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PREFACE TO SECOND EDITION 

The second edition to the 'Guidelines for Determining the Capacity of D-Regions with Premature 

Concrete Deterioration of ASR/DEF' in essence is an update of the first edition 0-5997-P1 (Mander 

et al., 2012a), with findings and improved analysis techniques developed since 2012. The two 

major additions to this edition are Chapters 4 and 5.  

Chapter 4 describes the development of a new minimalistic expansion model that is 

developed for ASR/DEF related expansion in reinforced concrete structures. The proposed model 

provides a method to predict the transient variation of expansion strains that are caused by 

ASR/DEF related expansion in reinforced concrete. Chapter 5 shows the application of the 

expansion model to the C-Beam specimen in detail. Based on the modeled expansion strains, the 

prestrains that need to be applied on the C-STM of a structure to simulate the effects of ASR/DEF 

can be obtained directly. This is markedly different from the recommended values of the prestress 

that were made in the first edition of the guidelines, which still can be used as a simplified first-

order analysis, or when sufficient information to develop the expansion model is not available.  

Worked example 1 in the first edition of the guidelines, which was the application of the 

C-STM technique to column bent cap, is not included in this revised edition. That example can be 

seen in Chapter 4 of Technical Report 0-5997-1 (Mander et al., 2012b). 

Any revisions/additional information from the first edition is marked with a vertical side-

bar in the left margin. Note that since Chapters 4 and 5 are entirely new, they are indicated by the 

side-bar next to the chapter heading. 
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1. FORWARD 

When a bridge engineer encounters a design or analysis problem concerning a bridge substructure, 

that structure will commonly have a mixture of member types, some slender, and some squat. 

Slender members are generally governed by flexure, and normal beam theory should suffice for 

analysis and design. Squat members can often be handled by beam theory too, although nowadays 

designers have a choice and may opt to use strut-and-tie (SAT) models. 

When the structure possesses a mixture of beam (B-) regions and deep or disturbed (D-) 

regions the dilemma facing the structural engineer is: What method should one use for structural 

analysis and design? 

The issue becomes even more murky when a structure already exists, but shows signs of 

damage and deterioration from the effects of Alkali Silica Reaction (ASR), Delayed Ettringite 

Formation (DEF), or other deterioration mechanisms. The engineer is faced with a second 

dilemma: How do deteriorated material properties get incorporated into the analysis? 

It is well-known that the behavior of deep beams or disturbed (or “D”) regions in a 

structural system cannot be accurately described according to conventional beam theory alone. 

This is due to the high irregularity of internal stress and strain distributions, accompanied by the 

interaction of flexure and shear. As a result, the coupled flexure and shear analysis of structural 

concrete members, especially deep beams, have been a contentious issue to both researchers and 

structural engineers for decades.  

Conventional U.S. design standards for D-regions have historically been based on 

empirically derived expressions. The concept of strut-and-tie modeling (SAT) was first introduced 

as a method of strength design in the AASHTO LRFD Bridge Design Specification (2010) in 1994, 

and the ACI 318 Building Code Requirements for Structural Concrete (2011) in 2002. However, 

as a SAT model only satisfies force equilibrium and is intentionally formulated as a lower bound 

(plastic) solution, the critical mode of failure (i.e., element or nodal failure) is often illusive to the 

designer. Thus the ultimate failure mechanism might lead to an undesirable brittle collapse when 

imposed to overload scenarios. 
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Current nonlinear shear analysis models for structural concrete deep beams are generally 

complicated to use and have limited applicability or appeal to practicing engineers. Clearly, it is 

desirable to have a model that is derived from rational mechanics and validated with experimental 

evidence that can be implemented into commercially available structural analysis software. 

Therefore, a Compatibility Strut-and-Tie Model (C-STM) that is intended for the nonlinear 

analysis of shear critical reinforced concrete structures is presented.  

These guidelines seek to demystify the above mentioned dilemmas. More specifically, 

guidelines are presented for determining the capacity of D-regions without and with premature 

concrete deterioration, in particular ASR and DEF effects. 

In many cases either beam theory, or SAT methods should suffice in assessing the strength 

and safety of bridge substructures with or without ASR/DEF effects. However, as a supplementary 

analysis tool the C-STM approach can be used to augment the design process by accurately 

assessing the force-deformation response and nonlinear failure modes of deep beams with small 

span to depth ratios or D-regions. 
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2. ANALYSIS SCHEMA 

2.1 SCOPE 

This section presents the analysis methodology to be followed for the analysis of the structural 

capacity of bridge piers. The flowchart shown in Figure 2–1 depicts the procedure and the 

branching decision points that either terminate the analysis or trigger additional analyses to provide 

additional insights into expected behavior of bridge piers. 

2.2 STAGE 1: ANALYSIS USING BEAM THEORY 

As a first step in the analysis of a bridge pier as shown in Figure 2–2, it is assumed that flexural 

plastic hinge forms first, and the analysis is conducted based on flexural bending theory. The steps 

in this analysis technique can be summarized as described in the following steps: 

Step 1:  Determine first yield flexural capacity, b
yM . 

Calculate the beam yield moment ( b
yM ) at first yield of longitudinal steel given by: 

( ') ( / 3)b
y s cM C d d C d kd     (2-1)

in which d depth to the centroid of tensile reinforcement from the extreme compression fiber; 

d   depth to the centroid of compression steel from the extreme compression fiber;  

 when  s s s s yC A f f f  and 0.85c cC f ab  where sA  the area of compression reinforcement; 

sf  stress in steel corresponding to strain s ; yf  yield stress of reinforcing steel; cf    concrete 

compressive strength; b  breadth of the section; and k is the elastic compression zone coefficient 

as given by Park and Paulay (1975): 

     2 2 2L L L L L Lk n d d n n               
(2-2)

in which L   the ratio of tension reinforcement; L   the ratio of compression reinforcement; 

and n   the modular ratio of steel to concrete.  
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Figure 2–1: Flowchart for Analysis Procedure of Bridge Piers.  
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Figure 2–2: Bridge Pier and Equivalent Beam Model for Flexure Analysis.
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The externally applied load that causes first yield is given by: 

/b b
y y bP M L  (2-3)

where bL distance from the point of application of the load to the face of the column.  

Step 2:  Determine nominal flexural moment, f
nM . 

The flexural moment ( f
nM ) of the beam is calculated as: 

( ) ( / 2)f
n s cM C d d C d a     (2-4)

in which 1a β c  is the depth of the equivalent rectangular stress-block for which c  is the neutral 

axis depth and 1β   the equivalent rectangular stress-block parameter given as: 

 0.65 0.85 - 0.05 ( ) - 4 0.851 cβ = f ksi   (2-5)

Step 3:  Determine externally applied load based on flexure, f
nP . 

Based on the flexural capacity ( f
nM ), the externally applied load ( f

nP ) is determined: 

/f f
n n bP M L  (2-6)

Step 4:  Determine beam shear capacity, s
nV . 

The shear capacity ( s
nV ) of the beam is computed as: 

s
n c s pV V V V    (2-7)

in which pV  component of shear carried by prestressing tendons, if any; sV  shear carried by 

steel; and cV  shear carried by concrete given by: 

'0.0316  c c v vV  β f b d  (2-8)

where cf    concrete strength in ksi units; vb  section web width across shear plane; vd 

effective shear depth taken as vd jd  or not less than the greater of 0.9d (where d  effective 

depth), or 0.72h  (where h  overall depth).  

For sections with steel transverse to the longitudinal axis of the member ( o90  ), the 

shear carried by the hoops and /or cross ties is given by: 
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v
s v y

d
V A f cotθ

s
  (2-9)

where vA   cross-sectional area of hoopset; s hoopset spacing; and θ= shear crack angle 

inclined from the longitudinal axis. 

 AASHTO LRFD (2010) specifications permit β  and θ  in Eq. (2-8) and (2-9) to be 

calculated by one of the following two methods: 

Method 1:  Simplified Procedure 

For reinforced (non-prestressed) concrete members, values of 2.0β=  and o45θ=  can be used. 

Thus, the shear carried by concrete is the same as the well-known historic ACI-318 (2011) method. 

Method 2:  General Sectional Procedure 

This method is based on the simplified version of the Modified Compression Field Theory (MCFT) 

(Bentz et al., 2006). In this method the parameters β  and θ  can be determined as described below. 

 For sections containing the minimum amount of transverse reinforcement as specified in 

AASHTO LRFD (2010), β  is determined as: 

4.8

1+ 750 s

β=
ε

 
(2-10)

where sε net longitudinal tensile strain in the section at the centroid of the tensile reinforcement 

determined as explained later. 

 For sections that do not contain the minimum amount of shear reinforcement as specified 

in AASHTO LRFD (2010), β  is determined as: 

4.8 51

(1+ 750 ) (39 )s xe

β=
ε + s

 
(2-11)

where xes   the crack spacing parameter is given by: 

1.38
12.0( .) 80.0( .)

0.63xe x
g

in s s in
a

  


 
(2-12)
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where ga maximum aggregate size in inches;  xs   the lesser of either vd (effective shear depth) 

or the maximum distance between layers of longitudinal crack control reinforcement, where the 

area of the reinforcement in each layer is not less that 0.003 .v xb s  

 The crack angle   for any of the above cases is given by:  

29 + 3500 sθ= ε  (2-13)

In Eqs.(2-10), (2-11), and (2-13), s can be determined from the following expression: 

| |
0.5 | |u

u u p ps po
v

s
s s p ps

M
N V V A f

d

E A E A

 
    

  


 

(2-14)

where | |uM   factored moment, not to be taken less than | |u p vV V d ; uV  factored shear force; 

pV  component of shear carried by prestressing tendon; uN   factored axial force taken as 

positive if tensile and negative if compressive; sA  area of non-prestressing tensile steel; psA 

area of  prestressing steel on the flexural tension side of the member; pof  (pre-tensioned members) 

  stress in strands when concrete is cast around them, and pof  (post-tensioned members)  

average stress in the tendons when the post-tensioning is completed, or for usual levels of 

prestressing 0.7po puf f
 
for both pre and post-tensioning; puf  ultimate stress in the prestressing 

tendon; sE  and pE  modulus of elasticity of reinforcing steel and prestressing steel respectively; 

and sA  area of reinforcing steel. 

Step 5:  Check strength hierarchy. 

Once the externally applied load based on flexure ( f
nP ) and the shear capacity ( )s

nV are calculated, 

the strength hierarchy can be determined based on: 
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IF  s f
v n nV P 

 

THEN shear has a measure of reserve capacity and the beam should fail in flexure. 

IF  s f
v n f nV P 

 

THEN the factored shear capacity may be insufficient leading to a shear failure of 

the bridge pier. 

In the above 0.90v   and 0.90f 
 
are the strength reduction factors for shear and flexure, 

respectively, as per AASHTO LRFD Bridge Design Specifications (2010). 

Step 6:  Determine the shear capacity of the beam-column joint regions. 

For the beam-column joint regions in bent caps the joint shear capacity needs to be determined in 

the direction in which the shear steel (hoopsets) is oriented. Thus, the vertical joint shear ( )jvV  

determined from the shear force diagram (Figure 2–2) of the bridge bent cap can be transformed 

(if necessary) as follows: 

c
jh jv

b

h
V V

h
  

(2-15)

in which bh  and ch  are the overall depth of the beam and column, respectively.  

The joint capacity can be assessed as: 

j
n arch trussV V V   (2-16)

where archV   shear carried by the corner-to-corner diagonal concrete arch (defined later); and 

truss sv yV A f   the shear carried by the hoops and/or cross ties, in which svA   
the total area 

of steel given by all hoops/ties within the joint region. 

There is a parabolic distribution of stress in the corner-to-corner arch in the beam-column 

zone which can further be simplified as shown in Figure 2–3a and b. From Figure 2–3c, 

 sinV P  . The total tensile force across the arch equals / 2 sin  w tP jd b f     , which implies 

the shear contribution from the corner-to-corner joint arch is given by: 
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Figure 2–3: Joint Arch Mechanism in Beam-Column Joint. 
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0.253 ( ) 8 ( )arch c v c vV f ksi b jd f psi b jd    (2-17)

taking 0.126 ( ) 4 ( ).t c cf f ksi f psi     

For the beam-column joint to be safe in shear the following should be satisfied: 

j
v n jvV V   (2-18)

From the above analysis, if it is determined that the beam has a measure of reserve capacity 

then the analysis can essentially be stopped at this point. However, if either the beam or the beam-

column joint is a shear critical section, then further investigation is warranted. In such a case, or 

when required by the code, the strut-and-tie technique of analysis can be used for further analysis, 

which is discussed in the next section. 

2.3 STAGE 2: STRUT-AND-TIE ANALYSIS 

The strut-and-tie modeling technique is a lower bound plastic truss model that is particularly useful 

for design. It can also be adopted for strength analysis, and may be particularly useful for structures 

that possess stocky members and a significant number of D (disturbed) regions. Using an SAT 

approach, a structure with D-regions is modeled as a truss, which consists of three types of 

elements: struts, ties, and nodes.  Struts represent concrete that carries compressive loads while 

tensile loads are carried by ties representing steel reinforcements.  Struts and ties intersect at nodes.  

Nodes are labeled by the element forces intersecting at the nodes; “C” represents compression 

while “T” stands for tension.  Based on the type of member forces at the node, the nodes can be 

classified as CCC, CCT, CTT, and so on. 

The truss geometry of the strut-and-tie model is based on the direction of stress flow in the 

D-region. The ties are aligned along the reinforcement layout, whereas the struts are oriented based 

on the compressive stress flow trajectories. It is also reasonable to determine the truss geometry 

based on the cracks that can be seen on a structural member as illustrated in  

Figure 2–4b. 

Once the truss geometry is determined, the nodal geometries must be established in order 

to calculate the stresses on each of the nodal faces.  These calculated stresses must not exceed the 

allowable stresses for each nodal face. The nodes can be proportioned either as a hydrostatic node 
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or as a non-hydrostatic node. In a hydrostatic node the principal stresses are equal on all sides of 

the node; hence the ratio of each nodal face is directly proportional to the force being applied to 

the nodal face. However, often the nodal dimensions are inconsistent with the beam details such 

as the location of the reinforcement and depth of the flexural compression zone. In the case of non-

hydrostatic nodes the stresses applied to each nodal face is different as the node is sized based on 

the beam details. As a result of this the nodal geometry is synchronized with the beam details. 

Additionally, higher values of shear span-to-depth ratio can also lead to unrealistically large struts 

in the case of hydrostatic nodes. 

Based on the above concepts, a strut-and-tie model for a cantilever bent and a straddle bent 

are shown in Figure 2–4. The forces in the truss elements can be determined by a simple truss 

analysis. The stresses in each of the truss elements and nodes are then checked against the 

allowable stresses.  

The allowable concrete compressive stresses on the nodal face depend on the type of node. 

The allowable stresses in the nodal regions are defined as follows: 

For CCC nodes 0.85cu cf f   

(2-19) CCT nodes 0.75cu cf f   

 CTT nodes 0.65cu cf f   

The limiting compressive stress within a strut ( cuf ) is given by: 

1

0.85
0.8 170

c
cu c

f
f f


 

 
 

(2-20)

in which 1   principal tension strain given by: 

1 0.002 cot2
s s sε = ε +(ε + ) α  (2-21)

where s   tensile strain in the direction of the tension tie; and s   the smallest angle between 

the compressive strut and adjoining tension tie. 

The nominal resistance of a strut/node is given as: 

n cu csP f A  (2-22)

where csA   effective cross-sectional area of the strut/node.   



 

13 
 

  

 

 
(b)  

Figure 2–4: Strut-and-Tie Model of (a) Cantilever Bent (b) Straddle Bent. 
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The nominal resistance of a tension tie is given by: 

n y st ps pe yP f A A f f      (2-23)

where yf  yield strength of reinforcing steel; stA   area of reinforcing steel in the tension tie; 

psA  area of prestressing steel; pef  stress in prestressing steel after losses. 

A generalized stepwise procedure on how to build a strut-and-tie model for a bridge pier 

as illustrated in Figure 2–4 is as follows. 

Step 1:  Determine the truss and node geometry. 

The first step in doing a strut-and-tie analysis is to determine the geometry of the truss and the 

nodes. The width of the compression chords in the column and the beam can be determined based 

on the depth of the triangular stress-block or the equivalent rectangular stress-block. The base of 

the CCC node can be proportioned based on the externally applied load that causes beam flexure 

( f
nP ) and the vertical component of shear in the beam-column joint ( )jvV . The width of the CCT 

node is taken to be equal to the width of the bearing pad, and the CTT node is dimensioned based 

on the bending radius of longitudinal reinforcement. The struts can be drawn based on the 

dimension of the nodes. This will also provide the inclination angle of the diagonal struts. 

Step 2:  Solve the determinate truss. 

It is assumed that the beam tension steel yields, that is, b s yT A f . Considering equilibrium of 

forces at the nodes, the forces in all the members of the truss can be determined.  

Step 3:  Determine critical node. 

The critical node can be determined based on the nodal strength of each of the nodes. Based on 

the nodal dimensions and the allowable stress (Eq. 2-19), the nodal capacity can be determined. 

Based on this information the critical node is identified.  
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Step 4:  Determine shear demand. 

The shear demand on the bridge pier can be determined based on the most critical strut/tie or nodal 

zone.  

Though the strut-and-tie modeling technique is an efficient method of analysis for shear 

critical members, it is observed that there could be inconsistencies or added complexity due to the 

nature of the structure that is being analyzed. Additionally, further difficulties in reaching a 

conclusion are likely, if the factored shear capacity based on SAT analysis is lower than the 

factored capacity from Stage 1 of the analysis even though the nominal capacity from SAT analysis 

is higher. Also, the results of the SAT analysis are based on reasonable assumptions, which could 

lead to varying results depending on the assumptions made.  

This calls for a more advanced analysis technique that adopts the concepts of the strut-and-

tie method and gives an idea about the overall behavior of the structure. One such technique, the 

compatibility strut-and-tie modeling, is developed in the next chapter. 

2.4 STAGE 3: ANALYSIS USING COMPATIBILITY STRUT-AND-TIE METHODS 

As mentioned above, strut-and-tie analysis methods are strictly lower bound solutions. Such 

solutions adhere to the principles of equilibrium, but are both silent on and unable to predict 

deformations of the structure. 

2.4.1 Stage 3.1: C-STM Based on Undamaged Material Properties 

To obtain a more holistic view of structural behavior that provides a complete force vs. 

deformation pathway to failure, compatibility of member deformations must be incorporated into 

the analysis. This approach is referred to as the Compatibility Strut-and-Tie Model (C-STM). 

As this approach is relatively new, a complete background and theoretical formulation is 

presented in the next chapter. As the bookkeeping for this class of nonlinear analysis would be 

time consuming, it is suggested that nonlinear structural analysis software (e.g., SAP2000) be used 

for the analysis. In this stage of analysis the undamaged material properties are used in evaluating 

the behavior of the structure. 
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2.4.2 Stage 3.2: C-STM Allowing for ASR/DEF Damage and Its Effects 

It is well-known that ASR/DEF can cause the concrete to deteriorate. The effects of ASR/DEF on 

the structure can be explained as follows:  

 ASR/DEF effects cause the concrete to swell.  

 This in turn may cause the cover concrete to badly crack and in some cases cause spalling.  

 Meanwhile swelling of the core concrete occurs, but this is constrained in part by the 

presence of longitudinal and transverse reinforcement.  

 Tensile strains that are induced put the reinforcing steel to be in a state of prestress.  

 In turn, this prestress effect, which is similar to adding an axial force, increases the stiffness 

and can slightly enhance the strength of the members most affected by ASR/DEF.  

The effects of ASR/DEF on the structure can be modeled in C-STM by introducing the 

effects of deteriorated cover concrete, concrete core confinement, prestressing forces, and 

modifying the stress-strain relation of steel accordingly.  

Based on an assessment of the extent of damage due to ASR/DEF effects observed in the 

structure, the damage can be categorized into three classes: 'slight', 'moderate', and 'heavy' damage. 

Based on the degree of confinement of core concrete and the extent of weakened cover concrete, 

and their respective contributions to the total area of the compression chord, a weighted average 

concrete compressive strength is determined. In lieu of a more precise analysis to determine the 

extent of expansion and the corresponding amount of prestressing force to be applied on the 

longitudinal and transverse reinforcement, recommended factors can be used for determining the 

prestressing forces based on the extent of damage. A C-STM analysis with the modified properties 

gives the behavior of the structure with ASR/DEF damage. 

Based on the results from the three stages of analysis presented above, the structural 

capacity of the damaged/undamaged structure can be compared to the load demand on the 

structure. Based on these comparisons, acceptability criterion can be set for a structure; this 

constitutes stage 4 of the analysis schema. 
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2.5 STAGE 4: ESTABLISH ACCEPTABILITY OF STRUCTURE 

Based on the analysis conducted on the structure in the previous three stages, a structural engineer 

must be able to make recommendations and establish the acceptability of an existing structure that 

may or may not be subjected to any form of deterioration/damage. The engineer must be able to 

make acceptability recommendations with respect to:  

(a)  The remaining life of the structure: This would essentially give ample time to the state 

DOTs to plan ahead in time on how to deal with the existing structure and/or plan alternate 

strategies.  

(b) Repairs or retrofit: Such remediation can be done in order to strengthen the existing 

structure and give it added service life to enable it to perform as designed. 

(c) Permissible load rating: By limiting the permissible loads on the structure, the service life 

of the structure can be extended. 

 The first two stages of analysis, using beam theory and SAT analysis, would give the 

structural engineer just an idea about the maximum load that the structure can withstand before it 

starts to show signs of distress or even fails. However, stage 3 of the analysis (where the C-STM 

technique is adopted) gives the overall force-deformation of the structure, which helps to better 

predict its behavior and make a more definitive engineering judgment on the structure’s 

acceptability condition. The C-STM analysis technique will aid the structural engineer to make a 

more accurate educated prediction about the behavior of the structure. 

The different stages of analysis for the C-Beam specimens including the C-STM technique 

is presented in Chapter 6. 
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3. COMPATIBILITY STRUT-AND-TIE FORMULATION 

It is well-known that the shear resistance in structural concrete elements is resisted by a 

combination of truss and arch action (Park and Paulay, 1975). Truss action is associated with the 

shear resistance provided by the transverse reinforcement (Ritter, 1899; Mörsch, 1909; Dilger, 

1966; Paulay, 1971; Kim and Mander, 1999, 2000, and 2007). Arch action becomes prevalent in 

squat reinforced concrete members, particularly those with wide webs where a direct compression 

load path (arch) exists between the applied load and the supports. These two primary mechanisms 

are further considered in what follows. 

3.1 MODELING TRUSS ACTION 

Figure 3–1a illustrates a variable angle crack pattern that typically forms in the disturbed regions 

of a fixed-fixed reinforced concrete deep beam. After the development of first cracking, diagonal 

concrete compression struts are tied together by the longitudinal and transverse reinforcing steel, 

thus resembling a truss. Starting with a differential portion of this truss, Kim and Mander (1999, 

2007) integrated this over the beam length to develop a “continuum truss” model where cracking 

was implicitly smeared in order to obtain the shear stiffness in a numerical form. 

Alternative numerical integration schemes were then considered by Kim and Mander 

(1999, 2007) to model the discrete crack patterns typically observed in reinforced concrete beams 

and are explored further herein. For a fixed-fixed beam, the simplest of these numerical integration 

schemes uses a two-point Gaussian quadrature solution leading to a so-called two-point Gauss 

Truss shown in Figure 3–1b. Note the solid lines represent tension ties (reinforcing steel), and the 

dashed lines represent diagonal compression struts (concrete). Through experimental and 

analytical validation, Kim and Mander (1999, 2007) found the two-point Gauss Truss to be a 

suitably accurate numerical integration scheme for capturing both shear and flexure deformations 

of disturbed regions with fixed-fixed end conditions. Higher order numerical schemes were also 

considered; however the two-point Gauss Truss model has the appeal of being statically 

determinate (due to anti-symmetry).  

By taking only one-half of an anti-symmetric fixed-fixed beam that is represented by the 

two-point Gauss Truss, a statically determinant cantilever remains, which can be represented by a 

so-called Single-Point Gauss Truss. In order to confirm the numerical accuracy of the proposed 
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single-point Gauss Truss, a convergence study of higher order numerical integration schemes was 

conducted. Based on recommendations of Kim and Mander (1999, 2000), the axial rigidities 

assigned to each truss member at the thi  integration point are given by:  

 
( )Ti i s sh

L
EA E A

s
  (3-1)

 
2

0.5
( )

tan
i

di c v

i i

EA E A
x







 (3-2)

 ( )L L sEA A E  (3-3)

in which ( )TiEA   axial rigidity of the transverse reinforcement ties (where i   numerical weight 

factor for transverse reinforcement defined in Table 3–1, sE Young’s Modulus for steel, shA   

area of one set of stirrups, L   member length, and s   stirrup spacing); ( )diEA   axial rigidity of 

the diagonal concrete struts (where ix   normalized coordinate of the thi  integration point, i   

strut angle relative to longitudinal steel, cE   Young’s Modulus for concrete, v wA b d  is the shear 

area of concrete, wb   beam width, and d  the effective depth of the beam from the extreme 

concrete compression fiber to the centroid of the tension steel); and ( )LEA   axial rigidity of the 

longitudinal reinforcement ties (where LA   is the sectional area of steel assigned to the 

longitudinal tension tie).  

Table 3–1 presents four different numerical integration schemes that were considered in 

this convergence study: single, two, and three-point Gauss quadrature, and Boole’s rule. A 3 ft. by 

2 ft. (900 x 600 mm) cantilevered beam was used as an illustrative example with a span to depth 

ratio of 1, and longitudinal and transverse reinforcing ratios of 0.010 and 0.003, respectively, 

where each integration scheme is depicted at the top of Figure 3–2. The right column of 

Table 3–1 presents the relative elastic shear stiffness ( )K  of each truss normalized with respect to 

the two-point Gauss Truss. Although some variability between schemes exists, it can be concluded 

that any reasonable integration scheme may be used to provide a satisfactory representation of 

shear stiffness. However, a more in-depth study should be considered to compare the flexure-shear 

interaction between truss models.  
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(a) Discrete representation 

 
(b) Two-point Gauss Truss 

 
Figure 3–1: Truss Model Idealization for a Fixed-Fixed Beam-Kim and Mander (1999). 

 

Table 3–1: Convergence Study of Higher Order Truss Models for a Cantilever Beam. 

Numerical 
Scheme i xi ωi 

2

Truss

- point

K

K
 

Single-
Point 
Gauss 

1 
2 

0.42265 
0.57735 

1 
1 

1.0429 

Two-Point 
Gauss 

1 
2 

0.21132 
0.78868 

0.5 
0.5 

1.0000 

Three-
Point 
Gauss 

1 
2 
3 

0.11270 
0.50000 
0.88730 

5/18 
8/18 
5/18 

1.0007 

Boole’s 
Rule 

1 
2 
3 
4 
5 

0.00 
0.25 
0.50 
0.75 
1.00 

7/90 
32/90 
12/90 
32/90 
7/90 

0.9371 
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(a) Flexural failure 
(Tension chord yield) 

(b) Tensile shear failure 
(Hoop yield) 

(c) Compressive shear failure 
(Strut crushing) 

Figure 3–2: Results of Convergence Study for Different Numerical Integration  
Schemes for C-STM Analysis.   

Single-Point Two-Point Three-Point Boole's Rule

0.0

0.5

1.0

1.5

0 1 2 3

V
tr

u
s

s 
/ V

2-
p

o
in

t

∆truss/∆2-point

0 1 2 3
∆truss/∆2-point

0 1 2 3
∆truss/∆2-point

0.211L 
0.789 L V2-pointL 

0.4227L 
V 

0.113L
0.5L 

0.887 L
V

0.25L 

0.5L 
0.75 L 

  j
d 

V

d 

Nonlinear Members 



 

23 
 

Figure 3–2 shows the force-deformation response of each truss model normalized with 

respect to the two-point Gauss Truss solution considering the following nonlinear mechanisms: 

(a) flexural steel yielding; (b) transverse steel yielding; and (c) concrete strut crushing. Each truss 

is modeled using well-known commercial  structural analysis software SAP2000TM (1995), and 

considers a bilinear stress-strain relationship with 3 percent strain hardening stiffness for steel, and 

an elasto-plastic response with a maximum compression stress of 0.85 cf   for the concrete struts.  

When nonlinear behavior is governed by longitudinal tensile steel yielding  

(Figure 3–2a), the post-yield force-deformation response is ductile. Despite similar yield strengths, 

the single-point Gauss Truss model resulted in a slightly more flexible elastic stiffness than the 

higher order Gauss quadrature truss models. The Boole’s truss was the most flexible of the truss 

models and provided slightly lower initial yield strength, but had a similar post yield response.  

When nonlinear behavior is governed by transverse steel yielding (Figure 3–2b), similar 

stiffness results were obtained. However, the post yield stiffness was less than that with 

longitudinal steel yielding. This shows that yielding of the transverse reinforcement can lead to 

large shear deformations with small increases in applied load.  

When nonlinear behavior is governed by strut crushing (Figure 3–2c), the ultimate strength 

had a variation up to 30 percent with the single-point truss giving the largest difference. An elasto-

plastic response of concrete was used for illustrative purposes only and does not accurately model 

concrete crushing; hence the response of each was stopped at a ductility of two. 

In summary, for cantilever modeling, the single-point Gauss Truss is evidently a 

sufficiently accurate model for considering the nonlinear flexure-shear interaction relative to the 

higher order truss models when the failure mechanism is controlled by longitudinal and transverse 

steel yielding. However, for mechanisms controlled by strut crushing, a convergence study is 

recommended to ensure the single-point Gauss Truss does not over-estimate the failure 

mechanism.  
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3.2 MODELING ARCH ACTION 

Arch action consists of a compressive stress field forming a diagonal corner-to-corner concrete 

strut that is tied back by the longitudinal reinforcement as shown in Figure 3–3a. The strut is 

assumed to have a parabolic stress distribution with a strut width that is proportional to the depth 

and length of the beam as given below (Holden et al., 2003): 

 0.375 / cosAW jd   (3-4) 

This approach is similar to that proposed for coupling beams by Paulay (1971).  

3.3 MODELING THE COMBINED TRUSS AND ARCH ACTION 

Figure 3–3 presents the combined C-STM that is comprised of: (a) arch action acting through the 

center of the beam cross-section; and (b) truss action acting along the outside stirrup legs.  

Figure 3–3c shows the amalgamated response of arch and truss action, where displacement 

compatibility is inherently accounted for such that the two mechanisms work in parallel to one 

another. A method of apportioning the relative contributions of arch and truss action is described 

as follows. 

Different methods of allocating the shear resisting mechanisms have previously been 

proposed based on the following parameters: (i) strength (Paulay, 1971; Kim and Mander, 1999); 

(ii) stiffness (Zhu et al., 2003); (iii) geometry (Hwang et al., 2000); and (iv) the shear span-to-

internal lever arm ratio (FIP-Commission 3, 1996). An investigation into the merits of each of 

these strategies was conducted, and the following conclusion was drawn: varying the proportions 

of arch and truss action resulted in minimal differences of the elastic force-deformation response. 

However, significant differences in the nonlinear response of the flexure and shear failure 

mechanisms were observed. Hence to accurately model the flexure-shear interaction, it is 

considered necessary to apportion the arch and truss mechanisms according to the longitudinal and 

transverse reinforcement ratios in order to account for strength and /L jd  in order to account for 

geometry.  
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               (a) Arch action         (b) Truss action       (c) Combined C-STM 

(d) Arch breadth scalar vs. L/jd ratio (e) Arch breadth scalar with varying reinforcement ratios

Figure 3–3: Composition of Classic Arch and Truss Action That Leads to the  
Overall Compatibility Strut-and-Tie Model.   
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An arch breadth scalar   is proposed to apportion the section breadth (shown in the cross-

sections of Figure 3–3) and is defined by the following ratio: 

 
2cot

L yArch

Arch Truss L y T yh

fV

V V f f j




  
 

 
 (3-5) 

in which ArchV   maximum shear force resisted by arch action that is proportional to the 

longitudinal reinforcement given below; and TrussV   maximum shear force resisted by truss action 

that is proportional to the transverse reinforced given as: 

 tan tanArch y L L y wV f A f b d     (3-6a) 

 / cotTruss yh sh T yh wV f A L s f b jd    (3-6b) 

where    the corner-to-corner diagonal angle; L L wA b d   is the volumetric ratio of 

longitudinal steel to concrete; LA   is the area of longitudinal reinforcement contributing to the 

tension tie; T sh wA b s   is the volumetric ratio of transverse steel to concrete over one hoop 

spacing; yf   yield strength of the longitudinal steel; yhf   yield strength of the transverse steel; 

and (1 / )j d d   the internal lever arm coefficient.  

The total shear resistance of the combined C-STM UV , as shown in Figure 3–3c, can now 

be defined as:
  U A TV V V   (3-7) 

where AV   is the shear resistance from arch action; and TV   is the shear resistance from truss 

action.  

 In order to maintain deformation compatibility and equilibrium between the arch and truss 

mechanisms, it is assumed that the section breadth wb  is proportioned according to the component 

strength as follows:  

 
(1 )

;w wA T

U w U w

b bV V

V b V b

 
   (3-8) 
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where wb   the arch breadth, and (1 ) wb   the truss breadth as shown in the cross-sections of 

Figure 3–3a and b, respectively. 

 Figure 3–3d and e illustrates the results of the arch breadth scalar   (Eq. 3-5) when plotted 

against /L jd  with varying ratios of transverse to longitudinal reinforcement. As one might 

intuitively expect, this relationship shows that arch action is more prominent in beams with smaller 

/L jd  and T L   ratios, while truss action has more of an effect in beams with larger /L jd  and 

T L   ratios. Others have made similar conclusions (Hsu, 1996). 

3.4 STRESS AND STRAIN TRANSFORMATION FOR FLEXURAL EQUIVALENCE 

A primary difficulty associated with truss modeling approaches is the limitation of selecting a 

single truss model geometry that captures the full elastic and inelastic force-deformation response. 

For doubly reinforced sections, it is proposed that the longitudinal C-STM flexural chords 

(members 1-3 (compression), and 2-4-5 (tension) in Figure 3–3c) be aligned with the respective 

compression steel centroids so that the internal lever arm is represented as ',jd d d   where d  

and d   are the respective centroids of the tension and compression steel and (1 / )j d d   is the 

internal lever arm coefficient. A similar approach was used and validated by Kim and Mander 

(1999, 2000) in order to incorporate cyclic behavior. However, because the centroids of the steel 

compression force (Cs) and the concrete compression force (Cc) may not coincide, it is necessary 

to transform the concrete constitutive material properties accordingly so that the transposition of 

the concrete element force (Cc) will provide a similar moment in order to satisfy the sectional 

moment capacity throughout the analysis.  

Historically the truss geometry for strut-and-tie models has been mostly based on an elastic 

stress field analysis and typically ignores the presence of compression steel (Hwang et al., 2000; 

Drucker, 1961; Thürlimann et al., 1983). Other researchers contend that the use of elastic stress 

analysis is inappropriate when assessing the ultimate limit state of a structure due to highly 

nonlinear development of strains associated with D-regions (MacGregor, 1992; Salem and 

Maekawa, 2006; Yun, 2000; Sritharan and Ingham, 2003). The proposed transformation theory 

(described below) provides a method that accounts for both compression steel and the nonlinear 

behavior of concrete compression chord element in accordance with standard stress-block analysis 
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that is incorporated over the entire range of loading. Figure 3–4a illustrates a standard flexural 

stress block analysis preformed on a doubly reinforced concrete section, assuming plane sections 

remain plane purely for the purposes of defining the concrete compression force, where the 

concrete tensile strength is assumed as zero. The neutral axis depth c  can be defined such that

c kd , where k  is the elastic compression zone coefficient given by Park and Paulay (1975) as: 

      2 2 2L L L L L Lk n d d n n               (3-9a) 

For column members an additional modification is made to allow for the axial force given by 

Eq. (3–9 b) (Arnold, 2004). 

2

2' ' ''
2

' ' '
     c c c

L L L L L L
c s c s c s

f f fP d P P
n n n

f bd f d f bd f f bd f
k

                                                         
 (3-9b) 

where d   the effective depth of the beam from the extreme concrete compression fiber to the 

centroid of the tension steel; d   the depth from the extreme compression fiber to the centroid of 

the compression reinforcement;    the ratio of tension reinforcement;    the ratio of 

compression reinforcement; n = the modular ratio of steel to concrete; b   the section breadth; 

cf    concrete compression strength; and P   axial force plus prestressing force (if any). 

 Because the C-STM compression chord member is located at the steel centroid, a 

transformation of the concrete stress block force Cc is required to convert it to an equivalent 

C-STM force that coincides with C-STM compression chord member. Section equilibrium 

requires: 

  *
s cP C C T    (3-10)

in which P =  the applied axial load ( 0P   for beams); s s sT A E   (where sA  representative 

area of longitudinal tension steel, and s  tensile steel strain); s s s sC A E    (where sA   

representative area of longitudinal compression steel, and s   compression steel strain); and *
cC   

transformed concrete force discussed below.   
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(a) Doubly reinforced stress block analysis 

 
(b) Stress block parameters (Karthik and Mander, 2011) 

 
 

(c) Key stress-strain parameters 

Figure 3–4: Constitutive Stress-Strain Relationship for Compression Chord Elements.
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The effective concrete strain *
c  measured by the C-STM chord member can be defined 

in terms of the extreme compressive concrete strain using the strain compatibility relationships: 

 * 1c s c

d

kd
  

    
 

 (3-11)

Hence, the concrete compression force can be expressed in terms of equivalent concrete stress 

block and related to *
s c     as follows:  

 *( . )c c c c cC f kd b E A     
 

(3-12)

in which    the stress block parameters used to define the equivalent stress block, where    

effective average concrete stress ratio, and    effective stress block depth factor; cf    concrete 

strength; *
c   C-STM concrete compression chord strain;    a compatibility correction scalar; 

and cA kd b  is the area assigned to the concrete chord element.  

Rearranging Eq. (3-12) and substituting Eq. (3-11), the compatibility correction scalar can 

be expressed as: 

  * 1 '
c

c c

f

E d kd xn

 



 


 (3-13)

in which c cox    is the normalized concrete compression strain at the extreme compression 

fiber; 0.002co   for unconfined concrete; and c co cn E f   (where 60000 ( )c cE f psi

5000 ( )cf MPa is the initial tangent modulus) (Mander et al., 1988). 

The only remaining unknown variables in Eq. (3-13) are   and the nonlinear strain, x . 

The nonlinear relationship between these two stress block variables is shown in Figure 3–4b 

(Karthik and Mander, 2011), where a tri-linear relationship is used to approximate the stress block 

parameters. The key stress-strain parameters for obtaining the concrete chord members 

constitutive relationship can be obtained through a direct axis transformation as shown in  

Figure 3–4c: where stress is a function of cf  , and the strain is a function of cox , as derived 

from Eq. (3-13). The transformed constitutive relation used for concrete chord members is then 
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derived by substituting appropriate values of cf   and (1 / )d kd  into Figure 3–4c. An application 

of this is presented later. 

A similar analysis for singly reinforced beams may be applied where the location of the 

compression chord member can be defined as follows. For members that do not exceed the elastic 

limit in the concrete compression stress block, the internal lever arm may be defined such that 

/ 3jd d kd   (where k   the elastic compression zone coefficient defined in Eq. 3-9). For 

members that do exceed the elastic stresses, a more appropriate representation of the internal lever 

arm may be defined using an ultimate limit state analysis such that 1 / 2jd d c   (where 1  is 

the standard code-based stress block factor, and c  is the neutral axis depth calculated by satisfying 

section equilibrium).   

3.5 C-STM GEOMETRY AND AXIAL RIGIDITY ASSIGNMENTS  

The C-STM shown in Figure 3–3c can be adapted for any deep beam or disturbed region and 

modeled using structural analysis software. Each member in the C-STM is comprised of two 

elements that model the individual behavior of steel and concrete in that member. The two 

elements are constrained together in order to give the combined steel-concrete response. The 

C-STM requires the following parameters to be defined in order to model the constitutive behavior 

of truss members: (i) truss geometry to define the member force; and (ii) axial rigidities of the steel 

and concrete elements to define elastic deformations.   

3.5.1 Truss Geometry 

As previously discussed, the primary difficulty associated with accurate truss modeling is the 

limitation of selecting a single truss model geometry that captures the force-deformation over a 

range of both elastic and inelastic response. The truss geometry is defined by first locating the 

node coordinates for the compression and tension chord members. This is done in accordance with 

the foregoing section, where the location of the compression chord member varies for doubly and 

singly reinforced sections.   

The horizontal coordinates of the boundary nodes are either defined by: (i) an applied 

load/bearing support (i.e., Node 5 in Figure 3–3c is defined by the centroid of the applied load); 
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or (ii) at the intersecting lines of thrust from the beam and column members (i.e., Node 1 in  

Figure 3–3c is defined at the intersection of the compression steel in the beam and supporting 

column represented as a fixed boundary). The transverse tension ties in the truss mechanism are 

then located according to the selected numerical truss as defined in Figure 3–2 (i.e., Nodes 3 and 

4 in Figure 3–3c are defined by single-point Gauss quadrature). 

3.5.2 Axial Rigidity 

For each C-STM member, the expected composite steel-concrete response is modeled using 

separate elements for steel and concrete, respectively. Each element is assigned elastic axial 

rigidities as specified in Table 3–2, where the member numbers refer to Figure 3–3c. Some 

comments on Table 3–2 follow. 

For tension chord members (row 1 of Table 3–2), the presence of longitudinal distribution 

steel along the web may be accounted for by using an effective steel area:  

 * s
s

A d
A

d
  (3-14) 

where sA   the total area of longitudinal plus distribution reinforcement acting in tension; d   

the effective depth to the centroid of sA ; and d   section depth to the longitudinal tension 

reinforcement. 

For tension and compression chord members (row 1 and 2 of Table 3–2), the concrete area 

is assumed to be the same so that cyclic effects can to be accounted for, if necessary. 

For transverse truss members (row 3 of Table 3–2), the total area of transverse 

reinforcement is evaluated as the number of hoops actively participating in the truss mechanism

hN , where  int 1hN L s   is the number of hoopsets. Also, the effective tension area of concrete 

for the transverse tie is taken as twice the cover depth ( cc ) plus the stirrup hoop diameter ( hd ), 

multiplied over the length of actively participating hoops ( hN s ), thus defining the area of concrete 

surrounding the stirrup legs. 
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Table 3–2: Elastic Truss Member Axial Rigidities. 

Member 
Steel Concrete 

Comments 
E A E A 

2 – 4 
4 – 5 sE  sA  cE  .b kd  Tension Chord 

1 – 3 sE  sA  E cE  .b kd  *Compression Chord 

3 – 4 sE  h shN A  cE   4 2 h hc d N s  
† Active Hoop steel 
including tension 
stiffening effect 

1 – 5 – – cE  0.375  

cos
wb jd


 Concrete Strut in Arch 

Mechanism 

1 – 4 – – cE  
2

0.5(1- )

0.423 tan

wb jd


 Concrete Strut in Truss 

Mechanism 

3 – 5 – – cE  
2

0.5(1- )

0.577 tan

wb jd


 Concrete Strut in Truss 

Mechanism 

*    
(psi) (MPa)

= strain compatibility coefficient = =
168 1- 14 1-

c c
E

f f

d' / kd d' / kd


 
 

 In lieu of  a more precise analysis it is recommended that = 0.6E  

Ϯ  hN = int L/ s-1  is the integer part of  active hoops in truss mechanism  

For the concrete arch member (row 4 of Table 3–2), the strut width is given by Eq. (3-4) 

and is multiplied by the apportioned arch strut width wb  to obtain the strut area. 

For the concrete strut members in the truss mechanism (row 5 and 6 of Table 3–2), the strut 

width is defined using Eq. (3-2) (Kim and Mander, 1999, 2000), where the normalized coordinate 

of the ith integration point ix  is taken as 0.423 and 0.577 (in accordance with  

Table 3–1) for the concrete elements 1-4 and 3-5, respectively. These are multiplied by the 

apportioned truss strut width (1 ) wb  to obtain the respective strut areas. 

3.6 ELEMENT CONSTITUTIVE MATERIAL RELATIONS 

The elastic parameters of the C-STM model are defined by the truss geometry and axial rigidities. 

In order to define the strength of each element, nonlinear constitutive material relationships for 

cracked reinforced concrete are applied as follows.  
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3.6.1 Reinforcing Steel 

For simplicity, the reinforcing steel is approximated using a bi-linear stress-strain relationship with 

3 percent strain hardening beyond yielding. Where necessary, a more accurate material model may 

be applied in order to allow for bond slip or where a bilinear slope does not provide suitable 

accuracy.  

3.6.2 Diagonal Concrete Struts  

From the works of Vecchio and Collins (1986), Mau and Hsu (1987), and Hsu and Zhang (1997) 

it is well-known that the compression strength of diagonal concrete struts in reinforced concrete 

beams and panel elements is reduced as a result of the tensile strain acting orthogonal to the 

compression strain. This concrete softening phenomenon was investigated by Collins and his 

research group; one rendition of their work is modeled by the following relationship (Vecchio and 

Collins, 1986): 

 

2,max

1

1
1.0

'
0.8 0.34c

co

f

f





  


 
(3-15)

where    the softening coefficient; 2,maxf   the 'softened' concrete strength; co   the principal 

compression strain typically taken as 0.002; and 1   the principal tensile strain acting 

perpendicular to compression strut.  

This relationship is typically incorporated in each step of a hand analysis, or directly 

embedded into a nonlinear Finite Element Modeling (FEM) formulation where the softening 

coefficient is continuously updated to satisfy equilibrium (Rots et al., 1985). However, when 

applying this in commercial structural analysis software (such as SAP2000TM, 1995), the user is 

restricted to the initial input parameters and hence a more direct approximation is required. 

Accordingly, Eq. (3-15) can be conveniently recast as:  

 1

1

0.0012
1

3 co










 

(3-16)
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where  are Macaulay brackets, and the value 0.0012 can be thought of as a fracture strain such 

that only when 1 0.0012   the concrete softens. The strain 1  can be assessed from dummy strain 

elements (with EA=1) perpendicular to the diagonal concrete struts as described later. 

Vecchio and Collins (1993) and Belarbi and Hsu (1995) conducted extensive experimental 

studies to investigate the behavior of softened concrete. Based on the compression softening data 

obtained from panel test results (Vecchio, 2000) presented in Figure 3–5a the softening coefficient 

can be represented by: 

 
 1 2

1

1 0.25


 



 (3-17) 

where 2  the compression strain (negative) in the diagonal member. The strains 1  and 2  can 

be obtained from the C-STM analysis.  

In comparing the experimental force-deformation results of C-Beam Specimen 3 with 4 

(Mander et al., 2015), it was evident that there needs to be a simple method to discriminate between 

softened confined and unconfined concrete. Unconfined softened concrete occurs where there is 

an absence of completely enclosed or hooked hoops around a badly damaged concrete section 

which results in large transverse strains. It is proposed to distinguish between confined and 

unconfined softened concrete by the two different softened concrete models shown in  

Figure 3–5b.  

The softened constitutive relations for the diagonal concrete struts can now be defined by 

modifying the Mander et al. (1988) model to reduce the concrete stress and strain given by:  

 

1
c

c r

f xr
f

r x

 


 
 (3-18)

in which cf    softened concrete stress; ( )c cox    is the softened concrete strain coefficient 

(where 0.002co  ); and  c c secr E / E E   (where sec c coE f  ). The softened concrete stress-

strain relationship can be approximated as a linear response as shown in Figure 3–5b.  

3.6.3 Concrete Tensile Strength 

The contribution provided by the concrete tensile strength, commonly referred to as “tension 

stiffening” (Vecchio and Collins, 1986), is typically ignored in many force-based strut-and-tie 
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models (MacGregor, 1992; Collins and Mitchell, 1991; Collins, 1978; Hwang et al., 2000). By 

assuming strain compatibility between concrete and steel, the overall member tensile force is 

simply the summation of the steel and concrete forces for a given strain (Collins and Mitchell, 

1991; Vecchio and Collins, 1986). Thus the combined steel and concrete elements that make up 

the tension members 2-4-5, and 3-4 in Figure 3–3c, intrinsically provide the overall tension 

stiffened response. 

Tension stiffening models vary for different situations and structures; hence the following 

three approaches are recommended for the C-STM: 

 For longitudinal and transverse reinforcing steel bars, tension stiffening is modeled by 

considering a fracture energy method (Petersson, 1980) as shown in Figure 3–6. The fracture 

energy fG  is defined as the energy required to create one unit area of cracking in which 

f fG hg ,  where 3 ah d   is  the  crack  band width taken as three aggregate diameters; and 

fg   the area under the stress-strain softening diagram. The stress-strain relationship is 

defined using a tri-linear stress-strain relationship given by: 

 t c t t tf E for      (3-19a) 

 
2

3 3
t

t t u

f
f for  


   (3–19b) 

 0t t uf for     (3–19c) 

in  which tf   average concrete tensile stress; t   average concrete tensile strain; t    strain 

at peak tensile stress; 4 ( )t cf f psi   is typically used to define the concrete tensile strength 

(Collins and Mitchell, 1991); and u   ultimate tensile strain where stress can no longer be 

transferred and is defined by Eq. (3-20). 

 
18

5
f

u
t

G

f h
 


 (3-20)

Based on experimental results, Petersson (1980) noted that the fracture energy fG  for normal-
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(a) Compression Softening Data Obtained from Panel Tests (Vecchio, 2000) 

 
(b) Compression Softened Concrete Model  
Figure 3–5: Diagonal Concrete Elements 

 

 
Figure 3–6: Concrete Tension Stiffening Ties. 
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weight concrete typically ranges from    0.343 0.571 lbs / in 60 100 N / m   . 

Alternatively, for simplicity, u  is assumed as the steel yield strain in this work. 

 In the case of panel and wall structures with a dense network or reinforcing steel, the 

descending branch model proposed by Vecchio and Collins (1986) may be more appropriate 

as shown in Figure 3–6. That is:  

 1 2

1 500
t

t t t

t

f
f for

   



 


 (3-21) 

where 1  and 2   factors to account for bond characteristics of reinforcement. 

 For structures with experimental results, parameterized models can be applied to model the 

stress-strain relations used for concrete tension stiffening. 

3.6.4 Concrete Compression Chord Members 

As previously discussed, the transformed constitutive relation used for concrete chord members is 

derived by substituting appropriate values of cf   and (1 / )d kd  into Figure 3–4c to obtain the 

stress-strain relationship of the concrete compression chord member. 

3.6.5 Modified Material Properties to Account for ASR/DEF 

The effects of ASR/DEF on the structure can be taken into account in the C-STM analysis 

technique by modifying the material properties based on expansion strain modeling, observations, 

and experimental data. The extent of damage on the structure can be categorized into three classes: 

'slight', 'moderate', and 'heavy' damage. Based on this assessment the following material properties 

should be adopted in the analysis. 

1. Assess deteriorated cover concrete properties 

The assigned concrete strength within each concrete truss member needs to be appropriately 

factored to account for the damage caused by ASR/DEF expansion in cover concrete. The modified 

concrete strength is defined as: 

 cASR cf f   (3-22) 
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where    the strength reduction factor, which is based on the extent of damage observed. The 

right column of Figure 3–7 shows the average of the modeled transverse tensile expansion strains 

1( )  in the beam and column of the deteriorated C-Beam specimens. The horizontal bands indicate 

the range of transverse strains for undamaged (0< 1 <0.0012), 'slight' (0.0012< 1 <0.006), 

'moderate' (0.006< 1 <0.016), and 'heavy' ( 1 >0.016) damage. Substituting the range of 1  values 

into Eq. (3-16) results in the following range of strength reduction factors; default values of   are 

also recommended if precise values of 1  are unknown but the visually observed degree of damage 

is as indicated by Figure 3–7. 

 For 'slight' damage  1> >0.55  Default  0.75 

 For 'moderate' damage 0.55> >0.30  Default  0.40 

 For 'heavy' damage   <0.30  Default  0.30 

The out-of-plane photographs and the crack pattern observations presented in Figure 3–7 

shows the physical state of the C-Beam specimens that fall into the category of undamaged,  

'slight', 'moderate', and 'heavy' damage. Note that the crack pattern on 'moderately' damaged 

Specimen 4 looks similar to the crack pattern on the 'heavily' damaged Specimen 3. However, the 

cracks in the out-of-plane direction of Specimen 3 were wider compared to Specimen 4. It was 

also observed that the crack width strains (sum of crack widths/overall width) in the beam and 

column out-of-plane region were about half that of the surface strains that were measured from the 

DEMEC points from the same region. Thus, it is possible to relate the crack width strains with the 

actual expansion strains and thus determine the extent of damage caused by ASR/DEF expansion 

on the structure from Figure 3–7. 

2. Assess concrete core confinement properties 

ASR/DEF effect causes the concrete to swell. The swelling of core concrete is constrained by 

longitudinal and transverse reinforcement, which effectively confines the core concrete. To 

account for this effect the confinement ratio ( /cc cc coK f f   where cof    in situ concrete strength) 

has to be determined to obtain the confined concrete stress ( )ccf  . The procedure to evaluate the 

confinement ratio is described below (Mander et al., 1988).   
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 Figure 3–7: Deteriorated Specimen Appearance, and the Modeled Transverse Strains 
in the C-Beam Out-of-Plane Direction. 

Slight

Moderate

Heavy

0.0031

0

0.005

0.01

0.015

0.02

0.025

0 365 730 1095 1460 1826
Ex
p
an

si
o
n
 S
tr
ai
n

Deterioration Time (days)

Specimen 2

Slight

Moderate

Heavy

0.0104

0

0.005

0.01

0.015

0.02

0.025

0 365 730 1095 1460 1826

Ex
p
an

si
o
n
 S
tr
ai
n

Deterioration Time (days)

Specimen 4

Slight

Moderate

Heavy

0.0210

0

0.005

0.01

0.015

0.02

0.025

0 365 730 1095 1460 1826

Ex
p
an

si
o
n
 S
tr
ai
n

Deterioration Time (days)

Specimen 3



 

41 
 

The effective confining stress in the x and y direction lxf   and lyf  are given as: 

lx e x yf k f   
(3-23)

ly e y yf k f 

where ek  confinement effectiveness coefficient (defined below); yf   yield stress of reinforcing 

steel; x  and y  are the volumetric ratio of lateral confining steel parallel to the x and y axis, 

respectively, given as: 

sx
x

c

A
sd

   

(3-24)
sy

y
c

A
sb

 
 

in which sxA  and syA  total area of lateral reinforcement parallel to the x and y axes, respectively; 

s   spacing of hoop sets; cd   core dimension in y direction; and cb   core dimension in the x 

direction. The confinement effectiveness coefficient ( )ek  is the ratio of area of effectively confined 

core concrete ( )eA to the concrete core area of the section ( )ccA .  

e
e

cc

Ak
A

  (3-25)

In rectangular sections the transverse steel bows outward between the longitudinal bars, 

hence arching action will occur between the longitudinal bars that are fully supported in position 

by an angle bend in the transverse steel as shown in Figure 3–8. The arching action is assumed to 

take the form of a second degree parabola with an initial tangent slope of 45°. The area of one such 

parabola is given by  2 / 6iw , where iw  is the ith clear transverse spacing between longitudinal 

bars in which arching action of concrete develops. In the case of a lightly confined rectangular 

section, the parameter walong the y axis is taken as the depth of the neutral axis ( )kd  minus the 

distance from the extreme compression fiber to the longitudinal bar. The net area of ineffectively 

confined concrete for the n  longitudinal bars supported in the corners of the bent transverse hoops 

is given by: 
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 2

1

/ 6
n

i
i

w


  (3-26)

The total effectively confined core concrete area is defined as: 

 2

1

/ 6 1 0.5 1 0.5
n

e c c
i c c

s s
A b d w

b d

              
  (3-27)

in which s  clear longitudinal spacing between hoop bars in which arching action of concrete 

develops.  

The concrete core area of the rectangular section is given by: 

(1 )cc c c ccA b d    (3-28)

where cc  volumetric ratio of longitudinal steel in the confined core. Note that the term (1 )cc

in the above equation effectively removes the presence of longitudinal bars from the confined 

concrete area. From these the confinement effectiveness coefficient ( )ek can be determined from 

Eq. (3–25). 

The ratios /lx cof f   and /ly cof f   are determined, the smaller of these ratios is taken as 

1 /l cof f  , and the larger is taken as 2 /l cof f  . The confinement ratio ( / )cc cc coK f f   is determined 

from the chart shown in Figure 3–9. Thus, the confined concrete stress is then determined as 

cc cc cof K f  , where cof   in situ concrete strength. 

The strain ( )cc  corresponding to the maximum confined concrete stress ( )ccf   is defined 

as: 

(1 5( 1))cc co ccK     (3-29)

in which co  the strain corresponding to the unconfined concrete strength (usually co  0.002). 
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Figure 3–8: Assumed Arching Mechanism Between Hoops for 
Rectangular Sections (Mander, 1983). 

 

Figure 3–9: Confined Strength Determination from Lateral 
Confining Stresses for Rectangular Sections (Mander, 1983). 
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3. Compute effective concrete strength 

Both the cover and core concrete areas contribute to the area of the struts in the C-STM model. 

Therefore to account for the reduction in concrete strength in the cover concrete and the effects of 

confinement in the core concrete, a weighted average concrete strength is computed based on the 

area contribution of the cover concrete and the core concrete to the overall area of the strut 

elements.  

4. Prestress effects in longitudinal bars and hoops  

The constraint offered by longitudinal reinforcement and transverse hoops to the swelling of core 

concrete puts tensile strains on the reinforcing steel, which puts the concrete in a state of prestress. 

The prestressing forces can be evaluated based on the expansion strains in the specimen, at the end 

of its exposure period. For this, the expansion model that is formulated and applied to the C-Beam 

specimens (presented in the following chapters) can be used to determine the expansion strains 

and hence compute the corresponding prestressing force. In lieu of the above exhaustive expansion 

strain analysis, the following recommended values can be used. 

Depending on the extent of damage ('slight', 'moderate', or 'heavy') due to ASR/DEF effects 

the following recommendations are made for prestressing stresses ( )psf  in longitudinal 

reinforcement: 

 slight damage   0.3ps yf f  

 moderate damage  0.5ps yf f  

 heavy damage   1.1ps yf f  

in which yf  yield stress of longitudinal reinforcement. 

Similarly the recommendation for prestressing stresses in hoops are: 

 slight damage   0.5ps yhf f  

 moderate damage  1.0ps yhf f  

 heavy damage   1.25ps yhf f  

in which yhf  yield stress of transverse hoops. 
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Appropriate modifications to the stress-strain behavior of the reinforcing steel have to be 

made to account for the prestressing effects. The modified stress-strain relation of steel is shown 

in Figure 3–10 in which ps   prestrain corresponding to prestressing stress ( )psf . 

3.7 ULTIMATE STRENGTH AND SOFTENING OF CONSTITUTIVE RELATIONS  

The exact failure mechanism for deep beams or disturbed regions is difficult to define due to 

unknown (a priori) hierarchy of failure mechanisms, particularly given the fact that shear failure 

alone can be of four types: diagonal tension, web crushing, nodal failure, or sliding shear. In reality 

the type of failure is heavily dependent on the member geometry and reinforcement detailing, and 

is often a combination of events that lead to the formation of the final collapse mechanism. In the 

C-STM, steel yielding, concrete crushing, and concrete softening are intrinsically accounted for 

through the material constitutive relationships previously described. However, a more thorough 

post analysis assessment may be required in order to assess other possible critical failure 

mechanisms. 

3.7.1 Strut-and-Tie Strength Checks 

Strut-and-tie modeling predisposes itself to defining failure as either: yielding of reinforcing ties, 

crushing of a strut, anchorage failure of reinforcing ties, or nodal failure. The member forces in 

the C-STM can be used to check that the force does not exceed the strength defined using 

conventional SAT design procedures for anchorage and nodal failures. 

3.8 COMPUTATIONAL IMPLEMENTATION 

The computational analysis of the C-STM described in the above sections can be implemented 

using structural analysis software and carried out in six steps as discussed in what follows. 

Step 1:  Assign node coordinates 

For doubly reinforced sections the longitudinal chord members (members 2-4-5 tension, and 1-3 

compression of Figure 3–3c) are defined at the respective longitudinal steel centroids. The 

horizontal coordinates of the boundary nodes are either defined by: (i) an applied load/bearing 

support  (i.e.,  Node  5 in Figure 3–3c is defined by the centroid of the applied load); or (ii) at the 

intersecting  lines  of  thrust  from  the  beam and column members (i.e., Node 1 in Figure 3–3c is
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Figure 3–10: Modified Stress-Strain Model for Steel to Account for Prestressing Effects 

Due to ASR/DEF.  
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defined at the intersection of the compression steel in the beam and supporting column represented 

as a fixed boundary). The transverse tension ties in the truss mechanism are then located according 

to the selected numerical truss scheme (i.e., Nodes 3 and 4 in Figure 3–3c are defined by single- 

point Gauss quadrature).
 

Step 2:  Assign steel and concrete elements 

The steel and concrete elements of the C-STM can be modeled using separate trusses with nodes 

constrained together to give the combined steel-concrete member response. This is most easily 

simulated by duplicating the assigned nodes in the out-of-plane axis to form two separate trusses, 

and constraining the degrees of freedom for each of the duplicate nodes. Steel and concrete 

elements are then drawn with pinned-end connections between the appropriate node points as 

shown in Figure 3–11.  

The expressions presented in Table 3–2 are used to define the stiffness and axial area 

assignments for each steel and concrete element of the C-STM model. The arch breadth scalar   

is used to apportion the contribution of arch and truss action defined as a function of the 

longitudinal and transverse reinforcement and members’ span-to-depth ratio given by Eq. (3-5). 

Alternatively, the arch breadth scalar can be obtained graphically using Figure 3–3e, where 

the span to depth ratio is used to determine the arch breadth scalar according to the ratio of 

transverse to longitudinal reinforcement. Once defined, element areas are assigned as axial cross-

sectional areas with an associated material property that defines the elastic stiffness, thus defining 

the element’s axial rigidity.  

Step 3:  Assign nonlinear constitutive material relationships 

At this stage, the elastic response of the C-STM is defined by steps 1 and 2; hence nonlinear 

constitutive material relations for cracked reinforced concrete are now used to define the element’s 

nonlinear behavior. Figure 3–12 shows the theoretical stress-strain relationships used to define the 

concrete constitutive relations for: (a) diagonal concrete struts; (b) concrete chord members; and 

(c) concrete tension behavior used in conjunction with all truss elements that also possess steel. 

To account for the ASR/DEF effects, the modified material properties as discussed in section 3.6.5 

have to be considered.  
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Figure 3–11: SAP2000 Screenshot: Steel Truss (Top); Concrete Truss (Bottom). 
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(a) Diagonal Web Members 

(b) Compression Chord Elements 

(c) Tension Stiffened Elements 

Figure 3–12: Nonlinear Constitutive Material Properties. 
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Step 4:  Assign load cases 

Load patterns are assigned at node locations as either forces or displacements in order to replicate 

the structure’s loading pattern. Other parameter inputs include: loading control either specified as 

load or displacement control; incremental step size; results saved at final load or incremental load 

steps; and other nonlinear parameters. However in SAP2000TM (1995), in order to perform an 

analysis in displacement control, additional joints have to be introduced without altering the 

structural behavior of the system. Joint displacements are provided at these joints, and the 

corresponding forces are calculated to obtain the overall force-deformation behavior of the system. 

Step 5:  Run analysis 

The analysis can now be run for the desired load cases as input by the user. Once complete, the 

user can progressively step through the deformed shape to review the formation of nonlinear 

behavior.  

Step 6:  Post analysis investigation 

Axial forces, displacements, and other output parameters can then be exported to a spreadsheet so 

that a post analysis investigation can be conducted. The axial force in each member can be 

individually assessed in order to ensure that the force does not exceed any other strength failure 

criteria (i.e., anchorage failure, nodal crushing, concrete softening, etc.). Because element strains 

are  not  given  as  an  explicit  output in SAP2000TM (1995), an alternative means of defining the 

strain is required. This can done using one of the following techniques: 

(a) The element strain can be defined in terms of the element force divided by the axial rigidity as 

shown below: 

 
F

EA
   (3-30)

where EA  is constant in the elastic range, hence this can only be applied prior to nonlinear 

behavior. 

(b) For members that reach nonlinear deformations, the strain can be obtained from the link 

deformations. The link deformations can be divided by their actual member length to obtain 

the strain in that member.  
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(c) Alternatively to the above methods, a third truss called a ‘strain-meter truss,’ can be defined in 

the out-of-plane axis similar to the steel and concrete trusses such that each node is constrained 

accordingly. Truss elements with a unit axial rigidity (i.e., 1EA  ) can be drawn between the 

desired nodes as Strain Members so that the (small) force resisted is equal to the strain as 

shown in Eq. (3-30). This will provide the composite steel-concrete axial strain associated 

between the selected two node points. Note: this method was verified in this research using the 

previously mentioned methods providing identical comparisons for vertical and horizontal 

members. However, some minor numerical discrepancies were observed in the diagonal 

concrete members where the results from step (b) would deviate with highly nonlinear 

behavior. 

Application of the C-STM modeling technique is presented in Chapter 6. 
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4. MODELING ASR/DEF EXPANSION IN REINFORCED  
CONCRETE STRUCTURES 

4.1. INTRODUCTION 

Alkali-Silica Reaction (ASR) can be described as a chemical reaction between the alkalis in the 

cement and the reactive silica in the aggregates, which react to form alkali-silica gel. This gel 

absorbs moisture and expands causing the concrete to crack. Delayed Ettringite Formation (DEF) 

is the formation of ettringite in hardened concrete when the concrete is subjected to high 

temperatures, generally greater than 160°F, during curing and is exposed to moisture later in its 

life. This, like ASR, causes the hardened concrete to expand and thereby induces tensile cracking.  

The effects of ASR and DEF on long-term concrete behavior have been studied extensively 

over the past few years. Studies have shown that several factors affect ASR expansion in concrete, 

such as alkali content of the cement, reactivity of aggregates, temperature and humidity among 

others. The majority of previous studies, however, have concentrated on the effects of ASR on 

plain concrete; only a few are related to reinforced concrete. It has been established that external 

restraint (compressive) stresses and passive restraint stresses induced by reinforcement 

(confinement) can significantly influence the expansion caused by ASR on reinforced concrete 

(Hobbs, 1988; Jones and Clark, 1996; Multon et al., 2006). The effect of DEF induced expansion 

on reinforced concrete also has gained significant attention in recent times. Again, there is 

sufficient evidence to show that externally applied stresses and/or internal restraint stresses 

induced by confining or longitudinal reinforcement can significantly reduce the expansion caused 

by DEF in reinforced concrete (Bouzabata et al., 2012).  

Although extensive research has been conducted to model the expansion caused by ASR 

in concrete, a review of past investigations show that a majority of the work has been limited to 

plain concrete. The effects of compressive stresses on ASR expansion have not been solved by 

predictive models using the concepts of chemoelasticity (Multon et al., 2006). Additionally, most 

of the research combines the finite element method with the chemical mechanism to come up with 

a model for expansion in concrete due to ASR (Ulm et al., 2000; Li and Coussy, 2002; Capra and 
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Sellier, 2003; to name a few). These methods are complex and difficult to effectively implement 

in a regular design office engineering practice.  

A minimalist semi-empirical strain-based model for the analysis of swelling strains in 

reinforced concrete members due to ASR/DEF expansion is presented. The validation of the 

proposed model with experimental observations made on specimens cast and cured in saturated 

conditions in a laboratory test setting is presented in Mander et al. (2015). Later, modifications are 

proposed to the model to account for realistic field temperature and moisture content (partial 

saturation) variations. The validation of the modified model is presented in Mander et al. (2015), 

where the expansion strains from the model are compared with the observed expansion strains in 

field-cured large scale specimens showing signs of ASR and DEF. 

4.2. MODELING ASR/DEF EXPANSION IN SATURATED PRISMS 

Based on an examination of experimental results, expansion over time follows the general form 

presented in Figure 4–1 for plain and reinforced concrete. Therefore, a semi-empirical model to 

estimate the expansion strains in reinforced concrete caused due to ASR/DEF expansion over time 

is developed herein. A hyperbolic tangent function is proposed for the backbone equation which 

has the general form 

max( ) tanh o

r

t t
t

t  
  (4-1)

in which ( )t   the expansion strain in reinforced concrete due to the combined effects of ASR 

and DEF expansion at time ;t max
   the maximum expansion in concrete which is a function of 

reinforcement ratio  ; ot   the initiation time when expansion due to ASR/DEF commences; rt   

the 'rise time' of the hyperbolic tangent line which is the time from the beginning of ASR/DEF 

induced expansion to when the maximum expansion is reached along the tangent line; and   are 

the Macaulay brackets which represent a common engineering notation used to describe if 

0ot t  , then   0ot t  . The parameters ot  and rt  are empirically determined from the 

experimental expansion observations.  
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Figure 4–1: Expansion Model for ASR/DEF Induced Expansion in Concrete. 
 

  

Ex
p
an

si
o
n
 S
tr
ai
n
, 
(t
)

Time, t (days)

Plain Concrete

୭୫ୟ୶

Reinforced Concrete

୫ୟ୶

trto



 

56 
 

The other unknown parameter in (4-1), the maximum expansion in concrete max
 , is 

determined based on a strain energy approach. The strain energy density (u ) of the concrete prism 

of area ,A  length L  as shown in Figure 4–2a and subjected to an axial stress, ,  is given by: 

0

u d


    (4-2) 

where   and ,  respectively, are the strain and stress. In the simple case, to compute the strain 

energy in reinforced concrete, the strain energy in concrete ( )cU  and steel   sU  needs to be 

calculated.  

Figure 4–2b shows an equivalent elasto-plastic stress-strain relation of concrete in tension 

that is adopted for this study. This can be explained as follows. Consider the rectangular concrete 

specimen in Figure 4–2a with a single reinforcing bar running through the center of the specimen. 

The longitudinal free expansion of the concrete specimen is restrained by the reinforcing bar. As 

the ASR/DEF induced expansion within the concrete proceeds over time, the concrete reaches its 

maximum tensile strength, and a crack forms about the mid-length of the specimen. This results in 

the concrete tensile strength at the crack to be zero. As further expansion occurs, the maximum 

concrete tensile strength is reached mid-way on either side of the cracked specimen, resulting in 

cracks at every quarter–point of the specimen. The next set of cracks are formed at the 1/8th points 

of the concrete specimen. This phenomena may be considered as a 'divide and conquer 

mechanism'; accordingly the process continues until the cracks are spaced about the maximum 

aggregate size. At its final cracked state, as shown in Figure 4–2b, the tensile strength of concrete 

at the cracks will be zero, but the concrete will possess some tensile strength between the cracks. 

The effective saw tooth model of the tensile stress-strain relation averaged over the length of the 

prism of concrete can be represented by the equivalent elasto-plastic model shown in Figure 4–2b. 

The concrete strain energy density which is the shaded area beneath the stress-strain curve shown 

in Figure 4–2b is given as: 

2
2

2 2
c t

c c c

E
u

 
 

   
  

 (4-3) 

in   which   cE    Young’s  modulus  of  concrete;  c    tensile  strain  in  concrete;  t    strain 
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(a) Idealized Reinforced Concrete Prism Subjected to the Expansion Effects of ASR/DEF 

 

(b) Elasto-Plastic Model of Concrete  
in Tension 

(c) Elasto-Plastic Model of 
Reinforcing Steel 

Figure 4–2: Stress-Strain Models for Components of Reinforced Concrete. 
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corresponding to tensile strength of concrete ( tf  ); and  are the Macauly brackets. 

Figure 4–2c shows the elasto-plastic stress-strain relation of reinforcing steel. Depending 

on the reinforcement ratio of the reinforced concrete structure, two cases require consideration. 

First, when the expansion strains caused by the combined ASR/DEF expansion are greater than 

the yield strain of the reinforcing steel and second when the strains are below the yield strain. The 

strain energy density of steel which is the area under the curve in Figure 4–2c is given by:  

22

2
s

s s s y

E
u        

 (4-4) 

in which sE   Young’s modulus of steel; s   tensile strain in steel; y   yield strain of 

reinforcing steel. When the strain is below the yield strain, the term in the Macaulay brackets   

in Eq. (4-4) is set to zero. 

Multiplying Eqs. (4-3) and (4-4) with their respective concrete and steel volume gives the 

total strain energy of concrete ( cU ) and steel ( sU ), respectively. Using the principle of 

conservation of energy, the work done by ASR/DEF related expansion in plain concrete ( PCU ) is 

equal to the work done by ASR/DEF related expansion in reinforced concrete  ( RCU ), that is, 

PC RC c sU U U U    (4-5) 

The maximum strain in plain concrete is represented by max
o  as shown in Figure 4–2b. Assuming 

strain compatibility in reinforced concrete results in the same strain in concrete and steel ( ).c s   

Making necessary substitutions in Eq. (4-5) and rearranging the terms gives the following 

conditional quadratic equation: 

2

2 max1
1 1 0

2 2 2
y t t

s s o
s

n
     


 
     
 
 

 (4-6) 

Solving Eq. (4-6) for the two cases, Case I when the expansion strains are beyond the yield strain 

of the reinforcement and Case II where the expansion strains are lesser than the yield strain, 

respectively, gives rise to the following two equations: 
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For s y     

 

max
max

max

1

1 2

y y
o

t o

y

t

n

n


 
 

 







   
   
   
 

  
 

 (4-7a)

For s y     

 
max

max 1 4 1
2

t o

t

n
n

  
 

 
   

  
 (4-7b)

in which max
  the maximum expansion strain possible for a particular reinforcement ratio .  

Substituting Eq. (4-7) into Eq. (4-1) gives the expression for ASR/DEF induced expansion strain 

with time. It is evident from Eqs. (4-1) and (4-7) that the proposed minimalist semi-empirical 

formulation requires only a few physical parameters, specifically max
o , 0t , and rt . The 

reinforcement ratio (  ) can be determined from the cross-section properties while the remaining 

parameters y and t  can be determined knowing the reinforcing steel and concrete material 

properties.  

However, in the presence of post-tensioning compressive loads or cracks induced by tensile 

loads as shown in Figure 4–3, contributions from the compressive/tensile loads towards ASR/DEF 

induced expansion need to be accounted for. The derivation of the related equations is presented 

in what follows.  

Figure 4–4a shows an equivalent elasto-plastic stress-strain relation of concrete in tension 

as explained earlier. In the presence of a constant compressive force ( P ) applied across the section, 

by means of a constant axial load or post-tensioned prestress, the concrete experiences a 

compressive strain ( )pc  as shown in Figure 4–4a. This compressive effect essentially further 

increases resistance to the expansion caused by ASR/DEF in reinforced concrete. The concrete 

strain energy density which is the shaded area beneath the stress-strain curve shown in  

Figure 4–4a is given as:  
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(a) Constant axial load due to PT 
suppresses expansion 

(b) PT gravity load suppresses expansion on the 
compression side, and precracks promote expansion 

along the tension side 

Figure 4–3: Effects of Compressive and Tensile Loads on ASR/DEF Induced Expansion. 
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(a) Elasto-Plastic Model of Concrete in Tension 
Subjected to Compressive Forces 

(b) Elasto-Plastic Model of Reinforcing 
Steel Subjected to Compressive Forces 

(c) Elasto-Plastic Model of Prestressing Steel (d) Constant Applied Stress 

 

(e) Elasto-Plastic Model of Precracked Concrete in Tension 

Figure 4–4: Stress-Strain Models for Various Components. 
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2
2( )

2 2
c t

c pc c c

E
u

  
 

    
  

 (4-8) 

in which cE   Young’s modulus of concrete; c   tensile strain in concrete; t   strain 

corresponding to tensile strength of concrete ( tf  ), and pc   compressive strain corresponding to 

the compressive stress in concrete  pc c cf P E A  where cA   cross-sectional area of concrete. 

Figure 4–4b shows the elasto-plastic stress-strain relation of reinforcing steel. Here again, 

in the presence of applied compressive force the reinforcement experiences a compressive strain 

( )ps . Depending on the reinforcement ratio and the compressive load applied on the reinforced 

concrete structure, two cases have to be considered. First, when the expansion strains caused by 

ASR/DEF expansion is greater than the yield strain of the reinforcing steel and second when the 

strains are below the yield strain. The strain energy density of steel which is the shaded area in 

Figure 4–4b is given by:  

22( )
2

s
s ps s s y

E
u          

 (4-9) 

in which sE   Young’s modulus of steel; s   tensile strain in steel; y   yield strain of 

reinforcing steel, and ps   compressive strain corresponding to the compressive stress in steel 

ps s sf P E A where sA   total cross-sectional area of reinforcing steel.  

In the presence of prestressing strands, their contribution to the strain energy density of the 

structure also needs to be accounted for. The strands are tensioned well below their yield strength, 

and the area of the shaded region under the stress-strain curve in Figure 4–4c is given as: 

2

2
s

pre pre

E
u   (4-10) 

in which  pre s preP E A    prestrain in the strands where preA   area of prestressing strands. 

Finally, the constant applied compressive force results in a constant compressive stress 

( )const  across the concrete structure as shown in Figure 4–4d. The strain energy density due to 

the constant applied stress is given as: 
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const const cu    (4-11) 

Multiplying Eqs. (4-8) through (4-11) with their respective concrete and steel volume gives 

the total strain energy of concrete ( cU ), reinforcing steel ( sU ), prestressing strands ( preU ), and 

constant stress ( constU ). Using the principle of conservation of energy, the work done by ASR/DEF 

related expansion in plain concrete ( PCU ) is equal to the work done by ASR/DEF related expansion 

in reinforced concrete ( RCU ), which may or may not be subjected to a constant applied load, that 

is, 

PC RC c s pre constU U U U U U      (4-12) 

The maximum strain in plain concrete is represented by max
o  as shown in Figure 4–4a. Assuming 

strain compatibility in reinforced concrete results in the same strain in concrete and steel ( ).c s   

Making necessary substitutions in Eq. (4-12) and rearranging the terms gives the following 

conditional quadratic equation: 

2 2

2 max 2 21
1 1 0

2 2 2 2 2 2
y pc pret const t

s s pc ps o ps pre

s c

nn
n n

E

     
        


          

   
       

 (4-13) 

in which s cA A    reinforcement ratio; pre pre cA A    prestressing strand ratio; and 

s cn E E   modular ratio. Solving Eq. (4-13) for the two cases, Case I when the expansion strains 

are beyond the yield strain of the reinforcement and Case II where the expansion strains are lesser 

than the yield strain (then y s  in Eq. 4-13), respectively, gives rise to the following two 

equations: 
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For s y    
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(4-14a)

For s y    
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 (4-14b)

In Eq. (4-13) and (4-14) , ,pc ps   and const  are positive for tensile strains induced by 

tensile loads and negative for compressive strains induced by compressive loads. In the case where 

no prestressing strands are present, 0.pre   The parameters , , ,pc ps pre   and const can be 

determined from the applied axial load P and corresponding cross-sectional areas. In the case of a 

reinforced concrete member without constant applied loads or prestress the terms , , ,pc ps pre    and 

const  are zero.  

The work done by ASR/DEF expansion on concrete is further reduced if the concrete is 

pre-cracked due to tensile prestrains, that is, .pc t   In this case the concrete strain energy density 

which is the shaded area beneath the stress-strain curve shown in Figure 4–4e is given by: 

 
2

c
c t c pc

E
u        (4-15) 

Equating the work done by ASR/DEF related expansion in plain concrete and reinforced concrete 

as before, the maximum expansion can be computed using the following equations: 
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For s y    

 

 

2
max 2 2

max 2

2
2

t
o t y ps t pc
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y ps

c

n

n
E



      


   

      
 

 
   

 

 (4-16a)

For s y    
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

  
 

    

   

 

      
   

 
  
    

 (4-16b)

In Eqs. (4-14b) and (4-16b) it is important to consider only the positive value of max
  as it 

is an expansive strain and cannot be negative. Substituting the relevant expression for max
  into 

Eq. (4-1) gives the expression for ASR/DEF induced expansion strain with time.  

The validation of the proposed expansion model for ASR and DEF related expansion in 

small scale laboratory tests is presented in Mander et al. (2015). 

4.3. MODIFICATIONS TO ACCOUNT FOR TEMPERATURE AND MOISTURE VARIATIONS 

It is well known that the reactive material content, and various environmental factors such as 

temperature and humidity, stress conditions, boundary restraint, and moisture supply, all affect the 

extent of expansion strain caused by the ASR/DEF in concrete. Of these the reactive material 

content is implicitly taken into account when estimating the parameters max
o , ,ot and rt . The effects 

of the restraints are also taken into account in the expression proposed for maximum expansion 

max
 . To account for the effects of the other two important factors, temperature and moisture 

content (degree of saturation), necessary modifications to the proposed expansion equation are 

considered here. Implicit in the earlier development of the proposed equations were: (i) constant 

temperature; and (ii) saturated conditions (water bath) were used for curing. However, the 

temperature and moisture content conditions of an actual structure subjected to ASR/DEF 
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expansion may vary on a daily basis. To account for these real field temperature and moisture 

variations, modifications are proposed to Eq. (4-1) to include their effects. 

Eq. (4-1) can be slightly modified to include the effects of temperature ( )T : 

max
,

,

tanh o
t T

r T

t t

t  
  (4-17) 

where the parameters are defined as before and  max   is given by Eqs. (4-14) or (4-16).  

Ulm et al. (2000), defined the characteristic time ( c ) associated with ASR product 

formation as: 

     exp c
c c o o

o

U     

 

  
 

 (4-18) 

in which  c o   characteristic time at standard temperature of o  311°K oT  38°C (100°F) 

and cU  5400   500 K = activation energy constant of the characteristic time c .  o  °K can 

be re-written as  oT T T   °C (say). By the definition of the two terms c  and rt , 2 .r ct   

Therefore, the rise time of the tangent line ( rt ) is assumed to follow the same relation as Eq. (4-18) 

proposed by Ulm et al. (2000) i.e.,  

     exp c
r r o o

o

U
t t   


 

  
 

 (4-19) 

Substituting for o T    , cU  5400°K and as 0T   (=311°K) then 0oT   , thus  

Eq. (4-19) may be simplified to give 

, , exp
18o

o
r T r T

T T
t t

   
 

 (4-20) 

Finally substituting oT  38°C in Eq. (4-20) leads to 

, ,

38
exp

18or T r T

T
t t

   
 

 (4-21) 
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which may now be substituted into Eq. (4-17) to give 

max
,

,

38
tanh exp

18
o

o
t T

r T

t tT

t 
        

 (4-22) 

Eq. (4-22) gives the modified expression for the expansion caused by ASR/DEF in reinforced 

concrete taking into consideration the temperature variations.  

To account for the variations in moisture content, necessary modifications to Eq. (4-22) 

needs to be made. Figure 4–5 shows the variation of characteristic time ( c ) at 311°K with the 

degree of saturation  S , where the data points are adapted from Ulm et al. (2000). The 

experimental data can be reasonably well represented by the exponential function 1 .Se   

Incorporating this into the modified equation Eq. (4-22) leads to the following overall time-

dependent expansion strain model. 

max
, ,

,

tanh exp 3.11
18

o

o
t T S

r T

t tT
S

t 
         

 (4-23) 

Eq. (4-23) represents the proposed model modified for temperature and moisture content 

variations, for expansion strains in reinforced concrete caused by ASR/DEF expansion. Note that 

at standard temperature of 38°C (100°F) and degree of saturation of S 1, Eq. (4-23) reverts back 

to Eq. (4-1). 

Differentiating Eq. (4-23) with respect to time gives the expansion strain rate as follows: 

2max
, ,S

, , max
,T

T
exp 3.11 1

18
o

t T
t T S

r

S
t




 




                  
  (4-24) 

which is an ordinary differential equation with variable coefficients dependent on temperature and 

degree of saturation, T  and S . Because in field conditions T  and S  vary constantly, Eq. (4-24) 

requires a numerical solution as follows: 

 1 , ,i i t T S i
t       (4-25) 
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Figure 4–5: Variation of Characteristic Time with Relative Weight Increase. 
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in which t  time increment and the parameters with subscript ‘ i ’ denote their value at the thi  

time interval; and  , ,t T S is the temperature and saturation dependent strain rate given by 

Eq. (4-24). Eq. (4-25) can be easily solved computationally in an incremental time-stepping 

fashion. Daily temperatures and degree of saturation (assessed from rainfall records) are used 

directly in Eq. (4-24). 

The validation of the developed theory is presented in Mander et al. (2015), where the 

theory is used to model the expansion strains in post-tensioned reinforced concrete members which 

were exposed to environmental conditions and as a result subjected to the daily variations in 

temperature and moisture content. 

4.4. CLOSURE AND KEY FINDINGS 

The existing models on predicting the expansion caused by ASR/DEF are limited mainly to plain 

concrete. Additionally, they are complex and typically require a finite element model to implement 

their effects on structures. In this chapter a semi-empirical minimalist model was proposed which 

is capable of estimating the expansion in reinforced concrete structures caused by ASR/DEF. The 

model requires only a limited number of input factors that are related to the expansion 

characteristics and the material properties. The key findings from this study are summarized 

below: 

 The proposed model can simulate the expansion caused by ASR and/or DEF in laboratory 

specimens cured under standard laboratory conditions to accelerate ASR/DEF expansion. 

 It is necessary to extend the basic laboratory-based model to take into account the widely 

varying field conditions in temperature and moisture (degree of saturation).  

 The effects of compressive and tensile pre-strains are included in the model. This is an 

important aspect as compressive forces suppress the expansion caused by the ASR/DEF 

mechanisms, whereas tensile forces and initial cracking further promote and accelerate the 

ASR/DEF induced expansion. 

 By taking into account the appropriate reinforcement ratios, the proposed model can 

simulate the expansion strains in both the longitudinal and transverse directions. 
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Detailed example on the application of ASR/DEF expansion model to the C-Beam 

specimens is presented in Chapter 5. 
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5. WORKED EXAMPLE: DETERMINING EXPANSION STRAINS  
CAUSED BY ASR/DEF  

5.1. INTRODUCTION 

As part of a large scale experimental program described in the Phase I report of this research 

(Mander et al., 2012b), reinforced concrete C-Beam specimens representing cantilever and 

straddle bent bridge piers were cast and cured to promote ASR/DEF induced expansion in 

reinforced concrete. The reinforcement layout and the cross-section details of the C-Beam 

specimen are presented in Figure 5–1. To promote ASR in the specimen, high alkali content 

cement and aggregates with reactive silica along with sodium hydroxide mixed in water were used. 

The specimens were subjected to curing temperatures in excess of 160°F by means of an electrical 

resistive wiring setup to promote DEF related expansion in the specimen. The specimens were 

then transported outdoors and subjected to environmental conditions, as any actual bridge under 

service would be exposed to. To accelerate the expansion caused by ASR/DEF for purposes of the 

experimental study, a sprinkler system was installed and the specimens were sprinkled with water 

at regular intervals. Of the four specimens constructed, Specimen 1 was the control specimen and 

was stored indoors, while Specimens 2, 3, and 4 were conditioned outdoors and subjected to 

ASR/DEF deterioration for varying periods of time. 

Of the three deteriorated C-Beam specimens, Specimen 3 was conditioned in the field for 

five years with significant effects of ASR and DEF deterioration observed. The data from the strain 

and concrete gages embedded in the specimen, and DEMEC points on the surface of the specimen 

were collected on a regular basis. This chapter shows the application of the proposed expansion 

model to C-Beam Specimen 3. A comparison of the modeled expansion results with the field data 

is presented in Mander et al. (2015). 

5.2. PARAMETERS FOR MODELING EXPANSION IN C-BEAM SPECIMEN  

To represent the expansion strains in the C-Beam specimen in a meaningful and logical way, the 

C-Beam specimen was divided into different regions. Figure 5–2a identifies the various regions of 

the  C-Beam  specimen  used  in  this  study to model expansion strains. The C-Beam specimen is 
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Figure 5–1: Reinforcement Layout of C-Beam Specimen. 
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divided into the top face where the exposure face is horizontal, and the west and north side faces 

where the exposure face is vertical. Figure 5–2a also shows the location and orientation of DEMEC 

points on the surface of the C-Beam specimen. 

The C-Beam specimens were subjected to both ASR and DEF expansion. Since no clear 

evidence was available on when and how much each of the two expansion mechanisms contributed 

toward the total expansion strains in the specimen, the proposed expansion equation was applied 

once, considering the overall expansion properties. From the experimental results presented in 

Mander et al. (2012b, 2015), the time ( ot ) when expansion strains initiate was taken as 60 days. 

The rise time of the tangent line ( rt ) was deduced to be 120 days from the expansion data of 

Specimen 3. Since no data was available on the expansion caused by ASR/DEF expansion in plain 

concrete max( )o , this parameter was inferred from the largest crack observed from an unreinforced 

part of the specimen. The largest crack that was observed at the knee joint of the C-Beam specimen 

was about 1.18 inches wide. It is to be noted that the top face of the column in the joint region was 

essentially unreinforced. A crack width of 1.18 inches across a total section width of 24 inches, 

resulted in an expansion strain of approximately 0.05. Therefore, for this study the value of max
o 

0.05 was adopted.  

Figure 5–2b shows the relation between the reinforcement ratio and the maximum 

expansion strain computed for the various regions of the C-Beam specimen. As expected the 

maximum expansion strain in the C-Beam specimen decreases with increasing reinforcement ratio. 

The C-Beam specimen was subjected to tie-bar forces to simulate the effects of gravity loads on 

the structure. These induce tensile stresses promote cracking. These effects are also taken into 

account while computing the maximum expansion strain max
 . In Figure 5–2b two curves are 

presented, one where there are no tensile prestrain effects on the expansion strain and the other 

with the tensile prestrain effects considered. It is clear that for the same reinforcement ratio, the 

maximum expansion strain is greater when the tensile prestrain effects are considered. This is 

complimentary to the case where compressive strains cause lower expansion strains. The 

computation of the reinforcement ratio is discussed later in this section. To account for the 

variation  in  expansion  due  to  temperature and moisture content, the average daily temperature 

and  rainfall  amounts  were  obtained  from  the  closest  weather  station  to  the  site  where  the 
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(a) DEMEC Layout of C-Beam Specimen 
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(b) Variation of Maximum Expansion with Reinforcement Ratio 

 

(c) Observed Average Daily Temperature 

Figure 5–2: Information Pertinent to Model Expansion Strains in C-Beam Specimen.
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specimens were conditioned. Additionally, to obtain a reasonable estimate of the actual amount of 

moisture that the specimens were subjected to due to supplemental water from the sprinkler 

system, a series of rain gages were installed at various locations on Specimen 3. For this study a 

degree of saturation of S 0.1 was assumed for the horizontal exposure surfaces and for strains 

measured in the horizontal direction caused by cracks in the vertical direction. The vertical cracks 

allow better ingress of moisture into the specimen, and the related expansion causes horizontal 

strains. For strains measured in the vertical direction caused by horizontal cracks on the vertical 

exposure face, a degree of saturation of S 0.05 was adopted as the horizontal cracks do not allow 

for moisture ingress into the specimen as well as the vertical cracks. The temperature and moisture 

content data were used in the computation of expansion strains in the reinforced concrete C-Beam 

specimen. Figure 5–2c shows the variation of the daily average temperature recorded at the closest 

weather station to the site for the period when Specimen 3 was exposed to field conditions. 

Also taken into account in the computation of the maximum expansion strain, are the 

tensile strains induced by the applied tie-bar force used to mimic gravity loads on the specimen. 

The C-STM model of the C-Beam specimen that was developed by Mander et al. (2012b) was 

used to determine the initial strains. As shown in Figure 5–3 a 200 kip load corresponding to the 

tie-bar force was applied, and the corresponding tensile strains were obtained from the model. The 

values of the tensile strains in concrete and steel are shown in Figure 5–3. The applied tie-bar force 

caused tensile stresses in the longitudinal direction along the outer edges of the specimen, which 

resulted in a tensile prestrain. However, there were no stresses applied in the out-of-plane direction 

of the specimen, hence there are no prestrains that contribute to the expansion in the out-of-plane 

direction. However, the presence of transverse reinforcement restrains the expansion in the out-of-

plane direction. 

Another important parameter that is required for the implementation of the proposed 

expansion model is the reinforcement ratio of the specimen. As the DEMEC points were located 

on the surface of the specimen, the influence of reinforcing steel are different at the various 

DEMEC locations. Hence, it is essential to carefully compute the reinforcement ratio for the 

different regions of the specimen. In this study, various reinforcement ratios were computed based 

on the location and direction of the DEMEC strain measurements. Table 5–1 presents the 

properties of  C-Beam  Specimen 3  that  were  used  in calculating the reinforcement ratios, where 
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Figure 5–3: Computation of Average Tensile Loads from C-STM in the C-Beam 
Specimen due to Post-Tension Load. 

 

 

 

 Table 5–1: Properties for C-Beam Specimen 3.  

  Specimen 3  

 ' ( )cf ksi  5.93 

 ( .)colkd in  13.98 

 ( .)beamkd in  11.31 

 ( .)dl in for #8 bars 42.20 

 ( .)dl in for #4 bars 16.88 

 

  

Average tensile strain in concrete 
(εpc) and steel (εps) = 0.00084

Average tensile strain in concrete (εpc) 
and steel (εps) = 0.00067
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colkd  and beamkd are the depth of the neutral axis from the extreme compression fiber for the column 

and the beam, respectively, and dl  is the development length of the reinforcement. A detailed 

computation of the reinforcement ratio for C-Beam Specimen 3 is presented in Sheet 5-1– 

Sheet 5-8.  

 

Sheet 5-1 
COMPUTATION OF REINFORCEMENT RATIO ( )  AND MAXIMUM 

EXPANSION STRAIN ( )
max  FOR C-BEAM SPECIMEN 3. 

 

1 

  8 

GENERAL NOTES 

General parameters used: 
'

cf =5.93 ksi actual
cE =4390 ksi '

tf =0.580 ksi t =0.000132 

yf =65 ksi sE =29000 ksi y =0.00224  

0( )rt = 120 days  ASR
pc =0.05 

3
s

c

En
E

= = 19.82 
 

Maximum Expansion Strain 
The C-Beam specimen were subjected to tie-bar force to simulate gravity loads on the 
structure. This resulted in the specimen being precracked, which further accelerated the 
expansion process as these cracks provided a pathway for moisture ingress. To take into 
account the precracked nature of the specimen, Eq. 3-16a (which is repeated below for 

convenience) was used in the computation of the expansion strains ( )
max .  
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t
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y ps

c

n

n
E

æ ö÷ç+ - + - ÷ç ÷çè ø
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æ ö÷ç ÷+ - -ç ÷ç ÷çè ø

 3-16a 

Development Length (ACI Equations)  
It was established by Mander et al. (2011) that to develop the full yield strength of the 
reinforcement, the reinforcing bars transverse to the member edge should be longer than the bar 
development length ( dl ). 

#8 bars: ( )
 

 ' ' '

65000(1)(1)
3250

20 20(1)
y t e b

d b b
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f dl d d
f f f
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#4 bars: ( )
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 ' ' '
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Sheet 5-2 
COMPUTATION OF REINFORCEMENT RATIO ( )  AND MAXIMUM 

EXPANSION STRAIN ( )
max  FOR C-BEAM SPECIMEN 3. 

 

2 

     8 

COLUMN TOP FACE MEMBER REGION 

Section depth ( )d  = overall depth ( )D - depth to neutral 

axis ( )colkd  =  36-13.98 = 22.02'' 

 

Direction: Transverse ( )a  

Reinforcement type: #4 bars with c/s area sA =  
0.19635 in2 @ 4.5'' c/c spacing 

Reinforcement ratio ( ) sA sd= =  0.00198 

Additionally, as there are no tensile prestrains in the 
transverse direction,  pc ps= =  0.  

Maximum expansion strain 
max ==0.02202 

Direction: Longitudinal ( )a  

DEMEC measurements are made along two lines, one close to 
the edge of the column, and the other closer to the middle of 
the column cross-section. As the DEMEC readings are limited 
to the two lines, the strains measured could be more localized. 
Therefore narrow strips under the DEMEC points are 
considered to compute the reinforcement ratio. Because of 
their localized effects the average reinforcement ratio is 
considered. 

 
Width of strip ( )b = 2.785'' (shaded blue and green) 

c/s area of concrete cA = (22.02)(2.785) = 61.33 in2 

 
DEMEC points 
location 

Close to column edge (shaded 
blue) 

Close to column center (shaded 
green) 

 sA  (in2) 3.1416 (4–#8 bars) 0.7854 (1–#8 bar) 

 ( ) sA bd=  0.05122 0.01281 

 Average    0.03202 

 pc ps= =  0.00067 obtained from C-STM model. 


max ==0.0045 

Figure 5–4a shows the expansion results obtained in the transverse and longitudinal direction on 
the member region of the column top face of the C-Beam specimen. 
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Sheet 5-3 
COMPUTATION OF REINFORCEMENT RATIO ( )  AND MAXIMUM 

EXPANSION STRAIN ( )
max  FOR C-BEAM SPECIMEN 3 

 

  3 

      8 

COLUMN TOP FACE JOINT REGION 

Direction: Transverse ( )b  

There are no transverse hoops on the column top face in the joint region. Therefore,  =0 is 
considered for the region close to the edge. However, in the region away from the edge and 
close to the column member region, the influence of transverse reinforcement in the column 
member region is considered. A  =0.00198/2 = 0.00099 is assumed. 

Since there are no tensile prestrains in the transverse direction,  pc ps= =  0. 


max ==0.0304 

Figure 5–4b shows the transverse expansion strains in the joint region of the C-Beam specimen 
top face. 
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Sheet 5-4 
COMPUTATION OF REINFORCEMENT RATIO ( )  AND MAXIMUM 

EXPANSION STRAIN ( )
max  FOR C-BEAM SPECIMEN 3 

 

 4 

     8 

BEAM COLUMN JOINT REGION 

Concrete and steel volume in half the section depth (d =12'') is considered for calculating the 
reinforcement ratio.  

Direction: Vertical DEMEC Points Along Beam Longitudinal Steel 

Depending on the location of the DEMEC points on the face of the beam cross-section, two 
separate reinforcement ratios are computed. 

 DEMEC 
location 

Close to member 
edges (shaded 
blue) 

For interior 
DEMEC points 
(shaded green) 

 

 Area of steel,

sA  
3.9270 in2  
(5–#8 bars) 

0.5890 in2  
(3–#4 bars) 

 Area of 
concrete, cA  

(12)(6.1875) = 
74.25 in2 

(12)(23.625) = 
283.5 in2 

   0.0529 0.00208 

The reinforcement ratio is scaled down for the DEMEC points close to the C-Beam specimen 
edges. 

 Scaled reinforcement ratio 
for: 

DEMEC 145 and 146 
close to specimen top edge 

DEMEC 139–142, still within 
the development length 

 

l  5.25'' 15.75''  

( ) reduced dl l=  
0.00208(5.25/16.88) = 
0.000647 

0.0529(15.75/42.20) = 
0.01974  

With  ( 0),pc ps= =


max =  

0.03514 0.00453  

Figure 5–4c shows two curves for the expansion results from the 
model. Curve A corresponds to the case where the expansion 
strains are computed closer to the top edge of the specimen 
(within development length zone close to top edge) and Curve B 
for expansion strains computed away from the top edge (within 
development length zone away from top edge). 
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Sheet 5-5 
COMPUTATION OF REINFORCEMENT RATIO ( )  AND MAXIMUM 

EXPANSION STRAIN ( )
max  FOR C-BEAM SPECIMEN 3 

 

  5 

      8 

BEAM COLUMN JOINT REGION 

Concrete and steel volume in half the section depth (d = 12'') is considered for calculating the 
reinforcement ratio. 
Direction: Horizontal DEMEC Points Along Column Longitudinal Steel 

Depending on the location of the DEMEC points on the face of the beam cross-section, two 
separate reinforcement ratios are computed. 
For DEMEC within the development length zone and close to the specimen edges (first layer of 
DEMEC points 158, 162, 166, 170) the portion shaded in green is used to compute the 
reinforcement ratio as the influence of the reinforcement at the extremes (shaded blue) is unlikely 
to influence the expansion close to the specimen edge.  
 DEMEC 

location 
Close to member 
edges (shaded 
blue) 

For interior DEMEC 
points (shaded 
green) 

 

 Area of steel,

sA  
10.21 in2  (12–#8 
and 4–#4 U-bars, 
not shown) 

4.7124 in2  (5–#8 
and 4–#4 u-bars, 
not shown) 

 Area of 
concrete, cA  

(12)(36) = 432 
in2 

(12)(26.25) = 315 
in2 

   0.0236 0.01496 

The reinforcement ratio is scaled down for DEMEC points close to C-Beam specimen edges. 

 Scaled reinforcement ratio 
for: 

DEMEC 159, 163, 167 and 
171, still within the 
development length 

DEMEC 158, 162, 166 and 
170 close to specimen edge  

 l  15.75'' 5.25''  

 ( ) reduced dl l=  
0.0236(15.75/42.20) = 
0.00881 

0.01496(5.25/42.20) = 
0.001861 

 

 
With  ( 0),pc ps= =


max =  

0.00816 0.02278  

Figure 5–4d shows the expansion strains, close and away 
from the specimen edge, obtained from the model.  
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Sheet 5-6 
COMPUTATION OF REINFORCEMENT RATIO ( )  AND MAXIMUM 

EXPANSION STRAIN ( )
max  FOR C-BEAM SPECIMEN 3 

 

 6 

     8 

BEAM WEST FACE 

Concrete and steel volume in half the section depth (d = 12'') is considered for calculating the 
reinforcement ratio. 

Direction: Longitudinal  

As the DEMEC points are considerably away from the 
specimen edge, the reinforcement in the entire half-depth 
of the cross-section (d = 12'') is considered as localized 
effects near the edges are eliminated. 

 

 Area of steel, sA  8.44 in2 (10–#8 and 3–
#4 bars) 

 Area of concrete, cA  (12)(36) = 432 in2 

   0.01954 

 With  ( 0),pc ps= =


max =  

0.00456 

The reinforcement ratio is scaled down for the DEMEC 
points within the development length zone. 

 

 Scaled reinforcement ratio 
for: 

DEMEC 123-125 
within the development 
length zone 

l  35.15'' 

 ( ) reduced dl l=  
0.01954(35.15/42.20) 
= 0.01628 

 
With  ( 0),pc ps= = 

max =  0.00519 
 

Direction: Transverse 

Reinforcement type: #4 bars with c/s area sA =  0.19635 in2 @ 4.5'' c/c spacing 

Reinforcement ratio ( ) sA sd= =  0.00364 

As there are no tensile prestrains in the transverse direction,  pc ps= =  0.  

Maximum expansion strain 
max ==0.01526 

Figure 5–4e shows the expansion strain s in the longitudinal and transverse direction on 
the beam west face. 
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Sheet 5-7 
COMPUTATION OF REINFORCEMENT RATIO ( )  AND MAXIMUM 

EXPANSION STRAIN ( )
max  FOR C-BEAM SPECIMEN 3 

  7 

      8 

COLUMN WEST FACE 

Direction: Longitudinal  

The DEMEC points in the column of the specimen west 
face were located close to the specimen top edge, therefore 
the reinforcement ratio is calculated considering the area 
shaded in blue. 

 

 Area of steel, sA  3.927 in2 (5–#8 bars) 

 Area of concrete, 

cA  
(12)(4.875) = 58.5 in2 

   0.0671 

 pc ps= =  0.00067 
obtained from C-STM 
model. 

max =  0.00296 

 

Figure 5–4e shows the expansion strain s in the  longitudinal direction on the column west 
face  
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Sheet 5-8 
COMPUTATION OF REINFORCEMENT RATIO ( )  AND MAXIMUM 

EXPANSION STRAIN ( )
max  FOR C-BEAM SPECIMEN 3 

 

  8 

       8 

BEAM NORTH FACE 

Section depth ( )d  = overall depth ( )D - depth to neutral 

axis ( )beamkd  =  36-11.31 = 24.69'' 

 

Direction: Transverse ( )f  

Reinforcement type: #4 bars with c/s area sA =  
0.19635 in2 @ 4.5'' c/c spacing 

Reinforcement ratio ( ) sA sd= =  0.00177 

As there are no tensile prestrains in the transverse 
direction,  pc ps= =  0.  

Maximum expansion strain 
max ==0.0234 

Direction: Longitudinal ( )f  

DEMEC measurements are made along two lines, one close to the edge of the beam, and the other 
closer to the middle of the beam cross-section. As the DEMEC readings are limited to the two lines, 
the strains measured could be more localized. Therefore narrow strips under the DEMEC points are 
considered to compute the reinforcement ratio. Because of their localized effects, the average 
reinforcement ratio is considered. 

Width of strip ( )b = 2.785'' (shaded blue and green) 

 

c/s area of concrete cA = (24.69)(2.785) = 68.76 in2 

 
DEMEC points 
location 

Close to beam 
edge (shaded 
blue) 

Close to beam 
center (shaded 
green) 

 sA  (in2) 
1.1781 in2 
(1–#8 and 2–#4 
bars) 

0.7854 in2 
(1–#8 bar) 

 ( ) sA bd=  0.01713 0.01142 

 Average    0.01428 

 pc ps= =  0.00084 obtained from C-STM model. 

Maximum expansion strain 
max ==0.00855 

Figure 5–4f  shows the expansion strain results on the north face of the C-Beam specimen. 
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Table 5–2 presents a summary of the reinforcement ratio and the maximum expansion 

strains for the various regions of C-Beam Specimen 3.  

5.3. MODELING ASR/DEF EXPANSION IN C-BEAM SPECIMEN 

Figure 5–4a and b, respectively, considers the member region and the joint region of the C-Beam 

specimen top face. In the top face member region, the expansion strains in the transverse and 

longitudinal directions were considered. The concrete and steel volume from the extreme tension 

fiber to the neutral axis were used in the computation of the reinforcement ratio. In the longitudinal 

direction, DEMEC measurements were made along two lines, one close to the edge of the column, 

and the other closer to the middle of the column cross section as shown in  

Figure 5–4i. As the DEMEC readings were limited to two lines, the measured strains could be 

more localized, and the reinforcement ratios were computed accordingly as shown in Sheet 5-2. 

The tensile strains due to the tie-bar force computed from the C-STM analysis as shown in  

Figure 5–3 resulted in a tensile concrete and steel strain of 0.00067 and were appropriately 

incorporated into computing the maximum expansion strain max .  Figure 5–4a shows the 

expansion results obtained in the transverse and longitudinal direction on the column top face 

member region of the C-Beam specimen. 

Figure 5–4b considers the transverse expansion strains in the joint region of the C-Beam 

specimen top face. As there were no transverse U-bars in the joint region, this region is essentially 

unreinforced in the transverse direction. Therefore a reinforcement ratio of   0 was considered 

for this case. However, the transverse reinforcement in the column region can likely influence the 

expansion strains caused in the joint region away from the edge of the joint. Therefore, a case with 

half the transverse reinforcement ratio in the column region is also presented in Figure 5–4b. 

Figure 5–4c and d, respectively, considers the expansion strain in the vertical and 

horizontal direction in the beam-column joint region of the C-Beam specimen’s west face. 

Concrete and steel volume in half the section depth (12 in.) were considered for calculating the 

reinforcement ratio.  
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(a) Member (b) Joint 
Top Face (Horizontal Exposure Face) 

  

(c) Joint Vertical Direction (d) Joint Horizontal Direction 
 

(e) West Face (f) North Face 
Side Faces (Vertical Surface Exposed) 

Note: A/B: Within Dev. Length Zone Closer/Away from Edge; C/D: Inside/Outside Dev. Length Zone
Figure 5–4: Observed and Computed Expansion Strain–Specimen 3. 
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Depending on the location of the DEMEC points in the vertical direction of the beam-

column joint, separate reinforcement ratios were computed as shown in Sheet 5-4. Additionally, it 

was shown by Mander et al. (2011) that to develop the full yield strength of the reinforcement, the 

reinforcing bars transverse to the member edge should be longer than the bar development length 

( dl ). Therefore, scaled reinforcement ratios were considered for DEMEC points within the 

development length zone. Figure 5–4c shows two curves for the expansion results from the model. 

Curve A corresponds to the case where the expansion strains were computed closer to the top edge 

of the specimen (within development length zone close to top edge) and Curve B for expansion 

strains computed away from the top edge (within development length zone away from top edge). 

Figure 5–4d shows the modeled expansion strains in the direction of the column 

longitudinal reinforcement in the joint region. As in the earlier case, half section depth of 12 in. 

was used for the computation of reinforcement ratio (Sheet 5-5), and they were scaled down 

accordingly within the development length zone. In Figure 5–4d, Curve A and Curve B, 

respectively, corresponds to the case where the expansion strains were computed closer to the top 

edge and away from the top edge of the specimen, both still within the development length zone.  

Figure 5–4e shows the longitudinal expansion strains in the column, and the longitudinal 

and transverse expansion strains in the beam of the C-Beam specimen’s west face. The 

reinforcement ratios were computed considering half-depth (12 in.) of the cross section  

(Sheets 5-6 and 5-7). The DEMEC points in the column of the specimen west face were located 

close to the specimen top edge, and the reinforcement ratio was computed accordingly to account 

for the localized nature of the DEMEC readings (Sheet 5-7). The tensile concrete and steel strains 

due to the applied tie-bar force were computed to be 0.00067 from the C-STM model shown in 

Figure 5–3 and they were incorporated into computing the maximum expansion strains. For 

longitudinal expansion strains in the beam of the C-Beam specimen west face, scaled 

reinforcement ratios were considered for DEMEC points within the development length zone 

(Sheet 5-6). Figure 5–4e shows the expansion results from the model, where curve C and D, 

respectively, represent the expansion strains inside and outside the development length zone. In 

this case it is observed that there is not much difference between the two cases, as the DEMEC 

measurements were made relatively away from the specimen edges. 



 

89 
 

Figure 5–4f shows the modeled expansion strains in the longitudinal and transverse 

direction of the C-Beam specimen’s north face. The depth of the beam cross section from the 

extreme tension fiber to the neutral axis was considered for the computation of the reinforcement 

ratios. As in the case of the column top face, the longitudinal DEMEC measurements in the beam 

were made along two lines, one close to the edge of the beam, and the other closer to the middle 

of the beam cross section as shown in Figure 5–4i. The strains measured could be more localized 

as the DEMEC readings were limited to two lines, and the reinforcement ratios were computed 

accordingly as shown in Sheet 5-8. The tensile strains due to the tie-bar force computed from the 

C-STM analysis as shown in Figure 5–3, resulted in a tensile concrete and steel strain of 0.00084 

and were appropriately incorporated in computing the maximum expansion strain. Figure 5–4f 

shows the simulated transverse and longitudinal expansion strain on the C-Beam specimen north 

face. 

5.4. DISCUSSION 

A comparison of the simulated expansion results with the field observations presented in Mander 

et al. (2015) shows that the proposed model can be used to simulate the expansion strains in 

reinforced concrete reasonably well, considering the complex nature of ASR/DEF related 

expansion in reinforced concrete and the vagaries associated with the expansion data gathered 

from the field. In most cases the simulated results were within the range of measured field 

expansion data for the specimens.  

The effects of tensile strains caused by gravity loads on ASR/DEF expansion were also 

taken into account in the model to simulate the expansion results with good accuracy. The tie-bar 

force that was applied to simulate gravity loads in the C-Beam specimens caused tensile stresses 

along the tension side of the specimen. These tensile stresses caused pre-cracking which promoted 

ASR/DEF expansion. The tensile pre-strains along the direction of the longitudinal reinforcement 

were considered in the model. However, the tie-bar force did not cause any stresses in the 

transverse (out-of-plane) direction of the specimen, and hence the tensile prestrains were not 

considered in modeling the strains along the direction of the transverse reinforcement. As 

demonstrated in the chapter, it is extremely important to compute the relevant reinforcement ratio, 

as it affects the extent of expansion that can be caused by ASR/DEF.  
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Due to the orientation of the specimen during its field conditioning, different parts of the 

specimen were subjected to various amounts of moisture and hence different degrees of saturation. 

To account for this, the degree of saturation for the horizontal exposure faces and for strains caused 

by vertical cracks on the vertical exposure faces were assumed to be greater than the degree of 

saturation for the strains caused by horizontal cracks in the vertical exposure face. This assumption 

was also backed by the field expansion data. In an actual structure, many of these parameters 

cannot be determined realistically, and therefore it is important to assume relevant values based 

on sound reasoning.  

The results of this investigation show that if appropriate values are assigned to the limited 

input parameters required for the model, the proposed minimalist semi-empirical model can be 

effectively used to model the ASR/DEF induced expansion in reinforced concrete members that 

are exposed to field conditions.  

5.5. CLOSURE AND KEY FINDINGS 

By taking into account the appropriate input parameters for the proposed expansion model, the 

expansion strains caused by ASR/DEF in reinforced concrete specimen can be estimated within 

reasonable bounds as demonstrated in this chapter. The model predicts the general expansion 

behavior reasonably well. The key observations and findings from this chapter are summarized 

below: 

 Depending on the region of the specimen that is being considered, the moisture content and 

hence the degree of saturation can be different. Especially, on the horizontal exposure 

faces, water tends to pool/stand for longer when compared to the vertical exposure face, 

where the water runs off almost immediately.  

 The orientation of the cracks can also lead to differences in the expansion strain behavior. 

On vertical exposure faces, vertical cracks which cause horizontal expansion strains allow 

for more rapid water ingress into the specimen through the cracks, when compared to 

horizontal cracks which results in vertical strains.  

 The proposed model takes into account the tensile prestrains caused by the tie-bar force 

(which simulates gravity loads) in the direction of the longitudinal reinforcement.  
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 Considering the complex nature of the C-Beam specimen, and ASR/DEF induced 

expansion strains, the proposed model captures the expansion strains caused by ASR/DEF 

quite well. 
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6. WORKED EXAMPLE: ANALYSIS SCHEMA FOR 
C-BEAM SPECIMENS 

6.1 SCOPE 

In this section a reinforced concrete bridge pier tested by the authors in order to investigate the 

effect of premature concrete deterioration in bridge bents currently used in practice, specifically 

cantilever bents and straddle bents, is selected to illustrate the procedure of analysis detailed in 

Chapter 2. Additionally, the structure is modeled using the C-STM technique without and with the 

effects of ASR/DEF. All results are then compared with the experimental results. 

6.2 THE STRUCTURE 

The experimental specimen was designed as a 'C' shape sub-assemblage such that two large-scale 

bridge bent components were placed back-to-back so they could be tested as a self-reacting system. 

The C-Beam specimen had a constant cross-section of 3 ft. deep and 2 ft. wide that was 

symmetrical with the exception of the beam compression steel. More specifically the physical 

model scale factors representing the singly reinforced cantilevered bent and the doubly reinforced 

straddle bent were approximately 0.5 and 0.75, respectively. 

Figure 6–1 presents the reinforcing layout and cross-section of C-Beam Specimen. The 

longitudinal reinforcement consisted of 10 No. 8 bars running continuously around the outside and 

hooked at the end of each beam. The singly reinforced beam had two No. 8 straight compression 

bars for construction purposes. The doubly reinforced beam had symmetrical compression and 

tension reinforcement. 

The longitudinal beam distribution steel (distributed along the beam web) consisted of 

three sets of No. 4 straight bars equally spaced. Transverse beam reinforcement consisted of closed 

stirrups with a center-to-center spacing of 4.5 in. starting at the column face. The longitudinal 

column distribution steel consisted of five sets of No. 8 bars equally spaced. Transverse column 

reinforcement had overlapping No. 4 stirrups spaced 4.5 in. centers. The beam-column joint was 

reinforced with four No. 4 U-bars at 8 in. centers continuing from the transverse beam 

reinforcement. 
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Figure 6–1: Elevation and Cross-Section of the C-Beam Specimens. 

  



 

95 
 

Table 6–1 presents the reported material strength data on the test day and experimental test 

results. Specimen 1 was the control specimen and does not have any ASR/DEF induced damage, 

whereas Specimens 4 and 3 showed a 'moderate' and 'heavy' amount of damage due to ASR/DEF 

effects. The experimental setup, procedure, and general observations from the test can be found in 

Mander et al. (2012b, 2015). 

 Table 6–1: Material Properties and Test Results.  

   Specimen 1 Specimen 4 Specimen 3  

Material 
properties 

cf  (ksi) 5.40 4.00 5.93  

tf  (ksi) 0.30 --- ---  

cE  (ksi) 4190 3605 4390  

n* 6.92 8.04 6.61  

Experiment
al results 

Expt
YieldP (kip)   440 440 ---  

Expt
FailureP (kip)  474 503 498  

Expt
Yield (in.)  1.49 1.1 ---  

Expt
Failure (in.)  1.69 2.17 0.80  

   1.13 1.97 ---  

*Modular ratio = Young’s modulus of steel to concrete, where  
  29000 200sE ksi GPa   

6.3 STAGE 1: STRENGTH ANALYSIS USING BEAM THEORY 

The code-based design approaches that were described in detail in Chapter 2 are used to predict 

the response of C-Beam Specimens 1, 4, and 3. Results from the application of each of these 

approaches are presented as follows. Computations are presented in Appendix A. 

Step 1:  Determine first yield flexural capacity, b
yM . 

The yield moment and the external load causing first yield are calculated using Eqs. (2-1) and 

(2-3), respectively. The parameters required by the analysis of Specimens 1, 4, and 3 are presented 

in Table 6–2. For Specimen 1 the analysis resulted in a yield moment of 1290b
yM  kip-ft and a 

yield force of = 430b
yP  kip for the doubly reinforced beam. 
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 Table 6–2: Results of Stage 1 Flexure Analysis (Without Deterioration).  

  Specimen 1 Specimen 4 Specimen 3   

  Doubly  Singly  Doubly  Singly  Doubly  Singly    

 k  0.271 0.299 0.285 0.317 0.267 0.293 Eq. (2-2)  

 cC (kip)  -377 -480 -366 -474 -382 -478   

 sC (kip)  -132 -34 -144 -37 -128 -33   

 T (kip)  511 511 511 511 511 511   

 b
yM (kip.ft)  1290 1276 1285 1269 1291 1279 Eq. (2-1)  

 b
yP (kip)  430 425 428 423 430 426 Eq. (2-3)  

 1  0.78 0.78 0.85 0.85 0.75 0.75 Eq. (2-5)  

 f
nM (kip.ft)  1442 1416 1428 1383 1446 1425 Eq. (2-4)  

 f
nP (kip)  481 472 476 461 482 475 Eq. (2-6)  

Steps 2: Determine nominal flexural moment, f
nM . 

The nominal flexural moment ( f
nM ) was calculated based on Eq. (2-4). The flexural capacity, 

1442f
nM   kip-ft for the doubly reinforced beam of Specimen 1. 

Step 3:  Determine externally applied load based on beam flexure, f
nP . 

Based on the nominal flexural moment ( f
nM ), and knowing that the shear span to the face of the 

column bL   36 inches, the external load causing beam flexure on the bent cap is found to be 

481f
nP   kip for the doubly reinforced beam of Specimen 1. The results for Specimens 1, 4, and 3 

are presented in Table 6–2. 

Step 4:  Determine beam shear capacity, s
nV . 

The shear capacity ( s
nV ) is calculated from Eq. (2-7). Since there are no prestressing tendons, the 

component of shear carried by tendons 0pV  . The parameters β  and θ  are calculated based on 

Method 1. For the doubly reinforced side of Specimen 1 the shear capacity for the beam was found 
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to be 281s
nV   kip and for the joint was found to be 532j

nV   kip. The results of this analysis for 

Specimens 1, 4, and 3 are presented in Table 6–3. 

  Table 6–3: Results of Stage 1 Shear Analysis.  

    Specimen 1 Specimen 4 Specimen 3   

  2( )shA in   0.393 0.393 0.393   

   cf ksi   5.40 4.00 5.93   

   yf ksi   65 65 65   

  ( .)bs in
  4.5 4.5 4.5   

  ( .)js in
  8 8 8   

    Singly Doubly Singly Doubly Singly Doubly   

   .jd in
  31 30.5 31 30.5 31 30.5   

   cV kip   109 108 94 93 115 113 Eq. (2-8)  

   sV kip   176 173 176 173 176 173 Eq. (2-9)  

   ( )archV kip   437 430 376 370 458 451 Eq. (2-17)  

 ( )truss sv yV kip A f   102 102 102 102 102 102  
 

   s
nV kip   285 281 270 266 291 286 Eq. (2-7)  

   j
nV kip

  539 532 478 472 560 553 Eq. (2-16)  

Step 5:  Check strength hierarchy. 

The strength reduction factor for shear and flexure are 0.90v   and 0.90,f 
 
respectively. It is 

observed that for the doubly reinforced beam of Specimen 1, 0.90×281 = 253s
v nV  kip is less 

than 0.90×481 = 433f
f nP  kip. This result shows that the factored shear capacity for the beam 

is insufficient, which can lead to a shear failure in the beam. Similar observations are made for 

Specimens 4 and 3. 
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Step 6:  Determine the shear capacity of the beam-column joint regions. 

The beam-column joint shear can be found from the shear force diagram of the equivalent beam 

model of the C-Beam specimen shown in Figure 6–2. The joint shear was found to be 

558jvV 
 
kip. The joint shear capacity of the joint is calculated based on Eq. (2-16) and is found 

to be 532j
nV   kip. For the joint, it is observed that 0.90×532 = 479j

v nV   kip is less than 

0.90×558 = 502f jvV   kip. 

From this analysis it can be concluded that the factored shear capacity for both the beam 

and the joint is insufficient. This is true for Specimens 1, 4, and 3, and hence warrants further 

investigation, and a strut-and-tie analysis is performed.  

6.4 STAGE 2: STRENGTH ANALYSIS USING STRUT-AND-TIE MODELING 

The strut-and-tie model developed for C-Beam Specimen 1 is shown in Figure 6–3. The steps 

involved in the construct and analysis of the strut-and-tie method are shown below. 

Step 1:  Determine the truss and node geometry. 

The width of the bottom face of the CCC node is equal to the depth of compression zone of the 

column ( ),kd  which is determined based on the equation for the elastic compression zone 

coefficient k  (Eq. 2-2) and was found to be equal to 9.53 in. The bottom face of the CCC node 

can be proportioned based on the ratio of / 558 / 481 1.16f
jv nV P    (from the shear force diagram 

in Figure 6–2). The width of the CCT node is taken to be equal to the width of the bearing pad, 

which is 12  in. The width of the CTT node is based on the bar bending radius (R   4 in.) and the 

radius ( / 2)bd of the longitudinal column reinforcement. 

The height of the CCC node is assumed to be equal to the depth of the back face of the 

CCT node (which equals two times the distance from the tension face to the centroid of the tension 

reinforcement). The crack angle in the beam-column joint is assumed to be 45°. After the node 

geometries are determined, all the SAT model dimensions and inclination angle can be obtained. 
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Figure 6–2: Shear Force and Bending Moment Diagram of the Equivalent 
Beam Model of C-Beam Specimen 1 (Specimen 4) and [Specimen 3]. 

  



 

100 
 

 

  

 
Figure 6–3: Strut-and-Tie Model for C-Beam Specimen 1. 

   

CTT node detail 

See CTT node detail 
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Step 2:  Solve the determinate truss. 

All the member forces can be determined based on joint equilibrium assuming that the tension tie 

has yielded, that is s yT A f . The externally applied load based on steel yield was found to be 

429SAT
yP   kip. However, this is most unlikely to be the critical load, as the critical node needs to 

be identified as follows. 

Step 3:  Determine critical node. 

Based on the geometry of the nodes it is determined that the CTT node is the most critical node 

with allowable stress in this node given as 0.65 cf   (Eq. 2-19). The node strength of the CTT node 

is found to be cuF   536 kip, 397 kip, and 588 kip for Specimen 1, 4, and 3, respectively. 

Step 4:  Determine external load causing node failure. 

The external load causing node failure for Specimen 1 based on the node capacity of the CTT node 

can be back calculated and is found to be 318SAT
nP   kip. It is noted that for both the specimen 

SAT f
n nP P  and also the factored capacities SAT f

v n f nP P  . Therefore, joint capacity is technically 

undependable. The results of the strut-and-tie analysis are summarized in Table 6–4.  

Figure 6–4 shows that indeed the beam-column joint is most critical and that the CTT node 

is the most critical node. The joint is overlaid with the truss and the arch members as was observed 

from the crack pattern.  

The results show that it is somewhat inconclusive as to what the failure mode for 

Specimen 1 will be because the joint capacity is technically undependable. It is observed that the 

specimen also have undependable joint capacity. Additionally, the SAT analysis does not take into 

account the effects of ASR/DEF damage. This justifies the use of an advanced analysis technique 

where the C-STM method comes in handy.  
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Figure 6–4: Failure Pattern Observed at the Beam-Column Joint of  
C-Beam Specimen 1. 

 

   

 Tension ties 

 Beam chord 

 Transverse 
ties 

 Truss action 

 Arch action 
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 Table 6–4: Results for Stage 2 SAT Analysis.  
  Specimen 1 Specimen 4 Specimen 3 Comments  
 ( )bD kip  667 667 667   

 ( )jD kip  723 723 723   

 ( )b degrees  40 40 40   

 ( )j degrees  45 45 45   

 ( )SAT
yP kip  429 429 429 Based on longitudinal 

steel yield. 

 

 ( )SAT
v yP kip  300 300 300  

 ( )SAT
nP kip  318* 236* 349* Based on node 

capacity. 

 

 ( )SAT
v nP kip  223 165 244  

 ( )f
f nP kip  433 428 434   

  *Expected critical failure mode capacity.  

6.5 STAGE 3: STRENGTH AND DEFORMATION CAPACITY USING COMPATIBILITY STRUT-

AND-TIE COMPUTATIONAL MODELING 

Figure 6–5 shows the C-STM model for C-Beam specimen (a) without and (b) with ASR/DEF 

damage. The cantilever beams were modeled using a single-point Gauss quadrature model. The 

joints were modeled using a two-point Gauss model (Kim and Mander, 1999) where the transverse 

ties were aligned with the U-bar reinforcement to provide a more exact representation of the 

reinforcement. The representative areas of reinforcement for the tension chord were defined as the 

sum of longitudinal steel and three sets of web distribution steel for tension. The compression 

chord was defined as the compression longitudinal steel. Rows 2, 3, and 4 of  

Figure 6–6, respectively, show the different nonlinear concrete stress-strain relationships that were 

derived for C-Beam Specimens 1, 4, and 3 from the material properties presented in  

Table 6–1.  
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(a) Specimen 1: Without ASR/DEF damage 

 

(b) Specimen 2,3 & 4: With ASR/DEF damage 

 Primary tension reinforcement 
 Ties representing bundles of hoops 
 Concrete struts for “truss” 
 Central concrete “arch” 
 
 
 

Initial confinement effect in hoops and longitudinal steel due to 
concrete swelling, modeled as a set of externally applied nodal 
forces 

Figure 6–5: Modeling the C-Beam Specimens without and with ASR/DEF Damage.  
Note: The additional forces in (b) represent the prestress effect actively induced  

        in the reinforcing steel caused by ASR/DEF induced concrete swelling. 
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Concrete tensile stresses were 
neglected in the analysis as 

Specimen 4 was heavily cracked 
due to ASR/DEF expansion. 

Concrete tensile stresses were 
neglected in the analysis as 

Specimen 3 was heavily cracked 
due to ASR/DEF expansion. 

(a) Diagonal web elements (b) Beam compression chord 
elements 

(c) Tension stiffened elements 

Figure 6–6: Cracked Reinforced Concrete Material Properties. 

Row 1: Theoretical nonlinear behavior 

Row 2: Specimen 1 modeled behavior 

Row 3: Specimen 4 modeled behavior 

Row 4: Specimen 3 modeled behavior   
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Stage 3.1: C-STM without ASR/DEF damage 

Figure 6–5a shows the C-STM model that was developed for C-Beam Specimen 1. Specimen 1, 

the control specimen, had no ASR/DEF induced damages. To simulate the experimental test setup 

as accurately as possible, initial loads (shown as PT in Figure 6–5a) were applied to the tension 

chord members of the protected beam in order to replicate post-tensioning effects in accordance 

with Phase I and Phase II testing. Note that this model essentially represents the C-STM analysis 

without any ASR/DEF effects. 

Stage 3.2: C-STM with ASR/DEF damage 

Figure 6–5b shows the C-STM model for C-Beam Specimens 4 and 3, which respectively, showed 

'moderate'  and 'heavy' damage due to ASR/DEF. In order to account for the effects of ASR/DEF 

expansion, the confinement ratio for Specimen 4 was calculated to be ccK  1.28 and 1.35 for the 

beam and the column core concrete, respectively. Similarly for Specimen 3 the confinement ratio 

was calculated as ccK  1.21 for the beam and ccK  1.31 for the column. The computation of 

confinement ratio for Specimen 3 is presented in Sheet 6-1. Based on the theory presented in 

section 3.6.5 the cover concrete strength reduction factors   0.40 and   0.30 were adopted for 

Specimens 4 and 3 with 'moderate' and 'heavy' damage. As both the cover and core concrete areas 

contribute to the area of the strut in the C-STM model, a weighted average value of concrete 

compressive strength was used in the C-STM model. The computation of the effective concrete 

compressive strength for Specimen 3 is presented in detail in the Sheet 6-2.  

The prestress in the longitudinal and transverse reinforcement were deduced from the 

ASR/DEF expansion model presented in Chapter 4 and applied to the C-Beam specimens in 

Chapter 5, unlike in the earlier work (Mander et al., 2012b) where recommendations were made 

for the prestrains based on the level of damage. Detailed prestrain computations for the different 

longitudinal and transverse members of Specimen 3 are presented in Sheet 6-3–Sheet 6-7.
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Sheet 6-1 Computation of material properties to perform the C-STM analysis 
for C-Beam Specimen 3. 

     1 
         2 

1. Computation of Confinement Ratio for Beam and Column 
Concrete compressive strength obtained experimentally from cylinder tests, '

cf =5.93 ksi 
As the strains in the steel were much higher than the yield strain, yf =75 ksi is 
considered for the following computations. 
 Computation of concrete confinement ratio: beam 
 kd (in.) 11.31 

 

 A 2 (in ) ( / 2)cc c s cc d b= + G  206 

 A 2 (in ) ( / 2)e c s cc d b= + -G

   area of shaded region  

124.58  

 k = A / A  e e cc  0.605 
 

( )
 (ksi) k str y

lx e
c str

A f
f

c d s
=

+
 

0.201  

 2
(ksi)=k str y

ly e
c

A f
f

b s
 

0.188  

 

 Smallest confining stress ratio '/ly cf f  0.032 

 Largest confining stress ratio '/lx cf f  0.034 

 K  (from chart) 1.21 
 Computation of concrete confinement ratio: 

column 
 kd (in.) 13.98 
 A 2 (in ) ( / 2)cc c s cc d b= + G  693 

 A 2 (in ) ( / 2)e c s cc d b= + -G

   area of shaded region  

560.85  

 k = A / A  e e cc  0.81 
 ( )

 (ksi) k str yx
lx e

c

A f
f

sd
=  

0.321 

 

 ( )
(ksi) =k

str yy
ly e

c

A f
f

sb
 

0.252 

 Smallest confining stress ratio '/ly cf f  0.042 

 Largest confining stress ratio '/lx cf f  0.054 

 K  (from chart) 1.31 
 

  



 

108 
 

Sheet 6-2 
Computation of material properties to perform the C-STM analysis 

for C-Beam Specimen 3. 
     2 
          2 

2. Computation of effective concrete strength 

kd = depth from the compression face to the neutral axis 

Total area of concrete assigned to the chord members = breadth x depth to neutral axis from 
compression face, totalA = b kd´ = 24 kd´  

  Beam  Column 

 kd (in) 11.31 13.98 

 Area of cover concrete (in2) 

coverA  = 2(1.5) kd´ +[ ]2(1.5) 1.5b -  

65.43 73.44 

  Area of core concrete (in2) 

coreA  = ( )[24 (2 1.5)] 1.5kd- ´ -  

206 262.1 

 Contribution of cover concrete to the total 
area = cover totalA A  

0.241 0.219 

 Contribution of core concrete to the total 
area = core totalA A  

0.759 0.781 

 Effective '
cf  from graph (ksi) 5.46 6.07 

 
 

Concrete Stress-Strain Relation for Beam Concrete Stress-Strain Relation for 
Concrete 
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Sheet 6-3 Computation of prestrains in the various members of the C-STM 
model for Specimen 3 

 

    1 

       5 
General notes 

Development length for Specimen 3 #8 bars ( )DL  = 42.20'' 

Distance to center of C-STM members ( )l  

 Member from beam short face (in.) from column face (in.)  

 S1 31.04 58.22  

 S2/S6 50.17 39.09  

 S3/S7 64.135 25.125  

 S4/S8 74.01 15.25  

 S5/S9 83.635 5.625  

  from beam long face (in.)   

 S16 15.5   

 S17/S19 41.125   

 Note: Values in blue are less than the development length.  
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Sheet 6-4 Computation of prestrains in the various members of the C-STM 
model for Specimen 3 

     2           
         5  

Longitudinal beam members (S1-S5) 

 

 
Modeled Expansion Strains Outside Development 

Length Zone 
The prestrains in the longitudinal beam members (S1-S5) are computed considering the 
average of modeled expansion strains at the end of the exposure period (1829 days) in the 
joint vertical direction (c presented as Case III in Appendix I) or longitudinal beam in-plane 
direction (e presented as Case V in Appendix I) and longitudinal beam out-of-plane direction 
(f presented as Case VII in Appendix I).  
Note: ( ) /eff l DL=  and 

1829
( )eff = expansion strain at 1829 days of exposure. 

  
Joint vertical 

direction c (Case III, 
Appendix I) 

Longitudinal beam 
out-of-plane direction f 
(Case VII, Appendix I) 

Average 
prestrain   

 
Outside DL 

 =  0.0529  


1829 =  0.00226 

 =  0.01428 


1829 =  0.00871   

C-STM 
Member 

l  from column 
face (in.) 

eff  
1829
( )eff  eff  

1829
( )eff  

 S5 5.625 0.00705 0.00884 0.0019 0.0274 0.01812  
 S4 15.25 0.01912 0.00427 0.00516 0.01652 0.01040  
 S3 25.125 0.0315 0.00305 0.00850 0.01214 0.00759  
 S2 39.09 0.0490 0.00235 0.01323 0.00914 0.00575  

  
l from beam 
short face 

Longitudinal beam 
in-plane e (Case V, 

Appendix I) 

Longitudinal beam 
out-of-plane direction f 
(Case VII, Appendix I) 

Average 
prestrain  

 

 S2  Outside DL 
 =  0.01954 


1829 =  0.0042 

 =0.01428 


1829 =0.00871 

0.00646  

 S1 31.04'' 
eff =  

0.01437 

1829
( )eff =  

0.00523 
eff =

0.01050 

1829
( )eff =

0.01060 
0.00792  

Note: Prestrain values presented in blue are adopted for the corresponding C-STM member. 
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Expansion strain at 1829 days exposure
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Sheet 6-5 Computation of prestrains in the various members of the C-STM 
model for Specimen 3 

     3 
           5 

Longitudinal Beam Members (S6-S9) 

 

 

Modeled Expansion Strains Outside Development 
Length Zone 

The prestrains in the longitudinal beam members (S6-S9) are computed considering the 
modeled expansion strains at the end of the exposure period in the joint vertical direction (c 
presented as Case III in Appendix I) or longitudinal beam in-plane direction (e presented as 
Case V in Appendix I). 

  Joint vertical direction c (Case III, Appendix I)  

 Outside DL  =  0.0529  
1829 =  0.00226  

 C-STM 
Member 

l  measured from 
column face (in.) 

eff  
1829
( )eff   

 S9 5.625 0.00705 0.00884  

 S8 15.25 0.01912 0.00427  

 S7 25.125 0.0315 0.00305  

 S6 39.09 0.0490 0.00235  

  
l  measured from 
beam short face 

Longitudinal beam in-plane e (Case V, 
Appendix I)  

 S6 Outside DL  =0.01954 
1829 =0.0042  

Note: Prestrain values presented in blue are adopted for the corresponding C-STM member. 
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Sheet 6-6 Computation of prestrains in the various members of the C-STM 
model for Specimen 3 

 

    4 
         5 

Longitudinal column members (S16-S20) 

 

 

Modeled Expansion Strains Outside Development 
Length Zone 

The prestrains in the longitudinal column members (S16-S20) are computed considering 
the modeled expansion strains at the end of the exposure period (1829 days) in the column 
longitudinal face (e presented as Case VI in Appendix I). 

Note: ( ) /eff l DL=  and 
1829
( )eff = expansion strain at 1829 days of exposure. 

 
C-STM 
Member 

l  measured from 
beam long face 

(in.) 

Column longitudinal direction e (Case VI, 
Appendix I) 

 

 S18/S20 Outside DL  =0.0671 
1829 =0.0034  

  eff  
1829
( )eff   

 S17/S19 41.125 0.06539 0.0034  

 S16 15.5 0.02465 0.00565  

Note: Prestrain values presented in blue are adopted for the corresponding C-STM member. 
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Sheet 6-7 Computation of prestrains in the various members of the C-STM 
model for Specimen 3 

 

    5 
         5 

Transverse members (S14, S15, S21) 

 

 

Modeled Expansion Strains Outside Development 
Length Zone 

The prestrains in the transverse members in the beam (S14) and the beam-column joint 
(S15) are computed considering the modeled expansion strains at the end of the exposure 
period (1829 days) in the beam out-of-plane region (f presented as Case I in Appendix I). 
Similarly, the prestrains in the column transverse members (S21) are computed from the 
modeled expansion strains in the column top transverse region (a presented as Case II in 
Appendix I). 

Note: ( ) /eff l DL=  and 
1829
( )eff = expansion strain at 1829 days of exposure. 
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Table 6–5 presents a summary of the prestrains for Specimen 3 and 4. Based on the 

prestrains and the area of the steel member, the prestress force on the C-STM members were 

backcalculated. The modified stress-strain relation of longitudinal and transverse reinforcing steel 

due to prestressing effects (for Specimen 4) is shown in Figure 6–7. 

6.6 C-STM RESULTS AND DISCUSSION 

Figure 6–8a shows the modeled results for the C-STM response for C-Beam Specimens 1, 4, and 3. 

The stiffness change in the control Specimen 1 at about 130 kip was due to the first cracking of 

concrete. For Specimens 4 and 3, the major stiffness changes were at 450 kip and 465 kip, 

respectively. This change in stiffness occurred when the decompression of the prestress effect 

occurred at the critical cross sections.  

Figure 6–8b presents the experimental performance of the C-Beam specimens. The 

behavior of the specimens during the initial prestress process were not captured accurately. 

Therefore, the initial displacement of the experimental results are offset based on the C-STM 

observations.  

It is evident from Figure 6–8 that the computationally modelled C-STM results are in good 

agreement with the experimental observations from the C-Beam specimens. A comparison 

between the C-STM and experimental ultimate load capacity for the C-Beam specimens shows 

that the C-STM results are within 5% from the experimental results.  

The various levels of deterioration caused by ASR/DEF expansion on the concrete 

structure were also successfully modeled into the C-STM, and the results are in good agreement 

with the experimental observations.  

All the nonlinear mechanisms that developed progressively in the various constituent 

members of the C-STM are presented in Figure 6–9. The left column of Figure 6–9 shows the 

development of nonlinear hinges formed during the C-STM analysis of the C-Beam specimens. 

When this information is combined with the overall force-deformation behavior of the specimens 

(the graphs in Figure 6–9), some insight into the progression of nonlinear hinge formation with 

respect to the global force-deformation behavior of the structure is obtained. These modeled 

outcomes shown in Figure 6–9 agree well with the visual observations made during each 

experiment.   
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 Table 6–5: Prestrains in C-STM Members for C-Beam Specimens. 

 Member Specimen 4 Specimen 3 

 S1 0.0044 0.0079 

 S2 0.0036 0.0065 

 S3 0.0038 0.0076 

 S4 0.0046 0.0104 

 S5 0.0068 0.0181 

 S6 0.0027 0.0042 

 S7 0.0021 0.0031 

 S8 0.0027 0.0043 

 S9 0.0043 0.0088 

 S14/S15 0.0075 0.0217 

 S16/S22 0.0044 0.0057 

 S17/S19 0.0028 0.0034 

 S18/S20 0.0025 0.0034 

 S21 0.0133 0.0204 

 
   

C-STM longitudinal and transverse members 
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Figure 6–7: Actual and Modified Stress-Strain Models for Reinforcing Steel to 
Account for Prestressing Effects in C-Beam Specimen 4. 
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(a) C-STM Results 

 

(b) Experimental Performance 

Figure 6–8: Force-Deformation Results for Specimens 1, 4, and 3. 
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Figure 6–9a shows the order of nonlinear hinge formation observed from the C-STM 

analysis of Specimen 1, in addition to the force-deformation of C-Beam Specimen 1 along with 

the points that correspond to the formation of nonlinear hinges. The chronological progression of 

nonlinear behavior for C-Beam Specimen 1 is as follows. 

 Longitudinal cracking first occurred in the beam. This is when the member stress exceeds the 

concrete tensile strength, thus initiating flexural cracking in the beam at the column face, and 

along the column, respectively. Tension softening refers to the concrete’s ability to resist 

tensile strains after the development of the primary cracks. 

 Transverse cracking then occurred in the transverse concrete elements, starting in the beam 

column joint and then in the beam. This corresponds with diagonal shear cracking observed as 

a result of the flexure-shear interaction and is in agreement with experimental observations. 

 Chord compression occurred in the diagonal arch and column compression chord elements 

indicating that the concrete had exceeded the elastic limit of 0.5 cf  . 

 Longitudinal yielding occurred in the longitudinal beam reinforcement when the stress exceeds 

the specified yield stress yf . 

 Transverse steel yielding in the beam-column joint U-bars were the next member in the C-STM 

to respond nonlinearly. 

 With the yielding of transverse reinforcement in the beam-column joint the load-carrying 

capacity of the truss mechanism is limited, and the stress flow occurs through the corner-to-

corner arch diagonal in the beam-column joint. 

 The final event, which results in the collapse of the concrete bridge pier, is compression 

softening of the main corner-to-corner (arch) strut in the beam-column joint. 

It should be noted that Specimens 3 and 4 were heavily cracked due to the effects of 

ASR/DEF related expansion. Therefore, for Specimens 3 and 4 the concrete tensile strength was 

neglected in the C-STM analysis. As noted earlier, prestress forces were applied to the C-STM 

model to simulate the effects of expansion caused by ASR/DEF on the structure. Concrete 

decompression in Figure 6–9 refers to the stage when the effects of the applied prestress are 

overcome by the applied loading and the concrete strains become tensile (positive).  
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Figure 6–9: Computed Sequence of Non-Linear Behavior Events.  
(Note: Specimens 1, 4, and 3 respectively, had no, moderate,  

and heavy ASR/DEF damage.) 
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In Specimens 3 and 4, from the strain data obtained from the field, it was noted that 

reinforcement had yielded prior to testing. Similar observations are made in the C-STM analysis. 

In Specimen 4 the major change in stiffness of the force-deformation behavior occurred when 

decompression occurred in concrete in the beam and the beam-column region of the specimen 

(events 7-8 in Figure 6–9c). Similar observations were also made for Specimen 3 where the major 

change in stiffness occurred during the decompression of longitudinal reinforcement in the beam 

and beam-column region (events 4-5 in Figure 6–9d) just before the failure of the specimen. 

From Figure 6–9 it is evident that by overlaying the commencement of formation of non-

linear hinges in the different members of the C-STM on the overall force-deformation behavior of 

the specimen, a deep insight into the internal mechanism of the specimen behavior can be obtained. 

Also it is clear that the final event which resulted in the collapse of the C-Beam specimens with 

and without ASR/DEF damage was the compression softening of the corner-to-corner (arch) strut 

in the beam-column joint and the CTT node failure was an outcome of that failure mechanism. 

6.7 CONCLUDING REMARKS ON WORKED EXAMPLE 

The results of the analysis are summarized in Table 6–6. 

From the results presented in Table 6–6 and the C-STM results presented in Figure 6–8, it 

is observed that the flexural analysis predicts the yield force accurately. However, the sectional 

shear approach had the largest discrepancy and did not accurately represent the specimen capacity. 

These predictions are unduly harsh because the shear capacity is calculated in a D-region where 

the theory breaks down. It is for this reason a SAT analysis needs to be conducted.  This analysis 

would imply that the joint would fail even before the beam yielded, thus suggesting  that the 

structure fails in a very brittle manner. However, this is not the case as can be seen from the 

experimental results (Figure 6–8). The effects of ASR/DEF damage cannot be analyzed using any 

of these techniques. 

On the other hand, the C-STM simulates the behavior of the specimen quite well and also 

overcomes the difficulties associated with trying to model the failure mechanism using present 

conventional strength-based analysis techniques used in AASHTO LRFD (2010) for design. The 
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effects of ASR/DEF were modeled into the C-STM analysis technique, and the results are in good 

agreement with the experimental observations. Additionally, the C-STM provides additional 

insight in terms of the sequence of behavior and whether the behavior is ductile or brittle. 

Finally, providing the applied factored loads 1.25D+1.75(L+I) are less than C-STMP = 

318 kip then the load carrying performance of the structure can be deemed acceptable. However, 

it is to be noted that ‘heavy’ damage due to ASR/DEF considerably affects the ductility of the 

structure. Additionally, the cracks act as a pathway for moisture ingress into the core of the 

specimen which in turn promotes a considerable amount of corrosion of the exposed reinforcing 

bars. It is unknown what the combined effects of ASR/DEF expansion and corrosion would be on 

the structure. 
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7. CLOSURE 

The model for ASR/DEF related expansion in reinforced concrete, is an effective means of 

predicting the expansion strain in the various regions of a structure. Knowing the expansion strains, 

the amount of prestress to be applied on the structure to simulate the effects of ASR/DEF expansion 

can be computed.  

From the analysis of the C-Beam specimens presented in the earlier sections, it can be seen 

that the strength-based analysis does not give a conclusive estimate of the ultimate strength of 

bridge piers. Also, none of these analysis techniques takes the effects of ASR/DEF damage into 

account. However, the compatibility based strut-and-tie model that was developed as a 

computational method of analyzing the nonlinear flexure-shear interaction of deep beams and 

other disturbed regions gives a good estimate of the behavior of shear critical concrete bridge piers. 

The highlights of the expansion modeling and computational truss modeling technique are as 

follows:  

ASR/DEF Expansion Model: 

 The proposed minimalist model needs limited input parameters, which can be deduced 

from expansion observations and material properties. 

 In addition to the effects of varying temperature and moisture on ASR/DEF induced 

expansion, the effects of compressive and tensile stresses were also included in the 

formulation. 

 By taking into account the appropriate reinforcement ratios, the model was able to simulate 

the expansion strains in the longitudinal and transverse directions. Considering the 

complex nature of the ASR/DEF expansion mechanism, and the wide scatter of field 

recorded data, the model was able to simulate the expansion strains quite well. 

C-STM Analytical Modeling: 

 Incorporates a method for apportioning the interaction of different truss and arch shear 

resisting mechanisms.  

 Incorporates the contribution of both flexural steel and concrete in compression chord 

members transformed from conventional stress block methods, which in turn defines nodal 

coordinates.  
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 Incorporates a direct method of modeling the softened constitutive relations of cracked 

reinforced concrete struts, which does not require an iterative process to obtain 

convergence.  

 Enables to model the effects of ASR/DEF into the analysis. 

 Accurately simulates the global force-deformation response of the structure without and 

with ASR/DEF damage. 

 Enables to “see” the nonlinear mechanism that progressively develops in the structure and 

precisely pinpoints the failure point and mechanism. 
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APPENDIX A: STAGE 1–3 ANALYSIS–C-BEAM SPECIMENS 

This appendix presents the analysis procedure followed for the C-Beam specimens. The 

computations for Stage 1(beam theory), Stage 2 (SAT analysis), and Stage 3 (C-STM analysis) are 

included. 

 

Table A–1: Material Properties for C-Beam Specimens. 

 Specimen 1 Specimen 4 

cf (ksi) (at time of testing) 5.40 4.00 

tf  (ksi)  0.30 0.23 

cE  (ksi)  4190 3605 

yf (ksi)  65 65 

sE  (ksi)  29000 29000 

 
 
STAGE 1: ANALYSIS USING BEAM THEORY 

 
Step 1: Determine first yield flexural capacity, b

yM . 

 
 

(a) Doubly reinforced beam (b) Singly reinforced beam 
 

Figure A–1: Strain and stress distribution for computation of yield moment. 
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Table A–2: Computation of First Yield Flexural Capacity and Corresponding Axial Load.  

 Specimen 1 Specimen 4 

 Doubly 
reinforced 

Singly 
reinforced 

Doubly 
reinforced 

Singly 
reinforced 

2
sA  (in )  7.854 7.854 7.854 7.854 

2
sA  (in )  7.854 1.571 7.854 1.571 
 ( .)b in

  24 24 24 24 
 ( .)d in

  33.25 33.25 33.25 33.25 
' ( .)d in

 
2.75 2.25 2.75 2.25 

' ( .)jd d d in 
 

30.5 31 30.5 31 

s
L

A

bd
   0.00984 0.00984 0.00984 0.00984 

s
L

A

bd



   0.00984 0.00197 0.00984 0.00197 

/s cn E E
  6.92 8.04 

     2 2 2L L L L L Lk n d d n n               

k  0.271 0.299 0.285 0.317 
 kd (in)  9.01 9.94 9.48 10.54 

( )y
c

kd

d kd


 

  0.00083 0.00096 0.00089 0.00104 

( )y
s

kd d

d kd





 

  0.00058 0.00074 0.00063 0.00082 

1 ( )
2c c cC (kip)= E kd b  -377 -480 -366 -474 

s s s sC (kip)= A E   -132 -34 -144 -37 

s s yT  (kip)= A f  511 511 511 511 

( / 3) ( / 3 )b
y s sM T d kd C kd d      

b
yM (kip.in)  15474 15319 15420 15228 

/b b
y y bP M L where 36 .bL in  

b
yP (kip)  430 425 428 423 
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Step 2 and Step 3: Determine nominal flexural moment, f
nM  and externally applied load based on 

flexure, f
nP . 

For an accurate estimate of the nominal moment, calculations were performed in a spreadsheet 

considering the contribution of each layer of steel. The spreadsheets are presented below for both 

doubly and singly reinforced beam for both the specimens. 

Table A–3:  Computation of Flexural Moment and Corresponding Axial Load Demand for 
Doubly Reinforced Beam: Specimen 1. 

Input Parameters Calculated Variables 

Section Properties Reinforcement Details Reinforcement 
Properties  0.85 

Breadth (in) 24 Reinforcement Diameter 
(in) Es (ksi) 29000  0.78 

a (shear 
span) (in) 36 Longitudinal 1 fy (ksi) 65 

    
Concrete Properties Distribution 0.5     

Assume NA 
depth for 

equilibrium, 
c (in)  

4.145 
f'c (ksi) 5.4 Stirrups 0.5     

Analysis 

Layer 
No: 
of 

bars 
Area (in2) 

Dist to 
layers 
from 

bottom (in)

Strain 
Stress 

in Steel 
(ksi) 

Force in 
Concrete/ 
Steel (kip) 

Moment 
(kip-in) 

Concrete ----- ----- 1.617 -0.0030 ----- -356.16 -575.75 
(Bottom)     

1 8 6.28 2.250 -0.0014 -39.77 -249.91 -562.30 
Steel 2 2 1.57 4.750 0.0004 12.70 19.95 94.75 
Steel 3 2 0.39 10.125 0.0043 64.96 25.51 258.29 
Steel 4 2 0.39 18.000 0.0100 64.96 25.51 459.18 
Steel 5 2 0.39 25.875 0.0157 64.96 25.51 660.06 
Steel 6 2 1.57 31.250 0.0196 64.96 102.04 3188.72 
Steel 7 8 6.28 33.750 0.0214 64.96 408.16 13775.26 

  
Mn

f (kip-ft) 1441.52 
Pn

f (kip) 480.51 
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Table A–4:  Computation of Flexural Moment and Corresponding Axial Load Demand for 
Singly Reinforced Beam: Specimen 1. 

Input Parameters Calculated Variables 

Section Properties Reinforcement Details Reinforcement 
Properties  0.85 

Breadth (in) 24 Reinforcement Diameter 
(in.) Es (ksi) 29000  0.78 

a (shear 
span) (in) 36 Longitudinal 1 fy (ksi) 65 

    
Concrete Properties Distribution 0.5     

Assume NA 
depth for 

equilibrium, 
c (in)  

5.845 
f'c (ksi) 5.4 Stirrups 0.5     

Analysis 

Layer 
No: of 
bars 

Area (in2) 

Dist to 
layers 
from 

bottom 
(in) 

Strain 

Stress 
in 

Steel 
(ksi) 

Force in 
Concrete/ 
Steel (kip) 

Moment 
(kip-in) 

Concrete ----- ----- 2.280 -0.0030 ----- -502.23 -1144.86 
(Bottom)     

1 2 1.57 2.250 -0.0018 -53.46 -83.97 -188.93 
Steel 2 0 0.00 4.750 -0.0006 -16.30 0.00 0.00 
Steel 3 2 0.39 10.125 0.0022 62.08 24.38 246.83 
Steel 4 2 0.39 18.000 0.0062 64.96 25.51 459.18 
Steel 5 2 0.39 25.875 0.0103 64.96 25.51 660.06 
Steel 6 2 1.57 31.250 0.0130 64.96 102.04 3188.72 
Steel 7 8 6.28 33.750 0.0143 64.96 408.16 13775.26 

  
Mn

f (kip-ft) 1416.36 
Pn

f (kip) 472.12 
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Table A–5: Computation of Flexural Moment and Corresponding Axial Load Demand for 
Doubly Reinforced Beam: Specimen 4. 

Input Parameters Calculated Variables 

Section Properties Reinforcement Details 
Reinforcement 

Properties  0.85 

Breadth (in) 24 Reinforcement Diameter 
(in.) Es (ksi) 29000  0.85 

a (shear 
span) (in) 36 Longitudinal 1 fy (ksi) 65 

    
Concrete Properties Distribution 0.5     

Assume NA 
depth for 

equilibrium, 
c (in) 

4.555 
f'c (ksi) 4 Stirrups 0.5     

Analysis 

Layer 
No: of 
bars 

Area (in2) 

Dist to 
layers 
from 

bottom 
(in) 

Strain 
Stress in 

Steel 
(ksi) 

Force in 
Concrete/ 
Steel (kip) 

Moment 
(kip-in) 

Concrete ----- ----- 1.936 -0.0030 ----- -315.93 -611.61 
(Bottom)     1 8 6.28 2.250 -0.0015 -44.02 -276.61 -622.38 

Steel 2 2 1.57 4.750 0.0001 3.72 5.85 27.79 
Steel 3 2 0.39 10.125 0.0037 64.96 25.51 258.29 
Steel 4 2 0.39 18.000 0.0089 64.96 25.51 459.18 
Steel 5 2 0.39 25.875 0.0140 64.96 25.51 660.06 
Steel 6 2 1.57 31.250 0.0176 64.96 102.04 3188.72 
Steel 7 8 6.28 33.750 0.0192 64.96 408.16 13775.26 

  
Mn

f (kip-ft) 1427.94 
Pn

f (kip) 475.98 
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Table A–6: Computation of Flexural Moment and Corresponding Axial Load Demand for 
Singly Reinforced Beam: Specimen 4. 

Input Parameters Calculated Variables 

Section Properties Reinforcement Details Reinforcement 
Properties  0.85 

Breadth (in) 24 Reinforcement Diameter 
(in.) Es (ksi) 29000  0.85 

a (shear 
span) (in) 36 Longitudinal 1 fy (ksi) 65 

    
Concrete Properties Distribution 0.5     

Assume NA 
depth for 

equilibrium, 
c (in) 

6.985 
f'c (ksi) 4 Stirrups 0.5     

Analysis 

Layer 
No: of 
bars 

Area (in2) 

Dist to 
layers 
from 

bottom 
(in) 

Strain 
Stress in 

Steel 
(ksi) 

Force in 
Concrete/ 
Steel (kip) 

Moment 
(kip-in) 

Concrete ----- ----- 2.969 -0.0030 ----- -484.48 -1438.24 
(Bottom)     

1 2 1.57 2.250 -0.0020 -58.58 -92.01 -207.03 
Steel 2 0 0.00 4.750 -0.0010 -27.84 0.00 0.00 
Steel 3 2 0.39 10.125 0.0013 39.11 15.36 155.50 
Steel 4 2 0.39 18.000 0.0047 64.96 25.51 459.18 
Steel 5 2 0.39 25.875 0.0081 64.96 25.51 660.06 
Steel 6 2 1.57 31.250 0.0104 64.96 102.04 3188.72 
Steel 7 8 6.28 33.750 0.0115 64.96 408.16 13775.26 

  
Mn

f (kip-ft) 1382.79 
Pn

f (kip) 460.93 
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Step 4: Determine beam shear capacity, s
nV . 

Table A–7:  Computation of Beam Shear Capacity. 

 Specimen 1 Specimen 4 
cf (ksi) (at time of testing) 5.40 4.00 

 ( )yf ksi  65 65 

vb (in.) 24 24 
2 ( )vA in 0.393 0.393 

 ( )s in 4.5 4.5 
 β (per AASHTO  

Method 1)
2 2 

 θ (degrees) (per AASHTO 
Method 1)

45 45 

 Doubly Singly Doubly Singly 
 ( )vd jd in  30.5 31 30.5 31 

'   ( )c c v vV 0.0316 β f b d kip 108 109 93 94 

 ( )v
s v y

d
V A f cotθ kip

s


 
173 176 173 176 

 ( )s
n c sV V V kip  281 285 266 270 

 

Step 5: Check strength hierarchy. 

Table A–8: Checking Strength Hierarchy. 

 Specimen 1 Specimen 4 
 Doubly Singly Doubly Singly 

v  0.90 (AASHTO 5.5.4.2) 

 ( )s
nV kip  281 285 266 270 

f  0.90 (AASHTO 5.5.4.2) 

 ( )f
nP kip  481 472 476 461 

 ( )s
v nV kip  253 256 239 243 

 ( )f
f nP kip  433 425 428 415 
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In all of the above cases s f
v n f nV P  , which implies that the dependable shear capacity 

may be insufficient leading to a shear failure of the bridge pier. 

Step 6: Determine the shear capacity of the beam-column joint region. 

The vertical shear in the joint ( )jvV  caused by the axial load based on flexure can be determined 

from the shear force diagram of the equivalent beam model of the bridge pier shown in  

Figure A-2. The horizontal shear jhV can be computed from
 

.jvV  

Table A–9:  Computing the Vertical and Horizontal Shear in the Beam-Column Joint 
Caused by Flexural Axial Load Demand. 

 Specimen 1 Specimen 4 
 Doubly Singly Doubly Singly 

f
nP (kip) 481 472 476 461 

jvV  (kip) 558 548 554 535 

 ( .)c bh h in  36 36 

c
jh jv

b

h
V V

h
  (kip)

 
558 548 554 535 
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Figure A–2: Approach to determine shear in the beam-column joint for Specimen 1 and 

Specimen 4. 
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The computation for assessing the joint shear capacity is as follows: 

Table A–10:  Assessing the Joint Shear Capacity. 

 Specimen 1 Specimen 4 
2 ( )svA in  

(total area of hoops/ties 
in the joint region) 

1.571 1.571 

 ( )yf ksi  65 65 

 ( )cf ksi
 5.4 4.0 

 ( )vb in  24 24 

 Doubly Singly Doubly Singly 

 ( .)jd in  30.5 31 30.5 31 

 ( )trussV kip  102 102 102 102 

 ( )archV kip  430 437 370 376 

 ( )j
n arch trussV kip V V   532 539 472 478 

v  0.90 

 ( )j
v nV kip  479 485 425 430 

f  0.90 

 ( )f jvV kip  502 493 498 481 

 

In the above cases j
v n f jvV V  , which implies that the joint capacity is less than the 

demand, and hence there could be a shear joint failure. 

From the above analysis it is determined that the beam and the beam-column joint are shear 

critical. Therefore a strut-and-tie analysis is performed. It is also required by the code to perform 

a SAT as the /a d
 
ratio for the specimen is 1.08. 
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STAGE 2: STRUT-AND-TIE ANALYSIS 

Step 1: Determine the node geometry. 

The computation of the node dimensions and geometry for the two specimens follows. 

CCT node:  

 The width of the CCT node is taken equal to the width of the bearing pad =12 '' .  

 The depth of the back face of the CCT node = 2Gdistance from the extreme tension face 

to the centroid of the tension reinforcement = 2 2.75 5.5 ''.G  
 

CTT Node: 

 Width of the CTT node = 22 ( / 2)bR dG where R  bar bending radius = 4 ''  and bd   
diameter of the column longitudinal rebar = 1'' . 

CCC Node: 

 The width of the bottom face of the CCC node is equal to the depth of compression zone 

of the column ( )kd , which is determined based on the equation for the elastic compression 

zone coefficient .k  

 The bottom face is proportioned based on the ratio of / / f
jv na b V P  (Figure in  

Table A–11) obtained from Stage 1 of the analysis. 

 Since the horizontal force in the CCC node is equal to the horizontal force in the CCT node, 

the height of the CCC node is assumed to be equal to the depth of the back face of the CCT 

node = 2 2.75 5.5 ''.G  

 Knowing the above, the other sides of the CCC node can be determined. 
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Table A–11: Computations for Sizing the CCC Node. 

 

   
  (a) Column cross section                          (b) CCC node configuration 

 
 Specimen 1 Specimen 4 

2
sA  (in )  7.854 

2
sA  (in )  3.927 

 ( .)b in 24 
 ( .)d in

  33.25 

( .)d in 2.25 

s
L

A

bd
   0.00984 0.00984 

s
L

A

bd



   0.00492 

/s cn E E
  6.92 8.04 

     2 2 2L L L L L Lk n d d n n               

k  0.287 0.303 
 kd (in.)  9.5 10.1 

 ( )jvV kip  558 554 

 ( )f
nP kip  481 476 

/ f
jv nV P  1.16 1.16 

 ( )a in  5.12 5.41 
 ( )b in

 
4.41 4.66 
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Table A–12: Geometry and Dimensions of Nodes. 

C
C

T
 N

od
e 

 

C
T

T
 N

od
e 

 

C
C

C
 N

od
e 

Specimen 1 Specimen 4 
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Step 2: Solve the determinate truss-determine strut and tie forces. 

Table A–13:  Forces in the Struts and Ties of the SAT Model. 

 

 

C
C

T
 N

od
e 

Node forces based on steel yield 
2 ( )sA in  7.854 

 

 ( )yf ksi  65 

 b (degrees)  40 

 j (degrees)  45 

 ( )s yT A f kip  511 

/ cos( ) ( )b bD T kip  667 

sin( ) ( )SAT SAT
b b yP D kip P   429 

C
C

C
 N

od
e 

cos( ) ( )b bC D kip   511 

 

/ cos( ) ( )j jD C kip  723 

sin( ) ( )j
v j jP D kip  511 

 

Step 3 and Step 4: Determine minimum externally applied load causing node failure and determine 

shear demand. 

Allowable stresses in the nodes based on AASHTO (2010) are presented in Table A–14. From the 

allowable node stresses, the CTT node is found to be the critical node. The axial load required to 

cause the failure of the CTT node can be backcalculated based on the allowable nodal stress and 

the area of the node. The results are presented in Table A–14. 
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Table A–14:  Allowable Node Stresses and Axial Load Required to Cause CTT Node 
Failure. 

 Specimen 1 Specimen 4 

cf (ksi)  5.40 4.00 

Allowable Stresses 

CCC Node 0.85cu cf f    4.60 3.40 

CCT Node 0.75cu cf f   4.05 3.00 

CTT Node 0.65cu cf f   3.51 2.60 

Node capacity ( )  ( )j node cuD kip F  536 397 

Axial load that causes nodal failure, 

( )( ) /SAT SAT
n y j node jP kip P D D  

318 236 

 

For both the specimens it is evident that SAT
nP computed from the SAT analysis is lesser 

than
 

f
nP calculated from the beam flexure theory. Also, SAT f

v n f nP P  for both the specimens. 

However from the experimental results, it was observed that the load at failure for Specimen 1 

and 4 was Expt
FailureP 474 kip and 503 kip, respectively. It is apparent from Stage 1 and Stage 2 of 

the analysis that they do not give a good prediction of the load carrying capacity of the specimens. 

Therefore, a C-STM analysis is performed to evaluate the performance of the structure. 
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STAGE 3: ANALYSIS USING COMPATIBILITY STRUT-AND-TIE METHOD 

The computation of member and material properties of the C-STM model are presented below for 

Specimen 1 (control specimen) followed by Specimen 4 (with ASR/DEF damage).  

Computation for C-Beam Specimen 1 

A few of the section properties have to be determined beforehand to set up the C-STM geometry. 

These computations follow. 

Step 1: Calculate section properties. 

Table A–15: Computation of Section Properties for C-STM. 

 Doubly Reinforced Column Singly 
Reinforced 

CROSS-SECTION 

 

Compression Chord 8-#8 Bars 5-#8 Bars 2-#8 Bars 

h (in.) 36 36 36 

'd (in.) 2.25 2.25 2.25 

d (in.) 33.25 33.25 33.25 

sA (in2) 6.28 3.93 1.57 

Steel contributing to 
tension chord 

10-#8 Bars 
2 sets of 2-#4 

10-#8 Bars 
2 sets of 2-#4 

10-#8 Bars 
2 sets of 2-#8 

( )s totalA (in2) 8.64 11.00 8.64 
__

y (in) (centroid of  

( )s totalA ) 

3.78 4.86 3.78 

sA (in2) 
'

( ) 's total

h d y
A

d d

 



 

8.35 10.25 8.35 

'  ( )jd d d in   31.0 31.0 31.0 

d ' 

d

Compression Chord As’

Tension Chord As

 

As(total) 

h
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Determine the depth of compression zone ( )kd of the singly and doubly reinforced beams 

and column using the equation: 
2

2' ' ''2
' ' '

     c c c
L L L L L L

c s c s c s

f f fP d P P
n n n

f bd f d f bd f f bd f
k

                                                         
 

 
For the beams the axial load P is zero. 
 

Table A–16: Determining the Depth of the Compression Zone for Specimen 1. 

' 5.4cf 
ksi 

Compression Steel Tension Steel Axial Load Elastic Depth 
As' 
(in2) 

d' 
(in.) 

ρ' 
As 
(in2) 

d  
(in.) 

b 
(in.) 

ρ 
P  

(kip) 
k 

kd 
(in.) 

Single 
Beam 1.57 2.25 0.00197 8.35 33.25 24 0.01046 - 0.307 10.19 

Double 
Beam 6.28 2.25 0.00787 8.35 33.25 24 0.01046 - 0.283 9.42 

Column 3.92 2.25 0.00492 10.25 33.25 24 0.01284 430 0.394 13.10 
 
Step 2: Determine C-STM geometry based on Step 1. 

The tension ties (AK and K1K2 in Figure A–3) and compression chords (BH and L1L2 in Figure 

A–3) in the beams and the column are placed along the centroids of the tension and compression 

steel determined in Table A–15. The C-STM geometry is the same in both the singly and double 

reinforced beams. The overhang portion of the specimen is modeled using the single-point Gauss 

truss model as presented in Chapter 3. The position of tie CB is determined based on the 

coefficients for the single point Gauss model. In the beam-column joint region, the ties GF and IH 

are placed along the position of the U-Bars to better represent the specimen. All the dimensions of 

the C-STM are shown in Figure A–3.  
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Figure A–3: C-STM Model for C-Beam Specimen 1. 

 
Step 3: Determine axial rigidities. 

The next step in the C-STM analysis is to determine the axial rigidities of each of the members 

constituting the C-STM model.  

To model the combined response of steel and concrete in the compression chord members, 

the compatibility correction factor is calculated in Table A–17. Based on these correction scalars, 

the modified stress-strain relation of the compression chord is determined. 
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 Table A–17:  Computation of Compatibility Correction Scalar for Specimen 1. 

 Singly Reinforced Doubly Reinforced Column 

'd (in.) 2.25 2.25 2.25 

 ( .)kd in  10.19 9.42 13.10 

( )cf  ksi  5.4 5.4 5.4 

 
( )

168 1 '
c

E

f psi

d kd





  0.561 0.575 0.528 

 
( )

480 1 '
c

P

f psi

d kd






 

0.196 0.201 0.185 

 
( )

1500 1 '
c

PP

f psi

d kd



 


 

-0.063 -0.064 -0.059 
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The arch breadth scalar is calculated to determine the area that needs to be assigned to the 

inclined arch and struts in the beam and beam-column joints. 

 

Table A–18:  Computing Arch Breadth Scalar. 

2cot
L yArch

Arch Truss L y T yh

fV

V V f f j




  
 

 
 

 Singly Reinforced Doubly Reinforced Column 

d (in.) 33.25 33.25 33.25 

b (in.)  24 24 24 

 ( .)s in 4.5 4.5 8 

 ( .)jd in  31.0 31.0 31.0 

j 0.93 0.93 0.93 

y yhf f (ksi) 65 65 65 

2 ( )sA in  8.35 8.35 10.25 

2 ( )shA in  0.393 0.393 0.393 

T sh wA b s  0.00364 0.00364 0.00205 

L sA bd   0.0105 0.0105 0.0128 

 (degrees) 39.02 39.02 45 

 0.671 0.671 0.87 (0.75 used) 

 

Based on the properties computed above and the theory presented in Chapter 3, the axial rigidities 

are computed. The equations used are presented in Table 3–2. 
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Table A–19: Axial Rigidities of C-STM Elements: Specimen 1. 

  Steel Concrete Comments 

 MEMBER E (ksi) A (in2) E (ksi) A (in2)  

B
ea

m
 

A-E (D) 29000 8.35 4190 226.00 
Tension Chord 

A-E (S) 29000 8.35 4190 245.00 

B-D (D) 29000 6.28 2409 226.00 
Compression Chord 

B-D (S) 29000 1.57 2351 245.00 

BC 29000 2.36 4190 162.00 Transverse Steel 

AD - - 4190 240.60 Concrete Arch 

AB - - 4190 110.52 
Concrete Truss 

CD - - 4190 118.14 

B
ea

m
-C

ol
um

n 
Jo

in
t 

E-K (D) 29000 8.35 4190 226.00 
Tension Chord 

E-K (S) 29000 8.35 4190 245.00 

D-H (D) 29000 6.28 2409 226.00 
Compression Chord 

D-H (S) 29000 1.57 2351 245.00 

FG&HI 29000 0.39 4190 54.00 Transverse Steel 

DK - - 4190 295.92 Concrete Arch 

DG - - 4190 73.64 

Concrete Truss 
DI - - 4190 78.46 

FK - - 4190 78.15 

HK - - 4190 73.90 

C
ol

um
n JJ 29000 10.25 4190 314.40 Tension Chord 

LL 29000 3.93 2212 314.40 Compression Chord 

Beam: 6hN   and beam-column joint: 2hN   
(D) Doubly reinforced beam (S) Singly reinforced beam 

 

Step 4: Determine constituent material properties. 

The stress-strain models used for the members in Phase 1 of Specimen 1 are as follows. The only 

difference for Phase 2 of the specimen is that the concrete tensile strength was reduced to 0.2 ksi 

to account for the minor concrete cracking that had occurred in Phase 1 of the experiment. 
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Table A–20: Stress-Strain Models Used for C-STM Members: Phase 1 of Specimen 1. 

Member Stress-Strain Model 
All steel members. 

All concrete members, except the 

beam and column compression 

chord members. 

AB, CD, GD, ID, FK, HK, AD, 

CB, GF, IH, J1J2, and AK. 

Beam compression chord. 

BH 
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Table A–20: Stress-Strain Models Used for C-STM Members: Phase 1 of Specimen 1 
(continued). 

Column compression chord. 

L1L2 

Softened concrete model for the 

beam-column joint concrete arch. 

DK (In Phase 2) 
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Computation for C-Beam Specimen 4. 

C-Beam Specimen 4 was subjected to moderate amounts of ASR/DEF damage. While the 

procedure for calculating the member and material properties remains the same as in the case of 

Specimen 1, certain modifications are required to account for the effects of ASR/DEF in the 

specimens. The modifications are based on the recommendations made in Chapter 3. 

Step 1: Compute modified material properties to account for ASR/DEF. 

To account for the effects of ASR/DEF on the C-Beam specimens, modified material properties 

are calculated based on the recommendations presented in Section 3.6.5. 

 Diagonal truss concrete:  

Table A–21: Modified Concrete Strength for Concrete Truss  
Members of the C-STM. 

 Specimen 4 

ASR/DEF damage level Moderate 

 ( )cf ksi  4.0 

 0.70 

 ( )cASR cf ksi f  
  2.80 

The stress-strain of the following members (Figure A–3) is modified based on the reduced 

concrete strength of the diagonal truss: AK, AB, CD, GD, ID, FK, HK, CB, GF, and IH. 

 Compute prestress in the beam and column ties: 

Based on the recommendations made in 3.6.5 the prestress in the longitudinal bars and the 

hoops are calculated. 
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Table A–22:  Prestress in Longitudinal Bars and Hoops Due to ASR/DEF. 

 Specimen 4 

ASR/DEF damage level Moderate 

=  ( )y yhf f ksi  65 

Prestress in longitudinal bar (ksi) 0.5 32.5ps yf f   

Prestress in hoops (ksi) 1.0 65ps yhf f   

Knowing the prestress in the ties and the tie area, the prestress force to be applied in the 

C-STM model is computed. 

Table A–23:  Prestress Forces Applied to the C-STM Model. 

 Prestress Force (kip) 
MEMBER Specimen 4 

A-K 32.5G8.35=271.38 

B-H (D) 32.5G6.28=204.10 

B-H (S) 32.5G1.57=51.03 

BC 65G2.36=153.40 

FG&HI 65G0.393=25.35 

JJ 32.5G10.25=333.13 

LL 32.5G3.93=127.73 
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 Compute confinement ratio for the beam and the column: 

To account for the confinement caused by the swelling of core concrete, the confinement 

ratios are computed for the beam and the column. 

Table A–24:  Calculating Confinement Ratio of the Beam. 

 
 Specimen 4 

 ( )cf ksi
  4.0 

 ( .)kd in  11.20 
2 ( ) ( / 2)cc c s cA in c d b  G  200.70 

2 ( ) ( / 2)    e c s cA in c d b area of shaded region  G  122.86 

 e e cck = A / A  0.603 

 ( )lxf ksi  0.176 

 ( )lyf ksi  0.162 

Smallest confining stress ratio /ly cf f   0.041 

Largest confining stress ratio /lx cf f   0.44 

/cc cK f f   1.28 
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Table A–25:  Calculating Confinement Ratio of the Column. 

 
 Specimen 4 

 ( )cf ksi
  4.0 

 ( .)kd in  11.20 
2 ( )cc c cA in b d  693 

2 ( )    e c cA in b d area of shaded region   560.85 

 e e cck = A / A  0.81 

 ( )lxf ksi  0.278 

 ( )lyf ksi  0.219 

Smallest confining stress ratio /ly cf f   0.055 

Largest confining stress ratio /lx cf f   0.069 

/cc cK f f   1.35 

 
 
Step 2: Compute section properties. 

The steel areas computed in Table A–15 for Specimen 1 hold good for Specimen 4 as well. 

However, the depth of compression zone ( )kd  has to be recalculated to account for the prestress 

forces that are applied on the ties.  
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Table A–26:  Determining the Depth of the Compression Zone for Specimen 4 With 
ASR/DEF Damage. 

 

Compression Steel Tension Steel Axial Load Elastic Depth 
As' 
(in2) 

d' 
(in) 

ρ' 
As 
(in2) 

d  
(in) 

b 
(in) 

ρ 
P  

(kip) 
k 

kd  
(in) 

Single 
Beam 1.57 2.25 0.00197 8.35 33.25 24 0.01046 51.0 0.337 11.21 

Double 
Beam 6.28 2.25 0.00787 8.35 33.25 24 0.01046 204.1 0.343 11.40 

Column 3.92 2.25 0.00492 10.25 33.25 24 0.01284 763.1 0.458 15.22 
 

Step 3: Determine C-STM geometry. 

The geometry of the C-STM remains the same as Specimen 1. However, axial loads are applied at 

the nodes to account for the ASR/DEF effects. The C-STM model for Specimen 4 is shown in 

Figure A–4. 

 
 

Figure A–4: C-STM Model for C-Beam Specimen 4. 
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Step 4: Determine axial rigidities. 

The compatibility correction factor for Specimen 4 is recalculated. 

 

Table A–27:  Computation of Compatibility Correction Scalar for Specimen 4. 

 Singly Reinforced Doubly Reinforced Column 

d  (in.) 2.25 2.25 2.25 

 ( .)kd in  11.21 11.40 15.22 

( )cf  ksi  4.0 4.0 4.0 

 
( )

168 1
c

E

f psi

d kd





  0.471 0.469 0.442 

 
( )

480 1
c

P

f psi

d kd






 

0.165 0.164 0.155 

 
( )

1500 1
c

PP

f psi

d kd



 


 

-0.053 -0.053 -0.049 

 

The arch-breadth scalar remains the same as in Table A–18. The axial rigidities are 

recomputed based on the modified properties calculated above for Specimen 4.  
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Table A–28:  Axial Rigidities of C-STM Elements: Specimen 4. 

 
 Steel Concrete Comments 

MEMBER E (ksi) A (in2) E (ksi) A (in2)  

B
ea

m
 

A-E (D) 29000 8.35 4190 273.60 
Tension Chord 

A-E (S) 29000 8.35 4190 269.04 

B-D (D) 29000 6.28 1690 273.60 
Compression Chord 

B-D (S) 29000 1.57 1698 269.04 

BC 29000 2.36 4190 162.00 Transverse Steel 

AD - - 4190 240.60 Concrete Arch 

AB - - 4190 110.52 
Concrete Truss 

CD - - 4190 118.14 

B
ea

m
-C

ol
um

n 
Jo

in
t 

E-K (D) 29000 8.35 4190 273.60 
Tension Chord 

E-K (S) 29000 8.35 4190 269.04 

D-H (D) 29000 6.28 1690 273.60 
Compression Chord 

D-H (S) 29000 1.57 1698 269.04 

FG&HI 29000 0.39 4190 54.00 Transverse Steel 

DK - - 4190 295.92 Concrete Arch 

DG - - 4190 73.64 

Concrete Truss 
DI - - 4190 78.46 

FK - - 4190 78.15 

HK - - 4190 73.90 

C
ol

um
n JJ 29000 10.25 4190 365.28 Tension Chord 

LL 29000 3.93 1593 365.28 Compression Chord 

Beam: 6hN   and beam-column joint: 2hN   
(D) Doubly reinforced beam (S) Singly reinforced beam 
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Step 5: Determine constituent material properties. 

Table A–29: Stress-Strain Models for the Elements of the C-STM Model: Specimen 4. 

Member Stress-Strain Model 
All members 

Concrete truss members in 

the beam. 

AK, AB, CD, GD, ID, FK, 

HK, CB, GF, and IH. 

 

For remaining concrete 

members in the beam. 
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Table A–29: Stress-Strain Models for the Elements of the C-STM Model: Specimen 4 
(continued). 

Column members. 

Softened concrete model 

for the beam-column joint. 

DK 
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