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1. INTRODUCTION TO THE GUIDEBOOK 

The objective of this guidebook is to provide the Texas Department of Transportation 
(TxDOT) with methodologies and procedures on how historical incident data can be used 
to support and/or evaluate incident management operations at transportation management 
centers (TMCs). It is envisioned that each module in this guidebook can be used as a 
stand-alone product. However, the links between the terms and methods used across 
multiple modules are sometimes inevitable. Appropriate references across modules are 
provided where necessary.  

Module 1 provides a general introduction to the use of this guidebook. In Module 2, the 
guidebook provides an overview of intelligent transportation system (ITS) deployment at 
various Texas TMCs and existing data management. This module also summarizes what 
data are being collected from Texas TMCs. The remaining modules in this guidebook 
provide methodologies and procedures for using historical data to conduct two major 
types of analysis:  

• evaluation/planning analysis and 
• predictive analysis. 

The corresponding modules for each type of analysis are summarized in Table 1-1. This 
guidebook addresses primarily the use of incident data for various applications. However, 
the traffic data are required for some types of analysis. Table 1-2 summarizes the data 
sources required for specific types of analysis. 

Table 1-1: Using the Guidebook by Analysis Type. 

Analysis Type Evaluation/Planning Predictive 
• Reporting incident characteristics Module 3  
• Analyzing hot spots Module 4  
• Estimating incident impacts Module 5  
• Calculating performance measures Module 6  
• Predicting incident duration  Module 7 
• Predicting incident-induced 

congestion clearance time 
 Module 8 

Module 3 provides the analyst with the guidelines on what and how incident 
characteristics should be reported. This module addresses reporting considerations for 
common incident characteristics recorded at Texas TMCs. The complexity of the analysis 
of incident data for reporting increases with the number of levels of attributes used in the 
procedure. 

Module 4 outlines methodologies and tools for the analysis of incident-prone locations or 
hot spots from incident databases. Hot spot identification methods can be selected based 
upon data availability at the TMCs and the objectives of the hot spot analyses. 
Suggestions on how the agencies can utilize hot spot analysis results are also provided. 
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Table 1-2: Data Requirement by Analysis Type. 

Analysis Type Incident Data Traffic Data 
• Reporting incident characteristics Required None 
• Analyzing hot spots Required Optional 
• Estimating incident impacts Required Required 
• Calculating performance measures Depends Depends 
• Predicting incident duration Required None 
• Predicting incident-induced 

congestion clearance time 
Required Required 

Module 5 provides methodologies to estimate incident-related impacts using historical 
traffic and incident data. This module is separated into three major sections:  

• The first section provides an overview of incident impact estimation approaches 
ranging from deterministic models to simulation methods. 

• The second section describes an approach for estimating incident delay using 
historical traffic and incident data.  

• The third section proposes a comprehensive methodology using a profile-based 
method to quantify various incident-related impacts such as delay index and 
traffic recovery time. 

Module 6 provides a list of performance measures that can potentially be used to describe 
and evaluate the existing operation condition. This list was assembled based upon a 
review of literature, data availability at Texas TMCs, and feedback received from the 
survey conducted in this project. This module also provides methodologies and 
procedures for calculating these performance measures. 

Module 7 describes a set of guidelines and procedures for developing and applying 
models for predicting incident duration using incident characteristics available from 
incident databases. The methods discussed in this module mathematically capture 
incident characteristics that are statistically correlated with incident durations. The end 
users can use the models developed to predict the duration of an ongoing incident given 
its known characteristics. The predicted incident durations can be used to support the 
traffic control and advisory decisions of traffic managers during the incident management 
process.  

Module 8 describes a proactive use of historical and real-time traffic data for estimating 
incident-induced congestion clearance times. The analyst can proactively predict the 
impact of traffic incidents based on the time that it will take for the traffic to return to 
normal after incident occurrence. Total incident-induced time requires two components to 
be estimated: incident duration and incident-induced congestion clearance time. The first 
component can be predicted using the incident duration models described in Module 7. 
This module describes a methodology to estimate the second component using a 
deterministic queuing diagram.  

Examples from the methodologies and procedures developed are based on Houston 
TranStar’s data structure to maintain the continuity and consistency throughout this 
guidebook. These examples are intended to demonstrate the applications of the 
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methodologies and present the results. The applications of the proposed methods and 
procedures are however not limited to just Houston’s TranStar. These procedures are 
applicable to any Texas TMCs provided that the data sources required for the analysis are 
available. 

The methodologies and procedures described in this guidebook were demonstrated and 
evaluated in a companion report 0-5485-1. This report also includes the results from case 
studies conducted at three Texas TMCs, which are Houston’s TranStar, Austin’s 
Combined Transportation and Emergency Communications Center (CTECC), and Fort 
Worth’s TransVision. The users of this guidebook can find more information on the case 
study results and various applications of the proposed methodologies in this report. 

 

 





 

2. OVERVIEW OF TEXAS 
TRANSPORTATION MANAGEMENT CENTERS 

This module documents the current state of the practice in using and archiving incident 
data in traffic management centers in Texas. We examined different configurations in 
TMCs in Texas; assessed the availability, quantity, and quality of historical and real-time 
data in these TMCs; examined current incident detection and reporting procedures of 
these TMCs; and assessed current applications of historical data at these TMCs.  

As shown in Table 2-1, there are nine TMCs currently operating in Texas.  These nine 
management centers are in different stages of maturity.  Several of these centers, such as 
Amarillo’s Panhandle Electronic Guidance and Safety Information System (PEGASIS), 
Laredo’s South Texas Regional Advanced Transportation Information System 
(STRATIS), and Texoma Vision, have been operating for less than five years, while 
several of the other centers (such as TranStar, TransGuide, and TransVision) have over 
15 years of operating experience.   

Table 2-1: List of Texas Transportation Management Centers. 

City Population 
(2000 Census Data) Transportation Management Center 

Greater than 1 million 
                             Houston’s TranStar 
                             Dallas’ DalTrans 
                             San Antonio’s TransGuide 

Between 500,000 and 
1 million 

                             Austin’s CTECC 
                             Fort Worth’s TransVision 
                             El Paso’s TransVista 

Less than 500,000 
                             Amarillo’s PEGASIS 
                             Laredo’s STRATIS 
                             Wichita Falls’ Texoma Vision 

 

 

Through phone interviews with TxDOT and Texas Transportation Institute (TTI) contacts 
familiar with TMC deployment and data management, we collected the following 
information from each of these nine TMCs:  

• ITS deployment status including closed-circuit television (CCTV) coverage, 
traffic and environmental sensors, and traveler information systems; and 

• data management including real-time and historical data availability and data 
applications. 
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2.1. ITS Deployment and Data Management at Texas TMCs 

2.1.1. Houston’s TranStar 

The Houston TranStar consortium is a partnership of four government agencies:  TxDOT, 
Harris County, the Metropolitan Transit Authority of Harris County, and the City of 
Houston (1).  TranStar operates 24 hours a day and 7 days a week. The Motorist 
Assistance Patrol (MAP) operates as a public/private partnership from 6AM to 10PM 
weekdays. 

2.1.1.1. Deployment 

TranStar has a total of 770 directional freeway miles with real-time traffic data collection. 
In addition, CCTV cameras cover 335 freeway centerline miles. With 87 ramp meters, 
Houston has the largest deployment of ramp metering in Texas. Traffic data collection at 
TranStar relies mostly on automated vehicle identification (AVI). This system determines 
travel speeds on 720 miles of Houston area freeways and 61 miles of high-occupancy 
vehicle (HOV) lanes by using 147 AVI reader stations with over a million AVI toll tags 
(transponders) to calculate travel times. 

To provide traveler information, TranStar relies on 147 permanent and 5 portable 
dynamic message signs (DMSs), 12 fixed and 1 portable highway advisory radio (HAR) 
units covering 68 freeway centerline miles, a media outlet, and an Internet website 
(http://www.houstontranstar.org).  

TranStar is one of the four TMCs in Texas that specifically implemented a mobile 
version of its Internet website for travelers with wireless devices. The mobile version is 
accessible at http://traffic.houstontranstar.org/mobile. The information available on its 
mobile webpage includes speed maps, travel times, camera snapshots, incident 
information, construction closures, and message signs. 

Houston TranStar has established a multimedia partnership with the major news outlets in 
Houston, Texas (the 11th largest media market in the country). Houston TranStar’s 
CCTV images and AVI speed data can be seen on ABC, CBS, NBC, FOX, and Univision 
7 days a week, 365 days a year. Houston TranStar also provides other outlets, including 
Metro Traffic Network, Traffic Pulse Networks, and the Houston Chronicle, with traffic- 
and weather-related information.  

The MAP is a partnership between the Harris County Sheriff’s Department, Metropolitan 
Transit Authority of Harris County (METRO), the Texas Department of Transportation, 
the Houston Automobile Dealers Association, and Verizon Wireless telephone company. 
The MAP assists motorists with changing flat tires, provides fuel or water, assists with 
minor engine repairs, jump-starts vehicles, and transports motorists to safe locations. 

Houston TranStar was the first management center in the nation to establish a partnership 
with the Washington, D.C.-based Operation Respond Institute for the use of the 
Operation Respond Emergency Information System (OREIS). The OREIS enables 
Houston area emergency response personnel to quickly access information concerning 
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hazardous loads traveling on Houston’s freeways. With this system, Houston TranStar 
can access information on hazardous materials by container number, trailer number, or 
carrier name. In the event of an accident, responding emergency personnel can quickly 
identify the materials at hand, the safety precautions they must employ, and the correct 
methods to contain the hazardous situation. 

2.1.1.2. Data Management 

TranStar’s transportation management software operates on an Oracle database. TranStar 
has been archiving 15-minute aggregated AVI travel time and speed data since October 
1993, freeway incident data since May 1996, emergency road closure data since August 
2001, and construction lane closure data since May 2002 (2). 

Traffic Data 

TranStar currently collects and archives traffic data from two sources: AVI and 
microwave detection. The AVI system collects vehicle tag IDs and their corresponding 
time stamps each time vehicles are passing the checkpoints. An example of raw AVI data 
is shown in Table 2-2. Note that actual tag IDs are not displayed here for privacy reasons. 
These data are used to determine a travel time for each vehicle traveling on the segment. 
Table 2-3 shows an example of 15-minute aggregated AVI data. 

 

Table 2-2: Example of TranStar’s Raw AVI Data. 

 

Tag_ID Antenna_ID Checkpoint_ID Time_ID

HCTR00000001 5103 159 11/12/2006 00:00:45

HCTR00000002 8021 216 11/12/2006 00:00:59

HCTR00000003 4111 106 11/12/2006 00:00:59

HCTR00000004 4076 229 11/12/2006 00:00:59

HCTR00000005 8043 219 11/12/2006 00:01:00

HCTR00000006 1200 351 11/12/2006 00:00:59

HCTR00000007 4203 63 11/12/2006 00:01:00

: : : :
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Table 2-3: Example of 15-Minute Aggregated AVI Data. 

 
 

Houston TranStar recently installed Wavetronix microwave detection systems, shown in 
Figure 2-1, at a number of locations. The Wavetronix SmartSensor uses a 10.525 GHz 
frequency modulated continuous wave (FMCW) radar to provide traffic detection. The 
radar sensor is installed aboveground and can measure vehicle volume, occupancy, speed, 
and classification in up to eight lanes of traffic simultaneously (3). Table 2-4 shows an 
example of 30-second Wavetronix data. In addition, TranStar also has EIS Remote 
Traffic Microwave Sensor (RTMS) units installed on IH-10, IH-45, and SH-71. 

Incident Data 

Incident detection relies mostly on police dispatch monitoring, MAP calls, commercial 
traffic services, and CCTV camera scanning. TranStar has an incident detection 
algorithm that compares and detects changes in segment speeds versus historical speed 
values. However, relatively few incidents were detected in this manner, due largely to the 
long distance between consecutive AVI readers that prolongs the time for incident signals 
to reach AVI readers. 

 

ReadDate TimeInSecond StartChkPt EndChkPt Freq TravelTime Speed
10/1/2006 0 122 123 15 190.00 62.53
10/1/2006 900 122 123 8 187.88 63.23
10/1/2006 1800 122 123 13 190.92 62.22
10/1/2006 2700 122 123 7 175.71 67.61
10/1/2006 3600 122 123 9 179.67 66.12
10/1/2006 4500 122 123 9 192.44 61.73
10/1/2006 5400 122 123 5 172.60 68.83
10/1/2006 6300 122 123 3 189.00 62.86
10/1/2006 7200 122 123 7 190.86 62.25
10/1/2006 8100 122 123 4 189.25 62.77
10/1/2006 9000 122 123 10 189.00 62.86
10/1/2006 9900 122 123 7 181.00 65.64
10/1/2006 10800 122 123 6 183.67 64.68

: : : : : : :
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Figure 2-1: Wavetronix SmartSensor. 

 

Table 2-4: Example of 30-Second Wavetronix Data. 

 

Operators at TranStar verify incidents using CCTV cameras; then they decide on 
appropriate responses, such as posting messages on the DMSs. Incident-related 
information is entered into the database through the Regional Incident Management 

ID  Time Stamp  Lane #  Volume  Speed  Occupancy  Small  Medium  Large
1077 09/10/2006 00:00:00 1 3 59 3 2 1 0
1077 09/10/2006 00:00:00 2 3 70 2 2 1 0
1077 09/10/2006 00:00:00 3 3 63 2 3 0 0
1077 09/10/2006 00:00:00 4 2 69 2 0 2 0
1077 09/10/2006 00:00:00 5 2 73 3 0 0 2
1077 09/10/2006 00:00:00 99 13 66 2 7 4 2
1077 09/10/2006 00:00:30 1 2 59 1 2 0 0
1077 09/10/2006 00:00:30 2 4 75 5 0 3 1
1077 09/10/2006 00:00:30 3 5 61 4 3 2 0
1077 09/10/2006 00:00:30 4 3 72 3 1 2 0
1077 09/10/2006 00:00:30 5 1 73 1 0 1 0
1077 09/10/2006 00:00:30 99 15 67 3 6 8 1
1077 09/10/2006 00:01:00 1 2 63 1 2 0 0
1077 09/10/2006 00:01:00 2 5 76 5 2 2 1
1077 09/10/2006 00:01:00 3 4 59 2 3 1 0
1077 09/10/2006 00:01:00 4 5 79 4 1 2 2
1077 09/10/2006 00:01:00 5 0 0 0 0 0 0
1077 09/10/2006 00:01:00 99 16 71 2 8 5 3

: : : : : : : : :
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System (RIMS) interface. There are four main time points used to record an evolution of 
an incident: detected, verified, moved, and cleared. 

“Detected” refers to the time an operator, including the MAP dispatcher, creates an 
incident record in the database. This time may or may not coincide with the actual 
detection time. “Verified” refers to the time the operator confirms the incident with the 
CCTV camera. “Moved” refers to the time when emergency services remove lane-
blocking vehicles from traveled lanes. This time stamp is not always recorded depending 
on the type of incident and service required. “Cleared” refers to the time the appropriate 
response units clear the incident.  

TranStar provides incident information and updates its status in real time through its 
website (http://www.houstontranstar.org). Screenshots of incident information and its 
related information are shown in Figure 2-2. 

2.1.1.3. Data Applications 

The Houston TranStar Traffic Alarm Application was developed by TTI for TxDOT and 
Houston TranStar. The application uses travel time and speed data from Houston’s AVI 
system to graphically alert users to areas of extraordinary congestion and potential 
incidents on Houston area freeways. 

The application is currently run in a web browser and is only accessible to operators at 
TranStar at this time. The system compares real-time speed data with last year’s 
averages. The averages exclude weekends and holidays. Screenshots of this application 
are shown in Figure 2-3 and Figure 2-4. 

Once every minute, the system compares the current 15-minute speed average with the 
historical averages. An alarm is generated when the real-time speed average falls below 
the 97th percentile of the compiled historical averages. To minimize false alarms, the 
system performs a simple consistency check by requiring an alarm to be generated twice 
before it is plotted on the map. In other words, this feature requires the speed to remain 
below the threshold for at least two minutes before an alarm is generated. The alarm 
remains active until the speed moves above the 97th percentile threshold. 
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Figure 2-2: Incident Information on Houston’s TranStar Website. 
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Figure 2-3: TranStar’s Traffic Alarm Map. 

 

 
Figure 2-4: TranStar’s Traffic Alarm Details. 
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2.1.2. Dallas’ DalTrans 

A new DalTrans TMC was recently completed in 2007. The grand opening of the 
$10 million facility was held on January 23, 2008. The new 54,000-square-foot facility 
expands DalTrans’ capabilities to monitor traffic operations in the Dallas area, which 
includes more than 1,000 square miles and more than 30 cities. DalTrans has interfaces 
for a number of external systems to enable data exchange with other centers such as Fort 
Worth’s TransVision, City of Dallas, City of Richardson, City of Plano, and Dallas 
County. DalTrans implemented a standard center-to-center (C2C) interface with 
TransVision to enable system status data exchange and system device control.  

2.1.2.1. Deployment 

DalTrans’ CCTV and traffic sensor deployment includes: 

• CCTV cameras – approximately 200 cameras along more than 100 miles of 
roadway; 

• loop detectors (currently a large percentage of them are not working); 
• 34 Autoscope cameras covering approximately 26 miles of freeway; and 
• 59 microwave sensors. 

Currently, DalTrans is no longer using loop detectors to collect traffic data since a large 
percentage of them are damaged. Each Autoscope camera uses up to six virtual detectors 
that continuously capture volume, occupancy, speed, and vehicle classification data. The 
system polls camera data every 10 seconds (2). The microwave detection system is a 
primary source for traffic data collection at DalTrans. 

DalTrans provides traveler information via the following methods: 

• dynamic message signs – 37 existing, 6 in the construction phase, and 12 in the 
design phase; 

• Dallas traffic information website accessible at http://dfwtraffic.dot.state.tx.us or 
alternatively http://www.daltrans.org. Camera snapshots are automatically 
updated at roughly every eight minutes; 

• incident notification system allowing subscribers to be notified of freeway 
incidents via email. The service is currently limited to TxDOT and related 
transportation personnel; and 

• media outlets.  

DalTrans is one of the four TMCs in Texas that implemented a mobile version of its 
traffic information website. Travelers with web-enabled wireless devices can access the 
mobile webpage at the same Uniform Resource Locator (URL) (http://www.daltrans.org). 
The devices are automatically detected, and the mobile version is brought up 
automatically. Alternatively, the users can specifically access the mobile version of the 
webpage at one of these two URLs: http://www.daltrans.org/mobile and 
http://dfwtraffic.dot.state.tx.us/mobile.  DalTrans also shares its mobile website with Fort 
Worth’s TransVision, although the scope of traffic information available is slightly 
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different. The information available through DalTrans’ mobile webpage includes speed 
and incident map, incident information, lane closures, and camera snapshots. 

2.1.2.2. Data Management 

DalTrans’ central management software is a proprietary system developed internally to 
support DalTrans’ initial and short-term ITS deployment needs. DalTrans relies on a 
Microsoft Access® database. The current prototype DalTrans software is a distributed and 
modular system whose components interact with one another using real-time 
Transmission Control Protocol/Internet Protocol (TCP/IP) messaging (4). 

Traffic Data 

DalTrans developed a Universal Detector Data Archive (UDDA) to include the data from 
Autoscope video detectors, inductive loops, and SmartSensor side-fire microwave 
detectors. The new archive transfers data from multiple sources using Hypertext Transfer 
Protocol (HTTP) and Simple Object Access Protocol (SOAP) to access a web service that 
writes to the archive (2). The archive can be accessed via the Internet at 
http://ttidallas.tamu.edu/detectordataarchive. The archived data are in a comma-delimited 
format consisting of average speed, volume, and occupancy at five-minute aggregated 
intervals (see Table 2-5). 

 

Table 2-5: Example of DalTrans’ Detector Archive Data. 
2006-12-04 17:52:07Z, EB IH635@Welch EBHOV, 10043 3282, 0, 46, 63, 3, 0 
2006-12-04 17:52:07Z, EB IH635@Welch EBL1of4, 10043 3295, 0, 16, 52, 3, 0 
2006-12-04 17:52:07Z, EB IH635@Welch EBL2of4, 10043 3308, 0, 18, 56, 4, 0 
2006-12-04 17:52:07Z, EB IH635@Welch EBL3of4, 10043 3321, 0, 19, 68, 4, 0 
2006-12-04 17:52:07Z, EB IH635@Welch EBL4of4, 10043 3334, 0, 22, 71, 4, 0 
2006-12-04 17:52:07Z, EB IH635@Welch EBMNL, 10043 3347, 0, 21, 247, 4, 0 

 

 

Detector data are archived using a comma-delimited 8-bit Unicode Transformation 
Format (UTF-8) text format. Each data row contains the following fields separated by a 
comma: 

• date and time – the end of the collection period is recorded for the associated data; 
• detector name; 
• detector number; 
• detector status where 0 = normal, 1 = error, 2 = out of service, 3 = no data, and 

4 = incomplete; 
• average speed for the collection interval; 
• total volume for the collection interval; 
• average occupancy for the collection interval; and 
• percent truck for the collection interval. 

DalTrans also has an algorithm to compute travel time based on three-minute rolling 
averages of speed data and segment length. Computed travel times are not archived. 
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Incident Data 

Incident detection at DalTrans relies mainly on operators, cameras, and scanning of data 
feeds from Dallas 911 and Metro Traffic. Other sources include police radio scanning and 
courtesy patrol. Every five minutes, DalTrans receives an updated list of incidents from 
the City of Dallas 911 system. The software then filters out incidents that are not freeway 
related. 

Incident data are archived using a Microsoft Access database. An example of DalTrans’ 
incident record is shown in Table 2-6. DalTrans’ incident table includes the following 
fields for each incident record: 

• Latitude – cross street’s latitude. 
• Longitude – cross street’s longitude. 
• Road – the name of a roadway where an incident occurs. 
• Cross Street – the name of a cross street. 
• Cross Street Proximity – indicates the location of an incident on the roadway with 

respect to the cross street (At/Departing/Approaching). 
• Incident Status Change Times – the time when an incident is detected, verified, 

and cleared. DalTrans also has the disregarded time for an incident that was 
disregarded rather than cleared. An operator might disregard an incident as a false 
alarm, as an operator error, or for several other reasons. 

• Affected Lanes – indicates the lanes affected by the incident. This field is encoded 
as an integer, which requires a bit mask, shown in Table 2-7, to determine the 
affected lanes. 

• Incident Types – DalTrans collects five types of incidents, which are Accident, 
Stalled Vehicle, Debris, Undetermined, and Others. 

• Notified – indicates the units that have been notified of an incident. This field is 
encoded as an integer, which requires a bit mask, shown in Table 2-8, to interpret 
the value. 

• Detection Mode – Courtesy Patrol, Camera, Call-In, Police/Fire, Unknown, and 
Others. 

• Associated DMS – indicates DMSs associated with the affected incident location. 
• Camera – indicates the key of the nearest camera. 
• Operators – names of operators who detect and/or modify the status of an 

incident. 
• Number of vehicles involved in an incident. 

From the example of incident records, the “Affected Lanes” field value is 8224, which is 
equivalent to the following binary bits: 

0010 0000 0010 0000 

Comparison of the above bits with the bit masks from Table 2-7 indicates that Lane 1 and 
HOV Lane are affected by the incident. 

Conversely, if the Entrance Ramp, Lane 4, and Lane 5 are affected by the incident, the 
“Affected Lanes” would be equivalent to 0x0004 + 0x0100 + 0x0200 = 4 + 256 + 512 = 
772. 
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Table 2-6: Example of DalTrans’ Incident Records. 

 

 

Table 2-7: DalTrans’ Bit Masks for “Affected Lanes” Field. 

Description Hexadecimal Bit Mask 
(with “0x” Prefix) 

Equivalent  
Binary Bit Mask 

Left Shoulder 0x0001 0000 0000 0000 0001 
Right Shoulder 0x0002 0000 0000 0000 0010 
Entrance Ramp 0x0004 0000 0000 0000 0100 
Exit Ramp 0x0008 0000 0000 0000 1000 
Connector 0x0010 0000 0000 0001 0000 
Lane 1 0x0020 0000 0000 0010 0000 
Lane 2 0x0040 0000 0000 0100 0000 
Lane 3 0x0080 0000 0000 1000 0000 
Lane 4 0x0100 0000 0001 0000 0000 
Lane 5 0x0200 0000 0010 0000 0000 
Lane 6 0x0400 0000 0100 0000 0000 
Lane 7 0x0800 0000 1000 0000 0000 
Lane 8 0x1000 0001 0000 0000 0000 
HOV 0x2000 0010 0000 0000 0000 

 

 

Fieldnames: 
 
Key, GUID, Latitude, Longitude, Road, CrossStreet, CrossStreetProximity, 
Comments, PrivateComments, DetectedTime, DisregardedTime, VerifiedTime, 
ClearedTime, Status, AffectedLanes, Type, Notified, DetectionMode, 
AssociatedDMSs, Camera, VerifiedBy, DetectedBy, DisregardedBy, ClearedBy, 
EstimatedClearTime, LastModifiedByFullAccessUser, CourtesyPatrolVehicleKeys, 
NumVehicles 
 
Incident Records: 
 
25362, {B4BE681B-F830-423C-BD65-8918FD46389B}, 32.92458, -96.76327, IH 635, 
US 75, At, , , 11/25/2003 10:44:22 AM, 12:00:00 AM, 11/25/2003 10:46:12 AM, 
11/25/2003 10:46:15 AM, Cleared, 32, Debris, 0, Call-In, 24 27 28 29, 270, 
April Shortridge, Joe Hunt, , April Shortridge, , Yes, , 0 
 
906, {5EF73855-2309-11D7-9A99-000255A016CF}, 32.91071, -96.88166, IH 635, 
Josey Ln, At,  , , 1/15/2003 6:38:32 PM, 12:00:00 AM, 1/15/2003 6:38:32 PM, 
1/15/2003 6:56:32 PM, Cleared, 8224, Accident, 0, Camera, 24 27 28 29 25 26, 
129, Rick Edwards, Rick Edwards, , Rick Edwards, , Yes, , 2 
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Table 2-8: DalTrans’ Bit Masks for “Notified” Field. 

Description Hexadecimal Bit Mask 
(with “0x” Prefix) 

Equivalent  
Binary Bit Mask 

Police 0x01 0000 0001 
Courtesy Patrol 0x02 0000 0010 
Maintenance 0x04 0000 0100 
Public Information Office (PIO) 0x08 0000 1000 
Affected City 0x10 0001 0000 

 

 

Other Data 

DalTrans also archives DMS logs in an Access database. DMS messages are recorded in 
an Extensible Markup Language (XML) format. Each DMS log contains the information 
about DMS key, user name, date and time, and displayed messages. An example of a 
travel time message in an XML format is shown in Table 2-9. 

Table 2-9: Example of XML Messages. 
<DMSMessage><ID>dc43fa94-86dc-49da-a8d5-
465d91811f03</ID><Priority>1</Priority><Phases><Phase><Duration>2200</Duratio
n><Lines><Line><Alignment>2</Alignment><Text>TRAVEL 
TIME</Text></Line><Line><Alignment>2</Alignment><Text>TO GARLAND 
RD</Text></Line><Line><Alignment>2</Alignment><Text>19 TO 21 
MINUTES</Text></Line></Lines></Phase><Phase><Duration>2200</Duration><Lines><
Line><Alignment>2</Alignment><Text>TRAVEL 
TIME</Text></Line><Line><Alignment>2</Alignment><Text>TO 
IH30</Text></Line><Line><Alignment>2</Alignment><Text>25 TO 28 
MINUTES</Text></Line></Lines></Phase></Phases><LastUpdated>7/10/2006 5:30:10 
PM</LastUpdated><LastUpdatedBy>*Travel Time DMS Message 
Manager</LastUpdatedBy><BeaconStatus>2</BeaconStatus><DisplayedDate>1/1/2001<
/DisplayedDate></DMSMessage><Description>635 EB Preston  Added this message 
(*Travel Time DMS Message Manager)</Description> 

 

 

The above XML example is updated by a travel time DMS message manager, which can 
be translated to the alternate displays (two phases) on the DMS as shown in Figure 2-5. 

 

TRAVEL TIME 
TO GARLAND RD 
19 TO 21 MINUTES 

 
TRAVEL TIME 

TO IH30 
25 TO 28 MINUTES 

Figure 2-5: Example of DMS Message Display. 
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2.1.2.3. Data Applications 

Travel Time Application 

DalTrans is currently using three-minute rolling averages of mainlane speed data and 
segment length to compute travel time. Speed data are obtained from Autoscope and a 
side-fire radar detection system. Travel time calculations are configurable by TxDOT. 
Travel time is recalculated every time there is a change in one of the constituent detector 
values.  

Travel Time DMS Message Manager (TTMM) is a TMC component that automatically 
posts travel time messages on DMSs. Travel time messages are composed of text and 
variables. Variables express the values of associated detectors. “Detector” values for 
DalTrans are not necessarily coming from detectors. They can actually be any numeric 
value. The travel time application takes the incoming speed data from actual detectors 
and then injects the computed travel times back into the system as additional “Detector” 
data.  

Multiple variables can be inserted into each line of a DMS message, and each variable 
can be given a bias. For example, to create an “X to X+4” message, two variables would 
be inserted into a single line. Both variables have their values derived from the same 
detector, but the second variable is given a bias of 4.  

Message variables also support thresholds and alternate messages. When the value of a 
detector moves below or above the specified thresholds, an alternate message can be 
displayed. This enables messages such as “TRAVEL TIME LESS THAN 5 MINUTES” 
to be displayed when travel time drops below five minutes. The upper threshold can be 
used to display messages such as “TRAVEL TIME GREATER THAN 20 MINUTES” 
when travel time exceeds the upper threshold.  

For single-phase DMS messages, if the status of any detector that is tied to a constituent 
variable is not normal (i.e., error, out of service, or no data), then the message is removed 
from the DMS. For multi-phase DMS messages, only the phase or phases that contain 
abnormal variables are removed. If all of the phases of a multi-phase DMS message 
contain abnormal variables, then the entire message is removed. 

The TTMM configuration is controlled by means of an XML file. The TTMM will 
automatically recognize when the configuration file has been modified, and it will update 
the system and the DMSs accordingly.  

2.1.3. San Antonio’s TransGuide 

The Texas Department of Transportation’s “smart highway” project called TransGuide 
became operational on July 26, 1995. TransGuide’s intelligent transportation system was 
designed to provide information to motorists about traffic conditions, such as accidents, 
congestion, and construction. TransGuide can detect travel times and respond rapidly to 
accidents and emergencies. Partners in the TransGuide project include TxDOT, the City 
of San Antonio (police/fire/emergency medical service [EMS]/traffic), and VIA 
Metropolitan Transit (5). 
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The TransGuide transportation operations center operates 24 hours a day and 7 days a 
week. TransGuide no longer has its own courtesy patrol program.  

2.1.3.1. Deployment 

TransGuide’s traffic monitoring and sensor deployment includes approximately 144 
CCTV cameras installed on IH-10, IH-35, LP-410, south side of US-90, and northwest of 
LP-1604; approximately 200 stations of inductive loop detectors; 325 sensor locations of 
sonic detectors; and about 20 Autoscope detection systems.  

TransGuide provides pre-trip and en-route travel information through several channels 
including: 

• 155 dynamic message signs, 
• 180 lane control signals, 
• Internet website (http://www.transguide.dot.state.tx.us), and 
• local media outlets. 

In early 2003, TransGuide began to transmit a live video feed to local television stations 
through an external access video switch. The television stations, which include three local 
network affiliates and one local cable news channel, can pick and choose which camera 
will be shown during morning and afternoon traffic updates. This allows them to spend as 
much time as is needed on one or two cameras to discuss an accident or other situation 
that would affect the motorists’ travel time. Up to 20 channels of video can be broadcast 
to the stations at any time. 

2.1.3.2. Data Management 

TransGuide’s central management software operates as a client/server-based system that 
runs on Sun workstations in a Unix Solaris environment. The system includes multiple 
subsystems such as alarm incident handler (AIH) subsystem, CCTV subsystem, lane 
control signal (LCS) subsystem, and others. The details of the TransGuide subsystems 
were documented in a previous TTI research report (2). 

TransGuide uses a Sybase database to archive data describing ITS equipment 
characteristics and operations data to support day-to-day activities at the TMC. 
TransGuide maintains a long-term data repository in compressed file format, including 
traffic detector and event data. Scenario logs are maintained in Sybase, which includes a 
scenario header table and a scenario execution table. 

A scenario process is a predefined incident response program used by TransGuide. 
TransGuide operators create “scenarios” based on the incident location, the lanes 
affected, the type of incident, and whether the demand exceeds capacity for every lane 
mile covered by the TransGuide system (6). 
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Traffic Data 

TransGuide archives volume, occupancy, and speed data for all freeway lanes at 
20-second intervals. The 20-second traffic data are also aggregated at 15-minute intervals 
using 2-minute running averages. The 15-minute data set also includes local control units 
(LCU) poll data, alarm/incident assignments, and manager/operator changes, as well as 
scenario execution, commands, and cancellations. 

TransGuide’s traffic data are available on a public domain. TransGuide maintains data on 
a File Transfer Protocol (FTP) server, which can be accessible through any conventional 
FTP software or a web browser using the URL 
ftp://www.transguide.dot.state.tx.us/lanedata.  

An example of TransGuide’s 20-second lane data is shown in Figure 2-6. Each record 
contains date and time stamp, detector address, speed, volume, and percent occupancy. 
TransGuide does not archive vehicle classification information (i.e., percent trucks). The 
speed value is recorded as –1 for non-trap detectors typically installed at entrance and 
exit ramps. 

 

 
Figure 2-6: Example of TransGuide’s 20-Second Lane Data. 

The detector address has three fields separated by a dash: 

• Detector location and lane designation – “L” represents main lane, “EN” 
represents entrance ramp, and “EX” represents exit ramp. The number represents 
the lane numbering starting with the lane closest to the median. 

• Freeway number and direction – For example, 0010E represents IH-10 E. 
• Mile marker. 

Incident Data 

Incidents are detected based on a combination of detector-based alarms and 911-based 
alarms (through the AIH subsystem), CCTV camera scanning, San Antonio Police 
Computer-Aided Dispatch (SAP CAD) system, and media outlets. The majority of 
incidents are detected by police CAD.  

07/15/2006 00:02:29 EN1-0010W-574.621 Speed=56 Vol=006 Occ=008
07/15/2006 00:02:29 EN2-0010W-574.621 Speed=45 Vol=002 Occ=003
07/15/2006 00:02:29 EN3-0010W-574.621 Speed=49 Vol=001 Occ=001
07/15/2006 00:02:29 EX1-0010E-574.624 Speed=-1 Vol=001 Occ=002
07/15/2006 00:02:29 EX2-0010E-574.624 Speed=-1 Vol=003 Occ=004
07/15/2006 00:02:29 L1-0010W-574.623 Speed=69 Vol=001 Occ=001
07/15/2006 00:02:29 L2-0010E-574.623 Speed=68 Vol=002 Occ=002
07/15/2006 00:02:29 L2-0010W-574.623 Speed=00 Vol=000 Occ=000
07/15/2006 00:02:29 L3-0010E-574.623 Speed=67 Vol=001 Occ=001
07/15/2006 00:02:30 EN1-0010W-575.259 Speed=-1 Vol=000 Occ=000
07/15/2006 00:02:30 EX1-0010E-575.259 Speed=-1 Vol=000 Occ=000
07/15/2006 00:02:30 EN1-0010E-576.246 Speed=-1 Vol=000 Occ=000
07/15/2006 00:02:30 EX1-0010W-576.287 Speed=-1 Vol=000 Occ=000
07/15/2006 00:02:30 L1-0010E-576.264 Speed=00 Vol=000 Occ=000
07/15/2006 00:02:30 L1-0010W-576.264 Speed=00 Vol=000 Occ=000
07/15/2006 00:02:30 L2-0010W-576.264 Speed=65 Vol=001 Occ=001
07/15/2006 00:02:30 L3-0010E-576.264 Speed=00 Vol=001 Occ=000
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TransGuide does not directly archive incident data. However, both alarms from the 
incident detection algorithm and scenarios deployed by operators are recorded in an event 
data archive. TransGuide’s event data include 30 different major record types. An 
example of an event data archive is shown in Figure 2-7.  

 

Figure 2-7: Example of TransGuide’s Event Data Archive. 

Originally, this event data archive was to serve as a debugging tool for an advanced 
transportation management system (ATMS). Nevertheless, over time, the archive has 
become a very extensive data repository. Of particular interest related to the incident data 
are the following record types: 

• 2301, 2303 – messages displayed on the DMS; 
• 5301, 5302, and 5303 – contain incident data records; and 
• 8352 – contains DMS and LCS scenario data records. 

The detailed procedure to extract and analyze TransGuide’s incident data was described 
in previous TTI research reports (2, 7, 8). 

2.1.3.3. Data Applications 

Incident Detection Algorithm 

Detector-based alarms are generated from the algorithm using speed data for speed-trap 
detectors (on main lanes) and occupancy data for non-trap detectors (on entrance and exit 
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ramps). LCUs continuously poll and relay the detector data to the AIH subsystem every 
20 seconds. For speed-trap detectors, if a two-minute rolling average of speed drops 
below 25 mph, the AIH subsystem automatically triggers a minor (yellow) alarm. If a 
two-minute speed average drops below 20 mph, the AIH subsystem triggers a major (red) 
alarm. For non-trap detectors, the default occupancy thresholds are set at 25 and 
35 percent occupancy for minor and major alarms, respectively. 

Travel Time Application 

TransGuide’s algorithm takes the speed data from point-based detectors (i.e., loops and 
video detection) and the segment length covered by each to estimate travel times from a 
DMS to major intersections and/or interchanges. TransGuide’s algorithm defines a 
segment as a portion of a freeway between two sensor locations. The algorithm assigns 
the lower speed of the upstream and downstream average speeds to the segment. The 
travel time displayed on the DMS is the summation of segment travel times from the 
DMS to the major interchange or intersection for which the travel time is given. The 
freeway segments for travel time calculation are illustrated in Figure 2-8.  

 

 
Figure 2-8: Illustration of Segments for TransGuide’s Travel Time Algorithm (6). 

 

In this diagram, there are 11 segments defined by 12 sensor locations where all segments 
are assumed to be exactly half a mile in length. The segment travel time computation is 
shown in Table 2-10. The total travel time for over 5.5 miles (11 segments) is equal to 
12.2 minutes. 
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Table 2-10: TransGuide’s 
Travel Time Calculation. 

 

The travel times displayed on DMSs are shown as a range due to the variability in vehicle 
speeds. The travel time display is as follows: 

• If total travel time is less than 5 minutes, the display is shown as “under 
5 minutes.” 

• If total travel time is in the range of 5-20 minutes, the travel time is displayed in a 
2-minute range. 

• If total travel time is in the range of 20-30 minutes, the travel time is displayed in 
a 3-minute range. 

• If total travel time is greater than 30 minutes, the travel time is always displayed 
as “over 30 minutes.” However, the travel time of this range is rarely displayed. It 
is unusual to take 30 minutes or more to travel a 10-mile section unless there is an 
incident. The incident-related messages will override the travel time messages.  

The estimated travel times will be rounded down and then added with two or three 
minutes depending on the range. Therefore, for the example in Table 2-10, the travel time 
to IH-10 will be displayed as 12-14 minutes. 

TransGuide’s travel time process is fully automated. The existing TransGuide scenario 
process is used to display travel time messages. Travel time scenarios were created for 
each freeway with DMSs installed. The process extracts speed data from the existing 
speed subsystem and calculates travel times. The travel times are then inserted into the 
travel time scenarios and the messages displayed. The DMS travel times are 
automatically recalculated and updated every minute. When the travel time process is 
activated, the travel times are displayed throughout the day with no further actions 
required by the operators (6). 

Segment Speed Travel Time
(mph) (minutes)

1 55 0.5
2 47 0.6
3 47 0.6
4 45 0.7
5 30 1.0
6 30 1.0
7 30 1.0
8 25 1.2
9 20 1.5

10 15 2.0
11 15 2.0

12.2Total

Segment
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2.1.4. Austin’s CTECC 

Austin’s CTECC is part of a multi-agency (City of Austin, Travis County, TxDOT, and 
the Capital Metropolitan Transportation Authority) emergency communications project 
called the 911 Radio, Computer-Aided Dispatch, Mobile Data, and Transportation (911-
RDMT) project.  

CTECC has been established since January 2003 and has operated 24 hours a day and 
7 days a week since July 5, 2006. CTECC has its own courtesy patrol program known as 
the Highway Emergency Response Operations (HERO) program, which operates 
weekdays from 6AM to 10PM. CTECC is currently working on contracting private 
companies to provide additional response units during peak hours. 

2.1.4.1. Deployment 

CTECC has CCTV cameras covering approximately 37 freeway centerline miles. CCTV 
spacings are not uniform, with most cameras located at intersections and congestion-
prone locations. CTECC’s current sensor deployment includes loop detector stations 
covering some 37 freeway centerline miles, with detectors located roughly every half a 
mile. Speed-trap detectors are used for main lane and frontage roads, and non-trap 
detectors are used for entrance and exit ramps.  

To provide travelers with traffic information, CTECC has 16 DMSs and 44 LCSs 
installed under sign bridges at roughly every 3 miles. CTECC has installed three highway 
advisory radio (HAR) stations covering about 118 freeway miles. Motorists can tune into 
530AM and 800AM for pre-trip and en-route traffic information. CTECC also shares 
video feeds with four major television networks.  

CTECC also provides camera snapshots on the Internet via http://ausits.dot.state.tx.us 
(see Figure 2-9). The web application was developed by TxDOT Information Services 
Division (ISD). ISD maintains and handles the web/Internet details to provide the same 
look and feel. Smaller Texas TMCs can benefit from the web application while avoiding 
the need to find additional resources to maintain the website. As of now, the ISD web 
applications are deployed at Austin’s CTECC, Amarillo’s PEGASIS, and Wichita Falls’ 
Texoma Vision. The primary function now is to provide video snapshots to the public. 
The snapshots are updated approximately every two seconds for CTECC’s cameras. 
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Figure 2-9: CTECC’s CCTV Camera Locations and Example Snapshots. 

CTECC receives email alerts from local flood detectors owned by the City of Austin 
Office of Emergency Management (OEM) as well as weather alerts from the National 
Oceanic and Atmospheric Administration (NOAA) subscription service. Operators can 
take appropriate actions upon receiving these alerts. CTECC also implemented an 
incident notification system in which subscribers are notified of freeway incidents and 
stalls via a pager system.  

2.1.4.2. Data Management 

Austin’s CTECC uses TxDOT’s ATMS software and relies on Sybase as the main data 
repository.  

Traffic Data 

CTECC relies on loop detectors as a main source of traffic data. LCUs poll the traffic 
data every 20 seconds, and the data are aggregated at one-minute intervals. The 
one-minute lane-by-lane traffic data archive includes volume, occupancy, speed, and 
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percent truck along freeway main lanes and at selected locations along frontage roads. 
Archived data also include volume and occupancy on most entrance and exit ramps. 

CTECC maintains archived traffic data files by days and freeway segments (IH-35, LP-1, 
US-290, and US-183). Each archived file contains a file header and detector data. Each 
file header contains information about the total number of detectors, detector number, and 
cross street and lane descriptions. An example of a file header is shown in Figure 2-10. 
From this example, “258” represents the total number of detectors. The lane designation 
is represented by a two-digit alphanumeric code following a cross street description. The 
first digit is either F, E, or X, which signifies freeway main lanes, entrance ramps, and 
exit ramps, respectively. The second digit is the lane number where 1 is the lane nearest 
to the median.  

 
258,2000411,Guadalupe St     F1           ,2000412,Guadalupe St     F2       
,2000413,Guadalupe St     F3           ,2000415,Guadalupe St     E1          
,2000421,Guadalupe St     F1           ,2000422,Guadalupe St     F2          
,2000423,Guadalupe St     F3           ,2000427,Guadalupe St     X1          
,2000511,Chevy Chase Dr     F1         ,2000512,Chevy Chase Dr     F2       
,2000513,Chevy Chase Dr     F3         ,2000515,Chevy Chase Dr     E1        
,2000521,Chevy Chase Dr     F1         ,2000522,Chevy Chase Dr     F2        
,2000523,Chevy Chase Dr     F3         ,2000527,Chevy Chase Dr     X1        
,2001011,Carver Ave     F1             ,2001012,Carver Ave     F2            
,2001013,Carver Ave     F3             ,2001015,Carver Ave     E1            
,2001021,Carver Ave     F1             ,2001022,Carver Ave     F2            
,2001023,Carver Ave     F3             ,2001027,Carver Ave     X1, … 

Figure 2-10: Example of File Header from CTECC’s Archived Detector Data. 

 

An example of loop detector data is shown in Figure 2-11. Each data record begins with a 
time stamp (e.g., 14:40:27, 14:41:27), followed by a sequence of detector-by-detector 
traffic data in a comma-delimited format (detector number, volume, occupancy, speed, 
and percent truck). 

Loop detector data quality continues to be a major concern for CTECC. Two major types 
of data problems are erroneous and missing data. Erroneous data problems include data 
values beyond the expected range and detector-data shuffling/mismatching. Missing and 
erroneous data flagged by the basic checking algorithm (mostly threshold checking) at 
the System Control Unit (SCU) are recorded as –1. 

 
144027,2000411,11,4,66,0,2000412,23,10,54,4,2000413,16,9,51,18, 
2000415,12,6,45,0,2000421,5,2,64,0,2000422,11,5,62,0,2000423, 
22,10,55,9,2000427,14,6,52,0,2000511,12,4,47,0,2000512, 
25,11,38,4,2000513,0,0,0,0,2000515,27,10,33,0,2000521,7,2,49,0, 
2000522,16,6,46,0,… 
144127,2000411,13,5,64,7,2000412,27,13,51,3,2000413,18,10,51,11, 
2000415,4,2,48,0,2000421,10,4,65,10,2000422,12,5,62,0,2000423, 
19,9,54,5,2000427,17,9,49,11,2000511,3,1,47,0,2000512,10,3,42,0, 
2000513,0,0,0,0,… 

Figure 2-11: Example of CTECC’s Archived Traffic Data from Loop Detectors. 
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Incident Data 

In Exhibit B of the CTECC agreement (9), an incident is defined as any condition in 
which traffic flow is not normal. As an example, abnormal traffic flow could be caused 
by debris in the road or by non-recurring congestion, such as onlookers to an accident, 
construction, or roadway maintenance. The duration of the incident shall be considered 
complete once traffic flow has returned to normal and any TxDOT and/or emergency 
service personnel and vehicles have departed from the incident scene. 

Incident detection at CTECC relies heavily on a combination of loop detector-based 
incident alarms, CCTV camera scanning, police radio scanning, and courtesy patrols. The 
majority of incident detection is calls to CTECC. Upon receiving emergency calls, 911 
operators usually take approximately 30-90 seconds to evaluate the situation and identify 
appropriate responders. The 911 operators notify TMC operators if the incident is traffic 
related. 

The current incident detection algorithm compares a three-minute moving average of 
percent occupancy values against a threshold and generates an alarm if the moving 
average exceeds the threshold. The system supports different threshold profiles for 
different days and conditions. Operators can use these visual alerts from the incident 
detection algorithm to check if any incident is ongoing. 

Incident locations are identified by: 

• the coordinates of cell phones through the Enhanced 911 (E911) wireless system, 
• visual identification by the operators (click on the map to get the coordinates), and 
• the coordinates of cross streets for detector-based alarms used in conjunction with 

the field “At/Before/After.” 

E911 service allows a wireless or mobile telephone to be located geographically using 
some form of radio location from the cellular network or by using a global positioning 
system (GPS) built into the phone itself. 

CTECC has been archiving incident data since 1999. Nine incident types are supported in 
the ATMS incident report page, which are: collision, congestion, overturn, stall, 
abandonment, vehicle on fire, road debris, hazardous material spill, and public 
emergency. Accident, congestion, and stall make up more than 90 percent of all incident 
types recorded at CTECC. An example of a CTECC incident record is displayed in 
Figure 2-12 in a comma-delimited data format. 

CTECC collects the following time points for each incident record in the database: 

• incident detected/reported time (logged_datetime), 
• incident clearance time (cleared_datetime), and 
• incident last detected time (last_detected_datetime) – recorded when the alarm 

threshold has been exceeded more than once. 

Incident detected/reported times can be recorded in three different manners: 

• the time when an operator enters incident information into the database, 
• the time when detector-based alarm thresholds are exceeded, or 
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• the time when the incident message is received by the ATMS system from C2C 
communications. 

The C2C protocol allows subscribers to share incident-related messages based on ITS 
national standards. 

 
24305,9,Southbound,IH 0035,-10,,51st Street,,,,after,5100,Collision,"TxDOT 
ATMS Operations, Media",29-Jul-05,29-Jul-05,,JG.. cam 139.. collision 
blocking lane 1 just past 51st.. LCS's and DMS's posted.. HERO en 
route..,Freeway,Lane 1,,,Dry,No Defects,,Dawn,Clear/Cloudy,Courtesy 
Patrol,Possible injuries,2,"Passenger car, 
Truck",,JGOLD,10086089.52,3124167.018,237,,0.998,,, 
 
24306,1,Southbound,IH 0035,-10,,St. Johns 
Ave,,,,before,7200,Abandonment,,28-Jul-05,29-Jul-05,,JG..cam 132.. small 
white honda in R shoulder just past the entrance connector from US 183.. not 
blocking..,Freeway,Right 
Shoulder,,,,,,,,,,,,,JGOLD,10094585.26,3125914.945,239,,0.651,,, 
 
24307,15,Southbound,US 0183 Frontage Road,-10,,,Chevy Chase Dr.X1 exit 
ramp,,,at,500,Congestion,,29-Jul-05,29-Jul-05,,Routine Traffic,Freeway,Lane 
1,,,,,,,,,,,,1,,10097547.32,3126417.38,0,,,,, 
 

Figure 2-12: Example of CTECC’s Archived Incident Records. 

CTECC defines incident clearance time as the time traffic has returned to normal 
conditions, which essentially is the time when the scene has returned to the same 
condition as it was prior to the incident occurrence. For example, if there is a vehicle left 
on a shoulder as a result of an incident, the incident status will not be cleared until this 
vehicle is removed from the scene. 

2.1.4.3. Data Applications 

CTECC implemented automated incident detection using three-minute rolling averages 
of lane occupancy data. The alarms are generated once the occupancy data exceed a 
threshold profile configured by TxDOT. TxDOT implementation allows up to six 
thresholds and corresponding time periods for a given day. 

Thresholds can be set at any level of occupancy, and time intervals can be established at 
any point throughout the 24 hours of a day. The 24 hours of a typical profile start at 
12:00AM and end at 11:59PM. There can be at most six non-overlapping time intervals 
in a profile. Multiple profiles can be configured for different situations, such as 
weekdays, weekends, special events, and inclement weather (10). A typical threshold 
graph for the TxDOT incident detection algorithm is shown in Figure 2-13. 
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Figure 2-13: Typical Thresholds for TxDOT’s 

Incident Detection Algorithm (10). 

 

Since occupancy thresholds are configurable by TxDOT, a change in these thresholds can 
affect the number of alarms generated by the algorithm in the incident database. For 
instance, a significant increase in the number of detector-based congestion alarms from 
2003 to 2004 in the CTECC data archive is due in large part to the change in threshold 
configurations inside the TxDOT algorithm.  

2.1.5. Fort Worth’s TransVision 

Fort Worth’s TMC has been established since 1992 to manage and coordinate traffic 
operations in the district. A new facility for Fort Worth’s TransVision was opened in 
June 2000. The 29,622-square-foot TMC and initial system software were implemented 
at a cost of $8.4 million. The current TMC operating hours are from Monday to Friday, 
6AM to 6PM, with remote access provided 24 hours a day and 7 days a week. The 
courtesy patrol in the Dallas-Fort Worth area is operated by TxDOT. The area covered by 
the courtesy patrol is shown in Figure 2-14. 
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Figure 2-14: Dallas-Fort Worth Courtesy Patrol Coverage. 

2.1.5.1. Deployment 

As of 2007, Fort Worth’s TransVision has approximately 100 freeway centerline miles 
with real-time traffic data collection technologies and five ramp metering systems (11). 
The CCTV coverage is also approximately 100 freeway centerline miles. The camera 
locations are available on the web-based map (http://dfwtraffic.dot.state.tx.us). Real-time 
traffic data are collected by loop detectors and side-fire radar detection. TransVision is 
currently replacing damaged loop detectors with side-fire radar detection units. 

To disseminate travel-related information, TransVision relies on 64 DMSs and a traffic 
information website (http://dfwtraffic.dot.state.tx.us). TransVision shares its video feeds 
with all local television stations, Fort Worth public cable television, North Central Texas 
Council of Governments (NCTCOG), City of Fort Worth Emergency Operations Center, 
traffic service providers (traffic.com and MetroNet), and the Tarrant County 911 Center. 
TransVision also shares real-time traffic conditions with traffic service providers and 
with subscribers to TransVision’s incident email listserver (12). 

TransVision and DalTrans share their traffic information website. The URLs for both 
TMCs are directed to the same webpage (i.e., http://www.daltrans.org and 
http://dfwtraffic.dot.state.tx.us).  TransVision is also one of the four TMCs in Texas that 
implemented a mobile version of its traffic information webpage. Wireless devices are 
automatically detected, and users are directed to the mobile webpage from the same 
URLs. Information available on the mobile version is similar to DalTrans’ except that the 
speed and incident map is unavailable for TransVision’s. 

2.1.5.2. Data Management 

The TransVision management software is a combination of legacy codes originally 
developed by Lockheed Martin and software modules developed under the Statewide 
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Development and Integration (SDI) program. TransVision relies on a database structure 
in Sybase that is modified from Houston’s TranStar system, as well as Microsoft SQL 
Server. The latter is used by SDI subsystems for CCTV and DMS. 

Real-time traffic data are available primarily from the side-fire radar detection system. 
Available traffic data include volume, occupancy, speed, and percent truck. TransVision 
does not archive these data on a regular basis although it has a capability to do so. 
Therefore, the availability of archived traffic data at TransVision is very limited. 
Occupancy data, in particular, are continuously used for the automated incident detection 
module.  

Incident detection at TransVision relies on CCTV cameras, police dispatch monitoring, 
courtesy patrol calls, and commercial traffic services. The system also shares the incident 
information with DalTrans through the implemented C2C technology. The incident data 
have been archived since 2000. 

TransVision collects the following time points for each incident record: 

• incident reported/detected time, 
• incident verification time, 
• incident moved time, 
• incident clearance time, and 
• queue clearance time. 

Queue clearance time is the time when the queue built up as a result of a lane-blockage 
incident has dissipated. The queue and incident clearance times are the same if the 
incident neither obstructs travel lanes nor creates a queue. 

2.1.5.3. Data Applications 

TransVision currently uses occupancy data as inputs to its occupancy-based incident 
detection algorithm. TransVision also has a travel time estimation module, which takes 
point-based speed data and segment lengths to compute segment travel time. 

2.1.6. El Paso’s TransVista 

El Paso’s TMC TransVista has been fully operational since November 2000.  Overseen 
by TxDOT, TransVista manages 75 centerline miles of roadway with less than 25 TMC 
employees. TransVista currently operates Monday through Friday, 6AM to 8PM. 
TransVista operates a courtesy patrol program known as HERO from 8AM to 11PM. TTI 
is currently developing a TMC draft operator’s guide for TransVista, which includes 
general operating policies and traffic management operating procedures (13). Most 
monetary funding for TransVista comes from the federal Congestion Mitigation and Air 
Quality (CMAQ) Improvement Program.  TxDOT, however, provides funds to cover ITS 
maintenance costs for El Paso area state highways. 
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2.1.6.1. Deployment 

TransVista monitors and controls freeway operations in the El Paso area, which includes 
the use of CCTV cameras, DMSs, lane control signals, and vehicle data collection.  The 
TMC also provides network connection to the City of El Paso for traffic signal 
interconnection.  TransVista recently installed a highway advisory radio system, but the 
system was not operational as of January 2007.  It also has plans to replace its inducted 
loop detectors with a side-fire microwave vehicle detection system (MVDS) on area 
freeways. Figure 2-15 shows the ITS equipment map for El Paso’s TMC. The sensor and 
DMS deployment on LP-375 is shown in Figure 2-16. 

 

 
Figure 2-15: TransVista’s ITS Equipment Map. 
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Figure 2-16: TransVista’s ITS Deployment on LP-375. 

 

TransVista’s CCTV coverage, sensor, and DMS/LCS deployment broken down by 
freeway segment is summarized in Table 2-11. TransVista also has two ramp metering 
systems located on IH-10. 

 

Table 2-11: TransVista’s CCTV, Sensor, DMS, and LCS Deployment. 

 

Segment Miles Covered CCTV Cameras Loops DMSs LCSs Radar
Montana 13 5 0 2 0 0 
Airway 4 1 0 0 0 0 
IH-10 36 35 684 21 110 Yes*2

US-54 9 14 294 5 45 Yes*2

LP-375 10 23 24 4 0 Yes*2

Mesa (SH-20) NA*1 5 0 0 0 0 
Zaragosa (FM-659) NA*1 1 0 0 0 0 
Total 72 84 1002 32 155 --
Notes: *1 – No data available; *2 – Exact figure is unavailable.
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In addition, several ITS deployment projects are currently in the construction phase for 
TransVista, including installation of 17 CCTV cameras, 7 DMSs, loop detectors to cover 
an additional 16 miles on LP-375, and a traffic signal synchronization project. 

TransVista provides traffic and other information on the Internet at 
http://www.transvista.dot.state.tx.us. The website provides camera snapshots updated 
every minute, traffic alerts, border waiting times, and road closure information. 
TransVista also shares CCTV video and control with other TMCs, emergency personnel 
(fire, police, etc.), and local media outlets. 

2.1.6.2. Data Management 

TransVista relies on TxDOT ATMS software with a Sybase database to provide four 
primary operations components: traffic monitoring, incident assessment and reporting, 
environmental sensing of road conditions, and traffic management.  

Traffic Data 

TransVista is capable of collecting and archiving traffic data from loop detectors. 
However, these data are not used currently due to data quality concerns. TransVista relies 
on a side-fire radar detection system as its main source of traffic data. TransVista collects 
and archives volume, occupancy, speed, and truck percentage data from the radar 
detection system on a lane-by-lane basis. Figure 2-17 shows sample traffic data from the 
side-fire radar detection system aggregated at 30-second intervals. Each data column 
represents the data from a specific lane at each detection station. 

Incident Data 

Incidents are detected by the HERO program, police radio scanning, scanning of police 
reports via the Internet, and communications with the police department. The majority of 
incidents are detected from scanning of police reports. Incident data are currently 
collected but not archived. The HERO program maintains a separate archive for its patrol 
operations.  

TransVista routinely archives DMS messages as well as field maintenance/equipment 
data. An example of DMS logs is shown in Figure 2-18. LCS data are available in real 
time and archived in a separate database. 
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Figure 2-17: Example of TransVista’s Traffic Data. 

 
01-Nov-06 17:43:03 SL_INFO DMS Main ELP-ITS-ATMS SYSTEM 1020 DMS 
Main2663 Send Message Response New message placed on 10E - Mesa. New 
message is: 
[pt25o0][jl3]SIGN[nl][jl3]UNDER[nl][jl3]TEST[np][pt25o0][jl3][nl][jl3]TESTING
, owner is: , duration is 1:0, priority is neutral, beacons are off, pixel 
service is off 
 
01-Nov-06 17:43:13 SL_INFO DMS Main ELP-ITS-ATMS SYSTEM 1017 DMS 
Main2667 Send Sequence Message Sequence message sent to 10E - Mesa. 
Sequence ID is: Advisories\Mesa_trucks center lane. Message is: 
[pt30o0][jl3]TRUCKS[nl][jl3]USE[nl][jl3]CENTER 
LANE[np][pt30o0][jl3]NEXT[nl][jl3]5 MILES 
 
01-Nov-06 17:43:16 SL_INFO DMS Main ELP-ITS-ATMS SYSTEM 1020 DMS 
Main2667 Send Message Response New message placed on 10E - Mesa. New 
message is: [pt30o0][jl3]TRUCKS[nl][jl3]USE[nl][jl3]CENTER 
LANE[np][pt30o0][jl3]NEXT[nl][jl3]5 MILES, owner is: DMS Main, duration is 
18:50, priority is neutral, beacons are off, pixel service is off 
 
01-Nov-06 17:43:49 SL_INFO DMS Main ELP-ITS-ATMS SYSTEM 1020 DMS 
Main2671 Send Message Response New message placed on 10E - Mesa. New 
message is: [pt30o0][jl3][np][pt30o0][jl3], owner is: , duration is 0:0, 
priority is neutral, beacons are off, pixel service is off 
 
01-Nov-06 17:43:57 SL_INFO DMS Main ELP-ITS-ATMS SYSTEM 1017 DMS 
Main2675 Send Sequence Message Sequence message sent to 10E - Mesa. 
Sequence ID is: Advisories\Mesa_trucks center lane. Message is: 
[pt30o0][jl3]TRUCKS[nl][jl3]USE[nl][jl3]CENTER 
LANE[np][pt30o0][jl3]NEXT[nl][jl3]5 MILES 
 

Figure 2-18: Example of TransVista’s DMS Logs. 

14 05 2006 00:07:20 
MESSAGE NO. 232      VOLUME:   0   2   1   1   3   1   0   0   
                   LONG VEH:   0   0   0   0   0   0   0   0   
STATION ID. 37    OCCUPANCY:   0   1   1   1   3   2   0   0   
FWDLK SPEED-?   SIDEFRD SPD:   ?   56  64  54  57  38  ?   ?   
14 05 2006 00:07:37 
MESSAGE NO. 169      VOLUME:   4   2   0   0   0   0   0   0   
                   LONG VEH:   0   0   0   0   0   0   0   0   
STATION ID. 16    OCCUPANCY:   3   1   0   0   0   0   0   0   
FWDLK SPEED ?   SIDEFRD SPD:   45  54  ?   ?   ?   ?   ?   ?   
14 05 2006 00:07:37 
MESSAGE NO. 169      VOLUME:   4   2   0   0   0   0   0   0   
                   LONG VEH:   0   0   0   0   0   0   0   0   
STATION ID. 17    OCCUPANCY:   1   1   0   0   0   0   0   0   
FWDLK SPEED-?   SIDEFRD SPD:   60  60  ?   ?   ?   ?   ?   ?   
14 05 2006 00:07:38 
MESSAGE NO. 169      VOLUME:   1   1   0   0   0   0   0   0   
                   LONG VEH:   0   0   0   0   0   0   0   0   
STATION ID. 18    OCCUPANCY:   1   1   0   0   0   0   0   0   
FWDLK SPEED-?   SIDEFRD SPD:   58  57  ?   ?   ?   ?   ?   ?   
14 05 2006 00:07:42 
MESSAGE NO. 169      VOLUME:   2   1   0   0   0   0   0   0   
                   LONG VEH:   0   0   0   0   0   0   0   0   
STATION ID. 22    OCCUPANCY:   1   1   0   0   0   0   0   0   
FWDLK SPEED-?   SIDEFRD SPD:   50  57  ?   ?   ?   ?   ?   ?   
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2.1.6.3. Data Applications 

While TransVista does not have any data applications at this time, TTI currently compiles 
an annual internal report, which is provided to TransVista and shared with the Federal 
Highway Administration (FHWA), TxDOT, emergency personnel, and other TMCs. 
TransVista also provides certain traffic data, such as number of incidents and incident 
clearing time, to TTI as part of its pollution study. 

2.1.7. Amarillo’s PEGASIS 

Amarillo’s PEGASIS is the TMC for the panhandle region. PEGASIS was established in 
2001 with the installation of the first phase of ITS equipment completed in the fall of 
2002. The camera usage is strictly to monitor the traffic and weather conditions. The 
video is neither recorded nor used by any agency for other purposes. PEGASIS’ current 
operating hours are Monday through Friday, from 8AM to 5PM, with remote access 
24 hours a day and 7 days a week. PEGASIS does not have a courtesy patrol program. 
PEGASIS’ interior is shown in Figure 2-19 (14). 

 

 
Figure 2-19: Amarillo’s TMC – PEGASIS. 

2.1.7.1. Deployment 

PEGASIS ITS equipment deployment includes 10 CCTV cameras (7 cameras on IH-40 
and 3 cameras on US-287) and 8 DMSs. PEGASIS plans to install an additional 6 CCTV 
cameras and 5 DMSs by the end of 2007. PEGASIS provides travel-related information 
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via DMS, HAR system, and Internet. Currently, PEGASIS has one HAR station 
operational and plans to install one more station in the near future. PEGASIS has a traffic 
information website, which is accessible at http://amaits.dot.state.tx.us. Currently, only 
camera snapshots are updated in real time on the website every two seconds and eight 
seconds for broadband and dial-up connections, respectively. A screenshot of PEGASIS’ 
traffic information webpage is shown in Figure 2-20. PEGASIS has no sensors deployed 
for real-time traffic data collection at this time. 

 

 

 
Figure 2-20: PEGASIS Traffic Information Webpage. 

 

PEGASIS also specifically provides a mobile version of its webpage for wireless devices. 
The mobile webpage can be accessed at http://amaits.dot.state.tx.us/mobile/. Currently, 
only the real-time CCTV camera snapshots are available to the public. Users can specify 
which cameras they want to watch. The snapshots are not automatically updated for the 
mobile version. 
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2.1.7.2. Data Management and Applications 

PEGASIS uses the TxDOT ATMS as its central management software. Currently, neither 
traffic nor incident data are collected or archived at the TMC. The level of ITS 
deployment at PEGASIS is still in the early stage. Since PEGASIS does not collect any 
data currently, there is no application of either real-time or historical data at this time. 

2.1.8. Laredo’s STRATIS 

Laredo’s STRATIS was established in 2004 to support traffic monitoring and 
management in the Laredo region. The Laredo region is located just south of the Texas 
Hill Country on the north bank of the middle Rio Grande River. The ITS stakeholders 
defined the regional boundaries to correspond with the Rio Grande River and the counties 
that surround or include the City of Laredo. The initial phase of ITS infrastructure in the 
Laredo region consists of DMSs, video surveillance cameras, traffic sensors, HAR, and a 
central management software system. The primary functions of the TxDOT system are to 
provide congestion management, incident management, and traveler information for 
motorists (15). 

Figure 2-21 shows the interior of Laredo’s STRATIS (14). The TMC’s current operating 
hours are Monday through Friday, from 8AM to 5PM. Currently, there is only one 
operator staffing the facility. STRATIS does not have its own courtesy patrol program. 

 

 
Figure 2-21: Laredo’s TMC – STRATIS.  



 

 

2-35 Overview of Texas
Transportation Management Centers 

2.1.8.1. Deployment 

The video surveillance and traffic sensor deployment at Laredo’s STRATIS include: 

• CCTV cameras on IH-35 (mile marker 1-10), FM-1472 (2 miles), and LP-20 
(11 miles); 

• inductive loop detectors on LP-20 and FM-1472 covering approximately 5 miles; 
and 

• microwave radar detection on IH-35 (mile marker 1-7).  

STRATIS has five stations of flood detection system installed in Del Rio. The flood data 
are integrated into the TMC through datawide servers. STRATIS also implemented a 
railroad crossing monitoring system using wireless doppler radar. 

STRATIS relies on DMS, LCS, and HAR to provide traveler information to motorists. As 
of February 2007, 12 DMSs are operational, 2 additional DMSs are to be installed by 
August 2007, and 4 more will be installed by the end of 2008. There are 11 LCS stations 
with a total of 32 LCS heads. Two HAR stations have been deployed for the region. 
Motorists can tune into 530AM for railroad crossing status (so motorists can take 
alternative routes to avoid delay) and 1610AM for other general traffic and incident 
information. 

Currently, the TMC website development is in progress, but no exact operational date 
was provided. Information to be provided to the public will include CCTV camera 
snapshots, work zone and construction information, lane closures, and DMS messages. In 
addition, STRATIS is developing a system to automatically detect approaching trains at 
the railroad crossing over IH-35 and display messages on DMSs. 

STRATIS shares the video feeds only with the police department (PD) at this time. The 
PD cannot control the cameras directly but can request camera adjustment verbally.  

2.1.8.2. Data Management and Applications 

STRATIS uses the TxDOT ATMS as its central management software system and 
Sybase for its database structure. Traffic data, which include volume, occupancy, and 
speed, are collected in real time and archived every minute from both loop detectors and 
a radar detection system.  

Incident detection at STRATIS relies primarily on 911 callers and CCTV cameras. While 
the ATMS subsystem is capable of collecting and archiving incident data, STRATIS 
neither collects nor archives incident information on a regular basis at present.  

Similar to other smaller Texas TMCs (e.g., those in Amarillo and Wichita Falls), 
STRATIS is still in its early stage of ITS deployment and does not have any applications 
using either real-time or historical data at this time. 
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2.1.9. Wichita Falls’ Texoma Vision 

Wichita Falls’ Texoma Vision has had many of the individual components that make up 
the intelligent transportation system in place for years. The process began in September 
2003 when a group of local stakeholders met to develop the Wichita Falls Regional ITS 
Architecture and Development Plan. The individual components were officially brought 
together as a system with the construction of the Texoma Vision Traffic Management 
Center at the TxDOT Wichita Falls District Office that began in March 2004 (16). 

The TMC is the focal point of the system due to the ability to have a visual aid through 
camera locations placed along the IH-44 corridor. The TMC is monitored by TxDOT and 
the Wichita Falls Police Department. Hours of operation at the TMC are Monday through 
Friday, from 8AM to 5PM. Hours of operation at the 911 Wichita Falls Police Dispatch 
are 24 hours a day, 7 days a week. 

2.1.9.1. Deployment 

Texoma Vision has nine CCTV cameras installed on the IH-44/US-287 corridor covering 
approximately 10 miles of freeway. The TMC monitors traffic for the Texoma area on 
two 52-inch plasma screen TVs at the TxDOT office on Southwest Parkway. The Police 
Station 911 Center also has a 48-inch plasma screen TV to monitor traffic movements 
from their location at 710 Flood Street (Figure 2-22). The cameras can be controlled from 
either location. Currently, all cameras are located along the IH-44/US-287 corridor. 
Emphasis was placed on this particular corridor due to high traffic volumes in this 
specific area of the district (16).  

 

 
Figure 2-22: Texoma Vision 
Traffic Management Center. 

Texoma Vision provides travel information to motorists through four DMSs and a traffic 
information website. CCTV camera snapshots updated every two seconds are provided to 
the public over the Internet at http://wfsits.dot.state.tx.us/its-trafficinfo. Users can 
visually check current traffic conditions within CCTV coverage areas by selecting the 
cameras they want to watch from a web-based map, as shown in Figure 2-23. 

The TMC also has flood sensors, ice sensors, and full weather stations deployed for the 
region. The readings from the flood sensors are used to determine if and when the 
frontage roads need to be closed. Texoma Vision is one of the two TMCs (another one is 
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PEGASIS) in this study that have no sensors for collecting real-time traffic data at this 
time.  

The Texoma Vision TMC shares information with the Oklahoma Department of 
Transportation to aid motorists that travel between Oklahoma and Texas. 

 

Figure 2-23: CCTV Snapshots from Texoma Vision Website (16). 

2.1.9.2. Data Management and Applications 

Texoma Vision implemented the TxDOT ATMS as its central management software 
system. The Skyline software system is used to manage DMS operations. Currently, there 
are no traffic sensors deployed in the region, and thus no traffic data are being collected.  

Texoma Vision utilizes TxDOT’s automated weather stations to help determine the need 
to close roads or advise travelers of high winds or roadway hazards.  Flood sensors are an 
effective way to monitor roads without human eyes gauging a need to close the road due 
to water over the roadway.  United States Geological Survey (USGS) flood sensor data 
are monitored to evaluate when rivers and creeks are at dangerous levels, and a road 
closure can be issued if necessary.  Ice detection enables TxDOT to provide faster 
response to developing ice conditions and post winter weather advisories (16). 
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2.2. Summary and Comparison of Texas TMCs 

The information about ITS deployment and data management gathered from the survey 
of nine Texas TMCs is summarized in tabular form in Tables 2-12 through 2-19. 

 Table 2-12: General TMC Information. 

 

Houston - TranStar Established in April 
1996. Operates 24/7.

MAP operates as a 
public/private partnership 
from 6AM-10PM on 
weekdays.

Proprietary developed software. 
TranStar uses Oracle database.

Dallas - DalTrans Established in 2001. 
Operates M-F 5AM-
9PM.

Operates 5AM-9:30PM 
M-F and 11AM-8PM 
weekends.

Proprietary software developed and 
maintained by TTI. DalTrans uses 
Microsoft Access database. 

San Antonio - 
TransGuide

Established in 1995. 
Operates 24/7.

Terminated. TransGuide's ATMS operates as a 
client-server-based system that runs 
on Sun workstations in a Unix Solaris 
environment. TransGuide uses 
Sybase database.

Austin - CTECC Established in January 
2003. Operates 24/7 
since July 5, 2006.

Known as HERO 
program. Operates 
weekdays 6AM-10PM. 
Currently CTECC is 
working on contracting 
private companies to 
provide additional 
response units during 
peak hours.

TxDOT ATMS with Sybase database.

Fort Worth - 
TransVision

Established in 1992. 
Moved into a new 
facility in 2000. 
Operators on site M-F 
6AM-6PM. Remote 
access 24/7.

Operates M-F 7AM to 
midnight and weekends 
6:30AM to midnight.

TransVision's software is a 
combination of legacy codes 
originally developed by Lockheed 
Martin and software modules 
developed under SDI program. 
TransVision uses Sybase and 
Microsoft SQL Server. The latter is 
used by SDI subsystems for CCTV 
and DMS.

El Paso - TransVista Operates M-F 6AM-
8PM.

Known as HERO 
(Highway Emergency 
Response Operation) 
program. Operates 8AM-
11PM daily.

TxDOT ATMS with Sybase database.

Amarillo - PEGASIS Established in 2001. 
Operates from M-F 8AM-
5PM. Remote access 
24/7.

None. TxDOT ATMS.

Laredo - STRATIS Established in 2004. 
Operates M-F 8AM-
5PM. One operator.

None. TxDOT ATMS with Sybase database.

Wichita Falls - Texoma 
Vision

Established in 2004. 
Operates M-F 8AM-
5PM. One operator.

None. TxDOT ATMS is used but no data 
are archived. Skyline software is used 
to manage DMS messages.

Courtesy Patrol Central Management Software and 
DatabaseTMCs General TMC 

Information
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Table 2-13: CCTV and Real-Time Traffic Sensors. 

 

Inductive Loop 
Detectors

Video Image Vehicle 
Detection Systems 

(VIVDS)

Probe Vehicle 
System Radar Detectors Sonic/Acoustic 

Detectors

Houston - 
TranStar

Over 400 operational CCTV 
sites  covering more than 335 
freeway centerline miles as 
well as arterials. Plan to have 
more coverage on arterials.

Currently used only for 
detection at ramp 
meters. Long-term plan 
is to remove all and 
replace with radar 
sensors.

Terminated. Main source for 
travel time data. 
Antenna located 
approximately 
every 1-5 miles.

Approximately 40 
microwave radar 
sensors have been 
installed on I-10, I-
45, US-290, and 
hurricane 
evacuation route.

None.

Dallas - 
DalTrans

Operational. Camera 
locations are available from 
the web-based map on 
www.daltrans.org.

Terminated. Operational 
(Autoscope). Concern 
with data quality.

Terminated. Side-fire radar 
detection. Primary 
source for 
DalTrans' traffic 
data.

None.

San Antonio - 
TransGuide

Approximately 144 CCTV 
cameras are used to monitor 
traffic on IH-10, IH-35, LP-
410, south side of US-90, 
and northwest of LP-1604. 

Major source of traffic 
data. Approximately 
200 stations are 
installed roughly every 
half a mile. 

Approximately 20 
VIVDS are 
operational.

Terminated. None. Terminated.

Austin - 
CTECC

Covers 37 freeway miles. Covers 37 freeway 
miles with loops located 
approximately every 
half a mile. Currently 
considering replacing 
damaged loops with 
magnetic detectors.

Autoscope Solo Pro 
and Iteris Vantage 
detectors on IH-35.

None. Side-fire radar 
sensors as part of a 
testbed on IH-35.

Acoustic sensors 
as part of a testbed 
on IH-35.

Fort Worth - 
TransVision

Covers approximately 100 
freeway miles. Camera 
locations are available from 
the internet 
(dfwtraffic.dot.state.tx.us).

Operational. Currently 
replacing damaged 
loops with side-fire 
radar.

None. None. Side-fire radar 
detection covers 
approximately 100 
freeway miles.

None.

El Paso - 
TransVista

35 cameras on IH-10, 14 
cameras on US-54, 23 
cameras on LP-375, and 5 
cameras on SH-20.

Operational. Problems 
with data quality.

None. City of El Paso 
uses Autoscope for 
signal operations.

None. MVDS installed on 
LP-375, US-54, 
and part of IH-10.

None.

Amarillo - 
PEGASIS

7 cameras on IH-40 and 3 
cameras on US-287. Plan to 
install 6 more by the end of 
2007.

None. None. None. None. None.

Laredo - 
STRATIS

Operational on IH-35 (10 
miles), FM-1472 (2 miles), 
and LP-20 (11 miles).

5-mile coverage on LP-
20 and FM 1472.

None. None. Microwave 
detection installed 
on IH-35 (7 miles). 
Future plan is 
moving toward 
more detection of 
this type.

None.

Wichita Falls - 
Texoma Vision

Nine cameras on the IH-
44/US-287 corridor covering 
approximately 10 miles. Live 
video is not recorded.

None. None. None. None. None.

Freeway Traffic Sensors

CCTVTMCs
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Table 2-14: Environmental Sensors and Other ITS Deployment. 

 

Flood Sensors Ice Detection Full Weather Station
Houston - 
TranStar

19 road flood 
gauges.

9 sensors. 18 stations on evacuation 
route.

Ramp metering. Galveston 
ferry wait times available on 
the Internet. Regional 
Computerized Traffic Signal 
System (RCTSS) allows 
operators to modify timing 
plans. Rail-grade crossing 
monitoring provides frequent 
snapshots from 19 cameras at 
critical rail-grade crossings.

None.

Dallas - 
DalTrans

None. None. None. Implement C2C technology 
with TransVision.

None.

San Antonio - 
TransGuide

Five low-water 
crossing stations are 
currently 
operational.

None. None. TransGuide operates the 
Advance Warning for 
Railroad Delays (AWARD) 
in which three railroad 
crossings are being 
monitored. Warning signs are 
displayed when trains are 
passing.

TxDOT is transferring 
the control of 190 of its 
signals to City of San 
Antonio (CoSA) which 
in turn will upgrade 
these signals and share 
its signal data with the 
TMC.

Austin - 
CTECC

None. None. None. Ambient temperature sensors 
installed locally on DMS 
cabinet. Data can be 
downloaded on-site and are 
not integrated into ATMS 
system.

Austin used to have two 
ramp meters during the 
1970s-1980s. 

Fort Worth - 
TransVision

One high-water 
station was installed 
as part of frontier 
technology 
demonstration 
project.

One ice detection 
station was installed 
as part of frontier 
technology 
demonstration 
project.

Currently plan to install 
six full weather stations 
to be used mainly for ice 
prediction.

Implement C2C technology 
with DalTrans. TransVision 
also has 5 individual ramp 
meters. 

Currently, there is a plan 
to incorporate vehicle 
classifications (based on 
13 FHWA categories) 
into the data repository 
of the system.

El Paso - 
TransVista

Three pump 
stations located on 
IH-10 next to 
embankment are 
used to monitor 
water level.

None. None. None. None.

Amarillo - 
PEGASIS

None. Plan to 
install one high 
water detection in 
the near future.

None. None. None. None.

Laredo - 
STRATIS

5 stations of flood 
detection system are 
installed in Del Rio.

None. None. Railroad crossing monitoring 
using wireless doppler radar. 
Currently working on 
automating train detection 
and display of DMS 
messages near railroad 
crossing over IH-35.

Currently plan to 
increase the number of 
sensors, DMSs, and 
LCSs deployed.

Wichita Falls - 
Texoma Vision

Operational. 5 ice sensors. 5 stations collecting wind 
speed/direction, 
temperature, humidity, 
and precipitation.

None. None.

TMCs CommentsOther ITS DeploymentEnvironmental Sensors
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Table 2-17: Explanatory Data. 

 

Weather Data Flood Data Work Zone DMS Logs Lane 
Closure

Courtesy 
Patrol Others

Houston - 
TranStar

Data logs from rainfall, 
temperature, and wind 
sensors. Also available 
from incident database 
but not always recorded.

Available 
from flood 
sensors in 
real-time 
and 
archived.

Available 
from 
incident 
database. 
Not always 
recorded.

Separate 
DMS logs 
in Oracle 
database. 
Real-time 
and 
archived.

Lane 
closure 
logs. Real-
time and 
archived.

Archived in 
MAP 
database.

Dallas - 
DalTrans

None. None. Real time 
and 
archived in 
Access 
format.

Real time 
and 
archived in 
Access 
format.

None. Maintained 
as a 
separate 
archive.

None.

San Antonio - 
TransGuide

None. Data are 
collected 
from five 
low-water 
crossings. 
Not 
archived.

Scheduled 
lane closure 
data are 
available in 
real-time 
via 
TransGuide 
website. 
This data 
are also 
archived.

Displayed 
DMS 
messages as 
part of 
scenario 
database are 
available in 
real time 
and 
archived in 
event data.

Entered by 
operators. 
Archived.

None. LCS scenario logs (available 
in real time and archived in 
event data); scenario data 
(available in real-time and 
archived, logged by operators, 
deployed in response to 
abnormal events); ITS 
equipment inventory 
(available off-line, not 
archived; GIS-based 
inventory also exists); future 
plan with CoSA to share real-
time signal data with 
TransGuide.

Austin - 
CTECC

ATMS software has a 
capability to record this 
into an incident table 
(both real-time and 
archived) but rarely 
used. Required if 
command of traffic 
control device is needed.

None. Can be 
archived by 
ATMS 
software 
but rarely 
used. 
Handled 
through 
road closure 
list.

Available in 
real time 
and 
archived in 
a separate 
SQL 
database 
table.

Archived. Manually 
archived 
monthly in 
a separate 
database.

LCS data are available in real-
time and can be logged for 
only the first 300 lines. 
Maintenance logs contain 
error logs from LCUs such as 
communication failure and 
data polling timeout. 

Fort Worth - 
TransVision

Available from incident 
records.

None. None. Archived. Entered by 
operators. 
Archived.

None. None.

El Paso - 
TransVista

None. Water level 
data are 
archived in 
a separate 
subsystem.

None. Real-time 
and 
archived 
using 
proprietary 
protocol.

Archived 
from HERO 
patrol 
(Excel).

LCS data are available in real-
time and archived in a 
separate database.

Amarillo - 
PEGASIS

None. None. None. None. None. None. None.

Laredo - 
STRATIS

None. Available in 
real-time 
and 
archived.

None. Available in 
real-time 
and 
archived 
through 
ATMS 
subsystem.

Archived 
through 
ATMS 
subsystem.

None. None.

Wichita Falls - 
Texoma 
Vision

Available from weather 
sensors in real-time and 
archived.

Available 
from flood 
sensors in 
real-time 
and 
archived.

None. None. None. None. None.

TMCs
Explanatory Data
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Table 2-18: Incident Data. 

Reported Verified Moved Cleared Others
Houston - 
TranStar

Incidents are detected by 
CCTV cameras, incident 
detection algorithm, police 
radio scanning, MAP, police 
dispatch monitoring, and 
commercial traffic service. 
Primary source for detection is 
CCTV cameras.

Collected and archived 
since the beginning of 
the TMC operation. 
Incident locations are 
referenced to nearest 
cross street. 

Collected. Collected. Collected. Collected. Incident entry 
time, i.e., the 
time that an 
operator enters 
an incident into a 
database.

Dallas - 
DalTrans

Incidents are primarily detected 
by operators, cameras, and 
scanning of data feeds from 
Dallas 911 and Metro Traffic. 
Other sources include police 
radio scanning and courtesy 
patrol.

Collected and archived 
since 2001 in Access 
format. Incident 
locations are 
referenced to nearest 
cross street.

Collected. Collected. None. Collected. Operators 
could either use the 
time when all lanes 
are opened or when 
responders left the 
scene.

DalTrans 
collects incident 
status change 
times which also 
include incident 
disregarded time.

San Antonio - 
TransGuide

Incidents are detected by 
alarms from incident detection 
algorithm, operators, San 
Antonio Police Computer-
Aided Dispatch system (SAP 
CAD), and media outlets. 
Majority of incidents are 
detected by police CAD.

Incident data are 
collected but not 
archived. Both alarms 
from incident detection 
algorithm and 
scenarios deployed by 
operators are archived, 
however.

Collected. None. None. None. Scenario log 
starting time can 
be used to 
indicate when 
incident was 
verified.

Austin - CTECC Incidents are detected by video 
cameras, police radio scanning, 
HERO patrol, and alerts from 
automated incident detection 
alarms.

Collected and archived. 
Incidents can be 
located by cell phones 
(E911), operators 
(visually identify and 
click the location on 
the map), and 
coordinates of a cross 
street for detector-
based alarms.

Collected. None. None. Collected. Defined 
as the time the 
traffic returns to 
normal condition as 
it was before an 
incident.

Last detected 
date/time is 
recorded when 
the alarm 
threshold has 
been exceeded 
more than once.

Fort Worth - 
TransVision

Incidents are detected by video 
cameras and commercial traffic 
service. 

Collected and archived 
since 2000. Incident 
locations are 
referenced to nearest 
cross street.

Collected. Collected. Collected. Collected. Queue clearance 
time. Incident 
and queue 
clearance times 
are the same if 
there is no 
queue.

El Paso - 
TransVista

Incidents are detected by 
HERO program, police radio 
scanning, scanning of police 
reports via internet, and 
communications with PD. 
Majority of incidents are 
detected from scanning of 
police reports.

Collected but not 
archived. HERO patrol 
data are collected and 
archived separately.

None. None. None. None. None.

Amarillo - 
PEGASIS

No incident management 
program. Incidents are 
primarily detected by being 
called, e.g., police, TxDOT 
personnel, fire department.

Not collected. None. None. None. None. None.

Laredo - 
STRATIS

No incident management 
program. One operator. 
Incidents are primarily detected 
by 911 callers and video 
cameras.

Incidents are not 
collected on a regular 
basis although current 
ATMS subsystem is 
capable of doing so.

None. None. None. None. None.

Wichita Falls - 
Texoma Vision

No incident management 
program. One operator. PD can 
control and monitor the CCTV 
cameras.

Not collected. None. None. None. None. None.

TMCs Collected Incident Time PointsIncident Detection Incident Data
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Table 2-19: Data Applications at Texas TMCs. 

 

 

 

 

 

Automated Incident 
Detection Travel Time Estimation Others

Houston - TranStar Speed-based algorithm 
compares real-time speed 
data with historical averages 
and generates alarms if the 
current speed falls below 
certain thresholds.

Obtained from AVI system. 
Segment travel times are 
averaged every 15 minutes.

None.

Dallas - DalTrans None. Real-time 3-minute rolling 
averages of speed data are 
used to compute travel time.

None.

San Antonio - 
TransGuide

Operational. Real-time 2-
minute moving average of 
speed lane data is used for 
incident detection on 
mainlanes while occupancy 
is used on entrance and exit 
ramps.

Real-time speed lane data 
are used to compute travel 
time. The outputs are not 
archived.

None.

Austin - CTECC Loop-detector-based alarm 
thresholds using occupancy 
values. Threshold profiles 
are configured by the ATMS 
system administrator.

None. Currently, TTI is working on 
IAC to develop an 
Access/Excel-based tool to 
help evaluate the correlation 
between weather and 
incident data.

Fort Worth - 
TransVision

Operational. Occupancy-
based algorithm.

Speed-based algorithm. None.

El Paso - 
TransVista

None. None. None.

Amarillo - 
PEGASIS

None. None. None.

Laredo - STRATIS None. None. None.

Wichita Falls - 
Texoma Vision

None. None. None.

TMCs
Data Applications





 

3. REPORTING INCIDENT CHARACTERISTICS 

Currently, several Texas TMCs routinely collect and archive incident data from daily 
operations. These data are currently used at some TMCs to produce annual performance 
reports. The purpose of this module is to provide the analyst with information on what 
and how incident characteristics being collected should be reported. Common reporting 
formats are tables, graphs, and pie charts. The list of reports provided in this module is 
intended to serve as a guideline for the analyst to customize and build his or her own list 
of standard reports in order to meet the analysis and reporting objectives of the agencies.   

The following list consists of commonly collected incident data attributes at Texas 
TMCs:  

• incident type, 
• detection method, 
• verification method, 
• severity, 
• weather/environmental conditions, 
• vehicles involved – the number and types of vehicles involved, 
• incident responders, and 
• lane blockage characteristics – the number and types of lanes blocked. 

In addition, the following time points are commonly collected to represent the progress of 
the incident management process at the TMCs: 

• incident detection time and 
• incident clearance time. 

The analyst can use these data attributes to produce standard incident characteristics 
reports. Three major types of analyses can be used to produce these reports (in the order 
of increasing complexity): 

• frequency analysis (single attribute), 
• cross-attribute analysis, and 
• derived attribute analysis. 

Frequency analysis is the most common type of analysis involving the study of the 
distributions of incident data attributes. Cross-attribute analysis is the study of the 
distributions of two or more attributes concurrently. Derived attribute analysis involves 
specific calculations to retrieve certain characteristics from the database. This could be a 
single attribute or cross-attribute analysis of parameters that are not directly recorded in 
the incident database (e.g., number of lanes blocked, incident duration, etc.). 
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3.1. Frequency Analysis of Incident Attributes 

Frequency distribution is the most common type of reporting incident characteristics. The 
analyst can query the incident database to produce frequency distributions for each data 
attribute. This type of frequency reporting can be performed on various time scales such 
as monthly, quarterly, and annually depending on the objectives of the agency (e.g., 
short-term versus long-term performance monitoring). 

When frequency distributions are analyzed over time, they can reveal the trends and 
changes in occurrence patterns of specific incident data attributes. The choice of time 
scale in the frequency analysis depends on the objectives of the agencies. For operations 
planning, shorter time scales such as time of day or day of week can provide meaningful 
results for the frequency analysis. A longer time scale such as quarterly or annually is 
more suitable for long-term performance monitoring. Table 3-1 provides suggested time 
scales for the frequency analysis of incident data attributes.  

For example, the distributions of lane blockage should be reported either quarterly or 
annually for long-term monitoring, but the same analysis would not be particularly useful 
when analyzed by either time of day or day of week. On the other hand, the distribution 
of incident frequency by incident types would be useful at all ranges of time scale and 
thus could be used for both short- and long-term monitoring and planning. 

Table 3-1: Suggested Time Scale for Frequency Analysis. 

3.1.1. Reporting Format 

There are several alternatives to present the results from the analysis. Tabular formats are 
generally recommended for data archival purposes. However, graphical reporting formats 
are usually better for communicating the results across various groups of audiences. The 
general guideline for selecting the graphical reporting format is as follows: 

• If the percentage sum of the figures from all categories being analyzed is equal to 
100 percent, use pie charts or relative bar charts with a fixed height. This format 
is suitable for incident attributes that are mutually exclusive. For example, the 
distribution of incident severity is mutually exclusive because there can be only 
one level of severity recorded per incident (see Figure 3-1). However, this option 
is recommended only if the number of levels being represented in a bar is no more 

Time of Day Day of Week Monthly Quarterly Annually
Incident Types x x x x x

Detection Method x x x
Verification Method x x x

Responders x x x x
Severity x x x x

Weather Conditions x x
Vehicles Involved x x x
Lane Blockage x x

Common Incident Data  
Attributes

Time Scale
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than four. For a greater number of levels, use the second alternative (separate bar 
charts) instead to avoid visual cluttering of information.  

• If the percentage sum of the figures from all categories being analyzed is not 
equal to 100 percent, use separate bar charts for each category. For example, 
Figure 3-2 shows the distribution of incident responders by year. There can be 
multiple responders recorded per incident, and thus the percentage sum of all the 
figures in each year can be greater than 100 percent.  

• Use line charts to represent the counts, frequencies, or rates of incidents over 
time. For example, Figure 3-3 shows incident counts on a monthly basis for 
selected types of incidents. 

 

 
Figure 3-1: Yearly Distribution of Incident Severity (Houston). 

 

 
Figure 3-2: Yearly Distribution of Major Incident Responders (Houston). 
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Figure 3-3: Monthly Incident Counts for Major Incident 

Types (Houston). 

3.1.2. Reporting Time Scale 

The time scale used to produce frequency distribution reports should be selected based 
upon the objectives of the analysis. The general guideline is as follows: 

• operations evaluation/short-term monitoring – time of day, day of week, and 
monthly; and 

• before-after evaluation/long-term monitoring – quarterly and annually. 

The analyst may also consider other time scales as seasonality or weekday/weekend 
effects to address specific objectives of the analysis. It is important to ensure that the 
incident rates being compared are normalized by appropriate exposure. For example, 
when the incident frequency is analyzed by time of day, the number of hours included in 
AM peak, PM peak, and midday periods can vary. Incident rates must be calculated by 
dividing incident counts with the same unit time (e.g., 1,000 hours). Figure 3-4 shows the 
distribution of selected incident types by time of day. In this case, the weekday data were 
classified into different time periods, and the weekend counts were aggregated altogether 
regardless of time of day. The number of incident counts for each time period was 
normalized by the appropriate number of hours. 
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Figure 3-4: Distribution of Selected Incident Types by Time of Day 

(Houston). 

3.2. Cross-Attribute Analysis 

Frequency analysis in the previous section relies on a single incident data attribute. The 
analyst can study frequency distributions taking into account two or more data attributes 
simultaneously in the analysis. The incident reports produced from the analysis in this 
manner are referred to as “cross-attribute” analysis.  

The cross-attribute analysis, while usually more complicated, can provide a greater 
insight into occurrence patterns of specific combinations of incident data attributes. For 
example, a frequency distribution of incident severity by type can be used to identify the 
types of incidents with relatively higher rates of injuries and fatalities. Two-level cross-
attribute analysis refers to the type of distribution report based on two attributes 
concurrently (e.g., incident severity by type, number of lanes blocked by incident 
severity, etc.). When more than two attributes are used simultaneously, the distribution 
analysis becomes multi-level cross-attribute analysis. Theoretically, there is no upper 
limit on the number of attributes that the analyst can include. However, the results from 
multi-level cross-attribute analysis can quickly become confusing due to the excessive 
number of potential combinations. Moreover, the results of multi-level distribution 
reports can be difficult for the agency to synthesize internally or communicate to the 
public. 

Table 3-2 summarizes the suggested two-level cross-attribute analysis of incident data. 
The “x” in the table indicates a scenario where cross-attribute analyses can produce 
meaningful results. The analyst can use this matrix to create a customized list of desirable 
reports from cross-attribute analysis that suits the needs and/or requirements of the 
agency. 
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Table 3-2: Suggested Two-Level Cross-Attribute 
Analysis of Incident Data. 

 

 

The considerations for reporting format and time scale for cross-attribute analysis are 
similar to those of single attribute analysis. Figure 3-5 shows the distribution of major 
responders by incident types. A distribution of all responders was first examined to 
identify the types of major responders. Then, a cross-attribute analysis by incident types 
was performed on major responders to examine specific distributions of responders by 
incident types. 

 

 
Figure 3-5: Distribution of Selected Responders by Incident Types (Houston). 
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3.3. Derived Attribute Analysis 

Derived attributes are the characteristics that are not directly recorded but can be 
computed or extracted from the incident database. The level of complexity involved in 
retrieving these attributes varies and depends on the structure and format of the incident 
data archive. Examples of derived attributes are summarized in Table 3-3. 

Table 3-3: Examples of Derived Attributes. 

Attribute Calculation 
Categorical Attribute  
First Responder • If arrival times by responders are recorded in the 

database, use the earliest arrival time among all the 
responders.  

Number of Lanes 
Blocked 

• If lane number is recorded for each lane block, add 
up all the lanes recorded by types (e.g., main lane, 
frontage lane, ramp lane). 

  
Continuous Attribute  
Incident Duration • If both incident detection and clearance times are 

recorded, obtain the incident duration by computing 
the difference between the detection and clearance 
times. 

First Responder 
Response Time 

• Calculate the difference between incident detection 
time and first responder arrival time, if available. 

Total Response Time • Calculate the difference between incident detection 
time and last responder arrival time, if available.  

3.3.1. Validity Check 

It is recommended that data validity checks be performed prior to any subsequent 
analyses. The most common types of validity checks can be classified as follows: 

• Missing data – For example, incident duration cannot be computed if the 
clearance time is missing. 

• Erroneous data – For example, incident durations cannot be negative values. 
• Invalid data – Examples of logical checks for invalid data include minimum and 

maximum of duration data such as incident duration and first responder response 
time. 

3.3.2. Reporting Continuous Derived Attribute 

Considerations for reporting formats and time scales in this case are similar to all the 
previous analyses. Categorical variables can be analyzed and reported using frequency 
distributions grouped by either single or multiple attributes. However, for continuous 
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derived attributes such as duration data, the frequency method will no longer apply. The 
following types of statistics are recommended for reporting continuous values: 

• Mean – Mean value should only be used for data that are symmetrically 
distributed. Asymmetrically distributed data can give a biased estimate of mean 
value. When the distribution is symmetrical, the mean and median will be 
approximately the same. The advantage of the arithmetic mean over the median is 
that it is simpler and more efficient to calculate in computer software (e.g., 
spreadsheet based or database software). 

• Median – Median value is recommended for most duration data observed in the 
incident database. Median value is not affected by extremely low or high values in 
the data set and thus suitable for calculating averages of asymmetrically 
distributed data. 

• Specific percentile values – Percentile value is recommended for calculating the 
upper and lower ranges of the data set. To illustrate, 95th percentile of incident 
duration would represent the duration value at which only 5 percent of all incident 
data will exceed. Percentile values are preferred to minimum and maximum 
values for establishing the lower and upper ranges of the observed attribute values 
since they are less likely to be affected by outliers. 

• Exceedance rate – The rate at which the specified threshold is exceeded. This 
measure is useful when the agency is interested in analyzing specific situations. 
For example, in addition to obtaining incident duration, the analyst can also 
compute the rate at which the incident duration is greater than two hours by time 
of day. 

Figure 3-6 shows the example of incident duration statistics classified by incident types. 
In this case, the analyst can determine the average duration of specific incident types 
based on the median values and the corresponding upper duration threshold by the 85th 
percentile values. The duration data were displayed on a log scale in order to capture a 
wider range of duration values in the same chart. 

Figure 3-7 displays another example of derived attribute analysis. The incident data from 
Fort Worth were used to identify the major types of first responders and then compute the 
median and 95th percentile values of first responder response times. The data were also 
displayed in a log scale as in the case of incident durations. 
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Figure 3-6: Incident Duration Statistics by Incident Types (Houston). 

 

 
Figure 3-7: First Responder Response Time Statistics (Fort Worth). 

3.4. Considerations for Reporting Incident Characteristics 

Producing routine reports on incident characteristics is time consuming and requires 
technical expertise to do the job accurately. Incident characteristics are worth reporting if 
they are used to make informed decisions. The following considerations should be taken 
into account in producing these reports: 
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• What are the objectives of the reports? 
• The objectives of the reports should determine the appropriate time scale for the 

analysis. 
• What types of characteristics should be reported? 
• Are the data sufficient and valid for producing the reports? 
• Who will be the audiences? 
• What are the most effective presentation methods to communicate the results to 

the audiences? 
• Consider automating the calculation and reporting procedures if the reports are 

needed on a regular basis. 
• Incident characteristics are based on what has happened and by themselves are not 

predictions of what will happen. 

Table 3-4 outlines some of the possible advantages and disadvantages to the frequency of 
reporting. 

Table 3-4: Regular Monitoring Report Considerations – Modified from (17). 
Frequency of 

Regular 
Monitoring 

Reports 

Possible Advantages Possible Disadvantages 

Quarterly • Better connection to strategic agency goals
and decisions. 

• An active reporting system improves the 
visibility of performance improvement. 

• Improves communication between various 
stakeholders. 

• If formatted for public view, it also can be 
a good public information and 
accountability tool. 

• Encourages improvements in data 
organization and quality. 

• Builds internal agency support and 
accountability. 

• Regular reporting establishes a routine, 
helping to instill performance 
measurement into agency culture and daily 
activities. 

• Slow data reporting and 
processing may limit the value of 
a quarterly report. 

• Personnel resources required may 
exceed those available. 

• Measures driven by data 
availability may not be suitable 
for quarterly reporting. 

• Measures related to critical agency 
objectives may be difficult to 
report on frequent basis. 

• High “yawn” factor if conditions 
do not change quarterly. 

Annually • Greater ability to track historic trends. 
• Longer time period to collect data. 
• If formatted for public view, good public 

relations and accountability tool. 
• Able to provide in-depth coverage of 

agency’s performance. 

• Data availability and consistency. 
• Limited personnel resources. 
• Vulnerable to changes in 

administration or leadership (if not 
routinely visible and valued by 
top-level management). 

 

 



 

4. ANALYZING HOT SPOTS 

Historical incident data archived at the TMCs can be used to help identify incident-prone 
locations or hot spots. This module describes the analytical methods and tools for this 
application. 

This module outlines procedures to evaluate spatial and temporal patterns in the 
distribution of incidents for Texas TMCs and to use this information to develop strategies 
for improving incident management operations such as improving detection/response 
times. The main idea of this analysis is to perform incident data mining to determine 
whether there was evidence of spatial and temporal effects in the distribution of incidents.  
TMC managers can use such information as decision support tools for designing and 
improving their incident management strategies. Examples of hot spot applications 
include the assignment of patrol vehicles around freeway segments with high incident 
frequencies, identifying hazardous freeway segments for improved traffic sensors, and 
allocating control center operators for different work shifts.  

4.1. Overview of Hot Spot Identification Methods 

Depending on data availability, two methods can be used for identifying hot spots: 

• the frequency-based method and  
• the attribute-based method.  

First, the frequency-based identification method relies mainly on the frequency and 
location of incidents regardless of their characteristics. This method considers locations 
experiencing high rates of incidents as hot spots.  The advantage of this method is that it 
is simple and requires minimal incident data attributes. However, the weakness of this 
method is that it treats all the incidents equally regardless of their characteristics. The 
impacts of the incidents are not incorporated into the analysis.  

Second, in addition to incident frequency, incident characteristics such as incident 
duration can potentially be used as a proxy of incident impacts to identify hot spots. To 
utilize such information, the analyst may consider using the attribute-based identification 
method. The attribute-based method combines the information about the locations, 
frequencies, and certain attributes of incidents to identify hot spots. This method can help 
TMC managers pinpoint the locations of concern through effective use of the information 
available in the incident database. However, this also increases the complexity and data 
requirement of hot spot analysis procedures.  

4.2. Data Requirement 

The first step prior to the hot spot analysis is to check if the incident data attributes are 
sufficient for the analysis. As noted, characterization of incident data entails evaluating 
temporal and spatial patterns in the distribution of incidents.  Two types of data attributes 
are generally required for analyzing incident-related statistics and hot spot locations:  
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• Temporal attributes – This attribute is typically collected as time logs for various 
events in an incident timeline. The most critical temporal element is the incident 
occurrence time. The incident detection or notification time is often used to 
signify the incident starting time since the actual occurrence time can be difficult 
to obtain.  

• Spatial attributes – This attribute is used to identify the incident locations on the 
freeway. There are many ways to spatially reference incidents.  Examples include 
geographical coordinates (longitude and latitude), roadway sector address, names 
of closest intersecting roads, street address, and highway name and milepost.  The 
analyst could use any of these methods to map incident information. Nevertheless, 
the easiest method would be geographic coordinates. 

In addition to the required attributes, the supplemental attributes collected in the incident 
database are often very useful for this analysis. For instance, the analyst can examine 
high-incident locations classified by incident types where such attributes are available. 
These supplemental attributes are generally collected along each incident record at Texas 
TMCs. Examples of these attributes include: 

• incident type; 
• incident severity; 
• weather conditions; 
• incident responders; 
• blockage characteristics, e.g., number of lanes blocked, duration, and types of 

lanes blocked; and 
• number and type of vehicles involved. 

To suit various analysis objectives, the specific data requirement should be further 
tailored based on data availability at individual TMCs because the approaches for 
generating and archiving incident data vary from agency to agency.  

For example, TranStar maintains a comprehensive incident archive with over 70 incident 
data attributes generally collected.  In contrast, San Antonio’s TransGuide archives a 
much simpler log of incidents with only several incident data elements; nevertheless, 
TransGuide also archives all messages displayed on its DMSs.  Smaller TMCs, such as 
Laredo’s STRATIS, do not archive any of their incident information.  TMCs also vary in 
how they geographically reference their incident data.  For instance, TranStar uses the 
following incident location identifiers: main road name, direction, cross street name, and 
a qualifier (at, before, and after), in addition to longitude/latitude coordinates.  
TransGuide, on the other hand, geographically references its incidents using a sector 
address, which has three components separated by a dash: the letters SECT, representing 
roadway sector; freeway number; and mile marker.  TransGuide has a GIS-based 
database identifying the location of these sectors.  Mapping incident locations is crucial 
for the spatial analysis of the incidents.  

Table 4-1 shows an example of incident data attributes used to perform hot spot analysis 
based on Houston’s TranStar incident data specifications.  
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Table 4-1: Example of Incident Data Attributes Used for Hot Spot Analysis. 

4.3. Analysis Tools 

Geographic information system tools are particularly useful for an analysis of this type 
where required database queries are specifically related to mapping queried results as 
features on the base map. A typical database program such as Microsoft Access can also 
be used, but it provides limited functionalities in visualizing the results in a map-based 
format. The analyst can use a combination of Microsoft Access and ESRI ArcGIS to 
perform the hot spot analysis. Access is used mainly to manipulate and query the incident 
data. Most queries can be performed using Access unless spatial relationships are to be 
considered. Examples of spatial queries are locating the incidents that occurred within the 
proximity of loop detectors or locating the incidents that occurred within the proximity of 
each other. Spatial queries will require a GIS-based tool to carry out the analysis. 

4.4. Preliminary Evaluation of Incident Data 

The second step prior to conducting a hot spot analysis on the data is to conduct a 
preliminary evaluation on historical incident data. There are two major tasks in this 
evaluation: 

• data validation – check the incident data for any errors or abnormalities and 
• distribution analysis – identify any noticeable temporal or spatial incident patterns 

for the specific locations or areas of interest. 

4.4.1. Data Validation 

Incident data can be invalid for hot spot analysis for a number of reasons. Common errors 
observed in the incident database are: 

• Missing geographic reference information – Missing data fields such as road 
names, cross streets, and directions can lead to wrong placement of incident 

ROADWAY CROSS_STREET DIRECTION LATITUDE LONGITUDE Incident Duration Day of Week Hour Time of Day
IH-10 KATY IH-610 WEST LOOP Westbound 29.7805 -95.4539 17.0 Wed 20 Night

US-59 SOUTHWEST KIRBY DR Northbound 29.7305 -95.4187 18.0 Thu 2 Night
US-59 SOUTHWEST IH-610 WEST LOOP Northbound 29.7288 -95.4606 153.4 Thu 4 Night

IH-10 EAST US-59 EASTEX Eastbound 29.7697 -95.3413 164.6 Thu 4 Night
IH-45 GULF LOCKWOOD Northbound 29.72789 -95.33644 11.6 Thu 5 Night
IH-45 GULF EL DORADO BLVD Southbound 29.5536 -95.154 21.0 Thu 5 Night

IH-45 NORTH WEST RD Northbound 29.91512 -95.41241 40.2 Thu 6 AM Peak
US-59 EASTEX IH-45 GULF Southbound 29.74448 -95.36276 32.4 Thu 6 AM Peak

US-59 EASTEX HOV MT HOUSTON RD Southbound 29.8909 -95.3183 18.3 Thu 6 AM Peak
SH-225 SH-146 Eastbound 29.6886 -95.031 33.0 Thu 6 AM Peak

US-290 NORTHWEST HOV PINEMONT DR Eastbound 29.8415 -95.4926 98.0 Thu 7 AM Peak
IH-10 EAST HARDY/MCKEE ST Eastbound 29.76999 -95.35217 1.3 Thu 7 AM Peak

IH-610 EAST LOOP SHIP CHANNEL Northbound 29.7249 -95.2666 2.8 Thu 7 AM Peak
IH-610 WEST LOOP MEMORIAL DR Southbound 29.7733 -95.4559 24.2 Thu 8 AM Peak
IH-610 WEST LOOP IH-10 KATY Southbound 29.7806 -95.4536 20.8 Thu 8 AM Peak
IH-610 EAST LOOP CLINTON DR Southbound 29.7383 -95.2654 5.0 Thu 8 AM Peak

US-59 SOUTHWEST SH-288 Southbound 29.73405 -95.37128 15.4 Thu 8 AM Peak
IH-610 NORTH LOOP KELLEY ST Eastbound 29.8094 -95.3071 2.3 Thu 9 Midday
IH-610 NORTH LOOP HOMESTEAD RD Eastbound 29.8073 -95.3018 72.2 Thu 9 Midday

US-59 EASTEX TIDWELL RD Northbound 29.8488 -95.3339 7.9 Thu 9 Midday
US-59 SOUTHWEST IH-610 WEST LOOP Northbound 29.7288 -95.4606 92.7 Thu 9 Midday
IH-610 SOUTH LOOP IH-45 GULF Eastbound 29.6975 -95.2886 21.6 Thu 10 Midday

IH-45 NORTH IH-610 NORTH LOOP Southbound 29.81483 -95.37582 5.9 Thu 11 Midday
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locations and thus produce incorrect analysis results. Only incident records with 
complete geographic reference information should be retained. 

• Non-unique coordinate data – Multiple coordinates may exist for a single location 
based on the description of the cross street and roadway name. In cases where 
multiple coordinates are located within the proximity of the others, the one with 
highest incident counts should be considered the correct one. To avoid this 
problem, it is advisable to generate a table of unique location information to 
which individual incidents can be mapped.  

• Invalid incident duration – Incident duration is a derived attribute and also a good 
indicator for flagging invalid incident records. There are several forms of invalid 
duration value. For example, in Houston’s incident database, negative incident 
durations were occasionally observed; in Austin’s incident database, missing 
incident clearance times and unrealistically short incident durations are more 
common. These records should be excluded if the analyst intends to incorporate 
an incident duration component into the analysis, e.g., calculating average 
duration values. Otherwise, they can be left intact in the database as long as they 
do not significantly alter the frequency distributions of incident data. 

• Duplicate/invalid incident data entries – Some incident records appear more than 
once in the database. This type of error can occur when more than one operator is 
handling the same incident. This type of error may be detected by a pattern of 
very close start and end times and exactly the same characteristics such as 
response unit and detection methods. Though they are not easily identifiable, they 
do not represent a significant portion of the data based on our observation. 

4.4.2. Distribution Analysis 

Due to variations in generating and archiving incident data among Texas TMCs, 
preliminary analysis of the incident data must be conducted differently. In general, the 
analyst will need to develop queries that are specific to the agency’s incident database. 
The query outputs are in the same format for the same type of analysis. The 
implementation of the queries, however, varies depending on the specification of the 
incident database.  

Three major types of queries can be performed during the preliminary analysis for the 
identification of hot spots: 

• temporal distribution of incidents, 
• spatial distribution of incidents, and 
• distribution of incidents customized by supplemental attributes. 

4.4.2.1. Temporal Distribution of Incidents 

First, the analyst can develop queries to evaluate temporal patterns in the distribution of 
incidents from the sample incident data. Examples include the following categories: 

• distribution of incidents by month and if needed by season (summer season versus 
school-in-session season); 
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• distribution of incidents by day of week and weekday versus weekend days; and 
• distribution of incidents by time of day (AM peak, midday, PM peak, and night 

and early-morning hours). 

For each of these time periods, the average number of incidents per time period and the 
corresponding relative distribution percentages can be computed.  Such statistics will 
provide a number of performance measures that could be used to improve incident 
management practices.  Produced incident rates can also provide simple incident-
frequency forecasts, which can be used for optimizing TMC operator staffing and 
freeway courtesy patrol fleet scheduling and routing. 

The analyst can use the temporal trends of incidents to determine if and how the hot spots 
should be identified. For example, if the analyst observes distinct patterns of incident 
distribution by specific times of day or specific days of the week, the hot spots during 
those particular conditions should be separately identified for incident management 
purposes. 

Figure 4-1 shows an example of incident count distribution by months using TranStar’s 
incident database. 

Figure 4-1: Example of Monthly Incident Frequency over Time (Houston). 

4.4.2.2. Spatial Distribution of Incidents 

This procedure focuses on evaluating spatial patterns in the distribution of incidents from 
the sample incident data.  Maps showing the incident information corresponding to 
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different time periods can be generated.  The spatial analysis will be used to identify 
incident hot spots, i.e., areas with higher-than-normal incident rates.  For example, the 
information about the higher-than-normal incident locations and time periods can be used 
to develop appropriate surveillance strategies for TMC operators to help improve incident 
detection capabilities. 

A more aggregate, corridor-level spatial analysis can be done by dividing the city’s 
network into roughly homogeneous corridors.  For each corridor, the analyst can 
determine a number of performance measures such as average number of incidents per 
weekday, average number of incidents per weekday per mile, average number of 
incidents per million vehicles, and average number of incidents per million vehicle miles 
traveled (VMT).  The rankings of the corridors based on each of the aforementioned 
performance measures can also be determined.  

To examine spatial distributions of incidents, each incident record must contain the 
location information. The most common and convenient form is the coordinate data in 
latitude and longitude format. Texas TMCs typically use the coordinates of the nearest 
cross street to identify the locations of incidents. Additional location qualifiers 
(at/before/after) are also used to describe the incident locations with respect to the 
locations of the cross street. 

Microsoft Access can be used to perform queries for spatial distributions. However, GIS 
is particularly useful in displaying the query results in a map-based format. Most 
coordinate data recorded in an incident database can be easily projected onto the map 
using GIS. In this manner, the analyst can quickly examine the results and identify the 
potential locations of concern. 

Figure 4-2 shows an example of spatial distribution of incidents using TranStar’s incident 
database. The query was first performed in Microsoft Access using Structured Query 
Language (SQL), and then the results were imported and displayed on the GIS-based 
map. The analyst can customize the map symbols based on different ranges of incident 
frequencies. 

4.4.2.3. Distributions of Incidents Customized by Supplemental Attributes 

Various incident characteristics can be used to further disaggregate the incident 
distributions, for instance, by type or by severity. The analyst may also wish to examine 
the temporal-spatial distribution of incidents, which can be obtained by developing 
queries using a combination of both temporal and spatial attributes.  

For example, the analyst can combine the temporal and spatial attributes of incidents and 
perform the queries to: 

• identify locations with high incident frequency on an hourly basis or specific time 
of day (e.g., AM peak, PM peak, night); and 

• identify locations with high incident frequency by month or seasonality. 

In addition to the temporal-spatial distributions of incidents, the analyst can also 
customize incident distributions using supplemental attributes from the incident database. 
Examples of these supplemental attributes include: 
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• Incident severity – TranStar, for example, classifies the incident severity into 
three categories based on visual assessment of its impact on freeway traffic. These 
three categories are minor, major, and fatalities accident/collision. 

• Incident types – Examples of incident types typically recorded in Texas TMCs 
include accident, disablement/stall, and congestion. Note that the congestion type 
is included in the incident database for certain Texas TMCs, such as Austin’s 
CTECC. Congestion incidents in the CTECC database are the results of detector 
alarms when the occupancy exceeds the pre-specified thresholds. 

 

 
Figure 4-2: Example of Spatial Distribution of Incidents (TranStar). 
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4.5. Frequency-Based Hot Spot Analysis 

The frequency-based hot spot identification method defines hot spots as the locations that 
experience above-normal incident rates. Incident rates are the number of incidents 
divided by the time period over which the incidents occurred. An upper threshold must be 
specified to determine if a particular location has unusually high incident rates.  

4.5.1. Procedures for Frequency-Based Hot Spot Analysis 

The procedures to identify hot spots using the frequency-based method can be 
summarized as follows: 

• Conduct a preliminary analysis to identify any temporal/spatial patterns of 
incident distributions. The analyst can use this information to determine how the 
hot spot identification should be conducted. For example, based on our 
examination of Austin’s incident database, it was found that the hot spot analysis 
should be conducted based on different times of day. There was no distinct trend 
to conduct the analysis on a monthly basis. 

• Conduct queries that group incidents by their locations and other characteristics. 
For example, the analyst can query the spatial distribution of incidents by times of 
day. Similarly, the analyst can also examine particular types of incidents, such as 
collision, stall, etc. The query results should contain locations, counts or 
frequencies, and other specific characteristics (e.g., time of day, type of incident). 

• Normalize the incident counts by appropriate exposure. The concept of incident 
exposure is analogous to that of safety analysis. The rate at which incidents occur 
should be proportional to their exposure. The exposure for traffic incidents could 
be as simple as time period or traffic volume. It could also be more complicated, 
such as conflicting flows designed to capture specific types of conflicting traffic 
streams. It is important that the selected exposure has a logical relationship with 
incident occurrence. We recommend the use of time exposure (e.g., 1,000 hours) 
for this method due to its simplicity and error-free measurement. 

• Specify the threshold for hot spots. For example, 90th percentile of incidents per 
year can be set as a hot spot threshold. The locations that experience incident rates 
higher than the threshold are designated as hot spots. The threshold can be 
increased or decreased to balance the number of identified hot spots with 
available incident management resources. 

• Plot the identified hot spots on the map. A GIS-based map is a very useful and 
convenient tool for displaying the hot spot results. Only coordinate data of the hot 
spot locations are needed for the map display. For incident data, the coordinates 
of nearest cross streets are commonly used to give approximate locations of 
incidents. 

4.5.2. Defining Thresholds for Frequency-Based Hot Spots 

The analyst may consider three alternatives for threshold specification. First, if available, 
the threshold may be specified according to TMC policies. Second, specific percentile 
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values of incident rates can be established based on all historical incident data. Third, the 
specific number of top hot spot locations can be specified by the agency (e.g., top 20 hot 
spot locations), and then the threshold can be established such that it yields the specified 
number of hot spots. 

The thresholds may be adjusted based on available incident management resources. A 
higher threshold would allow fewer locations to be qualified as hot spots, and vice versa 
for a lower threshold. For example, a lower threshold may be adopted if there are 
sufficient monitoring resources (e.g., center operators) for all locations identified as 
potential hot spots. 

4.5.3. Recommended Frequency-Based Hot Spot Analysis 

There are several alternatives for conducting frequency-based hot spot analysis for the 
agency such as frequency by time of day or by incident type. It is recommended that, at 
the minimum, the following analyses should be performed for the agency: 

• weekday AM peak frequency-based hot spots, 
• weekday midday frequency-based hot spots, 
• weekday PM peak frequency-based hot spots, 
• weekday night frequency-based hot spots, 
• weekend frequency-based hot spots, and 
• all frequency-based hot spots (using all incidents regardless of time of day). 

The rule of thumb for safety evaluation requires three years worth of crash data in the 
analysis to ensure that hot spot results are reliable. It is possible to use less data in this 
analysis because incident data for all types are more frequent than the accident type 
alone. However, when analyzing hot spots for specific types of incidents, the analyst 
should be aware of the potential regression-to-mean effect, which is the case where safe 
locations are mistakenly notified as unsafe locations due to the randomness of incident 
occurrences.  

4.5.4. Example of Frequency-Based Hot Spot Results 

Figure 4-3 shows an example of hot spots identified using the frequency-based method 
during the AM peak period in Houston. Table 4-2 lists the locations of hot spots ranked 
by average number of incidents per 1,000 hours. In this case, incident data archived from 
2004 to 2007 in the Houston TranStar’s incident database were used. Then, the top 20 
locations with the highest incident rates were selected as hot spots. Other alternative 
thresholds, such as percentile of total number of locations or certain value of incident 
rates, can be used to designate hot spots as well.  

The hot spot queries were first conducted using Microsoft Access SQL, and then the 
results were customized and displayed using a GIS-based map. The maps can be 
customized to display the name of the cross streets and the freeway directions associated 
with the hot spots as well. 
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Figure 4-3: Houston AM Peak Frequency-Based Incident Hot Spots. 
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Table 4-2: Locations of Houston AM Peak Frequency-Based Incident Hot Spots. 

4.6. Attribute-Based Hot Spot Analysis 

The frequency-based identification method primarily uses only location and time of 
incident occurrences to identify hot spots. Though the frequency-based method is simple 
and easy to implement, several other potentially useful attributes collected in the database 
are not fully utilized. The attribute-based hot spot identification method aims to address 
this shortcoming by incorporating more attributes from the incident database into the 
identification of hot spots. 

The attribute-based identification method can be viewed as a supplemental technique to 
the frequency-based method. The analyst can use any appropriate incident attribute for 
the analysis as long as attributes have logical causations to the distribution of incidents.  
Typical examples of incident attributes include incident duration, incident type, incident 
delay, lane blockage characteristics, incident severity, and so forth. Discrete attribute 
values can be recoded using numeric values and then rescaled to appropriate ranges.  

The attributes used in the attribute-based hot spot analysis must possess the following 
characteristics: 

• The attribute value must be ordinal and numeric.  
• The increase and decrease in the attribute value should have a logical causal 

relationship with incident impacts. For example, the locations with high incident 
durations on average are more critical than the locations with lower average 
durations. 

Rank Roadway Cross Street Direction Total Avg*
1 US-59 SOUTHWEST IH-610 WEST LOOP Northbound 111 35
2 IH-610 NORTH LOOP IRVINGTON BLVD Westbound 82 26
3 IH-10 KATY SH-6 Eastbound 80 26
4 IH-45 NORTH IH-610 NORTH LOOP Southbound 75 24
5 IH-45 GULF US-59 EASTEX Northbound 72 23
6 US-59 SOUTHWEST CHIMNEY ROCK RD Northbound 69 22
7 IH-45 GULF BROADWAY ST/PARK PLACE Northbound 67 21
8 IH-610 NORTH LOOP IH-45 NORTH Westbound 63 20
9 IH-45 NORTH GULF BANK RD Southbound 62 20

10 IH-610 NORTH LOOP FULTON Westbound 61 19
11 IH-45 GULF TELEPHONE RD Northbound 55 18
12 US-59 SOUTHWEST HILLCROFT AVE Northbound 55 18
13 IH-10 KATY WASHINGTON AVE/WESTCOTT ST Westbound 54 17
14 IH-10 EAST LOCKWOOD DR Westbound 51 16
15 IH-45 GULF IH-610 SOUTH LOOP Northbound 48 15
16 IH-45 GULF SCOTT ST Northbound 48 15
17 IH-10 EAST HOLLAND AVE/JOHN RALSTON RD Westbound 47 15
18 IH-45 NORTH N SHEPHERD DR Southbound 46 15
19 IH-45 NORTH RANKIN RD Southbound 46 15
20 IH-610 WEST LOOP WOODWAY DR Northbound 46 15

Note: * Incident counts in respective locations are normalized by time exposure (1,000 hours).
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Examples of attributes other than incident duration that meet these requirements include 
incident clearance time, traffic volume (requires separate data source), number of lanes 
blocked, and number of vehicles involved. 

The following sections describe the methods for producing: 

• basic attribute-based hot spots and 
• advanced attribute-based hot spots using Getis-Ord spatial statistics. 

The advanced attribute-based identification method requires the use of the spatial analyst 
toolbox in ArcGIS to conduct the analysis. 

4.6.1. Basic Attribute-Based Hot Spot Analysis 

Basic attribute-based hot spot analysis identifies the locations with high attribute value as 
hot spots. The attribute values are calculated using descriptive statistics derived from all 
the incidents corresponding to each unique location.  

Among all incident attributes, incident duration is one important attribute that can be 
incorporated into the analysis. Incident duration can be easily calculated from the 
incident database if incident occurrence and clearance time logs are available. Incident 
duration can be viewed as a good proxy of incident impact measured on a continuous 
scale. For example, by incorporating duration characteristics, the analyst can define hot 
spots as the locations that tend to experience long-duration collisions. Several factors can 
be attributed to its long duration, such as the distance between incident sites and response 
units, freeway congestion at the time of collision, lack of CCTV coverage, etc. By 
incorporating the duration attribute into the hot spot analysis, the analyst can map out the 
locations where high-duration collisions are more likely to occur.  

4.6.1.1. Procedures for Basic Attribute-Based Hot Spot Analysis 

In this section, the duration attribute and median statistics are used as an example to 
describe the procedure. Other incident attributes with continuous values can be directly 
applied using appropriate aggregation statistics such as median, mean, maximum, etc. 
The procedures to identify hot spots using the median duration method can be 
summarized as follows: 

• Conduct a preliminary analysis to identify a logical correlation between the 
selected incident attribute and other incident characteristics. For example, based 
on the preliminary analysis of incident data in Houston, it was found that incident 
types have significant influence on incident duration. Also, the implication of 
long incident duration can differ by incident type. Accidents with long incident 
duration generally are high-impact ones. Non-lane-blocking stalls with long 
incident duration are typically those abandoned on shoulders, which do not 
require immediate response. 

• Create queries to retain only incident records with valid data attributes (i.e., 
incident duration).  
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• Check the sample size for each location for calculating median durations. First, 
query the incident counts grouped by locations and directions throughout the 
analysis period; then sort and rank incident counts in a descending order. Retain 
only the locations with sufficient incident counts for the median calculation. For 
Houston data, it is recommended that the top 25 percent of all locations (in terms 
of incident counts) are retained for the analysis, which is equivalent to the 
minimum of six incidents per unique location over the four-year period 2004 to 
2007.  

• Calculate median durations for all the locations retained from the previous step. 
Median statistics can effectively minimize the potential bias from data that are 
heavily skewed. In this manner, the extremely high or low duration values 
(outliers) will affect the average duration calculated by using median statistics. 

• Specify the threshold for hot spots. As discussed in Section 4.5.2, three 
alternatives can be used to establish the threshold.  

• Plot the identified hot spots on the map using the GIS-based tool. Similar to the 
frequency-based maps, only the coordinate data of the hot spot locations are 
required for the map display.  

The analyst should be mindful of the fact that median statistics require sufficient data 
points for the calculation. Setting a minimum threshold for incident frequency prior to the 
median analysis can help prevent a situation where locations with a few high-duration 
incidents could be mistakenly identified as hot spots. For Houston’s example, the top 25 
percent of locations with high incident frequency still retain approximately 80 percent of 
all incident records. Depending on the characteristics of incident data at the TMCs, 
different thresholds may be applied.  

4.6.1.2. Defining Thresholds for Hot Spots 

Similar to the methods for specifying thresholds for frequency-based hot spot analysis, 
three methods can be considered for establishing a threshold based on the calculated 
attribute value for each unique location: 

• agency-established threshold (e.g., median incident duration of 30 minutes or 
longer); 

• percentile-based threshold (e.g., 95th percentile of incident duration); and 
• target-based threshold (e.g., a duration threshold which yields 20 hot spots). 

4.6.1.3. Recommended Basic Attribute-Based Hot Spot Analysis 

There are a number of combinations to perform the attribute-based hot spot analysis 
ranging from the choice of attribute to the set of selected characteristics (e.g., incident 
type, time of day, etc.) Incident duration attribute should be considered as one candidate 
for the routine attribute-based hot spot analysis. The following analyses are 
recommended for basic duration-based analysis:  
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• median duration hot spots by incident type and 
• median duration hot spots by incident severity. 

Attributes other than incident duration can be considered as well. Incident response time, 
for example, measures the performance of response units to incidents, and it can be 
influenced by factors such as response units, incident type, and time of day. If the agency 
wishes to prioritize hot spots by those with long response times, the analyst can perform 
the following analyses: 

• median response time hot spots by major responders and 
• median response time hot spots by major responders for common types of 

incidents. 

In addition to attributes available from the incident database, external data sources can be 
considered in the attribute-based analysis as well. Examples include traffic volume and 
occupancy data from either loop detectors or radar sensors. These external data must be 
matched with incident records using incident detection times as a reference point. This 
data matching procedure can be complex in some cases.   

4.6.1.4. Example of Duration-Based Hot Spot Analysis 

Figure 4-4 shows the example results of attribute-based hot spot analysis using the 
median incident duration. The top 20 locations with high median duration are listed in 
Table 4-3. Only accidents from 2004 to 2007 recorded at Houston TranStar were used in 
the analysis regardless of time of day. The corresponding duration-based hot spot map is 
shown in Figure 4-4.  

4.6.2. Getis-Ord (Gi*) Spatial Statistics 

Gi* spatial statistics are a hot spot analysis tool implemented in ArcGIS software. Gi* 
spatial statistics can be used to find the locations of spatial clusters of either high or low 
attribute values. Let us consider the duration attribute as an example. Gi* statistics can be 
used to locate sites where above-average and below-average duration values tend to be 
found clustered. This tool can be run to calculate Gi* statistics corresponding to each 
incident record. Then, the analyst can specify a threshold for Gi* statistics to identify the 
locations that have clusters of incidents with high incident durations. This tool allows the 
analyst to test if those patterns of high/low attribute values are statistically significant. 
The appropriate level of statistical significance can be specified and adjusted to balance 
the number of hot spots identified with available incident management resources. 
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Figure 4-4: Basic Attribute-Based Hot Spot Identification (Median Duration). 
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Table 4-3: Locations of Hot Spots Using Basic Attribute-Based Analysis. 

4.6.2.1. Procedures for Hot Spot Analysis 

This analysis requires the hot spot analysis tool implemented in the ArcGIS software. The 
duration attribute is used to describe the procedure. It should be noted that other incident 
attributes with continuous values can be directly applied without any modifications. In 
addition, some categorical incident attributes can be converted to continuous numeric 
values as long as the original implications of the attributes remain. The primary steps to 
prepare the data for the GIS-based hot spot analysis can be summarized as follows: 

• Perform queries to create a data table that comprises the following fields: incident 
time logs, coordinate data, and selected attribute values (e.g., duration).  

• Remove locations with insufficient incident records from the analysis. The analyst 
can specify thresholds based upon the distribution of incident counts at each 
location. For Houston’s example, the observed median count was used as a cut-off 
value (i.e., six incidents per four years).  

• Remove locations with unrealistically low and high attribute values from the 
analysis. For Houston’s duration data, incidents longer than one day were 
excluded from further analysis to prevent the effects of outliers on the computed 
Gi* statistics. 

• Transform the duration values using a natural logarithm. This step is optional for 
attributes other than duration data. The purpose of log transformation is to 
account for the scaling effects. For example, consider an increase of incident 
duration by 30 minutes from the base durations of 30 minutes versus 300 minutes. 

Rank Roadway Cross Street Direction Median 
Duration (min)

# of 
Incidents

1 SH-288 BELLFORT BLVD Northbound 56.2 31
2 SH-288 ALMEDA-GENOA RD Northbound 42.5 55
3 IH-45 GULF FM-528/W NASA ROAD ONE Northbound 42.3 48
4 SH-288 SAM HOUSTON TOLLWAY Southbound 41.2 47
5 SH-288 AIRPORT BLVD Northbound 41.1 34
6 US-59 EASTEX IH-10 EAST Southbound 39.4 37
7 SH-288 OREM Northbound 39.3 36
8 IH-45 RAYFORD RD/SAWDUST RD Southbound 38.9 29
9 SH-288 REED RD Southbound 38.7 29
10 IH-45 RAYFORD RD/SAWDUST RD Northbound 37.8 34

11 BELTWAY 8-NORTH/SAM 
HOUSTON TOLL HARDY TOLL Westbound 37.7 83

12 US-290 NORTHWEST FM-529 Eastbound 37.5 44
13 IH-610 NORTH LOOP WAYSIDE DR Eastbound 37.1 36
14 SH-288 SAM HOUSTON TOLLWAY Northbound 37.1 61
15 IH-45 FM-518 Southbound 36.9 43
16 IH-610 SOUTH LOOP SH-288 Eastbound 36.6 97
17 US-290 NORTHWEST JONES RD Eastbound 36.6 44
18 SH-225 SCARBOROUGH LN Westbound 35.5 37
19 IH-610 NORTH LOOP US-59 EASTEX Eastbound 35.4 72
20 IH-610 WEST LOOP WOODWAY DR Southbound 35.2 75

Note: * Total incidents in respective locations are normalized by time exposure (1,000 hours).
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Logically, a 30-minute increase at a 30-minute duration should be considered 
more critical. However, without log transformation, such an increase will be 
weighed equally in the analysis. Log transformation will neutralize these effects 
so that the hot spot analysis results are not biased by the incidents with unusually 
long duration values. 

• Import the data table into the base map. The feature “Add XY…” in the ArcMap 
can be used to facilitate the process. The coordinate data are used for plotting 
incidents on the base map. Depending on the data sources, the coordinate systems 
used may be different. The analyst must check if the coordinate system of the 
incident database and that of the base map are matched to ensure that the results 
are plotted properly. The imported incident data will be created as a layer on the 
base map. 

• Export the created layer as a feature class. This class will be used as a data source 
for Gi* hot spot analysis. 

The procedures for calculating Gi* spatial statistics using duration attribute in ArcGIS are 
summarized as follows: 

• Open the Gi* Hot Spot Analysis module in ArcGIS. The dialog box as shown in 
Figure 4-5 will be displayed. Specify the location of a feature class (data source) 
created from the previous steps. 

• Specify the input field. The input field is the numeric attribute, which in this case 
is the log-transformed duration. 

• Specify the output feature class. This class will receive the calculated outputs 
(Gi* z score statistics). 

• Specify the conceptualization of spatial relationships as “zone of indifference.”  
This method considers any incidents within a critical distance (to be specified 
next) as part of the analysis. Once this critical distance is exceeded, the level of 
impact quickly drops off. 

• Specify the distance method as “Euclidean Distance.” Euclidean distance is a 
straight-line distance between two points. 

• Specify the distance band or threshold distance. To determine the appropriate 
distance band, we conducted an evaluation using a high/low clustering technique 
and searched for a critical distance that gives the highest z score (statistical 
significance). Based on the analysis results, it is recommended that 30 feet be 
used as a threshold distance.  

• Click OK to start the hot spot analysis. The Gi* statistics will be calculated for 
each incident and then stored in the output feature class. 
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Figure 4-5: Hot Spot Analysis (Getis-Ord Gi*) Tool in ArcGIS. 

 

4.6.2.2. Defining Threshold for Gi* Spatial Statistics 

The Gi* spatial statistics are essentially a z score. The higher the z score is, the higher the 
statistical significance of the clusters with high attribute values is. The same 
interpretation applies for the low z score. 

The z score is a test of statistical significance that the analyst can use to help decide 
whether or not to reject the null hypothesis. Z scores are measures of standard deviation. 
For example, if a tool returns a z score of +2.5, it is interpreted as “+2.5 standard 
deviations away from the mean.” Z score values are associated with a standard normal 
distribution. This distribution relates standard deviations with probabilities and allows 
significance and confidence to be attached to z scores. 

In order to reject or accept the null hypothesis, the analyst must make a subjective 
judgment regarding the degree of risk one is willing to accept for being wrong. This 
degree of risk is often given in terms of critical values and/or confidence level.  

For example, if the analyst would like to limit the probability of selecting the wrong sites 
as hot spots (having unusually high incident durations) at 5 percent, this corresponds to 
the use of 95 percent confidence level. If the z scores are between –1.96 and +1.96, the 
analyst cannot reject the null hypothesis at 5 percent significance; or in other words, the 
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probability that the observed patterns of clusters of incidents with high durations may be 
a result of randomness is greater than 5 percent. 

Below is the basic guideline of the use of Gi* z scores. First, the analyst must specify the 
appropriate level of confidence of the hot spot identification. Then, the threshold for Gi* 
statistics can be established as follows: 

• At 95 percent confidence level, define Gi* > 1.96 as hot spots. 
• At 90 percent confidence level, define Gi* > 1.64 as hot spots. 
• At 85 percent confidence level, define Gi* > 1.44 as hot spots. 

Next, the analyst can use the identified hot spots to define the hazardous freeway 
segments. Hazardous segments are defined as those segments within the vicinity of the 
hot spots. The next section describes the procedure to define hazardous segments. 

4.6.2.3. Using Hot Spots to Define Hazardous Segments 

Since the hot spots are geographically referenced to the nearest cross streets in the 
incident database, the exact locations of incidents may be difficult to determine. Using 
hot spot information alone may leave out adjacent freeway segments that could be of high 
risk otherwise. These segments can potentially be frequently monitored by control center 
operators to improve incident detection and response times. To address this issue, the 
analyst may wish to create a distance buffer around the identified hot spots to include 
freeway segments in the proximity of the hot spots. GIS spatial queries can be used to 
perform this task. The freeway segments adjacent to the hot spots derived from the GIS 
query analysis are referred to as “hazardous segments.” 

The procedure to define hazardous segments from the identified hot spots using GIS is 
described below: 

• Use “Select by Attributes…” to select the hot spots. For example, if hot spots are 
defined by those incidents with Gi* > 1.96, the analyst can use the Gi* attribute to 
specifically select the sites of hot spots. 

• Use “Select by Locations…” to select the road segments within the distance 
buffer of hot spots. For example, the analyst can select the features from a 
freeway segment layer that are within a distance of 0.5 mile of the selected hot 
spot locations (defined from the previous step). 

• Depending on how the data layers are constructed in the GIS base map, the 
analyst may need to refine the current selection to keep only the freeway portion 
selected. In this case, the analyst may need to perform one more query using 
“Select by Attributes…” to select only the road segments from the current 
selection that are classified as freeways (i.e., using the roadway type attribute). 

4.6.2.4. Example of Advanced Attribute-Based Hot Spot Results 

Table 4-4 and Figure 4-6 show the example results of hot spot analysis using the 
advanced attribute-based identification method. Accident incidents from Houston 
TranStar were used for the hot spot analysis. In addition to basic data validation, incident 
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records at locations with fewer than 1.5 accidents per year and those with durations 
longer than one day were excluded from the analysis. Logarithmic transformed duration 
values were used as an attribute for the calculation of Getis-Ord Gi* spatial statistics. 
Using a 99 percent confidence level, hot spots are identified as shown on the map in 
Figure 4-6. These hot spot locations are likely to have clusters of collisions with long 
durations. In addition, the specified confidence level also implies that the chance that 
these clusters occurred by random is less than 1 percent. 

In the Figure 4-6, the GIS spatial queries were used to define hazardous freeway 
segments within the proximity of the hot spots. A buffer distance of 1 mile was used to 
designate hazardous segments. The analyst can also modify this buffer value based upon 
examination of the results. 

 

Table 4-4: List of Accident Hot Spots Using Gi* Statistics (Houston). 

 

Rank Roadway Cross Street Direction Gi* Score
1 IH-10 EAST US-59 EASTEX Eastbound 7.29
2 IH-10 EAST US-59 EASTEX Westbound 7.29
3 US-59 EASTEX IH-10 EAST Northbound 7.29
4 US-59 EASTEX IH-10 EAST Southbound 7.29
5 US-59 SWEETWATER BLVD Northbound 5.39
6 US-59 SWEETWATER BLVD Southbound 5.39
7 IH-610 SOUTH LOOP SH-288 Westbound 5.34
8 SH-288 IH-610 SOUTH LOOP Northbound 5.34
9 SH-288 IH-610 SOUTH LOOP Southbound 5.34
10 SH-288 ALMEDA-GENOA RD Northbound 4.83
11 SH-288 ALMEDA-GENOA RD Southbound 4.83
12 US-59 BRAZOS RIVER Northbound 4.31
13 US-59 BRAZOS RIVER Southbound 4.31
14 SH-225 SH-134 BATTLEGROUND Eastbound 3.93
15 SH-225 SH-134 BATTLEGROUND Westbound 3.93
16 IH-45 SH-6/SH-146 Northbound 3.78
17 IH-45 SH-6/SH-146 Southbound 3.78
18 IH-610 NORTH LOOP WAYSIDE DR Eastbound 3.72
19 IH-610 NORTH LOOP WAYSIDE DR Westbound 3.72
20 SH-288 BELLFORT BLVD Northbound 3.71
21 SH-288 BELLFORT BLVD Southbound 3.71
22 IH-10 KATY BARKER CYPRESS RD Eastbound 3.67
23 IH-10 KATY BARKER CYPRESS RD Westbound 3.67
24 SH-225 PRESTON Eastbound 3.61
25 SH-225 PRESTON Westbound 3.61
26 SH-225 CENTER ST Eastbound 3.46
27 SH-225 CENTER ST Westbound 3.46
28 IH-45 SH-242 Northbound 3.36
29 IH-45 SH-242 Southbound 3.36
30 US-59 EASTEX IH-610 NORTH LOOP Northbound 3.32
31 US-59 EASTEX IH-610 NORTH LOOP Southbound 3.32
32 US-59 SH-99 GRAND PARKWAY/CRABB RIVER RD Northbound 3.30
33 US-59 SH-99 GRAND PARKWAY/CRABB RIVER RD Southbound 3.30
34 IH-45 FM-1488 Northbound 3.22
35 IH-45 FM-1488 Southbound 3.22
36 SH-146 IH-45 Southbound 3.22
… … … … …
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Figure 4-6: Hot Spots and Hazardous Segments Using Gi* Spatial Statistics. 
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4.7. Selecting Hot Spot Analysis Method 

Frequency-based and attribute-based hot spot analyses were described in the previous 
sections. Selecting the appropriate analysis method requires the following considerations: 

• availability and sufficiency of incident data, and 
• objectives of the analyses. 

Frequency-based hot spot analysis is essentially a spatial distribution of cumulative 
incident counts. Its implementation is simple, and the results are easy to display 
graphically. Explanation of the results is also straightforward. However, it does not take 
into account the impact of the incident, which could be otherwise measured by specific 
data attributes. The analyst should consider this method if: 

• only incident detection times and locations are available in the database; and/or 
• the agency’s priority is to reduce the frequency of incident occurrences. 

Basic attribute-based hot spot analysis accounts for meaningful relationships among 
various incident data attributes. The analyst can tailor the attribute-based analysis to meet 
the needs and analysis objectives of the agencies. The attribute-based method effectively 
utilizes data attributes commonly available in the incident database. The analyst should 
consider this method if: 

• attribute data are available, valid, and sufficient (e.g., at least six valid incident 
records for calculating median duration);\ and/or 

• the agency’s priority is to evaluate and improve the incident management 
performance of relevant entities based on the attributes of interest (e.g., reducing 
the incident duration, improving incident response time, etc.). 

Advanced attribute-based hot spot analysis simultaneously accounts for the frequency 
and the attribute value of incidents using Gi* spatial statistics. Only locations with 
repeated occurrences of high-impact incidents shall be defined as hot spots in this 
analysis. When using incident duration as an attribute, the hot spots are those locations 
that experience high frequency of high-duration incidents. This approach is more 
complicated and requires more resources than the other approaches. The analyst should 
consider this approach if:  

• the incident data and the attribute of interest are available, valid, and sufficient 
and/or 

• the agency’s priority is to reduce the frequency of high-impact incidents (e.g., 
high duration). 

4.8. Using Hot Spot Analysis Results 

Based on temporal-spatial distributions of incidents, high-incident locations with respect 
to temporal factors (e.g., time of day, months, seasonality) and various incident 
characteristics can be determined. It is suggested that this information be presented in a 
map-based format. A GIS-based map is a potential tool to facilitate the presentation of 
this information. Using the results from GIS-based database queries, TMC managers can 
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identify which corridors are subject to higher incident rates at a specific time period and 
may use this information as a decision support or to adjust strategic incident management 
activities as needed. 

The analyst can perform several variations of hot spot analyses depending on the 
objectives of the analysis and the availability and accuracy of the historical incident 
database. Below is a list of examples of comprehensive hot spot analysis with different 
objectives: 

• locations and time period with high frequency of incidents, 
• locations and time with high frequency of fatalities, 
• locations with high frequency of truck accidents, 
• locations and time period with high frequency of long incident duration, and 
• locations and time period with long incident response time. 

For example, if the analyst wishes to examine the historical incident database to help 
improve the incident response time, the analyst can follow the steps below to achieve this 
objective: 

• First, examine the historical incident data to determine if the incident response 
time is collected in the database on a regular basis. 

• Second, use the attribute-based identification method to incorporate the incident 
response time into hot spot analysis and statistically determine the locations that 
are more likely to experience a long response time. 

• Third, the analyst can use GIS-based tools to represent the identified locations 
onto the map and then visually examine the results from the analysis. 

Once the analysis is completed, a catalogue of strategic activities may be considered for 
improving incident detection and response times. Examples of these strategies along with 
their pros and cons are summarized in Table 4-5. 
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Table 4-5: Strategies for Improving Incident Detection and Response Times. 
Strategies Descriptions  Pros Cons 
Roving 
Courtesy 
Patrols/ 
Service 
Patrols 

This strategy involves the use of a 
specially equipped vehicle to provide 
emergency repairs and rapid clearance 
of stalled or disabled vehicle from the 
roadway.  Vehicle can be either pre-
positioned at strategic locations or rove 
in traffic stream based on hot spot 
results. 

• Permits the rapid detection 
and clearance of minor 
incidents. 

• Provides assistance and 
minor repairs for 
stalled/disabled vehicles. 

• Provides positive public 
relation image for agency. 

• Can provide traffic control 
for emergency responders. 

• Service can be contracted to 
private provider. 

• When patrol is busy with 
event, it cannot rapidly 
respond to secondary 
incident that may occur. 

• Requires specially equipped 
vehicles. 

• Operators may require 
special training and 
certification. 

• Congestion in work zone 
may prevent patrol from 
rapidly reaching incident. 

Closed 
Circuit 
Television/ 
Video 
Surveillance 
Cameras 

This strategy involves the use of closed 
circuit television or video surveillance 
cameras to assist in the rapid detection 
and verification of incident location 
and severity through visual inspections.  
Operators can adjust the rotation of 
cameras to frequent the hot spots. 
Additional camera installations can be 
considered at the hot spot locations to 
improve surveillance coverage. 

• Allows visual detection and 
confirmation of incident 
location and severity prior to 
initiating response. 

• Allows assessment of 
impacts of incidents on 
traffic operations. 

• Allows operators in control 
center to adjust operational 
strategies as incident 
conditions change. 

• Requires an individual to 
monitor video surveillance 
cameras, usually at a traffic 
management center. 

• Requires special technical 
skills to keep camera and 
communications system 
operational. 

• Can be costly to install and 
maintain during life of 
construction project.  

Stationary 
Observers 

This involves the use of specially 
trained spotters or observers who can 
provide information about incident 
locations via radio or cell phone to 
TMC or other emergency dispatch 
center. The observed locations can be 
strategically assigned based on the hot 
spot locations. 

• Volunteers can be used as 
observers. 

• Must contact someone else 
to initiate clearance 
functions.  

• Volunteer may not always 
be dependable. 

• May require special agency 
personnel to manage 
observers. 

DMS 
Messages/ 
Locations 

This strategy involves routine posting 
of call-in numbers that motorists can 
use to report traffic incidents. The hot 
spot results can be used to identify 
specific locations for this strategy. The 
locations of new installation of DMS 
can be based on hot spot analysis as 
well. 

• Can be incorporated as part 
of construction-related 
information 
dissemination/511 system. 

• Allows motorists to 
communicate directly with 
highway agency. 

• Most motorists are likely to 
use E911 services to report 
incidents. 

• Motorist may have difficulty 
remembering special call-in 
number. 

• May require specially 
trained call takers.  

ITS Traffic 
Sensors 

This strategy involves the use of 
traditional traffic detection and sensing 
technologies (such a loop detectors, 
radar detectors, video image detection 
system, etc.) to detect unusual pattern 
of traffic flows. Usually requires the 
use of automatic detection algorithms 
to locate incidents. Hot spot results can 
be used to plan the locations of new 
traffic sensors or where to improve the 
sensor coverage. 

• Transportation operators 
generally familiar with 
technology and techniques. 

• Traffic data collected can be 
used in many applications 
such as incident impact 
estimation or before-after 
evaluation study. 

• Detection algorithms prone 
to high false alarm rates and 
slow detection times, 
especially in highly 
congested locations.  

Improved 
Milepost 
Markers/ 
Location 
Referencing 
System 

This strategy involves improving or 
augmenting the traditional milepost 
marking system to provide incident 
response personnel and citizens with 
more accurate information.  This can 
be accomplished by spacing markers 
more closely (e.g., 10th of a mile on 
freeways) or improving visibility of 
markers (e.g., oversizing) based on the 
hot spot results.  

• Improves communication 
between citizens and 
response personnel. 

• Relatively inexpensive. 
• Provides motorist with 

location information for 
getting help quickly. 

• Helpful in managing traffic 
records and subsequent 
analysis. 

• May be difficult to keep 
signs visible/clean all the 
time. 

• Requires skilled motorists to 
understand referencing 
system. 

 



 

5. ESTIMATING INCIDENT IMPACTS 

This module provides methodologies to estimate incident-related impacts using historical 
traffic and incident data. Availability of historical data collected at the TMCs allows us to 
quantitatively assess and predict the impacts of various events on traffic conditions.  

This module is separated into four major sections:  

• The first section provides an overview of incident impact estimation approaches 
ranging from deterministic models to simulation methods. 

• The second section proposes an approach for estimating incident impacts in terms 
of traffic delay using historical traffic and incident data. Traffic delay has been 
widely used as a measure for the quality of travel. The analyst can use the 
approach described in this section to evaluate incident delays. The proposed 
method is intended for after-the-fact assessment. 

• The third section proposes a comprehensive methodology for evaluating impacts 
from specific incidents using historical incident and traffic data. The analyst can 
use this approach to estimate the time it takes for the traffic to return to normal 
conditions for any given incidents. 

• The fourth section describes how the measured incident impacts can be viewed 
from both system and travelers perspectives. 

5.1. Overview of Incident Impact Estimation 

An incident is defined as any occurrence that affects a roadway’s capacity, either by 
obstructing travel lanes or by causing gawkers to block traffic (18). Incidents include 
accidents, vehicle breakdowns, temporary maintenance and construction activities, and 
other random events that cause congestion. Incident-induced delay is one of the most 
important indicators for measuring the impacts on traffic operations. Incident-induced 
delay is determined by many factors, such as incident severity, roadway conditions, 
traffic conditions, and incident duration (19). There are two types of delay: 

• recurring delay – a delay caused by an increase in traffic demand, typically in a 
recurring pattern such as specific time of day and 

• non-recurring delay – a delay caused by unusual events such as traffic incidents, 
weather events, and construction zones. 

This section provides an overview of methods available for evaluation of the second type 
of delay. Several approaches have been developed in the past for estimating incident-
induced delay, which includes the deterministic queuing models (20-27), stochastic 
models (19, 28), difference-in-travel-time method (2, 29-33), and simulation method 
(17). These methods are summarized in this section. 
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5.1.1. Deterministic Queuing Model 

The deterministic queuing model is often depicted using a basic deterministic queuing 
diagram, which is shown in Figure 5-1. Figure 5-1 illustrates cumulative vehicle arrivals 
and departures during the congestion. In this model, traffic demand (q), incident duration 
(r), freeway capacity (s), and bottleneck capacity (s1) are assumed to be known and 
constant. The parameters in the diagram are defined as follows: q = traffic flow rate 
(vehicles per hour [vph]); r = incident duration (minutes); s = freeway capacity (vph); 
s1 = reduced freeway capacity during the incident (vph); tc = traffic-return-to-normal 
time; l = queue size at time t (vehicles [veh]); and d = the incident delay of the vehicle 
with arrival time t. 

 
Figure 5-1: Typical Deterministic Queuing Diagram. 

Figure 5-2 shows the queue size (l) and the incident delay (d) versus vehicle arrival time 
after the onset of the incident, in which 1 /rs q  represents the arrival time of the vehicle 
that experiences the highest delay. The maximum queue length happens when the 
incident is cleared. According to Figure 5-2, the incident delay (d) and the queue size (l) 
can be expressed by the following equations: 
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Figure 5-2: Schematic Diagrams of (a) Incident Delay and (b) Queue Size. 

In the deterministic queuing diagram, the area of the triangle formed by the curves of q , 
s , and 1s  denotes the total delay (TD) of the traffic stream induced by the incident. The 
TD can be calculated through Equation (5-3). It can be seen that the TD is a convex 
function of incident duration (r). 
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During the congestion, the total number of vehicles affected by the incident is: 
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Thus, the average delay for all vehicles affected by the incident can be calculated by: 
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In the deterministic queuing model, the incident duration and the reduced capacity are the 
two parameters that are difficult to estimate with reasonable accuracy. In practice, the 
reduction in capacity can be specified based on Exhibit 22-6 of the Highway Capacity 
Manual (34), where the remaining capacities (percent of the original capacity) are shown 
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as a function of the number of travel lanes blocked, the number of travel lanes, and 
incident severity. For example, for a three-lane freeway section with one lane blocked by 
the incident, the remaining capacity is 49 percent of the original capacity.  

Incident duration is the sum of detection, verification, response, and clearance times. The 
incident duration depends on several factors, such as incident location and incident type, 
and on the incident management systems in operation, such as the Freeway Service Patrol 
(FSP). The default incident duration sometimes can be taken from available records (17).  
The duration is also commonly estimated based on incident characteristics as discussed in 
the previous task of this project.  

Note that the incident clearance process could be a multistage one that takes an extended 
period of time. During such a clearance process, the available capacity may increase as 
more lanes are open to traffic. In a deterministic queuing analysis, this process will be 
reflected by different values of capacity Si at different stages of the clearance process. 

5.1.2. Stochastic Incident Delay Model 

The deterministic queuing model assumes that traffic demand, capacity reduction, and 
incident duration can be identified. Thus, this method may be adequate for the after-
incident evaluation, but it is insufficient for real-time incident delay estimation because 
incident duration and reduced capacity are unknown. The stochastic model was hence 
developed to estimate delay with the consideration of the randomness of incident duration 
and/or reduced capacity, which are modeled as random variables rather than deterministic 
values. The stochastic model is able to estimate the probability distribution of incident 
delay, from which the mean and variance of delay can be derived (19, 28). 

To illustrate the stochastic model, let the incident duration be the random variable under 
consideration (other variables are kept constant). Then, the probability distribution of 
delay depends on the probability distribution pattern of the incident duration. Suppose the 
probability density function (PDF) of the incident duration has two parameters, the mean 
r  and the variance 2

rσ ; then the mean delay can be expressed by: 

 1
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The variance of delay and the expected total delay can be also calculated by the following 
two equations, respectively: 
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It can be seen that the expected total delay in Equation (5-8) is larger than that in 
Equation (5-3), with the consideration of the probability distribution of incident duration. 
In addition to the mean delay, the variance of delay, and the expected total delay, the 
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incident delay of a vehicle with a certain arrival time to the link can be calculated also 
through the stochastic model.  

The stochastic model requires information on the probability distributions of the random 
variables. For instance, the mean and standard deviation of the incident duration are 
needed if incident duration is considered as a two-parameter random variable. The study 
by Sullivan (35) provides the means and standard deviations of incident durations under 
different incident types, incident management systems in operation, and incident 
locations. 

Boyles and Waller (36) proposed a stochastic delay prediction model for predicting delay 
incurred by an ongoing incident. This model was a part of a research project sponsored 
by TxDOT (0-5422). The model uses a probabilistic-based approach to account for 
uncertain incident duration in predicting delay. The accuracy of delay prediction depends 
heavily on incident duration and demand profile characteristics. However, no specific 
guidelines were given in this study on how to establish realistic demand profiles in order 
to use the proposed method. 

It is important to note that using a single expected value of incident duration will always 
underestimate delay in the presence of uncertainty. This effect can be traced to Jensen’s 
inequality where E[f(X)] ≥ f(E[X]) if f is convex and X is a random variable. Here, let f 
and X be an incident delay function and a random variable representing incident duration, 
respectively. Because f is proportional to the square of X, f(X) is strictly convex; thus the 
expected incident delay must be greater than delay that would result from an incident of 
expected duration (36). 

From the geometry of queue polygon, the total delay induced by a stationary incident can 
be expressed as: 

 ( )( )
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where D is the total delay, τ  is incident duration, qi is initial flow rate, qc is congested 
flow rate, and qr is recovery flow rate. Boyles and Waller (36) derived delay functions 
where uncertainty in incident duration (τ ) is represented by different probability 
distributions. One common assumption is a lognormal-distributed incident duration 
calibrated using regression techniques. If τ  follows a lognormal distribution with 
parameters μ  and 2σ , the expected total delay becomes: 
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5.1.3. Difference-in-Travel-Time Method 

The difference-in-travel-time method was developed based on the identification of travel 
times under normal and incident conditions and the quantification of the amount of traffic 
affected by incidents. Thus, delay (moving delay) is the extra travel time to traverse a 
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freeway segment under incident conditions in contrast to the travel time under incident-
free conditions. Depending on TMC configurations, travel time can be calculated using 
either: 

• spot speed data collected from point-based sensors at regular spacings or 
• section or link travel times using probe-vehicle data. 

Given the length of the freeway segment, prevailing traffic volume, and travel times 
(either directly observed or converted from speed data), delay can be calculated by the 
following equation. Note that converting travel times from speeds will require the speeds 
to be different from zero. 

 0
1

( )
T

i i
i

D V t t
=

= ∑ ⋅ −  (5-11) 

where D = delay (veh-hour); i = time interval for the delay calculation (e.g., 5-minute or 
15-minute interval); T = time period under incident-induced congested condition (in 
multiples of i); ti = actual average travel time for interval i; and t0 = average travel time 
under prevailing incident-free conditions. 

Previous studies using this method derived travel times from speed data observed through 
loop detectors at close spacings, such as 0.3 mile on I-880 in a San Francisco Bay Area 
study (31) and 0.5 mile on I-35 in a San Antonio study (2). The freeway segment is 
divided into sectors according to the placement of loop detectors. In this method, speed 
and volume data collected from dual loop detectors are used for delay estimation. Figure 
5-3 shows sampled 20-second speed data on a freeway segment impacted by an incident 
(2). This figure also shows three conceptual reference speed profiles for the calculation of 
incident delay: free-flow speed, incident-free historical average speed, and a hypothetical 
“incident-free” average speed.  
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Figure 5-3: Typical Incident Lane Speed Profile (2). 

 

With the conceptual reference speeds provided, delay can be calculated for each lane and 
further for each sector. The total incident delay is the sum of delays on all affected 
sectors: 
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where jd  = delay per sector j ; jkd  = delay per sector j  and time interval k ; ijkd   = 
delay per lane i , sector j , and time interval k ; jL  = length of sector j ; ijkV  = number 
of vehicles passing over the detector during time interval k  on lane i and sector j ; ijkS = 
speed per lane i , sector j , and time interval k , which is the average speed of all vehicles 
passing over the detector during time interval k ; and ijkR  = incident-free historical 
average speed per lane i , sector j , and time interval k. 

5.1.4. Simulation Method 

Macroscopic simulation packages provide an alternative approach to estimating incident 
delay (34). In the simulation of incident scenarios, several incident characteristics should 
be defined, such as: 

• number of freeway lanes, 
• volume-to-capacity ratio, 
• incident rate, 
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• incident duration, and 
• presence of usable shoulders. 

Simulation models have the flexibility of modeling the entire incident clearance process 
and its impact on travel flow in a larger network. However, calibration of simulation 
models under incident scenarios has not been researched enough since the logic of 
simulation is mainly developed for normal vehicle movements. Also, depending upon 
whether the simulation model is macroscopic or microscopic in nature, the simulation 
calibration process is completely different. 

5.2. Estimating Incident Delay 

Given that historical traffic and incident data are available, the difference-in-travel-time 
method is the most suitable approach for routine estimation of incident delay. This 
method calculates directly from the measured traffic data and requires minimal 
assumptions for prevailing incident-free traffic conditions. The limitation of this method 
is that it can be used only for after-the-fact evaluation of incident management operations 
and traffic impacts. There is no predictive component that TMC managers could 
potentially use to support incident management activities during the incident. 

Delay is easily understood by the public and can be aggregated to provide summary 
statistics for the corridor, area, or region. The numerical units or travel segments reported 
are critical components of information being conveyed to the audience. Similarly, 
specific delay statistics (e.g., total incident-induced delay during morning peak period on 
US-290 at LP-610) can be used as input to very specific operational or capital planning 
studies. These might be either operational or short-range applications. Delay easily 
translates into monetary values, and thus it is often used when conducting benefit/cost 
analyses. 

5.2.1. Data Requirement 

The following data elements are required for calculating delay using the difference-in-
travel-time method: 

• incident data – at the minimum, the incident record should contain the incident 
occurrence or notification time and geographic reference for the locations; 

• travel time data – either observed through an AVI system or converted from 
continuously recorded speed data from closely spaced point-based sensors (e.g., 
loop detectors, radar system); and 

• traffic volume – collected for specific freeway segments and time periods during 
both incident and incident-free conditions. 

5.2.1.1. Selecting Data Sources 

Travel time data are a critical input for incident delay calculation. Travel time data from 
probe-vehicle-based systems such as Houston’s AVI should be used whenever possible. 
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For TMCs with predominantly point-based detection systems, the sensors upstream of the 
incident location should be used for the analysis. In general, the travel time data either 
obtained directly from the probe-vehicle system or converted from speed data are not 
exactly the same. For comparative evaluation, a freeway segment in Houston with both 
types of systems installed was selected. First, the travel time data were retrieved from the 
AVI database and then converted to speed. Then, the speed data were obtained from three 
different radar sensors within the selected AVI segment using the same aggregation 
interval. The speed data were used to compare the data from both types of systems since 
they are independent of the segment length. Figure 5-4 shows the diagram of the example 
freeway segment. The AVI segment is defined based on the tag reader location, which in 
this case is 2.45 miles in length from 34th Street (origin checkpoint #30) to Pinemont 
Street (destination checkpoint #31). Three radar sensors were installed within this 
segment to collect traffic volume, occupancy, speed, and vehicle classification data on a 
lane-by-lane basis.  

Figure 5-4: AVI Travel Time Segment and Radar Sensor Locations. 

 

Figure 5-5 compares the speed data obtained from both types of systems on a typical 
incident-free day. Root mean square of errors (RMSE) was used to quantify the 
differences between the speed profiles from radar sensors and the AVI-based profile. The 
RMSE values calculated for all the profiles are approximately the same ranging from 6.9 
to 7.6 mph. When the traffic conditions are not affected by the incident, the travel time 
data obtained from point-based sensors located within the travel time segment of interest 
are not substantially different from those obtained from the probe-vehicle system. In 

2.45 miles
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other words, the locations of point-based sensors do not have a significant impact on the 
travel time data during incident-free conditions. Incident-free conditions can be 
represented by any point-based sensors within the segment of interest. 

 
Figure 5-5: AVI-Based (Probe-Vehicle) versus Radar-Based (Point-Based) Data. 

 

However, under incident conditions, the traffic data observed from the point-based 
sensors will depend on the relationship between the sensors and incident locations. For 
the purpose of travel time calculation, the sensors upstream of incident locations should 
be used for the analysis. Figure 5-6 shows the effects of incidents on speed profiles 
obtained from radar sensors at different locations within the travel time segment of 
interest.  

The first incident occurred in the morning hours between sensor ID 3991 and ID 4030. In 
this scenario, ID 3991 is located upstream of the incident location, and ID 4030 and 
ID 4014 are downstream. The profiles obtained from the sensor upstream of the incident 
location and the AVI system generally follow the same pattern. However, for the sensors 
downstream of an incident, the speed profiles did not drop until the incident was 
removed, which was when the traffic accumulated upstream was released all at once, 
causing the sudden drop in speed.  

The second incident in this profile occurred at Hollister Road. Therefore, all three sensors 
shown in Figure 5-6 are upstream of the incident location. In this case, there is no 
noticeable lag in speed drop as in the case of the first incident. However, the extent to 
which the speed profiles drop depends on shock wave characteristics and traffic diversion 
rates. 
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Figure 5-6: Comparison of Speed Profiles under Incident Conditions. 

5.2.2. Calculation Procedures 

There are four important steps in calculating incident delay using the difference-in-travel-
time method: 

• Identify the scope for the analysis. Define the scope based on the objective of the 
analysis, whether it is to evaluate the impacts from specific incidents, freeway 
segments, and/or time periods. 

• Establish prevailing incident-free traffic conditions during the same period. This 
step would require some assumptions on how historical traffic data could be used 
to represent traffic conditions if the incident had not occurred. 

• Establish prevailing traffic conditions during incident-induced congestion. 
Identify the duration in which the traffic conditions are affected by the incident. 

• Calculate the delay using the difference-in-travel-time method. 

5.2.2.1. Define the Scope for the Analysis 

The objective of the analysis dictates the scope and the data requirement for the analysis. 
To evaluate the delay for a particular incident, the analyst would require only incident 
location and traffic data at that location. If the objective is to evaluate the incident 
impacts for a specific freeway segment during a peak period, the analyst will have to 
identify all the incidents that occurred on that segment during the peak period.  
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The analyst will also have to define the extent for the delay analysis. First, it is logical to 
define the segments based on sensor configuration and deployment at the TMCs. For 
example, a freeway can be segmented by the locations of AVI readers or the locations of 
main lane loop detectors. Then, the analyst may combine multiple segments upstream of 
the incident location to define the extent of the delay analysis. 

5.2.2.2. Determine Prevailing Background Traffic Conditions 

Prevailing background or incident-free traffic conditions are the traffic conditions that 
travelers would have experienced if there were no incidents. Historical traffic data are 
required to develop realistic prevailing incident-free traffic conditions. It should be noted 
that a congested condition may already exist even if there is no incident. Several factors, 
in addition to incidents, such as peak-period traffic demand, inclement weather 
conditions, and bottlenecks, may contribute to freeway congestion. Prevailing incident-
free traffic conditions can be specifically defined by the analyst to capture all the sources 
of congestion except for the incident being examined. 

Incident-free traffic conditions can be defined using either speed or travel time profile. 
Travel time is, however, the final input used for calculating incident delay. Unless 
freeways are instrumented with a probe-vehicle system, the speed data observed through 
point-based detection must be converted to travel time for delay calculation using the 
following relationship:  

 
Segment Length (miles)Travel Time (minutes) = 60
Average Speed (mph)

×  (5-13) 

Incident-Filtered Method for Establishing Background Traffic Conditions 
If incident data are available and easy to retrieve, the analyst should consider the 
following options in establishing prevailing incident-free traffic conditions: 

• Incident-free traffic data from the previous week during the same time on the 
same day of the week – Use the traffic data from prior weeks if the data from a 
week ago are invalid for the calculation (e.g., affected by incidents or 
unavailable). Figure 5-7 shows an example of a one-day historical lane speed 
profile aggregated from 30-second traffic data observed through the SmartSensor 
radar system on US-290 at Huffmeister Road.  

• Average of incident-free traffic data from several weeks on the same days of the 
weeks – More historical data must be available and valid for this alternative. The 
advantage of this method is that averaging data reduces the chance of unusual 
daily traffic variations. 

• Weighted average method – This is the average of incident-free historical traffic 
data adjusted by different weighting factors. Similarly, the historical data used for 
averaging should be obtained from the same days of the weeks. However, in 
contrast to the previous alternatives, this method can give more weight to the most 
recent data in establishing prevailing incident-free traffic conditions. This method 
should be considered when sufficient historical data are available for calibrating 
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weighting factors such that the output can reasonably reflect the expected 
incident-free traffic condition. 

Properly calibrated weighting factors can be used for combining historical speed data 
from multiple days. Formally, the combined speed profile can be expressed as: 

 
1 1

; 1;  0
n n

i i i i
i i

ν αν α α
= =

= = ≥∑ ∑  (5-14) 

where ν  is the expected incident-free speed profile, iν  is the historical speed profile 
from week i on the same day of the week, n is number of weeks used in the calculation, 
and iα  is a weighting factor for historical speed profile iν .  

 

 
Figure 5-7: Example of Incident-Free Speed Profile Using SmartSensor Data. 

From Equation (5-14), the analyst can place more emphasis on the most recent historical 
data by assigning higher weighting factors to more recent speed profiles. The analyst can 
calibrate the parameters using regression techniques and determine the optimal value for 
the parameter n. If travel time is directly observed from a probe-vehicle system, the speed 
profile in this equation can be replaced with the travel time profile directly. Note that the 
averaging method described in the second option is a special case of the weighted 
average where iα  = 1/n for i = 1, 2,…, n. 

Median-Based Method for Establishing Background Traffic Conditions 

All the previous methods for establishing incident-free or background traffic conditions 
assume that the analyst has incident data available to filter traffic data for only incident-
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free days. This may not always be practical since traffic and incident data are often 
logged independently and thus require the analyst to manually integrate both data sources 
in order to construct appropriate background traffic conditions. The whole process could 
be very time consuming and still unable to fully remove incident traffic conditions, 
particularly if the incidents occur upstream or downstream of the freeway segments of 
interest. In order to address this problem, a simplified method for establishing 
background traffic conditions when incident data are limited or unavailable is described 
below. 

Instead of taking averages of incident-free traffic data (e.g., speed, travel time, flow), the 
analyst can choose multiple days of traffic data regardless of the traffic conditions and 
then calculate the median values for each interval in order to derive a background profile. 
The method is referred to as the “median-based profile approach.” The median-based 
profile relies on the following assumptions: 

• Incident traffic conditions generally substantially deviate from normal incident-
free traffic conditions during the same time period. 

• For every time interval, the data used to derive the profile consist of at least one 
interval of background traffic data. This condition is typically met when the 
sample size is sufficiently large since normal traffic conditions represent a much 
greater proportion of overall traffic conditions. 

The median-based profile approach requires only traffic data from the same time period. 
For example, to derive a background travel time profile for Monday traffic, the analyst 
should use multiple Mondays of traffic data from the same segment for best results. The 
procedure to obtain a median-based travel time profile under incident-free conditions is 
as follows: 

• Obtain at least four intervals of the data for at least one interval of the profile (4:1) 
to be constructed. For instance, if the incident-free travel time profile for Monday 
is to be constructed, the analyst should obtain at least four Mondays of travel time 
data for this purpose. Our evaluation of this technique indicated that the use of 4:1 
to 8:1 ratios will generally produce reliable background profiles. 

• Calculate the median value for each time interval (e.g., 5-minute, 15-minute). A 
series of median values over the analysis period is a travel time profile under 
incident-free traffic conditions. 

Median statistics simply remove extreme traffic conditions generally experienced under 
incident conditions or inclement weather events. Provided that the sample size is large 
enough, the remaining data in the mid-range of all the data represent the values that one 
would observe under normal traffic conditions. 

To illustrate this approach, a freeway segment on US-290 westbound from 34th Street to 
Pinemont Street was selected for the analysis. Figure 5-8 shows an example of incident-
free segment travel time profiles obtained from the AVI system for three Thursdays in 
2007. Houston’s incident data were queried to identify a list of incidents that occurred on 
the segment as well as the segment downstream. In this manner, we can mitigate the 
effect of incident-induced congestion that could potentially propagate from the 
downstream segment. Nevertheless, irregular spikes in the travel time profiles are still 
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noticeable but relatively less obvious than those observed in the incident-affected profiles 
shown in Figure 5-9.  

Thursday data were retrieved with and without incidents for four days each to perform 
the median-based analysis. Figure 5-10 shows the effects of sample size used to construct 
the profile. The number of days used was varied from three to eight Thursdays, and the 
days were randomly selected regardless of incident impacts. Irregular spikes or trends in 
the background profiles diminish as the number of days increases, thus indicating a 
positive correlation between the effectiveness of the method and the sample size. 

Figure 5-11 provides a comparison of background speed and travel time profiles obtained 
from incident-free data versus all data including incident-affected days. In this particular 
example, the speed profile was converted directly from the travel time data obtained from 
the AVI system. The median-based background profiles obtained from all data start to 
converge to the profile obtained from incident-free data as the number of days increases. 
It was found that using four to eight days of data is generally sufficient for weekday 
profiles. Fewer days (approximately three to six) are needed for weekend profiles in most 
cases. This approach is quite efficient and robust to irregularities observed in the data 
sources.  

 

 
Figure 5-8: Example of Incident-Free Travel Time Profiles. 
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Figure 5-9: Example of Incident-Affected Travel Time Profiles. 

 

 
Figure 5-10: Effects of Sample Size on Median-Based Background Profiles. 
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Figure 5-11: Median-Based Profiles Using Incident-Free versus All Data. 

5.2.2.3. Determine Prevailing Incident-Induced Traffic Conditions 

Traffic data observed from both a probe vehicle system and point-based sensors can be 
used to derive prevailing incident traffic conditions. There are two key components that 
need to be determined in this step: the duration and the extent of the incident impact. 
Visual assessment of speed profiles is particularly helpful for identifying the duration of 
incident-induced congestion. For TMCs with an AVI system, the analyst can examine the 
speed profiles of the segment affected by the incident. For TMCs with point-based 
detection, the analyst can examine the speed profiles observed through the sensors 
downstream of the incident. 

The analyst can compare the speed profiles between incident-induced and incident-free 
traffic conditions (see previous section) and then determine the total incident-induced 
duration, which is defined by the time period in which the speed profiles are lower than 
those of incident-free traffic conditions. 

Then, the analyst must obtain the current travel time profiles (converted from the speed) 
for the freeway segments within the extent of the delay analysis. In the next step, these 
incident-induced travel time profiles will be compared with the incident-free counterparts 
obtained from the previous step.  
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5.2.2.4. Calculate Delay Using the Difference-in-Travel-Time Method 

In the final step, the total incident delay can be estimated by adding the incident delay for 
each segment over the period of analysis. Figure 5-12 shows the example of hypothetical 
freeway segmentation for the delay analysis. Let us assume that segments j = 1,…,l  are 
affected by the incident for a total of time period T. Let k be the time interval of size Δ 
(e.g., five minutes) where k = 1,…,m and m = /T Δ⎡ ⎤⎢ ⎥ . Delay is then defined by the 
summation of products of traffic volume and average difference in travel time across all 
m time intervals and l  segments. 

Figure 5-12: Freeway Segmentation Based on Detector Locations. 

Mathematically, expanding the concept of delay calculation using the difference-in-
travel-time method in Equation (5-11) gives: 
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where D = total incident delay (veh-hours); Vjk = traffic volume on jth segment during kth 
interval; tjk = average travel time for jth segment during kth interval; and jkt  = expected 
incident-free travel time for jth segment during kth interval. 

Total incident delay can be presented specifically for an individual incident or on a larger 
scale such as a freeway corridor or a region. Area-wide total incident delay can also be 
used to measure the effectiveness of an incident management program, as well as various 
freeway management strategies. It is important that the scope of the delay analysis be 
defined properly in the first step to ensure that the objective of the analysis is achieved. 

5.3. Quantifying Detailed Incident-Related Impacts 

Multiple data types are typically archived at the TMCs after an incident. This section 
describes a methodology to analyze a combination of traffic and incident data to measure 
various incident-related impacts for specific incidents in addition to delay-related 
components. The results from this methodology would serve as supplemental measures 
for characterizing and evaluating specific incident impacts in addition to the incident 
delay (see Section 5.2). This methodology would enable the analyst to answer several 
questions related to a particular incident, such as: 
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Incident Management Perspective 
• How long does it take for the traffic to return to normal conditions after the 

incident has been cleared? 
• What is the total delay caused by an incident? 
• When does the total delay peak after the beginning of an incident? 

Travelers’ Perspective 
• What is the worst average (per-vehicle) delay experience to the travelers with 

respect to their anticipation? When does it take place after the beginning of an 
incident? 

• How much additional time do those travelers actually spend in traffic congestion 
as the result of an incident? 

• How do the changing traffic conditions affect the delay experienced by the 
travelers? 

5.3.1. Data Requirement 

The following data elements are required for calculating detailed incident-related 
impacts: 

• travel time data, 
• traffic volume data, and 
• incident data. 

The travel time data can be obtained either directly (probe-vehicle system) or converted 
from speed data (point-based detection system such as radar and loop detectors). The 
travel time data are used to construct both incident-affected and background travel time 
profiles. 

Traffic volume data during the incident-affected period are needed to calculate the total 
delay from the incident. For a point-based detection system, data retrieved from detectors 
upstream of incident locations should be used for the analysis.  

Incident data records, at a minimum, should contain incident detection and clearance 
times. The incident details, if available, are useful for describing the causal relationships 
between incident characteristics and their related impacts. In addition, the impacts of 
incidents sharing similar characteristics can be compared and evaluated across multiple 
locations or over different time periods. Any changes in the incident management 
strategies can also be evaluated provided that the data are available.   

5.3.2. Methodology 

The methodology to derive incident-related impacts is based on two critical profiles: 

• travel time profile under incident condition or incident-affected profile and 
• travel time under normal incident-free condition or background profile.  
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By superimposing the incident-affected profile onto the background profile, the analyst 
can obtain the delay profile from the differences between both profiles. This delay profile 
represents average delay (also known as per-vehicle delay) or additional delay 
experienced by travelers at a given point in time. It is the delay measured against 
background travel times, which in turn are a proxy of travelers’ anticipation. In other 
words, if travelers expect to take 5 minutes to traverse a specific freeway segment at 
7:00AM and they actually spend 12 minutes, this implies that the additional delay 
experienced by travelers is 7 minutes on average at 7:00AM. It is important to note that 
travelers’ anticipation can differ by time of day and day of week as represented by the 
background profile. The actual traveling conditions would be represented by the travel 
time profile under incident conditions. Hence, the average delay experience would also 
vary over time as the incident clearance process and traffic conditions evolve. 

The methodology to calculate detailed incident-related impacts for a specific incident is 
described step by step in the subsequent sections. 

5.3.2.1. Derive Average Delay Profile 

Average delay is an average delay per vehicle experienced by travelers for a particular 
freeway segment at a given time interval. It is the difference between actual travel time 
under incident conditions and background travel time under incident-free conditions. The 
average delay at any given interval becomes zero when actual travel time drops below the 
background travel time. Background travel time alternatively can be viewed as the 
expected travel time for motorists to traverse a freeway segment of interest. The average 
delay profile represents changes in average delay over time for a particular freeway 
segment. The analyst needs to prepare two profiles for deriving the average delay profile: 

• the travel time profile under incident condition and 
• the background travel time profile (normal incident-free condition). 

The smaller time intervals such as three to five minutes are recommended for building the 
profiles. The higher resolution will provide more flexibility in the analysis and increased 
capability in detecting critical time points as the incident event progresses. 

It is recommended that the 24-hour travel time profile be obtained for the incident day. 
However, if the data for an entire day are not available, the travel time data at least 
30 minutes before an incident and 3 hours after an incident should be obtained for the 
analysis. Figure 5-13 shows an example of travel time and speed profiles obtained on an 
incident day. The travel time data in the example are extracted from Houston’s AVI 
database. The vertical lines indicate the time from which the incident was detected until it 
was cleared. There were two incidents noted in this diagram. The first one occurred at 
approximately 7AM within the travel time segment. The second one occurred at 5:18PM 
in another travel time segment downstream of this one. The second incident was noted in 
this figure in order to illustrate how the delay profile can capture the impact of an 
incident-related lane closure downstream of the segment of interest. 
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Figure 5-13: Travel Time and Speed Profiles under Incident Condition. 

To derive the corresponding background profile, we used traffic data from eight 
Thursdays to build a profile using a median-based approach as described in 
Section 5.2.2.2. The resulting background profile is shown in Figure 5-14. The 
background profile reveals a pattern of recurrent congestion in the PM peak and to a 
lesser degree during the AM peak. It should be noted that, from the profile in Figure 5-13 
alone, it is difficult to determine whether the AM and PM peaks in travel time are caused 
by an incident or merely recurrent congestion. 

 
Figure 5-14: Background Travel Time and Speed Profiles. 
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Now, the average delay profile can be obtained by superimposing the profile in Figure 
5-13 onto the background profile in Figure 5-14. The average delay per vehicle is the 
difference between these two travel time profiles. The resulting average delay profile and 
the corresponding traffic volume on the incident day are shown in Figure 5-15. 

 
Figure 5-15: Average Delay and Traffic Volume Profiles. 

Several incident-related impacts can be derived from the average delay profile shown in 
Figure 5-15. The next section describes various incident-related impacts measurable from 
the profiles derived. 

5.3.2.2. Calculate Incident-Related Impacts from Average Delay Profile 

From the average delay profile, several incident-related impacts can be determined as 
shown in Figure 5-16, which are: 

• Profile-based incident start time – the time at which the impact of incident on 
traffic conditions is first observed. This time may not exactly coincide with the 
recorded incident detection time, but the difference is generally in the range of 
5-30 minutes. This difference is noticeably smaller for major incidents. 

• Peak delay per vehicle – the maximum amount of delay caused by an incident. 
This is also the maximum delay experienced by travelers from this incident.  

• 85th percentile of delay per vehicle – the 85th percentile of observed average 
delay values. This measure is a better representation of incident impacts on 
travelers and can be used to compare the impacts of multiple incidents since it is 
less affected by a single unusual peak in delay per vehicle.  

• Peak delay time point – the time point at which average delay per vehicle is the 
highest. It should be noted that this delay is measured against background travel 
time, and therefore the time at which the delay is peaked may not be the same as 
the time at which the segment travel time is the highest. 
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• Time to peak delay – the time it takes from the beginning of an incident to the 
time at which the peak delay is observed (peak delay time). This also indicates 
that the travelers who arrive at this freeway segment after the time to peak delay 
has passed would experience the highest amount of delay. It is recommended that 
the profile-based incident start time be used for this calculation if it does not 
coincide with the incident detection time recorded in the incident database. When 
incident clearance time is unavailable, the time to peak delay can serve as a good 
proxy for incident clearance time. 

• Lane blockage duration – this duration is approximated by the time elapsed from 
the profile-based incident start time to the peak delay time point. In general, this 
duration should be close to the time to peak delay. 

• Traffic recovery time (traffic-return-to-normal time) – the time elapsed from the 
moment at which the incident has been removed to the traffic-return-to-normal 
time. This is the time that it takes for the traffic to return to normal conditions 
after the incident has been removed, which in many cases can be longer than the 
incident duration itself. If the incident clearance time is unavailable, the peak 
delay time can be used to substitute this value. 

• Incident-induced congestion duration – the total duration in which an incident has 
caused additional traffic delay. This duration is measured from the profile-based 
incident start time to the traffic-return-to-normal time (the end of incident 
impact). The incident-induced congestion duration is equal to a sum of lane 
blockage duration and traffic recovery time when the profile-based incident start 
time and peak delay time point are used to define the lane blockage duration. 

 

Figure 5-16: Measurable Impacts from Average Delay Profile. 
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5.3.2.3. Calculate Delay Index 

One shortcoming of average delay per vehicle is that it does not fully account for the 
travel time anticipated by the travelers. For example, a traveler would be dissatisfied with 
a delay of one minute per vehicle during the off-peak period more than the peak period. 
This is because a traveler would anticipate a much shorter travel time during the off-peak 
period. In order to address this problem, a delay index can be used instead of average 
delay per vehicle to estimate the amount of travelers’ delay relative to their anticipation. 
A delay index is defined by: 

 
Average Delay per VehicleDelay Index = 100
Background Travel Time

× . (5-16) 

Since the average delay per vehicle is always zero or greater, the delay index will always 
be equal to or greater than zero. The higher delay index means more inconvenience to the 
travelers. For example, delay indices of 20 percent and 120 percent indicate that travelers 
would need to spend 20 percent and 120 percent more than their anticipated travel time to 
travel this freeway segment, respectively. 

The delay index relates the amount of traffic delay to travelers’ anticipation, thus making 
it suitable for quantifying the degree of customer satisfaction. A delay index profile as 
shown in Figure 5-17 can be used to assess the degree of travelers’ satisfaction over the 
course of an incident event and compare travelers’ attitudes toward multiple incidents at 
different times of day and locations.  

 

 
Figure 5-17: Delay Index Profile. 
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From Figure 5-17, the delay index peaks during the morning rush hours as a result of an 
accident blocking two main lanes. The delay index was also higher in the evening as a 
result of another downstream lane-blockage stall. It is interesting to note that the 
maximum average delays per vehicle caused by these two incidents are approximately the 
same (see Figure 5-15). However, when travelers’ anticipation is taken into consideration 
through the delay index, it is obvious that the road users would feel more impacts from 
the morning delay. This is because they anticipated a much faster travel time for the 
outbound direction in the morning for this freeway segment. 

5.3.2.4. Calculate Total Delay 

The previous profile looks at the average delay for individual travelers. However, from 
the system viewpoint, the amount of traffic flow traversing a freeway segment must also 
be incorporated. The total delay represents the amount of delay caused by an incident to 
all vehicles, which can be calculated by multiplying delay per vehicle with traffic volume 
for the interval. The traffic volume should be obtained from the sensor upstream of an 
incident location. The time interval used to aggregate the volume data should be 
consistent with the time interval used to calculate the average delay profile. The per-
interval total delay profile can be constructed by calculating total delays for every 
interval during the incident-induced congestion period. The total delay should be reported 
in vehicle-hours or vehicle-minutes. From the volume and vehicle delay profiles shown 
in Figure 5-15, the per-interval total delay profile for the first incident can be derived as 
shown in Figure 5-18.  

 
Figure 5-18: Per-Interval Total Delay Profile. 
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The following incident-related impacts can be extracted from the per-interval total delay 
profile: 

• Peak total delay per interval – the maximum amount of total delay per interval 
caused by an incident. The time at which the total delay per interval reaches its 
peak may not be the same as that of average delay because the total delay also 
accounts for the amount of traffic flow arriving at the incident location. The total 
delay is a better measure from an incident management perspective, while the 
delay per vehicle better represents the travelers’ perception of incident impacts. 

• Time to peak total delay – the time it takes from the beginning of an incident to 
reach the time interval in which the peak total delay is observed.  

• 85th percentile of total delay per interval – the 85th percentile value of total delay 
per interval. This value is more suitable for comparing the impacts of multiple 
incidents. 

• Total delay per incident – calculated by summing the total delays for all intervals 
during the incident-induced congestion period. This measure represents an overall 
impact of an incident on traffic. 

5.4. Using the Measured Incident Impacts 

The methodology described in this module can be used to evaluate incident impacts from 
both the system and travelers’ perspectives. From a system perspective, the analyst can 
apply this method to quantify the amount of traffic delay caused by an incident or to 
determine when the traffic flow resumes normal conditions. In addition, the analyst can 
relate the impact of incidents to travelers’ experience through the derivation of average 
delay and delay index profiles. In this manner, the analyst can use measures such as peak 
delay per vehicle, time to peak delay, and peak delay to evaluate the magnitude of delay 
as perceived by travelers as well as the time at which the worst condition took place. 
Usage perspectives in relation to various incident-related impact measures are 
summarized in Table 5-1. 

The analyst can use these measures as part of incident management performance 
monitoring and evaluation efforts such as:  

• evaluate the impacts of a specific incident from both the system and travelers’ 
perspectives, 

• evaluate the degree of travelers’ satisfaction, 
• compare the incident delays from multiple incidents (spatially and temporally), 
• evaluate the effectiveness of different incident management strategies using 

incident delay and recovery time, and 
• determine the spatial and temporal extent of the incident impact on freeway 

segments using a delay profile. 

From the example profiles shown in Figure 5-16 through Figure 5-18, the incident-related 
impacts can be measured as summarized in Table 5-2. The results are grouped by the 
profile from which the measures were extracted. 
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Table 5-1: Use of Incident-Related Impacts. 

For this example, the incident duration (from detection to clearance) as recorded in the 
database is 25 minutes. There were two vehicles involved in this accident, and two out of 
four main lanes were blocked (50 percent capacity reduction). The beginning of the 
incident impact as observed from the delay profile (i.e., profile-based incident start time) 
is close to the recorded incident detection time. The average delay per vehicle reaches its 
peak 25 minutes after the beginning of an incident, which is around the same time when 
the incident was cleared. The flow rate during the entire incident-induced congestion 
period is higher than the flow rate immediately before the incident. This implies that the 
traffic flow rate is increasing during this period. Since the volume is on the rise during 
this period (morning rush hour), the traffic takes as long as 69 minutes to recover to 
normal traffic conditions.  

From the travelers’ perspective, the maximum average delay was 196 seconds, which 
took place around the time when the incident was just cleared as indicated by the time to 
peak delay per vehicle of 25 minutes. The 85th percentile of average delay was 
162 seconds, indicating that approximately 15 percent of the time the travelers had to 
spend at least 162 seconds more than what they had expected. Using the delay index to 
account for their anticipation, the worst perception of delay occurred 20 minutes into an 
incident where the index peaked at 145 percent. This implies that the travelers spend 
145 percent more time to travel through this segment than what they anticipated. 

From the system perspective, the total delay profile reaches its peak around the same time 
when the incident was cleared or 30 minutes after the beginning of an incident. This also 
indicates the worst traffic condition from an incident management viewpoint, which may 
not necessarily be the same as that from the travelers’ perspective. The total impact from 
this incident on the freeway segment as measured by the total segment delay was 
307 veh-hours. 

Impact Measures System Perspective Travelers' Perspective
Average Delay Profile
Incident-Induced Congestion Duration x
Traffic Recovery Time x
Peak Delay per Vehicle x
85th Percentile of Delay per Vehicle x
Time to Peak Delay per Vehicle x
Delay Index Profile
Peak Delay Index x
85th Percentile of Delay Index x
Time to Peak Delay Index x
Per-Interval Total Delay Profile
Peak Total Delay per Interval x
85th Percentile of Total Delay per Interval x
Time to Peak Total Delay per Interval x
Total Impact
Total Incident Delay x
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Table 5-2: Example of Measured Incident Impacts. 

 
* All the time-to-peak values are measured from the profile-based incident start time. 

 
 

Incident Characteristics
ID 63379
Incident Detection Date & Time Thu 9/13/2007 7:01
Incident Duration (Min) 25
Type Accident
Severity Major Accident/Collision
Number of Lanes Blocked 2 of 4
Vehicles Involved 2
Traffic Volume Data
Average 10-minute Volume before the Start of the Incident (vphpl) 1299
Average 10-minute Volume after the Start of the Incident (vphpl) 1173
Average Volume throughout the Incident-Induced Congestion Period (vphpl) 1431
Per-Vehicle Delay Profile
Profile-based Incident Start Time Thu 9/13/2007 6:55
Lane Blockage Duration (min) 31
Incident Recovery Time (min) 69
Total Incident-Induced Congestion Duration (min) 100
Time to Peak Delay per Vehicle (min) 30
Max Delay per Vehicle (sec) 196
85th Percentile of Delay per Vehicle (sec) 162
Max Delay per Vehicle during Lane Blockage (sec) 196
Max Delay per Vehicle during Recovery Period (sec) 162
Delay Index Profile
Time to Peak Delay Index (min) 20
Max Delay Index 145%
85th Percentile of Delay Index 123%
Max Delay Index during Lane Blockage 145%
Max Delay Index during Recovery Period 123%
Per-Interval Total Delay Profile
Time to Peak Total Delay per Interval (min) 30
Max Total Delay per Interval (veh-hr) 28
85th Percentile of Total Delay per Interval (veh-hr) 21
Max Total Delay per Interval during Lane Blockage (veh-hr) 28
Max Total Delay per Interval during Recovery Period (veh-hr) 22
Total Impact
Total Delay per Incident (veh-hr) 307



 

6. CALCULATING PERFORMANCE MEASURES 

Previously, Module 5 described methodologies to obtain a comprehensive set of incident-
related impacts for each incident using a combination of traffic and incident data. This 
module describes a broader range of performance measures calculable from existing 
historical databases. The performance measures covered in this module were assembled 
based upon a review of literature, data availability, and feedback received from the 
surveys conducted at Texas TMCs. These measures are also easier to automate, and thus 
more convenient for regular monitoring as part of agencies’ routines (e.g., performance 
reports). 

6.1. Overview of Performance Measures 

The analyst can use multiple metrics derived from historical data to describe the 
performance of the facilities and operations at TMCs. Table 6-1 summarizes various 
types of performance metrics that can be derived from historical data archived at the 
TMCs and their potential usage. Potential uses of performance metrics can be classified 
into major categories as follows: 

• traveler information – The objective is to inform travelers of current traffic 
conditions so that they can make decisions on route choice (en route) or 
delay/cancel the trips (pre-trip), 

• operations evaluation, 
• resource allocation, 
• safety evaluation, 
• monitoring, 
• land use/planning, and 
• customer satisfaction – Customer satisfaction is difficult to measure since it is 

somewhat qualitative by nature. Surveys or questionnaires are common methods 
used to gauge customer satisfaction. However, it is possible that some metrics 
derivable from historical data can be a good proxy for customer satisfaction.  

Literature on performance measurement suggested a distinction be made between output 
and outcome types of measures as follows: 

• Output measures relate to the physical quantities of items: levels of effort 
expended and scale or scope of activities. Output measures are sometimes called 
“efficiency” measures. The National Cooperative Highway Research Program 
(NCHRP) 3-68 report (17) suggested the term “activity based” for this category of 
measures. 

• Outcome measures relate to the nature and extent of the services provided to 
transportation users. The term “quality of service” was suggested for this type of 
measure (17). 
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Table 6-1: Performance Metrics and Potential Uses. 
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Congestion Conditions
Travel Time The average time consumed by vehicles traversing a fixed distance of freeway. ● ● ● ● ●

Travel Time Index The ratio of the actual travel rate to the ideal travel rate. Travel rate is the 
inverse of speed, measured in minutes per mile. The ideal travel rate is the rate 
that occurs at the free-flow speed of a facility (unconstrained conditions).

● ● ● ●

Average Speed The average speed of vehicles traversing a fixed point on the freeway. ● ● ● ● ● ●
Delay per Vehicle The excess travel time used on a trip, facility, or freeway segment beyond 

what would occur under ideal conditions.
● ● ● ●

Total Delay Total freeway delay divided by the number of vehicles using the freeway. ● ● ● ●

Reliability
Buffer Index The difference between the 95th percentile travel time and the average travel 

time, normalized by the average travel time.
● ● ●

Planning Time Index The 95th percentile travel time index. ● ● ●

Throughput
Vehicle Throughput Number of vehicles traversing a freeway. ● ● ● ● ●
Vehicle Miles of Travel The product of the number of vehicles traveling over a length of freeway times 

the length of the freeway.
● ● ●

Safety
Collision Frequency Freeway crashes as defined by the state. ● ●
Collision Rates Total freeway crashes divided by freeway VMT for the time period ● ●

Incident Characteristics
Number of Incidents by 
Type and Extent of 
Blockage

Number of incidents classified by its types and lane blockage characteristics 
(e.g., number of main lanes blocked, number of shoulder lanes blocked, etc.).

● ● ●

Incident Duration The time elapsed from the notification of an incident to when the last 
responder has left the incident scene.

● ● ● ● ●

Blockage Duration The time elapsed from the notification of an incident to when all evidence of 
the incident (including responders' vehicles) has been removed from the travel 
lanes.

● ● ● ●

Lane-Hours Loss Due to 
Incidents

The number of whole or partial freeway lanes blocked by the incident and its 
responders, multiplied by the number of hours the lanes are blocked.

● ● ●

Incident Management
First Responder Response 
Time

Time difference between when the incident was first detected by an agency 
and the on-scene arrival of the first responder.

● ●

Notification Time Time difference between when the incident was first detected and when the 
last agency needed to respond to the incident was notified.

● ●

Total Response Time Time difference between when the incident was first detected by an agency 
and the on-scene arrival of the last responder.

● ●

Clearance Time Time difference between when the first responder arrived on the scene and 
blockage of a travel lane was removed.

● ●

On-Scene Time Time difference between when the first responder arrived and the last 
responder left a scene; also may be computed for individual responders.

● ●

Performance Metrics Definition

Potential Usage
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6.2. Spatial and Temporal Scales for Data Analysis 

There are several different spatial and temporal scales for performance analysis and 
reporting. The usage and intended audience in general will determine the appropriate 
spatial and temporal scales in performance reporting. The NCHRP guidebook (17) 
describes spatial scales to be considered for the analysis of most archived traffic 
operations data as follows: 

• by lane – point location; 
• direction – all functional lanes combined; sometimes referred to as a “station”; 
• link – typically between access points or entrance/exit ramps, same direction; 
• segment/section – a collection of contiguous links; 
• corridor – multiple adjacent sections/segments in approximately parallel 

directions. Examples include multiple types (e.g., freeway and arterial streets) and 
multiple modes (e.g., arterial street and rail line); 

• subarea – a collection of several sections or corridors within defined boundaries; 
and 

• area-wide/regional – a collection of several sections or corridors within a larger 
political boundary. 

Figure 6-1 shows a schematic demonstrating how traffic data collected from loop 
detectors can be aggregated at various levels of spatial scales for travel time estimation.  

Temporal scales are another important factor to be considered in the data analysis. 
Examples of temporal scales commonly used in the calculation of performance metrics 
include: 

• peak hour; 
• peak period – Three-hour periods in both the morning and afternoon as peak 

periods are recommended for most freeways (17). Two-hour and four-hour 
periods alternatively can be considered for smaller and larger urban areas, 
respectively; 

• midday; 
• weekday versus weekend; 
• seasonality; and 
• annual statistics. 

Intended use of performance metrics will determine appropriate spatial and temporal 
scales for the data analysis.  
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Figure 6-1: Different Spatial Scales for Aggregating Sensor Data (37). 

6.3. Calculation Procedures 

This section describes detailed calculation procedures for performance metrics 
summarized in Table 6-1.  
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6.3.1. Congestion Conditions 

6.3.1.1. Travel Time 

Data Requirement 
Depending on TMC configurations, travel time can be calculated using either: 

• spot speed data collected from point-based sensors at regular spacings or 
• section or link travel times using probe-vehicle data. 

Calculation Procedures 
There are two possible methods for calculating travel times from point-based sensors: 
snapshot method and vehicle trajectory method (17). The snapshot method sums all link 
travel times for the same period, regardless of whether vehicles traversing the freeway 
section will actually be in that link during the snapshot time period. The vehicle 
trajectory method traces the vehicle trip in time and applies the link travel time 
corresponding to the precise time in which a vehicle is expected to traverse the link.  

The first method can be used for real-time application, but it does not give an accurate 
estimate of actual vehicle travel time. The second method provides the better estimate of 
vehicle travel times, but it can be used only after the fact. When traffic conditions are 
changing, the trajectory method tends to give a more accurate estimation of travel times. 
The snapshot method will underestimate section travel time when traffic is building and 
overestimate section travel time when traffic is clearing. 

The accuracy of field data collected by a freeway surveillance system depends heavily 
on: 

• sensor spacing and density and 
• the reliability of the individual detectors, data communication, and storage 

system. 

The errors tend to increase with larger detector spacing and sparser detectorization. 
Multiple detectors can also serve as data quality crosschecks for each other. Two closely 
spaced detectors can be compared to evaluate the quality and consistency of the data 
collected. 

6.3.1.2. Travel Time Index 

The travel time index is commonly used as a measure of the degree of congestion on 
freeways. The higher index implies more congested traffic conditions, which may lead to 
less predictable travel time. Planners may use this information to evaluate the congestion 
problem and/or benchmark their freeway performance with other comparable 
metropolitan areas. This index may also be one good proxy for road users’ satisfaction. 
The degree of satisfaction is expected to have an inverse relationship with the travel time 
index. 
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Data Requirement 
The following data elements are required for calculating the travel time index: 

• section travel times during peak times, 
• section travel times during light traffic or free-flow conditions, and 
• VMT by sections (weighting factor for combining multiple travel time indices). 

Calculation Procedures 
To calculate a travel time index for one specific section: 

 Average Travel TimeTravel Time Index = 
Free-Flow Travel Time

 (6-1) 

To calculate the average travel time index for multiple sections: 

 
( )

( )
Section Section 

All Sections

Section 
All Sections

Travel Time Index VMT
Average Travel Time Index = 

VMT

i i

i

⋅∑
∑

 (6-2) 

Free-Flow Travel Time 
Free-flow or ideal travel time can be obtained by dividing freeway section length by free-
flow speed. The analyst must estimate free-flow speed in order to determine free-flow 
travel time. It is suggested that two possible alternatives be considered for the estimation. 

First, in the absence of historical data, NCHRP Report 387 (38) recommends the 
following regression equation for estimating free-flow speed based solely on speed limit: 

 ( )0.88 14f LimitV V= +  (6-3) 

Second, with sufficient historical data, the free-flow speed should be set at the lower of: 

• the 85th percentile speed that occurs under low-volume conditions or 
• the speed limit. 

6.3.1.3. Delay per Vehicle 

Delay per vehicle is defined as travel time in excess of what a traveler would need to 
traverse a freeway section under free-flow conditions. Delay per vehicle is a performance 
metric that most commuters can relate to since it can be related to their personal 
experience. The analyst can derive measurement-based delay from archived traffic data. 
There is no delay if traffic is currently in a free-flow condition or better. 

Delay per vehicle alternatively can be viewed as average vehicular delay for a specific 
section. Delay per vehicle can be used when traffic volume data are not available. 
Houston’s TranStar, for example, does not collect traffic volume in many freeway 
sections. Since the delay per vehicle does not account for traffic volume, any comparison 
of delay values should be made in comparable traffic conditions, e.g., weekday morning 
peak periods. 
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Data Requirement 
Required data elements for calculating measurement-based total delay are: 

• average link or section travel times and 
• link or section travel times during free-flow or light traffic. 

Calculation Procedures 
Delay for a specific road section is: 

 
(minutes)(minutes) (minutes)

Delay per Vehicle  = Average Travel Time  Free-Flow Travel Time−  (6-4) 

6.3.1.4. Total Delay 

Delay is defined as additional vehicle-hours in excess of what travelers would experience 
under free-flow conditions. Total delay is a sum of delay from multiple sections. Delay 
can be calculated when traffic volume data are available. Total delay can be used to 
represent delay for the entire trip (across multiple sections). Total delay over specific 
time periods can be used to measure the effect of freeway management strategies on 
particular segments. For example, the difference in total delay can be used to quantify the 
impacts of ramp metering on freeway traffic in before-after studies. 

Data Requirement 
The data elements required for calculating total delay are: 

• delay per vehicle (see Section 6.3.1.3) and 
• traffic volume by link or by section. 

Calculation Procedures 
Delay for a specific road section is: 

 ( )(minutes)

(vph)

Delay per Vehicle
Delay (vehicle-hours) = Volume

60
 (6-5) 

Total delay is a sum of delays from multiple sections: 

 Section 
(vehicle-hours) 1

Total Delay Delay
n

i
i=

= ∑  (6-6) 

6.3.2. Reliability 

Two performance metrics commonly used to measure the reliability of travel times are 
the buffer index and planning time index. Reliability measures can potentially be related 
to customer satisfaction because they indicate the degree to which extreme travel times 
differ from travelers’ anticipation. 
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6.3.2.1. Buffer Index 

The buffer index represents the extra time (buffer) most travelers add to their average 
travel time when planning trips. Buffer indices can be calculated for specific time periods 
such as peak and off-peak periods or for a larger time scale such as a daily or weekly 
basis. The 95th percentile travel time must be estimated from the travel time data when 
calculating the buffer index. It should be noted that travel times obtained at smaller 
aggregation intervals will provide a better estimate of the 95th percentile travel time (e.g., 
5-minute versus 15-minute intervals). 

Data Requirement 
The following data elements are required for calculating the buffer index: 

• section travel times for the analysis period and 
• VMT by section (or other weighting index) for combining buffer indices. 

Calculation Procedures 
The buffer index for a specific section and analysis period is: 

 95th Percentile Travel Time  Average Travel TimeBuffer Index (%) = 
Average Travel Time

−  (6-7) 

The VMT-weighted average buffer index for multiple sections and time periods is: 

 
( )ij ij

i,j

ij
i,j

VMT Buffer Index
Average Buffer Index = 

VMT
∀

∀

⋅∑
∑

 (6-8) 

where i = section number and j = time period. 

6.3.2.2. Planning Time Index 

Data Requirement 
The planning time index requires travel time index values to be calculated as described in 
Section 6.3.1.2 at regular intervals on a continuous basis for the entire analysis period, 
preferably one year. 

Calculation Procedures 
The planning time index is the 95th percentile travel time index of all the travel time 
indices calculated during the analysis period (typically one year). The planning time 
index represents the total time travelers would need to plan at most for on-time arrival. 
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6.3.3. Throughput 

Throughput measures indicate the amount of traffic carried by the freeway system. 
Throughput measures represent the productivity of the freeway system and are easily 
understood by a nontechnical audience. The analyst can quickly determine the extent of 
various impacts such as ITS deployment and freeway management strategies using this 
type of measure. Throughput is also often used in high-level decision-making processes 
and planning applications. 

6.3.3.1. Vehicle/Person Throughput 

Vehicle throughput could be used for most general-purpose lanes. Person throughput is a 
more appropriate measure for managed lanes such as HOV lanes. 

Data Requirement 
The following data element is required for calculating the vehicle throughput: 

• traffic volume counts for the facilities of interest. 
The following data elements are required for calculating person throughput: 

• traffic volume counts for the facilities of interest and 
• estimated vehicle occupancy. 

Calculation Procedures 
Continuous traffic volume counts are vehicle throughput. The product between traffic 
volume counts and average vehicle occupancy gives person throughput. The analyst can 
present throughput volumes on various spatial and time scales depending on the purpose 
of the analysis. 

6.3.3.2. Vehicle/Person Miles of Travel (VMT/PMT) 

VMT and PMT take into account not only the volume but also the extent of the facilities. 
VMT/PMT indicates the volume and the mileage handled by the facilities. It is also 
commonly used as an indicator of traffic exposure for the purpose of safety analysis. 
From a safety perspective, higher VMT implies more opportunities for traffic conflicts, 
thus increasing the likelihood of traffic collisions. 

Data Requirement 
Since volume data are typically observed through sensors deployed on the freeway 
network, links must be defined in a manner corresponding to the location of the sensors. 
The required data elements are: 

• links – defined by sensor locations, 
• link lengths, 
• traffic volume counts for the links, and 
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• estimated vehicle occupancy (for PMT). 

Calculation Procedures 
VMT is computed by multiplying traffic volume counts by the corresponding link length. 
PMT is obtained by multiplying VMT with average vehicle occupancy. 

6.3.4. Safety 

Collision-related data are commonly used and widely accepted as an objective 
measurement of safety. However, incident data collected at most Texas TMCs contain 
information adequate just for determining its occurrence time, location, and whether the 
incident is a collision type. Detailed crash characteristics such as crash types, severities, 
and other causative factors are typically not recorded in the incident database where the 
data are meant for evaluating incident management operations rather than safety. A crash 
database is required to determine detailed crash characteristics, but it is often impractical 
to use due to its problem with timeliness and availability.  

For safety-related performance metrics, the analyst should focus on deriving simple but 
reliable measures from the incident database. The two measures of interest are collision 
frequency and collision rates. Collision frequency is a measure for determining the 
absolute level of safety, and it is easy to obtain since it requires only collision records. 
The analyst can quickly compare collision frequencies over time, provided that traffic 
conditions have not changed significantly, to determine if there are any changes in safety 
conditions. Collision rates are relatively more difficult to calculate since they require the 
corresponding exposure data. Collision rates can be viewed as a measure of risk and are 
generally a better safety measure for comparing and evaluating multiple locations. 
Collision rates should be considered if traffic exposure data are available. 

6.3.4.1. Collision Frequency 

Data Requirement 
Collision records with time and location are required to determine collision frequency. 
However, a crash database may not always be timely or available for the analysis. 
Alternatively, the analyst can examine the incident database for collision records 
provided that incident type (i.e., collision) is one of the attributes recorded in the 
database. 

Calculation Procedures 
Collision counts can be aggregated by locations and time periods depending on the 
objectives of the analysis. If collision types are available, the analyst can also examine if 
the frequency is unusually high for specific segments/time periods. Appropriate safety 
countermeasures may be considered based on the analysis. 
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6.3.4.2. Collision Rates 

Data Requirement 
Required data elements are: 

• collision frequency and 
• corresponding exposure data – traffic volumes or VMT are commonly used for 

the corresponding segments and time periods. 

Calculation Procedures 
Collision rates are obtained by dividing collision frequency by exposure. One commonly 
used collision rate for freeway segments is the number of collisions per vehicle-miles of 
travel. The analyst can further classify the rates of collision by types if the type attribute 
is available in the database. 

6.3.5. Incident Characteristics 

Data attributes recorded in the incident database determine the scope of incident 
characteristics available at Texas TMCs. In general, the incident notification times are 
always recorded. The incident clearance times, types, and extent of blockage are also 
recorded but to a lesser degree of consistency. The analyst can examine the incident 
characteristics for the changes in frequency, extent of blockage, and duration of lane 
closure. These characteristics are also important inputs for benefit/cost analysis of the 
incident management program as well as incident management resource planning and 
allocation. 

6.3.5.1. Number of Incidents by Type and Extent of Blockage 

Data Requirement 
The required incident database contains the following attributes: 

• incident type and 
• blockage characteristics – number of lanes blocked, types of lanes blocked, and 

blockage duration. 

Calculation Procedures 
Aggregate the incidents by type over the analysis period (e.g., one year). Then, aggregate 
the incidents by type and lane blockage: for example, the number of collision incidents 
with zero to all lanes blocked. It is more informative to present the results in the form of 
pie charts or histograms.  
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6.3.5.2. Incident Duration 

Data Requirement 
The required incident database contains the following data attributes: 

• the time at which the incident is notified and 
• the time at which the last responder has left the incident scene. 

Calculation Procedures 
Incident duration is the time elapsed from the notification of an incident to when the last 
responder has left the incident scene. Use median statistics to represent average durations 
rather than the arithmetic mean whenever possible. The average durations can be 
classified by other data attributes such as incident types and time of day. 

6.3.5.3. Blockage Duration 

Data Requirement 
The required incident database contains the following data attributes: 

• information about lane blockage – whether travel lanes are blocked or the number 
of lanes blocked, 

• the time at which the incident is notified, and 
• the time at which the incident has been removed from the travel lanes. 

Calculation Procedures 
Blockage duration is the time elapsed from the notification of an incident to when the 
incident has been removed from the travel lanes. Similarly to incident durations, use 
median statistics to represent average values whenever possible. This is because 
empirical evidence indicates that the distribution of duration values tends to be heavily 
asymmetric. 

6.3.5.4. Lane-Hours Loss Due to Incidents 

Data Requirement 
The required incident database contains the following data attributes: 

• number of lanes blocked and 
• corresponding blockage durations.  

Calculation Procedures 
The lane-hours loss is calculated by multiplying the number of lanes blocked by the 
number of hours the lanes are blocked. If the changes in lane blockage status are logged 
in the incident database, the analyst can calculate the lane-hours loss based on the 
duration of each lane blockage status (e.g., the lane blockage sequence for one particular 



 

 

6-13 Calculating Performance Measures 

incident could be 1 lane for 15 minutes, 3 lanes for 10 minutes, and 1 lane for 
10 minutes). 

6.3.6. Incident Management 

As part of the NCHRP report (17), five performance metrics are recommended for 
monitoring and evaluating incident management operations. These metrics can be used to 
evaluate the operational efficiency across different components required for incident 
management functions. However, not all the measures discussed in this section can be 
derived from the existing incident databases in Texas. Additional time logs may be 
considered as part of incident reporting such that these metrics can be quantified at Texas 
TMCs. 

Table 6-2 summarizes the recommended metrics, definitions, and their required time 
logs. If the agency collects the arrival and departure time logs separately for each 
individual responder, these metrics can be calculated specifically for each responder as 
well. 

Table 6-2: Incident Management Performance Metrics. 

6.4. Summary of Data Requirements 

This section summarizes data requirements for calculating performance metrics described 
in this module. Table 6-3 provides a summary of traffic-related data required for 
calculating performance measures. Table 6-4 summarizes data elements required for 
computing incident characteristics and incident management performance from historical 
incident data. 
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First Responder Response Time Time difference between when the incident was first detected by an 
agency and the on-scene arrival of the first responder. ● ●

Notification Time Time difference between when the incident was first detected to when 
the last agency needed to respond to the incident was notified. ● ●

Total Response Time Time difference between when the incident was first detected by an 
agency and the on-scene arrival of the last responder. ● ●

Clearance Time Time difference between when the first responder arrived on the 
scene and blockage of a travel lane is removed. ● ●

On-Scene Time Time difference between when the first responder arrived and the last 
responder left a scene; also may be computed for individual 
responders.

● ●

Required Time Logs
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Table 6-3: Data Requirement Matrix for Traffic-Related Data. 

 

Table 6-4: Data Requirement Matrix for Incident Data. 

 

Category Performance Metrics
Average 

Travel Time 
(1)

Free-Flow 
Travel Time 

(2)

Section 
Length (3)

Vehicle Count 
per Unit Time 

(4)

Incident 
Count per 

Year
Travel Time ●

Travel Time Index ● ●
Average Travel Time Index ● ● ● ●

Delay Per Vehicle ● ●
Total Delay ● ● ●
Buffer Index ●

Average Buffer Index ● ● ●
Planning Time Index ● ●

Vehicle Throughput ●

Vehicle Miles of Travel ● ●

Collision Frequency ●
Collision Rates ● ● ●

Note:  (1) Average travel time can be obtained either (a) by the actual time needed for vehicles to traverse a section or (b) by converted travel 
time from speed and section length data. (2) Free flow travel time can be (a) observed during low-volume conditions or (b) calculated from 
roadway speed limit by applying appropriate coefficients. (3) Section length is typically defined with reference to the locations of traffic sensors. 
(4) Vehicle count per unit time varies according to the length of time predefined.    
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6.5. Using Performance Measures 

A recent NCHRP report (17) describes various examples of using performance measures 
in Chapter 9. The key considerations for applying for performance measures are: 

• What are the objectives of the uses? 
• Who are the target audiences? 
• What performance measures should be reported? 

Some examples of using performance measures are presented in Table 6-5. The 
timeframe for analysis can be classified in an ascending order as follows: 

• real-time applications, 
• operations planning, 
• short-range planning, and 
• long-range planning. 

 

Table 6-5: Examples of Using Performance Measures. 

Analysis Timeframe Examples 
Real Time • Travel time dissemination website 

• Real-time traveler information website (includes 
incidents, work zones, and other relevant 
information) 

Operations • Evaluation of congestion frequency 
• Evaluation of incident impacts on traffic conditions 
• Evaluation of HOV lane performance 
• Summary of incident management operations 

performance 
Short Range • Missouri dashboard measurements of performance 

(39) 
• Volume trend comparison 
• Speed and time contour diagram 
• Peer city comparison of travel time indices 

Long Range • Map display of congestion delay 
• Survey of customer satisfaction responses and trend 
• Urban mobility report (40) 

 

Also, reporting needs to change over time as the audience becomes more familiar with 
the reports. When the objectives for reporting are accomplished, the need for reporting 
may also become less frequent over time while the new issues may become more 
important. The whole reporting process is somewhat dynamic and should be adaptive 
enough to respond to invariably changing needs. 

 





 

7. PREDICTING INCIDENT DURATION 

This module describes a set of guidelines and procedures for developing and applying 
models for predicting incident duration using historical incident data. Numerous data 
attributes (incident characteristics) are being collected in the incident database at several 
Texas TMCs. Predicting incident duration involves selecting the right set of statistically 
significant incident characteristics and using the right tools and techniques to develop 
equations for predicting incident durations. Available methods range from simple 
descriptive statistics to more advanced statistical modeling approaches. 

In general, at the start of a freeway incident, traffic managers may be able to provide 
some ballpark estimates on how long the incident will last or how much time the 
responders will take to clear the incident. The current practice to estimate incident 
durations is mainly based on incident characteristics, current traffic conditions, and past 
experiences of traffic managers. This module provides quantitative methods and tools to 
objectively estimate incident durations based on prevailing incident characteristics. The 
methods discussed in this section mathematically capture incident characteristics that are 
typically statistically correlated with incident durations. Once these incident 
characteristics are observed, the analyst can determine the approximate duration of an 
incident to a certain degree of accuracy. The suggested methods and the results that 
follow are neither aimed at replacing common sense nor overriding engineering judgment 
but rather supplementing the traffic control and advisory decisions of traffic managers 
during the incident management process.  

7.1. Defining Incident Durations 

According to the NCHRP guidebook (17), incident durations are defined as the time 
elapsed from the notification of an incident to when the last responder leaves the scene. 
To perform the analysis, the analyst must identify if incident notification time and 
clearance time are recorded in the incident database. It should be noted that the definition 
of the time at which the incident has been cleared may not be consistent across Texas 
TMCs. For instance, this could be the time when the incident has been removed from the 
travel lanes or the time when all the response units have left the incident scene. 
Techniques outlined in this document can be used regardless of how this time point is 
defined. However, the end users of the results should be aware that these estimations 
must be interpreted in a manner consistent with how incident durations were determined 
from the database. Figure 7-1 illustrates the common definition of incident duration. 
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Figure 7-1: Incident Timeline and Incident Duration. 

7.2. Data Requirements 

Incident duration prediction is a two-stage process. The first stage – model building – is a 
one-time task using historical incident data to build the models for predicting incident 
durations. The second stage is using the models developed to predict the duration of a 
new incident. The second stage also includes the process of fine-tuning and recalibrating 
the models to reflect the most recent observations and thus improving the performance of 
the prediction. This process is also known as “model maintenance.” 

The data elements required for the model development are incident duration and incident 
characteristics. The incident duration can be computed from the difference between 
incident detection and incident clearance times. The incident characteristics are all the 
attributes recorded by the operator as part of the incident management process. To use the 
models, only specific incident characteristics are required in a format specified as part of 
the model-building process. 

It is recommended that at least one year of incident data be used to calibrate the models. 
The rule of thumb is to use more data whenever possible. The most recent data should be 
preferred to the older data in order for the established models to reflect prevailing traffic 
and incident conditions. 

Incident durations can be influenced by many characteristics collected in the incident 
database. It is difficult to generalize the characteristics that will be statistically significant 
predictors of incident durations for all agencies because each agency has its own database 
specifications and incident data collection procedure. There are also no standardized 
definitions for data elements being collected. For example, while most agencies record 
the severity of an incident, each agency has its own procedures on how to distinguish 
between minor and major incidents. Many agencies record the incident types, but what 
constitutes a collision incident for one TMC may be classified as another type for another 
TMC. For these reasons, it is not possible at the moment to develop a generic set of 
prediction models for statewide deployment. 
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Incident databases generally share common data attributes that can be classified into the 
following major categories: 

• general incident characteristics – general characteristics of an incident such as 
location, type, and severity; 

• detection and verification methods – descriptions of the methods used to detect 
and verify an incident; 

• environmental characteristics – weather, surface, and lighting conditions at the 
time of an incident occurrence; 

• incident timeline – various time points for key actions and milestones for the 
incident management process such as incident notification time, first responder 
arrival time, incident removal time, and incident clearance time; 

• blockage characteristics – the impact of the incident on travel lanes in terms of the 
types and number of lanes blocked and the types and number of vehicles 
involved; and 

• incident response characteristics – descriptions of incident responders such as 
type of response units and equipment used. 

7.3. Methodology 

Hazard-based duration models are recommended for predicting incident durations based 
on incident characteristics. Duration data are often encountered in the field of 
transportation research. In this case, the duration of an incident is of interest. While 
duration data are typically continuous and can be modeled with traditional linear 
regression, hazard-based duration models provide several advantages over linear 
regression models, which are: 

• ability to provide additional insights into the underlying duration problem based 
on hazard functions; 

• ability to handle non-negative constraints on the predicted incident duration; 
• ability to model various types of duration data (in addition to incident durations) 

such as incident response time, incident clearance time, etc.;  
• ability to account for censored data, i.e., when the actual starting or ending point 

of the duration data is not observed; and 
• ability to properly incorporate various incident characteristics that influence the 

incident duration. 

Nam and Mannering (41) were among the first researchers to apply hazard-based 
duration models to statistically evaluate the time it takes to detect/report, respond to, and 
clear incidents. Weibull models with gamma heterogeneity (i.e., inhomogeneous survival 
distribution across all observations) were used to estimate incident detection and response 
times. A log-logistic survival model was used to estimate incident clearance times. The 
temporal stability of the coefficients of model estimates over time was also investigated 
using likelihood ratio test statistics.  

To provide some background on the hazard-based models, let us define the cumulative 
distribution function as: 
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 ( ) ( )F t P T t= <  (7-1) 

where P denotes probability, T is a random time variable, and t is some specified time. 
F(t) can be considered the probability that an incident will last no longer than time t. The 
corresponding density function is: 

 ( ) ( )dF t
f t

dt
= , (7-2) 

and the hazard function is:  

 ( ) ( )
( )1

f t
h t

F t
=

−
 (7-3) 

where h(t) is the conditional probability that an incident will end at time t given that the 
incident has lasted until time t. In other words, h(t) gives the rate at which an incident is 
ending at time t. The cumulative hazard H(t) is the integrated hazard function that 
provides the cumulative rate at which an incident is ending up to or before time t.  

The survivor function, which can be alternatively viewed as a complement of the 
distribution function, provides a probability that an incident will be equal to or greater 
than some specified time t. The survivor function is: 

 ( ) ( )S t P T t= ≥ . (7-4) 

The relationships between the density, cumulative distribution, survivor, and hazard 
functions can be summarized as shown in the following equations: 
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Incident characteristics as well as other data attributes available from the incident 
database can be incorporated into the hazard models. These variables are typically 
referred to as “covariates” in the modeling term. These covariates can be incorporated 
into the hazard-based models, which in turn affect the probability of either increasing or 
decreasing incident durations. 

Fully parametric models are tested in this task to determine the appropriate distributional 
form for characterizing incident durations. The distributions typically used in this type of 
analysis include lognormal, logistic, log-logistic, and Weibull models. We conducted a 
test to determine the suitable distribution for hazard models and found that the Weibull 
distribution is the preferred alternative for two reasons. First, using TranStar data, the 
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Weibull distribution was found to give the best goodness-of-fit (GOF) statistics using 
log-likelihood ratio tests. Second, the Weibull distribution allows positive duration 
dependence, which gives intuitive interpretation of incident duration data. In other words, 
the Weibull distribution with positive duration dependence implies that the likelihood 
that the incident duration is ending (i.e., incident is cleared) increases over time. 

The Weibull is a more generalized form of the exponential distribution. The Weibull 
density function is defined as: 

 ( ) ( ) ( )1 , 0, 0
PP tf t P t e Pλλ λ λ− −= > >  (7-8) 

and the corresponding hazard function is: 

 ( ) ( ) ( ) 1Ph t P tλ λ −= . (7-9) 

For Weibull, the parameter P specifies the shape of the hazard function. If P > 1, the 
hazard is monotone increasing in duration. If P < 1, it is monotone decreasing in duration. 
If P = 1, the hazard is constant in duration and the Weibull distribution becomes the 
exponential. 

The natural way to relate a covariate vector x to a parameter λ while satisfying the 
positivity constraint is to take: 

 log ,  
T

iT
i i i eβλ β λ= = xx . (7-10) 

For the Weibull distribution, the hazard function becomes: 

 ( ) 1 TP Ph t Pt e β−= x . (7-11) 

 

Once the model for predicting incident duration is calibrated, we can calculate the 
following quantities of interest, given a covariate vector of incident characteristics, from 
the model: 

• expected incident duration – use the median value instead of the arithmetic mean 
whenever possible to avoid bias caused by the skewness of the distribution, 

• confidence interval of the predicted incident duration, and 
• probability that an incident will last longer than some specified time t. 

The expected incident duration using the median value of the Weibull distribution is: 

 ( )1/ln 2 P
i iT λ=% . (7-12) 

The (1-α) percent confidence interval of the predicted incident duration is: 

 
1/ 1/
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2 2
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The probability that an incident will last longer than some specified time t is equivalent to 
the value obtained from the survivor function, that is: 

 ( ) ( ) ( )/1 1
PtS t F t e λ−= − = − . (7-14) 

7.4. Model Development 

This section describes the model development process starting from selecting the tools to 
calibrating and selecting the models. 

7.4.1. Analytical Tools 

The analytical tools are used for two primary purposes: data manipulation and model 
calibration. Data manipulation involves the procedures required to clean up and prepare 
the data in a format compatible for the analysis with the tool of choice. Model 
development is the procedure of calibrating the models, selecting the inputs, and fine-
tuning the results. Data manipulation can be carried out using any common office 
software such as Microsoft Excel and Microsoft Access. Model development requires a 
more specialized statistical package such as SAS, R, LIMDEP, and S-PLUS. The 
researchers have tested a combination of Microsoft Excel and S-PLUS for both data 
manipulation and model development in this project. 

It should be noted that the model development is a one-time task that requires some 
expertise in statistical modeling and experience with transportation data. This skill set 
may not be common within small- to medium-sized Texas TMCs. In such cases, the 
agencies may consider outsourcing this task to a qualified entity.  

7.4.2. Procedures 

Figure 7-2 summarizes the procedures to develop models for predicting incident 
durations using a historical incident database. The procedures consist of the following 
major steps: 

• Data preparation – Clean the data set and prepare the data in a format that is 
convenient for subsequent analysis. 

• Preliminary analysis – Analyze data attributes available in the incident database to 
determine if the data are valid and the sample size and its variability are 
sufficient. 

• Model calibration – Estimate the models using the selected statistical software 
package and then examine the results.  

• Model selection – Select the models based on the overall goodness of fit and the 
meaningful interpretation of the model covariates. 

• Model implementation (deployment) – Recode the developed models into a user-
friendly platform with a simplified graphical user interface (GUI) for inputs and 
outputs. This step is intended to facilitate the application by the end users. 
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Figure 7-2: Procedures for Developing Incident Duration Models. 

7.4.2.1. Data Preparation 

Data preparation is the process of cleaning and manipulating the data to convert into a 
format compatible for the analysis. Two critical tasks in the data preparation are data 
validation and data recoding.  

Data Validation 
Data validation is a process of checking the data to make sure that they are accurate for 
subsequent analysis. When checking the data, a valid response variable (i.e., incident 
duration) is required for the entire incident record to be valid. Some invalid explanatory 
variables (i.e., incident characteristics), on the other hand, are allowed as long as they are 
not selected as part of model calibration. There are three major types of data validation: 

• Missing data checks – Common types of missing data are incomplete data records 
such as incident clearance time and incident type information.  

• Error checks – This indicates that the data elements exist but should be excluded 
from the analysis. The erroneous data are flagged differently depending on the 
agencies. This may include obvious errors such as duplicate records, invalid time 
logs, false entries, and test records. For example, the incident clearance times can 
be logged as 01/01/1900 00:00, or the number of vehicles involved can be logged 
as 99. 

• Logical checks – This is the most difficult type of data validation as it requires 
experience with the data records. Logical errors are the scenarios in which the 
data exist and appear normal but in fact are logically incorrect. For example, the 
recorded clearance times earlier than the detection times should be checked by 
removing negative incident durations. As another example, TranStar’s incident 
database contains two fields that can be used to determine the characteristics of 
lane blockage, i.e., TXDOT_LANES_AFFECTED and 
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MAINLANES_BLOCKED. However, the latter field will not be entered if the 
former one is used. Therefore, the zero entered in the first field does not always 
imply a non-lane-blocking incident in this case. 

All these types of validation must be addressed prior to subsequent analysis based on 
thorough examination of the incident database.  

Data Recoding 
Data recoding is the process of converting the data attributes in the incident database into 
a format convenient for analysis and modeling. For example, the incident severity may be 
recoded into integer variables 0, 1, and 2 representing personal damage only (PDO), 
injuries, and fatality incident respectively. The data recoding also has an implication on 
how the data will be treated in the modeling and analysis. There are three major types of 
data treatment in the recoding process: 

• Categorical – A categorical variable (sometimes called a nominal variable) is one 
that has two or more categories, but there is no intrinsic ordering to the categories.  
For example, the type of responders or the day of week is a categorical variable 
that has multiple categories and no intrinsic ordering to the categories. If the 
variable has a clear ordering, then that variable is an ordinal variable. 

• Ordinal – An ordinal variable is similar to a categorical variable.  The difference 
between the two is that there is a clear ordering of the variables.  For example, the 
number of lanes blocked or the number of vehicles involved can be ordered with 
the size between categories equally spaced. Some variables can be treated as 
ordinal also, but the differences between categories are difficult to assign 
consistently (e.g., incident severity). 

• Interval – An interval variable is similar to an ordinal variable, except that the 
intervals between the values of the interval variable are equally spaced. For 
example, the number of vehicles can be grouped by 0, 1-2, 3-4, 5-6, and 7 or 
more. Time of day is another type of variable that can be grouped into multiple 
intervals such as AM peak, PM peak, and the non-peak periods. 

7.4.2.2. Preliminary Analysis 

In this step, the data attributes and the recoded variables from the incident database must 
be examined if: 

• there is sufficient variability in particular attributes being considered as potential 
variables in incident duration modeling and 

• there is a sufficient sample size for the analysis of particular variables. 
First, basic statistics should be computed for each data attribute to determine if the 
sample is sufficient and its variability is acceptable. Many of these statistics can be taken 
directly as part of routine incident characteristics reports described in Module 3. 
Examples of these statistics, depending on the data attributes available in the database, 
include: 

• distributions of incidents by types and severities, 
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• distributions of weather-related incidents, 
• distributions of incident responders, 
• lane blockage characteristics, and 
• distributions of number of vehicles involved. 

Second, statistics on incident durations should be derived to give some idea as to whether 
particular attributes will strongly influence incident durations. The use of median 
duration as the average incident duration is strongly recommended rather than the 
arithmetic mean. This is due to the heavily asymmetric distribution of duration data 
where the mean value can be significantly influenced by a small portion of outliers. 

An empirical observation of incident duration data indicates that extreme duration values 
do not represent well the actual duration and thus should be excluded. Upper extremes 
(very long duration) are occasionally attributed to unmonitored or neglected situations 
where operators closed the record long after the event was over. Lower extremes, or very 
short durations, on the contrary, are typically caused by false entries. To mitigate the 
impacts from extreme duration data, the analyst may apply lower and upper thresholds to 
screen out invalid duration data. For example, if 5 percent of the duration data are to be 
excluded from the analysis, trim the duration data at the 2.5th and 97.5th percentiles from 
the lower and upper ends, respectively. 

Statistics on incident durations by types and severities are a useful piece of information 
since they provide TMC managers as well as operators a quick look-up table on how long 
an incident may last, particularly at the beginning of an incident where very little is 
known about the incident. Three recommended statistics for incident durations by type 
are as follows: 

• Median incident duration – This is equal to the 50th percentile, which indicates 
that 50 percent of the time an incident may last longer or shorter than these 
values. 

• 85th percentile incident duration – This value may be used for planning purposes 
if no better information is available for a particular type of incident. 

• 95th percentile incident duration – This value can be considered as an extreme 
case of an incident. This implies that the chance of incident duration exceeding 
this threshold is only 5 percent at most. 

7.4.2.3. Model Calibration and Selection 

Model calibration and selection are the two critical steps in the model development 
process. All major statistical software packages (e.g., SAS, S-PLUS, R) can be used to 
calibrate hazard-based duration models. Characteristics of data attributes and incident 
durations from the preliminary analysis will provide a basis for variable selection and 
testing. For the parametric model choices, the analyst should consider the following three 
distributions for testing in this step: Weibull, logistic, and log-logistic distribution. The 
best set of model inputs should be selected based upon three criteria: 

• overall GOF statistics of the model, 
• statistical significance of each variable, and 
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• interpretation of the variables. 
The log-likelihood ratio test is typically used to determine overall GOF of the model 
estimated using the maximum likelihood ratio technique. In this case, the model is 
considered favorable if the p-value obtained for the corresponding GOF statistics is less 
than 0.05 (i.e., α = 5%).  

Each variable included in the model should be statistically significant at α = 5%. While 
this is a desirable criterion, it may not be easily achieved since more variables being 
considered for the model will likely lead to confounding effects on its significance. When 
this becomes an issue, this criterion may be relaxed such that certain variables can meet 
this test at α = 10-20%. 

The interpretation of the variables, and in turn of the duration model, must be logical. The 
usefulness of the model can become questionable if it does not give intuitive results. One 
important rule of thumb for this check is to evaluate if the signs of estimated model 
coefficients are sensible. In general, positive model coefficients are supposed to increase 
incident duration and vice versa for negative coefficients. An analyst can perform this 
basic logical check by reviewing the signs of all the variables in the model with respect to 
its impact on incident durations. 

There are several ways to set up the models. The first consideration is whether to use a 
single model for the entire dataset or to split the dataset into multiple categories and then 
calibrate the submodel for each category. It is recommended that the multiple submodels 
be used if the variability in the dataset is sufficient for multiple data categories. In this 
way, the same factors are allowed to have different impacts on incident durations in 
different submodels. For example, the increase in number of lanes blocked in general is 
likely to give rise to the duration of a lane-blocking incident. However, for specific types 
of incidents (e.g., stall) with significant representation of non-lane-blocking scenarios, the 
increase in the number of lanes blocked can have a reverse effect. In such cases, the 
presence of lane-blocking situations is more likely to receive immediate attention by the 
operators, thus leading to a decrease in incident durations instead. For these reasons, 
multiple submodels should be favored whenever there is strong evidence that the same 
factors can potentially have contradicting effects on incident durations if included in the 
same model. 

The general guidelines for developing categories for incident duration submodels are 
summarized in Figure 7-3. The recommended classifications are based on the 
characteristics of incident types and availability of lane blockage information. When 
classifying the data by incident types, the analyst will need to construct separate 
submodels for major incident types only. The analyst can refer to the distribution of 
incident types to identify the major incident types. All other non-major incident types can 
be incorporated into one submodel with separate model coefficients to account for effects 
on different types in the same model. The lane blockage refers to main lane blocking. 
Some agencies also collect information on the types of lanes blocked (e.g., ramp, 
frontage, and main lane). In such cases, the lane-blocking category can be further 
categorized into more sublevels provided that the types of lanes blocked are consistently 
recorded. 
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Figure 7-3: Recommended Categories for Incident Duration Submodels. 

The entire model development process typically requires continual updating as more 
recent data become available. Therefore, the following model implementation should be 
conducted in a fashion that treats the core models themselves as a separate module. 
Agencies should allow capable users to have access to this module for fine-tuning and 
adjustment. 

7.5. Model Deployment 

Model deployment (also known as model implementation) is the process of transforming 
and repackaging the model developed from the previous step into a functional and user-
friendly format. Several implementation options can be considered at this point 
depending on the following factors: 

• degree of automation desired and 
• availability of computing and manpower resources. 

The level of automation refers to the degree at which manual intervention is required to 
either run or modify the tool. In the case of low-level automation and limited availability 
of resources, Excel-based implementation could be a viable option since it can serve as a 
proof-of-concept prototype. An Excel-based tool is easy to use since it requires merely 
appropriate entries of model inputs. Toward the high-end implementation, the full-scale 
programming of the distributable module in a developer environment such as Visual 
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Basic would be a more suitable option. The module can be designed such that it features 
automated entry of inputs and error checking. This also typically requires database 
connectivity to be set up with an existing incident database.   

7.6. Example: Houston’s Incident Duration Models 

The four-year incident data (2004-2007) from Houston’s TranStar were used to establish 
incident duration models in this example. Four submodels were developed based on 
incident types and lane blockage characteristics as follows: 

• lane-blocking accident, 
• lane-blocking stall, 
• lane-blocking other types (neither accident nor stall), and 
• all non-lane-blocking incidents. 

Table 7-1 summarizes the four incident duration submodels calibrated for Houston. The 
model coefficients shown in the table are statistically significant at a 95% confidence 
interval (p-value < 0.05) unless they are noted otherwise. The positive coefficients 
indicate that a presence of such factors would likely increase the duration of an incident 
and vice versa for negative coefficients. The larger coefficient values also signify a 
greater impact on incident durations. The Weibull hazard models were estimated for each 
incident type. Then, if the scale parameter is not statistically significant at α = 0.05, the 
model would be re-estimated using an exponential hazard model where the scale 
parameter was fixed at 1.0. Note that the exponential distribution is a special case of 
Weibull distribution. For each model calibrated, a summary of model statistics is 
provided that are: 

• selected distribution for the hazard model; 
• scale parameter – determines if the Weibull distribution can be reduced to 

exponential in this case; 
• chi-square statistics and the corresponding degrees of freedom – determines the 

overall goodness of fit of the respective model; 
• overall model p-value – indicates the overall statistical significance of the model. 

For example, the model p-value < 0.01 indicates that the explanatory variables 
included in the model can help explain the duration of incidents better than just an 
intercept alone at a 99% confidence level; and 

• number of observations used to calibrate each submodel. 

The models developed can be prototyped using Visual Basic for Applications (VBA) in 
Excel. Figure 7-4 and Figure 7-5 show the input and output of graphical user interfaces of 
an Excel-based prediction tool.  

Users can enter appropriate inputs through the input GUI. Basic input validation can be 
internally performed here to ensure that the input entries are conformed to the model 
specifications. For instance, the number of lanes blocked and the all main lanes blocked 
data fields are mutually exclusive in Houston’s incident database. Thus, the input GUI 
can be designed such that these two entries cannot exist concurrently. 
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Table 7-1: Houston’s Incident Duration Models. 

 

Coeff. p-value Coeff. p-value Coeff. p-value Coeff. p-value
Intercept 3.2737 0.0000 2.8294 0.0000 3.4378 0.0000 3.7553 0.0000
Incident Type
1 if accident; 0 if otherwise -0.1609 0.0000
1 if construction; 0 if otherwise 0.0882 0.0000 0.1834 0.0000 0.1872 0.0306
1 if HAZMAT spill; 0 if otherwise 0.7465 0.0000 0.5690 0.0974 0.8182 0.0000 0.6328 0.0000
1 if high water; 0 if otherwise 1.2592 0.0006 1.6316 0.0000 1.8007 0.0000
1 if ice on roadway; 0 if otherwise 1.2826 0.0000
1 if lost load; 0 if otherwise 0.7949 0.0000 0.5253 0.0020 0.3034 0.0040
1 if other type; 0 if otherwise 0.2776 0.0021 0.4205 0.0000 0.5060 0.0000
1 if stall; 0 if otherwise -0.2882 0.0000
1 if vehicle on fire; 0 if otherwise 0.4229 0.0000 0.3051 0.0005
Detection Method
1 if automated detection; 0 if otherwise -0.1910 0.0917 -0.4005 0.1052
1 if CCTV; 0 if otherwise -0.1214 0.0046 -0.2090 0.0018 -0.2697 0.0000 -0.1087 0.0224
1 if citizen; 0 if otherwise -0.1217 0.0571
1 if commercial traffic service; 0 if otherwise -0.1682 0.0020 -0.1620 0.1394 -0.1818 0.0058
1 if MAP; 0 if otherwise -0.2638 0.0587 -0.5512 0.0353
1 if METRO; 0 if otherwise -0.0982 0.1457
1 if other public agencies; 0 if otherwise -0.2611 0.0000 -0.3283 0.0000
1 if police; 0 if otherwise -0.0731 0.1131 -0.1544 0.1274 -0.0860 0.1042
Verification Method
1 if CCTV; 0 if otherwise -0.1456 0.0000 -0.2253 0.0331 -0.1059 0.0004
1 if commercial traffic service; 0 if otherwise 0.0976 0.1195
1 if MAP; 0 if otherwise -0.1910 0.1322
1 if other; 0 if otherwise 0.2399 0.0005 0.2939 0.1235 0.2928 0.0635 0.6591 0.0000
1 if city police; 0 if otherwise -0.1463 0.0353 0.1354 0.1127
1 if county police; 0 if otherwise -0.0912 0.0217 -0.2486 0.0427 -0.6006 0.0000
1 if METRO police; 0 if otherwise -1.3134 0.0658
Severity Level
1 if fatal incident; 0 if otherwise 1.1398 0.0000 1.4249 0.0000
1 if major incident; 0 if otherwise 0.1650 0.0000 0.2082 0.0000
Weather Condition
1 if limited visibility; 0 if otherwise 0.0492 0.0102
Vehicles Involved
1 if bus involved; 0 if otherwise 0.1804 0.0266 0.8681 0.0000 0.4717 0.0945 0.2685 0.0000
1 if heavy truck involved; 0 if otherwise 0.5104 0.0000 0.8280 0.0000 0.5829 0.0000 0.6145 0.0000
Number of vehicles involved 0.0681 0.0000
Time of Day
1 if weekday 6AM-9AM; 0 if otherwise 0.1396 0.0000 0.1208 0.0757
1 if weekday 4PM-7PM; 0 if otherwise 0.1676 0.0046
1 if weekday 7PM-6AM; 0 if otherwise 0.4272 0.0000 0.0722 0.0013
1 if weekend; 0 if otherwise 0.1559 0.0001 0.3598 0.0000 0.0401 0.0631
Responders
1 if city responded; 0 if otherwise 0.5213 0.0007
1 if coroner responded; 0 if otherwise 0.2791 0.0267
1 if county responded; 0 if otherwise 0.1128 0.1633 0.3814 0.0024
1 if EMS responded; 0 if otherwise 0.0392 0.0125 0.3138 0.0349 -0.2658 0.0111
1 if fire dept responded; 0 if otherwise 0.1177 0.0000 0.5133 0.0013 0.3954 0.0000 0.1970 0.0000
1 if HAZMAT team responded; 0 if otherwise 0.1955 0.1269 0.3811 0.0055
1 if HCFCD responded; 0 if otherwise 1.1290 0.2282 0.1667 0.0523
1 if MAP responded; 0 if otherwise -0.0948 0.0024 -0.1968 0.0000 -0.4188 0.0009
1 if METRO responded; 0 if otherwise 0.1567 0.1100 0.3200 0.0000
1 if city police responded; 0 if otherwise -0.0285 0.0601 0.1040 0.0006 -0.1767 0.0018 -0.0435 0.0323
1 if county police responded; 0 if otherwise 0.0916 0.0012 0.3374 0.0008
1 if METRO police responded; 0 if otherwise -0.6434 0.0179 0.2530 0.0000
1 if state police responded; 0 if otherwise 0.1110 0.1153 0.2199 0.0210
1 if TxDOT responded; 0 if otherwise 0.5450 0.0000 0.3240 0.0212 0.3035 0.0000 0.5616 0.0000
1 if wrecker responded; 0 if otherwise -0.1082 0.0009 -0.1126 0.0649 -0.0295 0.1520
Lane Blockage
1 if all mainlanes blocked; 0 if otherwise 0.6761 0.0000 0.3680 0.1286 0.5026 0.0000
Number of mainlanes blocked 0.0732 0.0000 0.1470 0.0090 0.1174 0.0002

Distribution Weibull Weibull Exponential Exponential
Scale 0.813 0.915 1 1
Chi-Square Statistics 6275.37 1213.62 1457.79 7598.41
Degree of Freedom 37 21 27 35
Model p-value <0.0001 <0.0001 <0.0001 <0.0001
Number of Observations 23851 7120 2676 23140

Incident Characteristics
Lane-Blocking 

Accident
Lane-Blocking 

Stall
Lane-Blocking 

Others
All Non-Lane-

Blocking Incidents
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Figure 7-4: Input GUI of Incident Duration Prediction Tool (Houston). 

 

 
Figure 7-5: Output GUI of Incident Duration Prediction Tool (Houston). 

 

The module outputs provide the following information: 

• average incident duration (expected value), 
• predicted incident duration in minutes for any given percentile values 

(50th percentile corresponds to a median value), and 
• probability that an incident will last longer than a specified time period (user-

specified values can be either selected from a group of default values or manually 
entered). 

To illustrate the use of module outputs, assume that the module is predicting the average 
and 85th percentile durations at 16 and 51 minutes, respectively, based on the incident 
characteristics entered by the users. This would imply the range of predicted incident 
durations between 16 and 51 minutes. Alternatively, users can also look at the probability 
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that an incident will last longer than some specified thresholds. For example, users can 
specify the time periods and recalculate the corresponding probabilities of exceedance for 
30-minute, 1-hour, and 2-hour thresholds. 

Users can compare the actual incident durations once the incidents are over with the 
predicted values from the module. The module performance is considered acceptable if 
the actual incident durations are consistently well within the range of the predicted 
values. If the performance of the models is not satisfactory, the analyst may consider the 
following strategies to enhance the predictability of the module: 

• Evaluate if the submodel classifications need revisions. 
• Revisit the model recoding process to determine if certain variables should be 

treated otherwise – The effects of categorical, ordinal, and interval treatment on 
the modeling results can vary. 

• If data supported, consider modeling various phases of incident management 
instead of the entire incident duration. This is based on the fact that the factors 
affecting specific phases of incident management can be different; for example, 
consider the factors that can potentially affect incident response time versus 
incident clearance time. 

• Consider the second-order model that includes the interactions between 
explanatory variables. Interaction effects on incident duration can be very 
complex and difficult to interpret logically. This strategy should be considered as 
a last resort to improve the model performance. 

It should be emphasized that the model development is a continual process that requires 
regular updating and fine-tuning. The fine-tuning process should also reflect any changes 
implemented by the agencies to the incident data structure. Any predictions resulting 
from the models should be treated as a decision-supported tool for the users to make an 
informed decision. The prediction results under no circumstances should override 
engineering judgment and common sense. 

 

 

 

 





 

8. PREDICTING INCIDENT-INDUCED CONGESTION CLEARANCE TIME 

This module describes a proactive use of historical and real-time traffic data for 
estimating incident-induced congestion clearance times. The analyst can proactively 
predict the impact of traffic incidents based on the time that it will take for the traffic to 
return to normal conditions after incident occurrence. Historical traffic data collected 
from sensors deployed at the TMCs can be used to establish “expected” normal traffic 
conditions for particular freeway segments and time periods. It is envisioned that TxDOT 
can use this information to proactively manage the incidents. 

One delay-related component that TMC managers can use to make an informed 
operational decision on incident management activities is the total incident-induced 
congestion period, which is the time it takes from the incident occurrence until the traffic 
returns to normal traffic conditions. This time is the summation of the incident duration 
(from incident notified to incident removed) and the traffic recovery time (from incident 
removed to congestion cleared). The time point at which the traffic returns to normal 
conditions is referred to as the incident-induced congestion clearance time. This 
information, in combination with real-time travel time information, could potentially be 
used by operators to decide on which DMSs and what messages should be disseminated. 
For example, TMC managers may choose to post incident-related messages onto the 
DMSs with travel times estimated to be 20 minutes or less upstream of the incident 
because the traffic is expected to return to normal conditions within the next 20 minutes. 
In this way, only the travelers that could potentially be impacted by the incident are 
informed instead of all the travelers upstream of the incident, thus improving the 
credibility of the traveler information system. 

Predicting the incident-induced congestion period requires two components to be 
estimated: 

• incident duration and 
• traffic recovery time.  

The first component can be predicted using the incident duration model described in 
Module 7. This section describes the methodology to estimate the second component 
using the deterministic queuing diagram.  

The prediction methodology described in this module can be used at any stage of incident 
management activities provided that incident duration is properly updated. The accuracy 
of the approach increases as the uncertainty of incident duration decreases. The result is 
the most accurate at the stage of incident where the incident duration is known with 
certainty and capacity flow rates can be reasonably estimated, i.e., when the incident is 
already removed from the roadway (thus predicted incident duration is no longer 
required) and traffic flow rates gradually resume to pre-incident levels. At this point, the 
only remaining component to be estimated is incident-induced congestion clearance time. 
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8.1. Data Requirement 

The following data elements are required for estimating the incident-induced congestion 
clearance time: 

• historical traffic volume data, 
• real-time traffic volume data, 
• incident duration and lane blockage characteristics, and 
• assumption for traffic diversion rate during incidents. 

Traffic volume data must be continuously collected at regular intervals from the sensors 
upstream of the incident location. This methodology estimates reduced freeway capacity 
from real-time traffic conditions. Therefore, if available, lane blockage characteristics 
(number of lanes blocked and durations) could alternatively be considered instead of real-
time traffic volume data. 

One limitation of this approach is that the impact of incidents on traffic conditions must 
be significant enough for roadway traffic sensors to detect the changes in traffic flow 
patterns. In other words, the analyst may find the incident-induced congestion clearance 
time for minor and/or non-main-lane blockage incidents to be negligible. The 
methodology is also sensitive to traffic diversion rate and incident duration. The former 
requires a realistic assumption since the diversion rate is typically unavailable, while the 
latter is difficult to estimate with a high degree of accuracy. 

8.2. Prediction Procedures 

Figure 5-1 illustrates cumulative flow profiles during incident-induced congestion. The 
parameters in the diagram are defined as follows:  

q: traffic flow rate (vph), 
r: incident duration (minutes), 
s: freeway capacity (vphpl), 
s1: reduced freeway capacity during the incident (vphpl), and 
tc: incident-induced congestion clearance period. 

The incident-induced congestion clearance period (tc) is the time from when the incident 
is detected until the incident-induced congestion is cleared. tc also includes incident 
duration, and its value could be much longer than the incident duration since it also 
accounts for the time it takes to clear the queue built up during incident-induced lane 
blockage. 

If all the parameters in the deterministic queuing diagram are known, tc can be calculated 
from the geometric relationship as follows: 

 ( )
( )

1
c

s s
t r

s q
−

= ⋅
−

 (8-1) 

Though the parameters of Equation (8-1) are not known for certain, they can be estimated 
and Equation (8-1) can be updated over time as the parameter estimates change. Let i be 
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the time elapsed from the beginning of the incident. The estimates of tc at time i can be 
expressed as: 

 ( )
( )

1,
,

ˆ ˆ
ˆ ˆ

ˆ ˆ
i i

c i i
i i

s s
t r

s q
−

= ⋅
−

. (8-2) 

The techniques and important considerations for estimating each parameter in 
Equation (8-2) are described in subsequent sections. Note that the time i mentioned 
subsequently is referenced to the incident occurrence. We denote tr as actual incident 
duration and tc as actual incident-induced congestion clearance duration. 

8.2.1. Estimate Incident Duration 

Incident duration (ri) can be estimated using an incident duration model calibrated from 
the incident database. If the model is not available, the analyst can derive summary 
statistics from incident records to obtain a set of default values for average incident 
durations, which can be categorized by various incident characteristics, such as incident 
types, severities, and lane blockage characteristics. 

At the beginning of the incident (i = 0), the analyst will have to rely on the predicted 
incident duration or default values. As the event progresses, the analyst should update the 
incident duration manually to reflect the actual situation on the scene. The value is known 
with certainty when the incident is removed from the scene. At this stage, the analyst 
should use the actual incident duration ( îr  = tr) and discard the predicted or default 
values. 

8.2.2. Estimate Expected Incoming Traffic Demand 

The expected incoming traffic demand (qi) is the expected flow rate under the incident-
free condition adjusted for traffic diversion. This represents the backlog traffic demand 
that accumulates during incident blockage. In reality, incoming traffic demand during the 
incident period will be lower than what we would expect under incident-free conditions 
because some of the traffic will start diverting to alternate routes. Therefore, incident-free 
traffic demand estimated from historical data must be reduced by the amount of diverted 
traffic in order to realistically estimate the demand flow rate. 

Traffic diversion rate (δ) is difficult to estimate with accuracy. The percentage of 
diversion depends on the presence of alternate routes, the incident severity, and the 
ability to disseminate incident-related information to both pre-trip and en-route travelers. 
The general guideline is to use a higher diversion rate for more severe incidents at the 
locations with alternate routes. The analyst will need to examine prediction outputs from 
the method and fine-tune this rate to reflect actual traffic conditions. 

The procedures to estimate qi can be summarized into the following steps: 

1. First, obtain incident-free historical traffic flow data recorded earlier on the same 
days of the week during the same time period in which the incident occurs. Use 
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the average or median from multiple weeks if available to reduce the possibility 
of anomalies within a one-day dataset. For example, if a major incident occurs at 
9:00AM on May 28, 2007, use the traffic data from 9:00AM on May 21, 2007, 
(and May 14, 2007, or more if available) to calculate historical flow rates.  

2. Specify the time window for calculating the historical flow rate. The time window 
should be approximately the same as the expected incident-induced duration. 
Increase the time window size for major incidents and vice versa for minor 
incidents. Use the default value of two hours if no other information is available. 
For the previous example, we will use a three-hour window for a major incident. 
Thus, from historical flow data on May 21, 2007, the time period for calculating 
historical flow rates would be from 9:00AM to 12:00PM.  

3. Calculate the average flow rate (in vph or vphpl) from the historical data during 
the specified time window. This average flow rate (q*) is the expected incoming 
demand under incident-free conditions. 

4. Apply the diversion rate δ to q* to obtain the estimate for incoming traffic 
demand, i.e., ( ) *ˆˆ 1iq qδ= − ⋅  where δ̂  is the estimated proportion of the diverted 

traffic. 

The estimated values of ˆiq  are generally constants throughout the analysis period, i.e., 
ˆiq  is fixed for all i. However, the analyst may find a need to update ˆiq  if the incident-

induced duration is extended well beyond the time window specified in Step 2. In this 
case, the time window in Step 2 must be increased and ˆiq  must be re-estimated as 
described in the subsequent steps. 

8.2.3. Estimate Capacity Flow Rate 

The capacity flow rate (si) is the expected flow rate after the incident has been removed. 
This rate determines how long it will take to clear the backlog traffic demand during the 
blockage.  

Before the incident is removed, i.e., at 0 ri t< < , the capacity flow rate can be estimated 
using the maximum historical flow rate. However, a particular freeway section may never 
operate at or close to full capacity, or it may temporarily service the traffic at an 
unsustainable flow rate before the operation breaks down. In either case, the maximum 
historical flow rate will not be an appropriate estimate for the true capacity. As such, a 
lower and upper threshold should be imposed in addition to the use of maximum 
historical flow rate as an estimate. We recommend that the lower threshold be in the 
range of 1600 to 1,800 vphpl and the upper threshold be in the neighbor of 2,000 to 2,200 
vphpl. In summary, the estimated capacity flow rate can be determined using the 
maximum historical flow rate observed at the sensor station with appropriate adjustment 
when the estimate is not within the recommended range.  

At ri t> , the incident has been removed. In this case, use the average of maximum 
historical flow rate and the actual flow rate observed from the real-time data. This 
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average rate is to account for the fact that it will take some time for the traffic flow to 
resume to the maximum flow rate once the incident has been removed. 

8.2.4. Estimate Reduced Flow Rate 

The reduced freeway capacity flow rate (s1,i) can be estimated using real-time traffic flow 
data. However, at the beginning of the incident, these data are not yet available; thus lane 
blockage characteristics could be used to estimate this flow rate. In summary, the reduced 
flow rate can be estimated as follows: 

• At i = 0, estimate the reduced flow rate from the lane blockage characteristics. For 
example, if all main lanes are blocked, 1, 0ˆ 0is = = . Methods provided in the 
Highway Capacity Manual (34) can be used to estimate freeway capacity 
reduction under different scenarios. 

• At 0 ri t< < , use the average flow rates observed at the upstream detector station 
after the incident occurrence. This value should be updated at regular intervals as 
more real-time flow data become available.  

8.2.5. Calculate Incident-Induced Congestion Clearance Time 

The analyst can calculate the incident-induced congestion clearance times (measured 
from when the incident is detected) and then update the estimates at regular intervals 
using Equation (8-2). It is convenient to specify the updating frequency that corresponds 
to the size of time interval used to aggregate real-time traffic flow data. For example, if 
the real-time data are being aggregated every 5 minutes, the analyst can choose to update 
the estimates every 5 or 10 minutes; that is: 
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 (8-3) 

8.3. Application Example 

This section provides an example of incident-induced congestion clearance time 
prediction using the procedures described in the previous section. To demonstrate the 
calculation process, we use the same example as shown in Section 5.3, in which actual 
data from TranStar’s incident and traffic data archives are employed. 

8.3.1. Scenario 

In this example, a major incident occurred on US-290 at 34th Street blocking two main 
lanes of traffic going westbound on Thursday, September 13, 2007, at 7:01AM.  The 
incident was removed at 7:32AM. Figure 8-1 shows the traffic flow and speed profiles 
observed from the upstream detectors. The data were aggregated for every five-minute 
interval. Table 8-1 shows the example of actual traffic data from both days aggregated for 
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every five-minute interval. These data will be used to calculate the inputs for the 
congestion clearance time prediction procedure. 

 
Figure 8-1: Traffic Conditions under Incident Impacts. 

 

Table 8-1: SmartSensor Data (US-290 at 34th Street, 
Westbound Main Lanes). 
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For this incident, the impact estimation methodology described in Section 5.3 was used to 
measure the actual time that the traffic returns to normal conditions. The incident-induced 
congestion clearance time measured from the average delay profile as shown Figure 8-2 
is 8:35AM or 94 minutes after the beginning of the incident. This time point is considered 
the true incident-induced congestion clearance time, which is used as a benchmark for the 
prediction performance of this method in this example. The predicted values calculated at 
each time step can be compared against this actual value. 

The next section discusses how historical and real-time traffic data observed from a 
SmartSensor radar sensor upstream of the incident can be used to predict the incident-
induced congestion clearance time in this example. 

 

Figure 8-2: Measuring Traffic-Return-to-Normal Time from Average Delay Profile. 

8.3.2. Prediction Example 

The prediction is updated every five minutes in this example. The actual incident-induced 
congestion period was 94 minutes. At the beginning of the incident (i = 0), the input 
parameters can be estimated as follows. 

8.3.2.1. Incident Duration 

The analyst can use the incident duration prediction model to estimate incident duration. 
To illustrate, the incident prediction module for Houston described in the example in 
Module 7 was used to predict the incident duration. The module predicted that the 
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incident duration would have an average of 26 minutes and an 85th percentile at 
57 minutes as shown in Figure 8-3. To be conservative, take 55 minutes as the predicted 
incident duration. Therefore, at the beginning, 0îr =  = 55 minutes. The incident duration 
estimate can be updated every five minutes and should be updated when more 
information is available. In this example, this value is reduced to 40 minutes at 7:25AM, 
6 minutes before the incident is removed. Once the incident has been removed, 31îr ≥ = 31 
minutes since the incident duration is now known with certainty. 

 
Figure 8-3: Incident Duration Prediction. 

8.3.2.2. Expected Incoming Traffic Demand 

For this incident, a one-hour window was chosen to calculate average incident-free flow 
rates using the historical data from the previous five Thursdays. The average historical 
flow rate, q*, from 7:00AM to 8:00AM was 1570 vphpl. 

Then, the diversion rate of 5 percent or δ̂  = 0.05 is applied to q* to account for the 
diverted traffic during the incident period. Therefore, the expected incoming traffic 
demand throughout the analysis period is estimated to be q̂ = (1-0.05)(1570) = 1492 
vphpl. 

8.3.2.3. Capacity Flow Rate 

From the observation of five-minute historical flow rates, the maximum value was 
564 vehicles, which is equivalent to 1692 vphpl. At time i = 0, there are no real-time 
traffic data available yet; the estimated 0îs =  is equal to 1692 vphpl. This value will be 
updated again after the incident has been removed and real-time capacity flow rates can 
be observed from the detectors, i.e., time i > tr (incident duration). 

8.3.2.4. Reduced Flow Rate 

At the beginning of the incident, we used the incident characteristics to estimate the 
reduced flow rates. In this case, the average real-time flow rates should be used as the 
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input for this value. For example, at 7:05AM, four minutes into the incident, the average 
five-minute flow rate observed is 1, 5ˆ is = = 396 vehicles or 1188 vphpl. 

8.3.2.5. Incident-Induced Congestion Clearance Time 

Now that all the parameters required for the prediction are estimated, at 7:05AM, the first 
estimate for tc can be calculated using Equation (8-3) as follows: 

 ( )
( )

( )
( )

1ˆ ˆ 1692 1188ˆ ˆ 55 138 minutes.
ˆ ˆ 1692 1491c

s s
t r

s q
− −

= ⋅ = ⋅ =
− −

 (8-4) 

Similarly, at 7:10AM, we have 

 ( )
( )
1692 1157ˆ 55 147 minutes.
1692 1491ct

−
= ⋅ =

−
 (8-5) 

The procedure can be repeated every 10 minutes to obtain new estimates for tc. 

8.3.2.6. Summary of Predicted Values 

Table 8-2 shows the prediction results using real-time traffic data to update the estimates 
every five minutes. 

 

Table 8-2: Predicted Incident-Induced Congestion Clearance Times. 

 

8.3.3. Cumulative Flow Profiles 

The estimates obtained in this example can be represented through cumulative flow 
profiles showing: 

• expected incoming traffic demand and 
• predicted flow profile under incident condition. 

Incident location   US-290 at 35th Street
Incident characteristics   7:01AM-7:32AM 2 main lanes blocked on a 4-lane section

Traffic diversion rate   5%
Incident-induced congestion 

clearance period   94 minutes

Time 7:05AM 7:10AM 7:15AM 7:20AM 7:25AM 7:30AM 7:35AM
Incident Duration (min) 55 55 55 55 40 40 31

Capacity flow rate (vphpl) 1692 1692 1692 1692 1692 1692 1535
Reduced flow rate (vphpl) 1188 1157 1159 1155 1232 1320 1377

Average historcial incident-free 
flow rate (vphpl) 1570 1570 1570 1570 1570 1570 1570

Expected incoming demand after 
diversion (vphpl) 1491 1491 1491 1491 1491 1491 1491

Predicted incident-induced 
congestion clearance period 

(min)
138 147 146 147 92 74 112
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Figure 8-4 shows cumulative flow profiles of the expected incoming demand and the 
predicted flow profile under incident condition at the beginning of the incident. The point 
at which these two profiles intersect corresponds to the time the congestion cleared, 
which in this case is 9:19AM (138 minutes after incident occurrence). 

Figure 8-5 shows the predicted cumulated flow profile at 7:25AM when the predicted 
incident duration is updated to 40 minutes, and Figure 8-6 presents the predicted 
cumulative flow profile after the incident is removed.  

 

 
Figure 8-4: Predicted Cumulative Flow Profile at 7:05AM. 
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Figure 8-5: Predicted Cumulative Flow Profile at 7:25AM. 

 

 
Figure 8-6: Predicted Cumulative Flow Profile at 7:35AM. 
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8.4. Summary  

Provided historical traffic volume and real-time traffic volume data are available, the 
incident-induced congestion clearance period can be estimated using the following 
equation: 

 

( )
( )

1,
,

ˆ ˆ
ˆ ˆ

ˆ ˆ
i i

c i i
i i

s s
t r

s q
−

= ⋅
−

. (8-6) 

The incident duration (r) can be estimated using the incident duration prediction model or 
default average values for specific types of incidents. The freeway capacity flow rate (s) 
can be estimated using maximum historical flow rates observed at the detector stations 
and adjusted for the threshold capacity. Once the incident has been removed, both s and r 
values can be updated with real-time data. The reduced flow rates (s1) can be estimated 
from incident characteristics at the beginning of the incident. Once the real-time reduced 
flow rates become available (e.g., 5 or 10 minutes after the occurrence), this value can be 
updated using real-time data instead. The demand flow rate (q) is the expected incoming 
flow rate during the incident-induced period. The demand flow rate is the expected 
incident-free traffic flow adjusted for the effects of traffic diversion, which can be 
estimated using historical traffic data. 
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