Technical Report Documentation Page

1. Report No. 2. Government Accession No.

FHWA/TX-04/0-1752-11

3. Recipient's Catalog No.

4. Title and Subtitle

CENTER-TO-CENTER COMMUNICATIONS IN LOW-
BANDWIDTH ENVIRONMENTS

5. Report Date

October 2003

6. Performing Organization Code

7. Author(s)
Robert E. Brydia, Steve C. Liu, and Kevin N. Balke

8. Performing Organization Report No.

Report 0-1752-11

9. Performing Organization Name and Address
Texas Transportation Institute

The Texas A&M University System
College Station, Texas 77843-3135

10. Work Unit No. (TRAIS)

11. Contract or Grant No.

Project No. 0-1752

12. Sponsoring Agency Name and Address

Texas Department of Transportation

Research and Technology Implementation Office
P. O. Box 5080

13. Type of Report and Period Covered
Technical Report:

September 2001 — August 2003

14. Sponsoring Agency Code

Austin, Texas 78763-5080

15. Supplementary Notes
Project performed in cooperation with the Texas Department of Transportation and the Federal Highway

Administration.
Project Title: TransLink® Research Program

6. Abstract
Center-to-center (C2C) communications provides the capability of exchanging status and control

information across centers with disparate systems. Built upon national standards, the Texas
implementations provide a C2C infrastructure which allows centers to provide command and control
functions to other centers. Participating centers can extract this information, forming a statewide traffic

management capability.

This report summarizes the research performed to examine the impacts of using the infrastructure in a low-
bandwidth environment. Multiple testing scenarios were constructed and examined to determine what, if
any, negative impacts would result from center connections over modems.

The results clearly show that the amount of data involved in the exchange of most C2C information is not
sufficient to stress even low-bandwidth connections. The caveat is the exchange of closed circuit TV
(CCTV) snapshots, which may take 2-20 seconds, depending on a number of factors, including size of the
snapshot and the modem connection speed.

17. Key Words 18. Distribution Statement
Center-to-Center Communications, C2C, TMDD, No restrictions. This document is available to the

Low-bandwidth, TxDOT public through NTIS:
National Technical Information Service
Springfield, Virginia 22161

http://www.ntis.gov
19. Security Classif.(of this report) 20. Security Classif.(of this page) 21. No. of Pages 22. Price
Unclassified Unclassified 46

Form DOT F 1700.7 s-72)

Reproduction of completed page authorized

CENTER-TO-CENTER COMMUNICATIONS
IN LOW-BANDWIDTH ENVIRONMENTS

by

Robert E. Brydia
Associate Research Scientist
Texas Transportation Institute

and
Steve C. Liu, Ph.D. Kevin N. Balke, Ph.D., P.E.
Associate Research Scientist TransLink® Center Director
Texas Transportation Institute Texas Transportation Institute

Report 0-1752-11
Project Number 0-1752
Project Title: TransLink® Research Program

Performed in cooperation with the
Texas Department of Transportation
and the
Federal Highway Administration

October 2003

TEXAS TRANSPORTATION INSTITUTE
The Texas A&M University System
College Station, Texas 77843-3135

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and
the accuracy of the data presented herein. The contents do not necessarily reflect the official
view or policies of the Federal Highway Administration (FHWA) or the Texas Department of
Transportation (TXxDOT). This report does not constitute a standard, specification, or regulation.
The engineer in charge was Kevin N. Balke, P.E. (Texas, #66529).

ACKNOWLEDGMENTS

This project was conducted as part of the TransLink® research program and was performed in

corporation with the Texas Department of Transportation and the Federal Highway

Administration. The project team recognizes the following TransLink® partners for their

generous support of the TransLink® research program:

U.S. Department of Transportation, Federal Highway Administration;
Texas Department of Transportation;

Metropolitan Transit Authority of Harris County;

Texas Transportation Institute; and

Rockwell International.

The project team would also like to recognize the following individuals for their support of this

specific project:

David Gibson, Federal Highway Administration;

Mark Olson, Federal Highway Administration;

Al Kosik, Traffic Operations Division, Texas Department of Transportation;
Richard Reeves, Traffic Operations Division, Texas Department of Transportation;
Sally Wegmann, Houston District, Texas Department of Transportation;

Terry Sams, Dallas District, Texas Department of Transportation;

Wallace Ewell, Fort Worth District, Texas Department of Transportation; and

Pat Irwin, San Antonio District, Texas Department of Transportation.

vi

TABLE OF CONTENTS

Page
List of Figures..... S SRSRERTP NN TT——— viii
List of Tables couunnmmaamsmnnsssnenssnasoni R AR SRR S ix
CHAPTER 1: INTRODUCTION |
JE 5 C1C g1l OO 1
WIHAT T8 U020 o uuscssinmnnsssosnssnsicassssesinsissososssses it ss0.50HS8 855555055 S SIS A SNBSS 2
HOW DOES IT WORKT?.....otitiiieieeeeece et stee et s et et sae st sa e sse st e saesebesasessenanens 3
TXDOT C2C IMPLEMENTATIONS ...ttt st 4
CUITENL ...ttt et e et b e et e e sae e se b e e sbeentens e b e e b enteseen e sae st enbe satentesanennean 4
P U s mmnsnomnomonnnsssssimommmosnmsessassis nsss o hsss e SRS S5 S8 AR BB TS5 SRR 5
TRANSLINK® C2C EFFORTS ..oovvcvvtmecvosnsiesessssesesssseesssss s sssssesssssesessssssssessssssssssssesseseses 6
CHAPTER 2: LOW-BANDWIDTH COMMUNICATIONS TESTING.cccevurreerrecserncssnnne 7
TEST CONFIGURATION 1 — ALL C2C COMPONENTS ON THE SAME MACHINE....... 7
The Status Interface Test Server Configuration. .o 8
The Data Provider Configuration...........cceeveruierieimmiiiiiineeiciece st 8
The Data Collector Configurationcooveeceeeertirieninnceneenee e e 10
The Data Extractor Configurationccceceecieevieeeiiiiiesicerteeieesseeeseesieeeneseessessnesssessseenas 11
The Status Interface Test Client Configurationccccceeeieeciieeerinineene e 12
Initiate C2C INFTASIIUCEUTEcoreenssmonsensnsencnssarssssssesanmsbonasnasibinsnesebiinnmessssbebnssaiibiossniss fukdhosdss 12
C2C Software Component RESPONSE........cceeeeerrerieritieirtecrenertesteteeeeesesseesessseensesseeeneens 13
Results of Test Configuration 1ccoueoeiiiiii i aee s 16
C2C ARCHITECTURE FOR ADDITIONAL, TESTING: .cumssssssssionumsnssmssassssmsvsmssasmwatss 16
Component CONFIZUIATIONcoveveeieierieeriieeeeeeceeee et e st et seeesesreseeesestesseenesesesseensean 17
LOW-BANDWIDTH CONNECTION TESTING....cciciieiiiieierieniierereeee e 18
RESULTS OF LOW-BANDWIDTH CONNECTION TESTINGccccceviiviriineinieeieeeenene 21
CHAPTER 3: EXTENSIONS TO THE C2C ENVIRONMENT 23
SUPPLEMENTING C2C USING SPECIAL EVENTS INFORMATION.........cccccevrmenuenenne 23
SPECIAL EVENTS INFORMATION FLOW......oovtiiimiiiiiieccntiniescenreceenreseceeeneeseeeees 23
SPECIAL EVENTS MESSAGE SETcviiiiitiiieereetee ettt et 24
SPECIAL EVENTS SERVER ...ttt ettt ettt e et sesvr e st e s sasseesanae s s sssaea s e 26
SEECTL, E BRI TR P resscssosmrssecsnnssonsonsrasssesessnns s s s oo ams 28
LOW-BANDWIDTH CONNBCTION TEBTIINUG . o s sissn svsssss asossn smsmessasonssissvis ohsss snassnsisss 29
RESULTS OF LOW-BANDWIDTH CONNECTION TESTINGcccoceveeereniereneeneeeeeenne 30
CHAPTER 4: THE FUTURE OF C2C.....uucececrvnnerccrens . w31
NEXT GENERATION C2C SPECIFICATIONcccoiniriirierieiinreniesiesaeeeiessesiesressesseesaesneneens 31
C2C IN LOW-BANDWIDTH ENVIRONMENTScoiiiiiiiticecencrssesie e 32
POTENTIAL ENHANCEMENTS FOR C2C IN LOW-BANDWIDTH
ENVIRONMENTS ..ottt st e b st e e bt st e s e st saesaa s e s e enesnsennas 33
TRANSLINK® SUPPORT FOR C2Ccoomrrreemmmmrissssmmsnesssessssssssssssssssssssnsssssssssnsssssossson 33
REFERENCES T 35

vii

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.

LIST OF FIGURES

Page

Components of Center-to-Center Specification.cccevereeverriereeinineiccncnee e 2
How Center-to-Center Communications WOIKS.cccevvrvereeeerineniennreneesieeeesee e 4
AN C2C Cormponents o Satne WIABHITIE.« siun -soisninnsss mmmnisnsoiosssss innss e55imansiisnsissssaiinms 7
Header Format Common to C2C Software Component Configuration Files. 8
The Data Provider “SysParams.dat” File.ccccoooiiirieoiieinieceececee e 9
The “DATEXASN.INI File. c..ocviiiiiieiieiiriiecirteer ettt 9
The Data Collector “BysParamis.dat™ FPile: . .ome oo casmonmssm s s s 10
The Data Extractor “SysParams.dat” File.ccccoovieeievieccirieceerreeeecee e 11
The Status Interface Test Client GUL.........cocoerievieiieniinineeeirese et 12
Process Status VIEWET.c..ceeiiiuiriieiieeieiiee et cetee e st esae st e nr s sneesnnesans 13
Statns Tnierfaoe Tosk Berver Glllcamnmmnn arnssicnsmmsmams s s s 13
Data PYOVIACE GUL.........covmonmosisersonsisnnssaosnnssnssbssnrarasansonsoibnsnssnssnssass iisirssss s i asssssh i 14
Data Collector GUIL........oouiuiriirininciiiertetet ettt st se e e 14
Data EXtractor GUL.......cocooiiiiiiiiienic ettt 15
Statues Torteviaers Tosl et OLIL wnesmsammsnemsammmmmesmessmasmmsssmsmons 15
C2C Software Component Architecture for Additional Testing.cccecveveveernnnes 16
Data Provider Directory Structure on Test Maching 1.ccccovvvivnenincnsiniiccininenns 17
Test Machine 1 Using Dial-Up ServiCe.......ccccervueriimiriienniniiineneeiieiecneececeseeseeennee 18
Both Test Machines Using Dial-Up SErvicCe.cccvceevimrieriirnenenencrieeeceenneeenneens 19
Snapshot on Test Machine 1 Showing Data FIows.cccooeoeiinieeneencciccicene 20
Snapshot on Test Machine 2 Showing Data FIOWS.ccccceeriveneinevicineniecceeennn 20
Special Event Information FIOWS.cccueviirieniinirieerieecreee et 24
Special Events Information Message Request Header.ccccocvvevininiiiiicnnecnenne 24
Special Events Information Message Response Header.ccccoveveiicieniiiniincnnene 25
Cover Page of Special Events Application Form.cocooeeoininiiininininenciencens 27
Page 1 of Special Events Application Form (with sample data).c..cccceevrnenennne. 27
Page 2 of Special Events Application Form (with sample data)...........cc.coovvercecennne 28
Special Events Client CommUDICAtION. ...c..c..ecvrverurueriirenenierreenirieeeseneeeeseeeeeereseeneens 29
Special Events Server Using Dial-Up S€rVice.cccceesermemssessonsssensessesssssessasssssassss 30
Both Special Events Server and Client Using Dial-Up Service.cceeevevveerieecnn. 30
Next Generation C2C SpPecifiCation.coeuvevieereerieienieeeeeeseee e s ee e e esvee e 32

viii

LIST OF TABLES

Page
Table 1. C2C Message Size for Command/Control Functions (in bytes).........c.ccvereerreercerccenenne 21
Table 2. CCTV Snapshot Transfer Times for Modem Connections (in seconds).cccuee..... 22
Table 3. SPEeial EvOIEE IIATRL woumsues meornmnasssssmmsn s siomsns i o554k 5555 Aasis Somsiss s s 25
Table 4. Individual Special Events Data EIements.ccovevcirvineriveniinienineneceesceseseeveseenne 25

X

CHAPTER 1:
INTRODUCTION

OVERVIEW

Within the realm of traffic operations, traffic management centers (TMCs) have been developed
as a central location for the collection of data and control of field devices. A TMC typically
performs one or more of the following functions:

operates traffic control devices,
monitors traffic conditions,

responds to incidents, and

publishes traffic related information (/).

As part of performing these functions efficiently, TMCs need to share information with one
another. One example might be an incident that affects a significant portion of the roadway
network. In this situation, telling neighboring TMCs the information may allow them to manage
traffic flow leading into the affected area and may allow drivers to take alternate routes to avoid
the area altogether. In another situation, a TMC may want to give a neighboring agency control
over a specific piece of equipment, such as a camera or a dynamic message sign (DMS).

Depending on the situation, other types of management centers may also need to share
information with traffic management centers. A transit management center might want to share
information on the location of the bus fleet while receiving information about roadway status.
An emergency operations center might provide information on flood conditions and request
control of dynamic message signs to alert drivers to dangerous conditions.

The problem with these information exchanges is that most centers do not use standardized
software, hardware, or communication systems. In fact, even within the same region or state,
multiple vendors may have been involved with the development of centers, leading to disparate
systems that in essence cannot communicate with each other. Even agencies that have multiple
TMC:s in a region or area may have very different systems inside each center. All of these
different systems lead to communication failures between centers—which impacts the efficiency
of the roadway system to recover from incidents.

The concept of center-to-center (C2C) communications bridges this gap and provides a common
method for exchanging information between centers. C2C also provides the capability to
exchange control information, providing external centers with a mechanism for controlling
infrastructure outside of their own devices.

The development of C2C allows each center to continue to use their proprietary systems, yet
participate in a loosely connected larger structure as needs dictate. C2C removes the need to
redesign and rebuild each individual system to achieve shared communications. In essence, C2C
gives a center the capability of independent communications on internal systems and common
communications to external systems (2, 3, 4).

WHAT IS C2C?

Looking at the big picture, C2C is a set of functions that describe a method of communicating
standard information and functions across disparate systems. At a more technical level, C2C is a
set of protocols, standard message sets, and data elements that are used to send information and
control between centers. Figure 1 identifies the components of the C2C specification.

Figure 1. Components of Center-to-Center Specification.

At the top-most level (refer to the outermost circle in Figure 1), C2C uses a protocol to send or
receive information between locations. A protocol is a “specific set of rules, procedures, or
conventions related to the format and timing of data transmission between two devices” (5, page
680). The C2C specifications were originally published with support for the Data Exchange
Abstract Syntax Notation (DATEX) and Common Object Request Broker Architecture
(CORBA) protocols. Specific implementations of C2C could use either protocol to send and
receive information between centers, although the same protocol would have to be used at each

end.

At the bottom-most level (refer to the innermost circle in Figure 1), the C2C specifications use
data elements to describe information. An individual data element might be the latitude of a
field device. Another individual data element would be the corresponding longitude of the
device. By describing the value of each individual data element, a complex and rich set of
information can be assembled.

For example, the complete set of information regarding a traffic signal would contain dozens of
individual data elements, corresponding to such items as the phasing of the signal, the timing of
each phase, the status of each component of the signal, and the physical location of the signal.

The middle circle in Figure 1 represents message sets. Typically, individual data elements are
assembled into functional groups. An example might be the functional group corresponding to
the status of a lane control signal (LCS). The data elements in this group include:

LCS identifier,

LCS name,

LCS location — latitude,

LCS location — longitude,
LCS status,

LCS geometry — heads,

LCH head capabilities, and
LCS current delay settings (6).

The complete set of functional groups for the entire range of information that will be sent or
received is called the message set.

In the C2C specifications, the message set was derived from the Traffic Management Data
Dictionary (TMDD). The TMDD is an effort by industry and the federal government to
standardize the data elements that TMCs use to communicate. The name of the specific message
set used for the C2C specifications is Message Sets for External Traffic Management Center
Communications (MS/ETMCC).

HOW DOES IT WORK?

Now that the background of why C2C was created is understood, a brief explanation of how it
works is warranted. Figure 2 shows a typical center, of any type. Within the center, proprietary
software is often utilized to accomplish the monitoring and control functions the center performs.
This software may be a computer-aided dispatch system, a traffic monitoring application, a
transit routing package, or any other software that a center would use. Regardless of the
software, defined data elements exist that are populated with specific pieces of information.

In order to construct a C2C interface, those data elements from the center software are mapped
into the data elements within the C2C specification. For example, the center software may call
the longitudinal location of a DMS something like “DMS-loc-long.” The corresponding data
element in the C2C specification may be “LocationLongitude.” A series of mappings are created
that essentially say the information in the two data elements is equal.

DMS —loc — long < LocationLongitude

Once the two elements are equated, the C2C specification groups all like objects into a message
set. The values in the entire message set are then sent out of the center using the appropriate

protocol. It is important to realize that in the current specification, only the VALUE of the data
elements is sent, not the IDENTITY that corresponds to the value.

CENTER

Figure 2. How Center-to-Center Communications Works.

In other words, for the C2C specification to work properly, both the send and receive interfaces
must know exactly which message set of elements is being transmitted, because only the values
will be sent. A null value will be sent for data elements that do not have a value.

At the receiving center, the process is reversed. The string of information is received by the
protocol, the message set of elements is identified, and data elements are populated with values
and then mapped into the specific data elements in use at that particular center. This allows each
C2C interface to be customized for each center and interface to any external software platform.

TXDOT C2C IMPLEMENTATIONS

Current

TxDOT has pursued the implementation of C2C between TMCs within Texas. Implementations
to date provide both a status and command component. Status allows a remote user to receive
information about the status of the roadway network or any particular device, as long as they
have the authentication credentials necessary for that task. Command components allow a user
within one TMC to control equipment belonging to another TMC, if the privileges are set up to
allow that interaction. The C2C interfaces at either TMC make these communications possible.

Currently, both the Dallas and Forth Worth TMCs have a C2C interface and can share status and
command information.

The initial TXDOT implementation had three goals:

e to provide freeway conditions data on a graphical map between control centers and for an
Intelligent Transportation Systems (ITS) Internet site,

e to extend the data server capabilities beyond freeway conditions, and
to include additional development and integration activities (7).

Through the process of creating the C2C interfaces for Dallas and Forth Worth, several lessons
learned have been documented by TxDOT:

e While the data elements in the national standards were mostly sufficient, the message sets
(functional groups) were not. Extensive supplementation of the message sets took place
to support the status and command interfaces.

e Data repositories can be created for ITS data using C2C.

e Data repositories can be hierarchical, allowing for multiple levels, e.g., local, regional,
and statewide.

e User authentication information using DATEX is not secure.

Implementation using the DATEX protocol is problematic due to lack of vendor support.
¢ Future implementations will likely change the communication protocol to a more widely
used and supported system.

¢ Integration of dissimilar systems can be achieved; however, careful attention must be
paid to basic system definitions and network configurations.

e Agencies without Advanced Transportation Management Systems (ATMS) can
participate in the C2C infrastructure by utilizing a lightweight C2C graphical user
interface (GUI) specifically designed to provide status and command information.

¢ Institutional issues, especially with regard to sharing control of equipment, must be
addressed (7).

Future

Researchers anticipate that the future will see all TMCs in Texas utilizing C2C—in essence
creating a traffic management information and control network across the entire state.

The advantage of this statewide network is that all of the information from various centers can be
centralized—in effect, creating a single view of traffic into the state. This could be of enormous
benefit to the tourist and trucking industries. Additionally, because the cost of building TMCs is
significant, the potential to reuse the interfaces and establish a common infrastructure could
accrue significant cost savings to future build-outs. Furthermore, areas without a TMC or
extensive ATMS capabilities could still participate in a statewide C2C infrastructure. Finally,
Texas enjoys a unique opportunity to guide future standards development as a result of the
implementations to date and the work that will continue in the future.

TRANSLINK® C2C EFFORTS

The amount of information exchanged during C2C communication can be significant. One
example is when a TMC first signs on and authenticates to another TMC. During the exchange,
the full database of accessible equipment is sent. [n a large urban area, this listing can be
extensive and take significant time and bandwidth.

Another example is the transmission of CCTV snapshots, which are used to provide feedback to
the command functions of pan, tilt and zoom. Additionally, because any communications
protocol incurs overhead above and beyond the information, the actual amount of C2C data sent
can be quite significant.

Because the initial C2C connection (Dallas €-> Forth Worth) was implemented over fiber,
bandwidth was not a concern. However, because future C2C architecture calls for smaller
centers and other areas to all connect in a statewide C2C infrastructure, bandwidth may be a
concern for many areas. Additionally, there were questions as to the growth capability of these
smaller areas using low-bandwidth communications, as the information being exchanged with
C2C continues to be supplemented and expanded.

The TransLink® task, therefore, focused on looking at C2C communications in a low-bandwidth
environment and performing an assessment of the connection capabilities of areas
communicating over phone lines. Specifically, the work effort asked the following questions:

Can C2C be implemented in a low-bandwidth environment such as a phone line?

Can this method of information transfer be effective?

What are the pros and cons of sending C2C in a low-bandwidth environment?

Can areas using low-bandwidth communications “keep up” as the information being
exchanged with C2C is expanded and supplemented?

e Can C2C be used to support large-scale integration efforts, such as the College Station
Integration Project?

CHAPTER 2:
LOW-BANDWIDTH COMMUNICATIONS TESTING

To assess the capability of using C2C in a low-bandwidth environment, and answer the questions
presented in Chapter 1 of this report, TransLink® obtained the most recent version of the C2C
software from TxDOT. This was version 2.1.2 for the C2C Infrastructure files and 2.2.1 for the
Status and Incident GUL. (Note that prior to the completion of this task, TxDOT released version
3.x of the C2C infrastructure files).

The distribution CD included several different C2C software components, each of which is
briefly described below. Each of these software components was configured and utilized to
construct a C2C infrastructure for different testing situations:

o Data Provider — Takes data native to a TMC format, converts it to TMDD, and makes it
available in a DATEX data stream.

e Data Collector — Collects data from data providers and sends it to other applications
using a DATEX data stream.

® Data Extractor — Receives information via a DATEX data stream and converts it into the
format required for the receiving TMC.

o Status Interface Test Server — Provides test data for the C2C infrastructure in the absence
of field devices sending live data.

e Status Interface Test Client — Receives data from the data extractor and provides
confirmation of data transfer across the C2C cloud.

e Process Status Viewer — A program that manages the operation of the C2C software
components (3).

TEST CONFIGURATION 1 - ALL C2C COMPONENTS ON THE SAME MACHINE

The first test configuration utilized all the C2C components on the same machine. This
configuration did not test low-bandwidth communications; rather, it was used to establish
baseline knowledge of the C2C software components, their capabilities and configuration, their
relation to each other, and the overall process of establishing a C2C infrastructure.

Figure 3 shows the testing configuration. Testers installed all software components on the same
machine. The test utilized the status interface test server to simulate data available from field
devices. The data provider takes the field test data and injects it into the C2C cloud via the data
collector. The data extractor receives data from the cloud via the data collector. Finally, the
status interface test client is used to retrieve the field data information on the other side of the
cloud (aka C2C infrastructure).

TEST MACHIE 1

Data Provider ':d Data Cofiecior Himm : 1‘:’!%“ d

Test Sarver

Figure 3. All C2C Components on Same Machine.

In order to establish a C2C cloud, many of the software components have specific parameters
that must be configured before the components will talk to the next process in the line.

The Status Interface Test Server Configuration

The status interface test sever does not have any configuration files. System parameters such as
server port number and initial test data location are hard coded inside the executable file. When it
is started, it loads data from the directory “.\Data\Field Tests” and listens for client connection
requests on port 8152. Additional test data can be loaded by entering a directory name in the
“data directory” field and pushing the “load data” button.

The Data Provider Configuration

The data provider has two configuration files. The “SysParams.dat” file specifies the
connectivity parameters to connect to the other software component. Figure 4 shows a portion of
the configuration file that contains the header information. This format is common across all of
the software components. Line numbers have been added to the figure to help reference the
location of critical information. The actual files do not contain the line numbers.

R R R AR R R R R R R R
Copyright, 1999-2001, Texas Department of Transportation; (512) 416-2000
#

The copyright to the computer program(s) and source code herein is the

property of the Texas Department of Transportation. The program(s) and

source code may be used and/or copied only with the written permission of
the Texas Department of Transportation or in accordance with the terms and
conditions stipulated in the agreement/contract under which the program(s)
and source code have been supplied.

OO0~ AN B WA —

Source File: SysParams.dat
Author: K.S. Honeyager
Abstract:

File includes the Data Provider system
configuration parameters.

&
:ti::h:#tiﬁ::ﬂ::ﬂ:%:lt:l:?:

|
%
|

Figure 4. Header Format Common to C2C Software Component Configuration Files.

Figure 5 shows the main portion of the “SysParams.dat” configuration file. Line numbers were
added to the figure to illustrate the location of critical information. The important parameters for
this file include:

e the IP address and port number of the process viewer (lines 29 through 31),

e the IP address and port number for the status logger (lines 36 through 37), and

e date source location (lines 42 through 44). In this configuration, the data source is the
status interface test server. The port number 8152 is hard coded in the status interface test
Server.

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
48
49

The process name displayed in the dialog box and log messages.
#
SysParams.ProcessName Data Provider

The IP address, port number and heartbeat interval (in ms) for
the process status viewer.
Note: Use 127.0.0.1 for IP loopback.

#

SysParams.ProcessViewerAddress 127.0.0.1
SysParams.ProcessViewerPort 8001
SysParams.ProcessViewerHeartbeatInterval 8500

The IP address and port number for the process status logger.
Note: Use 127.0.0.1 for IP loopback.

#

SysParams.StatusLoggerAddress 127.0.0.1
SysParams.StatusLoggerPort 8000

The Name, IP address, and port number for TMC Server or plug-in.
#

SysParams.ServerNames Status Interface Test Server
SysParams.ServerlpAddresses 127.0.0.1
SysParams.ServerPorts 8152

SysParams.ServerConnectInterval 20000

SysParams.SubscribeRoadwayNetwork 1
SysParams.Subscribelncidents 1

The second configuration file with the data provider is “DATEXASN.ini.” As shown in

Figure 6, this file configures the port number (line number 1) through which the data provider
will send DATEX format data for other system components. The file also configures additional
parameters associated with the DATEX protocol. Line numbers have been added to the figure to

Figure 5. The Data Provider “SysParams.dat” File.

illustrate the location of critical information.

A e

DATEXPort = 8201
PacketSize = 576
CircularFileSize = 4567
MaxHeartbeatDuration = 360
ResponseTimeout = 60
Presentation = BER

Figure 6. The “DATEXASN.ini” File.

The Data Collector Configuration

Like the data provider, the data collector also has two configuration files. The filenames are
common to both components. Overlap of the files is not an issue since the components are
installed in different directories.

The critical difference in the configuration file is located on lines 44 through 46 of Figure 7.
Line numbering has been added to the figure to aid in locating the critical information. For the
data collector, the file points to the downstream data provider, which is identified by an IP
address and port. The port number for the data source is defined by the DATEXPort variable in
the data provider’s “DATEXASN.ini” file. This configuration can be seen on line 1 of Figure 6.

Figure 7 also illustrates the configuration of the data collector when more than one data provider
is utilized. In this case, multiple providers are listed, using the name, IP address, and port
numbers. Lines 40 through 42 of Figure 7 show the parameters for this situation. The “#” sign
at the beginning of the line indicates that these lines are comments and will be ignored when
program execution begins. The use of the “#” sign allows for rapid reconfiguration of the testing
sequences. As currently configured, the file in Figure 7 will communicate with one data
provider.

20. # The process name displayed in the dialog box and log messages.
21 #

22. SysParams.ProcessName Data Collector

23.

24. # The IP address, port number and heartbeat interval (in ms) for
25. # the process status viewer.

26. # Note: Use 127.0.0.1 for IP loopback.

27. #

28. SysParams.ProcessViewerAddress 127.0.0.1
29. SysParams.ProcessViewerPort 8001
30. SysParams.ProcessViewerHeartbeatInterval 8500

31.

32. # The IP address and port number for the process status logger.
33. # Note: Use 127.0.0.1 for IP loopback.

34. #

35. SysParams.StatusLoggerAddress 127.0.0.1

36. SysParams.StatusLoggerPort 8000

37.

38. # The Name, IP address, and port number for Regional Data Server(s).

39, #

40. #SysParams.ServerNames Data Provider 01, Data Provider 02
41. #SysParams.ServerIpAddresses 127.0.0.1,127.0.0.1

42. #SysParams.ServerPorts 8201,8202

43,

44. SysParams.ServerNames Data Provider

45. SysParams.ServerlpAddresses 127.0.0.1

46. SvsParams.ServerPorts 8201

Figure 7. The Data Collector “SysParams.dat” File.

10

The Data Extractor Configuration

Like the data provider and data collector, the data extractor also has two configuration files. As
with the previous components, the filenames are common, and overlap is avoided by installation
into different directories.

Figure 8 shows the “SysParams.dat” file. The port number defined on line 42 tells the data
extractor itself where to find the data source. In this case, the data source is the downstream data
collector. Connections are made to that component’s DATEX port that is defined by the
DATEXPort variable in the data collector’s “DATEXASN.ini” file.

20. # The process name displayed in the dialog box and log messages.
21. #

22. SysParams.ProcessName Web Data Extractor

23.

24. # The IP address, port number and heartbeat interval (in ms) for
25. # the process status viewer.

26. # Note: Use 127.0.0.1 for IP loopback.

27. #

28. SysParams.ProcessViewerAddress 127.0.0.1
29. SysParams.ProcessViewerPort 8001
30. SysParams.ProcessViewerHeartbeatInterval 8500
31.

32. # The IP address and port number for the process status logger.
33. # Note: Use 127.0.0.1 for IP loopback.

34. #

35. SysParams.StatusLoggerAddress 127.0.0.1

36. SysParams.StatusLoggerPort 8000

37.

38. # The Name, IP address, and port number for the Data Collector or Data Provider.
39. #

40. SysParams.ServerNames Data Collector
41. SysParams.ServerlpAddresses 127.0.0.1

42. SysParams.ServerPorts 8300

43. SysParams.ServerConnectlnterval 10000

44,

45. # The port number for the web server.

46. #

47. SysParams.ClientPort 8400

Figure 8. The Data Extractor “SysParams.dat” File.

In the same fashion as the data collectors and providers, the data extractor provides data via a
DATEX port defined in the “DATEXASN.ini” file. The data extractor also publishes data to a
data port (configured on line 47 of Figure 8), for any additional applications deployed upon the
data extractor.

11

The Status Interface Test Client Configuration

Similar to the status interface test server, the status interface test client does not have any
configuration files. System parameters are input from the GUI of the client.

As seen in Figure 9, the configuration information requires an IP address and a port number.
The [P address is the IP address of the machine on which the data extractor is running. The port
number is defined by the SysParams.ClientPort variable in the data extractor’s configuration file
“SysParams.dat” (in this case, it is 8400, which can be seen in Figure 8, line 47).

Status Interface Test Client

P2 e

e | Lr"j

=t

N T
l 'ﬁom]swo__" ‘ v] ¥

Figure 9. The Status Interface Test Client GUIL.

Initiate C2C Infrastructure

The process status viewer application is used to initiate the operations of the C2C software
components. Each component is added to the process status viewer. All programs can be started
using the “File, Start All Processes” command sequence available in the program’s GUI. Figure
10 shows the process status viewer for test configuration 1. At the time of this screen capture,
the status interface test client application had not been started. The process status viewer
recognizes this and provides both textual and visual feedback that says the application is not
responding. Starting the application removes the “error” condition, which was used to
demonstrate the feedback capabilities of the process status viewer GUI.

12

P'm.r‘:ssStatustwer
| Status |PpD | startTime | LastUpdate |

Ciata Collecto Normal 2248 29 Apr 14:08:06 29 Apr 14:40:56
Data Extractor No Running Normal 144 29 Apr 14:08:06 29 Apr 14:40:56
StatusInterfaceTestClient ne BT 2320 29 Apr 14:08:06

StatusInterfaceTestServer No Running Normal 1492 29 Apr 14:08:06 29 Apr 14:40:59
Data Provider No Running Normal 2332 29 Apr 14:08:06 29 Apr 14:40:56

Ready S 4, [Inom | 4

Figure 10. Process Status Viewer.

C2C Software Component Response

Figure 11 shows the status interface test server GUI, which is the data source for test
configuration 1. The GUI indicates that test data have been sent to the upstream client (data
provider). The GUI also indicates the location of the data as well as the status of parameters that
can be used to effect changes to the data stream.

Status Interface Test Server

- |Sending current data to client.
Message length = 2578.

Sent current network data to client.
Sent current incidents to client.

Sent current lane closures to client.
Sent current traffic data to client.
Sent current DMS status to client.
Sent current LCS status to client.
Sent current CCTV status to client.
Sent current CCTV snapshot ta client.

H

: .D_ata’ Directory I.\DatakField Tests 7 Load Data

I Netwok [~ LCSStaws RepeatCount i
e [DMsSwuer s R

I Incidents I~ COTV Status M“”?e,";'??lmo

: r_-___L_.«nne Closures I~ C‘CTVSnapshot Delete j ‘;Updatel

Cear | S

Figure 11. Status Interface Test Server GUL

Figures 12 through 16 show the communications taking place as the C2C cloud is initiated. The
data provider accepts a connection from the data collector in Figure 12. In Figure 13, the data
collector accepts a connection from the data extractor. Figure 14 shows the data extractor
connecting to the data collector, as well as opening the supplementary port for publication of the

13

data it receives. Figure 14 shows this port operating on port number 8400, as defined in line 47
of the configuration file in Figure 8.

|Failed to connect to process status logger.
- {Connected to Data Provider
~ |DFW Data Collector server session 344 added....

F to connect to ptoess slt.
% ‘Web Data Extractor server session 316 added....
D ata Provider client session 328 added....

Figure 13. Data Collector GUI.

14

Web Data Extractor

Failed to connect to process status logger.
Listening for client on port 8400...
DFW Data Collector chient session 324 added....

Figure 14. Data Extractor GUL

Figure 15 shows the status interface test client GUI. The output flowing across the GUI
indicates that the data initiated on the other side of the C2C cloud are being received. Data flow
from the status interface test server to the data provider, to the data collector, to the data
extractor, and to the status interface test client. The GUI has configuration options for the IP
address and port number. In this test configuration, they are 127.0.0.1 and 8400, respectively.
The checkboxes allow a subscriber to receive specific types of information, such as incident or
DMS status. The checkboxes in Figure 15 show that the client is currently subscribed to receive
all available information.

Status Interface Test Client

=18

04/2914:08:08 Application started.
04/29 14:33:41 Connecting to host at 127.0.0.1:8400...
- {04/28314:33:41 Connected.
104/2914:34:15 Sent data subscription Oxff to host
04/29 14:34:15 Network data list received, count = 2.---ermsesseeenes i
04/29 14:34:15 Incident list received, count = 45 - -~
04/2314:34:15 LaneClosure list received, count = 17, --—--reeressens)
04/29 14:34:15 Tralfic data list received, count = 66, ----r—-eme-ees -
04/29 14:34:16 DMSStatus data list received, count = 6.~
104/29 14:34:16 LCSStatus data list received, count = 9.--

e
s

04/2914:34:16 CCTVStatus data list received, count = 10.—--seeeermm=
04/2914:34:16 CCTVSnapshot data list received, count = 10.-~-——-"

- -
« |127.d0.1 | ¥ Netwok |7 LCS Status
les il = || Tidfic [DMSStatus |-
Pl || e G

i =1 ||| 7 Lane Closure [¥' CCTV Snepshot

[~ Vebose I Stess Checkinput |

Figure 15. Status Interface Test Client GUL

15

Results of Test Configuration 1

The architecture of the first test configuration was not complicated. However, the goals of this

configuration were not to test low-bandwidth communications, but to establish familiarity with

the C2C components, understand the configuration process, and establish baseline connectivity.
As a result of this configuration exercise, researchers achieved the following:

e an overall understanding of the software components in the TxDOT C2C implementation
and their specific function in the C2C cloud,
¢ an understanding of the capabilities of each C2C component and how each component is

configured,
e an understanding of how to inject data into the C2C cloud and how the data progresses

through the cloud,
e an understanding of how to control the software components and provide a status check

on cloud operations,
e confirmation of baseline C2C software component communication, and

¢ hands-on experience with all of the above.

C2C ARCHITECTURE FOR ADDITIONAL TESTING

After successfully completing the initial test configuration, the researchers moved to a more
complicated C2C architecture to utilize in additional test configurations. As shown in Figure 16,
the architecture utilized multiple C2C components spread across two computers.

Status Interface

Test Client 3
T Test Client
Data Extractor
T Data Extractor
Data Collector : T
y —r—» Data Collector
y
Data Provider 00 Data Provider 01 Data Provider 02 | | Data Provider 03 | '| Data Provider 04 Data Provider 05

Q I /_ Status Interface |

Figure 16. C2C Software Component Architecture for Additional Testing.

Several aspects of this architecture are important to notice. First, the use of multiple machines
simulates the real-world environment of multiple TMCs injecting and extracting data into a C2C

16

cloud. Second, multiple data providers are utilized so that more data flow into the cloud. Third,
the architecture shows that the data collectors can receive information from multiple providers
and/or collectors simultaneously. Finally, the status interface test servers and clients are used to
inject and extract test data from the cloud, once it is established.

Component Configuration

Test machine 1 utilized five data providers. On an initial installation, only a single copy of a
data provider can be installed. Additionally, maintenance installations only allow for repairing
or removing the data provider or installing different components. Therefore, additional data
provider installations were created manually. A new working directory was established for each
instance of data provider. The same files were copied to each working directory. Figure 17
shows the data provider directory structure on test machine 1.

Fle Edt View Favorkes Tools Hep

oS | Qe Gres J BB X0 (B '
dkress [cac Eio-
Gocgle -]] Goscachweb @it e | hews | Bozse e - [- Psiar

E”Cj 0O 0O 0O 0O 0O C

C2Cweb Center to Command Command Data Collector Data Extractor Data Provider

C2C Center GUI Receiver Sender Instance 00
r_._ gun W awo, S ;/‘\._. — iz, O ld_
| Select an item to view its description. | !) l I . I l } l I
| see also: Data Provider Data Provider DataProvider DataProvider Documents Process Status Status Logger

Documents Instance 01 Instance 02 Instance 03 Instance 04

1ty Network places : _, —
| oot O O 60O O O

StatusInter... StatusInter... StdTolcdPr... TransVISIO... WebServer

|19 object(s) : : : ; [obytes & My Computer e

Figure 17. Data Provider Directory Structure on Test Machine 1.

The two configuration files for each data provider, “DatexASN.ini” and “SysParamas.dat,” were
configured according to the examples discussed previously. Each data provider utilized the same
IP address, since they are on the same machine, but each utilized a different port number. Ports
8200, 8201, 8202, 8203, and 8204 were used for data provider 00 to data provider 04,
respectively. Since each data provider is using information from the same status interface test
server, that portion of the configuration file was common across all data providers.

The data collector received information from each provider and passed it along to the data

collector on test machine 2, as well as to the data extractor on test machine 1. The link between
test machines 1 and 2 is the target area for examining the impact of low-bandwidth

17

communications. The data collector was configured to listen to all data providers. This
configuration was discussed earlier and referenced in Figure 7.

Each of the other components utilized in the testing was configured as previously described in
this chapter.

Similar to the initial configuration, test machine 2 utilized a single data provider. That data
provider fed into a data collection, which also received information from test machine 1. All of
this information was then sent to the data extractor. Test machine 2 also had additional C2C
software components, as illustrated in Figure 16. The configuration of these items was the same
as described earlier in this chapter.

LOW-BANDWIDTH CONNECTION TESTING

The low-bandwidth testing was accomplished using a dial-up modem and a 56 Kb connection to
the Texas A&M University dial-up service. As shown in Figure 18, the initial test configuration
was accomplished using test machine 1 on a dial-up connection. Test machine 2 was connected
to the local area network (LAN) using a broadband connection.

Machine 1 Machine 2

Figure 18. Test Machine 1 Using Dial-Up Service.

In the second test sequence, both machines were connected using a dial-up modem. Figure 19
shows this configuration. One item that should be noted is that the Texas A&M dial-up service,
like most Internet Service Providers (ISPs) assigns IP addresses dynamically. Each dial-up
connection is assigned a different [P connection. In order to accomplish this testing, the machine
had to be dialed into the network and the IP address determined. The software configuration
files for each component were then modified with the proper addressing information to achieve
communications. Each software component then had to be restarted so that the new information

would take effect.

18

Texas A&M
Dial-Up Service

Texas A&M
Dial-Up Service

Tes
Machine 1 Machine 2

Figure 19. Both Test Machines Using Dial-Up Service.

Figures 20 and 21 show snapshots from test machines 1 and 2 that were taken during the second
test, where both machines were connected using the dial-up modem service. As can be seen
from the figures, data flows are being injected into the system and being extracted from the
system. The most important result of the low-bandwidth testing was that at no point in time did
the researchers run into bandwidth conditions that limited or stopped the C2C communications.
Said in another manner, in testing, the TxXDOT C2C implementation functioned well over a low-
bandwidth connection.

19

Status Interface Test Client

103/2413:46:06 No data selected for subscnption.

03/24 1346:08 No data selected for request.

03/2413:46:53 Sent data subscription 0xff to host

03/2413:46:53 Network data st received, count = 10 -weemerreee e
03/2413:46:54 Incident kst received, count = 225, -—--— e
03/24 1346:54 LeneClosure fist received, count = 85— -
03/24 13:46:54 Tiaffic data list received, count = 330.—

03/24 13:46:54 DMSStatus data list receved, count = 30

03/24 13 46:54 LCSStatus data list d, count = 45,

03/24 13 46:54 CCTVStatus data fist receved, count = 50, -
03/24 13:46:54 CLCTVSnapshot data list recesved. count = 50

K1} it |

s — 1 [Newok B 05 Stae
[1:3 |127.DAD.’1 » :] W Tiaific 7 DMS Status
Pmtlwl] ']

W Incidents ™ CCTV Status
Cumu:ll

' Lane Ciosure 7 CCTV Snapshot
[Subsobe | Aequest |

Cos | Cancel |

I Vewose [Stess MIW'

Status Interface TEst Seiver

Sending current data to client.

Sent cutient CCTV snapshot to client.

Lo

l Data oiauuy].\nua\ruld'rm

I™ LCS Status Rmc:uth
I~ Tratfic I™ DMS Status -

[Incidents [~ CCTV Status Message Size [100

I™ Lane Closures |~ CCTV Snapshol ~ Delete [_Updalel

I~ Netwark

| PID | Stert Time | Last

StatusinterfaceTestChent
Data Coflector

Data Extractor

Data Provider00

Data Provider01

Data Provider03

Data Provider04

Data Provider02

§555858%%

Ready

Status Interface Test Client

1384 24 Mar 13:46:17 24 Mar 13:48:38
1348 24 Mar 13:45:17
1332 24 Mar 13:38:28
1200 20 Mar 14:38:35
984 24 Mar 13:3%:57
1140 20 Mar 15:11:17
1272 20 Mar 15:11:17
896 20 Mar 15:11:17
1292 20 Mar 15:12:40

24 Mar 13:48:40
24 Mar 13:48:33
24 Mar 13:48:35
24 Mar 13:48:39
24 Mar 13:48:39
24 Mar 13:48:39
24 Mar 13:48:37

—

Status Interface Test Server

03/24 13:5235 Connecting to host at 127.0.0.1:8400...

03/24 13:52:35 Connected.

03/24 13:52:45 Sent data subscription Oxff to host.

03/24 13:52:45 Network data list recetved, count = 4 ——--———- —
03/24 13:52.45 Incident fist received, count = 90. H
03/24 135245 LaneClosure Bst received, count = 34 ~----- -
03/24 1352:45 Tiaffic data fist recerved, count = 132~

03/24 13:52:46 DMSStatus data kst received, count = 12, -
03/24 13:52:46 LCSStatus data kst received, count = 18 -- -
03/24 13:52:46 CCTVStatus data fist received, count = 20.--—-
03/24 13:5246 CCTVSnapshot data kst received, count = 20 —

4 GEE Ao |

Sending current data to chent
Message length = 2578.

Sent curent network data to client
Sent curent ncidents to client

Sent current lane closuses to chient
Sent current traffic data to chent
Sent cuent DMS status to chent
Sent curient LCS status to client
Sent current CCTV status to client.
Sent curent CCTV snapshot to client.

-
—

1 Data Directory {.\Data\Field Tests Load Data |

M Network

I -,I M LCS Status
1P |127.0.01 d v Trdﬁc

F DMS Status
Port[8400 CETY Status

) P'Lmeuoue PCCWSM
__Comect |

™ Network ’_l'_' LCS Status Repeat Count [T
I Traffic DMS Status g r—'
™ Incidents I~ CCTv Status M““"’s“

i
g Lane Closures |~ CCTV Snapsht * Delete] paste |

[Subscibe | nequl
[Veboss I~ Stess Checkinput | Cloar |

Carcel |

m]wJ

| P

| start Time i Last Update]

StatusInterfaceTestServer
Data Provider 05

1560 24 Mar 13:51:16
1616 24 Mar 13:51:16
312 24 Mar 13:52:22
616 24 Mar 13:51:16
1548 24 Mar 13:51:16

24 Mar 13:52:56
24 Mar 13:52:55

24 Mar 13:53:00
24 Mar 13:52:56

[rRm T 4

Figure 21. Snapshot on Test Machine 2 Showing Data Flows.

20

RESULTS OF LOW-BANDWIDTH CONNECTION TESTING

Detailed analysis of transmitting data through a low-bandwidth connection depends largely on
specific parameters such as the message length and the modem connection speeds. Typical
speeds for modem connections are 33.6 kbps (kilobits per second) or 56 kbps. A 56 kbps
connection has an ultimate connection capability of 53 kbps, due to Federal Communications
Commission (FCC) regulations. As a result of noise in phone lines and other factors, most dial-
up connections typically achieve about 75-85 percent of their maximum transmission capability.
Therefore, the transmission speed for a 56 kbps dial-up connection is somewhere between 42 and
48 kbps. Similarly, the transmission speed for a 33.6 kbps connection is 25 to 28 kbps.

Table 1 shows the data sizes in use for message sets within the C2C environment. Excluding

network status and CCTV snapshot requests, the average length of most message sets is around
100-150 bytes.

Table 1. C2C Message Size for Command/Control Functions (in bytes).

Developed from (8).
Total Size of Data Sent (bytes)

Command/Control Section Request Request Response
Connection 68 38
Network Device Status 38 46 + Additional Data
DMS Status 72 1148
DMS Command 1130 74
LCS Status 72 136
LCS Command 112 74
CCTV Status 72 172
CCTV Snapshot 72 114 + Size of Snapshot
CCTV “Set Direction” 106 74
CCTV “Set Preset” 106 74
CCTV “Set Absolute” 116 74
CCTV “Set Offset” 122 74
CCTV “Video Switch” 140 74
CCTV “Lock Camera” 106 110

At these message sizes and typical transmission speeds, the data transfer is accomplished in well
under a second. The largest message size that needs to be transmitted is a DMS message set at
1184 bytes. However, even at this length and typical modem transmission speeds, data transfers
are accomplished in well under a second. This calculation is illustrated below:

21

DMS Message Size:
1148 Bytes

33.6 Modem Transmission Speed:

(33,600 kilobits per second/8 bits per byte) = 4200 bytes per second

Assume 75% efficiency:
(4200 x 0.75) = 3150 bytes per second

DMS Message Transmission Time:
(1148 bytes/3150 bytes per second)= 0.36 seconds

By far, the longest data transfer times in the C2C environment are seen with CCTV snapshots.
The status interface test server loads CCTV snapshots in a JPEG format into the C2C
environment. The data load is 114 bytes plus the size of the CCTV snapshot. Available test
images were between 5 and 10 kB (kilobytes) in size. At this size, a typical modem connection
speed would transfer the image in 2-3 seconds. Table 2 shows anticipated transfer times, in
seconds, based on the low-end efficiency (75 percent) of a modem connection.

Table 2. CCTYV Snapshot Transfer Times for Modem Connections (in seconds).

Size of CCTV Snapshot (kB)
Modem Speed (kbps) 10 20 40 60
33.6 3.3 sec 6.6sec | 13.1sec | 19.7 sec
56 1.95sec | 3.9 sec 7.8 sec 11.7 sec

Table 2 represents the longest transfer times, as most modem connections utilizing modern
hardware should achieve a higher efficiency rate than 75 percent. In addition, the connection
speed of 56 kbps is nearly universal. Therefore, a typical CCTV snapshot should transfer in 2-4
seconds within the C2C environment.

The caveat to this aspect of C2C data transfer is the situation where both the sending and
receiving centers are on modem connections. In this special (and perhaps rare) situation, the data
transfer times for CCTV snapshots are essentially doubled, as the center must upload to the C2C
environment over a modem connection and another center must download over a modem
connection. Total time from request to reception could, therefore, be on the order of 4-8 seconds
for a typical snapshot. However, this situation is likely to be rare and even this response rate
should be adequate for most traffic management tasks.

22

CHAPTER 3:
EXTENSIONS TO THE C2C ENVIRONMENT

With the investigation into the low-bandwidth capabilities of the existing C2C specification
complete, attention turned to the next question in the research process. Specifically, can areas
using low-bandwidth communications “keep up” as the information in the C2C cloud is
expanded? Currently, the message sets of C2C are well defined and, as seen from the results in
Chapter 2, impose a relatively light communications load, even when using modem connections.
However, as C2C expands and more information is made available in the cloud, the potential for
stressing low-bandwidth links increases, since the amount of information will increase and the
bandwidth in which to transfer it will not.

To test this aspect of low-bandwidth C2C communications, researchers supplemented the
existing infrastructure with additional data elements and message sets. Testing was then
performed to examine the impacts of the additional message transfer.

This phase of the research also allowed researchers to investigate another aspect of C2C
communications; namely, how easy is it to expand the existing C2C infrastructure and add
additional message capability into the system?

SUPPLEMENTING C2C USING SPECIAL EVENTS INFORMATION

In order to supplement the C2C infrastructure, the researchers decided to add a special events
message capability. In order to transport the data across C2C without modifying the internal
C2C software components, the special events data were tagged to look like a CCTV snapshot. In
essence, the C2C environment was fooled into sending special event information, thinking it was
a CCTV snapshot. This allowed the researchers to quickly supplement the C2C environment and
also perform the low-bandwidth testing in the same manner as explained in the previous chapter.

The City of College Station, Texas, has an established special event form that contains specific
information regarding the event, including event name, location, contact information, date and
time, and information regarding provisions for waste, site cleanup, parking, traffic control, and
more.

SPECIAL EVENTS INFORMATION FLOW

The special event data were designed to be attached to the data field of the CCTV snapshot
messages in the current C2C environment. This design allows the special event data to smoothly
go through the data provider, data collector, and data extractor without modification of those
components of the C2C components.

Figure 22 illustrates the following flow of information to transfer special event messages within
the C2C environment:

1. When started, special event server listens on local port 8152 and waits for the data
provider to connect.

23

Special event client connects to the data extractor.

Special event server sends response message that carries the special event data.
Special event client sends request message.

Special event client receives request message and extracts the special event data.

G N

SPECIAL EVENT INFRASTRUCTURE

spedial event 1 N 2 spacial event
sanver - data provider data collector data extracfor - client
3
— -

{ 4

L P —

h 5

S -

Figure 22. Special Event Information Flows.

In essence, the special event client and server replace the status interface test client and status
interface test server that were utilized in the earlier testing.

SPECIAL EVENTS MESSAGE SET

As stated previously, the special events information was added to C2C in such a way as to mimic
the requests of CCTV snapshots. This allowed the C2C environment to accept and handle the
messages as though they were CCTV snapshots and removed the need to modify the main
message transfer software components.

The only difference in the message transmission is that the data field in the CCTV snapshot
response message carries the camera status and JPEG snapshot information, whereas an ASCII
special event information table was utilized to carry the special event information. Figure 23
depicts the message set header for the information request (data sent from the client to the

server).

Message 1D Count Data

| 3071h | 0 | N/A |

Figure 23. Special Events Information Message Request Header.

The data sent from the server to the client has a message set header formatted as per Figure 24.

24

Message ID

Count Data

[3071h

I # Special Event Data Table 3

Figure 24. Special Events Information Message Response Header.

Table 3 illustrates the format of the special events data sent as part of the response from the
server to the client.

Table 3. Special Events Data.

Data Item Description | Data Type and Size | Detailed Data Description |
Dummy Data 13?;25 Placeholder

Event Data 2 botes 063534 bytes
g\zz:%l::asggf;ms spescfir;inegd-sallfgve Items are separated by “\n”

Table 4 illustrates the individual data elements encapsulated in the message set.

Table 4. Individual Special Events Data Elements.

No. Variable Name Description /[1\)/; ?:)a{-}ITI:rIES;a J
1 txtApplicationName | Application Name
2 txtDate Date mm/dd/yyyy
3 txtCompanyName Company Name
4 txtAddress Address
5 txtPhone Phone (111)-111-1111
6 txtCity City
7 txtState State
8 txtZipCode Zip Code 11111-1111
9 txtTitle Title of event
10 txtLocation Location
11 txtLocationZoning Location Zoning
12 txtTempSigns Type & location of temporary signs
rdbtnOutdoors One of
13 rdbtnTent Event to be held (Outdoors,
rdbtnOther Tent, Other)
14 txtFormula Formula fpr flame propf solution & | (V glif‘i if N,(,).13
date solution was applied is “Tent”)
15 txtEventOther Description of “Other” in No. 13 (Vg h‘fi lfN?,' 13
is “Other”)

25

Table 4 (cont). Individual Special Events Data Elements.

16 | txtProjectedAttendance | Projected Attendance

17 txtDataFrom Effective Dates (From) mm/dd/yyyy

18 txtDateThrough Effective Dates (Through) mm/dd/yyyy

19 txtNumberOfDays Effectl.ve Dates (# of Days of Integer
operation)

20 txtHours Hours of Operation

21 tProiEon st f)’trlcl)g/rlsmns for waste, human and

What provisions are being made for
22 txtProvisionCleanup site cleanup and grading if
necessary

What provisions are being made for
23 txtProvisionParking parking (including facility’s name
and surface composition)

What provisions are being made for
traffic (if required)

What provisions are being made for
“No Smoking” signs (if required)

24 txtProvisionTraffic

25 | xtProvisionNoSmoking

SPECIAL EVENTS SERVER

The special events server contained a graphical representation of the City of College Station
Special Events Application. For the purposes of this research, the form was replicated exactly as
it is used in paper format, including all data entry fields and wording. Figures 25 through 27
show each page of the special event application form. The form is shown with sample data

entered.

26

EfrmWelcome " s . _ 1o x|

Welcome | Pags1 | Pagez |

APPLICATION FOR SPECIAL EVENT LICENSE

CITYOF COLLEGE STATION
Business Regulations, Chapler 4, (5/00). as amended

Special Event The term 'Spauul Evant® as used in the City's ordinance shall mean a for-profit or non
-profit eventto which the public is invited, held on public or private property, atwhich
over 250 individuals altend. and held outside the confines of a building or permanent
structure. The term includes but is not limited to amy meeting, entertainment
performance. show. exhibition, or amusement. The term does notinclude gatherings
for athletic events that ere held in faciliies designed for athletic events.

Application critera to meet
- Application Fee of $200.00. (Fee does not epply 1o non-profit organizetions)
___Two copies of site plen (See second page for details),
____Two copies of Temp skudure!farnp!un. if applicable (See secand puge for details)
__Insurancs policy:
" $1.000.900 for death or injury to ane person
$2.000,000 for death or injury in one acoident

. License Band:
SI 0,600 - validfrom first day of event and 30 days following event - For clean up of debris and
1o cover protential dameage or injury to propery

Read end understand the *conditians of License” and "Penalties*, (Attachmint 1)

Figure 25. Cover Page of Special Events Application Form.

™ frmwelcome ° : .-_Lgliq

Weicome Pagel’ | Page2|

ApplicantName:|Dept. of Computer Science Date: [67730/2003
Company Name:lTAMU
Address: |H-R.B. Building Phone: |979-847-8603

S [Collge Station Stala] TX 7ip Code [77843-3112

Title ofevent [Happy Birthday to xx

Location: |MSC

Location Zoning: I““ Twe & Location of temporary signs: ls“‘”

[n Eventto be held; - i e

& Ouldoors
§ € Tent formula for flame proof solution & date solution was applied

« IQtlLe: =

Projectad sttendance Joll students

Effective detes: From. [07/30/2003 Through: [osr0272003 Number of Days of Operation; [

 Hours of operation: |72

s |

Figure 26. Page 1 of Special Events Application Form (with sample data).

27

Figure 27. Page 2 of Special Events Application Form (with sample data).

SPECIAL EVENTS CLIENT

The special events client performed two tasks in this application. First, it connected to the C2C
infrastructure and sent an information request through the cloud to the special events server.
Figure 22 shows the information flow. Figure 28 shows the special events client and the
communication messages to and from the cloud. The figure also shows the standard connectivity
options of IP address and port.

28

[ckent T = .
LogInlo | Paget | Page2]

[GetHostName} IP address resolved, ready lo connect o

[ConnectToSesver} Begn to connect lo 127 0.0.1 8400 Wovmw

[ConnectCalback] to sesver successfully
{btnSubscribe_Chck} Request Sent, watting for Aesponse...

[ReadCalback} Recerved the fust block of data

ICD Vession: 24 Packet Len: 401 Sequence Number 0 Messge ID. 3071 Count: 1

[ReadCalback| Receved 16 bytes data, 114 bytes left to read

Dept of Computer Science 07/30/2003 TAMU H.R.B Buiding 973-847-8603 Colige Station TX 77843-3112 Happy Blthdey(m«MSCadtad
{ReadCalback} Get one block of Message Data, wating for next block of Message Data...

[ReadCalback} Get al data blocks...

édD& I Ent I
Figure 28. Special Events Client Communication.

Second, the special events client displayed the special event information once it was received
from the cloud. The client utilizes the same screens as the data input side, so the data display
screens on the client look exactly the same as Figures 26 and 27.

LOW-BANDWIDTH CONNECTION TESTING

The C2C infrastructure established for low-bandwidth testing, and described in Chapter 2 of this
report, was again utilized to test the special events addition to C2C. Analogous to previous
testing, two test situations were conducted. The first (shown in Figure 29) utilized the special
events server on the dial-up connection. The second (shown in Figure 30) utilized both the
special events server and client on separate dial-up connections.

29

2N

-Texas A&M Broadb and
Dial-Up Service =

Special
Events
Server Client

Figure 29. Special Events Server Using Dial-Up Service.

/-‘—\ i ; .
"” Broadband
Texas A&M TeXéé“A&M
Dial-Up Service Dial-Up Service
Special o Special
Events Events
Server Client

Figure 30. Both Special Events Server and Client Using Dial-Up Service.

RESULTS OF LOW-BANDWIDTH CONNECTION TESTING

The results of the low-bandwidth testing for special events were exactly the same as with C2C
snapshots. Specifically, no impact or response was seen that indicated that the C2C
infrastructure could not be expanded and those expansions added to the message transferred in a
low-bandwidth C2C infrastructure.

30

CHAPTER 4:
THE FUTURE OF C2C

NEXT GENERATION C2C SPECIFICATION

C2C communications allow different centers to exchange data in a seamless manner. In Texas,
C2C support is planned for all existing and future TMCs, building on the initial success with the
Dallas and Forth Worth implementations. In effect, participation in the C2C infrastructure will
build a statewide traffic management and information sharing capability.

Behind the current implementations are several years of standards development, research efforts,
system integration, and software development. These efforts are not yet complete, as some of
the core aspects of C2C appear likely to change in the future.

As a communications protocol, DATEX/ASN has never enjoyed a great deal of support. There
is only one commercial product/vendor available and no public domain implementations. This
contributes to a wholesale lack of support and installed base for DATEX and makes it costly to
implement and support.

A number of efforts and trial studies have looked at replacing DATEX with a different protocol
for easier and less costly implementation and support. It appears likely that a combination of
XML (eXtensible Markup Language) for data encoding and Simple Object Access Protocol
(SOAP) for data transfer will be used in the future. This is the direction at both the national level
and within TxDOT (9, 10).

One of the key merits for changing the communications protocol is security. Passing DATEX
messages through agency firewalls is a complicated process. Because XML and SOAP are
known protocols in wide use, security considerations are widely known and less of a “threat”
when sending information between disparate networks.

In addition to the security considerations, XML with SOAP forms the basis for web services.
Unlike a traditional web server and browser approach, which is based on a server delivering data
to a GUI, web services deliver data to applications, across a network. In essence, this is the same
model in use for C2C communications, and the marriage of the two systems should allow for
increased application, ease of use, and interoperability. Finally, XML and SOAP are free and in
widespread use, so that support and licensing issues that come with DATEX are non-existent
with the next generation of C2C.

Figure 31 illustrates the components of the next generation of the C2C specification. At the core,
the individual data elements come from the Traffic Management Data Dictionary. These
elements, arranged in message sets, are then encoded, or represented, in XML. This information
is then sent via the SOAP communications protocol into the C2C cloud. Test implementations of
this specification have been successful and development is actively under way at the national
level (9, 10).

31

ata

. (TMDD).

Figure 31. Next Generation C2C Specification.

C2C IN LOW-BANDWIDTH ENVIRONMENTS

The investigations undertaken for this report demonstrate that low-bandwidth communication
links are not a hurdle to create on-demand, ad hoc communication connections between TMCs or
other types of operation centers. In fact, for the text-based message exchanges currently
supported by the C2C specification, phone-line links are quite adequate to convey the
information in a timely manner. Additions to the specification should perform in the same
manner, based on the experiments with the special events information transfer.

As the amount of information exchanged increases, phone-line-based connectivity will be
stressed. This is illustrated by the increasing message transfer times seen for larger CCTV
snapshots. Information transfers that increase the data flows, such as video transfer, will stress

the system even more.

In terms of control functions, phone-line-based transfers for text information will be adequate.
Examples of this type of control include DMS messages, lane control signals, or similar
equipment. Real-time control of video equipment, while possible over phone lines, is likely to
be somewhat laborious and detrimental to efficient operations, particularly in a critical situation.

The bottom line for low-bandwidth communications is that current C2C implementations can be

served over a phone line. Caution must be taken when supplementing the specification to ensure
that enough spare capacity exists to accommodate the information transfers.

32

POTENTIAL ENHANCEMENTS FOR C2C IN LOW-BANDWIDTH ENVIRONMENTS

The potential exists to enhance the capability of utilizing C2C in a low-bandwidth environment.
The key to doing this would be to add a flag to the data types. For example, data might be
flagged as critical or standard priority. Only data flagged as critical would be transferred via a
low-bandwidth connection. This would preserve the capacity of the communications link and
ensure that the truly important information was disseminated between centers.

For broadband connections, both priorities of data would be exchanged. When a broadband data
source sends all types of data to the C2C repository, the repository would accept all types of
data, but will send out the proper types of data to subscribers according to the bandwidth limit of
the subscribers. This capability, while not present in the existing specification, might allow for
more flexibility of C2C in the long run and might allow for critical traffic information to achieve
a more widespread dissemination as the C2C cloud is expanded in an ad hoc manner during any
particular event.

TRANSLINK® SUPPORT FOR C2C

One of the critical reasons behind the investigation of C2C in a low-bandwidth environment was
the College Station Integration Project (CSIP). CSIP is a federally funded deployment project,
matched with local dollars, to begin the process of developing integrated operations for
managing traffic during special events in the Bryan/College Station area. The project involves
multiple partners, including:

The City of College Station,

The City of Bryan,

TxDOT,

Brazos County,

College Station Urban Transportation Study Steering Committee (MPO in
the Bryan District),

Brazos Transit,

Texas A&M University, and

e the Texas Transportation Institute (TTI).

In addition to the above partners, numerous agencies within the surrounding area are
participating in the development of a regional architecture to guide future infrastructure
development and projects within the ITS arena.

The project has the goal of allowing traffic data, signal timing information, train information,
and video to be shared between the City of College Station, the City of Bryan and TxDOT
through the TransLink® Research Center. During special events, agencies can use the
TransLink® Laboratory to monitor traffic conditions and change signal timings, in real time,
from the laboratory floor. A data archiving system will also be developed and housed in the
TransLink® Laboratory that will allow traffic and response information to be collected and
archived for use in developing improved real-time traffic management strategies.

33

The project will provide the City of Bryan, the City of College Station, and TxDOT with the
ability to integrate their traffic signal systems along the major travel routes, and yet maintain
each agency’s autonomy over their respective system. This project also looks to expand the
agencies’ ability to manage travelers’ arrival and departure routes to these special events through
motorist information systems.

While the central portion of CSIP is served by a high-speed communications network capable of
transmitting data and hundreds of camera images simultaneously, the surrounding areas have no
such network connection. Indeed, a low-bandwidth connection, such as a modem dial-up, may
connect many partners during special events. As such, the operations and efficiency of the C2C
specification in these conditions were critical to research.

Based on the results of investigating the use of C2C in a low-bandwidth environment,
researchers believe the specification to be a viable and effective solution for disseminating status
and control information to multiple partner agencies. In addition, the C2C communications
capability provides a data transfer methodology for the data archiving effort, which is part of the
project.

TransLink® will support the next generation of the C2C specification, which uses the TMDD
data elements and messages sets, XML encapsulation, and SOAP as a communications protocol.
In addition, researchers will supplement the existing message sets with project specific data
elements to support project needs. This information and supplementary messages will be fed
back into the state and national standards development process.

34

REFERENCES

1. Gordon, R. L., R. A. Reiss, H. Haenal, E. R. Case, R. L. French, A. Mohaddes, and R.
Wolcott. Traffic Control Systems Handbook. Report FHWA-SA-95-032. FHWA, U.S.
Department of Transportation, Washington, D.C., 1996.

2. TMDD Steering Committee. Standards for Traffic Management Center to Center
Communications. Volume 1: Concept of Operations and Requirements. Report Traffic
Management Center Standard, Rev. 1.3, Draft Final. American Association of State Highway
and Transportation Officials and Institute of Transportation Engineers, Washington, D.C., 2003.

3. Southwest Research Institute. Center to Center Communications: Dallas/Ft. Worth
Data Server Command/Control Interface Control Document. Report DFWDS-CICD - Version
1.0. Texas Department of Transportation, Austin, TX, 2000.

4. Dellenback, S. W. Texas’s Experience in Connecting Dissimilar Traffic Management
Centers. Newsletter of the ITS Cooperative Deployment Network.
http://www.nawgits.com/icdn/dellenback.html Accessed August 8, 2003.

5. Newton, H. Newton'’s Telecom Dictionary, 16™ Edition. Telecom Books, New York,
NY, 2000.
6. Southwest Research Institute. Center to Center Communications.: Dallas/Ft. Worth

Data Server Status Interface Control Document. Report DFWDS-SICD - Version 2.1. Texas
Department of Transportation, Austin, TX, 2000.

Z Center-to-Center Local Self-Evaluation Report. Report C2C-LSER —~ Version 1.0 ITS-99
(712). Texas Department of Transportation, Austin, TX, 2003.

8 Southwest Research Institute. Center to Center Communications: Command/Control
Interface Control Document. Report C2C-CICD - Version 2.4. Texas Department of
Transportation, Austin, TX, 2001.

9. Werner, J. Texas’s Center-to- Center-Communications Efforts Evolves Towards a
Widely Used Internet Paradigm. Newsletter of the ITS Cooperative Deployment Network.
http://www.nawgits.com/icdn/tx_c2c.html Accessed August 8, 2003.

10. Dellenback, S. W. Investigation into Alternative ITS Protocols for Center-to-Center
Communications, 10-9274. Southwest Research Institute.
http://www.swri.edu/3pubs/IRD2002/10-9274.htm Accessed August 8, 2003.

35

