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PREFACE

Computer storage and time requirements for structural problems will often
determine whether or not a particular program is feasible to use on an exten-
sive basis. For multi-dimensioned problems requiring fine mesh spacing and
involving nonlinear or time-dependent behavior, careful attention must be given
to the efficiency of the solution process, even with the largest and fastest
computers in use today.

This report describes a system of equation solving routines that may be
applied to a wide variety of problems by utilizing them within appropriate
programs. The routines will not be directly apparent to the structural or
pavement design engineer in routine work; instead, it is the one who develops
the program or the one who is concerned with fitting a program to run on a
particular computer who will be directly involved with the material in this
report.,

The routines have been incorporated in many of the programs described
in other reports of the current project, ‘Because they are potentially very
useful in optimizing solution processes in future developments, it was de-

cided to document the routines separately by means of this report.
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ABSTRACT

A general method for the solution of large, sparsely banded, positive-
definite, coefficient matrices is presented. The goal in developing the
method was to produce an efficient and reliable solution process and to pro-
vide the user-programmer with a package which is problem~-independent, effi-
cient, and easy to use, so that program development time can be spent in
problem analysis rather than on solution technigque.

The procedures have been developed specifically to deal with matrices
generated by three and five-wide difference operators, whether symmetrical or

unsymmetrical,

KEY WORDS: structural analysis, numerical analysis, computers, mathematics,

banded equations, finite differences.
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SUMMARY

We see that for systems having numerous constant vectors or coefficient
matrices which are large, sparse, or possess a moderate degree of bandedness
direct methods are generally preferable to iterative methods.

Since we have considered both symmetric and nonsymmetric problems as
well as three and five-wide difference operators, four separate routines have
been programmed. For the nonsymmetric case having a three-wide difference
operator TRIP 3 (three-wide recursion inversion procedure) was developed,
TRIP 4 is for the symmetric case. For the five-wide nonsymmetric case there
is FRIP 3, and for the symmetric case FRIP 4., The above four routines are
flow charted and listed in Appendix A.

Each of these routine drives (or calls upon) a group of secondary matrix
manipulation routines referred to as the SUMP pack (Submatrix Manipulation
Package). The particular group used by these four routines is SUMP 6. For
a more complete description of these secondary routines see Appendix B.

The user of the solution procedure must in some way transmit his stiff-
ness matrix to it, and since for the solution procedure only one partitioned
level is needed at each recurrence of the algorithm, a shuttle routine which
is called at each step must be provided by the user. It is here that he com-
putes or fetches the appropriate level or partition of his stiffness matrix.
A complete description of this routine is given in Appendix C while an

example of the use of the entire package is presented in Appendix D.
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IMPLEMENTATION STATEMENT

The routines developed and explained herein are of immediate benefit to
the engineer who is developing a structural analysis program. The main body
of the report is concerned with the theoretical development of the procedures
and the appendices pertain to their implementation. These routines provide
the engineer-programmer not only with a ready-to-use, efficient solution
package, but with one that requires a minimum of input and reorganization of

the natural form of the stiffness matrix.
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CHAPTER 1. INTRODUCTION

In physical problems, closed-form solutions are not always available;
therefore, discrete methods must be employed to approximate the true solution.
One can think of representing a continuous problem by a satisfactory discrete-
element model and solve directly for the solution of the model and thereby
obtain an approximate solution to the real problem.

In either case, the solution technique boils down to the solving of a
system of linear algebraic equations that exhibit a high degree of sparseness
and whose non-zero elements tend to cluster about the main diagonal of the
coefficient matrix. Most physical systems may be ordered so that this banding
phenomena will be observed, but, when care is taken, the width of the band may
be reduced, thereby compacting the band and allowing for a more efficient so-
lution. Furthermore, if we enforce a preset method of ordering the grid
points, then the form of our finite-difference operator will produce banding
within the main band.

It is the purpose of this report to present an efficient, general method

for the solution of this type of problem.

Recursion Technique

The general problem can be subdivided in several ways. It can be symmet-
ric or non-symmetric, or it can have three subbands or five. These different
considerations are taken up in Chapter 2, along with the associated proofs

that verify the method.

Requirements

In Chapter 3 the amount of work (computations) along with the amount of
storage required is taken into consideration. Graphs showing actual times

involved for a wide range of problems are presented.



Use

The total package can be visualized as three main parts. The first part
contains the recursion algorithm and is listed and flow charted in Appendix A.
The next part drives a secondary group of matrix manipulation routines, more
commonly referred to as the SUMP package. These are located and flow charted
in Appendix B. The third and most crucial part to the user is the FSUB rou-
tine, where the coefficient matrix is defined. A description of what is
necessary for this routine is included in Appendix C, and the relationship

of the complete group to the user's main program is discussed in Appendix D.



CHAPTER 2. RECURSION INVERSION

The General Problem

While the type of coefficient matrix we will concern ourselves with
generally arises in physical problems where a discrete-element model of the
real problem is assumed and a finite difference operator is applied, the
solution technique is in no way bound to problems of this type. Any coeffi-
cient matrix which is positive definite and has the form of Fig 2.1 can be
solved using this method. Although this method can be extended, in this dis-
cussion we will consider only three and five-wide type problems, respectively
resulting from three and five-wide difference operators. We will also con-
sider both the symmetrical and nonsymmetrical cases, These limits were
selected since the one-wide case is trivial and the five-wide is extensive
enough for most two~dimensional problems.

There is some disagreement as to whether one should consider direct or
iterative solution techniques to solve this problem. The main advantages of
the iterative processes are that they requife less storage and are not as
susceptible to round-off error. The main advantages of the direct methods
are that for problems that give rise to coefficient matrices with 'small"
band widths they require less work. Also when it is known that in general
the problems have the same coefficient matrix A and differ only in the
constant vector f (sz = fz or AW = F) , which is quite often the case, the
direct methods are capable of solving the succeeding problems for as little
as 5 percent of the effort required to solve the initial problem.

In addition, if the problems are of the type that produces systems of
heterogeneous coefficients, there may be complications in the iterative
methods, whereas the direct methods are not as sensitive.

The power of this method is its ability to handle efficiently matrices
exhibiting second level banding which lends itself to partitioning into sub-
matrices which in turn are also banded.

Therefore, in the methods to be presented, we are assuming the widths of
the second level bands (N; , Np , ...) are small relative to K , the order of

the submatrices, and the overall band width is small and problems of the

type AW = F are expected.



Fig 2.1. Coefficient matrix for a general J-wide operator.



Figure 2.1 shows a general J-wide partitioned matrix. Figures 2.2, 2.3,
and 2.4 show a specific instance of a coefficient matrix resulting from the
application of a five-wide difference operator to a real grid.

In most instances, we also know that the coefficient matrix is symmetric
in addition to being positive definite. Since we can take advantage of this
additional knowledge, we will develop two procedures: one for the symmetric
case, one for the nonsymmetric case.

We have stated that we will limit ourselves to coefficient matrices which
can be partitioned into three and five-wide bands. 1In terms of our difference
operator, this restricts its vertical width but leaves the horizontal dimen-
sions completely general. If we think of our coefficient matrix without ref-
erence to a difference operator, this merely means the respective widths of
the bands are arbitrary up to the width of the submatrix itself. Of course,
for the symmetric case, the bands must be symmetric about the main diagonal,
e.g., N1 = N5 and N, = N4 (refer to Figs 2.5 through 2.10).

Nonsymmetric Case

In the case where the operator is applied once and only once at each grid
point, the respective widths of the subbands will be N1 , N2 , and N3 for
the three-wide case and N_. , N2 s, N, , N4 , and N for the five-wide.

To insure this form aid the narrozest band width,swe must enforce the
ordering of the mesh points as shown in Fig 2.11.

If we think of applying our operator, this tells us we apply it first to
the bottom row of points from left to right. Then we go to the second row and
so on, moving upward. If we now look at the partitioned matrix of Fig 2.4, we
see that each submatrix has order K (K x K elements) and the stiffness matrix
is composed of L x L submatrices. If we look at that portion of the cbeffi-
cient matrix formed by applying the operator to the ith row and for convenience
assume we have a five-wide operator, we have the nonsymmetric case shown in
Fig 2.12. Referring to the figure, we have

a v, + b.w. + ciwi + diwi+1 + eiwi+2 = fi (D)
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Assume
Wi = Ap+HBivin Y CVip
Then
Wiel T A P Bt 6 Yin
and
Vi = A BV G @)

Substitution into Eq 1 to eliminate the variables LI and Vi1 gives

rise to an equation with the form of Eq 2 where

= + -
Ay D,(EA; 4 +aA , - £)
B, = D(E.C; ;+d,)
C, = D.e.
1 11
and where
D. = -(a,C + E.B + c )'1
i - T80 i’i-1 7 %4
E. = a,B, + b,
i i“i-2 i

A, B, and C are referred to as recursion coefficients and D and E as
recursion multipliers for the five-wide case.
Now with the appropriate starting values, we have an efficient two-pass,

matrix elimination procedure.
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For the three-wide band, we have a similar situation where by referring

to Fig 2.13 we see that

biwi—l + ciwi -+ diwi+1 = fi 3)
Assume

vi T At CYin
Then

wi-l = Ai~1 + ci-lwi %)

Substitution into Eq 3 to eliminate LA gives rise to an equation with the

form of Eq 4 where

A, = D (bA, ;- £)
C., = D.d,
i ii
and
D, = (b,C +c )-1
i 7 ii-1 i

In the preceding derivations, the sign (-) represents matrix negation, the

o -1 , .
sign (+) represents matrix addition, ( ~) represents matrix inversion, and

concatination indicates matrix multiplication.

Symmetric Case

For the symmetric five-wide case, if we look at the ith partition we have
what is shown in Fig 2.14. Applying the same type of analysis as done for the

nonsymmetric case gives rise to the identical recursion equations with a,
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T
replaced by i o and bi by dI-l . This yields several important results

i
We shall later see that this leads to approximately a 50

for the five-wide case, namely, that E;Bi 1 5 and therefore Di , are symmetric
T

and B, = D.E, .
i i i+l

percent reduction in time for both the three and five-wide cases.

Making the substitutions in Eq 3 gives us

T

Ay = DAy g ey by ot )
Bi = Di(EiCi-l + di)
C = D,e

1 1 1

and
T -1
D; = -(e; 9Ci o *+ EByj g +¢y)
T T

By = ejoBi 0t di (5)

In the following definitions and theorems A and B are square matrices

and x 1is a vector.

Definitions

I. The statement that A 1is symmetric means that for all a ,

a,. a,. .
ij ji
II. The statement that A is positive definite means that for any non-
zero vector x , x"Ax > 0 .
Theorems
I. If A and B are symmetric, them A + B is symmetric.
II. If A 1is symmetric, then for all scalers ¢ , cA is symmetric.

III. A+ A7 is symmetric.

IV. If A 1is symmetric, then BAB" is symmetric.



cee AT = A; ve. ATA. .

V. (A N 281

VI. If A 1is symmetric, then A-1 is symmetric.

T T T T
=A LN N 4 1
2+"'+AN) 1+A2+ AN

VII. (A1 + A
Proof of the symmetry of D for the five-wide case:

Given Eq 5 and the boundary conditions

and that the coefficient matrix S and its diagonal partition

symmetric and positive definite.

E,B, + e

1 180 ¢

ol
Il

+ c

1°-1 1

c, which is symmetric

Therefore D1 is symmetric from VI and II

EB. + e C. +c

=d

y 2 | 0°0 2
T
= dlDldl + c2

c.
1

13

are

dTp.d, is symmetric because of IV and finally D, 1is symmetric because

17171 2

of I. Therefore D2 is symmetric from VI and II.
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Assume Di is symmetric for i = k-2 and i = k-1

-
We now need to show that Bk = DkEk+1 .

To do this we will use an inductive proof within our main induction.

For j =1
By = Dy(E,Cy+d) = Dyd;
T T T
EZ = eOBO + d]. = d].
T —_—
By = d;
Therefore
.
B, = DB
Assume for j = k-1
.
Be-1 D15k
T T
Be-1 = BB
Therefore
T +d) = D (ED .e ,+d)
D181+ %) ® DelBiPi-1®-1 ¥ %
From Eq 5
E T + a7

bl - Ck-18k-1 Tt %

(6)
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Therefore

B = Bt )
From Eq 5

B, = D(EC _;+d) (8)
and

Ce-l = Pect®iel = Die1®ied )

Substituting Eq 9 into Eq 8 gives

T

B k-1%k-1

= Dk(EkD

. + dk{ (10)

and substituting Eq 7 and Eq 10 into Eq 6 gives

B = Difiyr
Therefore
By = DJ.EJT.+1
j =1, 2, ..., k
and
gy T
D = EBp 1t ernCiaa ¥ S

T T 11
= ED 3B * e oD o%k0 t (D
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Since Dk-l and Dk-2 have been assumed to be symmetric we have that

T T T .
Eka-lEk and ek-sz-Zek-Z are both symmetric because of IV and finally

ﬁk is symmetric from the successive application of I. Therefore D, 1is

k
symmetric from VI and II and by induction we conclude that Di is

symmetric for all i =1, 2, ... . Given this we can now conclude that

B. =

.
. D,E;,, forall i=1,2, ... (12)

and therefore EiBi- is symmetric for all i =1, 2, ... .

1
The proof is similar but less involved for the three-wide case.
Making these substitutions into Eq 5 gives us our final set of equations

for the symmetric case.

Five-wide case

.
Ay = DyEAy g tey Ay, )
T
Bi - DiEi+1
C = D.,e
1 11
- -(eT .C. o+ EB, . +c)}
Dy = -(ey 0 o ¥ EyBy g+ ey
T T
- 13
Bir = Ci-1Bia1 7t 9 (13

Three-wide case

i T YiN%ia1%i-1 T i
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-— - T -1
D, = -(d;_4C. ; +¢)) (14)

If we compare the recursion inversion algorithm with the elimination
(a la Gauss) methods, we see analogous patterns. The first phase, in which the
recursion coefficients and multipliers are calculated, is analogous to the
triangularization phase of the elimination methods. The second phase, in
which the recursion equation is solved for the unknown vectors, is analogous
to the back-substitution phase.

In the following section we will see that there is also a similar pat-

tern in the way multiple constant vectors can be handled.

Multiple Constant Vectors

A very important part of any solution scheme is its ability to handle
problems where for the same coefficient matrix there are numerous constant

vectors. We represent this by AW = F where F = (f., f ey fg) . This

1’ 2’

actually represents £ individual problems,

Aw, = f. , Aw, = f2 , and so forth.

One way to handle this problem, which seems appealing at first glance,
is the classical solution w, = A-lfi , 1=1,2, ..., £ . This requires
N2 multiplications for each vector, which is approximately the same amount
required for back substitution, given an upper triangularized matrix or some
analogous factorization. But since it requires approximately N3 multipli-
cations to compute A-1 and only N3/3 for the elimination or decomposition
methods, we see that the latter are preferable. The above analysis was done
with the assumption that A had no special properties. In the case where
A 1is banded, the comparison between the two alternatives becomes even more
striking, because the decomposition methods can readily take advantage of the
banding whereas the inverse of a banded matrix is not necessarily banded and
therefore in general cannot take advantage of this additional information.

If we now consider the recursion inversion approach, we see that the
introduction of multiple f's requires only that for each vector we need to

recalculate recursion coefficient A and circumvent the calculations of B ,

C, D, and E, all of which is approximately equal to the work required for
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banded decomposition. In addition, we see that the work required to calculate
A is approximately equal to that needed for the transformation of the con-
stant vector F and banded back substitution.

For the sake of discussion and for descriptive purposes in the flow

charts, we categorize problems in the following manner:

Given AW = F , where F = f1

We refer to this as a standard problem

when AW = F , where F = (fl’ f2, ceey fg)

f1 is  referred to as the parent problem and fl’ i=2,3, ..., 4 are re-

ferred to as offspring problems.

While it is true that f1 through f are all of equal importance from

L

the solution standpoint, the distinction between f1 and the other f's was

made because in the recursion inversion procedure, the original vector is

operated on concurrently with the calculation of the recursion coefficients.



CHAPTER 3. EFFICIENCY, SPEED, AND SIZE

To program the recursion inversion procedure in the most efficient
manner, it is necessary that the implied matrix operations not be done expli-
citly, but by banded matrix operation routines which do only the necessary
operations. Also, to save storage as well as time, we pack these submatrices,
thereby eliminating the zero elements which lie between the bands. Also, to
minimize internal core memory requirements, only one level (horizontal parti-
tion) will actually be generated at any given time. The packing procedures

necessary are explained fully in Appendix C.

Computations

To compute the amount of work necessary, let us first consider in parti-

and N are

1 5

small relative to K (the submatrix order), where Nl and NS are the

respective band widths of the outside bands. Therefore, the overall band

cular the five-wide nonsymmetric case. Let us also assume N

width is = 4K + 1 , and for simplicity and because of the above assumption,
let us use 64K .

If we look back at the recursion coefficients, we see that the dominant
operations are the two full matrix multiplications in B and the one multi-
plication and inversion to get D . Referring to Fig 2.4 for the definition
of K and L , we define N as K times L . Each of these requires K3
multiplications. These must be repeated L times giving us an approximate
estimate of

4L

2
4K N

(2K)2N

which is the amount needed for a comparable form of banded Gaussian elimina-

tion,

19
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If we consider back substitution or the necessary work required for
additional constant vectors, we see that this involves only the computation
of the recursion coefficient A and then the application of the recursion
equation (Eq 2, p 4). The former requires roughly (2K + 1)N multiplications
while the latter takes 2KN making the total (4K + 1)N , which also com-
pares almost identically with banded Gaussian back-substitution.

We have used banded Gaussian elimination as a yardstick because, as was
mentioned in Chapter 1, it is much more expedient than taking the actual
inverse and in fact it has been proven that no direct method can take less
computation than Gaussian elimination for a nonsymmetric matrix.

We find that for the three-wide nonsymmetric caée, the recursion inver-
sion method also is approximately equivalent to banded Gaussian elimination
from the standpoint of computations involved. As was mentioned earlier, the
additional information of symmetry reduces both solutions by approximately

50 percent.

Accuracy

Error analysis indicates that for well-conditioned problems at least
four significant digits will remain for up to 100,000 equations, where a 60-
bit word length is used. 1In both the nonsymmetric and symmetric case, the
routines are such that one can take advantage of the accurate accumulation of
inner-products, which can be very helpful for problems that are ill-condi-
tioned. Greater advantage of this can be taken in the symmetric case because
a compacted inversion routine is employed which also takes advantage of the

accurate accumulation of inner-products,

Storage

For all practical purposes the storage requirements are consumed by the
recursion coefficients (Table 3.1). Although it is not necessary, the entire
solution vector has been retained in the core for convenience.

For a single vector problem, the auxiliary storage is reduced to
N(2K + 1) as one would expect. For the symmetric case we no longer need
Bi-2 but its space is replaced by Ei+1 . Also, only Ci-2 actually occurs

in the revised formulas, but Ci—l is needed as temporary storage. However,

by judicious arrangement, we have been able to use Bi-l as a temporary and
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TABLE 3.1. STORAGE FOR FIVE-WIDE CASE (NONSYMMETRIC)

Total Storage Core Auxiliary
Ai K-L K K-L
A1—1 K K 0
Ai-2 K K 0
Bi K2L = KN K2 K2 - L
B, K2 K2 0
i-1
B, K2 K2 0
i-2
Ci K2L = K*N K2 K2 + L
C. K2 K2 0
i-1
2
C, K K2 0
i-2
2 2
D K2 - L ' K K - L*
E K2 - L K2 K2 - L*
. K.L K-L 0
i

*
(This storage is necessary for multiple vector problems only.)

Total core storage = 8K2 +3K+K-.-L
Total auxiliary storage = 4K2L +K+L = NGUlBK+1)
delete the need for a storage slot for Ci—2 . Therefore, the core storage

2
for the symmetric five-wide case is reduced by K .

Table 3.2 describes an analogous situation.

For a single vector problem, the auxiliary storage is reduced to
N(K + 1) . It should now be obuious why K 1is chosen to be the smaller of
the pair K, L . Although the order of the stiffness matrix (N = K * L)
is not changed, the band width is directly proportional to K ; therefore it
should be the smaller to reduce both the core storage and computational

requirements,
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TABLE 3.2. STORAGE FOR THREE-WIDE CASE

Total Storage Core Auxiliary

A K - L K K- L
A 4 | K K 0
c, K°L K’ KL
2
D, KL K’ KL
W, K- L K- L 0
1

*
(This storage is necessary only for multiple vector problems.)

Total core storage (Tc) = 2K2 + 2K+ K « L

2
Total auxiliary storage = 2K L+ KL = N(@2K + 1)

Let us assume we had a problem that yielded a five-wide problem in

which K =10 and L = 20 :

Tc = 8 e 102 +3 +10+ 10 « 20 = 1030 .

In these computations we have been neglecting the storage necessary for
the coefficient matrix itself, but, since we only need one partition at a
time, this storage 1s negligible. 1If, in our example, we assume a typical
1-3-5-3-1 operator (refer to Fig 2.2), the additional storage required would
be (1+3+ 5+ 3+ 1)10 = 130 , which is not only small compared to 1030
but, as L increases, will not change since it is dependent only on K .
Also as K 1increases, this number increases linearly, whereas our total

core storage requirement (TC) increases quadratically.
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Timing
Figures 3.1 and 3.2 show the time in seconds for the solutions to
problems having square grids (L = K) . For rectangular grids (L > K) the
time increases in direct proportion to L and may be estimated by multiply-
L *

ing the time from Fig 3.1 or Fig 3.2 by P

*All runs were made on a CDC 6600, with the SCOPE 2.0 RUN compiler,
Basic execution time in minor cycles:

division - 29 m.c.

multiplication - 10 m.c.

addition - 4 m.c.

1 m.c. = 250 nanoseconds.
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Fig 3.1. Time graph for three-wide solver.
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Fig 3.2, Time graph for five-wide solver.
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APPENDIX A, FLOW CHARTS AND LISTINGS OF MAIN ROUTINES

TRIP 3 - Listing
TRIP 4 -~ Listing
TRIP 3 & 4 - Flow chart
FRIP 3 - Listing
FRIP 4 - Listing
FRIP 3 & 4 - Flow chart

TRIP: Three-wide Recursion Inversion Procedure

FRIP: Five-wide Recursion Inversion Procedure
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Cheznunn NOTATION FOR TRIP 13

C A - RECURSION COEFFICIENT ( A1) )

C AM1 - RECURSION COFFFTCIENT ( AlI-1) )

C ATM - TEMPORARY VECTOR

C C - RECURSION COEFFICIENT ( C(I) )

C M1 - RECURSION COEFFICIENT ( C(I-1) )

C D - RECURSION MULTIPLIER ( DI(IY )

C BB - SUB-MATRIX ( LITTLE B(I) )

C CcC - SUB-MATRIX ( LITTLE C(I) )

C DD - SUB-MATRIX ({ LITTLE D{I) )

C FF - SUB-MATRIX VECTOR ( LITTLE F(I) )

C L - SOLUTION VECTOR ( STORED AS TWO-DIMFNSIONAL )
C N1 - BAND WIDTH OF BB

C N2 - BAND WIDTH OF CC

C N3 - BAND WIDTH OF DD

C ML - PROBLEM TYPE SWITCH NEGATIVE FOR OFFSPRING
C ZERO FOR STANDARD

C POSITIVE FOR PARENT
C NK - ORDER OF SUBMATRICES

C NL - MATRIX ORDER OF OVERALL COEFFICIENT MATRIX
C NF - STARTING VALUE FOR MAIN DO LOOP

C L1 - VARTABLE DIMENSION PARAMETER ( REQUIRED )

C L2 - VARIABLE DIMENSION PARAMETER ({ OPTIONAL }

C L3 - VARIABRLE DIMENSION PARAMETER ( OPTIONAL )



SUBROUTINE TRIP3 ( L1sL2yL3sMLyAsAM19ATM,CyDy
1 BB sCCoDDsFFoWsN1sN2sN3 )
C %% %% %% THE LATEST REVISION DATE FOR THIS PROGRAM IS = - - =
Cexxxx%xx TH]S GRUUP OF 10 SUBROUTINES PROVIDES THE USER WITH AN
C EFFICIENT GENERAL SPARSELY BANDED EQUATION SOLVER
C (THE MATRIX IS ASSUMED TO BE POSITIVE DEFINITE)
C WHICH CAiN HANDLE UP Tu 3 GROUPS OF BANDS s EACH
C UF ARBITRARY WIDTH

Crx¥xxxx THIS ROUTINE SUPERVISES ¥ SUBROUTINES » 8 OF WHICH

C ARE SELF=SUFF]ICIENT AND COME AS A PACKAGE( SUMP 6
C REMAINING ONE GENERATES AND PACKS THE STIFFNESS
C MATRIX AS QUTLINED IN THE APPENDIX OF THE RELATED REPORT
C THIS RUUTINE MUST BE SUPPLIED BY THE USLR SINCE
C IT DESCRIBES H1S PARTICULAR PROBLEM
Cu**kxxx® N THE MAIN PROGRAM THE FOLLOWING CAN BE EQUIVALENCED
C ( ATM » CC !
Cre®xxix SCRATCH TAPES SHOULD BE KEWUESTED FOR TAPES 1 AND 2
C TAPE 3 WURKS APPRUPRIATELY AS A DISK FILE » BUT A SCRATCH
C TAPE CAN bt USED [F NECCESARY OR DESIRED.
DIMENSIOUN  AC(L1 ) s AM1(L1 ) s ATMIL1 ) ’
1 ClLlsL1) ’ D(L1sL1} ’ wiL2sL3) ’
2 BB(L1sN1) sy CC(L1sN2) s ODIN3sL1) s FFI(
COMMON /RI/ NK 9 NL s NF
REWIND 1
REWIND 2
REWIND 3
IFC ML ) 140, 100y 100
C SET INITIAL CONDITIONS
100 DU 135 I =1 » NK
bu 130 J =1 » NK
C(led? = Qa0
130 CONTINUE
135 CUNTINUE
140 VU 150 [ =1 » NK
All) = Qa0
150 CUNTINUE

by

THE

L1

20Myd
2UMYH
01AGH
23MR8
11JA8
12MR8
11JAb
11JA8
23MRY
V1AGS
11JA8
23MR8Y
I1JA8
11JA8
20MY8
2UMY8
U5MRb
2CMYB
2uMYd
2uMYs
2uMyy
VBAPS
~1FESB
110A8
11JA8
18JA8
11JA8
11JA8
V1FES8
UVIFEB
12MRY
11JUA8
11JA8
VIFES8
2UMY3
11JA8
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C***l#**%**%***i**********&*********%****Q%**%*%******%*********l****ii*********

C BEGIN FURWARD PASS ~—- SOLVE FOR RECURSION COEFFICIENTS

C******l*****I**%**%**l*****************&&***&*****&***************%******&*****

{ L] . * L * . . * . » * . . * L] L] L L L 4 L L 4

0O 1000 J = NF s NL QlFEB

JJ = J 11JA8

C FURM SUB-MATRICES 11JA8 .
CALL FSUB31 { L1lsL2sL3+BBsCCDDsFF ML JIsNLsNZsN3 } 12MR8

CALL RFv { AML, A s L1 s 1 » NK ) 2VMYB .

IF{ ML ) 210, 220, 220 VBAPB

C READ D MULTIPLIER FRUM TAPE 3 12MRE
210 READ (3) ({ DUIsK}) s I = 19NK} s K = 1sNK ) 12MR8 .
00 TU 280 11JA8 .

C CALCULATE RECURSION MULTIPLIER D 12MRE
220 CALL MBFV ({ BB ¢ C s D s L1 s L1 s NK 4 N1} 2UMY8 .
CALL ABF { CC o+ O s D 9o L1 » NK s N2 12MR8

CALL INVRS { D ¢ L1 » NK } 15MR8 .

CALL CFvV (D s L1 s L1 s NK » —1e) 2UMY8 .

C CALCULATE RECURSION COEFFICIENT C 11JA8 .
CALL MFB (L « DD s € s L1 s NK s N3 ) 1ZMR8 .

C CALCULATE KECURSIUN COEFFICIENT A 11JA8 &
280 CALL MBFV t BB , AMls ATMs L1 s 1 s NK » N1 } 2UMY8 .
CALL ASFV { ATM, FF s ATMs L1 s 1 o NK » -1 ) 2UMYE .

CALL MFFV (D o ATMs A s L1 o 1 s NK ) 2UMY8 .

C SAVE A COEFFICIENT ON TAPE 1 11JA8 .
WRITE (1) { A(IYs I = 1eNK I V1FEB

IF{ ML )} 400, 600 500 11JA8 .

400 READ (2) 18JAB  »
GO TO 1000 11JA8 .

C SAVE D MULTIPLIER ON TAPE 3 12MRB &
500 WRITE (3) (0 DUIsK) s I = 1sNK} » K = 1aNK ) 12MR8 .

C SAVE C CUOEFFICIENT ON TAPE 2 12MR8
600 WRITE (2) {{ CUIsK) 9 I = 1sNK) s K = 1sNK 1} 12MR8
1000 CONTINUE 11JA8 &

(. * * * * - * . L - . L] . » L 4 * L] . L4 - L d * . . L4 L . L L » . L]
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C'l-'l'***i******i**********i***l-'l"l-'l-************'l-'l-'l'l-'l-*i***i*************************

C BEGIN BACKWARD PASS -- COMPUTE RECURSION EQUATION
C****l’**************************************************************************
BACKSPACE 1 2UMY8
BACKSPACE 2 2UMY8
CALL RFV { WINFsNL)s A s L1 o 1 o NK ) O1AGS8
NLM1 = NL - 1 20MY8
C L] L] L ] L ] L ] L ] o o o L ] L ] L ] o L ] L] L ] L ] L ] L] L[] L ] L ] L] L ] e
DO 2000 L = NF o NiM] 2UMY8
J = NLM] + NF - L 20MY8 .
BACKSPACE 1 11JA8
BACKSPACE 2 18JA8 .
C READ A COEFFICIENT FRUM TAPE 1 11JA8 &
READ (1) ( A{I)s I = 1sNK ) O1FE8
C READ C COEFFICIENT FRUM TAPE 2 12MR8
READ (2) (( ClIsK) o I = 1eNK} 9 K = 19NK ) 12MR8
BACKSPACE 1 11JA8
BACKSPACE 2 18UA8
CALL MFFV  ( C o WINFsJ+1)9AMl,y L1 o 1 o NK ) O01AGE o
CALL ASFV ( A s AM1s WINFsJ) » L1 » 1 s NK » +1 ) 01AG8 .
2000 CONTINUE 11JA8 &
C L ] L L ] L ] L] o L ] L ] L ] L ] L ] o o L ] L ] L ] L ] L ] L ] L ] o L ] o L] o L ] L ] L ] o o e
RETURN 11JA8

END 11JA8
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CH¥Exxnx® NOTATION FOR TRIP 4

2a¥2¥2aXaNaXaXaaXalalalaXaXaXaNalaXaXaXaXeaNa)

A
AM1
ATM
C
cM1
D
DT1
cc
DD
FF
W
N1
N2
ML

NK
NL
NF
L1
L2
L3

RECURSION
RECURSION
TEMPORARY
RECURSION
RECURSION
RECURSION

COEFFICIENT
COEFFICIENT
VECTOR
COEFFICIENT
COEFFICIENT
MULTIPLIER

(
(
(
(
(

A )
A(I-1) )

an
aI-1
D(I) )

SUB=-MATRIX ( LITTLE D(I-1) TRANSPOSE )

SUB-MATRIX ( LITTLE C(I)
SUB-MATRIX ( LITTLE D(I)

)
)

SUB-MATRIX VECTOR ( LITTLE F(I) )

SOLUTION VECTOR ( STORED AS TWO-DIMENSIONAL )
BAND WIDTH OF DD
BAND WIDTH OF CC
PROBLEM TYPE SWITCH

ORDER OF SUBMATRICES
MATRIX ORDER OF OVERALL COEFFICIENT MATRIX
STARTING VALUE FOR MAIN DO LOOP

VARIABLE DIMENSION PARAMETER ( REQUIRED )
VARTABLE DIMENSION PARAMETER { OPTIONAL )
VARIABLE DIMENSION PARAMETER { OPTIONAL )

NEGATIVE FOR OFFSPRING
ZERO FOR STANDARD
POSITIVE FOR PARENT



SUBROUTINE TRIP4 ( L1sL2sL3sMLsASAM1sATMsCsD

1
CREHHR KR
CRERRHHE

C

C (THE MATRIX IS ASSUMED TO BE SYMMETRIC AND POSITIVE DEFINITE)
C WHICH CAN HANDLE UP TU 3 GROUPS OF BANDS s EACH
OF ARBITRARY WIDTH
Crannnxx THIS RUUTINE SUPERVISES 12 SUBROUTINLS s 11 OF WHICH
C ARE SELF-SUFFICIENT AND COME AS A PACKAGE( SUMP & )y THE
C REMAINING ONE GENERATES AND PACKS THE STIFFNESS
C MATRIX AS OUTLINED IN THE APPENDIX OF THE RELATED REPORT
C THIS ROUTINE MUST BE SUPPLIED BY THE USER SINCE
C IT DESCRIBES HIS PARTICULAR PROBLFM
CH**xxxx [N THE MAIN PROGRAM THE FOLLOWING CAN BE EQUIVALENCED
C ( ATM » CC !}
CerRxxxx SCRATCH TAPLS SHUULD BE REQUESTED FOR TAPES 1 AND 2
C TAPE 3 WURKS APPRUPRIATELY AS A DISK FILE s BUT A SCRATCH
C TAPE CAN Bk USED IF NECCESARY OR DESIRED.
DIMENSION A(L1 ) s AM1(L1 ) s ATM(L1 ) ’
1 C(LlsLl) D(L1sL1) s WIL2,L3)
2 DT1(L1sN1) s CC(L1sN2} s DD(N1lsL1) s FFL L1
COMMON /RI/ NK s NL s NF
REWIND 1
REWIND 2
REWIND 3
IF{ ML ) 140, 100s 100
d SET INITIAL CONDITIONS
100 DO 135 I =1 s NK
bu 130 J =1 » NK
Cilsdl = 040
130 CUNTINUE
135 CONTINUE
140 DO 150 I =1 » NK
A(I) = 060
150 CONTINUE

DT1sCCsDDsFFsWsN1sN2 )

THE LATEST REVISION DATE FOR THIS PROGRAM [S - = - -

THIS GROUP OF 13 SUBROUTINES PROVIDES THE USER WITH AN
EFFICIENT GENERAL SPARStLY BANDED EQUATION SOLVER

20MY8
20MY8
01AGS
23MR8
11JA8
12MR8
11UA8
11JA8
23MRy8
V1AGSH
11JA8
23MR8
11JA8
11JA8
20MY8
20MY8
O5MR8
2UMY8
2UMY8
2UMY8
2uUMY8
O9APS
U1FESB
11JA8
11JA8
18JA8
11JA8
11JA8
O1FES8
V1FES
12MR8
11JA8
11JA8
Ol1FESB
20MY8
11JA8
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€ T I T I T W T3 I I W I T 3 I I I I KW

C BEGIN FURWARD PA5S =- SOLVE FOR RECURSION COEFFICIENTS
A i s Ry TS T T T 2 e T LS R R TR 2

C * L4 » » » L] * * * L] L L * Ed * * * L . * » L - »

LD 1000 J = NF s NuL U1FESB .

JJd o= J 11UA8 .

C FORM sUB~-MATRICES 11UA8
CALL FS5UB32 ( L1sL2sL3e0T19CCoDDFFsMLeJJsN1IsN2 ) 12MR8

CALL RFV { AMly A 5 L1 o 1 s NK 1} 2UMY8

IF{ ML ) 210s 220 220 UG APS .

C REAL D MULTIPLIER FRUM TAPE 3 12MRY .
210 READ (3) {t D{I+sK) s I = 1sNK} 4 K = 1sNK ) 12MR8 .
GO TU 280 110A8

C CALCULATE RECURSIUN MULTIPLIER D 1ZMRE
220 CALL MBFV { DTls € s+ D s L1 s L1 s NK o N1 2UMYE
CALL ABF {t CC s D o D » L1 s NK s N2 12MRB

CALL INVRG { D o L1 » NK } 15MR8 »

CALL CFV { D » L1 s L1 o NK o -1} 2UMY8 .

C CALCULATE RECURSIUN COEFFICIENT C 12MRY .
CALL MFB { D » DD o € s L1 o NK s N1l 3} 12MRE

C CALCULATE RECURSIUN CUEFFICIENT A 11JA8
280 CALL MBFV { DTl, AM1,s ATM, LI 4 1 s NK 9 N1 2uMY8 .
CALL ASFV { ATy FF 9 ATMs L1 5 1 s NK o -1 ) 2uMYs .

CALL MFFV  { D » ATMy A 5 t1 » 1 + NK ) 2uUMYHs .

C SAVE A CUEFFICIENT ON TAPE 1 11JA8 .
WRITE (1) { A(I)s I = 1eNK VIFES

IF( ML ) 400, 600y 500 11JA8 .

400 READ (20 18JA8 .
GO TO 1000 11JA8 «

C SAVE D MULTIPLIER ON TAPE 3 12MR8 .
500 WRITE (3) (¢ DEIsK) 93 I = 1eNK) 9 K = 1eNK } 12MR8 .

C SAVE C COEFFICIENT ON TAPE 2 12MR8
600 WRITE (&) (t CUIsK) o I = 1sNK} 9 K = 1eNK } 12MR8 .
1000 CUNTINUE 11JA8
C L] . L] L ] L] L] [ ] » L] L] L] L] L ] A ] L] L] L ] » » - » * » » L] L] . L] . . .



39

C*-l'*i*i*ii**i-l*-l'-l'*****iii*i*i#*iii*iii*-l-l-l-l'-l'l"l'i-l-liiiiiiiiiiiiiiii*i*iii*iiiii*i*

C

BEGIN BACKWARD PASS

~— CUMPUTE RECURSION EQUATION

Cii*i*iiii*i*ii#iii*i*iii*iii*ii***ii****iiiiiii*iiiiiii*ii*iii*iiiiiii#i*iii*i*

2000

’

BACKSPACE 1
BACKSPACE 2
CALL RFV { WINFsNL)y A » L1
NLM1 NL = 1
L] L] L L]
buo 2000 L NF s NLM1
J = NLM1 + NF - L
BACKSPACE 1
BACKSPACE 2
REAL A CUOEFFICIENT FROM TAPE 1
READ (1) ( Atlls 1 = 1sNK !
READ C COEFFICLIENT FROUM TAPE 2
READ (2) (U CllsK) s | = 1sNK)
BACKSPACE 1
BACKSPACE 2
CALL MFFV  ( C s WINFsJ+1)9AM1,
CALL ASFV [ A » AM1,y WI(NF sJ)
CUNTINUE
L] L L] L L] L L L]
RETURN
END

1

K

L1
L1

ft

2UMYB
20MYB
01AGS
2UMY8
L ] * L ]
2UMY8
20MY8
11JA8
18JUA8
11JA8
U1FES8
12MR8
12MR8
11JA8
18JA8
01AGSH
U1AGS
11JA8
L ] L ] L ]
11JA8
110A8
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Flow Chart for Three-Wide Recursion Inversion Process

TRIP 3 , TRIP 4

\ SUBROUTINE TRIP /

OFFSPRING —-——
PARENT —X——
REGULAR —>—>— clear storage - = - BEGIN FORWARD PASS

and rewind tapes

|

— J = NF— NL Aﬁ)
FORM . .
SUBMATRICES M
shift "appropriate l
storage
v |
compute recursion |
multiplier D ~a
T v
+ X v READ (3)
compute recursion P
coefficient C
x v |
compute recursion .
coefficient A

v |
_ _ )
_— CONTINUE - =




| continuE )

l RETURN l
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Cxexxins NOTATION FOR FRIP 3

C A - RECURSION COEFFICIENT ( A1y

C AM1 - RECURSION COEFFICIENT { A(I-1)

C AM2 - RECURSION COEFFICIENT ([ A(I-2) )

C ATM - TEMPORARY VECTOR

C B - RECURSION COEFFICIENT ( B{(I} )

C BM1 - RECURSION COEFFICIENT ( B{I-1} )

C BM2 - RECURSION COEFFICIENT ( B{1-2) )

C C - RECURSION COEFFICIENT ( C(IY

C M1 - RECURSION COEFFICIENT ( ClI-1}

C M2 - RECURSION COEFFICIENT ( C(I-2Y

C D - RECURSION MULTIPLIER ( DI} )

C E - RECURSION MULTIPLIER ( E(I}

C AA - SUB-MATRIX ¢ LITTLE A{I}

C BB - SUB-MATRIX ( LITTLE B{I) )

C cC - SUB-MATRIX ( LITTLE C{I} }

C bD - SUB-MATRIX ( LITTLE DIV )

C EE - SUB~-MATRIX ( LITTLE E(IY 1}

C FF - SUB~MATRIX VECTOR { LITTLE F(Iy )

C w - SOLUTION VECTOR ( STORED AS TWO-DIMENSIONAL
C N1 - BAND WIDTH OF AA

C N2 - BAND WIDTH OF BB

C N3 - BAND WIDTH OF CC

C N4 - BAND WIDTH OF DD

C N5 - BAND WIDTH OF EE

C ML - PROBLEM TYPE SWITCH NEGATIVE FOR OFFSPRING
C ZERO FOR STANDARD
C POSITIVE FOR PARENT
C NK - ORDER OF SUBMATRICES

C NL - MATRIX ORDER OF OVERALL COFFFICIENT MATRIX
C NF - STARTING VALUF FOR MAIN DO LOOP

C L1 - VARIABLE DIMENSION PARAMETER ( REQUIRED )
C L2 - VARIABLE DIMENSTON PARAMETER { OPTIONAL
C L3 - VARTABLE DIMENSION PARAMETER ( OPTIONAL )



SUBRUUTINE FRIP3 ( L1oi29L39sMLIAIAM]1 sAM23ATMsB89BML19sBM2,4+Cy 20MYB

1 CM1 sCM2 sDsE sAA BB yCCoDDsEEsFFaWsN1 o N2sN3sN4& NS ) 20MYS

C 3% % %% % % THE LATEST REVISION DATE FOR THIS PROGRAM IS - = - - 01AGS
CrExxxx®t THIS GRUUP UF 10 SUBROUTINES PROVIDES THE USER WITH AN 20MY8
C EFFICIENT GENERAL SPARSELY BANDED EQUATION SOLVER U4 JAB
C (THE MATRIX IS ASSUMED TO BE POSITIVE DEFINITE) 12MR8
C WHICH CAN HANDLE UP TO 5 GROUPS OF BANDS s EACH 04JA8
C OF ARBITRARY WIDTH U4 JASB
Ce*%%xxx THIS ROUTINE SUPERVISES 9 SUBROUTINES » 8 OF wHICH . 2UMYS8
C ARE SELF-SUFFICIENT AND COME AS A PACKAGE( SUMP 6 )y THE 01AGS8
C REMATINING ONE GENERATES AND PACKS THE STIFFNESS 04UA8
C MATRIX AS QUTLINED IN THE APPENDIX UF THE RELATED REPORT 23MR8
C THIS RUUTINE MUST BE SUPPLIED BY THE USER SINCE U4 JAB
C IT DESCRIBES HIS PARTICULAR PROBLEM V4 JAY
Cex¥x%%% [N THE MAIN PRUGRAM THE FULLUWING CAN BE EQUIVALENCED 2UMY8B
C ( ATM » BB ! 2VMYB
Crxxxdx® SCRATCH TAPES SHOULD BE REQUESTED FOR TAPES 1 AND 2 USMRY
C TAPE 3 WURKS APPROPRIATELY AS A DISK FILE s BUT A SCRATCH 20MY8
C TAPE CAN BE USED IF NECCESARY OR DESIRED. 20MY8
DIMENSION A(L1 ) s AM11(L1 } s AM21(L1 ) ’ 2UMY8

1 B(L1sL1) s BM1(L1sL1) » BM2(L1sL1) s ATM(L] ) s 2UMYB

2 C{L1lsL1) s CM1(L1lsL1) s CM2(L1sL1) ’ 2UMYS8

3 DiLlsL 1) ’ E(L1sL]) . WiL2sL 2 ’ 2vMys

4 AA{L1sN1) s BB(L1sN2)- » CClL1sN2) s DD(L1sNg) s U4JASB

5 EE(NSsL]) s FF(L1) v4JAB
CUMMUN /RI/ NK o NL s NF V2FESB
REWIND 1 LG4 UASB
REWIND 2 04 UAB
REWIND 3 17JA8

IFC ML ) 140, 100, 100 04JA8

C SET INITIAL CONDITIONS V4 JAB
100 DO 135 J =1 s NK O1FES8
LO 130 I =1 » NK V1FES

BM1(1sJ}) = 060 V4 JAB

CM1(IsJ) = 040 V4 JAB

BlleJd? = 040 U4 JA8

Clledt = 040 V4 JAY

130 CONTINUE 04 JAB
135 CONT INUE V4 JAB
140 DO 150 I =1 s NK O1FES8
All) = 0.0 2UMYS8

AM1(I) = Q.0 2UMY8

150 CONTINUE V4 JAB
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C*****************-ﬁ-*******-)’e********************************%**i*i*********%&&%**

C BEGIN FURWARD PASS ~-- S0LVE FOR RECURSION COEFFICIENTS 04 JAB
CRHHK KK MK KK H KN TN I NI NI H NN TR I T NI T2 35636562 30 0 30630 3 26903606 206 2 3 29

C . L L] . - L4 L - » L L - L] . » - - » . - . - . . - *

»
DO 1000 J = NF o+ NL UIFE8
JJo=J U4JAB
C FURM SUB—-MATK]ICES VLJAB .
CALL FSUBSL (L1sL2+L3+AA»BBCCIDUIEE oFF sMLaJJINTsN2sN3sNG NS | 12MRE  »
CALL RFV { AMZ2, AM1y L1 s 1 o NK ) 2UMY8 .
CALL RFV t AM1y, A s L1 ¢ 1 5 NK 20MY8 .
IFt ML ) 210, 180y 180 04JA8
180 CALL RFvV { BMZ, BM1s L1 s L1 » NK ) 2UMYB .
CALL RFvy { BMlsy B » L1 » L1 s NK 20MY8
CALL RFV (M2, CM1s L1 » L1 s NK ) 20MY8
CALL RFvV ( CM1sy € 9 L1 s L1 » NK ) 20MY8
GQ TO 220 UL JAB
C READ D AND £ MULTIPLIERS FROM TAPE 3 17JA8 .
210 READ (3) (0 DOIgR)Y 9 ECLsK) s I = 14NK) 9 K = 14NK ) QlFEB
oUu TO 280 V4 JAB .
C CALCULATE RECURSIUN MULTIPLIER € VGJAB
220 CALL MBFV { AA 4 BM2, £ 4 L1 s L1 s NK 4 N1} 2UMY8 .
CALL ABF { BB » E s E o L1 s NK 4 N2 ) VIFEB .
C CALCULATE RECURSIUN MULTIPLIEK D VG JAB .
CALL MFFV ( E » BMls D 4 L1 s L1 » NK } 2VMY8 .
CALL MBFV ( AA » TM2s C s L1 s L1 4 NK s N1 } 20MY8 .

CALL ASFV (D 9 € s D s L1 s L1 o NK o +1 O1AGS
CALL ABF { CC 9 D o D o L1 s NK 4 N3 UIFEB .
CALL INVRS ( D 4 L1 9 NK ) ! O1FES
CALL CFV (D 9 L1 s L1 » NK » =14} 20MY8
C CALCULATE RECURSION COEFFIECENT C Q4 JA8 o
CALL MFB { U o EE 9 C s L1 4 NK 4 NS ) U1FEB .
C CALCULATE RECURSION COEFFIECENT B Q4 A8 .
CALL MFFVY  ( E 4 CM1s B » L1 » L1 » NK ) 2UMYB .
CALL ABF ( DD o B » BM2s L1 o+ NK 5 N& ) U1FES .
CALL MFFV (LU 4 BM2s B » L1 s L1 s NK } 20MY8 .
C CALCULATE RECURSIOUN COEFFIECENT A Ut JAB o
280 CALL MFFV ( E 4 AMl1s A s L1 o 1 ¢ NK 1} 2UMY8 .
CALL MBFV ( AA s AM2s ATM, L1 » 1 4 NK » K1) 2UMYB .
CALL ASFV L A » ATMy AMZ, L1 o 1 5 NK 4 +1 ) 2UMY8 .
CALL ASFV | AM2, FF o ATMy L1 s 1 4 NK » =1 2UMYB .
CALL MFFV (L ¢ ATMy, A 4 L1 s 1 4 NK 2UMYB .
C SAVE A CUEFFICIENT ON TAPE 1 VG JAB .
WRITE (1) { Afl)y 1 = 1sNK | U2FEB .
IFU ML 1400+600,500 Q4 JA8
400 READ (2 17JAB
Gu TO 1000 U4 JAB .
C SAVE D AND E MULTIPLIERS ON TAPE 3 170A8
500 WRITE (3) (( D(IsK)sE(LlsK)s I=1aNK}y K=1sNK) wZ2FEB
C SAVE B AND ¢ COEFFICIENTS ON TAPE 2 17JA8 .
&U0 WRITE (2) (0 BCIsKIsC(IsK)y [=1sNK)y K=1,4NK) UZFEB

1000 CONTINUE 04JA8B

C L] * - * L ] . Ld L . . . L L] . . L L] L2 L4 * 2 - - . L4 L J L] - . - e
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CRNHBRRAAAERR AR R XTI B M RN I IR NN WA 230 33 3 0 2360236 62 62 320 2 %

C

BEGIN BACKWARD PASS

——

COMPUTE RECURSION EQUATION

04JA8

Cili***i******&*&*ii**********!!**i*i***i**!***********%**%i*****%*%***i*l%****&

2000

BACKSPACE 1
BACKSPACE 2

CALL RFV { WINFsNL I
BACKSPACE 1

BACKSPACE 2

READ (13 ( Atl)y I =

READ (23 ([ B{lsK) »

BACKSPACE 1
BACKSPACE 2

CALL MFFV  { B » WINFsNLI,
CALL ASFV | A s AM1l, W(NF,sNL-1) s L1 » 1 5 NK o +1

NLM2 = NL — 2

A

1 sNK
C{lsK)ls T = 1sNK) s K = 1sNK)

VO 2000 L = NF s NLM2

J = NLM2 + NF
BACKSPACE 1
BACKSPACE 2

- L

L1 » 1 9 NK )

AM1, L1 » 1 » NK )

. Ld . * L] L] L L L L L L4 »

READ A CUOEFFICIENT FRUM TAPE 1

READ (1) ( A(l)y I =

1 sNK

i

READ B AND C COEFFICIENTS FROM TAPE 2

READ (2) (¢
BACKSPACE 1
BACKSPACE 2

Bll,yK)

» CllsK)s I = 19NK} » K = 1laNK}

CALL MFFV (B 5 WINFsJ+1)9sAM1, L1 » 1 5 NK }
CALL MFFV  ( C » WINFsJ+2)sAMZ2, L1 » 1 s NK )
CALL ASFV  ( AMl, AMZ2s AM1ls L1 5 1 3 NK o +1 }
CALL ASFV (A 5 AMls WINFsJd} 9 L1 5 1 ¢ NK ¢ #+1 }
CONTINUE
. & & & o * * & & & & & * 3 & * s
RETURN
END

2uMY8
2wMY8
01AGSH
20MYH
2UMYB
2UMYB
20MY8
20MY8
20My8
J1AGHE
UV1AGH
2uMYB
- * *
2VMYH
2wMYY
VA& JAB
17JA8
U4 JAB
UZFES8
17Ja8
U2FES
V4 JAB
17JA8
V1AGSH
V1AGS
2UMYS8
VU1AGSE
V4 JAB
. » L ]
4JA8
4JA8

*
. 5 & 5 8 & & ¢ & 5 & B s " ¢ e

»
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CEunxvn® NOTATION FOR FRIP &

2 ¥2XaNeXelaNaNaXakalalalalalalaNaNaNaNalala¥akalaXaiaRaXakaNa!

A
AM1
AM2
ATM
8
BM1
C
M1
CM2
D

E
EP1
ET2
DY
<C
ET1
EE
FF

NK
ML
NF
L1
L2

| 2 R N R |

[ I I A |

i

i

t

LI I I |

RECURSION COEFFICIENT ( A(I)
RECURSION COEFFICIENT { Atl-1) )
RECURSION COEFFICIENT All-2) )
TEMPORARY VECTOR
RECURSION COEFFICIENT {
RECURSION COEFFICIENT ( BtI-1)
RECURSION COEFFICIENT t C(1y
RECURSTION COEFFICIENT ( C(I-1)

(

(

(

-

8LIY )

RECURSION COEFFICIENT Ctl=2y

RECURSION MULTIPLIER DL1)

RECURSION MULTIPLIER E(1y )

RECURSION MULTIPLIER { E(I+1)

SUB-MATRIX ( LITTLE E(I-2) TRANSPOSE }

SUB-MATRIX ( LITTLE D(I) TRANSPOSE

SUB-MATRIX ( LITTLE CUI} 1

SUB-MATRIX ( LITTLE F(I-1) TRANSPOSE }

SUB~-MATRIX ( LITTLE E(IY

SUB-MATRIX VECTOR ( LITTLE F({I}

SOLUTION VECTOR [ STORED AS TWO-DIMFNSIONAL

BAND WIDTH OF EE

BAND WIDTH OF DD

BAND WIDTH OF CC

PROBLEM TYPE SWITCH NEGATIVE FOR OFFSPRING
ZERO FOR STANDARD
POSITIVE FOR PARENT

ORDER OF SUBMATRICES

MATRIX ORDER OF OVERALL COEFFICIENT MATRIX

STARTING VALUE FOR MAIN DO LOOP

VARIABLE DIMENSION PARAMETER ( REQUIRED

VARIABLE DIMENSION PARAMETER ( OPTIONAL )

VARIABLE DIMENSION PARAMETER ( OPTIONAL )



SUBROUTINE FRIP4 ( L1sL2sL3sMLsAsAM]1sAM23ATMsBsBMLsEPL +CsCM1

1
CRERRHRR

CHRFRRNR
C
C
C
C
C 3 %% %% % %
C
C
CHAR®HRN
C
C
CHERER®R

C
CRMHHRRR
C
C

DIMENSION  A(L1 ) s AM1(L1 )

vEwN -

DyEsET2sET1sCCoDTsEEsFFoWsN1sN2sN3

THE LATEST REVISION DATE FOR THIS PROGRAM IS = - = -
THIS GROUP OF 15 SUBROUTINES PROVIDES THE USER WITH AN
EFFICIENT GENERAL SPARSELY BANDED EQUATION SOLVER
(THE MATRIX IS ASSUMLD TO BE SYMMETRIC AND POSITIVE DEFINITE)
WHICH CAN HANDLE UP TO 5 GROUPS OF BANDS s EACH
UF ARBITRARY WIDTH
THIS ROUTINE SUPERVISES 14 SUBROUTINES s 13 OF WHICH
ARE SELF—SUFFICIENT AND COME AS A PACKAGE( SUMP 6 )y THE
REMAINING ONE GENERATES AND PACKS THE STIFFNESS
MATRIX AS OUTLINED IN IN THE APPENDIX OF THE RELATED REPORT
THIS ROUTINE MUST Bt SUPPLIED BY THE USER SINCE
IT DESCRIBES HIS PARTICULAR PROBLEM
IN THE MAIN PROGRAM THE FOLLOWING CAN RE EQUIVALENCED
( ATM » DT !
SCRATCH TAPES SHOULD BE REQUESTED FOR TAPES 1 AND 2
TAPE 3 WORKS APPROPRIATELY AS A DISK FILE 's BUT A SCRATCH
TAPE CAN BE USED IF NECCESARY OR DESIRED.
AM21(L1 )
BM1(L1sL1) EP1(L1sL1)

’ ’
B(L1lsL1) ’ ’
CM1(L1sLY) ’ D(L1sL1} ’
’ ’
’ ’

CtLlsLl)
E(LlsL])
DT(L1sN2)

ATM(L] ) ’

W({L2sL3) ET2(L1sN1)
CC(L1sN3) ET1(L1sN1)
FF(LL)

EE(N1sLY)

COMMON /RI/ NK s NL » NF
REWIND 1
REWIND 2
REWIND 3

100

130
135
140

150

IFC ML ) 140, 100y 100
SET INITIAL CONDITIONS
bO 135 J 1 s NK
DU 130 1 1 » NK
B(lsJ) =
Cllydt =
CM1 (1sJ)
EP1(1sJ)
CONTINUE
CONTINUE
DO 150 |
Al(l)
AM1 (1
CONTINUE

non
o
.
o

1 » NK
0.0
= 0e0

-0 B

20UMY8
27My8
UV1AGS
2UMYB
CeJp8
12MR8
v4 JAB
U4 JA8
20MY8
U1AGS
v4 JAB
23MR8
UG JAB
V4 JAB
20MY8
20My8
0O5MR8
2UMY8
20MYy
2VMY 8
2UMYS8
2VMY8
2VMY8B
23MR8
23MR8
02FE8
U4 JA8B
U4 JA8
17JA8
04JA8
U4 JAB
V1FES
V1FES
U4 JASB
U4JA8
V4 JA8
23MR8
V4 JAB
U4 JA8
O1FES
2UMY8
20MY8
U4 JA8

47
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C LA RS2 ST S T R R R R R TR R ST S R RIS e T T T

C BEGIN FURWARD PASS =-- SOLVE FOUR RECURSION COEFFICIENTS U4 Ja8
C***************-}***‘I"I’i********************'l‘***************‘!********************
C L ] * * L d L] - & L] L] * L t ] L d L d » . » » » » - - » L >
DO 1000 J = NF s NL CIFES
JJd = U U4 JAB
C FORM sUB-MATRICES U4 JAB o
CALL F3SUB52 ( L1sL29L39ET29sET19CCoDTHEEsFFsMLysJdJIsNIsN2sN3 } 27MY8 .
CALL RFV { AM2y AM1y L1 » 1 s NK } 20MY8 o
CALL RFV { AM1sy A » L1 5 1 s NK ) 20MY8 o
IFU ML ) 210, 180, 180 Q4 UAB
180 CALL RFy { BMly, B » L1 » L1 s NK ) 2UMY8 .
GO TO 220 C4UAa8 o
C READ D AND E MULTIPLIERS FROM TAPE 3 17JA8 .
210 READ (31 ({ D(Iy4K) 5 EC(IsK) s 1 = 1sNK} » K = 14NK } OlFE8
GU TO 280 V4 A8 .
C CALCULATE KECURSION MULTIKLIER E U4 JAB .
220 CALL RFV ( B 9 EP1s ]l s L1 » KK ) 2uMY8 .
C CALCULATLE KECURSIUN MULTIPLIEK EP1 23MR8 .
CALL MBFV ( ETl,s BMls EP1s L1 s L1 4 NK o N1 2uMysg
CALL ABF { T 5, EP1s EP1s L1 s NK 4 N2 ) 23MR8 .
C CALCULATE RECURSION MULTIPLIER D O04UAB
CALL SMFF (B 4 BM1s D s L1 o NK ) U5MR8
CALL RF¥V ( BMl, CM1s L1 s L1 4 NK 1 20MY8 .
CALL RFV { CM1s € » L1 » L1 5 NK 20MY8 .
CALL MBFV { ET2, BM1s C s L1 » L1 o NK 4 N1 2UMY8 o
CALL ASFVY (L s C s D s L1 o L1 » NK 4+ +1 2uMYB8 .
CALL ABF { CC s D 9 D 5 L1 s NK §°'N3 1} VIFE8
CALL INVRG { v s L1 9 NK )} 15MR8 .
CALL CFvV (D s L1 9 L1 9o NK s —1ls! 2uMY8 .
C CALCULATE RECURSIUN CUEFFIECENT C U&aJAB
CALL MFb (U » EE s © 9 L1 s NK 3 N1 ! 2UMRE
C CALCULATE RECURSION CUOEFFIECENT B U4JA8 .
CALL MFFT (U 5, EP1s B s L1 s NK 23MR8 .
C CALCULATE RECURSION COEFFIECENT A 04JA8 .
280 CALL MFFV (bt 4 AMl1s A 5 L1 5 1 4 NK 2UMYB .
CALL MBFV  { ETZ2s AM2s ATMs L1 s 1 4 NK s N1 20MY8 o
CALL ASFV { A, ATMy, AM2, L1 » 1 s NK s +1 20MY8 .
CALL ASFV  ( AM2, FF 4 ATMy L1 9 1 s NK s =1 2UMYB .
CALL MFFV (. D s ATMy A s L1 s 1 5 NK I 2UMY8 .
C SAVE A COEFFICIENT ON TAPE 1 UG JAB .
WRITE (1) ( All)s & = LeNK ! UZ2FEZ o
tF{ ML )4U03600950u U4 JAB .
400 READ (2) 17JA8 &
G0 TO 1000 4JAB .
C SAVE D AND E MULTIPLIERS ON TAPE 3 174A8 o
500 WRITE (3) ( DULsKISETLsK)» I=19NK)y K=14NK) O2FE8
C SAVE B AND C COEFFICIENTS ON TAPE 2 17JA8 .
600 WRITE (2) {{ B{IsK)sC({IsK)» I=14NK)y K=14sNK) O2FE8
1000 CONTINUE 04JA8 .
C - . ™y 'y - . e LR . . o . L] . @ L - . » s o
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C 3 B e et I I KB KT T B T T I T T B TN 3t T B e K NI N BN I T I I I K T J I K KB N NN

BEGIN BACKWARD PASS —= COMPUTE RECURSION EQUATION
L ET T2 2RSS R SR e e P Ry Ry R Y S I T T Y

C

2000

BACKSPACE 1

BACKSPACE 2

CALL RFV ( WINFeNL)s A 9 L1 o 1 o NK )
BACKSPACE 1

BACKSPACE 2

READ (1) ( ACI)s 1 = 19NK )

READ (2) {( BUIsK) 9 C(lsK)s I = 1sNK) » K =
BACKSPACE 1

BACKSPACE 2

CALL MFFV (B o WINFsNL?’s AM1,s L1 o 1 s NK
CALL ASFV ( A o AM1s WINFsNL—-1) s L1 » 1

NLMZ = NL - 2
o o L2 1 o o o o ® o
bu 2000 L = NF » NiM2
J = NLM2 + NF = L
BACKSPACE 1
BACKSPACE 2
READ A COEFFICIENT FROM TAPE 1

READ (1) ( A(l)s I = 1eNK )
READ B AND C COEFFICIENTS FROM TAPE 2
READ (2) (( BUIsK) o ClIsK)s I = 1sNK) » K =

BACKSPACE 1
BACKSPACE 2

CALL MFFV ( B 5 WINFsJ+1)9AM1y L1 » 1 4 NK
CALL MFFV ( C 9 WINFeJ+2)9AM2, L1 H»°1 s NK
CALL ASFV ( AMls AM2s AM1s L1 » 1 s NK o +1
CALL AxFV ( A 5 AM1y W(NFsJ) o L1 » 1 s NK
CONTINUE

[ ] L [ ] L ] L ] L] ® [ ] L d ° L ] L ] [ ] [ ] L ] L] *
RETURN
END

1

v

'NK)

NK

sNK)

04JA8

2UMY8
2UMY8
V1AGS
2UMYS8
2UMY8
2UMY8
20MY8
20MY8
2UMY8
01AGS8
01AGS8
2VMY8
2vMY8
2vMY8
V4 JAS
17JA8
U4 JASB
O2FES
17JA8
O2FESB
C4JASB
17JA8
O1AGS8
U1AGS
2VMY8
01AGS
V4 JAB
° L] L ]
4JA8
4JA8B
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Flow Chart for Five-Wide Recursion Inveresion Process

Offspring  wems e s e

Parent s ]

Regular —<¥—

FRIP 3 , FRIP 4

"\ SUBROUTINE FRIP /

clear storage and
rewind tapes

J=NF——NL)

FORM
SUBMATRICES

shift appropriate |

storage j

X i

compute recursion

multipliers D and E N
% Y READ(3)
D,E

compute recursion
coefficienta B and C

x Y I

compute recursion ,
coefficient A

CEIE
: READ (2)
WRITE(2)

B,C

CONTINUE >_._.___J




CONTINUED

I RETURN |
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This page replaces an intentionally blank page in the original.
-- CTR Library Digitization Team



APPENDIX B. FLOW CHARTS, LISTINGS, AND COMMENTS ON SUBORDINATE
SUBPROGRAMS FOR MATRIX MANIPULATIONS

Listings and Flow Charts of Subordinate Subroutines*

INVR5 - Takes inverse of general positive definite matrix
DCOM1
INVR6 i INVLT1 - Takes inverse of symmetric positive definite matrix
MLTXL
MFFV - Multiplies full (square) matrix times a full (square)
matrix or a vector
SMFF - Symmetric multiplication of a full times a full matrix
MFFT - Multiplies a full times the transpose of a full matrix
MBFV - Multiplies a banded (packed) matrix times a full
matrix or a vector
MFB - Multiplies a full matrix times a banded (packed)
matrix
ABF - Adds a banded matrix to a full matrix
ASFV - Adds or subtracts two full matrices or two vectors
RFV - Replaces a full matrix or a vector by another
CFV - Multiplies a full matrix or a vector by a constant

*In all the above subroutines, all matrices are either square or column vec-
tors, except in the banded routines where banded square matrices are repre-
sented by packed matrices that are K X J where K 1is the order of the
square matrix, and J 1is the band width.
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Cex*x¥x® THIS RUUTINE TAKES THE INVERSE OF A GENERAL POSTIVE
DEFINITE MATRIX » A SUPLRIMPOSED AUGMENTED MATRIX METHOD

C
C

20

30

150

160

170

175
180
185

990

SUBROUTINE INVRS { A 4 L1 » L2 )

I[s EMPLUYED
DIMENSIUN A(L1lsLl}

FORMAT { /785Xs¥* NON-POSITIVE DEFINITE MATRIX ENCOUNTERED ¥

FORMAT ( 1X+10E1043 )
EP = 1ls0E-10
L] [ ] L] . L] L 2 L 2 t L3 L ]
DO 185 I = 1 » L2
IF ( ABS(A(I,1) ) = EP } 990, 990, 150
S = 10 7/ A(lsl}
bO 160 4 = 1 s L2
AlClsJ!? AllsJ) * 5
CONTINUE
Alls1) =
bu 180 o =1
IF  J-1 1) 17
S = AlJy
1
=

]

s L2

180 170

Aldsl)
DO 175 K =

AtJdak)
CONTINUE
CONTINUE
CONTINUE

RETURN

PRINT 20

PRINT 30s(l A{IsJred=1sl2)sl=19L 2}
END

}

31JA8
US5MR4E
O5MR8
USMRE
2BDE7
UBAPB
100C7
100C7
100C7
31JA8
UGFESB
28DE7
190¢7
190C7
28D0E7
1v0C7
1w0C7
UGFESB
28DE7
2BDE7»
O6FE8.
100C7.
1u0C7
100C7
E ] L ] -
1w0C7
1v0C7
28DE7
100C7

¢ * 2 2 s b e
s % 5 6 & 5 8 5 % % 5 6 5 b s e
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SUBROUTINE INVR5
A,
L1, L2 A : I1/0, FULL MATRIX(SQ)
L1

: VARTABLE DIMENSION
1.2 : ORDER OF A

,————— —— —] DO 185 I = 1,L2

!

1

1

]

; Yes

I

. &

: No

} s = 1/A (1,1)

1

|

A If-——-'1 DO 160 J - 1,12 )

| 4 ALTER PIVOTAL

| ROW

: Nem— —d A(T,J) = A(T,J)*S

I

: A(IsI) T S

I

I

l—--——------{ D0 180 J = 1,12 )

I

I

|

|

| Yes

I )\

i

* ELIMINATE ON

! i~ COLUMN

| S2 = A(J,I)

| AQJ,I) =0

|

[

} {.._.--l DO 175 K = 1,12 )

I |
I

| | A(J,K) = A(J,K) - 82 * A(T,K)

| [ J
]

l ! a

_____ ~. —— — —4 CONTINUE
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CrxeFar Trils ROUTINE TAKES THE INVERSE OF A SYMMETRIC POSITIVE = DEF

C
«
C
lu
pAv]
v
¢ 44U
L
C
oy
luu
S5vu
6UL
6ul

SUUROUTINE INVRE X o L1 4 L2

)

MATRIX USING A CUMPACTLD CHUOLESKL DFECOMPOSITION PROCFDURE
A FULL OIMENSIONED MATRIX 1S REQUIRED BUT ONLY THE LOWER

HalF 15 USED BY THE 3 ROUTINES DRIVEN BY

DIMENSIUN X{L1sL1)

LF (L2 = 1 )y 6uls 1Us 20
LF L ALSFIX)aLTal~10 ) GO TO &CC
X = 1:} X
GU TO 500
LF [ Le = 2 ) 3us 3Us 40
S = X % X(292) = X{1,2) % X{251)
iF ( ABSFIUS1)«LT«E~1C ) G0 TO 600
51 = la/ 81
S = X
X = §1 % X{2+2}
X(2y2) = &1 * 5
X(1le2) = =851 ¥ X{(1,2)
Xt2el) = =51 ¥ X{Zysl)
GL TL HUU
CALL FIX1 € X L1y L2
CUNTINUE
CALL pCuMl { X » L1y L2
CALL INVLTI ¢ X » LI » L2}
CALL MLTXL { X 9o L1 » L2
CALL FIX1 ( Xo L1y L2
v 100 1 = 2 » L2
KC = | - 1
DU 50 J = 1 » KC
Xtdely = X(1sJ)
CONTINUE
CONTINUE
RETURN
PRINT &uleliX{Isd)s J=1sl2) e I=1,L2)
FOURMAT ( 1H143CH SINGQULAR MATRIX ENCOUNTERED

END

INVRG

s/ 32 (5Xs2F 1567}

l

19FER
ORMPA
05MR%
05MR8B
05MRA
19FF8
010C8
0locCa
010CH
010CK
010C8
N10CR
010CAR
NIOCA
nl1oCe
010CA
010C8
ehNolel:
010CA
N10CA
04aMRC
190Cn
DLMRO
19FFR
O5MR R
29019
19FER
19FF8
19FFR
18FF&
19FES8
19FFR
010CR
nlocs
A10CR
19FFR




SUBROUTINE DCOM1 ( X 4 L1 » L2 ) 19FES8
DIMENSION X(L1lsL1) » T(100) 12MR8
DOUBLE PRECISION S s Sl 29MY8
C****************-I--)i-**********************************************************
C 29MY8
CH#xnxxx CAUTIUN = THE ACCURATE ACCUMULATION OF INNER PRODUCTS IS 29MY8B
C BEING ATTEMPTEL THRU THE DOUBLE PRECISIONING OF THE VARIABLES 29MY8
C S AND S1 + CARE SHOULD BE TAKEN TO INSURE THIS IS DONE PROPERLY29MYS
C***************%**%***********************************i*********************
10 FURMAT ( /85Xs* NUN-POSITIVE DEFINITE MATRIX ENCOUNTERED * ) 12MRB

15 FORMAT ( /+5Xs13E10e3 ) 2UMRY

DO 20 I =1 L2 12MR8

TCI) = X(IsI) 12MR8

20 CONTINUE 12MR8

IF ( X(1s1) 4LEe 0.0 ! GO TO 4000 05MR8

S1 = X{(1s1) 24 JEB

S1 = DSQRT( S1 24JEB

X(ls1) = S1 24JEB

S1 = 1e0 / S1 24JES

LU SO0 I =2 4 L2 19FE8

X(Is1) = XtIsl) * S1 19FEB

50 CONTINUE 19FE8
L2Ml = L2 - 1 19FE8

(. L] * L * [ * * L] L] * L] * L] L] * L] * * * * * * * *
DU 200 J = 2 s L2M1 19FE8

S = 040 19FE8

ML = J -1 19FE8

DO 120 K =1 s JM] 19FE8

S = S 4+ X(JsK) * X(JsK) * 1,0D0 24 JEB

120 CUNTINUE 19FE8
IF ( X(JsJ! 4LEe S ) GO TO 4000 05MR8

51 = X{(JsJ) = S 24 JE8

S1 = DSQRT( S1 ) 24JE8

X(JsJd} = Sl , 24 JE8

S1 = 1le0 / S1 24 JEB

JP1 = J + 1 19FE8

DO 190 I = JP1 s L2 19FE8

$ = 040 19FE8

DO 180 K =1 s JMI] 19FE8

S = S + X(IsK) * X{JsK) * 1,0D0 24 JEB

180 CUNTINUE 19FE8
X(Isd) = ( X(1sJd) = S ) * 5] 19FE8

190 CONTINUVE 19FE8
200 COUNTINUE 19FE8

C L] * L] * L] L] L] L] L] L] L] - * * L] * * L] * L] * L] L] * L * L] L * *
S = 040 19FE8

DO 250 K = 1s L2Ml 19FES

S = S + X(L2sK) * X(L2,K) * 140DO 24JE8

250 CONTINUE 19FE8

S = X{(L2sL2) = 5 U5MRS8

IF (S oLEe 040 ) GO TO 4000 05MR8

X({L2sL2) = DSQRT( S ) 05MR8

RETURN 19FEB

4000 PRINT 10 12MR8

X{1s1t = T(1) 12MR8

59
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DO 400 1 =2 » L2 C5APSB

K=1«1 12MRAB

X(Isli = TUL]) 12MR8

DO 350 J =1 s K 12MR8

X{tEed) = X{da1) 12MR8

350 CONTINUE 12MR8
400 CONTINUE 12MR8
DO 500 I = 1y L2 2UMRY

500 PRINT 154 ( X{Iedle J = 1eL2 ) 2UMRY

END 19FES8
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SURROUTINF INVLTI § X s L1 » L2 } 19FF8

DIMENSION X{L1sL1) 19FEB

DOURLE PRECISION Sum 29MY8
e e g R Y 2y e IS T2 ST L PN ER L LY
C 29MY8 E
Crexun® CAUTION ~ THE ACCURATF ACCUMULATION OF INNFR PRODUCTS IS 29MY8 W
C BEING ATTEMPTED THRU THE DOUBLE PRECISIONING OF THF VARIABLE 29My8 A
C SUM o CARE SHOULD RE TAKEN TO TNSURFE THIS IS DONF PROPFRLY . 29MY8 R
G222 sy R I S ST TS TS S NS FR Y ST IS 28

DO S0 1T = 1 s L7 19FE8

X{Is1) = 140 7 X{(I,1} 19FF8

57 CONT INUF 19FES8

LoMI = L2 - 1 19FE8

DO 200 J = 1 s L2MY 19FE8

JP1 = g+l 19FES8

DO 150 [ = JP1 » L2 19FEB

IM1 = I=-1 19FE8

SUM = 0.0 19FE8

Do 120 K = J 5, IM1 19FES8

SUM = SUM « X{TeK} * X{KsJ) * 1.0D0 24.JF8

120 CONTINUE 19FF8

X{1sJ) = X(1s1) ® SUM 19FF8

15" CONTINUFE 19FE8

200 CONTINUE 19FE8

RETURN 19FE8

END 19FES8
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SUBROUTINE MLTXL ( X s L1 » L2 ) 19FE8

DIMENSION X(L1sL1)} 19FE8

DOURLE PRECISION SUMm 29MY8
CFR I3 I I I I I I I I I I I I I IEIE I I I I I I I I I I I I IR RD
C 29MY8 E
CHxxsnxx CAUTION - THE ACCURATE ACCUMULATION OF INNER PRODUCTS IS 29MY8 W
C BEING ATTEMPTED THRU THE DOUBLE PRECISIONING OF THE VARIABLE 29MY8 A
C SUM o CARE SHOULD BE TAKED TO INSURE THIS IS DONE PROPERLY . 29MY8 R
C 66363636 3 36 3636 34 36 36336 3 36 36 36 3 3 36 363036 3536 36 3636 36 3 336 366 3036 36 36 3636 36 336 3 3 3 3 3 6 36 36 3436 36 3 3 3 6 36 36 36 3 3696 3 3636 34 334 3 3 W E

DO 200 I =1 , L2 19FES8

DO 150 J =1 4 1 : 19FE8

SUM = 0.0 19FE8

DO 100 K =1 o L2 19FF8

SUM = SUM + X(KsI) * X{KesJ) * 1,0D0 24JE8

100 CONTINUE 19FEB

X{Is»J) = SUM 16FE8

150 CONTINUE 19FE8

200 CONTINUE 19FE8

RETURN 19FES8

END 19FE8



1

X —» X
\\SUBEOUiiNELéNVRi// ( X SYMM. AND POS. DEF. )
2 2 X: 1/0

L1: VARIABLE DIMENSION
1.2: ORDER OF X

acy - —

1

Z,

decompose X
to get L

f
L
I
i

invert,L to
-1
get L

Multiply(L'l)

by L—1 to get —»
-1 Lt x?

X
(Lower half)

l

set upper half
of A equal to
lower half

il
7
(]
1
5
™
]

'
1
I
i

T

i
1
'
[}

[RETURNl
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SUBROUTINE MFFV ( X s Y 9 Z 5 L1 o LS o L2 ) N3MR8
CREARRER® THIS ROUTINF MULTIPLIES A FULL MATRIX 13DF7
(of TIMES A FULL MATRIX OR A VECTOR 13DF7
C ( X %Y =2 13DE7

DIMENSION X(L1sL1) o Y(L14LS) o Z(L1sLS) 13DE7

DOUBLE PRECISION SUM 29MY8
C{{lll{‘l*{l{{ll*{{l{{{{ll*ll{ll’{lll{{{{{l{*{ll{{lllll*{l‘{{*l*{l**{{*{{{ll{le
C 29MY8 E
CRExntit® CAUTION - THE ACCURATE ACCUMULATION OF INNER PRODUCTS IS 29MYB W
C BEING ATTEMPTED THRU THE DOUBLE PRECISIONING OF THE VARIABLE 29MYB A
C SUM « CARE SHOULD BE TAKED TO TNSURE THIS IS DONF PROPERLY . 29MY8 R
C{{l***‘**************ﬂ'**ﬂ'ﬂ'*******ll*{l{*****{ll*{l*ll{'{{l‘{{{lll{l{l‘*l{*l{{lE

M= 1 20MY8

IF( L1 +EQs LS ) M = L2 20MYB

DO 110 J = 1M 13DF7

DO 105 I = 1sL? 13DE7

SUM = 0,0 03MRB

DO 100 K = 1,L2 13DE7

SUM = SUM + X{T4K) * Y(KeJ) * 1,0D0 24JF8

100 CONTINUF 13DE7
Z(1sJ) = SUM 03MR8

105 CONTINUE 13DE7
110 CONTINUE ‘ 13DE7
RETURN 13DE7

END 130E7



SUBROUTINE MFFV

: INPUT, FULL(Sq)
: INPUT, FULL OR VEC
: OUTPUT, FULL OR VEC

VARIABLE DIMENSION

: ORDER OF X
L5 : Y FULL OR VECTOR ?

X,Y, 2, X
L1, L5, Y
z
Ll :
‘,---—-{ DO 110 J = 1,M ) L2
)
|
:;,-—---{ DO 105 I = 1,L2)
|
{ =
! | suoM = 0.0 |
i
i ’,—--[ DO 100 K = 1,L2 )
b
1
) i [ SUM - X(I,K) * Y(K,J) + SUM
o
| == CONTINUE )
|
]
|
=4 7(1,7) - stm |

J-1= ]

L5

L5

H

n

L1
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SUBROUTINE SMFF { X » Y 9 2 s L1ls L2 } 19FES

CHxxxnxxr THIS ROUTINF MULTIPLIES TWO FULL MATRICES UNDFR THF ASSUMPTION 0OS5MR8

C THAT THEIR PRODUCT WILL BE SYMMETRIC ( XsYs AND Z ARE FULL 05MR8

C DIMENSTIONED BUT ONLY THE LOWER HALF OF EACH IS USED ) 05MR8

DIMENSION  XILIsL1} o Y(L1sLY} » Z{L1IsL1} 19FE8

DOUBLE PRECISION SuM 29MY8
CRMI NI I T II I FIIEIIEIIIIHIII6I E06 I T I I 3 IEI I III I M NH N
C 29MY8 E
CH*¥x%%% CAUTION - THE ACCURATE ACCUMULATION OF INNER PRODUCTS IS 29MY8 W
C BEING ATTEMPTED THRU THE DOUBLE PRFCISIONING OF THFE VARIABLE 29MY8 A
C SUM o CARE SHOULD BE TAKFED TO INSURE THIS IS DONF PROPERLY . 29MY8 R
CRM RN I I I I I I I IO T 000 30 I T30 0036 0600003000 3600606 360036 36 06 0 3 N AR

DO 110 J =1 » L2 19FES

DO 105 1 =1 o J 19FES8

SUM = 0.0 19FE€8

DO 100 K = 1 » L2 19F€E8

SUM = SUM + X{JsK}) * Y{KsI} * 1,0D0 24 JE8

100 CONTINUE 19FES8

Z(JseI} = SUM 19FE8

1058 CONTINUE 19FE8

110 CONTINUE 19FE8

RETURN 19FES

END 19FE8



SUBROUTINE SMFF

X. v,z X : INPUT, FULL(sq)
L 12 Y : INPUT,
’ Z : OUTPUT, LOWER HALF
L1 : VARIABLE DIMENSION
L2 : ORDER OF X , Y , Z

F--—-—{ DO 110 J = 1,12 )
!
:,f——--n-{ DO 105 I =1,J)

o - 0]

l,-—-.-{ DO 100 K = 1,L2)

‘——— suM = SIM + X(J,K) * Y(K,D) |

|
|
?

N\,

~————- Z(J,I) = SIM |

[RETURN ] ‘
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SUBROUTINE MFFT ( X s Y s Z 4 L1 » L2 18MR8

Cexxxx®x THIS ROUTINE MULTIPLIES A FULL MATRIX 18MR8

C TIMES THE TRANSPOSE OF A SECOND FULL MATRIX 18MR8

C { X * YT =2 ) 18MR8

DIMENSION X{L1lsL1) » YI(L1sL1) » Z(L1sL1)Y 18MR8

DOUBLE PRECISION SUM 29MY8
CREI NI I3 063636 369636 696 36 69696 3636 3636 96 36 36 96 36 36 96 36 36 3 3606 36 6 36 36 96 36 96 36 36 96 36 96 36 36 36 36 36 96 7 36 36 3 36 296 3636 3 4 HH %P
C 29MY8 E
Cex%xxu® CAUTION - THE ACCURATE ACCUMULATION OF TNNER PRODUCTS IS 29MY8 W
C BEING ATTEMPTED THRU THE DOUBLE PRECISIONING OF THE VARTABLE 29MY8 A
C SUM , CARE SHOULD BE TAKED TO INSURE THIS IS DONE PROPERLY . 29MY8 R
I I I I 360630066 36 06 606 0306 333 30696063 300 30636 0 00306 I 306 306 06 06 3 33 606 36 39636 0636 33 MR

DO 110 J = 1 » L2 18MR8

DO 105 1 =1 s L2 18MR8

SUM = 0.0 18MR8

DO 100 K =1 » L2 18MR8

SUM = SUM + X(1sK) * Y(JsK) * 1,000 24JF8

100 CONTINUE ‘ 18MR8

2(1sJ) = SUM 18MR8

105 CONTINUE 18MR8

110 CONTINUE 18MR8

RETURN 18MR8

END i 18MR8



SUBROUTINE MFFT

Y, 2 X : INPUT, FULL(sq)
Ll , L2 Y : INPUT, FULL(sq)
Z : OUTPUT, FULL(sq)
L1 : VARIABLE DIMENSION
{,._._._...[ DO 110 J - 1,12 ) L2 : ORDEROF X , Y , Z
|
i
},—-—--——{ DO 105 I = 1,L2)
%
: SM = o.o]
|
I
L DO 100 X = 1,L2)

4
|
I
|
“—————Z(1,]) = SIM |

*———{SUM = SUM + X(I,K) * Y(J,K) |

lRETURN[

69



70

SUBROUTINE MBFV [ XB s YF o 2F » L1 » L5 » L2 s LB ) 07DE?

CHsnntnd THIS ROUTINE MULTIPLIES A BANDED MATRIX O7DE7

C TIMES A FULL MATRIX OR A VECTOR O07TDE7

C ( XB # YF = 2F ) 0TDF7

DIMENSION XB( L1sLB } s YF( L1sLS ) o 2ZF( L1sL5 ) 07DE7

DOUBLF PRECISION SUM 29MY8
clllll{llll{llllllllllll}llllllllllllllll}llllllllll{llli{llll}lllll{}llllllllg
C 29MY8 E
CH¥unnnd CAUTION ~ THE ACCURATE ACCUMULATION OF INNER PRODUCTS 1S 29MY8 W
C BEING ATTEMPTED THRU THE DOUBLE PRECISIONING OF THE VARIABLE 29MY8 A
C SUM o« CARE SHOULD BE TAKED TO INSURE THIS IS DONE PROPERLY . 29MY8 R
clll{l{llll*l*llllllllllllllllllllllllllllllllllll}llll}{{llll}lllll{lllllllllE

M1 = 1 20MY8

IF{ L1 +EQe L5 ) M1 = L2 20MY8

L4 = LB/2 0O7TDEY

L6 = L4 + 1 O07DE7

N1 = L2 - L4 07DE7

DO 110 M = 1,M] 13DE7

DO 105 1 = L&sN1 13DE7

J =1 ~ L6 07DE?

SUM = 0.0 n6mMyY8s

DO 100 K = 1sLB n7TDEY

SUM = SUM + XB(1sK) * YF(K+JsM) * 1,0Nn0 24JE8

100 CONTINUE 10NO7

ZF(1eM) = SUM nemMY8

108 CONTINUE 10NO7

110 CONTINUE 10NO7

K1 = 0 10NO7

I =1 10NO7

12 = L4 07DE7

13 =1 07DE7

14 = LB 07DE7

IF{ 12 ) 150s 900y 150 NTNE7

150 DO 210 M = 1M} 13DE7

DO 205 1 = 11,12 13DE7

SUM = 0.0 06MYS8

N =1 0OTDEY

DO 200 Kk = 13y 14 07DE7

SUM = SUM + XB(I,N) * YF(KyM) * 1,0DD 24 JE8

N = N + 1 OTDE7

200 CONTINUE 10NO7

ZF(1sM) = SUM neMYs

205 CONTINUE 10NO7

210 CONTINUE 10NO7

IF( K1 ) 900+300+900 10NO7

300 Il = L2 - L4 + 1 O07DEY

12 = L2 07DEY

I3 = L2 - LB + 1 07DE7

14 = L? 07DE7

K1 = 1 10NO7

GO T0 150 10NO7

900 RETURN 10NO7

END 10NO7



SUBROUTINE MBFV
XB, YF, ZF,
L1, 15, L2, LB

14 = LB/2
L6 = L4+l
Nl = L2-14

DO 110 M

|

DO 105 I = L6,N1

)
]
.

~

!
[

| 3-1- 16 |

ZF(I,M) = 0.0]

—~4 Do 100 K = 1,LB)

XB :
: INPUT, FULL(sq)
ZF :
Ll :
L2 :
LB :
L5 :

INPUT, FULL(sq)

OUTPUT, FULL(sq)
VARIABLE DIMENSION
ORDER OF XB

BAND WIDTH

YF FULL OR VECTOR ?

[ ZF(1,M) - XB(I,K) * YF(K+J,M) + ZF(I,M) |

— e — —— — — — - — el = ————

‘=== CONTINUE |
KL = 0
I1 =1
12 = 14
13 = 1
I4 = LB
Yes
No

|
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’

~

o i e e ey,

4

~-{ Do 210 M

1,M1 )

il

~— D0 205

—
i

= 11,12

ZF (1,M)
N

——-[ DO 200

K = 13,14 )

ZF (I,M)
‘ N

= XB(I,N) * YF(K,M) + ZF(I,M)
= N1

CONT

INUE |

I1 = 1L2 - L4 +1

I2 = L2

I3 =12 - 1B +1

I4 = L2

Kl =1

YF ZF
H ] L5 - 11
OR
L5 =1
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SUBROUTINE MFB ( XF 9 YB » ZF 9 L1 9 L2 » LB ) 0TDE7

Ceeexx®® THIS ROUTINE MULTIPLIES A FULL MATRIX 07DE?

C TIMES A BANDED MATRIX 07DE?

C { XF # YB = 2F ) 07DE7
DIMENSION XF( L1sL1 ) » YB( tBslLl ) » ZF( L1sL]l 07DE7?
DOUBLE PRECISION SUM 29MY8

C***********i******************i*i***ii***I»I»I»I»I»I»I»'II»I»I»I»I'I'I'I»I»I»I»I»I»INII'INIINII»IHI'II»***B

C 29MY8 E

Crexxxkxr CAUTION - THE ACCURATE ACCUMULATION OF INNER PRODUCTS IS 29MY8 W

C BEING ATTEMPTED THRU THE DOUBLE PRECISIONING OF THE VARIABLE 29MY8 A

C SUM o CARFE SHOULD BE TAKED TO INSURE THIS IS DONE PROPFRLY . 29MY8 R

C*********************************************i****i*ii*i{i**'I'*I'I»INII'****I»I»*I'**F

L4 = LB/2 O7DE7

L6 = L4 + 1 O7DE?

N1 = L2 - L4 07DE7

DO 110 I = L6sN1] 07DE?

J =1« 1L6 07DE7?

DO 105 M = 1,012 07DE7?

SUM = 0,0 06MY8

DO 100 K = 1sLB8 NTINET

SUM = SUM + YBIKsI) # XF(MeK+J) * 1,000 24 JE8

100 CONTINUE 10NO7
ZF(Ms1) = SUM 04MYB

105 CONTINUE 10NO7
110 CONTINUE 10NO7
K1 =0 10NO7

11 =1 10NO7

I2 = L4 07DE?Y

13 = 1 . 0BDE?

14 = LB 07DE?

IF( 12 ) 1509 900, 150 07DE?

150 DO 2101 = 11, I2 10NO7
DO 205 M = 1oL2 0OTINET

SUM = 0.0 06MY8

N =1 08DE7

DO 200 K = 13, 14 08DE7

SUM = SUM + YB(NsI) # XF(MeK) # 1,0D0 24 JF8

N=N<+1 08DE?

200 CONTINUE 10NO7
IF(Ms]) = SUM 0o6MYS

205 CONTINUE 10NO7
210 CONTINUE 10NO7
IF( K1 ) 900+300+900 10NO7

300 I1 = L2 - L& + 1 07DFE7
T2 = L2 07TNE?

13 = L2 - B + 1 07DE?

14 = L2 07DE?

K1 =1 10NO7

GO TO 150-. 10NO7

900 RETURN 10NO7

END 10NO7
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—

e e e e . e e e e s e o

SUBROUTINE MFB

XF :
YB :

XF, YB, ZF,

L1, L2, LB

14 = LB/2 ZF

L6 = L4+l Ll

Nl = L2-14 L2
LB

{ Do 110 1 - L6,N1 )

,——4 D0 105 M

= 1,12 )

[ zrM,1) - 0 |

-_{}m100K==LLB),

INPUT, FULL MATRIX(sq)
INPUT, PACKED MATRIX

: OUTPUT, FULL MATRIX(sq)
¢ VARIABLE DIMENSION

: ORDER OF MATRIX

: WIDTH OF BAND (ODD)

[ZF(M,1) = YB(K,I) * XF(M,K+]) + ZF(M,I) |

*—— coNTINUE)

Yes

Kl = 0
I1 =1
12 = L4
I3 =1
I4 = LB
No



L2-14+1
L2
L2-1B+1
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SUBROUTINE ABF ( YB s XF » ZF s L1 s £2 + LB}

CEnxdxe® THIS ROUTINE ADDS A BANDED MATRIX

C
C

40
50

100
110

150

200
210

300

900

TO A FULL MATRIX
{ YB + XF = ZF OR XF + ¥YB = ZF }

DIMENSION YB{ L1sLB ) o XF{ L1sL1 )} » ZF{L1sL1)

L4 = LB/2

Nl = L2 - L&

Le = L4 + 1
Do 50 1 192

DO 40 J = 1sL2
ZF{TeJY = XF{I» )

CONTINUE

CONTINUE

DO 110 1 = L6sN1
J=1=-16

DO 100 K = 1.LB
ZFUTsK+J) = YB(IsK} + XFiI+K+J)
CONTINUE
CONTINUE
K1l
11
17
14 1
T4 LB
IFt 12 Y 150s 900y 150
DO 210 1 = 11412

0

1
L4

|12 I

N =1

PO 200 K = 13, 14
ZF(T+K) = YBUIsN} + XF(14K) .
N =N+

CONTINUE

CONTINUE

IF(K1} 900, 300, 900
i1 = L2 - L& + ]
12 = L2
I3 = L2 -~ LB +1
14 = L?
K1 =1

GO TO 150

RETURN

END

NINE7
07DE7
0TDET
07DET
07DE?
OTDE7
O07DE7
07DE?
07DE7
0TDET
07DE?
O7DET
O7DET
OIDET
07DE7
07DET
11DE7
10NO7
10NO7
10NO7
10NO7
07DE?
08DE?
O7DE7?
07DF7
10NO7
napE?
08NF7
11DE7?
08DE?
10NO7
10NO7
10NO7
07TDE?
07TDE?
07DE7
07DE7
07DET
10N07
10M07
10NO7



/

o —

—_———

y— i —— e e —— —

SUBROUTINE ABF YB :
YB, XF, ZF, XF :
L1, L2, LB ZF :

Ll
L2
L4 = LB/2 LB :
N1 = L2-1L4
L6 = L4+l

|
|
3]

1,L2)

,~——D0 40 J = 1,12)
| ZF(1,3) = XF(1,J) |
——— CONTINUE

Do 110 T = L6,N1)

J = I-L6

———-D0 100 K - 1,LB)

(
!
I

77

INPUT, FULL(sq)
INPUT, FULL(sq)
OUTPUT, FULL(sq)

: VARIABLE DIMENSION
: ORDER OF XF , ZF

BAND WIDTH

| ZF(I,K+1) - YB(I,K) + XF(I,K+J) |

CONTINUE )

K1 =0
I1 =1
12 = L4
I3 =1
I4 = LB
No



p
,~— D0 210 I = I1,12)

b

= 1 |

DO 200 K = 13,1a)

ZF(I,K) - YB(I,N) + XF(I,K)
N=N+1

e e i e s e s e s s e v
!
i

‘~—-f’ CONTINUE‘)

11 = L2 - 14+ 1

12 = L2
I3 = L2 - 1B+ 1
I4 = L2




C

50
100
110
190
200

210
300

SUBROUTINE ASFV ( X s Y » 2
Cexxxxx® THIS ROUTINE ADDS OR SUBTRACTS 2 FULL MATRICES OR 2 VECTORS

(X -Y =2

DIMENSION X(L1sLS)

M= 1
IF( L1 «EQ.
IF ( SIGN )
DO 110 J =
DO 100 I =
Z(1+0)
CONTINUE
CONTINUE
GO TO 1300
DO 210 J =
DO 200 1 =
Z(TsJ)
CONTINUE
CONTINUE
RETURN
END

s L1

OR X + Y =2
s Y(L1sLS)

LS ) M = L2

190s 50y S0

1eM

1.L2

= X{(leJ) + Y1)

1sM
1sL2

= X(IsJ) = Y(IsJ)

s LS

s L2

s Z(L1sLS)

SIGN )

20MY8
20MY8
13DE7
13DE7
20MY8
20MY8
13DE7
13DE7
13DE7
13DE7
130E7
13DE7
13DE7
13DE7
13DE7
13DE7
13DE7
13DFE7
13DE7
13DE7
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—
4

—— o —

{

,~4 DO 200

SUBROUTINE ASFV

X,Y, 2
Ll, L5, L2,

: INPUT, FULL(sq)
: INPUT, FULL(sq)

b4

SIGN

= e

{ po 210 g

= 1,4 )

I

1,12 )

[2(1,7) = X(@,3) - ¥(1,J) |

CONTINUE

Z : OUTPUT, FULL(sq)
L1l : VARIABLE DIMENSION
L2 : ORDEROF X , Y , Z

SIGN : - OR +
- /////\\\\\ + L5 : FULL OR VECTOR?

~4 D0 110 J=1M )

~4{ D0 100 T - 1,1.2)

7

[2(1,3) = x(1,3) + ¥(1,J) |

PR ——

"

CONTINUE




SUBROUTINE RFV ({ X s Y »

L1 s L5 » L2 )

CHxxxnt® THIS ROUTINE REPLACES A FULL MATRIX OR A VECTOR

C

(X =Y

DIMENSION X(L1sL5) s Y{(L1sL5)

M = 1
IF({ Ll +EQe L5 ) M =
DO 110 J = 1sM
DO 100 I =1 » L2
X(1sJ) = Y(1sJ)
100 CONTINUE
110 CONTINUE
RETURN
END

L2

23MR8
23MR8
23MR8
23MR8
20MY8
20MY8
?3MR8
23MR8
23MR8
23MR8
23MR8
20MY8
23MR8
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SUBROUTINE RFV
X,Y,
L1, L5 , L2

[ M=1 |
Yes
Ll = L5
No | M= 12 l
J
(

<[]
IR

1t

Ll



SUBROUTINE CFV { X » L1 » LS s L2 » C ) 20MYR
CHREnsdt THIS ROUTINE MULTIPLIES A FULL MATRIX OR A VECTOR BY A CONSTANT13DE?

< { X = C%X 13DE7
DIMENSION XIL1.L5%) 13DE7

M = 1 20MY8

IFE L1 «EQe L5 ¥ M = L2 20MY8

DO 110 J = 1M 13DE7

DO 100 I = 1.L2 13DE7

X{Isd) = X{1ed) # C 13DE7

100 CONTINUE 13DE?
110 CONTINUE 13DE7
RETURN 13DE7

END 13DE?
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SUBROUTINE CFV / X : 1/0

X, L1 : VARIABLE DIMENSION
L, 15, 12, ¢ L2 : ORDER OR LENGTH OF X
L5 : FULL OR VECTOR
C : CONSTANT MULTIPLIER

—~4 DO 110 J=1,M )

| D0 100 I - 1,L2)

el o e

‘—d X(1,]) = X(I,]) * C|

l RETURN l
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APPENDIX C. USE OF SUBROUTINES FSUB 3 AND FSUB 5

Example Using FSUB 32 for TRIP 4 (for problem with symmetric coefficient
matrix with a three-wide partitioning)

The call statement requires that FSUB 32 contain the following variables

in its parameter list:

SUBROUTINE FSUB 32 (L1, L2, L3, BB, CC, DD, FF, ML, JJ, N2, N3)

where
L1 - wvariable dimension,
L2, L3 - variable dimension parameters for data, necessary for
coefficient matrix generation if they are to be
handled as such. If so, they too must be included

in the parameter list.

BB, CC, DD, FF ~ dummy parameters representing the packed

submatrices -
a ., c., d,,and f, ,
i-1 i i i

ML - switch indicating whether problem is parent, regular, or
offspring (+, 0, -1). For this routine we are concerned
only with whether it is an offspring or not. Remember for
the symmetric case

by = 1-1’
JJ - 1index of what partition we are at, JJ =1, 2, ..., L ,
N2 - ©band width of BB and DD , and
N3 - band width of CC

The dimension statement will be as follows (if generation data are added
and variable dimensioning is used, then the additional variables should be

added on):
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DIMENSION BB(L1, N2) , cCC(Ll, N3) , DD(N1, L1) , FF(LL)
Common block RI 1is needed and appears as follows:
COMMON /RI/ NK , NL , NF

This block is common to both the solution driver (TRIP 4) and the main
driving routine utilizing the solution package and therefore will be explained

in the following appendix.
In general FSUB 32 will have the following form:

SUBROUTINE FSUB 32 (L1, L2, L3, BB, CC, DD, FF, ML, JJ, N2, N3)
DIMENSION BB(L1, N1) , CC(Ll, N2) , DD(Nl, L1) , FF(L1)

COMMON /RI/ NK , NL , NF

£ T
orm BB and FF (di-l s fi)
Yes
ML/f/g// \

No

form CC and DD (ci‘, di)

~

IRETURN

As 1t has been mentioned before, the submatrices are packed, and it is
here that the packing must be done. Figures C.l and C.2 explain the packing
procedure for the specific routines involved. For FSUB 31 and FSUB 32, BB
and CC (bi , ci) will be packed according to Fig C.1 and DD (di) accord-
ing to Fig C.2. For FSUB 51 and FSUB 52, AA, BB, CC , and DD (ai s
bi s C4 s di) are done as in Fig C.1 and EE (ei) as in Fig C.2. 1In both
cases FF (fi) is a vector. Figures C.3 and C.4 demonstrate a specific

application of the packing procedure.
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N\t

T,
| l
X\\
Kx K LZ x LB
Banded Matrix Packed Matrix

Fig C.1. Packing of the banded matrices that are
multiplied by a full matrix.

*

LB = bond width

LB+
2

L6
F aadanne

_ N

LB

T |

!
K x K LBx K
Banded Matrix Packed Matrix

Fig C.2. Packing of the banded matrices that are
multiplied by a full matrix,
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Example Using FSUB 52 for FRIP 4

The call statement requires that FSUB 52 contain the following variables

in its parameter list:

SUBROUTINE FSUB 52 (L1, L2, L3, AA, BB, CC, DD, EE, FF, ML, JJ,

1 N1, N2, N3)
where
L1, L2, L3 - as in FSUB 32,
AA, BB, CC, DD, EE, FF - dummy parameters representing the packed
matrices e. el c at
i-2 * “i-1* “i o %1
e, fi .
X T
For the symmetric case a;, =€ 9
bi = e;-l , and we need the transpose of
d, .
i
ML and JJ - as in FSUB 32,
N1 - ©band width of AA and EE ,
N2 - band width of BB and DD , and

N3 - band width of CC .

In general FSUB 52 will have the following form:

SUBROUTINE FSUB 52 (L1, L2, L3, AA, BB, CC, DD, EE, FF, ML, JJ,
1 N1, N2, N3) ,

DIMENSION AA(L1l, N1) , BB(L1l, N2) , CC(Ll, N3) , BD(L1l, N2) ,
1 EE(N1, L1) , FF(L1)

COMMON /RI/ NK , NL , NF



92

form AA and FF (eT , £.)
i-2 i

-

RETURN

For the nonsymmetric cases either TRIP3 or FRIP3 would be used and
therefore FSUB 31 or FSUB 51 would have to be created. The only difference in
FSUB 31 as opposed to FSUB 32 would be that b, 1is not necessarily equal to
dI-l ; therefore, it would have to be formed i;dependently and therefore the
additional band width parameter N4 is needed, and the calling would be as

follows:
CALL FSUB 31 (L1, L2, L3, BB, CC, DD, FF, ML, JJ, N2, N3, N&)

The analogous situation exists for the five-wide nonsymmetric case. The
five parameters AA through EE would now stand for a; through e, , respec-
i
tively and again the band width parameters must be added to the calling statement

and the subroutine parameter list.

CALL FSUB 51 (L1, L2, L3, AA, BB, CC, DD, EE, FF, ML, JJ,
1 N1, N2, N3, N4, N5)

This means we would now dimension DD with the variable N4 and EE with N5
whereas in the symmetric, since it is necessary that N5 = N1 and N4 = N2 , they

were not needed.
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APPENDIX D. USE OF OVERALL PACKAGE

To demonstrate what is necessary to use the solution package, we will
take TRIP 4 to use as an example.
First of all, the user's main program must dimension the following

variables thusly:

DIMENSION A(o) , AMl(») , ATM(a) , C(x, @) , D(o, @) ,

1 W, p) , DTl(x, 1) , CC(x, 1) , DD(l, o) , FF(a) (1)

For all four routines the dimension statement necessary in the main program is
identical with that in the appropriate routine, with the variable dimensions
replaced by the actual values the variable dimension parameters have been set
equal to. In the example below we have chosen ¢ = 10 which limits the maxi~
mum value K (the order of our submatrices) to 10. Also we have arbitrarily
chosen N2 =1, N3 =1 which is where the one's come from in the above

equation. Next we have the following common block:
COMMON /RI/ NK , NL , NF (2)

Since variable dimensioning has been used throughout, it is necessary
that certain variables be defined prior to the call statement. 1In the event
that data information needed for FSUB 32 is in common or is read and programmed
in, as is the case in this example, the variables L2 and L3 are extraneous.
They were included solely as variable dimension definers for any necessary
data arrays that should be variably dimensioned for practical purposes (in all
routines we have used the L2 and L3 parameters for the W array). We use

L1 to define g of the above dimension statement.

LI = ¢«
L2 = B
L3 = p (3)
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Generally NF will be either 1, 2, or 3 and is merely the starting value
for the main do loop that carries us through the L partitions. Due to inter-
nal subscripting (biased so as to avoid zero and negative subscripts) it is
sometimes advantageous to run from 2 to L+ 1, or 3 to L + 2 , instead of the
standard 1 to L . NK 1is the order of the submatrices for the particular prob-
lem, and NL 1is the matrix order of the overall coefficient matrix (there are
NL2 submatrices in the coefficient matrix). NK and NL will generally be
changing from problem to problem and therefore will most likely be read in or
be a function of some input parameter. For simplicity in our rather restric-
tive example, we have explicitly given them values but all that is necessary
is that they be defined in some fashioa.

To distinguish between parent, standard, and offspring problems, the

variable ML must be set to either a positive, zero, or negative value,

respectively.
NF - starting value for main do loop
NK ‘
} - defined as a function of the particular problem (see above)
NL
ML - -, 0, + number depending on type of problem

The only remaining necessity in the driving program is the call state-

ment itself.

CALL TRIP 4 (L1, L2, L3, ML, A, AM1l, ATM, C, CM1l, D, DT1l, CC,
1 DD, FF, W, 1, 3) ‘

All the variables have been explained except the last three. The last
two are the respective band widths of the outside and center submatrices,
and W 1is our output parameter containing the solution vector., The NL parti-
tions of W have been stacked as columns of a rectangular array, thereby being
more directly related to the type of problems this procedure was written for.
Combining this with the appropriate FSUB routine, we have the necessary
information to use the solution procedure. On the next page is an example
use of TRIP 4 using a restrictive but sufficient FSUB 32 to demonstrate the

minimal requirements necessary to use the procedure.



The FSUB 32 routine written for our example with NK = 3

generates the following coefficient matrix.
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The solution to problem 100 was obtained as a parent problem whereas 101

through 104 were obtained as offsprings since the coefficient matrix was the

same in all five cases.

into FSUB 32 since its purpose for this example was merely to generate a

suitable coefficient matrix with which to demonstrate the use of TRIP 4.

We have introduced no generalities or versalities

Below is the actual driver described above with the associated output.
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PROGRAM DRIV4 (INPUT sOUTPUTSsTAPE1sTAPE2sTAPE3 ) 27MR8
DIMENSION A(10) s AM1(10) s ATM(10) ’ 27TMR8

1 C(104510) » D(10s10) » W(10+10) » 19APS8

2 DT1(10s 1) » CC(10s 1) s DD(1 s10) » FF( 10 ) 19APS8
DIMENSION PROB(5) 19AP8
EQUIVALENCE ( ATM , CC ) 29MR8
COMMON /RI/ NK s NL s NF 27TMR8

5 FORMAT ( 5A5,15 ) 27MR8
6 FORMAT (1H1) 27MR8
7 FORMAT ( //+10Xs5A55//3s10Ks* ML = *,[5 ) 27MR8
8 FORMAT ( 5Xs* CONSTANT VECTOR %,/ ) 27TMR8
9 FORMAT (| //+5Xs*SOLUTION VECTOR PARTITIONED AND PRINTED * 27TMR8
1 2/s5X+s*OQUT AS A K BY L MATRIX *//7 ) 27TMR8
10 FORMAT ( 5X+10F944 ) 27TMR8
L1 = 10 27TMR8

L2 = 10 27TMR8

L3 = 10 27TMRS8

NF =1 27MR8

NK = 3 27MR8

NL = 4 27MR8

20 READ 5 +(PROB(I)s I =1s5)s ML 27MR8
PRINT 6 27TMRS8
PRINT 7 +(PROB(I)sI=1s5)s ML 27TMR8
PRINT 8 27TMR8
CALL TRIP4 ( L1sL2sL3sMLsASAM1sATMsCosDsDT1sCCsDDsFFoWslsl ) 21Mysg
PRINT 9 27TMR8

DO 100 1 =1 4, NK 27MR8

PRINT 10 s ( W(IsJ)s J=1sNL ) 27MR8
100 CONTINUE 27TMR8
GO TO 20 27MR8

END 27MR8




100
10

11

200

300
900

500
1000

SUBROUTINE FSUB32 ( L1s02+L3sBBsCCeDDsFFsMLsJJeN19NZ )
DIMENSION BB(L1sN1) s CCULL1sN2) » DDIN1sL1) » FF(L1}
COMMON /RI/ NK s NL s NF
DO 100 I =1 s NK
BB(I} = 1,0
CONT INUE
READ 10 5 ( FFUl1),1=1sNK}
FORMAT | 3FS5.3)
PRINT 119 JJ s ( FFUI)sI=14NK )
FORMAT { 5Xo% F(%]1e%) = %,10F8643 }
IF { ML«LT«0 } GO TO 1000
DO 200 I =1 4 N
CCel) = 1040
CONTINUE
IF { JJ«EQeNL ) GO TO 900
DO 300 I =1 5 NK
DD(I} = 140
CONTINUE
GO T0 1000
DO 500 I = 1 s NK
DD(1) = 0.0
CONTINUE
CONTINUE
RETURN
END

2TMRB
2TMRS
2TMRB
2TMR8
2TMR8
2TMRS
2TMR8
2TMRS
20APS8
20AP8
2TMR8
27TMR8
27MR8
27TMR8B
2TMRS
27TMR8
2TMRS8
2TMRS
27TMR8
2TMR8
27MRB
27MRS
27MRE
2TMRB
27MR8
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PHROA 100 « PARENT =

ML; i
CONSTANY VECTUR

F(ly 2 1,000 1.000 1.000
FI2) 3 1,000 1.000 1,000
F(3) = 14000 1,000 1.000
F{a)y = 1,000 1,000 1,000

SOLUTIUN vECTUR PARTITIONED AND PRINTED

OuT AS A K RY L MATRIX

<0917 LUHZ6 «OR20
«0Y17 0826 «0RB26
L0917 +0n26 0826

PROR 101 - OFFSPRING «

" = -
CONSTANT VECTOR

F2) ® 1.000 1.000 14000
FE3y = 1,000 1,000 1.000
F(a) = 1,000 1,000 1,000

SOLUTIUN VECTOK PARITTIONED
OuT AS a4 K BY L MATRIX

<0917 20H26 « 0826
0717 L0826 « 0826
0917 0826 + 0826

« 0917
0917
«0917

AND PRINTED

+0917
« 0917
« 0917



101

PROR 102 = OFFSpRING -

ML o= -1
CONSTANT VECTOK

FII 1.000 2,000 3.000

F{2) ® 4,000 5.000 64000
F(3) 3 7,000 59009_90000

SOLUTIUN VECTOR PARTITIONED AND PRINTED
OUT AS A K BY L MATRTX

« (664 e 3362 5721 +F428
198 «4187 «6547 140345
o 2499 5013 « 71372 1+1263

PROR 103 = OFFSPRING -

ML = -}
CONSTANT VECTUK

F{l} = =n, -1, wleo
F(2) = =p. =l 5000
Ft3) = 5-000'0. w0
Fia)y = =0, () o =0

SNLUTION yFCTOR PARTTTIONED AND PRINTED
0T AS a K HY L MATRTX

L0052 - 0518 +5103 “s 0510
(L {138 O« 0
-, 0210 «5103 «20515 « 0052
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PROR 104 = OFFSPRING =

M = -l
CONSTANT VECTOK

F(1) = 10.,000=0, e
F(2) = «p. =0 Qs
FL3) 2 w), =0, w0
F(a)y = =), -0 w0

SOLUTIUN vECTUR PARTTITIONED AND PRINTED
T AS A K HY L MATRIX

1,01p2 -, 1021 «0103 -, 0010
0‘ ﬁ‘ 0. 0.
0, 0, 0. 0.
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