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INTRODUCTION 

BACKGROUND 

Historically, freeway traffic management software has been designed to allow operators 

to react to incidents and congestion after they have already occurred.  While reacting to 

unexpected events will always remain a critical part of freeway operations, freeway operators 

need to proactively manage traffic on the freeway to minimize the impact of events or even 

possibly prevent them from occurring in the first place.  The purpose of this research project was 

to combine several existing research disciplines (such as traffic flow prediction and modeling) 

with real-time measurements of freeway performance to develop a tool that the Texas 

Department of Transportation (TxDOT) can use to proactively manage traffic operations on the 

freeway.  As part of this research, we examined techniques and technologies that TxDOT can 

use, in conjunction with real-time and archived loop detector data, to forecast if and when traffic 

conditions are likely to produce incidents.  We also examined methods TxDOT can use to predict 

traffic flow parameters (such as speed, volume, and occupancy) 1, 5, 10, and 15 minutes into the 

future.  We developed and tested a prototype tool that TxDOT can implement in their control 

centers that will combine these two models to predict potential problem locations in real time, 

before they occur.   

The overall goal of this research project was to produce a tool that TxDOT can 

implement in freeway management centers that will allow them to use traffic detector 

information currently being generated in their freeway management systems to make real-time, 

short-term predictions of when and where incidents and congestion are likely to occur on the 

freeway network. The idea was to combine roadway network modeling, traffic flow simulation, 

statistical regression and prediction methodologies, and archived and real-time traffic sensor 

information to forecast when and where: 1) traffic conditions will exist that are likely to produce 

an incident and 2) platoons of traffic will merge together to create congestion on the freeway. To 

accomplish this goal, we identified four objectives as part of this research effort: 

1. Develop a methodology for identifying and predicting when and where incidents are 

likely to occur on the freeway system by comparing traffic detector data from around 

known incident conditions. 
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2. Develop a model to predict traffic flow parameters 15 to 30 minutes into the future 

based on current and historical traffic flow conditions.  

3. Develop a prototype tool that can be implemented by TxDOT in their freeway 

management centers that combines the ability to predict potential incident conditions 

and short-term congestion. 

4. Conduct a demonstration of the prototype tool. 

We conducted this research over a two-year period.  In the first year, we focused on the 

first two objectives:  developing the traffic and incident prediction models.  In the second year of 

this project, we focused on the development of a prototype tool.  This report documents the 

development of the prototype tool. 

SUMMARY OF YEAR 1 ACTIVITIES 

In the first year of the research project, we focused on identifying techniques and 

strategies for predicting and forecasting traffic and incident conditions using real-time traffic 

sensor and other information. In conducting this research, the research team split into several 

independent groups, each focusing on different aspects of the problem. One group focused on 

using weather and traffic flow conditions as predictors of incident conditions. Other groups 

focused on developing models for producing short-term forecasts of potential congestion, using 

current measured traffic conditions. These research activities became the foundation for the work 

we performed in the second year of this project.  The results of these activities are summarized in 

Report 0-4946-1, Dynamic Traffic Flow Modeling for Incident Detection and Short-Term 

Congestion Prediction: Year 1 Progress Report (1).   

ORGANIZATION OF REPORT 

 This report is a summary of the processes and procedures used to develop the Dynamic 

Congestion and Incident Prediction System (DCIPS).  The DCIPS is a prototype tool designed to 

illustrate to TxDOT the potential of having a tool to predict when and where traffic and 

environmental conditions might lead to the formation of incidents and congestion.  In addition to 

this section, this report contains five major sections.  The “System Design and Architecture” 

section describes the major components, architecture, and data flows associated with developing 

the DCIPS prototype tool.  The “User’s Guide” section provides instructions and procedures for 
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installing, operating, and interpreting the results of the prediction models contained in the 

DCIPS.  The “Proof-of-Concept Testing” section describes how we used hardware-in-the-loop 

simulation to test the functionality and operation of the DCIPS prototype tool.  The “Issues 

Affecting Implementation” section documents some of the data quality issues we encountered as 

we attempted to deploy the prototype system.  The “Summary and Lessons Learned” section 

highlights some of the major findings from this research project as well as next steps for future 

research activities.  At the end of the report, we have included four appendices that describe the 

specifics of the traffic condition and incident prediction model developed as part of this research.
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SYSTEM DESIGN AND ARCHITECTURE 
 

The Texas Transportation Institute’s (TTI) Dynamic Congestion and Incident Prediction 

System is a prototype tool that has been designed and developed for TxDOT to be implemented 

in freeway management centers.  The DCIPS allows TxDOT to use traffic detector information 

currently being generated in their freeway management systems to make real-time, short-term 

predictions of when and where incidents and congestion are likely to occur on the freeway 

network.   

The system combines roadway network modeling, statistical regression and prediction 

methodologies, and real-time traffic sensor information to forecast when and where: 1) traffic 

conditions will exist that are likely to produce an incident and 2) platoons of traffic will merge 

together to create congestion on the freeway.  To accomplish this, TTI researchers have 

incorporated four prediction and forecasting models:  

• Cumulative Flow Forecast Model—This model forecasts the flow-in-process level of 

service and delay-in-flow level of service over a span of 15 minutes for all the 

stations in the designated target section of the freeway.  

• Speed-Density Forecast Model—This model forecasts speed and density for a given 

station in the designated target section of the freeway. 

• Incident Prediction Model—This model uses weather and traffic flow conditions as 

predictors of incident conditions.  It forecasts the incident probability, collision 

probability, and hazard score for a given station in the designated target section of the 

freeway. 

• Crash Potential Model—This model forecasts the crash potential for all the stations 

in the designated target section of the freeway. 

 
Figure 1 shows the high-level system architecture of the DCIPS.  Each of the major 

components of the DCIPS is discussed below.  
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Figure 1.  High-Level System Architecture Diagram of the Dynamic Congestion and 

Incident Prediction System. 
 

SYSTEM INPUT DATA 

The DCIPS was designed to operate in real-time using a live data source obtained from 

the field.  The system uses two types of operational data:  traffic operations data obtained from 

the TxDOT System Control Unit (SCU) and weather data from the National Oceanographic and 

Atmospheric Administration (NOAA) or from Road Weather Information System (RWIS).  

Below is a discussion of the data inputs into the DCIPS. 

Traffic Operations Data 

The DCIPS obtains its traffic operations data from TxDOT’s SCU.  The SCU collects 

traffic operations data from loop detectors installed on the freeway.  The traffic operations data 

are updated once every minute.  The following are types of traffic operations data used by the 

DCIPS:   

• Volume—This value represents a count of the number of vehicles passing over the 

detector station in a minute. 
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• Occupancy—This value represents the percent of time that a detector indicated the 

presence of a vehicle during that minute. 

• Speed—This value represents average speed of a vehicle passing through a trap-loop 

detection station during that minute. 

• Percent Trucks—This value represents the percent of vehicles crossing a trap detector 

exceeding a user-defined length threshold.  If the measured vehicle length exceeds the 

user-defined length threshold, the vehicle is counted as a truck.  At the end of the 

1-minute interval, the number of trucks is converted to the percent of trucks. 

For the purposes of this project, we assumed that each lane on the freeway as well as each 

lane on exit and entrance ramps was its own detection station and that detector data were not 

aggregated across lanes.   

Weather Data 

The system was also designed to take two sources of weather data:  information directly 

from Road Weather Information Systems that might be installed adjacent to the freeway as well 

as real-time weather data from the National Oceanographic and Atmospheric Administration 

weather stations.  The system was designed to take weather information directly from a NOAA 

weather website, like that shown in Figure 2.  This website contains current readings of the wind 

speed and direction, visibility and sky conditions, current temperature, dew point, relative 

humidity, and barometric pressures.  

The system also uses the latitude and longitude of the city to estimate sunrise and sunset 

times.  Sunrise and sunset were determined to be significant factors in predicting incident 

likelihood from the detector data (1). 

SYSTEM COMPONENTS 

Real-Time Data Extraction Subsystem 

While not a component of the DCIPS, the Real-Time Data Extraction System (RTDES) is 

an integral part of the Dynamic Congestion and Incident Prediction System. The Real-Time Data 

Extraction System consists of two components:  the System Control Unit Communications 

Manager and the 1-Minute Detector Data database.  The SCU Communications Manager is a 
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software program that extracts the 1-minute volume data from the SCU and places them in a 

“storage bin” from which other applications can extract the loop detector data.  The SCU 

Communications Manager requests an update of the detector information in the SCU at a rate of 

10 updates per second.  Upon receiving the information from the SCU, the SCU 

Communications Manager compares the most recently extracted information to information 

stored in a database to determine if the recent information represents new detector information.  

If the SCU Communications Manager determines that the data have been updated, it then stores 

the most recent data in the 1-Minute Detector Data database.  If the detector data have not been 

updated, the SCU Communications Manager continues requesting new data from the SCU until a 

new update has been received.  

 

 
Figure 2.  Screen Capture of National Weather Service (NWS) Website from Which the 

DCIPS Extracts Real-Time Weather Condition Information.  
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Dynamic Congestion and Incident Prediction Subsystem 

As shown in Figure 1, the DCIPS subsystem consists of four primary components:  the 

Prediction Data Communications Manager, the Traffic Condition Prediction Module, the 

Incident Prediction Module, and the Output Display Generator.   

Prediction Data Communications Manager 

The primary function of the Prediction Data Communications Manager is to extract the 

current traffic condition data from the RTDES at least once every minute and distribute them to 

each of the various traffic and incident prediction modules. The Prediction Data 

Communications Manager is also responsible for obtaining the current weather information from 

the NWS website and parsing the data stream to extract the relevant pieces of weather 

information used in the Incident Prediction Model (i.e., visibility, sky conditions, sunrise time, 

and sunset time).  The Prediction Data Communications Manager is also responsible for saving 

all the input data for the different modules in a database up to 1 hour for evaluation purposes. 

After an hour, the data from the database are appended into a text file, and the database is 

cleared.  The Prediction Data Communications Manager communicates with the two prediction 

modules through an interface that has controls that allow the modules to connect to the 

databases, read live data, and display their predictions.  Each module processes the data, 

calculates predictions, and saves the output in the database every 1 minute.  The structures of the 

databases where these data are stored are shown in Appendix A.   

Traffic Condition Prediction Module 

The Traffic Condition Prediction Module is the second major component of the DCIPS.  

Currently, the Traffic Condition Prediction Module contains two traffic prediction models—the 

Cumulative Flow Model and the Speed-Density Forecast Model—but has been designed to 

support the addition of other prediction models as they are developed.  The following provides a 

brief description of the two models currently contained in the Traffic Condition Prediction 

Model.  A more detailed description of these models can be found in Appendices B and C and in 

Report 0-4946-1 (1).   
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Cumulative Flow Model.  The Cumulative Flow Model was derived from work 

performed by Newell (2) and Cassidy and Windover (3).  The Cumulative Flow Model is based 

on the premise that under normal conditions, traffic detected at an upstream detector station can 

be expected to arrive at a downstream station at a time equivalent to the travel time of traffic.  

Flow that does not arrive at the expected travel time could be an indication of a potential 

operational problem.  Figure 3 illustrates the concept of the Cumulative Flow Model. A complete 

description of the development of this model can be found in Appendix B.   

 

 

Figure 3.  Illustration of the Concept Underlying the Cumulative Flow Model. 
 

In this application, the Cumulative Flow Model produces two predictions—the flow-in-

process and the delayed-flow.  The flow-in-process measure is the number of vehicles traveling 
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in a freeway section in a particular time and can be viewed as a proxy to density. As such, flow-

in-process is translated into the number of passenger cars per mile per lane and the level of 

service. Thresholds proposed in Chapter 23 of the Highway Capacity Manual (4) are used for 

classifying the level of service of the flow-in-process.   

The model also produces a delayed-flow ratio measure, which can be used as an indicator 

for assessing the level of congestion of a particular freeway section. The delayed-flow ratio is the 

ratio of the number of passenger cars being delayed to the number of passenger cars traveling in 

that section (or flow-in-process). A high delayed-flow ratio implies that a high percentage of 

vehicles are delayed and the operator should be alerted to a potential developing situation.   

If a freeway section is able to maintain a good quality of service, the delayed-flow ratio 

will not provide extra information on the operation status of that freeway section. To avoid this 

false alarm, the delayed-flow ratio is only calculated and shown for freeway sections with levels 

of service E and F. 

Speed-Density Forecast Model.  The other traffic prediction model we included in the 

Traffic Condition Prediction Module is the Speed-Density Forecast Model.  This model used a 

5-minute moving average to predict expected traffic conditions the next minute into the future.  

The same approach was used to forecast traffic volume conditions multiple time steps into the 

future.  Long-term forecasts into the future (more than 5 minutes into the future) were based 

solely on forecasted conditions.  We used this approach to develop 1-minute, 5-minute, 

10-minute, and 15-minute estimates of speed and density.  Figure 4 illustrates the moving-

average concept used to develop predictions of speed and density at individual detector stations.  

Incident Prediction Module 

In addition to providing predictions of future traffic conditions, we also developed a 

module to provide predictions of when and where traffic and environmental conditions were 

“favorable” for incident conditions to form.  We included two different models that produce 

forecasts of when incident conditions are likely to occur.  We called these models the Incident 

Prediction Model and the Crash Potential Model.  A brief overview of these two models is 

provided below.  A more in-depth discussion of the methodology used to develop these models 

can be found in Appendices C and D and in Report 0-4946-1 (1). 
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Figure 4.  Illustration of Moving-Average Concept Used in the Speed-Density Forecast 
Model. 

 

Incident Prediction Model.  The Incident Prediction Model utilizes real-time weather 

and traffic data and a probability-based statistical model to produce a likelihood forecast of 

where incidents are likely to occur along freeway segments. To provide traffic-related inputs, 

1-minute traffic data—volume, speed, and occupancy—as observed through inductive loop 

detectors were aggregated at 5-minute intervals. Current weather conditions were retrieved from 

the Internet on an hourly basis to provide weather-related inputs such as visibility and sky 

conditions. A statistical technique known as logit models was used to calibrate the model by 

examining historical relationships between incident and weather/traffic data.  

Crash Potential Model.   The final model included in the Incident Prediction Module 

was the Crash Potential Model.  This model applies some of the concepts and procedures used in 

predicting high-accident locations and safety analyses (5 - 9) to estimate the likelihood that a 

crash will occur at a particular location given the forecast of the expected traffic volume and 

existing geometric conditions.  The approach uses statistical procedures to identify real-time 

accident “precursors” in the traffic stream.  The precursors are identified by determining what 

the traffic conditions were like just prior to an accident occurring and are developed from 
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historical information about traffic conditions, geometric conditions, and accident experience at a 

particular location.  In this research, we attempted to use both density and coefficient of variation 

of speed as real-time precursors to where accidents were likely to occur.  Coefficient of variation 

of speed (CVS) is a measure of the amount of fluctuation (or variation) and is computed as the 

standard deviation in speed divided by the average speed.  A high value of CVS implies that a 

large amount of fluctuation in speed exists in the traffic stream, which has been shown to cause 

accidents (9).   

Output Display Generator 

The last major component of the DCIPS is the Output Display Generator.  Each model 

processes the data, calculates its predictions, and saves the output in the database every 1 minute.  

The Output Display Generator plots graphs based on the predictions by the respective models.  

Examples of the output plots generated for each model are presented and discussed below.  

In addition to generating the output display, the Output Display Generator is responsible 

for generating an archive of the model results.  Output from each model is kept in the database 

that is updated every minute.  Model outputs are retained in this database for 1 hour.  After every 

hour, the data are moved to a daily text file (similar to what is done with the Austin Advanced 

Transportation Management System [ATMS] loop detector data).  The weather data, which are 

updated every minute, are also saved into text files every hour per day. 

Cumulative Flow Model Outputs. A sample of the type of output produced by the 

Cumulative Flow Model is provided in Figure 5.  The Cumulative Flow Model provides a 

forecast of the flow-in-process and the ratio between the delayed-flow and flow-in-process to 

forecast the anticipated level of service. The user has the option to designate a targeted section of 

the freeway.  The level-of-service thresholds provided in Chapter 23 of the Highway Capacity 

Manual (4) are used for classifying the level of service of the flow-in-process.  The user has the 

option of predicting level of service based on the projected traffic conditions 1 minute, 

5 minutes, 10 minutes, and 15 minutes into the future.  If a freeway section is able to maintain a 

good quality of service, the delayed-flow ratio does not provide extra information on the 

operation status of that freeway section. To avoid false projections of poor performance, the 

delayed-flow ratio is only calculated and shown for freeway sections with levels of service E and 

F.  Higher values of delayed-flow ratio indicate greater levels of predicted congestion. 
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Figure 5.  Sample Output of Cumulative Flow Model. 

 
Speed-Density Forecast Model Outputs.  This model forecasts the predicted speed and 

density for a given station in the designated target section of the freeway.  The output manager 

speed is plotted in miles per hour (mph), while density is plotted in vehicles per hour per lane 

(vphpl).  We have provided the user with the capability to select the time interval for which to 

display the speed and density forecasts—1, 5, 10, or 15 minutes into the future.  Forecasted 

values are displayed for each station in a particular direction of travel.   

Figure 6 shows a sample output of the graphs produced by the Speed-Density Forecast 

Model.  Density values are displayed in green, while speed values are displayed in red.  
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Figure 6.  Sample Output of Speed-Density Forecast Model. 

 
 

Incident Prediction Model Outputs.  Figure 7 shows an example of the output 

generated for the Incident Prediction Model.   

 

 
Figure 7.  Sample Output of Incident Prediction Model. 

 

The graphical display consists of two graphs updated in real time.  The top graph displays 

the profiles of predicted probabilities and hazard scores over the last 15 minutes at the selected 

detector station. The user can specify the detector station of interest in this interface. Three 

predicted components are displayed in this graph: 1) probability of an in-lane incident,  
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2) probability of an incident being a collision given that an incident has occurred, and 3) hazard 

score. Using this graph, control center operators can monitor the trends to identify how long the 

predicted outputs at the selected location have been in a particular state. A persistent check can 

also be performed using this display. For instance, control center operators may require hazard 

scores to exceed a particular threshold for at least 3 minutes consecutively before any appropriate 

actions are warranted. 

The bottom graph displays the most recent hazard scores across all the detector stations 

along the freeway mainline of the test bed. Control center operators can use this graph to quickly 

review traffic situations throughout the entire test bed and determine where the traffic and 

weather conditions are critical for freeway operations. Higher hazard scores would imply more 

hazardous conditions at particular detector stations.  

Dual thresholds for hazard scores can be used to designate locations that require attention 

from control center operators. The lower threshold, once exceeded, can be used to put operators 

on alert conditions, while the higher threshold can be used to identify the locations that require 

immediate attention. The hazard score thresholds of 0.16 and 0.28 are recommended based on 

historical observations of Loop 1 and US 183 in Austin, Texas. These thresholds are considered 

preliminary and should be used only if there is no better information available. These thresholds 

are expected to be updated over time to reflect the current freeway conditions once the system 

has been deployed. To reduce the rate of false alarms, a persistence check can be applied before 

an alert can be issued. 

Crash Potential Model Outputs.  In our implementation, the Crash Potential Model 

uses real-time and forecasted measures of speed and density to predict when and where incidents 

are likely to occur.  Speed and density measures are extracted from the loop detectors and fed 

into the model to produce an estimate of the probability that an accident will occur given the 

current or predicted conditions.  The system then converts this likelihood estimate into the crash 

potential. Crash potential is defined as the expected number of crashes over a certain period of 

exposure. Exposure is denominated as vehicle miles of travel. The Crash Potential Model reports 

crash potential for that particular minute it is evaluating by looking at the precursors over the 

current time and preceding 4 minutes.  A sample of an output screen for the Crash Potential 

Model is shown in Figure 8. 
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Figure 8.  Sample Output of Crash Potential Model. 

 

DATA FLOWS 

Figure 9 is a data flow diagram for the DCIPS prototype.  The diagram shows what data 

elements are used by each of the model components and how the data move between these 

components.  The DCIPS uses 1-minute speed, volume, and occupancy information collected 

from traffic monitoring systems (i.e., loop detectors) from the TxDOT ATMS.  The DCIPS also 

uses weather information that is extracted from a website produced by the National Weather 

Service.  The SCU Communications Manager is responsible for extracting traffic condition data 

from the TxDOT ATMS.  This information is stored in a database that is part of the SCU 

Communications Manager subsystem.  The Prediction Data Communications Manager is 

responsible for extracting the 1-minute traffic condition data from the database and distributing 

the appropriate traffic condition information to each of the prediction models.  The Prediction 

Data Communications Manager is also responsible for securing the current weather data from the 

NWS website.  The Output Display Generator uses the output from each of the prediction models 

to generate the appropriate model displays described above. Also, the Output Display Generator 

is responsible for time-stamping and placing the model output results into an archival database 

that can be used to evaluate the accuracy of the prediction models. 
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Figure 9.  Data Flows in the Dynamic Congestion and Incident Prediction System. 



 

 19

USER’S GUIDE 
 

In this section of the report, we provide a user’s guide on how to install, operate, and 

interpret the model results from the DCIPS prototype tools.  First, we will describe the software 

and hardware requirements needed to operate the DCIPS tools.  We will then describe the 

processes and procedures for installing, operating, and removing the software program on a 

personal computer (PC).   The system has been designed to operate as a stand-alone application 

using real-time traffic and weather condition information.   

SOFTWARE AND HARDWARE REQUIREMENTS 

The SCU Communications Manager software is a stand-alone computer program 

designed to query and extract traffic detector data directly from TxDOT’s System Control Unit.  

Written in Visual Basic, the SCU Communications Manager requests the most recent update of 

traffic information from the SCU, compares this information to previously stored data to 

determine if conditions have changed, and then requires new information from a database.  It 

connects to the TxDOT SCU through one of the standard output ports on the SCU. 

The DCIPS software is a compilation of several individual programs—all written in 

Visual Basic.  A setup program has been prepared to allow all of the components to be installed 

automatically.  Ideally, the SCU Communications Manager and the DCIPS software need to be 

installed on the same computer in the control center.  The folders for DCIPS on the machine will 

be located at C:\Program Files\DCIPS.  The DCIPS folder will also contain the folders for the 

day files consisting of input traffic and weather data after you execute the application. 

Both the SCU Communications Manager and the DCIPS have been designed to run on a 

PC.  We recommend that the computer have a minimum of 1 gigahertz central processing unit 

(CPU) and 512 megabytes (MB) of random access memory (RAM), and runs one of Microsoft’s 

operating systems: Windows NT®, Windows 2000®, or Windows XP®.  Both the SCU 

Communications Manager and the DCIPS use a Microsoft Access® database for retaining 

necessary input data.   Both the SCU Communications Manager software and the DCIPS 

software need to be installed on the computer before the user can run the DCIPS.   
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INSTALLING THE DCIPS SOFTWARE 

We have provided TxDOT with an installation compact disc (CD) that contains the 

DCIPS software.  Included on this CD is a program to automatically install the DCIPS programs.  

After placing the CD in the appropriate drive, the user should double-click the Setup file located 

in the disc directory.  This should start the installation process and cause the installation program 

to display the welcome screen shown in Figure 10.  To continue with the installation process, the 

user should click the OK button located at the bottom of the welcome screen.  If the user does not 

wish to install the software, he or she can click the Exit Setup button on the bottom right of the 

welcome screen.   

 

 
Figure 10.  Welcome Screen of the DCIPS Installation Program. 

 
When the user hits the OK button in Figure 10, it will cause the DCIPS Setup screen to 

appear.  This screen is shown in Figure 11.  

The user should then click the install button (which looks like a computer and software, 

as show in Figure 11) on this screen to continue with the installation program.  This will cause 

the setup program to create a new directory—the Predictor Data Communications Manager—in 

the C:\Program Files directory and to install the DCIPS in that directory. 

If the user would like to install the DCIPS program in a subdirectory other than the one 

specified, he or she can change directories by clicking the Change Directory button.  This will 

allow the user to enter the path name to the directory where he or she would like the program 

installed.  After changing the directory, the user should then click the install button to continue 

the installation process.   
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Figure 11.  The Initial Setup Screen for Launching the DCIPS Installation Program. 

 
The user can quit the installation program by clicking the Exit Setup button at the bottom 

of the screen.  

After hitting the install button, the screen shown in Figure 12 should appear.  As a 

default, the installation program will install the DCIPS in the Dynamic Congestion and Incident 

Prediction System Program Group.  If the user would like to use a different program group, he or 

she can enter a new group name directly or select one from the Existing Groups listed on the 

screen.   

 
Figure 12.  Input Screen Where the User Can Specify the Location for Installing the 

DCIPS. 
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Once the user has entered the desired program group name, he or she should hit the 

Continue button.  This will cause the setup program to install the DCIPS program on the 

computer.  The user can terminate the installation process by clicking the Cancel button.  

If the installation process is successful, the user will see the screen shown in Figure 13.  

To clear the screen, the user should then click the OK button.  

 

 
Figure 13.  Screen Indicating That the DCIPS Has Been Successfully Installed. 

 

CONNECTING TO SCU COMMUNICATIONS MANAGER’S DATABASE  

After installing the DCIPS on the computer, the user still needs to establish a connection 

between the DCIPS and the SCU Communications Manager’s database.  This can be done using 

the Microsoft Windows® Administrative Tools program found on the Control Panel screen (see 

Figure 14). To start the process of connecting the DCIPS to the SCU database, the user should 

double-click the Administrative Tools icon. 

 

 
Figure 14.  The Administrative Tools Icon Located in the Control Panel. 
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Once the user double-clicks the Administrative Tools icon, the computer should display 

the screen shown in Figure 15.  The user then double-clicks the Data Sources (ODBC) shortcut 

on this screen.   

 
Figure 15.  Shortcut for Configuring the Data Source for the DCIPS. 

 
Double-clicking the Data Sources (ODBC) shortcut will cause the computer to open the 

ODBC Data Source Administrator screen.   The user should then select the System DSN tab 

located near the top of the screen.  After clicking this tab, the user should see the input screen 

shown in Figure 16.  From this screen the user would click the Add button on the right side of the 

screen.  This will cause the computer to display a screen similar to that shown in Figure 17.  

From this screen, the user should scroll down the list of available data source drivers and select 

Microsoft Access Driver (*.mdb) from the list.  If the Microsoft Access Driver (*.mdb) option is 

not shown in the list, the user will need to install Microsoft Access®.  The user can either cancel 

out of the ODBC Data Source Administrator screen and install Microsoft Access®, or contact his 

or her system administrator for assistance.  The user would then need to repeat the steps for 

connecting the database after the software has been installed.  

Once the appropriate database driver name has been highlighted, the user can click the 

Finish button at the bottom of the screen.  This should open a new screen similar to that shown in 

Figure 18. 
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Figure 16.  ODBC Data Source Administrator Screen. 

 

 
Figure 17.  Screen for Selecting Data Source Driver. 
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Figure 18.  ODBC Microsoft Access Setup Screen. 

 
In the space provided next to the Data Source Name, the user should enter the name of 

the database to which he or she is connecting.  In our example, we have called this data source 

name SCUAustinCON.  After providing a data source name, the user then needs to provide a 

name and path where this data source is located.  To do this, the user should click the Select 

button in the Database section of the input screen.  This will open a screen similar to that shown 

in Figure 19.  From this screen, the user should enter the path name where the 

SCU_Austin_LiveDatabase—the database used by the SCU Communications Manager—is 

located.  After entering the path name, the user should click the OK button on the right-hand side 

of the screen.  That will return the user to the ODBC Microsoft Access Setup screen, except this 

time the path name will be displayed in the Database section (see Figure 20).  The user can then 

click the OK button on the right-hand side of the screen to complete the connection process.  The 

DCIPS will be connected to the SCU Communications Manager database, and the DCIPS will be 

able to extract the traffic condition information from the SCU. 
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Figure 19.  Input Screen for Entering Path to SCU Real-Time Database. 

 
 

 
Figure 20.  ODBC Microsoft Access Setup Screen with Path to SCU Real-Time Database. 

 

OPERATING THE DCIPS 

Once the software programs have been installed and the connection has been made 

between the SCU Communications Manager and the DCIPS, the user is ready to begin operating 

the prototype tool.  The installation program places the DCIPS program in the Program Manager.  

To execute the DCIPS, the user should click Start and then All Programs.  The user should then 

navigate through the programs listed there until he or she finds the Dynamic Congestion and 



 

 27

Incident Prediction System (DCIPS) shortcut.   Double-clicking the shortcut will cause the 

DCIPS program to launch.  Figure 21 shows the initial DCIPS screen after the user launches the 

program.   

 

 
Figure 21.  Initial Start Screen of the DCIPS Prototype Tool. 

 

The user should then click the green Start Forecast button in the upper left-hand corner 

of the initial screen to start the DCIPS producing forecasts.  The DCIPS will go out to the 

identified NWS website location and download the current visibility and sunrise and sunset 

times, as well as establish a connection to the SCU Communications Manager.   

If a successful connection to these subsystems is made, the user should see a screen 

similar to that shown in Figure 22.  The screen will update to provide two pieces of status 

information:  the current weather conditions downloaded from the NWS website and the status of 

the communications to the SCU.  SCU Communications Status shows the status of the DCIPS 

with the SCU Communications Manager.  If the connection is good, it displays a message 

Connection successful along with a time stamp.  If the connection is lost, it displays a message 

No real time data available from SCU along with a time stamp.   
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Figure 22.  Initial Screen after User Clicks Start Forecast Button. 

 
After clicking the green Start Forecast button, three other buttons will be activated:  a 

yellow Forecast Display button, a red Stop Forecast button, and a blue Exit button.  The red Stop 

Forecast button will cause the DCIPS to stop forecasting traffic and incident conditions.  This is 

not the same as exiting the program.  The operator might use the Stop Forecast button if he or 

she wants to essentially “pause” the application (i.e., stop producing forecasts) without causing it 

to terminate permanently.  To fully terminate the program, the user needs to click on the blue 

Exit button to exit from initial startup screen.  Note, clicking on the red X in the top right-hand 

corner of the startup screen does not exit from the application.  When the user tries to exit that 

way, he or she gets the warning message shown in Figure 23. The only way the user can exit 

from the DCIPS is by clicking the Exit button. 
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Figure 23.  Error Screen If the User Tries to Exit the DCIPS Incorrectly. 

 
To begin receiving traffic conditions and incident forecast information, the user should 

click on the yellow Forecast Display button (see Figure 22).  This will cause the DCIPS to 

display a screen similar to that shown in Figure 24.  From this screen, the user can see the status 

of the communications with the SCU Communications Manager (in the SCU Communication 

Status window on the upper left-hand side of the screen).   The screen also contains a Bad Data 

Status window (upper right-hand side of the screen) that shows the user an error warning if the 

DCIPS has detected and corrected any bad data from the SCU.   

 

 
Figure 24.  Initial Status Screen for Displaying Traffic Condition and Incident Predictions. 

 

This screen also contains four tabs, each one corresponding to the traffic conditions and 

incident prediction models:  the Speed-Density Model, the Incident Prediction Model, the 

Cumulative Flow Model, and the Crash Potential Model.    

REMOVING THE DCIPS 

The user can remove the DCIPS program from the computer using the Add or Remove 

Programs feature in the Windows® software.  To access this feature, the user should access the 
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Control Panel through the Start menu on the desktop.  From the Control Panel screen, the user 

should select the Add or Remove Programs icon.  After clicking the Add or Remove Programs 

icon, the user sees a listing of all of the programs installed on the PC.  The user should scroll 

down the list and highlight Dynamic Congestion and Incident Prediction System (DCIPS) from 

the list.  The user should then click the Change/Remove button displayed on the screen.  Clicking 

that button should cause the screen shown in Figure 25 to be displayed to the user.  If the user 

wishes to continue with the removal process, he or she clicks the Yes button on the left-hand side 

of the screen.  Clicking the No button will cause the removal process to terminate without 

removing the program.   

 

 
Figure 25.  Confirmation Screen for Removing the DCIPS. 

 
Once Windows® has successfully removed the program; the user will receive the message 

shown in Figure 26 confirming that the program has been removed from the computer.  

 
 

 
Figure 26.  Confirmation Screen That the DCIPS Has Been Successfully Removed from the 

Computer.  
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PROOF-OF-CONCEPT TESTING 
 

In this section, we first describe how the system was set up for integration and Real-Time 

Incident Prediction System (RIPS) tool testing. Then, we ran the example test scenario to 

illustrate how the RIPS would work in the field.  

TEST SETUP 

We tested the developed RIPS in the laboratory setting using the hardware-in-the-loop 

simulation concept. VISSIM was selected as a simulation test bed where a 7-mile segment of 

Loop 1 was modeled and loop detectors were placed along the simulated network to generate 

detector observations. We used the Austin detector database to ensure that the detector placement 

in the simulated network corresponded to actual locations. The testing concept can be depicted as 

shown in Figure 27. 

VISSIM Simulated 
Network with Detectors

VLIVE
(VISSIM Interface and Control 
software developed in Visual 

Basic environment)

VISSIM COM  Module

Control VISSIM simulation
Retrieve real-time simulated 
loop detector data

20-second simulated LCU-like 

loop detector data

`
TxDOT ATMS 
Software

A software developed to 
retrieve one-minute SCU-like 

loop detector data

Real-Time Incident 
Prediction System (RIPS)

Retrieves webcast of 
current weather conditions

System Outputs

Computed traffic 
measures
Predicted incident 
probabilities
Hazard scores

Developed and Customized for RIPS Integration Testing

RIPS Module  
Figure 27.  Diagram of RIPS Integration Testing. 
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In a simulated network, a single-lane-blocked incident was coded in the simulated 

network using vehicle actuated programming (VAP) in order to illustrate the effects of the 

incident on traffic flow parameters. Incident location, starting time, and duration can be specified 

and modified by users. 

From the diagram, VLIVE software (see Figure 28) was developed in a Visual Basic 

(VB) environment integrating the VISSIM COM capability through VB’s graphical user 

interface designed for users to control and observe changes in traffic parameters in run-time. 

VLIVE retrieves the simulated loop detector data from VISSIM and aggregates them into a 

20-second data format similar to Local Control Units (LCU). These 20-second data from VLIVE 

are then combined in 1-minute data at the SCU level. Simple validation checks such as threshold 

checking are performed at the SCU level. A program was developed to retrieve 1-minute SCU 

data directly from the ATMS and then store them into a database. 

 

 
Figure 28.  VLIVE Software and the Simulated VISSIM Network. 
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SIMULATED NETWORK 

A 7-mile freeway segment of Loop 1 located in the west of Austin, Texas, from US 183 

to Lake Austin Boulevard was selected as a simulation test bed. The test bed consisted of a total 

of 69 individual inductive loop detectors on mainline and ramp sections. The web-based weather 

conditions from the Camp Mabry station located near the middle of the test bed were retrieved to 

provide inputs into the incident prediction models.  

A one-lane-blocked incident was programmed to occur on the test bed in order to 

examine the effects of an incident on traffic flow parameters as observed through inductive loop 

detectors. The incident location, duration, and occurrence time can be modified by users through 

VISSIM VAP. 

EXAMPLE SCENARIOS AND RESULTS 

A test incident scenario was a one-lane-blocked incident that lasted for 10 minutes near 

the south terminus of the test bed. Figure 29 through Figure 34 depict the simulated traffic 

conditions over the period of incident timeline and the corresponding prediction results. Three 

scenarios are presented herein: non-incident condition, during-incident condition, and post-

incident condition. 

For non-incident traffic and normal weather conditions (see Figure 29), the model outputs 

shown in Figure 30 show hazard scores in the range of 0.10 to 0.16, which are below the 

suggested threshold of 0.18, indicating that the current freeway traffic and weather conditions are 

unlikely to produce incidents. The top graph in Figure 30 displays the most recent hazard scores 

across all the detector stations along the freeway mainline of the test bed. Control center 

operators can use this graph to quickly review traffic situations throughout the entire test bed and 

determine where the traffic and weather conditions are critical for freeway operations. The 

bottom graph in Figure 30 shows the predicted outputs over the past 15 minutes at the selected 

detector station specified by users. Using this graph, control center operators can monitor the 

trends to identify how long the predicted outputs at a selected location have been in a particular 

state. A persistent check can also be performed using this graph. For instance, control center 

operators may require hazard scores to exceed the threshold for at least 3 minutes continuously 

before any appropriate actions will be put in place.  
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Similarly, Figure 31 and Figure 32 illustrate simulated traffic conditions during an 

incident and the corresponding model outputs respectively. The corresponding displays for a 

post-incident scenario are presented in Figure 33 and Figure 34. In this case, it should be noted 

that there is a delay period for hazard scores and predicted probabilities to decrease once an 

incident has been cleared. This corresponds with a notion that a risk of a secondary incident can 

be above normal right after the incident has been cleared and before traffic completely returns to 

pre-incident conditions. 

 

 
Figure 29.  Non-Incident Traffic Conditions. 
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Figure 30.  Example Model Outputs for Non-Incident Traffic Conditions. 

 
 

 
Figure 31.  During-Incident Traffic Conditions. 
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Figure 32.  Example Model Outputs During-Incident Traffic Conditions. 

 
 

 
Figure 33.  Post-Incident Traffic Conditions. 
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Figure 34.  Example Model Outputs for Post-Incident Traffic Conditions. 
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ISSUES AFFECTING IMPLEMENTATION 
 

Unlike simulation data, real data are seldom perfect. To develop and implement an 

effective model for deployment in traffic management systems, it is crucial to have reasonably 

accurate data on volume, occupancy, and speed. 

After analyzing Austin data, we have concerns about two problems, namely missing data 

and erroneous data. Instances of missing data include negative entries (-1) during certain 

1-minute periods and entries of zero (0) for several consecutive time periods. Erroneous data 

arise when the detector registers wrong data.  These two types of problems found in the Austin 

data are discussed below. 

MISSING DATA 

Missing data are a prevalent problem for Austin freeway systems. When examining the 

data, we found that a significant number of detectors are inoperative, as of November 14, 2005. 

Numerous detector stations on US 183 and Loop 1 register values of 0 or -1 all the time. For 

example, on the southbound direction of Loop 1, all three detectors of the Westover Road station 

report -1 for all the fields (Table 1), while the detectors of the ISD station (the next detector 

station downstream) report 0 for all the fields all the time (Table 2). 

 
Table 1.  Detectors of Westover Road Station on Southbound Loop 1. 

Time 
Stamp  Detector 

ID V O S T Detector 
ID V O S T Detector 

ID V O S T  

180024 … 6002821 -1 -1 -1 -1 6002822 -1 -1 -1 -1 6002823 -1 -1 -1 -1 … 
180124 … 6002821 -1 -1 -1 -1 6002822 -1 -1 -1 -1 6002823 -1 -1 -1 -1 … 
180224 … 6002821 -1 -1 -1 -1 6002822 -1 -1 -1 -1 6002823 -1 -1 -1 -1 … 
180325 … 6002821 -1 -1 -1 -1 6002822 -1 -1 -1 -1 6002823 -1 -1 -1 -1 … 
180424 … 6002821 -1 -1 -1 -1 6002822 -1 -1 -1 -1 6002823 -1 -1 -1 -1 … 
180524 … 6002821 -1 -1 -1 -1 6002822 -1 -1 -1 -1 6002823 -1 -1 -1 -1 … 
Note: V=Volume, O=Occupancy, S=Speed, T= Percent Trucks 
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Table 2.  Detectors of ISD Station on Southbound of Loop 1. 

Time 
Stamp  Detector 

ID V O S T Detector 
ID V O S T Detector 

ID V O S T  

180024 … 6003811 0 0 0 0 6003812 0 0 0 0 6003813 0 0 0 0 … 
180124 … 6003811 0 0 0 0 6003812 0 0 0 0 6003813 0 0 0 0 … 
180224 … 6003811 0 0 0 0 6003812 0 0 0 0 6003813 0 0 0 0 … 
180325 … 6003811 0 0 0 0 6003812 0 0 0 0 6003813 0 0 0 0 … 
180024 … 6003811 0 0 0 0 6003812 0 0 0 0 6003813 0 0 0 0 … 
180124 … 6003811 0 0 0 0 6003812 0 0 0 0 6003813 0 0 0 0 … 
Note: V=Volume; O=Occupancy, S=Speed, and T=Percent Trucks 

 
Further examination of data in the southbound direction of Loop 1 from November 14, 

2005, to November 16, 2005, suggested that detectors on Loop 1 may have an upper limit on 

occupancy for error checking because the reported occupancies are never more than 25 percent. 

Since peak period occupancy values on Loop 1 regularly exceed 25 percent, up to half of all 

observations during the peak period are missing. Examples are the detectors on the freeway 

section from Westchester to RM 2222 from around 7:30 a.m. to 9:00 a.m., and detectors on the 

southbound Loop 1 freeway section from RM 2222 to south of 45th Street.  

ERRONEOUS DATA 

As defined previously, erroneous data are incorrect data registered by the detector, LCU 

or SCU. Some types of erroneous data are easy to identify. For example, erroneous data arise 

when the detector reports positive occupancy and zero volume. Some detectors may occasionally 

report this type of erroneous data. But if a detector consistently outputs positive occupancy and 

zero volume, the detector must be examined. We found that detector 2011611 on Thunder Creek 

reported a significant number of cases of this type of erroneous data during 5:00 a.m. to 

10:00 p.m. of the week of November 7, 2005 (ranging from 36 to 95 cases). The number of 

erroneous data reported by this detector warrants further examination. 

Another type of erroneous data arises when a detector consistently reports constrained 

speed values. This type of erroneous data can be easily identified by simple time-of-day checks. 

For example, Figure 35 shows that the detectors on the Lazy Lane and Ohlen Road stations on 

northbound US 183 consistently report extremely slow speeds (less than 35 mph). 
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Figure 35.  Constrained Speed Values. 

 

However, in general, erroneous data are difficult to locate. For example, volume data 

collected from 2:00 p.m. to 6:00 p.m. on June 4, 2002 (a Tuesday), for the Guadalupe Street, 

Lamar Boulevard, and Lazy Lane stations on northbound US 183 did not reveal any abnormality. 

This site is illustrated in Figure 36. 

 

Figure 36.  Study Site on US 183 in Austin, Texas. 
 

When we applied the input-output model to the collected data, we were alarmed when 

examining the flow-in-process of the site. Figure 37 presents the flow-in-process and delayed-

flow plots for this site.  In the section from Lamar Boulevard to Lazy Lane, both flow-in-process 

and delayed-flow increased steadily at an approximate rate of 100 vehicles per hour from 

2:00 p.m. to 5:00 p.m., and jumped to around 500 vehicles from 5:00 p.m. to 6:00 p.m. Recall 

that flow-in-process is defined as the number of vehicles that are traveling in the section at any 
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particular time; it is improbable to have 500 vehicles in a half-mile three-lane section 

simultaneously.  

For the upstream section from Guadalupe Street to Lamar Boulevard, the flow-in-process 

and delayed-flow demonstrate a horizontal trend from 2:00 p.m. to 4:00 p.m. However, from 

around 4:15 p.m., both flow-in-process and delayed-flow dropped significantly, resulting in 

negative values. In other words, more vehicles are leaving the section than vehicles entering the 

section, a logically impossible scenario. 
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Figure 37.  Flow-in-Process and Delayed-Flow of Guadalupe-Lamar-Lazy Site. 
 

The above analysis revealed that the detector station at Lamar Boulevard recorded more 

vehicles than those at the Guadalupe Street station and Lazy Lane station. It is perhaps due to 

faulty detectors on Lamar Boulevard only. Thus, we ignored the data from the Lamar Boulevard 

station and plotted the flow-in-process and delayed-flow against time for the section Guadalupe-

Lazy in Figure 38. 
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In Figure 38, both flow-in-process and delayed-flow show an upward trend, which 

indicates an incident that lasted a couple of hours. However, there is no incident logged during 

that period. Therefore, we suspect that the detectors may not provide accurate volume counts.  
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Figure 38.  Flow-in-Process and Delayed-Flow of Guadalupe-Lazy Site. 

 

Also, we observed that many detectors on Loop 1 started to have different patterns in 

total daily volumes in March 2005, which may be the result of a SCU software update or 

problem solving by TxDOT. Data collected by detector 6004321 at the 45th Street station on 

southbound Loop 1 exemplify this pattern shift as shown in Figure 39. Because of this pattern 

shift, we must be careful when using the historic data. 

Since erroneous data appear to be valid and difficult to identify in general, erroneous data 

may have far more significant implications than missing data on both model development and 

implementation. 

CONCLUDING REMARKS 

Accurate data are a crucial key to the success of developing and implementing a 

congestion and incident prediction system. On one hand, a model that is developed based on 

inaccurate past data may not reflect the real environment and may render the results useless. On 

the other hand, a valid model may provide invalid results if the real-time data are faulty. 

Therefore, it is crucial that further investigation be carried out to identify the causes of these 

errors and that steps be taken to correct these problems. 
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SUMMARY AND LESSONS LEARNED 

SUMMARY 

Historical data can be a valuable resource for traffic management center operators.  This 

project showed that historical traffic condition information, coupled with information from other 

sources, such as weather information, can be used to generate models that operators can use to 

produce short-term forecasts of traffic conditions.  By tying these models to real-time traffic and 

weather condition information, operators can use these models to identify where incidents and 

congestion have the potential to occur based on the current travel conditions.  

In this research project, we examined several different strategies and techniques for 

developing short-term forecasts (i.e., up to 15 minutes into the future) of where traffic congestion 

and incidents were likely to form on a freeway network using real-time traffic and weather 

information. As part of this research, we developed and incorporated four different prediction 

models for forecasting when and where incidents and traffic congestion were likely to occur.  In 

the first model, the Cumulative Flow Forecast Model, we used traffic condition data from two 

adjacent detector stations to forecast the flow-in-process level of service and delay-in-flow level 

of service over a span of 15 minutes in the designated target section of the freeway.  We used the 

Speed-Density Forecast Model, which uses standard moving-average techniques to forecast 

traffic conditions, to develop 15-minute forecasts of traffic conditions at a single detector station 

based on observed historical trends.  In the Incident Prediction Model, we developed a model to 

predict the probability that an incident would occur, the probability that the incident would be a 

collision, and a hazard score for a given station in the designated target section of the freeway, 

based on current weather and traffic flow conditions as predictors.  With the Crash Potential 

Model, we applied standard accident rate forecasting techniques to predict the likelihood that 

current and forecasted traffic conditions might result in a collision.   

All four models were then integrated in a prototype tool, called the Dynamic Congestion 

and Incident Prediction System.  The DCIPS was designed to be installed in a TxDOT traffic 

management center (TMC) connected in real time to the System Control Unit, which provides 

1-minute volume, speed, and occupancy information collected from detector stations on the 

freeway.  The DCIPS system uses this information along with current visibility and weather data 

to develop forecasts of locations where incidents and congestion are likely to occur.  The 
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prototype tool was tested in a hardware-in-the-loop simulation environment in the TTI 

TransLink® Research Center laboratory. 

LESSONS LEARNED 

The following lists several of the lessons that we learned as part of this research project: 

• This research showed that using historical information to develop forecasts of 

potential traffic conditions was possible.  This research activity, however, was 

hampered by not having good quality data.  TxDOT needs to develop and employ 

procedures for ensuring the quality of the data that are stored in their databases.  

Good quality data are not only essential to producing forecasting models, but they are 

also critical to supporting planning activities for operations. The quality of the data 

feeding the process has an impact on the quality of the results of the forecasting tools.   

• This research also showed that it was possible to “tap into” the TxDOT ATMS data 

stream and extract data in real time without slowing down or interfering with the core 

ATMS software.  By tapping into the SCU data stream, TxDOT can develop multiple 

applications that utilize the same data stream without interfering with the operator’s 

ability to assess traffic performance and implement control strategies.  

FUTURE RESEARCH ACTIVITIES 

The following is a list of future research and implementation activities that need to be 

performed if TxDOT wants to continue development of prediction and forecasting tools: 

• TxDOT currently is working on techniques to identify erroneous and inconsistent 

traffic data before they get stored in databases.  This should significantly improve the 

quality of the data.  After this occurs, we recommend to TxDOT that they recalibrate 

the models developed as part of this research activity to ensure that they can 

accurately represent traffic conditions. 

• TxDOT needs to evaluate how their operators might use and react to forecasted 

information.  For example, TxDOT needs to determine what action(s) is(are) 

appropriate for an operator to take if he or she is alerted to the potential of an accident 

or congestion occurring at a location. Furthermore, TxDOT needs to develop tools 

and techniques for evaluating the impacts of an operator taking action based on 
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predicted information to determine if the potential action would have a positive or 

negative impact on the predicted conditions.   

• Much research is currently underway at many locations throughout the United States 

and elsewhere to develop traffic forecasting models and tools—some of which 

incorporate real-time measures of traffic conditions into the modeling process.  

Models such as DYNAMIT, DYNASMART, and others have the potential to provide 

forecasted traffic conditions based on a dynamic traffic assignment model.  TxDOT 

should continue to monitor the development of these tools and begin integrating and 

incorporating them as a traffic management tool in their control centers.   
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 APPENDIX A:  STRUCTURE OF DATABASE TABLES IN DCIPS 
 

The following items documents the structure of the database tables used in the 

development of the DCIPS.   

 

1. TrafficData—Contains real-time input data provided by the SCU Communications 
Manager. 
Field Name Data Type Field Size Description 
det_id Text 8 Unique detector identification 

number 
volume Number Integer 1-minute volume 
occupancy Number Integer Occupancy, 0-100% 
speed Number Integer Average speed, mph 
percenttrucks Number Integer Average truck percentage, 0-100% 
ftime Date/Time  Time stamp of last data record read 
VolBadCount Number Integer Keeps track of the number of times 

bad volume data were encountered 
and corrected with the previous value 
for each respective detector 

SpdBadCount Number Integer Keeps track of the number of times 
bad speed data were encountered and 
corrected with the previous value for 
each respective detector 

OccBadCount Number Integer Keeps track of the number of times 
bad occupancy data were 
encountered and corrected with the 
previous value for each respective 
detector 

TruckBadCount Number Integer Keeps track of the number of times 
bad percent trucks data were 
encountered and corrected with the 
previous value for each respective 
detector 

  
2. Station—Contains the relationship between each station and detectors, i.e., the list of 

detectors for each station. 
Field Name Data Type Field Size Description 
station_id Text 3 Unique station identification number 
det_id Text 7 Unique detector identification number 
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3. StationInfo—Contains detailed information for each station. 

Field Name Data Type Field Size Description 
station_id Text 3 Unique station identification number 
station_desc Text 15 Name of station 
hwy Text 5 Name of highway 
direction Text 1 Direction of traffic flow—N for north, S 

for south, E for east, W for west 
seq Number Integer Sequential order of station based on its 

location 
type Text 3 Type of station—ENT for entrance 

ramp, EXT for exit ramp, FWY for 
freeway 

 
4. Roadway—Contains roadway information for each station.  

Field Name Data Type Field Size Description 
station_id Text 3 Unique station identification number 
roadway_type Number Integer Type of roadway—1 for curved/ramp 

influence or 0 for straight/no ramp 
influence 

 
5. Weather—Contains weather data read from a web-based weather forecaster.  

Field Name Data Type Field Size Description 
udate Text 15 Date of update 
utime Text 15 Time of update 
visibility Text 25 The distance (in miles) that a person 

would be able to clearly identify an 
object. 

skyconditions Text 50 A description of the sky conditions 
(e.g., “clear”, “cloudy”, “partly 
cloudy” etc.) 

sunrisetime Text 10 Time of sunrise 
sunsettime Text 10 Time of sunset 

 
6. IncidentLikelihoodForecast—Contains the forecasted output data from Incident Likelihood 

Forecaster (ILF).  
Field Name Data Type Field Size Description 
station_id Number Integer Unique station identification 

number 
incidentprobability Number Double Probability for an incident to occur 
collisionprobability Number Double Probability for a collision to occur 
HScore Number Double Hazard score 
ftime Date/Time  Time stamp of forecast 
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7. CumulativeFlowForecast—Contains the forecasted output data from Cumulative Flow 
Forecaster (CFF). 
Field Name Data Type Field Size Description 
station_id Text 3 Unique station identification number 
FipLos Text 4 Flow-in-process level of service for 1 minute 
DfLos Number 3 Delay-in-flow level of service for 1 minute 
FipLos5min Text 4 Flow-in-process level of service for 5 minutes 
DfLos5min Number 3 Delay-in-flow level of service for 5 minutes 
FipLos10min Text 4 Flow-in-process level of service for 10 minutes
DfLos10min Number 3 Delay-in-flow level of service for 10 minutes 
FipLos15min Text 4 Flow-in-process level of service for 15 minutes
DfLos15min Number 3 Delay-in-flow level of service for 15 minutes 
ftime Date/Time  Time stamp of forecast 

 
8. CrashPotentialForecast—Contains the forecasted output data from Crash Rate Forecaster 

(CPF).  
Field Name Data Type Field Size Description 
station_id Text 3 Unique station identification 

number 
crashpotential1min Number Double Crash rate for 1 minute 
crashpotential5min Number Double Crash rate for 5 minutes 
crashpotential10min Number Double Crash rate for 10 minutes 
crashpotential15min Number Double Crash rate for 15 minutes 
ftime Date/Time  Time stamp of forecast 

 
 
9. SpeedDensityForecast—Contains the forecasted output data from Speed Density Forecaster 

(SDF).  
Field Name Data Type Field Size Description 
station_id Text 3 Unique station identification number 
density1min Number Integer Density for 1 minute 
speed1min Number Double Speed for 1 minute 
density5min Number Integer Density for 5 minutes 
speed5min Number Double Speed for 5 minutes 
density10min Number Integer Density for 10 minutes 
speed10min Number Double Speed for 10 minutes 
density15min Number Integer Density for 15 minutes 
speed15min Number Double Speed for 15 minutes 
ftime Date/Time  Time stamp of forecast 
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Figure 40 below shows the entity relationship diagram (ERD) of the tables described above. 
 

 
Figure 40.  Entity Relationship Diagram between the Internal Databases in the DCIPS. 
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APPENDIX B:  DEVELOPMENT OF INPUT-OUTPUT ANALYSIS OF 
CUMULATIVE FLOW MODEL  

 
This section presents a simple methodology for evaluating the operating states of a 

freeway using cumulative flow data from pairs of adjacent detectors along the freeway. The 

methodology is based on the works of Newell (1) and Cassidy and Windover (2). By examining 

the system from downstream to upstream, the proposed methodology provides a means of 

evaluating the operating states of the freeway system.  

BACKGROUND 

We first provide an overview of cumulative flow and the moving-time coordinates 

(MTC) system, which are the foundations of the proposed methodology described in the next 

section. Readers interested in further details are referred to Newell (1) and Cassidy and 

Windover (2). 

Cumulative Flow 

Cumulative flow is the measure of the total number of vehicles passing over a detector 

from some referenced time (i.e., since 8:00 a.m.). Define: 

A(x,t) = cumulative number of vehicles that have passed detector location x by time t, 

xu = an upstream detector location, 

xd = a downstream detector location, and 

y = freeway section of interest bounded by xu and xd. 

For any section y, we can construct an input-output diagram by drawing the cumulative 

flow curves, A(xu, t) and A(xd, t), with respect to time as shown in Figure 41. This input-output 

diagram is a very useful tool for analyzing the characteristics of freeway traffic flow in section y. 

More specifically, the vertical distance between the two curves at some time tj is the total number 

of vehicles in section y at that time. In this document, we define this quantity as flow-in-process 

of section y. Furthermore, the horizontal distance between the curves at height j represents the 

travel time of the jth vehicle from xu to xd. 
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Figure 41.  Input-Output Diagram. 

Moving-Time Coordinates System 

Even though the input-output diagram provides us with information on flow-in-process 

and travel time, additional information can be obtained by using an MTC system.  

Define moving time, t'(x,t), as follows: 

 
 t'(x,t) = t + v(xd -x) (B-1) 
 

where t is the actual data collection time (i.e., 8:00 a.m., 8:01 a.m., 8:02 a.m., etc.) at xu 

and v is the average free-flow travel time per unit distance (i.e., per foot, per meter, etc.) from xu 

to xd. We can now define new cumulative flow curves as follows: 

 
 A'(xu,t') = A(xu, t'-v(xd-xu)) (B-2) 

and 

 A'(xd,t') = A(xd, t'). (B-3) 
 

This transformation is equivalent to shifting the upstream curve A(xu,t) (in Figure 41) to 

the right by an amount equal to the free-flow travel time from xu to xd. In this MTC system, a 

vehicle traveling at v takes zero time to travel from xu to xd in the absence of delay inside section 

y. Figure 42 illustrates the cumulative curves of Figure 41 in an MTC system. As shown in 
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Figure 42, the vertical distance between the two curves at any time tj represents current delay to 

vehicles in section y. In this study, we refer to this quantity as delayed-flow.  
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Figure 42.  Input-Output Diagram Using Moving-Time Coordinates System. 

PROPOSED METHODOLOGY 

Characteristics of Flow-in-Process and Delayed-Flow 

In this section, we discuss characteristics of flow-in-process and delayed-flow under 

different traffic conditions on a freeway section. 

First, consider a perfect case where: 

1. the vehicles arrive uniformly at xu, 

2. the vehicles’ arrival rate at xu is constant, and  

3. the vehicles travel from xu to xd at the average free-flow speed.  

In this case, the two cumulative curves will be parallel (Figure 43a), and the upstream 

cumulative curve will superimpose the downstream cumulative curve in the MTC system  

(Figure 43b). As a result, flow-in-process will be constant, and delayed-flow will be zero.  



 

 58

 

 
Figure 43.  Constant Vehicle Flow. 

 

Suppose there is an increase in traffic flow at time t while the travel time is not affected. 

In this case, there will be more vehicles traveling in the section starting at time t. As a result, 

there will be a jump in flow-in-process while delayed-flow will remain zero (Figure 44). 

Similarly, if traffic flow decreases at time t without affecting travel time, there will be a decrease 

in flow-in-process while delayed-flow will remain unchanged (Figure 45). 

 
Figure 44.  Increased Vehicle Flow. 
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Figure 45.  Decreased Vehicle Flow. 
 

Now, suppose that an incident occurs in the section at time t1' resulting in increased travel 

time between the two detector locations. In the MTC system, this situation will cause the 

cumulative flow from xd to be lower than that from xu, resulting in a positive delayed-flow. When 

the incident clears at some time t2 ' > t1 ', the number of vehicles leaving the downstream detector 

location will increase, resulting in a decrease in flow-in-process and delayed-flow. Examples of 

the input-output diagrams and the corresponding flow-in-process and delayed-flow for the case 

described above are illustrated in Figure 46.  

If the shockwave resulting from the incident reaches xu, the operation of the adjacent 

upstream freeway will be compromised. This spillback of congestion into the upstream freeway 

section can be identified by doing a similar analysis for that section. 

 
Figure 46.  Incident at Freeway Section without Spillback. 
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at t1', and the shockwave spills back to the upstream section yu at t1. The figure also shows that 

the incident clears (that is, flow-in-process at section yd starts to decrease) at t2', while the effects 

of the incident in the upstream section start to subside at t2 > t2'. 

Input-output diagrams of section yu (Figure 47b) are similar to those in Figure 46, 

indicating the effect of the incident does not reach the section further upstream. Should the 

shockwave reach the upstream section of yu, Figure 47b will be similar to Figure 47a. 
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(a)Input-output diagrams for section yd.

(b) Input-output diagrams for upstream section yu.
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(a)Input-output diagrams for section yd.

(b) Input-output diagrams for upstream section yu.  
Figure 47.  Incident at Freeway Section with Spillback. 

Methodology 

Based on the analysis, we proposed evaluating the current operating states of the freeway 

system by monitoring the flow-in-process and delayed-flow of each adjacent pair of detectors 

along the freeway starting from the farthest downstream section yn and then back to the farthest 

upstream freeway section y1 (Figure 48).  
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Figure 48.  Freeway Detector System. 

 
As discussed previously, the flow-in-process and delayed-flow can identify whenever 

there is a volume change on any freeway section. Therefore, these indicators can identify the 

start and end of peak-flow periods as well as incidents. In addition, analysis of areas under the 

elevated sections of a delayed-flow curve may quantify the amount of delay at each freeway 

section. However, this issue needs further investigation. For instance, if an incident occurs at 

freeway section yi, monitoring delayed-flow for that section will identify the incident. Also, 

delayed-flow of upstream section yi-1 will identify when the shockwave from section yi arrives at 

section yi-1. Furthermore, the effects of the shockwave reaching farther upstream (i.e., 

section yi-2) can be identified using data from that section. For this reason, our proposed 

methodology evaluates the system from the farthest downstream freeway section to the farthest 

upstream freeway section.  

There are three primary advantages of this proposed methodology: 

• It is scalable and can be applied to freeways with different sizes. 

• Using the principle of flow conservation, it can be applied to freeway sections with 

different configurations (Figure 49).  

• It depends on a limited amount of information, i.e., volume counts and free-flow 

speed. 
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Figure 49.  Different Freeway Section Configurations. 

 

ILLUSTRATION USING SIMULATION 

In this section, we illustrate the proposed methodology by applying it to count data 

obtained from computer simulation using VISSIM 4.00 (3). The simulated system is a three-lane 

freeway with four basic freeway sections in the study area (Figure 50). In addition, the freeway 

speed was uniformly distributed in the range of 55 to 75 vehicles per hour.  

The simulation was divided into three time periods. Table 3 provides the durations and 

arrival rates for these periods. The arrival rate increases significantly after the first 15 minutes of 

simulation. The period of high demand lasts for 30 minutes, at which point the arrival rate drops 

to the initial rate. For the study described here, we conducted one 1-hour simulation without any 

incident and one 1-hour simulation with a single 10-minute incident, which started 1800 seconds 

into the simulation and blocked the middle lane only. As illustrated in Figure 50, the incident 

occurred at section y3 immediately downstream of detector station x3. 
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Figure 50.  Sample Freeway System. 

 

Figure 51 shows the flow-in-process and delayed-flow plots for the no-incident scenario. 

Here, the curves of flow-in-process and delayed-flow with respect to time are not piecewise 

linear as in the previous section. This is because vehicle arrivals are random as opposed to the 

uniform arrivals assumed for previous illustrations.  Furthermore, individual vehicles travel at 

different speeds and not the average free-flow speed as assumed earlier.  These characteristics 

are similar to that observed in the real world.  Nevertheless, the curves of flow-in-process and 

delayed-flow can be approximated by piecewise linear curves to produce curves similar to those 

presented in the previous section. 

In Figure 51 the flow-in-process for each section increased sharply some time after 

900 seconds of simulation and decreased sharply some time after 2700 seconds of simulation 

time.  In general, this result agrees with the arrival (demand) data presented in Table 3.  The 

elevated portion of the flow-in-process curves does not start at 900 seconds but is slightly shifted 

to the right. This shift is equal to the travel time from the vehicle entry point into the system to 
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the detector locations and shows when the increased traffic started impacting each section.  Also 

note that the flow-in-process of sections y3 and y4 is larger than that of sections y1 and y2 during 

the period with increased traffic flow.  In general, longer sections have larger flow-in-process, 

which is defined as vehicles traveling in the section at a particular time.  Since section y3 and y4 

are longer than sections y1 and y2, it is expected that the flow-in-process of sections y3 and y4 is 

larger than that of sections y1 and y2.  Despite a significant increase in demand, however, 

delayed-flow remains approximately the same at all freeway sections during the entire simulation 

period.  This is because no disruptions occurred on any section.  

 

Table 3.  Arrival Rate Distribution. 
 
 
 
 
 

 

Figure 52 presents the flow-in-process and delayed-flow plots for the scenario with 

incident. The behaviors of flow-in-process and delayed-flow plots for each section are similar to 

those in Figure 51 until 1800 seconds. In other words, these plots detect an increase in traffic and 

no increase in delay. At around 1800 seconds, the delayed-flow of section y3 increases 

significantly, which indicates an incident. Later, the delayed-flow and flow-in-process of 

upstream sections y2 and y1 also increase, while the delayed-flow of section y3 does not drop. It 

serves as a signal that the shockwave created by the incident has reached the upstream sections.  

More detailed information can be obtained by magnifying (Figure 53) the scale of plots 

for sections y1, y2, and y3. Figure 53a shows how time lags in peaks of delayed-flow at adjacent 

sections identify the progression of the shockwave. Note that the delayed-flow of downstream 

section y4 is not affected, while the flow-in-process decreases during the incident. This happens 

because fewer vehicles enter section y4 during the incident. 
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Figure 51.  Scenario without Incident. 
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Figure 52.  Scenario with Incident. 
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Figure 53.  Delayed-Flow during Beginning and End of the Incident. 
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Similarly, Figure 53b shows time lags between the times at which congestion starts to clear 

at adjacent sections. Since the incident lasted for 600 seconds, one would expect the delayed-

flow for the section with the incident to quickly drop to the level prior to the incident. This is the 

case for section y3 at time 2400 seconds. The delayed-flow of section y1 and y2 does not drop to 

the expected levels until several minutes after the incident cleared. This is not a surprising result. 

FREEWAY OPERATION STATUS PREDICTION 

While the proposed methodology evaluates the current operating state of a freeway 

system, it serves the traffic control operator if a prediction mechanism is added to the 

methodology. As such, a simple moving average-based model is employed for predicting flow-

in-process and delayed-flow from 1 minute to 15 minutes in advance. 

Modified Moving-Average Model 

Define: 

m = number of moving-average periods, 

o(t) = observed value (flow-in-process or delayed-flow) at time t, and 

p(t, u) = predicted value (flow-in-process or delayed-flow) of time t+u at time t. 

Then,  
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As shown in Equation B-4, the m-period moving-average model is used for forecasting. 

For one-period forecast, the predicted value is simply the m-period average of the past m 

observed value. For two-period forecast, p(t,2), since the o(t+1) is not available at time t, the 

predicted value p(t,1) is used instead. As such, p(t,u) will be calculated using predicted values 

only if u>m. 

This model is tested using the results of the simulation illustrated in the previous section. 

Based on experiment results, the number of the moving average is chosen to be five periods 
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since it generally provides the smallest average mean absolute errors for both predicted flow-in-

process and delayed-flow.  

For example, the 5-minute forecasts against time at section y2 for the two scenarios (with 

and without incident) are shown in Figure 54 and Figure 55.  

When there is no incident, the modified moving-average model is acceptable since the 

flow-in-process and delayed-flow are stable as in Figure 55. However, if an incident happens at 

time t, there is no indicator from the observed data at time t-5. Therefore, the pattern of the 

predicted flow-in-process and delayed-flow has an obvious 5-minute lag from the actual 

observed data.  

 
Figure 54.  Five-Minute Forecasts at Section y2 for Scenario without Incident. 

 
 

 
Figure 55.  Five-Minute Forecasts at Section y2 for Scenario with Incident. 
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Ideas for Developing Better Prediction Model 

As shown in the previous subsection, the simple modified moving-average model is not 

effective in forecasting flow-in-process and delayed-flow when an incident happens. This result 

is partly because the forecast is based solely on the information of a single detector station and 

valuable information is ignored using this localized approach. For example, since the current 

traffic volume entering the farthest upstream freeway section y1 (Figure 48) and all the entrance 

ramps are known, the entering and exiting volume of each downstream section can be estimated 

by projecting flow with approximate travel time. Another example is that if the delayed-flow of 

section y3 increases significantly, it may be a signal of an incident. Therefore, the operations of 

the upstream section may be affected in a later time. As such, the forecast for flow-in-process 

and delayed-flow of the upstream section must take into consideration the possible shockwave.  

We believe that a better prediction model can be developed by taking a system-wide 

approach for projecting flow from the upstream to downstream freeway section and then 

adjusting the predicted flow-in-process and delayed-flow from the downstream to upstream 

section. 

INTERPRETATION OF INPUT-OUTPUT MODEL RESULTS 

As discussed in the previous section, flow-in-process and delayed-flow are useful in 

detecting the operation state of the freeway. However, one may still need to perform a simple 

analysis to obtain knowledge about the operation status of the freeway given the nominal data on 

flow-in-process and delayed-flow. To free the operator from doing further analysis given the 

performance measures, the level of service of flow-in-process and the ratio of delayed-flow and 

flow-in-process (delayed ratio) are derived and shown instead of the nominal data in the user 

interface. The advantages of using these alternate measures are that they are easy to understand 

and that they immediately paint the general picture of the operation status of the freeway system. 

Level of Services of Flow-in-Process 

Recall that flow-in-process is the number of vehicles traveling in a freeway section in a 

particular time. Therefore, it can be viewed as a proxy for density. As such, flow-in-process is 

translated into the number of passenger cars per mile per lane, and the level-of-service thresholds 
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proposed in Chapter 23 of the Highway Capacity Manual (4) are used for classifying the level of 

service of the flow-in-process. 

Level-of-service thresholds shown in Chapter 23 of the Highway Capacity Manual (4)are 

reproduced in Table 4. 

Table 4.  Level-of-Service Thresholds from the Highway Capacity Manual. 
Level of 
Service 

Density Range (Flow-in-Process Range) 
in Passenger Car per Mile per Lane 

A 0-11 
B >10-18 
C >18-26 
D >26-35 
E >35-45 
F >45 

 

The advantage of using level of service is that it is easy to understand. However, subtle 

information is lost due to the level-of-service classification. For example, when traffic volume is 

increasing, the freeway section may show the same level of service for a couple of minutes 

before showing an inferior level of service. As such, a delay in detecting the changes in volume 

may result. 

Delayed-Flow Ratio 

The main purpose of delayed-flow is as an indicator for identifying the level of 

congestion of a particular freeway section. Therefore, a good indicator for delayed-flow is the 

ratio of the number of passenger cars being delayed to the number of passenger cars traveling in 

that section. If this ratio is high, a high percentage of vehicles are delayed and the operator 

should be notified. This indicator can be approximated by:  

 

Delayed-Flow Ratio = 100 percent (Delayed-Flow/Flow-in-Process). 

 

If a freeway section has a good quality of service based on flow-in-process, the delayed-

flow will not provide extra information about the operation status of that freeway section. For 

example, there may be a couple of passenger cars traveling on a freeway at midnight. If these 

vehicles are traveling at a speed of 5 miles below the expected speed, the delayed-flow may be 
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large compared to the flow-in-process. To avoid this false alarm, the delayed ratio is only 

calculated and shown for a freeway section with levels of service E and F. 

Example 

 To explain the results of the input-output model, we presented a sample output as shown  

in Figure 56.  Here, the level of service of flow-in-process and the delayed-flow ratio are plotted 

in bar-chart formats with the station name printed underneath.  The stations are arranged in order 

from upstream to downstream of the freeway.  

In the bar chart, the performance measures correspond to the immediate downstream 

section of the corresponding station. For example, the level of service shown under the station 

name RM2222 refers to the level of service of the section between RM2222 and Hancock. 

 

 
Figure 56.  Sample Output of the Input-Output Model. 

 
Figure 57 shows a sample output when a major incident occurs downstream of 35th Street 

where all lanes are blocked for 5 minutes. In this case, the section level of service is F, and the 

delayed ratio is calculated and shown. Since all the lanes are blocked, no vehicle can enter the 

downstream section; thus, the delayed ratio is 1. In this case, we expect that the operation of the 
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upstream section will be affected soon.  This shockwave effect is demonstrated in Figure 58, 

which is obtained 3 minutes after the incident. 

 

 
Figure 57.  Major Incident Downstream of 35th Street. 

 
 

 
Figure 58.  Freeway Operation 3 Minutes after Major Incident. 
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APPENDIX C:  DEVELOPMENT OF INCIDENT PREDICTION MODEL 
 

Reliable prediction, fast detection, and timely response are the keys to a successful 

freeway incident management system. This study was initiated as a part of a project sponsored 

by TxDOT to develop a prototype tool that TxDOT can integrate and implement with their 

current Advanced Transportation Management System software for use in their freeway 

management centers. This prototype tool will allow TxDOT operators to better detect when and 

where conditions on the freeway are likely to produce an incident or congestion is likely to 

occur. By having a better idea about when and where these conditions are likely to occur, 

TxDOT operators can take proactive steps to reduce demand and better manage freeways. 

The objectives of this study are twofold: 

• Develop a method to predict the likelihood of incident occurrence on freeways based 

on real-time loop detector, weather, and environmental data. 

• Implement and test the developed method through a prototype real-time incident 

prediction system. 

Past studies indicated that several traffic measures are potential precursors of freeway 

accidents (1, 2, 3). Further, a recent study by Songchitruksa and Balke (4) concluded that 

integrating weather and environmental data into traffic data could provide significant benefits for 

the performance of real-time incident prediction. Factors such as visibility and daylight 

conditions can enhance the incident prediction performance when compared to the models with 

only traffic data.  

Most past studies did not discuss if and how the models can be implemented in a real-

time environment. In this study, we first discuss the development of a real-time incident 

prediction model. Then, we focus our discussion on the design and development of a prototype 

real-time incident prediction tool that can be integrated with TxDOT ATMS. We set up a 

simulation test bed using VISSIM to generate the same real-time detector data as those obtained 

from the System Control Unit. This test bed was designed to test the real-time interaction 

capability of the prediction module with incoming traffic and weather data streams while 

avoiding the need to actually deploy the system in the field. This setup allowed us to correct any 

problems that may arise unexpectedly and fine-tune the system to meet the user’s need. 
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MODEL DEVELOPMENT 

We developed an integrated framework utilizing the weather conditions, environment, 

and loop data to enhance the ability to predict freeway incident occurrences. We explored several 

modeling approaches for RIPS. First, we calibrated the multinomial logit model considering 

three outcomes—no incident, congestion, and collision. Then, separate data sources were used to 

calibrate the multinomial logit (MNL) models in the following order: weather/environment, loop, 

and both loop and weather/environment. The estimation results revealed that the performance of 

the MNL models was unsatisfactory because: 1) the estimated parameters are unstable and not 

robust to different subsets of explanatory variables and 2) the parameter estimates cannot be 

easily interpreted because they were confounded by the bi-level nest structure. 

To address this issue, we recalibrated the model using sequential binary logit model 

estimation. The estimation results become consistently stable and amenable for logical 

interpretation. We proposed a method to compute incident occurrence potential or hazard score 

based on the predicted likelihoods. Specification of critical hazard score requires the use of the 

prediction performance curve. The procedure to establish the prediction performance curve is 

provided in this study. Using this curve, the critical threshold for hazard score can be specified 

for any given desirable detection and false alarm rates. 

In this section, we described the data used in this study. Then, the model development 

and selection process as well as the result interpretation are explained. The procedure to compute 

hazard score and specify critical threshold is discussed subsequently.  

Data 

In this study, we selected the freeway sections on Loop 1 and US 183 in Austin, Texas, 

for our analysis. These sections have area-wide installation of loop detectors. We obtained the 

weather data from the Camp Mabry weather station, which is the nearest weather station in the 

vicinity of the studied freeway sections. There are three sources of data that we used to develop 

incident prediction models in this study: 1) weather and environmental data, 2) loop detector 

data, and 3) incident data. 
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Weather and Environmental Data 

Weather information was obtained from climatological data provided by the National 

Climatic Data Center (NCDC) and can be accessed online. Weather records are usually archived 

on an hourly basis. The data are archived at more frequent intervals (every 10 to 20 minutes) 

during special weather events such as heavy fog and thunderstorms.  

Each weather record can contain both qualitative and quantitative fields. Some fields are 

ordinal-qualitative. For example, a weather type “TS” would represent moderate thunderstorm 

while “TS+” and “TS-“ indicate heavy and light thunderstorm, respectively. In addition, there 

can be a combination of weather types. For instance, if a light thunderstorm and a haze are 

occurring at the same time, the weather type record is “TS- HZ.” In order to perform the 

analysis, these text formats must be recoded as indicator variables, and a combination of weather 

types must be split into a set of single indicator variables. Weather data were recoded and stored 

in comma-delimited files. The data in these files are summarized in Table 5. 

 

Table 5.  Detailed Records of Processed Weather Data. 
Acronym Description Acronym Description
sta Station: AUST, CAMP, GEOR valGust Gust value
mo Month staPr Station pressure
yr Year prTend Pressure tendency
day Day seaLvlPr Sea level pressure
rtime Recorded time repType Report type
staType Station type precipTt Precipitation total
maint Maintenance indicator vis Visibility (numeric)
skyCond Sky condition skyCLR Clear sky indicator
visibil Visibility skyFEW Few clouds indicator
wthrType Weather types skySCT Scattered clouds indicator
dryBulbF Dry bulb temperature (F) skyBKN Broken clouds indicator
dryBulbC Dry bulb temperature (C) skyOVC Overcast indicator
wetBulbF Wet bulb temperature (F) wDZ Drizzle indicator
wetBulbC Wet bulb temperature (C) wRA Rain indicator
dewPtF Dew point (F) wTS Thunderstorm indicator
dewPtC Dew point (C) wFG Fog indicator
relHumid Relative humidity wFZ Freeze indicator
windSpd Wind speed (mph) wSQ Squall indicator
windDir Wind direction wHZ Haze indicator
windGust Wind gust indicator wSN Snow indicator  

Incident Data 

The incident logs were imported from the Excel® format and then manually reviewed and 

edited for errors in the records. Incident logs were recoded and stored in the same format as 
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weather records. A summary of records contained in the incident logs is shown in Table 6. One 

caveat about incident records is that the reported date and time at the beginning and at the end of 

an incident may be inaccurate due to a possibility of delay in the reporting process. In addition, a 

number of minor freeway incidents may have never been reported. However, this lagged time is 

associated with the type of incident. For instance, the mean time to reporting of fatal or injury 

accidents is more likely to be shorter than property damage only (PDO) accidents.  

 

Table 6.  Detailed Records of Processed Incident Data. 
Acronym Description Acronym Description
inIndex Incident index logEvent Logged date and time
inNumber Incident number clEvent Cleared date and time
dir Direction comment Additional comments
roadway Roadway affected Affected structure (freeway/ramps/frontage/interchange)
crossSt Cross street singleLn Affected lanes (specific)
detector Detector description logDate Logged date
entrRamp Entrance ramp logTime Logged time
exitRamp Exit ramp lane1 Affected lane 1 indicator
befAfter Before/After/At lane2 Affected lane 2 indicator
block Block number lane3 Affected lane 3 indicator
intype Incident type lane4 Affected lane 4 indicator
notified Notifier leftSh Affected left shoulder indicator

rightSh Affected right shoulder indicator

Loop Detector Data 

Each record of loop data contains a time stamp and a series of detector ID, volume, 

occupancy, speed, and percent truck. Loop data are currently archived on an hourly basis. Hourly 

data were combined into a single file for each day. Each record of loop data is referenced by a 

time stamp and detector ID. File names were created using the following format: “NAME 

YYYYMMDD.txt.” The “NAME” represents a roadway name, which is LP0001 or US0183. For 

example, the loop data from all detectors along US 183 on June 14, 2003, were stored in the file 

name “US0183 20030614.txt.” 

The inventory of loop detectors in Austin contains the information about each detector 

including detector ID (detID), station ID (staID), roadway (rdway), direction (dir), lane number 

(lane), type (freeway or ramp), and detector description (detdesc). 
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Computed Traffic Measures   

There is a large catalog of measures that can be computed from a stream of 1-minute 

observations of loop detectors. In this study, average volume, average speed, average occupancy, 

and CVS were evaluated in the model development. The computation procedure requires a 

specification of window size for moving averages. First, the calculation is carried out for each 

individual lane detector. Then, station averaging is applied to a set of detectors that belong to the 

same station.  

For each individual lane detector, the average volume, average speed, average 

occupancy, and in-lane variation of speed were computed. Moving-average window size can be 

specified in the calculation. In this analysis, 3-, 5-, and 8-minute moving averages were tested. 

The average volume per minute is calculated as 
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where 

 iq  = 1-minute volume count of ith interval and  

N  = number of 1-minute intervals in a specified averaging window. 

The average occupancy is calculated as 

 1

N

i
i

o
o

N
==
∑

 (C-2) 

where 

io  = 1-minute average percent occupancy.  

Also, occupancy is a proportional indicator of density. 

The weighted average speed is calculated as 
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where 

 iv  = 1-minute weighted average speed of ith interval. 
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The weighted average speed has an advantage over the arithmetic mean in that zero-count 

intervals are not used in a calculation, which avoids underestimation of mean values. The 

weighted average speed better describes the true fluctuation of vehicles’ speed over time, 

particularly during nighttime when there is a preponderance of zero-count intervals. 

CVS is a measure of the amount of fluctuation in traveling speeds. Past studies indicate 

that a breakdown in traffic flow will significantly increase the CVS and thus the likelihood of 

accidents (1,2,4). 

Because a speed observation can be zero when there is no vehicle, the computation of 

CVS can be done in many variations. To illustrate, assume that we are considering CVS over a 

5-minute interval. The first case is to compute the CVS using the 1-minute average speeds over 

5-minute intervals while each interval is weighted equally. In this manner, zero-count intervals, 

which are typically the case at night, will increase the value of CVS. In other words, CVS may 

be large because zero-count intervals can cause abrupt changes in speed values. The second case 

is to compute the CVS as in the first case, but each interval is weighted by the volume counts. 

Mathematically, this can be expressed as 
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The CVS values are generally sensitive to differences in speeds in low-volume 

conditions. The CVS calculation using Equation C-4 can be modified such that the moving 

weighted average speeds are used instead of 1-minute average speed. As a result, CVS can be 

computed as 
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vCVS  = the fluctuation of moving-average speeds over N  intervals.  
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Equation C-5 was used for the CVS computation in this analysis to mitigate the effect of 

changes in speed values in low-volume conditions. The CVS parameter also helps decrease the 

false alarm rate. Other measures such as standard deviations of volume and occupancy were not 

analyzed since an earlier study  of these indicators did not find results encouraging (5).  

Data from a group of lane detectors at the same location are referred to as “station data.” 

The computed lane measures are averaged across lanes to obtain station average measures. Four 

measures are computed as in the case of lane data. For each 1-minute interval, missing or invalid 

measures in each lane detector can either be omitted or specially treated. In this study, we treat 

any intervals that have invalid computed lane measures as invalid intervals.  

The station average volume is defined by 
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where 

l  = the number of lanes at the station. 

The station average occupancy, the station average speed, and the station average CVS 

are defined by Equations C-7, C-8, and C-9, respectively. 
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The station average measures were computed for every minute of valid lane detector data. 

These data are further matched with both incident-affected and incident-free conditions to 

produce a data set for model development. 
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Data Integration   

Incident logs were merged with weather records using incident logged date and time and 

weather record reported time. Only incident logs with weather records within 60 minutes of 

incident logged time were considered in the analysis. The merged data file “iwlimdep04.txt” 

consists of incident logs matched with weather records on IH 35, US 183, and Loop 1 from year 

2002 to 2004. The fields in the data file are inIndex, dir, inType, lane1, lane2, lane3, lane4, 

leftSh, rightSh, mo, yr, day, logTime, rtime, daytime, twi, dryBulbF, wetBulbF, precipTt, vis, 

skyCLR, skyFEW, skySCT, skyBKN, skyOVC, wDZ, wRA, wTS, wFG, wFZ, wSQ, wHZ, 

wSN, and rdway. 

For modeling purposes, incident logs must be matched with corresponding loop detector 

data. Only collision incidents on US 183 and Loop 1 from 2003 to 2004 were considered in the 

previous analysis because loop installations are somewhat limited on other roadways.  

The files “i.staID.03.txt” and “i.staID.04.txt” contain matched incident logs and station 

IDs for all types of incidents that occurred on freeways in 2003 and 2004, respectively. Cross 

street, roadway, and direction descriptions in incident logs were used to manually identify 

detector stations in the vicinity of an incident. Station IDs can be located for 762 and 3662 

incidents in 2003 and 2004, respectively. Note that these figures represent all types of incidents 

where the congestion incidents represent a significant portion of all incidents in 2004 due to 

changes in occupancy thresholds. 

From the analysis of loop data, the file “mdat.txt” contains computed loop-related 

measures for collision incidents in 2003 and 2004 on US 183 and Loop 1 that can be paired with 

specific detector station IDs. Three moving-average windows and eight values of incident 

detection times were used to compute the loop-related measures for a total of 117 collision 

records.  The values of 3, 5, and 8 minutes were used for a moving-average window. Incident 

detection times were varied from 0 to 35 minutes at 5-minute intervals. Each record contains the 

following fields: incident detection time (min.bef), incident index (inIndex), moving-average 

window (interval), time stamp of detector data (tstamp), mean volume (vol.mean), mean 

occupancy (occ.mean), mean speed (spd.mean), and mean CVS (cvs.mean). 

The sample for model calibration must consist of incident-affected and incident-free data. 

For incident-affected data, each record contains incident logs, weather records, loop data, and 

environment data. Incident-free data represent traffic conditions free from incident impacts. First, 
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incident logs were paired with 5-minute moving-average measures computed from loop data at 

15 minutes before reported incident occurrence times. Congestion, collision, and stall incidents 

in 2003 and 2004 from US 183 and Loop 1 were considered in the analysis, resulting in a total of 

4187 incidents. After extracting loop data for each incident, the number of incidents valid for the 

analysis was reduced to 3822 incidents due to missing or erroneous loop data. When the data 

were further matched with weather records, the number of incidents valid for the analysis 

reduced to 3808. For incident-affected conditions, the file “inc.iwloop.txt” contains incident data 

matched with weather records and loop data for model calibration. 

Incident-free data were selected randomly using the following set of criteria: 

• Only data during weekdays between 6 a.m. and 12 a.m. (midnight) from 2003 to 2004 

were considered due to limited monitoring outside TMC operating hours. 

• Only days without reported incidents were used in random sampling. 

• Five detector stations were randomly selected for each day. 

• Ten time stamps were randomly selected for each station ID for the computation of 

measures from loop data. 

A total of 2540 records of incident-free loop data were randomly sampled. Then, each 

record of computed loop data was matched with weather records at the Camp Mabry station. 

Only 20 records could not be matched with historical weather data, thus leaving 2520 records 

representative of incident-free data. 

The subsequent modeling analysis used a combination of 5-minute moving-average and 

15-minute duration before incident for calculation of traffic measures since it was found to be the 

most satisfactory specification for the incident prediction task (4).  

Preliminary Model Estimation 

First, three types of incidents were considered for model calibrations—collision, 

congestion, and stall. Nested and non-nested MNL models were used to assess and identify key 

determinants of incident types. Preliminary results indicated that stall incidents are difficult to 

predict due to their irregular pattern of occurrence. Stall incidents often involve mechanical 

breakdowns of vehicles and are fairly random. Factors such as seasonality and ambient 

temperature were tested during the model development; however, none of the factors were found 

to be significant enough to justify further consideration of stall incidents in the model calibration. 
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Therefore, stall incidents were excluded from further calibration attempts. Fortunately, stall 

incidents represent only a minute proportion of all incidents and take place mostly on freeway 

shoulders, thus causing only minimal disruption to mainline traffic flow.  

A comparison of incident records between 2003 and 2004 revealed a sudden increase in 

the number of congestion incidents on US 183. In order to avoid the bias in the sample, 

approximately 20 percent of congestion incidents in 2004 were randomly selected for the sample 

data set. 

There are a total of 3719 observations in the final data set, which can be broken down 

into 2520 non-incident records, 117 collision incidents, and 1082 congestion incidents. The nest 

structure as shown in Figure 59 was used for the calibration of nested MNL models. 

 

 
Figure 59.  Nest Structure for Nested MNL Models. 

 

Models were calibrated for three different scenarios: 1) both loop and weather data are 

available, 2) only loop data are available, and 3) only weather data are available. Model 

estimation results before probability adjustments for each corresponding scenario are shown in 

Table 7 through Table 9, respectively. The results indicated that selected explanatory variables 

are statistically significant regardless of the available data set. 

Estimation results were corrected for the biased sampling. In the data sampling 

procedure, we followed a so-called choice-based sampling, which is essentially the case where 

certain outcomes are intentionally oversampled in order to understand the decision-making 

process. As opposed to random sampling, the estimation results in this scenario must be properly 

corrected using the true proportion of each outcome in the population. 
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Table 7.  Estimated Nested MNL Model Using Loop and Weather Data. 
Variables Descriptions Estimated 

Coefficients t-ratio P-value

Attributes of utility functions of incident types of the in-lane incident branch
Estimated coefficients of the utility function of congestion incidents
JC Constant for the congestion incident alternative 3.418 7.253 0.000
JVOL Five-minute station average of traffic volume 

(veh/min/lane)
0.105 5.470 0.000

JOCC Five-minute station average of occupancy (%) 0.037 1.790 0.073
JDIR Direction indicator (1 if NB; 0 if SB) -0.808 -4.906 0.000
JPEAKHR Peak hour indicator (1 if during 7:30am to 9:00am or 

4:00pm to 6:00pm; 0 if otherwise)
-1.702 -5.903 0.000

JDAY Daytime indicator (1 if during the day; 0 if otherwise) -2.255 -5.167 0.000

Estimated coefficients of the utility function of collision incidents
CCVS Five-minute station average of variation in speeds 3.616 2.250 0.024
CTS Thunderstorm indicator (1 if thunderstorm is present; 

0 if otherwise)
1.185 2.396 0.017

Attributes of utility function of the branch choice
Estimated coefficients of the utility function of the in-lane incident branch
YC Constant for the in-lane incident branch -3.244 -6.240 0.000
YDAY Daytime indicator (1 if during the day; 0 if otherwise) 1.485 3.788 0.000

YOCC Five-minute station average of occupancy (%) 0.060 3.066 0.002
YCVS Five-minute station average of CVS (%) 11.135 6.556 0.000
YTS Thunderstorm indicator (1 if thunderstorm is present; 

0 if otherwise)
1.061 2.793 0.005

YLVIS Natural log of visibity in miles -0.466 -4.661 0.000
YWIND Wind speed (mph) -0.128 -7.625 0.000

Estimated inclusive value parameters
Φ(none) Estimated inclusive value parameter of the non-

incident branch
….. Fixed at 1.0 …..

Φ(in-lane) Estimated inclusive value parameter of the in-lane 
incident branch

0.781 5.868 0.000

Log likelihood at convergence -1635.104
Restricted log likelihood -2929.240
ρ2 statistic 0.442
Number of observations 3295
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Table 8.  Estimated Nested MNL Model Using Only Loop Detector Data. 
Variables Descriptions Estimated 

Coefficients t-ratio P-value

Attributes of utility functions of incident types of the in-lane incident branch
Estimated coefficients of the utility function of congestion incidents
JC Constant for the congestion incident alternative 3.723 7.754 0.000
JVOL Five-minute station average of traffic volume 

(veh/min/lane)
0.087 4.810 0.000

JOCC Five-minute station average of occupancy (%) 0.054 2.546 0.011
JDIR Direction indicator (1 if NB; 0 if SB) -0.761 -4.950 0.000
JPEAKHR Peak hour indicator (1 if during 7:30am to 9:00am or 

4:00pm to 6:00pm; 0 if otherwise)
-1.897 -6.070 0.000

JDAY Daytime indicator (1 if during the day; 0 if otherwise) -2.265 -5.173 0.000

Estimated coefficients of the utility function of collision incidents
CCVS Five-minute station average of variation in speeds 4.132 2.621 0.009

Attributes of utility function of the branch choice
Estimated coefficients of the utility function of the in-lane incident branch
YC Constant for the in-lane incident branch -5.044 -9.807 0.000
YDAY Daytime indicator (1 if during the day; 0 if otherwise) 1.563 3.591 0.000

YOCC Five-minute station average of occupancy (%) 0.056 2.594 0.009
YCVS Five-minute station average of CVS (%) 11.165 6.573 0.000

Estimated inclusive value parameters
Φ(none) Estimated inclusive value parameter of the non-

incident branch
….. Fixed at 1.0 …..

Φ(in-lane) Estimated inclusive value parameter of the in-lane 
incident branch

0.861 5.810 0.000

Log likelihood at convergence -1709.441
Restricted log likelihood -2959.738
ρ2 statistic 0.422
Number of observations 3335
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Table 9.  Estimated Nested MNL Model Using Only Weather Data. 
Variables Descriptions Estimated 

Coefficients t-ratio P-value

Attributes of utility functions of incident types of the in-lane incident branch
Estimated coefficients of the utility function of congestion incidents
JC Constant for the congestion incident alternative 3.861 9.544 0.000
JDIR Direction indicator (1 if NB; 0 if SB) -0.696 -5.285 0.000
JPEAKHR Peak hour indicator (1 if during 7:30am to 9:00am or 

4:00pm to 6:00pm; 0 if otherwise)
-1.062 -5.545 0.000

JDAY Daytime indicator (1 if during the day; 0 if otherwise) -0.710 -2.071 0.038

Estimated coefficients of the utility function of collision incidents
CTS Thunderstorm indicator (1 if thunderstorm is present; 

0 if otherwise)
0.951 2.107 0.035

Attributes of utility function of the branch choice
Estimated coefficients of the utility function of the in-lane incident branch
YC Constant for the in-lane incident branch -4.245 -4.893 0.000
YDAY Daytime indicator (1 if during the day; 0 if otherwise) 1.994 3.985 0.000

YTS Thunderstorm indicator (1 if thunderstorm is present; 
0 if otherwise)

0.862 2.373 0.018

YLVIS Natural log of visibity in miles -0.445 -5.679 0.000
YWIND Wind speed (mph) -0.132 -9.599 0.000

Estimated inclusive value parameters
Φ(none) Estimated inclusive value parameter of the non-

incident branch
….. Fixed at 1.0 …..

Φ(in-lane) Estimated inclusive value parameter of the in-lane 
incident branch

1.525 5.458 0.000

Log likelihood at convergence -2249.225
Restricted log likelihood -3378.399
ρ2 statistic 0.334
Number of observations 3719

 



 

 88

From Table 7, using both loop and weather data, the following factors were found to 

increase the likelihood of incident occurrence on freeways: 

• daytime, 

• increase in average occupancy, 

• increase in average CVS, 

• presence of thunderstorm, 

• degradation of visibility condition, and 

• decrease in wind speed. 

Given that an in-lane incident has occurred, the following factors were found to be 

significant determinants for differentiating a collision from congestion: 

• increase in average CVS, 

• presence of thunderstorm, 

• decrease in traffic flow, 

• decrease in occupancy, 

• northbound direction, 

• peak hours, and 

• daytime. 

The models were re-calibrated using separate loop and weather/environment data to 

evaluate if the coefficient estimates are robust. The estimation results are provided in Table 8 and 

Table 9. From both tables, while the overall model goodness-of-fit decreases, the signs of 

estimated coefficients and the statistical significance of explanatory variables are consistent with 

the previous case where both data sources were used for calibration. The implication here is that 

the combination of loop detector data and weather/environment data can provide an incident 

prediction model that is more robust than using one data source alone. 

There are disadvantages, however, to using MNL models for real-time incident 

prediction. First, the interpretation of the influence of coefficient estimates on the probabilities of 

the outcomes is complicated because it is confounded by the nest structure. For example, an 

increase in CVS can increase the likelihood of in-lane incident occurrence as well as the 

likelihood of collision given that an in-lane incident has occurred. According to the nest 

structure, the probabilities of the branch choice and the alternatives in the branch are both 

affected by the same variable. Therefore, the structure of MNL models requires the exact 



 

 89

calculation of the final probability to quantify the impact of changes in explanatory variables on 

the probabilities of the outcomes. Second, the estimation results of MNL models are relatively 

less robust to the choice of independent variables when compared to binary logit models. This 

characteristic of MNL models implies that the addition or removal of independent variables in 

the models may change the statistical significance of other existing variables. This model 

behavior is undesirable and can be avoided through the use of binary logit models as discussed in 

subsequent sections.  

Selected Incident Prediction Models 

The previous calibrations using MNL models showed that while the model choice is 

appropriate theoretically, the results and inherent disadvantages make them less desirable. To 

resolve this issue, we calibrated two binary logit models using both loop and 

weather/environment data with each model representing the same branch outcomes as in the 

previous MNL estimations. This approach is referred to as sequential binary logit estimation. 

Sequential Binary Logit Estimation 

Two binary logit models were estimated. The first model has two possible outcomes: an 

in-lane incident versus no incident. Given that an in-lane incident has occurred, the second 

prediction model also has two outcomes: collision versus congestion. Note that this sequential 

structure is similar to the MNL model except that this requires two separate model calibrations. 

The first model predicts the likelihood of having an in-lane incident within the next 

15 minutes in the vicinity of the detector station. The second model predicts the type of incident 

given that an incident has occurred, i.e., the likelihood of having a collision versus congestion. 

The binary logit estimation results of the first and second models are shown in Table 10 and 

Table 11, respectively. 

 

 



 

 90

Table 10.  Estimated Binary Logit Model for In-Lane Incident versus No Incident. 
Data set: Loop and weather data (US-183 and Loop 1 from 2003 to 2004)
Before constant adjustments

Variables Descriptions Estimated 
Coefficients t-ratio P-value

Attributes of utility functions of the in-lane incident alternative
ONE Constant for the in-lane incident alternative 2.796 2.433 0.0150
OCCMEAN Five-minute station average of occupancy (%) 0.114 4.187 0.0000
SPDMEAN Five-minute station average of weighted average 

mean speed
-0.034 -2.351 0.0187

CVSMEAN Five-minute station average of coefficient of 
variation in speed

9.244 1.834 0.0667

LOGVIS Natural log of visibity in miles -0.644 -3.432 0.0006
DAYTIME Daytime indicator (1 if during the day; 0 if 

otherwise)
0.924 2.886 0.0039

PEAKHR Peak hour indicator (1 if during 7:30am to 9:00am 
or 4:00pm to 6:00pm; 0 if otherwise)

-1.758 -5.551 0.0000

SUMMER Summer indicator (1 if summer; 0 if otherwise) 0.936 3.381 0.0007
DIR Direction indicator (1 if NB; 0 if SB) -0.751 -3.105 0.0019

Log likelihood at convergence -251.222
Restricted log likelihood -390.198
ρ2 statistic 0.356
Number of observations 563

 

To interpret the results in Table 10, an explanatory variable with a positive coefficient 

estimate implies that freeway conditions with a presence of such factors are more likely to 

produce an in-lane incident versus no incident and vice versa for negative coefficient estimates. 

The following factors were found to be significant precursors of in-lane incident occurrence:  

• increase in average occupancy, 

• decrease in average speed, 

• increase in average CVS, 

• decrease in visibility condition, 

• daytime, 

• non-peak periods, 

• summer season, and 

• southbound traveling direction. 
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The estimation results are quite intuitive. The results imply that incidents are more likely 

in congested traffic conditions and/or poor visibility conditions. In-lane incidents are also more 

likely to occur during daytime, summer, non-peak period, and southbound direction.  

The estimation results of the second binary logit model are presented in Table 11. This 

model predicts the type of incident given that an incident has occurred. Two possible outcomes 

were considered in this model: congestion versus collision. Oftentimes, the incident prediction 

model cannot differentiate whether the observed freeway conditions are more likely to produce a 

collision or normal congestion. This model aims to distinguish between these two types of events 

based on the available weather and traffic information. 

Positive coefficient estimates in Table 11 signify the increase in likelihood of having 

congestion rather than a collision and vice versa for negative coefficient estimates. The following 

conditions were found to be more likely to produce a collision: 

• decrease in average occupancy, 

• decrease in average speed, 

Table 11.  Estimated Binary Logit Model for Congestion versus Collision Incident. 
Data set: Loop and weather data (US-183 and Loop 1 from 2003 to 2004)
Before constant adjustments

Variables Descriptions Estimated 
Coefficients t-ratio P-value

Attributes of utility function of the congestion alternative
ONE Constant for the congestion alternative 1.593 1.692 0.0906
OCCMEAN Five-minute station average of occupancy (%) 0.142 4.713 0.0000
SPDMEAN Five-minute station average of weighted average 

mean speed
0.030 2.369 0.0179

LOGVIS Natural log of visibity in miles -0.805 -3.316 0.0009
DAYTIME Daytime indicator (1 if during the day; 0 if 

otherwise)
-1.887 -3.023 0.0025

PEAKHR Peak hour indicator (1 if during 7:30am to 9:00am 
or 4:00pm to 6:00pm; 0 if otherwise)

-2.540 -5.510 0.0000

SUMMER Summer indicator (1 if summer; 0 if otherwise) 1.704 3.887 0.0001
DIR Direction indicator (1 if NB; 0 if SB) -0.891 -2.057 0.0397
SKYCLR Clear sky indicator (1 if yes; 0 if otherwise) 1.454 3.866 0.0001

Log likelihood at convergence -107.890
Restricted log likelihood -179.593
ρ2 statistic 0.399
Number of observations 284
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• decrease in visibility condition, 

• peak periods, 

• non-summer seasons, 

• northbound traveling direction, and 

• sky conditions other than clear sky. 

From both models, it can be concluded that, in addition to traffic measures, visibility 

condition, sky condition, and seasonal indicator can be useful predictors of incident occurrence 

and incident type. 

Outcome Probability Adjustments 

Since the collision outcomes are overrepresented in the sample, an estimation correction 

must be made. To correct the constant estimates, each constant must have the following 

subtracted from it: 

 ln ,i

i

SF
PF

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (C-10) 

 
where 

SFi = the fraction of observations having outcome i in the sample and  

PFi = the fraction of observations having outcome i in the total population. 

To adjust the estimation results in Table 10, the number of incident-affected and incident-

free 15-minute intervals must be estimated. Based on historical incident data, there were  

87 incidents on average per station per year. A study by Drakopoulos reported that the average 

time from a crash occurrence until it was cleared was 52.2 minutes. Therefore, it was logical to 

assume that each crash occurrence affects the traffic conditions for three intervals on average. 

This gives PFincident = (87×3)/(52×5×19) = 0.05 and PFnon-incident = 0.95. Based on the sample 

used in the model calibration, the sample fractions can be calculated straightforwardly: SFincident 

= 278/563 = 0.494 and SFnon-incident = 1 – SFincident = 0.506. 

Similar adjustments apply to the results in Table 11. Let us consider all the incident 

records as population data. The data set used in the model calibrations was randomly sampled 

from this population. Therefore, the following adjustments can be estimated: SFcongestion = 

191/284, PFcongestion = 4000/4200, SFcollision = 93/284, and PFcollision = 200/4200. 
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Hazard Score   

The final models consist of two sequential binary logit models where the first one 

predicts the likelihood of an in-lane incident versus no incident and the second one predicts the 

likelihood of an incident being a collision versus congestion. Control center operators may find 

these two probabilities difficult to interpret in actual implementation since they can be 

overwhelmed by multiple sources of information simultaneously.  

Two predicted components shown in Table 10 and Table 11 after probability adjustments 

can be expressed as shown in Equations C-11 through C-18. 

The first predicted component can be estimated by computing two utility functions as 

follows: 

 
0.505 0.114( ) 0.034( ) 9.244( )

0.644 ( ) 0.924( ) 1.758( ) 0.936( )
0.751( )

incU OCCMEAN SPDMEAN CVSMEAN
Log VIS DAYTIME PEAKHR SUMMER

DIR

= + − +
− × + − +
−

(C-11) 

 0.630noneU =  (C-12) 

 
where 

Uinc and Unone= the utility functions of in-lane incident and no incident alternatives, 

respectively.  

The probabilities of having an in-lane incident and no incident can be calculated as: 

 Pr(In-Lane Incident)
inc

inc none

U

U U

e
e e

=
+

 (C-13) 

 Pr(No Incident) 1 Pr(In-Lane Incident)= −  (C-14) 

 
The second predicted component determines the likely incident type based on two utility 

functions: 

 

1.941 0.142( ) 0.030( ) 0.805 log( )

1.887( ) 2.540( ) 1.704( ) 0.891( )
1.454( )

congU OCCMEAN SPDMEAN VIS

DAYTIME PEAKHR SUMMER DIR
SKYCLR

= + + − ×

− − + −
+

 (C-15) 

 1.928collU = −  (C-16) 
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where 

Ucong and Ucoll = the utility functions of congestion and collision outcomes, respectively. 

The corresponding probabilities can be estimated as: 

 Pr(congestion | in-lane incident has occurred)
cong

cong coll

U

U U

e
e e

=
+

 (C-17) 

 Pr(collision|in-lane incident) 1 Pr(congestion | in-lane incident)= −  (C-18) 

 
To simplify the interpretation process, we considered three techniques to combine two 

predicted probabilities in an efficient and meaningful manner: 1) linear combination, 2) higher 

order function, and 3) Euclidean distance. 

A linear combination is essentially a linear function of predicted probabilities: 

 ( )Prt i
i

H iβ
∀

=∑  (C-19) 

where 

Ht = hazard score at time t and 

iβ  = a coefficient of predicted probability for outcome i. 

A higher order function or a nonlinear combination is similar to a linear combination 

except that the power of Pr(i) can be greater than 1. 

Euclidean distance is a normalized form of a quadratic function, which can be calculated 

as: 

 ( )
1/ 2

2Prt i
i

H iβ
∀

⎡ ⎤= ⎢ ⎥⎣ ⎦
∑  (C-20) 

where 
i

i
β

∀
∑ = 1. 

The Euclidean distance approach was selected in this study since it has the following 

desirable properties: 

• The scores are scaled and normalized from 0 to 1. 

• The score calculation is scalable if additional probability outcomes should be added. 
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• The higher score implies a more hazardous or incident-prone condition, and the lower 

score implies a less hazardous or incident-prone condition. 

• The normalized score can be visualized as a scaled distance from the origin in the  

n-dimension where n is the number of possible outcomes. The further distance 

implies a more critical condition. 

• All three techniques considered require appropriate assignment of weighting values or 

iβ .  

We utilized the normalized expected cost approach for this task. This approach views iβ  

as a normalized cost associated with each outcome i. The sequential binary estimation approach 

yields three possible outcomes with the following probabilities:  Pr(No Incident), 

Pr(Congestion), and Pr(Collision). The probability of no incident can be estimated from 

Equation C-14. The probabilities of congestion and collision outcomes can be determined as 

follows: 

 Pr(Congestion) = Pr(Congestion|In-lane Incident) Pr(In-lane Incident)⋅  (C-21) 

 Pr(Collision) = Pr(Collision|In-lane Incident) Pr(In-lane Incident)⋅  (C-22) 

 
Also, it should be noted that the summation of all outcome probabilities is equal to 1. 

Now, let us define ci as the associated cost of outcome i where i can be either congestion, 

collision, or nothing. Costs of a collision and congestion are the equivalent monetary amounts if 

they do occur or the equivalent monetary savings if they have been avoided through appropriate 

proactive strategies. In this case, it is obvious that cnothing = 0. Since the accurate valuation of 

ccongestion and ccollision is beyond the scope of this study, we assumed ccongestion = $50,000 and 

ccollision = $200,000 to illustrate how to translate the expected cost to the values for iβ .  

Since i
i
β

∀
∑ = 1, we can rescale the cost components to satisfy this property as follows: 

 i
i

i
i

c
c

β

∀

=
∑

 (C-23) 
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In this manner, iβ  can also be viewed as the normalized cost of an outcome i. Therefore, 

using the Euclidean approach, the hazard score at time t which combines all the predicted 

probabilities can be expressed as: 

 
1/ 22 2 20 Pr(No Incident) (0.2) Pr(Congestion) (0.8) Pr(Collision)t t t tH ⎡ ⎤= ⋅ + ⋅ + ⋅⎣ ⎦ (C-24) 

 
Denote that ( )0,1tH ∈ . The system implementation as described in subsequent sections 

utilizes Equation C-24 for the calculation of the hazard score. 

Threshold Selection Procedure 

We considered two procedures to specify the critical threshold for the hazard score: 1) 

percentile based and 2) performance based. 

In the percentile-based approach, thresholds are specified based on the percent of the time 

the score should be allowed to exceed the thresholds. There can be more than one threshold. For 

example, TMC managers can specify, based on historical data, two thresholds at 80th percentile 

and 90th percentile, respectively. The lower threshold may be designated as an alert condition, 

while the higher threshold would then require immediate attention by control center operators. 

To mitigate the number of false alarms as well as excessive hours of unnecessary 

monitoring, a simple filter control policy could be applied. One common filter policy is the 

persistence check. For example, the TMC can require the hazard score to exceed the specified 

thresholds for an extended period of time, say at least 2 minutes, before any follow-up actions 

would take place.  

A performance-based approach employs performance characteristics of prediction models 

to define the thresholds based on the tradeoff between two criteria: missing prediction rate and 

false alarm rate.  Hypothetical relationships of false alarm and missing prediction rates versus a 

range of thresholds are illustrated in Figure 60. 
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Figure 60.  Missing Prediction and False Alarm Rates versus Score Thresholds. 
 

The false alarm rate is defined as a ratio of the number of false predictions to the number 

of actual incidents. The missing prediction rate is defined as a ratio of the number of incidents 

that cannot be predicted in advance to the number of actual incidents. 

Based on Figure 60, TMC managers can specify the critical threshold with respect to 

their incident management objectives. For example, if the objective is to balance the false alarm 

and missing prediction rates (in other words, both rates are considered equally important), the 

critical threshold should be specified where these two curves intersect. If control centers are 

constrained by manpower resources for monitoring, the threshold could be moved further to the 

right to decrease the false alarm rates. On the other hand, if the objective is to place more 

importance upon the ability to predict incidents in advance, the threshold should be shifted 

toward the left.  

Although the performance-based approach would provide a well-established and 

defendable means to specify a critical threshold, it does require extensive data collection and 

observation in the field for threshold calibration. Therefore, the percentile-based approach was 

suggested for the specification of critical thresholds at the current stage of this system. 
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PROTOTYPE DEVELOPMENT 

First, data management is discussed. Then, system design and development including the 

real-time implementation of the models are explained. Design considerations for real-time 

system implementation learned from this study are provided. 

System Design and Development 

The system was developed in a Visual Basic environment to take advantage of its 

database capability. The design consists of a main module that controls and interacts with three 

submodules: weather/environmental, database, and computation. The system architecture is 

depicted in Figure 61. 

The weather/environmental module accesses the weather data via the Internet and 

extracts required inputs for the model. It also determines lighting conditions by using latitude 

and longitude to estimate sunrise and sunset times. The outputs from this module are directly 

passed onto the computational module. 

The database module provides connectivity to three data sources. In the field, the system 

will retrieve the traffic data from the ATMS software. However, in order to test the functionality 

of the system without interrupting the actual control center operation, we designed the system to 

have an option for retrieving simulated traffic data. We selected VISSIM as our software of 

choice in this study to generate freeway traffic data in a hardware-in-the-loop (HITL) manner. 

The HITL design and implementation are discussed in subsequent sections. This module also 

interacts with the database to collect intermediate outputs internally and to store final outputs 

into the central database.  

The computational module calculates loop-related traffic measures in real time. Both 

traffic and weather/environmental inputs are used to predict the probabilities of incidents 

following the models described above. The hazard score is also calculated using the Euclidean 

distance approach.  
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Figure 61.  Prototype System Architecture. 

 

The prototype was implemented in Visual Basic environment with ActiveX Data Object 

(ADO) capability. The main graphical user interface (GUI) is shown in Figure 62. This interface 

provides basic information about current weather information and the last time that the weather 

and predicted values were updated. It also shows predicted probabilities corresponding to the 

detector station ID selected by the users.  

From this main GUI, the users can turn on the graphical display (see Figure 63) of real-

time predicted likelihoods and hazard scores by checking the Display Live Forecast checkbox. 

The users can also view the real-time traffic measures (see Figure 64) derived from live loop 

detector data by clicking the Live Loop Data command button. 

The graphical display shown in Figure 63 consists of two graphs updated in real time. 

The top one displays the calculated hazard scores across all the detector stations at the most 

recent time. Control center operators can use this information to monitor area-wide freeway 

networks and quickly determine where the current traffic and weather conditions are likely to 

produce incidents. The bottom graph displays the profiles of predicted probabilities and hazard 

scores over the last 15 minutes at the selected detector station. The user can select the detector 

station of interest from the main GUI. Three predicted components are displayed in this graph:  

1) probability of an in-lane incident, 2) probability of an incident being a collision given that it 

has occurred, and 3) combined hazard score. 
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Figure 62.  RIPS—Main User Interface. 

 

The real-time computed traffic measures shown in Figure 64 allow the users to view the 

actual average flow, occupancy, speed, and coefficient of variation in speed at all the detector 

stations. Control center operators can use this real-time traffic data together with the forecast 

values to support their decisions concerning appropriate freeway management strategies. 

The system checks at a fixed interval if the traffic data have been updated. The system is 

designed to execute, update, and store the results only when there are new incoming data; 

otherwise, the system will stay in a rest mode until the next checking period. 

At the code level, the program was developed using a concept of classes to allow easy 

code maintenance and facilitate the integration process with different modules. 
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Figure 63.  RIPS—Predicted Likelihoods. 

 
 

 
Figure 64.  RIPS—Computed Traffic Measures. 
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Output Interpretation 

First, control center operators must define critical thresholds for hazard scores. A 

percentile-based threshold selection approach was used to define thresholds as discussed earlier. 

To illustrate this procedure, hazard scores were calculated using randomized historical traffic, 

weather, and environment data. To ensure appropriate representation of field conditions, 

5 percent of incident-affected and 95 percent of incident-free data were randomly sampled from 

historical observations. This proportion is consistent with the ratios used to adjust outcome 

probabilities. 

Utilizing the randomized historical data, two predicted probabilities were calculated 

using the calibrated binary logit models. The hazard scores were then calculated using 

Equation C-24. The 90th, 95th, and 99th percentiles of hazard scores were found to be 0.10, 0.16, 

and 0.28, respectively. If control center operators decided to specify the lower and upper 

thresholds of the hazard score to be 0.16 and 0.28, respectively, this would imply that the RIPS is 

likely to produce forecast values that may require the following to immediately assess the current 

conditions and possibly initiate appropriate freeway management strategies:  1) 5 percent of the 

time for control center operators to be alerted to potential incidents once the lower threshold is 

exceeded and 2) 1 percent of the time for control center operators once the upper threshold is 

exceeded. 

To reduce the rate of false alarms, a persistence check can be applied before an alert can 

be issued. For instance, the control center operators may require the lower and upper thresholds 

to be exceeded continuously for more than 3 and 2 minutes, respectively.  

The hazard score thresholds of 0.16 and 0.28 are recommended based on historical 

observations of Loop 1 and US 183 in Austin, Texas. These thresholds are considered 

preliminary and should be used only if there is no better information available. These thresholds 

are expected to be updated over time to reflect the current freeway conditions once the system 

has been deployed.  

Deployment Considerations 

Primary concerns related to deployment of the RIPS have been identified during the 

prototype development of RIPS, which are as follows:  

• data integrity, 
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• data management, and 

• communications (data flows). 

Preliminary evaluation of Austin loop detector data indicated two prevailing issues related to 

data integrity:  1) missing data and 2) erroneous data. 

Common causes of missing data are loop failure and malfunctioned data communication. 

Missing data can be detected by examining the archived loop data for a series of consecutive 

values of -1 or 0 for an extended period of time. In Austin, missing data were reported when the 

observed occupancy values exceeded the maximum threshold specified for the detector (e.g., 

25 percent). This partly explains why missing data frequently appear during the congested period 

of certain freeway segments in Austin.  

Erroneous data occur when observed data are different from actual values. There exist 

numerous patterns of erroneous data, and only some can be easily identified. Several scenarios of 

erroneous data are quite subtle and therefore difficult to detect programmatically. In addition, it 

is fairly complicated to enumerate all the check scenarios for erroneous data. Instances of 

erroneous data include: 

• invalid combinations of volume, occupancy, and speed values; 

• constrained speed observations; 

• undercounting and overcounting of traffic flows; and 

• repetitive data patterns. 

Invalid combinations of volume, occupancy, and speed values can be determined based 

upon general knowledge of traffic flow properties; for example, observed data can be flagged as 

erroneous if a positive speed value is reported while the occupancy is zero. Another scenario of 

erroneous data is constrained speed observations where the speed profile appears to be normal 

but the observed speed values are significantly below the anticipated segment speed. For 

instance, the detectors at Lazy Lane on US 183 observe average speeds below 35 mph 

throughout the entire day (see Figure 65). 
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Figure 65.  Speed Profiles of Detectors at Lazy Lane. 

 

Some erroneous data checks, such as detector undercounting and overcounting, require 

the examination of the vehicle conservation property at multiple successive detectors. Let us 

denote a flow-in-process as the difference between total in-flow and out-flow at two consecutive 

detector stations. One would expect to observe the flow-in-process to oscillate around zero over 

time if the detectors are functioning properly. However, this is not always the case as shown in 

Figure 66 where the flow-in-process between Lamar Boulevard and Guadalupe Street on US 183 

in Austin was drifting over time. 
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Figure 66.  Example of Drifting Flow-in-Process. 

 

Data management must be properly designed to handle growing flows of incoming data 

such as loop and weather data as well as system outputs. Issues to be addressed include how long 

the incoming data should be archived for quality control, how long the prediction outputs should 

be kept for measuring and fine-tuning system performance, and what database management 

system (DBMS) is cost-effective and well suited with the current ATMS architecture and future 

data requirements. 

Real-time data communications require the consideration of the following issues:  1) time 

synchronization, 2) time lag, and 3) processing speed. 

RIPS interacts with multiple data sources, and each has its own registered time stamps 

and archived intervals. In this case, there are three sources of time stamps—loop detector data, 

weather records, and environment data. Common time reference must be used to flag all the 

incoming data as well as prediction outputs.  

Time lag is defined as a delay period from the moment that the actual event has occurred 

to the moment that the system registers the event. The event could be any data sources such as 

vehicle speed or weather condition. 

Processing speed is inversely proportional to the size of the network handled by the 

RIPS. In order to keep the RIPS running in real time, additional computing resources must be 

sought as the number of detector stations grows. Dedicated computing resources for each 

freeway segment might be another viable solution to this problem as well. 
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The above issues have not been effectively addressed in the current implementation of 

this prototype.  
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APPENDIX D:  DEVELOPMENT OF CRASH POTENTIAL MODEL 
 

The purpose of this model is to correlate some traffic precursors with incident occurrence 

so that estimation of incidents for various traffic conditions is possible. The model is classified in 

statistical terms as a categorical log-linear model. A detailed description of the model 

components, its development, and real-time working procedure is given in this section. 

MODEL DESCRIPTION 

Selection of Crash Prediction Precursors 

A precursor is a variable that is derived from traffic stream data and whose variations can 

indicate or point to a desirable pattern in traffic flow behavior. Recent research in incident 

prediction has widely used the concept of precursors in models for predictions. Several 

researchers have worked with various precursors and tested the potential of those precursors for 

incident prediction.  

The first task in this research was to identify the appropriate incident precursor. A 

detailed review of the literature on incident prediction/precursors was carried out. In this review 

several traffic flow variables have been considered for their potential as incident precursors, such 

as density, speed, CVS, flow, volume headways, etc. Every study in this process was reviewed 

for the extent of predictability and was accordingly classified as positive (“+”) if the result 

showed satisfactory correlation between incident precursors and occurrence of incidents, 

negative (“-”) if no correlation was found, and zero (“0”) for undeterminable cases. It was found 

that a greater amount of research was done with CVS as a precursor than any other precursors. 

Some studies even distinguish between CVS along the lane and across the lanes. But most 

studies refer to CVS along the lanes.  

Traffic volume has traditionally been a precursor of interest to many researchers for 

statistically relating to crash frequency. This precursor has been statistically quite significant, and 

research using models with volume is capable of describing 60 percent of the incidents (1).  

However, the longer aggregation time involved in deducing traffic volumes has been a restriction 

of using volume as a precursor in real-time prediction systems. Volume has been predominantly 

useful in highway or intersection safety-oriented studies.  
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Hourly flow, which is a shorter time aggregation of volume, is another precursor that has 

been used by some researchers to predict accident rate. The results of models involving hourly 

flow have indicated a definitive correlation between hourly flow and accident rate; for example, 

in the work of Hiselius (2), an increasing rate of accidents with hourly flow is indicated. It has 

further been investigated by segregating vehicle types.  In the case of cars, there is a constant 

increase in accident rate with hourly flow, but in the case of trucks there is a decreasing rate with 

hourly flow. Another study (3) also affirms that hourly flow provides a better understanding of 

interactions like incidents. However, there has not been elaborate work on hourly flow as a 

precursor and a convenient prediction model for real-time applications.  

Time headway has been tried as a causal precursor, and it has been shown that shorter 

headways have been reasons for collisions (4). But again, there has been no convincingly 

explanatory model for use of this precursor in real-time incident prediction systems.  

A precursor that has been widely used and found to be sensitive in accident prediction is 

the coefficient of speed variation along the lane (5-9). Most of the models using CVS as a 

precursor have a very satisfactory correlation with accidents. Abdel-Aty et al. (8) have 

documented that their model’s crash prediction level was around 62 percent, and similarly 

convincing results have been reported in most of the other models. In all the studies involving 

CVS, the provision to aggregate the precursor values over an optimally small time period has 

been an advantage in sensing and predicting the variation of traffic behavior. However, a study 

(9) has taken a totally opposite stand with regard to the ability of CVS to serve as an incident 

precursor.  Several reasons can be attributed to such a difference in conclusions, such as method 

of obtaining speed data, aggregation interval, and statistical methodology. But in comparison to 

other precursors, CVS is the most likely choice of precursor for further investigation for use in 

real-time prediction models.  

Traffic density is another parameter that has a good correlation in explaining incidents; 

traffic density is usually used in conjunction with CVS (7, 8). After a careful review, density and 

CVS along the lanes have been chosen as the potential candidates for further investigation and 

use in the model for this project. A table summarizing the review of candidate incident precursor 

is given in Table 12. 
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Table 12.  Review of Precursors Used for Incident Prediction. 

Precursors 

Number of 
Studies 

Reviewed 
Positive 
Results 

Negative 
Results 

Neutral/Weak 
Results 

Speed variation along the 
lane 8 6 2 - 
Speed variation across the 
lanes 1 - - 1 
Occupancy or density 2 2 - - 
Volume 2 2 - - 
Hourly flow 2 2 - - 
Headway 1 1 - - 

 
 

Hence, for this module, CVS and density will be used as the primary precursors. Apart 

from these two primary precursors, two indicators, namely peak-hour indicator and roadway type 

indicator, will be used. These precursors will be defined according to Lee et al. (6). 

Defining the Precursors 

One-minute aggregated data that were archived by TxDOT were used in deriving the 

precursors for this module. With the speed data available from the detectors for every minute, a 

moving-average coefficient of variation of speed was calculated as given by Equation D-1. The 

CVS was calculated over a 5-minute period, starting from the time interval against which the 

precursors are reported and including the preceding four intervals. 
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where 

Si = speed in miles per hour at time t and  

n  = number of time intervals. 
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Average occupancy, which is another precursor, is simply calculated as a moving average 

of the 1-minute occupancy available in the data set. The average occupancy was calculated over 

a 5-minute period consistent with the CVS aggregation interval. 

The precursors obtained were tagged with either “peak” or “non-peak” for time-of-day 

indication. Precursors occurring anytime between 6:30 a.m. to 9:30 a.m. and 4:00 p.m. to 

7:00 p.m. were considered peak, and precursors obtained at other times were considered non-

peak. The roadway-type factor does not vary with each and every recording of data but is fixed 

for every detector location. The roadway type was classified as “straight” or “other” for each 

detector considered in this study. This classification was based on the horizontal alignment of the 

roadway section and the presence of ramps near the detector station. A detector station on a 

straight alignment and far from the influence area of the ramps is tagged as “straight”; otherwise, 

it is tagged as “other.” 

Model Formulation 

A categorical log-linear model was chosen to predict the likelihood of crash rate using the 

selected precursors. As indicated earlier, the proposed model very closely follows that suggested 

by Lee et al. (7), except that one of the additional precursors used by Lee et al. (7)—the speed 

difference between the two adjacent detectors along a lane (i.e., lateral CVS)—has not been 

considered in this model. The model correlates the expected number of crashes on any section of 

a freeway to the combined effect of the categorical precursors that prevail 5 minutes before the 

time of prediction. The functional form of the model is in Equation D-2. 

 
 N/ EXPβ = f (C * λCVS(i) * λOcc(j) * λR(k) * λP(l)) (D-2) 
 

where 

N = the expected number of crashes over the analysis time frame, 

EXP = the exposure in vehicle-kilometers of travel, 

C = constant, 

λCVS(i) = effect of the crash precursor variable CVS having i levels, 

λOcc(j) = effect of the crash precursor variable Occ having j levels, 

λR(k) = effect of road geometry (control factor) having k levels, 
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λP(l) = effect of time of day (control factor) having l levels, and 

β = coefficient for exposure. 

MODEL CALIBRATION  

Lee et al. (7) found that a proportion of 50:30:20—low, medium, and high values of 

precursors, respectively—gave the best fit for the categorical model that was developed in their 

study. For each of the precursors, CVS, and occupancy, the boundary values for the lowest 

50 percent of the precursor values and next 30 percent of the precursor values will be determined 

from the processed detector data. The boundary values used to determine the categories are given 

in Table 13. 

 

Table 13.  Boundary Values for the Precursors. 
Category CVS Occ (%) 

 
L (50) or 1 <= 0.043 <= 3.6 
M (30) or 2 > 0.043 & <= 0.227 > 3.6 & <= 5.8 
H (20) or 3 > 0.227 > 5.8 

 
 

This model is designed so that CVS has categories 1, 2, and 3, wherein 1 represents the 

low range of speed variation and 3 represents the high range of speed variation. Similarly, 

occupancy has three categories from 1 to 3, wherein 1 represents the low value of occupancy and 

3 represents the high value of occupancy. Roadway type and peak-hour factor have two 

categories each, as explained previously. Therefore, all 36 different categories are defined by 

taking a combination of different levels of precursors. For all 36 categories, the number of 

incidents in the study section during the 2-year study period was extracted from the incident logs, 

which form the input for the model calibration. The model was calibrated using the maximum 

likelihood methodology (10). The results of the calibration are given in Table 14. 
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Table 14.  Results of Parameter Estimation for Crash Potential Model. 
95% Confidence 

Interval 
Parameter 
  

Estimate 
  

Std. 
Error 
  

Z 
  

Sig. 
  

Lower 
Bound 

Upper 
Bound 

C 2.693 0.832 3.237 0.001 1.062 4.324

λCVS = 1 -1.395 0.566 -2.466 0.014 -2.504 -0.286

λCVS = 2 -0.373 0.357 -1.045 0.296 -1.071 0.326

λCVS = 3 0(a) . . . . .

λOcc = 1 -2.059 0.299 -6.884 0.000 -2.646 -1.473

λOcc = 2 -1.632 0.361 -4.522 0.000 -2.339 -0.924

λOcc = 3 0(a) . . . . .

λP = 0 -0.615 0.301 -2.047 0.041 -1.205 -0.026

λP = 1 0(a) . . . . .

λR = 0 -0.462 0.173 -2.670 0.008 -0.801 -0.123

λR = 1 0(a) . . . . .

β 0.043 0.099 0.437 0.662 -0.151 0.237

 

Discussion of Parameter Estimates 

The estimated parameters (λ) for the model are shown in Table 14. CVS and Occ 

parameters with subscript 1 indicate the lowest level of that precursor, 2 indicate medium level, 

and 3 indicate highest or most severe level, while subscript 0 for peak-time factor (λP) indicate a 

non-peak hour and 1 indicate peak hour. Similarly, subscript 0 for roadway type (λR) indicates a 

straight section of road without any on-ramps or off-ramps. β is a parameter exposure. C is a 

constant, which in the present model setup can be interpreted as the maximum risk that an 

incident is predicted. Information obtained in Table 14 is useful in analyzing two different 

aspects of the model parameter estimates. Firstly, the effect of different categories in a given 

precursor can be analyzed, and the effect of different precursors to the extent they can influence 

incident prediction can be analyzed. Secondly, the statistical significance of each of the 

parameters can be assessed. Both of these kinds of analyses are presented in the following 

paragraphs of this section. 

Physical Interpretation of Estimated Parameters  

Any traffic model is verified when it can reflect that which can be observed in real time 

or when it can explain some observed phenomenon. This kind of verification is called physical 

interpretation of the model. One category in each precursor is set to zero value. This category is 
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referred to as the aliased cell, and all other estimates will be in reference to the respective 

precursor’s aliased cell. Let us examine the physical significance of each precursor. Parameters 

for CVS show that the medium and low categories have a negative sign with decreasing value 

(real scale) as we move from the high to low category. The negative parameter means that when 

the traffic state transitions from the high category of CVS to the medium category, the risk of 

incident occurrence decreases by an amount. A further transition from the medium state to low 

CVS results in a further decrease in accident likelihood. The results agree with the general 

observations one can make on a highway. Many other studies, too, have shown that as CVS 

increases, there is a higher probability of incidents than under lower CVS. An approximate 

quantitative feel for the decrease in the risk is indicated by the numerical values of the estimated 

parameters. The model also indicates that the reduction in risk of accident is less from high to 

medium CVS when compared to the reduction in risk from the medium to low CVS categories. 

Occupancy, too, shows a trend similar to that for CVS. As we get from higher to lower 

occupancy, the risk of crash occurrence decreases. However, the calibrated model shows that the 

reduction in risk of crash occurrence is more significant as we move from a higher occupancy 

state to a medium occupancy state. And the same is true when there is a transition from a 

medium occupancy state to a low occupancy state. The results are aligned with practical 

observations. Accidents on highways are more likely during a high occupancy level than during 

low occupancy since high occupancy requires high attention from drivers so as not to become 

involved in accidents. Our model reflects this observation. But, comparing the values of CVS 

categories with occupancy categories, occupancy is more sensitive in responding to incident 

occurrence than CVS. The range of estimated values between high and low levels is much larger 

for occupancy than for CVS, which means that the risk of an accident is reduced even if traffic is 

operated smoothly by reducing variations in the speed of the traffic stream somehow. In contrast, 

by reducing the occupancy on a section, there is a high likelihood that risk in number of crashes 

can be considerably reduced, more than what we could achieve by controlling speed variation. 

From the results, we see that the peak-hour factor and roadway-type indicator have a 

negative value for the estimated parameters with subscript 0. This means that non-peak hours 

have less chance of incidents to occur than peak hours. Also, we can state from the results that 

straight sections of roadway, without on-ramps and off-ramps, have less likelihood of incident 

occurrence than curved sections or sections near ramps. The overall results show that the 
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influences of the roadway-type indicator and peak-hour indicator are less sensitive parameters 

when compared to CVS and occupancy in influencing the risk of accidents. However, peak-hour 

factor and roadway type are still significant precursors in incident forecasting. 

Statistical Significance of Estimated Parameters 

Another way of looking at the significance of the model is by analyzing the statistical 

results of the parameter estimation. The columns “Z” and “Sig.” in Table 14 are the primary 

indicators to measure the significance of the estimated parameters. Looking at the “Z” values, 

everything except λCVS = 2 and β are statistically significant with “Z” values being greater than 

1.96 at 95 percent confidence level.  Significance values of less than 0.05 are expected to declare 

any parameter used in the model to be statistically significant for use in the model. 

In the above context λCVS = 2 and β are obviously less significant to be included in the 

model from a statistical standpoint. However, λCVS = 2   is still included in the model for two 

reasons. Reduction in the number of CVS categories would mean a lesser number of traffic states 

to represent traffic flow, and removal of λCVS = 2 would reduce the total possible states to two-

thirds of the current possible states. Reducing the total number of possible states would make the 

model less sensitive to the change in traffic state and make it harder to predict the likelihood of 

accidents, which is not desirable. Justification for retaining the exposure parameter β is made 

because of the well-established relationship between the number of accidents and the exposure. 

The number of accidents alone is insufficient in making logical decisions about accident risks.  

Looking at two roads with a similar number of accidents, if the data for the first road were 

reported over a 2-year period and the data for the second road were reported over a 1-year 

period, there is a difference in terms of risk. In the example, the second road has a higher risk or 

likelihood of incident than the first road. Hence, exposure is an important factor in explaining the 

risk component in incident reporting. So, though β is statistically very insignificant, it has a 

greater role for the physical interpretation of the overall model. 

Working Procedure in Real Time 

A schematic of the working procedure for the incident prediction model for the given 

minute and given section of roadway is shown in Figure 68. Input requirements for the

 incident prediction model are the predicted speed and density at a particular 

section. Average speed and density over all the lanes on a particular section of roadway are 
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considered. The predicted speed and density are obtained from a traffic model. Other information 

that is required is time of day and the roadway-type indicator. The archived data of projected 

speed and density for the preceding 4 minutes for that particular section are extracted from the 

database. The precursors are calculated with this 5-minute traffic data. 

 

 
Figure 67.  Schematic for Working Procedure of Crash Potential Model. 

 

Once the precursors are determined, a check is made based on the predetermined 

boundary values to classify the current traffic condition among one of the 36 possible categories 

(the categories and boundary values were defined earlier). Based on the categories, the respective 

parameters for the model are considered and crash potential is calculated. 

This procedure is illustrated for a single station and for a given minute. The same cycle is 

carried out for all the detector stations that will be considered for the study and will run for a 
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continuous period of 1-minute intervals. However, in the beginning of the model run, the output 

will not be generated for the first 4 minutes due to insufficient data for precursor calculation. 

OUTPUT INTERPRETATION FOR CRASH POTENTIAL MODEL 

Crash potential is defined as the expected number of crashes over a certain period of 

exposure. Exposure is denominated as vehicle miles of travel. The incident likelihood model as a 

stand-alone reports crash potential for the particular minute it is evaluating by looking at the 

precursors over the current time and preceding 4 minutes.  

The advantage of this model in predicting future crash potential can be realized by using 

this model with a traffic prediction model. The process in which the incident likelihood model 

works in the current setup is depicted in Figure 68.  

The following example demonstrates how the crash potential is calculated from the 

model. Consider that CVS and occupancy are calculated from a 1-minute predicted speed and 

density on a section of a roadway that is just before an on-ramp during a morning peak hour with 

an average annual daily traffic (AADT) of 100,000 vehicles. We assume that both CVS and 

occupancy fall in the lower range as per the respective boundary values defined for this model. 

Hence, in terms of our model, the next 1-minute traffic condition falls into a category defined as 

CVS=1, Occ=1, P=1, and R=1. 

Equation D-3 shows our formulation of this categorical situation: 

 
AADT

ln(EXP))( P(I))()(CVS(i)e kRiOccC
CP

βλλλλ +++++
=  (D-3) 

  

Therefore, the crash potential for the next 1 minute, represented as CP1, is shown in 

Equation D-4: 

 

00066.01

510

)ln(100000)43.000059.2395.1693.2(
1

=

+++−−
=
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Similarly, depending on the category in which the predicted traffic condition exists, the 

model will estimate the corresponding crash potential. However, the threshold in determining if 

the crash potential should be flagged as high risk, medium risk, or low risk can be determined by 

doing further field studies and by engineering judgment. 

 

 
Figure 68.  Model Output of Crash Potential Model. 
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