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CHAPTER 1. BACKGROUND AND OBJECTIVES 

1.1 OBJECTIVES 

The purpose of this project is to develop several statistical tools and measures for PMIS 

data. The tools include defining appropriate sample sizes for auditing contractor performed 

distress ratings. The statistical measures to be determined include determining the measurement 

error for the PMIS Condition Score and to use this error in analyzing recent trends. 

1.2 DISTRESS DATA COLLECTION 

There are numerous methods that can be used to collect surface distress information. 

Distress surveys can be conducted and analyzed manually, or equipment can be used to automate 

some of the steps. In general, methods that are more costly are also more accurate, are more 

precise, and have the greatest resolution (Smith et al. 1996). Since the terms accuracy, precision, 

and resolution appear throughout this report, they will be defined so the terms will have the 

proper meaning. Accuracy is the degree to which the method provides a value that matches an 

accepted reference value (ASTM 1992). Precision is the closeness of agreement, or 

repeatability, among multiple measurements obtained under defined conditions (ASTM 1992). 

Resolution is the smallest increment that can be measured. 

The accuracy, precision, and resolution needed depend on the goals of the pavement 

management system and the funds available to pay for the inspection services. Some methods 

are more subjective than others. Publications by Hicks and Mahoney (1981), Epps and 

Monisrnith (1986), Cable and Marks (1990), and TxDOT (undated) describe in detail many of 

the data collection methods. 

1.3 INTERPRETING DISTRESS INFORMATION 

Distress information can be converted into a Condition Score, or information on each 

distress type and severity can be used individually. The Condition Score combines information 

from all of the distress ratings into a single number. This number can be used at the network 

level to define the condition state, to identify when treatments are needed, as a part of 

ranking/prioritization, and in condition projection. Individual distress type, severity, and 

1 



quantity information at the network level is normally restricted to use in a decision tree 

procedure to identify feasible treatments. For project-level analysis, individual distress 

information is routinely used in determining the cause of deterioration, identifying feasible 

treatments, and estimating repair quantities. 

From experience with manual systems, it is apparent that even though there is some 

deviation in distress types and quantities among raters during network-level surveys, the 

condition indexes may agree reasonably well. Since the condition indexes are used as key 

management indicators at the network level, they can be used if they are reasonably accurate and 

precise, even if the collection of individual distress types may not give the accuracy, precision, 

and resolution desired for individual distresses at the project level. 

Different surface types have different distress types that must be addressed in condition 

indexes. Pavements with hot-mix asphalt concrete (HMAC) surfaces are the predominant 

surface type in Texas, and the most important distress types must be included. Asphalt concrete 

overlays on Portland cement concrete have reflective cracks and crack deterioration that would 

not typically be found on other surface types. Pavements with a slurry seal applied to asphalt 

concrete (slurry) have fine, relatively uniform surface texture. The bituminous surface treatment 

(BST) pavements have a coarse surface texture that tends to mask some of the distress types, and 

they tend to have more distresses caused by pavement layer instability. The Portland cement 

concrete (PCC) pavements have a completely different set of distress types, but the amount of 

PCC pavement in Texas is somewhat limited. Although other pavement surface types are 

present, they can generally be included in one of these groups. For ease of discussion, when the 

generic term asphalt is used, it includes all of the asphaltic and bituminous surface types (AC, 

APC, slurry, and BST). PCC will be used to identify pavements with Portland cement concrete 

surfaces, and the individual names will be used to address the specific surface types. 

1.4 PURPOSE OF DISTRESS DATA COLLECTION 

Distress surveys are performed to collect data on the entire network (network level), to 

determine the type and cost of treatment for a specific project (project level), and to collect data 

for research purposes (research level). These different purposes require different data collection 

methods and accuracy. The objectives of each are summarized below (FHW A 1995): 
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Network level: 

a. expediency in the field condition survey; 

b. reproducibility of survey results should be provided within a reasonable 
degree of accuracy; and 

c. useful information should be provided for identifying potential 
rehabilitation projects, identifying potential budget needs, and establishing 
priorities. 

Project level: 

a. reproducibility of survey results within a high degree of accuracy; 

b. useful information should be provided for identifying causes of failures 
and determining effective maintenance and repair techniques; 

c. useful information should be provided for estimating costs of 
maintenance, repair, and restoration; and 

d. expediency in field condition survey (e.g., less than one quarter man day 
per project). 

Research level: 

a. accuracy of survey results with a high degree of reproducibility; 

b. useful information should be provided for identifying causes of distresses; 

c. location information should be provided for locating distresses so that they 
can be tracked over time; and 

d. expediency in field condition survey (e.g., less than one half man day per 
project). 

Network-level inspections are usually a driving type survey. Project-level evaluations 

can be conducted from a slowly moving vehicle but are also conducted by a walking survey, 

while research-level inspections are usually a detailed walking survey. 

1.5 CURRENT METHOD OF DISTRESS DATA COLLECTION IN TEXAS 

Prior to 2001, the frequency of surveys conducted by TxDOT on a particular road in the 

network was based on the functional class of the highway. Interstate highways (IH) were 

inspected annually while non-interstate highways were inspected every two years, although some 

districts did inspect greater percentages. 
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Traditionally, TxDOT used multiple crews even within a single district. These crews 

were typically composed of personnel with other duties and were temporarily assigned to the 

inspection effort. 

More recently, in an effort to standardize data collection, reduce variability between 

districts, reduce the number of raters, complete the work more quickly, and to free up district 

personnel, TxDOT hired contractors to perform this intensive data collection effort. Prior to 

using contractors, the large variability of the inspection results made comparisons between 

districts more difficult since raters in one district might have rated pavements lower (more strict 

interpretation or slightly different criteria) than a rater in a different district would have. Using 

contractors for the data collection reduced this variability by using a single crew for surveying 

multiple districts within a region. 

1.6 PMIS DISTRESS TYPES FOR FLEXffiLE PAVEMENTS 

Table 1 lists the current distresses used in the TxDOT Pavement Management 

Information System (PMIS) (TxDOT 2002). Currently, there are no severity levels associated 

with the PMIS distress survey. The addition of severities would complicate the process of 

defining distress but would provide added utility to the PMIS process as wider cracks could be 

separated and accounted for separately from hairline cracks. 

Any survey method must accurately, and at least as importantly consistently, quantify and 

identify the appropriate distress type. Although it is sometimes difficult to obtain consensus, 

even among qualified inspectors, as to whether a particular distress is still longitudinal cracking 

or whether it has progressed to the point where it should be considered alligator cracking, once a 

decision is made, the survey teams must reliably and consistently identify and measure the 

distress accurately. The following is a brief discussion of each of the distresses. All quotations 

and references are from the TxDOT PMIS manual (TxDOT 2002). 
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Table 1. FY2003 PMIS Distress Types for Flexible Pavements. 

Distress Ratings Based On 

Rutting, Shallow Percent of Wheel path Length 
(Measured by Profiler) 

Rutting, Deep Percent of Wheel path Length 
(Measured by Profiler) 

Patching Percent Lane Area 

Failures Number per Section 

Block Cracking Percent Lane Area 

Alligator Cracking Percent Wheelpath Length 

Longitudinal Cracking Length per 100 feet 

Transverse Cracking Number per 100 feet 

Flushing (Optional) Category 

Raveling (Optional) Category 

Rutting 

Rutting will continue to be collected by automated equipment. 

Patching 

"Patches are repairs made to pavement distress. The presence of patching indicates prior 

maintenance activity, and is thus used as a general measure of maintenance cost." 

Problems with recording patches have been a continuing problem in PMIS because the 

definition of what is to be counted as a defect (patch) is continually being debated and updated. 

For example, an improved area that is 495 feet long is a patch, but if it were to be 500 feet long, 

it would be counted as an overlay and have no impact on the Distress Score. One section would 

be rated as having a score of 74, while the overlay would receive a score of 100. Functionally, 

these pavements are equivalent. A measure of the complicated nature of patches is that the 

current PMIS manual contains 11 separate explanations and modifications, called "Special 

Cases" in the manual. 

The identification and determination of quantities for this distress accounts for the largest 

discrepancy in PMIS score on both the training and audit surveys. 
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Failures 
"A failure is a localized section of pavement where the surface has been severely eroded, 

badly cracked, depressed, or severely shoved. Failures are important to rate because they 

identify specific structural deficiencies that may pose safety hazards." 

This distress is subjective in nature and is often misidentified during training classes and 

during audit surveys. 

Block Cracking 

"Block cracking consists of interconnecting cracks that divide the pavement surface into 

approximately rectangular pieces, varying in size from 1 foot by 1 foot (0.3 meter by 0.3 meter) 

up to 10 feet by 10 feet (3 meters by 3 meters). Although similar in appearance to alligator 

cracking, block cracks are much larger. Block cracking is not load-associated. Instead, it is 

commonly caused by shrinkage of the asphalt concrete or by shrinkage of cement or lime­

stabilized base courses." 

The difficulty with this distress is the identification of the pattern associated with block 

cracking. However, block cracking is merely a lot of longitudinal and transverse cracking, and 

misidentification may not change the overall distress score. 

Alligator Cracking 

"Alligator cracking consists of interconnecting cracks which form small, irregularly 

shaped blocks that resemble the patterns found on an alligator's skin. Blocks formed by alligator 

cracks are less than 1 foot by 1 foot (0.3 meter by 0.3 meter). Larger blocks are rated as block 

cracking. Alligator cracks are formed whenever the pavement surface is repeatedly flexed under 

traffic loads. As a result, alligator cracking may indicate improper design or weak structural 

layers. Heavily loaded vehicles may also cause alligator cracking." 

It is very important to accurately assess this distress since it has a major impact on the 

Distress Score, maintenance level of service, and maintenance needs. Fortunately, because the 

PMIS survey does not have severity levels, it should be possible to obtain a high level of 

accuracy and repeatability. With severity levels, the distress has to be assigned to the different 

categories based on distress definitions that are not easily quantifiable. 
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However, during PMIS training classes and in the audit surveys, there is often a large 

discrepancy in the amount of alligator cracking reported. 

Longitudinal Cracking 

"Longitudinal cracking consists of cracks or breaks which run approximately parallel to 

the pavement centerline. Edge cracks, joint or slab cracks, and reflective cracking on composite 

pavement (i.e., overlaid concrete pavement) may all be rated as longitudinal cracking. 

Differential movement beneath the surface is the primary cause of longitudinal cracking." 

The functional definition of a longitudinal crack is that if it is at least 1/8 inch wide (i.e., 

generally is visible while seated in the rating vehicle), it should be recorded as a longitudinal 

crack. As with alligator cracking, the interpretation of longitudinal cracking is both important 

and relatively straightforward. However, there is also a substantial difference in the values 

reported during training classes and in PMIS audit surveys. 

Transverse Cracking 

''Transverse cracking consists of cracks or breaks which travel at right angles to the 

pavement centerline. Joint cracks and reflective cracks may also be rated as transverse cracking. 

Differential movement beneath the pavement surface usually causes transverse cracks. They 

may also be caused by surface shrinkage due to extreme temperature variations." 

Transverse cracks may be the easiest distress to catalog, though narrow cracks (1/8 inch 

wide) will be more difficult as the speed of travel increases. However, for flexible pavements, 

they have little impact unless there are many cracks (5 cracks per 100 feet result in a Distress 

Score of 91-94 ). 

Flushing and Raveling 

Flushing (sometimes called bleeding) and raveling are optional distresses that do not 

affect the Distress Score. While these optional distresses may be useful in identifying pavements 

needing routine or preventive maintenance, comprehensive skid testing rather than the network­

level approach of one skid test per half-mile provides a more quantifiable measure of pavements 

that need attention. 
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1.7 PMIS DISTRESS TYPES FOR CONTINUOUSLY REINFORCED CONCRETE 
PAVEMENTS (CRCP) 

Table 2 lists the current distresses used in the TxDOT Pavement Management 

Information System (TxDOT 2002) for CRCP pavements. All quotations and references are 

from the TxDOT PMIS manual (TxDOT 2002). 

Table 2. FY2003 PMIS Distress Types for Continuously Reinforced Concrete Pavements. 

Distress Ratings Based On 

Spalled Cracks Number per Section 

Punchouts Number per Section 

Asphalt Patches Number per Section 

Concrete Patches Number per Section 

Average (Transverse) 
Distance 

Crack Spacing 

SpaJied Cracks 

"A spalled crack is a crack that shows signs of chipping on either side, along some or all 

of its width." 

The distress definition also includes a width definition (spall is greater than 3 inches), but 

width is difficult to estimate while in a moving vehicle. The spalled crack distress is often a 

source of substantial variation in the rater class ratings. 

Punchouts 

"A typical punchout is a full depth block of pavement formed when one longitudinal 

crack crosses two transverse cracks. Although usually rectangular in shape, some punchouts 

may appear in other shapes." 

Punchouts can be difficult to accurately and consistently recognize during a field survey 

and are often a source of substantial variation in the rater class ratings. 
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Asphalt Patches 

"An asphalt patch is a localized area of asphalt concrete which has been placed to the full 

depth of the surrounding concrete slab, as a temporary method of correcting surface or structural 

defects." 

This distress is easy to identify. Few problems occur in identifying this distress. 

Concrete Patches 

"A concrete patch (a 'longer lasting' repair) is a localized area of newer concrete which 

has been placed to the full depth of the existing slab as a method of correcting surface or 

structural defects." 

Concrete patches are occasionally a source of differences during the field surveys, 

because of the similarity of the color and the difficulty in estimating the length of the patch 

(patches greater than 10 feet are recorded as one patch for every 10 feet) on a busy highway 

while driving along the shoulder. 

Average Crack Spacing 

"Average crack spacing is not, in itself, a pavement distress type. It is rated as a method 

of obtaining the percentage of transverse cracks that are spalled. However, average crack 

spacing is valuable as a measure of whether or not the CRCP slab is behaving as designed. A 

CRCP section with a small average crack spacing may deteriorate rapidly into a series of small 

punchouts if the proper corrective procedures are not applied." 

This distress is relatively easy to measure~ however, at higher speeds the narrow cracks 

may be a problem. Fortunately, average crack spacing has no impact on the Distress Score. 

1.8 PMIS DISTRESS TYPES FOR JOINTED CONCRETE PAVEMENTS (JCP) 

Table 3 lists the current distresses used in the TxDOT Pavement Management 

Information System (TxDOT 2002) for JCP pavements. All quotations and references are from 

the TxDOT PMIS manual (TxDOT 2002). 
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Table 3. FY2003 PMIS Distress Types for Jointed Concrete Pavements. 

Distress Ratings Based On 

Failed Joints and Cracks Number per Section 

Failures Number per Section 

Shattered (Failed) Slabs Number per Section 

Slabs with Longitudinal Cracks Number of Slabs per Section 

Concrete Patches Number per Section 

Average Joint Spacing Distance 

Failed Joints and Cracks 

"The distress type 'failed joints and cracks' covers two major items: spalled joints and 

transverse cracks, and asphalt patches of spalled joints and transverse cracks." 

Although the definitions for this distress are straightforward and well defined, 

considerable variability in results was typical for the rating classes. 

Failures 

"Failures are localized areas in which traffic loads do not appear to be transferred across 

the reinforcing bars. Failures are typically areas of surface distortion or disintegration." 

Failures in JCP were usually identified fairly consistently in the training classes. This 

distress is a major component of the PMIS Distress Score, but the distress is fairly rare. 

Shattered Slabs 

"A shattered slab is a slab that is so badly cracked that it warrants complete replacement." 

This distress was also identified fairly consistently and accurately. 

Slabs with Longitudinal Cracks 

"A longitudinal crack is a crack that roughly parallels the roadbed centerline." 

Although this distress was sometimes misidentified, most of the inspectors were accurate. 

When it was misidentified, the results were dramatically different. Since the measurements are 
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fairly well defined, more training is needed to ensure that this distress is recorded accurately. 

However, jointed concrete pavement is somewhat rare, and most slabs are not distressed. 

Concrete Patches 

"A concrete patch (a 'longer lasting' repair) is a localized area of newer concrete which 

has been placed to the full depth of the existing slab as a method of correcting surface or 

structural defects." 

Concrete patches are usually easy to identify and record. 

Apparent Joint Spacing 

"Some transverse cracks may become so wide (long) that they look and act like joints. 

The crack must be greater than ¥2 inch (13 mm) wide (long) across the complete width of the 

lane. These 'apparent' joints are important because they serve to divide the original slab into 

smaller units." 

There are usually no problems identifying this distress. 

1.9 RATER CERTIFICATION AND TRAINING METHODOLOGY 

Currently, the method used to conduct network-level distress data collection for 

pavements in Texas involves having crews drive at approximately 15 miles per hour (mph) 

(24 kmlhr) along the shoulder, or in the lane, and estimate the quantity of each distress type for a 

given length. For all asphalt and CRCP surfaces the unit of measurement is 40 feet (12m), 

which in the field is the distance from the start of one lane stripe to the start of the next lane 

stripe. For JRCP, most of the distresses are estimated for each slab or joint. Except for the 

under-construction or otherwise identified miles, all of the mileage is inspected. For roads that 

have undivided roadbeds, only one lane (the lane that appears to be in the worst condition) is 

inspected. For divided roads, one lane in each direction is inspected. TxDOT hires contractors 

to perform this service and has TxDOT and personnel from the Texas Transportation Institute 

(TTl) check the results by performing an audit survey of a small percentage of the pavements. 

Part of the research was to determine whether the audit percentage was adequate. 
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Prior to the start of the inspection season, contractor, TxDOT, and TTl personnel are 

required to attend training classes to become certified inspectors for the calendar year. Changes 

to the manual, including clarifications and interpretations, and inspections of selected sections 

are used in order to reduce the rater-to-rater variability between inspection teams. 

The training classes begin with the TxDOT representative (usually Doug Chalman) 

explaining the reference marker (RM) and lane designation system to any raters that had not 

attended previous certifications. The next step involves explaining each of the distresses 

including the definition, rating procedure, acceptable values, and a detailed description of the 

special cases involved with the distress. The class then conducted field trips to illustrate the 

distresses and data collection procedures. 

Later in the week, experienced raters arrive and must attend the distress data collection 

review. These are called refresher classes. As with the inexperienced raters, each distress was 

reviewed and a brief field trip was taken to refresh the raters on field measurements. After that, 

the raters were separated into teams containing both experienced and inexperienced raters. 

Several field test sections were inspected, and the results were reviewed. Teams whose 

results were far from the average of the group were chastised, reminded of the distress definition, 

and counseled to bring their ratings in-line. The following table (Table 4) from a flexible 

training class in Austin lists the values for the mean, standard deviation (SDev), and coefficient 

of variation (CVar = Mean/SDev). 

Finally, prior to receiving their certification, raters are required to pass an open book test 

developed by TxDOT that covers the material discussed in the class. A score of 70 is required to 

pass. It is very rare that anyone fails this test. 

Table 4. Statistical Values for PMIS Flexible Distresses. 

Sect. Patch Failures Alligator Longitudinal 
Mean SDev CVar Mean SDev CVar Mean SDev CVar Mean SDev CVar 

7 24.8 8.5 34% 1.0 2.1 207% 14.6 7.4 51% 
10 5.1 4.7 92% 2.0 1.9 93% 90.3 11.6 13% 
14 13.4 4.8 36% 20.8 4.6 22% 
15 56.0 11.9 21% 18.1 9.0 50% 
18 13.3 7.1 53% 0.4 0.5 138% 13.4 5.6 42% 70.4 24.9 35% 
20 13.0 5.0 43% 134.0 32.0 24% 

Ave. 7.4 47% 1.2 115% 4.2 97% 14.9 32% 
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1.10 AUDIT PROCEDURE 

In order to verify that the contractors are performing inspections accurately, TxDOT has 

enlisted the support of TTl to provide certified auditors that travel with TxDOT district personnel 

and rate a portion of the pavements. TTl raters attend the certification classes alongside the 

raters provided by the contractors. 

TxDOT provides a list of audit sections to the districts based on providing sections that 

have representative pavement types in approximately the same percentage as that found in the 

district, pavements that were in good, fair, and poor condition as of the last inspection, and with 

the constraint that it includes at least three consecutive PMIS sections. 

TxDOT or TTl personnel create maps of the counties and district to aid in scheduling 

inspections, and the audit is coordinated with contractor personnel to ensure that the audit and 

annual inspections are conducted within two weeks of each other. Reducing the time between 

annual and audit inspections reduces the chance that pavement condition will change between 

the inspections. Occasionally, seal coat crews will still be working in the area, and there have 

been pavements rated by one team where the road was then seal coated before the second team 

could perform the inspection. In order to document this and other problems, such as having a 

patching crew repair the road, TTl inspectors include notes in the inspection file that document 

these conditions and provide other indications on potential problems with the inspections. In 

addition, audit crews typically note whether the sections should be easy, medium, or hard to rate. 

A section is easy when there is little distress or only one distress that is easy to count. Hard 

sections have substantial distress types and quantities and may have high traffic volumes or other 

factors that make the inspection difficult. After the annual and audit surveys are completed, 

these notes can help explain discrepancies between the surveys. 

1.11 PROBLEMS WITH CURRENT METHOD 

In spite of the best efforts of TxDOT and all parties involved, there are significant 

problems with the current inspection method: 

• One problem is certainly the cost. The annual cost of these inspections is approximately 
$1 ,500,000. When the current contract expires and is renegotiated, it is expected that the 
costs will increase. 
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• Vehicles driving very slowly along the shoulder or within the lane are a potential safety 
hazard for both the inspectors and the traveling public. 

• There is considerable variability in the inspections. Normally, inspections conducted 
during the class would be expected to be the most consistent and have a smaller standard 
deviation than there would be during production inspection because: 
o all parties know they are being observed; 
o there should be no "burn out" since only a few pavements are inspected during class; 
o there is no incentive, time limit, or rush to finish the inspection; 
o definitions of distresses to be used are fresh in the minds of the inspectors; and 
o there are three or four inspectors in each vehicle, so no distresses should be missed. 

• Inspectors in different regions may still be rating differently. Since there is no overlap of 
inspections on the same pavements, this hypothesis is never tested. 

1.12 IMPROVEMENTS TO AUDIT METHODOLOGY 

As part of the review of the audit procedures, researchers suggest the following 

improvements. Most of these suggestions were immediately implemented ( 1, 2, 4, and 5). 

Those that have not been implemented (3 and 6) are identified as such. 

1. Audit should be from RM to RM. Originally, three segments, usually each 0.5 mile in 
length were selected for the audit survey. The rationale was that with at least three 
segments, the auditors would spend less time simply driving from one area to another and 
more time rating. Since the direction of travel on a road is dictated by the location of the 
sun (distresses can be seen much better when looking into the sun), auditors often located a 
reference marker and then skipped the first 0.5 mile segment before starting the audit. 
Changing the selection process to have the audit section start at an RM and run 
continuously to the next RM increased accuracy (because the location where the audit was 
to start was more closely identified), reduced the driving time (fewer locations but more 
segments in an area), and simplified the paperwork. 

2. Increase Audit Percentage but Reduce Counties. As the statistical analysis will 
demonstrate, inspecting a higher percentage within a county reduces the errors and 
improves the confidence level that poor inspection procedures will be identified. However, 
since the statistical analysis was not yet completed, the primary reason that this was 
adopted was because it greatly reduced the nonproductive travel time. Under the original 
plan, it was common for auditors to drive two hours, inspect just a few sections, and then 
drive two or more hours to get to the next area. 

3. Use Variable Audit Percentage. Later in this report, a method of selecting the statistically 
appropriate percentage is identified. This method would increase the accuracy of the audit 
process and make there-rating of suspect counties statistically defensible. Counties with 
less than about 300 segments should not be surveyed. This recommendation has not been 
implemented. 
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4. Eliminate 0.1 Mile Segments. At the start of a highway, the reference marker is usually 
offset from the beginning of the road so that the RM can be placed on a highway sign. 
These offsets are usually identified as being 0.1 mile in length but are often as short as 
50 feet and as long as 750 feet. In these intersections, atypical distresses are often found 
and the traffic is usually higher and can be turning onto the road with little prior notice. 
Because these segments are difficult to inspect, they make poor locations to check the work 
of others. 

5. Eliminate "Bad" Sections. To ensure an adequate mix of sections in good, fair, and poor 
condition, the original plan used the previous year's rating to determine these sections. 
However, the practical significance of this was that those sections that were "bad" last year 
were usually on the seal coat or rehabilitation list for this year and were often in perfect 
condition. The recommendation is to eliminate these. Although not directly implemented, 
the section list generated a few years ago has continued to be used and those sections are 
beginning to age. Likewise, those sections that were once in "fair" condition are now 
becoming .. poor." 

6. Require Raters to Rate to Receive Certification. This is the most controversial of the 
recommendations and has not been implemented. In order to be certified, a rater need only 
to be able to see far enough to read a newspaper and have enough intelligence or 
experience to find the answers to the test in the manuaL Some raters have even used tests 
from previous years to assist them on the test. While this level of expertise may be good 
enough for the person who records the data, the person actually identifying the distress 
types and quantities should be held to a higher standard. Additionally, although the teams 
that are far from the mark are cautioned to get their ratings more in line with the class, the 
teams often feel that they are the ones who are correct and the rest of the class was in error. 
To improve this situation, raters should be required to actually rate some pavement 
properly in order to become certified. Test sections should be identified and surveyed by a 
TxDOT instructor and at least one other trusted rater. These sections should be surveyed 
and a "ground truth" established. Raters wishing to be certified should be required to 
inspect these sections and if the results of their PMIS Distress Scores are not all within 10 
points of the "expert" ratings, they are not certified. Another option would be to require all 
distresses to be within a certain variance, but as noted before the identification of distresses 
can be problematic. 
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CHAPTER 2. STATISTICAL ANALYSIS AND PROCEDURES 

2.1 INTRODUCTION 

The need to reduce survey error is easily understood although the methods to do so are 

not usually so obvious. One method TxDOT has already implemented is to use automated 

equipment to measure rutting. The automated rutting measurement has proven to be effective 

and accurate and reduces the exposure of the rating team to traffic. There has been considerable 

interest by TxDOT, other states, FHWA, municipalities, and other agencies in the use of an 

automated survey vehicle to measure distress. 

An important part of reducing the error is to define the quantity of measurement error of 

PMIS surveys. Figure 1 illustrates the problem with not knowing the measurement error. In 

Figure 1, there are three data points representing three years of data. The question to be 

answered from this graph is whether there is a trend in the data. For our example the question 

would be "Is the Condition Score improving?" 

The data points seem to show a general increase in Condition Score in that the 1996 and 

1997 values are greater than the 1995 value and the regression line drawn through the points has 

a positive slope. However, if the measurement error is as little as three points, the plot shown in 

Figure 2 is also possible. 

Based on the previous example, with a known measurement error, the appropriate answer 

to the question of a trend would be to say that there is no trend. 

There are a variety of methods that can be used to determine the error. 

Statistical Comparison of Data Sets 

If the distress data collected by different persons using the same method, or different 

persons using different methods, on the same section of pavement are exactly the same, the 

distress types, severities, quantities, and Distress Score calculated from each set will be the same. 

However, even if the same person inspects the same section of pavement on the same day, there 

will generally be some difference between the results. This difference is called the measurement 

error. 
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Part of the concern about manual surveys is that there is considerable subjectivity in how 

inspectors define and interpret the distress types and severities, which leads to some of this error. 

When the same inspector inspects the same section of pavement several times, and when 

different inspectors inspect the same pavement at the same time, they may interpret the distress 

present as a different type of distress or as the same distress but with a different quantity or 

severity. These differences that occur when inspectors use the same set of definitions indicate 

the error that is expected either within repeat inspections by the same inspector or the error that 

is expected when more than one inspector is used in inspecting pavements. Because the PMIS 

Distress Score is calculated based on type and quantity of distress, differences in distress data 

will generally also affect the Distress Score. When different methods of defining the distresses 

are used, the results generally cannot be directly compared because of the differences in the 

definitions. 

Even if all of the subjectivity due to manual definitions were removed, there is still a 

difference in the appearance of the road surface depending on the direction and angle of the 

sunlight striking the road surface, the amount of moisture on the pavement surface, and the 

direction from which the inspector views the pavement surface. When the temperature is high, 

some cracks may be pressed closely together, while they may be separated when the temperature 

is low. If the pavement surface is evaluated on different days, there may be an increase in the 

distress present on the surface, or maintenance personnel may apply maintenance treatments that 

will change the severity. These factors cause some of the error, and they cannot be changed by 

improving definitions. 

Contractors provide teams of raters to rate the condition of the roads. It is important to 

ensure that these ratings are as accurate as possible. To accomplish this, inspection crews from 

TTl and TxDOT independently check the ratings performed by the contractors. TxDOT 

mandates that the contractor must redo the inspections in a county if more than 10 percent of the 

distress scores in that county differ by more than 15 points from the distress scores reported by 

the TII!fxDOT audit team. Originally, a 6 percent sample of road segments was selected to be 

audited. 

One purpose of this research was to examine the PMIS audit procedure data from a 

statistical approach in order to revise the current audit procedures. 
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When considering a sampling-based verification system, the possibility of decision­

making errors should be considered. We examine in detail the performance of the current quality 

assurance procedure in the context of statistical decision theory, identify problem areas in the 

present specification, and propose possible improvements 

2.2 STATISTICAL CONSIDERATIONS FOR DECISION RULES 

The following definitions will be used throughout this report. 

Noncompliant Score- A contractor Distress Score that differs by more than 15 from the 
corresponding auditor's score for a particular road segment. 

Noncompliant Vendor - A contractor who has more than 10 percent noncompliant scores in 
a county. 

Type I Error - An error that occurs when we incorrectly conclude a vendor is noncompliant 
(false positive). 

Type II Error- An error that occurs when we incorrectly conclude a vendor is compliant; 
i.e., we fail to detect that a vendor is noncompliant (false negative). 

In a sampling situation, we can never know for certain whether we have made a Type I or 

Type II error; rather, we speak in terms of the probabilities of these errors occurring, given 

certain assumptions about the behavior of our data. The probability of making a Type I error is 

denoted by a (the probability we will erroneously require the contractor to resurvey a county), 

while the probability associated with making a Type II error is denoted by p (the probability we 

will not require the contractor to resurvey when we should have). We can alternatively view a 

(Type I) and P (Type II) as the false positive and false negative rates, respectively. A measure 

related to Type II error is power, defined as (1 - p). Power can be viewed as the probability of 

correctly concluding a vendor is noncompliant and measures our ability to detect 

noncompliance. 

The number of samples (sample size) is very important in any sampling scheme. One can 

view any statistically based decision as an educated guess that depends on the amount of 

information at hand. The required sample size can be viewed as the amount of information 

necessary for a sufficiently good guess, where the criteria for a good guess depends on the error 

probabilities a and P we are willing to tolerate. All three criteria are mutually antagonistic in 
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that we can only optimize our decision procedure with respect to one criterion at the expense of 

the other criteria. Trade-offs must be made and we must seek a compromise among the above 

three criteria by constructing an appropriate decision procedure. If we feel that the consequences 

of incorrectly rejecting a rater as noncompliant are more severe than failing to identify a 

noncompliant rater, we should seek, subject to limitations on sample size, a decision procedure 

which minimizes a at the expense of f3. If, however, we are more concerned with the possible 

consequences of failing to identify noncompliant raters, we should seek to minimize f3 at the 

expense of a. 

2.3 DECISION PROCEDURE 

Keeping in mind the previously discussed tradeoffs, we commence interpreting the 

TxDOT criterion in the context of statistical decision theory. Recall that the TxDOT criterion 

defines a rater to be noncompliant if more than 10 percent of the Distress Scores for road 

segments in a county differ by more than 15 points from the corresponding audit Distress Scores. 

We would like our decision procedure to have a low Type I error probability when the proportion 

of noncompliant vendor scores, p, is below 0.10 and a low Type II error probability when p is 

above 0.10. In fact, we will specify the maximum allowable value for a to be 0.05 when 

p = 0.1 0 ; our optimum decision procedure will be one which minimizes f3 at all values of p 

greater than 0.1 0, subject to the restriction on a. 

If we denote the proportion of noncompliant Distress Scores observed in a sample of road 

segments by p, then our decision procedure for determining whether a rater is compliant will be 

the following: 

If p > c, conclude that the rater is noncompliant. 

If p ~ c, conclude that the rater is compliant. 

The number c , 0 ~ c ~ 1 , is a cutoff value for our decision procedure. It specifies the maximum 

proportion of noncompliant Distress Scores we are willing to tolerate in a particular sample of 

road segments. This is currently set at 0.10. 

Statistics involving proportions usually assume that the sample from which the statistics 

are calculated come from an infinitely large population. Under this assumption, the individual 
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observations in the sample can be considered to be independent of one another, and the sample 

proportion has, by definition, a binomial distribution (Montgomery 1991 ). In the case of the 

road condition data, there are only a finite number of road segments (finite population) which 

can be sampled. If the sample is large relative to the population, the sample proportion will 

not change as much between different samples as it would for an infinite population. For 

example, if the entire population is included in the sample, the sample proportion will always be 

the same no matter how many samples are taken (assuming the population remains the same). In 

other words, observations in a sample from a finite population are not independent and the 

degree of correlation between successive samples depends on the sample size relative to the total 

population. This type of distribution is called hypergeometric. The hypergeometric distribution 

of the sample proportion will not have as much variation as for the infinite population case 

(binomial distribution), so test statistics involving the sample proportion will have smaller cutoff 

or critical values. Since we are dealing with proportions arising from hypergeometric random 

variables, we may apply a normal approximation with a finite population correction factor to 

obtain the following formula for the value of c: 

where 

c = p + 1.645.J N- n .J p(l- p) , 
N-1 n 

(1) 

p is the maximum allowable proportion of noncompliant distress scores for a county, 
specified to be 0.1 0; 

N is the total number of road segments in a county, and 

n is the number of road segments in the audit sample. 

We make the important distinction here between the total number of rater scores in a 

county, termed the population of scores, and the sample of scores we use to evaluate raters. Our 

decision procedure makes an inference about the population of scores based on the information 

present in our sample. With this distinction made, one must then bear in mind that the 

proportion of noncompliant scores in a sample, while being representative of the county-wide 

noncompliance proportion, is not the same as the latter. To illustrate, suppose a rater obtains 

100 scores for a county; of these, 1 0 scores are sampled for evaluation. Let us further presume 
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that the total proportion of noncompliant scores by that rater for the entire county was 0.1 0~ that 

is, if we were to audit all 100 scores, we would find that 10 scores were noncompliant (the 

proportion noncompliant was 0.1 0). Finally, suppose that 5 of the noncompliant scores by that 

rater just happen to be included in the sample of 10 scores. Our rater will then be judged to have 

50 percent of his scores noncompliant, even though his county-wide proportion of noncompliant 

scores is a much lower 0.1 0. Obviously, in this example, our rater has been extraordinarily 

unlucky in that so many of his noncompliant scores were included in the sample. Had a different 

sample been chosen, perhaps no noncompliant scores would have been included. Our decision 

procedure has been designed to guard against exactly this type of problem: the variability of 

results from sample to sample. 

Unlike the current, fixed criterion specified by TxDOT where the maximum allowable 

proportion of noncompliant scores is 0.1 0, our cutoff will be a variable proportion of 

noncompliant scores depending on the number of segments in a county. Examining Equation 1, 

we see that the maximum allowable proportion of noncompliant scores increases as sample size 

decreases. This occurs because the uncertainty in a decision procedure is greater for smaller 

samples, where we have less information on which to base our decision, than for larger samples. 

In order to ensure that raters having 1 0 percent noncompliant scores are not rejected as 

noncompliant more than 5 percent of the time, we need to increase the maximum allowable 

proportion of noncompliant scores in a sample from the currently fixed proportion of 0.10 to a 

higher value to include a reasonable margin of error to allow for uncertainty in the rating and 

audit procedures. 

The power of our decision procedure to detect a noncompliant rater may also be 

determined. Let p A > p = 0.10 be a rater's proportion of noncompliant distress scores within the 

entire county; then the probability of identifying this rater as noncompliant is 

P[Z>1.645 p(l-p) - pA-p .. Jn(N- 1)]· 
p A (l P A) ~ p A (1 - p A) V N - n 

(2) 

where Z is a random variable having a standard normal distribution. 

23 



2.4 APPLICATION TO ATLANTA AND LUFKIN DISTRICTS 

Sample data from two representative highway districts where contractors had been 

collecting distress data for two years and which had a wide range of number of segments in a 

county were used to develop and test the statistical procedures. The Atlanta and Lufkin districts 

constitute 895 audit segment ratings, covering 15 Texas counties. These are listed by county 

number in Table 5. The number of audited segments in each county ranged from a minimum of 

27 to a maximum of 89. The proportion of noncompliant scores observed for the audited road 

segments is also shown for each county. 

Table 5. Data for Atlanta and Lufkin Districts. 

County Total Number Audited Percent Proportion 
Number of Segments (N) Segments (n) Audited Noncompliant {p) 

3 872 71 8.1 0.2817 
32 257 48 18.7 0.0833 
103 1209 86 7.1 0.1395 
114 842 71 8.4 0.2958 
172 325 27 8.3 0.1111 
174 873 72 8.2 0.2639 
183 708 28 4.0 0.2500 
187 838 89 10.6 0.1460 
202 475 56 11.8 0.2500 
203 538 81 15.1 0.0123 
204 505 56 11.1 0.1071 
210 788 64 8.1 0.1250 
225 541 38 7.0 0.1842 
228 439 44 10.0 0.3181 
230 707 64 9.1 0.0781 

For each county, we found the cutoff value for the decision procedure yielding minimum 

Type IT error (false negative), for a Type I (false positive) error not to exceed 0.05, at p 0.10. 

The cutoff values are shown in Table 6, along with the decision outcome under both the 

unmodified TxDOT criterion and our procedure. The sample fractions, f, shown in Table 6 are 

simply the proportion of audited road segments in a county. In examining the table, one sees that 

the necessary proportion of noncompliant scores in a sample for rejecting a rater as noncompliant 

is, as expected, larger than 0.1 0. Note that the cutoff value is inversely proportional to sample 

size, with larger samples requiring lower cutoff values. We also see from the table that our 
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decision procedure rejects raters less often than decisions adhering to a strict 10 percent criterion; 

of the 15 counties examined, 7 are deemed noncompliant under our statistical decision 

procedure, while 12 are identified as noncompliant under the 10 percent rule. Note also that in 

marginal cases, where the proportion noncompliant is slightly greater than 0.1 0, our decision 

procedure, with its margin of error, does not reject a rater as noncompliant. For example, County 

204, with a proportion of noncompliant scores in the sample of 0.1071, is rejected as 

noncompliant under the 10 percent rule, while our decision procedure more reasonably 

concludes the proportion is within the margin of error. Another principle advantage of our 

decision procedure is that, properly constructed, it is very fair to raters, since its margin of error 

provides a formal mechanism for giving "benefit of the doubt." Decisions made using such a 

procedure are easier to justify and interpret. 

Table 7 investigates the power of our decision procedure to detect noncompliant raters 

for each of the 15 counties. The probabilities of rejecting a rater depend on the county-wide 

proportion of noncompliant scores, p . While we do not know this proportion, we do know the 

quantitative relationship between it and the power of our procedures. We may then calculate 

power for a wide range of p and generate what are known as power curves to describe the 

performance of our decision procedures. Two such power curves, corresponding to Counties 

103 and 225, are shown in Figure 3. Looking more closely at Table 7, one sees that the power to 

detect noncompliant raters increases as the county-wide proportion of noncompliant scores 

becomes much larger than 0.1 0. The rate of this increase is more rapid for larger sample sizes, 

as can be observed by comparing the power for counties 103 and 225 in Table 7 and Figure 3. 

Note that the probability of detecting a noncompliant rater, given that their proportion of 

noncompliant scores across a county is 0.15, is less than 0.5 for all but one of the counties. In 

other words, if a rater's county-wide noncompliance rate is 0.15, on average, more than half the 

time the county will not be identified. Power improves for p = 0.20, with our decision procedure 

being able to detect noncompliant raters over 90 percent of the time, on average. We see, 

however, that the ability to reliably detect noncompliance only emerges when a raters' county­

wide proportion of noncompliant scores is at least twice the currently allowable rate of 10 

percent. 
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Table 6. Optimum Decision Rules. 

Audit Audit Reject Rater If 
County Sample Sample Proportion Non- Cutoff 
Number Size (n) Fraction (j) compliant ( p ) (c) p>O.lO? p >c? 

3 71 0.0814 0.2817 0.1562 Yes Yes 
32 48 0.1868 0.0833 0.1644 No No 

103 86 0.0711 0.1395 0.1513 Yes No 
114 71 0.0843 0.2958 0.1561 Yes Yes 
172 27 0.0831 0.1111 0.1911 Yes No 
174 72 0.0825 0.2639 0.1557 Yes Yes 
183 28 0.0395 0.2500 0.1915 Yes Yes 
187 89 0.1062 0.1460 0.1495 Yes No 
202 56 O.ll79 0.2500 0.1620 Yes Yes 
203 81 0.1506 0.0123 0.1506 No No 
204 56 0.1109 0.1071 0.1622 Yes No 
210 64 0.0812 0.1250 0.1592 Yes No 
225 38 0.0702 0.1842 0.1773 Yes Yes 
228 44 0.1002 0.3181 0.1706 Yes Yes 
230 64 0.0905 0.0781 0.1589 No No 

Table 7. Power of the Decision Procedures. 

Audit Audit Probability of Rejecting a Rater If 
County Sample Sample 
Number Size (n) Fraction (j) p 0.15 p=0.20 p =0.25 p=0.30 

3 71 0.0814 0.4398 0.8561 0.9768 0.9977 
32 48 0.1868 0.3789 0.7799 0.9446 0.9904 
103 86 0.0711 0.4860 0.8996 0.9889 0.9993 
114 71 0.0843 0.4405 0.8569 0.9771 0.9978 
172 27 0.0831 0.2666 0.5741 0.7866 0.9100 
174 72 0.0825 0.4434 0.8600 0.9781 0.9979 
183 28 0.0395 0.2655 0.5718 0.7842 0.9083 
187 89 0.1062 0.5058 0.9149 0.9921 0.9996 
202 56 0.1179 0.3946 0.8017 0.9553 0.9933 
203 81 0.1506 0.4937 0.9058 0.9903 0.9995 
204 56 0.1109 0.3929 0.7995 0.9542 0.9930 
210 64 0.0812 0.4153 0.8282 0.9667 0.9959 
225 38 0.0702 0.3129 0.6696 0.8727 0.9618 
228 44 0.1002 0.3432 0.7239 0.9118 0.9792 
230 64 0.0905 0.4176 0.8310 0.9678 0.9961 
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Figure 3. Power Comparison of Decision Procedures for Two Counties. 

The performance of the decision procedures for Counties 103 and 225 in Figure 3 is 

especially relevant when we consider the sizes of these counties. The sample fractions for both 

are approximately 0.07 (as seen in Tables 6 and 7), but the total number of road segments in 

county 103 is 1209, over twice the number for county 225 (see Table 5). Clearly, there is a wide 

difference in performance between the decision procedures for the two counties; the power of the 

decision procedure for County 225 is always much poorer than that for County 103. It seems 

that using the same sample fraction across counties of differing size yields different performance 

results. 

Tables 8 through 10, along with Figures 4 and 5, examine the relationship of sample size 

to power in more detail. Table 8 shows the decision procedures calculated for 10 counties with 

varying total numbers of road segments. All the procedures were obtained using 6 percent 

sample sizes and a fixed Type I (false positive, rater is rejected unnecessarily) error of0.05. We 

notice in Table 9 that, for various proportions of noncompliant scores, the probability of rejecting 
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a rater as noncompliant is very poor for smaller audit samples and county-wide proportions of 

noncompliant scores near 10 percent, but improves as both the audit sample size and the 

proportion of noncompliant scores increase. This may be more easily seen in Figure 4. One may 

also observe from Table l 0 and Figure 4 that as sample size decreases, the decision procedures 

will require large county-wide proportions of noncompliant segments to detect rater 

noncompliance with any high level of power. 

The behavior we observe in Tables 9 and 10 and Figures 4 and 5 is explained by the fact 

that the performance of statistical decision procedures depends on the amount of data at hand. 

Specifying a fixed sample fraction gives inconsistent results in terms of the ability of the 

decision procedure to detect noncompliance; in this case, we are allowing sample size to dictate 

the performance of our decision procedure, instead of having the decision procedure dictate the 

sample size. Given a variable sample size, the error probabilities of our decision procedure will 

also be variable and hence uncontrol1ed. Consistent performance may only be achieved by 

ensuring that sample sizes are adequate for the degree of performance required. 

The primary impact of this analysis is that under the current audit procedures, we are 

unjustified, statistically speaking, to reject a contractor's rating of a county unless the percentage 

of noncompliant scores is much, much higher than the current 10 percent criterion. 

Table 8. Decision Procedures for Various County Sizes ( 6 Percent Sampling). 

Segments per Audit Sample 
County (N) Size (n) Cutoff (c) 

100 6 0.5000 
200 12 0.4167 
300 18 0.3333 
400 24 0.2917 
500 30 0.3000 
600 36 0.2778 
700 42 0.2619 
800 48 0.2500 
900 54 0.2407 

1000 60 0.2500 
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Table 9. Probabilities of Rejecting a Rater with 6 Percent Sampling. 

Segments per Proportion Noncompliant 
County (N) p 0.15 p =0.20 p =0.25 p =0.30 

100 0.1515 0.2848 0.4059 0.5189 
200 0.1886 0.3839 0.5538 0.6968 
300 0.2206 0.4657 0.6633 0.8088 
400 0.2497 0.5360 0.7462 0.8801 
500 0.2770 0.5970 0.8092 0.9252 
600 0.3029 0.6502 0.8570 0.9537 
700 0.3276 0.6967 0.8931 0.9714 
800 0.3512 0.7373 0.9204 0.9825 
900 0.3740 0.7727 0.9408 0.9893 

1000 0.396 0.8036 0.9561 0.9935 
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Figure 4. Probabilities of Rejecting a Rater under 6 Percent Sampling. 
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Table 10. Proportion of Noncompliant Scores Required before Rater Is Rejected (6 
Percent Sampling). 

Segments per 
County (N) 

100 
200 
300 
400 
500 
600 
700 
800 
900 

1000 

0.55 

0.50 

.!3 
55 0.45 

E 
C) 
G) 0.40 

(f) -t: .!!1 0.35 
a. 
E 8 0.30 
t: 
0 
z 0.25 
0 
t: 

.Q 0.20 
t: 
8. e o.1s 
a.. 

0.10 

0.05 

0.0 

Pr(rej. rater)= 0.9 Pr(rej. rater)= 0.75 Pr(rej. rater)= 0.5 

0.550 0.430 0.300 
0.420 0.330 0.240 
0.355 0.285 0.215 
0.320 0.260 0.200 
0.295 0.240 0.190 
0.275 0.230 0.180 
0.260 0.220 0.175 
0.250 0.210 0.170 
0.240 0.205 0.170 
0.230 0.200 0.165 

\ 
\ 

\ 
\ t\. 

\ 
""' \ ~ ~ !'--.. 

'~ ' ~ r--
r-..... 

..___ 
r-- 90%F lower 

~ --r-- '---- -t;;;er 

-----
!--- 75%F - r--. 50%F ower 

1 00 200 300 400 500 600 700 800 900 1 000 

Road Segments per County 
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2.5 AN ALTERNATIVE TO FIXED PERCENTAGE SAMPLES 

We propose an alternative criterion for determining the appropriate sample sizes, based 

on considerations of Type I error and power. For this method, we choose the sample size n to be 

the smallest integer such that 

K2N 
n ~ 2 ' 

K +N+l 
(3) 

where 

(4) 

Here, zaand Z(t-fJ) are the appropriate quantiles from a standard normal distribution, 

corresponding to the desired Type I error (a) and power ( l-p ), respectively. For example, 

suppose we wish to construct a decision procedure which specifies a= 0.05 at p = O.l 0, and 

(1- p) = 0.9 at p A = 0.20. The corresponding values for Za and Z(t-fJ) would then be 1.645 and 

1.28, respectively. 

Table 11 and Figure 6 show the sample sizes required for 90 percent power at four 

assumed county-wide noncompliance proportions p A , for county sizes of l 00 to l 000 road 

segments. All sample sizes are calculated using Equations 3 and 4. Table 12 and Figure 7 show 

the corresponding required audit fractions; note that the required audit fractions for smaller 

counties are much larger than those required under a fixed 6 percent sampling scheme. The 

required sample fractions for large counties are less than they would be under a strict 6 percent 

sampling scheme only if we are satisfied with achieving 90 percent power at a county-wide 

proportion of noncompliant scores greater than 0.225. Figure 7 indicates that only large sample 

fractions can ensure adequate power to detect noncompliant raters when the audited counties 

have less than 300 highway segments. 

2.6 APPLICATION TO INSPECTION PROCEDURES 

The application of the preceding statistical analysis, when applied to the actual 

distribution of pavement conditions in Texas, illustrates that as currently implemented a 

contractor could submit distresses that would result in a Distress Score of 85 for all pavement 

sections throughout the state without inspecting any pavement and could not be penalized. This 

31 



is because of the high average distress score for Texas pavements and the statistical analysis of 

the auditing procedures presented in this report. Table 13 lists the percentages of pavement 

segments within a district that have a Distress Score less than 70. 

Under the current procedures, some counties would be identified as being noncompliant. 

In that case, the contractor could simply re-inspect, or in this case inspect, those counties. 

To solve this potential problem, the researchers propose that the procedures identified in 

the previous section, along with Table 11, be implemented. 

Table 11. Number of Audit Segments Required for 90 Percent Power at Specified p A 

(a= 0.05). 

Segments per Proportion Noncompliant ( p A) 
County (N) 0.200 0.225 0.250 0.300 

100 51 41 34 23 
200 68 51 40 26 
300 76 56 43 27 
400 81 59 44 28 
500 85 60 45 28 
600 87 61 46 28 
700 89 62 46 29 
800 90 63 47 29 
900 92 64 47 29 

1000 92 64 47 29 

Table 12. Sample Fractions Required for 90 Percent Power at Specified p A (a= 0.05 ). 

Segments per Proportion Noncompliant ( p A) 
County (N) 0.200 0.225 0.250 0.300 

100 0.5100 0.4100 0.3400 0.2300 
200 0.3400 0.2550 0.2000 0.1300 
300 0.2533 0.1867 0.1433 0.0900 
400 0.2025 0.1475 0.1100 0.0700 
500 0.1700 0.1200 0.0900 0.0560 
600 0.1450 0.1017 0.0767 0.0467 
700 0.1271 0.0886 0.0657 0.0414 
800 0.1125 0.0788 0.0588 0.0362 
900 0.1022 0.0711 0.0522 0.0322 

1000 0.0920 0.0640 0.0470 0.0290 
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Table 13. Percentage of Segments with Distress Score Less than 70. 

Fiscal Year 

District 2001 2002 2003 2004 

Paris 10.2 14.3 12.1 10.8 

Fort Worth 7.3 7.7 7.7 7.5 
Wichita Falls 5.4 10.8 7.6 7.0 

Amarillo 17.4 13.4 17.5 12.9 

Lubbock 12.9 14.4 12.9 10.6 

Odessa 3.5 3.7 I 2.7 3.7 
San Angelo 6.5 6.6 4.7 

I Abilene 7.0 5.9 6.4 7.0 

Waco 6.9 9.3 9.8 6.6 

Tyler 7.6 8.5 12.0 9.0 
Lufkin 12.8 11.8 10.0 8.7 
Houston 15.8 20.0 19.9 20.3 

Yoakum 13.0 12.1 11.0 9.5 

Austin 10.6 15.8 10.6 9.4 

San Antonio = 11.0 10.9 10.2 12.6 

Corpus Christi 14.5 15.3 13.3 13.9 

Bryan 12.0 11.6 8.4 11.2 
Dallas 26.7 25.1 18.3 14.7 
Atlanta 3.5 6.4 4.5 4.9 

Beaumont 14.7 16.2 18.2 9.1 

~0 4.6 6.6 6.6 7.4 

6.9 1 11.4 14.5 12.8 

Brownwood 5.4 7.3 4.9 3.5 
El Paso 9.2 7.0 6.1 7.4 

Childress 7.2 6.2 8.6 8.8 
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CHAPTER 3. CONFIDENCE INTERVALS FOR PAVEMENT 
CONDITION SCORES 

3.1 INTRODUCTION 

Each year the Texas Department of Transportation inspects over l 00,000 segments of 

roadway across the state. The results of these inspections are important for both ascertaining the 

condition of Texas roads and determining the proper allocation of funding for road maintenance. 

One principle concern related to these measurements is whether the fluctuations observed in 

average road condition from year to year represent real increases or decreases in this statistic, as 

opposed to being the result of random measurement errors. A goal of this project is to 

characterize the variability of mean pavement Distress Scores and develop a statistical 

framework for evaluating their year-to-year differences. 

The most familiar method of reporting measurement uncertainty is the confidence interval, 

where a statistic is combined with information about its variability to produce an interval 

estimate. The method of constructing this interval is expected, in repeated application, to include 

the value of the parameter being estimated by the statistic a certain proportion of the time, 

termed the confidence level. Such intervals or their counterparts, statistical hypothesis tests, may 

then be used to determine statistically significant differences between measurements. 

We have pursued two approaches to the problem of interval estimation of pavement 

Distress Scores: 

1. parametric confidence intervals, which involve assumptions about the probability 
distribution of the scores; and 

2. bootstrap (or nonparametric) confidence intervals, which are a computational approach 
and not reliant on distributional assumptions. 

We compare the performance of both approaches by applying them to recent road condition 

distress scores, and demonstrate the methods used for statistical comparison of differences 

among scores. 
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3.2 LARGE SAMPLE PARAMETRIC CONFIDENCE INTERVALS FOR MEANS 

The confidence intervals discussed here all involve the application of the law of large numbers, 

which states: given a large enough sample size from which to compute our statistic, the 

probability distribution of that statistic will converge to that of a normally distributed random 

variable (Casella and Berger 1990). Thus, for a sample mean fl computed from a sample of size 

n, a 100( 1-a) percent confidence interval for the population mean J..l is 

where 

fl+ a 
!"'- Za/2 .J;; ' 

a is the estimated standard deviation of the sample and 

Za12 is the upper a 12th percentile of a standard normal distribution. 

A brief example is useful for understanding the above nomenclature. Suppose we desire a 

(5) 

95 percent confidence interval for J..l. This implies that I 00( 1-a)= 95; solving this equation for 

a yields a= 0.05. The value of za12 will be the percentile of a standard normal distribution for 

which P(Z > Za12 ) = a/2 = 0.025, which is 1.96. 

As another example, on the Stanford-Binet Intelligence Test, a score of 100 means that 

50 percent of all individuals taking the test score below this value. Thus, 100 is the quantile 

corresponding to P(X > 100) = 0.5; alternatively, 100 is the 50th percentile of the distribution of 

scores on the test. The distinction between quantiles and percentiles is contextual, in that the 

term quantile is used when probabilities are being discussed (decimal number), and percentiles 

are used when percents are being discussed (a percentage is the probability multiplied by 100). 

We may also readily construct confidence intervals to compare two populations. Let A 

and /l2 be the sample means obtained from samples of size 11t and ~, respectively, and assume 

that these samples were taken from two independent populations having respective means liJ 

and ~ . Then a 100 ( 1-a) percent confidence interval for the difference in the population 

means j..l1 - j..l2 is 
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(6) 

where the quantities 8"1 and 8"2 are the standard deviations obtained from the two samples so 

that ~ 8"1 I n1 + 0"2 1 nz represents the standard deviation of the estimator A - /12 • 

3.3 RELATION BETWEEN CONFIDENCE INTERVALS AND HYPOTHESIS 
TESTING 

Any 100( 1-a) percent confidence interval has a corresponding hypothesis test at a 

significance level (maximum Type I error rate} of a. For determining whether two means are 

different from each other at significance level a, the appropriate set of hypotheses are 

Ho: lA- .Uzl = 0 • 

H A : lA - .Uzl > 0 · 

Under the null hypothesis H 0 (which assumes the means are equal), and provided that ~ and nz 

are sufficiently large, the statistic 

z (7) 

is a random variable having a standard normal distribution. Now assume that, for two given 

samples, we obtain a value for Z , say z *. The decision rule for choosing between hypotheses 

will depend on the likelihood of observing, under the null hypothesis, a value of the test statistic 

Z whose magnitude is as least as large as z • . Specifically, we will base our decision on the 

probability P(lz > z *I) of observing this, which is referred to as the p-value of the test statistic. 

The decision rule for the above hypotheses may then be stated: 

If P~Z > z *I)> a, reject H 0 and conclude that !A- ,.U2 j is larger than 0 at significance 

level a. The means are statistically different. 
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If P(lz > z *I ) ::; a , fail to reject H 0 and conclude that there is insufficient evidence to 

disprove the assumption that l.u, - ,.u21 = 0 at significance level a. The difference 

between the means is not statistically different. 

The p-value may be interpreted as the strength of evidence against the null hypothesis, with p­

values much smaller than a emphatically disproving H 0 and there is a difference in the means 

from year to year. Similarly, large p-values indicate the lack of evidence against the null 

hypothesis and there is no trend. 

The power of the test, or the probability of rejecting the null hypothesis when H A is true, 

may be obtained by 

(8) 

where 

Z is a random variable having a standard normal distribution, 

Zatz is the upper a 12th percentile of a standard normal distribution, 

,.UA = ,.U1- ,.U2 , ,.UA * 0 is the mean difference between the two populations, and 

a= a, + az is the standard deviation of the estimate for f.lt- ..Uz • 
n1 n2 

The operation of a smoke alarm illustrates the nature of Type I and Type II error. The 

alarm needs to be sensitive enough (have a low enough Type IT error rate) such that it will be 

able to reliably detect a fire. Imagine if the sensitivity of the detector is such that it correctly 

detects the presence of a fire half the time. Such a detector will probably have a low false alarm 

(Type I error) rate; i.e., it will not sound when frying food in the kitchen, however, it is clearly 

unacceptable to have a smoke detector which only "works" half the time. If the sensitivity of the 

smoke detector is increased so that it can correctly detect a fire 99 percent of the time, it will 

have a much higher false alarm (Type I error) rate and the fried chicken dinner may be 

interrupted. 
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In the case of evaluating raters, a similar trade-off must be made. One must decide 

whether it is more important to protect raters from the consequences of false alarms, or to ensure 

that noncompliant raters are reliably identified. Based on this decision, appropriate Type I and 

Type II error rates can be specified for the tests. 

3.4 BOOTSTRAP CONFIDENCE INTERVALS FOR MEANS 

Even if the observations are not normally distributed, the distribution of the mean or the 

proportion will be normally distributed if the sample size is very large (Casella and Berger 

1990). This is known as the law of large numbers. If the average distress score is computed 

from thousands of scores, the distribution of the average distress score can safely be assumed to 

have a normal distribution. For nonparametric confidence intervals, we can use a method known 

as bootstrapping to simulate the distribution of our statistic from the observed sample data 

(Davison and Hinkley 1997). Bootstrap methods are often used for analysis of experiments 

when sample sizes are small and the data are not normally distributed. 

By sampling with replacement from our observed data, whereby we generate a new 

sample from our data, we can generate a "new" set of data, called a bootstrap replicate or 

bootstrap sample, and obtain a different value for our statistic. If we repeat this process for a 

large number B of bootstrap replications, we get a distribution of many different values for our 

statistic. It is by ordering these values and selecting the appropriate percentiles that we create 

bootstrap confidence intervals. As an example, if we had 20 data points, we could take the 20 

numbers and put them in a hat. A new bootstrap sample would be generated by drawing a 

number out of the hat (sampling), writing down the number, and then returning that number to 

the hat (replacement). The hat is re-shuffled and a number drawn again (it could be the same 

number). This process is continued until a total of 20 numbers are drawn. 

The obvious advantage of bootstrap confidence intervals is that they may be obtained 

readily in many circumstances when a parametric approach is difficult or impossible to 

implement. Bootstrap intervals may also serve to corroborate parametric results in cases where 

both methods are applicable, by affording an examination of how closely the assumed and 

empirical probability distributions of the test statistic match. The disadvantage of the bootstrap 
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approach lies in the computational difficulties associated with resampling extremely large 

sample sizes, especially when there are 105 observations, such as in the TxDOT PMIS database. 

Bootstrap methods may be viewed as an approximation to another nonparametric 

approach known as permutation methods, which require the calculation of every possible 

permutation of the sample. For those who may feel uncomfortable with the use of nonparametric 

methods such as these, note that, historically, permutation methods were the preferred choice. 

Parametric probability distributions eventually achieved prominence for the primary reasons that 

they were computationally less demanding than their permutation counterparts and served as 

excellent approximations for permutation distributions. With the phenomenal improvement in 

computational resources in recent decades, nonparametric methods are regaining the recognition 

they enjoyed for the majority of the history of statistics. 

3.5 APPLICATION TO DATA FROM ATLANTA AND LUFKIN DISTRICTS 

The data shown in Table 14 comprise the pavement Distress Scores for 15 counties 

audited in both 1999 and 2000. Figure 8 shows the smoothed estimates for the probability 

densities of each year's Distress Scores. Note that the figure indicates pronounced skewness, 

with many scores clustering near the maximum value of 100. The densities also exhibit minor 

modes centered around 70, most likely due to heterogeneity in road conditions across counties. 

That is, within a county many scores seem to be either excellent or fair. Fortunately, the sample 

sizes are quite large so that we can be reasonably optimistic that the law of large numbers still 

holds. 

Parametric and bootstrap 95 percent confidence intervals were constructed for the mean 

distress score for each of the two years, denoted by f.J1999 and f.JzCXXJ , as well as their difference, 

with the results shown in Table 15. All bootstrap intervals were obtained by using 

B = 5000 bootstrap replications. One may see immediately the excellent agreement between the 

bootstrap and parametric results; most values differ only by a few hundredths of a point. 

Examining the confidence interval (CI) for the difference in means, we see that the interval 

includes the value of 0 for both methods. Drawing on the relationship between confidence 

intervals and hypothesis tests, we would conclude that the difference in mean Distress Scores 

across the two years is not significant at a 0.05 (null hypothesis is true). 
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Table 14. Data for Atlanta and Lufkin Districts. 

County Total Number 1999 Audited 2000 Audited 
Number of Segments Segments Segments 

3 872 71 None 
32 257 48 9 
103 1209 86 62 
ll4 842 71 34 
172 325 27 16 
174 873 72 49 
183 708 28 34 
187 838 89 23 
202 475 56 24 
203 538 81 27 
204 505 56 20 
210 788 64 29 
225 541 38 26 
228 439 44 27 
230 707 64 33 
Total Audited Segments 895 413 
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Figure 8. Estimated Probability Density for 1999 and 2000 Distress Scores. 
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We may better understand the close correspondence between the results of the two 

methods by considering the plots of the bootstrap density estimates for mean distress scores 

shown in Figure 9, and the bootstrap density estimate for the difference in mean distress scores 

shown in Figure 10. The two figures indicate that all three statistics are normally distributed; the 

distribution for the 2000 data is "fatter" as a result of the smaller sample size. This confirms our 

initial conjecture that the law of large numbers would assure convergence of the distributions of 

our statistics to normality. 

Hypothesis tests were also conducted at level a 0.05 to determine if the difference in 

mean distress scores 14 - 1-lJ. was nonzero, using both parametric and nonparametric methods. 

Test results are shown in Table 16; we see again that both methods yield very similar values. 

Both p-values are greater than 0.05, indicating insufficient evidence to reject the null hypothesis 

of zero difference, and the mean values of the Distress Scores for all pavements in the two 

districts are not statistically different from one year to the other. The power of the parametric 

test is displayed graphically in Figure 11, where we see that the test's ability to detect a nonzero 

difference between mean distress scores is relatively poor for any difference less than ±2. 

However, if the difference is greater than 3, we would be able to detect a statistical difference 85 

percent of the time. Coincidentally, the calculated standard deviation of the test statistic A -~ 
is 1.0051, which means that the scale of the x -axis in the figure represents standardized units. 

Hence, Figure 11 may also be interpreted as the general power curve for tests of differences in 

means. 

Table 15. Parametric and Bootstrap Confidence Intervals for Lufkin and Atlanta Districts. 

Parameter Estimate 95 Percent 95 Percent 
Parametric CI Bootstrap CI 

Lower Upper Lower Upper 

fl.t999 90.9452 89.8818 92.0088 89.86 91.99 

f.lzooo 89.7070 88.0489 91.3652 88.07 91.37 

fl.t999 - Jlzooo 1.23823 -0.7317 3.2081 -0.7485 3.233 
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Figure 10. Bootstrap Density Estimate for the Difference between 1999 and 2000 Mean 
Distress Scores. 

Table 16. Hypothesis Test Results for Difference in Mean Distress Scores. 

Method 

Parametric 
Bootstrap 

Test Statistic Value 

1.2320 
1.2820 
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p-value 

0.2180 
0.1996 
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Figure 11. Power of the Test for Differences in Mean Distress Scores. 

3.6 APPLICATION TO MEAN DISTRESS SCORES FOR ALL DISTRICTS 

We next examined Distress Scores from 1999 for all 25 districts, totaling 149,504 rated 

road segments. The distributions of the distress scores varied across districts, as can be seen 

from the smoothed density estimates in Figure 12. The three districts shown in the figure are 

representative of the types of distributions of distress scores observed. Distress Scores for the 

Houston District, for example, have a highly skewed, unimodal distribution, indicating that most 

road segments across all counties in the district had high distress scores. The elongated left tail 

of the distribution indicates that isolated road segments in poorer condition could be found 

scattered across the district as well. The distribution for the Wichita Falls District, however, 

shows that while the majority of distress scores were 90 or above, there was a significant 

minority of scores in the range of 70-80. This would seem to indicate that there are identifiable 

subgroups of highway segments that differ in their mean distress scores, perhaps due to recent 

road reconstruction or different pavement types. The San Angelo District presents the most 
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extreme example of multimodality; here we see that highway segments are divided between 

those with distress scores above 90 and those whose distress scores are centered around 82. 

There is also a substantial minority of segments having a Distress Score in the 50-70 range. 

95 percent confidence intervals were constructed for mean pavement Distress Score in 

each district, with the results tabulated in Table 17. All bootstrap intervals were again 

constructed from B = 5000 replicates. Despite the variety of distributions of distress scores, we 

could be assured of the appropriateness of employing large-sample parametric confidence 

intervals because the data for each district contained at least 604 road segments. Indeed, as in 

the case for the data from the Lufkin and Atlanta Districts in Section 3.5, we observe close 

agreement between the parametric and bootstrap results. The large sample sizes ensure 

reasonably precise interval estimates, with most intervals having widths less than one. 
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Figure 12. Estimated Probability Densities for Distress Scores in Selected Districts. 

We may also observe a rough correspondence between sample size n and the widths of 

the confidence intervals in Table 17. Recall that from Equation 5 the width of an interval is 

inversely proportional to the square root of the sample size. For example, the ratio of widths of 

the parametric intervals for the Wichita Falls and Lubbock Districts is approximately 6 (that is 
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the width of the interval for Wichita Falls is 6 times the size as that for Lubbock), while the ratio 

of the square roots of sample sizes for the two districts is 4.2. 

Table 17. Parametric and Bootstrap Confidence Intervals for Mean Distress Scores. 

Segments Mean 95 percent 95 percent 
District Rated (n) ({l) Parametric CI Bootstrap CI 

Lower Upper Lower Upper 

Paris 6725 92.3526 91.9947 92.7104 92.0101 92.7151 
Fort Worth 3614 93.4427 92.9183 93.9671 92.8953 93.9715 
Wichita Falls 604 86.5861 84.8099 88.3623 84.7875 88.3282 
Amarillo 9170 86.9662 86.5810 87.3513 86.6031 87.3923 
Lubbock 10651 90.8091 90.5123 91.1060 90.5184 91.0987 
Odessa 6444 96.5663 96.3409 96.7917 96.3278 96.7851 
San Angelo 6183 81.3962 81.0020 81.7905 81.0104 81.7964 
Abilene 8350 94.2783 94.0217 94.5350 94.0204 94.5311 
Waco 6582 94.3177 94.0231 94.6123 93.9869 94.5976 
Tyler 1030 91.9573 91.0970 92.8176 91.0340 92.7806 
Lufkin 3386 92.4259 91.9473 92.9044 91.9079 92.8686 
Houston 6780 87.5618 87.0640 88.0596 87.0737 88.0732 
Yoakum 7341 88.0672 87.6704 88.4639 87.6698 88.4398 
Austin 6199 87.2376 86.8373 87.6380 86.8166 87.6395 
San Antonio 9928 91.0626 90.7544 91.3707 90.7381 91.3606 
Corpus Christi 6401 91.0987 90.6912 91.5063 90.6904 91.5019 
Bryan 6692 91.2862 90.8712 91.7011 90.8742 91.7010 
Dallas 8812 80.3740 79.8098 80.9383 79.8175 80.9537 
Atlanta 5747 95.5634 95.3358 95.7911 95.3134 95.7728 
Beaumont 3697 88.4266 87.7458 89.1073 87.7278 89.0756 
Pharr 4990 95.8060 95.5187 96.0934 95.4989 96.0775 
Laredo 4667 93.4131 93.0609 93.7653 93.0352 93.7680 
Brownwood 5652 95.1515 94.8796 95.4233 94.8939 95.4303 
EI Paso 4494 93.0120 92.5941 93.4300 92.5691 93.4058 
Childress 5365 92.1940 91.8775 92.5105 91.8571 92.5055 

We also constructed a 95 percent parametric confidence interval for the overall mean 

Distress Score, which is shown in Table 18. The extremely large number of observations 

precluded the generation of bootstrap intervals although this difficulty could be ameliorated by 

performing computations on a computer with a fast processor and at least 512 megabytes of 
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RAM. Note that the very large sample size has resulted in a very precise interval estimate, with 

the width of the confidence interval being less than 0.2. That is, if the mean Distress Score 

varies from year to year by more than 0.35, this difference is statistically significant. 

Table 18. Parametric Confidence Interval for Overall Mean Distress Score. 

Segments 
Rated (n) 

149,504 

Mean 
(/L) 

90.5986 

95 Percent 
Parametric CI 

Lower Upper 

90.5141 90.6831_ 

From this we can see that there is no statistical reason for the scores to vary back and 

forth from year to year. Therefore, these differences represent either a true physical difference 

where the actual condition of the pavement is changing from year to year or some discrepancy in 

the data collected. 

An analysis was conducted of statewide data from 1999 through 2004 which showed that 

year to year changes were all statistically significant at an experiment wise significance level of 

0.005. This is due to the very large number of observations. While all results were statistically 

significant, the range of values was 91.309 (2002) to 92.734 (2004) which was a range of 1.425. 
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CHAPTER 4. SUMMARY AND CONCLUSIONS 

Each year the Texas Department of Transportation inspects over 100,000 segments of 

roadway across the state. Except for mileage under construction, or otherwise identified, all of 

the mileage is inspected. The results of these inspections are important for both ascertaining the 

condition of Texas roads and determining the proper allocation of funding for road maintenance. 

Prior to the start of the inspection season, contractor, TxDOT, and TTl personnel are 

required to attend training classes to become certified inspectors for the calendar year. Changes 

to the manual, including clarifications and interpretations, and inspections of selected sections 

are used in order to reduce the rater-to-rater variability between inspection teams. 

The current method of certifying qualified raters for PMIS inspections can be improved 

by adopting the recommendations to: 

• audit from one RM to the next RM, 

• eliminating the inclusion of short sections, 

• not including pavements that were in poor condition during the last inspection, 

• increasing the percentage of sections that are audited to a variable percentage based on 

the number of sections in a county, and 

• requiring raters to rate pavement as part of the certification process. 

Most of these suggestions were immediately implemented, but others are still under 

consideration. 

In an effort to standardize data collection, reduce variability between districts, reduce the 

number of raters, complete the work more quickly, and to free-up district personnel, TxDOT 

hired contractors to perform this intensive data collection effort and has TxDOT and personnel 

from TTl check the results by performing an audit survey of 6 percent of the pavements. The 

original TxDOT criterion defines the rating of a county to be noncompliant if more than 10 

percent of the Distress Scores for road segments in that county differ by more than 15 points 

from the corresponding audit Distress Scores. 

In our analysis of two districts, the probability of detecting a noncompliant rater, given 

that their proportion of noncompliant scores across a county is 0.15, is less than 50 percent for all 

but one of the counties. However, the ability to reliably detect noncompliance only emerges 
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when a raters' county-wide proportion of noncompliant scores is at least twice the currently 

allowable rate of l 0 percent. 

The primary impact of this analysis is that under the current audit procedures, we are 

unjustified, statistically speaking, to reject a contractor's rating of a county unless the percentage 

of noncompliant scores is much, much higher than the current 10 percent criteria. The 

application of the preceding statistical analysis, when applied to the actual distribution of 

pavement conditions in Texas, illustrates that as currently implemented a contractor could submit 

distresses that would result in a Distress Score of 85 for all pavement sections throughout the 

state without inspecting any pavement and could not be penalized. This is because of the high 

average distress score for Texas pavements and the statistical analysis of the auditing procedures 

presented in this report. 

We propose an alternative criterion for determining the appropriate sample sizes, based 

on statistical considerations. The analysis shows that the required audit fractions for smaller 

counties are much larger than those required under a fixed 6 percent sampling scheme. The 

required sample fractions for large counties are less than they would be under a strict 6 percent 

sampling scheme only if we are satisfied with achieving 90 percent power at a county-wide 

proportion of noncompliant scores greater than 22.5 percent. 

Another principle concern of this research was to determine whether the fluctuations 

observed in average road condition from year to year represent real increases or decreases in this 

statistic, as opposed to being the result of random measurement errors. 

The very large sample size has resulted in a very precise interval estimate, with the width 

of the confidence interval being less than 0.2. That is, if the mean Distress Score varies from 

year to year by more than 0.35, this difference is statistically significant. 
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