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DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts
and the accuracy of the data published herein.  The contents do not necessarily reflect the official
view or policies of the Federal Highway Administration (FHWA) and/or the Texas Department of
Transportation (TxDOT).  This report does not constitute a standard, specification, or regulation.
It is not intended for construction, bidding, or permit purposes.  The engineer in charge of the project
was James Bonneson, P.E. #67178.

NOTICE

The United States Government and the State of Texas do not endorse products or
manufacturers.  Trade or manufacturers’ names appear herein solely because they are considered
essential to the object of this report.
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CHAPTER 1.  INTRODUCTION

OVERVIEW

Retting et al. (1) found that drivers who disregard traffic signals are responsible for an
estimated 260,000 “red-light-running” crashes each year in the U.S., of which about 750 are fatal.
These crashes represent about 4 percent of all crashes and 3 percent of fatal crashes.  Retting et al.
also found that red-light-running crashes accounted for 5 percent of all injury crashes.  This over-
representation (i.e., 5 percent injury vs. 4 percent overall) led to the conclusion that red-light-related
crashes are typically more severe than other crashes. 

A recent review of the Fatality Analysis Reporting System (FARS) database by the Insurance
Institute for Highway Safety indicated that an average of 95 motorists die each year on Texas streets
and highways as a result of red-light violations (2).  A ranking of red-light-related fatalities on a “per
capita” basis indicates that Texas has the fourth highest rate in the nation.  Only the states of
Arizona, Nevada, and Michigan experienced more red-light-related fatalities per capita.  Moreover,
the cities of Dallas, Corpus Christi, Austin, Houston, and El Paso were specifically noted to have an
above-average number of red-light-related crashes (on a “per capita” basis) relative to other U.S.
cities with populations over 200,000. 

An examination of the Texas Department of Public Safety crash database by Quiroga et al.
(3) revealed that the reported number of persons killed or injured in red-light-related crashes in
Texas has grown from 10,000 persons/yr in 1975 to 25,000 persons/yr in 1999.  They estimate that
these crashes currently impose a societal cost on Texans of $1.4 to $3.0 billion annually.

The problem of red-light-running is widespread and growing; its cost to society is significant.
A wide range of potential countermeasures to the red-light-running problem exist.  These
countermeasures are generally divided into two broad categories: engineering countermeasures and
enforcement countermeasures.  A study by Retting et al. (4) has shown that countermeasures in both
categories are effective in reducing the frequency of red-light violations.  

Unfortunately, guidelines are not available for identifying intersections with the potential for
safety improvement (i.e., “problem” intersections) and whether engineering or enforcement is the
most appropriate countermeasure at a particular intersection.  Moreover, there has been concern
voiced over the validity of various methods used to identify problem locations, especially when
automated enforcement is being considered (5, 6).  There has also been concern expressed that
engineering countermeasures are sometimes not fully considered prior to the implementation of
enforcement (5, 6, 7).
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RESEARCH OBJECTIVE

The objectives of this research project were to: (1) quantify the safety impact of red-light-
running at intersections in Texas, and (2) provide guidelines for identifying truly problem
intersections and whether enforcement or engineering countermeasures are appropriate.  These
objectives were achieved through the satisfaction of the following goals:

! Identify the frequency of crashes caused by red-light-running at intersections on the Texas
highway system and in the larger Texas cities. 

! Develop guidelines for identifying intersections with abnormally high rates of red-light
violations and related crashes.

! Develop guidelines for identifying the most effective countermeasure (or countermeasures)
for application at a given intersection.

The research conducted in pursuit of these goals is documented in this report.  The findings
were used to develop a handbook for use by engineers when addressing red-light-related problems.

RESEARCH SCOPE

This research project addressed red-light violations that occur at signalized intersections on
Texas streets and highways.  The focus was on red-light violations by drivers traveling through the
intersection (as opposed to those that turn at the intersection).  Guidelines were developed that
consider both violation and crash frequency as indicators of a red-light-related problem.

RESEARCH APPROACH

This project’s research approach was based on a 2-year program of field investigation, data
analysis, and guideline development.  The research findings were used to develop a guideline
document to assist in the identification of problem locations and the implementation of
countermeasures to reduce red-light-related crashes.  During the first year of the research, the
frequency of red-light violations on the Texas highway system and in the larger Texas cities was
quantified.  In the second year, area-wide officer enforcement was evaluated as a treatment for red-
light-related safety problems.  Research in the second year also produced models for estimating the
expected frequency of violations and crashes.  The findings from both years of research were
combined to develop guidelines for identifying and treating problem locations on an area-wide and
a local intersection basis.

The main product of this research is the Red-Light-Running Handbook:  An Engineer’s Guide
to Reducing Red-Light-Related Crashes.  This document provides technical guidance for engineers
who desire to locate and treat intersections with red-light-related safety problems.  It also provides
quantitative information on the effectiveness of the more promising countermeasures.  The analytic
procedures in the Handbook are implemented in an Excel ® spreadsheet.  The spreadsheet is
available at http://tti.tamu.edu/documents/0-4196-treat.xls.
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CHAPTER 2.  INTERSECTION RED-LIGHT-RELATED
CRASH FREQUENCY

OVERVIEW

This chapter describes the development of a procedure for identifying intersections with the
potential for red-light-related safety improvement (i.e., “problem” intersections).  The application
of this procedure identifies intersections likely to need some type of  improvement and for which the
treatment is likely to be cost-effective.  To this end, the procedure can be used to identify and rank
intersections with an above average frequency of red-light-related crashes.  The procedure focuses
on the individual approach to a signalized intersection.  It considers crashes caused by through
vehicles on the approach.  It does not address intersection approaches that terminate at the
intersection (i.e., the stem approach of a “T” intersection).

A review of the literature on the topics of problem location identification and crash prediction
is described in the next section.  Then, a site selection and data collection plan is described.  Next,
the assembled database is examined and used to calibrate a crash prediction model.  Finally, the
calibrated model is used to develop the procedure for identifying problem intersection approaches.

LITERATURE REVIEW

This section reviews the literature related to procedures for identifying problem intersections.
It is not an exhaustive review.  Rather, it references two key documents that describe the findings
of a comprehensive review of site “screening” techniques.  This section also summarizes recent
research in the area of red-light-related crash prediction models and factors correlated with red-light
violation frequency.

Procedures for Identifying Problem Intersections

Hauer (8) examined alternative techniques for identifying locations for potential safety
improvement.  He identified eight techniques that are, or could be, used to identify problem
locations.  These techniques are listed in Table 2-1.

Several of the techniques listed in Table 2-1 are based on the use of crash frequency and
others are based on the use of crash rate.  Those based on frequency tend to direct the search for
problem locations to high-volume locations.  These techniques may not find the most unsafe (i.e.,
risky) locations; however, improvements to locations with frequent crashes tend to be the most
efficient in terms of the cost-effective reduction in crashes.  In contrast, techniques based on rate tend
to direct the search to locations where the risk of a crash is highest, regardless of crash frequency.
Improvements to locations with a high crash rate tend to be most sensitive to the level of motorist
safety but may not be cost-effective to provide.
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Table 2-1.  Alternative Techniques for Quantifying Improvement Potential.
No. Technique Rationale
1 Reported crash frequency, Fo Treat sites with the most frequently observed crashes.
2 Reported crash rate, Ro Treat sites where the reported crash risk is highest.
3 Expected crash frequency, Fn Treat sites with the highest expected frequency of crashes.
4 Expected crash rate, Rn Treat sites where the expected crash risk is highest.
5 Difference in crash frequency, Fo!Fn Treat sites with the highest potential for crash reduction.
6 Difference in crash rate, Ro!Rn Treat sites with the highest potential for risk reduction.
7 Scaled difference in frequency1, (Fo!Fn)/sF Same as 5 but weigh by degree of uncertainty in potential

benefit.
8 Scaled difference in rate2, (Ro!Rn)/sR Same as 6 but weigh by degree of uncertainty in potential

benefit.
Notes:
1 - sF = standard deviation of the difference in crash frequency.
2 - sR = standard deviation of the difference in crash rate.

As noted by Hauer (8), present practice is to use Technique 1, 2, or both to identify problem
locations.  However, these two techniques can mistakenly identify sites as problem locations when,
in fact, their recent association with a relatively frequent number of crashes is due only to the
randomness in crash occurrence (and not to a degradation in safety).  Techniques 3 through 8 are
intended to overcome these deficiencies.

Techniques 3 and 4 use the expected (or average) crash frequency or rate to identify problem
locations.  Hauer (9) has advocated the use of the empirical Bayes method to compute the expected
crash frequency or crash rate.  This method estimates an expected crash frequency (or rate) by
computing a weighted average of the reported crash frequency (or rate) and a predicted frequency
(or rate).  The predicted frequency is obtained from a model that is calibrated using crash data from
several sites with similar geometry and traffic control.  The expected frequency (or rate) is preferred
to the reported frequency (or rate) for locating problem locations because the misleading effects of
randomness in crash occurrence are minimized.

The difference in crash frequency (or rate) used in Techniques 5 and 6 is a further
improvement on Techniques 3 and 4.  This difference is intended to identify sites where the potential
for safety improvement is greatest.  In this regard, the difference identifies sites with “above average”
crash frequencies (or rates).  The rationale follows that these sites are most likely to demonstrate the
most significant reduction in crashes as a result of treatment.  Sites that have “below average” crash
frequencies (or rates) are not likely to realize as large a reduction in crashes (or risk) and, hence, are
not likely to be cost-effective to treat.

Techniques 7 and 8 represent one final enhancement to Techniques 5 and 6.  Specifically,
the enhancement is that of computing the standard deviation of the estimated difference in frequency
(or  rate) and using it to “scale,” or weigh, this difference based on the degree of uncertainty
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associated with it.  In this manner, locations with a large difference might not be identified as being
a problem location if there is considerable uncertainty associated with the estimated difference in
crash frequency (or rate).

Persaud et al. (10) evaluated the efficiency of Techniques 1, 2, 3, and 5.  They found that
Technique 5 was the most efficient at identifying intersections with treatable crashes.  Technique 2
was the least efficient technique.  

Challenges of Identifying Red-Light-Related Crashes

There are several challenges to the accurate identification of red-light-related crashes.  Such
crashes are not explicitly identified on the crash report forms used by most states (including Texas).
As a result, the identification of red-light-related crashes requires a thorough review of the crash
report with consideration given to the following crash attributes:  contributing cause, crash type,
traffic control, and offense charged.  The officer narrative and crash diagram also provide important
clues to the cause of the crash.

Unfortunately, the narrative and diagram are rarely available in a coded crash database.  This
sole use of a coded database can lead to errors.  The extent of these errors was recently investigated
by Bonneson et al. (11).  They identified the attributes commonly used to identify red-light-related
crashes using coded databases.  They found that various combinations of the following three
attributes were commonly used:  

! intersection relationship:  “at” the intersection, 
! crash type:  “right-angle,” and 
! first contributing factor:  “disregard of stop and go signal.”

To test the accuracy of these three attributes, Bonneson et al. (11) used them to identify the
red-light-related crashes at 70 signalized intersections in three Texas cities during a 3-year period.
A total of 274 crashes satisfied these three attributes.  However, after the acquisition and review of
the peace officer reports for all 3338 crashes that occurred in the vicinity of these intersections, it
was found that four crashes in the pool of 274 were not truly red-light-related and that 232 red-light-
related crashes were not identified (i.e., they were missed).  In summary, crash attributes commonly
thought to be useful for identifying red-light-related crashes may identify only about 54 percent (=
[274 !4]/[274 !4 + 232]  ×100) of those that actually occur.  Bonneson et al. (11) found that the
following attributes would identify 79 percent of the red-light-related crashes:

! intersection relationship:  “at” the intersection, and
! first contributing factor:  “disregard of stop and go signal” or “disregard stop sign or light.”
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Red-Light-Related Safety Prediction Models

Mohamedshah et al. (12) used crash data obtained from the State of California to develop a
model for predicting the frequency of red-light-related crashes on an intersection approach.  Their
database included 4709 red-light-related crashes that occurred during a 4-year period at 1756 four-
legged, urban intersections.  

A variety of factors were considered in the calibration of a prediction model.  These factors
included:  annual average daily traffic (AADT) on both intersecting streets, number of lanes crossed,
presence of left-turn bays, and type of traffic control (i.e., pretimed, actuated, or semi-actuated).
Other factors were also considered; however, only the factors listed were found to be statistically
significant.  The data reported by Mohamedshah et al. (12) were used to examine the effect of AADT
and lanes crossed on red-light-related crashes.  The results of this examination are shown in
Figure 2-1.  The number of lanes crossed was converted to an equivalent distance required by the
red-light-running driver to clear the intersection.

The trends shown in Figure 2-1a indicate that the annual crash frequency on the major-street
intersection approach ranges from 0.2 to 0.6 crashes per year over the range of AADTs.  Figure 2-1b
indicates that crashes are somewhat insensitive to clearance distance for distances up to 130 ft.
However, crashes were found to increase with clearance distances in excess of 130 ft.  This effect
of distance was found to be significant only for vehicles on the cross-street approaches.

Recent research by Bonneson et al. (13) found that there was a positive correlation between
red-light violations and related crashes.  Hence, it is logical that factors that influence violations may
also influence crash frequency. This section reviews several factors found by Bonneson et al. and
others to be correlated with red-light violations. 

Review of Factor Effects

Bonneson et al. (13) found that the following factors were correlated with violation
frequency:  approach flow rate, cycle length, yellow interval duration, running speed, clearance path
length, platoon ratio, use of signal head back plates, and use of advance detection.  Their effect on
red-light  violation frequency is illustrated in Table 2-2 for specified changes in the factor value.  

The information in Table 2-2 illustrates the individual effect of each factor on red-light
violation frequency.  The magnitude of the effect is dependent on the change of the associated factor.
Specific changes are listed in Table 2-2; different changes may yield different effects on violation
frequency.  In general, a decrease in violations was found to be associated with a decrease in flow
rate, an increase in yellow duration, a decrease in speed, an increase in clearance path length (i.e.,
a wider intersection), a decrease in platoon density, and the addition of signal head back plates.
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a.  Effect of Major Street Traffic Volume.

b.  Effect of Clearance Distance.

Figure 2-1.  Effect of Traffic Volume and Clearance Distance on Crash Frequency.
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Table 2-2.  Effect of Selected Factors on Red-Light Violation Frequency.

Factor
Effect of a Reduction in the

Factor Value 1
Effect of an Increase in the

Factor Value 1

Factor
Change

Violation Freq.
Change

Factor
Change

Violation Freq.
Change

Approach flow rate -1.0 % -1.0 % +1.0 % +1.0 %
Cycle length from 90 to 70 s +29 % from 90 to 110 s -18 %
Yellow interval duration -1.0 s +110 % +1.0 s -53 %
Running speed -10 mph -33 % +10 mph +45 %
Clearance path length -40 ft +81 % +40 ft -48 %
Platoon ratio -1 -18 % +1 +21 %
Use of back plates remove back plates +33 % add back plates -25 %

Note:
1 - Negative changes represent a reduction in the associated factor.

Examination of a Common Yellow Interval Equation

One equation for calculating the yellow interval duration is that proposed by Technical
Committee 4A-16 working under the direction of the Institute of Transportation Engineers (ITE)
(14).  The equation recommended by this committee is:

where,
Y = yellow interval duration, s;
dr = deceleration rate, use 10 ft/s2;
g = gravitational acceleration, use 32.2ft/s2;

Gr = approach grade, ft/ft;
Tpr = driver perception-reaction time, use 1.0 s; and
Va = 85th percentile approach speed, ft/s.

The relationship between Equation 1 and red-light violation frequency was evaluated  by
Bonneson et al. (13).  A “yellow interval difference” was estimated by subtracting the yellow interval
computed with Equation 1 from the observed yellow interval at several intersection approaches.  The
relationship between this difference and the observed violation frequency is shown in Figure 2-2.
The data in this figure indicate that there is a trend toward more red-light violations when the
observed yellow duration is shorter than the computed duration.  A regression analysis of the
relationship between yellow interval difference and red-light violation frequency indicated that the
relationship is statistically significant (i.e., p = 0.001).  A similar finding was previously reported
by Retting and Greene (15) in an examination of red-light violations at several intersections.
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Figure 2-2.  Red-Light Violation Frequency as a Function of Yellow Interval Difference.

SITE SELECTION AND DATA COLLECTION PLAN

This section describes the assembly of a database to be used in the development of a model
for estimating red-light-related crash frequency.  Specifically, it describes the field study sites, the
criteria for their selection, and a data collection plan.  Included in this description are the procedures
used to acquire and process the data.  The database includes the traffic volume, geometry, traffic
control, and crash data for several intersection approaches in Texas.  A field study “site” is defined
herein to be one signalized intersection approach.

Site Selection Criteria

The intersection approaches selected for inclusion in the database were intended to be
“typical” such that they collectively reflected a cross section of intersections in Texas.  The specific
criteria used to select these intersections included:

!  signalized intersection (actuated or semi-actuated),
!  moderate to high volumes,
!  randomly selected intersection,
!  speed limits between 30 and 50 mph,
!  approaching drivers have a clear view of signal heads,
!  intersection is in an urban or suburban area, and
!  no significant changes in geometry (e.g., added lane), speed limit, or phasing in last 3 years.
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In addition to the above criteria, it was essential that AADTs and crash reports were available
from the cities within which the intersections were located.

Field Study Site Characteristics

A total of 47 intersections in three Texas cities (Corpus Christi, Garland, and Irving)  were
selected for further investigation.  These intersections represent 181 approach study sites.
Preliminary geometry, traffic control, and traffic volume data were obtained for each approach to
ensure reasonable representation of several factors believed to be correlated with red-light-related
crashes.  The characteristics of these study sites are summarized in Table 2-3.

Table 2-3.  General Site Characteristics–Intersection Approach Crash Analysis.
Characteristic Statistic or

Category
Location Overall

(all cities)City 1 City 2 City 3
Intersections Count 22 12 13 47
Approach study sites1 Count 87 44 50 181
Annual average daily
traffic2, veh/d

Average 19,528 25,374 20,329 21,170
Standard deviation 8685 9065 11,578 9898

Approach speed limit3,
mph

Average 36 42 34 37
Range 30 to 45 40 to 45 30 to 40 30 to 45

Through lanes on the
approach3

Sites with 1 lane 10 0 4 14
Sites with 2 lanes 71 28 37 136
Sites with 3 lanes 6 16 9 31

Red signal light source3 Sites with bulb 58 44 50 152
Sites with LED4 29 0 0 29

Signal head back plate3 Sites with back plates 6 44 50 100
Sites w/o back plates 81 0 0 81

Notes:
1 - A field study site is defined as one intersection approach.
2 - AADT volumes listed represent an average for years 1999, 2000, and 2001.
3 - Data reflect conditions observed in 2003.
4 - LED: light-emitting diode.  Signal indication utilizes LEDs as the light source in lieu of an incandescent lamp.

With few exceptions, all four approaches were studied at each intersection.  In City 1, one
approach had a relatively high posted speed limit so it was eliminated.  In City 2, two intersections
had a “T” configuration.  In City 3, one intersection had a “T” configuration.  At these intersections,
only the two major-street approaches were included in the database.  Protected-only  left-turn
phasing was used at 15 percent of the study sites.  This percentage is consistent among each of the
three cities.
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Traffic volumes, speed limits, and through lane distributions were fairly consistent among
cities.  In contrast, the use of red LED signal indications and signal head back plates tended to be
city-specific.  This trend reflects the preferences of the city transportation agencies and was
impossible to avoid during site selection.  It resulted in a potential for confounding of the effect of
these two characteristics with other city-related differences in driver behavior.  With the exception
of four sites, all sites used incandescent bulbs to illuminate the yellow indications.  

Data Collection Plan

Crash reports for each of the study sites for the years 1999, 2000, and 2001 were requested
from the traffic engineering departments of the three Texas cities.  All total, 1018 crash reports were
obtained for the 47 intersections.  AADT volumes were also obtained for each intersection approach
for the range of years 1998 to 2002.  These volumes were adjusted (by extrapolation or interpolation)
to obtain an estimate of the AADT for 2000.

Field visits were scheduled for each city during the Fall of 2003.  During the visit, the
intersection geometry and traffic control devices were measured or inventoried.  Data collected for
each approach study site included:

! street names and route numbers;
! designation as major or minor route;
! speed limit;
! number of through lanes;
! number of left-turn lanes;
! clearance path length;
! approach width;
! approach grade category (less than -2.0 percent, level, more than 2.0 percent);
! red and yellow signal lens illumination (LED, bulb);
! left-turn phasing (protected-only, protected-permitted, permitted-only, none);
! skew angle; and
! yellow interval duration (for through movement phases).

Each of the approach study sites was examined in the field to verify that it had not undergone
significant physical change during the previous 4 years.  Agency records were not readily available
to confirm whether the yellow interval duration or speed limits had been changed during the previous
4 years.  However, there was no evidence or indication from city staff that such changes had
occurred.

The duration of the all-red interval for the through movement phases was estimated in the
field by observation of the signal operation.  These estimates indicated that an all-red interval in the
range of 0.5 to 1.5 s was used at each site.  Given the narrow range in these data, it was determined
that a relationship between all-red duration and crash frequency would not likely be quantifiable.
As a result, no further effort was expended to precisely quantify the all-red duration at each site.  A
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similar conclusion was reached with regard to grade because only a few sites in one city had grades
in excess of 2.0 percent (up or down).

DATA ANALYSIS

This section characterizes the field study sites through a summary of the volume, geometry,
traffic control, and crash databases assembled.  It also describes the development and calibration of
a crash prediction model.  In the last section, a sensitivity analysis is conducted that describes the
relationship between red-light-related crash frequency and various influential factors. 

Database Summary

The database assembled for this research is summarized in this section.  It includes the traffic
volume, geometry, traffic control, and crash data for 181 approach study sites at 47 intersections.
Initially, selected traffic characteristics are described.  Then, the crash data are summarized.

Descriptive Statistics

Table 2-4 lists several statistics that describe conditions at the study sites.  Path length was
combined with speed limit to obtain a clearance time estimate.  Clearance time represents the time
required to traverse the intersection when traveling at the posted speed limit.  An “implied”
deceleration rate is computed by algebraically manipulating Equation 1 to yield deceleration rate as
a function of speed limit, reaction time, and yellow duration.

Table 2-4.  Speed-Based Site Characteristics–Intersection Approach Crash Analysis.
Characteristic Statistic Location Overall

(all cities)City 1 City 2 City 3
Approach study sites Count 87 44 50 181
Clearance path length1, ft Average 110 122 97 109

Standard deviation 18 15 20 20
Clearance time2, s Average 2.1 2 1.9 2

Standard deviation 0.4 0.3 0.4 0.4
Yellow interval duration1, s Average 3.7 4.3 4.8 4.1

Range 3.1 to 4.7 4.0 to 4.7 4.1 to 5.3 3.1 to 5.3
Deceleration rate3, ft/s2 Average 9.9 9.5 6.7 8.9

Standard deviation 0.8 0.4 0.7 1.5
Notes:
1 - Data reflect conditions observed in 2003.
2 - Clearance time = clearance path length/approach speed limit (in ft/s).
3 - Deceleration rate = 0.5 × approach speed limit (in ft/s)/(yellow !1.0).
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The statistics in Table 2-4 indicate reasonable balance in clearance path length and clearance
path time among the study sites.  The sites in City 3 have a tendency toward longer yellow intervals
and lower deceleration rates.  The lower deceleration rate results from the tendency of City 3 to have
slower speeds and longer yellow intervals, relative to the other two cities.

Crash Characteristics 

The crash reports were manually reviewed to determine the crash type, contributing factors,
and whether the crash was a result of a red-light violation.  The officer’s narrative opinion and
diagram were critical to this determination.  Only those crashes that were definitively a result of a
red-light violation were identified as such in the database.  It was not possible to determine whether
a crash was related to a red-light violation for 2 percent of the reports reviewed in this manner.  

Each crash was assigned to one intersection approach based on the direction of travel of
“vehicle 1,” as specified on the crash report.  The convention followed by the officers filling out the
report is to identify vehicle 1 as the vehicle that was most likely the cause of the crash.  In the case
of red-light-related left-turn-opposed crashes, the through vehicle was identified as “vehicle 1.”

A summary of the crash database is provided in Table 2-5.  The crashes tabulated in this table
correspond to crashes that occurred at the intersection (and not on its approaches).  All total, 296 red-
light-related crashes were reported during a 3-year period.  These crashes represent 29 percent of all
the crashes that occurred at the 47 intersections.  About 44 percent of the red-light-related crashes
were categorized as property-damage-only (PDO) crashes.  The average crash rate is 0.55 red-light-
related crashes per year per approach.

Table 2-5.  Database Summary–Intersection Approach Crash Analysis.
Characteristic Statistic Location Total

(all cities)City 1 City 2 City 3
Approach study sites Count 87 44 50 181
Red-light-related crashes,
crashes/3 years

Severe (i.e., injury or fatal) 71 67 27 165
Property damage only 85 34 12 131

Total: 156 101 39 296
Average (cr/yr/app): 0.60 0.77 0.26 0.55

Percent PDO 1: 54 34 31 44
All crashes at intersection
and associated with the
approach, crashes/3 years

Severe (i.e., injury or fatal) 270 172 79 521
Property damage only 327 107 63 497

Total: 597 279 142 1018
Average (cr/yr/app): 2.29 2.11 0.95 1.87

Percent PDO 1: 55 38 44 49
Note:
1 - PDO: property-damage-only crash.
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Typical PDO percentages among cities for red-light-related crashes are in the range of 50 to
60 percent (11).  An examination of the PDO percentages listed in Table 2-5 indicates that many
PDO crashes in Cities 2 and 3 are not being reported.  This problem makes it difficult to compare
total crashes (i.e., PDO, injury, and fatal) among cities.

Model Development

This section describes the development of a crash prediction model.  This model is developed
using only severe crash data because of previously noted problems related to unreported PDO
crashes in two of the three cities.  Initially, the relationship between selected intersection factors and
red-light-related crash frequency is examined.  Then, the statistical analysis methodology used to
calibrate the model is described.  Finally, the calibrated model is presented.

Analysis of Factor Effects

The relationship between selected factors and red-light-related crash frequency is analyzed
in this section.  In general, the analysis of factor effects considered a wide range of factors and factor
combinations; they include:  intersection leg AADT, speed limit, yellow interval duration, clearance
path length, clearance time, back plate presence, red signal light source, skew angle, grade,
deceleration rate, left-turn phasing, number of lanes, major versus minor street designation, and city
(unless otherwise indicated, all factors apply to the subject approach).  Those factors and
combinations that were found to be most highly correlated (in a relative sense) are discussed in this
section.  The crash data analyzed in this section include all crashes (i.e., PDO, injury, and fatal).

The effect of intersection leg AADT on red-light-related crash frequency is illustrated in
Figure 2-3.  The pattern in the data indicates that crash frequency increases with an increase in
volume.  This trend is similar to that shown previously in Figure 2-1a.  A similar analysis of cross
street AADT did not reveal a significant relationship with crash frequency.

There are only 18 data points shown in Figure 2-3.  In fact, each data point in this figure (and
in subsequent figures in this section) represents an average for 10 approach study sites.  This
aggregation was needed because plots with 181 data points tended to obscure the portrayal of trends
in the data.  To overcome this problem, the site data were sorted by the independent variable (e.g.,
leg AADT), placed in sequential groups of 10, and averaged over the group for both the independent
and dependent variables.  This procedure was only used for graphical presentation; the 181 site-based
data points were used for all statistical analyses.

Figure 2-4 illustrates the relationship between yellow interval duration and crash frequency.
The trend line indicates that crash frequency decreases with increasing yellow duration.  It is likely
that an increase in yellow duration has the most influence on crashes between left-turning vehicles
(turning as a “permitted” movement at the end of the adjacent through phase) and opposing through
vehicles.  In this situation, a longer yellow time provides additional time for the last left-turning
driver to find a gap through which to safely turn at the end of the phase.  Bonneson et al. (11) report
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that about 15 percent of all red-light-related crashes include a left-turning vehicle.  The trend shown
in Figure 2-4 is similar to that noted previously in Figure 2-2 with regard to red-light violations.

Figure 2-3.  Crash Frequency as a Function of Leg AADT.

Figure 2-4.  Crash Frequency as a Function of Yellow Interval Duration.

Figure 2-5 illustrates the relationship between approach speed limit and crash frequency.  The
trend shown in this figure indicates that crash frequency increases significantly with speed.  Again,
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the trend shown in this figure is similar to that noted previously in Table 2-2 with regard to the effect
of speed on red-light violations.

Figure 2-5.  Crash Frequency as a Function of Approach Speed Limit.

The combined effect of both yellow duration and speed was examined in terms of the effect
of “implied” deceleration rate on crash frequency.  The result of this examination indicated that
deceleration rate is highly correlated with crash frequency (e.g., R2 = 0.41).  Crash frequency was
higher on those approaches where the yellow interval was associated with a higher deceleration rate.

The effect of clearance path length and clearance time on crash frequency was also examined.
The effect of clearance time was more highly correlated than clearance path length.  Its relationship
with crash frequency is shown in Figure 2-6.  The trend line indicates that crash frequency is lower
on approaches with longer clearance times.  It is similar to the trend noted previously in Table 2-2
with regard to the effect of clearance path length on red-light violations.  It suggests that drivers are
less likely to violate a red indication at wide intersections.

Further examination of the database indicates that almost all of the study sites have a
clearance time in the range of 1.5 to 2.5 s.  These times correspond to clearance path lengths in the
range of 80 to 130 ft.   In Figure 2-1b, path lengths in this range were not found to have a significant
effect on crash frequency.  Hence, the negative slope associated with the trend line in Figure 2-6 is
somewhat contrary to that shown in Figure 2-1b.
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Figure 2-6.  Crash Frequency as a Function of Clearance Time.

Statistical Analysis Method

A preliminary examination of the crash data indicated that they are neither normally
distributed nor of constant variance, as is assumed when using traditional least-squares regression.
Under these conditions, the generalized linear modeling technique, described by McCullagh and
Nelder (16), is appropriate because it accommodates the explicit specification of an error distribution
using maximum-likelihood methods for coefficient estimation. 

The distribution of crash frequency can be described by the family of compound Poisson
distributions.  In this context, there are two different sources of variability underlying the
distribution.  One source of variability stems from the differences in the mean crash frequency m
among the otherwise “similar” intersection approaches.  The other source stems from the randomness
in crash frequency at any given site, which likely follows the Poisson distribution.

Abbess et al. (17) have shown that if event occurrence at a particular location is Poisson
distributed then the distribution of events of a group of locations can be described by the negative
binomial distribution.  The variance of this distribution is:

where, 
x = reported crash frequency for a given approach having an expected frequency of E(m); and
k = dispersion parameter. 
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The Nonlinear Regression procedure (NLIN) in the SAS software was used to estimate the
model coefficients (18).  The benefits of using this procedure  are: (1) nonlinear model forms can
be evaluated, and (2) the dispersion parameter k can be held fixed during the model building process
(as described in the next paragraph).  The “loss” function  associated with NLIN was specified to
equal the log likelihood function for the negative binomial distribution.  The procedure was set up
to estimate model coefficients based on maximum-likelihood methods.

The goal of the regression model development was to build a parsimonious model.  This type
of model explains as much of the systematic variability as possible using the fewest number of
variables.  The procedure described by Sawalha and Sayed (19) was used to achieve this goal.  It is
based on a forward building procedure where one variable is added to the model at a time.  The
dispersion parameter k is held fixed at the best-fit value for a model with p variables while evaluating
alternative models with p+1 variables (i.e., models where one candidate variable has been added).
Only those variables that are: (1) associated with a calibration coefficient that is significant at a
95 percent confidence level, and (2) that reduce the scaled deviance by at least 3.84 (= χ2

0.05,1) are
considered as candidates for inclusion.  Of all candidate variables, the one that reduces the scaled
deviance by the largest amount is incorporated into an “enhanced” model.  A best-fit k is computed
for the enhanced model and the process repeated until no candidate variables can be identified.

The advantage of the NLIN procedure is that k can be held fixed during the search for
candidate variables.  The disadvantage of this procedure is that it is not able to compute the best-fit
value of k for the enhanced model.  This disadvantage is overcome by using the Generalized
Modeling (GENMOD) procedure in SAS with the enhanced model.  GENMOD automates the k-
estimation process using maximum-likelihood methods.  Thus, GENMOD is used to regress the
relationship between the reported and predicted crash frequencies (where the natural log of the
predicted values is specified as an offset variable and the “log” link function is used).  This new
estimate of k from GENMOD is then used in a second application of NLIN and the process repeated
until convergence is achieved between the k value used in NLIN and that obtained from GENMOD.
Convergence is typically achieved in two iterations.

Model Calibration

The regression analysis revealed that crash frequency is correlated with leg AADT, yellow
interval duration, speed limit, and clearance time.  A separate examination of the “implied”
deceleration rate (i.e., combining yellow duration and speed) indicated that it is a more accurate and
logical predictor of crash frequency so it was substituted for the yellow duration and speed variables.

The analysis of clearance time was initially assumed to be linear (based on the trend in
Figure 2-6).  However, a more detailed analysis comparing the model predictions (without a
clearance time term) with the observed clearance times indicated a non-linear relationship.  The best-
fit function for clearance time indicated that crash frequency decreased with increasing clearance
times up to 2.5 s.  Crash frequency then increased for clearance times in excess of 2.5 s.  This latter
effect is supported by the trend in Figure 2-1b.  Several model forms were evaluated to reflect this
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trend; however, the best fit was found using the positive deviation in clearance time from 2.5 s.  An
absolute-value function was used to quantify this deviation.

The best-fit crash prediction model was specified using the following equation:

with,

where,
E[r] = expected severe red-light-related crash frequency for the subject approach, crashes/yr;

di = deceleration rate implied by speed limit and yellow duration, ft/s2;
Tc = clearance time deviation, s;
Qd = intersection leg AADT (two-way total), veh/d;
Vsl = approach speed limit, mph;
Y = yellow interval duration, s; 

Lp = clearance path length, ft; and
bi = calibration coefficients (i = 0, 1, 2, 3).

The statistics related to the calibrated model are shown in Table 2-6.  The calibration
coefficient values shown can be used with Equations 3, 4, and 5 to estimate the severe red-light-
related crash frequency for a given intersection approach.  

A dispersion parameter k of 4.0 was found to yield a scaled Pearson χ2 of 1.01.  The Pearson
χ2 statistic for the model is 179, and the degrees of freedom are 177 (= n ! p !1 = 181!3!1).  As this
statistic is less than  χ2 0.05, 177 (= 209), the hypothesis that the model fits the data cannot be rejected.
The R2 for the model is 0.11.  An alternative measure of model fit that is better suited to negative
binomial error distributions is RK

2, as developed by Miaou (20).  The RK
2 for the calibrated model

is 0.45. 
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Table 2-6. Calibrated Model Statistical Description–Intersection Approach Crash Analysis.
Model Statistics Value

R2  (RK
2): 0.11  (0.45)

Scaled Pearson χ2: 1.01
Pearson χ2: 179  (χ2

0.05, 177 = 209)
Dispersion Parameter k: 4

Observations no: 181 sites (165 crashes during a 3-year period)
Standard Error: ±1.1 crashes/yr

Range of Model Variables
Variable Variable Name Units Minimum Maximum

Qd Intersection leg AADT veh/d 1347 49,233
Y Yellow interval duration s 3.1 5.3
Vsl Approach speed limit mph 30 45
Lp Clearance path length ft 65 166

Calibrated Coefficient Values
Variable Definition Value Std. Dev. t-statistic

b0 Intercept -4.70 0.85 -5.5
b1 Effect of leg AADT 0.509 0.180 2.8
b2 Effect of deceleration rate 0.186 0.065 2.9
b3 Effect of clearance time deviation 0.533 0.287 1.9

The regression coefficients for the calibrated model are listed in the last rows of Table 2-6.
The t-statistics shown indicate that all coefficients are significant at a 94 percent level of confidence
or higher.  A positive coefficient indicates that crashes increase with an increase in the associated
variable value.  Thus, approaches with higher deceleration rates are likely to have a higher frequency
of red-light-related crashes.  The use of clearance time deviation requires some caution when
interpreting the coefficient sign.  With this variable, crashes are found to decrease with increasing
clearance time up to 2.5 s; thereafter, they increase with increasing clearance time.  

The calibrated coefficients were inserted into Equation 3 to yield the following model:

This model can be used with Equations 4 and 5 to estimate the severe red-light-related crash
frequency for an intersection approach.

One means of assessing a model’s fit is through the graphical comparison of the observed
and predicted red-light-related crash frequencies. This comparison is provided in Figure 2-7. The
trend line in this figure does not represent the line of best fit; rather, it is a “y = x” line.  The data
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would lie on this line if the model predictions exactly equaled the observed data.  The clustering of
the data around this line indicates that the model is able to predict crash frequency without bias.

Figure 2-7.  Comparison of Reported and Predicted Intersection Crash Frequency.

Sensitivity Analysis

This section describes the findings from a sensitivity analysis of the calibrated model.
Examined are the effect of yellow interval duration, approach speed limit, and clearance path length
on crash frequency. 

Analysis Approach

The approach taken in this analysis was to examine the effect of a change in one variable on
crash frequency while the other variables held constant.  For a given variable, the relative effect of
a small change (or deviation) from a “base” value  was computed using Equation 6 twice, once using
the “new” value and once using the base value.  The ratio of the expected red-light violation
frequencies was then computed as:

where, MF represents a “modification factor” indicating the extent of the change in red-light-related
crashes due to a change in the base value.
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The effect of a change in yellow interval duration on the frequency of red-light-related  severe
crashes is shown in Figure 2-8.  Speed limit is also indicated in this figure because it was found to
have a secondary influence on the effect of yellow duration.  Equation 1 was used to compute a base
yellow duration for each speed limit evaluated. 

The trend in Figure 2-8 indicates that an increase in yellow interval duration decreases severe
crashes.  For example, an increase in yellow duration of 1.0 s is associated with an MF of about 0.6,
which corresponds to a 40 percent reduction in crashes. This reduction is consistent with the effect
of yellow interval duration on red-light violation frequency shown in Table 2-2.

Figure 2-8.  Effect of a Change in Yellow Interval Duration on Crash Frequency.

Approach Speed Limit

The effect of a change in speed limit on the frequency of severe red-light-related crashes is
shown in Figure 2-9.  This effect was found to be dependent on the actual speed limit.  Equation 1
was used to compute a base yellow duration for each speed limit evaluated. 

In general, the trend in Figure 2-9 indicates that an increase in speed limit is associated with
an increase in crashes.  For example, a 10-mph increase in the speed limit (where the base speed
limit is 35 mph and clearance path length is 90 ft) is associated with an MF of 2.09.  This MF
corresponds to a 109 percent increase in crashes.  A similar effect of speed change on red-light
violations was identified in Table 2-2.
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Figure 2-9.  Effect of a Change in Speed Limit on Crash Frequency.

The thick solid line in Figure 2-9 illustrates the effect of exceptionally wide intersections on
crash frequency.  This line corresponds to a path length of 130 ft and a speed limit of 35 mph.  It is
effectively horizontal for speed reductions from 1 to 10 mph.  In this range, crashes will not be
decreased by a speed reduction because of the resulting increase in clearance time.  In effect, the
benefit of speed reduction is offset by increased exposure to crash, as measured by the increased time
required to traverse the intersection. 

Length of Clearance Path

The effect of a change in clearance path length on crash frequency is shown in Figure 2-10.
In general, the trend in this figure indicates that an increase in path length is associated with a
decrease in severe crashes.  For example, if approach “B” has a clearance path of 90 ft and speed
limit of 35 mph and approach “A” has a path that is 130 ft (40 ft longer), then the MF is about 0.68.
This value indicates that approach “A” should have about 32 percent fewer crashes than approach
“B” (all other factors being the same).  This trend is consistent with that noted in Table 2-2 and
reflects a decrease in red-light violations with increasing clearance path length.

The thick solid line in Figure 2-10 illustrates the effect of exceptionally wide intersections
on crash frequency.  This line corresponds to a path length of 130 ft and a speed limit of 35 mph.
The “V” shape to this trend line indicates that increasing or decreasing the 130-ft path length will
increase crashes.  This breakpoint coincides with a clearance time of 2.5 s.  It effectively defines an
optimal intersection width for a given approach speed (or, alternatively, an optimum speed limit for
a given width).  These optimal widths are 110, 120, 150, and 165 ft for speed limits of 30, 35, 40,
and 45 mph, respectively.  The “V” shape is consistent with the trend line shown in Figure 2-1b.
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Figure 2-10.  Effect of a Change in Clearance Path Length on Crash Frequency.

MODEL EXTENSIONS

Examination of a Common Yellow Interval Equation

This section examines the relationship between red-light-related crashes and the yellow
interval duration computed using Equation 1.  The approach taken in this examination was to
compare the recorded crash frequency on an approach with the difference between the yellow
duration observed at the approach and that computed for it using Equation 1.  All crashes (i.e., PDO,
injury, and fatal) were used for this examination.  The results are shown in Figure 2-11.

The data in Figure 2-11 indicate that there is a trend toward fewer red-light-related crashes
when the observed yellow duration is longer than the computed duration.  A regression analysis of
the relationship between yellow interval difference and crash frequency indicated that the
relationship is statistically significant (i.e., p = 0.001).  A similar finding with respect to red-light
violations was shown in Figure 2-2.

Identify Sites with Potential for Red-Light-Related Safety Improvement

Hauer (9) and others have observed that intersections selected for safety improvement are
often in a class of “high-crash” locations.  As a consequence of this selection process, these
intersections tend to exhibit significant crash reductions after specific improvements are
implemented.  While the observed reduction is factual, it is not typical of the benefit that could be
derived from the improvement if it were applied to other locations.  Hauer (9) advocates the use of
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E[r|x] ' E[r] × weight %
x
y

× (1 & weight) (8)

weight ' 1 %
E[r] y

k

&1
(9)

the empirical Bayes method to more accurately quantify the true crash reduction potential of a
specific improvement or countermeasure.  

Figure 2-11.  Crash Frequency as a Function of Yellow Interval Difference.

The empirical Bayes method can be used to obtain an unbiased estimate of the red-light-
related crash frequency for a specific intersection approach.  This estimate is based on a weighted
combination of the reported frequency of red-light-related crashes x on the subject approach and the
predicted red-light-related crash frequency E[r] of similar approaches.  The unbiased estimate (i.e.,
E[r|x]) is a more accurate estimate of the expected red-light-related crash frequency on the subject
approach than either of the individual values (i.e., E[r] or x).  The following equations can be used
to compute E[r|x]:

with,

where,
E[r|x] = expected red-light-related crash frequency given that x crashes were reported in y years,

crashes/yr;
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x = reported red-light-related crash frequency, crashes;
y = time interval during which x crashes were reported, yr; and

weight = relative weight given to the prediction of expected red-light-related crash frequency.

The estimate obtained from Equation 8 can also be used (with Equation 6) to identify
problem intersection approaches.  Initially, Equation 6 is used to compute the expected red-light-
related crash frequency for a “typical” approach.  Then, Equation 8 is used to compute the expected
red-light-related crash frequency given that x crashes were reported for the subject approach.  These
two estimates are then used to compute the following index:

with,

where,
 = variance of E[r|x];σ2

r|x

 = variance of E[r] for the typical intersection approach; andσ2
r

no = number of observations used in the development of the model used to predict E[r].

The values of k and no are provided in Table 2-6.

If the reported red-light-related crash frequency x, when expressed on an annual basis (i.e.,
as the quotient of x/y), is less than the expected crash frequency E[r], then the index will be negative.
If this situation occurs, the subject approach is not likely to have a red-light-related crash problem.
However, the red-light violation frequency should also be evaluated to confirm this finding.

The index value is an indicator of the extent of the red-light-related crash problem for a given
intersection approach.  It is consistent with the “scaled difference in frequency” statistic identified
in Table 2-1.  In general, intersection approaches associated with a positive index value have more
red-light-related crashes than the “typical” approach.  An approach with an index of 2.0 is likely to
have a greater problem than an approach with an index of 1.0.  Greater certainty in the need for
treatment can be associated with higher index values. 

Occasionally, an intersection approach may not have its yellow interval or approach speed
limit in conformance with agency policy.  When this occurs, the computed index value should reflect
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the deviation from agency policy.  In this situation, two values of E[r] should be computed (i.e.,
E[r, existing] and E[r, policy].  The first value (i.e., E[r, existing]) is obtained using Equation 6 with
variable values that reflect conditions on the subject intersection approach.  This value is used in
Equations 8 and 9 to estimate E[r|x] and weight, respectively.  

The second value (i.e., E[r, policy]) represents the expected red-light-related crash frequency
of the typical intersection approach having yellow intervals timed in accordance with agency policy
and a speed limit established in accordance with agency policy.  If  agency policy does not address
yellow interval timing, then Equation 1 should be used to compute the value of Y in Equation 4.  If
agency policy does not address procedures for establishing speed limits, then the 85th percentile
approach speed should be used for Vsl in Equations 4 and 5.  The value of  E[r, policy] is then used
in Equations 10 and 12 to estimate the index and , respectively.σ2

r
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CHAPTER 3.  AREA-WIDE RED-LIGHT-RELATED 
CRASH FREQUENCY AND ENFORCEMENT EFFECTIVENESS

OVERVIEW

This chapter examines the effectiveness of officer enforcement at reducing red-light-related
crashes.  In this program, the enforcement agency specifically targets traffic control violations at
signalized intersections using a heightened level of enforcement relative to that previously employed.
The program is sustained for a period of time that can range from several months to 1 year.  The
objective of the program is to encourage drivers to be compliant with traffic control laws and more
aware of traffic control devices; the overarching goal is to make the road safer, as evidenced by
fewer crashes.  This type of targeted enforcement is often coupled with a public awareness campaign
that is intended to inform drivers and garner public support for the program.

The next section briefly reviews the various types of enforcement activities used to deter red-
light violations and reduce the associated crashes.  Then, a data collection plan is described.  The
plan is devised to provide the data needed to evaluate the effectiveness of enforcement programs
using before-after methods.  Next, the data collected are used to develop a model for predicting the
annual number of reported red-light-related crashes within a city.  This model is then used with the
before-after data to quantify the effectiveness of enforcement.  Finally, a procedure is described
wherein the crash prediction model is used to identify cities with potential for safety improvement.

LITERATURE REVIEW

This section reviews the types of enforcement programs being used to address red-light
violation problems.  Initially, the goals of these programs are reviewed.  Then, the characteristics of
the officer enforcement program and the camera enforcement program are described.  Finally, the
effectiveness of these two programs are synthesized from findings reported in the research literature.

Program Goals

The need to establish specific goals for an enforcement program is an important, and early,
step in the process of treating problem intersections.  These goals provide a benchmark by which
program success can be measured.  They should be based on achieving a level of reduction in crashes
or violations that:  (1) is cost-effective in its use of enforcement, (2) recognizes that a small number
of violations will always occur, and (3) is reasonable and acceptable to both the engineer and the
public.  The use of citation data as a measure of program effectiveness should be avoided because
the number of citations issued in a period of time is strongly correlated with enforcement strategy
and effort expended (i.e., productivity).  It is not a strong indicator of a change in driver behavior.

There is little doubt that increasing enforcement will reduce red-light violations and related
crashes.  However, it is also likely that there is a point of diminishing returns where further increases
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in enforcement effort bring little additional safety benefit.  In this context, the cost of providing
sufficient enforcement to eliminate red-light violations could exceed the financial resources of most
cities.  Even if these resources were available, it could be reasonably argued that they could be more
cost-effectively applied to other road safety problems.  This argument suggests that elimination of
red-light violations may be an unreasonable goal for most cities.

Types of Enforcement

Enforcement activities used to treat safety problems can be categorized as one of two types:
officer and camera.  Typical methods by which each of these two types are used to deal with red-light
violations is described in this section.

Officer Enforcement

Many enforcement agencies use a team enforcement technique to address red-light violations
and other intersection traffic control violations.  With this technique, one officer is stationed
upstream of the signalized intersection, and a second officer is located downstream of the
intersection.  When the “upstream” officer observes a violation, he or she sends a radio message to
the “downstream” officer, who then proceeds to stop and cite the violator.  This technique is
generally regarded as successful in reducing violations but is labor-intensive.

Some agencies use enforcement lights as an alternative to team enforcement.  An
enforcement light can be attached to the signal head or to the signal mast arm. The latter type of
installation is shown in Figure 3-1.  These lights are illuminated while the traffic signal indication
is red.  They allow a single officer stationed downstream of the signal to observe vehicles entering
the intersection and note whether the signal indication is red.  Enforcement lights eliminate the need
for team enforcement and, therefore, have a lower operating cost.

Camera Enforcement

Red-light enforcement cameras are typically deployed upstream of, and facing toward, the
intersection.  Figure 3-2 illustrates a typical camera location.  Pavement sensors detect the speed of
the vehicle as it crosses the stop line.  If its speed exceeds a specified threshold value during the red
indication, it is assumed that it is in violation, and the camera takes a sequence of two photos of the
vehicle. A red-light camera at a typical intersection can cost from $50,000 to $60,000, with
installation adding from $10,000 to $25,000 (21).  Operating costs are reported by Maccubbin et al.
(22) to be in the vicinity of $5000 per month.

A red-light violation may be treated as a civil or criminal offense, depending on the relevant
state statutes (it is a criminal offense in Texas).  Tickets for civil offenses can be sent by mail to
violators.  Prosecution of the violation as a criminal offense requires proof that the individual
committed the offense (e.g., a frontal photograph of the driver at the time of the violation) and is
adjudicated in a criminal court with a fine levied by a judge.  Fines can range from $50 to $270 (22).
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      Figure 3-1.  Enforcement Light.   Figure 3-2.  Enforcement Camera.

A short period of time is often allowed to lapse between the start of red and camera
activation.  This time is referred to herein as the “grace period.”  A recent review of grace period
values used throughout the world revealed that 0.5 s is the “international standard” and that 0.3 s is
commonly used in the U.S. (6).  A similar review by Milazzo et al. (7) of U.S. practice indicated a
range of 0.1 to 0.3 s.  They recommended the use of a 0.4-s grace period, with a possible increase
for intersection approaches having significant downgrade.

Program Effectiveness

Officer Enforcement Effectiveness

Officer enforcement is generally recognized as having an immediate, positive effect of
reducing red-light violations.  The extent of this impact varies depending on whether the officer (and
vehicle) is visible to potential offenders (i.e., overt/visible vs. covert/hidden deployment).  The
impact also varies depending on whether the enforcement is targeting specific, problem locations
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or it is deployed at random times and locations (i.e., targeted vs. random enforcement tactic).
Finally, the impact is likely to decrease over time since the enforcement activity ended.

Overt versus Covert Enforcement.  Officer enforcement is generally recognized as having
an immediate, positive effect of reducing red-light violations.  The extent of this impact will likely
vary, depending on whether the officer (and vehicle) is visible.  Logically, visible officers are likely
to have a more significant impact on violation frequency than hidden officers.  In fact, Cooper (23)
found that visible police presence significantly reduced traffic control violations.  On the other hand,
Krulikowski and Holman (24) found that officers that remain mostly hidden from view were
ineffective at reducing red-light-related crash frequency.

Targeted versus Random Selection of Intersection.  Because of the labor-intensive nature
of officer enforcement, most agencies target intersections with a high frequency of red-light
violations or red-light-related crashes.  The rationale for this approach is that the return on the
officers’ time will be maximized because they will likely issue a large number of citations.  This
approach is also viewed as being responsive to public concerns because it can have an immediate
impact on the frequency of red-light violations. 

An alternative to the targeted enforcement approach is random enforcement.  The random
selection of location and time for a short-term (i.e., 1 or 2 hours) enforcement activity should
increase the officers’ citywide effect on violations.  This approach has the advantage of allowing
enforcement agencies to cover a larger geographic area with limited staff resources.  The random
enforcement approach was implemented in Queensland, Australia, and studied by Newstead et al.
(25).  An analysis of before-after crash data indicated that random enforcement reduced crashes by
11 percent.

Temporal Effectiveness.  Cooper (23) conducted an evaluation of the effects of increased
enforcement on driver behavior at seven intersections in Toronto, Canada.  Each location received
a different duration of enforcement.  The officers were highly visible at all times during the
enforcement activity.  Cooper observed a 28 percent reduction in the number of intersection
violations while enforcement was taking place (and provided that enforcement was sustained for at
least 1 hour each day).  However, the effectiveness of the enforcement diminished rapidly once the
officers left the intersection.  This effect is shown in Figure 3-3 using the post-enforcement violation
data reported by Cooper.

The trend in Figure 3-3 suggests that violation rates increase by 19 percent after about
10 hours and 38 percent after about 6 days.  Given that the original reduction due to officer presence
was 28 percent, this trend implies that one-half the benefit of officer presence was lost after 10 hours,
and all of it was lost after 6 days.  The trend in Figure 3-3 can be used to estimate the average
reduction in daily violations based on the number of enforcement hours each day and typical
weekday hourly volume patterns.  For example, if the enforcement is repeated during the peak traffic
hour each day, then a 16 percent reduction in daily violations is realized.  This value would increase
to 17 percent if an additional hour of enforcement was provided.
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Figure 3-3.  Increase in Violations Following an Overt Officer Enforcement Activity.

Camera Enforcement Effectiveness

The effectiveness of camera enforcement at reducing red-light violations has been widely
reported.  A review of this literature by Bonneson et al. (11) indicates that camera enforcement
reduces red-light violations at the treated intersection between 40 and 59 percent.  Camera
enforcement reduces red-light-related crashes between 20 and 36 percent at the treated intersection.
However, rear-end crashes have been found to increase between 20 and 37 percent at these
intersections.  A comprehensive investigation of the impact of camera enforcement on total crashes
(including right-angle and rear-end crashes) found that camera enforcement reduced total crashes
by 7 percent on a citywide basis (26).

Several studies have examined the effect of camera enforcement on other, non-camera-
enforced intersections in the same city.  Data reported by the California state auditor indicated that
the application of camera enforcement at selected intersections in six cities coincided with a
10 percent reduction in red-light-related crashes on a citywide basis (6).

Summary of Findings

The literature review revealed that little is known about the effectiveness of area-wide officer
enforcement efforts that target specific types of violations.  The limited amount of data found suggest
that: (1) 1 or 2 hours of officer enforcement at a specific intersection reduces crashes by only a few
percentage points when averaged over a 24-hour period, (2) covert deployments are likely ineffective
at significantly reducing violations, and (3) the reductions due to targeted enforcement are often
short-lived (i.e.,violation rates return to pre-enforcement levels within a day or so after the officer
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leaves the intersection).  The more successful officer enforcement efforts are likely those that: (1) are
implemented on an area-wide basis with innovative enforcement strategies (e.g., visible officer
presence and random location selection), and (2) include a public awareness campaign (e.g., media
advertisement, public meetings, posters, etc.).

DATA COLLECTION PLAN

The review of the literature revealed that little is known about the effectiveness of officer
enforcement.  Evidence was offered to suggest that long-term, area-wide enforcement is likely to
have a more lasting effect than short-term enforcement of a problem intersection.  Other elements
of the enforcement activity (e.g., overt vs. covert and temporal effectiveness) were also discussed
but their influences reasoned to be more of academic interest because it is unlikely that enforcement
agencies will alter their enforcement activities as related to visible/hidden or enforcement duration.

The objective of this research was to quantify the effect of area-wide officer enforcement of
intersection traffic control on red-light-related crashes.  This type of enforcement targets traffic
control violations at signalized intersections located throughout a jurisdiction.  TxDOT’s Traffic
Safety Section, in cooperation with local law enforcement agencies, has funded area-wide
enforcement activities of this type since 1997.  The program is titled “Selective Traffic Enforcement
Program (STEP);” it is described in more detail in a subsequent section.

Activities directed at achieving the objective were focused on the TxDOT STEP.  A database
was established that included crash and enforcement data for several cites that participated in the
program.  The findings from a before-after analysis of these data should provide quantitative
evidence of the effectiveness of area-wide enforcement in terms of a measurable reduction in red-
light-related crashes.

The next section describes TxDOT’s selective enforcement program.  Then, the composition
of the database is described.  Finally, the cities included in the database are identified.

TxDOT Selective Traffic Enforcement Program

Through its Traffic Safety Section, TxDOT has awarded grants, called Intersection Traffic
Control STEPs (ITC-STEPs), to facilitate heightened enforcement of traffic laws at intersections.
Eighteen Texas cities have participated in the ITC-STEP since it started in 1997.  Each city identified
about 10 percent of its intersections for heightened enforcement.  Presumably, these intersections
were selected because they had a disproportionately high number of crashes. 

As part of the ITC-STEP, each city also schedules a public awareness campaign to coincide
with the heightened enforcement activity.  Most programs last for 1 or 2 fiscal years.  The
participating agency submits reports periodically that document program activities and measures of
productivity.  Items listed in the report include:
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! number and type of citations/arrests issued as part of STEP-funded enforcement; 
! number and type of citations/arrests issued by participating agency;
! number of STEP enforcement hours worked;
! number of intersection traffic-control-related crashes;
! number of presentations conducted in support of the grant;
! number of persons attending presentations;
! number of community events in which STEP officers participated (i.e., health fairs, booths);
! number of media exposures (i.e., news releases and interviews); and
! number of public information and education materials distributed (e.g., key tags).

The STEP enforcement hours represent additional hours beyond those routinely provided by
the city.  Hence, STEP hours are paid to the officers as overtime from the program funds.

STEP funds enable enforcement agencies to focus their efforts on particular types of
violations (e.g., intersection traffic control) and reduce the frequency of these violations through a
combination of heightened enforcement and public awareness.  The disadvantages of this type of
“area-wide” enforcement are: (1) that it is costly to implement, and (2) the simultaneous use of
targeted enforcement and public awareness activities makes it impossible to determine the relative
effectiveness of any one activity.  With rare exception, the program is not continued by the local
agency after the STEP grant funding is expended.

Database Composition

The database developed for this research describes the history of enforcement activities,
public awareness events, and red-light-related crashes for selected cities.  The observational unit in
the database is a 1-year record of activities, events, and crashes.  The “year” is defined by the
beginning and ending dates of the STEP funding year (i.e., October 1 through September 30).

A 2- or 3-year crash history for each city was gathered for the years prior to implementation
of the STEP.  The city’s crash history was also gathered for each year that it participated in the
program.  All crash data were obtained from the Texas Department of Public Safety (DPS) crash
database.  The data include all severe (i.e., injury or fatality) red-light-related crashes.  A red-light-
related crash was defined as a crash occurring “at” a signalized intersection where the first
contributing factor identified in the officer report is designated as “disregard of stop and go signal”
or “disregard of stop sign or light.”  These attributes were found by Bonneson  et al. (11) to be the
most accurate for identifying red-light-related crashes.

Quantitative data describing the enforcement strategies and public awareness activities
conducted as part of the STEP were obtained from the evaluation reports submitted by the program
participants.  These data were identified in the previous section.  All reports were obtained from
TxDOT’s Traffic Safety Section.
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Demographic information for each city represented in the database was also gathered.  As
with the crash data, the observational unit was the 1-year period defined by the STEP funding year.
These data include:

! population of the city,
! number of registered vehicles in the city,
! number of licensed drivers in the city, and
! full-time equivalent (FTE) police officers assigned to traffic control enforcement.

These data were gathered from the DPS and the city police departments, as appropriate.

Cities Represented in Database

Table 3-1 identifies eight Texas cities that participated in the ITC-STEP between the years
1997 and 2000.  These cities were selected for this investigation because their participation occurred
during one or more years for which crash data were also available from the DPS database. 

Table 3-1.  Texas Cities Represented in Enforcement Database.
City STEP Funding Year

1997 1998 1999 2000
Austin Before Before Before U

Bryan Before Before U U

Dallas Before Before Before U

Denton Before Before Before U

Fort Worth Before Before Before U

Garland Before Before U U

Midland Before Before Before U

Plano Before Before U U

Participation Dates: 10/1/96 to 9/30/97 10/1/97 to 9/30/98 10/1/98 to 9/30/99 10/1/99 to 9/30/00
Note:
U - participated in ITC-STEP.  “Before” - year for which data represent the “before ITC-STEP” condition.

DATA ANALYSIS

This section summarizes an analysis of the effectiveness of area-wide enforcement coupled
with a public awareness campaign, as implemented for the ITC-STEP.  The analysis begins with a
summary of the data associated with each of the cities participating in the program.  Then, a crash
prediction model is developed using regression techniques.  This model is used to estimate the
expected number of red-light-related crashes that would have occurred in each city had it not
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participated in the program.  Finally, the reported crash frequency is compared with the expected
crash frequency to determine the percent reduction in crashes due to the enforcement effort.

Database Summary

The database assembled for this research is summarized in this section.  It includes data
describing the enforcement effort expended during the ITC-STEP, population, and crash data for
years 1997 to 2000 for each of the eight Texas cities listed in Table 3-1.  The enforcement and
population data are listed in Table 3-2.  

Each row in Table 3-2 represents a period of time (measured in months) during the years
1997 through 2000.  Some rows of data represent the “before ITC-STEP” period, and some represent
the “during ITC-STEP” period.  Whenever possible, each row represents one calendar year; however,
the ITC-STEP’s fiscal-year basis required division of one calendar year into two rows (one for the
“before” period and one for the “during” period in that year).  In those instances where there are less
than 12 months represented for a calendar year in Table 3-2, the reason is due to a delayed start of
the program by the enforcement agency.

The data in Table 3-2 indicate the level of enforcement activity expended in each city.  A
total of 33,769 officer-hours were expended as part of the ITC-STEP.  The number of hours logged
varied from 568 (= 387 + 181) for Denton to 13,694 for Dallas.  A total of 31,615 citations for red-
light violation were issued during the program period.  Again, there was a wide range in the number
of citations among cities.  This variation was partly a reflection of differences in emphasis area
among the various cities.  The program encouraged enforcement of “child seat” and “seat belt” laws
concurrently with red-light violations.  In fact, about two citations for “other” violations were issued
for every one red-light violation during the course of the program.

The number of media exposure events is also listed in Table 3-2.  The number of events
sponsored was relatively modest for most cities.  Dallas, Garland, and Plano were the most
aggressive in using media.  Each of these cities held more than 20 events during the course of their
program.

The population of the participating cities is illustrated in the last column of Table 3-2.  The
population estimates for each year were obtained by interpolation using the1990 and 2000 census
estimates (27).  The variation in population among cities is quite wide, ranging from about 64,000
persons in Bryan to more than a million persons in Dallas. 
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Table 3-2.  General Site Characteristics–Area-Wide Crash Analysis.
City Analysis

Period
Time Period STEP Enforcement Effort STEP Media

Exposures,
events

Population, 1

persons
Months Calendar

Year
Time,

officer-hrs
Red-Light
Citations

Austin Before 12 1997 -- -- -- 599,280
12 1998 -- -- -- 618,374

9 1999 -- -- -- 637,468
During 3 1999 1005 1485 2 637,468

8 2000 4024 5160 5 656,562
Bryan Before 12 1997 -- -- -- 62,463

12 1998 -- -- -- 63,528
1 1999 -- -- -- 64,594

During 10 1999 1292 904 1 64,594
9 2000 487 406 1 65,660

Dallas Before 12 1997 -- -- -- 1,134,069
12 1998 -- -- -- 1,152,239
12 1999 -- -- -- 1,170,410

4 2000 -- -- -- 1,188,580
During 5 2000 13,694 7397 36 1,188,580

Denton Before 12 1997 -- -- -- 76,257
12 1998 -- -- -- 77,684

9 1999 -- -- -- 79,110
During 3 1999 387 898 2 79,110

9 2000 181 445 8 80,537
Fort Worth Before 12 1997 -- -- -- 508,572

12 1998 -- -- -- 517,279
10 1999 -- -- -- 525,987

During 2 1999 286 not reported 0 525,987
9 2000 1737 not reported 0 534,694

Garland Before 12 1997 -- -- -- 205,233
11 1998 -- -- -- 208,744

During 1 1998 192 226 2 208,744
10 1999 2043 3780 18 212,256

8 2000 2675 5415 2 215,768
Midland Before 12 1997 -- -- -- 93,330

12 1998 -- -- -- 93,885
10 1999 -- -- -- 94,441

During 1 1999 54 13 2 94,441
9 2000 1229 347 0 94,996

Plano Before 12 1997 -- -- -- 194,035
11 1998 -- -- -- 203,367

During 1 1998 187 202 3 203,367
9 1999 2599 2899 0 212,689
8 2000 1701 2038 18 222,030

Note:
1 - Based on 2000 census (27).
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Table 3-3 summarizes the number of severe crashes that occurred at the signalized
intersections in each of the participating cities.  The crash frequency listed in column 5 represents
the number of crashes at signalized intersections that have “disregard stop and go signal” or
“disregard stop sign or light” listed as the first contributing factor on the officer report.  Bonneson
et al. (11) have shown that crashes with these attributes (i.e., “signalized” intersection,  “at”
intersection, and “disregard”) are most likely to be exclusively red-light related.  However, they also
reported that these attributes do not identify all red-light-related crashes.  They recommended that
the number of crashes found using the aforementioned attributes should be inflated by 32 percent
to estimate the actual red-light-related crash frequency.

The last column of Table 3-3 represents the estimated number of severe red-light-related
crashes, as expressed in terms of crashes per month.  The estimate in any one row was obtained by
inflating the reported frequency of severe “disregard” crashes by 32 percent and then converting this
product into a monthly rate by dividing by the corresponding number of months listed in column 3.
The relationship between the red-light-related crash frequency and city population is shown in
Figure 3-4.

Figure 3-4.  Relationship between City Population and Crash Frequency.

The data shown in Figure 3-4 indicate the existence of a strong correlation between city
population and severe crash frequency.  Each data point in the figure represents one time period (i.e.,
row) in Table 3-3.  It should not be inferred from this figure that “population” is a cause for red-
light-related crashes.  Rather, population is a surrogate for the driver behavior, traffic conditions,
road network capacity, and level of enforcement present in each city.  This relationship will be
explored further in the next section.
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Table 3-3.  Site Crash Characteristics–Area-Wide Crash Analysis.
City Analysis

Period
Time Period Severe “Disregard” Crashes at Intersections Severe Red-

Light-Related 
Crash Freq.,

crashes/month
Months Calendar

Year
Frequency,

crashes/period
Freq., cr/month/
100,000 persons

Relative Change
RC, %

Austin Before 12 1997 703
8.9

-6.1

77
12 1998 631 69

9 1999 469 69
During 3 1999 170 8.3 75

8 2000 426 70
Bryan Before 12 1997 49

6.4
-7.9

5
12 1998 49 5

1 1999 3 4
During 10 1999 37 5.9 5

9 2000 36 5
Dallas Before 12 1997 1652

11.7
-4.0

182
12 1998 1677 184
12 1999 1567 172

4 2000 517 171
During 5 2000 668 11.2 176

Denton Before 12 1997 84
7.3

9.5

9
12 1998 54 6

9 1999 49 7
During 3 1999 21 8.0 9

9 2000 56 8
Fort Worth Before 12 1997 498

8.1
-1.4

55
12 1998 501 55
10 1999 426 56

During 2 1999 80 8.0 53
9 2000 389 57

Garland Before 12 1997 181 7.1

6.5

20
11 1998 155 19

During 1 1998 15
7.5

20
10 1999 162 21

8 2000 128 21
Midland Before 12 1997 94

7.6
-34.5

10
12 1998 82 9
10 1999 65 9

During 1 1999 2 5.0 3
9 2000 45 7

Plano Before 12 1997 211 8.3

-10.4

23
11 1998 170 20

During 1 1998 14
7.5

18
9 1999 153 22
8 2000 124 20
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The severe crash frequency in column 5 of Table 3-3 was used to explore relative trends in
the crash data during the “before” and “during” time periods.  In light of the strong correlation
between population and crash frequency, a normalized crash frequency was computed in terms of
monthly severe crashes per 100,000 persons.  A separate crash frequency was computed for the
“before” and the “during” periods.  These frequencies are listed in column 6.  The relative change
in crashes was then computed using these frequencies in the following equation:

where,
RC = relative change in crash frequency due to treatment, %;

rduring = crash frequency during treatment period, crashes/period; and
rbefore = crash frequency before treatment, crashes/period.

A negative value for the relative change indicates a reduction in crash frequency.  

The computed value of relative change for each city is listed in column 7 of Table 3-3.  These
values are shown graphically in Figure 3-5.  The trends in this figure indicate that six of the cities
experienced a reduction in severe red-light-related crashes in the period during the area-wide
enforcement activity.  The amount of reduction varied from 1.4 to 34 percent.

Figure 3-5.  Relative Change in Crash Frequency Following Area-Wide Enforcement.
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As indicated in Figure 3-5, crash frequency increased in Denton and Garland during the
conduct of the enforcement program.  This increase is illogical as it is unlikely that the increased
officer presence and associated media events precipitated an increase in crashes.  Possible
explanations for this increase were considered, and a variety of cause-effect relationships were
evaluated but none proved useful.

Officials with Denton and Garland were contacted but could offer no additional information,
in part because the events took place several years prior to the conduct of this research.  For Garland,
the researchers noted that major freeway reconstruction occurred during the years 1999 and 2000 in
the vicinity of Garland, and that a significant portion of freeway traffic was diverted through the city
to avoid work-zone-related congestion.  It is possible that this diversion could have resulted in an
increase in crashes by an amount larger than the reduction achieved due to the enforcement program.

Model Development

This section describes the development of a model for estimating the citywide frequency of
severe red-light-related crashes as a function of population.  The likely existence of this relationship
was noted in the discussion associated with Figure 3-4.  The next section describes the statistical
analysis methodology used to calibrate the model.  Then, the calibrated model is presented and its
fit to the data discussed.

Database Summary

A database was assembled of cities in Texas with a population of 15,000 or more persons.
The database included crash data for the years 1997 through 2000 and city population for year 2000.
The data were screened to include only severe crashes occurring at signalized intersections and for
which the first contributing factor cited in the peace officer report was “disregard stop and go signal”
or “disregard stop sign or light.”  The crash frequency obtained for each city was then inflated by
32 percent to obtain an accurate estimate of the frequency of severe red-light-related crashes.

A total of 135 cities satisfied the minimum population criteria. Cities with less than 15,000
persons were noted to frequently have no severe red-light-related crashes during the 4-year period.
Hence, they were excluded to avoid a possible bias in the regression analysis due to an excessive
number of observations with zero crashes.

Statistical Analysis Method

A preliminary examination of the crash data indicated that they are neither normally
distributed nor of constant variance, as is assumed when using traditional least-squares regression.
Under these conditions, the generalized linear modeling technique, described by McCullagh and
Nelder (16), is appropriate because it accommodates the explicit specification of an error distribution
using maximum-likelihood methods for coefficient estimation. 
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V(x) ' E(m) %
E(m)2

k
(14)

The distribution of crash frequency can be described by the family of compound Poisson
distributions.  In this context, there are two different sources of variability underlying the
distribution.  One source of variability stems from the differences in the mean crash frequency m
among the otherwise “similar” cities.  The other source stems from the randomness in crash
frequency at any given city, which likely follows the Poisson distribution.

Abbess et al. (17) have shown that if event occurrence at a particular location is Poisson
distributed then the distribution of events of a group of locations can be described by the negative
binomial distribution.  The variance of this distribution is:

where,
x = reported crash frequency for a given city having an expected frequency of E(m); and
k = dispersion parameter. 

The Nonlinear Regression procedure (NLIN) in the SAS software was used to estimate the
model coefficients (18).  The benefits of using this procedure  are: (1) nonlinear model forms can
be evaluated, and (2) the dispersion parameter k can be held fixed during the model building process
(as described in the next paragraph).  The “loss” function  associated with NLIN was specified to
equal the log likelihood function for the negative binomial distribution.  The procedure was set up
to estimate model coefficients based on maximum-likelihood methods.

The goal of the regression model development was to build a parsimonious model.  This type
of model explains as much of the systematic variability as possible using the fewest number of
variables.  The procedure described by Sawalha and Sayed (19) was used to achieve this goal.  It is
based on a forward building procedure where one variable is added to the model at a time.  The
dispersion parameter k is held fixed at the best-fit value for a model with p variables while evaluating
alternative models with p+1 variables (i.e., models where one candidate variable has been added).
Only those variables that are: (1) associated with a calibration coefficient that is significant at a
95 percent confidence level, and (2) that reduce the scaled deviance by at least 3.84 (= χ2

0.05,1) are
considered as candidates for inclusion.  Of all candidate variables, the one that reduces the scaled
deviance by the largest amount is incorporated into an “enhanced” model.  A best-fit k is computed
for the enhanced model and the process repeated until no candidate variables can be identified.

The advantage of the NLIN procedure is that k can be held fixed during the search for
candidate variables.  The disadvantage of this procedure is that it is not able to compute the best-fit
value of k for the enhanced model.  This disadvantage is overcome by using the Generalized
Modeling (GENMOD) procedure in SAS with the enhanced model.  GENMOD automates the k-
estimation process using maximum-likelihood methods.  Thus, GENMOD is used to regress the
relationship between the reported and predicted crash frequencies (where the natural log of the
predicted values is specified as an offset variable and the “log” link function is used).  This new
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estimate of k from GENMOD is then used in a second application of NLIN and the process repeated
until convergence is achieved between the k value used in NLIN and that obtained from GENMOD.
Convergence is typically achieved in two iterations.

Model Calibration

The regression analysis revealed that city population was strongly correlated with severe red-
light-related crash frequency.  The relationship was initially assumed to be continuous over the range
of population, as suggested by the trend line in Figure 3-4.  However, subsequent analyses indicated
that the relationship between population and crash frequency was different for cities with a small
population compared to those having a large population.  Several model forms were evaluated to
reflect these differences.  The best fit was obtained by including an indicator variable in the
regression model that changed the curve slope for cities with a population in excess of b3 × 100,000
persons.  The best-fit prediction model was specified using the following equation:

where,
E[r] = expected severe red-light-related crash frequency for the subject city, crashes/yr;

Ip = indicator variable for population (= 1.0 if population exceeds b3 × 100,000 persons; and
0.0 otherwise); 

Pa = area population, persons; and
bi = calibration coefficients (i = 0, 1, 2, 3).

The statistics related to the calibrated model are shown in Table 3-4.  The calibration
coefficient values shown can be used with Equation 15 to estimate the annual severe red-light-related
crash frequency for a given city or jurisdiction of known population.

A dispersion parameter k of 2.66 was found to yield a scaled Pearson χ2 of 1.02.  The Pearson
χ2 statistic for the model is 134, and the degrees of freedom are 131 (= n ! p !1 = 135 !3 !1).  As
this statistic is less than  χ2 0.05, 131 (= 159), the hypothesis that the model fits the data cannot be
rejected.  A measure of model fit that is appropriate for negative binomial error distributions is RK

2,
as developed by Miaou (20).  RK

2 for the calibrated model is 0.84. 

The regression coefficients for each model are listed in the last rows of Table 3-4.  The t-
statistics shown indicate that, with one exception, all coefficients are significant at a 95 percent level
of confidence or higher.  The coefficient associated with b3 is significant at a 90 percent level. A
positive coefficient indicates that crashes increase with an increase in the associated variable value.
Thus, cities with a larger population are likely to have a higher frequency of red-light-related crashes.
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Table 3-4.  Calibrated Model Statistical Description–Area-Wide Crash Analysis.
Model Statistics Value

RK
2: 0.84

Scaled Pearson χ2: 1.02
Pearson χ2: 134  (χ2

0.05, 131 = 159)
Dispersion Parameter k: 2.66

Observations no: 135 cities (68,253 crashes during a 4-year period)
Range of Model Variables
Variable Variable Name Units Minimum Maximum

Pa Area population persons 15,132 1,953,631
Calibrated Coefficient Values
Variable Definition Value Std. Dev. t-statistic

b0 Intercept 4.79 0.15 31.9
b1 Effect of population when # b3 × 100,000 1.458 0.118 12.4
b2 Incremental effect of population >b3 × 100,000 -0.376 0.189 -2.0
b3 Population threshold in 100,000s 1.013 0.631 1.6

The indicator variable Ip adapts Equation 15 to cities with a population in excess of 101,300
persons.  The resulting form of the calibrated equation is:

The fit of the calibrated model to the data is illustrated in Figure 3-6.  The trends shown are
logical and similar to those noted for Figure 3-4.  The frequency of severe crashes is higher in cities
with higher populations.  

The slope of the line in Figure 3-6 is steepest for cities in the range of 60,000 to 101,300
persons.  This trend may be related to the characteristics associated with these cities, as may differ
from those with smaller or larger populations.  These cities tend not to have relatively high traffic
demands on their urban street network, relative to cities with smaller populations.  On the other
hand, they do not have as extensive a network of urban freeways as do cities with a larger population
and are likely to have notable peak-hour traffic demands at major intersections.  Hence, the
concentration of drivers at intersections is likely to be high in cities of 60,000 to 101,300 during peak
hours.  There will likely be some anxiety associated with peak-hour delays, and the drivers will
typically have few alternative routes that include controlled-access highways.  These factors may
combine to explain the slightly steeper slope of the trend line for cities of 60,000 to 101,300 persons.
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a.  Cities with a Population in Excess of 200,000 Persons.

b.  Cities with a Population Relationship between 15,000 and 200,000 Persons.

Figure 3-6.  Predicted Relationship between City Population and Crash Frequency.

ENFORCEMENT EFFECTIVENESS EVALUATION

This section describes the analysis and evaluation of the effectiveness of area-wide
enforcement (in combination with a public awareness campaign).  Initially, the statistical analysis
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methods used for the before-during evaluation are described.  Then the findings from the evaluation
are summarized.

Statistical Analysis Method

A before-after evaluation method was used to evaluate the crash data and quantify the
effectiveness of area-wide enforcement.  The empirical Bayes-based method described by Hauer (9)
was used for the analysis.  This method yields an unbiased estimate of the crash frequency in the
“before” period.  This estimate is then extrapolated to the “after” period (hereafter referred to as the
“during” period to be consistent with the experimental design) to obtain an estimate of the crashes
that would have occurred in the “during” period had additional enforcement not been implemented.
This extrapolated estimate is then compared with the crashes that actually occurred with the
enforcement to determine if crashes were truly reduced.

The estimate of the crashes in the “before” period is based on a weighted combination of the
reported frequency of crashes during the “before” period x and the predicted crash frequency E[r],
obtained from Equation 16.  The estimate obtained in this manner E[r|x] is a more accurate estimate
of the expected crash frequency in the subject city than either of the individual values (i.e., E[r] or
x).  The following equations were used to compute E[r|x]: 

with,

where,
E[r|x] = expected red-light-related crash frequency given that x crashes were reported in y years,

crashes/yr;
x = reported red-light-related crash frequency, crashes;
y = time interval during which x crashes were reported, yr; and

weight = relative weight given to the prediction of expected red-light-related crash frequency.

Table 3-5 illustrates the application of Equations 17 and 18 to the “before” data.  Column 4
lists the severe red-light-related crash frequency xi estimated to occur during the corresponding time
period i in each city.  This estimate is obtained by multiplying the data in the last column of
Table 3-3 by the number of months represented by the time period.  The sum of these estimates for
any given city represents the reported red-light-related crash frequency in the “before” period x (i.e.,
x = 3 xi).
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Table 3-5.  Expected Annual Area-Wide Crashes in “Before” Period.
City Time Period Severe Red-

Light-Related
Crash Freq. x,
crashes/period

Expected
Crash Freq.

E[r],
crashes/period

Equivalent
Years

Relative to
1997 y

Weight
Given to 
E[r1997],
weight

Expected
Crash Freq. 
E[r|x],

crashes/yr
Months Calendar

Year
Austin 12 1997 928 837 1.00

0.0011 83912 1998 833 866 1.03
9 1999 619 671 0.80

Total: 2380 2.83
Bryan 12 1997 65 60 1.00

0.0204 6312 1998 65 62 1.02
1 1999 4 5 0.09

Total: 134 2.11
Dallas 12 1997 2181 1669 1.00

0.0005 210012 1998 2214 1698 1.02
12 1999 2068 1727 1.03

4 2000 682 585 0.35
Total: 7145 3.40

Denton 12 1997 111 81 1.00
0.0116 8712 1998 71 83 1.03

9 1999 65 64 0.79
Total: 247 2.82

Fort
Worth

12 1997 657 701 1.00
0.0013 65312 1998 661 714 1.02

10 1999 562 606 0.86
Total: 1880 2.88

Garland 12 1997 239 262 1.00
0.0052 23011 1998 205 245 0.93

Total: 444 1.93
Midland 12 1997 124 108 1.00

0.0085 11112 1998 108 109 1.01
10 1999 86 92 0.85

Total: 318 2.86
Plano 12 1997 279 247 1.00

0.0055 25611 1998 224 238 0.96
Total: 503 1.96

Each row of column 5 represents the expected severe red-light-related crash frequency E[ri]
for a specific time period i.  This value is obtained by converting E[r] from Equation 16 into an
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equivalent number of crashes for the specified time period.  This conversion is achieved by dividing
E[r] by 12 and then multiplying it by the number of months in the corresponding time period.  

The values in column 6 represent the ratio of expected crashes in any given time period i to
that estimated for 1997 (i.e., yi = E[ri]/E[r1997]).  This ratio represents an equivalent number of years,
relative to 1997, for the corresponding time period and reflects the increase in population that
occurred each year after 1997.  For any given city, the total number of equivalent years represents
an equivalent time interval y during which the x crashes were reported (i.e., y = 3 yi).

As suggested in the preceding paragraph, the base year for the analysis is 1997 with all
subsequent time periods adjusted for population growth using the concept of “equivalent years.”
Hence, the weight computed using Equation 18 is based on the expected red-light-related crash
frequency for 1997 E[r1997], as listed in the first row of column 5 for each city.  Thus, the value of
weight for Austin (= 0.0011) was computed from Equation 18 using the following values:
E[r] = E[r1997] = 837, y = 2.83, and k = 2.66.

The last column in Table 3-5 represents an unbiased estimate of the red-light-related crash
frequency for the “before” period.  It is computed from Equation 17.  For example, the value of
E[r|x] for Austin was computed using the following values:  E[r] = E[r1997] = 837, y = 2.83, and
x = 2380.

The value of E[r|x] in the last column of Table 3-5 is an unbiased estimate of the red-light-
related crash frequency.  However, it is not directly comparable to the reported crash frequency in
the “during” period.  This incompatibility stems from the fact that population increased between the
two analysis periods. The procedure recommended by Hauer (9) to remove this bias is described in
the following paragraphs.  The discussion that follows references the values shown in Table 3-6.

As described by Hauer (9), an unbiased estimate of treatment effectiveness requires a
prediction of the crash frequency that would have occurred had the treatment not been applied.  As
a first step in computing this predicted quantity, Equation 16 is used to estimate the expected severe
red-light-related crash frequency E[ri] for each time period i.  This estimate is shown in column 5
of Table 3-6 and is computed in the same manner as column 5 of Table 3-5.

The next step is to compute the equivalent number of years in the “during” period ya,i, relative
to 1997, for each time period i.  This value is shown in column 6 of Table 3-6 and is computed in
the same manner as column 6 of Table 3-5.

Finally, the crash frequency that would have occurred had the treatment not been applied rlri
*

is computed for each time period i.  These estimates are listed in each row of column 7 in Table 3-6.
The values shown were computed as the product of E[r|x] (from Table 3-5) and the corresponding
equivalent number of years ya,i. For example, in Table 3-6, the estimate of rlr1999

* for Austin in 1999
(= 224 crashes/period) is based on the following values:  E[r|x] = 839 and ya,1999 = 0.27.  
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Table 3-6.  Expected Annual Area-Wide Crashes in “During” Period.
Crashes That... ...Occurred With

Enforcement
...Would Have Occurred Without Enforcement

City Time Period Severe Red-
Light-Related
Crash Freq. λ,
crashes/period

Expected
Crash Freq.

E[r],
crashes/period

Equivalent
Years

Relative to
1997 ya

Expected
Crash Freq. 

rlr*,
crashes/period

Variance
, σ2

rlr,( i
(cr/period)2Months Calendar

Year
Austin 3 1999 224 224 0.27 224 21

8 2000 562 616 0.74 617 160
Total: 786 841 181

Bryan 10 1999 49 53 0.88 55 15
9 2000 48 49 0.81 51 19

Total: 97 106 34
Dallas 5 2000 882 732 0.44 920 119

Total: 882 920 119
Denton 3 1999 28 21 0.26 23 2

9 2000 74 66 0.81 71 20
Total: 102 94 22

Fort
Worth

2 1999 106 121 0.17 113 7
9 2000 513 555 0.79 517 142

Total: 619 630 149
Garland 1 1998 20 22 0.08 19 1

10 1999 214 227 0.87 199 72
8 2000 169 185 0.70 162 58

Total: 403 380 131
Midland 1 1999 3 9 0.08 9 0

9 2000 59 83 0.77 86 23
Total: 62 95 23

Plano 1 1998 18 22 0.09 22 1
9 1999 202 205 0.83 212 89
8 2000 164 191 0.77 197 77

Total: 384 431 167

For a specified city, the total number of severe red-light-related crashes that would have
occurred had the treatment not been applied rlr* is estimated as the sum of the individual estimates
for each time period i (i.e., rlr* = 3rlri

* ).  This value is then compared with the number of severe
red-light-related crashes reported in the “during” period to accurately determine the effectiveness of
the treatment.  In Table 3-6, the estimate of  rlr* for Austin is 841 crashes. By comparison, only 786
crashes were reported for the same time period.  The reduction in crashes is likely due to the
enforcement program implemented by the City of Austin.
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The variance of the estimate of rlr* is needed in a subsequent calculation.  It can be computed
using the following equation:

where,
 = variance of rlri

* for time period i, (crashes/yr)2;σ2
rlr,( i
ya,i = equivalent years in “during” period, yr;

rlr* = expected crash frequency that would have occurred had the treatment not been applied,
crashes/yr; and

E[r1997] = expected severe red-light-related crash frequency for 1997, crashes/yr.

Column 4  lists the severe red-light-related crash frequency λi estimated to occur during the
corresponding time period i in each city.  This estimate is obtained by multiplying the data in the last
column of Table 3-3 by the number of months represented in the corresponding time period.  The
sum of these estimates for any given city represents the reported red-light-related crash frequency
in the “during” period λ (i.e., λ = 3 λi).

Evaluation

The data in Table 3-6 were used to evaluate the effectiveness of area-wide enforcement.
Specifically, the estimated severe red-light-related crash frequency λi in column 4 of Table 3-6 was
compared with the expected crash frequency that would have occurred had the additional
enforcement not been applied rlr* (i.e., the last column in Table 3-6).  This comparison is shown in
Table 3-7.

The effectiveness of the area-wide enforcement is expressed in Table 3-7 in terms of a “crash
modification factor” CMF and a “relative change” RC in crash frequency.  The former statistic was
computed as:

Its standard deviation σCMF was computed as:
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RC ' CMF & 1 ×100 (22)

Table 3-7.  Area-Wide Enforcement Effectiveness.
City Severe Red-

Light-Related
Crash Freq. λ,
crashes/period

Expected
Crash Freq. 

rlr*,
crashes/period

Variance
, σ2

rlr,( i
(cr/period)2

Crash
Modification
Factor CMF

Factor
Standard
Deviation 

Relative
Change RC,

%

Austin 786 841 181 0.934 0.037 -6.6
Bryan 97 106 34 0.906 0.105 -9.4
Dallas 882 920 119 0.958 0.034 -4.2
Denton 102 94 22 1.077 0.119 7.7
Fort Worth 619 630 149 0.983 0.044 -1.7
Garland 403 380 131 1.060 0.062 6.0
Midland 62 95 23 0.651 0.089 -34.9
Plano 384 431 167 0.889 0.053 -11.1

Total: 3335 3497 826 0.953 0.018 -4.7
Modified

Total:1
2830 3028 674 0.936 0.019 -6.4

Note:
1 - Modified statistics do not include data for the cities of Denton and Garland.

The relative change was computed as:

As noted in the discussion with Equation 13, a negative value for the relative change indicates a
reduction in crash frequency.  

The relative change in severe red-light-related crash frequency is listed in the last column of
Table 3-7.  The values shown are similar with those listed in Table 3-3. The difference between the
values in Tables 3-3 and 3-7 is that those in the latter table are based on a more accurate assessment
of the crashes that would have occurred in the “during” period based on the increase in population
that occurred between the “before” and “during” periods.

The sign associated with the relative change values indicates that crashes were reduced at six
of the eight cities.  This reduction is likely due to the area-wide enforcement program funded by the
ITC-STEP.  As discussed previously, the increase in crashes associated with Denton and Garland
is illogical and cannot be explained.  It is very unlikely that the increase is a result of increased
enforcement activities.

The average relative change for all cities is shown in the second to last row of Table 3-7.  The
analysis indicates that area-wide enforcement (coupled with a public awareness campaign) is likely
to reduce severe red-light-related crashes by 4.7 percent.  If the data for Denton and Garland are
excluded from the analysis, the program reduced crashes by 6.4 percent.  Given that a crash increase
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in these two cities is illogical in the context of the treatment applied and sharply in contrast to the
trends found in the other cities, the reduction of 6.4 percent is believed to represent a more accurate
measure of enforcement effectiveness.

A relative change of 6.4 percent corresponds to a crash modification factor of 0.936.  The
standard deviation of this factor is 0.019.  Assuming that the variability in the error of the factor
estimate is normally distributed, the 95th percentile confidence interval for the factor was computed
as 0.90 to 0.97.  This range excludes 1.0 and, thereby, indicates with reasonable confidence that the
crash frequency was lower in the “during” period for these six cities than it would have been without
the enforcement program.

MODEL EXTENSIONS

The estimate of crash frequency obtained from Equation 17 can also be used (with
Equation 16) to identify cities that have an exceptionally high frequency of red-light-related crashes.
Initially, Equation 16 is used to compute the expected red-light-related crash frequency for a
“typical” city of similar population E[r].  Then, Equation 17 is used to compute the expected red-
light-related crash frequency given that x crashes were reported E[r|x] for the subject city.  These
two estimates are then used to compute the following index:

with,

where,
 = variance of E[r|x];σ2

r|x

 = variance of E[r] for the typical city of similar population; andσ2
r

no = number of observations used in the development of the model used to predict E[r].

The values of k and no are provided in Table 3-4.

If the reported red-light-related crash frequency x, when expressed on an annual basis (i.e.,
as the quotient of x/y), is less than the expected crash frequency E[r], then the index will be negative.
If this situation occurs, the subject city is not likely to have a red-light-related safety problem.
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The index value is an indicator of the extent of the red-light-related safety problem for a
given city.  In general, cities associated with a positive index value have more severe red-light-
related crashes than the “typical” city of similar population.  A city with an index of 2.0 is likely to
have a greater problem than a city with an index of 1.0.  Greater certainty in the need for treatment
can be associated with higher index values. 
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E[R] '
Q
C

1
0.927

ln 1 % e (2.30 & 0.927Ye & 0.334Bp % 0.0435V & 0.0180Lp % 0.220Rp ) e (0.745 IC % 0.996 IL )
(26)

Ye ' px Y % (1 & px) max: Y, D
V (27)

CHAPTER 4. INTERSECTION RED-LIGHT VIOLATION FREQUENCY

OVERVIEW

This chapter describes the findings from an analysis of the causes and effects of red-light
violations.  The findings presented are the result of a statistical analysis of a red-light violation
database originally assembled for TxDOT Research Project 0-4027 but enhanced in this research to
include additional factors.  A result of this reanalysis is an enhanced model for predicting red-light
violation frequency.  The findings reported in this chapter represent an update to the material in
Chapter 5 of the report Engineering Countermeasures to Reduce Red-Light-Running (13), as
prepared for Project 0-4027.

There were two objectives of this reanalysis of the data and recalibration of the previous
model.  One objective was to add sites to the database such that it reflected a wider range of key
model variables.  A second objective was to examine the effect of delay on a driver’s propensity to
violate the red indication. 

The organization of this chapter follows that of Chapter 5 in the Project 0-4027 final report
(13).  Initially, the model described in that report is presented to provide a basis for comparison.
Next, the updated database content is summarized and reviewed.  Then, the procedures used to
develop an enhanced red-light violation prediction model are described.  Finally, the findings from
a sensitivity analysis using the enhanced model are discussed.  The sensitivity analysis illustrates the
effects of selected factors on the frequency of red-light violations.

LITERATURE REVIEW

Bonneson et al. (13) documented the development of a red-light violation prediction model
using data representing 12 hours of traffic observation at each of 20 intersection approaches.  These
approaches were located in the Texas cities of Mexia, College Station, Richardson, Corpus Christi,
and Laredo.  The calibrated model they developed has the following form:

with,

The platoon ratio Rp used in Equation 26 represents the ratio of the flow rate at the end of the
phase to the approach flow rate.  This ratio is computed as:
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Rp '
Qe

Q
(28)

where,
E[R] = expected red-light violation frequency, veh/h;

Q = approach flow rate, veh/h;
C = cycle length, s;
Ye = effective yellow duration due to advance detector operation, s;

Bp = presence of back plates on the signal heads, (1 if present, 0 if not present);
V = average running speed, mph;

Lp = clearance path length, ft;
Rp = platoon ratio;
px = probability of phase termination by max-out (= 1.0 if the movement is pretimed or if

it is actuated but does not have advance detection);
Y = yellow interval duration, s; 

max [a,b] = the larger of variables a and b;
D = distance between stop line and the most distant upstream detector, ft;
IC = indicator variable for city of Corpus Christi, (1 if data apply to this city, 0 otherwise);
IL = indicator variable for city of Laredo, (1 if data apply to this city, 0 otherwise); and

Qe = phase-end flow rate, veh/h.

Since its publication, two limitations of the model have emerged.  First, the effect of delay
on motorist propensity to run the red indication is not reflected in the model.  The model indicates
that an increase in cycle length will result in a decrease in violations.  However, it can be reasonably
argued that an increase in cycle length will increase motorist delay and that motorists are more likely
to run the red when delays are long.

A second limitation of the model is its strong dependency on local calibration.  This
dependency is illustrated by the two indicator variables included in the model.  The calibration
coefficients associated with these two variables suggest that intersections in Corpus Christi and
Laredo have more than twice the number of violations as those in the other three cities.  The need
for these indicator variables suggests that either: (1) there are significant differences in enforcement
among cities, or (2) there are factors causing red-light violations in these two cities that are not
explained by the variables in Equation 26.

In an effort to address the aforementioned limitations, additional field studies were conducted
at three intersections in Irving, Texas.  The objective of these studies was to add sites to the database
such that it reflected a wider range of key model parameters (i.e., traffic volume  and yellow
duration).  Also, the videotapes recorded for Project 0-4027 were reviewed for the purpose of
extracting data describing the phase duration (i.e., green interval duration) for each study site.  The
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phase duration data were used to compute the volume-to-capacity ratio of the phase and its expected
uniform control delay (as defined in Chapter 16 of the Highway Capacity Manual [28]).

SITE SELECTION

Table 4-1 lists the intersections represented in the enhanced database.  The first five cities
listed  represent those cities included in the original database for Project 0-4027.  Three intersections
in the city of Irving were added for this project.  These intersections were selected to add a wider
range of volumes and yellow durations in the database.  All total, data for 13 intersections are
included in the combined database.

Table 4-1.  Intersection Characteristics–Intersection Approach Violation Analysis.

City Intersection1
Characteristic

Study Sites 2

(Approach)
Cycle

Length 3, s
Advance
Detection

Enforcement
Lights?

Mexia Bailey St. (F.M. 1365) & Milam St. (U.S. 84) EB, WB 75 No No
S.H. 14 & Tehuacana Hwy. (S.H. 171) EB, WB 37-66 No No

College
Station

Texas Ave. (S.H. 6) & G. Bush Dr. (F.M. 2347) NB, SB 89-131 No No
College Main & University Dr. (F.M. 60) EB, WB 110 No No

Richardson Plano Road & Belt Line Road SB, EB 75-108 No Yes
Greenville Ave. & Main Street SB, EB 69-111 No Yes

Corpus
Christi

F.M. 2292 & S.H. 44 EB, WB 57-156 Yes No
U.S. 77 & F.M. 665  (City of Driscoll) NB, SB 42-86 Yes No

Laredo Loop 20 & Los Presidentes NB, SB 90 No No
U.S. 83 & Prada Machin NB, SB 53-90 Yes No

Irving MacArthur Blvd. & Royal Lane NB, SB 103-144 No No
Nursery Road & Irving Blvd. NB, SB 94-109 No No
MacArthur Blvd. & Rochelle Road NB, SB 105-134 No No

Notes:
1 - North-south street is listed first.
2 - A “site” is defined as one intersection approach.  NB: northbound; SB: southbound; EB: eastbound; WB: westbound.
3 - Cycle length range represents the 15th and 85th percentile values observed at the site on 1 day.

At each intersection listed in Table 4-1, two approaches were selected for field study.  Each
intersection approach represents one study site.  The characteristics of each of the 26 approach study
sites are listed in Table 4-2.  The data in this table indicate that the study sites collectively offer a
reasonable range of speeds, grades, all-red interval durations, and signal head support types.
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Table 4-2.  General Site Characteristics–Intersection Approach Violation Analysis.

City Study Site
Characteristic

Speed
Limit,
mph

Approach
Lanes

Grade, 1

%
Clearance
Length, ft 2

All-Red
Interval,

s

Signal 
Head

Support
Mexia EB Milam St. 35 2 -2.8 70 1.0 Mast arm

WB Milam St. 35 2 2.8 70 1.0 Mast arm
EB S.H. 171 30 1 -0.5 93 1.0 Span wire
WB S.H. 171 30 1 0.0 93 1.0 Span wire

College
Station

NB Texas Ave. 40 3 0.0 95 1.0 Mast arm
SB Texas Ave. 40 3 -0.5 102 2.0 Mast arm
EB University Dr. 35 3 0.5 67 1.0 Mast arm
WB University Dr. 35 3 0.2 63 1.0 Mast arm

Richardson SB Plano Road 40 3 0.5 102 2.0 Mast arm
EB Belt Line Road 35 3 0.0 145 2.5 Mast arm
SB Greenville Ave. 30 3 0.5 94 2.0 Mast arm
EB Main Street 30 2 0.0 98 2.0 Mast arm

Corpus
Christi

EB S.H. 44 50 2 0.0 95 2.0 Span wire
WB S.H. 44 50 2 0.0 95 2.0 Span wire
NB U.S. 77 40 2 0.3 90 2.1 Span wire
SB U.S. 77 40 2 0.0 90 2.1 Span wire

Laredo NB Loop 20 40 2 -1.8 89 1.0 Mast arm
SB Loop 20 40 2 0.9 89 1.0 Mast arm
NB U.S. 83 55 2 1.5 98 2.0 Mast arm
SB U.S. 83 55 2 -1.3 98 2.0 Mast arm

Irving SB MacArthur at Royal 35 3 0.2 119 2.4 Mast arm
NB MacArthur at Royal 35 3 -0.2 119 2.4 Mast arm
SB Nursery Road 30 1 0.0 142 2.0 Mast arm
NB Nursery Road 30 1 0.0 142 2.0 Mast arm
NB MacArthur at Rochelle 35 2 0.0 89 2.0 Mast arm
SB MacArthur at Rochelle 35 2 0.0 89 2.0 Mast arm

Notes:
1 - Grade:  negative (-) grades are downgrades in a travel direction toward the intersection.
2 - Length of the clearance path measured from the near-side stop line to the far-side stop line.

DATA ANALYSIS

This section summarizes the database assembled for the analysis of factors that may influence
red-light violation frequency.  Initially, some descriptive statistics are offered that describe the traffic
characteristics at each study site.  Then, the observed frequency of red-light violations is tabulated
for each site and several red-light violation rates quantified.
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Database Summary

The database assembled for this research includes the traffic volume, geometry, traffic
control, and violation data for 13 intersections.  Two approaches were studied at each intersection.
Traffic data recorded at each intersection included:  vehicle count and classification for each signal
cycle, cycle length, number of red-light violations per cycle, average running speed, and flow rate
at the end of the phase. 

Descriptive Statistics

Summary statistics describing the variables in the database are provided in Tables 4-3 and
4-4.  The data in these tables reflect 6 hours of data collection at each intersection approach.  The
data in Table 4-3 indicate that more than 11,266 signal cycles were observed at 26 intersection
approaches.  During these cycles, 595 vehicles entered the intersection (as defined by the stop line)
after the change in signal indication from yellow to red.  Table 4-3 indicates that the sites in Irving
had both very low and very high traffic volumes.  These extremes in volume added a desired breadth
in the range of volumes represented in the database.

Of the 595 vehicles observed to violate the red indication, 84 were heavy vehicles and 511
were passenger cars.  Overall, 0.83 percent (= 84/10,160 ×100) of heavy vehicles violated a red
indication and 0.32 percent (= 511/160,745 ×100) of passenger cars violated the red indication.  A
paired test of these two proportions indicates that their difference is significantly different from zero
(p = 0.0001).  From this test, it is concluded that heavy vehicle operators are more than twice as
likely to run the red indication as passenger car drivers.   In their examination of two high-speed rural
intersections, Zegeer and Deen (29) also found that heavy vehicles were more than twice as likely
to run the red indication.

Table 4-4 summarizes the statistics associated with selected study site traffic characteristics.
In general, these statistics indicate that there is a wide range of flow rates, speeds, yellow-interval
durations, volume-to-capacity ratios, heavy-vehicle percentages, clearance path lengths, and cycle
lengths represented in the database. 

The “platoon ratio” listed in the last row of Table 4-4 represents the ratio of the flow rate at
the end of the phase to the average flow rate.  Observations during the field studies indicated that
red-light violations appeared to be more frequent at intersections with platoons arriving near the end
of the green indication.

Violation Rate Statistics

As a first step in the analysis of the data, red-light violation rates were computed for each
intersection approach.  Two rates were computed.  The first rate is expressed in terms of  red-light-
running events per 1000 vehicles.  The second rate represents the number of red-light violations per
10,000 vehicle-cycles, where “cycles” represent the average number of cycles per hour during the
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period for which vehicles are counted.  The use of “vehicle-cycles” is supported by the ratio Q/C that
appears in Equation 26. Both rates are listed in Table 4-5.

Table 4-3.  Site Violation Characteristics–Intersection Approach Violation Analysis.
City Study Site

Cycles
Heavy Vehicles 1 All Vehicles 1

Observations Violations Observations Violations
Mexia EB Milam St. 669 532 7 5003 22

WB Milam St. 666 483 6 5008 23
EB S.H. 171 815 48 0 1082 3
WB S.H. 171 793 91 0 2205 5

College
Station

NB Texas Ave. 374 309 1 14,331 31
SB Texas Ave. 370 321 0 14,180 45
EB University Dr. 383 277 1 12,802 45
WB University Dr. 385 541 10 12,176 95

Richardson SB Plano Road 440 390 0 10,035 8
EB Belt Line Road 442 160 0 7922 7
SB Greenville Ave. 484 138 0 3242 5
EB Main Street 493 278 2 9890 40

Corpus
Christi

EB S.H. 44 354 789 4 7026 23
WB S.H. 44 340 625 1 7667 21
NB U.S. 77 582 1330 17 5087 36
SB U.S. 77 590 1160 6 4667 28

Laredo NB Loop 20 439 568 9 5412 36
SB Loop 20 432 458 3 5694 38
NB U.S. 83 574 667 12 4670 43
SB U.S. 83 525 546 5 4713 32

Irving SB MacArthur at Royal 175 102 0 8729 6
NB MacArthur at Royal 175 110 0 7530 0
SB Nursery Road 207 9 0 1155 0
NB Nursery Road 207 22 0 979 0
NB MacArthur at Rochelle 177 100 0 4483 3
SB MacArthur at Rochelle 175 106 0 5217 0

Total: 11,266 10,160 84 170,905 595
Note:
1 - “All Vehicles”  include both passenger cars and heavy vehicles.  A “heavy vehicle” is defined as any vehicle with

more than four tires on the pavement, with the exception of a 1-ton pickup truck with dual tires on the rear axle (this
truck was considered to be a “passenger car”).
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Table 4-4.  Summary Traffic Characteristics–Intersection Approach Violation Analysis.
Variable Statistic 1

Average Std. Deviation Minimum Maximum
Approach flow rate, veh/h 637 384 59 1872
Cycle length, s 92 24 47 161
Yellow interval duration, s 4.3 0.60 3.2 5.3
85th percentile speed, mph 43 7.5 32 60
Clearance path length, ft 95 19 63 145
Volume-to-capacity ratio 0.40 0.17 0.13 0.81
Heavy-vehicle percentage, % 7.6 7.4 0 37
Platoon ratio 1.66 0.83 0.13 5.4

Note: 
1 - Flow rate, cycle length, volume-to-capacity ratio, heavy-vehicle percentage, and platoon ratio statistics are based

on 1 hour observations, with six observations available for each study site and study period combination.  Speed
statistics are based on one observation for each study site, where each site observation is based on a sample of
100 individual vehicle speeds at each study site.  Clearance path length and yellow duration are based on one
measurement at each study site.

As shown in the last row of Table 4-5, the overall average rates are 3.5 red-light violations
per 1000 vehicles and 0.9 red-light violations per 10,000 veh-cycles.  The former rate is similar to
that found in the literature.  Specifically, data reported by Kamyab et al. (30) indicate an average rate
of 3.0 violations per 1000 vehicles.  Data reported by Baguley (31) indicate an average rate of
5.3 violations per 1000 vehicles.

The red-light violation rates listed in Table 4-5 provide some indication of the extent of the
problem at the intersections studied.  For the purpose of comparing the two rates listed, consider that
those approach sites that have a rate that exceeds the average rate by a factor of two or more are
“problem” locations.  The vehicle-based rates in column 8 indicate that three approaches exceed the
average rate of 3.5 violations per 1000 vehicles by a factor of 2.0 or more.  These approaches are
identified by underline.  The vehicle-cycle-based rates in column 9 indicate that four approaches
exceed the average rate of 0.9 violations per 10,000 veh-cycles by 2.0 or more.  These approaches
are also identified by underline.

A comparison of the values in bold font in columns 8 and 9 of Table 4-5 indicate that there
is some discrepancy between the two violation rates as to which approaches are problematic.  Both
rates identify sites with a high number of violations relative to traffic volume.  However, the vehicle-
cycle-based rate also identifies sites where violation frequency is high relative to the number of
signal cycles that occurred.  This additional sensitivity illustrates the importance of considering both
volume and number-of-cycles when comparing sites based on red-light violation rate.
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Table 4-5.  Violation Rate Statistics–Intersection Approach Violation Analysis.

City Study Site
Total Observations Red-Light Violation Rate1

Hours
of

Study

Cycles Vehicles Viola-
tions

Cycles
per

Hour

Violations
per 

1000 veh

Violations 2 
per 

10,000 veh-cyc
Mexia EB Milam St. 12 669 5003 22 56 4.4 0.8

WB Milam St. 12 666 5008 23 56 4.6 0.8
EB S.H. 171 12 815 1082 3 68 2.8 0.4
WB S.H. 171 12 793 2205 5 66 2.3 0.3

College
Station

NB Texas Ave. 12 374 14,331 31 31 2.2 0.7
SB Texas Ave. 12 370 14,180 45 31 3.2 1.0
EB University Dr. 12 383 12,802 45 32 3.5 1.1
WB University Dr. 12 385 12,176 95 32 7.8 2.4

Richardson SB Plano Road 12 440 10,035 8 37 0.8 0.2
EB Belt Line Road 12 442 7922 7 37 0.9 0.2
SB Greenville Ave. 12 484 3242 5 40 1.5 0.4
EB Main Street 12 493 9890 40 41 4.0 1.0

Corpus
Christi

EB S.H. 44 12 354 7026 23 30 3.3 1.1
WB S.H. 44 11 340 7667 21 31 2.7 0.9
NB U.S. 77 12 582 5087 36 49 7.1 1.5
SB U.S. 77 12 590 4667 28 49 6.0 1.2

Laredo NB Loop 20 12 439 5412 36 37 6.7 1.8
SB Loop 20 12 432 5694 38 36 6.7 1.9
NB U.S. 83 12 574 4670 43 48 9.2 1.9
SB U.S. 83 12 525 4713 32 44 6.8 1.6

Irving SB MacArthur at Royal 6 175 8729 6 29 0.7 0.2
NB MacArthur at Royal 6 175 7530 0 29 0.0 0.0
SB Nursery Road 6 207 1155 0 35 0.0 0.0
NB Nursery Road 6 207 979 0 35 0.0 0.0
NB MacArthur at Rochelle 6 177 4483 3 30 0.7 0.2
SB MacArthur at Rochelle 6 175 5217 0 29 0.0 0.0

Total Observations & Average Rates: 275 11,266 170,905 595 41 3.5 0.9
Notes:
1 - Underlined values exceed the average rate by a factor of 2.0 or more.
2 - Rate computed as:  red-light violations/vehicles/cycles per hour × 10,000.

Model Development

This section summarizes the findings from an analysis of the factors associated with  red-light
violation frequency.  The findings presented are the result of a statistical analysis of the database
assembled for this research.  Initially,  the correlation between selected factors and red-light violation
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frequency is examined using graphical techniques and simple statistics.  Then, a statistical analysis
method that is appropriate for developing the violation prediction model is described.

Analysis of Factor Effects

This section describes an analysis of the relationship between red-light violation frequency
and selected variables in the database.  The analysis considered a wide range of variables; they
include:  approach flow rate, cycle length, yellow interval duration, speed, clearance path length,
volume-to-capacity ratio, heavy-vehicle percentage, use of signal head back plates, platoon ratio,
uniform delay, approach grade, number of approach lanes, LED signal indications, use of advance
detection, and signal head support.  The findings described in this section focus on those variables
found to have a significant correlation with red-light violation frequency.

Each variable included in the database represents the events observed during a 1-hour time
period.  In the case of traffic volume, the observation is the total number of through vehicles
traversing the subject approach.  Site-specific conditions, such as grade, are a constant for all hours
of observation.  For most other variables, the observation is an average for the 1-hour period.  There
are 275 hours of data represented in the database.

The effect of approach flow rate on red-light violation frequency is illustrated in Figure 4-1.
This figure indicates that violation frequency increases with increasing flow rate.  The pattern in the
data indicates that the relationship is linear with negligible violations at zero flow rate.

There are only 28 data points shown in Figure 4-1.  In fact, each data point in this figure (and
in subsequent figures in this section) represents an average for 10 hours of observation.  This
aggregation was needed because plots with 275 data points tended to obscure the portrayal of trends
in the data.  To overcome this problem, the hourly data were sorted by the independent variable (e.g.,
approach flow rate), placed in sequential groups of 10, and averaged over the group for both the
independent and dependent variables.  This procedure was only used for graphical presentation; the
275 hour-based data points were used for all statistical analyses.

The ratio of approach flow rate to cycle length was also compared with violation frequency.
Figure 4-2 shows the relationship between this ratio and the frequency of red-light violations.  Like
that found for approach flow rate, violation frequency increases with increasing flow-rate-to-cycle-
length ratio.  However, the correlation associated with this ratio is larger than that found for approach
flow rate alone indicating that both flow rate and cycle length (or its inverse, number of cycles) are
correlated with the frequency of red-light violations. 

Figure 4-3 illustrates the relationship between yellow interval duration and red-light violation
frequency.  The best-fit trend line shown suggests that violations decrease with longer yellow
intervals.  Red-light violations increase significantly for yellow intervals less than 3.5 s.  This trend
is consistent with that reported by Van der Horst and Wilmink (32).
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Figure 4-1.  Red-Light Violation Frequency as a Function of Approach Flow Rate.

Figure 4-2.  Red-Light Violation Frequency as a Function
of Flow-Rate-to-Cycle-Length Ratio.

The relationship between approach speed and red-light violation frequency is shown in
Figure 4-4.  The trend suggests that more red-light violations occur at higher speeds.  The scatter in
the data suggests that this relationship is not as strong as it is for approach flow rate or yellow
interval duration.
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Figure 4-3.  Red-Light Violation Frequency as a Function of Yellow Interval Duration.

Figure 4-4.  Red-Light Violation Frequency as a Function of Speed.

An examination of the relationship between the length of the clearance path through the
intersection and red-light violation frequency indicated that violations tended to decrease with
increasing path length.  Further examination revealed that this effect is more accurately captured by
using clearance time (i.e., the ratio of path length to speed).  The relationship between clearance time
and red-light violation frequency is illustrated in Figure 4-5. 
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Figure 4-5.  Red-Light Violation Frequency as a Function of Clearance Time.

The trend line shown in Figure 4-5 indicates that red-light violations are less frequent at
wider intersections.  This trend is logical and suggests that drivers are more reluctant to violate the
red indication if they believe their “time of exposure” to a right-angle crash is lengthy.  This time of
exposure directly relates to the time needed by the driver to cross the intersection.

The influence of delay on a driver’s propensity to violate the red indication was also
examined.  This examination focused on two different sources of delay, as defined in the Highway
Capacity Manual (28).  One source is due to the periodic presentation of a red indication.  This delay
is referred to as “uniform delay.”  It is directly correlated with cycle length and phase duration.  A
second source of delay stems from cycle failure (or unserved queues at the end of green) that may
be due to random arrivals or congestion.  This delay is referred to herein as “overflow” delay.  It is
directly correlated with volume-to-capacity ratio.

The relationship between volume-to-capacity ratio and the frequency of red-light violations
is shown in Figure 4-6.  The trend line indicates that red-light violations are more frequent at larger
volume-to-capacity ratios.  This finding suggests that drivers are more likely to violate the red
indication (presumably just after the end of the yellow interval) to avoid overflow delay.

The relationship between uniform delay and red-light violation frequency is shown in
Figure 4-7.  This delay was computed using Equation 16-11 in the Highway Capacity Manual (28);
delay was not measured directly in the field.  The scatter in the data is quite large with little change
over the range of computed delays.  The relatively flat slope of the trend line suggests that uniform
delay has a minimal effect on violation frequency.  Moreover, the slope of the trend line is illogical
because it implies there are fewer violations with increasing delay. 
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Figure 4-6.  Red-Light Violation Frequency as a Function of Volume-to-Capacity Ratio.

Figure 4-7.  Red-Light Violation Frequency as a Function of Uniform Delay.

Figure 4-8 illustrates the relationship between heavy-vehicle percentage and red-light
violation frequency.  In general, the trends shown suggest that red-light violation frequency increases
slightly with heavy-vehicle percentage.  A detailed examination of this trend indicated that the
increase in violation frequency with increasing heavy-vehicle percentage is explained by an increase
in the number of heavy-vehicle violations (and not by the ability of heavy vehicles to indirectly
influence nearby car drivers to violate the red).
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Figure 4-8.  Red-Light Violation Frequency as a Function of Heavy-Vehicle Percentage.

The effect of signal head back plates on the frequency of red-light violations is shown in
Figure 4-9.  Sites with back plates have a lower frequency of red-light violation.  The average
violation frequency for those sites with back plates was 1.6 veh/h compared to 3.4 veh/h for those
sites without back plates (i.e., sites with back plates had only 47 percent of the violations observed
at sites without back plates).  The standard deviation of each average is shown by the vertical line
on the corresponding bar.  A statistical analysis indicates that difference between the two averages
is statistically significant (p = 0.01).

Figure 4-9.  Red-Light Violation Frequency as a Function of Back Plate Use.
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V(x) ' E(m) %
E(m)2

k
(29)

Statistical Analysis Method

A preliminary examination of the data indicated that they are neither normally distributed nor
of constant variance, as is assumed when using traditional least-squares regression.  Under these
conditions, the generalized linear modeling technique is appropriate because it accommodates the
explicit specification of an error distribution using maximum-likelihood methods for coefficient
estimation. 

The distribution of violation frequency can be described as negative binomial because there
are two different sources of variability.  One source of variability stems from the differences in the
mean frequency m among the otherwise “similar” intersection approaches.  The other source stems
from the randomness in  frequency at any given site, which follows the Poisson distribution.  The
variance of the negative binomial distribution is:

where,
x = observed violation frequency for an approach having an expected frequency of E(m); and
k = dispersion parameter. 

The Nonlinear Regression procedure (NLIN) in the SAS software was used to estimate the
model coefficients (18).  The benefits of using this procedure are: (1) nonlinear model forms can be
evaluated, and (2) the dispersion parameter k can be held fixed during the model building process
(as described in the next paragraph).  The “loss” function  associated with NLIN was specified to
equal the log likelihood function for the negative binomial distribution.  The procedure was set up
to estimate model coefficients based on maximum-likelihood methods.

The goal of the regression model development was to build a parsimonious model.  This type
of model explains as much of the systematic variability as possible using the fewest number of
variables.  The procedure described by Sawalha and Sayed (19) was used to achieve this goal.  It is
based on a forward building procedure where one variable is added to the model at a time.  The
dispersion parameter k is held fixed at the best-fit value for a model with p variables while evaluating
alternative models with p+1 variables (i.e., models where one candidate variable has been added).
Only those variables that are: (1) associated with a calibration coefficient that is significant at a
95 percent confidence level, and (2) that reduce the scaled deviance by at least 3.84 (= χ2

0.05,1) are
considered as candidates for inclusion. Larger χ2 values are used if the subject factor includes two
or more parameters.  Of all candidate variables, the one that reduces the scaled deviance by the
largest amount is incorporated into an “enhanced” model.  A best-fit k is computed for the enhanced
model and the process repeated until no candidate variables can be identified.

The advantage of the NLIN procedure is that k can be held fixed during the search for
candidate variables.  The disadvantage of this procedure is that it is not able to compute the best-fit
value of k for the enhanced model.  This disadvantage is overcome by using the Generalized
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fx '
X 2

1.1 & X
(33)

Tct '
Lp

1.47 V85
(32)

E[R] '
Q
C

1
b1

ln 1 % e (b0 & b1Ye % b2Tcl % b3HV % b4V85 % b5 fx % b6 Bp )
(30)

X '
Q C
S n g (34)

Ye ' px Y % (1 & px) max: Y, D
1.47 V50

(31)

Modeling (GENMOD) procedure in SAS with the enhanced model.  GENMOD automates the k-
estimation process using maximum-likelihood methods.  Thus, GENMOD is used to regress the
relationship between the observed and predicted violation frequencies (where the natural log of the
predicted values is specified as an offset variable and the “log” link function is used).  This new
estimate of k from GENMOD is then used in a second application of NLIN and the process repeated
until convergence is achieved between the k value used in NLIN and that obtained from GENMOD.
Convergence is typically achieved in two iterations.

Model Calibration

The regression analysis revealed that mathematic relationships existed between red-light
violation frequency and yellow interval duration, use of signal head back plates, speed, clearance
path length, heavy-vehicle percentage, and volume-to-capacity ratio.  The regression coefficient
associated with each of these factors was found to be significant at a level of confidence that
exceeded 95 percent.  As a result of this analysis, the linear regression terms were specified in the
model using the following formulation:

with,

where,
E[R] = expected red-light violation frequency, veh/h;
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Q = approach flow rate, veh/h;
C = cycle length, s;
Ye = effective yellow duration due to advance detector operation, s;
Tct = clearance time, s;

HV = heavy-vehicle percentage, %;
V85 = 85th percentile speed, mph;
V50 = 50th percentile speed (.0.89 V85), mph;

fx = overflow delay factor;
Bp = presence of back plates on the signal heads, (1 if present, 0 if not present);
px = probability of phase termination by max-out (= 1.0 if the movement is pretimed or if

it is actuated but does not have advance detection);
Y = yellow interval duration, s; 

max [a,b] = the larger of variables a and b;
D = distance between stop line and the most distant upstream detector, ft;
Lp = clearance path length, ft;
X = volume-to-capacity ratio;
S = saturation flow rate, veh/h/ln;
n = number of lanes serving the approach flow rate; and
g = effective green interval (assumed to equal the green interval duration), s.

The regression analysis indicated that the calibrated model accounted for most of the
variability in the data without needing to include city-specific indicator variables.  Specifically,
differences among the cities are explained by the model variables.  Thus, the indicator variables used
with Equation 26 are not needed.  It is likely that the differences among cities found in the previous
model are explained by the overflow-delay and heavy-vehicle-percentage factors included in
Equation 30.

The statistics related to the calibrated prediction model are shown in Table 4-6.  The
calibrated coefficient values can be used with Equations 30 through 34 to predict the hourly red-light
violation frequency for a given intersection approach.  A dispersion parameter k of 6.1 was found
to yield a scaled Pearson χ2 of 0.99.  The Pearson χ2 statistic for the model is 265, and the degrees
of freedom are 268 (= n ! p !1 = 275 !6 !1).  As this statistic is less than  χ2 0.05, 268 (= 307), the
hypothesis that the model fits the data cannot be rejected.  The R2 for the model is 0.47.  An
alternative measure of  model fit that is better suited to negative binomial error distributions is RK

2,
as developed by Miaou (20).  RK

2 for the calibrated model is 0.82. 

The regression coefficients for the model are listed in the last rows of Table 4-6.  The t-
statistic shown indicates that all coefficients are significant at a 95 percent level of confidence or
higher.  A positive coefficient indicates that red-light violations increase with an increase in the
associated variable value.  Thus, approaches with higher speeds are likely to have a higher frequency
of violations.  In contrast, violations are less frequent at intersections with wider cross streets or at
those with back plates on the signal heads. 
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Table 4-6.  Calibrated Model Statistical Description–
Intersection Approach Violation Analysis.

Model Statistics Value
R2  (RK

2): 0.47  (0.82)
Scaled Pearson χ2: 0.99

Pearson χ2: 265  (χ2
0.05, 268 = 307)

Dispersion Parameter k: 6.1
Observations no: 275 hours
Standard Error: ±1.8 veh/h

Range of Model Variables
Variable Variable Name Units Minimum Maximum

Q Approach flow rate veh/h 59 1872
C Cycle length s 47 161
Y Yellow interval duration s 3.2 5.3

V85 85th percentile speed mph 32 60
Tct Clearance time s 1.1 2.8
X Volume-to-capacity ratio -- 0.13 0.81

HV Heavy-vehicle percentage % 0 37
Calibrated Coefficient Values
Variable Definition Value Std. Dev. t-statistic

b0 Intercept 2.47 0.80 3.1
b1 Effect of effective yellow duration 1.26 0.18 7.1
b2 Effect of clearance time -0.855 0.287 -3.0
b3 Effect of heavy-vehicle percentage 0.0545 0.0114 4.8
b4 Effect of speed 0.0693 0.0141 4.9
b5 Effect of overflow delay factor 0.451 0.170 2.7
b6 Effect of back plates -0.414 0.163 -2.5

The platoon ratio variable in Equation 26 was not found to be statistically significant during
the calibration of Equation 30.  Further examination of the data indicated a positive correlation
between volume-to-capacity ratio and platoon ratio.  Hence, it is likely that the two variables are
partially explaining the same variability in the data.  However, of the two factors, the overflow delay
factor (i.e., volume-to-capacity ratio) was found to explain more of the variability and offers a more
plausible explanation for the observed trends.

The fit of the model was assessed through the graphical comparison of the observed and
predicted red-light violation frequencies. This comparison is provided in Figure 4-10.  The trend line
in this figure does not represent the line of best fit; rather, it is a “y = x” line.  The data would fall
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on this line if the model predictions exactly equaled the observed data.  The trends shown in this
figure indicate that the model is able to predict the violation frequency without bias. 

Figure 4-10.  Comparison of Observed and Predicted Red-Light Violation Frequency.

The coefficient values were inserted in Equation 30 to yield the following equation:

For actuated approaches with advance detection, the probability of phase termination by max-
out was determined from the field data and used in the model calibration process.  However,
application of the calibrated model to this type of intersection approach will require estimation of
the probability of max-out.  A procedure described by Bonneson and McCoy (33) can be used to
compute the probability of max-out.  It can also be measured in the field as the portion of cycles for
which the subject phase maxes-out.  In some instances, it may be sufficient to estimate the
probability of max-out using engineering judgment based on familiarity with the operation of the
subject intersection approach.

Sensitivity Analysis

This section describes a sensitivity analysis of the calibrated prediction model.  Each model
variable was analyzed separately from the other variables.  Thus, the relative effect of a variable was
evaluated with the values of the other model variables held fixed.  For this analysis, it was assumed
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MF '
E[R]new

E[R]base
(36)

that the conditions in Equation 31 were such that the effective yellow duration Ye was equal to the
actual yellow interval duration Y.

Analysis Methodology

For a given base variable, the relative effect of a small change (or deviation) from the base
value  was computed  using Equation 35 twice, once using the “new” value and once using the base
value.  The ratio of the expected red-light violation frequencies was then computed as:

where, MF represents a “modification factor” indicating the extent of the change in violation
frequency due to a change in one variable value.  For example, if Equation 35 is evaluated once for
a proposed yellow duration of 4.0 s and again for a base yellow duration of 3.0 s, the resulting MF
from Equation 36 is about 0.4.  Thus, the 1.0-s increase in yellow translates into a 60 percent
(= 100 !0.4 × 100) reduction in violations. 

Two trends emerged during the development of the modification factors.  First, the value of
the modification factor is not strongly dependent on the “base” value.  Rather, it is only dependent
on the magnitude of the change in values.  Thus, a 1.0-s increase in yellow duration yields an MF
of about 0.4 regardless of whether the change is from 3.0 to 4.0 s, 4.0 to 5.0 s, or any two other
values that reflect an increase of 1.0 s.

The second trend that emerged is that the MF is somewhat insensitive to changes in the other
variable values.  In general, MF values vary less than ±10 percent for the range of typical values for
the other variables.  For example, a 1.0-s increase in yellow on a 35-mph approach yields an MF of
0.35.  If the speed on the approach is 45 mph, then the MF is 0.42 (a 0.07 increase relative to the MF
for 35 mph).

Cycle Length

Equation 35 indicates an inverse relationship between a change in cycle length and the
frequency of red-light violations.  That is, an increase in cycle length corresponds to a decrease in
violations.  The effect of a change in cycle length is illustrated in Figure 4-11.  Trend lines for three
“base” cycle lengths are illustrated.  A 20-s increase in cycle length from 90 to 110 s is associated
with an MF of 0.82, which corresponds to a reduction of 18 percent (= 100 !0.82 × 100).  It should
be noted that this change in cycle length assumes no change in any other variable (including the
volume-to-capacity ratio).
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Figure 4-11.  Effect of a Change in Cycle Length on Red-Light Violations.

Yellow Interval Duration

The effect of a change in yellow interval duration on the frequency of red-light violations is
shown in Figure 4-12.  The trend in this figure indicates that an increase in yellow interval duration
decreases red-light violations.  For example, an increase in yellow duration of 1.0 s is associated with
an MF of 0.4, which corresponds to a 60 percent reduction.

Figure 4-12.  Effect of a Change in Yellow Interval Duration on Red-Light Violations.



4-22

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

-10 -5 0 5 10

Change in 85th Percentile Speed, mph

C
ha

ng
e 

in
 R

ed
-L

ig
ht

 V
io

la
tio

n 
Fr

eq
ue

nc
y 

(M
F

)

Applicable to 85th percentile speeds 
between 30 and 60 mph.

85th Percentile Speed

The effect of a change in 85th percentile speed on the frequency of red-light violations is
shown in Figure 4-13.  The trend in this figure indicates that an increase in speed is associated with
an increase in red-light violations.  For example, an increase in speed of 10 mph is associated with
an MF of 1.7, which corresponds to a 70 percent increase in red-light violations. 

Figure 4-13.  Effect of a Change in 85th Percentile Speed on Red-Light Violations.

Length of Clearance Path

The effect of a change in clearance path length on red-light violations is shown in
Figure 4-14.  The trend in this figure indicates that an increase in path length is associated with a
decrease in red-light violations.  For example, if approach “A” has a clearance path that is 40 ft
longer than approach “B,” then its MF is 0.7.  This value indicates that approach “A” has 30 percent
fewer violations than approach “B” (all other factors being the same). 

Heavy-Vehicle Percentage

The effect of a change in heavy-vehicle percentage on red-light violations is shown in
Figure 4-15.  The trend in this figure indicates that an increase in the percentage of heavy vehicles
increases the number of violations.  As discussed previously, this increase is likely a result of the
greater propensity of heavy-vehicle operators to run the red light.
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Figure 4-14.  Effect of a Change in Clearance Path Length on Red-Light Violations.

Figure 4-15.  Effect of a Change in Heavy-Vehicle Percentage on Red-Light Violations.

Volume-to-Capacity Ratio

The effect of a change in volume-to-capacity ratio on the frequency of red-light violations
is shown in Figure 4-16.  The trend in this figure indicates that a decrease in volume-to-capacity ratio
is associated with a decrease in violations.  For example, if the phase duration is increased such that
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the existing volume-to-capacity ratio of 0.8 decreased by 0.1, then the MF is 0.77, which corresponds
to a 23 percent reduction in violations. 

Figure 4-16.  Effect of a Change in Volume-to-Capacity Ratio on Red-Light Violations.

In some situations, the change in volume-to-capacity ratio may be due to a change in cycle
length.  Further examination of the combined effect of a change in cycle length and volume-to-
capacity ratio revealed the existence of a range of volume-to-capacity ratios for which red-light
violations were minimal.  This effect is shown in Figure 4-17.  

As shown in Figure 4-17, red-light violations were found to be at their lowest level when the
volume-to-capacity ratio was in the range of 0.6 to 0.7.  This range was found to yield minimal
violations, regardless of speed, path length, yellow duration, heavy-vehicle percentage, cycle length,
phase duration, or traffic volume.  Volume-to-capacity ratios below this range resulted in an increase
in violations due primarily to shorter cycle lengths.  Volume-to-capacity ratios above this value
resulted in an increase in violations due primarily to an increase in overflow delay.

Use of Back Plates

An analysis of Equation 35, relative to the use of back plates, suggests that back plates are
associated with a lower frequency of red-light violation.  The modification factor for adding back
plates is 0.75, which corresponds to a reduction of 25 percent.  This reduction is lower than the
47 percent value found in the examination of the red-light-violation database (as noted in the
discussion of Figure 4-9); however, it is a more reliable estimate because the effects of other factors
are removed through the use of Equation 35.  The modification factor for removing back plates is
1.33, which corresponds to an increase of 33 percent.
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Figure 4-17.  Volume-to-Capacity Ratios Associated with Minimal Red-Light Violations.

MODEL EXTENSIONS

This section describes the findings from an application of the calibrated model to a range of
input values.  Initially, the application is in the context of a sensitivity analysis, where the relative
effect of each variable is evaluated in terms of the increase or decrease in red-light violations caused
by a change in the variable’s value.  Then, a commonly used equation for computing the yellow
interval duration is examined in terms of the expected red-light violation frequency associated with
the durations obtained from the equation.  The implications of these findings are discussed.

Examination of a Common Yellow Interval Equation

This section examines the relationship between red-light violation frequency and the yellow
interval duration computed using Equation 1.  The approach taken in this examination was to
compare the observed violation frequency on an approach with the difference between the yellow
duration observed at the approach and that computed for it using Equation 1.  The results are shown
in Figure 4-18. 

The data in Figure 4-18 indicate that there is a trend toward more red-light violations when
the observed yellow duration is shorter than the computed duration.  A regression analysis of the
relationship between yellow interval difference and red-light violation frequency indicated that the
relationship is statistically significant (i.e., p = 0.001).  A similar finding was previously reported
by Retting and Greene (15) in an examination of red-light violations at several intersections.  A
similar trend with respect to red-light-related crashes was shown in Figure 2-11.



4-26

R2 = 0.34

0

2

4

6

8

10

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Yellow Interval Difference (Y observed  - Y computed  ), s

O
bs

er
ve

d 
R

ed
-L

ig
ht

 V
io

la
tio

n 
Fr

eq
ue

nc
y,

 v
eh

/h

0

2

4

6

8

3.0 3.5 4.0 4.5 5.0 5.5

Yellow Interval Duration, s

Ex
pe

ct
ed

 R
ed

-L
ig

ht
 V

io
la

tio
n 

Fr
eq

ue
nc

y,
 v

eh
/h

600 veh/h, 8% heavy veh.
90-s cycle length
With back plate
90-ft clearance length
0.60 vol.-to-cap. ratio
:Computed yellow duration

35 mph

55 mph (85th %)

45 mph

Figure 4-18.  Red-Light Violation Frequency as a Function of Yellow Interval Difference.

Figure 4-19 illustrates the effect of yellow interval duration and 85th percentile speed on the
frequency of red-light violations.  The trend lines are based on the prediction model described
previously (i.e., Equation 35).  They indicate that the frequency of red-light violations decreases with
an increase in yellow interval duration.  They also indicate that, for the same yellow duration, the
number of violations is higher on higher-speed approaches.  

Figure 4-19.  Predicted Effect of Yellow Duration and Speed
on Red-Light Violation Frequency.
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E[R|x] ' E[R] × weight %
x
H

× (1 & weight) (37)

weight ' 1 %
E[R] H

k

&1
(38)

The black dots in Figure 4-19 indicate the value of the yellow interval duration computed
using Equation 1 for the corresponding speed.  The location of the dots suggests that use of this
equation yields about 2.0 red-light violations per hour (or 0.8 red-light violations per 10,000 vehicle-
cycles) for the “typical” conditions represented in the figure.

Identify Sites with Potential for Red-Light-Related Safety Improvement

As discussed in Chapter 2, Hauer (9) and others have observed that intersections selected for
safety improvement are often in a class of “high-crash” locations.  As a consequence of this selection
process, these intersections tend to exhibit significant crash reductions after specific improvements
are implemented.  While the observed reduction is factual, it is not typical of the benefit that could
be derived from the improvement if it were applied to other locations.  Hauer (9) advocates the use
of the empirical Bayes method to more accurately quantify the true crash reduction potential of a
specific improvement or countermeasure.  This source of bias is also present when using red-light
violation frequency to identify problem intersections.  Hence, the methods developed in Chapter 2
are extended in this section to the identification of truly problem intersections based on the
observation of violation frequency.

The empirical Bayes method can be used to obtain an unbiased estimate of the red-light
violation frequency for a specific intersection approach.  This estimate is based on a weighted
combination of the observed frequency of red-light violations x on the subject approach and the
predicted red-light violation frequency E[R] for similar approaches.  The unbiased estimate (i.e.,
E[R|x]) is a more accurate estimate of the expected red-light violation frequency on the subject
approach than either of the individual values (i.e., E[R] or x).  The following equations can be used
to compute E[R|x]:

with,

where,
E[R|x] = expected red-light violation frequency given that x violations were observed in H hours,

veh/h;
x = observed red-light violation frequency, veh;

H = time interval during which x violations were observed, h; and
weight = relative weight given to the prediction of expected red-light violation frequency.
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σ2
R|x ' (1 & weight) E[R|x]

H (40)

Index '
E[R|x] & E[R]

σ2
R|x % σ2

R
(39)

σ2
r '

E[R]2

k no
(41)

The estimate obtained from Equation 37 can also be used (with Equation 35) to identify
problem intersection approaches.  Initially, Equation 35 is used to compute the expected red-light
violation frequency for a “typical” approach.  Then, Equation 37 is used to compute the expected
red-light violation frequency given that x violations were observed on the subject approach.  These
two estimates are then used to compute the following index:

with,

where,
 = variance of E[R|x];σ2

R|x

 = variance of E[R] for the typical intersection approach; andσ2
R

no = number of observations used in the development of the model used to predict E[R].

The values of k and no are provided in Table 4-6.

If the observed red-light violation frequency x, when expressed on an hourly basis (i.e., as
the quotient of x/H), is less than the expected crash frequency E[R], then the index will be negative.
If this situation occurs, the subject approach is not likely to have a red-light violation problem.
However, the red-light-related crash frequency should also be evaluated to confirm this finding.

The index value is an indicator of the extent of the red-light violation problem for a given
intersection approach.  It is consistent with the “scaled difference in frequency” statistic identified
in Table 2-1.  In general, intersection approaches associated with a positive index value have more
red-light violations than the “typical” approach.  An approach with an index of 2.0 is likely to have
a greater problem than an approach with an index of 1.0.  Greater certainty in the need for treatment
can be associated with higher index values. 

Occasionally, an intersection approach may not have its yellow interval or approach speed
limit in conformance with agency policy.  When this occurs, the computed index value should reflect
the deviation from agency policy.  In this situation, two values of E[R] should be computed (i.e.,
E[R, existing] and E[R, policy].  The first value (i.e., E[R, existing]) is obtained using Equation 35
with variable values that reflect conditions on the subject intersection approach.  This value is also
used in Equations 37 and 38 to estimate E[R|x] and weight, respectively.  
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The second value (i.e., E[R, policy]) represents the expected red-light violation frequency
of the typical intersection approach having yellow intervals, back plates, and (if applicable) an
advance detection design established in accordance with agency policy.  If  agency policy does not
address yellow interval timing, then Equation 1 should be used to compute the value of Y used in
Equation 31.  The value of  E[R, policy]  is then used in Equations 39 and 41 to estimate the index
and , respectively.σ2

R
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CHAPTER 5.  RED-LIGHT VIOLATION CAUSES
 AND COUNTERMEASURES

OVERVIEW

This chapter examines the characteristics of red-light violations and related crashes for the
purpose of identifying the most appropriate set of countermeasures to use in treating problem
locations.  The characteristics considered include crash type and the duration of time the signal
indication was red prior to the crash or violation.  This latter characteristic is defined herein as “time-
into-red.”  As described in the next section, there is evidence that both the time-into-red of the
typical violation and the manner of collision of the typical red-light-related crash provide important
clues to the selection of countermeasures.

The remainder of this chapter is divided into four sections.  Initially, the literature is reviewed
as it relates to the characteristics of red-light violations and related crashes.  Then, a data collection
plan is developed for the purpose of analyzing the relationship between these characteristics and
various causal factors.  Next, the data are analyzed and the underlying trends quantified.  Finally, the
findings are used to develop guidelines for countermeasure selection.

LITERATURE REVIEW

This section reviews the literature related to red-light violation causes and their
characteristics. It also examines the reported relationships between time-into-red and both red-light
violations and red-light-related crashes.  With regard to crashes, it is likely that crash type is related
to the time-into-red that the crash occurs.  The literature on various engineering countermeasures that
have been used to reduce red-light violations are also examined.  The findings from this review
provide the foundation for a data collection plan that will lead to the development of
countermeasure selection guidelines.

Causes of Red-Light Violations

Several thousand crash reports were collected and reviewed by Bonneson et al. (11) for the
purpose of identifying red-light-related crash trends and costs.  A review of these reports revealed
that several reasons were frequently cited by drivers involved in red-light-related crashes.  The more
frequently cited reasons are summarized in Table 5-1.  They reflect some generalization by the
authors and are intended to illustrate the range of causes typically cited.

Many of the “causes” listed in Table 5-1 are self-explanatory; however, a couple are worthy
of added clarification.  “Judged safe as driver < 2 s ahead violated the red” means that the driver has
judged it safe to run the red indication because he or she is closely following (i.e., has a headway less
than 2.0 s with) another red-light runner.  This situation occurs most frequently when a succession
of vehicles pass through the intersection after the onset of red.  This sequence of red-running
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vehicles is quite visible to drivers in conflicting movements and rarely leads to a crash.  “Expectation
of green when in platoon” means that the driver was traveling along a street with a coordinated signal
system.  Drivers in a through movement platoon tend to develop an expectation of continued receipt
of the green indication as long as they stay in the platoon.  Such drivers are prone to run the red
indication in order to stay within the platoon.

Table 5-1.  Red-Light Violation Characterizations and Possible Causes.  
Cause

Category
Cause of Red-Light Violation 1 Violation

Type
Driver
Intent

Time of
Violation

Unnecessary
delay

Disregard for red (unnecessary delay) Avoidable Intentional Any time
during redJudged safe due to low conflicting volume

Congestion,
dense traffic

Congestion or excessive delay First few
seconds of

red
Judged safe as driver < 2 s ahead violated the red
Expectation of green when in platoon

Incapable of
stop

Downgrade steeper than expected Unavoidable
Speed higher than posted limit
Unable to stop (yellow seemed too short)

Inattentive Unexpected, first signal encountered Unintentional Any time
during redDistracted and did not see traffic signal

Not distracted, just did not see signal (e.g., drowsy)
Restricted view of signal due to sight obstruction
Confusing signal display (looked at wrong signal)

Note:
1 - Causes listed reflect the driver’s point of view.

Characterizations of a Red-Light Violation

Shown in Table 5-1 are several characterizations of the red-light violation. These
characterizations include “violation type,” “driver intent,” and “time of violation.”  Violation type
describes whether the violation was perceived as “avoidable” or “unavoidable.”  Driver intent
describes whether the violation was “intentional” or “unintentional.”  Time of violation describes
when the violation occurs relative to the onset of the red indication.

Avoidable Violations

An “avoidable” violation is committed by a driver who believes that it is possible to safely
stop but decides it is in his or her best interest to run the red indication.  Frequent avoidable red-light
violations may be an indication of congestion, dense traffic, or unnecessary delay.  Avoidable
violations are also characterized as “intentional.”
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Congestion.  Violations due to congestion reflect driver frustration after experiencing lengthy
delay.  The violation is likely to occur in the first few seconds of red.  Short of significant capacity
improvements, this violation may be most effectively treated by enforcement.  

Dense Traffic.  Violations attributed to “dense traffic” are likely found in coordinated signal
systems where the progression band is constrained at its trailing edge by the signal timing of the
subject approach.  In this situation, drivers in platoons have an expectation of continued receipt of
green because they are in the progression band and are “surprised” at the onset of yellow.  This
violation is likely to occur in the first few seconds of red.  Signal timing modifications may mitigate
this problem.  Enforcement may also be appropriate if engineering countermeasures are ineffective.

Unnecessary Delay.  Violations due to “unnecessary delay” reflect a perception that there
is: (1) no need to stop because the conflicting movements are vacant, or (2) previous stops led to
lengthy waits at the intersection that seem unnecessary because there were numerous breaks in the
crossing traffic during which the green could have been returned to the waiting driver.  This
perception often leads to a degradation in driver respect for traffic signals.  The violation can occur
any time during the red.  Signal removal or timing modifications may mitigate this problem.
Enforcement may also be appropriate if engineering countermeasures are ineffective.

Unavoidable Violations

An “unavoidable” violation is committed by a driver who either: (1) believes that he or she
is unable to safely stop and consciously decides to run the red, or (2) is unaware of the need to stop.
Frequent unavoidable violations may be caused by driver inability to stop or inattention.  The former
“cause” represents an intentional violation; the latter represents an unintentional violation.

Incapable of Stop.  This violation occurs when a driver sees the yellow signal indication but
determines that it is impossible to stop safely before reaching the intersection.  This determination
could be the result of a lengthy reaction time to the yellow onset, steep downgrade, high speed, or
a low tolerance for high deceleration.  Frequent violations may be an indication of an inconspicuous
yellow indication, inadequate yellow interval duration, or excessive speed.  This violation is likely
to occur in the first few seconds of red.  Signal timing modifications or improvements to enhance
the conspicuity of the yellow indication should mitigate this problem.

Inattentive.  This violation occurs when the driver is inattentive and does not see the signal
(or sees it too late to respond appropriately).  Frequent violations may be an indication of poor signal
visibility or conspicuity.  This violation can occur at any time during the red.  Improvements to
signal visibility or conspicuity should mitigate this problem to some degree.

Time of Violation

The time of violation (or time-into-red) relates to the time that the driver enters the
intersection after the onset of the red indication.  When a driver enters late into the red, it may be an
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indication of deficiencies in signal visibility or sight distance along the intersection approach.  When
drivers enter during the first few seconds of red, it may be an indication of frustration due to
excessive delay, an inadequate yellow interval duration, or excessive speed.

Analysis of Time-Into-Red

This section examines the reported relationships between time-into-red and both red-light
violations and red-light-related crashes.  The time of the crash would depend on the time of the red-
light violation and on the time of entry of the second vehicle involved in the crash.  Some recent
research on these topics is briefly discussed in the remainder of this section.

Time of Red-Light Violations

Researchers have investigated the time after the start of red when a red-light violator enters
an intersection.  In one of the more recent studies, Bonneson et al. (13) examined 541 signal phases
in which at least one through vehicle entered the intersection after the start of red.  The results of this
examination are shown in Figure 5-1.  The median entry time was less than 0.5 s.  About 98 percent
of drivers entered the intersection within 4 s after the start of red (i.e., end of yellow).

Figure 5-1.  Frequency of Red-Light Violations as a Function of Time-Into-Red.

Milazzo et al. (7) noted that there are two common types of red-light-related crashes:  right-
angle and left-turn-opposed.  Unlike right-angle crashes, left-turn-opposed crashes are likely to occur
soon after the start of red (possibly prior to the end of the all-red interval).  This statement is
especially true when the left-turn movement is permitted to turn through gaps in the opposing
through traffic stream.  Drivers of left-turning vehicles waiting in the intersection at the end of the
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phase may unintentionally turn in front of an opposing through vehicle, believing that its driver will
stop for the red indication.  If this through driver violates the red indication, he or she may collide
with the left-turning driver.  This situation is not likely to occur when protected-only left-turn
phasing is provided.

Figure 5-2 illustrates the time of entry of the opposing left-turn and crossing through
movements that conflict with the subject through movement.  These times are illustrated in terms
of the probability of a headway less than 2.5 s in the respective traffic streams.  The threshold value
of 2.5 s was selected for this illustration based on the assumption that a red-light violator is not able
to avoid conflict with a stream of vehicles when their headway is less than 2.5 s.

Figure 5-2.  Probability of Entering Intersection as a Function of Time-Into-Red.

Both conflicting traffic movements identified in Figure 5-2 are in queue as the subject phase
ends.  The probability associated with the crossing through movement increases more gradually than
the left-turn movement and reflects the slightly longer start-up reaction time of the crossing through
driver to the change in signal indication.  The probability for the through movement decreases after
about 20 s of red reflecting the transition from queue service to random arrivals during green.  The
probabilities shown in Figure 5-2 suggest that permitted left-turn vehicles clear the intersection
within the first 3 s of red.  Given a 1.0-s all-red interval, the probabilities also suggest that crossing
through vehicles will not start to enter until after about 4 s have lapsed.

Figure 5-3 illustrates how the time of violation and the time of entry combine to create the
potential for a red-light-related conflict.  It represents the combination of Figures 5-1 and 5-2 in
terms of the joint probability of a red-light violation during a specific time interval and the
probability of a conflicting vehicle entering the intersection during the same time interval.
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Figure 5-3.  Probability of a Red-Light-Related Conflict as a Function of Time-Into-Red.

The trends in Figure 5-3 indicate that the potential for conflict is very high in the first second
of red.  This conflict would be between a through vehicle violating the red and an opposing left-turn
vehicle attempting to clear the intersection.  The trend drops rapidly for the second and third seconds
of red reflecting the decreasing probability of  violation and of left-turn presence.  After the fourth
second, the probability of conflict increases in a manner consistent with the probability of a through
vehicle having a headway less than 2.5 s (shown in Figure 5-2).  These trends suggest that the red-
light-related crash type is likely to be highly correlated with the time of the crash.

The likelihood of a left-turn-opposed crash is represented as the area under the associated
“curve” (i.e., the sum of the first three probabilities).  Similarly, the likelihood of a right-angle
conflict is obtained by summing the area under its curve.  These two sums for the curves shown in
Figure 5-3 suggest that there are five to six times as many right-angle conflicts as there are left-turn-
opposed conflicts.  This ratio is consistent with the findings reported by Bonneson et al. (11) in their
analysis of 502 red-light-related crashes in three Texas cities. 

The points made in this, and previous, sections are summarized in Table 5-2 as they relate
to red-light violations.  The information in this table indicates that most of the violations occur in
the first 4 s of red.  If the frequency of violations is excessive, the violations are most likely caused
by congestion, dense traffic streams, or conditions that make it difficult for drivers to stop.  Also, it
is likely that permitted left-turn movements will be most at risk to experience conflict.  These
findings suggest that countermeasures that address violations in the first few seconds of red are
likely to significantly reduce left-turn-opposed crashes, should such crashes be over-represented at
the treated intersection.
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Table 5-2.  Relationship between Time of Violation and Violation Characteristics.
Time of 

Violation, s
Percent of 

Violations, %
Left-Turn Phasing Most Likely

Conflict
Cause of
Violation

0.0 to 4.0 98
Protected-only None --

Permitted or Prot./Perm. Left-turn-opposed Congestion, dense traffic,
incapable of stop

4.0 to end of
green

2 Any Right-angle Unnecessary delay,
inattentive

Time of Red-Light-Related Crashes

Milazzo et al. (7) investigated the relationship between time-into-red and crash type.  To
perform their study, they obtained 34 photographs of red-light-related crashes taken by enforcement
cameras.  All photos were obtained from Internet websites hosted by enforcement agencies.  The
crashes in the photos were then classified by crash type.  The right-angle crashes were further
classified by their time-into-red.  Milazzo et al.’s findings are shown in Table 5-3. 

Table 5-3.  Red-Light-Related Crash Summary Statistics.
Crash Type Range of Time- 

Into-Red, s
Number of 

Crashes
Average Time- 

Into-Red, s
Median Time-

Into-Red, s
Right-angle 0.0 to 2.9 0 No crashes No crashes

3.0 to 21.8 27 8.7 6.7
Left-turn-opposed 1.0 to 26.9 7 6.0 1.9

Overall: 34 8.1 6.4

The trends in the data in Table 5-3 are consistent with those noted for Figure 5-3.  First, right-
angle crashes do not appear likely to occur in the first 3 or 4 s of red.  Second, the median time-into-
red for the left-turn-opposed crashes of 1.9 s suggests that most of these crashes occur as a result of
permitted left-turning activity at the end of the phase.  Finally, it is likely that the  majority of red-
light-related crashes are of the right-angle type.

The reported average time-into-red for the left-turn movement of 6.0 s, when compared with
the median time of 1.9 s, suggests that there is one left-turn crash that occurred well into the red.  It
is likely that this crash was due to driver inattention rather than a misjudged gap at the end of a
permitted left-turn movement.

The points made in this, and previous, sections are summarized in Table 5-4 as they relate
to red-light-related crashes.  The information in this table is consistent with that previously offered
in Table 5-2.  Specifically, over-represented left-turn-opposed crashes are a likely indication that the
violations that occur in the first few seconds of red should be the focus of countermeasure selection.
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These violations are most likely related to congestion, dense traffic streams, or conditions that make
it difficult for drivers to stop.  On the other hand, if right-angle crashes are over-represented at the
intersection but left-turn-opposed crashes are not over-represented, then the violations occurring later
into the red should be the focus of countermeasure selection.  These violations are most likely related
to driver desire to avoid unnecessary delay or the inability of drivers to detect the controlling signal
indications in a timely manner.

Table 5-4.  Relationship between Time of Crash and Crash Characteristics.
Time of
Crash

Left-Turn Phasing Most Likely
Crash

Cause of Violation 
Leading to Crash

Early in red Protected-only None --
Permitted or Prot./Perm. Left-turn-opposed Congestion, dense traffic, incapable of stop

Any time in red Any Right-angle Unnecessary delay, inattentive

Countermeasures 

This section describes countermeasures that are likely to reduce red-light-related crashes.
Initially, engineering countermeasures are described.  Then, the public awareness campaign as a
countermeasure is described.  Enforcement countermeasures were previously discussed in Chapter 3.

Engineering Countermeasures

Table 5-5 lists most of the engineering countermeasures cited in the literature as having some
ability to reduce red-light violations, related crashes, or both.  The reported effectiveness of many
of these factors is also presented in the table.  These reduction factors reflect the findings from
several research projects, as identified in the last column of the table.  The effectiveness of education
and enforcement are also shown and will be discussed in subsequent sections.

A reduction factor is not provided for some countermeasures listed in Table 5-5.  Any such
omission reflects the fact that some countermeasures have not been formally studied.  Nevertheless,
their ability to reduce red-light violations and related crashes is intuitive and widely recognized,
especially when operations or visibility are improved by their implementation.  A fairly detailed
discussion of many of these countermeasures is provided in the ITE report, Making Intersections
Safer:  A Toolbox of Engineering Countermeasures to Reduce Red-Light Running (38).

Public Awareness Campaign

There are generally three main themes of an effective public awareness campaign.  These
themes and their associated objectives are:
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Table 5-5.  Red-Light Violation Countermeasure Effectiveness.
Category Countermeasure Reported Reductions, % 1, 2, 3

Violations Crashes Reference 4

Traffic char. Reduce approach speed by 5 mph 30 25 to 30 Chap. 4, 2
Signal
operation

Increase signal cycle length by 10 s, if v/c ratio < 0.60 15 -- Chap. 4
Increase yellow interval duration by 0.5 s 40 20 to 25 Chap. 4, 2
Provide green extension (advance detection) 5 65 -- 29
Add protected-only left-turn phasing 6 -- 70 34

Motorist
information

Improve signal visibility via better signal head location -- -- --
Improve signal visibility via additional signal head -- 47 35
Improve signal visibility by clearing sight lines to signal -- -- --
Improve signal conspicuity by upgrading to 12" lenses -- 47 35
Improve signal conspicuity by using yellow LEDs 13 -- 13
Improve signal conspicuity by using red LEDs -- -- --
Improve signal conspicuity by using back plates 25 32 Chap. 4, 35
Improve signal conspicuity by using dual red indications -- 33 35
Add advance warning signs (no active flashers) 7 -- 44 35
Add advance warning signs with active flashers 7 29 -- 36

Traffic
operation

Reduce delay through re-timing if v/c ratio > 0.70 10 to 50 -- Chap. 4
Reduce unnecessary delay through signal re-timing -- -- --
Improve signal coordination 8 -- -- --

Geometry Remove unneeded signals 100 100 --
Add capacity with additional lanes or turn bays -- -- --

Education Implement public awareness campaign -- -- --
Enforcement Implement officer enforcement program 9 16 (--) -- (6.4) 23, Chap. 3

Implement camera enforcement 10 40 (--) 36 (10) 37, 6
Notes:
1 - Values listed are for the specific intersection approach to which the countermeasure is applied.  
2 - Values in parentheses apply to the entire city or area influenced by the enforcement program.  
3 - Underlined factors are based on a simple before-after study without comparison.  Hence, values listed may overstate

the true effect of the countermeasure.  They are shown only to illustrate the potential benefit of the countermeasure.
4 - When two references are listed, they are listed in the order of “violation reference,” “crash reference.” Chapter

references refer to chapters in this report.  Numbers in italics identify published reports listed in Chapter 7.
5 - Green extension using advance detection should reduce red-light violations provided it does not max-out frequently.
6 - Crash reduction factor applies only to left-turn-opposed crashes.
7 - Active flashers accompany the advance warning sign and are activated during the last few seconds of green.
8 - Improvements to signal coordination will be most effective in reducing red-light violations if they result in: (1)

lower delay, (2) longer cycle lengths, and (3) progression bands that are not constrained by the end of the phase
such that platoons traveling through the intersection are repeatedly caught by the change to red.

9 - A citywide officer enforcement program should emphasize the enforcement of intersection traffic control violations.
Enforcement should be repeated for 1 or 2 hours each day to retain its effectiveness.  The 16 percent reduction
listed is based on 28 percent reduction for continuous officer presence but adjusted to represent a daily average for
the situation where enforcement is applied only 1 hour each day.  Adjustment is based on reported data (23).

10- Camera enforcement is generally recognized to result in an increase in rear-end crashes; however, most studies
indicate that this increase does not negate the greater reduction in red-light-related crashes (26).

“--” - data not available.
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! Educate drivers on red-light-running hazards (objective: stimulate a voluntarily change in the
driver’s behavior).

! Use the media to open communications between elected officials and the public about the
extent of the problem and the need for treatment (objective: gain public support for treatment).

! Provide advance warning that additional enforcement is being implemented to improve traffic
safety (objective:  minimize negative public reaction and avoid accusations of deception).

A wide range of methods are often used to convey the campaign message and heighten
motorist awareness.  Some of the more commonly used methods include:  posters, mass mailings,
hand outs, electronic media commercials, billboards, warning signs, and bumper stickers (39).
Methods less commonly used, but recommended, include:  (1) outreach efforts to schools, driver
education, and community groups; (2) maintenance of a website with program information and
answers to frequently-asked questions; and (3) regular surveys of public opinion, support, and
awareness of the program.

A review of the literature indicates that the effectiveness of public awareness campaigns is
rarely quantified and reported.  This limitation is likely due to the fact that campaigns are almost
always conducted in parallel with heightened enforcement.  In this situation, it is difficult to separate
the effect of the public awareness campaign from that of the enforcement program.

DATA COLLECTION PLAN

Based on the review of red-light-related crash trends, it was determined that data were needed
to further investigate the relationship between time-into-red and crash type.  The specific objectives
of this investigation were:

! to show when crashes occur after the start of red,
! to determine the effect of time-into-red on crash type and severity,
! to determine if other factors are correlated with time-into-red, and
! to show how this information can be used to select countermeasures to reduce red-light-

related crashes.

Site Selection Process

A database containing a minimum of 100 crashes was established as needed to achieve the
objectives of this investigation.  The establishment of this minimum was intended to ensure
statistical stability in any trends found in the data.  To achieve this minimum, it was rationalized that
2 to 3 years of crash data for 3 to 5 intersections (each with camera enforcement) in each of 2 cities
would be needed.

Several agencies known to have camera enforcement were contacted to solicit their
participation in this investigation.  Those agencies having the most cameras in operation for the
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greatest length of time were contacted first.  A key criterion used in selecting these agencies was the
availability of archived photos of red-light violations that resulted in a crash. 

Fifteen individuals representing nine city (or county) transportation departments in four states
were contacted for the purpose of obtaining their assistance with this investigation.  Of these
agencies, only four indicated a willingness to assist with the data collection process.  From these four
agencies, two city agencies were ultimately selected based primarily on their level of interest in this
research project.  These two agencies are located in Arizona.

Database Attributes

The database assembled for this investigation includes crash-related data, traffic control
settings, traffic volume, and geometric conditions for several camera-enforced intersections.  The
crash-related data consisted of the information that was recorded on the crash report or in the
photographed image of a red-light violation.  The attributes in the database for the Arizona cities are
listed in column 3 of Table 5-6.

The crash-related data included in the database for the Arizona sites were acquired from a
combination of the enforcement photolog and the crash report archives maintained by the respective
cities.  Practical limitations on data archiving and storage capacity limited the number of years for
which crash data were available.  Volume data were obtained from each city’s transportation
department.  Traffic control and geometry data were gathered by means of a field survey conducted
during the visit to each city.

Adjustments to Accommodate Sample Size

An initial review of the crash records at the two Arizona cities indicated that the minimum
desired sample size would not be achieved by considering only three to five intersections in each
city.  This realization was a result of three factors.  First, the presence of enforcement cameras had
a significant effect on reducing the frequency of red-light-related crashes in the selected cities.
Second, it was revealed that the cameras oftentimes did not photograph the actual crash.  This
finding was due to several causes (e.g., the red-light violator did not travel in a lane monitored by
the camera, the camera was located at a different intersection on the day of the crash, etc.).  Third,
many of the enforcement cameras in the two cities studied had been in service for 18 months or less.

Based on the aforementioned challenges to achieving the desired sample size, two approaches
were undertaken to maximize the amount of data collected for this investigation.  First, the number
of intersections included in the database was expanded to include all of the intersections for which
the city had enforcement camera equipment in operation during the previous 3 years.  This approach
expanded the database to include 12 intersections in Arizona.  Data for a total of 27 crashes were
obtained from these intersections.
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Table 5-6.  Database Attributes–Time-Into-Red Analysis.
Data
Type Attribute

Data Availability by Resource
Arizona Maryland Milazzo (7) Internet

Crash Time-into-red of crash UUUU UUUU UUUU UUUU

Speed of red-light-running vehicle UUUU UUUU UUUU UUUU

Travel direction at intersection (e.g., left-turn) UUUU -- -- --
Date & time of crash UUUU UUUU UUUU UUUU

Crash type (right-angle or left-turn-opposed) UUUU UUUU UUUU UUUU

Severity UUUU -- -- --
Number of injuries °°°° 1 -- -- --
Contributing factor(s) UUUU -- -- --

Traffic
control

Left-turn phasing UUUU °°°° 2 °°°° 2 °°°° 2

Yellow interval duration UUUU UUUU -- --
All-red interval duration UUUU -- -- --
Approach speed limit UUUU UUUU -- --

Volume Annual average daily traffic (AADT) UUUU -- -- --
Number
of lanes

Left, through, & right-turn lanes on subject street UUUU °°°° 3 °°°° 3 °°°° 3

Left, through, & right-turn lanes on cross street UUUU °°°° 3 °°°° 3 °°°° 3

Total Crashes:  63 27 18 7 11
Data Sources: Crash reports,

agency files,
field survey

Photo Photo Photo

Notes:
1- Number of injuries known only for a portion of the crashes.
2- Left-turn signal heads not always visible in camera field of view.
3- All lanes not always visible in camera field of view.

A second approach used to maximize the amount of crash data gathered involved the
acquisition of crash photos from other agencies and individuals.  These additional data resources are
identified in columns 4 through 6 of Table 5-6 (a description of these resources is provided in the
next section).  As indicated by the dashes in this table, the sole use of crash photos as the only data
source precluded the collection of some attributes.  This fact limited the examination of crash
severity, contributing factors, all-red interval duration, and traffic volume to only the “Arizona” data.
A total of 36 crash photos were obtained from resources other than Arizona.  The combined database
represents information on 63 red-light-related crashes.

Data Sources

Arizona

Data describing 27 crashes at 12 intersections were obtained from two cities in Arizona.  The
distribution of these crashes among the two cities is listed in Table 5-7. For legal reasons, photos of
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the crashes could not be obtained from either city.  Instead, city personnel reviewed the photos and
associated crash reports and documented their findings.  These findings were made available to the
research team.

Table 5-7.  Distribution of Crashes by Source and Crash Type.

Source
Number of
Intersection
Approaches

Number of Crashes by Crash Type

Left-Turn-Opposed Right-Angle Total

Arizona, City 1 3 4 2 6
Arizona, City 2 9 12 9 21
Maryland 11 3 15 18
Milazzo et al. (7) 3 1 4 5
Various Other 9 2 11 13

Total: 35 22 41 63

With a couple of exceptions, all of the crash data identified in column 3 of Table 5-6 were
obtained from city personnel.  Information about the severity of each crash was limited to simply an
indication of whether one or more persons involved were injured or killed.  Levels of injury extent
were not provided.  Also, the number of injured persons was often not reported.  As a result, an
investigation of the number of injuries by time-into-red was not possible.

Maryland

An agency in Maryland provided 18 photos of red-light-related crashes.  These crashes
occurred at 11 intersections collectively located in four counties in central Maryland.  The
distribution of these crashes is shown in Table 5-7.

All of the photos obtained indicated the time-into-red, vehicle speed, date and time, crash
type, left-turn phasing, yellow duration, and approach speed limit.  No information was available
about travel direction, crash severity, contributing factor, all-red duration, or traffic volume.
Information about the approach geometry was available in some photos.  Ten of the 11 intersections
were subsequently identified using Internet-based street maps.  From this identification, aerial photos
were obtained and used to provide missing information about the geometry of each intersection
approach.

Milazzo Research

The report by Milazzo et al. (7) contained five photos of red-light-related crashes.  These
photos had the following distribution:  
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! two crashes in Charlotte, North Carolina, representing one intersection; 
! one crash in Oxnard, California; and
! two crashes in Washington, D.C., representing one intersection.

The distribution of these crashes is shown in Table 5-7.

The photos provided by Milazzo et al. (7) tended to contain less information than those
provided by Maryland.  Specifically, they only provided data for time-into-red, vehicle speed, date
and time, crash type, and left-turn phasing.  No information was available about travel direction,
crash severity, contributing factor, yellow duration, all-red duration, approach speed limit, or traffic
volume.  Geometric information for each approach was obtained from a combination of the crash
photo and aerial photos obtained from the Internet.

Other Crash Photos

Thirteen photos of red-light-related crashes were obtained from various Internet sources.
Collectively, these photos represent nine intersections.  The locations of eight intersections were
identified using the photo and Internet-based street maps; however, the location of one intersection
could not be determined.  The photos of three crashes were obtained from various red-light-
violation-related Internet websites.  Three other photos were obtained from a prominent magazine.
The remaining crash photos were obtained from individuals affiliated with various enforcement
agencies.  Collectively, the photos represent locations in Washington D.C., North Carolina, and
Australia.  The distribution of these crashes is shown in Table 5-7.  

The data obtained from these photos varied.  Most of them contained the types of information
available in the Maryland photos.  However, some of them contained less information–more
consistent with that found in the photos provided by Milazzo et al. (7).

DATA ANALYSIS

This section describes a summary of key database statistics and an examination of
correlations between crash frequency and various factors (including time-into-red).

Database Summary

Selected database attributes are summarized in Table 5-8.  Collectively, the statistics
demonstrate that the data reflect a wide range of typical traffic control and volume conditions.  They
also show that, with one exception, there is no practical difference between the conditions present
in the left-turn-opposed and the right-angle crash photos.  Specifically, the percent injury crashes,
speed of violator, speed limit, and volume are almost invariant among the two crash types.
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Table 5-8.  Database Summary–Time-Into-Red Analysis.
Crash
Type

Attribute Statistic
Obs. Average Std. Dev. Median Minimum Maximum

Left-turn-
opposed

Time-into-red, s 22 0.9 0.6 0.9 0.1 3.1
Yellow duration, s 19 4.0 0.2 4.0 3.5 4.5
Percent injury crashes 1 16 56 -- -- -- --
Speed of violator, mph 21 32.8 10.1 32 16 52
Speed limit, mph 19 40.8 3.8 40 35 45
AADT, veh/d  1 16 18,100 4600 18,400 9800 32,100

Right-angle Time-into-red, s 41 14.1 12.0 8.9 0.6 44.2
Yellow duration, s 33 4.3 0.4 4.0 3.9 5.0
Percent injury crashes 1 11 55 -- -- -- --
Speed of violator, mph 40 33.5 7.8 32 17 55
Speed limit, mph 26 40.4 6.0 40 35 55
AADT, veh/d  1 11 17,800 2500 18,900 14,800 23,300

Note:
1 - Based on data from the two cities in Arizona.

The median time-into-red for left-turn-opposed crashes is 0.9 s whereas that for right-angle
crashes is 8.9 s.  This trend is consistent with that reported by Milazzo et al. (7), as discussed
previously with regard to Table 5-3.  It could be argued that this consistency is due, in part, to the
five photos that are common to both databases.  To test this argument, the five photos were deleted
from the database; however, the aforementioned median statistics did not change in value.  From this
test, it was concluded that the effect of crash type on time-into-red exists independently in both
databases.

The number of crashes for each crash type is indicated in column 3 of Table 5-8 for the
“time-into-red” attribute.  These statistics indicate that right-angle crashes exceed left-turn-opposed
crashes by a factor of two (= 41/22).  This factor is much smaller than the “five to six” reported by
Bonneson, et al. (11), as discussed in a previous section.  It suggests that the number of left-turn
crashes are over-represented in the database.  However, this finding should not be construed to mean
that there is any bias in the time-into-red or other statistics included in the database.

Analysis and Interpretation

The relationship between time-into-red and the attributes listed in Table 5-8 was investigated
more thoroughly using statistical techniques.  This investigation found that crash type was the only
attribute related to time-into-red.  Discernable trends relating to the other factors were not found.

Figure 5-4 shows the frequency of crashes as a function of time-into-red.  The trends in this
figure confirm the tendency for left-turn-opposed crashes to occur in the first few seconds of red.
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With one exception, all of the right-angle crashes occurred after 5 s or more of red.  Closer
inspection of the one exception revealed that it occurred very late at night with both vehicles
violating their respective red indications at about the same time.

Figure 5-4.  Crash Frequency by Time-Into-Red.

The trends in Figure 5-4 indicate that the frequency of red-light-related crashes tends to be
highest in the first 5 s of red.  Crash frequency declines thereafter, reaching a nominally small but
constant frequency after 20 s of red.  Based on the discussion associated with Figure 5-3, this pattern
was expected.  The high frequency of right-angle crashes in the range of 5 to15 s into red is due to
the discharge of the cross street through movement queue.  Red-light violations during queue
discharge have a high likelihood of conflict.  The potential for conflict after queue discharge is
invariant, reflecting the random occurrence of cross street arrivals and red-light violations during the
latter part of the red interval.

The distribution of crashes during the first 15 s of red was more closely examined  to
determine how the distribution of crashes varied over time for the left-turn-opposed and right-angle
crashes.  For this examination, the data shown in Figure 5-4 were used to develop Figure 5-5.  The
only difference between the figures is in the time interval used for each vertical bar.

The trends in Figure 5-5 are very similar to the hypothetical trends shown in Figure 5-3.
These  trends confirm the hypothesized effect of the joint probabilities of violation and conflicting
vehicle presence on crash occurrence.  From these trends, it is logical that enforcement efforts are
likely to reduce violations in the first few seconds of red and, therefore, significantly reduce left-turn-
opposed crashes.  In contrast, engineering countermeasures are most likely to reduce violations
throughout the red and, therefore, reduce both right-angle and left-turn-opposed crashes in somewhat
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equal proportion.  Increasing the all-red interval is likely to reduce the portion of right-angle crashes
that occur in the first few seconds of red.  However, these crashes are relatively infrequent, so
increasing the all-red interval may not significantly reduce the total number of right-angle crashes.

Figure 5-5.  Crash Frequency in the First Few Seconds of Red.

GUIDELINES FOR COUNTERMEASURE SELECTION

The findings from the data analysis are used in this section to develop guidelines for selecting
countermeasures to reduce red-light violations.  Initially, the characteristics of the red-light violator
are used to identify whether engineering or enforcement countermeasures are appropriate.  Then,
these characteristics are pooled with time-into-red and crash-type distribution statistics to develop
guidelines for determining when enforcement or engineering countermeasures will be most effective.

Red-Light Violation Characteristics and Related Countermeasures

The characterizations offered previously with regard to the discussion associated with
Table 5-1 are combined with the findings from the previous section to identify the most appropriate
countermeasure category.  These characterizations are repeated in columns 1 through 4 of Table 5-9.

As indicated in Table 5-9, time of violation is correlated with crash type.  Specifically, about
98 percent of all red-light violations occur within the first 4 s of red.  The red-light-related crash that
occurs within the first few seconds of red almost always includes a permitted left-turning vehicle and
an opposing through vehicle (i.e., a left-turn-opposed crash).  In this situation, the left-turning driver
is attempting to clear the intersection at the end of the adjacent through phase and an opposing
through driver runs the red indication (this scenario exists when protected-only left-turn phasing is
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not provided).  After the first few seconds of red, the right-angle crash is the more common red-light-
related crash.

Table 5-9.  Red-Light Violation Characterizations and Related Countermeasures.  
Cause

Category
Violation

Type
Driver
Intent

Time of
Violation

Most Likely
Crash

Countermeasure Category

Unnecessary
delay

Avoidable Intentional Any time
during red

Right-angle Enforcement
(unless engineering can be used to reduce

delay or eliminate signal)Congestion,
dense traffic

First few
seconds of

red

Left-turn-
opposed

Incapable of
stop

Unavoidable Engineering
(to increase probability of stopping)

Inattentive Unintentional Any time
during red

Right-angle Engineering
(to improve signal visibility or conspicuity)

As noted in a previous section, the various “causes” of a red-light violation (as reflect the
driver’s point of view) offer important clues to identifying the countermeasures that would be most
appropriate in certain specific situations.  For example, violations due to congestion reflect driver
frustration after experiencing lengthy delay.  This violation is likely to be most effectively treated
by enforcement unless significant improvements in capacity can be made through intersection
reconstruction.  This, and similar, relationships are illustrated in Table 5-9.  The various relationships
shown in this table between “cause category,” “most likely crash,” and “countermeasure category”
are used in the next section to develop countermeasure selection guidelines.

Countermeasure Selection Guidelines

Based on the characterizations offered in the previous section, guidelines have been
developed to help engineers determine when enforcement or engineering countermeasures are likely
to be most beneficial.  These guidelines are presented in the form of a flow chart where the various
decisions that need to be made are identified as a series of steps.  These steps ultimately lead to the
identification of a viable set of countermeasures.  This flow chart is shown in Figure 5-6. 

In general, countermeasure selection to address a problem location should be based on a
comprehensive engineering study of traffic conditions, traffic control device visibility, crash history,
and intersection sight distance.  The findings from the engineering analysis can then be used with
the guidelines in Figure 5-6 to determine the most beneficial countermeasure category. 

As a first step in the use of Figure 5-6, the crash history should be examined to determine if
red-light-related crashes are over-represented in terms of crash frequency.  Red-light-related crashes
include right-angle and left-turn-opposed crashes.  The index value described in Chapter 2 (i.e.,
Equation 10) can be used for this purpose.  An index of 1.0 or larger indicates over-representation
of crashes. If these crashes are over-represented, then the analysis proceeds to the next step.
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No 
(excessive right-angle)

Yes
(excessive left-turn)
(excessive violations)

Implement 
& monitor

No

Possible crash 
cause (as reported

by driver)?

Inattentive Unnecessary delay

Is delay reduction 
possible?

Yes No

Stop

Start

Are violations 
or left-turn-opposed 

crashes  over-
represented?

Incapable of stopPossible crash 
cause (as reported

 by driver)?

Congestion, 
Dense traffic

Return to Start if 
problem persists. 

*Note:  Consider targeted camera enforcement only after 
visible, targeted officer enforcement has been tried but found 
not cost-effective.  Include public awareness campaign with 
either type of enforcement.

Is delay reduction 
possible?

No Yes

Are red-light-
related crashes over-

represented?

Consider Enforcement 
Countermeasures*

Consider Engineering 
Countermeasures

Consider Engineering 
Countermeasures Consider Engineering 

Countermeasures

Consider Enforcement 
Countermeasures*

Consider Engineering 
Countermeasures

Yes

1. Improve signal visibility
  a. add 12" lenses
  b. improve sight distance
  c. add signal heads
2. Improve conspicuity
  a. add back plates
  b. add red LEDs
3. Add warning signs
4. Reduce speed
5. Remove signal

1. Retime signals
2. Remove signal

1. Improve signal coord.
2. Retime signals
3. Add lanes or bays

1. Camera enforcement 1. Targeted officer enf.
2. Camera enforcement  

1. Increase yellow 
2. Add advance detection
     for green extension
3. Use protected-only
     left-turn phasing
4. Reduce speed
5. Improve conspicuity
  a. add back plates
  b. add yellow LEDs

Figure 5-6.  Guidelines for Countermeasure Selection.

The next step is to determine whether red-light violations or red-light-related left-turn-
opposed crashes are over represented.  The index value described in Chapter 4 can be used to
evaluate red-light violations.  A procedure is described in the Appendix for extending the equations
in Chapters 2 and 3 to the estimation of an index value for left-turn-opposed crashes.  Again, an
index of 1.0 or larger is an indication of over-representation for the purpose of countermeasure
selection.  Excessive violations or left-turn-opposed crashes are an indication that countermeasure
selection should focus on treatment of violations occurring during the first few seconds of red.
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As a third step, the engineer should determine the probable cause of the typical crash, from
the perspective of the driver.  This determination should be based on both a review of the crash
reports and the findings from a field visit to the subject intersection.  During the field visit, the
engineer should use a videotape recorder to record traffic events on the subject intersection approach.
While this recording is underway, the engineer should evaluate intersection operation, signal
visibility, signal timing, and traffic speed.  When the field visit is completed, the engineer should
review the videotape and study the characteristics of the red-light violations that occurred.  Based
on a review of all data sources, the engineer should determine the probable cause of the typical red-
light-related crash.  Possible causes include:  driver inattention, congestion, unnecessary delay, and
incapable of stop.

If the crash cause is a result of congestion or unnecessary delay, then the engineer should
determine if there are viable capacity or signal timing improvements that can be made to reduce the
congestion or delay.  It should be noted that “unnecessary” delay is any delay that appears
unreasonable to the driver.  This type of delay can occur for a variety of reasons.  For example,
unnecessary delay often occurs for minor movements at an intersection where the major street
through movement is held in green for coordination purposes.  The unnecessary delay occurs after
the platoon has passed and no vehicles are arriving on the major street, even though the signal
remains green.  Drivers on the minor movements can become impatient when they are delayed for
no apparent reason.  A capacity analysis of this intersection may indicate that this minor movement
incurs a relatively short average delay so the engineer may not believe there is a problem.  However,
unnecessary delay may still occur and promote disrespect for the signal.  

Once the typical crash cause is determined, the engineer should select the class of
countermeasures that is appropriate for the typical crash characteristics found at the subject
intersection.  This category and a range of appropriate countermeasures are listed in each of the
rectangular boxes in Figure 5-6.  The countermeasures listed are tailored to the considerations that
led to the selection of the specific box.



6-1

CHAPTER 6.  CONCLUSIONS

OVERVIEW

A recent review of the Fatality Analysis Reporting System database by the Insurance Institute
for Highway Safety indicated that an average of 95 motorists die each year on Texas streets and
highways as a result of red-light violations (2).  A ranking of red-light-related fatalities on a “per
capita” basis indicates that Texas has the fourth highest rate in the nation.  Moreover, the cities of
Dallas, Corpus Christi, Austin, Houston, and El Paso were specifically noted to have an above-
average number of red-light-related crashes (on a “per capita” basis) relative to other U.S. cities with
populations over 200,000.

An examination of the Texas Department of Public Safety crash database by Quiroga et al.
(3) revealed that the reported number of persons killed or injured in red-light-related crashes in
Texas has grown from 10,000 persons/yr in 1975 to 25,000 persons/yr in 1999.  They estimate that
these crashes currently impose a societal cost on Texans of $1.4 to $3.0 billion annually.

The problem of red-light-running is widespread and growing; its cost to society is significant.
A wide range of potential countermeasures to the red-light-running problem exist.  These
countermeasures are generally divided into two broad categories: engineering countermeasures and
enforcement countermeasures.  A study by Retting et al. (4) has shown that countermeasures in both
categories are effective in reducing the frequency of red-light violations.

The objectives of this research project were to: (1) quantify the safety impact of red-light-
running at intersections in Texas, and (2) provide guidelines for identifying truly “problem”
intersections and whether enforcement or engineering countermeasures are appropriate. 

SUMMARY OF FINDINGS

The findings from the research are presented in this section.  The headings in this section are
consistent with the four main chapters of this report and follow their order of presentation.

Intersection Red-Light-Related Crash Frequency

A database was assembled for the purpose of evaluating the various factors that are correlated
with, or have an effect on, the frequency of red-light-related crashes.  The database includes the
traffic volume, geometry, traffic control, and crash data for 47 intersections in three Texas cities.
A total of 181 intersection approaches are represented in the database.  

A review of peace officer crash reports revealed that 296 red-light-related crashes were
reported on the 181 approach study sites during a 3-year period.  These crashes represent 29 percent
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of all the crashes that occurred at the 47 intersections.  The average crash rate is 0.55 red-light-
related crashes per year per approach.  

The data were used to examine the relationship between crash frequency and the yellow
interval duration computed using Equation 1.  This equation is referenced in several authoritative
engineering reference documents (14).  The approach taken in this examination was to compare the
reported crash frequency with the difference between the yellow duration observed at the approach
and that computed for it using Equation 1.  The results of the examination indicate that there is a
trend toward fewer red-light-related crashes when the observed yellow duration is longer than the
computed duration.

A regression model was developed relating crash frequency to various volume, geometry, and
traffic control factors.  The findings from this development indicated that the following factors are
correlated with red-light-related crash frequency:  approach leg AADT, yellow interval duration,
speed limit, and clearance time.  The results of a sensitivity analysis using the calibrated crash
prediction model are summarized in Table 6-1.

Table 6-1.  Predicted Effect of Selected Factors on Red-Light-Related Crash Frequency.

Factor
Effect of a Reduction in the

Factor Value 1
Effect of an Increase in the

Factor Value 1

Factor
Change

Crash Freq.
Change

Factor
Change

Crash Freq.
Change

Approach flow rate -1.0 % -0.5 % +1.0 % +0.5 %
Yellow interval duration -1.0 s +125 to +225 % +1.0 s -35 to -40 %
Approach speed limit -10 mph 0 to -60 % +10 mph +83 to +123 %
Clearance path length -40 ft +40 to +50 % +40 ft -30 to +50 %

Note:
1 - Negative changes represent a reduction in the associated factor.

The trends shown in Table 6-1 indicate that crashes decrease with an increase in yellow
interval duration and a reduction in speed limit.  The effect of clearance path length is less obvious.
In general, an increase in path length is associated with a decrease in crashes provided that the
corresponding clearance time is less than 2.5 s. This trend reflects increasing driver reluctance to
violate the red indication at wider intersections.  Path length and speed combinations that exceed
2.5 s travel time are associated with an increase in crashes.  This trend reflects the greater likelihood
of a red-light-related crash at wider intersections.

The aforementioned “breakpoint” clearance time of 2.5 s effectively defines an optimal
intersection width for a given approach speed (or, alternatively, an optimum speed limit for a given
width).  These optimal widths are 110, 120, 150, and 165 ft for speed limits of 30, 35, 40, and
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45 mph, respectively.  Theoretically, red-light-related crashes will be minimized at these optimum
width and speed combinations.

A procedure was developed for identifying intersections with the potential for red-light-
related safety improvement (i.e., “problem” intersections). The application of this procedure is
intended to identify intersections that are likely to need some type of safety improvement and for
which the treatment is likely to be cost-effective.  To this end, the procedure can be used to identify,
and rank, intersections with an above average frequency of red-light-related crashes. 

The procedure combines the empirical Bayes method with the calibrated crash prediction
model to estimate the expected crash frequency for the subject intersection approach.  This estimate
is then used to compute an index value that serves as an indicator of the extent of the red-light-
related crash problem for the subject approach.  In general, approaches associated with a positive
index value have more red-light-related crashes than the “typical” approach.  An approach with an
index of 2.0 is likely to have a greater problem than an approach with an index of 1.0.  Greater
certainty in the need for treatment can be associated with higher index values. 

Area-Wide Red-Light-Related Crash Frequency and Enforcement Effectiveness

A database was assembled for the purpose of evaluating the effectiveness of an officer
enforcement program that targets intersection traffic control violations.  In this program, the
enforcement agency uses a heightened level of enforcement relative to that otherwise employed.  The
program is sustained for a period of time that can range from several months to 1 year.  The objective
of the program is to encourage drivers to be compliant with traffic control laws and more aware of
traffic control devices; the overarching goal is to make the road safer, as evidenced by fewer crashes.
This type of targeted enforcement is often coupled with a public awareness campaign that is intended
to inform drivers and garner public support for the program.

Citywide crash data were assembled for eight Texas cities that participated in TxDOT’s
Intersection Traffic Control-Selective Traffic Enforcement Program.  Each city implemented a
citywide heightened enforcement program and  public awareness campaign for 1 or 2 years in the
period 1997 to 2000.  A total of 33,769 officer-hours were expended by these cities as part of the
ITC-STEP, and a total of 31,615 citations for red-light violation were issued.

A before-after evaluation method was used to evaluate the effectiveness of the ITC-STEP
at reducing red-light-related crashes.  The empirical Bayes-based method described by Hauer (9) was
used for the analysis.  The results of the analysis revealed that crashes were reduced at six of the
eight cities during the time that they participated in the ITC-STEP.  The program is estimated to have
reduced red-light-related crashes by 6.4 percent during the time of its implementation.

A procedure was developed to identify cities that have an exceptionally high frequency of
red-light-related crashes. The application of this procedure is intended to identify cities for which
area-wide enforcement is likely to be cost-effective. 
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Intersection Red-Light Violation Frequency

A database was assembled for the purpose of evaluating the various factors that are correlated
with, or have an effect on, the frequency of red-light violations.  The database includes traffic
volume, geometry, traffic control, and violation data for 13 intersections.  Two approaches were
studied at each intersection.  

More than 11,266 signal cycles were observed at the 26 intersection approaches.  During
these cycles, 595 vehicles entered the intersection after the change in signal indication from yellow
to red.  An examination of vehicle-type revealed that heavy vehicle operators are more than twice
as likely to run the red indication as passenger car drivers.  This finding was previously noted by
Zegeer and Deen (29).

The data were used to examine the relationship between violation frequency and the yellow
interval duration computed using Equation 1.  The approach taken in this examination was to
compare the observed violation frequency with the difference between the yellow duration observed
at the approach and that computed for it using Equation 1.  The results of the examination indicate
that there is a trend toward more violations when the observed yellow duration is shorter than the
computed duration.

A regression model was developed relating violation frequency to various volume, geometry,
and traffic control factors.  The findings from this development indicated that the following factors
are correlated with red-light violation frequency:  yellow interval duration, use of signal head back
plates, speed, clearance path length, heavy-vehicle percentage, and volume-to-capacity ratio.  The
results of a sensitivity analysis using the calibrated prediction model are summarized in Table 6-2.

The trends shown in Table 6-2 indicate that violations decrease with an increase in cycle
length, yellow interval duration, clearance path length, and the addition of back plates.  Violations
also decrease with a decrease in 85th percentile speed, heavy-vehicle percentage, and volume-to-
capacity ratio.  The effect of heavy vehicles on violation frequency is likely a result of the greater
propensity of heavy-vehicle operators to run the red light.

An examination of the combined effect of a change in cycle length and volume-to-capacity
ratio revealed that red-light violations were at their lowest level when the volume-to-capacity ratio
was in the range of 0.6 to 0.7.  This range of ratios was found to yield minimal violations, regardless
of speed, path length, yellow duration, heavy-vehicle percentage, cycle length, phase duration, or
traffic volume.  Volume-to-capacity ratios below this range resulted in an increase in violations due
primarily to shorter cycle lengths.  Volume-to-capacity ratios above this value resulted in an increase
in violations due primarily to an increase in delay.
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Table 6-2.  Predicted Effect of Selected Factors on Red-Light Violation Frequency.

Factor
Effect of a Reduction in the

Factor Value 1
Effect of an Increase in the

Factor Value 1

Factor
Change

Violation Freq.
Change

Factor
Change

Violation Freq.
Change

Approach flow rate -1.0 % -1.0 % +1.0 % +1.0 %
Cycle length -20 s +20 to +50 % +20 s !17 to -23 %
Yellow interval duration -1.0 s +100 % +1.0 s !60 %
85th Percentile speed -10 mph -50 % +10 mph +70 %
Clearance path length -40 ft +38 % +40 ft !30 %
Heavy-vehicle percentage -5.0 % -19 % +5.0 % +20 %
Volume-to-capacity ratio -0.1 -10 to -40 % +0.1 +10 to +100 %
Use of back plates remove back plates +33 % add back plates !25 %

Note:
1 - Negative changes represent a reduction in the associated factor.

A procedure was developed for identifying intersections with the potential for red-light-
related safety improvement. The procedure combines the empirical Bayes method with the calibrated
violation prediction model to estimate the expected violation frequency for the subject intersection
approach.  This estimate is then used to compute an index value that serves as an indicator of the
extent of the violation problem for the subject approach.  In general, approaches associated with a
positive index value have more violations than the “typical” approach.  An approach with an index
of 2.0 is likely to have a greater problem than an approach with an index of 1.0.  Greater certainty
in the need for treatment can be associated with higher index values. 

Red-Light Violation Causes and Countermeasures

A database was assembled to examine the characteristics of red-light-related crashes for the
purpose of identifying the most appropriate set of countermeasures to use in treating problem
locations.  The characteristics considered include crash type and the duration of time the signal
indication was red prior to the crash.  This latter characteristic is defined herein as “time-into-red.”

The database assembled for this investigation includes the time of crash and crash type for
each of 63 red-light-related crashes representing intersections in five states.  Photos from
enforcement cameras were the primary source of these data.

Analysis of the data indicated that the median time-into-red for left-turn-opposed crashes is
only 0.9 s whereas that for right-angle crashes is 8.9 s.  This trend is consistent with that reported
by Milazzo et al. (7).  An examination of the distribution of crash frequency and type by time-into-
red indicates that the frequency of red-light-related crashes tends to be highest in the first 5 s of red.
Crash frequency declines thereafter, reaching a nominally small but constant frequency after 20 s of
red.  
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CONCLUSIONS

Several conclusions are reached based on the findings of this research.  These conclusions
are summarized in this section.

The objective of a red-light-running treatment program should be the reduction of red-light-
related crashes (as opposed to red-light violations).  Countermeasures that reduce red-light-related
crashes will likely also reduce violations.

The identification of intersections with the potential for safety improvement (i.e., “problem”
locations) should be based on an evaluation of individual intersection approaches.  The need for
treatment at a specific approach should be based on the difference between expected crash frequency
for that approach and that for the “typical” approach.  Intersection approaches that have an expected
crash frequency that exceeds that of the typical approach have the greatest potential for
improvement.

To ensure reasonable certainty in the identification of problem locations, the aforementioned
difference in crash frequency should be divided by its standard deviation.  The resulting quotient
represents a dimensionless  “index” that serves as an indicator of the extent of the red-light-related
crash problem for the subject approach.  In general, approaches associated with a positive index
value have more red-light-related crashes than the “typical” approach.  An approach with an index
of 2.0 is likely to have a greater problem than an approach with an index of 1.0.  Greater certainty
in the need for treatment can be associated with higher index values. 

Any treatment of a problem intersection approach should be intended to return the approach’s
expected crash frequency to a level that is consistent with that of the typical approach.  The
implementation of countermeasures with the intent to reduce crashes below that of the typical
approach represents “over treatment.”  Over treatment is not likely to be cost-effective.

Treatment programs for locations with red-light-related problems should follow a sequential
process that includes the following steps:

1.  Conduct an engineering study to confirm the nature and extent of the problem.
2. Identify and implement viable enforcement countermeasures.
3. Evaluate the effectiveness of the implemented countermeasures.
4. If red-light-related problems still exist, consider implementation and evaluation of additional

(or other) engineering countermeasures until all viable countermeasures have been tried.
5. If red-light-related problems still exist, consider the implementation of an officer

enforcement program that targets intersection traffic control violations and includes a public
awareness campaign.

6. If officer enforcement is determined to be unsuccessful or ineffective, then camera
enforcement can be considered.  If camera enforcement is implemented, it should be
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accompanied by a public awareness campaign.  Also, rear-end crashes should be monitored
and remedial action taken if a sustained increase in rear-end crashes is observed.

In general, countermeasure selection to address a problem location should be based on a
comprehensive engineering study of traffic conditions, traffic control device visibility, crash history,
and intersection sight distance.  The findings from the engineering analysis can then be used with
the procedure outlined in Figure 5-6 to determine the most viable set of countermeasures. 

The following specific conclusions are reached as a result of the analysis of the data collected
for this research:

! Red-light-related crashes represent about 30 percent of all crashes that occur at signalized
intersections in Texas.

! Red-light-related crashes are influenced by, or correlated with, several intersection factors.
These relationships were exploited in the development of a crash prediction model.  This
model can be used to predict the expected crash frequency for an intersection approach based
on the following factors:  approach leg AADT, yellow interval duration, speed limit, and
clearance time. 

! The calibrated crash prediction model indicates that red-light-related crashes tend to be at a
minimum value when the clearance time is about 2.5 s.  This time corresponds to clearance
path widths of 110, 120, 150, and 165 ft for speed limits of 30, 35, 40, and 45 mph,
respectively. 

! Area-wide officer enforcement of intersection traffic control devices will reduce red-light-
related crashes by 6.4 percent during the time of the enforcement activity.

! Heavy vehicle operators are more than twice as likely to run the red indication as passenger
car drivers. 

! Red-light violations are influenced by, or correlated with, several intersection factors.  These
relationships were exploited in the development of a violation prediction model.  This model
can be used to predict the expected violation frequency for an intersection approach based
on the following factors:  yellow interval duration, use of signal head back plates,
85th percentile speed, clearance path length, heavy-vehicle percentage, and volume-to-
capacity ratio. 

! Red-light violations are at their lowest level when the volume-to-capacity ratio is in the range
of 0.6 to 0.7.  This range of ratios yields minimal violations, regardless of speed, path length,
yellow duration, heavy-vehicle percentage, cycle length, phase duration, or traffic volume.

! Enforcement efforts are likely to reduce violations occurring primarily in the first few
seconds of red and, therefore, should significantly reduce left-turn-opposed crashes.  In an
indirect manner, these efforts should also reduce some right-angle crashes by encouraging
driver compliance with the signal. In contrast, engineering countermeasures are most likely
to reduce violations throughout the red and, therefore, reduce both right-angle and left-turn-
opposed crashes in somewhat equal proportion. 

! Increasing the all-red interval is likely to reduce the portion of right-angle crashes that occur
in the first few seconds of red.  However, right-angle crashes are relatively infrequent in the
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first few seconds of red, so increasing the all-red interval may not significantly reduce the
total number of right-angle crashes.
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ESTIMATION OF EXPECTED LEFT-TURN CRASH FREQUENCY

OVERVIEW

This appendix describes the development of a method for estimating the expected crash
frequency of a specified subset of crashes for which the only prediction model available is that for
predicting total crash frequency.  In this situation, a prediction model is not available for directly
estimating the frequency of the crash subset.  For example, a model for predicting the expected
severe red-light-related crash frequency is developed in Chapter 2 (and Chapter 3); however, the
frequency of severe red-light-related, left-turn-opposed crashes is a sufficiently small subset of all
crashes as to frustrate the development of an accurate left-turn-opposed crash prediction model.

Initially, the need for a subset crash estimation method is described.  Then, a method
developed by Harwood et al. (40) for FHWA is reviewed and its underlying assumptions identified.
Next, a variation of the FHWA method is described that overcomes some specified weaknesses.
Finally, the method is illustrated in an example application.

LITERATURE REVIEW

Background

The empirical Bayes method is used in Chapter 2 to obtain an unbiased estimate of the red-
light-related crash frequency for a specific intersection approach (it is also used in Chapter 3 for area-
wide crash estimation).  The unbiased estimate is based on a weighted combination of the reported
frequency of red-light-related crashes x on the subject approach and the predicted red-light-related
crash frequency E[r] of similar approaches.  The unbiased estimate (i.e., E[r|x]) is a more accurate
estimate of the expected red-light-related crash frequency on the subject approach than either of the
individual values (i.e., E[r] or x).  The following equations were offered in Chapter 2 to compute
E[r|x]:

with,

where,
E[r|x] = expected red-light-related crash frequency given that x crashes were reported in y years,

crashes/yr;
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E[c]fi ' E[c] × pfi (A-3)

E[r] = expected severe red-light-related crash frequency for the subject approach, crashes/yr;
x = reported red-light-related crash frequency, crashes;
y = time interval during which x crashes were reported, yr;
k = dispersion parameter; and

weight = relative weight given to the prediction of expected red-light-related crash frequency.

The equations developed in Chapters 2 and 3 apply to severe (i.e., injury or fatal) crashes.
However, Equation A-1 is not restricted to this specific category of crashes.  It can also be used to
estimate the expected crash frequency for other crash categories and types, such as the expected
number of total crashes (i.e., property-damage-only, injury, and fatal) or the expected number of left-
turn-opposed crashes.  The only caveats to these applications are:  (1) x must represent the reported
number of crashes of the specified type, and (2) the equation used to compute E[r] must be
calibrated to estimate the expected frequency of crashes of the specified type.  

The second caveat mentioned in the previous paragraph often poses a significant challenge
because the development of models applicable to only a subset of the crash population (e.g., a model
for predicting only severe crashes or a model for predicting only left-turn-opposed crashes) is based
on only a portion of the available crash database.  Such partitioning of the database reduces the
sample size for model calibration and, given the extreme randomness in crash data, can severely
limit the accuracy of the resulting “subset” model.

FHWA Subset Crash Estimation Method

In recognition of the aforementioned limitations of “subset” model development, Harwood
et al. (40) developed a method for estimating severe crash frequency E[c]fi using a model that
predicts total crash frequency E[c].  The method begins with the use of the following equation to
estimate severe crash frequency:

where,
E[c]fi = expected severe crash frequency, crashes/yr;

pfi = portion of severe crashes; and
E[c] = expected total crash frequency, crashes/yr.

As a second step, Harwood et al. recommend the use of Equation A-1 and the estimate from
Equation A-3 to obtain the expected severe crash frequency for a specific location E[c|x]fi.  This
method is based on two assumptions.  Each assumption is discussed in the following sections.  

Assumption 1:  Dispersion Parameter Equality

Harwood et al. (40) recommend that value of weight computed using Equation A-2 should
be based on the dispersion parameter k for the “total crash” model.  The use of this parameter
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k i /k  = 0.68 p i  + 0.38
R2 = 0.30
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represents an assumption that the dispersion parameter associated with Equation A-3 for the severe
crash data is the same as that for the total crash data (i.e.,  kfi = k).

The accuracy of the aforementioned assumption was investigated using data reported by
McGee et al. (41).  They developed models for four crash-type categories:  total severe crashes,
severe left-turn crashes, severe rear-end crashes, and severe right-angle crashes.  A crash-type model
was developed for each combination of three- and four-leg intersections at stop-controlled and at
signal-controlled intersections.  A total of 32 prediction models were developed.  Each model was
associated with a unique dispersion parameter.

The reported dispersion parameters for the “total severe crash” models were compared with
the parameters obtained for the three crash-type subset models.  The results are shown in Figure A-1.
The  y-axis in this figure represents the ratio of the dispersion parameter ki for crash-type category
i to the dispersion parameter for the “total severe crash” model k.

Figure A-1.  Relationship between Portion Crashes in Subset
 and Dispersion Parameter Ratio.

The data in Figure A-1 indicate that the dispersion parameters for the crash-type subset
models is not equal to the dispersion parameter of the “total severe crash” model (i.e.,  kfi … k).
Equality of these two parameters would have been evidenced by the data being clustered about the
ratio of 1.0 and independent of the portion of crashes in the subset.  Rather, the subset dispersion
parameters ki range from 35 to 80 percent of k, the amount being correlated with the portion of
crashes in the subset pi.  A more detailed analysis did not indicate any correlation between crash type
and the dispersion parameter ratio.  These findings suggest that the assumption by Harwood et al.
(40) is relatively weak.
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E[c|x](fi ' E[c|x]
E[c|x]fi

E[c|x]fi % E[c|x]pdo
(A-4)

Assumption 2:  Bias Correction

The method recommended by Harwood et al. (40) for estimating severe crash frequency
consists of several steps.  First, Equation A-1 is used for each crash subset (i.e., once for property-
damage-only crashes, once for severe crashes).  Then, it is used to estimate “total crash” frequency.
This application yields three crash frequency estimates:  E[c|x]pdo, E[c|x]fi, and E[c|x]. 

At this point in the method, Harwood et al. (40) note that the sum of the estimates for the
individual subsets do not add to that obtained for total crashes (i.e.,  E[c|x]pdo + E[c|x]fi …E[c|x]) but
that they theoretically should add to this value.  To overcome this bias, they recommend a third step
that involves a bias correction.  In this step, the following equation is used to estimate the
“corrected” severe crash frequency:

where,
E[c|x]fi

* = expected severe crash frequency (corrected) given that x severe crashes were reported,
crashes/yr; and

E[c|x] = expected total crash frequency given that x crashes were reported, crashes/yr.

A similar equation is offered for correcting the property-damage-only crash estimate.  The
corrected estimates thus obtained sum to equal E[c|x] and are offered as unbiased estimates of
E[c|x]pdo and E[c|x]fi. 

The basis for development of the bias correction step is not described by Harwood et al. (40).
However, it is discussed by Hauer et al. (42) in a subsequent publication and appears to be based on
an ad hoc method of correcting for the bias in the component terms.  The correct way of removing
the bias is noted by Hauer et al. to be available but would add additional parameters and complexity.

The accuracy of the bias correction step described by Harwood et al. (40) has not been
documented in other literature.  It is likely to be sufficiently accurate to yield reasonable estimates
of E[c|x] for subset crash types.  However, the step does not specify how to obtain an accurate
estimate of weight for each subset.  An accurate estimate of this variable is needed when the
empirical Bayes method is extended to the identification of problem locations (i.e., when using
Equations 10 and 23).

METHOD DEVELOPMENT

An alternative subset crash estimation method is developed in this section that can be used
to estimate the expected crash frequency of crash category i (e.g., left-turn-opposed crashes) and
corresponding values of ki and weighti.  The approach is based on the availability of a crash
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E[r]lt ' E[r] × plt (A-5)

klt ' k × plt (A-6)

prediction model that has been previously developed for estimating “total” crashes.  The expected
crash frequency for a specified subset of crashes using this model is obtained by multiplying the total
crash estimate from the prediction model by the portion of crashes represented by the specified
subset category (i.e., consistent with Equation A-3).  The advantage of this method is that it does not
share the limitations associated with the method described in the previous section.

The remainder of this section describes the development of a method for predicting severe
red-light-related, left-turn-opposed crashes.  However, the method can be extended to the prediction
of crash frequency for other crash categories.  The development is based on the severe red-light-
related crash prediction model developed in Chapter 2 for local intersection analysis (i.e.,
Equation 6).  The modeling approach can also be extended to area-wide analyses using the crash
prediction model described in Chapter 3 (i.e., Equation 16).  The following equation is used to
estimate the expected left-turn-opposed crash frequency:

where,
E[r]lt = expected severe red-light-related, left-turn-opposed, crash frequency, crashes/yr;

plt = portion of severe red-light-related crashes that are defined as “left-turn-opposed” (use
0.15); and

E[r] = expected severe red-light-related crash frequency for the subject approach, crashes/yr.

An analysis of the distribution of red-light-related crash types by Bonneson et al. (11)
indicates that  left-turn-opposed crashes represent 15 percent of all red-light-related crashes.

The trend line in Figure A-1 indicates that the dispersion parameter associated with
Equation A-5 can be estimated using a linear equation.  However, the equation shown in the figure
does not comply with a necessary boundary condition.  Specifically, the subset dispersion factor ki
should converge to the dispersion parameter for total crashes k as the portion of crashes in the subset
pi approaches 1.0 (i.e., the dispersion parameter ratio should equal 1.0 when pi = 1.0).

A second boundary condition was also established during the investigation regarding the
relationship among k, ki, and pi.  Specifically, the value of ki used in Equation A-2 should yield
estimates of the expected subset crash frequency from Equation A-1 that add to the value estimated
for total crashes (i.e.,  E[c|x]lt + E[c|x]other = E[c|x]).  

Several functional forms for the relationship among k, ki, and pi were evaluated.  The form
that provides compliance with the aforementioned boundary conditions, overcomes the
aforementioned limitations of the method described by Harwood et al. (40), and is reasonably
consistent with the trends in Figure A-1 is:
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where,
klt = estimated dispersion parameter for left-turn-opposed crashes; and
k = dispersion parameter for total-crash prediction model.

The form of Equation A-6 implies a linear relationship between pi and the dispersion
parameter ratio ki/k with an intercept of 0.0 and a slope of 1.0.  These values compare with the 0.38
and 0.68 shown in Figure A-1.  Alternative forms of Equation A-6 that included these parameters,
or similar, were all found to have undesirable features.  Specifically, use of the linear equation shown
in Figure A-1 violated both boundary conditions.  A slight modification of the slope and intercept
values was found to yield compliance with the first boundary condition and yield an equally good
fit to the data in Figure A-1.  However, an additional adjustment factor was needed in Equation A-1
to ensure compliance with the second boundary condition.  Solutions that included the additional
adjustment factor were found to be unduly complex in their mathematical representation, relative
to the simplicity and fit obtained with Equation A-6.

The implication of Equation A-6 is that the weight variable is the same for the “total crash”
estimate as it is for any one crash-type subset.  The use of identical weight variables for each crash
subset ensures that the sum of the expected crash frequencies will equal the total crash frequency.

METHOD APPLICATION

The estimation method developed in the previous section is illustrated in this section in terms
of an example application.  Consider an intersection approach for which three severe red-light-
related crashes were reported in the previous year.  One of these crashes was identified as left-turn-
opposed.  The traffic, signal timing, and geometric conditions for the intersection approach were
input to Equation 6 to find that the expected severe red-light-related crash frequency for  similar
approaches E[r] is 0.60 crashes/yr.  Table 2-6 indicates that this model has a dispersion parameter
of 4.0.  These data are shown in Table A-1.

Equation A-5 is used to estimate the expected crash frequency for the “left-turn-opposed”
and “other” crash categories.  The results are shown in the third row of computations in Table A-1.
Equation A-6 is used to estimate the dispersion parameter for each crash category.  These results are
shown in the fourth row.  Equation A-2 is used to compute the weight variable.  It should be noted
that the value of this variable is identical for all crash categories.  Finally, Equation A-1 is used to
compute the expected crash frequency given that x crashes were reported.  

In this example application, as with any application of the recommended method, the data
in the first six rows of the crash-type columns (i.e., columns 2 and 3) add to the values shown in the
total-crash column (i.e., column 4).  The bias correction step recommended by Harwood et al. (40)
is not necessary with the proposed estimation method.

The last three rows of Table A-1 illustrate the application of the problem location
identification procedures (i.e., Equations 10, 11, and 12 of Chapter 2; and Equations 23, 24, and 25
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of Chapter 3).  The index values for the two crash types do not exceed 1.0, which is offered as the
threshold for identifying locations with a likely red-light-related crash problem.  Hence, it can be
concluded that neither left-turn-opposed or total red-light-related crashes are over-represented at this
intersection.

Table A-1.  Application of Left-Turn-Opposed Crash Frequency Estimation Method.
Statistic Crash Type Category Total Severe Red-Light-

Related CrashesLeft-Turn-Opposed Other
Portion of total crashes (p) 1 0.15 0.85 1.00
Reported crashes (x), crashes/yr 1 2 3
Expected crash freq. (E[r]), crashes/yr 0.09 0.51 0.60
Dispersion parameter (k) 0.6 3.4 4.0
weight 0.87 0.87 0.87
Expected crash freq. given that x
crashes were reported (E[r|x]),
crashes/yr

0.21 0.70 0.91

Variance of E[r] 0.0001 0.0004 0.0005
Variance of E[r|x] 0.0273 0.0910 0.1183
Index 0.73 0.63 0.90

Note:
1 - Portion of red-light-related, left-turn-opposed crashes is based on data reported by Bonneson et al. (11).
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