The fatigue behavior of welded steel tees loaded in cantilever bending was examined using simple variable amplitude stress waveforms. These waveforms were developed by superimposing two sine wave signals, i.e., a high frequency/low amplitude signal upon a low frequency/high amplitude signal. The test program involved changing the relative size and frequency of these two sine signals. The goal of these tests was to determine the effect that smaller high frequency stress cycles would have upon the fatigue life associated with a major stress cycle.

The results of the tests indicated that the damage effect of these smaller stresses was greater than anticipated. In fact, the current AASHTO method of bridge fatigue design may be inadequate because of the damage associated with these additional stresses. The current AASHTO design practice considers only one cycle per vehicle. The smaller dynamic oscillations of the structure are ignored. The impact fraction included in design only accounts for the increase in maximum stress. The influence of the smaller cycles can be included in design by increasing the impact fraction to account for their fatigue damage. The future tests in this project using measured stress histories will be used to develop this approach.
FATIGUE BEHAVIOR OF WELDED JOINTS SUBJECTED TO VARIABLE AMPLITUDE STRESSES

by

John M. Joehnk
Karl H. Frank
and
Joseph A. Yura

Research Report Number 306-1

Determination of the Influence of Low Level Stress Ranges on the Fatigue Performance of Steel Weldments
Research Project 3-5-81-306

Conducted for

Texas
State Department of Highways and Public Transportation

In cooperation with the
U. S. Department of Transportation
Federal Highway Administration

by the

CENTER FOR TRANSPORTATION RESEARCH
BUREAU OF ENGINEERING RESEARCH
THE UNIVERSITY OF TEXAS AT AUSTIN

October 1983
The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.
ACKNOWLEDGMENTS

The results of one phase of the Research Project 3-5-81-306, "Determination of the Influence of Low Level Stress Ranges on the Fatigue Performance of Steel Weldments," are presented. The work was sponsored by the Texas State Department of Highways and Public Transportation and the Federal Highway Administration and administered by the Center for Transportation Research. The tests were conducted at the Phil M. Ferguson Structural Engineering Laboratory of The University of Texas at Austin. Liaison was maintained through Mr. R. L. Wilkison of the SDHPT and Mr. D. E. Harley of FHWA. The computer analysis was done using the computer system at The University of Texas at Austin. Mr. Bahram (Alex) Tahmassebi and Mr. Conrad Paulson helped in various phases of the experimental setup. Farrel Zwerneman reviewed the data and revised the calculated stresses to account for an error in the specimen's width measurement.
ABSTRACT

The fatigue behavior of welded steel tees loaded in cantilever bending was examined using simple variable amplitude stress waveforms. These waveforms were developed by superimposing two sine wave signals, i.e., a high frequency/low amplitude signal upon a low frequency/high amplitude signal. The test program involved changing the relative size and frequency of these two sine signals. The goal of these tests was to determine the effect that smaller high frequency stress cycles would have upon the fatigue life associated with a major stress cycle.

The results of the tests indicated that the damage effect of these smaller stresses was greater than anticipated. In fact, the current AASHTO method of bridge fatigue design may be inadequate because of the damage associated with these additional stresses. The current AASHTO design practice considers only one cycle per vehicle. The smaller dynamic oscillations of the structure are ignored. The impact fraction included in design only accounts for the increase in maximum stress. The influence of the smaller cycles can be included in design by increasing the impact fraction to account for their fatigue damage. The future tests in this project using measured stress histories will be used to develop this approach.
IMPLEMENTATION

The results of this phase of the study cannot be directly implemented into current design practice. However, they will form a part of the basis for suggested revisions to current bridge practice in the final report.

The report is of immediate interest to engineers assessing the fatigue life of bridges or other structures from recorded stress histories. The non-linear damage model or Gurney's damage model should be employed to evaluate these stress histories. Employing the commonly used linear damage model of Miner will result in unconservative life predictions.
CONTENTS

Chapter 1: Introduction 1
 1.1 Problem Statement 1
 1.2 Objective ... 4
 1.3 Cumulative Damage 5
 1.4 Effective Stress 7
 1.4 Reservoir Counting 11
 1.5 Tensile Counting Method 12
 1.6 Gurney's Effective Stress 17
 1.7 Test Approach 21

Chapter 2: Testing Program 25
 2.1 Specimen Design 25
 2.2 Specimen Fabrication 25
 2.3 Test Setup ... 28
 2.4 Testing Procedure 31
 2.5 Superimposed Sine Testing 37
 2.6 Test Load Monitoring and Accuracy 41

Chapter 3: Test Results ... 52
 3.1 Constant Amplitude Test Results 52
 3.2 Superimposed Sine Test Results 60

Chapter 4: Discussion of Effective Stress Calculation 67
 4.1 Evaluation of Gurney's Method 67
 4.2 Evaluation of a Non-Linear Damage Model 69
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Mill Test Report</td>
<td>27</td>
</tr>
<tr>
<td>2.2</td>
<td>Superimposed Sine, SS, Test Types</td>
<td>42</td>
</tr>
<tr>
<td>2.3</td>
<td>Comparison of Effective Stress Calculations for Stress Histogram of Figure 2.15</td>
<td>50</td>
</tr>
<tr>
<td>3.1</td>
<td>Constant Amplitude, CA, Test Results</td>
<td>53</td>
</tr>
<tr>
<td>3.2</td>
<td>Bending Specimens Used in Other Investigations</td>
<td>58</td>
</tr>
<tr>
<td>3.3</td>
<td>Superimposed Sine, SS, Test Results</td>
<td>61</td>
</tr>
<tr>
<td>3.4</td>
<td>Weldment 3: SS Test Summary</td>
<td>64</td>
</tr>
<tr>
<td>3.5</td>
<td>Weldment 4: SS Test Summary</td>
<td>64</td>
</tr>
<tr>
<td>4.1</td>
<td>Comparison of Gurney's Predicted Fatigue Life of SS Testing against Actual Fatigue Lives</td>
<td>68</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparison of Failure Life Prediction Methods</td>
<td>77</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Bridge stress history for a truck velocity of 5 and 50 mph</td>
</tr>
<tr>
<td>1.2</td>
<td>Plot showing use of impact fraction to account for increase in static stresses due to dynamic loading</td>
</tr>
<tr>
<td>1.3</td>
<td>Prediction of cycles to failure from S-N curve based on constant amplitude fatigue tests</td>
</tr>
<tr>
<td>1.4</td>
<td>Example S-N curve and stress loading histogram</td>
</tr>
<tr>
<td>1.5</td>
<td>Applying reservoir counting to a stress history</td>
</tr>
<tr>
<td>1.6</td>
<td>Constant amplitude wave with a single stress excursion z</td>
</tr>
<tr>
<td>1.7</td>
<td>Constant amplitude wave with "v" excursions of stress z</td>
</tr>
<tr>
<td>1.8</td>
<td>Single constant amplitude wave with single stress excursion z</td>
</tr>
<tr>
<td>1.9</td>
<td>S_{rg}/S_{rr} vs. z/r at $m = 3$ for single size excursion stresses</td>
</tr>
<tr>
<td>1.10</td>
<td>Superimposed sine waveform from two sine waves</td>
</tr>
<tr>
<td>1.11</td>
<td>Experiment 1: SS testing</td>
</tr>
<tr>
<td>1.12</td>
<td>Experiment 2: SS testing</td>
</tr>
<tr>
<td>2.1</td>
<td>Test specimen geometry</td>
</tr>
<tr>
<td>2.2</td>
<td>Welding procedure</td>
</tr>
<tr>
<td>2.3</td>
<td>Test arrangement</td>
</tr>
<tr>
<td>2.4</td>
<td>Test frame</td>
</tr>
<tr>
<td>2.5</td>
<td>Knife edge loading system</td>
</tr>
<tr>
<td>2.6</td>
<td>Formation and growth of initial cracks in CA1406</td>
</tr>
<tr>
<td>2.7</td>
<td>Failure surfaces of two CA tests</td>
</tr>
</tbody>
</table>
LIST OF FIGURES (continued)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8</td>
<td>Crack grown to half of thickness</td>
<td>38</td>
</tr>
<tr>
<td>2.9</td>
<td>Dye penetrant indication of crack extension</td>
<td>39</td>
</tr>
<tr>
<td>2.10</td>
<td>Shape of SS stress distributions (based on reservoir counting)</td>
<td>40</td>
</tr>
<tr>
<td>2.11</td>
<td>Desired waveform</td>
<td>44</td>
</tr>
<tr>
<td>2.12</td>
<td>Waveform from superposition of two sine waves</td>
<td>46</td>
</tr>
<tr>
<td>2.13</td>
<td>Stress histogram of a computer simulated waveform</td>
<td>47</td>
</tr>
<tr>
<td>2.14</td>
<td>Digital recorded amplitudes of a constant sine amplitude signal at 1 Hz</td>
<td>48</td>
</tr>
<tr>
<td>2.15</td>
<td>Stress histogram of SS3306</td>
<td>49</td>
</tr>
<tr>
<td>3.1</td>
<td>Constant amplitude test data</td>
<td>54</td>
</tr>
<tr>
<td>3.2</td>
<td>Constant amplitude test data with best fit of each weldment group</td>
<td>55</td>
</tr>
<tr>
<td>3.3</td>
<td>Standard S-N curve based on weldments 2, 3, and 4</td>
<td>56</td>
</tr>
<tr>
<td>3.4</td>
<td>Constant amplitude test data on bending specimens</td>
<td>59</td>
</tr>
<tr>
<td>3.5</td>
<td>Plot of σ vs. N for superimposed sine testing</td>
<td>62</td>
</tr>
<tr>
<td>3.6</td>
<td>Effective stress of superimposed sine tests ($m = 4.2$) vs. fatigue life</td>
<td>63</td>
</tr>
<tr>
<td>3.7</td>
<td>Plot of z/σ vs. N_{avg}/N_t</td>
<td>66</td>
</tr>
<tr>
<td>4.1</td>
<td>SS test results with stress sequences, $v + 1$, equal to 10</td>
<td>70</td>
</tr>
<tr>
<td>4.2</td>
<td>SS test results with minor stress range, z, equal to 15 ksi</td>
<td>71</td>
</tr>
<tr>
<td>4.3</td>
<td>SS test results with minor stress range, z, equal to 20 ksi</td>
<td>72</td>
</tr>
<tr>
<td>4.4</td>
<td>$\log(N/N_c)$ vs. $p \log(v + 1)$</td>
<td>73</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>4.5</td>
<td>z_{eff}/z vs. z/σ</td>
<td>75</td>
</tr>
<tr>
<td>4.6</td>
<td>SS testing error histograms of various fatigue life prediction methods</td>
<td>78</td>
</tr>
</tbody>
</table>
NOTATION

a Crack depth
a_f Final crack depth
Δa Amount of crack extension
A Intercept of log-log S-N curve
D Total damage as fraction of fatigue life
D_i Fractional Damage due to n_i cycles of stress S_i
I AASHTO impact fraction
L Span length of bridge
L' Distance from knife edge to weld toe on test specimen
m Slope of constant amplitude log-log S-N curve
n Power term of an effective stress expression
n_i Number of cycles at S_i
N Cycles to failure of a complex waveform
N_i Cycles to failure of stress S_i
N_C Cycles to failure under constant amplitude loading, σ
N_g Predicted fatigue life using S_rg
N_m Predicted fatigue life using S_re based on Miner's rule
N_n Predicted fatigue life using S_re based on non-linear Miner's rule
N_t Total cycles to failure
ΔN' Additional cycles needed to grow specimen crack to mid-section
N_avg Predicted average fatigue life
N_rms, N_rmc Cycles to failure of S_rms, S_rmc
p z/σ
P_ij S_j/S_max,i
S Section modulus
S_{i}, S_{j} Stress level i, j
S_{re} Effective stress range
S_{max, i} S_{max} or \sigma of a complex cycle i.
S_{rg} Effective stress based on Gurney's cycle life interaction expression, eqn. 1.27
S_{Rminor} Effective stress of minor cycles, z, in SS waveform
S_{Rmajor} Effective stress of major cycles, \sigma, in SS waveform
z Stress range of excursion from main constant amplitude cycle
z' See Fig. 1.7
z_{eff} The value of "z" which produces the same damaging effect as a constant amplitude stress z_{eff}
\alpha_{j}, \alpha_{ij} Occurrence of S_{j}, S_{ij}
\gamma_{i} n_{i}/N
\gamma_{o}, \gamma_{z} Fractional occurrence of \sigma, z
\sigma Maximum stress range in a complex stress cycle
1.1 PROBLEM STATEMENT

In a recent research program at The University of Texas at Austin, stresses generated from truck loading on a bridge were monitored [5]. As the speed of the test truck increased, the maximum stress range increased. Associated with the major measured stress cycle are many smaller stress fluctuations. These smaller stress fluctuations become sizable with increased speed. This is shown in Fig. 1.1 for a truck moving across the bridge at 5 and 50 MPH.

Current AASHTO bridge fatigue specifications associate one cycle of stress for each passage of a truck over longitudinal members. The stress range produced by the design truck loading is increased by an impact fraction, I, based on the span length, L, as follows:

\[I = \frac{50}{L + 125} \]

where "I" can not exceed 30 per cent. This impact fraction is used to account for the increase in the maximum stress which occurs from the dynamic loading in a bridge as graphically shown in Fig. 1.2.

There is concern that the impact fraction, I, defined in the AASHTO specification is inadequate as the impact fraction does not directly account for the possible damage due to the additional stress cycles associated with a truck loading. The amount of damage that occurs from these additional stress cycles is not known.

Damage associated with a stress cycle, such as shown in Fig. 1.1, is normally accounted for by a linear cumulative damage rule. The
Figure 1.1 Bridge stress history for a truck velocity of 5 and 50 mph
Fig. 1.2 Plot showing use of impact fraction to account for increase in static stress due to dynamic loading.
application of linear cumulative damage to complex waveforms as exhibited by a bridge in the field is uncertain. In addition, there are various methods of counting stress cycles. The new British bridge fatigue design rules employ reservoir counting.[4] However, no experimental verification of this stress counting method currently exists. Most of the experimental work done in variable amplitude testing has been performed on waveforms with constant minimum stress. The stress cycles in these waveforms are well defined, but the damage caused by these waveforms may not be similar to the damage associated with bridge stress waveforms.

1.2 OBJECTIVE

The primary objective of this study is to determine experimentally the influence that superimposed high frequency/low stress cycles have on the fatigue life of low frequency/high amplitude stress cycles. Tests were conducted on welded steel tees loaded in bending. The validity of using an effective stress approach based on reservoir counting and linear cumulative damage rule to predict fatigue life was investigated. Other fatigue life prediction methods were examined. The findings of these tests will aid in linking constant amplitude data to variable amplitude data measured in the field.

This is the first part of a larger study addressing the problem of how much damage occurs due to the additional stress cycles associated with truck loading. An effective stress approach will be employed to account for this additional damage.
1.3 CUMULATIVE DAMAGE

Cumulative damage rules account for the damage effect of stress cycles by using known constant amplitude fatigue behavior. This can be demonstrated by looking at the S-N curve obtained from constant amplitude fatigue tests as shown in Fig. 1.3. For each level of stress, S_i, there is an associated failure life, N_i. The damage can be expressed as a fractional quantity of the number of cycles to failure, n_i. This fractional damage, D_i, due to "S_i" which occurs "n_i" cycles is as follows:

$$D_i = \frac{n_i}{N_i}$$ \hspace{1cm} (1.2)

When $D_i = 1$, failure is predicted since $n_i = N_i$.

If we assume that the damage effect of each stress range in a complex waveform is independent of one another, a generalized expression for total damage, D, can be expressed in terms of D_i as follows:

$$D = \Sigma D_i$$ \hspace{1cm} (1.3)

As before, failure is predicted when $D = 1$ or more commonly expressed:

$$\Sigma \frac{n_i}{N_i} = 1$$ \hspace{1cm} (1.4)

This linear damage accumulation hypothesis is referred to as the Palmgren-Miner hypothesis or Miner's rule. Miner's rule is well suited for determining the percent of fatigue life used. In order to predict failure life, the application of Miner's rule is cumbersome. Usually an effective stress approach is used in predicting failure life.
Fig. 1.3 Prediction of cycles to failure from S-N curve based on constant amplitude fatigue tests.
1.4 EFFECTIVE STRESS

An effective stress, \(S_{re} \), is a constant amplitude stress reproducing fatigue life associated with some stress history. An expression for \(S_{re} \) can be developed from the equation of an S-N curve and the application of Miner's rule. In general, the equation of an S-N curve is given by

\[
\log N_i = A - m \log S_i
\]

or

\[
N_i = 10^A S_i^{-m}
\] \hspace{1cm} (1.5) \hspace{1cm} (1.6)

where "A" and "m" are regression coefficients obtained from a least squares best fit. Substituting \(N_i \) from eqn. 1.6 into eqn. 1.4, Miner's rule, gives:

\[
\sum_i \frac{n_i}{10^A S_i^{-m}} = 1.0
\] \hspace{1cm} (1.7)

Using eqn. 1.6, the fatigue life \(N \) is written in terms of \(S_{re} \) as follows:

\[
N = 10^A S_{re}^{-m}
\] \hspace{1cm} (1.8)

or

\[
\frac{N S_{re}^m}{10^A} = 1.0
\] \hspace{1cm} (1.9)

Equating eqn. 1.7 with eqn. 1.9 and solving for \(S_{re} \) gives

\[
S_{re} = \left[\frac{\sum n_i S_i}{N} \right]^{1/m}
\] \hspace{1cm} (1.10)

or

\[
S_{re} = \left[\frac{\sum n_i S_i^{1/m}}{N} \right]^{m}
\] \hspace{1cm} (1.11)
where \(\xi_i \) is the relative occurrence of \(n_i \) with respect to the total number of cycles \(N \).

In general, welded bridge details have a slope of 3 on a log-log S-N curve. In constant amplitude testing done by the U. S. Steel Corporation[10], two details, a cover-plated beam and a welded beam, had slopes of 2.982 and 3.296 respectively. Variable amplitude tests were conducted on these two details using a Rayleigh distribution of stress ranges where every stress range had the same minimum stress level. Different ordering of the stresses did not cause an apparent difference in fatigue life. The variable amplitude data was plotted at effective stress values using \(m \) equal to 2 (root mean squared - rms) and 3 (root mean cubed - rmc) in eqn. 1.11. In these tests, the effective stress plotted at either the value of \(S_{\text{rms}} \) or \(S_{\text{rmc}} \) fell within a scatter band bounded by the 95 percent confidence limits of the constant amplitude data. Since the fatigue lives at \(S_{\text{rms}} \) led to a slightly better fit of the constant amplitude S-N curve than did \(S_{\text{rmc}} \), they concluded that the rms value is more accurate than the rmc value.

In general, \(S_{\text{rms}} \) may not lead to a good fatigue life prediction. This becomes apparent from the following fatigue life prediction example using both an rms and an rmc calculated effective stress range. The S-N curve and stress loading histogram for this example are shown in Fig. 1.4. Note that the slope of the S-N curve has purposely been set to 3 to demonstrate that the fatigue life prediction based on \(S_{\text{rmc}} \) would give a Miner's sum = 1. Based on the stress histogram shown in Fig. 1.4:

\[
S_{\text{rmc}} = [0.8(10)^3 + 0.2(25)^3]^{1/3} = 15.77
\]

and
N = A S_{R}^{-m}
where
A = 7.81 \times 10^{9}
m = 3

\[N_{25} = 5.00 \times 10^{5} \]
\[N_{10} = 1.99 \times 10^{6} \]

Fig. 1.4 Example S-N curve and stress loading histogram
\[S_{\text{rms}} = \left[0.8(10)^2 + 0.2(25)^2 \right]^{1/2} \]
\[= 14.32 \]
The corresponding cycles to failure are given by
\[N_{\text{rmc}} = 7.8125 \times 10^9 (15.77)^{-3} \]
\[= 1,990,511 \text{ cycles} \]
and
\[N_{\text{rms}} = 7.8125 \times 10^9 (14.32)^{-3} \]
\[= 2,661,601 \text{ cycles} \]
The associated cumulative damage becomes
\[\Sigma \frac{n}{N} = \frac{n_{25}}{N_{25}} + \frac{n_{10}}{N_{10}} \]
\[\Sigma \frac{n}{N} \text{ for rmc} = \frac{0.2(1,990,511)}{500,000} + \frac{0.8(1,990,511)}{7,812,500} \]
\[= 0.7962 + 0.2038 \]
\[= 1.0000 \]
\[\Sigma \frac{n}{N} \text{ for rms} = \frac{0.2(2,661,601)}{500,000} + \frac{0.8(2,661,601)}{7,812,500} \]
\[= 1.0646 + 0.2725 \]
\[= 1.3372 \]

Note: 0.7962 and 1.0646 are the damages associated with the 25 ksi stress.

The results of this particular example show three interesting points. 1) The rmc approach gives a cumulative damage of 1.00 which follows the linear cumulative damage law. 2) The rms approach gives a linear cumulative damage of 1.34. 3) The number of 25 ksi stress cycles required using the root mean squared approach is greater than the
number of 25 ksi stress cycles needed for failure in a constant amplitude test. The coefficient in the example is seen to be greater than 1. In other words, the effective stress based on an rms approach indicates 532,320 cycles of 25 ksi stress range would occur before failure, although the S-N curve predicts 500,000 cycles of 25 ksi stress range to failure. If this is true, the smaller cycles at 10 ksi increase the fatigue life. This is contrary to what experimental results in the present study would indicate. Had the value of "m" been equal to the slope of the log-log S-N curve, the smaller cycles of stress would not have increased the number of 25 ksi stresses needed to failure above \(N_c \), the number of constant amplitude cycles to failure. A proof follows in Appendix I. Thus, the effective stress calculations, where effective stress range, \(S_{re} \), is defined as in eqn. 1.11, should be performed with a value of \(m \) set as close to the slope of a representative log-log S-N curve. Again, the rmc approach is expected to give good fatigue prediction as welded details have S-N curve slopes of about 3.

1.4 RESERVOIR COUNTING

Before an effective stress concept can be employed, the stresses from a stress history must be determined. In a stress history as previously shown in Fig. 1.1 for the truck load moving at 50 mph, it is not obvious what constitutes a stress cycle or how stress cycles should be counted. The reservoir (or rainflow) counting method is generally used in counting stresses. The reservoir counting method is considered the best method for predicting fatigue life.[2] This is because the
reservoir counting method identifies major stress range cycles associated with low frequency components (i.e. as may result from a slowly varying mean stress). It does this while simultaneously identifying smaller high frequency stresses. The reservoir method is particularly attractive because it is easy to apply and makes complete use of the stress history.

The easiest way to illustrate the reservoir counting method is to consider a stress history, like the one shown in Fig. 1.5, filled with water. In order to determine the stresses, the reservoir is drained by letting the water out at the minimum peak stress values. The water is first drained at the lowest peak stress value, point 6 in Fig. 1.5. Then the water is drained at the next lowest peak stress value and so on until all the water has been drained. Each minimum peak designates a stress cycle. The number of stress cycles in a stress history can be determined by counting the number of times a minimum peak stress occurs. The corresponding height of the water drained at each minimum peak stress constitutes a stress range as shown by cross hatching in Fig. 1.5. From these stresses, an effective stress can be calculated.

1.5 TENSILE COUNTING METHOD

Since fatigue crack growth occurs during the tensile portion of a stress range, an alternate method referred to as the tensile counting method can be employed. The tensile counting method counts only the stress ranges as they are confronted. Using the stress waveform shown in Fig. 1.6, the tensile counted stresses are denoted z'. The effective
Fig. 1.5 Applying reservoir counting to a stress history
Fig. 1.6 Constant amplitude wave with a single stress excursion z

Fig. 1.7 Constant amplitude wave with "v" excursions of stress z
stress range using tensile counting with designation S_{rt} would be:

$$S_{rt} = z' \quad \text{where } z' = (\sigma + z)/2 \quad (1.12)$$

The corresponding effective stress range using reservoir counting with designation S_{rr} would be:

$$S_{rr} = \left[\frac{1}{2} - \sigma^m + \frac{1}{2} z^m\right]^{1/m} \quad (1.13)$$

Note that 2 cycles of stress are counted by both counting methods for each occurrence of the waveform shown in Fig. 1.6. In general, both counting methods produce the same number of stress cycles.

It is of interest to see which of the two counting methods above, if any lends itself to a more accurate prediction of fatigue life. For the waveform of Fig. 1.7, both of these counting methods give "v" cycles of stress for each occurrence of the stress waveform. Thus, the fatigue life prediction based on either of these counting methods can be directly related by viewing the ratio of the effective stresses. A higher effective stress would yield a more conservative prediction of fatigue life. It can be shown that for a waveform of Fig. 1.7 with "v" occurrences of single stress excursion size "z", that $S_{rr} > S_{rt}$ if $m > 1$. S_{rr} and S_{rt} are expressed as:

$$S_{rr} = \left[\frac{1}{2} - \sigma^m + \frac{v}{1 + v} z^m\right]^{1/m} \quad (1.14)$$

and

$$S_{rt} = z' \quad \text{where } z' = (\sigma + vz)/(1 + v) \quad (1.15)$$

The ratio of S_{rr} to S_{rt} can be expressed using eqns. 1.14 and 1.15 as

$$\frac{S_{rr}}{S_{rt}} = \left[\frac{1}{2} - \sigma^m + \frac{v}{1 + v} z^m\right]^{1/m} \quad (1.16)$$

Multiplying the numerator and denominator by $1/\sigma$, substituting p for
z/σ, and re-arranging terms gives:

\[
\frac{S_{rr}}{S_{rt}} = \frac{(1 + v)^{m-1}(1 + vp^m)^{1/m}}{1 + vp}
\]

(1.17)

With \(p \) equal to 1, \(S_{rr}/S_{rt} \) reduces to 1. Assuming that \(S_{rr}/S_{rt} > 1 \), we can say that \(\ln(S_{rr}/S_{rt}) > 0 \). Defining \(F = \ln(S_{rr}/S_{rt}) \), then:

\[
F = \ln\left[\frac{(1 + v)^{m-1}(1 + vp^m)^{1/m}}{(1 + vp)} \right]
\]

(1.18)

or

\[
F = \frac{m - 1}{m} \ln(1 + v) + \frac{1}{m} \ln(1 + vp^m) - \ln(1 + vp)
\]

(1.19)

From this follows:

\[
\frac{\partial F}{\partial p} = \frac{vp^{m-1}}{1 + vp^m} - \frac{v}{1 + vp}
\]

(1.20)

To find the location of minimum or maximum \(p \) value, set \(\frac{\partial F}{\partial p} = 0 \). From eqn. 1.20

\[
1 + vp^m = (1 + vp)p^{m-1}
\]

(1.21)

or

\[
1 = p^{m-1}
\]

(1.22)

For \(m > 1 \), \(F \) is a minimum or maximum when \(p = 1 \). Thus, in order to determine if \(F \) is a minimum or maximum when \(p = 1 \), find \(\frac{\partial^2 F}{\partial p^2} \). It can be shown that

\[
\frac{\partial^2 F}{\partial p^2} = 0 \quad \text{when } p = 1
\]

(1.23)

and

\[
\frac{\partial^2 F}{\partial p^2} > 0 \quad \text{when } 0 \leq p < 1 \text{ and } m > 1
\]

(1.24)

This implies that \(F \) is a minimum which verifies our initial assumption that \(S_{rr}/S_{rt} > 1 \). Thus, for constant amplitude waveforms with constant size excursions "z", a more conservative fatigue life prediction will
result from effective stresses based on reservoir counting rather than on tensile counting.

1.6 GURNEY'S EFFECTIVE STRESS

Another alternative for possible consideration in effective stress determination is stress interaction effects. Stress interaction means that the damage effect of one stress range can influence the damage effect of another stress range. Stress interaction is very difficult to model. An easy way to handle stress interaction is to relate the damage associated with complex waveforms to upper and lower limit constant amplitude waveforms as Gurney did in ref. 4. Gurney took a lower limit - upper limit approach in obtaining interaction effects between various levels of stress range. An upper and lower limit can be established by examining the waveform in Fig. 1.8. This waveform is a simple sine function of amplitude σ with a single excursion of size z. By upper limit, we mean that the effective damage caused by the waveform can not be greater than the same waveform with stress excursion size $z = \sigma$. By the same token, the lower limit approach implies that the effective damage caused by the waveform can not be less than the same waveform with stress excursion size $z = 0$. As shown in Fig. 1.8, the waveform degenerates into constant amplitude waves at upper and lower limits. Gurney performed fatigue tests with simple waveforms like the one shown in Fig. 1.8. He observed a linear relationship between p, the ratio of the magnitude of the stress excursion z to the stress range σ, and $\log N$, where "N" is the number of times the stress σ occurs. In
Fig. 1.8 Single constant amplitude wave with single stress excursion z
mathematical form, this relationship becomes:
\[
\log N = p \quad \text{where } p = \frac{z}{\sigma}
\]
(1.25)

A generalized equation using eqn. 1.25 can be written which satisfies upper and lower limits as follows:
\[
\log N = \log N_c - p \log(1 + v)
\]
(1.26)

or
\[
N = N_c(1 + v)^{-p}
\]
(1.27)

where "v" is the number of excursions of size "z" and "N_c" is the number of constant amplitude cycles with amplitude "\sigma" to cause failure. At lower limit, z = 0, the predicted life becomes \(N_c/(1 + v)\) as the total number of peaks in a complex waveform is "1 + v".

The number of cycles, \(N_t\), of \(\sigma\) plus every cycle of excursion size \(z\), based on an effective stress approach is as follows:
\[
N_t = A \cdot S_{rg}^{-m}
\]
(1.28)

or
\[
S_{rg} = (A/N_t)^{1/m}
\]
(1.29)

where \(S_{rg}\) is the effective stress based on Gurney's cycle life interaction expression, eqn 1.27. Substituting \((1 + v)N = N_t\) and eqn. 1.27 for \(N\) gives
\[
S_{rg} = \left(\frac{A}{N_c(1 + v)^{1-p}}\right)^{1/m}
\]
(1.30)

Substituting A\(\sigma^{-m} = N_c\) and cancelling terms gives
\[
S_{rg} = \sigma(1 + v)^{(p-1)/m}
\]
(1.31)

\(S_{rr}\), effective stress based on reservoir counting of waveforms with single size excursion \(z\), is given by
\[
S_{rr} = \left[\frac{1}{1 + v} \sigma^m + \frac{v}{1 + v} z^m\right]^{1/m}
\]
(1.32)

Substituting \(p\sigma = z\) into eqn. 1.32 and dividing \(S_{rg}\) by \(S_{rr}\) gives
\[\frac{S_{rg}}{S_{rr}} = \frac{\sigma (1 + v)(p-1)/m}{1 + v\sigma^m + \frac{v}{1 + v}(p\sigma)^m} \quad (1.33) \]

Factoring and substituting \(z/\sigma \) for \(p \), and cancelling terms results in

\[\frac{S_{rg}}{S_{rr}} = \frac{(1 + v)^{z/\sigma}}{1 + v(z/\sigma)^m} \quad (1.34) \]

This is a simple expression for waveforms with constant size \(z \) in terms of only \(z/\sigma \), \(v \), and \(m \).

Using \(m = 3 \), a plot of \(S_{rg}/S_{rr} \) vs. \(z/\sigma \) is shown in Fig. 1.9 for \(v \) excursions of stress size \(z \). From this plot, it is evident that with just a single stress excursion of \(z/\sigma = 0.25 \) that \(S_{rr} \) is 5% lower than \(S_{rg} \). It is possible for these effective stresses to differ by as much as 18%, which translates into a fatigue prediction difference of 39% for this example. Note that \(S_{rg}/S_{rr} \) are a maximum at \(z/\sigma \) between 0.3 to 0.4 when \(v \) is 5 to 15.

1.7 TEST APPROACH

The testing performed in this study was either constant amplitude, CA, or superimposed sine, SS. Superimposed sine tests involved taking two separately generated sine functions and summing the signals together. A resulting general waveform is shown in Fig. 1.10. Variations of this waveform could be generated by adjusting the relative magnitude and the relative frequency of the sine waves.

Once the S-N curve was established from constant amplitude tests, a series of superimposed sine tests were conducted. From these preliminary SS tests, two different experiments were initiated.
The diagram shows the relationship between S_{rg}/S_{rr} and z/σ for varying values of v at $m = 3$. The equation for S_{rg}/S_{rr} is given by:

$$\frac{S_{rg}}{S_{rr}} = \left[\frac{(v + 1) \frac{z}{\sigma}}{1 + vp^m} \right]^{1/m}$$

Fig. 1.9 S_{rg}/S_{rr} vs. z/σ at $m = 3$ for single size excursion stresses.
Fig. 1.10 Superimposed sine waveform from two sine waves

σ = Major Stress Range

z = Minor Stress Excursion

v = Number of Minor Excursions, **z**
The first experiment was performed to examine the ability of an effective stress range based on reservoir counting and linear cumulative damage rule to predict fatigue life. Waveforms were chosen to produce a constant effective stress range, 18 ksi. Since little CA data was available at the time the experiment was begun, effective stresses were determined on the basis of a root mean cubed approach. The minor stress excursions, \(z \), were kept at an average of 15 ksi with the major stress, \(\sigma \), being varied between 25 ksi and 35 ksi. The ratio of major stress occurrence to minor stress occurrence was varied between 1/5 and 1/16 for the respective tests as shown in Fig. 1.11.

The second experiment was performed to determine the damaging effect of small stresses. This was achieved by fixing the major stress range at 30 ksi and the cyclic ratio of major and minor occurrences at 1/10. The minor stress was varied between 20 ksi and 10 ksi. This is shown in Fig. 1.12.
Fig. 1.11 Experiment 1: SS testing

Fig. 1.12 Experiment 2: SS testing
CHAPTER 2: TESTING PROGRAM

2.1 SPECIMEN DESIGN

The tests were conducted on welded steel tee sections loaded in cantilever bending. This specimen could be easily fabricated and proved to be an attractive solution to the overall experiment design. The primary reason for selecting this specimen was the ability to test at high frequency. This was critical in reducing testing time. To ensure that failure occurred along the weld toe (not in the weld root), the end of the stem plate to be welded was beveled to produce a partial penetration. The weld was sized in accordance with recommendations made by Ouchida & Nishioka [8]. Specimen geometry is shown in Fig. 2.1.

All steel used was from the same heat of steel. The mill test report shows that this steel meets the chemical and mechanical requirements as set forth by ASTM Type 1 A572-50 grade steel. A summary of the mill test report is shown in Table 2.1. The chemistry of a sample was checked and shown as the laboratory results in Table 2.1.

2.2 SPECIMEN FABRICATION

This weldment was made from 2 plates of 1 inch thick A572-50 grade steel. These plates measured 13"x3'-6" and 8"x3'-6" respectively. A 5/16" bevel was flame cut along each side of one of the
Fig. 2.1 Test specimen geometry
TABLE 2.1 MILL TEST REPORT

Steel Grade: A572-50

<table>
<thead>
<tr>
<th>Chemical Composition</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Cr</th>
<th>Ni</th>
<th>Mo</th>
<th>V</th>
<th>Cu</th>
<th>Nb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mill Ladle Analysis (%)</td>
<td>0.19</td>
<td>0.23</td>
<td>1.12</td>
<td>0.019</td>
<td>0.019</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.030</td>
</tr>
<tr>
<td>Mill Product Analysis (%)</td>
<td>0.18</td>
<td>0.22</td>
<td>1.09</td>
<td>0.018</td>
<td>0.016</td>
<td>0.029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory Analysis (%)</td>
<td>0.17</td>
<td>0.23</td>
<td>1.11</td>
<td>0.013</td>
<td>0.022</td>
<td>0.18</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.027</td>
</tr>
<tr>
<td>ASTM Heat Analysis (Type 1)</td>
<td>0.23</td>
<td>0.40</td>
<td>0.80-</td>
<td>0.04</td>
<td>0.05</td>
<td>0.005-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requirements</td>
<td>max</td>
<td>max</td>
<td>1.65</td>
<td>max</td>
<td>max</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Chicago Spectro Service Laboratory, Inc.

Mechanical Strength (Mill Test Results)

<table>
<thead>
<tr>
<th>Mechanical Strength (Mill Test Results)</th>
<th>Tensile Test</th>
<th>ASTM Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield Point:</td>
<td>58 ksi</td>
<td>50 ksi</td>
</tr>
<tr>
<td>Tensile Strength:</td>
<td>81.2 ksi</td>
<td>65 ksi</td>
</tr>
</tbody>
</table>
long edges of the 13"x3'-6" plate. This large plate was placed perpendicular to the 8"x3'-6" plate with the beveled edge centered on the 8" side. The plates were tack welded to hold the plates in position.

A series of 18 weld passes, 9 for each weld, were made alternately on each side using a manual SMAW process. The first weld pass on each side of the long edge was made using a 3/32"-7018 low hydrogen rod at 26 volts DC and 120 amps. The remaining eight passes on a side were made using an 1/8"-7018 low hydrogen rod at 27 volts DC and 150 amps. The welding sequence is shown in Fig. 2.2.

After the welding was finished, the weldment was marked for identification by painting an edge with a stripe so the origin of each specimen could be established. Since only one side was painted, the same side weld toe could be identified and tested for a given weldment.

Next, the specimens were cut out of the weldment using a machine saw. First, a 1/2" slice was cut away from each end of the weldment to remove the beginning and end of the weld. Then thirteen - 3" wide specimens were cut out. Following the cutting, each specimen had two - 13/16" diameter holes drilled 5" apart in the flange of the tee. The holes were used to bolt the specimen to the test frame.

2.3 TEST SETUP

The test arrangement shown in Fig. 2.3 is a closed loop hydraulic fatigue testing system comprised of three major components: 1) the testing frame, 2) the hydraulic system, and 3) the electronic console.

The test specimen is bolted to the inside vertical face of the
<table>
<thead>
<tr>
<th>Weld Pass No.</th>
<th>Electrode</th>
<th>Current, Amps</th>
<th>Voltage, Volts DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 & 2</td>
<td>3/32"-7018</td>
<td>100</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Low Hydrogen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 - 18</td>
<td>1/8"-7018</td>
<td>150</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Low Hydrogen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2.2 Welding procedure
Fig. 2.3 Test arrangement
"L" shaped test frame as shown in Fig. 2.4. The knife edge loading system is shown in Fig. 2.5. A 5 kip load cell is connected between the hydraulic ram and the knife edge.

The hydraulic system provides a constant 3000 psi pressure. The servo valve mounted on the loading ram directs the hydraulic flow to the top or bottom of the ram in response to commands from the servo controller. The hydraulic ram always applies load in one direction, i.e. upwards into the specimen.

The programmed waveforms were developed from function generator signals. Unlike CA testing where one sine wave signal is needed, two function generators were used together to produce the superimposed sine testing experiments. The function generator signals were run at different relative frequencies and different relative amplitudes. The two signals were superimposed by the use of a summing junction circuit.

2.4 TESTING PROCEDURE

The programmed loads were determined from the desired nominal bending stress (σ) in the extreme tensile fiber of the test specimen at the weld toe as follows:

\[p = \frac{\sigma S}{L} \]

where "S" is the section modulus and "L" is the moment arm (distance from knife edge to weld toe). One measurement of the specimen width and four of the specimen thickness were made. The specimen's width was measured at the weld toe. The average of the measured dimensions were used
Fig. 2.4 Test frame
Fig. 2.5 Knife edge loading system
to calculate the section modulus of the specimen. Thickness was determined by averaging the measured plate thickness at four locations along the weld toe. The moment arm was computed from the average of the two measurements made from each side of the knife edge support centerline to the weld toe on the tension side of the specimen. All tests were run with a minimum nominal tensile bending stress of 5 ksi at the weld toe.

The test was terminated when the error signal, which is the difference between the command signal and the feedback signal, increased by 10 percent of its initial value. This increase in error occurred due to stiffness changes within the cross-section where the fatigue crack grows.

The fatigue failure of the specimen starts from small surface cracks along the weld toe of the fusion line on the tensile loaded side of the specimen. The first visible cracking normally occurs near the center of the weld toe with other cracks initiating along the weld toe. These cracks grow as semi-elliptical cracks in planes offset slightly from one another due to the irregularities of the weld toe. The cracks eventually coalesce as shown in Fig. 2.6. The rings shown on the fracture surface in this figure were made by tinting the crack with dye penetrant after 62% of the total fatigue life. The two cracks shown coalesced together to form the large semi-elliptical crack. The resulting crack depths at the end of the tests were a quarter to half of the plate thickness as shown in Fig. 2.7. The fatigue crack depth is the elliptical smooth surface at the top of the plate in the figures.

In order to determine the magnitude of the additional life remaining in the uncracked section of the test specimen, one test was continued until the loading system was unable to maintain the desired loads. This occurred because the ram displacements had to increase to maintain the same level of loads as the section failed. The resulting
Fig. 2.6 Formation and growth of initial cracks in CA1406
Fig. 2.7 Failure surfaces of two CA tests
crack shown in Fig. 2.8 is half the specimen thickness. The life consumed beyond the 10\% error cutoff was 6\%.

To further examine the rate of propagation, \(\frac{da}{dN} \), dye penetrant was used to tint the crack of another specimen near the end of its test life as shown in Fig. 2.9. The amount of extension, \(\Delta a \), is given by

\[
\Delta a = a_f - a = 0.45 \text{ in.} - 0.38 \text{ in.} = 0.07 \text{ in.}
\]

The corresponding number of major cycles, \(\Delta N \), was 7280. The corresponding crack propagation ratio is \(1/10^5 \). Assuming that the rate of crack propagation does not increase, \(\Delta N' \) (the number of cycles needed to grow the crack to midsection) is given by

\[
\Delta N' = (0.50 \text{ in.} - 0.45 \text{ in.}) \times 10^5 = 5000 \text{ cycles}
\]

The test failure life was 393,810 cycles meaning that there was only a 1.3\% potential increase in fatigue testing life. Remember, once the crack grew to mid-section, the experiment was halted as ram displacements became too large to attain the same load levels. It is concluded that there is no real difference in specimen test life when the crack is between one third to one half of the plate thickness.

2.5 SUPERIMPOSED SINE TESTING

In general, the stress distribution for an SS waveform based on reservoir counting can be expressed as shown in Fig. 2.10. The relative occurrence, \(\gamma \), of major and minor stresses is a function of the number of minor stress excursions, \(z \), present in an SS waveform.

Eight different waveforms were used for all the SS testing
Fig. 2.8 Crack grown to half of thickness
Fig. 2.9 Dye penetrant indication of crack extension
Fig. 2.10 Shape of SS stress distributions
(based on reservoir counting)
employed as shown in Table 2.2. This table shows the settings of the two function generator signals before summing. Table 2.2 also shows the effective stress range calculated for the major and minor stresses and will be called \(S_{R\text{major}} \) and \(S_{R\text{minor}} \) respectively. These effective stresses are evaluated using \(m = 4.2 \), since 4.2 is the slope of the CA data presented in Chapter 3. An effective major stress is determined using the major cycles of stress and similarly the effective minor stress is determined using all the minor stress excursions. These effective stresses were based on reservoir counted computer simulated stresses of the actual waveform. These values are then rounded to the values of \(\sigma \) and \(z \) shown in Table 2.2. These values of \(\sigma \) and \(z \) are used in discussing the effective major and minor stress respectively in the remainder of the text and will be used in all succeeding tables. The results of SS testing will be presented in two ways: 1) the effective stress range, \(S_{\text{re}} \) based on reservoir stress counting at the total number of cycles involved, \(N_t \), and 2) the major stress range, \(\sigma \), at the number of major stress cycles, \(N \).

2.6 TEST LOAD MONITORING AND ACCURACY

In the constant amplitude, CA, tests, the peak to peak load values were monitored using a peak detector. The peak detector was used to initially set and maintain the desired absolute minimum and maximum load on the specimen. To ensure that the load signal shown on the peak detector corresponded to the load monitored by the electronic console, a shunt calibration test of the feedback signal was performed before every
<table>
<thead>
<tr>
<th>SS Test Type</th>
<th>Function Generator Settings</th>
<th>Superimposed Sine Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Function Gen. #1</td>
<td>Function Gen. #2</td>
</tr>
<tr>
<td></td>
<td>Frequency Amplitude (Hz)</td>
<td>Frequency Amplitude (Hz)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>1/2</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

\(^1 m = 4.2\)
test run.

In the superimposed sine, SS, wave tests, only the absolute minimum and maximum peaks of the major wave were monitored. The SS testing presented certain problems as the SS waveform was created by summing two different function generator sine wave signals. It was impossible to eliminate the drift which existed between the function generator signals. This drift was caused by the drift in the frequencies and in the phasing of the signals at the start of the test. As a result, a variation in the major amplitude value occurred. Also, as sine waves are not linear functions, the superposition of the generated sine waves leads to a scatter of the minor wave amplitudes. These minor wave peaks could not be detected by the peak detector.

In order to estimate the resulting distribution of loads, computer simulation of the generated superimposed sine waves were performed for each type of superimposed sine waves used in the testing program to acquire a realistic distribution of stresses. Simulations of the actual SS waveforms were performed using the amplitudes and frequencies of the two function generator signals and selecting a frequency error between the two signals as demonstrated in the development of the following SS waveform using two sine waves.

The SS waveform with a major amplitude of $a = 30$ ksi and nine excursions, $v = 9$, of minor amplitude of $z = 15$ ksi as shown in Fig. 2.11 will be approximated by the superposition of two sine waves. In order to have nine minor amplitudes, the frequency ratio, $v + 1$, between the two function generator signals must be ten. Since a small frequency error occurs between the signals, let one signal run at 1 Hz and the other signal at 10.05 Hz. This will cause one minor wave to drift in every 20 cycles of the major waveform. If the respective programmed amplitudes are 13.92 and 16.25, then one cycle of the resulting complex
Fig. 2.11 Desired waveform

\(\sigma = 30 \)

\(Z = 15 \) (Typical)

STRESS (KSI)
waveform is shown in Fig. 2.12. The scatter of stress ranges associated with the minor amplitude is 14.1 to 15.7 ksi and the major amplitude is 29.9 to 30.2 ksi. The corresponding stress histogram is shown in Fig. 2.13. A high speed digital data acquisition system was employed to verify some of the simulation tests. High speed recordings were made from the load cell output of actual test loads on the specimen using a fixed sampling speed of 84 samples per second. The ability of the high speed recorder to sample the absolute minimum and maximum values diminishes at higher input frequencies due to the fixed sampling rate. The rolloff of the recording system was determined using a constant amplitude sine signal run at the same frequency as the high frequency minor wave signal portion of the SS waveform. Figure 2.14 shows a histogram of the recorded load range divided by the programmed load range for 36 cycles of loading at 10 Hz. The largest recorded load range is 96% of the actual with a mean of 95.4% for the recorded data. A similar analysis of a 1 Hz input sine wave produced a mean measured load range of 99.6%. This implies that the digital recorder is accurate and that the inaccuracy is attributable to sampling. Thus, all digitally recorded SS waveforms with minor wave frequencies of 10 Hz were corrected by dividing recorded stress ranges by 0.954. Figure 2.15 shows a stress range histogram for a particular SS test where the stress range predicted by computer simulation and recorded data during experimental testing divided by 0.954 is presented. The results indicate that the computer simulated stresses exceed the recorded stresses by less than 0.5 ksi. This implies that the actual stresses are slightly lower than predicted, meaning that fatigue lives of the SS testing should be longer than predicted.

An effective major and minor stress is calculated in Table 2.3 for the stress histogram of Fig. 2.15. Also, an effective stress based
Fig. 2.12 Waveform from superposition of two sine waves
Fig. 2.13 Stress histogram of a computer simulated waveform
SAMPLE SIZE = 36
FREQUENCY = 10 Hz
MEAN VALUE = 95.4%

Fig. 2.14 Digital recorded amplitudes of a constant sine amplitude signal at 1 Hz
Fig. 2.15 Stress histogram of SS3306
<table>
<thead>
<tr>
<th></th>
<th>Effective Stress (ksi)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Major</td>
<td>Minor</td>
<td>Major & Minor</td>
<td></td>
</tr>
<tr>
<td>Computer Simulated</td>
<td>29.8</td>
<td>14.8</td>
<td>18.9</td>
<td></td>
</tr>
<tr>
<td>Hi-Speed Digital/0.954</td>
<td>29.3</td>
<td>14.4</td>
<td>18.8</td>
<td></td>
</tr>
<tr>
<td>Reported</td>
<td>30.0</td>
<td>15.0</td>
<td>19.1</td>
<td></td>
</tr>
<tr>
<td>Reported/Digital</td>
<td>1.02</td>
<td>1.04</td>
<td>1.02</td>
<td></td>
</tr>
</tbody>
</table>

$m = 4.2$
on the overall stress histogram is provided using $m = 4.2$ in Table 2.3. These effective stresses, determined from computer simulation and high speed digital recording, are compared with each other. The effective major and minor stress predicted from computer simulation as shown in Table 2.3 are within 4% of the respective digital recorded effective major and minor stress. The corresponding effective stress of the entire computer simulated stress histogram is within 2% of the entire digital recorded stress histogram when $m = 4.2$. This implies good correlation between the stresses predicted and recorded. Thus, the stresses predicted from the computer simulation can be taken as the actual stresses and will be used to report the test results.
CHAPTER 3: TEST RESULTS

3.1 CONSTANT AMPLITUDE TEST RESULTS

Constant amplitude, CA, tests were conducted on 4 weldment groups to establish an S-N curve to serve as a basis to evaluate the complex stress function results. All of the CA test results are summarized in Table 3.1 and are plotted on a log-log S-N plot shown in Fig. 3.1. Note that weldment 1 test results produced the longest lives. The same results plotted in Fig. 3.1 are plotted in Fig. 3.2 along with a best fit regression line for each weldment type. In Fig. 3.2, the regression lines of weldments 2, 3, and 4 nearly lay on top of one another. The similarity of the regression lines of weldments 2, 3, and 4 indicate that they have the same behavior in constant amplitude fatigue. The CA results of weldment 1 did not correlate well those of weldments 2, 3, and 4. Thus, an S-N curve based only on weldments 2, 3, and 4 was established to evaluate the superimposed sine, SS, test results. SS testing was restricted to only weldments 2, 3, and 4 so that results could readily be compared between weldment groups. Note that weldments 2, 3, and 4 will be treated as producing identical behavior when comparing SS to CA test results. A plot of this standard CA data considering only weldments 2, 3, and 4 is shown in Fig. 3.3. The slope of the mean regression line is 4.2. Included in the plot, is a two sided 95% confidence band of the mean line. All CA testing performed on weldments 2, 3, and 4 resulted in specimen failure. The lowest CA test level run was 12.5 ksi for a weldment 4 specimen which failed at 22.3 million cycles.
TABLE 3.1 CONSTANT AMPLITUDE, CA, TEST RESULTS

<table>
<thead>
<tr>
<th>Test Specimen</th>
<th>Weldment Number</th>
<th>Stress Range (ksi)</th>
<th>Cycles to Failure x10³</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA1201</td>
<td>1</td>
<td>33.42</td>
<td>566</td>
</tr>
<tr>
<td>CA1205</td>
<td>1</td>
<td>33.46</td>
<td>411</td>
</tr>
<tr>
<td>CA2203</td>
<td>2</td>
<td>33.46</td>
<td>210</td>
</tr>
<tr>
<td>CA2204</td>
<td>2</td>
<td>33.46</td>
<td>338</td>
</tr>
<tr>
<td>CA1302</td>
<td>1</td>
<td>28.71</td>
<td>645</td>
</tr>
<tr>
<td>CA2302</td>
<td>2</td>
<td>28.68</td>
<td>584</td>
</tr>
<tr>
<td>CA3301</td>
<td>3</td>
<td>28.65</td>
<td>693</td>
</tr>
<tr>
<td>CA3303</td>
<td>3</td>
<td>28.71</td>
<td>422</td>
</tr>
<tr>
<td>CA4301</td>
<td>4</td>
<td>28.65</td>
<td>541</td>
</tr>
<tr>
<td>CA1403</td>
<td>1</td>
<td>23.90</td>
<td>1,182</td>
</tr>
<tr>
<td>CA1406</td>
<td>1</td>
<td>23.92</td>
<td>1,870</td>
</tr>
<tr>
<td>CA2401</td>
<td>2</td>
<td>23.82</td>
<td>1,064</td>
</tr>
<tr>
<td>CA2405</td>
<td>2</td>
<td>23.93</td>
<td>1,433</td>
</tr>
<tr>
<td>CA3402</td>
<td>3</td>
<td>23.87</td>
<td>1,105</td>
</tr>
<tr>
<td>CA4403</td>
<td>4</td>
<td>23.90</td>
<td>1,138</td>
</tr>
<tr>
<td>CA4404</td>
<td>4</td>
<td>23.92</td>
<td>1,062</td>
</tr>
<tr>
<td>CA1504</td>
<td>1</td>
<td>19.16</td>
<td>9,739</td>
</tr>
<tr>
<td>CA2506</td>
<td>2</td>
<td>19.12</td>
<td>2,095</td>
</tr>
<tr>
<td>CA4502</td>
<td>4</td>
<td>19.12</td>
<td>3,873</td>
</tr>
<tr>
<td>CA3610</td>
<td>3</td>
<td>17.19</td>
<td>4,245</td>
</tr>
<tr>
<td>CA4710</td>
<td>4</td>
<td>14.35</td>
<td>9,314</td>
</tr>
<tr>
<td>CA4812</td>
<td>4</td>
<td>11.98</td>
<td>22,460</td>
</tr>
</tbody>
</table>

1 Test discontinued
Fig. 3.1 Constant amplitude test data
Fig. 3.2 Constant amplitude test data with best fit of each weldment group
Fig. 3.3 Standard S-N curve based on weldments 2, 3, and 4

\[N = 7.03 \times 10^{11} S_R^{-4.19} \]

95% Confidence limit of regression line

Weldment

2 \(\Delta \)

3 +

4 ×
Other investigators [1,6,8,13] have conducted fatigue tests on various as-welded bending specimens. The type of loading and specimen geometry varied in these investigations. Table 3.2 shows schematically the types of specimens and weld geometry used in these studies. The results of previous studies along with all of the CA results of this present study are plotted in Fig. 3.4. In general, the lives of the CA tests conducted in this study had longer fatigue lives. All the slopes of the S-N curves were comparable with the exception of those in ref. 1 which had a flatter slope (a larger value of the stress range exponent). Tests from refs. 1 and 13 produced shorter lives. This could be due to the fact that the plate thicknesses were larger in these tests than in the other tests reported, which would correlate with Gurney's findings that thicker specimens should produce shorter lives [3]. Also, a 4 point bending load scheme was employed in refs. 1 and 13 as opposed to cantilever bending used in the other studies. Only one set of data [1] plotted used fully reversed loading (R = -1). Since no significant difference in the test results occurred when the stress ratio, R, was equal to 0 or -1, no distinction of R was made in plotting this data. Overall, the test results of this study appear to show fatigue behavior that is consistent with other investigations.
<table>
<thead>
<tr>
<th>Specimen Type and Loading</th>
<th>Weld</th>
<th>R</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Partial Penetration Fillet</td>
<td>0.1</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Full-Penetration Fillet</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Fillet</td>
<td>0.1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Non-Load Carrying Weld</td>
<td>0.1</td>
<td>13</td>
</tr>
</tbody>
</table>

Type A: Full-Penetration Fillet Weld
Type B: Fillet Weld
Fig. 3.4 Constant amplitude test data on bending specimens
3.2 SUPERIMPOSED SINE TEST RESULTS

All superimposed sine, SS, test results are summarized in Table 3.3. In order to determine the significance of the minor stress ranges, \(z \), upon the fatigue life of the specimens, the major stress range, \(\sigma \), was plotted with the corresponding number of major cycles to failure, \(N \), in Fig. 3.5. All of the data except one test result falls to the left of the 95% confidence limit for the corresponding CA regression line indicating that the smaller stress cycles produce a significant reduction in the fatigue life. A similar result occurs when the effective stress range, \(S_{re} \), was plotted with the total number of cycles to failure, \(N_t \), as shown in Fig. 3.6. \(S_{re} \) is determined using \(m = 4.2 \) in this figure. This plot has a better correlation with the CA line than did the plot of \(\sigma \) vs. \(N \). However most of the fatigue results in this plot fell short of the predicted fatigue life. Therefore, the linear cumulative damage model used to calculate \(S_{re} \) does not appear to adequately account for all damage occurring from the small stress cycles.

Initially one purpose of the study was to investigate whether minor wave damage could be represented in variable amplitude testing by cumulative damage rules where stresses are determined from reservoir counting techniques. Two sets of experiments were initiated as discussed in Section 1.8 on weldments 3 & 4 respectively.

In weldment 3, 3 pairs of SS tests were conducted. The minor stress range, \(z \), was kept constant at 15 ksi, while the major stress range, \(\sigma \), and the stress sequences, \(v + 1 \), were varied so that \(S_{re} \) was constant at approximately 18 ksi when using a root mean cubed effective stress, \(S_{rmc} \), calculation. This implies that the lives of the test specimens should be the same. It is apparent when viewing Table 3.4 that
<table>
<thead>
<tr>
<th>Test Specimen No.</th>
<th>Weld-ment (v+1)</th>
<th>Nominal σ (ksi)</th>
<th>z</th>
<th>z/σ</th>
<th>$1_{S_{rr}}$ (ksi)</th>
<th>$N \times 10^3$</th>
<th>$N_c \times 10^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS2207</td>
<td>2 10 35 5.4</td>
<td>0.154</td>
<td></td>
<td></td>
<td>19.3</td>
<td>183.0</td>
<td>1,830</td>
</tr>
<tr>
<td>SS2208</td>
<td>2 10 35 5.4</td>
<td>0.154</td>
<td></td>
<td></td>
<td>19.3</td>
<td>339.2</td>
<td>3,392</td>
</tr>
<tr>
<td>SS3204</td>
<td>3 16 35 15</td>
<td>0.429</td>
<td></td>
<td></td>
<td>18.9</td>
<td>85.2</td>
<td>1,363</td>
</tr>
<tr>
<td>SS3205</td>
<td>3 16 35 15</td>
<td>0.429</td>
<td></td>
<td></td>
<td>18.9</td>
<td>91.1</td>
<td>1,457</td>
</tr>
<tr>
<td>SS2209</td>
<td>2 8 35 20</td>
<td>0.571</td>
<td></td>
<td></td>
<td>23.2</td>
<td>140.9</td>
<td>1,127</td>
</tr>
<tr>
<td>SS2210</td>
<td>2 8 35 20</td>
<td>0.571</td>
<td></td>
<td></td>
<td>23.2</td>
<td>163.8</td>
<td>1,311</td>
</tr>
<tr>
<td>SS4306</td>
<td>4 10 30 10</td>
<td>0.333</td>
<td></td>
<td></td>
<td>16.8</td>
<td>224.7</td>
<td>2,247</td>
</tr>
<tr>
<td>SS4309</td>
<td>4 10 30 10</td>
<td>0.333</td>
<td></td>
<td></td>
<td>16.8</td>
<td>203.8</td>
<td>2,038</td>
</tr>
<tr>
<td>SS3306</td>
<td>3 10 30 15</td>
<td>0.500</td>
<td></td>
<td></td>
<td>18.1</td>
<td>187.3</td>
<td>1,873</td>
</tr>
<tr>
<td>SS3307</td>
<td>3 10 30 15</td>
<td>0.500</td>
<td></td>
<td></td>
<td>18.1</td>
<td>195.3</td>
<td>1,953</td>
</tr>
<tr>
<td>SS4305</td>
<td>4 10 30 15</td>
<td>0.500</td>
<td></td>
<td></td>
<td>18.1</td>
<td>181.4</td>
<td>1,814</td>
</tr>
<tr>
<td>SS4311</td>
<td>4 10 30 20</td>
<td>0.500</td>
<td></td>
<td></td>
<td>18.1</td>
<td>198.6</td>
<td>1,986</td>
</tr>
<tr>
<td>SS4307</td>
<td>4 10 30 20</td>
<td>0.667</td>
<td></td>
<td></td>
<td>20.9</td>
<td>133.4</td>
<td>1,334</td>
</tr>
<tr>
<td>SS4308</td>
<td>4 10 30 20</td>
<td>0.667</td>
<td></td>
<td></td>
<td>20.9</td>
<td>164.4</td>
<td>1,644</td>
</tr>
<tr>
<td>SS2411</td>
<td>2 10 25 14</td>
<td>0.560</td>
<td></td>
<td></td>
<td>15.8</td>
<td>393.8</td>
<td>3,938</td>
</tr>
<tr>
<td>SS2412</td>
<td>2 10 25 14</td>
<td>0.560</td>
<td></td>
<td></td>
<td>15.8</td>
<td>503.7</td>
<td>5,037</td>
</tr>
<tr>
<td>SS3408</td>
<td>3 5 25 15</td>
<td>0.600</td>
<td></td>
<td></td>
<td>17.8</td>
<td>392.6</td>
<td>1,963</td>
</tr>
<tr>
<td>SS3409</td>
<td>3 5 25 15</td>
<td>0.600</td>
<td></td>
<td></td>
<td>17.8</td>
<td>435.6</td>
<td>2,178</td>
</tr>
</tbody>
</table>

$m = 4.2$
Fig. 3.5 Plot of σ vs. N for superimposed sine testing
Regression Line from CA Data Based on Weldments 2, 3, & 4

95% Confidence Limit of Regression Line

Fig. 3.6 Effective stress of superimposed sine tests (m = 4.2) vs. fatigue life
TABLE 3.4 WELDMENT 3: SS TEST SUMMARY

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Nominal N_t (ksi)</th>
<th>$v+1$</th>
<th>N_t $x 10^3$</th>
<th>$2N_{pred}$</th>
<th>$2%N_t$</th>
<th>$3N_{pred}$</th>
<th>$3%N_t$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS3204</td>
<td>35</td>
<td>16</td>
<td>.429</td>
<td>1,363</td>
<td>4,667</td>
<td>.292</td>
<td>3,226</td>
</tr>
<tr>
<td>SS3205</td>
<td>35</td>
<td>16</td>
<td>.429</td>
<td>1,457</td>
<td>4,667</td>
<td>.312</td>
<td>3,226</td>
</tr>
<tr>
<td>SS3306</td>
<td>30</td>
<td>10</td>
<td>.500</td>
<td>1,873</td>
<td>5,013</td>
<td>.374</td>
<td>3,831</td>
</tr>
<tr>
<td>SS3307</td>
<td>30</td>
<td>10</td>
<td>.500</td>
<td>1,953</td>
<td>5,013</td>
<td>.390</td>
<td>3,831</td>
</tr>
<tr>
<td>SS3408</td>
<td>25</td>
<td>5</td>
<td>.600</td>
<td>1,963</td>
<td>4,743</td>
<td>.414</td>
<td>4,113</td>
</tr>
<tr>
<td>SS3409</td>
<td>25</td>
<td>5</td>
<td>.600</td>
<td>2,178</td>
<td>4,743</td>
<td>.459</td>
<td>4,113</td>
</tr>
</tbody>
</table>

1. $\sigma = 15$ ksi
2. N_{pred} is based on S_{rr} using $m = 3$ and is $x 10^3$
3. N_{pred} is based on S_{rr} using $m = 4.2$ and is $x 10^3$

TABLE 3.5 WELDMENT 4: SS TEST SUMMARY

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Nominal z (ksi)</th>
<th>N_t $x 10^3$</th>
<th>$2N_{pred}$</th>
<th>$2%N_t$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS4306</td>
<td>10</td>
<td>.333</td>
<td>2,247</td>
<td>5,164</td>
</tr>
<tr>
<td>SS4309</td>
<td>10</td>
<td>.333</td>
<td>2,038</td>
<td>5,164</td>
</tr>
<tr>
<td>SS4305</td>
<td>15</td>
<td>.500</td>
<td>1,814</td>
<td>3,831</td>
</tr>
<tr>
<td>SS4311</td>
<td>15</td>
<td>.500</td>
<td>1,986</td>
<td>3,831</td>
</tr>
<tr>
<td>SS4307</td>
<td>20</td>
<td>.667</td>
<td>1,334</td>
<td>2,084</td>
</tr>
<tr>
<td>SS4308</td>
<td>20</td>
<td>.667</td>
<td>1,644</td>
<td>2,084</td>
</tr>
</tbody>
</table>

1. $\sigma = 30$ ksi and $v+1 = 10$
2. Based on S_{rr} using $m = 4.2$
the life corresponding to S_{rmc} shows no relation to the actual fatigue lives. Although an S_{re} based on $m = 4.2$ gave better fatigue life predictions, the predicted lives were much larger than the experimental results. Also, as the major stress range decreased, the fatigue life increased and the predicted lives were closer to the actual.

In weldment 4, 3 pairs of SS tests were performed to determine the damage effect of minor stress, z. The minor stress, z, was varied, while the major stress, σ, and the ratio $"v + 1"$ were held constant at 30 ksi and 10 respectively. Table 3.5 summarizes the results. The results of Table 3.5 show that for smaller values of z, the ratio of the actual failure life to the predicted failure life decreased. This implies that there is a non-linear damage interaction between minor stress, z, and major stress, σ. This is similar to the effect found in the results from weldment 3.

A plot of $p, z/\sigma$, against the ratio of the predicted average fatigue life, N_{avg}, using S_{re} divided by the actual number of total cycles to failure, N_t, is shown in Fig. 3.7 for all the SS tests. The bars shown in the figure represent the range of the individual test results. The scatter in the figure is large, however it does indicate that the error in the fatigue life estimation is not constant with $"z/\sigma"$. The maximum error occurs in the vicinity of p equal to 0.3 to 0.4. The corresponding fatigue life is overestimated by a factor of two or more. When discussing Gurney's model in section 1.6, where S_{rg}/S_{rr} was plotted against z/σ, the maximum value of S_{rg}/S_{rr}, the ratio of Gurney's effective stress to the linear cumulative damage model stress, for values of $"v"$ between 5 and 15 occurred in the same range of $"p"$. This would indicate that Gurney's effective stress should provide a better estimate of fatigue performance.
Fig. 3.7 Plot of z/σ vs. N_{avg}/N_T
CHAPTER 4: DISCUSSION OF EFFECTIVE STRESS CALCULATION

Three effective stress methods (Miner's, tensile, and Gurney's) were investigated to determine their ability to predict the failure of the SS tests. SS test results indicated that a Miner's effective stress calculation gave unconservative fatigue life prediction. Thus the tensile effective stress method was not considered further as tensile effective stresses for any SS waveform would have an even lower effective stress than the corresponding Miner's effective stress. This lower effective stress would yield a more unconservative fatigue life prediction. On the other hand, Gurney's effective life prediction would appear to give slightly closer fatigue life prediction.

4.1 EVALUATION OF GURNEY'S METHOD

A comparison of the fatigue life prediction based on Gurney's approach and Miner's rule is shown in Table 4.1. The predicted lives from Gurney's approach are in better agreement with the experimental results than the lives predicted from Miner's approach. Miner's approach gave unconservative predictions that were off by a factor of two or more. Gurney's approach gave only four fatigue life predictions that were greater than 10% off on the unconservative side.

The SS test results have been plotted at the cycles to failure using "N", the number of major stress cycles of the major stress range,
TABLE 4.1 COMPARISON OF GURNEY'S PREDICTED FATIGUE LIFE OF SS TESTING AGAINST ACTUAL FATIGUE LIFE

<table>
<thead>
<tr>
<th>Specimen Number</th>
<th>Nominal (\sigma_{\text{major}})</th>
<th>p</th>
<th>(v+1)</th>
<th>Cycles to Failure (N \times 10^3)</th>
<th>Gurney's Predicted Life (\times 10^3)</th>
<th>Actual Predicted</th>
<th>(\sum_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS2207</td>
<td>35</td>
<td>.154</td>
<td>10</td>
<td>183</td>
<td>208</td>
<td>0.880</td>
<td>0.617</td>
</tr>
<tr>
<td>SS2208</td>
<td>35</td>
<td>.154</td>
<td>10</td>
<td>339</td>
<td>208</td>
<td>1.630</td>
<td>1.144</td>
</tr>
<tr>
<td>SS2209</td>
<td>35</td>
<td>.571</td>
<td>8</td>
<td>141</td>
<td>88</td>
<td>1.602</td>
<td>0.820</td>
</tr>
<tr>
<td>SS2210</td>
<td>35</td>
<td>.571</td>
<td>8</td>
<td>164</td>
<td>88</td>
<td>1.864</td>
<td>0.953</td>
</tr>
<tr>
<td>SS2411</td>
<td>25</td>
<td>.560</td>
<td>10</td>
<td>394</td>
<td>338</td>
<td>1.166</td>
<td>0.576</td>
</tr>
<tr>
<td>SS2412</td>
<td>25</td>
<td>.560</td>
<td>10</td>
<td>504</td>
<td>338</td>
<td>1.491</td>
<td>0.737</td>
</tr>
<tr>
<td>SS3204</td>
<td>35</td>
<td>.429</td>
<td>16</td>
<td>85</td>
<td>90</td>
<td>0.944</td>
<td>0.414</td>
</tr>
<tr>
<td>SS3205</td>
<td>35</td>
<td>.429</td>
<td>16</td>
<td>91</td>
<td>90</td>
<td>1.011</td>
<td>0.442</td>
</tr>
<tr>
<td>SS3306</td>
<td>30</td>
<td>.500</td>
<td>10</td>
<td>187</td>
<td>185</td>
<td>1.011</td>
<td>0.479</td>
</tr>
<tr>
<td>SS3307</td>
<td>30</td>
<td>.500</td>
<td>10</td>
<td>195</td>
<td>185</td>
<td>1.054</td>
<td>0.499</td>
</tr>
<tr>
<td>SS3408</td>
<td>25</td>
<td>.600</td>
<td>5</td>
<td>393</td>
<td>475</td>
<td>0.827</td>
<td>0.467</td>
</tr>
<tr>
<td>SS3409</td>
<td>25</td>
<td>.600</td>
<td>5</td>
<td>436</td>
<td>475</td>
<td>0.918</td>
<td>0.518</td>
</tr>
<tr>
<td>SS4305</td>
<td>30</td>
<td>.500</td>
<td>10</td>
<td>181</td>
<td>185</td>
<td>0.978</td>
<td>0.463</td>
</tr>
<tr>
<td>SS4311</td>
<td>30</td>
<td>.500</td>
<td>10</td>
<td>199</td>
<td>185</td>
<td>1.076</td>
<td>0.507</td>
</tr>
<tr>
<td>SS4306</td>
<td>30</td>
<td>.333</td>
<td>10</td>
<td>225</td>
<td>264</td>
<td>0.852</td>
<td>0.426</td>
</tr>
<tr>
<td>SS4309</td>
<td>30</td>
<td>.333</td>
<td>10</td>
<td>204</td>
<td>264</td>
<td>0.773</td>
<td>0.386</td>
</tr>
<tr>
<td>SS4307</td>
<td>30</td>
<td>.667</td>
<td>10</td>
<td>133</td>
<td>123</td>
<td>1.081</td>
<td>0.627</td>
</tr>
<tr>
<td>SS4308</td>
<td>30</td>
<td>.667</td>
<td>10</td>
<td>164</td>
<td>123</td>
<td>1.333</td>
<td>0.772</td>
</tr>
</tbody>
</table>
σ, in Figs. 4.1, 4.2, and 4.3. Figure 4.1 shows only the SS data with stress sequences "v + 1" equal to 10. Prediction curves based on Gurney's formulation are plotted as dashed lines for each different value of σ shown. In Figs. 4.2 and 4.3, only SS test results with σ equal to 15 ksi and 20 ksi respectively are plotted. Prediction curves of these figures are plotted for each different value of "v + 1". Constant amplitude points are designated by a bar — on the plotted symbol in Figs. 4.1, 4.2, and 4.3. These plots show that the data corresponds well with the prediction curves. Generally, the data falls to the right of its predicted value, meaning that the fatigue life prediction curves are conservative.

Fig. 4.4 shows how well the results of this study and Gurney's experiments [4] correspond to Gurney's fatigue life prediction. The solid line represents full agreement between tests and theory. Both sets of data contain a good deal of scatter. However, most of the scatter is on the conservative side.

4.2 EVALUATION OF A NON-LINEAR DAMAGE MODEL

The test results indicate that the damage caused by the small stress cycles is non-linear. A non-linear damage theory was investigated to explore this effect. Assuming that the damage effect of the major stress cycle, σ, is unaltered and taking "m" to be constant, an effective stress z_{eff} can be calculated which will emulate the non-linear damage by manipulating the S_{re} calculation as follows:
Fig. 4.1 SS test results with stress sequences, $v + 1$, equal to 10
Fig. 4.2 SS test results with minor stress range, z, equal to 15 ksi.
Fig. 4.3 SS test results with minor stress range, \(z \), equal to 20 ksi
Fig. 4.4 Log (N/N_c) vs. p Log (v + 1)

Gurney's Prediction

Unconservative

Conservative

Gurney's 4

Present Study
By substituting the expression of \(S_{re} \) in eqn. 4.1 into eqn. 4.2 and solving for \(z_{\text{eff}} \) gives:

\[
\left[\chi_o \sigma^m + \chi_z z_{\text{eff}}^m \right]^{1/m}
\]

and

\[
N_t = A S_{re}^{-m}
\]

By substituting the expression of \(S_{re} \) in eqn. 4.1 into eqn. 4.2 and solving for \(z_{\text{eff}} \) gives:

\[
z_{\text{eff}} = \left[\frac{A}{\chi_z N_t} - \chi_o \sigma^m \right]^{1/m}
\]

Constants "A" and "m" are known from the regression analysis of the CA data. \(\chi_z \) and \(\chi_o \) are fixed for a given test. Therefore, \(z_{\text{eff}} \) can be calculated.

The ratio \(z_{\text{eff}}/z \) is plotted in Fig. 4.5 as a function of \(z/\sigma \) for all SS tests. The SS test data for a given test type are plotted as a mean plus or minus the deviation of \(z_{\text{eff}}/z \). Rather than disregarding the result of SS2208 because its \(z_{\text{eff}} \) value was negative, the result was averaged with the \(z_{\text{eff}} \) from the result of SS2207 and plotted simply as "x". Also included in the plot is Gurney's data which was tested by waveforms with shapes similar to SS waveforms and is plotted as single points. Although Gurney used pulsating tension specimens with a fillet welded attachment, the results of both studies exhibited the same behavior. There is a definite trend in both data sets to have higher relative damage for lower values of \(z/\sigma \). A simple expression was developed using \(\sigma/\sigma \) to describe this variation in damage. This expression is \(z_{\text{eff}} = \text{SQRT}(\sigma_0) \). A plot of \(z_{\text{eff}}/z = \text{SQRT}(\sigma/\sigma) \) is shown in Fig. 4.5.

The non-linear damage effect can easily be incorporated into Miner's rule by modifying the effect of the lower stress by the expression \(\text{SQRT}(1/\rho) \), this is the same as \(\text{SQRT}(\sigma/\sigma) \), which results in the following effective stress expression for a given SS cycle:
Fig. 4.5 z_{eff}/z vs. z/σ
\[S_i = \left[\nu (p^{-1/2}z) + S_{\text{max}}^m \right]^{1/m} \]

or

\[S_i = \left[\sum_j \alpha_j (p^{0.5}S_j)^m \right]^{1/m} \tag{4.5} \]

where \(\alpha_j \) is the occurrence of \(S_j \), and \(p_j \) is the value \(S_j / S_{\text{max}} \). By expressing the effective complex stress, \(S_i \) in terms of the occurrence, \(\alpha \), of a stress range rather than in terms of the fractional occurrence, \(\tau \), the number of cycles to failure will be expressed as the number of complex cycles, \(N_c \), to failure. At \(S_j = S_{\text{max}} \), \(p_j = 1 \) and at \(S_j = 0 \), \(z_{\text{eff}} = 0 \). Thus eqn. 4.5 meets boundary conditions at \(p = 0 \) and \(p = 1 \). By substituting eqn. 4.5 into eqn. 1.11, the following non-linear Miner's expression results.

\[S_{re} = \left[\sum_{ij} \tau_{ij} \alpha_{ij} (p_{ij} S_{ij})^m \right]^{1/m} \tag{4.6} \]

where \(\tau_{ij} \) is the fractional occurrence of the complex waveform \(i \). \(\alpha_{ij} \) is the occurrence of \(S_{ij} \), and \(p_{ij} \) is the value \(S_j / S_{\text{max},i} \). \(S_{\text{max},i} \) is the \(S_{\text{max}} \) corresponding to a complex cycle "i". Thus different complex cycles generated from different truck traffic loadings can be accounted.

The non-linear Miner's expression gives fatigue life predictions close to Gurney's expression as shown in Table 4.2 for the different types of SS waveforms tested. Although some of Miner's estimates are closer to the actual prediction than either the Gurney or the non-linear Miner prediction, half of the Miner's estimates are off by a factor of two. Figure 4.6 shows the error associated with the fatigue life prediction based on each of the effective stress methods. Miner's rule had the most unconservative predictions with a mean error of \(-35\%\). Both Gurney's and the non-linear Miner's formulas gave comparable results. Their results were mainly on the conservative error side, a
TABLE 4.2 COMPARISON OF FAILURE LIFE PREDICTION METHODS

<table>
<thead>
<tr>
<th>SS Waveform (v+1) Type</th>
<th>Nominal</th>
<th>σ (ksi)</th>
<th>z (ksi)</th>
<th>1_{N_g}</th>
<th>2_{N_n}</th>
<th>3_{N_m}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>35</td>
<td>20</td>
<td>1.73</td>
<td>1.68</td>
<td>0.91</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>35</td>
<td>15</td>
<td>0.98</td>
<td>1.06</td>
<td>0.44</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>35</td>
<td>5.4</td>
<td>1.26</td>
<td>1.04</td>
<td>0.90</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>30</td>
<td>20</td>
<td>1.21</td>
<td>1.27</td>
<td>0.71</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>30</td>
<td>15</td>
<td>1.03</td>
<td>1.01</td>
<td>0.50</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>30</td>
<td>10</td>
<td>0.81</td>
<td>0.72</td>
<td>0.41</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>25</td>
<td>15</td>
<td>0.87</td>
<td>0.79</td>
<td>0.50</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>25</td>
<td>14</td>
<td>1.33</td>
<td>1.34</td>
<td>0.67</td>
</tr>
</tbody>
</table>

1$_{N_g}$ is the predicted fatigue life using Gurney's method

2$_{N_n}$ is the predicted fatigue life using non-linear Miner's rule

3$_{N_m}$ is the predicted fatigue life using Miner's rule
Fig. 4.6 SS testing error histograms of various fatigue life
positive error, with errors ranging from -32% to +86%. The mean error using the non-linear Miner's formula was 10% and using Gurney's formula was 14%. The validity of these two formulations needs to be tested further using waveforms from actual field stress histories.

The type of increase in design stress that a non-linear Miner's approach would cause can be modeled by an SS waveform with $v = 10$ and $p = 0.25$. Setting $m = 3$ and substituting the values of v and p into eqn. 4.4 leads to $S_i = 1.31 S_{max}$. This is slightly over 1.30, which is the maximum factor that can be obtained using an AASHTO impact fraction of 0.3. Thus, the use of an AASHTO impact fraction to modify the design stress for bridge fatigue design, may be inadequate.
CHAPTER 5: SUMMARY AND CONCLUSIONS

A research program was carried out to study the influence of high frequency/low stress cycles superimposed on low frequency stress cycles upon the fatigue life of a welded steel tee loaded in bending. The results show that:

1) the damage effect of minor stresses, z, need to be considered in fatigue life prediction.
2) an effective stress, S_{re} based on Miner's rule gives unconservative fatigue life predictions.
3) the damage due to minor stresses, z, are non-linear.
4) Gurney's effective stress, S_{rg} gives relatively conservative fatigue life predictions.
5) an alternate method which provides similar fatigue life predictions as Gurney's for SS waveforms can be obtained by modifying Miner's rule by the expression $\sqrt{1/p}$ as follows:

$$S_{re} = \left[\sum \gamma_{ij} \alpha_{ij} (p_{ij} S_{ij})^m \right]^{1/m}$$

where p equals the ratio of the minimum stress cycles to the maximum stress in the waveform.
6) the use of the current AASHTO impact fraction, I, can lead to an unconservative bridge fatigue design stress.

Further work should be concentrated on stress waveforms of actual field measured stresses. Assuming that further work continues to find the same fatigue behavior as presented in this study, the non-linear Miner's expression for S_{re} is a practical design formula.
APPENDIX I

The number of cycles that are required of any stress range used in an effective stress approach will not exceed its corresponding constant amplitude fatigue life pending that the power "n" is equal to the constant amplitude slope, "m". This is demonstrated using the expressions for S_{re} and N.

$$S_{re} = \left[\frac{\sum_{i} n_i S_i}{N} \right]^{1/n} \quad \text{(I.1)}$$

$$N = A S_{re}^{-m} \quad \text{(I.2)}$$

Substituting eqn. I.1 into eqn. I.2 gives

$$N = A \left[\frac{\sum_{i} n_i S_i}{N} \right]^{-m/n} \quad \text{(I.3)}$$

Setting $n = m$ and solving for A gives

$$A = \sum_{i} n_i S_i^m \quad \text{(I.4)}$$

Expanding eqn. I.4 results in

$$A = n_0 S_0 + \sum_{i=1}^{j} n_i S_i^m \quad \text{(I.5)}$$

Re-arranging terms, n_0 becomes

$$n_0 = \frac{A - \sum_{i} n_i S_i^m}{S_0} \quad \text{(I.6)}$$

or

$$n_0 = A S_0^{-m} - \sum_{i} n_i \left[\frac{S_i}{S_0} \right]^m \quad \text{(I.7)}$$

The corresponding CA value of n_0 is

81
\[n_0 = A S_0^{-m} \]
\[\text{Since} \quad A S_0^{-m} > A S_0^{-m} \sum \frac{S_i}{S_0}^m \]
\[\text{Then} \quad n_0(\text{from CA test}) > n_0(\text{from variable amplitude tests}) \]

Thus when \(m = n \), the number of cycles that are required of any stress range used in an effective stress approach will not exceed its corresponding constant amplitude fatigue life.
REFERENCES

