A DISCRETE-ELEMENT ANALYSIS FOR ANISOTROPIC
SKEW PLATES AND GRIDS

by

Mahendrakumar R, Vora
Hudson Matlock

Research Report Number 56-18

Development of Methods for Computer Simulation
of Beam~Columns and Grid-Beam and Slab Systems

Research Project 3-5-63-56

conducted for

The Texas Highway Department

in cooperation with the
U. S. Department of Transportation
Federal Highway Administration

by the

CENTER FOR HIGHWAY RESEARCH
THE UNIVERSITY OF TEXAS AT AUSTIN

August 1970



The opinions, findings, and conclusions
expressed in this publication are those
of the authors and not necessarily those
of the Federal Highway Administration.

ii



PREFACE

This report describes a numerical method for the analysis of anisotropic
skew plates or slabs with grid-beams. Relations are developed which simplify
the computation of anisotropic slab stiffnesses.

The method was programmed and coded for use on a digital computer. Al-
though the program was written for the CDC 6600 computer, it is also compati-
ble with IBM 360 systems. Copies of the program presented in this report may
be obtained from File D-8 Research, Texas Highway Department, Austin, Texas,
or from the Center for Highway Research at The University of Texas at Austin.
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ABSTRACT

A discrete-element method of analysis for anisotropic skew-plate and grid-
beam systems is presented, The method can be used to solve a wide variety of
problems, The principal features are

(1) formulation of six elastic stiffnesses and compliances in terms of

three moduli of elasticity in any three directions and three Poisson's
ratios related to these directions,

(2) representation of an anisotropic skew-plate and grid system by a
discrete-element model consisting of a tridirectional arrangement
of rigid bars and elastic joints,

(3) formulation of stress~strain and moment-curvature relations for the
discrete-element model using concepts of a continuum composed of
interconnected fibers,

(4) derivation of a stiffness matrix using equations of statics, and

(5) a recursion-inversion procedure to solve the stiffness equations,

The method allows free variation in stiffnesses, loads, and supports,
Concentrated and distributed loads and supports and external couples in three
directions, including grid-beams in three directions, are easily handled. A
computer program has been written to check the formulation. The results com-
pare well with the results from other abproximate methods and with experimental

data,

KEY WORDS: anisotropic elasticity, skew plate, skew grid, slab-grid system,

skew bridge, discrete-element analysis, computers, bridges, plates,
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SUMMARY

This study presents a method for the analysis of isotropic or anisotropic
skew-plate and skew-grid-beam systems. The method can be used to solve a wide
variety of problems and is particularly suited to analysis of skewed highway
bridges and pavements.

A discrete-element analog is used to represent the actual structure, and
formulation of the equations solved is based on this mechanical assembly. The
assembly is such that the stiffnesses, geometric properties, loads, and re-
straints of the real system are represented in an accurate manner. The assem-
bly is composed of an anisotropic plate with three tridirectional stiffnesses.
Relations are developed in which the anisotropic plate stiffnesses are related
to three moduli of elasticity in any three directions and three Poisson's
ratios related to these directions. The six elastic constants can be deter-
mined by testing simple uniaxial specimens taken from the plate in any three
directions. A grid beam assemblage may also be present and is oriented in the
same three independent directions. These beams transfer only bending moment.

The included computer program, SLAB 44, is written in FORTRAN for the
CDC 6600 computer and is easily made compatible with IBM 360, UNIVAC 1108, and
other comparable computer systems.

A series of example problems is included to demonstrate and verify the
method. No exact closed-form solution is available for even the simplest skew
plate but the results compare favorably with several approximate methods. 1In
addition, comparison is made with experimental results taken from a skewed,
prestressed bridge modeled to a 5.5-to-1 ratio. The model represents a stand-
ard Texas Highway Department bridge structure. The computed results compare
closely to the measured values within the elastic response range of the model.

A guide for data input is presented which allows routine application of
the method of analysis with little necessary reference to the body of the

main report. Any number of analyses may be run at the same time.

ix
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TMPLEMENTATION STATEMENT

The problems associated with analysis of skewed highway structures have
long been difficult for the highway engineer to solve. The use of approximate
distribution factors and strip methods has for years furnished the engineer
with convenient design approximations, but it can be shown that extending
these methods to heavily skewed structures may cause extreme complications
associated with the inherent twisting which is not considered.

In this study, a computer program (SLAB 44) is developed for computer
simulation and analysis of skewed slab and grid systems. The potential appli-
cation of this work ranges from sensitivity studies of skewed bridge geometries
to the day-to-day design of any skewed bridge structure. In addition, it may
be used to study some other effects of skewed slabs such as skew angles, as-
pect ratios, and diaphragm placements. Furthermore, the coupling of research
results of the skewed model test project with this program will make available
to the highway engineer procedures which will permit better analysis of many
types of structures.

Program SLAB 44 has recently been applied to the analysis of a skewed,
post-stressed continuous slab structure. Very good correlations have been
made between the analysis and a brief, full-scale load test of the structure
located in Pasadena, Texas. The investigation was initiated by the non-load
induced failure of a companion skewed structure.

Recommendations are made for further research in the area of nonlinear
response, especially concerning concrete slab characteristics. It is possible
to modify and extend the computer method presented in this work to include
nonlinear effects.

It is further recommended that this program be put into test use by de-
signers of the Texas Highway Department to further evaluate its uses, and to
investigate needed extensions or modifications to make it more usable for the

practicing design engineer.
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CHAPTER 1. INTRODUCTION

Skew slabs or plates with skew ribs occur frequently in modern structures
such as airplane wings, highway bridges, and building floors, and their analy-
sis is always difficult. There are no closed-form mathematical solutions
available for even the simplest cases, except a simple triangular plate given
by Timoshenko and Woinowsky-Krieger (Ref 40). The practicing engineer must
use some approximate procedure for analysis. To analyze a continuous pre-
stressed concrete skew slab bridge of two, three, or more spans, for example
(Fig 1), he may choose a strip of slab in the span direction and consider it
as a beam. This kind of approximation might be reasonable for a rectangular
slab bridge but may be inappropriate in the case of a skew slab bridge. Gen-
erally, because of the presence of large twisting effects, the largest princi-
pal moments are not in the span direction.

The objective of this study is to develop relations for elastic compli-
ances such that the computation of anisotropic plate stiffnesses is simplified,
and to develop a discrete-element method of analysis for anisotropic skew~

plate and grid systems in which the grid-beams may run in any three directions.

Previous Studies

Many investigators have attempted to analyze skew plate problems. Some

of the methods are discussed here.

Finite Difference. 1In the finite difference approach, the partial differ-

ential equation and the boundary conditions are replaced by difference equa-
tions, which may be solved by any procedure. The parallelogram-shaped mesh
could be used to fit the boundaries exactly. Using this type of mesh, Favre
(Ref 9) solved simply supported skew plates, while Chen, Siess, and Newmark
(Ref 6) solved a single-span, noncomposite skew bridge consisting of a concrete
slab of uniform thickness supported by five identical steel beams. Morley

(Ref 24) observed that when this type of mesh is used the convergence of solu-
tion, as indicated by advances to a finer mesh, deteriorates with increasing

angle of skew in the case of simply supported uniformly loaded skew plates.
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Fig 1. Continuous prestressed concrete skew bridge,



Jensen et al (Refs 14 and 15) used an alternate system of finite dif-
ference equations. Robinson (Ref 35) and Naruoka (Ref 25) extended Jensen's
finite difference procedure to compute influence coefficients for several
skew plates while Naruoka et al (Refs 26, 27, 28, and 29) solved orthotropic
parallelogram plates and gave several numerical and experimental results. All
these studies are for a single span and for either isotropic or orthotropic

plates.

Electrical Analog. 1In this method, the network of an electrical analog

automatically solves the finite difference equations within the boundary

while at the boundary the potentials are adjusted until the boundary conditions
are satisfied. Rushton et al (Refs 11, 34, and 36) utilized this procedure to
solve skew plates with various boundary conditions, including a four-span flat-
slab 45-degree-skew bridge. He observed that for large angles of skew there
was no apparent decrease in the accuracy of the deflections. Only isotropic

plates were considered in his study.

Conformal Mapping. Aggarwala (Refs 1 and 2) used a conformal mapping

procedure in which a parallelogram was mapped on the unit circle and obtained
solutions for plates under transverse loadings. Only simply supported iso-

tropic plates have been solved.

Finite-Element. 1In the finite-element method, the structure is idealized

as an assemblage of deformable elements linked together at the nodal points,
where the continuity and equilibrium are established., Using different types

of elements, several investigators, including West (Ref 42), Mehrain (Ref 22),
Cheung, King, and Zienkiewicz (Ref 7), Gustafson and Wright (Ref 10), and Sawko
and Cope (Ref 37), have studied the problem. All of these studies were for
either isotropic or orthotropic plates. Mehrain (Ref 22) has studied the skew
problem extensively, making a comparative analysis of various forms of finite
elements, and has observed that the accuracy of the finite-element solution
drops rapidly when the angle of skew is increased in the case of simply sup-

ported uniformly loaded plates.

Series, In this method, with the fourth-order partial differential equa-

tion governing the deflection of the plate, a solution is obtained in which



the deflection function is expressed in the form of a series. Quinlan (Ref
33), Kennedy and Huggins (Ref 16), and Morley (Refs 23 and 24) have presented
solutions using different forms of series, These solutions are for single-
span isotropic plates. Morley's results are the most extensive and several
investigators have used these results as the basis for comparisen with their

methods,

Other Solutions. Akay (Ref 3) used a double-net model to solve for ortho-
tropic skew plates with a boundary condition of either two opposite edges sim-
ply supported or all four edges simply supported, Several examples have been
solved and the results compared with the solutions from other approaches,
Suchar (Ref 39) dealt with anisotropic skew plates and obtained polynomial
solutions to the governing differential equation using oblique coordinates,
These polynomials were then used to calculate the influence surface for an
orthotropic parallelogram plate with two opposite sides simply supported and

the remaining edges free.

Present Study

It can be seen that except for Suchar (Ref 39) the studies were limited
to either isotropic or orthotropic plates and also that most of the methods
developed were for particular loading of boundary conditions,

In the present study a mechanical model consisting of a tridirectional
system of rigid bars and elastic joints was used to simulate anisotropic skew
plates plus slab-and-grid systems in which the grid-beams may run in any three
directions. The model developed and the relations formulated are not limited

to bending analysis but could also be adapted for plame stress analysis,

Discrete-Element Model

Chapter 2 describes a discrete-element model used to analyze anisotropic
skew-plate and grid systems. Assumptions made for the solution of the model

are also given,

Anisotropic Relations

Hearmon (Ref 12) and lekhnitskii (Ref 17) have developed stress-strain

relations in Cartesian coordinates for an anisotropic homogeneous body. For



the problem of plane-stress in two dimensions, these relations require the
computation of six elastic stiffnesses in terms of six independent elastic
constants: moduli of elasticity in the x and y-directions, one Poisson's
ratio, one shear modulus, and two coefficients of mutual influence of the
first kind.

In Chapter 3, relations are developed in which the six elastic stiffnesses
are related to three moduli of elasticity in any three directions and three
Poisson's ratios related to these directions, This simplification is helpful
in determining the six elastic constants by testing three simple uniaxial spec~
imens taken from the plate at any three directions. Since the integration of
stress-strain relations gives moment-curvature relations, the six anisotropic
plate stiffnesses also may be computed in terms of three moduli of elasticity
and three Poisson's ratios.

Using concepts of a continuum composed of interconnected fibers, stress-
strain relations for the anisotropic discrete slab model are derived in Chap-
ter 4., Moment-curvature relations for the slab and grid models are also de-

rived,

Stiffness Matrix

In Chapter 5, equations of statics are used to derive a stiffness matrix
for the discrete-element model, Chapter 6 describes the recursion-inversion

solution procedure used to solve the stiffness equations.

Verification of Model

Chapter 7 describes a computer program written to verify the formulation,
Several example problems are solved in Chapter 8,‘and results are compared
with, the closed-form solution for a triangular plate; with the solutions from
other approximate methods, such as series, finite-element, conformal mapping,
finite difference, and electrical analog; and with experimental results.

The appendices contain the guide for data input, general program flow

chart, notations, program listing, listing of input data, and selected output,
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CHAPTER 2, PROPOSED TRIDIRECTIONAL DISCRETE-ELEMENT MODEL

Introduction

In the discrete-element method of analysis a system (beam, plate, and
plate and grid-beams) is replaced by an analogous physical model and then the
analysis of the model is made., The mechanical assembly of this model should
be such that it can represent the stiffnesses, geometric properties, loads,
and restraints of the real system. This kind of approach has been used by
several investigators including Matlock (Refs 18 and 19) for beam-columnm,
Tucker (Ref 41) for rectangular grid-beam problems, and Newmark (Ref 30), Ang
and Newmark (Ref 4), and Hudson (Ref 13) for rectangular plate problems.

A discrete-element model for a skew-plate and grid-beam system is pro-
posed., In it the plate may be completely anisotropic and grid-beams may run
in any three directions. 1In this chapter, the functions of diffefent com-
ponents of the model are explained and the assumptions required for the analy-

sis of the model are listed,

Discrete-Element Model

A discrete-element model is to be worked out to be used to solve the

following:

(1) an anisotropic skew plate or slab,

(2) a grid-beam system in which the beams may run in any three directions
or less, and

(3) a combination problem, i.e,, an anisotropic skew-plate and grid-beam
system in which the beams may run in any three directions.,

Figure 2 shows the proposed tridirectional model for plates and Fig 3

shows a typical grid-beam model.

Components of Model

The model of a plate (Fig 2) will consist of elastic joints connected by

rigid bars running in directions a , b , and c .
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The model of a grid-beam (Fig 3) in a particular direction will consist
of elastic joints connected by rigid bars running in that direction. The model
of a grid-beam will be the same as the model of a beam-column worked out by

Matlock (Refs 18 and 21).

Function of Each Component

The stiffnesses, loads, and restraints will be lumped at elastic joints,
and hence all elastic action will take place at these joints. The only func-
tion of the rigid bars will be to transfer bending moments from one elastic

joint to another without deforming.

Connection

The plate model and the three grid-beam models of the grid-beam system
will be connected with one another at elastic joints. The rigid bars of dif-
ferent systems will have no connection with one another. Therefore at any par-
ticular elastic joint, the deflection of all the four systems should be the

same.

Assumptions Related to Conventional Plates and Grid-Beams

The following assumptions are related to the conventional plates and grid-
beams and are included in the subsequent discrete-element development. The
first three are the same as shown by Timoshenko (Ref 40) for thin plates with
small deflections.

(1) There is no axial deformation in the middle plane of the plate.

This plane remains neutral during bending.

(2) Points of the plate lying initially on a normal-to-the-middle plane
of the plate remain on a normal-to-the-middle plane of the plate
after bending.

(3) The normal stresses in the direction perpendicular to the plate can
be disregarded.

(4) All deformations are small with regard to the dimensions of the
plate and grid system.

(5) The neutral axis of a plate with grid-beams is in the same level
even though the cross sections of the plate and of each grid-beam
may be nonuniform.
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Assumptions Related to Discrete-Element Model for Plates and Grid-Beams

In addition to the above, the following assumptions are made for discrete-
element model for plates and grid-beams.
(1) Each elastic joint is of infinitesimal size and composed of an elas-

tic, but anisotropic, material. Curvature appears at the joint as
concentrated angle change.

(2) The rigid bars of the models (Figs 2 and 3) are infinitely stiff
and weightless. They transfer bending moments by means of equal
and opposite shears. They are torsionally soft; i.e., they do not
transfer twisting moment. They do not deform due to in-plane (axial)
forces.

(3) The stiffnesses of plates and of grid-beams may vary from point to
point.

(4) The spacing of elastic joints in the a and c-directions, designated
ha and hc , respectively, need not be equal but must be constant.

The spacing in the b-direction is equal to the length of the diagonal

of the parallelogram having sides ha and hb (Fig 2)f

Summary

The anisotropic plate and grid system is to be represented by a physical
model having only one degree of freedom at each joint. The model will be help-
ful in visualization of thé real problem. Discontinuous changes in stiffnesses,
loads, and supports may be accommodated easily in the model. Where numerical
word length is not a limitation, errors in the solution are due to approximating
the real system with the model and not to the solution of model. Thus, accu-
racy of the solution will depend upon the number of increments used in the

solution.



CHAPTER 3, ANISOTROPIC STRESS-STRAIN RELATIONS

Introduction

For plane stress problems, the anisotropic stress-strain relations require
computation of six elastic compliances or six elastic stiffnesses, Hearmon
(Ref 12) and Lekhnitskii (Ref 17) have shown that in Cartesian coordinates the
compliances could be related to six independent elastic constants (moduli of
elasticity in the x and y-directions, one shear modulus, one Poisson's ratio,
and two coefficients of mutual influence of the first kind). Hearmon (Ref 12)
has also described experiments required to determine the six compliances.

In this chapter, relations are worked out in which the six compliances
and six stiffnesses are related to three moduli of elasticity with respect to
any three directions and three Poisson's ratios related to these directions.
This simplification is helpful in understanding and in computing the elastic
compliances and stiffnesses.

Transformation relations have also been worked out whereby the modulus
of elasticity and Poisson's ratio in any desired direction may be obtained
from three moduli of elasticity and three Poisson's ratios related to any

other three directions,

Hooke's Law

Hooke's law states that each stress component is directly proportional

to each strain component, If g represents stress and e represents strain,

%3 €13kekL G.1)

and

€ij %13k (3.2)

wherein i, j, k and 4 take on all combinations of 1, 2 and 3.

11
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The terms c,, are called elastic stiffnesses and s, the elastic
ijké ijkd
compliances, Equations 3.1 and 3.2 show that there are 81 stiffnesses and com-~

This

pliances. It can be shown (Ref 12) that cij = Gji and s = Sgi *
©igks T Syike T Cijek - Sjigk P Sijrg T Sjikg T Sijax T Sjigk
and reduces the number of stiffnesses and compliances to 36. It has been shown

results in

by Hearmon (Ref 12) that by thermodynamic argument c¢ and s

. s = C e
ijkd k£i] ijks
= skzij and these reciprocal relations further reduce stiffnesses and compli-

ances to 21 in the most general case.
For plane stress problems, if o, and ¢ are the normal stresses in

the x and y-directions, respectively, and Txy is the shearing stress, and

if L ey , and ny are the corresponding strains, as shown in Fig 4(a),

then Hooke's law in Cartesian coordinates has the form

O, T ©11% + c12€y + c13ny

Oy = 0216X + c22€y -+ c23yxy

Txy = c31€x + C328y + c33ny (3.3)
or

ex = Sllok + 312°y + 313Txy

6, = 8p1% F Sp0, t 83T,y

Yy T 5319 T 5329, T 8337y (3.4)

The stiffnesses and compliances in Eqs 3.3 and 3.4 satisfy the reciprocal re-
lations which reduce the number of independent constants from nine to six.
Hence, in general, for an anisotropic thin plate in a state of plane stress
it is necessary to know the values of six different quéntities to calculate

elastic behavior., These reduce to two in the case of isotropic plates.
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Elastic Compliances for Anisotropic Thin Plates

Consider a small rectangular element of a thin anisotropic plate: if the
only stress acting on this element is o, > as shown in Fig 4(b), and the cor-

responding strains are I €y , and ny s, then from Eq 3.4

€

= = X - L
€ T S1% £ Spp o E (3.5)
X X
Sy Vxy
€ T S0 oL S T o T TF (3.6)
% X
and
..\.i).{_y_ = n_XL_}s 3.7
ny T 8319% £ 831 T o, - Ex 3.7

If the only stress acting on the element is cy , as shown in Fig 4(c),

and the corresponding strains are €, v ey , and ny then

[4
_ - X - 1 3.8
€y 220y £ Sp2 o E @.8)
y y
ex v X
e = s.g or s. = -X = _-3x (3.9)
12% = ®12 E
* 7 % y
and
~ or s, = XL - vy (3.10)
ny S3029, X ®32 o-y Ey *

Finally, if the only stress acting on the element is Txy , as shown in

Fig 4(d), and the corfesponding strains are €x s €y and ny then

y
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Yy 1
—_ - X = —
Yy °33Txy £ 933 T G G.1D
Xy Xy
€ T
= = L = ._Iﬁ
€x 13Txy or 513 T G (3.12)
Xy Xy
and
EX_ ﬂXAEX
€, = SZBTxy Or s,3 = 7 = G (3.13)
Xy Xy

In Eqs 3.5 through 3,13, Ex and Ey are the Young's moduli (for tension-
compression) with respect to the x and y-directions; ny is the shear mod-
ulus; Vo is the Poisson's ratio which characterizes the decrease in the
y-direction for the tension in the x-direction; VYX is the Poisson's ratio
which characterizes the decrease in the x~direction for the tension in the

y-direction; T and nxy y are the coefficients of mutual influence of

Xy, X ’

the first kind (Ref 17) which involve the ratio of shearing strain to normal

gstrain; and nx and T are the coefficients of mutual influence of
s Xy s Xy

the second kind (Ref 17) which involve the ratio of normal strain to shear-

ing strain.

Owing to the reciprocal relations,

\V) \Y]
- _ XY . _yx
S12. T %1 & T F E (.14)
x y
= g or Hﬁ;ﬁl = EEZ;E (3.15)
513 31 2= ¢ E .
Xy X
and
) Myxy _ Muy.y (3.16)
523 530 & ¢ E .



16

Hence for an anisotropic thin plate in a state of plane stress, six

elastic compliances S11 » S12 s Sy3 s Syn 3 Spq and Sy3 can be
evaluated with known values of six independent constants Ex , Ey , G ,
Xy
Vxy (or Vyx) ' Ty ,x (o nx,XY) > and Ty ,y (ox ﬂy,xy) )
Combining the above results, the six compliances can be written as
s = 4
11 E
X
s = lmy
12 E
X
nxz,x
S =
13 E
X
s = 4
22 E
y
s = EEX;X
23 E
y
and
1
°33 T @ (3.17)
Xy

Elastic Compliances in Terms of Three Moduli of Elasticity and Three
Poisson's Ratios

Another approach has been worked out to compute the six elastic compli-
ances. In it the compliances are functions of three moduli of elasticity in
any three directions a , b, and c¢ , as shown in Fig 5(a), and the three
Poisson's ratios related to these directions. Angle 61 between directions
a and b , angle 92 between directions a and c¢ , and angle 93 between
directions b and ¢ can have any value except O and 180 degrees. For con-

venience, directions x and a are taken as the same but, in general, the
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angle between directions x and a need not be zero, This approach can be

worked out as follows.

Consider a small rectangular element as shown in Fig 5(b).

If the only

stress acting on this element is 9.1 and the corresponding strains are ¢

€ , and vy__ , where ¢ and ¢ are strains in the a-direction and per-
ap ap a ap

pendicular to the a-direction (or ap-direction) and Yap is shearing strain,

then

- 0al
€a E
a
- - Va%1
eap Ea
- rr]agaxl
Yap Ea

(3.18)

where Ea is the modulus of elasticity with respect to the a-direction; Va

is the Poisson's ratio which characterizes the decrease perpendicular to the

a-direction (or ap-direction) for tension in the a-direction; and ﬂa is the

coefficient of mutual influence of the first kind related to the a~direction.

Now for the same state of stress, if the element is oriented with respect to

the x and y-directions, as shown in Fig 5(b) (the x and a~directions are

the same in this case), then

_ lal
8xl E
a
o Ya%1
= TIacal
nyl E

(3.19)

2
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and

%1 ~ %a1
°y1 = 0
Txyl = 0 (3-20)

where O, and ¢ are the normal stresses in the x and y-directionms,

yl

xyl
the corresponding strains,

respectively; T is the shearing stress; and ¢ and nyl are

x1°’ ey1 i
Now consider a small rectangular element as shown in Fig 5(c). If the
only stress acting on this element is

and the corresponding strains are

%b2
, and pr , where ¢ and are strains in the b-direction

€ , € €
b bp b bp
and perpendicular to the b-direction (or bp-direction) and pr is the shear-

ing strain, then

o = b2
b E
. Yb%2
ebp Eb
My %2
Yop = E—b‘" (3.21)

where Eb is the modulus of elasticity with respect to the b-direction; Vi,
is the Poisson's ratio which characterizes the decrease perpendicular to the

b~direction (or bp-direction) for tension in the b-direction; and ﬂb is the
coefficient of mutual influence of the first kind related to the b-direction.
Now for the same state of stress, if the element is oriented with respect to

the x and y-directions, as shown in Fig 5(c), then by using Mohr's circle

or transformation relations it can be shown that
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_ 2 2 %h2
€9 (ﬁl vm ﬂbzlml) E,
_ 2 2 MY
€92 (@ = vpdy = by B,
Voo = [-24m, - v 24m + 7 (4> -
xy2 11 b™"11 b "1
and
_ 2
% = #1%2
%92 = ™%:2
Txy2 © “41™%2
where 0,9 and oyz are the stresses in the
tively; Txy2 is the shearing stress; €0 2

responding strains; zl is is

and b-directions,

cos el 3y m

1
between the a

Finally, consider a small rectangular element as shown in Fig 5(d).

the only stress acting on this element is 0.3
are e¢_, € and €.

c , and ch , where €.

cp

tion and perpendicular to the c-direction (or cp-direction) and ch

shearing strain, then

2 _ b2

)] E (3.22)

(3.23)

x and y-directions, respec-

€y2 Il
sin 91 ; and 91

and ny2 are the cor-

is the angle

If
and the corresponding strains
are strains in the c-direc=-

is the
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Mo
3

cp c

where Ec is the modulus of elasticity with respect to the c~direction; Vo
is the Poisson's ratio which characterizes the decrease perpendicular to the
c~-direction (or cp-direction) for tension in the c-direction; and nc is the
coefficient of mutual influence of the first kind related to the c-direction,
Now for the same state of stress, if the element is oriented with respect to
the x and y-directions, then by using Mohr's circle or transformation re-

lations it can be shown that

2 2 93
3 = by = vemy ¥ T 4ymy) E_
_ 22 y Ze3
ey3 - (m2 chz ncf'2m2 Ec
= [-24m - v 24 m + (22 - m2)] Sgi (3.25)
Yaey3 22 T Vet T ety T M g .
and
2
%3 22 93
93 2%3
Txy3 = -22m20c3 (3.26)
where O3 and Oy3 are stresses in the x and y-directions, respectively;
Txy3 is the shearing stress; €43 » ey3 , and ny3 are corresponding

strains; 22 is cos 8y m, is sin 92 ; and 8, is the angle between the

a and c-directions.
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Now consider a case in which the above three sets of state of stresses
act simultaneously, The method of superposition can be used in this case,

Hence, as shown in Fig 5(e), if

% T % + Ox2 + 9%3

e R

Tay T Tayl T Txy2 T Txya (3.27)
and

°x ~ %x1 + €x2 + €x3

ey = eyl + ¢ 2 + €y3

Yy = Ygyl T Yeyo * Vg3 (3.28)
then from Eqs 3,20, 3,23, and 3.26

o, = 9,1 + obzﬁﬁ + cc3£§

Oy = 0+ OBZmi + ob3m§

Tey = 07 Fpoh™y T 9c3by™ | (3.29)

and from Eqs 3.19, 3,22, and 3,25

e}
oL 2 2 %2
x = E_ ‘%l + (4 = vymy + T 4ymy) E,
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2 2 93
+ Uy = vomy + T bym)
(o}
v (o}
Vs 2 2 b2
¢ = "E %t 7 vty A g
a b
2 2 Gc3
oy - vty - M4y F
(o}
= 2 + [-24.m, - v, 24,m, + (zz - 2) b2
Yy T E_ Cal 1™ 7 vp2hmy F Ty (g - mp) ] E,

[-2£2m2 = v 24,m, + ﬂc(

Also €., ¢ _, and ¥y can be relate
X y Xy

compliances from Eq 3.4 as follows:

+
5119 T 8120y * S13Tyy

+ +
$12% SZZGy s23Txy

Y

Xy $13% + 823cy + s33Txy

Substituting values of g, » O

y

2 2
x 511001 ¥ 0ppty T 0 34y

t 513004 m - 0 38m)

€

2
y = S12(0a1 t o4 + o

2

22) + s

2 2.4 %3
£2 - m2)] B (3.30)
c
d to Oy oy , and Txy using
(3.31)

and from Eq 3,29 into Eq 3,31

2 2
)+ spplopm + o qm,)

2 2
92 (Opomy + 0 3T)



24

Fs,3(Copdymy = g gd,m,)

_ 2 2 2 2
Yy 813(0,0 ¥ ooty T 0p38y) o sy5 (opymy F o gm,)
T o533 (-0 my = o gdymy) (3.32)

Since Egqs 3.30 and 3,32 should be the same, the coefficients of 041 Opy o
and 0.3 in both sets of equations should be equal., Comparison of the co-

efficients of 0,1 o and .3 results in the following nine relations:

s.. = %;— (3.33)

2 _ 1,2 2
Sllﬁl + S19™1 313£lm1 Eb (£1 vpmy + nbﬁlml) (3.34)
2 2 1,2 2
911£2 +osp, my - 813£2m2 = E_ (ﬁz v m, + ﬂcﬁzmz) (3.35)
\Ja
S10 = E; (3.36)
2 _ 1 ,2 2
Sift F o™ T Sashi™ T E] O Vpdy - Tptymy) (3.37)
2 1,2 2
Spady ¥ SpaMy 7 Sp3dom, T B (m, = v 2 - T 4,m, (3.38)
T[a
S13 ° E_ (3.39)
a
2 2 1. )
S13fp ¥ Sp3™ 7 S33hy™ T R -24ym) - v,24my
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2 2 |
+ ﬂb(zl - ml)] (3.40)
2 2 _ 1 - } ;
S13ly T Sy3my = S33dym, = E_ [-24,m, v 2hym,
2 2
+ ﬂc(LZ - m2)] (3.41)

Solving the above nine relations for six elastic compliances S11 > Sqyp »
513 s Sy 5 Sy3 s and S35 and three coefficients of mutual influence of
the first kind ﬂa s ﬂb , and ﬂc in terms of three moduli of elasticity

E E and E Poi 's i and th
a p » an c and three Poisson's ratios vy s Yy oo v, e

following results could be obtained:

(lez + mllz)(Lllz - \)amlm2

T| =
a 2£1m1£2m2

(m £, + £1m3)(£1£3 - vbm1m3) Eﬂ

173
2£1m1£3m3 Eb
) (Lzm3 - m2£3)(£2£3 + vcm2m3) Eﬂ (3.42)
2£2m2L3m3 EC
_ (zlm2 - mlzz)(zlzz +v mm, EE
b 2£1m1£2m2 Ea
(mll,3 - £1m3)(£1£3 + \)bmlm3
+ 24.m. 4 m
11733
Am, -m L)AL, +v mm ) E
+ 23 23 23 c 23 EE (3.43)

24 m, 4 my ¢
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(lez - mltz)(,ﬁlzz + vamlmz) Ec

'ﬂ = - f, -~
c 2,€,1rn1 P Ea

(m1£3 + £1m3)(.61£«3 - Vpmm ) Ec
+ 24.m. 4 m E.
117373 b

(£2m3 + m2£3)(-£2£3 + vcmsz)
+ 20.mdom (3.44)
2M2%3"3
1
511 N (3.45)
a
va
312 = - H (3.46)
a
. N (.ﬁlm + ml,ﬁz) 1 (zlmz + mlzz) 1?. ) m, 1
13 2m1m2 E{J1 2£1£2 Ea 2m1m3 Eb
m \YJ m m Y
+zzzz —b+z 1m El‘+zzlz B (.47)
173 b ‘MM e 2%3 B
oo b Wy tmm) e by g Y
22 mlm2 Ea mlm2 Ea mlm3 Eb 1m3 Eb
L L. v
4L 1 1 ‘c (3.48)
mymg E, mymy B
o Aym, +md)) | . Uymy +m8)) (24,4, + mymp) v
23 Zmlm2 Ea 2£1m11,2m2 Ea
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™ 1 +m2(‘°‘z+£11‘3) o, M1
2m1m3 Eb 2£1m1£3m3 Eb 2m2m3 Ec
m, (-4, - L. 4 ) v
N LRy = Ayh) v (3.49)
222m213m3 Ec
4 Vv
3 1 1 22 2,24 “a
5., = —2m— p e [em m (L. 4, - m.m ) - Lim) - miLo] ==
33 mlm2 Ea £1m1£2m2 172172 172 172 172 Ea
j v
2 1 22 2.2y 'b
- = (mm 2. + £5m° - mi4°) —
mlm3 Eb 21m123 3 17273 172 172 b
L v
1 1 1 22 2.2y “c
+ —— = 4 e (emom 4, + £ - mi4) =— (3.50)
mmy E_ 7 Lom,dom, 1M2%3 1™2 1%2” E_

where £3 is cos 93 3omg is sin 33 3 and 83 is the angle between the
b and c~directions,

Equations 3,45 through 3,50 describe the relations in which the six elas-
tic compliances are related to the three moduli of elasticity in any three
directions a, b, and c¢ and the three Poisson's ratios related to these

¢
1’ 2
and 93 except 0 and 180 degrees, It might appear that the relations are

not valid for 90 degrees but an additional relation between moduli of elas-

directions, These relations are valid for any value of angles §

ticity and Poisson's ratios exists at this angle. For example, if directions

a and b are at 90 degrees to each other then

v AY)
=2 - -E-‘l (3.51)
a b

Using this additional relation, compliances can still be computed in

terms of Ea s Eb s Ec s Vg2 Vo and Ve
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For the isotropic case Ea = Eb = EC = E and Vg TV TV TV 5

substituting these in Eqs 3.42 through 3.44 it can be seen that ﬂa = ﬂb = ﬂc

= 0 , which is as it should be.

Transformation Relation for Modulus of Elasticity

Knowing the values of six elastic compliances, the transformation rela-

tion for the modulus of elasticity can be worked out as follows.

Multiplying Eqs 3,34, 3,37, and 3,40 by 22 , mi , and -llml , respec-
tively, and adding the three resulting equations gives
1 _ 4 22 5,3 4
B~ htu T PhMi T 2hmts T Mt
3 2 2
= 24jmysyy o 4ym Sy (3.52)

where zl is cos 81 ;oomy is sin 81 ;
and b-directions, as shown in Fig 5(a); and

B, 1is the angle between the a

1

S S

S11 0 S12 0 S13 2 Spp 0 Sp3 0

and are elastic compliances (as shown in Fig 5(a), the x and a-direc-

533
tions are the same).

Now consider any direction b’ such that the angle between a (or x)

and b’-directions is 6{ . If Eé is the modulus of elasticity with respect

to the b’~direction then from Eq 3,52

1 _ 4 12 42 s 0 pt3 s P gt #3
E] Ly'syp 28 my sy, - 20 mys g T omys,, - 24m) TS,
2 2
+ ﬁl my S34 (3.53)

. 7
where ¢/ is cos 8! and m

. . 4
1 1 1 is sin 81 o

Equation 3.53 describes the transformation relation for the modulus of
elasticity in any direction, Similar relations have been worked out by

Lekhnitskii (Ref 17) using a different approach,
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Transformation Relation for Poisson's Ratio

7
. b
b’-direction), the Poisson's ratio related to the b’-direction can be worked

Knowing the value .of E (or modulus of elasticity with respect to the

out. Consider Eq 3.34 as

s LZ + s m2

_ L2
114t 512™ - 813t =5 4

2
A - wpmy + nbzlml) 3.54)

1™

Substituting the value of nb from Eq 3,43 into Eq 3.54 and then following a
procedure similar to that explained above for the transformation of the modulus

of elasticity, the following relation could be written:

12 4 IR IR 4
f= . Ef%—fg E's,. - ffif_g Els . + 24 E's
Vb m/m, b°1ll m b~12 m b°13
172 2 2
1,1 1 7 7_17 /] 41,1 7
L14qmy By Lgmy v By bymidy By
+ = + - —
m'm2 Ea £2m2 Ea mzm' Ec
12 23
1_ 1 4 1,7
2my VB, 44
f; m E + mlm7 . (3055)
22 13
where vé is the Poisson's ratio related to the b‘-direction; 2{ is

’

cos ei ; m; is sin e{ : e{ is the angle between the a and b’-directions;

Lé is cos eé ; mé is sin e; : eg is the angle between the b’ and

c-directions; Lz is cos 8§ m is sin 62 ; and 8

) is the angle be-

2 >
tween the a and c-directions.

2

Elastic Stiffnesses for Anisotropic Thin Plate

Knowing elastic compliances, the elastic stiffnesses can be computed

using the following procedure. Consider strain-stress relations

®x T ®11% + S1z°y + S13Txy
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€
y

Y.

Xy

227y

13 23%

+ +
slzo‘x S,,0 S

c +s,,0 t+ s
X

23Txy

33Txy

(3.56)

The values of elastic compliances can be computed by either of the above pro-

cedures or by some other means.

Eq 3,56 and solving for Oy

gives

Xy

11

12

13

22

23

33

H

1 ( s
[Det| “°22°33
L (s,,5
IDetl 2313
L (s, ,s
lDetl 12723
1 ( s
[Dec| ‘°33°11
L (s,,8
Detl 13712

L (s
[Dec| “°11°22

Substituting these values of compliances in

o]
y

, and

°13 Xy

23 xy

523523

512%33

513522)

513513)

553811)

512515)

(3.57)

(3.58)
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where
pet| = sy s1,  sq3
S12 S22 %23
813 %23 ®33 (3.59)
and where I | is used for the determinant.

Equations 3,58 and 3.59 describe the relations between the elastic stiff-
nesses and the elastic compliances in which the compliances may be computed

by using either Eq 3.17 or Eqs 3.45 through 3,50 or some other means,

Summary

The stiffnesses in Eq 3.58 could be related to three moduli of elasticity
with respect to any three directions (a , b, and ¢) and three Poisson's
ratios related to these directions through elastic compliances (Eqs 3.45
through 3,50). The six elastic constants could be experimentally determined
by testing three specimens from the plate in unidirectional tension, These
three specimens could be taken either from the three required directions (a ,
b , and c¢) or from any other three directions. The measured moduli of elas=-
ticity and Poisson's ratios may be transformed to the required directions
using Eqs 3.53 and 3.55.

How elastic stiffnesses can be used in the moment-curvature relations
for the discrete-element model of an anisotropic skew-plate and grid-beam

system is shown in Chapter 4,
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CHAPTER 4. STRESS-STRAIN RELATIONS FOR MODEL

Introduction

In this chapter, a small triangular element from an anisotropic plate is
considered, and the conventional relations between the three normal stresses
in any three directions and the corresponding three normal strains are worked
out.

Since the rigid bars in the model of the anisotropic skew plate do not
transfer any twisting moments, stress-strain relations for the plate model
are derived from a small triangular element of the plate. The plate is assumed

to be made up of three layers of interconnected fibers running in the three
directions. The three fiber stresses are related to the three conventional

normal strains for the stress-strain relations as derived for this element.

This concept makes it clear what discretization choice is appropriate to de-
velop the bar and spring model. Integration of these relations results in
moment-curvature relations for the anisotropic skew-plate model.

Moment-curvature relations for grid-beam models are also derived.

Conventional Stress-Strain Relations for Triangular Elements

Consider a small rectangular differential element of a thin anisotropic
plate. The stresses acting on this element are Oy > oy , and. Txy as
shown in Fig 6 where Oy and gy are the normal stresses in the =x and y-
directions, respectively, and Txy is the shearing stress. The corresponding
strains are € > ey , and ny .

The anisotropic stress-strain relations for the rectangular element

(Fig 6) may be written as

9% T C11%x + C12ey + c13ny

Oy = Cpafy t Cp2fy T CoaVyy

33
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Fig 6, Stresses and corresponding strains for a rectangular
element and equivalent triangular element for an
anisotropic plate,
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€x t €238y T C33Vyy .1

11 ° c12 , c13 , 29 c23 , and c33 are elastic stiffnesses.

Now consider a triangular differential element at the same location of

where ¢ c
the plate, as shown in Fig 6. The sides of this element are perpendicular to
the a , b, and c-directions (a and x-directions are taken to be the same
but, in general, are not necessarily the same). If the stresses acting on

this triangular element are Ty Op 5 O Ton Tpo and Te where o, >

c a
oy > and o, are the normal stresses in the a , b , and c-directions, re-

spectively (Fig 6), and Tao Ty oo and T. are the shearing stresses related
b b ec b Ya b
responding strains where ea s eb , and ec are normal strains and Yg o

to these directions, and if ea » € Yb , and Yc are cor-

Yb , and Y. are shearing strains, then by using Mohr's circle the following

relations may be written:

a X
c = cos2 6, + si 2 6, - 27 sin 6, cos 6
b Tx 17 9% 8 5 Xy 1 1
o = g cos2 6, + o sin2 0, - 27 sin 8, cos § 4.2)
c X 2 y 2 Xy 2 2
and
E = €
a X

- 2 . 2
€ = ¢_ cos 91 + ey sin 91 Y

b % sin 91 cos 91

Xy

_ 2 .2 .
€. T €, cos 62 + ey sin 92 ny sin 92 cos 92 - (4.3)
Combining Eqs 4.1, 4.2, and 4.3, it is possible to develop the following

anisotropic stress-strain relations in which the normal stresses in any three

directions are related to the corresponding normal strains:
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_ 1
0a T m,m.m [Paaea + Pab€b + Pacec:I
17273
_ 1 2 2
°% T mmm [(Paaﬁl + Pbaml - 2Pcaﬁlml)ea
1723
2 2 2
Rty Bypmy - 2P dympdey + (R L)
+P, m> - 2P f.m)e ]
be 'l cc’1l 1 7¢c
- 1 2 2
cc T m,m.m [(Paa£2 + Pbam2 2PcaZZmZ)ea
17273
+ (@ 4%+ P m> - 2P 4m)e
ab”2 bb 2 cb”2°2°7b
+ (P £2 + P m2 - 2P fg.m e ]
ac 2 bc 2 cc”2 2 ¢
where
P = m, + c, 4. 4.m, +c¢c,.m (L m, + mlﬂz)

aa “11™™2™s 12°1%2™3 13

3172

Pab T TC0fymy - C9™
P = ¢ . A.m, + 2
ac 12°1™ T “13™
Pra = CpaMlgmy + Copobylomy + copami(fymy + my L)
P = - fam, - ¢ m2
bb Cp2%2™y = 3™
P = 4.,m, + ¢ m2

be €22%¥1™ T C23™

(4.4)
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Pia = Cpamympmy t coglylomy + cggmy(4ymy +myL,)
P = = 4.m. - c 2
cb €23%2™ 33™2

PCc = c23£1m1 + c33mi 4.5)
and
21 = cos 91
22 = cos 92
23 = cos 93
m = sin 91
m, = sin 92
m, = sin 83 4.6)

Stress-Strain Relations for Fiber Continuum

As explained in Chapter 2, the discrete-element model for the anisotropic
skew plate consists of elastic joints connected by means of rigid bars running
in any three directions (Fig 2). The rigid bars transfer bending moments from
one elastic joint to the other elastic joint. Hence, to derive the stress-
strain relations for the plate model, the following procedure is adopted.

It is assumed that the triangular element of Fig 6 is composed of three
layers of infinitesimal fibers running in the a , b , and c-directions.
These layers are so connected that the effect due to Poisson's ratio is trans-
ferred from one layer to the other two layers. This can be visualized by
considering three layers of closely~-spaced straps running in the a , b,

and c-directions and pinned at the points of intersection as showm in Fig 7.
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Straps
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Fig 7. Simulation of anisotropic continuum
wita a fiber-element model,

"

N

m

aﬂ
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%
Continuum Stresses: T O T T T, Fiber Stresses: f, f, f

Fig B, Stresses for a continuum element
and equivalent fiber element,
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Now if fa s fb , and fc are stresses in the fibers running in the
a, b, and c-directions, respectively, as shown in Fig 8, then, by statics,

the following relations may be written

Q
i

f +f cos2 6, + £ cos2 9.
a b 1 c

a 2

oy = fa cos2 61 + fb + fC cos2 63

o. = fa cos2 62 + fb cos2 63 + fc (4.7)
and

T, T fb cos 91 sin 61 + fc cos 62 sin 62

T = -fa cos 61 sin el + fc cos 63 sin 63

T, = -f cos @, sing, - f cos 0, sin 0, (4.8)
Solving Eq 4.7 for fa s fb , and fc R

£, = % [a - zg)ca + (zgzg - zi)cb + (zizg - zg)ccl

£, = ¢ 1022 - Do+ (- 4o, + Rad - D)o ]

£, o= 2 1Ghe? - oDyo + (el - 4y, + (1 - 4o ] (4.9)
where D=1 - Z? -~ Zg - Zg + 22%2325 and Zl , ZZ , and 23 are cos 61 ’

cos 62 , and cos 63 , respectively (Eq 4.6).
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Substituting the values of G, » O

b

, and o, from Eq 4.4 into Eq 4.9,

the following stress-strain relations for the fiber continuum, which relate

the fiber stresses to the conventional strains, may be obtained:

where

11

12

13

+

12°b 13%¢c

a. . + a.. e + a

1252 T %2%p T 838,

a..e +a, e +a
a

23%p T 4338

2.2
. . 22112 . 2(£1m2 + mllz) . 1112
11 " mm, €12 m.m €13 2 2 %22
172 12 mlm2

' 2
21112(£1m2 + mllz) (f,lm2 + mllz)

22 €3 t 2 2 €33
1™ )
2
e B i) .
mlm3 12 mlm3 13 mim m 22

12(2£1m2 + mllz)

2m m C23 ) m2m C33
My Moy 13
2
11 + ml Cc + 1112 C
mm C12 T mm, 13 2 22
23 23 mlmzm3

ll(llmz + 2m1£2)

m m2m “23 m2m ' 33
17273

(4.10)
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22 24.m m2
- L 202 L 2
432 2 2 €22 2 2 23 2 2 %33
_ b (Bymy + my4y) 1
33 2 €22 23 2 ¢33
zi 20,m, mi
439 = 2 2 22 + 22 23 + 2 7 ©33 (4.11)
2™ 2™ 2™3
and where c11 , c12 , c13 , c22 , c23 , and c33 are elastic stiffnesses,

the values of which could be obtained as explained in Chapter 3.
The fiber continuum which is developed here could be made into a discrete-
element tridirectional model like that in Fig 2 for plane stress instead of

bending.

Moment-Curvature Relations for Fiber Continuum

Consider a differential triangular element, as shown in Fig 9, under the

action of fiber stresses fa , fb , and fc . If the three-layer element

considered is at a distance =z from the neutral surface then, based on assump-

tions in Chapter 2,

2
e, = z o w
da
2
p T % Q’%
ab
2
e = z ow (4.12)
c 2
oc
2 a2 a2
where ¥ s oW , and ¥ are curvatures in the a , b , and c~directions,
2 2 2
da ab ac

respectively.
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51—2

Differential element from plate.

Fig 9.
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If Ma s Mb , and M.C are bending moments per unit width in the plate

continuum and t is the thickness of the plate, then, using Eqs 4.10 and 4.12,
t t
+3 + 3

Ma = j zfadz = f (allea + a6, + 313€c)2d2

- L -
2

N e

2 2 2
J ( S w 3w 3w ) 2
= d,, === 4 a - | — z dz
11 aa2 12 abZ 13 aCZ

2 2 3
= < a,, —=+ a é—% + 214 Q—% ) %5 (4.13)
da ab 3¢

Deriving similar expressions for Mb and Mt and introducing the

following relations

.3
By, = an 12
3

- £

B, T 31517
3

= £

B3 % 353737
3

= £

By = 2,717
3

= £

B3 43 12
3

o
33 33 12 (4.14)



b4

and

it may be

11 11
P2 T 12
D13 = 13
Dy T
Pr3 T ©a3
D33 = €33
shown that
Ma - B11
M, = B
Mc - Bl3

(4.15)

(4.16)
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where

2.2
. 20,4, . 2(4ym, +m4,) . 474, )
11 11 Tmm, P12 m.m 13 2 2 22
12 12 m,m
1™
20 4. (4.m. +m.b.) (G.m, +m 0.)°
i b A U 177 1720
22 23 22 33
1™ 12
2
B.. = -———Lz D e D,. - “1ts D
12 mlm3 12 mlm3 13 mlm.m 22
1723
) £2(2£1m2 + mlzz) . (I,lm2 + mlzz) .
2 23 2_ 33
mymyMy R
) 220 L. (L.m, + 2m 4.)
s Ui W i S S i SIS B AN
13 mzm3 12 mzm3 13 m mzm 22 n mzm 23
1™2™3 1™M2™3
. (I,lm2 + mlzz) i
2 33
2™3
£§ 2£2m2 mg
Byy T 2 2 Dy, + 2 2 Dyy + 73 D34
1™ | 1™3
. _ L4, oo (I,lm2 + mlzz) o4 .
23 222 2 23 2 733
1M2™3 T MMy b
£i 2£1m1 mi
By = 22 Dyy + 2 7 Dy * 22 Dy5 67
2™3 2™3 23
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Equations 4.16 and 4.17 describe the moment-curvature relations for the
anisotropic skew plate continuum in which each moment is related to the three

curvatures in the a , b , and c-directions.

Moment~Curvature Relations for Grid-Beam Model

As discussed in Chapter 2, the discrete-element model for a grid-beam
running in a particular direction consists of elastic joints connected by
means of rigid bars rumning in that direction (Fig 3). Also each grid-beam
model is considered as a beam with deflection compatibility at the elastic
joints. The procedure used to derive moment-curvature relations for each grid-
beam model is the same as shown by Matlock (Ref 18) for the beam-column model.

Hence the final results may be written as

=]
[
&

2|
I
mi

(4.18)

where Ma s Mb , and ﬁ; are bending moments in grid-beams running in the
a, b, and c-directions, respectively, and Fa s Fb , and Fc are flexural
stiffnesses related to these directions.

It may be noted that if the plate stiffnesses through D are

P11 33
computed in terms of three moduli of elasticity in any three directions and
three Poisson's ratios related to these directions and if the three Poisson's
ratios are set to zero, then the moment-curvature relations for the plate con-
tinuum (Eq 4.16) do not reduce to the moment-curvature relations for the grid-

beam model (Eq 4.18).
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Alternate Approach to Compute B11 Through B33

An alternate approach is developed to compute B11 through Bj3 (Eq 4.16)
in which they are related to three moduli of elasticity with respect to three
directions and three directional Poisson effects. The directional Poisson ef-
fect characterizes the decrease in length in a particular direction for the
tension in some other direction whereas the conventional Poisson's ratio char-
acterizes the decrease in a particular direction for the tension in the direc~-
tion perpendicular to it. The alternate approach is as follows.

Consider a small rectangular element, shown in Fig 10(b), with the only

stress acting being oa (the x and a-directions are the same). For the

1
same state of stress, if a triangular element is considered, shown in Fig 10(b),

and if 0.1 » Op1 > and 0.1 are the normal stresses in the a , b , and
c-directions, respectively, and €1 ° ebi , and €, are the corresponding
normal strains, then
. = cal
al E
a
e = o & = -Zaplal
bl Hab®al E_
, w.o '
_ - _ —ac-al
€1 T Mac®al Ea (4.19)
and
a1 - %a1
_ .2
%1 = %1%
o = Lo (4.20)

cl 2 al
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Fig 10. Stresses and corresponding strains for anisotropic rectangular
and triangular plate elements in different directions.
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where Ea is the modulus of elasticity with respect to the a-direction, ap

and T are the directional Poisson effects which characterize the decrease
in the b and c-directions, respectively, for the tension in the a-direction,

A is cos 6 and © is the angle between the a and b-directions.

1° 1
Now consider a small rectangular element, shown in Fig 10(c), with the

1

only stress acting being o For the same state of stress, if a triangular

b2

element is considered, shown in Fig 10(c), and if T s Tpo and g, are
the normal stresses in the a , b , and c¢-directions, respectively, and
€0 ? eb2 , and €0 are the corresponding normal strains, then

. = b2
b2 E,
. = - __ Mpa®p2
a2 Hpa®p2 E
b
W, O
- . - _ _bc'b2
€2 T THpetp2 Eb (4.21)
and
922 = 4%,
%2 ° b2
o = zz 4.22)
c2 3%b2 .

where Eb is the modulus of elasticity with respect to the b-direction, Hpa

and by are the directional Poisson effects which characterize the decrease
in the a and c-directions, respectively, for the tension in the b-direction,
£ is cos 6, , and 6

3 3 3
Finally, consider a small rectangular element, shown in Fig 10(d), and

is the angle between the b and c-directionms.

with the only stress acting being 0.3 ° For the same state of stress, if a
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o
3° b3 °’
, and ec3 are the corre-

triangular element is considered, shown in Fig 10(d), and if o,

and oc3 are the normal stresses and ¢

sponding normal strains, then

23 * b3

e o -c3
c3 E
c
e = -y e - Mea®e3
a3 - Hea c3 E
c
bebZe3
b3 T Meves T T TE_ (4.23)
and
oa3 = z20c3
_ 2
%p3 T %393
O.3 = O3 (4.24)

where EC is the modulus of elasticity with respect to the c-direction, bea

and beb are the directional Poisson effects which characterize the decrease
in the a and b-directions, respectively, for the tension in the c-direction,

£ is cos 92 s and 92 is the angle between the a and c-directions.

2
Now consider a triangular element in which the above three sets of state

of stresses act simultaneously, as shown in Fig 10(e). The method of super-

position can be used. Hence, if
o = 0 + O + O
a a a

+o0.,+o0o

bl b3
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O, = Oo * 0.t 0., (4.25)
and

€a T Ca Tt e tegy

b T b1t b2 T b3

be, te, (426)

then, using Eqs 4.19 through 4.24,

_ 2
Ua = Ual + zlobz + £ 0c3
2 2
% 21941 + Opg T 2393
o = 2% +4l0  + (4.27)
c 2 al 3°b2 O¢3 ‘
and
e = L o _FPba_ Fea
a E %al " E b2 " E_ %3
a b c
e = -cab L o Tcb
b E %al TE %2 " E 93
a b c
B B
- ac bc 1
€& T "E %91 "E %27TE %3 (4.28)
a b c

Now if Eqs 4.1, 4.2, and 4.3 are combined so that the three normal

strains €, € and €, are related to the three normal stresses o, >
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Ty > and o, > which is the same as solving Eq 4.4 for three strains ¢ ,
eb , and €. > and if Eq 4.27 is substituted in these relations, then, by
comparing coefficients of %41 > O ° and 9.3 of the resulting equation

and Eq 4.28, the following relations could be obtained:

Pba - Hap

Eb Ea

Pea _ HMac

E E

(84 a

b b

Ecb - ___Ebc (4.29)
c b

Substituting Eq 4.29 into Eq 4.28 and solving for 041 * Tp2 > and 9.3

and then substituting the relations of Oq1 ° Opo > and o into Eq 4.27,

c3
it is possible to develop the following anisotropic stress-strain relations,
in which the normal stresses in any three directions are related to the cor-

responding normal strains.

2 2 ;2
s = L (_ Peb , “ifeateb 1 “1%ba
a Det Ei Ei E E EbEC

£2 f12 v EZ 2
2MbaPeb Mea ) e 4 ( Heateb _ 1*ca + ba
EbEC EbEc a E2 E2 EbEC
c c
£2 £2
N 2"batca 1, 2Mcb )€ (“‘baucb N Hea
E. E E E EE b E.E E.E
b ¢ a’c ac b ¢ b ¢

2 2 2 22
Pibabea  Fibep  fy  Iohpa )
EbEc EaEC EaEb E2 c



zZ 2 22
. 1 (_ b | Heafeb = 71 | Mba
Det EZ EZ EbEc EbEc
c c
) 2
Bubaucb Buca ) ( Mcateb  Mea
EbEc EbEc a E2 EZ
c c
2 2 2 2
+ zluba EBubauca + 1 £3ucb ) / zlubaucb
E.E E.E EE EE b \ E,E
b ¢ b e aec ac b ¢
2 2 22
“bca  Pbafea b %3 faMba ) e
EbEc EbEc EaEc EaEb Ei c
2 2 2 2 2
- =] (- fPep | Mateaten . 2 f3Mba | Paden
Det EZ E2 EbEc EbEc EbEc
c c
2 2 2 2
Ll'ca ﬂzucaucb f'Z’zuca BZuba Hpatea
tfE /¢t 2 "2 tEe TTEE
bec E E b ¢ b c
c c
2 2 2 2
L2, B ) ey + ( fotnaben | Fabca  Aipabes
EaEc EaEc b EbEc EbEc EbEc
zZ 2
+ 3Heb 1 Pba ) c
EaEc EaEb E2 c

53

(4.30)
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where
K K
el | E e
a b c
_ Tba 1 _ Heb
Eb Eb Ec
K K
ca cb 1
" E T E T (4.31)
C C c
and where | ] is used for the determinant.
Now substituting the values of O, s Op > and o from Eq 4.30 into

Eq 4.9, the following stress-strain relations for the fiber continuum may be

obtained in which the fiber stresses are related to the conventional strains:

2
/b TR
fa Dlt \'§b+E1E>ea+< cazc +E;>€b
a € E b~ c E b ¢
c c
+ ( Mpateb . Mea >
EbEc EbEc c
TR m u?
fy = lDltl ( e s > a"'(' §a+E1E >€b
‘ E bc Ec ac
Wy B m
+ ( ba"ca + cb > .
E.E E E c
b c ac
£ = 1 ( Hpateb + Mea > e + ( Pbatca + Heb > .
c |Det | EE, ~EE / a EE, EE /Db
uZ ‘
+(_E+;>€ (4.32)
2 E E c
Eb ab
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Solving Eq 4.32 for € 5 € and €. simple relations are obtained

between conventional strains and fiber stresses as follows:

_ 1 Hba Hea
¢ T8 f.8 HoET %
a b c
Hba 1 Heb
€, = -—f +=—f -—f
b Eb a. Eb b Ec c
o W
_ ca cb 1
ec = - E_— fa " E fb + E fc (4.33)
C C C

It is interesting to note that the stress-strain relations of Eqs 4.32
and 4.33, which are developed above for the anisotropic fiber continuum, are
analogous to the conventional stress-strain relations of Eqs 3.56 and 3.57
for a rectangular element of an anisotropic plate. For example, in the case
of a rectangular element, if the only stress acting is O » then cy = Txy
= 0 . The same is true for a fiber continuum in which if the only fiber
stress acting is fa , then fb = fc = 0 . Also, in the case of a rectangular
element, the reciprocal relations exist for stiffnesses and compliances.
Similar relations also exist for the fiber continuum in Eq 4.29.

Integration of stress-strain relations in Eq 4.32 results in moment-

curvature relations similar to Eq 4.16 in which

3 2
B = Lt ( _Hep 4L )
11 Det| 12 2 E.E
Ec bc

12 Det] 12

By, = 5 +
13 [ec] 12 \ "EE " EE,
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22 Ipet| 12

23 Det| 12
3 v
B = -— L(_.ﬂ+._1_) (4.34)

where t 1is the thickness of the plate, and lDetl is defined in Eq 4.31.
Equation 4,34 describes the six bending stiffnesses for an anisotropic

fiber continuum. The stiffnesses are related to three moduli of elasticity

E , Eb , and Ec with respect to the a , b , and c~directions, and three

a
directional Poisson effects boa (or uab) T (or u

ca ac) » and Heb
(or ubc) . These six constants could be experimentally determined by testing
three specimens from the plate in unidirectional tension.
1 1 . = = =0

It may be observed that if in Eq 4.34 Hpa = Hea = Hep , then the
moment-curvature relations of Eq 4.16 for the fiber continuum reduce to the
moment-curvature relations of Eq 4.18 for the grid-beam.

The relations between the directional Poisson effects and the conventional

Poisson's ratios can also be established since

2 2
Hpa C A1 7 Vpm 4™

2 2
-uca N f'2 - vcmZ + nc£2m2

2 2
by T 23 7 Vomy T Lgmy (4.35)

Substitution of values of ﬂb and ﬂc from Eqs 3.43 and 3.44 into the above

relations results in



N ) m3(£1£2 + vamlmz) EE.+ m2(£1£3 - vbmlm3)
ba 2£2m2 Ea 223m3

) my £yl + v myma) 4 m EE

2£2m2£3m3 Ec

m3(£1£2 + vamlmz) Ec m2(£1£3 - vbmlmB)ﬂzm2 EE

...u‘ = - .—+
ca 2.@1m1 Ea 221m1£3m3 Eb

) m1(£2£3 + vcm2m3)
2£3m3

_ My Fvammphamy B mp U ks - vymymy) B
*eb 24.m ¢ m E 21
1M1 4™ a

1™ Ey

m1(£2£3 + vcm2m3)

+
2£2m2

For the isotropic case, B11 through B33 reduce as follows:

2 2
5 _ Et3 (1 + £3 - vm3)
11 121 - v2) 2mfm§
~ Et3 (-zl - 22E3 + vm2m3)
Pz T 12(1 - vd) 2m2
1™™
. . Et3 (ﬁz + £1£3 + vm1m3)
13 121 - v)) 2m. m2m

17273
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2 2
5 ) Et3 (1 + 22 - vmz)
22 2 2 2
12(1 - v7) 2m1m3
. ) Et3 (-23 - 2122 + vmlmz)
23 2 2
12(1 - v7) 2m1m2m3
3 (1 + 22 - vmz)
Et 1 1
By3 = 2 2 2 (4.37)
12(1 - v°) 2m2m3

where E 1is the modulus of elasticity and v 1is the conventional Poisson's

ratio.

Summary

Equations 4.16 and 4.17 give moment-curvature relations for an anisotropic
skew plate continuum in which moments are per unit width. To get the concen-
trated moments acting at a particular elastic joint in the corresponding
discrete-element model, it is assumed that fibers running in a certain direc-
tion a , b, or ¢ and having a certain width, as shown in Fig 11, are col-
lected and lumped along each line of the model.

For a problem having only a grid, all the three grid-beams running in
any three directions have deflection compatibility at the elastic joints.

The effect of Poisson's ratio is not transferred from one grid-beam model to
the other two grid-beam models. For the problem of an anisotropic plate plus
grid-beams, the deflection compatibility is assumed at the elastic joints
between the plate model and the three grid-beam models, and the effects due to
Poisson's ratios are not transferred from plate model to any of the grid-beam

models and vice versa,



Fig 11.

Plan of an anisotropic skew plate model showing the widths
of fibers represented by each line of the model.
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CHAPTER 5. FORMULATION OF STIFFNESS MATRIX

Introduction

In this chapter the equilibrium equation at Joint i,j is derived by con-
sidering the free-body of the joint and the rigid bars of the discrete-element
slab and grid system. The operator resulting from the equilibrium equation is
discussed. To form the appropriate stiffness matrix the operator is applied

at each joint of the discrete-element model.

Free-Body Analysis

Figure 12 shows the free-body of Joint i,j of the slab and grid system
with all appropriate internal and external forces acting on it. Any of the
forces shown in Fig 12 may be zero but is considered to be acting for gene-
rality. The bars and joints are numbered as shown in Fig 13. For clarity,

the following symbols are defined:

i = an integer used to index joints of the slab and grid system along
the a-direction,

ha = the increment length along the a-direction,
hb = the increment length along the b-direction,
hC = the increment length along the c-direction,
j = an integer used to index joints of the slab and grid system along

the c-direction,

M? 3 = the concentrated bending moment in the a-direction at Joint 1i,]
3 .
(equals MahC sin 62) )

_? 3 = the beam bending moment in the a-direction at Joint 1i,j,

3
Qi 3 = the externally applied load at Joint i,j,

3
Si 3 = support spring value at Joint 1i,j,

3
T?-l 3 = external couple in the a-direction applied at Joint i-1,j],

3
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Fig 12. Free-body diagram of Joint i,j of an anisotropic
skew slab and grid system model.
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Fig 13, Plan view of skew slab and grid system model showing
all parts with generalized numbering system.

From Triangle PQR

Fig 14, Geometric relations,
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a . - . , . .
i,3 = sghear in slab Bar i,j running in the a-direction,

b

—a . . .. , . .

Vi 3 = shear in grid beam Bar i,j running in the a-direction,
b

W, 3 = deflection at Joint 1i,j.
b

Summation of vertical forces at Joint i,j (Fig 12) with up taken as

positive gives

a b c a b c -3
Vig PVt Vi Tt Vi, T Vaege T Vi Y Vi

—a —b —
+ V?,j + V?,j " Vi T Viega T Vi T
1 a a 1 b
" Sy iyt Gl v T ) t 2h, Ty ,5-1
+ 1P ) + = (-1 +7° . ) = 0 (5.1)

i+1,541° T 2h i, 3-1 T T 4

To eliminate shears from the above equation, the summation of moments

about each individual bar is taken as follows:

a _ a !
ViiPa T Moy T M
b b b’
-Vl,J b Mi-l,j-l i,j
_ C = C' . CI
i,jec i,j-1 i,j
a' a'
i+1,jha - Mi+1,j ) Mi,j
b b’ b’

Viel,341P T Miw e T M



c _.C oM
VisiePe T Mg M
and

B 1,jha = i~1,j b i,]

-b b —b
1>jhb N Mi'laj°1 Ml:j
oo - s oy
Yigte T Mg T M

> = ﬁa A
i+l,j a i+, i i,]

- = —b

Viel, 541 T Mia g T Mg

s o4 - oy 4 _—'C

v:i.,j+1h‘c N M1,j+1 Mi,j

I
where Ma s Mg , and Mé are concentrated values of slab moments.

M’ = Mh sin 0

. .
Mb = Mbha sin el
M’ = Mh sin 8

c c a 2

where Ma s Mb , and Mc are moments per unit width of slab.
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(5.2)

(5.3)

Also

(5.4)

Eliminating shears from Eq 5.1 by using Eqs 5.2 and 5.3 and rearranging

gives the following expression:
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1 a’ a’ a’ 1 b’ b’
o My T Py M) e Mg a0 P
! 1 7 z
+ Mb ) + 1 (MC . C C

41,540 o Mg T M5 ga

+ %; T Zﬁi,j + ﬁ?+1,J) + %; (ﬁ?-l,j-l

- ZEE,j + §§+1,j+1) + %: O o - M ML) S
= Y +’§%; CTyg* T,y * 5%; ('T?-l,j-l

* T?+1,j+1) + 5%; <“T§,j-1 * T?,j+1> G.5)

M; , Mﬁ , Mé , M, M , and M expressions are found by introducing

the finite-difference approximations for the second derivative of deflections

into Eqs 4.16 and 4.18 and using Eq 5.4:

a’ . | . 1
Mi1,5 = Bi-1,30c 8in 9y 2 M0, " a3 TV
a
12 . 1 ]
FBia,gte 02 7 (g e T B )
b
+ 313 h sin 8 l"(w - 2w + w ) (5.6)
i-1,% 2.2 Mi-1,5-1 i-1,5 T Vi-1,41 .
C
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¢
a - ol . 1 -
Mi,j = Bi,jhc sin 6, 2 (wi-l,j ZWi’j + Wi+1,j)
a
12 1
+ Bi,jhc sin 92 h2 '(Wi-l,j—l 2wi,j + Wi+1,j+1)
b
13 1
+ Bi,jhc sin 82 hz (wi,j-l - Zwi’j + wi,j+1) (5.7)
[od
M2 = 't h sine, L @ . - 2w +w )
1+1, 4 i+, 5§ 2.7 4,3 141,75 ¥ Y42,
a
12 . 1
t B, e SR % 7 By i T By gt Vit2,341)
b
-+ B]‘B h s8in 6 L (w -2w + w ) (5.8)
i+1,5% 2,2 Wi, 51 Vi, T Vi, 4 :
[¢]
b’ - ol2 1
M y,5-1 = Bioq,5-1P 8 8y 2 #i2,5-1 “295.1, 4.1
a
22 1
Wy ge1) FByp joqhy sin 8y 2 Gy g, 4-2
b
23 1
T 29y1,3-1 TV, g) T By gl 810 8y 2 Wi1,5-2
[od
) (5.9)

- 2Wi1,9-1 T Va1,
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b’ _ 12 . 1
£ 7 Pr,ita S 01 7 Gy T By e )
a
+ 822 h sin 8, = ( -2 )
57 2T 2 Mie1,5e1 TV T Vi, gk
h
b
23 . 1
F BRSOt (s T Y Y g
o4
b’ _ .12 . 1
M4 = Bip,gala 8109 2 Gy, 5 7 2, 50
a
22 . 1
i, g T B a0 T Oyt B g
b
23 , 1
t Wi 5420 T 81, 4l 810 8 2 /TR
o4
T 2941 541 T Vig, 42)
¢’ 13 1
LR R A L 2 (1,51 7 29,501
a
23 . 1 .
+ “&+1,j-1) + Bi,j-lha sin 62 hz (w'i_l’j_2 2w'i’j_1
b
33 . 1
+ “&+l,j) + Bi,j-lha sin 6, 2 (“&,j—Z
C
) 2Wl,j_1 * wlaj)

(5.10)

(5.11)

(5.12)
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?
c _ 13 1 :
Mg T BgPa o0y g Gyt By g )
a
523 1
+ B " jh sin 92 hz (Wi-l,j-l - zwi,j + Wi+l,j+1)
b
+ B b sin 8 w - 2w W ) (5.13)
1,1"% 2 2 i,3-1 1,1 7 "i,34
! 13 1
Mg T Bgah, f1n 8 w2 Gyr, 30 7 2,54 T Y, ge)
a
23 1
+ Bi j+l sin 92 hz (wi-l,j - Zwi’j+1 + wi+l,j+2)
b
33 1
+ B i j+1h sin e..'Z h2 (Wi,j Ty j+1 ,J+2) (5.14)
C
a a 1
Mi-l’j Fi-l,j hz (Wi—z,j - zwi-l’j + Wi’j) (5.15)
a
b = a 1 _
"9 1,1 12 Gy _q,5 7 2w, 4 F Vi ) (5.16)
a
bz | - a 1 _ A
Mis,1 T Fie,; 2 Gy g 7 294 5 +wi+2,j> (5.17)
a
=b _ b 1 i
Mg T P51 07 Greggge2 T 2Men g b y) (5.18)
b
w0 o= g L -
Mg T Fiy 2 (orgen T 25 T Vi g (5.19)

=

2
b
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—b = P

1
Miv, 5+l Fiv1, 441 2 G 5w 2 4 T Vi, 42
b
Mo = Fo L (w -2 + )
i’j'l isj“l hz i:j-z Wixj”l Wi,j
c
M = F° L (w - 2w + w )
i,] i,] h2 i,j-1 i,] i,3+1
c
M = FS L & - 2w + w )
i,j+l 1,341 .2 i,j i,341 i,3+2

h
c

The terms defined by Eqs 5.6 through 5.23 are introduced in Eq 5.5.

(5.20)

(5.21)

(5.22)

(5.23)

Collecting the terms, the final form of Eq 5.5 can be written as follows:

where

1 2 3 1
. + a, |, + X R . . .
ai’Jwi'z:j"z alajwi'lsj"z ai’JwixJ"z + blajwi'z,J“l

2 3 4

1
b + b, ., .
0y ¥i-1,3-1 T P, 5V 51 TP Vi, 5o G, V-2, g

2 3 4 5
NI TS T B S L UE TR IO AT S B P LF T g

2 3 4 5
LR LU T R I PR R L I R L I S
3 4 5

ey Vi, T Ve e Yo M2 T Fiy

al ~ 322 h_sin 61 . Fb 1
1,3 i-1,j-1 3 i-1,3-1,3
b b

(5.24)



2 23 h sin 91 23 ha sin 92
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i,j i-1,j-1 h2 i,j-1 h2h
hb c bc
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i,] 1,5-1 7 3 1,3-1 .3
c c
4L o2 RO g, singy
i,3 i-1,1 h h2 i~1,j-1 hahb
ab
2 gl ein 9, ppl2 e Sin %2 2 sin 8,
1,3 i-1,j h_h_ 1, | 42 1-1,3-1 “h_h_
ab
22 h sin 61 23 ha sin 91
2B, . 2B .
i-1,j3-1 3 i-1,j~-1 h h2
hb bc
22 ha sin 61 13 sin 92 23 ha sin 92
- 28 4 3 " Pi,5-1 Thh 2B, 7
b ¢ b e
b 1 b 1
- 2F; 1,5-1 3 2F1,5 3
b b
3L g3 Mm% 1 R sIn8, g, EIR
1,] 1,5 hh_ 41,1 2 i-1,3-1 BB
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23 ha sin el 13 sin 82 23 h sin 92
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b4 ) 313 sin 62 313 sin 62 (5.26)
1,3 i+l,5 h_h_ i,j-1 h_h_ '
cl ) Bll h sin 62 N Fa 1
i,j i-1,j 3 i-1,3 .3
h h
a a
cz -2311 h sin 62 -2312 h sin 62
1,3 i-1,3 3 i-1,3 2
h h h
a b
13 sin 62 11 h sin 92 23 h sin 91
2B;1,5 nm. - 2By 3 tBi1,5-1 2
s c > h ’ h, h
a bec
_ 2312 sin 61 2313 sin 62 .\ 323 h sin 62
i,j hh i,5 hh 1,541 .2
b h. h
bc
a 1 a 1
2Fi 1,53 7 %F4,5 3
h h
a a
~ 11 h sin 62 .\ 4311 h sin 92 .\ 4312 h sin 62
1,3 i-1,3 3 i, 3 i,] 2
h h h h
a a ab
JPRE sin 6, L 5l h, sin 8, . 522 h_~sin 8,
i,j hahc i+l,j h3 i-1,j3-1 h3
a b
sin 0 h sin 8 h sin 8
+ 4B12. "hT1'+ 4B?.2j aTl-f- 4Bi3. _a—2_1
»J ab ’ h >3 h,h
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. 322 ha sin 91 . 333 ha sin 92 . 4313 sin 92
i+1,j+1 h3 i,j~1 h3 ij hahc
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~— + 4F — S
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i+l,j h hZ i+1,3 hahc i,j hahb
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i+1,341 h h2 i,j-1 hzh i,] hahc
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a 1 a 1
- 2F - - 2F -_
ij h3 i+1,] h3
a a
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2 - g3 % a3 S
i,] i-1,] hah i, j+l hahc
3 ~ 12 h sin 92 13 sin 92 23 h sin 91
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i,] i-1,] hh2 i,j hh i,] hh2
ab b c
. B12 sin 91 ] 2333 ha sin 92 ) 2313 sin 92
141,341 hahb i, h3 i,j+l hahc
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2323 ha sin 92 ) 2333 ha sin 92
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i, 3 Fi 541 3
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4 12 B, sin® 44 sinb, 22 B, sin 8
d, , = =2B,, ———— + B, . - 2B, , ——}——
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) 2312 sin 91 ) 2322 ha sin 91
i+1, j+1 hahb i+l, j+1 h3
b
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e3 ~ B33 h sin 62 . 1
i,] i,j+1 h3 i,j+1 h3
C C
4 } 523 h sin el .\ 523 h sin 92
®1,3 141, 3+1 2 i,j+l 2
h, h hh
bc bc
h sin 8
e? = 22 a L, gb L (5.29)
1,3 1+1,§+1 3 i+1,3+1 .3
h h
b b
- 1 .8 a R S
Fr0 7 Y%t am, iy T T, T CTion e
b 1 c c
* T, t 2h_ CTiy-1 F T g (5.30)
Also, from Fig 14,
h h
b c
= (5.31)
sin 92 sin 91

Operator

The equilibrium equation (Eq 5.24) can be visualized as an operator. It
has 19 points as shown in Figs 15(c) and 15(d), and is first applied to the
bottom row of joints from left to right (Figs 15(a) and 15(b)), then to the
second row, and so on, moving upward. It is interesting to note that Fig 15(b),
which is a mirror image of Fig 15(a), does not form the same equilibrium equa-
tions as Fig 15(a). This is due to the lopsided operator. This means that
the two problems (Figs 15(a) and 15(b)) would not give'exactly the same re-
sults. It has been observed that the difference between these solutions is
about 1 percent in maximum deflection for a 20-by-20 increment solution. This

difference reduces as the number of increments is increased.
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Fig 15. Discrete-element models and their operators.
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Stiffness Matrix

Equations 5.24 through 5.30 describe the equilibrium equation at Joint 1i,j
of the discrete-element model. Similar equations are written at each joint of
the model, as explained above, to form the stiffness matrix.

In the matrix form, Eq 5.24 may be represented as

'[K] W} = {f} (5.32)

The form of matrices [K] s {w} , and {f} is shown in Fig 16. The stiff-
ness matrix [K] is symmetrical about its major diagonal and is also banded.
The central band is five terms wide. The bands on either side of the central
band are four terms wide and the two extreme bands are three terms wide. The
stiffness matrix is partitioned as shown by the dashed line in Fig 16. If
the skew slab and grid system to be solved is divided into m increments in
the a-direction and n increments in the c-direction, then the stiffness ma-
trix will have n+3 rows and n+3 columns of submatrices. Each submatrix
will have m+3 rows and mt3 columns of terms. Because the recursion pro-

cess is used to solve Eq 5.24, it is more efficient if m is smaller than n .

Summary

The stiffness matrix for the slab and grid system is obtained by writing
equations of statics at each joint. The stiffness matrix is symmetric about
its major diagonal. Advantage of this symmetry is taken in the solution of

equations.
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GENERAL SLAB EQUATION:

OR IN MATRIX FORM:
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CHAPTER 6. SOLUTION OF EQUATIONS

Introduction

The equilibrium equation is applied at each joint of the discrete-element
model and resulting equations are arranged and partitioned. A recursion-
inversion solution procedure is employed to solve the equations. A brief re-
view of this procedure is made in this chapter. It has been shown that

multiple load analysis can be handled efficiently also.

Arrangement of Equations

The problem to be solved, which may be an anisotropic skew plate, a skew
grid, or a combination of both, should be divided into a skew grid work. If
the number of increments is m in the a-direction and n in the c-direction
then the number of joints becomes mtl and n+l in the a and c-directions,
respectively. The equilibrium equation is written for each joint, including a
fictitious joint, all around the actual problem, which makes the total number
of equations to be solved (m + 3) X (n + 3) .

The equations are arranged and partitioned as shown in Fig 16. Fig 17

. . . .t . A
shows the banding of different submatrices at a j h horizontal partition.

Recursion-Inversion Solution Procedure

Matlock (Ref 18) described the recursion technique for the solution of
equations for a beam-column. Stelzer (Ref 38) and Panak and Matlock (Ref 31)
have used this technique to solve equations for the rectangular plate problems.

In the recursion procedure, a solution of the following form is assumed:

{Wj} - {Aj} + [Bj] {Wj+1} + [Cj] {Wj+2} (6.1)

At the jth hbrizontal partition (Fig 16) the equation may be written

in the form
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[aj] {Wj-z} + [bj] {wj-l} + [cj] {Wj} + [dj] {Wj+£}
+|:ej] {Wj+2} - {fj} (6.2)

Substitution of equations similar to Eq 6.1 into Eq 6.2 to eliminate

{wj_z} and {wj-l gives
(g = D] [ (o + Lol iy - ) |
e Loyl ] |

(o] = [n][, |

]
—
o
—
|

—
(=]
.
| E—
i
1
[w)
s
t ]

where

[Ej] ) ’aj] [Bj-z] + [bj] ( 6.4)

Endres and Matlock (Ref 8) modified Eq 6.3 in order to make the solution
procedure more efficient. The final form of equations for the solution of a

(o = D) [T 0+ Legea] foy - {2}
(1] = Do) [z
(o] = [)[e]
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where

-1

[Dj] = - [ej-Z]_- ¢s- ZJ [E][ :]+[cj]

[Ej+1] - [ j- 1] [BJ 1] [ ] (6.6)

and t stands for transpose of matrix.

Solution of Deflections

r oo
In the forward pass of the recursion procedure, iAj} , {Bj} , and LCjJ
are formed with the help of Egqs 6.5 and 6.6. On the reverse pass, deflections

.
iwj} are computed using Eq 6.1.

Multiple-Loading Technique

This technique was discussed by Panak and Matlock (Ref 31).

For a multiple-loading solution, instead of re-solving the problem for
each loading condition, the recursion coefficient vector {Aj} in Eq 6.5 is
modified for successive loadings and the other coefficients are retained on

tape storage.

Sunmary

The recursion technique is advantageous in multiple-load analysis. The

boundaries of the real problem are automatically taken care of due to the

model.,



CHAPTER 7, DESCRIPTION OF PROGRAM SLAB 44

Introduction

SLAB 44 is a computer program written to apply the discrete-element
formulation of an anisotropic skew-plate and grid-beam system in which the
grid-beams may run in any three directions, The number 44 simply means that
this is the 44th significantly distinct program in the chronological sequence
of development of various slab and grid programs. The program solves linear
problems. In this chapter, Program SLAB 44 is discussed and the procedure
for data input is explained. The error messages and other output information

are also discussed,

The FORTRAN Program

The SLAB 44 computer program is written in FORTRAN and for the CDC 6600
computer, The program could be modified to make it compatible with IBM 360
computers, UNIVAC 1108 systems, or other computers.

A summary flow chart for the SLAB 44 program is given in Fig 18, A gen-
eral flow diagram of the program is given in Appendix 2, A list of the vari-
ables used with their definitions is given in Appendix 3. A complete listing

of the program is shown in Appendix 4,

Time and Storage Requirements

The compile time for the program is about 21 seconds on the CDC 6600 com-
puter. The time required to run problems varies with the number of increments
involved. On the CDC 6600, a ten-by-ten increment problem can be solved in
about seven seconds, while a 20-by-20 increment problem can be solved in about
23 seconds, and a 40-by-40 increment problem can be solved in about 70 seconds,

The storage requirements are variable, depending upon the size of the

problem to be run,
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‘READ and echo PRINT all input data cardéj

—-—-——-—4D0 for each J 1eve1)

[CALL DATA2 - Retrieve data from card images

for solution process

Generate necessary stiffness and load data
Pack all stiffness submatrices as required

Solve for recursion
coefficients using
offspring efficiency

(D) A--All problems

———-4{:) B,C~~Normal or Parent problems

| NS —{CONTINUE )

h\\\\*(:> D,E-~-Parent problems
D,E~-Offspring problems

——— —|DO in reverse for each J level)

[Solve for deflectionst:::::ggi

—— — — — —— ~{CONTINUE

—-—-—-~4D0 for each J 1evef)

@@ and @ are

auxillary storage units

from card images

CALL DATA2 - Retrieve data

Compute momentsg, reactions and PRINT

———————— CONTINUE

[RETURN for new problem

Fig 18. Summary flow chart for program SLAB 44.
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Procedure for Data Input

A guide for data input in included in Appendix 1. The guide is designed
so that additional copies may be made and used for routine reference. A par-
allel study of the guide will help to understand the following discussion.

Any number of problems may be run at the same time. A problem series is
preceded by two cards which describe the run. The first card of each prob-
lem contains the program number and a brief description of the problem. The

problem series terminates when a blank problem number is encountered.

Tables of Data Input

‘Table 1 is comprised of a single data card that includes options to hold
data from a preceding problem, a count of cards added to each table in the
current problem, multiple load option, print option, reaction output option,
and stiffness input option.

The multiple load option in Table 1 is exercised for problem series in
which only the load pattern and placement will vary and stiffness properties
remain constant. The first problem in the loading series is the 'parent"
problem. Each successive loading is an 'offspring'' problem. The option is
left blank for a normal problem.

The print option in Table 1 may be exercised to print bending moments in
the a , b, and c-directions. The option is left blank to print bending
moments in the x and y-directions and twisting moments (the x and a-direc-
tions are the same). 1In either case, the largest principal moments are com-
puted and printed.

The reaction output option in Table 1 may be exercised to print a statics
check for each joint, i.e., the summation of all shears, loads, and restraint
reactions. The restraint reactions due to spring supports are printed if the
option is left blank. 1In either case, the summation of support spring reac-
tions and the maximum statics check error, with coordinates, are computed and
printed at the end of the problem.

The stiffness input option in Table 1 may be exercised to input slab
stiffnesses related to the three directions a , b , and c¢. The option is
left blank to input slab stiffnesses related to the orthogonal directions

x and y .
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Table 2 is comprised of a single data card that includes number of
increments in the a and c-directions, increment length in the a and
c-directions, and the angle between the a and c-direction in degrees (Fig 13).
For Table 2 a choice must be made between holding all the data from the pre-
ceding problem and entering entirely new data.

Table 3 is comprised of plate or slab bending stiffnesses. 1If the input

value of stiffnesses is related to the orthogonal directions (D through

D33), then for isotropic and orthotropic plates and stiffnessesliay be com-
puted either as shown in the guide for data input in Appendix 1 or by some
other procedure. For the anisotropic case the stiffnesses may be computed

by using either three moduli of elasticity in any three directions and three
Poisson's ratios related to the same three directions or another set of six
constants, as explained in Chapters 3 and 4. Any other procedure may be used
to find bending stiffnesses for an anisotropic plate. If the input value of
stiffnesses is related to the directions a , b , and ¢ (B11 through B33),
then it could be computed either in terms of stiffnesses related to the or-
thogonal directions (D11 through D33) or in terms of three moduli of elas-
ticity in any three directions and three directional Poisson effects, as ex-
plained in Chapter 4.

Table 4 is comprised of beam stiffnesses, loads, and support springs.
Concentrated stiffness values for beams running in the a , b , and c-direc-
tions may be input. Load and support spring values for any joint are deter-
mined by multiplying the unit load or unit support values by the appropriate
area of the real slab or plate assigned to that joint. Hinged supports are
provided by using large spring values. ZLoads and stiffmesses that occur be-
tween joints may be fractionally proportioned to the adjacent joints.

Table 5 is comprised of external couples in the a , b , and c-direc-
tions. Concentrated values of couples may be input at joints.

In Tables 3, 4, and 5 all the data are described with a and ¢ station
numbers. To distribute data over an area, the lower left-hand and upper right-
hand coordinates must be specified. To specify data at a single location, the
same coordinates must be specified in both the "From' and "Through" coordin-
ates. The "Through' coordinates must always be equal to or numerically greater
than the "From" coordinates. All the data in Tables 3, 4, and 5 are alge-

braically accumulated and therefore values may be added or subtracted.
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Error Messages

All input data are checked for possible errors. If any data errors are
encountered, the problem is terminated and messages showing the number of data
errors in each table and total data errors in the problem are printed. Typi-
cal input data errors are (1) misusing the multiple load option, such as an
offspring problem following a normal problem; (2) having the number of incre-
ments in the a-direction greater than in the c-direction; (3) specifying a
negative or zero increment length; (4) having the '"Through' coordinates less
than "From' coordinates; and (5) specifying data outside the limits of the
slab and grid system.

In addition to the above, a general purpose error message ''UNDESIGNATED

ERROR STOP" is provided for a number of unlikely errors.

Computed Results

The output is arranged so that the input quantities of Tables 1 through
5 are printed with explanatory headings. The computed final results are
printed in Table 6. The headings in Table 6 depend on the options used. This
table is arranged to print the a and c-joint coordinates; the transverse
deflection at each joint, with up positive; the bending moments in the x
and y-directions and twisting moment, or bending moments in the a , b , and
c-directions; the largest principal moment and its direction; and support reac-
tion, or statics check at each joint. The summation of support reactions is
computed and printed at the end of Table 6. Also, a statics check is made at
each joint and the maximum statics check error is printed at the end of Table 6.

The interpretation of moments computed at the edge of a slab and grid-
beam system needs some explanation. For example, for a simply supported, uni-
formly loaded, square plate, the moments at the edge, and in the direction
perpendicular to the simple support, should be zero. With Program SLAB &4,
these moments cannot be computed and printed as zeros, because in this pro-
gram one fictitious joint all around the actual problem is considered and the
moment at any boundary joint is computed in terms of three curvatures in the
three directions. For the moment to be zero, either the three curvatures or
all of the stiffnesses at the joint have to be zero. The moment could also
be zero if its value in Eq 4.16 is zero. The moments at the fictitious joints

would be computed as zero but at the actual boundary they might have some value.
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Summary

SLAB 44 provides a solution for an anisotropic skew-plate and grid-beam
system. The solution process used to solve the stiffness equations makes the
program very efficient. To solve a particular problem, usually 15 to 20 in-
crements in the a and c-directions are enough, although the number of incre-

ments depends upon the size of the real problem, accuracy required, and varia-

tion in parameters.



CHAPTER 8, EXAMPLE PROBLEMS AND COMPARISONS

Introduction

To verify the formulation of an anisotropic skew-plate and grid system
with the discrete-element approach, several example problems were solved using
Program SLAB 44, Since there are no closed-form mathematical solutions for
the skew plates, the results could be compared only with the results from other
approximate methods. 1In this chapter, seven problem series are presented,

In the first six series the results from the discrete-element solution are
compared with series, finite-element, conformal mapping, finite difference,
electrical analogue, and experimental results, The constants, e.g.,, stiff-
nesses and loads, used in each problem series are also given, In problem
series 7, a brief sensitivity analysis is made for modeling of bending and
torsional stiffnesses of a composite section of a single-span bridge.

A listing of input data and output for a selected problem is included

in Appendices 5 and 6.

Problem Series 1. Simply Supported, Uniformly Loaded Rhombic Plates

A series of simply supported, uniformly loaded, isotropic, rhombic plates
was solved using the SLAB 44 program with 20-by-20 increments. The results
for the maximum deflections, maximum principal moments, and minimum principal
moments are compared with the series solution by Morley (Ref 24), whose re-
sults are most extensive and have been used as a basis for comparison by sev-
eral investigators, including Gustafson, and the finite-element solution by
Gustafson (Ref 10) (Fig 19)., For 6, = 90°

2
pared with the exact solution by Timoshenko (Ref 40), Figure 19 shows these

o}
, or 0 skew, the results are com-

comparisons, The overall differences between Morley's and SLAB 44 results are
4,1 percent in maximum deflection at 92 = 50° , or 40° skew; 9.4 percent in
maximum principal moment at 62 = 30° , Or 60° skew; and 5.8 percent in mini-
mum principal moment at 6, = 50° , Or 40° skew. At 8, = 90° , Or 0° skew,

2 2
the differences between the exact solution (Ref 40) and SLAB 44 results are
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IR

Simply. supported, uniformly loaded,

isotropic, rhombic plate

a:=z 20in
Et3 2
Stiffness : D= s = 16x10 bin/in
1201-¢v7)
Poisson's Ratio: vz 0.3

Load per Unit Area : g, = 1xid Ib/ind

Angle mox X ?&0'—3 max ¥ ;;{EZ Mmin X q—o_;z—m'—z
P Ref 40[Ref 24|Ref 10 [SLAB 44[Ref40[Ret 24 |Ref 10 SLAB 4 Ref 4OlRef 24[Ref I0|SLAB 44
2 [Exact 16 x 16|20 x 20{Exact 16 x 16|20 x 20 [Exact. 16 x 1620 x 20
90° | 406 | - - 410 |a79 | - - 483 |479 | - - 48|
8s° - 401 - 406 - 486 490 - 466 - 470
80° - 387 - 392 - 486 - 492 - 448 - 454
60° - 256 [259 2.65 - 425 | 426 | 44| - 333 | 237 | 346
50° - 72 | 169 1.79 - 3.62 | 355 383 - 258 | 251 | 273
40° - 0958 | - 0996 | - 28I - 3.04 - .80 - 1.90
30° - 0408 |0377| 0409 | - 191 1.80 | 2.09 - 1.08 | 056| 1.09

Ref 40 is exact solution by Timoshenko and Woinowsky-Krieger

Ref 24 is series solution by Morley

Ref 10 is finite -element solution by Gustafson and Wright

Fig 19.

Comparison of results for simply supported,

uniformly loaded, isotropic, rhombic plates,
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1.0 percent in maximum deflection, 0.8 percent in maximum principal moment,

and 0.4 percent in minimum principal moment.

Problem Series 2, Simply Supported Rhombic Plates with Concentrated Load

Aggarwala (Ref 1) has used conformal mapping to obtain the central de-
flection of the simply supported, centrally loaded, isotropic, rhombic plates.
Twenty-by-twenty increment SLAB 44 solutions were made for different skew
angles and the deflections at the centers of plates are compared with his re-
sults (Fig 20). The difference between Aggarwala's results and those from
SLAB 44 at 92 = 50O , or 400 skew, is about 7 percent, which reduces to
about 2.8 percent at 06, = 90° , Or 0° skew.

2

Problem Series 3. Simply Supported, Uniformly Loaded Triangular Plate

A closed-form solution for the deformation of a simply supported, uni-
formly loaded, isotropic, equilateral triangular plate has been given by
Timoshenko (Ref 40). Using the SLAB 44 program, a 21-by-21 increment solu-
tion was made by inputting appropriate values of stiffnesses at each joint
and using Poisson's ratio of 0.3. Figure 21 shows the comparison of deflec-
tion at point O of the triangular plate, The difference between the closed-

form result and SLAB 44 result is about 0.78 percent.

Problem Series 4, Five-Beam, Noncomposite Skew Bridges

Chen, Siess, and Newmark (Ref 6) have considered a simple-span, noncom-
posite, skew bridge which consisted of a concrete slab of uniform thickness
supported by five identical steel beams uniformly spaced and parallel to the
direction of traffic, Using the finite difference approach, they have com-
puted influence coefficients for moments and deflections for a number of skew
bridges having an 8-by-8 mesh, Gustafson and Wright (Ref 10) have used the
finite-element method with an 8-by-8 mesh to solve the same bridge problem for
a few loading conditions and compared their results with the solutions of Chen,
Siess, and Newmark.

The SLAB 44 program, with 8-by-8 increments, was used to solve the same
bridge problem. Figure 22 shows a comparison of beam moments obtained from
finite difference, finite-element, and discrete-element solutions for differ-

ent skew angles., It is interesting to note that the results of finite-element
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AANNININNAN NV

3
Stiffness : Dz —E' — = 4.0x I Ibiin
2 01-v?)

Poisson’s Ratio : » = O3

Concentrated Load : Q = I.OxIO3 Ib

Simply supported, isotropic, rhombic plate
with concentrated load at the center

. D
Angle Defiection at Center x w
ez Ref Slz_to\Bx 24;
50° 0.0088i 000918
60° 001200 001252
70° 001547 001604
80° 001920 001978
90° 0.0231S 002380

Ref | is conformal mapping solution by Aggarwala

Fig 20. Comparison of results for simply supported, isotropic,
rhombic plates with concentrated load at the center,

3
Stiffness : D = '—E'—z = 10 x 10 Ib-in/in
12 {t- %)

Poisson's Ratio: v = 0.3

Load per Unit Area: q= 1.Ox i0° lb/inz

a = 10 inches
Deflection at O x D
q Ci03
impl d iformly lood SLAB 44
Simply supported, uniformly loaded, Ref 40 SLhB 4
isotropic, triangular plate
1.029 1.037

Ref 40 is onalytical solution. by Timoshenko and Woinowsky- Krieger

Fig 21. Comparison of results for a simply supported, uniformly

loaded, isotropic, triangular plate.
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Simple éx \< °
D o
Support ———/Re (( b
: _t w
| a— a |
PLAN OF BRIDGE TRANSVERSE SECTION
a = 20in b= 2in
Slab Stiffness: D E'S I x '05 Ib‘nz/'n
1 : = H [} n.
1201-22)
Poisson's Ratio: » = 0
Beam Stiffness: El = Ix 10’ b in
Concentrated Load: P = 5000 !'b
H: EL = s
T aD ~ Non-dimensional parameters
o used in Ref 6 and 10
b/a = 0.5
Angle Midspan Midspan Midspan Moment x F'%
Moment in Position ot
6, Ret 6 Ref 10 Slab 44
Beam Load P on Beam 8x8 8x8 8x 8
150° A A 0.154 0.157 0.156
C 0015 0.02i 0022
E 0000 0005 0005
B A 0049 0.050 0049
C 0027 0.033 0033
E 0004 00l2 0011
C A 0015 0.020 0.021
C 0.070 0.085 0.085
Ref 6 is finite difference solutions by Chen, Siess, and Newmark.
Ref 10 is finite -element solution by Gustafson and Wright

Fig 22(a).

noncomposite skew bridges,

Comparison of results for five-beam,
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Angle Midspon. Mid'spm Midspan Moment x ﬁ

Moment in Position of Ref 6 et 10 Sicb 44

92 Beam Load P on Beam g x8 ee‘ 8 08 x 8
135° A A 0.160 0.165 0163
c 0.015 0.022 0023

E -0.009 -0003 -0003

B A 0056 0060 0.060

c 0.033 0043 0044

E -0.00I 0.006 0.006

C A 0015 0022 0022

c 0.078 0.096 0.095

120° A A ole4 0169 0.168
c 0016 0022 0.022

E -0013 -0.009 -0.009

B A 0.06l 0.064 0.065

c 0038 0.048 0048

3 -0003 0002 0002

c A 0016 0022 0022

C 0.083 0.099 0.098

90° A A 0.172 0.171
c 0.022 0.022

E -0017 -0014

B A 0.067 0.068

c 0050 0.051

3 0.000 0.000

c A 0.022 0022

c 0.101 0.099

Ref 6 is the finite difference ‘solution by Chen, Siess,and Newmark.

Ref 10 is the finite -element solution by Gustafson and Wright.

Fig 22(b).

Comparison of results for five-beam,
noncomposite skew bridges.
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and discrete-element (SLAB 44) solutions are almost identical, even though the
finite-element method requires the solution of more than twice as many equa-
tions as SLAB 44 for the same mesh size when in-plane displacements are not
considered. For 6, = 90° , Or 0° skew, the three approaches give almost

2
identical results,

Problem Series 5, Four-Span Skew Bridge

Harnden and Rushton (Ref 11) have studied the deformation of a four-span
45° skew bridge using an electrical analogue computer. Sawko and Cope (Ref
37) have used the finite-element approach to solve the same bridge problem,

Using 14-by-64 increments, the SLAB 44 program was used to solve the same
problem for a load uniformly distributed on the entire bridge. Figure 23 shows
the deflections and moments in the span direction obtained from the three ap-
proaches. The results are superimposed on the grid used in Program SLAB 44,
The difference in deflection between an electrical analogue and SLAB 44 solu-
tions is about 4 percent at the location of maximum deflection (797, 780, and
830), and at other locations the difference is less than 5 percent with res-
pect to the maximum deflection., The difference in deflection between finite-
element and SLAB 44 results is about 6 percent at the location of maxiﬁum de-
flection and less than 6 percent at all other locations except one, where the
difference is 8.8 percent with respect to the maximum deflection. In the case
of bending moments, except for the locations over the supports, SLAB 44 results

are very close to the other two approaches.

Problem Series 6., Verification with Experimental Results

Barboza (Ref 5) experimentally investigated the behavior of a skew, pre-
stressed concrete bridge under various loading conditions. The bridge chosen
was a Texas Highway Department standard, simply supported bridge with a skew
angle of 300. The bridge consisted of precast prestressed I-shaped girders
with a cast-in-place deck slab. The slab was constructed to act compositely
with the precast girders. The scale factor used for the model was 5.5.

Figure 24 shows the dimensions of the model bridge. During the investigation,
Barboza made a few auxiliary tests to determine experimentally the bending

and torsional stiffnesses of a precast girder with the cast-in-place slab the

width of which equaled the girder spacing in the model bridge (16.5 inches).
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Fig 23.

Comparison of results for a four-span skew bridge.
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Fig 24.

Experimental model tested by Barboza (Ref 5).
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The girders used in these auxiliary tests were fabricated in the same manner
as those used in the model bridge structure.

Program SLAB 44 was used to analyze this bridge by inputting composite
girder stiffnesses, which were obtained experimentally by Barboza, as beams.
The torsional stiffness of the girders, also determined experimentally by
Barboza, was input as additional twisting stiffness in a two-increment width
of slab along the girders. The other parameters used were the same as given
by Barboza and as shown in Fig 24.

The analysis was made for five different positions of concentrated load
of 1,000 pounds, as tested by Barboza. At this load, the structure was still
uncracked, The results of deflections and bending moments at the midspans of
girders were compared with the experimental results. Figure 25 shows these
comparisons, It is evident that there is a very close correlation between
experimental (Ref 5) and SLAB 44 results.

This problem series effectively demonstrates the modeling of composite
action. It also shows that the diaphragms can be handled very simply even

though they run in neither the span direction nor the skew direction.

Problem Series 7. Sensitivity of Modeling Bending and Torsional Stiffness
of Composite Section

In this problem series, Program SLAB 44 was used to study the effects of
variation of bending and torsional stiffnesses of a composite section of a
single span bridge. This study is only analytical, even though the stiffnesses
and constants of the bridge considered are the same as in problem series 6,

Figure 26 shows the dimensions and constants of the bridge. In the cases
studied, the load of 1,000 pounds was considered to be acting at A4, The table
in Fig 26 shows the variation in midspan deflections and midspan moments of
girders D and E as the bending stiffness of the composite section was varied
from 0.9 to 1.0 to 1.1 of the measured value (Ref 5), and the equivalent twist-
ing stiffness was varied from 1.0 to 0.5 to 0.0 of the measured value (Ref 5).

It can be seen from the table in Fig 26 that the effect of variation of
bending stiffness on deflection is more significant than the effect of varia-
tion of equivalent twisting stiffness. For example, consider the results of
girder D. The deflection with a bending stiffness of 1,73 X 109 and a twist-
ing stiffness of 3.625 X 106 is 0.,01663, For the same bending stiffness, if

the twisting stiffness is reduced by half then the deflection increases to



100

Prestressed
Concrete Girder
Simple
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PLAN SECTION
Number of increments: 22 along skew by 72 along span
Slab Stiffness: D = D, = 746 x IO Ib in/in
n 22
Poisson's Ratio : v = 0.167
Diaphragm Stiffness : 2.34 x 10 Ib in’
Girder Midspan Deflections Computed by Midspan Moments Computed by
Girder Bending SLAB 44 with Equivalent Girder SLAB 44 with Equivalent Girder
Number Stiffness Twisting Stiffness of Twisting Stiffness of
x 10° 3625 x 10° |05 x 3625 None 3625x 10° |05x3625 None
(Ref 5) x 10° (Ref 5) x 10°
09x 173 =
LS57 0.01805 0.01877 0.02043 12.55 12.90 13.72
D
.73
(Ref 5) 0.01663 0.01730 001883 12.79 13.15 I3.98
LIx 173 =
1903 001544 0.01607 001749 13.01 13.38 14.22
0'? ;5'77 3= 0olg79 | 001940 | 002073 | 12.82 1317 13.90
E I;73
(Réf 5) 001722 001779 0.01902 13.01 13.37 14.11
LIx 173 =
1903 001592 0.01645 001760 13.19 13.55 14.31

A4
is experimental solution by Barboza.

Note: All comparisons are for load at
Ref S

Fig 26.
stiffness of composite section,

Sensitivity of modeling bending and torsional
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0.01730, which is a 3.9 percent increase. If the twisting stiffness is kept
the same (3.625 X 106) but the bending stiffness is reduced by only 10 percent,
then the deflection increases to 0,01805, which is an 8.2 percent increase
(over 0,01663), Compared to deflections, the bending moments are not appre-
ciably affected. Even though only one load position was studied, this prob-
lem series demonstrates the necessity of computing composite girder bending

stiffnesses with care.

Other Comparisons

In addition to use with the above problem series, SLAB 44 was used to
o

solve several example problems for 0° skew, or 62 = 90" , and the results
were compared by solving the same problems using Program SLAB 36 (Ref 32),
These problems were solved with different load and support conditions. The
results of comparisons are not included here but it was observed that the dif-
ference in maximum deflection between the two solutions was about 1 percent,
using ten-by-ten increments in both the cases.

Late in this study, there was an opportunity to apply the program to a
real bridge. This study is reported elsewhere (Ref 20). Program SLAB 44 was
used to study a failed structure, to study load placement on the test étructure,
to analyze the test structure, and to compare experimental results. The results

indicated that for a severely skewed structure the strip method of analysis is

not appropriate.

Summary

It has been observed by Mehrain (Ref 22) that in the case of simply sup-
ported uniformly loaded skew plates, the accuracy of finite difference and
finite-element methods of solution drops rapidly as the angle of skew is in-
creased. In the case of the finite-element method, this may be caused due to
Kirchoff's hypothesis. This has not been observed (Problem Series 1) with the
discrete-element approach presented here, even though the accuracy of the solu-
tion does depend upon the number of increments selected. 1In general, the re-
sults of the discrete~element model are in good agreement with the results of

other approximate methods and with experimental data.
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Summary

CHAPTER 9, USE OF THE METHOD

A discrete-element procedure of analysis of an anisotropic skew-plate and

grid-beam system has been described. 1t has been observed from the literature

studied that most of the work done on a skew plate is for either isotropic or

orthotropic properties and for simple load and support conditions, The method

presented here is not limited by these considerations. The stiffnesses, loads,

and supports can be freely varied from point to point and in any direction,.

Concentrated and distributed loads and support springs, including external

couples in three directions, can be easily handled. The principal features of

this approach are summarized as follows:

(L)

(2)

(3)

@)

(5)

In the anisotropic stress-strain relations, the elastic compliances
and stiffnesses are formulated in terms of three moduli of elasticity
in any three directions and three Poisson's ratios related to these
directions, This simplifies the computation of anisotropic plate
stiffnesses in terms of six constants which could be experimentally
determined by three tension tests.

The anisotropic skew-plate and grid system is represented by a dis-
crete~element model consisting of a tridirectional arrangement of
rigid bars and elastic joints, The rigid bars are infinitely stiff
and weightless and transfer bending moments. The elastic joints

for the plate model are composed of elastic, but anisotropic, material
The stiffnesses, loads, and restraints are lumped at elastic joints,
All the elastic action takes place at these joints.

To derive stress-strain relations for the plate model, it is assumed
that an element of the plate is made up of three layers of inter-
connected fibers running in three directions. The fiber stresses
are then related to conventional strains. The integration of these
relations results in moment-curvature relations for the plate model.
Each grid-beam is considered as a beam (Ref 18),

Using equations of statics, the stiffness matrix is derived. The
concentrated moments required in the equations of statics are ob-
tained by assuming that the fibers running in a particular direction
and having a certain width (Fig 11) are collected and lumped along
each line of the model.

A recursion-inversion procedure is used to solve the stiffness equa-
tions.
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(6) A computer program, SLAB 44, is developed which is capable of
determining deflections, bending and twisting moments, largest prin-
cipal moment together with its direction, and reaction at each joint
of the discrete-element model.

Comparisons with several different approaches such as series, finite-

element, conformal mapping, finite difference, electrical analog, and experi-

mental indicate that SLAB 44 produces excellent results.

Recommendations Pertaining to the .Use of SLAB 44

This study and Program SLAB 44 are intended to provide a basic tool for
use in design and to serve as a basis for future developments, The types of
problems available in the literature are relatively simple, and SLAB 44 could
be used to solve types of problems other than the example problems solved in
Chapter 8 with SLAB 44,

Before coding a particular problem, the study of detailed rules and in-
structions would be helpful, Whenever it is necessary to make several solu-
tions for the same structure in order to consider different load criteria or

placements, the use of a multiple-load option switch is helpful in reducing

the computer time.

Extensions of the Basic Method

The method developed could possibly be extended for several applications:

(1) The rotational restraint and axial thrust could be introduced in
the formulation as is done in the beam-column and rectangular slab
formulation by Matlock et al (Refs 18, 21, 13, and 31).

(2) The method could be extended to solve for nonlinear loads and sup-
ports in which the loads and supports are represented by load-
deformation curves,

(3) The method could be utilized to study alternative designs for a
particular problem., For example, in the bridge shown in Fig 24,
the effect of different diaphragm configurations could be easily
studied.

(4) All of the development of anisotropic stress-strain relations and
discretization techniques developed here may be applied to plane
stress problems,

(5) It may be possible to combine plane stress with bending analysis to
solve for plates and pavement slabs in which in-plane forces are
considered,
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SLAB 44 GUIDE FOR DATA INPUT ~ CARD FORMS

IDENTIFICATION OF RUN (two alphanumeric cards per run)

a0

IDENTIFICATION OF PROBLEM (one alphanumeric card each problem: program stops if PROB NUM is left blank)

PROB NUM

| | Description of problem
80

TABLE 1. CONTROL DATA (one card for each problem)

Enter "l" to Hold Prior Number of Cards Added For Multiple Reaction Stiffness
Table Table Table Table Table Table Table Table Load Print Output Input
2 3 4 5 2 3 4 5 Option Option Option Option
10 15 20 2s 35 0 s 50 60 70 ) 80

Multiple Load Option: Blank for Normal
+1 for Parent
-1 for Offspring

Print Option: Blank for M , M , and M
X y Xy

1 for M , M , and M
a b c

Reaction Output Option: Blank for Support Reactions
1 for Statics Check

e
Stiffness Input Option: Blank for input value of slab stiffnesses in orthogonal directions (D11 through D33) Iy
1 for input value of slab stiffnesses related to the a , b , and c-directions
(Bll through B33)
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-

//c b
TABLE 2. CONSTANTS (one card, or none if Table 2 or preceding problem is held)

/T

Increment Increment Angle he
Number of Length in Length in Between a and _l(
Increments a-Direction c-Direction c~Directions A —
.a c ha hc 92 A—hc ——b/
(degrees)
) 0 ™) 30 Y
TABLE 3. JOINT STIFFNESS DATA (number of cards according to Table 1)
From Through o Ll Diy D13 D2 Dy3 D3
2 ¢ 3 c B11 512 B3 Ba2 B23 B33
s 10 s 20 30 .0 50 € 70 k 80
3 3 3 3
- ic: (—E) E _vE )t~ __E__) 5 (__E_) 5
Dyq through D33 Isotropic: ( 2) 12 ( 2) 12 0 ( 2/ 12 0 2(1 + )/ 12
: 1L ~-w 1 -v 1 -v
Ex t3 Y Ex t3 E t3 t3
orenorropic: (T—i) 17 (72550) 17 0 501 0 ©) 12
X'y Xy Xy

Anisotropic: May be computed by using Eqs 3.45 through 3.50, 3.58, and 4.15 in terms of three .
moduli of elasticity and three Poisson's ratios; or by using Eqs 3,17, 3.58, and 4.15
in terms of the other six constants; or by some other means.

B11 through B33 may be computed by using Eq 4.17 in terms of D11 through D33 ; or by using Eq 4.34 in terms of

three moduli of elasticity and three directional Poisson effects. 1In either case, the Stiffness
Input Option in Table 1 must be exercised.

11
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TABLE 4. BEAM STIFFNESS AND LOAD DATA (number of cards according to Table 1)

From Through Beam Bending Stiffnesses Load Spring
a c a c F F F Q S
a b c
s 10 15 20 30 0 %0

TABLE 5. EXTERNAL COUPLE DATA (number of cards according to Table 1)

From Through External Couples

a C a c Ta Tb T

T0

3 10 3 20 30 40

STOP CARD (one blank card at end of run)
]

L11
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GENERAL PROGRAM NOTES

The data cards must be stacked in proper order for the program to run.

A consistent system of units must be used for all input data, for example, kips and feet,

All 2 to 5-space words are understood to be right-justified integers or whole decimal numbers . . .
All 10-space words are floating-point decimal numbers . « o« « o o o o o o o o « o o o o« o|-4 .32 1E+ 0 3]

TABLE 1, CONTROL DATA

For Table 2, the user must choose between holding all the data from the preceding problem or entering
entirely new data, If the hold option is set equal to 1, the number of cards input for this table
must be zero,

In Tables 3, 4, and 5, the data are accumulated by adding to previously stored data. The number of cards
input is independent of the hold option, except that the cumulative total of cards in each of the tables
cannot exceed the number allowed by program dimension statements,

Card counts in Table 1 should be rechecked after the coding of each problem is completed.

The multiple-load option is exercised for problem series in which only the load positions and magnitudes
will vary., The first problem in a series is the Parent and is specified by entering +1, successive
loadings are the Offspring and are specified by entering -1, If the option is left blank, the prob-
lem is complete within itself,

For Offspring problems, Tables 2, 3, and 5 are omitted.

The print option may be exercised for output moments., If specified 1, bending moments in a , b , and

c-directions are printed. If left blank, bending moments in x and y~directions and twisting moments
are printed ( x and a-directions are the same). In either case the largest principal moments are

computed and printed.

The reaction output option may be exercised by entering either 1 or leaving a blank. If 1 is entered, a
statics check for each joint is printed (a statics check is a summation of all shears, loads, and
restraint reactions). If a blank is left, restrain reactions due to spring supports are printed.

The stiffness input option may be exercised for input values of slab stiffnesses in Table 3. To input stiff-
nesses related to the a , b , and c-directiens (B11 through B33), 1 is entered., The option is left

blank to input stiffnesses related to the orthogonal x and y-directions (D11 through D33).

611
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TABLE 2. CONSTANTS

The number of increments in the a-direction should be less than or equal to the number of increments in the
c-direction.

The angle between the a and c-directions should be specified in degrees.

TABLES 3, 4, AND 5, STIFFNESS, LOAD, AND EXTERNAL COUPLE DATA

Variables: D through D

11 11 33

Typical Input Units: 1b-in2/in 1b-in2/in lb—in2 1b 1b/in in-1b

All data are described with a coordinate system which is related to the a and c-station numbers (Fig 13).
To distribute data over an area, it is necessary to specify the lower left-hand and the upper right-hand
coordinates.

To specify data at a single location, it is necessary to specify the same coordinates in both the 'From" and
""Through" coordinates.

The "Through" coordinates must always be equal to or numerically greater than the "From" coordinates.

The user may input values on the edge of the slab and the corners to represent the proportionate area
desired.

There are no restrictions on the order of cards in Tables 3, 4, and 5. Cumulative input is used, with full
values at each coordinate.

Unit stiffness values D11 through D33 for a slab or plate and concentrated stiffness values Fa through
Fc for beams are input at full value joints. The values may be reduced proportionately for edges.

Load values Q and support springs S for any joint are determined by multiplying the unit load or unit
support value by the appropriate area of the real slab or plate assigned to that joint. Hinged supports
are provided by using large S values., Concentrated loads that occur between joints can be proportioned
geometrically to adjacent joints. ‘

33 B_.. through B Fa through Fc Q s Ta through Tc

121
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GENERAL FLOW DIAGRAM FOR SLAB 44

1010
READ problem identificatioﬁ\j

Yes
num :
/ ) 9990
Terminate the
No .
problem series
1020

|PRINT problem identificatioﬁﬁ

|READ and PRINT Table 1. Control Datgj

1200
READ (or hold) and PRINT Tables 2, 3, 4, and 5
Table 2. Constants
Table 3. Joint Stiffness Data
Table 4. Beam Stiffness and Load Data
Table 5. External Couple Data

Check all input tables for data errors }—————W

Return for new
problem if data
Yes errors exist

Is this
an offspring
roblem?

No

1875
lCompute constants l

(.
RN
Rewind
Tapes 1,
2, and 3

Prepare tape
storage

an offspring Yes

roblem?
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2100
|[Zero recursion coefficients B, C, CML, EP1|

-
2140

[Zero recursion coefficients A, AM1|

Zero deflections and moments|

L1 = MAP3
L2 = MAPS

(————ﬁ)o J =2 to MCP4 )

JN=J -3
Retrieve data
[ CALL DATA2|| needed at this
' J step
— D0 I =2 to MAP4) Form submatrices
r—— for each J step
+ K=1- 1|
Load and EET2
|Compute FF(K,1) and EET2(K,1 thru 5)| toms are only
ones needed for
4 \\\\\\\\ offspring problem
s this
. Yes
an offspring —
roblem?
No
3150
Compute submatrices CC(K,l thru 5),
DD(K,1 thru 5), and EE(K,1 thru 5)
J
—

3350
\~—— CONTINUE )

Pack EET2(L1,5) as required
for solution process
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1Is this

an offspring
robi%
[]

3380
Pack CC(L1l,5) as required
for solution process

Compute and Pack DDT(L1,5)
(transpose of DD)

Compute EET1(L1,5)
(transpose of EEP at previous J step)

|Pack EE(L1,5) as EEP(5,L1)|

[ 4000

CONTINUE )

CALL RFV , Retain recursion

R coefficient A to
AM2(L1,1) = AMI(LL,1) use at next J step
AM1(L1,1) = A(L1,1) '

an offspring
problem? Retrieve multipliers
D and E from Tape 3

if problem is an off-

spring

4180

CALL RFV
BM1(11,L1) = B(L1l,Ll1l) Retain recursion
E(L1l,L1) = EP1(L1,Ll) coefficient B and

multiplier EPl to
use at next J step

CALL MBFV and ABF
EP1(L1,L1) = DDT(L1,5) + Compute multiplier

EET1(L1,5) * BM1(L1,Ll) EP1 (E at J+1)
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CALL SMFF, RFV, RFV, MBFV, ASFY, ABF,
INVR6, and CFV

D(L1,L1) = E(LL,L1) * BM1(L1,L1) Compute multiplier

D. Retain recursion
BM1(L1,L1) = CM1(L1,L1)
CM1(L1,L1) = c(L1l,Ll) : coeffiCienE g to
c(Ll,Ll) = EET2(L1,5) * BM1(L1l,Ll) uge at nex step

D(L1,Ll) = ~1 / {D(L1,Ll) +
c(L1,Ll) + cc(r1,5)}

CALL MFB 1 Compute recursion
_ﬂ_C(Ll,Ll) = D(L1,L1) * EEP(5,Ll1) coefficient C
CALL MFFT Compute recursion
B(L1l,L1) = D(L1,L1) * EP1(Ll,Ll) coefficient B
A y,
4 4,280
CALL MFFV, MBFV, ASFV, ASFV, and MFFV
A(L1,1) = D(L1,L1) * {E(L1,Ll) * Compute recursion
AMI(L1,1) + EET2(Ll1,5) * coefficient A

AM2 (L1,1) + FF(LLl,D)}

Retain recursion
coefficient A on

Tape 1
an offspring Yes 4400
problem? Move Tape 2
Fagllin
RFAD forward one J
record
Tape 2 7

Is this
a parent
problem?

Yes

Retain multipliers
D and E on Tape 3

Retain reeursion
coefficients B
and € on Tape 2
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Compute deflec-

tions starting
at MCP4

Position Tape 1
for reading A

Pogition Tape 2
for reading B
and C

Retrieve the A
recurgion ceoffi-
cient to use at
this J step

Retrieve the B
and C recursion
coefficients to
uge at this J
step

Reposition Tape 1

Backspace Reposition Tape 2

Tape 2

CALL MFFV, MFFV, ASFV, and ASFV
W(Ll,J) = A(L1l,1) + B(L1,Ll) * W(L1l,J+1) Compute deflec-
+ C(L1,L1) * W(Ll,J+2) tions W at this
J step
6000

CONTINUE
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I
PRINT problem identlflcatlo\\j
and Table 6 headings

r———|DOJ=2 to MCP4 )

Retrieve data

CALL DATAZH needed at this

J step

(——-IDO I=2 to MAP4 )

Compute concentrated bending
moments in the model

6250
- CONTINUE

/—'——.—

(——-|D0 I =2 to MAP4 )

Compute support spring reaction
and statics check

Compute maximum statics check error

Compute conventional moments
CBMA, CBMB, CBMC and
+ CBMX, CBMY, CBMXY

Compute principal moments from

use of Mohr's circle.

Test to print largest value of

principal moment and angle from
X to the largest.

largest principal moment, angle, and
reaction or statics check

PRINT coordinates, deflection, momenté}w Print results

L_ 6400
—— ———CONTINUE )

l 7000
{CONTINUE
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PRINT summation of reactions
and maximum statics check
error at coordinate a, ¢

[RETURN for new problem'
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-1
X—» X
SUBROUTINE INVRG ( X SYMM. AND POS. DEF. )
X, L1, L2 X: 1/0

L1: VARIABLE DIMENSION
L2: ORDER OF X
decompose X R y R .

to get L
X—D
y
invert. L to D 7 N .
-1
get L \\\\\\__, N
L. ,
| BN

-1. 7
Multiply(L ) < -

-1 N
by L to get —
-1 ht x?

X L — s -
(Lower half)

set upper half
of A equal to
lower half

RETURN

This flow chart 1s extracted from Ref 8.



X, Y

SUBROUTINE MFFV

, 2, : INPUT, FULL(Sq)

X
Ll, L5, Y : INPUT, FULL OR VEC

Z : OUTPUT, FULL OR VEC
L1 : VARTIABLE DIMENSION

,~—=- D0 110

J : ORDER OF X

il
—
=
./
R

L5 : Y FULL OR VECTOR ?

~—~—4 D0 105

| SsuM -

,~={ DO 100

K=1,12)

| SUM = X(I,K) * Y(K,J) + SUM

o i — ——

{
L

CONTINUE )

e et el e e e e s e e 0 o .

———q z(1,1) - s |

lRETURNI

X } . Y

DRI

L1l

]

1]

u
[

This flow chart is extracted from Ref 8.
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SUBROUTINE SMFF
X,Y, 2
Ll , L2

%

: INPUT, FULL(sq)

: INPUT,

: OUTPUT, LOWER HALF
: VARIABLE DIMENSION
: ORDER OF X , ¥ , Z

N = e

L
,——-—--po110 J-1,12) *
———=—D0 105 T - 1,7)

(s 0]

',_-—{ DO 100 K - 1,12)

|
1
g

= SUM + X(J,K) * Y(K,I) ]

e s e o St . . s o s

r'e

~———- 2(J,I) = SUM |

'RETURN

BIGAN

This flow chart is extracted from Ref 8.



SUBROUTINE MFFT
X,Y, 2
Ll , L2

X : INPUT, FULL(sq)
Y : INPUT, FULL(sq)
Z : OUTPUT, FULL(sq)
L1 : VARIABLE DIMENSION
~—=—==1 D0 110 J = 1,L2) L2 : ORDEROF X , Y , Z
,———=- D0 1051 = 1,L2)
ISUM = 0.0

]
|
!

DO 100 K - 1,L2>

i -

“———{SUM = SUM + X(I,K) * Y(J,K) |

..—.—-—__.__'___,_.___—-.—-_..—.--——
~

4

~————2(1,J) - sim |

[ RETURN l

This flow chart is extracted from Ref 8.
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SUBROUTINE MBFV
XB, YF, ZF, XB : INPUT, FULL(sq)

YF : INPUT, FULL(sq)
1, L5, L2, LB )
Li, - ZF : OUTPUT, FULL(sq)
L1 : VARIABLE DIMENSION
L2 : ORDER OF XB

L4 = LB/2 LB : BAND WIDTH
L6 = L4+l L5 : YF FULL OR VECTOR ?
Nl = L2-L&

,~=—4 DO 110 M = 1,M1)

DO 105 I = L6,N1)

\Y"""
1
— L

[J=1- 16|
~~< DO 100 K - 1,LB)

ZF(I,M) = XB(I,K) * YF(K+J,M) + ZF(I,M) |

e . e e S . S o o i o s el e e e

N
rxj
~~
[}
X
N’
Ii

o
<o

(/
|
. —

CONTINUE |
KL = 0
11 = 1
12 = L4
13 =1
T4 = LB
Yes
No
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( \

,~— D0 210 M = 1,M1 )

11,12)

ZF(1,M) = 0.0 [
N =1

i

~

It

-——1 DO 205 1

- — ———— — —— — —

~—- D0 200 K = 13,14 )

Il

ZF(I,M) = XB(I,N) * YF(K,M) + ZF(I,M)
N = N+1

B ————

—~  CONTINUE |
RETURN No
Yes

I1 = L2 - L4 + 1

12 - L2 )
I3 =12 - LB + 1

T4 = L2

Kl = 1

L5 = L1

1t
—

L5

XB YF ZF

This flow chart is extracted from Ref 8.



138

—

o el e e 2 e e e e

/

Yes

SUBROUTINE MFB

XF :
YB :

XF, YB, ZF,

L1, L2, LB

L4 = LB/2

L6 = L4+l L1

N1 = L2-L4 L2
{ Do 110 1 - L6,N1)
|- 1-16 |

,—=- D0 105 M = 1,L2 )

| zF(M,1) -

0 ]

—==D0 100 X = 1,LB )

ZF

INPUT, FULL MATRIX(sq)
INPUT, PACKED MATRIX
OUTPUT, FULL MATRIX(sq)

: VARIABLE DIMENSION
: ORDER OF MATRIX
LB :

WIDTH OF BAND (ODD)

[ZF(M,1) - YB(K,I) * XF(M,K+J) + ZF(M,I) |

‘_‘| CONTI@

Kl =0
I1 =1
12 = L4
I3 =1
14 = LB

No
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- \

. DO 210 T = I1,I2)

|

i,———-{ DO 205 M = 1,L2 )

|

: ZF(M,I) - 0

| N =1

[

|

[ ——- D0 200K - 13,14

[ —I ’ j [
|

| ZF(M,I) - YB(N,I) * XF(M,K) + ZF(M,I)
) N - N+l :

i

‘~—-| CONTINUE )

Il - L2-L4+1

12 = L2 )
I3 = L2-LB+1

T4 - 12

KL = 1

This flow chart is extracted from Ref 8.
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SUBROUTINE ABF / YB : INPUT, FULL(sq)
YB, XF, ZF, XF : INPUT, FULL(sq)
Ll, 12, LB ZF : OUTPUT, FULL(sq)
L1 : VARIABLE DIMENSION
L2 : ORDER OF XF , ZF
L4 - LB/2 LB : BAND WIDTH
N1 - L2-L&4
L6 - L4+l
!,—————{ DO 50 I - 1,12)
|
i,-—-——f})o 40 J = 1,L2)
|
) | ZF(1,3) - XF(1,J) |
|
{
‘—— —J cONTINUE
l,—-——-{no 110 T - L6,N1)
|
‘ J  I-Lé6
1 .
|———- DO 100 K - 1,LB)
|
|
) [ ZF(I,K+J) - YB(I,K) + XF(I,K+J) |
|
{

= ——— CONTINUF )

Kl - O
11 - 1
12 - L4
I3 .1
14 - LB
Yes
No
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r N

,~-{D0 210 T - 11,12)

]
|

= 1
a1
|
I

,—— DO 200 K - 13,@

N=N+1

|
i JF(L.E) - YB(IL.N) + XF(L.D)
|
I

‘---—i CONTINUE )

RETURN No

Yes
11 = L2 - L4 + 1
12 - L2
I3 - L2 - LB + 1 /
T4 . L2
Kl =1

This flow chart is extracted from Ref 8.
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SUBROUTINE ASFV

X,Y, Z, X : INPUT, FULL(sq)
L1, 15, L2, SIGN Y : INPUT, FULL(sq)
Z : OUTPUT, FULL(sq)
L1 : VARIABLE DIMENSION
LZ : ORDER OF X , ¥ , 2

/////\\\\\ SICGN : - OR + ,
- . + L5 : FULL OR VECTOR?

~4 D0 210 J = 1,M ) ~1 D0 110 J-1,M )

~{Dpo200 1. 1,12) ~{po100 1-1,12)

i {
I I
I I
l, I,
| :
L [2(1,3) - X(1,9) - Y(I,d) L [Z(1,3) - X(1,3) + Y(1,1)
| )
| |
{
‘- CONTINUE ‘~- CONTINUE
TR
[ RETURN |

This flow chart is extracted from Ref 8.
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SUBROUTINE RFV
X 3 Y >
Ll , L5 , L2

,~—D0110 J=1,M )

#

_..{bo 100 1

1, Lz)

\-_{xcl,3) = y(1,J) [

— e e o —

{ RETURN

(][] e

OR

o

This flow chart is extracted from Ref 8,
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SUBROUTINE CFV

X, X
L1, 15, 12, O
L5

c

~4 DO 110 J - 1,M )

————

} | po 100 I =1,12)

1
|
‘4 X(1,]) = X(I,J) *C|

I RETURN I

: I/0
Ll :
: ORDER OR LENGTH OF X
: FULL OR VECTOR

: CONSTANT MULTIPLIER

VARTABLE DIMENSION

This flow chart is extracted from Ref 8,
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NUTATION FOR SLAB44

Al RECURSION COFEFFICIENT 03MYOD
ALF ANGLF ON MOHRS CIRCLE 03MYOQ
AM1 () RECURSION COEFFICIENT A{) AT J=1 03MYO0
AMZ () RECURSION COEFFICIENT Al) AT J-2 03MYO
AN1 U} sANZ () IDENTIFICATION AND RFMARKS (ALPHA=NUM) 03MYD
ATM( TEMP STORAGE FOR A{) RFCURSION COFFF 03MYO0
B() RECURSION COFFFICIENT 03MYO
BETA ANGLF TO LARGEST PRINCIPAL MOMENT 03MYC
BETAT TWICF BETA 03MY O
BMA () sBMB () 4BMCI) CONCENTRATED MOMENTS IN SLAB MODEL IN 03MYO

A B C DIRECTIONS 03MYO
BMBA () sBMBB () +BMBC {)CONCENTRATED MOMENTS IN BEAM MODEL IN 03MYD

A B C DIRECTIONS 03MYO
BMBBML1 () 4BMBCM1L) BMBB() AND BMBC() AT JU~1 03MYO
BMBBP1( ) +BMBCP1¢() BMBB() AND BMRC() AT J+1 03MYO
BMBM1{ ) sBMCM1 () BMB () AND BMC()} AT JU-1 03MYO
BMBP1() 4BMCP1() BMB ()} AND BMC(} AT J+1 CaMyD
BM1 () RECURSION COEFFICIENT B{) AT J-1 03MY0
B11VMsB11VPsR11VY B11 AT (T-14J)s (I41sJ)s (1a) 03MYQ
B12MVsB12PP,R12PYV B12 AT (1aJd=1)s (I+1sJ+1)y (TaJ+1) 03MyY0
B12VMsB12VPsB12VV 812 AT (1-1sd)s (I41sJ)s (Isd} 03MYQ
B13MV,B13PVvsB13VM B13 AT (lsJ=1)y (IsJ+1l)s (1=1s0) 03MYO
B13VP,B13VV B13 AT (I1+1sJ)y (1 sJ} 03MYQ
B22MM,B22MV,.B22PP B22 AT (I-19J=1)s (1sJd~10s (1414041} 03MYQ
B22PVsB22VV 822 AT (lsd+1dy {1e) 03MYO0
B23MMsB23MVsB23PP B23 AT (I-1sJ=1)y (IsJ=11s (1+1,0+1) 03MY0D
B23PVsB23VV B23 AT (1yJ+1)s (Ia 03MYOD
B33MVsB33PVeB33VV B33 AT (laJ=1)ys (1sJdsl)s (142} 03MYD
ct! RECURSION COFFFICIFENT 03MyYD
CBA ONE DIVIDED RY HA CURED 03MYD
(BB ONE DIVIDED Ry HR CURED 03MYQ
CBC ONE DIVIDED RY HC CURED 03MYO
CBMA s CBMB s CBMC CONVENTIONAL BENDING MOMENTS PER UNIT 03MY0D

WIDTH OF SLAR IN A B C DIRECTIONS 03MYO
CBMO,CBMT FIRST AND SECOND PRINCIPAL BENDING MOMENTSUL3MYO
CBMX ,CBMY CONVENTIONAL BENDING MOMENTS PER UNIT G3MY O

WIDTH OF SLAB IN X AND Y DIRECTIONS U3MYO
CBMXY CONVENTIONAL TWISTING MOMENT PER UNIT 03MYO

WIDTH OF SLAB ABOUT X DIRECTION 03MYO
CCls COEFFICIENTS IN STIFFNESS MATRIX 03MYO
CM1(,} RECURSION COEFFICIENT Cls) AT J-1 03MYO
C511 THRU (S33 MULT CONSTANTS FOR B11 THRU B33 IN STIFF  03MYQ

MATRIX 03MYQ
C13C2sC3 COSINE OF THETAYl THETAZ THETA3 03MYD
C15+C254+C35 COSINE SQUARE OF THETALl THETA2 THETAZ 03MYO
D{s} RECURSION MULTIPLIER U3MYO
DD s} COEFFICIENTS IN STIFFNESS MATRIX 03MYO0
DDT L) TRANSPOSE OF DD () 03MYO
D11¢) THRU D33¢) BENDING STIFFNESS PER UNIT WIDTH OF SLAB  03MYD
DLIN(U) THRU D33N() INPUT VALUES OF D11{) THRU D33(} 03MY0
D12M1() THRU D33M1()1D12() THRU D33() AT J-1 03MY0D
D12P1() THRU D33P1(1D12() THRU D33() AT J+1 03MY0
Els) RECURSION MULTIPLIFR 03MY (D
EEL ) COEFFICIENTS IN STIFFNESS MATRIX G3MYO
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aNaNaNaNaNaNaYaNaNalaNaNaNaNaNaNaNaNalaNaNaNaNalNaNaNaNaNaNaNaNaNaNaNaNaNaNaNaNaNaNaNaaNalalaleWalieWal¥ele WeliaWal

EEP ()

EET1()

EET2(9)

EP1(s)
FAUISFBU)sFC()
FAN()sFBN()sFCNI()
FBM1 () sFCM1 ()
FBP1()sFCP1()
FF()

HAsHB sHC

I

IN13() THRU [N15()

IN23() THRU IN251()

IPR
ISTA
ISTIFF
I TEMP
ITEST

J
JN
JN13() THRU JUN15¢()

JIN23 () THRU JN2%5()

JSTA

JTEMP

K

KEEP2 THRU KEEPS
KML

KPROB

KROPT

L

LlsL2

MA

MAP1 THRU MAPS
MC

MCP1 THRU MCP5
ML

N

NCD2 THRU NCD5

NCT3 THRU NCT5
NC13 THRU NC15

NDES

NDE1 THRU NDES
NF

NK

NL

NLM2

NPROB

N1sN2sN3

PMMAX

PACKED EE(s) AS REQUIRED FOR SOLUTION 03MyQ
TRANSPOSE OF EEP(,) AT J-1 03MYO
TRANSPOSE OF EE AT J-2 03MYQ
RECURSION MULTIPLIER U3MYOo
BEAM STIFFNESS IN A B C DIRECTIONS 03MYO
INPUT VALUES OF FA() FB() FC(} 03MYO
FB() FC() AT J-1 03MYO
FB() FC() AT J+1 03MYO
COEFFICIENT IN LOAD VECTOR 03MYO0
INCREMENT LENGTH IN A B C DIRECTIONS 03MYO
STATION NUMBER IN A OR X DIRECTION 03MYO
INITIAL STATION IN A OR X DIRECTION 03MYO
USED IN TABLF 3 THRU 5 03My0
FINAL STATION IN A OR X DIRFCTION 03MYO
USED IN TABLE 3 THRU 5 03mMYO0
PRINT OPTION SWiTCH L3MYO
EXTERNAL STATION IN A OR X DIRECTION 03MYO
STIFFNESS INPUT OPTION SWITCH 03MYO
ISTA FOR MAXIMUM STATICS CHECK ERROR 03MYO
= 5 ALPHANUMERIC BLANKS USED TO 03MYO
TERMINATE PROGRAM 03MYO
STATION NUMBER IN C DIRECTION 03MYO
J-3 03MYO
INITIAL STATION IN C DIRECTION 03MYO
USED IN TABLE 3 THRU 5 03MYO
FINAL STATION IN C DIRECTION 03MYO0
USED IN TABLE 3 THRU 5 03MYO0
EXTERNAL STATION IN C DIRECTION 03MYQ
JSTA FOR MAXIMUM STATICS CHECK ERROR 03MYO
DO LOOP INDEX 03MYO
IF = 1s KEEP PRIOR DATAs TABLES 2 THRU 5 ©3MYO
KEEP ML FOR ERROR CHECKS . 03MYO
PROBLEM NUMBER FOR PARENT PROBLEM 03MYQ
REACTION OUTPUT OPTION SWITCH 03MYO
DO LOOP INDEX 03MYO
VARIABLE DIMENSION UNIT . 03MYD
NUMBER OF INCREMENTS IN A OR X DIRECTION 03MYO
MA+1 THRU MA+5 03MY0
NUMBER OF INCREMENTS IN C DIRECTION 03MYO
MC+1 THRU MC+5 03MYO
MULTIPLE LOADING SWITCH 03MYOQ
INDEX FOR READING CARDS U3mMYO
NUMBER OF CARDS IN TABLES 2 THRU 5 03MYO
FOR THIS PROBLEM 03MYO
TOTAL NUMBER OF CARDS IN TABLES 3 THRU 5 03MYO
INITIAL INDEX VALUF FOR THE INPUT TO 03MYOQ
TABLES 3 THRU 5 03mMYC
NDE1 + NDE2 + NDF3 NDE4 + NDES 03MYO0
NUMBER OF DATA ERRORS IN TABLES 1 THRU 5 03MYO
STARTING VALUE FOR DO LOOP 03MYO
ORDER OF SUBMATRICES 03MYO
MATRIX ORDER OF OVERALL COEFFICIENT MATRIXO03MYO
NL-2 03MYOQ
PROBLEM NUMBER ( PROGRAM STOPS IF BLANK ) 03MYO
BAND WIDTH OF EE(,) DDls) CClys) 03MY0

LARGEST PRINCIPAL MOMENT 03MYO



[aRaNaRaRARATARAN N a N a N aRaNaNaNaNaNaRARARARA N A NAN S

Q)

QNT )

REACT

SO

SN )

STACH

STEMP

SUMR
SWBsSWS
S$1+52+53
S15+525+535
TAL()

TAN( )Y+ TBN (Y sTCNC()

TBMI ()Y TCMLIC()
TBP1()sTCP1{)
THETA
THETAL
THETAZ

THETA3
Wis)

TRANSVERSE LOAD PER JOINT

INPUT VALUE OF Q()

SUPPORT SPRING REACTION PER JOINT
SPRING SUPPORTs VALUE PER JOINT

INPUT VALUE OF S¢)

STATICS CHECK ERROR PER JOINT

MAXIMUM STATICS CHECK ERROR

SUMMATION OF REACTIONS

SWITCHES TO PRINT HEADINGS FOR OUTPUT
SINE OF THETAl THETAZ THETA3

SINE SQUARE OF THETAl THETA2 THETA3
EXTERNAL COUPLE IN A OR X DIRECTION
INPUT VALUES FOR EXTERNAL COUPLE IN

A B C DIRFCTIONS

EXTERNAL COUPLES IN R AND ¢ DIRFCTIONS
AT J-1

EXTERNAL COUPLES IN B AND ¢ DIRFCTIONS
AT J+1

ANGLE BETWEEN A AND C DIRECTIONS

IN DEGREES

ANGLE BETWEEN A AND 8 DIRECTIONS

IN RADIANS

THETA IN RADIANS

THETAZ2 - THFTAl

DEFLECTION AT EACH JOINT

03MYO
03MYQ
03MYO0
03MYO
03MYO
03MYO
03MYO
U3MYO
03MYO
03MYO
03MY0
03MYO
03MYQ
03MYQ
03MYQ
03MYO
03MYO
G3MYO
03MYQ
U3MYOQ
03MYO
03MYO
03MY0
03MYO
03MYO0
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PROGRAM SLAB44 (

THIS PROGRAM

INPUT,

OUTPUT»

TAPE 1

TAPE2,

TAPE3

)

IS NOW DIMENSIONED TO SOLVE A 25 BY 75 GRID AND

FOR UPTO 70 CARDS IN EACH TABLFs L1 = MA + 34 L2 = MA + 5
1 FORMAT ( 52H PROGRAM SLAB4y4 - MASTBR DECK - Ms VORA
1 ’ 28H REVISION DATE 03 MAY 70
DIMENSION AN1(32), AN2(14)
———— DIMENSION STATEMENT FOR NUMBER OF CARDS IN DIFFERENT TABLES
DIMENSION IN13( 70)s JN13( 70)s IN23( 70)s JN23( 70)s D1IN( 7C),
1 D12NC 70)s D13N{ 70}y D22N( 70)y D23N( 70), D33N( 70),
2 IN14(C 70)s JN14( T7C)y IN24( T7C)y JIN24( 70)s FAN( 7C),
3 FBN( 70)s FCN( 7C), QN TCY, SN{ 7C),
4 IN15(C 701y JUN15( 70)s IN25( 70)s JUN25( 70)s TAN( 70),
5 TBN( 70)s TCN( 70)
----- DIMENSION STATEMENT WITH ( MA+5 )
DIMENSI]ION D11{30)» D12(30), D13(30}, D22130) D23(30),
1 D33(30)s D12M1(30)y D13M1(3C)y D22M1(3C) s D23M1(3C),
2 D33M1(30)s D12P1(30)s D13P1(30),y D22P1(30), D23P1(30),
3 D33P1(30), FA(30) FRB(3C), FCt30), Q(30),
4 S(30)y FBM1(3U)s FCM1(30)y FBP1(30)s FCP1(3U),
5 TA(30)y TBM1(30)s TCM1(30)s TRP1(30)s TCP1(30)
''''' DIMENSION STATEMENT WITH ( MA+3, ) EXPECT FOR W WHICH
IS ( MA+5s MC+5 )
DIMENSION CC(28y 5) DD(28s 5y EE(28y 5)s DDT(28y 5),
1 EEP( 5+28)s EET1128s S5)s EET2(28, S} FF(28s 1)
2 A(28 }bs  AM1 (28 )y AM2(28 by B(285,28)
3 BM1(28+28)s EP1(28,28)s, ATM(28 ) e C(289281)
4 CM1(284+28) D(28,28), E(284928) W(3G,80)
““““ DIMENSJON STATEMENT WITH ( MA+5 )
DIMENSION BMA(30)ys BMBM1(30), BMB(30), BMBP1(30),
1 BMCM1(30) » BMC(30})s BMCP1(30), BMBA(30),
2 BMBBM1 (30 » BMBB(30)s BMBBP1(30)s BMBCM1 (20},
3 BMBC(30), BMBCP11(30)
COMMON s DATA2 / IN13s JUN13s IN23s JUN23, IN14s JN14s IN24s JUN24,
1 IN15s JUN15s IN25, UN25)
2 D11Ns D12Ns D13Ns D22Ns D23Ns D33N»
3 FANs FBNy FCNy QN SNy TANs TBNs TCN,
4 NCT3, NCT4s NCT5, MAPS
6 FORMAT ()
11 FORMAT ¢{ 5H1 » 80X, 10H]-—-~-- TRIM )
12 FORMAT ( 16A5 )
13 FORMAT ( 5Xs 16A5 )
14 FORMAT ( A5, 5Xs 14A5 )
15 FORMAT (///710H PROB » /5Xs A5s 5Xs 14A5 )
16 FORMAT (///17H PROB (CONTD)s / 5Xs A5s 5Xs 14A5 )
20 FORMAT ( 5Xs 415, 5Xs 415, 5Xs 15y 5X, 315 )
21 FORMAT ( 215, 3E10.3 )
33 FORMAT ( 4( 2Xs I3 ) 6E10e2 )
43 FORMAT ( 4( 2Xs I3 )y 5E10e3 )
53 FORMAT ( 40 2X» I3 1}y 3E10e3 )
100 FORMAT ( //27H TABLE 1« CONTROL DATA,
1 /7 48Xs 35H TABLE NUMBER,
2 /43Xy 42H 2 3 4 59
3 7/ 5Xs 41H HOLD FROM PRECEDING PROBLEM (1=HOLD) 19X, 415,
4 / 5Xs 33H NUM CARDS INPUT THIS PROBLEMs 27Xy 415 ,

153

JREVISED

120¢C9

120C9
120C9
120C9
120C9
120C9
120C9

REDIMEN
REDIMEN
REDIMEN
REDIMEN
REDIMEN
REDIMEN

REDIMEN
REDIMEN
REDIMEN
REDIMEN
REDIMEN

RED IMEN
REDIMEN
REDIMEN
REDIMEN
140C9
140C9
14009
140C9
140C9
120C9
120C9
120C9
120C9
120C9
120C9
230C9
03MYO
120C9
120¢9
120C9
120C9
120C9
120C9
120C9
120C9
120C9
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5 /7 5Xs 50H MULTIPLE LOAD OPTION ( IF BLANK, PROBLEM IS Ss 120C9
6 16HINGLE LOADING --, 120C9
7 / 15Xs 50HIF +1, PARENT FOR NEXT PROR -= [F -1, A OFFSPRING s 120C9
8 SHPROBle 10Xs 15, 120C9
9 / 5Xs SOH PRINT OPTION (IF BLANK, MX MY MXY == IF 1, 120C9
A 25HMA MB MC PRINTED) s 15, 120C9
B / 5Xs S50H REACTION OUTPUT OPTION (IF BLANKs SUPPORT REA, 120C9
C QHCTION == 120C9
D /  15Xs 30HIF 1s STATICS CHECK PRINTED) s 35Xs 15, 03MYQ
E / 5Xs 51H STIFFNESS INPUT OPTION (1F BLANKs D11 THRU D33,03MY0
F / 15Xy 30HIF 1, B11l THRU B33 INPUT) s 35X, 185 ) 03MYO
200 FORMAT ( //24H TABLE 2« CONSTANTS ) 120C9
201 FORMAT ( 7/ S0H NUMBER OF INCREMENTS IN A DIRECTION MA o 120C9
1 32Xs 134 v 120¢9
2 10Xs 4O0HNUMBER OF INCREMENTS IN C DIRECTION MC s 32X, 13, 7120C9
3 10X+ 35HINCREMENT LENGTH IN A DIRECTION HAs 30Xs E1043s /7 120C9
4 10X+ 35HINCREMENT LENGTH IN C NDIRECTION HCs 30Xs E1043s / 120C9
5 10Xs 45HANGLE BFTWEEN A AND ¢ DIRECTION IN DEGRFFS ’ 120C9
6 20Xs E1043 ) 120C9
300 FORMAT { /735H TABLE 3. JOINT STIFFNESS DATA, 120¢9
1 /7 50H FROM THRU D11 D12 D13 o+ 120C9
2 35H D22 D23 D33 ’ 120¢9
3 / 20H JOINT JOINT ) 120C9
301 FORMAT { //35H TABLE 3. JOINT STIFFNESS DATA, 03MYO
1 // 50H FROM THRU Bl1l B12 B13 o 03MYO
2 35H B22 B23 B33 ’ U3MYO
3 / 20H JOINT JOINT 120C9
311 FORMAT ( 5X» 201Xs 12y 1Xs I3 )y 6F11e3 ) 120C9
400 FORMAT ( //45H TABLE 4« BEAM STIFFNFSS AND LOAD DATA » 120¢9
1 /7 SOH FROM THRU FA FR FC s 120C9
2 35H Q 5 s 120C9
3 / 20H JOINT JOINT ) 120C9
411 FORMAT ( 5Xs 2(1Xs 129+ 1Xe I3 ) 5FE11e3 ! 120C9
500 FORMAT ( //35H TABLE 5. EXTERNAL COUPLE DATA» 120¢9
1 /7 50H FROM THRU TA 8 TC » 120C9
2 / 20H JOINT JOINT 12009
511 FORMAT  5Xs 2{1Xs 129 1Xs 13 3}s 3F1143 ) 120C9
T00 FORMAT ( //25H TABLE 6« RESULTS } 230C9
701 FORMAT { //50H TABLE 6+ RESULTS —- USING STIFFNESS DATA FROMy 230C9
1 18H PREVIOUS PROBLEM » A5 ) 23009
711 FORMAT ( / 49H INPUT DATA IS SUCH THAT ONLY BEAM 4 230C9
1 20HQUTPUT 1S REQUIRED 230C9
2 /7 10Xs 40H BEAM MOMENTS ARF TOTAL PER BFAM s /) 230C9
712 FORMAT ( / 49H INPUT DATA 1S SUCH THAT ONLY SLAB , 230C9
1 20HOUTPUT 15 REQUIRED 230C9
2 // 10Xs 40H SLAB MOMENTS ARE PER UNIT WIDTH ’ 230C9
3 /  10Xs 47H COUNTERCLOCKWISE BETA ANGLES ARE POSITIVE 230C9
4 // 25Xs S50H LARGEST BETA » 230C9
5 /  25Xe S50H PRINCIPAL X TO ) 23009
713 FORMAT ( / 50H SLAB MOMENTS ARE PER UNIT WIDTH s 230C9
1 /  10Xs 40H BEAM MOMENTS ARE TOTAL PER REAM ’ 230C9
2 7/ 10Xs 47H COUNTERCLOCKWISE BETA ANGLES ARE POSITIVE /73 230C9
721 FORMAT{25X+51HBEAM A BEAM B BEAM C $+03MYO
1 S5HUPPORT 03IMY O
2 / 52H A s C DEFL MOMENT MOMENT MOMENZ30(C9
3 31IHT REACTION ) 03MYQ



722 FORMAT{25Xs51HBEAM A BEAM B BEAM C S+03MYQ
1 6HTATICS, 03MYO
2 / 52H A s C DEFL MOMENT MOMENT MOMEN230C9
3 31HT CHECK ) U3MYO
731 FORMAT{25Xs51HSLAB X SLAB Y SLAB XY SLAB LARGEST S$S,03MYO
1 6HUPPORT » 03MY0
2 / 52H A s C DEFL MOMENT MOMENT MOMEN230C9
3 31HT MOMENT MOMENT REACTION ) 03MYO
732 FORMAT(25Xs51HSLAB A SLAB B SLAB C SLAB LARGEST Ss03MYO
1 6HUPPORT , 03MYO
2 / 52H A s C DEFL MOMENT MOMENT MOMEN230C9
3 31HT MOMENT MOMENT REACTION ) 03MYO
733 FORMAT{25Xs51HSLAB X SLAB Y SLAB XY SLAB LARGEST $»U3MYO
1 6HTATICS 03MYO
2 / 52H A s C DEFL MOMENT MOMENT MOMEN230C9
3 31HT MOMENT MOMENT CHECK ) 03MYO0
734 FORMATI(25X951HSLAB A SLAB B SLAB C SLAB LARGEST S5,03MYO
1 6HTATICS 03MY0
2 / 52H Ay C DEFL MOMENT MOMENT MOMEN230C9
3 31HT MOMENT MOMENT CHECK ) 03MYO
741 FORMAT(25X+50HSLAB X SLAB Y SLAB XY LARGEST BETA sy 230C9
1 /  25Xs S50HMOMENT MOMENT MOMENT PRINCIPAL X T0O sy 23009
2 / 25X 51HBEAM A REAM B PEAM C SLAR LARGFST S,03MY0
3 6HUPPORT » 03MY0
4 / 52H A s C DEFL MOMENT MOMENT MOMEN230C9
5 31HT MOMENT MOMENT REACTION ) 03MYO
742 FORMAT(25Xs50HSLAB A SLAB B SLAB C LARGEST BETA sy 230C9
1 / 25X S50HMOMENT MOMENT MOMENT PRINCIPAL A T0 s 230C9
2 /  25X» 51HBEAM A BEAM B BEAM C SLAB LARGEST S,03MYO
3 6HUPPORT, 03MY0
4 / 52H A s C DEFL MOMENT MOMENT MOMEN230C9
5 31HT MOMENT MOMENT REACTION ) 03MYO
743 FORMATI(25X950HSLAB X SLAB Y SLAB XY LARGEST BETA s 230C9
1 /  25Xs 50HMOMENT MOMENT MOMENT PRINCIPAL X TO sy 230C9
2 / 25X 51HBEAM A BEAM B BEAM C SLAB LARGEST S,03MY0
3 6HTATICS 03MY0
4 / 52H A s C DEFL MOMENT MOMENT MOMEN230C9
5 31HT MOMENT MOMENT CHECK ) 03MYO
744 FORMAT(25Xs50HSLAB A SLAB B SLAB C LARGEST BETA sy 230C9
1 /  25Xs 50HMOMENT MOMENT MOMENT PRINCIPAL A TO s 230C9
2 /  25Xs 51HBEAM A BEAM B REAM C SLAB LARGEST S,»03MyQ
3 6HTATICS, 03MYO
4 / 52H A s C DEFL MOMENT MOMENT MOMEN230C9
5 31HT MOMENT MOMENT CHECK ) 03MYO
751 FORMAT ( 5Xs I2s 1Xs I3 4E11e3s 17Xs El11e3 ) 230¢9
752 FORMAT ( 5Xs 129 1Xs I3y 5E11e3s Fbals E11s3 ) 230C9
753 FORMAT ( 22Xy 3E11.3 ) 230C9
903 FORMAT ( / 25H NONE ) 120C9
905 FORMAT ( 46H USING DATA FROM THE PREVIOUS PROBLEM ) 120¢C9
910 FORMAT 43H ADDITIONAL DATA FOR THIS PROBLEM ) 120¢C9
980 FORMAT (///40H *%#%% UNDESIGNATED ERROR STOP *#*% ) 120C9
991 FORMAT ( //10H HRER [ 4y 120C9
1 33H DATA ERRORS IN THIS TABLE **%% ) 120¢9
992 FORMAT (///30H *x®%% PROBLEM TERMINATED 4 14 120¢9
1 20H DATA ERRORS #*%x*x ) 120C9
993 FORMAT ( //50H *x%¥* CAUTION, MULTIPLF LOAD OPTION MISUSED FO, 120C9
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1
994

1
995

1

1010

1020

1201

1203
1205

1210
1211
1212

30HR THIS OR PRIOR PROBLEM #xx#

)

FORMAT ( //29Xs 43HSUMMATION OF SUPPORT SPRING REACTION

Elle3 )

FORMAT ( / 29Xs 35HMAXIMUM STATICS CHECK ERROR AT STA v 13,

2H. =y El11e3 )
PROBLEM IDENTIFICATION

ITEST = 5H
KML = O
READ 12+ ( ANI(N)s N = 19 32 )
CALL TIC TOC (1)
READ 14 NPROB, ( AN2(N)y N = 1, 14 )
IF ¢ NPROB - ITEST ) 1020 9960, 1020
PRINT 11
PRINT 1
PRINT 13, ( AN1(N)y N = 1, 32 )
PRINT 159 NPROBs ( AN2(N)s N = 1y 14 )

INPUT TABLE 1

READ 20+ KEEP2, KEEP3s KEEP&4s KEEPS5,

NCD2s NCD3s NCD4s NCD59 MLy IPR, KROPT,

PRINT 100s KEEP2, KEEP3, KEFP4s KEEPS,

NCD2s NCD3s NCD4s NCD59 ML, IPRs KROPT,

NDE1 = ©
IF ( KML ) 1115y 1110» 1112
IF ¢ ML ) 1111s 1115, 1115
NDE1 = NDE1 + 1

GO TO 1115
IF ¢ ML ) 1115» 1113, 1113
PRINT 993
KML = ML

IF ( KEEP2 ) 9980s 1130» 1120
IF ( NCD2 ) 9980, 1130s 1125

' NDE1 = NDEl + 1
IF € ML ) 1135, 11454 1145
IF ( NCD2*NCD3*#NCD5 | 9980, 1145, 1140

NDE1 = NDEl1 + 1
IF ( NDE1 ) 9980, 1200s 1150
PRINT 991 NDE1

INPUT TABLE 2

PRINT 200
IF ( KEEP2 } 9980s 1201» 1230
NDE2 = ¢
IF ¢ NCD2 - 1 ) 1203 1205, 1203

NDE2 = NDE2 + 1
READ 21s MAs MCs HAs HCs THETA
PRINT 201s MAs MC» HAs HCs» THETA
IF ¢ MA = MC ) 1211s 1211 1210
NDE2 = NDE2 + 1
IF ¢ HA ® HC ) 12124 1212 1250
NDE2 = NDE2 + 1
GO TO 1250

ISTIFF

ISTIFF

I3

120C9
300C9
300C9
300C9
300C9

120C9
120C9
120C9
120C9
120C9
120C9
120C9
120C9
120Ce
120C9

120C9
03MYO0
120C9
03MYO
120C9
120C9
120C9
120C9
120C9
120C9
120C9
120C9
120C9
120C9
120C9
120C9
120C9
120C9
120C9
120C9

120C9
120C9
120C9
120C9
120C9
120C9
120C9
120C9
120C9
120C9
120¢C9
120C9



1230 IF ( NCD2 ) 9980s 12409 1235
1235 NDE2 = NDE2 + 1
1240 PRINT 905
PRINT 201y MAs MCs HAs HCs THETA
1250 IF ( NDE2 ) 9980, 1300, 1270
1270 PRINT 991s NDE2
----- INPUT TABLE 3
1300 IF ( ISTIFF ) 9980, 1301 1302
1301 PRINT 300
GO TO 1303
1302 PRINT 301
1303 IF ( XEEP3 ) 9980s 1304 1310
1304 NC13 =)
NCT3 = NCD3
NDE3 = 0
SWS = 0.0
GO TO 1335
1310 PRINT 905
DO 1325 N = 1 NCT3
PRINT 311 IN13(N)s JN13(N)s IN23(N1s JIN23(N),
1 D12N(NYs DI13N(N)s D22N(N)s D23NI(N),
1325 CONTINUE
PRINT 910
NC13 = NCT3 + 1
NCT3 = NCT3 + NCD3
1335 IF ( NCD3 ) 9980, 1337, 1340
1337 PRINT 903
GO TO 1372
1340 DO 1370 N = NC13, NCT3
———— IF STIFFNESS INPUT OPTION ISTIFF = 1, THEN 811
READ AND STORED AS D11 THROUGH D33
READ 339 IN13(N)s JINI3(N)s IN23(N)y UN23I(N),
1 D12N(N)s D13N(N)s D22N(N)y D23N(N)»
PRINT 311s IN13(N)s JN13(N)s IN23(N)y JUN23(N)s
1 D12N(N)s D13N(N)Ys D22N(N)y D23NI(NI»
IF € INI3(N) — IN23 (N} ) 1342, 1342y 134]
1341 NDE3 = NDE3 + 1
1342 IF ( JUN13(N) = JN23(N) ) 1344 1344 1343
1343 NDE3 = NDE3 + 1
1344 IF ( IN23(N) = MA ) 1346s 1346+ 1345
1345 NDE3 = NDE3 + 1
1346 [F ¢ UN23(N) = MC ) 1350s 1350, 1347
1347 NDE3 = NDE3 + 1
1350 SWS = SWS + ABS ( D1IN(N) + D12N(N)
1 + D23N(N) + D33N(N) )
1370 CONTINUE
1372 IF ( NDE3 ) 9980, 1400, 1375
1375 PRINT 991 NDES3
----- INPUT TABLE 4
1400 PRINT 400
IF { KEEP&4 ) 9980s 1401 1410
1401 NCl4 = 1

D1IN(N),
D33N(N)}

THROUGH B33 ARE

DIIN(N),
D33N(N!
D1IN(N),
D33NI(N])

+ D13N(N) + D22N(N)

120¢C9
120C9
120¢C9
120C9
120C9
120C9

03MYO
03MYO
03MYO0
03MYO0
03MYO
03MYOQ
120C9
120C9
120C9
120¢C9
120C9
120C9
120C9
120C9
120C9
120C9
120¢9
120C9
120C9
120C9
120C9
120C9

120C9
120C9
120C9
120C9
120C9
120C9
120C9
120C9
120¢9
120C9
120C9
120C9
120cC9
120¢C9
120C9
120C9
120C9

120C9
120C9
120C9
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NCT4 = NCD4 120¢C9

NDE&4 = 0 120C9

SWB = 040 120C9

GO TO 1435 120C9

1410 PRINT 905 120C9

DO 1425 N = 1+ NCT4 120C9

PRINT 411s INL1&4C(N)s JUNL4(IN)s IN24(N)s JUN24(N)s FANIN) s 120C9

1 FBN(N)s FCNIN}s QN(N)s SN(N) 120C9

1425 CONTINUE 120C9

PRINT 910 120C9

NC14 = NCT4 + 1 120C9

NCT4 = NCT4 + NCD4 120C9

1435 IF ( NCD& ) 9980, 1437, 1440 120C9

1437 PRINT 903 120C9

GO TO 1472 120C9

1440 DO 1470 N = NCl4s NCT4 120C9

READ 43y IN14(N)s JUNLGIN)s IN24(N}s JUN24(N)s FAN(N) 120C9

1 FBN(N)y FCN(N)y QN(N)s SN(N) 120C9

PRINT 411y IN14(N), JNLI&(N)y IN24(N)y JUN24(N)s FANIN)» 120C9

1 FBN(N)s FCN(N)s ON(N)s SN(N) 120C9

IF ¢ IN14(N) = IN24(N) ) 1442, 1442, 1441 120C9

1441 NDE4 = NDE4 + 1 120C9

1442 IF € UN14(N) - UN24 (N} ) 1444 1444y 14473 120C9

1443 NDE4 = NDE4 + 1 120C9

1444 IF ¢ IN24(N) — MA ) 1446y 14646, 1445 120C9

1445 NDE&4 = NDE4 + 1 120C9

1446 IF ( JUN24(N) = MC ) 1450s 1450, 1447 120C9

1447 NDE4 = NDE4 + 1 120C9

1450 SWB = SWB + ABS ( FAN(N) + FBN(N) + FCN(N) ) 120C9

IF ( ML ) 1455, 1470s 1470 : 120€9

1455 IF ( FAN(N)*FBN(N)*FCN(N)*SN(N) )} 1460s 1470, 1460 120C9

1460 NDE4 = NDE4 + 1 120¢9

1470 CONTINUE 120C9

1472 IF ( NDE4 ) 9980, 1500, 1475 120C9

1475 PRINT 991+ NDE4 120C9
C

Cr=—== INPUT TABLE 5

C

1500 PRINT 500 120c9

IF ( KEEPS ) 9980, 1501s 1510 120C9

1501 NC15 = 1 120C9

NCT5 = NCDS 120C9

NDES = 0 120C9

GO TO 1535 120C9

1510 PRINT 905 120C9

DO 1525 N = 1, NCTS 120C9

PRINT 5119 IN15(N)s JUNIS(N)s IN25(N)s JN25(N}, 120C9

1 TAN(N)s TBN(N)s TCN(N) 120C9

1525 CONTINUE 120C9

PRINT 910 120C9

NC15 = NCTS + 1 120C9

NCTS = NCTS + NCD5 120C9

1535 IF ( NCD5 ) 9980, 1537s 1540 120C9

1537 PRINT 903 120C9

GO TO 1572 120C9

1540 DO 1570 N = NC15s NCTS 120C9



1
1

1541
1542
1543
1544
1545
1546
1547
1570
1572
1575
1600

1650

1700

READ 53s IN15(N)s UN15(N)s IN25(N)s UN25(N)»
TAN(N)s TBN(N)s TCN(N)
PRINT 511 IN15(N}s JUN1S{N)s IN25(N), JN251(N)»
TAN(N) s TBN(N), TCN(N)
IF ( IN15(N) — IN25(N) ) 1542, 1542, 1541
NDES5 = NDES + 1
IF € JUN1IS(N) — JUN25(N) ) 1544, 1544 15473
NDES = NDES + 1
IF € IN25(N) - MA ) 1546s 1546, 1545
NDES = NDES + 1
IF € UN25(N) - MC ) 1570s 1570y 1547
NDES = NDES + 1
CONTINUE
IF ( NDE5 ) 9980, 1600y 1575
PRINT 991s NDES
NDES = NDE1 + NDE2 + NDE3 + NDE4 + NDF5
IF ( NDES ' 9980, 1700, 1650
PRINT 992, NDES
GO TO 1010
CONTINUE
COMPUTE FOR CONVENIENCE
IF ( ML ) 1885, 1875, 1875
MAP1 = MA + 1
MCP1 = MC + 1
MAP2 = MA + 2
MCP2 = MC + 2
MAP3 = MA + 3
MCP3 = MC + 3
MAP4 = MA + 4
MCP4 = MC + 4
MAPS = MA + 5
MCPS5 = MC + 5
KPROB = NPROB
THETA2 = THETA / 5729578
HB = SQRT ( HA®*HA + HC*HC + 240%HA*HC*COS
THETA1 = ASIN ( HC * SIN ( THETA2 ) / HB )
THETA3 = THETA2 - THETAl
CS11 = HC * SIN ( THETA2 ) / ( HA * HA * HA )
€512 = SIN ( THETA1 ) /7 ( HA * Hp )
CS13 = SIN ( THETA2 ) / ( HA * HC )
CS22 = HA * SIN ( THETAl ) / ( HB * HB %* HB )
CS23 = HA * SIN ( THETA2 ) / ( HAR * HB * HC )
CS33 = HA * SIN ( THETA2 ) / ( HC * HC % HC )
CBA "= 140 / ( HA * HA * HA )
CBB = 140 7/ ( HB * HB * HB )
CBC = 140 / ( HC * HC * HC )
Cl1 = COS ( THETAL )
C2 = COS ( THETAZ )
C3 = C0S { THETA3 )
51 = SIN t THETA1 )
$2 = SIN ( THETAZ2 )
§3 = SIN ( THETA3 )
Cls = C1 * C1
€28 = C2 % C2

(THETAZ2)

)

120C9
120C9
120C9
120C9
120¢C9
120¢9
120C9
120C9
120C9
120¢9
120C9
120C9
120C9
120C9
120C9
160C9
160C9
160C9
160C9
160C9

160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
230C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160CS
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
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1885

2130
2135
2140

2150

2300
2350

{35 = (3
S1s = S1
52% = 52
$35 = 53
CONTINUE

REWIND 1

REWIND 2

REWIND 3

IF { ML ) 2140, 2100, 2100

SET INITIAL CONDI
DO 2135 J =
DO 2130 I =

B(lyJ}
CllyJi
CM1(1 .0
EP1¢I+J)
DilsJi
CONTINUE
CONTINUE
DO 2150 I =
Afl) = 0
AM1It1} <
CONTINUE
DO 2350 J
DO 230C |
Wilsd) =
CONTINUE
CONTINUE
DO 2400 1 =
BMAL{ 1}
BMB(1}
BMC( )
BMBM1(])
BMBP1(1)
BMCM1 (1)
BMCP1(1)
BMBAL])
BMBBI(1)
BMBC (1)
BMBBM11( ]
g8MBBPI (]
BMBCMI (]
BMBCP11(]
CONTINUE

HoH

BEGIN FORWARD PAS

c3
51

$3

TIONS
1s MAP3
1+ MAP3
= 040
=z 040
= 0s0
= 0.0
= 0.0

1s MAP3
«0
0.0

1y, MCPS
1y MAPS
0«0

1s MAPS
0.0
040

<
.
o

*

L R I I Y
COoCQOOODOOOO

#o B U 0w oo u NN

QOO COLOCOOO

)
)
1
)

S -- SOLVE FOR RECURSION COEFFICIENTS

NK = MAP3
NL = MCP4
NF = 2

Ll = 28

L2 = 30

N1l = 5

N2 = 5

N3 = 5

DO 8000 J = 2y MCP4

160C9
160C9
160¢9
160C9
160C9
4JA8
C4 A8
17JA8
190C9

190C¢9
190C9
04.JA8
040A8
0auaB
23MR8
150L9
190¢9
190C¢9
190¢C9
20MY8
20MY8
190C9
230C9
230C9
2309
230C9
230C9
230C9
230C9
230C9
230C9
230C9
230C9
230¢9
230C9
230C9
230C9
230C9
230C9
230C9
230¢S
230C9
230C9

190C9
190C9
190¢9
REDIMEN
REDIMEN
130C9
190C9
190C9
190C9



JN =

----- RETRIEVE DATA

[ES IRV el

3110

3150
3160

N B W N e

WM

CALL DAT
p22M1
FAs F
TBP1

FORM SUBMATRIC

DO 3350 1

J - 3

NEEDED AT THIS J STEP

A2 { D11ls D12y D13y D22y D23y D33 D1Z2Ml>
sy D23M1, D33M1ls DI12P1y D13P1y D22P1ls D23P1

Bs FCs Qy S» FBM1y FCM1, FRPl, FCP1ly TAs T
TCP1y L2y JUNy ML )

ES

= 29 MAPY

COMPUTE TEMP CONSTANTS FOR SLAB STIFFNESS -- IF ISTIFF =

D11 THROUGH D33 COEFFICIENTS ARE ACTUALLY 811 THROUGH B33(TABLE 3)

IF ( ISTIF
B22MM

B23MM

B823MvV

B33Mv

GO TO 3120
B22MM
B23MM
B23MV
B33My

CONTINUE
COMPUTE STIFFN

F ) 9980s 3100y 3110

= [ €25 % D22MIUI-1) + 240 * (2 * 52 * D2
+ §25 * D33MI(I-1) ) / ( S1S * 535 }
(

H

- Cl * C2 * p2z2Mit(l-1)
( C1 * 52 + 51 % €2 ) % DZ3M1tI-1)

D13M1.
sy D33P,

130C9
130C9

BM1s TCM1,130C9

1y THE

aM1(I-1)

- §1 % S§2 ¥ D33M1{I-1) 3 /7 ( 51 % 52 * 5357
= (- Cl * C2 % D22M1I(1])
~ [ Cl ® 52 + S1 % C2 ) % D23MI(1)
~- S1 % S2 * D33MILI} ) /7 ( 51 * 52 * 535 )
= ( C1S % D22M1{I) + 2.0 * C1 * S1 * [H2Z3IM1(])
+ S1S % D33MI(I) ) / ( S25 * S35 )
= D22MY1(I-11
= D23M1(I-1})
= D23M1¢(1}
= D33M1(1)

ESS VECTORS FF AND EET2

K IS USED AS INDEX FOR FF AND EETZ SO THAT FF AND EET2 WILL 8E

STORED FROM 1
K = |
FF (K

EET2¢
EET2¢
EET21¢
EET2¢
EET2¢

IF ¢ ML )
TEMP CONSTANTS
COMPUTE REMAIN
IF ¢ ISTIF
Bl1ivM

811vy

TO MAP3 AS REQUIRED FOR SOLUTION PROCESS

-1
1) = QUI) + Qa5 % { — TA{I-1) + TA(I+1) ) /7 HA
+ 0«5 % { - TBM1(I-1) + TBPI(I+1) ) 7 HB
+ 045 * { - TCMIC{I) + TCP1t1) } 7/ HC

Ksl) = €522 % B22MM + CRE * FRM1(1-1)

Ke2) = €523 % { B23MM 4+ B23My )

K»3) = €533 * B33MV + CRC * FCM1(1}

Kesg) = 0.0

Keg) = (04,0

3350 3150 3150

B22MM, B23MM, B23Mv AND B33Mv ARE ALREADY COMPUTED

ING REQUIRED CONSTANTS

F ) 9980, 3160, 3170

= { 51S * $25 * D11(I-1)
+ 2.0 % C1 ¥ S1 % (2 * §2 * D12(1~1)
+ 240 % S1 * S2 * ( C1 * S2 4 S1 * C2 ) *
D13([-1) + C15 * C25 * D22(1~1}
+ 2.0 * C1 % C2 % { Cl % 52 + 51 % C2 } *
D23(1-1) + ( C1 * S2 + S§1 * C2 ) *% 2 % D33(1~-1)
} 7/t 815 * 525 )

= [ 515 * S$2S5 * D11(I}
+ 2,0 * C1 * 51 % C2 * 52 % p12(1}
+ 2.0 % 51 * 52 * ( C1 * 52 + S1 % C2 ) * DY3(1)
+ C15 * €25 * D22(1)

130C9

190C9

03MYOD
03MYO
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
03MY 0
03MYOQ
O3MYD
03MY O
03MY0
03MYO

O4NO9
190C9
190C9
190C9
190C9
190C9
150¢9
1%0¢9
190¢9
190C9

03MYD
03My0
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
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162

£ WN - H W SN - £ W - SV SN - SN = anE N -~ o\

SWN -

—

B11vP

B12VM

Bl2VV .

B12VvP

B12PP

B13VM

B13vv

B13vP

B13PV

B22vVv
B22PP

B23vv

|~~~ 0+ 0+ +~N++

P~ b~~~ b ~N

l ~+ ~+ ~N+++~N+++~ N+ +F Nt~

( C1 * 52 + S1 % C2 ) * D23(])

240 * C1 * C2 * ( C1 * S2 + S1 * C2 ) * D23(1) 160C9
( C1 * S2 4+ 51 % C2 ) %% 2 % D33(1) ) 160C9
( S1S * 525 ) 160C9
S1S * S2S * D11(1+1) 160C9
2,0 % C1 * S1 * C2 % S * D12(1+1) 160€9
240 % S1 * 52 * ( C1 * S2 + S1 *® C2 ) » 160C9
13(1+1) + C1S * C2S * D22(1+1) 160C9
20 * C1 * C2 * ( C]l * S2 + S1 * C2 ) » 160C9
23(1+1) + ( C1 * S2 4+ S1 * C2 ) #% 2 * D33(1+1) 160C9
/ ( S1S * 525 ) 160C9
—- S1 * C2 * g2 # D12(1-1) - S1 * $2S5 * D13(1-1)160C9
Cl * C2S8 * D22(I-1) 160C9
C2 * ( 240 % C1 * G2 4+ §1 * C2 ) * D23(1-1) 160C9
S2 * ( Cl * S2 + S1 * C2 ) % D33(1-1) ) 160C9
( S1S * S2 * S3 ) 160C9
- S1 * C2 * S2 % D12(]) - S1 * S28 * D13(1]) 160C9
Cl * C2S * D22(1) 160C9
C2 * ( 240 % C1 * S2 4+ S1 * C2 ) % D231(1) 160C9
S2 * ( Cl * S2 4+ S1 * C2 ) * D33(]) ) 160C9
( S1S * S2 * §3 ) 160C9
= S1 * C2 * 52 * D12(I+1) - S1 * Sp8 * D12(I+1)160C9
Cl * C2S * D22(1+1) 160C9
C2 % ( 2,0 % C1 * S2 4+ S1 * C2 ) * D23(1+1) 160C9
S2 * ( C1l * S2 4+ S1 * C2 ) * D33(1+1) ) 160C9
( S1S * S2 * S3 ) 160C9
~ S1 * C2 * S2 % DI12P1(I+1) 160C9
S1 * 525 * DI3P1(I+41) ~ Cl * C2S * D22P1{1I+1) 160C9
C2 # ( 2.0 % C1 * S2 + S * C2 ) % D23P1([+1) 160C9
S2 * (Cl * S2 + S1 * C2 ) * D33P1(1+1) ) 160C9
( S1S * S? * S3 ) 160C9
Cl1 * 51 * S2 % DI12(I-1) + S]1S * S? * D13(1-1) 160C9
ClS * C2 * D22(1-1) 160C9
Cl * ((Cl * S2 + 2,0 * 51 % C2 ) * D23(I-1) 160C9
S1 * ( Cl * S2 + 51 * C2 ) * D33(I-1) ) 160C9
( S1 * S2S * S3 ) 160C9
Cl * S1 * S2 * D12(]) + S1S * S2 * D13(]) 160C9
C1S * C2 * D22(1) 160C9
Cl * ( C1 * 52 4+ 2,0 * S1 % C2 ) * D23(I) 160C9
S1 * ( C1l * S2 + S1 * C2 ) * D33(1) ) 160C9
( S1 * 525 * 53 ) 160C9
Cl * 51 #* S2 * DI2(I+1) + S1S * S2 % D13(1+41) 160C9
C1s * C2 * D22(1+1) 160C9
Cl * ( Cl % 52 4+ 2,0 % S1 * C2 ) % D23(]+1) 160C9
S1 * ( Cl * S2 4+ S1 * C2 ) * D33([+1) ) 160C9
( S1 * S2S * 53 ) 160C9
Cl * S1 * S2 * D12P1(I) + S1S * S2 * D13P1(]) 160C9
C1S % C2 * D22P1(1) 160C9
Cl * (Cl * S2 + 2,0 * S1 % C2 ) * D23P1(1) 160C9
S1 * ( Cl *# 52 4+ S1 * C2 ) * D33P1(1) ) 160C9
( S1 * $2S * S3 ) 160C9
C2S % D22(I) + 2,0 * C2 * S2 % D23(]) 160C9
$2S * D33(I) ) /7 ( S1S * S3% ) 160C9
C2S * D22P1(I+1) + 240 * C2 * S2 * pP23P1(I+1) 160C9
$2S * D33P1(I+1) ) 7/ ( S1S * §3S ) 160C9
- Cl1 % C2 * D22(1) 160C9

160C9



3170

L WA=

N LW N

3310
3320

£ ON =

B23PV

B23PP

B33vv
B33PV

GO TO 3180

B11vM
Bl1lvv
B11VvP
B12VvM
Bl2vv
B12vP
B12PP
B13vM
B13vv
B13VP
B13Pv
B22vv
B22PP
B23vv
B23Pv
B23PP
B33vv
B33pv

L7 L T A

CONTINUE

COMPUTE STIFFNESSES CC,
K IS USED AS INDEX FOR CC,
STORED FROM 1 7O MAP3 AS REQUIRED

1F

CC(K»s1)
CC(Ks2)

CC(Ks3)

CC(K93)
CC(K+3)
CC(Ksy)

CC(Ks5)

= S1 * S2 * D33(1) )
( - C1 * C2 % D22P1(1)
- C1 ¥ 52 + 51 % C2)
= S1 % S2 * D33P1(])

- C1 * C2 * D22P1(1+1
- (. C1 *» S2 + 51 * C2 )
- S1 * S2 * D33P1(I+1) y / (
( C1S * Dp22(1)
+ S1S * D33(1) ) /7 (
( C1s * p22P1(1)
+ S51S * D33P1(I1) ) /
D11(I-1)
D11(1I)
Dl11(I+1)
D12¢I-1)
0121
Dl2(I+1)
D12P1(1+1)
D13(I-1)
D13(1)
D13(I+1)
D13P1(1)
D22(1)
D22P1(1+1)
D23(1)
D23P1(1)
D23P1(1I+1)
D33(1)
D33P1(1)

DDs AND EE
DD AND

3

nnw

+ 2.0 * C1 * S1 * D23P1(I)

/7

$25 * 8135

( 525 * S3S

)

* D23P1(I1)
) / ( S1 * S2 % 535 )
) N

* D23P1(I1+1)
S1 * 52 * 535
+ 2.0 * C1 * S1 * D23(1)

)

EE SO THAT CC»
FOR SOLUTION PROCESS

S1 * S2 * 53§

)

)

NPD AND EE WILL BE

160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
03MYO
03MYO
03MYO0
03MY0
03MYO
03MYO
03MYO
03MyQ
03MYC
03MYO
03MYOQ
03MYO
03MY0
03MYQ
03MYO
03MYO0
03MYO
03MYOQ
03MYO
03MYO

CS11 * B11VM + CBA * FA(I-1) 190C9
- 2.0 ¥ CS11 * ( B11VM + Bllvv ) 190C9

20 * CS12 * ( B12VM + B1l2vVv ) 190C9
= 2.0 ¥ CS13 * ( B13VM + B13VvV ) 190C9
+ CS23 * ( B23MM + B23pV ) 190C9
= 2.0 ¥ CBA * ( FA(I-1) + FA(I) ) 190C9
CS511 * ( B11lVvM + 4,0 ¥ B11vv + B1l1lVP 190C9
+ CS22 ¥ ( B22MM + 4,0 % B22yVv + B22PP ) 190C9
+ CS33 % ( B33MV + 4,0 % B33VvV + B33PV ) 190C9
+ 840 * ( CS12 * B12VV + (CS13 * B13Vy 190C9
+ (CS23 * B23vV ) + S(1) 190C9
+ CBA * ( FA(I-1) + 4.0 * FA(I) + FA(I+1) 190¢C9
+ (BB * ( FBM1(I-1) + 4,0 * FB(I) + FBP1(1+1)190¢9
) + CBC * ( FCMIU1) + 4.0 * FC(I) + FCP1(1) )190C9
20y 3310, 3320 190C9
1.0 190C9
= 20 *¥ CS11 * ( B1l1lVV + B1l1VP ) 190C9
- 240 ¥ CS12 * ( B12VV + B12VvP ) 190¢C9
- 2.0 ¥ C513 * ( B13VV + B13VvP ) 190C9
+ (Cs23 * ( B23Mv + B23PP ) 190C9
— 2.0 * CBA ¥ ( FA(I) + FA(I+1) ) 190¢C9

CS11 * B11VP + CBA * FA(I+1)

190C9
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S OON—=

£ WN =

)

DD (K1) = 0.0

DD(K»2) = c513 * ( B13VM + B13PV )

DD (K s 3) = 2.0 * CS13 % [ B13vv + B13Pv )
- 2.0 * (S23 * ( B23VVv + B23PV )
~ 2.0 * CS33 * { B33VV + B33PV )
+ CS12 * ( B12VM + B12PP )

- 2.0 * CBC * ( FC(I) + FCP1(I])

DD (K v4) = —~ 2.0 * CS12 * ( B12VV + B12PP )
- 2.0 * CS22 % ( B22VV + B22PP )
- 240 * CS23 * { B23VV + B23PP )
+ CS13 * ( B13VP + B13PV )

2.0 * CBB * ( FB(1) + FRP1(I+1)

DD(K»s5) = c512 * ( B12VP + B12PP )

EE(Ks1) = 040

EE(Ky2) = 040

EE(K3) = CS33 * B33PV + CBC * FCP1(I)

EE(K &) = €523 * ( B23PV + B23PP )

EE(K+5) = €S22 * B22PP + CBB * FBPl(1+1)

CONTINUE
PACK EET2 AS REQUIRED FOR SOLUTION PROCESS

EET2(1s1) = EET2(193)

EET2(1+2) = EET2(14)

EET2(193) = EET2(]+5)

EET2(144) = 040

EET2(1s5) = 040

EET2(2s1) = EET2(2+2)

EET2(2+2) = EET2(2+3)

EET2(243) = EET2(24)

EET2(294) = EET2(2+5)

EET2(2+5) = 0.0

IF

(

EET2(MAP2+5)
EET2 (MAP2 44)
EETZ2(MAPZ2+3)
EET2(MAPZ,42)
EETZ (MAP241)
EET2(MAP3,5)
EET2(MAP3 44)
EET2(MAP3,43)
EET2(MAP3,2)
EET2({MAP3,1)
ML )

HoH

W v ownn

EET 2(MAP2+4)
EET2(MAP2,3)
EET2(MAP2,2)
EET2 (MAP2,1)
0.0

EET2(MAP3,3)
EET2(MAP3,2)
EET2(MAP3,41)
040

0.0

4000 3380. 3380

PACK CC AS REQUIRED FOR SOLUTION PROCESS

CC(1ls1) = CC(1y93)
CC(192) = CC(1l4)
CC{1les3) = CC(1yr5)
CC(lea) = 0,0

CC(195) = 0,0

CC(291) = CC(2+2)
CC(292) = CC(2+3)
CC(29+3) = CC(244)
CC(294) = CCL2y5)
CC(2+5) = 0,0
CC(MAP2,5) = CC(MAP2,44)
CC(MAP2,44) = CC(MAP2+3)
CC(MAP2,3) = CC(MAP2,2)
CC(MAP2,2) = CC(MAP2,1)

)

190CS
190C9
190C9
190C9
190C9
190C9
190C9
190c¢C9
190C9
190C9
190¢9
190¢9
190C9
190C9
190C9
190C9
190C9
190C9
190C9

190C9
190CS9
190C9
190C9
190¢9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190CS
190C9

190¢C9
190C9
190C9
190C9
190C9
190C9
190C9
190CS
190C9
190C9
190¢C9
190¢9
190C9
190C9



3450

3505

3510

3515

CCUMAP2,1)
CC(MAP3,5)
CCIMAP3 44)
CCUMAP3,3)
CC(MAP3,2)
CCIMAP3,11

COMPUTE TRANSPOSE OF

DO 3450 1 = 14
DDT(1s1)
DDT (142}
DDT(143)
DDT (1s4)
DDT (145)
CONTINUE
DO 3505 L = 3,
K = MAP3 -
DDT (Kol}
CONTINUE
DDT(1+1)
DDT(2+1)
DO 3510 L = 2,
K = MAP3 -
DDT(Ks2) =
CONTINUE
DDT(1,2) =
DO 3515 K = 1
DDT (Ky4) =
CONTINUE
DDT (MAP3,4)
DO 3520 K = 1,
DDT (Ks5) =
CONTINUE
DDT (MAP2,5)
DDT (MAP3,5)

PACK DDT AS REQUIRED
DDT(1s1)
DDT (192)
DDT(153)
DDT (1s4)
DDT(15)
DDT(251)
DDT (2421}
DDT (253}
DDT (294)
DDT(2+5) =
DDT (MAP2,5)
DDT (MAP2 44}
DDT {MAP2,3)
DDT (MAP2,2)
DDT (MAP2,1)
DDT (MAP345)
DDT (MAP3,4)
DOT(MAP3,3)
DDT (MAP3,2)
DDT (MAP3,1)

COMPUTE TRANSPOSE OF

Homoiouou

"

[F2N T O N A

0.0
CC{MAP 343}
CC(MAP3,2)
CC{MAP3,41)
0.0

0.0
DD AS DDT
MAP3

DD(145)
DD(1s&)}
DD(I+3)
DD(1s2)
DD(I,1)

o8 B N

MAP3
L+ 3
DDTiK~-2s1)

0.0
Ge0
MAP3
L+ 2
DDT{K~1+2)

0.0
MAP2
DDT(K+1e4)

= 00
MAP1
DDT (K+2+5)

040
0.0

FOR SOLUTION PROCESS
DDT(1+3)

DDT(194)
DDT(145)

De0

0e0
DDT(2+2)
DDT12+3)
DDT{2+4)
DDT(2+5)
0.0

= DDT(MAP2,4)
= DDT{MAP2,3!
= DDTIMAP2,2}
= DDT(MAP2,1}
= 0«0
= DDT(MAP3,3}
= DDT(MAP3,2}
= DDTIMAP341)
E

nou

0.0
040

EP AT PREVIOUS J STEP AS EET1 EXCEPT AT J

190C9
190¢C9
130C%
190C9
190C9
190¢Cs

190C9
1990C9
190C9%
1%0C9
190C9
190C9
190C9
190C9%
190C9
190C9
190C9
190C9
190C9
190C%
130C¢9
190C9
190C9
190C%
190C%
190C9
190C9
190CS
190C9
190C9
190CS
190C9
190C9

190C9
190¢C9
190C9
190C9
190CS
190C9
190¢9
180CS
190C9
190CS
190C9
190Cs
190C9
190C9
190¢C9
190¢9
190C9
180¢C9
190¢9
190C9
2
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3700

3705

3710

3715

3720

IF ¢ VU - 2 ) 998
DO 3575 K = 1,
DO 3570 I = 1,
EET1(IsK) =
CONTINUE
CONTINUE
GO TO 3600
DO 3590 K 1l
DO 3585 1 1l
EET1(IsK) =
CONTINUE
CONTINUE
CONTINUE

PACK tE AT THIS STEP AS EEP AND AS REQUIRED FOR SOLUTION PROCESS

DO 3700 I = 1
EEP(1,1)
EEP({241])
EEP(3,1)
EEP(&4s])
EEP(5,1)

CONTINUE

DO 3705 L = 3,
K = MAP3 -
EEP(1+K) =

CONTINUE
EEP(1+1)
EEP(1+2)

DO 3710 L = 2»
K = MAP3 -
EEP(2sK) =

CONTINUE
EEP(2s1) =

DO 3715 K = 19
EEP (4 4K) =

CONTINUE
EEP{4 sMAP3)

PO 3720 K = 1,
EEP(5sK) =

CONTINUE
EEP(5sMAP2)
EEP (5 sMAP3)

How o uwn

EEP{(1+1)
EEP(2s1)
EEP(3s1)
EEP(441)
EEP(5,1)
EEP(1+2)
EEP(242)
EEP(3,2)
EEP(4,2)
EEP(54+2)
EEP (5 sMAP2)
EEP (4 sMAP2)
EEP(3,MAP2)
EEP{2 s+MAP2)

LS I [ | N T L T I NS (I 1}

Os 3550y 3580
5
MAP3

040

5
MAP3
EEP(Ks 1)

MAP3
EE(]+5)
EE(ls4)
EE(]+3)
EE(]Is2)
EE(I,1)

MAP3
L+ 3
EEP(1+K-2)

0.0

0.0
MAP3

L+ 2
EEP(2+K-1)

0«0
MAP2
EEP{49K+1)

= 060
MAP1
EEP(5,K+2)

0.0
0.0

nn

EEP(3,1)
EEP(4,41)
EEP(5+1)

0.0

0.0

EEP(2+2)
EEP(342)
EEP(4+2)
EEP(5+2)

0.0
EEP{4sMAP2)
EEP(3sMAP2)
EEP(2sMAP2)
EEP(1+MAP2)

#onun

190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9

190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190¢C9
190C9
190C9
190C9
190C9
190C9

190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9
190C9



EEP (1 sMAP2}
EEP(59MAP3)
EEP(49MAP3)
EEP (3 sMAP3)
EEP {2 sMAP3)
EEP(1sMAP3)
CONTINUE

0.0
EEP{3sMAP3)
EEP(2yMAP3 !
EEP(1sMAP3)
0.0
0.0

INDICES NKs NLs NFs N1s N2y N3s» Lls L2 FOR SOLUTION PROCESS

ARE DEFINED PRIOR TO DO 5000 LOOP

REPLACE AM2s AM1, BM1 WITH PREVIOUS COEFFICIENTS

CALL RFV { AM2s AM1s L1 » 1 s NK )
CALL RFV ([ AMl1y A 4 L1 9 1 4 NK )

IF ( ML ) 4210s 4180 4180
CALL RFV ( BM1l, B s Ll » L1 5 NK )

GO TO 4220
READ D AND E MULTIPLIERS FROM TAPE 13
READ (3) (( D(IsK) s EC(IsK) s I = 1,NK)

GO TO 4280
CALCULATE RECURSION MULTIPLIER E
CALL RFV ( E s EP1s Ll s L1 5 NK )
CALCULATE RECURSION MULTIPLIER EP1
CALL MBFV (EET1,s BM1s EP1,s L1 L1 s NK
CALL ABF (DDT » EP1y EP1s L1 NK s N2
CALCULATE RECURSION MULTIPLIER
CALL SMFF ( E 4 BM1y D s L1
CALL RFvV ( BMl, CM1s L1 » L1
CALL RFvV ( CM1y, C » 1 » L1
CALL MBFV (EET2, BM1s C , L1
CALL ASFV (D 4 C s D 4 L1

’
)

-

NK )
NK )
NK )
L1 »
L1 »
NK

NK
NK
N3

* o v o w e Uew

CALL ABF ({ CC s D o D L1
CALL INVR6 ( D 4 L1 s NK
CALL CFV (D 9 L1 » L1 » NK » -1,)
CALCULATE RECURSION COEFFIECENT C
CALL MFB ( D 4 EEPy C 4 L1 4 NK » N1
CALCULATE RECURSION COEFFIECENT B
CALL MFFT ( D s EP1sy B s L1 s NK )
CALCULATE RECURSION COEFFIECENT A
CALL MFFV. ( E 4, AM1y A 4, L1
CALL MBFV (EET2, AM2, ATM, L1
CALL ASFV (A 5 ATM, AM2, L1
CALL ASFV ( AM2,-FF 5 ATM, L1
CALL MFFV (D 4 ATMy A , L1
SAVE A COEFFICIENT ON TAPE 1
WRITE (1) C A(I)s I = 14NK )
IF ( ML ) 4400y 4600y 4500
READ (2)
GO TO 5000
SAVE D AND E MULTIPLIERS ON TAPE 3

NK
NK
NK
NK
NK

* * ¢ v 9
e
. ® ¢ v

-

LR R

K

N1

N1
+1
-1

WRITE (3) (0 DI1sK)sE(T 9K) 9 I=19NK)y K=1sNK)

SAVE B AND C COEFFICIENTS ON TAPE 2

WRITE (2) (( B(IsK)sC(IsK}s I=1sNK)s K=1sNK)

CONTINUE

1 sNK

BEGIN BACKWARD PASS -— COMPUTE RECURSION EQUATION

BACKSUBSTITUTE AND COMPUTE DEFLECTIONS

)

190¢C9
190¢CS9
190CS9
190C9
190CS
190¢S9
190C9

190C9
190C9
190C9
190C9
190C9

190C9
190C9

190C9

190¢C9S
190C9

190CS
190C9
190C9
190C9
190C9
190C9
190C9
190C9

190C9
190C9

190C9
190C9
190cC9
190C9
190¢9

190C9
190C9
190¢C9
190C9

190C9

190C9
190C9
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BACKSPACE 1 20MYB
RACKSPACE 2 20MyY8
CALL RFV { WINFsNL)s A 5 L1 5 1 5 NK ) 184L9
BACKSPACE 1 20MY8
BACKSPACE 2 20MY8
READ (1} { A{l}ls 1 = 1sNK ) 20MY8B
READ (21  ({ BtlsK) » ClIsKls I = 14NK} 4 K = 14NK) 20MYB
BACKSPACE 1 20MY8
BACKSPACE 2 20Mys
CALL MFFV (B 4 WINFsNL)s AMLs L1 s 1 5 NK ) 18JL9
CALL ASFV (A 4 AM1s W(NFsNL-1} s L1 o 1 o NK » +1 ) 18JL9
NLMZ = NL - 2 20MY8
C NOTE THAT NLM2 = MCP2
DO 6000 L = NF s NLM2 190Cy
J = NLM2 + NF - L 190(C9
BACKSPACE 1 190¢9
BACKSPACE 2 190(C9
(e READ A COEFFICIENT FROM TAPE 1
READ (1) { A(l)s 1 = 14NK ) 190C9
Qo e READ B AND C COEFFICIENTS FROM TAPE 2
READ (2) ({ B{I+K) s CtIsK)s I = 14NK) 4 K = 1sNK!} 190C9
BACKSPACE 1 190¢9
BACKSPACE 2 . 190C9
CALL MFFV (B sWINFsJ+1)se AM1, L] 4+ 1 s NK 15JL9
CALL MFFV (€ sW{NFsJ+2)y AM2, L1 4 1 4 NK ) 15419
CALL ASFV  ( AMl, AM2Z, AM1s L1 s 1 4 NK 5 +1 } 190C9
CALL ASFV (A 4 AMLIWINFsJ) 4 L1 5 1 s NK s +1 ) 15JL9
6000 CONTINUE 190C9
C
C o COMPUTE AND PRINT RESULTS
C
PRINT 11 230C9
PRINT 1 230C9
PRINT 13, { ANI(N)s N = 1y 32 230C9
PRINT 164 NPROB,y ( ANZ2(N)s N = 1+ 14 1} 230C9
IF € MU ) 61159 6110 6110 230C9
6110 PRINT 700 230C9
GO TQO 6120 230¢C9
6115 PRINT 701 KPROB 230C9
6120 IF { SWS ) 99B0s 6125 6140 300C9
6125 PRINT 711 300¢C%
IF { KROPT ) 9980s 6130+ 6135 300C9
6130 PRINT 721 300C9
GO TO 6215 300Ce
6135 PRINT 722 300C9
GO TO 6215 300C9
6140 IF ( SWB ) 9980, 6145, 6180 300¢9
6145 PRINT 712 300¢C9
IF ( KROPT 1} 9980y 6150, 6165 300C9
6£1%0 IF { IPR } 9980+ 61554 6160 300¢9
6155 PRINT 731 300Co
GO TO 6215 300¢9
6160 PRINT 732 300C9
GO TO 6215 300C9
6165 IF ¢ IPR ) 9980, 6£170s 6175 300C9

6170 PRINT 733 300C9



6175
6180

6185
6190

6195

6200
6205

6210
6215

W= £ WN - VP wN -

£ ON =

W N =

GO TO 6215 300C9
PRINT 734 300C9
GO TO 6215 300C9
PRINT 713 300C9
1F ( KROPT ) 9980y, 6185 6200 300C9
IF (¢ IPR ) 9980y 6190, 6195 300C9
PRINT 741 300C9
GO TO 6215 300C9
PRINT 742 300C9
GO TO 6215 300C9
IF ( IPR ) 998B0s 6205y 6210 300C9
PRINT 743 300C9
GO TO 6215 300C9
PRINT 744 300C9
CONTINUE 300C9
SUMR = 0.0 230C9
STEMP = 04,0 230C9
ITEMP = - 2 230¢9
JTEMP = - 2 230C9
DO 7000 J = 24 MCP4 230C9
UJN = J - 3 230C9
RETRIEVE DATA NEEDED AT THIS J STEP
CALL DATA2 ( D11y D12s D13y D22, D23, D33, D12M1l,s D13M1, 130C9
D22M1y D23M1, D33M1ls D12P1,s D13Pls D22P1s D23P1ys D33P1s 130C9
FAs FBy FCy Qs Sy FBM1l, FCM1, FBPly FCPly TAs TBM1ls, TCM1,130C9
TBP1s TCP1y L2y UNy, ML 1 130C9
DO 6250 1 = 24 MAP4 230C9
COMPUTE TEMP CONSTANTS FOR SLAB STIFFNESS -- IF ISTIFF = 1y THE
D11 THROUGH D33 COEFFICIENTS ARE ACTUALLY B11l THROUGH B33(TABLE 3)
IF ¢ ISTIFF ) 9980, 6216y 6217 03MYO
Bllvv = ( S1S * 525 * DI1(1) 03MYO
+ 240 * C1 * S1 * C2 * S2 * pl2(1) 160C9
+ 240 % S]1 * S2 * ( (C1l * S2 4+ S1 * C2 ) * D13(1) 160C9
+ C1S * C2S * D22(1) ) 160C9
+ 2,0 % C1 * C2 * ( Cl * S2 4+ S1 * C2 ) * D23(I) 160C9
+ ( Cl * S2 + S1 * C2 ) **% 2 % D33(1) ) 160C9
/ 515 * 525 ) 160C9
B12MV = ( — S1 % C2 * S§2 % DI2M1(I) -~ S1 * S25 * D13M1(1)160C9
- C1 * C2S * D22M1 (1) 160C9
= C2 % (2,0 * C1 * S2 4+ S1 * C2 ) * D23M1(1) 160C9
= 52 % ((C1 * S2 4+ S1 * C2 ) * D33M1(]) ) 160C9
/ ( S1S * S2 * S3 ) 160C9
Bl2vv = ( - S1 * C2 % S2 * D12(]) - S1 * S2S * D13(1) 160C9
- C1 * C25 * D22«(1) 160C9
~ C2 * ( 2,0 % C)1 * S2 + S1 #* C2 ) % D23(I) 160C9
-~ S2 * (Cl * S2 + S1 * C2 ) * D33¢(1} ) 160C9
/ ( S15 ® 52 * S3 ) 160C9
B12PV = ( - S1 * C2 * S2 * D12P1(1) - S1 * $25 * D13P1(1)160C9
= C1 * C25 * D22P1(1) 160C9
~ C2 * ( 240 * C1 * S2 + S1 * C2 ) * D23P1(1) 160C9
= S2 * (Cl * S2 4+ S1 * C2 ) * D33P1(I) ) 160C9
/ ( S1s * s2 * S3 ) 160C9
B13MV = ( C1 * S] * S2 * D12M1(1) + S1S * S2 * D13M1(I) 160C9
+ C1S * C2 * D22M1(1) 160C9
+ C1 * ((Cl * S2 4 2,0 % 51 % C2 ) * D23M1(1]) 160C9
+ S1 * ( Cl * S2 + S1:% C2 ) * D33M1(]) ) 160C9
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£ WN E

£ WON =

6217

6218

B13vv

B13PV

B22Mv
B22vv
B22PV

B23Mv

B23vv

B23PV

B33Mv
B33vv
B33Pv

GO TO 6218
B11VVv
B12Mv
B12VVv
B12PV
B13Mv
B13vv
B13Pv
B22MV
B22vv
B22PV
B23Mv
B23vv
B23PV
B33Mv
B33vv
B33PV

CONTINUE

L LA T | I T Y [ A ¥ A | N 7 { [ 1 (A [ T

/ ( S1 % 525 % S3 )

( C1 * S1 % S2 * D12(]) + S1S * S2 * D13(])
+ C1S * C2 * p22(I)

+ C1 * (( C1 % S2 + 2,0 % S1 % C2 ) * D23(1)
+ 51 % (C1 % S2 + S1 * C2 ) * D33(1) )

/ { S1 * 525 #* S3 )

( C1 * s1 * S2 % D12P1(1) + S1S * S2 * D13P1(1I)
+ C1S * C2 * D22P1(1)

+ C1 % (Cl % S2 « 2,0 % S1 % C2 ) % D23P1(I)
+ S1 * ( C1l % S2 4+ S1 * C2 ) % D33P1(]) )

/ { S1 * 525 * s3 )

{ €25 * D22M1(1) + 2,0 % C2 * S2 % D23M1(1)
+ 52S * D33MI(I) ) / ( S1S * $3S )

{ C25 % D22(]) + 2,0 * C2 * S2 * D23(1)

+ 525 * D33(1) ) /7 ( S1S * 535 )

{ C25 % D22P1(1) + 2.0 % C2 * S2 % D23P1(])
+ S2S5 * D33P1(I) ) / ( S1S * $3S )

( — C1 * C2 * D22M1(1)

- C1 * 52 + S1 % C2 ) * D23M1(1])

= S1 * 52 % D33M1{1) ) /7 ( S1 * S2 * S35 )
( - C1 % C2 % p22(1)

= { C1l * S2 + S1 *# C2 ) #* D23(1)

= S1 * S2 % D33(1) ) /7 ( S1 % 52 % S35 )

( = C1 *# C2 % D22P1(1)

- Cl ®# 52 + S1 % C2 ) % D23P1(1])

- S1 % S2 * D33P1(I) ) /7 ( S1 % S2 * S35 )
( C1S * D22M1(]I) + 2.0 * C1 % S1 * D23M1(1)
+ S1S * D33MI(I) ) / ( S2S5 % S35 )

{ C1S * D22(1) + 2.0 * C1 * S1 % D23(I)

+ S1S * O33(1) ) /7 ( 525 * S35 )

{ C1S * D22P1(1) + 2,0 * C1 * S1 % D23P1(])
+ S1S * D33P1(I) ) / ( S2S * $3S )

D11(1)

D12M1 (1)

Dl2(1)

D12P1 (1)

D13M1(1)

D13(1)

D13P1(I)

D22M1(1)

D22(1)

D22P1(1)

D23M1(1I)

D23(1)

D23P1(1)

D33M1<(1)

D33(1)

D33P1(1)

COMPUTE CONCENTRATED BENDING MOMENTS IN MODEL
= B11VV % CS11 * HA

BMA (1)

*
+

+

Wil-1,J)
Bl2vv * (S12 # HA
* { W(I-1sJ-1)
Bl3vv * (CS13 # HA

= 2¢0 * W(leJd) + W(I+19J) )

~ 20 * W(lsJ) + W(I+19J+1) )

160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
160C9
03MYO
03MYO
03MYO
03MYO0
03MYO0
03MYO
03MYO
03MYO
03MYO
03MYO
03MYO
03MYO
03MYO
03MYO
03MYO
03MY O
03MYO
03MYOQ

230C9
230C9
230C9
230C9
230C9



6220

6222

6224
6226

6228

6230

6232

6234

v

WS WN =

V& W=

VW N =

VP WwN =

VWA=

VW& WN =

[

L W(IeJ-1) = 2,0 * W(IsJ) + W(lsJ+1) ) 230C9

BMB (1) = B12VV * (CS12 * HB 230C9

o W(I=19J) = 260 * W(IeJ) + WlI+1,4J) ) 230C9

+ B22VV * (522 * HB 230C9

* 0 W(I-19J-1) =~ 2.0 * W(IsJ} + W(I+1sJ+1) ) 230C9

+ B23VV * (CS23 * HB 230C9

*( W(IsJ-1) = 240 % W(IeJ) + W(leJ+1) ) 230C9

BMC (1) = B13VV % (CS13 * HC 230C9

E { W(I=14J) = 240 * W(leJ) + W(I+1+J) ) 230C9

+ B23VV * (523 * HC 230C9

* ( W(I=19J-1) = 240 * W(lsJ) + W(I+1sJ+1) ) 230C9

+ B33VV * (CS33 * HC 230C9

*( W(Ted=1) = 2.0 * W(lyeJ) + W(IsJ+1) )} 230C9

IF ¢ J - 2 ) 9980y 6220 6222 02FEO
BMBM1(I) = 0.0 02FEO
BMCM1(1) = 0.0 02FEC

GO TO 6224 02FEO
BMBM1(I) = B12MV * (CS12 * HR 02FEQ

* o W(I=19d71) = 240 * W(lsJ=1) + W(I+14J-1) )230C9

+ B22MV * (CS22 * HB 230C9

* o W(I-19J-2) = 20 * W(IsJ-1) + W(I+1,J) ) 230C9

+ B23MV * (523 * HB 230C9

* ( W(lsJd=2) — 240 * W(lsJ-1) + W(IsJ) ) 230C9

BMCM1(1) = B13MV * (CS13 #* HC 230C9

* o W(I-1sJ-1) = 240 * W(lsJ-1) + W(I+1sJ-1) 1230C9

+ B23MV * (S23 * HC 230C9

® o W(I=19J=2) = 240 * W(IsJ-1) + W(I+1,J) ) 230C9

+ B33MV * (533 * HC 230C9

* o W(Ied=2) = 240 * W(lsJd=1) + W(IsJ) ) 230C9

IF ( MCP4 - J ) 9980, 6226y 6228 02FEO
BMBP1(1) = 0.0 02FEO
BMCP1(I) = 0.0 02FEO

GO TO 62130 02FEO
BMBP1(I) = B12PV * (CS12 * HR 02FEO

L W(I=19J41) = 240 * W(IsJ+1) + W(I+14J+1) )230C9

+ B22PV * (S22 * HB 230C9

* o WII=19Jd) = 240 * WII4J+1) + W(I+14J42) ) 230C9

+ B23PV * (CS23 * HB 230C9

* o WIIed) = 2,0 * W(IsJ+1) + W(IsJ+2) ) 230C9

BMCP1(I) = B13PV * (CS13 % HC 230C9

* ( W(I-19Jd+1) ~ 240 * W(IeJ+1) + W(I+1,J+1) 1230C9

+ B23PV * (CS23 * HC 230C9%

o WII=19J) = 2.0 * W(leJ+1) + WII+14J+2) ) 230C9

+ B33PV * (533 * HC 230C9

* ( W(IeJ) = 240 * W(leJ+1) + W(leJ+2) ) 230C9

BMBA(I) = FA(I) 7/ ( HA * HA ) 02FEO

* L W(I=19Jd) = 240 * W(leJ) + W(I+1,4J) ) 230C9

BMBB(I) = FB(I) / ( HB * HB ) 230C9

* o W(I=TeJ-1) = 240 * W(Isd) + W(I+1sJ+1) ) 230C9

BMBC(I) = FC(I1) 7/ ( HC * HC ) 230C9

* (W Ied=1) = 240 % W(leJ) + W(lsJ+1) ) 230C9

IF ( U - 2 ) 9980y 6232y 6234 02FEO
BMBBM1(1)= 0.0 O02FEO
BMBCM1(1)= 0.0 02FEO

GO TO 6236 02FEO

BMBBM1(1)= FBM1{(I) / ( HB #* HB

02FE0
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1 *o0WII=1sJ-2) = 2,0 % W(lsed-1) + Wil+1,J) ) 230C9
BMBCM1(I1= FCM1{I) 7 { HC * HC } 230C9
1 LWL ad=2) = 240 % W(lsJ-1) + WilsJ) 230C9
6236 IF { MCP4 —~ U ) 9980s 6238y 6240 02FEO
6238 BMBBP1(I}= Q.0 02FE0
BMBCP1{I)= 0.0 02FEO
GO TO 6250 02FEQ
6240 BMBBP1{I})= FBP1(I) 7 { HBR * HB ) 02FEO
1 oLOWII=1sd) = 2.0 % WllsJdsl) + W{I+1sJ+2) ) 230C9
BMBCP1(I)= FCP1(I) /7 ( HC % HC ) 230C9
1 oL WL ed) =~ 20 % WilsJ+1) + WllsJe2) 230C9
6250 CONTINUE 230C9
JSTA = J - 3 230C9
PRINT & 230C9
DO 6400 I = 2, MAP4 230C9
ISTA = | - 3 230C%
C-————(COMPUTE REACTIONS, STATICS CHECK»s SUMMATION OF REACTIONS AND
C MAXIMUM STATICS CHECK ERRQOR
REACT = = S{1) * W(l,J) 230C9
SUMR = SUMR + REACT 230C9
STACH = { BMA(I~1) = 2.0 * BMACI) + RMA(I+1) )} 7/ HA 230¢9
1 + { BMBMI{I-1) - 2,0 * RMAR(I) + RMBP1(T+1) ) / HB230c9
2 + | BMCMI{I) ~ 2.0 % BMC{I) + BMCP1(I) ) 7 HC 230¢9
3 + { BMBA(I-1) ~ 2.0 * BMSA(T) + RMRA(I+1) ) / HA 230C9
4 + { BMBBMI(I-1) — 2,0 * RMRR({1) + RMRRPI(1+1) ) /2309
5 HB + ( BMBCMI{I! - 2,0 * RMRC(I}) + BMBCP1(I1) ) / 230C9
6 HC = 045 * { ~ TA(I~1) + TAC(I+1) ) 7 HA 230C9
7 = 05 * { —~ TBMI(I~1) + TBPI(I+1) ) / HB 230C9
8 - 0as5 * { = TCMIL{1) + TCPI{IY } /7 HC - Q(]} 230C9
9 + S{I) * Wils, ) 230¢9
IF { ABS (STACH) - ABS (STEMPI } 6254, 6254, 6252 230C9
6252 STEMP = STACH 230C9
ITEMP = I54TA 230¢9
JTEMP = JSTA 230¢9
6254 CONTINUE 230C9
IF { SWS ) 9980, 6260 6280 300C9
6260 IF ( KROPT ) 9980, 6265s 6270 300C9
Commmm PRINT OUTPUT IF ONLY BEAMS EXIST
6265 PRINT 751 ISTAs JUSTAs WilsJ}s BMBA(I), BMBB(I), BMBC(I}, REACT 230C9
GO TO 6400 300¢9
6270 PRINT 751 I5TAs JSTAs W(lsJ)s BMBA(I)y BMBB(I)s BMBCI(I1s STACH 230C9
GO TO 6400 300¢o
e COMPUTE CONVENTIONAL BERNDING MOMENTS PER UNIT WIDTH
6280 CBMA = BMA(I) 7 ( HC % S2 ) + C15 * BMB(I) 7/ ( HA * S1 1300C9
1 4+ €25 % BMC{I) /7 { HA * 52 ) 230C9%
CBMB = C1S-* BMA(I} / ( HC * S2 ) + RMB(I) / ( HA * S1 1230¢9
1 + €3S % BMC(I) /7 ( HA * §2 230C9
CBMC = C2S * BMAI(I) / { HC % SZ ) + (3% * BMB(I1) / 230C9
1 { HA * S1 ) + BMC(])Y 7 { HA * 52 ) 230C9
CBMX = CBMA 230C9
CBMY = ( Cl1 * {2 * 53 % (BMA =~ €2 * S2 * (8MB 230C¢9
1 + Cl * S1 * CBMC )} ¢/ ( 51 * 52 » S3 } 230C9
CBMXY = { 53 % { C1 * 52 4+ §1 * (2 ) * CBMA - S25 * CBMB 230C9
1 + 51S * CBMC ) / ( 2.0 % S1 # 52 * §3 ) 230C9
Comeom e COMPUTE PRINCIPAL MOMENTS

CBMO = 045 * ( CBMX + CBMY 230C9



1 + SQRT [ 0s25 * { CBMX — CBMY ) *»*
2 + CBMXY » CBMxY )
CBMT = p.5 % { CBMX + CBMY ) :
1 ~ SART ( 0425 * ( CBMX - CBMY } **
2 + CBMXY #* CBMxy )
————— TEST TO PRINT ONLY MAXIMUM VALUE
IF { CBMX + CBMY | 6316, 6318, 6318
6316 PMMAX = CBMT
IF ( CBMX =~ CBMY ) 6340, 6330, 6320
6318 PMMAX = CBMO
IF ¢ CBMX = CBMY ) 6320, 6330, 6340
6320 ALF = ATAN ( CBMXY / ( 0«5 * ( CBMX = CBMY ) ) )
1 * 57.29578
IF { ALF ) 6322, 6324 6324
6322 BETAT = — ALF ~ 18040
GO TO 6345
6324 BETAT = = ALF + 18040
GO TO 6345
6330 IF { CBMXY ) 6332, 6334, 6336
6332 BETAT = 90.0
GO TO 6345
6334 BETAT = 0.0
GO TO 6345
6336 BETAT = 90.0
GO TO 6345
6340 ALF = ATAN { CBMXY / { Q.5 % ( CBMX -~ CBMY } ) )}
1 * 57,29578
BETAT = - ALF
~~~~~ CLOCKWISE ANGLES ARF NEGATIVE
6345 BETA = 0.5 * BETAT
IF { KROPT ) 9980+ 6350+ 6365
6350 IF ¢ IPR ) 9980, 6355, 6360

~~~~~ PRINT SLAE UR COMBINED SLAB-BEAM OQUTPUT
6355 PRINT 752+ ISTAs JSTAs WileJls CBMXs CBMY, CBMXY, PMMAX,

1 BETAs REACT
GO TO 6380
6360 PRINT 752y ISTAs JSTAs W{lsJls CBMA, CBMB, CRMC s PMMAX,
1 BETAs REACT
GO 710 6380
6365 IF { IPR ) 9980, 6370+ 6375
6370 PRINT 7529 1S5TAs JSTAs Wilsd)s CBMX, CBMY, CBMXYs PMMAX,
1 BETAs STACH
GO TO 6380 :
6375 PRINT 7529 I5TAs JSTAs WilsJ)s CBMAs CBMB, CBMC s+ PMMAX s
1 BETAs STACH
6380 IF ( SWB ) 9980, 6400, 6385
6385 PRINT 753+ BMBA(I}s BMBB(I}s BMBCI(]}
6400 CONTINUE
7000 CONTINUE

————— PRINT SUMMATION OF REACTIONS AND MAX STATICS CHECK ERROR
PRINT 994, SUMR
PRINT 995, ITEMP, JUTEMP, STEMP
CALL TIC TOC t(4)

GO TO 1010
2980 PRINT 980
9990 CONTINUE

230C9
230C9
230cC9
230C9
230C9

230C9
230C9
230C9
230C9
230C9%
230C9
230¢9
230C9
230C9
230C9
230C9
230C9
230C9
230C9
230C9
230C¢9
230C9
230C9
230C9
230C9
230C9
230C9

230C9
300C9
300C9

230C9
230C9
300C9
230C9
230C%
300C9
300C9
230C9
230C9
300C9
300C9
23009
300C9
230C9
230C9
230C9

300C9
300C9
120C9
120C9
120C9
120C9
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9999 CONTINUE 120C9
PRINT 11 120C9
PRINT 1 120C9
PRINT 13, ( ANL(N}» N = 1» 32 ) 120C9
CALL TIC TOC (2} 120C9

END 120C9



w N

SUBROUTINE DATA2 ( D
D22M1, D23M
FAs FBs FCy»

11y D12s D13
1s D33M1,
Qs So»

D22y D23,
D12P1s D13P1ls
FBM1, FCM1, FBP1

TBP1s TCP1,

L2s JUN» ML

)

D33
D22P1y
FCP1,

’

D12M1,
D23P1s
TAs

D13M1,
D33P1,
TBM1, TCM1,

THIS SUBROUTINE IS CALLED AT EACH J STEP IN THE STIFFNESS MATRIX
GENERATION AND AGAIN AT EACH J STEP WHEN COMPUTING RESULTSe

DIMENSION D11(L2)> D12(L2)s D13(L2), D22(L2)»
1 D33(L2)s D12M1(L2)s D13M1(L2)s D22M1(L2) s
2 D33M1(L2)s D12P1(L2)s D13P1(L2)s D22P1(L2),
3 D33P1(L2)y FA(L2), FB(L2) FC{L2)»
4 S(L2)y FBM1(L2)s FCM1(L2)s FBP1(L2)>
5 TA(L2)y TBM1(L2)s TCM1(L2)s TBP1{L2),

DIMENSION IN13( 70}y JN13( 70)s IN23( 70), JN23( 701,
1 D12N( 70)s D13N( 70)s D22N{ 70)s D23N( 70),
2 IN140 70)s JUN14( 70)s IN24( 70}y JN241( T70),
3 FBN( 70)s FCN( 70), QN( 701, SN 701,
& IN1S( 70)y JUN15( 70)s IN25( 70)s JUN25( 70),
5 TBN( 70}y TCN( 70}

COMMON / DATAZ / IN13, JUN13,s IN23, JUN23s INl&, JUNl4,
1 IN15s JUN15s IN25s JUN25»

2 D11Ns D12Ns D13Ns D22Ns D23Ns D32N»
3 FANs FBNs FCN» QN SNs TANs
4 NCT3, NCT4s NCT5s MAPS

98 FORMAT ( //30H UNDESIGNATED ERROR STOP )

305

310

315
320

DISTRIBUTE DATA FROM TABLE 3

DO 305 I = 1 MAPS
D111} = 0.0
D12(1) = 0.0
D13(1) = 040
D22(1) = 040
D23(1} = 0.0
033(1) = 0.0
D12M1(I) = 0.0
D13M1(1) = Q.0
D22M111) = 0,0
D23M1(1) = 0.0
D33M1(I) = 0.0
D12P1(1) = 0.0
D13P1(1) = 0.0
D22P1(1) = 0,0
D23P1(I) = 0.0
D33P1(I1) = 0.0
CONTINUE
IF ( NCT3 ) 980s 400, 310
DO 360 N = 1, NCT3
I1 = IN13(N) + 3
12 = IN23(N) + 3
IF ( UN - UN13(N) ) 345, 315, 315
IF { UN23(N} - UN ) 330, 320, 320
DO 325 I = [1s ]2
D11(I? = D11(I) + DIIN(N}
D12(1I? = D12(I) + D12N(N)

D23(L2)
D23M1(L2)
D23P11(L2),

Q(L2),
FCP1(L2},
TCP1(L2)

D11N( 70,
D33N( 70),
FAN( 70),

TAN( 701,

IN24y UN24,

TBNs TCN»

130C9
130¢C9
130C9
130C9

130C9
130¢9

130C9
130C9
130C9
130C9
130C9
130C9
120C9
120C9
120C9
120C9
120C9
120C9
140C9
140C9
140C9
140C9
140C9
130C9

130C9
130C9
130C9
130C9
130C9
130C9
130¢C9
130C9
130C9
130C9
130C9
130C9
130C9
130C9
130C9
130C9
130C9
130C9
130C9
130C9
130C9
130C9
130C9
130C9
130C9
130C9
130C9
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325
330
333
335

340
345
347
350

405

410

415
420

425
430
433
435

D13(1) = D13(I1) 4+ DI3N(N!
D22(1) = D22(1) + D22N(N)
D23 (1) = D23(1) + D23N(N)
D33(1) = D33(1) + D33N(N!
CONTINUE
IF ¢ (JUN-1) - UN13(N) ) 345, 333, 333
IF ( JUN23(N) - (UN-1) ) 345, 335, 335
DO 340 I = 11y 12
D12M1(I} = D12M1(1) + DI2N(N}
D13M1(I) = D13M1(I) + D13N(N)
D22M1(1) = D22M1(1) + D22N(N)
D23M1(I) = D23M1¢1) + D23N(N)
D33M1(I} = D33M1(I) + D33N(N}
CONTINUE
IF ¢ (UN+1) — UN13(N) ) 360y 347, 347
IF ¢ JN23(N) - (UN+1) ) 3603 350s 350
DO 355 I = 1y 1?2
D12P1(1) = D12P1(1) + DI12N(N)
D13P1(I) = D13P1(1) + DI13N(N)
D22P1(1) = D22P1(1) + D22N(N)
D23P1(I) = D23P1(I1) + D23N(N}
D33P1(1) = D33P1(1) + D33N(N)
CONTINUE
CONTINUE
DISTRIBUTE DATA FROM TABLE &
DO 405 I = 1, MAPS
FA(L) = 0,0
FBI(I) = 0.0
FC(1) = 0,0
QI = 0,0
St1) = 0,0
FBM1(1) = 0,0
FCM1(1) = 0,0
FBP1(1) = 0,0
FCP1(I) = 0,0
CONTINUE
IF ¢ NCT4 ) 980y 500 410
DO 460 N = 1, NCT4
I1 = IN14(N) + 3
I2 = IN24(N) + 3
IF ( UN — UN14(N) ) 4459 4154 415
IF ( JUN24(N) ~ JUN ) 430y 420y 420
DO 425 1 = I1s 12
FA(I) = FA(I) + FAN(N)
FB(I) = FB(I) + FBN(N)
FC(I) = FC(1) + FCN(N)
Q(I) = Q(I) + QN(N)
S(I) = S(I1) + SN(N)
CONTINUE
IF € (UN=1) = UN14(N) ) 445, 433, 433
IF € JUN24(N) = (UN-1) ) 445, 435, 435
DO 440 I = [1s 12
FBM1(1) = FBM1(1) + FBN(N)
FCM1(I) = FCM1(1) + FCN(N)

130C9
130C9
130C9
130C9
130C9
130C9
130C9
130C9
130C9
130C9
130C9
130C9
130C9
130C9
130C9
130C9
130C9
130C9
130¢9
130C9
130¢C9
130¢9
130¢9
130C9

130C9
130C9
130¢9
130¢C9
130¢9
130¢C9
130C9
130C9
130C9
130¢9
130C9
130¢9
130¢C9
130¢9
130¢C9
130C9
130C9
130C9
130¢9
130C9
130¢9
130C9
130¢9
130C9
130C9
130C9
130C9
130¢C9
130C9



440
445
447
450

505

510

515
520

525
530
533
535

540
545
547
550

555
560
600

CONTINUE
IF € (JN+1} = UNI4(NY ) 4605 44T 447
IF ¢ JN2&4{NY - (UN+1) ) 460s 4505 450
DO 455 1 = 11s 12
FBP1{I) = FBPI{I) + FBN(N)
FCP1(I} = FCPI{I1} + FCNIN)
CONTINUE
CONTINUE

DISTRIBUTE DATA FROM TABLE 5

DO 505 1 = 1, MAPS
TACLL) = 0,0
T8M1(1) = 0.0
TCM1(1) = 0.0
TBP1(I) = 0.0
TCP1(1) = 0.0
CONTINUE
IF ( NCT5 ) 980, 600, 510
DO 560 N = 14 NCTS
I1 = INIS(N} + 3
12 = IN25(N) + 3
IF € JN - UN1S(N} ) 545s 515, 515
IF ¢ JUN25(N) — UN )} 530 520, 520
PO 525 1 = 11s 12
TA(CL)Y = TACLI) + TANIN)
CONTINUE
IF L (JN=1) — UNIS(N) ) 545, 533, 51317
IF € JUN25{N) ~ {UN-1) ) 5455 535, K15
DO 540 I = 11, 12
TBMI(1} = TBMI(I) + TBAN(N)
TCMIC(IY = TCMI(1) + TCN(N)
CONTINUE
IF C (UN+1) = UN1I5(N) ) 560, 547, 547
IF { JUN25(IN) =~ (UN+1) ) 560, 550, 550
DO 555 I = J1s 12
TBP1(I) = TBPL1(1) + TBN(N)
TCPI(IY = TCP1(I) + TCN(N}
CONTINUE
CONTINUE
CONTINUE
RETURN

980 PRINT 98

END

130C9
130C9
130C9
130C9
130C9%
130¢9
130C9
130C9

130C9
130C9
130C9
130C9
130C9
130C9
130C9
130C9
130¢9
130C9
130C9
130C9
130C9
130¢9
130¢9
130C9
130C9
130C9
130C9
130C9
130¢9
130¢9
130C9
13009
130C9
130C9
130C9
130¢9
130C9
1320C9
130C9
130C9
130C9
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C
C
C

50
100

SUBROUTINE INVRE6 ( X » L1
CHxxxxx® THIS ROUTINE TAKES THE INVERSE OF A SYMMETRIC POSITIVE - DEF
MATRIX USING A COMPACTED CHOLESK] DECOMPOSITION PROCEDURE
A FULL DIMENSIONED MATRIX IS REQUIRED RUT ONLY THE LOWER
HALF IS USED BY THE 3 ROUTINES DRIVEN BY INVR6

DIMENSION X(L1sL1)

CALL DCOM1 { X 4 L1 4 L2
CALL INVLT1 ( X o L1 » o2
CALL MLTXL { X o L1 » o2
DO 100 I = 2 4 L2
KC =1 -1
DO 50 J =1 » KC
X(JyI) = X(14J)
CONTINUE
CONTINUE
RETURN
END

’

)
)

)

L2

)

19FES8
O5MR8B
O05MR8
O5MR8
O5MR8
15FE8
O5MR8
19FE8
G5MR8
19FE8
19FE8
19FES8
19FES8
19FES8
19FES8
19FES8
19FF8



Cxxx%%xx THIS SUBROUTINE PERFORMS DECOMPOSITION OF A GENERAL SYMMETRIC
MATRIX TO A LOWER TRIANGULAR MATRIX BY CHOLESK! DECOMPGOSITION

C

10

20

50

120

180

190
200

250

4000

350
400

500
15

SUBROUTINE DCOM1 ( X » 1l » L2}

DIMENSION X{L1sL1) » T(100)

FORMAT ( /85Xs* NON-POSITIVE DEFINITF MATRIX ENCOUNTFRED *

DO 20 T =1 s L2

T(I} = X{1.1)
CONTINUE
IF ( X{1s1} JLEs 0.0 ) GO TO 4000
X{1s1) = SQRT { X{1ls1) )
S1 = 1«0 /7 X(1s1)
DO 50 1 =2 5 L2
X{Is1) = Xt0Is1y » S1
CONTINUE
L2M1 = 2 - 1
DO 200 J = 2 s L?M1
S = (0.0
JMI = J - 1
DO 120 K = 1 » 4Ml
S = 5§ + X{JyK) * X{(JsK)
CONTINUE
IF ( X{JsJ) ,LEse S} GO TO 4000
X(JseJd) = SQRT ( XtJsJ) = 5 )
S1 = 1.0 / XtdsJ}
JP1 = J 4+ 1
DO 190 I = JP1 4 L2
5 = 0.0
DO 180 K =1 5 uMl
S = S + X(IsK) * X{JyK)
CONTINUE
XCIsJd) = ( X(IsJd) - & ) * 51
CONTINUE
CONTINUE
s = 0.0
DO 250 K = 1 L2M}
S = S 4+ X{L2sK) * X(L2.K}
CONTINUE
5 = X{L2,L2)y - §
IF { S «LEe 0«0 } GO TO 4000
X{L2sL2) = SQRT( §
RETURN
PRINT 10
X{1,1) = T(1}
DO 400 I = 2 5 L2
K=1=~1
X(Is1) = T(I}
DO 350 J =1 5 K
XtIsd) = XtJdsl
CONT INUE
CONTINUE

DO 500 I = 1, L2
PRINT 15, ( X(1sJ)s Jd=1,0L2 }
FORMAT  /+5X513E10e3 }
END

19FES8
03MYO
03MYO0
12MR8
12MR8
12MR8
12MR8
12MR8
05MR8
19FES
19FES8
19FES8
19FE8
19FES8
19FF8
19FER
19FE8
19F€E8
19FES8
19FES8
19FES
05MR8
19FES8
19FES8
19FES8
19FES8
19FEB
19FF8
19FES8
19FE8
19FEB
19FE8
19FE8
19FE8
19F€E8
19FES8
19FE8
05MR8
05MR8
05MR8
19FES
12MR8
12MR8
09APS
12MR8
12MR8
12MR8
12MR8
12MR8
12MR8
20MR9
20MR9
20MR9
19FESB
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SUBROUTINE INVLT1 ( X o L1 » L2 )
Cex¥¥¥%* THIS SUBROUTINE REPLACES A LOWER TRIANGULAR MATRIX BY
C ITS INVERSE
DIMENSION Xi(L1,L1)
DO S0 I =1 L2

X{IsI) = 140 /7 X{Is1)
S0 CONTINVE
L2M1l = L2 - 1
DO 200 J = 1 » L2M1
JP1 = U+l
DO 150 I = JP1 , L2
IM1 = -1
SUM = 0,0

L]
DO 120 K = J » IM1
SUM = SUM = X(I+K) * X(KsJ}
120 CONTINUE
X(IsJd) = X(IsI) % SUM
150 CONTINUE
200 CONTINUE
RETURN
END

SUBROUTINE MLTXL ¢ X » 1 » L2 )
CH*¥%¥%% THIS SUBROUTINE MULTIPLIES A LOWER TRIANGULAR MATRIX BY ITS

C IMPLIED TRANSPOSE GENERATING ONLY THE LOWER HALF OF THE
C SYMMETRIC RESULTS IN THE STORAGE ALLOTED TO THE ORIGINAL
C LOWER TRIANGULAR MATRIX

DIMENSION X(L1sL1)
DO 200 1 = 1 » L2
DO 150 J = 1 » I
SUM = 0,0
DO 100 K =1 » L2
SUM = SUM + X(KsI1) * X(KyJ)
100 CONTINUE
X(1sJ) = SUM
150 CONTINUE
200 CONT INUE
RETURN
END

19FE8
03MYO
03MYO
19FE8
19FF8
19FF8
19FF8
19FE8
19FE8
19FE8
19FF8
19FES8
19FE8
19FES8
19FES8
19FE8
19FF8
19F€8
19FEB8
19FE8
19FE8

19FE8
03MYD
03MYO
03MYO
03MYO
19FES8
19FE8
19FES8
19FE8
19FE8
19FEB
19FE8
19FES8
19FE8
19FES8
19FE8
19FES8
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SUBROUTINE MFFV { X » Y 5 Z s L1 » L5 s L2} C3MR8
Cuxxx®ax THIS ROUTINE MULTIPLIES A FULL MATRIX 13DE7
C TIMES A FULL MATRIX OR A VECTOR 13DE7
C ( X Y = 2} 13DE7

DIMENSION X(L1sL13} s Y{L1sLS5} & Z{L1,L5) 13DE7

M= 1 20MYR

IFC L1 #EQe LB } M = L2 20MY8

DO 110 J = 1,.,M 13DE7

DO 105 I = 1,L2 13DF7

SUM = (0,0 03MRB

DO 100 K = 1,L2 13DE7

SUM = SUM + XI{1+K) * Y(K,sJ} 03MR8

100 CONTINUE 13DE7
Z{1+J) = 8UM 03MR8

105 CONTINUE 13DE7
110 CONTINUE 13DE7

RETURN 13DE7

END 13DE7

SUBROUTINE SMFF  { X « Y s Z s L1y, L2 ) 19FE8
Crexx¥x® THIS ROUTINE MULTIPLIES TWO FULL MATRICES UNDFR THE ASSUMPTION 05MRB
C THAT THEIR PRODUCT WILL BEF SYMMETRIC ( XsYs AND Z ARE FULL 05MR8
C DIMENSIONED BUT ONLY THE LOWER HALF OF EACH IS USED ) 05MR8

DIMENSION  X{L1sL1) s Y(L1sL1} » Z{L1l,sL1} 19FES8

BO 110 J = 1 5 L2 19FES

DO 105 T =1 » J 19FES8

SUM = 0.0 19FES8

DO 100 K =1 4 L2 19FES8

SUM = SUM + X(JsK) *® Y{K,I) 19FE8

100 CONTINUE 1SFES8
ZtJ,1) = suMm 19FES8

105 CONTINUE 19FES8
110 CONTINUE 19FE8
RETURN 19FE8

END 1SFES8
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SUBROUTINE MFFT { X » Y 2 s L1 » L2} 18MR8
Cre%x%et THIS ROUTINE MULTIPLIES A FULL MATRIX 18MR8
C TIMES THE TRANSPOSE OF A SECOND FuLL MATRIX 18MR8
C ( X *# YT =2 18MR8

DIMENSION X(L1stL1) s Y{L1sL1) s Z{L1sL1) 18MR8

DO 110 J =1 s L2 18MR8

DO 105 I =1 s L2 18MR8

SUM = 0,0 18MR8

DO 100 K =1 , L2 18MR8

SUM = SUM + XI({I+K) * Y(JysK) 18MR8

100 CONTINUE 18MRB
Ztls»dl = SUM 18MR8

105 CONTINUE 18MR8
110 CONTIRUE 18MR8
RETURN 18MR8

END 18MR8



Cruduen THIS ROUTINE MULTIPLIES A BANDED MATRIX

C
«

SUBROUTINE MBF

V U XB 9 YF o 2F 4 L1

LS o

TIMES A FULL MATRIX OR A VECTOR
{ XB * YF = 2F )
DIMENSION XB( L1sLB ) 4 YF( L1sLS } o Z2FC
M1l = 1
IF{ Ll +EQe LS ) M1 = L2
L4 = LB/2
Lé = L4 + 1
Nl = L2 - L&
DO 110 M = 1,M]
DO 105 I = L6sN]
J =1 - 1L6
SUM = 0,0
DO 100 K = 1,4L8
SUM = XR([4K) #* YF(K+J4M) + SUM
100 CONTINUE
2F(14M) = SUM
105 CONTINUE
110 CONTINUE
Kl = 0
I1 =1
12 = L4
13 =1
I = LB
IFC 12 ) 1504 900s 150
150 DO 210 M = ] ,4M1
DO 205 I = 11412
SUM = 0,0
N =1
DO 200 K = 13, 14
SUM = XBI{IsN) * YF(K M) + SUM
N = N+ 1
200 CONTINUE
2F (1 sM) = SUM
205 CONTINUE
210 CONTINUE
IF( K1 ) 90043004900
300 Il = L2 - Lg + ]
12 = L2
I3 = L2 - LB + 1
16 = L2
K1 =1
GO TO 150
900 RETURN

END

L2

L1sL5

LB

)

)

C7DET
07DET7
07DEY
07DE7
O7DE7
20mys
20MYs8
07DE7
070€E7
VIDET
13DE7
130E7
O7DE7
cemys
O7DF7
06MY8
1CNO7
oeMY8
10NO7
10NO7
1CNO7
10NO7
C7DE7
C7DE7
UTDE?

. OTDE7

130F7
13DF7
oeMY8
CTI0E7
C70€7
OeMY8
C7DE7
1CNO7
CEMYB
10NO7
10NO7
10NO7
070E7
QIDF7
CrpE?
C7DE7
10NO7
10NO7
10NO7
10NO7
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SUBROUTINE MFB ( XF 4 YB 9 ZF 4y L1 5 L2 s LB } O7DE?
CHx®xRex THIS ROUTINE MULTIPLIES A FULL MATRIX VTDET
C TIMES A BANDED MATRIX 07DE7
e { XF % YB = ZF ) O7DE7

DIMENSION XF( L1sLl ) » YBU LByL1 )} 4 ZF( LlsL1 } 07DE7

L& = LB/2 O7DET

L6 = L& + 1 07DE?

Nl = L2 - L& 07DE7

DO 110 1 = L6sN1 0TDE7
J=1-16 07DE7

DO 105 M = 1,L2 07DE7

SUM = 0,0 06MY8

DO 100 K = 1.8 07DE7

SUM = YBUKsI) * XF(MsK+J) + SUM 06MY8

100 CONTINUE 19NO7
ZF(Ms1) = SUM 06MY8

105 CONTINUE 10NO7
110 CONTINUE 10NO7
Kl = 0 10NO7

11 =1 10NO7

12 = L& 07DE7

13 =1 08DE7

14 = LB 07DF7

IFC 12 ) 150, 900, 150 O7DE7

150 DO 210 1 = 11,y 12 10NO7
DO 205 M = 1,L2 07DET

SUM = 0,0° 06MY8

No= 1 UBDE?

DO 200 K = I3y }4 08DE7

SUM = YBUNsJ) ® XF(MsK) + SUM 06MY8

N=N+1 08DE7

200 CONTINUE 10NO7
ZF(Ms 1) = SUM 06MY 8

205 CONTINUE 10NO7
210 CONTINUE 10NO7
IFI K1 ) 900,300,900 10ND7

300 I1 = L2 - L4 + 1 07DE7
12 = L2 07DE7

I3 = L2 - LB + 1 07DE7

14 = L2 07DET

K1 = 1 10NO7

GO TO 150 10NO7

900 RETURN 10NO7

END 10NO7



C
C

SUBROUTINE ABF ( YB s XF 4 ZF s L1 » L2 » LB }
CHEXEX%% THIS ROUTINE ADDS A BANDED MATRIX

TO A FULL MATRIX
( YB + XF = ZF OR XF + YB = 2F )
DIMENSION YB{ L14LB J s XF({ L1sL1 } 5 ZF(L1sL1}
L4 = LB/2
Nl = L2 - L4
L6 = L4 + 1
DO 50 I = 1,L2
DO 40 J = 1,L2
ZF{lsJ) = XFU(lsJ)
40 CONTINUE
50 CONTINUE
DO 110 1 = L&sN}
J=1-16
DO 100 K = 1,LR
; ZF (T sK+J)Y = YBUISK) + XF(IlsK+)
100 CONTINUE
110 CONTINUE
K1 = 0
I1 =1
12 = La
I3 =1
14 = LB
IFL 12 Y 150, 900, 150
150 DO 210 I = [1s12
N =1
DO 200 K = 13, 14
ZF (T +K) = YBUIsN) + XF (14K}
N =N+1
200 CONTINUE
210 CONTINUE
IF(K1) 900s 300+ 900
300 Il = L2 ~ L4 + 1
12 = L2
I3 = L2 - LB + 1
14 = L2
Kl =1
GO TO 150
900 RETURN

O7DE7
O7DFE7
07DET
O7DE7
07DE7
C7DE7
07DE7
C7DE7
C7DE7
C7DE7?
U7DE7
07DE7?
07DE7
O07DE7
07DE?
C7DE7T
11DE7
10807
10NO7
10NO7
10NO7
07DE7

0BDE7

O7DF7
07DE7
10NO7
0BDE?7
C8DF7
11DE7
08DF7
10NO7
10NO7
10NO7
O7DE7Y
GIDET
07DE?
CIDE7

- 07DEY

10NO7
10NO7
10NO7
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SUBROUTINE ASFV { X » Y 9 Z » L1 9 L5 4 L2 5 SIGN }

Crx¥x%x® THIS ROUTINE ADDS OR SUBTRACTS 2 FULL MATRICES OR 2 VECTORS

C {t X =Y =2 OR X+ Y =21
DIMENSION X{L1sL5) s Y{LlsL5) s Z2(L1sL5)
M= 1
IFU L1 EQe LS } M = L2
IF ( SIGN ! 190s 50y 50
50 DO 110 J4 = 1M
DO 100 I = 1,12
ZiI,d) = XU1eJY + Y(1sJ)
100 CONTIRNUE
110 CONTINUE
GO TO 3200
190 DO 210 J = 1M
DO 200 1 = 14L2
2ZUIsd) 2 XUIsd) = Y{1sJ)
200 CONTINUE
210 CONTINUE
300 RETURN
END

SUBROUTINE RFV ( X » Y s L1 » L6 » L2
Cexxxxx® THIS ROUTINE REPLACES A FULL MATRIX OR A VECTOR
C ( X =Y

DIMENSION X(L1lsL5}) » Y{L1sL5)

M =1
IFU L1 #EQe LS ) M = L2
DO 110 J = 1M
DO 100 I =1 » L2
X(IsJd} = Yilsd)
100 CONTINUE
110 CONTINUE
RETURN
END

20MY8
20MY8
13DE7
13DE7
20Mys8
20MY8
13DE7?
13DE7
13DE7
13DE7
13DE7
13DF7
13DF7
13DE7
13DE7
13DE7?
13DFE7
13DE7
13DE7
13DE7

23MR8
23MR8
?3MR8
23MR8
20mMyY8
20MY8
23MR8
23MR8
23MR8
23MR8
23MR8
20MY8
23MR8



SUBROUTINE CFV [ X » L1 o LS » L2 » C )

20MY8

Chexxxn® THIS ROUTINE MULTIPLIES A FULL MATRIX OR A VECTOR RY A CONSTANT13DE?

C

100
110

10

11

12
1

30

40

50

60

70
990

[ X = C*X )}
DIMENSION X(L1sL5)
M =1
IFT L1 +EQe LS ) M = L2
DO 110 J = 1M
DO 100 I = 1sL2
X{Isd) = X{14J) * C
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE TIC TOC (4}
TIC TuC (1) COMPILE TIME

TIC TUC (2y = ELAPSED TM TIME
TIC T0C (31 = TIME FOR THIS PROBLEM
TIC TOC t4) = TIME FOR THIS PROBLEM AND ELAPSED TM TIME

FORMAT(///30X1GHELAPSED TM TIME = [5,8H MINUTESF9e3,8H SECONDS

FORMAT(///30X15HCOMPILE TIME = 415+8H MINUTESF943+8H SECONDS
FORMAT(///30X24HTIME FOR THIS PROBLEM = ,15,8H MINUTES,FGe3,

8H SECONDS )

I =4 -2

IF ¢ 1-1 ) 40+ 30s 30
Fia = F

CALL SECOND (F!

111 = F
11 = 111 7 60
FI2 = F = [1%60

IF ¢ 1 ) 50s 70s 60 -
PRINT 11y 11y FI2
GO TO 990
FI3 = F - Fl4
12 = FI3a 7 60
FI3 = F13 ~ [2%60
PRINT 12, 12y FlI3
IF { I-~1 ) 990s 990, 70
PRINT 10, Il FI2
CONTINUE
RETURN
END

13DF7
13DE7
20My8
20My8
13DE?
13DE?
13DE7
13DET
13DE7
13DE7
13DE7

240C6
20DET
03MYQ
20DET
03MY0
03MYO
25S5E6
255E6
?55F6
210v7
213Y7
255F6
25SE6
25SE6
255F6
25SE6
26317
21J¥7
255E6
75SE6
?55F6
255E6
255E6
21J9Y7
21JY7
06SE?
25SE6
255E6

187



This page replaces an intentionally blank page in the original.
-- CTR Library Digitization Team



APPENDIX 5

LISTING OF INPUT DATA FOR SELECTED EXAMPLE PROBLEM
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Problem 40l

NGt N
0— E _90

Five-beam Noncomposite Skew Bridge with Load at Midspan of Beam A

Fig Al. Geometry of the included problem,

191



192

CHG CEAQO136

401

SFODOHOHOFHOFHOFOMHHOOO®

CODED

8 2¢500E+00
0 8 8
1 8 7
) 7 8
1 7 7
0 8 0
0 7 0
2 8 2
2 7 2
4 8 4
4 7 4
6 8 6
6 7 6
8 8 8
8 7 8
0 0 8
0 8 8
8 4 8

AND RUN

2+.000E+00
24500E+04
2.500E+04
2¢500E+404
24500E+04
5.000E+06
54000E+06
5.000E+06
5+000E+06
54000E+06
54000E+06
5.000E+06
5,000E+06
5+000E+06
54000E+06

21 MAY 70

1 4
1«500E+02
0«.000E+00
0+000E+00
0«000E+00
0+ 000E+00

INCH-LB UNITS
PROBLEM SERIES 4 - FIVE BEAM NONCOMPOSITE SKEW BRIDGE WITH 8 X 8 INCREMENTS
5000 LB LOAD AT MIDSPAN OF BEAM a,

13

ANGLE THFTA2 =

-5.000E+03

15C DFG

0« 000E+Q0 2¢500E+04 0«000E+00
0«000F+00 2¢500E+04 04000E+00
0¢000F+00 24500E+04 0.000E+00
0e 000OF+00 24500E+04 04000E+00

1.000F+20
1.0U0E+20

1250E+04
14250E+04
1e250E+04
14250E+04



APPENDIX 6

COMPUTED RESULTS FOR SELECTED EXAMPLE PROBLEM
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PROGRAM  SLAB44 - MASTEw DECK =~ M,
CHG CEAQN]36 CODED aND RUN 21 May 70
PROBLEM SERIES 4 = FTIVF PEAM NONCOMPOSTTE

VORA
INCH=-LR UNITS

PROA
401 5000 LB L.OAD AT wmINSPAN OF RFAM 4. ANGLE THETAZ2 = 150 DEG
TARLE 1. CONTROL DATA
TARLE
c 3
HOL D FRCM PRECENTNG PROARLFM (1=HO[D) -0 -0
NUM CARDS INPUT THTS PRORLEM 1 4
MULTTPLE LOAD OPTION ( IF BLANK, PROBLEM IS SINGLE LOADTING --
IF ¢1le PARENT FOR NFAT PROB == IF ~1s A OFFSPRING PROR)
PRINT OPTION (IF wLANK,s MX MY MXY == IF 1le MA MR MC PRINTED)
REACTION GUTPUT OPTION (IF RLANKe SUPPORT KREACTION ==
IF le STATICS CHECK PRINTED)
STIFFNESS INPUT OPTION (IF RLANKe D11 TrHRY P33
IF 1e¢ 311 THKU 433 INPUT)
TARLE 2. CONSTANTS
NUMBER OQF INCREMENTS [N & DIRFCTTON Ma
NUMAER OF THCREMENTS IN C DIRECTION ~MC
INCREMENT LEWETH IN A DIRFCTION HA
[INCREMENT LENGTR IN C DIRFCTION HC
ANGLE BETWEFN A AxD C DIRFCTION Tn DECGRFEFES
TAHBLE <, JOINT STIFFNESS NATA
FROM THRU nhl n1z2 D13 paz ne3
JOINT  JOINT
0 0 ] & PeS00E+04 O O 2.5005’04 O
0 1 A 7T P2.500E+04 0, Ve ?e500F+04 0o
1 o 7 B 2.50nFE+04 0, 0, 25006+04 0,
i 1 7 T 2.500E+04 0. N 7+500E+04 0o
TABLE 4. BEAM STIFFNESS anND LOAD DATA
FROM THRU Fa F8 FC Q S
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TARLE s, EXTERNAL COUPLE OATA
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THETa2 = 150 DEC
LAPGEST HETA
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O 00
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