TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
FHWA/TX-82/55+301-1F		
4. Title and Subtitle		5. Report Date
WEDDAWIIC DEDBODWANCE OF		March 1983
HYDRAULIC PERFORMANCE OF	CULVERTS WITH SAFETY GRATES	6. Performing Organization Code
7. Author(s)		8. Performing Organization Report No.
Larry W. Mays, Morey E. W and Randal P. Arbuckle	Aalker, Michael S. Bennett,	Research Report 301-1F
9. Performing Organization Name and Ad	dress	10. Work Unit No.
Center for Transportation	n Research	
The University of Texas a	at Austin	11. Contract or Grant No.
Austin. Texas 78712-107	/5	Research Study 3-5-80-301
		13. Type of Report and Period Covered
12. Sponsoring Agency Nome and Address	j	
Texas State Department of Transportation; Tran	Highways and Public	Final
P. O. Box 5051	-r	14. Sponsoring Agency Code
Austin, Texas 78763		
15. Supplementary Notes	· · · · · · · · · · · · · · · · · · ·	
Study conducted in cooper	ation with the U.S. Departm	ent of Transportation, Federa
Highway Administrati	lon.	
	wdraulic Performance of Culw	erts with Safety Grates"
Research Study Title: "H	galautic feriormance of Guiv	creb wren bareby crabeb

The purpose of this research was to establish through an experimental study, the hydraulic characteristics of culvert end treatments (safety grates) on both box and pipe culverts. A significant amount of work has been performed in the past to establish the hydraulic characteristics of culverts, but there has been very little effort to study the hydraulics of culverts with grates. A 1:4 scale model was built to simulate flow conditions in a 5×8 -ft box culvert. Investigators also tested a 1:4 scale model simulating flow in a 60-in. helical corrugated metal pipe culvert. The slopes of the culverts, the flow rand the elevations which can exist in a highway culvert. The box culvert was tested with no safety grates, pipe safety grates and bar safety grates. A regression analysis of the experimental data was performed so as to relate (1) for outlet control, the various hydraulic parameters to the entrance headloss coefficient, and (2) for inlet control, the headwater depth to the discharge.

17. Key Words	18, Distribution Statement			
culverts, box, pipe, safety grates, hydraulic, model, regression analysis		No restrictions. This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.		
19. Security Clossif, (af this report)	20. Security Class	sif, (of this page)	21. No. of Pages	22. Price
Unclassified	Unclassifie	ed	342	

Form DOT F 1700.7 (8-69)

HYDRAULIC PERFORMANCE OF CULVERTS WITH SAFETY GRATES

by

. .

٠

3

Larry W. Mays Morey E. Walker Michael S. Bennett Randal P. Arbuckle

Research Report Number 301-1F

Hydraulic Performance of Culverts with Safety Grates Research Project 3-5-80-301

conducted for

Texas State Department of Highways and Public Transportation

> in cooperation with the U. S. Department of Transportation Federal Highway Administration

> > by the

CENTER FOR TRANSPORTATION RESEARCH BUREAU OF ENGINEERING RESEARCH THE UNIVERSITY OF TEXAS AT AUSTIN

March 1983

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

There was no invention or discovery conceived or first actually reduced to practice in the course of or under this contract, including any art, method, process, machine, manufacture, design or composition of matter, or any new and useful improvement thereof, or any variety of plant which is or may be patentable under the patent laws of the United States of America or any foreign country.

PREFACE

The research reported herein is a study of the performance of culverts with and without safety grate end treatments. The experimental work was carried out on 1) a 2-ft x 1.25-ft box culvert and 2) a 15-inch diameter helical corrugated metal pipe culvert. Experiments were conducted to determine the effect of safety grate end treatments on culvert hydraulics.

The study was initiated under an agreement between the State Department of Highways and Public Transportation, the State of Texas, the Federal Highway Administration and the Center for Highway Research of the University of Texas, Austin. Special acknowledgment is made to Messrs. Dwight Reagan and Sam Fox of the Texas Highway Department and Messrs. Sterling Jones and Dan O'Conner of the Federal Highway Administration for their valuable suggestions and comments during the investigation.

Special thanks are also due to the Armco Metal Pipe Corp. for providing the 15-in diameter helical corrugated metal pipe used in this study. The authors also wish to thank Messrs. Red Worley, J. Pritchard, Delbert Stark, Michael Pepe and J. Paul Hendrix for their assistance in construction of the models and the collection of the data. The assistance of Messrs. Nisai Wanakule and Yeou Koung Tung in carrying out the statistical analysis, was highly appreciated. Finally the authors wish to thank Ms. Nickla Tayarani for typing the manuscript, and the administrative staff at the Center for Research in Water Resources for their efforts and support towards completing this project.

iii

۲ , **.** 8 Ŧ .

ABSTRACT

The purpose of this research was to establish through an experimental study, the hydraulic characteristics of culvert end treatments (safety grates) on both box and pipe culverts. A significant amount of work has been performed in the past to establish the hydraulic characteristics of culverts, but there has been very little effort to study the hydraulics of culverts with grates. A 1:4 scale model was built to simulate flow conditions in a 5×8 -ft box culvert. Investigators also tested a 1:4 scale model simulating flow in a 60-in helical corrugated metal pipe culvert. The slopes of the culverts, the flowrates and the elevations of the tailwater were varied to simulate the various types of flow conditions which can exist in a highway culvert. The box culvert was tested with no safety grates and pipe safety grates. A regression analysis of the experimental data was performed so as to relate (1) for outlet control, the various hydraulic parameters to the entrance headloss coefficient, and (2) for inlet control, the headwater depth to the discharge.

F • Ŀ .

TABLE OF CONTENTS

		page
	PREFACE	iii
	ABSTRACT	v
	LIST OF TABLES	xi
	LIST OF FIGURES	xiii
CHAPTER 1	INTRODUCTION	
1.1	Statement Of Problem	1
1.2	Safety Grate Design	2
1.3	Review Of Previous Studies	6
1.4	Study Objectives	10
1.5	Review Of Culvert Hydraulics For Design	12
	1.5.1 Inlet Control	15
	1.5.2 Outlet Control	16
1.6	Flow Regimes	18
	1.6.1 Outlet Regimes	18
	1.6.2 Inlet Control Regimes	23
CHAPTER 2	EXPERIMENTAL CONSIDERATIONS	
2.1	Energy Equation	25
2.2	Hydraulic Similitude	28
2.3	Laboratory Facilities	29
2.4	Experimental Setup For Box Culvert Tests	32
2.5	Experimental Setup For Pipe Culvert Tests	37
2.6	Instrumentation	37

٠

TABLE OF CONTENTS (continued)

2.7	Model Safety Grates	42	
2.8	Measurements For Entrance Headloss	46	
2.9	Data Reduction		
2.10	Summary Of Box Culvert Tests		
	2.10.1 Safety Grate Tests	53	
	2.10.2 Clogging Tests	55	
2.11	Summary Of Pipe Culvert Tests	55	

CHAPTER 3 BOX CULVERT RESULTS

3.1	Entrance Headloss Coefficient With and Without Safety Grates	59
3.2	Headwater-Discharge Relationships	61
3.3	Entrance Headloss Coefficient-Headwater Relationship	63
3.4	Entrance Headloss Coefficient-Discharge Relationship	66
3.5	Headwater-Tailwater Relationships	67
3.6	Regression Equations Considering Regimes	68
	3.6.1 Development Of Regression Equations	68
	3.6.2 Regression Equations For C _e	68
3.7	Regression Equations For Submerged Conditions	70
3.8	Regression Equations For Unsumberged Conditions	74
3.9	Regression Equations For Submerged and Unsubmerged Combined	81

TABLE OF CONTENTS (continued)

••••

• .

•

۰.

.

٠

		page
CHAPTER 4	CLOGGING TESTS - BOX CULVERT	
4.1	Test Procedure For Clogging	95
4.2	Relationship Of Headwater-Percent Clogging	95
4.3	Relationship Of Entrance Headloss Coefficient - Percent Clogging	99
CHAPTER 5	PIPE CULVERT RESULTS	
5.1	Entrance Headloss Coefficient With and Without Safety Grates	104
5.2	Headwater-Discharge Relationship	104
5.3	Entrance Headloss Coefficient - Headwater Relationship	105
5.4	Entrance Headloss Coefficient - Discharge Relationship	105
5.5	Headwater-Tailwater Relationships	107
5.6	Regression Equations For Submerged Conditions	107
5.7	Regression Equations For Submerged and Unsubmerged Combined	116
CHAPTER 6	SUMMARY AND CONCLUSIONS	
6.1	Conclusions For Box Culvert Model	125
	6.1.1 Pipe Safety Grates	125
	6.1.2 Bar Safety Grates	127
	6.1.3 Summary of Regression Equations for Design	129
6.2	Conclusions For Pipe Culvert Model	131
6.3	Final Discussion	134
LIST OF REF	FERENCES	135

TABLE OF CONTENTS (continued)

APPENDICES

Α.	User's Manual and Fortran Listing For Computer Program Culvert	139
в.	Graphical Results For Box Culverts	155
с.	Summary Of Regression Results Box Culvert	205
D.	Clogging Test Results For Box Culverts	217
Ε.	Graphical Results For Pipe Culverts	255
F.	Data From Box Culvert Experiments	281
G.	Data From Pipe Culvert Experiments	303

LIST OF TABLES

. •

۰.

•

۰.

•

-

		page
Table	TITLE	
1.1	Classification of Culvert Hydraulic Controls	14
1.2	Entrance Loss Coefficients	19
2.1	Summary of Box Culvert Tests	54
2.2	Summary of Clogging Tests for Box Culvert	56
2.3	Summary of Pipe Culvert Tests	57
3.1	Regression Equations for Comparing Ce	
	(With and Without Pipe Safety Grates)	62
3.2	Regression Equations for Comparing C _e	
	(With and Without Bar Safety Grates)	62
3.3	Headwater Discharge Relationships for Inlet Control	
	a. Pipe Safety Grates	64
	b. Bar Safety Grates	64
3.4	Regression Coefficient (Pipe Safety Grates)	69
3.5	Regression Coefficients (No Grates)	69
3.6	Regression Coefficients (Bar Safety Grates)	69
3.7	Regression Equations for C _e (No Grates)	71
3.8	Regression Equations for C (Pipe Safety Grates)	71
3.9	Regression Equations for C (Bar Safety Grates)	72
3.10	Summary of Regression Results for Submerged Conditions	73
3.11	Summary of Regression Results for Unsubmerged Conditions	82
3.12	Summary of Regression Results for Submerged and Unsubmerged Conditions Combined	86

LIST OF TABLES (continued)

5.1	Headwater-Discharge Relationships for Inlet Control			
	a. No Grates1b. Grates Installed1	.06 .06		
5.2	Regression Equations for Pipe Culvert Equations 1	.08		
5.3	Regression Results for Submerged Conditions, No Grates 1	09		
5.4	Regression Results For Submerged Conditions, Grates Installed 1	15		
5.5	Regression Results for Submerged And Unsubmerged Conditions Combined, No Grates	.17		
5.6	Regression Results For Submerged And Unsubmerged Conditions Combined, Grates Installed	.17		

LIST OF FIGURES

`**.**

٠

• -

	Figure	TITLE	
•	1.1	Pipe Safety Grate, Prototype	3
	1.2	Bar Safety Grate, Prototype	4
	1.3	Pipe Grate For Pipe Culvert, Prototype	5
	1.4	Head-Discharge Relationship	9
	1.5	Definition Sketch (from HEC 5)	17
	1.6	Flow Regimes (Outlet Control)	20
	1.7	Flow Regimes (Inlet Control)	21
	2.1	Energy And Hydraulic Gradelines	26
	2.2	Schematic Of Hydraulics Laboratory	30
•	2.3	Overview Of Test Facilities	31
	2.4	Experimental Set-up	33
٦.	2.5	Outlet Channel	34
	2.6	Schematics Of Experimental Set-up	35
-	2.7	Box Culvert	36
	2.8	Headwall Design And Dimensions	38
	2.9	Pipe Culvert Model - Side And Plan Views	39
	2.10	Pipe Culvert	40
	2.11	Pipe Culvert Headwall Dimensions	41
	2.12	Manometers	43
	2.13	Stagnation Tubes For Pipe Culvert	44
	2.14	Model Safety Grates For Box Culvert	45
	2.15	Safety Grates	47
	2.16	Pipe Model Safety Grate	48
	2.17	Pipe Grates At Inlet	49
	2.18	Pipe Grates At Outlet	50

LIST OF FIGURES (continued)

3.1	Entrance Headloss Coefficient For Submerged Conditions, No Grates (Eq. 3.4)	75
3.2	Entrance Headloss Coefficient For Submerged Conditions, Pipe Grates (Eq. 3.5)	76
3.3	Entrance Headloss Coefficient For Submerged Conditions, Bar Grates (Eq. 3.6)	77
3.4	Entrance Headloss Coefficient For Submerged Conditions, No Grates (Eq. 3.7)	78
3.5	Entrance Headloss Coefficient For Submerged Conditions, Pipe Grates (Eq. 3.8)	79
3.6	Entrance Headloss Coefficient For Submerged Conditions, Bar Grates (Eq. 3.9)	80
3.7	Entrance Headloss Coefficient For Unsubmerged Conditions, No Grates (Eq. 3.10)	83
3.8	Entrance Headloss Coefficient For Unsubmerged Conditions, Pipe Grates (Eq. 3.11)	84
3.9	Entrance Headloss Coefficient For Unsubmerged Conditions, Bar Grates (Eq. 3. 12)	85
3.10	Entrance Headloss Coefficient For Submerged And Unsubmerged Conditions Combined, No Grates (Eq. 3.13)	88
3.11	Entrance Headloss Coefficient For Submerged And Unsubmerged Conditions Combined, Pipe Grates (Eq. 3.14)	89
3.12	Entrance Headloss Coefficient For Submerged And Unsubmerged Conditions Combined, Bar Grates (Eq. 3.15)	90
3.13	Entrance Headloss Coefficient, $\frac{Q}{pp_{1.5}} = 1.0$,	
	For The Outlet Control Conditions, No Grates (Eqs. 3.4, 3.10, 3.13)	91
3.14	Entrance Headloss Coefficient, $\frac{Q}{2\pi n^2 l_1 \delta} = 1.0$,	
	For The Outlet Control Conditions, No Grates (Eqs. 3.4, 3.10, 3.13)	92
3.15	Entrance Headloss Coefficient, $\frac{Q}{220} = 1.0$,	
	For The Outlet Control Conditions, Bar Grates (Eqs. 3.6, 3.12, 3.15)	93

LIST OF FIGURES (continued)

.

.

3.16	Entrance Headloss Coefficient, $\frac{Q}{2\pi r^{1/2}} = 1.0$,	
	For The Outlet Control Conditions, Bar Grates (Eqs. 3.6, 3.12, 3.15)	94
<i>b</i> 1	Clagging From Bottom To Top 15% and 30%	0.6
+•1 /· •	Clouding From Bottom To Top, 15% and 50%	90
4.2	Clogging From Bottom 10 Top, 43% and 60%	97
4.3	Clogging From Bottom To Top, 75% and 90%	98
5.1	Entrance Headloss Coefficient For Submerged Conditions, No Grates (Eq. 5.4)	111
5.2	Entrance Headloss Coefficient For Submerged Conditions, Grates (Eq. 5.5)	112
5.3	Entrance Headloss Coefficient For Submerged Conditions, Grates And No Grates (Eqs. 5.5, 5.4)	113
5.4	Entrance Headloss Coefficient For Submerged Conditions, Grates and No Grates (Eqs. 5.7, 5.6)	114
5.5	Entrance Headloss Coefficient For Submerged Conditions, Grates And No Grates (Eqs. 5.9, 5.8)	115
5.6	Entrance Headloss Coefficient For Submerged And Unsubmerged Conditions Combined, No Grates (Eq.5.10)	118
5.7	Entrance Headloss Coefficient For Submerged And Unsubmerged Conditions Combined, Grates (Eq. 5.11)	119
5.8	Entrance Headloss Coefficient For Submerged And Unsubmerged Conditions Combined, Grates and No Grates (Eqs. 5.11, 5.10)	120
5.9	Entrance Headloss Coefficient For Submerged And Unsubmerged Conditions Combined, Grates And No Grates (Eqs. 5.13, 5.12)	121
5.10	Entrance Headloss Coefficient For Submerged And Unsubmerged Conditions Combined, Grates And No Grates (Eqs. 5.15, 5.14)	123
5.11	Entrance Headloss Coefficient For Submerged And Unsubmerged Conditions Combined, No Grates, (Eqs. 5.12, 5.14, 5.16)	124

٠ ۳ • .

i

APPENDIX A

••••

۰.

٠

۰.

.

•

. -

Figure	Title	
A 1	User's Manual For Computer Program "CLIL VER T"	139
A.2	Fortran Listing For Computer Program "CULVERT"	145
		- 15

. • • • • • . .

APPENDIX B

•

۰.

•

۰.

•

•

Figure	Title	
B.1	Comparison of Entrance Headloss Coefficients With And Without Safety Grates, Slope =.0008	155
B.2	Comparison of Entrance Headloss Coefficients With And Without Safety Grates, Slope =.0013	156
B.3	Comparison of Entrance Headloss Coefficients With And Without Safety Grates, Slope =.0063	157
B.4	Comparison of Entrance Headloss Coefficients With And Without Safety Grates, Slope =.0108	158
B.5	Comparison of Entrance Headloss Coefficients With And Without Safety Grates, Slope =.0128	159
B.6	Comparison of Entrance Headloss Coefficients With And Without Safety Grates, Slope =.0008	160
B.7	Comparison of Entrance Headloss Coefficients With And Without Safety Grates, Slope =.0063	161
B.8	Comparison of Entrance Headloss Coefficients With And Without Safety Grates, Slope =.0108	162
B.9	Headwater vs. Discharge With And Without Pipe Grates, Slope = .0008	163
B.10	Headwater vs. Discharge With And Without Pipe Grates, Slope = .0013	164
B.11	Headwater vs. Discharge With And Without Pipe Grates, Slope = .0062	165
B.12	Headwater vs. Discharge With And Without Pipe Grates, Slope = .0108	166
B.13	Headwater vs. Discharge With And Without Pipe Grates, Slope = .0128	167
B.14	Headwater vs. Discharge With And Without Bar Grates, Slope = .0008	168
B.15	Headwater vs. Discharge With And Without Bar Grates, Slope = .0063	169
B.16	Headwater vs. Discharge With and Wtihout Bar Grates, Slope = .0063	170

APPENDIX B (continued)

		page
B.17	Entrance Headloss Coefficient vs. Headwater For Pipe Safety Grates, Slope = .0003	171
B.18	Entrance Headloss Coefficient vs. Headwater For Pipe Safety Grates, Slope = .0013	172
B.19	Entrance Headloss Coefficient vs. Headwater For Pipe Safety Grates, Slope = .0063	173
B.20	Entrance Headloss Coefficient vs. Headwater For Pipe Safety Grates, Slope = .0108	174
B.21	Entrance Headloss Coefficient vs. Headwater For Pipe Safety Grates, Slope = .0128	175
B.22	Entrance Headloss Coefficient vs Headwater For Bar Safety Grates, Slope = .0008	176
B.23	Entrance Headloss Coefficient vs. Headwater For Pipe Safety Grates, Slope = .0063	177
B.24	Entrance Headloss Coefficient vs. Headwater For Pipe Safety Grates, Slope = .0108	178
B.25	Entrance Headloss Coefficient vs. Discharge For Pipe Safety Grates, Slope = .0008	179
B.26	Entrance Headloss Coefficient vs. Discharge For Pipe Safety Grates, Slope = .0013	180
B . 27	Entrance Headloss Coefficient vs. Discharge For Pipe Safety Grates, Slope = .0063	181
B.28	Entrance Headloss Coefficient vs. Discharge For Pipe Safety Grates, Slope = .0108	182
B.29	Entrance Headloss Coefficient vs. Discharge For Pipe Safety Grates, Slope = .0128	183
B.30	Entrance Headloss Coefficient vs. Discharge For Bar Safety Grates, Slope = .0008	184
B.31	Entrance Headloss Coefficient vs. Discharge For Bar Safety Grates, Slope = .0063	185
B.32	Entrance Headloss Coefficient vs. Discharge For Bar Safety Grates, Slope = .0108	186
B.33	Headwater vs. Tailwater For Pipe Safety Grates, Slope = .0008	187
B.34	Headwater vs. Tailwater For Bar Safety Grates, Slope = .0008	188
B.35	Headwater vs. Tailwater For Both Pipe Safety Grates And Bar Safety Grates, Discharge = 8.1 cfs, Slope = .0008	189

APPENDIX B (continued)

••

• •

•

• .

۲

. .

B.36	Headwater vs. Tailwater, For Pipe Safety Grates, Slope = .0063	190
B.37	Headwater vs. Tailwater, For Bar Safety Grates, Slope = .0063	191
B.38	Headwater vs. Tailwater, For No Safety Grates, Pipe Safety Grates, And Bar Safety Grates, Discharge = 6.14 cfs, Slope = .0063	192
B.39	Headwater vs. Tailwater, For No Safety Grates, Pipe Safety Grates And Bar Safety Grates, Discharge = 8.12 cfs, Slope = .0063	193
B.40	Headwater vs. Tailwater, For No Safety Grates, Pipe Safety Grates And Bar Safety Grates, Discharge 9.66 cfs, Slope = .0063	194
B.41	Headwater vs. Tailwater, For No Safety Grates, Pipe Safety Grates And Bar Safety Grates, Discharge = 11.81 cfs, Slope = .0063	195
B.42	Headwater vs. Tailwater For Pipe Safety Grates, Slope = .0108	196
B.43	Headwater vs. Tailwater For Bar Safety Grates, Slope = .0108	197
B.44	Headwater vs. Tailwater For No Safety Grates, Pipe Safety Grates And Bar Safety Grates, Discharge 6.14 cfs, Slope = .0108	198
B.45	Headwater vs. Tailwater For No Safety Grates, Pipe Safety Grates And Bar Safety Grates, Discharge = 8.12 cfs, Slope = .0108	199
B.46	Headwater vs. Tailwater For No Safety Grates, Pipe Safety Grates And Bar Safety Grates, Discharge = 9.66 cfs, Slope = .0108	200
B.47	Headwater vs. Tailwater For No Safety Grates, Pipe Safety Grates And Bar Safety Grates, Discharge = 11.81 cfs. Slope = .0108	201

· · ·

•

٠

-

۳

· . .

APPENDIX C

.

٠

۰.

.

٠

•

• .

Table	Title	page
C.2	Box Culvert Results of Regression Analysis: No Grates	211
C.3	Box Culvert Results of Regression Analysis: Pipe Grates	212
C.4	Box Culvert Results of Regression Analysis: Bar Grates	213

, .

APPENDIX D

D.1	Headwater vs. Percentage Clogging (S ₀ = .0008, Q = 9 cfs)	217
D.2	Headwater vs. Percentage Clogging ($S_0 = .0008$, $O = 9.6$ cfs)	218
D.3	Headwater vs. Percentage Clogging ($S_0 = .0008, Q = 10 cfs$)	219
D.4	Headwater vs. Percentage Clogging (S = .0008, O = 11.2 cfs)	220
D.5	Headwater vs. Percentage Clogging (S = .0063, O = 8.04 cfs)	221
D.6	Headwater vs. Percentage Clogging (S = .0063, Q = 9.11 cfs)	222
D.7	Headwater vs. Percentage Clogging (S = .0063, Q = 10.04 cfs)	223
D.8	Headwater vs. Percentage Clogging ($S_0 = .0063, O = 11.07 cfs$)	224
D.9	Headwater vs. Percentage Clogging ($S_0 = .0008$, $Q = 9$ cfs) ($S_0 = .0128$, $Q = 9$ cfs)	225
D.10	Headwater vs. Percentage Clogging ($S_0 = .0063$, $Q = 9.11$ cfs) ($S_0 = .0128$, $Q = 9.02$ cfs)	226
D.11	Headwater vs. Percentage Clogging ($S_0 = .0008$, $S_0 = .0063$) ($S_0 = .0128$, $Q = 10$ cfs)	227
D.12	Headwater vs. Percentage Clogging (S ₀ = .0063, O = 8.12 cfs)	228
D.13	Headwater vs. Percentage Clogging ($S_0 = .0063, Q = 9.04 cfs$)	229
D.14	Headwater vs. Percentage Clogging ($S_0 = .0063, Q = 10.11$ cfs)	230
D.15	Headwater vs. Percentage Clogging ($S_0 = .0063, Q = 11.05$ cfs)	231
D.16	Headwater vs. Percentage Clogging ($S_0 = .0063, O = 11.91$ cfs)	232
D.17	Headwater vs. Percentage Clogging Pipe Safety Grates (S = .0063, Q = 9.11 cfs), Bar Safety Grates (S = .0063, Q = 9.09 cfs)	233
D.18	Headwater vs. Percentage Clogging, Pipe Safety Grates (S = .0062, Q = 10.04 cfs), Bar Safety Grates (S = .0062, Q = 10.11 cfs)	234
D.19	Headwater vs. Percentage Clogging, Pipe Safety Grates (S = .0063, Q = 11.1 cfs), Bar Safety Grates (S = .0063, Q = 11.1 cfs)	235
D.20	Entrance Headloss Coefficient vs. Percentage Clogging (S _o = .0008, Q = 9.02 cfs)	236
D .2 1	Entrance Headloss Coefficient vs. Percentage Clogging (S ₀ = .0008, Q = 9.62)	237

Title

• •

•

۰.

•

•

Figure

Page

APPENDIX D (continued)

.

D.22	Entrance Headloss Coefficient vs. Percentage Clogging (S _o = .0008, Q = 10.7 cfs)	238
D.23	Entrance Headloss Coefficient vs. Percentage Clogging (S _o = .0008, Q = 11.2 cfs)	239
D . 24	Entrance Headloss Coefficient vs. Percentage Clogging $(S_0 = .0063, Q = 8.04, O = 9.1, O = 10.04, Q = 11.07)$	240
D.25	Entrance Headloss Coefficient vs. Percentage Clogging $(S_0 = .0008, S_0 = .0128, Q = 9.02 \text{ cfs})$	241
D.26	Entrance Headloss Coefficient vs. Percentage Clogging $(S_0 = .0063, Q = 9.11 \text{ cfs}), (S_0 = .0128, Q = 9.02 \text{ cfs})$	242
D.27	Entrance Headloss Coefficient vs. Percentage Clogging ($S_0 = .0008$, $Q = 9.62$ cfs), ($S_0 = .0063$, $Q = .0063$, $Q = 10.04$ cfs)	243
	$(S_0 = .0128, Q = 100 \text{ cfs})$	
D.28	Entrance Headloss Coefficient vs. Percentage Clogging $(S_0 = .0063, Q = 10.04), (S_0 = .0128, Q = 10.0)$	244
D.29	Entrance Headloss Coefficient vs. Placement of Clogging, S = .0128, 15% clogging	245
D.30	Entrance Headloss Coefficient vs. Placement of Clogging, S = .0128, 30% clogging	246
D.31	Entrance Headloss Coefficient vs. Placement of Clogging, S = .0128, 45% clogging	247
D.32	Entrance Headloss Coefficient vs. Percentage Clogging, (S ₀ = .0063, Q = 9.09 cfs, Q = 10.11 cfs, Q = 11.05 cfs)	248
D.33	Entrance Headloss Coefficient vs. Percentage Clogging, Pipe Safety Grates (S = .0063, Q = 9.11 cfs), Bar Safety Grates (S = .0063, Q, = 9.09 cfs)	249
D.34	Entrance Headloss Coefficient vs. Percentage Clogging, Pipe Safety Grates (S = .0063, Q = 10.04 cfs), Bar Safety Grates (S = .0063, Q = 10.11 cfs)	250
D.35	Entrance Headloss Coefficient vs. Percentage Clogging, Pipe Safety Grates (S = .0063, Q = 11.07 cfs), Bar Safety Grates (S = .0063, Q = 11.05 cfs)	251

APPENDIX E

٠

۰.

.

.

•

٠

Figure	Title	Page
E. 1	Comparison of Entrance Headloss Coefficients With And Without Safety Grates, Slope = 0.0007	255
E.2	Comparison of Entrance Headloss Coefficients With And Without Safety Grates, Slope = 0.0008	256
E.3	Headwater vs. Discharge With And Without Grates, Slope = 0.0007	257
E.4	Headwater vs. Discharge With And Without Grates, Slope = 0.008	258
E.5	Headwater vs. Discharge With And Without Grates, Slope = 0.050	259
E.6	Entrance Headloss Coefficient vs. Headwater, Types 1, 2, 4A And 4B, With And Without Grates, Slope = 0.008	260
E.7	Entrance Headloss Coefficient vs. Headwater, Type 1, With And Without Grates, Slope = 0.008	261
E.8	Entrance Headloss Coefficient vs. Headwater, Type 2, With And Without Grates, Slope = 0.008	262
E.9	Entrance Headloss Coefficient vs. Headwater, Type 4A, With And Without Grates, Slope = 0.008	263
E.10	Entrance Headloss Coefficient vs. Headwater, Type 4B, With And Without Grates, Slope = 0.008	264
E.11	Entrance Headloss Coefficient vs. Headwater, Types 4A And 4B, With And Without Grates	
	Slope = 0.0007	265
E.12	Entrance Headloss Coefficient vs. Headwater,Type 4A, With And Without Grates, Slope = 0.0007	266
E.13	Entrance Headloss Coefficient vs. Headwater, Type 4B, With And Without Grates, Slope = 0.0007	267
E.14	Entrance Headloss Coefficient vs. Discharge, Types 1, 2, 4A And 4B, With And Without Grates, Slope = 0.008	268
E.15	Entrance Headloss Coefficient vs. Discharge, Type 1, With And Without Grates, Slope = 0.008	269

APPENDIX E (continued)

-

E.16	Entrance Headloss Coefficient vs. Discharge, Type 2, With And Without Grates, Slope = 0.008	270
E.17	Entrance Headloss Coefficient vs. Discharge, Type 4A, With And Without Grates, Slope = 0.008	271
E.18	Entrance Headloss Coefficient vs. Discharge, Type 4B, With And Without Grates, Slope = 0.008	272
E. 19	Entrance Headloss Coefficient vs. Discharge, Types 4A And 4B, With And Without Grates, Slope = 0.0007	273
E.20	Headwater vs. Tailwater, Grates And No Grates, Slope = 0.0007, Q = 5.6 cfs	274
E.21	Headwater vs. Tailwater, Grates And No Grates, Slope = 0.008, Q = 3.6 through 3.8 cfs	275
E.22	Headwater vs. Tailwater, Grates And No Grates, Slope = 0.008, Q = 4.5 cfs	276
E.23	Headwater vs. Tailwater, Grates And No Grates, Slope = 0.008, Q = 5.6 cfs	277

APPENDIX F

. .

• •

.

۰.

۰,

•

Table	Title	Page
F.1	Data, Type 1, No Grates	282
F . 2	Data, Type 2, Pipe Grates	283
F.3	Data, Type 1, Bar Grates	284
F.4	Data, Type 2, No Grates	285
F . 5	Data, Type 2, Pipe Grates	286
F.6	Data, Type 2, Bar Grates	287
F.7	Data, Type 3A, No Grates	288
F.8	Data, Type 3A, Pipe Grates	289
F . 9	Data, Type 3A, Bar Grates	290
F.10	Data, Type 4A, No Grates	291
F.11	Data, Type 4A, Pipe Grates	293
F.12	Data, Type 4A, Bar Grates	296
F.13	Data, Type 4B, No Grates	298
F.14	Data, Type 4B, Pipe Grates	299
F.15	Data, Type 4B, Bar Grates	300

۳ . -3 • •

APPENDIX G

, ,

*

٠

• .

.

•

Table	Title	Page
G.I	Data, For Pipe Culvert, Outlet Control, No Grates	304
G.2	Data, For Pipe Culvert, Outlet Control, Pipe Grates	306
G.3	Data, For Pipe Culvert, Inlet Control, No Grates	308
G.4	Data, For Pipe Culvert, Inlet Control, Pipe Grates	309

CHAPTER I INTRODUCTION

1.1 Statement of Problem

Culverts are designed to convey flow of stream water both along and across highway right of ways. If not properly designed, culverts could become dangerous obstructions to vehicles accidentally driven off a highway. To minimize the hazard, culverts could be designed so that the inlet and outlet structures are outside the highway right of way. Another safety feature would be the installation of guard rails. However, in some instances, the least costly and most practical safety design could be to install safety grates at the culvert ends (inlet and outlet structures).

Hydraulic engineers are concerned about the effect that safety grates have on the hydraulic performance of the culvert. Safety grates can cause an increase in entrance head losses affecting the culvert hydraulics and susceptibility to clogging. During flooding conditions, a large amount of debris (tree branches, trash, etc.) is usually present in the flow. If the debris clogs the entrance, then the culvert could become hydraulically ineffective and the possibility of overtopping the highway may exist. This can result in flood damages to adjacent property, damage to the highway embankment and structure, and increase traffic delays.

The purpose of this experimental study was to determine the effect of safety grates on the hydraulic performance of both box culverts and corrugated metal pipe culverts. Specifically studied were the changes in the entrance head losses for various flow regimes and the effect of clogging on the

1

culvert performance. The results are presented for use in the future design of highway culverts.

1.2 Safety Grate Design

The design of the safety grates is based on two constraints. First, the grates must have enough structural integrity to support an automobile. Second, the safety grates should have a minimum amount of materials for least possible interference of the natural flow. The Texas Transportation Institute (TTI) at Texas A & M University conducted a series of tests to determine a safety grate design considering automobile safety. Essentially, automobiles were driven at varying speeds over safety grates constructed of steel pipes. The result of the TTI study was a safety grate design constructed of 3-in diameter pipes placed on 30-in centers. These grates are referred to as "pipe safety grates" in this study and are illustrated in Fig. 1.1.

These grates are to be installed on highway embankments such that there are no protrusions above the highway embankments. For a complete discussion of the TTI study, refer to Texas Highway and Transportation Project Study No. 2-5-79-280 "Safe End Treatment for Roadside Culverts."

The experimental study described herein performed hydraulic model studies of the TTI design using a 1:4 scale model of an 8-ft x 5-ft box culvert. Also a bar type safety grate was tested using the 1:4 scale box culvert. Prototype dimensions of the bar grates are 1/2-in x 2-in placed on 5-in centers (Figure 1.2). Clogging tests using the box culvert were also performed. Safety grates for a pipe culvert (Figure 1.3) which had prototype dimensions of 3-in pipes placed on 24-in centers were also tested. The safety grates are discussed in detail in Section 2.7. Each of the grates are placed parallel with the highway embankments so that there are no vertical protrusions above the embankments.

2

.

• .

.

Figure 1.1 Pipe Safety Grate, Prototype

Figure 1.2 Bar Safety Grate, Prototype

Figure 1.3 Pipe Grate for Pipe Culvert, Prototype

,

A 4:1 slope of a highway embankment was used in all the experiments presented in this report. Results generally can be safely extrapolated to other embankment slopes.

1.3 Review of Previous Studies

Numerous investigators have researched the hydraulic controls and flow types of culverts. The primary controls of culverts have long been identified. However, the hydraulic performance of a new culvert design cannot be theoretically modeled with accuracy, and must be experimentally determined. A review of previous experiments contributes an understanding of culvert hydraulic controls and experimental techniques.

Mavis (1942) conducted one of the most comprehensive studies performed on culvert hydraulics. The culverts tested were 3-in, 4-in, 6-in, and 12-in diameter pipes. These pipes represented "conduits of intermediate lengths" which most field culverts are classified. Short length culverts have been defined as having negligible frictional resistance, and the discharge depends upon the geometry of the inlet and on headwater depth (Mavis, 1942). Hydraulically long culverts have headlosses which are a function of conduit geometry, frictional forces, flow rate, and Reynold's Number. Mavis determined that intermediatelength culverts operate under five sets of conditions which are:

- 1. Part-full free outfall
- 2. Part-full with outfall partially submerged
- 3. Full with outfall completely submerged
- 4. Full with outfall partially submerged
- 5. Full with free outfall.

The study results were charts and nomographs that have been used in a substantial number of design manuals.

Shoemaker and Clayton (1953) performed a series of model studies of box culverts on steep grades. Objectives of this study were to determine culvert hydraulics and to improve effectiveness of the Oregon State Highway Standard inlet. Three inlet types were tested: (1) an inlet with no flare or taper; (2) an inlet with tapered sides; and (3) an inlet designed to operate under entrance control. The investigators observed that a submerged standard inlet operates as a sluice gate while a tapered inlet allows flow full with no sluice gate contraction. The increase in culvert capacity due to the tapered inlet resulted from an increase in flow area by elimination of the sluice gate contraction.

Schiller (1955) conducted a series of tests on circular pipe culvert inlets. The purpose of the study was to determine efficient inlet designs based on hydraulic controls. Two inlet designs were compared; (1) a square-edged flush inlets with flared, straight, and parallel wingwalls; and (2) a mitered sharp-edged inlet. The square-edged flush inlet performed more efficiently than the mitered, sharp-edged inlet.

French (1955) presented a discussion of Schiller's works. He noted that the upstream approach channel characteristics greatly influenced the efficiency of the inlet. The greater the turbulence in the approach channel, the larger the amount of separation occurring at the inlet boundary surface. The ability of the upstream approach channel to control the full capacity was experimentally shown for culverts placed on steep slopes. French also noted that the effects of the approach channel would be smaller on larger scale models.

French (1957) also studied the effect of approach channel characteristics on pipe culvert operations. He concluded that general reproducibility of experimental results to field conditions involves considerable awareness of approach flow conditions.

Bossey (1961) presented an unpublished paper outlining the hydraulics of conventional highway culverts. He observed that two primary factors controlled culvert capacity - (1) the cross-sectional area of the barrel and (2) the headwater depth. Secondary factors were: (1) shape of barrel; (2) inlet geometry; (3) resistance characteristics; (4) length; and (5) slope. The secondary factors generated an increase in headwater depth as flow contracts into the culvert.

French (1966) also conducted an experimental study to determine the hydraulics of tapered box culvert inlets. Since the box culvert was placed on a steep slope, the experimental work involved only inlet control conditions. Again, the hydraulic performance of a highway box culvert on super-critical slopes could be substantially increased by tapering the inlet. Also, the hydraulic efficiency could be increased by not allowing subatmospheric pressure regions to form.

Blaisdell (1966) further categorized culvert flow into four regimes: (1) weir control; (2) orifice control; (3) slug and mixture control; and (4) pipe control. Weir control was defined for either an unsubmerged entrance geometry control on steep slopes or barrel geometry control on mild slopes. Orifice control represents submerged entrance geometry control. Slug and mixture control describes barrel geometry controlling a flow of water and entrained air. Pipe control was determined for a full flowing culvert controlled by barrel characteristics and/or tailwater depth. A graphical representation of the different flow types can be expressed in a headwater versus discharge plot (Figure 1.4).

Numerous design manuals exist for step by step selection of a culvert. Some of the most widely used manuals are listed in the references. In

Figure 1.4 Head-Discharge Relationship {after Blaisdel1 (1966)}

addition, computer programs have been written to aid in the culvert selection process. The State Department of Highways and Public Transportation in Texas uses the Texas Hydraulics System (THYSYS) in culvert design. THYSYS uses inputted values of the design discharge, the estimated tailwater, the culvert dimension parameters and slope, and determines the appropriate flow regime, headwater depth, and outlet velocity. THYSYS generally distinguishes between steep and mild slope regimes and specifically determines other parameters.

1.4 Study Objectives

As illustrated by the previous review, numerous experimental studies have been performed on the hydraulics of culverts, but none have been reported in the literature on culverts with safety grates. Several objectives included:

- Perform studies using a box culvert model to make a direct comparison of culvert performance with and without safety grates. This included hydraulic tests varying the culvert slope, discharge, headwater depth, and tailwater depth. For each variation of these parameters experimental data were collected without grates, with pipe grates installed, and with bar grates installed. The results of these tests are summarized in Chapter 3.
- 2. A second major objective was to determine the hydraulic effects of various levels of clogging of the safety grates. The problem of clogging is not addressed in current culvert design as culverts are presently designed without regard to clogging. Culverts without safety grates are usually large enough for trash or debris to pass through. However, from informal field

observations, safety grates can retain a significant amount of debris and can effectively clog the culvert. The effect of clogging on the entrance headloss coefficient was determined using various percentages of clogging ranging from 15 to 90 percent. Since the amount of debris collected on a grate cannot be predicted it would be difficult to develop guidelines for future culvert design taking into the effect of clogging. The results of the clogging tests are summarized in Chapter 4.

- 3. Perform studies using a corrugated metal pipe culvert to make a direct comparison of culvert performance with grates installed and without safety grates. This included hydraulic tests varying the culvert slope, dishcarge, headwater depth, and tailwater depth. For each variation of these parameters, experimental data were collected with and without safety grates installed. The results of these tests are summarized in Chapter 5.
- 4. For inlet control conditions, headwater-discharge relationships were developed. Regression equations were derived using the box culvert results for the situations: (1) no grates; (2) pipe grates installed; and (3) bar grates installed. Regression equations were devised using the pipe culvert results for the situations: (1) no grates; and (2) pipe grates installed. The results for the box culvert are summarized in Section 3.2 and for the pipe culvert are summarized in Section 5.2.
- 5. The box culvert results for outlet control were used to derive regression equations to define the entrance head loss coeffi-

cient as a function of the various hydraulic parameters. Several relationships were derived for each of the following conditions:

- (a) Each flow regime separately
- (b) Submerged conditions of the inlet
- (c) Unsubmerged conditions of the inlet
- (d) Submerged and unsubmerged conditions combined.

Because either inlet or outlet control in general is considered in design, the regression equations considering each flow regime separately may not be of practical use. The results of the above regression analysis are described in Chapter 3.

- 6. The pipe culvert results for outlet control were used to derive regressions to define the entrance head loss coefficient as a function of the various hydraulic parameters. Several relationships were derived for each of the following conditions:
 - (a) Submerged conditions of the inlet
 - (b) Submerged and unsubmerged combined.
- 7. Another major objective was to put the regression results of the entrance headloss coefficient (outlet control) for the box culvert and pipe culvert, with and without grates, in a graphical form for easy use by the designer.

1.5 Review of Culvert Hydraulics for Design

Designing culverts involves many factors including estimating flood peaks, hydraulic performance, structural adequacy, and costs. The design of culverts, based on the interrelationship of numerous controlling factors is not an exact scientific procedure. Some of the many factors which control flow

through culverts are: (1) discharge; (2) inlet and barrel geometries; (3) frictional resistance; (4) headwater depth; (5) tailwater depth; and (6) slope. Generally, only two or three primary factors determine the flow regime through a particular culvert. For example, the size and shape of the inlet may determine the capacity of a certain culvert. On the other hand, frictional resistance and tailwater depth might control the flow in another case. However, the primary factors are not always identifiable before a design is made. Iterative design procedures identify the controlling factors for given design parameters.

According to Blaisdell (1966), thirty-eight factors influence the hydraulic performance of a culvert (Table 1.1). The primary controlling factors can be divided into two main groups: (1) flow with inlet control (steep-slope regime - $S_0 \ge S_c$); and (2) flow with outlet control (mild slope regime - $S_0 < S_c$). The inlet control group determines the capacity of the culvert based on inlet conditions, while the outlet control group determines the capacity based on the barrel and outlet conditions. The outlet control group is a combination of the outlet control and barrel control groups as defined by Blaisdell.

There have been many reported laboratory tests and field observations that show the two major types of culvert flow. For each type of control, different factors and formulas are used to compute the hydraulic capacity of a culvert. Under inlet control, the cross-section area of the culvert barrel, the inlet geometry and the amount of headwater or ponding at the entrance are of primary importance. Outlet control involves the additional consideration of the elevation of the tailwater in the outlet channel and the slope, roughness and length of the culvert barrel.

Hydraulic computations can be used to determine the probable type of flow under which a culvert will operate for a given set of conditions. The

{after Blaisdell (1966)}

I. Inlet

- A. Unsubmerged
 - 1. Weir
 - 2. Surface profile
- B. Submerged
 - 1. Orifice
 - 2. Vortex
 - 3. Full

II. Barrel

- A. Length
 - 1. Short
 - 2. Long
- B. Slope
 - 1. Mild
 - a. Barrel slope less than critical slope
 - i. Part full, normal depth greater than critical depth
 - ii. Full, not applicable
 - b. Barrel slope less than friction slope
 - i. Part full, depth increases along barrel
 - ii. Full, barrel under pressure
 - 2. Steep
 - a. Barrel slope steeper than critical slope
 - i. Part full, normal depth less than critical depth
 - ii. Full, not applicable
 - b. Barrel slope steeper than friction slope
 - Part full, depth decreases along barrel (increases if the inlet causes the depth inside the inlet to be less than the normal depth)
 - ii. Full, barrel under suction
- C. Flow
 - 1. Part full
 - 2. Slug and mixture
 - 3. Full
- III. Outlet
 - A. Part full
 - 1. Critical depth
 - 2. Tailwater
 - B. Full
 - 1. Free
 - 2. Submerged

Federal Highway Administration (FHWA) in their Hydraulic Engineering Circular (HEC) No. 5 provide charts for computing headwater depths for both inlet control and outlet control and then use the higher value to indicate the type of control and to determine the headwater depth.

1.5.1 Inlet Control

Inlet control means that the discharge capacity of a culvert is controlled at the culvert entrance by the depth of headwater (HW) and the entrance geometry, including the barrel shape and cross-sectional area, and the type of inlet edge. For inlet control the roughness and length of the culvert barrel and the outlet conditions (including depth of tailwater) are not factors in determining culvert capacity. An increase in barrel slope reduces headwater to a small degree and any correction for slope can be neglected for conventional or commonly used culverts flowing with inlet control.

In all culvert design, headwater or depth of ponding at the entrance to a culvert is an important factor in culvert capacity. The headwater depth (or headwater HW) is the vertical distance from the culvert invert at the entrance to the energy line of the headwater pool (depth + velocity head). Because of the low velocities in most entrance pools and the difficulty in determining the velocity head for all flows, the water surface and the energy line at the entrance are assumed to be coincident thus the headwater depths given by the inlet control charts (in HEC 5) can be higher than may occur in some installations. For the purposes of measuring headwater, the culvert invert at the entrance is the low point in the culvert opening at the beginning of the full cross-section of the culvert barrel.

1.5.2 Outlet Control

For outlet control, the conditions downstream of the entrance are the controlling factors in the culvert hydraulic performance. Either or both the frictional forces or the tailwater depth directly control the flow through the culvert. The barrel friction predominates if critical depth occurs at the outlet. Tailwater controls the flow if the tailwater depth is large enough to effect the headwater depth. Outlet control conditions usually exist in areas of low topographical relief.

Culverts flowing with outlet control can flow with the culvert barrel full or part full for part or all of the barrel length. If the entire cross section of the barrel is filled with water for the total length of the barrel, the culvert is said to be in full flow or flowing full. The procedures given in HEC 5 provide methods for the accurate determination of headwater depth for the full flow conditions. The method given in HEC 5 for the part full flow condition, gives a solution for headwater depth that decreases in accuracy as the headwater decreases.

The head, H, or energy required to pass a given quantity of water through a culvert flowing in outlet control with the barrel flowing full throughout its length is made up of three major parts (Figure 1.5). This energy is obtained from ponding of water at the entrance and is expressed as

$$H = H_v + H_p + H_f$$
(1.1)

where H_v is the velocity head, H_e is the entrance headloss and H_f is the friction loss. A more usable form of the above equation is expressed as

$$HW = d + \frac{V^2}{2g} + C_e \frac{V^2}{2g} + H_f - S_o L \qquad (1.2)$$

where HW is headwater depth, d is depth of flow, V is the mean flow velocity, C_e is the entrance headloss coefficient, g is acceleration of gravity, H_f is frictional

Figure 1.5 Definition Sketch (from H.E.C. 5)

losses expressed as $H_f = S_f \cdot L$, S_f is the friction slope, S_o is the culvert slope, and L is culvert length; the datum is the elevation of the culvert invert at the exit.

The FHWA manual (HEC 5) and state highway design manuals specify that the entrance loss, H_e depends upon the geometry of the inlet edge. This loss is expressed as a coefficient, C_e , times the barrel velocity head or $H_e = C_e \frac{V^2}{2g}$. The entrance loss coefficients C_e for various types of entrances when the flow is in outlet control are listed in Table 1.2 which is from HEC 5.

1.6 Flow Regimes

The Federal Highway Administration (FHWA) and the State Department of Highways and Public Transportation in Texas (DHT) distinguishes between inlet and outlet control for design purposes. DHT (1970) also categorizes flow into six different regimes (Figures 1.6 and 1.7) which will be used throughout this report. Four of the flow regimes (1, 2, 4A, and 4B) are considered outlet control (Fig. 1.6). The other two flow regimes (3A and 3B) are considered inlet control (Fig. 1.7).

1.6.1 Outlet Control Regimes

Type 1 flow conditions (Fig. 1.6) occur when the culvert slope is less than the critical slope ($S_0 < S_c$), the headwater is less than 1.2 times the culvert height (HW < 1.2D), and the tailwater depth is less than the critical depth (TW < d_c). The energy equation is written between the entrance and outlet as

$$HW = d_{c} + \frac{V_{c}^{2}}{2g} + C_{e} \frac{V_{c}^{2}}{2g} + H_{f} - S_{o}L \qquad (1.3)$$

Table 1.2 - ENTRANCE LOSS COEFFICIENTS

Outlet Control, Full or Partly Full

Entrance head loss $H_e = C_e \frac{V^2}{2g}$

Type of Structure and Design of Entrance

Coefficient Ce

Pipe, Concrete

Projecting from fill, socket end (groove-end)	•	•	•	0.2
Projecting from fill, sq. cut end			•	0.5
Headwall or headwall and wingwalls				
Socket end of pipe (groove-end)	•	•	•	0.2
Square-edge	•	•	•	0.5
Rounded (radius = $1/12D$)	٠	•	•	0.2
Mitered to conform to fill slope	•	•	•	0.7
*End-Section conforming to fill slope	•	•	•	0.5
Beveled edges, 33.7° or 45° bevels	•	•	•	0.2
Side-or slope-tapered inlet	•	•	•	0.2

Pipe, or Pipe-Arch, Corrugated Metal

Projecting from fill (no headwall)	0.9
Headwall or headwall and wingwalls square-edge	0.5
Mitered to conform to fill slope, paved or unpaved	
slope	0.7
*End-Section conforming to fill slope	0.5
Beveled edges, 33.7° or 45° bevels	0.2
Side-or slope-tapered inlet	0.2

Box, Reinforced Concrete

leadwall parallel to embankment (no wingwalls)	
Square-edged on 3 edges	0.5
Rounded on 3 edges to radius of 1/12 barrel	
dimension, or beveled edges on 3 sides	0.2
Wingwalls at 30° to 75° to barrel	
Square-edged at crown	0.4
Crown edge rounded to radius of 1/12 barrel	
dimension, or beveled top edge	0.2
Wingwall at 10° to 25° to barrel	
Square-edged at crown	0.5
Wingwalls parallel (extension of sides)	
Square-edged at crown	0.7
Side-or slope-tapered inlet	0.2

*Note: "End Section conforming to fill slope," made of either metal or concrete, are the sections commonly available from manufacturers. From limited hydraulic tests they are equivalent in operation to a headwall in both inlet and outlet control. Some end sections, incorporating a closed taper in their design have a superior hydraulic performance.

TYPE 1: Free Surface, Outlet Control

TYPE 2: Free Surface, Outlet Control

TYPE 4A: Pressure Flow Throughout, Outlet Control

TYPE 4B: Submerged Inlet, Outlet Control

Figure 1.6 Flow Regimes (Outlet Control)

TYPE 3A: Free Inlet, Inlet Control

TYPE 3A: Inlet Submerged, Inlet Control

TYPE 3B: Outlet Submerged, Inlet Control

Figure 1.7 Flow Regimes (Inlet Control)

where d_c is the critical depth, V_c is the critical velocity, and H_f is the friction loss. For Type 1 flow conditions, there is a transition from subcritical flow in the culvert to supercritical tailwater flow. This situation requires the development of an estimate for S_f . In the DHT solution to the energy equation, S_f is estimated by assuming uniform flow at a constant depth of $1.1 \cdot d_c$.

Type 2 Flow Regime

Type 2 flow conditions (Figure 1.6) occur when the entrance is unsubmerged (HW \leq 1.2D), the slope is less than critical (S₀ < S_c), and the tailwater depth is between the critical depth and the culvert height (d_c < TW < D). The energy equation is expressed as

$$HW = TW + \frac{V_{tw}^2}{2g} + C_e \frac{V_{tw}^2}{2g} + H_f - S_o L \qquad (1.4)$$

where TW is the tailwater depth, and V_{tw} is the outlet velocity. For Type 2 flow conditions S_f is estimated by assuming uniform flow at a depth equal to TW.

Type 4A Flow Regime

Type 4A flow conditions (Figure 1.6) occur when either the slope is less than critical ($S_0 < S_c$) and the tailwater depth is greater than D (TW > D), or the slope is greater than critical ($S_0 > S_c$) and the tailwater depth is greater than slope times length plus D (TW > $S_0 \cdot L + D$). This type of flow is controlled by tailwater conditions. The energy equation is expressed as

$$HW = \frac{V^2}{2g} + C_e \frac{V^2}{2g} + H_f + TW - S_o L \qquad (1.5)$$

where V is based on full culvert flow, and ${\rm H}_{\rm f}$ is the full pipe flow frictional losses.

Type 4B Flow Regime

Type 4B flow conditions (Fig. 1.6) occur when the entrance is submerged (HW > 1.2D), tailwater is less than D, (TW < D), and the culvert flows full for part of its length. This type of flow is controlled by the barrel and tailwater conditions. The culvert hydraulic performance is approximated by

$$HW = \frac{V^2 t w}{2g} + C_e \frac{V^2}{2g} + H_f + P - S_o L \qquad (1.6)$$

where V is based on full culvert flow, P is estimated as $(d_c + D)/2$ when TW $< d_c$ or is TW when TW $> d_c$ and V_{tw} is based on d_c for TW $< d_c$ or is based on TW for TW $> d_c$.

1.6.2 Inlet Control Regimes

Type 3A Flow Regime

Type 3A flow conditions (Fig 1.7) occur when the slope is greater than or equal to critical ($S_0 \ge S_c$) and tailwater depth is less than the slope times the length (TW < S_0 L). Critical depth controls at the entrance when the entrance is unsubmerged and entrance geometry controls when the entrance is submerged. The culvert hydraulic performance is determined by empirical curves based on experimental measurements (HEC 5).

Type 3B Flow Regimes

Type 3B flow conditions (Figure 1.7) are similar to the Type 3A flow conditions, except $S_0 L < TW < S_0 L + D$. The inlet is either submerged or unsubmerged. Control may be at either the entrance, or the outlet, or may transfer back and forth as slug flow. Hydraulic performance is predicted from empirical nomographs or by type 4A and 4B hydraulic characteristics.

. • • * . • . • •

CHAPTER 2 EXPERIMENTAL CONSIDERATIONS

The planning, construction, and hydraulic testing of the model culvert with safety grates were divided into several stages. First, the physical parameters effecting the hydraulic performance of a culvert were determined by examining the energy equation. After identification of the controlling physical parameters, hydraulic similitude was utilized to express the relationship between the scale model culvert properties and the full size culvert performance. The model culvert was then designed and constructed to simulate possible field conditions. Finally, numerous hydraulic studies were performed on the culvert and the resulting experimental data was reduced for analysis.

2.1 Energy Equation

The primary objective of this study was to determine the effect that safety grates have on the entrance headloss coefficient. Naturally, the entrance headloss coefficient could not be physically measured, but was determined using experimentally collected data to solve the energy equation for C_e . Referring to Fig. 2-1, the energy equation written between points A and C is expressed as:

$$HW + \frac{V_A^2}{2g} = \frac{V^2}{2g} + C_e \frac{V_e^2}{2g} + H_f + d$$
 (2.1)

where HW is the headwater depth, V_A is the mean approach velocity, V is the mean velocity in the culvert, C_e is the entrance headloss coefficient, H_f is the frictional headloss in the culvert, d is the value of the hydraulic grade line at the entrance, and V_e is the mean entrance velocity measured at the entrance, point B in Fig. 2.1.

This general form of the energy equation could be solved for the entrance headloss coefficient if all other terms were physically measured. To

Figure 2.1 Energy and Hydraulic Gradelines

•

. .

.

minimize the number of terms to be measured, the energy equation was simplified. First, the model culvert approach channel was designed wider than the model culvert cross-section (velocity assumed to be zero). The approach velocity head term, $V_A/2g$, was then neglected in the energy equation. Most culvert design procedures do consider a zero approach velocity. However, referring to Fig. 2.1, the energy equation between A and B is expressed as:

$$HW = \frac{V^2}{2g} + d_e + C_e \frac{V_e^2}{2g}$$
(2.2)

where d_e is the value of the hydraulic gradeline at the entrance and V is the mean velocity at the entrance. The entrance headloss coefficient* can be expressed as:

$$C_{e} = \frac{(HW - (d_{e} + V_{e}^{2}/2g))}{V^{2}/2g}$$
 (2.3)

A major problem was encountered in measuring the depth of flow at the entrance because of a large amount of turbulence generated at the entrance. A separation zone forms along the culvert sides (Fig. 2.1) in which the streamlines have substantial curvature and, thus, an acceleration component of flow. The hydrostatic law of pressure distribution cannot be applied to a flow with a large acceleration component in the cross-sectional plane. In order to circumvent this problem, piezometers were used in the experimental program to measure the hydraulic head at intervals along the culvert. From the piezometer readings and elevation data, the depth of flow and the area of flow were calculated for each location. The velocity at each piezometer location was determined from the area of flow and the flowrate; V = Q/A. The total energy head at each location equals the velocity head plus the piezometer reading (adjusted to datum). A least squares, linear fit, of the adjusted piezometer readings downstream of the separation zone, was utilized to define the hydraulic

^{*}All C $_{\rm e}$ values were determined using the mean entrance velocity.

gradeline. The total energy heads at these locations were similarly linearly extrapolated to yield the energy gradeline. The calculated hydraulic and energy gradelines together with the elevation data were used to determine the depth of flow at the entrance and the entrance velocity.

2.2 <u>Hydraulic Similitude</u>

Hydraulic model studies are based on the application of the laws of hydraulic similitude. These laws are derived from the basic relations of fluid mechanics and express the interrelationship of the various fluid flow parameters, such as velocity, pressure, and shear, under similar boundary conditions. Similitude requires geometric, kinematic, and dynamic similarity be maintained between the model culvert and the prototype culvert.

The first condition of geometric similarity is satisfied if the ratio of all corresponding lengths in the model and prototype are equal. This scale ratio (L_R) can be expressed as

$$L_{R} = \frac{L_{m}}{L_{p}}$$
(2.4)

where L_m and L_p are corresponding lengths in the model and prototype, respectively. Geometric similarity does not depend on fluid motion or force.

The second condition of kinematic similarity is satisfied when the ratio of all corresponding components of velocity and acceleration are equal. Since the ratio of the components of motion can be written in terms of the scale ratio, the flow lines will be geometrically similar. The resulting velocity ratio, $V_{\rm R}$, is

$$V_{R} = \frac{V_{m}}{V_{p}}$$
(2.5)

where V_m and V_p are velocities in model and prototype, respectively. Once the geometric and kinematic similarities are satisfied, dynamic similarity is also satisfied.

In this culvert model study, gravitational forces are the dominant factors describing flow condition. The inertial, gravitational, and pressure forces are the major controlling factors affecting the flow in the culvert. Viscous and surface tension forces do affect the flow, but these effects are insignificant compared to the magnitude of the inertial, gravitational, and pressure forces and thus can be neglected.

2.3 Laboratory Facilities

All experimental tests for this study were performed at the Center for Research in Water Resources (CRWR) hydraulics laboratory at the Balcones Research Center of the University of Texas at Austin.

Permanent equipment such as pumps, a pipe system, and a return channel provide a system of recirculating water flow through the model. A schematic layout of the CRWR hydraulics lab is shown in Fig 2.2. The outdoor storage reservoir has a diameter of 100-ft and a storage capacity of approximately 550,000 gallons. Two pumps supplied a range of flows up to a maximum of approximately 12 cfs through model culverts. Regulating valves are located between the pumps and the indoor hydraulics laboratory. The supply piping system consists of 12-in diameter overhead pipes housed in a 97-ft by 100-ft room. The 4-ft x 4-ft return channel is located below the floor level of the laboratory. A sharp crested weir and a Lory Point gage were used to measure the discharge in the return channel.

A general schematic of the model setup is shown in Fig 2.3. Water from the supply pipe system enters an 8-ft x 8-ft x 6-ft high head box. This head box was constructed from 3/4-in thick A-C plywood and set in a metal frame. All plywood surfaces exposed to water were impregnated with polyester resin and all joints were reinforced with fiberglass tape. Two sets of baffles

٠

.

•

ę

Figure 2.3 Overview of Test Facilities

were used to reduce the amount of turbulence and were located at the approach channel entrance. The baffles were constructed of 1-in by 2-in vertical slats placed on alternating sides of a wooden frame. Two large styrofoam pads were used to decrease the amount of surface turbulence. From the head box the water flows into an 8-ft wide by 4-ft deep by 20-ft long horizontal approach channel. The channel was also constructed of 3/4-inch thick A-C plywood and was placed on a 2-ft high wooden frame. The measurements of headwater depth were made by two Lory Point gages located in the approach channel. Figure 2.4 shows the head box and approach channel. The water flows from the culvert model into a discharge channel (Fig. 2.5), also constructed of plywood.

The 8-ft wide by 4-ft high by 9-ft 4-in long outlet or discharge channel was supported on two stiffened W 10-ft x 12-ft steel beams. Six 5-ton screw jacks were used to vary outlet channel elevation and culvert slope. An 8ft wide by 4-ft 5-in high by 3/16-in thick sliding steel tailgate was mounted at the downstream end of the outlet channel in an 8-ft by 7-ft 8-in frame made of 2-in x 2-in angle iron. Tailwater depth was varied by two pulley mechanisms to raise and iower the tailgate. After passing the tailgate, water flows through a 12-ft wide by 4-ft long by 3-ft 10-in deep outfall box made of 3/4-in A-C plywood. The outfall box was supported by 2-in x 2-in angle iron and stiffened with 3/8-in diameter reinforcing steel bars.

2.4 Experimental Set up for Box Culvert Tests

Schematics (side view and plan view) of the experimental set up for the box culvert tests are shown in Fig. 2.6. The box culvert was constructed of 3/4-in plywood with 1/2-in plexiglass installed on one side (Fig. 2.7). The plexiglass enabled visual observation of the different flow regimes. The dimension of the culvert were 2-ft wide by 1.25-ft high by 27-ft long. The

a. Headbox and Approach Channel

•

4

b. Entrance to the Culvert

Figure 2.4 Experimental Set-Up

Figure 2.6 Schematics of Experimental Setup

Figure 2.7 Box Culvert

culvert was supported on two W 12 x 22 steel beams to keep deflections in the culvert to a minimum. Four 5-ton screw jacks were used to change the culvert slope and support the culvert. The slope of the culvert was set by the use of a Dumpy level. The headwalls to the box culvert were constructed of plywood on a 4 to 1 slope with a wingwall flare of 4 to 1. Figure 2.8 is a schematic of the box culvert headwalls. Figure 2.4 (b) shows water entering the box culvert.

2.5 Experimental Set Up for Pipe Culvert Tests

Schematics (side view and plan view of the pipe culvert model) are shown in Fig. 2.9. The pipe culvert is a 15-in diameter, ½-in by 2-3/4-in helical corrugated metal pipe* (Fig. 2.10). Two sections of pipe were connected by a bolt lock collar. The pipe was mounted on two stiffened W 10 x 12 steel beams. Five 5-ton screw jacks provided culvert support and slope variability.

The headwalls of the pipe culvert were constructed of 3/4-in A-C plywood (Fig. 2.11). The headwalls were mounted on a 4:1 sloping 2-in by 4-in wood frame. Polyester resin sealant, fiberglass tape, rubber stripping, metal plates, and sheet metal screws were used to waterproof the headwall.

2.6 Instrumentation

Discharge was measured with a sharp crested weir and depths were measured using Lory point gages, stagnation tubes, an open air manometer, and piezometers. The discharge was measured with a Lory point gage and a sharp crested weir, located in the return channel. Headwater depth was measured in the approach channel 10-ft upstream of the culvert entrance with two Lory point gages. The tailwater depths were measured with a piezometer, located in the outlet channel floor. The piezometers were connected by "Tygon" tubing to its separate, graduated, open air manometer. The slope of the culvert was measured with a Dumpy level.

^{*}Donated to the project by Armco, Inc., Middletown, Ohio.

Figure 2.8 Headwall Design and Dimensions

.

÷.

·`.

Figure 2.11 Pipe Culvert Headwall Dimensions

For the box culvert model the piezometric depths were measured by twelve piezometers located along the culvert centerline. The piezometers were connected by Tygon tubing to 1/2-in diameter open air manometers shown in Fig 2.12. Another manometer tube was placed at the downstream end of the box culvert for the 12th piezometer.

For the pipe culvert, hydraulic depths were measured by eight stagnation tubes and open air manometers. Eight 1-1/8-in diameter holes were drilled at approximately 3-1/2-ft intervals along the pipe. The stagnation tubes (Fig. 2.13) were set in rubber stoppers and mounted in the holes with silicon sealant, rubber gaskets, steel plates, and sheet metal screws. The stagnation tubes were connected by "Tygon" tubing to the 1/2-in diameter open air manometers (Fig. 2.12).

2.7 Model Safety Grates

Safety grates for the box culvert model included 1:4 scale model grates of the prototype grates (3-in diameter on 30-in centers) determined by the Texas Transportation Institute (TTI) study (1979). The model safety grate of the TTI design is shown in Fig. 2.14(a). These grates are referred to as the pipe safety grates for the purpose of this report. These model pipe grates were constructed of 3/4-in O.D. pipe conduit and were placed on 7.5-in centers as illustrated in Fig. 2.14(a).

In addition to using the model pipe grates, tests were also performed for prototype grates that have been used in the field. These prototype grates are constructed of 1/2-in x 2-in flat iron bars and are placed on 5-in centers: These grates are referred to as "bar grates" for the purpose of this report. The model bar grates are shown in Fig. 2.14(b). These model grates which are also a 1:4 scale model are 1/8-in x 1/2-in flat iron bars placed on 1.25-in centers. Figures

۰.

Figure 2.12 Manometers

Figure 2.13 Stagnation Tubes For Pipe Culvert

• • • •

. . .

Figure 2.14 Model Safety Grates For Box Culvert

45 5 · ·

2.15(a) and (b) show the pipe and bar safety grates installed on the headwalls of the box culvert model.

The safety grates for the corrugated metal pipe culvert are shown in Fig. 2.16. these grates have a somewhat different design than either of the two box culvert grates. These grates were constructed of 3/4-in diameter conduits placed on 6-in centers; they simulate 3-in diameter conduits placed on 24-in centers and are shown in Fig. 2.16. Figure 2.17 shows the pipe grates installed at the pipe culvert inlet and Fig. 2.18 shows the grates installed at the outlet.

2.8 Measurements For Entrance Headloss

Several flow parameters were measured in both free outfall and tailwater tests: (1) slope; (2) discharge; (3) headwater depth; (4) tailwater depth; and (5) hydraulic depths. Measurements were taken for three different situations: (1) no safety grate at the inlet or outlet; (2) a safety grate at the inlet only; and (3) safety grates at both the inlet and the outlet. A range of discharges were considered. This testing procedure enabled a direct comparison of the effect of safety grates on the entrance headloss coefficient.

For the pipe culvert tests, free outfall and tailwater test trials were performed for only two situations: (1) no safety grate treatment of inlet or outlet; and (2) safety grate installation on both inlet and outlet.

Free Outfall Tests

Free outfall conditions occur when the tail water depth is less than the critical depth at the outlet. The general procedure to take free outfall test measurements was as follows:

- 1. The discharge was determined from the weir reading once the flow was stabilized (generally, a period of 10 minutes).
- 2. The headwater depth was measured with the two Lory Point gages in the approach channel.

(a) Pipe Safety Grates Installed

(b) Bar Safety Grates Installed

Figure 2.15 Safety Grates

۰,

•

Figure 2.17 Pipe Grates At Inlet

- 3. The hydraulic grade line in the culvert was measured.
- 4. Steps 2 and 3 were repeated.
 - (a) No grates in place.
 - (b) Grate at the inlet only. (Box culvert only)
 - (c) Grates at both the inlet and outlet.
- 5. Steps 1, 2, 3 and 4 were repeated for different discharges.

Tailwater Test

The general procedure for taking measurements for the tailwater tests (when tailwater is greater than critical depth at the outlet) were as follows:

- 1. A constant flow rate was established in the culvert and weir readings were taken for determining the discharge.
- 2. A free outfall test $(TW < d_c)$ was run for the constant discharge.
- 3. An initial tail water depth was established by lowering the discharge channel gate.
- 4. After the flow stabilized, the two upstream point gages, the culvert piezometers, and the discharge channel piezometer were read and the values recorded.
- 5. The tailwater depth was increased in increments of $\frac{TW}{D} = 0.1$ and Step 4 was repeated. The tailwater depth was limited to $\frac{TW}{D} = 1.8$.

2.9 Data Reduction

The experimental data from the test measurements were converted into actual values of headwater depths, tailwater depths, entrance flow depths, and entrance velocity head. The data reduction was accomplished by using computer programs developed only for this purpose.

The computer program, CULVERT, was developed by the authors. A Fortran listing of the program and a user's manual is provided in Appendix A.

CULVERT was used to reduce raw data into flow parameters and the

entrance coefficient. Routines within the program computed the following quantities:

- 1. headwater depth,
- 2. tailwater depth,
- 3. hydraulic and energy grade lines,
- 4. velocity head at the culvert entrance,
- 5. entrance loss coefficient, C_p (based on Eq. 2.3),
- 6. tailwater depth divided by culvert diameter $\frac{TW}{D}$,
- 7. headwater depth divided by culvert diameter $\frac{HW}{D}$,
- 8. discharge factors $\frac{Q}{BD^{1.5}}$ for the box culvert and $\frac{Q}{D^{2.5}}$ for the pipe culvert.
- 9. culvert slope.

Headwater Depth Determination

The headwater depth was measured by two Lory point gages 10-ft upstream from the culvert entrance. The gages were placed far enough upstream to minimize effects of the entrance turbulence but close enough to the entrance to keep frictional losses at a minimum. The difference in elevation between the culvert entrance invert and the pointer tip at the zero mark was added to the Lory gage readings to determine the headwater depth.

Hydraulic Head and Velocity Head at Entrance

The determination of the hydraulic head and velocity head at the entrance involves several steps:

a. The piezometer readings (or the stagnation tube readings for the pipe) were converted into elevations above the inlet invert. The conversion is the difference in elevation between the inlet invert and the manometer zero point. A linear extrapolation of the converted instrument readings gives the approximate hydraulic grade line, from which the hydraulic head at the entrance is obtained.

- b. The velocity head (using average velocities) at each piezometer (stagnation tube) location was added to the hydraulic head to obtain the energy head. The velocities were determined by dividing the discharge by the corresponding flow area at each piezometer location. The approximate energy grade line was determined by linear extrapolation of the energy head values at each instrument location.
- c. The velocity head $(V^2/2g)$ at the entrance is obtained by subtracting the value at this location of the hydraulic grade line from the value of the energy grade line.

Tailwater Depth Determination

The tailwater depth was measured by a piezometer located in the middle of the outlet channel. An open air manometer was used to determine the hydrostatic pressure measured by the piezometer. To calibrate the piezometer to measure tailwater depth, the difference in elevation between the culvert outlet invert and the zero mark on the manometer was added to the manometer readings.

2.10 Summary of Box Culvert Tests

2.10.1 Safety Grate Tests

The tests were designed to provide adequate data for evaluating the hydraulic effects, of pipe or bar safety grates, for both entrance and outlet control, so as to include the six basic flow regimes of culvert flow. A summary of the tests are given in Table 2.1. The box culvert was tested for each of five slopes, ranging from 0.008 to 0.0128. A series of flowrates were run, either with no safety grates in place or with pipe safety grates on both upstream and downstream ends. The tailwater depth was increased for four specified values of flowrate, at each of three slopes. The tailwater gate was lowered such that the value of $\frac{TW}{D}$ was increased, in increments of approximately 0.1, for each flowrate up to 1.8. The bar safety grates were similiarly tested for three slopes.

_	Tests	for TW <d< th=""><th colspan="5">Tailwater Tests. TW>d</th></d<>	Tailwater Tests. TW>d				
	Grates	Range of	Grates	Range of	$\frac{TW}{D}$		
Slopes	Tested	Discharges. (cfs)	Tested	Discharges	D		
0.0008	No Grates Pipe	3.3 to 11.7 cfs	No Grates Pipe	6.14, 8.12, 10.4, 11.8 same as for no grates	0.4 to 1.8		
	Bar	in 0.8 increments	Bar	4.0, 6.5, 8.1, 11.0	increments of 0.1		
0.0013	No Grates Pipe	5.0 to 11.7 cfs in 0.7 increments		None			
0.0063	No Grates Pipe Bar	3.0 to 11.7 cfs in 0.8 increments	No Grates Pipe Bar	6.14, 8.12, 9.66, 11.8	0.5 to 1.8 increments of 0.1		
0.0108	No Grates Pipe Bar	3.0 to 11.7 cfs in 0.8 increments	No Grates Pipe Bar	6.14, 8.12, 9.66, 11.8	0.4 to 1.8 increments of 0.1		
0.0128	No Grates Pipe	3.0 to 11.7 cfs in 0.8 increments		None			

Table 2.1 Summary of Box Culvert Tests

* * * • •

2.10.2 Clogging Tests

Clogging tests were performed in order to evaluate the hydraulic effects of various degrees of debris blockage as could be caused by the safety grates. The pipe grates were tested using 3 slopes and 4 discharge for each slope. The bar grates were tested at one slope using 5 different discharges. In each case, the percentage of the entrance that was blocked, was increased from bottom to top in increments of 15% of the total available from 0 to 90 percent blockage. The tests were then repeated, beginning at the top of the entrance and increasing toward the bottom, until 90% blockage was achieved. A summary of the tests are given in Table 2.2.

2.11 Summary of Pipe Culvert Tests

The tests as summarized in Table 2.3, were designed to provide adequate data for evaluating the hydraulic effects of pipe grates on culvert flow, for both entrance and outlet control, so as to include the six basic flow regimes. For each of three slopes (0.0007, 0.008, and 0.05), a series of flowrates, in increments of approximately 0.3 cfs were run. Tailwater tests were made for S_o = 0.0007 and S_o = 0.008, at flowrates of 3.5, 4.5 and 5.5 cfs, and a range of $\frac{TW}{D}$ up to 1.9 in increments 0.1. All tests were performed with no safety grates and then with pipe safety grates at both upstream and downstream ends. Clogging tests were not performed on the pipe culvert.

Table 2.2 Summary of Clogging Tests for Box Culvert

Slopes	Grates Tested	Range of Discharges. (cfs)	Percent Clogging
0.0008	Pipe	9, 9.6, 10.0, 11.2	All tests for clogging
0.00(0	D'		increments of 15%
0.0063	Pipe	8.04, 9.11, 10.04, 11.17	
	Bar	8.12, 9.09, 10.1, 11.05, 11.91	
0.028	Pipe	9.0, 10.0	

• • •

	Tests for $TW < d_C$	Tailwater Te	sts.TW >d _C
	Range of	TW D	Range of
Slopes	Dischar ges		Discharges
0.0007	2.0 to 8.0 cfs	0.0 to 1.9	3.5
0.008	in increments	in increments	4.5
	of 0.3 cfs.	of 0.1	5.5
0.05	2.3 to 9.6 cfs	No Tests	No tests
	in increments of 0.3 cfs		

• •

• • ~ -• .

÷.

· • •

CHAPTER 3 BOX CULVERT RESULTS

The experimental tests using the pipe and bar safety grates for the box culvert model are presented and analyzed in this chapter. Figures are presented to compare the hydraulic effect with and without the pipe and bar safety grates under different combinations of slopes, discharges, headwater depths, and tailwater depths. For comparison, the experimental tests without safety grates are also included on selected figures. Discussion of the tests are presented describing the change in the hydraulics due to the safety grates. In addition, regression equations are presented for predicting entrance headloss coefficients for different conditions for outlet control. Also, regression equations are presented for determining headwater-discharge relationships for inlet control.

3.1 <u>Entrance Headloss Coefficients With and Without Safety Grates (Mild</u> <u>Slopes)</u>

The box culvert was tested under numerous possible conditions including low to high flow rates, mild to steep slopes, and free outfall to high tailwater. The effect of the pipe and bar safety grates on the entrance headloss coefficient, C_e , is illustrated by graphs of C_e for the safety grates installed versus C_e without the safety grates installed.

Figures B.1 through B.6 (Appendix B) show the entrance headloss coefficients with pipe safety grates installed versus the entrance headloss coefficients without safety grates installed. The entrance headloss coefficients with the bar safety grates installed versus the entrance headloss coefficients without safety grates installed versus the entrance headloss coefficients without safety grates installed are shown in Figures B.7 through B.9.

On Figs. B.I through B.9, a line intersecting the origin was drawn at a 45 degree angle with the abscissa. If either the safety grates increased the entrance headloss coefficient then the corresponding data points would plot above this line. If the entrance headloss coefficient decreased with the safety grates then the data points would plot below this line.

Types 1 and 2 flow regimes had a slight increase in the entrance headloss coefficient with pipe safety grates for slopes .0008 and .0063 (Fig. B. 1 and B.3) and a slight decrease for slope .0013 (Fig. B.2). These two flow regimes had the lowest entrance headloss coefficients for outlet control conditions.

The Type 4A flow regime (Figs. B.1 through B.5) had the highest entrance headloss coefficients for both inlet and outlet control conditions. For this flow regime, the C_e values with and without pipe safety grates had a large amount of variability. For Type 4A flow regime, very general conclusions are that the pipe safety grates had little or no effect on the entrance headloss coefficient for slopes .0008 and . 0063 (Figs. B.1 and B.3) and slightly decreased the C_e values on slopes .0013, .0108, and .0128 (Figs. B.2, B.4, and B.5). Again it should be noted, for Type 4A flow regime, the change in the entrance headloss coefficients with the pipe safety grates were not consistent and the conclusions should be viewed judiciously.

For the Type 4B flow regime, the entrance headloss coefficients increased with the pipe safety grates for slopes .0008 and .0063 (Figs. B.1 and B.3) and decreased for the slope .0013 (Fig. B.2).

The entrance headloss coefficients with the bar safety grates were generally higher than without safety grates (Fig. B.6 through B.8). For slopes .0008 and .0108 (Fig. B.6 and B.8), the increase in C_e with the bar safety grate was obvious for all flow regimes. For slope .0063 (Fig. B.7), the increase in the

entrance headloss coefficient was evident for flow regimes 2 and 4B. For flow regime 1, the C_e with and without the bar safety grates were similar for slope .0063. Similar to the pipe safety grates, the Type 4A flow regime for slope .0063 (Fig. B.7) had a large variability in the entrance coefficient with and without the bar safety grates and the effect of the bar safety grates on the entrance headloss coefficient was not clearly evident.

For each slope, linear regression analyses were performed for each flow regime using collected data points. The linear regression analysis determined the coefficients for the following equation:

$$C_e$$
(with grates) = A C_e (without grates) + B (3.1)

where A and B are the slope and y-intercept, respectively. Tables 3.1 and 3.2 are the linear regression analysis results performed for each slope and flow regime for the pipe and bar safety grates, respectively.

3.2 Headwater-Discharge Relationships (Inlet Control)

A unique relationship exists between the headwater and the discharge for inlet control. Inlet control should have only one headwater value for each discharge. Figures B.10 through B.17 are the relationships of $\frac{HW}{D}$ vs $\frac{Q}{BD}$ for inlet control. For each discharge, the headwater depth was measured with and without the safety grates. Figures B.10 through B.14 are results for the pipe safety grate tests and Fig. B.15 through B.17 are results for the bar safety grate tests.

For the pipe safety grate testing program (Fig. B.10 through B.14), the pipe safety grates had no effect on the headwater depth. Noting that the plots are for hydraulic tests with "clear" water (debris free), the test data with and without the pipe safety grates were identical. No noticeable increases in

	S ₀ = .0008			s	$S_0 = .0013$			S ₀ = .0063	
Flow Regime	A*	B*	R**	A	В	R	А	В	R
1	1.348	062	.869	1.036	022	.832	.983	.140	.993
2				1.285	066	.992	2.416	203	.802
4A	2.36	981	.423				1.138	109	.87
4B				.957	.001	.961	-3.704	-1.06	115
A11	1.086	045	.915	.978	025	.952	.961	.0185	.967

Table 3.1 Regression Equations for Comparing C_e (With and Without Pipe Safety Grates)

*A and B are defined in Eq. (3.1) **Coefficient of determination of the regression equation

Table 3.2 Regression Equations for Comparing C_e (With and Without Bar Safety Grates)

	S ₀ = .0008			s _o	S ₀ = .0063			$S_{0} = .1080$	
Flow Regime	A	В	R	A	В	R	A	в	R
1	1.059	.063	.988	.041	.844	.904			
2	1.351	030	.396	.192	.176	.225			
4A	.914	.904	.819	.696	.198	.731	.095	.718	.174
4B				2.525	204	.303	<u>-</u>		
A11	1.029	065	.981	.834	.103	.859	.972	.065	.935

headwater depth due to the pipe safety grates were indicated for either outlet control conditions (Fig. B.10 through B.12) or inlet control conditions (Fig. B.13 and B.14). Referring to Figs. B.12 and B.13, differences in headwater depths with and without safety grates were noted at the higher discharges. Not enough data was taken at these higher discharges to determine if the differences were due to the safety grates or were due to uncertainties in the measuring devices.

For the bar safety grate tests (Fig. B.15 and B.17), the headwater depth did increase with the bar safety grates. The bar safety grate test data plotted slightly above the test data without the safety grates. The increase in headwater was not constant but varied with discharge.

Headwater-discharge equations were determined by using all data points for inlet control conditions. Type 3A flow regime is inlet controlled, and the hydraulic capacity of a culvert depends upon the entrance geometry. Empirical curves which determine the culvert hydraulic performance are in the form

$$\frac{HW}{D} = a_0 + a_1 \frac{Q}{BD^{1.5}} + a_2 \left(\frac{Q}{BD^{1.5}}\right)^2 + \dots + a_n \left(\frac{Q}{BD^{1.5}}\right)^n (3.2)$$

where a_0 , a_1 , ..., a_n are the regression coefficients. The equations used $\frac{HW}{D}$ as the dependent variable and $\frac{Q}{BD^{1.5}}$ as the independent variable. The results of the regression analysis are summarized in Table 3.3. Because the pipe grates made no significant hydraulic effect, the results are presented as with and without pipe safety grates in Table 3.3a. The regression results for the bar grates are presented in Table 3.3b.

3.3 Entrance Headloss Coefficient - Headwater Relationship

Figures B.18 through B.25 are plots of the entrance headloss coefficients versus measured headwater depth. Each figure was for a constant slope

Table 3.3	Headwater	Discharge	Relationships	For	Inlet	Control
-----------	-----------	-----------	---------------	-----	-------	---------

	a o	^a 1	^a 2	^a 3	^a 4	^a 5	R
1	.1395	.3141					.98
2	.3624	.1270	.0349				.99
3	0587	.6814	1897	.0281			.99
4	0934	.7534	2349	.4000	0011		.99
5	1.8880	-3.7450	3.6310	-1.5390	.3071	0231	.99

(a) With And Without Pipe Safety Grates

(b) Bar Safety Grates

	ao	^a 1	^a 2	^a 3	^a 4	^a 5	R
1	.1190	.3291					.98
2	.3827	.1090	.0403				.99
3	.0433	.5655	1450	.0231			.99
4	5938	1.7280	8811	.2170	0181		.99
5.	1.3236	-2.661	2.9070	-1.3330	.2843	0226	.99

64

• •

• .

where the discharge and tailwater were varied. The corresponding flow regime was identified for each data point. The pipe safety grate tests are shown in Figs. B.18 through B.25 and the bar safety grates are shown in Figs. B. 23 and B. 25.

For outlet control conditions (Figs. B. 18 through B.20) and Type 4A flow regime (Figs. B.21 through B.22), the pipe safety grate tests data points are approximately grouped together according to the appropriate flow regime. The lowest average entrance headloss coefficients were measured for the Type 1 flow regime. Type 4A flow regime had the highest average entrance headloss coefficients. As a general trend, the entrance headloss coefficient increased with an increase in headwater. The C_e values did appear to reach a limit at HW/D greater than 1.5.

For the inlet control conditions (Figs. B.21 and B.22), the entrance headloss coefficients also increased with an increase in the headwater depth. The increase in the C_e value was very obvious for Type 3B flow regime for a slope .0108 (Fig. B.21). The maximum entrance headloss coefficient occurred at HW/D greater than 1.5.

Similarly, the bar safety grates data tended to group together according to flow regime (Figs. B.23 through B.25). For outlet control, the lowest and highest average entrance coefficients were for Types 1 and 4A flow regimes, respectively. For inlet control, Type 3A flow regime had the lowest average entrance coefficients. The entrance headloss coefficient had an obvious increase with an increase in headwater for slopes .0008 and .0063 (Fig B. 23 and B.24). The C_e values reached a maximum at HW/D greater than 1.5.

No direct evidence as to the effect of either pipe or bar safety grates can be inferred from the entrance headloss coefficient versus headwater relationships (Figs. B.18 through B.25). The changes in the entrance headloss

coefficient were not necessarily caused only by the pipe or bar safety grates. The entrance headloss coefficient actually depended upon the headwater which was in turn affected by the discharge, slope, tailwater, etc.

3.4 Entrance Headloss Coefficient - Discharge Relationship

Figures B.26 through B.24 are plots of entrance headloss coefficient versus the discharge factor $(\frac{Q}{BD^{1.5}})$. Each data point was identified as to the corresponding flow regime. For each plot, the slope remained constant while the discharge and tailwater were varied. Figures B.26 through B.30 are for the pipe safety grates. Figures B.31 through B.34 are for the bar safety grates. For Figs. B.26 through B.28, and B.30 through B.32, designated discharges were held constant and the tailwater depth was varied. The different C_e values for the same discharge resulted from changes in tailwater depth.

For the pipe safety grates (Figs. B.26 through B.30), the lower entrance headloss coefficients were for Type I and 3A flow regimes and the higher C_e values were generally for Type 4A flow regime. From the figures, the entrance headloss coefficients varied with discharge and different flow regimes. Types I and 3A flow regimes had the lowest variability of entrance headloss coefficients with discharge.

For the bar safety grates (Fig. B.26 through B.30), the lower entrance headloss coefficients were for Types 1 and 3A flow regimes and the higher C_e values were generally for Type 4A flow regime. From the figures, the entrance headloss coefficients varied with discharge and different flow regimes. Type 1 and 3A flow regime had the lowest variability of entrance headloss coefficients with discharge.

For the bar safety grates (Figs. B.31 through B.33), the entrance headloss coefficients also varied with discharge and flow regime. Types I and

3A flow regimes had the lowest C_e values and the smallest range in values. Again, Type 4A flow regime had the largest entrance headloss coefficients.

3.5 Headwater - Tailwater Relationships

For the tailwater tests, the tailwater was increased from free outfall conditions to full flow. The measured headwater versus the measured tailwater for pipe, bar, and no safety grates are shown in Figs. B.37 through B.48. On each plot, the calculated discharges were identified for the tested slopes. For Figs. B.36, B.39 through 41, and B.45 through 48, the measured data for the pipe, bar, and no safety grates were presented on the same plots. For these plots, using the same discharge, the headwaters with the pipe and bar safety grates were compared to the headwater without safety grates.

The plots of headwater versus tailwater have two distinct parts. In the first part, the headwater was not affected by the tailwater and the data points plotted horizontal. In the second part, the headwater increased with an increase in tailwater depth. For outlet control conditions, the tailwater did not affect the headwater until the tailwater depth was greater than critical depth. For inlet control conditions, the tailwater was greater than the slope times the length plus the critical depth when the tailwater affected the headwater.

For slopes of .0063 and .0108, seven different tests were run using four different discharges (Fig. B.38 through B.49). As evident, the data points from the pipe safety grates tests were approximately identical with the data for no safety grates tests. The effect of the pipe safety grates was less than the accuracy at which the tests were run. The bar safety grate tests did indicate an increase in the headwater depth for the lower tailwater (Figs. B.40 through B.41 and B.45 through B.48) but indicated little increase for the higher tailwater.

Large deviations in headwater depths between the pipe, bar, and no safety grate tests were noted for a slope of .0063 and a discharge of 11.81 cfs in Fig. B.42.

3.6 <u>Regression Equations Considering Flow Regimes</u>

3.6.1 Development of Regression Equations

Present engineering practice normally has a single entrance headloss coefficient for each culvert entrance design. However, based upon this experimental study, the entrance headloss coefficient varies with different flow conditions. Using a constant C_e value, the culvert could be under-designed for a given flow regime. To aid in the design of culverts with and without safety grates, several regression equations were determined which can be used to predict the entrance headloss coefficient based on (combinations of) design discharge, headwater, tailwater and/or slope. In this study, equations were deterval.

The regression equations for outlet control can be expressed in the general form

$$Y = B_0 + B_1 x_1 + B_2 x_2 + \dots + B_n X_n$$
(3.3)

where Y is the dependent variable to be estimated, X_1 , 2, ...n are the independent variables, and B_0 , B_1 , ... B_n are the regression coefficients. For this study, the dependent variable was the entrance headloss coefficient, C_p .

3.6.2 <u>Regression Equations for C</u>

The different equations used for the theoretical models and the general models are listed in Table C.1. Equations 1 through 7 in Table C.1 are theoretical regression models, and Eqs. 8 through 19 are the general models. The regression results (best fit models) for the pipe grates, no grates and bar grates are listed in Tables 3.4, 3.5, and 3.6, respectively. The equations are presented

Regime	Equation	Bo	В	^B 2	B ₃ B ₄	R
1	13	.203	2.258	651	084 34.185	.918
2	8	.387	1.450	321		.944
3A	6	.205	472			.655
4A	9	.365	.688	036	498	.591
4B	11	610	2.321	479	-105.65	.945

Table 3.4 Regression Coefficients (Pipe Safety Grates)

Table 3.5 Regression Coefficients (No Grates)

Regime	Equation	Во	B ₁	^B 2	B ₃ B ₄	R
1	13	.210	2.956	842	112 42.682	.884
2	8	333	1.367	309		.958
3A	1	.344	-2.823	1.154		.586
4A	9	.003	.525	.014	153	.653
4B	11	354	-1.664	.827	-41.657	.779

Table 3.6 Regression Coefficients (Bar Safety Grates)

Regime	Equation	B ₀	в ₁	^B 2	^B 3	В ₄	R
1	13	091	1.581	196	108	16.073	.919
2	8	269	1.782	4702			. 941
3A	6*	.543	608				.818
4A	2	.747	5.091	-3.648	-3.081		.700
4B	13	-8.193	689	4.210	421	-12.012	.980

`.

۳.

.

. . .

•

_ **`**.

in Tables 3.7 through 3.9. The information presented on the best fit models includes the appropriate regime, the model equation, the regression coefficients, and the coefficient of determination. A complete listing of each regression equation analyzed is presented in Appendix C.

Equations 13 and 8 (Table C.1) were the best fit equations for Type 1 and 2 flow regimes, respectively. For the pipe safety grates, and no safety grates, the best regression equations for flow regimes 4A and 4B are Eqs. 9 and 11, respectively (Table C.1). For the bar safety grates, Eq. 2 (Table C.1) for flow regime 4A and Eq. 13 (Table C.1) for flow regime 4B had the lowest coefficients of determination. The highest coefficients of determination were for the pipe and bar safety grate regression equations for flow regime 4B.

3.7 Regression Equations for Submerged Conditions

The regression equations developed for submerged inlet, unsubmerged inlet and combined submerged and unsubmerged inlet conditions, all with outlet control are developed for use in design. From the viewpoint of design considerations, regression equations should be in the simplest form with the least number of independent variables. The suggested or recommended equations may not necessarily be the best fit (largest coefficient of determination) because of the number of independent variables considered.

For submerged inlet conditions, $\frac{HW}{D} \leq 1.2$, (flow regimes 4A and 4B), regression equations were developed using the data for all slopes and discharges in these regimes. A summary of the regression equations and the results are presented in Table 3.10. One set of best fit regressions are as follows (Eq. 8, Table C.1):

No Grates

$$C_e = -0.061 + 0.519 \left(\frac{HW}{D}\right) - 0.049 \left(\frac{Q}{BD^{1.5}}\right)$$
 (3.4)

Table 3.7 Regression Equations for C_e (No Grates)

Regime 1

$$C_e = 0.210 + 2.956 \left(\frac{HW}{D}\right)^2 - 0.842 \left(\frac{Q}{BD^{1.5}}\right) - 0.112 \left(\frac{Q}{BD^{1.5}}\right)^2 + 42.682 S_o$$

Regime 2

٠.

•••

•

$$C_e = -0.333 + 1.367 \left(\frac{HW}{D}\right) - 0.309 \left(\frac{Q}{BD^{1.5}}\right)$$

Regime 4A

$$C_e = 0.003 + 0.525 \left(\frac{HW}{D}\right) + 0.014 \left(\frac{Q}{BD^{1.5}}\right) - 0.153 \left(\frac{TW}{D}\right)$$

Regime 4B

$$C_e = -0.354 - 1.664 \left(\frac{HW}{D}\right) + 0.827 \left(\frac{O}{BD^{1.5}}\right) - 41.657 S_o$$

Regime 1

$$C_e = 0.203 + 2.258 \left(\frac{HW}{D}\right)^2 - 0.651 \left(\frac{Q}{BD^{1.5}}\right) - 0.084 \left(\frac{Q}{BD^{1.5}}\right)^2 + 34.185 S_o$$

Regime 2

$$C_e = -0.387 + 1.450 \left(\frac{HW}{D}\right) - 0.321 \left(\frac{Q}{BD^{1.5}}\right)$$

Regime 4A

$$C_e = 0.365 + 0.688 \left(\frac{HW}{D}\right) - 0.036 \left(\frac{Q}{BD^{1.5}}\right) - 0.498 \left(\frac{TW}{D}\right)$$

Regime 4B

$$C_e = 0.610 + 2.321 \left(\frac{HW}{D}\right) - 0.479 \left(\frac{Q}{BD^{1.5}}\right) - 105.650 S_o$$

 Table 3.9
 Regression Equations for C_e (Bar Safety Grates)

Regime 1

$$C_e = -0.091 + 1.581 \left(\frac{HW}{D}\right)^2 - 0.196 \left(\frac{Q}{BD^{1.5}}\right) - 0.108 \left(\frac{Q}{BD^{1.5}}\right)^2 + 16.073 S_o$$

Regime 2

$$C_e = -0.269 + 1.782 \left(\frac{HW}{D}\right) - 0.470 \left(\frac{Q}{BD^{1.5}}\right)$$

Regime 4A

$$C_{e} = +0.747 + 5.091 \left(\frac{HW}{D}\right) \left(\frac{O}{BD^{1.5}}\right)^{-2} - 3.648 \left(\frac{O}{BD^{1.5}}\right)^{-2} - 3.081 \left(\frac{TW}{D}\right) \left(\frac{O}{BD^{1.5}}\right)^{-2}$$

•

· .

•

Regime 4B

$$C_e = 8.193 - 0.689 \left(\frac{HW}{D}\right)^2 + 4.210 \left(\frac{Q}{BD^{1.5}}\right) - 0.421 \left(\frac{Q}{BD^{1.5}}\right)^2 - 12.012 S_o$$

· · ·

• • • •

•

Equation Number	Type Of Grates	Bo	^B 1	^B 2	^B 3	^B 4	R
	No						
2	Grates	0.820	-1.838	-4.279	3.932		0.64
8		-0.061	0.519	-0.049			0.56
9		-0.055	0.073	0.072	0.260		0.70
11		-0.067	0.519	-0.048	0.759		0.56
13		-0.163	0.162	0.292	-0.054	1.755	0.57
16		0.670	-0.270	1.740			0.10
21		0.421	0.102	-0.348			0.65
	Bar						
2	Grates	0.814	-1.421	-6.070	5.032		0.71
8		-0.023	0.595	-0.086			0.63
9		-0.064	0.130	0.032	0.318		0.76
11		-0.061	0.600	-0.086	4.900		0.64
13		-0.118	0.180	0.258	-0.052	6.28	0.64
16		0.920	-0.088	6.800			0.25
21		0.616	0.063	-0.433			0.67
	Pipe						
2	Grates	0.785	-1.379	-2.896	2.779		0.45
8		-0.023	0.595	-0.086			0.38
9		0.216	-0.029	0.067	0.199		0.50
11		0.241	0.267	-0.005	-5.730		0.40
13		0.223	0.075	0.157	-0.025	-5.410	0.38
16		0.660	0.000	-7.530			0.14
21		0.470	.080	-0.250			0.47

Table 3.10Summary of Regression Results for Submerged Condition

Pipe Safety Grates

$$C_e = 0.21 + 0.269 \left(\frac{HW}{D}\right) - 0.003 \left(\frac{Q}{BD^{1.5}}\right)$$
 (3.5)

Bar Safety Grates

$$C_e = -0.023 + 0.595 \left(\frac{HW}{D}\right) -0.086 \left(\frac{Q}{BD^{1.5}}\right)$$
 (3.6)

The coefficients of determination for Eqs. 3.4, 3.5, and 3.6 are 0.56, 0.38 and 0.63, respectively. Figures 3.1, 3.2, and 3.3 are the respective graphs of Eqs. 3.4, 3.5 and 3.6.

Another set of best fit regression equations for submerged conditions are as follows (Eq. 21, Table C.1):

No Grates

$$C_e = 0.421 + 0.102 \left(\frac{Q}{BD^{1.5}}\right) - 0.348 \left(\frac{HW-TW}{D}\right)$$
 (3.7)

Pipe Safety Grates

$$C_e = 0.474 + 0.080 \left(\frac{Q}{BD^{1.5}}\right) - 0.254 \left(\frac{HW-TW}{D}\right)$$
 (3.8)

Bar Safety Grates

$$C_e = 0.616 + 0.063 \left(\frac{Q}{BD^{1.5}}\right) - 0.433 \left(\frac{HW-TW}{D}\right)$$
 (3.9)

The coefficients of determination for Eqs. 3.7, 3.8, and 3.9 are 0.65, 0.47 and 0.67, respectively. Figures 3.4, 3.5 and 3.6 are the respective graphs of Eqs. 3.4, 3.5, and 3.6.

3.8 Regression Equations for Unsubmerged Conditions

For unsubmerged inlet conditions, $-\frac{HW}{D} \leq 1.2$, (flow regimes 1 and 2) regression equations were developed using the data for all slopes and discharges

Figure 3.1 Entrance Headloss Coefficient for Submerged Conditions, No Grates (Eq. 3.4)

Figure 3.2 Entrance Headloss Coefficient for Submerged Conditions, Pipe Grates (Eq. 3.5)

۰.

76

• • • ·

Figure 3.3 Entrance Headloss Coefficient for Submerged Conditions, Bar Grates (Eq. 3.6)

• • •

Figure 3.5 Entrance Headloss Coefficient for Submerged Conditions, Pipe Grates (Eq. 3.8)

in these regimes. A summary of the regression equations and results are presented in Table 3.11. The best fit regressions are as follows (Eq. 8, Table C.1):

No Grates

$$C_e = -0.040 + 1.000 \left(\frac{HW}{D}\right) - 0.276 \left(\frac{Q}{BD^{1.5}}\right)$$
 (3.10)

Pipe Safety Grates

$$C_e = -0.122 + 1.046 \left(\frac{HW}{D}\right) - 0.262 \left(\frac{Q}{BD^{1.5}}\right)$$
 (3.11)

Bar Safety Grates

$$C_e = -0.213 + 1.448 \left(\frac{HW}{D}\right) - 0.366 \left(\frac{Q}{BD^{1.5}}\right)$$
 (3.12)

The coefficients of determination for Eqs. 3.10, 3.11, and 3.12 are 0.81, 0.79, and 0.82, respectively. Figures 3.7, 3.8, and 3.9 are the respective graphs of Eqs. 3.10, 3.11, 3.12.

Regression Equations for Submerged and Unsubmerged Combined

For the combined submerged and unsubmerged inlet conditions, regresssion equations were developed using the data for all slopes and discharges for the outlet control regimes. A summary of the regression equations and results are presented in Table 3.12. The best fit regressions are as follows (Eq. 8, Table C.1):

No Grates

$$C_e = -0.187 + 0.614 \left(\frac{HW}{D}\right) - 0.060 \left(\frac{Q}{BD^{1.5}}\right)$$
 (3.13)

Pipe Safety Grates

$$C_{e} = -0.172 + 0.479 \left(\frac{HW}{D}\right) + 0.001 \left(\frac{Q}{BD^{1.5}}\right)$$
 (3.14)

Equation Number	Type Of Grates	Bo	^B 1	^B 2	^B 3	⁸ 4	R
	No						
2	Grates	-0.053	4.070	-2.039	-0.152		0.71
8		-0.040	1.00	-0.276			0.81
9		-0.074	1.096	-0.294	-0.030		0.82
11		0.004	0.921	-0.258	-3.618		0.82
13		0.800	0.535	-0.585	0.062	-3.974	0.88
16		0.400	-0.046	-13.00			0.53
		0.355	-0.045				0.29
	_						
	Bar						
2	Grates	0.035	3.881	-2.288	0.090		0.85
8		-0.213	1.448	-0.366			0.82
9		-0.232	1.538	-0.388	-0.033		0.83
11		-0.127	1.285	-0.318	-12.818		0.85
13		0.980	0.639	-0.797	0.110	-10.352	0.87
16		0.470	-0.033	-27.00			0.55
20		0.446	-0.062				0.24
	Pipe						
2	Grates	0.022	3.933	-2.111	-0.092		0.65
8		-0.122	1.046	-0.262			0.79
9		-0.153	1.125	-0.274	-0.028		
11		-0.159	1.12	-0.282	4.554		0.80
13		0.464	0.605	-0.377	0.018	3.95	0.89
16		0.320	-0.017	-9.19			0.28
20		0.300	-0.023				0.13

Table 3.11 Summary of Regression Results for Unsubmerged Conditions

* * * *

, . . .

Figure 3.7 Entrance Headloss Coefficient for Unsubmerged Conditions, No Grates (Eq. 3.10)

• • •

• • • •

•

Figure 3.9 Entrance Headloss Coefficient for Unsubmerged Conditions, Bar Grates (Eq. 3.12)

Equation Number	Type Of Grates	Bo	^B 1	^B 2	^B 3	^B 4	R
1	No	0.452	2.279	-2.734			0.55
2	Grates	0.485	1.365	-2.291	0.524		0.55
6		0.417	0.387				0.16
8		-0.187	0.614	-0.060			0.76
9		-0.174	0.362	0.005	0.146		0.80
11		-0.188	0.614	-0.060	0.159		0.76
13		0.131	0.206	-0.005	-0.006	1.340	0.75
16		0.211	0.073	9.200			0.26
8 9	Bar Grates	-0.025 -0.004	0.643	-0.111	0.211		0.78
11		-0.024	0.044	-0.110	-0.538	2.369	0.78
		0.290	0.070	7.580			0.28
	Pipe Grates						
8		-0.172	0.479	0.001			0.73
9		-0.004	0.311	0.036	0.110		0.74
11		-0.143	0.477	0.000	-6.193		0.74
13		0.274	0.149	-0.064	0.013	-5.715	0.70
16		0.230	0.100	-7.900			0.36_

Bar Safety Grates

٠,

$$C_e = -0.025 + 0.643 \left(\frac{HW}{D}\right) - 0.111 \left(\frac{Q}{BD^{1.5}}\right)$$
 (3.15)

The coefficients of determination for Eqs. 3.13, 3.14, and 3.15 are 0.76, 0.73, and 0.78, respectively. Figures 3.10, 3.11, and 3.12 are the respective graphs of Eqs. 3.13, 3.14, and 3.15.

Figures 3.10 - 3.13 present a comparison of equations of the form $C_e = f(\frac{HW}{D}, \frac{Q}{BD^{1.5}})$ considering submerged conditions, unsubmerged conditions, and combined submerged and unsubmerged conditions. Figure 3.13 shows graphs of Eq. (3.4) for submerged conditions, Eq. (3.10) for unsubmerged conditions, and Eq. (3.13) for submerged and unsubmerged combined. Each of these curves in Figure 3.13 are for $\frac{Q}{BD^{1.5}} = 1.0$ and no grates. Similar graphs of Eqs. (3.4, 3.10, and 3.13) for $\frac{Q}{BD^{1.5}} = 3.0$ and no grates are shown in Fig. 3.14.

Figure 3.15 shows graphs of Eq. (3.6) for submerged conditions (bar grates), Eq. (3.15) for unsubmerged conditions (bar grates), and Eq. (3.15) for submerged and unsubmerged combined (bar grates). These graphs are for $\frac{Q}{BD^{1.5}} = 1.0$. The same set of graphs for $\frac{Q}{BD^{1.5}} = 3.0$ are presented in Fig. 3.16.

Figure 3.10 Entrance Headloss Coefficient for Submerged and Unsubmerged Conditions Combined, No Grates (Eq. 3.13)

• • • •

Figure 3.11 Entrance Headloss Coefficient for Submerged and Unsubmerged Conditions Combined, Pipe Grates (Eq. 3.14)

Figure 3.12 Entrance Headloss Coefficient for Submerged and Unsubmerged Conditions Combined, Bar Grates (Eq. 3.15)

• • • •

Figure 3.13 Entrance Headloss Coefficient, $\frac{Q}{BD}$ = 1.0, for the Outlet Control Conditions, No Grates (Eqs. 3.4, 3.10, 3.13)

Figure 3.14 Entrance Headloss Coefficient, $\frac{Q}{BD}$ = 3.0, for the Outlet Control Conditions, No Grates (Eqs. 3.4, 3.10, 3.13)

92

· · ·

. . .

Figure 3.15 Entrance Headloss Coefficient, $\frac{Q}{BD}$ = 1.0, for the Outlet Control Conditions, Bar Grates (Eqs. 3.6, 3.12, 3.15)

Figure 3.16 Entrance Headloss Coefficient, $\frac{Q}{BD}$ = 3.0, for the Outlet Control Conditions, Bar Grates (Eqs. 3.6, 3.12, 3.15)

, **f**, e

CHAPTER 4 CLOGGING TESTS - BOX CULVERT

To demonstrate the effect of clogging, the open surface area of the safety grates was covered with boards. The simulated clogging ranged from 15 to 90 percent of the open surface area of the grates (Figs. 4.1-4.3). The bar and pipe safety grates were covered with boards (simulating clogging) in intervals of 15 percent of the original open surface area. The clogging was placed in three different patterns; from top to bottom, from bottom to top, and randomly positioned.

4.1 Test Procedure for Clogging

The clogging tests were used to determine the relative effects of various percentages of clogging. Empirical tests were difficult due to the unpredictability of field conditions. The measurements were made under free outfall conditions. The steps in the clogging tests were the following:

- 1. A constant discharge was established where the water surface was at or above the top of the culvert.
- 2. A 15 percent clogging was placed at the top of the grate and all measurements were taken after the water flow stabilized. The sequence of measurements were the same as the free outfall tests.
- 3. The rest of the clogging was placed from the top downward until 90 percent of the grate was clogged. All measurements were taken at each different percentage of clogging.
- 4. The entire procedure was repeated with the clogging placed from bottom to the top of the safety grates.

4.2 Relationship of Headwater - Percent Clogging

Figures D.1 through D.11 are graphs illustrating the headwater/depth

 $(\frac{HW}{D})$ versus percentage clogging for the pipe safety grates on the box culvert.

30% Clogging

Figure 4.3 Clogging From Bottom To Top

For slopes of 0.0008 and 0.0063, the results of placing the clogging from top to bottom and from bottom to top on the pipe grates are shown in Figs. D.1 through D.9 for several discharges. Figures D.9 through D.11 show the effect of various culvert slopes for the same or similar discharges. Basically, the steeper slopes do have smaller $(\frac{HW}{D})$ for the same discharges. Obviously, the general trend was an increase in headwater depth with an increase in percentage of clogging. Below 45 percent clogging, the headwater is affected very little by the clogging, while above 45 percent, the headwater is not only affected by the clogging, but also by the placement of clogging. The headwater depth increases much more rapidly when the clogging is placed from the top downward than placing clogging from the bottom upward.

The clogging tests for the bar safety grates were only conducted using a .0063 slope. Test data from top downward and from bottom upward clogging are presented in (Figures D.12 through D.16) with constant discharges. As for the clogging tests on pipe grates, the headwater increased very little for clogging less than 45 percent but increased rapidly for clogging greater than 45 percent. At the higher percentage of clogging, the headwater was higher for clogging starting at the top than for clogging starting at the bottom. Figures D.17 through D. 19 present clogging data for both the pipe and bar safety grates under similar conditions (slope and discharge).

4.3 <u>Relationship of Entrance Headloss Coefficient - Percent Clogging</u>

The effects of the percentage of clogging and the placement of clogging for the pipe safety grates are illustrated in Figures D.20 through D.35.

Figures D.20 through D.23 are the relationships of C_e versus percent clogging for a culvert slope of 0.0008 and for the discharges of 9.02, 9.62, 10.7, and 11.2 cfs, respectively. Figures D.21 and D.23 illustrate the effect of the

position of clogging from top to bottom as opposed to clogging from bottom to top. The effect of clogging from top to bottom has a much more pronounced effect on increasing the C_e for larger percentages of clogging. Figure D.24 shows the effect of increasing C_e for a culvert slope of 0.0063 and dishcarges of 8.04, 9.10, 10.04 and 11.07 cfs.

Figures D.25 through D.28 are for the purpose of illustrating the effect of various culvert slopes for various percentages of clogging using pipe grates. Figure D.25 shows C_e versus percent clogging for culvert slopes of 0.0008 and 0.0128 and each with a discharge of 9.02 cfs. This figure clearly illustrates the drastic effect of increasing the C_e for larger percentages of clogging for the mild slope. This is also illustrated in Figure D.26 for the slopes of 0.0008 and 0.0128. Figures 0.27 shows the relationship for the three slopes, 0.0008, 0.0063, and 0.0128.

The effect of the placement of the clogging (bottom 1/3, middle 1/3, or top 1/3 of grate) on C_e for various discharges and percentages of clogging are illustrated in Figures D.29 through D.31. Discharges of 7.94, 9.03, 10.00, and 10.82 cfs were considered for the various percentages and placements of clogging. Similar conclusions as before to the placement of clogging were found. Clogging closer to the tope of the grate causes larger values of C_e .

A comparison of the effect of clogging for the bar grates and the pipe grates was also performed. Figure D.32 shows the relationship of C_e versus percent clogging for a culvert slope of 0.0063 and discharges of 9.09, 10.11 and 11.05 cfs for the bar safety grate. The larger dishcarges result in large C_e values for the same percent clogging as shown before for the pipe grates. Figures D.33 through D.35 show a comparison of the effect of the pipe grates as

opposed to the bar grates for various percentages of clogging, for a culvert slope of 0.0063 and discharges of approximately 9, 10, and 11 cfs.

For the discharge of 9 and 10 cfs (Figures D.33 and D.34) it is difficult to say which Type grate had the greatest effect, except for the 90 percent clogging. However, for the discharge of 11 cfs (Figure D.35), the effect was definitely greater for the bar safety grates.

۰۰.

<u>'</u>.

•

• •

•

• •

••

CHAPTER 5 PIPE CULVERT RESULTS

۰.

The experimental tests of the safety grates for the pipe culvert model are presented and analyzed in this chapter. Figures are presented to compare the hydraulic effect with and without the pipe safety grates under various combinations of slopes, discharges, headwater depths, and tailwater depths. For comparison, the experimental tests without safety grates are also included on selected figures. Discussions of the tests are presented describing changes in the hydraulics due to the safety grates. Regression equations are presented for predicting entrance headloss coefficients for different conditions of outlet control. Also, regression equations are presented for determining headwater-discharge relationships for inlet control.

Geometric similarity (of the corrugations) is not completely satisfied in this experiment. The safety grate similarity is easily satisfied by the construction of a 1:4 scale model grate. However, geometric similarity of corrugations between the 15-inch diameter model pipe culvert and a prototype culvert is not possible due to the constant corrugation sizes in helical corrugated metal pipe for all pipe diameters. In other words, the relative size of the corrugations to the pipe diameter decreases with increasing diameter. Furthermore, the angle of corrugations for helical pipe as fabricated, is not constant throughout the various pipe diameters.

Kinematic similarity is partially upheld for reasons similar to those for geometric similarity. The velocity ratio is satisfied for increasing diameter. However, because of constant corrugation size, complete kinematic similarity cannot be satisfied. Satisfaction of dynamic similarity is not complete for

reasons also due to the constant pipe corrugations. The inability to precisely model the corresponding lengths and velocities of model and prototype may limit the application of regression equations for C_e . Data for the regression analysis is listed in Appendix G.

5.1 Entrance Headloss Coefficient With and Without Safety Grates

A direct comparison of the entrance headloss coefficient with grates installed and the entrance headloss coefficient without grates for the mild slopes, 0.0007 and 0.008, are presented in Figures E.1 and E.2. For the milder slope, 0.0007, the entrance headloss coefficients for grates installed are greater than those without the grates. This clearly indicates that the grates do have an effect; however, the effect does not seem to be major. For the steeper slope, .008, the entrance headloss coefficients are significantly greater for the lower discharges and seem to have little effect for the higher discharges. In fact, the effect of the grates on the entrance headloss coefficient at the high discharges was insignificant.

5.2 Headwater-Discharge Relationships

The headwater-discharge relationships for inlet control are shown in Figures E.3, E.4, and E.5 for the slopes 0.0007, 0.008, and 0.05, respectively. The curves are plotted as $\frac{HW}{D}$ vs $\frac{Q}{D^{2.5}}$ with and without the safety grates installed. The safety grates do show an increase in $\frac{HW}{D}$ which is relatively constant throughout the range of discharges.

Regression equations for inlet control were developed using the general form

$$\frac{HW}{D} = a_0 + a_1 \left(\frac{Q}{D^{2.5}}\right) + a_2 \left(\frac{Q}{D^{2.5}}\right) + \dots + a_n \left(\frac{Q}{D^{2.5}}\right)^n$$
(5.1)

where $\frac{HW}{D}$ is the dependent variable and $\frac{O}{D^{2.5}}$ is the independent variable. The results of the regression analysis are summarized in Table 5.1 for no grates and the grates installed. As an example of the equations developed, the simplest form for the no grates and grates installed are, respectively,

$$\frac{HW}{D} = 0.166 + 0.385 \left(\frac{O}{D^{2.5}}\right)$$
(5.2)

and

$$\frac{HW}{D} = 0.158 + 0.389 \left(\frac{O}{D^{2.5}}\right)$$
(5.3)

5.3 Entrance Headloss Coefficient - Headwater Relationship

Entrance headloss coefficient - headwater relationships are plotted in Figs. E.6 through E.13 for various flow regimes of the two slopes, 0.008 and 0.0007. Figure E.6 illustrates the C_e vs $\frac{HW}{D}$ for flow regimes 1, 2, 4A and 4B with and without the grates for the slope of 0.008. Figures E.7, E.8, E.9, and E.11 are separate graphs of C_e vs $\frac{HW}{D}$ for flow regimes, 1, 2, 4A, 4B respectively. Figures E.11, E.12, and E.13 are for the slope, of 0.0007, considering flow regimes 4A and 4B combined, 4A and 4B respectively. Probably the most significant conclusion from these graphs is that C_e is significantly affected by $\frac{HW}{D}$. The entrance headloss coefficient for safety grates installed are greater than for no grates for unsubmerged inlets. The effect of safety grates on the entrance headloss coefficient with and without grates installed, increases substantially for an unsubmerged inlet.

5.4 Entrance Headloss Coefficient - Discharge Relationship

Entrance headloss coefficient-discharge relationships ($C_e vs \frac{Q}{D^{2.5}}$) are plotted in Figures E.14 through E.19 for various flow regimes for the two slopes, 0.008 and 0.0007. Figure E.14 illustrates the $C_e vs \frac{Q}{D^{2.5}}$ relationship

Equation	ao	al	^a 2	a3	a ₄	^a 5	R
1	0.166	0.385					0.9868
2	0.516	0.144	0.036				0.9923
3	-0.129	0.845	-0.190	0.022			0.9943
4	2.267	-2.606	1.524	-0.331	0.026		0.9977
5	0.236	1.088	-1.00	0.482	-0.099	0.007	0.9980

(a) No Grates, 31 Data Points

(b) Grates Installed, 30 Data Points

Equation	ao	^a 1	^a 2	a3	a ₄	^a 5	R
1	0.158	0.389					0.9839
2	0.645	0.053	0.049				0.9941
3	-0.082	0.846	-0.206	0.025			0.996
4	1.656	-1.656	+1.035	-0.230	0.019		9.9983
5	-0.774	2.775	-1.999	0.749	-0.132	0.009	0.9990

106

. .

•

for flow regimes 1, 2, 4A, and 4B with and without grates for the slope of 0.008. Figures E.15, E.16, E.17 and E.18 are separate graphs of C_e vs $\frac{Q}{D^{2.5}}$ for flow regimes 1, 2, 4A and 4B. Figure E.19 shows the relationship for flow regimes 4A and 4B for a slope of 0.0007. The most significant conclusion is that the entrance headloss coefficient increases substantially for increased discharges for submerged entrances.

5.5 Headwater-Tailwater Relationships

For the tailwater tests, the tailwater ranged from free outfall conditions to full flow. Figures E.20 through E. 23 show the relationship of $\frac{HW}{D}$ vs $\frac{TW}{D}$ with and without grates installed. Figure E.20 shows the relationships for a discharge of 5.6 cfs and a slope of 0.0007. Figures E.21, E.22, and E.23 are for the slope, of 0.008, and discharges 3.6, 4.5, and 5.5 cfs. The headwater depth is unaffected by rising tailwater depths less than critical depth. The flatter the culvert slope, the greater the effect of tailwater depth on the headwater depth.

5.6 Regression Equations for Submerged Inlet Conditions

Regression equations were developed for the entrance headloss coefficient for submerged inlet conditions, $\frac{HW}{D}$ <1.2. The various regression equations considered are listed in Table 5.2. The resulting coefficients, B₀, ..., B_n for each of the regression equations are listed in Table 5.3 for no grates and in Table 5.4 for the grates installed.

From the viewpoint of design considerations regression equations for C_e should be at the simplest form with the least number of independent variables. Equation 13 in Table 5.2 is one of the simpler forms considered. The regression equation for no grates is

$$C_e = -0.119 + 0.364 \left(\frac{Q}{D^{2.5}}\right) - 0.133 \left(\frac{HW-TW}{D}\right)$$
 (5.4)

 Table 5.2
 Regression Equations for Pipe Culvert Equation

1.
$$C_e = B_o + B_1 \left(\frac{Q}{D^{2.5}}\right) + B_2 \left(\frac{Q}{D^{2.5}}\right)^2 + B_3 \left(\frac{Q}{D^{2.5}}\right)^3 + B_4 \left(\frac{Q}{D^{2.5}}\right)$$

2. $C_e = B_o + B_1 \left(\frac{Q}{D^{2.5}}\right) + B_2(S_o)$
3. $C_e = B_o + B_1 \left(\frac{Q}{D^{2.5}}\right)^2$
4. $C_e = B_o + B_1 \left(\frac{Q}{D^{2.5}}\right)^2$
5. $C_e = B_o + B_1 \left(\frac{Q}{D^{2.5}}\right)^2 \left(\frac{HW}{D}\right)$
6. $C_e = B_o + B_1 \left(\frac{Q}{D^{2.5}}\right)^2 \left(\frac{HW}{D}\right)$
7. $C_e = B_o + B_1 \left(\frac{Q}{D^{2.5}}\right)^{-2} \left(\frac{HW}{D}\right) + B_2 \left(\frac{Q}{D^{2.5}}\right)^{-2}$
8. $C_e = B_o + B_1 \left(\frac{Q}{D^{2.5}}\right)^{-2} \left(\frac{HW}{D}\right) + B_2 \left(\frac{Q}{D^{2.5}}\right)^{-2} + B_3 \left(\frac{Q}{D^{2.5}}\right)^{-2} (S_o)$
9. $C_e = B_o + B_1 \left(\frac{Q}{D^{2.5}}\right)^{-2}$
10. $C_e = B_o + B_1 \left(\frac{W}{D}\right) + B_2 \left(\frac{Q}{D^{2.5}}\right) + B_3 (S_o)$
11. $C_e = B_o + B_1 \left(\frac{HW}{D}\right)^2 + B_2 \left(\frac{Q}{D^{2.5}}\right) + B_3 \left(\frac{Q}{D^{2.5}}\right) + B_4 \left(S_o\right)$
12. $C_e = B_o + B_1 \left(\frac{HW}{D}\right) + B_2 \left(\frac{HW}{D}\right)^2 + B_3 \left(\frac{Q}{D^{2.5}}\right) + B_4 \left(\frac{Q}{D^{2.5}}\right)^2 + B_5 (S_o)$
13. $C_e = B_o + B_1 \left(\frac{Q}{D^{2.5}}\right) + B_2 \left(\frac{HWTW}{D}\right)$

• •

· .

Equation	Во	^B 1	^B 2	^B 3	^B 4	^B 5	R
1	9.1511	-11.4430	5,5038	1.1215	0.0835		0.823
2	-0.0443	0.2623	17.1550				0.877
3	0.1448	0.230					0.811
4	0.5071	0.0352					0.798
5	0.0853	0.0937	0.1929				0.828
6	1.0738	-1.0640					0.504
7	1.1041	1.2168	-4.2980				0.813
8	1.1996	1.2439	-6.3351	205.8080			0.908
9	1.1585	-2.5967					0.758
10	-0.1160	0.1040	0.2221	17.6738			0.897
11	-0.7412	0.0321	0.6744	-0.0715	20.1376		0.912
12	-1.3816	1.0003	-0.2317	0.4842	-0.0398	21.1668	0.937
13	-0.1190	0.3640	-0.1330				0.860

Table 5.3 Regression Results for Submerged Conditions, No Grates, 90 Data Points

.

· • •

•

• • •

. .

· `·

Table 5.4 Regression Results for Submerged Conditions, Grates Installed, 87 Data Points

Equation	Bo	^B 1	^B 2	^B 3	^B 4	^B 5	R
1	13.4540	-16.4665	7.6996	-1.5431	0.1134		0.896
2	0.1165	0.2314	11.2522		- • -		0.913
3	0.2414	0.2102					0.877
4	0.5743	0.0319					0.864
5	0.2156	0.0501	0.1881				0.883
6	1.1295	-1.1600					0.582
7	1.1568	0.6726	-3.4833				0.855
8	1.2298	0.6702	-4.9686	150.2440			0.921
9	1.1951	-2.6103					0.834
10	0.0869	0.0541	0.2079	11.4102			0.920
11	-0.4294	0.0164	0.5609	-0.0549	13.4505		0.931
12	-0.7092	5799	-0.1356	0.3933	-0.0279	13.7285	0.944
13	0.0190	0.3230	-0.1110				0.920

and for grates installed is

$$C_{e} = 0.019 + 0.323 \left(\frac{Q}{D^{2.5}}\right) - 0.111 \left(\frac{HW-TW}{D}\right)$$
 (5.5)

The coefficients of determination are 0.86 for Eq. (5.4) and 0.92 for Eq. (5.5). Equation (5.4) is plotted in Fig. 5.1 and Eq. (5.5) is plotted in Fig. 5.2. A comparison of the two equations with and without grates is given in Figure 5.3. The values of C_e with grates are clearly greater than those without grates.

Another simple equation is Eq. 2 in Table 5.2. The regression equation for no grates is

$$C_e = -0.044 + 0.262 \left(\frac{O}{D^{2.5}}\right) + 17.155 (S_o)$$
 (5.6)

and for grates installed is

$$C_e = 0.117 + 0.231 \left(\frac{O}{D^{2.5}}\right) + 11.252 \left(S_0\right)$$
 (5.7)

The coefficients of determination for these equations are 0.877 for Eq. (5.6) and 0.913 for Eq. (5.7). These two equations (5.6) and (5.7) are plotted in Fig. 5.4 for three example slopes, $S_0 = 0.0005$, 0.005, and 0.01. These curves indicate that the differences in C_e for no grates and grates installed decrease for the larger slopes and for larger values of $(-\frac{Q}{D^{2.5}})$.

An even simpler form for C_e is Eq. 3 in Table 5.2. The regression equation for no grates is

$$C_e = 0.145 + 0.230 \left(\frac{Q}{D^{2.5}}\right)$$
 (5.8)

and for grates installed is

$$C_e = 0.241 + 0.210 \left(\frac{Q}{D^{2.5}}\right)$$
 (5.9)

The coefficients of determination for these equations are 0.81 for Eq. (5.8) and 0.88 for Eq. (5.9). These equations are plotted in Fig. 5.5.

ء • • • • , . • •

Figure 5.1 Entrance Headloss Coefficient for Submerged Conditions, No Grates (Eq. 5.4)

111

, . •

. .

Figure 5.2 Entrance Headloss Coefficient for Submerged Conditions, Grates (Eq. 5.5)

112

• • •

· · · ·

• •

Figure 5.3 Entrance Headloss Coefficient for Submerged Conditions, Grates and No Grates (Eqs. 5.5, 5.4)

Figure 5.4 Entrance Headloss Coefficient for Submerged Conditions, Grates and No Grates (Eqs. 5.7, 5.6)

• • • •

Figure 5.5 Entrance Headloss Coefficient for Submerged Conditions, Grates and No Grates (Eqs. 5.9, 5.8)

5.7 Regression Equations for Submerged and Unsubmerged Inlets Combined

Regression equations were developed for the entrance headloss coefficients for submerged and unsubmerged inlet conditions. The various regression equations considered are listed in Table 5.2. The resulting coefficients, B_0 , ..., B_n for each of the regression equations are listed in Table 5.5 for no grates and in Table 5.6 for the grates installed. The simple forms of the equations for C_e used for the submerged conditions are also considered.

The first set of equations are 13 in Table 5.2. The regression equation for no grates is

$$C_e = -0.115 + 0.350 \left(\frac{O}{D^{2.5}}\right) - 0.109 \left(\frac{HW-TW}{D}\right)$$
 (5.10)

and for grates installed is

$$C_e = 0.187 + 0.252 \left(\frac{Q}{D^{2.5}}\right) - 0.062 \left(\frac{HW-TW}{D}\right)$$
 (5.11)

The coefficients of determination for these equations are 0.90 for Eq. (5.10) and are 0.92 for Eq. (5.11). Equation (5.10) is plotted in Figure 5.6 and Eq. (5.11) is plotted in Fig. 5.7. A comparison of the two equations for no grates and grates installed is given in Fig. 5.8.

Utilizing Eq. 2 in Table 5.2, the regression equation for no grates is

$$C_e = -0.176 + 0.302 \left(\frac{Q}{D^{2.5}}\right) + 15.705 \left(S_0\right)$$
 (5.12)

and for grates installed is

$$C_e = 0.133 + 0.227 \left(\frac{Q}{D^{2.5}}\right) + 10.754 (S_o).$$
 (5.13)

The coefficients of determination for these equations are 0.901 for Eq. (5.12) and 0.93 for Eq. (5.13). These two equations are plotted in Fig. 5.9 for four example slopes 0.0005, 0.005, 0.010 and 0.015. These curves clearly indicate that the differences in C_e for no grates and grates installed decrease for the larger slopes and for larger values of $(\frac{Q}{D^{2.5}})$.

Equation	^B 1	^B 2	^B 3	^B 4	^B 5	^B 6	R
1	0.1940	0.0414	0.0417	0.0191	-0.0046		0.886
2	-0.1764	0.3024	15.7059				0.901
3	-0.0003	0.2721					0.874
4	0.3925	0.0446					0.848
5	-0.0329	0.1374	0.2016				0.894
6	1.1026	-1.4156					0.563
7	1.0012	0.1119	-1.6237				0.730
8	1.0452	0.0637	-2.5535	109.9870			0.747
9	1.0151	-1.5487					0.730
10	-0.2230	0.1489	0.2279	16.7126			0.924
11	-0.5012	0.0368	0.5103	-0.0459	17.8104		0.926
12	-0.6018	0.7528	-0.1697	0.1509	0.0109	17.5524	0.939
13	-0.1150	0.3500	-0.1090				0.900

Table 5.5 Regression Results for Submerged and Unsubmerged Conditions Combined, No Grates, 106 Data Points

. .

٠.

.

•

· ·

Table 5.6 Regression Results for Submerged and Unsubmerged Conditions Combined, Grates Installed, 101 Data Points

Equation	во	^B 1	^B 2	^B 3	⁸ 4	^B 5	R
1	1 / 217	-1 37/2	0 7/37	-0 1453	0 0100		0 91/
2	0 1329	0 2266	10 7540	0.1400	0.0100		0.914
3	0.2530	0.2062	10.7940				0.904
4	0.5471	0.0341					0.895
5	0.2431	0.0491	0.1800				0.908
6	1.1242	-1.2200					0.631
7	1.0594	-0.3908	-0.8262				0.703
8	1.0926	-0.4388	-1.4950	80.3584			0.720
9	1.0092	-1.0820					0.693
10	0.1197	0.0540	0.1982	10.9763			0.932
11	0.1074	0.0129	0.2386	-0.0060	11.0500		0.930
12	0.0765	0.3324	-0.0765	0,0685	0.2070	10.8565	0.935
13	0.1870	0.2520	-0.0620				0.920

Figure 5.6 Entrance Headloss Coefficient for Submerged and Unsubmerged Conditions Combined, No Grates (Eq. 5.10)

•

.

•

٠.

118

٠.

• . • •

.

Figure 5.8 Entrance Headloss Coefficient for Submerged and Unsubmerged Conditions Combined, Grates and No Grates (Eqs. 5.11, 5.10)

Figure 5.9 Entrance Headloss Coefficient for Submerged and Unsubmerged Conditions Combined, Grates and No Grates (Eqs. 5.13, 5.12)

The simplest form of the equation for C is 3 in Table 5.2 The regression equation for no grates is

$$C_{e} = -0.0003 + 0.272 \left(\frac{Q}{D^{2.5}}\right)$$
 (5.14)

and for grates installed is

$$C_e = 0.253 + 0.206 \left(\frac{Q}{D^{2.5}}\right)$$
 (5.15)

The coefficients of determination for these equations are 0.874 for Eq. (5.14) and 0.904 for Eq. (5.15). These equations are plotted in Fig. 5.10.

Figure 5.11 is a comparison for no grates of Eqs. 5.12 (for $S_0 = 0.0007$ and 0.008), Eq. 5.14 and Eq. 5.16 (from Eq. 4 in Table 5.2),

$$C_e = 0.392 + 0.045 \left(\frac{Q}{D^{2.5}}\right)^2$$
 (5.16)

The coefficient of determination for Eq. 5.16 is 0.85.

Figure 5.10 Entrance Headloss Coefficient for Submerged and Unsubmerged Conditions Combined, Grates and No Grates (Eqs. 5.15, 5.14)

Figure 5.11 Entrance Headloss Coefficient for Submerged and Unsubmerged Conditions Combined, No Grates (Eqs. 5.12, 5.14, 5.16)

CHAPTER 6 CONCLUSIONS

6.1 Conclusions for Box Culvert Model

6.1.1 Pipe Safety Grates

Based on the experimental study for the box culvert using pipe safety grates, the following conclusions are made:

- For steep and mild slope regimes with full barrel flow, the pipe safety grates increased the entrance headloss only slightly. The comparison of C_e values with and without the safety grates (Figs. B.1 B.5) indicate only a small increase in the entrance headloss coefficient for outlet control with slopes .0008 and .0063 and for inlet control with slopes .0108 and .0128. For slope .0013 (outlet control) the entrance headloss coefficient was not affected by the safety grates.
- 2. For full flow conditions and for submerged entrance conditions (Type 4A and 4B flow regimes), the pipe safety grates have little effect on the entrance headloss coefficient. Referring to the comparison plots of the C_e values with and without safety grates installed (Figures B.1 - B.5), the data points for Type 4A and 4B flow regimes appear scattered and the regression lines generally have the lowest correlation coefficients (Table 3.1).
- 3. The headwater depth was not measurably affected by the installation of the pipe safety grates. Referring to the head-water versus discharge plots (Figures B.9 -B.13), the data points

with the safety grates plotted almost identical with the data points without safety grates. Referring to the headwater versus tailwater plots (Figures B.33 - B.47), the data points with and without the pipe safety grates are approximately the same.

- 4. Conventional hydraulic design of culverts uses a constant entrance headloss coefficient for all Types of flow conditions. However, based upon this experimental study, the entrance headloss coefficient can vary with headwater, discharge, tailwater, and consequently with flow regime. From the entrance headloss coefficient versus headwater plots (Figures B.17 -B.21), the entrance headlosses increased with an increase in The increase in headwater was due to headwater depth. increases in tailwater and/or discharge. The maximum entrance headloss coefficients were obtained for $(\frac{HW}{D})$ greater than approximately 1.5. The lower C values were generally for outlet control with an unsubmerged entrance. The higher entrance headloss coefficients were for full culvert flow conditions.
- 5. The entrance headloss coefficient can be determined by regression equations based on combinations of headwater, tailwater, slope, and dishcarge. The regression equations with the best fit were for outlet control with unsubmerged entrance conditions (Type 1 and 2 flow regimes) and for submerged entrance with outlet control conditions (Type 4B flow regimes).
- 6. When the pipe safety grates experience clogging greater than 45 percent, the headwater and the entrance headloss coeffici-

ents increased dramatically (Figures B.1 – B.11 and B.20 – B.31, respectively), and the efficiency of the culvert was substantially decreased. The increase in headwater and entrance headloss coefficient was higher for the larger discharges. While there is an obvious propensity for clogging with safety grates, this study did not incude an evaluation of that propensity.

6.1.2 Bar Safety Grates

Based on the experimental testing program for the bar safety grates, the following conclusions are made:

- 1. The entrance headloss coefficients for the bar safety grates were higher than without the safety grates. The comparison of entrance headloss coefficients with and without bar safety grates (Figs. B.7 - B.9) indicate an increase in C_e for all flow regimes tested on slopes 0.0008 and 0.0108 and an increase in C_e for Type 2 and 4B flow regimes for the slope 0.0063. The data points for Type 1 and 4A flow regimes were rather scattered for slope 0.0063.
- 2. Along with the increase in the entrance headloss coefficients, there was a corresponding increase in the headwater due to the bar safety grates. Referring to the headwater versus discharge plots (Figs. B.14 B.16), the bar safety grates caused higher headwaters than with no safety grates under similar conditions. The increase in headwater was also evident in the headwater versus tailwater plots (Figs. B.34 B.47). The headwater depths with the bar safety grates were higher than the headwater depths without the safety grates for the same discharge and

tailwater. The increase in headwater due to the bar safety grates was less obvious for higher tailwater depths. The higher tailwater depths were less stable in this experiment, and thus less accurate.

- 3. The entrance headloss coefficient with the bar safety grates were also varied with headwater, discharge, tailwater, and flow regime. The entrance headloss coefficient increased with an increase in headwater as evident by the entrance headloss coefficient versus headwater plots (Figs. B.22 - B.24). The maximum C_e values were again obtained for $\frac{HW}{D}$ greater than 1.5. Outlet control with unsubmerged entrance (Type 1 flow regime) and full flow conditions (Type 4A flow regime) had the lowest and highest entrance headloss coefficients, respectively.
- 4. The developed regression equations for the bar safety grates can be used to determine the entrance headloss coefficients for Type 1, 2, 4B, and to a lesser extent, 4A flow regimes (Table 3.5). For the bar safety grates, the empirical curves (Table 3.6) were also determined for inlet control flow conditions (Type 3A flow regime).
- 5. The bar safety grates experienced the same response as the pipe safety grates did to clogging. The entrance headloss coefficient and headwater increased rapidly above 45 percent clogging and the increase was greater for the higher discharges (Figs. B.15 B.12 and B.22 B.35, respectively).

6.1.3 Summary of Regression Equations for Design

 Regression equations have been developed for determining the headwater-discharge relationships for inlet control. Five equations (1st order to 5th order polynomials) were developed for each situation, with or without pipe safety grates and with bar safety grates. The effect of pipe grates were insignificant so the same equations can be used with or without these grates. The regression coefficients are summarized in Table 3.3. The

fifth order equation for no grates is

$$\frac{HW}{D} = 1.888 - 3.745 \left(\frac{Q}{BD^{1.5}}\right) + 3.631 \left(\frac{Q}{BD^{1.5}}\right)^2 - 1.539 \left(\frac{Q}{BD^{1.5}}\right)^3 + 0.307 \left(\frac{Q}{BD^{1.5}}\right)^4 - 0.231 \left(\frac{Q}{BD^{1.5}}\right)^5$$

and for the bar grates installed is

$$\frac{HW}{D} = 1.3236 - 2.661 \left(\frac{Q}{BD^{1.5}}\right) + 2.907 \left(\frac{Q}{BD^{1.5}}\right)^2 - 1.333 \left(\frac{Q}{BD^{1.5}}\right)^3 + 0.2843 \left(\frac{Q}{BD^{1.5}}\right)^4 - 0.0226 \left(\frac{Q}{BD^{1.5}}\right)^5$$

2. Recommended regression equations for design considering submerged inlet, outlet control conditions are:

No Grates

$$C_e = 0.421 + 0.102 \left(\frac{Q}{BD^{1.5}}\right) - 0.348 \left(\frac{HW-TW}{D}\right)$$
 (6.1)

Pipe Safety Grates

$$C_e = 0.474 + 0.080 \left(\frac{Q}{BD^{1.5}}\right) - 0.254 \left(\frac{HW - TW}{D}\right)$$
 (6.2)

Bar Safety Grates

$$C_e = 0.616 + 0.063 \left(\frac{Q}{BD^{1.5}}\right) - 0.433 \left(\frac{HW - TW}{D}\right)$$
 (6.3)

3. Recommended regression equations for design considering unsubmerged inlet, outlet control conditions are:

No Grates

$$C_e = -0.040 + 1.000 \left(\frac{HW}{D}\right) - 0.276 \left(\frac{Q}{BD^{1.5}}\right)$$
 (6.4)

Pipe Safety Grates

$$C_e = -0.122 + 1.046 \left(\frac{HW}{D}\right) - 0.262 \left(\frac{O}{BD^{1.5}}\right)$$
 (6.5)

Bar Safety Grates

$$C_e = -0.213 + 1.448 \left(\frac{HW}{D}\right) - 0.366 \left(\frac{Q}{BD^{1.5}}\right)$$
 (6.6)

4. Recommended regression equations for design developed considering both submerged and unsubmerged inlet, outlet control conditions are:

No Grates

$$C_e = -0.187 + 0.614 \left(\frac{HW}{D}\right) - 0.060 \left(\frac{Q}{BD^{1.5}}\right)$$
 (6.7)

Pipe Safety Grates

$$C_e = -0.172 + 0.479 \left(\frac{HW}{D}\right) + 0.001 \left(\frac{Q}{BD^{1.5}}\right)$$
 (6.8)

Bar Safety Grates

$$C_e = 0.025 + 0.643 \left(\frac{HW}{D}\right) - 0.111 \left(\frac{Q}{BD^{1.5}}\right)$$
 (6.9)

5. The inclusion of the $(\frac{HW}{D})$ term in Eqs. 6.1-6.9 will add yet another level of trial and error manipulations to the standard procedure of culvert design. A possible procedure would use a first estimate of C_e to obtain, as per standard procedures, values for $(\frac{HW}{D})$ and $(\frac{Q}{BD^{1.5}})$. Next a new value for C_e could be obtained using the appropriate equation (6.1-6.9), etc, until a solution is converged upon.

6.2 Conclusions for Pipe Culvert Model

The following conclusions were made based upon the experimental study using the 15-inch diameter helical corrugated metal pipe culvert:

- At low discharges, the entrance coefficients are substantially higher for the grate treatment than for the no grate conditions. The effect of the grates on the entrance coefficient is more significant at higher discharges. (Figs. E.1 - E.2, E.14 - E.19).
- Headwater depth increases linearly with increasing discharge up to headwater depths equal to approximately 1.2 times the culvert diameter. The effect of the safety grates on headwater depth is virtually constant throughout the discharge range. (Figs. E.3 - E.5).

3. The entrance coefficient for the safety grate condition is higher than that for the no grate condition for unsubmerged inlets. The effect of safety grates on the entrance coefficient is relatively constant for a submerged inlet (Fig. E.12). The coefficient for both conditions increases substantially for an unsubmerged inlet (Fig. E.11).

- 4. The entrance coefficient increases substantially for increasing discharge for a submerged entrance (Fig. E.14).
- Headwater depth is unaffected by rising tailwater depth for less than critical depths (Figs. E.20 - E.23).
- 6. The flatter the slope, the greater the effect of tailwater depth on headwater depth (Figs. E.22 E.23).
- 7. For available headwall elevations greater than 1.2 times the culvert diameter, the effects of safety grate treatment on design criteria is insignificant. For available headwall elevations less than 1.2 times the culvert diameter, the effect of safety grate treatment on design criteria is substantial.
- 8. Regression equations have been developed for determining the headwater-discharge relationships for inlet control for no grates and for grates installed. Five equations (1st order to 5th order polynomials) were developed for each situation, with and without grates. The regression coefficients are summarized in

Table 5.1. The fifth order equation for no grates is

$$\left(\frac{HW}{D}\right) = 0.236 + 1.088 \left(\frac{Q}{BD^{1.5}}\right) + \left(\frac{Q}{BD^{1.5}}\right)D^2 + 0.482 \left(\frac{Q}{BD^{1.5}}\right)^3$$
 $+ 0.099 \left(\frac{Q}{BD^{1.5}}\right)^4 + 0.007 \left(\frac{Q}{BD^{1.5}}\right)^5$

and for grates installed is

$$\left(\frac{HW}{D}\right) = -0.774 + 2.775 \left(\frac{Q}{BD^{1.5}}\right) - 1.999 \left(\frac{Q}{BD^{1.5}}\right)^2 + 0.749 \left(\frac{Q}{BD^{1.5}}\right)^3 - 0.732 \left(\frac{Q}{BD^{1.5}}\right)^4 + 0.009 \left(\frac{Q}{BD^{1.5}}\right)^5$$

 Regression equations for outlet control conditions were developed for determining C_p for use in design procedures. The

suggested equations for submerged conditions are summarized as follows:

No Grates - Submerged Inlet

$$C_{e} = -0.044 + 0.262 \left(\frac{Q}{D^{2.5}} \right) + 17.155 \left(S_{0} \right)$$
(6.10)

or

- ·

.

•

. .

$$C_e = 0.145 + 0.230 \left(\frac{Q}{D^{2.5}}\right)$$
 (6.11)

Grates Installed - Submerged Inlet

$$C_e = 0.117 + 0.231 \left(\frac{Q}{D^{2.5'}}\right) + 11.252 \left(S_0\right)$$
 (6.12)

$$C_e = 0.241 + 0.210 \left(\frac{Q}{D^{2.5'}}\right)$$
 (6.13)

The suggested equations for submerged and unsubmerged conditions combined are summarized as follows:

No Grates - Submerged and Unsubmerged Inlets

$$C_e = -0.176 + 0.302 \left(\frac{Q}{D^{2.5}}\right) + 15.705 (S_o)$$
 (6.14)

or

$$C_e = -0.0000 + 0.272 \left(\frac{O}{D^{2.5}}\right)$$
 (6.15)

Grates Installed - Submerged and Unsubmerged Inlets

$$C_e = 0.133 + 0.227 \left(\frac{O}{D^{2.5}}\right) + 10.754 (S_o)$$
 (6.16)
or

$$C_e = 0.253 + 0.206 \left(\frac{Q}{D^{2.5}}\right)$$
 (6.17)

10. As discussed in Chapter 5, the extrapolation of the test results for the pipe culvert model should be done with caution keeping in mind that the corrugation sizes were not properly modeled.

6.3 Final Discussion

In the process of investigating the hydraulic performance of culverts with safety grates, experimental data was also collected and analysed for the same culverts with no safety grates in place. Typical design procedure incorporates conservative estimates for C_e which vary with entrance geometry and culvert type, but are considered independent of slope, HW, TW and Q. The equations presented here suggest that C_e can vary with slope, HW, TW and/or Q. Comparison for a given flow situation, of the C_e values calculated from the noted equations, whether with or without safety grates, with the value provided by typical practice can provide insight leading to more effective design of highway culverts.

REFERENCES

- 1. American Iron and Steel Institute, <u>Handbook of Steel Drainage</u> and Highway Construction, 2nd Edition, 1971.
- Blaisdell, F. W., "Flow in Culvert and Related Design Philosophies", Journal of the Hydraulics Division, ASCE, Vol. 92, March, 1966, pp. 19-31.
- Bossey, H. G., "Hydraulics of Conventional Highway Culverts", U.S. Department of Commerce, Bureau of Public Roads, Unpublished paper, August, 1961.
- 4. Chow, V. T., <u>Open Channel Hydraulics</u>, Mc-Graw-Hill Book Co., 1959, pp. 475-480.
- French, J. L., Discussion of "Tests on Circular-Pipe-Culvert Inlets", Highway Research Board, Bulletin 126, January, 1955, pp. 20-22.
- French, J. L., "Effect of Approach Channel Characteristics on Model Pipe Culvert Operation", National Bureau of Standards Report No. 5306, June 3, 1957.
- French, J. L., "Tapered Box Culvert Inlets Sixth Progress Report on Hydraulics of Culverts", National Bureau of Standards Report 9355, June, 1966.
- Mavis, F. T., "The Hydraulics of Culverts", Bulletin 56, Engineering Experiment Station, Pennsylvania State College, 1942, pp. 1-29.
- Schiller, R. E., "Tests on Circular-Pipe-Culvert Inlets", Highway Research Board, Bulletin 126, January 1955, pp. 11-19.
- Shoemaker, R. H. and Clayton, L. A., "Model Studies of Tapered Inlets for Box Culvert", Highway Research Board, Research Report 15-B, January, 1953.
- 11. State Department of Highways and Public Transportation in Texas, THYSYS, Bridge Division.
- 12. State Department of Highways and Public Transportation in Texas, <u>Hydraulic Manual</u>, Bridge Division, September, 1970, pp. 1V 1-68.

- 13. Statistical Engineering Laboratory at The National Bureau of Standards, OMNITAB, 1966.
- 14. University of Texas Computation Center, RLFOR, Austin, Texas.
- U.S. Department of Transportation, "Hydraulic Charts for the Selection of Highway Culverts", Hydraulic Engineering Circular No. 5, December, 1965, pp. 1-54.
- 16. U.S. Department of Transportation, "Capacity Chart for the Hydraulic Design of Highway Culverts", Hydraulic Engineering Circular No. 10, March, 1965, pp. 1-90.
- U.S. Department of Transportation, "Hydraulic Design of Improved Inlets for Culverts", Hydraulic Engineering Circular No. 13, August, 1972, pp. 1-172.

APPENDIX A

• •

-.

•

•

•

•

User's Manual And Fortran Listing

For Computer Program

"CULVERT"

• _

Appendix A.1

User's Manual for Computer

Program "CULVERT"

The computer program, CULVERT, was designed to convert test data into headwater, tailwater, discharge, energy gradeline, and hydraulic gradeline measurements. CULVERT was able to analyze test data from both box and cirular culverts. The output from the program consisted of two entrance headloss coefficients, the critical depth, the critical slope, and HW/D, TW/D, and Q/BD^{1.5} values. The entrance headloss coefficient was determined by both the energy and the hydraulic gradelines. The CULVERT output format was modified for use in several plotting routines and for the OMNITAB II and RLFOR statistical programs.

The arrangements and descriptions of the input cards are given as follows.

Input Data

The first data card will identify the culvert type being tested. a one or a two will mean a circular culvert, while a three or a four will identify a box culvert. The format is

FORTRAN		Card	
Name	Format	Column	Description
SHAPE	15	1- 5	Type of culvert being tested

The second data card will read in the slope, the physical dimensions, and the Manning's n for the culvert. The format is as follows:

FORTRAN Name	Format	Card Column	Description
SLOPE	F10.5	1-10	The measured slope of the culvert
LENGTH	F10.5	11-20	The measured length of the culvert in feet
MANN	F10.5	21-30	The assumed Manning's n for the culvert
WIDE	F10.5	31-40	The width of the culvert in feet. Diameter (DIAM) if the culvert is circular.
HIGH	F10.5	4 1-50	The height of the culvert in feet. Leave blank for circular culvert.

The third data set contains conversion factors which will change the raw measured data into actual measurements of headwater, tailwater, discharge, and hydraulic depth in the culvert. The determination of each conversion factor is given in Section 2.6, Testing of Data Reduction. The format is

FORTRAN Name	Format	Card Column	Description
HWLELE	F10.5	1-10	Conversion factor for the left upstream gauge measure- ment
HWRELE	F10.5	11-20	Conversion factor for the right upstream gauge measure- ment
TWLELE	F10.5	21-30	Conversion factor for the discharge channel piezometer
WEIREL	F10.5	31-40	Conversion factor for the weir point gauge reading
GAGEL	F10.5	41-50	Conversion factor for gauges 1 through 12

(continued)

FORTRAN Name	Format	Card Column	Description			
GAGOUT	F10.5	51-60	Conversion factor for gauge 12			

The fourth and fifty data cards will read in the distances that the twelve piezometers are from the culvert entrance. The format is

FORTRAN		Card	
Name	Format	Column	Description
DY(I)	F10.5	1-80	Location of each piezometer along the culvert in feet. I = 1 through 12.

The sixth data card reads in the discharge, date, and other information for each different safety grate test. This card, along with the following cards, will be repeated for each test conducted. The format is as follows:

FORTRAN Name	Format	Card Column	Description
HWEIR	F10.5	1-10	Measurement of the weir point gauge in feet. A 9999.0 will terminate the program.
В	A1 0	21-80	The date, the tailwater conditions, the grate type, and other pertinent information of the test.

The next two data cards will give the actual measurement for each safety grate test. These data cards are repeated each time the safety grates are removed or installed. A one in column 5 of the first card will mean the test was run without any safety grates in place. A test with just an upstream safety grate will have a two. With both safety grates, a three will be in column 5. The format of the first card is as follows:

FORTRAN Name	Format	Card Column	Description
ICOND	15	1- 5	Location of the safety grates 1 = No safety grates, 2 = Upstream safety grate, 3 = Both safety grates
DX(I)	F 10.0	11-80	Piezometric readings inside the culvert.

The format of the second card is as follows:

FORTRAN Name	Format	Card Column	Description
DX(I)	F10.0	1-50	Remaining piezometric readings
HWL	F10.0	51-60	Upstream left point gauge measurement
HWR	F10.0	61-70	Upstream right point gauge measurement
TWL	F10.0	71-80	Discharge channel piezometer reading.

· .

APPENDIX A.2

٠ ،

٠.

٠

•

. •

. .

Listing of Computer Program

"CULVERT"

• • ••• • • • · . •••

```
PROGRAM CULVERT(INPUT, OUTPUT, TAPE1, TAPE2, TAPE3, TAPE4, TA
PES, TAPES,
    ITAPE7, TAPE8, TAPE91
     REAL MANN, LENGTH
     INTEGER SHAPE
     DIMENSION A(3), B(6), DY(12), DX(12), EGL(12)
     DATA A(1)/18HW-0 GRATES/, A(2)/18HW+US GRATE/, A(3)/18HB0
THGRATES/
     DATA C/10H+HO--DATA+/,NT/1/
С
INPUT CULVERT PROPERTIES
C * *
     SLOPE, LENGTH, MANNING #5 N, AND CULVERT DIMENSIONS
C * *
C * *
      SHAPE = 1 FOR CIRCULAR CULVERT
£ * *
              4 FOR BOX CULVERT
£.**
      DIAM
            = CIRCULAR CULVERT DIAMETER
C * *
      WIDE -
            = BOX CULVERT WIDTH
           = BOX CULVERT HEIGHT
C * *
      HIGH
C
     REWIND NT
     READ 108, SHAPE
     GO TO (1,1,2,2), SHAPE
   1 READ 101, SLOPE, LENGTH, MANN, DIAM
     PRINT 341, DIAM, LENGTH, SLOPE
  301 FORMATCHH1,4X*CIRCULAR CULVERT MODEL*/5X*DIAMETER (IN F
1,1 =*F11,3
             ,5X*LENGTH =*F10.3,5X*SLOPF =*F10.4///)
    I.
    60 TO 3
   2 READ 1'1, SLOPE, LENGTH, MANN, WIDE, HIGH
     PPINT 302, HIGH, WIDE, LENGTH, SLOPE
  342 FORMAT(JH1,4X+BOX CULVERT MODEL+/5X+DIMENSION (IN FT.)
:*F1.3,2X,
              *BY*F14.3,5X*LENGTH #*F14.3,5X*SLOPF #*F18.4
    1
111
С
INPUT CONVERSION FACTORS
C * *
     HWLELE=LEFT UPSTREAM GAGE
6 * *
     HWRELE=RIGHT UPSTREAM GAGE
C * *
     TWLELE=TAILWATER GAGE
C * *
C * *
     WEIREL=WEIR CONVERSION
     GAGEL= GAGES 1 THRU 11
C \star \star
C * *
     GAGOUT = GAGE 12
C
   3 READ I 1, HWLELE, HWRELE, TWLELE, WEIREL, GAGEL, GAGOUT
C
C** INPUT PIEZOMETERS | OCATIONS IN CULVERT
C
    READ 131, (DY(1),1=1,12)
 10.4 FORMAT(15)
 181 FORMAT (BE 10 5)
ſ
C * * * * *
     ******
                     *************
     READ IN DISCHARGE DATA
C * *
      HWEIR = WEIR READING
C * *
      QPP = DISCHAGE (CFS)
C * *
```

```
С
   4 READ 143, HWEIR, B
 103 FORMAT(F10.5,10X,6A10)
     IF (HWEIR _EQ. 9999) GU TO 988
    HWEIR=HWEIR+WEIREL
     0PP=3.33+4.+HWEIR++1.5
С
COMPUTE CRITICAL DEPTH, CRITICAL SLOPE, AND NORMAL DEPTH
C * *
C * *
      CRITD = CRIFICAL DEPTH
C * *
      CRSLPE # CHITICAL SLOPE
C**
      UDEP
          = NORMAL DEPTH
r
     CALL CRITIC(SHAPE, DIAM, HIGH, WIDE, MANN, GPP, CRSLPE, CRITD)
     CALL HOXUD (SHAPE, DIAM, HIGH, WIDE, MANN, OPP, SLOPE, UDEP)
     PRINT 281, QPP, B, MANN, CRITD, UDEP, CRSLPE, SLOPE
 201 FORMAT(//5X, +DISCHARGE # +, F19.5.+ CFS+, 5X, 6419,/
            5X*MANNING =*F7_4,5X*CRITICAL DEPTH =*F7.4,
    1
            5X*NORMAL DEPTH #*F7.4,5X*CRITICAL SLOPE=*F714
    1
            5X*SLOPE=*F7_4//
    1
          1.X . * CONDITIONS*, 5X . * HEAD-WATER*, 5X .* E.G.L. DE*
    1
           5X,* H=OVER=D*,5X,*NON=DIMENQ*,5X,*HYD.G.L.CE*
    2
    X
           SX .* E.G.L. CE*, SX .* TH-OVER+D*/)
С
READ IN HEADWATER, TAILWATER, AND DEPTH DATA IN CULVERT
C**
C * *
      DX(I) = PIEZOMETER READINGS
      HWL
C * *
           = LEFT UPSTREAM POINT GAGE
            = RIGHT UPSTREAM POINT GAGE
C * *
      HWR
C * *
      TWI
           = DISCHARGE CHANNEL GAGE
C
   5 READ LUP, TCOND, (DX(I), 1×1,12), HWL, HWR, TWL
  102 FORMAT(15,5X,7F10.0/8F10.0)
     IFUIWL ER, 2173 GO TO 9
IFUIWL ER, 2103 GO TO 10
С
C * *
     CONVERT TEST DATA INTO ACTUAL MEASUREMENTS.
          = AVERAGE HEADWATER DEPTH
C * *
      HW
      TW
            # TAILWATER DEPTH
C * *
С
С
     TW=(TWL/12.)+TWLELE
     GO TO 11
  16 TW=818
  11 CONTINUE
     HW=(HWL+HWLFLE+HWP+HWPELE)/2.
С
START OF LINEAR REGRESSION BY DETERMING THE
C * *
     ENERGY AND HYDRAULIC GRADE LINES.
C * *
€
     XGS=;;,/
    XS=∂[
    YS=:
    DN=5
    DO 25 J=6,13
```

```
DEPTH=DX(J) + GAGEL
    DEP=DEPTH + SLOPE+DY(1)
    GO TO (35,30,31,31), SHAPE
  32 CALL CIRCLE(DEP, AREA, FSLOPE, DIAM, NPP, MANN)
    GO TO 32
  31 CALL BOX(DEP, AREA, FSLOPE, WIDE, HIGH, MANN, QPP)
  32 VEL=QPP/AREA
    EGL(J)=DEPTH + VEL**2/64.4
     XS=XS + DEPTH
     XGS = XGS + ECL(J)
  75 YS = YS + DY(J)
    XM = XS/DN
     YM=YS/DN
     XGLM=XGS/DN
     EGP=0 0
     XP=4
     YP=::
     DO 26 K=6,10
     XP = XP + (DX(K) + GAGEL + XM) + (DY(K) - YM)
     EGP=EGP+(EGL(K)+XGLM)*(DY(K)+YM)
  26 YP=YP+(0Y(K)+YM)**2
С
C * #
     CALCULATION OF DEPTH AT ENTRANCE BY EXTRAPOLATION OF
C * *
     THE ENERGY AND HYDRAULIC GRADELINES
C * *
      DE = HYDFAULIC DEPTH
C * *
      PGAMMA = ENERGY DEPTH
С
     DE=XM+(XP/YP)+YM
     PGAMMA=XGLM=(EGP/YP)*YM
     I₩ÚD= ara
C
C * *
     CALCULATION OF H-OVER-D, TW-OVER-D, AND AREA OF FLOW
C * *
      F = OPP/(B \star D \star \star 1_5)
C**
      HWOD
           = HEADWATER/HIGH
CAA
      TWOD = TAILWATER/HIGH
С
     GO TO(6,6,7,7), SHAPE
   6 CALL CIRCLE (DE, AREA, FSLOPE, DIAM, OPP, MANN)
     HWUD=HW/DIAM
    F=QPP/DIAM**215
     IF (TH'EQ'S' ") GO TO A
     TWOD=TW/DIAM
    GO TO 8
   7 CALL BOX(DE, AREA, FSLOPE, WIDE, HIGH, MANN, QPP)
     HWOD=HW/HIGH
    F=QPP/(WIDE+HIGH++1,5)
     IF (TW EQ 3 4) GO TO 8
    TWOD=TW/HIGH
С
C** DETERMINATION OF AVERAGE VELOCITY
С
   B VEL=QPP/AREA
С
DETERMINATION OF CE BY USE OF BOTH ENERGY AND
C * *
    HYDRAULIC GRADE LINES
C * *
```

```
147
```

.

```
C**********
                     *******
r
     CE=(HW+PGAMMA)/(VEL**2)/64.4)
     HGCE=(HH+DE)/(VEL**2/6404)+1
     PRINT 2/2, A(ICOND), HW, PGAMMA, HWOD, F, HGCE, CE, THOD
С
SEPARATION OF DATA INTO DIFFERENT FLOW REGIMES
C**
     USING TEXAS HWY. DEPT. CRETERIA
C * *
£
     SC=CRSLPE
     SL=SLOPE+LENGTH
     DC=CRIID
     IC=ICOND
     IF (SLOPE GELSC) GO TO 41
     IF (TW_GT_DC) GO TO 42
     IF (HW, GE, (1.2*HIGH)) GO TO 49
     IF (TW EU A A) GO TO 46
С
FLOW TYPE I
C * *
      SLOPE LIT CRSLPE
HW LIT 12*HIGH
TW LIT CPITD
C * *
C**
C * *
C************************
                          *************************
С
     HRITE(2,242) A(1COND), HW, PGAMMA, HWOD, F, HGCE, CE, TWOD
     60 TO 9
  46 IF (ICOND_E0_2) GO TO 9
     IF (ICOND_EQ_3) IC=2
     WRITE(IC, 242) A(ICOND), HW, PGAMMA, HWOD, F, HGCE, CE, TWOD
     GO TO 9
С
FLOW TYPE 4B
HW GTT, 1.2*HIGH
TW L.T. HEGH
C * * .
C * *
C * *
C*******************
                           ſ.
  49 1F (TH_NE, 4 M)GO TO 47
IF (ICOND, EQ. 2) GO TO 9
IF (ICOND, EQ. 1) IC=7
     IF (ICOND.E0.3) IC=8
     GO TO 43
  47 IC=8
  43 WRITE(IC, 202) A(ICOND), HW, PGAMMA, HWOD, F, HGCE, CE, TWOD
     GO TO 9
  42 IF (TW_GE_HIGH) GO TO 44
     IF (HW_GE_(1_2*HIGH)) GO TO 47
С
C * *
     FLOW TYPE 2
      SLOPE L.T. CPSLPE
HW L.T. 1.2*HIGH
TW G.T. CHITO BUT
L.T. HIGH
C**
C * *
C * *
C**
С
     WRITE(3,202) A(TCOND), HW, PGAMMA, HWOD, F, HGCE, CE, TWOD
     GO TO 9
  AT IF (TWIGE SLIAND TWILT (SL +HIGH)) GO TO 45
```

```
148
```
```
NULLIA
          S=0pp**2,*A**55.51\5***NMAM*$5**qq0=2
                                        9W/A=St
                                   MD=MIDE+D+S!
                                      BOIM*O≭V
                         H51H≠U (H91H *39° S0) ∃1
                                         -Sa=a
                                     KEAL MANN
                                                 Э
     ************
                                                ¥¥0
                          = MORMAL SLOPE
                                                ¥¥0
                                          S
                       ABTBMAAAA GBITBW =
                                                **3
                                          dM
                            = FLOW AREA
                                                **3
                                          V
                                                ¥¥0
                               390JS JAM90№ 0⊮A
      POULINE TO COMPUTE FLOW AREA, WETTED PARAMETER,
                                               *¥j
          SUBROUTIVE BOX(DS, A, S, WIDE, HIGH, MANN, QPP)
           <u></u>
                                          0NR
                                         4015 836
                                       S 01 09
                        5 IE (ICOND "EG" 2) CU 10 0
                    CCX2,26019171X21014,X1101AM907 S95
                                       6 01 09
   AS WRITE(9.2.2) A(LCOND), HW, PGAMAA, HWOD, F, HGCE, CE, TWOD
                                                 1
      *************
                 г.т. згорексемоти нит
с.т. згорексемоти нит
                                               ¥¥)
                                         MI
                                               **3
                             SLOPE GIT CRSLPE
                                               * ¥ 1)
                                   ELOW TYPE 38
                                               - ¥ ¥ Ü
1
                                       6 01 09
   AN WRITE(6,2222) ACICOND, HW, PGAMMA, HWOD, F, HGCE, CE, TWOD
                                                 C
************
                                             *****)
                  IN CONE STORE FLENGTH + HIGH
                                               *¥0
                                                ¥¥Ü
                                     210
                                               **1)
                          IN GIL HICH
                                               ¥¥0
                                                **1
                                   FLOW TYPE MA
                                               **)
                              ******
                                                 า
                                       6 01 09
  WRITE (IC.202) ACICOND', HW, PGAMA, HWOD, F, HGCE, CE, TWOD
                                              5
                                         5=01 80
                                      45 01 05
                            SEDI (£ 03 DNOD1) 41
                            11 (1COND E0 1) IC=4
                          TE (ICOND'E0'S) CO 10 8
                          11 (1M, NE % %) 60 10 48
                                                 1
    ************
                        IM F.T. SLOPE+LENGTH
SLOPE G.T. CRSLPE
FLOW TYPE 3A
                                              ¥¥0
                                                ¥¥Ü
                                              ¥¥Ü
             **********************************
                                                 C
```

IF (TW.GE.(SL+HICH)) 60 TO 44

```
END
     SUBROUTINE CIRCLE(D5, A, S, DIAM, QPP, MANN)
     REAL MANN
 120 VAL#(2+D5=DIAM)/DIAM
     IF (ABS (VAL) LT . I.) GO TO 20
     THETA=3
     15 01 00
  23 THETA=2.*ACOS(VAL)
  21 A=DIAM**2./8.*(6.2832-THETA+SIN(THETA))
     AK=1_486*((((6_2832=THETA+SIN(THETA))/8_)**5)/(((6.2832
-THETA)
        /2_1**2*(05/D1AM)**81)**(1./3.)
    1
     S=(QPP+MANN/(AK+D5++(8_/3_))++2
     DC = DS
     SC=S
     RETURN
     END
C*******
                 *******
     SUBROUTINE CRITIC(SHAPE, DIAM, HIGH, WIDE, MANN, QPP, CRSLPF,
CRITO
С
     HOUTINE TO COMPUTE CRITICAL DEPTH AND CRITICAL SLOPE
C**********
                  . . .
********
     INTEGER SHAPE
     REAL MANN
     GO TO (11.11.12.12), SHAPE
  11 0HE=0PE++2/32,2
     05=DIAM/2 -- 281
     DEMOM=21
   1 IF (DIAM/DENOM LT. J.#05) GO TO 3
     CALL CIRCLE(D5, A, CRSLPE, DIAM, QPP, MANN)
     TW0=A**3/(2_*SORT(D5*DIAM=D5*D5))
     DENOM=DENOM+2
     IF (ONE - 1WO) 2,3,4
   2 D5=D5-DTAM/DENOM
     GO TO 1
   4 D5=D5+DIAM/DENOM
     GO TO 1
   3 CRITD=D5
     GO TO 14
   12 CRITD=(QPP**2]/(32.2*WIDE**2.1)**(1/3.1
     CALL BOX(CRITD, A, CESLPE, WIDE, HIGH, MANN, GPP)
   14 RETURN
     END
C
C
************
*********
     SUBROUTINE BOXUD(SHAPE, DIAM, HIGH, WIDE, MANN, OPP, SLOPE, UD
EP1
     ROUTINE TO COMPUTE THE UNIFORM OR NORMAL DEPTH
С
*********
*******
     REAL MANN
     INTEGER SHAPE
     60 TO (1,2,12,41, SHAPE
   1 THIGH=DIAM*_93818
     HIMAX=DIAM
     GO TO 5
   > THIGH=HIGH+ 9257
     HIMAX#HIGH
```

```
GO TO 5
    a THIGH=HIGH
      HIMAX=HIGH
    5 DS=THIGH/2.
      DEHOM=4
    6 60 TO (7,7,10,10), SHAPE
    7 CALL CIRCLE (D5, A, S, DIAH, QPP, MANN)
      GO TO 11
   14 CALL BOX(D5,A,S,WIDE,HIGH,MANN,QPP)
11 IF(S GT. SLOPE) GO TO 13
D5=D5=THIGH/DENOM
      GO TO 14
   13 D5=D5+THIGH/DENOM
   14 IF (THICH/DENOM LT. 0.0651 GO TO 12
      DEHOM=DENOM*2;
       GO TO 6
   12 UDEP=05
      IF((THIGH-UDEP) .LT. #1885) UDEP=HIMAX
С
       PETURN
```

```
END
```

٢.

· • .

٠

•

. •

· ·

. • ~ ! ! ! 1 1 1 • -

APPENDIX B

•

~·.

•

--

•

. •

· •

Graphical Results For Box Culverts

•*.

Figure B.1 Comparison of Entrance Headloss Coefficients With and Without Safety Grates, Slope = .0008

Figure B.2 Comparison of Entrance Headloss Coefficients With and Without Safety Grates, Slope = .0013

.

с с 1 с с с с

Figure B.3 Comparison of Entrance Headloss Coefficients With and Without Safety Grates, Slope = .0063

ج .

Figure B.4 Comparison of Entrance Headloss Coefficients With and Without Safety Grates, Slope = .0108

Figure B.5 Comparison of Entrance Headloss Coefficients With and Without Safety Grates, Slope = .0128

• •. •

Figure B.6 Comparison of Entrance Headloss Coefficients With and Without Safety Grates, Slope = .0008

• • • •

..**.**

Figure B.7 Comparison of Entrance Headloss Coefficients With and Without Safety Grates, Slope = .0063

Figure B.8 Comparison of Entrance Headloss Coefficients With and Without Safety Grates, Slope = .0108

et a star

Figure B.12 Headwater vs. Discharge with and without Pipe Grates, Slope = .0108

۰.

Figure B.14 Headwater vs. Discharge with and without Bar Grates, Slope = .0008

168

Slope = .0063

.

۰. '

٠

• •

1.25 PIPE SAFETY GRATES Slope = .0008★ - Type 1 Flow Regime □- Type 2 Flow Regime 1.00 • - Type 4A Flow Regime ■ - Type 4B Flow Regime .75 Ce .50 .25 0 0 .5 1.0 1.5 2.0 2.5 HW D

Figure B.17 Entrance Headloss Coefficient vs. Headwater For Pipe Safety Grates, Slope = .0008

Figure B.18 Entrance Headloss Coefficient vs. Headwater For Pipe Safety Grates, Slope = .0013

-

• •

• • •

1.25 PIPE SAFETY GRATES Slope = .0063★ - Type 1 Flow Regime 1.00 □ - Type 2 Flow Regime • - Type 4A Flow Regime ■ - Type 4B Flow Regime .75 Ce .50 .25 0 .5 2.0 0 1.0 1.5 2.5 HW D

Figure B.19 Entrance Headloss Coefficient vs. Headwater For Pipe Safety Grates, Slope = .0063

Figure B.20 Entrance Headloss Coefficient vs. Headwater For Pipe Safety Grates, Slope = .0108

1.25 PIPE SAFETY GRATES Slope = .0128★- Type 3A Flow Regime 1.00 ■ - Type 3B Flow Regime • - Type 4A Flow Regime .75 Ce .50 .25 0 2.0 .5 1.0 1.5 2.5 0 HW D

Figure B.21 Entrance Headloss Coefficient vs. Headwater For Pipe Safety Grates, Slope = .0128

Figure B.22 Entrance Headloss Coefficient vs. Headwater For Bar Safety Grates, Slope = .0008

Figure B.23 Entrance Headloss Coefficient vs. Headwater For Bar Safety Grates, Slope = .0063

,

• •

• . *

Figure B.24 Entrance Headloss Coefficient vs. Headwater For Bar Safety Grates, Slope = .0108

• • •, •

 • • • • •

For Pipe Safety Grates, Slope = .0063

•

•

•

Figure B.29 Entrance Headloss Coefficient vs. Headwater For Pipe Safety Grates, Slope = .0128

52 SLOPE = 0.0008ALL POINTS □ REGIME 1 × REGIME 2 © REGIME 4A ▲ REGIME 4B 80 O . ----IENT O O ¥ 1C 75 O COEFF] O 9 0 0 ₿ х O ENTRANCE (× ð Х × ¥ ð XX D • х D Ð U ٣ Ū ٣ ٥ 00 -1,00 1.50 2.00 3.50 4.00 4.50 2.50 3.00 Q/(B*D**1.5)

Figure B.31 Entrance Headloss Coefficient vs. Headwater for Bar Safety Grates, Slope = .0063

.

• • •

Figure B.33 Headwater vs. Tailwater For Pipe Safety Grates, Slope = .0008

Figure B.34 Headwater vs. Tailwater For Bar Safety Grates, Slope = .0008

Figure B.36 Headwater vs. Tailwater for Pipe Safety Grates, Slope = .0063

• • • •

Figure B.37 Headwater vs. Tailwater for Bar Safety Grates, Slope = .0063

Figure B.38 Headwater vs. Tailwater For No Safety Grates, Pipe Safety Grates, and Bar Safety Grates, Discharge = 6.14 cfs, Slope = .0063

Figure B.39 Headwater vs. Tailwater For No Safety Grates, Pipe Safety Grates and Bar Safety Grates, Discharge = 8.12 cfs, Slope = .0063

Figure B.40 Headwater Vs. Tailwater For No Safety Grates, Pipe Safety Grates and Bar Safety Grates, Discharge = 9.66 cfs, Slope = .0063

•••••

Figure B.41 Headwater vs. Tailwater for No Safety Grates, Pipe Safety Grates, and Bar Safety Grates, Discharge = 11.81 cfs, Slope = .0063

Figure B.42 Headwater vs. Tailwater for Pipe Safety Grates, Slope = .0108

Slope = .0108

Figure B.44 Headwater vs. Tailwater for No Safety Grates, Pipe Safety Grates and Bar Safety Grates, Discharge = 6.14 cfs, Slope = .0108

Figure B.46 Headwater vs. Tailwater for No Safety Grate, Bar Safety Grate, Pipe Safety Grate, Discharge = 0.66 cfs, Slope = .0108

.

• • •

Figure B.47 Headwater vs. Tailwater for No Safety Grates, Pipe Safety Grates, Bar Safety Grates, Discharge = 11.81 cfs, Slope = .0108

-· · · . • _

--

. • •

, , , ,

APPENDIX C

· / 3、後日の24/3/80/0014/12 · 15/10 FFF

•••

•

.

, , ,

- .*

.

Summary of Regression Results: Box Culvert

, • · . . . -• • _

. N. -

•

To determine the regression equations, the experimental data was divided into the different flow regimes. Several regression equations using different combinations of controlling factors (headwater, tailwater, etc) were considered. As an example, for Type I flow regime, the headwater, tailwater, and slope are factors used in culvert design while tailwater depth is not. Therefore, the regression equations were developed using different combinations of discharge, headwater, and slope for Type I flow regime conditions.

· •

The statistical package program, OMITAB II, was utilized to determine the best fit equations for each combination of controlling factors. OMNITAB II (1966) was developed by the Statistical Engineering Laboratory of the National Bureau of Standards and uses the ordinary least squares method to determine the regression coefficients.

The regression equations to predict C_e were also used to identify outliers in the data. To identify outliers, the deviation of the measured C_e values from the predicted C_e values were computed and were assumed to be normally distributed. The frequency of occurrence for the maximum deviation was computed $\frac{1}{n+1}$ where n is the number of observed data points. A normal distribution table was used to determine the maximum deviation associated with the computed frequency. Outliers were identified as having deviations larger than the maximum expected deviation.

Regression Equations for C

Basically, the regression equations to determine entrance headloss coefficients were divided into two groups. The first set of regression equations were theoretical models based upon the energy equation. The second set of

regression equations predicted the entrance headloss coefficient from different combinations of headwater depth, discharge, tailwater depth and slope.

To develop the theoretical regression models, the energy equation for the entrance of the culvert was considered. The energy equation was rearranged so that the entrance headloss coefficient was the dependent variable and all other terms in the equation were independent variables. The resulting equation is

$$C_e = 2g \left(\frac{HW}{D}\right) \left(\frac{Q}{BD^{1.5}}\right)^{-2} - 2g \left(\frac{Q}{BD^{1.5}}\right)^{-2} - 1$$
 (C.1)

For the statistical analysis, the terms 2g, -2g, and -1 were replaced with the regression constants B_0 , B_1 , and B_2 . The final equation form is

$$C_e = B_0 + B_1 \left(\frac{HW}{D}\right) \left(\frac{Q}{BD^{1.5}}\right)^{-2} + B_2 \left(\frac{Q}{BD^{1.5}}\right)^{-2}$$
 (C.2)

To introduce different terms to the theoretical model, the variables were multiplied by $\left(\frac{Q}{BD^{1.5}}\right)^{-2}$ and added to the equation. As an example, if tailwater was included, then the final equation form would be

$$C_{e} = B_{0} + B_{1} \left(\frac{HW}{D}\right) \left(\frac{Q}{BD^{1.5}}\right)^{-2} + B_{2} \left(\frac{Q}{BD^{1.5}}\right)^{-2} + B_{3} \left(\frac{TW}{D}\right) \left(\frac{Q}{BD^{1.5}}\right)^{-2}$$
(C.3)

For the second set of equations, the regression models were in the general form

$$C_e = B_0 + B_1 \left(\frac{HW}{D}\right) + B_2 \left(\frac{Q}{BD^{1.5}}\right) + B_3 \left(\frac{TW}{D}\right)$$
 (C.4)

where all terms have been previously defined. It should be emphasized that the selection of independent variables for the regression analysis must be done so that independence is maintained. For example, if S_0 was also included in Eq.

(C.4) then the variables would not be independent in $\frac{HW}{D}$ which is a function of $\frac{Q}{BD^{1.5}}$, $\frac{TW}{D}$, and S_0 .

`**•**.

•••

. •

-- .*

. .

Table	C-	l
-------	----	---

Table C.1 (continued)

Equation Reference	Equation Form
8	$C_e = B_0 + B_1 (\frac{HW}{D}) + B_2 (\frac{Q}{BD^{1.5}})$
9	$C_e = B_0 + B_1 \left(\frac{HW}{D}\right) + B_2 \left(\frac{Q}{BD^{1.5}}\right) + B_3 \left(\frac{TW}{D}\right)$
10	$C_e = B_0 + B_1 \left(\frac{Q}{BD^{1.5}}\right) + B_2 \left(\frac{TW}{D}\right)$
11	$C_e = B_0 + B_1 \left(\frac{HW}{D} + B_2 \left(\frac{Q}{BD^{1.5}}\right) + B_3 (S_0)$
12	$C_e = B_0 + B_1 \left(\frac{HW}{D}\right) + B_2 \left(\frac{HW}{D}\right)^2 + B_3 \left(\frac{Q}{BD^{1.5}}\right) + B_2 \left(\frac{Q}{BD^{1.5}}\right)$
	$B_4 \left(\frac{1}{BD^{1.5}}\right)^{-1} + B_5 \left(S_0\right)$
13	$C_e = B_0 + B_1 \left(\frac{HW}{D}\right)^2 + B_2 \left(\frac{Q}{BD^{1.5}}\right) + B_3 \left(\frac{Q}{BD^{1.5}}\right)^2$
	$B_4(S_0)$
14	$C_e = B_0 + B_1 \left(\frac{Q}{BD^{1.5}}\right) + B_2 \left(\frac{TW}{D}\right) + B_3 (S_0)$
15	$C_e = B_0 + B_1 (S_0)$
16	$C_e = B_0 + B_1 \left(\frac{Q}{BD^{1.5}}\right) + B_2 (S_o)$

.

· ·

. .

, , ,

Ta	ble	C.1	

Equation Reference

Equation Form

•

. .

•

17
$$C_e = B_0 + B_1 \left(\frac{HW}{D} + B_2 (S_0)\right)$$

18 $C_e = B_0 + B_1 \quad (\frac{HW}{D})$

19
$$C_e = B_0 + B_1 \left(\frac{HW}{D}\right) + B_2 \left(\frac{TW}{D}\right)$$

20
$$C_e = B_0 + B_1 \left(\frac{Q}{BD^{1.5}}\right)$$

21
$$C_e = B_0 + B_1 \left(\frac{Q}{BD^{1.5}}\right) + B_2 \left(\frac{HW-TW}{D}\right)$$

TABLE C.2

``··

•

•

•

BOX CULVERT RESULTS OF REGRESSION ANALYSIS: NO GRATES

Regime	Equation	Bo	^B 1	^B 2	^B 3	^B 4	R	Number of Points
1	1	.222	431	.207			.076	36
	4	.072	1.822	-1.132	-55.845		.461	
	8	071	.825	206			.248	
	11	-1.164	4.274	-1.113	36.786		.710	
	13	.210	2.956	842	112	42.682	.884	
2	2	047	6.189	-4.171	-40.477		.943	34
	8	333	1.367	309			.958	
3 A	1	.344	-2.823	1.154			.586	36
4 A	1	.738	2.943	-5.167			.601	103
	2	.726	3.480	-4.778	739		.605	
	9	.003	.525	.014	153		.653	
4B	2	2.720	-36.654	16,641	-31.577		.604	42
	3	2.268	-32.40	14.443	-25.911		.572	
	9	832	-2.601	1.250	047		.572	
	11	354	-1.664	.827	-41.657		.779	

TABLE C. 3

BOX CULVERT RESULTS OF REGRESSION ANALYSIS: PIPE GRATES

.

•. •

•

Regime	Equation	Bo	^B 1	^B 2	^B 3	^B 4	R	Number of Points
1	1	.430	384	.181			.054	39
	3	.053	2.030	-1.251	59.330		.453	
	8	121	.977	245			.294	
	11	-1.288	4.542	-1.160	36.741		.791	
	12	.127	.333	2.111	723	072	.918	
	13	.203	2.258	651	084	34.185	.918	
	15	.159	7.929				.246	
	16	.135	.011	7.836			.258	
	17	.258	.092	.072	8.273		.258	
2	2	042	6.103	-4.771	.625		.828	32
	5	.163	-1.232	2.554	-109.0		.804	
	8	339	1.308	286			.922	
	9	355	1.313	287	.014		.913	
	10	023	061	.521			.598	
4 A	2	.646	5.105	-2.084	-4.085		.511	129
	3	.805	3.162	-1.470	-2.456		.517	
	8	.132	.240	.042			.543	
	9	.365	.688	0362	498		.591	
	10	.158	.077	.180			.423	
	14	.176	.077	.183	-5.708		.444	
	18	.511	.195	.283			.511	
4B	2	1.130	-13.674	8.337	3.256		.444	44
	8	.219	-1.356	.561			.273	
	9	.526	-1.179	.397	.205		.462	
	11	813	2.700	554	-123.532		.987	

TABLE C.4

`•• •

· · .

•

- .*

.

BOX CULVERT RESULTS OF REGRESSION ANALYSIS: BAR GRATES

Regime	Equation	Bo	^B 1	^B 2	^B 3	^B 4	R	Number of Points
1	1	.321	0060	420			.675	26
	8	364	1.339	268			.861	
	11	849	3.066	755	17.429		.904	
	13	091	1.581	196	108	16.073	.919	
2	2	.033	4.652	-2.555	356		.848	28
	8	269	1.782	470			.941	
	9	157	1.471	417	.078		.839	
3A	6	.543	608				.818	28
	18	.059	.137				•744	
4 A	1	.825	2.419	-4.591			.675	38
	2	.747	5.091	-3.648	-3.081		.700	
	3	.557	6.559	-5.052	-3.707		.666	
	8	.100	.308	.041			.627	
	9	.343	.738	035	484		.663	
	19	.256	.586	330			.658	
4B	1	571	-1.576	.803			.661	26
	9	660	-2.039	.998	099		.952	
	10	473	.196	.047			.509	
	11	612	-2.031	.999	-19.941		.957	
	13	-8.193	689	4.210	421	~12.012	.980	

.

• •

APPENDIX D

· · ·

•

. . •

•

.

Clogging Test Results For Box Culverts

••• . • • -. • .

•

.

- .*

. .

Figure D.1 Headwater vs. Percentage Clogging $(S_0 = .0008, Q = 9 cfs)$

:

Figure D.2 Headwater vs. Percentage Clogging $(S_0 = .0008, Q = 9.6 \text{ cfs})$

. .

· .'

.`

Figure D.3 Headwater vs. Percentage Clogging $(S_0 = .0008, Q = 10 \text{ cfs})$

<u>.</u> .

Figure D.4 Headwater vs. Percentage Clogging $(S_0 = .0008, Q = 11.2 cfs)$

. 4

.

Figure D.5 Headwater vs. Percentage Clogging $(S_0 = .0063, Q = 8.04 \text{ cfs})$

. .

Figure D.6 Headwater vs. Percentage Clogging $(S_0 = .0063, Q = 9.11 cfs)$

. .

•

•

- 1

.-

- .:

Figure D.9 Headwater vs. Percentage Clogging $(S_0 = .0008, Q = 9.cfs)$ $(S_0 = .0128, Q = 9.cfs)$

Figure D.10 Headwater vs. Percentage Clogging $(S_0 = .0063, Q = 9.11cfs)$ $(S_0 = .0128, Q = 9.02cfs)$

· • .

- 1

.

•

Figure D.11 Headwater vs. Percentage Clogging ($S_o = .0008$, $S_o = .0063$, $S_o = .0128$, Q = 10cfs)

. -

Figure D.12 Headwater vs. Percentage Clogging $(S_0 = .0063, Q = 8.12cfs)$

. .

...

.:

Figure D.13 Headwater vs. Percentage Clogging $(S_0 = .0063, Q = 9.09cfs)$

2 -

•• 、

. •

· .*

•

Figure D.15 Headwater vs. Percentage Clogging $(S_0 = .0063, Q = 11.05cfs)$

÷ -

Figure D.16 Headwater vs. Percentage Clogging $(S_0 = .0063, Q = 11.91 cfs)$

· • .

- 1

•••

.

Figure D.17 Headwater vs. Percentage Clogging Pipe Safety Grates ($S_0 = .0063$, Q = 9.11 cfs) Bar Safety Grates ($S_0 = .0063$, Q = 9.09 cfs)

Figure D.18 Headwater vs. Percentage Clogging Pipe Safety Grates ($S_0 = .0062$, Q = 10.04 cfs) Bar Safety Grates ($S_0 = .0062$, Q = 10.11 cfs)

. .

`• ,

۰,

Figure D.19 Headwater vs. Percentage Clogging Pipe Safety Grates ($S_0 = .0063$, Q = 11.1cfs) Bar Safety Grates ($S_0 = .0063$, Q = 11.1cfs)

Figure D.20 Entrance Headloss Coefficient vs. Percentage Clogging ($s_0 = .0008$, Q = 9.02 cfs)

. •

. .*

`

Figure D.21 Entrance Headloss Coefficient vs. Percentage Clogging (S = .0008, Q = 9.62 cfs)

. .

Figure D.22 Entrance Headloss Coefficient vs. Percentage Clogging

 $(S_0 = .0008, Q = 10.7cfs)$

· `,

C

÷

Figure D.23 Entrance Headloss Coefficient vs. Percentage Clogging

$$(S_0 = .0008, Q = 11.2cfs)$$

Figure D.24 Entrance Headloss Coefficient vs. Percentage Clogging $(S_0 = .0063, Q = 8.04 \text{ cfs}, Q = 9.1 \text{ cfs}, Q = 10.04 \text{ cfs}, Q = 11.07 \text{ cfs})$

. .

- 1

. . *

· .*

Figure D.25 Entrance Headloss Coefficient vs. Percentage Clogging $(S_0 = .0008, S_0 = .0128, Q = 9.02 \text{ cfs})$

Figure D.26 Entrance Headloss Coefficient vs. Percentage Clogging (S = .0063, Q = 9.11 cfs) (S = .0128, Q = 9.02 cfs)

____^

. .

Figure D.27 Entrance Headloss Coefficient vs. Percentage Clogging (S = .0008, Q = 9.62 cfs) (S^o = .0063, Q = 10.04 cfs) (S^o = .0128, Q = 10.0 cfs)

Figure D.28 Entrance Headloss Coefficient vs. Percentage Clogging (S = .0063, Q = 10.04 cfs) (S = .0128, Q = 10.0 cfs)

•

Placement of Clogging

Figure D.29 Entrance Headloss Coefficient vs. Placement of Clogging $S_0 = .0128, 15\%$ Clogging

Figure D.30 Entrance Headloss Coefficient vs. Placement of Clogging S = .0128, 30% Clogging

246

•*

••••

••••

• '

• .

•

Figure B.31 Entrance Headloss Coefficient vs. Placement of Clogging $S_0 = .0128$, 45% Clogging

247

t.

۰.

Figure D.32 Entrance Headloss Coefficient vs. Percentage Clogging $(S_{Q} = .0063, Q = 9.09 \text{ cfs}, Q = 10.11, Q = 11.05 \text{ cfs})$

. '.

. .*

Figure D.33 Entrance Headloss Coefficient vs. Percentage Clogging Pipe Safety Grates ($S_0 = .0063$, Q = 9.11 cfs) Bar Safety Grates ($S_0 = .0063$, Q = 9.09 cfs)

Figure D.34 Entrance Headloss Coefficient vs. Percentage Clogging Pipe Safety Grates (S = .0063, Q = 10.04 cfs) Bar Safety Grates (S = .0063, Q = 10.11 cfs)

· ',

.'

Figure D.35 Entrance Headloss Coefficient vs. Percentage Clogging Pipe Safety Grates (S = .0063, Q = 11.07 cfs) Bar Safety Grates (S = .0063, Q = 11.05 cfs)

٠. ٠,

APPENDIX E

۰.

- '.

•••

•

• .*

• .:

Graphical Results For Pipe Culverts

•. •

Figure E.1 Comparison of Entrance Headloss Coefficients With and Without Safety Grates Slope = 0.0007

Figure E.2 Comparison of Entrance Headloss Coefficients With and Without Safety Grates Slope = 0.008

•

Figure E.3 Headwater Vs. Discharge With and Without Grates Slope = 0.0007

Figure E.4 Headwater Vs. Discharge With and Without Grates Slope = 0.008

•* •'

. . . .

Figure E.5 Headwater Vs. Discharge With and Without Grates Slope = 0.50

Figure E.6 Entrance Headloss Coefficient Vs. Headwater Types 1, 2, 4A and 4B With and Without Grates, Slope = 0.0008

.

Figure E.7 Entrance Headloss Coefficient Vs. Headwater Type 1 With and Without Grates, Slope = 0.0008

Figure E.8 Entrance Headloss Coefficient Vs. Headwater Type 2 With and Without Grates, Slope = 0.0008

• *

.

Figure E.9 Entrance Headloss Coefficient Vs. Headwater Type 4A With and Without Grates, Slope = 0.008

Figure E.10 Entrance Headloss Coefficient Vs. Headwater Type 4B With and Without Grates, Slope = 0.008

, •

۰.

264

...

• •

Figure E.11 Entrance Headloss Coefficient Vs. Headwater Types 4A and 4B With and Without Grates, Slope = 0.0007

Type 4A With and Without Grates, Slope = 0.0007

.

٠.

.

266

- 1

• •

Figure E.13 Entrance Headloss Coefficient Vs. Headwater Type 4B With and Without Grates, Slope = 0.0007

Figure E.14 Entrance Headloss Coefficient Vs. Discharge Types 1, 2, 4A and 4B With and Without Grates Slope = 0.008

• ,

. '

•

Figure E.15 Entrance Headloss Coefficient Vs. Discharge Type 1 With and Without Grates, Slope = 0.008

Figure E.16 Entrance Headloss Coefficient Vs. Discharge Type 2 With and Without Grates, Slope = 0.008

• • •

Figure E.17 Entrance Headloss Coefficient Vs. Discharge Type 4A With and Without Grates, Slope = 0.008

Figure E.18 Entrance Headloss Coefficient Vs. Discharge Type 4B With and Without Grates, Slope = 0.008

· · ·

....

• *

• • •

Figure E.19 Entrance Headloss Coefficient Vs. Discharge Types 4A and 4B With and Without Grates, Slope = 0.0007

Figure E.20 Headwater Vs. Tailwater, Grates and No Grates Slope = 0.0007, Q = 5.6 cfs

· · ·

 $\frac{TW}{D}$

Figure E.21 Headwater Vs. Tailwater, Grates and No Grates Slope = 0.008, Q = 3.6-3.8 cfs

Figure E.22 Headwater Vs. Tailwater, Grates and No Grates Slope = 0.008, Q = 4.5 cfs

• •

• • *

Figure E.23 Headwater Vs. Tailwater, Grates and No Grates Slope = 0.008, Q = 5.6 cfs

• .* • .

•

•. .

APPENDIX F

• •

, **`**,

• .

•

• .*

- .*

Data From Culvert Experiments

• : . · · · •

•. •

•. •

Figure F.1 Curve for Determining Critical Depth (Y_c) in Box Culvert

Ce	HW D	$\frac{Q}{BD^{1.5}}$	TW D	s _o
. 40236 , 19881	,765#0 1,14348	1.06483	8,48449 8,48989 8,48989	. 00130 .00130
18459	61588 92268	2,41140	9,69648 4, 69648	40130
192 63 19 507 22182	95788 198328 91248	2,57847 3,93974 2,28158	9 .80199	,00130 ,00130 ,00280
25856	98324 1.04280 88480	2,55520 2,76113 2,94538	8 88430 8 00434 9 00434	, 109980 , 20480 , 20480
09733 13980	59128 64324 7868	1,18755 1,33437	и инии и чийнөө и чийна	99880 80980 80980
17345	7712 6336 3	1,77152	9 919999 9 919999 9 919999 9 919999 9 919999 9 919999 9 91999 9 919999 9 919999 9 910000000000	. 49980 . 49980 . 60089
22965	99882 1,12603 89882	3,15117 2,23144	1,004000 1,003300 1,004000 1,004000	29388 29388 29388
26574	98120 1,08440 53480	2,20374 2,90538 1,12372	n nasos n nasos n nasos	.29380 99980 69639
29684 39845 37899	,61202 ,6735° ,72889	1,39176 1,49163 1,68992	间,预销知识小 时,预期的周期 前,现的计规模	•₩9630 •₩630 •₩630
15414 17936 15609	76160 82249 87684	1989629 2911044 2933210	(4) (1월)]#(4) (4) (18)(13)(14) (4) (18)(13)(14) (4) (18)(13)(14)(14)(14)(14)(14)(14)(14)(14)(14)(14	.08633 ,20633 ,20638
166 67	95%80 9936% 1.#5120	2556101 279696 323974	8 33998 3 69982 3 89982	,98639 ,44639 ,88639
23203	1,1276% ,8236M 1,7148#	3,28917 2,16516 2,9#538	8 °8896 8 8 °8688 8° 6688 8°669993	,08638 ,00630 ,00630
13475	1, 91240	2,9 #53 8 3_45477	6,4 944 8 8.4 98 55	,00630 ,00630

Table F.1 Data, Type 1, No Grates

D = 1.25 ft, B = 2 ft

. .

·. -

Table F.2 Data, Type 2, Pipe Grates

С _е	HW D	$\frac{Q}{BD^{1.5}}$		s _o
, TE10	765#8	1,86483	0,00990	,00130
-21626	1,12268	3,28285		,00130
AARAI	1,17748	3,39#76	n ³ n b n ú h	. 46130
49377	81828	2.93462	9.46月份经	,00130
	,92228	2,41148	8,98889	, 96130
,10065	\$95828	2,57847	9 399964	,00136
12395	95868	2,57847	,52833	,49130
******	,95828	2,57847	,52833	, 40130
22406	95868	2;57667	,55333	.##130
11878	1,00780	55#3974	a 	,00130
21540	. 69468	2519622	130720	, 98859
22184	± ₩18840	2,20150	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*******
24248		2,75520	N. 00000	.08080
14240	1.04169	2./0115	សុខភេ ទទំនួនទាំ	.00000
-37647 ******	1,98684	2,93558	19 - 19 19 19 19 19 19 19 19 19 19 19 19 19	
107133 10741	:59128	1,18755	a, dandt	
15466	±07488	1,33437	4 . 09999	. 20083
-13099	·7#56#	1,54843	N. HRAMA	,00083
12070	:77288	1,77152	0.03030	.10080
15204	, 8356≝	1,99171	0.02080	, ³⁰⁸⁸⁸
24195	\$928 <u>4</u>	2,19822	a angag	
30910	1, 49929	294538	n 90049	190280
=27149	1,08560	2,93538	57453	,04080
17224	5 32⊌≝	1912072	9 (JJ339)	• ua63a
29684	10028t	1,39176	9 ,63884	, 40634
. 36751	66242	1,49163	9_99646	, 00630
36639	72684	1_68992	8,63384	,00630
18396	,7652#	1,89629	0 ° 8338P	• 939236
18330	82280	2,11:444	8,81480	,04630
,10011	87800	2:33518	0,00049	,06630
- 21 37 3	95481	5:20161	8,36830	,04638
11012	· • 9682	2,79696	0,00000	,00630
-106 41	1, 536	3 63974	4.03330	· 40634
-24475	1,1288#	3,23917	.	,00630
15011	82443	2,16516	0,06449	, 98630
10690 	1,2148	7,98538	,54973	, 49036
******	1,01000	2,99558	134975	199030
21303 21844	1,17160	3,45477	154973	, 20026
*41203	1.17160	3.45477	.64973	.##63#

۰.

• •

• ;

- .*

• •

C _e	HW D	$\frac{Q}{BD^{1.5}}$	TW D	s _o
<i>.</i> #6921	66328	1,45297	8	ู้ คอดออ
23451	7568#	1264960	4.00000	
13948	79769	1-85439		
15248	84848	2546788	8.85668	.00000
114#6	#8548	2528718	8.00000	
212#3	964BB	251466	0,999999	
28689	1 \$3442	2,73732	9 . 8346a	. 48088
32623	1.10728	2.99865	2、动动的外的	
45291	1 19455	3,23876	4 64409	
35#93	1 49120	2,89932	ខ ្មីនានកាន់ខ	. 199888
30316	1,08568	2.89932	\$7853	์ หม่อยอ
27489	93760	2,31522	6 . 64189	. 40080
24240	67163	1 43377	a 49989	. 48884
19332	5 968%	1,33437	ର ୍ଟର୍ମୟନ	. 33630
15650	66328	1,54533	તે. છ વળવાલ	. 38638
18792	72568	1,75612	의 위한격품용	. 09630
16486	7784	1,965#5	त ् लस्त्रेक्ष्	. 99630
23732	8524%	2,18167	8. 0336 9	.48630
22443	\$98920	2,48571	6、3、薄白斑外	
20821	96368	2.63693	H \$ 1945.83	. 90630
26250	1,03248	2.87512	ର କରର୍ବ୍ୟ ନ	.88638
31595	1.1972	3.12008	A 2994999	. 99630
27561	18923	3,35898	୶ୢ୕ୢୠ୶ଢ଼ଢ଼ଌ	40630
22636	1,02800	2,98538	54973	
17#45	69246	2,19822	<u>ମ୍</u> ୟନ୍ତ୍ରୟ	.0#639
22636	1_92893	2,9#538		.46638

·. -

.,

Table F.4 Data, Type 2, No Grates

•

• •

· .

. •

~ **.***

· .:

c	HW	$\frac{Q}{15}$		s
e	D	BD ¹ ·J	D	0
24994	14268	328285	85333	.00130
26893	1,17468	3.34618	82838	. 88130
11363	91948	2 41143	58667	, 89130
22482	1,99948	3. #3974	88667	##130
26071	98128	2,28374	57853	
24238	98328	2,20374	67853	
26449	94440	2.20374	77#53	.02080
32907	1. 24 14 14 14 14	2 ∑2≈374	87053	
52221	1.11000	2.20374	. 98720	. ~@ Ø 8Ø
27149	08568	2193538	67853	
27228	1 08560	2198538	77053	,98080
31897	14528	2190538	187853	
28844	15080	2,97538	97953	
26071	1 84159	2,20374	57853	19N8A
24238	19324	2 2:374	<u>,</u> 67⊮53	. 98988
26449	9/1442	2 20374	77053	, 8 ·· # 8 Ø
32907	1,484412	2 2:4374	87953	
[52221	1,11495	2,29374	98724	, ଜନଅଷଟ
27149	1.08565	2,97538	67453	. คยอยห
27228	1.88563	2,94538	77953	. 96989
131897	1,1*52*	2,98538	87#53	.0008H
28844	1,15989	2,98538	97053	<u>_</u> #2980
289430	, 832⊴≥	2,19822	·56648	
12193	83270	2,19822	66644	*#863B
15183	63299	2,19822	.74973	.90634
18669	844 34	5,19853	384973	,89630
28542	- 9 %R (1.2)	5,19855	,94973	· * 約億630
15066	1. 322.33	2.95/183	96648	,80630
:13475	1,61240	2,7#538	.64973	.89630
13475	1,81208	2,93538	,74973	,00630
,13475	1, 31240	2,90538	,84973	,89639
,14355	1 2144	2.9#538	.84973	,00630
,17691	1.01000	5784228	.94973	.##638

Table F.5 Data, Type 2, Pipe Grates

1 .

٠.

·. -

С _е	HW D	$\frac{Q}{BD^{1.5}}$	TW D	s _o
128838	1.14588	3.24285	85333	. 50134
26170	1.17468	3234618	RH333	90130
\$2726	87428	2 83462	77833	
197381	91548	2241140	68333	. 89138
24190	1 89988	3 83974	.88667	.#0130
48685	1.09520	2 19822	97853	
19532	9#724	2,19822	58724	. 9098P
27981	1 45720	2 23144	93723	
22749	95528	2223144	80387	
19465	91760	2,23144	72887	, 00080
26071	90159	2.28374	57053	୍ଟ ଅନ୍ତର
24238	.98328	2 29374	67953	
26449	94448	2224374	77@53	98988
32997	1 99443	222374	87853	, 89889
58963	1 1 1 4 4 5	2,24374	9872 ज	, 40080
27149	1,0856%	≥ <u>,</u> 9 :538	67853	• 6 9 6 8 6
27228	1. 28562	2,10538	77953	.
31897	18520	2.94538	87953	,×9880
28844	1,15000	2,98538	97853	49 080
13671	8276%	2,16516	\$33 37	, 98638
13671	5 2760	2,16516	64973	3963 8
13#15	8276*	2,16516	74973	· 44638
2.3351	83443	2,16516	84973	. 90639
48724	92124	216516	94973	.ee63p
15200	1, 1488	2_98538	,64973	, 20630
15280	1,21483	2,98538	74973	•8003N
, 152 2 4	1,0148%	2 98538	,84973	, 19630
14583	1,01320	2,90538	93397	. 66638
, 3475	1,11244	2 9:1538	64973	, 23639
13475	,*124£	2,94538	74973	3 ¹⁴⁸⁶³⁹
154/D	1,01244	2,99538	,84973	192926
×1303	1,1716#	3,45477	,74973	*#AP30
1203	1,17160	5,45477	,54975	,00030
-51202	1,17164	3,45477	.94973	. 97630

Table F.6 Data, Type 2, Bar Grates

°e	HW D	$\frac{Q}{BD^{1.5}}$	TW D	so
36548	1 89648	2 89932	86220	, NOURO
30316	1.0300	2.89932	\$ ⁷⁹⁷⁶⁹	*******
46473	1,15689	2. 49932	96228	,00089
28874	93888	2,31522	56224	
33451	93829	2,31522	67953	, 88888
.34688	94722	2,31522	.7538/	1000A0
- 57343 - 58196	1 14602	2 31522	103120 98720	
36582	72529	1_43377	57953	20080
52681	77268	1.43377	67053	
\$9#44	79720	1,43377	77953	60080
81383	191382	1,43377	87953	.19989
82784	1,42438	1,13377	97/53	
23039	● / 3 3 時間 ● 7 1 K 1 K	3 = 45577	#2/1023 45387	**************************************
200777 27645	3 AA748	2 19822	54973	200000
17245	84245	219822	64973	#0630
17545	84243	2,19822	74973	, 60630
23184	85240	2,19822	,84973	38630
15979	91880	2,19822	9/1973	,00630
22036	1.12898	2,98538	+54975	29630
22030	1 43844	5 04218 Vi Am330	1/99/3 88071	. ********
23145	1,95844	2_9#538	94973	.00638

•

. **Ч**

•

. •

- .

Table F.7 Data, Type 3A, No Grates

. .

۰.

c	HW	Q	TW	<u> </u>
Ğе	D	$\frac{1.5}{1.5}$	D	ిం
		00		
6866	1884, 5	2.42851	6 46963	.01280
7949	866%2	2.37731	6.60870	\$1280
##894	5324#	1.18305	8.99886	91280
1 4840	918AW	2.56682	9.05553	.01289
15544	1.346.18	3 67539	1.14888	81288
14-83	1.98568	3 20738	N. 84888	91286
16277	1212-	3 31447	1.076 88	81282
4854	73.80	1.88#54	4.98390	.01286
15124	61363	1 49163	1.23004	12AG
*****	69923	1 77152	8.38884	212A0
13510	478.24	1 00853	9 33000	.61286
12542	1 Str 24-9	2 92966	4.34985	
\$514	79443	2 12681	N NRMAN	MIZAR
19753	1.54633	4 19154	9.340.90	61288
9371	26.18.5	2 67222	4 3.144.4	31280
:1166	1 4:40 4	3 85189	3. 1.34.6.1	41280
29568	1.45967	2 98453	°. 19893	91280
16218	5216 1	1 1398	AAAAAA	210A9
10779	* <u>* * * * *</u> * * 9 // // *	1 31570	64 (7 52 5) 49 40	610A0
2944	52564	1 5 46 21	4 18838	
8769	6924	7 +512	4. 44.93%	91080
12658	755%	1.91289	3.300.49	
- 49694	8 44 8 ×	2 12681	8.49260	
11271	BARDA	2 34942	· 公保持法约	81486
15645	93520	2 57847	6 9.33.8.A	ALARA
18752	49720	2 44493	4 . B. B. B. B. B. B.	21080
21298	1 96488	3 45822	4.32045	11486
16669	114.3	3 34814	A 448 A 3	01980
15539	25928	3 56451	6.199834	91880
11263	1.3984+	3 82719	A 439992	
16754	1.55124	1 18469	4 10000	91280
19421	47680	93645	0.80088	81988
14982	8372*	2.19822	1,76390	91880
18598	1 41362	2 99538	4.48820	.81080
20421	1.17328	3 45477	a . 00000	
18646	1 52649	422583	8 87888	21888

Table F.8 Data, Type 3A, Pipe Grates

Ce	HW D	$\frac{Q}{1.5}$	TW D	s
		BD	-	Ū
-612/	. 37160	2.42851	A.BX834	.91289
08725	86840	2.37731	3 11 999310	. 31283
<i>,</i> ₩1473	53368	1,183#5	୶ୢୢୄ୶୶୶ଌୢଌ	.31283
,18126	41480	56682	୫୍ ୬୫୪୬୬	.01289
-1 ⁹¹⁵⁸	1.330A0	3 67539	\$ \$P\$30	.31280
16439	1 89240	3,23738	8.4448	12 80
15721	1.12762	3 31447	0 89840	.01280
36386	1342	1 48854	9 3 9 4 4 2	. #128#
- ··2·668	6.480	1,49163	4、医肺色素的	. 81280
	100420	1.77152	战, 建铁铁 医降	. 1280
14898	1159.00	1.04853	3 2 23334	. \$1285
16241	1 998-00	2, 92966	A. 白鹭瑪麗族	.81282
\$ \$266	17960 g	2,12681	6 6 8 2 8 4	. 6128v
_ ≥ ∌\$\$6	1.536.03	4 19154	19】和岱·赫达	.01240
_ <u>⊇#653</u>	96562	3,67222	9 983A3	312A8
<u>,</u> 4395	1.37524	3 85380	a n gare	191289
12544	1 81540	2 98453	14 . A. S.	. #128#
26440	5220.	1 13398	· 是帮助的的	. #1489
15197	189520	1.31579	5 OAAR +	្តី 🛛 🖓 អាង
3313	62546	1.50621	8 95431	.01080
11160	69564	1.78512	¥ _ #3#23	
13666	75848	1.91249	ا في محمد و ال	81382
111955	81244	2 12681	2 QV - 40	31982
2447	36926	2 34962	2、1月十四八	a sha
16459	2340	2 57847	1 928333	21048
19683	9972	2 8:493	3 34.374	111083
[53 55 4	1. 618-	3 35822	2、各种连辑的	21080
1/451	122/00	3.3=814	2 X X X X Y A	
193#1	1 2444+	3 56451	56066.0	718A8
153#3	1.3476*	3 82719	8 30089	.81989
24403	1 51869	4 18469	1.00000	1983
2\$517	47841	93645	A . M SI & & O	.91989

. .

۰**۲**

•

. •

- .:

- .

С _е	HW D	$\frac{Q}{BD^{1.5}}$	TW D	s _o
18332	59680	1.33437	ง , อตรสอ	
[;565 ₽	66323	1,54533	a 90320	. 2963/4
18792	7256%	1275612	0.38485	,0063N
16488	77840	1,96505	9,46698	,00630
23#32	85240	2,18167	4,00000	. 88638
22143	98928	2 49571	0,00499	. 98639
29821	96369	2:63693	0,89896	9863 0
26250	1.9324#	2.87512	8 . 48888	. 88638
31595	1.1+720	3,12988	8,20230	e8630
27561	<u>₹</u> 1892≠	3,35893	1 09838	. 90639
25343	1,3784-	3_67539	8 NANAR	49630
24684	45453	3 88714	0.63683	.99630
295#3	1,58480	4,17181	4 88323	99630
	51488	3,18751	9 <mark>관계대학</mark> 생	,01084
13468	5832 5	1,28787	3,896833	, 41988
12328	6376	1 47739	这,好你的 语句	
1:3433	, 69320	1,67476	8,130000	,010B0
16:47	75480	1,88854	a, øshreg	, मेर्नसन
14293	8 7841	2,49412	法。韩昌昌进办	.31383
13872	86 84\$	5:31255	的。如何对于	.01080
17955	_9288#	2,5436%	N. @ 3. P. A. A.	.01980
18549	ૢૢૢૢૢૢૢૢૢૢૡૢૡૢૡ	2,77982	的复数错误错误	, 9198 4
23631	1、卵体口泌尿	3 , ∿213ø	∧ _£⊉∄∄3∂	. 910A8
21574	A_1288##	3,27823	of , 各种的批批	.81880
19877	1,2576	3,52565	* * * · J · J · A · A	. W10RU
17489	(₂ 3796)	3,78739	8,00000	.01089
23215	10968	3,98776	0,00%94	,81980
22950	1.552%?	4_28524	9,389999	.01080

• •

•.

Ξ.

°e	HW D	Q 1.5	TW D	s
18#546	1.53320	3092729	1.17853	. 00080
89715	1.66168	1 92724	1.27953	
32727	1.77848	3692729	1.37853	. 20080
85734	1.84968	3 92729	1.45387	10080
88389	1.93286	3192729	1.55387	
\$89242	2.95495	3:92729	1.65387	
88499	2.22289	3592729	1.78728	
28958ĩ	2.2928	3 92729	1.87453	
47458	1.19298	2.28374	1.07053	
68675	1 29600	2.20374	1,18723	, 89889
95727	1.42848	222#374	1,32853	
88894	1 48320	2 28374	1,39587	.
_7 5₽5 9	1.59888	2 26374	1,53720	18989
61799	1.67689	2 2037 4	1,55387	. 00984
,95215	1,77498	2,28374	1,65387	,00080
283548	1.91328	2.28374	1,77853	,00080
55941	1,28520	2,9#538	1,97953	, 79080
51652	1,33968	2,96538	1,17053	.60081
-06328	1,45288	2,98538	1,27853	,40089
67244	1,58288	2 99538	1,37053	* 6058 8
67054	1,67886	2.98538	1,47853	,00080
286775	1,74369	98558	1,57055	
89993	1,87683	2 99538	1,67453	.00880
,67542	1,99249	2,98538	1,77953	,08080
,83270	1,48550	392129	1,08720	,00080 90,470
30251	1,87520	2014022	1,04975	, 9903N
26131	1,00200	2119022	1+199/3	
-3///3	1,20200	2,19022	1,249/3	100000 100000 100000
17219	1.30040	2.17066	1,34973	
- CT - 10	1.072200	2010822	1 54973	- 胡爾方文氏
78441	1 62744	2 10822	1 64973	900030 396X3
J9886	1 6668W	2 19822	1 74973	30630
28611	1.5888#	4 22583	1.04973	00630
64712	47568	4 22583	1.13307	88630
89122	1.5248	4 22583	1.23397	. 19631
79825	1.63680	4 22583	1.34973	.00630
82775	1.71520	4 22583	1,39973	. 39630
76859	1.79285	422583	1,49973	3 8638
83922	1.91842	4 <u>22583</u>	1,61640	, Ø863Ø
79#11	2,85888	4 22583	1,73307	,00634
[2876A	1,07963	2 _ 9 \$400	1,04973	
76226	1,25120	2,95488	1,14973	, 80630
33727	1,2676*	2,95400	1,24973	,80639
49964	1,38160	2,95480	1,34973	,88636
38239	1 48683	2.95488	1,44973	,08630
69743	1,61642	2,95488	1,54973	. 99636
62941	172528	2,95444	1,64973	,88639
66495	1.78483	2.95488	1 74973	,88638

. •

. .

.

.

.

•.

С	HW	<u>Q</u>	TW	c
ĭе	D	PD1.5	D	ిం
		עם		
17832	1,24486	3 45477	1.04973	. 11630
\$6866	1.2612#	3.45477	1.14973	. 18630
59798	1 3844	3.45477	1 24973	38631
65535	1.47121	3 45477	1 7/1973	04630
74182	1 5A723	1 /15477	1 4/1072	38419
62517	89-6676.0	1 45077	1 5/073	100039 B4410
77694	1.00700	5 - 4 3 4 7 7 5 - 4 - 4 - 4 - 7	1,34773	90030
11034	1 1 4 / 0#	5,45477	1.049/5	. 800.59
0/420	1.00/00	5 45477	1,74975	* nn 0 2 h
-51840		2:9#538	1,04973	, #0 630
268462	1,20950	2,19822	1,30413	,01089
59395	1,37240	2,19822	1,48413	.41989
56197	1 49989	2.19822	1.50413	91080
59794	1.3464.	2.99659	1.39413	NAMIN.
61618	I AREAR	2 94659	1 46017	RINAD
0/5/0	* 6332 ST	1 08450	1 50/117	- 01000 - 01000
	メージョンデムで、イ ・ ・ ムッイ ACC・イ	5 478937 5 (1)#4 85	1 10017	01000
,0W0.32	1,000004	2,99039	1,007413	101000
,12824	1 4 / 4130	3341032	1,50413	01060
<u>,</u> 785₩2	1,5552#	3,39714	1,44413	,01080
85772	1,6672#	3,38438	1,5#413	91080
77045	1 78160	3 38438	1,68413	#188
_864 5 0	1 87449	3 38438	1.70413	01080
87799	1 964AF	3538438	1.80413	-n1080
79358	1.63560	4.171#1	1.30413	11888
77827	7292	4 17181	1.48.413	
\$93716	1 826A3	/1 19962	1 59413	HIBAR
LAORA	0740	4 16042	1 66413	MIGRO
87613	2 41768	1 86784	1 62833	34124
* C7696	1 1.4	3 0 3 3 0 0 0 1 0 3 7 0 8	1 28667	44170
10/074		4 . 001 90	1.20007	- PR 130
19469	14040 m	4, 2001	1,1.000	, 201.30
/0130	1 0 / 2 0 0	9 - C1 C1 P	1,44000	90120
43419	1,75028	1,7666	1./1200	-00138
59993	1,59228	3,26112	1,38667	, 48130
- 62936	6,83308	3,42912	1,59580	, 20130
68416	1,74988	3,33349	1,51167	,00130
40118	2,04258	1,94911	1,98667	68130
154799	1,70628	2,36598	1,60333	. 40130
55164	88388	2 54368	1,75333	.00139
55266	54028	3_08983	1.370##	.06130
78422	1 7764	2 39433	1 92453	F1280
56860	1 10244	2 14962	1 55387	11280
50000 C-#005		1 16666	1 58720	31280
	237630	5 55534	4 13451	G1280
-44310		7.277264	1 57734	,01200
-15200	1,3/50%	2,01224	1,00/20	01200
15438	1,12126	5.51447	1,33.50/	, 1200
71265	1,51840	3,27423	1,55387	, 01280
81824	1,74884	1,79728	1,95387	.61586
63925	1,61929	1,76512	1,83720	,1280
183220	1.872.88	3 98776	1,74553	,01280
56283	1,39960	2 89932	1,46228	,91280
76837	: 976#8	4519154	1 86387	01280
85353	2 92248	2.65456	2,12053	.01288
Table F.11 Data, Type 4A, Pipe Grates

C	HW	0	TW	S
e	ע	BD ^{1.5}	U	0
,76182	1,94-28	3 85384	1,62835	,00130
63288	1,07228	1,64798	1,28667	, 98130
,40207	2,08268	4,45351	1,12855	9 1 3 -
78419	1,07140	4 21212	1,40107	,00130
22404	1 10020	1.//000	1,/110/	
28082	1,07300	3,00112	1,37300	970137 did1%a
	1,03340	3,46716	1,3000/	2 4 10 1 3 10 2 10 1 1 1 10
- 407 34 - Add 64	2 4624A	1.00011	1 98667	300130
****20 ***790	1 711628	2.16598	1 64733	
55163	1 88388	2 54368	1.75333	30130
32126	1.52188	3 9.39.63	1.37434	. 199134
57245	1.22485	2.19822	1.#7.453	
23678	1.25360	2 19822	1.17053	48080
58862	1.37645	219822	1.27853	. (1888
53531	1.47636	2,19822	1.37.153	
81785	1.61720	219872	1.47053	
12242	1.744.00	5,19825	1,57253	, ###80
74855	8-44.5	52861.5	1 67453	,49080
62861	1 89301	5,19855	1,77853	11880
42879	2,0+683	2,19822	1,87953	
67393	P = -4844	2,19822	1,97053	• # 11 97 814
46776	1,2112	99538	1,86387	
49837	1,32124	2,9€558	1,18587	- 30389
-66927	1,5476-	2, 99558	1,1/455	- 1919 -
+01/14	1,44288	¥≊⊅,5≂ ⊃	1,2730/	
\$0002P	1,20223	2 Y 3 3 6 2 9 9 5 1 8	1,27333	្រូវ១៩កាប ផ្សែសុស្ត
100411 84839	1 78963	2 9/35 68	55187	a AnAit
78844	1 8752	9.9.538	1.67#53	24989
67821	2	2.9.538	1,78728	34082
62942	2 96243	2 9:538	1 85387	୍ କ୍ରମ୍ଭାରର
55515	1, 39969	5,73454	1,07353	្នុំ ១៦១៩ម
52922	1,508.00	3,73454	1,18723	39988
59959	\$ \$ \$852%	3,73454	1,59559	. 49380
561795	1,7-120	3,73454	1,36559	, 01084
77246	1,78562	3,59050	45387	******
74246	1,4416.3	5.59854	1,64587	*6008v
76234	1 49/02	5,77950 7.50963	1,00224	9 6 9 10 6 9 9 6 6 10 6 10 9 6 6 10 6 10
-12241	2 8 9 5 0 F	55,578,59 1,40,459	1 98724	3 01700 1 01700 1 01700
17831 FRIJAT	7368198 2 38160	२,३४३२° २,६०५६७	1 05187	43948A
68770	2 85286	4 22583	1 58722	43384
71669	2.11680	4.22583	1.67853	
47281	2.25600	4 22585	1.77853	្ត្រី១០១៩ទ
83779	1.72243	0.22583	1,27853	
86667	B4848	422583	1,37453	, AURAN
75116	1,95840	4,22583	1,47053	, 30060
84637	1 58480	4,22583	1,07053	. 64480
75838	1,55640	4,22583	1,17453	, 1998h
88548	1,53320	3,92729	1,17853	, 40888
8715	1,06168	3,92729	1,27#53	1 48884
82727	1,77840	3,92729	1,37453	148850
2 8473 4	1.8496#	3.92729	1,45387	1 14499

•

•

.

. .

٠.

, •

. .

.

٠.

~. .

<u> </u>	HW	Q	TW	<u> </u>
Ğе –	D	nn ^{1.5}	D	5 0
		עם		
189242	2.95448	3,92729	1.65387	30388
.88490	2. 22208	3,92729	1.78720	. 16884
149581	29283	3 92729	1.87453	. 63389
47458	1.19280	2528374	1.07053	. JANAB
68675	1 2968 -	2.2:374	1,18720	. 74880
95727	1 4284 - 5	0 20374	1.32853	3998 8
80894	1 48320	220374	1,39587	. 00488
75454	1,59680	2.28374	1,53720	
61799	67686	252374	1,55387	เสสติดอิต
\$95215	1 77484	2,2=374	1,65387	
\$83548	1,91320	2 20374	1,77853	14980
155941	1,2452#	2 98538	1,47853	, 999990
\$51652	1,33960	2_9/1538	1,17#53	, 93980
2 66358	1.45280	2,99538	1,27853	* #9466
67244	1,44545	2,9538	1,37.453	• / 3×83
<u>67854</u>	1,07884	2, 4+538	1,47053	+ BAYAA
	1,74360	2,9538	1,57453	
	2 876min	2,99538	1,67853	, 664 88
67542	1 3354 M	2.9:538	1,77953	• 91421818 • 91421818
93748	1,31,28.8	3,92729	1,07055	
-83220	3,40364	5,92129	1,20720	2 ° 0 0 0 0 0
20374	11 11 11 11 11 11 11 11 11 11 11 11 11	7,10310	1,03507	900030 306 10
59001	1 20264	~_*0310 **•0833	1,173%/ , 3/1071	11050 33610
1743/0	1 C	2 19922	1,29775	•≈~030 à3610
*2/213 *2/213	332878 1 KQ288	2 14832	1 44973	- 10031 AA614
20105	1 40800	2 10822	1 54973	34630
	1 69563	2 19832	1 64973	49.639
5.87.99	1 72921	2 19822	1.74973	13630
20416	2312720	2 9 4538	1.96640	34630
53894	1 1992"	2 99538	1 16642	59630
48293	1 28985	2.94538	1 24973	011630
54758	1.35808	2 99538	1.33397	.09630
56552	1.47160	2 9#538	1,43397	H0630
\$5936	1.6298	2[9#538	1,57473	, ∂₽63∂
72726	1 7248	2,74538	1,64973	£963P
65897	1 8H283	2,94538	1,74973	98630
[576 5 2	1,54728	4,22583	1,14973	PE630
66995	1,5772-	4_22583	1,24973	,06638
75418	1,6736#	4,22583	1,34973	, 44630
_814 3 3	1,7864	4,22583	1,44973	,98638
79159	1,85720	4,22583	1,54973	19638
_6877P	1,9484	0,22583	1:64973	.08630
78870	2,06440	4,22583	1,74973	. 11050
22957	1,18886	3,45477	1.05507	,09630
,56727	1,26640	3,45477	1,15557	96626
,51271	1,15000	5,45477	1,2358/	*******
59924	1145680	3,45477	1,55571	90430 90030
,63377	1,36720	3,45477	J 43587	. #0050 macya
-683A1	1,7204%	3,45477	1,20,211	100030
_75464	1.07960	3-45477	1.00043	. 100 20

`**.**

۰ **۲**

۰.

- .

· .

С _е	HW D	$\frac{Q}{BD^{1.5}}$	TW D	s _o
67%58 55617	1,89284	3,45477	1,74973	, 08630
66859	1 378/200	2,19822	1,48413	••(600 ••(600
,73/89	1,59368	5,19855	1,60413	, 11886 181888
÷67384 •65794	1,6844A 1,78920	2,19822	1,70413	,#1#80 ,#1#80
61435 66#\$8	1,35646 1,47240	2;9 9538 2;9#538	1,39413 1,48413	,01080 ,91080
74856	1,56883 1,67428	2,9 3538 2,93538	1,50413	.#1884 .#1884
7#890 47687	177482 186643	2594 53 8 2194538	1,78413 1,80413	
64253	1,4668& 1,56320	3.45477	1.34413	610AB
71867	1,6572× 1,75880	3_45477 3_45477	1,50413	
64026	1.84588	3,45477	1,70413	,01089 .01089
A5551	1,64169	4,22583	1,38413	91882
79741 78814	1 87724 1 9544#	4,22583 4,22583	1,52413	.01080 .01080

. .

· ·

ce	HW	$\frac{Q}{1.5}$	TW	s
- • • • • • • • • •		BD		•
1201034	48888	31452584	1,45387	, 40589
ST4/43	1,01248	31.92729	1,17887	.08848
404#33	1,07009	3,92729	1,27953	,89688
- 74000 - 017A8	1,19100	3242124	1,3/053	, 40857
84225	1,72008	3,72/27	1,4/855	140800
89107	2 898050 2 898050	203720	1 67457	1 00000 Madau
94577	2 25484	1 93739	1 77481	100000
58126	1.29524	2 89932	1.68720	144AA
50125	1.39520	2189932	1,18728	
55173	1.5004.1	2.89932	1.24728	98082
72847	1 58848	2,89932	1,35387	. 84688
173142	1,67480	2 89932	1,45387	
66893	1,7816#	2789932	1,56220	
71618	1,9768#	2,89932	1,75187	
92142	5,50369	2.89932	1,97053	, *****
-49448	1,23128	2,31522	1,08720	,
-634#3	28680	2,31255	1,15387	.06880
- / 4 / 60	1,48844	2: 31522	1,25387	,00000
_00/0/ -70718	1 1 7 7 9 0	2,31222	1,30/20	,00000
56788	1 70344	2,21222	1 58730	3 000000 000080
74418	1 91600	2,31322	1,3072U 1 [°] 77601	
1 #7689	2 10168	2 31362	1 97983	100000
27299	1 96842	2 19822	1 14973	
31674	1.12528	2.19822	1.24973	10630
38072	1.29000	2,19822	1.34973	39630
59395	1.39498	2.19822	1 44973	99639
<u></u> 6995	1.49728	2 19822	1 54973	. 20638
96159	1,65968	2209122	1,64973	. 89639
44469	1.68688	2,19822	1,74973	, 0063P
66291	45728	4,22583	1,14973	, #0639
58359	63768	4:22583	1,24973	,08639
64/76 Fammer	1,72080	4,22583	1,34973	, 19630
-03W70 	1,/100	4.22203	1 8/077	, rno 30 834 70
	07246	9,72303 0193581	1 6497%	10030
79449	2 0ABR9	4522503	1 74973	00630
64943	1.26760	3 45477	1 14973	09639
71159	39360	3 45477	1 24973	88630
71370	1.49288	3 45477	1.34973	.00630
73889	1.62928	345477	1.44973	.88638
69648	1,78280	3,45477	1,54973	F0630
62945	1.78640	345477	1,64973	8963 8
66619	1 95328	3,45477	1,74973	
61421	1 21200	2 <u>5</u> 9#538	1,14973	,00630
56247	1,31120	2,9 653 8	1,24973	,00630
789#6	1,42848	2_9#538	1,34973	,96630
72932	1,58244	2,9#538	1,44973	,05630
03113	1,03640	2,70338	3,34973	*******
_ @Z373	1.07329	Z,98538	1,04973	, *9438

. د

. .

• .

<u>ب</u>

- .

•

C	HW	Q	TW	
е	D	$\overline{\mathrm{BD}^{1.5}}$	D	So
75472	1.84848	2:96538	1.74973	. 28630
21318	1.58880	4 28989	1.14973	99630
60054	1.63648	428689	1 24973	. 99638
281753	1.67568	4 28989	1.36649	48638
85689	1.7868#	428889	1 44973	
61201	9.08:30	428889	1.58387	46634
82458	2.0976#	4 28489	1.658/10	98638
87662	2 11/4#	428689	1.74173	
74836	1 29468	2 19822	1.30413	
153524	1.37Higo	5,19855	1.40413	31686
87135	1 49128	2 19822	1.50413	81080
76987	1.57768	2.19822	1.60413	.01960
34322	1.69160	219822	1.70413	BIBAR
85536	1.01304	2.19822	1 89413	.01089
64757	1 2884S	2 19822	1.39413	
4 9536	3 30112 3	5,19822	1 49413	
172434	(_ 4#8886	2199538	1 39/13	101080
81655	1.48600	2 86305	1.42413	. 31686
79141	1.58680	2.86335	1.50413	. #1987
88881	1 69523	2.86395	1 60413	. 01082
78998	1,78280	2, 83896	1.70413	.91080
73565	1,8884	2 83896	1.88413	.01080
284468	48643	3,37163	1,30413	.01988
82438	1,59368	3,33349	1,40413	71080
92882	1,6916#	3,33349	1,50413	, einse
1 09463	1,7736	3 33349	1 69413	,01080
84297	1,87288	3,33349	1,70413	.81080
85452	1,9748#	3,33349	1,80413	,91089
505051	1,0636*	4,22583	1,39413	, 91980
14003	1,74364	4,22583	1,40413	,M108 M
1-2-4-4	1,76568	4,22583	1,58413	,01989
. / I COS	1,93848	<u>8.22283</u>	1.68413	_B1988

с	HW	_Q	TW	c
Ğе	D	BD ^{1.5}	D	ిం
		50		
51763	1.38348	3594741		.80130
33966	22186	3:51273		.98138
47977	1.36348	4 ี ∺ 8798	8,99 855	.00130
68831	1 477#B	a 26719	9.0 000 8	.80138
54524	1.42868	419154	କ୍ରୁ ଜଣ୍ଡାଜଣ	. 96138
33961	1.21748	3 49982	ค้อสงสช	. 40130
3925P	1.2168#	3 39714	H , HH HHH	ุ้ พยสลม
223734	1_33888	3,67539	8,84000	. อดหลด
64757	2.39160	3 91389	4 * ######	, 99880
26343	1.56963	4-15734		
27389	1,57560	4,22583	ก่ และพย	, VUBAR
46489	1,24364	3,44194	e, 38349	, Jabab
74966	41569	3,92729	8 , 48088	, 19680
71861	1,41160	3,92729	,47853	-9098A
72544	1,41163	3,92729	,97853	,04080
71861	1-41168	3,92729	,57853	. 64049
71861	1+41160	3,92729	÷67053	* 40444
71861	5,41168	3,92729	,77453	,00080
15362	1,25080	3,54596	N NG996	,09630
28972	1, 39968	3,76994	0,00034	,00630
22000	1,49048	3,90/37	n , 499944	,00030
,21329	1,54360	4,98922	и , стр яя	, 86638
\$23003	1,0000	4,22005	8, MBMA9	,00030
23005	1,30328	5.0/334	17 1 18 17 18 19 18 14 14 14 14 14	100030
+21/07	1 47249	5,00714	8 - 8 99 99 99 99 	10470
*21141	२,0040₽ × 50790	4,17191	3 8 9 9 9 7 7 7 6 9 9 9 7 7	
10015	5 20/ E2 1 2 1 1 B 3	1 45477		
	1 58724	1.22582	54973	48648
=	1 58738	0.22587	+ 54973	39630
27471	1 63769	4.22583	74973	48630
24542	59620	4 22583	84973	. 33630
22361	1 59689	4 22583	94973	. \$9630
23915	24486	3 45477	54973	. 98638
2#915	1 25/1B #	3 45477	64973	88630
28915	1 23488	3 45477	74973	20630
28915	2-4480	3 45477	84973	.34638
27915	1 29484	3.45477	94973	.# ¹¹ 630
5@156	1.25560	3.49337	ด สถุดธุล	BABAD
23751	1.3748+	3,73454	0,00003	.00280
25817	1.50864	4 80124	8,98888	
>5489	1.57840	4 19154	0,00000	

. .

×

Table F.14 Data, Type 4B, Pipe Grates

۰.

. .

.

•

- •

C	HW	Q	TW	S
Се Се	D	$BD^{1.5}$	D	్ం
• · · · • • •	1 74/128	т ^т 0л7л (เล้าเสียงเตาส์	- 90170
_34183	1 16748	7,01700	03888	300130
50445	1 22188	2 51271	3 GGA46	10130
54442	I TEOMA	1 G G G 7 9 A	ក ខ្លួលប្រក ភូមិសារារារ	69130
	I THORA	AK 64798	92084	. 80130
3401 00	1 44848	4226718	48113	40130
37320	1 46768	426714		
103307 Still	1.41968	4 19154	.75333	89130
100100	1 42668	4,19154	9 99999	.00130
39114	1 22468	3 49982	อ วงดออส	. 89130
33111	1 21988	3-49982	80333	. 00130
38398	1,22488	3 39714	୳ୢୄୄୄୄୄୄୄୄୄୄୄୄୄୄୄୄୄୄୄୄୄୄୄ	
24893	1.33984	3_67539	6.68889	,00089
61763	34963	3,91389	n,780a0	,00080
32343	1,5516%	4,15734	H . 48936	,00080
132109	1,57960	4,22583	4.080AA	• 98986
74292	1,51688	4,22583	,97453	, 29080
,57822	1,34888	3,74114	88720	* 90080 * 90080
59896	1,34889	3 74114	102422	909080
59250	1,34280	5,74114	1.034EX	
89840	49.562	4.19154	, 72000	, BB 8000
75882	11/109	4.19154	+00001 74797	1000000 3000000
74234	1 3 4 / / D M	4,17154	9/1030/ a (A)00030	1000000 1000000
4/070		2,99179	0	. N9089
-021/3	4 41284	2 92729	57853	49989
.02121	1 43288	3 92729	67853	
*A3137	43283	3 92729	77953	099980
206167 83508	43434	3 12729	87053	
71861	41163	3 92729	87453	BANAN
72544	1 4116	3 92729	97053	00980
71861	41164	3,92729	<u>,</u> 57053	,00080
71861	1,41168	3,92729	67953	
71861	1,4116.	3,92729	77853	,00080
24594	1,27480	3,54596	8,88830	, 19634
26595	1,37884	3,76394	N 98838	, 99630
25541	1,47128	5,70/5/		100054
,26591	1,71/20	4 80766	17 . 17 . 17 . 17	00030 444 14
+23063	まっつつうりや	H 2 2 2 0 3	C,000000 51107	100031 100031
127750 128747	1 5K460	4-225A1	* 00001 * 666/14	100030 100030
JCHC0/	1 5826A	4.22581	74973	
1 C JOOJ 3 C A A Z	1.58368	4-22581	84973	.88418
23863	1.55360	4.22583	94973	88630
ちん ちんんちょう	*******	· • • • • • • •	• · · · • •	

Table F.15 Data, Type 4B, Bar Grates

÷.

1 -

· ·

<u> </u>	HW	Q	TW	c
۲e	D	$BD^{1.5}$	D	ర
27398	1,29160	3;49337	0,000 000	ុំមុខអង្គម
24937	1,39560	3,73454	A , 400 00	ู ผิดหลือ
28589	1,5176#	4480124	4,886 88	
31517	1.58965	4519154	л , Эврн и	
25343	1.37848	3567539	6,63066	. 00630
24684	45/180	3 88714	3,04888	. 89639
29503	1 58484	4517101	0,00004	
57723	1,4396#	4222583	54973	. 98639
57384	1.43960	422583	64973	
57228	1.4396#	4522583	74973	
. 7228	43966	422583	84973	
57362	1 43968	4222583	94973	. 1919634
21964	1.2176	3145477	54973	. 48638
21964	1.21768	3245477	64973	. 58636
22161	1.21269	3 45477	74973	. 49638
22161	1.21200	3 45477	84973	10063 8
22391	1.2124 4	3,45477	94973	
20120	1.68680	428689	54973	. 88630
22475	1.68688	428889	63397	. #4630
28885	1,60688	4 ⁷ 28889	74973	. 09630
24832	∫ ,6⊴58∞	4 28 389	81640	.88630
24183	1.69680	4,28889	94973	. 88638
57628	1 43460	4,22583	0 , 84084	. 8963P
21964	1,21769	3145477	8 8 8 8 8 8 8 8	, 99638
24832	1,60688	4528889	4.888 88	.##638

APPENDIX G

۰.

r 'r

~.

۰ د

•••

۰.

Data From Pipe Culver Experiments

• • • • ~ • -• •

Figure G.l Curve for Determining Critical Depth (dc) in Pipe Culvert

303

•

.

~

•

C	HW	Q _	TW	
Ğе	D	D2	D	So
*****				.a.a. ± 2. ¶
3 EL79E	1,33324	5,20403	8 N 9 0 9 0	• 8042/
307 KU 74784	1, 1120	2.0/332	9,46366	, 90007
1 4/30	1 44252	27/4443	9,99 55 0	- 08007 - 04007
	1,04469	3,04240	9,799990 1. 188490	384001
_0#439 *74845	* 70.003	3,13897	8. 802 00	• 0000/
. 1,7,200 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5_3007	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	300001 300047
#013407	1 03408	3,71104	29 - 19 (9 (9 (9 (9 ()))) (1 - 19 (9 ()) (1 - 1))	_ #00407
71C9P	1,73457	3,3/377	್ಕಾರಾಣರನ ಎ.ಎ.ಎ.ಎ.ಮನ್	\$ 279201 379.347
1 3 3 1 / 20	3 10 100	7 07 401	ំ ភ្លេសសស ភ ខណៈសេស	- 20007
00681	2 27 28/	2 96811	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P (3) (3 (3 6 7
S SAUSI	2 4416-6	4 17223	a activity	123467
1 37472	2 6056.	4 37.200	8	89367
1 13727	2 7 4644	1 49433	a waxar	1. 1. 2. 3. 4. 5. 7
82743	1 78380	3 17819		32367
81381	7.485	3 17819	31533	99967
82755	1.73683	3 :7819	38280	93867
85118	73478	3 17619	44867	.98067
79418	1.7328-	3.17819	53286	33967
82113	1.7384.5	3.17819	63244	11967
81454	1.75320	3 17819	74967	33057
82391	77964	3 17819	82434	.03967
83232	1 82245	3 17819	91533	.08967
83725	1 86-33	3,17819	197 483	12:067
82988	1 2412	317819	1.43290	_ 999467
83133	2 3268.	317819	1,13239	.03067
Ĩ83894	2 11360	3,17819	1.24867	.88967
86326	2 1948/	3,17819	1.34867	.90067
180471	2.2724	3 17819	1,44867	· #3967
77569	2.34560	3,17819	1,51533	.00067
31189	7,496.80	3,17819	1 69967	93967
_A1975	2,45231	3,17819	1_61533	2 ⁰⁰³⁶⁷
_43870	7256 *	1,15489	日。19月日時間	· 39788
39456	7764	1,31685	8,24086	* 63785
38654	83363	1,47842	6,04689	+94780
39898	,3768%	1,63596	0,15390	,80780
44852	,95223	1,79315	0.03040	*N#780
48/42	986A8	1,91449	N N N N N N N	.00780
43017	1 M4848	2,40308	ः <u>१</u> ४७७७ । यहाप्र	2 4 7 8 A
10221	2 24420	2,80800	191222	908/00
44100 * " A K A A		2,00000	+2/222	9 00700 43744
44320	1,000040	2,00000 3.1.6360	17577	9 9 7 7 8 8 0 3 7 8 4
****// ******	2 3 7 7 7 7	アンドウアウガーフトロンドウン	1/1000 A7611	300100 31780
130L1	ままえく ひんり	हू,≋90708 2 gkako	177333 07611	9 7 0 1 0 0 (4 0 7 0 0
30701 61760	1,1/03	5 00000 5 01424	10000 17511	300/00 24724
-33107 "ART9K	1 COCV4	7 # 00 0% 2 % 44 4 #	1 17521	9 ¹⁰⁰ 000 011713
,03317 ,XXAAR	1 47654	2 94464	1 27622	32780
*030P0	1 47.136	7 . TONDO 7 . GABAG	1 t t t t t t	107AG
"KALED	1 66671	5 8317A	1 <u>8</u> 7611	\$ 9978A
20104	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	5.885274 5.3317/	1 57671	
507170 544 5 5	1.86487	2 43370	1.67533	10780
* ** * * ** **	• • • • • • • • • • • • • • • • • • •			

.

<u>ب</u> ۲.

с	HW	Q	TW	-
e.	D		D	s
19596	2,41483	2.11258	1 776 77	
88348	2,11840	2.11258	1 87677	139785
48796	1,09368	2.17251	19 ¹⁰ /000	*##78C
+48725	1,13769	2.3#937	್ಕ್ ಬ್ರಬ್ಬೆಸ್ಟ್ರ್ ಜಿ.ಬಿ.ಸ್ಟಾರ್ ಕ್ರಿ	, 907BP
122510	1,19884	2 45683	11.11.11.11.11.11.11.11.11.11.11.11.11.	,88780
* 0 * 5 4 9	1.25122	2.58335		,00780
59143	1:2528A	2.58114		,80780
- 59143	1.252.14	2 58335	******	,88788
~99 84	:25249	2 58275	+44533	,*378n
•			.5/553	. 89780
,62191	1,25968	2,58335	,67533	.00780
61349	1,27883	2,58335	77533	.00780
66811	1.51920	≥`_\$8335	87533	.80785
74236	1.39444	2,58335	97533	. 10784
4585 9	1 44364	2,58335	1.47533	#3789
92472	1 58884	2,58335	1,17533	
<u>5</u> 65498	1.67368	258335	1.27533	.00780
76563	1.75834	2,55152	1.37533	.00780
182796	1.85043	2.55152	1 47533	.987A2
77481	1 95968	2,55152	1 57533	2 90780
77295	2.47124	2,55152	1,67533	. HM780
75677	2.16761	2,55152	1,77533	10078U
76563	5 26252	2 55152	1 87533	44780
67778	1.33769	2 71197	a Harma	187AH
61759	1 39888	2 88391	พ.่ กวลชุด	.80780
291685	1.46 6.8.	2,97537	ห ู้ มีพหม _ี อ	N-1788
94133	1 52:180	3. 99314	5 44883	.00780
[94692	152.83	3 .0314	47533	A18780
34950	1.522.53	3, 69314	57533	S0780
2 99494	58642	3 13557	4 39.383	.08789
99494	1.58640	3 13557	47533	. 42780
<u><u> 98396</u></u>	1.39129	3,13557	\$57533	#3780
<u> </u>	1 68 367	3,13557	.67533	. 1997 NØ
798235	1. 92562	3.13557	77533	40780
98 #71	1.6652-	3,13557	87533	.29785
99136	1 7 A 8 A	3,13557	97533	. 00780
290-462	1 8 57 8	3,13557	1.07533	28.780
1 34956	1.92:24	3,13557	1,17533	.98788
99651	9968-	3 13557	1,27533	.00780
1 34994	2 08529	3,13557	1,37533	.33780
1 39178	2 19390	3,13557	1,47533	. 93780
1 41913	2,26482	3.13557	1,57533	20789
120481	2.39128	3,13557	1.67533	.88789
98921	2,48283	3,13557	1,77533	,9780
94778	P 55360	3113557	1 87533	.00780
91815	1.62325	3,27264	a , 84999	N8780
98248	1.72960	3 38543	8、伊德波县8	
95261	1,81128	3,54369	ୠୄ୕ୄଌ୶୳୷୶	00780
1,92536	1,932##	3,78435	H , HG33 8	,84783
1 93268	2,94699	3,87649	8,08880	,00780
1,1#325	2,15160	3,97733	3,08969	. 20789
1,13469	2,31884	4,17223	8,00048	,00788
1,17431	2,45488	4,31334	n , 86 068	
1,15274	\$_ \$#R@8	4 42734	0,0848%	.00789
1 17387	8.62882	4,56159	J. 988899	43780

.

*

с	HW	Q	TW	c
ĭе	D	2.5	D	ిం
C2514	4 17048			
_ 38300 148514	1.37248	2,58485	6,30693	. #9967
200331	2 42635	5,02332	N. 2386 1	,20367
-/3391	1,51269	7,74445	н <u>,</u> Эрефи	,#8867
×1484	1,66648	3,04248	0,0v0#0	,#Ø867
83486	1 74520	3-15268	9 , 70 69 0	.00067
76767	1,81483	3,35059	4 , Hare o	,98967
86319	1.8836#	3,41164	୬ ୁଁ ମଧ୍ୟମା ମ	. 20867
93774	1,99.00	3,52599	8 8 9 9 9 3 1	Pak67
96688	2 28158	3 65948	្រំសូមអង	. 80067
1.52788	\$ 2248*	3 44983	สุ้ดชดงอ	
1 1535	2.33440	3 96813	计算法性的原因	
1 11 527	2 48839	1 17223	3 44878	39867
1 8262	2.4332%	4.37922	1. 189.14	.88967
1 12263	2 740.04	1 49430	1.64440	
89783	177433	3 . 7819	8. HAHHH	36467
84783	7740	3 17819	41533	9.1267
89783	1743.5	1 17819	16533	40067
92482	1 7 7 5 G A	1 17810	5/1867	46.247
91.446	7756	1 17810	14007	14017
CARBR	1 79603	3,17017	101000	9117507
012877	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	3,17017	- / 100/	
- 73077 - 987 31	1 0 0 0 0 0 v	3,17014	.01222	_ 9 & 9 D I
2001 23	1,8414*	3 1/619	104001	- 389 VA57
	1.01680	5.17519	. 40333	* 2000
- 43433 - 0%885	4264	3,17819	1,036.74	, 0MM67
97032	9997	3_17819	1,14867	. 04/67
98.225	5,19964	5,17419	1.54544	331667
* 68000	2,18684	5,17819	1,35/33	.04/167
84945	2,33724	3,17819	1,49867	· · · · · · 67
83764	2.4624~	3,17819	1,61533	• · 3867
97838	2,5876	3,17819	1,73296	+ 33367
-66319	7#360	1,15406	3 _68836	* 3378A
55279	7938/	1,31605	9,43883	• 00780
255933	8524×	1 17842	រង ្ខ ំអូវីសិមិភ្នំអី	,49784
<u>1985</u> 242	, ADAR 1	t⊈6⊮596	ୢୄଌୢୖ୷୷ୠ୶ଡ଼୶	, 00780
6 168	97169	79315	8, 19943	, <u>0.4783</u>
<u>-</u>	1, ##32%	1,91449	通,并开行的边	,29784
71269	2,21160	2,11258	<u>성</u> 국서대학교	, 34786
71269	1,1160	2,11258	47533	.00782
249x32	1 11160	2,11258	,57533	, ⊌9789
7 *632	1.11702	2.11258	67533	30782
1 72135	1,13160	2,11258	77533	697AU
64879	1.17284	2,11258	,87533	. 46780
<u>59825</u>	1,24921	2,17251	,97533	20784
69888	1.31765	2,17251	1.47533	.00780
174541	1.41480	2[17251	1,17533	6078 4
77955	1 53160	2.17251	1,27533	.00780
74988	1.51880	2.17251	1.37533	И Л7 ВИ
74796	1.71802	2.17251	1.47533	
67855	8236#	2.17251	1.57533	
80262	1 92724	2 17251	1 67533	20780
74419	2 23033	2 17291	1 77533	99789
75340	========= >===========================	2 17251	1 87522	017A0
	C	4 # 4 / 6 3 1	L # 19 1 A 3 3	• • • • • • • •

.

٠.

۰ ر

c	HW	Q	TW	S
Сe	D	_2.5	<u> </u>	ిం
- 4 3 3 4 4	• • • • • • • • • •	D		
- CJE1C	1,110#7	2,17251	8,96860	,
× × 7 × 7	1,15847	2,39937	8,88868	, 99788
.00/3/	1,21928	2,45085	B . 80088	, 00780
00447	1,27884	7,58335	8.94844	• 4478H
274540	2,276	2,55152	9 ₂ 09000	· 여겨78의
/1002	1,26883	2,55152	<i>,</i> 47533	.H0784
* 12451	1,26881	2,55152	,57533	, ³ 0780
\$ 7 4 5 7 5	1,2768	2,55152	.67533	, 3078H
- / 4 / 5	1.79567	2,55152	.77533	. \$3788
77968	31564	2,55152	87533	90780
76888	1,38324	2,55152	97533	.00780
78687	1 46244	2,55152	1,07533	. #8780
89247	1 5542	2255152	1.17533	
77797	3.65480	2,55152	1,27533	10780
76690	1.74288	2,55152	1,37533	
78786	1 8570-	2,55152	1,47533	.UH784
18₽5 5 9	1 9516/	2,55152	1,57533	_##789
81335	2,94562	2,55152	1,67533	. 18780
19523	2,17043	2,55152	1,77533	39780
74322	2 ,258⊌⊎	2,55152	1,87533	- 887A9
75986	35613	2,71197	6 34669	186789
87 69	1,1312:	2 88391	8,199¢ e	. 33783
94326	1,48165	2,47537	ಕ್ರಿ ಚಿತ್ರಗಳು	. ANTRE
99573	1.63.333	3 17819	· 4· 5 使通信	. 307A8
99573	1,53.25	3.17819	47533	,# <u>9</u> 788
99573	1,83.00	3_17819	57533	.0%780
1 0293	1,53163	3,17819	,67533	,00780
1 31577	1.65280	3_17819	77533	<u>.</u> 20780
98927	69 /8×	3,17819	,87533	P 4789
99937	1,75362	3,17819	,97533	* 1878P
1, 1601	1,82.964	3,17819	1,87533	. 20780
1.1932	1 PO 80	3,17819	1,17533	·*****
1, 18815	1 95762	3,17819	1,27533	. 40780
1	2, <u>18~</u> 8 A	3,17819	1,37533	
98619	2,25320	3,17819	1,47533	,09780
98337	2,2992%	5,17819	1,5/555	- <u>-</u> 001/50
98372	2.5452	3 1/219	1 77577	- 70780 - 44784
90221	2, 000000 2, 000000	3,17019	t,//333	• 00/00 • 00/00
45445	- 5700a	7,77244		100/00 100700
0339Z	1 0 0 4 4 L	2.21204	0 000000 0 000000	
1.420/7	* R1583	2,30343 1 5/1740	™_245 49786 ⊒ ¹ 2626686	-90/00 249940
, YOIII	1.000CP/2 1.000k/1/	3, 34394 1 70/120	របត្តបាសាសាការបែក សារដ្ឋាសាសាការបែក	900100 442724
1 02921	1,77042 9,24243	2,10433 T.87649	⁹ 985388 3.333666	
1 80275	5 1 5 0 2 4 5 1 6 6 4 5	2 01017	ഗ <u>ം</u> ⊽⊎യയ⊍ ക്.ുമാംകംകം	
1.1543/	2 1 7 7 7 8 8 2 1 1 1 1 9 9 4	2.7/123	मि हरम्म भाषतम सारकार का	300/00
1,10271	2 3 4 2 D 3 2 3 4 0 4 2	411663	5 300000 3 30000	9 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 3 4 7 4 7	> KE143	n 63720	0,100000 8 28888	*********
1,13074	2 47480	A RAIRO		20704
5 14123	F	4,30177	의 * 진국, 121 68 4	*****

Table G.3 Data For Pipe Culvert, Inlet Control, No Grates

.

4

Ce	HW D	$\frac{Q}{D^{2.5}}$	TW D	s _o
27496	,768-53	1,33520	0.00464	1 1 5 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1
27010	18080	1.42577	9,6568W	.05000
- 34472	101368	1,53839		1.2484
24310	,84657	1,64696	0,00005	,75885
29398	,87320	1,76499	a 199490	, 45999
,28471	,98520	1,87136	8,50909	, 85000
25094	,92568	199441	3,38383	.05968
,27296	1,05363	2,44984	9,32932	, 25400
,26749	1,18248	2,63134	8,864.88	. 45490
31951	1,16728	2.72988	0,00000	. 95988
38434	1,25240	2,87564	6,00000	,85498
,46898	1,33/1814	5,99211	a yaxaa	.05000
48285	1,38889	3,13557	a nunca	.82000
54350	1,44722	8 26401	୶ୢୢୢୢୢୖ୶୫ଌଌଌ	.05000
53474	1,51480	3,37671	0,08089	,85080
231405	1,55368	3,51715	୶ୢୄୄୄୄୄୄୄୄୄୄ୶୶୶୶	,05000
19230	1,48568	3,65853	6,60838	.25320
,61606	1 54288	3,74948	୵ୢୢ୶୶୶୷୶	, 35938
59778	1.6236#	3,95893	8 24059	,95990
61343	1 61322	3,95893	2 90838	,05099
63857	1.63649	3,95893	·····································	65948
72196	1.78160	4,27556	0.64620	* 5988
36157	1.82523	4159389	6.66444	.85480
41849	1 88433	4.63891	ธุ์ลอทสห	์ พรทุธต
43888	1 94883	4,75569	8 080 89	650VP
148319	2.5 9.8.84	4.785%4	ผ ู้ถูกสดุว	.05000
28996	2. 42=8+	4.97228	୪ ୍ ୟ ଶମ ଅଷ	- 3500M
33449	2.1316~	5,47179	ค้ะตดงระ	,05980
26948	2 23684	5 <u>[1820]</u>		,85898
41865	2,31728	529302	6	,95986
_R6938	2 59728	5248659	8	

c _e	HW	$\frac{Q}{D^{2.5}}$	 	so
~ 77//69	• 7 7 H anda	U U 77523	u [*] an aass	
- 3/90/ - 776 A W	370800	1,333204		,
3/043	14000	1,423//		, "3990 utata
30347	102450	1,33037		197000 18460
_ 37W00	300040	1.04070		12000
200504	7 C Y W 17 G	1,10499	9 988889 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 0 3 0 0 0 JE 0 0 0
27230 77730F	9 7 2 19 10 19 0 11 7 10 1	1,07537	9929909 2000000	163344
- 35473	74320	1,99441	4 0 3 0 9 0 3 3	្នុះខេត្តចាប់ ខេត្តខេត្ត
,323/0		2 44989	10 - 1 2 10 12 10 10 10 10 10 10 10 10 10 10 10 10 10	100000
YYDO	1,12048	2.03134	9999997 1999997	903000 9030000
= 5/721	1.14046	2,12000 5 97844	a nun	**************************************
41522	1,20704	2,07304	80 - 1 0 97 - 10 72	
, 33983	33 (4.2	2,99210	N . NNNNN	*******
24942	1,3/883	5,1500/	10 , 10 , 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	,05000
- 47/80 	1,5236	5,26481	M . A 19 19 19 19	
- 5/ 760	1,34769	3,37071	A 104440	
_0%031	1,4/132.0	3,51/15	M P M M M M M M	**************************************
64590	1.54(22	3,65953	0.96000	, 05000
-68214	1,56648	3,74944	N 19461919	.05000
55820	1-05569	3,95893	R . R .H S & M	
68784	1,6364	3,95893	G,动体内积经	,05000
75103	1.79443	4, 27556	的。和你们你可	. 45000
_37241	1 82285	4_5#389	0,08082	,05000
_4 0556	9344.5	4,63891	3,09990	<u>,</u> 35980
[34#35	\$ 952:59	4,75569	U_9 00000	
33167	2,000.0	4_785 84	网。白色花外公	,05000
35657	2 46924	4,97228	8,80888	,85088
19834	2,12848	5 07179	8,88484	, #58# 8
39511	2,23529	5 18281	8 . 88.048	,05000
5368 6	2,36124	5_29302		,05 0#0
1.31543	5,04254	5.48659	영 문 원 생기(64)(7	. 95988