

TTI-2-9-79-261-2 (SUPPLEMENT NO. 1)

TEXAS TRANSPORTATION INSTITUTE

STATE DEPARTMENT OF HIGHWAYS AND PUBLIC TRANSPORTATION

COOPERATIVE RESEARCH

EVALUATION OF FABRIC INTERLAYERS—A CONDITION SURVEY REPORT

in cooperation with the Department of Transportation Federal Highway Administration

RESEARCH REPORT 261-2 (SUPPLEMENT NO. 1) STUDY 2-9-79-261 FABRIC UNDERSEALS

			CENTER FOR TRANSPORTATION RESEARCH	ARCH LIBRARY Tion Page
1. Report No. FHWA/TX-84/15 +261-2	2. Government Accession	No.	L007463	
4. Title and Sublitle Evaluation of Fabric Interl Report	tion Survey	Report Date September, 198 Performing Organizati		
 Author's) Joe W. Button Performing Organization Name and Address 			Performing Organization Research Repor Supplement No.	t 261-2 1
Texas Transportation Instit The Texas A&M University Sy College Station, Texas 7784	ute stem	11	Contract or Grant No Study No. 2-9-	
12. Sponsoring Agency Name and Address Texas State Department of H and Public Transportatio P. O. Box 5051, Austin, Tex	n		Type of Report and P Novemb Interim Septem	ber 1984
Field installations cons sections in Districts 4, 7, 1 these pavements was to evalua in 1982, presented the initia naterials. This supplement of service. Based on the data of fabric performs better than a all in reducing reflection cr	O and 21 were c te fabric inter I field evaluat gives a field ev collected, there another or that	onstructed in layers. Resea ion and proper aluation after is no evidenc	1979-80. The rch Report 261 ties of the co up to five ye e to indicate	purpose of -2, published onstruction ears in that one
^{17. Key Words} Asphalt pavement, aspha fabric interlayer, reflection	n cracking. a N 5	ational Techni	e public throu cal Informatio	gh the
19. Security Classif. (at this report) Unclassified	20. Security Classif. Unclassifie		21. No. of Pages 31	22. Price

EVALUATION OF FABRIC INTERLAYERS--A CONDITION SURVEY REPORT

by

Joe W. Button Associate Research Engineer

Research Report 261-2 Supplement No. 1

Research Study No. 2-9-79-261

Sponsored by the Texas State Department of Highways and Public Transportation U.S. Department of Transportation and Federal Highway Administration

> TEXAS TRANSPORTATION INSTITUTE The Texas A&M University System College Station, Texas 77843

> > August, 1984

PREFACE

This is the third in a series of reports dealing with the findings of research project number 2-9-79-261 which concerns the use of engineering fabrics to reduce reflection cracking in asphalt concrete overlays. This report is a condition survey of the field test sections installed as a part of the research study and is written as a supplement to Research Report 261-2.

DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration. This report does not constitute a standard, specification or regulation. Report No. 261-1, "Laboratory Evaluation of Selected Fabrics for Reinforcement of Asphaltic Concrete Overlays," by D. L. Pickett and R. L. Lytton, deals with the development of a computer program to analyze laboratory data using fracture mechanics and finite element theory and relate these data to field performance.

Report No. 261-2, "Evaluation of Fabric Interlayers," by J. W. Button and J. A. Epps, summarizes laboratory and field test results and gives recommendations to minimize problems during construction and early service-life and to maximize long-term performance of fabrics installed to arrest reflection cracking in asphalt concrete overlays.

IMPLEMENTATION STATEMENT

In general, the four primary field tests of fabrics installed to reduce reflective cracking in asphalt concrete overlays in Texas are presently inconclusive. That is, based on the test sections described in Research Report 261-2 and this supplement, no positive statements can be made regarding the ability of fabrics to reduce reflective cracking within five years in service. However, during the course of this study, certain design and construction procedures and fabric properties appeared to be more suitable than others. Recommendations pertaining to these construction procedures and fabric properties have been made in Research Report 261-2 and should be implemented.

	Approximate Co	nversions to M	BILLE MEASULES		<u> </u>		Approximate Conv		ngti iC iNiCE20/63
bol	When You Know	Multiply by	To Find	Symbol	6 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Symbol	When You Know	Multiply by	To Find
		LENGTH						LENGTH	
							millimeters	0.04	inches
1	inches	•2.5	centimeters	cm '		mm	centimeters	0.4	inches
	feet	30	centimeters	CILL	=	cm	meters	3.3	feet
1	yards	0.9	meters	m		m	meters	3.3 1.1	yards
i	miles	1.6	kilometers	km	<u> </u>	m km	kilometers	0.6	miles
		AREA				A 111		0.0	
		AREA						AREA	
2	square inches	6.5	square centimeters	cm ³	6 <u> </u>	_			
3	square feet	0.09	square meters	m ³		cm²	square contimeters	0.16	square inches
d3	square yards	0.8	square meters	m ³		m ³	square meters	1.2	square yards
ni²	square miles	2.6	square kilometers	km²		km ³	square kilometers	0.4	square miles
	acres	0.4	hectares	ha		ha	hectares (10,000 m ²)	2.5	acres
	N	IASS (weight)			5		M	ASS (weight)	
	-				<u> </u>				
Z	ounces	28	grams	g		9	grams	0.035	ounces
b	pounds	0.45	kilograms	kg		kg	kilograms	2.2	pounds
	short tons	0.9	tonnes	t	* - : : : :	t	tonnes (1000 kg)	1.1	short tons
	(2000 ib)							VOLUME	
		VOLUME							
					<u> </u>	mi	milliliters	0.03	fluid ounces
sp	teaspoons	5	milliliters	mi		1	liters	2.1	pints
bsp	tablespoons	15	milliliters	mi		L	liters	1.06	quarts
ioz	fluid ounces	30	milliliters	tm		1	liters	0.26	gallons
	cups	0.24	liters	1		m3	cubic moters	35	cubic feet
nt	pints	0.47	liters	1	× - 2 5	m,	cubic meters	1.3	cubic yards
nt	quarts	0.95	liters	1					
al	gallons	3.8	liters	1			TEMP	ERATURE (e	xact)
13	cubic feet	0.03	cubic meters	m,					
yd ³	cubic yards	0.76	cubic meters	m,	m	°c	Celsius	9/5 (then	Fahrenheit
	TEM	PERATURE (ex	rant)		· _ = =	-	temperature	add 32)	temperature
	1 E 1410	ENATONE (6)							
F	Fahrenheit	5/9 (after	Celsius	°c					
-	temperature	subtracting	temperature		<u> </u>		°F 32		d
		32)	· · ·					98.6	21
							-40 0 40	80 120	160 200
		•					┝╾ ╏╴┺╺╋╍┹╤┺╴┺╤┺╼╇ ═╇═┫	20 40	<u></u>

METRIC CONVERSION FACTORS

-

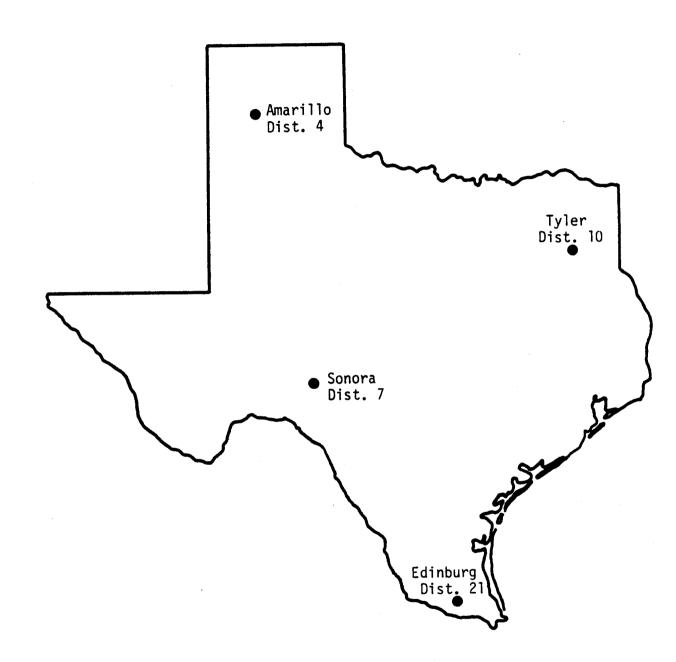
<

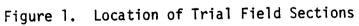
TABLE OF CONTENTS

Page

PREFACE	ii
DISCLAIMER	ii
LIST OF REPORTS	iii
IMPLEMENTATION STATEMENT	iv
METRIC CONVERSION FACTORS	v
TABLE OF CONTENTS	vi
INTRODUCTION	1
SUMMARY OF FIELD PROJECTS	2
FINDINGS	5
District 7	5
District 4 \ldots	7
District 21	8
District 10	10
CONCLUSIONS AND RECOMMENDATIONS	13
REFERENCES	14
APPENDIX A - Temperature Data	15
APPENDIX B - Traffic Data	24

INTRODUCTION


Field installations consisting of eight to thirteen one-guarter mile test sections were constructed in four different areas of the state of Texas. Two projects were constructed in 1979, one in 1980 The test sections involved placement of a fabric and one in 1981. followed by a hot-mix asphaltic concrete (HMAC) overlay. Ten different fabrics were tested. They were compared to a control section consisting of either a conventional HMAC overlay with no interlayer or one with a chipseal as an interlayer. One location included an additional test section containing a chipseal usina asphalt rubber as an interlayer (and underseal). Three test sections were installed over cracked asphalt concrete pavements and one over a portland cement concrete pavement to evaluate the relative ability of the interlayer to reduce reflection cracking. Field performance of these test pavements has been evaluated for periods up to five years.


The primary objectives of this study are to evaluate the fabrics order 1) establish performance of in to realistic specification limits, 2) determine the types of distress, if any, that fabrics may be used to correct, 3) quantify fabric properties that will optimize field performance, 4) define satisfactory field installation procedures for utilizing fabrics and 5) establish an cost-benefit relationship for fabric overlay economic systems. Objectives 1, 3, and 4 were at least partially met by the laboratory and field research conducted during this study. Objectives 2 and 5 have been difficult to fulfill from the four field studies considered. since the fabric test sections and the control sections are performing essentially the same. However, additional data collected from other fabric tests in Texas and other states have been used to partially fulfill these objectives.

The purpose of this report is to supplement Research Report 261-2 $(\underline{1})$ by documenting two additional years of performance evaluation of the field experiments located in Districts 4, 7, 10, and 21.

SUMMARY OF FIELD PROJECTS

Test pavements were built at four locations as shown in Figure 1. The primary purpose of these test pavements was to determine the effectiveness of fabrics in arresting reflection cracking in asphalt concrete overlays. Original pavements in Districts 4, 7 and 21 consisted of asphalt concrete; whereas, the original pavement in District 10 consisted of continuously reinforced portland cement concrete. The control section in District 7 contains a standard chipseal as an interlayer; control sections in Districts 4, 10 and 21 do not contain an interlayer. Specific information about each test project is furnished in Table 1. Detailed information about the projects is given in Research Report 261-2 $(\underline{1})$.

Table 1.	Summary	Field	Projects	where	Fabrics	were	Installed
----------	---------	-------	----------	-------	---------	------	-----------

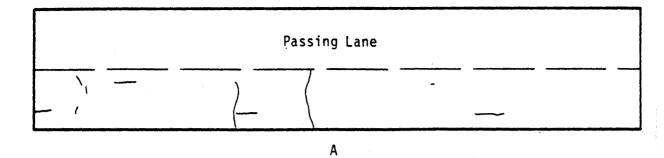
	Location							
Item	West of West of Sonora Amarillo		Edinburg	East of Tyler				
Highway Designation	IH-10	IH-40	US 281 and SH 107	IH 20				
District Number	7	4	21	10				
County and Number	Crockett (53)	01dham (180)	Hidalgo (109)	Gregg (93)				
Control-Section No.	141-1	90-4	255-7 & 8 and 342-1	495-6 & 7				
No. of Lanes each Direction	2	2	2	2				
Existing Pavement								
Layer 1 (Top)	3" HMAC	1" HMAC (Type D)	1" HMAC*	8" CRCP				
Layer 2	15" Flex Base	3" HMAC (Type A)	12" Flex Base	RC-2 membrane				
Layer 3	Subbase	12" Flex Base	Subgrade	6" Soil Cement				
Layer 4	-	6" Lime Tr.Subgr.	-	Subgrade				
Date of Overlay Construction	Aug-Sept 1979	Sept 1979	Feb 1980	July 1981				
Fabrics Used								
1	Chipseal (Control)	Control	Control	Control				
2	Fabric 1	Fabric 1	Fabric 1	Fabric 3				
3	Fabric 2	Fabric 2	Fabric 2 (SH 107)	Fabric 4				
4	Fabric 3	Fabric 3	Fabric 3	Fabric 7				
5	Fabric 4	Fabric 4	Fabric 4	Fabric 8				
6	Fabric 5	Fabric 5	Fabric 5	Fabric 9				
7	Asp-Rub Chipseal			Fabric 10				
HMAC Overlay	Туре D	Type D	Туре D	Туре В Туре D				
Asphalt Type & Grade	AC-10	AC-10	AC-10	AC-20 AC-20				
Asphalt Source	Refinery 4	Refinery 5	Refinery 15	Refinery 6 Refinery ²⁴				
Aggregate Type	Crsh Limestone + Field Sand	Crsh Limestone + Field Sand + Blow Sand	River Gravel + Sand	Crsh Limestone Lt wt + conc. + Field Sand Sand + fld sa				
Asphalt Additives	None	None	None	Antistrip A Antstrip B				
Asphalt Tack Coat for Fabrics				•				
Type and Grade	AC-20	AC-10	AC-10	AC-20				
Source	Refinery 4	Refinery 5	Refinery 15	Refinery 24				
Traffic Data**			(US 281) (SH 107)					
ADT	3,400	7,900	19,500 13,000	14,000				
Percent trucks	24.1	23.8	3.4 18.2	22				
Equivalent 18K axle loads	5,983	15,468	19,043 1,476	-				
Percent Tandem Axles	90	20	90 40	40				
Weather Data $(\underline{1})$								
Temperature								
Normal Max, °F	95	91	97	94				
Normal Min, °F	33	22	49	35				
Typical Max Drop, °F/hr	-	5	-	-				
Typical Max 24 hr Drop, °F	_	60	-	_				
Frost Penetration, in.	1	12 (max)	0					
Freeze Index	0	0	0	0				
Precipitation								
Annual Ave. Precip, in.	19	20	18	43				
Annual Ave. Ice/Snow, in	1	15	Trace	2				

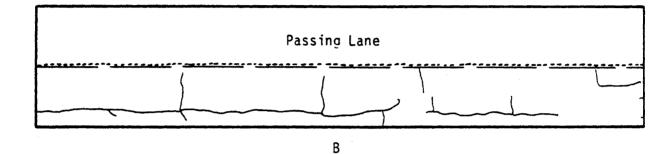
*Approximately 2 inches of ACP had been removed by cold milling prior to placement of fabric.

**Traffic data as of 1980.

FINDINGS

Field performance evaluations of the four field trials as of the spring of 1984 are described in the following paragraphs. Updated weather data are given in Appendix A. Updated traffic data are included in Appendix B.


DISTRICT 7


After 57 months in service, which includes five winters, all of the test pavements and control sections on Interstate 10 in District 7 appear to be in good condition. Some new cracks appeared in the overlay during the unusually cold winter of 1983-84 but they are few and do not appear to be associated with the lack of fabric (control sections contain a standard chipseal interlayer) or any particular type of fabric. The spring of 1984 was the first time that a significant number of cracks had been observed on any of these test pavements.

More cracking occurred in the westbound lanes than the eastbound lanes. Most of the cracking occurred as a longitudinal crack near the centerline of the roadway. About two-thirds of these longitudinal cracks are located above cracks in the original pavement and hence may be considered reflection cracks. However, about one-third of these longitudinal cracks are not associated with cracks in the original pavement. Therefore, all of these cracks cannot be considered reflection cracks. Furthermore, the westbound control section exhibited a substantial amount of longitudinal cracks, some of which were above cracks in the original pavement and some of which were not. This indicates these cracks are not necessarily associated with longitudinal joints in the fabrics. Typical cracking patterns in the overlay are shown as dashed lines in Figure 2.

Most of the transverse cracks appeared to be reflective as they were located over cracks in the original pavement surface.

As in years past, slight flushing was observed in the travel lane and was about the same in all the fabric test sections and the control section. Moderate flushing was noted in the travel lanes of the

Passing Lane

•

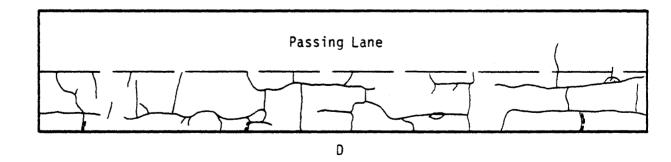


Figure 2. Original Cracking Patterns on IH 10 West of Sonora (District 7) Prior to Overlaying (Maps are typically 100 ft. x 24 ft.). (Cracks in overlay as of June 1984 are shown as dashed lines.) asphalt rubber test sections. Flushing was not evident in the passing lanes of any of the sections. In fact, there were no signs of distress in the passing lane of any of these pavement sections.

Rutting in the travel lanes of all pavement sections ranged from one-eighth inch to one-quarter inch. The deeper rut was usually in the inside wheel path. Slightly more rutting (3/8-inch) was noted in the asphalt rubber test sections. A few areas, primarily in the westbound lane, exhibited a longitudinal crack along the inside edge of the outer edge-stripe. This is a minor crack and is possibly due to the difference in thermal expansion of the pavement caused by the reflectivity (thus cooling effect) of the white edge-stripe.

In summary, there is no evidence to indicate that one fabric performs different from another or that a chipseal interlayer performs different from a fabric interlayer. The asphalt rubber test sections exhibited slightly more rutting and flushing than any of the other sections possibly due to the use of more binder.

DISTRICT 4

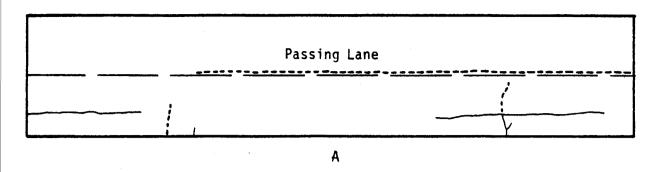
In the fall of 1979, fifty-six months after construction, the test pavements on Interstate 40 in District 4 appear to be performing reasonably well in spite of moderate cracking which occurred during the first winter. Since that time, the cracks have grown a small amount during each winter but very few new cracks have appeared since the spring of 1980. Cracks have been filled twice since the overlay was placed. The second time they were filled (in 1984) with a material composed of asphalt and granulated rubber.

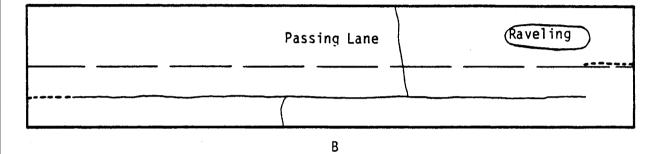
As mentioned in Report 261-2, $(\underline{1})$, this construction project was not designated a field trial for this study until after a sealcoat had been placed in 1978. Consequently, the research team was unable to record the cracks in the original pavement prior to overlaying. However, verbal communication with the District Construction Engineer and an exhaustive series of photographs prepared by District 4 personnel revealed that, originally, there was considerable fatigue cracking in the travel lane with some thermal (transverse) cracking and moderate rutting throughout the project.

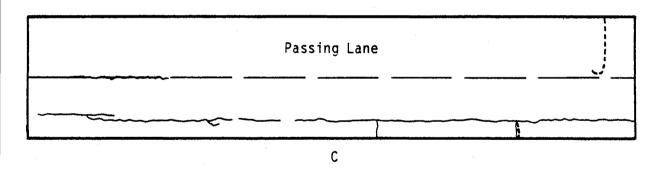
The first winter after construction of this pavement was long and cold and moderate cracking appeared as shown in Report 261-2 $(\underline{1})$. These cracks were sealed immediately but they continued to grow during each winter in service. Crack growth, of course, appeared directly related to the severity of the weather. Considerable crack growth occurred during the very cold winter of 1983-84. However, there appears to be no significant differences in cracking patterns in the sections containing fabric and those containing no fabric. Figure 3 shows cracking patterns typical of those presently found in the test pavements on Interstate 40.

In the spring of 1984, cracks in the pavements were filled using an apshalt/granulated rubber crack filler. This material covered an area about 3 or 4-inches wide along the path of the cracks and often extended past the end of the cracks. This made it impossible to precisely locate the crack tip by visual inspection.

Rutting in the travel lane has not progressed a perceptible amount since 1983. It ranges from one-eighth to one-quarter inch in both the eastbound and westbound travel lanes. No rutting was observed in the passing lanes. There is no difference in rutting in the fabric test sections and the control sections.


Raveling is about the same as reported in years past $(\underline{1})$. Moderate raveling in the passing lanes and only slight raveling in the travel lanes does not appear to be progressing significantly.


No appreciable flushing was noticed. There were no other signs of pavement distress.


In summary, there is no evidence to indicate that asphalt concrete pavements containing different fabrics perform different from one another or different from similar pavements containing no fabric.

DISTRICT 21

The distress observed in the original test pavements located on US 281 and SH 107 in Edinburg was relatively nonuniform. Some areas exhibited severe block cracking, while other areas exhibited severe alligator cracking and some areas exhibited almost no cracking at all. In addition, there was some very localized rutting usually associated

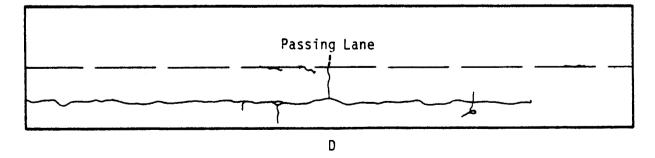
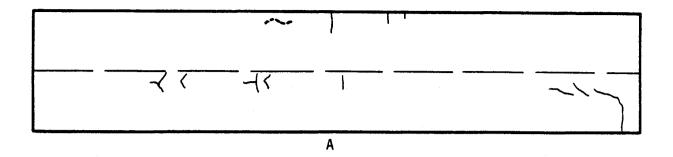
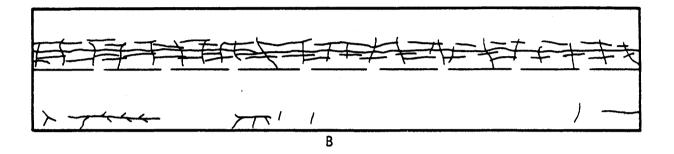
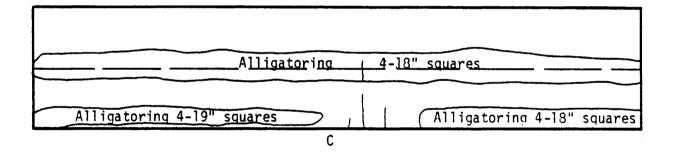


Figure 3. Typical Cracking Patterns on IH 40 West of Amarillo (District 4) These reflected through overlay during first winter. (Maps are typically 100 ft. x 24 ft.) (Further development of cracks in succeeding 4 years are shown as dashed lines.) with alligator cracking. This nonuniformity in the original pavements is evident in the appearance of the overlay surface today.

After a 40-month performance period, the pavements appear to be serving quite well. A few new cracks have appeared in the last two years. Most of them appear to be reflective but some are not. The reader is reminded that prior to overlaying, much of the asphalt concrete surface course was removed by cold milling to maintain the curbline. Mapping of the cracks in the surface of the original pavement was accomplished prior to the milling operation.


A few new longitudinal cracks were observed in fabric test sections 21-US281-4, 21-US281-5 and 21-SH107-1. These new cracks do not appear to be associated with longitudinal joints or the outer edge A few new fatigue cracks (alligator or T-shaped of the fabrics. cracks) were observed in isolated areas of all pavement sections. However, cracking does not appear to be a serious problem. Typical cracking patterns in the overlays are shown as dashed lines in Figure Existing cracks have not been sealed. There are no significant 4. differences between the test pavements containing fabric and the control section. There is no evidence to indicate any of the fabrics are reducing the occurrance of cracking whether reflective or otherwise.


Generally, rutting throughout the pavement sections is less than one-eighth inch in depth. Although some very localized rutting was observed with depths up to one-half inch, this is not a serious problem. The localized rutting appears to be associated with weak spots in the base or subgrade and not the asphalt concrete pavement. Typically, the more deeply rutted areas are only 5 to 15 feet in length and, in most cases, were visible prior to overlaying.


No flushing, raveling, corrugations, or significant patching were observed.

DISTRICT 10

Thirty-three months after construction, the test pavements on Interstate 20 in District 10 appear to be in very good condition. Some rutting and minimal cracking were noted throughout all the test sections and the control section in Gregg County.

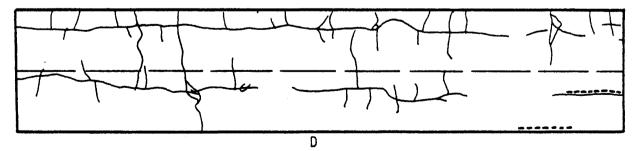


Figure 4. Original Cracking Patterns on US 281 in Edinburg (District 21) Prior to Overlaying. (Maps are typically 100 ft. x 24 ft.). (Cracks in overlay as of June 1984 are shown as dashed lines.)

Only one transverse crack was observed. It was located in test section 10-IH20-4E, which is probably not significant. The crack started at the right edge of the travel lane and proceeded about four No other transverse cracks feet toward the center of the roadway. were observed in the test pavements in Gregg County. Approximately 90 percent of the edge crack originating between the continuously reinforced concrete pavement and the soil cement shoulder has reflected through the asphalt concrete overlay. Prior to overlaying, this crack was sawed to give an opening at the surface of about 2-inches wide and 2-inches deep and filled with an asphalt rubber crack sealing material. Where fabrics were applied, this edge crack was covered with the fabric. In addition, two test sections in Smith County employed three foot fabric strips to cover these edge cracks. The fabric did not appear to aid in reducing reflection of this large edge crack.

Rutting in the travel lane ranged from 3/8-inch to 3/4-inch and appears to be independent of the type or presence of fabric. Hardly any rutting was noticed in the passing lanes.

Slight flushing was observed in the wheelpaths of the travel lane of all pavement sections. There were no other visible signs of distress. Generally, there were no observable differences in the pavement sections in Gregg County.

CONCLUSIONS AND RECOMMENDATIONS

Based on the information developed, after up to five years in service, the four primary fabric test projects show no significant differences between any of the test sections. Furthermore, from the data collected one cannot positively conclude that one fabric performs better than another or that any fabric performs better than none at all in reducing reflection cracking.

The test sections described in Research Report 261-2 and this supplement have been documented in considerable detail. A great deal of engineering design, research effort and funds have been invested in these field experiments. It often takes many years to fully evaluate the effectiveness of paving materials or techniques. It is, therefore, recommended that annual monitoring of these test pavements be continued for an unspecified period to evaluate the long-term effects of fabrics installed to reduce or delay reflection cracking. This will also facilitate realistic estimates of the benefits of the different types of fabrics or fabric properties and thus allow maximum achievement of the project objectives.

REFERENCES

1. Button, J. W. and J. A. Epps, "Evaluation of Fabric Interlayers", Research Report 261-2, Texas Transportation Institute, Texas A&M University, November, 1982. Appendix A

	Average Monthly Temperatures, °F		Extrem Temperatur		Maximum Drop in	
Month	Maximum	Minimum	Highest	Lowest	24 hours, °F	
1979						
Sept	89	58	99	48	44	
0ct	85	51	97	29	46	
Nov	64	35	79	11	<u>,</u> 49	
Dec	61	33	78	13	46	
1980						
Jan	61	32	79	21	45	
Feb	64	33	82	20	52	
Mar	71	39	85	8	63	
Apr	79	47	89	30	45	
May	84	61	97	50	34	
June	94	70	106	65	34	
July	9 8	73	104	64	38	
Aug	92	69	98	60	33	
Sept	87	67	95	55	36	
0ct	76	50	88	30	45	
Nov	63	35	88	20	51	
Dec	60	34	78	20	54	
<u>1981</u>						
Jan	59	32	79	22	48	
Feb	61	37	79	10	60	
Mar	66	42	84	26	37	
Apr	76	56	85	36	42	
May	83	59	97	40	33	
June	87	66	95	56	-	
July	93	69	98	61	27	
Aug	94	66	100	58	31	
Sept	88	59	98	43	35	
0ct	77	55	91	32	35	
Nov	72	38	85	22	48	
Dec	65	29	80	12	49	

Table Al. Temperature Data from Ozona (Sonora) District 7

Month		Average Monthly Temperature, °F		Extreme Temperatures, °F		
	Maximum	Minimum	Highest	Lowest	Drop in 24 hours,°f	
1982						
Jan	61	27	81	1	60	
Feb	59	32	82	10	48	
Mar	73	45	93	18	44	
Apr	79	52	96	39	53	
May	82	60	94	40	33	
June	90	68	99	50	31	
July	94	71	101	63	33	
Aug	95	70	100	63	33	
Sep	91	63	97	50	39	
Oct	79	53	92	35	40	
Nov	66	42	91	19	40	
Dec	60	32	80	24	45	
1983						
Jan	57	30	72	18	40	
Feb	61	34	76	24	39	
Mar	71	42	81	29	41	
Apr						
May	Data Una	vailable				
Jun	88	65	98	54	35	
Jul	94	71	99	62	29	
Aug	95	68	100	63	33	
Sep	90	64	100	44	37	
Oct	79	56	93	39	40	
Nov	69	42	84	16	47	
Dec	51	23	78	-2	43	
1984	51	20		_		
<u>1504</u> Jan	51	29	76	15	52	
Feb	65	31	79	18	56	
Mar	72	41	86	23	49	
Apr	82	46	98	30	49	

Table Al. Continued.

	Average Monthly Temperatures, °F			Extreme Temperatures, °F		
Month	Maximum	Minimum	Highest	Lowest	Drop in 24 hours, °	
1979					•	
Sep	83	56	94	46	40	
0ct	76	44	94	31	45	
Nov	52	29	68	16	42	
Dec	53	24	73	9	51	
1980						
Jan	47	23	73	9	46	
Feb	50	25	77	9	36	
Mar	59	28	76	4	44	
Apr	67	38	85	26	42	
May	75	49	92	41	35	
June	93	64	106 ·	51	37	
July	97	68	104	62	34	
Aug	92	65	99	58	36	
Sept	83	58	97	42	38	
0ct	72	42	84	21	43	
Nov	56	29	87	3	47	
Dec	56	26	77	11	45	
1981						
Jan	53	23	75	13	47	
Feb	59	25	83	-7	51	
Mar	62	36	83	22	44	
Apr	79	52	89	37	49	
May	80	52	93	37	42	
June	93	64	107	48	-	
July	95	68	105	58	35	
Aug	86	63	95	56	28	
Sept	81	57	91	47	35	
0ct	69	44	85	28	42	
Nov	63	35	80	23	44	
Dec	55	25	76	13	40	

Table A2. Temperature Data from Amarillo District 4.

Table A2. Continued

	Average Monthly Temperatures, °F		Extrer Temperatu		Maximum Drop in
Month	Maximum	Minimum	Highest	Lowest	24 hours, °
1982					
Jan	54	21	73	2	63
Feb	50	22	82	-5	45
Mar	64	31	82	9	44
Apr	70	38	89	24	55
May	79	48	94	35	44
June	86	56	102	46	39
July	91	66	100	59	32
Aug	91	66	102	59	31
Sept	84	58	97	47	36
0ct	72	42	86	26	39
Nov	59	33	75	17	42
Dec	49	24	74	3	45
1983					
Jan	45	22	68	9	44
Feb	47	25	71	7	39
Mar	58	. 33	84	11	46
Apr	65	37	87	25	42
May	75	46	88	33	40
Jun	84	57	101	44	41
July	94	66	102	54	33
Aug	96	66	101	61	34
Sept	88	59	102	31	38
0ct	73	48	90	38	39
Nov	61	35	80	16	39
Dec	36	14	68	-7	43
1984					
Jan	44	19	71	-11	37
Feb	56	24	74	15	47
Mar	58	30	84	13	43
Apr	66	37	84	29	44

.

	Average Mo Temperatu	onthly res,°F		Extreme Temperatures, °F		
Month	Maximum	Minimum	Highest	Lowest	Drop in 24 hours, °F	
1980						
Feb	72	51	90	33	35	
Mar	83	60	93	31	35	
Apr	87	62	99	43	39	
May	90	71	95	60	28	
June	97	76	104	72	24	
July	100	76	101	72	31	
Aug	95	77	100	73	28	
Sept	96	74	100	68	27	
0ct	85	64	97	31	30	
Nov	72	51	88	36	33	
Dec	70	50	83	38	35	
<u>1981</u>						
Jan	68	48	82	36	37	
Feb	73	53	90	34	33	
Mar	78	57	90	43	35	
Apr	85	69	93	56	23	
May	90	70	98	58	25	
June	94	75	99	71	-	
July	97	75	101	73	26	
Aug	98	77	103	74	28	
Sept	92	71	99	54	25	
0ct	90	65	95	44	36	
Nov	82	57	89	44	35	
Dec	76	49	90	35	35	
1982						
Jan	74	48	90	27	48	
Feb	70	49	92	31	38	
Mar	80	58	90	37	33	
Apr	85	65	100	52	35	
May	86	70	92	60	25	

Table A3. Temperature Data from McAllen (Edinburg) District 21

-

	Average Monthly Temperatures, °F		Extreme Temperatures, °F		Maximum Drop in	
Month	Maximum	Minimum	Highest	Lowest	24 hours, °F	
1982 (coi	nt.)					
Jun	95	74	100	70	26	
July	97	75	99	73	26	
Aug	96	75	100	72	25	
Sept	94	71	99	63	29	
0ct	87	65	94	49	32	
Nov	80	60	95	41	40	
Dec	73	52	92	41	37	
1983						
Jan	68	49	82	38	35	
Feb	75	51	85	43	33	
Mar	81	56	96	48	34	
Apr	85	61	97	49	32	
May	87	70	98	60	28	
Jun	94	72	103	68	32	
July	93	75	98	71	24	
Aug	95	75	101	70	26	
Sept	93	72	100	60	28	
0ct	87	65	95	55	30	
Nov	82	59	91	47	37	
Dec	64	42	88	18	38	
1984						
Jan	61	44	80	30	30	
Feb	72	50	85	39	34	
Mar	82	59	104	41	42	
Apr	90	64	105	54	33	

Table A3. Continued.

	Average Monthly Temperatures, F			Extreme Temperatures, °F		
Month	Maximum	Minimum	Highest	Lowest	Drop in 24 hours, °F	
1981						
July	93	71	99	67	28	
Aug	94	68	102	59	34	
Sept	86	60	94	41	35	
0ct	76	53	94	31	34	
Nov	69	42	80	26	36	
Dec	58	33	79	16	37	
1982						
Jan	57	30	78	1	49	
Feb	55	34	87	16	40	
Mar	70	50	87	26	33	
Apr	73	51	86	32	46	
May	82	62	93	42	33	
June	88	66	93	54	31	
July	93	71	100	65	31	
Aug	95	71	100	65	30	
Sept	90	60	99	43	36	
0ct	77	50	93	29	43	
Nov	64	44	84	27	32	
Dec	60	39	81	19	35	
1983						
Jan	53	32	71	21	37	
Feb	58	36	74	28	37	
Mar	67	42	82	28	34	
Apr	72	47	83	32	37	
May	81	57	92	41	39	
Jun	86	64	94	52	31	
July	91	70	97	56	29	
Aug	94	71	100	67	28	

Table A4. Temperature Data from Tyler District 10

	Average Monthly Temperatures, °F		Extreme Temperatures, °F		Maximum Drop in	
Month	Maximum	Minimum	Highest	Lowest	24 hours, °F	
<u>1983</u> (con	it.)	<u> </u>				
Sept	89	61	100	36	21	
0ct	79	52	93	39	34	
Nov	67	44	83	23	42	
Dec	46	26	75	2	40	
1984						
Jan	50	26	73	8	37	
Feb	Data Unav	vailable				
Mar	68	46	85	29	40	
Apr	77	53	89	39	37	

Table A4. (Continued)

Appendix B

1983 Traffic Data

Table B1. Traffic Data as of 1983

	Location				
Item	West of Sonora	West of Amarillo	Edinburg	East of Tyler	
Highway Designation District Number County and Number Control-Section No. No. of Lanes each Direction	IH-10 7 Crockett (53) 141-1 2	IH-40 4 01dham (180) 90-4 2	<u>US 281 and SH 107</u> 21 Hidalgo (109) 255-7 & 8 and 342-1 2	IH 20 10 Gregg (93) 495-6 & 7 2	
Traffic Data ADT Percent trucks Equivalent 18K axle loads* Percent Tandem Axles**	3,900 32.8 6.8 x 10 ⁶ 90	9,100 33.5 17.3 x 10 ⁶ 80	24,000 13,400 8.5 5 10.8 x 10 ⁶ 2.02 x 10 ⁶ 80 80	18,000 23 28.5 x 10 ⁶ 100	

*20 year design value (1983 to 2003)

**Percent in average ten heaviest wheel loads daily (ATHWLD)