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CHAPTER 1.  INTRODUCTION 

Report 0-4745-1 “Incident Characteristics and Impact on Freeway Traffic” summarized the 
activities conducted during the first phase of research project 0-4745 (1).  It described a process 
to determine patterns in the spatial and temporal distribution of incidents along freeway corridors 
using geographic information system (GIS), traffic engineering, and statistical analysis 
techniques.  It also illustrated incident detection and data archival practices at several Texas 
Department of Transportation (TxDOT) transportation management centers (TMCs), a process to 
develop a geodatabase of intelligent transportation system (ITS) equipment and archived ITS 
data using a variety of data sources at the San Antonio TMC (TransGuide), a process to 
determine patterns in the spatial and temporal distribution of freeway incidents in San Antonio, 
and a process to calculate the impact of incidents on traffic delay.  The report contained products 
0-4745-P1 (which described incident evaluation procedures) and 0-4745-P2 (which described 
steps for incident evaluation procedure implementation). 
 
This report summarizes the procedures and activities completed during the second phase of the 
research.  Those activities resulted in two products (0-4745-P3—detailed incident evaluation 
procedures—and 0-4745-P4—process definitions and implementation recommendations), which 
are included in Report 0-4745-2 (2).  During the second phase, the research team extended the 
first phase analysis to evaluate in greater detail incident detection procedures at a sample TMC 
(TransGuide) and assess the feasibility to modify/calibrate alarm threshold values to help 
optimize incident detection practices at that TMC.  The research involved the use of two 
performance measures (detection rate and false alarm rate) and the development of a prototype 
offline tool to evaluate automatic incident detection algorithm performance.  It also extended an 
analysis from the first phase to evaluate the completeness and quality control of archived loop 
detector data. 
 
This report is organized as follows:  
 

• Chapter 1 is this introductory chapter. 
• Chapter 2 describes the incident detection process at TransGuide, with a focus on the 

automatic incident detection algorithm, and the process to extract meaningful incident 
data from archived ITS data sources. 

• Chapter 3 summarizes the analysis conducted to evaluate the feasibility to modify alarm 
threshold values at TransGuide. 

• Chapter 4 describes the analysis to evaluate the completeness and quality control of 
archived loop detector data. 

• Chapter 5 summarizes conclusions and recommendations for implementation. 
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CHAPTER 2.  INCIDENT DETECTION AT TRANSGUIDE 

This chapter describes the incident detection process at TransGuide, with a focus on the 
automatic incident detection algorithm, and the process to extract meaningful incident data from 
archived ITS data sources.  It starts with a brief introduction to automatic incident detection 
concepts, followed by a summarized description of the incident detection process at TransGuide, 
the process to extract incident data from archived ITS data sources, and an overall assessment of 
effectiveness of the automatic incident detection process at TransGuide. 
 

INCIDENT DETECTION ALGORITHMS 

TMCs use a variety of techniques to detect roadway incidents.  Examples include detector-based 
alarms, 911-based alarms, closed-circuit television (CCTV) camera scanning, police radio 
scanning, courtesy patrols, motorist assistant dispatch, and commercial traffic services.  TMCs 
are increasingly relying on non-detector-based procedures to detect incidents, which raises 
questions about the feasibility to continue making considerable investments on road-based 
detectors and associated hardware and software infrastructure.  Nevertheless, in jurisdictions 
where road detectors are already in place, detector-based incident detection remains an important 
incident management tool. 
 
Detector-based incident detection algorithms typically follow one of the following approaches: 
 

• Comparative Approach.  Algorithms that follow this approach compare measured 
traffic conditions against predetermined thresholds and trigger an alarm if the field 
measures cross the thresholds.  Examples of this type of algorithm are the California 
algorithm series, which use absolute and relative differences in occupancy values (3) and 
the Texas algorithm, which uses moving average occupancy values (4).  The TransGuide 
algorithm falls within this category, except that it uses speed data from speed-trap 
detectors and percent occupancy data from non-speed-trap loop detectors.  Comparative 
algorithms are simpler than other algorithms.  Many implementations rely on static 
thresholds, making them relatively inefficient for handling fluctuating traffic demands 
(5).  Some implementations enable managers to vary thresholds using pre-specified 
criteria, e.g., by time of day, but populating threshold lookup tables frequently remains an 
incomplete task. 

• Statistical Approach.  Algorithms that follow this approach use statistical procedures to 
detect significant deviations in traffic patterns over time as compared to predictable 
patterns.  Examples of this type of model include the standard normal deviate model (6), 
which uses the mean and standard deviation of occupancy values, time-series models (7), 
which use autoregressive integrated moving average (ARIMA) predictions of occupancy 
values, and the Minnesota algorithm (8), which uses a low-pass filter to remove high-
frequency components in observed data.  Statistical models require data to follow pre-
specified statistical theory models, thus limiting their wide applicability. 

• Traffic Modeling Approach.  Algorithms that follow this approach use complex traffic-
flow theoretical models to predict deviations from normal conditions using current traffic 
measurements as well as historical trends.  An example of this type of algorithm is the 



 4

McMaster algorithm, which relies on the volume-occupancy relationship to determine 
when conditions change at individual detection stations (9). 

• Artificial Intelligence Approach.  Algorithms that follow this approach use artificial 
intelligence techniques such as neural networks (10) and fuzzy set theory (11).  Although 
these techniques do not pre-assume theoretical traffic models, they nonetheless require 
extensive calibration.  They are also among the most recent examples of algorithm 
development work and for the most part remain untested under real-world operating 
conditions. 

 
TxDOT has funded a number of research studies related to the implementation and effectiveness 
of incident detection algorithms in Texas.  For example, in 1993 Project 0-1232 evaluated 
several algorithms based on performance measures reported in the literature and site visits to 
operating TMCs in the United States and Canada (9).  The project recommended implementation 
of the California 7, California 8, and McMaster algorithms.  In 1996, Project 0-1795 tested the 
California 8, Minnesota, and Texas algorithms using TransGuide data, and developed a holistic 
data fusion model that combined detector data and indicators from different algorithms (5).  
Project 0-2917 compared the performance of the TransGuide speed-based algorithm against the 
California 8 algorithm and a fuzzy logic algorithm (12).  Using data from seven incidents in 
1996, the study concluded that the TransGuide’s algorithm performed well compared to the other 
algorithms.  More recently, Project 0-4156 and Project 0-4957 explored the integration of loop 
detector data and automated vehicle identification (AVI) data for incident detection at 
TransGuide (4, 13).  These projects concluded AVI-based algorithms were feasible, but did not 
perform as well as loop detector-based algorithms.  As a side note, it may be worth noting that in 
2003 TransGuide abandoned the AVI data collection program. 
 

TRANSGUIDE INCIDENT DETECTION PROCESS 

This section describes the general system configuration and incident detection and response 
process at TransGuide.  For convenience, it summarizes relevant material from Chapter 2 of 
Report 0-4745-1, but expands on the description of the automated incident detection algorithm 
and alarm incident handling process (1). 

Configuration 

TransGuide’s ITS deployment covers some 87 miles of freeway.  It includes 1,463 loop detector 
units (both speed-trap and non-speed-trap) and sonic detectors organized in 325 sensor locations 
located roughly every half a mile, 140 CCTV cameras located roughly every mile, 80 main lane 
dynamic message signs (DMSs) located roughly every 3 miles, 121 frontage road DMSs, and 
236 lane control signals (LCSs) located roughly every mile.  No longer operational is an AVI 
subsystem that TransGuide used to collect travel time and speed data on corridors that did not 
have loop detector coverage.  Currently, TransGuide is deploying Autoscope cameras to collect 
speed, volume, and occupancy data on several periphery corridors.   
 
TransGuide’s transportation management software operates as a client/server-based system that 
runs on Sun workstations in a Unix Solaris environment (14, 15).  The system includes several 
subsystems (Table 1), each with a number of components, including menu bars, processes, 
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services, and servers.  Table 2 describes subsystem components that are most relevant for 
understanding the ITS data archival process. 
 

Table 1.  TransGuide Subsystems. 
Subsystem Description 

Administrative (ADM) Subsystem It accomplishes basic administrative tasks and contains the 
main user interface—called the Advanced Traffic 
Management System (ATMS) Menu Bar—that sends 
requests to all other graphical user interface (GUI) servers 
in the system. 

Alarm Incident Handler (AIH) Subsystem It handles incident alarms using data from four subsystems: 
Local Control Unit (LCU), Advanced Warning to Avoid 
Railroad Delays (AWARD), AIH 911, and Pump Station.  
It also executes incident responses. 

Advanced Traveler Information System (ATIS) 
Subsystem 

It distributes travel information managed by the ATIS data 
server process. 

AVI Subsystem No longer operational, it handled real-time speed and travel 
time data using field data collected from vehicle AVI tags. 

AWARD Subsystem It provides railroad crossing information to motorist and 
emergency response vehicles.  Using loop detector sensors, 
it calculates and predicts the arrival and duration of 
closures along the Union Pacific Kerrville Line. 

CCTV Subsystem It controls the operation of the CCTV cameras in the 
TransGuide ATMS. 

Changeable Message Sign (CMS) or DMS 
Subsystem 

It manages and controls DMSs through interaction with the 
Map Application and Scenario Management (SCM) 
subsystems. 

Data Server Subsystem It is the main centerpoint of access for all data in the 
TransGuide ATMS.  It collects, stores, and distributes data 
to the TransGuide ATMS. 

Dynamic Data Distribution (DDD) Subsystem It distributes real-time ATMS data to the appropriate 
collection point.  It interacts with all ATMS master 
processes and collects and sends equipment and incident 
data every 20 seconds to the Data Server Subsystem. 

Estimated Travel Time (ETT) Subsystem It provides current traffic and estimated travel time data to 
drivers through field equipment such as the DMSs. 

Lane Closure GUI Subsystem It allows operators to manually edit information about lane 
closures in a database table. 

LCS Subsystem It manages and controls LCS units.  This subsystem 
interacts with the SCM and map display subsystems. 

LCU Subsystem It manages and controls LCUs in the TransGuide ATMS. 
Map Application Subsystem It is a set of map application tools (Real-Time Map 

Display, Real-Time Map Generation Tool, and World 
Wide Web Real-Time Map Display) that display 
TransGuide ATMS data using a map interface. 

SCM Subsystem It manages scenarios in the TransGuide ATMS. 
Paging Subsystem It sends alphanumeric pages from ATMS operators.   
Personalized Assistance and Notification (PLAN) 
Subsystem 

No longer operational, it enabled users to select routes for 
which they wanted to receive incident information from the 
TransGuide ATMS via e-mail. 

Pump Station Subsystem It handles alarms from the drainage pumps. 
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Table 2.  Sample of Relevant ITS Data TransGuide Subsystem Components. 
Component Function 

AIH Background Process It handles alarm requests from all subsystems that produce incident events. 
AIH Management Process It manages all ATMS alarms and incidents. 
AIH 911 Process It reads current San Antonio Police Department incidents and updates the 

AIH background process. 
AIH GUI Server It displays ATMS incident alarms and messages on the screen. 
CCTV Master It manages all connection, disconnection, and control command requests. 
CCTV GUI It makes requests for connection and control commands to cameras. 
CMS Master It manages the interactions of all DMSs in the TransGuide ATMS. 
CMS GUI Server It manages the screens for the CMS interface. 
TransGuide CMS Poll Server It establishes connections to DMSs and polls DMSs once per polling cycle. 
National Transportation 
Communications for ITS Protocol 
(NTCIP) CMS Poll Server 

It is similar to the TransGuide CMS Poll Server, except it uses the statewide 
driver client library that supports the NTCIP to communicate with DMSs. 

LCS Master It manages lane control signal interactions. 
LCS GUI Server It manages the screens for the LCS interface. 
TransGuide LCS Poll Server It establishes connections to LCSs and polls LCSs once per polling cycle. 
LCU Master It manages LCU interactions. 
LCU GUI Server It manages screens for the LCU interface. 
LCU Driver It pushes commands from the LCU Master to the LCU poll servers.  It also 

sends alarm packages to the AIH Subsystem. 
Austin LCU Poll Server It establishes connections to Austin LCUs and polls those LCUs once per 

polling cycle. 
NazTech LCU Poll Server It establishes connections to Naztech LCUs and polls those LCUs once per 

polling cycle. 
Map Display Application It provides access to real-time speed data, status data about road segments 

and traffic equipment, incident data, and lane closure data. 
Map Generation Application It creates a geographic representation of roadway segments and ITS 

equipment. 
Scenario Master It manages scenarios along with interactions with the field equipment. 
Scenario GUI Server It manages screens for the scenario interface. 

 

Incident Detection and Response 

Incident detection relies on a combination of detector-based alarms and 911-based alarms, 
CCTV camera scanning, police radio scanning, and courtesy patrols.  The AIH subsystem 
handles detector-based alarms and 911-based alarms.  For 911-based alarms, the AIH subsystem 
manages these alarms only if they are on or near TransGuide LCU-instrumented roadways.  
Detector-based alarms rely on speed for speed-trap detectors (installed on main lanes and some 
ramps) and percent occupancy for non-speed-trap detectors (mostly installed on entrance and exit 
ramps).  LCUs continuously poll data from the detectors and relay 20-second aggregated data to 
the LCU driver.  For speed-trap detectors, if a moving 2-minute average speed drops below 25 
mph, the LCU driver automatically triggers a minor (yellow) alarm.  If the moving 2-minute 
average speed drops below 20 mph, the alarm becomes a major (red) alarm.  For non-speed-trap 
detectors, the default minor and major alarm thresholds are 25 percent occupancy and 35 percent 
occupancy, respectively. 
 
It may be worth noting that these thresholds are default values and that the AIH subsystem 
allows users to set up different thresholds by time of day, day of week, or day of the year (16).  
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The system also allows users to vary LCU polling intervals from 10 to 60 seconds (the default is 
20 seconds) and moving average lengths from 1 to 10 minutes (the default is 2 minutes).  
TransGuide officials rarely modify the default settings, partly because of the lack of a formalized 
procedure to access and analyze archived ITS data trends that could suggest that modifying 
default values could result in a more effective incident detection and alarm handling process. 
 
The manager on duty receives all alarms, decides what further action is necessary, and assigns 
alarms to operators (Figure 1).  After the manager assigns an alarm to an operator, the alarm 
becomes an incident.  In practice, operators are responsible for specific corridors and tend to 
handle most incidents that happen on those corridors.  However, if a corridor is experiencing too 
many alarms, the system manager can forward alarms to other operators to distribute the work 
load.  At the operator’s desk, all incidents on the network appear both on the system map and in 
the form of icons that identify the process that gave origin to the alarm (e.g., “LA” for lane 
alarm, “PD” for police department alarm, “RR” for railroad alarm, and “PS” for pumping station 
alarm) and a color code to indicate the alarm condition (green, yellow, or red). 
 

 
Figure 1.  TransGuide Incident Assignment Screen. 

 
After an operator acknowledges an incident, the system displays a modified version of the 
incident assignment screen and the CCTV subsystem attempts to display the primary incident 
camera listed on the incident screen (Figure 2).  After verifying the incident with the CCTV 
camera, the operator has the option to execute a scenario (Figure 3).  A scenario is a pre-defined 
set of messages that operators can apply to a pre-selected set of DMSs and/or LCSs, depending 
on incident type, extent, and location.  In practice, operators also have the option to create new 
scenarios or modify existing scenarios to fit the needs of the specific incidents the operators are 
managing.  The system displays all active scenarios using “S” icons (Figure 2). 
 
The original TransGuide ATMS design allowed operators to load scenarios only if an incident 
record already existed in the system.  After a system design change several years ago, operators 
were able to load scenarios even if an incident record did not previously exist.  This resulted in 
added flexibility because operators could display DMS and LCS messages to manage incidents 
detected by processes such as CCTV camera scanning and courtesy patrols, i.e., incidents not 
handled by the AIH subsystem.  In practice, the system design change did not include an 
alternate procedure to generate an incident record for those incidents, leaving the scenario record 
as the only data repository for incidents not handled by the AIH subsystem. 
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Figure 2.  TransGuide Operator Console Screen. 

 

 
Figure 3.  TransGuide Scenario Search Screen. 



 9

Because of the current structure of the detector-based incident detection algorithm, which relies 
on speed for main lanes and percent occupancy for ramps, many alarms are actually the result of 
recurrent roadway congestion.  TransGuide has a policy of displaying congestion-related DMS 
messages to alert motorists about congested traffic conditions.  Experienced operators are aware 
of the locations where the system usually triggers congestion-related alarms and prepare 
scenarios accordingly ahead of time.  Typically, operators watch camera feeds for specific 
corridors to monitor congestion buildup.  When the system begins to generate congestion-related 
alarms, or at the discretion of the operator, the operator may execute the scenario prepared in 
advance.  In theory, operators could cancel congestion-related alarms at any time.  In practice, 
they typically “iconize” congestion-related alarms and wait until speeds increase again before 
closing the alarms to prevent new alarm triggers at the same locations within a short period of 
time. 
 
In general, the system design is such that, as long as there is an active alarm for a specific 
highway segment (whether the alarm is congestion-related or in response to an actual incident), 
the system does not trigger any new alarms for that segment.  For the system to generate new 
alarms for the segment in question, the operator first has to close any previous active alarm 
associated with that segment.  Because the operators’ response is not automatic and can vary 
substantially from case to case, it becomes very difficult to replicate or predict exactly when 
operators close alarms, which, in turn, makes it difficult to fully characterize the incident 
detection and alarm incident handling processes using archived incident data.  This also makes it 
difficult to identify and test strategies to optimize the incident detection process. 

Traffic and Incident Data 

TransGuide maintains a long-term data repository in compressed file format, which includes 20-
second detector data (since July 1997) and event data (since January 1998) (17).  TransGuide 
also maintains a scenario log in Sybase, which includes a scenario header table and a scenario 
execution table (since February 2002).  The current 20-second detector data archive includes 
speed, volume, and percent occupancy.  As Figure 4 shows, each record contains a date and time 
stamp, the detector address, and the corresponding average speed (in mph), volume, and percent 
occupancy values.  The detector address has three components separated by a dash: detector 
location and designation (where “L” represents main lane, “EN” represents entrance ramp, “EX” 
represents exit lane, and the number represents the lane number beginning with the lane closest 
to the median), freeway number and direction, and mile marker.  The system reports speeds on 
non-speed-trap detectors as -1. 
 

02/04/2003 00:30:36 EN1-0035S-166.340   Speed=-1 Vol=001 Occ=001 
02/04/2003 00:30:36 EX1-0035S-166.239   Speed=-1 Vol=000 Occ=000 
02/04/2003 00:30:36 EX2-0035S-166.239   Speed=-1 Vol=001 Occ=001 
02/04/2003 00:30:36 L1-0035N-166.450    Speed=61 Vol=001 Occ=001 
02/04/2003 00:30:36 L2-0035N-166.450    Speed=54 Vol=001 Occ=001 
02/04/2003 00:30:36 L2-0035S-166.450    Speed=60 Vol=004 Occ=005 
02/04/2003 00:30:36 L3-0035N-166.450    Speed=54 Vol=004 Occ=005 
02/04/2003 00:30:36 L3-0035S-166.450    Speed=57 Vol=004 Occ=005 

Figure 4.  Sample 20-Second Detector Data at TransGuide. 
 
The current event data archive includes 30 different major record types (such as 2301, 2303, and 
8354), with several record types including more than one record subtype (Figure 5).  The original 
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intent of the event data archive was to serve as a debugging tool for ATMS, but over time, the 
archive has grown to become a very extensive data repository.  Of particular interest in this 
research are record types 5301, 5302, and 5303, which contain incident data records. 
 
8337 lcu_driver5 2003/05/20 16:00:10 1053464410 L2-1604W-032.121 1 61 5 15 25 144 
2301 cms_master 2003/05/20 15:57:00 1053464220 CMS CMS2-0410W-025.558 Display Return: msgID=2643  

text='TRAVEL TIME TO|US281 4-6 MINS|IH10 9-11 MINS|||' 
2301 cms_master 2003/05/20 15:57:12 1053464232 CMS CMS2-0090W-568.933 Display Return: msgID=2646  

text='TRAVEL TIME TO|LP410 5-7 MINS|HUNT LN 6-8 MINS|||' 
5304 aih_back 2003/05/20 16:00:33 1053464433 258 'L2-0035S-164.412' 'SECT-0035S-164.412' 3 28 23 

'Normal' 'CCTV-0035N-163.955'.1 'ToBeAssigned' 'blopez' '' '' 1053461876 0 0 0 
5302 aih_back 2003/05/20 16:00:33 1053464433 258 'L2-0035S-164.412' 'SECT-0035S-164.412' 3 23 25 

'MinorAlarm' 'CCTV-0035N-163.955'.1 'ToBeAssigned' 'blopez' '' '' 1053461876 0 0 0 
5301 aih_back 2003/05/20 16:00:33 1053464433 274 'L3-0035N-164.412' 'SECT-0035N-164.412' 3 20 16 

'MinorAlarm' 'CCTV-0035N-164.835'.1 'ToBeAssigned' 'blopez' '' '' 1053464433 0 0 0 
8341 aih_mgmt 2003/05/20 16:00:33 1053464433 274 SECT-0035N-164.412 blopez 3 0 
2301 cms_master 2003/05/20 15:57:21 1053464241 CMS CMS3-0035N-164.308 Display Return: msgID=2805  

text='CONGESTION|ON FREEWAY||ENTER WITH|CAUTION|' 
2301 cms_master 2003/05/20 15:57:21 1053464241 CMS CMS2-0035N-168.672 Display Return: msgID=2645  

text='TRAVEL TIME TO|LOOP 1604|UNDER 5 MINS|||' 
5302 aih_back 2003/05/20 16:00:49 1053464449 267 'EN2-0035S-153.608' 'SECT-0035S-153.608' 2 -1 35 

'MinorAlarm' 'CCTV-0035N-153.619'.1 'ToBeAssigned' 'blopez' '' '' 1053463712 0 0 0 
2301 cms_master 2003/05/20 15:57:42 1053464262 CMS CMS2-0035S-168.645 Display Return: msgID=2645  

text='TRAVEL TIME TO|LP410 UNDER 5 MINS|US281 12-14 MINS|||' 

Figure 5.  Sample Event Data at TransGuide. 
 
Figure 6 shows sample records from the archived scenario database.  Each record includes a 
header that summarizes basic data from the scenario loaded by the operator and a linked table 
that contains actual DMS and LCS messages displayed in the field. 
 

 
Figure 6.  Sample Scenario Data at TransGuide. 
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INCIDENT DETECTION ALGORITHM ASSESSMENT 

Three commonly used measures to conceptualize and/or assess the performance of incident 
detection algorithms are: 
 

• Detection Rate (DR): It is the ratio of the number of detected incidents to the total 
number of recorded incidents. 

• False Alarm Rate (FAR): It is the ratio of incorrect decisions (false positives) to the total 
number of algorithm decisions made. 

• Detection Time (DT): It is the time interval between the moment the incident occurred 
and the time the incident was detected. 

 
As Figure 7 shows, detection rate is directly proportional to the detection time.  Likewise, the 
false alarm rate is inversely proportional to the detection time.  It follows that by increasing the 
time it takes for the algorithm to detect incidents (which would result, e.g., from using a more 
sophisticated algorithm), it is possible to increase the detection rate while, at the same time, 
reducing false alarm rates.  Unfortunately, a longer detection time would also result in a longer 
incident response time, which is normally undesirable.  Likewise, a too short detection time 
(which would result, e.g., from using a relatively simple algorithm), while desirable, would also 
result in low detection rates and high false alarm rates.  Consequently, it becomes necessary to 
calibrate the incident detection algorithm to achieve an acceptable balance between detection 
rates, false alarm rates, and detection times. 
 

 
Figure 7.  Incident Detection Algorithm Performance Measure Relationships (9). 

 
It may be worth noting that one of the original design objectives at TransGuide called for fast 
incident detection—which resulted in a simple one-parameter incident detection algorithm—
even at the expense of the false alarm rate (16).  The reasoning behind this decision was that 
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TransGuide operators would be able to quickly confirm individual alarms using the video 
subsystem, rendering the requirement for a more sophisticated incident detection algorithm (that 
would most likely result in longer incident detection times) unnecessary. 

Matching Alarms to Incidents 

The researchers prepared two datasets for the analysis.  The first dataset contained 19,553 
scenario database records from March 2002 – May 2004 that included data for four types of 
incidents: major accidents, minor accidents, stalled-vehicle incidents, and debris incidents.  The 
researchers assumed this database provided an adequate representation of the history of freeway 
incidents based on the results of an analysis completed during the first phase that found 
similarities between incidents (major and minor accidents) from the TransGuide scenario 
database and crash data from the Texas Department of Public Safety (TxDPS) (1).  Although the 
analysis showed differences by time of day (the number of TransGuide-reported incidents during 
daytime hours was larger, but at night, the number of TxDPS-reported crashes was larger), the 
impact on the total number of incidents as a result of potential nighttime underreporting at 
TransGuide should be relatively minor because the vast majority of incidents happen during 
daytime hours.  
 
The second dataset contained alarms triggered by the TransGuide incident detection algorithm in 
response to events on the road.  For the analysis, the researchers focused on record types 5301 
and 5303 from the event log files.  In general, the AIH subsystem creates a new 5301 record 
every time it receives a new alarm package from the LCU subsystem.  It also creates a new 5303 
record every time an operator closes an alarm.  The system also generates other record types 
while an alarm is active, although those records are of no particular interest for this analysis.  In 
total, for the March 2002 – May 2004 period, the dataset contained records for 202,690 alarms. 
 
In an ideal situation, the number of records in the two datasets would be the same, with a record 
in the incident dataset having a corresponding matching record in the alarm dataset.  In practice, 
because of false alarms, potentially erroneous scenario records, and other factors, there is not a 
perfect match between incident records and alarm records.  In general, as Figure 8 shows, there 
are three possible matching outcomes: 
 

• Incident Detected.  This occurs if an incident actually happened (a scenario was 
deployed) and the alarm incident handler triggered an alarm. 

• False Negative.  This occurs if an incident actually happened (a scenario was deployed) 
and the alarm incident handler did not trigger an alarm. 

• False Positive.  This occurs if an incident did not happen (a scenario was not deployed) 
but the alarm incident handler triggered an alarm. 

 
   LCU Subsystem 

Triggered Alarm? 
   Yes No 

Yes Incident Occurred Incident Detected False Negative Scenario 
Deployed? No No Incident Occurred False Positive  

Figure 8.  Possible Incident versus Alarm Dataset Matching Outcomes. 
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To find the number of detected incidents, the researchers attempted to match incidents reported 
in the scenario database to alarms recorded in the event database.  Because of the lack of a 
common link between these two datasets (more specifically, an incident ID), the researchers had 
to develop a “fuzzy” spatio-temporal query methodology whereby an incident would be 
considered detected if the LCU subsystem triggered an alarm within a pre-specified spatio-
temporal window associated with an incident record (Figure 9).  The reason behind this fuzzy 
range concept was to account for situations such as an alarm being triggered before or after 
operators deployed a scenario (which almost always happens because the two datasets are not 
synchronous), an alarm being triggered on a sector other than where the incident actually 
happened, and scenarios being reported on the wrong sector.  Figure 10 illustrates the query 
building process, which used the geodatabase structure described in report 0-4745-1 (1). 
 

Time

Space

Scenario data 
reported incident 

at this time

Scenario data 
reported incident 

on this sector

-10 min

10 min

Sector Downstream 
Sector

Upstream 
Sector

2nd Upstream 
Sector  

Figure 9.  Spatio-Temporal Query Concept. 
 
A preliminary analysis suggested using a spatio-temporal window composed of three highway 
sectors (including the sector of interest as well as the adjacent upstream and downstream sectors) 
and a 10-minute range before and after the scenario execution time.  To test this hypothesis, the 
researchers conducted a sensitivity analysis (Figure 11).  As Figure 11a shows, the number of 
matched incidents and alarms increased with the number of sectors considered.  However, the 
rate of increase in the number of matches flattened after including more than three sectors in the 
query (the sector of interest as well as the adjacent upstream and downstream sectors), clearly 
suggesting that the chances of sector mismatch decreased considerably outside the three sector 
window.  Figure 11b shows that the number of matched incidents and alarms increased as the 
time window size increased.  In this case, the number of matches did not flatten, suggesting the 
possibility of an increasing number of alarm records incorrectly matching incident records and 
that using time window size was not necessarily a strong query parameter.  Nonetheless, since it 
was necessary to use a time window factor for the query building process anyway, the 
researchers decided to maintain the 10-minute range before and after the scenario execution time. 
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ATMS_F_SCENARIO_HEADER

 LOGID
 UPDATEDINCIDENTTYPE
 UPDATEDSTARTDATETIME
 UPDATEDCANCELDATETIME
 UPDATEDSTARTDATE
 UPDATEDSTARTTIME
 UPDATEDCANCELDATE
 UPDATEDCANCELTIME
 SCENARIOID
 INCIDENTID
 UPDATEDCONTIGUOUSADDRESS
 LANESCLOSED
 CAPACITYEXCEEDED
 MANAGER
 OPERATOR
 STARTDATETIME
 CANCELLEDDATETIME
 STARTDATE
 STARTTIME
 CANCELDATE
 CANCELTIME
 CONTIGUOUSADDRESS
 TYPE

Incident_Scenarios

 LOGID
 UPDATEDINCIDENTTYPE
 UPDATEDSTARTDATETIME
 UPDATEDCANCELDATETIME
 SCENARIOID
 INCIDENTID
 UPDATEDCONTIGUOUSADDRESS
 LANESCLOSED
 TYPE
 ROUTE
 MILEMARKER

AIHNEWINCIDENTLANE_5301

 TYPE
 PROCESS
 DATE5301
 TIME5301
 EPOCHTIME
 INCID
 LANEADDRESS
 CONTIGUOUS
 NUMLANES
 SPEED
 OCCUPANCY
 CONDITION
 CAMERAADDRESS
 CAMERAPRESET
 STATUS
 MANAGER
 OPERATOR
 SCENARIO
 ALARMTIME
 ASSIGNTIME
 LOGONTIME
 CLOSETIME
 Updated_SectAddress

Matched_Entries

 INCID
 AlarmStartDateTime
 AlarmCloseDateTime
 LANEADDRESS
 SectorAddress
 Start_NoLanes
 StartSpeed
 StartOcc
 StartCondition
 Close_NoLanes
 CloseSpeed
 CloseOcc
 CloseCondition
 CloseStatus
 Alarms_ROUTE
 Alarms_MILEMARKER
 LOGID
 UPDATEDINCIDENTTYPE
 UPDATEDSTARTDATETIME
 UPDATEDCANCELDATETIME
 SCENARIOID
 INCIDENTID
 UPDATEDCONTIGUOUSADDRESS
 LANESCLOSED
 TYPE
 Incidents_ROUTE
 Incidents_MILEMARKER
 MileMarkerDIFF

AIHCLOSEINCIDENTLANE_5303

 TYPE
 PROCESS
 DATE5303
 TIME5303
 EPOCHTIME
 INCID
 LANEADDRESS
 CONTIGUOUS
 NUMLANES
 SPEED
 OCCUPANCY
 CONDITION
 CAMERAADDRESS
 CAMERAPRESET
 STATUS
 MANAGER
 OPERATOR
 SCENARIO
 ALARMTIME
 ASSIGNTIME
 LOGONTIME
 CLOSETIME
 UPDATED_SectAddress

Alarm_Events

 INCID
 AlarmStartDateTime
 AlarmCloseDateTime
 LANEADDRESS
 SectorAddress
 Start_NoLanes
 StartSpeed
 StartOcc
 StartCondition
 Close_NoLanes
 CloseSpeed
 CloseOcc
 CloseCondition
 CloseStatus
 ROUTE
 MILEMARKER

GIS_DETECTORUNIT

 OBJECTID
 DETECTORUNITADDRESS
 STATION
 STATIONITS
 LANETYPE
 LANEPOSITION
 ROUTE
 MILEMARKER
 DETECTORGROUPADDRESS
 SECTADDRESS
 COMMENT
 SHAPE_LENGTH
 SHAPE_AREA

Query 1
Query 2

Query 3

 
Figure 10.  Query Building Process to Match Incidents to Alarms. 
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(b) Temporal window sensitivity 
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Figure 11.  Sensitivity Results for Incident-Alarm Matching Query. 
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Analysis 

Figure 12 summarizes the results of the matching operation.  From Figure 11, out of 19,553 
incidents during the March 2002 – May 2004 analysis period, 3,828 incident records had a 
matching alarm record.  Likewise, 4,651 alarm records had a matching incident record.  
Therefore,  
 

Detection Rate (DR)  = 19.6% %100
19,553
3,828

 incidentsrecorded  of No.
incidentsdetected  of No.

==  

 

False Alarm Rate (FAR) = %0039.0%100
7921,463  ,3204

198,039
decisionsalgorithm  of No.

 positivesfalse of No.
=

××
=  

 
This calculation assumed for simplicity that the algorithm made 4,320 decisions per detector per 
day (once every 20 seconds) and that all 1,463 detectors in the geodatabase were operational all 
the time during the 792-day analysis period from March 2002 to May 2004. 
 
It was not possible to calculate the third performance measure (detection time) because the 
archived incident data did not provide a measure for when incidents actually happened in relation 
to the time the system detected the incidents. 
 

   LCU Subsystem 
Triggered Alarm? 

   Yes No 
Yes Incident Occurred Incident Detected False Negative Scenario 

Deployed? No No Incident Occurred False Positive  
 

19,553 Incidents
(major accidents, minor 

accidents, stalled 
vehicle, and debris)

202,690 Alarms
(major and minor 

alarms)

15,725
False Negatives

4,651
Alarms

3,828 
Incidents

198,039
False Positives 
(False Alarms)

Matched

 
Figure 12.  Summary of Matching Results. 

 
The 19.6 percent incident detection rate included major and minor accidents, stalled vehicles, 
and debris.  After excluding debris incidents from the analysis, the incident detection rate would 
grow to 20.0 percent (3,695 detected incidents relative to 18,427 recorded incidents).  Likewise, 
excluding debris and stalled vehicle incidents from the analysis would result in an incident 
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detection rate of 24.8 percent (2,755 detected incidents relative to 11,083 recorded incidents).  
Excluding debris, stalled vehicles, and minor accidents would result in an incident detection rate 
of 27.2 percent (1,789 detected incidents relative to 6,571 recorded incidents).  In general, these 
percentages indicate the incident detection algorithm is responsible for the detection of 20 – 27 
percent of incidents detected at TransGuide.  The literature reports detection rates that are 
typically much higher—between 60 and 100 percent (4, 9), but it also includes references to 
detection rates in the 30 – 50 percent range (18).  Readers should be aware that many high 
detection rate reports in the literature use very small sample sizes and/or pre-set thresholds 
calibrated under the assumption of “normal flow” conditions (19).  Actual performance on the 
ground tends to be lower (18). 
 
A false alarm rate of 0.0039 percent is relatively low compared to rates typically found in the 
literature—between 0.0018 and 1.9 percent (9).  However, a low false alarm rate, although 
desirable, is not necessarily a good performance measure because it ignores the frequency of 
false alarms operators actually experience (19).  Another disadvantage is that it ignores the total 
number of alarms the algorithm triggers.  The overall false alarm frequency is: 
 

False Alarm Frequency (FAF) = ralarms/hou false 10
24792

198,039
hours of No.
positives false of No.

=
×

=  

 
which indicates that, on average, operators need to respond to false alarms every 6 minutes.  
Because most alarms happen during daytime hours, the false alarm frequency during daytime 
hours (17 alarms per hour or a false alarm roughly every 4 minutes) is much higher than the 
overall average. 
 
A formulation that measures the effectiveness of the incident detection algorithm in terms of the 
number of incident-confirmed alarms relative to the total number of alarms actually triggered is: 
 

Effective Alarm Rate (EAR) = %3.2%100
690,202

4,651
alarms of No.

alarmsconfirmed  of No.
==  

 
which would correspond to an “alternative” false alarm rate—that relates the number of false 
alarms to the number of alarms actually triggered—of 97.7 percent.  This result indicates that 
between two and three alarms for every 100 alarms correspond to detected incidents. 
 
Both detection rate and false rate measures are average values.  As Figure 13 and Figure 14 
show, detection rates and false alarm rates vary considerably by location.  Interestingly, many 
sectors with low detection rates are located on corridor sections with relatively low volumes, 
such as SL 1604 west of IH-10, US 90 west of SH 151, and IH-37 south of SE Military Drive.  
One possible reason for the low detection rates on those corridors is the minor alarm threshold of 
25 mph currently in place, which might not be high enough to enable an effective detection of 
incidents.  However, a few other more heavily traveled corridors also experienced low detection 
rates.  Likewise, Figure 14 shows several sectors with unusually high false alarm rates.  The 
research could not identify reasons for such apparent anomalies.  Further analyses would be 
necessary to clarify the issue. 
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Figure 13.  Distribution of Detection Rates by Sector. 
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Figure 14.  Distribution of False Alarm Rates by Sector. 
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CHAPTER 3.  INCIDENT DETECTION ALARM THRESHOLD 
OPTIMIZATION 

This chapter describes the work completed to assess the feasibility of modifying current incident 
detection alarm thresholds to help optimize TMC incident detection practices.  It describes the 
analytical methodology followed, a prototype offline tool to evaluate incident detection 
algorithm performance, and ways to increase detection rate while minimizing the impact on false 
alarm rates. 
 

ANALYTICAL APPROACHES 

A number of approaches may be possible to optimize TMC incident detection algorithm 
performance.  In the specific case of Texas TMCs, one approach would be to increase from 
single-parameter incident detection algorithms (e.g., TransGuide uses speed for speed-trap 
detectors and occupancy rate for non-speed-trap detectors) to multiple-parameter incident 
detection algorithms.  There are several ways to increase the number of parameters, e.g., by 
using speed, volume, and occupancy data from a single sector or speed, volume, and/or 
occupancy data from multiple sectors (e.g., the sector in question, the upstream sector, and the 
downstream sector).  The rationale behind this approach is that traffic flow relationships tend to 
behave differently during abnormal traffic conditions as opposed to normal conditions and that 
tracking those relationships in real-time would enhance/optimize incident detection (Figure 15). 
 

 
Figure 15.  Typical Traffic Flow Relationships Before and During Incidents. 
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Another approach would be to vary alarm thresholds according to some pre-specified criteria 
(e.g., by time of day or based on traffic flow conditions) to enable a more effective incident 
detection algorithm response.  Figure 16 illustrates this concept.  An incident happened at about 
5:23 PM (TMC operators displayed DMS and LCS messages to warn motorists about the 
incident at 5:31:48 PM).  During the incident, speeds decreased from about 50 mph to 26 mph.  
However, the incident detection algorithm did not trigger an alarm because the speed alarm 
threshold was set at 25 mph.  By raising the threshold to 30 mph, the algorithm could have 
triggered an alarm on lane 2 at 5:33:22 PM (still later than the TMC response, though).  Raising 
the alarm threshold to 35 mph could have enabled the incident detection algorithm to trigger an 
alarm on lane 1 at 5:25:21 PM and potentially result in an earlier TMC response to the incident.  
Further, raising the alarm threshold to 40 mph could have enabled the algorithm to trigger an 
alarm at 5:24:33 PM.  Raising the alarm threshold even further, however, would not have 
produced any additional benefit.  For example, at 45 mph, it would have produced at least one 
false alarm (at 5:07:44 PM). 
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Figure 16.  Illustration of Dynamic Threshold Levels Approach for AID Optimization. 

 

SAMPLE CASES 

For the analysis, the researchers used incident data—and corresponding archived 20-second lane 
data—from the list of 19,553 incidents identified in Chapter 2.  Following the structure in Figure 
12, the researchers selected cases that fell under the Detected Incident, False Negative, and False 
Positive (i.e., False Alarm) categories.  Evaluating all 19,553 incident cases would have been 
ideal but unfeasible during the course of the research.  First, to analyze incident detection 
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algorithm behavior and response properly, it was necessary to analyze in great detail all available 
data associated with each incident (speed, volume, occupancy, incident response messages, event 
data, and so on, both for the sector in question as well as adjacent sectors).  Basically, this meant 
analyzing incident data on a case by case basis.  Second, in the process to identify suitable 
sample sites, the researchers found many cases of gaps in the lane data that effectively prevented 
the use of the data to properly characterize incidents or to understand incident detection 
algorithm response.  Chapter 4 will discuss the issue of data completeness in greater detail.  
Third, rather than focusing on the development of automated procedures to optimize/enhance 
incident detection algorithm performance in a batch mode, it was of a higher priority to 
adequately understand incident cases in a controlled laboratory setting with the hope that the 
lessons learned from that analysis could be exported later to the rest of the cases.  For these 
reasons, the decision was to select a sample that could still be considered representative of the 
entire population.  Figure 17 shows the location of the sample cases selected.  The 75 sample 
cases covered a wide range of situations, including detected incidents (26), false negatives (35), 
and false positives (14).  For completeness, the dataset included data from both Traffic 
Operations Division (TRF) LCUs (30 cases) and Naztec LCUs (45 cases). 
 

INCIDENT CHARACTERIZATION 

For each case selected, the researchers prepared plots depicting speed, volume, and occupancy, 
relationships for the main sector, as well as the upstream and downstream sectors (Figure 18 
through Figure 21).  To better understand differences and similarities among cases, the 
researchers categorized each case according to the criteria in Table 3 (for both detected incidents 
and false negatives) and Table 4 (for false positives—false alarms).  These classification criteria 
follow previous work documented in the literature (3, 9, 22).  Table 5 summarizes the results of 
the categorization effort.   
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Figure 17.  Spatial Distribution of Sample Cases. 
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Sector SECT-0010E-565.683
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Black squares represent speed and blue triangles represent occupancy. 
An alarm event was triggered at 7:29 AM on lane 2 of SECT-0010E-565.683. 

Figure 18.  Speed and Occupancy Profiles for Sample Case No. 45. 
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Blue squares represent conditions after an alarm was triggered at 7:29 AM on lane 2 of SECT-0010E-565.683. 

Figure 19.  Speed versus Occupancy Plots for Sample Case No. 45. 
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Blue squares represent conditions after an alarm was triggered at 7:29 AM on lane 2 of SECT-0010E-565.683. 

Figure 20.  Speed versusVolume Plots for Sample Case No. 45. 
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Blue squares represent conditions after an alarm was triggered at 7:29 AM on lane 2 of SECT-0010E-565.683. 

Figure 21.  Volume versus Occupancy Plots for Sample Case No. 45. 
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Table 3.  Categories for Incident Pattern Characterization. 
Type Conditions 

before incident 
Conditions during incident Comment 

Type I-1 Uncongested 
traffic 

 

Roadway capacity at the site of incident is less than the 
volume of oncoming traffic.  A queue develops upstream 
of the incident site while at the same time a region of light 
traffic develops downstream. 

This is the easiest 
pattern to detect. 

Type I-2 Uncongested 
traffic 

 

Incident partially and shortly blocks a lane or two in a 
multi-lane sector. Roadway capacity at the incident site 
exceeds incoming traffic.  Only minor, or possibly no 
queues, form in the immediate vicinity of the incident. 

Impact of incident is 
less severe than Type 
I-1.  It is more 
difficult to detect. 

Type I-3 Light or free-
flowing traffic 

Incident has no noticeable impact on traffic.  It can also 
happen in situations with moderate traffic conditions with 
a stalled vehicle or debris on the shoulder. 

This type is extremely 
difficult for any 
algorithm to detect. 

Type I-4 Congested or 
heavy traffic 

Roadway capacity at the incident site is less than the 
volume (and capacity) of the traffic downstream.  Since 
the incident meters traffic entering downstream sector, 
demand in downstream decreases and thus congestion 
starts to slowly clear downstream while congestion 
persists upstream of incident. 

Some algorithms may 
detect this type of 
incident but only after 
considerable delay 
and/or processing. 

Type I-5 Congested or 
heavy traffic 

Roadway capacity (and volume) at the incident site is 
greater than the volume of the traffic downstream.  This 
situation usually happens when incident occurs in the 
midst of queues caused by earlier incident or recurrent 
congestion. Since traffic is already congested, incident 
impact will be hardly distinguishable. 

Similar to Type I-3, 
this type is extremely 
difficult for any 
algorithm to detect. 

 

Table 4.  Categories for False Alarm Pattern Characterization. 
Type Conditions causing alarm generation Comment 

Type A-1 Abnormal traffic data due to malfunctioning detector(s) 
reporting high occupancy or very-low speed values. 

Bad data produces bad decisions.  
Quality control tests should be used to 
validate data before using algorithm. 

Type A-2 Heavy traffic (stop-and-go) condition due to recurrent 
congestion causing significant speed variations similar to 
those experienced during incidents. 

Most significant contributor to false 
alarms. 

Type A-3 Abnormal roadway geometrics, such as sharp horizontal 
curves, severe vertical grades, or intermediate ramps and 
interchanges can cause speed to decrease. 

TMC operators can identify these 
locations relatively easily.  It requires 
localized customization of incident 
detection parameters. 

Type A-4 Bottlenecks caused by excessive entrance ramp traffic can 
cause significant variations in occupancy and speed 
values. 

Excessive entrance ramp traffic can 
occur during peak hours or special 
events.  TMC operators can frequently 
identify these situations. 

Type A-5 Slow-moving vehicle(s), such as trucks or rubberneckers, 
can cause isolated variations in speed prompting an alarm. 

Improper calibration of incident 
detection algorithm parameters could 
trigger this type of false alarm. 
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Table 5.  Categorization of Sample Cases. 
Incident Cases Type Total Detected Incident False Negative 

False Positive (False 
Alarm) Cases 

Type I-1 25 42% 22 85% 3 9%   
Type I-2 7 12% 1 4% 6 18%   
Type I-3 11 18% 0 0% 11 32%   
Type I-4 6 10% 2 8% 4 12%   
Type I-5 4 7% 1 4% 3 9%   
Type A-1       3 20% 
Type A-2       7 47% 
Type A-3       3 20% 
Type A-4       2 13% 
Type A-5       0 0% 

Missing Data1 7 11%  0% 7 21%  0% 
Total 60 100% 26 100% 34 100% 15 100% 

1 Either data were missing completely or critical data were missing for incident detection purposes. 
 
An analysis of the data in Table 5 yields the following results: 
 

• Overall, 25 (or 42 percent) of incidents were of Type I-1.  Of this total, 22 (or 85 percent 
of detected incidents) were of Type I-1.  Only 3 cases were false negatives.  It is likely 
that incident detection algorithm optimization could lower this number even more 
considering that Type I-1 cases are normally the easiest to detect.  Readers should be 
aware that 42 percent does not represent a true “incident detection rate,” but rather an 
indication of the relative proportion of Type I-1 cases in the sample.  Such a percentage 
turned out to be higher that the incident detection rates documented in Chapter 2 and may 
provide an indication that the selected sample was probably biased.  Nonetheless, the 
result in Table 5 is still useful because it provides at least some approximation to the 
relative frequency of cases that might be encountered in the actual population. 

• There were 15 Type I-3 or Type I-5 incidents (or 25 percent).  Of this total, 14 were false 
negatives (i.e., there was an incident but the incident detection algorithm did not detect 
them).  Considering that these two incident types are usually the most difficult to detect, 
it is highly unlikely that incident detection algorithm optimization alone could lower the 
number of false negatives significantly under this category. 

• There were 13 Type I-2 or Type I-4 incidents (or 22 percent).  Of this total, 10 were false 
negatives.  It is likely that incident detection optimization could reduce this number, 
although it is not clear at this point by how much. 

• There were 7 (or 11 percent) of incidents with critical lane data missing, which prevented 
the incident detection algorithm from generating alarms and also prevented an assessment 
of the feasibility to optimize the algorithm to increase the chances of detection.  Notice 
that 89 percent does not represent a true measure of data completeness, since some of the 
other cases also had missing data, but in those cases the missing data were not critical for 
incident detection.  Overall, in about 27 percent of all cases studied, there was at least one 
lane in the immediate vicinity of the incident with missing data.  Further, only 42 percent 
of all cases had complete data from the main sector as well as its downstream and 
upstream sectors.  Chapter 4 will explore the issue of data completeness in greater detail. 
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• There were 7 Type A-2 false positive (false alarm) cases (or 47 percent), which were 
associated with typical recurrent congestion conditions.  It is likely that optimizing the 
incident detection algorithm could lower the number of false alarms under this category, 
particularly during peak hours when most of the Type A-2 alarms tend to occur. 

• There were 3 Type A-1 false positive cases (or 20 percent), which were likely the result 
of abnormal lane detector data.  The most effective way to address this type of false 
alarm cases would be by introducing quality control tests to the lane data prior to their 
use by the incident detection algorithm. 

• There were 5 Type A-3 or Type A-4 false positive cases (or 33 percent), which were 
likely influenced by localized road geometric characteristics or perhaps by heavy 
entrance ramp traffic that could have caused sudden changes in speed and/or occupancy 
values.  In most cases, localized customization of incident detection parameters would be 
necessary to reduce the number of false alarms under this category. 

 

ALARM THRESHOLD MODIFICATION TOOL 

The analysis from the previous section led to the conclusion that adding multiple parameters to 
the incident detection algorithm at TransGuide would not necessarily result in more effective 
incident detection, particularly during congested periods, when the need is highest.  An 
additional challenge was that lane data time stamps from contiguous sectors were frequently 
asynchronous, making the matching process between corresponding records more difficult, 
therefore less feasible.  These reasons prompted an assessment of the feasibility of the second 
approach, i.e., varying alarm thresholds according to some pre-specified criteria (e.g., by time of 
day or based on traffic flow conditions).  To test this approach, the researchers developed an 
offline tool called Incident Detection Algorithm Tester (IDAT) that simulates the alarm 
generation process at TransGuide.  The purpose of the tool was to measure the impact of 
modifying speed alarm thresholds on the number and timing of alarms generated by the system. 
 
As Figure 22 shows, IDAT enables users to select one or more sectors of interest and a range of 
dates.  With this information, the tool reads archived 20-second lane data from the archived lane 
data database, calculates 2-minute moving average speeds, and “triggers” minor and major 
alarms if the moving averages fall below the pre-specified thresholds.  IDAT also enables users 
to export the minor and alarm data to comma-delimited text files.   
 
Conceptually, the process to generate alarms using moving average speed values based on pre-
specified thresholds is straightforward.  In practice, simulating archived alarm events can be 
quite challenging because, in reality, as long as TMC operators are managing active alarms, the 
system ignores (and therefore does not archive) any new alarms from any of the lane detectors 
within the affected sectors.  Floor personnel are supposed to close the alarms when they no 
longer need to manage the incidents, but the exact time when this happens varies considerably 
from case to case.  Frequently during recurrent congestion conditions, operators “iconize” alarm 
windows to prevent the system from generating new alarms for that sector, sometimes through 
the rest of the peak period or when the congestion ends.  Because of the uncertainty associated 
with the time an alarm effectively closes, it is not always possible to determine if the event 
archive contains all the alarms the system could have generated, therefore making it very 
difficult to fully replicate the archived alarm event database. 
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Figure 22.  Incident Detection Algorithm Tester Interface. 

 
To overcome this difficulty, the researchers introduced an artificial “minimum recovery time” to 
enable an alarm to close automatically if the calculated moving average value was consistently 
larger than the minor alarm threshold (i.e., the moving average “recovered”) for the duration of 
that minimum recovery time.  After a calibration phase that involved varying the minimum 
recovery time from 5 minutes to 60 minutes in 5-minute increments, the researchers selected a 
default value of 15 minutes.  The 15-minute recovery time produced a number of generated 
alarms that was closest to the number of alarms in the archive. 
 
The actual incident detection algorithm at TransGuide is extremely complex because it needs to 
deal with many special situations, e.g., records containing zero speeds or zero occupancy values, 
zero speeds and non-zero occupancy values, data from two different types of LCU software, and 
data gaps of various durations.  The researchers attempted to replicate the algorithm as closely as 
possible, but at some point it became evident that rather than achieving a 100 percent matching 
rate between simulated alarms and archived alarms, it was more important to develop a tool that 
would enable the measurement of changes in the number and timing of alarms in response to 
changes in alarm thresholds.  The simulation actually focused on detecting minor alarm 
thresholds because the incident detection algorithm at TransGuide simply modifies the status of 
already existing alarms when the moving averages drop below the major alarm threshold. 
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ANALYSIS AND RESULTS 

To conduct the analysis, the researchers selected 27 cases from the 75 cases identified 
previously.  The 27 cases were the only cases that involved incidents that the incident detection 
algorithm either detected or could have detected if the alarm thresholds were modified.  For each 
case, the researchers ran IDAT for a 24-hour period and recorded the number of alarms 
generated in addition to the corresponding time stamps.  The simulation involved using five 
different alarm threshold values: 25 mph (current minor alarm threshold), 30 mph, 35 mph, 40 
mph, and 45 mph.  To better visualize traffic conditions surrounding each of the 27 sample cases 
studied, the researchers plotted speed profiles covering the 24-hour period of analysis.  In 
addition to the speed profile, each plot included all alarms generated at different alarm threshold 
levels, as well as all reported incidents for that particular sector and day.   
 
As an illustration, Figure 23 shows the plot for one of the sample cases considered.  According to 
the speed profile, there was a decrease in speed at approximately 6:23 PM that turned out to be 
associated with an incident (as documented by a scenario database record executed at 6:31 PM).  
During the incident, speeds dropped from about 65 mph to 10 mph.  Figure 23 shows the speed 
data points IDAT selected for various alarm threshold values from 25 mph to 45 mph in 5-mph 
increments.  Interestingly, there was no record for an alarm in the event database.  However, the 
speed profile also shows that between 5 and 6 PM there was another drop in speed, which turned 
out to be associated with recurrent congestion (as documented by an alarm at about 5:15 PM and 
a congestion-related scenario deployed by TMC operators).  Figure 23 shows the corresponding 
speed data points IDAT selected.  There was no record for when TMC operators closed the 
congestion-related alarm, which raises the possibility that the alarm remained active long after 
the congestion ended at about 7:20 PM.  If the alarm was still active when the actual incident at 
6:23 PM happened, this would explain why there was no alarm record in the database. 
 
Using the plots facilitated the determination of incident detection times as well as an assessment 
of a number of factors (e.g., moving average speed structure, congestion levels, and data gaps).  
After plotting and analyzing all cases, the researchers calculated average number of alarms per 
24-hour period and average incident detection time for all incidents within the same period.  
Figure 24 shows the relationship between average number of alarms per 24-hour period, average 
incident detection time, and alarm threshold level.  For completeness, Figure 25 shows the effect 
of congestion levels on the average number of alarms per 24-hour period, and Figure 26 shows 
the effect of congestion levels on average incident detection time.  For completeness, all figures 
show both average values and relative changes with respect to the current 25-mph alarm 
threshold.   
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Figure 23.  Sample 24-hour Speed Profile with Alarms for Different Threshold Levels. 
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 (a) Number of Alarms and Detection Time 
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(b) Relative Change in Number of Alarms 
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Figure 24.  Impact of Alarm Thresholds on Number of Alarms and Detection Times. 
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(a) Number of Alarms 
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(b) Relative Change in Number of Alarms 
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Figure 25.  Impact of Congestion Levels on the Number of Alarms per Day. 
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(a) Detection Time 
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(b) Relative Change in Detection Time 
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Figure 26.  Impact of Congestion Levels on Average Detection Time. 
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An analysis of the data yields the following results: 
 

• As Figure 24 shows, as the alarm threshold level increased, the average number of alarms 
increased and the average incident detection time decreased.  The best-fit curves 
indicated a growth trend for number of alarms that was approximately exponential with 
relatively low growth rates for threshold levels between 25 mph and 35 mph and 
accelerated growth rates for threshold levels between 40 and 45 mph.  The best-fit curves 
also indicated a trend for average incident detection time that was more linear than the 
trend for number of alarms.  As a result, raising the alarm threshold from 25 mph to 45 
mph resulted in a 140 percent increase in the average number of alarms while average 
incident detection times decreased by about 60 percent.   

• The number of alarms in Figure 24 included both true alarms, i.e., alarms that 
corresponded to actual incidents on the ground, and false alarms, i.e., cases where there 
was an alarm but an incident did not actually happen.  For simplicity, the researchers 
decided to keep both types of alarms in the analysis because of the realization that TMC 
operators need to react to both true and false alarms anyway.  The percentage of false 
alarms increased as the alarm threshold increased.  For example, for a 25 mph alarm 
threshold, 42 percent of the alarms were false alarms.  For 35 mph, 47 percent of the 
alarms were false alarms.  For 40 mph, 54 percent of the alarms were false alarms, and 
for 45 mph, 74 percent of the alarms were false alarms.  This trend is an indication that 
one of the main effects of increasing the alarm threshold, particularly at the 40 mph or 45 
mph level, would be to increase the number of false alarms. 

• Figure 25 shows an impact of congestion levels on the number of alarms generated by the 
algorithm.  In general, there were more alarms under uncongested traffic conditions than 
under congested conditions.  However, readers should be aware that part of the reason 
was that uncongested traffic conditions spanned over a much longer period of time than 
congested traffic conditions.  Overall, the ratio of number of alarms during uncongested 
periods to number of alarms during congested periods was similar to the corresponding 
ratio of incidents recorded during the first phase of the research, which was based on 
some 20,000 incident data points (1).   

• Figure 26 shows there was a correlation between congestion levels and average incident 
detection times.  In general, incident detection took considerably longer (between 60 and 
100 percent longer) under congested traffic conditions than under uncongested traffic 
conditions.  Increasing the alarm threshold level resulted in a decrease in average incident 
detection times that was much more noticeable under uncongested traffic conditions than 
under congested traffic conditions.  As opposed to the number of alarms, there was not a 
decrease in incident detection time performance as the alarm threshold increased from 25 
mph to 45 mph, suggesting that performance in terms of incident detection times would 
generally improve by increasing the alarm threshold level.  Increase in performance 
would be more noticeable under uncongested conditions than under congested conditions. 

• Average incident detection time was about 4.3 minutes (260 seconds) at the 25-mph 
alarm threshold level, with average values ranging from about 4 minutes for uncongested 
traffic to 6 minutes for congested traffic.  While based on simulated runs, these numbers 
are not unreasonable considering the lag effect caused by the use of 2-minute moving 
average speeds and the time it takes for recorded speeds to physically drop below the 
alarm threshold.  As Figure 27 shows, moving average speeds introduce a lag to the 
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speed profile that is typically between 1 and 1.5 minutes, but that can be as large as 2 
minutes.  How fast speeds drop below the threshold depends on traffic conditions and the 
nature of the incident.  In the case of the speed profile shown in Figure 27, it took about 
40 seconds for the speed to drop from 40 mph to less than 25 mph. 

 

17:40 17:45 17:50 17:55 18:00 18:05 18:10
5

10

15

20

25

30

35

40

45

 Original 5302 Records

 Time

 S
pe

ed
 (m

ph
)

 20-sec Speed Values
 IDAT-generated 2-min

         Moving Averages

 Revised 5302 Records

 
Figure 27.  Comparison between 20-Second Speed Data and 2-Minute Moving Averages. 

 
• Figure 27 also shows points associated with record type 5302, which the archived event 

logs use to keep track of instances when the moving average speeds cross the 25-mph and 
20-mph thresholds while an alarm is active (i.e., any time after record type 5301 and 
before record type 5303).  Notice the significant offset associated with the original points 
(approximately 6.5 minutes), which forced the recalculation of their time stamps to 
properly align the data with the 2-minute average profile.  This observation is important 
because record types 5301 and 5303 (which provided the foundation for the matched 
event-incident dataset) are also affected by similar offset issues.  Unfortunately, a review 
of several incident and event cases revealed that offsets were not consistent (they varied 
anywhere from -1 to 4 minutes, or, as in the case of Figure 27, 6.5 minutes), limiting the 
applicability of a generic offset correction factor. 

• To obtain an estimate of actual average detection times, the researchers used 24 cases that 
included detected incidents from the 75 sample cases discussed in Chapter 3.  The 
original list included 26 cases, but the researchers eliminated 2 cases that did not have 
incident times clearly identified.  Since there is no record for actual incident time stamps, 
the researchers used archived lane data to identify approximate incident times and then 
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calculated incident detection times as the difference between event data alarm times 
(from the 5301 type records) and incident times.  The resulting average incident detection 
time was 7.6 minutes.  After taking into account the offset associated with the 5301 type 
records for each incident, the overall average detection time was 5.8 minutes. 

 

IMPLEMENTATION STRATEGIES 

From the previous section, 35 mph is the maximum minor alarm threshold value that could 
reasonably be expected without increasing the number of false alarms to an unacceptable level.  
Because increasing the minor alarm threshold can increase the number of alarms and decrease 
incident detection times, but the relative impact depends on traffic conditions, a number of 
implementation strategies might be possible: 
 

1. Do nothing.  In this scenario, TransGuide would maintain current alarm threshold 
values, i.e., 25 mph for minor alarms and 20 mph for major alarms, regardless of 
congestion level (or time of day).  Obviously, this scenario would not result in any 
improvements in incident detection capabilities. 

2. Increase alarm thresholds during peak hours only.  In this scenario, TransGuide 
would increase the minor alarm threshold to 35 mph during peak hours while 
maintaining the current 25-mph minor alarm threshold for the remaining hours.  This 
scenario would result in a modest increase in the number of alarms during peak hours 
and a significant (possibly around 20 percent) reduction in incident detection times.  It 
may be worth noting that not necessarily all traffic during peak hours is congested.  It is 
possible, therefore, that the net benefit for the entire network would be different—
potentially higher as discussed below.   

3. Increase alarm thresholds during off-peak hours only.  In this scenario, TransGuide 
would increase the minor alarm threshold to 35 mph during off-peak hours (i.e., when 
most uncongested traffic occurs) while maintaining the current 25-mph minor alarm 
threshold during peak hours.  This scenario would result in a significant increase in the 
number of alarms during off-peak hours (possibly around 30 percent) and a significant 
reduction in incident detection times (possibly around 35 percent).  Since at 35 mph the 
number of false alarms would not be much higher than at the current 25-mph level, it is 
reasonable to expect that most of the increase in the number of alarms would be in the 
form of true alarms.  Overall, Scenario 3 would yield a higher benefit than either 
Scenario 1 or 2. 

4. Increase alarm thresholds for the entire day.  In this scenario, TransGuide would 
increase the minor alarm threshold to 35 mph throughout the day, regardless of 
congestion level (or time of day period).  This scenario would result in a significant 
increase in the number alarms during off-peak hours (possibly around 30 percent), a 
modest increase in the number of alarms during peak hours, a significant reduction in 
incident detection times during off-peak hours (possibly around 35 percent), and a 
significant reduction in incident detection times during peak hours (possibly around 20 
percent).  The overall impact would be a 10 percent increase in the number of alarms (at 
least half of which would be in the form of true alarms) and a 30 percent decrease in 
incident detection times.  Overall, Scenario 4 is the most favorable. 
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A question that might surface at this point is whether it would be feasible (or even necessary) to 
use archived lane data to modify alarm thresholds for individual detectors.  Presumably, one of 
the expected benefits of using archive lane data would be to develop the ability to customize 
alarm thresholds for different time periods based on the actual history of speed data (in the case 
of speed-trap detectors) or occupancy data (in the case of non speed-trap detectors).  Since 
significant variations from free flow conditions typically occur during peak hours, the ability to 
customize alarm thresholds would serve its purpose primarily during those hours of the day, not 
during off-peak hours when traffic usually travels unimpeded.  However, as the analysis above 
points out, modifying alarm thresholds would be more beneficial during off-peak hours than 
during peak hours.  During off-peak hours, using archive lane data to customize alarm thresholds 
does not appear to be particularly promising because speeds during those time periods are for the 
most part free flow speeds and, therefore, predictable.  From this perspective, there would not be 
considerable value in using archived data to customize alarm thresholds. 
 
An argument sometimes presented to justify using archived data to customize alarm thresholds is 
that customized lower alarm threshold levels during peak hours can reduce the number of false 
alarms.  It is true that using a lower alarm threshold during peak hours could result in a lower 
number of false alarms (according to the analysis above, some 5 percent when decreasing the 
alarm threshold from 35 to 25 mph or 32 percent when decreasing the alarm threshold from 45 to 
25 mph).  However, the trade-off would be considerably longer incident detection times (around 
50 percent when decreasing the alarm threshold from 35 to 25 mph or 130 percent when 
decreasing the alarm threshold from 45 to 25 mph) and potentially a reduction in the number of 
true alarms.  Overall, it appears that the benefit in terms of lower number of false alarms would 
not compensate the trade-off in terms of longer incident detection times.  These reasons lead to 
the conclusion that not even during congested periods it would be necessary to either use 
archived lane data or use a minor alarm threshold lower than 35 mph. 
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CHAPTER 4.  ARCHIVED ITS DATA QUALITY AND COMPLETENESS 

This chapter summarizes the work completed to address quality control and completeness issues 
associated with archived ITS data at TransGuide.  It includes a description of quality control 
tests, the results of an analysis conducted on some 3.4 billion 20-second lane detector data 
records from the TransGuide TMC, and a discussion of ITS data completeness issues. 
 

DATA QUALITY ASSESSMENT 

Methodology 

While examining archived ITS data for the analysis during the first phase of the research, the 
researchers encountered situations such as erroneous data (e.g., incorrect scenario type 
characterization), missing data (in relation to the need to do data imputation), and comparability 
of ITS data to similar data sources (in relation to the normalization of the number of incidents 
using traffic volume data) (1).  This prompted a data quality control analysis and the 
development of a preliminary set of quality control tests for detector data.  During the second 
phase of the research, the researchers extended the first phase data quality control analysis and 
evaluated some 3.4 billion 20-second lane detector data records from March 2002 to April 2004.  
Using this large sample size was beneficial because it enabled the observation of quality control 
trends as TransGuide was installing new detectors on the ground. 
 
Previous research has reported extensively on the need to implement quality control programs 
for ITS data to address critical issues such as suspicious or erroneous data, nature and extent of 
missing data, and accuracy and comparability of ITS data to similar data sources (23, 24).  The 
quality control tests developed as part of this research built on those efforts, although, by 
necessity, the quality control tests underwent modifications to suit the needs of the research.  
Table 6 shows a preliminary list of quality control tests the researchers evaluated.  In general, the 
tests in Table 6 apply to two types of records: “valid” records and “abnormal” records.  “Valid” 
records are records with valid volume and occupancy values but invalid “by design” speed 
values, e.g., -1 in the case of non-speed-trap detectors located on entrance and exit ramps, or zero 
in the case of main lane detectors when no vehicle has passed the detection zone during the 
detection time period.  “Abnormal” records are records with “abnormal” combinations of speed, 
volume, and percent occupancy values (e.g., zero speed, zero volume, but larger than zero 
occupancy) that might result from causes such as faulty detectors or faulty LCU software logic.  
It may be worth noting that two types of LCU and associated software are currently operational 
at TransGuide: Naztec LCUs and TxDOT Traffic Operations Division (TRF) LCUs (also called 
Austin LCUs).  It was therefore of interest to determine if different types of LCU produced 
different quality control test results.  As a reference, Figure 28 shows the location of detectors 
controlled by Naztec LCUs and the location of detectors controlled by TRF LCUs. 
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Table 6.  Preliminary Speed, Volume, and Occupancy Quality Control Tests. 
Quality Control Name and Description Test Action 

First-Level Tests 
1a Record format error 

Record is in incorrect format 
Record is in incorrect format Move record to dump 

file 
1b Duplicate records 

 
Detector ID and date/time stamp are identical Move duplicate record 

to dump file 
Second-Level Tests 

2a Extreme values 
Unknown cause 

Speed < -1 or Speed > 100 
Volume < 0 or Volume > 3000 
Occupancy < 0 or Occupancy > 100 

Flag record 

2b Entrance or exit ramp: Valid record Speed = -1 
0 < Volume ≤  3000 
0 < Occupancy ≤  100 

Flag record 
Set Speed = <null> 

2c Entrance or exit ramp: No vehicle present 
No vehicle passed the detection zone during 
the detection time period 

Speed = -1 
Volume = 0 
Occupancy = 0 

Flag record 
Set Speed = <null> 

2d Entrance or exit ramp: Volume is zero 
when occupancy is not zero 

Speed = -1 
Volume = 0 
0 < Occupancy ≤  100 

Flag record 
Set Speed = <null> 
 

2e Entrance or exit ramp: Occupancy is zero 
when volume is not zero 
 

Speed = -1 
0 < Volume ≤  3000 
Occupancy = 0 

Flag record 
Set Speed = <null> 
 

2f Main lane: No vehicle present 
No vehicle passed the detection zone during 
the detection time period 

Speed = 0 
Volume = 0 
Occupancy = 0 

Flag record 

2g Main lane: Speed and volume are zero 
when occupancy is not zero 
 

Speed = 0 
Volume = 0 
0 < Occupancy ≤  100 

Flag record 

2h Main lane: Speed and occupancy are zero 
when volume is not zero 

Speed = 0 
0 < Volume ≤  3000 
Occupancy = 0 

Flag record 

2i Main lane: Speed trap not functioning 
properly 
 

Speed = 0 
0 < Volume ≤  3000 
0 < Occupancy ≤  100 

Flag record 

2j Main lane: Volume and occupancy are zero 
when speed is not zero 
 

0 < Speed ≤  100 
Volume = 0 
Occupancy = 0 

Flag record 

2k Main lane: Volume is zero when speed and 
occupancy are not zero 
 

0 < Speed ≤  100 
Volume = 0 
0 < Occupancy ≤  100 

Flag record 

2l Main lane: Occupancy is zero when speed 
and volume are not zero 
 

0 < Speed ≤  100 
0 < Volume ≤  3000 
Occupancy = 0 

Flag record 

 
Given the extremely large number of lane records in the database, the researchers found it 
computationally more efficient to add quality control flag values to an indexed quality control 
field as the script was populating the lane data table rather than running queries after the fact 
using volume, speed, and occupancy data to assess quality control flag values.  Using an indexed 
quality control field accelerated the query building process considerably, but the downside was 
that the researchers had to make preliminary assumptions with respect to certain thresholds.  For 
example, in the case of the 3,000 volume threshold, the researchers examined sample lane 
detector data files and found a few cases where there were gaps in the data and volume data after 
the gaps that were “too” large for what would be typical of a 20 second period (suggesting that 
the LCU apparently had not reset the volume counter).  Since there was no way of knowing 
ahead of time if the volume data would be necessarily invalid, the decision was to use a large 
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enough threshold and examine the results once all the quality control flag data were in the 
database.  Similarly, in the case of the 100 mph speed threshold, since there was no way of 
knowing ahead of time if a speed value between 90 and 100 mph was an anomaly or simply the 
result of extremely aggressive driving, the decision was to use a large enough speed threshold 
and examine the results after all the data were in the database.  The following section describes 
the results of these analyses. 
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Figure 28.  Detectors Controlled by Naztec LCUs and TRF LCUs. 
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Quality Control Analysis 

First-Level Tests 

Because of the structure of the flat file lane data archive (Figure 1), there were no records that 
failed quality control test 1a (record format errors).  In the case of quality control test 1b 
(duplicate records), the analysis detected a few instances of duplicate detector ID and date/time 
stamp records whenever the time changed from central daylight time (CDT) to central standard 
time (CST) in October.  Internally, TransGuide uses the Unix time function to assign unique time 
stamps to events.  However, the lane data archive does not use the Unix time function, relying 
instead on local date/time stamps (Figure 4).  As a result, when time changes back one hour at 
2:00 AM the last Sunday in October, the time stamps of the records following that change begin 
at 1:00 AM.  Since the archive already contains lane records with time stamps beginning at 1:00 
AM (from the previous hour), there is a very good chance that some, if not all, of the new 
records will contain duplicate detector ID/time stamp information.  In practice, this phenomenon 
does not always happen because time stamps sometimes fluctuate by a second or two (i.e., the 
time interval is not always exactly 20 seconds).  If this happens when the time changes one hour, 
the database will not exactly contain duplicate records—although there is still a problem because 
it can be very difficult to sort the records and, consequently, recreate the time series reliably. 
 
Interestingly, another implication of the yearly time change is that in April, when time changes 
forward one hour from CST to CDT, there is a one-hour gap in the lane data archive. 

Second-Level Tests 

Table 7 summarizes the second-level quality control tests on some 3.4 billion 20-second speed, 
volume, and occupancy data from March 1, 2002, through April 30, 2004.  An analysis of the 
data yields the following results: 
 

• Some 1.6 billion speed, volume, and occupancy records had a quality control flag, 
accounting for nearly 48 percent of the 3.4 billion lane data record set.  Approximately 
1.5 billion flagged records were “valid” records and the remaining 126 million flagged 
records were “abnormal” records.  The “valid” flagged records had a speed value of -1 or 
0, but the volume and occupancy values were most likely valid.  A total of 126 million 
“abnormal” records translate to an overall “abnormal” record rate of about 3.7 percent. 

• Of the 126 million “abnormal” records, the vast majority (106 million or 84 percent) had 
flag 2j (speed > 0, volume = 0, and occupancy = 0).  The remaining 11 flags accounted 
for 16-percent of the “abnormal” records. 

• There were significant differences between TRF LCU records and Naztec LCU records.  
For example, even though 32 percent of LCUs were TRF LCUs, the percent of 
“abnormal” records associated with detectors controlled by TRF LCUs was 84 percent.  
The vast majority of these records had flag 2j (speed > 0, volume = 0, and occupancy = 
0), with practically no records under the other flag categories (except flag 2a).  In 
contrast, Naztec LCU records, even though they were the minority, had representation in 
every single flag category.  Some 54 percent of Naztec LCU records had flag 2i (speed = 
0, volume > 0, occupancy > 0).  Interestingly, while only 433 Naztec LCU records had 
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flag 2a (extreme values: speed > 100, volume > 3,000, occupancy > 100), more than 
157,000 TRF LCU records had that flag. 

• The differences between TRF LCU records and Naztec LCU records point to other 
important differences between the two types of LCU software.  For example, there were 
369 million Naztec LCU records with flag 2f (speed = 0, volume = 0, and occupancy = 
0).  In contrast, there was not a single TRF LCU record with that flag.  The reason is that 
the TRF LCU software does not generate lane detector records if no vehicles cross the 
associated detectors during the 20-second recording interval.  While the result is a more 
compact lane data repository, it makes it practically impossible to recreate what actually 
happened in the field, since a missing record does not automatically mean that no 
vehicles crossed the detectors.  To address this limitation, it would be advisable to modify 
the TRF LCU software so that it can generate null speed (to avoid problems associated 
with the use of zero speeds), zero volume, and zero occupancy records when no vehicles 
are present during the 20-second recording interval. 

 

Table 7.  Summary of 20-Second Lane Records Flagged from March 2002 to April 2004. 
TRF LCU Naztec LCU Quality 

Control 
Flag 

“Valid” 
Records 

“Abnormal” 
Records 

“Valid” 
Records 

“Abnormal” 
Records 

2a   157,470 <1%   433 <1%
2b 172,315,686 17%   464,394,214 20%   
2c 186,139,423 18%   295,773,277 13%   
2d   2 <1%   1,510,386 <1%
2e       2,211,955 <1%
2f     368,902,192 16%   
2g       1,563,112 <1%
2h       1,946,840 <1%
2i       10,935,197 <1%
2j   105,533,470 10%   226,056 <1%
2k   46 <1%   24,369 <1%
2l       1,917,923 <1%

Subtotal 358,455,109 34% 105,690,988 10% 1,129,069,683 48% 20,336,271 1%
Total 464,146,097          45% 1,149,405,954          49% 

Total Flags 1,613,552,051           48% 
Lane 

Records 1,042,089,780 2,351,336,786 

Total Lane 
Records 3,393,426,566 

 
The researchers also examined spatial trends in the distribution of quality control flags.  As 
Figure 29, Figure 30, and Figure 31 show, in several cases the spatial distribution was roughly 
uniform, although there were some significant exceptions.  For example, in the case of flags 2d, 
2e, 2g, 2h, 2i, and 2l, there was a higher concentration of flagged records in the central part of 
town than on or outside Loop 410.  Likewise, in the case of flag 2j, there was a higher 
concentration of flagged records on US 90 west of downtown than in other parts of town. 
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Blue squares represent Naztec LCU detectors.  Red circles represent TRF LCU detectors. 
Symbols represent ratio of number of flagged records to number of potential records per detector.  Symbol sizes are relative to 
each map and are not necessarily comparable across maps. 

Figure 29.  Spatial Distribution of Quality Control Records (Flags 2a – 2d). 
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Blue squares represent Naztec LCU detectors.  Red circles represent TRF LCU detectors. 
Symbols represent ratio of number of flagged records to number of potential records per detector.  Symbol sizes are relative to 
each map and are not necessarily comparable across maps. 

Figure 30.  Spatial Distribution of Quality Control Records (Flags 2e – 2h). 
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Blue squares represent Naztec LCU detectors.  Red circles represent TRF LCU detectors. 
Symbols represent ratio of number of flagged records to number of potential records per detector.  Symbol sizes are relative to 
each map and are not necessarily comparable across maps. 

Figure 31.  Spatial Distribution of Quality Control Records (Flags 2i – 2l). 
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In addition to spatial variations, the researchers examined temporal variations in the distribution 
of quality control flags.  As Figure 32 shows, the distribution of quality control flags varied 
widely throughout the day.  In most cases, the highest concentration of flagged records occurred 
at night, when there was relatively little traffic and, consequently, there was a higher chance 
either for time intervals with no vehicles crossing the detectors (e.g., 2f) or for isolated detector 
readings producing abnormal speed, volume, and occupancy combinations (e.g., flags 2g, 2h, 2i, 
2j, 2k, and 2l).  Not surprisingly, most records associated with flag 2b (which were valid records, 
except the speed was recorded as -1) happened during the day, when most of the traffic took 
place.   
 
TRF LCU flag 2a records yielded an interesting pattern characterized by a peak at about 6 AM, a 
minor dip at about 8 AM, a second peak at 10 AM, a steady decline until about 5 PM, a third 
peak at 9 PM, and a decline until 4 AM.  Naztec LCU flag 2a records produced a completely 
different pattern, but the sample size was very small, making the observed trend unreliable.  The 
trend for TRF LCU flag 2a records was interesting because flag 2a involved extreme value 
records (speed > 100 mph, volume > 3,000, occupancy > 100 percent).  Anecdotally, TransGuide 
officials have indicated that during evening hours, TRF LCUs sometimes produce records with 
extremely high values, particularly speeds.  The flag 2a trend in Figure 32 confirms that 
observation, although it also points to other times of the day when extreme value records are also 
relatively high (e.g., from 6 – 10 AM). 
 
To assess the feasibility of the quality control thresholds (100 mph for speed, 3,000 for volume, 
and 100 percent for occupancy rate), the researchers analyzed the speed, volume, and occupancy 
data distributions of the 3.4 billion 20-second lane records in the database (actually 2.2 billion in 
the case of speed data records because not all lane records were from speed-trap detectors).  
Figure 33 summarizes the results of the analysis.  Figure 33a shows that most records were 
between 1 and 75 mph (typical of freeway driving conditions), with a rapidly decreasing trend 
between 75 and 93 mph, and a few lingering records above 93 mph.  Three data points stood out: 
0, 87, and 94 mph.  At first sight, the trend between 1 and 5 mph would suggest the number of 
zero speed records to be around 100,000 (presumably, actual number of records where vehicles 
physically stopped).  However, it is more likely that the vast majority of the nearly 400 million 
zero speed records—all of them associated with Naztec LCUs—resulted from cases where no 
vehicles crossed the detectors.  In the case of the 87- and 94-mph records, the trends clearly 
showed an anomaly, but it was unclear from the analysis what could have caused that anomaly.  
Overall, Figure 33a suggests a reasonable upper speed threshold of about 93 mph (which would 
translate to about 0.01 percent of records exceeding that threshold).  By comparison, the 
equivalent percentages for 90 and 100 mph thresholds are 0.1 and 0.007 percent, respectively. 
 
Figure 33b shows that most records had volumes lower than 10 vehicles, with a rapidly 
decreasing trend between 10 and 300, and a few lingering records above 300.  By and large, 
Figure 33b suggests a reasonable upper volume threshold to be around 18 (which would translate 
to 0.1 percent of records exceeding that threshold).  By comparison, the equivalent percentage 
for 37, 100, and 3,000 would be 0.01, 0.002, and 0.000003 percent, respectively.  It may be 
worth noting that 18 vehicles over a 20-second period are equivalent to a flow rate of 3,240 
vehicles per hour, which is higher than the maximum hourly flow rate of 2,400 passenger cars 
per hour per lane normally associated with freeway traffic at capacity. 
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Figure 33c shows that, with the exception of a handful of records, practically all records had 
occupancy rates less than or equal to 100 percent.  Interestingly, there was a jump between 99 
and 100 percent, which the analysis could not explain.  Overall, Figure 33c suggests that a 
reasonable upper occupancy threshold is 99 percent (which would translate to 0.006 percent of 
records exceeding that threshold).  By comparison, the equivalent percentage for 100 percent 
occupancy rate is 0.0000004 percent. 
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Figure 32.  Temporal Distribution of Quality Control Records. 
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(a) Speed Data Distribution 
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(b) Volume Data Distribution 
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(c) Occupancy Data Distribution 
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Figure 33.  Speed, Volume, and Occupancy Data Distributions. 
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DATA COMPLETENESS ASSESSMENT 

The researchers conducted a data completeness analysis to complement the quality control 
analysis presented in the previous section.  The completeness analysis included an aggregate 
evaluation of completeness by LCU server as well as a detailed evaluation of completeness at the 
individual detector level.   
 
The purpose of the aggregate completeness analysis at the LCU server level was to determine 
any trends that could be attributed to system-wide causes rather than individual detectors.  
TransGuide currently operates six LCU servers (Table 8).  With the exception of Server 6, which 
started processing detector data in November 2003, the remaining servers were supposed to be 
operational and process data during the 792-day analysis period from March 1, 2002, through 
April 30, 2004.  Table 8 shows there were several days during this analysis period when the 
archive did not include any data.  Overall, the completeness rate—measured as number of days 
with data to total number of potential days with data—varied from 95 to 100 percent. 
 

Table 8.  Summary Data Completeness Results by LCU Server. 
Statistic Server 0 Server 1 Server 2 Server 3 Server 4 Server 5 Server 6 

Count 792 790 752 781 781 781 160 
Max No. of Days 792 792 792 792 792 792 168 
Days with No Data 0 2 40 11 11 11 8 
Completeness Rate 100% 99.7% 94.9% 98.6% 98.6% 98.6% 95.2% 
No. of Records 744,776,647 995,158,370 614,461,919 393,337,241 294,779,400 292,259,242 62,881,334
Daily Median 938,913 1,269,771 826,466 533,595 402,643 362,357 399,601
Daily Average 940,375 1,259,694 817,104 503,633 377,438 374,212 393,008
Daily Maximum 1,131,003 1,378,409 1,181,130 638,521 477,290 469,178 423,382
Daily Minimum 504,519 103,095 53,609 199,558 118,722 139,183 146,807
Standard Deviation 104,864 78,724 135,003 92,929 82,284 54,524 30,771
Coefficient of Variation 11.2% 6.2% 16.5% 18.4% 21.8% 14.6% 7.8% 
 
Table 8 also shows a wide range in the total number of records per day associated with each 
server, suggesting the possibility of large gaps in the data.  To measure this effect, the 
researchers looked at the history of records associated with individual lane detectors over the 
792-day analysis period.  For each detector, the researchers determined the earliest date/time 
stamp with data and the latest date/time stamp with data to calculate the maximum number of 
potential records that could be associated with that detector.  The researchers also counted the 
effective number of records for each detector and then calculated a completeness rate.   
 
As Figure 34 shows, very few detectors had high completeness rates.  For example, only about 
35 percent of detectors had a completeness rate of 95 percent or higher.  Likewise, very few 
detectors had low completeness rates.  For example, only about 10 percent of detectors had a 
completeness rate of 50 percent or lower.  On average, the completeness rate for all detectors 
was 80 percent.  There was a significant difference between TRF LCU detectors and Naztec 
LCU detectors.  The overall completeness rate for Naztec LCU detectors was higher than the 
overall completeness rate for TRF LCUs (84 percent versus 71 percent, respectively).  This 
difference is reasonable considering that TRF LCUs do not generate records when vehicles do 
not cross the detectors during the 20-second polling period.   
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Figure 34.  Detector Data Completeness Summary. 

 
As Figure 35 shows, the spatial distribution of completeness rates by detector was not uniform.  
In general, there was more variability in the case of Naztec LCUs than in the case of TRF LCUs, 
with a larger number of Naztect LCU detectors having very low completeness rates.  This result 
is consistent with the trend shown in Figure 34 for detectors having completeness rates less than 
50 percent.  Even though the spatial distribution of completeness rates was more uniform for 
TRF LCUs, there were a few detectors, particularly on US 90 west of downtown, that had very 
low completeness rates. 

Data Completeness during Incidents 

Following the characterization of sample cases in Chapter 3, the researchers noticed what 
appeared to be more gaps in the lane data during incidents than during normal traffic conditions.  
This observation prompted an analysis to test the data gap hypothesis.  For the analysis, the 
researchers calculated completeness rates for incident and non-incident periods using 53 cases 
that included detected incidents and false negatives from the 75 sample cases discussed in 
Chapter 3.  The original list included 60 cases, but the researchers eliminated seven cases that 
had missing data before the incidents happened.  To calculate completeness rates during 
incidents, the researchers included all the lanes associated with the sector where the incident 
occurred as well as the lanes associated with the upstream and downstream sectors.  To calculate 
completeness rates during non-incident periods, the researchers used the time windows that 
characterized the selected incidents (essentially incident start time and incident end time) and 
queried the archived database to gather several days’ worth of non-incident lane data before and 
after the dates when the incidents occurred. 
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Figure 35.  Spatial Distribution of Completeness Rates. 

 
Table 9 summarizes the results.  Because TRF LCUs and Naztec LCUs treat zero-speed, zero-
occupancy data differently, the results include two tabulations: one assuming that zero-speed, 
zero-occupancy data were valid, and another one assuming that zero-speed, zero-occupancy data 
were invalid.  For 27 cases (or about 51 percent), the completeness rate during incidents was 
significantly lower than during non-incident periods.  This result assumed zero-speed, zero-
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occupancy data to be valid.  When zero-speed, zero-occupancy data were treated as invalid data, 
and therefore excluded from the analysis, it turned out that 32 out of 53 cases (or about 60 
percent) had a completeness rate during incidents that was significantly lower than during non-
incident periods.  Notice that TRF LCUs resulted in a higher proportion of cases with 
completeness rates during incidents lower than during non-incident periods (e.g., 65 percent 
versus 40 percent, assuming zero-speed, zero-occupancy data to be valid). 
 

Table 9.  Data Completeness Results for Incident vs. Non-Incident Periods. 
(a) For Naztec LCUs, zero-speed, zero occupancy observations are counted as valid observations 

LCU Type Total No. of Cases No. of Cases with Completeness 
Rate during Incidents lower 
than Non-Incident Periods 

Ratio 

TRF LCU 23 15 65% 
Naztec LCU 30 12 40% 
Both LCU Types 53 27 51% 

 
(b) For Naztec LCUs, zero-speed, zero occupancy observations are counted as invalid observations 

LCU Type Total No. of Cases No. of Cases with Completeness 
Rate during Incidents lower 
than Non-Incident Periods 

Ratio 

TRF LCU 23 15 65% 
Naztec LCU 30 17 57% 
Both LCU Types 53 32 60% 

 
The researchers also calculated overall completeness rates by merging all the lane data for the 53 
sample cases into two separate groups: one for incidents and the other one for non-incident 
periods.  The overall completeness rate for incident periods was 64 percent as opposed to 78 
percent for non-incident periods (which was very close to the 80 percent overall completeness 
rate for all detectors, as the previous section documented).  After excluding zero-speed, zero-
occupancy from the analysis, the difference was even greater: 52 percent for incident periods 
versus 70 percent for non-incident periods.  Unfortunately, during the course of the research it 
was not possible to explore in detail potential reasons that could explain why data gaps seemed 
to be more prevalent during incidents.  It is possible that traffic flow during incidents can be 
erratic in ways that the LCU software cannot process properly, causing it to simply reject more 
records than normal. 

Influence of Lane Closures on ITS Data Completeness 

TransGuide maintains a database to keep track of lane closure events, which includes data 
elements such as route name and direction, beginning and ending crossing streets, beginning and 
ending dates and times, nature of the work being performed, number of lanes affected, associated 
ramps affected, and detour information.  The lane closure database also includes information in 
the form of latitude-longitude pairs associated with individual lane closure events.  Figure 36 
shows a sample of records from that database.   
 
The researchers attempted to link the lane closure database to the prototype geodatabase of ITS 
features developed in this project in an effort to establish a correlation between lane closure data 
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and potential gaps in the lane data repository.  Manual matching of individual lane closure events 
and lane data records is certainly possible because, with the route information and beginning and 
ending crossing streets from the lane closure database, it would be possible to manually identify 
the TransGuide sectors of interest.  With the beginning and ending dates and time stamps, it 
would then be possible to run a query on the lane data archive to gather all the corresponding 
lane data records and determine completeness rates.  For example, for the lane closure event on 
US 90 between SH 151 and Acme Road (Figure 36), the researchers identified five lane detectors 
on sector SECT-0090W-568.156 that could be affected by the closure.  For the lane closure 
duration (from August 5, 2002, at 10:00 PM to August 4, 2002 at 5:00 AM), they gathered all the 
corresponding lane detector speed, volume, and occupancy records and calculated the 
corresponding completeness rates: 25, 43, 42, 43, and 25 percent for lanes 1 (left most), 2, 3, 4, 
and 5 (right most), respectively.  The average completeness rate for the sector was 36 percent.  
Notice that, according to the lane closure database, the lane closure affected the two right lanes.  
However, the lane data archive showed a completeness rate for those lanes that was similar to the 
other three lanes. 
 

 
Figure 36.  Sample Lane Closure Database Records. 

 
Interestingly, the overall completeness rates for the same lanes from March 2002 – April 2004 
were 46, 52, 63, 71, and 60 percent (or 58 percent overall for the sector).  At first sight, this 
result could suggest that the lane closure event was responsible for the lower completeness rates.  
However, all the detectors in this part of town are controlled by TRF LCUs, which do not report 
data if no vehicles cross the detectors during the corresponding 20-second recording intervals.  
Since the lane closure took place at night, when there was less traffic and consequently fewer 
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lane data records in the database, identifying the impact of the lane closure on the completeness 
rate became much less clear.  As a reference, the overall completeness rates for the same lanes 
using data from two different random nights when there were no incidents and no lane closures 
were 21, 0.2, 12, 61, and 50 percent (or 29 percent overall for the sector). 
 
In general, while the process to obtain completeness rates using the lane closure database as a 
data resource is conceptually simple, it is not trivial to execute, particularly if the objective is to 
be able to match lane closure data and archived lane data automatically.  As Figure 36 shows, the 
field containing the highway name in the lane closure database does not follow consistent 
naming conventions, which would make it very difficult to use automated scripts to extract road 
name information reliably.  As a result, there are many instances of records that refer to the same 
highway, but use very different spelling, e.g., I 10, I  10 (i.e., two spaces between “I” and “10”), 
IH 10, IH-10, IH 10E, IH 10W, IH 10E/W, IH 10EAST, IH 10EB, IH 10WEST, and IH 10WB.  
It is not always clear whether the first street named corresponds to the corridor along which the 
lane closure takes place.  Further, the road name field frequently uses local street names instead 
of state highway names and does not always make a clear distinction between main lanes and 
frontage roads.  A similar difficulty arises from the street names representing the beginning and 
ending locations, which means that an automated procedure would have very low chances of 
success not just matching corridors, but also matching beginning and ending locations. 
 
Because the lane closure database included latitude-longitude data, the researchers generated a 
layer in the GIS to represent the location associated with every lane closure in the sample.  
Figure 37 shows the resulting map.  At first sight, it appeared that the mapped locations would be 
adequate to match lane closure locations to sectors.  However, a zoomed-in view quickly 
revealed significant discrepancies between lane closure locations and ITS infrastructure locations 
that made it extremely difficult to derive meaningful information consistently.  For example, 
because lane closure locations only provided single data points representing entire lane closure 
events, it was not clear from the map whether the points represented the beginning, the end, or 
any point somewhere in the middle of the lane closure events.  As an illustration, all the 
highlighted road closure events in Figure 37 included US 90 and 36th Street in the description.  
With only that information provided, however, it would be very difficult to (a) determine the 
correct relationship between lane closure points, lane closure event extents, and 36th Street; and 
(b) map the lane closure points to the correct ITS detectors and sectors. 
 
The zoomed-in view in Figure 37 highlighted another challenge.  In general, neighborhood 
operations facilitate the mapping between features in a GIS environment.  However, the success 
in using those procedures depends, among other factors, on the positional accuracy of the various 
features involved.  Highly inaccurate features dramatically increase the probability that features 
will be incorrectly mapped.  As an illustration, several of the points in Figure 37 could be 
mapped to the wrong sector (e.g., a point representing a lane closure on the eastbound direction 
would be mapped to a westbound sector), because their physical location on the map is not 
consistent with the corresponding database description. 
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In its present form, the TransGuide lane closure database is not very useful to help assess ITS 
data completeness.  To make the lane closure database useful for this purpose, it would be 
necessary to modify its database structure and data entry procedures.  It may be worth noting that 
the Highway Condition Reporting System (HCRS) already enables districts to enter roadway 
closure data that become part of the official TxDOT highway condition data repository (26).  
Because there are two separate data entry processes entering very similar information (one for 
the TransGuide lane closure database and the other one for HCRS), it would be advisable to 
develop a single data entry interface that could address the needs of both systems.  If this is not 
feasible or practical, at the very least it would be advisable to modify the TransGuide lane 
closure database.  The following is a list of potential changes that would be necessary: 
 

• Replace the highway and limit fields with at least three fields, where the first field 
represents the route where the lane closure will take place, the second field represents the 
beginning point, and the third field represents the ending point. 

• In the data entry form, replace text boxes with drop-down lists to ensure compliance with 
pre-established roadway naming conventions.  Effectively, this strategy would eliminate 
the problem resulting from using a multiplicity of names to represent the same corridor.  
To facilitate data entry into HCRS, the drop-down lists should use official TxDOT route 
ID designations, e.g., “IH0010” instead of “IH 10” or “IH-10,” or “US0090” instead of 
“US 90.” 

• Develop a different procedure to represent lane closure locations.  Single point coordinate 
data pairs to represent lane closure locations are inadequate.  Since there is a one-to-many 
relationship between lane closure events and highway segments or sectors, the required 
change would involve using either multiple coordinate data pairs or the ability to 
associate several linear features with lane closure events.  Using online mapping 
techniques (e.g., using Arc Internet Map Server (ArcIMS), which is part of TxDOT’s 
core GIS architecture) would enable the complete representation of road closure events 
by interactively clicking on the affected highway segments or sectors.  This approach 
would also enable explicit modeling of lane closures affecting both directions of travel. 

 
To implement the changes to the lane closure database it might be necessary to take into account 
requirements included in the TxDOT GIS architecture (27), in particular those that pertain to the 
integration of absolute location measures and relative location measures and temporal and spatial 
querying. 
 

REVISED DATA QUALITY CONTROL TESTS 

The results from the previous sections confirmed the need to introduce some changes to the 
preliminary list of quality control tests shown in Table 6.  Table 10 shows the revised list.  A 
summarized description of the new table structure follows: 
 

• Speed threshold.  The updated threshold is 93 mph.  Based on the results of the analysis, 
recorded speeds exceed this threshold 0.01 percent of the time. 

• Volume threshold.  The updated threshold is 18 vehicles.  On average, recorded volumes 
exceed this threshold 0.1 percent of the time. 
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Table 10.  Revised Speed, Volume, and Occupancy Quality Control Tests. 

Quality Control Name and 
Description Test (LCU Subsystem Level) Action before Database 

Archival 

Further Action before 
Future Use (Query 

Level after Archival) 
First-Level Tests 

1a Record format error 
 

Record is in incorrect format Move record to dump 
file 

 

1b Duplicate records 
 

Detector ID and date/time stamp are 
identical 

Flag record 
Add system time 
function date/time stamp 

 

Second-Level Tests 
2a Extreme values Speed < -1 or Speed > 93 

Or (Volume < 0 or Volume > 18) 
Or (Occupancy < 0 or Occupancy > 99) 

Flag record Set Speed = <null> 
Set Volume = <null> 
Set Occupancy = <null>
Impute missing values 1 

2b Entrance or exit ramp (valid 
record) 

Speed = -1 
0 < Volume ≤  18 
0 < Occupancy ≤  99 

Flag record 
Set Speed = <null> 

 

2c Entrance or exit ramp: No 
vehicle present (valid record) 
 

Speed = -1 
Volume = 0 
Occupancy = 0 

Flag record 
Set Speed = <null> 

 

2d Entrance or exit ramp: Volume 
is zero when occupancy is not 
zero 

Speed = -1 
Volume = 0 
0 < Occupancy ≤  99 

Flag record 
Set Speed = <null> 
 

Set Volume = <null> 
Set Occupancy = <null>
Impute missing values 1 

2e Entrance or exit ramp: 
Occupancy is zero when 
volume is not zero 

Speed = -1 
0 < Volume ≤  18 
Occupancy = 0 

Flag record 
Set Speed = <null> 
 

Set Volume = <null> 
Set Occupancy = <null>
Impute missing values 1 

2f Main lane: No vehicle present 
(valid record) 
 

Speed = 0 or Speed = <null> 
Volume = 0 
Occupancy = 0 

Flag record 
Set Speed = <null> 
 

 

2g Main lane: Speed and volume 
are zero when occupancy is not 
zero 

Speed = 0 
Volume = 0 
0 < Occupancy ≤  99 

Flag record Set Speed = <null> 
Set Volume = <null> 
Set Occupancy = <null>
Impute missing values 1 

2h Main lane: Speed and 
occupancy are zero when 
volume is not zero 

Speed = 0 
0 < Volume ≤  18 
Occupancy = 0 

Flag record Set Speed = <null> 
Set Volume = <null> 
Set Occupancy = <null>
Impute missing values 1 

2i Main lane: Speed is zero when 
volume and occupancy are not 
zero 

Speed = 0 
0 < Volume ≤  18 
0 < Occupancy ≤  99 

Flag record Set Speed = <null> 
Set Volume = <null> 
Set Occupancy = <null>
Impute missing values 1 

2j Main lane: Volume and 
occupancy are zero when speed 
is not zero 

0 < Speed ≤  93 
Volume = 0 
Occupancy = 0 

Flag record Set Speed = <null> 
Set Volume = <null> 
Set Occupancy = <null>
Impute missing values 1 

2k Main lane: Volume is zero 
when speed and occupancy are 
not zero 

0 < Speed ≤  93 
Volume = 0 
0 < Occupancy ≤  99 

Flag record Set Speed = <null> 
Set Volume = <null> 
Set Occupancy = <null>
Impute missing values 1 

2l Main lane: Occupancy is zero 
when speed and volume are not 
zero 

0 < Speed ≤  93 
0 < Volume ≤  18 
Occupancy = 0 

Flag record Set Speed = <null> 
Set Volume = <null> 
Set Occupancy = <null>
Impute missing values 1 

2m Missing records: either field or 
LCU server cause 

Record is missing Insert record 
Set Speed = <null> 
Set Volume = <null> 
Set Occupancy = <null> 

Impute missing values 1 

1 If needed for the analysis. 
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• Percent occupancy threshold.  The updated threshold is 99 percent.  On average, recorded 
occupancy values exceed this threshold 0.0000004 percent of the time. 

• Actions.  For clarity, Table 10 shows two types of actions: actions before database 
archival and additional actions before using the archived data in the future.  Since there is 
relatively little control over the characteristics and functionality of the LCU software 
used in the field, the assumption here is that implementation of any action before 
database archival will likely take place at the LCU server level.  With the exceptions of 
tests 2b, 2c, 2d, 2e, and 2f (which change the speed value from -1 or 0 to null), actions 
before database archival should not result in any changes to the raw data.  Additional 
actions before future use are suggested and include changing speed, volume, and 
occupancy values to null for “abnormal” records and imputing missing values as needed, 
depending on the needs and purposes of the analysis. 

• Test 1b.  The only cases where the analysis found duplicate records (meaning the detector 
ID and the date/time stamp were duplicate) were when the time changed back one hour 
from CDT to CST.  Because the affected records were still valid, it would have been 
inappropriate to move the duplicate records to a dump file.  To address this issue, the 
revised version of Test 1b simply flags those records.  In addition, it adds a unique 
date/time stamp field using the Unix time function, which TransGuide already uses 
throughout the rest of the system.   

• Test 2m.  This test explicitly keeps track of missing records that may be caused by 
reasons other than the system not being able to physically append records to the database.  
A typical example would be if there is a malfunctioning detector and/or LCU that 
prevents the LCU driver from receiving data from the field.  Adding records with null 
speed, volume, and occupancy values can increase the physical size of the database.  
However, adding those records to the database (with the corresponding flag) can provide 
a useful, positive confirmation that the missing record was due to problems in the field, 
not at the TMC.  In general, flag 2m addresses cases where there is traffic crossing the 
detection zone, but the system in effect cannot generate a record.  In contrast, flag 2f 
addresses cases where the detector is functioning properly but there is no traffic.  
Currently, Naztec LCUs generate this type of record, but TRF LCUs do not.  To provide 
a positive confirmation that any missing TRF LCU record is indeed due to problems in 
the field and not simply due to lack of traffic, it would be advisable to modify the TRF 
LCU software to enable the generation of records having zero (or null) speed, zero 
volume, and zero occupancy. 
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CHAPTER 5.  CONCLUSIONS AND RECOMMENDATIONS 

Previous chapters described incident detection practices at TransGuide, a process to enhance 
incident detection algorithm performance, and ITS data quality control and completeness tests.  
This chapter summarizes the research findings and outlines recommendations for implementation 
and further work.   
 

SUMMARY OF FINDINGS 

Incident Detection Assessment 

Chapter 2 discussed the incident detection process at TransGuide, with a focus on the incident 
detection algorithm, and the process to extract meaningful incident data from archived ITS data 
sources.  It described TransGuide’s general system configuration and the incident response 
process at TransGuide.  For incident detection, TransGuide relies on a combination of detector-
based alarms and 911-based alarms, CCTV camera scanning, police radio scanning, and courtesy 
patrols.  Detector-based alarms rely on speed for speed-trap detectors on main lanes and percent 
occupancy for non-speed-trap detectors on entrance and exit ramps.  The current thresholds for 
speed-trap detectors are 25 mph (minor alarms) and 20 mph (major alarms).  For non-speed-trap 
detectors, the current thresholds are 25 percent occupancy (minor alarms) and 35 percent 
occupancy (major alarms). 
 
To assess the incident detection algorithm effectiveness, the researchers prepared two datasets.  
The first dataset contained data from the scenario database, under the assumption that this 
database provided an adequate representation of the history of incidents along the freeway 
network covered by TransGuide.  The second dataset contained alarms triggered by the incident 
detection algorithm in response to events on the road.  The lack of a common link between the 
two datasets led to the use of a “fuzzy” spatio-temporal query methodology that considered an 
incident to be detected if the incident detection algorithm triggered an alarm within a pre-
specified spatio-temporal window associated with an incident record.   
 
Matching alarm and scenario data enabled the determination of performance measures such as 
incident detection rates, false alarm rates, false alarm frequeny, and effective alarm rate.  To 
complete the analysis, the researchers also prepared maps showing the spatial distribution of 
incident detection rates and false alarm rates on a sector by sector basis.  The incident detection 
rate, which included major and minor accidents, stalled vehicles, and debris, was 20 percent.  
After excluding debris, stalled vehicles, and minor accidents, the incident detection rate 
increased to 27 percent.  The literature reports detection rates that are typically much higher (60 
– 100 percent), although there are also references to detection rates in the 30 – 50 percent range.  
Readers should be aware that many high detection rates in the literature are based on very small 
sample sizes and/or pre-set thresholds calibrated under the assumption of “normal flow” 
conditions, and that actual performance on the ground tends to be lower.  The false alarm rate 
was 0.0039 percent, which was low compared to rates typically found in the literature (0.002 – 
1.9 percent).  The false alarm frequency was 10 false alarms per hour (or a false alarm roughly 
every 6 minutes).  The effective alarm rate, or number of incident-confirmed alarms relative to 
the total number of alarms actually triggered, was 2.3 percent.   
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These results raise questions about the effectiveness of using road sensors for incident detection, 
not just at TransGuide but also at many other TMCs that rely on similar technologies.  These 
questions are relevant given the increasing use of non-sensor-based incident detection procedures 
(such as drivers calling on their cell phones to report incidents).  Unfortunately, the data 
available for the research only provided answers relative to the effectiveness of the incident 
detection algorithm, but not whether or when incidents would be detected if the road sensors 
were not in place.  As a result, it was not possible to conclusively determine whether eliminating 
the use of sensors for incident detection would be advisable.  It may be worth noting that TMCs 
use detectors not just for incident detection but also for the production of performance measures 
such as travel times and delays, which TMCs are increasingly disseminating to the public 
through traveler information system implementations.  Public perception is that travel time 
information is useful and timely, therefore providing justification to the continuous investment 
on detector technology and related infrastructure.  In this regard, TMC officials are facing a 
number of issues related to the spatial and temporal resolution of the data collection (i.e., 
detector spacing and data collection interval) because the data needs for travel time calculations 
are not necessarily the same as those for incident detection. 

Alarm Threshold Optimization 

Chapter 3 discussed the feasibility of modifying current incident detection alarm thresholds to 
help optimize TMC incident detection practices.  For the analysis, the researchers used incident 
data, alarm event data, and archived 20-second lane data.  The researchers analyzed 75 sample 
cases that covered a wide range of situations, including detected incidents (scenario loaded and 
alarm triggered), false negatives (scenario loaded, but no alarm was triggered), and false 
positives (no scenario was loaded but an alarm was triggered anyway).  For completeness, the 
dataset included data from both TRF LCUs and Naztec LCUs.  To better understand differences 
and similarities among cases, the researchers categorized cases based on traffic conditions before 
and during incidents (for detected incidents and false negatives) and based on conditions causing 
alarm generation (for false alarms). 
 
The researchers used a prototype offline tool to evaluate incident detection algorithm 
performance by measuring the impact of modifying speed alarm thresholds on the number and 
timing of alarms generated by the system.  The tool, called Incident Detection Algorithm Tester 
(IDAT), enables users to select one or more sectors of interest and a range of dates.  With this 
information, the tool reads 20-second data from the archived lane data database, calculates 2-
minute moving average speeds, and “triggers” minor and major alarms if the moving averages 
fall below the pre-specified thresholds.  IDAT also enables users to export the minor and alarm 
data to comma-delimited text files.  
 
For each case analyzed, the researchers ran IDAT for a 24-hour period and recorded the number 
of alarms generated in addition to the corresponding time stamps.  The simulation involved using 
five different alarm threshold values: 25 mph (current minor alarm threshold), 30 mph, 35 mph, 
40 mph, and 45 mph.  Analysis of data showed that as the alarm threshold level increased, the 
average number of alarms increased exponentially and the average incident detection time 
decreased linearly.  There was a correlation between congestion levels and the number of alarms 
generated by the algorithm, as well as a correlation between congestion levels and average 
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incident detection times.  In general, incident detection took considerably longer (between 60 
and 100 percent longer) under congested traffic conditions than under uncongested traffic 
conditions.  Increasing the alarm threshold level resulted in a decrease in average incident 
detection times that were much more noticeable under uncongested traffic conditions than under 
congested traffic conditions. 
 
The analysis indicates that increasing the minor alarm threshold from 25 mph to 35 mph would 
result in tangible benefits in terms of shorter incident detection times without increasing the 
number of false alarms to an unacceptable level.  The analysis also indicates that the best 
strategy would be to increase the minor alarm threshold to 35 mph throughout the day, regardless 
of congestion level or time of day period.  The overall impact of increasing the minor alarm 
threshold to 35 mph would be a 10 percent increase in the number of alarms (at least half of 
which would be in the form of true alarms) and a 30 percent decrease in incident detection times. 
 
The analysis resulted in some additional observations.  For example, average incident detection 
time was about 4.3 minutes (260 seconds) at the 25-mph alarm threshold level, with average 
values ranging from 4 minutes for uncongested traffic to 6 minutes for congested traffic.  In 
general, using 2-minute moving average speeds in the incident detection algorithm (as opposed 
to the original 20-second speeds) resulted in 1 – 2 minutes of delay in the incident detection time. 

Data Quality and Completeness 

Chapter 4 discussed ITS data quality control and completeness issues.  For the analysis, the 
researchers evaluated approximately 3.4 billion 20-second lane detector data records from March 
2002 to April 2004.  In general, there were two types of tests: tests for “valid” records and tests 
for “abnormal” records.  “Valid” records were records with valid volume and occupancy values 
but invalid “by design” speed values, e.g., -1 in the case of non-speed-trap detectors located on 
entrance and exit ramps, or zero in the case of main lane detectors when no vehicle passed the 
detection zone during the detection time period.  “Abnormal” records were records with 
“abnormal” combinations of speed, volume, and percent occupancy values (e.g., zero speed, zero 
volume, but larger than zero occupancy) that could have resulted from causes such as faulty 
detectors or faulty LCU software logic.  Some 1.6 billion speed, volume, and occupancy records 
had a quality control flag, accounting for nearly 48 percent of the 3.4 billion lane data record set.  
Approximately 1.5 billion flagged records were “valid” records and the remaining 126 million 
flagged records were “abnormal” records.  The 126 million “abnormal” records resulted in an 
overall “abnormal” record rate of about 3.7 percent. 
 
There were significant differences between TRF LCU records and Naztec LCU records.  For 
example, even though 32 percent of LCUs were TRF LCUs, the percent of “abnormal” records 
associated with detectors controlled by TRF LCUs was 84 percent.  The vast majority of these 
records had flag 2j (speed > 0, volume = 0, and occupancy = 0), with practically no records 
under the other flag categories (except flag 2a).  In contrast, Naztec LCU records, even though 
they were the minority, had representation in every single flag category.  Some 54 percent of 
Naztec LCU records had flag 2i (speed = 0, volume > 0, occupancy > 0).  There were 369 
million Naztec LCU records with flag 2f (speed = 0, volume = 0, and occupancy = 0).  In 
contrast, there was not a single TRF LCU record with that flag.  The reason is that the TRF LCU 
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software does not generate lane detector records if no vehicles have crossed the associated 
detectors during the 20-second recording interval. 
 
An evaluation of spatial trends in the distribution of quality control flags showed cases where the 
spatial distribution was roughly uniform, but also cases where there were significant exceptions.  
An evaluation of temporal variations in the distribution of quality control flags showed that, in 
most cases, the highest concentration of flagged records occurred at night, when there was 
relatively little traffic and, consequently, there was a higher chance for time intervals without 
vehicles or for isolated detector readings producing abnormal data. 
 
An analysis of the speed data series found 93 mph to be an adequate upper threshold for quality 
control purposes.  Similar analyses of the volume and percent occupancy data found 18 vehicles 
and 99 percent, respectively, to be adequate upper thresholds for quality control purposes.  Three 
speed values stood out in the analysis because of their abnormal frequencies: 0, 87, and 94 mph.  
Most zero-speed records—all of them associated with Naztec LCUs—resulted from cases where 
no vehicles crossed the detectors.  In the case of the 87- and 94-mph records, the trends clearly 
showed an anomaly, but it was unclear from the analysis what could have caused that anomaly.  
In the case of the percent occupancy data, there was a jump between 99 and 100 percent, which 
the analysis could not explain. 
 
The data completeness analysis included an aggregate evaluation of completeness by LCU server 
and a detailed evaluation of completeness at the individual detector level.  At the LCU server 
level, the completeness rate—measured as the ratio of number of days with data to total number 
of potential days with data—varied from 95 to 100 percent.  At the individual detector level, the 
analysis showed that, on average, the completeness rate for all detectors was about 80 percent.  
Very few detectors had high completeness rates.  For example, only about 35 percent of 
detectors had a completeness rate of 95 percent or higher.  At the same time, very few detectors 
had very low completeness rates.  For example, only about 10 percent of detectors had a 
completeness rate of 50 percent or lower.  The overall completeness rate for Naztec LCU 
detectors was higher than for TRF LCUs (84 percent versus 71 percent, respectively).  
Interestingly, the analysis showed a higher than average frequency of gaps in the lane data during 
incidents than during normal traffic conditions. 
 

RECOMMENDATIONS FOR IMPLEMENTATION 

Report 0-4745-2 contains products 0-4745-P3 (which includes detailed incident evaluation 
procedures) and 0-4745-P4 (which addresses process definitions and implementation 
recommendations) (2).  That report already describes recommendations for implementation in 
detail.  This section, therefore, only summarizes some of the most relevant aspects. 
 
The research developed a number of procedures for evaluating incident detection practices and 
performance.  The procedures cover a wide range of activities such as extracting meaningful 
incident data for analysis, evaluating incident detection algorithm performance, and assessing 
data quality control and completeness.  Implementation of the research findings would likely 
involve changes in the way managers and operators interact with, manage, and interpret incident-
related data.  For example, implementation of the process and queries to match alarms and 
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incidents requires the use of queries to match alarm data and scenario data, which, in turn, 
requires the use of relational database structures to handle event data, scenario header and 
execution data, and ITS infrastructure data.  Specific recommendations include incorporating 
those database structures into the TransGuide database design, developing a GUI to automate the 
query design process, and modifying the scenario header table population process to ensure that 
the incident ID field is the same as the incident ID field in the alarm tables. 
 
Implementation of the incident detection algorithm performance evaluation tool would require 
the development and installation of an offline tool similar to the IDAT tool the researchers 
developed to simulate the alarm generation process at TransGuide.  Specific recommendations 
include developing a relational database archive of 20-second speed, volume, and occupancy 
data and developing code and corresponding GUI to include the minimum recovery time concept 
implemented in IDAT.  It may be worth noting that the minimum recovery time concept has 
potential beyond the offline incident evaluation environment evaluated during the research.  
Incorporating a minimum recovery time into the real-time incident management process at 
TxDOT would enable the system to automatically close alarms after moving average speeds 
have “recovered” after a reasonable period of time; thus, reducing further interference for 
operators. 
 
As mentioned previously, the analysis showed that increasing the minor alarm threshold would 
result in tangible benefits in terms of shorter incident detection times without increasing the 
number of false alarms to an unacceptable level.  The recommendation is to increase the minor 
alarm threshold to 35 mph throughout the day, regardless of congestion level or time of day 
period.  The expected impact of increasing the minor alarm threshold to 35 mph would be a 10 
percent increase in the number of alarms (at least half of which would be in the form of true 
alarms) and a 30 percent decrease in incident detection times. 
 
Implementation of the data quality control flags (Table 10) would involve making changes to the 
way the LCU subsystem manages field data.  Specific recommendations include creating a 
lookup table in the archive database to list and describe the various quality control tests and flags 
used, developing a module to conduct data quality control tests and assign flags to the affected 
records immediately after receiving lane data from the field, adding a unique date/time stamp to 
the lane data archive that does not depend on the seasonal changes between CST and CDT, and 
developing code and GUIs to automate the query building process.   
 

RECOMMENDATIONS FOR FURTHER RESEARCH WORK 

This report has outlined a number of areas that need further work.  A summary of research needs 
follows: 
 

• Continue the development of ITS data quality control and completeness testing 
procedures.  This research described tests that, for the most part, involve individual lane 
records and, therefore, ignored trends that would require analyses of consecutive lane 
detector records.  Examples include tests to verify the validity of volume data over longer 
periods of time, such as 15 minutes, one hour, or 24 hours; as well as tests to verify the 
validity of the relationship between speed, volume, and occupancy in cases where none 
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of the values is zero (which this research addressed).  The importance of developing more 
comprehensive quality control and completeness tests becomes apparent as TMCs see 
their roles evolving towards the management and distribution of both real-time and 
archived data packages to interested stakeholders. 

• Develop a prototype lane closure database and associated data entry and management 
procedures to address both district needs and TxDOT highway condition reporting needs.  
This report outlined a few recommendations concerning changes that would be necessary 
to make the lane closure database at TransGuide useful as a data resource for ITS data 
completeness assessments.  In the larger picture, however, it appears that both HCRS and 
the local lane closure database would need enhancements to avoid duplication of data 
entry efforts and to ensure the resulting database design addresses both local district and 
division needs.  It would be advisable to develop a prototype that takes into account 
modern web-based mapping and data management tools to facilitate the data entry, query, 
and reporting processes. 

• Investigate the correlation between missing ITS data and incidents.  This research project 
found unusually high gaps in archived lane data during incidents.  It is possible that 
traffic flow during incidents can be erratic in ways that the LCU software does not how to 
process properly, causing it to simply reject more records than normal.  Unfortunately, 
during the course of the research it was not possible to explore in detail any potential 
reasons that could explain why data gaps seemed to be more prevalent during incidents.  
Further research would be needed to explain this finding. 
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