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DISCLAIMER 
 
 
 The contents of this report reflect the views of the authors, who are solely 
responsible for the facts and accuracy of the data, opinions, and conclusions presented 
herein.  The contents do not necessarily reflect the official views or policies of the Texas 
Department of Transportation (TxDOT) or the Federal Highway Administration 
(FHWA).  This report does not constitute a standard or regulation, and its contents are not 
intended for construction, bidding, or permit purposes.  The use and names of specific 
products or manufacturers listed herein does not imply endorsement of these products or 
manufacturers.  The engineer in charge of the project was Carroll J. Messer, P.E. (Texas 
# 31409). 
 
 
 
 

NOTICE 
 
 
 The United States Government and the State of Texas do not endorse products or 
manufacturers.  Trade or manufacturers’ names may appear herein solely because they 
are considered essential to the object of this report. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

vi

ACKNOWLEDGMENTS 
 
 
 This research was conducted during a two-year study under a cooperative 
research program between the Texas Transportation Institute (TTI), TxDOT, and FHWA.  
Michael Jedlicka of the TxDOT Bryan District was the project director (PD).  Other 
TxDOT members of the project monitoring committee included Don Baker, Dale Barron, 
Glenn Campbell, Ted Copeland, Carlos Ibarra, Roy Parikh, Ismael Soto, and Doug 
Vanover.  Robert R. Kovar and Tom Beeman of the Design Division were the program 
coordinators. Grant Schultz, Roelof Engelbrecht, Ricky Parker, and Kwaku Obeng-
Boampong of TTI also contributed to the materials used in this report. Grant Schultz 
prepared an initial draft of the literature review. Ricky Parker made major contributions 
to the design of the back up flasher system together with field wiring and other related 
electrician services provided by TTI.  Hassan Charara provided the software interface 
design for laboratory testing and program coding of the AWEGS run on the field 
computers.  Kwaku Obeng-Boampong conducted all of the video data reduction and 
analysis for red-light-running of the AWEGS operations at the Waco and Brenham field 
sites.



 
 

vii

TABLE OF CONTENTS 
 
              Page 
 
LIST OF FIGURES ........................................................................................................ IX 
LIST OF TABLES ........................................................................................................... X 
 
CHAPTER 1.   INTRODUCTION.................................................................................. 1 

PROJECT OVERVIEW ................................................................................................. 1 
RESEARCH OBJECTIVES ........................................................................................... 1 
SCOPE OF RESEARCH ................................................................................................ 2 

 
CHAPTER 2.   LITERATURE REVIEW...................................................................... 3 

SIGNIFICANCE OF WORK ......................................................................................... 3 
THE LITERATURE ....................................................................................................... 4 

Installation of Advance Warning Flashers.................................................................. 4 
Safety Impacts............................................................................................................. 7 
Selected Canadian Practice ......................................................................................... 9 
Minnesota Department of Transportation Practice ................................................... 10 

LITERATURE SUMMARY AND ANALYSIS.......................................................... 11 
2000 MUTCD ............................................................................................................... 12 

 
CHAPTER 3.   PROBLEM SPECIFICATIONS FOR ADVANCE WARNING 
SYSTEM FOR END-OF-GREEN IN TEXAS............................................................. 15 

INTRODUCTION ........................................................................................................ 15 
DESIGN PROBLEM SPECIFICATIONS ................................................................... 15 

Traffic ....................................................................................................................... 15 
Dilemma Zone Detection Guide ............................................................................... 17 
Trucks ....................................................................................................................... 18 

ADVANCE WARNING FEATURES ......................................................................... 18 
ADVANCE WARNING TECHNOLOGY LEVELS .................................................. 20 

Level 0 – Existing Technology ................................................................................. 20 
Level 1 – Single Detector Advance Detection and Basic Modeling Technology .... 21 
Level 2 – Vehicle Detection, Speed Estimation, and Vehicle Classification ........... 22 

ADVANCE WARNING SIGNS .................................................................................. 22 
 
CHAPTER 4.   THEORY OF AWEGS OPERATIONS............................................. 25 

OVERVIEW ................................................................................................................. 25 
DETECTOR FUNCTIONS .......................................................................................... 26 
COMMON TEXAS PRACTICE.................................................................................. 27 

Analysis of Nader’s Guide........................................................................................ 28 
Simulation Studies .................................................................................................... 31 
Summary ................................................................................................................... 33 

ESTIMATION OF NADER’S EFFECTIVE PASSAGE GAP.................................... 33 
Level 1 Effective Passage Gap ................................................................................. 35 

TRAVEL TIME APPLICATIONS IN LEVEL 2......................................................... 36 



 
 

viii

DYNAMIC PREDICTION OF CRITICAL PASSAGE GAP ..................................... 37 
Forecast of Gap between Vehicles............................................................................ 38 
Estimating the Current MTAC.................................................................................. 39 
Quality Control Limits.............................................................................................. 40 
Predicting Critical Gap of Arriving Vehicle............................................................. 42 
Metamorphosis—Method of System Protection from a Detector Failure ................ 42 

VARIABLE HOLD TIME ........................................................................................... 42 
Dilemma Zone Protection ......................................................................................... 43 

VARIABLE PHASE HOLD......................................................................................... 46 
 
CHAPTER 5.   FIELD EVALUATION OF AWEGSS............................................... 49 

STUDY SITES.............................................................................................................. 49 
OPERATING PERFORMANCE ................................................................................. 51 

Phase Holds............................................................................................................... 52 
Advance Warning ..................................................................................................... 54 

TRAFFIC PERFORMANCE ....................................................................................... 59 
Method of Data Collection........................................................................................ 59 
Development of Red-Light-Running Criteria........................................................... 59 
Before-and-After Study Results on Red-Light-Running in Waco............................ 61 
Before-and-After Study Results on Red-Light-Running in Brenham ...................... 63 

 
CHAPTER 6.   CONCLUSIONS AND RECOMMENDATIONS ............................. 65 

CONCLUSIONS........................................................................................................... 65 
RECOMMENDATIONS.............................................................................................. 66 

 
REFERENCES................................................................................................................ 67 
 



 ix

LIST OF FIGURES 
 
                    Page 
 
Figure 1.  Dilemma Zone Boundaries on a Typical Intersection Approach. ............................ 3 
Figure 2.  Various Advance Warning Signs Studied in NCHRP Synthesis 186. ..................... 5 
Figure 3.  Example of High-Speed Traffic Not Covered by Dilemma Zone Detection. ........ 16 
Figure 4.  Design Features and System Connections for AWEGS......................................... 19 
Figure 5.  Possible Layout and Ring Structure for Level 0 with Trailing Overlaps. .............. 20 
Figure 6.  Level 1 – Advance Detection Technology Layout................................................. 21 
Figure 7.   Generalized Layout of a Level 2 AWEGS. ........................................................... 22 
Figure 8.   Examples of Advance Warning Signs Used in Texas. .......................................... 23 
Figure 9.  A Generalized Layout of a 60 mph AWEGS in Texas. ......................................... 25 
Figure 10.  Gap-Out Probability of Nader’s Guide as a Function of Passage Gap................. 30 
Figure 11.  Probability of Phase Gap-Out per Randomly Arriving Vehicle for Nader’s Guide       

Detection as Related to Approach Volume and Passage Gap from Simulation. ... 32 
Figure 12.  Estimated Maximum Allowable Headway as Related to Passage Gap Set in 

Controller for 60 and 70 mph Design (Approach) Speeds for Nader’s Guide 
Detection. ............................................................................................................... 34 

Figure 13.  Example of Time-Space Diagram of Vehicle Arrivals and Forecasted Gaps 
between Vehicles. .................................................................................................. 37 

Figure 14.  Travel Times to Stopline for Various AWEGS Design Elements. ...................... 45 
Figure 15.  Distance to Stopline for Various AWEGS Design Elements on Level Grade. .... 46 
Figure 16.   Example of a 0.58 Second Phase Hold for a 67 mph Arriving Car for a 60 mph 

Design Speed Detector Layout............................................................................... 47 
Figure 17.  Westbound TX 6 Approach near Waco before AWEGS. .................................... 49 
Figure 18.  Eastbound US 290 Approach in Brenham before AWEGS. ................................ 50 
Figure 19.  Westbound US 290 Approach in Brenham after AWEGS Installed. ................... 50 
Figure 20.  Advance Warning Distribution in Waco Day 1 - Level 1. ................................... 56 
Figure 21.  Advance Warning Distribution in Waco Day 1 - Level 2. ................................... 56 
Figure 22.  Advance Warning Distribution in Brenham - Day 1............................................ 58 
Figure 23.  Video Imaging Vehicle Detection System (VIVDS) at Waco ............................. 60 
Figure 24.  Red-Light-Running in Waco. ............................................................................... 62 
Figure 25.  Reduction in Red-Light-Running in Waco........................................................... 62 
Figure 26.  Red-Light-Running in Brenham........................................................................... 64 
Figure 27.  Reduction in Red-Light-Running in Brenham. .................................................... 64 
 
 



 x

LIST OF TABLES 
 
                    Page 
 
Table 1.  Summary of Previous AWF Studies........................................................................ 12 
Table 2.  Nader’s Guide for Detector Installation for High-Speed Approaches. (24) ............ 17 
Table 3.  Analysis of Texas Practice Compared to Institute of Transportation Engineers 

Criteria for Signal Change Interval Timing. .......................................................... 29 
Table 4. AWEGS Parameters Recommended for Determining Dilemma Zones of Drivers in 

Cars or Trucks Approaching Traffic Signals at High-Speed at Yellow Onset. ..... 44 
Table 5.  Number of Phase Holds and Phase Ends in Waco................................................... 52 
Table 6.  Number of Phase Holds and Phase Ends in Brenham. ............................................ 53 
Table 7.  Advance Warning in Waco...................................................................................... 54 
Table 8.  Advance Warning Distribution in Brenham (Level 2). ........................................... 57 
Table 9.  Results of Red-Light-Running in Waco. ................................................................. 61 
Table 10. Summary of Red-Light-Running in Brenham. ....................................................... 63 



 1

CHAPTER 1.   INTRODUCTION 
 

PROJECT OVERVIEW 

 Texas has become the second most populous state in America, and population growth 
continues at a rapid pace.  Consequently, traffic signals are being installed more frequently at 
high-speed, high-growth rural intersections because of higher traffic volumes due to the 
resulting urban-to-rural migration.  Most of these newly signalized intersections have posted 
speed limits above 45 mph and, in some instances, 70 mph.  One major difficulty with traffic 
signal operation on high-speed approaches is the dilemma faced by approaching motorists 
when the downstream signal turns yellow.  Should the motorists stop or proceed through the 
intersection?  Crashes that may occur at these intersections result in high property damage 
and personal injury due to the high-speeds involved. 
 
 Research sponsored by the Texas Department of Transportation (TxDOT) has 
developed a new system named Advance Warning for End-of-Green System (AWEGS) for 
application to high-speed signalized intersections in isolated (non-coordinated) rural 
locations.  This report contains the work the research team of Texas Transportation Institute 
(TTI) conducted to design, develop, install, and evaluate the new AWEGS.  Companion 
research reports provide a manual for traffic engineers to use to design and install similar 
AWEGSs in Texas (1).  TTI developed a second manual for traffic signal technicians to use 
as a guide for installation and maintenance of AWEGS (2).  The remainder of this report 
contains the research objectives, theory of operations, and study results conducted at two 
field test sites in Waco and Brenham, Texas. 

RESEARCH OBJECTIVES 

 This two-year research project had three primary objectives.  These were to: 
 
1. Develop designs for providing effective advance warning to approaching   
 motorists of the end-of-green phase at high-speed and rural intersections; 
 
2. Formulate effective traffic signal design strategies for supporting these   
 devices that include the type and location of vehicle sensors; and 
 
3. Develop practical traffic engineering manuals that effectively communicate  
 the recommended application and installation guidelines, design features, and  
 related  traffic signal operations in high-speed and rural environments where  
 traffic-actuated signal control is envisioned.  
 
 Additionally, research subsystems had to be developed to reliably test AWEGS prior 
to field implementation (AWEGS cabinet-in-the-loop), build a backup flasher system in case 
of system malfunction or power outages, and deploy a wireless red-light-running evaluation 
system at each field site using video data collection. 
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SCOPE OF RESEARCH 

 TxDOT directed this project to research the use of advance flashing beacons and/or 
other methods and develop a system to provide advance warning of the end-of-green signal 
phase to motorists and thereby eliminate the dilemma and sudden braking.  The development 
of such warning devices would reduce the number of crashes, reduce pavement damage due 
to sudden braking, and reduce or eliminate drivers’ dilemma approaching a high-speed 
signalized intersection. 
 
 The research team from Texas Transportation Institute proposed a two-year study to 
accomplish the above stated mission of the project.  The study was funded by TxDOT for a 
total of $316,266.  The funds were used in part to purchase six advance warning signs with 
flashing beacons, three industrial-grade computers, three backup flashers,  one video imaging 
vehicle detection system (two cameras installed in Brenham), and other hardware installed at 
the two field sites.  Local TxDOT districts funded and managed the installation of two 
AWEGSs.  The two systems remain in place and operational under the supervision of local 
TxDOT district traffic engineering personnel. 
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CHAPTER 2.   LITERATURE REVIEW 
 

SIGNIFICANCE OF WORK 

 A primary goal of the Texas Department of Transportation is to make the highways in 
Texas as safe as possible.  This goal is becoming more difficult as the population grows and 
suburban development spreads into adjacent rural locations.  In addition, many rural speed 
limits have been returned to 70 mph with the recent elimination of the federal national 
maximum speed limit of 55 mph. Consequently, many warranted traffic signals are being 
installed at high-speed and rural intersections because of the large population growth.  Most 
of these intersections have posted speed limits well above 45 mph.  One major difficulty with 
traffic signals on high-speed approaches is the dilemma that a motorist faces when the signal 
turns yellow.   Webster defines a dilemma as “a. a choice, or situation involving choice, 
between equally unsatisfactory alternatives, or b. a difficult or persistent problem” (3).  The 
location of the dilemma zone on a typical approach is shown in Figure 1. 

 

Figure 1.  Dilemma Zone Boundaries on a Typical Intersection Approach. 
 
 At the start of the yellow interval, approaching motorists are faced with a decision to 
proceed through the intersection, or bring their vehicle to a safe stop.  The decision to stop is 
easy for drivers far from the intersection at the onset of yellow.  Similarly, the decision to 
continue to travel through the intersection is easy to make when the vehicle is close to the 
intersection.  However, between these two opposite decision points exists a zone where the 
decision to stop or proceed is not as easy, even if the signal is timed according to national 
traffic engineering guidelines (4).  Incorrect decisions here may result in severe crashes. 
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THE LITERATURE  

 The decision process faced by motorists as the signal turns yellow leads to potential 
red-light-running (RLR), which has become a significant safety problem throughout North 
America.  Crashes that occur under these circumstances tend to result in increased property 
damage and personal injury, oftentimes fatalities.  Retting et al. (5) reported that 
approximately 1 million collisions occur at signalized intersections in the United States each 
year.  Of these collisions, engineers estimate that at least 10 percent can be directly attributed 
to red-light-running.  One of the methods currently under investigation and used sporadically 
throughout the United States and Canada is the installation of advance flashing beacons 
and/or other methods to provide advance warning to motorists of the end-of-green signal 
phase, thus reducing or eliminating the dilemma faced by drivers.  These installations have 
proved to be effective in several instances, but not without tradeoffs.  Sayed et al. (6) 
indicated that effective advance warning flasher implementation has the potential to 
minimize the number of vehicles in the “dilemma zone,” which in turn could lead to 
increased safety in this zone and a reduction in accident frequency, which warrants 
evaluation. 
 
 This literature review describes the background and research that has occurred with 
regard to advance warning flashers (AWFs) and the importance of this research to reduce 
RLR.  In addition, this section outlines some warrants that have been identified for the 
installation of such devices.  Finally, a summary of the research and the pros and cons 
associated with AWFs is presented.  AWFs are basically equivalent to the Advanced Traffic 
Control Sign (W3-4) described in the millennium edition of the national Manual of Uniform 
Traffic Control Devices (MUTCD) of 2000 (7). 

Installation of Advance Warning Flashers 

 The installation of AWF devices can be traced as far back as 1968 in Alberta, 
Canada.  Installations of this type have increased over the years to the point where the City of 
Calgary now has more than 30 installations within its city limits.  Throughout the United 
States and Canada, AWF installations have been documented to take on a number of 
different designs and practices.  Bowman (8) has prepared a Synthesis of Highway Practice 
outlining the different advance warning devices that were not specifically identified in the 
1988 MUTCD.   
 
 Transportation agencies have developed a wide variety of advance warning devices to 
address unusual safety, operational, or environmental conditions that cannot be adequately 
addressed using standard warning devices found in the MUTCD.  The synthesis presents the 
results of a literature review and state-of-the-practice survey conducted to provide useful 
information on advance warning devices that were not specified in the MUTCD.  Both active 
and passive devices intended for long-term use were included in this analysis (8). 
 
 Bowman (8) identified 10 different text messages used by 10 state agencies and five 
cities.  The 10 different text messages and corresponding signs are depicted in Figure 2.  
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1. Stop Ahead 

 
 

2. Stop Ahead When Flashing 

 

3. Red Signal Ahead 

 
 

4.  Signal Ahead Prepare to Stop When 
Flashing 

 

5. Prepare to Stop When Flashing 

 

 
 

6. Prepare To Stop 

 

 

7. Signal Ahead sign supplemented with 
flashers 

 
 

8. When Flashing Stop Ahead 

 

9. Be Prepared to Stop When Flashing 

 
 

10. Red Signal Ahead When Flashing 

 
 

  
 

Figure 2.  Various Advance Warning Signs Studied in NCHRP Synthesis 186. 
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 The results of this NCHRP analysis indicated that the most widely used message was 
“Prepare To Stop When Flashing,” which was used in six different configurations by five 
different states and one city.  Of the 15 agencies that used the devices contained in this 
subcategory, three states and one city used more than one device to warn of signal changes.  
Some 23 percent of the agencies indicated that they used a device of this nature (8).  
 
 Several other studies have been performed over the years that have also looked at 
different text messages and sign installations.  The results of these studies summarized the 
different sign types into three different categories.  Sayed et al. (6) summarized these to 
include the following: 
 
 “Prepare To Stop When Flashing (PTSWF):  The PTSWF sign is essentially a 
 warning sign with the text Prepare To Stop When Flashing complemented by two 
 amber warning beacons that begin to flash a few seconds before the onset of the 
 yellow interval (at a downstream signalized intersection) and that continue to flash 
 until the end of the red interval. 
 
 Flashing Symbolic Signal Ahead (FSSA):  This device is similar to the PTSWF sign 
 except that the words Prepare To Stop When Flashing are replaced by a schematic 
 traffic signal composed of a rectangle with solid red, yellow, and green circles.  The 
 flashers operate in the same manner as the PTSWF sign. 
 
 Continuous Flashing Symbolic Signal Ahead (CFSSA):  As the name suggests, this 
 device is identical to the FSSA sign but it has flashers that flash all the time – the 
 flashers are not connected to the traffic signal controller” (8). 
 
 Eck and Sabra (9) also looked at the different types of devices and indicated that there 
are many different variations of advance warning devices.  They concluded that the flashing 
“Red Signal Ahead” sign, the PTSWF sign (and its variations), and flashing strobes are the 
three most commonly used advance warning devices.  Pant and Xie (10) found that the 
PTSWF sign is the most commonly used sign in the state of Ohio and is preferred over other 
devices due to driver familiarity. 
 
 A review of Canadian practices provides some insight to an additional alternative in 
signing for advance warning installations.   A summary of design and installation of AWF in 
the four western provinces of Canada (British Columbia, Alberta, Saskatchewan, and 
Manitoba) indicates that a combination PTSWF and FSSA has been put into practice through 
the years (11).  Discussions with the City of Calgary and the British Columbia Ministry of 
Transportation indicated that their installations have evolved over the past 30 years from a 
standard PTSWF sign to a combination PTSWF and FSSA sign.  The combination sign 
includes the symbolic “signal ahead” sign with the words “Prepare To Stop” along the 
bottom of the sign.  These installations are typically installed overhead and include standard 
warrants and design criteria as discussed in more detail later in this literature review. 
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 In addition to the research that has been done on the different types of signs used for 
advance warning of signals, Pant and Huang (12) as well as Sabra (13) performed driver 
surveys and studies to determine which of the different types of signs drivers reacted to best.  
Sabra (13) conducted a research investigation on the Federal Highway Administration 
(FHWA) highway driving simulator (HYSIM) using 60 test subjects to examine driver 
response to active advance warning systems (AAWS) at a high-speed signalized intersection.  
Measures of effectiveness included identification distance, reaction time, vehicle approach 
speed, and vehicle lateral placement measured on the HYSIM.  The different AAWS 
evaluated included the PTSWF, the symbolic “Signal Ahead” sign with flashing lights, and a 
“Red Signal Ahead” sign with the “red” flashing.   
 
 The results of this analysis indicated that the symbolic “Signal Ahead” sign with 
flashing beacons had the greatest identification distance among all the test signs and was 
preferred by most drivers.  The study found that the PTSWF sign confused subject drivers 
rather than helped them to modify their reaction, and this sign was the most incorrectly 
identified.  Pant and Huang (12) also found as a result of their analysis that drivers did not 
always understand the correct meaning of the PTSWF sign; however, the motorists surveyed 
still preferred the PTSWF sign over other signs due to familiarity with the sign throughout 
the state. 
 
 In addition to the different text messaging on the signs themselves, Bowman (8) also 
outlined the different methods used by agencies for installation of the sign.  The different 
methods included standard sign mounting on the roadside, span-wire mounting across the 
traveled way, mast-arm mounted signs, and, in some instances, sign bridge mounting.  Sabra 
(13) studied the effects of different mounting locations as part of the HYSIM analysis, but 
concluded that in general the location of the sign did not have an impact on driver response. 
 
 The research conducted to date shows that there are many different types of 
installation for advance warning devices throughout the United States and Canada.  These 
different installations make it difficult to compare one site to another because of the 
differences in design and installation.  It is clear, however, that the PTSWF has been the most 
common installation throughout the United States. 

Safety Impacts 

 One of the main purposes for the consideration of the installation of advance warning 
devices has been to improve safety at high-speed signalized intersections.  Several research 
projects have been undertaken over the years outlining the effects of AWF installation on 
safety.  The main method for determining safety has been in terms of accident reduction 
before and after installation.  Agent and Pigman (14), Eck and Sabra (9), Gibby et al. (15), 
Klugman et al. (16), and Sayed et al. (6) all found that intersections with advance warning 
appear to have lower left-turn, right-angle, and in some instances, rear-end accidents. 
 
 Agent and Pigman (14) found that the use of an AWF should be limited to locations 
where either an existing or high potential accident problem exists, particularly a high percent 
of angle accidents.  Gibby et al. (15) provided more detail indicating that high-speed 
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approaches with AWFs had significantly lower total, left-turn, right-angle, and rear-end 
approach accident rates than those without AWFs.  Gibby et al. also observed significantly 
lower ratios of nighttime accidents.  The research performed by Klugman et al. (16) in 
Minnesota concluded that the use of AWF devices could be effective at reducing right-angle 
and rear-end accidents under certain situations, but device usage does not automatically 
increase the safety of all intersections.  Sayed et al. (6) provided the most detailed accident 
analysis, indicating that AWF intersections showed 10 percent fewer total accidents and 12 
percent fewer severe accidents.  Negligible reductions were observed with respect to rear-end 
accidents.  Sayed et al. found the reduction was not statistically significant at the 95 percent 
level. 
 
 Sayed et al. (6) also found a correlation between the accident frequency of AWF sites 
and the minor street traffic volumes.  It was observed that when the minor street traffic 
volumes are low, the AWF sites have a higher frequency of accidents than non-AWF sites; 
however, with increasing minor street traffic volumes, the accident frequency for AWF-
equipped intersections was found to be lower than at non-AWF sites.  The specific results 
indicated that AWFs were effective at locations with a minor street Annual Average Daily 
Traffic (AADT) of 13,000 vehicles per day (vpd) or greater. 
 
 In addition to the comparison of accident reduction for intersections with AWF 
installations, Farraher et al. (17) collected data on the impact of red-light-running and vehicle 
speeds through the intersection.  Farraher concluded that the installation of advance warning 
flashers provided a 29 percent reduction overall in red-light-running, a 63 percent reduction 
in truck red-light-running, and an 18.2 percent reduction in the speed of trucks through the 
survey intersection.  Farraher et al. commented that although the data indicate that advance 
warning flashers are effective at the site studied, the number of overall violators and their 
speeds remained unacceptably high. 
 
 Another concern with AWF installation and safety is in relation to the potential for 
increased speeds as the advance warning device is activated.  This is particularly true for the 
PTSWF and FSSA signs.  Pant and Xie (10), and Pant and Huang (12) provided data from 
two separate studies in Ohio linking increased speeds at intersections with advance warning 
devices.  Pant and Huang (12) found that an increase in speed at intersection approaches was 
common as the signal approached the red phase of the cycle.  This was particularly true for 
tangent approaches and less of a concern for curved approaches where limited sight distance 
existed.  Pant and Huang concluded that the use of advance warning devices, particularly 
PTSWF and FSSA signs, should be discouraged, as they were found to encourage high-
speeds under some conditions.  Pant and Xie (10) performed a follow-up study to this 
research and found once again that when flashers were off and the signal indication was 
clear, drivers faced with a PTSWF or FSSA sign generally increased their speeds in an 
attempt “to beat the light.”  Once again, this was particularly true on tangent approaches, and 
as such, installation of advance warning devices was discouraged, particularly on tangent 
sections. 
 
 The research performed to date indicates that intersections with AWFs have 
consistently provided lower overall accident rates and fewer severe accidents than 
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intersections without the devices.  These reductions, however, have not been shown to be 
statistically significant.  The drawbacks of safety, however, are in the documented increase in 
red-light-running after the start of red and the increase in speeds approaching the intersection 
under certain conditions. 

Selected Canadian Practice 

 AWF devices have been in operation in Western Canada for more than 30 years and 
are noteworthy for their documented experience and policies for advance warning devices.  
The City of Calgary together with the provinces of British Columbia and Manitoba have 
specific “warrants” for installation of AWF devices.   
 
City of Calgary, Alberta 
 
 The City of Calgary has established criteria for the installation of AWFs within its 
city limits (11).  The operational criteria and guidelines for installation are as follows: 
 

• at all signalized intersections having a posted speed limit of 100 km/h; 
• at the first signal into the city on routes where the posted speed limit is in excess of 70 

km/h; 
• on roadways having a speed limit in excess of 70 km/h where an accident hazard 

exists that is correctable through the use of advance warning signals; or 
• on roadways where horizontal or vertical alignment causes restricted visibility of the 

approaching intersection. 
 
British Columbia 
 
 Sayed et al. (6) outlined the following warrants for installation for British Columbia 
referenced from the British Columbia Engineering Guidelines (18).  These applications 
warrants remained into 2001 (19): 
 

• posted speed limit on the roadway is 70 km/h or greater; 
• view of the traffic signals is obstructed because of vertical or horizontal alignment 

(regardless of the speed limit) so that a safe stopping distance is not available; 
• there is a grade in the approach to the intersection that requires more than the normal 

braking effort; or 
• drivers are exposed to many kilometers of high-speed driving (regardless of posted 

speed limit) and encounter the first traffic signal in a developed community. 
 
Manitoba 
 
 Manitoba policy (20) indicates that “Prepare to Stop” sign installations are required at 
approaches to permanent signalized intersections and should be installed on the primary 
roadway (main street) approaches, at any of the following: 
 

• isolated rural intersections with approach speed limit of 70 km/h or greater; 
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• rural intersections at least 2 km away from nearest signalized intersection with 
approach speed limit of 70 km/h or greater; 

• intersections at approaches to urban areas with approach speed limit of 70 km/h or 
greater; 

• intersections within 1 km of 3 percent or greater downgrade with approach speed 
limit of 60 km/h or greater; 

• intersections within 500 m of significant sight restrictions due to horizontal or vertical 
roadway alignment, etc. with approach speed limit of 60 km/h or greater; or 

• intersections where “fail to stop” right-angle accidents exceed four per year on a 
three-year average with approach speed limit of 60 km/h or greater. 

 
And on the secondary roadway (cross street) approaches, at any of the following: 
 

• rural intersections with AADT approaching volumes of 2000 or more with approach 
speed limit of 70 km/h or greater; 

• intersections within 1 km of 3 percent or greater downgrade with approach speed  
 limit of 60 km/h or greater; 
• intersections within 500 m of significant sight restrictions due to horizontal or vertical 

roadway alignment, etc. with approach speed limit of 60 km/h or greater; or 
• intersections where “fail to stop” right-angle accidents exceed four per year on a 

three-year average with approach speed limit of 60 km/h or greater. 
 
Ontario Ministry of Transportation 
 
 A detailed research program regarding advance warning and detection was completed 
in October 1998 for the Ontario Ministry of Transportation (21).  This study included a 
thorough literature review, five field studies, crash data, benefit/cost analysis, and policy 
development.  The research team included at least 10 individuals from Synetics 
Transportation Consultants, Inc.  Their most important policy recommendation was that 
advance warning signing should be considered simultaneously with the type of detection 
system deployed.  Guidelines similar to the above practices were supported. 

Minnesota Department of Transportation Practice 

 The most recent American practice reviewed was developed by the Minnesota 
Department of Transportation (MnDOT) in 2000 (22).  This guideline states that “AWF 
should only be installed in response to a specifically correctable problem, not in anticipation 
of a future problem. Generally, AWF implementation is appropriate only at high-speed 
locations.  Before an AWF is installed, other remedial actions should be considered.”  The 
MnDOT guide continued with a taxonomy of potential problem categories for which 
application criteria and comment were provided:   “the following guidelines generally apply 
only where the posted speed is 55 mph or higher by category and [criteria]:   
 

• isolated or unexpected signalized intersection  [>10 miles to next signal];   
• limited sight distance [~AASHTO stopping distance, truck decel. reduced 20 

percent]; 
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• dilemma zone [~ITE stopping distance, truck decel. reduced 20 percent]; 
• accidents [not 1 or 2 above]; 
• heavy truck volume  [grade >3 percent with > 15 percent trucks]; and 
• engineering judgment. 

 
 The MnDOT AWF guide (22) is consistent with the previous research and traffic 
engineering practice on AWFs noted above. 

LITERATURE SUMMARY AND ANALYSIS 

 Several agencies have identified advance warning for end-of-green phase at high-
speed traffic signals as an important research topic for the 21st century.  As traffic signals are 
installed more frequently at high-speed and rural intersections, the need to provide for safety 
is ever increasing.  Several methods have been identified throughout the United States and 
Canada to provide advance warning for end-of-green phase.   
 
 The most common of these methods is the installation of advance warning devices 
that typically take one of three different designs.  The first, PTSWF, provides a warning sign 
in connection with flashers activated prior to the signal indication turning to yellow and 
remaining activated through the green phase.  The literature indicates that this is the most 
common type of advance warning currently in practice in the United States.  The second type 
of advance warning is the FSSA sign.  This warning serves the same purpose as the PTSWF, 
the only difference is in the sign design itself.  While the PTSWF includes the words 
“Prepare To Stop When Flashing,” the FSSA includes a symbolic “signal ahead” sign with 
flashing yellow lights, once again linked to the signal controller.  A combination PTSWF 
plus FSSA sign is also in use in all of the four western Canadian provinces.  This 
combination sign provides the symbolic signal reference with the “Prepare To Stop” wording 
providing advance warning of the upcoming signal indication.  The final advance warning 
device is the CFSSA, which mirrors the FSSA sign in design, but does not include an 
activated flashing device.  Instead of an actuated device, this system includes a constant 
flashing yellow light to help warn the driver of an approaching signal. 
 

Several studies have been performed to compare and contrast the pros and cons, as 
well as the warrants for installation of advance warning devices.  A summary of the main 
points is illustrated in Table 1. 
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Table 1.  Summary of Previous AWF Studies. 

               Summary of Previous Advance Warning Flasher Study Results 
                      Pros                    Cons 
Reduction of Dilemma Zone Increased speed at intersection 
Reduction in accidents Increased cost 
Reduced driver reaction time Requires a need to educate the public 
Increased driver expectancy Increase in extended red-light-running 
Increased warning for signalized 
areas  

Reduction in overall red light 
violations  

Reduction in truck speeds  
 
 
 The potential to provide effective advance warning devices for high-speed roads in 
Texas is worth developing.  Existing research shows that there are advantages that have been 
identified with advance warning installation.  These advantages can help to reduce accidents, 
increase overall intersection safety, and provide a safe and efficient transportation system.  
As noted in the research reviewed, however, installation of advance warning devices has not 
always produced the positive results anticipated at all intersections.  Consequently, the 
application, design, and operation of advance warning systems need to be carefully employed 
for specific site conditions. 

2000 MUTCD 

 The MUTCD was initially published in December 2000 (7).  A first revision was 
published in June 2001, and a second revision is scheduled for late 2003.  The MUTCD 
provides national design and operations guidance for AWEGS applications in America. The 
following materials relevant to AWEGS applications were extracted from the 2000 MUTCD: 
 
Section 2C.26 Advance Traffic Control Signs (W3-1, W3-2, W3-3, W3-4): 
 
Standard:  The Advance Traffic Control symbol signs include the Stop Ahead (W3-1a), Yield 
Ahead (W3-2a), and Signal Ahead (W3-3) signs.  These signs shall be installed on an 
approach to a primary traffic control device that is not visible for a sufficient distance 
(defined in a table) to permit the road user to respond to the device.  
  
Option:  An Advance Traffic Control sign may be used for additional emphasis of the 
primary traffic control device, even when the visibility distance to the device is satisfactory.  
A warning beacon may be used with a Signal Ahead (W3-3) sign.   
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A BE PREPARED TO STOP (W3-4) sign may be used to warn of stopped traffic caused by 
traffic control signals or in areas that regularly experience traffic congestion. 
 
Standard:  When a BE PREPARED TO STOP sign is used in advance of traffic signals, it 
shall be used in addition to a Signal Ahead sign. 
 
Option:  The BE PREPARED TO STOP sign may be supplemented with beacons. 
 
Guidance:  When the beacon is interconnected with a traffic control signal or queue detection 
system, the BE PREPARED TO STOP sign should be supplemented with a WHEN 
FLASHING plaque. 
 
 Only in the second revision of the 2000 MUTCD was the W3-4 BE PREPARED TO 
STOP advance traffic control sign actually shown in a pictorial display.  Apparently, some 
debate existed within the national committee as to whether it should be a three-line or four-
line sign.  The three-line sign is depicted therein, and this design was selected for use as the 
AWEGS’ advance warning sign.   Advance warning for unexpected and problematic queuing 
at traffic signals seems to be the primary application expected for the new W3-4 sign.  The 
proposed application of the W3-4 sign for mitigating red-light-running in this project would 
appear to be an extension of the intended use permitted by the Manual (7). 
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CHAPTER 3.   PROBLEM SPECIFICATIONS FOR ADVANCE 
WARNING SYSTEM FOR END-OF-GREEN IN TEXAS 

 

INTRODUCTION 

 Every new system design, such as AWEGS, should have a clear statement of the 
(traffic) problem that it is trying to efficiently address.  All system designs have a finite scope 
of expected service and tradeoffs between various features, functions, and costs.  All designs 
are limited by the resources of time and technology, and AWEGS is no exception.  This 
chapter presents a description of the traffic problems being addressed by AWEGS and 
provides general guidance for its application based on the literature on the subject and our 
field experiences to date.  This guidance material might be used in the future to develop a 
specific warrant for AWEGS applications once more field experience is obtained. 

DESIGN PROBLEM SPECIFICATIONS 

 The goal of AWEGS operations is to get drivers approaching a traffic-actuated 
signalized intersection at high-speed to slow down to a speed so they can safely stop when 
the signal turns yellow and then red shortly thereafter.   Yellow lights are not generally timed 
for these high-speeds (i.e., usually illegal speeds above the speed limit).   A flashing warning 
(e.g., beacon) is activated to warn approaching motorists when AWEGS detects the traffic 
signal phase is about to end, usually in about 5 seconds.   An additional function was added 
to (Level 2) AWEGS to minimize dilemma zone exposure to trucks and high-speed cars 
when the signal is operating in the green dwell state during light traffic. 

Traffic 

 Important inputs to the design of AWEGSs include the characteristics of traffic flow 
of speed of traffic, traffic mix, and degree of interruption by adjacent traffic signals.  Our 
AWEGS design assumes that the arrival traffic flow (1) is located in Texas, (2) is isolated 
from adjacent traffic signals (non-coordinated), (3) has mixed traffic of cars (and pickups) 
and trucks, and (4) has mostly free-flowing speeds that are normally distributed.   
 
 Spot-speed studies should be conducted using procedures similar to TxDOT’s 
Procedures for Establishing Speed Zones (23).  Two basic spot-speed parameters are needed 
for each high-speed approach: the mean (50th percentile) speed (mph), and the 85th percentile 
speed (mph), as used for speed zoning.  The term “approach speed” used herein is 
synonymous with the 85th percentile speed of a spot-speed study, which is frequently used as 
a guide to set speed limits on rural highways, setting yellow warning signal intervals, and for 
choosing signal detector design speeds. An example distribution of spot-speeds for a high-
speed rural highway is shown in Figure 3 for a mean (50th percentile) speed of 53 mph and an 
85th percentile speed of 60 mph.  Note that 15 percent of the traffic will be traveling at speeds 
exceeding the 85th percentile speed, and some may find stopping on red difficult unless 
warned of the impending loss-of-green signal in advance. 
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b.  Cumulative distribution of approach spot-speeds. 

Figure 3.  Example of High-Speed Traffic Not Covered by Dilemma Zone Detection. 
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Dilemma Zone Detection Guide 

 Our AWEGS was designed primarily to improve the safety at traffic-actuated signals 
designed to provide high-speed dilemma zone protection in Texas.  Multiple inductive-loop 
detector layouts along the approach to the signal provide this dilemma zone protection up to 
the design speed.  The detector layout varies with approach speed, as described in draft 
design guidelines originally developed for TxDOT around 1990 and updated circa 1996 (24).  
These draft guidelines, called Nader’s Guide in this report, are presented in Table 2.  
Inductive-loop detectors (ILDs), operating in the presence mode, are presumed when using 
these guidelines.  Nader’s Guidelines (24) were extended from 55 mph to 70 mph when the 
55 mph national maximum speed limit was repealed in 1996. 
 

    Table 2.  Nader’s Guide for Detector Installation for High-Speed Approaches. (24) 

Distance from Head of Detector to 
Stopline at Intersection, feet 

Approach 
Speed, 
mph CDAb 1 CDA 2 CDA 3 

Stopline 
Area 

Detector a 

Passage 
Gap, 

seconds 
45 330 210 --- 6′ x 40′ 2.0 
50 350 220 --- 6′ x 40′ 2.0 
55 415 320 225 6′ x 40′ 1.2 
60 475 375 275 6′ x 40′ 1.4 
65 540 430 320 6′ x 40′ 1.2 
70 600 475 350 6′ x 40′ 1.2 

      a Presence on red;  then delayed (no) call on green following first gap-out. 
      b Dilemma Zone Detectors 
 
 Traffic engineers typically assume that the design speed for signal timing and design 
is the 85th percentile approach speed of free-flowing vehicles.  The speed limit is also 
frequently based on the 85th percentile approach speed, for it represents the maximum speed 
judged safe for specified (existing) speed-zoning conditions by reasonable and prudent 
driving public.   In recent times, the specification of design speed has become less specific to 
existing traffic conditions, but the fact remains that traffic engineers face a tradeoff among 
many operational measures in selecting any speed value for design.  
 
 Increasing the design speed at traffic-actuated signals leads to longer signal cycles, 
more sluggish traffic operations, and increased traffic delays. Traffic engineers know that 
these negative consequences should also be minimized where possible.   The upshot of this 
paradox is that about 15 percent of the arrival traffic in free-flowing conditions, which are 
exactly as assumed, would be traveling faster than the design speed of the dilemma zone 
detection system.  These high-speed motorists could benefit from a warning when a green 
signal ahead is about to change so that they could slow down to a safe approach speed.  
 
 Most dilemma zone detection systems used on Texas highways are based on existing 
conditions similar to those assumed in Nader’s Guide.  These existing conditions generally 
include: (1) passenger cars only, (2) level grades, and (3) no change in roadway design, 
among other possibilities. Upgrading the pavement quality will likely result in an immediate 
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increase in travel speed.  It is very expensive to readjust multiple-loop dilemma zone detector 
designs to best fit current conditions to maximize the safety provided, so traffic engineers 
may increase the “passage gap” in the signal controller unit above those recommended in the 
original design; e.g., the right-hand column of Table 2.  This gap adjustment (usually an 
increase) usually aids only the slower motorists.  It does not aid high-speed motorists.  
Moreover, increasing the passage gap increases: (1) the sluggishness of the signal operation, 
(2) traffic delay, and (3) the propensity of the signal phase to “max-out,” thereby losing all 
dilemma zone protection and green split control. 

Trucks 

 Recent federal legislation aside, trucks are 20 times heavier and more difficult to stop 
than passenger cars.  Publications from 1994 (25) and 1998 (21) concluded that large trucks 
decelerate at approximately 70 percent of passenger car rates.  MnDOT (22) assumes trucks 
decelerate to a quick stop at 80 percent of passenger cars.   In the geometric design of crest 
vertical curves of highways, this increased stopping sight distance of trucks is presumed to be 
overcome by the nearly 5-foot increase in truck driver’s eye height as compared to cars.  No 
such compensation exists for truck drivers to the onset of the yellow at a traffic signal.  
Moreover, trucks’ lower deceleration capability is not directly considered in signal timing or 
most dilemma zone detector layouts, including Nader’s Guide.  Thus, most truck drivers 
could benefit from having advance warning for the end-of-green. 

ADVANCE WARNING FEATURES 

 Advance warning of end-of-green systems have been widely deployed in North 
America for more than 30 years, using the detector and controller technology of the day.  The 
previous literature review and analysis shows that advance warning systems are meritorious 
of field deployment and testing. 
 
 Figure 4 presents design features of our AWEGS for high-speed traffic signals. A 
Level 2 AWEGS, having two advance detectors per approach lane, is shown in Figure 4.  
AWEGS receives vehicle actuations from inductive loop detectors (ILDs) strategically 
placed along the approach roadway to the intersection.  Video detection systems could 
probably be used in a similar role.  Video detection offers directional flow features which 
could be also used to minimize false calls for cross-street green caused by turning traffic at 
intersections lacking barrier island channelization. 
 
 Traffic signal controllers typically deployed at high-speed rural intersections in Texas 
operate in the full traffic-actuated mode.  The green for a cross-street approach is called only 
on detected traffic demand, and the signal green can terminate either because large gaps in 
the traffic stream are detected (i.e., gap-out) or because of the green reaching its maximum 
allotted time under heavy traffic demand (i.e., max-out).  An active advance warning system 
that warns the motorist about the termination of green should do so safely and consistently.  
This means that advance warning should be provided in a consistent manner when either the 
controller gaps-out or maxes-out.  It is essential to provide a consistent warning to the drivers 
to ensure driver respect for the AWEGS. 
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Figure 4.  Design Features and System Connections for AWEGS. 
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ADVANCE WARNING TECHNOLOGY LEVELS 

 Three technology levels of advance warning devices/systems were originally 
envisioned for development, deployment, and testing in this research.  Level 0 contained 
state-of-the-art (or practice) advance warning devices with no major development cost.  
Level 1 would feature the detection and response to the “average” arriving vehicle, and Level 
2 would provide speed estimation of individual vehicles and differentiation between cars and 
trucks.  An overview of the features of these advance warning technology levels follows.  

Level 0 – Existing Technology 

 This state-of-the-practice advance warning device/system would routinely activate 
when the end-of-green signal for the protected high-speed approach is eminent.  A timed 
“trailing overlap” of about 5 seconds would follow the terminating arterial (actuated) signal 
phase gapping-out so that advance warning flasher operation could be implemented.  After 
this timed overlap expired, the signal phase would end with the start of yellow.  Figure 5 
illustrates the timed-overlap method (Level 0) for providing advance warning for traffic-
actuated signals.  The main features (and advantages) of this basic technology are that no 
advanced detection is needed, no major technology development would be needed, and 
system installation within the signal cabinet is minimal. 

Dilemma zone detectors 

Advance warning sign 
Traffic signal controller 

Signal sent to the advance sign by wireless communication 
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Figure 5.  Possible Layout and Ring Structure for Level 0 with Trailing Overlaps. 
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 Some existing traffic signal controllers have incorporated advance warning logic (19).  
However, none of the signal controllers used by TxDOT has trailing overlap advance 
warning logic explicitly built in.   Moreover, the routine loss of dilemma zone protection, 
provided by TxDOT’s widely used advanced detection design (or as provided by Nader’s 
Guide), causes this method (Level 0) for routinely providing advance warning for end-of-
green to be judged unattractive for routine implementation in Texas.  A decision was made 
not to field test Level 0 in this research project. 

Level 1 – Single Detector Advance Detection and Basic Modeling Technology 

This technology level features the advance detection in real time of individual 
vehicles arriving on the approach.  However, neither the individual type of vehicle nor its 
speed is determined.  Thus, all vehicles detected are presumed to be traveling at the average 
speed and in need of warning of any imminent end-of-green.  As used here, advance 
detection implies a location upstream of TxDOT’s typical dilemma zone detectors, and not a 
technology level.  Estimation of future phase gap-out between arriving vehicles is considered 
the principal technical challenge of Level 1 systems since the exact arrival time of vehicles to 
the TxDOT detectors is not known.   

 
The paradoxical upshot of this relatively simple Level 1 AWEGS design is that it 

provides a very conservative AWF operation because the original location of the approach’s 
detector (later to be named the ADA detector) is based on the assumption that the design 
approach vehicle is traveling very fast (that is, at the 99th percentile speed), but individual 
projected travel times are based on the estimated average space-mean speed.  This 
conservative advance warning system causes more traffic delay and less efficient signal 
operation to occur than would a Level 2 system.  Figure 6 conceptually illustrates the 
deployment of a Level 1 advance warning system. 
 

Dilemma zone detectors
Advance detector(s)

Advance warning sign
Signal controller with

advance warning logic

Signal sent to the advance sign by wireless communication

 

Figure 6.  Level 1 – Advance Detection Technology Layout. 
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Level 2 – Vehicle Detection, Speed Estimation, and Vehicle Classification  

Level 2 AWEGS builds on Level 1 technology by adding knowledge regarding the 
general type (car, truck) of vehicle and its individual speed.  This additional information is 
obtained by placing a second advance detector (BDA) at a strategic location downstream 
from the initial advance detector needed for Level 1.  Both AWEGS advance detectors are 
also strategically located upstream of TxDOT’s dilemma zone detectors, presumed to already 
be installed at the signalized intersection of interest.  Figure 7 presents the general layout of a 
Level 2 AWEGS.   
 

Dilemma zone detectors
Advance detector(s) 

Advance warning sign 
Signal controller with

advance warning logic

Signal sent to the advance sign by wireless communication

 

Figure 7.   Generalized Layout of a Level 2 AWEGS. 
 

ADVANCE WARNING SIGNS 

The type of advance warning device used by AWEGS could range from simple 
ground-mounted W3-4 signs with flasher beacons to more complex cantilevered electronic 
matrix signs.  Figure 8 presents examples of these advance warning sign options.   Recall the 
prior advance warning signing options noted previously in Figure 2.  The deployment and 
evaluation of such advance warning signs will be described in the following chapters.  Figure 
8a is the W3-4 sign installed at our test site in Waco.  The vertically mounted flasher beacons 
provide the active warning element.  Their design (and their backup system design) proved to 
be a fairly complex problem because nominal off-the-shelf flash drivers, commonly used in 
signal cabinets, do not provide the immediate full-flash capability desired for AWEGS 
applications.    Figure 8b depicts an overhead advance warning sign mounted on a large 
cantilevered sign support structure.  Less costly mast-arm designs are also frequently used to 
support overhead advance traffic control warning signs with attached warning beacons.  
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a.  Pole-mounted AWEGS (W3-4) in Waco (left) and Brenham (right), Texas. 

 

 
 

b.  Cantilevered electronic matrix warning sign located in Marshall, Texas. 

 

Figure 8.   Examples of Advance Warning Signs Used in Texas. 
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CHAPTER 4.   THEORY OF AWEGS OPERATIONS 
 

OVERVIEW 

 AWEGS was designed to provide advance warning for end-of-green for high-speed, 
rural intersections.  A minimum of interference with the existing traffic-actuated signal’s 
operation was desired.  For this research, a MUTCD-compliant W3-4 advance traffic control 
sign was selected to provide the advance warning message.  Advance detection was placed 
ahead of existing TxDOT detectors (usually by Nader’s Guide) to provide look-ahead time to 
identify arriving vehicles.  Two research technology designs, Level 1 and Level 2, were 
developed and investigated.  Level 1 used one advance detector (ADA) to monitor the arrival 
of vehicles.  Level 2 added a second detector just downstream of the ADA detector to 
measure each vehicle’s speed (travel time) and vehicle type (car, truck).  As the research 
progressed from Level 1 to Level 2 systems, the features of Level 1 became the backup 
design for Level 2 when and if one of the two advance detectors failed.   A typical detector 
layout for one two-lane, divided 60 mph approach of a Level 2 AWEGS is presented in 
Figure 9.  The remainder of this chapter provides the details of the operational theory and 
development of AWEGS.  Companion reports provide the recommended design 
methodology (1) and signal installation for field applications (2).     
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Figure 9.  A Generalized Layout of a 60 mph AWEGS in Texas. 
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DETECTOR FUNCTIONS 

 AWEGS employs three basic operations of forecasting, surveillance, and monitoring.  
As noted in Figure 9, for Level 2 systems, there are two detector groups for each arterial 
approach phase “ i ”  per lane.   These are the:  
 1.    ADA i and BDA i detectors (forming a speed trap); and the 
 2.    CDA i detectors  (i.e., TxDOT’s dilemma zone detectors). 
The tasks assigned to these detector groups are described in subsequent sections.   
 
 The CDA multiple-loop detector layout, widely known in Texas as “Nader’s Guide” 
and defined previously in Table 2, provides high-speed dilemma zone protection using 
traffic-actuated control.  AWEGS monitors the input status of these existing multiple loops.  
AWEGS then tries to estimate the control output (gap-out of the traffic-actuated controller) 
given the same local detector inputs and data files (of passage gaps, minimum greens, 
maximum greens, etc.) that the traffic-actuated controller uses.  The TxDOT CDA detectors 
have uniform spacing between them (see Table 2).  One important local operational question 
is “What passage gap is actually being used by the local district traffic engineer in the signal 
controller?”  Our field experience suggests that the coded passage gap may be larger than 
that recommended in Nader’s Guide (24).  Moreover, the spacing between the detectors also 
may not be as indicated in the Guide for a particular site and approach speed because of local 
engineering judgment. 
 
A.   Forecasting—of phase gap-out time from the ADA/BDA detectors, which would later            
 be measured by the controller at the CDA detectors (a forecasting task): 
    1.    Using only the ADA detector – a constant-speed, Level 1 technology. 
    2.    Using the ADA and BDA detectors – a speed-based, Level 2 technology. 
    3.    Output: Flash W3-4 sign beacons for AWNG time.  No phase hold. 
 
B.  Surveillance—of impending phase gap-out by controller (a watch-dog alarm task). 
 There are two main cases where this status condition seems to occur: 
    1.    An error has occurred between the predicted effective passage gap for          
        vehicle j and the measured effective gap over the CDA detectors, and a          
        call for service exists against this phase which is ready to gap-out. 
    2.    The arterial through phases (say Phases 2 and 6) have gapped out and now are in      
        Green Rest during light traffic conditions; then suddenly a conflicting call  
        (hopefully a true call) for service arises, usually from the cross street, but  
        sometimes from the opposing left turn.  Effective ways are provided in AWEGS 
        for dealing with these conditions.  Level 2 technology, which is speed based,     
        reduces the frequency of occurrence of the former case for error; whereas, the 
        unpredictable (in real time) latter event is routinely handled by careful timing and 
        application of the delay function during not-green, which is available with    
        inductive-loop detection (either in the detector amplifier or controller unit). 
    3.    Output: AWEGS response depends on whether any approach traffic is located 
        between the ADA advance detector and the CDA detectors.  Outputs include:     
          a.  Case 0 — no arrival traffic is detected traveling in zone of detection (no 
       traffic arriving is a function of approach traffic volume). 
          Output:  Flash W3-4 sign with onset of call.  No phase hold. 
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          b.   Case 1—Arrival traffic is detected traveling in the zone of detection: 
   Output:  Level 1—Flash W3-4 sign, and hold phase green for a  
   constant time,  usually about 5 seconds. 
   Output:  Level 2—Flash W3-4 sign, and hold phase green only if  
   vehicle is in its dilemma zone, based on its vehicle type and speed.  
   This is a major benefit of Level 2 technology in that holds are placed 
   only if they appear to be needed to minimize dilemma zone problems. 
 
C. Monitoring— of all inputs and status of the traffic-actuated controller to determine 
 any impending (within next 0.2 seconds or so) missed phase.                                                                 
 1.   Gap-out of the signal controller by monitoring CDA detector inputs and signal 
       controller status (a monitoring task), or  
     2.   Any impending max-out of arterial signal phase (a watch-dog task);    
     3.   Output: Flash W3-4 sign beacons for all or remaining AWG time and Hold  
       phase for same duration only if arrival traffic is operating in zone of detection  
       of phase.  This response essentially adds a trailing overlap to the impending  
       end of the phase when the W3-4 sign has not already been turned on.  
 
 Level 1 technology provides major advantages compared to Level 0, where a trailing 
overlap would be applied to each phase termination, thereby loosing all dilemma zone 
protection and increasing traffic delays. When Level 1 AWEGS estimates that the signal 
controller is about to gap-out the phase (say within the next 0.2 seconds), then Level 1 
AWEGS checks to see if the approach is clear from the ADA detector to the stopline.  If 
clear, then no action is taken (in particular no hold is placed on the ending phase which might 
further delay traffic stopped at the intersection and loose dilemma zone protection of traffic 
that might arrive during the hold time).  The phase should gap-out shortly thereafter with the 
flash synchronized to start with yellow onset (judged a more desirable visual scene to more 
distant motorists approaching the signal), instead of possibly 0.2 seconds earlier.   
 
     Level 2 provides the additional gap-out feature of variable hold times.  The main 
efficiency advantage during imminent gap-out (“fire” conditions) is the determination of 
whether a hold is needed, based on the approach vehicle’s type and speed, to provide 
dilemma zone protection.  Typically, cars would have to be traveling faster than the design 
speed of the CDA detector set (Nader’s Guide) for them to need a hold and be located very 
close to the CDA detectors; most faster trucks located in the ADA-CDA zone would merit a 
hold be place to allow them to reach the CDA detectors.  

COMMON TEXAS PRACTICE 

 Texas Department of Transportation does not currently have an official high-speed 
detection system plan or standard layout.  However, a detection layout developed by a former 
TxDOT traffic engineer is widely used in the field. As noted previously in Table 2, this 
unofficial practice is known herein as Nader’s Guide (24).   Both field sites where our 
AWEGS were deployed used this layout.  The development and assumptions of Nader’s 
Guide are unpublished, but it has been researched by others to some extent (25, 26, 27). 



 28

 Nader’s Guide provides two or three high-speed detectors per approach, depending on 
speed.  These detectors are 6-foot by 6-foot ILD operating in the presence mode.  A stopline 
area detector may be installed to detect local driveway calls where both intersecting 
highways are major roads.  Otherwise, a minimum recall is usually placed on the major road, 
and the stopline detectors for it are omitted.  Spacing and distance from the intersection 
stopline increase with approach speed (i.e., the speed limit or the 85th percentile speed, if 
known to be higher).  The ILDs are assumed to be operating in the presence mode without 
delay for the phase’s passage gap shown for each approach speed. 

Analysis of Nader’s Guide 

 Nader’s Guide for detector layout commonly found today on Texas highways is 
significantly different from that used by many Texas traffic engineers in prior decades (4).  
Whereas the design shown in Table 2 has uniform spacing between detectors for a given 
speed (24), the prior multiple-loop design (4) had variable spacing between the detectors.  
The prior multiple-loop design operated much like a speed sieve, gapping-out only those 
vehicles that could safely and would likely stop based on their individually measured speeds, 
as those motorists approached the intersection.   The speed-sieve result was achieved by 
systematically reducing the spacing between the detectors (sometimes as many as five 
detectors for high-speed approaches) as the loops were installed in the roadway proceeding 
toward the intersection.  It is unknown why this change was made (26).  Current Texas 
practice will basically gap-out all vehicles traveling less than the critical speed for existing 
conditions, especially at low-volume conditions.   
 
 The AWEGS design developed in this research is based on the traffic operations 
expected to arise from the deployment of Nader’s Guide detector layout.  As noted above, 
both field sites in this research used the layout.  While we have analyzed the method to better 
design and operate AWEGS in the field, neither optimization nor improvement of Nader’s 
Guide has been attempted, based on the scope of this research.  Some data and guidance are 
provided, however, regarding potential gap-out impacts of size of passage gaps on the traffic 
signal controllers in the field. 
 
 The critical speed, or slowest speed that will not gap-out for each detector speed 
group used in Nader’s Guide, can be readily calculated based on the noted uniform spacing 
between detectors and given signal timing.  The basic formula is: 
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where: 
 vc = critical gap-out speed for Nader’s Guide, feet per second, fps; 
           PGap = passage gap of traffic-actuated controller phase, seconds,  
 Sv = spacing between detectors for approach speed group, v , feet; and 
 Ld, Lv = length of detector (6 feet) and vehicle (16 feet), respectively, feet. 
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 The probability of an arriving vehicle gapping-out while traveling between the first 
(CDA1) and second (CDA2) detectors during light traffic (assuming no other vehicle being 
in the detection zone) is the probability that the vehicle’s speed is less than the critical speed, 
or 

  ),(),(Pr)(Pr σmcc vNvvvobvobGO ⇒≤=     (2) 
 
where it is assumed that arrival speeds, v, are normally distributed with a known mean, vm, 
and standard deviation, σ, of speeds.  For this analysis, a coefficient of variation ( mvcv /σ= ) 
of 0.13 was assumed.   
 
 An analysis of two cases—Nader’s Guide and the Institute of Transportation 
Engineers (ITE) driver behavior parameters widely used (28) for timing yellow change 
intervals—are given in Table 3.  It is assumed that the design speed is the 85th  percentile 
speed.  For example, for a 45 mph approach (design) speed, the critical speed that will hold 
the phase green against conflicting calls (with a 2.0 second passage gap) is 33.41 mph.  
Traffic is traveling at speeds less than this critical speed is 10.58 percent, and therefore these 
vehicles would be expected to gap-out between the CDA1 and CDA2 detectors.  Most 
critical is the 70 mph design with a passage gap of 1.2 seconds, which has a critical speed of 
58.52 mph, where 34.76 percent of the traffic would gap-out while crossing the Guide’s 
layout.  Here 32.32 percent of the traffic would be exposed to potential deceleration rates 
exceeding ITE design guidelines for signal timing (nearly 96 percent of those gapping-out). 
 

Table 3.  Analysis of Texas Practice Compared to Institute of Transportation Engineers 
Criteria for Signal Change Interval Timing. 

Nader’s Guide a ITE Design Criteria b Coverage of ITE Criteria 85th 
percentile 
Approach 

Speed, 
mph 

Critical 
Speed, 
Mph 

Probability 
of 

Gapping- 
Out c 

CDA2 Safe 
Stopping 

Speed, mph 

Arrivals 
Exposed to 
ITE Stop, 
percent 

CDA2 Cover 
Passage Gap, 

seconds 

Prob. 
Gap-out 
with Full 

Cover 
45 33.41 0.1133 25.16 11.08 2.66 0.0022 
50 36.82 0.1034 25.88 10.26 2.85 0.0007 
55 41.48 0.1341 32.35 12.88 1.54 0.0047 
60 37.99 0.0152 35.49 0.95 1.50 0.0051 
65 50.00 0.1647 38.41 15.90 1.56 0.0051 
70 58.52 0.3476 40.66 32.32 1.73 0.0039 

 

a Nader’s Guide as shown in Table 2 (24). 
b ITE perception-reaction time T = 1.0 seconds, acceptable deceleration rate = 10 fps2  (28). 
c Assumes approach speeds distributed normally with a coefficient of variation of 0.13. 
 
 
 A graphic examination of the probability of a single arrival gapping-out while 
traveling over Nader’s Guide is presented in Figure 10.  For example, the probability that an 
arriving vehicle taken from a normal distribution of speeds would gap-out while driving over 
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a 45 mph design speed layout (= 85th percentile approach speed) would be 11.33 percent 
when the passage gap set in the controller is 2.0 seconds.  Figure 10 shows the gap-out 
probability increases to 66 percent if the passage gap were reduced to 1.6 seconds.  
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Figure 10.  Gap-Out Probability of Nader’s Guide as a Function of Passage Gap. 
 
 An examination of Table 3 and Figure 10 provides several revealing results.  There 
are inconsistent gap-out probabilities (column 3) across the speed ranges in Nader’s Guide, 
being much larger at the higher speeds of 65 to 70 mph.  Low speeds of 45 and 50 mph have 
a remarkably higher gap-out probability than the other speeds for a given passage gap.  There 
are similarly high percentages of vehicles exposed to “unsatisfactory” stopping possibilities, 
based on the ITE stopping criteria (column 4) with 32.32 percent (column 5) of those 
vehicles arriving at an approach speed of 70 mph being so exposed upon phase gap-out in 
light traffic.  During low traffic volumes, 34.76 percent all gap-outs will occur between the 
first (CDA1) and second (CDA2) detectors.  In order to fully cover all vehicles potentially 
exposed to unsatisfactory stopping conditions following gap-out (that is, from being in their 
respective dilemma zones as defined from the above ITE criteria), the passage gaps listed in 
column 6 would be needed to provide reliable service, as a minimum, given Nader’s Guide 
for detector spacing.   
 An important finding when full ITE coverage is provided by using the passage gaps 
of column 6 of Table 3 is that almost no vehicles for any speed would then likely gap-out the 
arterial phase (column 7) while traveling over the detectors.  This no intermediate gap-out 
result would produce longer maximum allowable headways (MAH), thereby increasing the 
cycle time and resulting traffic delays at the intersection (25).  This situation is truly a design 
dilemma within Texas practice.  Our two field study sites (at Waco, having a 60 mph 
approach speed, and at Brenham with a 70 mph approach speed) both were observed to have 
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2.0 second passage gaps installed for their respective arterial phases.  This timing reflects the 
field adjustment traffic engineers may apply where Nader’s Guide has been by engineers to 
specify the original dilemma zone detection layout.    

Simulation Studies 

 Computer simulation studies using Excel were conducted to further examine these 
issues and to determine the effect traffic volume has on gap-out probabilities of common 
Texas practice using Nader’s Guide.  In these simulation studies, it was presumed that the 
signal phase did not extend to its maximum green time allowed.  Two design speeds of 60 
mph and 70 mph were also studied.  Again, the primary reason for conducting these 
simulation studies was to guide the development of AWEGS. 
 
 The simulation results for Nader’s Guide detection system (of Table 2) were 
developed in graphic form to expedite analysis.  Figure 11a presents gap-out characteristics 
for the 60 mph and 70 mph approach (design) speeds for a 200 vph approach volume.  The 
upper two speed-based curves in Figure 11 a show the overall gap-out probability per 
arriving vehicle of the detector set using the passage gaps in Nader’s Guide; whereas, the 
lower two curves depict comparative gap-out results only between the first two detectors 
(CDA1 –> CDA2).  The 70 mph design was shown to be much more likely to gap-out a 
vehicle crossing the first two detectors than would the 60 mph design.  Figure 11b provides 
simulation results of the same intra-detector (CDA1 –> CDA2) probabilities as related to the 
size of passage gap and approach traffic volumes for the 70 mph design speed case.  
Increasing the size of the passage gap is seen to significantly reduce the intra-gap-out 
probability, together with increasing traffic volumes. 
 
 It is noted that increasing traffic volume decreases the likelihood of either system 
gapping-out for any randomly arriving vehicle.  However, Texas practice designs clearly will 
have many slower vehicles falling through the cracks than will the 2.0-second timing, 
particularly for the 70 mph case where about 30 percent or more of the arriving vehicles 
would be expected to fall through as would be expected from Table 3.   The 2.0-second gap 
timing will almost never gap-out between the CDA detectors.  In fact, the two lower curves 
of the 2.0-second fix are indistinguishable from zero probability. However, the 2.0-second fix 
will more likely extend the phase to maximum green in higher volumes, also an undesirable 
outcome, as can be inferred by comparing the total gap-out probabilities given by the upper 
speed-based curves between the two figures.   
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a.   Simulation results for 60 and 70 mph approach speeds. 
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b.  Simulation results for 70 mph approach speed for various volumes. 

 

Figure 11.  Probability of Phase Gap-Out per Randomly Arriving Vehicle for Nader’s 
Guide Detection as Related to Approach Volume and Passage Gap from Simulation. 
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Summary   

 The upshot of these simulation results is notable for designing AWEGS in Texas.  
Traffic operations to be expected from signalized intersections using Nader’s Guide are very 
sensitive to passage gap timing for some speed groups, and their individual MAH are very 
different, which makes predicting gap-outs challenging.  If the passage gap set in the  
controller produces a critical speed which contains a sizeable percentage of arriving vehicles, 
then a proportionate number of those vehicles will gap-out between the first two detectors.  
Such a short gap will produce a highly variable MAH.  Long passage gaps will likely cause 
vehicles to gap-out only at the end of the detector set near the stopline. This setting produces 
a very low likelihood of gapping-out between the multiple-loop CDA detectors. 
   
 Consequently, two types of gap-outs may descriptively occur—the crack-outs and the 
trail-outs—depending on the speed of the vehicle and passage gap set in the controller for the 
phase.  It appears (from Figure 11) that most will be the trailing type if the 2.0-second 
passage gap currently employed in the controllers at the two study sites exists.  The 
simulation studies indicate that passage gaps of 1.6 seconds or greater produce little chance 
of inter-detector gap-out (no falling through the cracks) using Nader’s Guide.   Thus, a 
reliable estimate of the overall passage gap and maximum allowable headway for any design 
speed can be estimated, given that longer passage gaps are (likely) used in the controller. 

ESTIMATION OF NADER’S EFFECTIVE PASSAGE GAP 

 For AWEGS to be able to predict that a traffic-actuated signal controller is going to 
gap-out a phase currently extending in green against conflicting traffic demand,  the effective 
passage gap of any detector design must be estimated for any given traffic speed and passage 
gap set in the controller.   Theoretically, this situation was a major challenge in the research 
and development of AWEGS.  To begin, it is assumed that passages gaps will be used to 
minimize intra-detector gap-out, as noted in Table 3 and from field observations.  It is also 
known that a general relationship exists between traffic flow theory of traffic headways 
(elapsed time between arrivals of vehicles at a point for a given speed) and operational 
passage gaps between vehicles, assuming that ILDs are measuring their arrival.  We now can 
assume (for specified conditions) that Nader’s Guide layout will act like a very long present 
loop for most passage gaps set.  The basic relationship in (maximum) headway terms is (25, 
26, 27): 
 

PassGap
v

llGapPMAH
sh

vdz +
+

=+=      (3) 

where: 
 MAH = maximum allowable headway for a given condition, seconds; 
 P = presence time (average) over the initial detector, seconds; 
 vdz ll ,  = length of detection zone and vehicle (average) being measured, feet; 
 shv  = average space-mean speed of holding traffic, feet per second; and 
      PassGap   = passage gap (estimated to be) set for signal phase of interest, seconds. 
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Understanding the cause-effect of Equation 3 is critical to understanding how 
AWEGS works.    If PassGap is set in the controller, then MAH is the resulting critical 
traffic headway that would gap-out the phase.  That is, any vehicle following another vehicle 
at a headway greater than MAH would not hold the extending phase green, and the yellow 
warning interval would begin.  Please note that dZl  is a function of speed in Nader’s Guide 
and does not vary consistently with speed.   The speed, shv , is very difficult to calculate, so 
the Excel simulation was used to calibrate the above model form to Nader’s design 
conditions.  Initial studies examined only the 60 and 70 mph design conditions, as depicted in 
Figure 12.  Observations of the small differences for the two speeds permitted averaging the 
results using statistical regression.  The following linear regression equation was developed: 

 
 PassGapMAH 31.146.2 +=       (4) 
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Figure 12.  Estimated Maximum Allowable Headway as Related to Passage Gap Set in 
Controller for 60 and 70 mph Design (Approach) Speeds for Nader’s Guide Detection. 

 
 
 
  Equation 4 produces results very similar to those previously estimated by Bonneson 
et al. using the same speeds in Nader’s Guide (27).  These results somewhat verified the 
Excel simulation modeling, and the model development continued along the same lines 
keeping the objectives in mind.  AWEGS needs an equivalent single-detector passage gap 
from which to estimate an impending gap-out condition, given the PassGap set in the 
controller, and local site parameters.  That is: 
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where: 
 

AWV85 =  design speed (85th percentile approach speed) of AWEGS for a given                            
Nader’s Guide layout and presumed local 85th percentile speed, mph. 

 
If the length of the detection zone ( dzl ) is defined as 
 

dddddz lCDACDAnlXnl +−−=+∆−= )(*)1(*)1( 12     (6) 
 
then the effective passage gap ( AWEGSPassGap ) of  Nader’s Guide can be found from 
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Level 1 Effective Passage Gap 

Thus, the effective passage gap to be used in AWEGS for Level 1 technology can be 
estimated, here assuming a three-detector dilemma zone set, from 
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From which is developed the method for estimating an equivalent single-detector passage 
gap as used in Level 1 AWEGS: 
 

 PassGapnPassGap
V

PgoutCDACDA
PassGap dAWEGS *
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=  (9) 

where: 
 

AWEGSPassGap = effective passage gap used in Level 1 AWEGS, seconds:  
 iCDA  = distance to stopline of detectors i = 1,2,3 in Nader’s Guide, feet; 
 dn  = number of detectors in a set { i } in Nader’s Guide; 
 85V  = design (or 85th percent-tile approach) speed of the detector set, mph. 
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1.17     = calibration factor from 85th percentile to 50th percentile speed, and 
conversion from time- to space-mean speed.  This value was 
determined from simulation as a theoretical value of 1.1212 plus some 
adjustment for multiple activations, even at low volumes. A 7 mph 
standard deviation in speed was assumed for this calculation; and 

Pgout  = probability of detector layout gapping-out per arriving vehicle, given 
its design speed and controller PassGap, which is assumed to be zero.   
  

 Level 2 technology measures the speed of all arriving vehicles.  If the average speed 
of the traffic stream increased on an approach for a given detector layout (and design speed), 
the average travel time over the layout would decrease, and the effective passage gap would 
therefore decrease if the original traffic speeds were all greater than the critical speed for 
gap-out of the loops.  Equation 9 suggests this inverse relationship.  However, if the original 
traffic speeds were too slow for the design in place, then increasing the traffic speeds would 
result in fewer gap-outs such that the overall average passage gap might increase for a while, 
and then it would begin to decrease as noted above.   
 
 A complex theoretical model of this process has been developed but is considered 
beyond current needs.  Suffice it to note that all current AWEGS operations assume that the 
original passage gaps set in the controller are sufficient to provide a minimal intra-detector 
gap-out probability.  An Excel spreadsheet was developed which provides application 
guidance on this subject beyond what is suggested from Figure 12.  This spreadsheet is 
available at http://ceprofs.tamu.edu/cmesser, subdirectory AWEGS. 

TRAVEL TIME APPLICATIONS IN LEVEL 2 

 The main feature of Level 2 technology in AWEGS is the measurement of an 
individual vehicle’s travel time (or speed) across the upstream AWEGS trap detectors, ADA 
and BDA.  A typical detector layout for AWEGS Level 2 was presented in Figure 9.   The 
recommended head-to-head spacing ( )BDAADA XX −  between the ADA and BDA ILDs is 30 
feet, as shown in Figure 9.  Thirty feet should be long enough to provide accurate travel time 
measurement, given the computer’s scan rate.  The recommended gap spacing between the 
detectors is 24 feet.  One might call these detectors speed-trap detectors such that speeds of 
individual vehicles could be calculated from

 

 
vi t

X ADA X BDA
ttABi ttABi

( )
'

=
−

=
30

      (10)
 

 
but the AWEGS design question is: “Why calculate speed?”  Except for providing the 
engineer some reference to local speed zones and travel speeds, there is little reason to use 
speed directly in a traffic signal control system.  For example, most traffic signal technicians 
call traffic signal controllers timers basically because controllers work almost exclusively 
with times of and between local traffic events: phase times, yellow times, gap times, etc.  
Likewise, AWEGS Level 2 works only with time, not a derived speed.  

http://ceprofs.tamu.edu/cmesser
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DYNAMIC PREDICTION OF CRITICAL PASSAGE GAP 

 AWEGS needs accurate estimates of (1) the time gap between arriving vehicles and 
(2) the signal controller’s effective critical gap for the given CDA detector pattern and 
passage gap set in the controller for the phase.  The overall problem of predicting if and when 
the downstream traffic-actuated signal controller may gap-out an existing green phase 
between arriving vehicles, when conflicting calls for service exist, is composed of two steps: 
(1) a forecast of the likely critical passage gap and (2) a follow-up prediction of the actual 
gap once the next arriving vehicle is detected, assuming the gap-out question remains.  As 
vehicles arrive at the ADA/BDA advance speed-trap detector set, their projected arrival time 
at the CDA1 detector is predicted, as depicted in Figure 13.  Since the arrival time or speed 
of the next arriving vehicle is not immediately known, a forecast (a back calculation) of the 
critical arrival time for the next vehicle is made, assuming it would be traveling at the 
average speed of traffic.  The corner points of the trapezoidal shapes are calculated as 
described below.  Projection lines from a vehicle are not coincident because traffic gaps must 
account for vehicle length.  Predicted event times are immediately updated as new arrival 
data become available to AWEGS. 
 

 
Figure 13.  Example of Time-Space Diagram of Vehicle Arrivals and Forecasted Gaps 

between Vehicles. 
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Forecast of Gap between Vehicles 

 Estimation of the actual headway gap between two vehicles, i and i-1, per lane can be 
determined from the prediction of arrival times (AT) of vehicles at the CDA detector set and 
the application of basic safe car-following logic, as follows: 

 

 
ATi CDA Ti BDA ttBCi@ @= +       (11) 

 
subject to a minimum safe car-following headway and related gap at the CDA1 detector of: 
 

 
ATi ATi MinSH ATi CDA Pi MinSGap≥ − + ≥ − + +1 1 1@   (12)

 

 
where Pi is the presence time of vehicle i as measured while traveling over the ADA detector. 
 
 We assume that all high-speed approach vehicle detectors are of the same design and 
length.  AWEGS uses the latter formulation (Equation 12) to better account for long trucks 
with the MinSGap set at a nominal value of 1.0 seconds.  The design requires that the travel 
time between the advance speed-trap detectors and the standard TxDOT dilemma zone 
detectors (ttBCi ) of each detected vehicle be estimated in real time. 
 
 
1.     Travel Time 
 
 The travel time of every vehicle crossing the ADA to BDA detectors is measured in 
milliseconds, ms, from which travel times associated with vehicle i are determined from: 
 

 

ttABi measured travel time ms

ttBCi
X BC
X AB

ttABi

=

=

( )

*
      (13) 

 
where the predicted travel time from the BDA to CDA detectors is directly proportional to 
the respective travel distance ratio as determined from the locations of the detectors. 
 
 
2.     Critical Arrival Time at CDA1 
 
 Assuming that vehicle i has arrived at the BDA detector prior to AWEGS deciding 
that the active green phase will soon gap-out (as noted below, or has just gapped out), the 
arrival time of vehicle i at CDA1 (the leading dilemma zone detector) is compared to the 
critical phase gap-out time.  The question of extending the phase, or gapping-out the phase is 
resolved from: 
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Extend:
 

 
ATi CGAPi CDA ATi Pi PassGap≤ = − + − +@ 1 1 1 φ    (14) 

 
Gap-out:    

 

 
ATi CGAPi CDA ATi Pi PassGap> = − + − +@ 1 1 1 φ    (15) 

 
where PassGapN is the effective single-detector passage gap for the signal phase, as used in 
Level 1 technology (see Equation  9) 
 
3.     Critical Lag Time at ADA 
 
 However, AWEGS may have already decided (with a high confidence at low to 
moderate volumes) that the downstream signal phase will soon gap-out (against a conflicting 
call) because vehicle i did not arrive at the BDA detector by its critical gap time.  AWEGS 
will wait only so long for the next vehicle to arrive.  The critical wait (hot) time set for the 
ADA detector is estimated from: 
  

 

 
CHotTi ADA CGAPi CDA MTACi@ @= − − 1      (16) 

 
where MTAC is the current mean travel time, as measured by AWEGS, from the ADA to 
CDA detectors.  Vehicles arriving at the ADA detector before their hot time but traveling 
slower than the average speed might not arrive at the CDA detector soon enough to extend 
the phase.  All vehicles traveling faster than the average would hold the phase in green.  This 
is a major operational improvement of Level 2 over Level 1 (constant mean speed) 
technology. 

Estimating the Current MTAC 

 AWEGS provides an exponential smoothed running average of the expected travel 
time (MTAC) downstream between the ADA and CDA1 detectors.  Adaptation to current 
long-term traffic and environmental conditions is a design objective.   Adjustment to time of 
day impacts, such as related to hourly volume changes, light-to-dark-to-light visibility 
conditions, and day of week effects, are anticipated together with those weather-related 
environmental impacts due to rain, ice, sleet, and snow.  Short-term traffic effects, such as 
due to platooning, may also be sensed.  Significant improvement in speed prediction is 
expected as errors in the original database (presumed to be collected from a prior traffic 
study) grow due to aging of the database and as local conditions routinely change.  The 
exponential smoothing method used is as follows: 
  

 
MTACi MTACi BETA ttACi MTACi= − + − −1 1*( )    (17) 
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where BETA is the exponential smoothing (sensitivity) factor, and whose inverse represents 
the “sample size.”  A BETA of 1 would imply that the current estimate of the true mean (a 
sample size of 1) would be that of the last vehicle measured.  A BETA of 0.0 suggests that the 
current estimate of the mean would remain the original value stored in the database (MTAC0) 
i.e., an infinitely large sample size would be collected before a new value is estimated.  
AWEGS currently uses BETA =  0.05, or an equivalent sample size of 20 vehicles. The lower 
the BETA value, the lower the sensitivity to current traffic conditions.  BETA values as low as 
0.01 appear equally attractive.  Experience may suggest a better starting value for BETA, or 
later adjustments to the value.  Travel times used to estimate MTAC are taken only when the 
downstream signal is green. 
 
 Another important AWEGS design feature is how it responds to detector failure or 
otherwise questionable detector input data.  But what constitutes a detector failure?  Quality 
control limits are defined to assist in this determination.  

Quality Control Limits 

 The ability of travel time and speed measurements to represent normal traffic flow is 
defined in AWEGS by upper and lower quality control limits.  Measured speed and travel 
time could be too high or too low to likely be a true measurement of actual unimpeded 
through-traffic operations. Low-speed traffic may be detected that is (a) turning into or out of 
local driveways, (b) turning at the downstream intersection, or (c) arriving on red behind a 
stopped queue.  Moreover, lane changing or passing may also affect travel time 
measurements.   Providing warning for end-of-green for high-speed through traffic is a 
specific goal of AWEGS, so high-speed traffic should be retained and addressed.  Only 
unlikely super high-speed measurements are considered suspect, and they are reset to the 
upper speed control limit. 
 
 The basic assumption of AWEGS quality control of real-time measures is that 
individual and sample mean travel times collected approximately 10 seconds travel time 
upstream of signalized intersection during green are normally distributed.   Following some 
preliminary study of field data and simulation results, a ProbT (a rejection probability) = 
0.00135 (or a t or z statistic of 3.0) producing one rejected low and one rejected high vehicle 
in a sample of 740 arriving vehicles) has been selected as the confidence level. 
 
 We assume that the local district traffic engineer would have the following spot-speed 
traffic data available to him/her for each direction of flow along the high-speed roadway 
approximately 1000 feet in advance of the signalized intersection of interest.  As an example: 
 
  Mean (50th percentile) speed, mph =     55.9    
  85th percentile speed, mph =                  62.7    
 
 The usual speed zoning sampling criteria would seem appropriate: at least 125 free- 
flowing vehicles.   These data should also be used to establish the original locations of the 
ADA and BDA detectors and to check the correctness of the locations of TxDOT’s CDA 
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detectors.    From the above field data coded into the system, AWEGS calculates the 
following statistics and quality control criteria: 
  Standard Deviation: SIGMA = (V85-V50)/1.04  [=6.538] 
  Coef. of Variation: CoV = SIGMA/Mean Speed [=0.117] 
  ALPHA = ProbT*CoV    [=0.351] 
 
 
AWEGS general form for setting upper and lower quality control limits also employs BETA: 
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where BETA = 1 for individual vehicle measurements, and BETA = 0.05 for exponentially 
smoothed running averages shown above, given the mean travel time from B to C.   
 
 Calculation of a space-mean travel time from a spot-speed study requires adjustment 
from time-mean (spot) speed to space-mean speed (and corresponding reciprocal adjustment 
to related travel times).  AWEGS adjusts the base mean travel time by: 
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where: 
  
 sV  = space-mean speed, fps; 
 tV  = time-mean speed, fps; 
 sttM  = space-mean travel time, seconds; 
 tttM  = time-mean travel time, seconds;  
 CoV  = coefficient of variation of speeds (here assumed to be 0.117); and 
 SMSF  = space-mean speed factor (here SMSF =1.014). 
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Predicting Critical Gap of Arriving Vehicle 

 AWEGS Level 2 processing of the gap-out question continues as described above 
until either AWEGS determines that the phase will gap-out (i.e., predicts a “fire” state) or 
another vehicle is noted arriving on the ADA detector.  Once its time of arrival and speed 
(travel time) are determined, only one small decision process error could possibly occur, if 
gap-out has been forecasted, assuming a true conflicting call.   It is possible that this is a very 
fast vehicle (unknown to AWEGS until this moment) which has arrived at ADA just after its 
CHotTi time, but it can still get to the downstream CDA1 detector before its CGAPi@CDA1 
time.  AWEGS has no way of knowing that such a high-speed vehicle will arrive just after 
deciding that the phase will soon end (i.e., the Ti@ADA >CHotTi@ADA ).  This likelihood is very 
low and is estimated to be less than 1 percent of these termination cases at an arrival volume 
of 400 vph within a travel time delta of 1.0 seconds.  Level 1 also faces this same problem, so 
Level 2 operation adds no deficiency. 

Metamorphosis—Method of System Protection from a Detector Failure 

 A system that depends heavily on quality data inputs from two traffic detectors 
located in the roadway, as Level 2 AWEGS does, should be designed to operate effectively 
should one of the ADA/BDA detectors per lane either: (a) fail, due to a mechanical problem, 
or (b) miss detecting a passing vehicle.  AWEGS is so designed using the above quality 
control limits.  An exogenous mean travel time is always available from the basic input data 
for each approach.  Should either one of the ADA/BDA detectors fail, then a long travel time 
since last activation would be calculated, and this travel time would be rejected by the upper 
travel time limit.   AWEGS is programmed to replace the false long travel time with the 
mean travel time for that vehicle.  Should the detector failure continue over an extended 
period of time, then the resulting running average will slowly drift toward the stored mean 
travel time for the approach (as if it were operating with Level 1 technology).   Should one 
detector fail on each approach, AWEGS will slowly change from a Level 2 to a Level 1 
system, as if it were in a state of metamorphosis.  Should the problem detector begin working 
again, AWEGS will then slowly return to a Level 2 system without reprogramming or 
recoding any data. 
 
 Super high-speed vehicle calculations (very short travel times being measured) are 
also likely to be false, but the AWEGS design response reflects possible consequences of 
them being true, however unlikely  The super-short travel times are replaced with the current 
lower limit travel time, which would reflect a very fast but still plausible speed being 
measured.   In this regard, it is important that trucks do not lose measured loop presence as 
they travel over the individual inductive loops, thereby producing erratic and/or misleading 
speed measurements. 

VARIABLE HOLD TIME 

 One of the major advances of the speed-sensitive Level 2 technology provided in 
AWEGS is the capability of efficiently addressing potential dilemma zone issues facing very 
high-speed traffic approaching the intersection on green while simultaneously minimizing the 
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frequency and magnitude of phase hold times applied by AWEGS to the signal system.  
These targeted speeds could be well above the speed limit. Level 1 operation can not 
determine a very fast vehicle from a very slow vehicle.    
 
 Level 1 provided an inefficient phase hold signal operation.  To ensure adequate end-
of-green warning was provided for high-speed traffic using Level 1 technology, all approach 
traffic was assumed to be high-speed traffic when a phase was predicted to end; i.e., its 
condition was now judged hot. A fixed phase hold of about 5.0 seconds was placed on the 
hot actuated phase, i.e., one that was dwelling in green rest (gapped out but no conflicting 
call exists), and then a cross-street call is suddenly detected.  For a phase hold to be placed on 
a hot phase, at least one approach vehicle must be detected between the ADA and CDA1 
detectors when the conflicting call was received.    
 
 The idea of providing dilemma zone protection for only very high-speed traffic (say 
from the 85th percentile speed up to the 99th percentile value) was not an original AWEGS 
design objective.  However, providing this protection was relatively easy and served as a 
rational basis for minimizing the frequency and duration of phase hold times needed (and 
provided).  Several past researchers had noted long fixed phase holds as being operationally 
problematic in their previous advance warning designs (21, 25, 27). 
 
 This new variable hold capability greatly reduces the likelihood of the traffic-actuated 
phase extending to maximum green, wherein all dilemma zone protection would be lost and 
much unnecessary delay caused the motoring public when traffic volumes are high.  In 
addition, dilemma zone protection for truck traffic can also be readily provided to a large 
extent by judicious selection of the space gap between the 6-foot by 6-foot ILDs used for the 
ADA and BDA speed-trap detectors. 

Dilemma Zone Protection 

 Numerous research papers have been written regarding dilemma zones.   The 
interested reader might start with recent works from Canadian researchers (21) and by 
Bonneson and McCoy (25). An advance warning system that can also minimize the number 
of vehicles in their dilemma zone at yellow onset is also likely to reduce red-light-running 
(27).  Dilemma zones can be defined as time-based or space-based zones.  Most researchers 
usually show space-based zones so that approach detection can be located along the roadway 
(27).  However, equivalent time-based dilemma zones are more useful for AWEGS.  Time-
based dilemma zones have a leading- and trailing-edge travel time to the intersection defined 
for each vehicle’s speed/travel time as: 
 
1.  Leading Edge, sec:   

 

 
ttDZle TPRle

v
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TPRle
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= + = +

2 2 * *     (18) 
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2.  Trailing Edge, sec: 
 

 
ttDZte TPRte

v
dte

TPRte
X AB

dte tt AB
= + = +

2 2 * *
    (19)

 

 
 
where the new variables are defined in Table 4.  The dilemma zone for a vehicle is the time 
domain between the leading and trailing edges of the zone. 
 

Table 4.  AWEGS Parameters Recommended for Determining Dilemma Zones of 
Drivers in Cars or Trucks Approaching Traffic Signals at High-Speed at Yellow Onset. 

Leading Edge 
Le 

Trailing Edge 
te 

Leading Edge 
Le 

Trailing Edge 
Te  

 
Vehicle 

Type 

 
 

Vehicle 
Length, 

feet 

Perception-
Reaction Time 
TPRle,, seconds 

Perception-
Reaction Time 
TPRte , seconds 

Deceleration, 
95 percent 

Stop, 
dle , fps2 

Deceleration, 
5 percent Stop,

dte , fps2 

Car < 24 1.2 0.5 8.9 16.0 

Truck $24 1.2 0.5 6.2 16.0 
 
 
 Several points should be noted regarding the above dilemma zone formulations.   
First, the latter equations do not use speed directly; they use only measured travel times from 
the ADA to BDA detectors.  Second, every vehicle (and driver) will have its own dilemma 
zone depending on its speed (travel time) and type of vehicle.  Third, if trucks can be 
distinguished from cars, then truck dilemma zones can be identified for a given speed since 
acceptable truck deceleration rates have been estimated to be about 70 percent of those of 
cars (21, 25).  A recent Minnesota reference assumes trucks decelerate at 80 percent of cars 
(22).  Drivers’ perception of yellow onset, decision to stop or go, and reaction times are 
presumed to be the same by vehicle-driver type.  Table 4 presents recommended AWEGS 
values for TPR and du/ll calibrated at 55 mph from other research (25). 
 
 AWEGS will identify a passing vehicle as a truck when both the ADA and BDA 
detectors (per lane) are simultaneously activated, and a car, otherwise.  The break point for 
vehicle length in Table 4 was chosen to ensure that four-door crew cab ¾-ton pickup trucks 
with front bumper guards and rear trailer hitches, commonly found in Texas, will be 
classified as cars and not trucks. In a small survey, some of these larger four-door crew cab 
pickups were measured to be about 21 feet long (the largest measured was 21.4 feet) and 
many full-size sports utility vehicles are about 20 feet long.  In addition, a vehicle traveling 
80 mph will travel 2.35 feet in 0.020 seconds (two computer periodic scan intervals), so the 
gap spacing between the ADA and BDA detectors should be at least 23.75 feet (23.75 = 21.4 
+ 2.35), or rounded up to 24 feet, as shown.  This detector design correctly identified every 
vehicle in a total sample of about 50 vehicles from a traffic stream having about 15 percent 
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trucks at our rural Waco site.  A large pickup pulling a horse trailer would be classified as a 
truck, as desired, and so would be most single-unit trucks.  Shorter detector spacings of 18.8 
and 19.5 feet installed at our Brenham field site usually classified large SUVs, full-size cars, 
and crew cab pickups as trucks, which is not the desired outcome. 
 
 AWEGS dilemma zone applications are illustrated in Figures 14 and 15. Figure 14 
provides plots of the resulting travel time dilemma zone boundaries as related to Nader’s 
Guide sometimes used by TxDOT for CDA1 detector locations, based on a design speed 
equivalent to the 85th percentile approach speed.  Figure 15 shows the recommended 
ADA/BDA detector trap location is also adequate to provide dilemma zone protection for the 
fastest trucks likely to be encountered. 
 

 AWEGS Dilemma Zone Travel Time Boundary for
 Vehicle %-tile Speed for Design Speed Shown 
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Figure 14.  Travel Times to Stopline for Various AWEGS Design Elements. 
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 AWEGS Leading Edge Dilemma Zone Boundary for 
Cars and TrucksTraveling at %-tile Speed 
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Figure 15.  Distance to Stopline for Various AWEGS Design Elements on Level Grade. 

VARIABLE PHASE HOLD 

 A phase hold is applied only for those few vehicles currently inside their dilemma 
zone but have not yet arrived at the CDA1 detector, which would then automatically extend 
the phase.  AWEGS does not try to determine when the subject vehicle has actually arrived at 
the CDA1 detector; rather, a hold of sufficient time is placed on the extending green phase to 
permit such arrival.  The variable phase hold is calculated from: 
 
 ε+−= iCDAile ttttDZHOLD ,1,        (20) 
where: 
 
 HOLD    = variable phase hold time for the subject through phase, seconds; 
 ilettDZ ,    = travel time from leading edge of dilemma zone to stopline, seconds;  
 iCDAtt ,!    = travel time from CDA1 (TxDOT) detector to stopline, seconds; and  
 ε    = a 1.0 second buffer to ensure coverage of vehicle to CDA1 detector. 
 An example of the variable hold process is illustrated in Figure 16 for a 60 mph 
design speed detector layout.  Here a high-speed 67 mph vehicle is 0.40 seconds into its 
dilemma zone, when the conflicting call is received, and needs 0.58 second variable-phase 
hold for it to arrive at the CDA1 (TxDOT) leading dilemma zone detector.  Once detected by 
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the controller, detection across the remaining CDA (TxDOT) detectors will automatically 
extend the phase.   
 
 The following chapter describes the field studies conducted to evaluate the AWEGS 
previously described at two real-world study sites located in Texas.  Extensive laboratory 
testing of the proposed hardware designs was conducted at TTI’s Gilchrist laboratory using 
cabinet-in-the-loop technology before AWEGS was deployed at the two sites.  Details of 
cabinet-in-the-loop testing are described elsewhere (29). 
 
 

A 0.58 sec Variable Hold for 67-mph Car at 
Position 300 when Conflicting Call Occurs 
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Figure 16.   Example of a 0.58 Second Phase Hold for a 67 mph Arriving Car for a 60 
mph Design Speed Detector Layout. 
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CHAPTER 5.   FIELD EVALUATION OF AWEGSS 
 

STUDY SITES 

 Researchers deployed two AWEGSs in the field and evaluated their performance.  
Two field sites were chosen as study sites due to their known potential for red-light-running.  
The first site was at the signalized intersection of Texas 6 and FM 185 about 6 miles west of 
Waco.  Existing dilemma zone detection was a more widely but uniformly spaced version of 
Nader’s Guide for 60 mph.  One advance warning AWEGS sign was provided for each high-
speed approach of Texas 6.  Figure 17 illustrates this two-lane undivided site.  Figure 8a 
shows one AWEGS sign installed and operating at the Waco site. 

 

Figure 17.  Westbound TX 6 Approach near Waco before AWEGS. 
 
 The second AWEGS site was at the signalized intersection of US 290 and FM 577 
along the US 290 bypass in southeast Brenham.   Figure 18 shows this (US 290) four-lane, 
divided road.  Two advance warning signs, one on each side of the roadway, were placed for 
each approach of US 290, as can be seen in Figure 19.  The local dilemma zone multiple-
loop design was for a design speed of 70 mph using Nader’s Guide.    
 
 Researchers conducted two types of AWEGS technology evaluations.   First, the 
performance of AWEGS operating under Level 1 (no speed measurements) and Level 2 
(with speed measurements and other features) technology were compared and contrasted so 
that the features and tradeoffs between the two systems could be clearly demonstrated and 
understood.   Second, the overall traffic performance of the Level 1 and Level 2 systems 
were compared to traffic conditions before AWEGS was installed.  Massive databases were 
collected by the AWEGS computer system at each site for many days to assist in this 
evaluation.  Red-light-runners were detected using video imaging vehicle detection systems 
(VIVDS) at the Waco and Brenham sites. 
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Figure 18.  Eastbound US 290 Approach in Brenham before AWEGS.   

 
 
 
 
 
 

 

 

Figure 19.  Westbound US 290 Approach in Brenham after AWEGS Installed. 
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OPERATING PERFORMANCE 

 The function of AWEGS is to provide an advance warning before the end-of-green of 
the arterial phases to high-speed approach traffic.  The system monitors almost all of the 
detections at the intersection, detections on the advance detectors on the arterial approaches, 
and the signal controller status.  Based on the detector activity, AWEGS then predicts the 
termination of green about 5 to 6 seconds in advance for each arterial approach and starts 
flashing the advance warning beacons. 
 
 In order to ensure that a vehicle is not in its dilemma zone at the termination of green, 
sometimes AWEGS places a phase hold for special cases.  In Level 1 implementation, 
AWEGS used only one advance detector.  Hence, the system was likely placing more holds, 
and they were all between 4.5 to 5.0 seconds long, since travel times were fixed and based on 
the off-peak space-mean speed.  However, in Level 2 implementation, AWEGS used both 
advance detectors, and it was more intelligent in placing phase holds.  These phase holds 
should be far fewer in number and shorter in duration in Level 2 than in Level 1. 
 
 AWEGS attempts to provide an advance warning for the end-of-green of about 5 to 6 
seconds.  AWEGS makes decisions on termination of green based on several assumptions 
regarding vehicle detection and operation.  However, motorists do not always drive in a 
predictable manner.  They sometimes slow down on an approach, and sometimes they speed 
up.  To overcome this variability of driver behavior, the system monitors the signal controller 
to provide high-quality prediction.  If the prediction is proving to be false, AWEGS has to 
catch up with the controller operations to warn the vehicle by delaying the termination of 
green when the vehicle is in the dilemma zone by placing a phase hold.  Sometimes the 
advance detectors may detect the first vehicle of a platoon.  Under the right conditions, 
AWEGS may start flashing the beacons after protecting the lead vehicle of the platoon 
because of conflicting calls.  AWEGS does this because it has no way of knowing a platoon 
of vehicles is oncoming.  This situation can result in advance warning of more than 5 to 6 
seconds because the subsequent vehicles in the platoon may extend the phase. 
 
 Sometimes no advance warning on the arterial may be provided.  This usually will 
happen because no advance warning is really necessary.  This may happen when a call 
suddenly comes on a conflicting phase when there are no vehicles on the arterial approaches 
(as may happen during off-peak periods).  Here, no need exists to provide any advance 
warning for the arterial approaches. 
 
 Sometimes the system is unable to distinguish a real detection on a detector from a 
false call.  For example, a real detection on a side-street stop bar detector is a vehicle waiting 
for a green on the side street.  A false detection on the same detector is a left-turning vehicle 
from the arterial going over the same detector during an arterial left-turn movement.  With 
ILD, the amplifier in the cabinet is unable to distinguish this detection as being a false call.  
Hence, the AWEGS reacts to this false detection as if it were a true call, and AWEGS may 
immediately start flashing if conditions are right.  However, the system usually soon 
recognizes the false call and stops flashing the beacons when it is safe to do so.  This 
unnecessary flashing can be minimized by providing good intersection geometric design 
initially and improved directional detection capabilities 
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 This situation sometimes leads to false calls and may result in a large variation in the 
warning time provided to approaching motorists, and this case may even cause some false 
flashing.  However, the AWEGS has been designed to minimize this variation in warning 
time and ensure that it does not have an adverse impact on approaching motorists. 

Phase Holds 

 In order to better understand system performance, six days of detailed data were 
examined from the Level 1 and Level 2 AWEGS operations in Waco together with Level 2 
implementation in Brenham.  Researchers analyzed these data to determine the hold patterns, 
the number of phase terminations, and the pattern of the advance warning being provided per 
typical day.  Table 5 illustrates the statistics observed in Waco regarding the number of phase 
holds and the mean duration of phase holds.  The table also illustrates the number of phase 
ends for each approach. 
 

Table 5.  Number of Phase Holds and Phase Ends in Waco. 

# of Holds
Mean Hold, 

sec Std. Dev
Phase 

Ends, # # of Holds
Mean Hold, 

sec Std. Dev
Phase 

Ends, #
Sunday 126 4.947 0 857 105 4.667 0 849
Monday 146 4.947 0 999 152 4.667 0 984
Tuesday 122 4.947 0 946 172 4.667 0 944
Wednesday 154 4.947 0 974 159 4.667 0 975
Thursday 151 4.947 0 968 170 4.667 0 975
Friday 151 4.947 0 1057 165 4.667 0 1046
Average 142 4.947 967 154 4.667 962

# of Holds
Mean Hold, 

sec Std. Dev
Phase 

Ends, # # of Holds
Mean Hold, 

sec Std. Dev
Phase 

Ends, #
Sunday 5 1.714 0.828 1033 5 1.207 0.225 1014
Monday 5 1.441 0.245 1052 10 1.880 0.823 1044
Tuesday 9 1.619 0.596 1085 9 1.416 0.674 1092
Wednesday 2 1.507 0.419 1086 13 1.453 0.451 1082
Thursday 5 1.552 0.626 1025 13 1.527 0.652 1124
Friday 2 1.842 0.636 1173 6 1.137 0.125 1162
Average 5 1.613 1076 9 1.437 1086

Level 2 - Speed Measured

Day

Phase 2 (Leading Through) Phase 6 (Leading Through)

Level 1 - No Speed Measured

Day

Phase 2 (Leading Through) Phase 6 (Leading Through)

 
 
 As Table 5 illustrates for Waco, the number of phase holds for a Level 1 deployment 
for Phase 2 ranges from 122 to 154 for an average of 142 and for Phase 6 from 105 to 172 for 
an average of 154 per day.  However, for the Level 2 deployment, the number of phase holds 
dropped significantly.  For Phase 2 the range was from 2 to 9 for an average of 5 and for 
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Phase 6 from 5 to 13 for an average of 9 per day.  It is also seen from the table that in Level 
1, the duration of the phase hold for Phase 2 was a fixed value of 4.947 seconds and for 
Phase 6 was a fixed value of 4.667 seconds.  However, in Level 2 the average duration of the 
phase holds are 1.613 seconds and 1.437 seconds for Phase 2 and Phase 6, respectively. 
 
 This decrease in the number of phase holds and the duration of the phase hold was 
expected.  Level 2 AWEGS uses both advance detectors on the arterial approaches to 
determine the type of vehicle (car or truck).  It then calculates the dilemma zone for each and 
every vehicle.  The system is also continuously keeping track of the likely position of the 
vehicle as it approaches the TxDOT dilemma zone detectors.  Hence, the system only 
provides a phase hold to vehicles that really need it and only for the duration needed to avoid 
getting caught in its dilemma zone.  The Level 2 strategy significantly reduced the number of 
phase holds and their duration. 
 
 Table 5 also illustrates the daily number of phase ends for each phase in Level 1 and 
Level 2.  In Level 1, the number of phase ends for Phase 2 range from 857 to 1057 per day; 
while Phase 6 ranges from 849 to 1046.  It is seen that in Level 2 the number of phase ends 
for Phase 2 ranges from 1025 to 1173 and for Phase 6 range from 1014 to 1162.  This 12 
percent increase in the daily number of phase ends in Level 2 is also expected because of the 
similar decrease in the number and duration of phase holds from Level 1 to Level 2.  This 
means that the Level 2 AWEGS is doing a pretty good job of predicting the operation of the 
full-actuated traffic signal controller, and it is having a very small influence on the controller 
operations (very few phase holds). 
 
 Table 6 illustrates the patterns of holds and phase ends in Brenham for Level 2.  A 
Level 1 deployment was not deemed necessary in Brenham as the construction at the 
intersection was not completed until the Level 2 algorithm was developed and since Level 2 
is judged to be a superior algorithm.  
 
 

Table 6.  Number of Phase Holds and Phase Ends in Brenham. 

Day # of Holds
Mean 

Hold, sec Std. Dev
Phase 

Ends (#) # of Holds
Mean Hold, 

sec Std. Dev
Phase 

Ends (#)
Sunday 15 1.819 0.627 895 6 2.618 1.359 468
Monday 16 2.005 0.898 904 5 2.238 0.83 527
Tuesday 11 2.478 1.136 907 3 2.303 0.108 551
Thursday 16 2.044 1.073 907 0 0 0 503
Friday 21 2.246 0.913 886 1 2.003 0 511
Saturday 15 2.09 0.771 922 1 2.533 0 540
Average 16 2.114 904 3 1.949 517

Phase 4 (Lagging Through) Phase 8 (Leading Through)

 
 Table 6 shows a significant difference between the number of phase holds for Phase 4 
and Phase 8.  While the phase holds for Phase 4 range from 11 to 21 for an average of 16 per 
day, they range from 0 to 6 on Phase 8 for an average of 3 per day.  Similarly, the number of 
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phase ends ranges from 886 to 922 for Phase 4 for an average of 904, and they range from 
468 to 551 for Phase 8 for an average of 917 per day.  These results are expected, as there is 
a significant amount of traffic on Phase 3, which is the arterial left-turn movement opposing 
Phase 4.  Hence, Phase 4 terminates more often than Phase 8 resulting in more phase holds. 

Advance Warning 

 The data collected were also analyzed for the distribution of advance warning being 
provided to the motorists.  Additional information about the number of times no advance 
warning was provided as well as the number of times the AWEGS started flashing for false 
calls and stopped flashing after realizing the error.  For the sake of brevity, results for only 
one day are provided in Table 7.  Table 7 illustrates the results of the data analysis for Day 1 
in both Level 1 and Level 2 in Waco for Phase 2 and Phase 6 approaches. 
 

Table 7.  Advance Warning in Waco. 

Flash at 
the Onset 
of Yellow

Flash to 
Start of 
Yellow

Flash for 
False 
Actuations

Flash at 
the Onset 
of Yellow

Flash to 
Start of 
Yellow

Flash for 
False 
Actuations

Level 1
Count (#) 5 852 303 11 838 208
Min, sec 0.26 0.00 0.26 0.00
Max, sec 115.91 13.36 36.85 14.50
Average, sec 5.55 2.02 5.30 1.59
Std. Dev, sec 6.25 1.91 4.84 1.85

Level 2
Count (#) 19 1012 21 5 1009 20
Min, sec 0.00 0.07 0.09 0.07
Max, sec 26.85 4.99 26.97 4.90
Average, sec 3.58 1.66 3.68 1.86
Std. Dev, sec 3.03 1.45 3.38 1.73

Phase 2 (Leading Through) Phase 6 (Leading Through)
Day 1

 
 
 
 Table 7 provides information about three parameters regarding the advance warning 
for each approach.  The column Flash at the Onset of Yellow illustrates the number of times 
AWEGS did not provide any advance warning of the end-of-green, meaning that the beacons 
started flashing at the onset of yellow.  This operation is very efficient and does not 
necessarily suggest an unfavorable situation.  AWEGS does not provide an advance warning 
when no vehicles are detected on the arterial approaches when a “hot” conflicting call is 
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received.  Providing a warning under such cases will only delay serving the vehicle on the 
side street and makes the intersection signal operation less efficient. 
 
 The column Flash to Start of Yellow contains the most critical information.  This 
column states the number of times the advance warning was provided, illustrates the range of 
the advance warning by detailing the minimum and the maximum advance warning provided, 
and calculates the mean and standard deviation of the range of advance warning for the 
particular approach.  The third column Flash for False Actuations indicates the number of 
times the AWEGS started flashing the beacons for an unknown false call and then had to stop 
flashing when the system saw the false call drop.  This column indicates the number of times 
AWEGS corrected its actions either due to unexpected driver behavior, false calls, or wrong 
assumptions. 
 
 As Table 7 indicates, AWEGS provided more advance warnings in Level 2 than 
Level 1 for both Phases 2 and 6.  This trend is consistent for the remaining days.  As noted 
earlier, the logic of AWEGS was significantly enhanced in Level 2.  As shown in Table 5, 
there was a 12 percent increase in the number of phase ends from Level 1 to Level 2.  Hence, 
we see a higher count for the times advance warning was provided.  Table 7 also shows a 
significant reduction in the number of false flashes from Level 1 to Level 2.  Even this trend 
was expected in Level 2.  The AWEGS in Level 2 has been enhanced to recognize the 
intricacies of the phasing sequences.  While Level 1 assumed lead-lead phasing for arterial 
lefts, the actual phasing sequence was lag-lag in Waco.  In Level 1 AWEGS started flashing 
the beacons a number of times only to correct it later because of the difference in left-turn 
phasing sequence.  Level 2 deployment corrected this problem in Brenham. 
 
 Figure 20 and Figure 21 graphically show the distribution of advance warning time 
provided by AWEGS in Waco per day for Level 1 and Level 2 deployments, respectively.  
Advance warning durations of between 1 and 2 seconds seem to be predominant in the 
graphs.  Advance warning of 1 to 2 seconds was given in about 275 cases in Level 1 and 425 
cases in Level 2.  On the surface this would be cause for serious concern because AWEGS’s 
objective is to provide approximately 5 to 6 seconds of advance warning.   
 
 Upon detailed analysis of these warnings, however, it was found that all of these 
warnings occurred when there were no motorists on the arterial approaches when the arterial 
phase had terminated.  Hence, a smaller warning of less than 2 seconds under those 
conditions is not an indication of faulty AWEGS operation.  It actually means that AWEGS 
is correctly predicting the gap-out of the arterial phases in very light traffic conditions for a 
large majority of the cases.  If we disregard these warnings of less than 2 seconds, it is seen 
that in both Level 1 and Level 2, AWEGS is providing an advance warning of 5 to 6 seconds 
in a majority of the phase termination and meeting the system objective.  It is significant to 
note that almost no 0 to 1 second advance warnings were observed during the day.  This 
implies that almost no end-of-green phase terminations were missed by AWEGS; i.e., the 
phase ended or was about to end with no system response previous active.   
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Figure 20.  Advance Warning Distribution in Waco Day 1 - Level 1. 
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Figure 21.  Advance Warning Distribution in Waco Day 1 - Level 2. 
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 Similarly, Table 8 illustrates the flashing operations for the Level 2 deployment in 
Brenham. It is clearly seen from Table 8 that there is a significant difference in the operation 
of the beacons between Phase 4 and Phase 8.  While the count of flash to start of yellow 
(advance warning) for Phase 4 is about 744, it is as low as 460 for Phase 8.  This is clearly 
because of the number of phase terminations for each of the phases as seen in Table 6.  
However there is also a big difference in the flash at the onset of yellow parameter.  While 
AWEGS started flashing at the onset of yellow 150 times for Phase 4 approach, it only did so 
4 times for Phase 8 approach.  TTI researchers analyzed these occurrences to find out the 
causes for this large discrepancy and found two reasons. 
 

Table 8.  Advance Warning Distribution in Brenham (Level 2). 

Flash at 
the Onset 

of 
Yellow

Flash to 
Start of 
Yellow

Flash for 
False 

Actuations

Flash at 
the Onset 

of 
Yellow

Flash to 
Start of 
Yellow

Flash for 
False 

Actuations
Level 2
Count (#) 150 744 15 4 460 1
Min, sec. 0.01 0.12 0.18 0.74
Max, sec. 46.42 3.99 94.82 0.74
Average, sec. 4.73 0.80 11.31 0.74
Std. Dev, sec. 3.65 1.03 14.82 0.00

Day 1
Phase 4 (Lagging Through) Phase 8 (Leading Through)

 
 
 Vehicles arriving on Phase 3 (eastbound left), which is a conflicting phase for Phase 
4, were often making a left turn on the red and were then waiting for a green indication in the 
median of the highway.  These vehicles were placing a call on a detector located within the 
median, which was responsible for terminating Phase 4 green.  However, AWEGS is only 
monitoring the actuations on Phase 3 and not on the detector placed in the median.  And 
AWEGS was also making an assumption that motorists would make a left turn only after 
getting a protected left turn for Phase 3.  However, motorists were making left turns on red, 
resulting in the beacons flashing numerous times at the onset of yellow.  AWEGS should 
monitor the activity of the detector in the median of the highway in Brenham and minimize 
these unexpected terminations of Phase 4. 
  
 A number of eastbound through vehicles (Phase 8) were accidentally actuating 
(splash over) the adjacent left-turn detector (Phase 3).  AWEGS monitoring the Phase 3 
detector sees the call on Phase 3 but also sees the vehicle leave the detector immediately and 
assumes that the phase will not be served.  However, the traffic signal controller had its 
Memory On function activated for Phase 3.  The controller remembers this actuation on 
Phase 3 and services the phase even though no vehicle is there.  TxDOT personnel have 
programmed Memory On to ensure that a phase is serviced with a high degree of reliability.  
What this means is that there will always be some unexpected terminations of Phase 4.  
These unexpected terminations on Phase 4 do not have any adverse impact on safety of 
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vehicles on the approach because it will only happen when there are no vehicles at their 
critical locations. 
 
 Figure 22 illustrates the distribution of advance warning for Phase 4 and Phase 8 for 
the study day.  Figure 22 shows that a majority of the advance warnings in Brenham were 
between 5 and 6 seconds.  Some warnings were less than 1 second because no motorists were 
on the approach when a vehicle was detected on a conflicting phase.  AWEGS is aware of the 
termination condition at all times.  The distribution illustrates that AWEGS is providing the 
intended warning to the motorists in advance of the end-of-green. 
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Figure 22.  Advance Warning Distribution in Brenham - Day 1. 
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TRAFFIC PERFORMANCE  

 AWEGS was designed to reduce red-light-running and to improve the resulting traffic 
safety.   The short duration of the two-year project necessitated the focus on the primary 
performance variable of red-light-running, which will be described in the following section 
for the two field sites.  Methods of data collection using remote video detection will be 
described first, followed by a description of the criteria used to define a red-light-runner.  
Extensive before-after field observations will then follow.   Overall, a 40 to 45 percent 
reduction in red-light-running was obtained at the two sites.  

Method of Data Collection 

 The red-light-running problem before the installation of AWEGS was measured by 
means of surrogate methods at SH 6 and FM 185 intersection in Waco and at US 290 and FM 
577 intersection in Brenham.  This was done by means of a computer program that logged in 
actuations of detectors in the field.  AWEGS collected some of the events it monitors and 
also the decisions it makes, based on these events, into log files for system verification and 
evaluation.  The collected data were written into two log files named as mmddyyyy.ada and 
mmddyyyy.vda.  The .ada log file documents the decisions made by the system and most of 
the intersection and controllers events AWEGS monitors.  Thus, the passage of vehicles was 
identifiable in such files, which were converted into Excel files.  Also, the current status of 
the advance warning flashers and the traffic signal itself were logged into these files.  The 
.ada files were utilized to monitor the system performance of the AWEGS, while the .vda 
files helped to analyze traffic performance of the system, specifically in the area of red-light-
running. 

 Events logged into the .vda files (for evaluating RLR), included time stamps for 
actuations of the loops provided by the video imaging system installed at the site.  In Waco, 
each main-street monitored approach had two video loops, while in Brenham each approach 
had one.  The .vda file also contained time stamps for the beginning of the green, yellow, all-
red, and red intervals of main-street phases.  Also in this .vda file are counts of vehicles 
detected by the first loop of the video loops pair, associated with the approach, during the 
green, yellow, all-red, and red intervals of the main-street phases.  A standard VIVDS located 
at the intersection was used.  An example of this VIVDS system mounted on the mast arm 
above the luminaire in Waco is shown in Figure 23.   

Development of Red-Light-Running Criteria  

 For two weeks prior to the installation of AWEGS, red-light-running data were 
collected and reduced to obtain the number of red-light-runners for each day.  A plot of the 
actuations of passage times of vehicles was made to determine the nature of the distribution 
of these data in order to determine an appropriate range of passage times on detectors and to 
distinguish between a high-speed vehicle going across the intersection during a red signal 
from some other event.  These other events included vehicles from the cross street that 
actuate the second video detector and any opposing left-turn vehicles that may trigger an 
actuation from the first detector. 
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Figure 23.  Video Imaging Vehicle Detection System (VIVDS) at Waco. 
 
 
 Based on these plots, the researchers realized that about 80 percent of detection 
presence times were between 200 and 600 milliseconds.  Red-light-running constitutes a 
traffic violation that occurs when a motorist enters an intersection (often deliberately) some 
time after the signal light has turned red.  Motorists who inadvertently enter an intersection 
when the signal changes to red when waiting to turn, for example, are not red-light-runners.  
A defined period of time of 5 seconds after the start of red clearance was used to measure 
red-light-running. 

 Thus, together with the nature of the placement of video detectors and speeds of 
vehicles, the red-light-running event was defined as follows: 

• any vehicle crossing the stopline (from the input side of the first through VIVDS 
detector) during red clearance;  

• any vehicle crossing the stopline during real red following red clearance, timed from 
the start of real red until 5 seconds of red display had elapsed, where the initial time 
on this clock starts at start of red clearance; and 

• a crossing was defined as the first (A) detector being briefly activated followed within 
2 seconds by its trailing (B) detector briefly coming on.  “Briefly” was defined by a 
detector presence time between 0.2 and 0.6 seconds. 

  
 These conditions were used partly to separate true red-light-runners from other (false) 
events like side-street and main-street left-turning vehicles who inadvertently trigger one of 
the video detectors during red.  However, in Brenham, there was only one video detector 
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available for each approach, thus the third criterion was altered to account for the fact there 
was no trailing B detector.  The presence time of the A detector was utilized, however. 

Before-and-After Study Results on Red-Light-Running in Waco 

 The before period of study was conducted from October 19, 2002, to November 2, 
2002.  After the deployment of Level 1 technology, three different periods of after studies 
were conducted during December, March, and April.  These study periods were 
approximately four weeks, eight weeks, and three months, respectively, after installation of 
the Level 1 AWEGS technology.  After Level 2 technology deployment, data were collected 
for the period between July 16, 2003, and August 9, 2003, for a total of 21 days. 

 Thus, for a total of 35 days after the installation of AWEGS, data were collected to 
analyze the impact of the Level 1 system on RLR.  After the deployment of Level 2 
technology, data were collected for a period of 21 days in the months of July and August 
2003, which was about two weeks after the initialization of Level 2.  Table 9 gives a 
summary of the rates for these different periods of analysis. The traffic performance results 
for both TX 6 directions of flow are combined in Table 9 and later also for the Brenham site. 
 
 The efficacy of various AWEGS designs to reduce RLR at the Waco site can be seen 
in Table 9.  There was a rate of 8.62 red-light-runners per day for the period of study before 
the installation of AWEGS.  After the first installation of AWEGS, 4.69 runners per day were 
recorded during Level 1. This is a statistically significant 45 percent reduction in RLR. The 
Level 2 deployment also was very effective, producing only 5.24 red-light-runners per day, 
or nearly a 40 percent reduction.  While the more traffic efficient Level 2 experienced a 
slight 12 percent increase in RLR per day when compared to Level 1, this small statistically 
insignificant increase is the same as the 12 percent increase in the number of phase ends 
observed between Level 1 and Level 2 in Table 5.  Thus, the rate of RLR per phase end 
exposure is practically the same for the two systems.  Further plots to identify specific nature 
of the reductions in RLR for the red clearance and following real red periods are given in 
Figure 24 and Figure 25.  
 
 

Table 9.  Results of Red-Light-Running in Waco. 

  Time Period Actual Count Rate/day  
Study 
Period 

No. of 
Days 

From To Red 
Clear. 

Real 
Red 

Total Red 
Clear. 

Real 
Red 

Total 

Before 13 10/19/2002 11/2/2002 93 19 112 7.15 1.46 8.62 

After – 
Level 1 

35 12/4/2002 4/3/2003 135 29 164 3.86 0.83 4.69 

After – 
Level 2 

21 7/19/2003 8/8/2003 96 14 110 4.57 0.67 5.24 
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Figure 24.  Red-Light-Running in Waco. 
 
 

0%

10%

20%

30%

40%

50%

60%

70%

Total Real Red Red Clearance

Pe
rc

en
t o

f B
ef

or
e

Level 1
Level 2

 

Figure 25.  Reduction in Red-Light-Running in Waco. 
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 The figures show that the Waco site experienced statistically significant reductions in 
RLR of 45 and 40 percent for the Level 1 and Level 2 study cases, respectively, as compared 
to the before condition without AWEGS.  A look into the nature of these reductions shows 
that the Level 2 reductions of RLR in real red (i.e., for 3.5 seconds into the real red) was 45 
percent, or about 10 percent higher than in Level 1.  On the other hand, the reduction in RLR 
during red clearance (with a duration of 1.5 seconds) was about 10 percent higher in Level 1 
deployment than in Level 2.  Since there were overall reductions in RLR, one can presume 
that more traffic was diverted out of the real red zone to stop, than out of the red clearance.  

 A slight, statistically insignificant 12 percent increase in RLR was noted for Level 2 
when compared to Level 1.  Two reasons for this small increase are offered.  One is the 
relatively inefficient traffic signal operation that occurred during Level 1, noted earlier in 
Table 5, when compared to Level 2.  Level 2 had a similar 12 percent increase in the number 
of phase ends per day versus Level 1.  This increase is strikingly the same percentage as the 
12 percent increase in RLR that occurred.  Thus, RLR per exposure for the two AWEGSs 
were the same.  Another event occurred at the Waco site between Level 1 and Level 2 
deployment.  The high-speed road, TX 6, was repaved with a high-friction, anti-skid surface.  
Comparisons of handheld radar spot-speed studies conducted at the start of Level 1 and Level 
2 indicate an increase in operating speed of 2-4 mph for the two directions of flow.  In any 
case, the potential operational benefits of Level 2 over Level 1 far outweigh any RLR 
benefits that Level 1 might offer, except in those few cases where a speed-trap detector may 
fail.  Here, AWEGS Level 2 will slowly transition to a still effective Level 1 system until 
such time as the suspect detectors are repaired. 

Before-and-After Study Results on Red-Light-Running in Brenham 

 The RLR phenomenon at the intersection of FM 577 and US 290 in Brenham was 
conducted over a two-month period.  Twenty-one days prior to the installation of AWEGS 
(in May 2003), data were collected to determine the level of RLR at the intersection.  
Approximately one month after the installation of the system (during July and August 2003), 
data were collected and analyzed for 21 days to determine the effect of AWEGS on the red-
light-running events.  Table 10 contains a summary of the results for both periods of data 
collection.  It can be seen that RLR rates in Brenham were appreciably higher than in Waco, 
primarily due to the higher traffic volumes through the intersection at Brenham.  Plots of the 
RLR events were done to give a clearer picture of the reduction rates observed in Brenham.   
 

Table 10.  Summary of Red-Light-Running in Brenham. 

Time Period Actual Count Rate/day 
Study 
Period 

No. of 
Days From  To Red Clear Real Red Total

Red 
Clear Real Red Total 

Before 21 5/3/2003 5/30/2003 1475 404 1879 70.24 19.24 89.48 
After 21 7/17/2003 8/12/2003 859 200 1059 40.90 9.52 50.43 

 
 Figures 26 and 27 show the nature of RLR reduction observed in Brenham.  Figure 26 
shows a decrease from 90 to 50 red light runners per day, or nearly a 45 percent reduction in 



 64

RLR.  Closer study reveals greater reduction in real-red running than in red clearance.  All of 
these before-and-after reductions are statistically and practically significant.  These results 
show the potential benefits to be expected in a wider deployment of AWEGS where needed. 
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Figure 26.  Red-Light-Running in Brenham. 
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Figure 27.  Reduction in Red-Light-Running in Brenham. 



 65

CHAPTER 6.   CONCLUSIONS AND RECOMMENDATIONS 
 
 
 This research project developed an effective system for warning approaching 
motorists of the forthcoming end-of-green phase at high-speed ( ≥ 45 mph) isolated traffic- 
actuated signals in Texas.  The research developed a fully functional Advance Warning for 
End-of-Green System, known as AWEGS.  AWEGS was designed by the authors from the 
Texas Transportation Institute for the Texas Department of Transportation.  AWEGS was 
field tested at two sites in Waco and Brenham, Texas.  The Waco site was a high-speed, two-
lane rural road.  The second site was a very high-speed, high-volume, four-lane divided 
highway located on the US 290 bypass of Brenham, Texas.  Both sites had a lot of heavy 
trucks, but the Brenham site had many large interstate freight trucks.  AWEGS reduced red-
light-running, during the targeted first 5 seconds of red, by 38 to 42 percent.  Level 2 features 
are much preferred because they also minimize any negative impact on the operation of the 
existing traffic-actuated controller (from phase holds).  Level 2 also provides new and 
effective dilemma zone protection for targeted trucks and very high-speed cars. 
 
 Two companion reports were written to provide guidance on the design, installation, 
and operation of AWEGS (1, 2).   More specific conclusions of this research are identified 
below.  Based on these findings, both research and implementation recommendations are 
offered future AWEGS researchers and design engineers who might wish to deploy such 
system in Texas and elsewhere. 

CONCLUSIONS 

1. A series of advance warning technologies were tested over the two-year study.  A 
 base Level 1 technology was initially proposed using trailing overlaps to provide a 
 fixed amount of advance warning of the end-of-green phase, but this method was 
 rejected upon further investigation of its likely performance because it would give up 
 existing dilemma zone protection routinely provided by TxDOT engineers. 
   
2. Advance warning systems should minimize the usage of fixed trailing overlaps 
 where full traffic-actuated systems are deployed.  AWEGS Level 2 does minimize the 
 usage of trailing overlaps to perhaps no more than 2 percent of the phase terminations 
 per day.  
 
3. Both Level 1 and Level 2 AWEGSs appear to provide effective advance warning for 
 end-of-green with reductions in RLR during the first 5 seconds of red on the 
 order of 38 to 42 percent based on the study results at the two sites in Waco and 
 Brenham. 
 
4. Level 2 AWEGS provides far superior overall operating features than does Level 1.  
 It minimizes the usages of trailing overlaps, provides far fewer traffic delays due to 
 stoppages at the signal than does Level 1, and it also provides identifiable extra 
 dilemma zone protection only for those very high-speed vehicles and trucks needing 
 some variable phase hold protection. 
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5. However, the traffic study results show that AWEGS should be designed to fall back 
 to a Level 1 system rather than going to either a background flash or trailing overlap 
 should either of the approach roadway’s two speed-trap detectors fail.   
 
6. Many false calls on cross-street movements are likely to be occurring at some high-
 speed rural signalized intersections, especially those prone to excessive red-light 
 running.  These false calls may be causing a proportionally high number of red-light-
 runners and related safety problems.  Signalized intersections having high-speed 
 traffic with a high percentage of left-turning traffic across unchannelized highway 
 approaches using non-directional traffic detection of calls are candidates.  Directional 
 detection of roadway traffic, perhaps using VIVDS stopline detection would 
 ameliorate some of this problem, where it is  significant, and the addition of barrier 
 divisional channelization would further reduce these false calls. 

RECOMMENDATIONS 

1. The Texas Department of Transportation should strongly consider further 
 implementation of the above described Advance Warning for End-of-Green System 
 at perhaps six additional sites in the various regions of the state.  These systems 
 should be operated and observed for at least three years so that reliable before-and-
 after traffic accident data could be collected and analyzed to verify the crash 
 reduction capabilities of AWEGS suggested by the positive RLR studies observed in 
 this research.   
 
2. TxDOT should attempt to design, install, and operate such AWEGSs at known 
 red-light-running sites using the design guidelines, software, and guidance provided 
 by this research project.  Intersection and system designs should be provided that 
 minimize the likelihood of all types of false calls.  Technical support and guidance 
 for these implementation projects by TxDOT could be provided by the AWEGS 
 research staff of TTI as appropriate. 
 
3. Follow-up studies should be conducted at some of these sites where TxDOT can 
 readily install video imaging video detection systems to monitor RLR. Summary 
 documents could be prepared by TTI researchers in concert with TxDOT field 
 personnel that could be used to update the two manuals being developed within this 
 research work (1, 2).   
 
4. Further research should be conducted to improve the knowledge base of AWEGS 
 applications in general.  However, two areas should be specifically considered.  
 Human factors studies should be conducted to determine the optimal configuration 
 and operations of the AWEGS signs as related to the various types  of roadside 
 environments expected.  Off-the-shelf devices should be developed to economically 
 and reliably drive and backup the advance flasher operation desired. 
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