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CHAPTER 1  
 

INTRODUCTION 
 

The construction of a hot-mix asphalt (HMA) overlay is the most common method used 
by the Texas Department of Transportation (TxDOT) to rehabilitate existing asphalt and concrete 
pavements.  Selecting the appropriate overlay type and thickness are important decisions that 
TxDOT engineers make on a routine basis.  However, this selection is a difficult balancing act, 
because for an HMA overlay to perform well it must have a balance of both good rut and crack 
resistance.  Furthermore, asphalt overlay performance is highly influenced by many factors, such 
as existing pavement conditions, traffic volume, environmental condition, and asphalt overlay 
mixes. Therefore, there is a need to develop an advanced asphalt overlay design system 
considering all these influential factors and both rutting and reflective cracking requirements to 
assist TxDOT engineers in making decisions.   

The three primary objectives of Research Project 0-5123 were to 1) develop an HMA 
overlay mix design balancing rutting and reflective cracking requirements, 2) develop guidelines 
for evaluating existing pavements focusing on identifying repair locations and collecting 
information needed for the HMA overlay thickness design in which the primary concern is 
reflective cracking, and 3) develop an HMA overlay thickness design system focusing on 
reflective cracking and rutting. The first two objectives have been completed and documented in 
the Year 1 report 0-5123-1 entitled “Integrated Asphalt (Overlay) Mixture Design, Balancing 
Rutting and Cracking Requirements,” and the Year 2 report 0-5123-2 entitled “Guidelines for 
Evaluation of Existing Pavements for HMA Overlay,” respectively. In the last two years the 
research team focused on the third objective of this research project and developed asphalt 
overlay thickness design system, which is documented in this report.  

Chapter 2 discusses the development and calibration of a reflective cracking model for 
asphalt overlays, and similar development for asphalt overlay rutting is described in Chapter 3. 
Chapter 4 documents the asphalt overlay thickness design and analysis system and associated 
software incorporating both reflective cracking and rutting models developed in Chapters 2 and 3. 
Chapter 5 presents the sensitivity analysis of the asphalt overlay thickness design system.  
Finally, Chapter 6 summarizes the report and makes some recommendations.  
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CHAPTER 2 
 

DEVELOPMENT AND CALIBRATION OF THE M-E REFLECTIVE 
CRACKING MODEL FOR ASPHALT OVERLAYS 

 

INTRODUCTION 

An HMA overlay is one of the primary options for rehabilitating existing HMA concrete 
pavements and Portland cement concrete (PCC) pavements. HMA overlays often exhibit a 
cracking pattern similar to that which had previously existed in the old pavement shortly after 
opening to traffic. This propagation of a crack from the existing pavement into and through a 
new HMA overlay is known as reflective cracking.  Reflective cracking is most common in 
HMA overlays placed on PCC pavements, but it also occurs in overlays on cracked asphalt 
concrete pavements as well as in asphalt pavements with stabilized bases. It is well known that 
when reflective cracking occurs, the infiltration of water can cause rapid deterioration of the 
underlying pavement structure including the foundation, thus, reducing the pavement service life.  
However, a rational reflective cracking model for HMA overlay design and analysis is still 
missing. The reflective cracking model in the Mechanistic-Empirical Design Guide (MEPDG) 
developed under the NCHRP Project 1-37A is a pure empirical model (1). Therefore, there is a 
need to develop an M-E reflective crack model for routine HMA overlay thickness design and 
analysis.  

 The basic mechanism for reflective cracking is strain concentration in the overlay due to 
the movement in the existing pavement at the vicinity of joints and/or cracks. This movement 
may be induced by bending or shearing action resulting from traffic loads or daily and seasonal 
temperature changes, as shown in Figure 2-1. In fact, the majority of reflective cracking is 
caused by the combination of all these mechanisms. As shown in Figure 2-1b, every pass of a 
traffic load will induce two shear plus one bending action on the HMA overlay. Also, these 
bending and shear actions are affected by the daily temperature variations. Thus, the combination 
of all these three mechanisms (bending, shearing, and thermal) is crucial to successfully model 
reflective cracking. In addition, reflective crack propagation is also influenced by other factors 
such as the existing pavement’s structural geometry and HMA overlay fracture properties, 
specifically, the load transfer efficiency at joints and cracks. Therefore, all the three mechanisms 
and associated influencing factors must be addressed in the M-E reflective cracking model. 
Based on this background, the main objective of this chapter was to develop such an M-E 
reflective cracking model for HMA overlay design and analysis. 

The research approach utilized to achieve the above objective includes three steps: 

1) reflective cracking model review and recommendations; 
2) development of the Paris’ law-based fracture mechanics approach for predicting 

reflective cracking of HMA overlays; and 
3) preliminary calibration of the developed reflective cracking model. 

The detailed work conducted is presented in the subsequent text. 
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(a) (Nunn (2))                 (b) (Lytton (3)) 

Figure 2-1. Mechanisms of Reflective Cracking. 

REFLECTIVE CRACKING MODEL REVIEW AND RECOMMENDATION 

Reflective cracking has been a serious concern associated with HMA overlay over 
existing pavements from as early as 1932, when Gary and Martin (4) studied this problem. Since 
then, many studies have been conducted to address this problem. Various models have been 
developed to analyze or predict reflective cracking. In general, these models can be categorized 
as follows:  

1) empirical model (1, 5),  

2) extended multi-layer linear elastic model (6, 7),  

3) equilibrium equations-based models (8, 9), 

4) finite element (FE) plus traditional fatigue equation model,  

5) Paris’ law-based fracture mechanics model,  

6) cohesive cracking/zone model, and  

7) non-local continuum damage mechanics-based model.  

The first three models are considered too simple to accurately model the reflective cracking 
phenomenon. Thus, the following discussion will focus on the last four reflective cracking 
models.  

FE + Traditional Fatigue Equation Model 
Monismith and Coetzee (10) made a comprehensive review on reflective cracking in 

1980. One of their recommendations was to use the FE to examine the state of strain of HMA 
overlay around the crack in the existing pavement. The computed strain can then be used with 
standard fatigue analysis methods for prediction of the HMA overlay life. In 2002, Sousa et al. 
(11) improved this approach using the critical Von Mises strain instead of tensile strain at the 
crack tip and developed a statistical model to evaluate the critical Von Mises strain, which makes 
this approach possible for routine applications. However, the major limitation of this approach is 
no consideration of the crack propagation, as noted by Wu (12).  
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Most recently, Wu (12) proposed an M-E design procedure to mitigate reflective cracking; 
see Figure 2-2. The proposed procedure depends on three models: 1) the statistical critical strain 
model, 2) the regression model that links the initial conditions of an HMA overlay to its crack 
through time NCDM, and 3) the model for calculating the shift factor C accounting for traffic 
wander, aging, etc. Wu (12) just established the first statistical critical strain model. The other 
two models were left for future study. Note that the second model requires the use of the first 
model as well as collecting damage evolution law parameters for typical HMA mixes and 
running FE simulations with non-local continuum damage mechanics model for thousands of 
overlay structures. The third model requires the use of the first two models as well as collecting 
extensive field performance data. Significant efforts are still needed to accomplish this work. 

 
Figure 2-2. Overlay Design Flow Chart Proposed by Wu (12). 

 
 
Paris’ Law-Based Fracture Mechanics Model 

Since Majidzadeh (13) introduced the fracture mechanics concepts into the field of 
asphalt pavements in 1970, the fracture mechanics approach has been widely used in predicting 
pavement cracking. Different from continuum mechanics, the fracture mechanics approach 
focuses on crack propagation. The crack propagation process can be caused by Modes I, II, III, 
or a combination of two or all the three modes of loading (see Figure 2-3).   
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Mode I: Opening mode         Mode II: Shearing mode           Mode III: Tearing mode 

Figure 2-3. Three Modes of Crack Opening Displacement (13). 

 

The fact that the combined mechanisms of reflective crack propagation (bending, 
shearing, and thermal stress) can be exactly modelled by fracture Modes I and II makes the 
fracture mechanics approach very attractive for modelling reflective cracking. 

The most widely used crack propagation law was proposed by Paris and Erdogan (14) in 
the form of Equation 2-1.    

( )nKA
dN
dc

Δ×=                        (2-1) 

where c is the crack length; N is the number of loading cycles; A and n are fracture properties of 
the HMA mixture often determined by laboratory tests; and ΔK is the stress intensity factor (SIF) 
amplitude, depending on the geometry of the pavement structure, fracture mode, and crack 
length. 

The use of Paris’ law for describing the crack growth process in visco-elastic materials, 
such as HMA mixtures, has been theoretically justified by Schapery (15, 16). Also, it has been 
successfully applied to predict reflective cracking of HMA overlays (17-24) and low temperature 
cracking (25). Apparently, the key for using Paris’ law is to establish a simple way to calculate 
the SIF under various traffic loads and daily temperature variations and to practically determine 
HMA fracture properties (A and n), which are the main focus of this chapter. 

 
Cohesive Crack/Zone Model 

HMA concrete fracture is a complex phenomenon; there is a strongly nonlinear fracture 
process zone (FPZ) around the crack tip in the HMA concrete. In order to account for a relatively 
large plastic yield zone ahead of a crack tip, the cohesive cracking model (CCM) has been 
adopted to characterize HMA concrete fracture (26-35). Buttlar and his associates (33-35) have 
simulated the reflective cracking development using the CCM. The simulation results showed 
that the CCM is very promising with great potential. However, the application of the CCM to 
HMA concrete is still in the preliminary stage. Most of the above studies only applied the CCM 
to cracking under monotonic loading. To extend the CCM to repeated loading and crack 
propagation, additional material parameters describing damage accumulation under unloading 
and reloading cycles are needed. To the knowledge of the authors, there has not been much work 
done on this subject yet. In general, the CCM is still in its infancy and not readily applicable for 
routine HMA overlay designs and analyses. More research is still needed in this area. 
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Non-Local Continuum Damage Mechanics Model for Reflective Cracking 
Another advanced mechanics-based model used for modelling reflective cracking is the 

non-local Continuum Damage Mechanics (CDM) model (12, 36).  The ultimate state of local 
CDM corresponds generally to macroscopic crack initiation upon which it becomes a crack 
propagation problem and should be considered in the framework of fracture mechanics. If the 
local CDM is used to describe crack propagation (such as reflective cracking), the spurious mesh 
dependency then comes into play. Fortunately, this mesh-dependency can be avoided by 
introducing non-local mechanics. Bazant and Jirasek (37) made a comprehensive, state-of-the-
research review of non-local formulations and provided a series of causes as well as motivations 
for introducing non-local continuum. However, the non-local CDM for HMA reflective cracking 
is relatively rare, and the results presented by Wu et al. (36) are promising, but just like the CCM, 
is still under development. 

In summary, both the CCM and non-local CDM, compared to the FE+traditional fatigue 
equation model and the Paris’ law-based fracture mechanics model are more advanced with great 
potential. However, both models are still under development. Thus, these two advanced models 
are not ready for practical application on a daily basis. As noted previously, development of the 
FE+traditional fatigue equation model has not been completed yet (12). Therefore, the best 
choice for the reflective cracking model at present is the Paris’ law-based fracture mechanics 
model. In the past, the Paris’ law-based fracture mechanics model was used to a limited extent 
because of the difficulties of calculating the SIFs and determining HMA fracture properties (A 
and n). However, these two difficulties have been recently resolved through development of the 
SA-CrackPro program specifically tailored for pavement SIF analysis and an upgraded Overlay 
Tester (OT) for the HMA fracture properties (38, 39). 

 
Recommended Reflective Cracking Model 

The recommended reflective cracking model in this research project includes three 
components: reflective crack propagation model, reflective cracking damage model, and 
reflective cracking amount model. The format of each of these models is presented in the 
following discussion.  

• Reflective Crack Propagation Model 
The general reflective crack propagation model (Equation 2-2) is based on Paris’ law 

with the combination of bending, shearing, and thermal loading. 

( ) ( ) ( )nthermali
n

shearingi
n

bending KAkNKAkNKAkC 321 +Δ+Δ=Δ      (2-2) 

where ΔC is the daily crack length increment; ΔN is the daily load repetitions; A and n are the 
HMA fracture properties; Kbending, Kshearing, and Kthermal are the SIF caused by bending, shearing, 
and thermal loading, respectively; and k1, k2, and k3 are the calibration factors. 

 

• Reflective Cracking Damage Model 

hCD /∑Δ=            (2-3) 

where D is the damage ratio; h is the overlay thickness; and ∑ΔC is the total crack length. 
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• Reflective Cracking Amount Model 
A sigmoidal model as presented in Equation 2-4 is used to describe the development of 

the reflective cracking amount:       

DCe
RCR log11

100
+

=          (2-4) 

where RCR is the reflective cracking rate (%); C1 =-7.0 is used based on the relationship between 
the observed fatigue distress vs. damage (39); and D is the damage from Equation 2-3. 

It is clear that the two key issues of the recommended reflective cracking model are how 
to quickly compute the SIFs under various traffic and thermal loads and to practically determine 
HMA fracture properties (A and n). It is worth noting that the traffic loading is often very fast 
and within a very short period of time so that the HMA mixes can be assumed to be quasi-elastic 
materials represented by the elastic (dynamic) modulus and Poisson’s ratio. In contrast, the 
thermal loading often lasts several hours (or days) so that the HMA mixes are better represented 
using a visco-elastic model. In this study, a hybrid thermal reflective crack propagation model, 
similar to the low-temperature cracking model (25), is proposed. More detailed information is 
presented in the following sections. 

TRAFFIC LOAD RELATED SIF AND ASSOCIATED REGRESSION EQUATIONS 

    As noted previously, the SIF calculation is a very critical and difficult aspect of reflective 
crack propagation analysis. To make the SIF calculations easy and practical, the authors have 
developed a semi-analytical (SA) FE-based crack propagation program named SA-CrackPro (38). 
The SA-CrackPro is essentially a 2D SIF calculation program that incorporates an SA method so 
that the SA-CrackPro can provide the same satisfactory computations and results as a 3D FE 
program, but at a much faster speed. Also, an accuracy verification of the SA-CrackPro with the 
commercial ANSYS FE program (40) yielded comparable results, as shown in Table 2-1 (38). For 
an old pavement being overlaid, it is reasonable to assume that the load transfer at the joint/crack 
is only contributed by the aggregate interlock (shearing). This shearing load transfer at a 
joint/crack is modelled using the thin-layer element and shearing modulus (logk) in the SA-
CrackPro program. After substantial analyses, reasonable logk values corresponding to different 
load transfer conditions were established and listed in Table 2-2.  More detailed information 
about the SA-CrackPro program, FE mesh, pavement structure and boundary conditions, and the 
comparison with the ANASYS FE program can be found in reference 38. 

 
Table 2-1. SIF Comparison between SA-CrackPro and ANSYS-3D (38). 

Crack 
Length 
(inch) 

KI
 (MPa* mm0.5) KII (MPa* mm0.5) 

SA-CrackPro ANSYS-3D  Error (%) SA-CrackPro ANSYS-3D Error (%) 

0.3 1.724 1.641 4.8 2.560 2.694 5.3 
0.9 0.280 0.278 0.7 3.482 3.658 5.1 
1.5 -2.115 -1.959 7.4 4.512 4.569 1.3 
2.1 -5.786 -5.401 6.7 5.736 5.796 1.0 
2.7 -13.652 -12.446 8.8 8.485 8.191 -3.5 



9 
 

Table 2-2. logk Values for Load Transfer Simulation. 

Joint/crack load 
transfer condition 

logk (MPa/m) 

AC/PCC AC/AC 

90 % 7.0 7.0 

50 % 3.5 5.5 

10 % 1.0 1.0 

 

 With this verified SA-CrackPro program, four factors including structural and material 
parameters (i. e., layer modulus and thickness), multi-layer base and/or subbase (equivalent layer 
thickness), multi-HMA overlays, and various load spectrums are discussed. Numerous SIF 
computations on various pavement structures under different traffic loads were subsequently 
conducted. The findings from the SIF analyses are presented below. 

 
Effect of Structural and Material Parameters on SIF 

A four-layered pavement structure consisting of an HMA overlay, existing joint PCC 
concrete layer, base, and subgrade was used to identify the significant influential parameters on 
shearing SIFs. Table 2-3 provides the pavement structural thickness and material properties used 
for computing the SIF values and the associated statistical analyses. The total factorial 
combinations for shearing SIFs (Kshearing) were 11,664. The purpose of the statistical analysis was 
to determine the parameters that have significant influence on Kshearing. The Pearson correlation 
statistical analysis results are listed in Table 2-4. Because 99 percent of the Kbending for HMA 
over PCC pavements were negative values that have no contribution to the reflective crack 
propagation, HMA overlay over existing HMA pavement structures were used for Kbending 
analyses. Also, as noted previously, the load transfer at cracks (or joints) is simulated through 
pure shearing. Thus, zero load transfer was used for Kbending analyses. Similar runs were also 
conducted, and the results are also presented in Table 2-4.  

From Table 2-4, it can be seen that all the variables except the subgrade modulus have 
significant influence on both the Kbending and Kshearing, and accordingly should be incorporated 
into the SIF regression equations being developed.  

This finding about the subgrade does not mean that the subgrade has no influence on 
pavement responses. As reported by Huang (41), the main influence of the subgrade is on 
pavement surface deflections, vertical compression stress in the layer lying directly above the 
subgrade, and compressive strain of the subgrade itself. According to Table 2-4, the subgrade 
modulus did not significantly influence both Kbending and Kshearing and accordingly reflective crack 
propagation. Therefore, a fixed 7 ksi subgrade modulus was utilized for the rest of the SIF 
analyses in this study.   

 



10 
 

Table 2-3. Structural and Material Properties for Kshearing. 

Parameters Range Selected values Count number

H1: HMA layer thickness (inch) 2-8 2, 4, 8 3 

E1: HMA layer modulus (ksi) 290-2200 290, 870, 2200 3 

H2: existing PCC layer thickness (inch) 8-14 8, 10, 14 3 

E2: existing PCC layer modulus (ksi) 2900-5800 2900, 5800 2 

Load transfer condition-LTC (%) 10-90 10, 50, 90 3 

H3: base layer thickness (inch) 6-18 6, 18 2 

E3: base layer modulus (ksi) 15-500 15, 100, 500 3 

E4: subgrade modulus (ksi) 4-17 4, 7, 17 3 

c/H1 (c-crack length) 0.2-0.8 0.2, 0.4, 0.6, 0.8 4 

  Note: total runs for Kshearing =3*3*3*2*2*3*3*3*4=11,664. 

 

Table 2-4. Statistic Analysis Results. 

Parameters 
Kbending Kbending 

Pearson 
correlation Significance Pearson 

correlation Significance 

H1 .129(**) .000 -.263(**) .000 

E1 .311(**) .000 .340(**) .000 

H2 -.080(**) .000 -.059(**) .000 

E2 -.067(**) .000 -.066(**) .000 

LTC N/A -.578(**) .000 

H3 -.052(**) .000 -.018(*) .048 

E3 -.206(**) .000 -.141(**) .000 

E4 -.019 .110 -.007 .453 

Crack length -.165(**) .000 .124(**) 000 

  Note: ** Correlation is significant at the 0.01 level (2-tailed). 
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Consideration of a Multi-Layered Base and/or Subbase 

Pavement structures often include more than one base and/or subbase layers with 
different moduli values. If this is the case, it is desirable to transfer the multi-layer base and/or  
subbase into an equivalent single layer with only one composite modulus value using Odemark’s 
method of equivalent layer thickness (MET) (42). Note that the application of MET and use of a 
single composite modulus value was necessary in order to reduce the amount of SIF 
computations. This approach has been widely used for pavement response analyses (43) and 
FWD backcalculation (44). However, whether or not this layer thickness equivalent concept 
works for SIF has not been fully explored in the literature.  To verify this concept, one pavement 
structure consisting of an HMA overlay, an existing HMA layer with a crack having no load 
transfer, one base layer, two subbase layers, and the subgrade was analyzed, as shown in    
Figure 2-4. More than 15,000 SIF computations (Kbending and Kshearing) were run using the SA-
CrackPro program. Figure 2-5 shows the SIF comparisons between un-transformed and 
transformed pavement structures. It is obvious from the results shown in Figure 2-5 that 
Odemark’s equivalent thickness concept is still applicable to SIF computations. With this 
verification, the pavement structures below the existing HMA (or PCC) layer can be simplified 
as only a base layer plus the subgrade. 

 
 

Figure 2-4. HMA Overlay Pavement Structures (LTC=10%) and Associated Odemark’s 
Transformation. 
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(a) Kbending verification           (b) Kshearing verification 

Figure 2-5. Verification of the MET Approach for Multi-Base Pavement Structures. 
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Consideration of a Multi-Layered HMA Overlay 

Similarly, it is expected that the MET approach may be also applicable to HMA overlays. 
To check its validity, pavement structures with three and two HMA overlays over existing HMA 
(for bending) and PCC concrete pavements (for shearing with three levels of load transfer) and 
associated equivalent structures, as shown in Figure 2-6, were analyzed. Part of the analysis 
results are presented in Figure 2-7. It is clear that the MET approach is also applicable for multi-
HMA overlays. Similar results have been observed for HMA over PCC pavements with            
50 percent and 90 percent load transfers as well. Therefore, multi-layered HMA overlay can also 
be treated as one HMA overlay using the MET approach, which significantly simplifies the SIF 
computations and regression equation development. 

 

 
Figure 2-6. Three-Layer Overlay Structure and Its Transformation. 
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Figure 2-7. Verification of the MET Approach for Multi-HMA Pavement Structures. 
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level traffic loading on both the bending and shearing SIFs needs to be investigated. Detailed 
information is presented below.   

• Multi-axle traffic loading analysis 

The influence of multi-axle traffic loading on the tensile strain at the bottom of the HMA 
layer has been well discussed by Huang (41). Figure 2-8 shows a tandem-axle load and 
associated tensile strain responses at different locations. The effect of this tandem-axle load on 
fatigue damage and the associated crack initiation is often taken into account by considering both 
εa and εa-εb (εa-εb is the strain for the second axle load); see Figure 2-8. This is considered a 
reasonable approach because the damage caused by the horizontal tensile strains in both the 
traffic direction and perpendicular to the traffic direction contribute to fatigue damage including 
the associated crack initiation process. Note that a similar approach has been used in VESYS 
(45), KENLAYER (41), and even in the MEPDG (1).   

 

Figure 2-8. Tandem Traffic Loading (41). 
 

However, this approach may not be applicable to crack propagation because of the 
existence of macro-cracks. In the stage of crack propagation, a macro-crack in the direction 
perpendicular to traffic exists and ideally propagates in the vertical direction towards the 
pavement surface.  The main contributions to the crack propagation are from Kbending and Kshearing 
in the traffic direction. As an example, an HMA overlay pavement structure consisting of an 
HMA overlay, an existing HMA concrete layer, a base layer, and the subgrade was used for 
investigating the Kbending and Kshearing values corresponding to different crack lengths under a 
moving tridem-axle load passing over a crack. Figure 2-9 shows the Kbending and Kshearing 
development at different crack lengths under a 54 kip tridem-axle load with a tire pressure of  
100 psi.  For comparison purposes, the Kbending and Kshearing development at different crack 
lengths under an 18 kip single axle load with a pressure of 100 psi is also presented in Figure 2-9. 
It can be seen that the maximum Kbending and Kshearing values under the tridem-axle load are 
almost the same as those under the single axle load. Extensive analysis results show that this 
observation is also true for other pavement structures under different types of multi-axle loads.  
Therefore, multi-axle loads, for simplicity, can be handled through multiple applications of the 
single axle load. Thus, the varied traffic loading spectrum can be easily analyzed as a multi-level 
single axle load, which is discussed in the subsequent section. 
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(c) Kshearing under tridem-axle load        (d) Kshearing under single axle load 

Figure 2-9. Kbending and Kshearing Comparison: Tridem vs. Single Axle Load. 
 

• Multi-level single axle load configuration 

For a single axle traffic load, its load levels vary in a very wide range, which may result 
from variations in the tire pressure, contact area, and/or both. Both Kbending and Kshearing are 
linearly proportional to the tire pressure for the same contact area. Thus, only one tire pressure of 
100 psi was used in this analysis. Kbending and Kshearing can be readily determined under other tire 
pressures 

In the case of varying contact area but keeping tire pressure constant, Kbending and Kshearing 
must be specifically calculated for each contact area (= effective tire width × tire length). It also 
has been reported that the tire length and associated contact area increases with an increase in the 
load level while keeping the tire pressure constant; however the effective tire width hardly varies 
with the load level (46). Therefore, increasing the contact area is actually equal to an increase in 
the tire length, since the effective tire width does not vary with the load level.   

After reviewing the default load spectrum in the MEPDG (1), four levels of single axle 
loads listed in Table 2-5 were selected for developing SIF regression equations. Note that a 
constant effective tire width of 6.2 inches was chosen based on the text book “Pavement 
Analysis and Design” by Huang (41). The SIF values corresponding to the other load level (or 
contact area/tire length) can be interpolated or extrapolated based on these SIF values. 
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Table 2-5. Four Single Axle Loads Recommended for SIF Analysis. 

Axle load Tire pressure Effective tire width Tire length 
4 kip 100 psi 6.2 inch 1.6 inch 
11 kip 100 psi 6.2 inch 4.4 inch 
18 kip 100 psi 6.2 inch 7.2 inch 
25 kip 100 psi 6.2 inch 10.0 inch 

Note: a standard single axle consists of 2 dual tires. 

Based on the above discussions, SIF regression equations were developed and presented 
in the next section. 

 

SIF Regression Equations 

Since the MET approach is validated for SIF, only pavement structures with an HMA 
layer, an existing HMA or PCC layer, a base layer, and the subgrade (E= 7 ksi), as shown in 
Figure 2-10, were analyzed to develop SIF regression equations. For each pavement structure, 
the SIF in both bending and shearing modes under four load levels (see Table 2-5) were 
calculated. Note that the bending mode refers to the loading center just at the top of the crack, 
and the shearing mode refers to the loading edge at the top of the crack. For the shearing mode, 
three load transfer levels were analyzed: very poor, fair, and good. Therefore, a total of 32 SIF 
regression equations (= 4 load levels × 2 existing pavements × 4 SIFs) have been developed 
based on more than 1,600,000 runs. Only the SIF (Kbending and Kshearing) regression equations 
under 18 kip single axle load are presented below. The goodness of fit is shown in Figure 2-11, 
in which all SIF data computations are plotted. All the other regression equations are listed in 
Appendix A. Note that the Kbending and Kshearing equations have the same polynomial expression 
format (Equation 2-5): 
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Figure 2-10. Four-Layered Pavement Structures Used for Developing the SIF Equations. 
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• HMA/PCC: Kbending under single axle load of 18 kip 
( ) ( ) ( )( )

( )( )6964.7log0080.1log1908.0log9882.1

0721.31log0389.4log6100.0log2856.20log9689.2log5670.7log5900.1

1
2

11

2
2

22
2

2
6674.0

33

−+−

×++−−++−= −

EEH

EEHHEHKa  (2-6) 

( )( )
( ) ( ) ( )( ) ( )( ) ( )6

0
8594.0

0
6878.3

1
7583.7

2
5383.0

3

1
2

11
2

1
6

103660.14093.180855.19056.52688.22logloglog

5739.1109600.162502.0log5328.76log4974.12101018.7
−−−

−

×−−×+−×−××

×+−+−×=

fcfEEE

ffEEKb  (2-7) 

( )( )
( ) ( ) ( )( ) ( )( ) ( )4900.46264.270769.11618.00595.0logloglog

7209.1967353.174384.3log1921.102log9941.80035.0

0
1273.1

0
8892.7

1
2183.9

2
6440.1

3

1
2

11
2

1

+×+×−××

×−+−+−=
−− fcfEEE

ffEEK c  (2-8) 

( )( )
( ) ( ) ( )( ) ( )( ) ( )3287.00514.94002.03612.03984.21logloglog

0447.893137.900213.3log5807.57log6682.130014.0

0
0255.0

0
0160.2

1
7219.4

2
0535.0

3

1
2

11
2

1

−×+−×+××

×−−++−=
− fcfEEE

ffEEK d  (2-9) 

( )( ) ( ) ( ) ( )( ) 1013.08501.2logloglog3703.0log2021.0log0253.0 8212.9
1

5751.7
2

6612.1
31

2
1 +−×××+−= −− EEEEEK e

 (2-10) 

where f0, f1, Y, and I are defined below: 
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• HMA/PCC: Kshearing@LTE=10 % under single axle load of 18 kip 
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• HMA/ PCC: Kshearing@LTE=50 % under single axle load of 18 kip 
( ) ( ) ( )( )

( )( )2575.14log3627.4log4444.0log1037.1

3603.6log7615.0log0895.0log3039.0log0307.0log9483.4log0193.0

1
2

11

2
2

22
2

2
0624.0

33

+−+−

×−+−+−+−= −

EEH

EEHHEHKa  (2-20) 

( )( )
( ) ( ) ( )( ) ( ) ( )( )( )2234.00782.15858.0logloglog

3394.1041949.53493.0log5807.74log3162.160479.0
0398.1

20
7523.0

0
2398.9

1
1959.2

2
0480.6

3

1
2

11
2

1

++×−×+××

×++−−=
−−−− HcfcfEEE

ffEEK b  (2-21) 

( )( )
( ) ( ) ( )( ) ( ) ( )( )( )0072.05305.02319.12logloglog

9205.14644.22248.0log3902.3log1138.01147.0
5690.3

20
2861.3

0
4083.2

1
2297.0

2
4164.1

3

1
2

11
2

1

++××+××

×−−++−=
−− HcfcfEEE

ffEEK c   (2-22) 



17 
 

( )( )
( ) ( ) ( )( ) ( ) ( )( )( )2505.10463.00513.0logloglog

4835.257984.10899.0log9453.14log3439.20714.0
3926.1

20
6751.0

0
1088.1

1
2683.0

2
2434.0

3

1
2

11
2

1

++×−×−××

×++−−=
− HcfcfEEE

ffEEK d   (2-23) 

( )( ) ( ) ( ) ( )( ) 5145.05951.0logloglog0481.3log0511.2log4222.0 9661.1
1

8482.1
2

3937.0
31

2
1 −+×××+−= − EEEEEK e

 (2-24) 

• HMA/ PCC: Kshearing@LTE=90 % under single axle load of 18 kip 
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HMA over PCC: Bending
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(a) Kbending plot                            (b) Kshearing with LTE=10% plot 
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(c) Kshearing with LTE=10% plot               (d) Kshearing with LTE=10% plot 

Figure 2-11. SIF Values Predicted by Regression Equation vs. SIF  
Calculated by SA-CrackPro Program. 
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THERMAL RELATED SIF AND ASSOCIATED REGRESSION EQUATIONS 

As discussed previously, HMA overlay(s) under thermal loading often shows strong 
visco-elastic behavior due to long loading times, which makes the well, known Paris’ law for 
crack propagation not applicable. Fortunately, Hiltunen and Roque (25) successfully developed a 
“hybrid” approach for low-temperature cracking, which includes: 1) establishment of the 
relationship between SIF at the crack tip and the thermal stress at the far field at the same height 
of the crack tip in the HMA layer, 2) calculation of thermal stress based on the 1D visco-elastic 
constitutive equation, and 3) estimation of crack propagation based on Paris’ law. This approach 
is theoretically sound and practically applicable. Thus, a similar approach is used in this research 
project to analyze thermal reflective crack propagation.  

However, it should be noted that some differences exist between the low-temperature 
cracking and the thermal reflective cracking.  For example, the crack propagates upward for the 
thermal reflective cracking. In contrast, for the low-temperature cracking, the crack propagates 
downward. Additionally, the pavement structure modeled in the low-temperature cracking model 
included one HMA layer only. However, for the reflective cracking, at least two layers (HMA 
overlay plus cracked HMA (or PCC) layer) must be considered. These differences make it 
impossible to directly use the relationship between the SIF and the thermal stress (σVE-far) at the 
middle of crack spacing developed for the low-temperature cracking, although the other two 
components (thermal stress calculation and Paris’ law-based crack propagation) can still be used. 
Thus, new SIF versus thermal stress relationships must be developed for HMA overlays. 

A two-layer pavement structure with a continuous interface between the HMA overlay 
and the existing HMA/PCC pavements, as shown in Figure 2-12, was used to develop such 
relationships. For HMA/existing HMA pavements, the continuous interface between the existing 
HMA layer and base layer was assumed. However, a semi-continuous condition was assigned to 
the interface between PCC slabs and the base/foundation layer. After extensive FE analysis, the 
Kthermal versus σVE-far relationships were developed in the form of Equations 2-30. Detailed 
equations are presented below:  

 

 
Figure 2-12. HMA Overlay Structure Model. 
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• HMA/existing HMA pavements: Kthermal 
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where α1 and α2 are the thermal coefficients of expansion of HMA overlay and existing HMA 
layer, respectively.  

• HMA/existing PCC pavements: Kthermal 
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where α1 and α2 are the thermal coefficients of expansion of HMA overlay and existing HMA 
layer, respectively. 

 

Regarding the σVE-far (at middle of crack spacing or slab) calculation, the key is to 
develop a master curve of relaxation modulus E(t) for the HMA overlay material.  In this 
research project, the dynamic modulus (|E*|) of HMA material is the main input for the asphalt 
overlay thickness design so that the relaxation modulus E(t) is estimated from the dynamic 
modulus (|E*|) through inter-conversion between linear visco-elastic functions (47).  With 
known E(t), the σVE-far can be calculated based on the 1D visco-elastic constitutive equation.  
Detailed steps used in this research project to calculate the σVE-far are presented below. 

 Step 1: Develop the storage modulus E' ( θcos*E= ) master curves with reduced 
angular frequency ω. Note that Tf /22 ππω == , where f is the frequency and T is the 
time period.  The master curve formula is given in Equation 2-41: 

re
E

ωγβ
αδ

log1
log

++
+=′       (2-41) 
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where δ, α, β, and γ are material parameters; Tr a×= ωω  is the reduced angular 
frequency; and aT is the shift factor as a function of temperature T (Equation 2-42) in 
which a, b, and c are regression coefficients. 

cbTaTaT ++= 2log      (2-42) 

 Step 2: Determine relaxation modulus E(t) from the storage modulus E'(ω) through 
the Prony series of representation. 

The storage modulus E'(ω) developed in Step 1 can be further represented below:  
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where Ee (the equilibrium modulus), Ei (relaxation strengths), and ρi (relaxation time) 
are all positive constants. The series expression in Equation 2-43 is often referred to 
as a Prony series. As demonstrated later, using the Prony series expression can 
significantly simplify the σVE-far calculation. 

Meanwhile, the same Prony series used in Equation 2-43 can be used to represent the 
relaxation modulus, E(t): 
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 Step 3: Calculate the σVE-far based on the Boltzmann superposition principle using the 
following equation. 

( ) ( )∫ ∂
∂

−=
t

dtEt
0

τ
τ
ετσ         (2-45) 

where σ(t) is stress at time t (or σVE-far); E(t-τ) is relaxation modulus at time t-τ; ε is 
stain at time t (= ( )( )0TtT −×α ; α is coefficient of thermal expansion, T(t) is pavement 
temperature at time t; T0 is pavement reference temperature when σ=0; and τ is 
variable of integration.   

If a direct integration of the convolution function represented in Equation 2-45 is 
performed, the entire history of strains has to be stored.  In order to avoid the need of 
storing the strain histories, the convolution representation was transformed into a two-
step recurrence formula which involves internal variables.  Detailed theoretical 
background can be found in the literature (48).  The formula used in this research for 
computing strain response is given below: 
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where hi(t) is an internal variable for the specific Voigt element, i, at time t, and its 
definition is given below. 
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Note that if the creep compliance data from the indirect tension test (IDT) are available, 
relaxation modulus E(t) can also be determined through inter-conversion, which has been well 
documented in reference 25 and others.   

HMA FRACTURE PROPERTIES: A AND n 

As noted previously, another aspect of the Paris’ law-based reflective cracking model is 
to determine HMA fracture properties: A and n. Since Majidzadeh et al. initiated the work in this 
area in the early 1970s (13), the HMA fracture properties have been studied for a long time (17-
19, 49-54). Different test setups, such as the repeated direct tension test, IDT, and semicircular 
bending test have been tried. However, the common difficulties such as specimen preparation 
and long testing time still exist. To overcome some of these difficulties, Zhou et al. recently 
developed an Overlay Tester (OT)-based HMA fracture properties test procedure (39). The three 
main innovative features of the OT-based test procedure for HMA fracture determination are: 

1. Specimen size (6 inch by 3 inch wide by 1.5 inch high): this size of specimen can be 
easily cut from samples compacted by the Superpave Gyratory Compactor or from field 
cores or HMA slabs (either lab fabricated or cut from the field). 

2. Lab specimen preparation (Figure 2-13): neither a hole in the center nor a notch at the 
bottom of the specimen is required, since a crack is always initiated in the first cycle. 

 

 
 

 

Figure 2-13. OT Specimen Preparation. 
 
 

3. Short testing time: in contrast to other fracture types of tests (i.e., IDT, semicircular 
bending test, or repeated direct tension test) which generally take a long testing time, the 
OT test for determining fracture properties (A and n) can generally be done within          
20 minutes, because only the first 100 cycles of data are necessary for fracture properties 
determination. 
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The detailed OT-based HMA fracture property test procedure is presented in Appendix B. 
It is worth noting that all test procedures including the OT-based procedure addresses only Mode 
I fracture (opening and/or bending mode loading). Regarding the Mode II fracture (shearing 
mode loading), there is no simple performance test available to date to adequately characterize 
this fracture mode. In most cases, it is assumed that Modes I and II share the same fracture 
properties (A and n) (3, 13, 19, 20).   

 

PRELIMINARY CALIBRATION OF THE REFLECTIVE CRACKING MODEL 

The reflective cracking model developed above was calibrated with three field case 
studies: 1) a pure thermal loading case, 2) a 1 inch HMA overlay over a jointed PCC pavement, 
and 3) a 4 inch HMA overlay over a badly cracked CRCP on Interstate Highway (IH) 20. 
Detailed information is presented as follows. 

 
Case 1: Thermal reflective cracking model verification  

The study on pure thermal reflective cracking is generally not practical and is also rare 
since the roads are built for traffic. Fortunately, an overlay test section with long-term 
performance data is available for this calibration. Buttlar et al. (55) constructed several test 
sections on Runway 18-36 and Taxiway F at the Rantoul National Aviation Center (RNAC) with 
an initial purpose of identifying cost-effective rehabilitation strategies to mitigate reflective 
cracking in 1999. However, there is no (or very few) aircraft loading on the control test section. 
Thus, it is reasonable to use it for calibrating the pure thermal reflective cracking model. 

The control overlay section shown in Figure 2-14 consists of 2.5-4 inch asphalt overlay 
over a jointed PCC pavement, and an average overlay thickness of 3.25 inches was used in later 
reflective cracking prediction. Two surface mixes with the same aggregate gradation were used 
in the control section, one mix with a PG58-22 binder and the other with a PG64-22 binder. The 
IDT creep compliance test results from Buttlar et al. (55) are shown in Table 2-6. As reported by 
Buttlar (56), after seven years in the field, zero reflective cracking was observed. 
 

 
Figure 2-14. Cross-Section for Control Section at RNAC (55). 

 

Since no test was performed to determine the HMA fracture properties of these two 
mixes, the following relationships were used to estimate A and n values for the analysis: 

                           /2 mn =       (16) 
    14.136.2log nA −−=         (49) 
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The m values determined from the creep compliance are 0.3712 and 0.4661 for PG58-22 and 
PG64-22 mixes, respectively. The assumed thermal coefficients of expansion are 13.5×10-6 and 
5.5×10-6 for HMA mixes and the existing PCC, respectively.  Additionally, the required 
temperature profiles of HMA overlays for calculating σVE-far were predicted through the EICM (1) 
in which the weather station at Champaign/Urbana, Illinois, was used.  After numerous trials, the 
calibration factor for thermal reflective cracking was determined to be k3=1200 in Equation 2-2, 
and the associated reflective cracking development for these two sections are shown in       
Figure 2-15. 

Table 2-6. HMA Mix Properties Used for Thermal Analysis (55). 

Parameter Temp. (ºC) Time(s) PG58-22 PG64-28 

Creep Test Results 

Creep 
Compliance 

(1/GPa) 

-20 

1 0.039 0.056 
2 0.042 0.06 
5 0.048 0.067 
10 0.046 0.072 
20 0.049 0.081 
50 0.052 0.098 
100 0.054 0.104 

-10 

1 0.064 0.07 
2 0.063 0.07 
5 0.071 0.095 
10 0.081 0.094 
20 0.091 0.116 
50 0.111 0.142 
100 0.126 0.164 

0 

1 0.076 0.089 
2 0.096 0.104 
5 0.117 0.128 
10 0.124 0.174 
20 0.15 0.206 
50 0.192 0.289 
100 0.243 0.377 

m 0.3712 0.4661 
A 3.1401E-9 5.6018E-8 
n 5.3887 4.2909 
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Rantoul Airport: Reflective Cracking Rate vs. Time
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Figure 2-15. Predicted Reflective Cracking Development at RNAC. 

 

Case 2: 1 inch HMA overlay over a jointed PCC pavement 
A 1 inch HMA overlay over an 8 inch jointed PCC pavement was constructed on 

Pumphrey Street, Fort Worth, Texas, in July 2007. The overall conditions of the main lane of the 
existing PCC pavement were good, and the load transfer efficiency at the joints was more than 
90 percent. But joints at all the ramps had very poor load transfer efficiency (less than               
30 percent). The estimated 20-year traffic loading is 0.5 million ESALs. Two mixes specifically 
designed for this overlay project were dense-graded Type F mixes, which have the same 
gradation but two different binders: crumb rubber modified binder and 3 percent latex modified 
binder. Both mixes passed TxDOT’s requirements for Hamburg wheel tracking test and OT (57) 
and were expected to have the same or similar performance. Figure 2-16 shows the existing 
pavement conditions and a plan view after HMA overlay.  Three site visits had been made to this 
overlay project on December 14, 2007, April 2, 2008, and July 30, 2008, respectively.  Cracking 
was not observed on the main lane for both mixes (see Figure 2-17a), but the ramps had           
30-50 percent reflective cracking for both mixes and as an example, Figure 2-17b shows a 
reflected crack through the section with the two mixes at ramp R1. 

During construction, the plant mixes were sampled for a series of lab characterization 
including dynamic modulus, OT, Hamburg, and repeated load permanent deformation tests.             
Figure 2-18a shows the dynamic modulus master curves of these two mixes, and the fracture 
properties measured at room temperature are also presented in Figure 2-18a. With all this 
information plus the weather station at Fort Worth, Texas, the reflective cracking performance of 
these two test sections on both the main lane and the ramps were predicted and compared to the 
observed reflective cracking (see Figure 2-18b). The calibration factor for shearing is k2=40 in 
Equation 2-2. Note that the calibration factor for bending, k1 could not be determined in this case 
because the 1 inch overlay is under compression and consequently, all the Kbending values are 
negative. Thus, the k1 value has to be determined in the next case (i.e., Case 3). 
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Figure 2-16. Plan View of the Pumphrey Street Project. 

 

  
(a)                   (b) 

Figure 2-17. Observed Reflective Cracking. 
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(18a)                         (18b) 

Figure 2-18. Pumphrey Street: Reflective Cracking Prediction. 
 
 
Case 3: 4 inch HMA overlay at IH20 

The IH 20 is one of the busiest truck-traveled highways in Texas. Based on 2004 traffic 
data, the estimated 20-year design traffic for this pavement is 87.2 million equivalent single axle 
loads (ESALs), with an average annual daily traffic (AADT) of 32,810 vehicles (with trucks 
constituting over 33 percent of the total). After years of heavy traffic, this section of highway 
needed to be rehabilitated. The main reason for the rehabilitation was the severe transverse 
cracks that caused poor ride quality. The pavement structure before the new HMA overlay 
consisted of 4 inch HMA overlay, 8 inch CRCP, 7 inch cement-stabilized base, 6 inch cement-
treated base, and 6 inch select material over subgrade. The rehabilitation scheme included 1) 
milling off the 4 inch existing HMA overlay, 2) full-depth repair of the CRCP at selected 
locations, and 3) placement of a new 4 inch HMA overlay. After milling the existing 4 inch 
HMA overlay, the rolling dynamic deflectometer (RDD), which can continuously measure 
pavement deflection, was used to evaluate the load transfer conditions at the transverse cracks of 
the CRCP. Figure 2-19, as an example, shows the RDD deflection data with two sensors: Sensors 
1 and 3. In this case, 10 locations have significant spikes that exceed 10 mils. These significant 
spikes indicate locations with poor load transfer (less than 50 percent). A total of seven reflective 
cracks corresponding to these spikes were observed within 25 months after opening to traffic, 
which are shown at the bottom in Figure 2-19 (58).  It is clear that the load transfer had 
significant influence on reflective cracking. 

Crumb rubber: 
A=1.707E-7, n=4.098
Latex: 
A=7.650E-8, n=4.176
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Figure 2-19. RDD Deflection Data at Test Section 1. 

 

A total of nine mixes with the same PG76-22 binder (3 aggregate sources × 3 mix types) 
were used in this rehab project. These nine mixes were very stiff and had the same or very 
similar performance in terms of dynamic modulus (59), rutting resistance (Hamburg wheel 
tracking test), cracking resistance (Overlay test), and field performance. Thus, only test Section 1 
consisting of 2 inch Superpave 12.5 mm mix and 2 inch dense-graded Type B mix was used to 
calibrate the reflective cracking model. The dynamic modulus and fracture properties of both 
mixes are presented in Figure 2-20a, and the observed reflective cracking at this section is shown 
in Figure 2-20b. After several trials, the calibration factor for bending load was found to be 
k1=20. The predicted and the observed reflective cracking are shown in Figure 2-20b. 
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Figure 2-20. IH20 Section 1: Reflective Cracking Prediction. 
 
In summary, the Paris’ law-based reflective cracking model has been preliminarily 

calibrated using three field case studies, and the three calibration factors, k1, k2, and k3 for 
bending, shearing, and thermal loading, respectively, have been separately determined. To verify 
the calibrated reflective cracking model, six HMA overlays over cracked asphalt pavements 
tested under CalTrans accelerated pavement testing (APT) are employed and presented next. 
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VERIFICATION OF THE CALIBRATED REFLECTIVE CRACKING MODEL 

A comprehensive APT study has recently been completed on the use of modified binders 
to limit reflective cracking in thin asphalt concrete overlays at the University of California 
Pavement Research Center (60). The experiment entailed the construction of a 90 m test road 
consisting of compacted clay subgrade, a 410 mm aggregate base, and 90 mm dense graded 
asphalt concrete surface. A Heavy Vehicle Simulator (HVS) was used to induce fatigue cracking 
on six, 8×1 m sections. Trafficking on each section was stopped when crack density exceeded 
2.5 m/m2.  Six different overlays, including a dense graded asphalt concrete control section and 
five different rubber modified binder sections, were then placed on the road, as shown in    
Figure 2-21.  The overlaid pavement structure is shown in Figure 2-22.  Pavement temperatures 
were controlled to be around 68 ºF (20 ºC) using a temperature chamber. The HVS test results 
are presented in Table 2-7. The original six section locations were precisely mapped onto the 
overlays and the HVS used to assess reflective cracking in each. The reflective cracking 
conditions of Sections 587 and 588 after the HVS test are presented in Figure 2-23. 

 

 
Figure 2-21. Layout of Six Overlay Test Sections (60). 

 
 

 
Figure 2-22. Pavement Structures of Six HVS Asphalt Overlay Test Sections (60). 
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Table 2-7. HVS Test Results of Six Asphalt Overlay Sections. 

Section 
ID 

Section brief description No. of ESALs to 2.5 
m/m2 cracking 

Regular overlay test 
results 

586 45 mm MB4-G with 15% 
rubber 

None after 88 million 
ESALs 

>2000 

587 45 mm RAC-G 60 million 396 

588 Control section with 90 mm 
AR-4000-D (Dense graded 

asphalt concrete) 

16 million 16 

589 45 mm MB4-G None after 66 million 
ESALs 

>2000 

590 90 mm MB4-G None after 37 million 
ESALs 

>2000 

591 45mm MAC15-G None after 91 million 
ESALs 

>2000 

 

 
(a) Section 587 

 
(b) Section 588 

Figure 2-23. Reflective Cracking Conditions of Sections 587 and 588 after HVS Testing (60). 
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A total of 18 cores (3 cores from each section) were taken and shipped to TTI for the 
overlay testing. Two series of testing were conducted: 1) regular overlay test following          
Tex-248-F conducted at 77 ºF with a 0.025 inch maximum opening displacement, and 2) 
dynamic modulus and fracture properties (A and n) test. The regular overlay test results are 
shown in Table 2-8. Comparing with the HVS test results, it is apparent that the overlay test can 
clearly differentiate the poor reflective cracking resistance sections from the good ones.  Note 
that the specimens of Sections 585, 586, 589, and 590 did not break at all after 2000 cycles.  The 
measured dynamic modulus and fracture properties of each Section are shown in Figure 2-24 and 
Table 2-8, respectively.  Furthermore, the reflective cracking rate for each HVS Section was 
predicted based on all this information and the preliminary calibrated reflective cracking model, 
as shown in Table 2-8.  For comparison, HVS test results are also presented in Table 2-8.  
Clearly, the predicted reflective cracking rate matches what has been observed under the HVS 
test which is further shown in Figure 2-25 (61).  Note that the cores shown in Figure 2-25 were 
taken after the HVS test.  Apparently, the existing cracks at Sections 587 and 588 reflected 
through the HMA overlay, but almost no crack propagated at Sections 586, 589, 590, and 591 at 
all, which is what has been predicted from the calibrated reflective cracking model (Table 2-8). 
Therefore, the calibrated reflective cracking model is basically valid. 
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Figure 2-24. Dynamic Modulus Test Results of HVS Overlay Sections. 
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Table 2-8. HVS Overlay Fracture Properties and Reflective Cracking Prediction. 

Section 
ID 

Fracture Properties Cracking Model 
Predicted No. of 

ESALs to 50 Percent 
Reflective Cracking 

HVS Observed 
No. of ESALs 
to 2.5 m/m2 
Cracking A n 

586 2.77E-06 4.974703 No crack propagation 
after 91 million ESALs 

None after 88 
million ESALs 

587 3.41E-09 4.003453 50.4 million 60 million 

588 6.10E-10 4.9019 8.3 million 16 million 

589 2.44E-08 5.543798 No crack propagation 
after 66 million ESALs 

None after 66 
million ESALs 

590 6.52E-08 5.184681 No crack propagation 
after 37 million ESALs 

None after 37 
million ESALs 

591 3.44E-10 4.763871 None after 91 million 
ESALs 

None after 91 
million ESALs 

 

  
(a) Section 586                    (b) Section 587 

Figure 2-25.  Field Cores Conditions after the HVS Testing (61). 
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(c) Section 588                       (d) Section 589 

  
(e) Section 590                    (f) Section 591 

Figure 2-25.  Field Cores Conditions after the HVS Testing (61) (Continued). 
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SUMMARY AND CONCLUSIONS 

This chapter discussed the M-E reflective cracking models for HMA overlay thickness 
design and analysis. Based on the work presented in this chapter, the following conclusions and 
recommendations are made. 

 

• For simplicity and practical routine applications, the well-known Paris’ law-based 
fracture mechanics model still is a rational choice to model reflective cracking induced 
by both traffic loading (bending and shearing) and thermal effects. This was the basis 
of the M-E models proposed in this study for modelling reflective cracking in asphalt 
overlays. 

• Based on extensive SIF computations and statistical analysis, a total of 32 SIF 
regression equations were developed for asphalt overlays over existing flexible 
pavements and asphalt overlays over existing PCC pavements with three levels of load 
transfers efficiencies (10, 50, and 90 percent) at joints/cracks. These developed 
equations make it possible and practical to directly analyze the reflective crack 
propagation caused by variable traffic load spectrum. It was also found that the MET 
approach is valid for multi-layered asphalt overlays and bases (and/or subbases). 

• For the thermal reflective cracking, a “hybrid” approach, similar to the SHRP low 
temperature cracking model, was proposed. In this hybrid approach, the viscoelastic 
properties of HMA mixes are considered through the thermal stress at the far field 
(σVE-far), which then ties with the stress intensity factor (Kthermal). Regression equations 
were accordingly developed for asphalt overlays over existing flexible pavements and 
asphalt overlays over existing PCC pavements, respectively. 

• The HMA fracture properties (A and n), which are the fundamental input parameters 
required in the proposed M-E reflective cracking model, can be easily and directly 
determined in the laboratory using the simple and rapid OT test. The main innovative 
features of the OT for fracture property determination are the moderately small and 
convenient specimen size, easy specimen preparation, and short testing time (within  
20 minutes).  To assist in implementation the default values of fracture parameters (A 
and n) have been provided for typical overlay mixes (such as Type C, D, and SMAs), 
as presented in Chapter 4.  

• The proposed reflective cracking model was preliminarily calibrated using three HMA 
overlay field case studies, and the calibrated model has been verified using the 
reflective cracking data of six asphalt overlay sections collected from California’s 
HVS test site. Thus far, satisfactory results have been obtained. However, more field 
performance data are definitely needed for further model calibration and verification. 
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Overall, the M-E models proposed in this chapter offer great promise potential for 
rationally modelling and accurately predicting the reflective cracking potential of HMA overlays. 
Based on the data presented herein, both traffic loading (bending and shearing) and thermal 
effects, over flexible or rigid PCC pavements can satisfactorily be characterized. Additionally, 
the OT proved to be an ideal laboratory test for rapidly determining the HMA fracture properties 
that are required as some of the input parameters in the proposed M-E models for reflective 
cracking. However, although comparable results with field measurements were obtained in this 
study, further model validation and calibration with more field data, varied traffic load spectrums, 
different environmental conditions, and different materials (HMA mix types) are still required. 
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CHAPTER 3 
DEVELOPMENT AND CALIBRATION OF M-E RUTTING  

MODEL FOR ASPHALT OVERLAYS 
 
 
INTRODUCTION 
 

Rutting is another potential major distress and concern for asphalt overlays for at least 
two reasons: 1) if the surface is impervious, the ruts trap water, and at depths of about 0.2 inch, 
hydroplaning (particularly for passenger cars) is a definite threat; and 2) as the ruts progress in 
depth, steering becomes increasingly difficult, leading to added safety concerns. Therefore, it is 
important to make efforts to minimize rutting, and at the same time it is necessary to develop a 
model to predict the potential rutting development when designing an HMA overlay.   

 Different from new asphalt pavement in which rutting may be from each pavement layer 
(i.e., asphalt layer, granular base, or subgrade), the HMA overlay rutting is mainly confined to 
the overlay itself, because rutting from the old pavements, in most cases, had already occurred 
before the HMA overlay.  Several field trench studies on US281 and US175 clearly showed that 
the rutting was coming primarily from the top 2 inches of HMA layers, as shown in Figures 3-1 
and 3-2. Thus, the rutting prediction in this research project focused only on the HMA overlay 
itself. 

Regarding HMA overlay rutting, it is commonly accepted that rutting (permanent 
deformation) is a manifestation of two different mechanisms and is a combination of 
densification (volume change) and repetitive shear deformation (plastic flow with no volume 
change).  It is difficult to determine the relative amounts of rutting occurring in each HMA layer, 
and the relative proportions of rut depth that can be attributed to densification and shear, because 
many factors, such as binder type, binder content, mix type, load level, temperature, initial 
compacted density, etc., have are influence on rutting. To adequately consider all these 
influential factors, it is necessary to develop an M-E rutting model.  Based on this background, 
the main objective of this chapter was to develop an M-E rutting model for HMA overlay design 
and analysis. 

The research approach utilized to achieve the above objective includes four steps: 

 

1) Rutting model review and recommendation; 

2) Development of HMA overlay rutting model; 

3) Calibration of the developed HMA overlay rutting model; and 

4) Verification of the calibrated HMA overlay rutting model. 

 

The detailed work conducted is presented in the subsequent text. 

 



36 
 

 

 
Figure 3-1.  Trench Profiles for Sections 161 (Top) and 162 (Bottom) on US281. 

 

 
Figure 3-2. Trench Wire Lines for Overlay Sections 508 (Top) and 507 (Bottom) on US175. 
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RUTTING MODEL REVIEW AND RECOMMENDATION 

Rutting prediction and modeling have been studied for a long time. Various models have 
been developed to predict rutting (or permanent deformation). In general, these models can be 
categorized as 1) layer strain rutting model and 2) shear strain rutting model. Detailed 
information is presented below. 

Category 1: Layer Strain Rutting Model 
The most often used approach for the rutting prediction is based on the use of elastic 

theory and the results of plastic strains determined by repeated load tests on pavement materials. 
The approach was initially introduced by Heukelom and Klomp (62).  Since then, research has 
been conducted by others such as Monismith (63), McLean (64), Romain (65), Barksdale (66), 
and Morris and Hass (67) for soils, granular materials, and asphalt concrete. The fundamental 
concept of this approach is the assumption that the plastic strain εp is functionally proportional to 
the elastic state of stress (or strain) and number of load repetitions.  This constitutive deformation 
law is considered applicable for any material type and at any point within the pavement system.  
The response of any material must be experimentally determined from laboratory tests for 
conditions (times, temperature, stress state, moisture, density, etc.) expected to occur in situ. 

Provided the plastic deformation response is known, elastic theory (either linear or     
non-linear) is then used to determine the expected stress state within the pavement.  By 
subdividing each layer into convenient thickness (Δzj) and determining the average stress state at 
each layer increment, the permanent deformation within the ith layer, δi,

p may be found by 
summing the (εi

p)×(Δzi) products.  This process is done for each layer present in the pavement so 
that it is termed “layer strain” rutting model.  The total permanent deformation of the pavement 
is found from: 

∑
=

=
n

i

p
i

p
t

1
δδ        (3-1) 

where δt,
p is total permanent deformation of the pavement, δi,

p is permanent deformation within 
the ith layer, and n is number of layers. 

Obviously, such a summation process is done along a vertical axis (constant horizontal 
plane coordinates).  While different permanent deformation models have been proposed, only 
three most promising layer strain rutting models, MEPDG rutting model (68), NCHRP 1-40B 
rutting model (69), and VESYS rutting model (70, 71), are discussed below. 

• MEPDG rutting model  

The final MEPDG HMA rutting model is presented below: 

479244.05606.14488.3
1 10 NTk

r

p −×=
ε
ε

     (3-2) 

where εp is permanent strain, εr is resilient strain, T is temperature (ºF), N is number of load 
repetitions, and k1 is depth adjustment coefficient and defined as follows: 

( ) DDCCk 328196.0211 ××+=      (3-3) 
342.174868.21039.0 2

1 −+−= acac hhC     (3-4) 
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428.277331.10172.0 2
2 +−= acac hhC      (3-5) 

where hac is total HMA thickness (inch) and D is depth below the surface (inch).  

• NCHRP 1-40B rutting model 

NCHRP 1-40B rutting model has the same format as the MEPDG rutting model.  The 
enhancement is to adjust permanent deformation constants based on HMA volumetric properties.  

( )321101
rrr kkk

r

p NTk=
ε
ε

      (3-6) 

where k1 is depth adjustment function defined in the MEPDG rutting model.  kr1, kr2, and kr3 are 
material properties and defined below. 

Constant kr1 is defined as follows: 

[ ] 4488.3105093.1log 0057.15213.0
1

3
1 −××××= −

beffarr VVKk   (3-7) 

where Vbeff  is effective asphalt content in volume (%), and Kr1 is intercept coefficient shown in  
Figure 3-3. 

 
Figure 3-3.  LogKr1 Coefficient vs. Voids Filled with Asphalt (%) (69). 

Constant kr2 is defined below: 
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where Va(design) is design air voids; Pb is asphalt content by weight; Pb(opt)  is design asphalt 
content by weight; Findex is fine aggregate angularity index (Table 3-1); and Cindex is coarse 
aggregate angularity index (Table 3-2). 

Table 3-1. Fine Aggregate Angularity Index Used to Adjust Findex. 

Gradation – External to Restricted Zone Fine Aggregate Angularity 
<45 >45 

Dense Grading – External to Restricted Zone 1.00 0.90 
Dense Grading – through Restricted Zone 1.05 1.00 
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Table 3-2. Coarse Aggregate Angularity Index Used to Adjust Cindex. 

Type of 
Gradation 

Percent Crushed Material with Two Faces 
0 25 50 75 100 

Well Graded 1.1 1.05 1.0 1.0 0.9 
Gap Graded 1.2 1.1 1.05 1.0 0.9 

 

Constant kr3 is presented below: 

( )optb

b
rr P

P
Kk ××= 33 4791.0      (3-9) 

where Kr3 is slope coefficient; for fine-graded mixes with GI<20, Kr3 is 0.40; for coarse-graded 
mixes with 20<GI<40, Kr3 is 0.70; for coarse-graded mixes with GI>40, Kr3 is 0.80; and GI is 
gradation index and defined below: 

( )∑
=

−=
50#

8/3
45.0

i
ii PPGI       (3-10) 

• VESYS rutting model 

The VESYS rutting model is based on the assumption (or laboratory permanent 
deformation law) that the permanent strain per loading pulse occurring in a material specimen 
can be expressed by: 

    
( ) αμ
ε

ε −=
Δ

N
Np

     (3-11) 

where ∆εp(N) is vertical permanent strain at load repetition, N; ε is peak haversine load strain for 
a load pulse of duration of 0.1 sec measured on the 200th repetition; and μ and α are material 
properties depending on stress state, temperature, etc. 

The above equation assumes that ε remains relatively constant throughout the test, and 
thus, the permanent strain increment, ∆εp(N), at any load cycle is:  

     ( ) ( )NN rp εεε −=Δ     (3-12) 

where εr(N) is the resilient or rebound strain taking place at cycle N.  Then, the rut depth for any 
single layer after N load cycles can be written as: 

     α

α
μεε −

−
×=×= 1

1
NHHR pD    (3-13) 

where H is layer thickness. 

The VESYS layer rutting model estimates the permanent deformation in each finite layer 
as the product of the elastic compression in that layer and the layer material permanent 
deformation law associated with that layer. The layer rutting model is expressed by: 
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where Us 
+ is the deflection at the top of the subgrade due to single axle load; Ui

+ and Ui
- are 

deflections at the top and bottom of finite layer i due to axle group; et is strain at top of subgrade 
due to the axle group; es is strain at top of subgrade due to a single axle; μsub and αsub are 
permanent deformation parameters of the subgrade; and μi and αi are permanent deformation 
parameters of layer i. 

The major feature of the VESYS rutting model is to characterize layer properties rather 
than global parameters used by the MEPDG.  For each layer, the VESYS rutting model requires 
permanent deformation parameters: μ and αi.   

 
Category 2: WesTrack Shearing Strain Rutting Model 

 
An alternative to the layer strain approach has been recently proposed to model the 

rutting behavior of the WesTrack test sections (72).  In this approach, the pavement is modeled 
as a multi-layered elastic system with the asphalt concrete modulus determined from the repeated 
simple shear test at constant height (RSST-CH) tests.  Rutting in AC is assumed to be controlled 
by shear deformations.  Computed elastic shear stress and strain (τ, γe) at a depth of 50 mm 
beneath the edge of the tire are used for rutting estimates.  Densification of the asphalt concrete 
is excluded in the rutting estimates since it has a comparatively small influence on surface rutting. 

In simple loading, permanent shear strain in the AC is assumed to accumulate according 
to the following expression: 

( ) cei nba ×××= γτγ exp     (3-15) 

where τ is shear stress determined at this depth using elastic analysis; γe is corresponding elastic 
shear strain; n is number of axle load repetitions; and a, b, c are regression coefficients obtained 
from field data, RSST-CH laboratory test data, and the elastic simulations. 

Rutting in AC layer due to the shear deformation is determined from the following: 

     i
jAC KRD γ∗=      (3-16) 

For a 150 mm (6 inch) layer, the value of K is 5.5 where the rut depth (RD) is expressed 
in inches. 

 
Rutting Model Selection and Recommendation 

As noted previously, the WesTrack shearing rutting model requires the RSST-CH to 
characterize permanent deformation properties of HMA mixes and predict pavement rutting 
using empirical shift factors.  The feature of the WesTrack shearing rutting model is that only the 
HMA layer located at 2 inches below the pavement surface, regardless of how many HMA layers 
exist in the pavement structure, is required to be evaluated under the RSST-CH.  The 
disadvantages of the WesTrack shearing rutting model are 1) high variability of RSST-CH and 2) 
very limited uses and validation. 
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Regarding the layer strain models, both MEPDG and NCHRP 1-40B rutting models have 
specific parameters and do not need to run laboratory testing.  While the NCHRP 1-40B rutting 
model is an enhanced MEPDG model and considers many more factors (e.g., asphalt binder 
content, angularity, gradation) influencing rutting, asphalt binder PG grade (a parameter that 
most affects rutting of HMA pavement based on accelerated load testing) is not directly 
considered in the NCHRP 1-40B rutting model.  It is worth noting that not requiring laboratory 
testing is both advantageous and disadvantageous for these two models, because while it makes 
the models simple to implement, not using laboratory characterization of HMA mixes may lead 
to inaccurate rutting prediction.  However, HMA mixes are very complex, and laboratory 
characterization of permanent deformation properties is critical to adequately predict field rutting 
performance.  

Different from both the MEPDG and NCHRP 1-40B rutting models, the major feature of 
the VESYS layer rutting model is to characterize layer properties rather than global parameters 
used by the MEPDG.  For each layer, the VESYS rutting model requires permanent deformation 
parameters: αi and μi.  Its disadvantage also is acquiring these layer properties and running 
repeated load tests for each layer.  However, recognizing the complexity of HMA mixes, it is 
necessary to characterize each HMA layer’s permanent deformation properties in order to make 
a more accurate prediction. Therefore, the VESYS layer rutting model was finally selected for 
modeling HMA overlays rutting.  The detailed rutting model for asphalt overlays is presented 
below. 

( ) iNUUkR i

N

i
iiRDD

αμ −

=

−+∑ ∫ −=
1

     (3-17) 

where, kRD is calibration factor, Ui
+ and Ui

- are deflection at top and bottom of finite layer i due 
to axle group; N is number of overlays; and μi and αi are permanent deformation parameters of 
overlay layer i. 

It is clear that the two key issues of the recommended rutting model are to 1) calculate 
the deflection of each HMA overlay and 2) determine permanent deformation parameters for 
each HMA overlay: μi and αi in the lab.  Additionally, rutting accumulation principle under 
different traffic loads and environmental conditions should also be addressed.  All these three 
issues will be discussed in the next section. 

 

DEVELOPMENT OF HMA OVERLAY RUTTING MODEL 

As noted above, the VESYS layer rutting model has been recommended for predicting 
HMA overlay rutting.  However, there are three issues needing to be further addressed.  The 
following text will further discuss each one. 

 
Calculation of HMA Overlay Deflection 

Currently, different multi-layer linear elastic programs are available for calculating 
pavement deflection.  To be consistent with current TxDOT’s pavement design program, 
FPS19W in which the well-known multi-layer elastic program, Weslea, is used, the Weslea 
program was chosen to calculate the HMA overlay deflections for rutting prediction.   
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Laboratory Determination of HMA Overlay Rutting Properties: μ and α 

The most often used laboratory test for determining the permanent deformation properties 
of HMA materials is repeated load test. Generally, the test is run without confining pressure with 
0.1 second loading and 0.9 second rest period. After reviewing historical reference about the 
repeated load test in the literature, Zhou and Scullion (73) have standardized the repeated load 
test (or VESYS test) protocol. It was recommended that the test be conducted at three 
temperatures: 77, 104, and 122 ºF.  For each temperature, the applied load is listed in Table 3-3.  
Detailed test protocol can be found in reference 73.  

 

Table 3-3. Repeated Load Test Temperatures and Load Levels. 

Test temperature (ºF) 77 104 122 

Applied deviator stress (psi) 30 20 10 

 

Rutting Accumulation Principle 
To consider the effects of stresses of different magnitudes on the development of rutting, 

which result from variations in traffic loads and environmental conditions, an accumulative 
damage hypothesis is required, just as for fatigue.  A “time-hardening” procedure appears to 
provide a reasonable approach (72, 74).   

For each season i, εi
p is computed from: 

( ) ( )[ ]S
eqi

S
ieqi

p
i

p
i NnNatN −+== 1εε    (3-18) 

where εi
p(at N=1) is permanent strain at the first load repetition; ni is number of load repetitions 

during season i; Neqi is equivalent total number of load repetitions at beginning of season i; and S 
is slope of logεp –logN curve derived from laboratory test results. 

The Neq is obtained for each element k with the time-hardening matching scheme as 
follows: 
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With the above developed HMA overlay rutting, the next step is to calibrate it using field 
rutting data and then verify it using different field rutting data. 

 
CALIBRATION OF THE HMA OVERLAY RUTTING MODEL 

The purpose of calibration is to determine the calibration factor kRD in the HMA overlay 
rutting model.  As shown previously, the calibration factor in the MEPDG rutting model is a 
function of pavement temperature and asphalt layer thickness. Additionally, it has also been 
recognized that permanent strain (εp) may not be directly proportional to resilient strain (εr) but 
related to both resilient strain and modulus (75), so that a modulus (or strain) factor is necessary 
for the calibration.  Therefore, it is anticipated that kRD is also related to pavement temperature 
(T), HMA modulus, and HMA overlay thickness (hOL), as presented below: 

 ( ) ( ) ( )OLRD hfEfTfk 321 ××=     (3-24) 

Therefore, the calibration process was to determine pavement temperature factor, f1(T), modulus 
factor, f2(E), and HMA overlay thickness factor, f3(hOL), using field rutting data.   

 
Determination of Calibration Factors: f1(T) and f2(E) 

In this research project, the field rutting data from the NCAT (National Center for 
Asphalt Technology) pavement test track were used to determine both f1(T) and f2(E).  As noted 
below, the sections of the NCAT test track selected for the model calibration are thin sections 
and most of them are less than 3 inches.  Based on the national rutting trench studies conducted 
by NCAT (76) and the trench studies in Texas (Figures 3-1 and 3-2), most of the rutting occurred 
only in the top 4 inch HMA layers. Therefore, the thickness factor for the sections of the NCAT 
test track was assumed to be 1.0 when determining the calibration factors f1(T) and f2(E).   

Figure 3-4 shows the 2006 experimental sections of the test track, which were 
constructed in October 2006 and trafficked in November 2006. The ESALs were applied with 
four fully loaded trucks at 45 mph with 3 trailers per tractor. Each tractor pulled a load of 
approximately 152,000 pounds for each of 7 loaded axles, and approximately 12,000 pounds for 
the front steer axle.  The cumulative ESALs for NCAT Test Track are plotted in Figure 3-5. 
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Figure 3-4. 2006 Experimental Sections of the NCAT Test Track. 
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Figure 3-5. Accumulated Traffic Loads in ESALs at the NCAT Test Track. 

 

 

A total of 9 sections, N1, N2, S2, S7A, S7B, S8A, S8B, S11, and S12 were selected for 
determining the calibration factors f1(T) and f2(E).  As shown in Figure 3-6, rut depths of these 9 
sections after around 6 million ESALs loading ranged from small rutting (Sections N1, N2, and 
S2), intermediate rutting (Sections S11 and S12), and very deep rutting (Sections 7A, 7B, 8A, 
and 8B).  Plant mixes from these 9 test sections were compacted using the Superpave Gyratory 



45 
 

Compactor (SGC)  to mold samples for both dynamic modulus test and repeated load test.  
Figure 3-7 shows an example of prepared samples (4 inch diameter by 6 inch height) for both 
tests.  The dynamic modulus test was conducted over five different temperatures of 14, 40, 70, 
100, and 130 °F and six loading frequencies of 25, 10, 5, 1, 0.5, and 0.1 Hz for each test 
temperature, respectively.  Figure 3-8 shows the dynamic modulus master curves for the selected 
HMA mixes.  Additionally, the repeated load test was run at three temperatures: 77, 104, and 122 
°F.  The permanent deformation properties (μ, α) for each selected section determined from the 
repeated load test are tabulated in Table 3-4. 

 

 
Figure 3-6. Measured Rut Depths of Test Track Sections. 
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Figure 3-7. Examples of Prepared Specimens for Dynamic Modulus Test and Repeated 
Load Test. 
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Figure 3-8. Dynamic Modulus Master Curves of the HMA Mixes Used for Calibration. 
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Table 3-4. μ and α Values of Selected Sections Determined from the Repeated Load Test. 

Mixes 77 ºF 104 ºF 122 ºF 
α µ α µ α µ 

7A 0.752 0.987 0.744 1.179 0.725 1.139 
7B 0.754 1.025 0.766 1.255 0.762 1.040 
8A 0.797 0.850 0.786 0.988 0.774 1.000 
8B 0.782 0.970 0.789 1.245 0.802 1.195 
S11 0.580 0.152 0.761 0.726 0.855 1.167 
S12 0.750 0.638 0.838 0.873 0.830 0.820 
S2 0.708 0.372 0.781 0.681 0.802 0.958 
N1 0.600 0.236 0.821 1.143 0.877 1.377 
N2 0.667 0.211 0.832 0.872 0.878 1.126 

 
 

In the calibration process, the climate data from the weather station at Opelika, Alabama, 
where the test track is located were used as input to the EICM model to predict HMA layer 
temperature. Note that the modulus E value used for determining f2(E) during the calibration was 
chosen at 130 ºF and 10 Hz. There are two reasons for choosing such a specific temperature and 
frequency; one reason is that rutting in most cases occurs at high temperatures (beyond 100 ºF), 
and the other is that dynamic modulus at 130 ºF and 10 Hz had good correlations with field rut 
depth, as shown in the NCHRP Report 465 (77).  A trial and error approach was to determine 
both f1(T) and f2(E) meanwhile minimizing the difference between the predicted and the 
measured rut depth, as shown in Figure 3-9.  The final temperature factor and modulus factor are 
presented below: 

( ) Te
Tf 204437.03009.181 1

643124.3191112.0
−+

+=      (3-25) 

( ) Ee
Ef 09239.028248.82 1

27860.130787.0
+−+

+=      (3-26) 

where T is HMA overlay temperature, ºF; and E is HMA overlay modulus measured at 130 ºF 
and 10 Hz, ksi. 



48 
 

 

 
Figure 3-9. Comparisons between the Measured and Predicted Rut Development. 
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Figure 3-9. Comparisons between the Measured and Predicted Rut Development 

(Continued). 
 
 
Determination of HMA Overlay Thickness Factor 

Currently, all layer strain-based rutting models including the model used in this study 
predict higher and higher rut depth with increasing HMA overlay thickness, but the reality in the 
field is that the rutting will continually increase with thicker and thicker HMA overlay until the 
HMA overlay thickness reaches a certain value (normally around 5 inches).  After that, the HMA 
overlay rutting normally does not change much with increasing the overlay thickness.  Based on 
this general observation and field trench data shown in Figures 3-1 and 3-2 and the thickness 
adjustment factor used in the MEPDG program, a pure empirical factor, f3(hOL) was developed 
for adjusting the influence of the HMA overlay thickness on the predicted rut depth. The 
recommended HMA overlay thickness factor is presented in Equation 3-27.  Figure 3-10 shows 
the difference of the rutting development before and after thickness adjustment.  Ideally, this 
empirical factor, f3(hOL) will be replaced when more thick HMA overlay rutting data and trench 
information are available. 
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HMA Overlay with a PG64-22 Binder over PCC at Dallas District
under 10 Million ESALs (20 Years)
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(a) Predicted HMA Overlay Rutting before Thickness Adjustment 
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(b) Predicted HMA Overlay Rutting after Thickness Adjustment 

 
Figure 3-10. Rutting Development Comparison before and after Thickness Adjustment. 
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VERIFICATION OF THE CALIBRATED HMA OVERLAY RUTTING MODEL 
It is well known that it is necessary and important to verify the accuracy and 

reasonableness of the calibrated HMA overlay rutting model using an independent data source.  
In this study, the NCAT Test Track 2000 rutting data were employed for this verification process.  
Note that the rutting model was calibrated using the NCAT Test Track 2006 rutting data. 

Since the NCAT Test Track 2000 had finished before the Research Project 0-5123 started, 
neither plant mixes nor raw material were available to this study.  After carefully reviewing the 
literature, some useful information about the NCAT Test Track 2000 was found in one of the 
NCHRP 9-19 reports: Field Validation of the Simple Performance Test in which the measured 
rutting data, traffic loading conditions, dynamic modulus test and repeated load test results of 
several test sections were well documented (78). Three test sections, N02, N12, and N13, were 
identified for the purpose of rutting model verification.  Figure 3-11 shows the dynamic modulus 
master curves of the three test sections, and Table 3-5 lists the permanent deformation 
parameters (μ, α) determined from the repeated load test, at 100 ºF. The comparisons between the 
predicted and the measured rutting development are shown in Figure 3-12.  Generally, the 
predicted rutting matches the measured rutting in the field.  Thus, the calibrated HMA overlay 
rutting model is valid. 
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Figure 3-11. Dynamic Modulus Master Curves of Sections N02, N12, and N13. 

 
Table 3-5. Permanent Deformation Properties of Sections N02, N12, and N13 at 100 ºF. 

Section N02 N12 N13 

μ 0.478 0.182 0.840 

α 0.720 0.548 0.780 
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Figure 3-12. Comparisons between the Predicted and the Measured Rutting Development 

of Sections N02, N12, and N13. 
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SUMMARY AND CONCLUSIONS 

This chapter discussed the M-E rutting models for HMA overlay thickness design and 
analysis. Based on the work presented in this chapter, the following conclusions and 
recommendations are made. 

• After reviewing existing rutting models in the literature, it was found that the well-
known VESYS layer rutting model still is a rational choice to model HMA overlay 
rutting development.  The main feature of the VESYS layer rutting model is to 
characterize layer properties rather than global parameters used in the MEPDG.  For 
each layer, the VESYS rutting model requires rutting parameters: αi and μi.  The HMA 
rutting parameters (α and μ), which are some of the fundamental input parameters 
required in the proposed M-E rutting model, can be directly determined from the 
repeated load test. To assist with implementation the default values of rutting 
parameters α and μ have been provided for typical overlay mixes (such as Type C, D, 
and SMAs), as presented in the next chapter.  

• The proposed HMA overlay rutting model was preliminarily calibrated using 11 test 
sections of the NCAT Test Track 2006, and the calibrated model was further verified 
using the rutting data of 3 test sections of the NCAT Test Track 2000. Thus far, 
satisfactory results have been obtained. However, more field performance data are 
definitely needed for further model calibration and verification. 

Overall, the M-E rutting model proposed in this chapter offers greater promising potential for 
rationally modeling and accurately predicting the rutting potential of HMA overlays. Although 
comparable results with field measurements were obtained in this study, further model validation 
and calibration with more field data, varied traffic load spectrums, different environmental 
conditions, and different materials (HMA mix types) are still required. 
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CHAPTER 4 
HMA OVERLAY THICKNESS DESIGN AND ANALYSIS SYSTEM AND 

ASSOCIATED SOFTWARE 
 

 

INTRODUCTION 
The reflective cracking model preliminarily calibrated above has been integrated into an 

HMA overlay thickness design and analysis system and associated software.  This chapter 
discusses the flowchart of the HMA overlay thickness design and analysis system.  Specifically, 
the HMA overlay thickness design software is presented in detail.  

HMA OVERLAY THICKNESS DESIGN AND ANALYSIS SYSTEM 

Figure 4-1 shows the flowchart of the HMA overlay thickness design and analysis system 
in which both the reflective cracking and rutting models were integrated. As shown in Figure 4-1, 
there are four main components in the HMA overlay design and analysis system: 1) HMA 
overlay, 2) existing pavement conditions, 3) climatic condition, and 4) traffic loading condition. 
More detailed description of these four components is provided as follows. 

HMA Overlay 
Different HMA overlay alternatives have been provided in the design system.  For 

example, the design system allows users to choose either single-layer or double-layer overlay. 
Also, for each specific layer, users can select different types of mixes, such as Type C and D, 
SMA-C, SMA-F, CAM, etc.; for each specific mix type, users can choose different binder types, 
such as a Type D mix with PG76-22 binder or a Type D mix with PG70-22 binder.  Therefore, 
the overlay design system provides users a significant amount of combinations of designing 
HMA overlays for a specific project. 

For each specific overlay mix, the required material properties are dynamic modulus, 
fracture properties A and n, and permanent deformation properties α and μ. For simplicity and 
easy application, default values for the required material properties for the most often used 
overlay mixes have been provided in the design system.  Figure 4-2 shows the dynamic modulus 
master curves of the overlay mixes, and Table 4-1 presents the default fracture properties and 
permanent deformation properties of the overlay mixes.  Additionally, test protocols have also 
been developed to directly measure these material properties if necessary: 

• Dynamic modulus test: AASHTO TP62-03, Standard Method of Test for 
Determining Dynamic Modulus of Hot-Mix Asphalt Concrete Mixtures; 

• Fracture properties: Overlay Test for Fracture Properties A and n, Appendix A; and 

• Permanent deformation properties α and μ: VESYS Test Protocol for Asphalt Mixes, 
Report 0-5798-1. 
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SuperPave D Mixes
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Figure 4-2. Default Dynamic Modulus Master Curves of the Overlay Mixes. 
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SuperPave C Mixes
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SMA Mixes and CAM Mix
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Figure 4-2. Default Dynamic Modulus Master Curves of the Overlay Mixes (Continued). 
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Table 4-1. Default Rutting and Cracking Parameters of the Overlay Mixes. 

Mix Type Binder 
Type 

Rutting parameters Cracking Parameters 
α μ A n 

 
 

Type C 
 
 

64-22 0.7315 0.7234 2.29E-08 4.1475 
70-22 0.7423 0.7014 2.29E-08 4.1475 
76-22 0.7485 0.6756 2.29E-08 4.1475 
64-28 0.7315 0.7306 2.29E-08 4.1475 
70-28 0.7423 0.6986 2.29E-08 4.1475 

 
 

Type D 
 
 

64-22 0.7465 0.8102 2.09E-08 4.3475 
70-22 0.7521 0.7792 2.09E-08 4.3475 
76-22 0.7609 0.7265 2.09E-08 4.3475 
64-28 0.7465 0.8202 2.09E-08 4.3475 
70-28 0.7521 0.7892 2.09E-08 4.3475 

 
 

SP C 
 
 

64-22 0.7315 0.7234 2.29E-08 4.1475 
70-22 0.7423 0.7014 2.29E-08 4.1475 
76-22 0.7485 0.6756 2.29E-08 4.1475 
64-28 0.7315 0.7306 2.29E-08 4.1475 
70-28 0.7423 0.6986 2.29E-08 4.1475 

 
 

SP D 
 
 

64-22 0.7465 0.8102 2.09E-08 4.3475 
70-22 0.7521 0.7792 2.09E-08 4.3475 
76-22 0.7609 0.7265 2.09E-08 4.3475 
64-28 0.7465 0.8202 2.09E-08 4.3475 
70-28 0.7521 0.7892 2.09E-08 4.3475 

SMA C 76-22 0.7106 0.7761 1.06E-08 4.2350 
SMA D 76-22 0.7106 0.7856 1.06E-08 4.2350 
SMA F 76-22 0.7106 0.8004 1.06E-08 4.2350 

SMAR C 76-22 0.7106 0.5406 1.06E-08 4.2350 
SMAR F 76-22 0.7106 0.5514 1.06E-08 4.2350 

CAM 76-22 0.7670 1.3540 1.55E-08 4.1891 

 
Existing Pavement Conditions 

It has been well recognized that existing pavement conditions are very critical to HMA 
overlay design.  To address this issue, guidelines for evaluation of existing pavements for HMA 
overlay were developed under this research project and published in the Year 2 Report 0-5123-2. 
In general, both in-situ survey and the non-destructive tests (NDT) are needed for the evaluation.  
The NDT testing includes the radar for determining the layer thickness of existing pavement 
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layers, the falling weight deflectometer (FWD) for backcalculating moduli of existing pavement 
layers and the load transfer at joints or cracks, and the rolling dynamic deflectometer (RDD) for 
continuously evaluating existing joints for joint concrete pavements. 

The required inputs for the existing pavements are layer thickness, layer modulus, 
joints/crack spacing, load transfer efficiency at joints, and severity level of cracks of existing 
asphalt pavements. 

 
Climatic Condition 

Climatic condition has significant influence on the pavement temperature variations and 
consequently on both rutting and reflective cracking.  The HMA overlay design system 
employed the enhanced integrated climatic model (EICM) to predict the pavement layer 
temperature based on weather station data in Texas. The only required input for climatic 
influence is the closest weather station to the design project.  Currently, more than 80 weather 
station data have been included in the design system.  

 
Traffic Loading  

To be consistent to current flexible pavement design program (FPS19W), the traffic 
loading input in the new overlay design system is the equivalent standard axle load (18 kips). 
Also, the traffic input is exactly the same as that in the FPS19W program. 

 
HMA OVERLAY THICKNESS DESIGN AND ANALYSIS SOFTWARE 

Figure 4-3 shows the main screen and the layout of asphalt overlay design and analysis 
software. The user first provides the software with the General Information of the project and 
then inputs in three main categories, Traffic, Climate, and Structure & Material Properties.  After 
all inputs are provided for the design and analysis program, the user chooses to run the analysis.  
The software now executes the crack propagation and rutting accumulation analysis, and the 
normal running time is generally less than 4 min.  The user can then view input and output 
summaries created by the program. The program automatically creates a summary of all inputs 
of the analyzed overlay design project.  It also provides a summary of the distress and 
performance prediction in both tabular and graphical formats.  All charts are plotted in Microsoft 
Excel® and hence can be incorporated into electronic documents and reports.  

The following text details the inputs in the order of General Information, Traffic, Climate, 
and Structure & Material Properties, and output screens of the overlay design software. 
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Figure 4-3. Main Screen of Asphalt Overlay Design and Analysis System. 

 
 
Project General Information Inputs 

Project General Information inputs include “General Information,” “Project 
Identification,” and “Analysis Parameter & Criteria.” The input screens for each one of them are 
described below. 

• “General Information” Input 
Figure 4-4 shows the input screen of “General Information” in which two major inputs 

are “Type of AC Overlay Design” and “Design Life (years).”  The user can choose three types of 
overlay design: 1) AC/AC, 2) AC/JCP, and 3) AC/CRCP.  Additionally, the user can also specify 
the construction information of the overlay as shown in Figure 4-5. Note that the overlay 
construction information includes the overlay construction month and traffic open month, which 
has some influence on the EICM program but mainly affects the starting month of the asphalt 
overlay performance prediction.  For instance, if the traffic opening date for an AC overlay was 
July 2000, the overlay performance prediction will start at July 2000. 

 

General 
information

Input zone

Output zone

Run 
analysis 
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Figure 4-4. Input Screen of the General Information. 

 

 
Figure 4-5. Input Screen of the General Information with the Specified Construction 

Information. 
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• “Project Identification” Input 
Figure 4-6 shows the input screen of the “Project Identification,” which includes District, 

County, CSJ, Function Class, Date, Reference Mark Format, Reference Mark Begin, and 
Reference Mark End. The 25 districts in Texas and the counties in each district have been 
uploaded into the software.  The user can choose the specified district and county where the AC 
overlay project located.   

 
Figure 4-6. Input Screen of the Project Identification. 

 
 

• “Analysis Parameters and Performance Criteria” Input 
Figure 4-7 presents the input screen of the “Analysis Parameters and Performance 

Criteria.”  Two criteria included are reflective cracking rate (%) and AC rut depth.  The user can 
specify the asphalt overlay failure criteria.  The overlay design software will take the criteria the 
user specified as the analysis stop criteria.  For example, if the user inputs 50 percent for 
reflective cracking rate and 0.5 inch for AC rutting, and the rutting criterion is met first, the 
overlay design program will stop analyzing the rutting development when the predicted rutting 
reaches 0.5 inch deep but continue to calculate the reflective cracking rate development until it 
reaches 50 percent or the analysis period reaches the pavement design life (see Figure 4-5).     
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Figure 4-7. Input Screen of the Analysis Parameters and Performance Criteria. 

 
Traffic Input  

Figure 4-8 shows the traffic load input that is exactly the same as those in the FPS19W.    

 
Figure 4-8. Traffic Load Input Screen. 
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Climate Input 
Figure 4-9 shows the input screen of climate.  The user has two major choices in     

Figure 4-9: Load Existing Climate Data File or Create New Climatic Data File. Further 
description for these two choices is provided below. 

 

 
Figure 4-9. Input Screen of the Climate. 

 
 
 

• Load Existing Climate Data File 
If the user clicks the button “Load Existing Climate Data File,” an opening existing 

climatic data file screen shown in Figure 4-10 will show up.  Then the user can choose the 
existing climatic data files that have been generated before.   



66 
 

 

Figure 4-10. Screen of the Load Existing Climatic Data File. 

 

• Create New Climatic Data File 

If the user clicks the button “Create New Climatic Data File,” the screen will become that 
shown in Figure 4-11. Then the user can select a specific weather station close to the asphalt 
overlay project, as shown in Figure 4-11. In case the asphalt overlay project is located in between 
several weather stations, the user can then use the function of interpolating climatic data for a 
given location. As shown in Figure 4-12, the closet six weather stations will show up for user 
selection.  After selection, the program will automatically run the EICM program to generate 
climatic data for this specific overlay project. 
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Figure 4-11. Input Screen of the Climatic Data for a Specific Weather Station. 

 

 
Figure 4-12. Input Screen of the Interpolate Climatic Data for a Given Weather Station. 
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Structure & Material Properties 
The input screen of the Structure & Material Properties is shown in Figure 4-13.  Overall 

the asphalt overlay pavement is composed of asphalt overlay, existing concrete layer or existing 
asphalt layer, existing base layer, and subgrade. For each specific pavement structural layer, 
different material properties are required.  The following text will detail the inputs of the 
Structure & Material Properties.  

 
Figure 4-13. Main Input Screen of the Structure & Material Properties. 

• Asphalt Overlay 
First, the user can choose either one single-layer or two-layer overlay.  For each overlay, 

the user needs to select or input the following material information and/or properties: 

a. Mix type 

The user first needs to select a mix type for each asphalt overlay.  The available 
mix types in the software are Type C, Type D, Superpave C, Superpave D, SMA-
C, SMA-D, SMA-F, SMAR-C-I, SMAR-CII, SMAR-F-I, SMAR-F-II, and CAM, 
as shown in Figure 4-14. Then, the user can click the “Edit” or “OK” button to 
further describe the asphalt overlay mix that is provided below. 
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Figure 4-14. Input Screen of Mix Type of Asphalt Overlay. 

 

 

b. Binder type 

Figure 4-15 shows the input screen for further description of the overlay mix when 
the user clicks either the “OK” button for an existing project or the “Edit” button 
for a new project.  After selecting the mix type, the next step is to determine the 
binder type being used with the mix. As shown in Figure 4-15, a PG76-22 binder 
is chosen in this case. 
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Figure 4-15. Input Screen of Binder Type Selection and Other Material Properties. 

 

In the case of dense-graded mixes (Type C and D), Superpave mixes (Superpave 
C and D), and CAM mix, the Superpave PG binder grading system is proposed 
for binder type selection (see Figure 4-15).  In case of SMA-C, SMA-D, and 
SMA-F mixes, the only binder type specified in the current specification is PG76-
XX binder, which is presented in Figure 4-16.  If the overlay type is an SMAR 
mix (SMAR-C-I, SMAR-C-II, SMAR-F-I, and SMAR-F-II), the binder type 
selection is not applicable and unnecessary (see Figure 4-17). 
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Figure 4-16. Screen of the Binder Type Selection for SMA Mixes. 

 

 
Figure 4-17. Screen of the Binder Type Selection for SMAR Mixes. 
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c. Dynamic modulus 

Dynamic moduli of asphalt overlay mixes are one of the key inputs of the overlay 
design and analysis software.  Currently, there are two levels of dynamic modulus 
for each overlay mix: Levels 1 and 3 are provided in the program (see Figures 4-15, 
4-16, and 4-17). Level 3 input is default values depending on the mix type and the 
binder type the user selected above.  Note that the default dynamic modulus master 
curves for the overlay mixes are shown in Figure 4-2.  Level 1 input needs to run 
the dynamic modulus test at five temperatures (14, 40, 70, 100, and 130 °F) and 
six frequencies (25, 10, 5, 1, 0.5, and 0.1 Hz), as indicated in Figure 4-18. Then the 
overlay design program will automatically generate the master curve based on the 
30 dynamic modulus inputs. Note that Level 2 dynamic modulus input is currently 
disabled because it was found that the Witczak E* model has a problem when 
predicting the dynamic modulus at a low temperature. The Level 2 input will be 
enabled when the correct Witczak E* model is available. 

 

 
Figure 4-18. Input Screen of the Level 1 Dynamic Modulus. 

 
d. Fracture properties 

The fracture properties (A and n) of asphalt overlay mixes are also the key inputs 
required by the software.  For each overlay mix, default A and n values at 77 °F 
have been provided, as shown in Figure 4-19. Additionally, the user can run the 
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Overlay Test to determine the fracture properties (A and n) at different 
temperatures and then input the measured A and n values at the specified 
temperatures (see Figure 4-20).  

 
Figure 4-19. Input Screen of the Fracture Properties of Asphalt Overlay Mixes. 

 
Figure 4-20. Input Screen of the Fracture Properties Measured at Two Temperatures. 

 
e. Rutting properties 

Similar to fracture properties, the rutting properties of asphalt overlay mixes are 
also required. Again, default values for rutting properties are provided for asphalt 
overlay mixes.  One example is shown in Figure 4-21. The user can also run the 
repeated load test to determine the rutting properties of asphalt overlay mixes and 
then load them to the program, as shown in Figure 4-22. 
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Figure 4-21. Input Screen of the Rutting Properties of Asphalt Overlay Mixes. 

 

 
Figure 4-22. Input Screen of the Rutting Properties Measured at Two Temperatures. 

 
f. Thermal coefficient of expansion 

Another input parameter required is the thermal coefficient of expansion of asphalt 
overlay concrete.  This input parameter has some influence on the thermal stress 
and consequently thermal related reflective cracking. Currently, default values of 
the thermal coefficient of expansion have been provided for the asphalt overlay 
mixes in the program. 
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• Existing JPCP (JRCP) and CRCP 
The input screens for JPCP (JRCP) and CRCP are very similar, as shown in Figure 4-23. 

The required inputs are thermal coefficient of expansion, joint/crack spacing, modulus of 
concrete slab, and load transfer efficiency at joints/cracks.  

 

  
Figure 4-23. Input Screen of the Existing JPCP (JRCP) and CRCP. 

 

• Existing AC 
The input screen of the existing asphalt layer is shown in Figure 4-24.  It can be seen that 

there are four types of input information required for the existing asphalt pavement: 1) thermal 
coefficient of expansion, 2) cracking pattern/type (alligator, longitudinal, transverse, and block 
cracking), 3) crack severity level (low, medium, and high), and 4) modulus. Additionally, for the 
transverse cracking, the crack spacing is also needed.  As indicated in Figure 4-24, the modulus 
of existing asphalt layer is backcalculated from the FWD data, so that it is very important to 
evaluate the pavement structural conditions using the FWD before attempting the asphalt overlay 
thickness design. 
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Figure 4-24. Input Screen of the Existing Asphalt Layer. 

 

• Existing Base 
First, the user can choose the existing base layer to be none, single layer, or two layers. 

The base layer material can be granular base, stabilized base, or simply stabilized subgrade, as 
displayed in Figure 4-25.   

 
Figure 4-25. Existing Base Type Selection Screen. 
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The input required for the granular base material is shown in Figure 4-26.  Two levels of 
modulus inputs are provided in the software.  For Level 2 modulus input, a typical design value 
is assigned to the granular base material without considering the seasonal (or monthly) variation 
of the modulus. Different from Level 2 input, Level 1 input requires monthly modulus of the 
granular base material. Again, it is recommended to conduct the FWD testing and backcalculate 
the modulus of the existing base layer. 

  
Figure 4-26. Input Screens of the Existing Granular Base Material. 

 
In the case of a stabilized base or subgrade, the required input is simply modulus value of 

the stabilized base or subgrade, as displayed in Figure 4-27. 

 

  
Figure 4-27. Input Screen of the Existing Stabilized Base/Subgrade. 
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• Subgrade 
As presented in Figure 4-28, the input for Subgrade is very close to that of the granular 

base material.  

 

 

  
Figure 4-28. Input Screen for Subgrade Layer. 
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Run and Analysis Results Output 
After finishing the program inputs, click the “Analysis” button (see Figure 4-3) to run the 

program and predict the performance of the asphalt overlay project.  Figure 4-29 shows the main 
screen of the software after successfully running the program. As seen in Figure 4-29, the 
outputs of the analysis results include the input summary and output summary.  An example of 
the input summary includes General Information, Traffic, Climate, and Structure & Material 
Properties is presented in Figure 4-30.  The outputs of the overlay design program composed of 
General Results Summary Table, Reflective Cracking Plot, and Rutting Plot are shown in 
Figures 4-31, 4-32, and 4-33, respectively. 

 

  

 
   

 
Figure 4-29. Main Output Screen of the Overlay Design and Analysis Program.  
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Figure 4-30. Input Summary Table. 

 
Figure 4-31. General Output Results Summary Table. 
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Figure 4-32. Reflective Cracking Plot. 

 
Figure 4-33. Rutting Plot. 
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SUMMARY AND CONCLUSIONS 

This chapter describes the asphalt overlay design and analysis system and associated 
software in which the calibrated reflective cracking and rutting models discussed in previous 
chapters are integrated.  The main feathers of the asphalt overlay design and analysis system 
include: 

• Traffic input is compatible to the current flexible pavement design software, FPS19W. 

• Pavement temperature is automatically predicted from the EICM model. 

• Two levels of inputs of material properties are required.  Specifically, default input 
values are provided for asphalt overlay mixes.  Additionally, if Level 1 inputs are 
preferred, a series of lab test procedures were recommended or developed.  

• The program automatically creates a summary of all inputs of the asphalt overlay 
design project.  It also provides a summary of the distress and performance prediction 
in both tabular and graphical formats.  All charts are plotted in Microsoft Excel and 
hence can be incorporated into electronic documents and reports. 

 



83 
 

CHAPTER 5 

SENSITIVITY ANALYSIS OF THE ASPHALT OVERLAY DESIGN AND 
ANALYSIS SYSTEM 

 

INTRODUCTION 

The asphalt overlay design and analysis system and related software developed 
previously provide methodologies for the analysis and performance prediction of asphalt 
overlays over existing flexible and rigid pavements.  The performance predicted by these 
methodologies (in terms of distresses such as reflective cracking and rutting) for the anticipated 
climatic and traffic conditions depends on the values of input parameters that characterize 
asphalt overlay and existing pavement materials, layers, design features, and condition.  
However, these input parameter values are expected to differ to varying degrees and, therefore, 
the predicted performance may also vary to some degree depending on the input parameter 
values. Thus, it is necessary to determine the degree of sensitivity of the performance (in terms 
of reflective cracking and rutting) predicted by the asphalt overlay design and analysis program 
relative to input parameter values.  This information will help identify, for specific climatic 
regions and traffic conditions, the input parameters that appear to substantially influence 
predicted performance.  In this manner, users can focus efforts on those input parameters that 
will greatly influence the asphalt overlay design. This chapter will conduct the sensitivity 
analysis and identify the significantly influential input parameters affecting the asphalt overlay 
performance in terms of reflective cracking and rutting. 

 

SENSITIVITY ANALYSIS ON REFLECTIVE CRACKING AND RUTTING OF 
ASPHALT OVERLAY 

As noted above, the objective of the sensitivity analysis is to investigate how the 
reflective cracking prediction of an asphalt overlay is influenced by changes in magnitude of 
several key input variables.  To do so, the asphalt overlay design and analysis program was run 
using several factorial combinations of the input parameters.  In general, the sensitivity study of 
reflective cracking was not intended to cover a complete full factorial matrix of all parameters.  
Rather, the intent was to investigate the effect of varying one parameter at a time, while keeping 
as many of the other variables as constant input parameters. 

Design Parameters and Pavement Structure 
To study the effect of the desired sensitivity of input parameters on reflective cracking, 

the key input parameters were usually selected from one of three different levels of the parameter 
under study.  In certain special cases, a fourth or fifth level was employed to ensure that an 
adequate range of the variable can be evaluated.  In general, most of the program runs were 
conducted using the “medium” inputs, while varying the key parameter being investigated. The 
key input parameters and associated input values used in this study are listed below: 
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• Influence of traffic (ESALs 20 YR, millions): 3, 5, 10, 30; 

• Influence of climate: Amarillo (cold), Austin (intermediate), McAllen (hot); 

• Influence of asphalt overlay thickness (inch): 1.5, 3, 5, 6, 9; 

• Influence of mix type: Type C, Type D, SMA D, SMA C; 

• Influence of binder type (or mix stiffness): PG64-22, PG70-22, PG76-22; 

• Influence of thermal coefficient of expansion of the asphalt overlay (10-6 in/in/°F): 
10, 13.5, 17;  

• In case of AC/JPCP: 
a. Influence of existing JPCP slab modulus (ksi): 3000, 4000, 5000; 

b. Influence of existing JPCP slab thickness (inch): 8, 10, 12; 

c. Influence of the load transfer efficiency at joints/cracks: 30, 50, 70, 90; 

d. Influence of thermal coefficient of expansion of existing JPCP (10-6 in/in/°F): 
4.0, 5.5, 7.0; 

e. Influence of joints/cracking spacing of existing JPCP (ft): 5, 15, 25; 

f. Influence of existing base layer modulus (ksi): 100, 300, 500; 

g. Influence of existing base layer thickness (inch): 4, 6, 8; 

• In case of AC/AC: 

a. Influence of existing asphalt layer modulus (ksi): 200, 500, 800; 
b. Influence of existing asphalt layer thickness (inch): 2, 4, 6, 8; 

c. Influence of the severity level of existing cracks: low, medium, high; 

d. Influence of thermal coefficient of expansion of existing asphalt layer (10-6 
in/in/°F): 10, 13.5, 17; 

e. Influence of transverse cracking spacing of existing asphalt pavement (ft):     
5, 15, 25; 

f. Influence of existing base layer modulus (ksi): 20, 50, 100; 

g. Influence of existing base layer thickness (inch): 4, 6, 8; 

• Influence of the modulus of existing subgrade (ksi): 5, 8, 15. 

As one example, Figure 5-1 shows the basic (or “medium” bolded above) pavement 
structure used in the sensitivity study for AC/JPCP pavements that are under 10 million ESALs 
of traffic loading within a 20-year design period with a climate of Austin, Texas.  Similar 
pavement structures with 10 million ESALs of traffic loading within a 20-year design period 
with a climate of Austin, Texas were used for sensitivity analysis on AC/AC pavements. 
Detailed sensitivity analysis results are presented next. 
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Figure 5-1. Basic AC/JPCP Pavement Structure for Sensitivity Analysis. 

Sensitivity Analysis on Reflective Cracking of Asphalt Overlay 

• In case of AC/JPCP pavements: 

A total of 34 asphalt overlay cases have been run, and the influences of the 14 input 
parameters listed previously on reflective cracking of asphalt overlay are shown in Figures 5-2 to 
5-15.  It is clear that the influence of those 14 input parameters can be divided into three 
categories: significant, minor, and tiny or none.  These three categories and associated input 
parameters are listed below: 

a. Significant input parameters: 1) traffic loading level, 2) climate, 3) asphalt 
overlay thickness, 4) load transfer efficiency, 5) asphalt overlay mix type, and 6) 
existing base layer modulus; 

b. Intermediate influential parameters: 1) asphalt binder type, 2) PCC slab thickness, 
3) joints/crack spacing, and 4) thermal coefficient of expansion of PCC slab; and 

c. Minor influential parameters: 1) thermal coefficient of expansion of asphalt 
overlay, 2) existing PCC slab modulus, 4) existing base layer thickness, and 5) 
subgrade modulus. 

Dividing the relevance of input parameters into three categories is beneficial in evaluating an 
asphalt overlay thickness design. It is apparent that the six significant input parameters must be 
considered when designing an asphalt overlay.  Then the intermediate influential parameters 
should be taken into account if possible.  Finally, the minor influential parameters can be ignored 
for asphalt overlay design in terms of reflective cracking. 

Specifically, asphalt overlay life in terms of reflective cracking is not linearly 
proportional to asphalt overlay thickness, as clearly shown in Figure 5-4.  In the case shown in 
Figure 5-4, a 4 inch asphalt overlay has more than two times the life of a 3 inch asphalt overlay.  
This finding means that asphalt overlays must have a minimum, cost-effective thickness in order 
to have longer life, and below such a minimum asphalt overlay, the reflective cracking will 
quickly show up; such a design is not economical. 

Another interesting finding regarding the load transfer efficiency is shown in Figure 5-8.  
Figure 5-8 clearly indicates the importance of having good load transfer efficiency at 
joints/cracks. As seen in Figure 5-8, the reflective cracking will quickly occur when the load 
transfer efficiency is below 70 percent.  However, the asphalt overlay will have no reflective 
cracking when the load transfer efficiency is 90 percent. This observation indicates that it is 

3" Asphalt Overlay, Type D, PG76-22 binder

8" PCC, 15 ft slab E=4000 ksi, LTE=70 %

4" asphalt layer, E=300 ksi 

Subgrade, E=8 ksi 

10 million ESALs, 20 YR Climate: Austin, Texas 
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better to have an overlay before the PCC pavements deteriorate very badly; it is important to 
treat the bad joints/cracks where the load transfer efficiency is below 70 percent before the 
asphalt overlay.     

Influence of Traffic Level (ESALs) on Reflective Cracking
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Figure 5-2. AC/JPCP: Influence of Traffic Level on Reflective Cracking. 

Influence of Climate on Reflective Cracking
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Figure 5-3. AC/JPCP: Influence of Climate on Reflective Cracking. 
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Influence of Overlay Thickness on Reflective Cracking
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Figure 5-4. AC/JPCP: Influence of Asphalt Overlay Thickness on Reflective Cracking. 

 

Influence of Overlay Mix Type on Reflective Cracking
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Figure 5-5. AC/JPCP: Influence of Mix Type on Reflective Cracking. 
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Influence of Binder Type on Reflective Cracking
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Figure 5-6. AC/JPCP: Influence of Asphalt Binder Type on Reflective Cracking. 
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Figure 5-7. AC/JPCP: Influence of Asphalt Overlay Thermal Coefficient of Expansion on 
Reflective Cracking. 
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Influence of LTE on Reflective Cracking
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Figure 5-8. AC/JPCP: Influence of Load Transfer Efficiency at Joints/Crack on Reflective 

Cracking. 
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Figure 5-9. AC/JPCP: Influence of Existing PCC Slab Modulus on Reflective Cracking. 



90 
 

Influence of PCC Thickness on Reflective Cracking
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Figure 5-10. AC/JPCP: Influence of Existing PCC Slab Thickness on Reflective Cracking. 
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Figure 5-11. AC/JPCP: Influence of Existing Joints/Cracking Spacing on Reflective 

Cracking. 
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Influence of PCC Concrete Thermal Coefficient of Expansion on Reflective Cracking
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Figure 5-12. AC/JPCP: Influence of Existing PCC Concrete Thermal Coefficient of 

Expansion on Reflective Cracking. 
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Figure 5-13. AC/JPCP: Influence of Existing Base Layer Thickness on Reflective Cracking. 
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Influence of Base Layer Modulus on Reflective Cracking
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Figure 5-14. AC/JPCP: Influence of Existing Base Layer Modulus on Reflective Cracking. 
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Figure 5-15. AC/JPCP: Influence of Subgrade Modulus on Reflective Cracking. 
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• In case of AC/AC pavements: 
Similar runs have been conducted for AC/AC pavements.  The influences of the 14 input 

parameters listed previously on reflective cracking of asphalt overlay are shown in Figures 5-16 
to 5-29.  Similarly, the influence of those 14 input parameters can be divided into three 
categories: significant, minor, and tiny or none.  These three categories and associated input 
parameters are listed below: 

a. Significant input parameters: 1) traffic loading level, 2) climate, 3) asphalt 
overlay thickness, 4) asphalt overlay mix type, 5) asphalt binder type, 6) crack 
severity level, 7) existing AC layer modulus, 8) existing AC layer thickness, and 9) 
existing based layer modulus; 

b. Intermediate influential parameters: 1) existing base layer thickness; and 

c. Minor influential parameters: 1) thermal coefficient of expansion of asphalt 
overlay, 2) thermal coefficient of expansion of existing AC layer, 3) crack spacing, 
and 4) subgrade modulus. 

Again, the nine significant input parameters must be considered when designing an asphalt 
overlay.  Then the intermediate influential parameter should be taken into account if possible.  
Finally, the minor influential parameters can be ignored for asphalt overlay design in terms of 
reflective cracking. 

 

0

10

20

30

40

50

60

0 50 100 150 200

R
ef

le
ct

iv
e 

C
ra

ck
in

g 
R

at
e 

(%
)

Months

Influence of Traffic Level (ESALs) on Reflective Cracking

3million

5million

10million

30million

 
Figure 5-16. AC/AC: Influence of Traffic Level on Reflective Cracking. 
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Figure 5-17. AC/AC: Influence of Climate on Reflective Cracking. 
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Figure 5-18. AC/AC: Influence of Asphalt Overlay Thickness on Reflective Cracking. 

 



95 
 

0

10

20

30

40

50

60

0 50 100 150 200

R
ef

le
ct

iv
e 

C
ra

ck
in

g 
R

at
e 

(%
)

Months

Influence of Overlay Mix Type on Reflective Cracking

Type D

Type C

SMA D

SMA C

 
Figure 5-19. AC/AC: Influence of Mix Type on Reflective Cracking. 
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Figure 5-20. AC/AC: Influence of Asphalt Binder Type on Reflective Cracking. 
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Figure 5-21. AC/AC: Influence of Asphalt Overlay Thermal Coefficient of Expansion on 

Reflective Cracking. 
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Figure 5-22. AC/AC: Influence of Crack Severity Level on Reflective Cracking. 
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Figure 5-23. AC/AC: Influence of Existing AC Modulus on Reflective Cracking. 
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Figure 5-24. AC/AC: Influence of Existing AC Layer Thickness on Reflective Cracking. 
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Figure 5-25. AC/AC: Influence of Existing Crack Spacing on Reflective Cracking. 
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Figure 5-26. AC/AC: Influence of Existing AC Thermal Coefficient of Expansion on 

Reflective Cracking. 
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Figure 5-27. AC/AC: Influence of Existing Base Layer Thickness on Reflective Cracking. 
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Figure 5-28. AC/AC: Influence of Existing Base Layer Modulus on Reflective Cracking. 
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Figure 5-29. AC/AC: Influence of Subgrade Modulus on Reflective Cracking. 

 

Sensitivity Analysis on Asphalt Overlay Rutting 

• In case of AC/JPCP pavements: 
A total of 34 asphalt overlay cases have been run, and the influences of the 14 input 

parameters listed previously on asphalt overlay rutting are shown in Figures 5-30 to 5-43. 
Similar to reflective cracking, the influence of those 14 input parameters can also be divided into 
three categories: significant, minor, and tiny or none.  These three categories and associated 
input parameters are listed below: 

 

a. Significant input parameters: 1) traffic loading level, 2) climate, 3) asphalt 
overlay thickness, 4) asphalt binder type, and 5) asphalt overlay mix type; 

b. Intermediate influential parameters: 1) PCC slab thickness and 2) existing PCC 
slab modulus; and  

c. Minor/none influential parameters: 1) thermal coefficient of expansion of asphalt 
overlay, 2) joints/crack spacing, 3) thermal coefficient of expansion of PCC slab, 
4) load transfer efficiency of PCC slab at joints/cracks, 5) existing base layer 
thickness, 6) existing base layer modulus, and 7) subgrade modulus. 
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Dividing the relevance of input parameters into three categories is beneficial in evaluating an 
asphalt overlay thickness design. It is apparent that in terms of asphalt overlay rutting, the most 
significant five parameters are 1) traffic loading level, 2) climate, 3) asphalt overlay thickness, 4) 
asphalt binder type, and 5) asphalt overlay mix type, which must be considered when designing 
an asphalt overlay.  Generally, all other parameters can be ignored. 

Specifically, it is worth mentioning that the asphalt overlay rutting does not 
proportionally increase to the overlay thickness, which is displayed in Figure 5-32.  Initially, the 
asphalt overlay rutting will increase with thicker asphalt overlay; then reaches its maximum 
value when the overlay is around 5 inches thick. Beyond that, the rutting will slowly decrease.  
For example, a 4 inch asphalt overlay has more rutting than a 1.5 inch asphalt overlay; a 6 inch 
asphalt overlay has similar rutting development to that of a 4 inch asphalt overlay, and a 9 inch 
asphalt overlay has relatively smaller rutting depth than that of 6 inch asphalt overlay.  As noted 
previously, this prediction is consistent with the field observation, and it is due to the difference 
in the deviatoric stress depth distribution patterns between thin, moderate, and thick asphalt 
overlays.   

  

 

 

Influence of Traffic Level (ESALs) on Rutting

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 20 40 60 80 100 120 140 160 180 200
Months

R
ut

 D
ep

th
 (i

n) 3million
5million
10million
30million

 
Figure 5-30. AC/JPCP: Influence of Traffic Level on Rutting. 
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Influence of Climate on  Rutting
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Figure 5-31. AC/JPCP: Influence of Climate on Rutting. 

Influence of Overlay Thickness on Rutting

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 20 40 60 80 100 120 140 160 180 200
Months

R
ut

 D
ep

th
 (i

n) 1.5inch
3inch
4inch
6inch
9inch

 
Figure 5-32. AC/JPCP: Influence of Asphalt Overlay Thickness on Rutting. 
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Figure 5-33. AC/JPCP: Influence of Overlay Mix Type on Rutting. 
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Figure 5-34. AC/JPCP: Influence of Asphalt Binder Type on Rutting. 
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Influence of Aspalt Overlay Thermal Coefficient of Expansion on  Rutting
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Figure 5-35. AC/JPCP: Influence of Asphalt Overlay Thermal Coefficient of Expansion on 
Rutting. 
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Figure 5-36. AC/JPCP: Influence of Load Transfer Efficiency at Joints/Crack on Rutting. 
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Influence of PCC Modulus on Rutting
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Figure 5-37. AC/JPCP: Influence of Existing PCC Slab Modulus on Rutting. 
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Figure 5-38. AC/JPCP: Influence of Existing PCC Slab Thickness on Rutting. 
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Influence of Joint/Crack Spacing on Rutting
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Figure 5-39. AC/JPCP: Influence of Existing Joints/Cracking Spacing on Rutting. 
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Figure 5-40. AC/JPCP: Influence of Existing PCC Concrete Thermal Coefficient of 

Expansion on Rutting. 
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Influence of Base Layer Thickness on Rutting
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Figure 5-41. AC/JPCP: Influence of Existing Base Layer Thickness on Rutting. 
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Figure 5-42. AC/JPCP: Influence of Existing Base Layer Modulus on Rutting. 
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Influence of Subgrade Modulus on Rutting
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Figure 5-43. AC/JPCP: Influence of Subgrade Modulus on Rutting. 

 

• In case of AC/AC pavements: 
Again, similar runs have been conducted for AC/AC pavements, and the influences of the 

14 input parameters listed previously on asphalt overlay rutting are similar to those on AC/JPCP 
pavements.  Therefore, the influential graphs, for brevity, are omitted here. Only these three 
categories and associated input parameters are listed below: 

 

a. Significant input parameters: 1) traffic loading level, 2) climate, 3) asphalt 
overlay thickness, 4) asphalt binder type, and 5) asphalt overlay mix type; 

b. Intermediate influential parameters: 1) existing AC layer thickness, 2) existing 
AC layer modulus, 3) existing base layer thickness, 4) existing base layer 
modulus, and 5) subgrade modulus; and 

c. Minor/none influential parameters: 1) thermal coefficient of expansion of asphalt 
overlay, 2) joints/crack spacing, 3) thermal coefficient of expansion of existing 
AC layer, and 4) crack severity level.  

 

Again, the five significant input parameters must be considered when designing an asphalt 
overlay.  Then the intermediate influential parameter should be taken into account if possible.  
Finally, the minor influential parameters can be ignored for asphalt overlay design in terms of 
rutting. 
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Discussion 
To perform well in the field an asphalt overlay must have balanced rutting and reflective 

cracking performances.  Therefore, the significant input parameters to both rutting and reflective 
cracking should be well taken into account when designing an asphalt overlay.  Combining both 
rutting and reflective cracking influential parameters, the most important factors for asphalt 
overlay design are: 

 

1. traffic loading level, 

2. climate, 

3. asphalt overlay thickness, 

4. asphalt overlay mix type, 

5. asphalt binder type, 

6. load transfer efficiency for JPCP pavements 

7. crack severity level for existing AC pavements, 

8. existing base layer modulus, and  

9. existing AC layer thickness in case of asphalt overlay over existing AC pavements.  

 

Therefore, it is critical for a good asphalt overlay design to accurately collect all of these nine 
input parameters. To extend performance life, it is worth emphasizing that the asphalt overlay 
should be designed as thick as possible and to treat the poor joints/cracks. 

 

SUMMARY AND CONCLUSIONS 

This chapter summarizes the sensitivity analysis conducted on the asphalt overlay 
thickness design and analysis program.  It was found that not all of the input parameters have 
significant influence on the asphalt overlay performance in terms of the reflective cracking and 
rutting.  The nine most important input parameters identified for asphalt overlay design are 1) 
traffic loading level, 2) climate, 3) asphalt overlay thickness, 4) overlay mix type, 5) asphalt 
binder type, 6) load transfer efficiency for JPCP pavements, 7) crack severity level for existing 
AC pavements, 8) existing base layer modulus, and 9) existing AC layer thickness in case of 
asphalt overlay over existing AC pavements.  Specifically, it is worth noting that asphalt overlay 
life in terms of reflective cracking is not linearly proportional to overlay thickness.  A 4 inch 
asphalt overlay can have more than two times the life of a 3 inch overlay.  Additionally, it is 
always beneficial to treat the joints/cracks before placing an asphalt overlay.  Specifically, the 
bad joints/cracks where the load transfer efficiency is below 70 percent must be treated in order 
to have a longer overlay life. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 
 

This report documents the asphalt overlay thickness design and analysis system and 
associated software.  Based on the research presented in this report, the following conclusions 
and recommendations are made. 

CONCLUSIONS 
o For simplicity and practical routine applications, the well-known Paris’ law-based 

fracture mechanics model still is a rational choice to model reflective cracking 
induced by both traffic loading (bending and shearing) and thermal effects. This was 
the basis of the M-E models proposed in this study for modelling reflective cracking 
in HMA overlays. 

o Based on extensive SIF computations and statistical analysis, a total of 32 SIF 
regression equations were developed for asphalt overlays over existing flexible 
pavements and asphalt overlays over existing PCC pavements with three levels of 
load transfers efficiencies (10, 50, and 90 percent) at joints/cracks. These developed 
equations make it possible and practical to directly analyze the reflective crack 
propagation caused by ESALs or variable traffic load spectrum. It was also found that 
the MET approach is valid for multi-layered asphalt overlays and bases (and/or 
subbases). 

o For the thermal reflective cracking, a “hybrid” approach, similar to the SHRP low 
temperature cracking model, was proposed. In this hybrid approach, the viscoelastic 
properties of asphalt overlay mixes are considered through the thermal stress at the 
far field (σVE-far), which then ties with the stress intensity factor (Kthermal). Regression 
equations were accordingly developed for asphalt overlays over existing flexible 
pavements and asphalt overlays over existing PCC pavements. 

o The HMA fracture properties (A and n), which are some of the fundamental input 
parameters required in the proposed M-E reflective cracking model, can be easily and 
directly determined in the laboratory using the simple and rapid OT test. The main 
innovative features of the OT for fracture property determination are the moderately 
small and convenient specimen size, easy specimen preparation, and short testing 
time (within 15 minutes).  For simplicity and convenience, the default values of 
fracture parameters (A and n) have been provided for typical overlay mixes (such as 
Type C, D, and SMAs).  

o The proposed reflective cracking model was preliminarily calibrated using three 
HMA overlay field case studies, and the calibrated model has been verified using the 
reflective cracking data of six asphalt overlay sections collected from California’s 
HVS test site. Thus far, satisfactory results have been obtained.  

o After reviewing existing rutting models in the literature, it was found that the well-
known VESYS layer rutting model still is a rational choice to model HMA overlay 
rutting development.  The main feature of the VESYS layer rutting model is to 

111
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characterize layer properties rather than global parameters used in the MEPDG.  For 
each layer, the VESYS rutting model requires rutting parameters: αi and μi.  The 
HMA rutting parameters (α and μ), which are some of the fundamental input 
parameters required in the proposed M-E rutting model, can be directly determined 
from the repeated load test. For simplicity and convenience, default values of rutting 
parameters α and μ have been provided for typical overlay mixes (such as Type C, D, 
and SMAs).  

o The proposed HMA overlay rutting model was preliminarily calibrated using 11 test 
sections of the NCAT Test Track 2006, and the calibrated model was further verified 
using the rutting data of 3 test sections of the NCAT Test Track 2000. Thus far, 
satisfactory results have been obtained. 

o Both calibrated reflective cracking and rutting models have been integrated into an 
asphalt overlay thickness design and analysis system and associated software.  The 
four input categories required include 1) the General Information of the project, 2) 
Traffic, 3) Climate, and 4) Structure & Material Properties. To assist in 
implementation, default values of pavement material properties have been provided in 
the software.  The running time of the software is generally less than 4 min., and the 
software program automatically creates a summary of all inputs of the analyzed 
overlay design project.  It also provides a summary of the distress and performance 
prediction in both tabular and graphical formats.  All charts are plotted in Microsoft 
Excel and hence can be incorporated into electronic documents and reports. 

o The sensitivity analysis conducted on the asphalt overlay thickness design and 
analysis software indicated that not all of the input parameters have significant 
influence on the asphalt overlay performance in terms of the reflective cracking and 
rutting.  The nine most important input parameters identified for asphalt overlay 
design are 1) traffic loading level, 2) climate, 3) asphalt overlay thickness, 4) overlay 
mix type, 5) asphalt binder type, 6) load transfer efficiency for JPCP pavements, 7) 
crack severity level for existing AC pavements, 8) existing base layer modulus, and 9) 
existing AC layer thickness in case of asphalt overlay over existing AC pavements.  
Specifically, it is worth noting that asphalt overlay life in terms of reflective cracking 
is not linearly proportional to overlay thickness.  A 4 inch asphalt overlay can have 
more than two times the life of a 3 inch overlay.  Additionally, it is always beneficial 
to treat the joints/cracks before placing an asphalt overlay.  Specifically, the bad 
joints/cracks where the load transfer efficiency is below 70 percent must be treated in 
order to have a longer overlay life. 

RECOMMENDATIONS 
Overall, the M-E reflective cracking and rutting models developed in this study offer great 

promise for rationally modelling and accurately predicting the reflective cracking and rutting of 
asphalt overlays.  The asphalt overlay thickness design and analysis program is user-friendly and 
available to TxDOT pavement engineers, and its prediction is rational and reasonable.  Therefore, 
it is strongly recommended to use this program to design asphalt overlays for state-wide pilot 
implementation, follow up the performance of these overlays, and finally further calibrate/refine 
the reflective cracking and rutting models used in the program.  
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APPENDIX A: 
SIF REGRESSION EQUATIONS 

 
The traffic induced SIF regression equations for Kbending and Kshearing have the same general 

format but with different coefficients. The detailed 28 regression equations are listed below: 
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4. HMA/ PCC: Kshearing@LTE=0.9 under single axle load of 4 kip 
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5. HMA/PCC: Kbending under single axle load of 11 kip 
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6. HMA/PCC: Kshearing@LTE=0.1 under single axle load of 11 kip 
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7. HMA/ PCC: Kshearing@LTE=0.5 under single axle load of 11 kip 
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8. HMA/ PCC: Kshearing@LTE=0.9 under single axle load of 11 kip 
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9. HMA/PCC: Kbending under single axle load of 25 kip 
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10. HMA/PCC: Kshearing@LTE=0.1 under single axle load of 25 kip 
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11. HMA/ PCC: Kshearing@LTE=0.5 under single axle load of 25 kip 
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12. HMA/ PCC: Kshearing@LTE=0.9 under single axle load of 25 kip 
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13. HMA/HMA: Kbending under single axle load of 4 kip 
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14. HMA/HMA: Kshearing@LTE=0.1 under single axle load of 4 kip 
( ) ( ) ( )( )

( )( )05821.8log03303.2log22059.0log03698.1

45613.0log10054.3log33835.0log62929.1log20728.0log08167.2log25362.0

1
2

11

2
2

22
2

2
39253.2

33

+−+−

×++−−−+−=

EEH

EEHHEHK a  

( )( )
( ) ( ) ( )( ) ( )( )25464.1))((30786.130209.0logloglog

03969.202119.000063.0log12232.4log69774.008749.0
00034.0

20
00622.0

0
05104.2

1
59461.1

2
38414.2

3

1
2

11
2

1

−+××+××

×−+++−=
−−− HcfcfEEE

ffEEK b  

( )( )
( ) ( ) ( )( ) ( )( )54927.0))((5756.012645.0logloglog

9923.34018944.000291.0log9557.124log65096.1100133.0
0023.0

20
0058.0

0
02187.5

1
01147.1

2
34487.2

3

1
2

11
2

1

++×−×−××

×++−−=
−−− HcfcfEEE

ffEEK c  

122



115 
 

( )( )
( ) ( ) ( )( ) ( )( )94873.0))((84733.002683.0logloglog

71764.4831109.000655.0log26805.30log6588.342122.0
02479.0

20
00045.0

0
97808.0

1
06008.0

2
25754.2

3

1
2

11
2

1

++×−×−××

×−+−+−=
− HcfcfEEE

ffEEK d  

( )( )
( ) ( ) ( )( ) 00946.038264.0logloglog

03398.0log00899.0log00134.0
13325.1

1
56227.0

2
71559.1

3

1
2

1

−+××

×+−=
−− EEE

EEK e  

15. HMA/HMA: Kshearing@LTE=0.5 under single axle load of 4 kip 
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16. HMA/HMA: Kshearing@LTE=0.9 under single axle load of 4 kip 
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17. HMA/HMA: Kbending under single axle load of 11 kip 
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18. HMA/HMA: Kshearing@LTE=0.1 under single axle load of 11 kip 
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19. HMA/HMA: Kshearing@LTE=0.5 under single axle load of 11 kip 
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20. HMA/HMA: Kshearing@LTE=0.9 under single axle load of 11 kip 
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21. HMA/HMA: Kbending under single axle load of 18 kip 
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22. HMA/HMA: Kshearing@LTE=0.1 under single axle load of 18 kip 
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23. HMA/HMA: Kshearing@LTE=0.5 under single axle load of 18 kip 
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24. HMA/HMA: Kshearing@LTE=0.9 under single axle load of 18 kip 
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25. HMA/HMA: Kbending under single axle load of 25 kip 
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26. HMA/HMA: Kshearing@LTE=0.1 under single axle load of 25 kip 
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27. HMA/HMA: Kshearing@LTE=0.5 under single axle load of 25 kip 
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28. HMA/HMA: Kshearing@LTE=0.9 under single axle load of 25 kip 
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APPENDIX B: 
OVERLAY TEST PROTOCOL FOR HMA FRACTURE PROPERTIES 

 
1. SCOPE 

1.1. This test method determines the fatigue fracture properties of bituminous mixtures.  This 
test method is very similar to the regular overlay test procedure, Tex-248-F, but not 
exactly the same. 

1.2  The values given in parentheses (if provided) are not standard and may not be exact 
mathematical conversions. Use each system of units separately. Combining values from 
the two systems may result in nonconformance with the standard. 

2. APPARATUS 

2.1  Overlay Tester—The device is an electro-hydraulic system that applies repeated direct 
tension loads to specimens. The machine features two blocks. One is fixed and the other 
slides horizontally. The device automatically measures and records load, displacement, 
and temperature every 0.1 sec. 
The sliding block applies tension in a cyclic triangular waveform to a constant maximum 
displacement of 0.025 in. (0.63 mm). The sliding block reaches the maximum 
displacement and then returns to its initial position in 10 sec. (one cycle). 
Note 1 —the constant maximum opening displacement of 0.025 in. (0.63 mm) may need 

to be reduced to be 0.015 in. (0.38 mm), depending on how stiff the bituminous 
mixtures are. 

Additionally, the device includes: 
• an air bath chamber that controls the test temperature, 
• a linear variable differential transducer to measure the displacement of the block, 
• an electronic load cell to measure the load resulting from the displacement, 
• aluminum or steel base plates to restrict shifting of the specimen during testing, and 
• a mounting jig to align the two base plates for specimen preparation. 
Refer to manufacturer for equipment range and accuracy for LVDT and load cell. 

2.2  Cutting Template—Refer to Figure B1. 

3 in. (76 mm) 6 in.
(150 mm)

3 in. (76 mm) 6 in.
(150 mm)

 
Figure B1. Cutting Template. 
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2.3  3/8-in. Socket Drive Handle with a 3-in. (7.6 cm) extension. 

2.4  Hacksaw with carbide grit blade. 

3. MATERIALS 

3.1 Two-part epoxy with a minimum 24 hr. tensile strength of 600 psi (4.1 MPa) and 24 hr. 
shear strength of 2,000 psi (13.8 MPa) according to Tex-614-J. 

3.2 10 lb. (4.5 kg) weight. 

3.3 1/4-in. width adhesive tape. 

3.4 Paint or permanent marker. 

4. SPECIMENS 

4.1 Laboratory Molded Specimens—Prepare specimens according to Tex-205-F and 
Tex-241-F. Specimen diameter must be 150 mm (6 in.) and specimen height should be 
115 ±5 mm (4.5 ±0.2 in.). Density of the laboratory molded specimen should be targeted 
such that the trimmed specimen density is 93 ±1%. 

Note 2 —Select molded specimen density depending on experience and knowledge of 
materials used, typically 92 ±1%. 

Note 3 —Mixture weights for specimens prepared in the laboratory typically vary 
between 4500 to 4700 g to achieve density. Mixture weights for specimens 
prepared in the laboratory vary with different aggregate sources and with 
different mix types. 

4.2 Core Specimens—Specimen diameter must be 6 ±0.1 in. (150 ±3 mm) and specimen 
height should be a minimum of 1.5 in. (38 mm). There is not a specific density 
requirement for core specimens. 

5. PROCEDURE 

5.1 Sample Preparation: 

5.1.1  Use three cylindrically molded specimens or collect three roadway cores   
according to Section 4. 

5.2  Trimming of Cylindrical Specimen: 

5.2.1  Place the cutting template on the top surface of the laboratory molded specimen or 
roadway core. Trace the location of the first two cuts by drawing lines using paint 
or a permanent marker along both sides of the cutting template. 

5.2.2  Trim the specimen ends by cutting the specimen perpendicular to the top surface 
following the traced lines. Discard specimen ends. 

5.2.3  Trim off the top and bottom of the specimen to produce a sample with a height of 
1.5 ±0.02 in. (38 ±0.5 mm). Discard the top and bottom parts of the specimen. 

Note 4 —Refer to Figure B2. 
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3 in. (76 mm)

Trimming specimen’s ends

Specimen’s
Top Surface

Specimen’s
Top Surface

Tracing lines using cutting template

Sides of
Cutting

Template

1.5 ±0.125 in.
(3.8 ±3 mm)

3 in.
(76 mm)

Trimming specimen to required height

Specimen’s
Top Surface

Initial
Height

Discarded Part

Discarded Part

3 in. (76 mm)

Trimming specimen’s ends

Specimen’s
Top Surface

Specimen’s
Top Surface

Tracing lines using cutting template

Sides of
Cutting

Template

1.5 ±0.125 in.
(3.8 ±3 mm)

3 in.
(76 mm)

Trimming specimen to required height

Specimen’s
Top Surface

Initial
Height

Discarded Part

Discarded Part

 
Figure B2. Trimming of Cylindrical Specimen. 

 
 

5.2.4 Measure the relative density of the trimmed specimen according to Tex-207-F. 
Density for trimmed laboratory molded specimen must be 93 ±1%. Discard and 
prepare a new specimen if it does not meet the density requirement. Density for 
trimmed core specimens is for informational purposes only. 

5.2.5 Dry the trimmed specimen at a maximum temperature of 140 ±5°F (60 ±3°C) to 
constant weight. 

Note 5 —Constant weight is the weight at which further oven drying does not 
alter the weight by more than 0.05% in a 2-hr. interval. 

5.3 Mounting Trimmed Specimen to Base Plates: 
5.3.1 Mount and secure the base plates to the mounting jig. Cut a piece of adhesive tape 

approximately 4.0 in. (102 mm) in length. Center and place piece of tape over the 
gap between the base plates. 
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5.3.2 Prepare epoxy following manufacturer’s instructions. 

5.3.3 Glue the trimmed specimen to the base plates using the prepared epoxy. Cover the 
majority of both base plates with the epoxy including the tape. 

5.3.4 Place a 10-lb. (4.5 kg) weight on top of the glued specimen to ensure full contact 
of the trimmed specimen to the base plates. Allow the epoxy to cure for the time 
recommended by the manufacturer. Remove the weight off the specimen after the 
epoxy has cured. 

5.3.5 Use a hacksaw to cut through the tape and dry epoxy located at the gap opening 
between the base plates. Slightly score the test specimen to propagate a crack at 
the gap opening. 

5.4 Preconditioning the OT specimen 
5.4.1 Place the test sample assembly in a 77 ±1°F (25 ±0.5°C) temperature chamber and 

allow to remain for a minimum of 2 hours before testing. 

5.5 Starting Testing Device: 
5.5.1 Turn on the overlay tester. Turn on the computer and wait at least 1 minute to 

establish communication with the overlay tester. Start the overlay test software. 

5.5.2 Turn on the hydraulic pump using the software after it is completely loaded on the 
computer. Turn the machine to load mode. 

5.6 Mounting Trimmed Test Specimen to Testing Device: 
5.6.1 Enter the required test information into the overlay test software for the specimen 

mounted. Mount the specimen assembly onto the machine according to the 
manufacturer’s instructions and the following recommendations. 

• Clean the bottom of the base plates and the top of the testing machine blocks 
before placing the specimen assembly into the blocks. If not all four surfaces 
are clean, damage may occur to the machine, the specimen, or the base plates 
when tightening the base plates. 

• Apply 15 lb-in of torque for each screw when fastening the base plates to the 
machine. 

5.7 Testing Specimen: 
5.7.1 Turn the machine to stroke mode. Perform testing at a constant temperature of   

77 ±1°F (25 ±0.5°C). 

Note 6 —Ensure temperature of trimmed test specimen is 77 ±1°F (25 ±0.5°C). 

5.7.2 Start the test by enabling the start button in the program. Perform testing until a 
93% reduction (or more) of the maximum load measured from the first opening 
cycle occurs. If 93% is not reached, run the test to 100 cycles. 

Note 7 —This is not a regular OT testing, a maximum of 100 cycles is enough for 
determining fracture properties A and n. 
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Note 8 —The constant maximum opening displacement of 0.025 in. (0.63 mm) 
may need to be reduced to be 0.015 in. (0.38 mm) if the cycles to reach 
93% load reduction are less than 50 cycles. Then, repeat the test. 

5.7.3 Remove specimen assembly. 

Note 9 —Ensure machine is in load mode before removing specimen assembly. 

6. Data Analysis and Report 

An Excel© Macro has been developed to directly read the output file from the overlay test 
and automatically determine the fracture properties (A and n) of the specimen.  Figure B3 
shows the macro start window, and the A and n results from this macro are shown in     
Figure B4.  Note that the only input the macro required is modulus of the specimen.  The 
theoretical background and detailed steps of determining both A and n values are presented 
Appendix C. 
 
 

 
Figure B3. Macro for Fracture Properties (A and n). 
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dC/dN and SIF

y = 6.4531E-08x4.1819E+00

R2 = 9.7229E-01

0.1

1

10

1 10 100

SIF (MPa*mm^0.5)

dC
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N

 
Figure B4. A and n Output from the Macro. 

A = 6.4531E-8 
n = 4.1819 
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APPENDIX C: 
THEORETICAL BACKGROUND AND DETAILED STEPS OF 
DETERMINING HMA FRACTURE PROPERTIES: A AND n 

 

It is well known that HMA mixes are complex materials. However, for simplicity and 
convenience, HMA mixes are often assumed to be quasi-elastic materials represented by 
dynamic modulus and Poisson’s ratio.  With this assumption, the well-known Paris’ law shown 
in Equation 1 can be used to describe crack propagation of HMA mixes (1).  

( )nKA
dN
dc

Δ=         (C-1) 

where c is crack length, N is number of load repetitions, dc/dN is crack speed or rate of crack 
growth, ∆K is change of stress intensity factor (SIF), and A and n is fracture properties of 
material. 

In view of Equation C-1, it can be seen that the information required for determining 
HMA fracture properties (A and n) includes 1) the SIF corresponding to any specific crack length 
(c) and 2) crack length (c) corresponding to a specific number of load repetitions (N).  The 
proposed approach for determining the SIF and crack length (c) are discussed as follows: 

• Determination of SIF  
A two dimensional (2D) finite element (FE) program named 2D-CrackPro was 

developed to analyze the SIF under the OT testing.  In the 2D-CrackPro program, the desired 

r
1  stress singularity in the crack tip region was met by placing the mid-side nodes of two 

adjacent sides of an 8-node isoparametric element at the one-fourth distance mark from the 
common corner node (2).  The accuracy of this program has been verified by comparing the 
computed SIFs of an infinite slab with a center crack with those given in “the stress analysis of 
cracks handbook” (3). 

Figure C1 shows the 2D FE mesh plus the singularity elements used.  Since Poisson’s 
ratio has minor influence on SIF, a constant Poisson’s ratio (υ=0.35) was used for all the 
analyses.  With the above quasi-elastic assumption, it has been found that the SIF is proportional 
to dynamic modulus (E) of the overlay tester (OT) specimen and the specified maximum opening 
displacement (MOD).  Therefore, the SIFs corresponding to variable crack length (c) were 
calculated at an assumed condition: 1) dynamic modulus of the OT specimen: E=1 MPa, and 2) 
MOD = 1 mm.  The results are presented in Figure C2.  To facilitate implementation, a 
regression equation shown in Figure C2 was developed for the SIF versus crack length at the 
condition of E=1 MPa and MOD = 1 mm.   

For any other E and MOD combination, the corresponding SIF can be determined by the 
following equation: 

4590.02911.0 −∗∗∗= cMODESIF       (2) 

where SIF is stress intensity factor (MPa*mm0.5), E is dynamic modulus (MPa), MOD is 
maximum opening displacement (mm), and c is crack length (mm). 
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Figure C1.  A 2D FE Mesh of the OT System. 
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Figure C2.  Calculated SIF vs. Crack Length. 

 

Additionally, it can be seen that the SIF shown in Figure C2 decreases rapidly at the 
beginning, and its decreasing rate becomes smaller and smaller with crack length growth.  This 
observation indicates that the initial crack propagation stage is very important to determine 
reasonable fracture properties of HMA mixes, which means that the required fracture properties 
can be determined from the initial stage of the OT testing (perhaps within 15 minutes). This 
feature separates the OT from other types of fracture tests (such as, direct tension test [4, 5, 6], 
indirect tension test [7]), because the other tests often focused on the late crack propagation stage 
where the SIF increased rapidly so that these tests generally take a very long time (say hours). 

• Determination of crack length (c) 
To monitor crack length growth, researchers have used several different techniques such 

as crack foil (5). Recently, Seo et al. applied a Digital Image Correlation (DIC) technique to 
monitor crack propagation and crack length (6).  The DIC is a non-contact, full-field 
displacement (or strain) measurement system that analyzes the displacement (or strain) by 
comparing digital images of a deformed specimen with that of an initial undeformed specimen.  
Compared with other techniques, the DIC is one of most advanced techniques for monitoring 
crack propagation. However, using the DIC system will definitely increase the difficulty and cost 
of running the OT. Fortunately, there is an alternative method used for estimating crack length, 
namely the backcalculation approach, which has been successfully used by Jacobs (5) and Roque 
et al. (7) to backcalculate the crack length from the recorded load or displacements.   
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Three assumptions listed below were made for establishing the theoretical relationship 
between an equivalent crack length and the maximum load required to reach a specified MOD.  

1) An equivalent (or ideal) crack starts from the bottom at the center of the OT 
specimen and propagates vertically to the top surface of the specimen. 

2) The reduction of maximum load from the first cycle is attributed to crack growth. 
3) As assumed previously, HMA mixes are quasi-elastic and are represented by a 

dynamic modulus and Poisson’s ratio (υ=0.35). 

With the above three assumptions, the maximum load required to reach a MOD is 
proportional to the dynamic modulus of the OT specimen and decreases with crack length 
growth, provided that the MOD is constant.  To exclude the influence of the dynamic modulus 
and the MOD, the maximum load corresponding to any crack length was normalized to the 
maximum load corresponding to “zero” crack length which is determined through extrapolation. 
Figure C3 shows the relationship between the normalized maximum load (y-axis) and crack 
length (x-axis).  A corresponding regression equation is also presented in Figure C3.  

Since the maximum load at each cycle is automatically recorded during the OT testing, it 
is easy to develop the relationship between the normalized maximum load at each cycle and the 
number of cycles.  Finally, combining with Figure C3, crack growth rate (dc/dN) can be 
calculated. 

• Determination of fracture properties: A and n 
With known SIF (K) and crack growth rate (dc/dN), the fracture properties (A and n) can 

be readily determined.  Figure C4 shows the five steps of determining HMA fracture properties 
(A and n).   

 

Normalized Maximum Load vs. Crack Length

y = 3E-05x4 - 0.0012x3 + 0.0189x2 - 0.155x + 1.0043
R2 = 0.9993

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

Crack Length (mm) 

N
or

m
al

iz
ed

 M
ax

. L
oa

d

 
Figure C3.  Normalized Maximum Load vs. Crack Length. 
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Figure C4.  Determination of Fracture Properties: A and n. 
 

   In summary, this appendix presented the development and detailed steps of determining 
HMA fracture properties (A and n) using the OT. 
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