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A B S T R ACT 

The strength and stiffness behavior of reinforced concrete 

columns subjected to biaxial bending and compression was investigated. 

In order to provide data points on biaxial interaction surfaces, nine 

rectangular cross section columns and fifteen partial circular cross 

section columns were loaded to failure as moments were increased while 

thrust was maintained at a constant value. Test data included longi

tudinal strain profiles as well as transverse displacement measure

ments at all levels of load. Test measurements were compared with a 

discrete element analytical model that was modified to provide results 

that were in favorable agreement with measured response. Test results 

from other investigators were included in the data against which 

analytical results were checked. 

The reciprocal thrust equation: 

= 1 
P 

x 
+ 

1 
P 

y 

1 
P 

o 

was selected as the simplest analytical expression that provided 

approximations of strength that were consistent with test results. 

The influence of slenderness effects in skew bending was examined. 

The moment magnifier method was used for approximate analysis of slen

derness. Member stiffness relationships recommended by the ACI Building 

Code (ACI 318-71) were studied in addition to alternate approximations 

of EI. The ACI procedures were found to give safe results at low 

thrust levels only if ACI Eq. (10-7) was used. Moment magnification 

used separately for each principal axis of bending appeared to give 

rational reflections of biaxial behavior. The discrete element 

analytical model was also used to produce more analytical data for 

comparison with the approximate methods of analysis. Simple 
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approximations of EI were not found to be consistent with test data 

when thrust levels varied and when slenderness ratios were large. 

A deflection limit method for computing member strength was 

introduced. The method involved assigning to the nominal eccentricity 

an additional eccentricity that is a function of the slenderness ratio. 

An empirical equation and a procedure for computing member strength 

were proposed on the basis of agreement with experimental data. 

KEY WORDS: columns, reinforced concrete, strength, stiffness, 

biaxial bending, compression 



SUM MAR Y 

All reinforced concrete columns must be proportioned to resist 

compression thrust that is assumed to act at some degree of eccentric

ity away from the longitudinal centroid of the column. This report 

contains an analytic and laboratory investigation of concrete columns 

that are required to resist thrust that is eccentric about both 

principal axes of member cross sections. Heretofore, the design of 

columns to resist biaxially eccentric thrust has been dependent upon 

largely unverified analytic combinations of design procedures for 

uniaxial thrust. 

The investigation incorporates results from other laboratories 

where columns with square cross sections were tested. Since the 

shape of columns in bridge structures frequently is rectangular or 

partially circular (rectangular with circular ends), nine rectangular 

specimens and fifteen partially circular specimens were tested as a 

part of this investigation. 

The investigation revealed that cross section strength and 

cross section ductility are significantly undervalued analytically 

if the customary Whitney constant stress block model is used to repre

sent the limit strength of concrete on nonrectangular compression 

zones. The investigation indicated that biaxially eccentric thrust 

capacity p. can be analyzed more accurately in terms of uniaxial 
1 

thrust capacities P and P , and a squash load strength P in the 
x y 0 

following equation of reciprocals 

I 
p. 
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The effects of slenderness can be incorporated through moment 

magnificatian factors applied separately to each uniaxial thrust 

capacity P and P • x y 
The skew bending tendency to twist the column 

was found to be negligible. Values of flexural stiffness of cross 

sections under thrusts less than O.4P should reflect the effects of 
o 

cracking and reinforcement percentage. 

Simplified general formulas for flexural stiffness must 

reflect lower bound resistance to deflection, and consequently they 

become useless for moment magnifier applications to extremely slender 

members. An analysis technique that employs a deflection limit as a 

supplementary eccentricity is proposed in lieu of moment magnification 

for extremely slender columns. 



IMP L E MEN TAT ION 

Specific recommendations for design procedures have been made 

as a result of this study. For many conditions of column design, the 

cross sections and reinforcement can be selected on the basis of a 

uniaxial bending load condition, and subsequent analysis must be made 

to assure adequate strength for biaxial bending load cases. The 

analysis for biaxial bending should employ the reciprocal thrust 

equation and should not use any of the strength approximations now 

employed for moment "contours" under constant thrust. Applications of 

the reciprocal thrust equation can be programmed for use in column 

design or analysis computer subroutines, or applications can be based 

on uniaxial strength interaction diagram design aids. 

If biaxial bending load conditions are likely to represent 

the most severe loading condition, an equivalent uniaxial moment can 

be used for the preliminary selection of a cross section shape and 

for longitudinal reinforcement. The equation for the equivalent uni

axial moment is simply a crude adaptation of a moment contour function 

for rectangular cross sections. 

The biaxial bending capacity of prismatic slender columns can 

be analyzed in terms of moment magnification factors. Two moment 

magnification factors must be determined, one for each principal axis 

of the column cross section and unsupported length. Thrust values P 
x 

and P in the reciprocal thrust interaction equation must represent 
y 

capacities under magnified eccentricities about each principal axis. 

Implementation of the design and analytic verification recom

mendations including slenderness effects could be expedited by means 

of a computer program subroutine for the design of prismatic reinforced 
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concrete columns. The design subroutine should be programmed to 

include its own evaluation of cross section strength for selected 

general shapes of columns. Equations for the analysis of slenderness 

effects and for biaxially eccentric thrust load cases are given in 

the report. 
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C HAP T E R 1 

INTRODUCTION 

1.1 General Review 

A column that is subjected to axial compression and bending 

moments about both major axes presents a biaxial bending problem in 

the column. The problem always occurs in the design of monolithic 

building frames, at corner columns. The corner column of a reinforced 

concrete frame must resist biaxial bending because moments are intro

duced from beams which frame to the column from both directions of 

the major axes of the column. In many cases the beam from one direc

tion predominates the total skew bending moment, but both directions 

must resist moment. 

For esthetic appearance, a single column bridge bent, as 

shown in Fig. 1.1, has come into favor in the design of highway bridges. 

Single column bridge bents require only one set of forms at a time. 

Single columns that support bent caps in highway bridges are always 

loaded with moments about both principal axes of column cross sections. 

Moments are introduced to the column in one direction by the cantilever 

action of the beam, as shown in Fig. 1.2(a). In the perpendicular 

direction, longitudinal braking forces create moments in addition to 

moment that is introduced from torsion when stringers from only one 

side of the bent cap are loaded as suggested in Fig. 1.2(b). 

Although numerous studies of columns under uniaxial bending 

have been made and many design aids are available, the biaxial bending 

problem has not benefited from as much research. Empirical and 

analytical approaches to the problem have led to complex and diffi

cult design aids from which the precision of results have yet to be 

demonstrated by physical tests. 

1 



2 

Fig. 1.1 Single column bridge bents 



Bent c~p 

Lo~d 

Column 

Fig. 1.2 Sketch of highway bridge 

1.2 Review of Research on Biaxial 
Bending of Concrete Columns 

3 

Pavement 

cap 

The ultimate strength design of columns with uniaxial bending 

logically follows the concepts of nonlinear behavior as a basis for 

concrete design. The special problem of biaxial bending was given 

less attention, but several investigators suggested analytic and design 

techniques. 

1.2.1 The Investigation of Strength of Short Columns. In 
11 1952, Craemer reported using the idea of plasticity to solve the 

problem of skew bending for both beams and columns by an iteration 

method. He assumed that compressive stress at the extreme fiber of 

*Superscript numbers refer to references at the end of this 
dissertation. 
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of the member equals f' but the average stress of 0.85f' on the 
c c 

compression zone was used for the calculations. 

Tung Au
3 

presented a procedure and design charts for rectangu

lar sections under skew bending. He assumed a uniform stress of 

k1f~ over the compression zone bounded by the edges of the extreme 

compressive corner and a line parallel to the neutral axis with an 

equivalent depth measured from the extreme compressive corner taken 

equal to k1h, where h is the distance from the corner to the neutral 

axis. The value of k1 was taken not greater than 0.85 and it was to 

be reduced at the rate of 0.05 per 1000 psi concrete strength in 

excess of 5000 psi. 

9 Kuang-Han Chu treated the analysis of biaxia11y loaded 

reinforced concrete columns by separating the compression zone of 

concrete into a plastic portion and an elastic portion. By trial and 

error, the location of the neutral axis was located using the equilib

rium of forces and moments on the section. 

1.2.1.1 Concept of the Failure Surface. If the failure 

interaction diagrams of load and moment about all axes of the column 

cross section are plotted using the same axis for thrust but with 

different orientations of moment axes according to the moment angles, 

a three-dimensional failure surface is formed. 23 Every point on this 

surface represents a failure load-moment condition for the cross 

section. In 1960, Bres1er5 used the failure surface concept to pro

pose two equations which would represent approximately the failure 

surface. 

(a) Reciprocal Load Equation. When the inverse of the failure 

load, lIP, is plotted on one axis and the eccentricities, e and e 
u x y 

of the two major axes on the other two axes, as shown in Fig. 1.3, the 

approximate equation for this failure surface is: 

1 
P. 
~ 

1 
P 

o 
1.1 



where P. 
~ 

P ,P 
x Y 

P 
o 

Approximate load capacity of the section (i.e., 
p. ~ P ) when subjected to eccentricities e and e 
~ u x y 

= Load-carrying 
pression with 
respectively 

capacities of the section under com
uniaxial eccentricity e and e , 

y x 

Load-carrying capacity of the section under concentric 
axial compression 

5 

Bresler indicated that a formula similar to Eq. 1.1 is given 

in the Russian Specification, but no reference is available for the 

derivation of this equation. 

(b) Load Contour Equation. Bresler described another failure 

surface which is shown in Fig. 1.4. The failure thrust is plotted 

against the associated failure moments, ~u and Myu, about two major 

axes. At a level of axial load, P , the failure moments corre-
u 

sponding to that load can be related as: 

where M M xu' yu 

M 
xo 

M yo 

M 0.1 
[xu] + 
M 

xo 
1.2 

= moments at failure load, P , about x-axis and y-axis, 
u 

respectively 

= Failure moment about x-axis when axial load, P , acts 
u with uniaxial eccentricity producing moment about the 

x-axis only (i.e., M = 0) 
y 

Failure moment about y-axis when axial load, P , acts 
with uniaxial eccentricity producing moment abgut the 
y-axis only (i.e., M = 0) x 
Exponents depending on column dimensions, amount and 
distribution of steel and properties of concrete 

Bresler tested some specimens and made calculations to evalu

ate the validity of the proposed equations. He found that for 

rectangular sections, 0.1 and ~1 in Eq. 1.2 could be assumed equal, so 

Eq. 1.2 becomes 

1.0 1.3 
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Fig. 1. 3 Failure surface (lIP, e , e ), 
the Reciprocal Load Meth~d y 

Plane of constant 
load 

Load contour 

~ ____ ...... Myu 

Fig. 1.4 Failure surface (P , M M) 
u yu' xu' Load Contour Metho~ 
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With ~l varied from 1.15 and 1.55, a good result could be obtained. 

From Eq. 1.1, p. gave excellent agreement with tested and analytical 
1 

results. 

1.2.1.2 Transformation of Axis. 30 31 32 Pannell ' , showed that 

an interaction surface at any load level, P , of a rectangular cross 
u 

section, as shown in Fig. 1.5(a), could be transformed into an equiva-

lent interaction surface of a square section. If the interaction sur

face in Fig. 1.5(a) is distorted by multiplying the minor axis 

coordinate {Le., M in Fig. 1.5(a)] by the ratio M 1M , then it xU yo xo 
will transform to coincide with the interaction surface of square 

sections in Fig. 1.5(b), where M and M are the uniaxial failure 
yo xo 

moments at loadP eccentric about the major and minor axes, 
u 

res pee ti ve ly. 

(0) (b) 

Fig. 1.S Horizontal section of interaction surface; 
for rectangular column (left); for square 
column (right) 
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It was also confirmed that the ratio of M 1M at all load 
yo xo 

levels for the cross section was effectively a constant and might be 

represented by the ratio of <PI = MYb/Mxb of "balanced" failure moments 

about the major and minor axes. When the square column interaction 

surface is used, it is possible to calculate the failure moment about 

the diagonal, Md. With three points, M , Md , and ~lM in Fig. 1.6, 
yo ' xo 

Pannell drew a smooth continuous curve "A" tangent to these points 

and used the curve to define the entire failure surface. 

Myo 
Curve "A" 

" B" 

Fig. 1.6 Horizontal section of quadrant 
of actual failure surface and 
surface of revolution 

Also shown in Fig. 1.6 is the circular arc "B" which resulted 

from revolving the uniaxial failure moment, M , about the origin. 
yo 

At the load angle of 45 0
, the deviation from the diagonal failure 

moment, M
d

, to the circular arc can be found as M - Md or NM , 
yo yo 

where N = 1 - Md/M . yo 
Pannell gave the equation of the deviation "s" 

of curve "A" to the circular arc liB" as 

. 2 
S = NM Hn 91 yo 

where 9
1 

is the load angle. 

1.4 
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At any point on the failure surface "A" with the load P and 
u 

resulting moment M of (~M and M , Pannell showed that the required ru '-1 xu yu 
uniaxial moment capacity is 

M 
yo = 

M 
yu 

1 - N 

-1 
in which 81 = tan ~M 1M 

'1 xu yu 

sec 91 

. 29 
s~n 1 

1.5 

Pannell also included a chart for the value of N calculated 

from the basic equation of equilibrium of the section. He tried to 

compare his method with Bresler's load contour equation (Eq. 1.3) by 

rewriting the equation in the form that follows: 

M 0.1 
[ xu] 
M 

xo 

('-\ M 
r~] 

M 
yo 

a. 
[M ] 1 

yo 

0.1 

M 0.1 
+ [~] 

M 
yo 

M 0.1 
+ [~] 

M 
yo 

0.1 = ('l"\lM) + . xu 

1 

1 

a 
(M ) 1 

yu 
1.6 

After the comparison, Pannell concluded that his proposed Eq. 1.5 

gave better accuracy than Eq. 1.6 and was easier to use. The 

exponent 0.
1 

of Eq. 1.6 was difficult to determine because it varied 

within a wide range and it was sensitive to the condition of eccen

tricity. Pannell also claimed that his method was practical for 

design, because only one major axis interaction curve was needed. 

37 
Ramamurthy, in 1965 presented his study in biaxial bending 

at the 61st Annual American Concrete Institute Convention. He first 

investigated square columns and reported that for columns with eight 

or more bars, the neutral axis is approximately perpendicular to the 

line from the centroid of the section to the load point (Le., 8
2 

= (~ 

in Fig. 1.7, where 8
2 

is the load angle and ~ is the neutral axis 

angle). 
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Neutral 

Axis 

Fig. 1.7 Load angle and neutral axis angle 

Ramamurthy also observed that in any load contour for the 

square column, the relationship between M and M of the same load xu xo 
level can be expressed approximately as 

M = M (1 - sin3(.~ ) xu xo C-L 
1.7 

where M is the greater of the moments about the major axis. With 
xu 

~2 ~ 92 , Eq. 1.7 gives 

then 

where 

M = M ru xu 

M 
ru 

M = the resulting moment on the section ru 

The simplified equation becomes 

92 
M = M (1 - 0.1 45) ru xo 1.8 

-1 in which 9
2 

is the load angle expressed in degree or 9 = tan e Ie 
2 x y 

For rectangular columns, Ramamurthy used the transformation 

of axis technique to change the section into an equivalent square 

section and Eq. 1.8 had been adjusted to read: 
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. 2S 
S2 

M 2 s~n 2 
= M [1 - 0.15 45 l cos S + 1.9 ru 2 k 2 xo 

M 2 

where k2 
xo = M 
yo 

tan S2 = k2 tan 82 

= tran~formed load angle 

Values of k2 were also recommended for various aspect ratios tlb for 

the rectangular sections. 

The inclination of the neutral axis in rectangular columns 

under biaxial bending also was studied by Ramamurthy and the values 

of 8
2 

and <P2 were tabulated. The conclusion of the study indicated 

the variation in 82 and ~2 is small, so the proposed relation of 

8
2 

= (~ can be used. Some specimens were tested to verify his method. 

The reciprocal load Eq. 1.1 was also used and it was said to give a 

reasonable result. 

In 1967, H. E10sei1y16 of Switzerland reported on rectangular 

reinforced concrete sections under biaxial bending. He also trans

formed the rectangular section into a square section and constructed 

design charts and tables for many cases of concrete strength, steel 

strength, amounts of reinforcement and various arrangements of steel 

bars. 

1.2.1.3 Simplification of Load Contour Equation. After 

Bresler introduced the idea of a failure surface and the load contour 

equation, some investigators developed a more practical criteria for 

design purposes. 

23 
Furlong studied the problem of square columns using the 

rectangular stress block for ultimate strength analysis in concrete 

under compression. He constructed interaction diagrams and load con

tours. His study concluded that for the design of ultimate moment 

capacity in square columns at a particular load level, P , the limit 
u 

of the skew moment should not exceed an ellipse whose axes are the 
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uniaxial moment capacities for the load P. His equation took the 
u 

form of Eq. 1.3 with a
l 

= 2. 

2 

+ 
M 
(~) 
M 

yo 

2 

1.0 1.10 

Furlong recommended that if I P
u 

- Pb I /Pb 
:5: 1.0, the limit should 

be reduced from 1.0 to 0.85 or 0.9, where P
b 

is the load capacity at 

a balanced condition. 

29 
Meek tested nine square columns and recommended that for 

design purposes, the description of a load contour interaction curve 

required another point in addition to the uniaxial moment capacities 

(M ,M ). He suggested using the case of equal eccentricities or the 
xo yo 

moment about the 45
0 

diagonal. Then a straight line interpolation 

could be used between the moment about the diagonal and the moment 

about a principal axis. Figure 1.8 shows Meek's approximated load 

contour. 

..... 1---
Actual Load 

Contour curve 

Fig. 1.8 Meek's approximation of load contour 
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19 
In 1965, Fleming and Werner presented a set of design charts 

,./ 45 for square sections with different I and f values. Weber also 
c y 

constructed a set of design charts for diagonal bending in square 

columns and used Meek's idea of linear interpolation between the 

uniaxial bending and the diagonal bending in order to design square 

columns with any load angles. 

Parme33 ,34 related Bresler's load contour equation to the 

logarithmic form 

where 

log 0.5 log 0.5 

M log 83 M log 83 
[ xu] + [~] = 1.0 loll 
M M 

xo yo 

= the ordinate of the load contour at the point at which 
the moments, M 1M and M 1M ,are equal. 83 values 
range between 5~5 ~gd 1.0.Yu yo 

When compared to the theoretical curve, for columns with 

various bar arrangements and different aspect ratios, Eq. 1.11 gave 

results that agreed within 5 percent. Parme also pointed out that 

83 was a function of the amount, distribution, and location of the 

reinforcement, the dimensions of the section, and the properties of 

materials. He found that 83 was dependent primarily on the ratio of 

the load level, P IP , bar arrangement, and the strength of the steel. 
u 0 

The parameters bit, amount of cover or edge distance, and f' had a 
c 

minor effect on 8
3

. 

More simplifications were made for peA Publication No. 18. 34 

As shown in Fig. 1.9, two straight lines intersecting at the point on 

the load contour where the relative moments are equal (i.e., 

M 1M 
xu xo 

surface. 

Myu/Myo = 83 ) were used to approximate a load contour 

The two straight lines can be expressed; 



14 

Fig. 1.9 peA approximation 

M M (1 - 83 ) M M 
~ + xu 

1 when MYu > 
xu 

1.12 = M M 83 
M yo xo yo xo 

M M (1 - S ) M M xu + --L!! 3 1 xu xu 
1.13 M M 83 

when M > M 
xo yo xo yo 

For rectangular cross sec tions, these equations were 

(1 - 83 ) M M 
M + M bIt M when MYu > xu 

1.14 
83 

R1 M yu xu yo yo xo 

(1 - 8 ) M M 
and 3 M xu ~ 1.15 M +M tlb when M > xu yu 63 

R1 xo M xo yo 

where M was the moment about the strong axis and twas the depth xu of the section. 

The values of 6
3 

with various bar arrangements, steel 

strengths, and different load levels were also presented in this 

report. 
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In peA Publication No. 2035 more tables were included for 

designing biaxially loaded columns. This publication also contained 

materials for the section with unequal bar arrangements on the faces 

and for rectangular cross sections. 

Fleming,20 in 1974, used a discretization of a cross section 

to analyze cross sections and he compared his results with experi

mental data available for short columns loaded with biaxial bending. 

He tried to analyze the problem using various stress-strain functions 

for concrete. His results showed that the equivalent rectangular 

stress-block gave a reasonable strength representation of concrete 

behavior in skew bending. Fleming recommended that if an a l value 

for Eq. 1.3 were available, Bresler's load contour equation would be 

easy to apply. However. without the aid of a computer. he concluded 

that Bresler's reciprocal load equation was the simplest and it pro

vided results as accurate as any analysis he had studied. 

The studies that have been described treat only the analysis 

and design of cross sections. Most of the investigators used as a 

basis of "correctness" the results of an analysis that employed 

Whitney's concept of a rectangular stress block to represent concrete 

in compression prior to failure. Investigators recognized that more 

accurate results would require a more accurate representation of con

crete strength. The strength influence of slenderness was not con

sidered by these investigators. Slenderness effects have been studied, 

and the most promising analytic techniques have used digital computer 

programs. 

1.2.2 Numerical Analysis Methods. Research has been pursued 

on the problem of skew bending, including length effects, using 

numerical analysis methods. The method of analysis usually consists 

of three steps: (1) find the load-moment-curvature (P-M-~) relation

ship for all cross sections, (2) use moment-curvature functions to 

find the deflected shape, and (3) verify the deflected shape by 

iteration. 
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6 Warner and Brettle developed a partitioned element method 

for studying the ultimate strength of hollow colums. The plane of 

strain in the cross section was defined in terms of maximum corner 

strain, minimum corner strain, and the neutral axis angle. The cross 

section was divided into small grid elements. The strain at the cen

troid of each grid then was defined and the stress at each element was 

obtained by using stress-strain relationships of the materials. Forces 

and moments on the section then could be calculated by integrating 

all forces and moments from the elements. For a given load and skew 

bending moment, the proper plane of strain could be searched by itera

tion. Warner44 made further studies on biaxial columns with square 

and rectangular cross sections. He generated P-M-~ curves for a con

stant neutral axis angle by increasing P, or maximum corner strain, 

before finding the resultant force and corresponding curvature. 

Farah and Huggins17 defined the plane of strain by using 

three corner strains. With the stress-strain relationship, the force 

of each grid element could be found and integrated for the values of 

total moment and force on the section in terms of the three corner 

strains. The column was divided into small segments along the length. 

With an assumed initial deflected shape, the curvature at each section 

corresponding to the forces could be obtained. These curvatures then 

were used to describe a new deformation of the column. An iteration 

method was used for predicting each new deflected shape until the pre

dicted and the resultant shapes were the same within acceptable 

tolerances. 

Drysdale14 studied the behavior of slender columns under 

biaxial loading. He tested columns under both sustained load and 

short term loading and the results gave good agreement with the 

analytical results estimated by Farah and Huggins' method. 

Wu,47 in 1973, studied the effect of the volume/surface ratio 

or sustained loading behavior of biaxially loaded square slender 

columns. Wu analyzed the problem by partitioning the cross section 
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into strips parallel to the neutral axis in order to calculate the 

P-M-~ relationship of cross sections. He assumed that the neutral 

axis angle and the load angle were orthogonal. He used a differential 

equation which was solved by an approximate method in order to compute 

the deflected shape, eventually yielding a continuous function for the 

deflected shape. 

Redwine38 used Farah and Huggins' method to study the behavior 

of biaxially loaded rectangular columns. His analytic study included 

possible twisting of the section as well as slenderness effects. He 

concluded that torsional effects could be negligible. He found that 

the difference between the neutral axis angle and nominal load angle, 

M /M , increased with the cross section aspect ratio, bit, and reached 
y x 

the greatest difference when the neutral axis was closest to the corner 

of the maximum compressive strain. For deflection studies, he found 

that the tendency for nonplanar behavior (neutral axis orientation 

changes along the length of the column) increased with slenderness, 

for small aspect ratios and for larger eccentricities, eft. However, 

he concluded that in general nonplanar behavior was of minor signifi

cance. Redwine used Eqs. (10-7) and (10-8) in the ACI Building Code 

(ACI 318-71)1 for calculating the stiffnesses of slender members, then 

magnified separately the moment about each major axis and computed the 

resultant moment by using the equation 

1.16 

He observed that the use of these equations for stiffness gave a 

smaller load capacity of the column than did the numerical analysis. 

Thus, he concluded that ACI rules gave safe values for column design. 

Using the analyzed load as a correct strength, he reported that the 

safety ratio when using the ACI Code (P 1 d/PACI) would be smallest ana yze 
for large ratios eft. For smaller eft ratios, an increase in slender-

ness decreased the safety ratio, but for larger eft ratios slenderness 

had less effect on the safety ratio. 
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1.3 Scope of This Investigation 

Previous studies have shown that Bresler's idea of failure 

surfaces and his proposed equations were the most convenient design 

methods for approaching the problem of columns under biaxial load. 

Several tests indicated that both the reciprocal load equation 

(Eq. 1.1) and the load contour equation (Eq. 1.3) gave results that 

agree with experimental work. Most of the experiments were done on 

square short columns. A small number of tests were conducted on 

1 h d 1 A1 h h F1 . 20. d· d h rectangu ar s ape co umns. t oug em~ng ~n ~cate t at non-

rectangular shapes should exhibit good agreement analytically using 

Bresler's equations, no physical test had been done to confirm his 

prediction. 

The load contour equation (Eq. 1.3) is easy to apply if the 

exponential, 0'1" is known, but to find the value of 0.1 is a difficult 

problem because many parameters are involved. The reciprocal load 

equation is easier to apply but less research has been directed 

toward it than that directed toward perfecting parameters for Eq. 1.3. 

In the ACI Building Code (318-71)1 it is required that for 

all compression members subjected to bending about both principal axes, 

the moment about each axis must be amplified by a moment magnification 

factor a, computed from the corresponding conditions of restraint 

about each axis (ACI 318-71, Sec. 10.11.5.2). No experimental data 

are available in support of this requirement. 

The scope of the investigation reported here included the 

development of an analytical capacity for studying long concrete 

columns under biaxia11y eccentric thrust. Laboratory tests of columns 

with rectangular and oval-shaped cross sections were monitored both 

for strength and stiffness data. The oval shape consisted of a 5 in. 

diameter semicircle at each end of a 5 in. by 6 in. rectangle, and 

will be called a partial circle or oval cross section in this report. 

23 
At a relatively high thrust level, Furlong observed that 

the contour lines of the complete failure interaction surface could be 
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represented by an ellipse whose axes were the ultimate moment 

capacities with the load P acting along the principal axes of the 
u 

column cross section. Thus, if moment capacity can be predicted for 

bending about both principal axes at high thrust levels, intermediate 

or biaxial moment capacity can be predicted also. In order to reveal 

irregular aspects of the interaction surface, the thrust levels used 

for physical tests in this report were set at thrust levels of 0.2P , 
o 

0.35P , and 0.5P , 
o 0 

of the section, P 
o 

where P is here defined as the axial load capacity 
o 

A fl + A f. The concrete cylinder strength f' 
g c s y c 

was used without the usual reduction factor 0.85 for strength ca1cu1a-

tions even though specimens were cast in the vertical position and the 

majority of failure regions were above midheight of the specimens. 

The absence of a reduction factor 0.85 kept analytical expressions for 

stress-strain functions consistent for all load levels, and none of 

the biaxial bending tests involved failures near the top of specimens. 

For axial load levels below 0.6P , the strength analysis of cross 
o 

sections is relatively insensitive to the precise value of P , and all 
o 

physical tests involved total axial loads less than 0.6P . 
o 

The analytic computer programs were modified to produce 

results consistent with physical test data from these tests, as well 

as tests reported by others. Finally, the reliability of some 

approximate analysis techniques useful for design were checked 

against analytic as well as test results. 





C HAP T E R 2 

PHYSICAL TESTS AND MEASUREMENTS 

2.1 General 

Twenty-four columns with two different shapes but the same 

length were tested to failure. Nine specimens with rectangular 

cross section were designated RC-l through RC-9. Fifteen partial 

circular columns were called C-l through C-15. During the sequence 

of loading, thrust was maintained at one of three different load levels, 

0.2P ,0.35P , or 0.5P ,while eccentric loads were increased to produce 
000 

failure. P was the squash load capacity of the section. Each type 
o 

of cross section for the column was tested with one of three nominal 

skew load angles, 22-1/20 ,450
, or 67-1/20

, and at one of the three 

axial load levels. Uniaxial bending tests were made on partial circu

lar columns, but not on rectangular columns. 

2.2 Type of Specimens 

Test specimens were intended to represent one-sixth to one

eighth scale models of bridge pier columns with low reinforcement 

ratios for longitudinal steel. There were two different shapes in the 

test columns but all specimens were the same length of 72 in. The 

rectangular cross section had the nominal exterior dimension of 5 in. 

by 9 in. The partial circular columns had two semicircles 5 in. in 

diameter, located 6 in. apart, making the total depth of 11 in. with 

a 5-in. width. Figure 2.1 shows the dimensions and details of both 

cross sections. The longitudinal reinforcement was 6 mm diameter 

deformed bar, 14 bars for the partial circular and 10 bars for the 

rectangular columns. The reinforcement ratio was 0.01 for rectangular 

sections and 0.0138 for partial circle sections. All the reinforcing 

21 
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bars were 72 in. long, placed 5/8 in. from the surface of the columns. 

The longitudinal bars were tied with 13 gage steel wire spaced at 

5 in. centers along the length of the columns. 

2.3 Materials and Fabrication 

2.3.1 Concrete. The prototype concrete mix was designed for 

a strength of fl = 4000 psi, according to the State Department of High-
c 

ways and Public Transportation Specification.4l The actual mix model 

contained a maximum size of coarse aggregate of 3/8 in. Type 1 portland 

cement was used for all specimens. The typical proportions of the con

crete mix are shown in Table 2.1. Concrete was placed with the column 

form in the vertical position. Cylinder forms also were filled with 

concrete simultaneously so that the cylinders would represent the con

crete in the batch. The concrete was placed and vibrated in approxi

mately 2-ft. lifts. The cylinders also were machine vibrated. 

Table 2.2 shows the listing of the average cylinder strength for every 

specimen. Each cylinder strength in the table represents an average 

from ten cylinder tests conducted on the same day that the column was 

loaded to failure. Also shown in Table 2.2 are the standard deviation 

and coefficient of variation for ten cylinders tested with each 

specimen. 

2.3.2 Reinforcing Steel. Deformed steel bars 72 in. long and 

6 mm (0.24 in.) in diameter were used as longitudinal reinforcing bars, 

and 13 gage wire was used as tie reinforcement at a spacing of 5 in. 

on centers. A typical stress-strain relationship of the 6 mm bar is 

shown in Fig. 2.2. The average of ten tension test specimens gave a 

yield strength based on an 0.2 percent offset equal to 65.5 ksi, with 

the values ranged between 64.3 ksi to 66.3 ksi, and the modulus of 

elasticity was 30,000 ksi. The ultimate strength of the reinforcing 

bars was 94.3 ksi. The average cross-sectional area was 0.049 sq. in. 

2.3.3 Fabrication. A steel form was used for rectangular 

columns. For partial circular columns, the form for the circular 
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Specimen 

RC-1 

RC-2 

RC-3 

RC-4 

RC-5 

RC-6 

RC-7 

RC-8 

RC-9 

C-1 

C-2 

C-3 

*From 10 

TABLE 2.1 PROPORTIONS OF THE CONCRETE MIX 
FOR 6 CU .FT. 

Ma teria1 Weight (lbs) 

Cement (Type I) 125.5 

Water 45.0 

Sand 264.0 

Aggregate 424.0 

Septair 40.0 cc 

TABLE 2.2 AVERAGE CYLINDER STRENGTH OF SPECIMENS 

Average* Std. * Coef.* Average* Std.* 
Cylinder Devia. of Specimen Cylinder Devia. 
Strength (] Varia- Strength (] 

(psi) (psi) ti'on (psi) (psi) 

4886 126 0.026 C-4 4831 169 

4871 246 0.051 C-5 4340 131 

5210 255 0.049 C-6 4396 270 

5181 228 0.044 C-7 4403 157 

5012 297 0.059 C-8 4760 269 

4425 132 0.032 C-9 4534 173 

4350 211 0.049 C-10 4425 107 

4446 135 0.030 C-11 4830 84 

4700 282 0.060 C-12 5091 188 

4783 280 0.059 C-13 5397 115 

4460 155 0.035 C-14 5514 381 

4386 167 0.038 C-15 5468 295 

cylinder tests 

Coe£. * 
of 

Varia-
tion 

0.035 

0.031 

0.061 

0.036 

0.057 

0.038 

0.024 

0.017 

0.037 

0.021 

0.069 

0.054 
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Fig. 2.3 Steel cages of rectangular column 
and partial circular column 



Fig. 2.4 Column after casting, forms have 
not been taken out 
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TABLE 2.3 SURFACE DIMENSION OF RC-2 

Section Distance North Face South Face East Face West Face from TO]2 

1 3 in. 5 in. 5-1/16 in. 9-1/32 in. 9-1/16 in. 

2 9 5-1/32 5-1/16 9-1/32 9-1/16 

3 15 5-1/32 5-1/16 9-1/16 9-1/32 

4 21 5-1/32 5-1/16 9-1/16 9-1/32 

5 27 5-1/16 5-1/16 9-1/32 9-1/32 

6 33 5-1/16 5-3/32 9-1/32 9-1/32 

7 ~ 36 5-1/16 5-3/32 9-1/32 9-1/32 

8 39 5-1/16 5-3/32 9-1/32 9-1/32 

9 45 5-1/16 5-3/32 9-1/32 9-1/32 

10 51 5-1/16 5-1/16 9-1/32 9-1/32 

11 57 5-1/16 5-1/16 9-1/32 9-1/32 

12 63 5-1/16 5-1/16 9-1/32 9-1/32 

TABLE 2.4 SURFACE DIMENSION OF C-l 

Section Distance Overall Overall 
from Top Width Depth 

(in.) (in. ) (in. ) 

1 3 5,5 11 
2 9 4-31/32,4-31/32 10-31/32 
3 15 5,4-31/32 10-31/32 
4 21 4-31/32,4-31/32 10-15/16 
5 27 4-15/16,4-15/16 10-31/32 
6 33 5,4-15/16 11 
7 36 4-15/16,4-15/16 10-31/32 
8 39 4-15/16,4-15/16 11 
9 45 4-29/32,4-7/8 11-1/16 

10 51 4-15/16,4-31/32 11 
11 57 4-31/32,4-31/32 11 
12 63 4-15/16,4-15/16 11-1/16 
13 69 4-15/16,4-15/16 11-1/16 
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shape was made from a 5-in. diameter plastic tube. The tube was cut 

longitudinally into halves and screwed to steel plates which were used 

as sidewall forms for the straight sides of the column. Figure 2.3 

shows the pictures of the forms with a reinforcement cage inside. The 

cage was held in position with some small wire chairs to provide 5/S-in. 

clear cover on longitudinal bars. 

All columns were cast in the vertical position to represent 

the actual field condition. Figure 2.4 shows the picture of both 

rectangular and oval shape columns after the concrete was cast, but 

before the forms had been removed. The form was stripped within two 

days of casting and the specimen and cylinders were cured under 

plastic covers. 

The actual dimensions of the columns varied slightly due to 

the imperfections in forming and the flexibility of the plastic tube. 

Actual width and depth were measured at 6-in. intervals along the 

columns. No sig~ificant dimensional error was detected. The maximum 

error from desired member cross section was less than ±2.5 percent. 

Tables 2.3 and 2.4 show the actual dimensions of Specimens RC-2 and C-l. 

After the tests, some attempts were made to measure the actual 

concrete cover of the reinforcing bars. It was found that the cover

ing was almost the same as the nominal cover. For subsequent calcula

tions the position of the reinforcing bars was assumed to be the same 

as the nominal position, as shown in Fig. 2.1. Shown in Figs. 2.5 and 

2.6 are the actual clear cover of the concrete for Specimens RC-6 and 

C-l, respectively. 

2.4 Loading System 

The main axial thrust was applied by a 200 kip double acting 

hydraulic ram along the centroid of the column cross section. Thrust 

was transmitted to the specimen through a hem i s ph e ric a 1 head 

welded to a flat plate. Loading tended to flatten the hemispherical 

shape. Two 20-kip single acting rams were used to induce moment about 
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each principal axis. These moment rams were connected to one hand 

pump in order to ensure that the eccentric loads in both rams remained 

very near the same level. The schematic diagram of the loading system 

is shown in Fig. 2.7. 

Two loading heads were placed over the ends of the column to 

transmit load from bearings and rams to the column. The heads were 

made from S/8-in. steel plates welded together to form a shape of the 

cross section of the column. Two wide flange beam sections were butt

welded to the side of each column loading head. Eccentric loads were 

applied at the outside of the wide flange beams·. The location of the 

loading points on the eccentric moment arms were designed to produce 

the assigned moment angles. The moment angle has been defined as: 

e 

= 

= 

-1 M . tan strong ax~s 
M k . wea ax~s 

-1 P X strong axis moment arm 
tan 

P X weak axis moment arm 

tan-l strong axis moment arm 
weak axis moment arm 

In this test program there were five different moment angles, 

900
, 67-1/2 0

, 45°, 22-1/2°, and 0°. Figure 2.8 shows a diagram of 

the assembled loading system. Figure 2.9 is a picture of the column 

with loading heads and rams in place. 

2.5 Specimen Preparation 

The following steps were taken in order to put the column 

into its testing position: 

(a) The faces of the column were marked into 6-in. segments 

beginning 3 in. from midheight. The marking served to 

identify points at which the actual size of the column was 

measured and then served as reference lines for attaching 

measuring devices. 
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Fig. 2.7 Schematic of load system 
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Fig. 2.9 Specimen in testing position 
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(b) Loading heads were attached to the column in the following 

manner: 

1. The top loading head was set on the floor with the open 

side up and the moment arms were leveled. 

2. The top of the column was lowered into the loading head 

with the aid of an overhead hoist. The column was 

adjusted into the proper position so that the center of 

the column and the loading head were aligned. By match

ing the punched marks on the head with some longitudinal 

reference lines on the column the load points on the 

head also were aligned. All the alignment adjustments 

could be made with some alignment bolts on the sides of 

the loading head. 

3. The column was pulled out of the head after the alignment 

bolts had been loosened one turn. 

4. Hydrastone was poured into the box and the column was 

replaced. After a final adjustment of the alignment, the 

hydrastone was allowed to set. 

5. The column was turned end for end and the procedure was 

repeated for attaching the bottom end of the column. 

(c) The column then was placed in the loading position in the 

loading frame. Overall alignment was aided by using a plumb 

bob located so that the hemispherical head at both top and 

bottom of the specimen would be positioned through the verti

cal centroidal axis of the column. 

2.6 Instrumentation Devices 

Three types of data, the magnitude of applied loads, the 

surface deformations, and the lateral deformations were collected 

during the test. 

2.6.1 Magnitude of Applied Loads. The axial load that was 

applied at the centroid of the column was monitored by three 100 kip 
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load cells. The load cells were placed side by side under a bearing 

plate beneath the bottom hemispherical head. The three load cells 

provided a stable support for the column and also sufficient capacity 

for the highest load near 300 kips. A hydraulic pressure transducer 

also was used to monitor the axial load and to provide the electrical 

signal necessary for remote recording. In addition, visual observa

tion of a pressure gage dial on the hydraulic pump provided a record 

and continual control of the axial centroidal load. 

The loads of the two small rams on the moment arms were also 

monitored by two 10-kip capacity load cells located in the bottom 

of the load saddles. One pressure transducer together with a pressure 

gage dial were used to measure for recording the force in the two 

rams which were connected to the same pump. 

The loading devices were calibrated in so far as possible 

under the same conditions as those of the actual test. Each load 

arrangement of ram, pump, hemisphere bearing, pressure transducer, 

load cell, and bearing plate was assembled in the same arrangement 

for calibration and for the tests. 

2.6.2 Lateral Deformation. Deflections in the direction of 

each principal axis were measured by using linear potentiometers. 

The potentiometers were placed along the 24-in. midheight portion 

of the column at 6-in. intervals providing five measuring stations in 

the midheight region. 

Torsional displacements were measured at three positions in 

the horizontal plane, one at the top, one at the bottom, and one at 

midheight. The three measurements could be converted to records of 

twist and the displacement in the direction of the minor axis. Twist 

near the top of the column was monitored by two potentiometers mounted 

6 in. apart on the longer face of the column at 11 in. below the top 

end. Two dial gages were used to measure the twist near the bottom end, 

also mounted 6 in. apart on the west face at 11 in. above the bottom 

end. Another pair of dial gages was used for measuring twist at 
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midheight of the column. The gages were placed 8 in. out from the 

shorter faces of the column at midheight providing a longer twisting 

arm. 

All the deflection measuring devices were mounted on a 2-1/2 

in. steel pipe vertical post supported on the laboratory floor. All 

movement recorded, therefore, would be relative to the post, which 

was assumed fixed in position and direction. 

2.6.3 Surface Deformation. Six steel frame strain meters 

(Fig. 2.10) were mounted on the column at 6 in. intervals through the 

30 in. midheight portion of the column. The steel frames were 

attached to the column by a bolt at each side. The bolts were 

tightened to the column against aluminum bearing plates, which were 

glued to the column at the desired points. A linear potentiometer 

was placed between corresponding legs at adjacent frames. The records 

from the potentiomeyers indicated the change in longitudinal position 
7 between two adjacent frames. Similar frames were used by Chang, 

4 22 24 
Breen, Furlong, and Green, et al., except that the system used 

here was expanded in order to measure biaxial longitudinal deformation. 

All data from load cells and poteniometers were recorded onto 

magnetic tape and paper tape by a VIDAR data acquisition system which 

also provided a printed teletyped output when one was desired. The 

pressure transducer readings, dial gage readings, and pressure gage 

readings were recorded on the data collection sheets. The linear 

potentiometers and dial gages that were used gave an accuracy for the 

readings to the nearest 0.001 in. The strain indicator which was 

used to record the change in pressure transducer readings could give 

readings as accurate as±5 microstrains. The pressure gage gave read

ings to within ±50 psi. A column with all devices attached and in 

the position ready to be tested is shown in Fig. 2.9. 

2.7 Test Procedure 

The loading procedure in the test program was designed so 

that the total amount of axial load would be maintained at a constant 
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level while the moments would increase un til failure. With this type 

of loading, the eccentricity would increase, moving outward from the 

centroid of the column along a nomihally straight tine. 

After all devices had been connected and checked, pressure 

was applied to the axial ram for about 10 percent of the desired axial 

load level and then the load was released. This procedure helped to 

sea t the measuring devices and the column bearings. After seating, 

the axial ram was loaded in about ten increments until the desired 

thrust level was reached. After each increment of axial load a set 

of data was recorded. 

After the desired axial thrust level had been reached, the 

eccentric moment load about both strong and weak axis was applied. 

The loading points on the moment arms were located so that the nominal 
. 0 0 0 0 0 

eccentricity angle would be e~ther 0 , 22-1/2 , 45 , 67-1/2 , or 90 . 

The rams on each moment arm were loaded simultaneously from the same 

pump. The increment of the ram load was very small at the first few 

eccentric loadings. A graph of moment load and centerline deflection 

on the weak axis was maintained during the loading sequence. The 

magnitude of the load increment was adjusted according to the non

linearity of this graph. After the column reached the inelastic range, 

the load increment was kept very small, and readings were made only 

after the column could maintain steadily a level of load for several 

minutes. 

The axial load was checked occasionally to keep the thrust 

level constant. Adjustments of load were made to the axial ram only 

if the total thrust varied more than 5 percent from the preferred 

level. 

During the test cracks were observed and each was marked 

after each load stage. All data were recorded after each loading 

before marking the cracks. While readings were made and the cracks 

were marked, some creep and relaxation occurred. When it was noted 

that the creep was significant, another set of readings was taken 

before the next load increment was applied. 
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As the column reached ultimate load, the moment ram load 

could not be increased; because of the loss of stiffness the column 

ceased to resist greater load, and the dial gage at the midheight of 

the column showed increasing lateral deformation without any addi

tional load increments. The VIDAR-recorded data readings could be 

taken continuously until failure occurred. Moment rams were pumped 

until failure of the column took place. It was found that the column 

failure sometimes damaged the potentiometers. Consequently, for the 

oval-shaped columns, loading was stopped after load instability of 

the column was observed (i.e., centerline deflection increased 

rapidly while the column could not maintain a constant moment). 

Figures 2.11 and 2.12 show pictures of some specimens after failure. 



Fig. 2.11 Specimen RC~6 after failure, before 
measuring devices were taken off 

Fig. 2.12 Specimen C-10 after failure, all 
instruments were taken off 
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C HAP T E R 3 

ANALYSIS OF DATA 

3.1 General 

Three types of data were collected during the tests: lateral 

deflection, concrete surface deformation, and load measurement. Defor

mation and load cell readings were recorded on magnetic tape. A 

standard VIDAR program decoded the information and converted the 

readings to a reduced form of engineering units. Data files of this 

reduced information have been stored on magnetic tapes as well as 

punched cards. Computer programs have been written to reduce the data 

to the form of axial load, applied moments, skew angle, deflections, 

eccentricities, and surface strains. Another program has been pre

pared to analyze the surface strains and compute the forces, moments, 

and curvatures. Comparison of load and moments among different types 

of load indicators has been made to verify the reliability of-the 

measured data. 

3.2 Deflection 

The deflected shapes in both weak axis and strong axis 

directions have been plotted for every load stage. These graphs show 

some aspects of behavior of the column during the test which would 

affect the analysis of thp. magnitude of the load. 

3.2.1 Initial Position of Column. It had been observed that 

during each load stage the top and bottom of the column moved. This 

resulted in the changing of the position of the column. As higher 

moments were applied to the column, the movement decreas'ed and the 

position of the ends stabilized finally at loads lower than eventual 

failure loads. Figures 3.1 and 3.2 show the movement and the stable 

position of RC-S and C-ll. 

43 
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For computer input the reference position of the column has 

been taken for the load stage at which no further movement of the 

column heads was noted. All the readings after the stabilized load 

stage have been corrected to a reference axis through the stable posi

tions of the ends of the specimens. The stable positions of the ends 

of each specimen are tabulated in Table 3.l(a) as well as the deflec

tions at midheight at failure of each column. 

No measurement of column crookedness was made. It was assumed 

that the columns were straight because of the use of straight steel 

forms. Any error due to column crookedness was neglected. Specific 

measurement of movement of the top end of the column during the test 

was not attempted, but instead the column deflections were referred 

to the estimated position of the chord between column ends. 

3.2.2 End Eccentricity. Eccentricity of Axial Load Ram. 

Axial loads were applied through hemispherical bearings located as near 

as possible along the longitudinal centroid of the specimens. Even 

with some flattening, the bearings could not transmit flexural forces, 

and the applied axial force had to act along a line between end bear

ings. The actual eccentricity of end bearings from the longitudinal 

axis of the specimen was estimated from measured deformations at mid

height of the specimen under the "axial load only" condition. Subse

quent application of flexural loads involved no change in the position 

of end bearings for axial load rams. 

A midheight correction e. for axial load end eccentricity was 
~ 

computed on the basis of the elastic deformation of a beam column as 

illustrated in Fig. 3.3 and defined by Eq. 3.1. The effect of Eq. 3.1 

was to average the influence of end eccentricity at opposite ends of 

the specimen for an estimate of the overall influence at mid height 

before the application of flexural forces with accurately measured 

eccen trici ties. 

lIEl 
e =--

i PL2 [2(1 - cos u) 1 
2 u cos u 3.1 

where 
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EI = Stiffness of the section 

6 = Midheight deflection taken as the lateral distance from 
column centroid to the reference line between "final" 
position of ends of column 

L = Length of the column 

p 

ei~ 7 bi 
p 

16 

14 .r 
L 

Fie. 3.,3 End eccentricity due to misalignment 

The magnitude of centerline deflection and axial load at the 

last load stage before moment load was to be applied had been used in 

Eq. 3.1 to calculate initial end eccentricity in each direction. These 

eccentricities are tabulated with every column in Table 3.1 (a). 

Eccentricity due to End Rotation. As the column deflected, 

the contact point between the hemispherical ball and the bearing 

plate at the end of the column changed with respect to the column 

axis. Rotation of the loaded ends created the change in end eccentric

ity, as shown in Fig. 3.4. 

IClitial pOliti on 
of c.olumn head 

Fig. 3.4 

Position of column 
head after rotation 

End eccentricity due to ,end rotation 

The change in eccentricity can be determined if the end slope 

of the deflected column is known. It is assumed that the deflected 

shape was one-half of the sine wave with the amplitude equal to center

line deflection. The deflected shape then can be expressed as 
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y = /::, sin nx 
L 

the slope y' = ~ II. /::, cos nx 
dx L L 

at end, x = 0 y' = II. /::, = e L A 

As illustrated in Fig. 3.4, if R equals the radius of the 

hemi spherica 1 ba 11, the end eccen tric i ty, e is 
c 

If eA is small so that tan e
A 

e
A 

e 
c 

e 
c 

R /::, II. 
L 

3.2 

3.3 

3.4 

In Figs. 3.1 and 3.2 a curve of the half sine wave adjusted 

with the amplitude set equal to the centerline deflection is plotted 

as a dashed line for comparison with the maximum measured deflected 

shape that is shown. 

25 
Green measured the radius of the bearing surface of the ball 

and found that R ~ 18 in. appeared to be the most reasonable value. The 

column length, L, of 76.25 in. was measured between end bearings of 

the specimen and was used in Eq. 3.4. The end eccentricities due to 

end rotation changed during the test because the centerline deflec

tion changed according to the applied moment. 

Effects of misalignment and end rotation have been included in 

the computer program that calculated applied force and effective total 

moments. Table 3.1(a) also shows an example of the eccentricities 

due to end rotation at the very last load stage in the experiment. 

The end eccentricity due to misalignment of the axial ram on 

the strong axis was small enough to be neglected for some specimens. 

However, the misalignment eccentricity was found to be a significant 

factor in calculating the total eccentricity at midheight of some 
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columns. For example, Specimen RC-5 was found to have an end eccen

tricity due to misalignment in the strong axis direction of 0.176 in., 

which produced moment equal to 38 percent of the total moment at mid

height at the failure load. The weak axis misalignment of the axial 

load ram was computed for every specimen. The maximum end eccentricity 

due to misalignment about the weak axis was 0.45 in. for Specimen C-12, 

creating 29 percent of the total moment at midheightat the failure 

load stage. 

The end rotation always was an important factor in the calcu

lation of the total eccentricity. The ratio between moment due to end 

rotation and the total moment at midheight was smaller for strong 

axis than for the weak axis bending. At the failure load stage, a 

maximum ratio of 20 percent was found in Specimen C-10 in the strong 

axis direction. The maximum ratio of 39 percent was found in the weak 

axis direction of Specimen RC-4. The moments due to misalignment and 

due to end rotation at failure load are shown in Table 3.1(b). 

3.3 Axial Load and Moments 

The total axial thrust, P
T

, is the combination of the loads 

from three rams, one ram P
A 

at the longitudinal axis of the specimen 

and two rams Ps and Pw on the eccentric thrust arms. 

3.5 

where P
T 

Total axial load 

PA = Load on axial ram 

Pw = Load on weak axis moment ram 

Ps Load on strong axis moment ram 

Applied moments for each principal axis were determined as 

the combination of eccentric thrust from each ram, including the cor

rections for alignment of the major force PA. 

M = Ps X strong axis moment arm + PA(e. + e ) so 1S cs 

M 
wo 

3.6 

3.7 
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where M M so' wo Strong axis moment and weak axis moment applied at 
ends of the column 

Strong and weak axis eccentricity of the axial load 
ram 

= Strong and weak axis eccentricity due to end 
rotation 

The moments along the 24 in. middle portion of the column 

were the sum of the applied moment at the end and the additional 

second order moment due to thrust and lateral deflection. Table 3.1(b) 

also shows the tabulation of total end moment and the moment at mid

height at the failure load stage for every column. 

3.3.1 Applied Loads Measured from Load Cells and from Ram 

Hydraulic Pressure. There were two methods for measuring ram load: 

the reading from load cells and the reading from the ram pressure 

transducer. At the time the load cell calibration was made, the 

system consisted of an axial load ram, bottom hemispherical ball, 

bottom bearing plate, three load cells, and a pressure transducer. 

The total load obtained from the load cells and from the pressure 

transducer were nearly identical, as shown in Table 3.2. In the actual 

column tests, although careful adjustment of alignment was attempted, 

the readings in load cells indicated that each of the three load 

cells did not carry equal load. Even the sum of different load cell 

readings differed from loads indicated by the pressure transducers. 

Comparisons between load cell readings and pressure readings have 

been made at several load stages for each column. The average of the 

ratio between load cell data and pressure data for each column is 

shown in Table 3.3. Data in Table 3.3 indicate that the ram pressure 

load was generally lower than the sum of load cell readings. During 

any specimen loading, the ratios between ram pressure load and load 

cell readings remained within 5 percent of a constant or mean value. 

For uniaxial bending tests of. partial circle specimens (Load Angle = 
00 or 900 in Table 3.3), both measuring systems indicated loads that 

were within 4 percent of one another. 
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Actual 
Ram 
Load* 

(kips) 

0 

5.01 

16.87 

20.86 

30.30 

40.32 

49.92 

60.10 

70.07 

80.36 

90.50 

100.60 

110.28 

121.18 

131.31 

141. 07 

151.61 

161.60 

TABLE 3.2 CALIBRATION OF LOAD CELLS AND PRESSURE 
TRANSDUCER READING FOR AXIAL RAM 

Load in Individual Load Cell Total Load from 

L. C. 1;4 L.C. 1;5 L.C. #6 Load Cell 

(kips) (kips) (kips) (kips) 

0 0 0 0 

3.544 1. 731 1.266 6.541 

6.201 4.588 5.526 16.315 

8.269 5.670 7.467 21.406 

11.433 7.704 11.644 30.781 

17.761 10.041 16.242 44.044 

17.339 12.465 20.123 49.927 

22.064 15.278 24.426 61.768 

22.908 17.832 28.307 69.047 

27.843 20.472 32.695 80.940 

30.628 23.242 36.787 90.657 

33.117 25.622 40.542 99.281 

36.492 28.046 44.718 109.256 

41.006 31.249 49.823 122.078 

43.326 33.975 54.210 131. 511 

46.996 36.226 58.007 141.229 

49.359 39.299 63.070 151.728 

52.565 42.026 67.726 162.217 

*Indicated from calibration machine 

Load from 
Pressure 
Transducers 

(kips) 

0 

5.269 

16.017 

20.969 

30.488 

40.780 

50.404 

60.801 

71.233 

80.541 

90.516 

100.597 

110.116 

121. 005 

131.056 

140.920 

150.650 

160.801 
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TABLE 3.3 RATIO BETWEEN LOAD CELL READINGS AND RAM 
PRESSURE LOAD 

Load Load Angle Load on Ram Range of the No. 

Specimen Leve1(tan-1M 1M ) Load on Load Cell Ratio wi thin of 

(P ) S w (average) SEecimen Reading 
o (degree) Max. Min. 

C-1 0.2 0 1.023 1.039 0.996 10 

C-15 0.4 0 0.963 0.981 0.958 7 

C-2 0.6 0 0.982 0.996 0.974 10 

C-3 0.2 90 1.003 1.037 0.959 11 

C-14 0.4 90 0.983 1.007 0.961 12 

C-4 0.6 90 1.007 1.028 1.005 9 

C-5 0.2 45 0.971 0.979 0.946 4 

C-6 0.4 45 0.963 0.979 0.940 8 

C-7 0.6 45 0.980 0.985 0.972 8 

C-8 0.2 22~ 0.944 0.971 0.911 9 

C-9 0.4 22~ 0.969 0.995 0.935 9 

C-10 0.6 22~ 0.956 0.958 0.947 6 

C-11 0.2 67~ 0.946 0.996 0.919 11 

C-12 0.4 67~ 0.915 0.930 0.892 11 

C-12 0.6 67~ 0.921 0.940 0.894 11 

RC-6 0.2 22~ 0.881 0.907 0.869 14 

RC-5 0.4 22~ 0.899 0.915 0.892 12 

RC-1 0.6 22~ 0.847 0.880 0.838 18 

RC-7 0.2 45 0.876 0.930 0.841 11 

RC-3 0.4 45 0.914 0.972 0.899 13 

RC-2 0.6 45 0.896 0.923 0.870 17 

RC-8 0.2 67~ 0.825 0.850 0.808 9 

RC-9 0.4 67~ 0.824 0.833 0.821 8 

RC-4 0.6 67~ 0.907 0.923 0.899 18 
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Relationships between nominal load angle and the ratio of 

axial thrust measured from ram pressure and load cells are also 

plotted in Fig. 3.5. The plot shows that specimens with oval-shaped 

cross section had better agreement between load cell readings and 

pressure readings than did rectangular cross section specimens. For 

biaxially loaded specimens, specimens with a nominal load angle of 

67-1/20 showed the largest difference between load cell readings and 

pressure readings, while specimens with a load angle of 45 0 had the 

bes t agreemen t. 

For biaxial bending tests, the test with an eccentric load 
o 

angle of 67-1/2 on rectangular specimens gave the maximum differences. 

The lowest value of the ratio between the load from ram pressure and 

the load from load cells is 0.S24. Since load indicated from load cell 

involved the sum of three load cell readings, the effect of eccen

tricity at bearings would be more prominent from load cells. Data 

in Table 3.3 indicate maximum difference in total load measurements 
o 

when the load angle was 67-1/2. Load cell sensitivity to eccentric 

force through the load cell was considered to be the source of observed 

variations between ram pressure data and the sum of load cell readings. 

Consequently, the ram pressures were used as the reported value of 

load for all strength studies. The values read from pressure trans

ducers were found to agree within 50 psi with the visual observations 

of pressures from a gage in the hydraulic system. 

From Table 3.3, RC-S and RC-7 have the maximum difference of 

the average ratio between pressure load and the load cell load. Also, 

the ranges of the ratio are greatest for these two specimens. The 

ratio of load cell reading and pressure transducer reading for several 

load stages of RC-8 is listed in Table 3.4. The statistical analysis 

of the data for RC-S in Table 3.4 shows that the variations of the 

measuring systems are not large. For RC-S, the standard deviation of 

0.0116 and the coefficient of variation of 0.014 have been computed 

when the ratios of ram pressure load to the load cell loads were used 

as population in the analysis. With the maximum error of three 
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TA5LE 3.4 INDIVIDUAL STATISTICAL ANALYSIS FOR 

Reading 
No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

~ 
x 

7.429 

x = 0.8254 

Standard Deviation 

P /P OF RC-8 pressure load cell 

P pressure 
P load cell 

(x) 

0.827 

0.808 

0.819 

0.823 

0.818 

0.850 

0.830 

0.831 

0.823 

(x - i) 

0.0016 

-0.0174 

-0.0064 

-0.0024 

-0.0074 

0.0246 

0.0046 

0.0056 

-0.0024 

~ = 0.00107024 

_ ~ (x - x) j - 2 

(T - n - 1 0.011566 

Code of Variation [ 0.014 x 

- 2 
(x - x) 

0.00000256 

0.00030276 

0.00004096 

0.00000576 

0.00005476 

0.00060516 

0.00002116 

0.00003136 

0.00000576 

VI 
0\ 
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standard deviations, or ±3.5 percent, most of the data of RC-8 can 

be represented by the mean value of the ratio. Similar analyses were 

conducted for other columns, and the results indicated that the 

average of the ratio can be used to represent the difference between 

the load cell reading and the ram pressure reading. The data from 

pressure transducers could not be read at the load near failure, 

whereas the load cell readings were available on magnetic tape until 

failure. Load cell data were corrected in proportion to the average 

ratio between ram pressure data and load cell data at lower levels of 

load where ram pressure data were available. With corrections for end 

eccentricity of spherical bearings, rotation of loading heads, and a 

dual set of end thrust measurements, it is felt that reported thrusts 

and moments are within ±10 percent of a "true" value. 

Computer programs were written to compute the total axial 

load, end moment, moment along the column due to secondary effect 

from deflections, the eccentricities and the effective angle of eccen

tricity for every load stage of every specimen. 

Although the axial load from the computer output shows that 

the load cell reading and the ram pressure load reading are different, 

the flexural effect of concentric thrust PA was minor and the computed 

moments are almost the same. Figure 3.6 shows the comparison between 

the centerline moments of Specimen RC-9 determined with concentric 

thrust from load cells and from ram pressures plotted on the same 

scale. Note that even though thrust measurements differed by 20 per

cent, differences in end moments cannot be detected. 

3.4 Analysis of Surface Deformation 

Throughout the 30 in. center portion of each co lumn, 

the surface deformations were measured at five stations of 6-in. gage 

length. Four potentiometer readings for each section were recorded, 

one for each face of the column. The potentiometers were attached to 

the end of the arms of steel frames which were described in Chapter 2. 

3.4.1 Plane of Strain. At each 6-in. station, four deforma

tion readings were available. Only three were needed to compute an 



·5 
a.1 
::2:.:: 
...:..: 
cn C 
:sCI) ... E 
.&;0 
1-2 

200 

150 

100 

50 

2 

o Thrust 

o strong Allis Moment 

t:. Weak Aldl Moment 
__ Load Cell Meolurement 

__ Preuure l.1eo6uremcnt 

f/ 
I 

I 

/t 

, / 
I 

. ~ lAornont obout 
/ Strong A,l • 

Moment about 

Weak Axis 

,1/ . .,-,-...,-_ .... 
4 6 8 10 12 14 16 18 20 22 24 2(, 28 110 32 

Load stage 

Fig. 3.6 Load cell measurement and ram pressure measurement for 
Specimen RC-9 

\..II 
<Xl 



59 

equation of the deformed plane. Figure 3.7 shows the planes of strain 

before load and the deformed plane after loading. It has been assumed 

that plane sections before loading remain plane after the load was 

applied. The validity of this assumption will be discussed later in 

this section. 

-

z 

<D 

---

, Deformed Plane 

~ ! y 

-- '/@ 
@ '" / 

Original Plane 

Fig. 3.7 Planes of strain 

)( 

In Fig. 3. 7, 1 1 I , 2 2 I, 3 3 I , and 4 4 I represent the 

strains at each corner of the section. The three potentiometer read

ings that showed the most compressive deformation were used to define 

the plane. The fourth point, which was frequently a tension deforma

tion, was used as a check point. Using the coordinates as shown in 

Fig. 3.7, the Z direction represents longitudinal deformation. An 

equation of the deformed plane can be developed as follows: 

The general equation of the plane is 

A + B + C + D ::: 0 3.8 
x y Z 

or A(x
l 

x
2

) + B(YI - Y ) 2 + C(zl - z ) 
2 

0 3.9 

A(x2 
x

3
) + B(Y2 - Y ) 3 + C(z2 - z ) 

3 
0 3.10 

A(x
3 xl) + B(Y3 - y ) 

1 + C(z3 - z ) 
1 

0 3.11 
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With the data available for x, y, and z values, the three simultaneous 

equations 3.9, 3.10, and 3.11 can be solved for the value of constants 

A, B, and C. The general equa tionof s train was used to determine the 

strain of the section at any point simply by input coordinates x, y of 

the point. 

A computer program was coded to reduce the potentiometer read

ings into the strains at the middle of each side of the measuring 

station. This program also averaged the strain along all five stations. 

The average strain for each face of every load has been printed onto 

the magnetic tape permanent file for later studies with the computer 

system. 

The validity of the assumption that strains varied in a plane 

was examined by comparing at the fourth measuring station the observed 

strain and the strain which was computed from observations at the 

other three stations. Data for three different load levels on two 

specimens are shown in Table 3.5. These data are representative for 

all specimens. The table shows at each measuring station the differ

ence of values and an error ratio taken as the ratio between the 

difference and the measured value. After each set of values for five 

longitudinal positions along the specimen, the average of all five 

strain values is shown. Error ratios were larger generally before 

moment loading was applied, and the error ratios tended to become 

smaller as moment loading was increased. The error ratio of 0.053 

for the sum of all stations at the first cracking load on Specimen C-5 

is considerably smaller than ratios as high as 0.544 at Station 1 

under the same load, indicating the local influence of cracks that 

cross from one station to another. Under high moment loading near 

failure in each test, the error ratio for the sum of all stations was 

never greater than 0.1 and usually less than 0.05, a range within 

which the assumption of a plane variation of strain is acceptable. 

The error ratio for the sum of all stations of each specimen at the 

failure load stage is shown in Table 3.6. 



TABLE 3.5 COMPARISON OF MEASURED AND COMPUTED 
STRAINS AT 4th POINT 

Load Stage Lev~l 
East Deformation Differance Err:>r* Computed Measured 

SI!ecimen RC-1 

16 1 0.00056 0.00030 0.00025 0.829 
(Before momen t 2 0.00164 0.00132 0.00023 0.249 
load was 3 0.00288 0.00020 0.0026e 13.249 
applied) 4 0.00168 0.00088 0.00080 0.903 

5 0.00619 0.00381 0.00238 0.624 
Sum 0.01295 0.00651 0.00644 
Avg. 0.00259 0.00130 0.00129 0.988 

25 0.03593 0.03875 -0.00282 -0.073 
(1st crack) 2 0.04367 0.04158 0.00209 0.050 

3 0.04525 0.04380 0.00144 0.033 
4 0.03557 0.03688 -0.00132 0.036 
5 0.04746 0.04601 0.00145 0.031 

Sum 0.20787 0.20702 0.00085 
Avg. 0.04157 0.04140 0.00017 0.004 

30 0.07910 0.09414 -0.01504 -0.160 
(Failur~) 2 0.11514 0.10637 0.00877 0.083 

3 0.11093 0.11062 0.00031 0.003 
4 0.09709 0.10097 -0.00388 -0.039 
5 0.10912 0.10756 0.00156 0.015 

Sum ').51137 0.51965 -0.00828 
Avg. 0.10227 0.10393 -0.00166 -C.015 

SI!ecimen C-5 

9 1 -0.00297 -0.00243 -0.00055 0.183 
(before momenc 2 -0.00156 -0.00172 0.00017 -0.106 

load was 3 -0.00231 -0.00253 0.00022 -0.097 
applied) 4 -0.00196 -0.00192 -0.00004 0.020 

5 -0.00023 -0.00074 0.00051 -2.198 
Sum -0.00903 -0.00934 -0.00031 
Avg. -0.00181 -0.00186 -0.00006 -0.C34 

13 0.01661 0.02565 -0.00904 -0.544 
(15 t crack) 2 0.03023 0.02407 0.00615 0.204 

3 0.02907 0.03136 -0.00229 -0.079 
4 0.02011 0.02330 -0.00319 -0.159 
5 0.02909 0.02767 0.00141 0.049 

Sum 0.12510 0.13206 -0.00696 
Avg. 0.02502 0.02641 -0.00139 -0.053 

22 1 0.06744 0.07749 -0. L'1005 -0.149 
(Failure) 2 0.08849 0.08433 0.00417 0.047 

3 0.11029 0.10707 0.00322. 0.029 
4 0.07351 0.07829 -0.00478 -0.065 
5 0.C8824 0.08418 0.00406 0.046 

Sum 0.4279i 0.43136 -0.00339 
Avg. 0.08559 0.08627 -0.00068 -0.008 

*Ecror - Difference/Measured 
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TABLE 3.6 AVERAGE VALUE OF ERROR OF TIlE 4th POINT 
COMPARISON AT FAILURE LOAD STAGE 

Average value of Average value of 
Specimen error at failure* Specimen error at failure* 

10 % 

RC-l 1.59 C-5 0.79 

RC-2 2.75 C-6 3.61 

RC-3 2.97 C-7 8.62** 

RC-4 1.81 C-8 0.78 

RC-5 5.11 C-9 3.20 

RC-6 1. 34 C-lO 1.28 

RC-7 4.47 C-11 2.14 

RC-8 1. 74 C-12 0.46 

RC-9 2.05** C-13 5.81 

*Average error Sum of the differences between measured and 
computed value of every level divided by sum of 
the measured values of the 4th point strains of 
every level. 

**Average from four levels only because of bad potentiometer at one 
level. 
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Wu also showed that it was evident that the strain distribu-

tion was almost linear even at high loads by plotting strain profiles 

of the cross sections under various loadings. The assumption of 

linear strain distribution was accepted also by Wu on the basis of 

his observations. 

The calculation of loads that correspond to measured strains 

was based on the average value of strain along the five measuring 

stations. It may also be implied tha.t the strain in the steel bars 

could be determined from the equation of plane of deformation. In 

this test program there was no measurement of strain in steel bars; 

all calculations of stress and strain in steel, therefore, were made 

after the calculation of Eq. 3.8. 

3.4.2 Discretization of a Cross Section. After the plane of 

strain has been defined, the strain was used to compute the force, 

moment, and curvature of the deformed section. The section was dis

cretized into small grid elements. The grid system made it convenient 

to analyze for both rectangular sections and partial circular sections. 

Strain at the centroid of each element was computed, and a stress-strain 

function of the material, either steel or concrete, was used in order 

to get the stress and the force at that element. Integrating the 

force and moment over the whole section yielded the internal force and 

moments at each particular load stage. 

3.4.3 Stress-Strain Relationship of Materials. For reinforc-

ing steel, the stress-strain curve has been shown in Chapter 2. An ideal

ized stress-strain curve was used with no consideration of strain 

hardening in reinforcing bars. The same stress-strain relationship 

was used for both compression and tension. 

Several stress-strain functions for concrete were tried in the 

analyses. 
8 

Chang, 

d 27 d h" 1 43 The relationship proposed by Hognesta, To esc 1n1 et a " 
28 

and Kent and Park were used and the results were compared 

to the test results. The functions proposed by Hognestad and 
21 

Todeschini were quoted from Fowler's report on the study of rein-

forced concrete columns governed by concrete compression. It was 

found that better agreement was achieved from all four stress-strain 
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functions when the full cylinder strength of concrete, ~, was used 
c 

instead of a reduced maximum such as 0.85~. The stress-strain functions 
c 

which were used in the calculations are shown graphically in Fig. 3.8. 

More details on these stress-strain functions are displayed in 

Appendix B. The summary of the load and moments at failure of each 

specimen analyzed from strain measurements with different type of 

stress-strain functions is shown in Table 3. 7(a), (b), and (c). 

Two more stress-strain functions were used in the analysis of 

strain, the "Modified Hognestad stress-strain function," and the 

"Parabo1 ic-Rec tangu1ar s tress-s train func tion." The d etai 1s of these 

two stress-strain functions are discussed in the following sections: 

Modified Hognestad Stress-Strain Function. Hognestad's 

stress-strain relationship consisted of two parts. The initial 

parabolic curve is defined by the equation: 

where f" 
c 

(c 

(0 = 

(c 
f = f" [2 

c c 

Maximum compression 
= 0.85f' 

c 
Strain in 

Strain in 

concrete 

concrete 

2 f" 
c 

E 
o 

stress of concrete in flexure 

corresponding to stress, f c 
at maximum stress 

E Initial slope of the curve 
o 

3.12 

3.13 

Beyond the maximum value of stress where the slope of the 

parabola becomes horizontal and strain equals (0' the curve is repre

sented by a straight line which falls to the value of 0.85f" at a 
c 

strain of 0.0038. Some modifications to Eq. 3.12 were studied. 

4 
Breen suggested that for horizontal cast columns if the maxi-

mum stress were taken as the cylinder stress (fH = f/) the function 
c c' 

gives a reasonably good agreement for the theoretical values when com-

d h . 1 1 S· 40 d d h h pare to t e exper~menta va ues. arg~n recommen e t at t e 

initial modulus of elasticity, Eo may be taken as 



u; 
~ 

Co) .... 
U) 
U) 
I&J 
ct: 
~ 
U) 

woo 

4000 

3000 

2000 

1000 

......... / 

/ . ' 
/ 
.f.~~.~ 

//' Jr • 
c. 4" "",'II • 

--...... --...... ...... 
...... 

tc = f~ 

--......... -- .. --....... --....... --....... ...... 
....... /i "\~~. 

J" \ '"h, 
II ' -... ,~ \ ' ,p , :,. \ , 

" .......... 
............ ........... .......... 

\ , 
\ 

Parabolic RectanQular 

Kent + Park 

Chang 

Modified Hognestad 

-- A- Hognest-ad 

Todeschini 

O~'----------'-----------r----------'----------~----------r-------~--------
.001 

Fig. 3.8 

.002 .003 .004 .005 STRAIN Jill/III 

Stress-strain relationship of concrete (for fl ~ 5000 psi) c 

0\ 
V1 



66 

TABLE 3.7 COMPARISON BETWEEN APPLIED LOAD AND LOAD 
COMPUTED FROM STRAIN AT FAILURE 

Applied PT computed from strain/PT test 

Specimen Thrus t* Modified Parabolic PT teo t Rognestad Rectangular Todeschini Rognestad Kent Ix Park 

k 

(a) ~ 

RC-1 119.2 0.908 0.907 0.790 0.766 0.884 
RC-2 120.3 0.872 0.876 0.758 0.734 0.838 
RC-3 94.3 0.991 1.002 0.858 0.827 0.971 
RC-4 123.8 0.755 0.769 0.655 0.632 0.725 
RC-5 87.1 0.799 0.799 0.681 0.657 0.786 
RC-6 53.9 0.732 0.709 0.606 0.579 0.698 
RC-7 40.4 0.768 0.750 0.624 0.595 0.710 
RC-8 1,0.4 0.756 0.741 0.617 0.587 0.716 
RC-9 85.8 0.887 0.894 0.764 0.740 0.833 
C-5 49.5 0.993 0.935 0.840 0.794 0.935 
C-6 92.2 1.022 0.996 0.887 0.858 0.983 
C-7 139.7 0.961 0.954 0.842 0.821 0.916 
C-8 57.1 0.771 0.756 0.632 0.601 0.750 
C-9 96.2 0.930 0.917 0.804 0.778 0.896 
C-10 138.2 0.913 0.906 0.799 0.779 0.873 
C-11 53.2 0.930 0.942 0.773 0.742 0.867 
C-12 99.2 0.837 0.~41 0.719 0.692 0.819 
C-13 152.5 0.979 1).991 0.856 0.825 0.979 
C-l 60.7 0.823 0.817 0.684 0.656 0.795 
C-2 135.6 0.898 0.877 0.785 0.761 0.872 
C-15 109.2 0.833 0.851 0.715 0.690 0.819 
C-3 58.4 0.799 0.800 0.661 0.639 0.737 
C-4 155.8 0.917 0.924 0.804 0.783 0.880 
C-14 119.2 1.103 1.155 0.962 0.93'- 1.014 

Mean 0.8824 0.8795 0.7548 0.7279 0.8457 
Standard Deviation 0.0973 0.1034 0.0958 0.0952 0.0935 

Coefficient of Variation 0.110 0.118 0.127 0.131 0.111 

Applied Ms computed from strain/M. Strong Axis test 
Specimen Moment'" Modified Parabolic Todeschini RognesUd Kent Ix Park 

M Rognes tad Rectangular 
s test 
k-in. 

(b) Stron!l Axis Moment 

RC-1 60.6 0.946 0.981 0.857 0.846 0.877 
RC-2 124.0 0.890 0.924 0.801 0.794 0.821 
RC-3 128.2 0.918 0.940 0.825 0.815 0.871 
RC-4 228.9 0.869 0.894 0.778 0.765 0.814 
RC-5 40.3 0.838 0.860 0.763 0.755 0.796 
RC-6 52.2 0.710 0.724 0.643 0.638 0.691 
RC-7 86.6 0.942 0.958 0.850 0.843 0.897 
RC-8 190.4 0.827 0.825 0.749 0.735 0.794 
RC-9 217.5 0.938 0.959 0.841 0.826 0.877 
C-5 138.3 0.948 0.920 0.853 0.831 0.920 
C-6 171.3 0.882 0.883 0.794 0.784 0.861 
C-7 165.1 0.806 0.833 0.724 0.719 0.755 
C-8 64.4 0.638 0.639 0.577 0.568 0.627 
C-9 67.8 0.867 0.880 0.788 0.779 0.835 
C-10 57.1 1.147 1.182 1.035 1.026 1.076 
C-11 251.9 0.861 0.876 0.782 0.770 0.819 
C-12 243.1 0.931 0.940 0.841 0.826 0.910 
C-13 268.2 0.915 0.924 0.812 0.800 0.901 
C-3 372.2 0.879 0.886 0.801 0.791 0.840 
C-4 424.2 0.856 0.879 0.768 0.760 0.809 
C-14 455.2 0.951 1.001 0.861 0.847 0.845 

Mean 0.8838 0.9004 0.7973 0.7866 0.8398 
Standard Devia tion 0.0991 /).1050 0.0888 0.0876 0.0893 

Coefficient of Variation 0.112 0.117 0.111 0.111 0.106 

*From ram pressure 

Chang 

0.841 
0.811 
0.905 
0.700 
0.724 
0.650 
0.688 
0.674 
0.828 
0.845 
0.933 
0.906 
0.670 
0.859 
0.860 
0.856 
0.758 
0.885 
0.743 
0.822 
0.765 
0.747 
0.869 
1.066 

0.8085 
0.0998 
0.123 

Chang 

1).971 
0.904 
0.914 
0.854 
0.856 
0.716 
0.933 
0.792 
0.918 
0.872 
0.859 
0.815 
0.616 
0.860 
1.157 
0.840 
0.896 
0.878 
0.861 
0.860 
0.963 

0.8731 
0.1025 
0.117 
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TABLE 3.7 (Continued) 

Applied Mw computed from strain/Mw test 

Specimen Weak Axis Modified -Parabolic Moment* Todeschini Hognestad Kent & Park Chang 

Mw test 
Hognestad Rectangular 

k-in. 

(c) Weak Axis Moment 

Rc-l 184 .0 0.834 0.842 0.740 0.728 0.809 0.809 
RC-2 154.1 0.922 0.938 0.820 0.806 0.878 0.898 
RC-3 150.4 0.972 0.986 0.865 0.846 0.946 0.927 
RC-4 127.4 0.895 0.921 0.799 0.784 0.840 0.876 
RC-5 160.8 0.968 0.970 0.865 0.848 0.953 0.917 
RC-6 145.9 0.844 0.833 0.760 0.744 0.824 0.798 
RC-7 121.3 0.880 0.875 0.796 0.781 0.845 0.841 
RC-8 86.4 0.861 0.860 0.775 0.761 0.812 0.826 
RC-9 102.0 0.922 0.949 0.824 0.814 0.856 0.910 
C-5 113.5 0.945 0.913 0.849 0.822 0.913 0.860 
C-6 147.1 0.930 0.923 0.832 0.817 0.906 0.890 
C-7 161.6 0.858 0.879 0.767 0.735 0.771 0.860 
C-8 168.0 0.860 0.854 0.778 0.762 0.849 0.809 
C-9 179.1 0.911 0.912 0.820 0.807 0.887 0.882 
C-10 188.0 0.826 0.815 0.140 0.133 0.192 0.823 
C-ll 128.8 0.900 0.915 0.811 0.803 0.851 0.875 
C-12 155.6 0.867 0.874 0.779 0.763 0.848 0.826 
C-13 147.7 0.843 0.852 0.746 0.733 0.830 0.806 
C-1 165.5 0.929 0.929 0.842 0.827 0.910 0.890 
C-2 154.1 0.971 0.97? 0.867 0.855 0.962 0.940 
C-15 194.2 0.989 1.004 0.891 0.875 0.965 0.953 

Mean 0.9016 0.9055 0.8082 0.7926 0.8692 0.8674 
Standard Devia Hon 0.0505 0.0532 0.0453 0.C448 0.0569 0.0471 

Coefficient of Variation 0.056 0.059 0.056 0.057 0.065 0.054 

=== 
*From ram pressure 
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E = 72,000 ff 
o c 3.14 

The stress-strain relationship used in this investigation was a com

bination of those proposed above. The parabolic part can be expressed 

as 

f 
c 

2f: 
f' [ c 

c 

which is the same as the Hognestad curve except that f' is the 
c 

3.lS 

cylinder strength instead of 0.8Sf'. Values of f: and E are defined 
coo 

in Eqs. 3.13 and 3.14, respectively. 

At strains beyond f: , the straight line with the same slope 
o 

as the Hognestad curve was used. The stress falls from f' at to c f:o 
0.8Sf' at a strain of 0.0038, but the function was allowed to go 

c 
beyond the strain of 0.0038 with no limiting strain. The Modified 

Hognestad Stress-Strain Curve is shown in Fig. 3.8. 

Parabolic Rectangular Stress-Strain Function. The Comit~ Euro

pe~n du B~ton (CEB)lO. recommends a concrete stress-strain function 

oonsisting of a parabola plus a zero slope straight line. The para

bolic portion has the same equation as Hognestad's curve, but the 

maximum concrete stress, f equals 0.8Sf' at a strain of E 0.002. ceo 
Beyond the strain of 0.002, a constant stress can be used up to the 

failure strain of 0.003S. Analysis using this stress-strain relation

ship underestimated results compared to the test values. A modifica

tion of this type of curve was made so that the maximum stress at the 

strain of Eo = 0.002 is f' ins tead of 0.8Sf' . Also, the cons tan t 
c c 

stress of f' was used for strains beyond 0.002 with no limit to the 
c 

failure strain. Thus, the firs t portion had a parabolic pa th wi th 

the same equation as the Modified Hognestad curve in Eq. 3.lS, except 

that ~ was always 0.002 (and E = 2f' /0.002), and there was no 
o 0 c 

reduction of stress beyond the strain of f:. The graphical repre
o 

sentation of the Parabolic Rectangular Stress-Strain Function is also 

shown in Fig. 3.8. 
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The strain analyses using the full cylinder strength of con

crete, f', gave a better result for both thrust and moments than the 
c 

stress-strain function which used only 0.85f' as a maximum compress~ve 
c 

stress. The Hognestad stress-strain curve and the Todeschini et a1. 

function which used 0.85f' gave much lower values of thrust and moments 
c 

than the applied load measured from ram pressure. The thrust, moment 

about the strong axis, and the moment about the weak axis at the 

failure load stage analyzed from strains using several types of 

stress-strain function are listed in Table 3.7. Also shown in this 

table is the thrust and moment measured from ram pressure, which was 

used as the applied load. 

The comparison between applied thrusts and thrusts computed 

from measured strains are shown in Table 3.7(a). The applied thrusts 

were always higher than the computed thrusts regardless of the assumed 

stress variation for concrete, except for Specimens C-14 and C-6 when 

the Modified Hognestad stress-strain function was used. The Modified 

Hognestad and Parabolic Rectangular stress-strain functions gave the 

highest values among all stress functions used in the comparison. 

The mean values of P diP t were about 0.88 for both functions compute tes 
with the standard deviation of about 0.10. The comparison of thrust 

showed that if the value of thrust from load cell readings was used 

for applied thrust, the deviation would be greater because load cells 

always gave higher readings than ram pressure readings, as discussed 

in Sec. 3.3.1. 

A similar comparison for measured and computed moments is 

shown in Table 3.7(b) and (c). The observed moments again were always 

larger than the computed moments for both strong and weak axis bending, 

except for strong axis moments of Specimens C~10 and C-14 when the 

applied moments were smaller than the moments computed with some of 

the stress-strain functions. The Parabolic Rectangular stress func

tion gave the best agreement with the applied moment, giving a mean 

value for M diM of 0.90 for strong axis bending and 0.91 for compute test 
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weak axis bending. The coefficient of variation of the comparison 

for all stress functions was almost the same regardless of concrete 

stress function, varying in a range of 0.11 to 0.12 for strong axis 

moment and 0.05 to 0.07 for weak axis moment. 

It should be noted that when the stress-strain functions used 

full strength of cylinder stress, f', the differences in calculated 
c 

forces were small, although different stress-strain functions were 

used with the strain analyses. Similarly, the reduction of stress 

beyond the strain E had a minor effect on results, and the best 
o 

result was from the function with no reduction of stress beyond the 

strain of E . 
o 

It could be concluded in this study that the stress-strain 

functions using nominal cylinder strength of concrete, f' , should be 
c 

used in analysis, at least for short-time loading. The first part 

of the function should be a parabola and the tail of the curve beyond 

maximum stress can be considered constant with strain limit or decre-

ment of stress. Analysis for sustained load with some creep of con

crete cannot be derived from data considered in these studies. 

3.4.4 Superposition of Stress-Strain Relationship onto the 

Discretized Deformed Section. The average longitudinal strains of 

the cross sections at each load stage were stored on magnetic tape. 

The equation of the strain plane was computed. For each grid element 

of the discretized section, the strain at the centroid of each element 

was calculated. The average stress on each element was found from the 

stress-strain function. 

Figure 3.9 shows the superposition of concrete stress-strain 

relationships onto the cross section. At element A in the section, 

the strain is (. A stress of f was found and the force in the 
c c 

element was simply the product of the stress and the area of that 

element. Tension in concrete was neglected. 



Fig. 3.9 Superposition of stress-strain 
relationship on the cross section 
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function 

3.4.5 Force and Moments from Strain Measurement. The total 

force corresponding to measured strains was obtained by integrating 

all the element forces. Moments about each axis were determined by 

summing the product of each element force and its distance from each 

principal axis. 
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A computer program called GRID used the geometry of the 

section, the area and coordinates of the reinforcing bars, and the 

location of the strains which were to be read from the tape. Strains 

at each load stage were input. The procedure to find the plane of 

strain, to discretize the cross section, and to relate the stress

strain functions were coded into the program. Alternate subroutines 

for different stress-strain functions could be used in the program. 

The final results from each set of output were the axial force, 

moments about the strong and weak axis, curvature about each axis, 

moment angle, neutral axis angle, and the maximum compressive strain 

and its location. 

3.5 Comparisons between Applied Forces 
and Theoretical Forces Computed 
from Strains 

In Figs. 3.10 to 3.33, graphs of thrust, moment about the 

strong axis and moment about the weak axis are plotted against curva

tures; strong axis moment is shown with strong axis curvature and 

weak axis moment with weak axis curvatures. Thrust values are plotted 

against total curvature about the skewed axis. Solid line graphs 

represent observed data and dotted line graphs represent data computed 

from the average of strain profile along five stations in the 30 in. 

midheight portion of each specimen. The Parabolic Rectangular Stress

strain Function was used for all computed forces on concrete. 

Graphs for rectangular cross section columns are in Figs. 

3.10 to 3.18. Thrusts computed from strains were always lower than 

the applied thrust. Although at the beginning of loading Specimen RC-3 

showed higher thrust analyzed from strains than thrust from the ram, but 

as the moments increased the thrust analyzed from strain dropped to a 

lower value than the ram pressure thrust. The maximum difference 

between the analyzed thrust and the applied thrust was about 30 kips 
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Fig. 3.21 Applied forces and forces computed from strains 
Specimen C-7 (P IP = 0.529, load angle 45°) 
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Fig. 3.22 Applied forces and forces computed from strains 
Specimen C-8 (Pu/Po = 0.203, load angle 22.5°) 
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Fig. 3.23 Applied forces and forces computed from strains 
Specimen C-9 (P IP ; 0.355, load angle 22.5°) 
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Fig. 3.24 Applied forces and forces computed from strains 
Specimen c-lO (P /P = 0.521, load angle 22.5°) 
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Fig. 3.26 Applied forces and forces computed from strains 
Specimen C-12 (P /P = 0.355. load angle 67.50 ) 
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Specimen C-13 (P /P = 0.486, load angle 67.5 0 ) 
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Fig. 3.28 Applied forces and forces computed from strains 
Specimen C-l (P IP = 0.215, weak axis uniaxial 
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Fig. 3.30 Applied forces and forces computed from strains 
Specimen C-15 (P /P = 0.345, weak axis uniaxial 
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for the applied thrust of 130 kips on Specimen RC-4, a difference of 

23 percent. At the lower level of thrust the percentage difference 

was higher although the value of the difference was lower. For 

example, the difference was 18 kips in Specimen RC-7 for a measured 

thrust of 47 kips, or about 38 percent. Moments computed from strains 

were always lower than the moments indicated from ram pressures. The 

analyzed moments gave better agreement with the applied moments than 

did the thrust, with no difference between moment computed from strain 

and from the applied moment greater than 20 percent. 

Figures 3.19 to 3.27 show the graphs for Specimens C-5 to C-13, 

the oval-shaped cross section columns under biaxial bending. Again, 

the values of thrust and moments computed from strains were less than 

the measured forces for almost all cases. Correspondence between 

analytic and measured values was not as good as that of rectangular 

columns. However, all comparisons indicated the same trends of 

behavior. The maximum difference between the theoretical and the 

measured thrust was about 32 percent in Specimen C-12. Oval-shaped 

columns gave better agreement than the rectangular columns for thrust 

comparisons in specimens with low levels of thrust. No moments 

analyzed from strain deviated from measured moments by more than 

15 percent at failure, except for the strong axis moment of Specimen 

C-8, for which there was a 30 percent difference. The largest differ

ence between the analyzed moment and measured moment was found at the 

beginning of the loading of partial circular specimens. A difference 

as high as 40 percent was found in the weak axis moment of Specimen 

C-13 at the early stage of loading. These large differences decreased 

as the loading approached failure. 

Thrusts and moments computed from strains were always lower 

than the observed values for the midheight region. The use of strains 

averaged over a 30-in. length may account for the lower flexural 

forces from analysis, but the smaller thrust values imply that the 

initial slope of the parabolic rectangular stress function may not be 

high enough. 
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Thrust and moment versus curvature graphs for uniaxial bending 

tests are shown in Figs. 3.28 to 3.33. Correspondence between thrust 

for analyzed results and for the applied thrust was closer in uniaxial 

specimens than in the biaxial bending specimens. Again, the applied 

loads were higher than the theoretical load, except for thrust in 

Specimen C-14. The maximum difference between the analyzed results 

and the applied loads at failure was less than 20 percent for thrust, 

12 percent for strong axis moment, and 17 percent for weak axis 

moment. 

3.6 General Behavior and Mode of 
Failure of Specimens 

The loading system of this test program was operated so 

that the axial thrust should remain constant as moments or eccentricity 

increased. The axial load was applied to the designated level first 

before the moment load gradually was applied until failure. A summary 

of the failure observations for all specimens is shown in Table 3.8. 

The load and moment recorded by ram pressure and by load cells are 

both shown in this table, but the load from ram pressure was used as 

the capacity of the column throughout this report. 

(a) Type of Failure. Two types of failure were observed. 

Tension failure has been said to occur if the tension steel in the 

specimen yields before concrete spalls in compression. When the 

tension steel yielded (computed from the plane of strain), the speci

men could carry more load and display large deformation after this 

stage. Such a column then would fail when concrete in the compression 

zone crushed and cracks on the tension face could be seen. Compression 

failure occurred when concrete at the compression face spalled, or 

crushed before yielding in the tension steel had been reached. For 

high thrust levels (0.5P ), all specimens failed in the compression 
o 

mode, and for low axial load, all columns failed in tension. At the 

load level of 0.35P , a combination of these two modes occurred. 
o 

Figure 3.34(a) and (b) show the pictures of specimens failed in ten-

sion and compression modes. 
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(b) Location of Failure. Because of the nonuniformity of 

concrete, columns could fail at any location where the concrete was 

weak and moments were high. Usually the columns failed near midheight 

where the maximum moment was measured. 

For Specimens C-3 and C-4, which were uniaxial strong axis 

tests, the secondary moment effect was small, and moments were almost 

the same along the length of the columns. These columns failed at 

the position near the top of the specimens. Because of the vertical 

casting procedure, the top portion of these columns was expected to 

be weaker than lower portions and failure was considered likely to 

happen near the top. 

Listed in Table 3.8 are the mode of failure and its location 

for all specimens. For specimens C-S, C-6, C-7, C-ll, C-12, C-13, 

and C-lS, no crushing of concrete was reached. As previously explained 

in Sec. 2.7, the tests were stopped before failure would occur to 

prevent damage of the measuring devices. 

(c) Maximum Strain in Concrete. Maximum compressive strains 

averaged across five stations (30 in.) along the center portion of 

the columns are listed in Table 3.8. The maximum strain of all the 

columns at failure varied from 0.00228 to 0.00393, except for Speci

men C-5, for which the maximum strain through the 30-in. region was 

only 0.00194. The strains across a 30-in. gage length were known to 

be smaller than the localized values at positions 2 to 8 in. long 

where concrete actually spalled at failure. The maximum compressive 

strain at failure measured locally for the five stations at the 6-in. 

gage length are also shown in Table 3.8 for every specimen. These 

values ranged from 0.00306 to 0.00526, except for Specimen C-S, for 

which the maximum strain was 0.00223 locally. The strength study that 

is described in Chapter 4, together with the low compressive strains 

indicated here led to the conclusion that the test for Specimen C-S was 

stopped before the column actually reached its maximum load. 

The shape of the cross section was found to have an influence 

on the maximum strain at failure. The partial circular specimens 



hUuu wad ... t ~~f'l&ht._ 

Sped._a 1brullt ".trona " .. at 

. __ -"--__ -"'" In. k-h. 

lC-l 

IC-Z 

le-, 

RC-4 

RC-5 

Rr~-6 

le-7 

1Ie-' 

119.2 
(n8.7) 

60.~ IM.O 
(61.01 (118.7) 

120.) 124.0 1".1 
(In.9) (114.') (155.5) 

94.) 128.1 150 .• 
(10".2) ('18.5/ (151." 

12 •. ~ 228.9 127 .• 
(1'1.1) (229.6) (118.) 

87.1 40.) 160.8 
('5.81 (40.5) (161.9) 

H.9 52.1 145.9 
,,".9) (n." (146.9) 

4l'.'" 86.6 Ill.) 
(46.) (86.9) (171.4) .0.. 190.4 .... 
(45.7) (I~ .• ) (87.0) 

lC-' '~.8 217.5 101.0 
(1110.4) (2'8.5) ('"],5) 

c-~.. 49.41: lJe.) ttl.S 
(>n.7) (lJ8.) (11) .• ) 

C-6 92.2 171.' 147.1 
(9~.) (171.7) (147.5) 

C-7 1J9.7 165.1 161.6 
(U::.'t) (US.,) (161.9) 

C-8 

C-9 

(.;-10 

c-II 

c- l:Z 

c-lJ 

e-l 

c-l 

t;-lS 

C-) 

C·4 

c-u 

57.1 
(5'.') 

64.. 168.0 
(~'.5) (168.5) 

96.2: 67.8 179.1 
(98.9) (67.') (179.5) 

n'.2 57.1 188.0 
(144.1) 1'7.1) (1.'.6) 

\1.2 1\1.' 120.8 
Uj·:!l (:Z'U,l) (129.0) 

99.2 :!o\J.l ISS.6 
(106.9) (241.5) (156.1) 

151.5 168.1 147.7 
('64.1) (l69n) (14'.) 

60.7 165.5 

(".4) (154 » 
1)5.6 154.1 

(lle.O) (154.) 

109.1 194.1 
n'"j 2) (194.9) 

58.4 37Z.:Z 
(58.) (171.1) 

155.It 42",:Z 
(154.8) (414.1' 

119.1 .55.1 
~ (4'i5.3) 

·Froa r •• pte811Ure 
(..,due fra. loa.d cell In p.t'enth.alel 

TABLE 3.8 FAILURE SUMMARY 
""d .... cOlll-

,ful"vature l!..!:1!...lon-.!!.!.!!'!. __ 

Stronc A.tll "'ull Azh A)O'''~. doni 41 t 
-4 -4 c~nlll!t' _z __ 

• 10 • 10 posHlon tltAtil'Jn 
__ -1' etatlon" 

1.119 '.185 0.0030J 0.00324 

2.41) 8.1:9) 0.00355 n.OI'Ml8 

2. ,,, 8.179 0.00328 0.00166 

3.98ft 7.476 e,,003 .. 6 n_ 0049' 

0.866 10.710 0.Mo272 0.nnJl4 

1.294 n.llo 0.00270 0.0('l1l 

).221 l6..2f§0 0.00345 n.00t.67 

5.4'" 8.517 0.(0))9 0.00487 

4.871 7.759 0.001,02 O.oo~u 

I. 706 6.520 0.00194 0.002n 

l.8M 7.501 0.00275 0.00'06 

I. 761 7.816 O.oonl 0.00)57 

0.821 t:z,59n 0.00246 n.on353 

0.1).\5 lo.eno 0.007"5 0.nn3'57 

0.88] 8.fi98 O.OOHI O.DfMU 

4."54 n.2OO () _ Otl3f,7 n.OM2n 

'.998 11.222 n_o02'}& n.00)90 

2. B'; 5.0-" I) .nOlf.& O,OOl92 

14. S80 n.002')& n.00401 

'.R80 O.OOIU 0.00516 

11.950 0.00277 0.00309 

8.1'o1lJ 0,00328 0.00)81 

It. '-)0 0.00310 o 00147 

6.311 0.00]9) 0.00526 

R. A. 
Anlltp .. 
.. , 

n.2 

16.1 

18.1 

•. 6 

5 .• 

lZ.7 

)2.5 

H.' 
16..7 

14.1 

n.7 

).7 

4.1 

5.8 

2l. 7 

20.n 

n.l 

Lo.~_._ 
-.- at 

.. t Ir'nd _ldh~ Lsh t 

9 

ll.n U.2 

SO,2 '''.8 
49.7 ',0.5 

71.8 60.' 

\9.' 14.1 

n.5 19.7 

4'. I 35.5 

69 .• 65.6 

72.0 64.' 

S5.7 50." 

56.1 49.4 

51.8 45.6 

2fi.0 2l.0 

1 •. ) 20.7 

2Z.3 16.9 

1.7,7 62.' 

64.9 S7,4 

68.6 61. 1 

~""or C-5 t •• t .Iopplr'd befoT. col~ lIr.tulilly (.tlpd 

9 - fit Tyl'lr' 0' rallnrll 

9.7 C~r •• lIlnn 

22,6 Ct'lllPr f'1I I' Ion 

24.4 l'CMf'f:l:tI III Ion 

32.8 CO"'l'r IPII 1'1 on 

9.5 Tpnllion 

If •. l T,.n", Inn 

22." TIPn51nn 

H.I TIPn" Ion 

HO Co~re"'''l'''n 

). TIPnlllron 

JI. ) COMf"r ... ,lton 

H.9 COMp"p"lIlon 

17. ) T"nlll"", 

15 .• TIPn,.l"" + c.....,.. 

Il.l C""'P r lr'lI1'Jon 

'.1.2 T~nl'lo[1 

')7.4 TIPn.fnn + Cc.p. 

JI.O C~r ••• lon 

Tenafon 

COI'I'pr.·.t(lII 

T.nitlon 

Tf:nlll(,n 

('0"""."Ion 

Tenslo" + Co..,. 

'dl hlu' I.or .. tlOll 

Jlttdhlr'l,ht 

fi" .. hoVI: IIIldhpllZht. 

Mldh .. l,ht 

{," h~lov _lrlh~lJij:ht 

6" .hoVI: .. ltthplJij:ht 

Htdhplght 

3" ,.II"vl: ",ldh"l~ht 

Mldhl!18h t 

12" fIIhovlr' IIIltth~t,IJh r 

"to cru!lhtng. vldlr' rr"~k" 

"0 rrlJlllhtnlll:, j'o.p. flt .. ,.1 yLpldl:d 

No rrll!lhlnlf, 

Htdh .. tghl 

12" b"lnv "lIdh~l~ht 

&" .. hovl: _t dh .. L8h t 

,." o:rullhtng 

No crulhl ng 

No cnuhlns 

0" .hove IIIldh"'lght 

9" IIbo" •• ldhet,.ht 

Nto crullhlns;. wide r.1-ack 

1S" hplew lop of (.olUf11n 

1"''' below top of rolullln 

6" ahove! .Idlu'lfilhl 

t-' 
o 
t-' 



102 

had smaller average strains at failure than the rectangular specimens. 

Rusch's39 study of maximum strain of various shapes of compression 

area under flexure indicated that a triangular shape would yield more 

maximum strain at failure than a rectangular shape. In the case of a 

rectangular cross section subjected to biaxial bending, the compression 

area of the cross section would be a triangle as the width of the com

pression zone reduces from the neutral axis to the maximum compressive 

fiber. Therefore, in accordance with Rusch's observation a rectangular 

cross section should have more strain at failure than the partial 

circular cross sections, in which maximum strain is not at a corner. The 

average of maximum strain at failure for fourteen specimens of partial 

circular cross section (all except C-5) was 0.00298, while the average 

of the maximum strain for all rectangular specimens was 0.00333. 

(d) Load Angle and Neutral Axis Angle. Also tabulated in 

Table 3.6 are the neutral axis angles and the load angles at both top 

and center of the columns at the failure load stage. 

The load angle is defined as 

M 
8 = tan- l strong 

M weak 
= Un 

-1 
e 
strong 
e 
weak 

8 is measured from the strong axis of bending. 

The neutral axis angle. ¢. is the angle between the weak axis 

and the neutral axis. The sketch of these two angles is shown in 

Fig. 3.35. 
1. Change of load angle (n from end of the column to 

to midheight of the column 

From Table 3.8 it can be seen that the load angle 

8 is smaller at midheight than it is at the ends of the column. This 

difference was due to the secondary effect of the deflection. The 

column deflected more in the weak direction than in the strong 

direction, such that the secondary effect was greater in the weak 

axis direction. This caused the load angle to decrease as the 

secondary effect increased from the loading point at the end to the 



103 

weak axis of bending 

--.p..;;:--I'---+....&...~*"----.........j~ strong axi s 
eweak of bending 

Fig. 3.35 Load angle and N.A. angle 

central portion of the column. The deviation of this load angle 

along the length of the column had no measurable influence on thrust 

level or the applied moment angle. The maximum change of the load 

angle was 13.2 degrees and the minimum was 2.8 degrees. The shape 

of the cross section was not found to effect the amount of change in 

load angle along the column. 

2. Difference between load angle and neutral axis angle 

Some research reported by Wu47 and Ramamurthy37 

neglected the difference of load angle, 9, and neutral axis angle, ~, 

and used the same angle for their strength analysis. Although Wu 

observed that there was some difference between 9 and W, he concluded 

that it was small and neglected the difference in order to simplify 

his analysis. In this experimental program it was found that there 

was a significant amount of difference between the load angle and the 

neutral axis angle. 

It was observed that the difference between load angle and 

neutral axis angle or (9 - ~ as shown in Table 3.8) is related to 

the applied moment angle. As the load angle 9 increased the differ

ence of 9-cp increased. The quantity (9-m) was greatest for specimens 

with a nominal load angle of 67-1/2 degrees and smallest for speci

ments with a nominal load angle of 22-1/2 degrees. No significant 

effect of thrust level was found to be involved in the angle 9-w. 
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Figure 3.36 shows a plot between load angle, e, and the 

difference between load angle and neutral axis angle, 9-~. The plot 

suggests a linear relationship between 9 and 9-cf) on the basis of the 

data available which includes load angles between 15 degrees and 65 

degrees. However, when a "90-degree" load angle (major axis flexure) 

was used for partial circle columns, there was almost no difference 

between e and cpo 

Redwine
38 

studied the problem of the difference between the 

load angle and neutral axis angle using his analytical model. He 

concluded that the difference was mainly dependent on the orientation 

of the neutral axis and the aspect ratio of the section. The axial 

load level and strain gradient had only a small effect on 9-cp. He 

also observed that values of 9-cp as large as 38 degrees could be pre

dicted for columns with the same aspect ratio of sections used in 

these tests. 
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Fig. 3.36 Load angle (9) vs. the difference between load 
angle and neutral axis angle (9-<1')) 
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The practical significance of the real skew angle at midheight 

involves the estimate of M and M components that must be checked 
y x 

for strength in the design process. The application of moment magni-

fier coefficients that increase according to flexibility through a 

given unsupported length of column produces the same trend of differ

ence between load angle e at column ends and column midheight as that 

observed in these tests. 

(e) Rotation about Longitudinal Centroidal Axis and Twist. 

During the test, the specimen was observed to rotate about its longi

tudinal centroidal axis. Measurements at the top, midheight, and 

bottom of the columns indicated that before the moment load was 

applied a very small rotation was recorded, but after moment was 

applied the rotation increased continually until the failure load. 

Specimen RC-9 was noted to have the most rotational movement. The 

maximum rotations of RC-9 after moment was applied were 0.25 degrees 

at the top, 0.28 degrees at midheight, and 0.43 degrees at the bottom. 

Twist of the column is defined here as the change of angle of 

rotation along the length of the column. For each specimen there 

were two measurements which indicated the twist, the change of angle 

of rotation from top to midheight, and from midheight to the bottom 

of the column. Although Specimen RC-9 was observed to have the maxi

mum rotation, the maximum twist was not obtained from Specimen RC-9. 

Maximum twist was measured for Specimen RC-2, a rectangular specimen 

with 0.00746 radian (0.427 degree) of twist from top to midheight, and 

0.00311 radian (0.178 degree) from midheight to the bottom. These 

twist angles were the angle change along a length of 25 in. For par

tial circular specimens, the maximum twist was found for Specimen C-ll 

to be 0.00386 radian (0.221 degree) from top to midheight, and 

0.00731 radian (0.419 degree) from midheight to the bottom. 

Redwine38 studied the torsion of columns under biaxial 

bending and concluded that the effect of torsion should be negligible. 

Green25 also confirmed that the biaxially column failure was not 

influenced by torsional effects. 
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With the maximum angle of twist of 0.0075 radian measured 

from RC-2, the torsional stress due to this twist can be estimated 

as follows: 

where CPt = Twist angle per unit leng th 

J = Polar moment of inertia of sec tion 

G = Shear modulus 

T = Torque on the section 

38 3 
Redwine used the value of J as 0.196bt , where b was the 

depth and t was the width of the section, and he used G equal to 

1.25 X 105 psi for the shear modulus of concrete. These values 

applied to Specimen RC-2 yield: 

T 
CPt= 3 

0.196bt X 1.25 X 

3 
T = ~ [0.196 X 9 X 5 

T 0.~~75 [0.196 X 9 X 53 X 1.25 X 105] 

T = 8.2 k-in. 

The allowable shear stress for torsion as specified in the 

ACI Building Code(ACI 318-71)1 for plain concrete sections is 

v 2.4 Ji' tc c 

= 169.7 psi for 5000 psi concrete 

or the allowable torsional moment for concrete is 
2 

T z: ~ v 
c 3 tc 

= 52 X 9 X 169.7 
3 

12.7 k-in. > 8.2 k-in. 
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The calculation shows that when the column twisted to the 

maximum angle of twist measured from all tests reported here, less 

than two-thirds of the allowable torsional shear strength of plain 

concrete would be generated. The inevitable presence of longitudinal 

bars and ties in columns should reduce even further any likelihood 

of torsional strength complications in biaxially loaded concrete 

columns. 





C HAP T E R 4 

CROSS SECTION STRENGTH AND STIFFNESS 

4.1 Introduction 

A surface that describes the ultimate capacity of a column 

under combined axial thrust and flexure can be constructed by plotting 

an infinite number of points for which thrust is the vertical axis and 

flexural capacities about each principal axis are the coordinates in 

the horizontal plane. Any vertical plane contains a thrust-flexure 

interaction diagram for a specific skew angle. Interaction diagrams 

for uniaxial bending about a principal axis have been derived on the 

basis of a limiting strain definition of failure. These uniaxial 

interaction diagrams have been accepted as accurate enough for design, 

and functions that relate biaxial capacities to the uniaxial capacities 

have been proposed by some investigators. 

One method of relating the uniaxial capacities of cross sections 

to biaxial capacities is called "the Load Contour Method." For any 

levels of axial load the ratios between the component of skew moment 

about each principal axis to the moment capacities about each principal 

axis at the same thrust level can be expressed as 

with M M 
xu' yu 

M ,M 
xo yo 

M 

[M
xu

] 
xo 

M 

+ [M
Yu

] 
yo 

0.1 

1 

Components of ultimate moment at the assigned thrust 

= Uniaxial moment capacities about each principal axis 
for the assigned thrust 

= Exponent that is a function of cross-sectional 
properties and the ratio between M and M 

xo yo 

109 

4.1 
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M f 23,33 h . d . f 1 any re erences ave conta1ne suggest10ns or eva uating 

the exponent ~l,some involving relatively complex relationships 

among parameters. The "calibration" of analytic functions for ex, 
1 

has relied entirely on correlations with results from interaction 

surfaces that were derived with a rectangular stress block to represent 

concrete strength prior to failure. In most cases the analytic 

results that were obtained from the use of Eq. (4.1) after a
l 

had been 

evaluated were not checked against laboratory data from actual resis

tance to load. 30 ,32,33 

Another method, "the Reciprocal Load Method" provides a 

simple relationship between skewed thrust and the uniaxial thrust 

capacities of the column. In this chapter the Reciprocal Load Method 

introduced by Bresler
5 

will be discussed. This method requires only 

uniaxial interaction diagrams before a 'cross section can be analyzed. 

4.2 Reciprocal Thrust Equation 

The derivation of the reciprocal thrust equation as presented 
5 I here was described by Bresler. A plane, S , passing through three 

points, A, B, and C, which lie on the failure surface S is defined 

for the surface sketched in Fig. 4.1. A, B, and C have the coordinates: 

A (exA ' 0, .1..) 
p 

Y 

B (0, eyB , .1...) 
p 

x 

C (0, 0, P ) 
o 

The thrust P is the axial load capacity without any 
o 

eccentricity of the section, and P and P are the load capacity at the 
x y 

uniaxial eccentricity eyB and exA ' respectively. With these definitions 

point A represents a point (p , M ) on the uniaxial load-moment intery yu' 
action curve for bending about the y axis, point B is a point on the 

uniaxial interaction diagram for moment about the x axis and C is a 

point on the interaction curve with no eccentricity and is the 

common point of both uniaxial interaction curves. 
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I y 

I 
Pu 

Fig. 4.1 Failure surface for reciprocal load (from Ref. 5) 

1 The general equation for the plane S' with the same axes p-, 
u 

De +D e +D...l.+D =0 
1 x 2 y cP 4 

u 

Substituting the coordinates of points A, B, and C which are 

points that plane S' passed through gives 

D e + 0 + D ...l. + D4 = 0 
1 xA 3P 

Y 

o + D + D .1... + D4 = 0 
2

e
yB 3p 

x 

O+O+D.l+D =0 
3P 4 

o 

Solving Eqs. 4.3, 4.4, 4.5 simultaneously in terms of 

D4 yields 

4.2 

4.3 

4.4 

4.5 
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D4 P 

D1 =-- (---2 - 1) e
xA 

P 
y 

D4 P 
D2 =-- (---2 - 1) 

eyB P x 

Equation 4.2 then can be expressed as 

D [_1_ /0 _ l)e +_1_/0 _ l)e _ Po + 11= 0 
4 e A P x e B P Y P x Y Y x u 

4.6 

Dividing Eq. 4.6 by D
4

P
o

' the equation for the plane Sl 

becomes 

e 1 e 1 ~+~ ~(~ - -) + --L(~ :p) 0 
e A P P e B P P P 

x Y 0 Y x 0 u 0 
4.7 

Point 1, on the failure surface S with the coordinates 

e = e A' e = e B and lip = lip ,is approximately equal to point 
x x y y u u1 

lion plane Sl with the coordinates e = e A' e = e B and lip lip .• 
x x y y u ~ 

Equation 4.7 after substituting coordinates of point 11 becomes 

1 ~+~ 1 ~+~ 0 - -- = 
P P P P P. P 4.8 

Y 0 x 0 ~ 0 

1 =~+~ 1 or 
p. P P P 4.9 
~ x Y 0 

Equation 4.9 is called the Reciprocal Load Equation where 

P. 
~ 

p = 
x 

P = 
Y 

P 
0 

Approximate failure load capacity of the section under 
biaxial bending with eccentricities e and e 

xy 
Uniaxial load capacity of the section under eccentricity 
e only 

y 
Uniaxial load capacity of the section under eccentricity 
e only 

x 
Axial load capacity of the section without any 
eccentricities 
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5 37 Bresler and Ramamurthy compared results using this equation 

and physical test results. They concluded that Eq. 4.9 can be used to 

predict the approximate load capacity of reinforced concrete sections 

with reasonable accuracy. Pannel1
32 

indicated that Eq. 4.7 may be 

inappropriate when small values of axial load are involved (pip < 0.06) 
o 

and the sections should be designed only for flexure in such cases. 

4.3 Uniaxial Interaction Diagram 

In order to use Eq. 4.9 one must obtain values P ,e and 
x y 

P , e which are shown on the uniaxial interaction diagram for each 
y x 

major axis of the section. Three types of stress-strain relationships 

for the ultimate compressive strength of concrete have been considered 

for derivations of uniaxial interaction functions in this study. 

Rectangular Stress Block. The compressive strength of 

concrete at ultimate load can be represented by a rectangular block 

of stress. The ACI Building Code
1 

(ACI 318-71) permits such a block 

to be considered if the maximum compression strain at an extreme fiber 

is taken as 0.003. A uniformly distributed concrete stress of 0.85f' 
c 

is assumed to act over a compression region bounded by the extreme 

compressive fiber and a line parallel to the neutral axis at a distance 

a = 8 C from the extreme fiber of maximum compression strain. The 
o 

distance, C, is the distance from the neutral axis to the point of 

maximum compression strain, and S is a factor that is used to modify 
o 

the total magnitude of compression force and to locate the centroid 

of the force. The factor S may be taken as 0.85 for concrete 
o 

strengths fl up to 4000 psi, but it is to be reduced 0.05 for each 
c 

1000 psi stress for fl greater than 4000 psi. Figure 4.2 shows the 
c 

strain distribution and the concrete stress related to this distri-

bution. Tension in concrete may be neglected according to the ACI 

Building Code. 

Modified Hognestad Stress-Strain Curve. The second type 

of concrete stress-strain relationship used was a modified Hognestad 



114 

EU = 0·003 

1&.1 
Z 
o 
N 

Neutral Axis 

..... ~ 
ffi (/) 
..J (/) 1&.1 
«> I.LI z 0:0 
~ ~N 
I.LI 0 

0·85 f~ 

§ 

strain stress 

Fig. 4.2 Rectangular stress block 

curve which has been described in Chapter 3. The curve consists of 

two portions, a parabola and a straight line. 

For strains less than € = 2f'/E , the curve is a parabola 
o c c 

with the equation 

where E 
c 

72000 R 
c 

f 
c 

Beyond the strain of € , the curve is a straight line with a slope 
o 

4.10 

down from stress fl at € to a stress 0.85f' at the strain of 0.0038. 
c 0 c 

Failure is assumed to exist when the maximum strain at the extreme 

compressive fiber reaches 0.0038. No tension is considered for 

concrete. Strain and stress distribution of this type are shown in 

Fig. 4.3. 

Parabolic-Rectangular Stress-Strain Function. A parabo1ic

rectangular stress-strain function for concrete was discussed in 

Chapter 3. In order to construct the interaction diagram between 



EU= 0·0038 

UJ 
Z 
o 
N 

o· 85f'c 

o 
strain stress 

Fig. 4.3 Modified Hognestad stress-strain curve 

ll5 

thrust and moment for uniaxial bending in this chapter, the parabolic 

curve had the same equation as the Modified Hognestad's curve ( Eq. 4.10) 

but ( was taken as 0.002 instead of 2f'/E. Beyond the strain of 
o c c 

0.002 a constant stress was used up to the failure strain of 0.0035. 

The failure strain of 0.0035 has been recommended by 
10 

the Comit~ Europe~n de Beton. Figure 4.4 shows the strain distri-

butionand the stress corresponding to the strain on the section. 

Again no tension stress in concrete was considered. 

Points on interaction diagrams were calculated by assuming 

a neutral axis location and the failure strain on the extreme 

compressive fiber, strain distribution was assumed to vary linearly 

acorss the section. The stress-strain relationships for concrete were 

used to determine stresses and forces in the segments of the section. 

These forces were integrated to get normal forces and moments about 

the centroid of the section. The same procedure was used for 

reinforcing steel except that the elastic-purely plastic stress-strain 

function for steel was used. 
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o 
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l' c 

Fig. 4.4 Parabolic-rectangular stress-strain curve 

4.4 Approximate Strength of the Section by 
Reciprocal Thrust Equation 

With the eccentricities specified about both axes, the uniaxial 

strengths corresponding to those eccentricities can be found from 

uniaxial interaction diagrams. The approximate strength of the 

section under biaxial eccentricities e ,e can be determined by using 
x y 

Eq. 4.9. 

In this section, the moments and axial load at the failure 

load stage of every specimen were used as the actual load capacity 

of the cross section. Eccentricity of the axial load on the cross 

section was taken as the ultimate moment divided by the axial load. 

All the given values are based on the thrusts and moments for the 

center portion of the members. 

With these "measured" eccentricities, the predicted strength 

was calculated using Eq. 4.9 and the uniaxial interaction diagrams. 

Table 4.1 displays three values of the approximate strength of the 



TABLE 4.1 COLUMN STRENGTH USING RECIPROCAL LOAD EQUATION 
======================== -_.----------------

~. 

** 

SpEc:fmen 

C-8 

C-5 

C-11 

C-9 

C-6 

C-12 

C-I0 

C-7 

C-13 

RC-I 

RC-2 

kC-4 

RC-5 

RC-3 

RC-9 

Rc-6 

RC-7 

I\C-il 

f' c 
psi 

4760 

4340 

4030 

4830 

4396 

5091 

4425 

44Q3 

5~97 

4881' 

4871 

5181 

5012 

5210 

470" 

4425 

4350 

4l,46 

EccentrJcity 

ECC 
s 

in. 

1.128 

2.796 

4.135 

0.704 

1.859 

2.451 

0.4lJ 

1.182 

1.759 

0.508 

1.031 

1.777 

0..-,63 

1.360 

2535 

0.968 

2.144 

1 •. ll6 

ECC 
w 

in. 

2.940 

2.295 

2."20 

1.8ul 

1.5~5 

1.568 

1.360 

1.157 

0.968 

1. 543 

1.281 

0.989 

1.8,+5 

1.594 

1.189 

2.705 

3.003 

2. Ii, I 

p 
test 
k 

57.1 

49.5 

53.2 

96.2 

92.2 

99.2 

138.2 

139.7 

152.5 

119.2 

120.3 

128.8 

~7. I 

94.3 

85.8 

53.9 

40.4 

40.4 

R~clangular Stres!' 
Block 

P * 
" k 

~46.4 

228.7 

24'1.4 

236.9 

231. 1 

260.4 

232.3 

231.4 

273 .3 

219.5 

218.9 

230.4 

221..1 

231.9 

212.4 

201.e 

199.(' 

20l.() 

Mean 

Pi 

k 

4'1.3 

53.6 

4~.1 

84.5 

78.0 

81.0 

106.2 

107.0 

124.0 

92 .8 

98.3 

102.4 

81.2 

84.7 

73.9 

46.4 

36.2 

35.1 

P/Pu 

0.863 

1.0831 

0./91 

0.878 

0.846 

0.817 

0.768 

0.766 

0.813 

0.719 

0.817 

0.795 

0.944 

0.898 

0.861 

0.861 

0.896 

0.874 

0.8392 

Standard UeviatioD 0.0497 

Coef. uf Varia lion 0.0592 

For rectangular stress block tYVe Po - 0.85f~ Ac + Asfy 

F"r parabol1c stress-atn.ln type 1'0 - l.(jf~ ''c + A.fy 

1:;"ecimen C-5 not included in .laUstical "Co,lysis. 

Hod i iied Ilognes tad's 
Stress-Strain Curve 

*-Jr 
P 

o 
k 

282.0 

261.1 

285.5 

270.8 

264.0 

298.4 

265.4 

264.3 

313.6 

252.6 

251. 9 

265.4 

258.2 

267.2 

244.2 

231. i 

228.~ 

232.7 

Pi 
k 

51.6 

56.2 

44.8 

88.1 

83.8 

81.3 

107.5 

111.1 

130.3 

97.4 

101.9 

106.5 

86.2 

90.0 

78.7 

48.2 

37.9 

36.4 

P/Pu 

0.904 

1.1351 

0.842 

0.916 

0.909 

0.880 

0.778 

0.7!15 

0.854 

0.817 

0.847 

0.827 

0.990 

0.954 

0.917 

0.894 

0.938 

0.901 

0.8802 

0.0560 

0.\1636 

Parabolic-¥ectangular 
Stress-Strain Curve 

p ** 
o 
k 

262.0 

2bl.l 

28.~. 5 

270.8 

264.0 

298.4 

265.4 

264.3 

313.6 

252.6 

251. 9 

265.4 

258.2 

267.2 

244.2 

231. 7 

228.5 

232.7 

Pi 
k 

53.1 

58.5 

46.0 

91.4 

88.1 

91.3 

118.3 

118.0 

138.5 

104.9 

109.7 

114.5 

92.5 

95.8 

83.0 

49.9 

39.3 

31.1 

P 1/1' u 

0.930 

1.1821 

0.865 

0.950 

0.956 

0.920 

0.856 

0.845 

0.908 

0.880 

0.912 

0.889 

1.062 

1.016 

0.<167 

0.926 

0.973 

0.933 

0.9287 

0.0548 

0.0590 

** l' ip 
U 0 

0.2025 

0.1896 

0.1863 

0.3552 

0.3492 

0.3324 

0.5207 

0.5286 

0.4b63 

0.4719 

0.4776 

0.4853 

0.3173 

0.3529 

0.3514 

0.2326 

0.ln8 

C.I736 

t-' 
t-' 
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section, one value for each type of stress-strain relationship of 

concrete. Table 4.1 shows the comparisons of these values and also the 

observed thrust P. when ultimate moments occurred. The ratios of 
~ 

the calculated strengths and the observed strength are listed in 

Table 4.1. 

It has been noted that for Specimen C-S the approximate value 

from Eq. 4.9 predicted much higher strength than the actual test 

strength. This indicated that the test on Specimen C-S had not 

reached a failure load stage at the end of testing, and the column 

would carry higher moments than the moments recorded when the test was 

stopped. The results from Sec. 3.6 indicated that the maximum com

pressive strain at the final load stage was lower than the strain in 

other tests and no yielding in the reinforcing bars was observed when 

strains in the bars were calculated from the equation of the plane of 

deformation. With the observations both in Sec. 3.6 and in this sec

tion, it was concluded that for Specimen C-S the test result did not 

represent the "failure load". 

As indicated in Table 4.1, the results from the rectangular 

and Hognestad stress-strain functions are lower than the observed 

strengths. For the parabolic rectangular stress-strain curve, the 

results indicate lower analytic values except for two specimens, RC-3 

and RC-S. The average of the ratio between p. and P for all specimens 
~ u 

shows that with rectangular stress block stress diagram the result 

was least accurate and parabola-rectangle function gave the best 

agreement between analysis and test results. The standard deviation 

of the ratio of P./p is between 5 percent and 5.6 percent, and the 
~ u 

coefficient of variation is between 5.9 percent to 6.4 percent for all 

three types of stress-strain curves of concrete. The highest and 

best mean value that was determined was 0.929 from the modified CEB 

curve with the standard deviation of only 5.5 percent and a coefficient 

of variation of 5.9 percent. 
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4.5 Strength of Section on Uniaxial Tests 

Six specimens with a partial circular cross section were 

tested in bending about only one major axis at a time. Listed in 

Table 4.2 are the results from the tests and the predicted failure 

moments from three types of interaction diagram analyzed for the 

same axial load level as the tests. The results indicate again that 

the parabolic-rectangular stress-strain function for concrete 

gave the most favorable agreement between test values and analytic 

values. The mean value of the ratio between the moment from this 

interaction diagram and the actual failure moment was 0.996 with 

the standard deviation of 7.3 percent and a coefficient of variation 

of 7.33 percent. It should be noted that this interaction function 

gave failure estimates higher than those measured for load about the 

weak axis, but the excess was less than 4 percent. 

The parabola-rectangle (Modified CEB) stress-strain function 

was used for the strength investigation that follows. 

4.6 Study of Other Experimental Results 

Data from two other investigators were used for further evidence 

of the reliability of the reciprocal load equation. The data include 
5 four rectangular columns tested by Bresler and 55 square and 

37 rectangular columns tested by Ramamurthy. The 18 biaxial tests 

reported here make the specimen sample total 77 for this investigation. 

The approximate strength P. was calculated by using the 
1 

reciprocal load equation for every sample. The ratio of P. and the 
1 

actual tested strength P for each column was used as an index of the 
u 

accuracy of the reciprocal load method. The mean value or the ratio 

between P. and P taken from all samples was 0.9428. The standard 
1. u 

deviation wa.s 0.0689, and the coefficient of variation was 7.31 

percent. 

These results indicate that the reciprocal load equation 

with a proper thrust-moment interaction diagram for uniaxial bending 



TABLE 4.2 FAILURE LOAD OF THE UNIAXIAL TESTS 

Frolll Interaction Oiagram 
Specimen fl P Rect. rara- Modified Ka'Mu c u StrC!Sa boltc Hognes-

Block ReeL tad 
(Ma) (M ) (~) 

psi k k-in. k-in. c 
k-in. k-in. k-in. 

C-l 4783 60.7 165.5 160 169 166.5 0.9668 

C-15 5468 109.2 194.2 181 208 202 0.9320 

C-2 4460 135.6 154.1 140 167 157 0.9805 

C-3 4386 58.4 372.2 331 350 346.5 0.8893 

C-14 5514 119.2 455.2 387 447 436.5 0.8502 

C-4 4831 155.S 424.2 304.5 371 348 0.7178 

i 0.8894 

(r 0.0886 

Coefficient of Variation 0.0996 

M 1M 
c u 

1.0211 

1.0711 

1. 0837 

0.9404 

0.9820 

0.8746 

0.9955 

0.0730 

0.0733 

~/Hu 

1.0060 

1.0402 

1.0188 

0.9310 

0.9589 

0.8204 

0.9626 

0.0734 

0.0762 

t-' 
I'\) 

o 
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gives a good prediction for cross section capacity under biaxial 

bending and compression. Further studies of the influence on accuracy 

from variables such as axial load level, percentage of steel and 

section shape will be described. 

4.6.1 Influence of Axial Load Level. Figure 4.5 shows data 

points comparing values of the ratio p./p with the relative thrust 
~ u 

level P /p for all 77 data points. More data fell below the average 
u 0 

value of p.ip ; 0.9428 for the thrust level greater than 0.4, but 
~ u 

one cannot conclude that the axial load level has any apparent trend 

that affects the accuracy of the reciprocal thrust strength calcula

tion because of the lack of data at thrust levels higher than 0.6P . 
o 

4.6.2 Influence of Percentage of Reinforcement, Aspect 

Ratio and Load Angle. The accuracy of strength predictions was not 

found to be influenced by the amount of reinforcement. The data 

included specimens with reinforcement ratios of 1 percent to 4.5 

percent. Table 4.3 shows the list of percentage of reinforcement on 

the cross section and the average ratio of P./p for each percentage. 
~ u 

These data show that the accuracy or inaccuracy of the reciprocal 

thrust estimate of P. was independent of the amount of reinforcement. 
~ 

Table 4.4 compares the relationship between the aspect 

ratio (depth/width) of the section and the predicted strength 

P./P. Again there is no evidence that the aspect ratio influences 
~ u 

the accuracy of strength calculated from the reciprocal load equation. 

The limited number of specimens with partial circular cross sections 

showed the most inaccurate result, suggesting that there might be 

some influence from the shape of the cross section. However, the low 

estimates of strength may be due not to the reciprocal thrust 

equation, but instead due to the uniaxial strength estimates. 

The relationship between P./P and the aspect ratio d/b is 
~ u 

also shown graphically in Fig. 4.6. A linear regression analysis of 

data points gives the relationship as 
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TABLE 4.3 INFLUENCE OF PERCENTAGE OF REINFORCEMENT 

Percentage of Number of Average 
Steel, Specimens P. /p 

l. u 

0.0109 9 0.951 

0.138 8 0.904 

0.0218 5 0.943 

0.0245 19 0.952 

0.0256 4 1.005 

0.0291 5 0.998 

0.0341 4 0.926 

0.0383 8 0.944 

0.0430 8 0.947 

0.0455 6 0.867 

TABLE 4.4 INFLUENCE OF ASPECT RATIO 

Aspect Ratio Number of Average 
d/b Specimens p. /p 

l. U 

1.0 35 0.949 

1. 33 4 1.005 

1.5 11 0.926 

1.8 9 0.951 

2.0 9 0.936 

2.2* 8 0.904 

* Partial Circular Cross Section 
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Fig. 4.6 Influence of aspect ratio 

P./p = 1.017 - 0.044 d/b 
~ u 

4.11 

with the coefficient of correlation equal to r = -0.577. From the 

low coefficient of correlation, one could not conclude that there was 

any influence of aspect ratio on the accuracy of the reciprocal load 

approximation. But the trend showed that at higher aspect ratios there 

might be some influence on the accuracy of the calculation. 

Listed in Table 4.5 are the skew angles and the average 

ratio of p./p at those load angles. No unique relationship between 
~ u 

skew angle and the reciprocal load equation is apparent. 

None of the parameters studied, reinforcement ratio, aspect 

ratio, thrust level, or load angle, appeared to have a predictable 

influence on the relative accuracy of the reciprocal thrust equation 

for estimating the biaxial bending strength P.. The accuracy 
~ 

of the reciprocal thrust equation is dependent only on the accuracy 

of uniaxial strength estimates for P and P that act at the 
x y 

specified eccentricities ey and ex. 
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TABLE 4.5 INFLUENCE OF LOAD ANGLE 

Skew Angle 
Number of Average 
Specimens P./P 

~ u 

100 _200 
21 0.945 

20
0 
-300 15 0.929 

300 _400 
12 0.966 

over 400 28 0.934 

4.7 Stiffness of the Cross Section 

The relationship between the measured moments about both 

principal axes and the corresponding curvatures were studied with 

graphs shown in Figs. 4.7 to 4.30. These graphs show the measured 

moment-curvature (M-t,,) results of all the columns tested. The moment 

values were the midheight moments computed from the ram pressure 

readings, and the curvatures were the average values obtained from 

five stations along the center portion of the column as described in 

Chapter 3. These average moment-curvature graphs represent the column 

section at midheight. The slope of the M-~ curve would represent the 

flexural stiffness EI of the cross section at midheight. 

The nominal computed values of EI about each axis for uncracked 

sections and for cracked sections are also shown as lines of constant 

slopein Figs. 4.7 to 4.30. The uncracked section nominal EI was com

puted as E I + E I where E = 57000~, E = 30000 ksi, I = gross cg ss c c s g 
moment of inertia of the section about the axis of bending, and I = 

s 
moment of inertia of the reinforcing steel about the appropriate axis 

of bending. Because of the low percentage of steel (0.011 and 0.013), 

the cracked section EI values were estimated as 40 percent of the gross 

stiffness E I of the section on the basis of the approximation in 
c g 

ACl l ,2 Eq. (10-8), EI = E I /2.5 Values of E I , E I and E I /2.5 cg cg ss cg 
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Fig. 4.16 Moment-curvature relationship, Specimen RC-4 
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Fig. 4.18 Moment-curvature relationship, Specimen RC-6 
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Fig. 4.22 Moment-curvature relationship, Specimen C-5 
(P IP = 0.190, load angle 45°) 
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Fig. 4.23 Moment-curvature relationship, Specimen C-6 
(P IP = 0.349, load angle 450 ) 
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Fig. 4.25 Moment-curvature relationship, Specimen C-8 
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for all specimens are shown in Table 5.1 in Chapter 5. Cracked 

section estimates of EI are shown by dashed lines in Figs. 4.7 to 4.30. 

The initial slope of the graph representing uncracked EI was changed 

to the cracked EI slope at the moment for which cracking was observed 

visually during the loading sequence. The ACI I Building Code recom-

mends in Sec. 9.5.2.2 the estimation of cracking moment, M = 
cr 

f I 
~ where f = 7.5 ~ , I = gross moment of inertia of the section, 

Yt r c g ~ 

and Yt = distance from centroidal axis of gross section to extreme 

fiber in tension. Table 4.6 shows the values of the computed cracking 

moment for each axis and the cracking moment as observed for every 

specimen. The comparison between the computed and observed cracking 

moments indicated either that the ACI Code formula underestimated the 

cracking moment or visual evidences existed well after theoretical 

cracking both for strong axis and weak axis. Only in Specimens RC-l, 

RC-5, and RC-6 were the observed strong axis cracking moments lower 

than the moments computed according to the ACI Code equation. Lower 

observed values were recorded with the load angle of 22-1/20 (i.e., 

the weak axis moment was greater than the strong axis moment). Speci

mens with load angles of 22-1/20 on both oval-shaped and rectangular 

columns had observed cracking moments closer to the computed values 

for strong axis bending. For other load angles the observed moment 

was significantly higher than the computed moment for strong axis bend

ing. The differences were greater for weak axis moment on all specimens. 

For uniaxial moment tests, the computed cracking moment was also 

less than the observed value. Observed and computed cracking moments 

of uniaxial test specimens are shown in Figs. 4.7 to 4.12. The graphs 

show that the slope of the M-~ relationship began to decrease at a 

moment between the observed and computed cracking moments. This 

observation indicates that the ACI Code equation underestimates the 

cracking moment, and the crack should occur before becoming a visible 

crack, so that the observed values were too high. In this report the 

cracking moments which are shown in Figs. 4.13 to 4.30 are the moments 



Specimen 

RC-1 

RC-2 

RC-3 

RC-4 

RC-5 

RC-6 

RC-7 

Rc-8 

RC-9 

C-5 

C-6 

c-7 
C-8 

C-9 

C-10 

C-11 

C-12 

C-13 

C-1 

C-2 

C-15 

C-3 

C-4 

C-14 

TABLE 4.6 CRACKING MOMENT 

f = 7.W 
r c 

psi 

524.2 

523.4 

541.4 

539.8 

531.0 

498.9 

494.7 

500.1 

514.2 

494.1 

497.3 

497.7 

517.4 

505.0 

498.9 

521.2 

535.1 

551.0 

518.7 

500.9 

554.6 

496.7 

521.3 

556.9 

M = f I /y * cr r g t 

M cr strong 
k-in. 

35.4 

35.3 

36.5 

36.4 

35.8 

33.7 

33.4 

33.8 

34.7 

37.9 

38.2 

38.2 

39.7 

38.8 

38.3 

40.0 

41.1 

42.3 

38.1 

40.0 

42.8 

M cr weak 
k-in. 

19.7 

19.6 

20.3 

20.2 

19.9 

18.7 

18.6 

18.8 

19.3 

27.2 

27.3 

27.4 

28.4 

27.8 

27.4 

28.6 

29.4 

30.3 

28.5 

27.5 

30.5 

*From ACI Code, Sec. 9.5.2.2. 
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M ** cr observed 

M M crstrong cr weak 
k-in. k-in. 

24.7 

113.0 

69.6 

180.7 

16.3 

24.2 

36.0 

81.5 

116.9 

97.5 

128.8 

141.5 

40.2 

54.0 

49.0 

147.3 

179.0 

257.8 

177.5 

395.9 

360.0 

75.5 

139.8 

82.4 

100.7 

91.2 

65.7 

61.9 

33.8 

50.0 

65.8 

103.8 

129.0 

100.7 

134.3 

161.4 

75.7 

117.2 

118.7 

93.3 

140.2 

143.0 

**Moment at load stage when first visible crack was noticed. 
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which were determined from ram pressures at the load stage at which 

the first visible crack was detected during the test. 

Behavior of column stiffness as influenced by various param

eters is discussed on the basis of the M-~ plots in Figs. 4.7 to 4.30. 

The influence of the thrust level and the load angle on the stiffness 

of columns will be discussed together with a comparison between the 

slope of the M-~ curve and the computed EI values before and after 

cracks occurred. 

Influence of Thrust Level. Before cracking, the nominal EI 

for bending about the strong axis agrees well with the initial slope 

of the measured M4P curve for both rectangular-shaped and oval-shaped 

columns in every level of thrust, as shown by virtually identical 

slopes to observed and analytical graphs at precracking stages. The 

slope of the M-~ curve decreased before reaching the observed cracking 

moment, as has been discussed, suggesting that cracking occurred and 

column stiffness decreased before visible cracks could be seen. The 

same phenomenon was observed for the weak axis stiffness of specimens 

under low thrust (O.2P - 0.35P ) on both rectangular columns and 
o 0 

oval-shaped columns with uniaxial eccentricities. 

For weak axis bending, as thrust levels increased for rectangu

lar columns, the nominal uncracked stiffness for bending about the weak 

axis suggested stiffer EI values than the measured values. The initial 

slope of the M~ curve for bending about the weak axis on the oval

shaped columns was smaller than the nominal EI value at every thrust 

level. 

For the cracked section, the strong axis stiffness for columns 

of both shapes showed obvious similarities between measured and esti

mated values of EI, although the computed EI was greater than the slope 

of the M~ curve after cracking. The slope of the M~ curve for bending 

about the weak axis after cracking showed that the nominal EI over

estimated the section stiffness for both rectangular and oval columns 

at all levels of thrust. 
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Influence of Nominal Load Angle. The nominal initial 

stiffness (uncracked EI) for strong axis bending showed good agree

ment with the initial slope of M-~ curves at large moment angles. The 

load angle as used here refers to the angle for which the tangent 

equals the ratio of moment about the strong axis and weak axis. At a 

moment angle of 22-1/2
0

, the measured slopes deviated from the nominal 

EI and showed stiffness softer than calculated, especially on oval

shaped columns. For weak axis stiffness of biaxial bending specimens, 

no unique influence of load angle could be detected. All specimens 

showed that the initial slope of M-~ curves was smaller than the com

puted EI. However, better agreement was found for the weak axis 

uncracked stiffness of the uniaxial test specimens. 

The observation of stiffness after cracking indicated reason

able agreement between measured and nominal EI values for bending 

about the strong axis. For weak axis values of EI, a smaller stiffness 

was detected from the slope of the measured M-m curves than from the 

estimated cracked section stiffness. Specimens with small load angles 

(22-1/2 0
) showed better agreement than specimens with large load angles, 

although no consistent relationship was apparent between load angle and 

the cracked section changes in EI. 

The investigation of the stiffness of the columns could be sum

marized wi th the observation tha t before cracking, the nominal uncracked 

section was in good agreement with the EI measured from M-~ curves 

especially for strong axis bending. The observed cracking moment was 

higher than the moment at which the initial slope of the M-cI'l curve 

started to change to indicate softer or cracked section stiffness. 

After cracking, the nominal stiffness calculation overestimated the 

EI of the section, but it was within reasonable agreement for strong 

axis bending. Better results were observed for columns under low 

thrust than under high thrust. The nominal uncracked section EI gave 

a better estimation for columns with larger moment angles than those 
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with the smaller load angles. No relationship between stiffness and 

load angle could be observed after columns cracked. 

38 M-m Curve by BIAM2. A computer program called BIAM2 prepared 

by Redwine38 was used to predict the strength and stiffness behavior 

of rectangular columns in this test program. BIAM2 was coded to analyze 

pinned end columns loaded with biaxial bending with equal end eccentrici

ties. For consistency of the analytical results and experimental results 

BIAM2 was modified to use the parabolic-rectangular stress-strain curve 

for concrete as previously described. A grid system to discretize the 

cross section was also used. Failure of columns was defined analyti

cally to occur when the maximum strain of 0.0035 on any section was 

reached. The loading input was specified so that the axial thrust was 

applied first before the eccentricities on each major axis were made 

to increase gradually at a constant load angle the same as in the test 

specimen. Total thrust was maintained constant throughout. The toler

ance limit for deflection, which was the control of convergence in 

BIAM2, was increased from 0.01 in. at early loads up to 0.05 in. near 

failure in order to improve the rate of convergence and the computa

tional stability of the analytical model. 

Analytical moment-curvature relationships for the midheight 

section of each rectangular column were plotted with dashed lines in 

Figs. 4.13 to 4.21. The M-~ plots from BIAM2 followed almost the same 

path as the observed M-m curves. The failure moments at midheight from 

BIAM2 were lower than the observed moments in every specimen with the 

maximum difference not greater than 20 percent. The convergence proce

dure did not allow BIAM2 to approach the same ultimate limit as that 

observed. A summary of the end eccentricities from BIAM2 at failure 

is shown in Table 5.8 for a comparison with the results from the actual 

test. 



C HAP T E R 5 

MEMBER STRENGTH 

5.1 Introduction 

The strength analysis in Chapter 4 considered only the cross

sectional strength of the columns. Data were taken from short column 

tests or from the position in which maximum moments were measured. No 

slenderness effect was included in the investigations that were 

reported in Chapter 4. Member strength is differentiated from cross 

section strength in that slenderness affects member strength. 

In this chapter the strength of columns subjected to biaxial 

bending will be discussed with length effects included. In general, 

the methods that use moment amplification, such as required in the 

ACI Building Code,l will be employed in order to predict slenderness 

effects. Member strength as determined according to an analysis that 

employs the reciprocal thrust equation (Eq. 4.9) will be used in con

junction with moment magnification as recommended by the ACI Building 

Code for biaxial bending in slender columns, in order to compare 
14 analytic predictions with test results. Data from Drysdale and 

from Wu
47 

for short term loading tests of slender columns will be 

included in the data as well as a set of analytical m6del column 

variable lengths, but with the same cross-sectional properties as the 

rectangular columns of this test report. Recommended procedures for 

handling the effect of length will conclude this chapter. 

5.2 Moment Magnification Required 
in the ACI Building Code 

When a column is loaded with end eccentricity, supplementary 

moment must be considered along the column length in addition to the 

moment due to end eccentricity alone. In Fig, 5.1 a column with equal 

155 
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Column Deflected Shape Moment Diagram 

Fig. 5.1 Column subjected to end eccentricities 

end eccentricities, e, is shown subjected to a moment Pe at each end. 

Secondary moments Py due to lateral displacements of the column axis 

will increase the magnitude of moment between column ends. The deflec

tion y is greatly dependent on the overall length, so that this 

secondary effect is called a "long column effect". 

If cross section strength is uniformly constant, the capacity 

of a column will decrease as length increases, because between the ends 

of the column the secondary moment Py must be sustained in addition to 

the end moment Pe. The amount of secondary moment Py increases with 

length. 

The three curves A, B, and C in Fig. 5.2 show graphs of maximum 

(midheight) moment and thrust in short, intermediate, and long columns 

under the same end eccentricity e. 

Curve 1 illustrates the strength interaction diagram for failure 

thrust and moment at all cross sections. When the thrust moment condi-

tion at any point along the column intersects the interaction curve, 
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material failure (defined as the stage at which crushing and spalling 

of concrete occurred on extreme compression fibers) of the column can 

be assumed to have occurred. The load-moment curve A for a very 

short column is a straight line. For intermediate length columns, the 

auxiliary or secondary moments Py increase nonlinearly as P increases, 

and the column fails at an axial load lower than the short column 

capacity, because of the larger moment at the failure section. Long 

column instability is represented by curve C, which suggests that a 

maximum thrust cannot be sustained until moments increase enough to 

reach the interaction diagram for strength. 

The ACI Building Code (ACI 318-71)1 requires that secondary or 

Py moments be considered for the design of slender compression members. 

The Code groups columns into three slenderness categories based on the 

slenderness ratio kl/r (effective length of column to radius of gyra

tion of cross section). A short single curvature column 1s said to 
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have a slenderness ratio less than 22 for which the effect of 

slenderness may be neglected. At the other extreme, for all com

pression members with kt/r greater than 100, a special analysis that 

includes the influence of axial load, variable moment of inertia or 

member stiffness and the affect of lateral deflection on force and 

moment must be made. Columns with kl/r less than 100 can be designed 

using the design axial load and a magnified design moment, M , defined 
c 

as (quoted from ACI 318-71, Chap. 10) 

where 

and 

M .. ~M 
c - 2 

C 
m 

P 
1 ___ u_ 

~c 

p 
c 

5.1 

~ 1.0 5.2 

5.3 

in which 

M = Momen t to be used for de'sign of compression members 
c 

M2 = Value of larger design end moment on compression member 

o = Moment magnification factor 

C 
m 

P u 
cp 

p 
c 

EI 

= A factor relating the actual moment diagram to an 
equivalent uniform moment diagram 

Cm = 0.6 + 0.4 Ml /M2 ?: 0.4 

Value of smaller design end moment on compression member, 
positive if member is bent in single curvature, negative 
if bent in double curvature 

Axial design load in compression member 

Capacity reduction factor 

Cri tical load 

Flexural stiffness of compression members 

kf, = Effective length of compression members 

In this report the columns to be analyzed are assumed to be 

pinned at their ends and subjected to equal end moments that create a 

deflected shape that is called symmetric single curvature. Single 
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curvature simply indicates curvature of a single direction as opposed 

to double curvature which would involve a point of inflection between 

ends of the column. The factor C in Eq. 5.2 is 1.0 for symmetric 
m 

single curvature, and the effective length coefficient k is also 1.0. 

Since laboratory studies will involve measured material strengths and 

dimensions, no capacity reduction factor ~ should be applicable, and 

(D will be taken as unity. The moment magnification factor 5 should be 

applied to moments that have been computed on the basis of a first 

order frame analysis. First order analysis is an analysis performed 

without considering secondary effects of lateral displacements of 

joints or members. 

For members subjected to bending about both principal axes, 

the ACI Building Code requires the amplification of moments in both 

directions, each 6 factor determined as if bending occurred separately 

about each axis. With C , k, and ~ equal to 1.0, the magnified 
m 

factor can be expressed as 

where p 
c 

= 1 5.4 
1 - p /p 

u c 

5.5 

There may be differences in the cross section stiffness factor EI 

values for each axis of bending and corresponding differences in ~ 

values for each axis of bending. 

5.2.1 EI Computed from ACI Code. The value of compression 

member flexural stiffness EI, as specified by the ACI Building Code
l 

may be taken either as 

E I 
--.£.....& + E I 

5 s s 
1 +Ad 

ACI (10-7) EI 
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or 

where 

E 
c 

E 
s 

I 
g 

I 
s 

= 

= 
= 
= 

EI 

E I 
-.£....8. 

2.5 
1 + ~d ACI (10··8) 

the sustained load factor which for short term loading 
can be taken as zero 

the modulus of elasticity of concrete 

57000 J~ in psi 

the modulus of elasticity of steel 

the gross moment of inertia of the concrete cross section 
about the centroida1 axis of bending 

the moment of inertia of reinforcement about the cen
troida1 axis of bending of the member cross section 

The discussion in the Commentary of the ACI Building Code2 and 

in Chapter 14.18 of Ref. 18 recommends that for small percentages of 

reinforcement (P
t 

about 0.01 to 0.02), Eq. ACI(10-8) gives a good 

approximation of EI, while Eq. ACI(10-7) is preferable for larger per

centages of reinforcement. The approximate EI from these two equations 

when compared to the theoretical EI computed from the slopes of thrust

moment-curvature functions gives a variety of results. The variety, 

however, tends always to predict EI softer than that measured. Since 

the EI values as computed from these equations are lower than measured 

values, the size of 0 should be larger than those determined from 

tests or from more accurate estimates of EI. No published discussions 

of the moment magnifier for columns under biaxial bending have been 

found. The study in this chapter includes the observation of moment 

magnifiers for columns under compression with bending about both axes. 

Table 5.1 contains calculated values that were used to deter-

mine EI from Building Code Eqs. (10-7) and (10-8) applied to the cross 

section properties of all 24 specimens in the test series reported 

here. Because the percentage of steel Pt 
was only 0.011, Eq. (10-8) 

gives larger values of EI than Eq. (10-7) for both strong axis and 

weak axis bending. 

Tes ts. 

5.2.2 Moment Magnifiers According to ACI Code Compared with 

With the stiffness 1is~ in Table 5.1, the critical loads, P , 
c 
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TABLE 5.1 FLEXURAL STIFFNESS ACCORDING TO ACI BULl DING CODE 

Spec 1mell !)a ta AC! E~ • ( 10-7) AC1 £.q. 00-8) 

S t1:01l1i1 Ad. Weak Axi. £1 • E t /5+E I £1 • E I /1.5 
E I I c g • s C iii 

Specimen c $ w 
ksi E I E I ~ I E I Strollg Weak Sttong Wuk 

C g • s c g $ s 

..:r "" 1.66X106 5.':'04:d05 5.6~3X105 1. 5341.10
5 6. 644X105 2.162K1C5 C·8 3933 .s .s 

C·5 3755 ... 1.586 5.159 5.473 1.485 6.344 2.064 
'" '" C-li 3961 ...: - 1.673 5.442 5.647 1.541 6.692 2.177 

., 
" 

..... ..:r 
C-9 3838 .. 10 1.621 0 5.273 :: 5.543 1.508 6.484 2.109 ... 
C-6 3719 1.596 "< 5.191 " 5.493 1.491 6.384 2.076 

..:r ..:r .... 
c·n 4067 !i .: 1 7t8 <:;; 5.586 '" S.737 1.571 6.a72 2.235 '" .; ..; 

'" 0 .... "': C-10 3792 N ... 1.6!J2 5.210 5.505 1.495 6.408 2. OS:' 
N .... 

C-7 3782 "" ... 1.591 5.196 5.':'95 1.492 6.388 2.07e 

C-D ':'187 " " 1. 769 5.753 5.839 1.604 7.076 2.301 .. .. ... ... 
..:r "" 1.21Oxl06 3.73S><105 3.752x!OS - 5 5 1.:'94'.105 

RC-l 3984 .s ..: 1.107~10 4.840xl0 

RC-2 3978 "" 0 1.208 3.729 3.748 1.106 4.832 1.492 

"" ": 
RC-4 4103 ..:r 1.246 3.847 3.824 1.129 4.984 1.S39 

'" RC-5 4035 = i 1.226 0 3.783 ..:r 3.784 1.117 4.904 1.513 .. '" .... 
RC·3 4114 1. 250 " 3.851 3.832 1.131 5.000 1.543 >C 

..:r ..:r '" RC-9 3908 1.lS7 
.... 3.664 0 3.706 1.093 4.748 1.466 ..: ..: ~ ,.; .... 

'" '" ... ... 
RC·6 3792 ..i ..i 1.152 3.555 3.636 : . Oil 4.608 1.422 

<:> '" RC-7 3759 '" L 142 3.524 3.616 1.065 4.568 1.410 

RC-8 3801 .. .. i:. 1.155 3.563 3.642 1.073 4.62(1 1.425 - ... 
"" ..:r 

..: ..: ... 
'" "! 

5.416Xl05 - 5 2.16!)xl05 
Col 3942 ...: 1.536dO 

c-tS 4215 
'" 

5.791 1.611 2.316 .. i.l ~ ..:r 1.499 2.092 C-2 3807 ... .. .... 5.231 ;:. 
" 

..:r~ ... ,.., 
6.380)(105 

C-l 3775 " .s 1.595~106 ;:; 0.; 5.491~lC5 - N "" 7.152 C-14 4233 '" 1.188 5.677 <; ~ 
C-4 3962 '" ... 1.674 5.649 6.696 

'" '" ..:r 

.. :a 
til Oil - -
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of each column for bending about each axis were computed according to 

Eq. 5.5 and a length kt = 76.25 in. The moment magnifier for bending 

about each axis was then computed using Eq. 5.4 with P taken as the 
u 

thrust that measured from ram pressure at failure. Moment magnifiers 

computed by Eqs. ACI (10-7) and (10-8) are listed in Table 5.2. 

Also included in Table 5.2 are the measured compression force, 

the end eccentricities and midheight eccentricities for both axes of 

bending. The maximum deflection and consequent maximum secondary moment 

was expected at midheight due to symmetrical loading. The measured 

moment magnifier was taken as the eccentricity at midheight divided by 

end eccentricity. 

M 
max 

M end 
= 

P e 
u max 

P e d u en 
= 

e 
max 

eend 
5.6 

The comparisons between 0
ACI 

and 6 in Table 5.2 indicated 
test 

that with low compression forces ACI Eq. (10-8) gave some unsafe values 

of magnifier (OACI/\est < 1.0), the lowest values underestimating weak 

axis magnifiers by 22 percent. For the higher axial loads, 

ACI Eq. (10-7) exaggerated the values of weak axis magnifier by as 

much as 80 percent, while ACI Eq. (10-8) gave a maximum value only 

27 percent higher than that which was measured. The comparison 

showed that for strong axis moment magnifiers both ACI Eq. (10-7) 

and ACI Eq. (10-8) gave good agreement with the test values. The 

mean value for ~ACI/5 for strong axis was 0.997 for ACI Eq. (10-7) test 
and 0.971 for ACI Eq. (10-8), with the standard deviation of 0.041 and 

0.037 respectively. Less favorable results were found for weak axis 

moment magnifiers. The mean value of 0ACI/5 was 1.171 for test 
ACI Eq. (10-7) and 0.94 for ACI Eq. (10-8), with the standard devia-

tion of 0.244 and 0.103, respectively. 

The shape of the column also had some influence on the moment 

magnifier comparison. It can be seen that larger ratios of 

~ACI/~ were obtained from rectangular shaped columns than those test 
from the oval shaped columns at the same thrust level. 



TABLE 5.2 MOMENT MAGNIFICATION FACTOR 

(Measured from Test and Computed Ba$ed on ACI Building Code) 

Teat DAta 

I Strong Axla Ece. 
Speci ... en fc Pu -~ 

(psI) (kip') End Hldhelght 

C-8 

C-5 

4760 57.1 1.036 

4340 49.~ 2.644 

C-II 4830 53.2 4.H4 

C-9 4534 96.2 0.614 

C-6 4396 92.2 I. 594 

C-12 5091 99.2 2.131 

C-10 4425 \38.2 0.315 

C-7 4403 139.7 1.018 

C-\3 5397152.51.529 

1.128 

2.796 

4.735 

0.704 

1.859 

2.451 

0.4\3 

1.182 

I. 759 

RC-I 

RC-2 

RC-4 

4886 119.2 0.399 0.508 

RC-5 

RC-3 

RC-9 

RC-6 

RC-7 

RC-8 

C-I 

4871 120.3 0.893 1.031 

5181 128.8 1.514. 1.777 

5012 87.1 0.390 0.463 

5210 94.3 1.211 

4700 85.8 2.222 

4425 51.9 0.888 

4350 40.4 1.935 

4446 40.4 4.349 

4783 60.7 

I. 360 

2.535 

0.968 

2.144 

4.716 

C-15 5468 109.2 

C-2 4460 \35.6 

C-3 4386 58.4 5.782 

C-14 5514 119.2 3.377 

C-4 4831 15.~.8 2.416 

6.375 

3.8\3 

2.723 

Weak Ax h Ecc. 
(In. ) 

End Hldhelght 

2.128 2.940 

1."03 2.29~ 

1.787 2.420 

1.414 1.861 

1. 066 I. 595 

1.000 1.5&8 

0.767 1.360 

0.616 1.157 

0.599 0.968 

\.038 1.543 

0.744 1.281 

0.499 0.989 

\.127 1.845 

1.026 1.594 

0.723 1.189 

1.860 2.705 

2.141 3.003 

1.632 2.141 

1.990 2.728 

0.999 1.77A 

0.692 I. \36 

HODlent H8.gat fter 6 

About Strong "x,. 

Acl f'1. ACI Eq. 
Test (10-7) (10-8) 

1.064 

1.0~6 

1.059 

1.114 

1.110 

1.1\3 

1.174 

1.176 

1.182 

1.230 

1.233 

I. 248 

1.157 

1.170 

1.158 

\. 096 

1.070 

1.070 

1.067 

I. \36 

1.194 

1.053 1.089 

1.048 1.057 

1.049 1.088 

1.096 1.147 

1.093 1.166 

1.093 1.150 

1.146 1.3\1 

1.148 1.161 

1.11,5 1.150 

1.170 1.273 

1.172 1.155 

1.180 1.174 

1.117 1.187 

1.114 1.123 

1.\19 1.141 

1.074 1.090 

I. 055 1.108 

1.054 1.084 

I. OS] J .103 

1.1119 1.129 

1.159 1.127 

About Veat Axh 
p Ip 

ACI Eg. ACt Eg. 
(10-7) (10-8) Test 

u 0 

1.281 

1.244 

1.255 

1.602 

1.57] 

1.592 

2.196 

2.230 

2.273 

2.735 

2.785 

3.048 

1.850 

1.8)0 

1.861 

1.421 

1.288 

1.285 

1.304 

1.665 

2.140 

1.184 1.382 0.2025 

1.165 1.273 0.1896 

1.168 1.354 0.1863 

1.367 1.316 0.35~2 

I. 354 1.496 0.3492 

1.]S4 1.568 0.3324 

1.641 1.773 0.5207 

1.656 1.878 0.5286 

1.640 1.616 0.4863 

1.887 1.487 0.4719 

1.905 1. 722 0.4776 

1.972 1.982 0.4853 

1.5\3 1.637 0.3373 

1.498 1.554 0.3529 

1.526 1.645 0.3514 

I. 287 I. 454 0.2326 

1.203 1.403 0.1768 

1.200 1.312 0.1736 

1.198 1.371 0.2150 

1. 385 I. 780 0.3450 

1.618 1.642 0.5090 

0.2230 

0.3740 

0.5470 

Load 
Angle 

(degree) 

22-1/2 

45 

67-1/2 

22-1/2 

45 

67-1/2 

22-1/2 

45 

67-1/2 

22-1/2 

45 

67-1/2 

22-1/2 

45 

67-1/2 

22 -1/2 

45 

67-1/2 

o 
o 
o 

90 

90 

90 

HeRn 

Standard Deviatlon 

6AC1/6te.t ~ACJ/\e.t 
lAC 1 Eq. (10- 7) J [AC [ Eq. (I.Q:.!!ll_ 
Strong Weak Strnng Weak 

Ax!'I Ads Axis Axtf'l. 

0.977 

0.999 

0.973 

0.971 

0.952 

0.968 

0.895 

1.0\3 

1.028 

0.966 

1.067 

1.063 

0.975 

1.042 

1.015 

1.006 

1.014 

0.987 

0.967 

1.006 

1.059 

0.9973 

0.0405 

0.927 

0.977 

0.927 

1.217 

1.051 

1.015 

I. 239 

1.187 

1.407 

1.839 

1.617 

I. 538 

I. \30 

1.178 

1.131 

0.977 

1.071 

0.979 

0.951 

0.935 

I. 303 

0.967 

0.991 

0.964 

0.955 

0.937 

0.9~0 

0.874 

0.989 

0.996 

0.919 

1.015 

1.005 

0.941 

0.992 

0.981 

0.985 

0.952 

0.972 

0.958 

0.982 

1.059 

1.1712 0.9707 

0.2437 0.0368 

0.857 

0.915 

0.863 

1.039 

0.905 

0.864 

0.926 

0.882 

I. 015 

I. 269 

1.106 

0.995 

0.924 

0.964 

0.928 

0.883 

0.857 

0.915 

0.874 

0.778 

0.985 

0.9402 

0.1030 
t-' 
(J\ 
W 



164 

5.3 Method of Computing Measured EI 

Having observed that for the biaxial bending problem in 

columns, the moment magnifier procedure of the ACI Code with simpli

fied relationships for flexural stiffness gave inconsistent results, 

alternate relationships were considered. The stiffness EI was over

estimated for low axial loads and underestimated at high axial loads 
2 

and appeared to be shape sensitive. The ACI Commentary and the 

discussion of Ref. 18 included thrust levels higher than the axial 

loads in this test program. 

The measured moment at the end and the moment at midheight of 

the column were calculated. The measured moment magnifiers for the 

two major axes were computed. The reverse procedure was then used in 

order to calculate a flexural stiffness of each column under the 

actual loading conditions. Rearranging Eq. 5.4 gives: 

P 
u 

1 1 = - -
P ~ 

5.7 
c 

P 
or P 

u = c 
1 

1 
- ~ 

5.8 

P 
n2EI 

c £2 
But 

P £2 
EI u • --

1 
1 n 2 -
5 

so 5.9 

The measured EI at the failure load stage was determined with 

Eq. 5.9. Table 5.3 shows intermediate calculations in this procedure 

and the resulting value of EI. Also tabulated in Table 5.3 is the 

ratio between EI and the computed EI, where EI is the gross flexural 
g g 

stiffness based on the product of concrete stiffness and the gross 

moment of inertia of the cross section. This EI ratio was plotted 
g 

against the axial load ratio P /P in Fig. 5.3. The data are rather 
u 0 



Specimen P IP 
u 0 

C-8 0.2025 
C-5 0.1896 
C-lI 0.1863 

C-9 0.3552 
C-6 0.3492 
C-12 0.3324 

C-I0 0.5207 
C-7 0.5:<86 
C-lJ 0.4863 

RC-l 0.4719 
RC-2 0.4776 
RC-4 0.1.853 

RC-5 0.337J 
RC-3 0.3529 
RC-9 0.3514 

Rc-6 0.2326 
RC-7 0.1768 
RC-8 0.1736 

C-l 0.215 
C-15 0.345 
C-2 0.509 

C-3 0.223 
C-14 0.374 
C-4 0.547 

TABLE 5.3 FLEXURAL STIFFNESS COMPUTED FROM TEST DATA 

StIong Axis Weak Axis EI lEI 
P P g 

P !i P 
u EI P ~ ----Y. EI ; -1 !iw u s c 1-- s c 1-.!. w Strong Axis Weak Axis 

kips in. kips 
fl 

k-in: in. kips 
Ii 

k-in7 

57.1 1.089 698.7 4.116xl0
5 1.382 206.6 1.217Xl0 

5 
4.035 4.440 

49.5 1.057 917.9 5.407 1. 27 3 230.8 1.360 2.933 3.793 
53.2 1.088 657.7 3.874 1.354 203.5 1.199 4.319 4.539 

96.2 1. 147 750.6 4.422 1. 316 400.6 2.360 3.666 2.234 
92.2 1.166 647.6 3.815 1.496 278.1 1.638 4.183 3.169 
99.2 1.150 760.5 4.480 1. 568 273.8 1.613 3.835 3.464 

138.2 1.311 582.6 3.432 1. 773 317.0 1.867 4.668 2.791 
139.7 1.161 1007.4 5.934 1.878 298.8 1.760 2.691 2.952 
152.5 1.150 1169.2 6.888 1. 616 400.1 2.357 2.568 2.441 

119.2 1.273 555.8 3.274 1.487 364.0 2.144 3.696 1.742 
120.3 1.155 896.4 5.281 1. 722 286.9 1.690 2.287 2.207 
128.8 1 .17~ 869.0 5.119 1.982 260.0 1. 532 2.434 2.919 

1!7 . I 1.187 552.9 3.2~7 1.637 223.8 1.318 3.764 2.870 
94. ) 1.123 861.0 5.072 1.554 264.5 1.558 2,1.65 2.476 
85.1! 1 .141 694.3 4.090 1.645 LI8.8 1.289 2.902 2.843 

53.9 1.090 652.8 3.846 1.454 172.6 1.017 2.995 3.496 
40.4 1.108 414.5 2.441. 1.403 140.6 0.828 4.676 4.256 
40.4 1.084 521.4 3.071. 1. 312 169.9 1.001 3.760 3.559 

60.7 1.371 224.3 1.321 4.100 
109.2 1. 780 21,9.2 1.468 3.945 
135.6 1.640 347.5 2.047 2.555 

58.4 1.10) 625.4 3.684 4.330 
119.2 1.129 1043.2 6.11.5 2.910 
155.8 1.127 1382.6 8.145 2.022 

t-' 
0' 
VI 
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scattered, but a trend of the relationship between EI lEI and 
g measured 

P IP can be observed. 
u 0 

A linear regression analysis was made using P IP as an inde
u 0 

pendent variable and EI lEI d as a g measure dependent variable. The 

results showed that the relationship between EI lEI d and 
g measure 

P Ip 
u 0 

could be approximated. 

EI lEI 
g measured ~ 5.017 - 4.958 P Ip 

u 0 
5.10 

or approximately 

EI 
EI = ----~g~--~ 

5(1 - P Ip ) 
u 0 

5.11 

With the adjustment of EI using Eq. 5.11, when P Ip is less 
u 0 

than 0.5, the computed value of EI will be less than that computed 

from ACI Eq. (10-8). The values in Table 5.2 show that for higher 

levels of thrust, ACI Eq. (10-8) gave a safe estimation of moment 

magnifiers, so ACI Eq. (10-8) may be applied for the thrust levels 

greater than 0.5. The dotted line graph of Fig. 5.3 indicates that a 

value 6 instead of 5 in the denominator of Eq. 5.11 provides a lower 

bound for all data. 

Table 5.4 contains a list of the stiffness and moment magnifier 

values computed from Eq. 5.11 plus the ratios between computed and 

measured values. The ratio 0E 5 11/0 d gave a mean value of q.. measure 
0.994 for strong axis and 1.033 for weak axis, with the standard devia-

tion of 0.0296 and 0.1087, respectively. The overall average ratio on 

both axes was 1.0135, with a standard deviation of 0.08 

5.4 Column Strength Analysis Including 
Length Effects Using Moment 
Magnifier Method 

5.4.1 Specimens in This Test Program. The 24 specimens of 

this series of tests consisted of intermediate length columns with 
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TABLE 5.4 MOMENT MAGNIFIER BASED ON FLEXURAL STIFFNESS FROM EQ. 5.11 

EI5 •11 = 
EI 

8 
5(i - pu/po) 

Strong Axis Weak Axis 6 16 
5.11 test 

Specimen P P Ip 
EI5• 11 Pc 5.11 "5.11 Ii EI 5•11 Pc 5.11 55 •11 

b Strong Weak u u a tes t test 

C-8 57.1 0.2025 4.166)(10 5 707.2 1.088 1.089 1.355)(105 230.0 1.330 1.382 0.999 0.962 
C-5 49.5 0.1896 3.914 664.4 1.081 1.057 1.273 216.1 1. 297 1.273 1.023 1.019 
C-ll 53.2 0.1863 4.112 698.0 1.083 1.088 1.338 227.1 1.306 1.354 0.995 0.965 

C-9 96.2 0.3552 5.028 853.5 1.127 1.147 1.636 277.7 1.530 1. 316 0.983 1.163 
C-6 92.2 0.3492 4.905 832.6 1.125 1.166 1.595 270.8 1.516 1.496 0.965 1.013 
C-12 99.2 0.3324 5.147 873.7 1.128 1.150 1.674 284.2 1.536 1.568 0.981 0.980 

C-10 138.2 0.5207 4.799 814.6 1.204 1.311 2.174 369.0 1.599 1. 773 0.918 0.902 
C-7 139.7 0.5286 6.776 1150.3 1.138 1.161 2.204 374.1 1.596 1.878 0.980 0.849 
C-13 152.5 0.4863 6.887 1169.1 1.150 1.150 2.240 380.2 1.670 1.616 1.000 1.033 

RC-1 119.2 0.4719 4.582 777 .8 1.181 1.273 1.415 240.2 1.985 1.487 0.928 1.335 
RC-2 120.3 0.4776 4.625 785.1 1.181 1.555 1.428 242.4 1.901 1.722 1.023 1.104 
RC-4 128.8 0.4853 4.842 821.9 1.186 1.174 1.495 253.8 2.030 1.982 1.010 1.024 

RC-5 87.1 0.3373 3.700 628.1 1.161 1.187 1.142 193.9 1.816 1.637 0.978 1.109 
RC-3 94.3 0.3529 3.863 655.8 1.168 1.123 1.192 202.3 1.873 1.554 1.040 1.205 
RC-9 85.8 0.3514 3.660 621.3 1.160 1.141 1.130 191.8 1.809 1.645 1.018 1.100 

RC-6 53.9 0.2326 3.002 509.6 1.118 1.090 0.9265 157.3 1.521 1.454 1.026 1.046 
RC-7 40.4 0.1768 2.775 471.1 1. 094 1.108 0.8562 145.3 1.385 1.403 0.987 0.987 
RC-8 40.4 0.1736 2.795 474.5 1.093 1.084 0.8623 146.4 1.381 1.312 1.008 1.053 

C-1 60.7 0.2150 1.3799 234.2 1.350 1.371 0.985 
C-15 109.2 0.345 1. 768 300.1 1.572 1.780 0.883 
C-2 135.6 0.509 2.131 361. 7 1.600 1.642 0.974 

C-3 58.4 0.223 4.106 697.0 1.091 1.103 0.989 
C-14 119.2 0.374 5.712 969.6 1.140 1.129 1.010 
C-4 155.8 0.547 7.391 1254.7 1.142 1.124 1.016 
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two types of cross-sectional shapes. Nine rectangular shaped columns 

and nine oval shaped specimens were tested under biaxial bending 

moment and compression. The slenderness ratio t/r of rectangular 

shaped columns was 27.5 for strong axis bending and 50 for weak axis 

bending, if r is taken as the radius of gyration of the uncracked 

transformed cross section. The oval shaped columns had slenderness 

ratios of 24.3 and 43 in the strong and weak axis directions, 

respectively, if r were taken again as the radius of gyration of the 

uncracked transformed section. 

Moment magnifiers computed from the use of AC1 Eq. (10-7) and 

AC1 Eq. (10-8) were used to magnify the measured end eccentricities 

at the failure thrust stage. Then column strength according to these 

eccentricities was computed with the reciprocal load equation dis

cussed in Chapter 4 as rewritten below: 

1 
P. 

1 

= 
1 
p 

x 
+ 1 

p 
y 

1 
p 

o 
5.12 

Also determined were the column capacities using moment 

magnifiers as proposed by Eq. 5.11. The computed strengths are 

listed in Table 5.5 for comparison with the actual test loads. The 

measured end eccentricities and moment magnifiers were already shown 

in Table 5.2 and Table 5.4. 

From Table 5.5, the computed strength of C-5 is included 

even though the capacity was felt to be larger than the maximum 

test value, as previously mentioned in Chapters 4. The 

strength of C-5 was the only overestimated strength obtained from 

the use of Eq. 5.11. The E1 value from AC1 Eq. (10-7) gave good 

results at lower levels of axial load, but grossly underestimated the 

strength at higher thrusts. The use of AC1 Eq. (10-8) gave good 

approximations at high axial loads, but overestimated the strength 

when the tnrust was low. Overoptimistic strength estimates cannot 

be tolerated for design purposes. The E1 values from Eq. 5.11 resulted 

in estimates of member strength closer to measured values and also 

predicted less strength than any of the observed values except the 
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TABLE 5.5 COLUMN STRENGTH USING MOMENT MAGNIFIER METHOD 

p. P /P. 
Specimen 1 

P 
test 1 

P)PO ACI Eq. ACI Eq. test ACI Eq. ACI Eq. 
(10-7) (10-8) Hq. 5.11 (10-7) (10-8) Eq.5.11 

C-8 58.74 65.26 55.77 57.1 0.972 0.875 1.024 0.2025 
C-5 59.49 63.12 56.76 49.5 0.832 0.784 0.872 0.1896* 
C-11 49.86 52.84 47.53 53.2 1. 067 1.007 1.119 0.1863 

C-9 74.99 88.84 78.93 96.2 1.283 1.083 1.219 0.3552 
C-6 85.93 95.22 87.84 92.2 1.073 0.968 1.050 0.3492 
C-12 91.25 101.18 92.78 99.2 1.087 0.980 1.069 0.3324 

C-10 101. 31 126.37 128.32 138.2 1.364 1.094 1.077 0.5207 
C-7 106.31 126.47 129.00 139.7 1.314 1.105 1.083 0.5286 
C-13 114.96 137.91 136.61 152.5 1.327 1.106 1.116 0.4863 

RC-1 51.24 85.17 80.14 119.2 2.326 1.400 1.487 0.4719 
RC-2 74.39 102.78 102.80 120.3 1. 617 1.170 1.170 0.4776 
RC-4 89.89 114.37 112.86 128.8 1.433 1.126 1.141 0.4853 

RC-5 80.41 99.26 82.27 87.1 1.083 0.877 1.059 0.3373 
RC-3 83.45 98.17 81.58 94.3 1.130 0.961 1.156 0.3529 
RC-9 77.92 86.43 78.92 85.8 1.101 0.993 1.087 0.3514 

RC-6 52.11 59.54 47.35 53.9 1.034 0.905 1.138 0.2326 
RC-7 44.03 48.06 39.97 40.4 0.918 0.841 1.011 0.1768 
RC-8 39.12 41.35 36.57 40.4 1. 033 0.977 1.105 0.1736 

Mean 1.2448 1.0275 1.1242 

Standard Deviation 0.324 0.218 0.104 

*C-5 did not fail according to Sec. 4.4. 
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aforementioned C-5 result. The average ratio between P and p. 
test ~ 

using Eq. 5.11 (excluding Specimen C-5) was 1.124 with a maximum value 

of 1.49 and a minimum of 1.01, the standard deviation was 0.104. ACI 

Eq. (10-8) gave better mean values of P t tiP. than did Eq. 5.11, but es ~ 

with more scatter in the data (mean = 1.028 and standard deviation = 

0.218). ACI Eq. (10-7) gave the worst comparison. The maximum ratio 

for Specimen RC-l involved a measured weak axis magnifier that was 

33 percent greater than that predicted by the use of Eq. 5.11 for EI. 

5.4.2 Slender Columns Tested by Others. Thirty-three slender 

column test results reported by others were analyzed, twenty-two 
14 columns were from the experiments reported by Drysdale and eleven 

47 
reported by Wu. All columns were square columns with the same 

slenderness ratio of tlr = 105 and with approximately a 3 percent 

reinforcement ratio. The details of cross section properties and 

loading conditions for these columns are given in Appendix A. 

Another set of imaginary columns named RC-lA to RC-9A were 

modeled in a computer aided analysis, so that they had the same 

dimensions and reinforcement as the rectangular specimens described 

in Chapter 2, but with the length increased to 108 inches. The 

longer length gave a slenderness ratio of 75 about the weak axis. The 

computer program BIAM2 written by Redwine38 was used to provide the 

analytical predictions for these columns. The nominal loadings for 

the column were input so that there were three load levels, 0.2P , 
o 

0.4P , and 0.6P , and nominal moment angles of 22-1/2, 45, and 
o 0 

67-1/2 degrees for each load level. These imaginary column loadings 

were the same as the proposed loadin~of the actual test program 
I reported here. The concrete strength f = 4500 psi was assumed to 
c 

possess a parabola-straight line stress-strain relationship. 

(a) The Computation of Column Flexural Stiffness. Flexural 

stiffness of columns described in Sec. 5.4.2 were computed using 

ACI Eq. (10-7), Eq. (10-8), and Eq. 5.11. The calculated stiffnesses 
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are tabulated in Table 5.6, as well as the critical load P computed 
c 

from Eq. 5.5. 

From Table 5.6, the stiffnesses computed from ACI Eqs. (10-7) 

and (10-8) and Eq. 5.11 can be called conservative, because 

each gives very large moment magnifiers o. With the "soft" EI values 

and large slenderness ratio, the computed critical loads shown in 

Table 5.6 were lower than the actual failure loads reported from 

experiments. This indicates that the moment magnifier method cannot 

be applied to these long columns under biaxial bending unless an 

appropriate adjustment for the stiffness of columns can be made. 

These results do indicate that design applications of ACI Eq. (10-7), 

(10-8), or Eq. 5.11 would give "too safe" results at least for the 

very slender columns. 

(b) Strength of Columns Predicted by BIAM2. The strength of 

Drysdale and Wu specimens were computed analytically using computer 
14 very slender column such as the Drysdale 

38 program BIAM2. For a 

d W 47 . h l' 1 an u specLmens, t e ana YSLS converged s owly. I t was noted tha t 

the control tolerance limit for deflections which were the control 

of convergence in BIAM2 needed to be increased up to 0.1 in. in 

order to let the program converge. With the control deflection 

tolerance of 0.1 in., the analytical results of strength of Drysdale 

and Wu specimens are shown in Table 5.7. Comparing to the test 

strength, BIAM2 gave a reasonable result although for the 6-1/4 and 

7-1/2 in. column from Wu specimens the program overestimated the 

strength of the columns as much as 17 percent. 

The BIAM2 analysis also was used to predict the strength 

of rectangular columns tested in this report. Input for that study 

was adjusted so that the axial thrust could remain constant at the 

failure thrust while the eccentricities about each principal axis 

were increased gradually until failure was predicted. The results 

from BIAM2 for RC-1 to RC-9 are recorded in Table 5.8. The predicted 

member strength from BIAM2 showed good agreement with test results, 



TABLE 5.6 FLEXURAL STIFFNESS 

EI* 1 - P Ip 
Specimen PIPo AC1 Eq. ACt E'l' P b 

u c 
Eq. 5.11 0 65_11 (10-7) (10-8) Eq. 5.11 u ACI 10-1 ACI 10-8 

XI05 XI0 5 
k k k k 

Drysdale Seecimens 

AIC 0.2647 1.0808 0.7406 0.5036 43.83 30.04 20.43 37.6 1.035 ** ** 
AID 0.2B42 1.0803 0.7396 0.5166 43.81 29.99 20.95 40.3 12.481 ** ** 
A2A 0.2788 1.0794 0.7377 O. >114 43.78 29.92 20.74 39.4 9.995 ** ** 
A2B 0.2831 1.0794 0.7377 0.5145 43.78 24.92 20.81 40.0 11. 582 ** ** 
Ale 0.2650 1.0869 0.7529 0.5122 44.08 30.53 20.77 38.5 7.900 ** ** 
A3D 0.2588 1.0869 0.7529 0.5079 44.08 30.53 20.60 31.6 6.802 ** ** 
BIC 0.2565 1.0622 0.7035 0.4731 43.08 28.53 19.19 34.0 4.744 ** ...... 
BID 0.2595 1.0622 0.7035 0.4750 43.08 28.53 19.26 34.4 4.963 ** ** 
R2C 0.2761 1.0702 0.7194 0.4969 43.40 29.18 20.16 37.7 7.614 ** ** 
820 0.2761 1.0702 0.7194 0.4969 43.40 29.18 20.16 37.7 7.614 ** ** 
C2A 0.2791 1.0798 0.7387 0.5123 43.79 29.96 20.78 39.5 10.207 ** ** 
C28 0.2769 1.0798 0.7387 0.5108 43.79 29.96 20.72 39.2 9.540 ** ** 
C3A 0.2815 1.0916 0.7622 0.5304 44.27 30.91 21. 51 41.6 16.581 ** ** 
C38 0.2686 1.0916 0.7622 0.5211 44.27 30.91 21.13 39.7 9.687 ** ** 
EIC 0.2296 1.0808 0.7406 0.4807 43.83 30.04 19.50 32.6 3.903 ** ** 
E1D 0.2365 1.0808 0.7406 0.4850 43.83 30.04 19.67 33.6 4.284 ** ** 
E2A 0.2177 1.1043 0.7876 0.5034 44.79 31.94 20.41 33.7 4.039 ** ** 
!28 0.2158 1.1043 0.7876 0.5022 44.79 31.94 20.37 33.4 3.932 ** ** 
FIA 0.3965 1.0920 0.7631 0.6322 44.29 30.95 25.64 58.7 ** ** ** 
FIB 0.3762 1.0920 0.7631 0.6117 44.29 30.95 24.61 55.7 ** ** ** 
F2A 0.3799 1. 095 7 0.7704 0.6212 44.44 31.24 25.19 57.0 *" ** ** 
F2B 0.3799 1.0957 0.7704 0.6212 44.44 31.24 25.19 57.0 ** ** ** 

WU Sl!ecimena 

1 0.2291 0.3424 0.2394 0.1553 25.01 17.48 11.34 19.0 4.161 ** ** 
2 0.2207 1.0300 0.7566 0.4B54 41.77 30.68 19.68 31.8 4.187 ** ~ .. 
3 0.1973 2.5539 1. 851>6 1.1565 67.14 48.81 30.40 45.0 3.031 12.811 ** 
4 0.2065 5.4252 3.86&1 2.4374 99.05 70.62 44.50 69.0 3.296 43.593 ** 

10 0.2117 ! .0300 0.7566 0.4799 41. 77 30.66 19.46 30.5 3.706 170.444 *1' 
16 0.2093 1.0286 0.7536 0.4767 41.72 30.57 19.33 30.0 3.560 53.632 ** 
16 0.2239 1.0220 0.7406 0.4771 41.45 30.04 19.35 31.3 4.084 ** "* 
26 0.1783 0.3615 0.2776 0.1689 26.40 20.27 12.33 18.3 3.259 10.289 ** 
27 0.1871 1.0904 0.8774 0.5397 1,4.22 35.58 21.89 33.5 4.125 17.106 *. 
28 0.1700 2.6966 Z .1425 1.2907 70.90 56.:13 33.93 47.6 3.069 6.604 .., 
29 0.1535 5.7123 4.4421 2.6238 104 .30 81.10 47.90 62.7 2.507 4.406 ~ 

*ACI F.q. 00-7) E1 ~ E I /5 + ~ L **P u:> 1.'" 
...... 

c II s 9 
-....j 

W 
ACt Eq. 00-8) EJ = E,,\/2.5 
Eq. 5.11 £1 • E"lg/5(1 - 1.'/1.'0) 
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TABLE 5.7 STRENGTH OF COLUMN FROM BIAM2, DRYSDALE AND WU SPECIMENS 

End Eccentricity P 
Specimen u 

e e (from test) x y 
in. in. kips 

Drysdale* 

f' = 4000 psi 0.707 0.707 37.0 c 
0.383 0.924 40.0 

0.574 1.386 38.6 

0.191 0.462 57.0 

Wu 

1 0.662 0.662 19.0 

26 0.563 0.975 18.3 

2,10,16 0.885 0.885 31.8 

27 0.750 1.300 33.5 

3 1.110 1.110 45.0 

28 0.938 1.625 47.8 

4 1.325 1.325 69.0 

29 1.125 1.950 62.7 

*A11 Drysdale specimens were the same dimension 
with small variation of concrete strength 
(3500 psi to 4400 psi). Concrete strength of 
4000 psi was assumed in the input data for 
BIAM2 to represent all the Drysdale spectmens. 

P PB1AM2 u 
(BIAM2) P test 

kips .,.-

36.9 0.997 

36.9 0.923 

30.0 0.777 

51.9 0.911 

19.1 1.005 

19.5 1.066 

31.6 0.994 

32.5 0.970 

49.7 1.104 

51.0 1.067 

73.75 1.069 

72.0 1.148 



TABLE 5.8 

Specimen Axial Load 
(kips) 

RC1 119.2 

RC2 120.3 

RC3 94.3 

RC4 128.8 

RC5 87.1 

RC6 53.9 

RC7 40.4 

Rc8 40.4 

RC9 85.8 

STRENGTH OF RC COLUMNS FROM BIAM2 

Tes tEnd Ecc. BIAM2 End Ecc. 

e e e e s w s w 

0.399 1.038 0.320 0.8336 

0.893 0.744 0.880 0.7330 

1.211 1.026 1.250 1.0600 

1.514 0.499 1.480 0.4869 

0.390 1.127 0.440 1. 2707 

0.888 1.860 0.890 1.8663 

1.935 2.141 1.970 2.1808 

4.349 1.632 4.090 1.5378 

2.222 0.723 2.260 0.7345 

Ecc
B1AM2 

Ecc test 

0.802 

0.985 

1.032 

0.978 

1.128 

1.002 

1.018 

0.940 

1.017 

I-' ..... 
0\ 
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involving a maximum overestimate of 13 percent and an underestimate 

not greater than 20 percent of the observed strength. For an overall 

comparison with Wu, Drysdale, and the rectangular columns reported 

here, the average ratio between analytical strength and test strength 

was 0.997 with the standard deviation of 0.091 indicating good 

agreement. 

5.5 Member Strength Using Deflection Limit 

It has been observed that the moment magnifier method for 

column strength is not an accurate approach for the biaxial bending 

problem with very slender columns. In this section another study is 

reported using the available experimental data to substantiate an 

alternate approach. 

With seventeen of the Drysdale and Wu specimen tests on 

square columns subjected to equal eccentricities on both axes (i.e., 
o load angle = 45 ), a backward computation was performed as follows: 

If P 

(1) The test strength was taken as P., and P was computed from 
~ 0 

reported section properties. P and P could be determined 
x y 

from the reciprocal load equation. 

+ 1 = P. P P P (5.12) 
1 X Y 0 

- P (Load angle = 450
) x y 

2 1 1 = + P Pi P x 0 

5.13 

P = 5.14 x 
P 

0 

(2) With the calculated P , the failure eccentricity e could be x x 
located on the interaction diagram for the section. 

(3) Assuming that the column fails at midheight where the maximum 

moment was expected, the deflection at midheight becomes 
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TABLE 5.9 COLUMN STRENGTH OF DRYSDALE AND WU SPECIMENS 
WITH EQUAL END ECCENTRICITIES 

1 
fl e -e EI EI

lO
_

7 Specimen P P L + 1 p II: end 6/L total PIPo 
6 PIP P 

test e eend u 0 P P 11 11 L L c c (Xl05) EI u 0 11 test 

Ale 37.6 142.05 29.73 59.46 2.050 0.707 0.0086 0.01216 0.2647 2.90 0.655 57.4 1.4l53 0.7637 

AID 40.3 141.8 31.38 62.76 1.886 0.707 0.0076 0.01075 0.2842 2.668 0.625 64.48 1.5899 0.6795 

A2A 39.4 141.3 30.81 61.26 1.930 0.707 0.0078 0.01103 0.2788 2.730 0.634 62.15 1.5325 0.7043 

A2D 40.0 141.3 31.17 68.34 1.897 0.707 0.0078 0.01103 0.2831 2.683 0.627 63.80 1.5731 0.6862 

AlC 38.5 145.3 30.44 60.88 2.039 0.707 0.0085 0.01202 0.2650 2.884 0.653 58.96 1.4538 0.7476 

A3D 37.6 145.3 29.87 59.74 2.098 0.707 0.0089 0.01259 0.2588 2.967 0.663 56.71 1.3983 0.7773 

Ole 34.0 132.55 27.06 54.12 2.154 0.707 0.0093 0.01315 0.2565 3.ot.7 0.672 50.60 1. 2477 0.8513 

DID 34.4 132.55 27.31 54.62 2.123 0.707 0.0091 0.01287 0.2595 3.003 0.667 51. 57 1.2716 0.8353 

D2e 37.7 136.55 '9.54 59.08 1.964 0.707 0.0081 0.01146 0.2761 2.778 0.640 58.91 1.4526 0.7367 

D2D 37.7 136.55 29.54 59.08 1.964 0.707 0.0081 0.01146 0.2761 2.778 0.640 58.91 l.4526 0.7367 

19.0 82.95 15.46 30.92 1.808 0.662 0.0099 0.01400 0.2291 2.731 0.634 29.97 0.4H)I~ 0.8343 

2 31.8 144.06 26.05 52.10 2.477 0.885 0.0102 0.01442 0.2207 2.799 0.643 49.46 1. 2196 0.8445 

3 45.0 228.1 37.59 75.18 3.518 1.110 0.0124 0.01754 0.1973 3.440 0.709 63.47 2.4l41 1. 0579 

4 69.0 334.21 57.19 114.38 4.039 1.325 0.0117 0.01655 0.2065 3.0/.8 0.672 102.68 5.6238 0.9647 

10 30.5 144.06 25.17 50.3/, 2.603 0.885 0.0110 0.01556 0.2117 2.941 0.660 46.21 1.1394 0.9040 

16 30.0 143.31 24.81 49.62 2.639 0.885 0.0112 0.01584 0.2093 2.981 0.665 1.5.1I 1.1123 0.9248 

16 31.3 139.81 25.57 51.14 2.459 0.885 0.0101 0.01428 0.2239 2.779 0.641 1.8.83 1.2040 O. fII.88 
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(4) Moment magnification was taken as the ratio e /e 
x end 

(5) Computed flexural stiffness: EI was computed using the same 

procedure described in Sec. 5.3 (the reverse procedure with 

Eqs. 5.7 - 5.9). 

(6) Values of 6/L for both axes were computed using 6 from step 3 

to find the total 6/L, 6/L total = J(6 /L)2 + (~ /L)2 x ' y 

A step-by-step computation is tabulated in Table 5.9. The 

study on these slender columns subjected to biaxial bending then was 

considered with two different column behavior parameters, the column 

stiffness EI and a deflection limit at fai1ure,6/L. 

5.5.1 Column Stiffness EI. Table 5.9 contains the list of 

EI values computed backward from failure loads of Drysdale and Wu 

square columns loaded by equal eccentricities on both principal axes. 

A ratio between El test and EI computed according to ACI Eq. (10-7) was 

found and also tabulated in Table 5.9. A linear relationship between 

the ratio EI10_7/Eltest and the relative thrust level was found to be 

EI
1O

_
7 = 1.6(1 - 2 P /p ) 5.15 

EI u 0 
test 

EI 
EI

1O
_
7 5.16 or = 1.6(1 - 2 P /p ) test 

u 0 

Using Eq. 5.16 to compute the moment magnifier for specimens 

with unequal eccentricities, the reciprocal load method for column 

strength then was applied in order to calculate the column strength 

P.. The calculated strength P. and the actual strength P for 
~ ~ test 

Drysdale and Wu slender columns are shown in Table 5.10. The results 

obtained using Eq. 5.16 for the flexural stiffness showed inconsistent 

accuracy of the computed strength. The result of using Eq. 5.16 was 

good for calculating the strength of columns under equal eccentricities. 

For Drysdale columns with unequal moments, Eq. 5.16 overestimated the 
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TABLE 5.10 COLUMN STRENGTH BY MOMENT MAGNIFIER ME'lHOD 
USING EQ. 5.16 

EI 
EI

lO
_

7 
= 

2P IP ) 1.6(1 -
U 0 

Specimen f' I' 
Eccentrici t! 

6 
Pi 

c 0 e " P P Pi P test -p--
c y x y test 

Drysdale Seecimens 

A1C 3890 142.05 0.707 0.707 2.8244 60.43 60.43 38.4 37.6 1.021 
AID 3880 141.8 0.707 0.707 2.7408 61.62 61.62 39.4 40.3 0.978 
A2A 3860 141.3 0.707 0.707 2.7558 61.21 61.21 39.1 39.4 0.992 
A2B 3860 141.3 0.707 0.707 2.7339 61.55 61.55 39.3 40.0 0.983 
A3C 4020 145.3 0.707 0.707 2.9145 60.46 60.46 38.2 38.5 0.992 
A3D 4020 145.3 0.707 0.707 2.9272 60.29 60.29 38.0 37.6 1.011 
BIC 3510 132.55 0.707 0.707 2.5970 60.08 60.08 38.8 34.0 1.141 
BID 3510 132.55 0.707 0.707 2.5948 60.11 60.11 38.9 34.4 1.131 
B2c 3670 136.55 0.707 0.707 2.6477 60.98 60.98 39.3 37.7 1.042 
B2D 3690 136.55 0.707 0.707 2.6477 60.98 60.98 39.3 37.7 1.042 
C2A 3870 141.55 0.383 0.924 2.7595 86.42 50.90 41.4 39.5 1.048 
C2B 3870 141.55 0.383 0.924 2.7706 86.27 50.75 41.3 39.2 1.053 
C3A 4120 147.8 0.383 0.924 2.9153 87.90 50.71 41.1 41.6 0.988 
C3B 4120 147.8 0.383 0.924 2.9761 87.04 49.95 40.4 39.7 1.018 
EIC 3890 142.05 0.574 1.386 2.8071 69.40 34.19 27.3 32.6 0.837 
E1D 3890 142.05 0.574 1.386 2.8281 69.09 33.89 27.1 33.6 0.807 
E2A 4400 154.80 0.574 1.386 3.1222 70.18 30.82 24.9 33.7 0.739 
E2B 4400 154.8 0.574 1.386 3.1073 70.40 31.02 25.0 33.4 0.749 
FIA 4130 148.05 0.191 0.462 1. 7825 124.61 100.06 88.8 58.7 1.513 
FIB 4130 148.05 0.191 0.462 1.9930 122.29 95.89 84.4 55.7 1.515 
'2A 4210 150.05 0.191 0.462 1.9724 124.19 97.57 85.9 57.0 1.507 
F2B 4210 150.05 0.191 0.462 1.9724 124.19 97.57 85.9 57.0 1.507 

Wu Sl!ecimens 

1 4060 82.95 0.662 0.662 2.9289 29.33 29.33 17.8 19.0 0.937 
2 4060 144.06 0.885 0.885 3.1285 48.03 48.03 28.8 31.8 0.906 
3 4100 228.10 1.110 1.110 2.8503 81.36 81.36 49.5 45.0 1.100 
4 4140 334.21 1.325 1.325 2.8920 118.71 118.71 72.2 69.0 1.046 

10 4060 144.06 0.885 0.885 3.0636 48.83 48.83 29.4 30.5 0.964 
16 4030 143.31 0.885 0.885 3.0216 49.13 49.13 29.6 30.0 0.987 
16 3890 139.81 0.885 0.885 3.0051 48.31 48.31 29.2 31.3 0.933 
26 5460 102.64 0.563 0.975 3.4898 34.64 16.11 12.3 18.3 0.672 
27 5460 179.06 0.750 1.300 4.1396 48.88 22.25 16.7 33.5 0.499 
28 5460 281.23 0.938 1.625 3.4716 94.47 45.72 34.6 47.8 0.724 
29 5460 408.46 1.125 1.9S0 2.9994 154.48 84.20 62.9 62.7 1.003 
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TABLE 5.11 COLUMN STRENG'ffi USING DEFLECTION CONTROL--DRYSDALE AND 
WU SPECIMENS WIlli UNEQUAL END ECCENTRICITY 

I!.IL Total 

O.OllS 

0.0125 

0.0125 

0.0125 

0.0140 

0.0140 

0.0140 

0.0140 

0.0095 

0.0095 

0.0095 

0.0095 

O.OllS 

O.OllS 

0.0115 

0.0115 

'-celT 
.fT. f!'fry 

0.265 

0.265 

0.265 

0.265 

0.398 

0.398 

0.398 

0.398 

0.132 

0.132 

~.132 

~.132 

0.520 

0.520 

0.520 

0.520 

0.640 

0.640 

0.640 

O.MO 

0.961 

0.961 

0.961 

0.961 

0.320 

0.320 

0.370 

0.320 

0.900 

0.901 

0.901 

0.901 

I!./L 

"IL
X 

I!.fLY 

0.004182 

0.004182 

0.001.182 

0.004187 

0.01l~49 

0.01l549 

0.01l~49 

0.01l5~9 

0.005351 0.012935 

0.005351 0.012935 

0.00535/ 0.012935 

0.005351 0.012935 

0.003623 0.008182 

0.003623 0.000182 

0.003623 0.008/82 

0.003623 0.008182 

0.008148 0.015151 

0.008148 0.015151 

0.006/48 0.015151 

0.008148 0.015151 

~~ ~c~±-~ __ 
eo e I!' P 

x J' x y 

0.383 

0.383 

0.383 

0.38l 

0.5/4 

0.514 

0.514 

0.514 

0.191 

0.191 

0.191 

0.191 

0.563 

0.150 

~.938 

1.125 

0.914 

0.921. 

0.924 

0.924 

1. 386 

1.386 

1.186 

1.386 

0.462 

0.462 

0.462 

0.462 

0.915 

1.300 

1.625 

1.950 

1.1290 2.1751 

1.12~0 2.1251 

1.1290 2.1251 

1.1290 2.1251 

1.1,097 1./,OJR 

1.4091 3.4038 

1.4091 3.1,038 

1.1,091 3.40)8 

0.1561 1.8120 

0.1561 1.8320 

0.1561 1.8320 

0.1561 1.8)20 

1. 5800 2.1310 

2.11469 3.6645 

7.6324 4. %11 

1.1589 5.1,/40 

p. p 
Y 

8J.R9 48.45 

RJ.89 ',R.I,S 

81.1,4 50.'8 

81.44 50.28 

p 
o 

11.1.55 

141.55 

141.8 

141.8 

H.OO 40.00 142.05 

15.00 40.00 142.05 

~1.19 41.14 154.~ 

81.19 41.14 154.8 

103.1R 66.48 148.05 

103.18 66.48 14R.05 

101 •. 56 6/.28 150.05 

101 •. 56 6/.28 150.0~ 

40.88 71.42 1~2.64 

10.51, 39.18 179.06 

111.39 62.56 281.23 

162.38 92.31 408.46 

I' 
I 

39.7 

)9.2 

40.12 

40.12 

31.96 

31. 96 

)3.54 

33.54 

55.62 

S'l.62 

~6. 30 

56.30 

17./.2 

29.31 

46.12 

68. /9 

p 
u 

39.5 

"19.2 

41.6 

39.1 

32.6 

33.6 

33.1 

33.4 

58.1 

55.1 

51.0 

51.0 

18.3 

33.5 

41.8 

62.1 

p l /r u 

O.99:! 

1.000 

0.919 

1.026 

0.980 

0.951 

0.995 

1.004 

0.9/.8 

0.999 

0.989 

0.98~ 

0.952 

0.815 

0.917 

1.09/ 

J-' 
CO 
J-' 
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column strength on columns with small eccentricities and under

estimated the column strength on columns with large eccentricities. 

The equation underestimated the strength of columns tested by Wu, but 

better agreement was found on large cross section columns than on the 

small cross section columns. 

5.5.2 Deflection Limit at Failure. A study on the deflec

tion limit of long columns was conducted. In Table 5.9, a relation

ship between /':.JL total and P u/P 0 was observed, with the average of 

P /p at 0.2703 and 6/L total equal to 0.01183 for Drysdale specimens. 
u 0 

Average values P /p were 0.2141 in the Wu specimens, with 6/L total 
u 0 

equal to 0.01546. These values indicated that as the relative thrust 

level increased, the failure deflection 6/L decreased. 

An analysis of results for columns subjected to unequal eccen

tricities was made to study whether the deflection control would give 

satisfactory results. A deflection control was assigned for each 

principal axis proportional to the e/r ratio (ratio of eccentricity to 

radius of gyration) of the cross section about the centroida1 axis 

such that the total amount of deflection should equal 6/L total 

(i.e., J(6 /L)2 + (6 /L)2 ~ 6/L total). The Drysdale and Wu test 
x y 

data with unequal end eccentricities of columns were grouped accord-

ing to their relative thrust level. An arbitrary deflection limit 

~/L total was assigned to each group on a trial and error basis, from 

which the most satisfactory deflection for each group is shown in 

Table 5.11. Values of 6 /L and 6 /L were computed and also the mid-x y 
height eccentricities e = End Ecc + 6. The reciprocal load method 

was applied and the computed strength P. was tabulated. The assigned 
~ 

~/L total for each group was changed until a result was obtained for 

which Pi was within 5 percent of the reported failure load Pu ' 

From the results in Table 5.9 and Table 5.11, the average 

value of P /p and the deflection limit 6/L total assigned for each 
u 0 

group was found, and the average values are listed in Table 5.12 below. 
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Graphs displaying ~/L total as a function of the inverse bf 

Pu/P o are shown in Fig. 5.4, and the linear relation between these twO 

variables can be observed. Using the same procedure, values of ~/L 

total were assigned to other specimens with different slenderness 

ratios. By trial and error an assigned ~/L was selected to give a 

a computed value of P. nearest to the actual test P . 
1 U 

TABLE 5.12 LOAD LEVEL P Ip AND ASSIGNED 
u 0 

DEFLECTION LIMIT 

1 ---P Ip 
u 0 

ML total P Ip 
u 0 

0.1722 0.01750 5.807 
0.2140 0.01546 4.673 
0.2249 0.01400 4.446 
0.2703 0.01183 3.700 
0.2765 0.01250 3.617 
0.3831 0.00950 2.610 

The assigned ~/L total and P IP for each specimen are also 
U 0 

plotted in Fig. 5.4. For each group of slenderness ratios, a linear 

regression analysis was made, and the relationship between ~/L total 

and P Ip were computed as follows: 
u 0 

~/L total = 0.00293 + 0.00259 P ~p for specimens with 
u 0 t/r k = 105 wea 

~/L total 0.00274 + 0.00193 P ~p for specimens with 
u 0 llr k = 75 wea 

~/L total = 0.00372 + 0.00107 P ~p for specimens with 
u 0 llr k = 52.8 wea 

~/L total = 0.00340 + 0.00078 P ~p for specimens with 
u 0 llr k = 45.8 wea 

5.l7(a) 

5.l7(b) 

5.l7(c) 

5.l7(d) 

From Eq. 5.l7(a) to Eq. 5.l7(d) it was found that the first 

term of the right-hand side of these equations changed only slightly, 

and thereafter the first term was assumed to be constant. The coeffi

cient of the second term varied in the proportion of llr k' For wea 
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specimens with different ~/r ratios, the ratio of the coefficients of 

different groups was close to the ratio of the corresponding slender

ness ratios. Eq. 5.18 was then proposed, using the most conservative 

values from Eq. 5.l7(a) to Eq. 5.l7(d) (the coefficient that would 

give the largest ~/L total): 

~/L total 
1 ~/rweak 

= 0.00372 + [0.00270 P /p] 105 
u 0 

5.18 

Table 5.13 shows the calculation of column strength using 

Eq. 5.18 for all 59 specimens reported in this chapter. The compari

son between P. and the actual P was calculated as P./P and also has 
1 u 1 u 

been shown in Table 5.13. The mean value of P./P for all specimens 
1 u 

was 0.9397, with the standard deviation of 0.046 and the coefficient 

of variation of 0.049. It should be noted that there were a few 

specimens that gave unconservative results; i.e., P./P > 1.0. The 
1 u 

maximum P./P was 1.13, or a 13 percent overestimate, while the mini-
1 u 

mum was 0.848, or a 15 percent underestimate of the actual strength. 

In conclusion it has been demonstrated that a method of 

strength analysis more consistent than the moment magnification analy

sis for the length effect of reinforced concrete columns under biaxial 

bending can be developed in terms of a deflection limit, ~/L total, as 

in Eq. 5.18. The method of assigning a deflection limit to calculate 

an a~ditional bending moment or eccentricity has been called an addi-
26 49 tional moment or complementary moment method. » 

The deflection limit is a function of axial load level P /P 
u 0 

and slenderness ratio k~/r. For each axis of bending, the limit is 

proportioned according to the t/r ratio on the weak axis and the strong 

axis. The term relative eccentricity was defined as the ratio of the 

eccentricity to the radius of gyration of the same direction of bend-

ing, so the relative skew angle was the fictitious angle between the rela

tive eccentricities. The eccentricity to be calculated for estimating 

the column strength is simply the end eccentricity plus the deflection 

~ from the deflection limit. With this procedure, the approximation 
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TABLE 5.13 COLUMN STRENGTH USING DEFLECTION CONTROL 

(~) Total 0.00372 + [0.00270 1 
] l/r = L P Ip 105 

U 0 
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TABLE 5.13 (Continued) 

51''''''--'' ",/Po b/L Total f.ccl~ f1.l l • End Ec;c End E« + b 
e /. • I. blL" tilL 1 • " e • . " 1 1 end x end 'I " 1 

Drlsd«le'. SeedfllH!:DI (Contlmaed) 

Cu. 0.27'1 O.Otl194 0.265 0.640 0.005124 0.012375 0.384 0.924 1.18l 2.855 
e211 0.2769 0.01l411 0.2U 0.640 0.005154 0.012446 0.384 0.924 1.188 2.866 
elA 0.281S 0.01l311 0.265 0.640 0.005092 0.012298 0.384 0.924 1.178 2.842 
e31 0.2686 0.013772 0.265 0.640 0.005269 0.012724 0.384 0.924 1.206 2.909 
£lC 0.2295 0.01S485 0.398 0.961 0.005925 0.014307 0.H4 1.386 1.498 3.618 
EIO 0.2365 0.015136 0.398 0.961 0.005792 0.013984 0.574 1.386 1.478 1.568 
UA 0.2177 0.016\22 0.398 0.961 0.006169 0.014895 0.574 1.386 1.5:16 1.710 
1:21 0.2158 0.016232 0.398 0.961 0.006211 0.014997 0.574 ,.l86 1. 543 3.726 
FlA 0.3965 0.010530 0.1l2 0.320 0.004015 0.009734 0.191 .462 0.817 1.981 
Fill 0.3762 0.010897 O.ln 0.320 0.004155 0.010074 0.191 0.462 0.839 2.034 
nil 0.3199 0.010827 0.132 0.320 0.004129 0.010009 0.191 0.462 0.835 2.02) 
US 0.3799 0.010827 0.132 0.320 0.004129 0.010009 0.191 0.462 0.835 2.023 

Wu' .. Seecimenl 

I 0.2291 0.015505 0.611 0.611 0.010'J64 0.010964 0.662 0.662 1.937 1.937 
2 0.2207 0.015954 0.614 0.614 0.011281 0.011281 0.885 0.885 2.645 2.645 
3 0.1973 0.017405 0.615 a.6ts 0.012307 0.012307 1.110 l.1I0 1.494 3.494 
4 0.2065 0.016795 0.612 0.612 0.011876 0.011876 l.l25 1.325 4.086 4.086 

10 0.2117 0.016474 0.614 0.614 0.011649 0.01l649 0.885 0.885 2.702 2.702 
16 0.2093 0.016620 0.614 0.614 0.011752 0.011752 0.885 0.885 2.718 2.718 
16 0.2239 0.015779 0.614 0.614 0.011157 0.011157 0.885 0.885 2.625 2.625 
26 0.1783 0.018863 0.520 0.900 0.009431 0.016333 0.563 0.9H 1.660 2.874 
27 0.1871 0.018151 0.520 0.9(l1 0.009073 11.015721 0.750 1.100 2.165 3.152 
28 0.1700 0.019602 0.520 O.9(ll 0.009798 0.016977 0.938 1.625 2.836 4.914 
29 0.1535 0.021110 0.520 0.901 0.010602 0.018370 1.125 1.950 3.590 6.221 

'[ 1':p-
u 

10. of data 

Mean 

Standard devhtion 

Coefflcieqt of varlat.lon 

P P 

" 1 

82.0 46.9 
81.8 46.7 
85.6 48.7 
84.6 47.8 
72.4 37.3 
72.9 37.9 
77.3 37.6 
77 .1 37.4 

100.4 63.1 
99.3 62.0 

100.8 63.0 
100.8 63.0 

29.3 29.3 
50.0 50.0 
75.6 75.6 

113.4 113.4 
49.0 49.0 
48.5 48.5 
48.8 48.8 
39.4 21.9 
69.3 31.9 

105.4 56.2 
147.8 76.8 

55.443 

59 

0.9397 

0.0462 

0.0492 

P P 1 0 

141.55 37.8 
141.5S 37.6 
147.80 39.3 
147.80 38.5 
142.05 29.8' 
142.05 30.2 
154.80 30.2 
154.80 30.1 
11.8.05 52.5 
148.05 51.4 
150.05 52. ) 
lSO.OS 52.3 

82.95 17.8 
144.06 30.2 
228.10 45.3 
334.21 68.3 
144.06 29.5 
143.31 29.2 
1l9.81 29.6 
102.64 16.3 
119.06 28.4 
281. 23 42.1 
408.46 57.7 

P 
u 

39.5 
39.2 
41.6 
39.7 
32.6 
33.6 
3).7 
]3.4 
58.7 
55.7 
57.0 
57.0 

19.0 
31.8 
45.0 
69.0 
30.5 
30.0 
31. 3 
18.3 
33.5 
47.8 
62.7 

P [/Pu 

0.957 
0.959 
O. ""5 
0.970 
0.914 
0.899 
0.896 
0.901 
0.894 
0.923 
0.918 
0.918 

0.937 
0.950 
1.007 
0.990 
0.967 
0.913 
0.946 
0.891 
0.848 
0.881 
0.920 

..... 
(Xl ..... 
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of member strength of pinned-end columns with equal end moments that 

cause columns to deflect in single curvature can be estimated more 

accurately than the approximation of strength derived only on the 

basis of moment magnifiers and the strength of cross sections. The 

moment magnifier method was found less effective for the estimation 

of column strength in biaxial bending because of its inconsistency in 

the calculation of column stiffness. 

5.6 Procedure to Calculate Column 
Strength Using Deflection 
Control 

A column can be analyzed for capacity to support a given 

condition of thrust and moment about each principal axis using the 

deflection control procedure. A step-by-step outline of the procedure 

is described as follows: 

1. Compute the end eccentricities under the load conditions given, 

and then calculate the relative eccentricity e/r about each 

principal axis. 

2. Find the relative skew angle according to the relative 

eccentricities. 

3. Use Eq. 5.18 and compute the total deflection ratio, 6/L, for the 

relative thrust level P /P . 
u 0 

4. Proportion the deflection ratio components to each principal axis 

according to the relative skew angle in step 2. 

5. Determine the deflection limit 6 about each axis by multiplying 

6/L values from step 4 by the column length. 

6. The failure eccentricity for each axis is the end eccentricity 

plus the deflection limit in step 5. 

7. Apply the failure eccentricity in step 6 to the uniaxial 

interaction diagram and locate the uniaxial failure thrust 

values P and P for each axis. 
x y 



8. Use the Reciprocal Load Equation (Eq. 5.12) to predict the 

strength of the column P .. 
1 
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9. Compare P. to the given thrust P . 
1 U 

If P. > P the column is safe 
1 u 

under the loading condition given. If P > p. the column is not 
u 1 

strong enough to carry the loads assigned. 

An example for the above procedure is illustrated step by 

step, using Specimen RC-1: 

The details of the problem 

Failure thrus t 

Strong axis moment 

Weak axis moment 

f' 
c 

f 
y 

Column length 

119.2 kips 

47.6 k-in. 

123.8 k-in. 

4.886 ksi 

65.5 ksi 

76.25 in. 

Column dimension and reinforcement were shown in Chapter 2 

(i.e., 5 in. by 9 in. rectangular column with 10 - 8mm diameter 

deformed bars). 

Strength Analysis 

The step numbers are the same as previously described above. 

1. End eccentricity e 0.399 in. s 
e = 1.038 in. 

w 
Radius of gyration r = 2.598 in. s 

r 1.443 in. w 
399 ~s 0.1536 r 2.598 

Relative eccentricity 

e 1.038 
0.7193 -w ---

r 1.443 

2. Relative skew angle 
-1 0.1536 

::I tan (0.7193) 

= 12.05 degree 

P ~ A f' + A f 
0 c c s y 3. Squash strength 

"" 252.0 k 

P 
119.2 u 0.473 = ---= 

P 252.0 Relative thrust level 
0 
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Deflection limit from Eq. 5.18 I 
t r 

6/L = 0.00372 + [0.00270p ~p] 10~eak 
u 0 

6/L = 0.00372 + [0 00270 1] 7&.25 
. 0.473 1.443 X 105 

6/L = 0.006593 

4. Proportion for weak axis and strong axis 

5,6 

~s = 0.006593 sin (12.05 0
) 

= 0.001376 

~ = 0.006595 cos (12.050
) 

= 0.006448 

6 Maximum eccentricity e = e + - . L 
end L 

Strong axis e = 0.399 + 0.001376 X 76.25 = 0.504 in. s 
Weak axis e = 1.038 + 0.006448 X 76.25 = 1.530 in. w 

7. With e = 0.504, e = 1.530 from interaction diagram for uniaxial s w 

8. 

bending of RC-1 in Fig. 5.5 

P = 218.7 k s 
P = 112.3 k w 

From Eq. 5.12 
Pi 

-1 
P 

o 

1 
Pi = 218.7 + 112.3 

Pi = 105.2 k 

1 
252.0 

The analyzed strength was 105.2, which was about 12 percent lower 

than the actual strength of 119.2 k. 

The sensitivity of the computation procedure for changes of 

the relative load level P Ip in Eq. 5.18 was investigated. When 
u 0 

the actual failure strength P is not known, it was found that even 
u 

with inaccurate estimates of P used in Eq. 5.18, the resulting pre
u 

dieted strength P. was found to converge toward the "correct" value. 
1 

Convergence was more rapid for an iteration method that started with 
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values P greater than P. and the rate of convergence was slowest 
u ~ 

for low ratios P./P. For Specimen RC-1 as an example if the first 
~ 0 

estimate of P = 200 k, the resulting p. = 110.1 k, and then using 
u ~ 

110.1 k as P for the next calculation, p. = 104.2 k. If the pro-
u ~ 

cedure had started first with P = 70 k, the resu1 ting p. = 81.5 k, u ~ 

and the second iteration yields p. = 84.0 k. A review of values from 
~ 

Drysdale and Wu specimens showed that if the iteration procedure were 

used to compute the column strength with unknown values of P , 
u 

con-

vergence should not be assumed unless the computed value of p. is 
~ 

less than the initial value P 
u 

used in the calculation of 6/L in 

Eq. 5.18. The assumed P at the start should be greater than 
u 

actual strength of the column for the quickest convergence. 

the 

Of course, 

if p. is greater than P , the p. estimate does represent at least a 
~ u ~ 

lower bound on the maximum or "correct" value. 

Data from very slender columns that were tested by Saenz and 

Martin
48 

were used to test the deflection limit method for long con

centrically loaded columns. Equation 5.18 was used to calculate 6/L 

and the total deflection was assigned to the weak axis deflection. 

With concentric loading the end eccentricity was considered zero and 

the maximum analytic eccentricity used was taken as the total deflec

tion. The predicted failure thrust was determined from the uniaxial 

interaction diagram with thrust and moment acting about the weak axis. 

End conditions of the specimens were assumed partially fixed such 

that the effective length used in the computation was 0.751. Three 

types of specimens were selected in the study: specimens with lengths 

of 7-1/2, 9, and 12 ft. with concrete strengths of 3350, 4930, and 

5590 psi, respectively. The column cross section was 5 in. by 

3-9/16 in., with four #2 bars as longitudinal reinforcing steel. The 

deflection limit method gave the strength of the columns as 53.4, 

67.5, and 55.3 kips for 7-1/2, 9, and 12 ft. specimens, respectively. 

The average test strengths of these specimens were 54.3, 72.0, and 

54.2 kips. The results showed that deflection limit procedures may 

also apply for predicting the strength of columns under concentric 
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load, even without an initial or arbitrary eccentricity specified for 

analysis. 





C HAP T E R 6 

CONCLUSIONS 

6.1 Summary of the Investigation 

The purpose of the investigation reported herein was to 

study the behavior of reinforced concrete columns subject to loads 

that cause bending moments about two principal axes plus compression 

in the longitudinal direction. A general review on column strength 

included data available from previous studies by other investigators. 

Additional data were obtained from physical tests on columns with 

rectangular and partial circle cross sections. Strengths estimated 

from an approximate method of calculation were compared with the 

experimental data, and the influence of parameters that would 

affect the accuracy of the method was studied. Secondary effects of 

lateral deformation were included in the investigation of member 

strength. 

A moment magnifier method was used also for comparing 

results with the experimental data. Methods of computing member 

stiffness as recommended by the ACI Building Code
1 

were included in 

the comparisons with test data. A numerical analysis method was 

also used after it was adjusted to agree with test results and it 

was used to develop more analytical data for comparison with the 

approximate methods of analysis. Member strength for very slender 

columns could be estimated from a de f1 e c tion control method 

which was introduced. An empirical equation for column strength was 

proposed on the basis of its favorable comparison with experimental 

resu1 ts. 

195 
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6.2 Results of the Investigation 
from Physical Tests 

(a) The assumption that plane sections remain plane before 

and after loading was examined and was found to be acceptable. On 

the basis of correspondence between a fourth point measurement and 

a plane section analytical prediction, test data showed that the 

distribution of the average cross-sectional strain was within 10 per

cent of being a plane when long gage-lengths (5 thicknesses of the 

member) were used, although the local strain differences for each 

6-in. gage length showed greater values. The variations overall at 

less than 10 percent were considered accurate enough for computing 

forces compatible with plane strain distribution. This assumption 

was used with average strains through a 30-in. length of specimen in 

all the strength analyses throughout this report. 

(b) In the analyses of forces that were consistent with strain 

measurements, the stress-strain functions for concrete that used a 

full cylinder strength fl as the maximum stress gave better correla-
c 

tion than stress-strain functions that used reduced maximum strength 

such as 0.85f' as the maximum compressive stress. The integration of 
c 

stresses consistent with strains that were determined from measured 

longitudinal displacements indicated that a parabolic rectangular 

stress-strain function for concrete gave values of force and moment 

in better agreement with measured loads than any other form of stress

strain functions for concrete that were investigated. 

(c) Load angle and neutral axis angle were found not to be 

equal. The difference between the load angle and the neutral 

axis angle always showed that the neutral axis shifted toward the 

weak axis of bending. The difference was significant enough that 

it should not be neglected in the analysis when both the neutral 

axis angle and load angle are required such as in numerical analysis. 

The difference between these angles tended to increase as the nominal 

angle increased. No effect of thrust level was observed to be 
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involved in this difference. Secondary deflections caused the net 

value of load angle (M . 1M k .) to vary along the length strong aX1S wea aX1S 
of a slender column. The load angle change indicated that columns 

deflected more in the weak axis direction than in the strong axis 

direction. The deflection caused more secondary moment about weak 

axis than about the strong axis. Thus the load angle decreased from 

end to midheight of the column where the maximum deflection occurred. 

(d) Torsional effects from twisting of the member were small 

and could be neglected in the analysis. 

6.3 Results of the Study of Cross 
Section Strength and Stiffness 

6.3.1 Strength. The strength of short columns can be 

approximated using the reciprocal load equation: 

1 
P. 

1 

1 
p 

o 

This equation requires uniaxial interaction diagrams of thrust and 

moment about each principal axis. The investigation of strength 

revealed that: 

(a) The reciprocal load equation could be used to predict the 

strength of the column cross section (with the average of less than 

6 percent difference from the test results) when the accurate uniaxial 

interaction diagrams were used. 

(b) Interaction diagrams of ultimate thrust and moment derived 

with the rectangular stress block for concrete strength showed gen

erally less strength than that obtained in measured tests. Conse

quently, when the interaction diagrams derived from the rectangular 

stress block assumption are used, the biaxial column strength was 

underestimated by the reciprocal load equation. 

(c) The stress-strain function that best represented the 

concrete behavior in constructing the uniaxial interaction diagram 

was the parabolic rectangular function. The stress-strain curve 

consisted of a parabola with a maximum stress of f~ at a strain of 
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0.002, and beyond the strain of 0.002 the concrete stress remained 

constant at f' until the failure strain was reached. The actual maxi-
c 

mum strain across a 30-in. gage length at failure from tests varied 

from 0.00228 to 0.00393; the maximum strain up to 0.00525 was found 

locally in the 6 in. segment of the column. In the construction of 

interaction diagrams for failure thrust and uniaxial moment, the 

failure strain of 0.0035 was assumed for every specimen. 

(d) The amount of reinforcement, aspect ratio, and load angle 

were not found to be factors that influenced the calculation of 

strength with the reciprocal load method. The accuracy of the equa

tion depended on the accuracy of the interaction diagram of thrust 

and moments about each principal axis. 

6.3.2 Stiffness. The slope of the graphs of moment and 

curvature (M-~ curve) at the middle portion of the column repre-

sented the stiffness EI of the section. 

the section showed that: 

The study of stiffness of 

(a) Before cracking the computed stiffness EI based on an 

uncracked cross section agreed well with the initial slope of the 

measured M-~ curve for strong axis bending of both rectangular and 

oval-shaped sections. For weak axis flexural stiffness, the computa

tion of a nominal uncracked section stiffness overestimated the 

stiffness of the oval-shaped column. At low levels of thrust 

(P = 0.2P ) the computed uncracked section stiffness for bending 
u 0 

about the weak axis of rectangular cross sections compared well with 

the initial slope of the M-~ curves, but at higher thrust levels the 

same computation again overestimated the cross section stiffness. 

(b) After each specimen cracked the nominal cracked section 

EI was assumed to be equal to 40 percent of the uncracked stiffness. 

The comparison with graphs from tests showed that the nominal 

cracked stiffness for bending about the strong axis was larger than 

the slope of the measured M-~ curve, but still in reasonable agree-

ment. For bending about the weak axis, the computed uncracked section 
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EI overestimated the column stiffness at every level of thrust for 

both rectangular and oval-shaped columns. 

6.4 Results of the Study of Slenderness 
Effects on Member Strength 

6.4.1 The study on length effects showed that the moment 

magnification method would not give accurate results in predicting 

the member strength if the flexural stiffness EI of the member was 

inaccurately computed. The recommended stiffnesses in the ACI Build

ing Code
1 

were used in the investigation. It was found that for the 

test specimens reported,ACI Eq. (10-7) underestimated weak axis 

stiffness at high levels of thrust (O.SP ), but better agreement 
o 

with test results were obtained at lower levels of thrust. However, 

ACI Eq. (10-7) gave good agreement with the tests for calculating 

strong axis stiffness at every level of thrust. The stiffness com

puted with ACI Eq. (10-8) overestimated the column stiffness at low 

thrust levels (0.2P ), but gave reasonable values at higher thrust 
o 

levels. The data from experiments suggested that member stiffness 

should reflect the influence of the level of thrust. A graph of 

measured flexural stiffness and the thrust level showed that the 

effective stiffness EI increased as the thrust level increased for 

thrust values as high as O.SSP. The study of long columns tested 
o 

by other investigators showed that a different relationship exists 

between thrust level and stiffness. It was concluded that simplified 

estimates of stiffness were inconsistent; each method of calculating 

stiffness might be good for one specimen but might not be accurate 

for others that had a different overall slenderness or load angle. 

6.4.2 The numerical analysis of column strength using 

computer program BIAM2 gave favorable results compared with the 

experimental data (average of 0.997 with a maximum of 13 percent over

estimate and 23 percent underestimate when compared to the observed 

strength). The convergence of the iteration method was found to 

be the main problem in the BIAM2 analysis. The iteration could 



200 

not converge if tolerance limits were too small, but when larger 

tolerances were used the problem converged slowly. 

6.4.3 Although intentional underestimations of stiffness are 

generally safe for design, for the most slender columns in this report 

the method of computing column stiffness from the ACI Code formulas 

could not be applied because the formulas indicated that columns 

failed in instability at loads lower than the actual failure load 

(i.e., P < P). It was found that in addition to the slenderness . cr u 
ratio the thrust level should be a factor in the complementary moment 

or deflection control. An empirical equation for the deflection 

limit was derived from the data available. The assigned deflection 

then was distributed to each principal axis according to the nominal 

ratio of eccentricity about each axis of bending. The reciprocal 

load equation then was applied to calculate the column strength after 

the additional deflection had been added to the end eccentricity (if 

any). Predictions of column strength from the method were found to 

be within 15 percent of measured values from tests. 

6.5 Conclusions and Recommendations 

The reciprocal load equation provides a good method for 

estimating approximate column strength for biaxial bending problems. 

This method requires only uniaxial interaction diagrams for bending 

about two major axes and it is independent of other biaxial bending 

parameters such as percentage of steel, load angle, and column shape 

aspect ratio. Accurate results require the use of interaction dia

grams that are accurate. A parabola-rectangle function for concrete 

stress-strain behavior with a full cylinder strength f' for maximum 
c 

compressive stress gave results less likely to underestimate strength 

than did the use of rectangular stress block. Eccentrically loaded 

columns can be designed for specified thrust and eccentricities plus 

additional eccentricities that accommodate length effects. The 

moment magnifier method for biaxial bending problems is accurate 

only if the flexural stiffness is accurately computed. More con

sistent results were found using the deflection limit to assign the 
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additional eccentricity to the column. No computation of flexural 

stiffness EI is required for using the deflection limit method. Also 

the neutral axis angle was not required in the deflection limit pro

cedure, so that the relationship between load angle and neutral axis 

angle is not involved in the computation. 

In this test series only columns with pinned-ends subjected 

to equal end moments that caused the columns to bend in single curva

ture were studied. Further work on columns with other end conditions 

and different end moments should be observed. It is recommended that 

further studies of stiffness of members be conducted. The existing 

computer program BIAM2, with possible modifications for more rapid 

convergence, can be used as a "true" strength predictor when no 

physical test data are available. Simplified general forms of equa

tions to predict EI can be studied systematically in order to deter

mine the domains of accuracy for the simplified equations. The 

biaxial bending capacity of unique shapes of cross section such as 

L, T, or hollow boxes can be studied also. 
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APPENDIX A 

DRYSDALE AND WU SPECIMENS 

(a) Dimensions and Properties 

Drysdale Specimens 

-
I{') 

Wu Specimens 

D 
205 

Length = 13' Ou 

Reinforcement 4 - #4 
f = 56.0 ksi 
Y 

A = 0.2 in: each s 
E - 29000 ksi s 

Length = 9'8-1/~' 
Reinforcement 4 - #3 

f "'- 57.2 ksi 
Y 

As 0.113 in~ each 

E 28600 ksi s 

Length = 13 1 Oil 

Reinforcement 4 - 4,4 

f - 57.2 ksi 
Y 2 A 0.186 in. each 
s 

E = 28600 ksi s 



206 

6 I/, " 
It 4..,..'l 15 II 

Length 16'1-3/4" 1 ~6 
T Reinforcement 4 - 4fr5 

=q- D f 57.0 ksi _ ...... y 2 c.p A 0.298 in. each 
s 

E ::: 28500 ksi 
s 

7 t'2l1 

t Length"'" 19'4-1/2" 
I .. Reinforcement 4 - 4fr6 11S 

D 
f ,- 56.8 ksi 
y 2 

~ A - 0.446 in. each 
s 

...... E 28400 ksi 
s 
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(b) Concrete Strength and Loading Information 

Specimen f' Failure Load End Eccentricitx c 
psi kips e e 

x y 
in. in. 

Drxsda1e 8Eecimens 

A1C 3890 37.6 0.707 0.707 
A1D 3880 40.3 0.707 0.707 
A2A 3860 39.4 0.707 0.707 
A2B 3860 40.0 0.707 0.707 
A3C 4020 38.5 0.707 0.707 
A3D 4020 37.6 0.707 0.707 
B1C 3510 34.0 0.707 0.707 
B1D 3510 34.4 0.707 0.707 
B2C 3670 37.7 0.707 0.707 
B2D 3670 37.7 0.707 0.707 
C2A 3870 39.9 0.383 0.924 
C2B 3870 39.2 0.383 0.924 
C3A 4120 31.6 0.383 0.924 
C3B 4120 39.7 0.383 0.924 
E1C 3890 32.6 0.574 1. 386 
E1D 3890 33.6 0.574 1.386 
E2A 4400 33.7 0.574 1.386 
E2B 4400 33.7 0.574 1. 386 
F1A 4130 58.7 0.191 0.462 
F1B 4130 55.7 0.191 0.462 
F2A 4210 57.0 0.191 0.462 
F2B 4210 57.0 0.191 0.462 

Specimen Size f' c Failure Load End Eccentricitx 

psi kips e e 
x y 

in. in. 

Wu S:eecimens 

1 3-3/4"X3-3/4" 4060 19.0 0.662 0.662 
2 5"X5" 4060 31.8 0.885 0.885 
3 6-1/4"X6-1/4" 4100 45.0 1.110 1.110 
4 7-1/2"X7-1/2" 4140 69.0 1.325 1.325 

10 5 "X5" 4060 30.5 0.885 0.885 
16 5 "X5" 4030 30.0 0.885 0.885 
16 5":<5" 3890 31. 3 0.885 0.885 
26 3- 3/4 "X3- 31 4" 5460 18.3 0.563 0.975 
27 5"X5 " 5460 33.5 0.750 1.300 
28 6-1/4"'1.6-1/ 4" 5460 47.8 0.938 1. 625 
29 7-1/2"'1.7-1/2" 5460 62.7 1.125 1.950 
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STRESS-STRAIN RELATIONSHIP OF CONCRETE 

The stress-strain functions of concrete used in the strain 

analysis in Chapter 3 were the functions which were proposed by 

Hognestad, Todeschini, et a1., Kent and Park, and Chang. The 

details of these functions are described below. 

(a) Hognestad Stress-Strain Function. The function consists of 

two parts, the first part is a parabola with an equation of 

where f = Concrete stress at strain ( 
c 

f". Maximum compressive stress at strain E , equals 0.85f' 
c a c 

f' = Concrete cylinder strength 
c 

( 

( 
a 

= Strain of concrete associate with stress f 
c 

os Strain 
f" 

of concrete at maximum stress 

.. 2..-£ 
(0 E 

E 
c 

c 
= Modulus of elasticity of concrete 

The functions were quoted from Fowler's report. 

The latter part was a straight line with the stress of f" 
c 

at strain E and a decrease to 0.85f" at a strain of 0.0038 which 
a c 

is considered the maximum strain of concrete at failure. 

(b) Todeschini, et a1. Stress-Strain Function. The function 

proposed by Todeschini is a continuous curve with the equation 

f = 2 f" .: 
c c 2 

( [1 + (-L) ] 
a ( 

a 

with the same notation as (a). 

211 
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(c) Kent and Park Stress-Strain Function. The Ken~ and Park 

stress-strain function has two parts as does Hognestad's function, 

but the full concrete cylinder strength, f' is used. The equation 
c 

for the parabola is 

with the same notation as function (a), but (0 is taken as 0.002 

instead of 2f'/E . 
c c 

For strains greater than ( the function is also a straight 
o 

line which is represented by the following equations: 

for confined concrete and ( > 0.002 

where A" 
s 

p 

f = f' [1 - Z «( - ( )] 
c c 0 

z 

" 

0.5 

2 (b" + d" ) A II 
S 

b"d"s 

3 + 0.002f 
c 

f' - 1000 
c 

Area of hoop bar 

s Spacing of hoop reinforcement 

b",d" = Width and depth of the confined area, b" ~ d" 

Z = Slope of the straight line portion of the function 

In the calculation in Chapter 3, Z was calculated and approximated 

as 260. 

(d) Chang Stress-Strain Function. Chang modified the Kent and 

Park stress-strain function by including the compression steel effect 

in the slope of the straight line. The first portion of the function 
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is the same as Kent and Park except that Chang used (0 2f'/E 
c c 

instead of 0.002. The tail of the function has the same equation as 

function C, but the calculation for pH contains also the effect of 

compression steel, 

II 

P 

2 (b H + d /I ) AHA I 
s + S 

-~b-'lrTl-s~/lr-s--::' b /I d II 

where A' = Area of steel under compression 
s 

The calculation of Z by Chang's method for the specimen in 

this test program gave a Z value of 68 which was used in Chapter 3. 

Two more stress-strain functions were introduced in Chapter 3, 

the Modified Hognestad Stress-Strain Function and the Parabolic

Rectangular Stress-Strain Function. Details of these two functions 

are explained in Chapter 3 and will not be repeated here. The 

graphical expression of all these stress-strain functions are shown 

in Fig. 3.7 for the concrete strength of 5000 psi. 
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