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Alternative Regression Equations for Estimation of 
Annual Peak-Streamflow Frequency for Undeveloped 
Watersheds in Texas using PRESS Minimization 

By William H. Asquith and David B. Thompson1 

Abstract 

The U.S. Geological Survey, in cooperation with the 
Texas Department of Transportation and in partnership 
with Texas Tech University, investigated a refinement of 
the regional regression method and developed alternative 
equations for estimation of peak-streamflow frequency for 
undeveloped watersheds in Texas. A common model for 
estimation of peak-streamflow frequency is based on the 
regional regression method. The current (2008) regional 
regression equations for 11 regions of Texas are based on 
log10 transformations of all regression variables (drainage 
area, main-channel slope, and watershed shape). Exclu­
sive use of log10-transformation does not fully linearize the 
relations between the variables. As a result, some system­
atic bias remains in the current equations. The bias results 
in overestimation of peak streamflow for both the smallest 
and largest watersheds. The bias increases with increas­
ing recurrence interval. The primary source of the bias is 
the discernible curvilinear relation in log10 space between 
peak streamflow and drainage area. Bias is demonstrated 
by selected residual plots with superimposed LOWESS trend 
lines. To address the bias, a statistical framework based on 
minimization of the PRESS statistic through power transfor­
mation of drainage area is described and implemented, and 
the resulting regression equations are reported. Compared 
to log10-exclusive equations, the equations derived from 
PRESS minimization have PRESS statistics and residual stan­
dard errors less than the log10-exclusive equations. Select­
ed residual plots for the PRESS-minimized equations are 
presented to demonstrate that systematic bias in regional 
regression equations for peak-streamflow frequency estima­
tion in Texas can be reduced. Because the overall error is 
similar to the error associated with previous equations and 
because the bias is reduced, the PRESS-minimized equa­

1Texas Tech University, Lubbock, Tex. 

tions reported here provide alternative equations for peak­
streamflow frequency estimation. 

Introduction 

Peak-streamflow frequency estimates are needed for 
flood-plain management; for objective assessment of flood 
risk; for cost-effective design of dams, levees, and other 
flood-control structures; and for design of roads, bridges, 
and culverts. Peak-streamflow frequency represents the 
peak streamflow for recurrence intervals of 2, 5, 10, 25, 
50, and 100 years. 

Beginning in 2003, the U.S. Geological Survey 
(USGS), in cooperation with the Texas Department 
of Transportation (Research Project 0–4405) and in 
partnership with Texas Tech University, began a 3-year 
investigation of the influence of hydrologic scale (rep­
resented by drainage area for this report) on hydrologic 
model performance (Asquith and Thompson, 2005; 
Thompson, 2006). Hydrologic models for estimation of 
design floods are in widespread use by TXDOT engineers 
and the broader hydrologic engineering community. A 
common model for estimation of peak-streamflow fre­
quency is based on the regional regression method. This 
method is the subject of this report. 

Bias exists in the regional regression equations for esti­
mation of peak-streamflow frequency in Texas (Asquith 
and Slade, 1997), hereinafter referred to as AS1997. The 
source of the bias is the discernible curvilinear relation 
between peak streamflow and drainage area—the bias is 
graphically illustrated in this report. The current regional 
regression equations might overestimate peak-streamflow 
for both the smallest and largest watersheds represented 
in the AS1997 investigation. The bias is scale-dependent 
(depends on the size of the drainage area) and can be 
reduced. 
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Purpose and Scope 

The primary purpose of this report, which parallels 
the discussion of Asquith and Thompson (2005), is to use 
an alternative statistical framework to develop regression 
equations with potentially less bias and therefore enhanced 
prediction capability—in particular, enhanced prediction 
capability for small watersheds. For this report, a small 
watershed is defined as having a contributing drainage 
area less than about 10 square miles. Peak-streamflow 
frequency estimation for small undeveloped (rural) and 
ungaged watersheds in Texas is a major concern for TxDOT 
engineers. The alternative framework uses a technique 
involving the minimization of the PRESS (PRediction Error 
Sum of Squares) statistic (Helsel and Hirsch, 2002, p. 247). 
The secondary purpose of this report is to present regression 
equations based on PRESS minimization for the estimation 
of peak-streamflow frequency at ungaged sites in undevel­
oped watersheds in Texas. Finally, the tertiary purpose of 
this report is to present “statewide” regression equations for 
Texas lacking a context of specific geographic regions. 

The scope of the report is limited to the at-site peak­
streamflow frequency values for 664 USGS streamflow­
gaging stations used in AS1997 and digitally tabulated in 
Asquith and Slade (1999, file tx664.dat). The alterna­
tive regression equations presented here are based on the 
entire study area (Texas and slight overlap with surrounding 
states) of AS1997. The scope of the report does not include 
consideration of the spatial dependence of peak-streamflow 
frequency beyond its association with mean annual precipi­
tation. 

Acknowledgments 
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Current (2008) Regional Regression 
Equations for Peak-Streamflow Fre­
quency Estimation in Texas 

The current (2008) regional regression equations are 
provided by AS1997, who provide 96 equations to estimate 
the 2-, 5-, 10-, 25-, 50-, and 100-year annual peak dis­
charge (the peak-streamflow frequency curve) for undevel­
oped watersheds in Texas. The equations use the watershed 
characteristics of drainage area, main-channel slope, and 

watershed shape as predictor variables. AS1997 divides 
Texas into 11 regions. The mean number of stations used 
for each equation is 36. For each region, 6 or 12 weighted­
least-squares regression equations were developed using a 
forward stepwise procedure. The distinction between 6­
and 12-equation regions is elaborated upon later in this sec­
tion. 

The AS1997 statistical analysis is sound, with inno­
vative methods of equation development and presentation, 
and widely used (in a second printing); however, three 
observations regarding the AS1997 procedural framework 
are important for this report. The observations are impor­
tant because they relate to application or implementation of 
the AS1997 equations by end users involved in public and 
private infrastructure design. The observations gradually 
developed over the years since publication of AS1997 and 
were refined for this investigation. The three observations 
are described in the following sections. 

Inconsistent Peak-Streamflow Frequency 
Curves by Regional Regression 

For a given region, watershed characteristics used to 
develop the AS1997 regression equations for the 2- through 
100-year equations are inconsistent; a fact that can be 
attributed to statistically inconsistent peak-streamflow fre­
quency curve for some watersheds. By definition, a peak­
streamflow frequency curve must monotonically increase 
with increasing recurrence interval. The term inconsistent 
in this context means that the computed discharge for a 
recurrence interval exceeds the discharge for a larger recur­
rence interval. For example, the 50-year peak streamflow 
is computed to be greater than the 100-year peak stream-
flow. The source of the peak-streamflow inconsistency is 
the inconsistent use of watershed characteristics within an 
equation ensemble (a set of equations for a given region). 

The inconsistency in watershed characteristics exists 
because AS1997 used a forward stepwise regression proce­
dure and did not specifically force predictor variables into 
the equations. For example, the equations for region 11 of 
AS1997 (southeastern Texas) are listed in table 1. Main­
channel slope is not used for the 2-year recurrence interval, 
but it is for larger recurrence intervals. Watershed shape is 
used for the 2- through 10-year recurrence intervals, but it is 
not used for larger recurrence intervals. Although difficult 
to visualize, combinations of watershed characteristics can 
be substituted into the equations listed in table 1 to produce 
an inconsistent frequency curve. 

AS1997 explicitly discusses the potential for incon­
sistent peak-streamflow frequency curves from the equa­
tions (Asquith and Slade, 1997, p. 11). When the equations 
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and guidance on equation application originally were devel­
oped, the authors (Asquith and Slade) anticipated that end 
users would apply “hydrologic engineering judgement” to 
manually mitigate peak-streamflow inconsistencies. How­
ever, numerous end users have communicated to the senior 
author a degree of confusion or frustration in regard to 
application of the AS1997 equations, which indicates a 
need for alternative equations that will not produce, or have 
a greatly reduced potential for producing, inconsistent peak­
streamflow frequency curves. 

Regional Regression Equation Applicability 
and Implementation 

AS1997 provides numerous figures (Asquith and 
Slade, 1997, figs. 4–14) in which the relations between 
drainage area, main-channel slope, and watershed shape 
are graphically depicted for each of the 11 regions. 
Superimposed on these plots are generalized “convex 
hulls”2 representing the “approximate [parameter space] 
defined by [watershed] characteristics” for each region. 
For watersheds having coordinates of drainage area, 
main-channel slope, and watershed shape outside the 
convex hull, the applicability of the equations for the 
region is uncertain, and the potential for an inconsistent 
peak-streamflow frequency curve increases. 

Since publication of AS1997, the senior author has 
learned from interaction with end users that the convex 
hulls presented in AS1997 commonly are underutilized. 

2Quoting from http://en.wikipedia.org/wiki/Convex_hull accessed 
on February 19, 2008: “For planar objects, [those] lying in the plane, the convex 
hull may be easily visualized by imagining an elastic band stretched open to encom­
pass the given object; when released, it will assume the shape of the required convex 
hull.” 

Table 1. Asquith and Slade (1997) regression equations for 
region 11 (southeast Texas). 

[QT , peak streamflow for T -year recurrence interval in cubic feet 
per second; A, drainage area in square miles; S, main-channel 
slope in feet per mile; and H, dimensionless watershed shape. 
Sixty-six stations were used in the regression development.] 

Regression equation 
Adjusted 

R-
squared 

Residual 
standard 

error 
log10(QT ) 

Q2 = 159A0.669 H−0.262 0.91 0.18 

Q5 = 191A0.696 S0.130 H−0.186 .91 .18 

Q10 = 199A0.718 S0.221 H−0.151 .90 .20 

Q25 = 201A0.713 S0.313 .88 .22 

Q50 = 207A0.735 S0.380 .86 .24 

Q100 = 213A0.755 S0.442 .85 .26 

Furthermore, some end users abstracted (reproduced) for 
application only the equations from AS1997. As a result, 
important context that contributes to optimum use of the 
equations is lost. 

The apparent lack of full adherence to the entire pro­
cedural framework and caveats of the AS1997 regional 
regression equations is understandable given that AS1997 
provides 96 separate equations and considerable detail. 
Therefore, a simpler regional regression method for esti­
mation of peak-streamflow frequency in Texas would be 
useful. 

Biased Peak-Streamflow Frequency Values 

The multiple linear regional regression equations of 
AS1997 are exclusively based on log10 transformations of 
observed peak-streamflow frequency values, drainage area, 
main-channel slope, and watershed shape. Multiple linear 
regression is based on a linear relation between the regres­
sor variable (peak-streamflow frequency) and the predic­
tor variables (drainage area, main-channel slope, watershed 
shape, and others). AS1997 (Asquith and Slade, 1997, 
p. 8) notes that, for some regions, peak-streamflow val­
ues (for example, the 100-year peak streamflow) have a 
discernible curvilinear relation with drainage area in log10 
space. AS1997 addresses the nonlinearity (and thus miti­
gates the bias) by classifying watersheds into two ranges of 
drainage area. Separate regional regression analyses were 
done for watersheds with drainage areas less than 32 square 
miles and for watersheds with areas greater than 32 square 
miles. The 32-square-mile break point was determined by 
data interpretation. The drainage-area distinction and bias 
mitigation is explicitly discussed in AS1997 (Asquith and 
Slade, 1997, p. 13). 

The drainage-area classification was not made for six 
of the 11 regions because either the number of watersheds 
was small (degrees of freedom for regression) within a 
region or an absence of a discernible curvilinear relation 
between log10-transformed peak streamflow and drainage 
area was perceived. For a region in which the drainage-area 
classification was made, 12 equations for the region were 
developed—six equations for watersheds with drainage 
areas less than 32 square miles and six equations for water­
sheds with drainage areas greater than 32 square miles. 
Conversely, six equations were developed for regions in 
which nonlinearity was not apparent and no drainage-area 
classification was made. 

The drainage-area classification complicates applica­
tion of the equations for watersheds near the 32-square mile 
break point. AS1997 (Asquith and Slade, 1997, p. 12) pro­
vides an ad hoc procedure to prorate estimates for water­

http://en.wikipedia.org/wiki/Convex_hull
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sheds of 10 to 100 square miles between the equation 
ensemble for drainage areas less than or equal to 32 square 
miles and the ensemble for drainage areas greater than or 
equal to 32 square miles. If the proration procedure is not 
followed, “jumps” in peak streamflow at 32 square miles 
will result. 

The nonlinearity is apparent in the graphical depiction 
of the 32-square-mile classification technique to mitigate 
for nonlinearity (Asquith and Slade, 1997, figs. 3 and 15). 
Despite the measures to address the nonlinearity and thus 
mitigate bias, the AS1997 equations still have the potential 
to overestimate peak-streamflow frequency values for both 
the smallest and largest watersheds. As noted, eliminating 
or reducing the potential for inconsistent peak-streamflow 
frequency curves and making the regional regression equa­
tion method easier for end users to apply are ancillary 
reasons to develop the alternative equations shown in this 
report; but another reason for development of alternative 
equations is to remove the bias inherent in the AS1997 
equations. 

Typical regression practice to reduce underestimation 
or overestimation (peak-streamflow frequency values for 
this report) is to seek an alternative transformation on the 
regressor variable (Maindonald and Braun, 2003, p. 126– 
127). Some readers might question why an alternative trans­
formation on drainage area (a predictor variable) is sought 
rather than an alternative transformation on the 2- through 
100-year peak-streamflow values (regressor variables). The 
authors chose to assess an alternative transformation on 
drainage area so that the residual standard errors (log10 
units of streamflow) reported are directly comparable to 
those from AS1997. 

Alternative Regression Equations 
for Estimation of Peak-Streamflow 
Frequency for Watersheds in Texas 

Regression Equations Based on Logarithmic 
Transformation of Drainage Area 

The traditional practice for development of regres­
sion equations to estimate peak-streamflow frequency is to 
transform regressor variables (the at-site peak-streamflow 
frequency values, such as the 2- through 100-year peak 
streamflows) and all the predictor variables (Stedinger and 
others, 1993, p. 18.35) by the log10 function. Drainage area, 
a measure of watershed slope, and other characteristics 
are common predictor variables. AS1997 considered six 

characteristics: 2-year 24-hour precipitation, mean annual 
precipitation (1951–80)3, drainage area, stream length, 
basin shape factor, and main-channel slope. The precipi­
tation statistics reported in AS1997 are for the approximate 
watershed centroid. However, for the equations reported 
in AS1997, only drainage area, main-channel slope, and 
watershed shape are used. For this report, only drainage 
area, mean annual precipitation, and main-channel slope 
are used. 

Because of the ubiquitous nature of log10 transforma­
tion in hydrologic analyses, important comparative analysis 
for this report is facilitated by developing regression equa­
tions using log10 transformation on the same data used in 
AS1997. However, no designation of geographic region is 
used for this report. AS1997 considered data for 664 USGS 
streamflow-gaging stations. From preliminary data analysis 
(results not presented here), eight stations were identified 
as outliers on the basis of the relative change of exploratory 
regressions and associated diagnostics when each of the 
outlying stations were individually dropped. These stations 
were eliminated from further analysis. The summary statis­
tics (table 2) of drainage area, mean annual precipitation, 
and main-channel slope were computed after the removal 
of the eight stations listed in table 3. 

Weighted-least squares regression on the 2-, 5-, 10-, 
25-, 50-, and 100-year peak-streamflow values for the re­
maining 656 streamflow-gaging stations is accomplished 
using drainage area, mean annual precipitation, and main-
channel slope as predictor variables. For comparison, the 
mean number of stations per equation in AS1997 is 36. 
Therefore, the degrees of freedom for the regression equa­
tions reported here are about 18 times larger than those of 
AS1997. 

Analysis of collinearity through variance inflation fac­
tors and statistical significance (results not reported here) 
strongly indicated that inclusion of watershed shape in the 
regression equations in addition to drainage area, mean 

3This period coincides with the most undeveloped peak-streamflow data and 
streamflow-gaging stations in Texas. 

Table 2. Summary statistics of basin characteristics used in 
regression analysis described in this report. 

[A, drainage area, in square miles; P, mean annual precipitation, 
in inches (1951–1981); S, main-channel slope, in feet per mile] 

Min­
inum 

1st 
Quar­
tile 

Median 
3rd 

Quar­
tile 

Maxi­
mum 

A 0.10 7.2 128 6,960 174, 000 
P 8 22 31 41 57 
S .38 7.35 13.4 33.6 371 
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Table 3. U.S. Geological Survey streamflow-gaging stations identified as outliers and removed from analysis. 

Station no. Station name Drainage area 
(square miles) 

08039900 Little Sandy Creek tributary near Jasper, Texas 0.46 
08080700 Running Water Draw at Plainview, Texas 382 
08089100 Elm Creek tributary near Graford, Texas 1.10 
08210400 Lagarto Creek near George West, Texas 155 
08383200 Pintada Arroyo tributary near Clines Corners, New Mexico 29.20 
08393600 North Spring River at Roswell, New Mexico 19.50 
08405050 Last Chance Canyon tributary near Carlsbad Caverns, New Mexico .20 
08434000 Toyah Creek below Toyah Lake near Pecos, Texas 3, 709 

annual precipitation, and main-channel slope is not appro­
priate. The six regression equations are listed in table 4. 
For all six equations, the p-values for the coefficients on the 
watershed characteristics are less than .0001, which means 
that the variables and intercept are all highly statistically 
significant. 

A simple comparison between 100-year residual stan­
dard error listed in table 4 and the weighted-mean 100-year 
residual standard error from AS1997 provides perspective. 
The weighted-mean 100-year residual standard error from 
AS1997 is computed by weighting the errors in AS1997 
(Asquith and Slade, 1997, table 2) by the number of sta­
tions for each region. The weighted-mean, 100-year, resid­
ual standard error from AS1997 is about 0.27; the 100­
year residual standard error listed in table 4 is 0.34. These 
two residual standard errors are of similar magnitude. Ad­
ditional comparisons of residual standard errors listed in 
table 4 to those in AS1997 indicate that all have about the 
same magnitude, although overall the errors are greater for 
the equations reported here. The conclusion from this com­
parison is that the six equations in table 4 have approxi­
mately the same residual standard error as the 96 equations 
reported in AS1997. 

For the equations in table 4, inclusion of mean annual 
precipitation for the watershed is useful. Mean annual 
precipitation becomes a surrogate for spatial location that 
replaces the concept of geographic region designation asso­
ciated with the equations in AS1997. Mean annual precipi­
tation was not used in AS1997 for the final equations shown 
in that report. 

Bias in multiple linear regression is well depicted in 
a residual (observed minus predicted) graph in which the 
residual for a particular data point is plotted on the vertical 
axis and the corresponding fitted value is plotted on the 
horizontal axis. If there is a discernible trend or shape in 
the graph—that is, a tendency for residuals to plot above 

or below the zero-residual line, then bias in the equation 
exists. 

Residuals for the 100-year peak-streamflow equation 
listed in table 4 are graphed in figure 1. A LOWESS 

(LOcally WEighted Scatterplot Smoothing) trend line 
(Cleveland, 1979) through the data is superimposed. 
The lowess() function of the R software package (R 
Development Core Team, 2006) with default settings was 
used. The concave-down shape of the LOWESS trend line 
indicates systematic bias in the regression. The negative 
magnitudes of the left and right segments of the LOWESS 

trend line indicate that overestimation of the 100-year 
peak-streamflow occurs for watersheds with small and 
large fitted values (the smallest and largest watersheds, 
respectively). 

The LOWESS trend line is only an indicator of bias 
and does not represent a true bias correction; however, 
interpretation of the line as a bias measure is useful. For 
example, referring to figure 1, for a fitted value of about 
2.5 (316 cubic feet per second) and a LOWESS-indicated 
bias of about −0.25, a more appropriate value might be 
2.5− 0.25 = 2.25 (178 cubic feet per second). There­
fore, the bias-corrected value, albeit ad hoc, is about 44 
percent less than the fitted value. In general, the log10 ­
exclusive regressions in table 4 have concave-down trend 
lines through the residuals. The concavity of the LOWESS 

trend line (interpreted as bias in the equations) increases 
with increasing recurrence interval (results not presented 
here). 

Hydrologic scale typically is measured by drainage 
area. Therefore, it is informative to develop second and 
third sets of log10-transformed regression equations on the 
same 656 stations using drainage area and mean annual 
precipitation (table 5) and only drainage area (table 6) as 
predictor variables. 
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Figure 1. Residual plot of regression of 100-year peak streamflow using logarithmic transformation of drainage area using 
three predictor variables. 

For these 12 equations, the p-values for the coefficients 
on the intercept, drainage area, and mean annual precipi­
taiton are less than .0001. The residual standard errors asso­
ciated with the equations in tables 5 and 6 are all greater 
than those listed in table 4 and because one and two fewer 
predictor variables are in the equations in tables 5 and 6, 
respectively. 

Residuals for the 100-year peak-streamflow equation 
listed in table 6 are shown in figure 2. The LOWESS 

trend line superimposed through the data has considerable 
downward concavity similar to the trend line in figure 1. 
The interpretations of the regressions in table 6 using the 
LOWESS trend line on the residual plot are the same as 
those for the regression equations in table 4. Specifically, 
peak streamflow is overestimated for watersheds with small 
fitted values (the smallest watersheds) and for watersheds 
with large fitted values (the largest watersheds). The bias 
is considerable. The concavity of the LOWESS trend line 
increases with increasing recurrence interval (results not 
presented here). 

In conclusion, systematic bias is present in the regres­
sion equations reported in tables 4–6, and by general 
method association, bias is present in the AS1997 equa­
tions. The bias exists because of the curvilinear relation 

between log10-transformed peak streamflow and drainage 
area. The bias is mitigated in the AS1997 analysis by sepa­
rating regressions into two groups on the basis of watershed 
drainage area, less than or greater than 32 square miles. 
The relation between log10-transformed peak streamflow 
and drainage area becomes increasingly curvilinear with 
increasing recurrence interval. 

Regression Equations Based on PRESS Min­
imization and Power Transformation of 
Drainage Area 

The PRESS statistic generally is regarded as a measure 
of regression performance when the model is used to pre­
dict new data (Montgomery and others, 2001, p. 153). Pre­
diction of new data is what analysts and engineers do when 
they estimate peak streamflow from a regression equation. 
Regression equations with small PRESS values are desir­
able. Thus, PRESS minimization is an appropriate goal. 
Helsel and Hirsch (2002, p. 247) state that, “Minimizing 
PRESS means that the equation produces the least error 
when making new predictions.” Conceptually, PRESS mini­
mization identifies the appropriate transformation to “press” 
the bias out of the equations (fig. 3). 



� �2n ei . ∑
PRESS = wi 1− hiii=1 
� e(i) = yi − yi, 

7 Alternative Regression Equations for Estimation of Peak-Streamflow Frequency for Watersheds in Texas 

FITTED Q100, IN LOG10(CUBIC FEET PER SECOND)
1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

-1.50

-1.25

-1.00

-0.75

-0.50

-0.25

0

0.25

0.50

0.75

1.00

1.25

LOCally-WEighted Scatterplot Smoothing (LOWESS) trend line
Regression residual

EXPLANATION

OB
SE

RV
ED

M
IN

US
PR

ED
IC

TE
D

Q1
00

,
IN

LO
G1

0(
CU

BI
C 

FE
ET

 P
ER

 S
EC

ON
D)

Figure 2. Residual plot of regression of 100-year peak streamflow using logarithmic transformation of drainage area using 
drainage area as the only predictor variable. 

The PRESS statistic is computed from the PRESS resid- software packages. The PRESS computation is made by 
uals, which are defined as 

(3)(1) 

where e(i) is the PRESS residual, yi is the observed ith peak­
streamflow value, and y�  i is the predicted value based on the 
remaining n − 1 sample points. In other words, the ith sta­
tion (data point) is not used to generate the ith regression 
equation. Thus, PRESS residuals are regarded as validation 
statistics. The PRESS statistic, with inclusion of the regres­
sion weight factor (wi), is 

n 

∑
wie2 
(i). PRESS = 

i=1 

Because the PRESS statistic is an overall measure of 
regression fit (like residual standard error) and is a vali­
dation statistic (unlike residual standard error), minimiza­
tion of PRESS is desirable. The most “valid” regression is 
produced when the PRESS statistic is minimized. The fol­
lowing transformation on drainage area was selected after 
exploratory analysis: 

(2) A� = Aλ , (4)

Equation 2 is computationally intensive (n regressions 
are required). A more efficient computation of PRESS is 
made using regression residuals (ei) and leverage (hii). (The 
double subscript ii refers to the diagonal of the hat matrix.4) 
These values are readily available from modern regression 

4Quoting from Montgomery and others (2001, p. 75): The n × n matrix H = 
X(X�X)−1X is usually called the hat matrix. It maps the vector of observed values 
into a vector of fitted values. The hat matrix and its properties play a central role in 
regression analysis. 

where A� is the transformed value for the regression, A is 
drainage area, and λ is a real number. The transformation 
is referred to in this report as the power transformation. 

Three computer programs were written in R (R Devel­
opment Core Team, 2006) to loop through successive non-
integer values of λ and record the value that yields a 
minimum PRESS for each of the six recurrence intervals. 
Tens of thousands of regressions were done in the pro­
cess of exploratory data analysis and for the final mini­
mization reported here. The first program implemented the 
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Figure 3. Conceptual display of the PRESS statistic minimiza­
tion. 

watershed characteristics drainage area, mean annual pre­
cipitation, and main-channel slope as predictor variables; 
the second program implemented drainage area and mean 
annual precipitation; and the third program implemented 
only drainage area as a predictor variable. 

The programs and incremental output are provided in 
appendixes 1–3. The programs and output are included in 
the report to provide an archive of the PRESS minimization 
algorithm and the regression analysis results summarized 
in tables 4–6 as well as tables 7–9. 

The results of the power transformation of drainage 
area using the three predictor variables are listed in table 7. 
The value of λ is the exponent on A in the equations. The 
value of λ increases in absolute magnitude with increasing 
recurrence interval; the larger the absolute value of λ , the 
larger the amount of concavity in the trend line of residuals 
(systematic bias) that is reduced. 

In all six equations, the p-values for the coefficients 
on the watershed characteristics are less than .0001. The 
diagnostic statistics of adjusted R-squared and residual stan­
dard error in the table are greater and less than, respectively, 
those in table 4. Therefore, the equations using the power 
transformation have less uncertainty. However, the PRESS 

statistic is the more important statistic to compare. 

The PRESS statistic for a given recurrence interval is 
less when the power transformation on drainage area is 
used instead of the log10 transformation. The percentage 
changes in the PRESS statistics associated with the power 
transformation (table 7) compared to those associated with 
the log10 transformation (table 4) show that, as recurrence 
interval increases, the power transformation produces an 
increasingly more valid regression. 

Residual standard errors of the PRESS-minimized equa­
tions in table 7 are similar to those of the equations reported 
in AS1997. For example, the 100-year residual standard 
error is about 0.33 and the AS1997 weighted value is 0.27 
for the 11 regions collectively. 

Residuals for the 100-year peak-streamflow equations 
using the three predictor variables (table 7) are shown in fig­
ure 4. Downward concavity of the superimposed LOWESS 

trend line is not present, unlike the LOWESS trend line 

in figure 1. In fact, the LOWESS trend line is essentially 
flat, which indicates that systematic bias in the equation 
is reduced through use of the specified power transforma­
tion. The power transformation on drainage area effectively 
linearizes the relation between 100-year peak streamflow 
and drainage area. Minimization of the PRESS statistic 
effectively removes systematic bias. Similar results (not 
reported here) were obtained for the other five recurrence 
intervals. 

The results of the power transformation of drainage 
area using drainage area and mean annual precipitation 
and only drainage area as predictor variables are listed in 
tables 8 and 9. Again, the value of λ is the exponent on A in 
the equations. In all 12 equations, the p-values for the coef­
ficients on the watershed characteristics are less than .0001. 
Adjusted R-squared and residual standard error for regres­
sion based on power transformation are greater and less 
than, respectively, for those regressions based exclusively 
on log10 transformation (tables 5 and 6). Therefore, the 
equations using the power transformation have less uncer­
tainty. The PRESS statistic for a given recurrence interval 
is less when the power transformation on drainage area is 
used instead of the log10 transformation. The percentage 
changes in the PRESS statistic associated with the power 
transformation (tables 8 and 9) compared to those associ­
ated with the log10 transformation (tables 5 and 6) show 
that, as recurrence interval increases, the power transforma­
tion produces an increasingly more valid regression. 

Residuals for the 100-year peak-streamflow equations 
in table 9 are graphed in figure 5. The concave-down shape 
of the superimposed LOWESS trend line in the residuals 
graph from the log10 transformation (fig. 2) is not present 
in the graph derived from the power transformation. In fact, 
the LOWESS trend line is essentially flat (fig. 5), which indi­
cates that systematic bias in the equation has been reduced. 
The authors conclude that the power transformation on 
drainage area effectively linearizes the relation between 
100-year peak streamflow and drainage area. Minimiza­
tion of PRESS effectively removes systematic bias. Similar 
results (not reported here) were obtained for the other five 
recurrence intervals. 

The PRESS statistics for the equations in tables 7 and 9 
are shown graphically by recurrence interval in figure 6 (the 
PRESS statistics for the equations in table 8 are not shown). 
From the figure it is clear that the power transformation 
with PRESS minimization produces PRESS statistics less 
than those from the log10-exclusive equations. PRESS min­
imization becomes increasingly important as recurrence 
interval increases because the log10 transformation does 
not produce a linear relation between peak streamflow and 
drainage area for the larger recurrence-interval events. 
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Figure 4. Residual plot of regression of 100-year peak streamflow using power transformation of drainage area using three 
predictor variables. 
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Figure 5. Residual plot of regression of 100-year peak streamflow using power transformation of drainage area using drainage 
area as the only predictor variable. 
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Although the smallest PRESS statistics occur for the 5­
year recurrence interval, the PRESS statistics for the 2-year 
recurrence interval are not exceeded until the 25-year and 
larger recurrence intervals are reached. An interpretation 
of the PRESS statistic is that estimation of the 2-year peak 
streamflow using watershed characteristics is more difficult 
than estimation for the 5-year and 10-year peak streamflow. 
This observation is consistent with residual standard errors 
reported in AS1997. 

Finally, the magnitude and extent of the bias between 
the log10-exclusive regression and the PRESS-minimized 
regression is informative. The magnitude of the bias can be 
expressed as the ratio (the bias ratio) of the log10 equations 
(tables 4 or 6) to the PRESS-minimized equations (tables 7 
or 9). For example, the bias ratio for the 100-year peak 
streamflow for the drainage-area-only equations is 

(5)

When the ratio is greater than 1, the log10-exclusive 
regression overestimates peak streamflow relative to the 
PRESS-minimized regression. Similar equations of the bias 
ratio for other recurrence intervals are easily defined. To­
gether, the six equations defining the bias ratio document 
the inherent differences between the log10-exclusive peak­
streamflow equations and the PRESS-minimized equations. 

The extent of the bias ratio is shown by the ratio as a 
function of drainage area. An example, by recurrence in­
terval, for the regressions using drainage area as the only 
predictor variable is shown in figure 7 (see eq. 5). An inter­
pretation of the figure is that the log10-exclusive regressions 
overestimate peak-streamflow frequency for drainage areas 
less than about 8 square miles and drainage areas greater 
than about 2,000 square miles. The overestimation for 
drainage areas less than about 2 square miles is substan­
tial. The overestimation for drainage areas less than about 
0.5 square mile exceeds 100 percent for all but the 2-year 
peak streamflow. Alternatively, the log10-exclusive regres­
sions slightly underestimate peak-streamflow frequency for 
drainage areas between about 8 and 2,000 square miles. 

Summary 

Peak-streamflow frequency estimates are needed for 
flood-plain management; for objective assessment of flood 
risk; for cost-effective design of dams, levees, other flood­
control structures; and for design of roads, bridges, and 

culverts. Peak-streamflow frequency represents the collec­
tive peak streamflow for recurrence intervals of 2, 5, 10, 25, 
50, and 100 years. 

The U.S. Geological Survey (USGS), in cooperation 
with the Texas Department of Transportation and in partner-
ship with Texas Tech University, investigated a refinement 
of the regional regression method and developed alternative 
equations for estimation of peak-streamflow frequency for 
undeveloped watersheds in Texas. A common model for 
estimation of peak-streamflow frequency is based on the 
regional regression method, which relates peak-streamflow 
frequency to watershed characteristics. 

The current (2008) regional regression equations (96 
separate equations) for 11 geographic regions of Texas 
are based on log10 transformations on all regression vari­
ables (the peak-streamflow values and the watershed char­
acteristics of drainage area, main-channel slope, and water­
shed shape). The log10 transformation does not fully lin­
earize the relations between the variables, which is a major 
assumption in linear regression analysis. As a result, some 
systematic bias remains in the current equations. The pri­
mary source of the bias is the discernible curvilinear rela­
tion between peak streamflow and drainage area in log10 
space. The bias results in overestimation of peak stream­
flow for both the smallest and largest watersheds, and the 
bias increases with increasing recurrence interval. 

To demonstrate the extent of the bias, equations using 
log10(drainage area) for the study area (Texas and slight 
overlap with surrounding states) are reported. Separate 
regional distinction is not made for this report. Mean 
annual precipitation provides a surrogate for spatial loca­
tion that replaces the concept of geographic region desig­
nation associated with the current equations. The use of 
mean annual precipitation reduces the number of equations 
for a given number of predictor variables (three, two, or 
one) from 96 to 6—one equation for each of the six recur­
rence intervals. To address the bias, a statistical framework 
based on minimization of the PRESS statistic through power 
transformation on drainage area is described. 

The PRESS statistic is an important measure of regres­
sion performance. It is a validation-type statistic, and small 
values are desirable. Minimization of PRESS is appropriate 
for peak-streamflow frequency analysis because the equa­
tions are used in hydrologic engineering practice to predict 
new data. 

Compared to log10(drainage area) equations, the equa­
tions derived from PRESS minimization have PRESS statis­
tics and residual standard errors less than the log10(drainage 
area) equations. Selected residual plots for the PRESS­
minimized equations demonstrate that the systematic bias 
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in regional regression equations for peak-streamflow fre­
quency estimation in Texas can be reduced. Because the 
overall error is similar to the overall error associated with 
the equations currently in use and bias is reduced, the 
PRESS-minimized equations reported here provide alterna­
tive equations for peak-streamflow frequency estimation. 
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Table 4. Regression equations based on logarithmic transformation of drainage area using three predictor variables.
 

[QT , peak streamflow for T -year recurrence interval in cubic feet per second; A, drainage area in square miles; P, mean annual 
precipitation in inches; and S, main-channel slope in feet per mile.] 

Regression equation 
Adjusted 

R-
squared 

Residual 
standard 

error 
log10(QT ) 

PRESS 
statistic 

Q2 = 10−0.5240 A0.6565 P1.474 S0.3525 0.8282 0.2866 54.36 

Q5 = 10−0.2204 A0.6790 P1.376 S0.4828 .8414 .2686 47.76 

Q10 = 10−0.04207 A0.6896 P1.317 S0.5421 .8310 .2778 51.12 

Q25 = 100.1501 A0.7005 P1.256 S0.6005 .8086 .2993 59.34 

Q50 = 100.2748 A0.7073 P1.218 S0.6359 .7887 .3186 67.25 

Q100 = 100.3879 A0.7133 P1.183 S0.6660 .7675 .3393 76.25 

Table 5. Regression equations based on logarithmic transformation of drainage area using two predictor variables. 

[QT , peak streamflow for T -year recurrence interval in cubic feet per second; A, drainage area in square miles; and P, mean annual 
precipitation in inches.] 

Regression equation 
Adjusted 

R-
squared 

Residual 
standard 

error 
log10(QT ) 

PRESS 
statistic 

Q2 = 100.8330 A0.5534 P0.9732 0.8153 0.2971 58.29 

Q5 = 101.639 A0.5378 P0.6896 .8157 .2895 55.32 

Q10 = 102.045 A0.5311 P0.5469 .7987 .3032 60.69 

Q25 = 102.462 A0.5249 P0.4029 .7698 .3282 71.10 

Q50 = 102.723 A0.5214 P0.3140 .7463 .3491 80.44 

Q100 = 102.952 A0.5186 P0.2366 .7224 .3707 90.72 

Table 6. Regression equations based on logarithmic transformation of drainage area using one predictor variable. 

[QT , peak streamflow for T -year recurrence interval in cubic feet per second; and A, drainage area in square miles.] 

Regression equation 
Adjusted 

R-
squared 

Residual 
standard 

error 
log10(QT ) 

PRESS 
statistic 

Q2 = 102.339 A0.5158 0.7642 0.3357 74.22 

Q5 = 102.706 A0.5111 .7889 .3099 63.28 

Q10 = 102.892 A0.5100 .7820 .3156 65.63 

Q25 = 103.086 A0.5093 .7612 .3343 73.67 

Q50 = 103.209 A0.5092 .7414 .3525 81.88 

Q100 = 103.318 A0.5094 .7199 .3724 91.39 
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Table 7. Regression equations based on power transformation of drainage area using three predictor variables. 

[QT , peak streamflow for T -year recurrence interval in cubic feet per second; A, drainage area in square miles; P, mean annual 
precipitation in inches; and S, main-channel slope in feet per mile. The exponent of A is the power λ .] 

Regression equation 
Adjusted 

R-
squared 

Residual 
standard 

error 
log10(QT ) 

PRESS 
statistic 

Percent 
change from 

PRESS in 
table 4 

Q2 = 1035.60−36.09A−0.0082 
P1.448 S0.3472 0.8286 0.2863 54.27 −0.17 

Q5 = 1011.16−11.28A−0.0299 
P1.279 S0.4640 .8461 .2646 46.37 −2.9 

Q10 = 109.047−8.950 A−0.0400 
P1.188 S0.5172 .8396 .2707 48.57 −5.0 

Q25 = 107.949−7.628 A−0.0497 
P1.096 S0.5699 .8217 .2889 55.32 −6.8 

Q50 = 107.554−7.090 A−0.0553 
P1.039 S0.6021 .8048 .3062 62.18 −7.5 

Q100 = 107.307−6.714A−0.0601 
P0.9883 S0.6295 .7862 .3253 70.19 −7.9 

Table 8. Regression equations based on power transformation of drainage area using two predictor variables. 

[QT , peak streamflow for T -year recurrence interval in cubic feet per second; A, drainage area in square miles; and P, mean annual 
precipitation in inches. The exponent of A is the power λ .] 

Regression equation 
Adjusted 

R-
squared 

Residual 
standard 

error 
log10(QT ) 

PRESS 
statistic 

Percent 
change from 

PRESS in 
table 5 

Q2 = 1017.36−16.51A−0.0157 
P0.9429 0.8162 0.2965 58.02 −0.46 

Q5 = 108.080−6.403A−0.0451 
P0.6065 .8226 .2841 53.27 −3.7 

Q10 = 107.200−5.107A−0.0596 
P0.4397 .8103 .2943 57.18 −5.8 

Q25 = 106.849−4.329A−0.0740 
P0.2729 .7870 .3157 65.80 −7.5 

Q50 = 106.777−3.991A−0.0828 
P0.1706 .7670 .3345 73.88 −8.2 

Q100 = 106.776−3.758 A−0.0903 
P0.08212 .7458 .3548 82.98 −8.5 

Table 9. Regression equations based on power transformation of drainage area using one predictor variable. 

[QT , peak streamflow for T -year recurrence interval in cubic feet per second; and A, drainage area in square miles. The exponent of A is 
the power λ .] 

Regression equation 
Adjusted 

R-
squared 

Residual 
standard 

error 
log10(QT ) 

PRESS 
statistic 

Percent 
change from 

PRESS in 
table 6 

Q2 = 108.280−6.031 A−0.0465 
0.7710 0.3309 72.06 −2.9 

Q5 = 107.194−4.614 A−0.0658 
.8030 .2994 59.00 −6.8 

Q10 = 106.961−4.212 A−0.0749 
.8002 .3021 60.10 −8.4 

Q25 = 106.840−3.914 A−0.0837 
.7834 .3184 66.77 −9.4 

Q50 = 106.806−3.766 A−0.0890 
.7659 .3354 74.08 −9.5 

Q100 = 106.800−3.659 A−0.0934 
.7462 .3545 82.78 −9.4 
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R : Copyright 2006, The R Foundation for Statistical Computing 
Version 2.3.0 (2006 -04 -24) 
ISBN 3 -900051 -07 -0 

R is free software and comes with ABSOLUTELY NO WARRANTY. 
You are welcome to redistribute it under certain conditions. 
Type ’license () ’ or ’licence () ’ for distribution details. 

Natural language support but running in an English locale 

R is a collaborative project with many contributors.
 
Type ’contributors () ’ for more information and
 
’citation () ’ on how to cite R or R packages in publications.
 

Type ’demo() ’ for some demos , ’help() ’ for on -line help , or
 
’help.start () ’ for an HTML browser interface to help.
 
Type ’q() ’ to quit R.
 

> # In R, it appears necessary to ensure that the sum of the 
> # weight factors equals the length of the weight factor 
> # vector. Otherwise , one artificially inflates the 
> # residual standard error and hence prediction limits. Other 
> # diagnostics are changed , but remain in relative proportion 
> # with one another --so influence conclusions remain the same? 
> # Also , the coefficients of the regression are correct regardless 
> # of the summation constraint needed on the weights. 
> MLRweights <- function(vector) { 
+ tmp = length(vector)/sum(vector)
 
+ return (tmp*vector)
 
+ }
 
>
 
> # PRESS statistics
 
> PRESS <- function(model) {
 
+ if(is.null(model$terms)) stop("invalid� ’lm ’�object:�no�terms ")
 
+ sum( (weighted.residuals(model)/(1 - hatvalues(model)))^2 )
 
+ }
 
>
 
>
 
> DATA <- read.csv("tx664.csv ",header =T)
 
> attach(DATA)
 
> names(DATA)
 
[1] "Station " "LatD " "LatM " "LatS " "LonD " "LonM " "LonS " 
[8] "EqYrs " "CDA " "MAP " "P224 " "Slope " "Shape " "Q2 " 

[15] "Q5 " "Q10 " "Q25 " "Q50 " "Q100 " "C2 " "C25 "
 
[22] "C100 "
 
> outliers <- c(212 ,323 ,358 ,602 ,614 ,620 ,628 ,637)
 
> CDA <- CDA[-outliers]
 
> Q2 <- Q2[-outliers]
 
> Q5 <- Q5[-outliers]
 
> Q10 <- Q10[-outliers]
 
> Q25 <- Q25[-outliers]
 
> Q50 <- Q50[-outliers]
 
> Q100 <- Q100[-outliers]
 
> MAP <- MAP[-outliers]
 
> Slope <- Slope[-outliers]
 
> WEIGHTS <- MLRweights(EqYrs[ -outliers ])
 
>
 
>
 
> WLS2 _2.OUT <- lm(Q2 ~CDA+MAP+Slope , weights =WEIGHTS)
 
> WLS2 _5.OUT <- lm(Q5 ~CDA+MAP+Slope , weights =WEIGHTS)
 
> WLS2 _10. OUT <- lm(Q10 ~CDA+MAP+Slope , weights =WEIGHTS)
 
> WLS2 _25. OUT <- lm(Q25 ~CDA+MAP+Slope , weights =WEIGHTS)
 
> WLS2 _50. OUT <- lm(Q50 ~CDA+MAP+Slope , weights =WEIGHTS)
 
> WLS2 _100. OUT <- lm(Q100 ~CDA+MAP+Slope , weights =WEIGHTS)
 
>
 
> PRESS(WLS2 _2.OUT)
 
[1] 54.36495
 
> summary(WLS2 _2.OUT)
 

Call:
 
lm(formula = Q2 ~ CDA + MAP + Slope , weights = WEIGHTS)
 

Residuals: 
Min 1Q Median 3Q Max 

-1.119685 -0.171447 -0.009884 0.188213 1.104813 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 
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( Intercept ) -0.52401 0.22148 -2.366 0.0183 * 
CDA 0.65645 0.01762 37.250 < 2e -16 *** 
MAP 1.47417 0.09926 14.851 < 2e -16 *** 
Slope 0.35245 0.04981 7.076 3.84 e -12 *** 
---
Signif . codes : 0 "***" , 0.001 "**" , 0.01 "*" , 0.05 "." , 0.1 "�" , 1 

Residual standard error : 0.2866 on 652 degrees of freedom 
Multiple R -Squared : 0.829 , Adjusted R -squared : 0.8282 
F -statistic : 1054 on 3 and 652 DF , p -value : < 2.2 e -16 

> 
> PRESS ( WLS2 _ 5. OUT ) 
[1] 47.75871 
> summary ( WLS2 _ 5. OUT ) 

Call : 
lm ( formula = Q5 ~ CDA + MAP + Slope , weights = WEIGHTS ) 

Residuals : 
Min 1Q Median 3Q Max 

-0.97622 -0.17392 -0.01896 0.14456 0.86452 

Coefficients : 
Estimate Std . Error t value Pr ( >|t |) 

( Intercept ) -0.22042 0.20756 -1.062 0.289 
CDA 0.67897 0.01652 41.111 <2e -16 *** 
MAP 1.37583 0.09303 14.790 <2e -16 *** 
Slope 0.48282 0.04668 10.344 <2e -16 *** 
---
Signif . codes : 0 "***" , 0.001 "**" , 0.01 "*" , 0.05 "." , 0.1 "�" , 1 

Residual standard error : 0.2686 on 652 degrees of freedom 
Multiple R -Squared : 0.8422 , Adjusted R -squared : 0.8414 
F -statistic : 1160 on 3 and 652 DF , p -value : < 2.2 e -16 

> 
> PRESS ( WLS2 _ 10. OUT ) 
[1] 51.11918 
> summary ( WLS2 _ 10. OUT ) 

Call : 
lm ( formula = Q10 ~ CDA + MAP + Slope , weights = WEIGHTS ) 

Residuals : 
Min 1Q Median 3Q Max 

-1.01418 -0.19171 -0.01982 0.13608 0.84651 

Coefficients : 
Estimate Std . Error t value Pr ( >|t |) 

( Intercept ) -0.04207 0.21472 -0.196 0.845 
CDA 0.68963 0.01708 40.365 <2e -16 *** 
MAP 1.31742 0.09623 13.690 <2e -16 *** 
Slope 0.54210 0.04829 11.227 <2e -16 *** 
---
Signif . codes : 0 "***" , 0.001 "**" , 0.01 "*" , 0.05 "." , 0.1 "�" , 1 

Residual standard error : 0.2778 on 652 degrees of freedom 
Multiple R -Squared : 0.8318 , Adjusted R -squared : 0.831 
F -statistic : 1075 on 3 and 652 DF , p -value : < 2.2 e -16 

> 
> PRESS ( WLS2 _ 25. OUT ) 
[1] 59.34262 
> summary ( WLS2 _ 25. OUT ) 

Call : 
lm ( formula = Q25 ~ CDA + MAP + Slope , weights = WEIGHTS ) 

Residuals : 
Min 1Q Median 3Q Max 

-1.03979 -0.20721 -0.02706 0.13507 1.02047 

Coefficients : 
Estimate Std . Error t value Pr ( >|t |) 

( Intercept ) 0.15008 0.23132 0.649 0.517 
CDA 0.70048 0.01841 38.057 <2e -16 *** 
MAP 1.25642 0.10368 12.119 <2e -16 *** 
Slope 0.60053 0.05202 11.544 <2e -16 *** 
---
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Signif. codes: 0 "***", 0.001 "**", 0.01 "*", 0.05 ".", 0.1 "�", 1
 

Residual standard error: 0.2993 on 652 degrees of freedom
 
Multiple R-Squared: 0.8095 , Adjusted R-squared: 0.8086
 
F-statistic: 923.4 on 3 and 652 DF , p-value: < 2.2e -16
 

>
 
> PRESS(WLS2 _50. OUT)
 
[1] 67.2532 
> summary(WLS2 _50. OUT) 

Call:
 
lm(formula = Q50 ~ CDA + MAP + Slope , weights = WEIGHTS)
 

Residuals: 
Min 1Q Median 3Q Max 

-1.09952 -0.22645 -0.03173 0.13983 1.09056 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 0.27484 0.24625 1.116 0.265 
CDA 0.70729 0.01959 36.097 <2e -16 *** 
MAP 1.21778 0.11037 11.034 <2e -16 *** 
Slope 0.63587 0.05538 11.482 <2e -16 *** 
---
Signif. codes: 0 "***", 0.001 "**", 0.01 "*", 0.05 ".", 0.1 "�", 1
 

Residual standard error: 0.3186 on 652 degrees of freedom
 
Multiple R-Squared: 0.7896 , Adjusted R-squared: 0.7887
 
F-statistic: 815.8 on 3 and 652 DF , p-value: < 2.2e -16
 

>
 
> PRESS(WLS2 _100. OUT)
 
[1] 76.25372 
> summary(WLS2 _100. OUT) 

Call:
 
lm(formula = Q100 ~ CDA + MAP + Slope , weights = WEIGHTS)
 

Residuals: 
Min 1Q Median 3Q Max 

-1.16119 -0.23060 -0.03985 0.14572 1.20525 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 0.38788 0.26221 1.479 0.140 
CDA 0.71333 0.02086 34.190 <2e -16 *** 
MAP 1.18327 0.11752 10.069 <2e -16 *** 
Slope 0.66604 0.05897 11.295 <2e -16 *** 
---
Signif. codes: 0 "***", 0.001 "**", 0.01 "*", 0.05 ".", 0.1 "�", 1 

Residual standard error: 0.3393 on 652 degrees of freedom 
Multiple R-Squared: 0.7686 , Adjusted R-squared: 0.7675 
F-statistic: 721.7 on 3 and 652 DF , p-value: < 2.2e -16 

> 
> 
> doQt <- function(Q,type) { 
+ smallpress <- 10000 
+ smallpower <- 10000 
+ #Q <- 10^Q 
+ for(power in seq( -.1,.1,by =0.0001)) { # 0.007 , 0.08 , by =0.0001 
+ if(power == 0) next 
+ power <- -1 * power 
+ CDA1 <- 10^ CDA 
+ CDA1 <- CDA1^power 
+ WLS.OUT <- lm(Q~CDA1+MAP+Slope , weights =WEIGHTS) 
+ press <- PRESS(WLS.OUT) 
+ if(press < smallpress) { 
+ smallpress <- press 
+ smallpower <- power 
+ } 
+ #plot(fitted(WLS.OUT),residuals (WLS.OUT),ylim =c( -2,2),col =2) 
+ #sm <- lowess(fitted(WLS.OUT),y=residuals (WLS.OUT)) 
+ #lines(sm ,lwd =2) 
+ #lines(c( -10 ,10),c(0 ,0)) 
+ } 
+ print(c(type ,smallpower ,smallpress)) 
+ return(c(type ,smallpower ,smallpress)) 
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+ }
 
>
 
>
 
> vals2 <- doQt(Q2 ,2)
 
[1] 2.00000 -0.00820 54.26502
 
> vals5 <- doQt(Q5 ,5)
 
[1] 5.00000 -0.02990 46.36806
 
> vals10 <- doQt(Q10 ,10)
 
[1] 10.00000 -0.04000 48.56881
 
> vals25 <- doQt(Q25 ,25)
 
[1] 25.00000 -0.04970 55.31596
 
> vals50 <- doQt(Q50 ,50)
 
[1] 50.0000 -0.0553 62.1783
 
> vals100 <- doQt(Q100 ,100)
 
[1] 100.00000 -0.06010 70.18746
 
>
 
> vals2
 
[1] 2.00000 -0.00820 54.26502
 
> vals5
 
[1] 5.00000 -0.02990 46.36806
 
> vals10
 
[1] 10.00000 -0.04000 48.56881
 
> vals25
 
[1] 25.00000 -0.04970 55.31596
 
> vals50
 
[1] 50.0000 -0.0553 62.1783
 
> vals100
 
[1] 100.00000 -0.06010 70.18746
 
>
 
>
 
> finalQt <- function(Q,power ,type) {
 
+ CDA1 <- 10^CDA
 
+ CDA1 <- CDA1^power
 
+ WLS.OUT <- lm(Q~CDA1+MAP+Slope , weights =WEIGHTS)
 
+ # plot ( CDA , residuals ( WLS . OUT ),ylim =c( -3 ,3) ) 
+ #plot(fitted(WLS.OUT),residuals (WLS.OUT),pch =16, col =2, ylim =c( -1.5 ,1)) 
+ #sm <- lowess(fitted(WLS.OUT),y=residuals (WLS.OUT)) 
+ # lines (sm , lwd =2) 
+ #lines(c( -10 ,10),c(0 ,0)) 
+ cat(c("POWER:�",power , "\n")) 
+ print(summary(WLS.OUT)) 
+ 
+ W <- diag(WEIGHTS) 
+ X = model.matrix(WLS.OUT) 
+ Xt = t(X) 
+ 
+ # Perform manual WLS regression and hat matrix 
+ tmp <- chol2inv( chol( Xt %*% W %*% X ) ) 
+ wlshat1 <- X %*% tmp %*% Xt 
+ print(tmp) # inverted covariance matrix 
+ print(max(diag(wlshat1))) # the maximum leverage 
+ m.wls.out <- tmp %*% Xt %*% W %*% Q 
+ print(m.wls.out) # the regression coefficients 
+ 
+ PRESS(WLS.OUT) 
+ return(WLS.OUT) 
+ } 
> 
> 
> F2.OUT <- finalQt(Q2,vals2 [2],2) 
POWER: -0.0082 

Call:
 
lm(formula = Q ~ CDA1 + MAP + Slope , weights = WEIGHTS)
 

Residuals: 
Min 1Q Median 3Q Max 

-1.134364 -0.169019 -0.008506 0.190237 1.097330 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 35.59867 0.78972 45.078 < 2e -16 *** 
CDA1 -36.09370 0.96760 -37.302 < 2e -16 *** 
MAP 1.44788 0.09866 14.676 < 2e -16 *** 
Slope 0.34723 0.04963 6.996 6.53e -12 *** 

Signif. codes: 0 "***", 0.001 "**", 0.01 "*", 0.05 ".", 0.1 "�", 1 

Residual standard error: 0.2863 on 652 degrees of freedom 
Multiple R-Squared: 0.8293 , Adjusted R-squared: 0.8286 
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F-statistic: 1056 on 3 and 652 DF , p-value: < 2.2e -16 

[,1] [,2] [,3] [,4] 
[1,] 7.6093394 -9.2195944 0.55243205 0.36807256 
[2,] -9.2195944 11.4232854 -0.80660576 -0.48359566 
[3,] 0.5524321 -0.8066058 0.11875864 0.04243762 
[4,] 0.3680726 -0.4835957 0.04243762 0.03005193 
[1] 0.1053207 

[,1] 
[1,] 35.5986711 
[2,] -36.0936961 
[3,] 1.4478828 
[4,] 0.3472258 
> F5.OUT <- finalQt(Q5,vals5 [2],5) 
POWER: -0.0299 

Call:
 
lm(formula = Q ~ CDA1 + MAP + Slope , weights = WEIGHTS)
 

Residuals: 
Min 1Q Median 3Q Max 

-0.933747 -0.170028 -0.005652 0.142126 0.836051 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 11.16386 0.14688 76.01 <2e -16 *** 
CDA1 -11.27975 0.26878 -41.97 <2e -16 *** 
MAP 1.27941 0.08982 14.24 <2e -16 *** 
Slope 0.46404 0.04544 10.21 <2e -16 *** 
---
Signif. codes: 0 "***", 0.001 "**", 0.01 "*", 0.05 ".", 0.1 "�", 1 

Residual standard error: 0.2646 on 652 degrees of freedom 
Multiple R-Squared: 0.8468 , Adjusted R-squared: 0.8461 
F-statistic: 1201 on 3 and 652 DF , p-value: < 2.2e -16 

[,1] [,2] [,3] [,4] 
[1,] 0.30819904 -0.3799637 -0.01210666 0.03055440 
[2,] -0.37996370 1.0321015 -0.23486075 -0.14338346 
[3,] -0.01210666 -0.2348608 0.11524761 0.04091835 
[4,] 0.03055440 -0.1433835 0.04091835 0.02949867 
[1] 0.1047414 

[,1] 
[1,] 11.1638574 
[2,] -11.2797452 
[3,] 1.2794083 
[4,] 0.4640428 
> F10.OUT <- finalQt(Q10 ,vals10 [2] ,10) 
POWER: -0.04 

Call:
 
lm(formula = Q ~ CDA1 + MAP + Slope , weights = WEIGHTS)
 

Residuals: 
Min 1Q Median 3Q Max 

-0.949383 -0.169673 -0.007528 0.145502 0.782993 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 9.04660 0.11863 76.26 <2e -16 *** 
CDA1 -8.94992 0.21392 -41.84 <2e -16 *** 
MAP 1.18822 0.09121 13.03 <2e -16 *** 
Slope 0.51724 0.04625 11.18 <2e -16 *** 
---
Signif. codes: 0 "***", 0.001 "**", 0.01 "*", 0.05 ".", 0.1 "�", 1 

Residual standard error: 0.2707 on 652 degrees of freedom 
Multiple R-Squared: 0.8403 , Adjusted R-squared: 0.8396 
F-statistic: 1143 on 3 and 652 DF , p-value: < 2.2e -16 

[,1] [,2] [,3] [,4] 
[1,] 0.192009986 -0.1216301 -0.06356396 -0.000679897 
[2,] -0.121630080 0.6244004 -0.17970515 -0.110637868 
[3,] -0.063563963 -0.1797051 0.11352360 0.040132667 
[4,] -0.000679897 -0.1106379 0.04013267 0.029183281 
[1] 0.1041505 

[,1] 
[1,] 9.0465969 
[2,] -8.9499203 
[3,] 1.1882238 
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[4 ,] 0.5172355 
> F25 . OUT <- finalQt ( Q25 , vals25 [2] ,25) 
POWER : -0.0497 

Call : 
lm ( formula = Q ~ CDA1 + MAP + Slope , weights = WEIGHTS ) 

Residuals : 
Min 1Q Median 3Q Max 

-1.01532 -0.18941 -0.01757 0.14541 0.94158 

Coefficients : 
Estimate Std . Error t value Pr ( >|t |) 

( Intercept ) 7.94932 0.11881 66.91 <2e -16 *** 
CDA1 -7.62804 0.19053 -40.03 <2e -16 *** 
MAP 1.09555 0.09660 11.34 <2e -16 *** 
Slope 0.56992 0.04906 11.62 <2e -16 *** 
---
Signif . codes : 0 "***" , 0.001 "**" , 0.01 "*" , 0.05 "." , 0.1 "�" , 1 

Residual standard error : 0.2889 on 652 degrees of freedom 
Multiple R -Squared : 0.8225 , Adjusted R -squared : 0.8217 
F -statistic : 1007 on 3 and 652 DF , p -value : < 2.2 e -16 

[ ,1] [ ,2] [ ,3] [ ,4] 
[1 ,] 0.16917355 -0.01930396 -0.09202358 -0.01816880 
[2 ,] -0.01930396 0.43507942 -0.14753723 -0.09156878 
[3 ,] -0.09202358 -0.14753723 0.11183416 0.03934196 
[4 ,] -0.01816880 -0.09156878 0.03934196 0.02885127 
[1] 0.1034083 

[ ,1] 
[1 ,] 7.9493152 
[2 ,] -7.6280350 
[3 ,] 1.0955540 
[4 ,] 0.5699208 
> F50 . OUT <- finalQt ( Q50 , vals50 [2] ,50) 
POWER : -0.0553 

Call : 
lm ( formula = Q ~ CDA1 + MAP + Slope , weights = WEIGHTS ) 

Residuals : 
Min 1Q Median 3Q Max 

-1.10808 -0.20353 -0.02085 0.14901 1.00273 

Coefficients : 
Estimate Std . Error t value Pr ( >|t |) 

( Intercept ) 7.55371 0.12581 60.04 <2e -16 *** 
CDA1 -7.08958 0.18527 -38.27 <2e -16 *** 
MAP 1.03865 0.10195 10.19 <2e -16 *** 
Slope 0.60210 0.05183 11.62 <2e -16 *** 
---
Signif . codes : 0 "***" , 0.001 "**" , 0.01 "*" , 0.05 "." , 0.1 "�" , 1 

Residual standard error : 0.3062 on 652 degrees of freedom 
Multiple R -Squared : 0.8057 , Adjusted R -squared : 0.8048 
F -statistic : 901.1 on 3 and 652 DF , p -value : < 2.2 e -16 

[ ,1] [ ,2] [ ,3] [ ,4] 
[1 ,] 0.16878887 0.01314134 -0.10338009 -0.02523111 
[2 ,] 0.01314134 0.36601926 -0.13398330 -0.08354382 
[3 ,] -0.10338009 -0.13398330 0.11084897 0.03887227 
[4 ,] -0.02523111 -0.08354382 0.03887227 0.02864815 
[1] 0.1029075 

[ ,1] 
[1 ,] 7.5537081 
[2 ,] -7.0895811 
[3 ,] 1.0386544 
[4 ,] 0.6021032 
> F100 . OUT <- finalQt ( Q100 , vals100 [2] ,100) 
POWER : -0.0601 

Call : 
lm ( formula = Q ~ CDA1 + MAP + Slope , weights = WEIGHTS ) 

Residuals : 
Min 1Q Median 3Q Max 

-1.21129 -0.21871 -0.03113 0.15723 1.08687 

Coefficients : 
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Estimate Std. Error t value Pr(>|t|) 
(Intercept) 7.30661 0.13476 54.218 <2e -16 *** 
CDA1 -6.71364 0.18421 -36.445 <2e -16 *** 
MAP 0.98827 0.10790 9.159 <2e -16 *** 
Slope 0.62951 0.05489 11.468 <2e -16 *** 

Signif. codes: 0 "***", 0.001 "**", 0.01 "*", 0.05 ".", 0.1 "�", 1 

Residual standard error: 0.3253 on 652 degrees of freedom 
Multiple R-Squared: 0.7872 , Adjusted R-squared: 0.7862 
F-statistic: 803.9 on 3 and 652 DF , p-value: < 2.2e -16 

[,1] [,2] [,3] [,4] 
[1,] 0.17159632 0.03242555 -0.11114151 -0.03010189 
[2,] 0.03242555 0.32062551 -0.12431136 -0.07782179 
[3,] -0.11114151 -0.12431136 0.11000107 0.03846329 
[4,] -0.03010189 -0.07782179 0.03846329 0.02846809 
[1] 0.1024386 

[,1] 
[1,] 7.3066130 
[2,] -6.7136406 
[3,] 0.9882687 
[4,] 0.6295080 
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R : Copyright 2006, The R Foundation for Statistical Computing 
Version 2.3.0 (2006 -04 -24) 
ISBN 3 -900051 -07 -0 

R is free software and comes with ABSOLUTELY NO WARRANTY. 
You are welcome to redistribute it under certain conditions. 
Type ’license () ’ or ’licence () ’ for distribution details. 

Natural language support but running in an English locale 

R is a collaborative project with many contributors.
 
Type ’contributors () ’ for more information and
 
’citation () ’ on how to cite R or R packages in publications.
 

Type ’demo() ’ for some demos , ’help() ’ for on -line help , or
 
’help.start () ’ for an HTML browser interface to help.
 
Type ’q() ’ to quit R.
 

> # In R, it appears necessary to ensure that the sum of the 
> # weight factors equals the length of the weight factor 
> # vector. Otherwise , one artificially inflates the 
> # residual standard error and hence prediction limits. Other 
> # diagnostics are changed , but remain in relative proportion 
> # with one another --so influence conclusions remain the same? 
> # Also , the coefficients of the regression are correct regardless 
> # of the summation constraint needed on the weights. 
> MLRweights <- function(vector) { 
+ tmp = length(vector)/sum(vector)
 
+ return (tmp*vector)
 
+ }
 
>
 
> # PRESS statistics
 
> PRESS <- function(model) {
 
+ if(is.null(model$terms)) stop("invalid� ’lm ’�object:�no�terms ")
 
+ sum( (weighted.residuals(model)/(1 - hatvalues(model)))^2 )
 
+ }
 
>
 
>
 
> DATA <- read.csv("tx664.csv ",header =T)
 
> attach(DATA)
 
> names(DATA)
 
[1] "Station " "LatD " "LatM " "LatS " "LonD " "LonM " "LonS " 
[8] "EqYrs " "CDA " "MAP " "P224 " "Slope " "Shape " "Q2 " 

[15] "Q5 " "Q10 " "Q25 " "Q50 " "Q100 " "C2 " "C25 "
 
[22] "C100 "
 
> outliers <- c(212 ,323 ,358 ,602 ,614 ,620 ,628 ,637)
 
> CDA <- CDA[-outliers]
 
> Q2 <- Q2[-outliers]
 
> Q5 <- Q5[-outliers]
 
> Q10 <- Q10[-outliers]
 
> Q25 <- Q25[-outliers]
 
> Q50 <- Q50[-outliers]
 
> Q100 <- Q100[-outliers]
 
> MAP <- MAP[-outliers]
 
> Slope <- Slope[-outliers]
 
> WEIGHTS <- MLRweights(EqYrs[ -outliers ])
 
>
 
>
 
> WLS2 _2.OUT <- lm(Q2 ~CDA+MAP , weights =WEIGHTS)
 
> WLS2 _5.OUT <- lm(Q5 ~CDA+MAP , weights =WEIGHTS)
 
> WLS2 _10. OUT <- lm(Q10 ~CDA+MAP , weights =WEIGHTS)
 
> WLS2 _25. OUT <- lm(Q25 ~CDA+MAP , weights =WEIGHTS)
 
> WLS2 _50. OUT <- lm(Q50 ~CDA+MAP , weights =WEIGHTS)
 
> WLS2 _100. OUT <- lm(Q100 ~CDA+MAP , weights =WEIGHTS)
 
>
 
> PRESS(WLS2 _2.OUT)
 
[1] 58.28556
 
> summary(WLS2 _2.OUT)
 

Call:
 
lm(formula = Q2 ~ CDA + MAP , weights = WEIGHTS)
 

Residuals: 
Min 1Q Median 3Q Max 

-1.09718 -0.18756 -0.01553 0.18068 1.10729 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 
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( Intercept ) 0.83297 0.11490 7.25 1.19 e -12 *** 
CDA 0.55340 0.01029 53.78 < 2e -16 *** 
MAP 0.97323 0.07215 13.49 < 2e -16 *** 
---
Signif . codes : 0 "***" , 0.001 "**" , 0.01 "*" , 0.05 "." , 0.1 "�" , 1 

Residual standard error : 0.2971 on 653 degrees of freedom 
Multiple R -Squared : 0.8159 , Adjusted R -squared : 0.8153 
F -statistic : 1447 on 2 and 653 DF , p -value : < 2.2 e -16 

> 
> PRESS ( WLS2 _ 5. OUT ) 
[1] 55.31802 
> summary ( WLS2 _ 5. OUT ) 

Call : 
lm ( formula = Q5 ~ CDA + MAP , weights = WEIGHTS ) 

Residuals : 
Min 1Q Median 3Q Max 

-0.86588 -0.20147 -0.02265 0.14310 0.86740 

Coefficients : 
Estimate Std . Error t value Pr ( >|t |) 

( Intercept ) 1.63852 0.11196 14.635 <2e -16 *** 
CDA 0.53779 0.01003 53.638 <2e -16 *** 
MAP 0.68959 0.07030 9.809 <2e -16 *** 
---
Signif . codes : 0 "***" , 0.001 "**" , 0.01 "*" , 0.05 "." , 0.1 "�" , 1 

Residual standard error : 0.2895 on 653 degrees of freedom 
Multiple R -Squared : 0.8163 , Adjusted R -squared : 0.8157 
F -statistic : 1451 on 2 and 653 DF , p -value : < 2.2 e -16 

> 
> PRESS ( WLS2 _ 10. OUT ) 
[1] 60.68633 
> summary ( WLS2 _ 10. OUT ) 

Call : 
lm ( formula = Q10 ~ CDA + MAP , weights = WEIGHTS ) 

Residuals : 
Min 1Q Median 3Q Max 

-0.91736 -0.22632 -0.02745 0.14438 1.00583 

Coefficients : 
Estimate Std . Error t value Pr ( >|t |) 

( Intercept ) 2.04511 0.11726 17.441 < 2e -16 *** 
CDA 0.53112 0.01050 50.577 < 2e -16 *** 
MAP 0.54692 0.07363 7.428 3.47 e -13 *** 
---
Signif . codes : 0 "***" , 0.001 "**" , 0.01 "*" , 0.05 "." , 0.1 "�" , 1 

Residual standard error : 0.3032 on 653 degrees of freedom 
Multiple R -Squared : 0.7993 , Adjusted R -squared : 0.7987 
F -statistic : 1300 on 2 and 653 DF , p -value : < 2.2 e -16 

> 
> PRESS ( WLS2 _ 25. OUT ) 
[1] 71.10338 
> summary ( WLS2 _ 25. OUT ) 

Call : 
lm ( formula = Q25 ~ CDA + MAP , weights = WEIGHTS ) 

Residuals : 
Min 1Q Median 3Q Max 

-0.97147 -0.24335 -0.03816 0.13714 1.17710 

Coefficients : 
Estimate Std . Error t value Pr ( >|t |) 

( Intercept ) 2.46222 0.12692 19.400 < 2e -16 *** 
CDA 0.52489 0.01137 46.181 < 2e -16 *** 
MAP 0.40288 0.07970 5.055 5.59 e -07 *** 
---
Signif . codes : 0 "***" , 0.001 "**" , 0.01 "*" , 0.05 "." , 0.1 "�" , 1 

Residual standard error : 0.3282 on 653 degrees of freedom 
Multiple R -Squared : 0.7705 , Adjusted R -squared : 0.7698 
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F-statistic: 1096 on 2 and 653 DF , p-value: < 2.2e -16
 

>
 
> PRESS(WLS2 _50. OUT)
 
[1] 80.44262 
> summary(WLS2 _50. OUT) 

Call:
 
lm(formula = Q50 ~ CDA + MAP , weights = WEIGHTS)
 

Residuals: 
Min 1Q Median 3Q Max 

-1.00636 -0.26998 -0.04396 0.13322 1.28007 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 2.72306 0.13499 20.173 < 2e -16 *** 
CDA 0.52137 0.01209 43.130 < 2e -16 *** 
MAP 0.31401 0.08476 3.705 0.000230 *** 
---
Signif. codes: 0 "***", 0.001 "**", 0.01 "*", 0.05 ".", 0.1 "�", 1
 

Residual standard error: 0.3491 on 653 degrees of freedom
 
Multiple R-Squared: 0.7471 , Adjusted R-squared: 0.7463
 
F-statistic: 964.5 on 2 and 653 DF , p-value: < 2.2e -16
 

>
 
> PRESS(WLS2 _100. OUT)
 
[1] 90.72161 
> summary(WLS2 _100. OUT) 

Call:
 
lm(formula = Q100 ~ CDA + MAP , weights = WEIGHTS)
 

Residuals: 
Min 1Q Median 3Q Max 

-1.03776 -0.28890 -0.05912 0.15130 1.41052 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 2.95226 0.14334 20.596 < 2e -16 *** 
CDA 0.51858 0.01284 40.398 < 2e -16 *** 
MAP 0.23661 0.09001 2.629 0.00877 ** 
---
Signif. codes: 0 "***", 0.001 "**", 0.01 "*", 0.05 ".", 0.1 "�", 1 

Residual standard error: 0.3707 on 653 degrees of freedom 
Multiple R-Squared: 0.7233 , Adjusted R-squared: 0.7224 
F-statistic: 853.4 on 2 and 653 DF , p-value: < 2.2e -16 

> 
> 
> doQt <- function(Q,type) { 
+ smallpress <- 10000 
+ smallpower <- 10000 
+ #Q <- 10^Q 
+ for(power in seq( -.1,.1,by =0.0001)) { # 0.007 , 0.08 , by =0.0001 
+ if(power == 0) next 
+ power <- -1 * power 
+ CDA1 <- 10^ CDA 
+ CDA1 <- CDA1^power 
+ WLS.OUT <- lm(Q~CDA1+MAP , weights =WEIGHTS) 
+ press <- PRESS(WLS.OUT) 
+ if(press < smallpress) { 
+ smallpress <- press 
+ smallpower <- power 
+ } 
+ #plot(fitted(WLS.OUT),residuals (WLS.OUT),ylim =c( -2,2),col =2) 
+ #sm <- lowess(fitted(WLS.OUT),y=residuals (WLS.OUT)) 
+ #lines(sm ,lwd =2) 
+ #lines(c( -10 ,10),c(0 ,0)) 
+ }
 
+ print(c(type ,smallpower ,smallpress))
 
+ return(c(type ,smallpower ,smallpress))
 
+ }
 
>
 
>
 
> vals2 <- doQt(Q2 ,2)
 
[1] 2.00000 -0.01570 58.02393
 
> vals5 <- doQt(Q5 ,5)
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[1] 5.00000 -0.04510 53.26502 
> vals10 <- doQt(Q10 ,10) 
[1] 10.00000 -0.05960 57.17684 
> vals25 <- doQt(Q25 ,25) 
[1] 25.00000 -0.07400 65.79596 
> vals50 <- doQt(Q50 ,50) 
[1] 50.00000 -0.08280 73.87932 
> vals100 <- doQt(Q100 ,100) 
[1] 100.00000 -0.09030 82.98081 
> 
> vals2 
[1] 2.00000 -0.01570 58.02393 
> vals5 
[1] 5.00000 -0.04510 53.26502 
> vals10 
[1] 10.00000 -0.05960 57.17684 
> vals25 
[1] 25.00000 -0.07400 65.79596 
> vals50 
[1] 50.00000 -0.08280 73.87932 
> vals100 
[1] 100.00000 -0.09030 82.98081 
> 
> 
> finalQt <- function(Q,power ,type) { 
+ CDA1 <- 10^CDA 
+ CDA1 <- CDA1^power 
+ WLS.OUT <- lm(Q~CDA1+MAP , weights =WEIGHTS) 
+ # plot ( CDA , residuals ( WLS . OUT ),ylim =c( -3 ,3) ) 
+ #plot(fitted(WLS.OUT),residuals (WLS.OUT),pch =16, col =2, ylim =c( -1.5 ,1)) 
+ #sm <- lowess(fitted(WLS.OUT),y=residuals (WLS.OUT)) 
+ # lines (sm , lwd =2) 
+ #lines(c( -10 ,10),c(0 ,0)) 
+ cat(c("POWER:�",power , "\n")) 
+ print(summary(WLS.OUT)) 
+ 
+ W <- diag(WEIGHTS) 
+ X = model.matrix(WLS.OUT) 
+ Xt = t(X) 
+ 
+ # Perform manual WLS regression and hat matrix 
+ tmp <- chol2inv( chol( Xt %*% W %*% X ) ) 
+ wlshat1 <- X %*% tmp %*% Xt 
+ print(tmp) # inverted covariance matrix 
+ print(max(diag(wlshat1))) # maximum leverage 
+ m.wls.out <- tmp %*% Xt %*% W %*% Q 
+ print(m.wls.out) # the regression coefficients 
+ 
+ PRESS(WLS.OUT) 
+ return(WLS.OUT) 
+ } 
> 
> 
> F2.OUT <- finalQt(Q2,vals2 [2],2) 
POWER: -0.0157 

Call:
 
lm(formula = Q ~ CDA1 + MAP , weights = WEIGHTS)
 

Residuals: 
Min 1Q Median 3Q Max 

-1.11654 -0.18172 -0.01350 0.18093 1.09514 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 17.35866 0.27228 63.75 <2e -16 *** 
CDA1 -16.51148 0.30614 -53.93 <2e -16 *** 
MAP 0.94286 0.07183 13.13 <2e -16 *** 

Signif. codes: 0 "***", 0.001 "**", 0.01 "*", 0.05 ".", 0.1 "�", 1 

Residual standard error: 0.2965 on 653 degrees of freedom 
Multiple R-Squared: 0.8167 , Adjusted R-squared: 0.8162 
F-statistic: 1455 on 2 and 653 DF , p-value: < 2.2e -16 

[,1] [,2] [,3] 
[1,] 0.84355557 -0.88041997 -0.02485273 
[2,] -0.88041997 1.06646053 -0.06598735 
[3,] -0.02485273 -0.06598735 0.05871136 
[1] 0.02790216 



---
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[,1] 
[1,] 17.3586632 
[2,] -16.5114820 
[3,] 0.9428574 
> F5.OUT <- finalQt(Q5,vals5 [2],5) 
POWER: -0.0451 

Call:
 
lm(formula = Q ~ CDA1 + MAP , weights = WEIGHTS)
 

Residuals: 
Min 1Q Median 3Q Max 

-0.91606 -0.20427 -0.02218 0.14384 0.83370 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 8.07960 0.11743 68.806 <2e -16 *** 
CDA1 -6.40329 0.11665 -54.894 <2e -16 *** 
MAP 0.60654 0.06857 8.846 <2e -16 *** 

Signif. codes: 0 "***", 0.001 "**", 0.01 "*", 0.05 ".", 0.1 "�", 1 

Residual standard error: 0.2841 on 653 degrees of freedom 
Multiple R-Squared: 0.8231 , Adjusted R-squared: 0.8226 
F-statistic: 1519 on 2 and 653 DF , p-value: < 2.2e -16 

[,1] [,2] [,3] 
[1,] 0.17084538 -0.09552241 -0.06531660 
[2,] -0.09552241 0.16858758 -0.02473015 
[3,] -0.06531660 -0.02473015 0.05825606 
[1] 0.0277843 

[,1] 
[1,] 8.0796013 
[2,] -6.4032928 
[3,] 0.6065365 
> F10.OUT <- finalQt(Q10 ,vals10 [2] ,10) 
POWER: -0.0596 

Call:
 
lm(formula = Q ~ CDA1 + MAP , weights = WEIGHTS)
 

Residuals: 
Min 1Q Median 3Q Max 

-0.98237 -0.22307 -0.01623 0.14879 0.93836 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 7.19977 0.11028 65.284 < 2e -16 *** 
CDA1 -5.10664 0.09729 -52.490 < 2e -16 *** 
MAP 0.43974 0.07091 6.201 9.94e -10 *** 

Signif. codes: 0 "***", 0.001 "**", 0.01 "*", 0.05 ".", 0.1 "�", 1 

Residual standard error: 0.2943 on 653 degrees of freedom 
Multiple R-Squared: 0.8109 , Adjusted R-squared: 0.8103 
F-statistic: 1400 on 2 and 653 DF , p-value: < 2.2e -16 

[,1] [,2] [,3] 
[1,] 0.14038398 -0.05084317 -0.07034334 
[2,] -0.05084317 0.10924813 -0.01930732 
[3,] -0.07034334 -0.01930732 0.05804055 
[1] 0.02768903 

[,1] 
[1,] 7.199766 
[2,] -5.106641 
[3,] 0.439738 
> F25.OUT <- finalQt(Q25 ,vals25 [2] ,25) 
POWER: -0.074 

Call:
 
lm(formula = Q ~ CDA1 + MAP , weights = WEIGHTS)
 

Residuals: 
Min 1Q Median 3Q Max 

-1.05059 -0.23898 -0.02263 0.15452 1.09630 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 6.84851 0.11304 60.586 < 2e -16 *** 
CDA1 -4.32907 0.08916 -48.551 < 2e -16 *** 
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MAP 0.27291 0.07593 3.594 0.00035 *** 
---
Signif . codes : 0 "***" , 0.001 "**" , 0.01 "*" , 0.05 "." , 0.1 "�" , 1 

Residual standard error : 0.3157 on 653 degrees of freedom 
Multiple R -Squared : 0.7877 , Adjusted R -squared : 0.787 
F -statistic : 1211 on 2 and 653 DF , p -value : < 2.2 e -16 

[ ,1] [ ,2] [ ,3] 
[1 ,] 0.12817981 -0.03022921 -0.07326873 
[2 ,] -0.03022921 0.07975385 -0.01598832 
[3 ,] -0.07326873 -0.01598832 0.05783358 
[1] 0.02757124 

[ ,1] 
[1 ,] 6.8485138 
[2 ,] -4.3290741 
[3 ,] 0.2729137 
> F50 . OUT <- finalQt ( Q50 , vals50 [2] ,50) 
POWER : -0.0828 

Call : 
lm ( formula = Q ~ CDA1 + MAP , weights = WEIGHTS ) 

Residuals : 
Min 1Q Median 3Q Max 

-1.11361 -0.24415 -0.02832 0.14935 1.19162 

Coefficients : 
Estimate Std . Error t value Pr ( >|t |) 

( Intercept ) 6.77654 0.11793 57.461 <2e -16 *** 
CDA1 -3.99103 0.08744 -45.643 <2e -16 *** 
MAP 0.17064 0.08037 2.123 0.0341 * 
---
Signif . codes : 0 "***" , 0.001 "**" , 0.01 "*" , 0.05 "." , 0.1 "�" , 1 

Residual standard error : 0.3345 on 653 degrees of freedom 
Multiple R -Squared : 0.7677 , Adjusted R -squared : 0.767 
F -statistic : 1079 on 2 and 653 DF , p -value : < 2.2 e -16 

[ ,1] [ ,2] [ ,3] 
[1 ,] 0.12426816 -0.02270511 -0.07450586 
[2 ,] -0.02270511 0.06831574 -0.01451140 
[3 ,] -0.07450586 -0.01451140 0.05771085 
[1] 0.02748834 

[ ,1] 
[1 ,] 6.7765427 
[2 ,] -3.9910263 
[3 ,] 0.1706351 
> F100 . OUT <- finalQt ( Q100 , vals100 [2] ,100) 
POWER : -0.0903 

Call : 
lm ( formula = Q ~ CDA1 + MAP , weights = WEIGHTS ) 

Residuals : 
Min 1Q Median 3Q Max 

-1.18053 -0.25296 -0.04201 0.15569 1.27209 

Coefficients : 
Estimate Std . Error t value Pr ( >|t |) 

( Intercept ) 6.77645 0.12386 54.711 <2e -16 *** 
CDA1 -3.75755 0.08748 -42.953 <2e -16 *** 
MAP 0.08212 0.08509 0.965 0.335 
---
Signif . codes : 0 "***" , 0.001 "**" , 0.01 "*" , 0.05 "." , 0.1 "�" , 1 

Residual standard error : 0.3545 on 653 degrees of freedom 
Multiple R -Squared : 0.7469 , Adjusted R -squared : 0.7461 
F -statistic : 963.4 on 2 and 653 DF , p -value : < 2.2 e -16 

[ ,1] [ ,2] [ ,3] 
[1 ,] 0.12205140 -0.01801320 -0.07534347 
[2 ,] -0.01801320 0.06088392 -0.01347027 
[3 ,] -0.07534347 -0.01347027 0.05760862 
[1] 0.02741139 

[ ,1] 
[1 ,] 6.77645185 
[2 ,] -3.75754823 
[3 ,] 0.08211505 
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R : Copyright 2006, The R Foundation for Statistical Computing 
Version 2.3.0 (2006 -04 -24) 
ISBN 3 -900051 -07 -0 

R is free software and comes with ABSOLUTELY NO WARRANTY. 
You are welcome to redistribute it under certain conditions. 
Type ’license () ’ or ’licence () ’ for distribution details. 

Natural language support but running in an English locale 

R is a collaborative project with many contributors.
 
Type ’contributors () ’ for more information and
 
’citation () ’ on how to cite R or R packages in publications.
 

Type ’demo() ’ for some demos , ’help() ’ for on -line help , or
 
’help.start () ’ for an HTML browser interface to help.
 
Type ’q() ’ to quit R.
 

> # In R, it appears necessary to ensure that the sum of the 
> # weight factors equals the length of the weight factor 
> # vector. Otherwise , one artificially inflates the 
> # residual standard error and hence prediction limits. Other 
> # diagnostics are changed , but remain in relative proportion 
> # with one another --so influence conclusions remain the same? 
> # Also , the coefficients of the regression are correct regardless 
> # of the summation constraint needed on the weights. 
> MLRweights <- function(vector) { 
+ tmp = length(vector)/sum(vector)
 
+ return (tmp*vector)
 
+ }
 
>
 
> # PRESS statistics
 
> PRESS <- function(model) {
 
+ if(is.null(model$terms)) stop("invalid� ’lm ’�object:�no�terms ")
 
+ sum( (weighted.residuals(model)/(1 - hatvalues(model)))^2 )
 
+ }
 
>
 
>
 
> DATA <- read.csv("tx664.csv ",header =T)
 
> attach(DATA)
 
> names(DATA)
 
[1] "Station " "LatD " "LatM " "LatS " "LonD " "LonM " "LonS " 
[8] "EqYrs " "CDA " "MAP " "P224 " "Slope " "Shape " "Q2 " 

[15] "Q5 " "Q10 " "Q25 " "Q50 " "Q100 " "C2 " "C25 "
 
[22] "C100 "
 
> outliers <- c(212 ,323 ,358 ,602 ,614 ,620 ,628 ,637)
 
> CDA <- CDA[-outliers]
 
> Q2 <- Q2[-outliers]
 
> Q5 <- Q5[-outliers]
 
> Q10 <- Q10[-outliers]
 
> Q25 <- Q25[-outliers]
 
> Q50 <- Q50[-outliers]
 
> Q100 <- Q100[-outliers]
 
> MAP <- MAP[-outliers]
 
> Slope <- Slope[-outliers]
 
> WEIGHTS <- MLRweights(EqYrs[ -outliers ])
 
>
 
>
 
> WLS2 _2.OUT <- lm(Q2 ~CDA , weights =WEIGHTS)
 
> WLS2 _5.OUT <- lm(Q5 ~CDA , weights =WEIGHTS)
 
> WLS2 _10. OUT <- lm(Q10 ~CDA , weights =WEIGHTS)
 
> WLS2 _25. OUT <- lm(Q25 ~CDA , weights =WEIGHTS)
 
> WLS2 _50. OUT <- lm(Q50 ~CDA , weights =WEIGHTS)
 
> WLS2 _100. OUT <- lm(Q100 ~CDA , weights =WEIGHTS)
 
>
 
> PRESS(WLS2 _2.OUT)
 
[1] 74.22438
 
> summary(WLS2 _2.OUT)
 

Call:
 
lm(formula = Q2 ~ CDA , weights = WEIGHTS)
 

Residuals: 
Min 1Q Median 3Q Max 

-1.391650 -0.189314 0.009216 0.194396 1.339501 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 
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( Intercept ) 2.33920 0.03059 76.47 <2e -16 *** 
CDA 0.51577 0.01119 46.09 <2e -16 *** 
---
Signif . codes : 0 "***" , 0.001 "**" , 0.01 "*" , 0.05 "." , 0.1 "�" , 1 

Residual standard error : 0.3357 on 654 degrees of freedom 
Multiple R -Squared : 0.7646 , Adjusted R -squared : 0.7642 
F -statistic : 2124 on 1 and 654 DF , p -value : < 2.2 e -16 

> 
> PRESS ( WLS2 _ 5. OUT ) 
[1] 63.27671 
> summary ( WLS2 _ 5. OUT ) 

Call : 
lm ( formula = Q5 ~ CDA , weights = WEIGHTS ) 

Residuals : 
Min 1Q Median 3Q Max 

-1.05357 -0.20297 -0.03195 0.16029 1.03193 

Coefficients : 
Estimate Std . Error t value Pr ( >|t |) 

( Intercept ) 2.70576 0.02824 95.82 <2e -16 *** 
CDA 0.51113 0.01033 49.48 <2e -16 *** 
---
Signif . codes : 0 "***" , 0.001 "**" , 0.01 "*" , 0.05 "." , 0.1 "�" , 1 

Residual standard error : 0.3099 on 654 degrees of freedom 
Multiple R -Squared : 0.7892 , Adjusted R -squared : 0.7889 
F -statistic : 2449 on 1 and 654 DF , p -value : < 2.2 e -16 

> 
> PRESS ( WLS2 _ 10. OUT ) 
[1] 65.62669 
> summary ( WLS2 _ 10. OUT ) 

Call : 
lm ( formula = Q10 ~ CDA , weights = WEIGHTS ) 

Residuals : 
Min 1Q Median 3Q Max 

-0.99571 -0.22175 -0.03330 0.15717 0.95890 

Coefficients : 
Estimate Std . Error t value Pr ( >|t |) 

( Intercept ) 2.89156 0.02875 100.57 <2e -16 *** 
CDA 0.50998 0.01052 48.48 <2e -16 *** 
---
Signif . codes : 0 "***" , 0.001 "**" , 0.01 "*" , 0.05 "." , 0.1 "�" , 1 

Residual standard error : 0.3156 on 654 degrees of freedom 
Multiple R -Squared : 0.7823 , Adjusted R -squared : 0.782 
F -statistic : 2351 on 1 and 654 DF , p -value : < 2.2 e -16 

> 
> PRESS ( WLS2 _ 25. OUT ) 
[1] 73.67088 
> summary ( WLS2 _ 25. OUT ) 

Call : 
lm ( formula = Q25 ~ CDA , weights = WEIGHTS ) 

Residuals : 
Min 1Q Median 3Q Max 

-1.0580 -0.2404 -0.0421 0.1519 1.1425 

Coefficients : 
Estimate Std . Error t value Pr ( >|t |) 

( Intercept ) 3.08574 0.03046 101.3 <2e -16 *** 
CDA 0.50931 0.01114 45.7 <2e -16 *** 
---
Signif . codes : 0 "***" , 0.001 "**" , 0.01 "*" , 0.05 "." , 0.1 "�" , 1 

Residual standard error : 0.3343 on 654 degrees of freedom 
Multiple R -Squared : 0.7616 , Adjusted R -squared : 0.7612 
F -statistic : 2089 on 1 and 654 DF , p -value : < 2.2 e -16 

> 
> PRESS ( WLS2 _ 50. OUT ) 
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[1] 81.88232 
> summary(WLS2 _50. OUT) 

Call:
 
lm(formula = Q50 ~ CDA , weights = WEIGHTS)
 

Residuals: 
Min 1Q Median 3Q Max 

-1.09259 -0.27013 -0.04421 0.14452 1.25313 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 3.20903 0.03212 99.92 <2e -16 *** 
CDA 0.50923 0.01175 43.34 <2e -16 *** 
---
Signif. codes: 0 "***", 0.001 "**", 0.01 "*", 0.05 ".", 0.1 "�", 1
 

Residual standard error: 0.3525 on 654 degrees of freedom
 
Multiple R-Squared: 0.7418 , Adjusted R-squared: 0.7414
 
F-statistic: 1879 on 1 and 654 DF , p-value: < 2.2e -16
 

>
 
> PRESS(WLS2 _100. OUT)
 
[1] 91.3865 
> summary(WLS2 _100. OUT) 

Call:
 
lm(formula = Q100 ~ CDA , weights = WEIGHTS)
 

Residuals: 
Min 1Q Median 3Q Max 

-1.1200 -0.2832 -0.0552 0.1460 1.3960 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 3.31846 0.03393 97.81 <2e -16 *** 
CDA 0.50944 0.01241 41.05 <2e -16 *** 
---
Signif. codes: 0 "***", 0.001 "**", 0.01 "*", 0.05 ".", 0.1 "�", 1 

Residual standard error: 0.3724 on 654 degrees of freedom 
Multiple R-Squared: 0.7204 , Adjusted R-squared: 0.7199 
F-statistic: 1685 on 1 and 654 DF , p-value: < 2.2e -16 

> 
> 
> doQt <- function(Q,type) { 
+ smallpress <- 10000 
+ smallpower <- 10000 
+ #Q <- 10^Q 
+ for(power in seq( -.1,.1,by =0.0001)) { # 0.007 , 0.08 , by =0.0001 
+ if(power == 0) next 
+ power <- -1 * power 
+ CDA1 <- 10^ CDA 
+ CDA1 <- CDA1^power 
+ WLS.OUT <- lm(Q~CDA1 , weights =WEIGHTS) 
+ press <- PRESS(WLS.OUT) 
+ if(press < smallpress) { 
+ smallpress <- press 
+ smallpower <- power 
+ } 
+ #plot(fitted(WLS.OUT),residuals (WLS.OUT),ylim =c( -2,2),col =2) 
+ #sm <- lowess(fitted(WLS.OUT),y=residuals (WLS.OUT)) 
+ #lines(sm ,lwd =2) 
+ #lines(c( -10 ,10),c(0 ,0)) 
+ }
 
+ print(c(type ,smallpower ,smallpress))
 
+ return(c(type ,smallpower ,smallpress))
 
+ }
 
>
 
>
 
> vals2 <- doQt(Q2 ,2)
 
[1] 2.00000 -0.04650 72.06471
 
> vals5 <- doQt(Q5 ,5)
 
[1] 5.00000 -0.06580 59.00068
 
> vals10 <- doQt(Q10 ,10)
 
[1] 10.00000 -0.07490 60.09731
 
> vals25 <- doQt(Q25 ,25)
 
[1] 25.0000 -0.0837 66.7667
 
> vals50 <- doQt(Q50 ,50)
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[1] 50.0000 -0.0890 74.0839 
> vals100 <- doQt(Q100 ,100) 
[1] 100.00000 -0.09340 82.78375 
> 
> vals2 
[1] 2.00000 -0.04650 72.06471 
> vals5 
[1] 5.00000 -0.06580 59.00068 
> vals10 
[1] 10.00000 -0.07490 60.09731 
> vals25 
[1] 25.0000 -0.0837 66.7667 
> vals50 
[1] 50.0000 -0.0890 74.0839 
> vals100 
[1] 100.00000 -0.09340 82.78375 
> 
> 
> finalQt <- function(Q,power ,type) { 
+ CDA1 <- 10^CDA 
+ CDA1 <- CDA1^power 
+ WLS.OUT <- lm(Q~CDA1 , weights =WEIGHTS) 
+ # plot ( CDA , residuals ( WLS . OUT ),ylim =c( -3 ,3) ) 
+ #plot(fitted(WLS.OUT),residuals (WLS.OUT),pch =16, col =2, ylim =c( -1.5 ,1)) 
+ #sm <- lowess(fitted(WLS.OUT),y=residuals (WLS.OUT)) 
+ # lines (sm , lwd =2) 
+ #lines(c( -10 ,10),c(0 ,0)) 
+ cat(c("POWER:�",power , "\n")) 
+ print(summary(WLS.OUT)) 
+ 
+ W <- diag(WEIGHTS) 
+ X = model.matrix(WLS.OUT) 
+ Xt = t(X) 
+ 
+ # Perform manual WLS regression and hat matrix 
+ tmp <- chol2inv( chol( Xt %*% W %*% X ) ) 
+ wlshat1 <- X %*% tmp %*% Xt 
+ print(tmp) # inverted covariance matrix 
+ print(max(diag(wlshat1))) # maximum leverage 
+ m.wls.out <- tmp %*% Xt %*% W %*% Q 
+ print(m.wls.out) # the regression coefficients 
+ 
+ PRESS(WLS.OUT) 
+ return(WLS.OUT) 
+ } 
> 
> 
> F2.OUT <- finalQt(Q2,vals2 [2],2) 
POWER: -0.0465 

Call:
 
lm(formula = Q ~ CDA1 , weights = WEIGHTS)
 

Residuals: 
Min 1Q Median 3Q Max 

-1.43150 -0.18074 0.01207 0.20405 1.28629 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 8.2799 0.1002 82.63 <2e -16 *** 
CDA1 -6.0308 0.1284 -46.97 <2e -16 *** 

Signif. codes: 0 "***", 0.001 "**", 0.01 "*", 0.05 ".", 0.1 "�", 1 

Residual standard error: 0.3309 on 654 degrees of freedom 
Multiple R-Squared: 0.7713 , Adjusted R-squared: 0.771 
F-statistic: 2206 on 1 and 654 DF , p-value: < 2.2e -16 

[,1] [,2] 
[1,] 0.09169293 -0.1165254 
[2,] -0.11652540 0.1505865 
[1] 0.01885060 

[,1] 
[1,] 8.279869 
[2,] -6.030849 
> F5.OUT <- finalQt(Q5,vals5 [2],5) 
POWER: -0.0658 

Call:
 
lm(formula = Q ~ CDA1 , weights = WEIGHTS)
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Residuals : 
Min 1Q Median 3Q Max 

-1.064167 -0.195349 0.003766 0.160790 0.957834 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 7.19379 0.06350 113.29 <2e -16 *** 
CDA1 -4.61402 0.08928 -51.68 <2e -16 *** 
---
Signif. codes: 0 "***", 0.001 "**", 0.01 "*", 0.05 ".", 0.1 "�", 1 

Residual standard error: 0.2994 on 654 degrees of freedom 
Multiple R-Squared: 0.8033 , Adjusted R-squared: 0.803 
F-statistic: 2671 on 1 and 654 DF , p-value: < 2.2e -16 

[,1] [,2] 
[1,] 0.04499556 -0.06218392 
[2,] -0.06218392 0.08895185 
[1] 0.02071799 

[,1] 
[1,] 7.193790 
[2,] -4.614025 
> F10.OUT <- finalQt(Q10 ,vals10 [2] ,10) 
POWER: -0.0749 

Call:
 
lm(formula = Q ~ CDA1 , weights = WEIGHTS)
 

Residuals: 
Min 1Q Median 3Q Max 

-1.069176 -0.212532 -0.002709 0.158296 0.889868 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 6.96115 0.05610 124.08 <2e -16 *** 
CDA1 -4.21241 0.08222 -51.23 <2e -16 *** 
---
Signif. codes: 0 "***", 0.001 "**", 0.01 "*", 0.05 ".", 0.1 "�", 1 

Residual standard error: 0.3021 on 654 degrees of freedom 
Multiple R-Squared: 0.8005 , Adjusted R-squared: 0.8002 
F-statistic: 2625 on 1 and 654 DF , p-value: < 2.2e -16 

[,1] [,2] 
[1,] 0.03449016 -0.04941901 
[2,] -0.04941901 0.07408408 
[1] 0.02164636 

[,1] 
[1,] 6.961146 
[2,] -4.212410 
> F25.OUT <- finalQt(Q25 ,vals25 [2] ,25) 
POWER: -0.0837 

Call:
 
lm(formula = Q ~ CDA1 , weights = WEIGHTS)
 

Residuals: 
Min 1Q Median 3Q Max 

-1.14066 -0.23002 -0.01563 0.16378 1.06665 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 6.84023 0.05276 129.64 <2e -16 *** 
CDA1 -3.91357 0.08038 -48.69 <2e -16 *** 
---
Signif. codes: 0 "***", 0.001 "**", 0.01 "*", 0.05 ".", 0.1 "�", 1 

Residual standard error: 0.3184 on 654 degrees of freedom 
Multiple R-Squared: 0.7838 , Adjusted R-squared: 0.7834 
F-statistic: 2370 on 1 and 654 DF , p-value: < 2.2e -16 

[,1] [,2] 
[1,] 0.02746451 -0.04066401 
[2,] -0.04066401 0.06374535 
[1] 0.02257363 

[,1] 
[1,] 6.840234 
[2,] -3.913570 
> F50.OUT <- finalQt(Q50 ,vals50 [2] ,50) 



      

        
 

40 Alternative Regression Equations for Estimation of Peak-Streamflow Frequency for Watersheds in Texas 

POWER: -0.089
 

Call:
 
lm(formula = Q ~ CDA1 , weights = WEIGHTS)
 

Residuals: 
Min 1Q Median 3Q Max 

-1.18085 -0.24244 -0.02337 0.16170 1.17321 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 6.80600 0.05219 130.4 <2e -16 *** 
CDA1 -3.76582 0.08133 -46.3 <2e -16 *** 
---
Signif. codes: 0 "***", 0.001 "**", 0.01 "*", 0.05 ".", 0.1 "�", 1 

Residual standard error: 0.3354 on 654 degrees of freedom 
Multiple R-Squared: 0.7662 , Adjusted R-squared: 0.7659 
F-statistic: 2144 on 1 and 654 DF , p-value: < 2.2e -16 

[,1] [,2] 
[1,] 0.02422098 -0.03653889 
[2,] -0.03653889 0.05882340 
[1] 0.02314619 

[,1] 
[1,] 6.806003 
[2,] -3.765824 
> F100.OUT <- finalQt(Q100 ,vals100 [2] ,100) 
POWER: -0.0934 

Call:
 
lm(formula = Q ~ CDA1 , weights = WEIGHTS)
 

Residuals: 
Min 1Q Median 3Q Max 

-1.21299 -0.25175 -0.03704 0.15891 1.26325 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 6.80019 0.05252 129.49 <2e -16 *** 
CDA1 -3.65879 0.08336 -43.89 <2e -16 *** 
---
Signif. codes: 0 "***", 0.001 "**", 0.01 "*", 0.05 ".", 0.1 "�", 1 

Residual standard error: 0.3545 on 654 degrees of freedom 
Multiple R-Squared: 0.7465 , Adjusted R-squared: 0.7462 
F-statistic: 1926 on 1 and 654 DF , p-value: < 2.2e -16 

[,1] [,2] 
[1,] 0.02194667 -0.03360600 
[2,] -0.03360600 0.05530056 
[1] 0.0236296 

[,1] 
[1,] 6.800189 
[2,] -3.658793 

Publishing support provided by USGS Lafayette Publishing Service Center

Information regarding water resources in Texas is available at 
http: //tx.usgs.gov/ 
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