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The contents of this report reflect the views of the authors who are
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The contents do not necessariiy reflect the officiél views or policies of
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Abstract

A mathematical model was developed for reﬁresenting the measured'
displacement vector fields in thirty test sections at the Research
Annex at Texas A&M University. While the model predicted the dis-
placements fairly well in each test section, it was obvious that
improvements were required in the model before attempting its use in
the design of flexible pavements.

Key Words: Pavements, Flexible Pavements, Pavement Deflections,

Dynamic Deflections.
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Summary

A basic prupose of Study 136 was to provide new experimental
eivdence of the manner in which strains induced by dynamic surface
loads are distributed throughout flexible pavement structures. Since
strains in heterogeneous materials cannot be measured accurately, while
displacements can (at least under cyclic loading), it was decided to
measure the latter in the expectation that a mathematical model for the
displacements could be found, and the model could be easily converted
to strains by well known procedures. Accordingly, measurements were
made on 30 specially designed test sections at the Texas A&M University
Research Annex. Cyclic loading (8 cps, 1000 1lbs. peak-to-peak) was
supplied by a Dynaflect.

Measured Data: Nearly 7300 measurements of vertical and horizontal

displacements, half of which were replicate measurements to be used in
defining experimental error, were made and have been compiled in Appendix
B, a separate volume (see page 3). With regard to these data, the
following can be said:

a. Vertical motions at all points were downward as the load was
increased, and had an average replication (or experimental) error of
15% of the mean displacement. This error is considered small and tends
to support the reliability of the vertical displacement data.

b. At shallow depths in the pavement structure (about 3 inches for
the thinnest pavements, up to approximately 20 inches for some thick
pavements) points tended to move horizontally toward the load; at
greater depths they moved horizontally away from the load. The average

replication error was 327% of the mean value of the amplitude. Thus the
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horizontal (or radial) displacement measurements appear to be less
reliable than the vertical measurements.

c. Contour maps of a number of the sections suggested the existence
of a horizontal line (or "neutral axis™) in the vicinity of which radial
displacements were near zero, and vertical displacements were near maximum,
at least up to about 100 inches measured horizontally from the load.

d. Some of the data suggested that the sum of the three nqrmal
strains (the dilatation, or bulk strain) was negligible, compared to
the largest of the three strains.

Application of Neutral Axis Concept: A commonly used formula for

locating the depth to the neutral axis of a composite beam was employed
as' a regression model for an analysis of the appropriate data‘(layer
thicknesses, material types, apparent depths to the neutral axis) from
the 30 test sections. This analysis yielded ratios of the elastic
moduli of the six types of materials used in bases, subbases and
embankments, to the modulus of the asphaltic concrete material. The
modular ratios appeared to be ordered reasonably, but their values
should be checked by independent means.

Model for Displacements: The model adopted for displacements

(which was so structured that the bulk strain was zero, and the depth

to the neutra; axis appeared in the model) contained four constants

to be determined by regression on the data. When fitted to the vertical
displacements section-by-section good fits were obtained, the value of
the squared correlation coefficient, R?, ranging from .94 to .99, but
when fitted to the vertical displacement data from all 30 seqtions
simultaneously, large prediction errors were encountered. When fitted
to the radial (horizontal) displacement data section—by—section‘lower

values of R? resulted, and the values of the four constants obtained



were different for each section from the values previously found from
the vertical displacement data for the same section.

Conclusions and Recommendation: Since the displacement vector

model c0u1d‘not be extrapolated from one test section to the next, it
obviously cannot be extrapolated to real highway sections, and therefore
is not suitable, in its present form, for use as a practical deéign
tool. The basic data, however, are considered unique in the field of
pavement research, and deserve further study. It is recommended that

such a study be pursued to a satisfactory conclusion.
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Implementation Statement

The analysis reported herein resulted in a displacement vector
model that only partially met the requirements of a pracfical pavement
design tool. The basic data, available in Appendix B, should be
analyzed further and a model developed that is suitable for use in the
Texas Flexible Pavement Design system computer program to supplement
or replace the presently used structural subsystem. Implementation

must await the results of this further study.
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1. “Introduction

More experimental evidence of the manner in which stresses and/or
strains induced by hgavy wheel loads are distributed through flexible
pavement structures in essential to the continued develbpment of bésic
pavement design theory. Various mathematical theories - e.g., linear
elastic, non-linear elastic, visco-elastic, etc. - have in recent years
been proposed for use in predicting these stresses or strains. A choice
among these theories can be based, according to some researchers, on
the behavior of the pavement materials when subjected to laboratory
testing of small samples of the construction ﬁaterials. Others have
proposed to validate one theory or another through field or model testing,
in some cases involving the measurement of stresses and/or strains by
means of instruments imbedded in the structure.

In the present instance an oscillating load (8 cps, 1000 1bs.
peak-to-peak) wasvapplied by a Dynaflect to the surface of 30 test sections
involving seven types of construction materials founded on a bed of
plastic clay. The horizontal and vertical motions, or displacements,
caused by the oscillating load were measured by portable instruments
lowered to various depths into an open, small-diameter drilled hole.

By lowering the measuring instrument to a selected depth, and
stationing the dynaflect at selected distances from the hole, horizontal
displacements were measured in a vertical plane in each section at 117
points on a rectangular grid 9 points deep by 13 points long. Grid
points were loéated at horizontal distances from the load ranging from

approximately 12 inches to 216 inches, and at depths from 0 to 65 inches.



Vertical displacements were measured at the same points, and at 9

additional points in a vertical line located at a horizontal distance
of 10 inches from the load. More details are given in Research Report

136-2(1)

An analysis of these displacements is the subject of this report.



2. Basic Data

The lay-out and cross—-sections of the test sections used in this
study are fully described in Research Report 32-8(2). It will suffice
to say here that the‘data treated were gathered on 27 statistically
designed test sections, each consisting of a surfacing material (Asphaltic
concrete) a baée material, a subbase material and an embankment. Mater-—
ials and thicknesses were varied among the test sections in such a way
as to make possible objective statistical analyses of the response of
the sections to surface loads, and to isolate the response of each mater-
ial. Three additional sections, not conforming to the original experiment
‘design but lending additional strength to it were also included so that a
total of 30 sections were tested.

The measured displacements and other basic data are compiled in
Appendix b, published as a separate volume of this report. To illustrate
the information available in Appendix B, a typical set of eight pages for
one section (Section 5) is presented in Figures 2.1 and 2.2 and Tables 2.1
through 2.6. Average data of the type shown in Tables 2.5 and 2.6 were
used in the regression analyses discussed in a later chapter. The repli-
cation error is treated in Chapter 3. The equipment and procedures used
in making the measurements are discusséd fully in a previous report (1).

Appendix B can be obtained on a loan basis from:

Engineer-Director, File D-10
Planning and Research Division
Texas Highwav Department

P.0. Box 5051
Austin, Texas 78763
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Table 2.4
SECTION 5 f REPLICATION B
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Table 2.5
SECTION 5 AVERAGE OF REPLICATIONS A AND B

U - DATA (MICRO-INCHES) FOR SINGLE 1000 LB. LOAD

DEPTH  #xdsxxsdxtsssdx R AD I AL O I STANCE R (I N. ) *keekssrkkesseiss
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0.0 -89 =136 =150 -154 ~125 =90 -58 -36 -16 -8 2 3
5.50 53 33 -2 -13 -17 =17 -11 -7 -5 3 4 3
8.75 51 34 27 24 18 15 11 8 6 5 5 &
12.50 - 125 128 118 106 T4 51 34 24 13 8 5 4
17.00 132 164 160 149 106 73 50 34 i9 12 8 5
29.00 54 60 67 72 T2 65 54 44 31 21 15 9
41.00 40 60 74 87 95 89 75 65 44 28 18 i1
57.00 30 37 47 56 67 68 62 53 40 27 18 il
65.00 23 30 39 46 57 61 57 51 39 25 18 11
SECTION S REP ERROR IN U
MEAN REP. ERROR
I DEPTH (IN) REP. ERROR ABS MEAN (PCT OF MEAN)
1 0.0 27 68 40.5
2 5.5 13 14 96,0
3 8.8 6 17 32.4
4 i2.5 29 54 54.2
5 17.0 33 71 46.8
6 29.0 8 45 1609
7 41.0 : 11 S4 21.1
8 57.0 4 41 9.2
9 65.0 3 36 7.2

SECTION VALUES 18 44 - 42.0
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Table 2.6
SECTION 5 AVERAGE OF REPLICATIONS A AND B

W — CATA (MICRC-INCHES) FOR SINGLE 1000 LB. LOAD

DEPTH Mgk kEESRRKREKEE R A D1 A L DI STYTANTCE ] ( I N o ) sstkdkkkrkrshrkR

- . | | A _
(ING) 10,0 11.7 15.6 20.6 26.0 37,4 49.0 60.8 T2.7 96.5 1204 144.3 180.3 216.2

0.0 1300 1280 1116 934 814 554 368 254 160 81 48 33 26 21
5.50 1343 1240 1124  94S 806 553 355 239 156 79 49 34 25 z22
B.75 1375 1320 1133 97¢C 822 542 370 238 156 82 48 34 26 22
12.50 1335 1212 1097 950 = 784 530 348 234 = 153 8% 48 33 26 21
17.00 1062 1011 951 827 - 693 495 331 228 145 81 48 34 26 21

29.00 645 686 604 562 503 378 272 192 131 77 48 34 26 21
41.00 497 48C 475 4332 3s0 316 236 174 120 77 48 35 26 21
57.00 284 280 277 268 248 219 176 135 103 69 47 36 26 20

65.00 242 232 231 225 217 192 157 126 95 69 47 36 26 21

SECTION & REP ERROR IN W

ME AN \ REP. ERROR
I DEPTH (IN) REP. ERROR MEAN  (PCT OF MEAN)
1 0.0 79 500 15.8
2 5.5 91 499 18,2
3 8.8 82 510 16.1
4 12.5 82 491 16.7
5 17.0 60 426 14.1
6 29.0 13 299 ©11.0
7 41.0 31 238 13.1
8 57.0 28 157 18.2
9 65.0 24 138 17.6

SECTION VALUES 52 362 17.2



3. Replication Errvor

An estimate of displacement variability not amenable to explanation
by the design constants of a test section is the replication error for
the section. Pairs of replicate measurements were made in each of the
thirty sections in accordance with the procedures described in a previous
report of this study(l).' As stated in that report (p. 7), ”replication
errors obéerved‘on a test section reflect not only the variability of
the measuring process but also include the effects of wvariations in
the structural properties of the section. The combined variabilityzﬁill
define the 1iﬁitiﬁg prediction accuracy for thé‘displacemgnt model béihg
sought."

Although replicate measurements were made with the Dynaflect at
identical horizontél distances from each of two ins;rumented bére holes.
in a section, the vertical distances frdm load to trénsducer were
sometimes slightly different, mainly because of differences (usually
small) in the depfh to an interface between layers. When a measurement
had previously been made at an interfécé in an instrumented hole, it was
believed desirable to make the corresponding replicate measurement at the
actual interface in the second hole rather than at the depth of the first
measurement, if the two depths differed. In this way, the variability
in layer thickness would be accounted for ihvthe replication error.

Replication errors were calculated as follows.

Let d (i) = the algebraic difference between the iEh-pair of n
replicate measurements of a horizontal (or vertical) displacement.

Then the section replication error for horizontal (or vertical) displacements

12



was computed from

n .
Section Rep. Error ;N/é[d(i)/Z]Z,/n (3.1)
, 1

The horiZontél displacement of a point was considered positive in
sigh if it moved away ffom the oscillating load while the load was
increasing (or toward the load while it was decreasing); otherwise it
was given a negative sign. A similar rule applied to vertical displace-
ments, but since all points had a downward component of motion during
periods of increasing load, all vertical displacemeﬁts were positive.

On the contrary, many of the horizontal displacements were negative.
Thus, to’éxpress a replication error (Equation 3.1) as a percentage of
the average displacement for a section, it was decided to use as a base
the average of the absolute values of the observed displacements. In
Table 3.1 are the replication errors, averaged over éll 30 sections,
expressed both in mils (thousandths of an inch) and as a percentage of
the average of the absolute values of the observed displacements.

Replication errors for individual sections are given in Appendix A,
Tables Al and A2, and in more detail in Appendix B. It will be noted in
the summary appearing in Table 3.1, that the mean replication error
for horizontai displaceménts is small when measured in mils, but large
when expressed as a percentage of the average absolute value of the
displacement, as compared with similar statistics for the vertical
displacements. The trend toward large percentage errors in replicate
measurements of horizontal displacements may be due in part to the fact
that the transducer for measuring them was more sensitive to small,
unavoidable angular installation errors, than was the case for the vertical

displacement transducer. Even if this source of error is discounted,
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Table 3.1: Mean Values of Section Replication

Mean Abs. Vaiue; All Displacements (in Mils)
Replication Error

In Mils

As a percentage of avérage

o absolute displacement measured
in each section : '

14

Errors, for Thirty Sections
Horizontal Vertical

Displacement  Displacement

0.028 0.226

0.009 0.033

- 327 L5%



the fact remains that the absolute values of the horizontal displacements
were, on the average, only 127 of the vertical displacements , (.028 mils
compared to .226 mils), so that the horizontai transducer was frequently
operated near its limit of sensitivity even under the most favorable
circumstances.

The role playéd by the replication errors in the development of
a model for the displacement vector field will be discussed in the next

chapter.
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4, Displacement Vector Model,

Thié'chaptér spécifies the minimum requirements that should be met
by a displacement vecthf ﬁodel intéuded fdr‘evéntuai use as a part of
the structural subsystem of the Texas Flexible Pavement Design Sysfem
(FPS)(3). It also describes Lﬂ génerai[terms the type of model developed,
aﬁd the degreé.of sﬁccess achiévea in satiéfyiné’the specified fequirements.

4.1. Definitions: Most of the minimum requirements of the mo&el
can be more concisely expressed in symbols than in words. A list of
the necessary symbols and their definitions follow.

The symbolé r, Z, O represent cylindrical coordinates of a point
located within a pavement structure. The origin of coordinates is in
the pavement surface, which is considered to be a horizontal plane of
infinite extent. Positive values of z are measured downward. The
coordinate r, always positive, is measured horizontally. A load,
acting vertically downward, is applied at the origin of coordinates.
Each layer of material, bounded by horizontal planes of infinite extent,
is assumed to be statistically homogeneous; thus, the vector field is
assumed to be sensibly symmetrical about the z-axis so that the value
of the angular coordinate, 0, is of no significance.

u(r,z) = the radial component of the displacement of a point with
coordinates r and z. G(r,z) is an estimate, compufed from a model, of
u(r,z).

w(r,z) = the vertical component of the displacement. w(r,z) is an

estimate, computed from a model, of w(r,z).
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er(r,z), ee(rsz), ez(r,z) = the radial, tangential and vertical
normal strains respectively. The corresponding estimates are gr(r,z),
EG(r,z), Ez(r,z).

As the load is increased, u is positive if the point moves away
from the load, w is positive if it moves downward, and a normal strain
€ is positive if the material in a small region surrounding the point
is elongated in thé direction indicated by the subscript on e.

Normal strains are related to the displacements as follows:

_ 8y
€ T or (4.1)

e, = —=
8 r (4.2).

e =M
z oz (4.3)

hy, ho, h3, hy = the thickness of the surfacing, base, subbase and
embankment, respectively, of a test section. Values of these section
constants are given in Table 4.1.

E1, Eo, E3, Ey, E5 = a measure of the stiffness of the material
(independent of its-thickness or position in the structure) composing
the surfacing, base, subbase, embankment and foundation soil, respectively,
of the test section. The types of.materials used are indicated in Table
4,1 and are descriﬁed in more detail in Table 4.2.

fi (x1, X2, . . .) represents an algebraic function of the quantities
X1, X2, - « « The subscript, i, is used on f to distinguish between

different functions of the same variables.

4.2. Requirements of Model: The minimum requirements to be placed

on any model were deemed to be the following.
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Table 4.1: Test Section Designs

Thickness (In.) Material Type (see also Table 2.2)
Sec. Surf. Base Subb. Emb. Surf. Base Subb. Emb.
1 5 4 4 40 HMAC LSHC LS Clay
2 1 12 4 36 HMAC LS+C LS Clay
3 1 4 12 36 HMAC LS+C LS Clay
4 5 12 12 24 HMAC LS+C LS Clay
5 5 4 4 40 HMAC LS LS+C Clay
6 1 12 4 36 HMAC LS LS+C Clay
7 1 4 12 36 HMAC LS LS+C Clay
8 5 12 12 24 HMAC LS LS+C Clay
9 5 4 4 40 HMAC LS LS Gr.
10 1 12 4 36 HMAC LS LS Gr.
11 1 4 12 36 HMAC LS LS Gr.
12 5 12 12 24 HMAC LS LS Gr.
13 .5 4 4 40 HMAC LS+C LS+C Gr.
14 1 12 4 36 HMAC LS+C LS+C Gr.
15 1 4 12 36 HMAC LS+C LS+C Gr.
16 5 12 12 24 HMAC LS+C LS+C Gr.
17 3 8 8 34 HMAC LS+L L.S+L SC
18 1 8 8 36 HMAC LS+, LS+L SC
19 -5 8 8 32 HMAC LS+, LS+L SC
20 3 4 8 38 HMAC LS+L  LS+L SC
21 3 12 8 30 HMAC LS+L LS+L SC
24 3 8 8 34 HMAC LS LS+L SC
25 3 8 8 34 . HMAC LS+C LS+L SC
26 3 8 8 34 HMAC LS+L LS SC
27 3 8 8 34 HMAC LS+L  LS+C sc
28 3 8 8 34 HMAC LS+L  LS+L Clay
29 3 8 8 34 HMAC LS+L LS+L Gr.
31 0.5 6 0 0 ‘ST LS+C — ——
32 0.5 6 0 0 ST LS - _
33 0.5 6 0 0 ST LS+L - —
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Table 4,2:

Materials Used in Embankment, Subbase, Base

and Surfacing of Test Sections

Abhreviation

Unified Texas Compressive
Used In AASHO Soil Triaxial Strength
Description Table 2.2 Class Class Class (psi)*

Compacted Plastic Clay Clay A-7-6(20) CH 5.0 22
Sandy Clay sC A-2-6(1) SC 4.0 40
Sandy Gravel Gr. A-1-6 SW 3.6 43
Crushed Limestone LS A-1-a GS-GM 1.7 165
Crushed Limestone

+ 2% Lime LS+L A-1-a GW-GM 1.0 430
Crushed Limestone

+ 47 Cement LS+C A-1-a GW-GM 1.0 2270
Asphaltic Concrete HMAC
Surface Treatment ST

* By Texas triaxial procedure, at a lateral pressure of 5 psi

NOTE: The natural material below the embankments was a deep deposit of plastic
clay similar to that described above.
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A. The model should consist of a set of two eqﬁations,

a(r,z) = £(hy, « « «» hy3 Ey, o o o g3 Cpy Copy v v w3 ry2)  (4.4)

w(r,z) = fa(hy, « . «, hy; Ej, « . . Eg; Cy, Cpy o« .3 1,2)  (4.5)

B. Equations 4.4 and 4.5 should predict the measured values of u
and w on the test sections with an overall error of approximately the
same magnitude as the measured overall replicatién error.

C. Equations 4.4 and 4.5 should meet the following simple conditions
at certain points outside the Boundaries of the measured vector fields:

(1) G(o,z) = 0 for all values pf z.

(2) %(o,z) should be the maximum value .of %(r,z) on the horizontal
plane z = a constant of finite value.

(3) Both ﬁ(r;z) and %(r,z) should be zero at points infinitely
distant from the load (r and/or z infinite).

D. The model should mee£ the following test for consistency: if
two adjacent layers have the same value of E, then the model must yleld
the same result if the two layers are combined into a single layer with
that modulus.

E. Expressions for normal strains found by operating on Equations
4.4 and 4.5 as indicated by Equations 4.1 and 4.3, should vield values
that compare favorably with stréiﬁs/foﬁﬁd by numerical differentiation
of the baéic data.

F. The model should be tractable to the extent that displacements
and strains can be calculated with a minimum of computer time, perhaps
less than one percent of the time required by available computer programs

for linear elastic layered systems.
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The requirements specified in paragraphs A through ¥ appear to
need no justification. However, it may be noted that a required state
of equilibrium of the stresses assoéiated with the displacements was
not mentioned. This was omitted because it was taken for granted that
if the selected model proved to predict the displacements within the
replication error, then the stresses corresponding to the computed
displacements could be assumed to be in equilibrium to within a tolerable
error. It was also felt that any special conditions that might exist at
the interface between dissimilar materials would automatically be duplicated

by a model that predicted the displacements with the required accuracy.
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4.3: Neutral Axis Concept: An examination of contour plots of the

u-data collected on the 30 sections turned up many cases in which the
contour line for u = 0 was approximately horizontal, at least within the
range 11.7" < r < 100". For example, see Figures 2.1 and 2.2. If such

‘a contour line were approximated by a straight horizontal line it seemed
clear that both u and the radial strain, €. = du/9r, would be very small
at points along that line, at least within the range, 11.7" < r < 100", on
many of the sectiomns.

A study of the w-data showed that the maximum value of w (with r
being fixed) nearly always occurred not .at the surface, as might be expected,
but at varying depths below the surface. The vertical strain e, = ow/dz .
was necessarily zero at the point where w was maximum. The estimated points
at which 9w/3z = 0 in numerous sections fell near a straight horizontal
line drawn through the field, at least within the range 10" < r < 100".

The approximately horizontal line on which €, Was near zero and that
on which €, Was mnear zero did not always coincide; in fact, there was
poor correlation between the depths at which these two lines appeared to
occur.

Nevertheless there seemed to be enough evidence in the data to warrant
the adoption of the concept oan neutral axis,; along which the normal strains
€. and €, were zero. This assumption vastly simplified the introduction
into the model of the constants E;, E;, Ej, and Ey. The simplification
was brought about by treating a unit width of the pavement structure as a
composite beam of unit width and a depth equal to the combined thickness
of surface, base, subbase and compacted embankment - a total of 53 inches
for the 27 main test sections, and 6.5 inches for the three special turn

around sections. A formula in common use in structural engineering for
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determining the position of the neutral axis of a composite beam was
used. It appears below.

Z = [hy(hi/2) + ho(hy + hy/2) (E»/Ey)

+ h3(hy; + hy + h3/2) (E3/Ep)

+ hy(hy + hy + hy + hy/2) (E4/E))]

/Thy + hy(Es/Ey) + h3(E3/Eq) + hy(E4/ED] (4.6)
where Z is the depth to the neutral axis, and the other symbols are as
previously defined.

An estimate of Z was made from the contour map of u-data for each
section. The layer thicknesses were known (Table 4.1). Thus, in Equation
4.6, only the modular ratios E;/E;, E3/E; and E,/Ej were unknown for each
section.

By a suitable transformation of Equation 4.6, it was possible to write
a linear regression equation with six coefficients, each representing the
ratio of the modulus of one of the six construction materials to the modulus
of the surfacing material. A regression analysis using the appropriate
data from all thirty sections (depth to neutral axis, Z; layer thicknesses,
hy, hy, hy and hy; and the type of material composing each layer), yielded
the modular ratios given in Table 4.3.

The méduli appearing in Table 4.3 appear to be ordered logically,
with the possible exception of the cement-stabilized limestone. However,
because of difficulties encountered in selecting from theru—data a
representative horizontal line corresponding to u=0, the application of
the neutral axis concept to this study is admittedly open to question:

The choice was made in the interest of simplicity and utility.

23



Table 4.3: Ratio of Modulii of Six Comstruction
Materials to Modulus of Asphaltic Concrete

Material Ratio
Asphaltic Concrete 1.00
Cr. Limestone + 47 Cement 0.60
Cr. Limestone + 2% Lime 0.34
Cr. Limestone 0.25
Sandy Gravel 0.0093
Sandy Clay 0.0066
Plastic Clay 0.00089
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4.4: Bulk Strain Assumption: When data collection had been completed

on the first three of the 30 test sections, the normal strains were
estimated from the basic data in accordance with Equations 4.1, 4.2 and
4.3, The sum of the resulting trio of normal strains at most points
tended to be very small compared to the largest of the three strains.
It was therefore decided to make the simplifying assumption that the sum,
Er + ee + az (or bulk strain), was zero at every point in the pavement
structure. By application of Equation 4.1, 4.2 and 4.3, this assumption
led to the following relationship between the vertical and horizontal
displacements:
u = - %‘ j. %%- rdr 4.7

Equation 4.7 made it possible to adopt a model for w(r,z), determine
the best fitting values of the constants Cy, Cyr, . . ., by regression
analysis using w(r,z) as the dependent variable, and employ Equation 4.7
to find the corresponding model for u(r,z). If the resulting model were
found to fit the u-data with acceptable accuracy, the assumption that the
bulk strain is negligible would be proved, and the main problem of this
phase of the study - to produce a satisfactory model - would be solved.

It should be noted here that the geometry of a continuous medium
leads to the conclusion that if the bulk strain is zero, and if the normal
strains are sufficiently small, then the medium deforms with negligﬂ)h;

change in volume. In applications of the theory of elasticity, such as

medium would be said to have a Poisson's ratio of 0.5.
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4.5. Type of Model and Results Achieved: Equations were developed for

a(r,z) and Q(r,z). These equations and details of their derivation are given
in Appendix A. Here only their general form and the degrees of success
achieved in meeting the requirements specified in Article 4.2 will be
treated.

The letter preceding each of the following paragraphs indlicates that
the subject matter discussed is related to the paragraph designated by
the same letter in the list of requirements, Article 4.2.

A. The original model developed consisted of two equations,

a(r,z) = £3(Z, C, A1, A2, A3, r, z) (448)

w(r,z) fu(z, C, A1, A2, A3, r, 2z) (4.9)
where C, Aj, A, A3y were regarded as regression constants assumed to hkave
the same value for all sections. Z was computed for each section from
Equation 4.6, by substituting in that equation the appropriate modular
ratios from Table 4.3, and the layer thicnkesses, hj, hy, h3 and hy, from
Table 4.1. Thus, unlike Equations 4.4 and 4.5, representing a more
desirable model, Equations 4.8 and 4.9 did not explicitly contain E; and
Eg. It should be pointed out that neither quantity was a variable in the
experiment design, and would therefore, from a statistical point of view,
be difficult to quantify. E; perhaps could be estimated from laboratory
tests: it would then be possible to quantify E,, Ej and E; from the
ratios recorded in Table 4.3. Several schemes for including E; and Eg

in Equations 4.8 and 4.9 were comsidered, but none were satisfactory in

terms of predicting the measured displacements.

Equations 4.8 and 4.9 satisfied the assumed condition that the bulk

strain was zero; i.e., they satisfied Equation 4.7.
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When Equation 4.9 was fitted to the w-data, section~by-section, it
was found that the regression constants Aj, Ap, Az and C varied from section
to section in such a way that they could not be related, with sufficient
accuracy, to the section design variables. Thus, instead of one set of
the regression constants, C, Aj, Ap, and A3, thirty sets were determined
from the w-data, one set per section. These, along with related statistical
data, are given in Table Al in Appendix A.

The equation for a(r,z) (Equation 4.8) was found from Equation 4.9

by application of Equation 4.7. Thus, the constants C, Aj, A and Aq,

s
already determined section-by-section from analysis of the w-data, carried
over to the equation for G(r,z), section-by-section. When the resulting
set of 30 equations were used to predict the u—data, large errors were
found: the assumption that the bulk strain was zero at all points in the
pavement structure was thus apparently invalidated.

The general form of Equation 4.8, however, produced fair results when
a new set of the constants, C, Al, A2 and A3 were determined directly
from the u~data, again section-by-section. Thus another set of 30 constants
were determined: these appear in Table A2,

Thus it is clear that the model only partially satisfied the requirements
specified in paragraph 4.2A.

B. When the constants C, A1, A2 and A3 recorded in Tables Al and
A2 were used in Equations 4.8 and 4.9, respectively, the prediction
errors for each section were, on the whole, comparable with the replication
errors for the section. Thus, requirement 4.2B was satisfied section~
by-section, but not across sections.

C. The boundary conditions specified in 4.2C were met.

D. The consistency requirement specified in 4.2D was met.
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E. The model failed to meet the requirement specified ir. 4.2E regarding
strainsg, even though the displacement vector field was predicted within an
error usually considered adequate. An examination of plots of W versus z
(r fixed), and 4 versus T (z fixed), showed that the slopes of these curves

(equivalent to e¢_ and €,, respectively) did not agree closely enough with

r z

corresponding slopes of curves of the measured data to warrant the claim that
predicted strains were sufficiently accurate for use in design. For

example, there was a distinct tendency for the predicted compressive

vertical strain to grow larger with increases in depth below the neutral

axis, while the experimental data showed the opposite trend.

F. The specification regarding computer time (%4.2F) was met.

28




5. Summary of Findings and Recommendations

The findings and recommendations that follow are based mainly on
the material presented in the two chapters preceding this one.

3.1. Measured Data: With regard to the measured data, the following

can be said:

a. The measured values of vertical displacements in the thirty test
sections were all positive in sign (all downward in direction), averaged
0.226 mils, and had an average replication error of 0.033 mils or 15%.
of the mean displacement. This érror is considered small and tends to
support the reliability of the measured vertical displacement data.

b. The horizontal displacements observed in the same sections tended
at shallow depths to be negative (points moved toward the load), and at
greater depths to be positive (points moved away from the load). The mean
of the absolute values of these displacements was 0.028 mils, and the average
replication error was 0.009 mils or 32% of the mean of the absdlute values
observed. Thus it appears from their larger percentage replication error
that the observed horizontal displacements were less consistent than -
the vertical displacemeﬁts. One reason may have been that the horizontal
transducer frequently operated near its sensitivity limit.

c. Contour maps of a number of the.test sections suggested the
existence of a horizontal line (or "neutral axis") in the vicinity of
which radiél displacements were near zero and vertical displaéementg were

near maximum, at least in the approximate range 12" ¢ r < 100".
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d. . Some of the early displacement data, when converted to normal
strains by an approximate numerical procedure, suggested that the sum of
the normal strains (i.e. the bulk strain) was negligible when compared to
the largest of the normal strains.

5.2. Application of Neutral Axis Concept: A commonly used formula

for locating the depth to the neutral axis of a composite beam was employed
as a regression model for an analysis of the appropriate data from the 30
test sections. - This anal&sis yielded ratios of the moduli of the six types
of materials used in bases, subbases and embankments, to the modulus of

the asphaltic concrete. The moduli appeared to'be ordered reasonably, but
their values should be checked by somé indepeﬁdent means.

"

5.3. Model for Vertical Displacements: With regard to the model

selected for the vertical displacement data, the principal findings were
as follows.

a. The model, which contained four constants to be evaluated from
the data; could:not be fitted to the data from all 30 test sections
simultaneously without excessive prediction errors.

b. When fitted to the data section-by-section, the model prediction
e}rors compared favorably with the section replication errors, and the
squared correlation coefficients were high, ranging from 0.94 to 0.99.

c. From finding b. above, it is clear that the model for vertical
displacements has some merit and that the data has a certain consistency,
but from finding a. it is cqually clear that in its present form the model
can not be extrapolated to real highway sections, since it can not be
extrapolated from one test section ﬁo another. Therefore, it is concluded
that the model for vertical displacements is not suitable for use in design,

and further analysis work is necessary.
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5.4, Model for Radial Displacements:

a. A model for radial displacements in-each test séction ws obtained
from the corresponding equation for vertical displacements, (for which the
values of all constants were already known) based on the assumption that
the bulk strain was zero. The results were not acceptable because of large
prediction errors. It was then concluded that the bulk strain was not
sufficiently small to warrant use of the simplifying assumption that it
was negligible.

b. The same general form of the equation for radial displacements
described in a. above was then used, except that new constants were obtained
by regression analysis on the radial displacement data, section-by-section.
The prediction errors were greatly reduced, but were still, on the average,
twice the size of the replication errors. Squared correlation coefficients
ranged from .51 to .93 and averaged .73. Thus, both on the score of a rather
poor fit to the data, and the fact that the equations developed section-by-
section could not be extrapolated to real highway sections, it was concluded
that the equation for radial displacements, like that for vertical displace-
ments, is not suitable for use in design, and further analysis work is
necessary.

5.5 Predicted Strains: After all regression constants appearing

in the displacement models had been evaluated from the data, the models
were differeptiated to obtain expressions for the normal strains, € and
Ez. The strains computed from these expressions did not agree well

with strains indicated from plots of the basic data. The disparity was
too large to permit use of these equations in design, even though at least
one of the displacement equations fit the displacement data very well

according to normal statistical standards.

31



. 5.6. Recommendation: In view of the fact that only partial success

was achieved in this first attempt to model the observed vector fields
measured. in the 30 test sections used in this study, it is recommended
that another trial or trials be undertaken and continued until a model
meeting all the specifications stated in Article 4.2 is produced. The
basic data, believed to be unique in the field of pavement research, is

available iﬁ full in Appendix B for this pufpose.
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Appendix A

Fquations Used In The Analysis

Two basic assumptions were made:

(1) A neutral axis exists.

(2) The dilatation (bulk strain) is zero.

Let Z = z at the neutral axis. Then Z is given by Equation 4.6 in
the main body of the report.

If the bulk strain is zero, it follows that

5 (ru) d(rw) o " o
e T ez =0 7§A1>

It can be shown that Equation Al is satisfied if

w= (e a0 (A2)
dz |
__ 1 dYy dop dog :

W - ( a Tt e (A3)

where o;, op,03 are arbitrary functions of r only, and 8 is an arbitrary
function of z only.

The form of o, (i = 1, 2, 3) that was chosen is

1
o AL b, r”
ST L-e 1) (A)
where by = .005, by = .0005, by = .00005 (A5)
_ (2 _qy2
and B =ce (gD Inc (A6)

The values assigned to by, bs and b3 were found by a’trial—and—error
method of regreséion, using Equation (A8) below, wifh z held conétant‘
Once selected, these values of the bi fitted/w-data, with 2 fixed, very
closely: R? was in the order of 0.99 for ﬁearly all sections #t all depths z.

From (A2), (A4) and (A6) the full expression for u was found to be
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clnecy .z -(Z-D?nc

u =( 7 < - 1) e
—b1r2 —bor? o2
1, A (1= 1Ty Ay (1-e7P2F) | Aa (1-e P (A7)
x = [ + = +
r " by b2 b3

From (A3), (A4) and (A6) the full expression for w was found to be

2

- - 2 - 2 _ (Z . 2
w =c (Ae byr + Aje bor + Age b3r ) e (Z DIn c (A8)

It can be shown from (A8) that along any vertical line (r = a comnstant),

w(r,Z) is the maximum value of w(r, z) along that line. It can also be

shown from A(8) that

o = wixr,Z)

w(r,o0) (A9)

where r is fixed in value. Thus, along any vertical line, r = a constant,
¢ is the ratio of the maximum value of w to the value of w at thé surface.

It can be shown with little effort that Equations (A7) and_(A8)
satisfy the simple boundary conditions specified in Article 4.2C in the
main body of the report. It can also be shown from Equation 4.6 that Z
meets the consistency test specified in Article 4.2D, and from this it
follows that Equations A7 and A8 also meet that test.

When (A7) and (A8) were tested against the data by non-linear
regression analysis section-by-section, it was found that the constants

C, Ay, Ay, A3 had different values in the two eguations, and furthermore,

that these values did not carry across from one section to the next, although

high values of R’ and small errors resulted from analyses of the w-data,
section~by-section, and a fair fit was obtained using the u-data. A listing
of the values of C, Ay, Ay, A3 for each section, together with a comparison

of prediction with replication errors, Wili be found in Tables Al and A2.

By differentiating (A7) and (A8) the following expressions for strain

were found.




Table Al: Results of Analyses of Horizontal Displacements, u

(For model see equation A7)

Pred. Rep.
Section Z (in.) C A1 Ao Aj R? i;iiz) ?;Ei;)
1 4.9 1.102 .8090 .0242 -.0144 .77 .034 .017
2 7.3 1.029 .0497 .1998 -.0049 .83 .009 .009
3 6.5 1.067 .8854 .0820 -.0160 .74 .027 011
4 10.6 1.065 .0748 .1536 -.0024 .93 .004 .005
5 5.6 1.072 . 7466 .0752 -.0173 .68 .031 .019
6 9.1 1.080 .3043 .2176 -.0259 .86 014 .015
7 9.1 1.080 .0889 .1545 -~.0108 .89 .008 .006
8 14.0 1.118 .0307 .1061 -.0025 .60 .013 .004
9 5.8 1.083 .6657 -.0273 -.0037 .62 .023 .009
10 9.0 1.080 .0577 .0630 -.0080 .72 .019 .006
11 9.0 1.159 L4543 -.0085 -.0004 .51 .025 .006
12 11.0 1.050 L4311 .1081 -.0004 .55 .017 .007
13 6.7 1.025 L2489 - .1040 -.0047 .62 .013 .008
14 9.0 1.046 .1095 .0962 -.0009 .68 .009 .005
15 9.0 1.050 L0976 L0741 -.0020 .66 .009 .006
16 13.6 1.050 .0061 .1233 -.0104 .92 .004 .002
17 8.4 1.065 .1375 .1332 -.0114 .79 .011 .007
18 8.7 1.064 .2374 .1331 -.0068 .68 .016 .011
19 8.6 1.050 .1163 L1434 -.0092 .76 011 011
20 6.8 1.027 .7987 .1796 -.0091 .78 .012 .007
21 10.0 1.054 L1177 .1351 -.0026 .87 .006 .008
24 8.5 1.083 4159 .0881 -.0111 .12 .018 .008
25 8.1 1.033 .0606 .1297 -.0022 .83 .006 . .005
26 7.8 1.069 4517 .0925  -.0102 .73  .016  .012
27 9.7 1.065 .1074 .1560 -.0080 .86 .008 .009
28 7.7 1.042 .0153 .1666 -.0097 - .86 .007 .002
29 8.6 1.031 .0309 1244 -.0001 .78 .007 .004
31 3.1 1.012 4023 L1443 -.0330 .77 .032 .017
32 2.7 1.016 4488 -.3429 -.0164 .66 .091 .022
33 2.9 1,009 .9650 .2393 ~-.0463 .77 .030 .015
Average .73 .018 .009




Table A2: Results of Analyses of Vertical Displacements, w
(for Model see Equation A8)

Pred. Rep.

2 Error Error

Section Z (in). C Al A2 A3 R (mils)  (mils)
1 4.9 1.014 .3756 . 8089 .0914 .97 .062 .056
2 7.3 1.017 -.0258 .2570 .1867 .98 .193 .023
3 6.5 1.020 .3810 .5666  .1165 .98 .037 .068
4 10.6 1.026 -.0154 1120 1446 .98 .118 .050
5 5.6 1.019 4295 .9163 .1215 .98 062 062
6 9.1 1.040 .1665 .6293 .1332 .98 .032 .058
7 9.1 1.030 ~-.0246 .2960 1732 .98 .020 .028
8 14.0 1.057 6711 .1469 L1642 .98 017 .023
9 5.8 1.010 .3627 .3028 L1517 .96 037 .010
10 9.0 1.029 .3503 .2743  .1385 .97 .032 .055
11 9.0 1.030 .3518 .2618 L1341 .96 .037 .032
12 11.0 1.032 .3298 .1900 . 1484 .96 .030 .032
13 6.7 1.011 .0487 .2857 .1509 .98 .021 .028
14 9.0 1.019 .0059 1641 .1735 .98 .016 .013
15 9.0 1.033 .0043 .1870 .2001 .94 .030 020
16 13.6 1.026 .0087 .0688 L1745 .98 .010 .009
17 8.4 1.024 .0184 .2752 .1925 .98 019 - .017
18 8.7 1.030 0447 .3667 L1979 .98 .028 .035
19 8.6 1.025 -.0245 L2847 .1841 .98 .019 .028
20 6.8 1.016 .2912 .3039 L2044 .98 .024 .030
21 10.0 1.030 -.0078 .1793 .1978 .99 .014 .013
24 8.5 1.035 .2763 4331 .1575 .98 .030 .016
25 8.1 1.017 .0056 .1585 .1872 .99 .012 .012
26 7.8 1.024 .0671 .3767 .1765 .99 S .021 .031
27 9.7 1.036 -.0176 .2751 .2009 .98 .021 .009
28 7.7 1.019 -.0020 .2825 .1882 .98 .019 .013
29 8.6 1.014 .0089 L1174 .1363 .98 .011 .019
31 3.1 1.005 .6868 .0152 .0942 .94 L1004 .020
32 2.7 1.005° .7380 .6004 .0894 .94 137 .062
33 2.9 1.005 . 5449 . 8895 1044 .94 .092 .122
Average .97 .043 .033
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where C, Ay, Ay, A3 are to be taken from Table Al for use in Equation Al0,

and from Table A2 for use in Equation All.

At r = 0, for points directly beneath the load, (Al10) and (All)

reduce to the following.

Z 2
er(o,Z) - (& 1n Sy (2 _ 1) e—(Z - 1)% 1n c

Z Z
x(A] + Ay + Ag) (A12)
Z _
Ez(o,z) _ (—Zc ;n c) C% - 1) e—(Z 1) In ¢
X(Al + Ay + A3) (A13)

where the values of C, Ay, Ap, A3 are to be taken from Table Al for
use in Equation (Al2) and from Table A2 for use in Equation (Al3).

The strains predicted from (Al2) and (Al3) appeared unreasonable when
compared with strains estimated directly from plots of the measured data
at nearby points, as previously mentioned in the main body of the report.

The analysis leading to estimates of modular ratios and values
of the depth, Z, of the neutral axis, was independent of the w-data, and

required from the u-data only the apparent distance from the surface
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to the zero contour of u (see, for example, Figure 2.1). Because of the
vagaries of this contour line in most sections at distances from the

load exceeding about 100 inches (r > 100"), it was decided to select,

with some subjective judgement, the value of Z from that position of the
contour lying between r = 11.7" and r = 100". Even within this range, the
depth to the contour line varied over a considerable range for many sections
and these ranges were different for the two sets of replicate measurements.
These ranges are shown graphically in Figure Al. Also shown in that figure
is the computed value of Z for each section. It is clear that although the
computed values lie within the observed overall range of values observed
(when both replicates are considered), the concept of a horizontal neutral
axis should be considered tentative. 1Tt was adopted because it seemed

to yield a proper ordering of the six modular ratios from a very simple
mathematical model (Equation 4.6).

To make clear what is meant by "computed" values of Z, the following
explanation is offered.

Equation 4.6 was first transformed into a model in which "observed"
values of Z were used, leaving only the modular ratios as unknown constants.
These constants, or moduiar ratios, were found by linear regressioﬁ analysis,
and then used in Equation 4.6 (in the form in which it appears in the
text) to compute Z for each test section. As indicated in Figure Al,
the computed values of Z generally lie within the range observed in one

or both replicates.
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