Technical Report Documentation Page

1. Report No.	2. Government Accession No.	3. Recipients Catalog No.						
FHWA/1X-92+492-1F								
4. Title and Subtitle		5. Report Date						
MIX DESIGN PROCEDURES AND	June 1992							
FOR POLYMER MODIFIED ASPHA	6. Performing Organization Code							
7 Author(s)		8 Performing Organization Report No.						
Thomas W. Kennedy, Hassan								
and David R. Jones IV	Research Report 492-1F							
9. Performing Organization Name and Address	10. Work Unit No. (TRAIS)							
Center for Transportation								
The University of Texas at	11. Contract or Grant No.							
Austin, Texas 78712-1075	Research Study 3-9-87/1-492							
	13. Type of Report and Period Covered							
12. Sponsoring Agency Name and Address	Final							
Transportation Planning Di								
P O Box 5051	14. Sponsoring Agency Code							
Austin, Texas 78763-5051								
15. Supplementary Notes								
Study conducted in cooperation with the U.S. Department of Transportation, Federal								
Highway Administration. Research Study Title: 'Mix Design Procedures and								
Considerations for Polymer Modified Asphalt Compatibility and Stability"								

16. Abstract

A five-year study has been performed to investigate the behavior of binders and asphalt mixtures containing polymer modifiers. The polymers were SBS, SBR, EVA, Ground Rubber, and polyolefin. These materials were used separately and in combinations with each other to change the characteristics of the binders and asphalt mixtures. The research included laboratory experiments to characterize the materials, and field projects to ascertain their performance. Four hot mix asphalt projects were conducted in Districts 15, 11, 25, and 10 in Texas, and two seal coat projects were constructed in Districts 6 and 17 in Texas.

The testing results of the field and laboratory samples are presented in this report.

² ² ² ² ² ² ² ²								
17. Key Words	18. Distribution Statement							
behavior, binders, asphalt mi polymer modifiers, materials, projects, laboratory experime mix field projects, seal coat	xtures, field nts, hot projects	No restrictions. available to the National Technica Springfield, Vira	No restrictions. This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.					
19 Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages	22. Price				
Unclassified	Unclassifie	d	496					

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

-

:

.

.

.

.

MIX DESIGN PROCEDURES AND CONSIDERATIONS FOR POLYMER MODIFIED ASPHALT COMPATIBILITY AND STABILITY

by

Thomas W. Kennedy Hassan Torshizi David R. Jones IV

Research Report Number 492-1F

Research Project 3-9-87/1-492

Mix Design Procedures and Considerations for Polymer Modified Asphalt Compatibility and Stability

conducted for

Texas Department of Transportation

in cooperation with the

U. S. Department of Transportation Federal Highway Administration

by the

CENTER FOR TRANSPORTATION RESEARCH

Bureau of Engineering Research THE UNIVERSITY OF TEXAS AT AUSTIN

June 1992

NOT INTENDED FOR CONSTRUCTION, PERMIT, OR BIDDING PURPOSES

Thomas W. Kennedy, P.E. (Texas No. 29596) Research Supervisor

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration or the Texas Department of Transportation. This report does not constitute a standard, specification, or regulation.

There was no invention or discovery conceived or first actually reduced to practice in the course of or under this contract, including any art, method, process, machine, manufacture, design or composition of matter, or any new and useful improvement thereof, or any variety of plant which is or may be patentable under the patent laws of the United States of America or any foreign country.

PREFACE

This is the final report for project 3-9-87/1-492, "Mix Design Procedures and Considerations for Polymer Modified Asphalt Compatibility and Stability." This report presents the information and findings based upon laboratory, plant and initial field performance of HMAC mixtures and seal coats designed, produced and placed in six TxDOT districts. Findings based upon the field performance of these test sections will be presented on the final report for project 1306 (continuation of 492).

The assistance and close cooperation of the Texas Department of Transportation, especially personnel from those Districts directly involved and Donald O'Connor of the Materials and Tests Division, is acknowledged.

Appreciation is also expressed to the Center for Transportation Research staff; Maghsoud Tahmoressi, James Anagnos, and Eugene Betts.

ABSTRACT

A five year study has been performed to investigate the behavior of binders and asphalt mixtures containing polymer modifiers. The polymers were SBS, SBR, EVA, Ground Rubber and polyolefin. These materials were used separately and in combinations with each other to change the characteristics of the binders and asphalt mixtures. The research included laboratory experiments to characterize the materials, and field projects to ascertain their performance. Four hot mix field projects were conducted in Districts 15, 11, 25 and 10 in Texas and two seal coat projects were constructed in Districts 6 and 17 in Texas.

The testing results of the field and laboratory samples are presented in this report.

SUMMARY

The use of polymer modified binders has gained importance in road construction over the past few years. The objectives of polymer addition are to improve mechanical properties of binders which result in reducing thermal and fatigue cracking, moisture damage and permanent deformation.

A five year study has been performed to investigate the behavior of asphalt mixtures containing polymer modifiers. Seven different polymers including SBS, SBR, EVA and SBR/Polyolefin were Twenty eight test sections were utilized in this study. in six districts of the Texas Department of constructed Transportation. A comprehensive testing program was designed and carried out to determine whether improved asphalt concrete pavement performance could be gained through polymer modification of the In addition, the effects of polymers on the asphalt binder. properties of asphalt and HMAC mixtures were evaluated.

Samples of all aggregates, binders and mixtures were collected during construction. Laboratory tests were conducted on the binders, field-prepared mixtures, and laboratory-prepared mixtures. A comparison was made between various test methods which are commonly used to predict thermal cracking, permanent deformation This comparison will help to and temperature susceptibility. identify tests which predict field performance after long-term field performance data are obtained. Furthermore, it was found that certain engineering properties of field-prepared mixtures could be predicted in the laboratory. In addition, statistical analyses were performed to predict engineering properties of plantmixed mixtures from engineering properties of laboratory-prepared In this analysis factors such as air voids, mixing mixtures. temperature, test temperature, and aging indices were included.

Several tests were evaluated in order to determine their effectiveness in characterizing polymer-modified asphalts. Once the field performance of test sections is determined after longterm performance evaluations, the results presented in this report can be used to develop a comprehensive mixture design and analysis method for polymer-modified hot-mixed asphalt concrete.

V

IMPLEMENTATION

Regression equations have been developed to predict the engineering properties of plant-mixed mixtures from engineering properties in the laboratory. The properties of polymer-modified binder and HMAC evaluated in this study can be used in a data base which describes the properties of currently available commercial polymers. Also, a tensile creep compliance formula for indirect creep test was developed in this study.

Since test pavements constructed during this study have not had sufficient time to provide performance indications, it is recommended that the present mix design procedures and specifications in use by the Texas Department of Transportation be continued.

Table of Contents

- ·

•

:

CHAPTER 1: INTRODUCTION	1
Background	3
Project Objective	4
Report Organization	4
CHAPTER 2: EXPERIMENTAL PROGRAM	6
Experimental Field Program.	6
Construction of Test Sections	6
Materials	8
Construction Techniques	8
Field Sampling Program	8
Test Methods.	10
Binder Laboratory Testing.	10
Penetration	īī
Kinematic Viscosity	11
Absolute Viscosity	12
Softening Point	12
Rolling Thin Film Oven Test	13
Penetration Index	13
Penetration Viscosity Number	14
Penetration and Viscosity Patios	15
Stiffness Modulus	15
Limiting Stiffnors Mothod	10
Critical Stross Nothod	10
Force Ductility	10
Schuouer Decemeter	1/
Schweyer Rheometer	20
Compatibility Test.	25
Mixture Laboratory Testing	25
Marshall Stability Test	26
Hveem Stability Test	27
Indirect Tensile Test	27
Indirect Tensile Strength	29
Resilient Modulus	30
Poisson's Ratio	30
Indirect Tensile Fatigue Test	32
Alpha and Gnu	33
Creep Test	34
Tensile Strength Ratio	36
Experimental Laboratory Program	37
Asphalt and Modified Asphalt Binders	37
Laboratory Mixed/Laboratory Compacted	
Mixtures	38
Plant Mixed/Laboratory Compacted Mixtures.	38
Plant Mixed/Field Compacted Mixtures	39

CHAPTER 3: ANALYSIS OF TEST RESULTS ON UNMODIFIED
AND MODIFIED ASPHALTS 40
Penetration at 39.2°F
Penetration at 77°F
Viscosity at 140°F
Kinematic Viscosity at 275°F
Ring and Ball Softening Point
Penetration Index and Penetration Viscosity
Number
Low Temperature Cracking.
Predicting Stiffness Modulus
Force Ductility
Maximum True Tensile Strength
Maximum True Tensile Strain.
Area Under Stress Strain Curve
Asphalt Modulus
Asphalt-Polymer Modulus.
Schwever Rheology 65
Shear Suscentibility
Constant Power Viscosity
Compatibility 73
CHARTER A. ANALYSTS OF TEST PESILITS ON UNMODIFIED
AND MODIFIED MIXTUPES 77
Evaluation of Laboratory Mixtures (Standard
Compaction) 77
Marshall Stability and Flow
Hyper Stability
Tensile Strength
Tensile Strain at Failure
Secont Modulus
Pesilient Modulus
Poisson's Patio
Fulliation of Laboratory Mixture (Modified
Compaction)
Marchall Stability and Flow
Huppen Stability
Toncile Strength
Tensile Strain at Failure
Secont Modulus
Besilient Modulus
Poisson's Patio
Forson S Racio
Fatigue Constant K and K 107
$\begin{array}{c} \text{ratigue constant, } n_1 \text{ and } n_2 \cdots \cdots$
$\begin{array}{c} \text{Alpha and Ghu}, \dots, \dots, \dots, \dots, \dots, \dots \\ \text{Croop Compliance} \\ 110 \end{array}$
Terep Compliance
Tensile Stlength Ratio
Comparison between Laboratory Mixtures and
Plant Mixtures
Comparison of nanu and mechanically-mixed
Laboratory migrae

•

-

CHAPTER	5:	EVALUATI	ION OF	' EFF	'EC	TS (OF	PO	LYI	MER	A	ND		
-		COMPARIS	SON OF	TES	T I	MET	HOD	S	•		•	•	•	.134
Ef	fect	of Polym	ner on	Mea	su	red	Pr	op	er	tie	s.	•	•	• 134
	P	Penetratio	on	• •	•	• •	•	•	•	• •	•	•	•	• 135
	v	iscosity.	• •	• •	•	• •	•	•	•		•	•	•	• 135
	S	oftening	Point	• •	•		•		•	• •	•	•	•	.138
	F	Penetratio	on Ind	lex a	nd	Pe	net	ra	ti	on-				
		Visco	sity	Numb	ber	• •	•	•	•		•	•	•	•138
	S	Shear Susc	ceptib	ilit	:y		•	•	•		•	•	•	.138
	S	Stiffness	Modul	us.	-		•	•	•		•	•	•	.138
	A	ging Inde	ex		•		•	•	•		•	•	•	.139
	C	racking 1	Cemper	atur	ce		•	•	•		•	•	•	.139
	M	faximum Te	ensile	sti	ces	s a	nd	St	ra	in.			•	.139
	2	rea Under	stre	ss S	str	ain	Cu	irv	e	• •		•		.139
	2	sphalt Mo	odulus		•	• •	•	•	•		•	•	•	.140
	2	sphalt-Po	olvmer	Mod	lul	us.								.140
Co	mpar	rison of T	Test M	letho	ods									.140
		lemperatu	ce Sus	cept	ib	ili.	tv							.144
	- T	Thermal Ci	rackin				-1	•	•			•	•	144
	T	Permanent	Defor	mati	• i on	•••	•	•	•	•••	•	•	•	.144
	•	ermanene	DEIGI	ma c.	.011	••	•	•	•	•••	•	•	•	• 1 4 4
CHAPTER	6:	CONCLUS	CONS.	••	•	••	•	•	•	•••	•	•	•	•146
ADDENDT	v	DDECEN			ጥፑ	C.L.	DFC		тc					
AFFENDI	A A i	DICUI	DTOT 1		ΤC	51	REC		13					172
		01511			•	•••	•	•	•	•••	•	•	•	• 1/2
ADDENDT	v p.	DDECEN			mτ	cm ·	DEC		mс					
APPENDI	A Di	PRESENT			1.F	51	RES	OL	13					245
		DIST	KICT 1	· T •	•	•••	•	•	•	• •	•	•	•	• 245
NDENDT	v 0.	DDECEN			mæ	~	DRC		— ~					
APPENDI	x c:	PRESENT			TE	ST	RES	SUL	тs					200
		DIST	RICT 2	25 •	•	• •	•	•	•	• •	•	•	•	. 309
						~			-					
APPENDI	X D:	PRESEN	TATION	OF	TE	ST	RES	SUL	TS					077
		DIST	RICT 1	10.	•	• •	•	•	•	• •	•	•	•	. 3//
APPENDI	X E:	SEAL CO	DAT TE	EST S	SEC	TIO	NS							
		DIST	RICTS	17 /	AND	6.	•	•	•	• •	•	•	•	• 467
APPENDI	X F:	DEVELO	PMENT	OF (CRE	EP	CON	IPL	IA	NCE	5			470
		FORM	ULA US	SING	IN	DIR	ECI	ΓT	EN	SII	Æ	TE	ST	. 4/3
REFEREN	CES	• • • •		• •	•		•	•	• .		•	•	•	. 482

•

•

. .

· .

.

CHAPTER 1

INTRODUCTION

Highway and airfield pavements are continuously subjected to ever increasing traffic loads, higher volumes of traffic, and higher tire pressures. In addition, these pavements are further distressed by the action of environmental factors such as temperature and moisture. These combined factors are causing a significant amount of distress resulting in shorter service lives, poorer performance and higher maintenance costs.

The basic types of pavement distress are:

- Thermal cracking
- Fatigue cracking
- Permanent deformation

In addition, the severity of these distresses is increased by the following related factors:

- Moisture damage
- Aging

Thermal cracking occurs in two forms, low temperature cracking and thermal fatique. Thermal cracks are transverse cracks which generally run perpendicular to the direction of traffic and are often spaced equidistant from each other. As the temperature is reduced the pavement structure tends to shrink. This shrinkage is resisted by friction which is developed between the pavement section and the underlaying layer. Development of frictional forces cause tensile stresses to develop in the pavement. The magnitude of these stresses is dependent on the stiffness, coefficient of expansion of the material, the rate of temperature change and the magnitude of the temperature change. Low temperature cracking takes place when the tensile stress induced by a single drop in temperature exceeds the tensile strength of the asphalt mixtures. Similarly repeated thermal cycles may cause the pavement to crack as the result of thermal fatigue.

Fatigue cracking, also called alligator cracking, is caused by

the action of repeated loads induced by moving traffic. Fatigue cracking susceptibility increases with higher loads, increased repetitions of loads, or inadequate support in one of the pavement layers which causes the HMAC pavement to experience higher strains. The problem of fatigue cracking is further compounded because the desirable mixture properties for increased fatigue life are different for thick and thin pavements. Thick sections require stiffer materials for minimal fatigue cracking and thin sections require less stiff or more flexible materials.

Permanent deformation on rural highways is manifested by wheelpath rutting. However in urban areas and at the intersections, where heavy vehicles move slowly or stop frequently, both rutting and shoving can occur. Rutting in HMAC can be caused by either densification from traffic or shear flow of the mixture. Shoving is only caused by shear flow of the mixture. In general, the more severe premature rutting failures and distortion problems of HMAC are related to lateral flow of asphalt or shear distortion, rather than to one-dimensional densification. These types of distress (rutting and shoving) are a function of the shearing resistance of the materials. The shearing resistance of HMAC is a function of the interparticle cohesion and friction as well as the amount of stress applied to the material. The cohesion of the mix depends on the amount and properties of the asphalt cement in the mix.

<u>Moisture damage</u> occurs in two forms, loss of cohesion and loss of adhesion. Loss of adhesion or stripping involves the physical separation of the asphalt cement and the aggregate, primarily due to the action of moisture and traffic. Loss of cohesion involves failure of the asphalt film itself. Both forms of damage are characterized by a reduction in strength and stiffness of the asphalt mixture.

<u>Aging</u> occurs primarily as the result of oxidation, which causes hardening of the asphalt. This increased stiffness (due to the hardening) can cause increased cracking due to temperature changes or repeated loads.

To reduce the stresses discussed above, an ideal asphalt binder should possess several desirable characteristics such as:

1) Low stiffness (or viscosity) during the construction phase to expedite pumping of the liquid binder and mixing and compaction of hot mix asphaltic concrete.

2) High stiffness at high temperatures (summer) to reduce rutting and shoving, and to improve fatigue life of HMAC pavements.

3) Low stiffness at low temperatures to reduce thermal cracking and fatigue cracking.

4) Adequate adhesion between the binder and aggregate in the presence of moisture and traffic to reduce stripping.

5) Low aging susceptibility to resist changes in properties with aging.

These objectives may not be achievable simultaneously in conventional asphalt cements. However the advent of asphalt modifiers has opened up new means of satisfying the above objectives.

Since the engineering properties of current asphalt modifiers are dependent on the asphalt cement, it is important to provide a means of determining asphalt-additive compatibility, binder characteristics, and mixture design procedures that will be sensitive to the modified asphaltic binders.

BACKGROUND

The concept of modifying asphalt binders and mixtures is certainly not new, but has become much more prominent during the past fifteen years. One reason for this resurgence in interest has been the changing process of how oil refineries obtain and process Following the 1973 Arab oil embargo, the traditional crude oil. crude sources changed. Many refineries that were accustomed to a single crude source were faced with processing oil from multiple changes made it more difficult sources. These to meet specifications for paving grade asphalt cement. This situation provided additional opportunities for enhancing asphalt cement

performance through modification.

PROJECT OBJECTIVES

To study some of the concepts of asphalt modification, the Texas Department of Transportation (TxDOT) funded a research study at the University of Texas at Austin. The primary objectives of the research program were as follows:

- 1. To define the properties desired in a polymer modified binder.
- 2. To select tests which best measure or quantify these properties in materials for hot mixed asphaltic concrete.
- 3. To evaluate proper design procedures for hot mix asphaltic concrete.
- 4. To establish specifications for modified binders for each application.

The work and activities required to achieve the overall objectives of the project were as follows:

- 1. To select materials.
- To determine properties of polymer modified binders in the laboratory.
- 3. To determine engineering properties of polymer modified mixtures in the laboratory.
- 4. To construct field test sections for polymer modified mixtures and control mixtures .
- 5. To monitor field performance for future long-term evaluation.

REPORT ORGANIZATION

This report summarizes the characteristics of unmodified and modified binders and mixtures using different polymers, asphalt cements and aggregates. In addition, information related to the construction of four hot mix and two seal coat test projects in Texas are reported. The subsequent findings of the long-term field

monitoring program will provide both information related to the field performance of mixtures and the relationship between performance and the predicted performance based on the laboratory test results.

Chapter 1 describes the research objectives of this project. The experimental laboratory program, experimental field program and test methods are discussed in Chapter 2. Test results for binders and mixtures are presented in Chapter and 3 Chapter 4, respectively. Test methods are evaluated and discussed in chapter 5. The conclusions and recommendations based on the findings of this study are presented in Chapter 6. Information related to the field projects along with the test results are summarized in Appendices A through E. The relationships to determine tensile creep compliance were developed in this study, and are documented in detail in Appendix F.

CHAPTER 2

EXPERIMENTAL PROGRAM

Laboratory and field studies were developed in cooperation with the Texas Department of Transportation (TXDOT) to achieve the objectives of this study. The field and laboratory experimental programs including test methods and engineering properties which were evaluated are described in the following sections.

EXPERIMENTAL FIELD PROGRAM

The experimental field program involved the construction and evaluation of highway test sections (four hot mix and two seal coat field projects) in six different districts of the TXDOT (Fig 2.1). These test sections involved different traffic and climatic conditions, aggregates, asphalt cements, and polymers. The experimental field programs were designed in conjunction with the Materials and Tests Division of TXDOT (D-9), and in cooperation with the districts in which the test sections were constructed. Field construction was supervised by District Personnel, with technical assistance provided by project personnel from the Center for Transportation Research.

The purpose of building the test sections was to determine what changes were necessary in construction processes when using polymer modified binders. In addition, long-term performance of polymer modified pavements were to be evaluated. Condition surveys after construction were obtained to determine whether use of polymer modified binders is beneficial in terms of long term pavement performance.

Construction of Test Sections

The six field projects involved a total of twenty eight test sections containing different aggregates, asphalt cements, and polymers. The field operations and test variables for each test

Fig 2.1 Location of field test sections.

section, along with a description of the asphalts, aggregates, polymers, and construction techniques are described in detail in Appendices A through E. The information related to field construction is summarized below.

<u>Materials.</u> Aggregates, asphalts and polymers utilized in the six test projects are identified in Table 2.1. Identical aggregates were utilized for all test sections in a given district. One percent lime by weight of aggregate was used for all test sections in District 25. In several cases, the actual binder contents used in the field mixtures deviated from preliminary laboratory design values due to field construction requirements or the recommendations of polymer suppliers.

Seven different polymers were used: Goodyear UP 70 (SBR), Polysar NS 175 (SBR), Styrelf (SBS), Polybilt 103 (EVA), Dow (SBR/Polyolefin), Kraton D1101 (SBS), and Crafco rubber C107 (recycled tires). Percentage of polymer, by weight of binder, was recommended by the manufacturers.

<u>Construction Techniques.</u> Three of the hot mix field projects (Districts 11, 25 and 10) utilized drum mix plants and the fourth field project (District 15) utilized a batch plant. All polymer modified binders were preblended. The mixing temperatures were between 310°F and 350°F. The initial breakdown compaction occurred between 250 and 280°F. Compaction of each test section was achieved using a vibratory roller, a pneumatic roller, and a static steel wheel roller. Location and length of the test sections are described in the appendices.

Field Sampling Program

Plant mixed samples of control and polymer modified mixtures utilized in each test section were obtained. In addition, samples of asphalt cements, polymer modified binders, and aggregates were obtained and shipped to the asphalt research laboratory at the University of Texas at Austin.

						•••••				
Location of Field S Project	Test	Aggr eg ates	Asphalt	Binder Content, X Polymer					Polymer	Appendix*
	Number		& Grade	Field	+ Design ++	Source	Туре	Designation	X X	
District 1 San Antonio	1 2 5 3 4 0 5 6 7	Sandstone 31% Limestone 27% Limestone Screenings 19% Field Sand 23%	TFA AC-10 TFA AC-10 TFA AC-20 TFA AC-20 TFA AC-20 TFA AC-10 TFA AC-10 TFA AC-20	4.6 4.6 4.6 6.3 4.6 4.6	4.8 6.3	Goodyear Elf Exxon Crafco Polysar Dow	SBR SBS - EVA Recy. tires SBR SBR/Polyole	UP 70 Styrelf-13 Polybilt 103 Genstar C107 NS 175 fin	3X 3X 3X 18X 3X 5X	A A A A A A A
District 1 Lufkin	1 1 2 3	LtWt. Type D 56% Coarse Sandstone Screenings 10% Fine Sndstone Screenings 15% Field Sand 19%	Texaco AC-20 Texaco AC-10 Texaco AC-10	6.8 6.8 6.8	6.8	Elf Goodyear	- SBS SBR	Styrelf-13 UP 70	- 3X 3X	8 8 8
District 2 Childress	1 5 2 3 4 5	Crushed Gravel 51% Screenings 49% Lime 1% by weight of aggregates	Shamrock AC-20 6 Fina AC-10 Fina AC-10 Fina AC-10 Fina AC-10 Fina AC-10	0 5.0 5.0 5.0 5.0 5.0	5.4 5.8 5.4 5.0 5.4	- Goodyear Elf Shell Shell	- SBR SBS SBS SBS	UP 70 Styrelf-13 Kraton D1101 Kraton D1101	3X 3X 3X 6X	с с с с с
District 1 Tyler	1 0 2 3 4 5	Crushed Stone 65% Screenings 15% Field Sand 20%	Total AC-20 Fina AC-10 Fina AC-10 Exxon AC-10 Gulf AC-10	4.6 4.6 4.6 4.6 4.6	4.9 - - -	Goodyear Elf Exxon Shell	SBR SBS EVA SBS	UP 70 Styrelf-13 Polybilt 103 Kraton D1101	3% 3% 3% 3%	D D D D D
District 1 Bryan	1 7 2 3 4	Pre- Coated Aggregates	Fina AC-5 Fina AC-10 Exxon AC-10 Exxon AC-10	0.35 Ga 0.35 Ga 0.35 Ga 0.35 Ga	al/SqYd al/SqYd al/SqYd al/SqYd al/SqYd	Goodyear Shell Elf	SBR SBS SBS	UP 70 Kraton D1101 Styrelf-13	2% 3% 3%	E E E E
District 6 Odessa	1 2 3 4	Pre- Coated Aggregates	Fina AC-5 Fina AC-5 Fina AC-5 Fina AC-5	0.35 Ga 0.35 Ga 0.35 Ga 0.35 Ga	al/SqYd al/SqYd al/SqYd al/SqYd	Exxon Shell Goodyear	EVA SBS SBR	Polybilt 103 Kraton D1101 UP 70	3.2% 4.5% 2%	E E E E

5

.

TABLE 2.1 Summary of Materials for Field Test Projects

* Details are contained in the indicated Appendices + Binder content used for the field test project mixtures ++ Laboratory design optimum binder content

Field cores were taken immediately following construction and each year for a period of five years. These cores were approximately 4-inches in diameter and 1 to 2 inches in thickness. Twelve cores were obtained from each test section in the wheel path at approximately 100-foot intervals, with the first and last cores located approximately 200 feet from the beginning and the end of the test section.

TEST METHODS

Laboratory binder and mixture tests were conducted in accordance with applicable Texas Test Methods or ASTM standards. The binder and mixture tests used in this study are described in the following sections.

Binder Laboratory Testing

Binder tests conducted and parameters measured on unmodified and modified asphalt binders are as follows:

Conventional Binder Tests

- Penetration (ASTM D5) @ 77°F and 39.2°F
- Kinematic Viscosity (ASTM D2170) @ 275°F
- Viscosity (ASTM D2171) @ 140°F
- Softening Point (ASTM D2398)
- Rolling Thin Film Oven (ASTM D2872)

The following materials properties were obtained for each binder.

Temperature Susceptibility:

- Penetration Index, PI (Ref 5)
- Penetration Viscosity Number, PVN (Ref 6)

Durability Indicators:

- Penetration Ratio (77°F)
- Kinematic Viscosity Ratio (275°F)
- Absolute Viscosity Ratio (140°F)

Stiffness Modulus

• Stiffness-Temperature Susceptibility

Cracking Temperature

- Limiting Stiffness Method
- Critical Stress Method

Force Ductility (Refs 3, 4,16)

- Asphalt Modulus
- Asphalt Polymer Modulus
- Maximum True Stress
- Maximum True Strain
- Area under Stress-Strain Curve

Schweyer Constant Stress Rheometer (Ref 2)

- Shear susceptibility
- Apparent Viscosity
- Constant Power Viscosity
- Constant Power Viscosity-Temperature Susceptibility

Compatibility

• Hot Storage Stability Test

<u>Penetration.</u> The penetration test is an empirical measure of consistency. In this test a standard needle penetrates into the asphalt sample under known conditions of loading, time and temperature. The distance in tenths of a millimeter which the needle penetrates into the sample is the 'penetration'. The test procedure for measuring penetration at 77°F and lower temperatures is given in ASTM D5. Higher values of penetration indicate softer asphalts. Penetration values are also used to determine the temperature susceptibility of binders in terms of penetration index (PI) or penetration-viscosity number (PVN)

Kinematic Viscosity. The ratio between the applied shear

stress and shear rate of a liquid is called the viscosity. Kinematic viscosity is the ratio of the viscosity to the density of a liquid. It is a measure of resistance to flow of a liquid under gravity. The standard ASTM D2170 test method uses a capillary viscometer to determine Kinematic viscosity at 275°F. In this test the time in seconds required for the binder to flow under gravity between two timing marks is measured. Multiplying this measured time by the calibration factor for the viscometer gives a value for viscosity in centistokes, which is the standard unit for measurement of kinematic viscosity.

Absolute Viscosity. Viscosity grading of asphalts is based on The ASTM D2171 method was used to determine viscosity at 140°F. viscosity at 140°F using a Cannon-Manning vacuum viscometer. The 140°F temperature is selected because it approximates the maximum HMAC pavement surface temperature during summer in the United States. Since asphalt binders at 140°F are too viscous to flow through capillary tube viscometers, a partial vacuum is applied to the efflux (small) side of the viscometer to induce flow. The time in seconds required for the binder to flow under vacuum between the timing marks is measured. Multiplying this measured time by the calibration factor for the viscometer gives a value for viscosity in poises, which is the standard unit for absolute viscosity.

Softening Point. Softening point is measured by the ring and ball (R & B) method in accordance with ASTM D2398. It can be defined as the temperature at which an asphalt cement cannot support its own weight and starts flowing. Its purpose is to determine the temperature at which a phase change occurs in the asphalt. Softening point is also used to determine the temperature susceptibility of binders in terms of penetration index (PI).

Rolling Thin Film Oven Test (RTFOT). A moving film of asphalt cement is heated in an oven for 75 minutes at 325°F. The combined effect of heat and air cause oxidative aging of the asphalt. The degree of oxidative aging is determined by measurement of physical properties before and after oven treatment. The test method is described in ASTM D2872. This test approximates the change in properties of asphalt during conventional hot-mixing at approximately 310°F as indicated by viscosity measurement.

<u>Penetration Index (PI).</u> Penetration index has been used as a means of estimating temperature susceptibility of asphalts for many years. There are several methods of determining PI. Penetration index was first proposed as a method of estimating temperature susceptibility by Pfeiffer and Van Doormaal (Ref 5), based on penetration at two temperatures. The following relationship is used to calculate PI:

$$\frac{20-PI}{10-PI} = 50 X \frac{\delta \log(pen)}{\delta T}$$

or

$$PI = \frac{20-500A}{1+50A}$$

where

and,

T1 and T2 are two temperatures at which penetration is measured. Penetration index determined from the above relationship will

be referred to as PI(Pen/Pen) in the remainder of this report. Penetration index can also be determined using penetration and softening point (Ref 5). By this procedure an assumption is made that all asphalts have a penetration of 800 at their softening point. The relationship between penetration and softening point that can be used to define PI is:

$$PI = \frac{30}{1 + 90 (PTS)} - 10$$

where,

$$PTS = \frac{\log(800) - \log(Pen)}{T_{RLB} - T_{Pen}}$$

PTS = Penetration Temperature Susceptibility T_{RLB} = Softening Point, F Pen = Penetration at 77°F

From the above equation it is apparent that an increase in the PI value indicates a decrease in the apparent temperature susceptibility of the material. Penetration Index by this method will be referred to as PI(Pen/SP) in the remainder of this report.

Penetration Viscosity Number (PVN). The Penetration-Viscosity Number is another method of estimating the temperature susceptibility of asphalt cements. PVN was developed by McLeod (Ref 6) when penetration Index (PI) failed to provide good correlation with observed pavement cracking at low temperatures in Canada. The PVN used in this research is based upon penetration at 77°F and viscosity at 275°F. PVN can also be determined for penetration at 77°F and viscosity at 140°F.

PVN can be calculated using the following relationship:

 $PVN = \frac{4.258-0.7967(\log(Pen)) - \log(Vis)}{0.7591-0.1858(\log(Pen))} X(-1.5)$

where,

Pen = Penetration at 77°F

Vis = Kinematic Viscosity at 275°F

Both PI and PVN parameters were calculated because the data needed to generate these values are easily obtained, and PVN and PI are believed to correlate to low temperature performance of HMAC pavements. Although the correlation of PVN and PI to pavement performance may occasionally yield contradictory data, recent research indicates that both methods of predicting temperature susceptibility may have merit (Ref 7).

Penetration and Viscosity Ratios. These parameters are the ratio of the measured property after aging in the rolling thin film oven test to the property before aging. For conventional materials, the ratio should always provide a value greater than one for viscosity data, and a value less than one for penetration data because of the oxidative hardening which takes place during the RTFOT. Values close to one by either method for paving binders indicate better resistance to oxidative hardening during plant mixing and service life.

Stiffness Modulus. Stiffness modulus is the ratio of stress to strain. For asphalt binders and HMAC mixtures, this modulus is dependent on both test temperature and the duration of applied stress. Stiffness modulus may be used to estimate low-temperature cracking susceptibility of HMAC mixtures. Low-temperature cracking occurs when the stresses caused by temperature drop exceed the tensile strength of HMAC mixtures. It is generally believed that at low temperatures, stiffness of HMAC mixtures is controlled primarily by the properties of the asphalt binder (Refs 8, 9). Therefore, low temperature properties of the asphalt pavements can be improved by controlling the stiffness of the asphalt binder.

Van der Poel developed a nomograph (Ref 10) which Heukolem later revised (Ref 11) to estimate bitumen stiffness as a function of loading rate, temperature susceptibility, and softening point.

The nomograph is based on laboratory measurements of many asphalts from a wide assortment of sources and refining techniques. Stiffness is easily determined from the nomograph, and can be estimated over a wide temperature or rate of loading range.

To measure stiffness-temperature susceptibility, stiffness vs. test temperature is plotted on a semilogarithmic scale. The slope of the best fit line resulting from such a plot is termed the stiffness-temperature susceptibility.

Limiting Stiffness Method. One of the simplest means of predicting the cracking temperature of asphalt binders is to estimate the temperature at which the asphalts reach a critical "limiting stiffness". Canadian researchers (Refs 12, 13) adopted a limiting Stiffness of 29,000 psi at 2-hour loading time based on field observations from the St. Anne Test Road. The new SHRP binder specifications will also consider the issue of stiffness and low temperature performance, and specifiy the temperature at which the binder may achieve the same 29,000 psi stiffness. The St. Anne Road Test was a joint research project of the Manitoba Department of Transportation and Shell Canada Limited designed to study low temperature cracking of asphalt pavements. Further study on the St. Anne Test Road asphalts has resulted in establishing the stiffness of approximately 145,000 psi at a one-half hour loading time as the limiting stiffness (Ref 14). Thus the temperature at which the asphalt stiffness reaches 145,000 psi at a half-hour considered to be the predicted loading time is cracking temperature. Stiffness can be determined using the Van der Poel nomograph.

<u>Critical Stress Method.</u> Hills (Ref 15) introduced a procedure for predicting cracking temperatures of pavements based on the estimation of thermal stresses developed in the asphalt binder. In this procedure, it is assumed that the thermal stress, σ_t , developed in asphalt as it cools, can be calculated from the following relationship:

 $\sigma_t - \Sigma (Si \times \alpha_k \times \Delta T)$

where,

- Si = Asphalt stiffness at a one hour loading time at a series of temperature intervals, ΔT .
- α_{A} = Coefficient of linear thermal contraction. It is assumed to be 2 x 10E-4 in/in/°C

Using asphalt penetration data, asphalt stiffness at 18°F (10°C) intervals from 32°F down to -58°F is determined. When required, the temperature range can be modified to accommodate various asphalt grades. The thermal stress, σ_t , is calculated by summing the individual stress increments.

Hills concluded from semi-theoretical considerations and from mix cracking observations that pavement cracking occurred at a temperature corresponding to a calculated thermal stress, σ_t , of about 73 psi. The calculated cracking temperature is taken as the temperature at which a stress of 73 psi is induced.

Force Ductility. The force ductility test is a modification of the asphalt ductility test (ASTM D113). The principal alteration of the test consists of adding a load cell in the loading chain. Specimens are maintained at 39.2°F by circulating water through the ductility bath during testing. A second major alteration of the standard ASTM procedure involves the test specimen shape. A standard ASTM specimen is as shown in Figure 2.2. The mold is modified for force ductility testing by fabricating new pieces a and a' (Fig 2.3). This mold fabricates a test specimen with a constant cross-section area for a distance of approximately 3 cm which produces a deformation rate of 0.74±0.01 cm/min between the gage marks of the test specimen at a fixed loading rate of 1 cm/min (Ref 4).

Figure 2.2 ASTM DII3 Ductility Mold

Figure 2.3 Force - Ductility Mold

The following properties are measured from a force ductility test:

- Asphalt Modulus
- Asphalt Polymer Modulus
- Maximum True Stress
- Maximum True Strain
- Area under Stress Strain Curve

Raw data obtained from the force ductility machine are initially in terms of a force-time relationship. However, the constant deformation rate of 0.74 cm/min allows conversion of force-time information to force-strain data. Stress data are calculated using the initial one square centimeter cross sectional area. True stress is obtained by calculating the change in cross-section as the specimen increases in length. Engineering strain is obtained by dividing the change in gauge length by the original length as follows:

$$\epsilon_{e} - \frac{\Delta Lo}{Lo}$$

where,

 ϵ_e = Engineering strain Δ Lo = Change in gage length Lo = Initial gage length

True strain, ϵ_t , is obtained by summing all engineering strains and evaluating the limit as dL approaches zero or,

$$e_t - \int_{LO}^{L} \frac{dLO}{LO} = \ln(L) - \ln(LO) = \ln((LO + \Delta LO)/LO)$$

$$\epsilon_{\star} = \text{Ln}(1+\epsilon_{\star})$$

The data were gathered when the areas of the cross sections were relatively constant. This greatly reduced variation due to sample configuration, and improved the repeatability of the test. Modulus of elasticity was determined by evaluating the slope of the true stress-strain curve. Two slopes were evaluated. The initial slope of the stress-strain curve in the linear region under primary loading is referred to as the 'asphalt modulus'. A second slope was observed for certain blends of asphalt and polymer which is characterized by secondary loading and will be referred to as 'asphalt-polymer modulus'. Other parameters measured using this test were ultimate tensile stress and strain, and work energy applied to the specimen during testing, as determined by the area under the true stress-strain curve. An example of a typical stress-strain curve which is used to obtain these parameters is shown in Figure 2.4.

<u>Schweyer Rheometer.</u> The Schweyer Rheometer is described as a constant stress rheometer (Ref 2) that produces a rheogram of apparent viscosity versus shear rate. The principle of operation of the Schweyer constant stress rheometer is relatively simple and involves the following:

- Force sample through precision capillary by constant load on plunger (Fig 2.5).
- 2. Measure movement of sample through orifice using LVDT and chart recorder.

The movement of the plunger is nonlinear until flow equilibrium is established. At flow equilibrium the constant velocity of the plunger is recorded. The force applied to the plunger is related to shear stress as a function of sample and capillary tube geometry. Shear rate is a function of sample velocity through the capillary tube. Apparent viscosity is defined as the ratio of shear stress to shear rate:

> Apparent Viscosity - Shear Stress Shear Rate

TRUE STRAIN

Fig 2.4 Typical Force Ductility Characteristics of Neat Asphalt and Polymer-Modified Asphalt.

Fig 2.3 Schematic of Schweyer Rheometer Assembly.

Units of shear stress (τ) , rate of shear (γ) and apparent viscosity (η) are in Pascal, reciprocal second and Pascal-second, respectively. (1 Pascal-second = 10 Poises). Generally, the plot of shear stress vs. rate of shear on a logarithmic scale will describe a straight line which may be represented by a power formula:

 $\tau = A\gamma^c$

where

C = Slope of the straight line of the log-log plot

A = Apparent viscosity at shear rate 1 reciprocal second.

The Schweyer 'C' parameter (slope) is used as a measure of shear susceptibility or deviation from Newtonian behavior. Materials with slopes equal to one are defined as a Newtonian fluid and hence are not shear susceptible (Fig 2.6). For these materials the apparent viscosity is constant over a range of shear rates. Materials with slopes less than 1 (C<1) are defined as "shear thinning" fluids (Fig 2.7), and materials with slopes greater than 1 (C>1) are termed "shear thickening" fluids (Fig 2.8).

Schweyer rheology measurements were obtained at different temperatures ranging from 39°F to 140°F. Several runs at varying shear stresses are made to develop a plot (rheogram) of log (apparent viscosity) versus log (shear rate) for a given test temperature. The log-log plot of apparent viscosity and shear rate is linear, theoretically allowing calculation of apparent viscosity at any shear rate. In this study, shear susceptibility and apparent viscosity at a shear rate of 1 reciprocal second are reported at 39°F, 77°F, and 140°F for aged and unaged materials used in the District 15 project. These properties were obtained at 39°F, 60°F, 77°F, 90°F, and 140°F test temperatures for unaged materials used in Districts 11 and 25. In addition constant power viscosity at a constant power input of 100 W/m3 ($\tau \cdot \gamma = 10^5$) was computed. To measure the viscosity-temperature susceptibility, viscosity vs.

ŀ
test temperature is plotted on a semilogarithmic scale. The slope of the best fitted line resulting from such a plot is termed viscosity-temperature susceptibility.

Compatibility Test. Polymer compatibility with asphalt is of utmost concern to both contractors and state officials. If polymer separation occurs during shipping and storage at elevated temperatures, problems associated with inconsistent binder quality will develop. Material with low polymer content will not exhibit the desired enhanced properties. This is a particular problem if the base asphalt is intentionally softened to maximize flexibility or cracking resistance. Most procedures for monitoring polymer separation involve storing the material at an elevated temperature for a reasonable period of time (one day to two weeks) and then running an identification test on samples taken from the top and bottom of the container. Any test which identifies differences in polymer concentration can be used. In this study a hot storage stability test was used. Samples of modified binders were stored for two days at 160°C in 50 mm diameter cans. Following a cooling period the top and bottom parts were separated and penetration was determined for each portion. Based on this test, the blends can be categorized as follows:

- Compatible less than 10% difference in penetration between the top and bottom.
- Incompatible more than 10% difference in penetration between the top and bottom.

<u>Mixture Laboratory Testing</u>

Several tests were performed on unmodified and modified asphalt mixtures to measure their engineering properties. The following engineering properties were measured:

- Marshall Stability Test (ASTM D1559)
 - Marshall Stability
 - Marshall Flow or Flow Index

- Hveem Stability Test (Tex-208-F)
 - Hveem Stability
- Indirect Tensile Strength Test (Tex-226-F)
 - Indirect Tensile Strength
 - Tensile Strain at Failure
 - Secant Modulus
- Indirect Tension Test for Resilient Modulus (ASTM D1423)
 - Resilient Modulus
 - Poisson's Ratio
- Indirect Tensile Fatigue Test
 - Fatigue Constants, K1 and K2
 - Permanent Deformation Characteristic Parameters (Alpha and Gnu)
- Indirect Tensile Creep Test
 - Tensile Creep Compliance
- Moisture Sensitivity Test (Tex-531-C)
 - Tensile Strength Ratio (TSR)

<u>Marshall Stability Test.</u> The Marshall test was developed by the Corps of Engineers in the early 1960s based on methods and concepts formulated by Bruce Marshall of the Mississippi State Highway Department. This test is used to estimate asphalt content as a part of the Marshall mixture design procedure.

Marshall stability and flow values were determined using a Marshall loading apparatus as described in ASTM D1559. The compacted specimens (4 inches in diameter with a 2.5 inch height) were loaded at 140°F at a constant deformation rate of 2 inches per minute and the load and corresponding vertical deformation were recorded on an X-Y plotter. The maximum load, expressed in pounds, is the Marshall stability and the vertical deformation corresponding to the maximum load, expressed in units of 0.01 inches, is the flow value.

<u>Hveem Stability Test.</u> The Hveem stabilometer was developed by Francis Hveem of the California Division of Highways. The stabilometer is an empirical measure of aggregate interlock within HMAC mixtures.

Hveem stability was determined using the Hveem stabilometer as described in Tex-208-F (Ref 20). The compacted specimens (4 inches in diameter with a 2.0 inch height) were loaded at 140 F at a constant deformation rate of 0.05 inches per minute to a vertical load of 5000 pounds. The resultant horizontal force at 5000 lbs was measured as the pressure on the stabilometer wall and was used to calculate the Hveem stability as follows:

$$S = \frac{22.2}{P_h D_2 / (P_v - P_h) + 0.222}$$

where

S = Hveem Stability, %

P_v = Applied vertical pressure (160 psi)

 P_{h} = Transmitted horizontal pressure at P_{v} =160 psi, psi

 D_2 = Displacement of the stabilometer fluid to increase the horizontal pressure from 5 to 100 psi, measured in revolutions of a calibrated pump handle.

Indirect Tensile Test. The indirect tensile test is performed by loading a cylindrical specimen with a single or repeated compressive load which acts parallel to and along the vertical diametral plane (Fig 2.9(a)). The load, which is distributed through a 0.5-inch wide steel loading strip curved (for a 4-inch diameter specimen) to fit the specimen, produces a relatively uniform tensile stress perpendicular to the direction of the applied load and along the vertical diametral plane, which ultimately causes the specimen to fail by splitting along the

(a) Compressive load being applied.

(b) Specimen failing in tension.

vertical diameter. (Fig 2.9(b)).

The development of equations that permitted the computation of the tensile strength, the tensile strain at failure, the modulus of elasticity, and Poisson's ratio are reported in Refs (21,22). The equation to compute the tensile creep compliance has been developed during this study, and presented in Appendix F.

Indirect tensile strength. Indirect tensile strength was measured in accordance with Tex-226-F (Ref 20). Although only one test temperature is specified (77°F) in the test method Tex-226-F, two additional test temperatures (39°F and 104°F) were used to determine the effect of temperature on tensile strength of mixtures. Tensile strength was calculated using the following equation for four-inch diameter specimens:

$$S_t = 0.156 \frac{P_{\text{max}}}{t}$$

where,

 S_t = Tensile strength, psi P_{max} = Total applied vertical load at failure, lbs t = Thickness or height of the specimen, in.

<u>Tensile strain at failure.</u> The tensile strain at failure was calculated using the following equation (Ref 23) for four-inch diameter specimens:

$$e_f = \Delta H \frac{0.1185v + .03896}{0.02494v + 0.0673}$$

where,

 $\epsilon_{\star} =$ Strain at failure

 ΔH = Horizontal deformation in inches at failure or deformation at maximum or peak load

v = Poisson's ratio

<u>Resilient Modulus.</u> Resilient modulus was determined using the repeat-load indirect tensile test as described in ASTM D4123. A small preload was applied to the specimen to prevent impact damage of loading, and to minimize the effect of seating of the loading strip. The repeated load, which was approximately 20 percent of the static failure load, was then applied at a frequency of one cycle per second (1 HZ) with 0.1-second load duration and 0.9-second rest period. The load, vertical deformation, and horizontal deformations were recorded on a pair of X-Y plotters. A typical load pulse and the resulting deformation relationships are shown in Figure 2.10.

The resilient modulus was calculated using the resilient, or instantaneously recoverable, horizontal and vertical deformations after approximately 200 load cycles. The equation used to calculate the resilient modulus was

$$E_R - \frac{P_R}{t H_R} (0.27 + v_R)$$

where,

 E_R = Resilient modulus, psi P_R = Applied repeated load, lbs (Fig 2.10) t = Specimen thickness, in H_R = Horizontal resilient deformation, in v_R = Resilient Poisson's ratio

<u>Poisson's Ratio.</u> Poisson's ratio (v) was calculated from both horizontal and vertical movements in accordance with ASTM D1423 using the following relationship:

$$v = 3.59 DR - 0.27$$

•

-

Fig 2.10 Typical Load Pulse and Deformation-Time Relationships for the Repeated-Load Indirect Tensile Test.

:

where

 $DR = \Delta H / \Delta V =$ The deformation ratio measured during the indirect tensile test.

 ΔH = The recoverable horizontal deformation measured during the resilient modulus test.

 ΔV = The recoverable vertical deformation measured during the resilient modulus test.

Indirect Tensile Fatigue Test. The indirect tensile test configuration was used to measure the fatigue properties of HMAC mixtures. The test was performed at a frequency of one cycle per second (1 HZ) with 0.1-second load duration and 0.9-second rest period. Previous research by Kennedy (Ref 24), and more recently Baladi (Ref 25), have concluded that the indirect tensile test is a good tool for measuring the fatigue characteristics of asphalt concrete materials. The reasoning used is that the indirect tensile test simulates the state of stress in the lower portion of asphalt concrete layer (or tension zone).

Fatigue life relationships are often expressed in terms of initial strain for the controlled-stress test as follows:

$$N_{f} = K_{1} (1/\epsilon_{mix})^{K_{2}}$$

where

 N_f = Number of repetitions or load applications to failure. K_1 and K_2 = Fatigue constants (Regression constants). ϵ_{mix} = Initial strain in the mixture.

Initial strain is estimated by three different methods:

- By projecting the relationship between resilient strain and the number of load applications to the first load application.
- 2) By dividing the applied dynamic stress by the average repeated-load resilient modulus.
- 3) By dividing the applied dynamic stress by the average

static modulus of elasticity.

Kennedy (Ref 26) has concluded that the third method is better than the other two methods since it produces the highest correlation coefficients between the logarithm of number of load repetitions and the logarithm of initial strain. Consequently, the third method was used in this study. The fatigue equation describes a straight line on a log-log plot of cycles to failure versus initial strain, where k_1 is the intercept of Y-axis and $-K_2$ is the slope of the straight line.

<u>Alpha and Gnu.</u> The alpha and gnu functions were originally developed by Brademeyer et al (Ref 27) to describe the permanent deformation characteristics of asphalt concrete mixtures, and are two input parameters required for the VESYS program (Ref 28). Both values are mathematically defined below:

> alpha = 1-S Gnu = IS/ϵ_{r}

where

S = Slope of the logarithm of number of load repetitions (N) versus logarithm of the accumulated permanent strain (Ep).

I = Intercept of the straight line (arithmetic strain value) with the accumulated permanent strain axis, i.e. value at which number of load repetitions scale equals 1.

 ϵ_r = Resilient or recoverable strain.

Alpha and gnu are typically measured from testing cylindrical specimens in compression. Rauhut (Ref 28) suggests that reasonable values of alpha and gnu can only be calculated from compression samples after 100,000 load repetitions. However, Kennedy (Ref 29) found that using the indirect tensile test to calculate alpha and gnu during the first one thousand load cycles gave comparable results to the compression loading after 100,000 cycles. Von Quintus (Ref 30) has also used the indirect tensile test to measure permanent strain at 10,000 load cycles to compare different asphalt grades over a range of asphalt contents. Therefore, the indirect tensile test was used to calculate alpha and gnu for each of the mixtures.

<u>Creep Test.</u> Normally a creep test is conducted by applying a constant uniaxial stress to a cylindrical specimen and measuring the time-dependent deformation which occurs. Creep compliance D_t is then calculated by dividing the strain by the applied stress as follows:

$$D_t - \frac{e_t}{\sigma_o}$$
 at any test temperature T

where,

 ϵ_t = Strain at time t σ_o = Applied stress

The indirect tensile test configuration was used to measure creep compliance of HMAC mixtures. The creep compliance equation for the indirect tensile creep test was developed during this study and is shown in Appendix F.

The Creep compliance is not only an important property in itself, it is also related to and is an indicator of several important properties such as permanent deformation, temperature susceptibility and fracture properties (Ref 31). Since the creep test is simple and quick to run at a variety of test temperatures, it is useful to run a series of these tests to assist in concrete interpreting the expected performance of asphalt In this study indirect tensile creep tests were pavements. conducted at three different temperatures (39, 60, 90°F). Α constant stress that was less than 5 percent of the expected failure stress was applied for one hour. Horizontal deformation of

the specimens was measured by linear variable differential transducers (LVTD's). After removal of the load, the specimen recovered to some extent. The amount of recovery was measured after one hour. The tensile creep compliance, D(t), was calculated using equation 9 in Appendix F, which was developed in this study.

Averages of the tensile creep compliance measured at each temperature were fitted with a curve of the form

$$D(t) = D_1 t^m$$

where

D(t) = Tensile creep compliance, in x in/lb

t = Time, sec

m and D1 = The slope and intercept of creep curve on log-log
plot

Several investigators have shown that asphalt mixtures exhibit simple thermo-rheological behavior, which means that an interchangeability exists between time and temperature. This relationship was investigated experimentally by carrying out creep tests at three different temperatures (60, 77, and 90°F). The average creep compliance curves for each temperature were shifted horizontally parallel to the time axis until each lined up with the curve for 77°F, which is designated as the "master" creep curve. The amount of the shift in time with changing temperature is expressed as a ratio, a_{τ} , as follows:

$$a_T - \frac{t}{t_{TO}}$$

where

 t_{10} = The time at which a given compliance is reached when the material is at the "master" temperature, T0. In this study the

master temperature is 77°F.

t = The time at which the same compliance is reached when material is at some other temperature.

Two commonly-used functions which produce numerical comparison of the temperature susceptibility of the materials were utilized. The first of these is commonly used in the VESYS program developed by the Federal Highway Administration (Ref 32). The function is

$$\log(a_{\tau}) = -\beta(T-T_{0})$$

where

 β = The temperature susceptibility constant T₀ = The master curve temperature T = any other temperature

The second function which is commonly used to describe the time-temperature shift of viscosity in polymers is known as the "WLF" equation (Ref 33). The equation is

$$\log(a_T) - \frac{-C_1(T-T_0)}{(C_2 + T - T_0)}$$

where

 C_1 and C_2 = The material constants. The constant C_2 serves as a temperature susceptibility constant.

In this study the values of shift factor, $log(a_{\tau})$, did not fit the WLF equation.

<u>Tensile Strength Ratio.</u> The indirect tensile test was utilized to determine the tensile strength ratio (TSR) of wet and dry specimens as follows:

where

St = Indirect tensile strength

The Texas test method Tex-531-C method (Ref 20) was selected for conditioning specimens as described below.

Specimens with air voids content of approximately 7 percent were conditioned by vacuum saturation with water. A partial vacuum (approximately 15 to 17 inches of mercury) was applied long enough to achieve a degree of saturation of about 70 percent. The specimens were placed in a freezer at 0°F for 15 hours. After the 15 hour freeze cycle, the specimens were removed from the freezer and placed in a 140°F water bath for 24 hours. After a complete freeze-thaw cycle, the moisture-conditioned specimens were cooled to room temperature in a 77°F water bath for approximately three hours prior to testing. The specimens were then tested to determine their indirect tensile strength (St conditioned). Paired specimens were kept at room condition and tested to measure the dry strength (St unconditioned)

EXPERIMENTAL LABORATORY PROGRAM

Laboratory mixture tests were performed on mixtures which were 1) mixed and compacted in the laboratory (laboratory mixtures), and 2) mixed in the plant and compacted in the laboratory (plant mixtures), and 3) mixed in the plant and compacted in the field (field cores). In addition, laboratory binder tests were performed on neat asphalt and modified asphalt binders which were obtained from the plants.

Asphalt and Modified Asphalt Binders

The asphalt cements (controls) and polymer modified asphalts

were obtained at the asphalt mixing plants. The samples were transported to the laboratory and subsequently tested. The testing programs for the unmodified and modified asphalt binders are outlined in Tables A-2, B-2, C-2 and D-2. The test results are summarized in Appendices A through D.

Laboratory Mixed / Laboratory Compacted Mixtures

The neat asphalt and modified asphalt binders and aggregates were obtained from each project. These materials were mixed and samples prepared for testing in the laboratory in accordance with the mixture design used for the field construction.

The Texas-Gyratory shear compactor was utilized for two compaction procedures , described as standard and modified compactions. The standard compaction procedure specified by the Texas State Department of Highways and Public Transportation would normally produce 3 percent air voids in the mixtures containing optimum asphalt content. Since 7 percent air voids is generally obtained in the construction process, a modified compaction process was also used. For the modified compaction process, the compactive effort was reduced to produce an air void content of approximately 7 percent.

The testing programs for laboratory mixed / laboratory compacted mixtures utilized for the field project materials is outlined in Tables A-3, B-3, C-3 and D-3. The test results are summarized in Appendices A through D.

<u>Plant Mixed / Laboratory Compacted Mixtures</u>

Samples of field mixtures were obtained at the asphalt mixing plants. The samples were transported to the laboratory and subsequently compacted using the standard and modified compaction procedures. It was necessary to reheat the samples to achieve a compaction temperature of 250°F. The testing program for the plant mixed / laboratory compacted mixtures are outlined in Tables A-4, B-4, C-4 and D-4. The test results are summarized in Appendices A through D.

<u>Plant Mixed / Field Compacted Mixtures</u>

Plant mixed and field compacted specimens (4 inch diameter pavement cores) were obtained immediately and in one year intervals following construction of the test sections over a period of five years. The field cores were measured for thickness and air voids content, and subsequently tested in the laboratory. Since the heights of cores were less than 2 inches, the Hveem stability tests were not performed. The testing programs for the field cores are outlined in Tables A-5, B-5, C-5 and D-5.

CHAPTER 3

ANALYSIS OF TEST RESULTS ON UNMODIFIED AND MODIFIED ASPHALTS

Results of laboratory tests conducted on unmodified and polymer-modified asphalt binders for Districts 15, 11, 25 and 10 are listed and illustrated in Appendices A, B, C and D, respectively. Summaries of the test results for unmodified and polymer-modified asphalt binders are presented in Tables 3.1 through 3.13.

Where appropriate, Analysis of Variance (ANOVA) techniques were utilized to determine if significant differences exist between material types for each test parameter. In cases where significant difference was indicated, the Newman-Keul multiple range test (Ref 18) was used to determine which means were significantly different. The lower case letters in parentheses in Tables 3.1 through 3.13 indicate whether means are significantly different. Letters of the same type for each parameter indicate no significant difference in means at alpha = 0.05.

PENETRATION at 39.2°F

Results of penetration at 39.2°F are shown in Table 3.1 and are plotted in Figure 3.1. Table 3.1 contains the average penetration obtained from two replicate tests conducted for each material.

The results showed no significant difference between the mean values of the modified AC-10 asphalt binders and the control TFA AC-10 binder which was supplied by Texas Fuel and Asphalt, and between the modified AC-20 and the control AC-20 binders. However, the control and modified AC-20 asphalt binders demonstrated significantly lower values of penetration than the modified AC-10 asphalt binders.

<u>Effect of Polymer.</u> As shown in Figure 3.1, addition of the polymers changed penetration of the TFA asphalt cements by one or two points, which was not significant.

Test	Parameter	TFA AC-10	TFA AC-10 R	TFA AC-10	TFA AC-10	TFA AC-10	TFA AC-20	TFA AC-20	TFA AC-20	TEXACO AC-20	TEXACO AC-10	TEXACO AC-10
			UP 70	ELF	NS 175	c107		₽ Polybilt	DOM		UP 70	ELF
Penetration a	39.2 F, 100g, 5	Sec.										
	before RTFOT	15 (Ь)	14 (Ь)	16 (b)	13 (b)	15 (b)	9 (a)	10 (a)	10 (a)	9 (a)	13 (b)	15 (Б)
Penetration a	77 F, 100g, 5 Se	ec.	_									
	before RTFOT	102 (k)	100 (j,k)	101 (k)	93 (h)	79 (d)	70 (Ъ)	70 (b)	66 (a)	71 (b)	87 (f)	93 (h)
	after RTFOT	65	67	73	70	-	46	49	43	46	50	67
		(g,h)	(h)	())	(1)		(a,b,c)	(c,d)	(a)	(b,c)	(d)	(h,i)
Pen. Ratio (P	en. Retained)	0.63	0.67	0.72	0.75		0.65	0.70	0.65	0.65	0.58	0.72
Viscosity a 1	40 F, Poises			_								
	before RTFOT	1131	1311	3332	1318	-	2087	3296	5198	2375	2330	3060
		(a)	(b)	(i)	(b)		(d)	(i)	(k)	(e)	(e)	(h)
	after RTFOT	3000	3932	6331	3780	-	7401	262 66	31592	7002	4327	5882
		(a)	(b)	(g)	(b)		(i)	(k)	(1)	(h)	(c)	(f)
Viscosoty Rat	io 🗃 140 F	2.65	3.00	1.90	2.87	-	3.55	· 7.97	6.08	2.95	1.86	1.92
Viscosity a 2	75 F, Centistokes	5		-			-					
	before RTFOT	297	503	754	495	-	416	919	1202	496	822	715
		(a)	(c)	(g)	(c)		(b)	(i)	(k)	(c)	(h)	(f)
	after RTFOT	464	729	96 7	682	-	697	1830	2329	751	1049	897
		(a)	(c)	(f)	(b)		(b)	(k)	(1)	(c)	(h)	(d)
Viscosoty Rat	io a 275 F	1.56	1.45	1.28	1.38	-	1.68	1.99	1.94	1.51	1.28	1.26
Softening Poi	nt, F											
	before RTFOT	117	122	132	122	138	126	133	139	126	127	130
		(a)	(b)	(g,h)	(b)	(j))	(c)	(h,i)	(j,k)	(c)	(c,d,e)	(f,g,h)

Table 3.1 Summary of Test Results of Penetration, Viscosity and Softening Point for Unmodified and Polymer-Modified Asphalt Binders

Note: Letters of the same type in parentheses indicate no significant difference exists between binders for a given test parameter at alpha = 0.05

Table 3.1 (Continued)

- 1

.

Test	Parameter	FINA AC-10 & ELF	FINA AC-10 & 3% D1101	FINA AC-10 & 6% D1101	TOTAL AC-20	FINA AC-10 & UP 70	FINA AC-10 & ELF	EXXON AC-10 & Polybilt	GULF AC-10 & 3% D1101
Penetration a	39.2 F, 100g, 5	Sec.							
	before RTFOT	14 (Ь)	13 (b)	16 (Ъ)	10 (a)	14 (Ъ)	14 (Ь)	15 (Ъ)	16 (Ь)
Penetration a	77 F, 100g, 5 Se	e.							
	before RTFOT	9 0	82	98	74	93	89	96	89
		(g)	(e)	(i,j)	(c)	(h)	(f,g)	(i)	(f,g)
	after RTFOT	56	47	67	44	56	61	63	56
		(e)	(b,c,d)	(h,i)	(a,b)	(e)	(f)	(f,g)	(e)
Pen. Ratio (P	en. Retained)	0.63	0.57	0.69	0.59	0.60	0.69	0.66	0.63
Viscosity @ 1	40 F, Poises				_				
	before RTFOT	2770	8127	-	2037	2373	2904	2375	3470
		(f)	(1)		(c,d)	(e)	(g)	(e)	(j)
	after RTFOT	7481	13749		4798	5140	7416	5819	7280
		(i)	(j)		(d)	(e)	(i)	(f)	(i)
Viscosoty Rat	io a 140 F	2.70	1.69	-	2.36	2.17	2.55	2.45	2.10
Viscosity a 2	75 F, Centistokes	 ;							
	before RTFOT	781	584	1013	510	650	763	640	782
		(g)	(d)	(j)	(c)	(e)	(g)	(e)	(g)
	after RTFOT	1009	736	1050	917.5	942.5	1097.5	1242.5	1055
		(g)	(c)	(h)	(d,e)	(e,f)	(i)	(j)	(h)
Viscosoty Rat	io a 275 F	1.29	1.26	1.04	1.80	1.45	1.44	1.94	1.35
Softening Poi	nt, F	_						_	_
	before RTFOT	129	141	148	127.5	129.5	134.5	140.5	146.5
		(d,e,f,g)	(k)	(1)	(c,d,e,f)	(e,f,g)	(i)	(k)	(1)

Note: Letters of the same type in parentheses indicate no significant difference exists between binders for a given test parameter at alpha = 0.05

.

PENETRATION at 77°F

Average values of penetration test at 77°F before and after RTFOT aging are summarized in Table 3.1 and plotted in Figure 3.2. Both before and after RTFOT aging the mean values of penetration at 77°F for the AC-20 control asphalt binders were significantly lower than the mean values of the polymer-modified AC-10 asphalt binders, except for the aged 3% Kraton D1101 blend in District 25.

Effect of Polymer. The effects of polymer on penetration for the TFA asphalt cements before and after RTFOT aging are shown in Figure 3.2. In general, there is a trend for the polymer modified binders to decrease penetration (harden) before RTFOT aging, and increase penetration (soften) after aging by RTFOT. The Genstar C107 and Polysar NS 175 binders before RTFOT aging exhibited the greatest penetration decrease, 23 points and 9 points, respectively, while the other polymers exhibited equal or slightly smaller penetration values. The Dow modifier showed a 3 point decrease in pentration after the RTFOT.

Effect of Aging. The results of penetration at 77°F for the TFA asphalt binders indicate aging in the RTFOT may have less effect on penetration values for polymer-modified asphalt binders To demonstrate this effect the than for unmodified asphalts. penetration retained after aging by RTFOT percentage of (penetration ratio) for the unmodified and modified asphalt binders was evaluated. The results are shown in Table 3.1, and are plotted This figure shows that aging by RTFOT had the in Figure 3.3. greatest effect on penetration for the 3% Kraton binder in District 25 and the least effect for the Polysar and Styrelf binders.

VISCOSITY at 140°F

Average values of viscosity at 140°F before and after RTFOT aging are presented in Table 3.1 and plotted in Figure 3.4. Before RTFOT aging the AC-20 control asphalt binders were significantly less viscous than the modified binders except for the SBR polymer modified binders (Goodyear UP 70 and Polysar NS 175). However, after RTFOT all polymer modified AC-10 asphalt binders in

Districts 15 and 11 demonstrated significantly lower values of viscosity than the AC-20 control binders. This trend was reversed in Districts 25 and 10.

Effect of Polymer. As shown in Figure 3.4 The polymer-modified asphalt binders showed an increase in viscosity at 140°F. This trend occurred before and after RTFOT aging. It is shown in Table 3.1 that before RTFOT aging the SBS polymers (Kraton and Styrelf) had the greatest effect on viscosity, followed by the Polyolefin (Dow) and EVA (Polybilt) polymers. The SBR polymers (Goodyear UP-70 and Polysar NS-175) had the least effect.

Effect of Aging. Viscosity ratios at 140°F are shown in Table 3.1 and are plotted in Figure 3.5. As shown in this figure aging by RTFOT has less effect on viscosity for the polymer-modified AC-10 asphalt binders compared with the modified AC-20 asphalt binders. Furthermore, aging had the least effect on viscosity for the Kraton binders.

KINEMATIC VISCOSITY at 275°F

Average values of kinematic viscosity before and after RTFOT aging are shown in Table 3.1 and plotted in Figure 3.6 . Before RTFOT aging all modified AC-10 asphalt binders except the 3% Kraton blend in District 25 showed significantly higher viscosity than the AC-20 control asphalt binders. The 3% Kraton blend was significantly less viscous than the Shamrock AC-20, but more viscous than the TFA AC-20, Texaco AC-20, and Total asphalt binders before RTFOT aging.

<u>Effect of Polymer.</u> Similar to viscosity at 140°F, polymer-modified asphalt binders showed an increase in viscosity before and after RTFOT aging compared with respective control asphalt binders (Fig 3.6). The Dow modifier, which increased viscosity by about a factor of 3.0 before and after RTFOT aging, had the greatest effect on kinematic viscosity.

<u>Effect of Aging.</u> Similar to viscosity at 140°F, kinematic viscosity was less affected by RTFOT aging for the modified AC-10 asphalt binders than the unmodified and modified AC-20 asphalt

binders (Fig 3.7). The greatest effect of aging on kinematic viscosity was observed for the polybilt (Exxon) blends.

RING AND BALL SOFTENING POINT

Average values of softening point are shown in Figure 3.8, and listed in Table 3.1. Softening point for the Goodyear and Polysar TFA binders were significantly less than the AC-20 control asphalts. The 6% Kraton binder demonstrated a significantly higher softening point compared with the other modified binders.

Effect of Polymer. Softening point increased significantly for polymer-modified asphalt binders (Fig 3.8). Similar to viscosity, softening point was affected less by SBR polymers than SBS polymers. The Genstar exhibited the highest change for TFA asphalts, with an average increase of 22 degrees, while SBR polymers showed the lowest change with an average increase of 5 degrees.

PENETRATION INDEX AND PENETRATION VISCOSITY NUMBER

Table 3.2 presents the values of PI(Pen/Pen), PI(Pen/SP), and PVN for the unmodified and modified asphalt binders. The results are plotted in Figure 3.9. PI(Pen/Pen) Values were substantially lower than PI(pen/sp) values. This might have resulted from the assumption that all asphalts have a penetration of 800 at the softening point, a poor assumption for polymer modified binders. Penetration of asphalt binders at their softening points vary widely from 800, especially for modified asphalt binders which have high softening point and PI values. PVN values were generally lower than PI (Pen/SP), but comparable to PI(Pen/Pen). The average numerical difference between PI(pen/pen) and PVN was about .16; however, the average PI(Pen/SP) of the twenty binders under study was more than four times the average of PI(Pen/Pen) and PVN.

Effect of Polymer. Penetration indices (both PI(Pen/Pen) and PI (Pen/SP)) and PVN increased with addition of polymer (Fig 3.9).

-

Bi	nder	Penetrati		
Asphalt	Polymer	PI(Pen/Pen)	PI(Pen/SP)	PVN
TFA AC-10		-0.18	-0.04	-0.72
TFA AC-10	Goodyear UP 70	-0.11	0.69	0.14
TFA AC-10	Styrelf-13	0.33	2.01	0.79
TFA AC-10	Polysar NS 175	-0.11	0.46	0.02
TFA AC-10	Genstar C107	1.04	2.08	-
TFA AC-20	-	-0.39	0.19	-0.6
TFA AC-20	Polybilt 103	-0.04	0.98	0.62
TFA AC-20	Dow	0.17	1.66	0.96
Texaco AC-20		-0.43	0.23	-0.32
Texaco AC-10	Goodyear UP 70	0.12	0.97	0.76
Texaco AC-10	Styrelf-13	0.39	1.6	0.63
Shamrock AC-20	-	-0.25	0.21	-0.03
Fina AC-10	Styrelf-13	0.26	1.35	0.73
Fina AC-10	3% kraton D110	1 0.33	2.55	0.12
Fina AC-10	6% kraton D110	1 0.44	3.92	1.25
Total AC-20	-	-0.23	0.62	-0.22
Fina AC-10	Goodyear UP 70	0.14	1.60	0.47
Fina AC-10	Styrelf-13	0.30	2.10	0.67
Exxon AC-10	Polybilt 103	0.28	3.07	0.49
Gulf AC-10	3% kraton D110	1 1.06	3.48	0.71

Table 3.2 Penetration Index and Penetration Viscosity Number for Unmodified and Polymer-Modified Asphalt Binders.

Fig 3.9 Penetration Index and PVN for Unmodified and Modified Binders Before RTFOT.

PI (P	en/Pen)	PI	(Pen/SP)	-	PVN
Texaco AC-20		TFA AC-10		TFA AC-10	
 TFA AC-20		TFA AC-20		TFA AC-20	
Shamrock AC-20		Shamrock AC-2	20	Texaco AC-20	
 Total AC-20		Texaco AC-20		Total AC-20	
TFA AC-10		TFA AC-10	+ Polysar NS 175	Shamrock AC-2	20
TFA AC-10 +	Goodyear UP 70	Total AC-20		TFA AC-10	+ Polysar NS 175
TFA AC-10 +	Polysar NS 175	TFA AC-10	+ Goodyear UP 70	Fina AC-10	+ 3% kraton D1101
TFA AC-20 +	Polybilt 103	Texaco AC-10	+ Goodyear UP 70	TFA AC-10	+ Goodyear UP 70
Texaco AC-10 +	Goodyear UP 70	TFA AC-20	+ Polybilt 103	Fina AC-10	+ Goodyear UP 70
 Fina AC-10 +	Goodyear UP 70	Fina AC-10	+ Styrelf13	Exxon AC-10	+ Polybilt 103
TFA AC-20 +	Dow	Texaco AC-10	+ Styrelf-13	TFA AC-20	+ Polybilt 103
 Fina AC-10 +	Styrelf13	Fina AC-10	+ Goodyear UP 70	Texaco AC-10	+ Styrelf-13
Exxon AC-10 +	Polybilt 103	TFA AC-20	+ Dow	Fina AC-10	+ Styrelf13
Fina AC-10 +	Styrelf-13	TFA AC-10	+ Styrelf-13	Gulf AC-10	+ 3% kraton D1101
 Fina AC-10 +	3% kraton D1101	TFA AC-10	+ Genstar C107	 Fina AC-10 	+ Styrelf-13
TFA AC-10 +	Styrelf-13	Fina AC-10	+ Styrelf-13	Texaco AC-10	+ Goodyear UP 70
Texaco AC-10 +	Styrelf-13	Fina AC-10	+ 3% kraton D1101	TFA AC-10	+ Styrelf-13
Fina AC-10 +	6% kraton D1101	Exxon AC-10	+ Polybilt 103	TFA AC-20	+ Dow
TFA AC-10 +	Genstar C107	Gulf AC-10	+ 3% kraton D1101	Fina AC-10	+ 6% kraton D1101
Gulf AC-10 +	3% kraton D1101	Fina AC-10	+ 6% kraton D1101	 	

Table 3.3 Decreasing Order of Temperature Susceptibility Properties (PI, PVN).

The decreasing order of temperature susceptibility obtained by PI(pen/pen) PI(Pen/SP) and PVN is shown in Table 3.3. The unmodified asphalt binders demonstrated more temperature susceptibility than the polymer modified asphalts binders according to the three methods. In addition, the Kraton D-1101 and the Genstar C-107 had the greatest effect on reducing temperature susceptibility. The least effect was observed for Polysar NS-175. In general, the SBS polymer modified binders were less temperature susceptible than the SBR modified ones.

LOW TEMPERATURE CRACKING

Table 3.4 and Figure 3.10 present the results of low temperature cracking. As shown, there was no substantial difference between cracking temperatures obtained by the two methods (Limiting Stiffness Method and Critical Stress Method). However, it should be noted that the criteria used for the limiting stiffness and critical stress methods have been established for conventional asphalt binders, and may not be acceptable for polymer modified asphalts. On the basis that failure criteria for asphalt binders can be used as a guide for polymer modified asphalt binders the following observations were made:

1) The addition of the Goodyear UP-70 and Polysar NS-175 (SBR Polymers) to the TFA asphalt did not appear to significantly alter the temperature at which thermally induced cracking is predicted to occur in the TFA asphalt. However, the addition of Goodyear UP-70 appeared to decrease the temperature at which low temperature cracking is predicted to occur for the Texaco and Fina asphalt binders (Table 3.4).

2) The rubber (Genstar C107), Styrelf-13 and Kraton D1101 (SBS polymers) appeared to be much more effective in lowering the predicted cracking temperatures than SBR polymers (Polysar and Goodyear).

3) Polymer modified asphalt binders generally had lower predicted cracking temperatures than respective control asphalts.

Bind	ler	Cracking T	emperature
Asphalt	Polymer	Limitting Stiffness Method	Crtical Stress Method
TFA AC-10	_	-47	-49
TFA AC-10	Goodyear UP 70	-48	-46
TFA AC-10	Styrelf-13	-59	-59
TFA AC-10	Polysar NS 175	-46	-45
TFA AC-10	Genstar C107	-56	-55
TFA AC-20	-	-43	-42
TFA AC-20	Polybilt 103	-45	-43
TFA AC-20	Dow	-47	-48
Texaco AC-20	-	-43	-43
Texaco AC-10	Goodyear UP 70	-50	-52
Texaco AC-10	Styrelf-13	-52	-53
Shamrock AC-20	-	-41	-42
Fina AC-10	Styrelf13	-54	-51
Fina AC-10	3% kraton D1101	-59	-61
Fina AC-10	6% kraton D1101	-74	-72
Total AC-20		-43	-44
Fina AC-10	Goodyear UP 70	-54	-55
Fina AC-10	Styrelf13	-58	-57
Exxon AC-10	Polybilt 103	-66	-63
Gulf AC-10	3% kraton D1101	-68	-66

Table 3.4 Summary of Predicted Cracking Temperatures for Unmodified and Modified Asphalt Binders.

.

PREDICTING STIFFNESS MODULUS

Results of stiffness modulus obtained from Van der Poel nomograph at different temperatures and loading times are presented in Table 3.5 and plotted in Figures A-13, B-13 and C-13. The polymer modified binders generally were softer at 39 F and stiffer at 77 F and 104 F than the control asphalt binders. This trend is most easily seen in Figure A-8. This effect can be described by stiffness temperature susceptibility obtained from the slope of fitted line of log stiffness vs. test temperature plot. Figures A-14, A-15, B-14, C-14 and D-14 show relationships between temperature and stiffness modulus for various polymers. The coefficients of correlation of fitted lines resulting from the data range from .99 to 1.0. This confirms a linear relationship between log stiffness modulus and test temperature. To confirm that the stiffness temperature susceptibilities (slopes) were significantly different from one another. A statistical test for parallel slopes in simple regression with two groups at alpha =0.05 (Ref 19) was utilized. A summary of the test results for each district is shown in Table 3.5. The lower case letter in parentheses indicates whether slopes are significantly different. Letters of the same type within a district indicate no significant difference in slope. The above analyses indicate that all the polymer modified TFA asphalt binders except NS-175 were significantly less temperature susceptible compared with their respective control asphalts. In addition, modified Texaco and Fina asphalt binders appeared to be significantly less temperature susceptible than the respective control asphalts.

The least effect on stiffness temperature susceptibility was observed for Polysar (SBR Polymer), while the other polymers improved temperature susceptibility significantly. The SBS, SBR/Polyolefin and rubber C107 improved temperature susceptibility more than the SBR and EVA polymers.

A comparison between Van der Poel stiffness modulus and asphalt modulus obtained from force ductility is shown in Figures A-16, B-15 and C-15. These figures suggest that the Van der Poel
				Distric	t 15				Die	strict	11
 Test Parameter 	TFA AC-10 	TFA AC-10 & UP 70	TFA AC-10 & ELF	TFA AC-10 & NS 175	TFA AC-10 & C107	TFA AC-20	TFA AC-20 & Polybilt	TFA AC-20 & DOW	TEXACO AC-20 	TEXACO AC-10 & UP 70	TEXACO AC-10 & ELF
Stiffness Modulus,	- 								 		
5 Sec. Loading	450	435	305	493	522	725	725	754	1015	508	363
20 Sec. Loading	145	203	160	232	261	305	319	392	348	246	174
Stiffness Modulus @ 0.1	-/ 			<u> </u>					I I I		
39 F	5075	3625	2030	4785	2900	6960	5800	4640	7250	3190	2465
77 F	160	145	189	218	247	290	319	363	334	232	174
104 F	12	15	25	16	46	23	33	54	26	23	25
Stiffness/Temperature	-0.073	-0.067	-0.053	-0.068	-0.050	-0.069	-0.062	-0.054	 -0.068	-0.059	-0.056
Slope	1								1		
l Standard Error of Slope	 0.0012	0.0000	0.0027	0.0033	0.0007	0.0021	0.0015	0.0007	 0.0028	0.0035	0.0005
1	(a) 	(b)	(d,e)	(a,b,c)	(e)	(a,b)	(c)	(d)	(a) 	(b)	(b)

 Table 3.5
 Summary of Predicted Stiffness Modulus and Stiffness-Temperature Susceptibility for Unmodified and Polymer-Modified Asphalt Binders.

1	!	Distr	ict 25		1	Dist	rict 10		
Test Parameter 	SHAM. AC-20 	FINA AC-10 & ELF	FINA AC-10 & 3% D1101	FINA AC-10 & 6% D1101	 TOTAL AC-20 	FINA AC-10 & UP 70	FINA AC-10 & ELF	EXXON AC-10 & Polybilt	GULF AC-10 & 3% D1101
Stiffness Modulus,	_ 				 				اا ا
5 Sec. Loading	1160	464	435	232	i -	-	-	· _	- 1
20 Sec. Loading	508	218	218	131	- 1	-	-	•	-
]Stiffness Modulus ລ 0.1	-! 				 				
Sec	I								- I
39 F	7540	2900	2320	943	6525	2465	2175	2320	1600
1 77 F	334	203	232	160	290	174	181	218	232
104 F	26	25	41	32	36	37	31	31	35
Stiffness/Temperature Slope	-0.068 	-0.057	-0.049	-0.041	-0.063 	-0.051	-0.051	-0.052	-0.046
 Standard Error of Slope	0.0026	0.0016	0.0007	0.0028	 0.0011	0.0028	0.0001	0.0021	0.0041
l	(a) _	(b)	(c)	(d)	(a) 	(b)	(b)	(b)	(c)

Note: Letters of the same type in parentheses within a district indicate no significant difference exists between binders for a given test parameter at alpha = 0.05 stiffness at 20 second loading and 39°F is the same as asphalt modulus measured by the force ductility test. However, the Van der Poel stiffness at 5 second loading and 39°F over-predicted the asphalt modulus by about a factor of 2.

FORCE DUCTILITY

A summary of the average values of the parameters obtained from force ductility test is presented in Table 3.6. Figures A-17 through A-21, B-16 through B-20 and C-16 through C-20 show the results of force ductility parameters and how they were affected by polymers and RTFOT aging .

MAXIMUM TRUE TENSILE STRENGTH. A significant increase in tensile strength occurred for all modified asphalt binders except for the Goodyear binders. Failure stress for the Goodyear modified binders was approximately equal to the control asphalt binders. The Kraton binders followed by Styrelf and Polybilt-103 demonstrated significantly higher tensile strength compared with the other modified binders. Goodyear UP-70, Polysar NS-175 and Crafco C-107 had the least effects on the tensile strength. After RTFOT aging all the modified asphalt binders, especially UP-70, presented significantly higher values of tensile strength than the control asphalt binders.

The effect of RTFOT aging on tensile strength is compared in Figures B-21 and C-21. From these figures it appears that the Kraton and Styrelf binders do not develop the increase in tensile strength occurring in the UP-70 and the control binders after RTFOT aging.

MAXIMUM TRUE TENSILE STRAIN. Addition of Goodyear UP-70 and Polysar NS-175 significantly increased maximum tensile strain of the TFA AC-10. However, the Dow, Polybilt, and Styrelf did not affect the tensile strain significantly. Failure strength for the binders modified with the Kraton and Styrelf was significantly higher than the AC-20 control binders. The Crafco binder showed

Parameter	TFA AC-10	TFA AC-10 & UP 70	TFA AC-10 & ELF	TFA AC-10 & NS 175	TFA AC-10 & C107	TFA AC-20	TFA AC-20 & Polybilt	TFA AC-20 & DOW	TEXACO AC-20	TEXACO AC-10 & UP 70	TEXACO AC-10 & ELF	SHAM. AC-20	FINA AC-10 & ELF	FINA AC-10 & 3% D1101	FINA AC-10 & 6% D1101
Maximum True Stress, psi before RTFOT	59 (a)	84 (a)	387 (f)	124 (b)	130 (b)	101 (b)	289 (e)	174 (c)	60 (a)	75 (a)	210 (d)	120 (b)	289 (e)	474 (g)	596 (h)
after RTFOT		-	-	-	-	-	-	-	154 (a)	522 (f)	265 (c)	204 (b)	456 (e)	424 (d)	416 (d)
Maximum True Stress Ratio	D								2.57	6.99	1.26	1.70	1.58	0.89	0.70
Maximum True Strain, in/ before RTFOT	in 2.95 (d)	3.51 (g)	2.77 (d)	3.53 (g)	1.39 (a)	2.40 (b,c)	2.46 (c)	2.28 (b,c)	2.44 (b,c)	3.73 (h)	3.38 (f)	2.23 (b)	2.94 (d)	3.13 (e)	2.78 (d)
after RTFOT	-	-	-			-	-	-	2.29 (b)	3.69 (e)	2.77 (d)	1.47 (a)	2.54 (c,d)	2.62 (d)	2.56 (d)
Maximum True Strain Ratio	D								0.94	0.99	0.82	0.66	0.86	0.84	0.92
True Area , psi before RTFOT	115 (b)	159 (d)	404 (i)	248 (f)	125 (b,c)	121 (b,c)	363 (h)	198 (e)	83 (a)	150 (c,d)	269 (f)	136 (b,c,d)	332 (g)	473 (j)	347 (g,h)
after RTFOT	-	-	-	-	-	-	-	-	181 (a)	689 (e)	322 (b)	163 (a)	485 (d)	511 (d)	364 (c)
True Area Ratio									2.19	4.60	1.20	1.20	1.46	1.08	1.05
Asphalt Modulus, psi before RTFOT	146 (a)	214 (b)	227 (b)	296 (c)	245 (b)	326 (c,d)	346 (d)	413 (e)	242 (b)	224 (b)	154 (a)	472 (f)	210 (b)	250 (b)	115 (a)
after RTFOT	-	-	-		-	-	-	-	453 (c)	410 (b,c)	248 (a)	428 (b,c)	349 (b)	390 (b,c)	204 (a)
Asphalt Modulus Ratio									1.87	1.83	1.62	0.91	1.66	1.56	1.77
Asphalt-Polymer Modulus, before RTFOT	psi n/a	89 (b)	392 (g)	131 (c)	50 (a)	n/a	205 (e)	n/a	n/a	105 (b)	169 (d)	n/a	279 (f)	452 (h)	819 (i)
after RTFOT	•	•	-	-	-	-	-	-	n/a	456 (d)	232 (a)	n/a	400 (c)	365 (b)	417 (c)
Asphalt-Polymer Modulus F	Ratio									4.33	1.37		1.43	0.81	0.51

Table 3.6 Summary of Force Ductility Parameters for Unmodified and Polymer-Modified Asphalt Binders.

Note: Letters of the same type in parentheses indicate no significant difference exists between binders for a given test parameter at alpha = 0.05.

the lowest failure strain of 1.39 in/in. After RTFOT all the modified AC-10 binders showed significantly higher failure strain than the AC-20 control binders. The effect of aging on failure strain was compared in Figures B-21 and C-21 by strain ratio before and after RTFOT aging. These figures indicate the aging had least effect on the UP-70 binders. The greatest effect was observed for Shamrock AC-20 binder.

AREA UNDER STRESS-STRAIN CURVE. Addition of the polymers except Genstar C-107 increased area under the curve significantly. The UP-70, Dow, and NS-175 modifiers had relatively less effect compared with Kraton and Styrelf. Area increased by approximately four times for the Styrelf and doubled for the SBR polymers.

After RTFOT aging all the modified binders presented significantly greater area than the AC-20 control binders. Similar to maximum tensile strength, The SBS polymer binders (Kraton and Styrelf) were affected less than the Goodyear and control binders (Figs B-21 and C-21). Area increased by about a factor of four for the Goodyear and by a factor of 1.5 for the Styrelf and Kraton binders after RTOFT.

ASPHALT MODULUS. Asphalt modulus of the modified AC-10 asphalt binders were significantly less than that of respective control AC-20 asphalt binders and significantly greater than the TFA AC-10 asphalt binder. Polybilt-103 did not change the modulus of TFA AC-20 whereas Dow increased the modulus by 30 percent. Comparison of asphalt modulus between the binders indicates that Styrelf and 6% Kraton binders had lower modulus of asphalt than UP-70, NS-175 and Crafco C-107 binders.

After RTFOT the asphalt modulus of the Styrelf with Texaco and 6% Kraton with Fina were significantly less than the other modified and the control AC-20 asphalt binders. By examining Figures B-21 and C-21, it is apparent that the effects of aging on asphalt modulus for the modified binders were approximately the same.

ASPHALT-POLYMER MODULUS. None of the control asphalt binders demonstrated the presence of an asphalt-polymer modulus. This was no surprise , since it is believed this secondary increase in load (see Fig 2.4) is due to the presence of the polymer in the binder. The Kraton, Styrelf, and Polybilt binders demonstrated significantly higher polymer-asphalt modulus than the UP-70 and NS-175. Dow did not show the presence of an asphalt-polymer modulus.

After RTFOT aging the UP-70 binder showed the highest asphalt-polymer modulus, followed by the Kraton and Styrelf binders. Figures B-21 and C-21 show the ratio of asphalt polymer modulus after and before RTFOT aging. Aging affected the UP-70 binders the most, and the Styrelf and Kraton binders very little.

SCHWEYER RHEOLOGY

Rheological data obtained from the Schweyer constant stress rheometer were rate of shear in reciprocal seconds and shear stress The data are presented in Tables A-8, B-8 and C-8. in Pascals. Figures A-22 through A-37, B-22 through B-27 and C-22 through C-29 show shear stress-shear rate and apparent viscosity-shear rate diagrams for the materials used in Districts 15, 11, and 25 These figures contain shear susceptibility 'C', respectively. standard error of shear susceptibility 'Se' and coefficient of Values of shear susceptibility, correlation 'R'. apparent viscosity at a shear rate of 1 reciprocal second, and apparent viscosity at constant power input (10⁵ units) are reported in Tables A-6, A-7, B-6 and C-6.

SHEAR SUSCEPTIBILITY. Shear susceptibility was measured before and after RTFOT aging at 39°F, 77°F, 140°F for the modified and unmodified asphalt binders used in District 15, and before RTFOT aging at 39°F, 60°F, 77°F, 90°F, and 140°F for the binders used in Districts 11, and 25. Shear rates were approximately 0.001 to 0.1, 0.1 to 10, and 10 to 1000 in reciprocal seconds for test temperatures of 39°F, 77°F, and 140°F respectively. A statistical

t-test was utilized to compare shear susceptibility values (slope of shear stress-shear rate diagram) with 1.0. All the binders, including unmodified asphalt cements, demonstrated non-Newtonian behavior at all test temperatures since their slopes were significantly different from 1. The Styrelf modified binders displayed shear thickening behavior except in one case at 140°F. The other binders demonstrated shear thinning behavior at all test temperatures.

A statistical test for parallel slopes was utilized to compare A summary of the effects of polymers, shear susceptibility. temperature, and aging on shear susceptibility is shown on Tables 3.7 through 3.9 respectively. Shear susceptibility closer to unity indicates less degree of non-Newtonian behavior (less shear susceptible). Table 3.7 and Figures A-38 and A-39 indicate the addition of Dow and Polybilt-103 significantly increased the degree of non-Newtonian behavior of the TFA AC-20 asphalt binders at all test temperatures. This trend was observed after RTFOT aging. In addition, most modified AC-10 binders were less shear susceptible compared with their respective control AC-20 asphalt binders. Furthermore, an increase of Kraton content from 3 percent to 6 percent in Fina AC-10 significantly increased shear susceptibility at all test temperature above 60°F.

The effects of aging on shear susceptibility are shown in Figures A-40 and Table 3.8. It appears that either aged binders were significantly more shear susceptible than corresponding unaged ones, or there was no significant difference.

The effects of temperature on shear susceptibility are presented in Table 3.9 and Plotted in Figures A-38, B-28 and C-30. All binders except 6 percent Kraton displayed higher shear susceptibility at 39°F than at 140°F. In general, these figures suggest that as test temperature increased, the non-Newtonian constant 'C' became closer to unity, showing a decrease in shear susceptibility.

11	11			Distric	t 15				Dis	strict	11		Distr	ict 25	
Test Parameter 	TFA AC-10 	, TFA AC-10 & UP 70	TFA AC-10 & ELF	TFA AC-10 & NS 175	TFA AC-10 & C107	TFA AC-20	TFA AC-20 & Polybilt	TFA AC-20 & DOW	TEXACO AC-20 	TEXACO AC-10 & UP 70	TEXACO AC-10 & ELF	SHAM. AC-20	FINA AC-10 & ELF	FINA AC-10 & 3% D1101	FINA AC-10 & 6% D1101
 Shear Susceptibility @ 39 F Before RTFOT 	 0.602 (c,d)	0.747 (b)	1.135 (a)	0.770 (b)	0.535 (d,e)	0.638 (c)	0.507 (e)	0.511 (e)	 0.646 (c)	0.747 (b)	1.277 (a)	0.490	1.235 (a)	0.799 (b)	0.777 (b)
 after RTFOT 	 0.584 (c)	0.612 (c)	1.213 (a)	0.697 (b)	-	0.607 (c)	0.508 (d)	0.485 (d)	 - 	•	-	 - 	• .		•
Shear Susceptibility @ 60 F Before RTFOT 	 - 	-	•		-	•	-	-	 0.804 (c)	0.892 (b)	1.167 (a)	0.696 (d)	1.215 (a)	0.876 (b)	0.828 (c)
Shear Susceptibility @ 77 F Before RTFOT 	 0.879 (b)	0.816 (c)	1.069 (a)	0.858 (Ъ)	0.678 (e)	0.778 (d)	0.627 (f)	0.519 (g)	 0.804 (b)	0.803 (b)	1.152 (a)	0.664 (d)	1.076 (a)	0.889 (b)	0.772 (c)
efter RTFOT 	0.796 (b) 	0.720 (d)	1.156 (a)	0.764 (c)	-	0.715 (d)	0.614 (e)	0.486 (f)	- - 	-	• •	 	•	-	-
Shear Susceptibility @ 90 F Before RTFOT 	 - 	•	-	-	•	-	-	-	 0.830 (b) 	0. 794 (b)	1.131 (a)	 0.761 (c)	1.089 (a)	0.886 (b)	 0.809 (c)
Shear Susceptibility @ 140 F Before RTFOT 	 0.938 (c)	0.952 (c)	1.019 (a)	0.967 (b)	0.699 (f)	0.840 (d)	0.713 (f)	0.777 (e)	 0.832 (c)	0.880 (b)	0.971 (a)	0.894 (b)	1.018 (a)	0.885 (Ъ)	0.772 (c)
after RTFOT 	0.850 (c)	0.856 (c)	1.016 (a)	0.913 (b)	-	0.803 (d)	0.623 (f)	0.690 (e)	- 	•	- 	• 	-	•	-

Table 3.7 Summary of Shear Susceptibility for Unmodified and Polymer Modified Asphalt Binders

Note: Letters of the same type in parentheses within a district indicate no significant difference exists between binders for a given test parameter at alpha = 0.05

Binder	Shear Su	usceptibility	Shear Sus	sceptibility	Shear Su	sceptibility
Asphalt Polymer	Before RTFOT	After RTFOT	 Before RTFOT	After RTFOT	 Before RTFOT	After RTFOT
 	 Test Ter	nperature 39 F	 Test Temp	perature 77 F	 Test Tem	perature 140 F
- TFA_AC-10 - 	 6.024E-01 (a)	5,836E-01 (a)	 8.786E-01 (a)	7.957E-01 (b)	 9.378E-01 (a)	8.498E-01 (b)
 TFA AC-10 Goodyear UP 	 70 7.470E-01 (a)	6.116E-01 (b)	 8.159E-01 (a)	7.200E-01 (b)	 9.518E-01 (a)	 8.563E-01 (b)
 TFA AC-10 Styrelf-13	 1.135E+00 (b)	1.213E+00 (a)	 1.069E+00 (b)	1.156E+00 (a)	 1.019E+00 (a)	 1.016E+00 (a)
 TFA AC-10 Polysar NS 	 75 7.699E-01 (a)	6,968E-01 (b)	 8,576E-01 	7.637E-01	 9.670E-01 (a)	 9.128E-01 (b)
 TFA AC-10 Genstar C10 	 5.3 49E-01 		 6.778E-01	-	 6.990E-01 	-
 TFA AC-20 - 	 6.376E-01 (a)	6.067E-01 (a)	 7,778E-01 (a)	7.154E-01 (b)	 8.400E-01 (a)	 8.034E-01 (a)
 TFA AC-20 Polybilt 10 	 5.070E-01 (a)	5,075E-01 (a)	 6.269E-01 (a)	6.143E-01 (a)	 7.133E-01 (a)	 6.226E-01 (b)
 TFA AC-20 Dow 	 5.107E-01 (a)	4.853E-01 (a)	 5.189E-01 (a)	4.863E-01 (a)	 7.773E-01 (a)	 6.899E-01 (b)

Table 3.8 Effect of Aging by RTFOT on Shear Susceptibility for Unmodified and Modified Asphalt Binders.

Note: Letters of the same type in parentheses within a test temperature indicate no significant difference exists between shear susceptibility before and after RTFOT at alpha = 0.05

11	Binder		_		Sh	ear Susc	eptibility	,				Ī
Asphalt	Polymer	 39 F	60 F	77 F	90 F	140 F	39 F	60 F	77 F	90 F	140 F	
 		 	be	fore RTF	от		!! 	af	ter RTFOT			
11			•••									H
TFA AC-10	-	0.602	-	0.879	•	0.938	0.584	-	0.796	-	0.850	11
41 14		(c)		(D)		(8)	(c) 		(D)		(8)	H
TFA AC-10	Goodyear UP 70	0.747	-	0.816	-	0.952	 0.612	-	0.720	-	0.856	l
ü	·	(c)		(b)		(a)	(c)		(b)		(a)	ìi
11							H					
TFA AC-10	Styrelf-13	1.135	-	1.069	•	1.019	1.213	-	1.156	-	1.016	IJ
11 11		(c)		(b)		(a)	(c)		(b)		(a)	1
II 1 ITFA AC-10	Polysar NS 175	 0.770	-	0.858	-	0.967	11 11 0.697	•	0.764	-	0.913	H
1	,	(c)		(b)		(a)	(c)		(b)		(a)	ii
ÎÎ		H					Ĥ					
TFA AC-10	Genstar C107	0.535	-	0.678	-	0.699	-	-	•	-	-	H
		(b)		(a)		(a)	II					ļ
11 11TEA AC-20		 0.638	-	0 778		0 8/0	 0.607		0 715		0 803	H
		(c)		(b)		(a)	(c)		(b)		(a)	ï
ï				~		\ - <i>\</i>			ς-γ		\- /	i
TFA AC-20	Polybilt 103	0.507	-	0.627	•	0.713	0.508	-	0.614		0.623	İ
11		(c)		(b)		(a)	(b)		(a)		(a)	ł
	D avi			0 540		0.777			0 /0/		0 (00	ļ
11 AC-20	DOM		-	(b)	•	U.///	0.485 (b)	-	0.480 (b)	-	(8)	ł
11						(8)			(6)			h
Texaco AC-	20	0.646	0.804	0.804	0.830	0.832	ii -	-	-	-	-	i
ÎI		(b)	(a)	(a)	(a)	(a)	II					I
11												I
Texaco AC-	10 Goodyear UP 70	0.747	0.892	0.803	0.794	0.880	II -	-	-	-	-	ļ
		(D) 	(a)	(D)	(D)	(a)						ł
ITexaco AC-	10 Styrelf-13	1.277	1.167	1.152	1.131	0.971	-	-	-	-	-	i
11	•	(a)	(b)	(b)	(b)	(c)	ii					i
11		H					11					I
Shamrock A	C-20	0.490	0.696	0.664	0.761	0.894	<u> </u> -	-	-	•	-	ļ
! 11		(e)	(c)	(d)	(b)	(a)						
ll Fina AC-10	Styrelf-13	 1.235	1.215	1,076	1.089	1.018	11 -	-	-	-	-	I
11		(a)	(a)	(b)	(b)	(c)	ii					i
11		II .					II					Ì
Fina AC-10	3% Kraton D1101	0.799	0.876	0.889	0.886	0.885	-	-	-	-	-	ł
11		(b)	(a)	(a)	(a)	(a)	11					ļ
 Eing_40-40	47 Knoten 04444	 0.777	0 939	0 777	0 900	0 777		_		-	_	1
II III AC+10	OA KRACON DITUT	0.777 (b)	U.020 (a)	(h)	(a b)	(h)		-	•	•	-	I
11			(4)		(0,0)	(5)						ł

Table 3.9 Effect of Test Temperature on Shear Susceptibility for Unmodified and Modified Asphalt Binders.

Note: Letters of the same type in parentheses indicate no significant difference exists between test temperatures at alpha = 0.05 CONSTANT POWER VISCOSITY. Figures A-22 through A-37, B-22 through B-27 and C-22 through C-29 show that computing apparent viscosity for a fixed shear rate of 1 reciprocal second for the modified and unmodified asphalt binders necessitates excessive extrapolation of the data at either of the extremes of temperature. Therefore, the method of constant power input which offers the advantage that very little or no extrapolation of data is necessary was utilized. A constant power of 100 W/m³ ($\tau \propto \gamma = 10^5$) was chosen as convenient. The power constant viscosity values at three test temperatures for the aged and unaged materials used in District 15, and at five test temperatures for the unaged materials used in Districts 11, and 25 are presented in Table 3.10 and plotted in Figures A-41, B-27 and C-29. Figure A-41 indicates addition of polymer to the TFA AC-10 increased constant power viscosity at all test temperatures. However the trend is not the same for the TFA AC-20 asphalt cements. Figures B-27 and C-29 show that the modified Fina and Texaco AC-10 asphalt binders showed higher apparent viscosity than the respective controls.

It was desirable to compare absolute viscosity at 140°F test temperature obtained by the capillary tubes (ASTM D2171) with apparent viscosity obtained on the Schweyer constant stress rheometer at shear rates occurring in tube viscometers. Table 3.11 shows the comparison of absolute viscosity and apparent viscosity at the same shear rate. This indicates there is no significant difference between viscosity values obtained by different viscometers if they are measured at the same rate of shear and very little or no extrapolation of data is made.

To evaluate the degree of temperature susceptibility of the binders, power constant viscosity vs. absolute test temperature are plotted in semilogarithmic scale. The slope of the straight line resulting from such a plot is a measure of temperature susceptibility of the power constant viscosity. Power constant viscosity - test temperature relationships for the aged and unaged materials used in District 15 are shown in Figures A-44 through A-47. These relationships for unaged materials used in Districts

B	inder		Constant	Power Visa	osity	
Asphalt	Polymer	39 F	60 F	77 F	90 F	140 F
			b	fore RTF0	1	
TFA AC-10	-	2.760E+07	-	1.123E+05	-	9.651E+01
TFA AC-10 G	ioodyear UP 70	3.736E+07		2.143E+05	-	1.256E+02
TFA AC-10 S	tyrelf-13	7.610E+07	-	5.844E+05	-	3.691E+02
TFA AC-10 P	olysar NS 175	6.072E+07	-	2.289E+05	-	1.236E+02
TFA AC-10 G	enstar C107	6.464E+07	-	4.518E+05	-	1.003E+03
TFA AC-20		7.183E+07	-	3.343E+05	-	1.731E+02
TFA AC-20 P	olybilt 103	1.007E+08	-	3.599E+05	-	2.738E+02
TFA AC-20 D	OW	5.759E+07	-	7.548E+05	-	3.683E+02
Texaco AC-20		5.126E+07	2.854E+06	3.699E+05	7.854E+04	1.949E+02
Texaco AC-10	Goodyear UP 70	6.359E+07	2.519E+06	2.634E+05	5.046E+04	2.090E+02
 Texaco AC-10	Styrelf-13	4.014E+07	7.308E+06	3.945E+05	5.694E+04	2.891E+02
I Shamrock AC-2	20	7.153E+07	3.372E+06	2.871E+05	5.491E+04	1.680E+02
 Fina AC-10 	Styrelf-13	5.839E+07	8.621E+06	5.003E+05	7.223E+04	3.077E+02
Fina AC-10	3% Kraton D1101	4.692E+08	8.506E+06	6.009E+05	9.326E+04	6.016E+02
Fina AC-10	6% Kraton D1101	4.667E+08	7.754E+06	4.969E+05	9.921E+04	6.500E+02
			a	fter RTFOT		
TFA AC-10	-	6.993E+07	-	4.034E+05		2.533E+02
TFA AC-10 G	ioodyear UP 70	1.309E+08	-	6.826E+05	-	3.683E+02
TFA AC-10 S	Styrelf-13	2.300E+08	-	1.488E+06	-	6.220E+02
TFA AC-10 P	Polysar NS 175	9.859E+07	-	7.168E+05	-	3.771E+02
TFA AC-10 G	ienstar C107	-	-	-	-	-
TFA AC-20	-	2.443E+08	•	1.504E+06	-	5.304E+02
TFA AC-20 P	Polybilt 103	1.104E+08	-	1.175E+06	-	1.160E+03
TFA AC-20 D)ow	7.906E+07		1.678E+06	-	1.672E+03

Table 3.10 Summary of Constant Power Viscosity for Unmodified and Modified Asphalt Binders.

	Binder	Rate of Shear	Vis. 140 F, poises	Vis. 140 F, poises
Asphalt	Polymer	1/sec	Cannon Manning Viscometer	Constant Stress Rheometer
			before RTF	DT
TFA AC-10	-	4.60	1131	1089
TFA AC-10	Goodyear UP 70	8.17	1311	1333
TFA AC-10	Styrelf-13	4.15	3332	3597
TFA AC-10	Polysar NS 175	11.39	1318	1274
TFA AC-10	Genstar C107	-	-	-
TFA AC-20	•	7.20	2087	2099
TFA AC-20	Polybilt 103	8.44	3296	3461
TFA AC-20	Dow	2.89	5198	5428
Texaco AC-2	20	4.61	2375	2546
Texaco AC-1	10 Goodyear UP 70	5.88	2330	2448
Texaco AC-1	0 Styrelf-13	4.54	3060	3011
 Shamrock AC 	:-20	5.72	1998	1959
Fina AC-10	Styrelf-13	5.00	2770	3007
Fina AC-10	3% Kraton D1101	1.70	8127	7592
 Fina AC-10	6% Kraton D1101	-	-	-
			after RTFO	T
TFA AC-10	-	4.60	3000	3156
TFA AC-10	Goodyear UP 70	7.10	3932	4157
TFA AC-10	Styrel f-13	4_41	6331	6114
TFA AC-10	Polysar NS 175	7.39	3780	4040
TFA AC-10	Genstar C107	· -	-	-
TFA AC-20	•	2.03	7401	7724
TFA AC-20	Polybilt 103	1.06	26266	26312
TFA AC-20	Dow	0.88	31592	32815

Table 3.11 Comparison of Viscosity at 140 F between Cannon Manning Viscometer and Schweyer Constant Stress Rheometer.

11, and 25 are shown in Figures B-28 and C-30. The coefficients of correlation of fitted lines resulting from the data range from .99 to 1.0. This confirms a good linear relationship between log power constant viscosity and absolute test temperature.

A statistical analysis was performed to confirm whether the viscosity temperature susceptibilities (slopes) are different from one another. A summary of the test results is shown in Table 3.12. The results indicate no significant difference in the viscosity temperature susceptibility was observed between the materials within the same district. Furthermore, Table 3.13 shows that aging the modified and unmodified TFA asphalt binders did not have any significant effect on viscosity temperature susceptibility.

COMPATIBILITY

Figure 3.11 presents the results of storage stability test for binders used in Districts 15, 11, 25 and 10. As shown in this figure, there was no substantial difference in penetration between the top and bottom of the samples except for the Dow and Polybilt blends. This may indicate that TFA AC-20 is not completely compatible with the Dow and Polybilt polymers. A note should be added here that the Dow blend also did not demonstrate the presence of asphalt-polymer modulus in the force ductility test. Some researchers believe that the presence of asphalt-polymer modulus is due to presence of the polymer in binders.

Table 3.7 Summary of Shear Susceptibility for Unmodified and Polymer Modified Asphalt Binders

.

ī	1	11				Distri	ct 15				11	Dis	trict 1	1	11		Distr	ict 25		11
ł	1	Ш									11-		•••••		۱ŀ		•••••			-11
I	Test Parameter		TFA	TFA	TFA	TFA	ŢFA	TFA	TFA	TFA	ין	EXACO	TEXACO	TEXACO	11	SHAM.	FINA	FINA	FINA	11
I	1	11	AC-10	AC-10	AC-10	AC-10	AC-10	AC-20	AC-20	AC-20	11	AC-20	AC-10	AC-10	11	AC-20	AC-10	AC-10	AC-10	11
I	1	Н		&	&	&	&		8	&	H		&	8	11		&	8	. &	11
1	1	11		UP 70	ELF	NS 175	C107		Polybilt	DOW	П		UP 70	ELF	11		ELF	3% D1101	6% D110	1
I		_11_													.11.					11
I	Temperature Susceptibility	П									Н				Ш					11
I	Before RTFOT	Ш	0.096	-0.097	-0.095	-0.101	-0.085	-0.098	-0.098	-0.093	0 -	0.096	-0.097	-0.095	II.	-0.100	-0.097	-0.103	-0.102	0
I	1	11	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	П	(a)	(a)	(a)	11	(a)	(a)	(a)	(a)	11
I	1	11									Ш				11					11
I	after RTFOT	١ŀ	0.097	-0.099	-0.105	-0.096		-0.401	-0.089	-0.084	11	-	•	-	11	-	-	-	-	11
I	1	П	(a)	(a)	(a)	(a)		(a)	(b)	(b)	11				П					11
Ì	1	11					_				11_				11					

Note: Letters of the same type in parentheses within a district indicate no significant difference exists between binders for a given test parameter at alpha = 0.05

.

	Binder	Temperature	Susceptibility
Asphalt	Polymer	 Before RTFOT 	After RTFOT
FA AC-10	-	 -0.096	-0.097
		(a)	(a)
FA AC-10	Goodyear UP 70	 -0.097	-0.099
		(a)	(a)
FA AC-10	Styrelf-13	 -0.095	-0.105
	-	(a)	(a)
FA AC-10	Polysar NS 175	 -0.101	-0.096
		(a)	(a)
FA AC-10	Genstar C107	 -0.085 	-
FA AC-20		 -0.100	-0.101
		(8)	(a)
FA AC-20	Polybilt 103	 -0.098	-0.089
		(a)	(a)
FA AC-20	Dow	-0.093	-0.084
		(a)	(a)

Table 3.13 Effect of Aging by RTFOT on Viscosity Temperature Susceptibility for Unmodified and Modified Asphalt Binders.

Note: Letters of the same type in parentheses indicate no significant difference exists between temperature susceptibility at alpha = 0.05

.

Fig 3-11 Results of Penetation for Modified Binders after Storage Stability Test.

CHAPTER 4

ANALYSIS OF TEST RESULTS ON UNMODIFIED AND MODIFIED MIXTURES

Results of laboratory tests conducted on unmodified and polymer-modified mixtures used in Districts 15, 11, 25 and 10 are listed and illustrated in Appendices A, B, C and D respectively. Summaries of certain test results for unmodified and modified mixtures prepared in the laboratory are presented in Tables 4.1 and 4.2.

Where appropriate, analysis of variance (ANOVA) techniques were utilized to determine if significant differences exist between control and modified asphalt mixtures for each test parameter. In each case when a significant difference was indicated, the Newman-Keul multiple range test (Ref 18) was used to determine which means were significantly different. The lower case letters in parentheses in Tables 4.1 and 4.2 indicate whether means are significantly different. Letters of the same type for each parameter indicate no significant difference in means at alpha = In this chapter individual engineering properties for 0.05. laboratory mixtures are discussed. Furthermore a comparison between plant mixture (plant-mixed/laboratory-compacted mixtures) properties and laboratory mixture (laboratory-mixed/laboratorycompacted mixtures) properties is made.

EVALUATION OF LABORATORY MIXTURES (STANDARD COMPACTION)

A standard compaction specimen would normally produce 3 percent air voids in the mixtures containing optimum asphalt content. Engineering properties measured for laboratory prepared mixtures utilized in Districts 15, 11, 25 and 10 using standard compactions are as follows:

- Marshall Stability and Flow at 140°F
- Hveem Stability at 140°F

	l			Distric	t 15				Dis	trict 1	1
Test Parameter	 TFA					 TF A	••••••		TEXACO		
	AC-10	UP 70	Styrelf	NS 175	C107	AC-20 P	olybilt	Dow	AC-20	UP 70	Styrel f
Marshall Stability, lb	1044	2305	2056	1591	•	1985	2750	2412	2303	2722	2339
	(a)	(d)	(c)	(b)		(c)	(e)	(d)	(a)	(b)	(a)
Marshall Flow, 0.01 in	9.5	12.7	13.0	11.7	-	12.0	12.0	9.8	12.0	13.7	12.8
	(a) 	(b,c)	(c)	(b)		(b,c)	(b,c)	(a)	(a)	(b)	(a,b)
Hveem Stability, %	41	41	- 44	41	-	43	47	51	43	41	42
	(a)	(a)	(a,b)	(a)		(a)	(b)	(c)	(a)	(a)	· (a)
Tensile Strength	378	391	483	388	-	464	439	487	452	486	530
at 39 F, psi	(a)	(a)	(c)	(a)		(b,c)	(b)	(c)	(a) 	(b)	(c)
Tensile Strength	64	104	132	96	-	128	133	137	117	152	126
at 77 F, psi	(a) 	(b)	(c)	(b)		(c)	(c)	(c)	(a) 	(c)	(b)
Tensile Strength	19	46	49	36	-	52	61	64	40	49	37
at 104 F, psi I	(a) 	(c)	(c,d)	(b)		(d)	(e)	(e)	(a) 	(b)	(a)
Tensile Strain	0.37	0.25	0.36	0.28	-	0.10	0.21	0.19	0.25	0.21	0.53
at 39 F, X	(d)	(c)	(d)	(c)		(a)	(b)	(b)	(a) 	(a)	(b)
Tensile Strain	0.97	0.85	1.17	0.90	-	0.64	0.49	0.39	1.07	1.20	1.53
at 77 F, X	(c,d) 	(c)	(d)	(c)		(b)	(a,b)	(a)	[[(a) 	(b)	(c)
Tensile Strain	1.04	1.05	1.46	1.13	-	0.86	0.71	0.45	1.04	1.23	1.53
at 104 F, X 	(d) 	(d)	(e)	(d)		(c)	(b)	(a)	[[(a) 	(b)	(c)
Secant Modulus	209	316	270	281	•	902	428	523	355	469	205
at 39 F, ksi	(a) 	(a)	(a)	(a)		(c)	(b)	(b)	(b) Ц	(c)	(a)
Secant Modulus	14	25	23	22	-	40	54	71	22	26	17
at 77 F, ksi	(a) 	(b)	(b)	(b)		(c)	(d)	(e)	(b)	(c)	(a)
Secant Modulus	4	9	7	6	-	12	17	29	8	8	5
at 104 F, ksi	(a)	(a,b)	(a)	(a)		(b)	(c)	(d)	(b) 	(b)	(a)
Resilient Modulus	1512	1384	2231	1394	-	2121	1651	1076	667	952	651
at 39 F, ksi	(a,b) 	(a,b)	(Б)	(a,b)		(b)	(a,b)	(a)	(a) 	(a)	(a)
Resilient Modulus	337	420	434	467	-	550	547	646	232	353	213
lat 77 F, ksi	(a) 	(a,b)	(a,b)	(p'c)		(c)	(c)	(d)	(a) 	(b)	(a)
Resilient Modulus	107	168	193	165	-	239	289	239	86	102	69
at 104 F, ksi 	(a) 	(a,b)	(a,b,c)	(a,b)		(b,c)	(c)	(b,c)	(a) 	(a)	(a)
Poisson's Ratio at 39 F	<u> ·</u>	•	-	-	•	-	•	•	0.17	0.01	0.16
Poisson's Ratio at 77 F	-	•		-	-	•	•	•	0.26	0.20	0.25
Poisson's Ratio at 104 F	- 	•	•	-	-	-	•	-	0.44	0.40	0.32

Table 4.1 Engineering Properties of Laboratory Mixed / Laboratory Compacted Mixtures Using Standard Compaction.

Note: Letters of the same type in parentheses within a district indicate no significant difference exists between mixtures for a given test parameter at alpha = 0.05

Table 4.1 (Continued)

		Distr	ict 25			Di	strict 10)	
 Test Parameter	 SHAM.				TOTAL				
1	AC-20	Styrelf	3% D1101	6% D1101	AC-20	UP-70	Styrelf	POLYBILT	3% D1101
Marshall Stability, lb	2400	3182	3136	3513	1359	955	1305	987	880
1	(a) 	(b)	(b)	(c) 	(b) 	(a)	(b)	(a)	(a)
Marshall Flow, 0.01 in	14.7	17.3	16.3	18.7	10.3	10.0	10.3	9.5	9.7
 	(a) .	(D)	(b)	(c) 	(a) 	(a)	(a)	(a)	(a)
Hveem Stability, %	43	43	43	43	45	45	45	43	42
	(a) 	(a)	(a)	(a)	(a) 	(a)	(a)	(a)	(a)
Tensile Strength	569	684	625	512	446	489	516	396	454
at 39 F, psi	(b) 	(d)	(c)	(a)	(Б)	(c)	(c)	(a)	(Ь)
Tensile Strength	121	176	168	132	135	108	149	73	83
at 77 F, psi 	(a) 	(c)	(c)	(Ь)	(c)	(b)	(d)	(a)	(a)
Tensile Strength	38	61	58	51	39	26	39	19	19
at 104 F, psi 	(a) 	(c)	(c)	(Б)	(c)	(b)	(c)	(a)	(a)
Tensile Strain	0.22	0.46	0.36	0.93	0.24	0.22	0.28	0.55	0.47
at 39 F, %	(a)	(c)	(b)	(d)	(a)	(a)	(a)	(c)	(b)
Tensile Strain	0.87	1.64	1.24	2.41		1.48	1.58	1.10	1.46
at 77 F, X	(a) 	(c)	(b)	(d)	(a)	(b)	(b)	(a)	(b)
Tensile Strain	1.25	2.10	1.96	3.45	1.08	1.53	1.82	1.14	1.80
at 104 F, %	(a) 	(b)	(b)	(c) 	(a) 	(b)	(c)	(a)	(c)
Secant Modulus	525	297	348	110	378	441	372	146	195
at 39 F, ksi 	(d)	(Ь)	(c)	(a)	(c)	(d)	(c)	(a)	(b)
Secant Modulus	27	21	27	11	23	15	19	13	11
at 77 F, ksi	(c)	(b)	(c)	(a)	(c)	(a,b)	(b)	(a)	(a)
Secant Modulus	6	6	6	3	7.2	3.5	4.3	3.3	2.1
at 104 F, ksi 1	(b)	(b)	(b)	(a)	(d)	(b)	(c)	(b)	(a)
Resilient Modulus	1067	1032	933	663	2588	1490	2097	1934	3708
 at 39 F, ksi 	(b) 	(b)	(a,b)	(a)	(a,b) 	(a)	(a)	(a)	(b)
Resilient Modulus	319	296	316	169	873	455	553	428	351
at 77 F, ksi 	(b) 	(b)	(b)	(a)	(c)	(a,b)	(b)	(a,b)	(a)
Resilient Modulus	101	80	71	62	171	103	143	115	95
 at 104 F, ksi 	(ь)	(a,b)	(a)	(a)	(a) 	(a)	(a)	(a)	(a)
Poisson's Ratio at 39 F	0.16	0.19	0.17	0.26		-	-	-	-
Poisson's Ratio at 77 F	0.30	0.33	0.30	0.32	0.11	0.49	0.37	0.43	0.41
Poisson's Ratio at 104 F	0.44	0.53	0.60	0.46	•	•	•	•	•

Note: Letters of the same type in parentheses within a district indicate no significant difference exists between mixtures for a given test parameter at alpha = 0.05

		District 15							District 11		
Test Parameter	 TFA AC-10	UP 70	Styrelf	NS 175	c107	TFA AC-20 F	Polybilt	Dow	 TEXACO AC-20	UP 70	Styrelf
 Marshall Stability, 1b		878	845	1070	953	1072	1067	1067	908	951	684
,,,	(a)	(b)	(b)	(b)	(b)	(b)	(b)	(b)	(b)	(b)	(a)
Marshall Flow, 0.01 in	8.2	12.0	13.5	12.2	26.3	11.2	10.8	9.8	13.7	.15.7	16.0
	(a)	(c,d)	(d)	(c,d)	(e)	(b,c)	(b,c)	(b)	(a)	(b)	(b)
Hveem Stability, %	 37 (a,b,c)	33 (a)	3 5 (a,b)	40 (c)	37 (a,b,c)	41 (c)	38 (b,c)	39 (b,c)	 38 (b)	35 (a)	33 (a)
Tensile Strength at 39 f, psi	 318 (b)	285 (b)	319 (b)	286 (b)	112 (a)	320 (b)	284 (b)	305 (b)	 303 (a)	363 (b)	304 (a)
Tensile Strength	52	67	76	70	36	79	80	74	70	84	64
at 77 F, psi	_(b)	(c)	(c,d)	(c,d)	(a)	(d)	(d)	(c,d)	(b)	(c)	(a)
Tensile Strength	13	24	25	28	15	32	31	36	20	20	15
at 104 F, psi	(a)	(b)	(b)	(b,c)	(a)	(c,d)	(c,d)	(d)	(b)	(b)	(a)
Tensile Strain	0.37	0.30	0.50	0.32	0.56	0.18	0.19	0.21	0.36	0.35	0.73
at 39 F, %	(c)	(b)	(d)	(b)	(e)	(a)	(a)	(a)	(a)	(a)	(b)
Tensile Strain	1.07	0.94	1.38	0.90	1.80	0.55	0.55	0.36	1.28	1.51	2.15
at 77 f, %	(d)	(c)	(e)	(c)	(f)	(b)	(b)	(a)	(a)	(b)	(c)
Tensile Strain	1.01	1.34	1.92	1.05	2.73	0.79	0.78	0.43	1.31	1.58	2.43
at 104 F, %	(b,c)	(d)	(e)	(c)	(f)	(b)	(b)	(a)	(a)	(b)	(c)
Secant Modulus	177	191	127	183	40	350	302	298	172	206	83
at 39 F, ksi	(b)	(b)	(b)	(b)	(a)	(c)	(c)	(c)	(b)	(b)	(a)
Secant Modulus at 77 F, ksi	 9.8 (b)	14.3 (b,c)	11.0 (b,c)	15.7 (c)	4.0 (a)	29.2 (d)	29.5 (d)	41.2 (e)	 11.0 (b)	11.1 (b)	5.9 (a)
Secant Modulus	2.6	3.6	2.6	5.3	1.1	8.1	8.0	16.8	3.0	2.6	1.2
at 104 F, ksi	(b)	(b)	(b)	(c)	(a)	(d)	(d)	(e)	(c)	(b)	(a)
Resilient Modulus	1236	1132	1414	907	428	1217	1497	903	623	615	564
at 39 F, ksi	(b,c)	(b,c)	(b,c)	(b)	(a)	(b,c)	(c)	(b)	(a)	(a)	(a)
Resilient Modulus	212	327	284	352	131	352	414	475	138	209	115
at 77 F, ksi	(a)	(b,c,d)	(b,c)	(b,c,d)) (a)	(b,c,d)	(c,đ)	(d)	(a)	(a)	(a)
Resilient Modulus	89	160	104	150	71	190	149	207	81	70	53
at 104 F, ksi	(a,b)	(b,c)	(a,b)	(b,c)	(a)	(c)	(b,c)	(c)	(a)	(a)	(a)
Poisson's Ratio at 39 F	 	•	•	•	•	•	•	•	0.06	0.14	0.07
Poisson's Ratio at 77 F	- 	•	•	•	•	•	•	-	0.31	0.22	0.29
Poisson's Ratio at 104 F 	: - 	-	-	-	-	-	•	-	0.15 	0.36	0.40

Table 4.2 Engineering Properties of Laboratory Mixed / Laboratory Compacted Mixtures Using Modified Compaction

Note: Letters of the same type in parentheses within a district indicate no significant difference exists between mixtures for a given test parameter at alpha = 0.05

.

Table 4.2 (Continued)

1	District 25				District 10					
Test Parameter	 Sham.		•••••		TOTAL					
	AC-20	Styrelf	3% D1101	6% D1101	AC-20	UP-70	Styrelf	POLYBILT	3% D1101	
Marshall Stability, lb	1179	1644	1646	1462	493	525	533	227	491	
	(a) 	(b)	(b)	(Ь)	((b)	(b)	(b)	(a)	(Ь)	
Marshall Flow, 0.01 in	16.3	20.3	20.0	22.7	10.8	11.7	14.0	11.3	12.8	
 	(â) 	(b)	(b)	(c) 	(a) 	(a,b)	(c)	(a,d)	(b) 	
Hveem Stability, %	. 36	36	36	33	35	36	36	34	35	
1	(b) 	(b)	(b)	(a)	(a)	(a)	(a)	(a)	(a)	
Tensile Strength	399	467	414	286	332	435	397	273	374	
at 39 F, psi 	(b) 	(c)	(b)	(a)	(a,b) 	(c)	(b,c)	(a)	(b,c)	
Tensile Strength	88	123	98	80	86	79	100	37	60	
at 77 F, psi	(a,b) 	(c)	(b)	(a)	(c)	(c)	(d)	(a)	(b)	
Tensile Strength	27	42	31	28	21	18	20	8	11	
at 104 F, psi	(a) 	(b)	(a)	(a)	(d)	(c)	(d)	(a)	(Ь)	
Tensile Strain	0.28	0.40	0.41	1.03	0.23	0.22	0.25	0.75	0.62	
at 39 F, %	(a)	(b)	(b)	(c)	(a)	(a)	(a)	(c)	(b)	
Tensile Strain	0.58	1.76	1.84	3.38	1.23	1.33	2.25	1.33	1.79	
at 77 F, X	(a) 	(b)	(c)	(d)	(a)	(a)	(c)	(a)	(Ь)	
Tensile Strain	1.27	2.28	2.49	3.85	1.59	1.53	2.88	1.32	2.10	
at 104 F, X 	(a) 	(b)	(c)	(d)	(a) 	(a)	(c)	(a)	(b)	
Secant Modulus	293	231	204	55	299	395	317	72	12 1	
at 39 F, ksi 	(c) 	(b)	(b)	(a)	(ь)	(c)	(b)	(a)	(a)	
Secant Modulus	20.1	14.0	10.7	4.7	14	12	9	6	7	
at 77 F, ksi	(d) 	(c)	(b)	(a)	(c)	(c)	(Þ)	(a)	(a,b)	
Secant Modulus	4.2	3.7	2.5	1.5	2.6	2.4	1.4	1.3	1.0	
at 104 F, ksi	(d) 	(c)	(b)	(a)	(b)	(b)	(a)	(a)	(a)	
Resilient Modulus	758	579	728	573	2120	1827	2643	1238	2064	
at 39 F, ksi	(a) 	(a)	(a)	(a)	(b)	(a,b)	(b)	(a)	(b)	
Resilient Modulus	313	254	221	98	394	495	425	270	405	
at 77 F, ksi 	(b) 	(b)	(b)	(a)	(a)	(a)	(a)	(a)	(a)	
Resilient Modulus	117	60	51	46	174	119	95	132	145	
at 104 F, ksi 	 (b)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	
Poisson's Ratio at 39 F	0.03	0.15	0.17	0.21	•	-	-	•	-	
Poisson's Ratio at 77 F	0.18	0.21	0.24	0.41	0.44	0.32	0.43	0.36	0.36	
Poisson's Ratio at 104 F	0.26	0.54	0.51	0.40	<u> </u>	•	-	-	-	

Note: Letters of the same type in parentheses within a district indicate no significant difference exists between mixtures for a given test parameter at alpha = 0.05

- Tensile Strength at 39°F, 77°F and 104°F
- Tensile Strain at Failure at 39°F, 77°F and 104°F
- Secant Modulus at 39°F, 77°F and 104°F
- Resilient Modulus at 39°F, 77°F and 104°F
- Poisson's Ratio at 39°F, 77°F and 104°F

Marshall Stability and Flow

Results of Marshall stability are shown in Table 4.1 and plotted in Figure 4.1. Table 4.1 contains average values of the Marshall stability and flow obtained from three replicate tests conducted for each material. The modified mixtures containing TFA AC-10 and TFA AC-20 exhibited significantly higher values of Marshall stability than their respective control mixtures. In District 11 Marshall stability of the UP-70 mixture was significantly higher than the control (Texaco AC-20) mixture, and no significant difference was observed between the Styrelf and the control mixtures. The modified Fina AC-10 mixture in District 25 exhibited a significantly higher value of Marshall stability than the control mixture (Shamrock AC-20). In District 10 the modified AC-10 mixtures generally showed lower values of Marshall stability than the control mixture (Total AC-20). It appears that addition of the polymers to the asphalt cements increases Marshall stability of the mixtures. The Kraton at 6 percent, UP-70, and Styrelf exhibited the greatest improvement.

Marshall flow values are shown in Table 4.1 and plotted in Figure 4.2. Figure 4.2 shows that addition of polymer to the TFA AC-10 significantly increased the Marshall flow of the mixtures; however, this trend was not observed for the TFA AC-20 mixtures. In Districts 11 and 25, the modified AC-10 mixtures generally exhibited significantly higher values for Marshall flow than the respective controls. No significant difference in Marshall flow was observed between the control (Total AC-20) and the modified mixtures in District 10.

Fig 4.1 Marshall Stability for Laboratory Mixtures Using Standard Compaction.

Hveem Stability

Average values of Hveem Stability are presented in Table 4.1 and plotted in Figure 4.3. Analysis of variance using alpha=0.05 and Newman Keul multiple range test showed that there was no significant difference between the modified AC-10 mixtures and the AC-20 control mixture in a given district. Furthermore, the effect of the polymers on Hveem stability for mixtures containing TFA AC-10 was not significant. This may be due to the fact that Hveem stability is largely dependent upon interparticle friction of the aggregate and does not correlate particularly well with binder properties.

Tensile Strength

Average values of tensile strength at three different test temperatures (39°F, 77°F, and 104°F) are shown in Table 4.1, and relationships between tensile strength and temperature are shown in Figure 4.4. Regarding the mixtures containing TFA asphalt cement (District 15), the polymer modified mixtures exhibited higher tensile strength than the respective control mixtures with the exception of Polybilt mixture at 39°F. This effect was more pronounced at higher temperatures. In Districts 11 and 25, tensile strength of modified AC-10 mixtures with two exceptions (the 6 percent Kraton mixtures at 39°F and the Styrelf mixtures at 104°F) were significantly higher than the respective AC-20 controls. The 6 percent Kraton mixture showed significantly lower tensile strength at 39°F and higher tensile strength at 104°F compared with the Shamrock AC-20 control. Therefore, the Kraton could be expected to reduce thermal cracking and rutting since based on tensile strength, mixtures containing 6 percent kraton would be more flexible (less brittle) at colder temperatures and stiffer at higher temperatures. It should be noted that historical data have shown that Shamrock asphalt cement is a low temperature susceptible binder. In District 10 the Modified AC-10 mixtures except for the

86

<u>a</u>

Styrelf exhibited lower tensile strength than the control mixture (Total AC-20) at 104°F.

<u>Tensile Strain at Failure</u>

The relationships between tensile strain at failure and test temperature are shown in Figure 4.5. The average values are presented in Table 4.1. The effect of polymers on tensile strain was different for TFA AC-10 and TFA AC-20 mixtures (Fig 4.5). In general, addition of polymer to TFA AC-10 mixtures increased the tensile strain at 104°F and decreased it at 39°F. This trend was the opposite for stiffer mixtures (TFA AC-20 mixtures). However, strain at failure for all modified AC-10 mixtures with the exception of the UP 70 at 39°F was significantly higher than that of the respective AC-20 control mixtures. Furthermore Figure 4.5 indicates that the Styrelf and Kraton (SBS polymer) mixtures were less brittle than the UP 70 and NS 175 (SBR polymers) mixtures.

Secant Modulus

Results of secant modulus are shown in Table 4.1 and plotted in Figure 4.6. As shown in this figure, addition of the Polybilt and Dow to TFA AC-20 mixtures significantly increased secant modulus at 77°F and 104°F and significantly decreased it at 39°F. Also, the modified TFA AC-10 mixtures exhibited higher secant modulus than the AC-10 control mixture at all test temperatures. However the difference between the secant modulus of the modified TFA AC-10 mixtures and TFA AC-10 mixture was statistically significant at 77°F (Table 4.1). In Districts 11 and 10 secant modulus of the control mixtures was higher than that of the modified mixtures in District 25 showed significantly lower values of secant modulus than the Shamrock AC-20 mixture.

There were generally large differences between secant modulus of the AC-20 control mixtures and modified AC-10 mixtures at 39°F

(Fig 4.6). These differences decreased as the test temperature increased. This may be an indication that the modified AC-10 mixtures are less temperature susceptible than the AC-20 controls.

Resilient Modulus

relationships between resilient modulus The and test temperature are shown in Figure 4.7. The average values are presented in Table 4.1. As shown in Figure 4.7, resilient modulus of the polymer-modified mixtures (except for the Styrelf) increased at 104°F and decreased at 39°F compared with the control mixtures (TFA AC-10 and TFA AC-20). In Districts 25 and 10 the resilient modulus of the modified mixtures was consistently lower than that of the respective controls at all temperatures except for the Kraton mixture in District 10. Also, resilient modulus of the control Texaco mixture in District 11 were lower than the UP-70 mixture and higher than the Styrelf mixture. It should be noted that there was no statistically significant difference between resilient modulus of the modified AC-10 and the respective AC-20 control mixtures in most cases.

Ideally polymers should decrease mixture stiffness at low temperatures to improve flexibility and reduce cracking, and increase mixture stiffness at high temperatures in order to reduce permanent deformation. Based on the above statement the Dow and Kraton (at 6 percent) were more effective in reducing low temperature cracking than the other polymers.

<u>Poisson's Ratio</u>

Average values of Poisson's ratio are presented in Table 4.1. The Poisson's ratio values ranged from 0.01 to 0.60. Values less than 0.2 and greater than 0.45 are unrealistic and impractical for HMAC mixtures. One of the reasons for the unrealistic values obtained in Table 4.1 is a result of the formula given in ASTM D4123 for calculation of Poisson's ratio. The formula is based on

Standard Compaction.

the assumption that asphalt mixtures are homogeneous, isotropic and elastic. However, values of Poisson's ratio obtained at 77°F appeared to be more realistic than those obtained at 39°F and 104°F. Furthermore, Poisson's ratio increased with increasing test temperatures. Since the engineering properties of asphalt mixtures considered in this study are not very sensitive to Poisson's ratio, a Poisson 's ratio of 0.33 is assumed for all the mixtures at 77°F.

EVALUATION OF LABORATORY MIXTURES (MODIFIED COMPACTION)

Modified compaction specimens contain 7 percent air voids, which is generally obtained in the construction process. Engineering properties measured for laboratory mixtures utilized in Districts 15, 11, 25 and 10 using modified compaction are as follows:

- Marshall Stability and Flow at 140°F
- Hveem Stability at 140°F
- Tensile Strength at 39°F, 77°F and 104°F
- Tensile Strain at Failure at 39°F, 77°F and 104°F
- Secant Modulus at 39°F, 77°F and 104°F
- Resilient Modulus at 39°F, 77°F and 104°F
- Poisson's Ratio at 39°F, 77°F and 104°F
- Fatigue Life at Different Stress Level at 77°F
- Fatigue Constants, K1 and K2 at 77°F
- Alpha and Gnu at 77°F
- Creep Compliance at 60°F, 77°F and 90°F
- Tensile Strength Ratio (TSR)

Marshall Stability and Flow

Results of Marshall stability testing are shown in Table 4.2 and plotted in Figure 4.8. Table 4.2 contains average values of Marshall stability and flow obtained from three replicate tests

Fig 4.8 Marshall Stability for Laboratory Mixtures Using Modified Compaction.

conducted for each material. The modified mixtures containing TFA AC-10 exhibited significantly higher values of Marshall stability than the TFA AC-10 control mixture. There was no significant difference between the modified AC-20 mixtures and the TFA AC-20 control. In District 11 Marshall stability of the Styrelf mixture was significantly lower than the control (Texaco AC-20), but no significant difference was observed between the UP 70 and the control mixtures. The modified Fina AC-10 mixture in District 25 exhibited a significantly higher value of Marshall stability than the control mixture (Shamrock AC-20). This trend was not observed for the modified Fina mixtures in District 10. Similar to standard compaction specimens, addition of polymers to the AC-10 asphalt cement increased Marshall stability of the mixtures.

Marshall flow values are shown in Table 4.2 and plotted in Figure 4.9. This figure shows that addition of polymer to the TFA AC-10 significantly increased the Marshall flow of the mixtures; however, this trend was not observed for the TFA AC-20 mixtures. In Districts 11, 25 and 10 the modified AC-10 mixtures exhibited higher Marshall flow than the respective controls. The Kraton had the greatest effect on Marshall flow. These trends were similar to the trends observed in the standard compaction specimens.

Hveem Stability

Average values for the Hveem Stability of the mixtures are presented in Table 4.2 and plotted in Figure 4.10. Analysis of variance using alpha=0.05 and the Newman-Keul multiple range test (Ref 18) showed that the effect of the polymers on Hveem stability for mixtures containing TFA AC-10 and AC-20 was not significant. This may be due to the fact that Hveem stability is largely dependent upon interparticle friction of the aggregate and does not correlate particularly well with binder properties. In District 11 the modified AC-10 mixtures showed significantly lower Hveem Stability than the AC-20 control. The 6 percent Kraton mixture in

Fig 4.10 Hveem Stability for Laboratory Mixtures Using Modified Compaction.

District 25 had significantly lower values of Hveem stability than other mixtures. There was no significant difference in Hveem stability between the control and modified mixtures in District 10.

Tensile Strength

Average values of tensile strength at three different test temperatures (39°F, 77°F, and 104°F) are shown in Table 4.2, and relationships between tensile strength and temperature are plotted in Figure 4.11. Regarding the mixtures containing TFA asphalt cement (District 15), the polymer modified mixtures generally exhibited higher tensile strength than the respective control mixtures at 77°F and 104°F, and lower tensile strength at 39°F. This effect was more pronounced for the AC-10 than AC-20 mixtures. In District 11 the UP 70 mixture showed higher values of tensile strength at 39°F and 77°F than the control and the same value of tensile strength at 104°F. However the Styrelf exhibited the lowest values of tensile strength among the mixtures at all test temperatures. In District 25 the tensile strength of the Styrelf and 3 percent kraton mixtures were generally higher than the AC-20 control (Shamrock). However the 6 percent Kraton mixtures showed significantly lower tensile strength at 39°F and the same tensile strength at 104°F compared with the Shamrock AC-20 control. Therefore, the Kraton could be expected to reduce thermal cracking, since based on tensile strength, mixtures containing 6 percent Kraton would be more flexible (less brittle) at colder temperatures. In District 10 all modified mixtures except for the Styrelf exhibited lower tensile strength than the AC-20 control mixture at 77°F and 104°F. The Polybilt mixture showed more flexibility than the control at low temperatures.

<u>Tensile Strain at Failure</u>

The relationships between tensile strain at failure and test

temperature are shown in Figure 4.12. The average values are presented in Table 4.2. The effect of polymers on tensile strain was different for TFA AC-10 and TFA AC-20 mixtures (Fig 4.12). In general, addition of SBR polymer to the TFA AC-10 mixtures increased tensile strain at 104°F and decreased it at 39°F. However, the SBS polymer and Genstar C107 significantly increased the tensile strain. There was no significant difference between the Polybilt and the control AC-20 mixture. The Dow polymer reduced tensile strain at high temperatures. The modified mixtures utilized in District 11, 25 and 10 generally had higher tensile strain values than the respective controls. Similar to standard compaction specimens, the Styrelf and Kraton (SBS polymer) mixtures were less brittle than the SBR mixtures (UP-70 and NS-175).

Secant Modulus

Results of secant modulus measurements are shown in Table 4.2 and plotted in Figure 4.13. The modified TFA AC-10 and AC-20 mixtures (except for Genstar C107) exhibited higher secant modulus than the respective control mixtures at all test temperatures. However the difference between secant modulus of the modified and control mixtures was statistically significant only for the Dow and NS 175 mixtures at 77°F and 104°F (Table 4.1). In District 11 the secant modulus of the control mixture was higher than that of the modified mixtures except for the UP-70 mixtures at 39°F and 77°F. All modified mixtures in District 25 showed significantly lower values of secant modulus than the Shamrock AC-20 mixture. In District 10 mixtures containing the Kraton and Polybilt were more flexible than the control at 39°F. The modified mixtures exhibited lower secant modulus than the control at 77°F and 104°F.

Resilient Modulus

The relationships between resilient modulus and test temperature are shown in Figure 4.14. The average values are

presented in Table 4.2. As shown in Figure 4.14 addition of the UP-70, NS-175, Styrelf and Dow to TFA mixtures increased resilient modulus at 77°F and decreased it at 39°F. However the effect was not statistically significant. The Genstar C107 and Dow mixtures exhibited significantly lower resilient modulus than the control at 39°F and no significant difference was observed at 77°F and 104°F. In Districts 11 and 10 no significant difference was observed between resilient modulus of the modified and the control mixtures except for the Polybilt mixture. In District 25 resilient modulus of the Shamrock AC-20 mixture was consistently higher than resilient modulus of the modified Fina mixtures at all temperatures.

Since polymers under this study generally reduce mixture stiffness at low temperature, they may also reduce low-temperature cracking. Based on the above statement the Dow, Kraton (at 6 percent) and Genstar C107 were more effective in reducing lowtemperature cracking than the other polymers.

<u>Poisson's Ratio</u>

Average values of Poisson's ratio are presented in Table 4.2. The Poisson's ratio values ranged from 0.0.3 to 0.54. Values less than 0.2 and greater than 0.45 are unrealistic and impractical for One of the reasons for the unrealistic values HMAC mixtures. obtained in Table 4.2 is a result of the formula given in ASTM D4123 for calculation of Poisson's ratio. The formula is based on the assumption that asphalt mixtures are homogeneous, isotropic and Similar to the standard compacted specimens, values of elastic. Poisson's ratio obtained at 77°F appeared to be more realistic than those obtained at 39°F and 104°F, and Poisson's ratio increased with increasing test temperature. Since the engineering properties of asphalt mixtures considered in this study are not very sensitive to Poisson's ratio, a Poisson's ratio of 0.33 is assumed for all the mixtures at 77°F.

Fatigue Life

Results of the indirect fatigue test are given in Appendices A, B, C and D for the mixtures used in District 15, 11, 25 and 10 respectively. In order to more easily evaluate the relative fatigue response at 77°F, the fatigue life versus tensile strain graphs for the laboratory mixtures are plotted in logarithmic scale in Figure 4.15. Based on this figure the following trends were apparent:

- 1. For mixtures used in District 15, the polymer modified AC-10 mixtures provided more favorable results than controls, the TFA AC-10 and TFA AC-20 mixtures. Furthermore, the modified mixtures containing AC-20 (Polybilt and Dow) produced superior fatique characteristics compared to the TFA AC-20 control mixture at low stress level (low strain). This trend possibly can be explained in terms of the viscosity or stiffness of the binder. A stiffer binder would be expected to produce a longer fatigue life under the controlled-stress fatigue test.
- 2. The Styrelf mixtures used in Districts 11 and 10 had statistically superior fatigue properties compared to their respective controls (Texaco AC-20 and Total AC-20). Although the plots of the Texaco AC-20 and UP-70 mixtures in District 11 were statistically different (alpha = 0.05), they were closely grouped. Statistical difference is defined when either the intercept or slope or both are different.
- 3. In District 25, the Styrelf, 3 percent Kraton and 6 percent Kraton mixtures were not significantly different. These mixtures exhibited superior fatigue responses to the control at high stress level.
- 4. Generally, each additive blend with AC-10 in Districts 15, 25 and 10 produced a mixture which was statistically superior to the AC-20 control mixtures. The Styrelf and Genstar C107 had the greatest improvement.

Fatigue Constants, K1 and K2

Several researchers have postulated that a linear relationship exists between K2 and log K1 irrespective of mixture properties and test procedures (Refs 33, 34). This relationship was investigated by plotting log K1 versus K2 obtained from laboratory and plant mixtures (Fig 4.16). The equation of the best fitted line resulting from this plot is as follows:

$$K2 = 1.100 - 0.270 Log(K1)$$
 (R=0.986 Se=0.135)

Kennedy (Ref 34) developed the following linear regression relationships from combining several sets of data:

$$K2 = 1.350 - 0.252 \text{ Log}(K1)$$
 ($R = 0.95$ Se = 0.29)

A comparison between Kennedy's equation and the equation obtained in this study was made in Table 4.3. It was shown that Kennedy's equation over-predicted the values of K2 by an average of approximately 0.16.

ALPHA and GNU

Values of alpha and gnu for the laboratory mixtures obtained by indirect tensile test are presented in Figures 4.17 and 4.18. As shown in Figure 4.17 alpha values of the modified mixtures were significantly higher than those of the respective controls. This trend was reversed for gnu values (Fig 4.18). It should be noted that alpha and gnu are parameters which are difficult to define in terms of their significance on mixture performance. However the extensive sensitivity analysis of the VESYS program by Rauhut, et al, provided a great step toward understanding the significance of these values. The most important finding in the Rauhut study with respect to this research in terms of alpha and gnu are as follows:

Fig 4.16 Relationship between Log Kl and K2 for Laboratory and Plant Mixtures Using Modified Compaction.

1	FATIGUE CONSTANT		K2	K2	DELTA
	From Lab	Test	From Regression	From Kennedy's	K2
MIXTURE -	к1	к2	Equation In This Study	Equation K2	
District 15 Laboratory Mixtures			· /		
TFA AC-10	4.74E-02	1.11	1.46	1.68	0.23
TFA AC-10 + 3% UP 70	4.96E-05	2.14	2.26	2.43	0.17
TFA AC-10 + 3% Styrelf	9.68E-04	1.82	1.91	2.11	0.20
TFA AC-10 + 3% NS 175	4.36E-06	2.54	2.55	2.70	0.16
1 1FA AC-10 + 18% C107	7.75E-05	2.43	2.21	2.39	0.18
$\frac{116}{10} + \frac{10}{10} + 1$	4.02E-06	2.35	2.55	2./1	0.15
TFA AC-10 + 3% Potybilt	4.31E-14	4.40	4.70	4.72	0.09
District 11 Laboratory Mixtures					
Texaco AC-20	7.18E-04	2.01	1.95	2.14	0.19
Texaco AC-10 + 3% UP 70	2.21E-04	2.17	2.09	2.27	0.19
Texaco AC-10 + 3% Styrelf	4.65E-03	1.82	1.73	1.94	0.21
District 25 Laboratory Mixtures					
Shamrock AC-20	1.72E-08	3.27	3.19	3.31	0.11
Fina AC-10 + 3% Styrelf	1.59E-07	3.02	2.93	3.06	0.13
Fina AC-10 + 3% D1101	2.39E-07	2.98	2.89	3.02	0.13
Fina AC-10 + 6% D1101	1.49E-07	3.03	2.94	3.07	0.13
District 10 Laboratory Mixtures					
Total AC-20	5.04E-03	1.66	1.72	1.93	0.21
Fina AC-10 + 3% UP 70	4.32E-04	1.91	2.01	2.20	0.19
Fina AC-10 + 3% Styrelf	2.13E-03	1.88	1.82	2.02	0.20
Exxon AC-10 + 3% Polybilt	2.65E-03	1.64	1.79	2.00	0.20
Gulf AC-10 + 3% D1101	5.36E-03	1.61	1.71	1.92	0.21
District 15 Plant Mixtures					
TFA AC-10 + 3% UP 70	5.75E-06	2.57	2.51	2.67	0.16
TFA AC-10 + 3% Styrelf	8.52E-05	2.20	2.20	2.38	0.18
TFA AC-10 + 3% NS 175	3.54E-06	2.59	2.57	2.72	0.15
TFA AC-10 + 18% C107	1.07E-08	3.58	3.25	3.36	0.11
	4.99E-08	3.16	3.07	5.19	0.12
TFA AC-10 + 3% Polydilt	1.38E-13	4.30	4.28	4.59	0.04
District 11 Plant Nixtures					
	2.89F-05	2.40	2.32	2.49	0.17
Texaco AC-10 + 3% UP 70	6.31E-07	2.87	2.77	2.91	0.14
Texaco AC-10 + 3% Styrelf	1.57E-04	2.24	2.13	2.31	0.18
District 25 Plant Mixtures					
Fina AC-10 + 3% Styrelf	1.89E-07	2.95	2.91	3.04	0.13
Fina AC-10 + 3% D1101	2.11E-07	2.99	2.90	3.03	0.13
Fina AC-10 + 6% D1101	1.38E-08	3.30	3.22	3.33	0.11
District 10 Plant Mixtures	7 8/5 0/	4.05			0.00
1 1018L AU-20	7.04E-04	1.95	1.94	2.13	0.20
Fina AL-10 + 3% UP /U	7 DOE-07	1.00	1./0	1.91	0.21
Exton AC-10 + 3% Polyhil+	2.015-03	1 77	1.0/	2 07	0.21
$\frac{1}{10000000000000000000000000000000000$	7.23F-04	1.84	1 05	2.14	0.19
					,

Table 4.3 Comparison of the Fatigue Parameter K2 from Laboratory Tests Conducted in this Study to the Parameter K2 Calculated from the Regression Equation Developed by Kennedy (Ref 33).

Kennedy's Regression Equation: K2 = 1.350 - 0.252 log(K1) (R = 0.95; Se = 0.29)

Regression Equation Developed in this Study: K2 = 1.100 - 0.270 log(K1) (R = 0.99; Se = 0.135)

- 1. The alpha parameter for HMAC normally occurs within the range of 0.07 to 0.63, and gnu is quite variable and may be as high as 2.0. In this study the alpha and gnu ranged from 0.07 to 0.51 and 0.02 to 2.06, respectively.
- 2. Alpha and gnu are very stress-sensitive. Both decreased with increasing deviator stress. In this study all values were obtained at the stress level of about 15 percent of tensile strength.
- 3. Temperature is an important parameter in testing for alpha and gnu. The test temperature for fatigue test was 77°F in this study. Since alpha and gnu are assumed to predict the permanent deformation characteristics of the mixtures, a time-temperature shift function for creep compliance may be used to compute the alpha and gnu in other test temperatures.
- 4. A low alpha and a high gnu indicates increased rutting and vice versa.

Creep Compliance

The results of creep compliance testing for laboratory mixtures bound with blends of TFA asphalt cements and additives (District 15) are shown in Table A-19 and plotted in Figures 4.19. The following trends were observed from Figure 4.19, which presents the average tensile creep compliance at 60°F, 77°F and 90°F:

- All modified AC-10 mixtures responded with a higher creep compliance than the AC-20 mixture at 60°F test temperature.
- 2. The modified AC-20 mixtures showed lower compliance than AC-20 at all test temperature. Therefore addition of Polybilt or Dow to the TFA AC-20 greatly improved high temperature deformation susceptibility.
- 3. The Polysar NS-175 mixtures had higher creep compliance

Fig 4.19 Creep Compliance Curve for Laboratory Mixtures Using Modified Compaction (District 15).

than the TFA AC-20 mixture at low temperature and lower creep compliance than the TFA AC-20 at high temperature. Addition of polymer to the TFA AC-10 or AC-20 improved resistance to permanent deformation of the mixtures.

5. Values of the temperature susceptibility constant (beta) of the TFA mixtures are shown in Table A-21. On the basis of the beta values the laboratory TFA mixtures were ranked in order of ascending temperature susceptibility:

a) TFA AC-10

4.

- b) TFA AC-10 with Styrelf
- c) TFA AC-10 with NS-175
- d) TFA AC-10 with C107
- e) TFA AC-10 with UP-70
- f) TFA AC-20
- g) TFA AC-20 with Dow
- h) TFA AC-20 with Polybilt

It appears that the modified TFA AC-10 mixtures maintained a more stable compliance during temperature change than the TFA AC-20 mixtures.

Creep compliance data for laboratory mixtures composed of additive blends of the Texaco asphalt cement at 60° F, 77° F, and 90° F are shown in Figure 4.20 and tabulated in Table B-19. Here the additives were blended with an AC-10 Texaco asphalt cement, and the control mixture was blended with Texaco AC-20. When comparing the modified AC-10 mixtures with the AC-20 control, the following observations were made:

 The creep compliance of the Styrelf mixture was greater than that of the control at all test temperatures. However, the difference between creep compliance of the Styrelf and control mixtures was more significant at low temperatures than at high temperatures.

Fig 4.20 Modified Compaction (District 11).

- 2. The mixture containing UP-70 had less creep compliance than the control at all test temperatures. This difference was more significant at 90°F at relatively long load duration (greater than 10 minutes). This is an indication that the UP-70 mixtures have lower permanent deformation at high pavement service temperature than the controls.
- 3. The values of beta (temperature susceptibility constant) are shown in Table B-21. Similar to the TFA mixtures, the creep compliance of modified Texaco mixtures are less affected by temperature change than the control (Texaco AC-20).

Creep compliance data for laboratory mixtures utilized in Districts 25 and 10 are shown in Tables C-19 D-19 and plotted in Figures 4-21 and 4-22. From these figures the following trends were observed:

- A review of Figures 4-21 and 4-22 indicates that at short loading times at 90°F the modified Fina AC-10 mixture exhibited compliance values greater than the control mixture (Shamrock AC-20), and the compliance relationships tended to converge at longer loading time at 90°F.
- 2. At low temperatures the compliance values of modified mixtures were all higher compared to the AC-20 controls. This may be an indication that the modified mixtures better relieve the temperature-induced stress than the control.
- 3. Beta values in Table C-21 show that the control (Shamrock AC-20) was less temperature susceptible than the modified mixtures. This trend was not observed in Districts 15, 11 and 10. This result might be due to the fact that Shamrock asphalt cement is less temperature susceptible than Fina's asphalt.

Fig 4.21 Creep Compliance Curve for Laboratory Mixtures Using Modified Compaction (District 25).

Fig 4.22 Creep Compliance Curve for Laboratory Mixtures Using Modified Compaction (District 10).

Tensile Strength Ratio (TSR)

Results of tensile strength ratio for mixtures used in Districts 15, 11, 25 and 10 are shown in Tables A-25, B-25, C-25 and D-25 respectively. The average values of TSR are plotted in Figure 4.23. As shown in this figure, addition of polymers improved moisture damage susceptibility of the mixtures used in District 15, 11 and 10. However, the addition of one percent lime to the mixtures in District 25 masked any moisture effects due to the polymers.

COMPARISON BETWEEN LABORATORY MIXTURES AND PLANT MIXTURES

Considerable differences exist between the HMAC production processes used in the laboratory and those used in a batch or drum mix plant. It is important to look at those differences and understand how and why engineering properties of laboratoryprepared mixtures might differ from engineering properties of plant-mixed mixtures. Those are as follows:

- 1) The degree of hardening of the asphalt cement in the laboratory is much less than that which occurs during mix production at the asphalt plant. Furthermore, the amount of asphalt cement hardening which typically occurs in a drum mix plant is less than that in a pugmill at a batch plant. Of course, the degree of hardening is quite variable and is a function of many factors such as mixing temperature, moisture content of aggregates and rate of production.
- 2) If a collector or baghouse is used as an air pollution control device, in either of the two types of plants, and sends ultrafine aggregates back into the plant, a stable mix in the laboratory can be soft and tender in the field.

3) The aggregates are uniformly heated in the laboratory. However in the plant the coarse aggregates are usually heated to a lower temperature than are the fine aggregates.

This study attempted to determine engineering properties of plant mixtures as a function of engineering properties of laboratory prepared mixtures, test temperature, air voids, mixing temperature and aging indices. Multiple regression analysis was used to achieve that objective. In the process of establishing the regression equations, stepwise regression methods were used to identify variables which had significant effects on the accuracy of the prediction of properties of plant-mixed mixtures from the properties of laboratory-prepared mixtures. Correlations between the laboratory-prepared and plant-mixed results were established for the following engineering properties:

- Marshall Stability and Flow
- Hveem Stability
- Tensile Strength
- Tensile Strain at Failure
- Secant Modulus
- Resilient Modulus
- Fatigue Constants, K1 and K2
- Slope and Intercept of Creep Compliance Curve

Since nonconstant variance was diagnosed at different test temperatures for certain engineering properties, a square root transformation was utilized. Table 4.4 presents the results of the stepwise regression analysis to determine the properties which had significant effects on the accuracy of the prediction of plantmixed properties from the properties of laboratory-prepared mixtures. Table 4.5 presents the regression equations which were derived to predict plant mixed properties. The regression equations contain only the variables which are identified as significant.

Measured Property	PROPERTY OF LABORATORY MIXTURE	TEST TEMP.	AIR VOIDS	MIXING TEMP.	AGING INDEX
Marshall Stability	XXX	N/A			
Marshall Flow	XXX	N/A			
Hveem Stability	XXX	N/A			
Tensile Strength	XXX	XXX	xxx		
Tensile Strain	xxx	xxx		xxx	
Secant Modulus	xxx	XXX	XXX	XXX	
Resilient Modulus	XXX	xxx			
Fatigue Constant, K1	XXX	N/A	N/A		
Fatigue Constant, K2	XXX	N/A	N/A		
Intercept of Creep Curve, D1	XXX		N/A		
Slope of Creep Curve, M	XXX	XXX	N/A		

Table 4.4 Identification of variables which have significant effect on prediction of plant mixed properties.

Note: (XXX) indicates variables which are significant. (---) indicates variables which are not significant at alpha=0.05.

MARSHALL-P = 98 + 0.837 (MARSHALL-L) R = 83.8Se = 482DF = 33MARSHALL FLOW-P = 2.68 + 0.848 (MARSHALL FLOW-L) Se = 2.087R = 85.3% DF = 33HVEEM-P = 11.0 + 0.724 (HVEEM-L) R = 70.8% Se = 3.287DF = 33SQRT(St-P) = 18.6 + 0.0187 (St-L) - 0.359 AV - 0.103 (TEMP)R = 98.4% Se = 1.085DF = 101SQRT(Ef-P) = 0.410 + 0.291 (Ef-L) - 0.0033 (TEMP) - 0.0024 (300 - Tmix)R = 89.8Se = 0.145DF = 101SQRT(Es-P)=17.3 + 0.0202(Es-L) - 0.336 AV - 0.123 (TEMP) - 0.0336(300-Tmix)R = 96.7% Se = 1.638DF = 100SQRT(Er-P) = 28.6 + 0.0103 (Er-L) - 0.170 (TEMP)R = 94.4% Se = 3.884DF = 102LOG(K1-P) = -1.11 + 0.963 (LOG(K1-L))R = 90.6% Se = 1.332DF = 16K2-P = 0.312 + 1.01 (K2-L)R = 88.5% Se = 0.399DF = 16LOG(D1-P) = -1.07 + 0.803 LOG(D1-L)R = 89.4% Se = 0.197DF = 52M-P = -0.292 + 1.03 M-L + 0.00295 (TEMP) R = 83.4%Se = 0.080DF = 51LEGEND P = PLANT $\mathbf{L} = \mathbf{L}\mathbf{A}\mathbf{B}\mathbf{O}\mathbf{R}\mathbf{A}\mathbf{T}\mathbf{O}\mathbf{R}\mathbf{Y}$ St = Indirect Tensile Strength Ef = Tensile Strain at Failure Es = Secant Modulus Er = Resilient Modulus K1 and k_2 = Fatigue Constants M and D1 = Slope and Intercept of Creep Curve

Table 4.5 Regression Equations for Plant Mixed Properties.

COMPARISON OF HAND AND MECHANICALLY MIXED LABORATORY MIXTURES

The primary objective of this section was to investigate the basic mix design procedure, and take into account the type of mixing (hand vs. mechanical) that will take place during the preparation of mixtures in the laboratory, and examine any possible effects due to mixing methods. This study was carried out in order to determine the difference between engineering properties of handmixed and mechanically mixed mixtures, and to determine the best correlation between mixtures prepared in the laboratory, and the asphaltic concrete being made during actual plant production.

The testing program for hand versus mechanically-mixed polymer modified asphalt mixtures is outlined in Table 4.6. As shown in this table, four mixtures were selected from districts 10 and 11. These mixtures contain four different polymers and two types of aggregate (light-weight and crushed stone). Additionally, two mixing and compaction temperatures were used for the hand-mixed mixtures.

Specimen Preparation

Aggregates were batched by dry weight to meet the specified Dry aggregates were preheated to the specified mix gradation. temperature, and the asphalt cement was heated to 275 ± 5 °F. The specified amount of asphalt was then added to the heated The combined mixture was placed in an oven to bring aggregates. the temperature to the required mixing temperature. Two mixing temperatures (275° and 295°F) were used for hand-mixed mixtures. The mixtures were then mixed either mechanically for approximately 3 minutes in an automatic 12-quart capacity Hobert mixer, or by hand using a trowel. Blending of aggregates and polymer modified asphalt cement was continued until aggregates were thoroughly All hand-mixed mixtures required at least two cycles of coated. heating and mixing to coat the aggregate particles thoroughly. The mixtures were then placed in preheated ovens and brought to the proper compaction temperatures (250 \pm 5 or 270 \pm 5°F). Mixtures

Type of Mix	Com. To	Mechanical Mix emp=250 Mix.	ing Γemp=275	Com. Te	Hand Mixed mp=250 Mix.7	Гетр=275	Com. T	Hand Mixed emp=270 Mix.T	emp=295		Plant Mix	
	St 77	Marshall 140	Hveem 140	St 77	Marshall 140	Hveem 140	St 77	Marshall 140	Hveem 140	St 77	Marshall 140	Hveem 140
Texaco AC-10	•		-		-	-		-	-		-	
Styrelf-13	3	3	3	3	3	3	3	3	3	3	3	3
Light-Weight Agg.	-	-	-	-	-	-		-	-	-		
Техасо АС-10	-		-	-	-	-		-	-	-	•	-
Goodyear SBR	3	3	3	3	3	3	3	3	3	3	3	3
Light-Weight Agg.			-	-		-	-	-	-	-		
Exxon AC-10		•	-	-	-	-		-	-	-	-	-
3% EVA	3	3	3	3	3	3	3	3	3	3	3	3
Crushed Stone Agg.	-	-	-	-	-	-		-	-	-	-	-
Gulf AC-10	•	-	-	-	-	-	-	-	-	-	-	-
3% D1101 SBS	3	3	3	3	3	3	3	3	3	3	3	3
Crushed Stone	-	-	-	-	-	-	-	-	-	-		

Table 4.6 Experimental Design for Hand vs. Mechanical Mixing Study (Number of Samples per Data Point)

were compacted using the Texas Gyratory Shear Compactor, and standard compaction techniques were utilized. The standard compaction procedure specified by TXDOT would normally produce 3% air voids in the design mixture containing optimum asphalt cement. After compaction all specimens were cured at room temperature for 2 days. The specimens were then placed in environmental chambers for 15 hours to attain the desired testing temperature.

Specimens were tested using the indirect tensile test, Marshall stability and Hveem stability tests. The test results are summarized in Table 4.7.

Results of laboratory tests conducted on hand-mixed, mechanically-mixed and plant mixtures are listed in Table 4.7 and plotted in Figures 4.24 through 4.26. Analysis of variance (ANOVA) techniques were utilized to determine if significant differences exist between different mixing procedures for each test parameter. In addition, the correlation coefficients between mixing procedures were calculated.

<u>Hveem Stability</u>

Average values of the Hveem stability for the tested mixtures are plotted in Figure 4.24. Analysis of variance using Alpha = 0.05 and the Newman Keul multiple range test showed that there was no significant difference between the mixing procedures. However, the mechanical mixing procedure exhibited higher values of Hveem stability by an average 3% than the hand-mixing procedure.

Marshall Stability

Results of Marshall Stability testing are shown in Table 4.7 and plotted in Figure 4.25. As shown in the figure, mechanical mixtures containing Styrelf and UP-70 exhibited significantly higher values of Marshall Stability than the hand-mixed mixtures containing the same polymers. This trend was not observed for mixtures containing Exxon and Kraton polymers. In addition, no significant difference was observed between those samples handmixed at 275°F and plant mixtures.

	Com. Ten	Hand Mixed np=250 Mix.T	emp=275	Com. Ter	Hand Mixed np=270 Mix.T	emp=295	Com. Ter	Mech. Mix mp=250 Mix.Te	emp=275		Plant Mix	
	Hveem	Marshall	St 77°F	Hveem	Marshall	St.	Hveem	Marshall	St.	Hveem	Marshall	St.
Texaco AC-10	39	1805	98	40	1968	125	42	2206	125	40	2197	155
3% Styrelf-13	37	1710	95	39	2102	132	40	2350	124	40	2002	156
Light-Weight Agg.	<u>38</u>	<u>1812</u>	<u>100</u>	<u>39</u>	2205	<u>109</u>	<u>44</u>	<u>2462</u>	<u>129</u>	<u>38</u>	<u>2214</u>	<u>150</u>
Average	38	1776	98	39	2092	122	42	2339	126	39	2138	153
Техасо АС-10	36	1710	88	39	1950	127	41	2407	159	42	1948	162
Goodyear SBR	· 37	1711	92	40	1728	110	42	2935	150	42	1928	164
Light-Weight Agg.	<u>38</u>	<u>1653</u>	<u>93</u>	<u>37</u>	<u>2210</u>	<u>132</u>	<u>41</u>	<u>2823</u>	<u>148</u>	<u>42</u>	<u>1743</u>	<u>159</u>
Average	37	1691	91	39	1963	123	41	2722	152	42	1873	162
Exxon AC-10	40	871	51	41	925	65	43	983	70	41	865	77
3% EVA	41	1181	50	40	980	49	44	99 0	77	39	792	73
Crushed Stone Agg.	<u>41</u>	<u>811</u>	<u>44</u>	<u>40</u>	<u>820</u>	<u>72</u>	<u>41</u>	÷	<u>70</u>	<u>39</u>	<u>950</u>	<u>72</u>
Averag e	41	959	48	40	908	62	43	987	73	40	869	74
Gulf AC-10	39	1027	64	41	1140	75	42	865	78	42	1294	97
3% D1101 SBS	39	1001	65	37	1065	70	40	93 1	83	43	1122	100
Crushed Stone Agg.	40	<u>1142</u>	<u>62</u>	<u>41</u>	<u>1195</u>	<u>59</u>	<u>45</u>	<u>845</u>	<u>87</u>	<u>41</u>	<u>1043</u>	<u>91</u>
Average	40	1057	63	40	1133	68	42	880	83	.42	1153	96

Table 4.7 Engineering Results of Hand vs. Mechanical Mixing Study

Figure 4.24 Comparison of Hveem Stability for Various Types of Mixing

Tensile Strength

Average values of tensile strength for different mixing procedures are plotted in Figure 4.26. In all cases, the plant mixtures exhibited higher values of tensile strength than other mixtures. On the basis of the descending tensile strength values the mixing procedures can be ranked as follows:

- 1. Plant Mixing
- 2. Mechanical Mixing
- 3. Hand-Mixing at 295°F
- 4. Hand-Mixing at 275°F

It appears that to a certain extent the higher mixing temperature will improve the tensile strength of the hand-mixed mixtures. The coefficients of correlation between different mixing procedures for Hveem, Marshall Stability and tensile strength are shown in Table 4.8. Based on the correlation between hand-mixing and plant mixed materials being generally higher than the correlation between mechanical mixing and plant mixing, one is tempted to recommend hand-mixing at 295°F. However, this conclusion is based only on tensile strength and Marshall Stability measurements, and is not strongly supported by Hveem stability. The data in this study are limited, however, and are not supported by the very extensive Engineering data comparing plant versus mechanically mixed mixtures. These results (which are discussed earlier in this chapter), clearly demonstrate the positive correlations between the engineering properties of plant mixtures and mechanically mixed laboratory mixtures. Regression equations to allow prediction of plant mixed properties from mechanicallymixed samples are shown in Table 4.5. Due to the very laborintensive nature of the hand-mixing process, and the need for repetitive hand-mixing sessions to achieve adequate asphalt coating of aggregates, the opportunity for excessive aging of hand-mixed samples is very real. High variability between different technicians and different laboratories would also be expected due to differences in hand-mixing techniques. This will lead to high variability, and make meaningful comparisons between technicians or

Table 4.8 Correlation Study of Mixing Methods Using ANOVA Techniques

	Hand-Mixed Temp. 275°F	Hand-Mixed Temp. 295°F	Mechanically Mixed	Plant Mixed			
Hand-Mixed Temp. 275°F	1	0.90	0.80	0.01			
Hand-Mixed Temp. 295°F	· _	1	0.50	0.04			
Mechanically Mixed	-	. –	1	0.30			
Plant Mixed	-	_	-	1			

R-Squared for Hveem Stability

R-Squared for Marshall Stability

	Hand-Mixed Temp. 275°F	Hand-Mixed Temp. 295°F	Mechanically Mixed	Plant Mixed
Hand-Mixed Temp. 275°F	1	1.00	0.92	0.98
Hand-Mixed Temp. 295°F		1	0.90	0.99
Mechanically Mixed	-	-	I	0.83
Plant Mixed	-	-	-	1

R-Squared for Indirect Tensile

	Hand-Mixed Temp. 275°F	Hand-Mixed Temp. 295°F	Mechanically Mixed	Plant Mixed
Hand-Mixed Temp. 275°F	1	0.95	0.82	0.96
Hand-Mixed Temp. 295°F	-	I	0.92	0.98
Mechanically Mixed	-	-	1	0.95
Plant Mixed	-	_	-	1
laboratories more difficult. For these reasons, the use of handmixing techniques for preparing laboratory mixtures is not recommended.

CHAPTER 5

EVALUATION OF EFFECTS OF POLYMERS AND COMPARISON OF TEST METHODS

Several binder and mixture tests were used to evaluate properties of the binders and mixtures used in this study. The following three distress categories were evaluated:

- 1) Thermal cracking
- 2) Permanent deformation
- 3) Fatigue cracking

Currently several different binder and mixture properties are used by researchers to evaluate the susceptibility of an asphalt pavement to each of these distresses. In the course of this study eleven binder or mixture properties evaluation measured for of thermal were cracking Nine binder or mixture properties were susceptibility. measured for evaluation of permanent deformation. Only one test, the repeated load (indirect), was used for fatigue cracking evaluation due to equipment limitations at the University of Texas laboratories.

The effect of polymers on each test parameter and range of values measured for each test parameter were determined. In addition a comparison was made between various test methods in each distress category. Results of these analyses are presented in this chapter.

EFFECTS OF POLYMERS ON MEASURED PROPERTIES

Results of numerous binder laboratory tests have been presented in Chapter 3 for both control and polymer modified asphalts. These results suggest that certain

tests may be better than others in identifying the presence of polymers in asphalt cement. More importantly, some of these tests should be better predictors of modified pavement performance when correlation between field performance and laboratory test results are obtained. Table 5.1 is a summary of the average range of values obtained for each test parameter for control and modified binders. Table 5.2 presents the effects of polymers on the test parameters. By reviewing Table 5.2, it can be easily determined whether addition of a given polymer causes an increase (I), decrease (D) or has no effect (E) on the asphalt cement. A brief discussion of results shown in Tables 5.1 and 5.2 will follow.

<u>Penetration</u>. The effect of polymer on penetration at 39°F was not statistically significant. At 77°F, certain polymers decreased penetration. Therefore, this test is not effective in characterizing polymer modified binders at 39°F. However, this test is required for determination of parameters such as Penetration index (PI) and Penetration viscosity number (PVN) which do distinguish between control and modified binders.

<u>Viscosity.</u> All materials tested demonstrated non-Newtonian behavior. Therefore unless the shear rate during testing is known, viscosity comparison between materials cannot be performed. In an attempt to determine the viscosity at a constant rate of shear, the shear susceptibility and viscosity at a shear rate of 1 reciprocal second were measured at different temperatures using a constant stress rheometer. The power law formula, $\eta = \eta_{01} \gamma^{c-1}$ was used to determine viscosity at a desired shear rate. The other method to compare viscosity is the constant power viscosity, which was described in Chapter 2. As shown in Tables 5.1 and 5.2, addition of polymer caused an increase

Test Parameter	TFA AC-10	AC-20	Modified AC-10	Modified AC-20
Penetration , 77 F	102	67-74	79-101	66 -70
39 F	15	9-10	13-16	10
Viscosity, 140 F	1131	1998-2375	1311-8127	3296-5198
Kinematic Viscosity, 275	297	416-624	495-1013	919-1202
Constant Power Viscosity, 39 F	2.76E+07	5.13E07-7.18E07	3.74E07-4.69E08	5.76E07-1.01E8
77 F	1.12E+05	2.87E05-3.70E05	2.14E05-6.01E05	3.6E05-7.55E05
140 F	9.65E+01	1.68E02-1.95E02	1.24E02-1.00E03	2.74E02-3.68E02
Viscosity-Temp. Susceptibility	-0.096	(-0.100)-(-0.096)	(-0.103)-(-0.085)	(-0.098)-(-0.093)
Softening Point	117	126-128	122-147	133-139
Penetration Index PI(pen/pen)	-0.18	(-0.43)-(-0.23)	(-0.11)-(1.06)	(-0.04)-(0.17)
Penetration Index Pl(pen/sp)	-0.04	0.19-0.62	0.46-3.92	0.98-1.66
i Penetration Viscosity Number	-0.72	(-0.60)-(-0.03)	G. 02-1.25	0.62-0.96
 Shear Susceptibility, 39 F	0.60	0.49-0.65	0.53-1.28	0.51-0.51
1 77 F	0.88	0.66-0.80	0.68-1.15	0.52-0.63
140 F	0.94	0.83-0.89	0.70-1.02	0.71-0.78
א Asphalt Stiffness ם 0.1 sec, 39	F 5075	6525 <i>-7</i> 540	943 -4785	4640-5800
77	F 160	290-334	145-247	319-363
104	F 12	23-36	15-46	33-54
Stiffness-Temp. Susceptibility	-0.073	(-0.69)-(-0.063)	(-0.068)-(-0.041)	(-0.062)-(-0.054)
 Penetration Retained 	0.63	0.59-0.68	0.57-0.75	0.65-0.70
I Viscosity Ratio I	2.65	2.60-3.55	1.69-3.00	6.08-7.97
/ [Kinematic Viscosity Ratio	1.56	1.43-1.80	1.04-1.94	1.94-1.99
l Cracking Temperature	-48	(-44)-(-41)	(-74)-(-45)	(-48)-(-43)
l Maximum True Stress	60	6 0-120	75-595	174-289
l Maximum True Strain	2.95	2.23-2.44	1.39-3.73	2.28-2.46
 Area under Stress-Strain Curve	115	83-136	125-473	198-363
l Asphalt Modulus	146	242-472	115-296	346-413
 Asphalt-Polymer Modulus	-	-	50-819	0.0-205

,

Table 5.1 Parameter Range for Modified and Control Asphalts before RTFOT

Test Persenter		680			Rubber
	383	SBK	SBR/POLYOLETIN	EVA	C107
Penetration , 77 F	E	E,D	D	E	D
39 F	E	E	E	E	E
Viscosity, 140 F	I	I	I	I	I
Kinematic Viscosity, 275	I	I	I	I	I
Constant Power Viscosity, 39 F	I	I	D	I	I
77 F	I	I	I	I	I
140 F	1	I,	I	I	I
Viscosity-Temp. Susceptibility	E	E	D	D	E
 Softening Point 	I	1	I	1	I.
Penetration Index	I	I	I	I	I
Penetration Viscosity Number	I	I	I .	I	
 Shear Susceptibility, 39 F	I	I	D	D	Ε
77 F	I	E,D	D	D	D
140 F	I	Ε,Ι	D	D	D
Stiffness Modulus, 39 F	D	D	D	D	D
77 F	I	I.D	ī	I	ī
104 F	I	I	I	I	I
Stiffness-Temp. Susceptibility	D	E,D	D	D	D
Penetration Retained	I	I	E	I	-
Viscosity Ratio	D	I	I	I	-
Kinematic Viscosity Ratio	D	D	I	I	-
Power Viscosity Ratio, 39 F	I	I,D	D	D	-
77 F	D	D	D	D	-
140 F	D	I	I	I	-
Cracking Temperature	I	E	I	E	I
Maximum True Stress	I	E,I	I	I	I
Maximum True Strain	E	I	E	E	D
Area under Stress-Strain Curve	I	I	I	I	E
Asphalt Modulus	I	I	I	E	I
Asphalt-Polymer Modulus	I	I	E	I	I

Table 5.2 Effect of Polymers on the Properties of TFA Asphalt Cement before RTFOT

in viscosity at all test temperatures. In addition, temperature susceptibility, as measured by changes in viscosity with changes in test temperature, was evaluated. Only EVA and Dow polymers caused a decrease in the Viscosity-temperature susceptibility. Other polymers did not change this parameter significantly.

<u>Softening Point.</u> All polymers caused an increase in the softening point. Therefore, this test parameter may be used to determine characteristics of polymer modified binders.

<u>Penetration Index (PI) and Penetration Viscosity Number</u> <u>(PVN).</u> Penetration Index and Penetration Viscosity Number increased through the addition of polymers. This indicates that modified asphalt binders are less temperature susceptible than the controls. The range of penetration index and penetration-viscosity number values for modified and unmodified binders are shown in Table 5.1.

Shear Susceptibility. Polymer modified binders evaluated in this study were generally shear thinning liquids. However, not all combinations of the materials tested This behavior is a desirable demonstrated this behavior. trait during construction. Polymer modified binders showed high viscosity at the low shear rates applied in the laboratory. If these materials were not shear thinning, mixing temperature during construction would have to be significantly increased to ensure proper handling. However, the shear thinning characteristics will cause a significant reduction in viscosity at high shear rates experienced during construction. Therefore, mixing temperatures do not need to be increased significantly.

Stiffness modulus. It would be desirable for paving binder

to have low stiffness at low temperatures and high stiffness at high temperatures. Polymers used in the study generally reduced stiffness at low temperatures and increased stiffness at high temperatures. Therefore, stiffness-temperature susceptibility of the polymer modified binders were less than the controls. This effect is shown in Table 5.2. The range of stiffness and stiffness-temperature susceptibility values for modified and control binders are shown in Table 5.1.

<u>Aging Index.</u> SBS polymers generally reduced the aging index. The effect of other polymers on aging index is not as clear. Table 5.1 shows the range of aging indices for modified and control binders.

<u>Cracking Temperature.</u> Thermal cracking was improved by the addition of SBS, Dow and Genstar C107 polymers. Low temperature cracking obtained by the critical stress method or limiting stiffness method did not seem to be realistic as related to performance. These methods indicated extremely low cracking temperatures such as -60°F. However, these methods may be utilized when comparison between materials is desired.

Maximum Tensile Stress and Strain. Maximum tensile stress and strain should be very useful in identifying characteristics of modified binders. The limits of tensile strength and tensile strain for modified and control binders are shown in Table 5.2. The modified binders studied generally had much higher tensile strength and tensile strain than their control asphalts. This may indicate high performance binders for use in paving construction.

Area Under Stress-Strain Curve. All polymers except the

rubber (C107) increased the amount of work required (area under stress-strain curve) to break the binder at 39°F in force-ductility testing. This parameter is the forceductility counterpart to "toughness" in the toughness and tenacity test.

<u>Asphalt Modulus.</u> The polymers studied generally caused an increase in asphalt modulus. However, polymer modified AC-10 binders generally demonstrated lower asphalt modulus than AC-20 controls. Desirable cold temperature properties would include a material with low modulus, high tensile strength and high strain at failure.

<u>Asphalt-Polymer Modulus.</u> This parameter may be useful in determining whether an asphalt has been polymer modified. The control asphalts did not demonstrate secondary loading during the force-ductility test. Existence of secondary loading during the force-ductility test generally indicates that the asphalt has been polymer modified. The range of values are shown in Table 5.1.

COMPARISON OF TEST METHODS

Several different tests were used to evaluate the thermal cracking, permanent deformation and temperature susceptibility of binders and corresponding mixtures. These tests are currently used in the paving industry for determining performance characteristics of paving binders and mixtures. However, they do not always give the same performance prediction. In this portion of the study each binder or mixture in a given district was ranked according to its influence on pavement performance as predicted by each test property. Results of the ranking are shown in Table 5.3 through 5.5 for thermal cracking, permanent deformation and temperature susceptibility, respectively.

DISTRICT	PI (pen/pen)	PI (pen/sp)	PVN	STIFFNESS TEMP SUSCEP.	VIS. TEMP. SUSCEP.
15	AC-20	AC-10	AC-10	AC-10	NS-175
15	AC-10	AC-20	AC-20	AC-20	AC-20
15	NS-175	NS-175	NS-175	NS-175	POLYBILT
15	UP-70	UP-70	UP-70	UP-70	UP-70
15	POLYBILT	POLYBILT	POLYBILT	POLYBILT	AC-10
15	DOW	DOW	STYRELF	DOW	STYRELF
15	STYRELF	STYRELF	DOW	STYRELF	DOW
15	GENSTAR	GENSTAR		GENSTAR	GENSTAR
11	AC-20	AC-20	AC-20	AC-20	UP-70
11	UP-70	UP-70	STYRELF	UP-70	AC-20
11	STYRELF	STYRELF	UP-70	STYRELF	STYRELF
25	AC-20	AC-20	AC-20	AC-20	3% KRATON
25	STYRELF	STYRELF	3% KRATON	STYRELF	6% KRATON
25	3% KRATON	3% KRATON	STYRELF	3% KRATON	AC-20
25	6% KRATON	6% KRATON	6% KRATON	6% KRATON	STYRELF
10	AC-20	AC-20	AC-20	AC-20	
10	UP 70	UP 70	UP 70	POLYBILT	-
10	POLYBILT	STYRELF	POLYBILT	STYRELF	-
10	STYRELF	POLYBILT	STYRELF	UP 70	-
10	KRATON	KRATON	KRATON	KRATON	-

Table 5.3 Comparison of Test Methods Used in Temperature Susceptibility Evaluation.

Note: Binders and mixtures are listed in ascending order of reducing temperature susceptibility as measured by each test method in a given district.

 DISTRICT 	VISCOSITY 39 F 	MAXINUM TRUE STRESS 39 F	MAXIMUM TRUE STRAIN 39 F	ÇURVE AREA 39 F	ASPHALT MODULUS 39 F	STIFFNESS MODULUS 39 F	CRACKING TEMPERATURE	TENSILE STRENGTH 39 F	TENSILE STRAIN 39 F	SECANT MODULUS 39 F	RESILIENT MODULUS 39 F
15	POLYBILT	AC-10	GENSTAR	AC-10	DOW	AC-20	AC-20	AC-20	AC-20	AC-20	POLYBILT
15 15	STYRELF	UP-70 AC-20	DOW AC-20	AC-20 GENSTAR	POLYBILT	POLYBILT AC-10	POLYBILT NS-175	STYRELF	POLYBILT DOW	POLYBILT	STYRELF AC-10
15	GENSTAR	NS-175	POLYBILT	UP-70	NS-175	NS-175	AC-10	DOW	UP-70	UP-70	AC-20
15 15	NS-175 DOW	GENSTAR DON	STYRELF AC-10	DOW NS-175	GENSTAR Styrelf	00W UP-70	DOW UP-70	NS-175 UP-70	NS-175 AC-10	NS-175 AC-10	UP-70 NS-175
15 15	UP-70	POLYBILT	UP-70 NS-175	POLYBILT	UP-70 AC-10	GENSTAR STYRELF	GENSTAR	POLYBILT	STYREL F GENSTAR	STYRELF	DOW
	<u> </u>										
11	AC-20	AC-20 UP-70	AC-20 STYRELF	AC-20 UP-70	AC-20 UP-70	AC-20 UP-70	AC-20 UP-70	UP-70 STYRELF	0P-70 AC-20	UP-70 AC-20	AC-20 UP-70
11 ···	STYRELF	STYRELF	UP-70	STYRELF	STYRELF	STYRELF	STYRELF	AC-20	STYRELF	STYRELF	STYRELF
25	3% KRATON	AC-20	AC-20	AC-20	AC-20	AC-20	AC-20	STYRELF	AC-20	AC-20	AC-20
25	AC-20	STYRELF 3% KRATON	6% KRATON STYRELF	STYRELF 6% KRATON	3% KRATON Styrelf	STYRELF 3% KRATON	STYRELF 3% KRATON	3% KRATON AC-20	STYRELF 3% KRATON	STYRELF 3% KRATON	3% KRATON Styrelf
25 	STYRELF	6% KRATON	3% KRATON	3% KRATON	6% KRATON	6% KRATON	6% KRATON	6% KRATON	6% KRATON	6% KRATON	6% KRATON
10	-	-	-	-	-	AC-20	AC-20	UP 70	UP 70	UP 70	STYRELF
10 10	-	•	•	-	•	UP 70	UP 70	STYRELF	AC-20	STYRELF	AC-20
10		•		•		STYRELF	POLYBILT	AC-20	KRATON	KRATON	UP 70
10	-	•	•	•	-	KRATON	KRATON	POLYBILT	POLYBILT	POLYBILT	POLYBILT

Table 5.4 Comparison of Test Methods used in Thermal Cracking Evaluation.

Note: Binders and mixtures are listed in ascending order of reducing thermal cracking susceptibility as measured by each test method in a given district.

DISTRICT		STIFFNESS	MARSHALL	HVEEM STARILITY	TENSILE	SECANT	RESILIENT	ALPHA 77 F	
DISTRICT					104 F	104 F	104 F		1000 sec.
15	_ AC-10	AC-10	AC-10	UP-70	AC-10	GENSTAR	GENSTAR	AC-10	AC-10
15	NS-175	UP-70	STYRELF	STYRELF	GENSTAR	AC-10	AC-10	AC-20	STYRELF
15	UP-70	NS-175	UP-70	AC-10	UP-70	STYRELF	STYRELF	NS-175	NS-175
15	AC-20	AC-20	GENSTAR	GENSTAR	STYRELF	UP-70	NS-175	UP-70	UP-70
15	POLYBILT	STYRELF	POLYBILT	POLYBILT	NS-175	NS-175	UP-70	GENSTAR	GENSTAR
15	STYRELF	POLYBILT	DOW	DOW	POLYBILT	POLYBILT	POLYBILT	STYRELF	AC-20
15	DOW	GENSTAR	NS-175	NS-175	AC-20	AC-20	AC-20	POLYBILT	POLYBILT
15	GENSTAR	DOW	AC-20	AC-20	DOW	DOW	DOW	DOW	DOW
11		UP-70	STYRELF	STYRELF	STYRELF	STYRELF	STYRELF	UP-70	STYRELF
11	UP-70	STYRELF	AC-20	UP-70	AC-20	UP-70	UP-70	AC-20	AC-20
11	STYRELF	AC-20	UP-70	AC-20	UP-70	AC-20	AC-20	STYRELF	UP-70
25	AC-20	STYRELF	AC-20	6% KRATON	AC-20	6% KRATON	6% KRATON	AC-20	6% KRATON
25	STYRELF	AC-20	6% KRATON	STYRELF	6% KRATON	3% KRATON	3% KRATON	3% KRATON	STYRELF
25	3% KRATON	3% KRATON	STYRELF	AC-20	3% KRATON	STYRELF	STYRELF	STYRELF	3% KRATON
25	6% KRATON	6% KRATON	3% KRATON	3% KRATON	STYRELF	AC-20	AC-20	6% KRATON	AC-20
10	 AC-20	STYRELF	POLYBILT	POLYBILT	POLYBILT	KRATON	STYRELF	KRATON	AC-20
10	UP 70	POLYBILT	KRATON	KRATON	KRATON	POLYBILT	UP 70	UP 70	POLYBILT
10	POLYBILT	KRATON	AC-20	AC-20	UP 70	STYRELF	POLYBILT	STYRELF	KRATON
10	STYRELF	AC-20	UP 70	STYRELF	STYRELF	UP 70	KRATON	AC-20	STYRELF
10	KRATON	UP 70	STYRELF	UP 70	AC-20	AC-20	AC-20	POLYBILT	UP 70

ι.

Table 5.5 Comparison of Test Methods used in Permanent Deformation Evaluation.

Note: Binders and mixtures are listed in ascending order of reducing permanent deformation susceptibility

as measured by each test method in a given district.

<u>Temperature Susceptibility.</u> Table 5.3 shows the ranking of binders which reflect their temperature susceptibility. Five parameters, PI (Pen/Pen), PI (Pen/Sp), PVN, stiffnesstemperature slope and viscosity-temperature slope were used in determining temperature susceptibility. As shown in Table 5.3, PI (Pen/Pen), PI (Pen/Sp) PVN and the stiffness temperature slope will generally produce the same ranking or performance prediction. Therefore, only one of these parameters needs to be evaluated in future studies.

<u>Thermal Cracking.</u> Table 5.4 shows the ranking of binders and their corresponding mixtures as related to thermal cracking. Eleven parameters were used in determining thermal cracking susceptibility. As shown in Table 5.4, maximum strength at 39°F and the area under the stress strain curve yielded approximately the same ranking. In addition, stiffness at 39°F and cracking temperature also yielded approximately the same ranking. For mixture tests, tensile strain and secant modulus at 39°F produced exactly the same ranking.

<u>Permanent Deformation.</u> Table 5.5 shows the ranking of binders and mixtures as related to permanent deformation. The nine parameters shown in Table 5.5 were used to determine the susceptibility to permanent deformation . Viscosity at 140°F and stiffness at 104°F yielded approximately the same ranking. In addition, tensile strength at 104°F and secant modulus at 104°F also produced approximately the same ranking.

At the present time, the actual field performance of these binders has not been determined due to the short inservice life of the test sections. When actual field performance evaluations are completed, it will be possible to identify tests which best predict field performance. After identifying tests which predict pavement performance, mix design criteria can be established with the aid of the data presented in previous chapters.

CHAPTER 6

CONCLUSIONS

During the course of this study, 20 hot mix test sections were constructed in four districts of the Texas Department of Transportation. Seven different polymers were utilized in the study. The polymer modified asphalt binders and their corresponding HMAC mixtures were evaluated in a comprehensive These materials were studied to evaluate the testing program. effects of polymers on the properties of both the asphalt and HMAC In addition, several tests were evaluated in order to mixtures. determine the effectiveness of these test methods in characterizing polymers. Once the field performance of the test sections is determined after long-term performance evaluations, the results presented in this report can be used to develop a comprehensive mixture design and analysis method for polymer-modified hot-mixed asphalt concrete.

Based on the conditions of this study and the results of the data analysis the following conclusions appear warranted:

A. <u>Test Method</u>

- Both the empirical and the fundamental tests evaluated in this study may be useful for identifying polymer-modified binder properties. However, viscosity tests (ASTM D2170 and ASTM D2171) are inadequate in characterizing the polymer modified binders unless the shear rate is measured. All modified binders demonstrated non-Newtonian behavior.
- 2. Conventional capillary viscometer tests may provide misleading results for mixing and compaction temperatures of asphalt concrete due to the differences in shear rate which exist between mixing plants and capillary

viscometers. Most polymer-modified binders show shearthinning behavior. Therefore these binders exhibited low viscosity at the high shear rates which exist in plant production processes.

- 3. The Schweyer constant stress rheometer is a reliable testing device for the evaluation of rheological properties of binders. It is possible to construct flow diagrams over a wide range of shear stress, rate of shear, and test temperature using this rheometer.
- 4. Constant power viscosity eliminates the need for excessive extrapolation of viscosity from one shear rate to another. This parameter can be used for comparison of binder viscosity, particularly at low temperatures.
- 5. The flow behavior of the binders used in this study can be described by the power law formula.
- 6. At a given shear rate viscosities obtained with the capillary tube viscometer and the Schweyer Rheometer are comparable.
- 7. As a result of this study, a comparison is made between various test methods which are commonly used to predict thermal cracking, permanent deformation and temperature susceptibility. This comparison may help to identify tests which predict field performance after actual field performance data is obtained.

B. <u>Binder Properties</u>

- Temperature susceptibility is significantly decreased for modified binders as measured by either penetration index or penetration viscosity number.
- The addition of polymers decreased stiffness temperature susceptibility. The effect was very pronounced for both the SBS and Genstar C107.
- 3. The Genstar C107 and SBS polymers appear to be very

effective in lowering the predicted pavement cracking temperature, but for the asphalt rubber this may not be directly linked to the polymer itself. This is due to the presence of up to 30% light oils in the ground tire rubber.

- 4. Rolling thin film oven aging generally affected properties of SBS binders less than SBR binders.
- 5. The addition of polymers significantly increased tensile strength and the area under stress-strain curves of the binder. This may indicate a higher resistance to cracking of these binders.
- 6. Of all polymer-modified binders evaluated, only Dow did not exhibit the second slope in the stress-strain curve. This may indicate the non-compatibility of the polymer and asphalt cement.
- 7. The binders tested in this study exhibited non-Newtonian flow behavior. The degree of non-Newtonian flow increased with RTFOT aging, and decreased as the test temperature increased.

C. <u>Mixture Properties</u>

- Hveem stability of mixtures was not significantly affected by the polymers. Although Hveem stability is quite sensitive to changes in binder quantity, it is not sensitive to changes in rheological properties of the binder.
- 2. Polymers generally increased the Marshall Stability of mixtures containing AC-10 asphalt cements up to that of the AC-20 control mixtures.
- 3. Indirect tension test results showed that polymers generally increased the mixture tensile strength and secant modulus at the high temperatures. This may indicate an improved resistance to permanent deformation.

However, resilient modulus of mixtures was not significantly affected by the addition of polymers. Tensile strain at failure of modified AC-10 mixtures were significantly higher than that of the AC-20 controls at low temperatures. This may be indicative of improved resistance to thermal cracking where modified AC-10 is used instead of AC-20 asphalt cement.

- 4. The polymers used in this study, especially SBS, improved moisture damage resistance of the mixture. Addition of 1% lime to the mixtures in District 25 masked the effect of the polymers due to the high tensile strength ratio (TSR) exhibited by mixtures due to lime addition.
- 5. Fatigue response of mixtures containing AC-10 plus a polymer was generally superior or equal to the control mixtures which contain AC-20 with no polymer. The Styrelf and Genstar C107 had the greatest improvement in fatigue response among the polymers used in this study.
- 6. A linear regression relationship between log K_1 and K_2 (fatigue constants) was developed as follows: $K_2 = 1.110 - 0.270 \log K_1$ R = 0.986 Se = 0.135
- 7. Indirect tensile creep testing showed that addition of polymer to mixtures improved permanent deformation resistance. SBR modified binders showed more improvement than SBS modified binders.

D. <u>Plant Mixed vs. Laboratory Mixed Properties</u>

 Stepwise regression analysis was performed to predict engineering properties of plant mixed mixtures from engineering properties of laboratory prepared mixtures. Other factors such as mixing temperature, air voids, test temperature and aging indices were also included in the regression analysis. It was found that for engineering properties such as Marshall Stability, Marshall Flow, Hveem Stability, Tensile Strength, Tensile strain at failure, secant modulus, resilient modulus, fatigue constants and intercept and slope of creep compliance curve, the laboratory prepared mixture properties may be used to predict properties of plant mixed HMAC.

APPENDIX A

PRESENTATION OF TEST RESULTS - DISTRICT 15

APPENDIX A

PRESENTATION OF TEST RESULTS - DISTRICT 15

The objectives of Appendix A are twofold: (1) to describe the site-specific field operations of the test sections along with a description of the materials, polymers, and construction techniques used for this field project, and (2) to present the laboratory test results of the unmodified and modified binders and laboratory mixed and plant mixed mixtures for the experimental field study in District 15 of the Texas Department of Transportation (TxDOT).

EXPERIMENTAL FIELD PROGRAM

The test pavements were constructed on US 281 in Comal County, Texas, in April 1987, and involved pavement overlay of one lane of the highway. The test sections are shown schematically in Figure A-1. Each test section was approximately one to one and a half inches thick, twelve feet wide, and 1500 feet long. A total of seven test sections were constructed with six different polymers plus a control. Field construction was conducted by District 15 of the TxDOT and assisted by the Center for Transportation Research, the University of Texas at Austin. The average daily traffic (ADT) was estimated at 2650 vehicles for the test pavement.

MATERIALS

<u>ASPHALT CEMENT.</u> AC-10 and an AC-20 asphalt cements were supplied by Texas Fuel and Asphalt of Corpus Christi, Texas, and used throughout this project.

<u>AGGREGATE.</u> Four aggregates, a grade No. 4 sandstone, a grade No. 5 limestone, a limestone screening, and a field sand, were combined

to produce the project gradation. Gradations of individual aggregates, the project gradation, percentage of each aggregate, and the gradation specifications are given in Table A-1. The project gradation is plotted on a 0.45 power graph in Figure A-2.

POLYMER. Six polymers included in this field project consisted of two types of Styrene Butadiene Rubber (SBR), one type of Styrene block copolymer (SBS), а combination of SBR latex and functionalized Polyolefin, an Ethylene Vinyl Acetate (EVA), and recycled tires (rubber). Sources of these polymers and designations used for this study are shown below.

SOURCE	TYPE	DESIGNATION
Goodyear	SBR	UP 70
Polysar	SBR	NS 175
Elf	SBS	Styrelf-13
Dow	SBR/Polyolefin	-
Exxon	EVA	Polybilt 103
Crafco	Recycled tires	Genstar C107

Blending of the asphalts and the polymers was performed by the polymer manufacturers or processors in the refinery or in a distributor truck. No polymer was introduced into the asphalt in-line injection system of the plant.

<u>Styrene Butadiene Rubber.</u> Styrene Butadiene latices are available in a wide variety of monomer proportions, molecular weight ranges, emulsifier types and other variations. Two products specifically recommended for use in hot mix asphalt concrete, UP-70 and NS- 175, were included in this field project. The latex UP-70 and the polysar NS-175 were supplied by Textile Rubber and Chemical Co. and BASF Co., respectively. The total amount of the UP-70 and the NS-175 used in the TFA AC-10 was 3 percent in each blend.

Styrene Butadiene Styrene. The Styrelf-13 utilized was a

copolymer of Styrene and Butadiene. The Styrelf modified binder was blended by Elf Asphalt Co. with the TFA AC-10 at 3% polymer by weight of total binder.

<u>SBR/Polyolefin.</u> This polymer, a combination of a SBR latex and a functionalized polyolefin, was supplied by Dow Chemical Co. The modified binder contained 5 percent polymer (2 percent polyolefin and 3 percent SBR solids) and 95 percent TFA AC-20.

Ethylene Vinyl Acetate. The polybilt 103, a copolymer of Ethylene Vinyl Acetate (EVA), was obtained from Exxon Chemical Co. This polymer had a permanent polarity which was associated with the acetate group. The modified binder contained 97 percent TFA AC-20 and 3 percent polybilt 103.

<u>Rubber.</u> The Genstar C107 obtained from Crafco Co. consisted of chiefly vulcanized SBR or polyisoprene. Blending of the TFA AC-10 and the Genstar C107 was done in a distributor truck in the plant at 350°F at high shear. The blend which contained 18 percent rubber (Genstar C017) by the weight of binder resulted in a highly viscous and tacky asphalt binder.

FIELD OPERATION

Approximately 600 tons of each mix was produced using a batch plant. Identical aggregates were utilized throughout the experiment. Two grades, AC-10 and AC-20, of TFA asphalt cement were utilized. The Ultra Pave 70 (3 percent), Genstar C107 (18 percent), Polysar NS-175 (3 percent) and Styrelf-13 (3 percent) were blended with the TFA AC-10. The Dow (5 percent) and Polybilt 103 (3 percent) were preblended with the TFA AC-20.

Mixing temperature for the Polybilt 103, NS 175, Styrelf-13 and Dow mixtures was about 320°F and was increased to about 340°F for the Genstar C107 and UP-70 mixtures. The control asphalt, TFA

AC-20, was mixed at 315°F. The initial breakdown compaction occurred between 250°F and 270°F except for the Polybilt 103 mixtures. The polybilt modified mixtures were allowed to cool down to between 220°F and 230°F before rolling, and at these temperatures the mixtures exhibited good handling characteristics. The Genstar C107 modified mixtures were noticeably stiffer than the other mixtures and did not lay as smoothly. The mixtures containing UP-70 showed problems during construction. These problems were confined to the mixture sticking to the dump trucks during delivery and workability through the paver. Compaction of each test section was achieved using a vibratory roller, a pneumatic roller and a steel wheel roller. Environmental conditions during construction were favorable, with early morning temperatures of approximately 70°F and afternoon temperatures of 95°F.

Twelve field cores were obtained from each test section soon after the construction. These cores were approximately 4-inches in diameter and one to one and a half inches in thickness. The field cores were transported to the Center for Transportation Research immediately after sampling.

PRESENTATION OF TEST RESULTS

Summaries of test results for the unmodified and modified binders are presented in Tables A-6 through A-8 and are plotted in Figures A-3 through A-47.

Summaries of test results for the unmodified and modified mixtures are presented in Tables A-9 through A-26 and are plotted in Figures A-48 through A-67.

	Sandst	one	Limest	one	Limest	:one nijngs	Field	Sand		
	Siev e Analysis	31%	Sieve Analysis	27%	Sieve Analysis	19%	Sieve Analysis	23%	- Combined Gradation	SDHPT Specification
Plus 1/2 in.	0,0	0,0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0
1/2 to 3/8 in	33,0	10,2	0.0	0,0	0.0	0.0	0.0	0.0	10.2	0-15
3/8 to No. 4	57,1	17,7	50.5	13,6	0.0	0.0	0.0	0.0	31.3	21-53
No. 4 to No. 10	7,5	2,3	47.1	12,7	18.3	3.5	0.1	0.0	18.5	11-32
Plus No. 10									60.1	54-74
No. 10 to No.40	0,5	0.2	1.3	0,4	54.4	10.3	12.2	2.8	13.6	6-32
No. 40 to No. 80	0.1	0.0	0.1	0,0	16.5	3.1	62.6	14.4	17.6	4-27
No. 80 to No. 200	0.3	0.1	0.5	0.1	7.6	1.4	21.4	4.9	6.6	3-27
Minus No. 200	1.5	0.5	0.5	0.1	3.2	0.6	3.7	0.9	2.1	1-8
 Total	100,0	31.0	100.0	27,0	100.0	19.0	100.0	23.0	100.0	

. ·

.

Table A I Addreamic annohiton (District 12)	Table A-1	AGGREGATE	GRADATION	(DISTRICT	15)
---	-----------	-----------	-----------	-----------	-----

•

			Penetr	ation		Visco	osity		Softening	Force Ductility		5	Schweyer	Rheolo	уgy	
Bi	nder	Before	RTFOT	After RTFOT	Before	RTFOT	After	RTFOT	Before	39.2 F	Before	RTFO	r		Afte	r RTFOT
Asphalt	Polymer	39. 2 F	77 F	77 F	140 F	275 F	140 F	275 F	RIFUI		39 F	77 F	140 F	39 F	77 F	140 F
TFA AC-10		2	2	2	2	2	2	2	2	2	1	1	1	1	1	1
TFA AC-10	Goodyear UP 70	2	2	2	2	2	2	2	2	2	1	1	1	1	1	1
TFA AC-10	Styrelf-13	2	2	2	2	2	2	2	2	2	1	1	1	1	1	1
TFA AC-10	Polysar NS 175	2	2	2	2	2	2	2	2	2	1	1	1	1	1	1
TFA AC-10	Crafco Genstar C10	7 2	2	2	2	2	2	2	2	2	1	1	1	1	1	1
TFA AC-20	•	2	2	2	2	2	2	2	2	2	1	1	1	1	1	1
TFA AC-20	Exxon Polybilt 10	3	2	2	2	2	2	2	2	2	1	1	1	1	1	1
TFA AC-20	Dow	2	2	2	2	2	2	2	2	2	1	1	1	1	1	1

TABLE A-2 Experimental Testing Program for Unmodified and Polymer-Modified Asphalt Binders Number of Test Repetitions (District 15)

			Penetr	ation		Visco	sity	~	Softening	Force Ductility		9	Schweyer	Rheolo	уgy	
Bi	nder	Before	RTFOT	After RTFOT	Before	RTFOT	After	RTFOT	Before	39.2 F	Before	RTFO	1		Aft	er RTFOT
Asphalt	Polymer	39.2 F	77 F	77 F	140 F	275 F	140 F	2 7 5 F	RIFUI		39 F	77 F	140 F	39 F	77 F	140 F
TFA AC-10	-	2	2	2	2	2	2	2	2	2	1	1	1	1	1	1
TFA AC-10	Goodyear UP 70	2	2	2	Ź	2	2	2	2	2	1	1	1	1	1	1
TFA AC-10	Styrelf-13	2	2	2	5	2	2	-2	2	2	1	1	1	1	1	1
TFA AC-10	Polysar NS 175	2	2	2	ž	2	2	2	2	2	1	1	1	1	1	1
ŤFA AC-10	Crafco Genstar C10	2	2	2	Ş	2	2	2	2	2	1	1	1	1	1	1
ŤFA AC-20	-	2	2	2	ž	2	2	2	2	2	1	1	1	1	1	1
ŤFA AC-20	Exxon Polybilt 10	3	2	2	2	2	2	2	2	2	1	1	1	1	1	1
ŤFA AC-20	Dow	2	2	2	Ś	2	2	2	2	2	1	1	1	1	1	1

1

TABLE A-2 Experimental Testing Program for Unmodified and Polymer-Modified Asphalt Binders Number of Test Repetitions (District 15)

						Modifi	ed Co	ompa	ction	Ì					Stand	ard Com	paction	
Bi	nder	Resil & Ind	ient M	odulus Tensile	Hveem 140F	Marshall 140F	(Cree a	р	Str	Fatigu	e vels	Moisture Resistance	Resili & Indi	ent Mo	dulus ensile	Hveem 140F	Marshall 140F
Asphalt	Polymer	39F	trengt 77F	h 104F	1401	1401	60F	77F	90F	15%	25%	50%		39F	Streng 77F	th 104F		
TFA AC-10	Goodyear UP 70	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3
TFA AC-10	Styrelf-13	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3
TFA AC-20	. •	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3
TFA AC-20	Exxon Polybilt 103	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3
TFA AC-10	Crafco Genstar C107	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3
TFA AC-10	Polysar NS 175	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3
TFA AC-20	Dow	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3
TFA AC-10	•	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3

•

TABLE A-3 Experimental Testing Program for Laboratory Compacted-Laboratory Mixed Mixtures Number of Test Repetitions (District 15)

* TFA AC-10 mixture was not placed in the field test section.

.

.

			Modified Compaction											Stand	ard Com	paction		
Bir Asphalt	nder Polymer	Resil & Ind S	ient M irect trengt	odulus Tensile h	Hveem 140F	Marshall 140F	60F	Cree a 77F	P 90F	Str 15%	Fatigu ess le 25%	e vels 50%	Moisture Resistance	Resili & Indi	ent Mo rect T Streng	dulus ensile th	Hveem 140F	Marshall 140F
	-	39F	77F	104F										39F	77F	104F		
TFA AC-10	Goodyear UP 70	3	3	3	3	3	2	5.	2	2	2	2	3	3	3	. 3	3	3
TFA AC-10	Styrelf-13	3	3	3	3	3	2	ž	5	2	2	2	3	3	3	3	3	3
TFA AC-20	-	3	3	3	3	3	2	5	2	2	2	2	3	3	3	3	3	3
TFA AC-20	Exxon Polybilt 103	3	3	3	3	3	2	ž	2	2	2	2	3	3	3	3	3	3
TFA AC-10	Crafco Genstar C107	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3
ŤFA AC-10	Polysar NS 175	3	3	3	3	3	2	Ž	2	2	2	2	3	3	3	3	3	3
ŤFA AC-20	Dow	3	3	3	3	3	2	ź	2	2	2	2	3	3	3	3	3	3
								_	_	_								

TABLE A-4 Experimental Testing Program for Laboratory Compacted-Plant Mixed Mixtures Number of Test Repetitions (District 15)

.

	Binder		Resil & Indi	ient M	odulus ensile	Marshall 140F
	Asphalt	Polymer	205	h		
			391	//1	1041	
TFA	AC-10	Goodyear UP 70	3	3	3	3
TFA	AC-10	Styrelf-13	3	3	3	3
TFA	AC-20	-	3	3	3	3
TFA	AC-20	Polybilt 103	3	3	3	3
TFA	AC-10	Genstar C107	3	3	3	3
TFA	AC-10	Polysar NS 175	3	3	3	3
TFA	AC-20	Dow	3	3	3	3

TABLE A-5 Experimental Testing Program for Field Cores. District 15

Parameter		TFA AC-10	TFA AC-10 & 3% Goodyear	TFA AC-10 & 3% Styrelf	TFA AC-10 & 3% Polysar	TFA AC-10 & 18% Crafco	TFA AC-20	TFA AC-20 & 3% Exxon	TFA AC-20 & 5% Dow
Penetration @ 39.2 F (25 C)	******		====== 15	======================================	13				9 STEELE
100g, 5 Sec.		14	13	15	13	14	9	10	11
	Avg,	14.5	- 14	16	13		9	10	10
Penetration @ 77 F (4 C)		101	99	101	92	78	69	69	67
100g, 5 Sec.		103	101	101	94	80	71	70	65
	Avg.	102	100	101	93	79	70	69.5	66
Viscosity @ 140 F (60 C)		1124	1300	3347	1320	-	2091	3300	5235
Poises		1138	1321	3317	1316	-	2083	3291	5161
	Avg.	1131	1310.5	3332	1318	-	2087	3295.5	5198
Viscosity @ 275 F (135 C)		298	500	750	490	-	414	927	1194
Centistokes		296	506	757	500	-	418	911	1209
	Avg.	297	503	753.5	495	-	416	919	1201.5
Softening Point, F		117	123	132	121	139	126	131	140
		117	121	131	123	137	126	134	138
	Avg.	117	122	131.5	122	138	126	132.5	139

Table A-6 Unmodified and Modified Asphalt Properties before RTFOT.

.

=======================================			===================		***********		**********		
Parameter		TFA AC-10	TFA AC-10 &	TFA AC-10 &	TFA AC-10 &	TFA AC-10 &	TFA AC-20	TFA AC-20 &	TFA AC-20 &
			3% Goodyear	3% Styrelf	3% Polysar	18% Crafco		3% Exxon	5% Dow
121222222288888888222222222222222222222	2222	22222222222			# EEEEE E±±±=				
Maximum True Stress, psi		63.2	85.8	382.8	127.2	135.3	102.8	286.5	172.2
		55.2	81.4	391.1	121.6	124.5	99.1	291.2	175.1
	Avg.	59.2	83.6	386.95	124.4	129.9	100.95	288.85	173.65
Maximum True Strain, in/in		2.97	3.5	2.76	3.54	1.39	2.39	2.47	2.26
		2.93	3.52	2.77	3.52	1.38	2.4	2.45	2.3
	Avg.	2.95	3.51	2.765	3.53	1.385	2.395	2.46	2.28
True Area , psi		117.8	156.4	392.8	245.4	125.1	124	363.3	194.7
		112.4	161.3	414.5	251.2	124.7	118.8	361.8	201.5
	Avg.	115.1	158.85	403.65	248.3	124.9	121.4	362.55	198.1
Asphalt Modulus, psi		132.2	210.8	238	304.9	222.6	339.8	320.5	405.3
		158.8	217.2	216	286.4	267.9	313	371.22	420.6
	Avg.	145.5	214	227	295.65	245.25	326.4	345.86	412.95
Asphalt-Polymer Modulus,		-	90.9	409	132.1	51.2	-	213.2	-
psi		-	87.6	374	129.3	48.7	-	196.3	
	Avg.	-	89.25	391.5	130.7	49.95	-	204.75	-

Table A-6 (Continued)

Parameter	TFA AC-10	TFA AC-10 & 3% Goodyear	TFA AC-10 & 3% Styrelf	TFA AC-10 & 3% Polysar	TFA AC-10 & 18% Crafco	TFA AC-20	TFA AC-20 & 3% Exxon	TFA AC-20 & 5% Dow
				******	==============		22222222222	
Shear Susceptibility								
a 39.2 F	6.024E-01	7.470E-01	1.135E+00	7.699E-01	5.349E-01	6.376E-01	5.070E-01	5.107E-01
a 77 F	8.786E-01	8.159E-01	1.069E+00	8.576E-01	6.777E-01	7.778E-01	6.269E-01	5.189E-01
a 140 F	9,378E-01	9.518E-01	1.019E+00	9.670E-01	6.990E-01	8.400E-01	7.133E-01	7.773E-01
Apparent Viscosity, pas-sec								
at Shear Rate = 1 1/sec								
a 39.2 F	9.030E+06	1.766E+07	1.192E+08	2.905E+07	1.435E+07	2.182E+07	1.832E+07	1.216E+07
ê 77 F	1.115E+05	1.998E+05	6.213E+05	2.158E+05	3.543E+05	2.924E+05	2.834E+05	4.641E+05
€ 140 F	1,1985+02	1.476E+02	3.503E+02	1.381E+02	2.005E+03	2.879E+02	6.380E+02	6.875E+02
Constant Power Viscosity,								
pas-sec								
a 39.2 F	2,760E+07	3.736E+07	7.610 E +07	6.072E+07	6.464E+07	7.183E+07	1.007E+08	5.759E+07
a 77 F	1,123E+05	2.143E+05	5.844E+05	2.289E+05	4.518E+05	3.343E+05	3.599E+05	7.548E+05
€ 140 F	9.651E+01	1.256E+02	3.691E+02	1.236E+02	1.003E+03	1.731E+02	2.738E+02	3.683E+02

Table A-6 (Continued)

Table A-6 (Continued)								
Parameter	TFA AC-10	TFA AC-10 & 3% Goodyear	TFA AC-10 & 3% Styrelf	TFA AC-10 & 3% Polysar	TFA AC-10 & 18% Crafco	TFA AC-20	TFA AC-20 & 3% Exxon	TFA AC-20 & 5% Dow
Departmention Index Pl(Den/Den)	-0 18	-0 11	••••••••••••••••••••••••••••••••••••••	-0 11	1_04	-0 30	-0.04	0 17
		0.11	0.55	0.11	1.04	0.37	0.04	0.17
Penetration Index PI(Pen/SP)	-0.04	0.69	2.01	0.46	2.08	0.19	0.98	1.66
Penetration Viscosity Number, PVN	-0.72	0.14	0.79	0.02	-	-0.6	0.62	0.96
Stiffness Modulus a 39.2 F, psi								
5 Sec. Loading	450	435	305	493	522	725	725	754
20 Sec. Loading	145	203	160	232	261	305	319	392
Stiffness Modulus @ 0.1 Sec								
39.2F	5075	3625	2030	4785	2900	6960	5800	4640
77F	160	145	189	218	247	290	319	363
104F	12	15	25	16	46	23	33	54
Stiffness/Temperature Slope	-0.073	-0.067	-0.053	-0.068	-0.050	-0.069	-0.062	-0.054
Apparent Viscosity/Temp. Slope								
before RTFOT	-0.087	-0.091	-0.098	-0.095	-0.068	-0.087	-0.079	-0.076
after RTFOT	-0.083	-0.085	-0.106	-0.087	•	-0.085	-0.069	-0.066
Constant Power Visco./Temp. Slope								
before RTFOT	-0.096	-0.097	-0.095	-0.101	-0.085	-0.100	-0.098	-0.093
after RTFOT	-0.097	-0.099	-0.105	-0.096	-	-0.101	-0.089	-0.084

•

.

Parameter	TFA AC-10	TFA AC-10	TFA AC-10	TFA AC-10	TFA AC-10	TFA AC-20	TFA AC-20	TFA AC-20
		4 74 Cooticoo	ي ۲۲ Chural 6	ě 7¥ Delveen	å 197 Crofee		6 74 Europ	ě FY Dau
		5% Googyear	SA STYREIT	3% Polysar	18% Cratco		34 EXXON	77 DOM
Penetration Ratio, 77 F	0.63	0.67	0,72	0.75	-	0.65	0.70	0.64
Viscosity Ratio	2,65	3.00	1,90	2.87	• .	3.55	7.97	6.08
Kinematic Viscosity Ratio	1.56	1.45	1,28	1.38		1.68	1.99	1.94
Shear Susceptibility Ratio								
a 39.2 F	0.97	0.82	1,07	0.91	-	0.95	1.00	0.95
a 77 F	0.91	0.88	1,08	0.89	-	0.92	0.98	0.94
⊇ 140 F	0.91	0.90	1,00	0.94	•	0.96	0.87	0.89
Apparent Viscosity Ratio								
a 39.2 F	1.98	1.84	4,39	1.19	-	2.41	1.07	1.17
9 77 F	3.14	2.61	2,95	2.63	-	3.50	2.58	1.75
∂ 140 F	3.31	3.73	1,70	3.48	-	3.08	4.22	4.59
Constant Power Viscosity Ratio			2					
a 39,2 F	2.53	3.50	3,02	1.62	-	3.40	1.10	1.37
a 77 F	3.59	3.18	2,55	3.13	-	4.50	3.27	2.22
a 140 F	2.62	2.93	1,68	3.05	-	3.06	4.24	4.54

Table A-6 (Continued)

.

	***********	************	***********			=================		*******
Parameter	TFA AC-10	TFA AC-10	TFA AC-10	TFA AC-10	TFA AC-10	TFA AC-20	TFA AC-20	TFA AC-20
		&	&	&	&		&	&
		3% Goodyear	3% Styrelf	3% Polysar	18% Crafco		3% Exxon	5% Dow
*****====*****			=================		***********	***********	***********	82223322222
Penetration @ 77 F (4 C)	6	4 65	73	69	-	45	47	42
100g, 5 Sec.	6	5 68	72	70	-	46	50	43
Av	J. 6	5 67	73	70		46	49	43
Viscosity 🔒 140 F (60 C)	295	5 3960	6292	3765	-	7436	26109	31520
Poises	304	4 3904	6370	3795	-	7365	26423	31663
Av	. 300	3932	6331	3780		7401	26266	31592
Viscosity @ 275 F (135 C)	46	1 732	972	672	-	700	1849	2350
Centistokes	46	7 726	962	692	•	694	1810	2308
Avg	. 464	729	967	682		697	1830	2329
Shear Susceptibility								
a 39.2 F	5.836E-0	6.116E-01	1.213E+00	6.968E-01	-	6.067E-01	5.075E-01	4.853E-01
∂ 77 F	7.957E-0	7.200E-01	1.156E+00	7.637E-01	•	7.154E-01	6.143E-01	4.863E-01
a 140 F	8.498E-0	8.563E-01	1.016E+00	9.128E-01	-	8.034E-01	6.226E-01	6.899E-01
Apparent Viscosity, pas-sec								
Shear Rate = 1 1/sec								
a 39.2 F	1.788E+07	7 3.247E+07	5.238E+08	3.468E+07	-	5.268E+07	1.966E+07	1.420E+07
9 77 F	3.498E+0	5.216E+05	1.836E+06	5.680E+05	-	1.023E+06	7.307E+05	8.131E+05
a 140 F	3.969E+02	2 5.509E+02	5.968E+02	4.809E+02	-	8.877E+02	2.690E+03	3.154E+03
Constant Power Viscosity, Das-sec								
- € 39.2 F	6.993E+07	1.309E+08	2.300E+08	9.859E+07	-	2.443E+08	1.104E+08	7.906E+07
9 77 F	4.034E+05	6.826E+05	1.488E+06	7.168E+05	-	1.504E+06	1.175E+06	1.678E+06
a 140 F	2.533E+02	2 3.683E+02	6.220E+02	3.771E+02	-	5.304E+02	1.160E+03	1.672E+03

Table A-7 Unmodified and Modified Asphalt Properties after RTFOT.

	Shear	Shear	Apparent	Shear	Shear	Apparent
Test	Stress	Rate	Viscosity	Stress	Rate	Viscosity
Temp.	Pascal	1/Sec	Pascal-Sec	Pascal	1/Sec	Pascal-Sec
		TFA AC-10			TFA AC-10	
	I	Before RTFC	т		After RTFOT	•
T = 140 F	8.22E+04	1.04E+03	7.93E+01	6.95E+04	4.44E+02	1.56E+02
	4.17E+04	5.15E+02	8.09E+01	4.63E+04	2.67E+02	1.73E+02
	2.24E+04	2.72E+02	8.22E+01	2.85E+04	1.48E+02	1.93E+02
	1.36E+04	1.59E+02	8.55E+01	1.82E+04	9.31E+01	1.95E+02
	1.01E+04	1.12E+02	9.03E+01	1.25E+04	5.68E+01	2.19E+02
	8.55E+03	9.41E+01	9.09E+01	7.30E+03	3.20E+01	2.28E+02
	7.02E+03	7.55E+01	9.30E+01	4.99E+03	1.92 E+01	2.60E+02
T = 77 F	8.81E+05	1.08E+01	8.15E+04	1.09E+06	3.98E+00	2.75E+05
	5.82E+05	6.24E+00	9.32E+04	7.41E+05	2.64E+00	2.80E+05
	2.45E+05	2.51E+00	9.76E+04	4.33E+05	1.39E+00	3.11E+05
	1.74E+05	1.67E+00	1.04E+05	2.27E+05	5.61E-01	4.05E+05
	8.70E+04	7.50E-01	1.16E+05	1.03E+05	2.13E-01	4.83E+05
	5.44E+04	4.41E-01	1.23E+05	6.06E+04	1.11E-01	5.48E+05
T = 39 F	4.19E+06	2.20E-01	1.90E+07	4.46E+06	8.90E-02	5.02E+07
	2.80E+06	1.57E-01	1.78E+07	3.32E+06	5.81E-02	5.72E+07
	1.74E+06	7.71E-02	2.25E+07	2.46E+06	3.48E-02	7.08F+07
	9.27E+05	2.88E-02	3.22E+07	1.42E+06	1.25E-02	1.14E+08
	5.48E+05	8.20E-03	6.68E+07	8.04E+05	4.97E-03	1.62E+08
	3.54E+05	3.85E-03	9.20E+07			
	2.24E+05	2.33E-03	9.62E+07			
•						
	TFA	AC-10 + 37	(UP 70	TFA	AC-10 + 3%	UP 70
	1	Before RTFC	т		After RTFOI	
T = 140 F	2.18E+04	1.94E+02	1.12E+02	6.71E+04	2.74E+02	2.45E+02
	1.51E+04	1.29E+02	1.17E+02	4.02E+04	1.51E+02	2.67E+02
	1.09E+04	8.93E+01	1.22E+02	2.43E+04	8.24E+01	2.95E+02
	5.59E+03	4.54E+01	1.23E+02	1.63E+04	5.15E+01	3.16E+02
	2.69E+03	2.11E+01	1.28E+02	9.89E+03	2.93E+01	3.38E+02
	1.32E+03	1.01E+01	1.31E+02	5.45E+05	1.46E+01	3.73E+02
T = 77 F	8.45E+05	5.96E+00	1.42E+05	7.79E+05	1.71E+00	4.56E+05
	4.12E+05	2.51E+00	1.64E+05	4.35E+05	7.82E-01	5.57E+05
	2.17E+05	1.07E+00	2.02E+05	2.15E+05	3.07E-01	7.00E+05
	1.08E+05	4.42E-01	2.45E+05	1.07E+05	1.08E-01	9.98E+05
	5.47E+04	2.04E-01	2.68E+05			
	2.71E+04	9.03E-02	3.00E+05			
t = 39 f	3.23E+06	9.55E-02	3.38E+07	4.16E+06	3.50E-02	1.19E+08
	1.69E+06	4.49E-02	3.76E+07	3.15E+06	2.13E-02	1.48E+08
	8.66E+05	1.88E-02	4.61E+07	2.23E+06	1.24E-02	1.79E+08
	4.37E+05	7.19E-03	6.08E+07	1.17E+06	4.73E-03	2.47E+08
	2.22E+05	2.79E-03	7.96E+07	6.07E+05	1.43E-03	4.26E+08
	1.11E+05	1.10E-03	1.01E+08			

Table A-8 Constant Stress Rheometer Results for Unmodified and Modified Binders.
Table A-8 (C	ontinued)
--------------	-----------

	Shear	Shear	Apparent	Shear	Shear	Apparent
Test	Stress	Rate	Viscosity	Stress	Rate	Viscosity
Temp.	Pascal	1/Sec	Pascal-Sec	Pascal	1/Sec	Pascal-Sec
	TFA	AC-10 + 3%	Styrelf	TFA /	AC-10 + 3%	Styrelf
	1	Before RTFC	т		fter RTF01	r -
T = 140 F	4.56E+04	1.19E+02	3.82E+02	8.99E+04	1.39E+02	6.46E+02
	1.77E+04	4.68E+01	3.78E+02	6.36E+04	9.88E+01	6.44E+02
	9.12E+03	2.45E+01	3.72E+02	3.95E+04	6.19E+01	6.38E+02
	4.85E+03	1.32E+01	3.67E+02	2.06E+04	3.26E+01	6.32E+02
				1.07E+04	1.72E+01	6.25E+02
t = 77 F	1.01E+06	1.52E+00	6.63E+05	1.70E+06	8.92E-01	1.91E+06
	5.26E+05	8.74E-01	6.02E+05	1.26E+06	7.25E-01	1.74E+06
	2.63E+05	4.59E-01	5.72E+05	8.01E+05	5.01E-01	1.60E+06
	1.10E+05	1.99E-01	5.51E+05	4.72E+05	3.23E-01	1.46E+06
	5.91E+04	1.09E-01	5.42E+05	2.30E+05	1.67E-01	1.38E+06
	3.07E+04	5.96E-02	5.14E+05	1.04E+05	8.09E-02	1.29E+06
T = 39 F	2.77E+06	3.49E-02	7.93E+07	3.87E+06	1.72E-02	2.25E+08
	2.17E+06	3.03E-02	7.15E+07	2.83E+06	1.36E-02	2.08E+08
	8.51E+05	1.31E-02	6.47E+07	2.09E+06	1.06E-02	1.96E+08
	2.60E+05	4.47E-03	5.83E+07	1.57E+06	8.27E-03	1.89E+08
				9.15E+05	5.29E-03	1.73E+08
	TFA A	C-10 + 3% N	is 175	TFA A	-10 + 3% N	IS 175
		Before RTFC	DT		fter RTFO	r
T = 140 F	2.28E+04	1.96E+02	1.16E+02	8.66E+04	2.99E+02	2.89E+02
	1.14E+04	9.63E+01	1.18E+02	6.25E+04	2.09E+02	2.99E+02
	6.27E+03	5.18E+01	1.21E+02	3.51E+04	1.06E+02	3.31E+02
	4.28E+03	3.46E+01	1.23E+02	9.21E+03	2.56E+01	3.60E+02
	1.90E+03	1.51E+01	1.26E+02	6.14E+03	1.63E+01	3.76E+02
t = 77 F	3.10E+05	1.58E+00	1.96E+05	1.72E+06	4.11E+00	4.17E+05
	1.11E+05	4.32E-01	2.57E+05	1.29E+06	2.93E+00	4.42E+05
	6.52E+04	2.45E-01	2.65E+05	8.63E+05	1.79E+00	4.82E+05
	3.58E+04	1.28E-01	2.81E+05	5.39E+05	9.66E-01	5.58E+05
	2.28E+04	7.29E-02	3.13E+05	2.16E+05	2.72E-01	7.93E+05
				1.08E+05	1.14E-01	9.46E+05
T = 39 F	3.56E+06	5.98E-02	5.96E+07	3.07E+06	3.16E-02	9.73E+07
	1.71E+06	2.69E-02	6.37E+07	2.29E+06	1.97E-02	1.16E+08
	0 705+05	1.30E-02	7.53E+07	1.63E+06	1.17E-02	1.39E+08
	9.792703					
	5.01E+05	5.27E-03	9.51E+07	9.43E+05	6.13E-03	1.54E+08
	5.01E+05 2.57E+05	5.27E-03 2.11E-03	9.51E+07 1.22E+08	9.43E+05 4.77E+05	6.13E-03 2.15E-03	1.54E+08 2.22E+08

169

• •

Table A-8 ((Continued)
-------------	-------------

_

	Shear	Shear	Apparent	Shear	Shear	Apparent
Test	Stress	Rate	Viscosity	Stress	Rate	Viscosity
Temp.	Pascal	1/Sec	Pascal-Sec	Pascal	1/Sec	Pascal-Sec
	TFA A	c-10 + 18%	C107			
	I	Before RTFC	т			
T = 140 F	1.42E+05	4.49E+02	3.17E+02			
	9.97E+04	2.63E+02	3.79E+02			
	6.84E+04	1.57E+02	4.35E+02			
T = 77 F	1.07E+06	4.87E+00	2.20E+05			
	5.35E+05	1.88E+00	2.84E+05			
	2.73E+05	7.11E-01	3.84E+05		•	
	1.39E+05	2.61E-01	5.33E+05			
	7.54E+04	9.63E-02	7.83E+05			
T = 39 F	3.75E+06	7.24E-02	5.18E+07			
	2.02E+06	2.92E-02	6.91E+07			
	1.08E+06	8.65E-03	1.25E+08			
	5.97E+05	2.37E-03	2.52E+08			
		TFA AC-20			TFA AC-20	
		Before RTFC	т		After RTFO	Γ
T = 140 F	1.63E+04	1.24E+02	1.31E+02	5.70E+04	1.79E+02	3.19E+02
	1.17E+04	8.19E+01	1.43E+02	3.99E+04	1.13E+02	3.55E+02
	8.38E+03	5.38E+01	1.56E+02	2.57E+04	6.78E+01	3.78E+02
	5.20E+03	3.19E+01	1.63E+02	1.01E+04	1.95E+01	5.19E+02
				5.70E+03	1.05E+01	5.43E+02
T = 77 F	9.51E+05	4.80E+00	1.98E+05	1.07E+06	1.04E+00	1.03E+06
	4.75E+05	1.83E+00	2.60E+05	6.44E+05	5.36E-01	1.20E+06
	2.59E+05	8.21E-01	3.16E+05	3.33E+05	2.16E-01	1.54E+06
	1.30E+05	3.56E-01	3.64E+05	1.72E+05	8.03E-02	2.14E+06
	6.70E+04	1.41E-01	4.75E+05			
	3.29E+04	6.44E-02	5.12E+05			
T = 39 F	3.86E+06	5.77E-02	6.70E+07	5.18E+06	2.46E-02	2.11E+08
	2.46E+06	3.38E-02	7.29E+07	3.60E+06	1.08E-02	3.33E+08
	1.55E+06	1.75E-02	8.83E+07	2.44E+06	5.82E-03	4.20E+08
	7.53E+05	6.21E-03	1.21E+08	1.26E+06	2.29E-03	5.51E+08
	4.36E+05	1.77E-03	2.46E+08			

Table A-8 (Continued)

_	Shear	Shear	Apparent	Shear	Shear	Apparent
Test	Stress	Rate	Viscosity	Stress	Rate	Viscosity
Temp.	Pascal	1/Sec	Pascal-Sec	Pascal	1/Sec	Pascal-Sec
	TFA AC-	10 + 3% Pol	ybilt 103	TFA AC-1	10 + 3% Pol	ybilt 103
	1	Before RTFC	т		After RTF01	•
T = 140 F	5.03E+04	3.70E+02	1.36E+02	7.12E+04	1.88E+02	3.79E+02
	2.01E+04	1.35E+02	1.49E+02	4.99E+04	1.11E+02	4.47E+02
	1.26E+04	6.13E+01	2.05E+02	2.85E+04	4.65E+01	6.12E+02
	5.36E+03	2.37E+01	2.26E+02	1.78E+04	1 .9 5E+01	9.15E+02
	2.10E+03	7.94E+00	2.64E+02	1.28E+04	1.23E+01	1.04E+03
	9.22E+02	1.38E+00	6.68E+02	8.90E+03	6.94E+00	1.28E+03
	4.02E+02	4.36E-01	9.23E+02			
T = 77 F	1.23E+06	1.03E+01	1.20E+05	1.27E+06	2.39E+00	5.31E+05
	5.52E+05	3.01E+00	1.83E+05	7.32E+05	9.58E-01	7.64E+05
	2.02E+05	5.80E-01	3.48E+05	4.77E+05	5.88E-01	8.11E+05
	1.02E+05	1.80E-01	5.65E+05	2.76E+05	1.87E-01	1.48E+06
	5 .95 E+04	8.79E-02	6.76E+05	1.27E+05	5.82E-02	2.19E+06
T = 39 F	5.19E+06	7.80E-02	6.65E+07	5.93E+06	8.61E-02	6.88E+07
	3.49E+06	3.97E-02	8.80E+07	3.90E+06	4.40E-02	8.87E+07
	2.51E+06	2.10E-02	1.20E+08	2.71E+06	2.19E-02	1.24E+08
	1.26E+06	5.00E-03	2.53E+08	1.57E+06	6.66E-03	2.35E+08
	6.61E+05	1.41E-03	4.68E+08	8.85E+05	2.15E-03	4.11E+08
	TFA	AC-10 + 57	Dow	TFA	AC-10 + 57	Dow
		Before RTFC	DT	/	fter RTF01	
T = 140 F	3.09E+04	1.37E+02	2.25E+02	7.87E+04	1.03E+02	7.67E+02
	1.71E+04	6.17E+01	2.77E+02	4.57E+04	5.13E+01	8.92E+02
	9.17E+03	2.71E+01	3.38E+02	2.17E+04	1.59E+01	1.37E+03
	4.51E+03	1.12E+01	4.02E+02	9.75E+03	5.15E+00	1.89E+03
	1.71E+03	3.29E+00	5.21E+02			
T = 77 F	1.04E+06	4.17E+00	2.50E+05	1.03E+06	1.59E+00	6.49E+05
	5.26E+05	1.53E+00	3.43E+05	7.64E+05	8.64E-01	8.85E+05
	2.81E+05	3.97E-01	7.08E+05	5.01E+05	3.95E-01	1.27E+06
	2.19E+05	2.20E-01	9.95E+05	2.69E+05	1.03E-01	2.60E+06
	1.05E+05	5.51E-02	1.91E+06	1.50E+05	3.01E-02	4.98E+06
T = 39 F	3.99E+06	1.02E-01	3.93E+07	3.04E+06	3.74E-02	8.12E+07
	1.99E+06	2.67E-02	7.46E+07	2.16E+06	2.29E-02	9.45E+07
	1.07E+06	1.08E-02	9.94E+07	1.30E+06	8.02E-03	1.62E+08
	5.42E+05	2.60E-03	2.09E+08	8.36E+05	2.66E-03	3.14E+08
	2.22E+05	3.28E-04	6.74E+08			

MIXTURE		AIR VOIDS	HVEEM STABILITY %	AIR VOIDS	MARSHALL STABILITY 1bs	VALUES FLOW .01 in
Control: TFA AC-10		7.6 7.8 7.5	39 36 37	7.1 7.7 7.0	509 446 545	8.5 7.5 8.5
	AVG.	7.6	37	7.2	500	8.2
TFA AC-10 + 3% UP 70		6.0 6.1 5.8	33 33 33	5.5 6.2 5.9	898 854 882	11.5 13.0 11.5
	AVG.	6.0	33	5.9	878	12.0
TFA AC-10 + 3% Styrelf	 	8.0 7.6 8.0	35 35 36	6.2 7.5 7.6	1071 808 655	13.0 14.5 13.0
	AVG.	7.9	35	7.1	845	13.5
TFA AC-10 + 3% NS 175		7.0 7.2 6.9	44 40 37	7.0 7.0 7.1	1043 1064 1102	12.0 12.0 12.5
	AVG.	7.1	40	7.0	1070	-12.2
TFA AC-10 + 18% C107	 	12.1 11.9 10.9	38 34 39	11.6 11.0 10.3	751 907 1200	25.0 27.0 27.0
	AVG.	11.6	37	10.9	953	26.3
Control: TFA AC-20		7.4 7.0 6.2	40 44 40	7.4 6.2 6.9	1105 1000 1112	10.5 12.5 10.5
	AVG.	6.9	41	6.8	1072	11.2
TFA AC-20 + 3% Polybilt 103		7.3 7.2 6.8	37 38 40	6.6 7.2 7.1	1158 981 1061	11.5 11.0 10.0
	AVG.	7.1	38	7.0	1067	10.8
TFA AC-20 + 5% Dow	{ ; ; ;	7.6 7.5 6.9	39 39 38	6.7 7.4 7.5	1123 1070 1008	10.0 10.0 9.5
	1	7.3	39	7.2	1067	9.8

Table A-9 Marshall and Hveem Test Results for Laboratory Mixed/Laboratory Compacted Mixtures Using Modified Compaction

. .

. .

MIXTURE		AIR VOIDS	HVEEM STABILITY	AIR VOIDS	MARSHALL STABILITY lbs	VALUES FLOW .01 in
Control: TFA AC-10	-i	3.8 4.7 5.1	40 41 42	4.3 4.2 4.2	1114 1045 972	9.5 9.5 9.5
	AVG.	4.5	41	4.3	1044	9.5
TFA AC-10 + 3% UP 70		2.9 2.1 3.0	42 41 41	3.0 2.3 2.3	2443 2256 2217	13.0 13.0 12.0
	AVG.	2.6	41	2.6	2305	12.7
TFA AC-10 + 3% Styrelf		4.2 3.3 4.0	42 43 48	3.2 3.3 4.2	2127 2025 2017	14.0 12.5 12.5
	AVG.	3.8	44	3.5	2056	13.0
TFA AC-10 + 3% NS 175		4.0 4.2 3.4	41 41 40	4.9 4.4 3.4	1402 1489 1882	11.0 12.0 12.0
	AVG.	3.9	41	4.2	_ 1591	11.7
TFA AC-10 + 18% C107		-	-	-	=	-
	AVG.		=		7	=
Control: TFA AC-20		3.7 4.2 3.7	42 42 44	3.4 3.8 3.7	2129 1995 1830	12.0 12.0 12.0
	AVG.	3.9	43	3.6	1985	12.0
TFA AC-20 + 3% Polybilt 103		3.8 3.6 3.6	49 50 42	3.5 3.3 3.8	2920 2675 2656	12.0 12.0 12.0
	AVG.	3.7	47	3.5	2750	12.0
TFA AC-20 + 5% Dow		2.6 2.9 3.3	50 51 51	2.8 2.3 2.9	2423 2364 2451	10.0 9.5 10.0
	AVG.	2.9	51	2.6	2412	9.8

Table A-10 Marshall and Hveem Test Results for Laboratory Mixed/Laboratory Compacted Mixtures Using Standard Compaction

. .

MIXTURE		AIR VOIDS	HVEEM STABILITY	AIR VOIDS	MARSHALL STABILITY 1bs	VALUES FLOW .01 in
TFA AC-10 + 3% UP 70	•] 	6.6 6.6	38 36 35	6.6 6.5	771 664 681	14.0 15.0
	AVG.	6.7	 36	6.7	705	14.7
TFA AC-10 + 3% Styrelf	 	7.1 6.9 7.5	37 40 38	7.2 7.2 6.8	595 596 594	13.0 12.0 12.0
	AVG.	7.2	38	7.1	 595	12.3
TFA AC-10 + 3% NS 175		6.7 6.8 6.7	35 39 37	6.8 6.8 6.6	553 523 520	14.0 14.0 12.5
	AVG.	6.7	37	6.7	532	13.5
TFA AC-10 + 18% C107	 	7.4 7.5 7.5	42 38 38	7.3 7.1 6.8	808 811 801	23.0 23.5 24.0
	AVG.	7.4	39	7.1	806	23.5
Control: TFA AC-20	 	6.9 6.7 7.0	34 35 36	6.9 6.8 6.7	709 663 667	21.0 19.5 19.0
	AVG.	6.8	35	6.8	680	19.8
TFA AC-20 + 3% Polybilt 103	 	7.0 7.7 7.3	40 41 42	7.0 7.1 . 7.3	707 655 668	14.0 13.0 14.0
	AVG.	7.3	41	7.2	677	13.7
TFA AC-20 + 5% Dow		8.2 7.1 7.6	44 44 45	7.7 8.0 7.9	846 871 874	9.0 8.5 9.5
	AVG.	7.7	44	7.9	864	9.0

Table A-11 Marshall and Hveem Test Results for Plant Mixed/Laboratory Compacted Mixtures Using Modified Compaction

MIXTURE		AIR VOIDS	HVEEM STABILITY	AIR VOIDS	MARSHALL V STABILITY 1bs	VALUES FLOW .01 in
TFA AC-10 + 3% UP 70	·	4.3 4.3 4.3	43 39 42	4.4 4.0 4.3	1117 1199 1159	13.5 14.0 14.0
	AVG.	4.3	41	4.3	1159	13.8
TFA AC-10 + 3% Styrelf		4.2 3.9 3.7	41 43 47	4.0 4.0 3.8	1025 921 1043	12.0 12.0 12.0
	AVG.	3.9	44	3.9	996	12.0
TFA AC-10 + 3% NS 175		2.2 2.0 2.4	41 46 47	1.9 1.9 2.3	1300 1179 1240	12.0 11.5 13.0
	AVG.	2.2	45	2.0	1240	12.2
TFA AC-10 + 18% C107		4.7 3.8 4.0	40 42 41	3.8 4.0 4.2	1072 1057 1112	22.0 22.0 22.0
	AVG.	4.1	41	4.0	1080	22.0
Control: TFA AC-20		3.1 3.2 3.4	43 44 45	2.9 3.2 2.9	1405 1549 1358	14.0 14.0 13.0
	AVG.	3.2	44	3.0	1437	13.7
TFA AC-20 + 3% Polybilt 103		3.3 3.3 3.2	45 47 43	3.2 2.8	1402 1409	12.0 11.5
	AVG.	3.3	45	3.0	1406	11.8
TFA AC-20 + 5% Dow		2.7 2.8 2.7	48 47 52	3.2 2.6 2.9	1630 1656 1665	12.0 12.0 12.0
	AVG.	2.7	49	2.9	1650	12.0

Table A-12 Marshall and Hveem Test Results for Plant Mixed/Laboratory Compacted Mixtures Using Standard Compaction

. .

MIXTURE	TEST TEMP. F	VOIDS	INDIRECT TENSILE STRENGTH PSI	STRAIN AT FAILURE	SECANT MODULUS KSI	RESILIENT MODULUS KSI	POISSON'S RATIO
Control: TFA AC-10	39	7.6 7.0 7.7	319 328 306	0.44 0.32 0.34	146 203 181	1394 1334 981	
	AV	G. 7.4	318	0.37	177	1236	-
TFA AC-10 + 3% UP 70	39	5.6 6.1 6.2	299 285 271	0.29 0.30 0.30	205 189 179	960 1556 879	-
	AV	G. 6.0	285	0.30	191	1132	-
TFA AC-10 + 3% Styrelf	39	7.7 7.8 7.9	327 306 323	0.48 0.51 0.51	135 120 127	1510 1102 1629	-
	AV	G. 7.8	319	0.50	127	1414	-
TFA AC-10 + 3% NS 175	39	6.6 7.0 6.9	279 272 306	0.31 0.35 0.29	179 156 214	937 879 905	-
	AV	G. 6.8	285	¢.32	183	907	-
TFA AC-10 + 18% C107	39	10.9 11.3 11.4	116 114 105	0.57 0.58 0.52	40 39 40	467 407 409	-
	AV	G. 11.2	112	0.56	40	428	-
Control: TFA AC-20	39	6.9 7.5 6.5	318 304 339	0.17 0.17 0.21	370 354 325	951 1504 1198	-
	AV	G. 7.0	320	0.18	350	1217	-
TFA AC-20 + 3% Polybilt	39	6.7 7.5 7.3	284 275 294	0.19 0.21 0.17	295 258 353	1528 1461 1502	-
	AV	G. 7.2	284	0.19	302	1497	-
TFA AC-10 + 5% Dow	3 9	6.4 6.0 6.9	323 325 268	0.20 0.19 0.23	318 347 229	987 821 901	-
		6.4	305	0.21	298	903	•

Table A-13 Indirect Tensile Test Results for Laboratory Mixed/Laboratory Compacted Mixtures Using Modified Compaction

. .

•

.

•

Table	A-13	(Continued)	
-------	------	-------------	--

. .

MIXTURE	TEST TEMP. F	VOIDS	INDIRECT TENSILE STRENGTH PSI	STRAIN AT FAILURE	SECANT MODULUS KSI	RESILIENT MODULUS KSI	POISSON'S RATIO
Control: TFA AC-10	77	7.6 7.3 7.0	49 50 58	1.01 1.14 1.07	9.8 8.7 10.8	288 200 147	-
		7.3	52	1.07	9.8	212	•
FA AC-10 + 3% UP 70 	77	6.2 5.6 5.9	69 67	0.95 0.98 0.89	13.8 13.9 15.0	397 282 301	-
		5.9	67	0.94	14.3	327	-
TFA AC-10 + 3% Styrelf	77	7.5 8.3 7.5	77 69 83	1.39 1.39 1.36	11.0 10.0 12.2	270 290 291	-
		7.8	76	1.38	11.0	284	-
TFA AC-10 + 3% NS 175	77	6.8 7.0 6.8	72 64 74	0.83 0.97 0.89	17.4 13.2 16.7	322 363 371	-
		6.9	70	0.90	15.7	352	
TFA AC-10 + 19% C107	77	12.5 12.4	- 37 32 40	1.85 1.79 1.77	4.0 3.5 4.6	102 145 148	-
		12.3	36	1.80	4.0	131	
Control: TFA AC-20	77	7.2 8.4 7.8	84 76 78	0.51 0.54 0.59	33.0 28.5 26.2	415 297 343	-
		7.8	79	0.55	29.2	352	-
TFA AC-20 + 3% Polybilt	77	6.7 7.3 7.0	78 79 84	0.55 0.60 0.49	28.2 26.1 34.1	379 411 453	-
		7.0	80	0.55	29.5	414	-
TFA AC-20 + 5% Dow	77	6.6 7.7 6.7	72 72 78	0.36 0.36 0.35	39.7 39.4 44.6	433 361 631	-
 		7.0	74	0.36	41.2	475	-

Table A-13	(Continued)
------------	-------------

MIXTURE	TEST TEMP. F	VOIDS	INDIRECT TENSILE STRENGTH PSI	STRAIN AT FAILURE	SECANT MODULUS KSI	RESILIENT MODULUS KSI	POISSON'S RATIO
Control: TFA AC-10	104	7.2 7.2 7.6	13 13 13	1.07 0.98 1.00	2.4 2.7 2.7	86 75 105	-
		7.3	. 13	1.01	2.6	89	-
TFA AC-10 + 3% UP 70	104	6.0 5.8 5.1	21 23 28	1.40 1.40 1.22	3.0 3.3 4.6	178 159 143	-
		5.6	24	1.34	3.6	160	-
TFA AC-10 + 3% Styrelf	104	7.0 8.0 7.5	27 23 25	1.98 2.08 1.72	2.7 2.2 2.9	94 99 120	-
i I		7.5	25	1.92	2.6	104	-
TFA AC-10 + 3% NS 175	104	6.5 6.9 6.8	30 25 28	1.07 1.09 0.99	5.5 4.7 5.7	197 137 115	-
1		6.7	28	1.05	5.3	150	-
TFA AC-10 + 18% C10Z	104	11.0 11.3 10.5	15 17 13	2.58 2.56 3.04	1.1 1.3 0.9	70 72 71	-
		10.9	15	2.73	1.1	71	-
Control: TFA AC-20	104	7.1 7.8 7.2	32 32 32	0.78 0.77 0.83	8.3 8.4 7.6	238 135 196	-
) 		7.4	32	0.79	8.1	190	-
TFA AC-20 + 3% Polybilt	104	7.3 6.9 7.0	32 35 27	0.83 0.79 0.73	7.7 8.9 7.4	140 136 172	
		7.1	31	0.78	8.0	149	-
TFA AC-20 + 5% Dow	104	7.4 7.5 7.6	34 38 36	0.41 0.42 0.47	16.9 18.3 15.2	242 219 160	-
i 		7.5	36	0.43	16.8	207	•

MIXTURE	TEST TEMP. F	AIR VOIDS	INDIRECT TENSILE STRENGTH PSI	STRAIN AT FAILURE	SECANT MODULUS KSI	RESILIENT MODULUS KSI	POISSON'S RATIO
Control: TFA AC-10	39	5.0 5.3 5.3	368 388 378	0.38 0.35	204 214	1647 1663 1225	
	AVG	. 5.2	378	0.37	209	1512	-
TFA AC-10 + 3% UP 70	39	2.9 3.2 2.9	412 395 365	0.29 0.27 0.20	283 297 369	1826 1346 980	-
	AVG	. 3.0	391	0.25	316	1384	-
TFA AC-10 + 3% Styrelf	39	3.3 3.6 3.3	469 527 452	0.35 0.36 0.35	265 289 256	1848 2439 2406	-
Ì	AVG	. 3.4	483	0.36	270	2231	- 1
TFA AC-10 + 3% NS 175	39	3.8 4.6 3.7	385 369 409	0.26 0.28 0.29	295 263 285	1292 1456 1433	-
	AVG	. 4.0	388	0.28	281	: 394	-
TFA AC-10 + 18% C107	39	:	:	-	-	:	-
	AVG	. •					
Control: TFA AC-20	39	4.0 4.0 3.9	461 472 459	0.12 0.09 0.10	770 1007 928	1925 2625 1812	-
	AVG	. 4.0	464	0.10	902	2121	-
TFA AC-20 + 3% Polybilt	39	3.7 3.9 3.5	436 447 435	0.23 0.20 0.19	380 440 464	2080 1606 1267	
	AVG	. 3.7	439	0.21	428	1651	-
TFA AC-20 + 5% Dow	39	3.0 2.8 2.5	480 482 499	0.18 0.21 0.18	542 463 564	1225 711 1293	-
		2.8	487	0.19	523	1076	•

Table A-14	Indirect	Tensile	Test	Results	for	Laboratory	Mixed/Laboratory	Compacted
	Mixtures	Using St	andar	rd Compac	:tio	ถ	•	

Table A-14 (Continued)

•

MIXTURE	TEST TEMP.' F	AIR VOIDS	INDIRECT TENSILE STRENGTH PSI	STRAIN AT FAILURE	SECANT MODULUS KSI	RESILIENT MODULUS KSI	POISSON'S RATIO
Control: TFA AC-10	77	4.7 5.1 5.1	62 66 64	0.73 1.18 1.00	17.1 11.3 12.7	318 322 372	-
		5.0	64	0.97	13.7	337	-
TFA AC-10 + 3% UP 70	77	2.8 3.3 2.9	98 103 111	0.86 0.83 0.84	22.7 24.8 26.3	394 494 374	-
		3.0	104	0.85	24.6	420	-
TFA AC-10 + 3% Styrelf	77	3.4 4.0 3.4	130 128 138	1.29 1.21 1.01	20.2 21.1 27.2	453 430 418	-
		3.6	132	1.17	22.9	434	
TFA AC-10 + 3% NS 175	77	4.4 4.4 3.7	94 97 98	0.91 0.90 0.87	20.6 21.4 22.5	411 530 460	-
		4.2	96	0.90	21.5	467	-
TFA AC-10 + 18% C107	77	:	•	:	-	-	-
		•	- 	-	-	-	
		-	•	-	•	-	-
Control: TFA AC-20	77	3.8 3.7 4.1	126 125 132	0.62 0.65 0.63	40.2 38.4 41.6	495 580 576	-
		3.9	128	0.64	40.1	550	-
TFA AC-20 + 3% Polybilt	77	3.7 4.2 3.7	136 123 138	0.51 0.47 0.48	52.9 52.6 57.7	490 576 575	-
1		3.8	133	0.49	54.4	547	-
TFA AC-20 + 5% Dom	77	4.8 2.9 2.9	140 135 138	0.36 0.42 0.39	76.6 64.6 70.7	733 566 638	-
		3.5	137	0.39	70.6	646	-

able A-14	(Conti	inued)	
-----------	--------	--------	--

,

MIXTURE	TEST TEMP.• F	AIR VOIDS	INDIRECT TENSILE STRENGTH PSI	STRAIN AT FAILURE	SECANT MODULUS KSI	RESILIENT MODULUS KSI	POISSON'S RATIO
Control: TFA AC-10	104	4.8 4.9 4.6	20 15 21	1.09 0.88 1.14	3.7 3.5 3.6	110 124 87	
		4.8	19	1.04	3.6	107	-
TFA AC-10 + 3% UP 70	104	3.1 2.1 3.1	43 51 42	1.06 1.05 1.04	8.2 9.8 8.2	206 150 147	-
		2.8	46	1.05	8.7	168	-
TFA AC-10 + 3% Styrelf	104	3.1 3.2 3.6	52 51 44	1.46 1.40 1.52	7.1 7.2 5.8	269 131 178	-
1		3.3	49	1.46	6.7	193	-
TFA AC-10 + 3% NS 175	104	4.0 4.6 4.8	37 37 34	1.13 1.12 1.15	6.6 6.5 5.9	161 151 183	-
1		4.5	36	1.13	6.3	165	•
TFA AC-10 ± 18% C107	104		-	-	-	-	-
			····· •			•••••	
Control: TFA AC-20	104	3.7 4.0 3.9	53 50 51	0.86 0.86	11.6 12.0	266 233 217	-
		3.8	52	0.86	11.8	239	-
TFA AC-20 + 3% Polybilt	104	3.8 3.9 3.5	61 60 62	0.73 0.72 0.69	16.7 16.5 18.0	184 412 269	-
		3.7	61	0.71	17.1	289	-
TFA AC-20 + 5% Dow	104	2.5 3.3 3.1	70 60 61	0.39 0.47 0.49	36.1 25.6 24.9	241 233 244	-
		3.0	64	0.45	28.9	239	-

.

MIXTURE	TEST TEMP. F	AIR VOIDS	INDIRECT TENSILE STRENGTH PSI	STRAIN AT FAILURE	SECANT MODULUS KSI	RESILIENT MODULUS KSI	POISSCN'S RATIO
TFA AC-10 + 3% UP 70	39	6.8 6.9 7.0	303 297 304	0.37 0.37 0.36	164 158 167	1418 1624 1437	-
1	AVG	. 6.9	301	0.37	163	1493	-
TFA AC-10 + 3% Styrelf	39	7.1 7.0 7.1	415 386 401	0.48 0.45 0.49	173 170 164	1528 1688 1678	-
	AVG	. 7.1	400	0.47	169	1632	-
TFA AC-10 + 3% NS 175	39	6.4 6.5 6.8	307 299 273	0.39 0.38 0.35	157 157 154	1566 1601 1823	:
	AVG	. 6.6	293	0.37	156	1664	-
TFA AC-10 + 18% C107	39	7.2 7.6 7.6	172 166 170	0.37 0.37 0.36	77 73 76	1320 1236 879	-
1	AVG	. 7.5	169	0.37	75	1145	
Control: TFA AC-20	39	7.2 7.0 6.9	257 265 260	0.23 0.22 0.22	224 237 238	1480 1463 1287	-
. 	AVG	. 7.0	261	0.22	233	1410	-
TFA AC-20 + 3% Polybilt	39	7.0 7.2 7.6	313 304 288	0.26 0.29 0.32	240 212 182	1663 1625 1669	-
	AVG	. 7.3	302	0.29	211	1652	•
TFA AC-20 + 5% Dow	39	7.9 7.9 7.8	27 4 283 295	0.19 0.20 0.21	284 286 284	1789 1774 1523	•
		7.9	284	0.20	285	1695	-

TTable A-15 Indirect Tensile Test Results for Plant Mixed/Laboratory Compacted Mixtures Using Modified Compaction

•

Table A-15 (Continued)

MIXTURE	TEST. TEMP. F	AIR I VOIDS & S	NDIRECT TENSILE TRENGTH PSI	STRAIN AT FAILURE	SECANT MODULUS KSI	RESILIENT MODULUS KSI	POISSON'S RATIO
TFA AC-10 + 32 UP 70	77	7.1 6.7 6.9	97 100 95	0.75 0.94 0.85	25.8 21.4 22.4	415 420 409	
		6.9	98	0.85	23.2	415	-
TFA AC-10 + 3% Styrelf 	77	7.0 7.2 7.6	119 119 110	1.14 1.08 1.17	20.9 22.1 18.8	422 490 394	-
		7.3	116	1.13	20.6	435	•
TFA AC-10 + 3% NS 175	77	6.9 6.9 7.1	89 91 85	0.75 0.85 0.80	23.6 21.5 21.1	350 405 413	-
		6.9	88	0.80	22.1	389	-
TFA AC-10 + 18% C107	77	6.5 6.4 6.6	71 62 67	0.37 0.37 0.36	11.9 11.9	199 165 182	-
		5.5	67	0.37	11.9	182	-
Control: TFA AC-20	77	7.0 6.6 7.0		0.54 0.59 0.64	32.8 29.1 24.6	417 422 378	-
		6.9	85	0.59	28.8	406	
TFA AC-20 + 3% Polybilt	77	6.8 7.5 6.8	104 100 107	0.47 0.47 0.49	44.1 42.5 43.8	397 407 407	-
ł		7.0	104	0.48	43.5	404	-
TFA AC-20 + 5% Dow	77	8.0 7.5 7.8	98 113 111	0.36 0.33 0.40	53.7 69.1 56.1	420 446 436	
 		7.8	107	0.36	59.6	434	-

able A-15	(Continued)
-----------	-------------

MIXTURE	TEST. TEMP. F	AIR VOIDS	INDIRECT TENSILE STRENGTH PSI	STRAIN AT FAILURE	SECANT MODULUS KSI	RESILIENT MODULUS KSI	POISSON'S RATIO
TFA AC-10 + 3% UP 70	104	7.0 6.8 6.8	43 51 47	1.17 1.11 1.09	7.4 9.1 8.6	127 164 115	-
		6.9	47	1.12	8.4	136	-
TFA AC-10 + 3% Styrelf	104	7.3 7.1 6.8	44 46 50	1.35 1.25 1.35	6.5 7.3 7.4	117 155 149	-
		7.0	47	1.32	7.1	140	-
TFA AC-10 + 3% NS 175	104	6.4 6.4 6.5	42 41 43	0.99 1.01 0.99	8.4 8.1 8.6	139 142 131	-
		6.5	42	0.99	8.4	137	-
TFA AC-10 + 18% C107	104	7.3 7.3 7.2	36 35 35	0.37 0.37 0.36	5.1 5.4 4.6	117 116 92	-
		7.3	35	0.37	5.1	108	-
Control: TFA AC-20	104	5.6 7.4 7.1	39 42 40	0.85 0.84 0.73	9.3 9.9 10.9	124 143 188	-
		7.0	40	0.81	10.0	152	•
TFA AC-20 + 3% Polybilt	104	6.8 7.1 7.2	52 55 50	0.72 0.67 0.73	14.6 16.4 13.7	123 140 122	-
		7.0	52	0.70	14.9	128	-
TFA AC-20 + 5% Dow	104	7.6 7.6 7.7	65 62 50	0.46 0.42 0.46	28.3 29.3 26.0	179 174 169	-
		7.6	62	0.45	27.9	174	•

MIXTURE	TEST TEMP. F	AIR VOIDS	INDIRECT TENSILE STRENGTH PSI	STRAIN AT FAILURE	SECANT MODULUS KSI	RESILIENT MODULUS KSI	POISSON'S RATIO
TFA AC-10 + 3% UP 70	39	4.2 4.0 4.2	408 420 401	0.31 0.31 0.29	261 274 275	1588 1704 1658	
	AVG	. 4.2	410	0.30	270	1650	-
TFA AC-10 + 3% Styrelf	39	4.3 3.7 4.1	554 572 542	0.30 0.31 0.31	373 366 347	1613 1754 1734	-
	AVG	. 4.0	556	0.31	362	1700	-
TFA AC-10 + 3% NS 175	39	1.9 2.1 2.1	457 487 504	0.25 0.27 0.30	366 360 340	1762 1640 1765	-
1	AVG	. 2.1	483	0.27	355	1722	-
TFA AC-10 + 18% C107	39	4.5 4.4 3.9	259 272 274	0.37 0.37 0.36	172 180 170	1032 1119 1452	-
	478	. 4.3	268	0.37	174	:201	-
Control: TFA AC-20	39	2.9 3.0 3.1	448 478 455	0.20 0.21 0.18	441 459 514	1797 1935 1790	-
	AVG	. 3.0	460	0.20	471	1841	-
TFA AC-20 + 3% Polybilt	39	3.3 3.3 3.3	485 484 489	0.21 ⁻ 0.24 0.25	455 395 383	1600 1856 1511	-
	AVG	. 3.3	486	0.24	411	1655	-
TFA AC-20 + 5% Dow	39	2.9 2.9 3.0	506 516 500	0.20 C.21 0.21	499 484 469	1707 1864 1655	-
		2.9	508	0.21	484	1742	-

Table A-16 Indirect Tensile Test Results for Plant Mixed/Laboratory Compacted Mixtures Using Standard Compaction

-

.

,

. .

Table	A-16	(Continued)
-------	------	-------------

•

.

. .

MIXTURE	TEST TEMP. F	AIR VOIDS	INDIRECT TENSILE STRENGTH PSI	STRAIN AT FAILURE	SECANT Modulus KSI	RESILIENT MODULUS KSI	POISSON'S RATIO
TFA AC-10 + 3% UP 70	77	3.6 4.1 4.1	134 140 130	0.70 0.71 0.69	38.4 39.4 37.9	504 506 476	-
1		3.9	135	0.70	38.6	495	-
TFA AC-10 + 3% Styrelf	77	4.1 4.2 4.1	163 162 168	1.04 1.04 1.02	31.3 31.1 32.8	461 459 438	-
		4.1	164	1.03	31.7	453	•
TFA AC-10 + 3% NS 175	77	2.2 2.3 2.0	160 154 156	0.70 0.70 0.75	45.4 43.7 41.5	470 484 501	• / •
		2.2	157	0.72	43.5	485	•
TFA AC-10 + 18% C107	77	4.4 5.1 3.7	93 103 103	0.37 0.37 0.36	20.9 21.9 22.0	392 401 529	-
1		4.4	100	0.37	21.6	441	•
Control: TFA AC-20	77	3.2 3.0 3.1	149 153 162	0.54 0.52 0.55	55.1 58.7 58.6	457 470 445	
1		3.1	155	0.54	57.5	457	•
TFA AC-20 + 3% Polybilt	77	3.1 3.2 3.4	165 172 178	0.46 0.47 0.47	71.3 73.6 75.8	498 489 478	
		3.2	172	0.47	73.6	488	•
TFA AC-20 + 53-Dow I	. 77	2.8 2.7 2.6	190 190 191	0.40 0.40 0.41	94.8 96.0 93.9	539 423 436	-
		2.7	190	0.40	94.9	466	•

Table A-16 (Continued)

MIXTURE	TEST. TEMP. F	AIR VOIDS	INDIRECT TENSILE STRENGTH PSI	STRAIN AT FAILURE	SECANT MODULUS KSI	RESILIENT MODULUS KSI	POISSON'S RATIO
TFA AC-10 + 3% UP 70	104	4.0 4.2 4.3	53 53 56	0.97 0.99 1.02	10.9 10.6 11.0	198 185 190	
		4.2	54	0.99	10.9	191	•
TFA AC-10 + 3% Styrelf	104	4.2 3.7 4.2	56 59 65	1.27 1.19 1.15	8.8 9.9 11.2	179 209 220	-
		4.0	50	1.21	10.0	202	•
TFA AC-10 + 3% NS 175	104	2.2 2.1 2.0	69 66 71	0.94 0.94 0.94	14.8 14.0 15.1	176 199 209	-
		2.1	59	0.94	14.6	195	-
TFA AC-10 + 18% C107	104	4.6 4.2 3.7	46 47 48	0.37 0.37 0.36	6.9 8.0 7.6	179 148 190	-
		4.2	47	0.37	7.5	172	-
Control: TFA AC-20	104	2.8 3.1 3.2	68 63 70	0.62 0.71 0.75	21.8 17.6 18.7	222 249 215	-
		3.0	67	0.70	19.4	229	-
TFA AC-20 + 3% Polybilt	104	3.1 3.2 3.7	76 78 81	0.63 0.59 0.69	24.0 26.5 23.5	213 198 252	-
		3.3	78	0.64	24.7	221	•
TFA AC-20 + 5% Dow	104	2.8 3.0 3.0	95 96 96	0.57 0.53 0.52	33.5 36.7 37.0	298 241 201	-
		2.9	96	0.54	35.7	247	-

	TEST	AIR	LOAD	INDIRECT RE	SILIEN	ALPHA	GNU	Ea=IN	^s	R-SOUR
	F	\$		STRESS I PSI	IN/IN		-	S	LOG(I)	Ea=IN ^S
Control: TFA AC-10	77	7.6	106	7.2 3.	.6E-05	0.0743	1.5062	0.9257	-4.2275	0.999
1		7.1	106	7.0 3.	.4E-05	0.0742	2.6049	0.9258	-4.0218	0.994
1 1 1 1	AVG	. 7.4	106	7.1 3.	.5E-05	0.0743	2.0555	0.9258	-4.1247	
TFA AC-10 + 3% UP 70	77	6.2	138	9.5 5.	.7E-05	0.2574	0.6507	0.7426	-4.3000	0.998
		5.6	137	9.3 5.	.5E-05	0.2728	0.7682	0.7272	-4.2390	0.999
	AVG	. 5.9	138	9.4 5.	.6E-05	0.2651	0.7094	0.7349	-4.2695	
TFA AC-10 + 3% Styrelf	77	7.1	161	10.9 7	.8E-05	0.2747	0.6857	0.7253	-4.1323	0.999
		7.4	160	10.7 7	.3E-05	0.2810	0.6393	0.7190	-4.1889	0.999
1	AVG	. 7.3	160	10.8 7	.5E-05	0.2779	0.6625	0.7222	-4.1606	,
TFA AC-10 + 3% NS 175	77	6.6	144	9.8 5	. 5E-0 5	0.2455	0.3986	0.7545	-4.5399	0.999
9 1 1		7.4	144	9.9 5	.7E-05	0.2662	0.4809	0.7338	-4.4261	0.999
, ; ; ;	AVG	. 7.0	144	9.8 5	.6E-05	0.2559	0.4398	0.7442	-4.4830	
TFA AC-10 + 18% C107	77	13.4	74	4.8 7	.3E-05	0.2495	0.2474	0.7505	-4.6198	0.996
		11.9	74	4.7 7	.0E-05	0.2925	0.2750	0.7075	-4.5641	0.997
1 1 1	AVG	. 12.7	74	4.8 7	.2E-05	0.2710	0.2612	0.7290	-4.5920	
Control: TFA AC-20	77	8.0	172	11.5 6	.5E-05	0.2232	0.0432	0.7768	-5.4418	0.994
		7.7	171	11.5 6	.5E-05	0.2024	0.1063	0.7976	-5.0622	0.999
	AVG	i. 7.8	171	11.5 6	.5E-05	0.2128	0.0748	0.7872	-5.2520	
TFA AC-20 + 3% Polybilt	77	7.45	218	14.7 7	.0E-05	0.2927	0.1055	0.7073	-4.9799	0.996
		6.95	221	14.97	.0E-05	0.3606	0.0530	0.6394	-5.2354	0.998
	AVG	i. 7.2	220	14.8 7	. 0E- 05	0.3267	0.0792	0.6734	-5.1077	
TFA AC-20 + 5% DON	77	7.8	217	14.4 6	.0E-05	0.3206	0.0188	0.6794	-5.7818	0.999
		7.6	216	14.4 6	.0E-05	0.2874	0.0119	0.7126	-5.9990	0.999
		7.7	216	14.4 6	.0E-05	0.3040	0.0154	0.6960	-5.8904	

Table A-17 Alpha and Gnu Parameters for Laboratory Mixed/Laboratory Compacted Mixtures

. .

. •

•

.

NIVIDC	TEST	AIR	LOAD	INDIRECT RESILIEN	ALPHA	GNU	Ea=IN	^s	R-SOUR !
HIATORE	F	\$	682	STRESS IN/IN PSI		-	5	LOG(I)	Ea=IN ^S
TFA AC-10 + 3% UP 70	77	7.4	194	13.7 4.9E-05	0.3042	0.2232	0.6958	-4.8000	0.998
5 7		6.9	194	13.8 5.2E-05	0.4415	0.3523	0.5585	-4.4841	0.997
	AVG	. 7.2	194	13.7 5.1E-05	0.3729	0.2878	0.6272	-4.6421	1
TFA AC-10 + 3% Styrelf	77	7.3	228	16.1 6.8E-05	0.3584	0.4790	0.6416	-4.2970	0.992
		6.7	232	16.5 7.2E-05	0.3017	0.3595	0.6983	-4.4340	0.993
	AVG	. 7.0	230	16.3 7.0E-05	0.3301	0.4193	0.6700	-4.3655	
TFA AC-10 + 3% NS 175	77	6.5	175	12.2 3. 3E-0 5	0.2023	0.1445	0.7977	-5.2302	0.999
	•	6.6	176	12.3 4.2E-05	0.2562	0.2717	0.7438	-4.8182	0.998
- 	AVG	. 6.5	176	12.3 3.7E-05	0.2293	0.2081	0.7708	-5.0242	
TFA AC-10 + 18% C107	77	7.6	131	9.1 3.1E-05	0.4508	0.4063	0.5492	-4.6367	0.999
		7.4	133	9.3 4.7E-05	0.3496	0.1161	0.6504	-5.0780	0.998
4 1 1	AVG	. 7.5	132	9.2 3.9E-05	0.4002	0.2612	0.5998	-4.8574	1
Control: TFA AC-20	77	7.4	172	11.9 3.6E-05	0.3375	0.1109	0.6625	-5.2213	0.998
1		7.0	171	11.9 3.5E-05	0.3173	0.0768	0.6827	-5.4034	0.987
 	AVG	. 7.2	171	11.9 3.5E-05	0.3274	0.0939	0.6726	-5.3124	
TFA AC-20 + 3% Polybilt	77	7.32	218	14.6 3.4E-05	0.7661	0.5669	0.2339	-4.0866	0.992
		7.33	221	14.7 4.4E-05	0.5413	0.1603	0.4587	-4.8112	0.993
 	AVG	. 7.3	220	14.7 3.9E-05	0.6537	0.3636	0.3463	-4.4489	
TFA AC-20 + 5% Dow	77	7.8	217	15.2 4.9E-05	0.6000	0.0259	0.4000	-5.4958	0.990
1		7.6	216	15.1 4.8E-05	0.6767	0.0526	0.3233	-5.1067	0.993
		7.7	216	15.1 4.9E-05	0.6384	0.0392	0.3617	-5.3013	

Table A-18 Alpha and Gmu Parameters for Plant Mixed/Laboratory Compacted Mixtures

. .

NTYTIRE	TEST	AIR	LOAD	INDIRECT	STATIC INITIAL	LOAD	FATIGUE	CONSTANT	- FOR
TIXIONL	F	\$		STRESS	KSI IN/IN	CICLES	K1	K2	Nf=K1(1/Emix) [°] K
Control: TFA AC-10	77	7.6 7.1 7.4 7.3 7.7 7.3	106 106 184 182 376 373	7.2 7.0 12.6 12.4 25.5 25.5	28 2.6E-04 28 2.5E-04 28 4.5E-04 28 4.4E-04 28 9.1E-04 28 9.1E-04	575 288 304 283 93 109	4.74E-02	1.11	0.84
tfa AC-10 + 39, up 70	77	6.2 5.6 6.0 6.3 6.4 5.5	138 137 235 235 478 482	9.5 9.3 16.1 16.0 32.6 33.0	42 2.3E-04 42 2.2E-04 42 3.8E-04 42 3.8E-04 42 7.8E-04 42 7.9E-04	3245 3400 945 982 185 277	4. 96 E-05	2.14	0.99
TFA AC-10 + 3% Styrelf	77	7.1 7.4 7.7 7.3 6.8 7.2	161 160 275 275 508 509	10.9 10.7 18.2 18.6 33.8 34.0	31 3.5E-04 31 3.4E-04 31 5.9E-04 31 6.0E-04 31 1.1E-03 31 1.1E-03	2450 1500 720 826 221 252	9.685-04	1.82	0.96
TFA AC-10 + 32 NS 175	77	6.6 7.4 7.2 6.8 5.9 6.9	144 144 246 247 505 506	9.8 9.9 16.6 16.8 27.8 34.8	35 2.8E-04 35 2.8E-04 35 4.8E-04 35 4.8E-04 35 7.9E-04 35 1.0E-03	4825 4035 1344 1510 - 205 242	4.36E-06	2.54	0.%
TFA AC-10 + 18% C107	77	13.4 11.3 11.4 11.6 12.2 11.9	74 74 131 131 271 267	4.8 4.7 8.5 8.6 17.3 17.5	11 4.4E-04 11 4.3E-04 11 7.7E-04 11 7.8E-04 11 1.6E-03 11 1.6E-03	8700 11755 4340 2540 377 521	7.75E-05	2.43	0.97
Control: TFA AC-20	77	8.0 7.7 7.1 7.6 6.9 6.8	144 143 286 286 581 581	9.6 9.6 19.2 19.2 38.8 38.9	102 9.4E-05 102 9.4E-05 102 1.9E-04 102 1.9E-04 102 3.8E-04 102 3.8E-04	13680 9470 2847 2646 353 503	4.02E-06	2.35	0.98
TFA AC-20 + 3% Polybilt	77	7.4 6.9 7.6 7.7 6.9 6.7	167 168 286 286 584 584	11.3 11.3 19.3 19.2 39.5 39.6	103 1.1E-04 103 1.1E-04 103 1.9E-04 103 1.9E-04 103 3.8E-04 103 3.8E-04	15120 26100 2392 2410 364 260) 1.54E-09	3.30	0.98
TFA AC-20 + 5% Dow	77	7.8 7.6 6.4 6.7 7.2 7.6	156 158 267 268 545 545	10.3 10.5 18.0 17.9 36.1 36.1	152 6.8E-05 152 6.9E-05 152 1.2E-04 152 1.2E-04 152 2.4E-04 152 2.4E-04	81340 73620 16900 8345 316 355	4.31E-14	4.40	0.98

Table A-19 Fatigue Parameter Values for Laboratory Mixed/Laboratory Compacted Mixtures

NIXTURE	TEST	AIR	·LOAD FRS	INDIRECT	STATIC INITIAL	LOAD	FATIGUE	CONSTANT	R-SOUR
	F	ž		STRESS	KSI IN/IN	UNCLU	K1	K 2	Nf=K1(1/Esix) [*] K
TFA AC-10 + 32 UP 70	77	7.4 6.9 6.7 6.8 7.0 6.7	194 194 332 332 677 674	13.7 13.8 23.7 23.6 48.0 48.1	66 2.1E-04 66 2.1E-04 66 3.6E-04 66 3.6E-04 66 7.3E-04 66 7.3E-04	17800 14900 4145 4057 552 778	5.75E-06	5 2.57	0.993
TFA AC-10 + 3% Styrelf	77	7.3 6.7 6.86 7.38 7.32 6.92	228 232 395 398 799 802	16.1 16.5 28.1 28.1 56.4 57.1	57 2.82-04 57 2.92-04 57 4.92-04 57 4.92-04 57 9.92-04 57 1.02-03	5623 4948 1489 1622 292 392	8.52E-05	5 2.20	0.992
TFA AC-10 + 3% NS 175	77	6.5 6.6 6.71 6.66 6.91 6.55	175 176 303 302 625 606	12.2 12.3 21.3 21.2 43.6 42.6	61 2.0E-04 61 2.0E-04 61 3.5E-04 61 3.5E-04 61 7.1E-04 61 7.0E-04	13700 10300 4051 3492 396 566	3.54E-06	6 2.59	0.983
TFA AC-10 + 18% C107	77	7.6 7.4 7.00 7.30 7.55 7.16	131 133 229 230 465 467	9.1 9.3 15.9 15.9 32.4 32.4	39 2.3E-04 39 2.4E-04 39 4.1E-04 39 4.1E-04 39 8.3E-04 39 8.3E-04	112300 108400 15985 13825 1156 1235	1.07E-08	8 3.58	0.999
Control: TFA AC-20	77	7.4 7.0 7.10 6.85 7.53 7.05	172 171 294 294 607 601	11.9 11.9 20.4 20.2 41.7 41.8	88 1.3E-04 88 1.4E-04 88 2.3E-04 88 2.3E-04 88 4.7E-04 88 4.7E-04	76500 70650 21130 15750 1427 1440	4.99E-08	8 3.16	0.990
TFA AC-20 + 3% Polybilt	77	7.32 7.33 7.23 7.04 7.10 7.42	218 221 375 376 762 764	14.6 14.7 25.0 25.3 51.0 51.1	138 1.1E-04 138 1.1E-04 138 1.8E-04 138 1.8E-04 138 1.8E-04 138 3.7E-04 138 3.7E-04	260300 181350 16250 20980 920 1105	1.66E-1;	2 4.30	0.995
TFA AC-20 + 5% Dow	77	7.8 7.6 7.62 7.86 7.83 7.94	217 216 363 377 755 759	15.2 15.1 25.4 26.2 52.8 52.8	194 7.8E-05 194 7.8E-05 194 1.3E-04 194 1.3E-04 194 2.7E-04 194 2.7E-04	191250 198400 22250 34100 970 640	1.38E-1:	3 4.43	0.986

Table A-20 Fatigue Parameter Values for Plant Mixed/Laboratory Compacted Mixtures

.

MIXTURE	TEMP. F	D1	m	Log(SHIFT FACTOR)	BETA
Control: TFA AC-10	60	1.86E-06	0.84	0.77	0.033
	77	8.01E-06	0.84		1
	90	2.70E-05	0.71	-0.27	
TFA AC-10 + 3% UP 70	60	2.61E-06	0.56	0.79	0.063
	77	5.18E-06	0.63		
	90	2.21E-05	0.64	-1.04	
TFA AC-10 + 3% Styrelf	60	2.97E-06	0.70	0.58	0.040
	77	1.24E-05	0.62		
	90	3.285-05	0.59	-0.60	
TFA AC-10 + 3% NS 175	60	2.90E-06	0.54	0.83	0.042
	77	5.18E-06	0.63		
	90	1.06E-05	0.62	-0.44	
TFA AC-10 + 18% C107	60	6.56E <i>=</i> 07	0.70	1.03	0.059
	77	3.80E-06	0.67		
	90	1.14E-05	0.69	-0.75	
Control: TFA AC-20	60	9.93E-07	0.58	1.05	0.073
	77	4.28E-06	0.57		
	90	1.55E-05	0.62	-1.10	-
TFA AC-20 + 3% Polybilt	60	1.97E-06	0.41	1.19	0.089
	77	5.24E-06	0.45		
	90	2.425-05	0.41	-1.41	
TFA AC-20 + 5% Dow	60	1.38E-06	0.31	1.26	0.083
	77	2.11E-06	0.42		
	90	6.12E-06	0.44	-1.20	

Table A-21 Creep Compliance Properties for Laboratory Mixed/Laboratory Compacted Mixture Using Modified Compaction.

. .

MIXTURE	TEMP. F	D1	n	Log(SHIFT FACTOR)	BETA
TFA AC-10 + 3% UP 70	60	2.30E-06	0.46	0.97	0.090
	77	3.46E-06	0.59		1
	90	3.21E-05	0.58	-1.61	
TFA AC-10 + 3% Styrelf	60	3.90E-06	0.47	0.96	0.055
	77	9.24E-06	0.50		
	90	1.50E-05	0.58	-0.71	
TFA AC-10 + 3% NS 175	60	2.27E-06	0.44	1.15	0.064
1	77	4.04E-06	0.56		
	90	1.68E-05	0.46	-0.78	
TFA AC-10 + 18% C107	60	5.50E-07	0.63	1.29	0.079
1	77	3.58E-06	0.63		
	90	1.43E-05	0.66	-1.07	
Control: TFA AC-20	60	7.02E-07	0.49	1.21	0.077
	77	2.51E-06	0.51		
	90	1.17E-05	0.45	-1.07	
TFA AC-20 + 3% Polybilt	60	1.91E-06	0.30	0.81	0.074
	77	1.98E-06	0.42		
	90	5.90E-06	0.45	-1.30	
TFA AC-20 + 5% Dow	60	2.10E-06	0.14	1.01	0.053
	77	1.53E-06	0.29		
1	90	1.82E-06	0.34	-0.60	

Table A-22 Creep Compliance Properties for Plant Mixed/ Laboratory Compacted Mixture Using Modified Compaction.

TINE TOTAL TENSILE TENSILE	TIME TOTAL TENSILE TENSILE
SEC. HORIZONTAL STRAIN CREEP	SEC. HORIZONTAL STRAIN CREEP
DEFORMATION IN/IN COMPLIANCE	DEFORMATION IN/IN COMPLIANCE
IN IN^2/LB	IN IN^2/LB
TFA AC-20	TFA AC-20
TEST TEMP = 60 , ZIGMA = 7.648 PSI	TEST TEMP = 60 , ZIGMA = 7.648 PSI
31.6 2.85E-04 1.48E-04 9.69E-06 56.2 3.90E-04 2.03E-04 1.33E-05 100.0 5.35E-04 2.78E-04 1.82E-05 177.8 7.35E-04 3.82E-04 2.50E-05 316.2 1.03E-03 5.33E-04 3.49E-05 562.3 1.43E-03 7.41E-04 4.85E-05 1000.0 2.09E-03 1.08E-03 7.09E-05 1778.3 2.99E-03 1.55E-03 1.01E-04 3162.3 4.30E-03 2.24E-03 1.46E-04 3600.0 4.60E-03 2.39E-03 1.56E-04 7200.0 4.13E-03 2.15E-03	31.6 3.20E-04 1.66E-04 5.66E-06 56.2 4.50E-04 2.34E-04 7.96E-06 100.0 6.10E-04 3.17E-04 1.08E-05 177.8 8.40E-04 4.37E-04 1.49E-05 316.2 1.15E-03 5.98E-04 2.03E-05 562.3 1.60E-03 8.32E-04 2.83E-05 1000.0 2.24E-03 1.17E-03 3.96E-05 1778.3 3.13E-03 1.63E-03 5.53E-05 3162.3 4.40E-03 2.29E-03 7.78E-05 3600.0 4.72E-03 2.45E-03 8.35E-05 7200.0 4.19E-03 2.18E-03
TFA AC-20	TFA AC-20
TEST TEMP = 77 , ZIGMA=5.570 PSI	TEST TEMP = 77 , ZIGMA=3.917 PSI
31.6 4.50E-04 2.34E-04 2.10E-05 56.2 6.25E-04 3.25E-04 2.92E-05 100.0 8.50E-04 4.42E-04 3.97E-05 177.8 1.18E-03 6.11E-04 5.49E-05 316.2 1.63E-03 8.45E-04 7.59E-05 562.3 2.25E-03 1.17E-03 1.05E-04 1000.0 3.30E-03 1.72E-03 1.54E-04 1778.3 4.95E-03 2.57E-03 2.31E-04 3162.3 7.80E-03 4.06E-03 3.64E-04 3600.0 8.63E-03 4.29E-03 4.03E-04	31.6 6.50E-04 3.38E-04 4.32E-05 56.2 9.00E-04 4.68E-04 5.98E-05 100.0 1.20E-03 6.24E-04 7.97E-05 177.8 1.65E-03 8.58E-04 1.10E-04 316.2 2.15E-03 1.12E-03 1.43E-04 562.3 2.88E-03 1.50E-03 2.62E-04 1000.0 3.95E-03 2.05E-03 2.62E-04 1778.3 5.63E-03 2.93E-03 3.73E-04 3162.3 8.13E-03 4.23E-03 5.39E-04 3600.0 8.90E-03 4.63E-03 5.91E-04 7200.0 8.83E-03 4.59E-03 5.91E-04
TFA AC-20	TFA AC-20
TEST TEMP = 90 , ZIGMA=2.797 PSI	TEST TEMP = 90 , ZIGMA=1.405 PSI
3.2 3.00E-04 1.56E-04 2.79E-05	3.2 1.40E-04 7.28E-05 2.59E-05
5.6 4.75E-04 2.47E-04 4.42E-05	5.6 1.95E-04 1.01E-04 3.61E-05
10.0 6.50E-04 3.38E-04 6.04E-05	10.0 2.65E-04 1.38E-04 4.90E-05
17.8 1.03E-03 5.33E-04 9.53E-05	17.8 3.70E-04 1.92E-04 6.85E-05
31.6 1.43E-03 7.41E-04 1.32E-04	31.6 5.10E-04 2.65E-04 9.44E-05
56.2 1.98E-03 1.03E-03 1.84E-04	56.2 7.00E-04 3.64E-04 1.30E-04
100.0 2.60E-03 1.35E-03 2.42E-04	100.0 9.50E-04 4.94E-04 1.76E-04
177.8 3.85E-03 2.00E-03 3.58E-04	177.8 1.35E-03 7.00E-04 2.49E-04
316.2 5.45E-03 2.83E-03 5.07E-04	316.2 1.95E-03 1.01E-03 3.60E-04
562.3 8.50E-03 4.42E-03 7.90E-04	562.3 2.82E-03 1.47E-03 5.22E-04
1000.0 1.55E-02 8.06E-03 1.44E-03	1000.0 4.26E-03 2.22E-03 7.88E-04

Table A-23 Creep Compliance of Laboratory Mixed / Laboratory Compacted Mixtures Using Modified Compaction.

TIME TOTAL TENSILE TENSILE SEC. HORIZONTAL STRAIN CREEP DEFORMATION IN/IN COMPLIANCE IN IN^2/LB	TIME TOTAL TENSILE TENSILE SEC. HORIZONTAL STRAIN CREEP DEFORMATION IN/IN COMPLIANCE IN IN^2/LB
IFA AC-20 + 3% POLYBILT 103 TEST TEMP = 60 , ZIGMA = 7.700 PSI	TFA AC-20 + 3% POLYBILY 103 TEST TEMP = 60 , ZIGMA = 7.750 PSI
31.6 2.75E-04 1.43E-04 9.29E-06 56.2 3.50E-04 1.82E-04 1.18E-05 100.0 4.60E-04 2.39E-04 1.55E-05 177.8 6.15E-04 3.20E-04 2.08E-05 316.2 8.00E-04 4.16E-04 2.70E-05 562.3 1.03E-03 5.33E-04 3.46E-05 1000.0 1.30E-03 6.76E-04 4.39E-05 1778.3 1.67E-03 8.66E-04 5.62E-05 3162.3 2.08E-03 1.08E-03 7.01E-05 3600.0 2.18E-03 1.13E-03 7.35E-05 7200.0 1.50E-03 7.80E-04	31.6 4.30E-04 2.24E-04 7.50E-06 56.2 5.15E-04 2.68E-04 8.99E-06 100.0 6.15E-04 3.20E-04 1.07E-05 177.8 7.20E-04 3.74E-04 1.26E-05 316.2 8.30E-04 4.32E-04 1.45E-05 562.3 1.08E-03 5.62E-04 1.88E-05 1000.0 1.38E-03 7.18E-04 2.41E-05 1778.3 1.78E-03 9.26E-04 3.11E-05 3162.3 2.34E-03 1.22E-03 4.08E-05 3600.0 2.48E-03 1.29E-03 4.32E-05 7200.0 1.77E-03 9.19E-04 -04
TFA AC-20 + 3% POLYBILT 103 TEST TEMP = 77 , ZIGMA=6.103 PSI	TFA AC-20 + 3% POLYBILT 103 TEST TEMP = 77 , ZIGMA=6.061 PSI
31.6 6.00E-04 3.12E-04 2.56E-05 56.2 7.85E-04 4.08E-04 3.34E-05 100.0 1.00E-03 5.20E-04 4.26E-05 177.8 1.30E-03 6.76E-04 5.54E-05 316.2 1.69E-03 8.76E-04 7.18E-05 562.3 2.25E-03 1.17E-03 9.59E-05 1000.0 3.04E-03 1.58E-03 1.29E-04 1778.3 4.20E-03 2.18E-03 1.79E-04 3162.3 5.90E-03 3.07E-03 2.51E-04 3600.0 6.40E-03 3.33E-03 2.73E-04 7200.0 5.70E-03 2.96E-03 1.79E-04	31.6 5.50E-04 2.86E-04 2.36E-05 56.2 7.25E-04 3.77E-04 3.11E-05 100.0 8.90E-04 4.63E-04 3.82E-05 177.8 1.19E-03 6.19E-04 5.11E-05 316.2 1.53E-03 7.93E-04 6.54E-05 562.3 1.95E-03 1.01E-03 8.37E-05
TFA AC-20 + 3% POLYBILT 103 TEST TEMP = 90 , ZIGMA=3.300 PS1	
3.2 5.05E-04 2.63E-04 3.98E-05 5.6 6.30E-04 3.28E-04 4.96E-05 10.0 7.70E-04 4.00E-04 6.07E-05 17.8 1.00E-03 5.20E-04 7.88E-05 31.6 1.28E-03 6.63E-04 1.00E-04 56.2 1.59E-03 8.27E-04 1.25E-04 100.0 2.05E-03 1.07E-03 1.62E-04 177.8 2.62E-03 1.36E-03 2.06E-04 316.2 3.34E-03 1.73E-03 2.63E-04 562.3 4.14E-03 2.15E-03 3.26E-04	

SEC.	TOTAL HORIZONTAL DEFORMATION IN	TENSILE STRAIN IN/IN (TENSILE CREEP COMPLIANCE IN^2/LB	TIME SEC.	TOTAL HORIZONTAL DEFORMATION IN	TENSILE STRAIN IN/IN	TENSILE CREEP COMPLIANCE IN^2/LB
TE	TFA AC-20 ST TEMP = 60) + 5% DOW , ZIGMA = 1	7.333 PSI	TE	TFA AC-20 ST TEMP = 60	+ 5% DOW , ZIGMA =	7.395 PSI
31.6 56.2 100.0 177.8 316.2 562.3 1000.0 1778.3 3162.3 3600.0 7200.0	1.75E-04 2.05E-04 2.40E-04 2.93E-04 3.50E-04 4.20E-04 5.15E-04 6.35E-04 7.85E-04 8.28E-04 3.70E-04	9.10E-05 1.07E-04 1.25E-04 1.52E-04 1.82E-04 2.18E-04 2.68E-04 3.30E-04 4.08E-04 4.30E-04 1.92E-04	6.21E-06 7.27E-06 8.51E-06 1.04E-05 1.24E-05 1.49E-05 1.83E-05 2.25E-05 2.78E-05 2.93E-05	31.6 56.2 100.0 177.8 316.2 562.3 1000.0 1778.3 3162.3 3600.0 7200.0	1.20E-04 1.30E-04 1.53E-04 2.08E-04 2.33E-04 2.60E-04 2.98E-04 3.45E-04 3.57E-04	6.24E-05 6.76E-05 8.97E-05 1.08E-04 1.21E-04 1.35E-04 1.55E-04 1.79E-04	2.19E-06 2.38E-06 3.15E-06 3.80E-06 4.25E-06 4.76E-06 5.44E-06 6.31E-06 6.53E-06
Ţ	TFA AC-20 EST TEMP = 77) + 5% DOW , ZIGMA=4	.690 PSI	Ţ	TFA AC-20 TEST TEMP = 77	+ 5% DOW , ZIGMA=	6.058 PSI
31.6 56.2 100.0 177.8 316.2 562.3 1000.0 1778.3 3162.3 3600.0 7200.0	1.50E-04 2.10E-04 2.75E-04 3.70E-04 4.75E-04 5.90E-04 7.65E-04 9.60E-04 1.21E-03 1.28E-03 9.15E-04	7.80E-05 1.09E-04 1.43E-04 1.92E-04 2.47E-04 3.07E-04 3.98E-04 4.99E-04 6.27E-04 6.63E-04 4.76E-04	8.32E-06 1.16E-05 1.52E-05 2.05E-05 2.63E-05 3.27E-05 4.24E-05 5.32E-05 6.68E-05 7.07E-05	31.6 56.2 100.0 177.8 316.2 562.3 1000.0 1778.3 3162.2 3600.0 7209.0	2.25E-04 2.70E-04 3.20E-04 4.10E-04 5.10E-04 6.30E-04 8.15E-04 1.05E-03 1.38E-03 1.48E-03 1.03E-03	1.17E-04 1.40E-04 1.66E-04 2.13E-04 2.65E-04 3.28E-04 4.24E-04 5.46E-04 7.15E-04 7.67E-04 5.33E-04	9.66E-06 1.16E-05 1.37E-05 2.19E-05 2.70E-05 3.50E-05 4.51E-05 5.90E-05 6.33E-05
Ť	TFA AC-20 EST TEMP = 90) + 5% DOW) , ZIGMA=3	.363 PSI				
31.6 56.2 100.0 177.8 316.2 562.3 1000.0 1778.3 3162.3 3162.3 3600.0 7200.0	3.60E-04 4.90E-04 6.40E-04 8.00E-04 1.00E-03 1.26E-03 1.65E-03 8.2.16E-03 8.2.90E-03 3.18E-03 0.2.83E-03	1.87E-04 2.55E-04 3.33E-04 4.16E-04 5.20E-04 6.55E-04 8.58E-04 1.12E-03 1.51E-03 1.65E-03 1.47E-03	2.78E-05 3.79E-05 4.95E-05 6.19E-05 7.73E-05 9.74E-05 1.28E-04 1.67E-04 2.24E-04 2.46E-04				

Table A-23 (Continued)

•

SEC. HORIZONTAL STRAIN CREEP DEFORMATION IN/IN COMPLIANCE IN IN^2/LB	TIME TOTAL TENSILE TENSILE SEC. HORIZONTAL STRAIN CREEP DEFORMATION IN/IN COMPLIANCE IN IN^2/LB
TFA AC-10 TEST TEMP = 60 , ZIGHA = 4.830 PSI	TEST TEMP = 60 , ZIGHA = 4.769 PSI
31.6 1.50E-03 7.80E-04 8.08E-05 56.2 2.10E-03 1.09E-03 1.13E-04 100.0 2.80E-03 1.46E-03 1.51E-04 177.8 4.20E-03 2.18E-03 2.26E-04 316.2 6.00E-03 3.12E-03 3.23E-04	31.6 1.25E-03 6.50E-04 3.55E-05 56.2 1.85E-03 9.62E-04 5.25E-05 1C0.0 3.00E-03 1.56E-03 8.51E-05 177.8 5.00E-03 2.60E-03 1.42E-04 316.2 8.50E-03 4.42E-03 2.41E-04 316.2 8.50E-02 1.30E-02 7.09E-04 1000.0 2.50E-02 1.30E-02 7.09E-04 1778.3 4.25E-02 2.21E-02 1.21E-03 3162.3 7.15E-02 3.72E-02 2.03E-03 3600.0 8.30E-02 4.32E-02 2.35E-03 7200.0 8.30E-02 4.32E-02 1.32E-02
TFA AC-10 TEST TEMP = 77 , ZIGMA=0.774 PSI	TFA AC-10 TEST TEMP = 77 , ZIGMA=0.921 PSI
31.6 4.00E-04 2.08E-04 1.34E-04 56.2 6.50E-04 3.38E-04 2.18E-04 100.0 1.10E-03 5.72E-04 3.70E-04 177.8 1.80E-03 9.36E-04 6.05E-04 316.2 2.90E-03 1.51E-03 9.74E-04 562.3 5.00E-03 2.60E-03 1.68E-03 1000.0 1.00E-02 5.20E-03 3.36E-03	31.6 5.50E-04 2.86E-04 1.745-04 56.2 8.50E-04 4.42E-04 2.69E-04 100.0 1.25E-03 6.50E-04 3.96E-04 177.8 2.00E-03 1.04E-03 6.34E-04 316.2 3.00E-03 1.56E-03 9.50E-04 562.3 5.00E-03 2.60E-03 1.58E-03 1000.0 8.20E-03 4.26E-03 2.60E-03
TFA AC-10 TEST TEMP = 90 , ZIGMA=0.734 PSI	TEST TEMP = 90 , ZISMA=0.585 PSI
31.6 6.50E-04 3.38E-04 2.30E-04 56.2 1.00E-03 5.20E-04 3.54E-04 100.0 1.40E-03 7.28E-04 4.96E-04 177.8 2.05E-03 1.07E-03 7.26E-04	5.6 3.50E-04 1.82E-04 1.56E-04 10.0 4.50E-04 2.34E-04 2.00E-04 17.8 6.25E-04 3.25E-04 2.78E-04 31.6 8.70E-04 4.52E-04 3.87E-04 56.2 1.30E-03 6.76E-04 5.78E-04 100.0 2.00E-03 1.04E-03 8.89E-04 177.8 3.08E-03 1.60E-03 1.37E-03

Table A-23 (Continued)

-

.

. .

Table A-23 (Continued)

SEC.	TOTAL HORIZONTAL DEFORMATION IN	IENSILE TENSILE STRAIN CREEP IN/IN COMPLIANCE IN^2/LB	TIME TOTAL SEC. HORIZONTAL DEFORMATION IN	TENSILE TENSILE STRAIN CREEP IN/IN COMPLIANCE IN^2/LB + 32 UP 70
	TEST TEMP = 60	, ZIGMA = 6.505 PSI	TEST TEMP = 60	ZIGNA = 6.581 PSI
3 5 10 17 31 56 100	1.6 6.00E-04 6.2 7.50E-04 0.0 9.50E-04 7.8 1.30E-03 6.2 1.80E-03 2.3 2.45E-03 0.0 3.53E-03	3.12E-04 2.40E-05 3.90E-04 3.00E-05 4.94E-04 3.80E-05 6.76E-04 5.20E-05 9.36E-04 7.19E-05 1.27E-03 9.79E-05 1.83E-03 1.41E-04	31.6 8.00E-04 56.2 1.05E-03 100.0 1.38E-03 177.8 1.95E-03 315.2 2.60E-03 562.3 3.50E-03 1000.0 4.78E-03	4.16E-04 1.64E-05 5.46E-04 2.16E-05 7.15E-04 2.83E-05 1.01E-03 4.01E-05 1.35E-03 5.34E-05 1.82E-03 7.19E-05 2.48E-03 9.81E-05
316 360 720	8.3 5.15E-03 2.3 7.75E-03 0.0 8.55E-03 0.0 7.90E-03	2.68E-03 2.06E-04 4.03E-03 3.10E-04 4.45E-03 3.42E-04	1778.3 6.70E-03 3162.3 9.90E-03 3600.0 1.09E-02	3.48E-03 1.38E-04 5.15E-03 2.03E-04 5.64E-03 2.23E-04
	TFA AC-1 TEST TEMP = 7	0 + 3% UP 70 7 , ZIGMA=2.616 PSI	TFA AC-10 TEST TEMP = 77	+ 3% UP 70 , ZIGMA=1.080 PSI
3 5 10 17 31 56 100 177 316 360 720	1.6 5.50E-04 6.2 8.00E-04 0.0 1.10E-03 7.8 1.65E-03 6.2 2.30E-03 2.3 3.10E-03 0.0 4.90E-03 8.3 7.25E-03 2.3 1.16E-02 0.0 1.32E-02 0.0 1.28E-02	2.86E-04 5.47E-05 4.56E-04 7.95E-05 5.72E-04 1.09E-04 8.58E-04 1.64E-04 1.20E-03 2.29E-04 1.61E-03 3.08E-04 2.55E-03 4.87E-04 3.77E-03 7.21E-04 6.03E-03 1.15E-03 6.87E-03 1.31E-03 6.66E-03	31.6 2.50E-04 56.2 3.50E-04 100.0 4.65E-04 177.8 6.25E-04 316.2 8.90E-04 562.3 1.28E-03 1000.0 1.83E-03 1778.3 2.48E-03 3162.3 3.43E-03 3162.3 3.43E-03 3600.0 3.75E-03 7200.0 3.70E-03	1.30E-04 4.05E-05 1.82E-04 5.66E-05 2.42E-04 7.52E-05 3.25E-04 1.01E-04 4.63E-04 2.06E-04 9.52E-04 2.96E-04 1.29E-03 4.01E-04 1.78E-03 5.55E-04 1.92E-03
	TFA AC-1 TEST TEMP = 9	0 + 3% UP 70 0 , ZIGMA=1.054 PSI	TFA AC-10 TEST TEMP = 90	+ 3% UP 70 , ZIGMA=1.080 PSI
10 17 31 56 100	1.6 6.50E-04 6.2 1.00E-03 0.0 1.40E-03 7.8 2.05E-03 6.2 3.10E-03 2.3 4.35E-03 0.0 6.55E-03	3.38E-04 1.60E-C4 5.20E-04 2.47E-04 7.28E-04 3.45E-04 1.07E-03 5.06E-04 1.61E-03 7.65E-C4 2.26E-03 1.07E-03 3.41E-03 1.62E-C3	31.6 1.05E-03 56.2 1.50E-03 100.0 2.00E-03 177.8 2.80E-03 316.2 3.90E-03 562.3 5.90E-03 1000.0 9.80E-03	5.46E-04 2.53E-04 7.80E-04 3.61E-04 1.04E-03 4.82E-04 1.46E-03 6.74E-04 2.03E-03 9.39E-04 3.07E-03 1.42E-03 5.10E-03 2.36E-03

Table A-23 (Continued)

TIME TOTAL TENSILE TENSILE	TIME TOTAL TENSILE TENSILE
SEC. HORIZONTAL STRAIN CREEP	SEC. HORIZONTAL STRAIN CREEP
DEFORMATION IN/IN COMPLIANCE	DEFORMATION IN/IN COMPLIANCE
IN IN^2/LB	IN IN 2/LB
TFA AC-10 + 3% STYRELF	TFA AC-10 + 3% STYRELF
TEST TEMP = 60 , ZIGMA = 7.375 PSI	TEST TEMP = 60 , ZIGMA = 7.355 PSI
31.6 2.00E-03 1.04E-03 7.05E-05 56.2 2.65E-03 1.38E-03 9.34E-05 100.0 3.45E-03 1.79E-03 1.22E-04 177.8 4.75E-03 2.47E-03 1.67E-04 316.2 6.30E-03 3.28E-03 2.22E-04 562.3 8.90E-03 4.63E-03 3.14E-04 1000.0 1.33E-02 6.89E-03 4.67E-04 162.3 3.84E-02 2.00E-02 7.40E-04 3162.3 3.84E-02 2.00E-02 1.35E-03 3600.0 4.56E-02 2.37E-02 1.61E-03 7200.0 4.17E-02 1.61E-03 1.61E-03	100.0 2.40E-03 1.25E-03 4.41E-05 177.8 3.90E-03 2.03E-03 7.17E-05 316.2 5.50E-03 2.86E-03 1.01E-04 562.3 8.30E-03 4.32E-03 1.53E-04 1000.0 1.26E-02 6.53E-03 2.31E-04 1778.3 2.05E-02 1.07E-02 3.77E-04 3162.3 3.60E-02 1.87E-02 6.62E-04
TFA AC-10 + 3% STYRELF	TFA AC-10 + 3% STYRELF
TEST TEMP = 77 , ZIGMA=1.356 PSI	TEST TEMP = 77 , ZIGMA= 595 PSI
31.6 5.50E-04 6.00E-04 1.05E-04 56.2 8.00E-04 8.50E-04 1.53E-04 100.0 1.10E-03 1.20E-03 2.11E-04 177.8 1.65E-03 1.73E-03 3.16E-04 316.2 2.30E-03 2.35E-03 4.41E-04 562.3 3.10E-03 3.33E-03 5.95E-04 1000.0 4.90E-03 4.85E-03 9.40E-02 1778.3 7.25E-03 7.10E-03 1.39E-03 3162.3 1.16E-02 1.11E-02 2.22E-03 3600.0 1.32E-02 1.24E-02 2.53E-03 7200.0 1.28E-02 1.23E-02	31_6 8.00E-04 4.16E-04 3.50E-04 56.2 1.20E-03 6.24E-04 5.24E-04 100.0 1.75E-03 9.10E-04 7.65E-04 177.8 2.70E-03 1.40E-03 1.18E-03 316.2 3.90E-03 2.03E-03 1.70E-03 562.3 5.80E-03 3.02E-03 2.53E-03 1000.0 9.10E-03 4.73E-03 3.98E-03
TFA AC-10 + 3% STYRELF	TFA AC-10 + 3% STYRELF
TEST TEMP = 90 , ZIGMA=0.848 PSI	TEST TEMP = 90 , ZIGMA=0.595 PSI
3.2 2.50E-04 1.30E-04 7.67E-05 5.6 3.25E-04 1.69E-04 9.97E-05 10.0 4.50E-04 2.34E-04 1.38E-04 17.8 6.50E-04 3.38E-04 1.99E-04 31.6 9.00E-04 4.68E-04 2.76E-04 56.2 1.28E-03 6.63E-04 3.91E-04 100.0 1.85E-03 9.62E-04 5.67E-04 177.8 2.73E-03 1.42E-03 8.36E-04 316.2 4.20E-03 2.18E-03 1.29E-03 562.3 6.70E-03 3.48E-03 2.05E-03	3.2 1.50E-04 7.80E-05 6.56E-05 5.6 1.90E-04 9.88E-05 8.30E-05 10.0 2.55E-04 1.33E-04 1.11E-04 17.8 3.65E-04 1.90E-04 1.60E-04 31.6 4.90E-04 2.55E-04 2.14E-04 56.2 6.50E-04 3.38E-04 2.84E-04 100.0 8.80E-04 4.58E-04 3.85E-04 177.8 1.20E-03 6.24E-04 5.24E-04 316.2 1.63E-03 8.45E-04 7.10E-04 562.3 2.45E-03 1.27E-03 1.07E-03 1000.0 3.43E-03 1.76E-03 2.34E-03 3162.3 9.10E-03 4.73E-03 3.98E-03 3162.3 9.10E-03 4.73E-03 3.98E-03 3600.0 1.09E-02 5.67E-03 4.76E-03

•

Table A-23	(Continued)
------------	-------------

TIME TOTAL TENSILE TENSILE	TIME TOTAL TENSILE TENSILE
SEC. HORIZONTAL STRAIN CREEP	SEC. HORIZONTAL STRAIN CREEP
DEFORMATION IN/IN COMPLIANCE	DEFORMATION IN/IN COMPLIANCE
IN IN^2/LB	IN IN^2/LB
TFA AC-10 + 3% NS 175	TFA AC-10 + 3% NS 175
TEST TEMP = 60 , ZIGMA = 6.890 PSI	TEST TEMP = 60 , ZIGMA = 6.843 PSI
31.6 6.50E-04 3.38E-04 2.45E-05 56.2 9.25E-04 4.81E-04 3.49E-05 100.0 1.30E-03 6.76E-04 4.91E-05 177.8 1.78E-03 9.23E-04 6.70E-05 316.2 2.35E-03 1.22E-03 8.87E-05 562.3 3.15E-03 1.64E-03 1.19E-04 1000.0 4.23E-03 2.20E-03 2.59E-04 1778.3 5.80E-03 3.02E-03 2.19E-04 3162.3 8.15E-03 4.24E-03 3.08E-04 3600.0 8.90E-03 4.63E-03 3.36E-04 7200.0 7.97E-03 7.97E-03 3.36E-04	31.6 6.00E-04 3.12E-04 1.19E-05 56.2 8.25E-04 4.29E-04 1.63E-05 100.0 1.10E-03 5.72E-04 2.17E-05 177.8 1.45E-03 7.54E-04 2.87E-05 316.2 1.93E-03 1.00E-03 3.80E-05 562.3 2.58E-03 1.34E-03 5.09E-05 1000.0 3.56E-03 1.85E-03 7.04E-05 1778.3 5.00E-03 2.60E-03 9.88E-05 3162.3 7.05E-03 3.67E-03 1.39E-04 3600.0 7.70E-03 4.00E-03 1.52E-04
TFA AC-10 + 3% NS 175	TFA AC-10 + 3% NS 175
TEST TEMP = 77 , ZIGMA=1.684 PSI	TEST TEMP = 77 , ZIGMA=2.124 PSI
31.6 3.50E-04 1.82E-04 5.40E-05 56.2 5.10E-04 2.65E-04 7.88E-05 100.0 7.00E-04 3.64E-04 1.08E-04 177.8 1.05E-03 5.46E-04 1.62E-04 316.2 1.50E-03 7.80E-04 2.32E-04 5462.3 2.05E-03 1.07E-03 3.17E-04 1000.0 2.88E-03 1.50E-03 4.45E-04 1778.3 3.95E-03 2.05E-03 6.10E-04 3162.3 5.40E-03 2.81E-03 8.34E-04 3600.0 5.80E-03 3.02E-03 8.96E-04 7200.0 5.85E-03 3.04E-03 1.04E-03	31.6 3.40E-04 1.77E-04 4.16E-05 56.2 4.70E-04 2.44E-04 5.75E-05 100.0 6.10E-04 3.17E-04 7.47E-05 177.8 8.30E-04 4.32E-04 1.02E-04 316.2 1.18E-03 6.14E-04 1.44E-04 562.3 1.87E-03 9.73E-04 2.29E-04 1000.0 3.00E-03 1.56E-03 3.67E-04 1000.0 3.00E-03 2.42E-03 5.69E-04 1000.0 3.00E-03 3.69E-03 8.69E-04 162.3 7.10E-03 3.69E-03 8.69E-04 3600.0 7.80E-03 4.06E-03 9.55E-04 7200.0 7.55E-03 3.93E-03 1.93E-03
TFA AC-10 + 3% NS 175	TFA AC-10 + 3% NS 175
TEST TEMP = 90 , ZIGMA=1.104 PSI	TEST TEMP = 90 , ZIGMA=.811 PSI
31.6 4.00E-04 2.08E-04 9.42E-05 56.2 5.75E-04 2.99E-04 1.35E-04 100.0 7.60E-04 3.95E-04 1.79E-04 177.8 1.05E-03 5.46E-04 2.47E-04 316.2 1.40E-03 7.28E-04 3.30E-04 562.3 1.93E-03 1.00E-03 4.53E-04 1000.0 3.05E-03 1.59E-03 7.18E-04	3.2 6.00E-05 3.12E-05 1.92E-05 5.6 9.50E-05 4.94E-05 3.05E-05 10.0 1.35E-04 7.02E-05 4.33E-05 17.8 1.80E-04 9.36E-05 5.77E-05 31.6 2.60E-04 1.35E-04 8.34E-05 56.2 3.90E-04 2.03E-04 1.25E-04 100.0 5.80E-04 3.02E-04 1.86E-04 107.8 8.55E-04 4.45E-04 2.74E-04 316.2 1.23E-03 6.37E-04 3.93E-04 562.3 1.78E-03 9.23E-04 5.69E-04 1000.0 2.63E-03 1.37E-03 8.42E-04 1000.0 2.63E-03 1.37E-03 8.42E-04 1000.0 2.63E-03 1.37E-03 8.42E-04 1000.0 2.63E-03 3.35E-03 2.07E-03 3162.3 6.45E-03 3.35E-03 2.07E-03 3162.3 6.45E-03 3.35E-03 2.07E-03 3600.0 6.75E-03 3.51E-03 2.16E-03 7200.0 6.75E-03 3.51E-03 2.16E-03

Table A-23 (Continued)

SEC. HORIZONTAL STRAIN CREEP DEFORMATION IN/IN COMPLIANCE IN IN^2/LB	SEC. HORIZONTAL STRAIN CREEP DEFORMATION IN/IN COMPLIANCE IN IN 2/LB
TFA AC-10 + 18% C107 TEST TEMP = 60 , ZIGMA = 9.889 PSI	IFA AC-10 + 18% C107 TEST TEMP = 60 , ZIGMA = 5.920 PSI
31.6 2.50E-03 1.30E-03 6.57E-05 56.2 3.75E-03 1.95E-03 9.86E-05 100.0 5.25E-03 2.73E-03 1.38E-04 177.8 7.15E-03 3.72E-03 1.88E-04 316.2 9.80E-03 5.10E-03 2.58E-04	31.6 3.50E-04 1.82E-04 8.00E-06 56.2 4.50E-04 2.34E-04 1.03E-05 100.0 6.50E-04 3.38E-04 1.49E-05 177.8 1.00E-03 5.20E-04 2.38E-05 316.2 1.60E-03 8.32E-04 3.66E-05 562.3 2.45E-03 1.27E-03 5.60E-05 1000.0 3.75E-03 1.95E-03 8.57E-05 1778.3 5.40E-03 2.81E-03 1.23E-04 3162.3 7.60E-03 3.95E-03 1.74E-04 3600.0 8.28E-03 4.30E-03 1.89E-04 7200.0 6.20E-03 1.30E-03 1.89E-04
	TFA AC-10 + 18% C107 TEST TEMP = 77 , ZIGMA=2.854 PST
	21.6 4.00E-04 2.08E-04 3.64E-05 56.2 7.02E-04 3.64E-04 5.38E-05 100.0 9.00E-04 4.68E-04 8.20E-05 177.8 1.40E-03 7.28E-04 1.28E-04 316.2 2.00E-02 1.04E-03 1.82E-04 562.3 2.90E-02 1.51E-03 2.64E-04 100.0 4.45E-03 2.31E-03 4.05E-04 100.0 4.45E-03 2.31E-03 4.05E-04 162.3 7.78E-03 3.12E-03 5.47E-04 3162.3 7.78E-03 4.04E-03 7.08E-04 3162.0 8.13E-03 4.23E-03 7.40E-04 3162.0 6.00E-03 7.40E-04 7200.0
IFA AC-10 + 18% C107 TEST TEMP = 90 , ZIGMA=1.283 PSI	TFA AC-10 + 18% C107 TEST TEMP = 90 , ZIGMA=1.274 PSI
3.2 1.50E-04 7.80E-05 3.04E-05 5.6 2.10E-04 1.09E-04 4.26E-05 10.0 3.00E-04 1.56E-04 6.08E-05 17.8 4.70E-04 2.44E-04 9.53E-05 31.6 7.25E-04 3.77E-04 1.47E-04 56.2 1.08E-03 5.59E-04 2.18E-04 100.0 1.55E-03 8.06E-04 3.14E-04 177.8 2.25E-03 1.17E-03 4.56E-04 316.2 3.155-03 1.64E-03 6.38E-04 562.3 4.45E-03 2.31E-03 9.02E-04 1000.0 7.03E-03 3.65E-03 2.28E-03 1778.3 1.13E-02 5.85E-03 2.28E-03 3162.3 1.75E-02 9.08E-03 3.54E-03 3600.0 1.90E-02 9.88E-03 3.85E-03 7200.0 1.865-02 9.67E-03 3.77E-03	5.6 1.60E-04 8.32E-05 3.27E-05 10.0 2.05E-04 1.07E-04 4.18E-05 17.8 3.85E-04 2.00E-04 7.86E-05 31.6 5.50E-04 2.86E-04 1.12E-04 56.2 8.75E-04 4.55E-04 1.79E-04 100.0 1.23E-03 6.37E-04 2.50E-04 126.2 2.50E-03 1.30E-03 5.10E-04 56.2 3.63E-03 1.89E-03 7.40E-04 16.2 2.50E-03 1.89E-03 1.13E-03 1778.3 8.60E-03 4.47E-03 1.76E-03 3162.3 1.27E-02 6.61E-03 2.59E-03 3600.0 1.33E-02 7.23E-03 2.84E-03

TIME SEC.	TOTAL HORIZONTAL DEFORMATION	TENSILE STRAIN IN/IN	TENSILE CREEP COMPLIANCE	TIME SEC.	TOTAL HORIZONTAL DEFORMATION	TENSILE STRAIN IN/IN	TENSILE CREEP COMPLIANCE
	IN		IN^2/LB		ĪN		IN^2/LB
	۱	FA AC-20					
TE	ST TEMP = 60	, ZIGMA =	8.271 PSI				
31.6	1.25E-04	6.50E-05	3.93E-06				
56.2	1.60E-04	8.32E-05	5.03E-06				
100.0	2.05E-04	1.07E-04	6.45E-06				
177.8	2.85E-04	1.48E-04	8.96E-06				
316.2	3.75E-04	1.95E-04	1.18E-05				
562.3	4.90E-04	2.55E-04	1.54E-05				
1000.0	6.40E-04	3.33E-04	2.01E-05			,	
1778.3	8.70E-04	4.52E-04	2.74E-05				
3162.3	1.17E-03	6.06E-04	3.66E-05				
3600.0	1.25E-03	6.50E-04	3.93E-05				
7200.0	7.00E-04	3.64E-04					
	1	FA AC-20				TFA AC-20	
т	EST TEMP = 77	7 , ZIGMA=	8.935 PSI	TE	ST TEMP = 7	7 , ZIGMA=	8.733 PSI
31.6	4.25E-04	2.21E-04	1.24E-05	31.6	5.50E-04	2.86E-04	1.64E-05
56.2	5.65E-04	2.94E-04	1.64E-05	56.2	8.0DE-04	4.16E-04	2.38E-05
100.0	7.10E-04	3.69E-04	2.07E-05	100.0	1.10E-03	5.72E-04	3.28E-05
177.8	9.40E-04	4.89E-04	2.74E-05	177.8	1.48E-03	7.72E-04	4.42E-05
316.2	1.23E-03	6.37E-04	3.57E-05	316.2	1.95E-03	1.01E-03	5.81E-05
562.3	1.65E-03	8.58E-04	4.80E-05	562.3	2.57E-03	1.33E-03	7.64E-05
1000.0	2.24E-03	1.16E-03	6.50E-05	1000.0	3.39E-D3	1.76E-03	1.01E-04
1778.3	3.13E-03	1.63E-03	9.10E-05	1778.3	4.51E-03	2.35E-03	1.34E-04
3162.3	4.50E-03	2.34E-03	1.31E-04	3162.3	6.10E-03	3.17E-03	1.82E-04
3600.0	4.87E-03	2.54E-03	1.42E-04	3600.0	6.55E-D3	3.41E-03	1.95E-04
7200.0	4.33E-03	2.25E-03		7200.0	6.20E-03	3.22E-03	
	. 1	IFA AC-20					
T	EST TEMP = 90), ZIGMA=	2.060 PSI				
- 31.6	4.00E-04	2.08E-04	5.05E-05				
56.2	5.50E-04	2.86E-04	6.94E-05				

Table A-24 Creep Compliance of Plant Mixed / Laboratory Compacted Mixtures Using Modified Compaction.

2	\sim	2
2	v	4

9.47E-05

1.26E-04

1.65E-04

2.11E-04

2.67E-04

3.35E-04

4.13E-04

4.36E-04

100.0 7.50E-04 3.90E-04

5.20E-04

6.81E-04

8.71E-04

1.10E-03

1.38E-03

1.70E-03

1.79E-03

1.70E-03

1.00E-03

1.31E-03

1.68E-03

2.12E-03

1778.3 2.65E-03

3162.3 3.28E-03

3600.0 3.45E-03

7200.0 3.28E-03

177.8

316.2

562.3

Table A-24 (Continued)

TIME SEC.	TOTAL HORIZONTAL	TENSILE STRAIN	TENSILE	TIME SEC.	TOTAL	TENSILE STRAIN	TENSILE CREEP
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANCE
	IN		IN^2/LB		IN		IN^2/LB
	TFA AC-20 +	3% POLYB	ILT 103		_		
TE	ST TEMP = 60	, ZIGMA =	10.416 PSI				
-	•••••	•••••					
31.6	2.25E-04	1.17E-04	5.62E-06				
56.2	2.65E-04	1.38E-04	6.62E-06				
100.0	3.10E-04	1.61E-04	7.74E-06				
177.8	3.62E-04	1.89E-04	9.05E-06				
316.2	4.20E-04	2.18E-04	1.05E-05				
562.3	5.05E-04	2.63E-04	1.26E-05				
1000.0	6.10E-04	3.17E-04	1.52E-05				
1778.3	7.45E-04	3.87E-04	1.86E-05				
3162.3	9.05E-04	4.71E-04	2.26E-05				
3600.0	9.40E-04	4.89E-04	2.35E-05				
7200.0	5.25E-04	2.73E-04					

TFA AC-20 + 3% POLYBILT 103

TE	ST TEMP = 77	, ZIGMA=6	.764 PSI
31.6	2.00E-04	1.04E-04	7.69E-06
56.2	2.70E-04	1.40E-04	1.04E-05
100.0	3.50E-04	1.82E-04	1.35E-05
177.8	4.40E-04	2.29E-04	1.69E-05
316.2	5.50E-04	2.86E-04	2.11E-05
562.3	6.75E-04	3.51E-04	2.60E-05
1000.0	8.30E-04	4.32E-04	3.19E-05
1778.3	1.00E-03	5.20E-04	3.84E-05
3162.3	1.21E-03	6.29E-04	4.65E-05
3600.0	1.28E-03	6.63E-04	4.90E-05
7200.0	7.90E-04	4.11E-04	

TFA AC-20 4	3% POLYBII	LT 103
T TEMP = 90), ZIGMA=2	.01 PSI
2.00E-04	1.04E-04	2.59E-05
2.75E-04	1.43E-04	3.56E-05
3.75E-04	1.95E-04	4.85E-05
5.00E-04	2.60E-04	6.47E-05
6.75E-04	3.51E-04	8.73E-05
8.50E-04	4.42E-04	1.10E-04
1.10E-03	5.72E-04	1.42E-04
1.35E-03	7.02E-04	1.75E-04
1.65E-03	8.58E-04	2.13E-04
1.78E-03	9.23E-04	2.30E-04
	TFA AC-20 4 T TEMP = 90 2.00E-04 2.75E-04 3.75E-04 5.00E-04 6.75E-04 8.50E-04 1.10E-03 1.35E-03 1.65E-03 1.78E-03	TFA AC-20 + 3% POLYBI T TEMP = 90 , ZIGMA=2 2.00E-04 1.04E-04 2.75E-04 1.43E-04 3.75E-04 1.95E-04 5.00E-04 2.60E-04 6.75E-04 3.51E-04 8.50E-04 4.42E-04 1.10E-03 5.72E-04 1.35E-03 7.02E-04 1.65E-03 8.58E-04 1.78E-03 9.23E-04

7200.0 3.38E-03 1.76E-03

TFA AC-20 + 3% POLYBILT 103 TEST TEMP = 77 , ZIGMA=9.729 PSI -----31.6 3.00E-04 1.56E-04 8.41E-06 56.2 3.75E-04 1.95E-04 1.05E-05 100.0 5.00E-04 2.60E-04 1.40E-05 177.8 6.50E-04 3.38E-04 1.82E-05 316.2 8.30E-04 4.32E-04 2.33E-05 1.08E-03 5.62E-04 3.03E-05 562.3 1000.0 1.41E-03 7.33E-04 3.95E-05 1778.3 1.84E-03 9.57E-04 5.16E-05 3162.3 2.31E-03 1.20E-03 6.47E-05 3600.0 2.44E-03 1.27E-03 6.82E-05 7200.0 1.80E-03 9.36E-04

Table A-24 (Continued)

•

TIME	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSILE
SEC.	HORIZONTAL	STRAIN	CREEP	SEC.	HORIZONTAL	STRAIN	CREEP
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANCE
	IN		IN^2/LB		IN		IN^2/LB
	TFA AC-	20 + 5% D			_		
т	TEST TEMP = 60	, ZIGMA =	10.775 PSI				

31.	.6 1.37E-04	7.15E-05	3.32E-06				
56.	.2 1.52E-04	7.93E-05	3.68E-06				
100.	.0 1.68E-04	8.71E-05	4.04E-06				
177.	.8 1.82E-04	9.49E-05	4.40E-06				
316.	.2 2.01E-04	1.05E-04	4.86E-06				
562.	.3 2.22E-04	1.16E-04	5.37E-06				
1000.	.0 2.40E-04	1.25E-04	5.79E-06				
1778.	.3 2.45E-04	1.27E-04	5.91E-06				
3162.	.3 2.65E-04	1.38E-04	6.40E-06				
3600.	.0 2.73E-04	1.42E-04	6.58E-06				
7200.	.0 6.25E-05	3.25E-05					
T 31. 56. 100. 177. 316. 562. 1000. 1778. 3162. 3600. 7200.	TFA AC- TEST TEMP = 60 .6 1.37E-04 .2 1.52E-04 .0 1.68E-04 .8 1.82E-04 .2 2.01E-04 .3 2.22E-04 .0 2.40E-04 .3 2.45E-04 .3 2.65E-04 .0 2.73E-04 .0 6.25E-05	20 + 5% D0 , ZIGMA = 7.15E-05 7.93E-05 8.71E-05 9.49E-05 1.05E-04 1.16E-04 1.25E-04 1.25E-04 1.27E-04 1.38E-04 1.42E-04 3.25E-05	0W 10.775 PSI 3.32E-06 3.68E-06 4.04E-06 4.40E-06 4.86E-06 5.37E-06 5.79E-06 5.91E-06 6.40E-06 6.58E-06				

.

TFA AC-20 + 5% DOW

TES	ST TEMP = 77	, ZIGMA=6.	.764 PSI
•••			
31.6	1.60E-04	8.32E-05	3.80E-06
56.2	1.90E-04	9.88E-05	4.51E-06
100.0	2.35E-04	1.22E-04	5.58E-06
177.8	2.90E-04	1.51E-04	6.88E-06
316.2	3.55E-04	1.85E-04	8.43E-06
562.3	4.35E-04	2.26E-04	1.03E-05
1000.0	5.35E-04	2.78E-04	1.27E-05
1778.3	6.85E-04	3.56E-04	1.63E-05
3162.3	8.80E-04	4.58E-04	2.09E-05
3600.0	9.25E-04	4.81E-04	2.20E-05
7200.0	3.15E-04	1.64E-04	

TFA AC-20 + 5% DOW

	TES	T TEMP = 77	, ZIGMA=7	.695 PSI
			•••••	
	31.6	1.45E-04	7.54E-05	4.90E-06
	56.2	1.65E-04	8.58E-05	5.58E-06
	100.0	1.88E-04	9.75E-05	6.34E-06
	177.8	2.08E-04	1.08E-04	7.01E-06
	316.2	2.25E-04	1.17E-04	7.60E-06
	562.3	2.36E-04	1.23E-04	7.98E-06
1	1000.0	2.67E-04	1.39E-04	9.01E-06
1	1778.3	3.08E-04	1.60E-04	1.04E-05
3	5162.3	3.85E-04	2.00E-04	1.30E-05
3	5600.0	4.05E-04	2.11E-04	1.37E-05

TFA AC-20 + 5% DOW

T	EST T	EMP =	90,	ZIGHA=	4.250	PSI	
-		••••	•••••	•••••		••••	
31.6	5 1.	00E-0	45	.20E-05	6.1	2E-06	
56.2	2 1.	15E-0	45	.98E-05	5 7.0	4E-06	
100.0	1.	40E-0	47	.28E-05	8.5	7E-06	
177.8	3 1.	70E-0	48	.84E-05	i 1.0	4E-05	
316.2	2.	00E-0	4 1	.04E-04	1.2	2E-05	
562.3	2.	35E-0	4 1	.22E-04	1.4	4E-05	
1000.0	3.	00E-0	4 1	.56E-04	1.8	4E-05	
1778.3	4.	00E-0	42	.08E-04	2.4	5E-05	
3162.3	4.	55E-0	42	.37E-04	2.7	BE-05	
3600.0	4.	70E-0	42	.44E-04	2.8	BE-05	
7200.0	1.	55E-0	48	.06E-05	;		
TIME SEC.	TOTAL HORIZONTAL DEFORMATION	TENSILE STRAIN IN/IN	TENSILE CREEP COMPLIANCE	TIME SEC.	TOTAL HORIZONTAL DEFORMATION	TENSILE STRAIN IN/IN	TENSILE CREEP COMPLIANCE
--------------	------------------------------------	----------------------------	--------------------------------	--------------	------------------------------------	----------------------------	--------------------------------
	IN		IN^2/LB		IN		IN^2/LB
	TFA AC-10	+ 3% UP 7	0				
TE	ST TEMP = 60	, ZIGMA =	9.723 PSI				
-			•••••				
31.6	4.25E-04	2.21E-04	1.14E-05				
56.2	5.40E-04	2.81E-04	1.44E-05				
100.0	6.95E-04	3.61E-04	1.86E-05				
177.8	9.25E-04	4.81E-04	2.47E-05				
316.2	1.20E-03	6.24E-04	3.21E-05				
562.3	1.55E-03	8.06E-04	4.15E-05				
1000.0	2.06E-03	1.07E-03	5.52E-05				
1778.3	2.73E-03	1.42E-03	7.29E-05				
3162.3	3.42E-03	1.78E-03	9.13E-05				
3600.0	3.60E-03	1.87E-03	9.63E-05				
7200.0	2.91E-03	1.51E-03					

TFA AC-10 + 3% UP 70

TE	ST TEMP = 77	, ZIGMA=9	.251 PSI
			•••••
31.6	1.05E-03	5.46E-04	2.95E-05
56.2	1.40E-03	7.28E-04	3.94E-05
100.0	1.85E-03	9.62E-04	5.20E-05
177.8	2.50E-03	1.30E-03	7.03E-05
316.2	3.45E-03	1.79E-03	9.70E-05
562.3	4.75E-03	2.47E-03	1.34E-04
1000.0	6.70E-03	3.48E-03	1.88E-04
1778.3	1.00E-02	5.20E-03	2.81E-04
3162.3	1.63E-02	8.45E-03	4.57E-04
3600.0	1.86E-02	9.65E-03	5.21E-04
7200.0	1.78E-02	9.23E-03	

TFA AC-10 + 3% UP 70

TES	ST TEMP = 7	7 , ZIGMA=9	.480 PSI
		•••••	
31.6	1.00E-03	5.20E-04	2.74E-05
56.2	1.40E-03	7.28E-04	3.84E-05
100.0	1.90E-03	9.88E-04	5.21E-05
177.8	2.75E-03	1.43E-03	7.54E-05
316.2	3.75E-03	1.95E-03	1.03E-04
562.3	5.00E-03	2.60E-03	1.37E-04
1000.0	6.85E-03	3.56E-03	1.88E-04
1778.3	1.00E-02	5.20E-03	2.74E-04
3162.3	1.49E-02	7.72E-03	4.07E-04
3600.0	1.65E-02	8.58E-03	4.53E-04
7200.0	1.58E-02	8.22E-03	

TFA AC-10 + 3% UP 70

	TEST	TEMP	= 90		ZIGNA=1	.094	PSI
				• • •	• • • • • • • •		
31.	6 '	1.10E	03	5.	72E-04	2.6	1E-04
56.	2 '	1.50E	03	7.	80E-04	3.5	7E-04
100.	0 [.]	1.95E	03	1.	01E-03	4.6	4E-04
177.	8 2	2.60E	03	1.	35E-03	6.1	BE-0 4
316.	2 3	5.55E	03	1.	85E-03	8.4	4E-04
562.	34	4.85E	03	2.	52E-03	1.1	5E-03
1000.	0 7	7.65E	-03	3.	98E-03	1.8	2E-03
1778.	3 '	1.07E	02	5.	54E-03	2.5	3E-03
3162.	3 [.]	1.57E	02	8.	17E-03	3.7	3E-03
3600.	0 '	1.71E	02	8.	89E-03	4.0	6E - 03
7200.	0 '	1.62E	02				

TIME	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSILE
SEC.	HORIZONTAL	STRAIN	CREEP	SEC.	HORIZONTAL	STRAIN	CREEP
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANCE
	IN		IN^2/LB		IN		IN^2/LB
	TFA AC-10	+ 3% STYR	ELF		· · ·		
TE	ST TEMP = 60	, ZIGMA =	11.188 PSI				
31.6	9.00E-04	4.68E-04	2.09E-05				
56.2	1.15E-03	5.98E-04	2.67E-05				
100.0	1.42E-03	7.41E-04	3.31E-05				
177.8	1.83E-03	9.49E-04	4.24E-05				
316.2	2.30E-03	1.20E-03	5.35E-05				
562.3	3.05E-03	1.59E-03	7.09E-05				
1000.0	4.05E-03	2.11E-03	9.41E-05				
1778.3	5.47E-03	2.85E-03	1.27E-04				
3162.3	7.65E-03	3.98E-03	1.78E-04				
3600.0	8.24E-03	4.29E-03	1.92E-04				
7200.0	7.62E-03	3.97E-03					

TFA AC-10 + 3% STYRELF

TES	T TEMP = 77	, ZIGMA=4.	.392 PSI
•••		•••••	
31.6	1.50E-03	7.80E-04	8.88E-05
56.2	2.25E-03	1.17E-03	1.33E-04
100.0	3.00E-03	1.56E-03	1.78E-04
177.8	4.50E-03	2.34E-03	2.66E-04
316.2	6.25E-03	3.25E-03	3.70E-04
562.3	1.08E-02	5.59E-03	6.37E-04
1000.0	2.00E-02	1.04E-02	1.18E-03

TFA AC-10 + 3% STYRELF

TES	ST TEMP = 77	7, ZIGMA=4	.402 PSI
31.6	9.00E-04	4.68E-04	5.32E-05
56.2	1.20E-03	6.24E-04	7.09E-05
100.0	1.55E-03	8.06E-04	9.16E-05
177.8	2.05E-03	1.07E-03	1.21E-04
316.2	2.80E-03	1.46E-03	1.65E-04
562.3	3.85E-03	2.00E-03	2.27E-04
1000.0	5.05E-03	2.63E-03	2.98E-04

TFA AC-10 + 3% STYRELF TEST TENP = 90 \times ZIGMA=1.091 PSI

IES	SI IEMP = YU	, ZIGMA= 1.	.091 PSI
•••			
31.6	4.50E-04	2.34E-04	1.07E-04
56.2	6.75E-04	3.51E-04	1.61E-04
100.0	9.25E-04	4.81E-04	2.20E-04
177.8	1.28E-03	6.63E-04	3.04E-04
316.2	1.75E-03	9.10E-04	4.17E-04
562.3	2.40E-03	1.25E-03	5.72E-04
1000.0	3.53E-03	1.83E-03	8.40E-04

.

TIME SEC.	TOTAL	TENSILE STRAIN	TENSILE	TIME SEC.	TOTAL	TENSILE STRAIN	TENSILE
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANCE
	IN		IN^2/LB		IN		IN^2/LB
	TFA AC-10	+ 3% NS 1	75				
TE	EST TEMP = 60	, ZIGMA =	8.813 PSI				
31.6	5 3.25E-04	1.69E-04	9.59E-06				
56.2	2 4.45E-04	2.31E-04	1.31E-05				
100.0	5.75E-04	2.99E-04	1.70E-05				
177.8	8.00E-04	4.16E-04	2.36E-05				
316.2	2 1.08E-03	5.62E-04	3.19E-05				
562.3	5 1.38E-03	7.18E-04	4.07E-05				
1000.0	0 1.70E-03	8.84E-04	5.02E-05				
1778.3	5 2.10E-03	1.09E-03	6.20E-05				
3162.3	3 2.55E-03	1.33E-03	7.52E-05				
3600.0	2.65E-03	1.38E-03	7.82E-05				
7200.0	1.83E-03	9.49E-04					

TFA AC-10 + 3% NS 175

TES	ST TEMP = 77	7 , ZIGMA=9	.177 PSI
31.6	1.25E-03	6.50E-04	3.54E-05
56.2	1.75E-03	9.10E-04	4.96E-05
100.0	2.25E-03	1.17E-03	6.38E-05
177.8	3.25E-03	1.69E-03	9.21E-05
316.2	4.35E-03	2.26E-03	1.23E-04
562.3	6.35E-03	3.30E-03	1.80E-04

TFA AC-10 + 3% NS 175 TEST TEMP = 77 , ZIGMA=5.637 PSI

100.0	9.50E-04	4 .9 4E-04	4.38E-05
177.8	1.30E-03	6.76E-04	6.00E-05
316.2	1.70E-03	8.84E-04	7.84E-05
562.3	2.35E-03	1.22E-03	1.08E-04
1000.0	3.25E-03	1.69E-03	1.50E-04
1778.3	4.50E-03	2.34E-03	2.08E-04
3162.3	6.65E-03	3.46E-03	3.07E-04
3600.0	7.35E-03	3.82E-03	3.39E-04
7200.0	7.00E-03	3.64E-03	

TFA AC-10 + 3% NS 175						
TES	ST TEMP = 90	0 , ZIGMA=1	.070 PSI			
31.6	3.25E-04	1.69E-04	7.90E-05			
56.2	4.50E-04	2.34E-04	1.09E-04			
100.0	5.90E-04	3.07E-04	1.43E-04			
177.8	7.70E-04	4.00E-04	1.87E-04			
316.2	9.90E-04	5.15E-04	2.41E-04			
562.3	1.28E-03	6.63E-04	3.10E-04			
1000.0	1.64E-03	8.56E-04	4.00E-04			
1778.3	2.15E-03	1.12E-03	5.21E-04			
3162.3	2.84E-03	1.47E-03	6.89E-04			
3600.0	3.02E-03	1.57E-03	7.34E-04			
7200.0	2.96E-03					

_

TIME SEC.	TOTAL HORIZONTAL DEFORMATION IN	TENSILE STRAIN IN/IN	TENSILE CREEP COMPLIANCE IN^2/LB	TIME SEC.	TOTAL HORIZONTAL DEFORMATION IN	TENSILE STRAIN IN/IN	TENSILE CREEP COMPLIANCE IN^2/LB
	TFA AC-10	+ 3% C107					
TE	ST TEMP = 60	, ZIGMA =	10.477 PSI				
-							
31.6	2.40E-04	1.25E-04	5.96E-06				
56.2	3.05E-04	1.59E-04	7.57E-06				
100.0	3.85E-04	2.00E-04	9.56E-06				
177.8	5.35E-04	2.78E-04	1.33E-05		•		
316.2	2 7.10E-04	3.69E-04	1.76E-05				
562.3	9.75E-04	5.07E-04	2.42E-05				
1000.0	1.53E-03	7.98E-04	3.81E-05				
1778.3	2.60E-03	1.35E-03	6.45E-05				
3162.3	4.10E-03	2.13E-03	1.02E-04				
3600.0	4.50E-03	2.34E-03	1.12E-04				
7200.0	1.83E-03	9.49E-04					

TFA	AC-10	+ 3%	C107
-----	-------	------	------

TES	T TEMP = 77	, ZIGMA=	10.338 PSI
31.6	1.65E-03	8.58E-04	4.15E-05
56.2	2.20E-03	1.14E-03	5.53E-05
100.0	2.85E-03	1.48E-03	7.17E-05
177.8	4.00E-03	2.08E-03	1.01E-04
316.2	5.60E-03	2.91E-03	1.41E-04
562.3	8.60E-03	4.47E-03	2.16E-04
1000.0	1.19E-02	6.19E-03	2.99E-04
1778.3	1.82E-02	9.47E-03	4.58E-04
3162.3	3.39E-02	1.76E-02	8.51E-04
3600.0	4.19E-02	2.18E-02	1.05E-03
7200.0	3.83E-02		

TFA AC-10 + 3% C107 TEST TEMP = 77 , Z1GMA=9.103 PS1

31.6	1.00E-03	5.20E-04	2.86E-05
56.2	1.40E-03	7.28E-04	4.00E-05
100.0	2.00E-03	1.04E-03	5.71E-05
177.8	2.80E-03	1.46E-03	8.00E-05
316.2	3.75E-03	1.95E-03	1.07E-04
562.3	5.20E-03	2.70E-03	1.49E-04
1000.0	7.25E-03	3.77E-03	2.07E-04
1778.3	1.00E-02	5.20E-03	2.86E-04
3162.3	1.38E-02	7.15E-03	3.93E-04
3600.0	1.48E-02	7.67E-03	4.21E-04
7200.0	1.35E-02	7.02E-03	

TFA AC-10 + 3% C107 TEST TEMP = 90 , ZIGMA=2.084 PSI

177.8	4.00E-03	2.08E-03	4.99E-04
316.2	5.00E-03	2.60E-03	6.24E-04
562.3	7.00E-03	3.64E-03	8.73E-04
1000.0	1.05E-02	5.46E-03	1.31E-03
1778.3	1.45E-02	7.54E-03	1.81E-03
3162.3	2.54E-02	1.32E-02	3.17E-03
3600.0	2.84E-02	1.48E-02	3.54E-03
7200.0	2.60E-02	1.35E-02	

	•	Dry Cond	lition	Wet Co	Wet Condition	
MIXTURE	TEST TEMP. F	AIR VOIDS	TENSILE STRENGTH PSI	AIR VOIDS	TENSILE STRENGTH PSI	TSR
Control: TFA AC-10	77	7.6 7.3 7.0 7.3	49 50 58 52	7.2 7.5 7.4 	20 14 18 	0.33
TFA AC-10 + 3% UP 70	77	6.2 5.6 5.9	66 69 67	5.7 5.9 6.1	38 51 39 	0.63
TFA AC-10 + 3% Styrelf	77	7.5 8.3 7.5	77 69 83 	8.1 7.0 7.5	52 47 52 	0.66
TFA AC-10 + 3% NS 175	77	6.8 7.0 6.8	72 64 74 	7.2 6.7 6.8	38 51 39 	0.61
TFA AC-10 + 18% C107	77	11.9 12.5 12.4 12.3	37 32 40 	11.3 11.2 11.1 11.2	21 20 20 	0.57
Control: TFA AC-20	77	7.2 8.4 7.8 7.8	84 76 78 	6.9 7.5 7.5 7.3	40 37 37 	0.48
TFA AC-20 + 3% Polybilt	77	6.7 7.3 7.0 7.0	78 79 84 	7.6 7.0 6.2	40 43 59 47	0.59
TFA AC-20 + 5% Dow	77	6.6 7.7 6.7	72 72 78	7.2 7.3 7.4	62 59 52	
		7.0	74	7.3	58	0.78

Table A-25 Moisture Sensitivity Test Results for Laboratory Mixed/Laboratory Compacted Mixtures Using Modified Compaction.

.

.

		Dry Con	dition	Wet Co	ndition	i
MIXTURE	TEST TEMP F	AIR VOIDS	TENSILE STRENGTH PSI	AIR VOIDS	TENSILE STRENGTH PSI	TSR
TFA AC-10 + 3% UP 70	77	7.1 6.7 6.9	97 100 95	7.0 7.3 6.7	94 78 91	
TEA AC-10 + 25 Churald	77	6.9	98	7.0	88	0.90
TFA AC-10 + 3% Styreit	//	7.0 7.2 7.6	119 119 110	6.8 7.2 7.2	122 112 121	
		7.3	116	7.1	118	1.02
TFA AC-10 + 3% NS 175	77	6.9 6.9 7.1	89 91 85	6.7 6.5 6.6	78 76 71	
		6.9	88	6.6	75	0.85
TFA AC-10 + 18% C107	77	6.5 6.4 6.6	71 62 67	7.3 7.3 7.3	49 53 49	
		6.5	67	7.3	50	0.76
Control: TFA AC-20	77	7.0 6.6 7.0	89 86 80	7.5 7.2 7.0	61 64 66	
		6.9	85	7.2	64	0.75
TFA AC-20 + 3% Polybilt	77	6.8 7.5 6.8	104 100 107	6.9 7.5 7.4	93 77 94	
		7.0	104	7.3	88	0.85
TFA AC-20 + 5% Dow	77	8.0 7.5 7.8	98 113 111	7.6 7.6 7.6	85 79 86	
		7.8	107	7.6	83	0.78

Table A-26 Moisture Sensitivity Test Results for Plant Mixed/Laboratory Compacted Mixtures Using Modified Compaction.

.

.

.

Combined Design Gradation	SDHPT Specification	Polysar	Exxon	TFA	Goodyear	Styrelf	DOW	Rubber
AC Content	specification	4.63	4.47	4.52	4.57	4.52	4.45	
0.0	0							
10.2	0-15	11.5	10.4	8.8	6.1	9.4	12.5	We Could
31.3	21-53	31.5	37	36.2	32.1	36.7	34.6	Not Separate
18.5	11-32	18.8	16.5	24.1	21.4	19.7	17.5	The Rubber
60.1	54-74	61.8	63.9	69.1	59.6	65.8	64.6	From Agg & AC
13.6	6-32	14.4	13.9	13	18.2	15	17.9	Some of The Fine
17.6	4-27	13.8	13.6	10.7	14.1	12.3	118	Agg's Might
6.6	3-27	6.9	6.5	4.8	5.9	5.4	4.4	Have Been Counted
2.1	1-8	3.1	2.1	2.4	2.2	1.5	1.3	As AC
100.0		100.0	100.0	100.0	100.0	100.0	206.2	

Table A-27 AGGREGATE GRADATION OF EXTRACTED CORES (DISTRICT 15)

Aggregate produced by Vulcan Whites Mines, using delta grade 4 sandstone, limestone (grade 5), limestone screenings from Vulcan Materials, and field sand.

Fig A-1 Schematic Illustration of Field Test Sections.

• •

Fig A-2 Aggregate gradation Chart.

Fig A-10 Softening Point for Unmodified and Modified TFA Binders

.

Fig. A-14 Asphalt Stiffness vs. Test Temperature for TFA AC-10 Binders

Fig A-15 Asphalt Stiffness vs. Test Temperature for TFA AC-20 Binders.

Fig A-17 Maximum True Stress at 39 F for Unmodified and Modified TFA Binders

Fig A-19 Curve Area at 39 F for Unmodified and Modified TFA Binders

Fig A-21 Asphalt-Polymer Modulus at 39 F for Unmodified and Modified TFA Binders

Fig A-22 Shear Stress vs. Shear Rate for TFA AC-10 at Different Test Temperature.

Different Test Temperatures.

Test Temperatures.

Fig A-34 Shear Stress vs. Shear Rate for Polybilt Modified Binder at Different Test Temperatures.

Different Test Temperatures.

Fig A-45 Constant Power Viscosity vs. Test Temperature for TFA AC-20 Binders before RTFOT.

Fig A-47 Constant Power Viscosity vs. Test Temperature for TFA AC-10 Binders after RTFOT.

Fig A-50 Hveem Stability for Laboratory Mixtures Using Standard Compaction.

Fig. A-53 Secant Modulus vs. Test Temperature for Laboratory Mixtures Using Standard Compaction.

Fig A-55 Marshall Stability for Laboratory Mixtures Using Modified Compaction.

g

Fig A-59 Tensile Strain at Failure vs. Test Temperature for Laboratory Mixtures Using Modified Compaction.

Fig A-62 Alpha Values for Laboratory Mixtures Using Modified Compaction.

Fig A-63 GNU Values for Laboratory Mixtures Using Modified Compaction.

Fig A-64 Relationship between Fatigue Life and Applied Strain for Laboratory Mixtures Using Modified Compaction.

Using Modified Compaction.

APPENDIX B

PRESENTATION OF TEST RESULTS - DISTRICT 11

APPENDIX B

PRESENTATION OF TEST RESULTS - DISTRICT 11

The objectives of Appendix B are twofold: (1) to describe the site-specific field operations of the test sections along with a description of the materials, polymers, and construction techniques used for this field project, and (2) to present the laboratory test results of the unmodified and modified binders and laboratory mixed and plant mixed mixtures for the experimental field study in District 11 of the Texas Department Transportation (TxDOT).

EXPERIMENTAL FIELD PROGRAM

The test pavements were constructed on US 190 in Polk County, Texas, in April 1989, and involved pavement overlay of four lanes of the highway. The test sections are shown schematically in Figure B-1. Each test section was approximately one to one and a half inches thick. A total of three test sections were constructed with two different polymers plus a control. Field construction was conducted by District 11 of the TxDOT and assisted by the Center for Transportation Research, the University of Texas at Austin.

MATERIALS

<u>ASPHALT CEMENT.</u> AC-10 and an AC-20 asphalt cements were supplied by Texaco of Port Neches, Texas, and used throughout this project.

<u>AGGREGATE.</u> Four aggregates, a red lightweight type D, a coarse sandstone screening, a fine sandstone screening, and a field sand, were combined to produce project gradation. Gradations of individual aggregates, the project gradation, percentage of each aggregate, and the gradation specifications are given in Table B-1. The project gradation is plotted on a 0.45 power graph in Figure B-2. <u>POLYMER.</u> Two polymers included in this field project consisted of a Styrene Butadiene Rubber (SBR), and a Styrene block copolymer (SBS). Sources of these polymers and designations used for this study are shown below.

SOURCE	<u>TYPE</u>	DESIGNATION
Goodyear	SBR	UP 70
Elf	SBS	Styrelf-13

Blending of the asphalts and the polymers was performed by the polymer manufacturers or processors in the refinery or in a distributor truck. No polymer was introduced into the asphalt in-line injection system of the plant.

<u>Styrene Butadiene Rubber.</u> One type of Styrene Butadiene Rubber, Ultra Pave 70, was included in this field project. The latex UP 70 was supplied by Textile Rubber and Chemical Co. The total amount of the UP 70 used in the Texaco AC-10 was 3 percent.

Styrene Butadiene Styrene. The Styrelf-13 utilized was a triblock copolymer of styrene and butadiene. The Styrelf modified binder was blended by Elf Asphalt, Baytown, Texas, with Texaco AC-10 at 3% Styrelf-13 by weight of total binder.

FIELD OPERATION

Approximately 12,000 tons of each mix were produced using a drum mix plant. Identical aggregates were utilized throughout the experiment. Two grades, AC-10 and AC-20, of Texaco asphalt cement were utilized. The Ultra Pave 70 (3 percent) and the Styrelf-13 (3 percent) were preblended with Texaco AC-10. The AC-20 was used for the control test section.

Mixing temperature for the UP 70, and the styrelf-13 mixtures was about 320°F. The control asphalt, Texaco AC-20, was mixed at 305°F. The initial breakdown compaction occurred between 250°F and

247

270°F for all mixtures. The Styrelf mix on this project seemed to hold its heat for quite a long time. Mixing, production, and paving operation went well for all mixtures. Compaction of each test section was achieved using a vibratory roller, a pneumatic roller, and a steel wheel roller. Environmental conditions during construction were favorable with early morning temperatures of approximately 68°F and afternoon temperatures of 93°F.

Twelve field cores were obtained from each test section soon after the construction. These cores were approximately 4-inch in diameter and one to one and a half inches in thickness. The field cores were transported to the Center for Transportation Research immediately after sampling.

PRESENTATION OF TEST RESULTS

Summaries of test results for the unmodified and the modified binders are presented in Tables B-6 through B-8 and are plotted in Figures B-3 through B-30.

Summaries of test results for the unmodified and the modified mixtures and the cores are presented in Tables B-9 through B-26 and are plotted in Figures B-31 through B-50.

	Red Lt	Red LtWt		Sandstone Coarse Screenings		Sandstone Fine Screenings		Field Sand		
	Sieve Analysis % By Volum	56% e	Sieve Analysis % By Volume	10%	Sieve Analysis % By Volume	15%	Sieve Analysis % By Volume	19%	- Combined Gradation	SDHPT Specification
 Plus 1/2 in.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
1/2 to 3/8 in	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-15
3/8 to No. 4	68.8	38.5	4.1	0.4	0.0	0.0	0.0	0.0	38.9	21-53
No. 4 to No. 10	30.0	16.8	25.6	2.6	6.5	1.0	0.4	0.1	20.4	11-32
Plus No. 10									59.3	54-74
No. 10 to No.40	0.6	0.3	43.2	4.3	20.3	3.0	8.7	1.7	9.4	6-32
No. 40 to No. 80	0.0	0.0	8.0	0.8	27.7	4.2	57.1	10.8	15.8	4-27
No. 80 to No. 200	0.0	0.0	17.3	1.7	40.7	6.1	22.8	4.3	12.2	3-27
Minus No. 200	0.6	0.3	1.8	0.2	4.8	0.7	11.0	2.1	3.3	1-8
	100.0	56.0	100.0	10.0	100.0	15.0	100.0	19.0	100.0	· · · ·

.

•

Table B-1 AGGREGATE GRADATION (DISTRICT 11)

			Penetr	ation		Visco	sity		Softenin Point	ng Focce D	Focce Ductility		Schweyer Rheology			
Binder		Before RIFOT		After RTFOT	Before	RTFOT	After	RTFOT	Before	Before RTENT	After RIFOI		Before RTFOT			
Asphalt	Polymer	39.2 F	77 F	77 F	140 F	275 F	140 F	275 F		39.2 F	 39.2 F	39 F	60 F	77	F 90 F	140 F
Texaco AC-20	-	2	2	2	2	2	2	2	2	2	2	1	1	1	1	1
Texaco AC-10	Styrelf-13	2	2	2	2	2	2	2	2	2	2	1	1	1	1	1
Texaco AC-10	Goodyear UP 70	2	2	2	2	2	2	2	2	2	2	1	1	1	1	1

TABLE B-2 Experimental Testing Program for Unmodified and Polymer-Modified Asphalt Binders District 11

•

		Modified Compaction									Standard Compaction						
Binder	Resilient modulus & Indirect Tensile		Hveem Marsha 140F 140F		shall Creep 40F E		Str	Fatique Stress levels		Hoisture Resistance	Resilient modulus & Indirect Tensile		Hveem ! 140F	Marshall 140F			
Asphalt Polymer	Strength				60F	77F	90F 15%	15%	15% 25% 50%		Strength						
	39F	77F	104F								39F	,77F	104F				
Texaco - AC-20	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3
Texaco Styrelf-13 AC-10	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3
Texaco Goodyear AC-10 UP 70	3	3	3	3	.3	2	2	2	2	2	2	3	3	3	3	3	3

TABLE B-3 Experimental Testing Program for Laboratory Compacted-Laboratory Mixed Mixtures District 11

TABLE B-4	Experimental	Testing Program	for Laboratory	Compacted-Plant	Mixed Mixtures
-----------	--------------	-----------------	----------------	-----------------	----------------

District 11

			Modified Compaction											Standard Compaction				
Binder		Resilient modulus & Indirect Tensile		Hveen 140F	Marshall 140F		Cree e	р	Str	Fatique Stress levels		Moisture Resistance	Resilient modulus & Indirect Tensile Strength		Hveen 140F	Marshall 140F		
Asphalt Polymer	lymer	Strength				60F	77F	77F 90F	15% 25% 50%									
		39F	77F	104F										39F	77F	104F		
Texaco AC-20	-	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3
Texaco Styr AC-10	elf-13	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3
Texaco Good AC-10 UP 7	year O	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3

252

Binder		Resi & Ind	Marshall 140F			
Asphalt	Polymer	a inc.	Streng	th	1401	
		39F	77F	104F		
Texaco AC-20	-	3	3	3	3	
Texaco AC-10	Styrelf-13	3	3	3	3	
Texaco AC-10	Goodyear UP 70	3	3	3	3	
<pre>!exaco AC-10Texaco AC-10</pre>	Goodyear UP 70	3	3	3		

TABLE B-5 Experimental Testing Program for Field Cores. District 11

######################################		********		
			Техасо	Texaco
Parameter		Техасо	AC-10	AC-10
		AC-20	£	Ł
			3% Goodyear	3% Styrelf
Penetration @ 39.2 F (25 C)		y 0	12	15
100 g, 5 Sec.		y	14	15
	A∨g.	9	13	.15
Penetration @ 77 F (4 C)	•	72	87	92
100g, 5 Sec.		70	86	94
	A∨g.	71	87	93
Viscosity @ 140 F (60 C)		2380	2348	3025
Poises		2370	2312	3095
	Avg.	2375	2330	3060
Viscosity @ 275 F (135 C)		500	841	703
Centistokes		492	802	726
	A∨g.	496	822	715
Softening Point, F		126	128	130
		126	126	130
	Avg.	126	127	130
Maximum True Stress, psi		58	73	204
		62	76	216
	Avg.	60	75	210
Maximum True Strain, in/in		2.48	3.74	3.35
		2.40	3.71	3.40
	A∨g.	2.44	3.73	3.38
True Area , psi		80	149	266
		85	151	272
	Avg.	83	150	269

Table B-6 Unmodified and Modified Asphalt Properties before RTFOT.

Table B-6 (Continued)				
######################################				
			Texaco	Texaco
Parameter	•	Texaco	AC-10	AC-10
	1	AC-20	&	Ł
			3% Goodyear	3% Styrelf
Asphalt Modulus. psi	2222222222	249		======== 151
······································		236	223	157
	Avg.	242	224	154
	-			
Asphalt-Polymer Modulus, psi		-	103	170
		-	108	168
	Avg.	-	105	169
Shear Susceptibility				
a 39.2 F	6.4	459E-01	7.468E-01	1.277E+00
a 60 F	8.	043E-01	8.925E-01	1.167E+00
a 77 F	8.	040E-01	8.028E-01	1.152E+00
a 90 F	8.	301E-01	7.940E-01	1.131E+00
a 140 F	8.	321E-01	8.796E-01	9.713E-01
Apparent Viscosity, Pascal-Sec	ond			
Shear Rate = 1 1/sec,				
a 39.2 F	1.0	699E+07	2.808E+07	9.222E+07
a 60 F	2.	056E+06	2.118E+06	1.046E+07
a 77 F	3.	254E+05	2.394E+05	4.380E+05
a 90 F	8.	017E+04	5.414E+04	5.488E+04
a 140 F	3.3	291E+02	3.030E+02	3.144E+02
Constant Power Viscosity,				
Pascal-Second				
a 39.2 F	5.	126E+07	6.359E+07	4.014E+07
a 60 F	2.	854E+06	2.519E+06	7.308E+06
a 77 F	3.	699E+05	2.634E+05	3.945E+05
₽ 90 F	7.3	854E+04	5.046E+04	5.694E+04
a 140 F	1.9	949E+02	2.090E+02	2.891E+02

		Texaco	Техасо
Parameter	Техасо	AC-10	AC-10
	AC-20	&	&
		3% Goodyear	3% Styrelf
Penetration Index PI(Pen/Pen)	-0.43	0.12	0.39
Penetration Index PI(Pen/SP)	0.23	0.97	1.6
Penetration Viscosity Number PVN	-0.32	0.76	0.63
Stiffness Modulus @ 39.2 F, psi			
5 Sec. Loading	1015	508	363
20 Sec. Loading	348	246	174
Stiffness Modulus 2 0 1 Sec			
	7250	3100	2/45
775	33/	232	174
10/5	24	252	25
1047	20	25	25
Stiffness/Temperature Slope	-0.068	-0.059	-0.056
Apparent Viscosity/Temp. Slope	-0.084	-0.088	-0.100
Constant Power Visco./Temp. Slope	-0.096	-0.097	-0.095
Penetration Ratio, 77 F	0.65	0.58	0.72
Viscosity Ratio	2.95	1.86	1.92
Kinematic Viscosity Ratio	1.51	1.28	1.26
Maximum True Stress Ratio	2.57	6.99	1.26
Maximum True Strain Ratio	0.94	0.99	0.82
True Area Ratio	2.19	4.60	1.20
Asphalt Modulus Ratio	1.87	1.83	1.62
Asphalt-Polymer Modulus Ratio	-	4.33	1.37

Table B-6 (Continued)

.

Parameter		Texaco AC-20	Texaco AC-10 &	Texaco AC-10
			3% Goodyear	3% Styrelf

Penetration @ 77 F (4 C)		46	50	66
100g, 5 Sec.		4/	50	58
	Avg.	46	50	67
Viscosity @ 140 F (60 C)		6975	4351	5895
Poises		7029	4302	5868
	Avg.	7002	4327	5882
Viscosity @ 275 F (135 C)		741	1045	895
Centistokes		761	1052	899
	Avg.	751	1049	897
Maximum True Stress, psi		152	520	264
		155	524	266
	Avg.	154	522	265
Maximum True Strain, in/in		2.31	3.68	2.79
		2.27	3.70	2.74
	Avg.	2.29	3.69	2.77
True Area , psi		181	688	321
		182	690	322
	Avg.	181	689	322
Asphalt Modulus, psi		499	395	246
		406	425	251
	Avg.	453	410	248
Asphalt-Polymer Modulus, psi		-	465	228
		-	447	235
	Avg.	-	456	232

Table B-7 Unmodified and Modified Asphalt Properties after RIFOT.

Test Temp.	Shear Stress Pascal	Shear Rate 1/Sec	Apparent Viscosoty Pascal-Sec	Shear Stress Pascal	Shear Rate 1/Sec	Apparent Viscosoty Pascal-Sec
		Texaco AC-2	20	Texaco A	AC-10 + 3%	UP 70
T = 140 F	8.18E+04	7.06E+02	 1.16E+02	8.44E+04	6.16E+02	1.37E+02
	4.35E+04	3.56E+02	1.22E+02	4.17E+04	2.62E+02	1.59E+02
	2.40E+04	1.86E+02	1.29E+02	2.19E+04	1.33E+02	1.65E+02
	1.20E+04	8.08E+01	1.49E+02	1.27E+04	6.77E+01	1.88E+02
	9.00E+03	5.20E+01	1.73E+02	7.24E+03	3.73E+01	1.94E+02
	3.60E+03	1.68E+01	2.14E+02	4.39E+03	2.11E+01	2.08E+02
⊺ = 90 F	7.22E+05	1.30E+01	5.54E+04	5.93E+05	1.84E+01	3.21E+04
	4.29E+05	7.82E+00	5.48E+04	4.00E+05	1.25E+01	3.20E+04
	2.43E+05	3.98E+00	6.11E+04	2.32E+05	6.74E+00	3.44E+04
	1.39E+05	2.03E+00	6.86E+04	1.36E+05	3.41E+00	3.98E+04
	7.29E+04	8.99E-01	8.11E+04	7.50E+04	1.58E+00	4.75E+04
	3.865+04	3.93E-01	9.83E+04	3.86E+04	5.90E-01	6.53E+04
T = 77 F	1.04E+06	4.20E+00	2.48E+05	1.23E+06	7.19E+00	1.72E+05
	6.49E+05	2.37E+00	2.74E+05	7.90E+05	4.20E+00	1.88E+05
	4.33E+05	1.42E+00	3.05E+05	4.27E+05	2.20E+00	1.95E+05
	2.44E+05	7.05E-01	3.45E+05	2.06E+05	9.75E-01	2.11E+05
	9.96E+04	2.36E-01	4.225+05	1.08E+05	3.69E-01	2.93E+05
	6.93E+04	1.42E-01	4.89E+05	4.98E+04	1.28E-01	3.89E+05
T = 60 F	5.88E+05	· 2.10E-01	2.81E+06	1.65E+06	7.61E-01	2.17E+06
	3.81E+05	1.25E-01	3.05E+06	1.06E+06	4.57E-01	2.31E+06
	2.21E+05	6.16E-02	3.60E+06	6.02E+05	2.46E-01	2.45E+06
	1.32E+05	3.34E-02	3.94E+06	2.87E+05	1.06E-01	2.70E+06
	9.69E+04	2.22E-02	4.37E+06	1.47E+05	4.89E-02	3.01E+06
				7.69E+04	2.49E-02	3.09E+06
T = 39 F	4.12E+06	9.49E-02	4.34E+07	2.87E+06	4.71E-02	6.09E+07
	2.925+06	6.84E-02	4.26E+07	1.90E+06	2.92E-02	6.52E+07
	1.82E+06	3.52E-02	5.16E+07	1.10E+06	1.03E-02	1.07E+08
	1.00E+06	1.39E-02	7.21E+07	5.95E+05	6.84E-03	8.69E+07
	6.06F+05	5.725-03	1.06E+08	2.77E+05	2.30E-03	1.215+08
	3.34E+05	2.08E-03	1.61E+08	1.64E+05	9.07E-04	1.81E+08
	1.77E+05	8.54E-04	2.08E+08			

Table B-8 Constant Stress Rheometer Results for Unmodified and Modified Binders.

Table B-8 (Continued)

Test Temp.	Shear Stress Pascal	Shëar Rate 1/Sec	Apparent Viscosoty Pascal-Sec
	Texaco	AC-10 + 3%	Styrelf
T = 140 F	9.98E+04	3.76E+02	2.65E+02
	5.23E+04	1.93E+02	2.70E+02
	2.02E+04	7.24E+01	2.79E+02
	1.12E+04	3.95E+01	2.83E+02
	6.53E+03	2.27E+01	2.87E+02
T = 90 F	4.73E+05	6.61E+00	7.15E+04
	2.51E+05	3.92E+00	6.40E+04
	1.29E+05	2.14E+00	6.04E+04
	6.59E+04	1.17E+00	5.64E+04
	4.30E+04	7.96E-01	5.40E+04
	2.19E+04	4.46E-01	4.89E+04
T = 77 F	1.43E+06	2.61E+00	5.46E+05
	8.67E+05	1.75E+00	4.94E+05
	4.39E+05	1.10E+C0	4.00E+05
	2.63E+05	6.86E-01	3.84E+05
	9.32E+04	2.59E-01	3.59E+05
	6.14E+04	1.76E-01	3.49E+05
	3.18E+04	1.00E-01	3.17E+05
T = 60 F	2.07E+06	2.36E-01	8.76E+06
	1.35E+06	1.77E-01	7.66E+06
	8.77E+05	1.25E-01	7.02E+06
	4.99E+05	7.49E-02	6.66E+06
	2.85E+05	4.58E-02	6.23E+06
	1.21E+05	2.14E-02	5.66E+06
T = 39 F	3.78E+06	8.18E-02	4.62E+07
	1.89E+06	4.77E-02	3.96E+07
	1.00E+06	2.93E-02	3.43E+07
	4.72E+05	1.60E-02	2.94E+07

MIXTURE		AIR VOIDS	HVEEM STABILITY	AIR VOIDS	MARSHALL STABILITY lbs	VALUES FLCW .01 in
Control: Texaco AC-20		6.0 6.8 6.2	38 39 37	7.0 6.4 6.6	858 976 890	13.5 13.5 14.0
	AVG.	6.3	38	6.7	908	13.7
Texaco AC-10 + 3% UP 70	 	6.9 7.2 6.8	36 35 34	6.9 7.1 7.0	957 968 928	15.0 17.0 15.0
	AVG.	7.0	35	7.0	951	15.7
Texaco AC-10 + 3% Styrelf		6.7 6.3 6.2	32 34 34	6.6 6.4 6.8	676 692	16.0 16.0 16.0
 	AVG.	6.4	33	6.6	684	16.0

Table B-9 Marshall and Hveem Test Results for Laboratory Mixed/Laboratory Compacted Mixtures Using Modified Compaction

Table B-10 Marshall and Hveem Test Results for Laboratory Mixed/Laboratory Compacted Mixtures Using Standard Compaction

MIXTURE		AIR VOIDS	HVEEM STABILITY	AIR VOIDS	MARSHALL STABILITY 1bs	VALUES FLOW .01 in
Control: Texaco AC-20	 	2.1 2.4 2.9	43 44 42	2.0 2.2 2.1	2207 2384 2319	12.0 12.0 12.0
	AVG.	2.5	43	2.1	2303	12.0
Texaco AC-10 + 3% UP 70		2.8 3.2 2.9	41 42 41	2.6 3.6 3.1	2407 2935 2823	13.0 13.5 14.5
1	AVG.	3.0	41	3.1	2722	13.7
Texaco AC-10 + 3% Styrelf 		1.3 1.4 1.5	42 40 44	1.5 1.2 1.4	2206 2350 2462	13.0 12.5 13.0
	AVG.	1.4	42	1.4	2339	12.8

MIXTURE		võids	STABILITY	võids	STABILITY	FLOW
Control: Texaco AC-20		7.4 7.8 7.5	38 37 34	6.1 6.5 8.9	944 842 861	11.5 12.0 12.5
4	AVG.	7.6	36	7.2	882	12.0
Texaco AC-10 + 3% UP 70		7.1 6.3 7.0	37 37 36	6.5 7.0 6.7	943 820 800	14.0 13.0 13.5
4	AVG.	6.8	37	6.7	854	13.5
Texaco AC-10 + 3% Styrelf		6.6 7.2 6.3	28 29 29 	5.7 6.3 7.0	459	16.0 17.0

Table B-1	1 Marshall	and Hveem Test	Results for	Plant	Mixed/Laboratory	Compacted
	Mixtures	Using Modified	Compaction		·	•

Table B-12 Marshall and Hveem Test Results for Plant Mixed/Laboratory Compacted Mixtures Using Standard Compaction

MIXTURE		AIR VOIDS	HVEEM STABILITY	AIR VOIDS	MARSHALL STABILITY lbs	VALUES FLOW .01 in
Control: Texaco AC-20	• 	3.8 3.0 3.5	40 40 42	3.3 3.8 4.6	1850 1545 1678	11.0 10.5 11.0
	AVG.	3.5	41	3.9	1691	10.8
Texaco AC-10 + 3% UP 70		3.2 3.6 3.4	42 42 42	2.8 2.9 3.3	1948 1928 1743	12.5 11.5 12.5
	AVG.	3.4	42	3.0	1873	12.2
Texaco AC-10 + 3% Styrelf	AVG.	0.6 1.0 0.6	40 40 38 39	0.9 0.8 0.3 0.7	2197 2002 2214 2138	13.0 12.5 13.0 12.8

MIXTURE	TEST TEMP. F	VOIDS	INDIRECT TENSILE STRENGTH PSI	STRAIN AT FAILURE	SECANT MODULUS KSI	RESILIENT MODULUS KSI	POISSON'S RATIO
Control: Texaco AC-20	-39	- 6.5 6.4 7.0	315 295 300	0.42 0.35 0.30	151 167 198	491 644 733	0.24 0.02 -0.08
1	4	AVG. 6.6	303	0.36	172	623	0.06
1 Texaco AC-10 + 3% UP 70 	39	6.9 7.2 6.6	349 356 384	0.34 0.38 0.34	206 185 227	922 452 471	-0.04 0.24 0.23
 	4	AVG. 6.9	363	0.35	206	615	0.14
Texaco AC-10 + 3% Styrel	F 39	6.4 6.6 6.4	318 316 277	0.73 0.74 0.73	87 85 76	678 508 505	0.01 0.11 0.09
	4	AVG. 6.5	304	0.73	83	564	0.07
1 Control: Texaco AC-20	77	6.8 6.1 6.9	69 74 68	1.23 1.21 1.40	11.2 12.2 9.7	129 162 123	0.38 0.21 0.35
 	"	AVG. 6.6	70	1.28	11.0	138	0.31
Texaco AC-10 + 3% UP 70	77	7.1 7.1 7.0	81 85 87	1.56 1.52 1.46	10.3 11.2 11.9	186 294 148	0.24 0.08 0.36
	"	AVG. 7.1	84	1.51	11.1	209	0.22
Texaco AC-10 + 3% Styrel	f 77	6.4 6.3 6.0	62 65 65	2.13 2.13 2.18	5.8 6.0 5.9	77 123 146	0.49 0.24 0.14
1	4	AVG. 6.2	64	2.15	5.9	115	0.29
Control: Texaco AC-20	104	6.5 6.5 6.4	19 20 21	1.29 1.29 1.34	3.0 3.1 3.1	95 68 79	0.04 0.25 0.16
1		AVG. 6.5	20	1.31	3.0	81	0.15
Texaco AC-10 + 3% UP 70	104	7.6 6.7 6.7	20 20 21	1.61 1.56 1.56	2.4 2.6 2.7	47 106 58	0.54 0.10 0.44
1	4	AVG. 7.0	20	1.58	2.6	70	0.36
Texaco AC-10 + 3% Styrel	f 104	6.3 6.8 6.3	18 14 14	2.60 2.34 2.34	1.4 1.2 1.2	30 43 85	0.63 0.34 0.21
	i	AVG. 6.5	15	2.43	1.2	53	0.40

Table B-13 Indirect Tensile Test Results for Laboratory Mixed/Laboratory Compacted Mixtures Using Modified Compaction

•

MIXTURE	TEST TEMP. F	AIR VOIDS	INDIRECT TENSILE STRENGTH PSI	STRAIN AT FAILURE	SECANT MODULUS KSI	RESILIENT MODULUS KSI	POISSON'S RATIO
Control: Texaco AC-20	39	1.7 2.2 2.4	460 430 467	0.28 0.24 0.25	333 359 374	764 626 612	0.17 0.12 0.22
	f	AVG. 2.1	452	0.25	355	667	0.17
Texaco AC-10 + 3% UP 70	39	3.0 3.0 3.4	488 492 477	0.19 0.22 0.22	521 450 436	1042 1043 769	-0.01 -0.03 0.06
1	. A	AVG. 3.1	486	0.21	469	952	0.01
Texaco AC-10 + 3% Styrel H	f 39	1.4 1.5 1.4	517 554 520	0.44 0.52 0.62	237 213 167	462 617 872	0.24 0.17 0.05
1	4	AVG. 1.4	530	0.53	205	651	0.16
Control: Texaco AC-20	77	2.3 2.2 2.6	118 119 115	1.04 1.12 1.04	22.7 22.1	264 246 187	0.20 0.20 0.39
i	A	AVG. 2.4	117	1.07	22.4	232	0.26
Texaco AC-10 + 3% UP 70	77	3.2 3.5 2.7	159 150 148	1.25 1.08 1.26	25.5 27.8 23.4	355 323 381	0.21 0.22 0.17
	A	AVG. 3.1	152	1.20	25.6	353	0.20
Texaco AC-10 + 3% Styrel	f 77	2.0 1.3 1.8	125 124 129	1.56 1.51 1.51	16.0 16.4 17.1	202 220 217	0.26 0.23 0.27
	¢	AVG. 1.7	126	1.53	16.5	213	0.25
Control: Texaco AC-20	104	2.1 2.3 2.7	42 41 39	0.99 1.07 1.06	8.5 7:6 7.3	123 58 78	0.19 0.67 0.45
	A	AVG. 2.4	40	1.04	7.8	86	0.44
Texaco AC-10 + 3% UP 70	104	2.9 3.5 2.4	48 53 45	1.25 1.20 1.25	7.7 8.9 7.2	113 112 81	0.33 0.37 0.51
1	f	AVG. 2.9	49	1.23	8.0	102	0.40
Texaco AC-10 + 3% Styrel	f 104	1.8 1.3 1.3	37 39 36	1.56 1.53 1.49	4.7 5.1 4.8	53 86 67	0.43 0.16 0.37
	4	AVG. 1.5	37	1.53	4.9	69	0.32

Table B-14 Indirect Tensile Test Results for Laboratory Mixed/Laboratory Compacted Mixtures Using Standard Compaction

MIXTURE	TEST TEMP. F		AIR VOIDS 2	INDIRECT TENSILE STRENGTH PSI	STRAIN AT FAILURE	SECANT MODULUS KSI	RESILIENT MODULUS KSI	POISSON'S RATIO
Control: Texaco AC-20	- 39		7.0 6.7 8.3	347 349 352	0.31 0.35 0.26	222 200 270	334 466 457	
		AVG.	7.3	349	0.31	231	419	-
Texaco AC-10 + 3% UP 70	39		6.6 7.1 6.7	337 343 353	0.33 0.43 0.30	202 159 238	502 450 466	-
		AVG.	6.8	344	0.35	200	473	-
Texaco AC-10 + 3% Styrel	f 39		7.7 6.5 6.3	314 329 315	0.69 0.79 0.41	91 83 155	507 450 382	-
		AVG.	6.8	319	0.63	110	446	-
Control: Texaco AC-20	77		7.6 7.3 6.4	107 108 101	1.20 1.26 1.20	17.8 17.2 16.9	221 235 219	-
		AVG.	7.1	106	1.22	17.3	225	
Texaco AC-10 + 3% UP 70	77		6.8 7.1 7.1	102 107 103	1.35 1.38 1.37	15.0 15.5 15.0	218 191 254	-
		AVG.	7.0	104	1.37	15.2	221	
Texaco AC-10 + 3% Styrel	f 77		7.8 6.1 6.5	68 69 80	2.02 1.82 1.72	6.8 7.6 9.3	192 106 113	-
		AVG.	6.8	73	1.85	7.9	137	-
Control: Texaco AC-20	104		7.2 7.0 6.6	31 31 33	1.45 1.31 1.43	4.3 4.8 4.5	96 80 88	0.28 0.28 0.36
1		AVG .	6.9	32	1.40	4.6	88	0.31
Texaco AC-10 + 3% UP 70	104		7.1 6.9 6.9	26 25 29	1.74 1.57 1.61	3.0 3.2 3.6	72 182 99	0.38 0.09 0.17
		AVG.	7.0	27	1.64	3.3	118	0.21
Texaco AC-10 + 3% Styrel	f 104		6.1 7.2 6.1	19 22 19	2.37 2.12 2.28	1.6 2.1 1.7	180 271 65	-0.10 -0.12 0.23
		AVG.	6.5	20	2.26	1.8	172	0.00

Table B-15 Indirect Tensile Test Results for Plant Mixed/Laboratory Compacted Mixtures Using Modified Compaction

MIXTURE	TEST TEMP. F	AIR VOIDS	INDIRECT TENSILE STRENGTH PSI	STRAIN AT FAILURE	SECANT MODULUS KSI	RESILIENT MODULUS KSI	POISSON'S RATIO
Control: Texaco AC-20	39	3.0 4.2 3.5	446 429 464	0.23 0.20 0.22	381 434 425	562 780 443	-
	A۱	G. 3.6	446	0.22	413	595	-
Texaco AC-10 + 3% UP 70	39	3.4 3.8 2.8	467 467 473	0.26 0.26 0.26	359 358 364	457 374 736	-
1	A۱	6. 3.3	469	0.26	360	522	-
Texaco AC-10 + 3% Styrel	f 39	1.9 0.9 1.3	515 512 504	0.00 0.33 0.35	312 289	513 525 698	-
1	AV	6. 1.4	510	0.23	300	579	-
Control: Texaco AC-20	77	4.1 3.3 3.1	161 154 159	0.88 1.04 1.11	36.4 29.6 28.7	283 310 287	-
	A	G. 3.5	158	1.01	31.5	293	-
Texaco AC-10 + 3% UP 70	77	3.2 2.8 2.4	162 164 159	1.30 1.20 1.20	24.9 27.3 26.6	290 581 290	-
	A\	G. 2.8	162	1.23	26.3	387	-
Texaco AC-10 + 3% Styrel	f 77	0.9 1.4 0.9	155 156 150	1.39 1.36 1.51	22.3 22.9 19.8	257 180 254	-
	A\	6. 1.1	153	1.42	21.7	230	-
Control: Texaco AC-20	104	5.1 3.5 3.6	58 53 57	1.21 1.30 1.23	9.5 8.1 9.3	202 102 131	0.15 0.36 0.33
1	A	6. 4.1	56	1.25	9.0	145	0.28
Texaco AC-10 + 3% UP 70	104	3.2 2.6 2.8	50 49 50	1.59 1.62 1.62	6.4 6.1 6.2	114 116 118	0.27 0.30 0.35
	A	G. 2.9	50	1.61	6.2	116	0.31
Texaco AC-10 + 3% Styrel	f 104	1.0 0.4 0.8	51 48 50	1.87 1.68 1.61	5.4 5.8 6.2	103 84 102	0.22 0.38 0.21
1	A	G. 0.7	50	1.72	5.8	96	0.27

Table B-16 Indirect Tensile Test Results for Plant Mixed/Laboratory Compacted Mixtures Using Standard Compaction

,

NTYTHOC	TEST	AIR	LOAD	INDIRECT RESILIEN	ALPHA	GNU	Ea=IN	rs	R-SOUR
	F	\$		STRESS IN/IN PSI			S	L06(I)	Ea=IN^S
Control: Texaco AC-20	77	6.9 6.8	155 155	9.7 3.8E-05 9.5 3.8E-05	0.2362 0.1196	0.3670 0.2333	0.7638 0.8804	-4.7420 -5.0005	0.989 0.988
	AVG.	. 6.9	155	9.6 3.8E-05	0.1779	0.3001	0.8221	-4.8713	
Texaco AC-10 + 3% UP 70	77	7.0 7.1	185 185	11.3 6.2E-05 11.4 6.2E-05	0.1508	0.1536 0.1665	0.8492 0.8360	-4.9473 -4.9055	0.996 0.991
	AVG	. 7.1	185	11.4 6.2E-05	0.1574	0.1601	0.8425	-4.9264	
Texaco AC-10 + 3% Styrel	f 77	6.3 6.0	140 140	8.6 5.2E-05 8.6 5.2E-05	0.2046 0.2192	0.6955 0.7118	0.7954 0.7808	-4.3423 -4.3242	0.994 0.993
	AVG	. 6.2	140	8.6 5.2E-05	0.2119	0.7036	0.7881	-4.3333	

Table 8-17 Alpha and Snu Parameters for Laboratory Mixed/Laboratory Compacted Mixtures

Table 8-18 Alpha and Gnu Parameters for Plant Mixed/Laboratory Compacted Mixtures

HTYTIRE	TEND	AIR	LOAD	INDIRECT RES	ILIEN ALPHA	GNU	Ea=IN	<u>_</u> S	R-SOUR FOR
	F	3		STRESS IN PSI	/IN		S	LOG(I)	Ea=IN [^] S
Control: Texaco AC-20	77	6.6 7.0	219 221	15.0 7.8 14.9 7.8	E-05 0.3439 E-05 0.2708	0.4454 0.2354	0.6561 0.7292	-4.2761 -4.5990	0.998 0.993
	AVG.	6.8	220	15.0 7.8	E-05 0.3074	0.3404	0.6927	-4.4376	1
Texaco AC-10 + 3% UP 70	77	6.5 7.0	230 230	15.2 7.3 15.0 7.3	E-05 0.1705 E-05 0.2178	0.1901 0.2383	0.8295 0.7822	-4.7777 -4.6540	0.999 0.998
	AVG.	6.8	230	15.1 7.3	E-05 0.1942	0.2142	0.8059	-4.7159	1
Texaco AC-10 + 3% Styrel	f 77	6.2 6.8	160 162	10.3 1.2 10.4 1.0	E-04 0.2703 E-04 0.1326	0.1845 0.3131	0.7297 0.8674	-4.5290 -4.4255	0.983 0.994
	AVG	. 6.5	161	10.4 1.1	E-04 0.2015	0.2488	0.7986	-4.4773	i

MIXTURE	TEST TEMP. F	AIR VOIDS	load LBS	INDIRECT TENSILE STRESS PSI	STATIC INITIAL NOOULUS STRAIN KSI IN/IN	LOAD CYCLES	FATIGUE K1	CONSTANT K2	R-SQUR FOR Nf=K1(1/Emix)^K
Control: Texaco AC-20	77	6.9 9.8 6.2 6.6 6.2 6.8	155 155 260 260 775 775	9.7 9.5 16.2 16.0 47.4 47.5	29 3.3E-04 29 3.3E-04 29 5.6E-04 29 5.5E-04 29 1.6E-03 29 1.6E-03	5220 6750 2890 3150 282 240	7.18E-0	4 2.01	0.983
Texaco AC-10 + 3% UP 70	77	7.0 7.1 7.2 7.2 6.9	185 185 310 310 600 600	11.3 11.4 19.2 19.1 37.4 37.2	30 3.8E-04 30 3.8E-04 30 6.4E-04 30 6.4E-04 30 1.2E-03 30 1.2E-03	7434 8115 1225 1020 575 535	2.21E-0	4 2.17	0.890
Texaco AC-10 + 3% Styrelf	77	6.3 6.0 6.4 6.5 6.9 6.3	140 140 230 235 470 470	8.6 8.6 14.0 14.6 28.9 28.8	14 6.1E-04 14 6.1E-04 14 1.0E-03 14 1.0E-03 14 2.1E-03 14 2.1E-03	3120 3458 1320 1410 320 406	4.65E-0	3 1.82	0.991

Table 8-19 Fatigue Parameter Values for Laboratory Mixed/Laboratory Compacted Mixtures

Table 8-20 Fatigue Parameter Values for Plant Mixed/Laboratory Compacted Mixtures

MIXTURE	TEST TEMP.	AIR	LOAD	INDIRECT	STATIC INITIAL HODULUS STRAIN	LOAD	FATIGUE	CONSTANT	R-SQUR - For
	F	\$		STRESS PSI	KSI IN/IN		K1	K2	Nf=K1(1/Emix) [°] K
Control: Texaco AC-20		6.6 7.0 6.5 6.7 6.6 6.5	219 221 367 366 739 742	15.0 14.9 25.2 25.1 50.4 50.3	44 3.4E-04 44 3.4E-04 44 5.7E-04 44 5.7E-04 44 1.1E-03 44 1.1E-03	6160 5860 1720 2260 320 340	2.89E-0	5 2.40	0.993
Texaco AC-10 + 32 UP 70	77	6.5 7.0 6.70 7.30 6.60 6.70	230 230 390 390 762 763	15.2 15.0 25.9 25.5 50.2 50.4	45 3.4E-04 45 3.3E-04 45 5.8E-04 45 5.7E-04 45 1.1E-03 45 1.1E-03	5620 4750 1860 1500 220 130	6.31E-0	7 2.87	0.969
Texaco AC-10 + 3% Styrelf	77	6.2 6.8 6.30 6.00 6.20 7.00	160 162 265 266 535 530	10.3 10.4 17.3 17.5 35.1 34.0	19 5.4E-04 19 5.5E-04 19 9.1E-04 19 9.2E-04 19 1.8E-03 19 1.8E-03	2560 2560 1300 1650 185 180	1.57E-0	4 2.24	0.938

MIXTURE	TEMP. F	D1	M	Log(SHIFT FACTOR)	BETA
Control: Texaco AC-20	60	2.69E-06	0.58	1.14	0.072
1	77	1.21E-05	0.58		
1 1 1	90	4.55E-05	0.58	-1.00	
Texaco AC-10 + 3% UP 70	60	1.05E-06	0.62	1.03	0.062
1	77	3.63E-06	0.70		
1	90	4.11E-05	0.41	-0.82	
Texaco AC-10 + 3% Styrel	f 60	9.43E-06	0.53	1.06	0.051
1	77	3.29E-05	0.55		
	90	6.50E-05	0.55	-0.52	

Table B-21 Creep Compliance Properties for Laboratory Mixed/ Laboratory Compacted Mixture Using Modified Compaction.

Table B-22 Creep Compliance Properties for Plant Mixed/ Laboratory Compacted Mixture Using Modified Compaction.

MIXTURE	TEMP. F	D1 _	m	Log(SHIFT FACTOR)	BETA
Control: Texaco AC-20	60	5.00E-06	0.40	1.13	0.063
1	77	1.09E-05	0.49		1
	90	2.32E-05	0.54	-0.78	1
Texaco AC-10 + 3% UP 70	60	1.76E-06	0.49	1.60	0.074
1	77	9.27E-06	0.55		1
	90	1.72E-05	0.63	-0.70	
Texaco AC-10 + 3% Styrel	f 60	1.09E-05	0.46	1.14	0.049
8	77	3.22E-05	0.51		1
	90	4.47E-05	0.56	-0.39	_

TIME	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSILE
	OFFORMATION	TN/TN		SEC.	HURILUNIAL	SIRAIN	CREEP
	IN	111/11			TN	18/18	TN^2/LP
	X N		IN Z/LD		14		18 2/15
	TE)	ACO AC-20	·		TE)	ACO AC-20	
-	51 IEAP = 60	, /16MA =	6.913 P51	TE	ST TEMP = 60	, ZIGMA =	6.983 PSI
1.0	5.50E-05	2.86E-05	2.07E-06	1.0	9.50E-05	4.94E-05	3.54E-06
1.8	9.00E-05	4.68E-05	3.39E-06	1.8	1.30E-04	6.76E-05	4.84E-06
3.2	1.20E-04	6.24E-05	4.51E-06	3.2	1.60E-04	8.32E-05	5.96E-06
5.6	2.00E-04	1.04E-04	7.52E-06	5.6	2.15E-04	1.12E-04	8.01E-06
10.0	2.75E-04	1.43E-04	1.03E-05	10.0	2.70E-04	1.40E-04	1.01E-05
18.0	3.98E-04	2.07E-04	1.50E-05	18.0	3.53E-04	1.83E-04	1.31E-05
31.6	5.38E-04	2.80E-04	2.02E-05	31.6	4.65E-04	2.42E-04	1.73E-05
56.2	7.18E-04	3.73E-04	2.70E-05	56.2	6.05E-04	3.15E-04	2.25E-05
100.0	1.08E-03	5.62E-04	4.06E-05	100.0	8.20E-04	4.26E-04	3.05E-05
177.8	1.53E-03	7.93E-04	5.74E-05	177.8	1.14E-03	5.90E-04	4.23E-05
316.2	2.11E-03	1.10E-03	7.94E-05	316.2	1.50E-03	7.80E-04	5.59E-05
562.3	3.00E-03	1.56E-03	1.13E-04	562.3	2.28E-03	1.18E-03	8.47E-05
1000.0	4.25E-03	2.21E-03	1.60E-04	1000.0	3.30E-03	1.72E-03	1.23E-04
1778.3	5.95E-03	3.09E-03	2.24E-04	1778.3	4.97E-03	2.58E-03	1.85E-04
3162.3	8.78E-03	4.56E-03	3.30E-04	3162.3	7.84E-03	4.08E-03	2.92E-04
3600.0	9.64E-03	5.01E-03	3.62E-04	3600.0	8.54E-03	4.44E-03	3.18E-04
7200.0	8.40E-03	4.37E-03		7200.0	7.50E-03	3.90E-03	
	TEX	ACO AC-20			TEX	ACC AC-20	
TE	ST TEMP = 77	, ZIGMA =	2.263 PSI	TE	ST TEMP = 77	, ZIGMA =	2.452 PS1
1.0	9.50E-05	4.94E-05	1.09E-05	1.0	1.15E-04	5.98E-05	1.22E-05
1.8	1.40E-04	7.28E-05	1.61E-0S	1.8	2.00E-04	1.04E-04	2.12E-05
3.2	1.80E-04	9.36E-05	2.07E-05	3.2	2.45E-04	1.27E-04	2.60E-05
5.6	2.50E-04	1.30E-04	2.87E-05	5.6	3.70E-04	1.92E-04	3.92E-05
10.0	3.35E-04	1.74E-04	3.85E-05	10.0	5.05E-04	2.635-04	5.36E-05
18.0	4.60E-04	2.39E-04	5.29E-05	18.0	7.30E-04	3.80E-04	7.74E-05
31.6	6.20E-04	3.22E-04	7.12E-05	31.6	1.06E-03	5.51E-04	1.12E-04
56.2	8.10E-04	4.21E-04	9.31E-05	56.2	1.40E-03	7.28E-04	1.48E-04
100.0	1.08E-03	5.59E-04	1.24E-04	100.0	1.96E-03	1.02E-03	2.08E-04
177.8	1.45E-03	7.54E-04	1.67E-04	177.8	2.68E-03	1.39E-03	2.84E-04
316.2	2.13E-03	1.11E-03	2.44E-04	316.2	3.88E-03	2.02E-03	4.11E-04
562.3	3.07E-03	1.59E-03	3.525-04	562.3	5.53E-03	2.87E-03	5.86E-04
1000.0	4.38E-03	2.28E-03	5 135-04	1000.0	8.23E-03	4.285-03	8.72E-04
1778.3	6.63E-03	3.45E-03	1.51E-04	1778.3	1.26E-02	6.54E-03	1.33E-03
3162.3	1.04E-02	5.38E-03	:.:•E-03				
3600.0	1.16E-02	6.02E-03	: 3E-03				
7200.0	1.12E-02	5.81E-03					

Table B-23 Creep Compliance of Laboratory Mixed / Laboratory Compacted Mixtures Using Modified Compaction.

Table 8-23 (Continued)

TINE	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSILE
SEC.	HORIZONTAL	STRAIN	CREEP	SEC.	HORIZONTAL	STRAIN	CREEP
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANCE
	IN		IN ^{2/LB}		IN		IN^2/LB
	TE	(ACO AC-20			TE	(ACO AC-20	
TE	ST TEMP = 90	, ZIGMA =	0.678 PSI	TES	ST TEMP = 90	, ZIGMA =	0.746 PSI
1.0	1.10E-04	5.72E-05	4.22E-05	1.0	1.40E-04	7.28E-05	4.88E-05
1.8	3 1.55E-04	8.06E-05	5.95E-05	1.8	2.00E-04	1.04E-04	6.97E-05
3.2	2.00E-04	1.04E-04	7.67E-05	3.2	2.85E-04	1.48E-04	9.93E-05
5.6	2.85E-04	1.48E-04	1.09E-04	5.6	4.205-04	2.18E-04	1.46E-04
10.0) 3.75E-04	1.95E-04	1.44E-04	10.0	5.80E-04	3.02E-04	2.02E-04
18.0) 5.30E-04	2.76E-04	2.03E-04	18.0	8.30E-04	4.32E-04	2.89E-04
31.6	7.80E-04	4.06E-04	2.99E-04	31.6	1.10E-03	5.72E-04	3.83E-04
56.2	2 1.17E-03	6.095-04	4.49E-04	56.2	1.46E-03	7.59E-04	5.09E-04
100.0	1.67E-03	8.66E-04	6.39E-04	100.0	1.93E-03	1.00E-03	6.73E-04
177.9	2.56E-03	1.33E-03	9.82E-04	177.8	2.54E-03	1.32E-03	8.84E-04
316.2	3.26E-03	1.705-03	1.25E-03	316.2	3.53E-03	1.835-03	1.235-03
562.3	8 4.91E-03	2.55E-03	1.88E-03	562.3	5.02E-03	2.61E-03	1.75E-03
1000.0	7.16E-03	3.72E-03	2.75E-03	1000.0	7.45E-03	3.87E-03	2.605-03
1778.3	3 1.29E-02	6.71E-03	4.95E-03				
3162.3	3 2.74E-02	1.43E-02	1.05E-02				
3600.0	3.51E-02	1.822-02	1.34E-02				
	TEXACO AC	-10 + 32	UP 70		TEXACO AC	-10 + 3%	UP 70
TE	ST TEMP = 60	, ZIGMA =	8.128 PSI	TES	ST TEMP = 60	, ZIGMA =	8.112 PSI
•						*******	
1.(5.50E-05	2.86E-05	1.76E-06	1.0	1.50E-05	7.80E-06	4.81E-07
1.8	8 8.00E-05	4.16E-05	2.56E-06	1.8	2.00E-05	1.04E-05	6.41E-07
3.2	2 1.05E-04	5.46E-05	3.36E-06	3.2	3.002-05	1.56E-05	9.62E-07
5.0	5 1.60E-04	8.32E-05	5.12E-06	5.6	3.85E-05	2.00E-05	1.23E-06
10.0	2.10E-04	1.09E-04	6./2E-06	10.0	4.50E-05	2.34E-05	1.44E-06
18.0	3.05E-04	1.595-04	9./6E-06	18.0	7.50E-05	3.90E-05	2.40E-06
31.0	4.20E-04	2.18E-04	1.34E-05	31.6	1.15E-04	5.98E-05	3.69E-06
56.	2 5.64E-04	2.93E-04	1.802-05	56.2	1.84E-04	9.54E-05	5.88E-06
100.0	J /.88E-04	4.10E-04	2.52E-05	100.0	3.20E-04	1.66E-04	1.03E-05
177.	B 1.10E-03	5.72E-04	3.52E-05	177.8	5.75E-04	2.99E-04	1.84E-05
316.3	2 1.49E-03	7.72E-04	4.75E-05	316.2	8.50E-04	4.42E-04	2.72E-05
562.	3 2.02E-03	1.05E-03	6.45E-05	562.3	1.30E-03	6.76E-04	4.17E-05
1000.0	2.20E-03	1.14E-03	7.04E-05	1000.0	2.15E-03	1.12E-03	6.89E-05
1778.3	3 3.64E-03	1.89E-03	1.16E-04	1778.3	3.45E-03	1.79E-03	1.11E-04
3162.3	3 4.50E-03	2.34E-03	1.44E-04	3162.3	5.55E-03	2.89E-03	1.78E-04
3600.	0 5.37E-03	2.79E-03	1.72E-04	3600.0	6.00E-03	3.125-03	1.925-04
7200.	0 4.60E-03	2.395-03		7200.0	4.98E-03	2.595-03	

Table 8-23 (Continued)

TIME	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSILE
SEC.	HORIZONTAL	STRAIN	CREEP	SEC.	HORIZONTAL	STRAIN	CREEP
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANC
	IN		IN^2/LB		IN		IN ^{2/L8}
	TEYACO AC	-10 + 32	110 70		TEYACO AC	-10 + 25	70
TE	ST TEMP = 77	. 716MA =	2 199 DST	TE	TEXHLU HU	-10 + 36 710ma -	1 949 65
-						, 219n# -	1.007 F3
1.0	3.00E-05	1.56E-05	3.55E-06	1.0	3.00E-05	1.56E-05	4.17E-0
1.8	4.25E-05	2.21E-05	5.03E-06	1.8	4.50E-05	2.34E-05	6.26E-0
3.2	5.00E-05	2.60E-05	5.91E-06	3.2	6.00E-05	3.12E-05	8.35E-0
5.6	7.00E-05	3.64E-05	8.285-06	5.6	1.15E-04	5.98E-05	1.60E-0
10.0	1.00E-04	5.20E-05	1.185-05	10.0	1.75E-04	9.105-05	2.43E-0
18.0	1.35E-04	7.02E-05	1.60E-05	18.0	2.75E-04	1.43E-04	3.83E-0
31.6	1.85E-04	9.62E-05	2.19E-05	31.6	4.40E-04	2.29E-04	6.12E-0
56.2	2.65E-04	1.38E-04	3.13E-05	56.2	6.50E-04	3.38E-04	9.04E-0
100.0	3.50E-04	1.82E-04	4.14E-05	100.0	1.04E-03	5.38E-04	1.44E-0
177.8	5.20E-04	2.70E-04	6.15E-05	177.8	1.60E-03	8.325-04	2.23E-0
316.2	7.80E-04	4.06E-04	9.22E-05	316.2	2.45E-03	1.27E-03	3.41E-0
562.3	1.29E-03	6.68E-04	1.52E-04	562.3	3.50E-03	1.82E-03	4.87E-0
1000.0	2.09E-03	1.08E-03	2.47E-04	1000.0	4.80E-03	2.50E-03	6.68E-C
1778.3	3.19E-03	1.66E-03	3.77E-04	1778.3	6.70E-03	3.48E-03	9.32E-0
3162.3	5.19E-03	2.70E-03	6.14E-04	3162.3	9.85E-03	5.12E-03	1.375-0
3600.0	5.80E-03	3.02E-03	6.86E-04				
7200.0	5.58E-03	2.90E-03					
	TEXACO AC	-10 + 32	UP 70		TEYACO AC	-10 + 32	10 70
TE	ST TEMP = 90	, ZIGMA =	0.760 PSI	TES	ST TEMP = 90	, ZIGMA =	0.754 PS
-		2 205-05					
1.0	9 50E-05	3.385-03	2.225-05	1.0	1.50E-04	/.80E-05	5.1/2-0
1.0	9.30E-03	4.745-05	3.250-05	1.8	2.000-04	1.045-04	0.901-0
5.6	1.200-04	8 845-05	4.11E-05 5 82E-05	3.2	2.405-04	1.235-04	0.200-0
10 0	2 15E-04	1 125-04	7 365-05	10.0	3.20E-04	2 095-04	1 205-0
18.0	2 835-04	1 475-04	9 675-05	18.0	5 05E-04	2.000-04	1.300-0
31.6	3 70F-04	1.92E-04	1 275-04	31 6	6 65E-04	2.03L-04	2 295-0
56.2	4.88E-04	2.54E-04	1.67E-04	56.2	8.80F-04	4 58F-04	3 04F-0
100.0	6.752-04	3.51E-04	2.315-04	100.0	1.095-03	5.64F-04	3 74F-0
177.8	8.90E-04	4.63E-04	3.05E-04	177.B	1.30E-03	6.76F-04	4 485-0
316.2	1.09E-03	5.64E-04	3.71E-04	316.2	1.535-03	7.96F-04	5,28E-0
562.3	1.27E-03	6.58E-04	4.335-04	562.3	1.88E-03	9.78F-04	6.485-0
1000.0	1.645-03	8.50E-04	5.59E-04	1000.0	2.255-03	1.17E-03	7.765-0
1778.3	2.16E-03	1.12E-03	7.39E-04	1778.3	2.57E-03	1.33E-03	8.85F-0
3162.3	2.87E-03	1.49E-03	9.80E-04	3162.3	3.15E-03	1.64E-03	1.09E-0
3600.0	3.205-03	1.66E-03	1.09E-03	3600.0	3.285-03	1.705-03	1.135-0
7200 0	2 99F-03	1 55F-03					

Table 8-23 (Continued)

TIME	TOTAL	TENSILE	TENSILE	TINE	TOTAL	TENSILE	TENSILE
SEC.	HORIZONTAL	STRAIN	CREEP	SEC.	HORIZONTAL	STRAIN	CREEP
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	TN/TN	COMPLIANCE
	IN		IN^2/LB		IN		IN ² /LB
					-		
	TEXACO AC	C-10 + 3%	STYRELF		TEXACO AC	-10 + 3%	STYRELF
TE	ST TEMP = 60	, ZIGMA =	6.999 PSI	TES	ST TEMP = 60	, ZIGMA =	6.958 PSI
-							•••••
1.0	2.50E-04	1.30E-04	9.29E-06	1.0	2.30E-04	1.20E-04	8.60E-06
1.8	3.75E-04	1.95E-04	1.39E-05	1.8	3.40E-04	1.77E-04	1.27E-05
3.2	5.00E-04	2.60E-04	1.86E-05	3.2	4.45E-04	2.31E-04	1.66E-05
5.6	7.10E-04	3.69E-04	2.64E-05	5.6	6.35E-04	3.30E-04	2.37E-05
10.0	9.35E-04	4.86E-04	3.47E-05	10.0	8.00E-04	4.16E-04	2.99E-05
18.0	1.31E-03	6.81E-04	4.87E-05	18.0	1.12E-03	5.80E-04	4.17E-05
31.6	1.79E-03	9.31E-04	6.65E-05	31.6	1.44E-03	7.49E-04	5.38E-05
56.2	2.3BE-03	1.24E-03	8.825-05	56.2	1.94E-03	1.01E-03	7.25E-05
100.0	3.14E-03	1.63E-03	1.16E-04	100.0	2.69E-03	1.40E-03	1.00E-04
177.8	3.87E-03	2.01E-03	1.44E-04	177.8	3.63E-03	1.89E-03	1.35E-04
316.2	5.37E-03	2.79E-03	1.99E-04	316.2	4.80E-03	2.50E-03	1.79E-04
562.3	8 7.47E-03	3.88E-03	2.77E-04	562.3	6.55E-03	3.41E-03	2.45E-04
1000.0	1.05E-02	5.47E-03	3.91E-04	1000.0	9.285-03	4.825-03	3.47E-04
1778.3	1.77E-02	9.21E-03	6.58E-04	1778.3	1.34E-02	6.96E-03	5.00E-04
3162.3	2.345-02	1.22E-02	8.695-04				
3600.0	2.64E-02	1.37E-02	9.8CE-04				
7200.0	2.37E-02	1.23E-02					
	IEXACO AC	-10 + 32 5	STYRELF		TEXACO AC	-10 + 32	STYRELF
	SI (EMP = //	, ZIGMA =	1.240 PSI	TES	ST TEMP = 77	, ZIGMA =	1.845 PSI
- 1 0	1 105-04	5 725-05	2 215-05		2 505-04	1 205 04	
1.0	1 705-04	8 84F-05	3 575-05	1.0	2.30E-04	2 095-04	3.522-05
3.2	2 25E-04	1 17E-04	4 725-05	3.2	5 75E-04	2.000-04	9 105-05
5.6	3.35F-04	1.74F-04	7 03E-05	5.6	8 50F-04	A ADE-04	1 205-04
10.0	4.255-04	2.21F-04	8.91E-05	10.0	1 15E-03	5 98F-04	1.200-04
18.0	5.70E-04	2.96E-04	1.20E-04	18.0	1 45E-03	7 54E-04	2 04F-04
31.6	8.75E-04	4.55E-04	1.845-04	31.6	1.88F-03	9 75F-04	2 64E-04
56.2	1.20E-03	6.24E-04	2.52E-04	56.2	2.47E-03	1.28F-03	3.475-04
100.0	1.64E-03	8.50E-04	3.435-04	100.0	3.32E-03	1.72E-03	4 67E-04
177.8	2.20E-03	1.14E-03	4.61E-04	177.8	4.48E-03	2 33F-03	6 315-04
316.2	2.94E-03	1.53E-03	6.17E-04	316.2	6.35E-03	3.30E-03	8.95E-04
562.3	3.98E-03	2.07E-03	8.35E-04	562.3	9.35E-03	4.86F-03	1.325-03
1000.0	5.39E-03	2.80E-03	1.13E-03	1000.0	1.45E-02	7.52F-03	2.04F-03
1778.3	7.92E-03	4.12E-03	1.66E-03				L
3162.3	1.20E-02	6.22E-03	2.51E-03				
3600.0	1.44E-02	7.465-03	3.01E-03				
7200-0	1.40E-02	7.28E-03					

Table B-23 (Continued)

TIME	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSILE
SEC.	HORIZONTAL	STRAIN	CREEP	SEC.	HORIZONTAL	STRAIN	CREEP
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANCE
	IN		IN^2/LB		IN		IN^2/LB
	TEXACO AC	-10 + 3% 5	TYRELF		TEXACO AC	-10 + 3\$	STYRELF
TE	ST TEMP = 90	, ZIGMA =	0.413 PSI	TE	ST TEMP = 90	, ZIGMA =	0.688 PSI
1.0	1.00E-04	5.20E-05	6.30E-05	1.0	1.75E-04	9.10E-05	6.61E-05
1.8	1.40E-04	7.28E-05	8.82E-05	1.8	2.50E-04	1.30E-04	9.45E-05
3.2	1.80E-04	9.36E-05	1.13E-04	3.2	3.10E-04	1.61E-04	1.17E-04
5.6	2.65E-04	1.38E-04	1.67E-04	5.6	4.50E-04	2.34E-04	1.702-04
10.0	3.40E-04	1.77E-04	2.14E-04	10.0	6.35E-04	3.30E-04	2.40E-04
18.0	4.55E-04	2.37E-04	2.86E-04	18.0	9.20E-04	4.785-04	3.48E-04
31.6	6.15E-04	3.20E-04	3.87E-04	31.6	1.25E-03	6.48E-04	4.71E-04
56.2	8.65E-04	4.50E-04	5.45E-04	56.2	1.92E-03	9.96E-04	7.24E-04
100.0	1.25E-03	6.50E-04	7.87E-04	100.0	2.49E-03	1.29E-03	9.39E-04
177.8	1.70E-03	8.84E-04	1.07E-03	177.8	3.15E-03	1.64E-03	1.19E-03
316.2	2.55E-03	1.33E-03	1.615-03	316.2	3.155-03	1.64E-03	1.19E-03
562.3	3.75E-03	1.95E-03	2.36E-03	562.3	4.45E-03	- 2.31E-03	1.68E-03
1000.0	5.40E-03	2.81E-03	3.40E-03				
1778.3	8.10E-03	4.21E-03	5.10E-03				
3162.3	1.29E-02	6.68E-03	8.09E-03				
3600.0	1.46E-02	7.59E-03	9.19E-03				
7200.0	1.41E-02	7.33E-03					

273

TIME SEC.	TOTAL HORIZONTAL	TENSILE STRAIN	TENSILE	TIME SEC.	TOTAL HORIZONTAL	TENSILE STRAIN	TENSILE CREEP
	DEFORMATION IN	IN/IN	COMPLIANCE IN^2/LB		DEFORMATION IN	IN/IN	COMPLIANCE IN ^{2/LB}
	TEX	ACO AC-20			TEX	ACO AC-20	_
TE	57 TEMP = 60	, ZIGMA =	5.547 P5I	TE	5T TEMP = 60	, ZIGMA =	7.112 P51
1.0) 1.40E-04	7.28E-05	6.56E-06	1.0	1.00E-04	5.20E-05	3.66E-06
1.8	3 1.90E-04	9.88E-05	8.91E-06	1.8	1.60E-04	8.32E-05	5.85E-06
3.2	2.00E-04	1.045-04	9.385-06	3.2	1.95E-04	1.01E-04	7.13E-0
5.6	2.30E-04	1.20E-04	1.08E-05	5.6	2.55E-04	1.33E-04	9.32E-0
10.0	2.75E-04	1.43E-04	1.295-05	10.0	3.20E-04	1.66E-04	1.175-0
18.0	3.25E-04	1.69E-04	1.52E-05	18.0	4.00E-04	2.08E-04	1.46E-0
31.6	3.70E-04	1.92E-04	1.73E-05	31.6	4.90E-04	2.55E-04	1.79E-0
56.2	2 4.75E-04	2.47E-04	2.23E-05	56.2	6.15E-04	3.20E-04	2.25E-0
100.0	6.35E-04	3.305-04	2.98E-05	100.0	7.70E-04	4.00E-04	2.82E-0
177.8	8.30E-04	4.32E-04	3.89E-05	177.8	9.65E-04	5.02E-04	3.53E-0
316.2	2 1.15E-03	5.96E-04	5.37E-05	316.2	1.175-03	6.06E-04	4.26E-0
562.3	3 1.50E-03	7.80E-04	7.03E-05	562.3	1.39E-03	7.20E-04	5.06E-0
1000.0	2.04E-03	1.06E-03	9.56E-05	1000.0	1.715-03	8.87E-04	6.23E-0
1778.3	3 2.825-03	1.47E-03	1.32E-04	1778.3	2.115-03	1.09E-03	7.70E-0
3162.3	3.54E-03	1.84E-03	1.665-04	3162.3	2.64E-03	1.37E-03	9.63E-0
3600.0	3.72E-03	1.93E-03	1.74E-04	3600.0	2.79E-03	1.45E-03	1.02E-0
7200.0	2.77E-03	1.44E-03		7200.0	1.68E-03	8.74E-04	
	TE	KACO AC-20			TE)	(ACO AC-20	
TE	EST TEMP = 77	, ZIGMA =	5.629 PSI	TE	ST TEMP = 77	, ZIGMA =	5.597 PS
1.0	0 1.90E-04	9.88E-05	8.78E-06	1.0	3.10E-04	1.61E-04	1.445-0
1.8	B 2.80E-04	1.46E-04	1.29E-05	1.8	4.25E-04	2.21E-04	1.97E-0
3.3	2 3.50E-04	1.82E-04	1.62E-05	3.2	5.25E-04	2.73E-04	2.44E-0
5.0	6 4.6CE-04	2.39E-04	2.13E-05	5.6	6.60E-04	3.435-04	3.07E-0
10.0	0 6.10E-04	3.17E-04	2.82E-05	10.0	8.25E-04	4.295-04	3.83E-0
18.0	0 7.85E-04	4.08E-04	3.63E-05	18.0	1.04E-03	5.41E-04	4.83E-0
31.6	6 1.02E-03	5.28E-04	4.69E-05	31.6	1.41E-03	7.33E-04	6.55E-0
56.3	2 1.30E-03	6.76E-04	6.01E-05	56.2	1.85E-03	9.62E-04	8.602-0
100.0	0 1.755-03	9.10E-04	8.08E-05	100.0	2.36E-03	1.225-03	1.09E-0
177.0	B 2.28E-03	1.18E-03	1.05E-04	177.8	3.215-03	1.67E-03	1.49E-0
316.3	2 3.05E-03	1.59E-03	1.41E-04	315.2	4.455-03	2.31E-03	2.075-0
562.	3 3.95E-03	2.05E-03	1.82E-04	562.3	6.10E-03	3.175-03	2.835-0
1000.	0 6.10E-03	3.17E-03	2.82E-04	1000.0	9.25E-03	4.81E-03	4.30E-0
1778.	3 9.35E-03	4.86E-03	4.32E-04	1778.3	1.57E-02	8.14E-03	7.27E-0
3162.	3 1.52E-02	7.92E-03	7.03E-04				
3600.	0 1.73E-02	9.00E-03	7.99E-04				
7200.	0 1.495-02	7.72E-03					

Table B-24 Creep Compliance of Plant Mixed / Laboratory Compacted Mixtures Using Modified Compaction.

Table B-24 (Continued)

_

TIME	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSILE
SEC.	HORIZONTAL	STRAIN	CREEP	SEC.	HORIZONTAL	STRAIN	CREEP
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANCE
	IN		IN ² /LB		IN		IN ^{2/LB}
					_		
	TEX	ACO AC-20			TEX	ACD AC-20	
TE	ST TEMP = 90	, ZIGMA =	1.298 PSI	TE	ST TEMP = 90	, ZIGMA =	1.654 PSI.
•				-			
1.0) 1.20E-04	6.24E-05	2.40E-05	1.0	1.40E-04	7.28E-05	2.20E-05
1.8	B 1.55E-04	8.06E-05	3.11E-05	1.8	2.00E-04	1.04E-04	3.14E-05
3.2	2.00E-04	1.04E-04	4.01E-05	3.2	2.855-04	1.48E-04	4.48E-05
5.6	2.75E-04	1.43E-04	5.51E-05	5.5	4.20E-04	2.18E-04	6.60E-05
10.0) 3.60E-04	1.87E-04	7.21E-05	10.0	5.80E-04	3.02E-04	9.125-05
18.0) 4.80E-04	2.50E-04	9.62E-05	18.0	8.30E-04	4.325-04	1.30E-04
31.6	6.65E-04	3.465-04	1.33E-04	31.6	1.10E-03	5.72E-04	1.73E-04
56.2	9.05E-04	4.71E-04	1.81E-04	56.2	1.46E-03	7.59E-04	2.30E-04
100.0) 1.20E-03	6.22E-04	2.39E-04	100.0	1.93E-03	1.00E-03	3.03E-04
177.8	1.59E-03	8.27E-04	3.19E-04	177.8	2.54E-03	1.32E-03	3.99E-04
316.2	2.18E-03	1.13E-03	4.36E-04	316.2	3.53E-03	1.83E-03	5.54E-04
562.3	3 2.99E-03	1.55E-03	5.98E-04	562.3	5.02E-03	2.615-03	7.88E-04
1000.0	4.23E-03	2.205-03	8.465-04	1000.0	7.45E-03	3.875-03	1.17E-03
1778.3	6.20E-03	3.22E-03	1.24E-03				
3162.3	9.80E-03	5.10E-03	1.965-03				
3600.0	1.095-02	5.68E-03	2.19E-03				
7200.0	1.05E-02	5.47E-03					
	TEXACO AC	-10 + 3%	UP 70		TEXACO AC	-10 + 3%	UP.70
15	ST TEMP = 60	, ZIGMA =	8.726 PSI	TE	ST TEMP = 60	, ZIGMA =	8.725 PSI
			• • • • •	-			••••••
1.0	8.00E-05	4.165-05	2.38E-06	1.0	0.0CE-05	4.152-05	2.385-06
1.8	9.50E-05	4.94E-05	2.83E-06	1.8	9.00E-05	4.58E-05	2.68E-06
5.4	1.10E-04	5./22-05	3.28E-06	3.2	1.152-04	5.982-05	3.43E-05
5.0	1.30E-04	6./6E-05	3.8/E-06	5.6	1.35E-04	7.022-05	4.025-06
10.0) 1.60E-04	8.32E-05	4.//E-06	10.0	1.652-04	8.585-05	4.922-06
18.0	2.00E-04	1.041-04	5.96E-06	18.0	2.105-04	1.091-04	6.26E-06
31.0	5 2.60E-04	1.352-04	/./SE-06	31.6	2.60E-04	1.351-04	7.75E-06
56.4	2 3.45E-04	1./92-04	1.03E-05	56.2	3.502-04	1.826-04	1.04E-05
100.0) 4./0E-04	2.44E-04	1.40E-05	100.0	4.75E-04	Z.4/E-04	1.42E-05
1//.0	3 /.30E-04	3.80E-04	2.18E-05	1/7.8	6.75E-04	3.51E-04	2.01E-05
316.2	1.04E-03	5.38E-04	3.08E-C5	316.2	9.45E-04	4.912-04	2.82E-05
562.3	3 1.42E-03	7.36E-04	4.22E-05	562.3	1.35E-03	7.022-04	4.02E-05
1000.0	1.90E-03	9.88E-04	5.66E-05	1000.0	1.80E-03	9.36E-04	5.36E-05
1778.3	2.56E-03	1.33E-03	7.63E-05	1778.3	2.40E-03	1.25E-03	7.15E-05
3162.3	3.59E-03	1.86E-03	1.07E-04	3162.3	3.255-03	1.69E-03	9.69E-05
3600.0	3.87E-03	2.01E-03	1.15E-04	3600.0	3.50E-03	1.82E-03	1.04E-04
7200.0	2.71E-03	1.41E-03		7200.0	2.402-03	1.255-03	

Table 8-24 (Continued)

TIME	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSILE
SEC.	HCRIZONTAL	STRAIN	CREEP	SEC.	HORIZONTAL	STRAIN	CREEP
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANCE
	IN		IN^2/L8		IN		IN^2/LB
	TEXACO AC	-10 + 3%	UP 70		TEXACO AC	-10 + 3%	JP 70
TE	ST TEMP = 77	, ZIGMA =	4.318 PSI	TE	ST TEMP = 77	, ZIGMA =	3.615 PS
1.0	1.50E-04	7.80E-05	9.035-06	1.0	2.005-04	1.04E-04	1.44E-0
1.8	1.65E-04	8.58E-05	9.94E-06	1.8	3.25E-04	1.69E-04	2.34E-0
3.2	1.80E-04	9.36E-05	1.08E-05	3.2	4.10E-04	2.13E-04	2.95E-0
5.6	2.00E-04	1.04E-04	1.20E-05	5.6	5.15E-04	2.68E-04	3.70E-0
10.0	2.50E-04	1.30E-04	1.51E-05	10.0	6.10E-04	3.175-04	4.395-0
18.0	3.15E-04	1.64E-04	1.90E-05	18.0	8.25E-04	4.29E-04	5.93E-0
31.5	4.5CE-04	2.345-04	2.71E-05	31.6	1.07E-03	5.57E-04	7.705-0
56.2	6.55E-04	3.41E-04	3.94E-05	56.2	1.40E-03	7.28E-04	1.01E-0
100.0	9.00E-04	4.68E-04	5.42E-05	100.0	1.90E-03	9.88E-04	1.37E-0
177.8	1.14E-03	5.93E-04	6.87E-05	:77.8	2.58E-03	1.34E-03	1.85E-0
316.2	1.64E-03	8.53E-04	9.8BE-05	316.2	3.53E-03	1.83E-03	2.545-0
562.3	2.64E-03	1.37E-03	1.595-04	562.3	4.95E-03	2.57E-03	3.56E-0
1000.0	4.435-03	2.305-03	2.66E-04	1000.0	7.39E-03	3.84E-03	5.315-0
1778.3	7.85E-03	4.08E-03	4.73E-04	1778.3	1.06E-02	5.51E-03	7.63E-0
3162.3	1.485-02	7.705-03	8.91E-04	3162.3	1.67E-02	8.695-03	1.205-0
3600.0	1.72E-02	8.95E-03	1.04E-03	3600.0	1.88E-02	9.76E-03	1.35E-0
7200.0	1.56E-02	8.12E-03		7200.0	1.71E-02	8.90E-03	
	TEXACO AC	-10 + 3%	UP 70		TEXACO A	0-10 + 3%	UP 70
TE	ST TEMP = 90	, ZIGMA =	1.322 PSI	TE	ST TEMP = 90	, ZIGMA =	0.886 PS
1.0	1.10E-04	5.725-05	2.16E-05	1.0	5.505-05	2.86E-05	1.61E-0
1.8	1.55E-04	8.06E-05	3.05E-05	1.8	7.50E-05	3.90E-05	2.20E-0
3.2	2.15E-04	1.12E-04	4.23E-05	3.2	1.05E-04	5.46E-05	3.08E-0
5.6	3.00E-04	1.56E-04	5.905-05	- 5.6	1.40E-04	7.28E-05	4.11E-0
10.0	4.25E-04	2.215-04	8.36E-05	10.0	1.95E-04	1.01E-04	5.72E-0
18.0	6.20E-04	3.22E-04	1.22E-04	18.0	2.90E-04	1.51E-04	8.51E-0
31.6	8.35E-04	4.345-04	1.64E-04	31.6	4.205-04	2.18E-04	1.23E-0
56.2	1.16E-03	6.01E-04	2.27E-04	56.2	5.75E-04	2.995-04	1.695-0
100.0	1.60E-03	8.32E-04	3.15E-04	100.0	8.652-04	4.50E-04	2.545-0
177.8	2.225-03	1.15E-03	4.36E-04	177.8	1.34E-03	6.94E-04	3.925-0
316.2	2 3.10E-03	1.61E-03	6.10E-04	316.2	2.075-03	1.07E-03	6.06E-0
562.3	4.45E-03	2.31E-03	8.75E-C4	562.3	3.03E-03	1.57E-03	8.88E-0
1000.0	6.595-03	3.425-03	1.305-03	1000.0	4.775-03	2.495-03	1.405-0
1778.3	3 1.10E-02	5.725-03	2.16E-03	1778.3	7.84E-03	4.07E-03	2.30E-0
				3162.3	1.275-02	5.585-03	3.715-0
				3600.0	1.42E-02	7.405-03	4.185-0
				7200.0	1.375-02	7.145-03	
Table B-24 (Continued)

TIME	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSILE
SEC.	HORIZONTAL	STRAIN	CREEP	SEC.	HORIZONTAL	STRAIN	CREEP
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANC
	IN		IN ² /LB		IN		IN 2/LE
	TEXACO AC	-10 + 32	STYRELF		TEXACO AC	-10 + 33	STYRELE
TE	ST TEMP = 60	, ZIGMA =	7.652 PSI	TE	ST TEMP = 60	, ZIGMA =	5.613 PS
1.0	2.75E-04	1.43E-04	9.35E-06	1.0	2.10E-04	1.09E-04	9.73E-0
1.8	4.55E-04	2.37E-04	1.55E-05	1.8	3.60E-04	1.87E-04	1.67E-0
3.2	5.60E-04	2.915-04	1.90E-05	3.2	4.50E-04	2.34E-04	2.08E-0
5.6	7.50E-04	3.90E-04	2.55E-05	5.6	5.50E-04	2.86E-04	2.55E-0
10.0	9.655-04	5.025-04	3.28E-05	10.0	6.702-04	3.48E-04	3.10E-0
18.0	1.28E-03	6.66E-04	4.35E-05	18.0	8.40E-04	4.37E-04	3.89E-(
31.6	1.69E-03	8.79E-04	5.74E-05	31.6	1.04E-03	5.38E-04	4.805-0
56.2	2.21E-03	1.15E-03	7.49E-05	56.2	1.38E-03	7.18E-04	5.395-0
100.0	2.93E-03	1.52E-03	9.94 <u>E-05</u>	100.0	1.785-03	9.26E-04	8.25E-0
177.8	3.68E-03	1.91E-03	1.25E-04	177.8	2.20E-03	1.14E-03	1.02E-0
316.2	4.83E-03	2.51E-03	1.64E-04	316.2	2.795-03	1.45E-03	1.295-(
562.3	6.29E-03	3.275-03	2.14E-04	562.3	3.55E-03	1.85E-03	1.64E-
1000.0	8.555-03	4.455-03	2.915-04	1000.0	4.602-03	2.395-03	2.13E-
1778.3	1.19E-02	6.195-03	4.04E-04	1778.3	6.04E-03	3.14E-03	2.805-
3152.3	1.745-02	9.055-03	5.915-04	3162.3	8.42E-C3	4.385-03	3.905-
3600.0	1.915-02	9.915-03	- 6.4 75-04	3600.0	9.005-03	4.685-03	4.175-3
7200.0	1.585-02	8.205-03		7200.0	7.24E-03	3.775-03	
	TEXACO AC	-10 + 3%	STYRELF		TEXACO AC	-10 + 3 2	STYRELE
TE	ST TEMP = 77	, ZIGMA =	3.515 PSI	TE	ST TEMP = 77	, ZIGMA =	1.840 PS
1.0	5.255-04	2.735-04	3.895-05	- 1.0	1.605-04	8.325-05	2.265-
1.8	7.75E-04	4.03E-04	5.73E-05	1.8	2.10E-04	1.09E-04	2.97E-
3.2	1.03E-03	5.33E-04	7.58E-05	3.2	3.00E-04	1.56E-04	4.24E-
5.6	1.38E-03	7.15E-04	1.02E-04	5.5	4.0CE-04	2.08E-04	5.65E-
10.0	1.855-03	9.62E-04	1.37E-04	10.0	5.40E-04	2.815-04	7.635-
18.0	2.40E-03	1.25E-03	1.785-04	18.0	7.605-04	3.95E-04	1.07E-
31.6	3.16E-03	1.64E-03	2.34E-04	31.6	1.07E-C3	5.57E-04	1.51E-
56.2	4.16E-03	2.16E-03	3.07E-04	56.2	1.43E-03	7.44E-04	2.02E-
100.0	5.53E-03	2.88E-03	4.095-04	100.0	1.94E-03	1.01E-03	2.74E-
177.8	7.25E-03	3.775-03	5.36E-04	177.8	2.595-03	1.35E-03	3.66E-
316.2	9.80E-03	5.10E-03	7.25E-04	316.2	3.40E-03	1.775-03	4.815-
562.3	1.29E-02	6.68E-C3	9.51E-04	562.3	4.74E-03	2.47E-03	6.705-
				1000.0	6.65E-03	3.46E-03	9.405-
				1778.3	9.68E-03	5.03E-03	1.37E-
				3162.3	1.47E-02	7.62E-03	2.07E-
				3600.0	1.62E-02	8.43E-03	2.29E-4
				7200.0	+.505-02	7.805-03	

.

.

Table B-24 (Continued)

TIME	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSILE
SEC.	HORIZONTAL	STRAIN	CREEP	SEC.	HORIZONTAL	STRAIN	CREEP
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANCE
	IN		IN^2/LB		IN		IN^2/LB
	TEXACO AC	C-10 + 3%	STYRELF		TEXACO AC	2-10 + 3%	STYRELF
TE	ST TEMP = 90	, ZIGMA =	1.148 PSI	TE	EST TEMP = 90	, ZIGMA =	1.250 PSI
1.0	2.00E-04	1.04F-04	4.53E-05	1.0	0. 2.50F-04	1.305-04	5.20F-05
1.8	3.00E-04	1.56E-04	6.80E-05	1.1	B 3.50E-04	1.825-04	7.285-05
3.2	4.00E-04	2.085-04	9.06E-05	3.	2 4.50E-04	2.345-04	9.365-05
5.5	4.60E-04	2.395-04	1.04E-04	5.	6 5.50E-04	2.865-04	1.14E-04
10.0	6.602-04	3.432-04	1.505-04	10.0	0 7.505-04	3.902-04	1.565-04
18.0	9.00E-04	4.68E-04	2.04E-04	18.0	0 1.05E-03	5.46E-04	2.185-04
31.6	1.24E-03	6.42E-04	2.805-04	31.0	6 1.45E-03	7.545-04	3.02E-04
56.2	1.66E-03	8.63E-04	3.76E-04	56.	2 1.95E-03	1.01E-03	4.06E-04
100.0	2.31E-03	1.20E-03	5.232-04	100.0	0 2.705-03	1.40E-03	5.62E-04
:77.8	3.30E-03	1.72E-03	7.48E-04	177.1	8 3.65E-03	1.90E-03	7.59E-04
316.2	4.90E-03	2.55E-03	1.11E-03	315.	2 5.50E-03	2.86E-03	1.145-03
562.3	7.26E-03	3.782-03	1.64E-03	562.3	3 8.25E-03	4.295-03	1.72E-03
1000.0	1.15E-02	5.99E-03	2.61E-03	1000.	0 1.27E-02	6.585-03	2.635-03

			Dry Cond	lition	Wet Co	ndition	
MIXTURE .	TEST TEMP. F	•	AIR VOIDS	TENSILE STRENGTH PSI	AIR VOIDS	TENSILE STRENGTH PSI	TSR-
Control: Texaco AC-20	77		6.8 6.1 6.9	69 74 68	6.5 7.3 .7.3	44 37 37	
1	¢	AVG.	6.6	70	7.0	39	0.56
Texaco AC-10 + 3% UP 70	77		7.1 7.1 7.0	81 85 87	7.4 6.8 6.9	50 65 62	
1	ŕ	AVG.	7.1	84	7.0	59	0.71
Texaco AC-10 + 3% Styrel	f 77		6.4 6.3 6.0	62 65 65	6.1 6.2 6.6	55 57 56	
	ł	AVG.	6.2	64	6.3	56	0.88

Table B-25 Moisture Sensitivity Test Results for Laboratory Mixed/Laboratory Compacted Mixtures Using Modified Compaction.

Table B-26Moisture Sensitivity Test Results for Plant Mixed/Laboratory CompactedMixtures Using Modified Compaction.

		Dry Con	dition	Wet Co	ndition	
MIXTURE	TEST TEMP. F	AIR VOIDS	TENSILE STRENGTH PSI	AIR VOIDS	TENSILE STRENGTH PSI	TSR
Control: Texaco AC-20	77	7.6 7.3 6.4	107 108 101	6.5 7.7 7.5	86 79 90	
	AVG	. 7.1	106	7.2	85	0.81
Texaco AC-10 + 3% UP 70	77	6.8 7.1 7.1	102 107 103	6.9 6.8 6.7	86 86 96	
1	AVG	. 7.0	104	6.8	89	0.86
Texaco AC-10 + 3% Styrel	f 77	7.8 6.1 6.5	68 69 80	6.6 6.7 6.8	74 75 71	
	AVG	. 6.8	73	6.7	73	1.00

Combined Gradation	SDHPT Specification	AC-20 AC=6.91	Latex AC=6.72	Styrelf AC=6.88
0.0	0	0	0	0
0.0	0-15	0	0	0
38.9	21-53	38.7	38.8	37.5
20.4	11-32	19.4	20.5	19.8
59.3	54-74	58.1	59.3	57.3
9.4	6-32	9.7	9.4	9.6
15.8	4-27	19.4	15.8	17.8
12.2	3-27	9.7	12.2	12.1
3.3	1-8	3.1	3.3	3.2
100.0		100.0	100.0	100.0

Table B-27 AGGREGATE GRADATION OF EXTRACTED CORES (DISTRICT 11)

<u>Source</u>

Red Light wt. Type D. Coarse Sandstone Screenings Fine Sandstone Screenings Field Sand

٠

TXI-Clodine Pit Lafarge, Oakwood Pit Lafarge, Oakwood Pit Champion Pit District 11 Field Test Sections US59 — Polk County, Beginning South Of Livingston, Texas At US190 Date Placed: April 1989

N

Fig B-1 Schematic Illustration of Field Test Sections.

Fig B-2 Aggregate gradation Chart

Fig B-10 Softening Point for Unmodified and Modified Texaco Binders

Fig B-14 Asphalt Stiffness vs. Test Temperature for Texaco Binders.

Fig B-15 Asphalt Modulus at 39 F for Unmodified and Modified Texaco Binders.

.

-

Different Test Temperatures.

at Different Test Temperatures.

Fig B-31 Marshall Stability for Laboratory Mixtures Using Standard Compaction

Fig B-32 Marshall Flow for Laboratory Mixtures Using Standard Compaction

Fig B-33 Hveem Stability for Laboratory Mixtures Using Standard Compaction

Fig B-38 Marshall Stability for Laboratory Mixtures Using Modified Compaction

Fig B-39 Marshall Flow for Laboratory Mixtures Using Modified Compaction

Fig B-40 Hveem Stability for Laboratory Mixtures Using Modified Compaction

Mixtures Using Modified Compaction.

Fig B-45 Alpha Values for Laboratory Mixtures Using Modified Compaction

Fig B-46 Gnu Values for Laboratory Mixtures Using Modified Compaction

.

.

.

.

.

.

APPENDIX C

.

PRESENTATION OF TEST RESULTS - DISTRICT 25

•

APPENDIX C

PRESENTATION OF TEST RESULTS - DISTRICT 25

The objectives of Appendix C are twofold: (1) to describe the site-specific field operations of the test sections along with a description of the materials, polymers, and construction techniques used for this field project, and (2) to present the laboratory test results of the unmodified and modified binders and laboratory mixed and plant mixed mixtures for the experimental field study in District 25 of the Texas Department of Transportation (TxDOT).

EXPERIMENTAL FIELD PROGRAM

Two test sections, control and latex UP 70, were constructed on US 287 in Donley County, Texas in September 1988. Three test Styrelf-13 and Kraton D1101 sections, at two levels of concentration, were placed in April 1989 followed by the test sections constructed in September 1988. The test sections are shown schematically in Figure C-1 and involved pavement overlay of one lane of the highway. Each test section was approximately one to one and a half inches thick. Field construction was conducted by District 25 of the TxDOT and assisted by the Center for Transportation Research, the University of Texas at Austin. The decision to include this field project in this study was made after the first two test sections (control and UP 70) had been placed. Therefore, loose samples of plant mixtures and samples of binders were not obtained from the control and UP 70 test sections.

MATERIALS

<u>ASPHALT CEMENT.</u> An AC-10 asphalt cement supplied by American Petrofina Co., Big Spring, Texas, and an AC-20 supplied by Shamrock Co., Sunray, Texas, were used for polymer modified and control mixtures, respectively.

AGGREGATE. Two aggregates, a crushed gravel and a sandstone

screening, were combined to produce project gradation. Gradations of individual aggregates, the project gradation, percentage of each aggregate, and the gradation specifications are given in Table C-1. The project gradation is plotted on a 0.45 power graph in Figure C-2.

<u>POLYMER.</u> Three polymers included in this field project consisted of a Styrene Butadiene Rubber (SBR), and a Styrene block copolymer (SBS). Sources of these polymers and designations used for this study are shown below:

SOURCE	<u>TYPE</u>	DESIGNATION
Goodyear	SBR	UP 70
Elf	SBS	Styrelf-13
Shell	SBS	Kraton D1101

Blending of the asphalts and the polymers was performed by the polymer manufacturers or processors in the refinery or in a distributor truck. No polymer was introduced into the asphalt in-line injection system of the plant.

<u>Styrene Butadiene Rubber.</u> One type of Styrene Butadiene Rubber, Ultra Pave 70, was included in this field project. The latex UP 70 was supplied by Textile Rubber and Chemical Co. The total amount of the UP 70 used in the Fina AC-10 was 3 percent.

Styrene Butadiene Styrene. The Styrelf-13 utilized was a triblock copolymer of Styrene and Butadiene. The Styrelf modified binder was blended by Elf Asphalt Aquitaine Co, Lubbock, Texas, for Fina AC-10 at 3% Styrelf-13 by the weight of total binder. The Kraton D1101 which consisted of a triblock copolymer of Styrene and Butadiene was obtained from Shell Development Co. Blends of Fina AC-10 were used at 3% and 6% kraton D1101 by weight of total binder.

FIELD OPERATION

Approximately 3000 tons of each mix were produced using a drum mix plant. Identical aggregates were utilized throughout the experiment. The Ultra Pave 70 (3 percent), the Styrelf-13 (3 percent), and the Kraton D1101 (3 percent and 6 percent) were preblended with Fina AC-10. The Shamrock AC-20 was used for the control test section.

Mixing temperature for the Styrelf-13 and Kraton D1101 (3 percent) mixtures was about 310°F and was increased to about 350°F for mixtures containing 6 percent Kraton D1101. The initial breakdown compaction occurred between 250°F and 270°F for all mixtures. Compaction of each test section was achieved using a vibratory roller, a pneumatic roller and a steel wheel roller.

Twelve field cores were obtained from the test sections which were constructed in April 1989 soon after the construction. These cores were approximately 4 inches in diameter and one to one and a half inches in thickness. The field cores were transported to the Center for Transportation Research immediately after sampling.

PRESENTATION OF TEST RESULTS

Summaries of test results for the unmodified and modified binders are presented in Tables C-6 through C-8 and are plotted in Figures C-3 through C-32.

Summaries of test results for the unmodified and the modified mixtures and the cores are presented in Tables C-9 through C-26 and are plotted in Figures C-32 through C-52.
	Crushed Gr	avel	Screen	nings		
	Sieve Analysis	51%	Sieve Analysis	49%	Combined Gradation	SDHPT Specification
 Plus 1/2 in.	0.0	0.0	0.0	0.0	0.0	0
1/2 to 3/8 in	12.8	6.5	0.0	0.0	6.5	0-15
3/8 to No. 4	59.2	30.2	0.0	0.0	30.2	21-53
No. 4 to No. 10	25.6	13.1	17.0	8.3	21.4	11-32
Plus No. 10					58.1	54-74
No. 10 to No.40	1.2	0.6	49.1	24.1	24.7	6-32
No. 40 to No. 80	0.3	0.2	16.4	8.0	8.2	4-27
No. 80 to No. 200	0.3	0.2	11.1	5.4	5.6	3-27
Minus No. 200	0.6	0.3	6.4	3.1	3.4	1-8
Total	100.0	51.0	100.0	49.0	100.0	

Table C-1 AGGREGATE GRADATION (DISTRICT 25)

		Penetration				Visco	sity		Softening Force Ductility				Schweyer Rheology			
Bir	nder	Before	RTFOT	After RTFOT	Before	RTFOT	After	RTFOT	Point Before	Before	After	•••	Be	fore	RTFOT	
		•••••			.				RTFOT	RTFOT	RTFOT				•••••	
Asphalt	Polymer	39.2 F	77 F	77 F	140 F	275 F	140 F	275 F				39	F 60	F 77	F 90	F 140 F
										39. 2 F	39.2 F					
Shamroci AC-20	k	2	2	2	2	2	2	2	2	2	2	1	1	1	1	1
Fina AC-10	Styrelf13	2	2	2	2	2	2	2	2	2	2	1	1	1	1	1
Fina AC-10	3% kraton D1101	2	2	2	2	2	2	2	2	2	2	1	1	1	1	1
Fina AC-10	6% kraton D1101	2	2	2	2	2	2	2	2	2	2	1	1	1	1	1

TABLE C-2 Experimental Testing Program for Unmodified and Polymer-Modified Asphalt Binders Number of Test Repetitions (District 25)

						Modif	ied	Comp	actio	n					Stand	ard Co	pactio	N
8i	nder	Resll & Ind	ient irect	modulus Tensile	Hveen 140F	Marshall 140F		стее е	p	Str	Fatiqu ess le	e vels	Moisture Resistance	Resili & Indi	ient mo irect T	dulus ensile	Hveen 140F	Marshall 140F
Asphalt	Polymer	S 39F	treng 77F	ith 104F			60F	77F	90F	15%	25%	50%		39F	Streng 77F	th 104F		
Shanroc AC-20	k	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3
Fina AC-10	Goodyear UP 70	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3
Fina AC-10	Styrelf13	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3
Fina AC-10	3% kraton D1101	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3
Fina AC-10	6% kraton D1101	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3

TABLE C-3 Experimental Testing Program for Laboratory Compacted-Laboratory Mixed Mixtures District 25

						Hodif	ied	Comp	actio	n (Stand	lard Co	pactio	n
Bi	nder	Resil:	ient irect	nodulus Tensile	Hveen 140F	Marshall 140F		стее Стее	р Р	Str	Fatiqu ess le	e vels	Noisture Resistance	Resili & Indi	ient mo irect 1	dulus ensile	Hveen 140F	Marshall 140F
Asphalt	Polymer	51 39F	treng 77F	th 104F			60F	77F	90F	15%	25%	50%		39F	Streng 77F	ith 104F		
Shamroc AC-20	k	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	. •
Fina AC-10	Goodyear UP 70	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-
Fina AC-10	Styrelf13	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3
Fina AC-10	3% kraton D1101	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3
Fina AC-10	6% kraton D1101	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3

TABLE C-4 Experimental Testing Program for Laboratory Compacted-Plant Mixed Mixtures District 25

* Plant mixed mixtures were not obtained.

.

· · ·

Binder		Resi & Ind	lient : irect	modulus Tensile	Marshall 140F
Asphalt	Polymer		Streng	th	
		39F	77F	104F	
Shamrock AC-20	-	3	3	3	3
Fina AC-10	Goodyear UP 70	3	3	3	3
Fina AC-10	Styrelf13	3	3	3	3
Fina AC-10	3% kraton D1101	3	3	3	3
Fina AC-10	6% kraton D1101	3	3	3	3

TABLE C-5 Experimental Testing Program for Field Cores. District 25

-

***************************************		***********	***********	
		Fina	Fina	Fina
Parameter	Shamrock	AC-10	AC-10	AC-10
	AC-20	Ł	Ł	Ł
		3% Styrelf	3% Kraton	6% Kraton
Penetration a 39.2 F (25 C)	9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			16
100g, 5 Sec.	9	14	14	15
Ave	9. 9	- 14	13	16
Penetration @ 77 F (4 C)	67	91	83	96
100g, 5 Sec.	66	89	81	99
Ave	g. <u>67</u>	90	82	98
Viscosity Ə 140 F (60 C)	2004	2760	8171	-
Poises	1992	2780	8083	-
Ave	g. 1998	2770	8127	
Viscosity @ 275 F (135 C)	628	775	589	1020
Centistokes	620	787	579	1005
Av	g. <u>624</u>	781	584	1013
Softening Point, F	126	128	140	147
	127	130	142	148
Ave	g. 127	129	141	148
Maximum True Stress, psi	124	293	467	625
	116	284	481	566
Av	g. 120	289	474	596
Maximum True Strain, in/in	2.42	2.94	3.11	2.81
	2.03	2.94	3.14	2.75
Avy	g. 2.23	2.94	3.13	2.78
True Area , psi	143	340	469	370
	128	324	476	325
Av	g. 136	332	473	347

Table C-6 Unmodified and Modified Asphalt Properties before RTFOT.

	<u></u>	***======	***********		22222222222
			Fina	Fina	Fina
Parameter		Shamrock	AC-10	AC-10	AC-10
		AC-20	£	Ł	Ł
			3% Styrelf	3% Kraton	6% Kraton
Asphalt Modulus, psi			219	253	138
vohiore usantes/ boy		464	201	246	93
	Avg.	472	210	250	115
Asphalt-Polymer Modulus,	psi	-	2 92	438	8 40
		-	267	467	799
	Avg.	-	279	452	819
Shear Suscentibility					
a 39.2 F		4.903E-01	1.235E+00	7.989E-01	7.768E-01
a 60 F		6.961E-01	1.215E+00	8.764E-01	8.283E-01
a 77 F		6.637E-01	1.076E+00	8.892E-01	7.717E-01
a 90 F		7.609E-01	1.089E+00	8.861E-01	8.088E-01
a 140 F		8.940E-01	1.018E+00	8.852E-01	7.717E-01
Apparent Viscosity,					
Pascal-Second					
Shear Rate = 1 1/sec					
a 39.2 F		1.340E+07	1.236E+08	2.005E+08	1.818E+08
a 60 F		1.976E+06	1.392E+07	6.463E+06	5.337E+06
a 77 F		2.405E+05	5.321E+05	5.441E+05	4.138E+05
a 90 F		5.899E+04	7.120E+04	9.363E+04	9.928E+04
a 140 F		2.357E+02	2.922E+02	8.068E+02	1.155E+03
Constant Power Viscosity					
Pascal-Second	-				
a 39.2 f		7.153E+07	5.839E+07	4.692E+08	4.667E+08
a 60 F	:	3.372E+06	8.621E+06	8.506E+06	7.754E+06
a 77 F	:	2.871E+05	5.003E+05	6.009E+05	4.969E+05
a 90 F	:	5.491E+04	7.223E+04	9.326E+04	9.921E+04
a 140 F	:	1.680E+02	3.077E+02	6.016E+02	6.500E+02

Table C-6 (Continued)

Parameter	Shamrock AC-20	Fina AC-10 & 3% Styrelf	Fina AC-10 & 3% Kraton	Fina AC-10 & 6% Kraton
Penetration Index PI(Pen/Pen)	-0.25	0.26	0.33	0.44
Penetration Index PI(Pen/SP)	0.21	1.35	2.55	3.92
Penetration Viscosity Number	-0.03	0.73	0.12	1.25
Stiffness Modulus @ 39.2 F, ps	i			
5 Sec. Loading	1160	464	435	232
20 Sec. Loading	508	218	218	131
Stiffness Modulus @ 0.1 Sec				
39.2F	7540	2900	2320	943
77F	334	203	232	160
104F	26	25	41	32
Stiffness/Temperature Slope	-0.068	-0.057	-0.049	-0.041
Apparent Viscosity/Temp. Slop	-0.086	-0.103	-0.095	-0.091
Constant Power Visco./Temp. S	-0.100	-0.097	-0.103	-0.102
Penetration Ratio, 77 F	0.68	0.63	0.57	0.69
Viscosity Ratio	2.60	2.70	1.69	-
Kinematic Viscosity Ratio	1.43	1.29	1.26	1.04
Maximum True Stress Ratio	1.70	1.58	0.89	0.70
Maximum True Strain Ratio	0.66	0.86	0.84	0.92
True Area Ratio	1.20	1.46	1.08	1.05
Asphalt Modulus Ratio	0.91	1.66	1.56	1.77
Asphalt-Polymer Modulus Ratio	-	1.43	0.81	0.51

Table C-6 (Continued)

••

************************************			22222222222222	
Parameter	Shamrock AC-20	Fina AC-10 & 2% Styrolf	Fina AC-10 &	Fina AC-10 &
		3% SLYTEIT		04 Ridloll
Penetration @ 77 F (4 C) 100g, 5 Sec.	44 46	56 57	47 47	68 67
A	vg. 45	56	47	67
Viscosity @ 140 F (60 C) Poises	5210 5194	7465 7496	13788 13709	-
A	vg. 5202	7481	13749	
Viscosity 0 275 F (135 C) Centistokes	892 896	1017 1001	746 725	1052 1048
A	vg. 894	1009	736	1050
Maximum True Stress, psi	203 205	460 451	426 422	412 419
A	vg. 204	456	424	416
Maximum True Strain, in/in	1.63 1.30	2.54 2.54	2.66 2.58	2.56 2.56
A	vg. 1.47	2.54	2.62	2.56
True Area , psi	167 158	512 457	527 495	366 361
A	vg. 163	485	511	364
Asphalt Modulus, psi	433 422	356 341	388 392	209 198
A	vg. 428	349	390	204
Asphalt-Polymer Modulus, p	si - -	407 393	375 356	421 413
A	vg. –	400	365	417

•

Table C-7 Unmodified and Modified Asphalt Properties after RTFOT.

	Shear	Shear	Apparent	Shear	Shear	Apparent
Test	Stress	Rate	Viscosoty	Stress	Rate	Viscosoty
Temp.	Pascal	1/Sec	Pascal-Sec	Pascal	1/Sec	Pascal-Sec
		Shamrock AC	:-20	Fina AC	C-10 + 3% S	tyrelf
T = 140 F	7 175+04	6 09F+02	1 18F+02	1 77E+05	5 39F+02	3 28F+02
1 - 140 1	4 78F+04	3 74F+02	1 28F+02	1 13E+05	3 49F+02	3 23E+02
	2 235+04	1 60F+02	1 405+02	6 19F+04	1 92E+02	3 22F+02
	1 45F+04	1 00E+02	1 44E+02	2 88E+04	9 08F+01	3 17E+02
	1 005+04	6 72E+01	1 495+02	1 43E+04	4 56E+01	3 13E+02
	6 16E+03	3 94E+01	1 575+02	1.452.04	4.300.001	0.100.02
	4 08E+03	2 38E+01	1 715+02			
	4.002703	2.301+01	1./12+02			
T = 90 F	6.13E+05	2.16E+01	2.84E+04	8.99E+05	9.76E+00	9.21E+04
	3.67E+05	1.12E+01	3.27E+04	5.73E+05	6.82E+00	8.40E+04
	2.50E+05	6.83E+00	3.66E+04	4.01E+05	5.10E+00	7.86E+04
	1.50E+05	3.25E+00	4.61E+04	2.72E+05	3.51E+00	7.75E+04
	7.13E+04	1.27E+00	5.635+04	1.58E+05	2.10E+00	7.50E+04
	3.71E+04	5.55E-01	6.58E+04	6.81E+04	9.31E-01	7.31E+04
				3.73E+04	5.50E-01	6.77E+04
T = 77 F	1.30E+06	1.16E+01	1.125+05	1.73E+06	2.99E+00	5.78E+05
	7.69E+05	6.47E+00	1.19E+05	1.08E+06	1.92E+00	5.64E+05
	4.27E+05	2.49E+00	1.71E+05	6.24E+05	1.14E+00	5.49E+05
	2.51E+05	1.05E+00	2.39E+05	4.38E+05	8.68E-01	5.05E+05
	1.60E+05	5.00E-01	3.20E+05	2.03E+05	4.04E-01	5.01E+05
	9.07E+04	2.32E-01	3.91E+05	1.02E+05	2.17E-01	4.72E+05
	5.44E+04	1.09E-01	5.01E+05	5.70E+04	1.25E-01	4.57E+05
T = 60 F	1 56E+06	7.36F-01	2.12E+06	2.52F+06	2.34E-01	1.08E+07
	1.25E+06	4.97E-01	2.51E+06	1.32E+06	1.48E-01	8.90E+06
	7.27E+05	2.40F-01	3.03E+06	8.00E+05	9.795-02	8.175+06
	3 54E+05	8.66E-02	4.08E+06	5 43E+05	7 15E-02	7 59E+06
	1 90E+05	3.34E-02	5.70E+06	2 64F+05	3 66E-02	7 22E+06
	1.12E+05	1.64E-02	6.81E+06	21042.00	0.002 02	,
T = 39 F	4.48E+06	9.12E-02	4.91E+07	4.22E+06	6.08E-02	6.94E+07
	3.44E+06	6.77E-02	5.08E+07	2.75E+06	4.46E-02	6.15E+07
	2.24E+06	3.00E-02	7.47E+07	2.12E+05	3.94E-02	5.38E+07
	1.42E+06	1.08E-02	1.32E+08	1.32E+06	2.75E-02	4.78E+07
	8.50E+05	3.24E-03	2.635+08	5.94E+05	1.33E-02	4.46E+07
	4.71E+05	1.09E-03	4.33E+08	3.05E+05	7.395-03	4.13E+07

Table C-B Constant Stress Rheometer Results for Unmodified and Modified Binders.

Table C-8 (C	Continued)	
--------------	------------	--

$T = 140 F$ $\frac{Fina AC-10 + 3% D1101}{125428 286.1959 438}$ $Fina AC-10 + 6% C-10 +$	Pascal-Sec
T = 140 F $252757 654.6625 386 1.11E+05 3.58E+02$ $125428 286.1959 438 5.99E+04 1.66E+02$ $58153 128.4989 453 3.42E+04 8.40E+01$ $38009 81.7783 465 1.77E+04 3.67E+01$ $22805 45.3805 503 8.55E+03 1.25E+01$ $11022 17.9958 613$ $T = 90 F$ $715175 9.6567 74060 7.36E+05 1.09E+01$ $464864 6.0527 76803 4.36E+05 6.29E+00$ $354012 4.4168 80151 2.79E+05 3.85E+00$	D1101
125428 286.1959 438 5.99E+04 1.66E+02 58153 128.4989 453 3.42E+04 8.40E+01 38009 81.7783 465 1.77E+04 3.67E+01 22805 45.3805 503 8.55E+03 1.25E+01 11022 17.9958 613 613 7.36E+05 1.09E+01 464864 6.0527 76803 4.36E+05 6.29E+00 3.85E+00 354012 4.4168 80151 2.79E+05 3.85E+00	3.11E+02
58153 128.4989 453 3.42E+04 8.40E+01 38009 81.7783 465 1.77E+04 3.67E+01 22805 45.3805 503 8.55E+03 1.25E+01 11022 17.9958 613 613 7.36E+05 1.09E+01 464864 6.0527 76803 4.36E+05 6.29E+00 354012 4.4168 80151 2.79E+05 3.85E+00	3.61E+02
38009 81.7783 465 1.77E+04 3.67E+01 22805 45.3805 503 8.55E+03 1.25E+01 11022 17.9958 613 613 1.09E+01 464864 6.0527 76803 4.36E+05 6.29E+00 354012 4.4168 80151 2.79E+05 3.85E+00	4.07E+02
22805 45.3805 503 8.55E+03 1.25E+01 11022 17.9958 613 613 1.25E+01 T = 90 F 715175 9.6567 74060 7.36E+05 1.09E+01 464864 6.0527 76803 4.36E+05 6.29E+00 354012 4.4168 80151 2.79E+05 3.85E+00	4.81E+02
11022 17.9958 613 T = 90 F 715175 9.6567 74060 7.36E+05 1.09E+01 464864 6.0527 76803 4.36E+05 6.29E+00 354012 4.4168 80151 2.79E+05 3.85E+00	6.83E+02
T = 90 F 715175 9.6567 74060 7.36E+05 1.09E+01 464864 6.0527 76803 4.36E+05 6.29E+00 354012 4.4168 80151 2.79E+05 3.85E+00	
464864 6.0527 76803 4.36E+05 6.29E+00 354012 4.4168 80151 2.79E+05 3.85E+00	6 75F+04
354012 4.4168 80151 2.79E+05 3.85E+00	6 93E+04
	7 23E+04
232432 2 8421 81781 1 43E+05 1 74E+00	8 21E+04
114428 1 3806 82881 6 28E+04 5 14E-01	1 22E+05
64366 0 6438 99980	11222.00
35759 0.3220 111064	
T = 77 F 761617 1.4764 515861 8.96E+05 2.37E+00	3.77E+05
391689 0.6949 563665 5.29E+05 1.38E+00	3.83E+05
304647 0.5236 581804 3.29E+05 8.19E-01	4.02E+05
174084 0.2660 654336 1.89E+05 4.08E-01	4.64E+05
108802 0.1631 667269 1.13E+05 1.99E-01	5.70E+05
59841 0.0856 699101 5.29E+04 6.01E-02	8.80E+05
T = 60 F 1257023 0.1514 8305253 1.67E+06 2.50E-01	6.66E+06
817065 0.0923 8855215 1.24E+06 1.68E-01	7.37E+06
488842 0.0568 8612855 8.19E+05 1.02E-01	8.025+06
237438 0.0225 10534952 5.28E+05 6.27E-02	8.42E+06
146653 0.0131 11157969 2.78E+05 2.81E-02	9.89E+06
T = 39 F 4888710 0.0096 509796267 3.75E+06 7.31E-03	5.13E+08
2190286 0.0034 641791231 2.37E+06 3.40E-03	6.95E+08
1244304 0.0018 676990317 1.26E+06 1.66E-03	7.61E+08
901718 0.0011 812140444 9.14E+05 1.07E-03	8.51E+08

-

MIXTURE		AIR VOIDS	HVEEM STABILITY	AIR VOIDS	MARSHALL V STABILITY Ibs	VALUES FLOW .01 in
Control: Shamrock AC-20		7.4 6.5 6.5	36 36 36	7.4 7.5 6.7	1089 1198 1249	17.0 16.0 16.0
	AVG.	6.8	36	7.2	1179	16.3
Fina AC-10 + 3% Styrelf		6.5 6.5 6.6	34 36 37	7.1 7.0 7.4	1528 1780 1624	20.0 21.0 20.0
	AVG.	6.5	36	7.2	1644	20.3
Fina AC-10 + 3% D1101		7.3 7.4 7.1	36 37 36	7.3 7.1 7.2	1630 1562 1745	20.0 20.0 20.0
	AVG.	7.3	36	7.2	1646	20.0
Fina AC-10 + 6% D1101		6.9 7.6 7.1	32 32 34	7.5 7.3 7.1	1519 1521 1347	25.0 22.0 21.0
	AVG.	7.2	33	7.3	1462	22.7

Table C-9 Marshall and Hveem Test Results for Laboratory Mixed/Laboratory Compacted Mixtures Using Modified Compaction

Table	C-10	Marshall	and	Hveem	Test	Results	for	Laboratory	Mixed/Laboratory	Compacted
		Mixtures	Using	i Stanc	lard	Compactio	חכ			

MIXTURE		AIR VOIDS	HVEEM STABILITY	AIR VOIDS	MARSHALL STABILITY 15s	VALUES FLOW .01 in
Control: Shamrock AC-20		3.0 2.7 3.3	43 41 44	3.2 2.3 3.1	2207 2514 2480	14.0 15.0 15.0
	AVG.	3.0	43	2.9	2400	14.7
Fina AC-10 + 3% Styrelf 		2.5 2.5 2.7	42 40 47	2.3 2.2 2.2	3297 3105 3145	17.0 18.0 17.0
 	AVG.	2.6	43	2.2	3182	17.3
Fina AC-10 + 3% D1101		3.0 2.4 2.9	46 40 44	2.6 3.0 2.5	3200 3014 3192	16.0 16.0 17.0
 	AVG.	2.8	43	2.7	3136	16.3
Fina AC-10 + 6% 01101		1.7 1.7 2.6	42 43 45	1.9 2.2 2.4	3518 3430 3590	18.0 19.0 19.0
 	AVG.	2.0	43	2.2	3513	18.7

MIXTURE ·		AIR VOIDS	HVEEM STABILITY	AIR VOIDS	MARSHALL STABILITY 1bs	VALUES FLOW .01 in
Fina AC-10 + 3% Styrelf		7.8 7.6 7.3	40 42 43	7.6 7.7 7.9	2054 1946 2021	21.0 21.0 21.0
	AVG.	7.6	42	7.7	2007	21.0
Fina AC-10 + 3% D1101	1	6.7 6.9 6.8	38 39 39	6.6 6.7 6.8	1723 2013 1856	22.0 24.0 24.0
	AVG.	6.8	39	6.7	1864	23.3
Fina AC-10 + 6% D1101		6.4 6.9 6.7	42 42 42	6.9 6.6 6.7	2218 2416 2272	20.0 20.0 19.5
	AVG.	6.7	42	6.7	2302	19.8

Table C-11 Marshall and Hveem Test Results for Plant Mixed/Laboratory Compacted Mixtures Using Modified Compaction.

Table C-12 Marshall and Hveem Test Results for Plant Mixed/Laboratory Compacted Mixtures Using Standard Compaction.

MIXTURE		AIR VOIDS	HVEEM STABILITY	AIR VOIDS	MARSHALL STABILITY lbs	VALUES FLOW .01 in
Fina AC-10 + 3% Styreif	 	3.7 4.0 4.1	46 43 45	3.7 3.9 4.1	3676 3484 3565	20.0 19.5 18.5
 	AVG.	3.9	45	3.9	3575	19.3
Fina AC-10 + 3% D1101	 	2.8 2.7 2.9	42 43 43	2.9 2.5 2.7	3182 3697 3487	17.5 19.5 20.0
	AVG.	2.8	43	2.7	3455	19.0
Fina AC-10 + 6% D1101	1 	3.5 3.4 3.2	44 47 44	3.7 3.7 3.6	3790 3507 3737	19.5 18.5 18.5
	AVG.	3.4	45	3.7	3678	18.8

I Type MIXTURE	TEST TEMP. F	•	AIR VOIDS	INDIRECT TENSILE STRENGTH PSI	STRAIN AT FAILURE	SECANT MODULUS KSI	RESILIENT MODULUS KSI	POISSON'S RATIO
Control: Shamrock AC-20	39		7.2 7.6 7.1	378 402 416	0.24 0.26 0.33	316 309 254	677 754 842	0.02 0.02 0.05
		AVG.	7.3	399	0.28	293	758	0.03
Fina AC-10 + 3% Styrelf	39		7.0 6.6 7.0	447 491 464	0.42 0.40 0.40	215 245 235	476 441 821	0.08 0.26 0.12
1		AVG.	6.9	467	0.40	231	579	0.15
Fina AC-10 + 3% D1101 	39		7.2 7.4 7.3	409 416 418	0.40 0.40 0.42	204 207 201	508 859 816	0.28 0.04 0.18
1		AVG.	7.3	414	0.41	204	728	0.17
Fina AC-10 + 6% D1101	39		7.3 7.2 6.5	298 291 268	1.04 1.01 1.04	57 57 51	628 625 465	0.16 0.18 0.29
1 		AVG.	7.0	286	1.03	55	573	0.21
Control: Shamrock AC-20	77		7.6 7.5 7.1	91 89 84	0.86	21.1 19.0	377 286 274	0.10 0.21 0.22
1		AVG.	7.4	88	0.87	20.1	313	0.18
Fina AC-10 + 3% Styrelf 	77		7.0 6.1 6.8	125 133 112	1.79 1.72 1.77	13.9 15.4 12.6	232 272 258	0.24 0.19 0.20
		AVG.	6.6	123	1.76	14.0	254	0.21
Fina AC-10 + 3% D1101	77		6.9 7.5 7.0	98 101 96	1.82 1.82 1.87	10.8 11.1 10.2	170 218 276	0.39 0.22 0.12
1		AVG.	7.1	98	1.84	10.7	221	0.24
Fina AC-10 + 6% D1101	77		7.0 7.1 7.0	80 72 87	3.38 3.40 3.35	4.8 4.2 5.2	95 -77 120	0.43 0.50 0.29
		AVG.	7.0	80	3.38	4.7	98	0.41

Table C-13 Indirect Tensile Test Results for Laboratory Mixed/Laboratory Compacted Mixtures Using Modified Compaction.

.

Tab	le	C-1:	3 (() o n	ti	nu	ed)
-----	----	------	------	-------	----	----	----	---

MIXTURE	TEST TEMP. F	•	AIR VOIDS 2	INDIRECT TENSILE STRENGTH PSI	STRÀIN AT FAILURE X	SECANT MODULUS KSI	RESILIENT MODULUS KSI	POISSON'S RATIO
Control: Shamrock AC-20 1 1	104		6.5 6.3 7.5	28 27 25	1.25 1.29 1.26	4.4 4.1 4.0	107 121 122	0.26 0.16 0.37
ł . ł		AVG.	6.8	27	1.27	4.2	117	0.26
Fina AC-10 + 3% Styrelf	104		6.5 6.7 6.9	43 45 39	2.32 2.26 2.27	3.7 4.0 3.4	57 66 59	0.58 0.50 0.54
		AVG.	6.7	42	2.28	3.7	60	0.54
Fina AC-10 + 3% D1101	104		7.2 7.1 7.4	31 33 30	2.41 2.47 2.58	2.6 2.6 2.3	45 53 56	0.59 0.51 0.44
1		AVG.	. 7.2	31	2.49	2.5	51	0.51
Fina AC-10 + 6% D1101			7.5 6.9 7.1	28 28 29	3.90 3.64 4.00	1.4 1.5 1.5	31 57 49	0.63 0.26 0.30
1		AVG.	. 7.2	28	3.85	1.5	46	0.40

MIXTURE	TEST TEMP. F		AIR VOIDS X	INDIRECT TENSILE STRENGTH PSI	STRAIN AT FAILURE	SECANT HODULUS KSI	RESILIENT MODULUS KSI	POISSON'S RATIO
Control: Shamrock AC-20	39		3.2 2.8 2.8	516 603 587	0.18 0.25 0.22	567 483 525	976 933 1292	0.20 0.20 0.09
		AVG.	2.9	569	0.22	525	1067	0.16
Fina AC-10 + 3% Styrelf	39		2.4 2.0 2.3	666 715 670	0.44 0.47 0.47	301 305 286	1093 974 1029	0.16 0.15 0.25
1		AVG.	2.2	684	0.46	297	1032	0.19
Fina AC-10 + 3% D1101	39		2.6 2.9 2.4	646 602 627	0.37 0.35 0.35	345 345 354	1182 775 843	0.08 0.11 0.31
		AVG.	2.6	625	0.36	348	933	0.17
Fina AC-10 + 6% D1101	39		1.5 1.7 1.9	521 519 496	0.92 0.96 0.90	113 108 109	692 642 655	0.28 0.24 0.25
i ł		AVG.	1.7	512	0.93	110	663	0.26
Cont <u>ro</u> l: Shamrock AC-20	77		3.0 3.3 3.0	122 120 122	0.92 0.82 0.88	26.5 27.5	321 355 281	0.18 0.22 0.48
		AVG.	3.1	121	0.87	27.1	319	0.30
Fina AC-10 + 3% Styrelf	77		2.2 2.2 1.9	175 177 177	1.59 1.63 1.72	22.0 21.7 20.6	301 303 283	0.34 0.31 0.36
		AVG.	2.1	176	1.64	21.4	296	0.33
Fina AC-10 + 3% D1101	77		3.1 2.8 3.1	167 171 166	1.25 1.17 1.32	26.7 29.1 25.2	293 322 332	0.30 0.30 0.32
	-	AVG.	3.0	168	1.24	27.0	316	0.30
Fina AC-10 + 6% D1101 	77		2.0 1.9 1.9	132 140 123	2.44 2.34 2.44	10.8 12.0 10.1	185 160 163	0.24 0.40 0.32
l. l 		AVG.	1.9	132	2.41	10.9	169	0.32

Table C-14 Indirect Tensile Test Results for Laboratory Mixed/Laboratory Compacted Mixtures Using Standard Compaction.

Table C-14 (Continued)

.

. . .

-

MIXTURE	TEST TEMP. F		AIR VOIDS	INDIRECT TENSILE STRENGTH PSI	STRAIN AT FAILURE	SECANT MODULUS KSI	RESILIENT MODULUS KSI	POISSON'S RATIO
Control: Shamrock AC-20	104		2.4 3.0 2.8	38 37 39	1.25 1.24 1.26	6.1 6.0 6.1	103 99 102	0.48 0.44 0.39
Fina AC-10 + 3% Styrelf	104	AV6.	2.7	38 60 62	2.05	6.1 5.9 5.7	101 90 88	0.44 0.41 0.52
		AVG.	2.8	<u>61</u> 61	2.08	5.9	62 	0.67
Fina AC-10 + 3% D1101	104		3.1 2.7 2.9	56 59 61	2.08 1.87 1.94	5.3 6.3 6.2	61 90 62	0.64 0.45 0.72
Fina AC-10 + 6% D1101		AVG.	2.9 2.3 2.2 1.8	58 50 50 53	1.96 3.74 3.41 3.20	5.9 2.7 2.9 3.3	71 68 67 52	0.60 0.38 0.47 0.52
		AVG.	2.1	51	3.45	3.0	62	0.46

.

MIXTURE	TEST TEMP. F		AIR VOIDS	INDIRECT TENSILE STRENGTH PSI	STRAIN AT FAILURE	SECANT MODULUS KSI	RESTLIENT MODULUS KSI	POISSON'S RATIO
Fina AC-10 + 3% Styrelf	39		7.7 7.7 7.6	434 467 456	0.37 0.43 0.41	232 219 224	584 473 459	-
		AVG	. 7.7	452	0.40	- 225	505	-
Fina AC-10 + 3% D1101	39		6.7 6.7 6.7	426 403 411	0.42 0.47 0.47	202 172 175	915 622 654	-
ĺ		AVG	. 6.7	413	0.45	183	730	
Fina AC-10 + 6% D1101	39		6.7 6.8 6.8	404 386 387	0.77 0.78 0.76	105 99 101	638 471 621	-
		AVG	. 6.8	393	0.77	102	577	
Fina AC-10 + 3% Styrelf	77		7.7 7.6 7.7	141 124 140	1.23 1.22 1.16	22.9 20.2 24.0	219 257 313	-
		AVG	. 7.7	135	1.20	22.4	263	
Fina AC-10 + 3% D1101	77		7.0 7.1 6.8	121 118 115	1.73 1.60 1.83	14.0 14.7 12.6	291 199 223	-
		AVG	. 7.0	118	1.72	13.7	238	
Fina AC-10 + 63 D1101	77		6.5 6.8 6.8	116 121 111	1.79 1.97 2.08	12.9 12.3 10.6	149 148 202	-
		AV6	. 6.7	116	1.95	11.9	166	
Fina AC-10 + 3% Styrelf	104		7.7 7.4 7.5	45 46 49	1.69 1.68 1.77	5.3 5.5 5.5	101 139 131	0.26 0.13 0.23
1		AVG	. 7.5	47	1.71	5.5	124	0.21
Fina AC-10 + 3% D1101	104		7.0 6.5 6.9	38 40 37	2.09 2.17 2.31	3.7 3.7 3.2	83 72 117	0.28 0.49 0.25
		AVG	. 6.8	39	2.19	3.5	91	0.34
Fina AC-10 + 6% D1101	104		6.4 6.3 6.5	41 43 43	2.69 2.49 2.76	3.1 3.5 3.1	57 65 63	0.38 0.34 0.44
		AVG	. 6.4	43	2.65	3.2	61	0.39

Table C-15 Indirect Tensile Test Results for Plant Mixed/Laboratory Compacted Mixtures Using Modified Compaction.

MIXTURE	TEST TEMP.		AIR VOIDS	INDIRECT TENSILE	STRAIN AT	SECANT	RESILIENT	POISSON'S RATIO
	r	•	4	PSI	FAILUKE	K51	K51	Ì
Fina AC-10 + 3% Styrelt	39		3.8 3.8	659 637	0.31	422	855	
•			3.9	644	0.28	458	758	
	~~	AVG.	3.8	647	0.31	423	885	-
j Pina AC-10 + 3% D1101 I	39		2.6	614 636	0.28	43/ 370	682 1188	
		AVS.	2.6		0.33		936	
Fina AC-10 + 6% D1101	39		3.3	495	0.68	146	765	-
			3.4 3.5	539 527	0.70 0.84	153 126	602 516	:
1		AVG.	3.4	520	0.74	142	628	
Fina AC-10 + 3% Styrelf	77		3.7	213	1.17	36.4	363	-
			3.9	208	1.09	38.0	423	
		AVG.	3.8	210	0.75	37.2	427	-
Fina AC-10 + 3% D1101	77		2.7	204 203	1.25	32.6 32.8	382 357	:
 		AUC	2.4	196	1.19	32.8-	- 167	
Fina AC-10 + 62 D1101	77	HVG.	2.0	171	1.23	32.7 18 8	302	
			3.3	165 162	1.87	17.6	197 179	-
		AVG.	3.4	166	1.83	18.1	200	
Fina AC-10 + 3% Styrelf	104		4.0	75	1.63	9.2	122	0.33
8			3.7		1.53	9.8	128	
1		AVG.	3.8	74	1.51	9.9	143	0.33
Fina AC-10 + 3% D1101	104		2.5	73 72 73	1.78 1.72 1.67	8.1 8.3 8.8	124 115 123	0.27
1		AVG.	2.7	73	1.72	8.4	121	0.30
Fina AC-10 + 6% D1101			3.5	60	2.49	4.8	79	0.41
j l			3.5	60 60	2.13	5.7	88 83	0.28
1		AVG.	3.5	60	2.41	5.0	84	0.36
1								

Table C-16 Indirect Tensile Test Results for Plant Mixed/Laboratory Compacted Mixtures Using Standard Compaction.

HIXTURE	TEST TEMP.	AIR VOIDS	LOAD	INDIRECT RETENSILE	ESILIEN STRAIN	ALPHA	GNU	Ea=IN	5	R-SQUR For
1	F	*	•	STRESS PSI	IN/IN			S	LOG(I)	Ea=IN^S
Control: SHAMROCK AC-20	77	7.3	195 195	13.0 5 13.2 5	.2E-05 .2E-05	0.3486 0.3930	0.1666 0.2000	0.6514 0.6070	-4.8761 -4.7661	0.995 0.993
	AVG	7.1	195	13.1 5	.2E-05	0.3708	0.1833	0.6292	-4.8211	
Fina AC-10 + 3% Styrelf	77	7.5 6.6	271 271	18.3 8 18.4 8	.1E-05 .1E-05	0.4424 0.5039	0.5312 0.3732	0.5576 0.4961	-4.1147 -4.2173	0.997 0.989
1	AVG	. 7.1	271	18.3 8	.1E-05	0.4732	0.4522	0.5269	-4.1660	
Fina AC-10 + 3% D1101	77	7.3 7.5	215 215	14.5 6 14.4 6	.5E-05 .5E-05	0.3998 0.3514	0.3732 0.3197	0.6002 0.6486	-4.3934 -4.4943	0.995 0.991
1	AVG	. 7.4	215	14.4 6	.5E-05	0.3756	0.3465	0.6244	-4.4439	
Fina AC-10 + 6% 01101	77	7.6 6.5	175 175	11.6 1 11.6 1	.1E-04 .1E-04	0.5250 0.4910	0.8722 0.3749	0.4750 0.5090	-3.7083 -4.1050	0.993 0.995
1	AVG	. 7.1	175	11.6 1	.1E-04	0.5080	0.6236	0.4920	-3.9067	

Table C-17 Alpha and Gnu Parameters for Laboratory Mixed/Laboratory Compacted Mixtures.

Table C-18 Alpha and Gnu Parameters for Plant Mixed/Laboratory Compacted Mixtures.

NTYTURE	TEST	AIR	LOAD	INDIRECT RESILIEN	ALPHA	GNU	Ea=IN	<u></u>	R-SOUR
	F	4	200	STRESS IN/IN PSI			\$	L0G(I)	Ea=IN^S
Fina AC-10 + 3% Styrelf	77	7.6 7.8	292 292	19.1 7.8E-05 19.0 7.8E-05	0.4283 0.4171	0.3920 0.2756	0.5717 0.5829	-4.2718 -4.4332	0.999 0.999
	AVG.	7.7	292	19.1 7.8E-05	0.4227	0.3338	0.5773	-4.3525	
Fina AC-10 + 3% D1101	77	6.8 6.6	270 270	17.5 8.6E-05 17.7 8.3E-05	0.4018 0.4124	0.3584 0.2327	0.5982 0.5876	-4.2890 -4.4822	0.997 0.981
1	AVG.	6.7	270	17.6 8.5E-05	0.4071	0.2955	0.5929	-4.3856	' I
Fina AC-10 + 6% D1101	77	6.4 6.8	259 260	17.1 1.2E-04 17.1 1.2E-04	0.4042	0.2962 0.4103	0.5958 0.5000	-4.2353 -4.0177	0.991 0.994
	AVG.	6.6	259	17.1 1.2E-04	0.4521	0.3533	0.5479	-4.1265	

NIXTURE	TEST	AIR	LOAD	INDIRECT	STATIC INITIAL	LOAD	FATIGUE	CONSTANT	R-SQUR - FOR
	F	\$		STRESS	KSI IN/IN	CICLES	K1	K2	Nf=K1(1/Emix) [°] K
Control: SHAMROCK AC-20	71	7.3 6.8 7.0 6.6 6.9 7.3	195 195 320 325 646 646	13.0 13.2 21.5 22.2 44.1 43.2	109 1.2E-04 109 1.2E-04 109 2.0E-04 109 2.0E-04 109 4.0E-04 109 4.0E-04	77000 140220 18000 37500 2329 1806	1.72E-0	8 3.27	0.96
Fina AC-10 + 3% Styrelf	77	7.5 6.6 6.7 7.2 7.0 6.4	271 271 451 454 900 900	18.3 18.4 30.5 30.5 60.2 61.1	102 1.8E-04 102 1.8E-04 102 3.0E-04 102 3.0E-04 102 5.9E-04 102 6.0E-04	19200 59400 8735 5760 837 975	1.59E-0	7 3.02	0.94
Fina AC-10 + 3% D1101	77	7.3 7.5 7.0 7.2 7.5 7.4	215 215 360 703 705	14.5 14.4 24.2 24.2 46.9 47.7	78 1.9E-04 78 1.8E-04 78 3.1E-04 78 3.1E-04 78 6.0E-04 78 6.1E-04	29600 28800 8000 7200 1000 750	2.39E-0	7 2.98	0.99
Fina AC-10 + 6% D1101	77	7.6 6.5 7.2 6.9 6.8 7.6	175 175 290 290 585 590	11.6 11.6 19.1 19.1 38.9 38.9	63 1.8E-04 63 1.8E-04 63 3.0E-04 63 3.0E-04 63 6.2E-04	18786 73234 4575 5222 1268 640	1. 49E- 0	7 3.03	0.90

Table C-19 Fatigue Parameter Values for Laboratory Mixed/Laboratory Compacted Mixtures.

. .

Table C-20 Fatigue Parameter Values for Plant Mixed/Laboratory Compacted Mixtures.

MIXTURE	TEST Temp. F	AIR VOIDS	LOAD LBS	INDIRECT TENSILE STRESS	STATIC INITIAL HODULUS STRAIN KSI IN/IN	LOAD CYCLES	FATIGUE K1	CONSTANT K2	R-SQUR - FOR Nf=K1(1/Emix)^K
i Fina AC-10 + 3% Styrelf 	77 ·	7.6 7.8 7.2 7.9	292 292 513 513	19.1 19.0 33.2 33.5	110 1.7E-04 110 1.7E-04 110 3.0E-04 110 3.0E-04	19140 21800 4130 7090	1.89E-0	7 2.95	0.98
Fina AC-10 + 3% D1101	77	7.3 7.5 6.8 6.6 6.7	1007 1012 270 270 442	65.7 65.9 17.5 17.7 28.9	110 6.0E-04 110 6.0E-04 81 2.2E-04 81 2.2E-04 81 3.6E-04	539 539 16210 19100 5310	2.11E-0	7 2.99	0.99
Fina AC-10 + 6% D1101	77	6.9 6.9 6.7 6.4	444 864 863 259	29.0 56.3 56.1 17.1	81 3.6E-04 81 7.0E-04 81 6.9E-04 86 2.0E-04 86 2.0E-04	4360 600 513 18700 26100	1.38E-0	8 3.30	0.99
2 4 1 1		6.6 6.8 6.6 6.5	438 434 870 885	28.9 28.5 57.3 58.2	86 3.4E-04 86 3.3E-04 86 6.7E-04 86 6.8E-04	4600 3160 420 380			

MIXTURE	TEMP. F	D1	m	Log(SHIFT FACTOR)	BETA
Control: SHAMROCK AC-20	60	2.18E-06	0.42	0.96	0.044
	77	4.15E-06	0.52		
	90	4.96E-06	0.61	-0.40	
Fina AC-10 + 3% Styrelf	60	3.53E-06	0.45	1.14	0.067
	77	1.07E-05	0.48		
	90	3.01E-05	0.45	-0.87	
Fina AC-10 + 3% D1101	60	2.44E-06	0.52	1.30	0.056
	77	1.33E-05	0.45		
	90	2.77E-05	0.38	-0.45	
Fina AC-10 + 6% D1101	60	9.45E-06	0.43	1.05	0.048
	77	2.99E-05	0.39		
	90	5.92E-05	0.31	-0.46	

Table C-21 Creep Compliance Properties for Laboratory Mixed/ Laboratory Compacted Mixture Using Modified Compaction.

. .

Table C-22 Creep Compliance Properties for Plant Mixed/ Laboratory Compacted Mixture Using Modified Compaction.

MIXTURE	TEMP. F	D1	ព	Log(SHIFT FACTOR)	BETA
Fina AC-10 + 3% Styrelf	60	2.94E-06	0.38	1.91	0.075
	77	1.49E-05	0.39		
	90	2.56E-05	0.36	-0.50	
Fina AC-10 + 3% D1101	60	4.27E-06	0.38	1.36	0.056
	77	1.18E-05	0.45		
	90	1.75E-05	0.45	-0.41	
Fina AC-10 + 6% D1101	60	5.60E-06	0.38	0.93	0.047
	77	1.76E-05	0.29		
	90	2.51E-05	0.28	-0.51	

TIME	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSILE	Ε
SEC.	HORIZONTAL	STRAIN	CREEP	SEC.	HORIZONTAL	STRAIN	CREEP	
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANC	CE
	IN		IN^2/LB		IN		IN^2/LE	B
	SHAMP	ROCK AC-20	·····		SHAMP	ROCK AC-20		
TE -	ST TEMP = 60	, ZIGMA =	10.122 PSI	TES	5T TEMP = 60	, ZIGMA =	10.170 F	PS] -
1.0	1.10E-04	5.72E-05	2.83E-06	1.0	1.25E-04	6.50E-05	3.20E-0	06
1.8	1.25E-04	6.50E-05	3.21E-06	1.8	1.40E-04	7.28E-05	3.58E-(06
3.2	1.39E-04	7.23E-05	3.57E-06	3.2	1.50E-04	7.80E-05	3.84E-0	06
5.6	1.80E-04	9.36E-05	4.62E-06	5.6	1.80E-04	9.36E-05	4.60E-0	06
10.0	2.18E-04	1.13E-04	5.59E-06	10.0	2.00E-04	1.04E-04	5.11E-0	06
18.0	2.77E-04	1.44E-04	7.10E-06	18.0	2.19E-04	1.14E-04	5.59E-(06
31.6	3.53E-04	1.84E-04	9.07E-06	31.6	2.29E-04	1.19E-04	5.84E-(06
56.2	4.45E-04	2.31E-04	1.14E-05	56.2	2.50E-04	1.30E-04	6.39E-0	06
100.0	5.95E-04	3.09E-04	1.53E-05	100.0	3.20E-04	1.66E-04	8.18E-C	06
177.8	8.20E-04	4.26E-04	2.11E-05	177.8	4.50E-04	2.34E-04	1.15E-0	05
316.2	1.10E-03	5.72E-04	2.83E-05	316.2	7.30E-04	3.80E-04	1.87E-0	05
562.3	1.50E-03	7.78E-04	3.84E-05	562.3	1.12E-03	5.80E-04	2.85E-0	05
1000.0	2.02E-03	1.05E-03	5.19E-05	1000.0	1.48E-03	7.70E-04	3.78E-0	05
1778.3	2.59E-03	1.35E-03	6.652-05	1778.3	1.895-03	9.835-04	4.93E-0	05
3162.3	3.37E-03	1.75E-03	8.66E-05	3162.3	2.55E-03	1.33E-03	6.52E-0	05
3600.0	3.59E-03	1.86E-03	9.21E-05	3600.0	2.69E-03	1.40E-03	6.87E-0	05
3600.0 7200.0	3.59E-03 3.01E-03	1.86E-03 1.57E-03	9.21E-05	3600.0 7200.0	2.69E-03 1.93E-03_	1.40E-03 1.00E-03	6.87E-0	05
3600.0 7200.0	3.59E-03 3.01E-03 Shamr	1.86E-03 1.57E-03 ROCK AC-20	9.21E-05	3600.0 7200.0	2.69E-03 1.93E-03_ Shamf	1.40E-03 1.00E-03 ROCK AC-20	6.87E-0	05
3600.0 7200.0 TE	3.59E-03 3.01E-03 SHAMR ST TEMP = 77	1.86E-03 1.57E-03 ROCK AC-20 , ZIGMA =	9.21E-05 4.052 PSI	3600.0 7200.0 TES	2.69E-03 1.93E-03 SHAMF ST TEMP = 77	1.40E-03 1.00E-03 ROCK AC-20 , ZIGMA =	6.87E-0	SI
3600.0 7200.0 TE - 1.0	3.59E-03 3.01E-03 SHAMR ST TEMP = 77 5.75E-05	1.86E-03 1.57E-03 ROCK AC-20 , ZIGMA = 2.99E-05	9.21E-05 4.052 PSI 3.69E-06	3600.0 7200.0 TE: 1.0	2.69E-03 1.93E-03 SHAMA ST TEMP = 77 8.50E-05	1.40E-03 1.00E-03 ROCK AC-20 , ZIGMA = 4.42E-05	6.87E-0 4.037 PS 5.48E-0	SI - 06
3600.0 7200.0 TE - 1.0 1.8	3.59E-03 3.01E-03 SHAMR ST TEMP = 77 5.75E-05 7.00E-05	1.86E-03 1.57E-03 ROCK AC-20 , ZIGMA = 2.99E-05 3.64E-05	9.21E-05 4.052 PSI 3.69E-06 4.49E-06	3600.0 7200.0 TE: 1.0 1.8	2.69E-03 1.93E-03 SHAMA ST TEMP = 77 8.50E-05 1.10E-04	1.40E-03 1.00E-03 ROCK AC-20 , ZIGMA = 4.42E-05 5.72E-05	6.87E-0 4.037 PS 5.48E-0 7.09E-0	SI - 06
3600.0 7200.0 TE - 1.0 1.8 3.2	3.59E-03 3.01E-03 SHAMR ST TEMP = 77 5.7SE-05 7.D0E-05 9.50E-05	1.86E-03 1.57E-03 ROCK AC-20 , ZIGMA = 2.99E-05 3.64E-05 4.94E-05	9.21E-05 4.052 PSI 3.69E-06 4.49E-06 6.10E-06	3600.0 7200.0 TE: 1.0 1.8 3.2	2.69E-03 1.93E-03 SHAMR 5T TEMP = 77 8.50E-05 1.10E-04 1.33E-04	1.40E-03 1.00E-03 ROCK AC-20 , ZIGMA = 4.42E-05 5.72E-05 6.89E-05	6.87E-0 4.037 PS 5.48E-0 7.09E-0 8.54E-0	SI - 06 06
3600.0 7200.0 TE - 1.0 1.8 3.2 5.6	3.59E-03 3.01E-03 SHAMR ST TEMP = 77 5.75E-05 7.00E-05 9.50E-05 1.33E-04	1.86E-03 1.57E-03 OCK AC-20 , ZIGMA = 2.99E-05 3.64E-05 4.94E-05 6.89E-05	9.21E-05 4.052 PSI 3.69E-06 4.49E-06 6.10E-06 8.50E-06	3600.0 7200.0 TE: 1.0 1.8 3.2 5.6	2.69E-03 1.93E-03 SHAMF 5T TEMP = 77 8.50E-05 1.10E-04 1.33E-04 1.85E-04	1.40E-03 1.00E-03 20CK AC-20 , ZIGMA = 4.42E-05 5.72E-05 6.89E-05 9.62E-05	6.87E-0 4.037 PS 5.48E-0 7.09E-0 8.54E-0 1.19E-0	SI - 06 06 05
3600.0 7200.0 TE - 1.0 1.8 3.2 5.6 10.0	3.59E-03 3.01E-03 SHAMR ST TEMP = 77 5.75E-05 7.00E-05 9.50E-05 1.33E-04 1.73E-04	1.86E-03 1.57E-03 20CK AC-20 , ZIGMA = 2.99E-05 3.64E-05 4.94E-05 6.89E-05 8.97E-05	9.21E-05 4.052 PSI 3.69E-06 4.49E-06 6.10E-06 8.50E-06 1.11E-05	3600.0 7200.0 1.0 1.8 3.2 5.6 10.0	2.69E-03 1.93E-03 SHAMF ST TEMP = 77 8.50E-05 1.10E-04 1.33E-04 1.85E-04 2.40E-04	1.40E-03 1.00E-03 20CK AC-20 , ZIGMA = 4.42E-05 5.72E-05 6.89E-05 9.62E-05 1.25E-04	6.87E-0 4.037 PS 5.48E-0 7.09E-0 8.54E-0 1.19E-0 1.55E-0	SI - 06 06 05 05
3600.0 7200.0 TE - 1.0 1.8 3.2 5.6 10.0 18.0	3.59E-03 3.01E-03 SHAMR ST TEMP = 77 5.75E-05 7.00E-05 9.50E-05 1.33E-04 1.73E-04 2.30E-04	1.86E-03 1.57E-03 20CK AC-20 , ZIGMA = 2.99E-05 3.64E-05 6.89E-05 8.97E-05 1.20E-04	9.21E-05 4.052 PSI 3.69E-06 4.49E-06 6.10E-06 8.50E-06 1.11E-05 1.48E-05	3600.0 7200.0 1.0 1.8 3.2 5.6 10.0 18.0	2.69E-03 1.93E-03 SHAMF ST TEMP = 77 8.50E-05 1.10E-04 1.33E-04 1.85E-04 2.40E-04 3.35E-04	1.40E-03 1.00E-03 20CK AC-20 , ZIGMA = 4.42E-05 5.72E-05 6.89E-05 9.62E-05 1.25E-04 1.74E-04	6.87E-0 4.037 PS 5.48E-0 7.09E-0 8.54E-0 1.19E-0 1.55E-0 2.16E-0	SI - 06 06 05 05
3600.0 7200.0 TE - 1.0 1.8 3.2 5.6 10.0 18.0 31.6	3.59E-03 3.01E-03 SHAMR ST TEMP = 77 5.7SE-05 7.00E-05 9.50E-05 1.33E-04 1.73E-04 2.30E-04 2.95E-04	1.86E-03 1.57E-03 20CK AC-20 , ZIGMA = 2.99E-05 3.64E-05 4.94E-05 6.89E-05 8.97E-05 1.20E-04 1.53E-04	9.21E-05 4.052 PSI 3.69E-06 4.49E-06 6.10E-06 8.50E-06 1.11E-05 1.48E-05 1.89E-05	3600.0 7200.0 1.0 1.8 3.2 5.6 10.0 18.0 31.6	2.69E-03 1.93E-03 SHAMF ST TEMP = 77 8.50E-05 1.10E-04 1.33E-04 1.85E-04 2.40E-04 3.35E-04 4.45E-04	1.40E-03 1.00E-03 20CK AC-20 , ZIGMA = 4.42E-05 5.72E-05 6.89E-05 9.62E-05 1.25E-04 1.74E-04 2.31E-04	6.87E-0 4.037 PS 5.48E-0 7.09E-0 8.54E-0 1.19E-0 2.16E-0 2.87E-0	SI - 06 06 05 05 05
3600.0 7200.0 1.0 1.8 3.2 5.6 10.0 18.0 31.6 56.2	3.59E-03 3.01E-03 SHAMR ST TEMP = 77 5.75E-05 7.00E-05 9.50E-05 1.33E-04 1.73E-04 2.30E-04 2.95E-04 4.15E-04	1.86E-03 1.57E-03 20CK AC-20 , ZIGMA = 2.99E-05 3.64E-05 6.89E-05 8.97E-05 1.20E-04 1.53E-04 2.16E-04	9.21E-05 4.052 PSI 3.69E-06 4.49E-06 6.10E-06 8.50E-06 1.11E-05 1.48E-05 1.89E-05 2.66E-05	3600.0 7200.0 1.0 1.8 3.2 5.6 10.0 18.0 31.6 56.2	2.69E-03 1.93E-03 SHAMR ST TEMP = 77 8.50E-05 1.10E-04 1.33E-04 1.85E-04 2.40E-04 3.35E-04 4.45E-04 5.75E-04	1.40E-03 1.00E-03 20CK AC-20 , ZIGMA = 4.42E-05 5.72E-05 6.89E-05 9.62E-05 1.25E-04 1.74E-04 2.31E-04 2.99E-04	6.87E-0 4.037 PS 5.48E-0 7.09E-0 8.54E-0 1.19E-0 2.16E-0 2.87E-0 3.70E-0	SI - 06 06 05 05 05 05
3600.0 7200.0 7200.0 1.0 1.8 3.2 5.6 10.0 18.0 31.6 56.2 100.0	3.59E-03 3.01E-03 SHAMR ST TEMP = 77 5.75E-05 7.00E-05 9.50E-05 1.33E-04 1.73E-04 2.30E-04 2.95E-04 4.15E-04 6.10E-04	1.86E-03 1.57E-03 2.97E-03 3.64E-05 3.64E-05 4.94E-05 6.89E-05 8.97E-05 1.20E-04 1.53E-04 2.16E-04 3.17E-04	9.21E-05 4.052 PSI 3.69E-06 4.49E-06 6.10E-06 8.50E-06 1.11E-05 1.48E-05 1.89E-05 2.66E-05 3.91E-05	3600.0 7200.0 1.0 1.8 3.2 5.6 10.0 18.0 31.6 56.2 100.0	2.69E-03 1.93E-03 SHAMF ST TEMP = 77 8.50E-05 1.10E-04 1.33E-04 1.85E-04 2.40E-04 3.35E-04 4.45E-04 5.75E-04 7.35E-04	1.40E-03 1.00E-03 20CK AC-20 , ZIGMA = 4.42E-05 5.72E-05 6.89E-05 9.62E-05 1.25E-04 1.74E-04 2.31E-04 2.99E-04 3.82E-04	6.87E-0 4.037 PS 5.48E-0 7.09E-0 8.54E-0 1.19E-0 2.16E-0 2.87E-0 3.70E-0 4.73E-0	SI - 06 06 05 05 05 05 05
3600.0 7200.0 7200.0 1.0 1.0 1.8 3.2 5.6 10.0 18.0 31.6 56.2 100.0 177.8	3.59E-03 3.01E-03 SHAMR ST TEMP = 77 5.75E-05 7.00E-05 9.50E-05 1.33E-04 1.73E-04 2.30E-04 2.95E-04 4.15E-04 6.10E-04 8.55E-04	1.86E-03 1.57E-03 20CK AC-20 , ZIGMA = 2.99E-05 3.64E-05 4.94E-05 6.89E-05 8.97E-05 1.20E-04 1.53E-04 2.16E-04 3.17E-04 4.45E-04	9.21E-05 4.052 PSI 3.69E-06 4.49E-06 6.10E-06 8.50E-06 1.11E-05 1.48E-05 1.89E-05 2.66E-05 3.91E-05 5.49E-05	3600.0 7200.0 1.0 1.8 3.2 5.6 10.0 18.0 31.6 56.2 100.0 177.8	2.69E-03 1.93E-03 SHAMF ST TEMP = 77 8.50E-05 1.10E-04 1.33E-04 1.85E-04 2.40E-04 3.35E-04 4.45E-04 5.75E-04 7.35E-04 1.03E-03	1.40E-03 1.00E-03 20CK AC-20 , ZIGMA = 4.42E-05 5.72E-05 6.89E-05 9.62E-05 1.25E-04 1.74E-04 2.31E-04 2.99E-04 3.82E-04 5.36E-04	4.037 PS 5.48E-0 7.09E-0 8.54E-0 1.19E-0 1.55E-0 2.16E-0 2.87E-0 3.70E-0 4.73E-0 6.63E-0	SI - 66605 05505 05505 05505
3600.0 7200.0 7200.0 1.0 1.0 1.8 3.2 5.6 10.0 18.0 31.6 56.2 100.0 177.8 316.2	3.59E-03 3.01E-03 SHAMR ST TEMP = 77 5.75E-05 7.00E-05 9.50E-05 1.33E-04 1.73E-04 2.30E-04 2.95E-04 4.15E-04 6.10E-04 8.55E-04 1.23E-03	1.86E-03 1.57E-03 20CK AC-20 , ZIGMA = 2.99E-05 3.64E-05 6.89E-05 8.97E-05 1.20E-04 1.53E-04 2.16E-04 3.17E-04 4.45E-04 6.37E-04	9.21E-05 4.052 PSI 3.69E-06 4.49E-06 6.10E-06 8.50E-06 1.11E-05 1.48E-05 1.89E-05 2.66E-05 3.91E-05 5.49E-05 7.86E-05	3600.0 7200.0 7200.0 1.0 1.8 3.2 5.6 10.0 18.0 31.6 56.2 100.0 177.8 316.2	2.69E-03 1.93E-03 SHAMF ST TEMP = 77 8.50E-05 1.10E-04 1.33E-04 1.85E-04 2.40E-04 3.35E-04 4.45E-04 5.75E-04 7.35E-04 1.03E-03 1.40E-03	1.40E-03 1.00E-03 20CK AC-20 , ZIGMA = 4.42E-05 5.72E-05 6.89E-05 9.62E-05 1.25E-04 1.74E-04 2.31E-04 2.31E-04 3.82E-04 5.36E-04 7.26E-04	4.037 PS 5.48E-0 7.09E-0 8.54E-0 1.19E-0 1.55E-0 2.16E-0 2.87E-0 3.70E-0 4.73E-0 6.63E-0 8.99E-0	SI - 6660550505050505050505
3600.0 7200.0 7200.0 1.0 1.8 3.2 5.6 10.0 18.0 31.6 56.2 100.0 177.8 316.2 562.3	3.59E-03 3.01E-03 SHAMR ST TEMP = 77 5.75E-05 7.00E-05 9.50E-05 1.33E-04 1.73E-04 2.30E-04 2.95E-04 4.15E-04 6.10E-04 8.55E-04 1.23E-03 1.75E-03	1.86E-03 1.57E-03 20CK AC-20 , ZIGMA = 2.99E-05 3.64E-05 6.89E-05 8.97E-05 1.20E-04 1.53E-04 2.16E-04 3.17E-04 4.45E-04 6.37E-04 9.10E-04	9.21E-05 4.052 PSI 3.69E-06 4.49E-06 6.10E-06 8.50E-06 1.11E-05 1.48E-05 1.89E-05 2.66E-05 3.91E-05 5.49E-05 7.86E-05 1.12E-04	3600.0 7200.0 7200.0 1.0 1.8 3.2 5.6 10.0 18.0 31.6 56.2 100.0 177.8 316.2 562.3	2.69E-03 1.93E-03 SHAMF ST TEMP = 77 8.50E-05 1.10E-04 1.33E-04 1.85E-04 2.40E-04 3.35E-04 4.45E-04 5.75E-04 7.35E-04 1.03E-03 1.40E-03 1.76E-03	1.40E-03 1.00E-03 20CK AC-20 , ZIGMA = 4.42E-05 5.72E-05 6.89E-05 9.62E-05 1.25E-04 1.74E-04 2.31E-04 2.31E-04 3.82E-04 5.36E-04 7.26E-04 9.15E-04	4.037 PS 5.48E-0 7.09E-0 8.54E-0 1.19E-0 1.55E-0 2.16E-0 2.87E-0 3.70E-0 4.73E-0 6.63E-0 8.99E-0 1.13E-0	SI - 66 66 55 55 55 55 55 55 55 55 55 55 55
3600.0 7200.0 7200.0 1.0 1.8 3.2 5.6 10.0 18.0 31.6 56.2 100.0 177.8 316.2 562.3 1000.0	3.59E-03 3.01E-03 SHAMR ST TEMP = 77 5.75E-05 7.00E-05 9.50E-05 1.33E-04 1.73E-04 2.30E-04 2.95E-04 4.15E-04 6.10E-04 8.55E-04 1.23E-03 1.75E-03 2.36E-03	1.86E-03 1.57E-03 20CK AC-20 , ZIGMA = 2.99E-05 3.64E-05 4.94E-05 6.89E-05 8.97E-05 1.20E-04 1.53E-04 2.16E-04 3.17E-04 4.45E-04 6.37E-04 9.10E-04 1.23E-03	9.21E-05 4.052 PSI 3.69E-06 4.49E-06 6.10E-06 8.50E-06 1.11E-05 1.48E-05 1.89E-05 2.66E-05 3.91E-05 5.49E-05 7.86E-05 1.12E-04 1.51E-04	3600.0 7200.0 7200.0 1.0 1.8 3.2 5.6 10.0 18.0 31.6 56.2 100.0 177.8 316.2 562.3 1000.0	2.69E-03 1.93E-03 SHAMF ST TEMP = 77 8.50E-05 1.10E-04 1.33E-04 1.85E-04 2.40E-04 3.35E-04 4.45E-04 5.75E-04 7.35E-04 1.03E-03 1.40E-03 1.76E-03 2.56E-03	1.40E-03 1.00E-03 20CK AC-20 , ZIGMA = 4.42E-05 5.72E-05 6.89E-05 9.62E-05 1.25E-04 1.74E-04 2.31E-04 2.99E-04 3.82E-04 5.36E-04 7.26E-04 9.15E-04 1.33E-03	4.037 PS 5.48E-0 7.09E-0 8.54E-0 1.19E-0 1.55E-0 2.16E-0 2.87E-0 3.70E-0 4.73E-0 6.63E-0 8.99E-0 1.13E-0 1.65E-0	SI 0660550505050505050404
3600.0 7200.0 7200.0 1.0 1.8 3.2 5.6 10.0 18.0 31.6 56.2 100.0 177.8 316.2 562.3 1000.0 1778.3	3.59E-03 3.01E-03 SHAMR ST TEMP = 77 5.7SE-05 7.00E-05 9.50E-05 1.33E-04 1.73E-04 2.30E-04 2.95E-04 4.15E-04 6.10E-04 8.55E-04 1.23E-03 1.75E-03 2.36E-03 3.01E-03	1.86E-03 1.57E-03 20CK AC-20 , ZIGMA = 2.99E-05 3.64E-05 4.94E-05 6.89E-05 8.97E-05 1.20E-04 1.53E-04 2.16E-04 3.17E-04 4.45E-04 6.37E-04 9.10E-04 1.23E-03 1.57E-03	9.21E-05 4.052 PSI 3.69E-06 4.49E-06 6.10E-06 8.50E-06 1.11E-05 1.48E-05 1.89E-05 2.66E-05 3.91E-05 5.49E-05 7.86E-05 1.12E-04 1.51E-04 1.93E-04	3600.0 7200.0 7200.0 1.0 1.8 3.2 5.6 10.0 18.0 31.6 56.2 100.0 177.8 316.2 562.3 1000.0 1778.3	2.69E-03 1.93E-03 SHAMF ST TEMP = 77 8.50E-05 1.10E-04 1.33E-04 1.85E-04 2.40E-04 3.35E-04 4.45E-04 5.75E-04 7.35E-04 1.03E-03 1.40E-03 1.76E-03 2.56E-03 3.47E-03	1.40E-03 1.00E-03 20CK AC-20 , ZIGMA = 4.42E-05 5.72E-05 6.89E-05 9.62E-05 1.25E-04 1.74E-04 2.31E-04 2.99E-04 3.82E-04 5.36E-04 9.15E-04 1.33E-03 1.80E-03	4.037 PS 5.48E-0 7.09E-0 8.54E-0 1.55E-0 2.16E-0 2.16E-0 3.70E-0 4.73E-0 6.63E-0 8.99E-0 1.13E-0 1.65E-0 2.24E-0	SI 0660550505050505004004
3600.0 7200.0 7200.0 1.0 1.8 3.2 5.6 10.0 18.0 31.6 56.2 100.0 177.8 316.2 562.3 1000.0 1778.3 3162.3	3.59E-03 3.01E-03 SHAMR ST TEMP = 77 5.75E-05 7.00E-05 9.50E-05 1.33E-04 1.73E-04 2.30E-04 2.95E-04 4.15E-04 6.10E-04 8.55E-04 1.23E-03 1.75E-03 2.36E-03 3.01E-03 3.64E-03	1.86E-03 1.57E-03 2.97E-05 3.64E-05 4.94E-05 6.89E-05 8.97E-05 1.20E-04 1.53E-04 2.16E-04 3.17E-04 4.45E-04 6.37E-04 9.10E-04 1.23E-03 1.57E-03 1.89E-03	9.21E-05 4.052 PSI 3.69E-06 4.49E-06 6.10E-06 8.50E-06 1.11E-05 1.48E-05 1.48E-05 2.66E-05 3.91E-05 5.49E-05 7.86E-05 1.12E-04 1.51E-04 1.93E-04 2.33E-04	3600.0 7200.0 7200.0 1.0 1.0 1.8 3.2 5.6 10.0 18.0 31.6 56.2 100.0 177.8 316.2 562.3 1000.0 1778.3 3162.3	2.69E-03 1.93E-03 SHAMF ST TEMP = 77 8.50E-05 1.10E-04 1.33E-04 1.33E-04 1.85E-04 2.40E-04 3.35E-04 4.45E-04 5.75E-04 7.35E-04 1.03E-03 1.76E-03 2.56E-03 3.47E-03 4.69E-03	1.40E-03 1.00E-03 20CK AC-20 , ZIGMA = 4.42E-05 5.72E-05 6.89E-05 9.62E-05 1.25E-04 1.74E-04 2.31E-04 2.99E-04 3.82E-04 5.36E-04 7.26E-04 9.15E-04 1.33E-03 1.80E-03 2.44E-03	4.037 PS 5.48E-0 7.09E-0 8.54E-0 1.19E-0 1.55E-0 2.16E-0 2.87E-0 4.73E-0 6.63E-0 8.99E-0 1.13E-0 1.65E-0 2.24E-0 3.02E-0	SI - 666655555555555555555555555555555555
3600.0 7200.0 7200.0 1.8 3.2 5.6 10.0 18.0 31.6 56.2 100.0 177.8 316.2 562.3 1000.0 1778.3 3162.3 3162.3	3.59E-03 3.01E-03 SHAMR ST TEMP = 77 5.75E-05 7.00E-05 9.50E-05 1.33E-04 1.73E-04 2.30E-04 2.30E-04 2.95E-04 4.15E-04 6.10E-04 8.55E-04 1.23E-03 1.75E-03 2.36E-03 3.01E-03 3.64E-03 4.10E-03	1.86E-03 1.57E-03 20CK AC-20 , ZIGMA = 2.99E-05 3.64E-05 4.94E-05 6.89E-05 8.97E-05 1.20E-04 1.53E-04 2.16E-04 3.17E-04 4.45E-04 6.37E-04 1.23E-03 1.57E-03 1.89E-03 2.13E-03	9.21E-05 4.052 PSI 3.69E-06 4.49E-06 6.10E-06 8.50E-06 1.11E-05 1.48E-05 1.48E-05 1.48E-05 2.66E-05 3.91E-05 5.49E-05 7.86E-05 1.12E-04 1.51E-04 1.93E-04 2.33E-04 2.63E-04	3600.0 7200.0 7200.0 1.0 1.8 3.2 5.6 10.0 18.0 31.6 56.2 100.0 177.8 316.2 562.3 1000.0 1778.3 3162.3 3600.0	2.69E-03 1.93E-03 SHAMF ST TEMP = 77 8.50E-05 1.10E-04 1.33E-04 1.85E-04 2.40E-04 3.35E-04 4.45E-04 5.75E-04 1.03E-03 1.76E-03 1.76E-03 2.56E-03 3.47E-03 4.69E-03 5.02E-03	1.40E-03 1.00E-03 20CK AC-20 , ZIGMA = 4.42E-05 5.72E-05 6.89E-05 9.62E-05 1.25E-04 1.74E-04 2.31E-04 2.31E-04 3.82E-04 3.82E-04 5.36E-04 7.26E-04 9.15E-04 1.33E-03 1.80E-03 2.44E-03 2.61E-03	4.037 PS 5.48E-0 7.09E-0 8.54E-0 1.19E-0 1.55E-0 2.16E-0 2.87E-0 3.70E-0 4.73E-0 6.63E-0 8.99E-0 1.13E-0 1.65E-0 2.24E-0 3.02E-0 3.23E-0	SI - 666655555555555555555555555555555555

 Table C-23
 Creep Compliance of Laboratory Mixed / Laboratory Compacted Mixtures Using Modified Compaction.

. .

Table C-23 (Continued)

TIME SEC.	TOTAL HORIZONTAL	TENSILE STRAIN	TENSILE CREEP	TIME SEC.	TOTAL HORIZONTAL	TENSILE STRAIN	TENSILE CREEP
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANCE
	1N		IN 27LB		IN		IN 2/L9
	SHAM	ROCK AC-20			SHAME	OCK AC-20	
TE	ST TEMP = 90	, ZIGMA =	0.830 PSI	TES	ST TEMP = 90	, ZIGMA =	0.853 PSI
1.0	1.60E-05	8.32E-06	5.01E-06	1.0	1.30E-05	6.76E-06	3.96E-06
1.8	2.75E-05	1.43E-05	8.62E-06	1.8	1.85E-05	9.62E-06	5.64E-06
3.2	3.45E-05	1.79E-05	1.08E-05	3.2	2.50E-05	1.30E-05	7.62E-00
5.6	5.00E-0S	2.60E-05	1.57E-05	5.6	3.75E-05	1.95E-05	1.14E-0
10.0	6.50E-05	3.38E-05	2.04E-05	10.0	5.10E-05	2.65E-05	1.55E-0
18.0	9.50E-05	4.94E-05	2.98E-05	18.0	7.65E-05	3.98E-05	2.33E-0
31.6	1.53E-04	7.93E-05	4.78E-05	31.6	1.20E-04	6.24E-05	3.66E-0
56.2	2.60E-04	1.35E-04	8.15E-05	56.2	1.80E-04	9.36E-05	5.49E-0
100.0	4.15E-04	2.16E-04	1.30E-04	100.0	2.51E-04	1.31E-04	7.65E-0
177.8	6.00E-04	3.12E-04	1.88E-04	177.8	3.55E-04	1.85E-04	1.08E-0
316.2	8.00E-04	4.16E-04	2.51E-04	316.2	4.60E-04	2.39E-04	1.40E-0
562.3	1.10E-03	5.72E-04	3.45E-04	562.3	6.75E-04	3.51E-04	2.06E-0
1000.0	1.40E-03	7.28E-04	4.39E-04	1000.0	9.25E-04	4.81E-04	2.82E-0
1778.3	1.58E-03	8.19E-04	4.93E-04	1778.3	1.17E-03	6.06E-04	3.55E-0
3162.3	1.94E-03	1.01E-03	6.06E-04	3162.3	1.62E-03	8.40E-04	4.925-0
3600.0	1.95E-03	1.01E-03	6.11E-04	- 3600.0	1.85E-03	9.60E-04	5.625-0
7200.0	1.95E-03	1.01E-03		7200.0	1.81E-03	9.39E-04	
	FINA AC-1	10 + 33 ST	YRELF		FINA AC-1	10 + 33 ST	YRELF
TE	ST TEMP = 60	, ZIGMA =	12.292 PSI	TES	ST TEMP = 60	, ZIGMA =	12.197 PS
1.0	1.65E-04	8.58E-05	3.49E-06	1.0	1.65E-04	8.58E-05	3.52E-0
1.8	2.20E-04	1.14E-04	4.65E-06	1.8	1.95E-04	1.012-04	4.16E-0
3.2	2.70E-04	1.40E-04	5.71E-06	3.2	2.15E-04	1.12E-04	4.58E-0
5.6	3.90E-04	2.03E-04	8.25E-06	5.6	3.08E-04	1.60E-04	6.56E-0
10.0	S.10E-04	2.65E-04	1.08E-05	10.0	3.90E-04	2.03E-04	8.32E-0
18.0	6.83E-04	3.55E-04	1.44E-05	18.0	5.55E-04	2.89E-04	1.18E-0
31.6	8.85E-04	4.60E-04	1.87E-05	31.6	7.90E-04	4.11E-04	1.68E-0
56.2	1.19E-03	6.16E-04	2.51E-05	56.2	1.11E-03	5.75E-04	2.36E-0
100.0	1.52E-03	7.88E-04	3.21E-05	100.0	1.48E-03	7.70E-04	3.16E-0
177.8	1.89E-03	9.80E-04	3.99E-05	177.8	1.88E-03	9.78E-04	4.01E-0
316.2	2.37E-03	1.23E-03	5.00E-05	316.2	2.415-03	1.255-03	5.13E-0
562.3	2.90E-03	1.51E-03	6.12E-05	562.3	3.07E-03	1.60E-03	6.55E-0
1000.0	3.52E-03	1.83E-03	7.44E-05	1000.0	3.822-03	1.99E-03	8.14E-0
1778.3	4.23E-03	2.20E-03	8.94E-05	1778.3	4.79E-03	2.49E-03	1.02E-0
3162.3	5.28E-03	2.74E-03	1.12E-04	3162.3	5.97E-03	3.10E-03	1.275-0
3162.3 3600.0	5.28E-03 5.53E-03	2.74E-03 2.87E-03	1.12E-04 1.17E-04	3162.3 3600.0	5.97E-03 6.29E-03	3.10E-03 3.27E-03	1.275-0 1.34E-0

Table C-23 (Continued)

. .

TIME SEC.	TOTAL HORIZONTAL	TENSILE STRAIN	TENSILE	TIME	TOTAL	TENSILE	TENSILE
	DEFORMATION	IN/IN	COMPLIANCE	••••	OFFORMATION	TN/TN	COMPLITANC
	IN		IN^2/LB		IN	.	IN^2/LE
	FINA AC-1	0 + 3% ST	YRELF		FINA AC-1	0 + 3% ST	TRELF
TE	ST TEMP = 77	, ZIGMA =	5.756 PSI	TE	ST TEMP = 77	, ZIGMA =	5.783 PS
1.0	1.35E-04	7.02E-05	6.10E-06	1.0	2.00E-04	1.04E-04	8.99E-(
1.8	2.50E-04	1.30E-04	1.13E-05	1.8	3.00E-04	1.56E-04	1.35E-(
3.2	3.5CE-04	1.82E-04	1.58E-05	3.2	3.85E-04	2.00E-04	1.73E-(
5.6	5.55E-04	2.89E-04	2.51E-05	5.6	5.60E-04	2.915-04	2.52E-
10.0	8.05E-04	4.19E-04	3.64E-05	10.0	7.35E-04	3.825-04	3.31E-
18.0	1.26E-03	6.53E-04	5.67E-05	18.0	1.02E-03	5.31E-04	4.59E-
31.6	1.80E-03	9.36E-04	8.13E-05	31.6	1.35E-03	7.02E-04	6.07E-
56.2	2.43E-03	1.26E-03	1.10E-04	56.2	1.75E-03	9.08E-04	7.85E-
100.0	3.08E-03	1.60E-03	1.39E-04	100.0	2.25E-03	1.17E-03	1.01E-
177.B	3.85E-03	2.00E-03	1.74E-04	177.8	2.80E-03	1.46E-03	1.26E-
316.2	4.55E-03	2.37E-03	2.06E-04	316.2	3.49E-03	1.81E-03	1.57E-
562.3	6.00E-03	3.12E-03	2.71E-04	562.3	4.30E-03	2.24E-03	1.93E-
1000.0	7.30E-03	3.80E-03	3.30E-04	1000.0	5.30E-03	2.76E-03	2.38E-
1778.3	8.5CE-03	4.42E-03	3.84E-04	1778.3	6.655-03	3.46E-03	2.99E-
3162.3	1.05E-02	5.44E -03	4.72E-04	3162.3	8.60E-03	4.47E-03	3.87E-
3600.0	1.11E-02	5.77E-03	5.01E-04	3600.0	9.15E-03	4.76E-03	4.11E-
7200.0	1.00E-02	5.20E-03		7200.0	8.13E-03	4.23E-03	
	FINA AC-1	0 + 3% ST	YRELF		FINA AC-1	0 + 3% ST	YRELF
TE	ST TEMP = 90	, ZIGMA =	0.880 PSI	TE	ST TEMP = 90	, ZIGMA =	0.881 P
1.0	8.00E-05	4.16E-05	2.36E-05	1.0	9.50E-05	4.94E-05	2.80E-
1.8	1.15E-04	5.98E-05	3.40E-05	1.8	1.40E-04	7.28E-05	4.13E-
3.2	1.50E-04	7.80E-05	4.43E-05	3.2	1.80E-04	9.36E-05	5.31E-
5.6	2.08E-04	1.08E-04	6.15E-05	5.6	2.55E-04	1.33E-04	7.53E-
10.0	2.68E-04	1.39E-04	7.90E-05	10.0	3.30E-04	1.72E-04	9.74E-
18.0	3.48E-04	1.81E-04	1.03E-04	18.0	4.35E-04	2.26E-04	1.28E-
31.6	4.56E-04	2.37E-04	1.35E-04	31.6	5.62E-04	2.92E-04	1.66E-
56.2	6.25E-04	3.25E-04	1.85E-04	56.2	6.85E-04	3.56E-04	2.02E-
100.0	8.752-04	4.55E-04	2.59E-04	100.0	8.95E-04	4.65E-04	2.64E-
177.8	1.18E-03	6.11E-04	3.47E-04	177.8	1.23E-03	6.405-04	3.63E-0
316.2	1.53E-03	7.96E-04	4.525-04	316.2	1.65E-03	8.58E-04	4.87E-
562.3	2.03E-03	1.05E-03	5.98E-04	562.3	2.03E-03	1.06E-03	5.99E-
1000.0	2.51E-03	1.31E-03	7.425-04	1000.0	2.425-03	1.26E-03	7.13E-0
1778.3	2.97E-03	1.54E-03	8.76E-04	1778.3	2.87E-03	1.495-03	8.47E-0
3162.3	3.455-03	1.79E-03	1.02E-03	3162.3	3.40E-C3	1.77E-03	1.00E-0
3600.0	3.58E-03	1.86E-03	1.065-03	3600.0	3.55E-03	1.855-03	1.05E-0
7200.0	3.39E-03	1.76E-03		7200.0	3.41E-03	1.77E-03	

Table C-23 (Continued)

TIME	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSILE
SEC.	HORIZONTAL	STRAIN	CREEP	SEC.	HORIZONTAL	STRAIN	CREEP
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANCE
	IN		IN^2/LB		IN		IN^2/LB
							_
	FINA AC-10	+ 3% KRAT	ON D1101		FINA AC-10	+ 3% KRAT	ON D1101
TE	EST TEMP = 60	, ZIGMA ≠	10.634 PSI	TE	ST TEMP = 60	, ZIGMA =	10.523 PSI
1.0	0 7.00E-05	3.64E-05	1.71E-06	1.0	1.20E-04	6.24E-05	2.97E-06
1.6	B 1.05E-04	5.46E-0S	2.57E-06	1.8	1.55E-04	8.06E-05	3.83E-06
3.2	2 1.30E-04	6.76E-05	3.18E-06	3.2	1.90E-04	9.88E-05	4.70E-06
5.0	5 2.03E-04	1.05E-04	4.95E-06	5.6	2.75E-04	1.43E-04	6.80E-06
10.0	2.74E-04	1.42E-04	6.69E-06	10.0	3.75E-04	1.95E-04	9.27E-06
18.0	0 3.95E-04	2.05E-04	9.66E-06	18.0	5.00E-04	2.60E-04	1.24E-05
31.0	6 5.65E-04	2.94E-04	1.38E-05	31.6	6.50E-04	3.38E-04	1.61E-05
56.2	2 7.38E-04	3.84E-04	1.80E-05	56.2	8.80E-04	4.58E-04	2.17E-05
100.0	1.13E-03	5.85E-04	2.75E-05	100.0	1.24E-03	6.422-04	3.05E-05
177.8	B 1.52E-03	7.88E-04	3.70E-05	177.8	1.74E-03	9.05E-04	4.30E-05
316.3	2 2.08E-03	1.08E-03	5.07E-05	316.2	2.39E-03	1.24E-03	5.895-05
562.3	3 2.70E-03	1.40E-03	6.60E-05	562.3	3.23E-03	1.68E-03	7.972-05
1000.0	3.44E-03	1.79E-03	8.40E-05	1000.0	3.84E-03	1.995-03	9.48E-05
1778.3	3 4 .33E-03	2.25E-03	1.06E-04	1778.3	4.53E-03	2.355-03	1.12E-04
3162.3	3 5.37E-03	2.79E-03	1.31E-04	3162.3	5.635-03	2.932-03	1.39E-04
3600.0	5.672-03	2.95E-03	1.39E-04	3600.0	5.93E-03	3.085-03	1.46E-04
7200.0	0 4.65E-03	2.42E-03		7200.0	5.08E-03	2.64E-03	
	FINA AC-10	+ 32 KRAT	ON 01101		FTNA 40-10	+ 32 KRAT	ON 01101
T	EST TEMP = 77	. ZIGMA =	4.613 PSI	TE	ST TEMP = 77	. ZIGHA =	4.581 PSI
1.0	0 1.40E-04	7.28E-05	7.89E-06	1.0	2.40E-04	1.25E-04	1.36E-05
1.0	B 2.30E-04	1.20E-04	1.30E-05	1.8	3.30E-04	1.725-04	1.87E-05
3.3	2 3.15E-04	1.64E-04	1.78E-05	3.2	4.405-04	2.29E-04	2.50E-05
5.	6 4.90E-04	2.55E-04	2.76E-05	5.6	5.65E-04	2.94E-04	3.21E-05
10.0	0 6.80E-04	3.54E-04	3.83E-05	10.0	7.25E-04	3.775-04	4.12E-05
18.	0 9.55E-04	4.97E-04	5.3BE-05	18.0	9.50E-04	4.94E-04	5.39E-05
31.0	6 1.33E-03	6.89E-04	7.47E-05	31.6	1.23E-03	6.37E-04	6.95E-05
56.	2 1.75E-03	9.10E-04	9.87E-05	56.2	1.61E-03	8.35E-04	9.11E-05
100.	C 2.24E-03	1.16E-03	1.26E-04	100.0	2.06E-03	1.072-03	1.17E-04
177.	8 2.73E-03	1.42E-03	1.54E-04	177.8	2.705-03	1.40E-03	1.53E-04
316.	2 3.40E-03	1.77E-03	1.92E-04	316.2	3.35E-03	1.74E-C3	1.90E-04
562.	3 4.18E-03	2.17E-03	2.35E-04	562.3	4.23E-03	2.20E-03	2.40E-04
1000.	0 5.03E-03	2.61E-03	2.83E-04	1000.0	5.33E-03	2.77E-03	3.02E-04
1778.	3 6.15E-03	3.20E-03	3.47E-04	1778.3	6.78E-03	3.52E-03	3.85E-04
3162.	3 7.51E-03	3.91E-03	4.23E-04	3162.3	8.65E-03	4.502-03	4.91E-04
3600.	0 7.89E-03	4.10E-03	4.45E-04	3600.0	9.15E-03	4.76E-03	5.19E-04
7200.	0 6.90E-03	3.59E-03		7200.0	8.13E-03	4.23E-03	

Table C-23 (Continued)

TIME	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSILE
SEC.	HORIZONTAL	STRAIN	CREEP	SEC.	HORIZONTAL	STRAIN	CREEP
	DEFORMATION	' IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANCE
	IN		IN ² /LB		IN		IN ² /LB
	FINA AC-10	+ 3% KRATO	DN D1101		FINA AC-10	+ 3% KRAT	DN D1101
!E	ST TEMP = 90	, ZIGMA =	0.8C1 PSI	15	ST TEMP = 90	, ZIGMA =	0.811 PSI
1.0	5.50E-05	2.86E-05	1.79E-05	1.0	8.00E-05	4.16E-05	2.57E-05
1.8	8.25E-05	4.29E-05	2.68E-05	1.8	1.15E-04	5.98E-05	3.69E-05
3.2	1.02E-04	5.285-05	3.30E-05	3.2	1.50E-04	7.805-05	4.815-05
5.6	1.50E-04	7.80E-05	4.87E-05	5.6	2.05E-04	1.07E-04	6.57E-05
10.0	1.902-04	9.88E-05	6.17E-05	10.0	2.55E-04	1.33E-04	8.18E-05
18.0	2.54E-04	1.32E-04	8.23E-05	18.0	3.COE-04	1.56E-04	9.62E-05
31.6	3.25E-04	1.69E-04	1.06E-04	31.6	3.75E-04	1.95E-04	1.20E-04
56.2	4.05E-04	2.11E-04	1.31E-04	56.2	4.70E-04	2.44E-04	1.51E-04
100.0	5.13E-04	2.67E-04	1.665-04	100.0	5.95E-04	3.09E-04	1.91E-04
177.8	6.40E-04	3.33E-04	2.08E-04	177.8	7.25E-04	3.77E-04	2.32E-04
316.2	8.15E-04	4.24E-04	2.65E-04	316.2	8.75E-04	4.55E-04	2.81E-04
562.3	1.00E-03	5.20E-04	3.25E-04	562.3	1.03E-03	5.33E-04	3.29E-04
1000.0	1.20E-03	6.24E-04	3.90E-04	1000.0	1.185-03	6.11E-04	3.77E-0
1778.3	1.41E-03	7.33E-04	4.58E-04	1778.3	1.35E-03	7.00E-04	4.31E-04
3162 . 3	- 1.67E-03	8.665-04	5.415-04	3162.3	1.53E-03	7.935-04	4.89E-04
3600.0	1.73E-03	9.00E-04	5.62E-04	3600.0	1.58E-03	8.19E-04	5.05E-04
7200.0	1.625-03	8.435-04		7200.0	1.54E-03	7.98E-04	
	FINA AC-10	+ 6% KRAT	ON D1101		FINA AC-10	+ 6% KRAT	CN D1101
TE	ST TEMP = 60	, ZIGMA =	7.433 PSI	TE	ST TEMP = 60	, ZIGMA =	7.430 PSI
1.0	2.20E-04	1.14E-04	7.70E-06	1.0	2.50E-04	1.30E-04	8.75E-0
1.8	3.10E-04	1.61E-04	1.08E-05	1.8	3.65E-04	1.90E-04	1.28E-0
3.2	3.70E-04	1.92E-04	1.29E-05	3.2	4.50E-04	2.34E-04	1.58E-0
5.6	5.45E-04	2.83E-04	1.91E-05	5.6	6.35E-C4	3.305-04	2.22E-0
10.0	6.85E-04	3.56E-04	2.40E-05	10.0	7.80E-04	4.065-04	2.73E-0
18.0	9.25E-04	4.81E-04	3.245-05	18.0	1.05E-03	5.44E-04	3.66E-0
31.6	1.22E-03	6.35E-04	4.275-05	31.6	1.41E-03	7.33E-04	4.94E-0
56.2	1.59E-03	8.27E-04	5.56E-05	56.2	1.79E-C3	9.315-04	6.27E-0
100.0	2.125-03	1.10E-03	7.405-05	100.0	2.28E-03	1.19E-03	7.98E-C
177.8	2.69E-03	1.40E-03	9.39E-05	177.8	2.88E-03	1.50E-03	1.01E-0
315.2	2 3.40E-03	1.775-03	1.19E-04	316.2	3.525-03	1.83E-03	1.235-0
562.3	4.39E-03	2.28E-03	1.54E-04	562.3	4.35E-03	2.26E-03	1.52E-04
1000.0	5.485-03	2.85E-03	1.92E-04	1000.0	5.335-03	2.775-03	1.875-0
1778.3	6.78E-03	3.52E-03	2.375-04	1778.3	6.43E-03	3.345-03	2.25E-04
3162.3	8.265-03	4.30E-03	2.89E-04	3152.3	7.685-03	3.995-03	2.69E-04
3600.0	8.63E-03	4.495-03	3.025-04	3500.0	8.04E-03	4.18E-03	2.81E-04
7200.0	6.80E-03	3.545-03		7200.0	6.77E-03	3.525-03	

Table C-23 (Continued)

TIME	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSILE
SEC.	HORIZONTAL	STRAIN	CREEP	SEC.	HORIZONTAL	STRAIN	CREEP
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANCE
	IN		IN^2/LB		IN		IN^2/LB
	•				•		
	FINA AC-10	+ 6% KRAT	ON D1101		FINA AC-10	+ 5% KRATI	CN D1101
T	EST TEMP = 77	, ZIGMA =	3.208 PSI	TES	ST TEMP = 77	, ZIGMA =	3.311 PSI
	••••••••••						
1.	0 3.50E-04	1.825-04	2.84E-05	1.0	2.25E-04	1.17E-04	1.775-05
1.	8 5.00E-04	2.60E-04	4.05E-05	1.8	3.25E-04	1.69E-04	2.55E-05
3.	2 6.35E-04	3.30E-C4	5.15E-05	3.2	4.65E-C4	2.425-04	3.65E-05
5.	6 8.85E-04	4.60E-04	7.17E-05	5.6	6.75E-04	3.51E-04	5.30E-05
10.	0 1.14E-03	5.90E-04	9.20E-05	10.0	8.60E-04	4.47E-04	6.75E-05
18.	0 1.51E-03	7.85E-04	1.22E-04	18.0	1.14E-03	5.93E-04	8.95E-05
31.	6 1.87E-03	9.73E-04	1.52E-04	31.6	1.49E-03	7.725-04	1.17E-04
56.	Z 2.26E-03	1.18E-03	1.83E-04	56.2	1.88E-03	9.75E-04	1.47E-04
100.	0 2.85E-03	1.48E-03	2.31E-04	100.0	2.37E-03	1.235-03	1.86E-04
177.	8 3.45E-03	1.79E-03	2.90E-04	177.8	2.92E-03	1.525-03	2.29E-04
316.	2 4.03E-03	2.10E-03	3.27E-04	316.2	3.70E-03	1.925-03	2.91E-04
562.	3 4.73E-03	2.46E-03	3.83E-04	562.3	4.68E-03	2.435-03	3.675-04
1000.	0 5.535-03	2.87E-03	4.48E-04	1000.0	5.605-03	2.915-03	4.405-04
1778.	3 6.52E-03	3.39E-03	5.28E-04	1778.3	6.65E-03	3.465-03	5.22E-04
3152.	3 7.685-03	3.995-03	6.225-04	3162.3	7.505-03	3.905- 0 3	— 5.89E-C4
3600.	0 7.95E-03	4.135-03	6.44E-04	3600.0	7.85E-03	4.085-03	6.17E-04
7200.	0 6.88E-03	3.58E-03		7200.0	7.00E-03	3.645-03	
	FINA AC-10	+ 5% KRAT	ON D1101		FINA AC-10	+ 6% KRAT	CN 01101
Ī	EST TEMP = 90	, ZIGMA =	0.801 P5I	E	ST TEMP = 90	, ZIGMA =	0.818 PSI
1	0 1.35F-04	7.02E-05	4 38F-05	1 0	1 70F-04	8 84F-05	5 405-05
1.	8 1.90E-04	9.88E-05	6.17E-05	1.8	2.10E-04	1.09E-04	6.68E-05
3.	2 2.50E-04	1.30E-04	8.12E-05	3.2	2.45F-04	1.275-04	7.79E-05
5.	6 3.40E-04	1.77E-04	1.10E-04	5.6	3.10E-04	1.615-04	9.86E-05
10.	0 4.35E-04	2.265-04	1.415-04	10.0	3.58E-04	1 865-04	1.14E-04
18.	0 5.60E-04	2.91E-04	1.825-04	18.0	4.18E-04	2 175-04	1.33E-04
31.	6 6.90E-04	3.59E-04	2.24E-04	31.6	5.25E-04	2.735-04	1.675-04
56	2 8.38E-04	4.36E-04	2.72E-04	56.2	5.85E-04	3.045-04	1.86E-04
100.	0 1.01E-03	5.25E-04	3.28E-04	100.0	8.00E-04	4.16E-04	2.54E-04
177	8 1.23E-03	6.37E-04	3.98E-04	177 8	9.50E-04	4.94F-04	3.02F-04
316	2 1.44F-03	7.49F-04	4.68F-04	316.2	1 095-02	5 645-04	3 45F-04
540.	3 1 675-03	8 645-04	5 A1F-04	542 2	1 155-03	5 985-04	3 66F-04
1000	0 1 875-03	9 725-04	6 07F-04	1000 0	1 285-02	L L25-04	4 05F-04
1770	2 2 125-02	1 105-01	6 875-04	1778 3	1 445-03	7 205-04	4.0JE-04
2162	3 2.126-03	1.100-03	7 605-04	21/0.3	1 605-03	Q 745-04	5 345-04
3400	0 2 395-03	1 24F-03	7 745-04	3600 0	1.072-03	0 125-04	5.500-04
JOUU. 7200	V 2.37E-V3	1.240-03	/./45-V4	JOCU.U	1 405-03	9 705-04	5.002-04
/200.	2.235-03	1.101-03		/200.0	1.096-03	0./91-04	

TIME	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSILE
521.	HUKIZUNIAL	SIKAIN		SEC.	MUKIZUNIAL	SIKAIN	
	DEFURNALIUN	18/18	LUNPLIANCE		DEFURNATION	18718	LUMPLIANUE
	14		IN 27LB		IN		18 2713
	FINA AC-1	0 + 3% ST	YRELF		FINA AC-1	0 + 3% ST	YRELF
16	SI IEMP = 60	, ZIGMA =	10.073 P51	15	ST IEMP = 60 	, ZIGMA =	10.155 P5:
1.0	1.50E-04	7.805-05	3.87E-06	1	1.50E-04	7.80E-05	3.84E-06
1.9	1.75E-04	9.10E-05	4.52E-06	1.8	1.55E-04	8.06E-05	3.97E-06
3.2	2.00E-04	1.045-04	5.16E-06	3.2	1.60E-04	8.32E-05	4.10E-06
5.6	2.40E-04	1.25E-04	6.20E-06	5.6	1.65E-04	8.58E-05	4.23E-06
10.0	3.00E-04	1.56E-04	7.75E-06	10	1.75E-04	9.10E-05	4.48E-06
18.0	4.05E-04	2.11E-04	1.05E-05	18	1.90E-04	9.88E-05	4.87E-06
31.6	5.30E-04	2.76E-04	1.37E-05	31.6	2.30E-04	1.20E-04	5.89E-06
56.2	6.B0E-04	3.54E-04	1.76E-05	56.2	2.50E-04	1.30E-04	6.40E-06
100.0	8.05E-04	4.195-04	2.08E-05	100.0	3.305-04	1.72E-04	8.45E-06
177.8	9.70E-04	5.04E-04	2.50E-05	177.8	4.65E-04	2.425-04	1.19E-05
316.2	1.22E-03	6.32E-04	3.14E-05	316.2	6.85E-04	3.56E-04	1.75E-0
562.3	1.61E-03	8.37E-04	4.16E-05	562.3	1.00E-03	5.20E-04	2.56E-0
1000.0	2.035-03	1.06E-03	5.245-05	1000.0	1.32E-03	6.84E-04	3.372-0
1778.3	2.44E-03	1.27E-03	6.295-05	1778.3	1.74E-03	9.05E-04	4.46E-0
3162.3	2.95E-03	1.53E-03	7.62E-05	3162.3	2.15E-03	1.12E-03	5.51E-0
3600.0	3.10E-03	1.61E-03	8.00E-05	3600.0	2.25E-03	1.17E-03	5.76E-0
7200.0	1.95E-03	1.01E-03		7200.0	1.00E-03	5.20E-04	
	FINA AC-1	10 + 3% ST	YRELF		FINA AC-1	10 + 3% ST	YRELF
TE	IST TEMP = 77	, ZIGMA =	5.372 PSI	TE	ST TEMP = 77	, ZIGMA =	5.372 PS
- 1.0	2.20E-04	1.14E-04	1.06E-05	-	3.35E-04	1.745-04	1.62E-0
1.8	3.15E-04	1.64E-04	1.52E-05	1 8	4.45E-04	2.31E-04	2.15E-0
3.2	4.10E-04	2.13E-04	1.985-05	3.2	5.60E-04	2.91E-04	2.71E-0
5.6	5.10E-04	2.65E-04	2.475-05	5.6	7.00E-04	3.64E-04	3.39E-0
10.0	6.30E-04	3.28E-04	3.05E-05	10	8.90E-04	4.63E-04	4.31E-0
18.0	7.98E-04	4.15E-04	3.862-05	18	1.17E-03	6.09E-04	5.66E-0
31.6	1.012-03	5.255-04	4.895-05	31.6	1.485-03	7.705-04	7.16E-0
56.2	1.30E-03	6.74E-04	6.275-05	56.2	1.85E-03	9.625-04	8.96E-0
100.0) 1.69E-03	8.765-04	8.165-05	100.0	2.285-03	1.185-03	1.10E-0
177.8	2.05E-03	1.06E-03	9.90E-05	177.8	2.775-03	1.445-03	1.34E-0
316.2	2.50E-03	1.30E-03	1.21E-04	316.2	3.34E-03	1.73E-03	1.61E-0
562.3	3.125-03	1.62E-03	1.515-04	562.3	3.95E-03	2.05E-03	1.91E-0
1000 0	3.87E-03	2.01E-03	1.875-04	1000.0	4.855-03	2.52E-03	2.35E-0
1778 1	4.75E-03	2.475-03	2.305-04	1778 3	6.09E-03	3.16E-03	2.95E-0
3162 1	3 5.95E-03	3.09E-03	2.885-04	3:62 3	7.805-03	4.065-03	3.785-0
3600 0	6.26F-03	3 255-03	3.03F-04	3600 0	8.355-03	4.345-03	4.045-0
3000.0	0.202 03		ATANF AA	7200.0	4 915-02	2 545-03	4.04L V

 Table C-24
 Creep Compliance of Plant Mixed / Laboratory Compacted Mixtures Using Modified Compaction.

-

-

Table C-24 (Continued)

TIME	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSILE
SEC.	HORIZONTAL	STRAIN	CREEP	SEC.	HORIZONTAL	STRAIN	CREEP
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANCE
	IN		IN ² /LB		IN	•••••	IN ² /LB
	FINA AC-1	10 + 3% ST	YRELF		FINA AC-1	0 + 3% 57	RELF
TES	ST TEMP = 90	, ZIGMA =	1.523 P\$I	TES	ST TEMP = 90	, ZIGMA =	1.574 PSI
1.0	1.55E-04	8.06E-05	2.65E-0S	1	1.00E-04	5.20E-05	1.65E-05
1.8	2.10E-04	1.09E-04	3.59E-05	1.8	1.30E+04	6.76E-05	2.15E-05
3.2	2.65E-04	1.38E-04	4.52E-05	3.2	1.65E-04	8.58E-05	2.735-05
5.6	3.50E-04	1.82E-04	5.98E-05	5.6	2.25E-04	1.17E-04	3.725-05
10.0	4.50E-04	2.34E-04	7.68E-05	10	2.95E-04	1.53E-04	4.87E-05
18.0	5.75E-04	2.99E-04	9.82E-05	18	3.75E-04	1.95E-04	6.20E-05
31.6	7.00E-04	3.64E-04	1.20E-04	31.6	5.00E-04	2.60E-04	8.265-05
56.2	8.50E-04	4.42E-04	1.45E-04	56.2	6.15E-04	3.205-04	1.025-04
100.0	1.01E-03	5.25E-04	1.725-04	100.0	7.8CE-04	4.06E-04	1.295-04
177.8	1.18E-03	6.14E-04	2.01E-04	177.8	9.85E-04	5.125-04	1.635-04
316.2	1.35E-03	7.025-04	2.315-04	316.2	1.245-03	6.45E-04	2.055-04
562.3	1.53E-03	7.935-04	2.60E-04	562.3	1.53E-03	7.96E-04	2.532-04
1000.0	1.705-03	8.84E-04	2.905-04	1000.0	1.835-03	9.525-04	3.025-04
1778.3	1.93E-03	1.00E-03	3.30E-04	1778.3	2.20E-03	1.14E-03	3.63E-04
3162.3	2.40E-03	1.25E-03	4.105-04	3162.3	2.745-03	1.425-03	4.525-04
3600.0	2.505-03	1.30E-03	4.272-04	3600.0	2.87E-03	1.495-03	4.745-04
7200.0	2.10E-03	1.09E-03		7200.0	2.44E-03	1.27E-03	
	FINA AC-10	3% KRATC	N D1101		FINA AC-10	33 KRATC	V D1101
TES	ST TEMP = 60	, ZIGMA =	7.496 PSI	TES	ST TEMP = 60	, ZIGMA =	10.143 PSI
1.0	1.45E-04	7.54E-05	5.03E-06	1	2.00E-04	1.045-04	5.13E-06
1.8	1.70E-04	8.84E-05	5.90E-06	1.8	2.30E-04	1.20E-04	5.90E-06
3.2	2.055-04	1.07E-04	7.11E-06	3.2	2.65E-04	1.385-04	6.79E-06
5.6	2.40E-04	1.25E-04	8.33E-06	5.6	2.95E-04	1.53E-04	7.56E-06
10.0	2.80E-04	1.46E-04	9.71E-06	10	3.605-04	1.87E-04	9.23E-06
18.0	3.30E-04	1.72E-04	1.14E-05	18	4.30E-04	2.24E-04	1.10E-05
31.6	3.80E-04	1.98E-04	1.32E-05	31.6	5.70E-04	2.96E-04	1.465-05
56.2	4.30E-04	2.24E-04	1.49E-05	56.2	7.10E-04	3.69E-04	1.82E-05
100.0	5.30E-04	2.76E-04	1.84E-05	100.0	9.15E-04	4.762-04	2.35E-05
177.8	6.8CE-04	3.54E-04	2.36E-05	177.8	1.21E-03	6.295-04	3.105-05
316.2	8.60E-04	4.47E-04	2.98E-05	316.2	1.55E-03	8.06E-04	3.975-05
562.3	1.15E-03	5.96E-04	3.97E-05	562.3	2.08E-03	1.08E-03	5.32E-05
1000.0	1.44E-03	7.46E-04	4.985-05	1000.0	2.73E-03	1.42E-03	6.99E-05
1778.3	1.74E-03	9.02E-04	6.02E-05	1778.3	3.38E-03	1.76E-03	8.672-05
3162.3	2.14E-03	1.11E-03	7.42E-05	3152.3	4.265-03	2.225-03	1.095-04
3600.0	2.25E-03	1.17E-03	7.81E-05	3600.0	4.47E-03	2.325-03	1.145-04
7200.0	1.23E-03	6.37E-04		7200.0	3.045-03	1.585-03	

Table C-24 (Continued)

TIME	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSILE
SEC.	HORIZONTAL	STRAIN	CREEP	SEC.	HORIZONTAL	STRAIN	CREEP
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANCE
	IN		IN ² /LB		IN		IN^2/LB
	FINA AC-10	+ 3% KRATC	N D1101		FINA AC-10	3% KRATO	N D1101
TE	ST TEMP = 77	, ZIGMA =	5.496 PSI	TES	T TEMP = 77	, ZIGMA =	5.347 P5I
1.0	1.90E-04	9.88E-05	8.99E-06		3.00E-04	1.56E-04	1.46E-05
1.8	2.60E-04	1.35E-04	1.23E-05	1.8	4.00E-04	2.08E-04	1.95E-05
3.2	3.305-04	1.72E-04	1.56E-05	3.2	5.002-04	2.60E-04	2.432-05
5.6	4.40E-04	2.29E-04	2.08E-05	5.6	6.00E-04	3.12E-04	2.92E-05
10.0	6.35E-04	3.30E-04	3.00E-05	10	7.15E-04	3.72E-04	3.48E-05
18.0	8.10E-04	4.21E-04	3.83E-05	18	9.45E-04	4.91E-04	4.60E-05
31.6	1.10E-03	5.72E-04	5.20E-05	31.6	1.25E-03	6.48E-04	6.06E-05
56.2	1.50E-03	7.80E-04	7.10E-05	56.2	1.57E-03	8.14E-04	7.61E-05
100.0	1.96E-03	1.02E-03	9.27E-05	100.0	1.94E-03	1.01E-03	9.415-05
177.8	2.45E-03	1.27E-03	1.16E-04	177.8	2.45E-03	1.27E-03	1.19E-04
316.2	3.19E-03	1.66E-03	1.515-04	316.2	3.13E-03	1.63E-03	1.52E-04
562.3	4.09E-03	2.13E-03	1.94E-04	562.3	4.10E-03	2.13E-03	1.99E-04
1000.0	5.33E-03	2.77E-03	2.52E-04	1000.0	5.19E-03	2.70E-03	2.52E-04
1778.3	7.02E-03	3.65E-03	3.322-04	1778.3	6.69E-03	3.48E-03	3.25E-04
3162.3	9.55E-03	4.97E-03	4.52E-04	3162.3	8.795-03	4.57E-03	4.27E-C4
3600.0	1.03E-02	5.33E-03	4.85E-04	3600.0	9.39E-03	4.88E-03	4.56E-04
7200.0	8.465-03	4.405-03		7200.0	7.56E-03	3.93E-03	
	ETNA AC-10	+ 35 40470	N 01101		ETNA AC-10 -		N 01101
TF	ST TEND = 90	7TGNA =	1 610 PST	TEC	T TEND = 90	71644 =	1 595 DST
						, L L UIIN -	
1.0	9.00E-05	4.68E-05	1.45E-05	1	1.10E-04	5.72E-05	1.79E-05
1.9	1.20E-04	6.24E-05	1.94E-05	1.8	1.55E-04	8.06E-05	2.53E-05
3.2	1.55E-04	8.065-05	2.50E-05	3.2	2.005-04	1.04E-04	3.26E-05
5.6	2.05E-04	1.07E-04	3.315-05	5.5	2.855-04	1.48E-04	4.65E-05
10.0	2.58E-04	1.34E-04	4.16E-05	10	4.00E-04	2.08E-04	6.52E-05
18.0	3.335-04	1.73E-04	5.37E-05	18	5.15E-04	2.68E-04	8.40E-05
31.6	4.40E-04	2.295-04	7.11E-05	31.6	6.50E-C4	3.38E-C4	1.06E-04
56.2	2 5.305-04	2.76E-04	8.565-05	56.2	8.502-04	4.425-04	1.395-04
100.0	6.405-04	3.335-04	1.03E-04	100.0	1.09E-03	5.67E-04	1.785-04
177.8	7.45E-04	3.875-04	1.20E-C4	177.8	1.47E-03	7.65E-04	2.40E-04
316.2	8.505-04	4.425-04	1.375-04	316.2	1.83E-C3	9.495-04	2.985-04
				562.3	2.09E-03	1.08E-03	3.40E-04
				1000.0	2.35E-03	1.225-03	3.835-04
				1778.3	2.76E-03	1.44E-03	4.505-04
				3162.3	3.385-03	1.765-03	5.51E-04
				3600.0	3.55E-03	1.85E-03	5.79E-04
				7200.0	3.045-03	1.585-03	

Table C-24 (Continued)

TIME	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSILE
SEC.	HORIZONTAL	STRAIN	CREEP	SEC.	HORIZONTAL	STRAIN	CREEP
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANCE
	IN		IN^2/LB		IN		IN^2/LB
	FINA AC-10 +	63 KRATO	N D1101		FINA AC-10 +	63 KRATO	N 01101
TE	ST TEMP = 60	, ZIGMA =	10.575 PSI	TES	ST TEMP = 60	, ZIGMA =	10.158 PSI
1.0	2.35E-04	1.22E-04	5.78E-06	1	1.20E-04	6.24E-05	3.07E-06
1.8	3 2.80E-04	1.46E-04	6.89E-06	1.8	2.05E-04	1.07E-04	5.25E-06
3.2	2 3.70E-04	1.92E-04	9.10E-06	3.2	3.25E-04	1.695-04	8.32E-06
5.6	6 4.95E-04	2.57E-04	1.22E-05	5.6	4.75E-C4	2.475-04	1.22E-05
10.0) 6.65E-04	3.46E-04	1.64E-05	10	5.75E-04	2.99E-04	1.47E-05
18.0) 8.75E-04	4.55E-04	2.15E-05	18	6.65E-04	3.46E-04	1.70E-05
31.6	5 1.16E-03	6.01E-04	2.84E-05	31.6	7.505-04	3.90E-04	1.92E-05
56.2	2 1.46E-03	7.57E-04	3.58E-05	56.2	8.60E-04	4.47E-04	2.20E-05
100.0) 1.67E-03	8.66E-04	4.09E-05	100.0	1.06E-03	5.51E-04	2.715-05
177.8	8 2.035-03	1.06E-03	4.99E-05	177.8	1.265-03	6.53E-04	3.215-05
316.2	2.495-03	1.305-03	6.12E-05	316.2	1.575-03	8.175-04	4.025-05
562.3	3.04E-03	1.58E-03	7.46E-05	562.3	2.00E-03	1.045-03	5.12E-05
1000.0) 3.645-03	1.895-03	8.955-05	1000.0	2.47E-03	1.285-03	6.325-05
1778.3	8 4.44E-C3	2.315-03	1.09E-04	1779.3	3.235-03	1.685-03	8.275-05
3162.3	5.365-03	2.795-03	1.325-04	3162.3	4.085-03	2.125-03	1.045-04
3600.0) 5.59E-03	2.91E-03	1.37E-04	3600.0	4.26E-03	2.22E-03	1.09E-04
7200.0	3.55E-03	1.85E-03		7200.0	2.15E-03	1.12E-03	
	FINA AC-10 +	63 KRATO	N 01101		FINA AC-10	- 6% KRATO	N D1101
TE	IST TEMP = 77	, ZIGMA =	5.370 PSI	TE	ST TEMP = 77	, ZIGMA =	5.485 PSI
1.0	4.1CE-04	2.13E-04	1.275-05	1	6.50E-04	3.39E-04	1.99E-05
1.8	5.50E-04	2.86E-04	1.71E-05	1.8	8.65E-04	4.50E-04	2.65E-05
3.2	6.30E-C4	3.28E-04	1.96E-05	3.2	1.02E-03	5.31E-04	3.13E-05
5.6	5 7.10E-04	3.69E-04	2.21E-05	5.6	1.215-03	6.29E-04	3.715-05
10.0	7.60E-04	3.95E-04	2.36E-05	10	1.495-03	7.752-04	4.572-05
18.0	8.55E-04	4.45E-04	2.66E-05	18	1.79E-03	9.28E-04	5.47E-05
31.6	5 1.04E-03	5.38E-04	3.22E-05	31.6	1.98E-03	1.03E-03	6.052-05
56.2	2 1.23E-03	6.40E-04	3.825-05	56.2	2.33E-03	1.21E-03	7.13E-05
100.0	1.48E-03	7.70E-04	4.602-05	100.0	2.725-03	1.415-03	8.345-05
177.8	3 1.82E-03	9.44E-04	5.645-05	177.8	3.19E-03	1.66E-03	9.78E-05
316.2	2 2.18E-03	1.13E-03	6.765-05	316.2	3.605-03	1.87E-03	1.105-04
562.3	3 2.58E-03	1.34E-03	8.00E-05	562.3	4.15E-03	2.16E-03	1.275-04
1000.0	3.05E-03	1.59E-03	9.485-05	1000.0	4.852-03	2.525-03	1.49E-04
1778.3	3 3.71E-03	1.93E-03	1.15E-04	1778.3	6.01E-03	3.13E-03	1.84E-04
3162	3 4.625-03	2.405-03	1.445-04	3162.3	7.285-03	3.795-03	2.235-04
3600.0	4.855-03	2.525-03	1.51E-04	3600.0	7.595-03	2.945-03	2.325-04
7200	2.555-03	1.335-03		7200.0	5.35E-03	2.785-03	

Table C-24 (Continued)

TINE	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSILE
SEC.	HORIZONTAL	STRAIN	CREEP	SEC.	HORIZONTAL	STRAIN	CREEP
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANCE
	IN	•	IN^2/LB		IN	••	IN^2/LB
<u>`</u>	FT114 40 40						
-	FINA AC-10	63 KRAICI	N 01101		FINA AC-10	62 KRAID	N D1101
11	SI IEMP = 90	, ZIGMA =	1.683 P51	TES	ST TEMP = 90	, ZIGMA =	1.609 PSI
1.0	0 1.50E-04	7.80E-05	2.325-05	1	8.50E-05	4.42E-05	1.37E-05
1.8	B 2.03E-04	1.05E-04	3.13E-05	1.8	1.35E-04	7.02E-05	2.19E-05
3.2	2 2.30E-04	1.20E-04	3.55E-05	3.2	1.955-04	1.01E-04	3.155-05
5.6	5 2.8CE-04	1.46E-04	4.33E-05	5.6	2.50E-04	1.30E-04	4.04E-05
10.0	3.60E-04	1.87E-04	5.56E-05	10	2.95E-04	1.53E-04	4.775-05
18.0	4.60E-04	2.39E-04	7.11E-05	18	3.38E-04	1.76E-04	5.45E-05
31.6	5.80E-04	3.02E-04	8.96E-05	31.6	3.98E-04	2.07E-04	6.42E-05
56.2	2 7.40E-04	3.85E-04	1.14E-04	56.2	4.60E-04	2.39E-04	7.43E-05
100.0	8.60E-04	4.47E-04	1.33E-04	100.0	5.20E-04	2.705-04	8.40E-05
177.8	9.40E-04	4.89E-04	1.45E-04	177.8	5.75E-04	2.99E-04	9.29E-05
316.3	2 1.015-03	5.255-04	1.56E-04	316.2	6.60E-04	3.43E-04	1.07E-04
562.3	3 1.08E-03	5.622-04	1.67E-04	562.3	7.38E-04	3.84E-04	1.19E-04
1000.0	0 1.20E-C3	6.225-04	1.85E-04	1000.0	8.45E-04	4.39E-04	1.37E-04
1778.3	3 1.34E-03	6.94E-04	2.06E-04	1778.3	1.00E-03	5.20E-04	1.625-04
3162.3	3 1.485-03	7.67E-04	2.285-04	3162.3	1.225-03	6.35E-04	1.97E-04
3600.0	0 1.53E-03	7.965-04	2.36E-04	3600.0	1.27E-03	6.61E-04	2.05E-04
7200.0	0 1.115-03	5.75E-04		7200.0	8.705-04	4.525-04	

		Dry Con	dition	Wet Co	ndition	
MIXTURE	TEST TEMP. F	AIR VOIDS	TENSILE STRENGTH PSI	AIR VOIDS	TENSILE STRENGTH PSI	TSR
Control: Shamrock AC-20	77	7.6 7.5 7.1	91 89 84	6.9 7.1 7.6	79 81 85	
	AVG	. 7.4	88	7.2	82	0.93
Fina AC-10 + 3% Styrelf	77	7.0 6.1 6.8	125 133 112	6.4 6.5 7.1	120 112 115	
	AVG	. 6.6	123	6.7	116	0.94
Fina AC-10 + 3% D1101	77	6.9 7.5 7.0	98 101 96	6.9 7.4 7.5	100 88 92	
	AVG	. 7.1	98	7.3	93	0.95
Fina AC-10 + 6% D1101	77	7.0 7.1 7.0	80 72 87	6.6 7.0 7.0	88 77 69	
2	AVG	. 7.0	80	6.9	78	0.98

Table C-25 Moisture Sensitivity Test Results for Laboratory Mixed/Laboratory Compacted Mixtures Using Modified Compaction.

1

Table C-26 Moisture Sensitivity Test Results for Plant Mixed/Laboratory Compacted Mixtures Using Modified Compaction.

		Dry Con	dition	Wet Co	ndition	
MIXTURE	TEST TEMP. F	AIR VOIDS	TENSILE STRENGTH PSI	AIR VOIDS	TENSILE STRENGTH PSI	TSR
Fina AC-10 + 3% Styrelf	77	7.7 7.6 7.7	141 124 140	7.5 7.2 7.6	139 110 141	
Fina AC-10 + 3% D1101	AVG. 77	7.0 7.1 6.8	135 121 118 115	7.4 6.8 6.9 6.8	130 118 116 120	0.96
	AVG .	7.0	118	6.8	118	1.00
Fina AC-10 + 6% D1101	77	6.5 6.8 6.8	116 121 111	6.6 6.4 6.5	108 118 114	
	AVG	6.7	116	6.5	113	0.98

Combined Gradation	SDHPT Specification	Styrelf AC=4.94	3% Kraton AC=5.08	6% Kraton AC=4.89
0.0	0			
6.5	0-15	6.8	6.7	6.5
30.2	21-53	29.9	29.5	30.5
21.4	11-32	22.5	20.9	20.8
58.1	54-74	59.2	57.1	57.8
24.7	6-32	23.4	25.2	25.0
8.2	4-27	8.5	8.3	8.4
5.6	3-27	5.7	5.9	5.7
3.4	1-8	3.2	3.5	3.1
100.0		100.0	100.0	100.0

Table C-27 AGGREGATE GRADATION OF EXTRACTED CORES (DISTRICT 25)

51% Jarrett Pit Coarse 49% Jarrett Pit Screenings

NOTE: All sections contain 1% lime

Fig C-1 Schematic Illustration of Field Test Sections.

Fig C-2 Aggregate gradation Chart

.

•

Fig C-3 Penetration at 39 F for Unmodified Shamrock and Modified Fina Binders

Fig C-5 Retained Penetration at 77 F for Unmodified Shamrock and Modified Fina Binders

Fig C-9 Viscosity Ratio at 275 F for Unmodified Shamrock and Modified Fina Binders

Fig C-10 Softening Point for Unmodified Shamrock and Modified Fina Binders

Fig C-13 Stiffness Modulus for Unmodified Shamrock and Modified Fina Binders.

Fig C—15 Asphalt Madulus at 39 F for Unmodified Shamrock and Modified Fina Binders

9

39

ч

ą

Unmodified

Fina

Binde

Fig

8

Fig C-30 Shear Susceptibility vs. Test Temperature for Unmodified Shamrock and Modified Fina Binders.

Fig C-31 Constant Power Viscosity for Unmodified and Modified Fina Binders.

-

.

Fig C-32 Constant Power Viscosity vs. Test Temperature for Unmodified Fina Binders.

Fig C-33 Marshall Stability for Laboratory Mixtures Using Standard Compaction.

Fig C-34 Marshall Flow for Laboratory Mixtures Using Standard Compaction.

Fig C-35 Hveem Stability for Laboratory Mixtures Using Standard Compaction.

Fig C-36 Tensile Strength vs. Test Temperature for Laboratory Mixtures Using Standard Compaction.

Mixtures Using Standard Compaction.

Fig C-40 Marshall Stability for Laboratory Mixtures Using Modified Compaction.

Fig C-41 Marshall Flow for Laboratory Mixtures Using Modified Compaction.

Fig C-42 Hveen Stability for Laboratory Mixtures Using Modified Compaction.

Fig C-45 Secant Modulus vs Test Temperature for Laboratory Mixtures Using Modified Compaction.

Fig C-46 Resilient Modulus vs Test Temperature for Laboratory Mixtures Using Modified Compaction.

Fig C-47 Alpha Values for Laboratory Mixtures Using Modified Compaction.

Fig C-48 Gnu Values for Laboratory Mixtures Using Modified Compaction.

for Laboratory Mixtures Using Modified Compaction.

Fig C-50 Creep Compliance Curves at 60 F for Laboratory Mixtures Using Modified Compaction.

Fig C-52 Creep Compliance at 90 F for Laboratory Mixtures Using Modified Compaction.

í

APPENDIX D

PRESENTATION OF TEST RESULTS - DISTRICT 10

APPENDIX D PRESENTATION OF TEST RESULTS - DISTRICT 10

The objectives of Appendix D are twofold: (1) to describe the site-specific field operations of the test sections along with a description of the materials, polymers, and construction techniques used for this field project, and (2) to present the laboratory test results of the unmodified and modified binders and laboratory mixed and plant mixed mixtures for the experimental field study in District 10 of the Texas Department Transportation (TxDOT).

EXPERIMENTAL FIELD PROGRAM

The test pavements were constructed on US 69 in Smith County, Texas, in July 1990, and involved pavement overlay of two lanes of the highway. The test sections are shown schematically in Figure D-1. Each test section was approximately two inches thick, twenty four feet wide, and 1000 feet long. A total of five test sections were constructed with four different polymers plus a control. Field construction was conducted by District 10 of the TxDOT and assisted by the Center for Transportation Research, the University of Texas at Austin. The average daily traffic (ADT) was estimated at 15500 vehicles for the test pavement.

MATERIALS

<u>ASPHALT CEMENT.</u> AC-10 asphalt cements were supplied by Gulf States Asphalt and Fina Oil & Chemical Co. and used for polymer-modified mixtures. An AC-20 asphalt cement supplied by Total Co. was used for the control test section.

<u>AGGREGATE.</u> Four aggregates, a type C limestone, a type D limestone, a limestone screening, and a field sand, were combined to produce the project gradation. Gradations of individual aggregates, the project gradation, percentage of each aggregate,

and the gradation specifications are given in Table D-1. The project gradation is plotted on a 0.45 power graph in Figure D-2.

<u>POLYMER.</u> Four polymers included in this field project consisted of one type of Styrene Butadiene Rubber (SBR), two types of Styrene block copolymer (SBS) and an Ethylene Vinyl Acetate (EVA). Sources of these polymers and designations used for this study are shown below.

SOURCE	<u>TYPE</u>	DESIGNATION
Goodyear	SBR	UP 70
Elf	SBS	Styrelf-13
Exxon	EVA	Polybilt 103
Shell	SBS	Kraton D1101

Blending of the asphalts and the polymers was performed by the polymer manufacturers or processors in the refinery or in a distributor truck. No polymer was introduced into the asphalt in-line injection system of the plant.

Ethylene Vinyl Acetate. The polybilt 103, a copolymer of Ethylene Vinyl Acetate (EVA), was obtained from Exxon Chemical Co. This polymer had a permanent polarity which was associated with the acetate group. The modified binder contained 97 percent Fina AC-10 and 3 percent polybilt 103.

Styrene Butadiene Rubber. One type of Styrene Butadiene Rubber, Ultra Pave 70, was included in this field project. The latex UP 70 was supplied by Textile Rubber and Chemical Co. The total amount of the UP 70 used in the Fina AC-10 was 3 percent.

<u>Styrene Butadiene Styrene.</u> The Styrelf-13 utilized was a triblock copolymer of Styrene and Butadiene. The Styrelf modified binder was blended by Elf Asphalt Co., Lubbock, Texas, for Fina

AC-10 at 3% Styrelf-13 by weight of total binder. The Kraton D1101 which consisted of a triblock copolymer of Styrene and Butadiene was obtained from Shell Development Co. The Blend of Gulf AC-10 was used at 3% Kraton D1101 by weight of total binder.

FIELD OPERATION

Approximately 600 tons of each mix were produced using a drum mix plant. Identical aggregates were utilized throughout the experiment. Two grades of asphalt cement, AC-10 and AC-20, were utilized. The Ultra Pave 70 (3 percent), Polybilt 103 (3 percent) and Styrelf-13 (3 percent) were blended with the Fina AC-10. The Kraton D1101 (3 percent) was preblended with the Gulf AC-10.

Mixing temperatures for the polybilt 103 and Styrelf-13 mixtures were 325°F, which was increased to 330°F for the UP 70 The control asphalt, Total AC-20, and the Kraton blend mixtures. were mixed at 315°F and 320°F, respectively. The initial breakdown compaction occurred between 250°F and 270°F, except for the Polybilt 103 mixtures. The polybilt modified mixtures were allowed to cool to between 200°F and 220°F before rolling, and at these temperatures the mixtures exhibited good handling characteristics. The Goodyear UP 70 modified mixture was noticeably stiffer than the other mixtures, and did not lay as smoothly. Compaction of each test section was achieved using a vibratory roller, a pneumatic roller and a steel wheel roller. Environmental conditions during construction were favorable, with early morning temperatures of approximately 65°F and afternoon temperatures of 85°F.

Twelve field cores were obtained from each test section soon after construction. These cores were approximately 4 inches in diameter and two inches in thickness. The field cores were transported to the Center for Transportation Research immediately after sampling.

PRESENTATION OF TEST RESULTS

Summaries of test results for the unmodified and modified binders are presented in Tables D-6 through D-8 and are plotted in Figures D-3 through D-14.

Summaries of test results for the unmodified and modified mixtures are presented in Tables D-9 through D-26 and are plotted in Figures D-16 through D-34.

	TY C CR. L	imestone	TY D CR. L	.imestone	Limest Screen	ings	Field	Sand		
	Sieve Analysis	30%	Sieve Analysis	35%	Sieve Analysis	15%	Sieve Analysis	20%	Combined Gradation	SDHPT Specification
7/8 to 5/8 in.	5.5	1.7	0.0	0.0	0.0	0.0	0.0	0.0	1.7	0
5/8 to 3/8 in	77.9	23.4	9.2	3.3	0.0	0.0	0.0	0.0	26.7	0-5
3/8 to No. 4	12.1	3.6	53.6	18.8	1.6	0.2	0.2	0.0	22.6	16-42
No. 4 to No. 10	1.6	0.5	29.9	10.5	9.7	1.5	0.2	0.0	12.5	11-37
Plus No. 10	97.1	29.2	92.7	32.6	11.3	1.7	0.4	0.0	63.5	54-72
No. 10 to No.40	1.0	0.3	5.5	1.8	63.3	9.5	0.4	0.2	11.8	6-32
No. 40 to No. 80	0.4	0.1	0.5	0.2	17.5	2.6	43.5	8.7	11.6	4-27
No. 80 to No. 200	0.7	0.2	0.7	0.2	5.5	0.8	51.2	10.2	11.4	3-27
Minus No. 200	0.8	0.2	0.6	0.2	2.4	0.4	4.5	0.9	1.7	1-8
Total	100.0	30.0	100.0	35.0	100.0	15.0	100.0	20.0	100.0	

Table D-1 AGGREGATE GRADATION (DISTRICT 10)

.

.

			Penetr	ation		Softening				
Binder		8efore	RTFOT	After RTFOT	Before	RTFOT	After	RTFOT	Before	
Asphalt	Polymer	39.2 F	77 F	77 F	140 F	275 F	140 F	275 F		
Total AC-10	-	2	2	2	2	2	2	2	2	
Fina AC-10	Goodyear UP 70	2	2	2	2	2	2	2	2	
Fina AC-10	Styrelf-13	2	2	2	2	2	2	2	2	
Exxon AC-10	Exxon Polybilt 103	2	2	2	2	2	2	2	2	
Gulf AC-10	Shell Kraton D110	2	2	2	2	2	2	2	2	

TABLE D-2 Experimental Testing Program for Unmodified and Polymer-Modified Asphalt Binders District 10

.

•

		Modified Compaction											Standard Compaction					
Binder		Resilient mod & Indirect Ten		modulus Tensile	Hveena 140F	veem Marshall 140F 140F	Creep			Fatique Stress levels		Moisture Resistance	Resilient modulus & Indirect Tensile		Hveem 140F	Marshall 140F		
Asphalt	Polymer	39F	Stren 77F	gth 104F			60F	77F	90F	15%	25%	50%		39F	Streng 77F	ith 104F		
Total AC-10		3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3 .
Fina AC-10	Goodyear UP 70	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3
Fina AC-10	Styrelf-13	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3
Exxon AC-10	Exxon Polybilt 103	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3
Gulf AC-10	Shell Kraton D1101	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3

TABLE D-3 Experimental Testing Program for Laboratory Compacted-Laboratory Nixed Mixtures District 10
						Modif	ied	Comp	actio	n					Stand	ard Co	pactio	n
Binder		Resil & Ind	ient irect	modulus Tensile	Hveem 140F	Marshall 140F		Cree e	р р	Str	Fatiqu ess le	e vels	Moisture Resistance	Resili & Indi	ent mo rect T	dulus ensile	Hveem 140F	Marshall 140F
Asphalt	Polymer	Strength				60F	77F	90F	15%	25%	252 503		Strength					
		39F	77F	104F										39F	77F	104F		
Total AC-10	-	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3
Fina AC-10	Goodyear UP 70	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3
Fina AC-10	Styrelf-13	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3
Exxon AC-10	Exxon Polybilt 103	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3
Gulf AC-10	Shell Kraton D1101	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	3	3

TABLE D-4 Experimental Testing Program for Laboratory Compacted-Plant Mixed Mixtures District 10

•

Binder		Resi	lient m	odulus	s Marshall		
		& Indi	irect T	ensile	140F		
Asphalt	Polymer	S	Strengt	h			
		39F	77F	104F			
Total AC-20	-	3	3	3	3		
TFA AC-10	Goodyear UP 70	3	3	3	3		
TFA AC-20	Styrelf-13	3	3	3	`3		
TFA AC-20	Polybilt 103	3	3	3	3		
TFA AC-10	Kraton D1101	3	3	3	3		

TABLE D-5 Experimental Testing Program for Field Cores. District 10

************************************	**********	********	=================			
		fina	Fina	Exxon	Gulf States	
Parameter	Total	AC-10	AC-10	AC-10	AC-10	
	AC-20	٤.	&	&	2	
		3% UP-70	3% Styrelf	3% Polybilt	3% Kraton	
************************************			***********		**********	
Penetration @ 39.2 f (25 C)	10	14	14	14	16	
100g, 5 Sec.	9	14	13	15	17	
Avg.	10	14	14	15	17	
Penetration a 77 F (4 C)	73	92	90	95	9 0	
100g, 5 Sec.	75	94	88	97	88	
Avg.	74	93	89	96	89	
Viscosity a 140 F (60 C)	2026	2245	2928	2340	3425	
Poises	2048	2500	2880	2410	3515	
Avg.	2037	2373	2904	2375	3470	
Viscosity @ 275 F (135 C)	508	634	750	635	788	
Centistokes	512	665	, 775	645	776	
Avg.	510	650	763	640	782	
Softening Point, F	128	129	135	140	147	
	127	130	134	141	146	
Avg.	128	130	135	141	147	
Penetration Index PI(Pen/Pen)	-0.23	0.14	0.30	0.28	1.06	
Penetration Index PI(Pen/SP)	0.62	1.60	2.10	3.07	3.48	
Penetration Viscosity Number	-0.22	0.47	0.67	0.49	0.71	
Stiffness Modulus @ 0.1 Sec						
39.2F	6525	2465	2175	2320	1600	
77F	29 0	174	181	218	232	
104F	36	37	31	31	35	
Stiffness/Temperature Slope	-0.063	-0.051	- 0. 051	-0.052	-0.046	
Penetration Ratio, 77 F	0.59	0.60	0.69	0.66	0.63	
Viscosity Ratio	2.36	2.17	2.55	2.45	2.10	
Kinematic Vicosity Ratio	1.80	1.45	1.44	1.94	1.35	

Table D-6 Unmodified and Modified Asphalt Properties before RTFOT.

Parameter	Total AC-20	Fina AC-10 & 3% UP-70	Fina AC-10 & 3% Styrelf	Exxon AC-10 & 3% Polybilt	Gulf States AC-10 & : 3% Kraton
Peretration $2.77 \in (4, f)$		 ۶۲			55
100g, 5 Sec.	45	57	62	63	57
A∨g.	44	56	61	63	56
Viscosity a 140 F (60 C)	4756	5120	7214	5718	7210
Poises	48 40	5160	7618	5920	7350
Avg.	4798	5140	7416	5819	7280
Viscosity @ 275 F (135 C)	910	925	1100	1220	1042
Centistokes	9 25	9 60	1095	1265	1068
Avg.	918	943	1098	1243	1055

Table D-7 Unmodified and Modified Asphalt Properties after RTFOT.

Binde	er	Cracking T	emperature
Asphalt	Polymer	Limiting Stiffness Method	Critical Stress Method
Total AC-20		-43	-44
Fina AC-10	Goodyear UP70	-54	-55
Fina AC-10	Styrelf13	-58	-57
Exxon AC-10	Polybilt 103	-66	-63
Gulf AC-10	3% kraton D1101	-68	-66

Table D-8 Summary of Predicted Cracking Temperatures for Unmodified and Modified Asphalt Binders (District 10)

1		AIR	HVEEN	AIR	MARSHALL	ALUES
MIXTURE		VOIDS	STABILITY	VOIDS	STABILITY	FLOW
1	ļ	x	×	X	lbs	.01 in
Control: Total AC-20	·! 	7.1		6.7	529	12.0
1	Î.	6.7	33	7.1	459	9.5
l	ļ	6.8	37	6.8	491	11.0
· · · · · · · · · · · · · · · · · · ·	 AVG. 	6.9	35	6.9	493	10.8
Fina AC-10 + 3% UP 70		6.7	36	6.4	488	12.0
	1	6.9	37	7.0	394	11.0
	1	6.7	36	6.4	693	12.0
	I		•••••			
	AVG.	6.8	36	6.6	525	11.7
Fina AC-10 + 3% Styrelf	i i	6.7	36	7.4	538	14.0
		7.3	38	7.0	531	14.0
	ļ	7.2	35	7.1	531	14.0
 	 AVG. 	7.1	36	7.2	533	14.0
Exxon AC-10 + 3% Polybilt	i i	6.6	34	7.3	275	12.0
	1	7.0	34	7.2	208	11.0
	1	7.3	32	6.8	196	11.0
1	1		•••••			•••••
	AVG.	7.0	34	7.1	227	11.3
 Gulf AC-10 + 3% Kraton D1101	1	6.6	34	7.3	463	13.0
1	i ·	6.7	35	7.2	519	12.5
	i	7.0	34			
		 4 P				
 	INVG.	0.0	32	/.3	491	12.8

Table D-9 Marshall and Hveem Test Results for Laboratory Mixed/Laboratory Compacted Mixtures Using Modified Compaction

.

.

1		AIR	HVEEM	AIR	MARSHALL	ALUES
MIXTURE	1	VOIDS	STABILITY	VOIDS	STABILITY	FLOW
		x	×	X	lbs	.01 in
Control: Total AC-20	. 	4.5	45	4.2	1307	10.0
	1	4.3	46	3.8	1472	11.0
	!	4.2	43	4.4	1298	10.0
	AVG.	4.3	45	4.1	1359	10.3
Fina AC-10 + 3% UP 70	1	4.5	45	4.7	1102	10.0
	i	4.8	45	5.2	931	10.0
	į –	5.0	46	4.7	832	10.0
	AVG.	4.8	45	4.9	955	10.0
Fina AC-10 + 3% Styrelf		4.4	45	4.8	1181	10.0
	1	4.1	45	4.1	1360	10.0
	Ì	5.2	43	4.4	1373	11.0
	AVG.	4.6	45	4.4	1305	10.3
Exxon AC-10 + 3% Polybilt	Ì	3.2	43	3.4	983	9.5
	i	3.7	44	3.4	99 0	9.5
	i	3.8	41	Í		ĺ
	AVG.	3.6	43	3.4	987	9.5
 Gulf AC-10 + 3% Kraton D1101		5.0	42	4.8	865	9.0
	i	4.9	40	4.3	931	11.0
	į	4.7	45	4.7	845	9.0
	 av g.	4.9	42	4.6	880	9.7

.

Table D-10 Marshall and Hveem Test Results for Laboratory Mixed/Laboratory Compacted Mixtures Using Standard Compaction

	1	AIR	HVEEM	AIR	MARSHALL	ALUES
MIXTURE	1	VOIDS	STABILITY	VOIDS	STABILITY	FLOW
	!	x	x	X	lbs	.01 in
Control: Total AC-20	.! 	7.4	38	7.5	700	12.0
	i	7.1	36	7.2	731	14.0
	i -	7.4	36	7.2	700	13.0
	 AVG. 	7.3	37	7.3	710	13.0
Fina AC-10 + 3% UP 70	i	7.3	30	7.0	357	15.0
	1	6.8	31	6.8	452	14.0
	1	7.4	28	6.9	363	14.0
	1		•••••	•		
	AVG.	7.2	30	6.9	391	14.3
Fina AC-10 + 3% Styrelf	i	7.0	35	 7.4	775	16.0
		7.3	32	6.7	781	14.0
	1	7.2	32	6.9	750	14.0
	AVG.	7.2	33	7.0	769	14.7
Exxon AC-10 + 3% Polybilt	i	7.1	33	 7.1	363	11.0
	1	6.8	34	7.0	338	11.0
	1	6.9	34	6.8	338	10.0
	1				•••••	
	AVG.	6.9	33	7.0	346	10.7
Gulf AC-10 + 3% Kraton 01101		6.9	34	6.7	713	15.0
	1	6.7	38	7.4	528	12.0
	1	7.1	35	6.5	620	12.0
	1					
	AVG.	6.9	36	6.9	620	13.0

Table D-11 Marshall and Hveem Test Results for Plant Mixed/Laboratory Compacted Mixtures Using Modified Compaction

1		AIR	HVEEM	AIR	MARSHALL	ALUES
MIXTURE	1	VOIDS	STABILITY	VOIDS	STABILITY	FLOW
1	ļ	x	×	x	lbs	.01 in
Control: Total AC-20	.! 	5.1	42	5.0	1610	 10.0
1	1	4.4	47	4.4	1703	11.0
1	!	5.2	46	4.7	1637	11.0
1	I AVG.	4.9	45	4.7	1650	10.7
Fina AC-10 + 3% UP 70	i –	3.7	45	3.2	1571	11.0
1	1	3.6	42	3.7	1333	11.0
1		3.5	44	3.2	1360	11.0
1	1		•••••		•••••	
	AVG.	3.6	44	3.4	· 1421	11.0
 Fina AC-10 + 3% Styrelf		4.8	37	4.4	1749	ا 11.0
1	1	4.5	· 38	3.9	1894	11.0
	!	4.1	40	4.7	1584	11.0
I 	I AVG.	4.5	38	4.3	1742	11.0
Exxon AC-10 + 3% Polybilt	ł	4.1	41	4.5	865	8.0
1		4.0	39	4.4	792	9.0
l		4.2	39	4.0	950	9.0
	 AVG.		40	4.3	 869	 8.7
						1
Gulf AC-10 + 3% Kraton D1101	I	4.0	42	4.5	1294	10.0
I	1	4.8	43	4.6	1122	10.0
	!	5.3	41	4.8	1043	10.0
	AVG.	4.7	42	4.6	1153	10.0

Table D-12 Marshall and Hveem Test Results for Plant Mixed/Laboratory Compacted Mixtures Using Standard Modified Compaction

MIXTURE	TEST TEMP. F	AIR VOIDS 2	INDIRECT TENSILE STRENGTH PSI	STRAIN AT FAILURE %	SECANT MODULUS KSI	RESILIENT MODULUS KSI	POISSON'S RATIO
Control: Total AC-20	39	6.9	318	0.21	305	2084	
1 1		6.7	372	0.21	357	2107	- !
1 		7.6	306	0.26	235	. 2167	-
1 · · · · · · · · · · · · · · · · · · ·	AVG	. 7.1	332	0.23	299	2120	-
Fina AC-10 + 3% UP 70	39	6.3	423	0.22	387	2260	-
1		6.8	453	0.23	395	1892	- :
1		6.8	.429	0.21	402	1329	-
1 1 1	AVG	. 6.6	435	0.22	395	1827	-
Fina AC-10 + 3% Styrelf	39	7.3	377	0.24	315	2151	-
•		7.6	363	0.20	357	2867	
1		7.0	450	0.32	279	2912	-
1 1 1	AVG	. 7.3	397	0.25	317	2643	-
Exxon AC-10 + 3% Polybilt	: 39	7.2	282	0.75	75	922	-
1		7.1	249	0.75	66	1536	-
1		7.3	288	0.75	76	1256	-
1 1 1	AVG	. 7.2	273	0.75	72	1238	-
Gulf AC-10 + 3% Kraton	39	6.9	359	0.70	102	1980	-
{		7.0	340	0.57	119	1705	
1		7.2	422	0.60	141	2506	-
	AVG	. 7.0	374	0.62	121	2064	-

Table D-13 Indirect Tensile Test Results for Laboratory Mixed/Laboratory Compacted Mixtures Using Modified Compaction

MIXTURE	TEST TEMP. F	AIR VOIDS	INDIRECT TENSILE STRENGTH PSI	STRAIN AT FAILURE	SECANT MODULUS KSI	RESILIENT MODULUS KSI	POISSON'S RATIO
Control: Total AC-20	77	7.0	89	1.17	15	333	0.70
1		7.1	83	1.25		446	0.35
1		7.2	85	1.27	13	402	0.26
	AVG	. 7.1	86	1.23	14	394	0.44
Fina AC-10 + 3% UP 70	77	6.3	67	1.43	9	424	0.36
1		6.6	85	1.12	15	618	0.21
		5.9	84	1.43	12	443	0.40
, , , ,	AVG	. 6.3	79	1.33	12	495	0.32
Fina AC-10 + 3% Styrelf	77	7.1	103	2.26	9	395	0.40
1		7.1	104	2.34	9	339	0.66
		7.1	95	2.16	9	542	0.23
, ; ; ;	AVG	. 7.1	100	2.25	9	425	0.43
Exxon AC-10 + 3% Polybil	t 77	6.8	38	1.27	6	259	0.41
1		7.3	34	1.40	5	270	0.32
		6.6	40	1.30	. 6	281	0.36
	AVG	. 6.9	37	1.33	6	270	0.36
Gulf AC-10 + 3% Kraton	77	6.5	52	1.77	6	412	0.38
8		7.1	62	1.82	7	262	0.45 ¦
		6.6	65	1.77	7	542	0.24
	AVG	. 6.7	60	1.79	7	405	0.36

Table D-13 (Continued)

MIXTURE	TEST TEMP. F	AIR VOIDS	INDIRECT TENSILE STRENGTH PSI	STRAIN AT FAILURE	SECANT MODULUS KSI	RESILIENT MODULUS KSI	POISSON'S RATIO
Control: Total AC-20	104	6.9	22	1.61	2.7	174	-
5 1		7.1	22	1.52	2.8	192	-
• 1 1		7.0	19	1.64	2.3	156	-
	AVG	. 7.0	21	1.59	2.6	174	-
Fina AC-10 + 3% UP 70	104	6.8	17	1.61	2.1	100	-
5 1		7.2	19	1.30	2.8	110	
t 1		6.6	18	1.66	2.1	148	-
4 4 1 1	AVG	. 6.9	18	1.53	2.4	119	
Fina AC-10 + 3% Styrelf	104	7.0	20	2.50	1.6	62	- [
1		7.0	21	3.07	1.4	76	-
4 1		6.6	20	3.07	1.3	146	-
, , , , ,	AVG	. 6.9	20	2.88	1.4	95	
Exxon AC-10 + 3% Polybil	t104	7.1	9	1.20	1.5	105	-
8		7.1	8	1.25	1.3	118	-
1 1 1		7.1	8	1.51	1.1	172	-
	AVG	. 7.1	8	1.32	1.3	132	-
Gulf AC-10 + 3% Kraton	104	6.4	11	1.98	1.1	151	-
3 1		6.3	11	2.13	1.0	106	-
		6.7	11	2.18	1.0	177	-
	AVG	. 6.5	11	2.10	1.0	145	

•

Table D-13 (Continued)

	TEST	AIR	INDIRECT	STRAIN	SECANT	RESILIENT	POISSON'S
MIXTURE	TEMP.	VOIDS	TENSILE	AT	MODULUS	MODULUS	RATIO
	F	*	STRENGTH	FAILURE	KSI	KSI	1
*			PSI	*			
Control: Total AC-20	39	4.5	460	0.24	376	3491	
		3.7	418	0.21	391	1793	-
		4.2	459	0.25	368	2480	-
• 1 4 4	AVG	. 4.1	446	0.24	378	2588	
Fina AC-10 + 3% UP 70	39	4.5	504	0.22	461	1637	-
1		4.1	466	0.21	437	1457	-
		4.6	497	0.23	424	1375	-
1 9 1	AVG	. 4.4	489	0.22	441	1490	
Fina AC-10 + 3% Styrelf	39	4.7	521	0.32	328	2212	
8		4.2	499	0.26	383	2624	-
		5.0	528	0.26	406	1453	-
1 1 1 1	AVG	. 4.6	516	0.28	372	2097	-
Exxon AC-10 + 3% Polybilt	: 39	2.9	383	0.47	163	1941	-
		3.3	388	0.55	142	1684	- !
i • 1		3.7	416	0.62	133	2176	-
, 1 1 1 4	AVG	. 3.3	396	0.55	146	1934	
Gulf AC-10 + 3% Kraton	39	4.2	469	0.46	203	4206	-
3 4		4.2	445	0.44	201	4457	
1 3 4		4.7	447	0.49	181	2460	-
4	AVG	. 4.4	454	0.47	195	3708	-

Table D-14 Indirect Tensile Test Results for Laboratory Mixed/Laboratory Compacted Mixtures Using Standard Compaction

. .

	TEST	AIR	INDIRECT	STRAIN	SECANT	RESILIENT	POISSON'S
I MIXIORE	F	VU1U5	STRENGTH		KST	KST	KHIIU
	'		PSI	2	NJ1	NUT	
				•			
Control: Total AC-20	77	4.0	135	1.12	24	887	0.10
1		4.1	140	1.12		892	0.11
1 7 1		4.3	129	1.17	22	840	0.12
	AVG	i. 4.1	135	1.14	23	873	0.11
Fina AC-10 + 3% UP 70	77	5.0	123	1.33	19	546	0.34
l 1		4.9	108	1.34	16	448	0.44 ¦
9 1 4		5.6	93	1.77	11	370	0.70
1 4 1	AVG	5.2	108	1.48	15	455	0.49
Fina AC-10 + 3% Styrelf	77	4.7	149	1.53	19	472	0.46
1		4.8	151	1.64	18	653	0.26 ¦
		4.8	148	1.56	19	535	0.40
5 5 1 2	AVC	6. 4.8	149	1.58	19	553	0.37
Exxon AC-10 + 3% Polybilt	. 77	3.7	70	1.20	12	489	0.26.
1		2.8	77	1.04	15	390	0.52 ¦
		3.4	70	1.07	13	404	0.50
	AV	6. 3.3	73	1.10	13	428	0.43
Gulf AC-10 + 3% Kraton	77	4.4	78	1.43	11	352	0.47
1		4.5	83	1.51	11	413	0.29
		4.5	87	1.46	12	288	0.49
1 9 1	AVG	6. 4.5	83	1.46	11	351	0.41

Table D-14 (Continued)

•

MIXTURE	TEST TEMP. F	AIR VOIDS	INDIRECT TENSILE STRENGTH PSI	STRAIN AT FAILURE	SECANT MODULUS KSI	RESILIENT MODULUS KSI	POISSON'S RATIO
Control: Total AC-20	104	4.1	38	1.09	7.0	158	-
4		4.0	41	1.07	7.6	141	- :
1 1		4.2	38	1.09	6.9	214	-
1 1 1 1	AVG	. 4.1	39	1.08	7.2	171	-
Fina AC-10 + 3% UP 70	104	4.1	26	1.40	3.8	90	-
- 		4.8	27	1.40	3.9	131	-
1		5.6	25	. 1.77	2.8	89	
, , , ,	AVG	. 4.8	26	1.53	3.5	103	
Fina AC-10 + 3% Styrelf	104	4.5	40	1.77	4.5	166	-
		4.7	39	1.82	4.3	167	- 1
4		4.3	39	1.87	4.1	95	-
, , , ,	AVG	. 4.5	39	1.82	4.3	143	
Exxon AC-10 + 3% Polybil	t104	3.7	18	1.14	3.2	139	
1		3.5	19	1.20	3.2	104	
		3.7	19	1.09	3.4	101	
	AVG	. 3.6	19	1.14	3.3	115	
Gulf AC-10 + 3% Kraton	104	4.9	18	1.82	1.9	83	-
\$ 6		4.5	19	1.77	2.2	107	
4 6 1		4.8	19	1.82	2.1	96	-
	AVG	. 4.7	19	1.80	2.1	95	-

Table D-14 (Continued)

MIXTURE	TEST TEMP. F	AIR VOIDS %	INDIRECT TENSILE STRENGTH PSI	STRAIN AT FAILURE	SECANT MODULUS KSI	RESILIENT MODULUS KSI	POISSON'S RATIO
Control: Total AC-20	39	7.6	337	0.18	370	1857	-
		7.2	312	0.18	353	2230	-
1 1		7.1	367	0.21	344	2238	-
1	AVG	G. 7.3	339	0.19	356	2108	-
Fina AC-10 + 3% UP 70	39	7.3	356	0.33	214	1402	-
\$ 1		7.3	347	0.38	180	1672	-
1 1 1		7.0	389	0.26	299	1200	-
1 1 1	AVG	G. 7.2	364	0.33	231	1425	-
Fina AC-10 + 3% Styrelf	39	6.9	400	0.34	236	1770	-
4 1		7.5	423	0.29	295	2056	
1 7 1		7.3	410	0.27	303	2685	-
1	AVG	ă. 7.2	411	0.30	278	2170	-
Exxon AC-10 + 3% Polybil	t 39	6.7	311	0.65	95	1447	-
1		7.2	271	0.57	95	1562	- :
1 1		7.2	244	0.57	85	1364	-
/ 	AVG	6. 7.0	275	0.60	92	1458	-
Gulf AC-10 + 3% Kraton	39	6.7	266	0.47	114	1230	-
f F		6.8	304	0.52	117	2029	-
1		6.9	339	0.52	130	1351	-
	AVG	6.8	303	0.50	120	1537	-

Table D-15 Indirect Tensile Test Results for Plant Mixed/Laboratory Compacted Mixtures Using Modified Compaction

. .

MIXTURE .	TEST TEMP. F	AII VOI \$	R DS 1	INDIRECT TENSILE STRENGTH PSI	STRAIN AT FAILURE	SECANT MODULUS KSI	RESILIENT MODULUS KSI	POISSON'S RATIO
Control: Total AC-20	77	7	.5	95	1.14	17	621	-
		7	.2	92	1.14		654	-
		7	.3	90 	1.20	15	742	-
	A	VG. 7	.3	92	1.16	16	672	-
Fina AC-10 + 3% UP 70	77	7	.2	73	1.77	8	314	-
		7	.3	71	1.77	8	329	-
а П		7	.5	78	1.98	8	241	-
	A	VG. 7	.3	74	1.84	8	294	-
Fina AC-10 + 3% Styrelf	77	6	.9	108	1.92	11	171	-
		7	.0	95	1.98	10	359	- :
		7	.0	103	1.92	11	441	-
	A	VG. 7	.0	102	1.94	11	324	-
Exxon AC-10 + 3% Polybilt	. 77	7	.2	40	1.66	5	249	-
		6	.6	47	1.51	6	221	-
		6	.8	46	1.69	5	218	-
	A	VG. 6	.9	44	1.62	6	229	-
Gulf AC-10 + 3% Kraton	77	7	.0	65	1.64	8	265	-
		6	.9	72	1.59	9	423	-
		7	.0	68	1.66	8	273	-
	A	VG. 7	.0	69	1.63	8	320	-

Table D-15 (Continued)

. .

	TEST	AIR	INDIRECT	STRAIN	SECANT	RESILIENT	POISSON'S
MIXTURE	TEMP.	VOIDS	TENSILE	AT	MODULUS	MODULUS	RATIO
1	r	4	DET	FAILURE	K51	K51	
0 1			PSI	•			1
Control: Total AC-20	104	7.3	24	1.46	3.3	234	-
1		7.3	25	1.51	3.3	177	- 1
8 1 0		6.9	24	1.51	3.2	160	-
; 1 [AVG	. 7.2	24	1.49	3.2	190	-
Fina AC-10 + 3% UP 70	104	7.4	10	1.98	1.1	133	-
\$ 1		7.2	12	1.87	1.3	204	- :
1		7.3	13	2.03	1.3	199	-
1							
1 1 1	AVG	. 7.3	.12	1.96	1.2	179	-
Fina AC-10 + 3% Styrelf	104	6.9	24	2.50	1.9	184	-
1		7.1	23	2.08	2.2	148	-
6 8 4		7.2	22	2.18	2.0	202	-
1 6 1 2	AVG	. 7.1	23	2.25	2.0	178	-
Exxon AC-10 + 3% Polybil	t104	6.6	11	1.46	1.5	165	-
1		7.1	8	1.33	1.2	163	
1 i 1		7.2	8	1.40	1.2	133	-
5 7 8	AVG	. 7.0	9	1.40	1.3	154	-
Gulf AC-10 + 3% Kraton	104	7.1	13	1.82	1.4	111	-
1		6.5	11	2.18	1.0	130	-
1 1 8		6.6	14	1.98	1.4	186	-
2 1 2 2 3	AVG	. 6.7	13	1.99	1.3	142	-

Table D-15 (Continued)

MIXTURE	TEST TEMP. F	AIR VOIDS	INDIRECT TENSILE STRENGTH PSI	STRAIN AT FAILURE %	SECANT MODULUS KSI	RESILIENT MODULUS KSI	POISSON'S RATIO
Control: Total AC-20	39	4.6	459	0.21	441	3495	-
		4.7	455	0.21	437	2758	- !
		5.0	450	0.21	432	2295	-
	AVG	. 4.8	455	0.21	437	2849	-
Fina AC-10 + 3% UP 70	39	3.4	495	0.21	475	2290	-
		3.5	566	0.29	388	1351	-
		4.1	565	0.29	395	1368	-
	AVG	. 3.7	542	0.26	419	1670	-
Fina AC-10 + 3% Styrelf	39	4.3	562	0.23	479	2677	-
		4.3	525	0.21	504	2640	- !
		3.8	584	0.25	467	3466	-
i I -	AVG	. 4.1	557	0.23	484	2928	-
Exxon AC-10 + 3% Polybilt	: 39	4.0	373	0.57	130	1812	-
-		4.1	384	0.57	134	2051	-
		3.7	384	0.52	147	1854	-
	AVG	. 3.9	380	0.55	137	1906	-
Gulf AC-10 + 3% Kraton	39	4.3	466	0.39	239	2106	-
		4.5	485	0.52	186	1821	-
		4.7	443	0.47	189	2194	-
	AVG	. 4.5	465	0.46	205	2040	-

Table D-16 Indirect Tensile Test Results for Plant Mixed/Laboratory Compacted Mixtures Using Standard Compaction

MIXTURE	TEMD							
		•	VOIDS	TENSILE	AT	MODULUS	MODULUS	RATIO
	F		*	STRENGTH	FAILURE	KSI	KSI	
				PSI	*			1
Control: Total AC-20	//		4.3	144	0.78	37	847	-
			5.1	137	0.73		629	-
			4.6	140	0.68	41	676	-
		AVG.	4.7	140	0.73	39	717	-
Fina AC-10 + 3% UP 70	77		3.3	143	1.25	23	831	-
			3.3	133	1.14	23	472	-
			3.9	128	1.25	21	891	-
	1	AVG.	3.5	135	1.21	22	731	-
Fina AC-10 + 3% Styrelf	77		4.0	164	1.52	22	561	-
· · · · · · · · · · · · · · · · · · ·			3.8	171	1.46	23	598	-
			4.3	156	1.56	20	741	-
	1	AVG.	4.0	164	1.51	22	633	-
Exxon AC-10 + 3% Polybil	t 77		3.5	77	1.12	14	244	-
			4.0	73	1.14	13	447	
			4.0	72	1.14	13	379	-
	ı	AVG.	3.8	74	1.14	13	357	
Gulf AC-10 + 3% Kraton	77		5.4	97	1.27	15	593	-
			4.5	100	1.30	15	327	-
			4.7	91	1.40	13	291	-
	ł	AVG.	4.9	 96	1.33		404	

Table D-16 (Continued)

. .

MIXTURE	TEST TEMP. F	AIR VOIDS	INDIRECT TENSILE STRENGTH	STRAIN AT FAILURE	SECANT MODULUS KSI	RESILIENT MODULUS KSI	POISSON'S RATIO
			FJI	•			1
Control: Total AC-20	104	5.1	40	1.25	6.3	217	
L 1		4.5	45	1.09	8.2	150	- ;
		4.1	44	1.09	8.1	241	-
, , , ,	AVG	. 4.6	43	1.14	7.5	203	
Fina AC-10 + 3% UP 70	104	3.2	33	1.25	5.3	206	-
	•	3.5	31	1.22	5.1	218	-
1		3.3	32	1.30	5.0	144	-
6 1							
	AVG	. 3.3	32	· 1.26	5.1	189	-
	104		40	• • • •		25.4	1
; FINA AC-10 + 3% Styreit	104	4.4	40	1.00	4.8	204	-
i I		3.0	43	1.01	5.4 5 1	150	_
1		J.0 		1.72	J.I 		
	AVG	. 3.9	43	1.66	5.1	185	-
Exxon AC-10 + 3% Polybili	t104	4.0	19	1.09	3.4	145	· -
		4.4	16	1.25	2.6	161	-
		3.6	20	1.04	3.8	148	-
4 1 1 1	AVG	. 4.0	18	1.13	3.3	151	
Gulf AC-10 + 3% Kraton	104	4.6	22	1.98	2.2	169	-
		4.1	22	1.66	2.6	141	-
		4.3	21	1.56	2.7	164	
	AVG	. 4.3	22	1.73	2.5	158	

Table D-16 (Continued)

NTYTURE	TEST	AIR	LOAD	INDIRECT	RESILIEN	ALPHA	GNU	Ea=IN	-5	R-SOUR
	F	\$	200	STRESS	IN/IN			S	LOG(I)	Ea=IN [^] S
Control: TOTAL AC-20	77	7.0 6.9	63 63	4.5 4.5	2.3E-05 2.3E-05	0.2355 0.2149	0.2620 0.2150	0.7645 0.7851	-5.1056 -5.2030	0.995 0.994
1	A	6. 7.0	63	4.5	2.3E-05	0.2252	0.2385	0.7748	-5.1543	l
Fina AC-10 + 3% UP-70	. 77	6.7	53 53	3.9 3.9	1.6E-05 1.6E-05	0.2114 0.1799	0.4565 0.1787	0.7886 0.8201	-5.0390 -5.4634	0.998 0.993
1	A	IG. 6.8	53	3.9	1.6E-05	0.1957	0.3176	0.8044	-5.2512	
Fina AC-10 + 3% Styrelf	77	6.9 7.2	68 68	4.8 4.8	2.4E-05 2.4E-05	0.2366 0.1991	0.2365 0.4662	0.7634 0.8009	-5.1340 -4.8601	0.996 0.996
1	A	6. 7.1	68	4.8	2.4E-05	0.2179	0.3513	0.7822	-4.9971	
Fina AC-10 + 3% POLYBILT	77	7.2 7.4	23 23	1.6	1.2E-05 1.2E-05	0.3459 0.3218	1.7545 1.9318	0.6541 0.6782	-4,4887 -4,4626	0.990 0.989
1	A	6. 7.3	23	1.6	1.2E-05	0.3339	1.8432	0.6662	-4.4757	
Fina AC-10 + 3% D1101	77	6.9 6.7	38 38	2.7 2.7	1.5E-05 1.5E-05	0.1342 0.1816	0.2879 0.7615	0.8658 0.8184	-5.3103 -4.8634	0.996 0.997
	A	/6. 6.8	38	2.7	1.5E-05	0.1579	0.5247	0.8421	-5.0869	

Table D-17 Alpha and Gnu Parameters for Laboratory Mixed/Laboratory Compacted Mixtures.

Table D-18 Alpha and Gnu Parameters for Plant Mixed/Laboratory Compacted Mixtures.

NIVIIDE	TEST	AIR	LOAD	INDIRECT	RESILIEN	ALPHA	GNU	Ea=IN	5	R-SQUR
	F	10105	LB3	STRESS	IN/IN			S	LOG(I)	Ea=IN [^] S
Control: TOTAL AC-20	77	7.3	98 98	7.0	2.1E-05 2.1E-05	0.2995	1.4098 0.9440	0.7005 0.6656	-4.3734 -4.5254	0.988 0.980
	AV	6. 7.3	98	7.0	2.1E-05	0.3170	1.1769	0.6831	-4.4494	
Fina AC-10 + 3% UP-70	77	7.1 7.1	58 58	4.0 4.1	2.8E-05 2.1E-05	0.1442 0.2159	0.2726	0.8558 0.7841	-5.0474 -5.0863	0.994 0.995
1	AV	6. 7.1	58	4.1	2.5E-05	0.1801	0.2903	0.8200	-5.0669	1
Fina AC-10 + 3% Styrelf	77	6.9 6.9	98 98	7.0 6.9	5.1E-05 3.8E-05	0.4094 0.3362	0.6712 0.7298	0.5906 0.6638	-4.2404 -4.3827	0.998 0.997
1	AV	6. 6.9	98	6.9	4.4E-05	0.3728	0.7005	0.6272	-4.3116	
Fina AC-10 + 3% POLYBILT	77	6.9 6.6	23 38	1.7 2.7	1.5E-05 2.4E-05	0.1721 0.1236	0.4687 0.3390	0.8279 0.8764	-5.0857 -5.0332	0.993 0.998
1	AV	G. 6.8	31	2.2	1.9E-05	0.1479	0.4039	0.8522	-5.0595	1
Fina AC-10 + 3% D1101	77	7.0 7.1	48 28	3.4 2.0	2.3E-05 1.3E-05	0.1528 0.2272	0.3744 0.6162	0.8472	-5.0000 -4.9778	0.999 0.999
	AV	G. 7.1	38	2.7	1.8E-05	0.1900	0.4953	0.8100	-4.9889	

	TEST	AIR	LOAD	INDIRECT	STATIC INITIAL	LOAD	FATIGUE	CONSTANT	R-SOUR
I HIXIUKE	F	\$	LR2	STRESS	KSI IN/IN	LILLES	K1	K2	- FUR Nf=K1(1/Emix)^K
Control: TOTAL AC-20	77	7.0	63	4.5	46 9.7F-05	23235	5.04E-0	3 1.66	0.980
		6.9	63	4.5	46 9.7E-05	21688			
		7.1	178	12.6	46 2.7E-04	5330			
		7.7	178	12.7	46 2.8E-04	4969			
1 1		7.0	298	21.3	46 4.6E-04	1766			
6 1		7.0	298	21.3	46 4.6E-04	1404			
Fina AC-10 + 3% UP-70	77	6.7	53	3.9	37 1.0E-04	16575	4.32E-0	4 1.91	0.992
1		6.9	53	3.9	37 1.0E-04	18550			
1		6.7	163	11.8	37 3.2E-04	2028			1
1 3		6.9	163	11.8	37 3.2E-04	1931			
1		6.7	269	19.3	37 5.2E-04	1000			·
1 1		6.6	269	19.5	37 5.3E-04	670			
Fina AC-10 + 3% Styrelf	77	6.9	68	4.8	25 1.9E-04	22915	2.13E-0	3 1.88	0.996
1		7.2	68	4.8	25 1.9E-04	18600			
ŧ 1		7.0	208	14.6	25 5.9E-04	2850			
4		6.9	208	14.7	25 5.9E-04	2738			
4 1		7.2	348	24.9	25 1.0E-03	881			
1 1 1		7.0	348	25.0	25 1.0E-03	930			
Fina AC-10 + 3% POLYBILT	77	7.2	23	1.6	16 9.9E-05	10225	2.65E-0	3 1.64	0.994
8		7.4	23	1.6	16 1.0E-04	9935			
		7.0	78	5.5	16 3.4E-04	1106			
1		7.2	78	5.4	16 3.4E-04	1500			
1		6.8	128	8.9	16 5.5E-04	626			
1 7 1		7.2	128	8.9	16 5.6E-04	586			
Fina AC-10 + 3% D1101	77	6.9	38	2.7	28 9.8E-05	16938	5.36E-0	3 1.61	0.957
4		6.7	38	2.7	28 9.7E-05	12719			
1		0.8	123	8.9	28 3.2E-04	3864			
		6.6	123	8.9	28 3.2E-04	2220			
4		7.5	208	14.7	28 5.3E-04	849			
1		7.0	208	15.0	28 5.3E-04	909			

Table D-19 Fatigue Parameter Values for Laboratory Mixed/Laboratory Compacted Mixtures.

. .

,

NTYTUDE	TEST	AIR	LOAD	INDIRECT	STATIC INITIAL	LOAD	FATIGUE	CONSTANT	R-SQUR
	F	\$	2	STRESS	KSI IN/IN		K1	K2	- FOR Nf=K1(1/Emix)^K
Control: TOTAL AC-20	77	7.3	98	7.0	43 1.6E-04	14313	7.84E-04	1.95	0.954
		7.3	98	7.0	43 1.6E-04	21213			
		7.3	188	13.6	43 3.2E-04	5794			
		7.6	188	13.6	43 3.2E-04	6975			
		7.2	318	22.7	43 5.3E-04	1928			
		7.2	318	22.9	43 5.3E-04	1485			
Fina AC-10 + 3% UP-70	77	7.1	58	4.0	25 1.6E-04	16738	5.89E-03	3 1.66	0.967
		7.0	33	2.3	25 9.3E-05	23308			
		7.0	158	11.1	25 4.5E-04	2746			
		6.9	98	6.9	25 2.8E-04	3660			
		7.2	258	18.0	25 7.2E-04	878			
		7.2	258	17.9	25 7.2E-04	920			
; Fina AC-10 + 3% Styrelf	77	6.9	98	7.0	29 2.4E-04	19790	7.90E-0	3 1.74	0.979
		6.9	73	5.1	29 1.8E-04	20510			
1		6.9	208	15.0	29 5.2E-04	4350			
		6.6	208	14.9	29 5.1E-04	4410			
1		7.2	358	25.4	29 8.8E-04	1470			
1		6.9	358	25.6	29 8.8E-04	1560			
; Fina AC-10 + 3% POLYBILT	77	6.9	23	1.7	14 1.2E-04	17996	2.01E-0	3 1.77	0.991
1		6.6	38	2.7	14 2.0E-04	5940			
1		7.2	88	6.3	14 4.5E-04	1950			
1		7.3	88	6.2	14 4.4E-04	1823			
l l		7.1	148	10.6	14 7.5E-04	595			
1		7.2	148	10.7	14 7.6E-04	620			
Fina AC-10 + 3% D1101	77	7.2	48	3.4	28 1.2E-04	18088	7.23E-0	4 1.86	0.990
l		7.2	28	2.0	28 7.1E-05	32070			
1		6.8	138	10.0	28 3.6E-04	2165			
6 1		6.9	138	9.7	28 3.5E-04	1884			
1		7.0	233	16.6	28 5.9E-04	668			
1		7.1	233	16.8	28 6.0E-04	754			

•

Table D-20 Fatigue Parameter Values for Plant Mixed/Laboratory Compacted Mixtures.

....

	- 1	-	100(0570
F	51	m	FACTOR)	BE A
60	1.46E-06	0.67	0.77	0.038
77	5.26E-06	0.65		
90	7.16E-06	0.73	-0.41	
60	2.095-06	0.64	0.54	0.028
77	4.06E-06	0.67		
90	6.53E-06	0.68	-0.32	
60	2.83E-06	0.63	0.40	0.034
77	5.81E-06	0.60		
90	9.44E-06	0.69	-0.59	
60	8.64E-06	0,62	0.39	0.016
77	1.345-05	0.66		
90	1.89E-05	0.61	-0.12	
60	1.84E-06	0.70	0.63	0,039
77	5.76E-06	0 66		
90	1.37E-05	0.65	-0.53	
	FEMP. F 60 77 90 60 77 90 60 77 90 60 77 90 60 77 90	TEMP. D1 F 60 1.46E-06 77 5.26E-06 90 7.16E-06 60 2.09E-06 77 4.06E-06 90 6.53E-06 60 2.83E-06 77 5.81E-06 90 9.44E-06 60 8.64E-06 77 1.34E-05 90 1.89E-05 60 1.84E-06 90 1.37E-05	TEMP. D1 m 60 1.46E-06 0.67 77 5.26E-06 0.65 90 7.16E-06 0.73 60 2.09E-06 0.64 77 4.06E-06 0.67 90 6.53E-06 0.63 77 5.81E-06 0.60 90 9.44E-06 0.69 60 8.64E-06 0.62 77 1.34E-05 0.66 90 1.89E-05 0.61 60 1.84E-06 0.70 77 5.76E-06 0.66 90 1.37E-05 0.65	TEMP. D1 m Log(SHIFT FACTOR) 60 1.46E-06 0.67 0.77 77 5.26E-06 0.65 0.73 90 7.16E-06 0.64 0.54 60 2.09E-06 0.64 0.54 77 4.06E-06 0.67 0.32 60 2.83E-06 0.63 0.40 77 5.81E-06 0.60 90 90 9.44E-06 0.69 -0.59 60 8.64E-06 0.62 0.39 77 1.34E-05 0.66 90 90 1.89E-05 0.61 -0.12 60 1.84E-06 0.70 0.63 90 1.37E-05 0.65 -0.53

Table D-21 Creep Compliance Properties for Laboratory Mixed/ Laboratory Compacted Mixture Using Modified Compaction.

Table D-22 Creep Compliance Properties for Plant Mixed/ Laboratory Compacted Mixture Using Modified Compaction.

MIXTURE	TEMP. F	01	m	Log(SHIFT FACTOR)	BETA
Control: Total AC-20	60 77	2.23E-06 4.79E-06	0.522	1.01	0.066
	90	9.53E-06	0.961	-0.95	1
Fina AC-10 + 3% UP 70	60 77	2.66E-06 7.89E-06	0.661	0.71	0.038
	90	1.68E-05	0.638	-0.45	
Fian AC-10 + 3% Styrelf	60 77	3.02E-06 4.63E-06	0.580 0.656	0.52	0.028
	90	7.03E-06	0.680	-0.34	
Exxon AC-10 + 3% Polybilt	60 77	5.32E-06 7.94E-06	0.632 0.707	0.43	0.027
	90	1.76E-05	0.658	-0.38	
Gulf AC-10 + 3% Kraton	60 77	2.46E-06 4.63E-06	0.662 0.623	0.32	0.033
	90	1.09E-05	0.638	-0.63	

TIME	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSILE
SEC.	HORIZONTAL	STRAIN	CREEP	SEC.	HORIZONTAL	STRAIN	CREEP
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANCE
	IN		IN^2/LB		IN		IN^2/LB
	TOTA	AL AC-20			TOT	AL AC-20	
TE	ST TEMP = 60	, ZIGMA =	7.279 PSI	Т	EST TEMP = 60	, ZIGMA =	7.422 PSI
-							
1.0	4.50E-05	2.34E-05	1.61E-06	1.	0 6.25E-05	3.25E-05	2.19E-06
1.8	5.50E-05	2.86E-05	1.96E-06	1.	8 8.75E-05	4.55E-05	3.07E-06
3.2	6.50E-05	3.38E-05	2.32E-06	З.	2 1.13E-04	5.85E-05	3.94E-06
5.6	9.00E-05	4.68E-05	3.22E-06	5.	6 1.55E-04	8.06E-05	5.43E-06
10.0	1.25E-04	6.50E-05	4.47E-06	10.	0 2.15E-04	1.12E-04	7.53E-06
18.0	1.90E-04	9.88E-05	6.79E-06	18.	0 3.15E-04	1.64E-04	1.10E-05
31.6	2.85E-04	1.48E-04	1.02E-05	31.	6 4.73E-04	2.46E-04	1.66E-05
56.2	4.80E-04	2.50E-04	1.71E-05	56.	2 7.10E-04	3.69E-04	2.49E-05
100.0	7.20E-04	3.74E-04	2.57E-05	100.	0 1.01E-03	5.25E-04	3.54E-05
177.8	1.15E-03	5.98E-04	4.11E-05	177.	8 1.45E-03	7.54E-04	5.08E-05
316.2	1.80E-03	9.36E-04	6.43E-05	316.	2 2.03E-03	1.05E-03	7.10E-05
562.3	2.95E-03	1.53E-03	1.05E-04	562.	3 2.69E-03	1.40E-03	9.43E-05
1000.0	4.70E-03	2.44E-03	1.68E-04	1000.	0 4.00E-03	2.08E-03	1.40E-04
1778.3	7.38E-03	3.84E-03	2.63E-04	1778.	3 5.75E-03	2.99E-03	2.01E-04
3162.3	1.28E-02	6.63E-03	4.56E-04	3162.	3 8.40E-03	4.37E-03	2.94E-04
3600.0	1.40E-02	7.26E-03	4.98E-04	3600.	0 9.15E-03	4.76E-03	3.21E-04
7200.0	1.27E-02	6.61E-03		7200.	0 8.60E-03	4.47E-03	3.01E-04
	TOTA	AL AC-20			TOT	AL AC-20	
TE	ST TEMP = 77	, ZIGMA =	2.415 PSI	T	EST TEMP = 77	, ZIGMA =	2.514 PSI
1.0	3.00E-05	1.56E-05	3.23E-06	1.	0 8,50E-05	4.42E-05	8.79E-06
1.8	3.90E-05	2.03E-05	4.20E-06	1.	8 1.40E-04	7.28E-05	1.45E-05
3.2	5.00E-05	2.60E-05	5.38E-06	3.	2 1.70E-04	8.84E-05	1.76E-05
5.6	6.15E-05	3.20E-05	6.62E-06	5.	6 2.25E-04	1.17E-04	2.33E-05
10.0	8.50E-05	4.42E-05	9.15E-06	10.	0 2.85E-04	1.48E-04	2.95E-05
18.0	1.46E-04	7.59E-05	1.57E-05	18.	0 4.03E-04	2.09E-04	4.16E-05
31.6	2.49E-04	1.30E-04	2.68E-05	31.	6 6.35E-04	3.30E-04	6.57E-05
56.2	4.35E-04	2.26E-04	4.68E-05	56.	2 1.05E-03	5.46E-04	1.09E-04
100.0	6.68E-04	3.47E-04	7.19E-05	100.	0 1.64E-03	8.53E-04	1.70E-04
177.8	9.50E-04	4.94E-04	1.02E-04	177.	8 2.08E-03	1.08E-03	2.15E-04
316.2	1.35E-03	7.02E-04	1.45E-04	316.	2 2.34E-03	1.21E-03	2.42E-04
562.3	1.95E-03	1.01E-03	2.10E-04	562.	3 2.98E-03	1.55E-03	3.08E-04
1000.0	2.80E-03	1.46E-03	3.02E-04	1000.	0 4.63E-03	2.41E-03	4.78E-04
1778.3	4.45E-03	2.31E-03	4.79E-04	1778.	3 7.80E-03	4.06E-03	8.07E-04
3162.3	9.20E-03	4.78E-03	9.91E-04	3162.	3 1.30E-02	6.74E-03	1.34E-03
3600.0	1.13E-02	5.88E-03	1.22E-03	3600.	0 1.46E-02	7.59E-03	1.51E-03
7200.0	1.12E-02	5.83E-03		7200.	0 1.42E-02	7.37E-03	

Table D-23Creep Compliance of Laboratory Mixed / Laboratory Compacted Mixtures Using
Modified Compaction.

Table D-23 (Continued)

31.6 56.2 100.0 177.8 316.2 562.3 1000.0

1778.3 3162.3 3600.0 7200.0

TIME SEC.	TOTAL HORIZONTAL DEFORMATION	TENSILE STRAIN IN/IN	TENSILE CREEP COMPLIANCE	TIME SEC.	TOTAL HORIZONTAL DEFORMATION	TENSILE STRAIN IN/IN	TENSILE CREEP COMPLIANCE
	IN		IN^2/LB		IN		IN^2/LB
	TOT	AL AC-20			TOT#	AC-20	
TE	ST TEMP = 90	, ZIGMA =	1.366 PSI	TES	ST TEMP = 90	, ZIGMA =	1.005 PSI
1.0	7.50E-05	3.90E~05	1.43E-05	1.0	1.50E-05	7.80E-06	3.88E-06
1.8	9.00E-05	4.68E-05	1.71E-05	1.8	2.20E-05	1.14E-05	5.69E-06
3.2	1.50E-04	7.80E-05	2.86E-05	3.2	2.70E-05	1.40E-05	6.99E-06
5.6	2.00E-04	1.04E-04	3.81E-05	5.6	3.60E-05	1.87E-05	9.32E-06
10.0	2.50E-04	1.30E-04	4.76E-05	10.0	5.25E-05	2.73E-05	1.36E-05
18.0	3.50E-04	1.82E-04	6.66E-05	18.0	8.75E-05	4.55E-05	2.26E-05
31.6	7.00E-04	3.64E-04	1.33E-04	31.6	1.30E-04	6.76E-05	3.36E-05
56.2	9.00E-04	4.68E-04	1.71E-04	56.2	2.08E-04	1.08E-04	5.37E-05
100.0	1.75E-03	9.10E-04	3.33E-04	100.0	3.60E-04	1.87E-04	9.32E-05
177.8	2.75E-03	1.43E-03	5.24E-04	177.8	6.25E-04	3.25E-04	1.62E-04
316.2	4.25E~03	2.21E-03	8.09E-04	316.2	1.04E-03	5.38E-04	2.68E-04
562.3	7.25E-03	3.77E-03	1.38E-03	562.3	1.74E-03	9.02E-04	4.49E-04
1000.0	9.25E-03	4.81E-03	1.76E-03	1000.0	2.85E-03	1.48E-03	7.37E-04
1778.3	1.25E-02	6.50E-03	2.38E-03	1778.3	3.65E-03	1.90E-03	9.44E-04
3162.3	1.63E-02	8.45E-03	3.09E-03	3162.3	5.95E-03	3.09E-03	1.54E-03
3600.0	1.68E-02	8.71E-03	3.19E-03	3600.0	6.08E-03	3.16E-03	1.57E-03
7200.0	1.62E-02	8.43E-03		7200.0	9.93E-03	5.16E-03	
	FINA AC-	10 + 3% UP	-70		FINA AC-1	0 + 3% UP	-70
TE	ST TEMP = 60	, ZIGMA =	7.525 PSI	TES	ST TEMP = 60	, ZIGMA =	7.515 PSI
1.0	5.00E-05	2.60E-05	1.73E-06	1.0	9.00E-05	4.68E-05	 3.11E-06
1.8	6.70E-05	3.48E-05	2.32E-06	1.8	1.25E-04	6.50E-05	4.33E-06
3.2	8.00E-05	4.16E-05	2.76E-06	3.2	1.73E-04	8.97E-05	5.97E-06
5.6	1.15E-04	5.98E-05	3.97E-06	5.6	2.40E-04	1.25E-04	8.31E-06
10.0	1.80E-04	9.36E-05	6.22E-06	10.0	3.30E-04	1.72E-04	1.14E-05
18.0	2.53E-04	1.31E-04	8.73E-06	18.0	4.78E-04	2.48E-04	1.65E-05

5.00E-05	2.60E-05	1.73E-06	
6.70E-05	3.48E-05	2.32E-06	
8.00E-05	4.16E-05	2.76E-06	
1.15E-04	5.98E-05	3.97E-06	
1.80E-04	9.36E-05	6.22E-06	
2.53E-04	1.31E-04	8.73E-06	
3.28E-04	1.70E-04	1.13E-05	
4.63E-04	2.41E-04	1.60E-05	
7.03E-04	3.65E-04	2.43E-05	
1.04E-03	5.38E-04	3.58E-05	
1.48E-03	7.67E-04	5.10E-05	
2.30E-03	1.20E-03	7.95E-05	
3.40E-03	1.77E-03	1.17E-04	1
5.25E-03	2.73E-03	1.81E-04	1
8.85E-03	4.60E-03	3.06E-04	3
9.73E-03	5.06E-03	3.36E-04	3
8.48E-03	4.41E-03		7

IESI	1EMP = 60	, ZIGMA =	7.515 PSI
1.0	9.00E-05	4.68E-05	3.11E-06
1.8	1.25E-04	6.50E-05	4.33E-06
3.2	1.73E-04	8.97E-05	5.97E-06
5.6	2.40E-04	1.25E-04	8.31E-06
10.0	3.30E-04	1.72E-04	1.14E-05
18.0	4.78E-04	2.48E-04	1.65E-05
31.6	6.95E-04	3.61E-04	2.41E-05
56.2	1.04E-03	5.41E-04	3.60E-05
100.0	1.58E-03	8.19E-04	5.45E-05
177 8	2.13E-03	1 11E-03	7 35E-05
316.2	2 955-03	1 535-03	1 02E-04
510.2	2.750 05	1.550-05	1.020-04
362.3	3.93E-03	2.042-03	1.365-04
1000.0	6.35E-03	3.30E-03	2.20E-04
1778.3	9.10E-03	4.73E-03	3.15E-04
3162.3	1.52E-02	7.91E-03	5.26E-04
3600.0	1.71E-02	8.89E-03	5.92E-04
7200_0	1.71E-02	8.89E-03	

Table D-23 (Continued)

:155	IUTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSILE
SEC.	HURIZUNIAL	STRAIN	CREEP	SEC.	HORIZONTAL	STRAIN	CREEP
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANCE
	IN		IN ² /LB		IN		IN^2/LB
	FINA AC-1	10 + 3% UP	-70		FINA AC-1	.0 + 3% UP	-70
15	SI IEMP = //	, ZIGMA =	1.376 PS1	IES	1 [EMP = 77]	, ZIGMA =	1.389 PS1
1.0	3.00E-05	1.56E-05	5.67E-06	1.0	3.75E-05	1.95E-05	7.02E-06
1.8	4.00E-05	2.08E-05	7.56E-06	1.8	5.75E-05	2.99E-05	1.08E-05
3.2	4.75E-05	2.47E-05	8.98E-06	3.2	7.90E-05	4.11E-0S	1.48E-05
5.6	5.25E-05	2.73E-05	9.92E-06	5.6	1.03E-04	5.33E-05	1.92E-05
10.0	6.00E-05	3.12E-05	1.13E-05	10.0	1.27E-04	6.61E-05	2.38E-05
18.0	7.75E-05	4.03E-05	1.46E-05	18.0	1.63E-04	8.48E-05	3.05E-05
31.6	1.10E-04	5.72E-05	2.08E-05	31.6	2.10E-04	1.09E-04	3.93E-05
56.2	1.70E-04	8.84E-05	3.21E-05	56.2	2.33E-04	1.21E-04	4.35E-05
100.0	2.63E-04	1.37E-04	4.96E-05	100.0	2.68E-04	1.39E-04	5.01E-05
177.8	3.35E-04	1.74E-04	6.33E-05	177.8	4.50E-04	2.34E-04	8.43E-05
316.2	7.25E-04	3.77E-04	1.37E-04	316.2	7.60E-04	3.95E-04	1.42E-04
562.3	1.60E-03	8.32E-04	3.02E-04	562.3	1.23E-03	6.37E-04	2.29E-04
1000.0	3.23E-03	1.68E-03	6.09E-04	1000.0	1.95E-03	1.01E-03	3.65E-04
1778.3	6.23E-03	3.24E-03	1.18E-03	1778.3	2.80E-03	1.46E-03	5.24E-04
3162.3	1.13E-02	5.85E-03	2.13E-03	3162.3	4.46E-03	2.32E-03	8.355-04
3600.0	1.30E-02	6.74E-03	2.45E-03	3600.0	4.97E-03	2.58E-03	9.30E-04
7200.0	1.29E-02	6.68E-03		7200.0	4.63E-03	2.415-03	
	FINA AC-1	10 + 3% UP	-70		FINA AC-1	LO + 3% UP	-70 ·
TE	ST TEMP = 90	, ZIGMA =	0.868 PSI	TES	T TEMP = 90	, ZIGMA =	0.875 PSI
1.0	2.00E-05	1.04E-05	5.99E-06	1.0	1.75E-05	9.10E-06	5.205-06
1.8	3.15E-05	1.64E-05	9.44E-06	1.8	2.65E-05	1.38E-05	7.88E-06
3.2	4.75E-05	2.47E-05	1.42E-05	3.2	3.75E-05	1.95E-05	1.11E-05
5.6	8.25E-05	4.29E-05	2.47E-05	5.6	5.40E-05	2.81E-05	1.60E-05
10.0	1.55E-04	8.06E-05	4.64E-05	10.0	7.75E-05	4.03E-05	2.30E-05
18.0	2.65E-04	1.38E-04	7.94E-05	18.0	9.75E-05	5.07E-05	2.90E-05
31.6	4.30E-04	2.24E-04	1.29E-04	31.6	1.29E-04	6.71E-05	3.83E-05
56.2	6.80E-04	3.54E-04	2.04E-04	56.2	1.90E-04	9.88E-05	5.65E-05
100.0	8.58E-04	4.46E-04	2.57E-04	100.0	2.65E-04	1.38E-04	7.88E-05
177.8	3 1.11E-03	5.77E-04	3.33E-04	177.8	3.75E-04	1.95E-04	1.11E-04
316.2	1.45E-03	7.52E-04	4.33E-04	316.2	5.45E-04	2.83E-04	1.62E-04
562.3	3 1.96E-03	1.02E-03	5.87E-04	562.3	8.40E-04	4.37E-04	2.50E-04
1000.0	2.75E-03	1.43E-03	8.24E-04	1000.0	1.30E-03	6.76E-04	3.86E-04
1778.3	4.10E-03	2.13E-03	1.23E-03	1778.3	2.34E-03	1.22E-03	6.95E-04
3162.3	6.40E-03	3.33E-03	1.92E-03	3162.3	4.00E-03	2.08E-03	1.19E-03
3600.0	7.15E-03	3.72E-03	2.14E-03	3600.0	4.55E-03	2.37E-03	1.35E-03
7200.0	7.20E-03	3.74E-03		7200.0	4.57E-03	2.37E-03	

Table D-23 (Continued)

TTHE	TOTAL							
1172		STRATH	IENSILE	IIME	TUTAL	TENSILE	TENSILE	
SEU.	DEFORMATION	JIRAIN		SEC.	HURIZUNIAL	SIRAIN	CREEP	
	DEFURMALIUN	IN/IN	CUMPLIANCE		DEFORMATION	1N/1N -	COMPLIANCE	
	IN		IN 27LB		IN		IN Z/LB	
	FINA AC-1	10 + 3% ST	YRELF		FINA AC-1	0 + 3% ST	YRELF	
TE	EST TEMP = 60	, ZIGMA =	7.348 PSI	TES	ST TEMP = 60	, ZIGMA =	7.371 PSI	
1.0	0 5.50E-05	2.86E-05	1.95E-06	1.0	1.15E-04	5.98E-05	4.06E-06	
1.8	8.75E-05	4.55E-05	3.10E-06	1.8	1.50E-04	7.80E-05	5.29E-06	
3.2	2 1.30E-04	6.76E-05	4.60E-06	3.2	2.00E-04	1.04E-04	7.06E-06	
5.6	5 2.30E-04	1.20E-04	8.14E-06	5.6	2.60E-04	1.35E-04	9.17E-06	
10.0	0 3.23E-04	1.68E-04	1.14E-05	10.0	3.65E-04	1.90E-04	1.29E-05	
18.0	0 4.70E-04	2.44E-04	1.66E-05	18.0	5.10E-04	2.65E-04	1.80E-05	
31.6	6 7.10E-04	3.69E-04	2.51E-05	31.6	7.35E-04	3.82E-04	2.59E-05	
56.2	2 9.28E-04	4.82E-04	3.28E-05	56.2	1.07E-03	5.57E-04	3.78E-05	
100.0	0 1.33E-03	6.89E-04	4.69E-05	100.0	1.53E-03	7.93E-04	5.38E-05	
177.8	B 1.88E-03	9.75E-04	6.64E-05	177.8	2.15E-03	1.12E-03	7.59E-05	
316.2	2 2.65E-03	1.38E-03	9.38E-05	316.2	3.10E-03	1.61E-03	1.09E-04	
562.3	3 3.83E-03	1.99E-03	1.35E-04	562.3	4.55E-03	2.37E-03	1.61E-04	
1000.0	5.50E-03	2.86E-03	1.95E-04	1000.0	6.70E-03	3.48E-03	2.36E-04	
1778.3	3 8.30E-03	4.32E-03	2.94E-04	1778.3	1.01E-02	5.23E-03	3.55E-04	
3162.3	3 1.29E-02	6.71E-03	4.57E-04	3162.3	1.56E-02	8.09E-03	5.49E-04	
3600.0	0 1.43E-02	7.44E-03	5.06E-04	3600.0	1.73E-02	8.975-03	6.09E-04	
7200.0	0 1.25E-02	6.50E-03		7200.0	1.60E-02	8.32E-03		
	FINA AC-1	0 + 3% ST	YRELF	FINA AC-10 + 3% STYRELF				
TE	EST TEMP = 77	, ZIGMA =	3.834 PSI	TES	5T TEMP = 77	, ZIGMA =	3.771 PSI	
1.0) 1.05E≏04	5.46E-05	7.12E-06	1.0	7.00E-05	3.64E-05	4.83E-06	
1.8	3 1.60E-04	8.32E-05	1.09E-05	1.8	1.05E-04	5.46E-05	7.24E-06	
3.2	2 2.20E-04	1.14E-04	1.49E-05	3.2	1.50E-04	7.80E-05	1.03E-05	
5.6	5 3.20E-04	1.66E-04	2.17E-05	5.6	2.00E-04	1.04E-04	1.38E-05	
10.0) 4.23E-04	2.20E-04	2.87E-05	10.0	2.58E-04	1.34E-04	1.78E-05	
18.0) 5.58E-04	2.90E-04	3.78E-05	18.0	3.75E-04	1.95E-04	2.59E-05	
31.6	5 7.75E-04	4.03E-04	5.26E-05	31.6	4.55E-04	2.37E-04	3.14E-05	
56.2	2 1.14E-03	5.90E-04	7.70E-05	56.2	6.30E-04	3.28E-04	4.345-05	
100.0) 1.47E-03	7.62E-04	9.94E-05	100.0	9.43E-04	4.90E-04	6.50E-05	
177.8	3 1.95E-03	1.01E-03	1.32E-04	177.8	1.35E-03	7.02E-04	9.31E-05	
316.2	2 2.75E-03	1.43E-03	1.87E-04	316.2	2.10E-03	1.09E-03	1.45E-04	
562.3	3.88E-03	2.02E-03	2.63E-04	562.3	2.80E-03	1.46E-03	1.93E-04	
1000.0	5.60E-03	2.91E-03	3.80E-04	1000.0	3.70E-03	1.92E-03	2.55E-04	
1778.3	3 8.58E-03	4.46E-03	5.82E-04	1778.3	5.40E-03	2.81E-03	3.72E-04	
3162.3	3 1.44E-02	7.46E-03	9.73E-04	3162.3	1.10E-02	5.72E-03	7.59E-04	
3600.0	0 1.65E-02	8.58E-03	1.12E-03	3600.0	1.35E-02	7.02E-03	9.31E-04	
7200.0	1.66E-02	8.61E-03		7200.0	1.32E-02	6.84E-03		

Table D-23 (Continued)

. .

TIME	TOTAL	TENSILE		TIME		TENSTIE	TENSTIE	
SEC .	HORIZONTAL	STRAIN	CREEP	SEC	HORIZONTAL	STRATN	CREEP	
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	TN/TN	COMPLIANCE	
	IN		IN ² /LB		IN	A.17 A.13		
	FINA AC-1	0 + 3% ST	YRELF		TEXACO AC	-10 + 3%	STYRELF	
15	51 1EMP = 90	, ZIGMA =	0.847 P5I	TES	5T TEMP = 90	, ZIGMA =	0.849 PSI	
1.0	2.50E-05	1.30E-05	7.68E-06	1.0	5.00E-05	2.60E-05	1.53E-05	
1.8	4.00E-05	2.08E-05	1.23 E- 05	1.8	7.00E-05	3.64E-05	2.14E-05	
3.2	5.50E-05	2.86E-05	1.69E-05	3.2	9.50E-05	4.945-05	2.91E-05	
5.6	7.50E-05	3.90E-05	2.30E-05	5.6	1.40E-04	7.28E-05	4.29E-05	
10.0	9.00E-05	4.68E-05	2.76E-05	10.0	2.00E-04	1.04E-04	6.13E-05	
18.0	1.10E-04	5.72E-05	3.38E-05	18.0	2.95E-04	1.53E-04	9.04E-05	
31.6	1.45E-04	7.54E-05	4.45E-05	31.6	4.20E-04	2.18E-04	1.29E-04	
56.2	2.20E-04	1.14E-04	6.75E-05	56.2	5.75E-04	2.99E-04	1.76E-04	
100.0	3.95E-04	2.05E-04	1.21E-04	100.0	7.90E-04	4.11E-04	2.42E-04	
177.8	7.25E-04	3.77E-04	2.23E-04	177.8	1.20E-03	6.24E-04	3.68E-04	
316.2	1.10E-03	5.72E-04	3.38E-04	316.2	1.90E-03	9.885-04	5.82E-04	
562.3	1.58E-03	8.19E-04	4.84E-04	562.3	2.90E-03	1.51E-03	8.88E-04	
1000.0	2.58E-03	1.34E-03	7.91E-04	1000.0	4.40E-03	2.29E-03	1.35E-03	
1778.3	4.25E-03	2.21E-03	1.30E-03	1778.3	6.60E-03	3.43E-03	2.02E-03	
3162.3	9.40E-03	4.89E-03	2.89E-03	3162.3	1.10E-02	5.70E-03	3.35E-03	
3600.0	1.00E-02	5.20E-03	3.07E-03	3600.0	1.29E-02	6.71E-03	3.95E-03	
7200.0	6.20E-03	3.22E-03		7200.0	9.95E-03	5.17E-03		
	FINA AC-1	10 + 3% POI	LYBILT	FINA AC-10 + 3% POLYBILT				
TE	ST TEMP = 60	, ZIGMA =	3.817 PSI	TES	ST TEMP = 60	, ZIGMA =	3.779 PSI	
1.0	1.50E-04	7.80E-05	1.02E-05	1.0	1.10E-04	5.72E-05	7.57E-06	
1.8	2.10E-04	1.09E-04	1.43E-05	1.8	1.75E-04	9.10E-05	1.20E-05	
3.2	3.00E-04	1.56E-04	2.04E-05	3.2	2.35E-04	1.22E-04	1.62E-05	
5.6	4.30E-04	2.24E-04	2.93E-05	5.6	3.20E-04	1.66E-04	2.20E-05	
10.0	5.80E-04	3.02E-04	3.95E-05	10.0	4.40E-04	2.29E-04	3.03E-05	
18.0	8.45E-04	4.39E-04	5.76E-05	18.0	6.25E-04	3.25E-04	4.30E-05	
31.6	1.26E-03	6.53E-04	8.55E-05	31.6	9.15E-04	4.76E-04	6.30E-05	
56.2	1.73E-03	8.97E-04	1.18E-04	56.2	1.36E-03	7.05E-04	9.32E-05	
100.0	2.46E-03	1.28E-03	1.67E-04	100.0	1.99E-03	1.03E-03	1.375-04	
177.8	3.35E-03	1.74E-03	2.28E-04	177.8	2.75E-03	1.43E-03	1.89E-04	
316.2	4.55E-03	2.37E-03	3.10E-04	316.2	4.10E-03	2.13E-03	2.825-04	
562.3	6.40E-03	3.33E-03	4.36E-04	562.3	5.95E-03	3.09E-03	4.09E-04	
1000.0	9.40E-03	4.89E-03	6.40E-04	1000.0	9.35E-03	4.86E-03	6.43E-04	
1778.3	1.59E-02	8.27E-03	1.08E-03	1778.3	1.65E-02	8.58E-03	1.14E-03	

Table D-23 (Continued)

.

. .

TIME	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSILE			
SEC.	HORIZONTAL	STRAIN	CREEP	SEC.	HORIZONTAL	STRAIN	CREEP			
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANCE			
	IN		IN^2/LB		IN		IN^2/LB			
	FINA AC-1	10 + 3% POI	YBILT		FINA AC-10 + 3% POLYBILT					
TE	ST TEMP = 77	, ZIGMA =	0.998 PSI	TES	T TEMP = 77	, ZIGMA =	0.988 PSI			
1.0	3.50E-05	1.82E-05	9.12E-06	1.0	6.50E-05	3.38E-05	1.71E-05			
1.8	6.00E-05	3.12E-05	1.56E-05	1.8	1.08E-04	5.59E-05	2.83E-05			
3.2	7.25E-05	3.77E-05	1.89E-05	3.2	1.55E-04	8.06E-05	4.08E-05			
5.6	9.75E-05	5.07E-05	2.54E-05	5.6	2.35E-04	1.22E-04	6.19E-05			
10.0	1.38E-04	7.15E-05	3.58E-05	10.0	3.08E-04	1.60E-04	8.09E-05			
18.0	2.40E-04	1.25E-04	6.25E-05	18.0	4.00E-04	2.08E-04	1.05E-04			
31.6	3.8CE-04	1.98E-04	9.90E-05	31.6	5.68E-04	2.95E-04	1.49E-04			
56.2	5.88E-04	3.06E-04	1.53E-04	56.2	8.43E-04	4.38E-04	2.22E-04			
100.0	8.15E-04	4.24E-04	2.12E-04	100.0	1.29E-03	6.71E-04	3.40E-04			
177.8	1.10E-03	5.72E-04	2.87E-04	177.8	2.00E-03	1.04E-03	5.26E-04			
316.2	1.63E-03	8.45E-04	4.23E-04	316.2	3.25E-03	1.69E-03	8.55E-04			
562.3	2.53E-03	1.31E-03	6.58E-04	562.3	4.90E-03	2.55E-03	1.29E-03			
1000.0	4.25E-03	2.215-03	1.11E-03	1000.0	7.75E-03	4.03E-03	2.04E-03			
1778.3	8.95E-03	4.65E-03	2.33E-03	1778.3	1.34E-02	6.94E-03	3.51E-03			

•

TEST	FINA AC-1 TEMP = 90	10 + 3% POLY , ZIGMA = (YBILT D.840 PSI	TEST	FINA AC-: TEMP = 90	10 + 3% POL' , ZIGMA = (YBILT 0.726 PSI
1.0	4.50E-05	2.34E-05	1.39E-05	1.0	6.00E-05	3.12E-05	2.15E-05
1.8	7.25E-05	3.77E-05	2.24E-05	1.8	9.00E-05	4.68E-05	3.22E-05
3.2	1.00E-04	5.20E-05	3.10E-05	3.2	1.20E-04	6.24E-05	4.30E-05
5.6	1.60E-04	8.32E-05	4.95E-05	5.6	1.70E-04	8.84E-05	6.09E-05
10.0	2.48E-04	1.29E-04	7.66E-05	10.0	2.43E-04	1.26E-04	8.69E-05
18.0	3.33E-04	1.73E-04	1.03E-04	18.0	3.48E-04	1.81E-04	1.24E-04
31.6	4.85E-04	2.52E-04	1.50E-04	31.6	4.93E-04	2.56E-04	1.76E-04
56.2	6.90E-04	3.59E-04	2.14E-04	56.2	6.83E-04	3.55E-04	2.44E-04
100.0	9.55E-04	4.97E-04	2.96E-04	100.0	9.88E-04	5.14E-04	3.54E-04
177.8	1.33E-03	6.89E-04	4.10E-04	177.8	1.35E-03	7.02E-04	4.84E-04
316.2	1.90E-03	9.88E-04	5.88E-04	316.2	1.78E-03	9.23E-04	6.36E-04
562.3	2.80E-03	1.46E-03	8.67E-04	562.3	2.39E-03	1.24E-03	8.56E-04
1000.0	4.10E-03	2.13E-03	1.27E-03	1000.0	3.13E-03	1.63E-03	1.12E-03
1778.3	6.58E-03	3.42E-03	2.04E-03	1778.3	4.30E-03	2.23E-03	1.54E-03
3162.3	1.03E-02	5.36E-03	3.19E-03	3162.3	6.09E-03	3.17E-03	2.18E-03
3600.0	1.15F-02	5.97E-03	3.55E-03	3600.0	6 65E-03	3.46E-03	2 385-03
7200.0	9.53E-03	4.95E-03		7200.0	4.65E-03	2.42E-03	2.002 00

Table D-23 (Continued)

. .

•

TIME	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSILE
SEC.	HORIZONTAL	STRAIN	CREEP	SEC.	HORIZONTAL	STRAIN	CREEP
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANCE
	IN		IN^2/LB		IN		IN ² /LE
		A + 25 D1	101			A 1 01 01	
TE	FINA AUTI	0 + 36 DI 710MA -		TE	FINA AU-1 ST TEMD - (A		101
-	.57 (EMF - 6V	, <u>210</u> 00 -	3.870 P51	1E -	51 1EMP = 60	, <u>/</u> 1GMA =	3.327 951
1.0	4.50E-05	2.34E-05	3.02E-06	1.0	5.00E-06	2.60E-06	3.91E-07
1.8	7.50E-05	3.90E-05	5.04E-06	1.8	1.00E-05	5.20E-06	7.82E-07
3.2	1.08E-04	5.59E-05	7.22E-06	3.2	1.50E-05	7.80E-06	1.175-06
5.6	1.55E-04	8.06E-05	1.04E-05	5.6	2.50E-05	1.30E-05	1.95E-06
10.0	2.50E-04	1.30E-04	1.68E-05	10.0	2.60E-05	1.35E-05	2.03E-06
18.0	3.50E-04	1.82E-04	2.35E-05	18.0	4.00E-05	2.08E-05	3.13E-06
31.6	5.45E-04	2.83E-04	3.66E-05	31.6	6.00E-05	3.12E-05	4.69E-06
56.2	8.48E-04	4.41E-04	5.69E-05	56.2	1.03E-04	5.33E-05	8.01E-06
100.0	1.21E-03	6.29E-04	8.13E-05	100.0	1.65E-04	8.58E-05	1.29E-05
177.8	1.75E-03	9.10E-04	1.18E-04	177.8	2.65E-04	1.38E-04	2.07E-05
316.2	2.47E-03	1.285-03	1.66E-04	316.2	4.30E-04	2.24E-04	3.36E-05
562.3	3.53E-03	1.83E-03	2.37E-04	562.3	6.55E-04	3.41E-04	5.12E-05
1000.0	5.05E-03	2.63E-03	3.39E-04	1000.0	1.14E-03	5.93E-04	8.91E-05
1778.3	7.52E-03	3.91E-03	5.05E-04	1778.3	1.64E-03	8.53E-04	1.28E-04
3162.3	1.16E-02	6.02E-03	7.78E-04	3162.3	3.895-03	2.02E-03	3.04E-04
3600.0	1.28E-02	6.66E-03	8.60E-04	3600.0	4.34E-03	2.26E-03	3.39E-04
7200.0	1.13E-02	5.88E-03		7200.0	3.16E-03	1.64E-03	
	FINA AC-1	0 + 3% 01	101		FINA AC-1	0 + 3% D1	101
ŤE	ST TEMP = 77	, ZIGMA =	2.464 PSI	TE	ST TEMP = 77	, ZIGMA =	2.392 PSI
1.0	6.00E-05	3.125-05	6.33E-06	1.0	4.00E-05	2.08E-05	4.355-06
1.8	3 1.00E-04	5.20E-05	1.06E-05	1.8	6.75E-05	3.51E-05	7.34E-06
3.2	2 1.43E-04	7.41E-05	1.50E-05	3.2	9.25E-05	4.81E-05	1.01E-05
5.6	2.15E-04	1.12E-04	2.27E-05	5.6	1.40E-04	7.28E-05	1.52E-05
10.0	3.05E-04	1.59E-04	3.225-05	10.0	1.95E-04	1.01E-04	2.125-05
18.0) 4.43E-04	2.30E-04	4.67E-05	18.0	2.68E-04	1.39E-04	2.91E-05
31.6	6.50E-04	3.38E-04	6.86E-05	31.6	3.94E-04	2.05E-04	4.28E-05
56.2	9.70E-04	5.04E-04	1.02E-04	56.2	5.88E-04	3.06E-04	6.39E-05
100.0) 1.42E-03	7.36E-04	1.49E-04	100.0	8.45E-04	4.39E-04	9.19E-05
177.8	2.10E-03	1.09E-03	2.22E-04	177.8	1.19E-03	6.19E-04	1.29E-04
316.2	2.85E-03	1.48E-03	3.01E-04	316.2	1.88E-03	9.75E-04	2.045-04
562.3	4.25E-03	2.21E-03	4.49E-04	562.3	2.85E-03	1.48E-03	3.10E-C4
1000.0	5.85E-03	3.04E-03	6.17E-04	1000.0	4.15E-03	2.16E-03	4.51E-04
1778.3	8.10E-03	4.21E-03	8.55E-04	1778.3	6.30E-03	3.28E-03	6.85E-04
3162.3	3 1.28E-02	6.63E-03	1.35E-03	3162.3	9.88E-03	5.14E-03	1.07E-03
3600.0) 1.43E-02	7.44E-03	1.51E-03	3600.0	1.10E-02	5.71E-03	1.19E-03
7200.0	1.45E-02	7.54E-03		7200.0	1.09E-02	5.67E-03	

Table D-23 (Continued)

TIME	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSILE
JEU.	DECODMATION		COMOL TANCE	SEC.	DEEODMATION	5 RAIN TN/TN	
	JEFORIHI ION	107.10	TNCOUR			10/10	
	114		19 2765		714		1.1 2/15
	FINA AC-1	0 + 3% D1	101		FINA AC-1	0 + 3% D1	101
TES	ST TEMP = 90	, ZIGMA =	0.846 PSI	TES	ST TEMP = 90	, ZIGMA =	0.873 PSI
1.0	6.00E-05	3.12E-05	1.84E-05	1.0	2.00E-05	1.04E-05	5.96E-06
1.8	1.00E-04	5.20E-05	3.07E-05	1.8	3.50E-05	1.82E-05	1.04E-05
3.2	1.50E-04	7.80E-05	4.61E-05	3.2	5.25E-05	2.73E-05	1.56E-05
5.6	2.00E-04	1.04E-04	6.15E-05	5.6	7.90E-05	4.11E-05	2.35E-05
10.0	2.85E-04	1.48E-04	8.76E-05	10.0	1.20E-04	6.24E-05	3.57E-05
18.0	4.20E-04	2.18E-04	1.29E-04	18.0	1.80E-04	9.36E-05	5.36E-05
31.6	6.05E-04	3.15E-04	1.86E-04	31.6	2.55E-04	1.33E-04	7.60E-05
56.2	8.65E-04	4.50E-04	2.66E-04	56.2	3.60E-04	1.87E-04	1.07E-04
100.0	1.16E-03	6.01E-04	3.55E-04	100.0	5.28E-04	2.74E-04	1.57E-04
177.8	1.70E-03	8.84E-04	5.23E-04	177.8	7.65E-04	3.98E-04	2.28E-04
316.2	2.50E-03	1.30E-03	7.68E-04	316.2	1.105-03	5.72E-04	3.28E-04
562.3	3.65E-03	1.90E-03	1.12E-03	562.3	1.53E-03	7.93E-04	4.54E-04
1000.0	5.50E-03	2.86E-03	1.69E-03	1000.0	2.14E-03	1.11E-03	6.37E-04
1778.3	8.30E-03	4.32E-03	2.55E-03	1778.3	2.67E-03	1.39E-03	7.95E-04
3162.3	1.36E-02	7.07E-03	4.18E-03	3162.3	3.25E-03	1.695-03	9.68E-04
3600.0	1.50E-02	7.80E-03	4.61E-03	3600.0	3.35E-03	1.74E-03	9.98E-04
7200.0	1.24E-02	6.42E-03		7200.0	2.16E-03	1.12E-03	

TIME	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSILE
SEC.	HORIZONTAL	STRAIN	CREEP	SEC.	HORIZONTAL	STRAIN	CREEP
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANCE
	IN		IN^2/LB		IN		IN^2/LB
	TOTA	AL AC-20			TOTA	L AC-20	
TE	ST TEMP = 60	, ZIGMA =	7.480 PSI	TES	ST TEMP = 60	, ZIGMA =	7.536 PSI
1.0	5.00E-05	2.60E-05	1.74E-06	1.0	9.50E-05	4.94E-05	3.28E-06
1.8	8.50E-05	4.42E-05	2.96E-06	1.8	1.15E-04	5.98E-05	3.97E-06
3.2	1.10E-04	5.72E-05	3.82E-06	3.2	1.45E-04	7.54E-05	5.00E-06
5.6	1.45E-04	7.54E-05	5.04E-06	5.6	1.70E-04	8.84E-05	5.87E-06
10.0	1.90E-04	9.88E-05	6.61E-06	10.0	2.15E-04	1.12E-04	7.42E-06
18.0	2.48E-04	1.29E-04	8.50E-06	18.0	2.70E-04	1.40E-04	9.32E-06
31.6	3.53E-04	1.83E-04	1.23E-05	31.6	3.53E-04	1.835-04	1.22E-05
56.2	4.90E-04	2.55E-04	1.70E-05	56.2	4.73E-04	2.46E-04	1.63E-05
100.0	6.70E-04	3.48E-04	2.33E-05	100.0	6.55E-04	3.415-04	2.26E-05
177.9	8.30E-04	4.32E-04	2.89E-05	177.8	8.50E-04	4.42E-04	2.93E-05
316.2	2 1.37E-03	7.13E-04	4.76E-05	316.2	1.15E-03	5.98E-04	3.97E-05
562.3	2.10E-03	1.09E-03	7.30E-05	562.3	1.51E-03	7.85E-04	5.21E-05
1000.0	2.72E-03	1.41E-03	9.46E-05	1000.0	2.16E-03	1.12E-03	7.45E-05
1778.3	3.77E-03	1.96E-03	1.31E-04	1778.3	3.11E-03	1.62E-03	1.07E-04
3162.3	4.82E-03	2.51E-03	1.68E-04	3162.3	4.50E-03	2.34E-03	1.55E-04
3600.0	5.22E-03	2.71E-03	1.81E-04	3600.0	4.88E-03	2.54E-03	1.68E-04
7200.0	4.57E-03	2.38E-03		7200.0	4.30E-03	2.24E-03	1.48E-04
	TOTA	AL AC-20			TOTA	AL AC-20	
TE	ST TEMP = 77	, ZIGMA =	2.418 PSI	TE	ST TEMP = 77	, ZIGMA =	3.871 PSI
1.0	4.00E-05	2.08E-05	4.30E-06	1.0	1.15E-04	5.985-05	7.73E-06
1.8	3 7.00E-05	3.6 4E-0 5	7.53E-06	1.8	1.70E-04	8.84E-05	1.14E-05
3.2	2 9.00E-05	4.68E-05	9.68E-06	3.2	2.25E-04	1.17E-04	1.51E-05
5.6	5 1.10E-04	5.72E-05	1.18E-05	5.6	3.00E-04	1.56E-04	2.02E-05
10.0	0 1.40E-04	7.28E-05	1.51E-05	10.0	4.08E-04	2.12E-04	2.74E-05
18.0	2.00E-04	1.04E-04	2.15E-05	18.0	5.08E-04	2.64E-04	3.41E-05
31.6	5 2.90E-04	1.51E-04	3.125-05	31.6	8.10E-04	4.21E-04	5.44E-05
56.2	2 4.70E-04	2.44E-04	5.05E-05	56.2	1.13E-03	5.85E-04	7.56E-05
_ 100.0	0 8.10E-04	4.21E-04	8.71E-05	100.0	1.48E-03	7.70E-04	9.94E-C5
177.8	B 1.20E-03	6.24E-04	1.29E-04	177.8	2.10E-03	1.09E-03	1.41E-04
316.2	2 1.75E-03	9.10E-04	1.88E-04	316.2	3.30E-03	1.72E-03	2.22E-04
562.3	3 2.50E-03	1.30E-03	2.69E-04	562.3	4.50E-03	2.34E-03	3.02E-04
1000.0	0 4.50E-03	2.34E-03	4.84E-04	1000.0	6.45E-03	3.35E-03	4.33E-04
1778.3	8.50E-03	4.42E-03	9.14E-04	1778.3	1.04E-02	5.38E-03	6.95E-04
3162.3	3 1.83E-02	9.49E-03	1.96E-03	3162.3	2.13E-02	1.11E-02	1.435-03
3600.0	2.23E-02	1.16E-02	2.39E-03	3600.0	2.55E-02	1.33E-02	1.71E-03
7200.0	2.15E-02	1.12E-02		7200.0	2.49E-02	1.30E-02	

Table D-24 Creep Compliance of Plant Mixed / Laboratory Compacted Mixtures Using Modified Compaction.

Table D-24 (Continued)

• •

TIME	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSILE
SEC.	HCRIZONTAL	STRAIN	CREEP	SEC.	HORIZONTAL	STRAIN	CREEP
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANCE
	IN		IN^2/LB		IN		IN^2/LB
	TOTA	AL AC-20			TOTA	L AC-20	
Ţ	EST TEMP = 90	, ZIGMA =	1.348 PSI	TE	EST TEMP = 90	, ZIGMA =	1.729 PSI
1.0	0 1.00E-04	5.20E-05	1.93E-05	1.0	0 2.75E-05	1.43E-05	4.14E-06
1.8	8 1.75E-04	9.10E-05	3.38E-05	1.6	B 4.00E-05	2.08E-05	6.02E-06
3.3	2 2.35E-04	1.22E-04	4.53E-05	3.3	2 6.00E-05	3.12E-05	9.025-06
5.6	6 4.00E-04	2.08E-04	7.72E-05	5.0	6 8.75E-05	4.55E-05	1.32E-05
10.0	0 7.35E-04	3.825-04	1.42E-04	10.3	0 1.15E-04	5.98E-05	1.73E-05
18.0	0 1.25E-03	6.50E-04	2.41E-04	18.0	0 1.65E-04	8.58E-05	2.48E-05
31.6	6 2.40E-03	1.25E-03	4.63E-04	31.6	6 2.23E-04	1.16E-04	3.35E-05
56.2	2 4.05E-03	2.11E-03	7.81E-04	56.2	2 3.30E-04	1.72E-04	4.96E-05
100.0	0 7.35E-03	3.82E-03	1.42E-03	100.0	0 5.25E∸04	2.73E-04	7.90E-05
177.8	8 1.30E-02	6.76E-03	2.51E-03	177.8	B 8.50E-04	4.42E-04	1.28E-04
316.2	2 2.55E-02	1.33E-02	4.92E-03	316.2	2 1.65E-03	8.585-04	2.48E-04
562.3	3 4.85E-02	2.52E-02	9.36E-03	562.3	3 3.355-03	1.74E-03	5.04E-04
1000.0	0 7.75E-02	4.03E-02	1.50E-02	1000.0	0 5.90E-03	3.07E-03	8.875-04

FINA AC-10 + 3% UP-70			FINA AC-10 + 3% UP-70				
TEST	TEMP = 60	, ZIGMA =)	7.341 PSI	TEST	TEMP = 60	, ZIGMA =	7.262 PSI
1.0	8.50E-05	4.42E-05	3.01E-06	1.0	9.50E-05	4.94E-05	3.40E-06
1.8	1.15E-04	5.98E-05	4.07E-06	1.8	1.25E-04	6.50E-05	4.49E-06
3.2	1.55E-04	8.06E-05	5.49E-06	3.2	1.65E-04	8.58E-05	5.91E-06
5.6	2.18E-04	1.13E-04	7.70E-06	5.6	2.50E-04	1.30E-04	8.95E-06
10.0	3.05E-04	1.59E-04	1.08E-05	10.0	3.70E-04	1.92E-04	1.32E-05
18.0	4.20E-04	2.18E-04	1.49E-05	18.0	5.40E-04	2.81E-04	1.93E-05
31.6	5.70E-04	2.96E-04	2.02E-05	31.6	8.00E-04	4.16E-04	2.86E-05
56.2	8.40E-04	4.37E-04	2.98E-05	56.2	1.12E-03	5.80E-04	3.99E-05
100.0	1.26E-03	6.55E-04	4.46E-05	100.0	1.66E-03	8.63E-04	5.94E-05
177.8	1.84E-03	9.57E-04	6.52E-05	177.8	2.33E-03	1.21E-03	8.34E-05
316.2	2.64E-03	1.37E-03	9.35E-05	316.2	3.33E-03	1.73E-03	1.19E-04
562.3	3.95E-03	2.05E-03	1.40E-04	562.3	5.08E-03	2.64E-03	1.82E-04
1000.0	5.55E-03	2.89E-03	1.97E-04	1000.0	8.13E-03	4.23E-03	2.91E-04
1778.3	7.95E-03	4.13E-03	2.82E-04	1778.3	1.35E-02	7.04E-03	4.85E-04
3162.3	1.13E-02	5.88E-03	4.00E-04	3162.3	2.48E-02	1.29E-02	8.875-04
3600.0	1.24E-02	6.45E-03	4.39E-04	3600.0	2.89E-02	1.50E-02	1.04E-03
7200.0	1.17E-02	6.06E-03		7200.0	2.74E-02	1.425-02	

Table D-24 (Continued)

TIME	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSTLE
SEC.	HORIZONTAL	STRAIN	CREEP	SEC.	HORIZONTAL	STRAIN	CREEP
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANCE
	IN		IN^2/LB		IN		IN^2/LB
	FINA AC-1	.0 + 3% UP	-70		FINA AC-1	.0 + 3% UP	-70
Ţ	EST TEMP = 77	, ZIGMA =	6.664 PSI	T	EST TEMP = 77	, ZIGMA =	3.907 PSI
1.	0 3.25E-04	1.69E-04	1.275-05	1.	C 8.50E-05	4.425-05	5.665-06
1.	8 4.50E-04	2.34E-04	1.76E-05	1.	8 1.10E-04	5.725-05	7.325-06
3.	2 5.65E-04	2.94E-04	2.20E-05	3.	2 2.255-04	1.17E-04	1.50E-05
5.	6 6.65E-04	3.46E-04	2.60E-05	5,	6 3.20E-04	1.66E-04	2.13E-05
10.	0 9.50E-04	4.94E-04	3,715-05	10.	0 4.40E-04	2.29E-04	2.93E-05
18.	0 1.33E-03	6.89E-04	5.175-05	18.	0 5.75E-04	2.99E-04	3.83E-05
31.	6 2.03E-03	1.05E-03	7.905-05	31.	6 8.4CE-04	4.37E-04	5.595-05
56.	2 3.15E-03	1.64E-03	1.23E-04	56.	2 1.36E-03	7.05E-04	9.025-05
100.	0 5.18E-03	2.69E-03	2.025-04	100.	0 1.68E-03	8.71E-04	1.11E-04
177.	8 8.40E-03	4.37E-03	3.28E-04	177.	8 2.61E-03	1.35E-03	1.73E-04
316.	2 1.09E-02	5.67E-03	4.25E-04	316.	2 3.90E-03	2.03E-03	2.50E-04
562.	3 2.54E-02	1.32E-02	9.915-04	562.	3 5.505-03	2.86E-03	3.66E-04

	FINA AC-1	10 + 3% UP-7	' 0
TEST	TEMP = 90	, ZIGMA = ().997 PSI
1 0	8 00E-05	4 16E-05	2 09F-05
1.8	1.15E-04	5.98E-05	3.00F-05
3.2	1.48E-04	7.67E-05	3.85E-05
5.6	2.08E-04	1.08E-04	5.415-05
10.0	2.75E-04	1.43E-04	7.175-05
18.0	3.80E-04	1.98E-04	9.91E-05
31.6	5.40E-04	2.81E-04	1.41E-04
56.2	7.70E-04	4.00E-04	2.01E-04
100.0	1.21E-03	6.29E-04	3.16E-04
177.8	1.85E-03	9.625-04	4.83E-04
316.2	2.75E-03	1.43E-03	7.17E-04
562.3	4.05E-03	2.11E-03	1.06E-03
1000.0	6.30E-03	3.28E-03	1.64E-03
1778.3	1.095-02	5.67E-03	2.845-03
3162.3	0.00E+00	0.00E+00	0.00E+00
3600.0	0.00E+0C	0.00E+00	0.00E+00
7200.0	0.00E+00	0.00E+00	

	FINA AC-1	.0 + 3% UP-7	70
TEST	TEMP = 90	, ZIGMA = (0.839 PSI
1.0	5.00E-05	2.60E-05	1.55E-05
1.8	7.50E-05	3.90E-05	2.32E-05
3.2	1.00E-04	5.20E-05	3.10E-05
5.6	1.50E-04	7.805-05	4.65E-05
10.0	2.00E-04	1.04E-04	6.205-05
18.0	3.00E-04	1.56E-04	9.305-05
31.6	4.00E-04	2.08E-04	1.24E-04
56.2	6.00E-04	3.12E-04	1.86E-04
100.0	1.40E-03	7.28E-04	4.34E-04
177.8	1.88E-03	9.75E-04	5.81E-04
316.2	2.06E-03	1.075-03	6.37E-04
562.3	2.36E-03	1.225-03	7.3CE-04
1000.0	3.11E-03	1.61E-03	9.525-04
1778.3	4.60E-03	2.39E-03	1.425-03
Table D-24 (Continued)

. .

TIME	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSILE
SEC.	HORIZONTAL	STRAIN	CREEP	SEC.	HORIZONTAL	STRAIN	CREEP
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANCE
	IN		IN^2/LB		IN		IN ² /LB
						•	
	FINA AC-	0 + 3% ST	YRELF		FINA AC-	0 + 3% ST	YRELE
TE	ST TEMP = 60	, ZIGMA =	7.405 PSI	TE	ST TEMP = 60	. ZIGMA =	7.408 PSI
-				-			
1.0	1.00E-04	5.20E-05	3.51E-06	1.0	9.50E-05	4.945-05	3.33E-05
1.8	1.40E-04	7.28E-05	4.92E-06	1.8	1.15E-04	5.98E-05	4.04E-06
3.2	1.85E-04	9.62E-05	6.50E-06	3.2	1.45E-04	7.54E-05	5.09E-06
5.6	2.60E-04	1.35E-04	9.13E-06	5.6	1.90E-04	9.88E-05	6.67E-06
10.0	3.60E-04	1.87E-04	1.265-05	10.0	2.56E-04	1.335-04	8.99E-06
18.0	5.COE-04	2.60E-04	1.76E-05	18.0	3.83E-04	1.995-04	1.34E-05
31.5	6.60E-04	3.43E-04	2.32E-05	31.6	5.85E-04	3.04E-04	2.05E-05
56.2	8.55E-04	4.45E-04	3.00E-05	56.2	9.00E-04	4.68E-04	3.16E-05
100.0	1.19E-03	6.19E-04	4.18E-05	100.0	1.35E-03	7.00E-04	4.72E-05
177.8	1.58E-03	8.19E-04	5.53E-05	177.8	1.80E-03	9.36E-04	6.32E-05
316.2	2.10E-03	1.09E-03	7.375-05	316.2	2.50E-03	1.30E-03	9.78E-05
562.3	2.98E-03	1.55E-03	1.04E-04	562.3	3.43E-03	1.78E-03	1.205-04
1000.0	4.33E-03	2.25E-03	1.525-04	1000.0	4.78E-03	2.485-03	1.68E-04
1778.3	6.585-03	3.42E-03	2.315-04	1778.3	6.75E-03	3.51E-03	2.375-04
3162.3	1.025-02	5.32E-03	3.595-04	3162.3	9.78E-03	5.085-03	3.43E-04
3600.0	1.115-02	5.76E-03	3.89E-04	3600.0	1.07E-02	5.575-03	3.765-04
7200.0	1.06E-02	5.50E-03	•••••	7200.0	9.8CE-03	5.105-03	
	FINA AC-1	10 + 3% ST	YRELF		FINA AC-1	0 + 3% ST	YRELE
TE	ST TEMP = 77	, ZIGMA =	1.350 PSI	TE	ST TEMP = 77	, ZIGMA =	1.344 PSI
-				-			
1.0	3.50E-05	1.82E-05	6.74E-06	1.0	2.75E-05	1.43E-05	5.32E-06
1.8	4.50E-05	2.34E-05	8.67E-06	1.8	4.40E-05	2.29E-05	8.51E-06
3.2	5.50E-05	2.86E-05	1.06E-05	3.2	5.60E-05	2.91E-05	1.08E-05
5.6	7.20E-05	3.74E-05	1.39E-05	5.6	8.10E-05	4.21E-05	1.57E-05
10.0	8.90E-05	4.63E-05	1.71E-05	10.0) 1.07E-04	5.54E-05	2.065-05
18.0	1.34E-04	6.97E-05	2.58E-05	18.0	1.36E-04	7.05E-05	2.52E-05
31.6	1.75E-04	9.10E-05	3.37E-05	31.6	2.13E-04	1.115-04	4.125-05
56.2	2.23E-04	1.16E-04	4.29E-05	56.2	2 3.25E-04	1.69E-04	6.295-05
100.0	3.05E-04	1.59E-04	5.88E-05	100.0	5.08E-04	2.64E-04	9.825-05
177.8	4.35E-04	2.26E-04	8.38E-05	177.8	8.00E-04	4.16E-04	1.55E-04
316.2	7.20E-04	3.74E-04	1.39E-04	316.2	2 1.14E-03	5.93E-04	2.215-04
562.3	3 1.13E-03	5.85E-04	2.17E-04	562.3	3 1.62E-03	8.40E-04	3.12E-04
1000.0) 1.90E-03	9.88E-04	3.66E-04	1000.0	2.68E-03	1.39E-03	5.18E-04
1778.3	3.13E-03	1.63E-03	6.02E-04	1778.3	8 4.17E-03	2.175-03	8.06E-04
3162.3	5.30E-03	2.76E-03	1.02E-03	3162.3	6.55E-03	3.41E-03	1.27E-03
3600.0	6.05E-03	3.15E-03	1.175-03	3600.0) 7.28E-03	3.785-03	1.415-03
7200.0	5.55E-03	2.895-03		7200.0) 7.03E-03	3.65E-03	

Table D-24 (Continued)

. .

.

TIME	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSTLE	TENSTLE
SEC	HORIZONTAL	STRAIN	CREEP	SEC .	HCRIZONTAL	STRAIN	CREED
•=••	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLITANCE
	IN		IN ^{2/LB}		IN		IN^2/18
	FINA AC-1	0 + 3% ST	YRELF		TEXACO AC	-10 + 3%	STYRELE
T	EST TEMP = 90	, ZIGMA =	0.855 PSI	TE	ST TEMP = 90	, ZIGMA =	0.855 PSI
1.(0 5.00F-06	2.60F-06	1.52E-06	- 1.0	4.00E-05	2.08F-05	1.225-05
1.1	B 1.00E-05	5.20E-06	3.04E-06	1.8	6.00E-05	3.125-05	1.825-05
3.3	2 1.50E-05	7.80E-06	4.56E-06	3.2	8.25E-05	4.295-05	2.51E-05
5.	6 2.00E-05	1.04E-05	6.08E-06	5.6	1.23E-04	6.37E-05	3.73E-05
10.	0 4.00E-05	2.08E-05	1.22E-05	10.0	1.75E-04	9.10E-05	5.32E-05
18.0	0 7.50E-05	3.90E-05	2.28E-05	18.0	2.53E-04	1.31E-04	7.68E-05
31.	6 1.25E-04	6.50E-05	3.80E-05	31.6	3.93E-04	2.04E-04	1.19E-04
56.	2 2.05E-04	1.075-04	6.24E-05	56.2	5.95E-04	3.09E-04	1.81E-04
100.	0 3.10E-04	1.61E-04	9.43E-05	100.0	8.90E-04	4.63E-04	2.71E-04
177.	8 4.50E-04	2.34E-04	1.37E-04	177.8	1.20E-03	6.245-04	3.65E-04
316.3	2 6.50E-04	3.38E-04	1.98E-04	316.2	1.55E-03	8.06E-04	4.71E-04
562.	3 1.10E-03	5.725-04	3.35E-04	562.3	2.10E-03	1.09E-03	6.39E-04
1000.0	0 1.85E-03	9.625-04	5.63E-04	1000.0	2.92E-03	1.525-03	8.87E-04
1778.	3 3.15E-03	1.64E-03	9.58E-04	1778.3	4.05E-03	2.11E-03	1.23E-03
3162.	3 5.35E-0 3	2.79E-03	1.63E-03	3162.3	6.185-03	3.215-03	1.88E-C3
3600.	0 5.60E-03	2.91E-03	1,70E-03	3600.0	6.58E-03	3.425-03	2.00E-03
7200.	0 4.105-03	2.13E-03		7200.0	5.13E-03	2.67E-03	
-	FINA AC-	10 + 3% PO	LYBILT		FINA AC-	0 + 3% PC	
1	ES: !EMP = 60	, ZIGMA =	3.868 951	16	S! !EMP = 60	, 21GMA =	7.504 951
1.	0 1.105-04	5.725-05	7.40E-06	1.0	1.50E-04	7.80E~05	5.20E-06
1.	8 1.50E-04	7.80E-05	1.01E-05	1.8	2.25E-04	1.17E-04	7.805-06
3.	2 1.90E-04	9.88E-05	1.285-05	3.2	2.95E-04	1.535-04	1.02E-05
5.	6 2.45E-04	1.27E-04	1.65E-05	5.6	4.20E-04	2.18E-04	1.46E-05
10.	0 3.25E-04	1.69E-04	2.19E-05	10.0	5.15E-04	2.68E-04	1.78E-05
18.	0 4.60E-04	2.39E-04	3.09E-05	18.0	7.05E-04	3.675-04	2.44E-05
31.	6 6.70E-04	3.48E-04	4.50E-05	31.6	5 1.10E-03	5.725-04	3.815-05
56.	2 9.05E-04	4.71E-04	6.08E-05	56.2	2 1.72E-03	8.95E-C4	5.96E-05
100.	0 1.39E-03	7.23E-04	9.35E-05	100.0	2.725-03	1.41E-03	9.43E-05
177.	8 1.93E-03	1.00E-03	1.29E-04	177.8	4.30E-03	2.24E-03	1.49E-04
316.	2 2.75E-03	1.43E-03	1.85E-04	316.2	2 6.65E-03	3.46E-03	2.305-04
562.	3 3.90E-03	2.03E-03	2.62E-04	562.3	9.40E-03	4.89E-03	3.26E-04
1000.	0 5.75E-03	2.99E-03	3.87E-04	1000.0) 1.97E-02	1.025-02	6.815-04
1778.	3 8.95E-03	4.65E-03	6.02E-04				
3162.	3 1.46E-02	7.57E-03	9.78E-04				
3600.	0 1.64E-02	8.50E-03	1.10E-03				
7200.	0 1.58E-02	8.19E-03	1.06E-03				

.

Table D-24 (Continued)

. .

•

TIME	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSILE	TENSILE
SEC.	HORIZONTAL	STRAIN	CREEP	SEC.	HORIZONTAL	STRAIN	CSEED
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANCE
	IN		IN^2/_B		IN		IN^2/18
	FINA AC-	0 + 3% PC	LYBILT		FINA AC-1	0 + 3% PO	YBILT
TE	ST TEMP = 77	, ZIGMA =	1.225 PSI	TE	ST TEMP = 77	, ZIGMA =	0.995 PSI
1.0	3.50E-05	1.82E-05	7.43E-06	1.0	4.00E-05	2.08E-05	1.05E-05
1.8	5.50E-05	2.86E-05	1.17E-05	1.8	5.75E-05	2.99E-05	1.50E-C5
3.2	7.75E-05	4.03E-05	1.655-05	3.2	7.75E-05	4.03E-05	2.03E-05
5.6	1.15E-04	5.98E-05	2.445-05	5.6	1.10E-04	5.72E-05	2.875-05
10.0	1.65E-04	8.585-05	3.50E-05	10.0	1.50E-04	7.80E-05	3.92E-05
18.0	2.40E-04	1.25E-04	5.09E-05	18.0	2.20E-04	1.14E-04	5.75E-05
31.6	3.45E-04	1.79E-04	7.32E-05	31.6	3.60E-04	1.87E-04	9.41E-05
56.2	4.85E-04	2.52E-04	1.03E-04	56.2	5.93E-04	3.08E-04	1.55E-04
100.0	6.85E-04	3.56E-04	1.45E-04	100.0	9.75E-04	5.07E-04	2.55E-04
177.8	9.50E-04	4.945-04	2.02E-04	177.8	1.55E-03	8.06E-04	4.05E-04
316.2	1.37E-03	7.10E-04	2.90E-04	316.2	2.50E-03	1.30E-03	6.53E-04
562.3	2.025-03	1.05E-03	4.285-04	562.3	3.75E-03	1.95E-03	9.80E-04
1000.0	3.03E-03	1.57E-03	6.42E-04	1000.0	5.85E-03	3.04E-03	1.53E-03
1778.3	4.95E-03	2.57E-03	1.05E-03	1778.3	9.60E-03	4.99E-03	2.515-03

FINA AC-10 + 3% POLYBILT

TEST	TEMP = 90	, ZIGMA =	0.856 PSI
1.0	5.50E-05	2.86E-05	1.67E-05
1.8	9.00E-05	4.68E-05	2.73E-05
3.2	1.30E-04	6.76E-05	3.95E-05
5.6	1.85E-04	9.62E-05	5.62E-05
10.0	2.70E-04	1.40E-04	8.20E-05
18.0	4.08E-04	2.12E-04	1.24E-04
31.6	6.20E-04	3.22E-04	1.88E-04
56.2	9.55E-04	4.97E-04	2.90E-04
100.0	1.50E-03	7.80E-04	4.56E-04
177.8	2.10E-03	1.09E-03	6.38E-04
316.2	3.03E-03	1.57E-03	9.19E-04
562.3	4.48E-03	2.33E-03	1.36E-03
1000.0	7.40E-03	3.85E-03	2.25E-03
1778.3	1.30E-02	6.76E-03	3.95E-03

FINA AC-10 + 3% POLYBILT

TEST	TEMP = 90	, ZIGMA =	0.875 PSI
1.0	7.00E-05	3.64E-05	2.08E-05
1.8	1.03E-04	5.33E-05	3.045-05
3.2	1.30E-04	6.76E-05	3.86E-05
5.6	1.70E-04	8.84E-05	5.05E-05
10.0	2.18E-04	1.13E-04	6.46E-05
18.0	2.98E-04	1.55E-04	8.83E-05
31.6	4.35E-04	2.26E-04	1.29E-04
56.2	6.63E-04	3.45E-04	1.975-04
100.0	1.02E-03	5.31È-04	3.03E-04
177.8	1.40E-03	7.28E-04	4.165-04
316.2	1.85E-03	9.62E-04	5.49E-04
562.3	2.66E-03	1.38E-03	7.905-04
1000.0	3.80E-03	1.98E-03	1.13E-03
1778.3	5.48E-03	2.85E-03	1.635-03
3162.3	9.00E-03	4.68E-03	2.675-03
3600.0	1.03E-02	5.345-03	3.05E-03
7200.0	7.93E-03	4.12E-03	

Table D-24 (Continued)

•

. .

TIME	TOTAL	TENSILE	TENSILE	TIME	TOTAL	TENSI'LE	TENSTLE
SEC.	HORIZONTAL	STRAIN	CREEP	SEC.	HORIZONTAL	STRAIN	CREEP
	DEFORMATION	IN/IN	COMPLIANCE		DEFORMATION	IN/IN	COMPLIANCE
	IN		IN ^{2/LB}		IN		IN ^{2/LB}
	FINA AC-	10 + 3% D1	101		FINA AC-1	10 + 3% 01	101
T	EST TEMP = 60	, ZIGMA =	3.194 PSI	TES	ST TEMP = 60	, ZIGMA =	3.152 PSI
				-			
	0 /.50E-06	3.90E-06	6.11E-0/	1.0	5.00E-05	2.601-05	4.13E-06
1.	8 1.50E-05	7.80E-06	1.225-06	1.8	8.50E-05	4.425-05	7.015-05
3.	2 2.005-05	1.042-05	1.635-06	3.2	1.185-04	6.112-05	9.59E-06
5.	6 3.00E-05	1.56E-05	2.44E-06	5.6	1.70E-04	8.841-05	1.40E-05
10.	0 4.00E-05	2.08E-05	3.26E-06	10.0	2.30E-04	1.205-04	1.905-05
18.	0 5.00E-05	2.60E-05	4.075-06	18.0	3.43E-04	1.78E-04	2.33E-05
31.	6 7.00E-05	3.64E-05	5.70E-06	31.5	5.042-04	2.625-04	4.15E-05
56.	2 1.025-04	5.28E-05	8.26E-06	56.2	6.85E-04	3.56E-04	5.65E-05
100.	0 1.33E-04	6.89E-05	1.08E-C5	100.0	1.015-03	5.235-04	8.29E-05
177.	8 2.25E-04	1.17E-04	1.83E-05	177.8	1.48E-03	7.675-04	1.225-04
316.	2 3.85E-04	2.005-04	3.13E-05	316.2	2.18E-03	1.135-03	1.795-04
562.	3 6.40E-04	3.33E-04	5.215-05	562.3	3.26E-03	1.70E-03	2.69E-04
1000.	0 1.03E-03	5.33E-04	8.35E-05	1000.0	4.885-03	2.545-03	4.025-04
1778.	3 1.78E-03	9.23E-04	1.45E-04	1778.3	6.93E-03	3.60E-03	5.715-04
3162.	3 3.155-03	1.64E-03	2.56E-04	3162.3	1.045-02	5.385-03	3.545-04
3600.	0 3.50E-03	1.825-03	2.85E-04	3600.0	1.12E-02	5.845-03	9.265-04
7200.	0 2.98E-03	1.55E-03		7200.0	1.08E-C2	5.625-03	
-	FINA AC-1	10 + 3% 01	101		FINA AC-3	10 + 3% 01 770MA -	101 ·
1	ESI IEMP = //	, ZIGMA =	2.3/6 951	15	51 IEMP = //	, ZIGMA = 	2.4/0 25.
1.	0 5.00E-05	2.60E-05	5.47E-06	1.0	3.00E-05	1.565-05	3.165-06
1.	8 8.50E-05	4.42E-05	9.30E-06	1.8	5.00E-05	2.602-05	5.265-06
3.	2 1.10E-04	5.72E-05	1.20E-05	3.2	7.35E-05	3.82E-05	7.74E-06
5.	6 1.70E-04	8.84E-05	1.86E-05	5.6	9.25E-05	4.815-05	9.745-06
10.	0 2.88E-04	1.50E-04	3.15E-05	10.0	1.225-04	6.325-05	1.28E-05
18.	0 3.45E-04	1.79E-04	3.78E-05	18.0	1.63E-04	8.452-05	1.715-05
31.	6 5.00E-04	2.60E-04	5.47E-05	31.6	2.03E-04	1.05E-04	2.135-05
56.	2 6.65E-04	3.46E-04	7.28E-05	56.2	2.50E-04	1.30E-04	2.53E-05
100.	0 1.03E-03	5.33E-04	1.12E-04	100.0	3.50E-04	1.825-04	3.685-05
:77	8 1 48E-03	7.67E-04	1.615-04	177.8	5.00E-04	2.60E-04	5 26E-05
316	2 2 20F-03	1.14F-03	2.41E-04	316.2	9.85F-04	5.12E-04	1.045-04
562	3 2 78F-03	1.44F-03	3.04F-04	562 3	1.75E-03	9.10F-04	1 84F-C4
1000	0 3 805-03	1 985-03	4 16E-04	1000 0	2 73E-03	1 425-03	2 875-04
1779	3 5 12F-02	2 675-02	5 61F-04	1778 2	3 76F-03	1 96F-03	2 94F-04
2140	3 7 225-02	2.0/2-03	7 915-04	2160.0	6 45E-02	3 355-03	6 795-04
2400	0 7 855-03	1 005-03	8 505-04	3102.3	7 455-02	2 875-02	7 845-04
3000.	0 7.00E-03	4.000-03	0.372-04	3000.0	7 305-03	3 805-03	/.042-04
/200.	J /./SE-U3	4.032-03		/200.0	7.302-03	3.002-03	

.

Table D-24 (Continued)

. .

TIME							
102	IUIAL	ENSILE	ENSILE		:0:AL		ENSILE
SEC.	HCRIZONIAL	SIRAIN	CREEP	SEC.	HCRIZCNIAL	STRAIN	CREEP
	DEFORMATION	INZIN	COMPLIANCE		DEFORMATION	INZIN	COMPLIANCE
	IN		IN^2/LB		IN		IN^2/18
							· · · ·
	FINA AC-	10 + 3% 01	101		FINA AC-1	0 + 3% D1	101
TE	ST TEMP = 90	, ZIGMA =	0.858 PSI	TE	ST TEMP = 90	, ZIGMA =	0.859 PSI
-	2 505-05	1 205 05				1 205 05	
1.0	2.50E-05	1.30E-05	7.58E-06	1.0	2.50E-05	1.302-05	/.5/1-05
1.8	7.50E-05	3.90E-05	2.27E-05	1.8	3.50E-05	1.825-05	1.06E-05
3.2	9.50E-05	4.945-05	2.885-05	3.2	5.50E-05	2.865-05	1.675-05
5.6	1.25E-04	6.5CE-05	3.79E-05	5.6	8.0CE-05	4.16E-05	2.42E-05
10.0	1.75E-04	9.105-05	5.30E-05	10.0	1.15E-04	5.98E-05	3.48E-05
18.0	3.25E-04	1.69E-04	9.85E-05	18.0	1.70E-04	8.84E-05	5.15E-05
31.6	4.75E-04	2.47E-04	1.44E-04	31.6	2.05E-04	1.075-04	6.21E-05
\$6.2	8.25E-04	4.29E-04	2.50E-04	56.2	3.35E-04	1.74E-04	1.01E-04
100.0	1.30E-03	6.76E-04	3.94E-04	100.0	4.90E-04	2.50E-04	1.45E-04
177.8	1.78E-03	9.23E-04	5.38E-04	177.8	7.45E-04	3.875-04	2.26E-04
316.2	2.18E-03	1.13E-03	6.59E-04	316.2	1.10E-03	5.70E-04	3.31E-04
562.3	2.63E-03	1.375-03	7.96E-04	562.3	1.55E-03	8.06E-04	4.69E-04
1000.0	3.33E-03	1.73E-03	1.01E-03	1000.0	2.40E-03	1.25E-03	7.25E-04
1778.3	4.13E-03	2.15E-03	1.255-03	1778.3	3.55E-03	1.84E-03	1.075-03
3162.3	4.98E-03	2.59F-03	1.515-03	3162.3	5 10E-03	2.65E-03	1.54E-03
3600 0	5 18E-03	2 69E-03	1 575-03	3600 0	5 405-03	2 815-02	1 475-00
7200.0	3 425-03	1 995-02	1.5/2-05	7200.0	3.40E-03	1 075_00	1.032 00
/200.0	3.032-03	072-03		/200.0	3.005-03	1.0/1703	

1 1 1		Dry Condition		Wet Co	Wet Condition	
MIXTURE	TEST TEMP. F	AIR VOIDS	TENSILE STRENGTH PSI	AIR VOIDS	TENSILE STRENGTH PSI	TSR
Control: Total AC-20	77	7.0	89	6.6	50	
1		7.1	83	6.9	. 50	
1		7.2	85	6,8	52	
1 4 4 1	AV	G. 7.1	86	6.8	51	0.59
Fina AC-10 + 3% UP 70	77	6.3	67	6.7	61	
		6.6	85	6.8	54	
		5.9	84	6.9	67	
, 1 1 1	AV	G. 6.3	79	6.8	61	0.77
Fina AC-10 + 3% Styrelf	77	7.1	103	7.2	57	
1		7.1	104	7.0	72	1
1		7.1	95	7.4	52	
4 4 1 1	AV	G. 7.1	100	7.2	61	0.60
: Exxon AC-10 + 3% Polybil:	t 77	6.8	38	6.8	26	
1		7.3	34	6.5	32	
1		6.6	40	7.0	29	
1 1 1	AV	G. 6.9	37	6.8	29	0.78
Gulf AC-10 + 3% Kraton	77	6.5	52	7.2	41	
		7.1	62	6.8	50	
1		6.6	65	7.2	45	
	AV	G. 6.7	60	7.1	45	0.76

Table D-25 Moisture Sensitivity Test Results for Laboratory Mixed/Laboratory Compacted Mixtures Using Modified Compaction.

. .

		Dry Condition		Wet Co	1		
MIXTURE	TEST TEMP. F	-	AIR VOIDS	TENSILE STRENGTH PSI	AIR VOIDS	TENSILE STRENGTH PSI	TSR
Control: Total AC-20	77		7.5 7.2 7.3	95 92 90	7.4 7.3 7.6	59 56 49	
		AVG.	7.3	92	7.4	55	0.59
Fina AC-10 + 3% UP 70	77		7.2 7.3 7.5	73 71 78	7.3 7.1 7.1	53 59 60	
		AVG.	7.3	74	7.2	57	0.77
Fina AC-10 + 3% Styrelf	77		6.9 7.0 7.0	108 95 103	7.2 7.0 6.8	80 78 72	
		AVG.	7.0	102	7.0	76	0.75
Exxon AC-10 + 3% Polybil	t 77		7.2 6.6 6.8	40 47 46	7.4 6.5 7.2	43 37 34	
		AVG.	6.9		7.0	38	0.86
Gulf AC-10 + 3% Kraton	77		7.0 6.9 7.0	65 72 68	7.0 6.9 7.0	29 56 57	
		AVG.	7.0	69	7.0	47	0.69

Table D-26 Moisture Sensitivity Test Results for Plant Mixed/Laboratory Compacted Mixtures Using Modified Compaction.

. .

Combined Gradation	SDHPT Specification	AC-20 AC=4.81	Latex AC=4.65	Styrelf AC=4.67	Exxon AC=4.72	Kraton AC=4.73
1.7	0-5	0	0	0	0	0
26.7	16-42	26.9	28.1	30.2	26.8	27.1
22.6	11-37	23.2	22.4	22.2	24.2	22.5
12.5	11-32	12.8	13.7	12.1	12.5	13.5
63.5	54-72	62.9	64.2	64.5	63.5	63.1
11.8	6-32	11.5	9.5	10.2	11.6	12.5
11.6	4-27	11.3	11.1	11.4	11.5	11.6
11.4	3-27	12.2	13.1	11.5	11.5	10.4
1.7	1-8	2.1	2.1	2.4	1.9	2.4
100.0		100.0	100.0	100.0	100.0	100.0

Table D-27 AGGREGATE GRADATION OF EXTRACTED CORES (DISTRICT 10)

<u>Producer</u>

Type C Coarse Limestone Type D Coarse Limestone Screenings Field Sand

Boorheim Field Richland Boorheim Field Richland Boorheim Field Richland Riley Pit

Fig. D-2 Aggregate Gradation Chart.

430

.

•

Penetration at 39F for Unmodified and Modified Binders. Fig. D-3 (District 10)

Penetration at 77F for Unmodified and Modified Binders. (District 10)

Fig. D-5 Penetration Retained at 77F for Unmodified and Modified Binders. (District 10)

Fig. D-6 Viscosity at 140F for Unmodified and Modified Binders. (District 10)

Fig. D-7 Viscosity Ratio at 140F for Unmodified and Modified Binders. (District 10)

Fig. D-8 Kinematic Viscosity at 275F for Unmodified and Modified Binders. (District 10)

Fig. D-9 Viscosity Ratio at 275F for Unmodified and Modified Binders. (District 10)

Fig. D-10 Softening point for Unmodified and Modified Binders. (District 10)

Fig. D-12 Cracking Temperature for Unmodified and Modified Binders. (District 10)

Fig. D-13 Stiffness Modulus at Different Test Temperatures for Unmodified and Modified Binders. (District 10)

Fig. D-14 Asphalt Stiffness vs. Test Temperature for Unmodified and Modified Binders. (District 10)

Fig. D-15 Marshall Stability for Laboratory Mixtures Using Standard Compaction.

Fig. D-16 Marshall flow for Laboratory Mixtures Using Standard Compaction.

Fig. D-17 Hveem Stability for Laboratory Mixtures Using Standard Compaction.

Fig. D-18 Tensile Strength vs. Test Temperature for Laboratory Mixtures Using Standard Compaction.

Fig. D-19 Tensile Strain at Failure vs. Test Temperature for Laboratory Mixtures Using Standard Compaction.

Fig. D-20 Secant Modulus vs. Test Temperature for Laboratory Mixtures Using Standard Compaction.

Fig. D-21 Resilient Modulus vs, Test Temperature for Laboratory Mixtures Using Standard Compaction.

Fig. D-22 Marshall Stability for Laboratory Mixtures Using Modified Compaction.

Fig. D-23 Marshall Flow for Laboratory Mixtures Using Modified Compaction.

Fig. D-24 Hveem Stability for Laboratory Mixtures Using Modified Compaction.

Fig. D-25 Tensile Strength vs. Test Temperature for Laboratory Mixtures Using Modified Compaction.

Fig. D-26 Tensile Strain at Failure vs. Test Temperature for Laboratory Mixtures Using Modified Compaction.

Fig. D-27 Secant Modulus vs. Test Temperature for Laboratory Mixtures Using Modified Compaction.

Fig. D-28 Resilient Modulus vs. Test Temperatures for Laboratory Mixtures Using Modified Compaction.

Fig. D-29 Alpha Values for Laboratory Mixtures Using Modified Compaction.

Fig. D-30 Gnu Values for Laboratory Mixtures Using Modified Compaction.

Fig. D-31 Relationship between Fatigue Life and Applied Strain for Laboratory Mixtures Using Modified Compaction.

Fig. D-32 Creep Compliance Curves at 60F for Laboratory Mixtures Using Modified Compaction.

Fig. D-33 Creep Compliance Curves at 77F for Laboratory Mixtures Using Modified Compaction.

Fig. D-34 Creep Compliance Curves at 90F for Laboratory Mixtures Using Modified Compaction.

District 10 Field Test Sections US69 — Smith County Date Placed: July 1990

Fig. D-1 Schematic Illustration of Field Test Section.

Fig. D-2 Aggregate Gradation Chart.

Fig. D-5 Penetration Retained at 77F for Unmodified and Modified Binders. (District 10)

Fig. D-6 Viscosity at 140F for Unmodified and Modified Binders. (District 10)

Fig. D-7 Viscosity Ratio at 140F for Unmodified and Modified Binders. (District 10)

Fig. D-8 Kinematic Viscosity at 275F for Unmodified and Modified Binders. (District 10)

Fig. D-9 Viscosity Ratio at 275F for Unmodified and Modified Binders. (District 10)

Fig. D-10 Softening point for Unmodified and Modified Binders. (District 10)

Fig. D-12 Cracking Temperature for Unmodified and Modified Binders. (District 10)

Fig. D-13 Stiffness Modulus at Different Test Temperatures for Unmodified and Modified Binders. (District 10)

Fig. D-14 Asphalt Stiffness vs. Test Temperature for Unmodified and Modified Binders. (District 10)

Fig. D-15 Marshall Stability for Laboratory Mixtures Using Standard Compaction.

Fig. D-16 Marshall flow for Laboratory Mixtures Using Standard Compaction.

Fig. D-17 Hveem Stability for Laboratory Mixtures Using Standard Compaction.

Fig. D-18 Tensile Strength vs. Test Temperature for Laboratory Mixtures Using Standard Compaction.

Fig. D-19 Tensile Strain at Failure vs. Test Temperature for Laboratory Mixtures Using Standard Compaction.

Fig. D-20 Secant Modulus vs. Test Temperature for Laboratory Mixtures Using Standard Compaction.

Fig. D-21 Resilient Modulus vs, Test Temperature for Laboratory Mixtures Using Standard Compaction.

Fig. D-22 Marshall Stability for Laboratory Mixtures Using Modified Compaction.

Fig. D-23 Marshall Flow for Laboratory Mixtures Using Modified Compaction.

Fig. D-24 Hveem Stability for Laboratory Mixtures Using Modified Compaction.

Fig. D-25 Tensile Strength vs. Test Temperature for Laboratory Mixtures Using Modified Compaction.

Fig. D-26 Tensile Strain at Failure vs. Test Temperature for Laboratory Mixtures Using Modified Compaction.

Fig. D-27 Secant Modulus vs. Test Temperature for Laboratory Mixtures Using Modified Compaction.

Fig. D-28 Resilient Modulus vs. Test Temperatures for Laboratory

Fig. D-29 Alpha Values for Laboratory Mixtures Using Modified Compaction.

Fig. D-30 Gnu Values for Laboratory Mixtures Using Modified Compaction.

Fig. D-31 Relationship between Fatigue Life and Applied Strain for Laboratory Mixtures Using Modified Compaction.

Fig. D-32 Creep Compliance Curves at 60F for Laboratory Mixtures Using Modified Compaction.

Fig. D-33 Creep Compliance Curves at 77F for Laboratory Mixtures Using Modified Compaction.

Fig. D-34 Creep Compliance Curves at 90F for Laboratory Mixtures Using Modified Compaction.

APPENDIX E

SEAL COAT TEST SECTIONS (Districts 17, 6)

.

APPENDIX E

SEAL COAT TEST SECTIONS (Districts 17, 6)

Polymer modified asphalts are used in seal coats primarily where a high volume of traffic is anticipated because it holds the aggregates quicker and longer. In addition to better and longer aggregate retention, the polymer modification will reduce bleeding and shelling.

To evaluate the effectiveness of polymers on seal coat field performance, two seal coat projects involving a total of eight test sections (including controls) were constructed on U.S. 79 (District 17) and S.H. 18 (District 6) in August 1990 and September 1990 respectively. The test sections are shown schematically in Figures E-1 and E-2. Aggregates, asphalts and polymers utilized in the two projects are identified in Table 2.1. Identical pre-coated aggregates were utilized for all test sections in a given district.

The aggregate rates were one cubic yard per 100 and 120 square yards for Districts 17 and 6, respectively. The asphalt application rate was 0.35 gallons per square yard for both the projects. Specifics of each job are shown in Tables E-1 and E-2. Field construction was conducted by Districts 17 and 6 of the TxDOT and assisted by the Center for Transportation Research, The University of Texas at Austin. Condition surveys after construction are being obtained to determine whether use of the polymer modified binders will be beneficial in terms of long term pavement performances.

District 17 Field Test Sections US79 — Robertson County, Beginning East Of Duck Creek Date Placed: AUGUST 1990

-E----

Fig E-1 Schematic Illustration of Seal Coat Test Sections (District 17).

Fig E-2 Schematic Illustration of Seal Coat Test Sections (District 6).

Table E-1 Chip Seal Conditions (District 6) Winkler County, SH18 Date of Application: 9-7-90 Weather: Clear Contractor: Wagner & Sons Control #292-2-31

Material	AC5/3.2% EVA	AC5/4.5% Kraton	AC5/2% Latex	AC5/Control (FINA)
Rate (gal/yd²)	.367	.375	.351	.354
Aggregate	CSA GR4 TY PB			
Rate	1:116	1:119	1:120	1:119
Station #'s	1510+47 to 1635+44	1635+44 to 1763+89	1763+89 to 1893+49	1893+49 to 2021+23

Field notes indicate good aggregate retention in all test sections. Some rutting was noted in the existing roadway. Table E-2 Chip Seal Conditions (District 17) Robertson County, US79 Date of Application: 8/10/90 Weather: Clear Contractor: Joe Richards, Inc. Control #186-6-40

Material	Fina AC5 2% UP-70	Fina AC-10	Exxon AC-10 3% Kraton	Exxon AC-10 3% Styrelf		
Rate (gal/yd²)	.348	.352	.357	.359		
Aggregate	Grade 4PrecoatedType PB(Southwest Materials)					
Rate	1:100	1:100	1:100	1:100		
Station #'s	685+62 to 744+42	744+42 to 803+ <u>22</u>	803+22 to 862+02	862+02 to 922+89		

APPENDIX F

DEVELOPMENT OF CREEP COMPLIANCE FORMULA USING THE INDIRECT TENSILE TEST

APPENDIX F

DEVELOPMENT OF CREEP COMPLIANCE FORMULA USING THE INDIRECT TENSILE TEST

The indirect tensile test involves loading of a circular element with a compressive load acting along the vertical plane. Hondros (Ref. 35) developed equations for stresses created in a circular element subject to a strip loading (Fig. E.1), assuming the body forces are negligible. Later, Kennedy (Ref. 21) developed equations for estimating the modulus of elasticity, Poisson's ratio, and strain in terms of applied load and deformations (horizontal and vertical). In order to obtain creep compliance, it is necessary to develop elastic relationships based upon deformations and material properties. These elastic relationships can be transformed to a viscoelastic solution by utilizing the correspondence principle which will be described in later sections.

It should be noted that the equation of creep compliance

$$D(t) - \frac{\boldsymbol{\epsilon}(t)}{\boldsymbol{\sigma}_0}$$

cannot be used in indirect tensile creep test analysis since the state of stress is not uniaxial.

EQUATIONS FOR COMPUTING STRESS AND DEFORMATIONS

Two analytical functions, $\psi(Z)$ and $\varphi(Z)$, for the concentrated forces (0,-P) and (0,P) acting at the points $Z_0 = \operatorname{Re}^{i\alpha}$ and $\overline{Z_0} - \operatorname{Re}^{-i\alpha}$ of the edge of the circular disc (Fig. E.2) were

extracted from reference 36. These functions are as follows:

X

$$\varphi(Z) = \frac{P_i}{2\pi} \left(\log \frac{Z_o - Z}{\overline{Z_o} - Z} - \log \frac{Z_o - \overline{Z_o}}{2R^2} Z \right)$$

(E.1)

$$\Psi(Z) = \frac{P_i}{2\pi} \left(\log \frac{Z_0 - Z}{\overline{Z_0} - Z} + \frac{\overline{Z_0}}{\overline{Z_0} - Z} - \frac{Z_0}{\overline{Z_0} - Z} \right)$$

Formulas for displacement and stresses on the circular disc at any arbitrary point Z can be expressed in the terms of the analytical functions $\varphi(Z)$ and $\Psi(Z)$ (Ref. 37) as follows

$$\sigma_{xx} + \sigma_{yy} = 4R[\varphi'(Z)]$$

$$\sigma_{yy} - \sigma_{xx} + 2i\sigma_{xy} - 2[\overline{Z}\varphi''(Z) + \psi'(Z)] \qquad (E.2)$$

$$2\mu (U_x + iU_y) - \chi \varphi(Z) - Z \overline{\varphi'(Z)} + \overline{\psi(Z)}$$

where

$$\chi - \frac{\lambda + 3\mu}{\lambda + \mu}$$

$$\lambda = \frac{2\mu\nu}{1-2\nu}$$
 = Lame's constant

The substitution of $\varphi'(Z)$, $\varphi''(Z)$, $\overline{\Psi}'(Z)$, $\varphi(Z)$ and the conjugates of $\varphi'(Z)$ and $\overline{\Psi}(Z)$ (which can be obtained from Equations E.1) in the right-hand member of Equations E.2 yield

$$\sigma_{yy} + \sigma xx - 2\frac{P}{\pi} \left(-\frac{\cos\theta_1}{r_1} - \frac{\cos\theta_2}{r_2} + \frac{\sin\alpha}{R} \right)$$

$$\sigma_{yy} - \sigma_{xx} + 2i\sigma_{xy} - \frac{-2P}{\pi} \left(\frac{\cos 2\theta_1 \cos \theta_1}{r_1} + \frac{\cos 2\theta_2 \cos \theta_2}{r_2} \right) + \frac{\cos 2\theta_2 \cos \theta_2}{r_2} + \frac{\cos 2\theta_2}{r_2} + \frac{\cos 2\theta_2$$

$$\frac{2Pi}{\pi} \left(\frac{Sin2\theta_1 Cos\theta_1}{r_1} + \frac{Sin2\theta_2 Cos\theta_2}{r_2} \right)$$
(E.3)

$$2\mu \left(U_{x}+iU_{y}\right) - \frac{Pi}{2\pi} \left(\chi \log \frac{r_{1}}{r_{2}} + \log \frac{r_{1}}{r_{2}} + \cos 2\theta_{2} - \cos 2\theta_{1} - \frac{(1-\chi)rSin\alpha Sin\theta}{R}\right)$$

$$-\frac{P}{2\pi}\left((\chi-1)\left(\theta_{1}+\theta_{2}+\pi\right)-(Sin2\theta_{2}+Sin2\theta_{1})+\frac{(1-\chi)rSin\alpha Cos\theta}{R}\right)$$

Equation E-3 is used for plane-strain problems.

In the generalized plane-stress problems $\overline{\lambda}$ must be used instead of λ and P must be conceived as the quantity P/h (h is the thickness of the disc).

Solving the equations E.3 for plane-stress problem we get:

$$\sigma_{xx} = -\frac{2P}{\pi h} \left(\frac{\sin^2 \theta_1 \cos \theta_1}{r_1} + \frac{\sin^2 \theta_2 \cos \theta_2}{r_2} \right) + \frac{P \sin \alpha}{\pi h R}$$

$$\sigma_{yy} = -\frac{2P}{\pi h} \left(\frac{\cos^3 \theta_1}{r_1} + \frac{\cos^3 \theta_2}{r_2} \right) + \frac{PSin\alpha}{\pi R}$$

$$\sigma_{xy} = \frac{2P}{\pi h} \left(\frac{\sin\theta_1 \cos^2\theta_1}{r_1} - \frac{\sin\theta_2 \cos^2\theta_2}{r_2} \right) \qquad (E.4)$$

$$U_{x} = -\frac{P}{4\pi h\mu} \left(\frac{2(1-\nu)(\theta_{1}+\theta_{2})}{(1+\nu)} - Sin2\theta_{1} - Sin2\theta_{2} - \frac{2(1-\nu)XSin\alpha}{(1+\nu)R} \right)$$

$$U_{y} = \frac{P}{4\pi h\mu} \left(\frac{4}{1+\nu} \log \frac{r_{2}}{r_{1}} + \cos 2\theta_{1} - \cos 2\theta_{2} - \frac{2(1-\nu)ySin\alpha}{(1+\nu)R} \right)$$

Deformations in the x and y directions $(U_x \text{ and } U_y)$ and stresses $(\sigma_x, \sigma_y \text{ and } \sigma_{xy})$ for strip loading (Fig. E.1) at any point can be easily computed by integrating equation E.4. For example, the deformations and stresses on the horizontal plane passing through the origin $(r_1=r_2 \ \theta_1=\theta_2)$ for uniformly distributed load with intensity P/ha are as follows:

$$\sigma_{xx} = -\int_{-\gamma}^{+\gamma} \frac{P}{ah\pi \cos\gamma} \left[\frac{4\cos^2\gamma \left(\frac{x}{R} - \sin\gamma\right)^2}{\left[\left(\frac{x}{R} - \sin\gamma\right)^2 + \cos^2\gamma\right]^2} - \cos^2\gamma \right] d\gamma$$

$$\sigma_{yy} = -\int_{-\gamma}^{\gamma} \frac{P}{ah\pi \cos\gamma} \left[\frac{4\cos^4\gamma}{\left[\left(\frac{X}{R} - \sin\gamma\right)^2 + \cos^2\gamma \right]^2} - \cos^2\gamma \right] d\gamma$$

$$\sigma_{xy} = 0$$
(E.5)

$$U_{x} = -\int_{-\gamma}^{\gamma} \frac{PR}{4\pi\mu ha} \left[\frac{2(1-\nu)}{1+\nu} Tan^{-1} 2 \left(\frac{X}{R} - \frac{\sin\gamma}{2} \right) / \cos\gamma \right]$$

$$-\left[\frac{4(X/R-Sin\gamma)Cos\gamma}{[(X/R-Sin\gamma)^2+Cos^2\gamma]}-\frac{2(1-\nu)XCos\gamma}{(1+\nu)R}\right]d\gamma$$

Stresses at the center of the specimen (X=0) and displacement at point B (X=R) can be obtained by performing the integration of Equation E.5.

$$\sigma_{xx} = -\frac{2P}{\pi ha} (4/3 \ Sin^3 \gamma - Sin \gamma)$$

$$\sigma_{yy} = -\frac{2P}{\pi ha} \left(\frac{\sin 3\gamma}{3} + 2\sin \gamma \right)$$
(E.6)

$$U_{x}(at point B) = -\frac{PR}{4\pi\mu ha} \left[\frac{2(1-\nu)}{(1+\nu)} (\pi\gamma - 2Sin\gamma) - 4Sin\gamma \right]$$

 $U_{y} = 0$

For a 4-inch diameter specimen and half inch curved loading

strip the stresses at the center of specimen are:

 σ_{xx} =.1555 $\frac{P}{h}$

$$\sigma_{yy} = -.4729 \frac{P}{h}$$
 (E.7)

 $\sigma_{xy} = 0$

Creep Compliance Equation

The correspondence principle (Ref. 37) states that if a viscoelastic material is subjected to a load function, $P=P_0g(t)$, the resulting stresses at time $t = t_1$ are the same as those in elastic material under the load $P = P_0g(t_1)$. The strain and displacements are derived from those of the elastic solution by replacing the material properties (Poisson's ratio and modulus) with S times their Laplace transforms and by substituting the displacement and load function with their Laplace transforms. If it is considered that asphalt concrete mixtures are isochronal in shear (v is constant with time), then the displacement equation in E.6 for a viscoelastic material and load function $P(t) = P_0g(t)$ can be written as follows:

$$\overline{U}(S) = + \frac{P_o \overline{g}(S)}{S \overline{\mu}(S)} K$$
(E.8)

where

$$K = -\frac{R}{4\pi ah} \left[\frac{2(1-\nu)}{(1+\nu)} (\pi\gamma - 2Sin\gamma) - 4Sin\gamma \right]$$

 $\overline{g}(S)$ = Laplace transform of g(t)

 $\overline{\mu}(S)$ = Laplace transform of $\mu(t)$

Having $J(S) \mu(S) - \frac{1}{S}$, the convolusion of equation E-8 is as follows

$$U(t) = P_0 K \int_0^t J(\tau) \frac{dg(t-\tau)}{d\tau} d\tau \qquad (E.9)$$

where

P₀g(t) = load function
J(t) = shear creep compliance

Shear creep compliance can be computed from E.9 by knowing the values of displacement and load functions which are recorded during indirect creep test.

Several assumptions should be recognized when the creep compliance formula, E.9, is utilized. The most important of these are as follows:

- 1. The mathematical analysis assumes that the material is isotropic and homogenous.
- 2. The state of plane stress exists in the specimen; but it does not occur in the practical situation.
- 3. Materials are isochronal in shear, which means the Poisson's ratio is not a function of stress or time.
- 4. Materials have Newtonian behavior.
- 5. The effect of heterogeneity on the general distribution of stress has not been determined but is probably quite small for steel loading strip.

REFERENCES

- Terrel, R.L. and J.L. Walter "Modified Asphalt Pavement Materials - The European Experience", <u>Proceedings</u>, Association of Asphalt Paving Technologists, Vol. 55, 1986.
- 2. Schweyer, H.E., L.L. Smith, and G.W. Fish, "A Constant Stress Rheometer for Asphalt Cements", Association of Asphalt Paving Technologists, Volume 45, 1976.
- Pavlovich, R.D., T.S. Shuler and J.C. Ronser, "Chemical and Physical Characteristics of Asphalt-Rubber", Phase II -Product Specifications and Test Procedures, Arizona D.O.T. Report Number: FHWA/A2-79/121, November, 1979.
- Shuler, T.S., C. Adams, and M. Lamborn, "Asphalt-Rubber Binder Laboratory Performance", Texas Transportation Institute, Research Report 347-1F, Study 2-9-83-347, Texas SDHPT, August, 1985.
- 5. Pfeiffer, J. and P.F. VanDoomeal, "The Rheological Properties of Asphaltic Bitumen", Journal of the Institute of Petroleum Technologists, Vol. 22, 1936.
- 6. McLeon, N.W., "Transverse Pavement Cracking Related to Hardness of Asphalt Cement", <u>Proceedings</u>, Canadian Technical Asphalt Association, Vol. 13, 1968.
- 7. Anderson, K.O. and S.C. Leang, "Evaluation of Asphalt Cements for Low Temperature Performance" paper presented at 66th annual meeting of Transportation Research Board, Washington, D.C., 1987.
- 8. Heukelom, W. and A.J.G. Klomp, "Road Design and Dynamic Loading", Association of Asphalt Paving Technologists, 1964.
- 9. Bonnaure, F., G. Gest, A. Gravois, and P. Uge, "A New Method of Predicting Stiffness of Asphalt Paving Mixtures", Association of Asphalt Paving Technologists, 1977.
- 10. Vander Pol, C., "A General System Describing the Viscoelastic Properties of Bitumens and its Relation to Routine Test Data," Journal of Applied Chemistry, Vol. 4, May, 1954.
- 11. Heukelom, W., "A Bitumen Test Data Chart for Showing the Effect of Temperature on the Mechanical Behavior of Asphaltic Bitumens", Journal of the Institute of Petroleum, Vol. 55, No. 546, 1969.
- 12. Young, F.D., I. Deme, R.A. Burgess, and D. Kopvillem, "St. Anne Test Road-Construction Summary and Performance After Two

Years Service", Proceedings, CTAA, 1969.

- 13. Burgess, R.A, D. Kopvillem, and F.D. Young, "St. Anne Test Road-Relationship Between Predicted Fracture Temperature and Low Temperature Field Performance", <u>Proceedings</u>, Association of Asphalt Paving Technologists, 1971.
- 14. Kandal, P.S., "Low Temperature Shrinkage Cracking of Pavements in Pennsylvania", <u>Proceedings</u>, Association of Asphalt Paving Technologists, 1978.
- 15. Hills, J.F., "Predicting the Fracture of Asphalt Mixes by Thermal Stresses", Journal Institute Petroleum, 1974.
- Anderson, D.I., and M.L. Willey, "Force Ductility An Asphalt Performance Indicator", <u>Transactions</u>, Association of Asphalt Paving Technologists, Vol. 45, 1976.
- 17. Reiner, M. and G.W. Blair, "Rheological Terminology", <u>Rheology: Theory and Applications</u> Vol. 4 Edited by F.R. Eirich, Academic Press Inc. New York, 1956.
- Ott, Lyman, "An Introduction to Statistical Methods and Data Analysis", Third edition. Boston, Massachusetts,: PWS-Kent, 1988.
- 19. Tia, M. and B.E. Ruth, "Basic Rheological Concepts Established by H.F. Schweyer", ASTM, STP 941, 1987.
- 20. Texas State Department of Highways and Public Transportation, "Manual of Testing Procedures", Bituminous Section, 200-F Series, 1978.
- 21. Hadley, William O., W. Ronald Hudson and Thomas W. Kennedy, "A Method of Estimating Tensile Properties of Materials Tested in Indirect Tension", <u>Research Report 98-7</u>, Center for Highway Research, The University of Texas at Austin, Austin, Texas, July 1970.
- 22. Anagnos, James N. and Thomas W. Kennedy, "Practical Method of Conducting the Indirect Tensile Test", <u>Research Report 98-10</u>, Center for Highway Research, The University of Texas at Austin, Austin, Texas, August, 1972.
- 23. Kennedy, Thomas W., and James N. Anagnos, "Procedures for the Static and Repeated-Load Indirect Tensile Test", <u>Research</u> <u>Report 183-14</u>, Center for Highway Research, The University of Texas at Austin, Austin, Texas, August 1983.
- 24. Kennedy, T.W., and D. Navarro, "Fatigue and Repeated-Load Elastic Characteristics of In-Service Asphalt-Treated Materials", <u>Research Report 183-2</u>, Center for Highway

Research, The University of Texas at Austin, Austin, Texas, 1975.

- 25. Baladi, G.Y., "Integrated Material and Structural Design Method for Flexible Pavements", Report No. FHWA/RD-88/109, Federal Highway Administration, September 1987.
- 26. Adedimila, Adedare S., and Thomas W. Kennedy, "Fatigue and Resilient Characteristics of Asphalt Mixtures by Repeated-Load Indirect Tensile Test," <u>Research Report 183-5</u>, Center for Highway Research, The University of Texas at Austin, Austin, Texas, August 1975.
- 27. Moavenzadeh, F., J.E. Soussou, H.K. Findakly, and B. Brademeyer, "Synthesis for Rational Design of Flexible Pavements," Part III, Massachusetts Institute of Technology, February 1974.
- 28. Rauhut, J. Brent, John C. O'Quinn, and W.R. Hudson, "Sensitivity Analysis of FHWA Structural Model VESYS II," Vol. I, Report No. FH 1/1, Austin Research Engineers Inc., November 1975.
- 29. Kennedy, T.W., J. Vallejo, and R. Haas, "Permanent Deformation Characteristics of Asphalt Mixtures by Repeated-Load Indirect Tensile Test," <u>Research Report 183-7</u>, Center for Highway Research, The University of Texas at Austin, Austin, Texas, June 1976.
- 30. Von Quintus, Harold L., "Evaluation and Comparison of Asphalt Concrete Mixtures", Report No. BR86-33, Prepared for the City of Austin, Texas, Brent Rauhut Engineering, Inc., February 1987.
- 31. Schapery, R.A., "A Theory of Crack Growth in Viscoelastic Media", Technical Report No. MM 2764-73-1, Mechanics and Materials Research Center, Texas A & M University, College Station, Texas, March 1973.
- 32. Kenis, W.J., "Predictive Design Procedures, VESYS User's Manual - An Interim Design Method for Flexible Pavement Using the VESYS Structural Subsystem," Final Report No. FHWA-RD-77-154, Federal Highway Administration, January, 1978.
- 33. Williams, M.L., R.F. Landel, and J.D. Ferry, "Visco-Elastic Properties of Polymers", Journal of American Chemical Society, Vol. 77, pg. 3701, 1955.
- 34. Adedimila, A.S. and Thomas W. Kennedy, "Fatigue and Resilient Characteristics of Asphalt Mixtures by Repeated-Load Indirect Tensile Test", <u>Research Report No. 183-5</u> Center for Highway Research, The University of Texas at Austin, Austin, Texas, August, 1975.

- 35. Hondros, G., "The Evaluation of Poisson's Ratio and the Modulus of Materials of a Low Tensile Resistance by the Brazilian (Indirect Tensile) Test with Particular Reference to Concrete," <u>Australian Journal of Applied Science</u>, Vol. 10, No. 3.
- 36. Sokolnikoff, I.S., "Mathematical Theory of Elasticity" Second Edition. New York, McGraw-Hill, 1956.
- 37. Muskhelishivili, N.I. "Some Basic Problems of the Mathematical Theory of Elasticity." Groningen, Noordhoff, 1953.

,