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PRE F ACE 

This report is the first in a series which summarizes the 

detailed investigation of the effects and control of tensile stresses 

in the anchorage zones of post-tensioned girders. This report sum

marizes the state-of-the-art and presents a three-dimensional finite 

element analysis procedure which is of great use in understanding the 

development of these tensile stresses. The second report in this 

series summarizes an extensive series of model and full-scale physical 

tests which were performed to document the problem and further explore 

the effect of variables. The third and final report in the series 

draws on the analytical and experimental results presented in the 

first two reports. It uses these results to develop design pro

cedures and suggested AASHTO specification provisions to control the 

problem. The third report also contains several examples to illus

trate the application of the design crit~ria and procedures. 

This work is a part of Research Project 3-5-77-208, entitled 

"Design Criteria for Post-tensioned Anchorage Zone Bursting 

Stresses." The studies described were conducted at the Phil M. 

Ferguson Structural Engineering Laboratory as a part of the overall 

research program of the Center for Transportation Research, Bureau of 

Engineering Research of The University of Texas at Austin. The work 

was sponsored jointly by the Texas Department of Highways and 

Public Transportation and the Federal Highway Administration under an 

agreement with The University of Texas at Austin and the Texas 

Department of Highways and Public Transportation. 

Liaison with the Texas Department of Highways and Public 

Transportation was maintained through the contact representative, 

Mr. Alan Matejowsky; the Area IV committee chairman, Mr. Robert L. 

Reed; and the State Bridge Engineer, Mr. wayne Henneberger; Mr. 

Randy Losch was the contact representative for the Federal Highway 
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Administration. Special thanks are due to Dr. E. B. Becker and Dr. 

C. P. Johnson of The University of Texas at Austi~who gave a great 

deal of assistance and encouragement in developing the program 

PUZGAP-3D used in the analytical phase. 

The overall study was directed by Dr. John E. Breen, The J. J. 

McKetta Professor of Engineering. The detailed analysis was carried 

out under the immediate supervision of Dr. William C. Stone, 

research engineer, Center for ~ransportation Research. 
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SUMMARY 

Several large thin-webbed box girders, with post-tensioned 

anchorage zones designed in accordance with AASHTO and ACI requirements 

have experienced large cracks along the tendon path in the anchorage 

zones at the design stressing load. Cracking of this nature provides 

a path for penetration of moisture and salts and thus presents a 

potential corrosion and frost damage threat. In addition, such 

cracking negates a major reason for the use of prestressed concrete, 

the minimization of service load cracking. 

This report summarizes an extensive literature review which 

documents the state-of-the-art in anchorage zone analysis, behavior, 

and design recommendations. In addition, the report outlines the 

general utilization of a powerful three-dimensional finite element 

program--PUZGAP-3D--for analysis of the complex anchorage zone region. 

The program was used to study both straight and curved tendon paths. 

Good correlation was found with experimental results up to first 

cracking which indicated that the program was very useful for 

exploring the effects of various parameters. 
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IMP L E MEN TAT ION 

This report is the first in a series which summarizes a 

major experimental and analytical project aimed directly at 

developing specific recommendations for design of post-tensioned 

girder anchorage zones. The recommendations should be considered 

by the State Deparbnent of Highways and Public Transportation and 

by AASHTO for inclusion in design specifications and in design 

manuals of practice. The specific recommendations are included in 

the third and concluding report of this series. 

This report contains background information of interest to 

those responsible for deciding on specification and codes. In 

addition, it contains specific information regarding the use of a 

three-dimensional finite element program for analysis of complex 

anchorage zones. The analysis is so demanding and complex in input 

that it is of little practical interest to designers. It is of 

interest and contains important information for persons wishing to 

carry out detailed analysis of anchorage zones for the development 

of criteria, hardware units, or special post-tensioning applications. 
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C HAP T E R 1 

INTRODUCTION 

1.1 Problems in Thin Web Post-Tensioned 
Structures 

Current trends in bridge construction show increased 

utilization of precast and prestressed concrete. After two decades 

with major utilization of pretensioned bridge girders, increasing 

bridge applications are being found for post-tensioning. California 

and Washington have pioneered in the use of cast-in-place post-tensioned 

box girder construction. Texas, Colorado, and Indiana have completed 

major segmentally constructed post-tensioned box girder bridges. A 

number of states have similar structures under active design or con- -

struction, and a variety of applications for lateral and transverse 

post-tensioning in relatively thin slab and web systems have been 

proposed. 

Pretensioning implies that the strands, or tendons, are 

stressed before the concrete is cast. Once the concrete has reached 

the desired strength the load is released from the jacking system and 

applied to the structure via bond along the tendon. This allows for a 

gradual transfer of the high prestress loads over some "lead in" 

length of the girder. 

In post-tensioned construction a hollow duct is placed in the 

structure during the casting phase usually by employing flexible metal 

tubing. After curing has taken place the tendon is drawn through the 

duct and stressed. Once the tendon has been stressed the load is 

locked off and permanently applied to the structure by some sort of 

anchorage device. Herein lies the fundamental difference between pre

and post-tensioning. The problem of transferring the large prestress 

force to the structure over a small local anchorage zone becomes a 

primary concern in the design of a successful post-tensioning system. 

1 
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In the construction of cast-in-place box girders, it is 

feasible to use enlarged anchorage zones at the ends of the spans or 

at interior diaphragms to contain the tensile stresses which generally 

occur in the vicinity of the point of application of the post

tensioning forces. In construction of post-tensioned "I" beam type 

girders, it has been the general practice to provide a thickened end 

block with substantial additional reinforcement to accommodate these 

anchorage zone stresses. Even in those thickened sections cover over 

edge tendons is small. However, in two very practical post-tensioning 

applications, segmentally constructed box girders and relatively thin 

laterally post-tensioned overhanging deck slabs, it is not economi

cally practical to provide massive thickness to control anchorage zone 

stresses. In fact, the entire length of the structure becomes the 

anchorage zone for an appreciable number of tendons and over

conservative anchoxage zone design could greatly penalize the 

economics of this form of construction. 

A number of problems have occurred in post-tensioned appli

cations in both the bridge and the building field which indicate that 

the design procedures and design criteria for post-tensioned anchorage 

zone tensile stresses need further examination and refinement. Sub

stantial cracking along the tendon path has been experienced in a 

precast segmental bridge in Texas [1] (see Fig. 1.1) and in a cast-in

place box girder bridge reported by Dilger and Ghali [21. In both of 

these bridges the cable profiles had significant curvature, inclination, 

and eccentricity in and near the anchorage zones. In the case of the 

Texas bridge, there was some concern over the possible effects of the 

anchorage hardware geometry. Similar cracking was reported in con

struction of the Olympic stadium in Montreal and in post-tensioned 

slab structures and other thin web applications. Significant anchor

age zone cracking was experienced in preliminary tests for a major 

lightweight concrete bridge in California which indicated light-

weight concrete may be even more vulnerable. 
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Fig. 1.1 Resident engineer pointing to tendon 
path crack 
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The cracking which occurred in these anchorage regions was 

controlled by auxiliary reinforcement and the member strength was not 

appreciably reduced. However harmless these cracks may appear, they 

provide a path for penetration of moisture and salts and thus present 

potential corrosion and frost damage threats. The formation of these 

cracks negates one of the major factors leading to the choice of pre

stressed concrete, the minimization of service load cracking. 

Major and contradictory changes have taken place in the 

AASHTO, ACl and PCl design specifications for anchorage zones in 

recent years, based more on the results of field experience and pro

prietary data than on published analyses or test procedures. Current 

design recommendations, while vague, seem both conservative and work

able for many applications where massive end blocks with large cover 

can be used with relatively straight or gently curving tendons in 

cast-in-p1ace post-tensioned construction. However, they do not give 

sufficient guidance for the wide range of thin web post-tensioned 

applications currently in use today, or the many new applications 

being suggested as the industry develops. Thus, this study of the 

development and control of critical anchorage zone tensile stresses 

was undertaken. Its goal was to provide more specific guidance to 

bridge design and construction personnel regarding the behavior of 

anchorage systems so that they could better assess the performance of 

a post-tensioning system without having to rely wholly on the recom

mendations of the hardware supplier. 

1.2 The Anchorage Zone Stress State 

1.2.1 The Nature of Anchorage Zone Stresses. Application of 

linear, elastic theory shows that if a concentrated normal load acts 

on a large (semi-infinite) body bounded by a plane, compressive and 

tensile stresses are set up. The distributions of radial stresses 

along the line of the load and along lines parallel to the load are 

shown in Fig. 1.2. Two important tension fields are shown in this 

· . 
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figure: those acting along the line of the load, which, by 

elasticity theory, become infinite directly beneath the point load 

(Fig. 1.2a), and those acting on or near the end face at points 

removed from the load (Figs. 1.2b, c). Figure 1.3 shows the varia

tions in transverse stress for a finite rectangular block loaded by a 

finite strip loading. The two tensile stress zones are generally 

called: 

(1) Bursting Stress--located along the line of loading, normal 
to it, and away from the point of loading. 

(2) Spalling Stress--located along the loading surface, parallel 
to it and away from the point of loading. 

In dealing with a specific post-tensioned anchorage, the load must be 

applied over a finite area. The compressive stress immediately under 

the anchor is called: 

(3) Bearing Stress--The load divided by the net bearing area. 

The precise role that each of these three stresses plays in the 

behavior of the anchorage zone has not been fully understood and a 

positive prediction of cracking loads has proven even more elusive. 

5 

1.2.1.1 Bursting Stress. Distress in the anchorage zone is 

signalled by the sudden formation of a crack along the line of the 

load. The load at which this occurs depends not only on the size of 

the loaded area in relation to the geometry of the loaded surface [3], 

but additioIlfllly on the geometry of the surface itself, 1. e., the 
-;£. 

eccentricity, inclination, and curvature of the tendon. In addition, 
"~ 

the shape of the- anchorage device as well as the action of supple-

mental reinforcement~affect the load at which crack formation occurs. 

In Fig. 1.2a, for the semi-infinite body, the tensile 

stresses increase rapidly near the pOint of application of the con

centrated load. High local transverse tensile stresses occur directly 

under the concentrated load. On the other hand, in Fig. 1.3, for the 

finite rectangular body, transverse compressive stresses occur 
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immediately under the load and the transverse tensile stresses occur 

away from the point of loading. These extreme differences in stress 

distribution for the two cases demonstrate the need to ensure that the 

boundary conditions employed in an analytical model correctly represent 

design conditions. 

The presence of tensile stresses in the anchorage zone can be 

readily visualized by considering two prisms of a low modulus material 

such as rubber, which are connected at their ends by small rigid plates. 

When a force is applied to the system through the plates, the final 

deformed position will be as shown in Fig. 1.4. In a real structure 

continuity across the tendon load path must be provided by the adjacent 

concrete. To satisfy compatibility along the vertical load axis a 

lateral tensile load would have to be applied to each interior edge of 

the prisms in Fig. 1.4 in order to close the gap. This would represent 

the bursting force. Similarly, at the upper and lower exterior corners 

internal tensile loads would have to be applied to return the exterior

edges to a straight line configuration. These are the spalling forces 

and associated stresses. 

The above analogy is a physical interpretation of St. Venant's 

principle applied to a member subjected to a concentrated load P as in 

Fig. 1.5(a). A section at a distance approximately equal to the depth 

of the section from the applied load should exhibit an essentially 

uniform normal stress distribution. The longitudinal stress distribu

tion within the zone ABCD is not uniform and cannot be analyzed by the 

usual laws of strength of materials. In fact, the distribution of 

stresses on Section EEl is completely discontinuous, with very high 

stresses at points near the applied load P and practically zero stress 

at all other points [4]. This zone of disturbance is called the 

lead-in zone. Fig. 1.5(b) is a free body of the upper part of the 

lead-in zone. Equilibrium of horizontal forces requires the shear 

stress T. Transverse stresses f are required for equilibrium of 
x 

moments about M. Finally, the vertical equilibrium of forces 
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Pig. 1.4 "Rubber analogy" illustrating the na.ture 
of bursting and spalling stresses 
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requires the transverse stress distribution resultant to be equal to 

zero. Therefore, tensile and compressive transverse stresses must 

occur within the lead-in zone. However, these equilibrium considera

tions are not sufficient for the determination of the transverse 

stress distribution. The various analytical approaches to the solu

tion of the stress distribution in the anchorage zone are discussed 

in detail in Chapters 2 and 3. 

Examination of Boussinesq's solution for the concentrated 

loading (Fig. 1.2), and for the uniformly loaded circular area with 

radius a' (Fig. 1.6) reveals that when a' becomes zero the two are 

identical for stresses along the axis of the load. If, as in actual 

practice, the load acts over a finite area with a reasonably large , 
radius a , the stresses are relatively small. These stresses are 

plotted for a constant load P in Fig. 1.7 for various values of a' la, 

where 2a denotes the section breadth and 2a' denotes the anchor 

breadth. Standard design practice in many countries has been to pro

vide massive reinforcement for the total resultant tensile force 

obtained by integrating the area under curves such as those shown in 

Figs. 1.7 and 1.8. Experience gained from anchorage zone cracking 

problems with the Texas bridge at Corpus Christi [1], in which the 

anchorage zones were reinforced based on a similar set of experi

mentally derived bursting curves [6] indicated that design based solely 

upon such consideration of bursting stresses may be unconservative. 

1.2.1.2 Spa11ing Stress. The spa11ing tensile stresses are 

maximum at the loaded surface and decrease rapidly away from the sur

face (see Figs. 1.2 and 1.3). The total spa11ing tensile force is thus 

relatively small. In contrast to the attention paid to bursting 

stresses, the spa11ing stresses have sometimes been neglected or dis

missed because they are so localized. However, the peak spa11ing 

stress can be very high, indeed much higher in almost every practical 

situation examined by the authors than the bursting stresses. This is 

shown to be of great significance in subsequent reports of this series 
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where it will be shown that cracking occurred along the tendon path 

with calculated bursting stresses far below the tensile strength of 
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the concrete. Like bursting stresses, the spalling stress distribu

tion is greatly affected by the geometric variables such as eccen

tricity, inclination, and proportions of the section. Most of the 

previous research on post-tensioned anchorage zones has been limited to 

straight tendon analysis and has been interpreted with emphasis on the 

role of the bursting stresses. This has been more due to the difficul

ties in satisfying the proper boundary conditions than lack of interest. 

The advent of sophisticated finite element programs in the last decade 

has allowed more realistic modeling for specimens with complex 

geometries. The results with these analyses indicate a key role of 

spalling stresses in crack formation. 

1.2.1.3 Bearing Stress. The maximum compressive stress 

developed by a post-tensioning system occurs beneath the anchor. In

the case of a flat plate, or bearing type anchor, the average bearing -

stress is equal to the post-tensioning load divided by the net area of 

the anchor defined as the projected plate area minus the tendon duct 

area. Current design specifications in the United States, while speci

fying the need to examine bursting and spalling stresses, usually 

phrase their strictest recommendations in terms of allowable bearing 

stress. Most European specifications permit significantly higher 

allowable bearing stresses in post-tensioned design [7]. Whether this 

apparent over-conservatism in the American codes is justified has been 

a question much pondered but under-researched. 

1.2.1.4 Additional Considerations. In addition to the geo

metric effects such as inclination, eccentricity, width and bearing 

area, the effects of friction and normal forces along the tendon duct 

for curved tendons (see Fig. 1.9), the effect of anchor hardware 

geometry (see Fig. 1.10) and other externally applied loads such as 

lateral post-tensioning must all be considered to fully grasp the 

anchorage zone stress state. 
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1.3 Overview of the Project 

1.3.1 Objectives. The overall research program was broken 

into six interactive phases which constitute its specific objectives. 

These were: 

(1) To document the state-of-the-art based on an extensive 
literature study of all analytical, experimental, and 
design related papers and reports concerning anchorage 
zone stresses for post-tensioned applications. 

The results of this survey are presented in detail in the next chapter 

of this report. 

(2) To survey the wide range of post-tensioning anchorage 
systems currently available in the United States and to 
make a classification according to general anchorage 
principles, sizes and shapes. 

Figure 1.10 shows the three distinct types of anchorages in use. These 

are the bearing or plate type anchor, the cone or wedge anchor, and a 

"bell" shaped anchor. There are also three basic schemes used in 

making up the tendon. These use either 250 or 270 ksi 7 wire strand 

tendons where the load is locked off using conical chucks, 240 ksi 

wire where the load is locked off by "button headinglf the heads of the 

wire, or 160-170 ksi bars, smooth or deformed. The latter uses a 

heavy duty nut which conveniently screws down once the post-tensioning 

load has been applied. Bar type tendons cannot be used where a sharp 

curvature is required, and wire type tendons usually require spe

cialized anchorage procedures in the field. For these reasons the 

7 wire strand tendon has been widely used in post-tensioned appli

cations. While theoretically the anchorage zone cannot detect 

whether it is being loaded by strand, wire, or bar, the overall per

formance of anchorages in regions where significant curvature of the 

tendon is required has shown that cracking can occur at locations 

well removed from the immediate anchorage area. This effect occurs 

primarily for multiple strand tendons, but can occur for single 

strand tendons as well, and is discussed at length in subsequent 

reports. 

'" 



(3) To survey present and projected tendon path and anchorage 
zone characteristics in post-tensioned bridge 
applications. 
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A detailed examination of available bridge plans for several segmental 

projects both in the United States and Europe, indicate three signifi

cant factors are present: 

(a) I~ order to pick up some of the dead load shea~ the tendons 

which are usually carried along the top deck slab are often curved down 

into the web sections in the segment in which they are anchored. This 

results in the tendon being sharply inclined at the anchor. 

(b) Since the tendon must be dropped into the web from a hori

zontal attitude, a significant curvature is developed which gives rise 

to large normal and friction forces along the duct. 

(c) Often a significant eccentricity of load with respect to 

web centroid occurs, particularly when multiple anchorages occur in the 

same web. 

These characteristics and their effects on the anchorage zone are 

illustrated in Fig. 1.9. There is a current trend to anchor out of the 

web for speed of construction. This technique uses side "blisters" in 

the interior of the box section to anchor the tendon. Aside from 

moving the anchorage away from the congestion at the end of the web 

section, this method often does not eliminate the above factors and in 

fact may give rise to an additional out-of-plane curvature effect. 

(4) To study systematically by both analytical and 
experimental procedures, the development of critical 
tensile stresses in the anchorage zone for typical 
applications using representative anchorage systems. 

In essence this was the core of the project. In this phase the 

principal variables, inclination, cover (width), eccentricity, bearing 

areas, and anchorage type were examined using both accurate 1/4-scale 

models and full-scale prototype specimens in the laboratory. A paral

lel effort was initiated to predict stress distributions in the 
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physical specimens through the use of tw~or three-dimensional static, 

linear elastic finite element programs. As primary empha&is was placed 

on developing a behavioral mode for first cracking, the linear elastic 

assumption proved to be sufficiently accurate. Once calibrated the 

computer program could then be used to extrapolate beyond the range of 

the experimental tests. Ultimate strength trends would be derived from 

physical specimen test data. 

The development and calibration of the analytical programs are 

detailed in Chapter 3 of this report. 

(5) To evaluate the efficiency of various active and passive 
reinforcement in anchorage zones, including spirals, 
conventional reinforcing bars and lateral prestressing. 

This objective was an outgrowth of the experimental program but dealt 

with crack control rather than the behavioral mechanism by which the 

crack was initiated. If the cracking load could be altered and the 

ultimate load enhanced by the addition of reinforcement, then major 

design interest focuses on the most efficient scheme for placement of 

this reinforcement. Placement was the primary question concerning pas

sive reinforcement. With lateral prestressing, or active reinforce

ment, a powerful new option was opened. This was due to the fact that 

the stress field in the anchorage zone could be significantly altered 

by the addition of a transverse compressive force. Results are dis

cussed in the subsequent reports. 

(6) To develop recommendations for specific design criteria 
for post-tensioned anchorage zone tensile stresses. 

Based upon experimental and analytic data these recommendations can be 

broken down into two categories: 

(a) If the structure is to be located in a highly corrosive 

environment where not even minor cracking can be tolerated, what is the 

maximum permissible stressing load, given the geometry of the 

anchorage zone? 



19 

(b) Given rigid geometric conditions and required load, what is 

an "acceptable" crack and how can this be controlled through an active 

or passive reinforcing scheme? 

In either case the structure must be capable of performing satisfac

torily under service load conditions and with an adequate factor of 

safety under failure conditions. The design recommendations and 

examples based on this investigation are contained in the final report. 
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C HAP T E R 2 

LITERATURE REVIEW 

2.1 Introduction 

A pioneering study of post-tensioned anchorage behavior 

appeared in the early 1950's when Guyon [4] investigated the tensile 

stresses responsible for cracking problems in early post-tensioning 

applications in Europe. In his classic 1953 text he states, 

The principal effect of localized forces is the production of 
stresses in planes at right angles to the line of action of such 
forces and which tend to burst the element transversely to the 
force. 

Hence the origin of the term "Bursting Stress." Using elasticity 

theory he developed a solution for the case of a load applied 

normally to the loaded surface. This theoretical solution was 

reduced to a practical design method known as the symmetrical prism 

analogy which is still in use in many countries today. This method 

is discussed in the next section. Guyon used a series of photo-

elastic tests performed by Tesar [8] to confirm the symmetrical prism 

theory. In addition to verifying the presence of the bursting stresses, 

another tensile stress was brought to light. This stress occurred 

parallel to the loaded face and had its maximum value at the loaded 

face, as shown in Fig. 2.1. Since such a tensile stress on the sur

face of a reinforced concrete beam usually tended to cause the cover 

concrete to flake or spall off, these surface tensile stresses became 

known as "Spa11ing Stresses." The names have remained in the litera

ture ever since. 

However, Guyon's work and nearly all the studies which fol

lowed, did not adequately consider the effects of loads which were 

applied inclined to the loaded face or which were applied at high 

21 
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eccentricities. Even the Zielinski and Rowe studies [9), widely 

regarded as the definitive experimental program and upon which many 

design codes and specifications are based, did not address either of 

these situations. Primary emphasis was placed on the bursting stress 

distribution as this was a simple concept to understand and design for. 

Consequently little experimental or analytical attention was paid to 

spalling stresses. They were regarded as surface phenomena which posed 

no threat to structural integrity when sufficient reinforcement was 

placed close to the loaded face. 

This general bias towards criteria based almost completely on 

bursting stress is cited in a report on post-tensioning anchorage prob

lems in nuclear containment vessels by Gergely in 1969 [3]. He states 

that, "In contrast with the attention paid to bursting zone conditions, 

the spalling stresses have sometimes been neglected or dismissed by 

deSigners because these stresses are localized." The extent to which

this bias affected physical and analytical studies can be seen in the ~ 

following sections. Indeed, faced with unexplainable cracking in 

post-tensioned members despite "adequate" bursting reinforcement, it is 

not surprising to see that the major codes resorted to archaic and 

overly conservative specifications based upon bearing stress studies 

from column base plates. It is clear that the problem was far from 

understood. 

2.2 Previous Research on Anchorage 
Zones 

2.2.1 Studies Based on Elasticity Solutions. The major 

initial contribution to elasticity analysis was made by Guyon. It is 

developed in detail because of its significance. A number of other 

studies using various solutions based on the classical equations of 

elasticity were performed in the early to mid-1960's. Most of these -

generally agreed with the trends first presented by Guyon. They are 

briefly mentioned for completeness. 
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2.2.1.1 Guyon's Theory. Guyon [4,5] pioneered a theoretical 

investigation of the anchorage zone stresses utilizing the two

dimensional theory of elasticity. Some of these results were verified 

by photoelasticity [8]. Guyon was highly aware of practical implica

tions and developed a series of design aids for single straight con

centric tendons, single straight eccentric tendons, and multiple 

straight eccentric tendons. He also attempted to explain changes in 

the stress field for slightly inclined tendons by using elasticity 

theory and by breaking the inclined load into normal and tangential 

components. 

Guyon's approach can be seen for a single axial force applied 

to a rectangular prism as shown in Fig. 2.2. He reduced the problem 

to two dimensions assuming the load to be applied across the width of 

the member. Thus the effect of cover was not considered. Guyon 

explained the presence of the bursting stress as follows: 

The single force P is uniformly distributed over a height 2a' 
(the anchor width), symmetrical about the axis of the beam OZ of 
Fig. 2.2. The lead-in-zone, of approximate length 2a, carries on 
the surface CD a uniform distributed load fz (St. Venant) to which 
P acts as a reaction; the lead-in-zone may be considered as a beam 
in equilibrium on the central support P and submitted to simple 
bending under the action of the horizontal forces fz. We are igno
ran~however, of the stress distribution in a beam of such 
proportions. 

The forces can be considered as passing across the block from 
AB to CD along trajectories such as 1,2,3,4,5,6 in Fig. 2.2. 
These trajectories are the isostatics issuing from the loaded 
area abo At their origin in ab they are parallel to the force P. 
Between these two sections then, they must adopt an S-form with a 
point of inflection at I. Having divided ab and CD into n equal 
parts, each isostatic can be supposed to carry a force of Pin from 
the center of one division in ab to the center of the corresponding 
division in CD. The material in the interior of the zone may thus 
be considered as made up of a series of curved fibers, each carry
ing a fraction of the compressive force. Now these fibers cannot 
support compression without exerting a transverse force normal to 
the fiber caused by their curvature. This force acts inwards or 
outwards according to the direction of convexity of the curve. 
The transverse stresses are at a maximum on the axis OZ. The 
shearing stress T, by symmetry, is zero on this axis. On the axis 



OZ therefore, the only stress is q, the transverse stress (where 
q = fx for convenience). Its value varies from AB to CD at which 
point it becomes zero, or at least negligible. 

An idea of the variation of q (or f ) along OZ may be gained x 
by replacing the isostatics on each side of OZ by an "average" iso-

25 

static carrying P/2 to the center of the upper or lower half of CD in 

Fig. 2.3. Then if R is the radius of curvature at any point along the 

line of this isostatic, the transverse force per unit of length of OZ 

is P/2R and this transverse force per unit length equals q, the burst

ing force. R is negative in the neighborhood of AB and q is thus com

pressive. At the inflection point I, R becomes infinite and q is zero. 

Between I and CD, R is positive and q becomes tensile, increasing until 

it reaches a maximum at approximately 4a' from the loaded face and then 

tending to zero as CD is approached since R again becomes infinite. 

The position of the point of inflection, the maximum compressive stress 

near ab, and the value and position of the maxUmwm tensile stress all 
-

depend on the ratio of the anchor width 2a' to the section height 2a. 

The variation of q (or f ) along the axis for various values of a' /a is 
x 

shown in Fig. 2.4, where f is normalized by the value P/2a. 
x 

Guyon was also aware of the presence of tensile stresses along 

the loaded face. From Fig. 2.1 it is apparent that in addition to the 

tension produced deep in the block along the line of action of the 

force, there are appreciable tensions near the surface adjacent to the 

anchor, the spa11ing stresses. Based upon the photoe1astic work by 

Tesar (8] Guyon calculated the resulting spalling tension for various 

values of a' /a follows: 

a' /a = 

Total 
Surface 
Tension 

o 

0.04 P 

C.10 

0.03 P 

0.25 0.5 

0.025 P 0.02 P 
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The sizing of reinforcement was thus a very simplified calculation. 

He recommended that this reinforcement should, 
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be placed as near the bearing surface as possible. This surface 
binding, which should be composed of steel of small diameter, need 
not be extensive since though the stresses are high on or near the 
surface, the depth of material on which they act is small. The 
resultant tension tending to crack the surface is thus not large. 

Proportioning of reinforcement for bursting stresses was 

handled in a similar manner. Given Fig. 2.4, an idealized triangular 

approximation such as shown in Fig. 2.5 could be arrived at. These 

criteria [4] for determining spalling and bursting reinforcement became 

widely accepted in European practice. 

The preceding discussion has been limited to axial, symmetric 

loading. For the case of nonuniform precompression produced by an 

eccentric force, Guyon proposed the "symmetrical prism" method. In 

this method the prestress load P is assumed to be applied over an 

imaginary symmetrical prism represented in Fig. 2.6, by the shaded 

areas of depth 2a
l

. The stresses are then determined by using the 

results of the single concentric force case. Upon comparing analytical 

results for a specific problem, Guyon found errors of 22 percent and 

7 percent respectively for maximum stresses and total bursting force. 

Since the errors indicated stresses computed by the symmetrical prism 

method to be larger than a more exact solution, he concluded that, 

for design purposes, the approach would be reasonable. 

From Fig. 2.6 it can be seen that for larger and larger 

eccentricities the ratio of a
f /a l used for calculation of bursting 

stress slowly trends toward the value of unity. Thus, Fig. 2.4 shows 

that the bursting stress would decrease toward zero. As the bursting 

stress decreases, so should the required reinforcement. This is a key 

point in assessment of the test results of specimens with eccentrici

ties reported in the second report of this current investigation. If 

the cracking load were dependent upon bursting stress, Guyon's theory 

indicates cracking loads should be higher for larger eccentricity. In 
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fact the opposite was seen to be the case. The cracking load P drops 

for increasing eccentricity. This paradox, and others which will be 

pointed out later, leads to the conclusion that a different indicator 

than bursting stresses is needed for design. 
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For the more complex case of several eccentric forces, another 

approximate method was proposed by Guyon. This is termed the "suc

cessive resultants" method, as illustrated in Fig. 2.7. It is assumed 

that maximum stresses occur on the axes of the individual forces, on 

the axes of the resultants of the groups of two forces, and on the axis 

of the resultant of the entire set of forces. In Fig. 2.7, the prism 

depth 2a for the total resultant R is defined as shown using the 
r 

symmetrical prism analogy. Similarly, for the partial resultants I and 

II, prisms of depth 2a I and 2a II are defined. Finally, the individual 

prisms for each of the forces Pl-4 can be defined. The tensile 

stresses and forces in each individual prism may be found from the 

ratios a' far' a' /a
I

, a' laIr' etc., where 2a' is the width of the anchor. 

According to Guyon this approximate method will lead to some excess of 

reinforcement over that actually required. 

Lastly, Guyon briefly examined the case of a slightly inclined 

tendon (lv:20h) by breaking the inclined force into a normal and tan

gential force applied to a rectangular prism, and using a standard 

elasticity approach. He concluded that the bursting tensile distribu

tion is "scarcely changed" from that of a normally applied force and 

recommended the use of an appropriate "symmetrical prism." In passing 

he noted that, "spalling tensions (for inclined loads) on the contrary 

are appreciably modified." His solution neglected the fact that in 

actual practice a block-out is usually required to achieve tendon 

inclination at the face. The above~mentioned phenomena are echoed 

in the work of Christodoulides and Sargious (Sec. 2.2.2) for 

slightly inclined tendons. 
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multiple anchorages in a rectangular end block 
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2.2.1.2 Douglas and Trahair. Using a three-dimensional axi

symmetric-analysis Douglas and Trahair studied the stress distribution 

in an axially loaded, hollow cylinder [11], and found good agreement 

with Guyon's theory except they did not detect spalling stresses because 

only large ratios of loaded area to cross section area were investigated. 

2.2.1.3 Iyengar. Iyengar presented a theoretical solution [12] 

for the two-dimensional problem and compared these with the results of 

other elasticity solutions by Guyon [4], Bleich [13], and Sievers [14]. 

His transverse stress distribution results agreed with those of Guyon. 

However, he concluded that Guyon's longitudinal and shear stress distri

butions were inappropriate. With Prabhakava [15], he developed a three

dimensional solution for a rectangular end block with a single straight 

tendon and found that the symmetrical prism method could effectively 

be used for design purposes. 

2.2.1.4 Gergely, Sozen and Siess. Gergely, Sozen and Siess 

[16] reported a finite difference solution for a few cases with rec

tangular sections and straight tendons and found results which agreed 

closely with Guyon's solution. 

2.2.2 Other Analytical Solutions 

2.2.2.1 Beam Method. In this method, approximate solutions 

for transverse tensile stress are obtained using a simple equilibrium 

analysis. For example, in Magnel's solution [17] a prism is isolated 

as shown in Fig. 2.8. The reference plane is one boundary and the prism 

is assumed to be acted upon by a concentrated prestressing force on one 

side and by a linear distribution of stress on the other side. The 

transverse stress distribution on the reference plane is assumed to be 

a cubic parabola. This type of approach was first applied by MOrsch 

[18] and subsequently extended to different loading configurations by 

Sievers [14] and Schleeh [19]. 
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2.2.2.2 Gergely. Similar types of analysis were used by 

Gergely [20] and Lenschow and Sozen [21]. Gergely's approach is illus

trated in Fig. 2.9. He argued that in many cases cracking could not 

be prevented and that a better approach was to limit crack widths to 

acceptable values. Equilibrium conditions were examined for a series 

of free bodies such as ABCD. For each free body a potential crack 

line, AB, served as one boundary and the end of the anchorage zone, 

BC, as another boundary. For equilibrium there had to be a mo~ent M 

and a shear V along AB. The most likely position for cracking was 

determined by finding the height BC for which the moment M was a max

imum. Reinforcement requirements were determined by calculating the 

force T for this moment and limiting the maximum reinforcement stress 

so that the crack width would not exceed an acceptable value. Con

servative approximations suggested for design were that the compres

sive force C in the concrete be assumed to act at the end of the 

crack and the bond-slip relationship for the reinforcement be 

assumed to be rigid plastic with a limiting value of 41fT (see Fig. 
c 

2. 9b). 

2.2.2.3 Lenschow and Sozen. Lenschowand Sozen [21] 

developed a physical analog for anchorage zone cracking based upon 

elemental beam equilibrium. As an example, consider a prismatic beam 

subjected to a concentrated force as shown in Fig. 2.10. It is 

desired to find the transverse tensile stresses along a section to be 

called the "reference plane, II parallel to the longitudinal axis. 

Instead of the classical elasticity methods of solution, the beam in 

Fig. 2.10 can be represented by the multiple beams in Fig. 2.11. The 

loading in Fig. 2.l2a is symmetrical about the beam centroid as are 

the cuts introduced, one of these being at the reference plane. 

Fictitious springs, representing the concrete, resist the deflection 

of the outer parts of the beam. The loading in Fig. 2.l2b is adjusted 

so that the two parts of the cut beam have the same curvature; the 

fictitious springs are not required. The loading conditions in Fig. 

2.l2b are prescribed so that they may be superimposed to yield the 
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actual loading of Fig. 2.10. The solution then utilizes equilibrium 

equations and compatibility of curvatures based on an elastically 

supported beam analysis to determine the transverse stresses on the 

reference plane. 

The results of the analysis compare quite favorably with those 

of Guyon and others as shown in Fig. 2.13. Good agreement is reported 

for both concentric and eccentric loads applied normal to a rectangular 

section. While the method has promise, the difficulty in defining the 

value of the spring stiffness for a given problem is a clear drawback. 

In order to obtain a comprehensive spalling stress profile a large 

series of calculations must be done since the reference plane only 

considers a line of stress parallel to the load. The method's 

advantage lies in the relatively direct proportioning of the reinforce

ment once the stress distribution across a critical plane is obtained. 

With proper boundary conditions, cracks in the beam can be modeled. 

2.2.2.4 Yettram and Robbins. In 1970 Yettram and Robbins 

[22] reported a series of three-dimensional finite element analyses 

of post-tensioned anchorage zones using 8 node brick elements. Prior 

to this present study their work seems to be the only finite element 

study done specifically to investigate bursting and spalling distri

butions. The results agreed quite well with those of Guyon. Several 

meaningful conclusions were drawn, indicating finite element tech

niques had great potential for predicting anchorage zone stresses up 

to cracking. 

The basic accuracy of the symmetrical prism analogy was 

examined for single eccentric anchorages as shown in Fig. 2.l4a and 

for two symmetrically placed anchorages as shown in Fig. 2.l4b. The 

individual prism of Fig. 2.l4c would be assumed applicable in both 

cases. The bursting stresses O'x are compared on the crit ical plane 

x = a l (x = ± a l 
for case b). The individual prism (case c) results 

are reasonable approximations of both the magnitude and the distribu-

tion of the bursting stresses. They are higher and thus more 
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conservative than the stresses for the complete prisms throughout the 

region of- greatest interest. This same agreement _is seen in Fig. 2.15 

for a wider prism. Both Figs. 2.14 and 2.15 show that the maximum 

bursting stress occurs in the center and the stress drops toward the 

side face of the member. The drop in the wide member is substantial. 

Many physical studies have based their measurements of bursting stress 

on mechanical extensometer readings taken on the outer surface. Thus 

for most cases this value will not reflect the true maximum transverse 

tensile stress which occurs along the centerline of the load. 

Application of the symmetrical prism method to anchorage 

zones of I, T, or box beams often results in individual prisms of 

nonrectangular section. The bursting stresses in such a prism are 

generally evaluated by considering an equivalent prism of rectangular 

section (i.e., two-dimensional). In order to evaluate the accuracy 

of this approximation, rectangular sections were compared with I sec-

tions for varying eccentricity of load. 

In Fig. 2.l6a the prism is subjected to a single axial force 

through an anchorage of the same width as the web. The stress dis

tribution in the web, except in the immediate vicinity of the flanges, 

is therefore two-dimensional. In Fig.' 2.l6c, the distributions of 

bursting stress on two longitudinal sections in the web of the prism 

are compared to corresponding distributions in the equivalent "two

dimensional" prism of Fig. 2.l6b. 

Fig. 2.1Bc indicates that the use of an equivalent flange-

less prism gives a reasonable approximation for the maximum bursting 

stresses along the line of action of the post-tensioning force (x = 0). 

However, on the section (x = sa/12) immediately below the flange, the 

stresses for the rectangular section are less than half those of the 

I section. The I section stresses near the flange are only 25 percent 

less than those on the critical section. Clearly the flanges have the 

effect of increasing the depth of the web over which the bursting 

stresses should be considered as acting. 
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In a comparison example, the I beam of Fig. 2.l7a is sub

jected to_a single eccentric force. In this example the bursting 

stress distribution along the line of action oE the force is com

pared to that of two equivalent rectangular sections. The first (Fig. 

2.l7b) corresponds to the full height of the I section, and the 

second (Fig. 2.l7c), corresponds to the equivalent symmetrical prism. 

In Fig. 2.17 the discrepancy between curves band c represents the 

order of accuracy normally associated with the symmetrical prism 

method. Both rectangular prisms give larger values for the maximum 

bursting stress than that predicted for the I section, the difference 

being about 30 percent for the symmetrical prism c. 

Close comparison of Figs. 2.l6c and 2.l7d shows an interesting 

trend not pOinted out in the Yettram and Robbins report. The maximum 

bursting stress for the eccentric loading was only one-seventh the 

value for the equivalent axial loading, for both flanged and rec

tangular sections. This would lead to the same erroneous conclusion 

as pointed out in Section 2.2.1 that less reinforcement would be 

required in the anchorage zone of eccentrically loaded sections. 

While no in-depth analysis of spalling stresses was attempted, 

a few examples were given. Figure 2.18 shows that for all sections 

(lor rectangular), the spalling stress increases with increasing 

eccentricity. For rectangular sections, this increase is dramatic. 

These trends for bursting and spalling stresses should be recognized 

when dealing with eccentric loads: for increasing eccentricity the 

spalling stress increases sharply, the bursting stress decreases. 

2.2.2.5 Summary of Analytical Studies. In a review of 

analytical studies, Hawkins [23] found the following areas in 

agreement: 

(1) There are at least two distinct zones of transverse tensile 
stresses. These are the spalling and bursting zones. 
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(2) Principal tensile stresses may occur along an axis other than 
the transverse axis. However, for practical purposes 
it is sufficient to consider transverse tensile stresses 
only. 

(3) For a single concentrated load the spalling stresses increase 
rapidly as the eccentricity of the load increases. 

(4) The maximum bursting stresses decrease as the eccentricity of 
the load increases. 

(5) The maximum bursting stresses decrease with an increase in the 
ratio of the loaded area to the block cross section area. 

(6) St. Venant's Principle is verified by m~t of the 
investigators. 

In general, all theoretical solutions presented were analytical 

models for: 

(1) Homogeneous, isotropic and linearly elastic anchorage zones. 

(2) End blocks which were subjected to loads applied by non
curved tendons. A few studies made on slightly inclined 
forces in draped tendons divided the load into normal and 
tangential components. 

(3) Two-dimensional or axi-symmetric three-dimensional problems. 

2.2.3 Photoelastic Investigation. Besides the previously 

mentioned work of Tesar [8], whose photoelastic tests were used to 

verify Guyon's studies, three other photoelastic studies dealing 

with post-tensioned anchorage zones warrant mentioning. 

2.2.3.1 Christodoulides. Christodoulides [24] carried out 

tests on the end of post-tensioned section gantry beam (Figs. 2.19 

and 2.20) with a rectangular end block. He replicated the physical 

test using a one twenty-fifth scale model cast using Araldite B 

photoelastic resin. The ducts in this three-dimensional model were 

formed by 1/16 in. diameter holes drilled through the plastic. In 

order to obtain stresses on the plane along the axis of loading the 

photoelastic technique of stress freezing was used. 

The results of the photoelastic tests showed that the maxi

mum tensile stresses occurred between and near the anchorages in 
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the central plane and had a value approximately twice the average com

pression as calculated on a section taken halfway between the anchor

ages and the beginning of the web of the I section. The agreement 

between the results for stresses obtained photoelastically and on the 

actual beam was within 20 percent. Christodoulides stated that the 

maximum stresses were considerably greater than those calculated using 

Guyon's approach. 

In earlier two-dimensional photoelastic tests, the presence of 

the tendon duct was ignored and two eccentric loads were applied. The 

results had compared favorably with analysis values of Guyon and 

Iyengar. However, the basic assumptions of the two-dimensional 

analyses were the same. Christodoulides made the following important 

statement regarding the reproduction of post-tensioned anchorage zone 

stresses through photoelastic techniques: 

It must be remembered that the actual distribution of stress in 
the end blocks of post-tensioned beams is a three-dimensional one, 
i.e., the stresses vary along the width of the beam as well as the 
depth and length. Also the cable ducts cast in the concrete will 
affect the distribution of stress. 

2.2.3.2 Sargious. Working under Leonhardt in the mid-1960's, 

Sargious [25] carried out a series of two-dimensional photoelastic 

tests on model end blocks to investigate the effect of the beam sup

port reaction on the stress distribution of post-tensioned anchorages. 

The models were of rectangular and T sections with single eccentric 

forces or three nonlinearly distributed forces. In each case one 

test was carried out with a zero support reaction. From the iso

clinics and isochromatics, the principal stress trajectories were 

derived. Typical results are shown in Fig. 2.21 for a force applied 

at either the upper or the lower kern limits of the rectangular sec

tion for zero support reaction. Figure 2.22 shows the stress tra

jectories and the tensile stress distribution in a rectangular end 

block having three applied forces in which the support reaction was 

· . 



0-33 0-36 

Z=0-023 V. 

,I I ~~~--+~---+--~ 

Vo ..---.-fIll" -~ 

r 
0-38 (a) 
0-29 

Vo 

\1- I ~---t--L----r--l--L I 
z. ~0-,009 V., I I I I l 

Fig. 2.21 

0-18 

(b) 

Sargious: experimental results for 
a single eccentric applied force on 
a rectangular end block (Ref. 26) 

V. 
T 

.) I: I I I I I -r- I r;-. p=i= .. ~~ 
)1 I~ Ii, 

Vo 
T~ 

~~~t1j=b·bt·r-+·Sj 

V. 
3 

V. 
3" 

~ 
3 

Fig. 2.22 

I-

O·IVo (a) 

--.~ -~-- I-~ 
----t--

::::::::.L~=i -I'-. __ -
-+--+- -::+---1-

~ .. 

(b) 
0·1 "0 

Sargious: experimental results for 
three applied forces on a rectangular 
end block (Ref. 26) 

+>
-.J 



48 

10 percent of the applied forces. In Fig. 2.22 the maximum transverse 

stress is 0.46 of the uniform compressive stress. The stress distri

bution in this figure does not conform to the successive resultant 

theory of Guyon. In addition to the transverse bursting stresses, 

there were considerable spa11ing tensile stresses between the forces 

close to the loaded face. The maximum value was 0.94 times the uni

form compressive stress, or more than double the maximum bursting 

stress. 

Sargious did not find any significant difference between the 

transverse stress distribution in a rectangular or a T end block when 

loaded by a single eccentric force and hence concluded that the effect 

of the flange could be ignored in such cases. However, in his cases 

the eccentricity was not great. As Yettram and Robbins pointed out 

in the later finite element study, eccentric load stress distribu

tions are definitely affected, usually decreased, when the load is 

applied in near proximity to the flange. The effect of the support 

reaction decreased the value of the maximum transverse stresses and 

affected the position of the maximum stress. This will be reflected 

later in this series when discussing the design of specimens with 

lateral post-tensioning. In general, lateral compressive loads tend 

to reduce the transverse tensile stresses. The question of how much 

and where becomes the key issue in reinforcement optimization. 

To confirm the photoe1astic tests, Sargious carried out a 

single test on a reinforced concrete end block, of rectangular sec

tion, subjected to a single symmetrical load. It was stated that 

the spa11ing tensile stresses were higher by 30 percent than those 

obtained in the corresponding photoe1astic test, but that the 

transverse bursting stresses were in good agreement. 

Sargious' work was limited to relatively small angles of 

inclination (up to 6.3 degrees from the horizontal axis) and his 

results were later used by Leonhardt [26] in developing a series of 

design recommendations. These are discussed in a following section. 
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2.2.3.3 Vaughn. In 1976, as part of an exploratory series of 

tests to investigate the possibility of using two-dimensional photo

elastic techniques to model mUltiple tendons, eccentricity, and inclina

tion for post-tensioned thin sections, Vaughn [27] performed a series of 

nine tests at The University of Texas at Austin. He used three differ

ent anchorage geometries--conica1, bearing, and inset bearing. Anchors 

were fashioned from lead cast in precisely machined brass molds. The 

web section was machined from 3/8 in. plates of PSM-S photoe1astic 

resin. Vaughn attempted to model the tendon duct by splitting the 

specimen into two separate two-dimensional pieces along the duct line 

or in some ~u1tip1e tendon cases, with three separate pieces. This 

technique is questionable for modeling physical concrete specimens, 

since for the bursting stress phenomena to exist there must be continuity 

across the tendon duct. While simple plate loading on a two-dimensional 

sheet may be less accurate than a three-dimensional model where the 

tendon duct is accounted for, it is unquestionably more accurate in pr~

dicting bursting stresses than where no continuity is developed. Despite 

this drawback, the tests did reveal some interesting results. 

(1) Conical Anchors produced principal tensile stresses on the order 

of 150 percent of those for flat, bearing-type anchors, and produced 

maximum shearing stresses on the order of 250 percent larger. 

(2) Eccentricity: Spa11ing stresses increased dramatically for 

increasing eccentricity. 

(3) Multiple Anchorages: Large spa11ing stresses were set up between 

the anchors along the loaded face. These were considerably higher than 

for a single anchor. Uniform longitudinal stress was achieved at a 

shorter distance from the loaded face than for single anchors. 

(4) Inclination: Spa11ing stress was markedly increased for 

increasing angles of inclination. Very high stresses were noted at the 

anchorage b1ockouts due to the reentrant corner used to achieve proper 

geometry. Normal and friction forces along the duct could not be 

modeled. 
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(5) Influence of Tendon Duct: In regions of high tendon curvature, 

often encountered in segmental bridge construction, considerable 

forces were exerted normal and tangential to the duct, particularly at 

points where the duct had a small radius of curvature. This is an 

important point because it indicated the possible creation of cracks 

extending outward from the tendon duct which were initiated by tendon 

pressure against the walls of the duct. This situation would be 

accentuated in real life tendons which contain as many as twenty-five 

or more individual strands, because of the tendency for the bundle to 

flatten out when the load is applied. 

2.2.3.4 Other Photoe1astic Studies. Two-dimensional tests 

for beams with short end blocks have been made by Rydzewski and 

Whitbread [28]. They observed that in addition to the bursting 

stresses under the load point, significant spa11ing stresses occurred 

along the loading face. Mahajan [29] tested eccentrically loaded 

specLmens whereas other investigators had used primarily axial, 

symmetric loading. Values of bursting stress for various ratios of 

loaded width to total width were investigated by Hi1tscher and Florin 

[30]. For this two-dimensional problem they found close agreement 

between the magnitude and distribution of their measured stresses and 

those calculated by Guyon's analysis. 

One of the major disadvantages of photoe1astic investigations 

is that they must be classified with analytical methods since they 

yield elastic stresses. Photoe1astic investigations can be used to 

check an elastic analysis (as will be shown in Chapter 3), but they 

cannot fulfill the same function as tests on concrete specimens. 

2.2.4 Tests on Concrete Specimens 

2.2.4.1 Zielinski and Rowe. One of the most extensive 

investigations reported using concrete specimens to determine the 

behavior of post-tensioned anchorage zones was carried out by 

Zielinski and Rowe in the mid-1960's [9,10]. The first phase of the 

study dealt with single, axial symmetric loadings. The following 

variables were considered: 



(1) The anchorage system, including position (external or 

embedded), type (square or circular) and method of trans

mission of the force (conical action or bearing plate). 

(2) The ratio of the loaded area to cross-sectional area of the 

specimen. 

(3) The duct for the post-tensioning cable. 

(4) The type, position, and amount of reinforcement. 
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Four types of relatively small concrete prisms (6 in. x 6 in. x 16 in., 

6-11/16 in. x 6-11/16 in. x 16 in., 8 in. x 8 in. x 12-1/2 in. and 

8 in. x 8 in. x 16 in.) were tested. Typical specimens are shown in 

Fig. 2.23. The results were obtained in terms of surface strain 

measurements and both cracking and ultimate loads. The following 

conclusions were reached: 

(1) The anchorage system geometry investigated did not appreciably 

affect either the distribution of transverse stresses or the ultimate 

load capacity. In other words, they concluded that conical anchorages 

performed as well as bearing type anchorages. (This has been the sub

ject of some debate since that time and stiff conical anchors are 

often considered suspect.) 

(2) For the specific case of a single symmetric load, the ratio 

of the loaded area to the cross section area was the most important 

factor in the transverse stress distribution. The smaller the ratio, 

the higher the stress. 

(3) The position of the maximum bursting stress was not sub

stantially affected by the above ratio. 

(4) The maximum bursting stress occurred on the axis of the load 

and was greater than that predicted by Guyon using the symmetrical 

prism analogy. 

(5) Spiral reinforcement was more efficient in containing trans

verse bursting stresses than the use of orthogonal mats. 
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(a) Crack pattern on end-blocks with embedded 
C.C.L. spiral anchorages 

(b) Crack pattern on 6 in. cubes with same value 
of 8 l /a as C.C.L . prisms 

Fig. 2.23 Formation of concrete cone ahead of anchor 
(from Ref . 9) 
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(6) Increasing the percentage of transverse reinforcement raised 

the ultimate load capacity, but this effect was limited in that a 

bearing type failure could occur in the case of an over-reinforced 

section. 

(7) The size of the duct did not seem to be a major factor influ

encing the bursting stress distribution. 

Zielinski and Rowe did not note an important possible mechanism of 

failure. In Fig. 2.23 an extremely significant point can be noted. 

In almost all cases where a bearing type anchorage was used, a pyra

midal "cone" of crushed concrete formed beneath the plate at a load 

stage close to the sighting of the visible longitudinal "bursting" 

crack. The sides of the cones had a dusty coating of powdered con

crete typically found in a shear type failure. Nearly identical 

"cones" were reported by Taylor [31] and were observed, without 

exception, in all specimens of the current Texas study tested by the -

authors which had bearing type anchors. The significant role of this

cone of concrete in the failure process is discussed in the second 

report of this series. 

In a second series of their tests, the effects of multiple 

anchorages were studied. Eleven tests on I-section specimens and 

nine tests on rectangular specimens were carried out. Figures 2.24 and 

2.25 show typical details of these specimens. The following conclu

sions were drawn: 

(1) The cross-sectional geometry of the end block can signifi

cantly affect the transverse stress distribution. 

(2) The multiple anchorage end block can be analyzed satisfac

torily by using Guyon's successive resultants method for the deter

mination of bursting stresses. 

(3) Tensile spalling zones exist between the applied loads 

(multiple anchorages) on the loaded face of the end block. These 

are a function of the distance between the loads. The test 
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results were insufficient to make a precise statement as to their 

variation-with the distance between the anchors. 

(4) The spalling stresses increase as the ratio of the loaded 

area to the cross section area decreases. 

(5) In end blocks, by virtue of the complex stress state that 

exists, the stress-strain relation of the concrete in tension is 

modified. The strain capacity prior to cracking is much greater 

than in normal flexural tension. 
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2.2.4.2 Taylor. As part of a study of prestressed concrete 

pressure vessels, Taylor [31] performed a series of seven tes~ as 

shown in Fig. 2.2~ in a preliminary effort to formulate a failure 

criterion for plain concrete. Several important conclusions were 

drawn: 

(1) The maximum transverse stress in a single axi-symrnetrically 

loaded end block was found to be greater than those predicted by the 

classical theories, but lower than those obtained by Zielinski and 

Rowe. 

(2) The mode of failure of a single anchorage appeared to be by 

wedging action of a cone of stiffer concrete under the bearing 

plate, formed by shear forces due to the incompatible stiffnesses of 

the anchorage unit and the concrete. 

(3) Uniform tensile stress applied to the anchorage zone reduced 

the load-carrying capacity of the anchorage unit and caused a reduc

tion in the maximum tensile strain at cracking. 

(4) Uniform (transverse) compressive stress applied to the 

anchorage zone increased the carrying capacity of the anchorage unit 

and the maximum tensile strain at cracking was increased. 

Taylor further stated that: 
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The results of the tests carried out on square prisms show 
that _whereas at first sight, all the prisms tested appeared to 
have failed by single tensile cracks (bursting cracks), closer 
examination of the failed specimens showed that there was a 

57 

cone [Fig. 2.27] of concrete under the bearing plate, the sur
faces of the cone exhibiting the extensive shattering of aggre
gate and powdering of mortar associated with a shear type fail
ure. It would appear that due to the different stiffness 
characteristics of the steel plate and the concrete, the bearing 
plate restrains the lateral expansion of the concrete, inducing 
complex triaxial compressive stresses. The concrete below the 
plate is thus relatively stronger than the surrounding concrete, 
and it would appear that failure is initiated along the boundary 
of a cone (pyramid for square anchors) at points of maximum 
shear stress. Once the shear resistance along the surface of 
the cone has been overcome, together with any additional resis
tance provided by compressive bursting (or lateral prestress) 
acting normal to the shear planes, it would appear that the cone 
is forced into the end block creating a wedging action and 
setting up high tensile stresses perpendicular to the load. The 
propagation of tensile cracks in a complex compression-tension 
stress field caused by the wedging action of the cone apparently _ 
governs failure of the end block. 

In this one statement, Taylor made what could be considered 

as the most important contribution up to that point in time concern

ing the behavior of post-tensioned anchorage zones. This is not to 

say that his statement solved the problem. In fact, it is curious 

that Taylor went on to make his design recommendations based upon 

experimentally obtained bursting stress distributions, just as had 

all previous investigators. Most elusive, of course, was the 

explanation for the initiation of the shear failure and subsequent 

cone formation. This topic will be discussed in detail in the 

second report in this series. 

2.2.4.3 Cooper and Gallaway. The problem of post-tensioned 

anchorage zone tensile stresses is complicated by the increasing use 

of thin sections with inclined, curved tendons which result in sig

nificant radial and friction forces along the tendon duct. 

An extensive research program in this area has been carried 

out at The University of Texas at Austin since 1968 in connection 

with the construction of the first segment precast post-tensioned 
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box girder bridge in the United States at Corpus Christi, Texas. 

During construction of the actual bridge, cracks were found along the 

tendon paths near the anchors in numerous segments. As a consequence, 

construction was slowed and another model study initiated in February 

1973. A detailed investigation revealed that three basic differences 

existed between the prototype details and those used earlier to build 

a 1/6-sca1e model span which had not experienced any cracking. These 

were described by Breen, Cooper and Gallaway [lJ as follows: 

(1) In some prototype units, web and top slab reinforcing bars 

were cut for placement of post-tensioning hardware, but the sections 

which had been removed were never replaced or only partially replaced. 

(2) The prototype used a cone-type anchor whereas the model used 

a bearing-type anchor. 

(3) The spiral reinforcement along the tendon in the anchorage zone 

used in the model was relatively much longer and heavier than the 

spiral reinforcement used in the prototype. 

Based upon this information a precise model replica of one of the 

cracked sections was constructed and loaded in an effort to reproduce 

the situation which led to cracking. The results of the model tests 

revealed the same cracking pattern as the prototype units. However, 

ultimate strength tests of the models showed no significant reduction 

in strength due to the cracking. The construction of the bridge was 

therefore continued and completed in June 1973. 

In order to isolate the causes for the formation of the tendon 

path cracks and to recommend measures to prevent their occurrence, a 

further exploratory investigation was undertaken by Breen, Cooper and 

Gallaway [1]. Fifteen microconcrete I section specimens were designed 

as one-sixth models corresponding to the web section of the prototype 

bridge. Variables explored anchorage geometery, concrete strength, 

local reinforcement pattern, the effects of longer spiral reinforce

ment, transverse post-tenSioning, tendon curvature, and percentage of 



web steel. The following quantitative conclusions were reached from 

the model- study: 

(1) The behavior of the I-section model is representative of the 

prototype web. 
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(2) There is no significant reduction in the ultimate shear 

strength of a well-reinforced member due to the presence of tendon 

path "bursting cracks." However, they represent a possible path for 

moisture and salt penetration and thus present potential corrosion and 

frost damage threats. 

(3) The formation of cracks along the tendon appears to be 

accelerated by conical anchorages, inadequate anchorage zone rein

forcement, and radial forces due to tendon curvature. 

(4) The cracking load is only slightly affected by the concrete 

compressive strength. 

(5) Specimens using bearing type anchorages performed much better 

than specimens with cone-type anchors. 

(6) The cracking load is not affected by increasing the percentage 

of web reinforcement, although crack widths can be effectively con

trolled by the presence of reinforcement. 

(7) Substantially longer spiral reinforcement is effective in 

delaying first cracking. 

(8) The cracking load is not substantially affected by increasing 

the bearing area of the anchor. 

(9) Transverse post-tensioning seems to be a very effective means 

of controlling (preventing) tendon path cracks. 

Due to- the limited number of tests and the fact that full-scale proto

type specimens were not available, the above conclusions were only 

qualitative. They do, however, reinforce many of the behavioral pat

terns for post-tensioned anchorage zones indicated by previous 



research and bring up one extremely important point: nominal bearing 

stress apparently has little or no influence on the mechanism of 

crack formation. 

2.2.5 Bearing Stresses. MOst design specifications limit 

allowable bearing stresses to substantially lower values than would 

appear necessary. The origin of the so-called "cube root" and 

"square root" formulas used in most specifications dates back to the 

late 1940's and early 1950's when active research was underway to 

determine the proper size of column base plates. Three important 

studies dealing with this topic indicate how the current specifica

tions evolved and provide an appropriate background for Sec. 2.3 

dealing with current code provisions. 

Based upon a number of tests of cylinders loaded through 

rigid bearing plates, in 1948 Billig [32] developed the following 

formula for permissible bearing stresses: 

where 

f = permissible compressive stresses cp 

f' . = cylinder strength at age of loading 
c~ 

A area of entire concrete section 
c 

~ bearing area 

(2.1) 

In 1952 Komendant [33] published the same formula with the exception 

that the cube root was replaced by the square root. This was based 

on a substantial number of tests using, again, cylinders loaded 

through rigi~ bearing plates. 
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Four substantial studies performed under the direction of 

Middendorf [34] were carried out in 1960. Using both rectangular 

blocks as well as cylinders ranging from 6 in. to 16 in. in diameter 

Middendorf reaffirmed the recommendations of Komendant, i.e., to 

switch to the following formula currently used in the ACI and PTI 

codes. 

f = 0.6f' .JA /~ cp C1 c ~D (2.2) 

He further recommended that the restriction f ~ f'. be dropped 
cp C1 

and the value be increased to a multiple of f' ., probably 3f' .. 
C1 C1 

He further concluded: 

(1) The formula has no apparent limit based on 28-day strengths. 

(2) Tilting of up to 5 degrees (limit of their tests) of the 

bearing plate does not affect the bearing ability. 

(3) The conclusions are applicable to concrete with f' ranging 
c 

from 4000 to 6000 pSi. 

(4) The results are consistent in concrete from three days of 

age upward. 

(5) The results are directly applicable to lightweight as well 

as normal concrete. 

In 1968, Hawkins [35] performed another series of tests 

designed to develop a more accurate formula for the bearing 

strength of concrete loaded by rigid plates. His test results 

showed: 

(1) No visible cracking or spalling of plain concrete until 

immed~ately before failure. 

(2) First warnings were usually vertical cracks on the sides of 

the block closest to the loaded area. 
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(3) Failure revealed a wedge of concrete beneath the bearing 

plate. 

Based upon this data Hawkins proposed the following formula: 

where 

q/f~ ::; 1 + *rJR -1) for R < 40 
c 

q ::; ultimate bearing strength (psi) 

f' ::; cylinder compressive strength 
c 

K ::; constant 2 = A cot a~ 50 for most cases 

a = 45° - ¢/2 ¢ ... internal angle of friction (33-35°) 

A ::; ftensile/~ 
R = effective unloaded area/loaded area where the 

effective unloaded area is geometrically similar and 
concentric with the loaded area. 

(2.3) 

In 1970, based upon further tests, Hawkins [36] recommended 

the following formula for strip loading of concrete through rigid 

plates. 

where 

q = c../i': 3 JD/W 
c 

(2.4) 

C ... 18.5 

D ::; distance from the block edge to the centerline of the 
plate 

W - width of the plate 

(see Fig. 2.28) 

In closing this section, the recent work of Niyogi [37] 

deserves mention. The first paper contains a general discussion of 

the bearing strength of concrete and discusses the problems associ

ated with the calculation of the allowable stresses and the probable 

mechanics of failure. The primary parameters were the geometry of 
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Fig. 2.28 Strip load dimensions 
for Eq. 2.4 

2b 

Fig. 2.29 Variable 
definitions for 
Niyogi's Eq. 2.5 

Fig. 2. 30 Defining eccen
tric bearing 
conditions for 
Niyogi's Eq. 2.6 
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the bearing plate to the loaded surface and the plate geometry. 

Square, rectangular and strip loadings were considered. He postu

lated the following formula for allowable bearing stress: 

q = ultimate bearing strength 

See Fig. 2.28 for geometry definitions. 

According to Niyogi, the bearing strength decreased for 

increasing height, with all other conditions the same. Also, 

eccentricity of the load tended to decrease the ultimate bearing 

strength such that: 

qe = eccentric load bearing stress 

- 2.36 [ 0.83 - (~a -~~y r~ (
e e'\ 

0.94 2a + 2~) -1.15 

See Fig. 2.30 for variable definitions. 

In a second series of tests performed in 1975, the same method of 

testing was used except that reinforcement was the prime variable. 

Both spiral and grid reinforcement were examined. The findings 

indicated: 

(1) Large diameter spirals appeared to be the most effective 

against cracking. 

(2) Large bearing plate performance was enhanced to a lesser 

extent by the provisions of reinforcement than smaller plates. 

(3) Visible cracking loads were increased by the addition of 

reinforcement. 

(4) Grid steel increased bearing strength, though not as effi

ciently as spiral reinforcement. 

(2.5) 

(2.6) ... 



(5) Spiral reinforcement increased bearing strength due to 

lateral confinement of the concrete cover. For spirals, the fol

lowing relation was found to hold: 

65 

qspiral 

qplain concrete 
1 + k . p k 55 for spiral (2.7) 

p = volumetric percent of 
lateral steel 

(6) For small bearing plates, and large diameter spirals, the 

bearing strength increased for greater steel percentages. 

2.3 Present Design Provisions 

2.3.1 Leonhardt. Based upon the work of previous 

investigators, notably Sargious and Guyon, Leonhardt [26] developed 

recommendations for the design of tensile reinforcement in the 

anchorage zone. For the two-dimensional problem, where the con

centrically applied force is assumed to be spread over the entire 

width of the member, Leonhardt suggested the following expression 

for the total splitting force attributed to the bursting stresses: 

where 

Z = O.3F(1 - a/h) 

Z denotes the total splitting force 

F is the concentric prestress load 

a is the width of the anchor plate 

h is the width or height of the member, depending on the 
orientation to be considered 

(2.8) 

This expression was derived by integrating the distribution curves 

of the- bursting transverse tensile stresses which were previously 

determined analytically. The reinforcement should be designed to 

resist that total force. Placement should follow the elastic dis

tribution curve of transverse tensile stresses. Practical arrange

ment of reinforcing such as shown in Fig. 2.31 was suggested. It 



66 

!.. 
aJi· 

.1 
~ 

P" I ['l ,..... ( r ~r r 

I 
1- r- 1---1-- -i , 
~ I 

I~ 
S.it.bll' aruugrmut' or tlte veraleai rei.Coree .. 
n.pnl (hor,loau' rei"rDf'eeaarnt rI"l'end. IOn 
b'ili) ...... i .. d ..... dJ.r pI ... ror whid •• /d = 0.10 

Suit.ble .. rr.n~t'mcllt or the vertie.1 reinloreement 
Itehind ." .".nor pl.le I ... whioi •• /d ~ 0.50. II the 
eornett .re _:unfe.re-d, the hairpin ban are oatined 

Fig. 2.31 

b 

The t.ype 01 f4'!iniortf'Jft4"nt nor ... llI,. in.lll1ed Hh'ud 
Fre, ... inf!t 1 ..... 0,.14':. in "riner ((rum (;",0,.) 

Detailing of reinforcement as recommended by 
Leonhardt (from Ref. 26) 



67 

should be noted that at this point in time spiral reinforcement had 

been used occasionally, but most recommendations were in the form 

of closely spaced grids of orthogonal reinforcement. 

2.3.2 Guyon. Guyon [5] recommended the following design 

procedure for single straight tendon anchorages: 

where 

For spalling stresses: 

(2.9) 

T = Total spalling force to be resisted by reinforcement. 
s 

P = Prestress force 

a, a l are defined in Fig. 2.32a. 

Guyon states that the term 0.04P should be resisted by mesh 

reinforcement placed immediately behind the anchor as illustrated in 

Fig. 2.32. The second term reflects the increase in spalling stress 

with increasing eccentricity. For this term large vertical bars 

(parallel to the end face) should be located immediately behind the 

mesh reinforcement. These should be sufficiently long so as to 

develop the full strength of the bar. 

For bursting stresses Guyon reduced the tensile portion of 

the bursting distribution to a triangular geometry which yielded 

approximately the same total bursting force as well as the magnitude 

and location of the peak stress, as shown in Fig. 2.32c. The total 

tensile force is: 

Tb = ~ (1 - y) (2.10) 
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where Tb = Total bursting tensile force 

P Prestress load 

y = 2a' /2a l (as defined in Fig. 2.33a); 2a' = width of the 
anchor _plate; 2~ is the depth of the symmetric prism 

The line marked K in Fig. 2.32c represents the tensile 

stress that can be resisted by the concrete alone. The peak burst

ing stress is given by the formula: 

where 

ax = 0.65 p(l - y) 
max 

p = P/cross-sectional area 

2.3.3 Rhodes and Turner. Based on the data from the 

extensive physical testing program of Zielinski and Rowe, Rhodes and 

Turner [6] in 1966 developed a series of expressions, using an 

approach similar to that of Guyon, where the total amount of rein

forcement required to resist the bursting stresses could be easily 

calculated. 

A fairly detailed explanation of the Rhodes and Turner design 

recommendations is included since this has been the most specific 

method thus far presented for the design of reinforcement to resist 

anchorage zone tensile stresses based upon experimental study. 

In the Rhodes and Turner method, using notation similar to 

that used by Guyon, the first step is to determine the dimensions 

of the effective prism, usually assumed square with the load being 

applied through a square anchorage. Examples are shown in Fig. 

2.33. A square anchor of side 2a l is assumed to act on a prism of 

side and depth 2a. The dimension 2a
l 

is equal to the side length and 

width of the proposed anchor. The dimension 2a is found by 

inspection; it is usually assumed to be the least distance between 

the center line of the anchor and the edge of the concrete or half 

clear distance to the neighboring anchor. 
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Similarly, a rectangular anchor with a dimension of 2a
l 

by 

2b
l 

is assumed to act on a rectangular prism of cross section 2a by 

2b. In this case two ratios alia and bllb can be computed, giving 

different tensile forces in two perpendicular directions. Similarly, 

the prism will have a theoretical depth of 2a for tension in one 

direction and 2b for tension in the other direction. Circular 

anchors are assumed to act on square prisms, in which 2a
l 

= 
Jarea of anchor. 

For each prism 

f = PiA 
c c 

(2.11) 

in which f is the uniform direct stress in the prism; P is the 
c 

maximum prestressing force, and A is the cross-sectional area of 
c 

the prism minus the area of the tendon duct. The maximum tensile 

stress in a direction normal to the central axis of the prism and 

parallel to a
l

' (or b
l

) can be expressed as 

f 
n 

Bf 
c 

and the total bursting tensile force can be expressed as 

T = CP 

(2.12) 

(2.13) 

in which Band C are parameters which vary with the ratio alia 

and which have been determined by experiment (see Fig. 2.34). 

The distribution of tensile stress in the longitudinal 

direction (along the tendon path) can be approximated by a triangle, 

as shown in Fig. 2.35. If a permissible tensile stress is specified 

then the theoretical length requiring reinforcement can be limited 

to the shaded length in Fig. 2.35. With the concrete resisting part 

of the tensile force, the tension TR to be resisted by the reinforce

ment is given by: 
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(2. 14) 

in which f
t 

is the permissible tensile stress. 

Zielinski and Rowe found that the strains which occur in end 

blocks prior to cracking correspond to apparent tensile strength in 

excess of the splitting tensile strength of the concrete. The ratio 

of apparent strength to splitting strength is a function of the 

ratio alta and is denoted by the coefficient K (see Fig. 2.34). The 

permissible tensile stress f t is therefore assumed to be equal to 

0.8KI, in which r is the tensile splitting strength of the concrete. 

Tensile stresses greater than f t must be resisted by the reinforce

ment, at a working stress f of 20,000 psi for mild steel bars or 
s . 

30,000 psi for hot rolled deformed bars. The area of reinforcement 

A required in each direction, in any prism containing a single 
s 

anchor is 

A = T /f s r s (2.15) 
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It is not common practice to specify a tensile splitting 

strength for concrete, and the designer must usually relate his 

figures to the compressive strength. Rhodes and Turner recommend the 

relationship 

O 5 0.75 
r = . u (2.16 ) 

in which u is the cube strength. 

Substituting the values T, f t and fn in Eq. 2.14 and 

combining with Eq. 2.15 yields: 

As = ~: [1- C· :;cy] (2.17) 
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Assuming suitable values for rand f , it is possible to plot 
s 

a family of curves relating the area of reinforcement to ·the ratio 

alIa for particular values of P. Since the coefficients C, B, and K 

all depend on alIa, the only remaining unknown is Ac' Fortunately, 

for any particular prestressing force there is little variation in the 

sizes of the anchors, and the value of 2a
l 

for any prestressing force 

is practically constant. The curves in Fig. 2.37 were calculated for 

square prisms, but Rhodes and Turner state they may also be used for 

rectangular prisms, for which the results will be slightly conserva

tive. The graphs are based on the assumption that r = 450 psi and 

fs = 20,000 psi. The values of 2a l and the areas of the ducts assumed 

for various prestressing forces are shown in Fig. 2.37. Values of K 

for ratios of alIa exceeding 0.7 were obtained by extrapolation. 

They assumed that the absolute maximum value of the service 

level prestressing force for any anchor would not exceed 85 percent of 

the guaranteed ultimate tensile strength of the tendon No allowance 

for the area of the duct need be made when calculating the ratio alIa 

but in order to determine f the area of the duct must be deducted 
c 

from the area of the prism. For an ordinary anchor plate, the diameter 

of the duct to be incorporated in the calculation is that at the point 

of maximum tension, that is, at a distance of 0.5a from the face of 

the anchor. However, many multi-strand anchors utilize a metal 

"trumpet" and the force is transmitted into the concrete by the com

bined end plate and tube. In such cases, they suggested it is 

acceptable to adopt the diameter of the sheath as the dimension to 

be used in design 

The foregoing considerations related to conditions at working 

load. It is also necessary to ensure that ultimate load conditions 

are satisfactory, that is, that sufficient reinforcement is provided 

to resist the tensile forces induced by a load equal to the guaran

teed tensile strength of the tendon multiplied by a suitable load 

"'. 
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factor. Rhodes and Turner recommend a value of 1.1 for the latter and 

the stress in the reinforcement must then not exceed the yield stress. 

Rhodes and Turner also noted the presence of, and necessity of 

reinforcing for, the spalling stresses. 

Additional tensile stresses are also produced between the anchors 
near the loaded face The magnitudes of these stresses depend on 
the loads, the distance between the anchors and the shape of the 
end block. A precise determination of these stresses can not be 
made (in Zielinski and Rowe's tests). but they can be allowed for 
by providing the reinforcement for each separate prism as near as 
practicable to the face of the end block. 

As an example of how one would normally apply these recom

mendations, Rhodes and Taylor presented the example shown in Fig. 

2.33h. A prism 7-1/2 in. square with an anchor having a flange of 

6 in. square has a duct with a diameter of 2 in. The value of cube 

strength u is assumed to be 6000 psi so that r is 450 psi. The tendon 

has seven 1/2 in. strands of 250 ksi steel. 

p = 7 x 37,000 x 0.85 = 220,000 pounds 

O.S 

area of the duct == 3.14 in.
2 

A (7.5)2 3.14 53 in. 2 
= - = 

c 

f P 220,000 
= 4,140 psi = - = c A 53 c 

f = Bf = 0.34 (4140) = 1,40S psi 
n c 

and occurs at a distance of 0.5a = 1.S7 in. from the face of the 

anchor. 



Hence 

T = CP = 0.15(220,000) = 33,000 lb. 

f t 
= 

T = 
r 

= 

.08Kr = 0.8(1.52)(450) = 

T[l - (f /f )2] 
t n 

33,000[1 (547/1408)2] 

= 28,300 
20,000 

= 1.42 in.
2 

547 psi. 

= 28,300 lb. 
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This can be achieved with eight #4 bars (A = 1.38 in.
2

) or four #4 
s 

stirrups placed as shown in Fig, 2.36. Alternativel~ the same 

area could be found from Fig. 2.37 for alia = 0.8 and seven 0.5 in. 

strands. 

The Rhodes and Taylor procedures were based on tests of con

centric straight tendons, but were used by the post-tensioning hard

ware supplier for design of the anchorage zone reinforcement in the 

Corpus Christi bridge segments. These segments had inclined, curved, 

eccentric tendons. The anchorage zones were reinforced according to 

the provisions of Rhodes and Turner but cracked substantially even 

though the general results of elasticity theories would indicate the 

bursting stresses for the eccentric tendons would be less than the 

nominal bursting stresses for concentric tendons. This questions 

the applicability of the Rhodes and Turner method to other than con

centric straight tendons. 

2.3.4 ACr. Presently the major American building code 

[38] provides extremely little information to aid the engineer in 

designing or checking the adequacy of an effective reinforcing sys

tem for post-tensioned anchorage zones. Section 18.13 of ACI 318-77 

requires: 
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lS.13.l-~Reinforcement shall be provided where required in tendon 
anchorage zones to resist bursting, splitting and spalling forces 
induced by tendon anchorages. Regions of abrupt change in section 
shall be adquately reinforced. 

lS.l3.2--End blocks shall be provided where required for support 
bearing or for distribution of concentrated prestressing forces. 

l8.l3.3--Post-tensioning anchorages and supporting concrete shall 
be designed to resist maximum jacking force for strength of con
crete at time of prestressing. 

l8.l3.4--Post-tensioning anchorage zones shall be designed to 
develop the guaranteed ultimate tensile strength of prestressing 
tendons using a strength reduction factor of 0.90 for concrete. 

The Commentary for Section 18.13 gives the following equations to 

size tendon anchorages based on permissible bearing stresses: 

Immediately after tendon anchorage: 

fb = 0.8f' .J
A
A2 - 0.20 :s; 1. 25 

CL 1 
f' 
ci (2.18) 

or after allowance for prestress losses: 

where 

(2.19) 

f~i = cylinder strength of concrete at time of loading 

Al = bearing area of the post-tensioning anchor plate 

A2 = maximum area of the portion of the anchorage surface 
that is geometrically similar to, and concentric with, 
the area of the anchor plate. 

fb = permissible concrete bearing stress under the anchor 
plate of the post-tensioning tendons with the end 
region adequately reinforced. 

No recommendations are made for satisfying the bursting and spalling 

zone reinforcement. No guidance is provided the designer except to 

note that the actual stresses are quite complicated around post

tensioned anchorages and a "refined strength analysis" should be used 

whenever possible. 
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The origin of the ACI formula came originally from the recom

mendation proposed by Billig in 1948. As discussed in the previous 

section, corrections to the formula were suggested by Komendant 

and later by Middendorf. The square root formula was eventually 

adopted in the 1973 ACI specifications for prestressed concrete in 

lieu of any other available information. 

2.3.5 CEB. In a similar fashion the Comit~ Euro-International 

du B~ton (CEB) and the Federation Internationale de la Precontrainte 

(FIP) [7] prescribe that for the case of a reasonable uniform distri

bution of the applied pressures, the local resisting force shall be 

determined as follows: 

where 

(2.20) 

= characteristic strength of concrete under compression 

= coefficient of safety applicable to concrete 

= the loaded area 

= the largest area which is geometrically similar to 
A d' with the same center of gravity, lying totally 

c within A , in the plane of A d 
c c 

= ultimate resisting force for design 

Since the coefficient of safety applicable to concrete (Yc) 

is normally equal to 1.5, the CEB/FIP formula can be rewritten as: 

(2.21) 
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Therefo~e, both ACI and CEB-FIP codes have the same type of 

formula for admissible bearing stresses, except with respect to the 

upper limit of applicability and factor of safety. The CEB bearing 

stresses are substantially higher. 

For the anchorage zone transverse reinforcement, the CEB-FIP 

recommendations suggest the following expression, developed by 

Leonhardt: 

where 

(2.22) 

NStd = total tensile force (bursting) to be resisted 

~du = 1.2a A maximum force in prestressing steel 
POmax ps 

ao = the side of the area Acd measured parallel to a 

a l = depth or width of the symmetrical prism, whichever 
governs. 

The resisting force in the reinforcement is 

where 

fyd 

fyk 

Ys 

= 

NR = fyd 
td 

f k/Y Y s 

A 
s 

= characteristic 

= coefficient of 

(2.23) 

yield stress of steel 

safety applicable to steel. 

Equating Eqs. 2.22 and 2.23 yields the required steel area. In a 

general statement the CEB-FIP Code recommends: 

The determination of the additional reinforcement may be based 
on the theory of elasticity or on the equilibrium and compati
bility of a rational internal system of forces. In both cases, 
the method used must be proven experimentally. 
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2.3.6 AASHTO. The current AASHTO [39] Specifications Section 

1.6.6(b)4, limits the anchorage bearing stress to 3000 psi (but not> 

0.9 f' .) which seems to be extremely conservative. One popular com-
c~ 

mercial anchor will normally develop unit stresses at transfer of 

approximately 6500 psi. The cylindrical anchorages on the Hood Canal 

Bridge had bearing stresses in the 10,000 psi range. M[ddendorf 

reported compressive stresses under bearing plates in some of his 

studies as high as 4f' .. AASHTO section 1.5.36 permits substantially 
c~ 

higher bearing stresses on reinforced concrete at ultimate since it 

includes JA2/Al factor. Clearly, the lack of definitive research on 

post-tensioned anchorage zones is echoed here in gross conservatism. 

The anchorage zone "state-of-the-art" could probably best be summed up 

in a statement from the 1977 AASHTO Specifications, Sec. 1.6.15: 

. . . In post-tensioned members a closely spaced grid of both 
vertical and horizontal bars shall be placed near the face of the
end block to resist bursting stresses. Amounts of steel in the 
end grid should follow Recommendations of the Supplier of the 
Anchorage. Where such recommendations are not available, the 
grid shall consist of at least #3 bars on 3 in. centers in each 
direction, placed not more than 1/2 in. from the inside face of 
the anchor bearing plate. 

Closely spaced reinforcement shall be placed both vertically 
and horizontally throughout the length of the end block in 
accordance with accepted methods of end block stress analysis. 

For the situation of thin web or low cover post-tensioned 

applications, it is clear the designer is given little guidance 

and the constructor is at the mercy of his suppliers. No Commentary 

exists to document the "accepted methods of end block stress 

analysis." 

2.3.7 PTI. The PTI [40] post-tensioning manual, Section 

3.1.7,-provides the same formula as the ACI 318-77 Commentary, but 

goes slightly further in stating: 

Manufacturers' standard bearing plates and other standard 
anchorage hardware should be used in all but special applica
tions. Reinforcement should be placed behind the anchor plates 
to resist bursting and spalling stresses in the concrete. 
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They then go on ~o refer to Leonhardt [26] and Guyon [4] for the 

design of this reinforcement. 

2.4 Sunmary 

The comprehensive literature review undertaken reflects the 

state of published analytical and test data on post-tensioned 

anchorage zones. Various post-tension systems have conducted extensive 

investigations and full-scale tests to determine proper uses for their 

hardware products. These tests are ordinarily not published in this 

highly competitive and proprietary field. Certainly, no post-tension 

system supplier would want to have its system utilized in an appli

cation where anchorage zone cracking would threaten the strength or 

serviceability of the structure. Yet the continuing demand for new 

applications brought on by innovation and development requires constant 

extrapolation of limited data to new circumstances. 

Most published analyses and test data are for straight, con

centric tendons. It was shown in discussion of the widely accepted 

"Synunetrical Prism" method of Guyon that when applied to eccentric 

tendons as in Fig. 2.6, the theory indicates trends directly opposed 

to test results. None of the published literature treats significant 

inclinations or curved tendons. The design codes and standards used 

in American design--AASHTO, AeI, PTI--are limited to conservative (and 

often impractical) bearing stress formulae and performance language 

telling the designer to resist bursting, splitting, and spalling 

forces but giving no guidance on how to do it. It was shown that one 

practical method (Rhodes and Turner) was based exclusively on straight 

tendon tests and when applied in a major bridge structure with 

inclined, eccentric tendons was unable to adequately prevent cracking. 

It is obvious further information is needed on this complex problem. 

p. 



C HAP T E R 3 

ANALYTICAL STUDY USING FINITE ELEMENTS 

3.1 Introduction 

The most important visible benchmark in the behavior of a 

post-tensioned anchorage zone under load is the formation of the 

longitudinal tendon path crack. From a serviceability standpoint, 

there is no concern before cracking. From a strength standpoint, 

cracking always seems to occur at a load somewhat under the ultimate 

capacity and hence serves as a warning indicator. Until shortly 

before the formation of the crack, the measurements made by the 

internal strain gages used in this study show that the load-strain 

relationships of the concrete are nearly linear. With proper 

vibration the concrete itself can be assumed to act as a homogeneous, 

elastic material up to the point of crack initiation. Thus, an 

approximate linear-elastic analysis of the anchorage zone stress 

state is a reasonable approximation prior to cracking 

This chapter details the selection and calibration of the 

static, linear-elastic finite element program used in this study. 

Comprehensive program details and examples of coding are given in 

Ref. 41. 

3.1.1 Finite Element Models. It is not possible to obtain 

analytical mathematical solutions for all engineering problems. An 

analytical solution is a mathematical expression that gives the 

values of the desired unknown quantity at any location in a body. 

Analytical solutions of anchorage zone stresses can be obtained 

only for certain simplified situations such as the uniform con

centric post-tensioning load on a rectangular prism solved by 

Guyon. For problems involving complex geometrics, material 

83 
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properties, and boundary conditions, the engineer must resort to 

numerical methods that provide approximate, but acceptable, solutions. 

In most numerical methods, the solutions yield approximate values of 

the unknown quantities only at a discrete number of points in the body. 

One way to discretize a structure is to divide it into an equivalent 

system of smaller elements. The assemblage of such elements then 

represents the original body. Instead of solving the problem for the 

entire structure in one operation, the solutions are first formulated 

for each smaller unit and then combined to obtain the solution for the 

original structure. Although the analysis procedure is thereby con

siderably simplified, the amount of data to be handled depends on 

the number of smaller bodies considered. For a very large number of 

subdivisions computation by hand is unworkable and autnmated elec

tronic computation is used. 

The finite element method is essentially a product of the 

electronic digital computer age. The method can be systematically 

programmed to accommodate such complex and difficult problems as 

nonhomogeneous materials, nonlinear stress behaVior, and complicated 

boundary conditions. It is this advantage in boundary condition 

modeling capabilities which led to the choice of a finite element 

approach for the solution of the post-tensioned anchorage zone stress 

state with realistic variables such as tendon inclination, 

eccentricity, and curvature. 

3.1.2 Mesh Generation. In early finite element programs, 

analyses were confined to two-dimensional plane stress and plane 

strain problems such as shown in Fig. 3.1a. Inputting the 

coordinates at each node and the connections between nodes was very 

time-consuming. Innovative methods for automatically defining sets 

of nodal points, called mesh generators, shortened the painstaking 

generation process. Until recently, these mesh generation schemes 

were usually limited to rectangular, regular, uniform arrays of 

points. For the more complex three-dimensional structures shown in 
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Fig. 3.lb, the input difficulties are a magnitude greater. One of 

the most powerful mesh generation schemes available was developed 

by Becker for use in the program TEXGAP [43]. This extensive pre

processor permits the user to generate one, two, and three-dimensional 

arrays of nodes. Automatic mesh generation was an absolute prerequi

site for solution of the complex, three-dimensional system of block

outs, curved tendons and flanges associated with a typical post

tensioned box girder anchorage zone. 

3.1.3 Accuracy. In dealing with complex geometries where 

the stress field may change rapidly, there are theoretically two 

approaches which can be used to achieve an accurate solution--mesh 

refinement or the use of higher order elements. Practical limits on 

computational time set limits on the level of mesh refinement possible. 

Higher order elements have several attributes which make them a 

desirable choice for modeling three-dimensional problems. The dis

placement field across the element is simulated by an analytical 

expression, usually a polynomial, known as a displacement model. 

If the exact solution is a linear displacement field, then this 

field is precisely replicated by a finite element using a linear 

displacement model. However, in any complex problem the true dis

placement field is not likely to be linear. In such a case the 

linear model is only approximate. Higher order displacement models 

yield more accurate, faster converging, approximations to the true 

solution. 

Likewis~ the physical geometry of the problem must be 

considered. If only rectangular objects are to be modeled, a linear 

geometry model for the element will be sufficient. If, however, 

curved boundaries are involved, these can only be modeled precisely 

by a higher order geometric model. The formulation of displacement 

models and the calculation of element stiffnesses is greatly simpli

fied if the geometry and displacements of the element are described 

in terms of the same parameters and if these parameters are of the 



An underground power station. Mesh used in analysis. 

a) Two-dimensional plane strain problem with irregular mesh (Ref. 42) 

Fig. 3.1 Typical irregular meshes 
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Three dimensional analysis of a pressure vessel 

b) Three-dimensional mesh (Ref. 42) 

Fig. 3.1 (continued) 
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same order. This is known as the isoparametric element concept The 

improvement in accuracy associated with higher order element formula

tion is readily seen from Fig. 3.2 where a cantilever beam is modeled 

with elements of various order. 

For many years the methodology has existed to permit the solu

tion of complex three-dimensional stress analysis problems using 

higher order finite elements. That there are only a few such codes 

and that these are infrequently used is basically due to two problems 

The first is the difficulty associated with programming the problem 

for execution. Mesh generation and element definition are much more 

difficult for higher order elements. The second complication is the 

actual solution of the equilibrium equations. When higher order 

elements are used, the size of the overall computational problem 

might easily exceed the capabilities of most systems, In the early 

1970's when Yettram and Robbins [221 were using finite element models 

for simple anchorage zone problems, nearly all programs used banded 

in-core gaussian elimination equation solvers. This imposed a severe 

restriction on the number of elements that could be used, Thus, most 

codes used the first order 8-node brick for their primary element. 

The recent development of the frontal equation solver by Irons 

[441 permits expansion of the number of elements, thus making feasible 

the large scale use of higher order elements. 

In choOSing a suitable program for the current project the 

field was quite narrow. In fact only one program was found which had 

the mesh generation and higher order element capabilities to make 

feasible an accurate solution of the post-tenSioned anchorage zone 

problem. That program was TEXGAP, developed by Becker and Dunham [43 1. 

,-
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A' 

Type of element Vertical Load of A Couple at AA' 

Max. den. Max. stress Max. den. Max.stress 
at AA' BB' at AA' BB' 

lSI 0-26 0·19 0-22 0-22 

D 0-65 0'56 0·67 0·67 

~ 0·53 0·51 0-52 O-SS 

D 0·99 0'99 1·00 I{)() 

D 1·00 1·00 1·00 I{)() 

EXACT 1·00 1·00 1·00 1·00 

A cantilever in plane stress analysed by various elements. Accuracy 
improvement with higher order elements 

Fig. 3.2 Accuracy improvement with higher order elem.ents 
(Ref. 42) 
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3.2 Capabilities of TEXGAP 

3.2.1 General. TEXGAP-2D and TEXGAP-3D are· linear elastic 

finite element codes for solution of static continuum problems. 

Before outlining the specific capabilities of the three variations 

of the code used, the general limitations and assumptions common to 

all are summarized. 

In a linear elastic program, isotropic material behavior is 

defined by E (Young's Modulus) and V (Poisson's Ratio). The program 

can vary either to model orthotropic materials. As the anchorage 

zone for a post-tensioned girder is principally concrete, the results 

will not be precise for extremely large strains, since concrete is a 

nonlinear material at high strains. However, most of this nonlinear

ity occurs with high compression. The tensile behavior may be 

assumed as nearly linear to cracking. Thus, it is assumed that the 

program will yield reasonable results up to first cracking. 

Concrete is composed of a mixture of aggregates of varying 

sizes and mechanical properties which are bound together with a fine 

mortar paste. With proper uniform vibration, the mixture assumes a 

reasonably homogeneous character. The computer program assumes the 

material to be ideally homogeneous. 

In modeling the anchorage zone, the program assumes perfect 

bond between adjacent elements, regardless of material properties. 

Thus, the program assumes an unbreakable, continuous contact between 

the steel anchorage plate and the concrete. Because of the extremely 

high frictior. forces which exist beneath the plate, this assumption 

should lead to negligible error. 

Local anchorage and shear reinforcement have not been 

included in the finite element model. In fact, this reinforcement 

has little effect on the behavior of the system until cracking has 

occurred. After cracking the analysis has little validity since the 

linear elastic assumption is no longer valid. 



3.2.2 TEXGAP-2D: Two-Dimensional Program. Since modeling in 

two dimensions is an order of magnitude easier than working in three 

dimensions, both computationally and visually, the possibility of 

using a two-dimensional program to model the anchorage zone behavior 

was investigated. While certain things such as curved tendon ducts 

could not be modeled in two dimensions, the trends for some vari

ables, as shown in Fig. 3 3, could be examined. Also, since previous 

photoelastic tests by Sargious and Vaughn utilized relatively thin 

plastics, a two-dimensional state of plane stress was a reasonable 

assumption for checking these studies. Indeed, calibration runs indi

cated excellent agreement with such tests. 

The program TEXGAP-2D is a linear elastic code for analysis 

of plane or axi-symmetric bodies. The grid of nodal points is gener

ated separately from the elements. This permits the user to experi

ment with a large number of nodal pOints. A large number of nodal 

points can be generated with a very few cards of input since TEXGAP 

generates nodes by parts or regions of the grid using an isoparamet

ric scheme instead of just by lines. Difficult curved boundaries can 

be accurately described using the cubic isoparametric generation 

scheme. Nodal points can be concentrated in the vicinity of a corner 

of special interest by utilization of a gradient specification. The 

primary elements used were an 8-node quadrilateral and a 6-node tri

angle, both of which can assume curved sides as shown in Fig. 3.4. 

TEXGAP uses the frontal solution technique of Irons [44] in 

which the stiffness equations are processed on an element basis. As 

soon as all contributions to a particular degree of freedom are 

assembled, that degree of freedom is condensed from the system. This 

usually keeps the number of active unknowns at a minimum and reduces 

the solution time. The frontal method allows extensive programming 

flexibility by permitting a variable number of degrees of freedom at 

nodal points. 
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In addition, TEXGAP has the unique and powerful capability to 

take a coarse grid finite element solution and subdivide a portion of 

the coarse grid into a very fine grid. The fine grid is resolved to 

achieve highly accurate results in localized regions at very low compu

tational costs. Debugging of the mesh before solution is done via an 

interactive graphics package which permits the viewing of the grid on 

a standard Tektronix terminal. A typical mesh for solution of duct 

stresses due to tendon normal (radial) loads is shown in Fig. 3.5. As 

the loads are applied along a relatively long surface with respect to 

the width of the web section in the actual girder, a plane strain 

assumption is used. 

3.2.3 TEXGAP-3D: Three-Dimensional Program. As was point~d 

out in Chapter 2, the actual post-tensioned anchorage is very much a 

three-dimensional entity. Although inclined loads can be modeled in 

two dimensions, the inclined post-tensioned system cannot. Large 

normal and friction forces are usually generated along the tendon duct 

which cannot be ignored. This requires that a cylindrical, parabolic, 

or sometimes cubically curved tendon duct be modeled through the rec

tangular shell of the web section. The boundary conditions satisfying 

the pressure and friction distribution along the duct must be applied. 

Since the duct is a three-dimensional entity, the cover concrete 

which surrounds it must be modeled as well. Physical tests to investi

gate the effect of cover by using variable web thickness indicated 

that the three-dimensional model yielded results closely matching the 

experimental data, while the two-dimensional program yielded con

sistently high results. For these reasons 'the more accurate three

dimensional program was adopted after the calibration stage. Besides 

the capability of modeling the duct, cover, and web thickness, it is 

also possible to consider the effect of bearing stress by examining 

different size anchor plates under the same loading. 

.' 
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TEXGAP-3D is a linear elastic finite element code that solves 

static three-dimensional continuum problems. It is not a general 

purpose code because it does not contain other element types such as 

beam, plate, and shell elements. It is well suited for analysis of a 

post-tensioned anchorage zone. In order to make the program more fail

safe, easier to use, and more convenient to code, only quadratic, 

isoparametric elements are included in the element library. The ele

ments can have curved edges with quadratic interpolation being used 

for both the displacements and the geometry. Three basic element 

configurations were used: bricks, tetrahedrons, and triangular 

prisms, as shown in Fig. 3.6. All three element types can be aniso

tropic compressible or isotropic incompressible. 

The preprocessor and postprocessors coded for TEXGAP3D are 

perhaps the most powerful such packages available today in a continuum 

three-dimensional program. The major features of the preprocessor 

include options to permit the definition of global and local coordi

nate systems of Cartesian, Cylindrical, Spherical, or Toroidal types. 

Nodes may be generated in these systems on arcs, curved surfaces, or 

three-dimensional blocks using linear, quadratic, or cubic interpola

tion with gradient control. Points on the intersection of coordinate 

systems can be computed as well as connections or Laplacian filling 

of points between previously defined points. Elements and boundary 

conditions can be easily defined using data defined looping and 

default nodal connectivities. Boundary conditions involve pressure, 

traction, spring, normal roller, and degree-of-freedom tieing as well 

as the usual nodal point force and displacement values. Material 

properties may be isotropic, orthotropic, and anisotropic. Local 

properties may be transformed to the global systems in several con

venient ways, including the use of the locally defined coordinate 

systems. 
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The major features of the postprocessor include ~ser control 

over the points within an element at which stresses and strains are 

computed. Either the built-in options or user-defined points may be 

used. Bounds are available to limit the processed region either by 

Cartesian or connectivity limits or both. Processing can be done on 

an entire block of elements, or on a layer, or on connecting planes. 

Isoparametric element plots and deformed grid plots as well as iso

parametric and deformed plane plots are available. Plots of the 

location of stress points by number are also available. Contour point 

plots can be made for stresses and/or strains on connectivity planes. 

Also worthy of note is that the program has the powerful 

option of rezoning or subdividing coarse grid elements to achieve 

more accurate definitions of stress and deformation in local regions 

of interest. Only brick elements can be rezoned. 

Because of the complexity of debugging difficult three

dimensional meshes, an interactive graphics plotting routine allows 

the user to quickly view sections of the mesh in different spatial 

orientations. If desired, surface plots using hidden line removal 

techniques are available. 

TEXGAP-3D was the main program base used for all three

dimensional finite element modeling throughout the course of the 

project. However, extensive modifications were made to facilitate 

modeling of the prototype specimens. These modifications are dis

cussed in the following section. 

3.2.4 Program PUZGAP-3D. One of the chief obstacles to the 

use of higher order elements in the early 1970's was the actual solu

tion of the system of equations for the nodal displacements. The 

magnitude of the system to be solved for even a relatively small 

problem using 20 node isoparametric bricks could easily exceed the 

central memory capacity of a large computer. This was because at 

that time almost all codes used gaussian elimination "band solvers." 

... 
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Consider a relatively large three-dimensional mesh such as 

that shown in Fig. 3.7a. If the solution used 20 node bricks, the 

node numbering for the first layer would be as shown in Fig. 3.7b, c, 

and d. The total number of nodes in the problem is thus the sum of 

11 X 96 corner nodes per layer (1056) plus 10 X 36 midside nodes per 

layer (360) or a total of 1416. Since there are three degrees of 

freedom per node, 4248 unknowns must be solved. A closer look at 

element number 1 in Fig. 3.7e shows that the maximum bandwidth is 

152 nodes or 152 X 3 = 456 degrees of freedom. The storage capacity 

required for the banded stiffness matrix would thus be 456 X 4248 

1,937,088 base ten characters. The maximum available core on the 

large CDC 6600 at the University of Texas is 220k base eight, or 

73,728 base ten. To store the banded form of this stiffness matrix 

for in-core solution would thus require 26 times the limiting 

storage capacity of this large computer. 

Early efforts at solving problems such as this led to ele

mentary substructuring of the band by partitioning. The methods of 

partitioning varied but in all methods as the upper partitions were 

eliminated they were removed to disk and the next partition brought 

into core. For the case of one general purpose program, SAP IV, two 

partitions are in core for solution at any given time. The main dis

advantage of this procedure, particularly with problems with large 

bandwidths, is that the massive transfer of I/O from disk to core 

results in inordinate amounts of computer time required for solution. 

In 1970, Irons introduced the frontal or wavefront 

technique. The stiffness matrix is assembled on an element by 

element basis, rather than by the usual technique using nodal point 

numbering. The technique allows for extremely rapid solution times 

as only a relatively small amount of core storage adequate to retain 

the "front" is needed. Detai ls are given in Ref. 41. In the example 

shown in Fig. 3.7, the maximum front width occurs when the final 

element for a given face is being reduced. For that situation, 96 
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nodes on the next face to be processed are retained in core, plus an 

additional 12 nodes from the final element from the previous face. 

nlat totals to 108 nodes or 324 degrees of freedom (DOF), since each 

node represents three translational DOF's. The required in-core 

storage for the front is 324 X 325/2 = 52,650. This is less than the 

73,728 base ten word capacity of most major computers such as the 

CDC 6600 and thus the program can execute directly in core using the 

frontal technique, whereas the band solver will require substantial 

partitioning. 

The refined mesh for a box girder web containing a 30 degree 

inclined, curved post-tensioning tendon running through the middle 

required 500 elements of 20 node bricks, arrayed in such a manner that 

at times the maximum front width approached 600. The in-core storage 

requirement using the frontal technique would be 600 x 601/2 = 180,300 

words~ This value exceeds the 73,728 available for the CDC 6600. 

The solution exceeded the capabilities of the frontal equation solver

used in TEXGAP. 

At that point in time C. P. Johnson of The University of 

Texas had done extensive work [45] in the area of multi-level sub

structuring techniques based upon a frontal equation solution. While 

the primary use of his program--PUZZLE--had been geared toward sub

structure reduction of complex grids for dynamic analysis, the provi

sion had been made for the general solution of large systems of finite 

element equations. 

PUZZLE operates on three levels of programming strategy: 

Level one is activated when the front can be stored in the available 

core. Except for programming methodology, this level is identical to 

that of TEXGAP's frontal equation solver. Level two is activated 

when the front associated with a given element cannot be stored. It 

does require that the portion of the front associated with the 

degrees of freedom to be eliminated can be stored in-core. This 
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portion is held in-core while the remainder of the front is processed 

in blocks whose size depends on the remaining available core. An 

additional level is available for those fronts which cannot be 

accommodated by the first two levels. Level three processes a given 

front by repeated application of level two. This provides virtually 

unlimited solution capacity. 

The successful interfacing of the two programs TEXGAP and 

PUZZLE by Becker, Johnson and Stone [41] formed the hybrid program 

PUZGAP 3D, and presented an extremely powerful tool for the solution 

of the post-tensiorred anchorage zone problem. PUZGAP 3D was used for 

all three-dimensional analysis discussed in this report. [Copies of 

program PUZGAP 3D can be obtained from Dr. E. B. Becker, c/o TICOM, 

Department of Engineering Mechanics, The University of Texas at 

Austin, Austin, Texas 78712. ] 

" 
3.3 Calibration 

The ultimate objective in the use of any analytical model is 

to be able to replicate as closely as possible the behavior of the 

physical prototype. Once the model is shown to produce accurate 

results for a variety of conditions, it can be used to extrapolate 

and yield solutions to complex problems where physical testing would 

be time-consuming and economically prohibitive. Such a process of 

verification is termed calibration. 

At the beginning of the calibration phase the available 

material for calibration consisted of a few photoelastic tests 

reported in the literature, experimental results from Zielinski and 

Rowe, and the photoelastic studies being done concurrently by Vaughn. 

Most of the ~omparisons with that data as outlined in Secs. 3.3.1 and 

3.3.2 proved quite acceptable. Howeve~ it was felt that none of the 

existing data realistically represented the anchorage zone stress 

state for a thin web post-tensioned anchorage. In particular, it 

.. ' 
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should be remembered that the maximum transverse tensile stress in a 

three-dimensional problem decays rapidly from its peak along the center 

line towards the side face. This was amply demonstrated by Yettram and 

Robbins [22]. All tests performed by Zielinski and Rowe [9] presented 

transverse stress distribu~ions based on surface strain measurements 

only. For this reason it was felt that the most positive method of 

calibration would be to compare the analysis results with physical 

measurements of the internal strain along the line of maximum trans

verse stress in a physical model. The gages in the model would ideally 

be located at the integration points of the elements along that line, 

but locations close to the nodes would also be acceptable. With this 

scheme, a precise means of calibrating the program would be available. 

These calibration procedures are detailed in Secs. 3.3.3 and 3.3.4. 

Detailed coding for TEXGAP and PUZGAP 3D for all calibration 

examples is presented in Ref. 41. 

3.3.1 Literature Comparisons. MOst anchorage stress studies 

in the past have been two-dimensional analyses, so the first compari

sons used the two-dimensional program. 

Sargious [25] performed a number of photoelastic tests, as 

described in Sec. 2.2.1. A computer run was made to model Sargious' 

test with an eccentricity of 2a/6 and an angle of inclination of 

approximately 6 degrees. The results for the bursting and spalling 

distributions are shown in Figs. 3.8a and 3.9. For this typical case, 

there is very good agreement between Sargious' experimental data and 

the finite element predictions. A plane stress assumption was used 

for the model. Stress contour plots generated by the program are 

shown in Fig. 3.10. Figure 3.l0a clearly shows the spalling and 

bursting transverse tensile stress zones. 

In addition to the calibration run, a number of different 

runs were made to investigate the effects of the various geometric 

variables such as eccentricity and inclination of the tendon. In 
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a) Transverse stress 
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Fig. 3.10 Stress distributions for Sargious I problem--
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general, the effects of change of eccentricity or inclination from 

the symmetrical centroidal loading configuration can be seen from 

Figs. 3.11 and 3.12. In Fig. 3.11 it can be seen that for any loading 

configuration other than centroidal, the maximum bursting stress 

decreases. Conversely, in Fig. 3.12 the maximum spalling stress 

increases rapidly for even slight changes in inclination and 

eccentricity. Main trends from these types of variable studies 

will be discussed in later reports in this series. 

In a second calibration series a number of tests performed by 

Zielinski and Rowe [9] were modeled to check the three-dimensional 

code. A typical example would be the 6 X 6 X 6 prisms. Figure 3.13 

shows the finite element mesh used for modeling the block. These 

figures were generated using an interactive mesh debugger and were 

taken directly from a Tektronix 4010 terminal. Note that the mesh 

shown represents only one-quarter of the prism tested by Zielinski 

and Rowe. Wherever possi.ble, advantage of geometric symmetry was 

taken. In general, concentric, straight tendon problems have four

fold symmetry. Eccentric and inclined tendon problems have two-fold 

symmetry. Care must be taken to supply the proper boundary conditions 

for these reduced models as shown in Fig. 3.14. The results for the 

bursting transverse strain distribution are shown in Fig. 3.15. 

These values are for the transverse surface strain taken along the 

prism face center line. It can be seen that the curves are similar 

in shape, although the FEM solution gives appreciably lower values 

than obtained by Zielinski and Rowe. 

3.3.2 Photoelastic Comparison. At the time the first 20 

calibration runs were being made, Vaughn [27] was nearing completion 

of a series of nine photoelastic tests. This provided a wealth of 

raw data to work with. Six of the nine tests were modeled using the 

two-dimensional finite element program. A typical mesh for a 

concentric single straight tendon with a bearing-type anchor is shown 

in Fig. 3.16. Figure 3.5 shows a section of the meshes used to 
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simulate Vaughn's tests which looked at the effect of radial forces on 

the tendon duct in regions of sharp curvature. Figure 3.17 shows a 

sample comparison run with Vaughn's test #7 which had two parallel 

straight tendons. In most cases the transverse and longitudinal 

stress distributions for the photoelastic model and 2D computer pro

gram agreed quite well, as shown in Fig. 3.17. For some cases, 

however, the resolution of stresses in regions of high stress con

centration, such as the tendon duct shown in Fig. 3.5, was not 

conclusive in the photoelastic tests. 

3.3.3 One-fourth Scale Model Tests. Photoelastic studies are 

not capable of replicating the perf~;:-man.::e of a concrete anchorage 

zone. Thus an extensive series of model tests was begun with the dual 

purpose of calibrating the program with hard data from anchorage zone 

tests in thin web concrete sections and to do a preliminary investiga

tion of the primary variables affecting the cracking load--cover, 

inclination, eccentricity and anchorage geometry. The use of one

fourth scale model specimens for the first series of physical tests 

in this investigation was decided upon for several reasons. The 

first was the economy of time and materials. It would take sub

stantially less effort to prepare, cast, instrument, and test a one

fourth scale model than a full-scale prototype. The second reason was 

that extensive prevtous research at The University of Texas at 

Austin had indicated thaflmicroconcrete models could be used to 

accurately replicate'con~tions and performance seen in prototype -, 
concrete speci~ns. Thus, models could be used to examine a wider 

range of parameters than would a test program confined solely to full-
~- -~ ~ ... _ ~_ .. - .0#- -~ 

scale testing. 

The next step was to develop a method of instrumentation 

capable of measuring the transverse bursting strain inside the con

crete, on the tendon center line and as rear to it as possible. The 

design of these gages is discussed in detail ~n the second report in 

this series. The insert strain gages were then suspended from the 
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model shear reinforcement and were oriented perpendicular to the 

tendon so as to measure the transverse strain. Each gage thus 

represented one point on a typical bursting strain distribution 

curve. The term bursting strain (and associated stress) is empha

sized here, because at the time these model specimens were being 

cast and tested the preponderance of literature indicated that this 

was the primary cause of tendon path cracking in post-tensioned 

anchorage zones. Thus, it was not until certain inconsistencies in 

this approach were noted from data analysis in the te,t program that 

it became evident that other stresses, in particular ehe spalling 
." 

3t:resses, demanded an intensive study. ~ 

3.3.3.1 Cover Effects. A series of four one-fourth scale 

models were used to investigate the effect of cover concrete for 

concentrically loaded anchorages. Figure 3.18 shows typical specimens 

with widths of t = 2 in. and t = 4 in. Six gages were placed along 

the tendon path at 3 in. spacing. As this was a four-fold symmetry 

problem, only one-quarter of the specimen was modeled with the finite 

element program. The equivalent FEM meshes are shown in Fig. 3.19. 

Comparative strains from the FEM model corresponding to 

insert gage locations were selected, as shown in Fig. 3.20. 

Figures 3.21, 3.22, and 3.23 illustrate the results of the 

first test series and the corresponding finite element runs. With 

the exception ur the 4 in. width model (Fig. 3.21) in which the 

experimental data were skewed slightly to the right, the program 

produced peak strains and bursting distribution shapes which could 

be considered tOL·.N ___ tlE:eptionally accurate, givet'l the expected scatter 

in experimental data. For the case with t = 2 in., it should be 

noted that the specimen was cracked at 24 ksi and, thus, to achieve a 

representative curve which could be scaled for comparison with the 

other specimens, the data were linearly scaled up from the 10 ksi 

load stage. 

... 
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(a) t 2 in. mode 1 M3- 2, phys ical tes t 

(b) t = 4 in. model M2-2. physical test 

Fig. 3.18 Typical physical specimens; cover series tests 
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(a) t ::::I 2 in., 1/4 symmetric mesh. Load applied to 
lower square 

(b) t = 6 in., 1/4 symmetric mesh. Load applied to 
lower left square 

Fig. 3.19 Interactive plot of cover series FEM meshes 
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3.3.3.2 Eccentricity. The eccentricity series used the 

same type of specimen as previously described except that the web 

width was set at 3 in. and the eccentricity varied from e = 0 to 
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e = O.6a (6 in.). Both plate anchors and cone-type anchors were 

used in the physical tests. A typical specimen and related FEM one

half symmetric surface mesh are shown in Fig. 3.24. Figure 3.25 shows 

the bursting strain distribution for this specimen with both bearing

type and cone-type anchors. Maximum strains are close to those pre

dicted but the location of the maximum strains is further along the 

axis than predicted. 

3.3.3.3 Inclination. The last variable investigated in the 

calibration tests using the one-fourth scale specimens was the tendon 

inclination. Previous work had indicated that large radial and fric

tion forces were generated along the tendon duct which could not be 

ignored in an analytical model. For the inclined tendon specimens 

shown in Fig. 3.26, the analytical model had to account for the 

anchorage blackout, the side cover, the proper geometry of the 

curved tendon path as well as the appropriate tendon duct and associ

ated forces. The development of the finite element model is shown in 

Fig. 3.27. Specific detail of the anchorage zone is shown in Fig. 

3.27. Specific detail of the anchorage zone is shown in Fig. 3.27c 

and d. For a problem of this complexity, even the mesh shown in Fig. 

3.27 can be considered quite coarse. There was sufficient refinement 

along the tendon duct in the anchorage zone to give a reasonable 

approximation of the bursting strain in that region. One method of 

verifying this accuracy was comparison of output for interfacing 

node~'-ori- two adjac~ elements. t-rth-e mesh-was sufficiently fine 

to model the actual stress field, these two values would be nearly 

identical. If, on the other hand, the gradient was quite sharp 

across a pair of elements where the mesh was too coarse, the values 

will differ marked ly. This indica ted tha t mesh refinemen t and pos

sibly successive rezoning operations might be necessary to achieve 
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(a) Specimen Ml-3, 30 degree inclined tendon 

(b) Spec imen M2-3. 30 'degree incl ined tendon 

Fig. 3.26 Typical inclined tendon model tests 
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(a) Lateral view of mesh used for curved tendon models 

(b) Isometric view 

Fig. 3.27 Interactive plot of mesh used for curved tendon 
models 

127 



u. 

(e ) .:1 ...... 01 _~T'" . _ ...... 

(. ) SooTf_ , 10' o f _ •• I, wldol" . f _ ....... . ..... 

• 

• 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



129 

the correct solution. The mesh shown in Fig. 3.27 was sufficiently 

fine to give a reasonable comparison with the experimental bursting 

strain distribution, as shown in Fig. 3.28. However, it was not 

sufficiently fine to give any reasonable estimate of the end face 

spalling distribution which has a very sharp gradient as one 

approaches the anchorage fr.om below. During the first twenty one

fourth scale tests, no gages were placed to study the spalling dis

tribution. To provide a solution for a sufficiently fine mesh along 

the tendon duct requitEd the development of the program PUZGAP 3D. 

The mesh refinement capabilities made possible by partitioning the 

front can be readily seen in the 460 element mesh used to model the 

full-scale curved tendon specimen reported in Sec. 3.3.4. 

3.3.4 Calibration; Full-Scale Tests. The final step in 

calibrating the program was to compare it against the results of the 

full-scale tests. There was a growing awareness of the importance of

the spalling stresses in the behavior of the anchorage zone and each 

full-scale test specimen was progressively more heavily instrumented 

in that area. The mesh refinement achievable with PUZGAP permitted 

accurate solutions for these spalling stresses. Greater refinement 

was also possible along the tendon duct. This, however, complicated 

the problem of which node points to use for obtaining the bursting 

strain curve, as illustrated in Fig. 3.29. Ideal positioning of the 

gage is shown in Fig. 3.29a. However, the gages were fastened with 

somewhat flexible steel wire and the placement process was quite 

laborious because of the need to thread them between reinforcement 

and duct work. On occasion, the gages would shift slightly when the 

reinforcing cage was p!aceo in the form and later duririg2rsting when 

vibrators inevitably hit the wires. The gages varied in location 

within-the bounds shown in Fig. 3.29b. The variances were small--on 

the order of 0.5 to 0.75 in. maximum for the full-scale specimens. 

The choice of nodes 1, 2, 3, or 4 or the element centroid for 

comparison with the gage would thus be somewhat arbitrary as strain 
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data were av~ilable at all these points. The decision was made to 

use node 4 which consistently indicated the highes~ strain, thus 

giving a conservative solution. 

Basically the full-scale specimens dealt with only two geo

metric variables: the size of the bearing plate and the tendon 

inclination. Various reinforcing schemes were tested using the 30 

degree inclined tendon, so that most of the full-scale tests had this 

geometry. The two straight tendon tests, used to investigate bearing 

stress effects, were precisely replicated in the finite element 

model, as shown in Fig. 3.30. Note that computational advantage was 

taken of the four-fold symmetry. Figure 3.31 shows two of the typical 

curved tendon specimens. The development of the finite element model, 

which was assembled and debugged in stages, is illustrated in Fig. 

3.32. Typical listings of input data for the straight tendon full

scale specimens and curved tendon specimens are given in Ref. 41 . 

. The nodal point definitions for the 30 degree tendon take about 150 

statements in the PUZGAP version. An equivalent set of nodal defi

nitions would have to be done on a point-by-point basis for codes such 

as SAP IV or NASTRAN. This would require well over 10,000 statements. 

The element definitions would require another 460. 

For the curved tendon models shown in Fig. 3.32, it should be 

noted that the flanges were not included in the model. The reason 

for this was the extreme difficulty involved with developing a com

patible mesh where the duct crosses into the flange. Before going 

to the "flangeless" model however, a number of runs were made to 

investigate the errors which would be incurred for such an assump

tion. As it turned out, for the situation where the anchorage is 

located c-lose to the section centroid (Le., low eccentricity) the 

results are virtually identical. This is not true for highly 

eccentric anchors in the vicinity of the flange. For these situa

tions, if curved tendons are involved, the solution will have to be 

more rigorous. Fortunately, most segmental bridges that have 



(a) FSlB 30-FEM quarter symmetric model 

(b) FSIB physical test 
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(a) Full-scale specimen FS2B and FS2A (30 and 15 
degree inclined tendons) 

(b) FSSA 30 degree tendon with lateral prestress 
for maximum precompression of bursting stress 

Fig. 3.31 Typical full-scale specimens 
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(c) Lateral view of duct mesh in vicinity of the 
anchorage zone 

(d) Full lateral view of tendon duct mesh. Note 
geometry error at top of panels 7 and 8 where 
midside interpolation was mistyped in input 

Fig. 3.32 (continued) 



(e) Bottom mE:sh near anchorage zone--lateral view. 
Note ~esh refinement along end face (left) compared 
toFig.).27a 

(£) Bottom mesh near anchorage zone--isornetric view 

Fig. 3.32 (continued) 
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(i) Top mesh--lateral view 

(j) Top mesh--surface plot 

Fig. 3.32 (continued) 
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anchorages located in the flange have nearly horizontal profiles, 

simplifying the mesh generation. 

3.3.5 Results. Figures 3.33 through 3.37 give comparisons 

between experimental gage data and the 3D-FEM solution for the 

bursting strain distribution. Given the anticipated scatter associ

ated with strain gage data, the comparison seems to be qualitatively 

reasonable, the program being neither consistently low nor too high. 

For most cases, the three-dimensional program appears to yield 

fairly acceptable results for the bursting and spalling distributions 

measured experimentally. 

Quantitatively, the term good correlation was assumed when 

the standard deviation of the predicted strain divided by the 

observed strain was less than 25 percent. Excellent correlation was 

assumed when the standard deviation was less than 10 percent. Figure 

3.38 is a statistical summary showing typical correlations for five 

randomly selected specimens comparing experimental and FEM predicted 

strains for both bursting and spa11ing distributions. MOst fall in the 

"good correlation" range. The worst case shown (Fig. 3.33) is greatly 

influenced by one strain gage which strongly disagrees with the 

theoretical predictions. 

Careful attention should be paid to the strain distribution 

along the end face--the spalling strain. Due to the loss of several 

of the gages, the experimental data for specimens FS1A and FS1B were 

insufficient for comparison. However, Figs. 3.39 through 3.42 

illustrate spa11ing distributions for specimens FS2B, FS2A, FS4A, and 

FS5A, each of which was more heavily instrumented. FS5A had dual 

backup gages and thus yielded the highest number of "surviving" gages 

after fabrication and casting. Consequently, it was not surprising 

that this test yielded the best comparison with the PUZGAP program 

(see Fig. 3.41). In viewing these particular plots the predominant 

feature is the "spike," predicted from the analytical study, which 
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Gage No. E IE x 
E a 

Fig. 3.23 1 1.14 .7a 
M3-2 Data 2 1.06 a X = 1.03 

3 .92 1.3a S.D. = .093 
4 1.0 1.6a 

Fig. 3.22 1 1.10 .7a 
M2-2 Data 2 1.12 a X = 1.038 

3 1.13 1.3a S.D. = .23 
4 .66 1.6a 
5 1.0 1.9a 

Fig. 3.28 1 .825 .7a 
Ml-3 Data 2 1.14 a X = 1.12 

3 1. 23 1.3a S.D. = .20 
4 1.3 1.6a 

Fig. 3.33 1 .11 .36a 
FSIA Data 2 .89 .51a 

3 1.11 .66a X = 1.12 
4 1. 25 .80a S.D. = .52 
5 1.42 .95a 
6 1.28 lola 
7 1.8 l.24a 

Fig. 3.35 1 1.0 .31a 
FS5A Data 2 1.0 .34a 

3 .6 .34a 
4 .87 .39a X 1.03 
5 .89 .44a S.D. = .26 
6 1.28' .44a 
7 1.56 .61a 
8 1.06 .88a 

Notes: £ = FEM predicted strain E == Actual gage strain 
p a 

X = Mean value of E IE S.D. = Standard deviation 
p a 

Fig. 3.38 Statistical comparison of FEM predicted strain 
vs experimental gage data for various tests 
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occurs near the anchor plate. In modeling the inclined tendo~ 

specimens a right angle block out was provided to achieve the 
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desired angle, as was done in the physical specimen. The introduc

tion of this idealized right angle, or reentrant corner, gives rise 

to a stress concentration (approximately = 6) in the vicinity of the 

corner. As will be shown in a later report, the calcula ted spalling 

tensile strain near the anchor plate edge appears to be a critical 

indicator of the load at which the tendon path crack forms. Thus, 

the accurate assessment of the strain between the blockout corner and 

the plate edge takes on great significance. Experimentally, direct 

measurement of the tensile strain at the blockout corner was not pos

sible due to space limitations, However, since the program generally 

yielded a spalling distribution with similar shape and strain magni

tude at points along the end face away from the anchor where 

measurements were made, it was assumed that the analytical results, 

although high due to the idealized corner, gave a reasonable indi

cation of the relative magnitude of the peak spalling strain for 

specimens with varying degrees of inclination achieved through tendon 

blockouts. The highly localized concentration of these spalling 

stresses could not be verified directly in the experiments but the 

cracking loads correlated well with the magnitude of the predicted 

strains. Rather than try to isolate a precise stress concentration 

factor due to the idealized corner, different "trigger" strains 

were developed for inclined tendons and straight tendons for the 

prediction of formation of the tendon path crack. These are out

lined in the next report of this series. 





C HAP T E R 4 

CONCLUSIONS 

4.1 General 

At the inception of this study in 1975 the state-of-the-art 

in American practice for anchorage reinforcement design was for the 

structural designer to choose a post-tensioning system and rely on the 

hardware supplier to furnish detailed advice on the use of the system. 

Often the suppliers' knowledge was based on limited tests, on prac

tical experience, generally with enlarged cast-in-place end blocks, 

and on the published work of such investigators as Zielinski and 

Rowe, who relied on the classical bursting stress approach to sup

plementary anchorage reinforcement design. 

Although these designs might work well for straight tendon 

applications with little eccentricity in enlarged anchor zones, they 

were insufficient to control cracking in some thin member applica

tions such as in precast segmental box girder bridge web sections. 

In these applications, the tendons were often not only eccentric, 

but also highly inclined in order to pick up a portion of the dead 

load shear. Because of the highly proprietary nature of the industry 

those companies which did have experience with such problems were 

often reticent to show this knowledge in the public literature. 

American specifications such as AASHTO and the ACI Building Code 

were framed in very limited terms of allowable bearing stresses, and 

did not reflect the effects of section aspect ratio, of tendon 

eccentricity, curvature and section aspect ratio, of tendon 

eccentricity, curvature and inclination, nor of the effect of sup

plementary reinforcement. 
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This report summarized an extensive literature study of 

all published analytical, experimental, and design-related papers 

and reports concerning anchorage zone stresses for post-tensioned 

applications. Many proprietary documents exist which were not 

available to the investigators. Most of the published analyses and 

test data are for concentric, straight tendons. Extension to 

eccentric, inclined, and curved tendons is limited and questionable. 

American design codes and specifications are limited to conservative 

bearing stress formulae and performance language warning the 

designer to resist bursting, splitting, and spallin~ stresses. 

Little guidance or direction is given on how such '3istance should 

be provided. It was shown that one widely used de~ on method which 

was based exclusively on straight tendon tests was insufficient to 

prevent anchorage zone cracking when applied to a major bridge struc

ture with inclined, eccentric tendons. 

The report introduced two- and three-dimensional finite 

element programs which have greater solution capabilities than pro

grams heretofore used. The results predicted with the 2D FEM programs 

were in close agreement with results of other elastic analyses and 

photoelastic tests. They do indicate major effects when variables 

such as tendon inclination and eccentricity are examined. The 3D FEM 

tests showed very good agreement with bursting stress data obtained in 

30 concrete model tests. Comparison of test data obtained in full

scale members showed greater scatter but was still classed as good. 

General agreement with spalling stress distributions was also good 

except in high peak regions immediately adjacent to the anchorage 

blockout corner where no experimental data could be obtained. 

The programs are a useful tool for examination of the effect 

of variables such as cover, inclination, tendon duct curvature, and 

eccentricity. 



These static, linear elastic, three-dimensional finite 

element analyses can be used to predict the state of stress of the 

anchorage zone with reasonable accuracy up to the cracking load. 
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They are not valid once cracking begins and thus do not give ultimate 

load information except that the cracking load is a lower bound. 

Experimental verification of the effect of variables and 

design recommendations are summarized in the other two reports in 

this series. 
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