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PREFACE

A numerical method for the dynamic analysis of plates on nonlinear
foundations was developed during this study. The method offers the highway
engineer a rational approach for the solution of many plate and slab vibration
problems, including pavement slabs and highway bridges which can be idealized
as orthotropic plates.

The method was programmed and coded for use on a digital computer. Al-
though the program was written for the Control Data Corporation (CDC) 6600
computer it can be made compatible with IBM 360 systems. Copies of the pro-
gram presented in this report may be obtained from the Center for Highway
Research at The University of Texas at Austin.

This work was sponsored by the Texas Highway Department in cooperation
with the U. S. Department of Transportation Bureau of Public Roads, under
Research Project 3-5-63-56. The Computation Center of The University of Texas
at Austin contributed the computer time required for this study. The authors
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ABSTRACT

This work describes a discrete-element method for the dynamic analysis of
plates or slabs on nonlinear foundations. The method has been programmed for
a high-speed digital computer and can be used to obtain solutions to a wide
variety of plate vibration problems.

A step-by-step numerical integration procedure is employed to numerically
integrate the solution in time. The assumption of a linear variation of
acceleration during the time-step interval is utilized to develop a recursive
solution procedure. Recommendations for the selection of the time-step incre-
ment, based on the stability analysis of the algorithm, are presented.

The nonlinear analysis is performed by an iteration procedure which ad-
justs the load rather than the foundation stiffness. This so-called load
iteration method is presented as an alternative to the familiar stiffness
ad justment procedures. Although the closure is slower with regard to the
number of cycles required to reach equilibrium, a significant reduction in the
computer time per cycle is realized by load iteration.

The program has been developed to accept a general variation in the elas-
tic properties of the plate and in the nonlinear foundation characteristics.
Furthermore there is considerable latitude in the description of the plan con-
figuration and the dynamic loading.

Several example problems demonstrating the method are included, as is an

example of the preparation of data for computer input.

KEY WORDS: mechanics, orthotropic bridges, slabs, vibration.
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SUMMARY

The purpose of this work was the development of a numerical method for
dynamic analysis of plates or slabs on nonlinear foundations. From the
computer program which was developed, several example problems are presented
to illustrate the validity of the numerical procedure and the potential
application to highway bridge and pavement problems.

The computer program was developed to solve a model of the elastic slab
consisting of rigid bars and elastic joints and torsion bars. This idealiza-
tion, called a discrete-element model, has been successfully used to obtain
static solutions to slab problems. The inertia properties of the plate were
added to the static model in the form of lumped concentrated masses. Also
added to the static model was a method to dissipate emergy by viscous dampers
or dashpots.

The numerical technique which was developed to propagate the dynamic
response was, because of the nonlinear aspects of the problem a step-by-step
method. Values of plate deflection, moment, and foundation forces are deter-
mined at discrete time intervals.

The response of the plate is first evaluated at time t = t, Information
gained from the response at t0 is then utilized to determine the response at
some time At from to. The numerical technique therefore steps ahead an amount
At to obtain each new solution. For a bridge or pavement problem, many time
steps may be required to determine the response of the structure to a moving
load.

The selection of the time step increment At is an important factor in
obtaining correct and meaningful results. Included in this report is a simpli-
fied formula to determine the maximum time step increment. This formula has as
its variables the plate and foundation stiffness, the mass of the plate model,
and the increment length selected for the model representation of the plate.

To facilitate the use of this program for highway problems, the user
has been given a convenient tabular format for the organization of data for

computer analysis. For example, only two (2) data cards are required for the

ix



program to position on the slab a load moving with any velocity. As the
procedure steps ahead in time, the load is automatically advanced at the
correct speed.

The numerical method has been verified by solving several simple example
problems. First, the free vibration of a simply supported plate was studied
and the results from the program compared with theory. For this study, the
difference between numerical and theoretical results was insignificant.
Additional studies were run with moving loads, and again the results from the
numerical procedure were very satisfactory. An example of a slab connecting
the pavement with a bridge deck was studied. The foundation was idealized as
a bilinear curve, resisting downward deflection but permitting lift-off. The
results of this study showed the slab to 1lift free of the foundation and to
oscillate about the static deflection curve. Peak deflections, however, were

significantly greater than the static deflection,



IMPLEMENTATION STATEMENT

In this study, another tool has been developed for computer simulation
and analysis of slab systems. The computer program described in this work
may be used to study some of the dynamic effects of both moving loads and
nonlinear foundation support for pavement slabs.

The problems associated with dynamic analysis of highway structures
have long been untenable for the highway engineer. Although the use of
impact factor to amplify the static load coupled with a static analysis has
for years furnished the engineer a convenient design approximation, the dynamic
reponse characteristics of the structure have remained submerged due to the
extreme complication associated with the required dynamic analysis.

The potential application of this work ranges from sensitivity studies
of rigid pavement dynamics to the review of impact factors for certain types
of bridge structures. Furthermore, the coupling of research results of the
pavement dynamics project with this program will make available to the high-
way engineer a procedure which will permit the dynamic study of the vehicle,
slab, and foundation system.

Recommendations are made for further research in the area of pavement
dynamics, especially in the area of the foundation characteristics. Either
model tests or carefully controlled full scale tests should be performed to
develop data for a correlation study of the numerical method. As more infor-
mation becomes available about foundation properties, it will be possible to

modify and extend the computer method presented in this work.
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xvii
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Stiffness matrix coefficient

Partitioned matrix of ai . coeffi-
cients

Constant

Recursion coefficient vector
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Distributed viscous damping

Partitioned matrix of ci ., coeffi-
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Stiffness matrix coefficients
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Stiffness matrix coefficients

Isotropic plate bending stiffness



xviii
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CHAPTER 1. INTRODUCTION

This work presents a rational method for step-by-step dynamic analysis
of orthotropic plates on nonlinear foundations and uses a method of nonlinear
analysis in which the load vector is modified to reflect the nonlinearity,
instead of altering the stiffness matrix of the mathematical model between
iterations. This load iteration method is coupled with a linear acceleration
algorithm for the development of the analysis procedure. Linear accelerations
between each two stations in time are prescribed for model node points.

Motivation for development of the numerical procedure came from problems
encountered in the field of highway engineering, particularly those related to
pavement and bridge structures. The effect of vehicle motion on stresses and
deflections of highway structures has long been an unknown factor. To focus
on these highway problems, the method is applied to a bridge approach slab,
and the type of nonlinearity studied is a special bilinear foundation behavior,
to represent the loss of foundation support as the slab rises from the founda-
tion.

A computer program is developed to demonstrate the method of analysis,
using a simplified tabular imput form to describe the problem. While the
dynamic loading must be specified by the user, either periodic or nonperiodic
load, as well as stationary or moving, can be easily described. Furthermore,
the foundation characteristics are described by curves composed of straight

line segments.

Definition of the Problem

The effect of vehicle motion on highway structures has been a major con-
cern of highway and airfield engineers for some time, and large-scale tests,
such as the AASHO Road Test at Ottawa, Illinois (Ref 21), have served to focus
attention on the need for a method for evaluating it.

The lack of agreement about the importance of dynamic effects is apparent,
especially in the area of highway pavement design. At a recent special con-

ference of the Highway Research Board, Harr suggested a review of the hypothesis



that pavement loads are quasi-static and offered the possibility that energy
is transmitted in all directions from the point of contact of the wheel with
the pavement and may cause cracking and deterioration of the pavement at edges
and other points where there is no foundation support (Ref 7). On the other
hand, Jones et al have viewed the pavement problem as being essentially one of
statics (Ref 12). The results of their investigations suggested that the
dynamic effects are not significant, because of the great difference between
the speed of a vehicle and the velocity of propagation of elastic waves.

Thus, it appeared that an analysis tool which would permit qualitative
and quantitative study of some of the effects of dynamic loading on structural
pavements would be useful in determining the significance of the loadings and,
subsequently, in designing a wide range of structures. Therefore the develop~

ment of such a tool was chosen as the problem to be considered in this study.

The Discrete-Element Analysis Procedure

Over a period of years, developments by various investigators have led to
the discrete-element analysis procedure, which is the basis of the analysis
described in this report. The concept of this use of a discrete-element model
for plates can be traced to Ang and Newmark (Ref 3). Tucker extended the con-
cept for beams to grid and plate structures, using an alternating-direction
method as the basis for his work on solutions for the grid-beam structure of
a plate (Ref 24), and later Ang and Prescott presented model equations for
solving complex isotropic plate problems (Ref 2).

An orthotropic plate model was developed by Hudson in a study which ex-
tended the work of Tucker and refined the alternating-direction procedure for
solving the large number of equilibrium equations generated by the mathematical
model (Ref 9). A method for direct solution of these equilibrium equations
developed by Stelzer takes advantage of the banded nature of the equations
(Ref 20). 1In this method, the formulation of equilibrium equations results in
a partitioned stiffness matrix with a submatrix band width of five, i.e., two
submatrices on either side of the main diagonal partition.

A dynamic analysis of elastic plates based on a finite-difference method
was developed by Salani (Ref 19). Using an alternating-direction implicit
(ADI) iterative procedure, the transient and steady state response of isotropic

plates can be determined.



Basis of the Method for Vibration Analysis

The discrete-element model presented in this report is Hudson's model
extended to include mass and viscous clamping. The mass of the plate is lumped
at stations or node points, and viscous damping is absolute; that is, each
node point is connected to a fixed reference plane by a dashpot.

Solutions to the equations of motion are obtained at discrete points in
time. An algorithm based on the assumption of linear acceleration between
time stations is used to propagate the solution step-by-step. Nonlinear
analysis is accomplished by iteration for equilibrium at each time step. A
method is presented which does not require the adjustment of the stiffness
matrix during the iterative procedure. Instead, the loading is modified to
produce convergance to the equilibrium position.

Many techniques for step-by-step analysis of structural vibration have
been suggested, ranging from mathematically oriented methods to methods based
on assumptions of the nature of the motion between time steps (Refs 16, 19,
and 27). The latter technique was selected for use in this study of response

of plates on nonlinear foundations.

Application

The tool presented here permits qualitative and quantitative study of some
of the effects of dynamic loading on structural pavement and certain types of
bridges. With it a bridge can be idealized as a plate, which is more realistic
than idealizing it as a beam, and the program is general enough to permit the
study of a wide range of structures containing plate-like structures, floors
of multi-story buildings, certain types of aircraft structures, and the be-
havior of such structural grids as those which make up the deck of an offshore

drilling platform.
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CHAPTER 2. EQUATIONS OF MOTION FOR DISCRETE-ELEMENT MODEL

The model for dynamic analysis is developed by the addition of mass and
damping to node points of a discrete-element plate model. The equation of
motion is derived by the addition of inertia and damping forces to the model
load vector.

The equation of motion and the mathematical model presented in this
chapter pertain to linearly elastic thin plates in which lateral deflections
are small. Before the discrete-element model is considered, the classical
theory for isotropic and orthotropic plates is reviewed. The relationship
between the continuum plate equations and the discrete-element model can be
demonstrated by application of finite-difference approximations to the con-

tinuum expressions.

Classical Equation of Motion

The classical equilibrium equation for a plate on an elastic foundation

can be written as

) 2
cM 3 ™M oM
Xy y o [ dw
-2 = q-sw+zx-\| P =
axz Oxdy ay2 ox \ X Ox )
3/ éﬂ)
+ Sy \ Py Sy (2.1)

The positive sense for the deflection is upward, which causes the difference
in sign for the deflections and in-plane thrusts P from that given by
Timoshenko (Ref 22). The equation is valid for either isotropic or ortho-
tropic plates, as material properties do not influence the equilibrium ex-
pression.

The development of the equation of motion follows from D'Alembert's

principle (Ref 26). An inertia force equal to the negative product of mass



per unit area times acceleration is applied on a unit area of the middle plane

of the plate:

9
F = _p -—2 (2'2)

Viscous damping, included in the analysis, develops a force

= _. ow
g = 4 3t 2.3)

on the middle plane of the plate.
Adding Eqs 2.2 and 2.3 to the equilibrium equation yields the equation of

motion for a plate vibrating with small deflections:

32 M oM 2
. 33y 32 2 ‘aBe
> (p )3 (p )
A AR A (2.4)

Bending moments in the isotropic plate are found by the familiar rela-

tionships:

2 2
/
M = D\a—w+va—w) (2.5a)
X 2 2
3% oy
2 2
M = D<3_%+v3_vzv) (2.5b)
y ady 9x
2
M = -D(1 - v) ow (2.5¢)
Xy Oxoy



M,

Fig 1. Direction of positive plate moments.



where

3
p = —bBt (2.5d)

1201 - v2)

A sign change is noted when Eqs 2.5 are compared with the moment-curvature
relationships given by Timoshenko. Again, this is due to a reversal of the
positive w coordinate direction. The assumed positive moment directions for
the plate are shown in Fig 1.

The bending moments in a plate of an orthotropic material are of a similar

form (Ref 23):

2 2
M= D (2w, 2 ) (2.6a)
x ox y ay
, 22 2 .
Moo= D_|{ S, a—; ) (2.6b)
y y ay2 % %
2
_ O w
Mxy = "ny dxdy (2.6¢)

Substituting the more general Eqs 2.6 into Eq 2.4 gives the equation of

motion for orthotropic plates:

2 -~ 2 2 2
5 /[ 3w 37w \ ] 3 4 a w
2 L Dx 2 vy ay2 ) J + 2 Jxdy \ Xy axay )
2 2 2 2
+2 [ p ( 3w 9_5 ) ] = Q¥ c, dw
ay2 L Ty ay2 X 3y St Jt
3 oW o ow
+q'sw+ax<anx)+ay<Pyay) 2.7
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Fig 2. Discrete-element model of a plate or slab.
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Volterra and Zachmanoglou have presented numerical solutions of Eq 2.7 for
rectangular isotropic plates (Ref 26). However, the solution to Eq 2.7 be-

comes untenable for plates of variable stiffness and general support conditions.

Discrete~Element Model - Static Analysis

A relatively simple mathematical model of the orthotropic plate can be
constructed from rigid bars and elastic elements which simulate bending and
twisting properties of the plate. A convenient discrete-element plate model,
shown in Fig 2, was developed by Hudson (Ref 9) and Ingram (Ref 11). Torsion
bars simulate twisting characteristics of the plate while special elastic
joints are used to develop bending properties. Motivation for development of
this model stems from work by Matlock and Haliburton on discrete-element beams
(Ref 14), in which a similar idealization of rigid bars and elastic joints was
used to represent beams,

Derivation of the equilibrium equation for the discrete-element model is
presented in Appendix A. 1In this development, the elastic joint and torsion
bar properties are defined by applying a difference approximation to the
moment expressions {(Eq 2.6). It is important to note that the units of moment
in the model are lb-in while the usual units of plate moment are lb-in/in.
Furthermore, model moments are identified by superscript and continuum moments
by subscripts x and y .

The equilibrium equation of Appendix A could have been derived directly
from Eqs 2.1 and 2.6, with the substitution of difference approximations for
the partial derivatives resulting in Eqs A.19 through A.31 of Appendix A.

Thus the discrete-element model plays a dual role. It stands by itself
as a convenient structural idealization of a plate, and it can be related to
the continuum equation by difference approximations and may therefore be
viewed as a physical interpretation of the difference equationms.

Node equilibrium equations can be combined and written in matrix notation:

BICERS

-
The terms of the stiffness matrix [Kj -are deflection coefficients given by

Eqs A.19 through A.31.
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Fig 3. Joint detail of discrete-element model for dynamic analysis.
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Discrete-Element Model - Dynamic Analysis

Details of the discrete-element model for dynamic analysis are presented
in Fig 3. The rigid bars connecting joints are massless, with the mass of the
plate concentrated at joints, or node points. As in the static model, founda-
tion support springs are attached to the model at joints. Viscous dampers,
represented as dashpots, are also connected to the joints and to a fixed re-
ference plane.

Adding the inertia and damping forces to the right-hand side or load side
of the static equilibrium equation yields the equation of motion for the model
(see Appendix B). The equation of motion for each node can be combined and

written in matrix form:

W) 6+ [o] (9 [0 - (0

~—

In Eq 2.9, the stiffness matrix LK] is that given in Eq 2.8. Due to the
1deallzat10n of concentrated mass and damping at joints, both the mass matrix
LMJ and damping matrix LDF] are diagonal.

Dynamic response of the discrete-element model is found by integrating
Eq 2.9. A numerical method for the integration is presented in the following

chapter.



CHAPTER 3. NUMERICAL INTEGRATION

The equations of motion are numerically integrated by an algorithm based
on the assumption that the acceleration of each node has a linear variation
during the time-step interval. It was necessary to use a step-by-step method

because of the nonlinear foundation characteristics.

Numerical Analysis of Initial-Value Problems

An alternative to the step-by-step methods for vibration analysis is the
normal mode method (Ref 10). This approach is attractive because the simul-
taneous equations describing the dynamic equilibrium of the structure are
transformed into N independent, second-order differential equations, where
N is the number of degrees of freedom of the structure. The analysis re-

quires first the solution of the eigenvalue problem

[-wz [M:\ + [K:” {w} = 0 (3.1)

for both the natural frequencies w (eigenvalues) and the corresponding normal
mode shapes (eigenvectors). The normal modes are related to the structural

displacements w by multipliers termed normal coordinates.

{W} = [Q] {”} (3.2)

In Eq 3.2, each column of [@] is a normal mode and the normal coordinates 1)
determine the contribution of each mode to the total response of the structure.
Although the normal coordinates are time dependent variables, the normal mode
matrix [@] is not.

The equations of motion (Eq 2.9) are uncoupled if Eq 3.2 is substituted
for {w} and both sides of Eq 2.9 are post multiplied by the transpose of the

normal mode matrix:

13
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In Eq 3.4 [ﬁ] , Lﬁ?} , and [f] are diagonal matrices. However, for the

matrix [5?J to be diagonal, [DF] must be a function of either [MJ or

<]

solved and then superposed, by means of Eq 3.2, to determine the total response

The single degree of freedom systems represented by Eq 3.4, are easily

of the structure.

Several features of this approach are appealing. First is the ease of
solution of the uncoupled equations. Also, for many problems the excitation
of the higher modes of vibration and their contribution to the dynamic res-
ponse of a structure are insignificant. The investigator therefore needs only
to compute the response of the fundamental and a few of the next higher modes
to define adequately the structural response.

On the other hand, when the higher modes are important to the response,
and the structure has many degrees of freedom, the operations required for
Vibratiop analysis will be very time consuming. Furthermore, if the damping
matrix LDF} is not a function of [MJ or [KJ , the equations cannot be un-
coupled. Finally, normal mode analysis must be limited to linear problems.

A step-by-step integration method is therefore required for the analysis pro-
cedure presented in this study.

Development of the step-by-step methods can be traced to the use of
finite-difference approximations. The problem, involving either derivatives
or partial derivatives, is transformed from one with continuous variables to
one in which the variables are defined at discrete points in time or space.

In Chapter 2 it was shown that the discretization of the space coordinate can

be modeled. The finite-difference approximation of the continuum plate equa-
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tions was shown to represent a discrete-element structure. On the other hand,
discretizations of the time coordinate are often more difficult to interpret.
An example would be the substitution of central difference expressions for

acceleration and velocity into the plate equations of motion given by Eq 2.9:

1 \: ! 1 "
2 M:| Jka-z - 2w gt Wk} + 2h, | DF | {'Wk-z + Wk}
t

=

[ - o)

With small time steps (Ref 5), Eq 3.5 can be solved explicitly for W How-
ever, the variation of the time-dependent deflection during the time interval
ht is not clear.

Other methods for step-by-step analysis yield direct physical interpre-
tation of the nature of the displacement during the time interval ht . In
1951 Houbolt published a numerical method for vibration analysis of lumped-mass
systems (Ref 8). His approach was to pass a third-order curve through node
displacements for four consecutive points in time (Fig 4). By differentiating
the expression and evaluating the derivatives at the fourth point in time a
backwards difference operator was developed. The third-order variation in de-

flection results in an acceleration which is linear during any time interval:

e _ 1 - _
W = 3 (2wk ka-l + 4Wk-2 wk_3) (3.6a)
h
t
.o 1 )
W, = 6hk (llwk - 18Wk-1 + 9wk_2 2Wk—3) (3.6b)

This method was successfully used by Tucker to determine the response of
piles to wave loading (Ref 25). The analysis procedure presented by Houbolt
leads to an implicit solution for the unknown deflection at the new time

station:
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Fig 4. Node-point deflection as a third-order

function of time (after Houbolt, Ref 8).
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1
T2 M] {'5Wk-1 + 4w, Wk-3}
t
- DF] {-18 +9 2 }
6h, Vi1 T e T 2V 4 (3.7

Newmark, on the other hand, developed a powerful iterative technique for
step-by-step analysis (Ref 16). The acceleration at the end of a time step is

estimated, and the velocity and deflection are then calculated by

h

L] —_ L ] _t L) LX)

Ve T Yeer t 7 G T (3.72)
= + h_ W& +<l-B>h2" + gh% (3.7b)

e T V-1t P 2 k-1 PRV ‘

The restoring and damping forces can then be determined at time k and a new

estimate of acceleration can be computed:
EIRC BRI CH R LI CUS S RGO (.8
kp k11 k-1

With the new estimate of acceleration at time k , the process is repeated un-
til the successive values of acceleration agree within a specified tolerance.
The parameter B in Eq 3.7 governs the influence of the acceleration at
the end of the time interval (ﬁk) on the displacement at that point. Further-
more, the value selected for B determines the variation of acceleration
during the interval ht . For = % s
tion assumption. A B-value of % represents constant acceleration throughout

the method becomes a linear accelera-

the interval and B = g may be interpreted as a step function having an

acceleration ﬁk-l over the first half of the time interval and ﬁk through

the last half.
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Because of the iterative technique, the method easily lends itself fo
nonlinear analysis. However, for linear analysis, a direct solution is pos-
sible for deflections at the new time station. Using the B method (Eq 3.7),
Chan et al have developed a recurrence relation which eliminates both veloc-
ities and accelerations from the equations of motion (Ref 4).

Wilson and Clough presented direct methods for step-by-step vibration
analysis which are based on the variation of acceleration during the time-step
interval (Ref 27). Methods are presented for constant, linear, and parabolic
variations. The step-by-step procedure developed in this report was based on

work by these investigators.

Linear Acceleration Algorithm for Step-by-Step Analysis

The basis for the analysis presented herein is the assumption of a linear
variation of the acceleration between time steps. As shown in Fig 5, the
linear acceleration approach has several appealing properties. First, con-
tinuous values of acceleration, velocity, and deflection are obtained. Further-
more, it is the lowest order approximation of acceleration which satisfies
these conditions.

The acceleration at the end of the interval, from k-1 to k , is equal

to the initial acceleration plus a constant v times the time-step increment:

W S W + htv (3.9)

Expressions for velocity and deflection are found by integrating Eq 3.9 and

eliminating the constant v

h .

. t .
f = — .1
Wy Vi1 + 5 (wk_1 + wk) (3.10a)
Vi S Vg + htwk-l + 3 W1 + T Y (3.10b)

These relations may then be substituted into the equations of motion (Eq

2.9) for the derivation of a recursive relation for accelerations at time k :
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Fig 5. Node-point response for linear acceleration

algorithm (after Wilson and Clough, Ref 27).
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- [[DF] +he [K]] {‘.”k-l} - [K] {wk-l} | 3.11)

The nodal accelerations, from Eq 3.11, are then used to compute velocities and
deflections (Eqs 3.10).

It is possible to eliminate both acceleration and velocity terms from Eq
3.11 by combining dynamic equilibrium equations at times k+l1 , k , and k-1 .
The recursive relation, found to be a specialized form of work presented by Chan

et al (Ref 4), will include only the displacement at the three time stations:

t

b Do ] fad = 0
t

h

: { zi.[MHK]] )}

5030+ [9] b
t

The derivation of Eq 3.12 is presented in detail in Appendix C.

Comparing Eqs 3.11 and 3.12, it may be seen that Eq 3.12 requires more
information for each time step, i.e., loading at the three time steps as well
as the two previous deflections. Although Eq 3.11 may be evaluated by knowing
the load at the end of the time interval in question, and the acceleration,

velocity, and deflection at the start of the interval, two additional calcula-

tions are required after W, is determined. Both the velocity and deflection
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must be computed for time k before the acceleration at k+l can be
determined. Because of those extra computations, the computer time required
to propagate an analysis a given number of time steps would be greater for

Eq 3.11. Equation 3.12 is therefore used in the analysis procédure.

Interpretation of Linear Acceleration Algorithm

The behavior of a node point for the assumption of linear acceleration is
shown in Fig 5. This response imposes certain load conditions on the struc-
ture. First, the inertia force Mw 1is seen to vary linearly between time
k-1 and k . Damping, if present, will vary as a second-order curve and the
elastic restoring force as a third-order curve. For the equations of motion
to be satisfied at all points within the time interval, forces with third-
order variation must be applied at all node points.

If dynamic loads are placed at all nodes of the structure, it would not
seem unreasonable that they vary as a third-order curve during the interval
ht . However, when one investigates unloaded node points, a condition which
may create errors is discovered. To bring the problem into focus, consider a
structure in free vibration with no damping. At discrete points in time, k ,
k+l , ... , dynamic equilibrium is satisfied and the applied load required is
zero. For equilibrium at any instant during the interval k to k+l , a load
is required which is the difference between the inertia force, which is linear,
and the restoring force, which has a third-order variation. If this difference
is large, serious errors would be introduced. To limit the load error, it is
necessary to select a small time increment for propagation of the solution.
Furthermore, it is shown in the next chapter that a small value for ht is

required for stability of the numerical procedure.
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CHAPTER 4. STABILITY ANALYSIS

There are two reasons for the use of step-by-step procedures for vibration
analysis. First and foremost, the method lends itself to nonlinear analysis.
A second but less significant reason would be to include the influence of the
higher modes of vibration on the total response of the structure. In the pre-
ceding chapter it was noted that the accuracy of the method may be seriously
influenced by the selection of a time-step increment which is too large.
Furthermore, it will be shown in this chapter that small time steps are often
required to insure stability of the numerical method. A rational approach
based on the stability analysis is proposed for the selection of the time-step

magnitude.

Stability of Numerical Solutions for Initial-Value Problems

The problem of stability does not appear in numerical solutions to boundary-
value problems since the selection of the increment size does not cause unstable
solutions. On the other hand, the stability of numerical solutions to initial-
value problems is related directly to the time-step increment. Small time-step
increments are required for stable solutions to many initial-value problems.

A large time-step increment may cause serious oscillations to appear after a
few time steps. Unbounded oscillations are characteristic of an unstable time-
step increment and are related to the mode shapes associated with the highest
natural frequencies of the model. The stable time-step increment, it will be
shown, is a function of x and y-increment size as well as the stiffness and
mass properties of the discrete-element model.

Determination of the stability of a numerical procedure is based on the
investigation of the propagation of errors introduced at any time step. If,
after a large number of time steps, the errors are unbounded, the solution is
said to be unstable. However, it has been shown that numerical solutions

which are unstable for one time increment are stable for a smaller value

(Ref 18).

23
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The basis for stability analysis of a step-by-step method is to solve the
equations of motion for the discrete-element model. It is generally possible
to assume a solution which is a product of two functions, one dependent only
on the time variable, the other dependent on the space variables. For many
problems, the time function will be exponential. 1If this is the case, the
exponential must decay as time increases for the numerical method to be stable.

While it is not practical to study the stability of the more complicated
structural configurations of plates on foundations, insight into the stability
of the numerical procedure can be gained by studying certain simple cases. 1In
this chapter the stability of the linear acceleration algorithm is investigated

for the simply supported plate with and without elastic foundation support.

Stability Analysis of Linear Acceleration Algorithm

The stability of the numerical procedure (Eq 3.12) can be studied by

assuming a function of the form (Ref 5)

A PR, 1) %.1)
The first two subscripts of w represent space coordinates while the last one
is the time step. To simplify the analysis of the numerical procedure, a uni-
form isotropic plate without damping is investigated.
Shown in Fig 6 is a graphical representation of the equation for one node
resulting from the substitution of Eqs A.19 through A.31 into Eq 3.12.
If equal increments are taken in both the x and y-directions, the equa-

tions given in Fig 6 can be simplified by

The equation for free vibration of any i,j node for a rectangular plate

becomes



Fig 6.

Graphical representation of the linear
acceleration algorithm for free vibrationm.
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In the preceding equation the foundation resistance is not included.

Dividing by é% , @ term r can be defined:

r = — 4.3)

It will be shown that the value of r must be restricted to a small number
for the solution to be stable.

Substitution of Eq 4.1 into Eq 4.2 gives

20 8 -2W(i,3) + 4

WG T o +1 = 0 (4.4)

e

The function W(i,j) will be of the form

W(E,j) = A sin (ami) sin (an) 4.5)
where
A = a bounded constant,
« = a value dependent on the boundary conditions i = 0 and
i=M,
B = a value dependent on the boundary conditions j = 0 and

i=N.,

For the simply supported plate, both zero moment and zero deflection are

satisfied along the boundary if

Zl%

and
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where M and N are the number of increments, respectively, in the i and
j-directions.

The term ¥ in Eq 4.4 is found to be

X = A sin ig  sin JBn(ZO + 2 cos 2am + 2 cos ZBn
- 16 cosa_ - 16 cos Bn + 8 cos o cos Bn) (4.6)

Before substituting ¥ into Eq 4.4, it is useful to determine its maxi-
mum value. Since m can take on values from 1 toM ~1 and n from 1 to
N - 1 , the sum of the terms in parenthesis will vary from 0 for m=n =1
to a maximum which approaches 64 when m=M -1 and n=N-1. It is
important at this point to note that the maximum value corresponds to the

highest mode of vibration for the discrete-element plate:

W(i,j) = A sin ( M- Du i ) sin ( N - Dn j )

M N

The lowest value, on the other hand, corresponds to the fundamental mode of

vibration:

) ot (T5)

For the fundamental mode shape, Eq 4.4 reduces to

W{i,j) = A sin (

=13
=3

2P 2?41 = 0 4.7)

Solving for e? gives

\ k . .
For this condition, the exponential e? oscillates but is bounded as
k increases. However, for the highest mode of vibration, the exponential

must satisfy the following relation:
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G i I EZGI ] +1 = 4.8)

Defining the coefficient of the middle term as G the values of e?  are

found to be

In order for Eq 4.1 to have a bounded value as k grows large, the following

condition must be satisfied:

<1 4.9)

This condition can be satisfied by

<1 (4.10)

N[O

Consider first the lower bound

-2 - 128r < -2 + 2561

or

0 < 384r

Since r is a positive number, this condition is always satisfied. For the

upper bound

-2 4+ 256r < 2 4+ 128 r

or

r <

w |-
N
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Substituting Eq 4.3 for r the maximum value for ht is found to be

/3M
ht < h 16_D (4.11)

For a plate on foundation, the exponential is determined by a method

similar to that given above:

4Shi
-2 + 256r + ——
e2cP + e SM +1 = 0 “.12)
Sh
t
1 + 64r + oM

Again, the coefficient of the middle term must satisfy Eq 4.10. As the lower
bound is satisfied by positive values for r and S , the upper bound will be

investigated:

LSHA N ZShZhi

t
- —_— —_—
2 + 256r + o 2 + 128r + oM

The preceding inequality can be simplified and the limiting value for ht

determined:
h, < h o 4 .13)
64D + Sh
It is seen that Eq 4.13 will reduce to Eq 4.11 when S =0 . Furthermore,

when Sh2 is large compared with 64D , the time increment ht must be
smaller than that given by Eq 4.11.

The stability of the numerical procedure has been investigated for a
simply supported rectangular plate with and without elastic support. The cri-

ok

terion for stability was that an exponential e be bounded as the time
coordinate k increased without bound. The value for e®? was found to be
related to the highest mode of vibration and, therefore, the smallest period

of vibration.
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Selection of Time Step for Numerical Integration

The selection of the time increment must be based on the smallest period
of vibration of the discrete-element model. It is not within the scope of
this work to present an exact method for predicting the highest frequency. On
the other hand, it is possible to obtain a reasonable estimate for this value
by a simple interpretation of the deflected shape of the plate in the highest
mode.

Consider the plate of Fig 7, fixed at all points but i,j . Giving a

unit deflection to this point, a restoring force, given by Eq A.25, is devel-

oped. For the isotropic plate the force is

(4.14)

Equation 4.14 is an estimate of the highest frequency of the discrete-element

slab. An estimate of the smallest period of vibration is therefore

M
T = onh S—M (4.15)
est 20D + Sh2

The stability criterion is compared with the estimated minimum period by

dividing Eq 4.13 by Eq 4.15:

h 2
- t_ . T1_r 60D + 3SI21 .16)
est 64D + Sh

When

sh® < D
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Fig 7. Method for predicting highest frequency

of free vibration.
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a satisfactory estimate for the maximum time increment will be
1
ht < =T 4.17)

Summary

The preceding analysis has focused on the simply supported plate, both
with and without foundation support. For other structural configurations, the
lowest period of the discrete-element model may differ considerably from that
given by Eq 4.15. Slabs on foundations, for example, will exhibit a minimum
period which is larger than that given by Eq 4.15. 1If the edges are unre-
strained, the slab becomes more flexible than that considered in the preceding
analysis, thus increasing the lowest period. 1If the initial stiffness of the
bilinear foundation is used in the analysis, separation of the slab from the
foundation will further increase the smallest period. It is clear, therefore,
that a time increment selected by Eq 4.17 will be adequate to ensure stability
of the numerical procedure. Furthermore, since damping is not included in
the stability analysis, its presence will also increase the stable time-step
increment given by Eq 4.17.

To select a time step for a bridge structure, it is recommended that the
average bending stiffness of the structure be used. A conservative estimate
for ht should result if the minimum node point mass is used in Eq 4.17.

The stability analysis has shown that stable numerical solutions to sim-
ply supported rectangular plate problems can always be obtained, providing the
time increment satisfies Eq 4.9. Solution instability, if noted, may be cor-

rected by reducing the magnitude of the time step and repeating the analysis.
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CHAPTER 5. NONLINEAR ANALYSIS

Although the problems investigated in this work involve support
characteristics which allow the slab to lift free of the foundation, the
iterative techniques discussed in this chapter can be used for the analysis
of structures with more general nonlinear material properties. Nonlinear
analysis is therefore discussed with reference to the general nonlinear foun-
dation.

In addition to the secant and tangent methods for solving structures with
material nonlinearity, the load iteration technique is presented and discussed.
The major difference, and advantage, of load iteration is that the deflection-
coefficient matrix of the structure is not modified from one iteration to the
next since corrections for nonlinear stiffness effects are made on the load

side of the equatioms.

Foundation Characterization

The foundation is modeled by discrete and'independent springs at each of
the node points. This idealization, commonly referred to as the Winkler foun-
dation, generates stiffness terms on only the main diagonal of the stiffness
matrix. Either linear or nonlinear characteristics can be prescribed for com-
puter analysis (see Chapter 8).

The nonlinear characteristics of each node-point spring are described by
a curve consisting of straight line segments. The bilinear foundation studied
in this work is shown in Fig 8. The force developed on the model by the foun-
dation is plotted on the vertical axis and the model deflection on the horizon-
tal axis. For both load and deflection, the positive sense is upward. For
this characterization, resistance to deflection is developed only when node
points deflect in the negative or downward direction.

The computer program has been prepared to accept any type of elastic non-
linearity, such as that shown in Fig 9. There are only two limitations on the
nonlinear characterization: (1) the resistance-deflection curve must be con-

tinuous and (2) for every value of deflection there must be a unique resistance.
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Stiffness Iteration

Nonlinear analysis can be performed by the repeated solution of modified
linear equations (Ref 15). The node-point deflections are first calculated
for an assumed foundation stiffness. The new deflections are then used to
obtain a better estimate of stiffness. Using the new stiffness, deflections
are again calculated and compared with the initial set. The iterative proce-
dure is repeated until the deflections of two consecutive iterations agree
within a specified tolerance, a condition which is called closure.

While it is often not possible to prove the convergence of stiffness
iteration methods, experience has shown that solutions generally are very
stable and usually converge. The procedures discussed below have been shown
to be convergent for the static analysis of plates supported on soil (Ref 1).
Furthermore, with the foundation properly defined, analytical solutions compare
very favorably with the experimental results.

An iterative procedure which has application to a wide range of nonlinear
elastic problems is the secant modulus method. By this method (shown in Fig 9)
the elastic supports are adjusted from one solution to the next until closure
is obtained. Although the secant modulus iteration method converges more
slowly than the tangent modulus method, to be discussed next, it is very stable.
Oscillations are rarely found in the iteration procedure; instead, the proce-
dure creeps toward the equilibrium position. This method may be applied with
very satisfactory results to problems with elastic, perfectly plastic material
properties,

The tangent modulus method (Fig 9) has been used successfully to analyze
beams on nonlinear foundations (Ref 13). This method may adjust both the
stiffness and the load from one iteration to the next. The rate of conver-
gence of the tangent modulus method is generally faster than that found for
the secant approcach. On the other hand, the tangent method may exhibit insta-
bility problems in cases of elastic, perfectly plastic material behavior.
However, the instability is rarely noted, because the possibility of the com-
plete plastic action for all support points is highly unlikely.

As a general rule, the tangent modulus method would be preferred to the
secant approach because of the rapid rate of closure which has been noted for
most problems. Studies of both beams and plates on nonlinear foundations have

shown this to be true.
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Load Iteration

The load iteration method (Fig 10) presents an attractive alternative to
the stiffness adjustment methods because the deflection coefficients remain
constant during the iteration procedure. The procedure therefore requires
only a single inversion of the stiffness matrix. Repetitive solutions are
found by multiplying the new load vector for each iteration by the inverted
stiffness matrix. The stiffness iteration methods, on the other hand, require
an inversion for each iteration.

Although the concept of the inverse of the coefficient matrix will be use-
ful for the discussion of the load iteration method, the equations are solved
by a more efficient matrix-decomposition method (see Chapter 7). For the
load iteration method, only single decomposition of the coefficient matrix is
required while stiffness iteration methods, on the other hand, require a com-
plete decomposition for each iteration.

The nonlinear foundation is initially characterized by a linear spring.
The deflections are computed using the linear approximation, and the prescribed
resistance for that deflection is determined. The difference between the pre-
scribed resistance and that developed by the linear spring is then added to
the load term and a new deflection determined. The process is repeated until
equilibrium is established.

With the nonlinear foundation represented by a linear spring, the equi-

librium equations for the discrete-element model can be written

(4 - (o) e

where

the linear stiffness matrix for the slab and foundation, in-
cluding the linear approximation for the nonlinear curve,

L]

{Q} = the applied lateral load,

{L(w)} = a deflection-dependent load function which is the dif-
ference between the nonlinear foundation curve and the
linear approximation.
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The iterative procedure therefore becomes

(6 - {6+ {ued

or

(o - " o

Equation 5.3 is repeatedly solved until the difference between successive solu-
tions is less than a prescribed tolerance.

To achieve convergence, load iteration generally requires more iterations
than either the secant or tangent methods. However, for many problems, con-
vergence is reached in less computer time than with the stiffness methods.

In a typical problem as many as ten load iterations can be performed in the
time required for a single cycle of a stiffness iteration.

Although the stability and convergence of the load iteration method have
not been rigorously proved, the method has been verified experimentally and
a wide variety of problems have been solved. Beams on nonlinear foundations
were studied first. The results of this investigation served as guide lines
for the plate studies.

The beam studies indicated that the load iteration method would be a use-
ful tool for nonlinear analysis. It was found that the linear approximation
of the foundation should be near to the initial tangent of the resistance-
deflection curve to insure stable closure. With a spring which was too soft,
oscillations were noted in the closure process. A safe approach was found by
always using the initial tangent, which, however, exhibited a creeping closure
toward the equilibrium position.

When the method was applied for the solution of plate problems, the
oscillating closure process was not as common as noted in beam solutions.

This can be attributed to the greater redundancy of the plate. At any point
on the beam the resistance to deflection is available from both the foundation
and the beam stiffnesses. The plate, on the other hand, may be viewed as a

grid, so that two crossing beams as well as the foundation offer resistance to

the node-point deflection.
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Closure of the solution, as noted earlier, using only load iteration may
require many cycles of the solution procedure. Experience has shown that for
a wide range of static problems, using alternating cycles of load iteration
with a single cycle of the tangent modulus method reduces both the number of
iterations and the time required for a solution. The number of cycles of load
iteration before changing to a tangent modulus depends on the number of incre-
ments in the discrete-element model, However, the method demonstrated in this

work (Chapter 9) focuses on solution capability by load iteration only,



CHAPTER 6. ALGORITHM FOR NONLINEAR DYNAMIC ANALYSIS

The load iteration method is coupled with the linear acceleration algorithm
for numerical integration to develop an interative procedure for nonlinear

analysis. Three separate steps are considered in the analysis:

(1) static solution for the initial conditions,
(2) analysis for the first time step, and

(3) the iterative procedure for the general time step.

Nonlinear Equations of Motion

The equilibrium equation for the load iteration method is given by Eq 5.1.
The addition of inertia and damping forces to Eq 5.1 will yield the equation

of motion for the model:

[M] {w} * [DF] {w} * [K] {w} - {Q} * {L(W)} 6.1)

Again {L(w)} represents the nonlinear load correction for the linearized
resistance-deflection curve. Nonlinear analysis will be performed by adjusting

the correction load until equilibrium or closure is satisfied.

Initial Conditions - Static Analysis

The step-by-step analysis is started with the plate at rest. Accelera-
tion and velocity for all node points are zero while the deflection is that
due to the dead load of the plate and all other sustained loads. The itera-

tion procedure for the dead load deflection is given by Eq 5.3 or

{wo} - [K]-l {QS+L0 } ©.2)

I I-1
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When equilibrium is established, the correction loads and deflections are
saved for use in the calculation of the deflection at the end of the first

time increment.

First Time Step

During the program planning phase of this work, consideration was given
to starting the propagation of the solution from a condition other than at
rest. For example, if initial velocities and accelerations are prescribed, or
need to be prescribed for a future extension of this work, the capabilities
for a logical starting procedure are required. Therefore, to facilitate the
modification of the program for other initial conditions, a special routine
for the initial time step was included. Although the starting procedure is
discussed with respect to the case of zero acceleration and velocity, which is
the case for studies presented herein, it may easily be extended to include
values other than zero.

The iteration procedure for the first time step is separated into two

parts. First, the acceleration at the end of the time interval is calculated;
it varies linearly from zero for k = 0 to a value ﬁl at time k =1 .
Then the velocity at k =1 is computed and the deflection found by Eq 6.1.
New correction loads, corresponding to the calculated deflections, are then
used to obtain a new estimate of acceleration at k = 1 . The derivation of
the iterative procedure is given below.

The deflection and velocity at k = 1 are given by

ht
wpoF 3w (6.3a)
and
hi
= — W .3b
Wy vy t+ 3 1 (6.3b)

The preceding equations are derived by substituting the initial conditions

into Eqs C.l1 and C.2 of Appendix C. The equations for dynamic equilibrium can

then be written as
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h2

)+ )} L )
= {Qs + QD)+ Lll_l} - [K] {wo} (6.4)

or

e 2] e [d] 5] - o rgeny b e

I-1

The right-hand side of Eq 6.4 is simplified by the replacement of LK] {wo}
with Eq 5.1. From the acceleration, calculated by Eq 6.5, the velocity is

determined (Eq 6.3a) and the deflections are found by

(] {w, b= {o +an + Lll_l} - [v] {wll} - [or] {"’11} (6.6)

I

A new estimate of the correction load {Ll } is found and substituted
I
into Eq 6.5. The iterative procedure is stopped when the deflections calcu-

lated at successive iterations agree within a specified tolerance.

To modify the program to include both initial velocities and accelera-
tions, it is necessary only to replace Eqs 6.3 by the more general Eqs C.l and
C.2 of Appendix C. The logic of the starting method and the iteration proce-
dure for the deflection at the end of the first time step would remain un-

changed.

General Time Step

With the deflection and correction load known at k =0 and k =1 , an
iterative procedure for the deflection at k = 2 , and all following time
stations, can be developed, following the analysis presented in Appendix C.

Dynamic equilibrium equations are first written for times k-1 , k ,

and k+1
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) fi [ ) + ] )

o v 1) .70
WG ) [ - B} e
) G5} D] o + ) )

= {Qs +Q gt Lk+1} (6.7¢)

After multiplying Eq 6.7b by 4, Eqs 6.7 are added and acceleration and
velocity terms replaced by Eqs C.6 and C.8:

[E—i [M] + %; [DF] + [K]J {Wk-f-l} N {6Qs RS
+ 4QD, + QD +1} + {Lk-l + 4L, + Lk+1}
; [ ig[m] ¥ [K]] {ow} - [fz [4]

- %; [DF] * [Kﬂ {Wk-l} (6.8)

The correction load at time k+1 is not immediately known, and iteration
is required. The load iteration procedure for the general time step therefore

becomes

[Z_i ] + %Z Lor] + [K]J {Wk-t-ll} = {Lk-i-ll_l} +{ol} (6.9)
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or

-1
{Wk+11} N [K,] {Lk+11_1 + Qﬁ+1} (6.10)

]

{Qé+1} = an equivalent load vector.

where

a modified stiffness matrix,

During the iteration at any time step, the equivalent load vector {Q£+1}
remains unchanged; only the correction load varies from one iteration to the
next. When equilibrium is established, the correction load and deflection are
stored for the analysis of deflection at time k+2 . A new equivalent load
vector {Qﬁ+2} is computed and the iterative procedure repeated.

For the initial conditions of zero velocity and acceleration, the pre-
ceding equations could have been employed to start the dynamic analysis of the
plate. 1If the static deflection, static load, and correction load for the
static condition were substituted for terms with k and k-1 subscripts, the

deflection w at the end of the first time step could have been determined

k+1
by Eq 6.9. However, use of the special starting procedure insures greater

flexibility of the program for future developments.

Summary

A method for the dynamic analysis of a discrete-element plate model on
nonlinear foundations has been presented. Justification and verification of
the method must be based on its rational development and experience with pro-
blem solving. Experience with the procedure has shown, for example, that non-
linear static problems can be solved by the load iteration method (Ref 1).
Furthermore, it was noted in Chapter 5 that analytical results check favorably
with experimental plate test data.

However, in the absence of experimental data for dynamically loaded plates
on nonlinear foundations, it becomes necessary to justify the method by both
its rational development and the demonstration of its solution capabilities.
In Chapter 9 the method is applied to the free vibration of a square plate and
the response of a plate to a moving load. Comparisons of computer results for
these problems with existing theory will be useful for the evaluation of the

method.
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CHAPTER 7. SOLUTION OF EQUATIONS

To describe adequately a plate for computer analysis, it may be necessary
to make a fine division of the structure, thereby generating a large number of
equations to be solved. The deflection coefficient matrix is not inverted, as
indicated in the preceding chapter. 1Instead, an efficient Gaussian elimina-
tion procedure for banded matrices is applied for the solution. Moreover, the
equations need not be solved for each load vector. Multipliers generated
during the first elimination procedure are stored for use with each successive
load vector. The recursive process for repeated solutions has been called the

multiple load method.

Organization of Equations

For each plate problem a rectangular grid work must be defined to describe
the structure (see Chapter 8). The number of increments or rigid bars in the
x-direction will be M and in the y-direction N . For the most efficient
use of the solution procedure, M < N . The number of node points or joints
therefore becomes M+ 1 and N + 1 for the x and y-directions. Two
boundary condition equations are required for each x and y-grid line, bringing
the total number of equations to be solved to M+ 3)(N + 3) .

The equations generated by the model are shown in Fig 11. Presented in
this manner two distinct types of banding are noted. TFirst there is a submatrix
banding. This is similar to banding noted when structures are partitioned into
substructures and then formulated by the stiffness method. For any constant
y-grid line j , the node behavior is influenced by deflections on grids j-2 ,
j=1 , j+1 , and j+2

Submatrix banding is shown in Fig 12. The terms in the submatrices are
given in either Appendix A (static analysis) or Appendix B (dynamic analysis).
Only the nonzero terms are computed and stored for the analysis procedure,

The coefficient matrix of Fig 11 is developed by writing either node
equilibrium equations or equations of motion starting at node i =0, j=20

and ending with node i =M+ 1, j =N+ 1 . Each horizontal partition in

49
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Fig 11 represents the node equations along a constant j-grid line, consecutively
written from i =0 to i =M+ 1 . The horizontal partitions identified as

-1 and N + 2 contain the boundary equations for edge conditions in the y-
direction. For the x-direction, the boundary equations appear as the first

and last lines of the partitions O through N+ 1 .,

Recursion~Inversion Solution Procedure

While the recursion-inversion method has been presented elsewhere (Refs 6
and 17), it is included to complete the discussion of the method for analysis.
Consider the j h horizontal partition of either the discretized equations of

motion or the static equilibrium equations:

Eaj] {“’j-z} + [bj] {wj-l} + Ecj:l {wj} + [dj] {Wj+1}
+Eej:1 Jij+2} = {qj} (7.1

By substituting a solution of the form

{WJ‘} N {AJ’} + [Bjj {Wj+1} + [Cj] {wj—!-Z} (7.2)

into Eq 7.1, it is possible to eliminate the deflections {Wj—z} and {wj—l} .

Solving for {wj} , the recursion matrices are determined:

{Aj} _[EJ] {Aj_l} + Eaj] {Aj_z} - {qj} ] (7.3)
5] = Do) [[e] Loyl o]
[Cj] [DJ [ej] (7.5)

The {Dj] and [EjJ matrices can be considered as multiplier matrices.

It ]
|
o o
[ e
| S | I

They are found to be
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[Dj] -7 [[aj] [Cj-Z] + [Ej] [Bj-l] + [Cj] ]-1 (7.6)
[Ej:| - [aj] [Bj-z] + [bj] (7.7)

Panak (Ref 17) shows the similarity between Eqs 7.3 through 7.7 and those de-
rived for the recursive solution of beam-columns (Ref 14). 1In the latter
problem, constants replace the matrices.

For a symmetric stiffness matrix, a similar set of recursive matrices and

multipliers can be developed (Ref 6):

][RR R CA I O o

[Bj] - [Dj] [Ej+1] (7.9)

[Cj] - [Dj] [ej] (7.10)

Any
>
[
[
I

where

-1

_ [[ej-z] o]+ [5]e,0) + o] } .

| —
=}

(S

| S
I

and

t t

[Ej+1] - [ej-l] [Bj-l] + [dj] (7.12)

A close inspection of Eqs 7.7 and 7.12 reveals the matrix [E-l] to be
zero. Furthermore, since [E_1] is not required for the symmetric form,
these calculations are omitted.

Since the equations for the discrete-element model are symmetric, Eqs 7.8

through 7.12 are used in the solution procedure.
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Multiple Load Analysis

The multiple load method for analysis was first presented by Panak (Ref
17), and is reviewed to complete the discussion of the procedure.

A careful study of Eqs 7.8 through 7.12 will reveal that the load vector
{qj} influences only the calculation of {Aj} . Since {Aj} does not appear
in either the remaining coefficient or multiplier matrices, a convenient
method for solving a system of linear equations with several loading, or right-
hand sides, presents itself, For the first right-hand side, the matrices

[Ej] s [Cj] , and [Bj] are computed and stored on disk or tape files. The

{Aj} term, however, is dependent on the unique loading condition, and is
destroyed when no longer required for the solution process. For the second
and all succeeding right-hand sides, the coefficient and multiplier matrices

are recalled, as needed, and new {Aj} values computed.



CHAPTER 8. COMPUTER PROGRAM

The numerical method described in this report has been coded in FORTRAN
language for the Control Data Corporation (CDC) 6600 digital computer. The
computer program consists of a main driver program and 27 subroutines. Al-
though several of the subroutines could easily be incorporated into the main
program, greater flexibility is achieved with the program in subroutine form.
This feature will facilitate the program's extension or modification to include
future developments.

Other significant features of the program include the extensive use of
peripheral storage units, the method for the description of the dynamic load-
ing, and, finally, the use of Endres' efficient recursion-inversion, multiple
load technique for the solution of the linear, simultaneous equations (Ref 6).

To provide the necessary storage for problems with large numbers of in-
crements in X and y-directions, much of the data have been placed on disk
files. 1In addition to program data, the static, dynamic, and correction loads,

as well as the structures stiffness matrix, are stored in separate files.

Program SLAB 35

Program SLAB 35 is a FORTRAN program for the CDC 6600 digital computer.
This program is the thirty-fifth of a sequence for the analysis of plate struc-
tures. All of the preceding programs identified by SLAB were written for the
static analysis of plates and slabs. With the exception of the READ and WRITE
commands for the peripheral storage requirement, the program was coded in ASA
FORTRAN.

A summary flow diagram which indicates the order in which operations are
performed is presented in Fig 13. Detailed flow diagrams and listings of the
main program and subroutines are given in Appendix E.

The required computer time for any problem is a function of the number of
model increments and number of iterations for closure. For the example pro-
blems included in this work, 140 time steps for a linear 8 by 8 plate required

2400 seconds. For the 4 by 15 plate with moving load, 200 time steps of the

55
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nonlinear solution would have required 16,000 seconds. The linear solution,
however, required only 2200 seconds for the same number of time steps.

The storage requirements of the program are shown graphically in Fig 14,
Note that a problem with equal increments in x and y-directions requires
more storage than long, narrow problems containing the same number of node
points. For example, a 10 by 65 grid requires approximately the same storage

as a 20 by 20 slab, although there is a ratio of 1-1/2 to 1 for the node points.

Data Input

Details of the input form and supplemental instructions are included in
Appendix D, which is intended as a self-contained instruction manual for SLAB
35. Furthermore, examples of the preparation of data for the program are pre-
sented as a guide for the user.

A tabular form has been developed for the data organization. Following
two alphanumeric program description cards and a problem identification card,

problem data are separated into seven tables:

Table 1 - Program Control Data

The information on these cards includes the number of cards and curves
for the remaining tables, number of increments and increment length, monitor

stations, and iteration control information.

Table 2 - Elastic Properties of the Slab

Bending stiffness and linear foundation springs are organized in this

table. The number of cards varies, up to 50, depending on the problem.

Table 3 - Axial Thrust and Twisting Stiffness

The distribution of the static axial thrust must be specified by the
program user. The plate twisting stiffness is also included in this table.

Again, as many as 50 cards may be used to describe the variables.

Table 4 - Mass and Damping Properties

The node point mass and damping are input in Table 4, using as many as

50 cards.

Table 5 - Static or Dead Loads

Loads and moments which are not functions of time are input in Table 5.

The weight of the plate will generally be input by this table. As many as 50

cards can be used to define the loading.
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Table 6 ~ Dynamic Loading

As many as 20 load-multiplier curves, each of which can control as many
as 20 loadings, are input in Table 6. A periodic multiplier is available by
the use of an option switch. A moving load option permits the loads to move

in either the positive or negative y-direction at a constant velocity.

Table 7 - Nonlinear Support Data

Nonlinear Winkler foundation springs can be prescribed for any area of
the plate. The nonlinear curve is described by a simple tabular input which
generates a curve of straight line segments.

Although example input is presented in Appendix D, it will be useful to
focus on the various types of data required for the description of the plate
for computer analysis.

On each plate, a rectangular grid must be established. The intersections
of grid lines establish node points for the model. When it is recalled that
the discrete~-element model consists of rigid bars and elastic joints, the grid
lines are immediately recognized as bars. Furthermore, the open areas between
grid lines contain model torsion bars. 1In Fig 15 an area of the model has
been superposed on the continuum to be analyzed.

The inputs required for the description of the plate are bending stiff-
ness, twisting stiffness, axial thrust, elastic support springs, mass, damping,
and dead load. The data are logically identified by node point coordinates.
With the exception of axial thrust and twisting stiffness, the variables are
concentrated at nodes. Mass, damping, and linear foundation springs exist
only at nodes, as do dead load and bending stiffness. A table can be compiled
which contains the node point and the corresponding value of these variables.
However, if these data are constant over an area of the plate, it will be
convenient to specify an area by the node points and call on the computer to
perform the distribution. This is, in fact, what is done.

The program accepts conventional plate stiffness properties and internally
converts them to model values. The other variables, however, must be input as
discrete or concentrated values. For example, the units of bending and twist-
ing stiffness are 1b-in2/in, or continuum units, while those for mass are
1b-se02/in, or concentrated values.

It will be convenient to describe twisting stiffness in an area between

grid lines. This is logically accomplished with the use of node coordinates.
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An area is identified by the coordinates of the lower left-hand and upper
right-hand node points. For example, the twisting stiffness in the area shown
on Fig 15 would be identified by 2,3; 3,4. Furthermore, it would not be
appropriate to define twisting stiffness by a single node point. As noted in
Appendix A, twisting stiffness does not exist in the model at nodes.

The axial thrust is in pounds rather than pounds per inch as in conven-
tional plate theory. The distribution of the axial thrust must be prescribed
by the user since the program does not perform an in-plane or axial analysis.
Axial tension is given a positive sign while compression is identified by a
negative sign. Axial thrust does not uniquely exist at a node point, but
within a bar or bars between node points. It is therefore defined by the co-
ordinates of two points, the first being the point of application of the load
and the second the point of reaction. For example, a value Px applied to
the left edge (0,2) and reacted at 2,2 would be located on the plate by (0,2;
2,2) with the smaller x-coordinate given first. In the y-direction, the force
is described in a similar manner, with the smaller y-coordinate listed first.

Area definitions are available for the description of a uniform axial
thrust in several bars. For example, if a uniform axial thrust Py is applied
to the plate of Fig 15 at nodes 0,1; 1,1; and 2,1, and reacted at nodes 0,4;
1,4; and 2,4, the area description 0,1; 2,4 identifies the loaded bars.

The user has been given considerable flexibility for specification of
dynamic loading. Periodic or nonperiodic as well as stationary or moving loads
can be described. To define the dynamic loading for Table 6, both a load and
a load amplitude multiplier are required. Since this study is intended to
focus on problems with highway structures, the loads would be the static wheel
loads of vehicles and the multiplier would give the variation of the wheel
loads with time. An example of the development of the multiplier curve is
given in Fig 16. In the example the static weight on the wheel is 5,000 pounds.
The multiplier curve varies around 1.0, according to the measured dynamic

loading and is constructed from straight line segments. The multiplier curve

can be applied to either point, line, or area descriptions of load.

Foundation Description

Either linear or nonlinear foundation characteristics can be described.
The linear foundations are input in Table 2 while the nonlinear characteristics

are described in Table 7.
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The nonlinear resistance-deflection curve is constructed from straight
line segments. Units of pounds and inches must be used for the development of
curves. As resistance is developed only at node points, a single coordinate
can define the location of the foundation reaction. However, both line and
area descriptions, as well as concentrated curves, are available when the
foundation characteristics are uniform over a line or area.

The limitations imposed on the construction of the curves were given in
Chapter 5; resistance-deflection curves must be continuous, and a unique resis-
tance must exist for any value of deflection. For deflections which exceed
the prescribed end points of the curve, the resistance is determined by a
straight line extrapolation of the last straight line segment of the curve.
When this condition exists, a message is printed to warn the user that an off-

curve condition exists.

Summary
Nodal coordinates are utilized to logically identify locations of slab,

foundation, and load variables. Three types of descriptions are required:

(1) node, (2) area, and (3) bar. Properties which exist at nodes are

(1) bending stiffness;

(2) elastic support, both linear and nonlinear;

(3) 1load;

(4) mass; and

(5) damping.
Area identification are required for the twisting stiffness while axial thrust
is a bar property.

Furthermore, both discrete and continuous data are used in the program.
For the convenience of the user, the bending and twisting stiffnesses of the
plate are input as continuum plate values or 1b-in2/in. All other data are
input as concentrated or discrete values.

A self-contained user's manual is given in Appendix D. Included in this

appendix are examples of data organization and the input format.
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CHAPTER 9. EXAMPLE PROBLEMS

Four types of example problems are presented to illustrate the accuracy
and solution capability of the program: (1) free vibration of a simply sup-
ported square plate, (2) moving line load on a simply supported rectangular
plate, (3) moving line load on a rectangular plate resting on both linear and
nonlinear foundations, and (4) response of highway bridge approach slab to

moving wheel loads.

Free Vibration of a Square Plate

The free vibration study was performed on a 48-~inch-square plate, simply
supported along its edges. The bending stiffness, uniform in both x and y-
directions, was 2.5 X 106 1b-in2/in and Poisson's ratio was 0.25. The mass

4 1b-sec2/in3. The plate was divided into

density of the plate was 7.5 X 10
an 8 by 8 grid with hx and hy eq?21 to 6 inches. The time-step incre-
ment, based on Eq 4.17, was 2.0 X 10 second. The theoretical period for the
fundamental mode of vibration was 64 time steps (Ref 19).

To develop a free vibration condition which would illustrate the funda-
mental frequency, a static or dead load approximating a double sine function

was applied to the plate:

Qi 3 = Q sin %; sin %; 9.1)

Lateral deflections were developed which approximated the fundamental mode
shape. The dynamic loading was a constant force (the negative of the dead
load) which canceled the dead load, causing the plate to vibrate in the first
mode shape.

The results of this problem are presented in Fig 17. The deflection of
the center node (4,4) is presented as a function of the time step for almost

two cycles of the fundamental period, or 120 time steps.
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Fig 17. Free vibration of a simply supported
square plate, station 4,4.
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Two important features should be noted in Fig 17. First, the displacement
history of node 4,4 shows no indication of instability. Second, the fundamen-
tal period for the 8 by 8 model is noted to be about 65 time steps, or one more
than the theoretical, and the second cycle of deflection repeats almbst exactly
the first.

Another problem was run with a time-step increment of 4.0 X 10_4 second,
or almost twice the maximum time step required for stability of the numerical
solution. Instability was noted in the results before one complete cycle of

free vibration.

Moving Load on a Simply Supported Rectangular Plate

The procedure was further verified by study of the traveling wave caused
by moving loads. The plate was loaded by a line load in the x-direction of
1,000 1b/station. The load was moved across the plate at 53.7 mph for one
problem and 214.8 mph for another, and the effect of the velocity of the moving
load on the response of the plate was studied. The results are shown in Figs
18, 19, and 20.

Figure 18 shows the plate configuration, data, and center line deflection
of the structure when the line load reached y-station 7. The general shape of
the deflection curves compares favorably with those reported by Salani (Ref 19).
As he noted, the deflected shape for the low velocity approached that of static
deflection. Dynamic effects were noted by the amplification of the deflections
in the center of the span and the positive deflections at the ends of the plate.
This last feature indicated the traveling wave caused by the moving load pre-
ceeded the load along the plate. For the higher velocity, on the other hand,
the traveling wave trailed the load.

Figures 19 and 20 show the deflection history of station 2,7 for the two
load velocities. The dynamic response of the plate to the lower velocity was
not as significant as to a velocity of 214.8 mph. 1In Fig 19 it can be noted
that some vibration remained as the load moved off of the plate, but the de-
flection at station 2,7 was considerably smaller when the load was on that
station. For the higher velocity there was little change in the maximum de-
flection of station 2,7 with time. With the traveling wave lagging the load,
free vibration with the maximum deflection was noted after the load moved off

of the plate.
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Fig 18. Moving load on simply supported
rectangular plate.
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Moving Load on a Rectangular Plate Resting on a Nonlinear Foundation

The preceding problem was modified to study the responses of plates on
nonlinear foundations. Edge support along the longitudinal edges was removed
and support springs were placed under each node point. Two problems were run
to demonstrate the solution capability of the program, one with linear springs
and a second with springs which resisted downward deflection but not lift-off
or upward deflection. The loading was increased from 1,000 lb/station to
100,000 1b/station to accentuate the difference between the linear and non-
linear solutions.

The plate configuration and data, as well as the longitudinal center-line
deflection, are shown in Fig 21. Although the deflections appear to be larger
than the increment length (Fig 21b) this is not the case and is due to the
scale selected for deflection. The increment length is almost eight times the
largest deflection shown in this figure.

In the linear problem, the plate appeared to oscillate with small deflec-
tions about the zero-deflection line. However, the small deflections at sta-
tions 1, 2, and 3 along the center line (about 0.3 inch) developed foundation
forces of about 150,000 pounds at each station. For stations 1 and 3 this
force acted down on the plate while at station 2 the force was upward.

As the load moved across the plate on the nonlinear foundation, the hold-
down forceé were not available for positive deformations, and the deflections
increased until the kinetic energy of each node point was transformed to
strain energy in the model which caused the large deflections for stations 1,
2, and 3.

The linear approximation for the nonlinear foundation was taken as the
spring stiffness in the negative deflection range, that is, 460,800 1b/in.

For station 2 (Fig 21b) the correction load at closure was approximately
2,250,000 pounds. This load was required in order to satisfy a zero founda-
tion resistance for the positive deflection. The load error at closure for
this station was an upward force of 1.295 pounds, well within the desired
accuracy for the solutionm.

An example of the closure process is shown in Fig 22. These data are
for station 2,3 at time station 40. The line load at this time station was
located at j = 3 . The creeping behavior of the closure, noted in Chapter 5,

is clearly seen in this curve. Twenty iterations were required to achieve
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Fig 21. Moving load on a plate on foundation.
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closure for all pode points, even though the curve of Fig 22 indicates closure

for station 2,3 within 10 iterations.

Bridge Approach Slab

An example of how the results of this study might be applied to a highway
pavement problem is shown in Fig 23. The approach slab connects the pavement
with the bridge deck and is supported on one end by the abutment bent and by

the base material over half of its length.
3

8

A coefficient of subgrade reaction for the base material of 250 1b/in
was selected for this example. The plate bending stiffness was 2.278 X 10
1b-in2/in in both the x and y-directions of the slab, typical for a 9-inch
pavement slab. The resistance-deflection characteristics of the base material
were represented by a bilinear curve (Fig 23). The connection of the slab and
the abutment bent was a hinge support. No resistance was offered the slab in
the area of the cardboard form material. A closure tolerance of 10“‘5 inch was
selected for this study.

Loads, representing the truck shown in Fig 23, were moved across the slab
at 60 mph. The response of a point in the path of the load for both static
and dynamic loads is shown in Fig 24.

Although the mean curve through the dynamic response data approaches the
static deflection curve, considerable dynamic amplification is noted by the
peak values. These peak deflections and stresses resulting from the dynamic
response of the system may be responsible for fatigue damage to the slab

material.

Summary

Four types of example problems were solved to demonstrate the method of
analysis. The free vibration problem illustrated the stability of the method
as well as its ability to predict the theoretical fundamental period of vibra-
tion. A second set of problems demonstrated the propagation of the traveling
wave in a simply supported rectangular plate. Comparisons were made between
the response of the plate resting on both linear and bilinear foundatioms,
thereby demonstrating the capability to solve nonlinear problems. Finally a

practical highway problem, a bridge approach slab, was solved to demonstrate

the application of the method to a typical engineering problem.



xpansion Joints
Shoulde7 R
i 1
6 ft. Py
1
b
[
- ||
24 ft g Approach | Lol
| 3 Slab 40 ft |
(9|n.) g. I |
©
@ [
[
lOff |
|
Shoulder
rett—— 20t

Approach Silab

Corrugoted Cordboard

Form

9fta

Pavement

Bridge

Base

(a) Location of approach slab.

Fig 23.

Resistance

!
f
I
|

Slab Loading

O©

""14 ft ?"“-—— 18 ft

hx = § £t

810 5400 6740 34i0 4520
~ hy = 2 ft
- o
| Monitor
= Station (4,6}
P
o= -

Load Path

360,000

(b)

8

™ Abutment BeM -1.0 Defiection :Winch

Nonlinear
Support

\ = Supported
Edge

Discrete-element model of approach slab.

Bridge approach slab.

SL



Station 4,6 Deflection, inches

76

.004 +

002

Time Step Increment , 1.3 x 10 sec.

Time Station
£ ] ) i : { | | i

~-002-+

-004 T

~.0086 T

-.008

~.010 -

-0i2r

Fig 24.

¥ [ 1 T L H 4 i

40 60 70 80 90

Static
Deflection

Dynamic
Response

1
100 1o

Static and dynamic response of bridge approach slab, station 4,6.



77

The first two examples serve to develop confidence in the method for
solving linear problems. The third example, on the other hand, presents the
solution capability of the algorithm for plates on nonlinear foundations.
Although experimental data are lacking for a correlation study of the proposed
nonlinear procedure, the nonlinear results appear reasonable when compared

with solutions for the plate on a linear foundation.
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CHAPTER 10, SUMMARY AND RECOMMENDATIONS FOR FURTHER RESEARCH

The result of this work was the development of a method for the dynamic
analysis of plates resting on nonlinear foundations. A step-by-step numerical
integration method was utilized to propagate in time the response of a discrete-
element model representing the plate.

The implementation of the analysis procedure was made possible by the high-
speed digital computer. The numerical method described in this work was coded
in FORTRAN language for the Control Data Corporation (CDC) 6600 digital com-
puter. To permit the analysis of plates with many increments in the x and
y~-directions, the peripheral storage facilities of this computer were utilized.
At the present time, the CDC 6600 at The University of Texas at Austin will
handle a 50-increment square plate.

The step-by-step numerical integration procedure was based on the rational
assumption of linear acceleration for each node during the time-step interval.
The stability of the linear acceleration algorithm was investigated and a
method presented for the selection of the time-step increment.

An iterative method for nonlinear analysis, which does not require the
adjustment of the stiffness matrix of the structure, was presented. Nonlinear
adjustments were made by correction loads which were added to the right-hand-
side of the equations. The load iteration technique utilizes an efficient
solution procedure known as the multiple load method for the repetitive solu-
tions of the equations. The multiple load method may permit as many as ten
load iterations to be performed in the time required for a single stiffness
iteration.

The numerical method was organized and programmed in a manner which will
facilitate the modification and extension of the method. Future extensions to
the model and the program might include relative damping, to represent mate-
rial damping properties of the plate, and, for highway pavement analysis, the
coupling of a vehicle model and pavement roughness characteristics to the

plate model for the generation of dynamic loads.
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The nonlinear solution capabilities should be extended to the plate
bending and twisting stiffness variables. Nonlinear moment-curvature and
moment-twist relations could be incorporated in the iterative procedure, there-
by permitting analysis of the plate or slab material for stresses in the non-
linear range. Furthermore, capabilities for inelastic analysis should be
developed for both the foundation and slab properties.

Studies of the nonlinear closure procedure should be continued. Although
the load iteration method appears attractive because of the multiple load solu-
tion procedure, methods for accelerating closure should be developed. One
method has been mentioned - that of alternating cycles of load iteration with
a single cycle of the tangent modulus method. However, it is possible that
other, more natural, methods may exist, such as the use of the curvature or
slope of the iteration curve for prediction of the equilibrium position.

The existing discrete-element model requires the user to know and specify
the distribution of axial or in-plane thrust throughout the plate. A valuable
extension of this work would be the modification of the model to include axial
deformations, and the development of the force-deformation equations for in-
plane thrust. Not only could the axial and bending solutions be coupled for
combined axial-bending analysis of plates, but the in-plane analysis could be
applied to plane-stress problems. Furthermore, an in-plane solution would be
required for the analysis of plates subjected to thermal gradients.

Although this study was not performed for the evaluation of the existing
computer equipment, comments are in order about the peripheral storage capa-
bilities and the time required to access this storage. Because the study was
performed with the CDC 6600 digital computer, the following remarks should be
reviewed with respect to this third generation computer.

I1f peripheral storage had not been utilized, the problem size would have
been limited by the available core storage. To overcome this, disk files were
used extensively for data storage. Although the problem size was significantly
increased, the access time for reading and writing files was found to be an
order of magnitude greater than the time required for the arithmetic operations.
To overcome the access time problem, a special, machine~dependent subroutine
was incorporated in the program. The fourth generation machines will hopefully

not have this limitation.
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Finally, experimental data are required for further evaluation of the
method. Carefully controlled model studies and field tests are required for
dynamic response data. Research of this nature will not only aid in the evalu-
ation of the numerical method but also furnish additional data on material

behavior, vhich could be applied to the discrete-element idealization of the

problem.



This page replaces an intentionally blank page in the original.
-- CTR Library Digitization Team



10.

11.

REFERENCES

Agarwal, Sohan L., and W. R. Hudson, "Experimental Verification of Discrete-
Element Solutions for Plates and Pavement Slabs," Research Report
No. 56~15, Center for Highway Research, The University of Texas at
Austin, August 1969.

Ang, A. H.-S., and Wallace Prescott. "Equations for Plate-Beam Systems in
Transverse Bending,' Journal of the Engineering Mechanics Division,
Vol 87, No. EM6, American Society of Civil Engineers, December 1969,
p 1.

Ang, A. H.-S., and N. M, Newmark, "A Numerical Procedure for the Analysis
of Continuous Plates,' Proceedings of the Second Conference on Elec-
tronic Computation, American Society of Civil Engineers, Pittsburgh,
September 1960, p 379.

Chan, S. P., H. L. Cox, and W. A. Benfield, "Transient Analysis of Forced
Vibration of Complex Structural-Mechanical Systems,' Journal of the
Roval Aeronautical Society, Vol 66, July 1962, p 457.

Crandall, Stephen H., Engineering Analysis, McGraw-Hill, 1956,

Endres, Frank L., and Hudson Matlock, "An Algebraic Equation Solution
Process Formulated in Anticipation of Banded Linear Equations,"
Research Report 56-19, Center for Highway Research, The University
of Texas at Austin, June 1970.

Harr, M. E., "Assuming the Vehicle Moves,' a report to the Annual Meeting

of the Highway Research Board, Special Conference Session on Distress

and Failure of Pavements, 1969.

Houbolt, John C., "A Recurrence Matrix Solution for the Dynamic Response
of Aircraft in Gusts,' National Advisory Committee for Aeronautics,
Technical Note 2060, March 1950,

Hudson, W. Ronald, and Hudson Matlock, "Discontinuous Orthotropic Plates
and Slabs," Research Report No. 56-6, Center for Highway Research,
The University of Texas at Austin, May 1966,

Hurty, Walter C., and Moshe F. Rubinstein, Dynamics of Structures,
Prentice-Hall, 1964,

Ingram, Wayne B., and Hudson Matlock, "A Finite-Element Method for Bending
of Layered Structural Systems," Research Report No. 56-5, Center
for Highway Research, The University of Texas at Austin, June 1967,

83



84

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

Jones, R., E. N. Lister, and E. N. Thrower, "Dynamic Behaviour of Soils
and Foundations," Vibration in Civil Engineering, B. 0. Skipp,
Editor, Butterworths, 1966.

Matlock, Hudson, "Applications of Numerical Methods to Some Structural
Problems in Offshore Operations," Proceedings, First Conference on
Drilling and Rock Mechanics, The University of Texas, Austin, January
1963.

Matlock, Hudson, and T. Allan Haliburton, "A Finite-Element Method of
Solution for Linearly Elastic Beam Columns," Research Report 56-1,
Center for Highway Research, The University of Texas, Austin, 1965,

Matlock, Hudson, and T. Allan Haliburton, "A Program for Finite-Element
Solution of Beam-Columns on Nonlinear Supports," 1335 Bonham Terrace,
Austin, Texas, 1964,

Newmark, Nathan M., "A Method of Computation for Structural Dynamics,"
Journal of the Engineering Mechanics Division, Vol 85, No. EM3,
American Society of Civil Engineers, July 1959, p 67.

Panak, John J., and Hudson Matlock, "A Discrete-Element Method of Multiple-
Loading Analysis for Two-way Bridge Floor Slabs," Research Report
No. 56-13, Center for Highway Research, The University of Texas
at Austin, January 1970.

Richtmyer, Robert D., Difference Methods for Initial-Value Problem,
Interscience Publishers, New York, 1957.

Salani, Harold J., and Hudson Matlock, "A Finite-Element Method for
Vibrating Beams and Plates," Research Report No. 56-8, Center
for Highway Research, The University of Texas at Austin, June 1967.

Stelzer, C. Fred, Jr., and W. Ronald Hudson, "A Direct Computer Solution
for Plates and Pavement Slabs," Research Report 56-9, Center for
Highway Research, The University of Texas at Austin, October 1967.

"The AASHO Road Test — History and Description of Project," Special Report
61lA, Highway Research Board, 1961.

Timoshenko, S., and S. Woinowsky-Krieger, Theory of Plates and Shells,
McGraw-Hill, 1959.

Troitsky, M. S., "Orthotropic Bridges Theory and Design," The James F.
Lincoln Arc Welding Foundation, Cleveland, Ohio, 1967.

Tucker, Richard L., "A General Method for Solving Grid-Beam and Plate Prob-
lems, " Ph.D. Dissertation, The University of Texas, Austin, 1963.

Tucker, Richard L., "Lateral Analysis of Piles with Dynamic Behavior,"
Conference on Deep Foundation, Mexico City, Mexico, December 1964.



85

26. Volterra, Enricco, and E. C. Zachmanoglou, Dynamics of Vibrations, Charles

E. Merrill Books, Columbus, Ohio, 1965,

27. Wilson, Edward L., and Ray W. Clough, "Dynamic Response by Step-by-Step

Matrix Analysis," Symposium on the Use of Computers in Civil Engi-
neering, Lisbon, Portugal, October 1962,



This page replaces an intentionally blank page in the original.
-- CTR Library Digitization Team



APPENDIX A

DERIVATION OF EQUILIBRIUM EQUATION
FOR DISCRETE~ELEMENT PLATE MODEL

s T R



This page replaces an intentionally blank page in the original.
-- CTR Library Digitization Team



APPENDIX A. DERIVATION OF EQUILIBRIUM EQUATION
FOR DISCRETE-ELEMENT PLATE MODEL

The basic derivation of the equilibrium equation has been presented
elsewhere (Refs 17 and 20), but is presented here in detail, for the benefit
of the reader.

The discrete-element model is shown in Fig 2. It consists of rigid bars,
elastic restraints at joints or nodes, and torsion bars connecting the middle
of the rigid bars.

An expanded view of a joint is shown in Fig Al. The elastic elements are
replaced by the forces and moments which are developed as the node points of
the model undergo deformations. All forces and moments are shown in their
positive direction.

Equilibrium of the joint of Fig Al in the 2z or w-direction is satisfied

by
= = Y L . v -
ZFZ Qi,j + i3 + Vi,j i+, ] Vi,j 1 Si,jwi,j (A.1)

Moment equilibrium for each of the bars will yield

R AT T A Vo ¥ -

X 1,j i’J i’j+l i'l’j i’j
+ P (~w +w, .) (A.2)
i’j i-l’j i’j '
_ = WYX RV 2 -
hxv}i{+1,j Mirl,i ~ Mis,ger t M}Z:J M}'1<+1,j
+ P (~w ) (A.3)
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-h W, = Mxy. + MY e, -
y 1,] 1+]-,J 1:J"1 1,]
\ A
+ P ,J( Wi,j-l + Wi,j) (A.4)
R = Y y y Y
BoVi 4 Mx ,j+l M}1{+1 Gl T M s
+ P (-w, . +w ) (A.5)
i,j+l i,j+l '

Substituting Eqs A.2 through A.5 into Eq A.l

L [ L yx ]
CARER ANVEE WITE L AT S SR
X
LRILE ANC A 1,90 7 Fien, 3OV 5

- MY y - oM y y o
M}i{+1,j+1 M i T Mg M g PR 0V
+ w i1 ) P’ ,J+1( wi,j + Wi,j+1) Qi,j Si,jwi,j (A.6)

Node point and torsion bar elastic constants are related to the continuum
plate constants through finite-difference approximations. As noted in Chapter
2, the continuum variables are represented by subscripts x and y and terms
with superscripts pertain to discrete or concentrated data.

The continuum bending moment is related to curvature by elastic stiffness

constants DX and Dy and Poisson's ratio values vx and v
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2 2
= 3w 5w)
M = Dy ( >tV (A.8)

X 2
Ay ox
In Eq A.7, vy represents the influence of curvature in the y-direction on
curvature in the x-direction. Similarly, in Eq A.8, the cross sensitivity of

X on y-curvature is Vo o Furthermore, the Poisson's ratio values are not

independent, but related to the bending stiffness by

Dwv = Dwv (A.9)

The above relationship can be proved by the Maxwell-Betti theorem. The bending
moments may therefore be expressed as a function of three variables, Dx s

Dy , and @ , given by Eq A.9:

2 2

M = D a—“2“+a—a—w (A.10)
X X 2
ox dy
2 2

M = D 5_%4”,5_; (A.11)
y y ay ox

Replacing the curvature by a central difference approximation gives the

model moment:

h
X = A -
1,3 D, ( 2)(Wi-l,j 2wy 5t Vi)
i,] hx
h
_x) _ .
+ ¥ ( hz (wi,j-l 2wi’j + Wi,j+l) (A.12)
y

y hx
i,] = Dy1 ; ( ;E >(wi,j-l B 2w1,J wi,j+l)
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X
+ ai,j ( h2 >(wi-1,j - Zwi,j + wi+1,j) (A.13)
X

The bending moment at adjacent node points is given by similar expressionms.
It is possible to relate the model and continuum twisting moments. First,

consider the continuum relationship between twisting moment and plate twist.

2

- . dw
Mxy = ny 353y (A.14)

The first subscript defines the direction of the moment vector while the
second indicates the surface to which the moment is applied. The moment vector
is parallel to the axis defined by the first subscript and acting on a verti-
cal plane which is parallel to the second (Fig 1). For equilibrium, the

moment vector parallel to the y-axis is related to that in the x-direction by:

- (A.15)

If the partial derivative is replaced by a difference expression, the

discrete-element twisting moment is obtained:

h
Y= - —I )(w. . -
i,j xyl’J hxhy i-1,j~-1 i,j-1
- wi-l,j + wi,j) (A.16)
yx hx
Ml,J = xyl’j h h )(wl-l j-1 i,j-1
- .1
wi-l,j + wi,j) (A.17)

Again, similar expressions are found for the twisting moments acting on

adjacent bars.
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It is important to note that there is a fundamental difference between
the bending and twisting moments for the discrete-element model. Bending
moments are generated at the node points while the twisting moments are de-
veloped in torsion bars attached to the midpoints of adjacent parallel bars.

It is not possible therefore to refer to the twisting moment at a node point.
The equilibrium equation for a node point is found by substituting the
model bending equations (A.l12 and A.13) and twisting moment equations (A.16 and
A.17) into Eq A.6. A relationship between stiffness and node point deflection

is established.

1 2 3

TP ie1,3-0 P M e P M g

%1,1"1,3-2

1 2 3
c., .w, . tc, .w, . +c, .w, . +cC, .wW, .
i,j1-2,] i,j"i-1,j 1,1 1,] i,j i+l,]

1 2
*eg, Vi, g Y1, 54 T Ve g
+ a3 +e. .w = q (A.18)
i,j i+1l,j+1 i,j i,j+2 i,j )
The coefficients of the deflection terms are
by
a, . = — (D ) (A.19)
1] RS Vi, -1
y
1 1
.= (2D +a, L ta . (A.20)
i,j hxhy xyl’J i~1,j3 i,j-1
h
2 X 2
b = -2—=—( +D )y - (
h
tad n2 o Yi,i-1 i,] by y  Vi,j
y
+D +a, . +a y - = pY (A.21)
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b y
y
+Pi’j+1) +5;
2h
Cf{ . = - _3-1 (DX + Dx ) = h2h (DX
»J b i,j it1, ] xy Vi1,
PX
_Citl,]
+ ny +di’j + ai‘l‘l,j) hx

i+l,j+1
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(A.22)

(A.23)

(A.24)

(A.25)

(A.26)
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5
ij = @, )
? h i+l,j
X
1 1
.. = (2D + o, Lo, L)
i,] hxhy xyi’j+1 i-1,j i,j+l
2h
2 X 2
d’ = - —= (D + D ) - (D
thJ hi Yi,3 1,540 By ¥y gn
Py
i,j+1
+ D + o +ai,j+1)' h

3 _ 1
T T

wly o i e Y %1, T )

hX
e. . = — (D )
1,] h3 (yi 41
y b
ql,j - Qi:.]

These equations may be written in matrix notation:

[ - {9

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

r
where FK] is the stiffness matrix of the plate. The terms in LK] are

given by Eqs A.19 through A.31. The load vector {Ql is given by Eq A.32.
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APPENDIX B. EQUATION OF MOTION FOR DISCRETE-
ELEMENT PLATE MODEL

A free-body diagram of the discrete-element plate model for dynamic
analysis is shown in Fig Bl. A dashpot, to represent viscous damping, is
attached to the node point as well as the fixed reference plane. The equation
of motion for each node is developed by adding the inertia and damping forces

to the node equilibrium equation (A.18):

1 2 3
3,3%1,3-2 T P, ¥i-1,5-1 P, Ve 51 P, 5V, 51

1 2 3 4
t e, iMi-2,5 T %, Y-, %,V T G, Vi,

5 1 2

o Va2, T, 50 T Y5V 0

3 -
g Vi, Y42 T Y,
d2wi . dwi .
"M ( e ) " D3 ( dt ) (8.1)

The new terms in Eq B.l (Mi ; and DFi j) are the nodal mass and damp-

b b

ing. The units of mass must be 1b-sec2/in and those of damping lb-sec/in.
It will be convenient to combine the equations of motion for the node

points and write in matrix form:

(W - @[] 8

or in the more familiar form

99
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Mi,j

Fig Bl. Expanded view and free bodies of dynamic model joint and connecting bars.
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W)+ L) ([ 4 -

In Eqs B.2 and B.3, differentiation with respect to time is conveniently
represented by the dot above the deflection. )

The mass matrix [MJ and damping matrix [DF} are diagonal. This is
the result of structural idealization given in Fig 3. The mass matrix would
take a different form if the mass were lumped in the bars. Furthermore, rela-

tive damping would change the form of the damping matrix.
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APPENDIX C. STEP~-BY~STEP NUMERICAL INTEGRATION PROCEDURE

The equations included in this appendix were derived especially for use
with the method developed during this study. They are coincidentally a spe-
cialized form of the equations presented by Cox et al (Ref 4) for step-by-step
analysis of structural systems.

The numerical integration of the equations of motion is based on the
assumption that the acceleration varies linearly during each time step. The
velocity and deflection, therefore, are dependent on the conditions at the

beginning of the time step and the acceleration at the end of the interval:

. R Tt

Merl T e T 7T Y 7 Yk (c.1)
oo

Wk+l = wk + htwk + 5— wk +'€— Wk+1 (C.2)

It is possible to combine Eqs C.l and C.2 with those for time increment k-1
to k and express the velocity and acceleration as a function of deflection

and the time increment length ht

h h
. e t Tt
R + 7 W1 + 5 W (c.3)
hi hi
Wy = Y1 + htwk-l + §~'wk_1 +-€—-wk (C.4)

Subtracting Eq C.4 from Eq C.Z,

Vel " 2wk +w ., = ht(wk - Wk-l) +e§-(bk - wk-l)
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hi
+ — - - (1]
5 a1~ W (C.5)
hi
The term ht(wk - wk-l) may be replaced by IR (hk + wk-l) (from, Eq C,3)
giving
6 . .
2 Mg — 2 ) T W P T (c.6)
h
t

A similar relation between velocity and deflection is found by first

adding Eqs C.2 and C.4:

e
Vbl T Y- T PGt ) x 3T G+ )
he
+ e (Wk+1 + wk) (C.7)

Next, the terms (hk + wk-l) and (wk+1

C.1. Combining terms leads to the relationship between velocity and deflec-

+ wk) are replaced by Eqs C.3 and

tion

.
= W

el + 4wk + w

1 (C.8)

The recursive relationship to propagate the solution from one time step
to the next is developed by writing the dynamic equilibrium relationships at

time k-1, k , and k+l

[M] {""k-l} + [DF] {‘.’k-l} + [K] {wk-l} = {Qk-l} (C.9)
)+ - D o - B
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[M] {wk+1} + [DF] {"’kﬂ} + [K] {Wk+1} = {Qk+1} (C.11)

Multiplying Eq C.10 by 4 and then adding Eqs C.9, C.10, and C.1l1l gives
[M] {Wk+1 At wk-l} * [DF] {Wk+1 + i+ i)

* [K:] {Wk+1 ot wk-l} - {?kﬂ + 40 + Q) (C.12)

Substituting Eqs C.6 and C.8 into Eq C.12 gives the following recursive

relationship for step-by-step recursive analysis:

& [M] + %;{DF] + [K] {Wk+1} = {Qk+1 A+ Qk-l}

by

by

[ 20D o - e T - - o

+ [K] {wk-l} (C.13)

As both [M] and [DF] are diagonal matrices, only the main diagonal of
the stiffness matrix is modified by the operations shown in Eq C.13.

Eq C.13 can be written as

[K'] {Wk+1} - {Qfm} - (C.14)

The right-hand side of Eq C.13 is combined, giving an equ}valent load vector
{Q£+1} . The terms in the modified stiffness matrix [K'J are given by Eqs
A.19 through A.31 with one exception: for dynamic analysis cz ; (Eq A.25)

becomes
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e

s ]

h
= —%l(nX + 4D +D_ )
hx i-1,] 1,] i+l,]
hx
+ 3 §3] + 4D + D h)
hy y1,_]--1 yi,J yi,j+1
2
+ 5 (DX + D + D + D
xy  Vi,j Yi+1,3 Yi,3+1 Yit+l, i+l
bha, ) A= @ P e @ 4B )
i, h i.] i+1,57 T h “i,j | i,i+l

(C.15)
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SLAB 35 GUIDE FOR DATA INPUT -- Card forms

IDENTIFICATION OF PROGRAM AND RUN (2 alphanumeric cards per run)

80

I

IDENTIFICATION OF PROBLEM (One card each problem)

Prob No. Description of problem

80

[ 1

| -] 1
TABLE 1. PROGRAM CONTROL DATA (Two or more* cards each problem)

00

Number of Print Number
Number of Curves in Option of
Cards in Table Table Control Monitor
2 3 4 5 6 7 Switch Stations
NCT2 NCT3 NCT4 NCT5 NCR6 NCR7 OP MON
Py 10 18 20 25 30 35 46 50 56 €0
Number of
Slab Number
Increments of Maximum
X Y Time Increment Length Time-Steps Poisson's
Direction Steps X-Direction Y-Direction _ Interval Ratio
MX MY MT HX HY HT PR
s 10 18 20 30 40 50 s0

* The first two cards of this table are required for each problem.
third card