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1. FORWARD 

When a bridge engineer encounters a design or analysis problem concerning a bridge 

substructure, that structure will commonly have a mixture of member types, some slender, and 

some squat. Slender members are generally governed by flexure, and normal beam theory should 

suffice for analysis and design. Squat members can often be handled by beam theory too, 

although nowadays designers have a choice and may opt to use strut-and-tie (SAT) models. 

 When the structure possesses a mixture of beam (B-) regions and deep or disturbed (D-) 

regions the dilemma facing the structural engineer is: What method should one use for structural 

analysis and design? 

 The issue becomes even more murky when a structure already exists, but shows signs of 

damage and deterioration from the effects of alkali-silica reaction (ASR), delayed ettringite 

formation (DEF), or other deterioration mechanisms. The engineer is faced with a second 

dilemma: How do deteriorated material properties get incorporated into the analysis? 

It is well-known that the behavior of deep beams or disturbed (or “D”) regions in a 

structural system cannot be accurately described according to conventional beam theory alone. 

This is due to the high irregularity of internal stress and strain distributions, accompanied by the 

interaction of flexure and shear. As a result, the coupled flexure and shear analysis of structural 

concrete members, especially deep beams, have been a contentious issue to both researchers and 

structural engineers for decades.  

Conventional U.S. design standards for D-regions have historically been based on 

empirically derived expressions. The concept of strut-and-tie modeling (SAT) was first 

introduced as a method of strength design in the AASHTO LRFD Bridge Design Specification 

(2010) in 1994, and the ACI 318 Building Code Requirements for Structural Concrete (2011) in 

2002. However, as a SAT model only satisfies force equilibrium and is intentionally formulated 

as a lower bound (plastic) solution, the critical mode of failure (i.e., element or nodal failure) is 

often illusive to the designer. Thus the ultimate failure mechanism might lead to an undesirable 

brittle collapse when imposed to overload scenarios. 
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Current nonlinear shear analysis models for structural concrete deep beams are generally 

complicated to use and have limited applicability or appeal to practicing engineers. Clearly, it is 

desirable to have a model that is derived from rational mechanics and validated with 

experimental evidence that can be implemented into commercially available structural analysis 

software. Therefore, a Compatibility Strut-and-Tie Model (C-STM) that is intended for the 

nonlinear analysis of shear critical reinforced concrete structures is presented.  

These guidelines seek to demystify the above mentioned dilemmas. More specifically, 

guidelines are presented for determining the capacity of D-regions without and with premature 

concrete deterioration, in particular ASR and DEF effects. 

In many cases either beam theory, or SAT methods should suffice in assessing the 

strength and safety of bridge substructures with or without ASR/DEF effects. However, as a 

supplementary analysis tool the C-STM approach can be used to augment the design process by 

accurately assessing the force-deformation response and nonlinear failure modes of deep beams 

with small span to depth ratios or D-regions. 
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2. ANALYSIS SCHEMA 

2.1 SCOPE 

This section presents the analysis methodology to be followed for the analysis of the structural 

capacity of bridge pier. The flowchart given in Figure 2–1 depicts the procedure and the 

branching decision points that either terminate the analysis or trigger additional analyses to 

provide additional insights into expected behavior of bridge piers. 

2.2 STAGE 1: ANALYSIS USING BEAM THEORY 

As a first step in the analysis of a bridge pier as shown in Figure 2–2, it is assumed that flexural 

plastic hinge forms first, and the analysis is conducted based on flexural bending theory. The 

steps in this analysis technique can be summarized as described in the following steps: 

Step 1:  Determine first yield flexural capacity, b
yM . 

Calculate the beam yield moment ( b
yM ) at first yield of longitudinal steel given by: 

( ') ( / 3)b
y s cM C d d C d kd     (2–1) 

in which d depth to the centroid of tensile reinforcement from the extreme compression fiber; 
'd  depth to the centroid of compression steel from the extreme compression fiber;  

'  when  s s s s yC A f f f  and '0.85c cC f ab  where '
sA  the area of compression reinforcement; 

sf  stress in steel corresponding to strain s ; yf  yield stress of reinforcing steel; '
cf   

concrete compressive strength; b  breadth of the section; and k is the elastic compression zone 

coefficient as given by Park and Paulay (1975): 

     nnddnk LLLLLL   222  
(2–2) 

in which L  the ratio of tension reinforcement; L  the ratio of compression reinforcement; 

and n   the modular ratio of steel to concrete.  
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Figure 2–1: Flowchart for Analysis Procedure of Bridge Piers.   
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Figure 2–2: Bridge Pier and Equivalent Beam Model for Flexure Analysis. 
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The externally applied load that causes first yield is given by: 

/b b
y y bP M L  (2–3) 

where bL distance from the point of application of the load to the face of the column.  

Step 2:  Determine nominal flexural moment, f
nM . 

The flexural moment ( f
nM ) of the beam is calculated as: 

'( ) ( / 2)f
n s cM C d d C d a     (2–4) 

in which 1a c  is the depth of the equivalent rectangular stress-block for which c  is the 
neutral axis depth and 1   the equivalent rectangular stress-block parameter given as: 

 '( ) -1 c0.65 = 0.85 -0.05 f ksi 4 0.85   (2–5) 

Step 3:  Determine externally applied load based on flexure, f
nP . 

Based on the flexural capacity ( f
nM ), the externally applied load ( f

nP ) is determined: 

/f f
n n bP M L  (2–6) 

Step 4:  Determine beam shear capacity, s
nV . 

The shear capacity ( s
nV ) of the beam is computed as: 

s
n c s pV V V V    (2–7) 

in which pV  component of shear carried by prestressing tendons, if any; sV  shear carried by 

steel; and cV  shear carried by concrete given by: 

'  c c v vV 0.0316 β f b d  (2–8) 

where '
cf   concrete strength is in ksi units; vb  section web width across shear plane; vd 

effective shear depth taken as vd jd  or not less than the greater of 0.9d (where d effective 

depth), or 0.72h  (where h overall depth).  
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For sections with steel transverse to the longitudinal axis of the member ( o90  ), the 

shear carried by the hoops and /or cross ties is given by: 

v
s v y

dV A f cotθ
s

  
(2–9) 

where vA   cross-sectional area of hoopset; s hoopset spacing; and θ = shear crack angle 

inclined from the longitudinal axis. 

 AASHTO LRFD (2010) specifications permit β  and θ  in Eq. (2–8) and (2–9) to be 

calculated by one of the following two methods: 

Method 1:  Simplified Procedure 

For reinforced (non-prestressed) concrete members, values of β = 2.0  and oθ = 45  can be used. 

Thus, the shear carried by concrete is the same as the well-known historic ACI-318 (2011) 

method. 

Method 2:  General Sectional Procedure 

This method is based on the simplified version of the Modified Compression Field Theory 

(MCFT) (Bentz et al., 2006). In this method the parameters β  and θ can be determined as 

described below. 

 For sections containing the minimum amount of transverse reinforcement as specified in 

AASHTO LRFD (2010), β  is determined as: 

s

4.8β =
1+750ε

 
(2–10) 

where s  net longitudinal tensile strain in the section at the centroid of the tensile 

reinforcement determined as explained later. 

 For sections that do not contain the minimum amount of shear reinforcement as specified 

in AASHTO LRFD (2010), β  is determined as: 
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s xe

4.8 51β =
(1+750ε ) (39+s )

 
(2–11) 

where xes  the crack spacing parameter is given by: 

( .) ( .)xe x
g

1.3812.0 in s s 80.0 in
a 0.63

  


 
(2–12) 

where ga maximum aggregate size in inches; xs  the lesser of either vd (effective shear depth) 

or the maximum distance between layers of longitudinal crack control reinforcement, where the 

area of the reinforcement in each layer is not less that .v x0.003b s  

 The crack angle  for any of the above cases is given by:  

sθ = 29+3500ε  (2–13) 

In Eqs. (2-10), (2-11), and (2-13), s can be determined from the following expression: 

| | 0.5 | |u
u u p ps po

v
s

s s p ps

M N V V A f
d

E A E A

 
    

  


 

(2–14) 

where | |uM   factored moment, not to be taken less than | |u p vV V d ; uV  factored shear force; 

pV  component of shear carried by prestressing tendon; uN   factored axial force taken as 

positive if tensile and negative if compressive; sA  area of nonprestressing tensile steel; psA 

area of  prestressing steel on the flexural tension side of the member; pof (pretensioned 

members)   stress in strands when concrete is cast around them, and pof (post-tensioned 

members)  average stress in the tendons when the post-tensioning is completed, or for usual 

levels of prestressing 0.7po puf f  for both pre and post-tensioning; puf  ultimate stress in the 

prestressing tendon; sE  and pE modulus of elasticity of reinforcing steel and prestressing steel 

respectively; and sA  area of reinforcing steel. 
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Step 5:  Check strength hierarchy. 

Once the externally applied load based on flexure ( f
nP ) and the shear capacity ( )s

nV are 

calculated, the strength hierarchy can be determined based on: 

IF  s f
v n nV P 

 

THEN shear has a measure of reserve capacity and the beam should fail in 

flexure. 

IF  s f
v n f nV P 

 

THEN the factored shear capacity may be insufficient leading to a shear failure of 

the bridge pier. 

In the above v 0.90   and f 0.90   are the strength reduction factors for shear and flexure, 

respectively, as per AASHTO LRFD Bridge Design Specifications (2010). 

Step 6:  Determine the shear capacity of the beam-column joint regions. 

For the beam-column joint regions in bent caps the joint shear capacity needs to be determined in 

the direction in which the shear steel (hoopsets) is oriented. Thus, the vertical joint shear ( )jvV  
determined from the shear force diagram (Figure 2–2) of the bridge bent cap can be transformed 

(if necessary) as follows: 

c
jh jv

b

hV V
h

  
(2–15) 

in which bh  and ch  are the overall depth of the beam and column, respectively.  

The joint capacity can be assessed as: 

j
n arch trussV V V   (2–16) 
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where archV   shear carried by the corner-to-corner diagonal concrete arch (defined later); and 

truss sv yV A f   the shear carried by the hoops and/or cross ties, in which svA   the total 

area of steel given by all hoops/ties within the joint region. 

There is a parabolic distribution of stress in the corner-to-corner arch in the beam-column 

zone which can further be simplified as shown in Figure 2–3a and b. From Figure 2–3c, 

 V P sin . The total tensile force across the arch equals '/ 2   w tP jd sin b f    , which 

implies the shear contribution from the corner-to-corner joint arch is given by: 

' '0.253 ( ) 8 ( )arch c v c vV f ksi b jd f psi b jd   (2–17) 

taking ' ' '0.126 ( ) 4 ( ).t c cf f ksi f psi   

For the beam-column joint to be safe in shear the following should be satisfied: 

j
v n jvV V   (2–18) 

From the above analysis, if it is determined that the beam has a measure of reserve 

capacity then the analysis can essentially be stopped at this point. However, if either the beam or 

the beam-column joint is a shear critical section, then further investigation is warranted. In such 

a case, or when required by the code, the strut-and-tie technique of analysis can be used for 

further analysis, which is discussed in the next section. 

2.3 STAGE 2: STRUT-AND-TIE ANALYSIS 

The strut-and-tie modeling technique is a lower bound plastic truss model that is particularly 

useful for design. It can also be adopted for strength analysis, and may be particularly useful for 

structures that possess stocky members and a significant number of D (disturbed) regions. Using 

an SAT approach, a structure with D-regions is modeled as a truss, which consists of three types 

of elements: struts, ties, and nodes.  Struts represent concrete that carries compressive loads 

while tensile loads are carried by ties representing steel reinforcements.  Struts and ties intersect 

at nodes.  Nodes are labeled by the element forces intersecting at the nodes; “C” represents 

compression while “T” stands for tension.  Based on the type of member forces at the node, the 

nodes can be classified as CCC, CCT, CTT, and so on. 
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Figure 2–3: Joint Arch Mechanism in Beam-Column Joint. 
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The truss geometry of the strut-and-tie model is based on the direction of stress flow in 

the D-region. The ties are aligned along the reinforcement layout, whereas the struts are oriented 

based on the compressive stress flow trajectories. It is also reasonable to determine the truss 

geometry based on the cracks that can be seen on a structural member as illustrated in  

Figure 2–4(b). 

Once the truss geometry is determined, the nodal geometries must be established in order 

to calculate the stresses on each of the nodal faces.  These calculated stresses must not exceed the 

allowable stresses for each nodal face. The nodes can be proportioned either as a hydrostatic 

node or as a non-hydrostatic node. In a hydrostatic node the principal stresses are equal on all 

sides of the node; hence the ratio of each nodal face is directly proportional to the force being 

applied to the nodal face. However, often the nodal dimensions are inconsistent with the beam 

details such as the location of the reinforcement and depth of the flexural compression zone. In 

the case of non-hydrostatic nodes the stresses applied to each nodal face is different as the node 

is sized based on the beam details. As a result of this the nodal geometry is synchronized with 

the beam details. Additionally, higher values of shear span-to-depth ratio can also lead to 

unrealistically large struts in the case of hydrostatic nodes. 

Based on the above concepts, a strut-and-tie model for a cantilever bent and a straddle 

bent are shown in Figure 2–4. The forces in the truss elements can be determined by a simple 

truss analysis. The stresses in each of the truss elements and nodes are then checked against the 

allowable stresses.  

The allowable concrete compressive stresses on the nodal face depend on the type of 

node. The allowable stresses in the nodal regions are defined as follows: 

For CCC nodes '0.85cu cf f  

(2–19)  CCT nodes '0.75cu cf f  

 CTT nodes '0.65cu cf f  

The limiting compressive stress within a strut ( cuf ) is given by: 
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(b)  

Figure 2–4: Strut-and-Tie Model of (a) Cantilever Bent (b) Straddle Bent.   
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'
'

1

0.85
0.8 170

c
cu c

ff f 
 

 
(2–20) 

in which 1   principal tension strain given by: 

0.002 2
1 s s sε = ε +(ε + ) cot α  (2–21) 

where s   tensile strain in the direction of the tension tie; and s   the smallest angle between 

the compressive strut and adjoining tension tie. 

The nominal resistance of a strut/node is given as: 

n cu csP f A  (2–22) 

where csA   effective cross-sectional area of the strut/node.  

The nominal resistance of a tension tie is given by: 

n y st ps pe yP f A A f f      (2–23) 

where yf  yield strength of reinforcing steel; stA   area of reinforcing steel in the tension tie; 

psA  area of prestressing steel; pef  stress in prestressing steel after losses. 

A generalized stepwise procedure on how to build a strut-and-tie model for a bridge pier 

as illustrated in Figure 2–4 is as follows. 

Step 1:  Determine the truss and node geometry. 

The first step in doing a strut-and-tie analysis is to determine the geometry of the truss and the 

nodes. The width of the compression chords in the column and the beam can be determined 

based on the depth of the triangular stress-block or the equivalent rectangular stress-block. The 

base of the CCC node can be proportioned based on the externally applied load that causes beam 

flexure ( f
nP ) and the vertical component of shear in the beam-column joint ( )jvV . The width of 

the CCT node is taken to be equal to the width of the bearing pad, and the CTT node is 

dimensioned based on the bending radius of longitudinal reinforcement. The struts can be drawn 

based on the dimension of the nodes. This will also provide the inclination angle of the diagonal 

struts. 
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Step 2:  Solve the determinate truss. 

It is assumed that the beam tension steel yields, that is, b s yT A f . Considering equilibrium of 

forces at the nodes, the forces in all the members of the truss can be determined.  

Step 3:  Determine critical node. 

The critical node can be determined based on the nodal strength of each of the nodes. Based on 

the nodal dimensions and the allowable stress (Eq. 2–19), the nodal capacity can be determined. 

Based on this information the critical node is identified.  

Step 4:  Determine shear demand. 

The shear demand on the bridge pier can be determined based on the most critical strut/tie or 

nodal zone.  

Though the strut-and-tie modeling technique is an efficient method of analysis for shear 

critical members, it is observed that there could be inconsistencies or added complexity due to 

the nature of the structure that is being analyzed. Additionally, further difficulties in reaching a 

conclusion are likely, if the factored shear capacity based on SAT analysis is lower than the 

factored capacity from Stage 1 of the analysis even though the nominal capacity from SAT 

analysis is higher. Also, the results of the SAT analysis are based on reasonable assumptions, 

which could lead to varying results depending on the assumptions made.  

This calls for a more advanced analysis technique that adopts the concepts of the strut-

and-tie method and gives an idea about the overall behavior of the structure. One such technique, 

the compatibility strut-and-tie modeling, is developed in the next chapter. 

2.4 STAGE 3: ANALYSIS USING COMPATIBILITY STRUT-AND-TIE METHODS 

As mentioned above, strut-and-tie analysis methods are strictly lower bound solutions. Such 

solutions adhere to the principles of equilibrium, but are both silent on and unable to predict 

deformations of the structure. 
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2.4.1 Stage 3.1: C-STM Based on Undamaged Material Properties 

To obtain a more holistic view of structural behavior that provides a complete force vs. 

deformation pathway to failure, compatibility of member deformations must be incorporated into 

the analysis. This approach is referred to as the Compatibility Strut-and-Tie Model (C-STM). 

As this approach is relatively new, a complete background and theoretical formulation is 

presented in the next chapter. As the bookkeeping for this class of nonlinear analysis would be 

time consuming, it is suggested that nonlinear structural analysis software (e.g., SAP2000) be 

used for the analysis. In this stage of analysis the undamaged material properties are used in 

evaluating the behavior of the structure. 

2.4.2 Stage 3.2: C-STM Allowing for ASR/DEF Damage and Its Effects 

It is well-known that ASR/DEF may cause the concrete to deteriorate. The effects of ASR/DEF 

on the structure can be explained as follows:  

 ASR/DEF effects cause the concrete to swell.  

 This in turn may cause the cover concrete to badly crack and in some cases cause 

spalling.  

 Meanwhile swelling of the core concrete occurs, but this is constrained in part by the 

presence of longitudinal and transverse reinforcement.  

 Tensile strains that are induced put the reinforcing steel to be in a state of prestress.  

 In turn, this prestress effect, which is similar to adding an axial force, increases the 

stiffness and can slightly enhance the strength of the members most affected by 

ASR/DEF.  

The effects of ASR/DEF on the structure can be modeled in C-STM by introducing the 

effects of deteriorated concrete, concrete core confinement, prestressing forces, and modifying 

the stress-strain relation of steel accordingly.  

Based on an assessment of the extent of damage due to ASR/DEF effects observed in the 

structure, the damage can be categorized into three classes: slight, moderate, and heavy damage. 

Based on the damage class, the deteriorated concrete properties and the prestressing forces in the 
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longitudinal and transverse reinforcing steel are determined. A C-STM analysis with the 

modified properties gives the behavior of the structure with ASR/DEF damage. 

Based on the results from the three stages of analysis presented above, the structural 

capacity of the damaged/undamaged structure can be compared to the load demand on the 

structure. Based on these comparisons, acceptability criterion can be set for a structure; this 

constitutes stage 4 of the analysis schema. 

2.5 STAGE 4: ESTABLISH ACCEPTABILITY OF STRUCTURE 

Based on the analysis conducted on the structure in the previous three stages, a structural 

engineer must be able to make recommendations and establish the acceptability of an existing 

structure that may or may not be subjected to any form of deterioration/damage. The engineer 

must be able to make acceptability recommendations with respect to:  

(a)  The remaining life of the structure: This would essentially give ample time to the state 

DOTs to plan ahead in time on how to deal with the existing structure and/or plan 

alternate strategies.  

(b) Repairs or retrofit: Such remediation can be done in order to strengthen the existing 

structure and give it added service life to enable it to perform as designed. 

(c) Permissible load rating: By limiting the permissible loads on the structure, the service life 

of the structure can be extended. 

 The first two stages of analysis, using beam theory and SAT analysis, would give the 

structural engineer just an idea about the maximum load that the structure can withstand before it 

starts to show signs of distress or even fails. However, stage 3 of the analysis (where the C-STM 

technique is adopted) gives the overall force-deformation of the structure, which helps to better 

predict its behavior and make a more definitive engineering judgment on the structure’s 

acceptability condition. The C-STM analysis technique will aid the structural engineer to make a 

more accurate educated prediction about the behavior of the structure. 

Detailed examples of the different stages of analysis are presented in Chapter 4 and 

Chapter 5. 
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3. COMPATIBILITY STRUT-AND-TIE FORMULATION 

It is well-known that the shear resistance in structural concrete elements is resisted by a 

combination of truss and arch action (Park and Paulay, 1975). Truss action is associated with the 

shear resistance provided by the transverse reinforcement (Ritter, 1899; Mörsch, 1909; Dilger, 

1966; Paulay, 1971; Kim and Mander, 1999, 2000, and 2007). Arch action becomes prevalent in 

squat reinforced concrete members, particularly those with wide webs where a direct 

compression load path (arch) exists between the applied load and the supports. These two 

primary mechanisms are further considered in what follows. 

3.1 MODELING TRUSS ACTION 

Figure 3–1(a) illustrates a variable angle crack pattern that typically forms in the disturbed 

regions of a fixed-fixed reinforced concrete deep beam. After the development of first cracking, 

diagonal concrete compression struts are tied together by the longitudinal and transverse 

reinforcing steel, thus resembling a truss. Starting with a differential portion of this truss, Kim 

and Mander (1999, 2007) integrated this over the beam length to develop a “continuum truss” 

model where cracking was implicitly smeared in order to obtain the shear stiffness in a numerical 

form. 

Alternative numerical integration schemes were then considered by Kim and Mander 

(1999, 2007) to model the discrete crack patterns typically observed in reinforced concrete 

beams and are explored further herein. For a fixed-fixed beam, the simplest of these numerical 

integration schemes uses a two-point Gaussian quadrature solution leading to a so-called two-

point Gauss Truss shown in Figure 3–1(b). Note the solid lines represent tension ties (reinforcing 

steel), and the dashed lines represent diagonal compression struts (concrete). Through 

experimental and analytical validation, Kim and Mander (1999, 2007) found the two-point Gauss 

Truss to be a suitably accurate numerical integration scheme for capturing both shear and flexure 

deformations of disturbed regions with fixed-fixed end conditions. Higher order numerical 

schemes were also considered; however the two-point Gauss Truss model has the appeal of being 

statically determinate (due to anti-symmetry).  
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By taking only one-half of an anti-symmetric fixed-fixed beam that is represented by the 

two-point Gauss Truss, a statically determinant cantilever remains, which can be represented by 

a so-called Single-Point Gauss Truss. In order to confirm the numerical accuracy of the proposed 

single-point Gauss Truss, a convergence study of higher order numerical integration schemes 

was conducted. Based on recommendations of Kim and Mander (1999, 2000), the axial rigidities 

assigned to each truss member at the thi  integration point are given by:  

 ( )Ti i s sh
LEA E A
s

  (3–1) 

 
2

0.5( )
tan

i
di c v

i i

EA E A
x







 (3–2) 

 ( )L L sEA A E  (3–3) 

in which ( )TiEA   axial rigidity of the transverse reinforcement ties (where i  numerical 

weight factor for transverse reinforcement defined in Table 3–1, sE Young’s Modulus for 

steel, shA   area of one set of stirrups, L   member length, and s   stirrup spacing); ( )diEA   

axial rigidity of the diagonal concrete struts (where ix   normalized coordinate of the thi  

integration point, i  strut angle relative to longitudinal steel, cE   Young’s Modulus for 

concrete, v wA b d  is the shear area of concrete, wb   beam width, and d  the effective depth of 

the beam from the extreme concrete compression fiber to the centroid of the tension steel); and 

( )LEA   axial rigidity the longitudinal reinforcement ties (where LA   is the sectional area of 

steel assigned to the longitudinal tension tie).  

Table 3–1 presents four different numerical integration schemes that were considered in 

this convergence study: single, two, and three-point Gauss quadrature, and Boole’s rule. A 3 ft 

by 2 ft (900 x 600 mm) cantilevered beam was used as an illustrative example with a span to 

depth ratio of 1, and longitudinal and transverse reinforcing ratios of 0.010 and 0.003, 

respectively, where each integration scheme is depicted at the top of Figure 3–2. The right 

column of Table 3–1  presents  the  relative  elastic  shear  stiffness (K) of each  truss  normalized   
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(a) Discrete representation 

 
(b) Two-point Gauss Truss 

 
 

Figure 3–1: Truss Model Idealization for a Fixed-Fixed Beam-Kim and Mander (1999). 
 

Table 3–1: Convergence Study of Higher Order Truss Models for a Cantilever Beam. 

Numerical 
Scheme i xi ωi 

Truss

2-point

K

K
 

Single-
Point 
Gauss 

1 
2 

0.42265 
0.57735 

1 
1 1.0429 

Two-Point 
Gauss 

1 
2 

0.21132 
0.78868 

0.5 
0.5 1.0000 

Three-
Point 
Gauss 

1 
2 
3 

0.11270 
0.50000 
0.88730 

5/18 
8/18 
5/18 

1.0007 

Boole’s 
Rule 

1 
2 
3 
4 
5 

0.00 
0.25 
0.50 
0.75 
1.00 

7/90 
32/90 
12/90 
32/90 
7/90 

0.9371 
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(a) Flexural failure 
(Tension chord yield) 

(b) Tensile shear failure 
(Hoop yield) 

(c) Compressive shear failure 
(Strut crushing) 

Figure 3–2: Results of Convergence Study for Different Numerical Integration  
Schemes for C-STM Analysis.   
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with respect to the two-point Gauss Truss. Although some variability between schemes exists, it 

can be concluded that any reasonable integration scheme may be used to provide a satisfactory 

representation of shear stiffness. However, a more in-depth study should be considered to 

compare the flexure-shear interaction between truss models. 

Figure 3–2 shows the force-deformation response of each truss model normalized with 

respect to the two-point Gauss Truss solution considering the following nonlinear mechanisms: 

(a) flexural steel yielding; (b) transverse steel yielding; and (c) concrete strut crushing. Each 

truss is modeled using well-known commercial  structural analysis software SAP2000TM (1995), 

and considers a bilinear stress-strain relationship with 3 percent strain hardening stiffness for 

steel, and an elasto-plastic response with a maximum compression stress of 0.85 cf   for the 

concrete struts.  

When nonlinear behavior is governed by longitudinal tensile steel yielding  

(Figure 3–2(a)), the post-yield force-deformation response is ductile. Despite similar yield 

strengths, the single-point Gauss Truss model resulted in a slightly more flexible elastic stiffness 

than the higher order Gauss quadrature truss models. The Boole’s truss was the most flexible of 

the truss models and provided slightly lower initial yield strength, but had a similar post yield 

response.  

When nonlinear behavior is governed by transverse steel yielding (Figure 3–2(b)), similar 

stiffness results were obtained. However the post yield stiffness was less than that with 

longitudinal steel yielding. This shows that yielding of the transverse reinforcement can lead to 

large shear deformations with small increases in applied load.  

When nonlinear behavior is governed by strut crushing (Figure 3–2(c)), the ultimate 

strength had a variation up to 30 percent with the single-point truss giving the largest difference. 

An elasto-plastic response of concrete was used for illustrative purposes only and does not 

accurately model concrete crushing; hence the response of each was stopped at a ductility of two. 

In summary, for cantilever modeling, the single-point Gauss Truss is evidently a 

sufficiently accurate model for considering the nonlinear flexure-shear interaction relative to the 

higher order truss models when the failure mechanism is controlled by longitudinal and 

transverse steel yielding. However, for mechanisms controlled by strut crushing, a convergence 
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study is recommended to ensure the single-point Gauss Truss does not over-estimate the failure 

mechanism.  

3.2 MODELING ARCH ACTION 

Arch action consists of a compressive stress field forming a diagonal corner-to-corner concrete 

strut that is tied back by the longitudinal reinforcement as shown in Figure 3–3(a). The strut is 

assumed to have a parabolic stress distribution with a strut width that is proportional to the depth 

and length of the beam given below (Holden et al., 2003): 

 cos/375.0 jdWA   (3–4) 

This approach is similar to that proposed for coupling beams by Paulay (1971).  

3.3 MODELING THE COMBINED TRUSS AND ARCH ACTION 

Figure 3–3 presents the combined C-STM that is comprised of: (a) arch action acting through the 

center of the beam cross-section; and (b) truss action acting along the outside stirrup legs.  

Figure 3–3(c) shows the amalgamated response of arch and truss action, where displacement 

compatibility is inherently accounted for such that the two mechanisms work in parallel to one 

another. A method of apportioning the relative contributions of arch and truss action is described 

as follows. 

 Different methods of allocating the shear resisting mechanisms have previously been 

proposed based on the following parameters: (i) strength (Paulay, 1971; Kim and Mander, 1999); 

(ii) stiffness (Zhu et al., 2003); (iii) geometry (Hwang et al., 2000); and (iv) the shear span-to-

internal lever arm ratio (FIP-Commission 3, 1996). An investigation into the merits of each of 

these strategies was conducted, and the following conclusion was drawn: varying the proportions 

of arch and truss action resulted in minimal differences of the elastic force-deformation response. 

However, significant differences in the nonlinear response of the flexure and shear failure 

mechanisms were observed. Hence to accurately model the flexure-shear interaction, it is 

considered necessary to apportion the arch and truss mechanisms according to the longitudinal 

and transverse reinforcement ratios in order to account for strength and jdL /  in order to account 

for geometry.   
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               (a) Arch action         (b) Truss action       (c) Combined C-STM 

  
(d) Arch breadth scalar vs. L/jd ratio (e) Arch breadth scalar with varying reinforcement ratios 

Figure 3–3: Composition of Classic Arch and Truss Action That Leads to the  
Overall Compatibility Strut-and-Tie Model.   
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An arch breadth scalar   is proposed to apportion the section breadth (shown in the cross-

sections of Figure 3–3) and is defined by the following ratio: 

 2cot
L yArch

Arch Truss L y T yh

fV
V V f f j




  
 

 
 (3–5) 

in which ArchV maximum shear force resisted by arch action that is proportional to the 

longitudinal reinforcement given below; and TrussV maximum shear force resisted by truss 

action that is proportional to the transverse reinforced given as: 

 tan tanArch y L L y wV f A f b d     (3–6a) 

 / cotTruss yh sh T yh wV f A L s f b jd    (3–6b) 

where   the corner-to-corner diagonal angle; L L wA b d   is the volumetric ratio of 

longitudinal steel to concrete; LA  is the area of longitudinal reinforcement contributing to the 

tension tie; T sh wA b s   is the volumetric ratio of transverse steel to concrete over one hoop 

spacing; yf   yield strength of the longitudinal steel; yhf   yield strength of the transverse steel; 

and )/1( ddj   the internal lever arm coefficient.  

The total shear resistance of the combined C-STM UV , as shown in Figure 3–3(c), can 

now be defined as:
 

 U A TV V V   (3–7) 

where AV  is the shear resistance from arch action; and TV   is the shear resistance from truss 

action.  

 In order to maintain deformation compatibility and equilibrium between the arch and 

truss mechanisms, it is assumed that the section breadth wb  is proportioned according to the 

component strength as follows:  
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(1 );w wA T

U w U w

b bV V
V b V b

 
   (3–8) 

where wb   the arch breadth, and (1 ) wb   the truss breadth as shown in the cross-sections of 

Figure 3–3(a) and (b), respectively. 

 Figure 3–3(d) and (e) illustrates the results of the arch breadth scalar   (Eq. 3–5) when 

plotted against /L jd  with varying ratios of transverse to longitudinal reinforcement. As one 

might intuitively expect, this relationship shows that arch action is more prominent in beams 

with smaller /L jd  and T L   ratios, while truss action has more of an effect in beams with 

larger /L jd  and T L   ratios. Others have made similar conclusions (Hsu, 1996). 

3.4 STRESS AND STRAIN TRANSFORMATION FOR FLEXURAL EQUIVALENCE 

A primary difficulty associated with truss modeling approaches is the limitation of selecting a 

single truss model geometry that captures the full elastic and inelastic force-deformation 

response. For doubly reinforced sections, it is proposed that the longitudinal C-STM flexural 

chords (members 1-3 (compression), and 2-4-5 (tension) in Figure 3–3(c)) be aligned with the 

respective compression steel centroids so that the internal lever arm is represented as ',jd d d   

where d  and 'd  are the respective centroids of the tension and compression steel and 

)/1( ddj   is the internal lever arm coefficient. A similar approach was used and validated 

by Kim and Mander (1999, 2000) in order to incorporate cyclic behavior. However, because the 

centroids of the steel compression force (Cs) and the concrete compression force (Cc) may not 

coincide, it is necessary to transform the concrete constitutive material properties accordingly so 

that the transposition of the concrete element force (Cc) will provide a similar moment in order to 

satisfy the sectional moment capacity throughout the analysis.  

Historically the truss geometry for strut-and-tie models has been mostly based on an 

elastic stress field analysis and typically ignores the presence of compression steel (Hwang et al., 

2000; Drucker, 1961; Thϋrlimann et al., 1983). Other researchers contend that the use of elastic 

stress analysis is inappropriate when assessing the ultimate limit state of a structure due to highly 

nonlinear development of strains associated with D-regions (MacGregor, 1992; Salem and 

Maekawa, 2006; Yun, 2000; Sritharan and Ingham, 2003). The proposed transformation theory 
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(described below) provides a method that accounts for both compression steel and the nonlinear 

behavior of concrete compression chord element in accordance with standard stress-block 

analysis that is incorporated over the entire range of loading. Figure 3–4(a) illustrates a standard 

flexural stress block analysis preformed on a doubly reinforced concrete section, assuming plane 

sections remain plane purely for the purposes of defining the concrete compression force, where 

the concrete tensile strength is assumed as zero. The neutral axis depth c can be defined such that

c kd , where k is the elastic compression zone coefficient given by Park and Paulay (1975) as: 

      nnddnk LLLLLL   222  (3–9a) 

For column members an additional modification is made to allow for the axial force given by 

Eq. (3–9 b) (Arnold, 2004). 
2

2' ' ''2
' ' '

c c c
L L L L L L

c s c s c s

f f fP d P Pn n n
f bd f d f bd f f bd f

k      
              

                                           

 (3–9b) 

where d   the effective depth of the beam from the extreme concrete compression fiber to the 

centroid of the tension steel; 'd  the depth from the extreme compression fiber to the centroid of 

the compression reinforcement;    the ratio of tension reinforcement; '   the ratio of 

compression reinforcement; n = the modular ratio of steel to concrete; b   the section breadth; 

'cf   concrete compression strength; and P   axial force plus prestressing force (if any). 

 Because the C-STM compression chord member is located at the steel centroid, a 

transformation of the concrete stress block force Cc is required to convert it to an equivalent C-

STM force that coincides with C-STM compression chord member. Section equilibrium requires: 

  *
s cP C C T    (3–10) 

in which P  the applied axial load ( 0P  for beams); s s sT A E   (where sA  representative 

area of longitudinal tension steel, and s  tensile steel strain); s s s sC A E    (where sA   

representative area of longitudinal compression steel, and s   compression steel strain); and 

*
cC   transformed concrete force discussed below.  
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(a) Doubly reinforced stress block analysis 

 
(b) Stress block parameters (Karthik and Mander, 2011) 

 
 

(c) Key stress-strain parameters 

Figure 3–4: Constitutive Stress-Strain Relationship for Compression Chord Elements.  
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The effective concrete strain *
c  measured by the C-STM chord member can be defined in terms 

of the extreme compressive concrete strain using the strain compatibility relationships: 

 
*

'1c s c
d
kd

  
 

   
 

 (3–11) 

Hence, the concrete compression force can be expressed in terms of equivalent concrete stress 

block and related to *
s c     as follows:  

 
*( . )c c c c cC f kd b E A     (3–12) 

in which    the stress block parameters used to define the equivalent stress block, where    

effective average concrete stress ratio, and    effective stress block depth factor; cf    concrete 

strength; *
c  C-STM concrete compression chord strain;    a compatibility correction scalar; 

and cA kd b  is the area assigned to the concrete chord element.  

Rearranging Eq. (3–12) and substituting Eq. (3–11), the compatibility correction scalar 

can be expressed as: 

 
 * 1 '

c

cc

f
E d kd xn

 





 

  (3–13) 

in which c cox    is the normalized concrete compression strain at the extreme compression 

fiber; 0.002co   for unconfined concrete; and c co cn E f   (where 60000 ( )c cE f psi

5000 ( )cf MPa is the initial tangent modulus) (Mander et al., 1988). 

The only remaining unknown variables in Eq. (3–13) are   and the nonlinear strain, x . 

The nonlinear relationship between these two stress block variables is shown in Figure 3–4(b) 

(Karthik and Mander, 2011), where a tri-linear relationship is used to approximate the stress 

block parameters. The key stress-strain parameters for obtaining the concrete chord members 

constitutive relationship can be obtained through a direct axis transformation as shown in 

Figure 3–4(c): where stress is a function of cf  , and the strain is a function of cox , as derived 
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from Eq. (3–13). The transformed constitutive relation used for concrete chord members is then 

derived by substituting appropriate values of cf   and (1 '/ )d kd  into Figure 3–4(c). An 

application of this is presented later. 

A similar analysis for singly reinforced beams may be applied where the location of the 

compression chord member can be defined as follows. For members that do not exceed the 

elastic limit in the concrete compression stress block, the internal lever arm may be defined such 

that / 3jd d kd   (where k   the elastic compression zone coefficient defined in Eq. (3–9)). 

For members that do exceed the elastic stresses, a more appropriate representation of the internal 

lever arm may be defined using an ultimate limit state analysis such that 1 / 2jd d c   (where 

1  is the standard code-based stress block factor, and c is the neutral axis depth calculated by 

satisfying section equilibrium).   

3.5 C-STM GEOMETRY AND AXIAL RIGIDITY ASSIGNMENTS  

The C-STM shown in Figure 3–3(c) can be adapted for any deep beam or disturbed region and 

modeled using structural analysis software. Each member in the C-STM is comprised of two 

elements that model the individual behavior of steel and concrete in that member. The two 

elements are constrained together in order to give the combined steel-concrete response. The C-

STM requires the following parameters to be defined in order to model the constitutive behavior 

of truss members: (i) truss geometry to define the member force; and (ii) axial rigidities of the 

steel and concrete elements to define elastic deformations.   

3.5.1 Truss Geometry 

As previously discussed, the primary difficulty associated with accurate truss modeling is the 

limitation of selecting a single truss model geometry that captures the force-deformation over a 

range of both elastic and inelastic response. The truss geometry is defined by first locating the 

node coordinates for the compression and tension chord members. This is done in accordance 

with the foregoing section, where the location of the compression chord member varies for 

doubly and singly reinforced sections.   
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 The horizontal coordinates of the boundary nodes are either defined by: (i) an applied 

load/bearing support (i.e., Node 5 in Figure 3–3(c) is defined by the centroid of the applied load); 

or (ii) at the intersecting lines of thrust from the beam and column members (i.e., Node 1 in 

Figure 3–3(c) is defined at the intersection of the compression steel in the beam and supporting 

column represented as a fixed boundary). The transverse tension ties in the truss mechanism are 

then located according to the selected numerical truss as defined in Figure 3–2 (i.e., Nodes 3 and 

4 in Figure 3–3(c) are defined by single-point Gauss quadrature). 

3.5.2 Axial Rigidity 

For each C-STM member, the expected composite steel-concrete response is modeled using 

separate elements for steel and concrete, respectively. Each element is assigned elastic axial 

rigidities as specified in Table 3–2, where the member numbers refer to Figure 3–3(c). Some 

comments on Table 3–2 follow. 

For tension chord members (row 1 of Table 3–2), the presence of longitudinal 

distribution steel along the web may be accounted for by using an effective steel area:  

 
d
dA

A s
s 
*  (3–14) 

where sA  the total area of longitudinal plus distribution reinforcement acting in tension; d  

the effective depth to the centroid of sA ; and d  section depth to the longitudinal tension 

reinforcement. 

For tension and compression chord members (row 1 and 2 of Table 3–2), the concrete 

area is assumed to be the same so that cyclic effects can to be accounted for, if necessary. 

For transverse truss members (row 3 of Table 3–2), the total area of transverse reinforcement 

is evaluated as the number of hoops actively participating in the truss mechanism hN , where 

 int 1hN L s   is the number of hoopsets. Also, the effective tension area of concrete for the 

transverse tie is taken as twice the cover depth (cc) plus the stirrup hoop diameter (dh), multiplied 
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over the length of actively participating hoops ( hN s ), thus defining the area of concrete 

surrounding the stirrup legs. 

Table 3–2: Elastic Truss Member Axial Rigidities. 

Member 
Steel Concrete 

Comments 
E A E A 

2 – 4 
4 – 5 sE  sA  cE  .b kd  Tension Chord 

1 – 3 sE  'sA  cEE  .b kd  * Compression Chord 

3 – 4 sE  h shN A  cE   4 2 h hc d N s  

† Active Hoop steel 
including tension 
stiffening effect 

1 – 5 – – cE  0.375
cos

wb jd


   Concrete Strut in Arch 
Mechanism 

1 – 4 – – cE  
2

0.5(1- )
0.423 tan

wb jd



 Concrete Strut in 
Truss Mechanism 

3 – 5 – – cE  
2

0.5(1- )
0.577 tan

wb jd



 Concrete Strut in 
Truss Mechanism 

*

   
c cf '(psi) f '(MPa)= strain compatibility coefficient = =

168 1-d'/ kd 14 1-d'/ kdE
 

 In lieu of a more precise analysis it is recommended that = 0.6E  

Ϯ

hN = int L/s-1  is the integer part of active hoops in truss mechanism 
 

 

For the concrete arch member (row 4 of Table 3–2), the strut width is given by Eq. (3–4) 

and is multiplied by the apportioned arch strut width wb  to obtain the strut area. 

For the concrete strut members in the truss mechanism (row 5 and 6 of Table 3–2), the 

strut width is defined using Eq. (3–2) (Kim and Mander, 1999, 2000), where the normalized 

coordinate of the ith integration point ix  is taken as 0.423 and 0.577 (in accordance with  

Table 3–1) for the concrete elements 1-4 and 3-5, respectively. These are multiplied by the 

apportioned truss strut width (1 ) wb  to obtain the respective strut areas. 
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3.6 ELEMENT CONSTITUTIVE MATERIAL RELATIONS 

The elastic parameters of the C-STM model are defined by the truss geometry and axial 

rigidities. In order to define the strength of each element, nonlinear constitutive material 

relationships for cracked reinforced concrete are applied as follows.  

3.6.1 Reinforcing Steel 

For simplicity, the reinforcing steel is approximated using a bi-linear stress-strain relationship 

with 3 percent strain hardening beyond yielding. Where necessary, a more accurate material 

model may be applied in order to allow for bond slip or where a bilinear slope does not provide 

suitable accuracy.  

3.6.2 Diagonal Concrete Struts  

From the works of Vecchio and Collins (1986), Mau and Hsu (1987), and Hsu and Zhang (1997) 

it is well-known that the compression strength of diagonal concrete struts in reinforced concrete 

beams and panel elements is reduced as a result of the tensile strain acting orthogonal to the 

compression strain. This concrete softening phenomenon was investigated by Collins and his 

research group; one rendition of their work is modeled by the following relationship (Vecchio 

and Collins, 1986): 

 2,max

1

1 1.0
'

0.8 0.34c

co

f
f






  



 (3–15) 

where    the softening coefficient; 2,maxf   the “softened” concrete strength; co   the 

principal compression strain typically taken as 0.002; and 1   the principal tensile strain acting 

perpendicular to compression strut.  

This relationship is typically incorporated in each step of a hand analysis, or directly 

embedded into a nonlinear Finite Element Modeling (FEM) formulation where the softening 

coefficient is continuously updated to satisfy equilibrium (Rots et al., 1985). However, when 

applying this in commercial structural analysis software (such as SAP2000TM, 1995), the user is 
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restricted to the initial input parameters and hence a more direct approximation is required. 

Accordingly, Eq. (3–15) can be conveniently recast as:  

 
1

1
0.00121

3 co











 (3–16) 

where  are Macaulay brackets, and the value 0.0012 can be thought of as a fracture strain 

such that only when 1 0.0012   the concrete softens.  

The strain 1  can be assessed from dummy strain elements (with EA=1) perpendicular to 

the diagonal concrete struts as described later.  An alternate to Eq. (3–16), based on the 

compression softening data obtained from panel test results presented in Vecchio (2000), is given 

by: 

 1

1 0.25













 (3–17) 

where 2  is the strain in the diagonal member. However, it is noted that the softened model for 

concrete is somewhat sensitive to 1,  and the value of 1  is dependent on where the transverse 

strain member is placed relative to the diagonal concrete element. 

The softened constitutive relations for the diagonal concrete struts can now be defined by 

modifying the Mander et al. (1988) model to reduce the concrete stress and strain given by:  

 
1

c
c r

f xrf
r x
 


 

 (3–18) 

in which cf    softened concrete stress; ( )c cox    is the softened concrete strain coefficient 

(where 0 002.co  ); and  c c secr E / E E   (where sec c coE f  ). The softened concrete 

stress-strain relationship is shown in Figure 3–5 by the dotted line and approximated as a linear 

response in accordance with Vecchio and Collins (1993). 
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3.6.3 Concrete Tensile Strength 

The contribution provided by the concrete tensile strength, commonly referred to as “tension 

stiffening” (Vecchio and Collins, 1986), is typically ignored in many force-based strut-and-tie 

models (MacGregor, 1992; Collins and Mitchell, 1991; Collins, 1978; Hwang et al., 2000). By 

assuming strain compatibility between concrete and steel, the overall member tensile force is 

simply the summation of the steel and concrete forces for a given strain (Collins and Mitchell, 

1991; Vecchio and Collins, 1986). Thus the combined steel and concrete elements that make up 

the tension members 2-4-5, and 3-4 in Figure 3–3(c), intrinsically provide the overall tension 

stiffened response. 

Tension stiffening models vary for different situations and structures; hence the following 

three approaches are recommended for the C-STM: 

 For longitudinal and transverse reinforcing steel bars, tension stiffening is modeled by 

considering a fracture energy method (Petersson, 1980) as shown in Figure 3–6. The fracture 

energy fG  is defined as the energy required to create one unit area of cracking in which 

f fG h g , where 3 ah d  is the crack band width taken as three aggregate diameters; and 

fg   the area under the stress-strain softening diagram. The stress-strain relationship is 

defined using a tri-linear stress-strain relationship given by: 

 t c t t tf E for     (3–19a) 

 2
3 3

t
t t u

ff for  


   (3–19b) 

 0t t uf for     (3–19c) 

in which tf   average concrete tensile stress; t   average concrete tensile strain;  t    

strain at peak tensile stress; 4 ( )t cf f psi   is typically used to define the concrete tensile 

strength (Collins and Mitchell, 1991); and u   ultimate tensile strain where stress can no 

longer be transferred and is defined by Eq. (3–20).  
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Figure 3–5: Diagonal Concrete Web Elements. 

 
Figure 3–6: Concrete Tension Stiffening Ties. 
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18
5

f
u

t

G
f h

 


 (3–20) 

Based on experimental results, Petersson (1980) noted that the fracture energy fG  for 

normal-weight concrete typically ranges from    0.343 0.571 / 60 100 /lbs in N m   . 

Alternatively, for simplicity, u  is assumed as the steel yield strain in this work. 

 In the case of panel and wall structures with a dense network or reinforcing steel, the 

descending branch model proposed by Vecchio and Collins (1986) may be more appropriate 

as shown in Figure 3–6. That is:  

 1 2

1 500
t

t t t
t

ff for 
 




 


 (3–21) 

where 1  and 2   factors to account for bond characteristics of reinforcement. 

 For structures with experimental results, parameterized models can be applied to model the 

stress-strain relations used for concrete tension stiffening. 

3.6.4 Concrete Compression Chord Members 

As previously discussed, the transformed constitutive relation used for concrete chord members 

is derived by substituting appropriate values of cf   and (1 '/ )d kd  into Figure 3–4(c) to obtain 

the stress-strain relationship of the concrete compression chord member. 

3.6.5 Modified Material Properties to Account for ASR/DEF 

The effects of ASR/DEF on the structure can be taken into account in the C-STM analysis 

technique by modifying the material properties based on observations and experimental data. 

The extent of damage on the structure can be categorized into three classes: slight, moderate, and 

heavy damage. Based on this assessment the following material properties should be adopted in 

the analysis. 
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1. Diagonal truss concrete:  

The concrete strength in the diagonal truss members have to be detuned to account for the 

damages in cover concrete due to deterioration of concrete by ASR/DEF effects. The 

modified concrete strength is given as: 

' '
cASR cf f   (3–22) 

where   the strength reduction factor defined according to the extent of damage as 

follows: 

 slight damage   0.85   

 moderate damage  0.70   

 heavy damage   0.60 
* 

*Caveat: This value is assessed based on incomplete trends in data at the 

time of writing (2012). Results of experiments currently in progress are 

expected in 2014 and will provide a final value.  

2. Assess concrete core confinement and modify the concrete properties:  

ASR/DEF effect causes the concrete to swell. The swelling of core concrete is constrained 

by longitudinal and transverse reinforcement, which effectively confines the core concrete. 

To account for this effect the confinement ratio ' '( /cc cc coK f f  where '
cof   in situ concrete 

strength) has to be determined to obtain the confined concrete stress '( )ccf . The procedure 

to evaluate the confinement ratio is described below (Mander et al., 1988). 

The effective confining stress in the x and y direction '
lxf  and '

lyf are given as: 

'
lx e x yf k f  

(3–23) 
'

ly e y yf k f
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where ek  confinement effectiveness coefficient (defined below); yf   yield stress of 

reinforcing steel; x  and y  are the volumetric ratio of lateral confining steel parallel to the 

x and y axis, respectively, given as: 

sx
x

c

A
sd

   

(3–24) 
sy

y
c

A
sb

 

 

in which sxA and syA  total area of lateral reinforcement parallel to the x and y axes, 

respectively; s  spacing of hoop sets; cd  core dimension in y direction; and cb   core 

dimension in the x direction. The confinement effectiveness coefficient ( )ek  is the ratio of 

area of effectively confined core concrete ( )eA to the concrete core area of the section 

( )ccA .  

e
e

cc

Ak
A

  
(3–25) 

In rectangular sections the transverse steel bows outward between the longitudinal 

bars, hence arching action will occur between the longitudinal bars that are fully supported 

in position by an angle bend in the transverse steel as shown in Figure 3–7. The arching 

action is assumed to take the form of a second degree parabola with an initial tangent slope 

of 45°. The area of one such parabola is given by  
2' / 6iw , where '

iw  is the ith clear 

transverse spacing between longitudinal bars in which arching action of concrete develops. 

In the case of a lightly confined rectangular section, the parameter 'w along the y axis is 

taken as the depth of the neutral axis ( )kd  minus the distance from the extreme 

compression fiber to the longitudinal bar. The net area of ineffectively confined concrete 

for the n  longitudinal bars supported in the corners of the bent transverse hoops is given 

by: 



41 
 

 
2'

1
/ 6

n

i
i

w


  
(3–26) 

The total effectively confined core concrete area is defined as: 

 
' '2'

1
/ 6 1 0.5 1 0.5

n

e c c i
i c c

s sA b d w
b d

   
      
    

  
(3–27) 

in which 's  clear longitudinal spacing between hoop bars in which arching action of 

concrete develops.  

The concrete core area of the rectangular section is given by: 

(1 )cc c c ccA b d   (3–28) 

where cc  volumetric ratio of longitudinal steel in the confined core. Note that the term 

(1 )cc in the above equation effectively removes the presence of longitudinal bars from 

the confined concrete area. From these the confinement effectiveness coefficient ( )ek can 

be determined from Eq. (3–25). 

The ratios ' '/lx cof f  and ' '/ly cof f  are determined, the smaller of these ratios is taken as 

' '
1 /l cof f , and the larger is taken as ' '

2 /l cof f . The confinement ratio ' '( / )cc cc coK f f  is 

determined from the chart shown in Figure 3–8. Thus, the confined concrete stress is then 

determined as ' '
cc cc cof K f , where '

cof   in situ concrete strength. 

The strain ( )cc  corresponding to the maximum confined concrete stress '( )ccf  is 

defined as: 

(1 5( 1))cc co ccK     (3–29) 

in which co  the strain corresponding to the unconfined concrete strength (usually co 

0.002). 
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Figure 3–7: Assumed Arching Mechanism Between Hoops for 
Rectangular Sections (Mander, 1983). 

 

Figure 3–8: Confined Strength Determination from Lateral 
Confining Stresses for Rectangular Sections (Mander, 1983).  
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3. Prestress effects in longitudinal bars and hoops:  

The constraint offered by longitudinal reinforcement and transverse hoops to swelling of 

core concrete puts tensile strains on the reinforcing steel. This effectively puts the 

longitudinal and transverse reinforcement in a state of prestress. 

The prestressing forces on the reinforcement can be evaluated from the prestressing 

stresses, which depend on the extent of damage (slight, moderate, or heavy) due to 

ASR/DEF effects. Based on experimental observations the following recommendations are 

made for prestressing stresses ( )psf  in longitudinal reinforcement: 

 slight damage   0.3ps yf f  

 moderate damage  0.5ps yf f  

 heavy damage   0.8ps yf f
* 

in which yf  yield stress of longitudinal reinforcement. 

Recommendations for prestressing stresses in hoops are: 

 slight damage   0.5ps yhf f  

 moderate damage  1.0ps yhf f  

 heavy damage   1.1ps yhf f
* 

in which yhf  yield stress of transverse hoops. 

*Caveat: This value is assessed based on incomplete trends in data at the 

time of writing (2012). Results of experiments currently in progress are 

expected in 2014 and will provide a final value.  

Appropriate modifications to the stress-strain behavior of the reinforcing steel have to 

be made to account for the prestressing effects. The modified stress-strain relation of steel is 

shown in Figure 3–9 in which ps   prestrain corresponding to prestressing stress ( )psf .
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Figure 3–9: Modified Stress-Strain Model for Steel to Account for Prestressing Effects Due 
to ASR/DEF.  
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3.7 ULTIMATE STRENGTH AND SOFTENING OF CONSTITUTIVE RELATIONS  

The exact failure mechanism for deep beams or disturbed regions is difficult to define due to 

unknown (a priori) hierarchy of failure mechanisms, particularly given the fact that shear failure 

alone can be of four types: diagonal tension, web crushing, nodal failure, or sliding shear. In 

reality the type of failure is heavily dependent on the member geometry and reinforcement 

detailing, and is often a combination of events that lead to the formation of the final collapse 

mechanism. In the C-STM, steel yielding, concrete crushing, and concrete softening are 

intrinsically accounted for through the material constitutive relationships previously described. 

However, a more thorough post analysis assessment may be required in order to assess other 

possible critical failure mechanisms. 

3.7.1 Strut-and-Tie Strength Checks 

Strut-and-tie modeling predisposes itself to defining failure as either: yielding of reinforcing ties, 

crushing of a strut, anchorage failure of reinforcing ties, or nodal failure. The member forces in 

the C-STM can be used to check that the force does not exceed the strength defined using 

conventional SAT design procedures for anchorage and nodal failures. 

3.8 COMPUTATIONAL IMPLEMENTATION 

The computational analysis of the C-STM described in the above sections can be implemented 

using structural analysis software and carried out in six steps as discussed in what follows.  

Step 1: Assign node coordinates 

For doubly reinforced sections the longitudinal chord members (members 2-4-5 tension, and 1-3 

compression of Figure 3–3(c)) are defined at the respective longitudinal steel centroids. The 

horizontal coordinates of the boundary nodes are either defined by: (i) an applied load/bearing 

support (i.e., Node 5 in Figure 3–3(c) is defined by the centroid of the applied load); or (ii) at the 

intersecting lines of thrust from the beam and column members (i.e., Node 1 in Figure 3–3(c) is 

defined at the intersection of the compression steel in the beam and supporting column 

represented as a fixed boundary). The transverse tension ties in the truss mechanism are then 

located according to the selected numerical truss scheme (i.e., Nodes 3 and 4 in Figure 3–3(c) are 

defined by single-point Gauss quadrature). 
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Step 2: Assign steel and concrete elements 

The steel and concrete elements of the C-STM can be modeled using separate trusses with nodes 

constrained together to give the combined steel-concrete member response. This is most easily 

simulated by duplicating the assigned nodes in the out-of-plane axis to form two separate trusses, 

and constraining the degrees of freedom for each of the duplicate nodes. Steel and concrete 

elements are then drawn with pinned-end connections between the appropriate node points as 

shown in Figure 3–10.  

The expressions presented in Table 3–2 are used to define the stiffness and axial area 

assignments for each steel and concrete element of the C-STM model. The arch breadth scalar   

is used to apportion the contribution of arch and truss action defined as a function of the 

longitudinal and transverse reinforcement and members’ span-to-depth ratio given by Eq. (3–5). 

Alternatively, the arch breadth scalar can be obtained graphically using Figure 3–3(e), 

where the span to depth ratio is used to determine the arch breadth scalar according to the ratio of 

transverse to longitudinal reinforcement. Once defined, element areas are assigned as axial cross-

sectional areas with an associated material property that defines the elastic stiffness, thus 

defining the element’s axial rigidity.  

Step 3: Assign nonlinear constitutive material relationships 

At this stage, the elastic response of the C-STM is defined by steps 1 and 2; hence nonlinear 

constitutive material relations for cracked reinforced concrete are now used to define the 

element’s nonlinear behavior. Figure 3–11 shows the theoretical stress-strain relationships used 

to define the concrete constitutive relations for: (a) diagonal concrete struts; (b) concrete chord 

members; and (c) concrete tension behavior used in conjunction with all truss elements that also 

possess steel. To account for the ASR/DEF effects, the modified material properties as discussed 

in section 3.6.5 have to be considered. 
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Figure 3–10: SAP2000 Screenshot: Steel Truss (Top); Concrete Truss (Bottom). 
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(b) 
 

 
 

(c) 
Figure 3–11: Nonlinear Constitutive Material Properties (a) Diagonal Web Members,  

(b) Compression Chord Elements, and (c) Tension Stiffened Elements.  
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Step 4: Assign load cases 

Load patterns are assigned at node locations as either forces or displacements in order to 

replicate the structure’s loading pattern. Other parameter inputs include: loading control either 

specified as load or displacement control; incremental step size; results saved at final load or 

incremental load steps; and other nonlinear parameters. However in SAP2000TM (1995), in order 

to perform an analysis in displacement control, additional joints have to be introduced without 

altering the structural behavior of the system. Joint displacements are provided at these joints, 

and the corresponding forces are calculated to obtain the overall force-deformation behavior of 

the system. 

Step 5: Run analysis 

The analysis can now be run for the desired load cases as input by the user. Once complete, the 

user can progressively step through the deformed shape to review the formation of nonlinear 

behavior.  

Step 6: Post analysis investigation 

Axial forces, displacements, and other output parameters can then be exported to a spreadsheet 

so that a post analysis investigation can be conducted. The axial force in each member can be 

individually assessed in order to ensure that the force does not exceed any other strength failure 

criteria (i.e., anchorage failure, nodal crushing, concrete softening, etc.). Because element strains 

are not given as an explicit output in SAP2000TM (1995), an alternative means of defining the 

strain is required. This can done using one of the following techniques: 

(a) The element strain can be defined in terms of the element force divided by the axial rigidity 

as shown below: 

 F
EA

   (3–30) 

where EA is constant in the elastic range, hence this can only be applied prior to nonlinear 

behavior. 
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(b) For members that reach nonlinear deformations, the strain can be obtained from the link 

deformations. The link deformations can be divided by their actual member length to obtain 

the strain in that member.  

(c) Alternatively to the above methods, a third truss called a ‘strain-meter truss,’ can be defined 

in the out-of-plane axis similar to the steel and concrete trusses such that each node is 

constrained accordingly. Truss elements with a unit axial rigidity (i.e., 1EA  ) can be drawn 

between the desired nodes as Strain Members so that the (small) force resisted is equal to the 

strain as shown in Eq. (3–30). This will provide the composite steel-concrete axial strain 

associated between the selected two node points. Note: this method was verified in this 

research using the previously mentioned methods providing identical comparisons for 

vertical and horizontal members. However, some minor numerical discrepancies were 

observed in the diagonal concrete members where the results from step (b) would deviate 

with highly nonlinear behavior. 

Application of the C-STM modeling technique is presented in the following sections with 

examples. 
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4. WORKED EXAMPLE 1 

4.1 SCOPE 

In this section a specimen tested by Bracci et al. (2000), Young et al. (2002), and Powanusorn 

and Bracci (2006) to investigate the causes of excessive cracking in deep reinforced concrete 

bent caps is used to illustrate the analytical procedures. The structure is first analyzed using beam 

theory, and from this a strut-and-tie model is developed. Finally the structure is modeled using 

the C-STM technique. All results are compared with the experimental results.  

4.2 THE STRUCTURE 

Full-scale models of prototype bents used in Texas that had shown sign of distress near the 

column-to-bent cap negative moment connection were tested in order to determine their 

performance and investigate the causes of the cracks. Figure 4–1 presents the reinforcing layout 

and cross-section of Specimen 2A selected for the analysis. The specimen has compression 

reinforcement consisting of eight No. 8 (25 mm) bars and a specified cover concrete depth of 

2.25 inches (57 mm). 

The reported force-deformation responses are based on the actuator forces that were run 

in parallel to one another in a stepped force-controlled configuration, versus the average 

displacement of the two experimental beam displacement responses. This was justified using the 

FEM model presented by Bracci et al. (2000), Young et al. (2002), and Powanusorn and Bracci 

(2006), as well as the C-STM (described below), where the end displacements of the two 

cantilevered ends were calculated within 1 percent of each other. 

Table 4–1 presents the reported material strength data and experimental test results for 

Specimen 2A (Bracci et al., 2000), in which: Expt
YieldP  and Expt

FailureP   applied load at first yield and 

ultimate failure, respectively; Expt
Yield  and Expt

Failure   vertical tip displacement at first yield and 

ultimate failure, respectively; and /Expt Expt
Failure Yield      structural displacement ductility. Note: as 

no test day strength results were provided, the 28–day strength was assumed for the analysis of 

Specimen 2A.  
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Figure 4–1: Elevation and Cross-Section of Specimen 2A (Bracci et al., 2000). 
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Table 4–1: Material Properties and Test Results. 

Material 
Properties 

cf  (ksi) 6.2  # 

tf  (ksi) 0.32 

Ec (ksi) 4490 

n* 6.46 

Experimental 
Results 

Expt
YieldP (kip)  330 
Expt

FailureP (kip)   404 
Expt
Yield (in)   0.25 

Expt
Failure (in)   0.77 

  3.08 
#TxDOT Class C Concrete-Average compression strength of three 28-day cylinder 
tests (Section 15.3, ACI 318-99). 
*Modular ratio = Young’s modulus of steel to concrete, were 29000 200sE ksi GPa   

General observations reported during testing were as follows: 1) vertical flexural 

cracking initiated near the column face at the top of the bent cap around 100 kip; 2) at 

approximately 160 kip the vertical flexural cracks began to incline toward the applied load; 3) 

with increased loading, inclined flexure-shear cracks initiated, propagated, and widened while 

the original flexural cracks stabilized; 4) ultimate failure was very sudden and typically occurred 

along the diagonal shear plane, extending from the load point inclined toward the column 

support (Bracci et al., 2000). 

4.3 STAGE 1: STRENGTH ANALYSIS USING BEAM THEORY 

The code based design approaches that were described in detail in Chapter 2 are used to predict 

the response of Specimen 2A. Results from the application of each of these approaches are 

presented as follows. 

Step 1:  Determine first yield flexural capacity, b
yM . 

The yield moment and the externally applied load causing first yield are calculated using 

Eqs. (2–1) and (2–3), respectively. The parameters required by the analysis are presented in 
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Table 4–2. The analysis results in a yield moment of 1028b
yM   kip-ft and an external yield load 

of 316b
yP   kip. 

Steps 2: Determine nominal flexural moment, f
nM . 

The nominal flexural moment ( f
nM ) was calculated based on Eq. (2–4). The flexural capacity 

1197f
nM   kip-ft. 

Step 3:  Determine externally applied load based on flexure, f
nP . 

Based on the nominal flexural moment ( f
nM ), and knowing that the shear span to the face of the 

column bL 39 inches, the  external load causing beam flexure is found to be 368f
nP   kip. The 

results are presented in Table 4–2. 

Step 4:  Determine beam shear capacity, s
nV . 

The shear capacity ( s
nV ) is calculated from Eq. (2–7). Since there are no prestressing tendons, the 

component of shear carried by tendons is 0pV  . The parameters β  and θ  are calculated based 

on Method 1. The beam shear capacity was found to be 341s
nV 

 
kip. The results of this analysis 

are presented in Table 4–3. 

Step 5:  Check strength hierarchy. 

The strength reduction factor for shear and flexure are v 0.90   and ,f 0.90   respectively. It 

is observed that 0.90×341= 307s
v nV   kip is less than 0.90×368 = 331f

f nP   kip. That is, the 

factored shear capacity is insufficient, which could lead to a shear failure of the bridge pier.  

Step 6:  Determine the shear capacity of the beam-column joint regions. 

From the shear force diagram of the equivalent beam model of the bent cap shown in Figure 4–2, 

it is observed that there is no shear in the beam-column joint. Hence, the beam-column joint is 

not critical.  



55 
 

Table 4–2: Results for Stage 1 Flexure Analysis. 

( )bL in  39  

( )wb in  33  

d'(in)  3 1/4  
'

L  0.00581  

d(in)  32 3/4  

L  0.00581  

n  6.46  

k  0.222 Eq. (2–2) 

cC (kip) -344  

sC (kip)  -64  

T (kip)  408  

b
yM (kip.ft)  1028 Eq. (2–1) 

b
yP (kip)  316 Eq. (2–3) 

1  0.74 Eq. (2–5) 

f
nM (kip.ft)  1197 Eq. (2–4) 

f
nP (kip)  368 Eq. (2–6) 

 

Table 4–3: Results for Stage 1 Shear Analysis. 

 d in  32.75  

2( )shA in  0.614  

 ’cf ksi  6.2  

 yf ksi  65  

 cV kip  153 Eq. (2–8) 

 sV kip  188 Eq. (2–9) 

 s
nV kip  341 Eq. (2–7) 
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Figure 4–2: Shear Force and Bending Moment Diagram of Equivalent Beam  
Model of Bent Cap Specimen 2A. 
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From the above computations it is observed that the factored shear capacity of the bent 

cap is insufficient. This warrants further investigation, and the strut-and-tie technique is used for 

further analysis. 

4.4 STAGE 2: STRENGTH ANALYSIS USING STRUT-AND-TIE MODELING 

The strut-and-tie model predictions are based on the procedure detailed in Chapter 2. No 

reduction factors are used in order to predict the actual response. The strut-and-tie model for the 

bent cap Specimen 2A is shown in Figure 4–3. Both the single panel and two panel strut-and-tie 

models are shown. The steps involved in the construct and analysis of the single panel strut-and-

tie method are given below. 

Step 1:  Determine the truss and node geometry. 

By equating the horizontal forces C  and T in Figure 4–3(a), the height ( a ) of the CCC node is 

determined to be:  

' ' 2.4 .
0.85 0.85

s y

c w c w

A fTa in
f b f b

    (4–1) 

where the variables are as described earlier. The width of the CCT node equals the width of the 

bearing pad, which is 16  inches. The depth of the back face of the CCT node is taken as twice 

the distance from near face of the beam to the centroid of the tension reinforcement = 6.75

inches. The angle of inclination of the compression strut 1 otan ( ) 36.8
 s

jd
shear span

   .  

Step 2:  Solve the determinate truss. 

Taking moment equilibrium about the CCC node the beam shear (  ) 306f
n sP T tan    kip. 

Thus based on longitudinal steel yield, 306SAT
yP   kip. Based on equilibrium of vertical forces at 

the CCT node the strut force 510D   kip. The bottom face of the CCC node is proportioned 

based on the vertical component of the strut force D  and compressive force C ,  and is found to 

be 1.75 inches.   
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(a) One panel model 

 
(b) Two panel model 

Figure 4–3: Strut-and-Tie Model of Reinforced Concrete Bridge Cap Specimen 2A.  
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Step 3:  Determine critical node. 

Based on the geometry of the nodes it is evident that the CCC node is the most critical node. The 

strength of the critical CCC node is found to be '0.85 510c nodef A   kip, where nodeA   the cross-

sectional area of the inclined face of the CCC node. 

Step 4:  Determine external load causing node failure. 

Incidentally it is found that the strut force D  is exactly equal to the node strength of the CCC 

node. Therefore, the externally applied load based on node capacity 368 kipSAT f
n nP P  . 

However, the factored capacity SAT f
v n f nP P  . The results obtained from the strut-and-tie 

analysis are presented in Table 4–4. 

Table 4–4: Results for Stage 2 SAT Analysis. 

Specimen 2A Comments 

a (in) 2.4  

θs(degrees) 36.8  

T (kip) 408  

D (kip) 510  

( )SAT
yP kip  306 Based on longitudinal 

steel yield. ( )SAT
v yP kip  214 

( )SAT
nP kip  368 Based on node 

capacity. ( )SAT
v nP kip  258 

( )f
f nP kip  331  

Figure 4–4(b) shows the experimentally obtained force-deformation response along with 

each of the code-based predictions as well as the computational response from the proposed 

C-STM (discussed in subsequent sections). As each of the code-based techniques is only a 

strength-based approach, no predictions of the structure’s global deformation can be made; hence 

the predicted forces are represented by horizontal lines.  
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From the SAT analysis it can be concluded that the joint capacity is undependable even 

though SAT f
n nP P . The results are inconclusive, and this warrants a more advanced analysis be 

conducted using C-STM; clearly it is desirable to have a more insightful analysis that can 

overcome these shortcomings. This is now the subject of the following section. 

4.5 STAGE 3: STRENGTH AND DEFORMATION CAPACITY USING COMPATIBILITY STRUT-

AND-TIE COMPUTATIONAL MODELING 

Using the modeling procedure described in Chapter 3 in detail, the proposed C-STM can be 

applied to the experimental reinforced concrete bent caps in order to provide a more informative 

analysis. Figure 4–4(a) shows the applied C-STM described earlier. The numbered node points 

in Figure 4–4(a) correspond to the cantilevered example shown in Figure 3–3(c), as well as 

suffixes C and B that refer to the tapered cantilever and beam ends, respectively. 

The representative area of longitudinal tension reinforcement (labeled 5C–5B)  

(Figure 4–4(a)) was defined as the centroid of the No. 8 longitudinal bars plus the three sets of 

two No. 4 web distribution bars. The internal lever arm of the column support was taken as the 

internal diameter of the longitudinal reinforcement, thus defining the horizontal coordinates of 

nodes 1 and 2. The horizontal coordinates of the vertical transverse reinforcement member 

(member 3–4) were defined according to the single-point Gauss quadrature model.  

As an example, Table 4–5 presents the variables used for Specimen 2A to calculate the 

area assignments of each element described in Step 2. For a /L jd  ratio of 1.52 and a transverse 

to longitudinal reinforcement ratio of 0.41, the corresponding arch breadth scalar can be 

calculated as 0.55 using Eq. (3–5), or graphically interpolated as illustrated in Figure 3–3(e). 
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(a) C-STM model for Specimen 2A 

 
(b) Comparison of force-deformation results of Specimen 2A 
Figure 4–4: C-STM Model and Results for Specimen 2A.   
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Table 4–5: Axial Rigidity Assignments for Specimen 2A. 

Member 
Steel Concrete 

Comments E – ksi 

(GPa) 

A – in. 2 

(mm2) 

E – ksi 

(MPa) 

A – in.2 

(mm2) 

2 – 4 
4 – 5 

29000sE 
 

(200)  

7.46sA 
 

(4813)  

4490cE 
 

(30,960)  
. 250.7b kd   
(161,740)  

†Tension Chord 

1 – 3 
29000sE 

 
(200)  

' 6.28sA 
 

(4051)  

3680E cE 
 

(25,373)  
. 250.7b kd   
(161,740)  

†* Compression Chord 

3 – 4 
29000sE 

 
(200)  

2.46h shN A 
 

(1584)  

4490cE 
 

(30,960)  
 4 2 256.3h hc d N s 

 
(165,350)  

Active Hoop steel 
including tension 
stiffening effect 

1 – 5 – – 
4490cE 

 
(30,960)  

0.375 224.2
cos

wb jd




  

 
(144,645)  

Concrete Strut in Arch 
Mechanism 

1 – 4 – – 
4490cE 

 
(30,960)  

2

0.5(1- )
0.423 tan

220.7wb jd




 
(145,390)  

Concrete Strut in Truss 
Mechanism 

3 – 5 – – 
4490cE 

 
(30,960)  

2

0.5(1- )
0.577 tan

203.2wb jd




 
(131,100)  

Concrete Strut in Truss 
Mechanism 

Variables 

†       245.0222
 nnddnk LLLLLL   *    

c cf '(psi) f '(MPa)
 = = 0.82

168 1-d'/ kd 14 1-d'/ kdE   

Row 2 of Figure 4–5 shows the three different nonlinear concrete stress-strain 

relationships derived for Specimen 2A from the material properties presented in Table 4–1, and 

are described as follows. 

Figure 4–5(a) shows the softened stress-strain relationship for the diagonal concrete struts 

that were applied to the diagonal web elements. This was obtained by first running an analysis 

with strain truss members perpendicular to the diagonal concrete strain elements. This provides 

with the strain transverse to the diagonal concrete members, 1 . Using Eq. (3–16) the concrete 

softening coefficient is evaluated, and the softened stress-strain relation is obtained using  

Eq. (3–18). The resulting softened stress-strain model may then be simplified in a tri-linear form 

for ease of implementation in SAP2000TM (1995), as shown in Figure 4–5(a).  

L  
in 

(mm) 

jd  
in 

(mm) 
L jd  T  L   

  
sA  

in2 
(mm2) 

sA  
in2 

(mm2) 
hN  

shA
in2 

(mm2) 

wb in 
(mm) 

d  
in 

(mm) 

kd in 
(mm) 

d  in 
(mm) 

  

42.25 
(1073) 

27.76 
(705) 1.52 0.0030 0.0073 0.55 7.46 

(4813) 
6.28 

(4051) 4 0.614 
(396) 

33 
(838) 

31 
(787) 

7.60 
(193) 

3.25 
(83) 33.3° 
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(a) Diagonal web elements (b) Beam compression chord 

elements 
(c) Tension stiffened elements 

   
Figure 4–5: Cracked Reinforced Concrete Material Properties. 

Top row: Theoretical nonlinear behavior 

Center row: Specimen 2A modeled behavior 
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Figure 4–5(b) shows the transformed concrete chord stress-strain relationship applied to 

the longitudinal compression chord members. This was obtained by multiplying the tri-linear 

stress ( )c  and strain ( c ) coefficients by cf   and co , respectively; where 002.0co  is 

typically used for unconfined concrete. A further strain transformation of c  is then required to 

obtain the compressive C-STM strain ( *
c ) that applies to the actual position of the C-STM 

compression chord member. This is achieved by multiplying the values of c by  1 '/d kd . 

Figure 4–5(c) shows the concrete tensile strength, which is directly related to the 

concretes material strength properties, as well as the type of structure under consideration. 

4.6 C-STM RESULTS AND DISCUSSION 

Figure 4–4(b) shows a comparison of the experimental results with the simulated analytical 

C-STM response for Specimen 2A. These comparisons illustrate the interaction of flexural and 

shear behavior that occurs in deep beams. It can be observed that the analytical results are in 

good agreement with the experimental results. It is also to be noted that the C-STM was able to 

accurately model the failure of the specimen. It was, however, observed that this failure point 

was dependent on the softened stress-strain model of concrete that was used for the arch 

elements. 

The photograph showing the crack pattern of Specimen 2A is presented in Figure 4–6(a). 

Figure 4–6(b) shows the order of nonlinear hinge formation observed by the C-STM analysis. 

These points are indicated on the force-deformation curve (Figure 4–6(c)), which gives an 

insight into the progression of the nonlinear hinges relative to the global force-deformation 

behavior of the structure. Each member is comprised of steel and concrete elements. 

Chronological progression of nonlinear behavior for Specimen 2A is described as follows. 

1. Concrete cracking first occurs in the longitudinal concrete element closest to the center-line 

when the concrete tensile strength tf   is exceeded. This signifies the vertical flexural 

cracking at the column face of the beams observed in Figure 4–6(a). 
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Figure 4–6: Failure Analysis of Specimen 2A.  
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2. Concrete cracking slowly extends along the longitudinal concrete element as the applied load 

increases. This signifies the formation of small vertical flexural cracks observed along the 

beam closer to the applied load. 

3. Concrete cracking of the transverse concrete element shortly follows. This signifies the 

propagation of shear cracking across the diagonal shear plane, where the cracks incline 

toward the column support. These cracks were typically observed at approximately 160 kip. 

4. Steel yielding first occurs in the longitudinal steel elements closest to the center-line when 

the yield stress yf  is exceeded. This corresponds to the flexural moment capacity of the 

critical section and drastically changes the member’s force-deformation response resulting in 

the nonlinear bilinear slope observed.   

5. Steel yielding extends along the longitudinal steel elements with increased loading. 

6. Steel yielding of the transverse steel elements occurs when the average stress of the stirrups 

exceeds the yield stress yf . This results in large shear deformations and indicates the 

widening of the diagonal shear crack observed close to the ultimate load.  

7. Once the transverse steel yields, the load-carrying capacity of the truss decreases. Stress flow 

occurs mainly through the corner-to-corner arch diagonal. This mechanism of stress flow 

provides additional load-carrying capacity (point 9 to 10 in Figure 4–6(c)) to the specimen. 

With further loading the peak stresses are reached in the softened diagonal arch member.  

8. It was observed that after the arch diagonal on the beam side of the specimen reached its 

peak softened stress, the strains in the arch diagonal on the cantilever portion of the beam 

increased. The specimen finally failed when the strains in this member started dropping, 

leading to the final collapse of the specimen, which is in agreement with the photograph of 

the specimen shown in Figure 4–6(a). 

 

 



67 
 

4.7 CONCLUDING REMARKS ON WORKED EXAMPLE 1 

A summary of the results from the three stages of analysis is presented in Table 4–6.  

Table 4–6: Result for Specimen 2A. 

Stage  
Capacity 

(kip) 

Factored 
Capacity 

(kip) 
Comments 

 b
yP  316 --- Externally applied load based on yield 

flexural resistance of the beam. 

Stage 1: 
Beam 

Theory 
f

nP  368 331 Externally applied load based on 
nominal flexural capacity of the beam. 

 s
nV  341 290 Beam shear capacity. 

Stage 2: 
SAT 

SAT
nP  368 N/A Externally applied load based on critical 

CCC node. 

SAT
yP  306 214 Externally applied load based on yield 

of longitudinal steel in beam. 

Stage 3:  
C-STM C -STM

P  383 268 Externally applied load based on C-
STM analysis. 

Experiment Expt
FailureP  404 --- Maximum load at incipient failure. 

 

The code-based prediction shows the difficulties associated with trying to predict the 

failure mechanism using present conventional strength-based analysis techniques. Hence when 

used alone, these strength-based approaches are unable to provide satisfactory insight into the 

expected behavior in order to identify the progression of failure modes along with any post-yield 

capacity. Interestingly, the flexural analysis methods provided the most consistent predictions of 

the yield force despite the common perception that plane sections no longer remain plane in 

disturbed regions.  

 It is observed that the C-STM simulates the behavior of the specimen fairly accurately 

and gives the entire force vs. deformation behavior of the specimen. It also overcomes the 

difficulties associated with trying to predict the failure mechanism using present conventional 

strength-based analysis techniques. Clearly, C-STM has an upper hand when compared to the 

code-based analysis techniques. 
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5. WORKED EXAMPLE 2 

5.1 SCOPE 

In this section a reinforced concrete bridge pier tested by the authors in order to investigate the 

effect of premature concrete deterioration in bridge bents currently used in practice, specifically 

cantilever bents and straddle bents, is selected to illustrate the procedure of analysis detailed in 

Chapter 2. Additionally, the structure is modeled using the C-STM technique without and with 

the effects of ASR/DEF. All results are then compared with the experimental results. 

5.2 THE STRUCTURE 

The experimental specimen was designed as a “C” shape sub-assemblage such that two large-

scale bridge bent components were placed back-to-back so they could be tested as a self-reacting 

system. The C-Beam specimen had a constant cross-section of 3 ft deep and 2 ft wide that was 

symmetrical with the exception of the beam compression steel. More specifically the physical 

model scale factors representing the singly reinforced cantilevered bent and the doubly 

reinforced straddle bent were approximately 0.5 and 0.75, respectively. 

Figure 5–1 presents the reinforcing layout and cross-section of C-Beam Specimen. The 

longitudinal reinforcement consisted of 10 No. 8 bars running continuously around the outside 

and hooked at the end of each beam. The singly reinforced beam had two No. 8 straight 

compression bars for construction purposes. The doubly reinforced beam had symmetrical 

compression and tension reinforcement. 

The longitudinal beam distribution steel (distributed along the beam web) consisted of 

three sets of No. 4 straight bars equally spaced. Transverse beam reinforcement consisted of 

closed stirrups with a center-to-center spacing of 4.5 inches starting at the column face. The 

longitudinal column distribution steel consisted of five sets of No. 8 bars equally spaced. 

Transverse column reinforcement had overlapping No. 4 stirrups spaced 4.5 inches centers. The 

beam-column joint was reinforced with four No. 4 U-bars at 8 inch centers continuing from the 

transverse beam reinforcement. 
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Figure 5–1: Elevation and Cross-Section of the C-Beam Specimens. 
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Table 5–1 presents the reported material strength data on the test day and experimental 

test results. Specimen 1 is the control specimen and does not have any ASR/DEF induced 

damage, whereas Specimen 4 showed moderate amount of damage due to ASR/DEF effects. The 

experimental setup, procedure, and general observations from the test can be found in Scott 

(2010). 

Table 5–1: Material Properties and Test Results. 
  Specimen 1 Specimen 4 

Material 
properties 

cf  (ksi) 5.40 4.00 

tf  (ksi) 0.30 0.23 

Ec (ksi) 4190 3605 

n* 6.92 8.04 

Experimental 
results 

Expt
YieldP (kip)  440 440 

Expt
FailureP (kip) 474 503 

Expt
Yield (in) 1.49 1.1 

Expt
Failure (in) 1.69 2.17 

  1.13 1.97 

*Modular ratio = Young’s modulus of steel to concrete, where  
  29000 200sE ksi GPa   

5.3 STAGE 1: STRENGTH ANALYSIS USING BEAM THEORY 

The code-based design approaches that were described in detail in Chapter 2 are used to predict 

the response of C-Beam Specimens 1 and 4. Results from the application of each of these 

approaches are presented as follows. Computations are presented in Appendix A. 

Step 1:  Determine first yield flexural capacity, b
yM . 

The yield moment and the external load causing first yield are calculated using Eqs. (2–1) and 

(2–3), respectively. The parameters required by the analysis of both Specimen 1 and 4 are 

presented in Table 5–2. For Specimen 1 the analysis resulted in a yield moment of 

1290b
yM   kip-ft and a yield force of 430b

yP   kip for the doubly reinforced beam. 
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Table 5–2: Results of Stage 1 Flexure Analysis (Without Deterioration). 

 Specimen 1 Specimen 4  

 Doubly 
reinforced 

Singly 
Reinforced 

Doubly 
reinforced 

Singly 
Reinforced  

k  0.271 0.299 0.285 0.317 Eq. (2–2) 

cC (kip) -377 -480 -366 -474  

sC (kip)  -132 -34 -144 -37  

T (kip)  511 511 511 511  

b
yM (kip.ft)  1290 1276 1285 1269 Eq. (2–1) 

b
yP (kip)  430 425 428 423 Eq. (2–3) 

1  0.78 0.78 0.85 0.85 Eq. (2–5) 

f
nM (kip.ft)  1442 1416 1428 1383 Eq. (2–4) 

f
nP (kip)  481 472 476 461 Eq. (2–6) 

Steps 2: Determine nominal flexural moment, f
nM . 

The nominal flexural moment ( f
nM ) was calculated based on Eq. (2–4). The flexural capacity, 

1442f
nM   kip-ft for the doubly reinforced beam of Specimen 1. 

Step 3:  Determine externally applied load based on beam flexure, f
nP . 

Based on the nominal flexural moment ( f
nM ), and knowing that the shear span to the face of the 

column bL   36 inches, the external load causing beam flexure on the bent cap is found to be 

481f
nP   kip for the doubly reinforced beam of Specimen 1. The results for both Specimen 1 

and 4 are presented in Table 5–2. 

Step 4:  Determine beam shear capacity, s
nV . 

The shear capacity ( s
nV ) is calculated from Eq. (2–7). Since there are no prestressing tendons, the 

component of shear carried by tendons 0pV  . The parameters β  and θ  are calculated based on 
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Method 1. For the doubly reinforced side of Specimen 1 the shear capacity for the beam was 

found to be 281s
nV   kip and for the joint was found to be 532j

nV   kip. The results of this 

analysis for both Specimen 1 and 4 are presented in Table 5–3. 

Table 5–3: Results of Stage 1 Shear Analysis. 

 Specimen 1 Specimen 4  

2( )shA in  0.393 0.393  

 '
cf ksi  5.40 4.00  

 yf ksi  65 65  

( )bs in
 

4.5 4.5  

( )js in
 

8 8  

 Singly Doubly Singly Doubly  

 jd in
 

31 30.5 31 30.5  

 cV kip  109 108 94 93 Eq. (2–8) 

 sV kip  176 173 176 173 Eq. (2–9) 

 ( )archV kip  437 430 376 370 Eq. (2–17) 

( )truss sv yV kip A f  102 102 102 102  

 s
nV kip  285 281 270 266 Eq. (2–7) 

 j
nV kip

 
539 532 478 472 Eq. (2–16) 

Step 5:  Check strength hierarchy. 

The strength reduction factor for shear and flexure are v 0.90   and ,f 0.90   respectively. It 

is observed that for the doubly reinforced beam of Specimen 1, 0.90×281= 253s
v nV  kip is less 

than 0.90×481= 433f
f nP  kip. This result shows that the factored shear capacity for the beam 

is insufficient, which can lead to a shear failure in the beam. 
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Step 6:  Determine the shear capacity of the beam-column joint regions. 

The beam-column joint shear can be found from the shear force diagram of the equivalent beam 

model of the C-Beam specimen shown in Figure 5–2. The joint shear was found to be 

558jvV   kip. The joint shear capacity of the joint is calculated based on Eq. (2–16) and is found 

to be 532j
nV   kip. For the joint it is observed that 0.90×532 = 479j

v nV   kip is less than 

0.90×558 = 502f jvV   kip. 

From this analysis it can be concluded that the factored shear capacity for both the beam 

and the joint is insufficient. This is true for both Specimens 1 and 4, and hence warrants further 

investigation, and a strut-and-tie analysis is performed.  

5.4 STAGE 2: STRENGTH ANALYSIS USING STRUT-AND-TIE MODELING 

The strut-and-tie model developed for C-Beam Specimen 1 is shown in Figure 5–3. The steps 

involved in the construct and analysis of the strut-and-tie method are shown below. 

Step 1:  Determine the truss and node geometry. 

The width of the bottom face of the CCC node is equal to the depth of compression zone of the 

column ( ),kd  which is determined based on the equation for the elastic compression zone 

coefficient k  (Eq. (2–2)) and was found to be equal to 9.53 inches. The bottom face of the CCC 

node can be proportioned based on the ratio of / 558 / 481 1.16f
jv nV P    (from the shear force 

diagram in Figure 5–2). The width of the CCT node is taken to be equal to the width of the 

bearing pad, which is 12  inches. The width of the CTT node is based on the bar bending radius 

( 4'')R   and the radius ( / 2)bd of the longitudinal column reinforcement. 

The height of the CCC node is assumed to be equal to the depth of the back face of the 

CCT node (which equals two times the distance from the tension face to the centroid of the 

tension reinforcement). The crack angle in the beam-column joint is assumed to be 45°. After the 

node geometries are determined, all the SAT model dimensions and inclination angle can be 

obtained.  
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 Figure 5–2: Shear Force and Bending Moment Diagram of the Equivalent Beam Model of  

C-Beam Specimen 1 (Specimen 4).  
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Figure 5–3: Strut-and-Tie Model for C-Beam Specimen 1. 

  

CTT node detail 

See CTT node detail 
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Step 2:  Solve the determinate truss. 

All the member forces can be determined based on joint equilibrium assuming that the tension tie 

has yielded, that is s yT A f . The externally applied load based on steel yield was found to be 

429SAT
yP   kip. However, this is most unlikely to be the critical load, as the critical node needs 

to be identified as follows. 

Step 3:  Determine critical node. 

Based on the geometry of the nodes it is determined that the CTT node is the most critical node 

with allowable stress in this node given as '0.65 cf  (Eq. 2–19). The node strength of the CTT 

node is found to be 536cuF   kip and 397  kip for Specimen 1 and 4, respectively. 

Step 4:  Determine external load causing node failure. 

The external load causing node failure for Specimen 1 based on the node capacity of the CTT 

node can be back calculated and is found to be 318SAT
nP   kip. It is noted that for both the 

specimen SAT f
n nP P  and also the factored capacities SAT f

v n f nP P  . Therefore, joint capacity is 

technically undependable. The results of the strut-and-tie analysis are summarized in Table 5–4.  

Figure 5–4 shows that indeed the beam-column joint is most critical and that the CTT 

node is the most critical node. The joint is overlaid with the truss and the arch members as was 

observed from the crack pattern.  

The results show that it is somewhat inconclusive as to what the failure mode for 

Specimen 1 will be because the joint capacity is technically undependable. It is observed that the 

specimen also have undependable joint capacity. Additionally, the SAT analysis does not take 

into account the effects of ASR/DEF damage. This justifies the use of an advanced analysis 

technique where the C-STM method comes in handy.  
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Figure 5–4: Failure Pattern Observed at the Beam-Column Joint of C-Beam Specimen 1. 
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Table 5–4: Results for Stage 2 SAT Analysis. 

 Specimen 1 Specimen 4 Comments 
( )bD kip  667 667  

( )jD kip  723 723  

( )b degrees  40 40  

( )j degrees  45 45  

( )SAT
yP kip  429 429 Based on longitudinal 

steel yield. ( )SAT
v yP kip  300 300 

( )SAT
nP kip  318* 236* Based on node 

capacity. ( )SAT
v nP kip  223 165 

( )f
f nP kip  433 428  

*Expected critical failure mode capacity. 

5.5 STAGE 3: STRENGTH AND DEFORMATION CAPACITY USING COMPATIBILITY STRUT-

AND-TIE COMPUTATIONAL MODELING 

Figure 5–5 shows the C-STM model for C-Beam specimen (a) without and (b) with ASR/DEF 

damage. The cantilever beams were modeled using a single-point Gauss quadrature model. The 

joints were modeled using a two-point Gauss model (Kim and Mander, 1999) where the 

transverse ties were aligned with the U-bar reinforcement to provide a more exact representation 

of the reinforcement. The representative areas of reinforcement for the tension chord were 

defined as the sum of longitudinal steel and three sets of web distribution steel for tension. The 

compression chord was defined as the compression longitudinal steel. Rows 2 and 3 of  

Figure 5–6, respectively, show the different nonlinear concrete stress-strain relationships that 

were derived for C-Beam Specimens 1 and 4 from the material properties presented in  

Table 5–1.  
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(b) Specimen 4: With ASR/DEF damage 

 
Figure 5–5: Modeling the C-Beam Specimens without and with ASR/DEF Damage.  

Note the additional forces in (b) represent the prestress effect actively  
induced in the reinforcing steel caused by ASR/DEF induced concrete  
swelling.  
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(a) Diagonal web elements (b) Beam compression chord elements (c) Tension stiffened elements 

   
   
Figure 5–6: Cracked Reinforced Concrete Material Properties. 

Top row: Theoretical nonlinear behavior 

Center row: Specimen 1 modeled behavior 

Bottom row: Specimen 4 modeled behavior 
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Stage 3.1: C-STM without ASR/DEF damage 

Figure 5–5(a) shows the C-STM model that was developed for C-Beam Specimen 1. Specimen 1 

is the control specimen and had no ASR/DEF induced damages. To simulate the experimental 

test setup as accurately as possible, initial loads (shown as PT in Figure 5–5(a)) were applied to 

the tension chord members of the protected beam in order to replicate post-tensioning effects in 

accordance with Phase I and Phase II testing. Note that this model essentially represents the 

C-STM analysis without any ASR/DEF effects. 

Stage 3.2: C-STM with ASR/DEF damage 

Figure 5–5(b) shows the C-STM model for C-Beam Specimen 4. Moderate damage due to 

ASR/DEF was observed in this specimen. Prestressing forces are applied on the longitudinal and 

transverse reinforcements in order to replicate the prestress effects that arise as a consequence of 

the swelling within the core concrete due to ASR/DEF effects. As per the recommendations 

made for moderate damage due to ASR/DEF effect in section 3.6.5, the strength reduction factor 

for cover concrete is taken as   0.70. The confinement ratio was calculated as ccK  1.28 for 

the beam and ccK  1.35 for the column core concrete. The prestress in the longitudinal 

reinforcement is taken as 0.5 yf  and that of the hoops is taken as 1.0 yf  as per the 

recommendations for moderate damage due to ASR/DEF. The modified stress-strain relation of 

longitudinal and transverse reinforcing steel due to prestressing effects is shown in Figure 5–7. 

5.6 C-STM RESULTS AND DISCUSSION 

Figure 5–8(a) shows the modeled results for the C-STM response for C-Beam Specimens 1 and 

4. In Specimen 1 it is evident that there is a stiffness change at about 100 kip; this is due to first 

cracking in concrete. For Specimen 4, however, this apparent stiffness change is at 310 kip. This 

higher level of apparent “cracking” is strictly when the decompression of the prestressed sections 

occurs.  

Note that after “cracking”/decompression occurs and prior to yield of the two specimens 

at about 450 kip, the cracked stiffness of the two specimens appears similar. These 

computationally   modeled   results   with   C-STM   are   in   agreement   with  the  experimental   
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Figure 5–7: Actual and Modified Stress-Strain Models for Reinforcing Steel to 
Account for Prestressing Effects in C-Beam Specimen 4. 
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(a) C-STM results 

 
(b) Experimental performance 

Figure 5–8: Force-Deformation Results for Specimens 1 and 4. 
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observations for the two specimens in Figure 5–8(b). Note that the initial prestress (field) loading 

in the experiments was not accurately captured, and it is for this reason the starting point of the 

laboratory experiment commences at a displacement of 0.25 inches. 

The photograph showing the crack pattern on the strong beam of the C-Beam Specimen 1 

is presented in Figure 5–9(a). Figure 5–9(b) shows the order of nonlinear hinge formation 

observed by the C-STM analysis. Figure 5–9(c) shows the force-deformation of C-Beam 

Specimen 1 along with the points that correspond to the formation of nonlinear hinges. The 

chronological progression of nonlinear behavior for C-Beam Specimen 1 is as follows  

(Figure 5–9(b)). 

1. Longitudinal cracking first occurred in the beam. This is when the member stress exceeds the 

concrete tensile strength, thus initiating flexural cracking in the beam at the column face, and 

along the column, respectively. Tension softening refers to the concrete’s ability to resist 

tensile strains after the development of the primary cracks. 

2. Transverse cracking then occurred in the transverse concrete elements, starting in the beam 

column joint and then in the beam. This corresponds with diagonal shear cracking observed 

as a result of the flexure-shear interaction and is in agreement with experimental 

observations. 

3. Chord compression occurred in the diagonal arch and column compression chord elements 

indicating that the concrete had exceeded the elastic limit of '0.5 cf . 

4. Longitudinal yielding occurred in the longitudinal beam reinforcement when the stress 

exceeds the specified yield stress yf . 

5. Transverse steel yielding in the beam-column joint U-bars were the next member in the C-

STM to respond nonlinearly. 

6. With the yielding of transverse reinforcement in the beam-column joint the load-carrying 

capacity of the truss mechanism is limited, and the stress flow occurs through the corner-to-

corner arch diagonal in the beam-column joint. 
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Figure 5–9: Failure Analysis of C-Beam Specimen 1. 
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 failure near end of experiment. 
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7. The final event, which results in the collapse of the concrete bridge pier, is compression 

softening of the main corner-to-corner (arch) strut in the beam-column joint. 

A similar mechanism is observed in C-Beam Specimen 4, which is modeled to include 

the effects of ASR/DEF. 

5.7 CONCLUDING REMARKS ON WORKED EXAMPLE 2 

The results of the analysis are summarized in Table 5–5.  

From the results presented in Table 5–5 and the C-STM results presented in Figure 5–8, it 

is observed that the flexural analysis predicts the yield force accurately. However, the sectional 

shear approach had the largest discrepancy and did not accurately represent the specimen 

capacity. These predictions are unduly harsh because the shear capacity is calculated in a D-

region where the theory breaks down. It is for this reason a SAT analysis needs to be conducted.  

This analysis would imply that the joint would fail even before the beam yielded, thus suggesting 

that the structure fails in a very brittle manner. However, this is not the case as can be seen from 

the experimental results (Figure 5–8). The effects of ASR/DEF damage cannot be analyzed using 

any of these techniques. 

On the other hand, the C-STM simulates the behavior of the specimen quite well and also 

overcomes the difficulties associated with trying to model the failure mechanism using present 

conventional strength-based analysis techniques used in AASHTO LRFD (2010) for design. The 

effects of ASR/DEF were modeled into the C-STM analysis technique, and the results are in 

good agreement with the experimental observations. Additionally, the C-STM provides the 

additional insight in terms of the sequence of behavior and whether the behavior is ductile or 

brittle. 

Finally, providing the applied factored loads 1.25D+1.75(L+I) are less than C-STMP = 

318 kip then the performance of the structure can be deemed acceptable. This is in spite of the 

moderate level of ASR/DEF damage observed.  
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Table 5–5: Result for C-Beam Specimens 1 and 4. 

 Specimen 1 Specimen 4  

Stage  Capacity  
(kip) 

Factored 
Capacity  

(kip) 

Capacity  
(kip) 

Factored 
Capacity  

(kip) 
Comments 

St
ag

e 
1:

 B
ea

m
 T

he
or

y b
yP  430 --- 428 --- 

External load based on 
yield flexural of the 
beam. 

f
nP  481 433 476 428 

External load based on 
nominal flexural capacity 
of the beam. 

s
nV  281 253 266 239 Beam shear capacity. 
j

nV
 

532 479 472 425 Joint shear capacity. 

St
ag

e 
2:

 S
A

T SAT
nP  318 223 236 165 External load based on 

critical CTT node. 

SAT
yP  429 N/A 429 N/A 

External load based on 
yield of longitudinal steel 
in beam. 

St
ag

e 
3:

  C
-

ST
M

 

C-STMP  454* 318+ 484* 339 

Compression failure due 
to diagonal 
splitting/compression in 
the beam-column joint 
zone.   0.70 
(assumed). 

Ex
pe

rim
en

t 

Expt
FailureP  474 --- 503 --- 

Maximum load at 
incipient failure due to 
failure in beam-column 
joint zone. 

 

* Bold typeface = critical case. 
+ Value assumed for overall structural load rating. 
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6. CLOSURE 

From the analysis presented in the earlier sections, it can be seen that the strength-based analysis 

does not give a conclusive estimate of the ultimate strength of bridge piers. Also, none of these 

analysis techniques takes the effects of ASR/DEF damage into account. However, the 

compatibility based strut-and-tie model that was developed as a computational method of 

analyzing the nonlinear flexure-shear interaction of deep beams and other disturbed regions gives 

a good estimate of the behavior of shear critical concrete bridge piers. The computational truss 

modeling technique developed has the following highlights:  

i. Incorporates a method for apportioning the interaction of different truss and arch shear 

resisting mechanisms.  

ii. Incorporates the contribution of both flexural steel and concrete in compression chord 

members transformed from conventional stress block methods, which in turn defines 

nodal coordinates.  

iii. Incorporates a direct method of modeling the softened constitutive relations of cracked 

reinforced concrete struts, which does not require an iterative process to obtain 

convergence.  

iv. Enables to model the effects of ASR/DEF into the analysis. 

v. Accurately simulates the global force-deformation response of the structure without and 

with ASR/DEF damage. 

vi. Enables to “see” the nonlinear mechanism that progressively develops in the structure 

and precisely pinpoints the failure point and mechanism. 
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APPENDIX A: STAGE 1–3 ANALYSIS–C-BEAM SPECIMEN 

This appendix presents the analysis procedure followed for the C-Beam specimens. The 

computations for Stage 1(beam theory), Stage 2 (SAT analysis), and Stage 3 (C-STM analysis) 

are included. 

 

Table C–1: Material Properties for C-Beam Specimens. 

 Specimen 1 Specimen 4 
'

cf (ksi) (at time of testing) 5.40 4.00 

tf (ksi)   0.30 0.23 

cE  (ksi)  4190 3605 

yf (ksi)  65 65 

sE  (ksi)  29000 29000 

 
 
STAGE 1: ANALYSIS USING BEAM THEORY 

 
Step 1: Determine first yield flexural capacity, b

yM . 
 
 

  
 

(a) Doubly reinforced beam (b) Singly reinforced beam 
 

Figure C–1: Strain and stress distribution for computation of yield moment. 
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Table C–2: Computation of First Yield Flexural Capacity and Corresponding Axial Load.  

 Specimen 1 Specimen 4 

 Doubly 
reinforced 

Singly 
reinforced 

Doubly 
reinforced 

Singly 
reinforced 

2
sA  (in )  7.854 7.854 7.854 7.854 
' 2
sA  (in )  7.854 1.571 7.854 1.571 

( )b in 
 24 24 24 24 

( )d in 
 

33.25 33.25 33.25 33.25 
'( )d in

 
2.75 2.25 2.75 2.25 

'( )jd d d in 
 

30.5 31 30.5 31 

s
L

A
bd

   0.00984 0.00984 0.00984 0.00984 

'
' s

L
A
bd

   0.00984 0.00197 0.00984 0.00197 

/s cn E E
 

6.92 8.04 

     nnddnk LLLLLL   222  
k  0.271 0.299 0.285 0.317 
 kd (in)  9.01 9.94 9.48 10.54 

( )y
c

kd
d kd


 


 0.00083 0.00096 0.00089 0.00104 

'
' ( )y

s

kd d
d kd








 0.00058 0.00074 0.00063 0.00082 

1 ( )
2c c cC (kip)= E kd b  -377 -480 -366 -474 

' '
s s s sC (kip)= A E  -132 -34 -144 -37 

s s yT  (kip)= A f  511 511 511 511 

'( / 3) ( / 3 )b
y s sM T d kd C kd d     

b
yM (kip.in)  15474 15319 15420 15228 

/b b
y y bP M L

 
where 36 bL in  

b
yP (kip)  430 425 428 423 
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Step 2 and Step 3: Determine nominal flexural moment, f
nM  and externally applied load based 

on flexure, f
nP . 

For an accurate estimate of the nominal moment, calculations were performed in a spreadsheet 

considering the contribution of each layer of steel. The spreadsheets are presented below for both 

doubly and singly reinforced beam for both the specimens. 

Table C–3:  Computation of Flexural Moment and Corresponding Axial Load Demand for 
Doubly Reinforced Beam: Specimen 1. 

Input Parameters Calculated Variables 

Section Properties Reinforcement Details 
Reinforcement 

Properties 
 0.85 

Breadth (in) 24 Reinforcement Diameter 
(in) Es (ksi) 29000  0.78 

a (shear 
span) (in) 36 Longitudinal 1 fy (ksi) 65 

    
Concrete Properties Distribution 0.5     

Assume NA 
depth for 

equilibrium, 
c (in)  

4.145 
f'c (ksi) 5.4 Stirrups 0.5     

Analysis 

Layer No: of 
bars Area (in2) 

Dist to 
layers 
from 

bottom (in) 

Strain 
Stress 

in Steel 
(ksi) 

Force in 
Concrete/ 
Steel (kip) 

Moment 
(kip-in) 

Concrete ----- ----- 1.617 -0.0030 ----- -356.16 -575.75 
(Bottom)     

1 8 6.28 2.250 -0.0014 -39.77 -249.91 -562.30 
Steel 2 2 1.57 4.750 0.0004 12.70 19.95 94.75 
Steel 3 2 0.39 10.125 0.0043 64.96 25.51 258.29 
Steel 4 2 0.39 18.000 0.0100 64.96 25.51 459.18 
Steel 5 2 0.39 25.875 0.0157 64.96 25.51 660.06 
Steel 6 2 1.57 31.250 0.0196 64.96 102.04 3188.72 
Steel 7 8 6.28 33.750 0.0214 64.96 408.16 13775.26 

  
Mn

f
 (kip-ft) 1441.52 

Pn
f
 (kip) 480.51 
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Table C–4:  Computation of Flexural Moment and Corresponding Axial Load Demand for 
Singly Reinforced Beam: Specimen 1. 

Input Parameters Calculated Variables 

Section Properties Reinforcement Details 
Reinforcement 

Properties 
 0.85 

Breadth (in) 24 Reinforcement Diameter 
(in) Es (ksi) 29000  0.78 

a (shear 
span) (in) 36 Longitudinal 1 fy (ksi) 65 

    
Concrete Properties Distribution 0.5     

Assume NA 
depth for 

equilibrium, 
c (in)  

5.845 
f'c (ksi) 5.4 Stirrups 0.5     

Analysis 

Layer No: of 
bars Area (in2) 

Dist to 
layers 
from 

bottom 
(in) 

Strain 
Stress 

in Steel 
(ksi) 

Force in 
Concrete/ 
Steel (kip) 

Moment 
(kip-in) 

Concrete ----- ----- 2.280 -0.0030 ----- -502.23 -1144.86 
(Bottom)     

1 2 1.57 2.250 -0.0018 -53.46 -83.97 -188.93 
Steel 2 0 0.00 4.750 -0.0006 -16.30 0.00 0.00 
Steel 3 2 0.39 10.125 0.0022 62.08 24.38 246.83 
Steel 4 2 0.39 18.000 0.0062 64.96 25.51 459.18 
Steel 5 2 0.39 25.875 0.0103 64.96 25.51 660.06 
Steel 6 2 1.57 31.250 0.0130 64.96 102.04 3188.72 
Steel 7 8 6.28 33.750 0.0143 64.96 408.16 13775.26 

  
Mn

f
 (kip-ft) 1416.36 

Pn
f
 (kip) 472.12 
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Table C–5: Computation of Flexural Moment and Corresponding Axial Load Demand for 
Doubly Reinforced Beam: Specimen 4. 

Input Parameters Calculated Variables 

Section Properties Reinforcement Details Reinforcement 
Properties  0.85 

Breadth (in) 24 Reinforcement Diameter 
(in) Es (ksi) 29000  0.85 

a (shear span) 
(in) 36 Longitudinal 1 fy (ksi) 65 

    
Concrete Properties Distribution 0.5     

Assume NA 
depth for 

equilibrium, 
c (in) 

4.555 
f'c (ksi) 4 Stirrups 0.5     

Analysis 

Layer No: of 
bars Area (in2) 

Dist to 
layers 
from 

bottom 
(in) 

Strain Stress in 
Steel (ksi) 

Force in 
Concrete/ 
Steel (kip) 

Moment 
(kip-in) 

Concrete ----- ----- 1.936 -0.0030 ----- -315.93 -611.61 
(Bottom)     1 8 6.28 2.250 -0.0015 -44.02 -276.61 -622.38 

Steel 2 2 1.57 4.750 0.0001 3.72 5.85 27.79 
Steel 3 2 0.39 10.125 0.0037 64.96 25.51 258.29 
Steel 4 2 0.39 18.000 0.0089 64.96 25.51 459.18 
Steel 5 2 0.39 25.875 0.0140 64.96 25.51 660.06 
Steel 6 2 1.57 31.250 0.0176 64.96 102.04 3188.72 
Steel 7 8 6.28 33.750 0.0192 64.96 408.16 13775.26 

  
Mn

f
 (kip-ft) 1427.94 

Pn
f
 (kip) 475.98 
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Table C–6: Computation of Flexural Moment and Corresponding Axial Load Demand for 
Singly Reinforced Beam: Specimen 4. 

Input Parameters Calculated Variables 

Section Properties Reinforcement Details 
Reinforcement 

Properties 
 0.85 

Breadth (in) 24 Reinforcement Diameter 
(in) Es (ksi) 29000  0.85 

a (shear span) 
(in) 36 Longitudinal 1 fy (ksi) 65 

    
Concrete Properties Distribution 0.5     

Assume NA 
depth for 

equilibrium, 
c (in) 

6.985 
f'c (ksi) 4 Stirrups 0.5     

Analysis 

Layer No: of 
bars Area (in2) 

Dist to 
layers 
from 

bottom 
(in) 

Strain Stress in 
Steel (ksi) 

Force in 
Concrete/ 
Steel (kip) 

Moment 
(kip-in) 

Concrete ----- ----- 2.969 -0.0030 ----- -484.48 -1438.24 
(Bottom)     1 2 1.57 2.250 -0.0020 -58.58 -92.01 -207.03 

Steel 2 0 0.00 4.750 -0.0010 -27.84 0.00 0.00 
Steel 3 2 0.39 10.125 0.0013 39.11 15.36 155.50 
Steel 4 2 0.39 18.000 0.0047 64.96 25.51 459.18 
Steel 5 2 0.39 25.875 0.0081 64.96 25.51 660.06 
Steel 6 2 1.57 31.250 0.0104 64.96 102.04 3188.72 
Steel 7 8 6.28 33.750 0.0115 64.96 408.16 13775.26 

  
Mn

f
 (kip-ft) 1382.79 

Pn
f
 (kip) 460.93 
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Step 4: Determine beam shear capacity, s
nV . 

Table C–7:  Computation of Beam Shear Capacity. 

 Specimen 1 Specimen 4 
'

cf (ksi) (at time of testing) 5.40 4.00 

 ( )yf ksi  65 65 

vb (in)
 

24 24 
2 ( )vA in

 
0.393 0.393 

 ( )s in
 

4.5 4.5 
 β (per AASHTO  

Method 1)
 

2 2 

 θ (degrees) (per AASHTO 
Method 1)

 

45 45 

 Doubly Singly Doubly Singly 
 ( )vd jd in  30.5 31 30.5 31 

'   ( )c c v vV 0.0316 β f b d kip  108 109 93 94 

 ( )v
s v y

dV A f cotθ kip
s


 

173 176 173 176 

 ( )s
n c sV V V kip 

 
281 285 266 270 

 

Step 5: Check strength hierarchy. 

Table C–8: Checking Strength Hierarchy. 

 Specimen 1 Specimen 4 
 Doubly Singly Doubly Singly 

v  0.90 (AASHTO 5.5.4.2) 

 ( )s
nV kip  281 285 266 270 

f  0.90 (AASHTO 5.5.4.2) 

 ( )f
nP kip  481 472 476 461 

 ( )s
v nV kip  253 256 239 243 

 ( )f
f nP kip  433 425 428 415 
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In all of the above cases s f
v n f nV P  , which implies that the dependable shear capacity 

may be insufficient leading to a shear failure of the bridge pier. 

Step 6: Determine the shear capacity of the beam-column joint region. 

The vertical shear in the joint ( )jvV  caused by the axial load based on flexure can be determined 

from the shear force diagram of the equivalent beam model of the bridge pier shown in 

Figure C–2. The horizontal shear jhV can be computed from
 

.jvV  

Table C–9:  Computing the Vertical and Horizontal Shear in the Beam-Column Joint 
Caused by Flexural Axial Load Demand. 

 Specimen 1 Specimen 4 

 Doubly Singly Doubly Singly 
f

nP (kip) 481 472 476 461 

jvV  (kip) 558 548 554 535 

 ( )c bh h in  36 36 

c
jh jv

b

hV V
h

  (kip)
 

558 548 554 535 
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Figure C–2: Approach to determine shear in the beam-column joint for Specimen 1 and 

Specimen 4. 
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The computation for assessing the joint shear capacity is as follows: 

Table C–10:  Assessing the Joint Shear Capacity. 

 Specimen 1 Specimen 4 
2 ( )svA in  

(total area of hoops/ties in 
the joint region) 

1.571 1.571 

 ( )yf ksi  65 65 

'  ( )cf ksi  5.4 4.0 

 ( )vb in  24 24 

 Doubly Singly Doubly Singly 

 ( )jd in  30.5 31 30.5 31 

 ( )trussV kip  102 102 102 102 

 ( )archV kip  430 437 370 376 

 ( )j
n arch trussV kip V V   532 539 472 478 

v  0.90 

 ( )j
v nV kip  479 485 425 430 

f  0.90 

 ( )f jvV kip  502 493 498 481 

 

In the above cases j
v n f jvV V  , which implies that the joint capacity is less than the 

demand, and hence there could be a shear joint failure. 

From the above analysis it is determined that the beam and the beam-column joint are 

shear critical. Therefore a strut-and-tie analysis is performed. It is also required by the code to 

perform a SAT as the /a d
 
ratio for the specimen is 1.08. 
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STAGE 2: STRUT-AND-TIE ANALYSIS 

Step 1: Determine the node geometry. 

The computation of the node dimensions and geometry for the two specimens follows. 

CCT node:  

 The width of the CCT node is taken equal to the width of the bearing pad =12'' .  

 The depth of the back face of the CCT node = 2Gdistance from the extreme tension face 

to the centroid of the tension reinforcement = 2 2.75 5.5''.G  
 

CTT Node: 

 Width of the CTT node = 22 ( / 2)bR dG where R bar bending radius = 4 ''  and bd   
diameter of the column longitudinal rebar = 1'' . 

CCC Node: 

 The width of the bottom face of the CCC node is equal to the depth of compression zone 

of the column ( )kd , which is determined based on the equation for the elastic 

compression zone coefficient .k  

 The bottom face is proportioned based on the ratio of / / f
jv na b V P  (Figure in  

Table C–11) obtained from Stage 1 of the analysis. 

 Since the horizontal force in the CCC node is equal to the horizontal force in the CCT 

node, the height of the CCC node is assumed to be equal to the depth of the back face of 

the CCT node = 2 2.75 5.5''.G  

 Knowing the above, the other sides of the CCC node can be determined. 
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Table C–11: Computations for Sizing the CCC Node. 

 

   
  (a) Column cross section                          (b) CCC node configuration 

 
 Specimen 1 Specimen 4 

2
sA  (in )  7.854 
' 2
sA  (in )  3.927 

( )b in 
 24 

( )d in 
 

33.25 
'( )d in

 
2.25 

s
L

A
bd

   0.00984 0.00984 

'
' s

L
A
bd

   0.00492 

/s cn E E
 

6.92 8.04 

     nnddnk LLLLLL   222  
k  0.287 0.303 
 kd (in)  9.5 10.1 

 ( )jvV kip  558 554 

 ( )f
nP kip  481 476 

/ f
jv nV P  1.16 1.16 

 ( )a in  5.12 5.41 
 ( )b in

 
4.41 4.66 

 

  



109 
 

Table C–12: Geometry and Dimensions of Nodes. 

C
C

T
 N

od
e 

 

C
T

T
 N

od
e 

 

C
C

C
 N

od
e 

Specimen 1 Specimen 4 
 

 
 

 

 

 

  



110 
 

Step 2: Solve the determinate truss-determine strut and tie forces 

Table C–13:  Forces in the Struts and Ties of the SAT Model. 

 

 

C
C

T
 N

od
e 

Node forces based on steel yield 
2 ( )sA in  7.854 

 

 ( )yf ksi  65 

 b (degrees)  40 

 j (degrees)  45 

 ( )s yT A f kip  511 

/ cos( ) ( )b bD T kip  667 

sin( ) ( )SAT SAT
b b yP D kip P   429 

C
C

C
 N

od
e 

' cos( ) ( )b bC D kip  511 

 

' / cos( ) ( )j jD C kip  723 

sin( ) ( )j
v j jP D kip  511 

 

Step 3 and Step 4: Determine minimum externally applied load causing node failure and 

determine shear demand. 

Allowable stresses in the nodes based on AASHTO (2010) are presented in Table C–14. From 

the allowable node stresses, the CTT node is found to be the critical node. The axial load 

required to cause the failure of the CTT node can be back calculated based on the allowable 

nodal stress and the area of the node. The results are presented in Table C–14. 
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Table C–14:  Allowable Node Stresses and Axial Load Required to Cause CTT Node 
Failure. 

 Specimen 1 Specimen 4 
'
cf (ksi)  5.40 4.00 

Allowable Stresses 
CCC Node '0.85cu cf f   4.60 3.40 

CCT Node '0.75cu cf f  4.05 3.00 

CTT Node '0.65cu cf f  3.51 2.60 
Node capacity ( )  ( )j node cuD kip F  536 397 

Axial load that causes nodal failure, 
( )( ) /SAT SAT

n y j node jP kip P D D  318 236 

 

For both the specimens it is evident that SAT
nP computed from the SAT analysis is lesser 

than
 

f
nP calculated from the beam flexure theory. Also, SAT f

v n f nP P  for both the specimens. 

However from the experimental results, it was observed that the load at failure for Specimen 1 

and 4 was Expt
FailureP 474 kip and 503 kip, respectively. It is apparent from Stage 1 and Stage 2 of 

the analysis that they do not give a good prediction of the load carrying capacity of the 

specimens. Therefore, a C-STM analysis is performed to evaluate the performance of the 

structure. 
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STAGE 3: ANALYSIS USING COMPATIBILITY STRUT-AND-TIE METHOD 

The computation of member and material properties of the C-STM model are presented below 

for Specimen 1 (control specimen) followed by Specimen 4 (with ASR/DEF damage).  

Computation for C-Beam Specimen 1 

A few of the section properties have to be determined beforehand to set up the C-STM geometry. 

These computations follow. 

Step 1: Calculate section properties. 

Table C–15: Computation of Section Properties for C-STM. 

 Doubly Reinforced Column Singly 
Reinforced 

CROSS-SECTION 

 
 

 
Compression Chord 8-#8 Bars 5-#8 Bars 2-#8 Bars 

h (in) 36 36 36 

'd (in) 2.25 2.25 2.25 

d (in) 33.25 33.25 33.25 

'sA (in2) 6.28 3.93 1.57 
Steel contributing to 

tension chord 
10-#8 Bars 

2 sets of 2-#4 
10-#8 Bars 

2 sets of 2-#4 
10-#8 Bars 

2 sets of 2-#8 

( )s totalA (in2) 8.64 11.00 8.64 
__

y (in) (centroid of  

( )s totalA ) 
3.78 4.86 3.78 

sA (in2) ( ) '

'

s total

h d y
A

d d

 



 8.35 10.25 8.35 

' ( )jd d d in    31.0 31.0 31.0 
 

d ' 

d 

Compression Chord As’ 

Tension Chord As 
 

As(total) 

h 
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Determine the depth of compression zone ( )kd of the singly and doubly reinforced beams 

and column using the equation: 
2

2' ' ''2
' ' '

c c c
L L L L L L

c s c s c s

f f fP d P Pn n n
f bd f d f bd f f bd f

k      
              

                                           

 

 
For the beams the axial load P is zero. 
 

Table C–16: Determining the Depth of the Compression Zone for Specimen 1. 

' 5.4cf 

ksi 

Compression Steel Tension Steel Axial Load Elastic Depth 
As' 

(in2) 
d' 

(in) 
ρ' 

As 
(in2) 

d  
(in) 

b 
(in) 

ρ 
P  

(kip) 
k 

kd 
(in) 

Single 
Beam 1.57 2.25 0.00197 8.35 33.25 24 0.01046 - 0.307 10.19 

Double 
Beam 6.28 2.25 0.00787 8.35 33.25 24 0.01046 - 0.283 9.42 

Column 3.92 2.25 0.00492 10.25 33.25 24 0.01284 430 0.394 13.10 
 
Step 2: Determine C-STM geometry based on Step 1. 

The tension ties (AK and K1K2 in Figure C–3) and compression chords (BH and L1L2 in 

Figure C–3) in the beams and the column are placed along the centroids of the tension and 

compression steel determined in Table C–15. The C-STM geometry is the same in both the 

singly and double reinforced beams. The overhang portion of the specimen is modeled using the 

single-point Gauss truss model as presented in Chapter 3. The position of tie CB is determined 

based on the coefficients for the single point Gauss model. In the beam-column joint region, the 

ties GF and IH are placed along the position of the U-Bars to better represent the specimen. All 

the dimensions of the C-STM are shown in Figure C–3.  
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Figure C–3: C-STM Model for C-Beam Specimen 1. 
 
Step 3: Determine axial rigidities. 

The next step in the C-STM analysis is to determine the axial rigidities of each of the members 

constituting the C-STM model.  

To model the combined response of steel and concrete in the compression chord 

members, the compatibility correction factor is calculated in Table C–17. Based on these 

correction scalars, the modified stress-strain relation of the compression chord is determined. 
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 Table C–17:  Computation of Compatibility Correction Scalar for Specimen 1. 

 Singly Reinforced Double Reinforced Column 
'd (in) 2.25 2.25 2.25 

( )kd in  10.19 9.42 13.10 

( )'
cf  ksi  5.4 5.4 5.4 

 

'( )
168 1 '

c
E

f psi
d kd

 
  

0.561 0.575 0.528 

 

' ( )
480 1 '

c
P

f psi
d kd

 
  

0.196 0.201 0.185 

 

' ( )
1500 1 '

c
PP

f psi
d kd

  
  

-0.063 -0.064 -0.059 
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The arch breadth scalar is calculated to determine the area that needs to be assigned to the 

inclined arch and struts in the beam and beam-column joints. 

 

Table C–18:  Computing Arch Breadth Scalar. 

2cot
L yArch

Arch Truss L y T yh

fV
V V f f j




  
 

 
 

 Singly Reinforced Double Reinforced Column 
d (in) 33.25 33.25 33.25 

b 24 24 24 

s 4.5 4.5 8 

( )jd in  31.0 31.0 31.0 
j 0.93 0.93 0.93 

y yhf f (ksi) 65 65 65 
2( )sA in  8.35 8.35 10.25 

2( )shA in  0.393 0.393 0.393 

T sh wA b s 

 
0.00364 0.00364 0.00205 

L sA bd   0.0105 0.0105 0.0128 



 
(degrees) 39.02 39.02 45 


 
0.671 0.671 0.87 (0.75 used) 

 

Based on the properties computed above and the theory presented in Chapter 3, the axial 

rigidities are computed. The equations used are presented in Table 3–2. 
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Table C–19: Axial Rigidities of C-STM Elements: Specimen 1. 

 
 Steel Concrete Comments 

 
MEMBER E (ksi) A (in2) E (ksi) A (in2)  

B
ea

m
 

A-E (D) 29000 8.35 4190 226.00 
Tension Chord 

A-E (S) 29000 8.35 4190 245.00 
B-D (D) 29000 6.28 2409 226.00 

Compression Chord 
B-D (S) 29000 1.57 2351 245.00 

BC 29000 2.36 4190 162.00 Transverse Steel 
AD - - 4190 240.60 Concrete Arch 
AB - - 4190 110.52 

Concrete Truss 
CD - - 4190 118.14 

B
ea

m
-C

ol
um

n 
Jo

in
t 

E-K (D) 29000 8.35 4190 226.00 
Tension Chord 

E-K (S) 29000 8.35 4190 245.00 
D-H (D) 29000 6.28 2409 226.00 

Compression Chord 
D-H (S) 29000 1.57 2351 245.00 
FG&HI 29000 0.39 4190 54.00 Transverse Steel 

DK - - 4190 295.92 Concrete Arch 
DG - - 4190 73.64 

Concrete Truss 
DI - - 4190 78.46 
FK - - 4190 78.15 
HK - - 4190 73.90 

C
ol

um
n JJ 29000 10.25 4190 314.40 Tension Chord 

LL 29000 3.93 2212 314.40 Compression Chord 

Beam: 6hN   and beam-column joint: 2hN   
(D) Doubly reinforced beam (S) Singly reinforced beam 

 

Step 4: Determine constituent material properties. 

The stress-strain models used for the members in Phase 1 of Specimen 1 are as follows. The only 

difference for Phase 2 of the specimen is that the concrete tensile strength was reduced to 0.2 ksi 

to account for the minor concrete cracking that had occurred in Phase 1 of the experiment. 
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Table C–20: Stress-Strain Models Used for C-STM Members: Phase 1 of Specimen 1. 

Member Stress-Strain Model 
All steel members. 

 
All concrete members, except the 

beam and column compression 

chord members. 

AB, CD, GD, ID, FK, HK, AD, 

CB, GF, IH, J1J2, and AK. 

 
Beam compression chord. 

BH 

 
  

-100
-80
-60
-40
-20

0
20
40
60
80

100

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

St
re

ss
 (

ks
i)

 
Strain 

-6

-5

-4

-3

-2

-1

0

1

-0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004

St
re

ss
 (

ks
i)

 

Strain 

-6

-5

-4

-3

-2

-1

0

1

-0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004

St
re

ss
 (

ks
i)

 

Strain 



119 
 

Table C–20: Stress-Strain Models Used for C-STM Members: Phase 1 of Specimen 1 
(continued). 

Column compression chord. 

L1L2 

 
Softened concrete model for the 

beam-column joint concrete arch. 

DK (In Phase 2) 
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Computation for C-Beam Specimen 4. 

C-Beam Specimen 4 was subjected to moderate amounts of ASR/DEF damage. While the 

procedure for calculating the member and material properties remains the same as in the case of 

Specimen 1, certain modifications are required to account for the effects of ASR/DEF in the 

specimens. The modifications are based on the recommendations made in Chapter 3. 

Step 1: Compute modified material properties to account for ASR/DEF. 

To account for the effects of ASR/DEF on the C-Beam specimens, modified material properties 

are calculated based on the recommendations presented in Section 3.6.5. 

 Diagonal truss concrete:  

Table C–21: Modified Concrete Strength for Concrete Truss  
Members of the C-STM. 

 Specimen 4 
ASR/DEF damage level Moderate 

'  ( )cf ksi  4.0 


 
0.70 

' ' ( )cASR cf ksi f 
 

2.80 

The stress-strain of the following members (Figure C–3) is modified based on the 

reduced concrete strength of the diagonal truss: AK, AB, CD, GD, ID, FK, HK, CB, GF, 

and IH. 

 Compute prestress in the beam and column ties: 

Based on the recommendations made in 3.6.5 the prestress in the longitudinal bars and 

the hoops are calculated. 
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Table C–22:  Prestress in Longitudinal Bars and Hoops Due to ASR/DEF. 

 Specimen 4 
ASR/DEF damage level Moderate 

=  ( )y yhf f ksi  65 
Prestress in longitudinal 

bar (ksi) 
0.5 32.5ps yf f   

Prestress in hoops (ksi)
 

1.0 65ps yhf f   

Knowing the prestress in the ties and the tie area, the prestress force to be applied in the 

C-STM  model is computed. 

Table C–23:  Prestress Forces Applied to the C-STM Model. 

 Prestress Force (kip) 
MEMBER Specimen 4 

A-K 32.5G8.35=271.38 

B-H (D) 32.5G6.28=204.10 

B-H (S) 32.5G1.57=51.03 

BC 65G2.36=153.40 

FG&HI 65G0.393=25.35 

JJ 32.5G10.25=333.13 

LL 32.5G3.93=127.73 
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 Compute confinement ratio for the beam and the column: 

To account for the confinement caused by the swelling of core concrete, the confinement 

ratios are computed for the beam and the column. 

Table C–24:  Calculating Confinement Ratio of the Beam. 

 
 Specimen 4 

'  ( )cf ksi
 

4.0 
 ( )kd in  11.20 

2 ( ) ( / 2)cc c s cA in c d b  G  200.70 
2 ( ) ( / 2)    e c s cA in c d b area of shaded region  G  122.86 

 e e cck = A / A  0.603 
 ( )lxf ksi  0.176 
 ( )lyf ksi  0.162 

Smallest confining stress ratio '/ly cf f  0.041 

Largest confining stress ratio '/lx cf f  0.44 
' '/cc cK f f  1.28 
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Table C–25:  Calculating Confinement Ratio of the Column. 

 
 Specimen 4 

'  ( )cf ksi
 

4.0 
 ( )kd in  11.20 
2 ( )cc c cA in b d  693 

2 ( )    e c cA in b d area of shaded region   560.85 
 e e cck = A / A  0.81 

 ( )lxf ksi  0.278 
 ( )lyf ksi  0.219 

Smallest confining stress ratio '/ly cf f  0.055 

Largest confining stress ratio '/lx cf f  0.069 
' '/cc cK f f  1.35 

 
 
Step 2: Compute section properties. 

The steel areas computed in Table C–15 for Specimen 1 hold good for Specimen 4 as well. 

However, the depth of compression zone ( )kd has to be recalculated to account for the prestress 

forces that are applied on the ties.  
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Table C–26:  Determining the Depth of the Compression Zone for Specimen 4 With 
ASR/DEF Damage. 

 

Compression Steel Tension Steel Axial Load Elastic Depth 
As' 

(in2) 
d' 

(in) 
ρ' 

As 
(in2) 

d  
(in) 

b 
(in) 

ρ 
P  

(kip) 
k 

kd  
(in) 

Single 
Beam 1.57 2.25 0.00197 8.35 33.25 24 0.01046 51.0 0.337 11.21 

Double 
Beam 6.28 2.25 0.00787 8.35 33.25 24 0.01046 204.1 0.343 11.40 

Column 3.92 2.25 0.00492 10.25 33.25 24 0.01284 763.1 0.458 15.22 
 

Step 3: Determine C-STM geometry. 

The geometry of the C-STM remains the same as Specimen 1. However, axial loads are applied 

at the nodes to account for the ASR/DEF effects. The C-STM model for Specimen 4 is shown in 

Figure C–4. 

 
 

Figure C–4: C-STM Model for C-Beam Specimen 4. 

Step 4: Determine axial rigidities. 

The compatibility correction factor for Specimen 4 is recalculated. 
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Table C–27:  Computation of Compatibility Correction Scalar for Specimen 4. 

 Singly Reinforced Double Reinforced Column 
'd (in) 2.25 2.25 2.25 

( )kd in  11.21 11.40 15.22 

( )'
cf  ksi  4.0 4.0 4.0 

 

'( )
168 1 '

c
E

f psi
d kd

 
  

0.471 0.469 0.442 

 

' ( )
480 1 '

c
P

f psi
d kd

 
  

0.165 0.164 0.155 

 

' ( )
1500 1 '

c
PP

f psi
d kd

  
  

-0.053 -0.053 -0.049 

 

The arch-breadth scalar remains the same as in Table C–18. 

The axial rigidities are recomputed based on the modified properties calculated above for 

Specimen 4.  
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Table C–28:  Axial Rigidities of C-STM Elements: Specimen 4. 

 
 Steel Concrete Comments 

MEMBER E (ksi) A (in2) E (ksi) A (in2)  

B
ea

m
 

A-E (D) 29000 8.35 4190 273.60 
Tension Chord 

A-E (S) 29000 8.35 4190 269.04 
B-D (D) 29000 6.28 1690 273.60 

Compression Chord 
B-D (S) 29000 1.57 1698 269.04 

BC 29000 2.36 4190 162.00 Transverse Steel 
AD - - 4190 240.60 Concrete Arch 
AB - - 4190 110.52 

Concrete Truss 
CD - - 4190 118.14 

B
ea

m
-C

ol
um

n 
Jo

in
t 

E-K (D) 29000 8.35 4190 273.60 
Tension Chord 

E-K (S) 29000 8.35 4190 269.04 
D-H (D) 29000 6.28 1690 273.60 

Compression Chord 
D-H (S) 29000 1.57 1698 269.04 
FG&HI 29000 0.39 4190 54.00 Transverse Steel 

DK - - 4190 295.92 Concrete Arch 
DG - - 4190 73.64 

Concrete Truss 
DI - - 4190 78.46 
FK - - 4190 78.15 
HK - - 4190 73.90 

C
ol

um
n JJ 29000 10.25 4190 365.28 Tension Chord 

LL 29000 3.93 1593 365.28 Compression Chord 

Beam: 6hN   and beam-column joint: 2hN   
(D) Doubly reinforced beam (S) Singly reinforced beam 
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Step 5: Determine constituent material properties. 

Table C–29: Stress-Strain Models for the Elements of the C-STM Model: Specimen 4. 

Member Stress-Strain Model 
All members 

 
Concrete truss members in 

the beam. 

AK, AB, CD, GD, ID, FK, 

HK, CB, GF, and IH. 

 

 
For remaining concrete 

members in the beam. 
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Table C–29: Stress-Strain Models for the Elements of the C-STM Model: Specimen 4 
(continued). 

Column members. 

 
Softened concrete model 

for the beam-column joint. 

DK 
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