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PREFACE 

A numerical method for the dynamic analysis of plates on nonlinear 

foundations was developed during this study. The method offers the highway 

engineer a rational approach for the solution of many plate and slab vibration 

problems, including pavement slabs and highway bridges which can be idealized 

as orthotropic plates. 

The method was programmed and coded for use on a digital computer. Al­

though the program was written for the Control Data Corporation (CDC) 6qOO 

computer it can be made compatible with IBM 360 systems. Copies of the pro­

gram presented in this report may be obtained from the Center for Highway 

Research at The University of Texas at Austin. 

This work was sponsored by the Texas Highway Department in cooperation 

with the U. S. Department of Transportation Bureau of Public Roads, under 

Research Project 3-5-63-56. The Computation Center of The University of Texas 

at Austin contributed the computer time required for this study. The authors 

are grateful to these organizations and the many individuals who have assisted 

them during this study. 
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ABSTRACT 

This work describes a discrete-element method for the dynamic analysis of 

plates or slabs on nonlinear foundations. The method has been programmed for 

a high-speed digital computer and can be used to obtain solutions to a wide 

variety of plate vibration problems. 

A step-by-step numerical integration procedure is employed to numerically 

integrate the solution in time. The assumption of a linear variation of 

acceleration during the time-step interval is utilized to develop a recursive 

solution procedure. Recommendations for the selection of the time-step incre­

ment, based on the stability analysis of the algorithm, are presented. 

The nonlinear analysis is performed by an iteration procedure which ad­

justs the load rather than the foundation stiffness. This so-called load 

iteration method is presented as an alternative to the familiar stiffness 

adjustment procedures. Although the closure is slower with regard to the 

number of cycles required to reach equilibrium, a significant reduction in the 

computer time per cycle is realized by load iteration. 

The program has been developed to accept a general variation in the elas­

tic properties of the plate and in the nonlinear foundation characteristics. 

Furthermore there is considerable latitude in the description of the plan con­

figuration and the dynamic loading. 

Several example problems demonstrating the method are included, as is an 

example of the preparation of data for computer input. 

KEY WORDS: mechanics, orthotropic bridges, slabs, vibration. 
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SUMMARY 

The purpose of this work was the development of a numerical method for 

dynamic analysis of plates or slabs on nonlinear foundations. From the 

computer program which was developed, several example problems are presented 

to illustrate the validity of the numerical procedure and the potential 

application to highway bridge and pavement problems. 

The computer program was developed to solve a model of the elastic slab 

consisting of rigid bars and elastic joints and torsion bars. This idealiza­

tion, called a discrete-element model, has been successfully used to obtain 

static solutions to slab problems. The inertia properties of the plate were 

added to the static model in the form of lumped concentrated masses. Also 

added to the static model was a method to dissipate energy by viscous dampers 

or dashpots. 

The numerical technique which was developed to propagate the dynamic 

response was, because of the nonlinear aspects of the problem a step-by-step 

method. Values of plate deflection, moment, and foundation forces are deter­

mined at discrete time intervals. 

The response of the plate is first evaluated at time t = t. Information 
o 

gained from the response at t is then utilized to determine the response at 
o 

some time 6t from t. The numerical technique therefore steps ahead an amount 
o 

6t to obtain each new solution. For a bridge or pavement problem, many time 

steps may be required to determine the response of the structure to a moving 

load. 

The selection of the time step increment 6t is an important factor in 

obtaining correct and meaningful results. Included in this report is a simpli­

fied formula to determine the maximum time step increment. This formula has as 

its variables the plate and foundation stiffness, the mass of the plate model, 

and the increment length selected for the model representation of the plate. 

To facilitate the use of this program for highway problems, the user 

has been given a convenient tabular format for the organization of data for 

computer analysis. For example, only two (2) data cards are required for the 
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program to position on the slab a load moving with any velocity. As the 

procedure steps ahead in time, the load is automatically advanced at the 

correct speed. 

The numerical method has been verified by solving several simple example 

problems. First, the free vibration of a simply supported plate was studied 

and the results from the program compared with theory. For this study, the 

difference between numerical and theoretical results was insignificant. 

Additional studies were run with moving loads, and again the results from the 

numerical procedure were very satisfactory. An example of a slab connecting 

the pavement with a bridge deck was studied. The foundation was idealized as 

a bilinear curve, resisting downward deflection but permitting lift-off. The 

results of this study showed the slab to lift free of the foundation and to 

oscillate about the static deflection curve. Peak deflections, however, were 

significantly greater than the static deflection. 



IMPLEMENTATION STATEMENT 

In this study, another tool has been developed for computer simulation 

and analysis of slab systems. The computer program described in this work 

may be used to study some of the dynamic effects of both moving loads and 

nonlinear foundation support for pavement slabs. 

The problems associated with dynamic analysis of highway structures 

have long been untenable for the highway engineer. Although the use of 

impact factor to amplify the static load coupled with a static analysis has 

for years furnished the engineer a convenient design approximation, the dynamic 

reponse characteristics of the structure have remained submerged due to the 

extreme complication associated with the required dynamic analysis. 

The potential application of this work ranges from sensitivity studies 

of rigid pavement dynamics to the review of impact factors for certain types 

of bridge structures. Furthermore, the coupling of research results of the 

P3vement dynamics project with this program will make available to the high­

way engineer a procedure which will permit the dynamic study of the vehicle, 

slab, and foundation system. 

gecommennati0ns are made for further research in the area of pavement 

dynamics, especially in the area of the foundation characteristics. Either 

model tests or carefully controlled full scale tests should be performed to 

develop data for a correlation study of the numerical method. As more infor­

mation becomes available about foundation properties, it will be possible to 

modify and extend the computer method presented in this work. 
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lb/in 

Ib-sec/in3 
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xvii 

Definition 

Stiffness matrix coefficient 

Partitioned matrix of 
cients 

Constant 

a .. 
1,J 

Recursion coefficient vector 

Partitioned matrix of 
cients 

b .. 
1,J 

Stiffness matrix coefficients 

Recursion coefficient matrix 

Distributed viscous damping 

Partitioned matrix of 
cients 

c .. 
1,J 

Stiffness matrix coefficients 

Recursion coefficient matrix 

Partitioned matrix of 
cients 

d .. 
1,J 

Stiffness matrix coefficients 

coeffi-

coeffi-

coeffi-

coeffi-

Isotropic plate bending stiffness 
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i 
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j 

k 

Typical Units 

lb-in
2
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lb-in
2
/in 

lb-sec/in 

lb-sec/in 

lb-sec/in 
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lb/in 

lb 
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Definition 

Plate bending stiffness in x and 
y-directions 

Plate twisting stiffness 

Diagonal matrix of viscous damping 
coefficients 

Uncoupled damping matrix for normal 
mode analysis 

Viscous damping coefficient 

Stiffness matrix coefficient 

Partitioned matrix of 
cients 

Modulus of elasticity 

e .. 
~,J 

coeffi-

Recursion coefficient multiplier 
matrix 

Distributed damping force on middle 
plane of plate 

Distributed inertia force on middle 
plane of plate 

Restoring force for a single mode 
point displacement 

Magnitude of time step 

Discrete-element widths in x and 
y-directions 
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with x-direction 

Iteration index 
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with y-direction 

Time step identification 



Symbols 

L 

M .. 
1.,J 

M , M 
x Y 

P 
x 

Q .• 1.,J 

s 

P 
Y 

Typical Units 

lb/in 

lb/in 

lb/in 

lb 

lb-sec2 /in 

lb-sec
2
/in 

lb-sec
2
/in 

lb-in/in 

lb-in/in 

lb-in 

lb-in 

lb/in 

lb 

lb 

lb 

lb 

lb 

xix 

Definition 

Stiffness matrix 

Modified stiffness matrix 

Uncoupled stiffness matrix for normal 
mode analysis 

Nonlinear correction load 

Mass matrix 

Uncoupled mass matrix for normal mode 
analysis 

Discrete node point mass 

Continu~ bending moment 

Continuum twisting moment 

Model bending moment 

Model twisting moment 

Distributed axial thrust 

Concentrated axial thrust 

Partitioned load vector 

Lateral load 

Modified load vector 

Load vector for normal mode analysis 

Distributed foundation support stiff­
ness 
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Symbol 

S .. 
~,J 

v 

w 

• w 

w 

W(i,j) 

Ci 

• 
11 , 11 

\l 

p 

w 

.. 
11 

Typical Units 

lb/in 

lb 

in. 

in/sec 

. / 2 
~n sec 

rad/sec 

Definition 

Discrete foundation support stiffness 

Slope of acceleration between time 
stations 

Shear force in plate model 

Deflection 

Velocity 

Acceleration 

Mode shape 

Product of bending stiffness and 
Poisson's ratio 

Normal coordinates 

Poisson's ratio (isotropic) 

Effect of x-curvature on that in y­
direction 

Effect of y-curvature on that in x­
direction 

Distributed plate mass 

Normal mode matrix 

Frequency 



CHAPTER 1. INTRODUCTION 

This work presents a rational method for step-by-step dynamic analysis 

of orthotropic plates on nonlinear foundations and uses a method of nonlinear 

analysis in which the load vector is modified to reflect the nonlinearity, 

instead of altering the stiffness matrix of the mathematical model between 

iterations. This load iteration method is coupled with a linear acceleration 

algorithm for the development of the analysis procedure. Linear accelerations 

between each two stations in time are prescribed for model node points. 

Motivation for development of the numerical procedure came from problems 

encountered in the field of highway engineering, particularly those related to 

pavement and bridge structures. The effect of vehicle motion on stresses and 

deflections of highway structures has long been an unknown factor. To focus 

on these highway problems, the method is applied to a bridge approach slab, 

and the type of nonlinearity studied is a special bilinear foundation behavior, 

to represent the loss of foundation support as the slab rises from the founda­

tion. 

A computer program is developed to demonstrate the method of analysis, 

using a simplified tabular imput form to describe the problem. While the 

dynamic loading must be specified by the user, either periodic or nonperiodic 

load, as well as stationary or moving, can be easily described. Furthermore, 

the foundation characteristics are described by curves composed of straight 

line segments. 

Definition of the Problem 

The effect of vehicle motion on highway structures has been a major con­

cern of highway and airfield engineers for some time, and large-scale tests, 

such as the AASHO Road Test at Ottawa, Illinois (Ref 21), have served to focus 

attention on the need for a method for evaluating it. 

The lack of agreement about the importance of dynamic effects is apparent, 

especially in the area of highway pavement design. At a recent special con­

ference of the Highway Research Board, Harr suggested a review of the hypothesis 
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that pavement loads are quasi-static and offered the possibility that energy 

is transmitted in all directions from the point of contact of the wheel with 

the pavement and may cause cracking and deterioration of the pavement at edges 

and other points where there is no foundation support (Ref 7). On the other 

hand, Jones et al have viewed the pavement problem as being essentially one of 

statics (Ref 12). The results of their investigations suggested that the 

dynamic effects are not significant, because of the great difference between 

the speed of a vehicle and the velocity of propagation of elastic waves. 

Thus, it appeared that an analysis tool which would permit qualitative 

and quantitative study of some of the effects of dynamic loading on structural 

pavements would be useful in determining the significance of the loadings and, 

subsequently, in designing a wide range of structures. Therefore the develop­

ment of such a tool was chosen as the problem to be considered in this study. 

The Discrete-Element Analysis Procedure 

Over a period of years, developments by various investigators have led to 

the discrete-element analysis procedure, which is the basis of the analysis 

described in this report. The concept of this use of a discrete-element model 

for plates can be traced to Ang and Newmark (Ref 3). Tucker extended the con­

cept for beams to grid and plate structures, using an alternating-direction 

method as the basis for his work on solutions for the grid-beam structure of 

a plate (Ref 24), and later Ang and Prescott presented model equations for 

solving complex isotropic plate problems (Ref 2). 

An orthotropic plate model was developed by Hudson in a study which ex­

tended the work of Tucker and refined the alternating-direction procedure for 

solving the large number of equilibrium equations generated by the mathematical 

model (Ref 9). A method for direct solution of these equilibrium equations 

developed by Stelzer takes advantage of the banded nature of the equations 

(Ref 20). In this method, the formulation of equilibrium equations results in 

a partitioned stiffness matrix with a submatrix band width of five, i.e., two 

submatrices on either side of the main diagonal partition. 

A dynamic analysis of elastic plates based on a finite-difference method 

was developed by Salani (Ref 19). Using an alternating-direction implicit 

(ADI) iterative procedure, the transient and steady state response of isotropic 

plates can be determined. 



3 

Basis of the Method for Vibration Analysis 

The discrete-element model presented in this report is Hudson's model 

extended to include mass and viscous clamping. The mass of the plate is lumped 

at stations or node points, and viscous damping is absolute; that is, each 

node point is connected to a fixed reference plane by a dashpot. 

Solutions to the equations of motion are obtained at discrete points in 

time. An algorithm based on the assumption of linear acceleration between 

time stations is used to propagate the solution step-by-step. Nonlinear 

analysis is accomplished by iteration for equilibrium at each time step. A 

method is presented which does not require the adjustment of the stiffness 

matrix during the iterative procedure. Instead, the loading is modified to 

produce convergance to the equilibrium position. 

Many techniques for step-by-step analysis of structural vibration have 

been suggested, ranging from mathematically oriented methods to methods based 

on assumptions of the nature of the motion between time steps (Refs 16, 19, 

and 27). The latter technique was selected for use in this study of response 

of plates on nonlinear foundations. 

Application 

The tool presented here permits qualitative and quantitative study of some 

of the effects of dynamic loading on structural pavement and certain types of 

bridges. With it a bridge can be idealized as a plate, which is more realistic 

than idealizing it as a beam, and the program is general enough to permit the 

study of a wide range of structures containing plate-like structures, floors 

of multi-story buildings, certain types of aircraft structures, and the be­

havior of such structural grids as those which make up the deck of an offshore 

drilling platform. 
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CHAPTER 2. EQUATIONS OF MOTION FOR DISCRETE-ELEMENT MODEL 

The model for dynamic analysis is developed by the addition of mass and 

damping to node points of a discrete-element plate model. The equation of 

motion is derived by the addition of inertia and damping forces to the model 

load vector. 

The equation of motion and the mathematical model presented in this 

chapter pertain to linearly elastic thin plates in which lateral deflections 

are small. Before the discrete-element model is considered, the classical 

theory for isotropic and orthotropic plates is reviewed. The relationship 

between the continuum plate equations and the discrete-element model can be 

demonstrated by application of finite-difference approximations to the con-

tinuum expressions. 

Classical Equation of Motion 

The classical equilibrium equation for a plate on an elastic foundation 

can be written as 

oM 
+ _.2£Y. = 

ol 

+ £... \1 P ow) oy \ Y oy 

o I ow \ 
q - sw + - ( P -) 

ox \ x ox 

(2.1) 

The positive sense for the deflection is upward, which causes the difference 

in sign for the deflections and in-plane thrusts P from that given by 

Timoshenko (Ref 22). The equation is valid for either isotropic or ortho­

tropic plates, as material properties do not influence the equilibrium ex­

pression. 

The development of the equation of motion follows from D'A1embert's 

principle (Ref 26). An inertia force equal to the negative product of mass 
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per unit area times acceleration is applied on a unit area of the middle plane 

of the plate: 

F = 
m 

Viscous damping, included in the analysis, develops a force 

= OW 
-cd ot 

on the middle plane of the plate. 

(2.2) 

(2.3) 

Adding Eqs 2.2 and 2.3 to the equilibrium equation yields the equation of 

motion for a plate vibrating with small deflections: 

- 2 - sw 

+ L (p ow) + :L (p ow) 
ox \ x OX oy y oy 

(2.4) 

Bending moments in the isotropic plate are found by the familiar rela­

tionships: 

I 2 
o2w ) 

M = 0 \ oW+v 
x ox

2 Oy2 
(2. 5a) 

o ( 
2 

o2w ) 
M = o w + v 

y oy2 ox
2 

(2.5b) 

M = -0(1 - v) 
o2w 

xy oxoy 
(2.5c) 
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Fig 1. Direction of positive plate moments. 
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where 

D == 2 
12 (1 - \! ) 

(2.5d) 

A sign change is noted when Eqs 2.5 are compared with the moment-curvature 

relationships given by Timoshenko. Again, this is due to a reversal of the 

positive w coordinate direction. The assumed positive moment directions for 

the plate are shown in Fig 1. 

The bending moments in a plate of an orthotropic material are of a similar 

form (Ref 23): 

2 2 
M == D (~+\!~) 

X x ox2 y ol (2.6a) 

I 02w 
0

2
; ) M == D ~ -- + \! 

Y y ol x oX 
(2.6b) 

M -D 
02w 

== xy oxoy xy 
(2.6c) 

Substituting the more general Eqs 2.6 into Eq 2.4 gives the equation of 

motion for orthotropic plates: 

0
2 r ( 

2 ::; ) ] iw 
D a w + \! == -p - cd ~ +-2 L y ol x ot2 ot 

oy 

+ q - sw + 2...... ( p OW ) + ~ ( p ow ) (2.7) 
OX x OX oY Y oy 
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Volterra and Zachmanog1ou have presented numerical solutions of Eq 2.7 for 

rectangular isotropic plates (Ref 26). However, the solution to Eq 2.7 be­

comes untenable for plates of variable stiffness and general support conditions. 

Discrete-Element Model - Static Analysis 

A relatively simple mathematical model of the orthotropic plate can be 

constructed from rigid bars and elastic elements which simulate bending and 

twisting properties of the plate. A convenient discrete-element plate model, 

shown in Fig 2, was developed by Hudson (Ref 9) and Ingram (Ref 11). Torsion 

bars simulate twisting characteristics of the plate while special elastic 

joints are used to develop bending properties. Motivation for development of 

this model stems from work by Matlock and Haliburton on discrete-element beams 

(Ref 14), in which a similar idealization of rigid bars and elastic joints was 

used to represent beams. 

Derivation of the equilibrium equation for the discrete-element model is 

presented in Appendix A. In this development, the elastic joint and torsion 

bar properties are defined by applying a difference approximation to the 

moment expressions (Eq 2.6). It is important to note that the units of moment 

in the model are 1b-in while the usual units of plate moment are 1b-in/in. 

Furthermore, model moments are identified by superscript and continuum moments 

by subscripts x and y . 

The equilibrium equation of Appendix A could have been derived directly 

from Eqs 2.1 and 2.6, with the substitution of difference apprOXimations for 

the partial derivatives resulting in Eqs A.19 through A.31 of Appendix A. 

Thus the discrete-element model plays a dual role. It stands by itself 

as a convenient structural idealization of a plate, and it can be related to 

the continuum equation by difference approximations and may therefore be 

viewed as a physical interpretation of the difference equations. 

Node equilibrium equations can be combined and written in matrix notation: 

(2.8) 

The terms of the stiffness matrix [KJ -are deflection coefficients given by 

Eqs A.19 through A.31. 
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Discrete-Element Model - Dynamic Analysis 

Details of the discrete-element model for dynamic analysis are presented 

in Fig 3. The rigid bars connecting joints are massless, with the mass of the 

plate concentrated at joints, or node points. As in the static model, founda­

tion support springs are attached to the model at joints. Viscous dampers, 

represented as dashpots, are also connected to the joints and to a fixed re­

ference plane. 

Adding the inertia and damping forces to the right-hand side or load side 

of the static equilibrium equation yields the equation of motion for the model 

(see Appendix B). The equation of motion for each node can be combined and 

written in matrix form: 

(2.9) 

In Eq 2.9, the stiffness matrix [KJ is that given in Eq 2.8. Due to the 

idealization of concentrated mass and damping at joints, both the mass matrix 

[M] and damping matrix [DFJ are diagonal. 

Dynamic response of the discrete-element model is found by integrating 

Eq 2.9. A numerical method for the integration is presented in the following 

chapter. 



CHAPTER 3. NUMERICAL INTEGRATION 

The equations of motion are numerically integrated by an algorithm based 

on the assumption that the acceleration of each node has a linear variation 

during the time-step interval. It was necessary to use a step-by-step method 

because of the nonlinear foundation characteristics. 

Numerical Analysis of Initial-Value Problems 

An alternative to the step-by-step methods for vibration analysis is the 

normal mode method (Ref 10). This approach is attractive because the simul­

taneous equations describing the dynamic equilibrium of the structure are 

transformed into N independent, second-order differential equations, where 

N is the number of degrees of freedom of the structure. The analysis re­

quires first the solution of the eigenvalue problem 

(3.1) 

for both the natural frequencies w (eigenvalues) and the corresponding normal 

mode shapes (eigenvectors). The normal modes are related to the structural 

displacements w by mUltipliers termed normal coordinates. 

(3.2) 

In Eq 3.2, each column of [~J is a normal mode and the normal coordinates ~ 
determine the contribution of each mode to the total response of the structure. 

Although the normal coordinates are time dependent variables, the normal mode 

matrix [~J is not. 

The equations of motion (Eq 2.9) are uncoupled if Eq 3.2 is substituted 

for {w} and both sides of Eq 2.9 are post multiplied by the transpose of the 

normal mode matrix: 

13 
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or 

In Eq 3.4 [HJ ' [DFJ ' and 

[DFJ to be diagonal, 

= (3.3) 

(3.4) 

[RJ are diagonal matrices. However, for the 

[DFJ must be a function of either [MJ or 

The single degree of freedom systems represented by Eq 3.4, are easily 

solved and then superposed, by means of Eq 3.2, to determine the total response 

of the structure. 

Several features of this approach are appealing. First is the ease of 

solution of the uncoupled equations. Also, for many problems the excitation 

of the higher modes of vibration and their contribution to the dynamic res­

ponse of a structure are insignificant. The investigator therefore needs only 

to compute the response of the fundamental and a few of the next higher modes 

to define adequately the structural response. 

On the other hand, when the higher modes are important to the response, 

and the structure has many degrees of freedom, the operations required for 

vibration analysis will be very time consuming. Furthermore, if the damping 

matrix [DFJ is not a function of [MJ or [KJ ' the equations cannot be un­

coupled. Finally, normal mode analysis must be limited to linear problems. 

A step-by-step integration method is therefore required for the analysis pro­

cedure presented in this study. 

Development of the step-by-step methods can be traced to the use of 

finite-difference approximations. The problem, involving either derivatives 

or partial derivatives, is transformed from one with continuous variables to 

one in which the variables are defined at discrete points in time or space. 

In Chapter 2 it was shown that the discretization of the space coordinate can 

be modeled. The finite-difference approximation of the continuum plate equa-
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tions was shown to represent a discrete-element structure. On the other hand, 

discretizations of the time coordinate are often more difficult to interpret. 

An example would be the substitution of central difference expressions for 

acceleration and velocity into the plate equations of motion given by Eq 2.9: 

(3.5) 

With small time steps (Ref 5), Eq 3.5 can be solved explicitly for wk. How­

ever, the variation of the time-dependent deflection during the time interval 

h
t 

is not clear. 

Other methods for step-by-step analysis yield direct physical interpre­

tation of the nature of the displacement during the time interval h
t

. In 

1951 Houbolt published a numerical method for vibration analysis of lumped-mass 

systems (Ref 8). His approach was to pass a third-order curve through node 

displacements for four consecutive points in time (Fig 4). By differentiating 

the expression and evaluating the derivatives at the fourth point in time a 

backwards difference operator was developed. The third-order variation in de­

flection results in an acceleration which is linear during any time interval: 

Wk 
1 (2w

k 
- 5w

k
_
l 

+ 4w
k

_
2 

- w
k

_
3

) == 
h2 

t 

(3.6a) 

. 1 
(llwk - l8w

k
_

l 
+ 9w

k
_
2 

2w
k

_
3

) wk == -6h
k 

(3.6b) 

This method was successfully used by Tucker to determine the response of 

piles to wave loading (Ref 25). The analysis procedure presented by Houbolt 

leads to an implicit solution for the unknown deflection at the new time 

station: 
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c:: 
o 

:.;: k-3 k-l k 
~ r-~-----+--------r-~----~-------+-----G> 
o 
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Solving for the coefficients a, b, c, and d: 

Wk 1 3\ 9h
2 

27h3 
t t 

w
k

_
l 

1 2h 4h2 8h3 
t t t 

w
k

_
2 1 h h

2 h3 
t t t 

w
k

_
3 

1 0 0 0 

a wk- 3 

b 
1 (2w

k 
9w

k
_

l 
+ l8w

k
_

2 
- llw

k
_

3
) -

6ht 

1 (-w
k 

+ 4w
k

_l - 5w
k

_
2 

+ 2w
k

_
3

) c 
2h2 

t 

d 
1 

(w - 3w
k

_
l 

+ 3w
k

_
2 

- w
k

_
3

) 

6h~ k 

a 

b 

c 

d 

Fig 4. Node-point deflection as a third-order 
function of time (after Houbolt, Ref 8). 
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[~2 [MJ + ~!)DFJ + [KJ] {WJ = {QJ 
t 

(3.7) 

Newmark, on the other hand, developed a powerful iterative technique for 

step-by-step analysis (Ref 16). The acceleration at the end of a time step is 

estimated, and the velocity and deflection are then calculated by 

h . . +--.!. (w
k

_
l 

+ w
k

) w
k = w

k
_

l 2 (3.7 a) 

+ ht'\_l +( 
1 - ~ ) h2w + ~h2 .. w

k = w
k

_
l 2 t k-l tWk (3.7b) 

The restoring and damping forces can then be determined at time k and a new 

estimate of acceleration can be computed: 

(3.8) 

With the new estimate of acceleration at time k, the process is repeated un­

til the successive values of acceleration agree within a specified tolerance. 

The parameter ~ in Eq 3.7 governs the influence of the acceleration at 

the end of the time interval (w
k

) on the displacement at that point. Further­

more, the value selected for ~ determines the variation of acceleration 

during the interval h • For ~ = -61 
, the method becomes a linear accelera-

t 1 
tion assumption. A ~-value of 4 represents constant acceleration throughout 

1 
the interval and ~ - 8 may be interpreted as a step function having an 

acceleration over the first half of the time interval and through 

the last half. 
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Because of the iterative technique, the method easily lends itself to 

nonlinear analysis. However, for linear analysis, a direct solution is pos­

sible for deflections at the new time station. Using the ~ method (Eq 3.7), 

Chan et al have developed a recurrence relation which eliminates both veloc­

ities and accelerations from the equations of motion (Ref 4). 

Wilson and Clough presented direct methods for step-by-step vibration 

analysis which are based on the variation of acceleration during the time-step 

interval (Ref 27). Methods are presented for constant, linear, and parabolic 

variations. The step-by-step procedure developed in this report was based on 

work by these investigators. 

Linear Acceleration Algorithm for Step-by-Step Analysis 

The basis for the analysis presented herein is the assumption of a linear 

variation of the acceleration between time steps. As shown in Fig 5, the 

linear acceleration approach has several appealing properties. First, con­

tinuous values of acceleration, velocity, and deflection are obtained. Further­

more, it is the lowest order approximation of acceleration which satisfies 

these conditions. 

The acceleration at the end of the interval, from k-l to k , is equal 

to the initial acceleration plus a constant v times the time-step increment: 

(3.9) 

Expressions for velocity and deflection are found by integrating Eq 3.9 and 

eliminating the constant v : 

h . = • +~ (w
k

_
l 

+ w
k

) w
k 

w
k

_l 2 
(3.l0a) 

h 2 h
2 

+ htwk _l 
t .. t .. 

w
k = w

k
_

l + ~ wk _l +~~ (3.l0b) 

These relations may then be substituted into the equations of motion CEq 

2.9) for the derivation of a recursive relation for accelerations at time k : 
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~ 

Fig 5. Node-point response for linear acceleration 
algorithm (after Wilson and Clough, Ref 27). 
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(3.11) 

The nodal accelerations, from Eq 3.11, are then used to compute velocities and 

deflections (Eqs 3.10). 

It is possible to eliminate both acceleration and velocity terms from Eq 

3.11 by combining dynamic equilibrium equations at times k+1, k, and k-1 

The recursive relation, found to be a specialized form of work presented by Chan 

et a1 (Ref 4), will include only the displacement at the three time stations: 

(3.12) 

The derivation of Eq 3.12 is presented in detail in Appendix C. 

Comparing Eqs 3.11 and 3.12, it may be seen that Eq 3.12 requires more 

information for each time step, i.e., loading at the three time steps as well 

as the two previous deflections. Although Eq 3.11 may be evaluated by knowing 

the load at the end of the time interval in question, and the acceleration, 

velocity, and deflection at the start of the interval, two additional calcula­

tions are required after wk is determined. Both the velocity and deflection 



must be computed for time k before the acceleration at k+1 can be 

determined. Because of those extra computations, the computer time required 

to propagate an analysis a given number of time steps would be greater for 

Eq 3.11. Equation 3.12 is therefore used in the analysis procedure. 

Interpretation of Linear Acceleration Algorithm 

21 

The behavior of a node point for the assumption of linear acceleration is 

shown in Fig 5. This response imposes certain load conditions on the struc­

ture. First, the inertia force Mw is seen to vary linearly between time 

k-1 and k. Damping, if present, will vary as a second-order curve and the 

elastic restoring force as a third-order curve. For the equations of motion 

to be satisfied at all points within the time interval, forces with third­

order variation must be applied at all node points. 

If dynamic loads are placed at all nodes of the structure, it would not 

seem unreasonable that they vary as a third-order curve during the interval 

h
t 

However, when one investigates unloaded node points, a condition which 

may create errors is discovered. To bring the problem into focus, consider a 

structure in free vibration with no damping. At discrete points in time, k, 

k+1 , , dynamic equilibrium is satisfied and the applied load required is 

zero. For equilibrium at any instant during the interval k to k+1 , a load 

is required which is the difference between the inertia force, which is linear, 

and the restoring force, which has a third-order variation. If this difference 

is large, serious errors would be introduced. To limit the load error, it is 

necessary to select a small time increment for propagation of the solution. 

Furthermore, it is shown in the next chapter that a small value for h
t 

is 

required for stability of the numerical procedure. 
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CHAPTER 4. STABILITY ANALYSIS 

There are two reasons for the use of step-by-step procedures for vibration 

analysis. First and foremost, the method lends itself to nonlinear analysis. 

A second but less significant reason would be to include the influence of the 

higher modes of vibration on the total response of the structure. In the pre­

ceding chapter it was noted that the accuracy of the method may be seriously 

influenced by the selection of a time-step increment which is too large. 

Furthermore, it will be shown in this chapter that small time steps are often 

required to insure stability of the numerical method. A rational approach 

based on the stability analysis is proposed for the selection of the time-step 

magnitude. 

Stability of Numerical Solutions for Initial-Value Problems 

The problem of stability does not appear in numerical solutions to boundary­

value problems since the selection of the increment size does not cause unstable 

solutions. On the other hand, the stability of numerical solutions to initial­

value problems is related directly to the time-step increment. Small time-step 

increments are required for stable solutions to many initial-value problems. 

A large time-step increment may cause serious oscillations to appear after a 

few time steps. Unbounded oscillations are characteristic of an unstable time­

step increment and are related to the mode shapes associated with the highest 

natural frequencies of the model. The stable time-step increment, it will be 

shown, is a function of x and y-increment size as well as the stiffness and 

mass properties of the discrete-element model. 

Determination of the stability of a numerical procedure is based on the 

investigation of the propagation of errors introduced at any time step. If, 

after a large number of time steps, the errors are unbounded, the solution is 

said to be unstable. However, it has been shown that numerical solutions 

which are unstable for one time increment are stable for a smaller value 

(Rei 18). 

23 
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The basis for stability analysis of a step-by-step method is to solve the 

equations of motion for the discrete-element model. It is generally possible 

to assume a solution which is a product of two functions, one dependent only 

on the time variable, the other dependent on the space variables .. For many 

problems, the time function will be exponential. If this is the case, the 

exponential must decay as time increases for the numerical method to be stable. 

While it is not practical to study the stability of the more complicated 

structural configurations of plates on foundations, insight into the stability 

of the numerical procedure can be gained by studying certain simple cases. In 

this chapter the stability of the linear acceleration algorithm is investigated 

for the simply supported plate with and without elastic foundation support. 

Stability Analysis of Linear Acceleration Algorithm 

The stability of the numerical procedure (Eq 3.12) can be studied by 

assuming a function of the form (Ref 5) 

w .. k 
1. ,J , 

= (4.1) 

The first two subscripts of w represent space coordinates while the last one 

is the time step. To simplify the analysis of the numerical procedure, a uni­

form isotropic plate without damping is investigated. 

Shown in Fig 6 is a graphical representation of the equation for one node 

resulting from the substitution of Eqs A.19 through A.31 into Eq 3.12. 

If equal increments are taken in both the x and y-directions, the equa­

tions given in Fig 6 can be simplified by 

h = h = h 
x y 

The equation for free vibration of any i,j node for a rectangular plate 

becomes 



+ + + + 
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Fig 6. Graphical representation of the linear 
acceleration algorithm for free vibration. 
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6M2 (w. . k 1 - 2w. . k + w. . k 1) h 1,J, - 1,J, 1,J, + 
t 

+ :2 { [Wi -2 ,j,k-1 + wi +2 ,j,k-1 + Wi ,j-2,k-1 

+ Wi ,j+2,k-1 - 8 (Wi - 1 ,j,k-1 + wi +1 ,j,k-1 

+ Wi ,j-1,k-1 + Wi ,j+1,k-1) + 2 (Wi - 1 ,j+1,k-1 

+ wi +1 ,j+1,k-1 + Wi - 1 ,j-1,k-1 + Wi +1 ,j-1,k-1) 

+ 20w .. k-1J + 4 [w·_ 2 . k + w·+2 . k + w. ·-2 k 1,J, 1 ,J, 1 ,J, 1,J, 

+ w. ·+2 k - 8 (w. 1 . k + w. 1 . k + w .. 1 k 1,J, 1- ,J, 1+ ,J, 1,J- , 

+ Wi ,j+1,k) + 2 (Wi - 1 ,j+1,k + wi +1,j+1,k 

+ w. -1 . -1 k + w. +1 . -1 J + 2 Ow. • kJ + 'LW . -2 . k+1 1 ,J, 1,J, 1,J, 1 ,J, 

+ Wi +2 ,j,k+1 + Wi ,j-2,k+1 + Wi ,j+2,k+1 

-8 (Wi - 1 ,j,k+1 + wi +1 ,j,k+1 + Wi ,j-1,k+1 + Wi ,j+1,k+1) 

+ 2 (Wi - 1 ,j+1,k+1 + wi +1 ,j+1,k+1 + Wi - 1 ,j-1,k+1 

+ wi + 1 , j -1 , k+ 1) + 2 Ow i , j , k+ J} = 0 (4.2) 



In the preceding 

Dividing by 

r 

equation the 
6M , a term 
h

2 
t 

foundation resistance is not included. 

r can be defined: 
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(4.3) 

It will be shown that the value of r must be restricted to a small number 

for the solution to be stable. 

where 

Substitution of Eq 4.1 into Eq 4.2 gives 

e2~ + e~ I -2W(i,j) + 4rx ] + 1 = 0 
L W(i,j) + rx 

The function W(i,j) will be of the form 

W(i, j) = 

A = a bounded constant, 

Ct m 
= 

= 

a value dependent on the boundary conditions 
i = M , 

a value dependent on the boundary conditions 
j = N • 

i = 0 and 

j = 0 and 

For the simply supported plate, both zero moment and zero deflection are 

satisfied along the boundary if 

and 

Ct m 

~n 

= 

= 

lIlTT 

M 

nlT 

N 

(4.4) 

(4.5) 
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where M and N are the number of increments, respectively, in the i and 

j-directions. 

The term X in Eq 4.4 is found to be 

x = A sin ia sin jS (20 + 2 cos 2a + 2 cos 2S 
m n m n 

(4.6) 

Before substituting X into Eq 4.4, it is useful to determine its maxi-

mum value. Since m can take on values from 1 to M - 1 and n from 1 

N - 1 , the sum of the terms in parenthesis will vary from 0 for m= n :; 

to a maximum which approaches 64 when m = M - 1 and n = N - 1 . It is 

important at this point to note that the maximum value corresponds to the 

highest mode of vibration for the discrete-element plate: 

W(i,j) = A sin ( (M ~ l)TI i ) sin ( (N ~ l)TI j ) 

The lowest value, on the other hand, corresponds to the fundamental mode of 

vibration: 

W(i, j) = " (TIM1") A S1n 

For the fundamental mode shape, Eq 4.4 reduces to 

to 

1 

= o (4.7) 

Solving for CD e' gives 

= = -1 

For this condition, the exponential e~k oscillates but is bounded as 

k increases. However, for the highest mode of vibration, the exponential 

must satisfy the following relation: 



e2~ + e~ [ -i + 256r ] + 1 = 0 
+ 64r 

Defining the coefficient of the middle term as 

found to be 

~1 2 
e ' = 

G the vIl1ues of 

29 

(4.8) 

e~ are 

In order for Eq 4.1 to have a bounded value as k grows large, the following 

condition must be satisfied: 

COl 2 
-1 < e ' < 1 

This condition can be satisfied by 

-1 < Q < 1 
2 

Consider first the lower bound 

-2 - 128r < -2 + 256r 

or 

o < 384r 

(4.9) 

(4.10) 

Since r is a positive number, this condition is always satisfied. For the 

upper bound 

or 

-2 + 256r < 2 + 128 r 

1 
r < 32 
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Substituting Eq 4.3 for r the maximum value for h
t 

is found to be 

h < h,j3M 
t 16D (4.11) 

For a plate on foundation, the exponential is determined by a method 

similar to that given above: 

4Sh
2 
t 

-2 + 256r + ~ 

Sh
2 
t 

1 + 64r + 6M 

+ 1 == 0 (4.12) 

Again, the coefficient of the middle term must satisfy Eq 4.10. As the lower 

bound is satisfied by positive values for rand S, the upper bound will be 

investigated: 

The preceding inequality can be simplified and the limiting value for h
t 

determined: 

12M 
(4.13 ) 

64D + Sh
2 

It is seen that Eq 4.13 will reduce to Eq 4.11 when S == O. Furthermore, 

when Sh2 is large compared with 64D, the time increment h t must be 

smaller than that given by Eq 4.11. 

The stability of the numerical procedure has been investigated for a 

simply supported rectaneu1ar plate with and without elastic support. The cri­

terion for stability was that an exponential e~k be bounded as the time 

coordinate k increased without bound. The value for e~ was found to be 

related to the highest mode of vibration and, therefore, the smallest period 

of vibration. 
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Selection of Time Step for Numerical Integration 

The selection of the time increment must be based on the smallest period 

of vibration of the discrete-element model. It is not within the scope of 

this work to present an exact method for predicting the highest frequency. On 

the other hand, it is possible to obtain a reasonable estimate for this value 

by a simple interpretation of the deflected shape of the plate in the highest 

mode. 

Consider the plate of Fig 7, fixed at all points but i,j • Giving a 

unit deflection to this point, a restoring force, given by Eq A.25, is devel­

oped. For the isotropic plate the force is 

If released, the node point would vibrate with a frequency 

to = 20D + Sh
2 

Mh
2 

(4.14) 

Equation 4.14 is an estimate of the highest frequency of the discrete-element 

slab. An estimate of the smallest period of vibration is therefore 

T = 2TIhj; M 
est 20D + Sh2 (4.15) 

The stability criterion is compared with the estimated minimum period by 

dividing Eq 4.13 by Eq 4.15: 

h t + 3Sh
2 

(4.16) 
T Sh

2 
est + 

When 

Sh
2 < D 
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Fig 7. Method for predicting highest frequency 
of free vibration. 
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a satisfactory estimate for the maximum time increment will be 

1 
h :-;;: - T 

t 4 est (4.17) 

Summary 

The preceding analysis has focused on the simply supported plate, both 

with and without foundation support. For other structural configurations, the 

lowest period of the discrete-element model may differ considerably from that 

given by Eq 4.15. Slabs on foundations, for example, will exhibit a minimum 

period which is larger than that given by Eq 4015. If the edges are unre­

strained, the slab becomes more flexible than that considered in the preceding 

analysis, thus increasing the lowest period. If the initial stiffness of the 

bilinear foundation is used in the analysis, separation of the slab from the 

foundation will further increase the smallest period. It is clear, therefore, 

that a time increment selected by Eq 4.17 will be adequate to ensure. stability 

of the numerical procedure. Furthermore, since damping is not included in 

the stability analysis, its presence will also increase the stable time-step 

increment given by Eq 4.17. 

To select a time step for a bridge structure, it is recommended that the 

average bending stiffness of the structure be used. A conservative estimate 

for h
t 

should result if the minimum node point mass is used in Eq 4.17. 

The stability analysis has shown that stable numerical solutions to sim­

ply supported rectangular plate problems can always be obtained, providing the 

time increment satisfies Eq 4.9. Solution instability, if noted, may be cor­

rected by reducing the magnitude of the time step and repeating the analysis. 
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CHAPTER 5. NONLINEAR ANALYSIS 

Although the problems investigated in this work involve support 

characteristics which allow the slab to lift free of the foundation, the 

iterative techniques discussed in this chapter can be used for the analysis 

of structures with more general nonlinear material properties. Nonlinear 

analysis is therefore discussed with reference to the general nonlinear foun­

dation. 

In addition to the secant and tangent methods for solving structures with 

material nonlinearity, the load iteration technique is presented and discussed. 

The major difference, and advantage, of load iteration is that the def1ection­

coefficient matrix of the structure is not modified from one iteration to the 

next since corrections for nonlinear stiffness effects are made on the load 

side of the equations. 

Foundation Characterization 

The foundation is modeled by discrete and independent springs at each of 

the node points. This idealization, commonly referred to as the Winkler foun­

dation, generates stiffness terms on only the main diagonal of the stiffness 

matrix. Either linear or nonlinear characteristics can be prescribed for com­

puter analysis (see Chapter 8). 

The nonlinear characteristics of each node-point spring are described by 

a curve consisting of straight line segments. The bilinear foundation studied 

in this work is shown in Fig 8. The force developed on the model by the foun­

dation is plotted on the vertical axis and the model deflection on the horizon­

tal axis. For both load and deflection, the positive sense is upward. For 

this characterization, resistance to deflection is developed only when node 

points deflect in the negative or downward direction. 

The computer program has been prepared to accept any type of elastic non­

linearity, such as that shown in Fig 9. There are only two limitations on the 

nonlinear characterization: (1) the resistance-deflection curve must be con­

tinuous and (2) for every value of deflection there must be a unique resistance. 
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Fig 9. Representation of nonlinear foundation characteristics. 
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Stiffness Iteration 

Nonlinear analysis can be performed by the repeated solution of modified 

linear equations (Ref 15). The node-point deflections are first calculated 

for an assumed foundation stiffness. The new deflections are then used to 

obtain a better estimate of stiffness. Using the new stiffness, deflections 

are again calculated and compared with the initial set. The iterative proce­

dure is repeated until the deflections of two consecutive iterations agree 

within a specified tolerance, a condition which is called closure. 

While it is often not possible to prove the convergence of stiffness 

iteration methods, experience has shown that solutions generally are very 

stable and usually converge. The procedures discussed below have been shown 

to be convergent for the static analysis of plates supported on soil (Ref 1). 

Furthermore, with the foundation properly defined, analytical solutions compare 

very favorably with the experimental results. 

An iterative procedure which has application to a wide range of nonlinear 

elastic problems is the secant modulus method. By this method (shown in Fig 9) 

the elastic supports are adjusted from one solution to the next until closure 

is obtained. Although the secant modulus iteration method converges more 

slowly than the tangent modulus method, to be discussed next, it is very stable. 

Oscillations are rarely found in the iteration procedure; instead, the proce­

dure creeps toward the equilibrium position. This method may be applied with 

very satisfactory results to problems with elastic, perfectly plastic material 

properties. 

The tangent modulus method (Fig 9) has been used successfully to analyze 

beams on nonlinear foundations (Ref 13). This method may adjust both the 

stiffness and the load from one iteration to the next. The rate of conver­

gence of the tangent modulus method is generally faster than that found for 

the secant approach. On the other hand, the tangent method may exhibit insta­

bility problems in cases of elastic, perfectly plastic material behavior. 

However, the instability is rarely noted, because the possibility of the com­

plete plastic action for all support points is highly unlikely. 

As a general rule, the tangent modulus method would be preferred to the 

secant approach because of the rapid rate of closure which has been noted for 

most problems. Studies of both beams and plates on nonlinear foundations have 

shown this to be true. 
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Load Iteration 

The load iteration method (Fig 10) presents an attractive alternative to 

the stiffness adjustment methods because the deflection coefficients remain 

constant during the iteration procedure. The procedure therefore requires 

only a single inversion of the stiffness matrix. Repetitive solutions are 

found by mUltiplying the new load vector for each iteration by the inverted 

stiffness matrix. The stiffness iteration methods, on the other hand, require 

an inversion for each iteration. 

Although the concept of the inverse of the coefficient matrix will be use­

ful for the discussion of the load iteration method, the equations are solved 

by a more efficient matrix-decomposition method (see Chapter 7). For the 

load iteration method, only single decomposition of the coefficient matrix is 

required while stiffness iteration methods, on the other hand, require a com­

plete decomposition for each iteration. 

The nonlinear foundation is initially characterized by a linear spring. 

The deflections are computed using the linear approximation, and the prescribed 

resistance for that deflection is determined. The difference between the pre­

scribed resistance and that developed by the linear spring is then added to 

the load term and a new deflection determined. The process is repeated until 

equilibri~ is established. 

With the nonlinear foundation represented by a linear spring, the equi­

librium equations for the discrete-element model can be written 

where 

(5.1) 

the linear stiffness matrix for the slab and foundation, in­
cluding the linear approximation for the nonlinear curve, 

the applied lateral load, 

= a deflection-dependent load function which is the dif­
ference between the nonlinear foundation curve and the 
linear approximation. 
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The iterative procedure therefore becomes 

(5.2) 

or 

::: (5.3) 

Equation 5.3 is repeatedly solved until the difference between successive solu­

tions is less than a prescribed tolerance. 

To achieve convergence, load iteration generally requires more iterations 

than either the secant or tangent methods. However, for many problems, con­

vergence is reached in less computer time than with the stiffness methods. 

In a typical problem as many as ten load iterations can be performed in the 

time required for a single cycle of a stiffness iteration. 

Although the stability and convergence of the load iteration method have 

not been rigorously proved, the method has been verified experimentally and 

a wide variety of problems have been solved. Beams on nonlinear foundations 

were studied first. The results of this investigation served as guide lines 

for the plate studies. 

The beam studies indicated that the load iteration method would be a use-

ful tool for nonlinear analysis. It was found that the linear approximation 

of the foundation should be near to the initial tangent of the resistance­

deflection curve to insure stable closure. With a spring which was too soft, 

oscillations were noted in the closure process. A safe approach was found by 

always using the initial tangent, which, however, exhibited a creeping closure 

toward the equilibrium position. 

When the method was applied for the solution of plate problems, the 

oscillating closure process was not as cornmon as noted in beam solutions. 

This can be attributed to the greater redundancy of the plate. At any point 

on the beam the resistance to deflection is available from both the foundation 

and the beam stiffnesses. The plate, on the other hand, may be viewed as a 

grid, so that two crossing beams as well as the foundation offer resistance to 

the node-point deflection. 
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Closure of the solution, as noted earlier, using only load iteration may 

require many cycles of the solution procedure. Experience has shown that for 

a wide range of static problems, using alternating cycles of load iteration 

with a single cycle of the tangent modulus method reduces both the number of 

iterations and the time required for a solution. The number of cycles of load 

iteration before changing to a tangent modulus depends on the number of incre­

ments in the discrete-element model. However, the method demonstrated in this 

work (Chapter 9) focuses on solution capability by load iteration only. 



CHAPTER 6. ALGORITHM FOR NONLINEAR DYNAMIC ANALYSIS 

The load iteration method is coupled with the linear acceleration algorithm 

for numerical integration to develop an interative procedure for nonlinear 

analysis. Three separate steps are considered in the analysis: 

(1) static solution for the initial conditions, 

(2) analysis for the first time step, and 

(3) the iterative procedure for the general time step. 

Nonlinear Equations of Motion 

The equilibrium equation for the load iteration method is given by Eq 5.1. 

The addition of inertia and damping forces to Eq 5.1 will yield the equation 

of motion for the model: 

(6.1) 

Again {L(W)} represents the nonlinear load correction for the linearized 

resistance-deflection curve. Nonlinear analysis will be performed by adjusting 

the correction load until equilibrium or closure is satisfied. 

Initial Conditions - Static Analysis 

The step-by-step analysis is started with the plate at rest. Accelera­

tion and velocity for all node points are zero while the deflection is that 

due to the dead load of the plate and all other sustained loads. The itera­

tion procedure for the dead load deflection is given by Eq 5.3 or 

= (6.2) 
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When equilibrium is established, the correction loads and deflections are 

saved for use in the calculation of the deflection at the end of the first 

time increment. 

First Time Step 

During the program planning phase of this work, consideration was given 

to starting the propagation of the solution from a condition other than at 

rest. For example, if initial velocities and accelerations are prescribed, or 

need to be prescribed for a future extension of this work, the capabilities 

for a logical starting procedure are required. Therefore, to facilitate the 

modification of the program for other initial conditions, a special routine 

for the initial time step was included. Although the starting procedure is 

discussed with respect to the case of zero acceleration and velocity, which is 

the case for studies presented herein, it may easily be extended to include 

values other than zero. 

The iteration procedure for the first time step is separated into two 

parts. First, the acceleration at the end of the time interval is calculated; 

it varies linearly from zero for k = 0 to a value at time k = 1 . 

Then the velocity at k = 1 is computed and the deflection found by Eq 6.1. 

New correction loads, corresponding to the calculated deflections, are then 

used to obtain a new estimate of acceleration at k = 1. The derivation of 

the iterative procedure is given below. 

The deflection and velocity at k = 1 are given by 

h . t .• 
w

1 = 2 w1 
(6.3a) 

and 

h
2 
t •• 

w
1 = wo + 6 wl 

(6.3b) 

The preceding equations are derived by substituting the initial conditions 

into Eqs C.1 and C.2 of Appendix C. The equations for dynamic equilibrium can 

then be written as 
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(6.4) 

or 

(6.5) 

The right-hand side of Eq 6.4 is simplified by the replacement of [KJ {Waf 
with Eq 5.1. From the acceleration, calculated by Eq 6.5, the velocity is 

determined (Eq 6.3a) and the deflections are found by 

(6.6) 

A new estimate of the correction load {L1} is found and substituted 
I 

into Eq 6.5. The iterative procedure is stopped when the deflections ca1cu-

1ated at successive iterations agree within a specified tolerance. 

To modify the program to include both initial velocities and accelera­

tions, it is necessary only to replace Eqs 6.3 by the more general Eqs C.1 and 

C.2 of Appendix C. The logic of the starting method and the iteration proce­

dure for the deflection at the end of the first time step would remain un­

changed. 

General Time Step 

With the deflection and correction load known at k = 0 and k = 1 , an 

iterative procedure for the deflection at k = 2 , and all following time 

stations, can be developed, following the analysis presented in Appendix C. 

Dynamic equilibrium equations are first written for times k-1, k, 

and k+1 : 
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(6.7 a) 

(6.7b) 

(6.7c) 

After multiplying Eq 6.7b by 4, Eqs 6.7 are added and acceleration and 

velocity terms replaced by Eqs C.6 and c.B: 

(6.B) 

The correction load at time k+l is not immediately known, and iteration 

is required. The load iteration procedure for the general time step therefore 

becomes 

(6.9) 



or 

where 

= 

[K'J = a modified stiffness matrix, 

{Q~+l} = an equivalent load vector. 
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(6.10) 

During the iteration at any time step, the equivalent load vector {Q~+l} 
remains unchanged; only the correction load varies from one iteration to the 

next. When equilibrium is established, the correction load and deflection are 

stored for the analysis of deflection at time k+2 . A new equivalent load 

vector {Q~+2} is computed and the iterative procedure repeated. 

For the initial conditions of zero velocity and acceleration, the pre­

ceding equations could have been employed to start the dynamic analysis of the 

plate. If the static deflection, static load, and correction load for the 

static condition were substituted for terms with k and k-l subscripts, the 

deflection at the end of the first time step could have been determined 

by Eq 6.9. However, use of the special starting procedure insures greater 

flexibility of the program for future developments. 

Summary 

A method for the dynamic analysis of a discrete-element plate model on 

nonlinear foundations has been presented •. Justification and verification of 

the method must be based on its rational development and experience with pro­

blem solving. Experience with the procedure has shown, for example, that non­

linear static problems can be solved by the load iteration method (Ref 1). 

Furthermore, it was noted in Chapter 5 that analytical results check favorably 

with experimental plate test data. 

However, in the absence of experimental data for dynamically loaded plates 

on nonlinear foundations, it becomes necessary to justify the method by both 

its rational development and the demonstration of its solution capabilities. 

In Chapter 9 the method is applied to the free vibration of a square plate and 

the response of a plate to a moving load. Comparisons of computer results for 

these problems with existing theory will be useful for the evaluation of the 

method. 
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CHAPTER 7. SOLUTION OF EQUATIONS 

To describe adequately a plate for computer analysis, it may be necessary 

to make a fine division of the structure, thereby generating a large number of 

equations to be solved. The deflection coefficient matrix is not inverted, as 

indicated in the preceding chapter. Instead, an efficient Gaussian elimina­

tion procedure for banded matrices is applied for the solution. Moreover, the 

equations need not be solved for each load vector. Multipliers generated 

during the first elimination procedure are stored for use with each successive 

load vector. The recursive process for repeated solutions has been called the 

multiple load method. 

Organization of Equations 

For each plate problem a rectangular grid work must be defined to describe 

the structure (see Chapter 8). The number of increments or rigid bars in the 

x-direction will be M and in the y-direction N. For the most efficient 

use of the solution procedure, M ~ N. The number of node points or joints 

therefore becoTIles M + 1 and N + 1 for the x and y-directions. Two 

boundary condition equations are required for each x and y-grid line, bringing 

the total number of equations to be solved to (M + 3)(N + 3) • 

The equations generated by the model are shown in Fig 11. Presented in 

this manner two distinct types of banding are noted. First there is a submatrix 

banding. This is similar to banding noted when structures are partitioned into 

substructures and then formulated by the stiffness method. For any constant 

y-grid line j , the node behavior is influenced by deflections on grids j-2 , 

j-1, j+1, and j+2 . 

Submatrix banding is shown in Fig 12. The terms in the submatrices are 

given in either Appendix A (static analysis) or Appendix B (dynamic analysis). 

Only the nonzero terms are computed and stored for the analysis procedure. 

The coefficient matrix of Fig 11 is developed by writing either node 

equilibrium equations or equations of motion starting at node i = 0 j = 0 

and ending with node i = M + 1, j = N + 1 Each horizontal partition in 
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Fig 11 represents the node equations along a constant j-grid line, consecutively 

written from i = 0 to i = M + 1. The horizontal partitions identified as 

-1 and N + 2 contain the boundary equations for edge conditions in the y­

direction. For the x-direction, the boundary equations appear as the first 

and last lines of the partitions 0 through N + 1 • 

Recursion-Inversion Solution Procedure 

While the recursion-inversion method has been presented elsewhere (Refs 6 

and 17), it is included to complete the discussion of the method for analysis. 

Consider the jth horizontal partition of either the discretized equations of 

motion or the static equilibrium equations: 

(7.1) 

By substituting a solution of the form 

(7.2) 

into Eq 7.1, it is possible to eliminate the deflections {Wj _2} and {Wj _l} . 

Solving for {W
j
} , the recursion matrices are determined: 

{Aj} = [OJ] [[ Ej] h-l} + [aJ h-2} - {qj} ] (7.3) 

[Bj] = [OJ] [[Ej] [Cj_1] + [dj]] (7.4) 

[ Cj ] = [Dj] [ej ] (7.5) 

The [Dj] and [Ej] matrices can be considered as multiplier matrices. 

They are found to be 
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(7.6) 

(7.7) 

Panak (Ref 17) shows the similarity between Eqs 7.3 through 7.7 and those de­

rived for the recursive solution of beam-columns (Ref 14). In the latter 

problem, constants replace the matrices. 

For a symmetric stiffness matrix, a similar set of recursive matrices and 

multipliers can be developed (Ref 6): 

(7.8) 

t 

[BjJ = [DjJ [Ej+1J (7.9) 

(7.10) 

where 

t -1 

- [c e j_2] [Cj-2] + [Ej] [Bj-l] + [ c j] 1 (7.11) 

and 

t t 

[Ej+1J = [ej _1J [Bj _1J + [d j ] (7.12) 

A close inspection of Eqs ~.7 and 7.12 reveals the matrix [E_1J to be 

zero. Furthermore, since [E_1J is not required for the symmetric form, 

these calculations are omitted. 

Since the equations for the discrete-element model are symmetric, Eqs 7.8 

through 7.12 are used in the solution procedure. 
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Multiple Load Analysis 

The multiple load method for analysis was first presented by Panak (Ref 

17), and is reviewed to complete the discussion of the procedure. 

A careful study of Eqs 7.8 through 7.12 will reveal that the load vector 

{qj} influences only the calculation of {Aj}. Since {Aj} does not appear 

in either the remaining coefficient or multiplier matrices, a convenient 

method for solving a system of linear equations with several loading, or right­

hand sides, presents itself. For the first right-hand side, the matrices 

[Ej] , [Cj ] , and [Bj] are computed and stored on disk or tape files. The 

{A
j
} term, however, is dependent on the unique loading condition, and is 

destroyed when no longer required for the solution process. For the second 

and all succeeding right-hand sides, the coefficient and multiplier matrices 

are recalled, as needed, and new {A
j
} values computed. 



CHAPTER 8. COMPUTER PROGRAM 

The numerical method described in this report has been coded in FORTRAN 

language for the Control Data Corporation (CDC) 6600 digital computer. The 

computer program consists of a main driver program and 27 subroutines. Al­

though several of the subroutines could easily be incorporated into the main 

program, greater flexibility is achieved with the program in subroutine form. 

This feature will facilitate the program's extension or modification to include 

future developments. 

Other significant features of the program include the extensive use of 

peripheral storage units, the method for the description of the dynamic load­

ing, and, finally, the use of Endres' efficient recursion-'inversion, multiple 

load technique for the solution of the linear, simultaneous equations (Ref 6). 

To provide the necessary storage for problems with large numbers of in­

crements in x and y-directions, much of the data have been placed on disk 

files. In addition to program data, the static, dynamic, and correction loads, 

as well as the structures stiffness matrix, are stored in separate files. 

Program SLAB 35 

Program SLAB 35 is a FORTRAN program for the CDC 6600 digital computer. 

This program is the thirty-fifth of a sequence for the analysis of plate struc­

tures. All of the preceding programs identified by SLAB were written for the 

static analysis of plates and slabs. With the exception of the READ and WRITE 

commands for the peripheral storage requirement, the program was coded in ASA 

FORTRAN. 

A summary flow diagram which indicates the order in which operations are 

performed is presented in Fig 13. Detailed flow diagrams and listings of the 

main program and subroutines are given in Appendix E. 

The required computer time for any problem is a function of the number of 

model increments and number of iterations for closure. For the example pro­

blems included in this work, 140 time steps for a linear 8 by 8 plate required 

2400 seconds. For the 4 by 15 plate with moving load, 200 time steps of the 
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nonlinear solution would have required 16,000 seconds. The linear solution, 

however, required only 2200 seconds for the same number of time steps. 
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The storage requirements of the program are shown graphically in Fig 14. 

Note that a problem with equal increments in x and y-directions requires 

more storage than long, narrow problems containing the same number of node 

points. For example, a 10 by 65 grid requires approximately the same storage 

as a 20 by 20 slab, although there is a ratio of 1-1/2 to 1 for the node points. 

Data Input 

Details of the input form and supplemental instructions are included in 

Appendix D, which is intended as a self-contained instruction manual for SLAB 

35. Furthermore, examples of the preparation of data for the program are pre­

sented as a guide for the user. 

A tabular form has been developed for the data organization. Following 

two alphanumeric program description cards and a problem identification card, 

problem data are separated into seven tables: 

Table 1 - Program Control Data 

The information on these cards includes the number of cards and curves 

for the remaining tables, number of increments and increment length, monitor 

stations, and iteration control information. 

Table 2 - Elastic Properties of the Slab 

Bending stiffness and linear foundation springs are organized in this 

table. The number of cards varies, up to 50, depending on the problem. 

Table 3 - Axial Thrust and Twisting Stiffness 

The distribution of the static axial thrust must be specified by the 

program user. The plate twisting stiffness is also included in this table. 

Again, as many as 50 cards may be used to describe the variables. 

Table 4 - Mass and Damping Properties 

The node point mass and damping are input in Table 4, using as many as 

50 cards. 

Table 5 - Static or Dead Loads 

Loads and moments which are not functions of time are input in Table 5. 

The weight of the plate will generally be input by this table. As many as 50 

cards can be used to define the loading. 
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Table 6 - Dynamic Loading 

As many as 20 load-multiplier curves, each of which can control as many 

as 20 loadings, are input in Table 6. A periodic multiplier is available by 

the use of an option switch. A moving load option permits the loads to move 

in either the positive or negative y-direction at a constant velocity. 

Table 7 - Nonlinear Support Data 

Nonlinear Winkler foundation springs can be prescribed for any area of 

the plate. The nonlinear curve is described by a simple tabular input which 

generates a curve of straight line segments. 

Although example input is presented in Appendix D, it will be useful to 

focus on the various types of data required for the description of the plate 

for computer analysis. 

On each plate, a rectangular grid must be established. The intersections 

of grid lines establish node points for the model. When it is recalled that 

the discrete-element model consists of rigid bars and elastic joints, the grid 

lines are immediately recognized as bars. Furthermore, the open areas between 

grid lines contain model torsion bars. In Fig 15 an area of the model has 

been superposed on the continuum to be analyzed. 

The inputs required for the description of the plate are bending stiff­

ness, twisting stiffness, axial thrust, elastic support springs, mass, damping, 

and dead load. The data are logically identified by node point coordinates. 

With the exception of axial thrust and twisting stiffness, the variables are 

concentrated at nodes. Mass, damping, and linear foundation springs exist 

only at nodes, as do dead load and bending stiffness. A table can be compiled 

which contains the node point and the corresponding value of these variables. 

However, if these data are constant over an area of the plate, it will be 

convenient to specify an area by the node points and calIon the computer to 

perform the distribution. This is, in fact, what is done. 

The program accepts conventional plate stiffness properties and internally 

converts them to model values. The other variables, however, must be input as 

discrete or concentrated values. For example, the units of bending and twist­

ing stiffness are lb-in2/in, or continuum units, while those for mass are 

lb-sec2/in, or concentrated values. 

It will be convenient to describe twisting stiffness in an area between 

grid lines. This is logically accomplished with the use of node coordinates. 
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Fig 15. Node coordinate identification of model 
properties (after Panak, Ref 17). 
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An area is identified by the coordinates of the lower left-hand and upper 

right-hand node points. For example, the twisting stiffness in the area shown 

on Fig 15 would be identified by 2,3; 3,4. Furthermore, it would not be 

appropriate to define twisting stiffness by a single node point. As noted in 

Appendix A, twisting stiffness does not exist in the model at nodes. 

The axial thrust is in pounds rather than pounds per inch as in conven­

tional plate theory. The distribution of the axial thrust must be prescribed 

by the user since the program does not perform an in-plane or axial analysis. 

Axial tension is given a positive sign while compression is identified by a 

negative sign. Axial thrust does not uniquely exist at a node point, but 

within a bar or bars between node points. It is therefore defined by the co­

ordinates of two points, the first being the point of application of the load 

and the second the point of reaction. For example, a value pX applied to 

the left edge (0,2) and reacted at 2,2 would be located on the plate by (0,2; 

2,2) with the smaller x-coordinate given first. In the y-direction, the force 

is described in a similar manner, with the smaller y-coordinate listed first. 

Area definitions are available for the description of a uniform axial 

thrust in several bars. For example, if a uniform axial thrust Py is applied 

to the plate of Fig 15 at nodes 0,1; 1,1; and 2,1, and reacted at nodes 0,4; 

1,4; and 2,4, the area description 0,1; 2,4 identifies the loaded bars. 

The user has been given considerable flexibility for specification of 

dynamic loading. Periodic or nonperiodic as well as stationary or moving loads 

can be described. To define the dynamic loading for Table 6, both a load and 

a load amplitude multiplier are required. Since this study is intended to 

focus on problems with highway structures, the loads would be the static wheel 

loads of vehicles and the mUltiplier would give the variation of the wheel 

loads with time. An example of the development of the multiplier curve is 

given in Fig 16. In the example the static weight on the wheel is 5,000 pounds. 

The multiplier curve varies around 1.0, according to the measured dynamic 

loading and is constructed from straight line segments. The multiplier curve 

can be applied to either point, line, or area descriptions of load. 

Foundation Description 

Either linear or nonlinear foundation characteristics can be described. 

The linear foundations are input in Table 2 while the nonlinear characteristics 

are described in Table 7. 
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The nonlinear resistance-deflection curve is constructed from straight 

line segments. Units of pounds and inches must be used for the development of 

curves. As resistance is developed only at node points, a single coordinate 

can define the location of the foundation reaction. However, both line and 

area descriptions, as well as concentrated curves, are available when the 

foundation characteristics are uniform over a line or area. 

The limitations imposed on the construction of the curves were given in 

Chapter 5; resistance-deflection curves must be continuous, and a unique resis­

tance must exist for any value of deflection. For deflections which exceed 

the prescribed end points of the curve, the resistance is determined by a 

straight line extrapolation of the last straight line segment of the curve. 

When this condition exists, a message is printed to warn the user that an off­

curve condition exists. 

Summary 

Nodal coordinates are utilized to logically identify locations of slab, 

foundation, and load variables. Three types of descriptions are required: 

(1) node, (2) area, and (3) bar. Properties which exist at nodes are 

(1) bending stiffness; 

(2) elastic support, both linear and nonlinear; 

(3) load; 

(4) mass; and 

(5) damping. 

Area identification are required for the twisting stiffness while axial thrust 

is a bar property. 

Furthermore, both discrete and continuous data are used in the program. 

For the convenience of the user, the bending and twisting stiffnesses of the 

plate are input as continuum plate values or Ib-in
2
/in. All other data are 

input as concentrated or discrete values. 

A self-contained user's manual is given in Appendix D. Included in this 

appendix are examples of data organization and the input format. 
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CHAPTER 9. EXAMPLE PROBLEMS 

Four types of example problems are presented to illustrate the accuracy 

and solution capability of the program: (1) free vibration of a simply sup­

ported square plate, (2) moving line load on a simply supported rectangular 

plate, (3) moving line load on a rectangular plate resting on both linear and 

nonlinear foundations, and (4) response of highway bridge approach slab to 

moving wheel loads. 

Free Vibration of a Square Plate 

The free vibration study was performed on a 48-inch-square plate, simply 

supported along its edges. The bending stiffness, uniform in both x and y­

directions, was 2.5 X 106 1b-in
2
/in and Poisson's ratio was 0.25. The mass 

density of the plate was 7.5 X 10-4 1b-sec2/in3 • The plate was divided into 

an 8 by 8 grid with hand h equal to 6 inches. The time-step incre­

ment, based on Eq 4.17: was 2.0
Y

X 10-4 second. The theoretical period for the 

fundamental mode of vibration was 64 time steps (Ref 19). 

To develop a free vibration condition which would illustrate the funda­

mental frequency, a static or dead load approximating a double sine function 

was applied to the plate: 

Q .• 
1.,J 

= 
iTT iTT 

Q sin 8 sin 8 (9.1) 

Lateral deflections were developed which approximated the fundamental mode 

shape. The dynamic loading was a constant force (the negative of the dead 

load) which canceled the dead load, causing the plate to vibrate in the first 

mode shape. 

The results of this problem are presented in Fig 17. The deflection of 

the center node (4,4) is presented as a function of the time step for almost 

two cycles of the fundamental period, or 120 time steps. 
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Two important features should be noted in Fig 17. First, the displacement 

history of node 4,4 shows no indication of instability. Second, the fundamen­

tal period for the 8 by 8 model is noted to be about 65 time steps, or one more 

than the theoretical, and the second cycle of deflection repeats almost exactly 

the first. 
-4 

Another problem was run with a time-step increment of 4.0 X 10 second, 

or almost twice the maximum time step required for stability of the numerical 

solution. Instability was noted in the results before one complete cycle of 

free vibration. 

Moving Load on a Simply Supported Rectangular Plate 

The procedure was further verified by study of the traveling wave caused 

by moving loads. The plate was loaded by a line load in the x-direction of 

1,000 Ib/station. The load was moved across the plate at 53.7 mph for one 

problem and 214.8 mph for another, and the effect of the velocity of the moving 

load on the response of the plate was studied. The results are shown in Figs 

18, 19, and 20. 

Figure 18 shows the plate configuration, data, and center line deflection 

of the structure when the line load reached y-station 7. The general shape of 

the deflection curves compares favorably with those reported by Salani (Ref 19). 

As he noted, the deflected shape for the low velocity approached that of static 

deflection. Dynamic effects were noted by the amplification of the deflections 

in the center of the span and the positive deflections at the ends of the plate. 

This last feature indicated the traveling wave caused by the moving load pre­

ceeded the load along the plate. For the higher velocity, on the other hand, 

the traveling wave trailed the load. 

Figures 19 and 20 show the deflection history of station 2,7 for the two 

load velocities. The dynamic response of the plate to the lower velocity was 

not as significant as to a velocity of 214.8 mph. In Fig 19 it can be noted 

that some vibration remained as the load moved off of the plate, but the de­

flection at station 2,7 was considerably smaller when the load was on that 

station. For the higher velocity there was little change in the maximum de­

flection of station 2,7 with time. With the traveling wave lagging the load, 

free vibration with the maximum deflection was noted after the load moved off 

of the plate. 
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Moving Load on a Rectangular Plate Resting on a Nonlinear Foundation 

The preceding problem was modified to study the responses of plates on 

nonlinear foundations. Edge support along the longitudinal edges was removed 

and support springs were placed under each node point. Two problems were run 

to demonstrate the solution capability of the program, one with linear springs 

and a second with springs which resisted downward deflection but not lift-off 

or upward deflection. The loading was increased from 1,000 Ib/station to 

100,000 lb/station to accentuate the difference between the linear and non­

linear solutions. 

The plate configuration and data, as well as the longitudinal center-line 

deflection, are shown in Fig 21. Although the deflections appear to be larger 

than the increment length (Fig 21b) this is not the case and is due to the 

scale selected for deflection. The increment length is almost eight times the 

largest deflection shown in this figure. 

In the linear problem, the plate appeared to oscillate with small deflec­

tions about the zero-deflection line. However, the small deflections at sta­

tions 1, 2, and 3 along the center line (about 0.3 inch) developed foundation 

forces of about 150,000 pounds at each station. For stations 1 and 3 this 

force acted down on the plate while at station 2 the force was upward. 

As the load moved across the plate on the nonlinear foundation, the hold­

down forces were not available for positive deformations, and the deflections 

increased until the kinetic energy of each node point was transformed to 

strain energy in the model which caused the large deflections for stations 1, 

2, and 3. 

The linear approximation for the nonlinear foundation was taken as the 

spring stiffness in the negative deflection range, that is, 460,800 Ib/in. 

For station 2 (Fig 2lb) the correction load at closure was approximately 

2,250,000 pounds. This load was required in order to satisfy a zero founda­

tion resistance for the positive deflection. The load error at closure for 

this station was an upward force of 1.295 pounds, well within the desired 

accuracy for the solution. 

An example of the closure process is shown in Fig 22. These data are 

for station 2,3 at time station 40. The line load at this time station was 

located at j = 3. The creeping behavior of the closure, noted in Chapter 5, 

is clearly seen in this curve. Twenty iterations were required to achieve 
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closure for all node points, even though the curve of Fig 22 indicates closure 

for station 2,3 within 10 iterations. 

Bridge Approach Slab 

An example of how the results of this study might be applied to a highway 

pavement problem is shown in Fig 23. The approach slab connects the pavement 

with the bridge deck and is supported on one end by the abutment bent and by 

the base material over half of its length. 

A coefficient of subgrade reaction for the base material of 250 lb/in3 

was selected for this example. The plate bending stiffness was 2.278 X 108 

lb-in2/in in both the x and y-directions of the slab, typical for a 9-inch 

pavement slab. The resistance-deflection characteristics of the base material 

were represented by a bilinear curve (Fig 23). The connection of the slab and 

the abutment bent was a hinge support. No resistance was offered the slab in 

the area of the cardboard form material. A closure tolerance of 10-5 inch was 

selected for this study. 

Loads, representing the truck shown in Fig 23, were moved across the slab 

at 60 mph. The response of a point in the path of the load for both static 

and dynamic loads is shown in Fig 24. 

Although the mean curve through the dynamic response data approaches the 

static deflection curve, considerable dynamic amplification is noted by the 

peak values. These peak deflections and stresses resulting from the dynamic 

response of the system may be responsible for fatigue damage to the slab 

material. 

Summary 

Four types of example problems were solved to demonstrate the method of 

analysis. The free vibration problem illustrated the stability of the method 

as well as its ability to predict the theoretical fundamental period of vibra­

tion. A second set of problems demonstrated the propagation of the traveling 

wave in a simply supported rectangular plate. Comparisons were made between 

the response of the plate resting on both linear and bilinear foundations, 

thereby demonstrating the capability to solve nonlinear problems. Finally a 

practical highway problem, a bridge approach slab, was solved to demonstrate 

the application of the method to a typical engineering problem. 
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The first two examples serve to develop confidence in the method for 

solving linear problems. The third example, on the other hand, presents the 

solution capability of the algorithm for plates on nonlinear foundations. 

Although experimental data are lacking for a correlation study of the proposed 

nonlinear procedure, the nonlinear results appear reasonable when compared 

with solutions for the plate on a linear foundation. 
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CHAPTER 10. SUMMARY AND RECOMMENDATIONS FOR FURTHER RESEARCH 

The result of this work was the development of a method for the dynamic 

analysis of plates resting on nonlinear foundations. A step-by-step numerical 

integration method was utilized to propagate in time the response of a discrete­

element model representing the plate. 

The implementation of the analysis procedure was made possible by the high­

speed digital computer. The numerical method described in this work was coded 

in FORTRAN language for the Control Data Corporation (CDC) 6600 digital com­

puter. To permit the analysis of plates with many increments in the x and 

y-directions, the peripheral storage facilities of this computer were utilized. 

At the present time, the CDC 6600 at The University of Texas at Austin will 

handle a 50-increment square plate. 

The step-by-step numerical integration procedure was based on the rational 

assumption of linear acceleration for each node during the time-step interval. 

The stability of the linear acceleration algorithm was investigated and a 

method presented for the selection of the time-step increment. 

An iterative method for nonlinear analysis, which does not require the 

adjustment of the stiffness matrix of the structure, was presented. Nonlinear 

adjustments were made by correction loads which were added to the right-hand­

side of the equations. The load iteration technique utilizes an efficient 

solution procedure known as the mUltiple load method for the repetitive solu­

tions of the equations. The multiple loac method may permit as many as ten 

load iterations to be performed in the time required for a single stiffness 

iteration. 

The numerical method was organized and programmed in a manner which will 

facilitate the modification and extension of the method. Future extensions to 

the model and the program might include relative damping, to represent mate­

rial damping properties of the plate, and, for highway pavement analysis, the 

coupling of a vehicle model and pavement roughness characteristics to the 

plate model for the generation of dynamic loads. 
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The nonlinear solution capabilities should be extended to the plate 

bending and twisting stiffness variables. Nonlinear moment-curvature and 

moment-twist relations could be incorporated in the iterative procedure, there­

by permitting analysis of the plate or slab material for stresses in the non­

linear range. Furthermore, capabilities for inelastic analysis should be 

developed for both the foundation and slab properties. 

Studies of the nonlinear closure procedure should be continued. Although 

the load iteration method appears attractive because of the multiple load solu­

tion procedure, methods for accelerating closure should be developed. One 

method has been mentioned - that of alternating cycles of load iteration with 

a single cycle of the tangent modulus method. However, it is possible that 

other, more natural, methods may exist, such as the use of the curvature or 

slope of the iteration curve for prediction of the equilibrium position. 

The existing discrete-element model requires the user to know and specify 

the distribution of axial or in-plane thrust throughout the plate. A valuable 

extension of this work would be the modification of the model to include axial 

deformations, and the development of the force-deformation equations for in­

plane thrust. Not only could the axial and bending solutions be coupled for 

combined axial-bending analysis of plates, but the in-plane analysis could be 

applied to plane-stress problems. Furthermore, an in-plane solution would be 

required for the analysis of plates subjected to thermal gradients. 

Although this study was not performed for the evaluation of the existing 

computer equipment, comments are in order about the peripheral storage capa­

bilities and the time required to access this storage. Because the study was 

performed with the CDC 6600 digital computer, the following remarks should be 

reviewed with respect to this third generation computer. 

If peripheral storage had not been utilized, the problem size would have 

been limited by the available core storage. To overcome this, disk files were 

used extensively for data storage. Although the problem size was significantly 

increased, the access time for reading and writing files was found to be an 

order of magnitude greater than the time required for the arithmetic operations. 

To overcome the access time problem, a special, machine-dependent subroutine 

was incorporated in the program. The fourth generation machines will hopefully 

not have this limitation. 
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Final]y, experimental data are required for further evaluation of the 

method. Carefully controlled model studies and field tests are required for 

dynamic response data. Research of this nature will not only aid in the evalu­

ation of the numerical method but also furnish additional data on material 

behavior, \mich could be applied to the discrete-element idealization of the 

problem. 
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APPENDIX A 

DERIVATION OF EQUILIBRIUM EQUATION 
FOR DISCRETE-ELEMENT PLATE MODEL 
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APPENDIX A. DERIVATION OF EQUILIBRIUM EQUATION 
FOR DISCRETE-ELEMENT PLATE MODEL 

The basic derivation of the equilibrium equation has been presented 

elsewhere (Refs 17 and 20), but is presented here in detail, for the benefit 

of the reader. 

The discrete-element model is shown in Fig 2. It consists of rigid bars, 

elastic restraints at joints or nodes, and torsion bars connecting the middle 

of the rigid bars. 

An expanded view of a joint is shown in Fig A1. The elastic elements are 

replaced by the forces and moments which are developed as the node points of 

the model undergo deformations. All forces and moments are shown in their 

positive direction. 

by 

Equilibrium of the joint of Fig A1 in the z or w-direction is satisfied 

2:F = Q . . + V: . + V~ . - V:+1 . - V~ . +1 - S . . w. . z 1,J 1,J 1,J 1 ,J 1,J 1,J 1,J 

Moment equilibrium for each of the bars will yield 

-h V: . = x 1,J 

x + P. . (-w. 1 . + w. . ) 1,J 1-,J 1,J 

-h V:+1 . x 1 ,J 
= MYX 

i+1,j M~X1 . 1 + ~ . - MC+1 . 1+ ,J+ 1,J 1,J 

+ P·+1 . (-w .. + w.+1 .) 1 ,J 1,J 1,J 

89 

(A.1) 

(A.2) 

(A.3) 



- M'· I i,i,1 

Qi,l 

Va. 
101 

~ +-:':~ j 
V. "I i,l 

M r,j'l 
/f,y 

• 
~ M~ v

1
it

f---I.1 ------.--------( 

• Pi • l •i 
Vi,I.1 

OF ·W·· I,J ',J 

Fig AI. Expanded view and free bodies of model joint and connecting bars. 



-h V~ , = 
y 1.,] 

+ P~ ,( -w, , 1 + w, , ) 
1.,J 1.,J- 1.,J 

y 
-h V, '+1 Y 1.,J = 

+ P~ '+l(-w, , + w, '+1) 1.,J 1.,J 1.,J 

y 
M, , 

1.,] 

y 
M, '+1 1.,J 

Substituting Eqs A.2 through A.5 into Eq A.1 

L [MY, x , _ MYx MYx + MYx + _,X 2-'x 
hx 1.,J i,j+1 - i+1,j i+1,j+1 Mi _1 ,j - Mi,j 

+ K'+1 ' + P~ ,( -w, 1 ' + w, ,) - P~+l ,( -w , , 1.,J 1.,J 1.-,J 1.,J 1.,J 1.,J 

+ w'+l ,)] + h
1 

[-K'Y, + K'+Y1 ' + ~Y '+1 1. ,J 1.,J 1.,J 1.,J 
Y 

= Q .. - s .. w .. 
1.,J 1.,J 1.,J 

91 

(A.4) 

(A.5) 

(A.6) 

Node point and torsion bar elastic constants are related to the continuum 

plate constants through finite-difference approximations. As noted in Chapter 

2, the continuum variables are represented by subscripts x and Y and terms 

with superscripts pertain to discrete or concentrated data. 

The continuum bending moment is related to curvature by elastic stiffness 

constants D x 

M = x 

and D 
Y 

and Poisson's ratio values v 
x 

and 

(A.7) 
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(A.B) 

In Eq A.7, v represents the influence of curvature in the y-direction on 
y 

curvature in the x-direction. Similarly, in Eq A.B, the cross sensitivity of 

x on y-curvature is v 
x 

Furthermore, the Poisson's ratio values are not 

independent, but related to the bending stiffness by 

D v = D v 
x Y Y x 

The above relationship can be proved by the Maxwell-Betti theorem. 

moments may therefore be expressed as a function of three variables, 

D , and a , given by Eq A.9: 
y 

2 2J2w 
D 2J w + M = -- a 

x x 2Jx
2 2Jy2 

2 2J2w 
M = D 2J w + a 

y y 2Jy2 2Jx2 

(A.9) 

The bending 

D , 
x 

(A.10) 

(A.11) 

Replacing the curvature by a central difference approximation gives the 

model moment: 

M~ . 
1,J 

Y M .• 
1,J 

= 

= 

D 

D 

x. . 
1,J 

y .. 
1,J 

h 

( ~ )(w i _1 ,j 2w .. + w'+l .) 1,J 1, J 
x 

- 2w .. + w. '+1) 1,J 1,J 
(A.12) 

h 

( h~ )(w i ,j_1 - 2w .. + w. '+1) 
1, J 1, J 

y 



h 

+ Cl'i,j ( h~ )(Wi _1 ,j - 2Wi ,j + Wi +1 ,j) 
x 
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(A.13) 

The bending moment at adjacent node points is given by similar expressions. 

It is possible to relate the model and continuum twisting moments. First, 

consider the continuum relationship between twisting moment and plate twist. 

M = xy (A.14) 

The first subscript defines the direction of the moment vector while the 

second indicates the surface to which the moment is applied. The moment vector 

is parallel to the axis defined by the first subscript and acting on a verti­

cal plane which is parallel to the second (Fig 1). For equilibrium, the 

moment vector parallel to the y-axis is related to that in the x-direction by: 

M =-M 
yx xy (A. IS) 

If the partial derivative is replaced by a difference expression, the 

discrete-element twisting moment is obtained: 

~y, == 
~,J 

h 

-D ( ~ )(wi _l J'-l - wi J'-l 
xY; J' x Y , , 

.L , 

- w. 1 . + w .. ) 
~-,J ~,J 

(A .16) 

h 

D ( h ~ )(Wi _l J'-1 - wi J'-l xy.. x y , , 
~,J 

- w. 1 . + w .. ) 1.-,J ~,J 
(A. In 

Again, similar expressions are found for the twisting moments acting on 

adjacent bars. 
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It is important to note that there is a fundamental difference between 

the bending and twisting moments for the discrete-element model. Bending 

moments are generated at the node points while the twisting moments are de­

veloped in torsion bars attached to the midpoints of adjacent parallel bars. 

It is not possible therefore to refer to the twisting moment at a node point. 

The equilibrium equation for a node point is found by substituting the 

model bending equations (A.12 and A.13) and twisting moment equations (A.16 and 

A.17) into Eq A.6. A relationship between stiffness and node point deflection 

is established. 

123 
a , , w , , 2 + b, , w, 1 ' 1 + b, , w , , 1 + b, , w '+1 ' 1 1,J 1,J- 1,J 1- ,J- 1,J 1,J- 1,J 1 ,J-

512 
+ c, ,w , +2 ' + d, ,w, 1 '+1 + d, , w , , 1 1,J 1,J 1,J 1- ,J 1,J 1,J+ 

3 
+ d, ,w'+l '+1 + e, ,w, '+2 1,J 1,J 1,J 1,J = q, , 

1,J 

The coefficients of the deflection terms ·are 

a, , 
1,J 

1 
b, , 
1,J 

2 b, , 
1,J 

= 

= 

= 

(D ) 
Yi,j-1 

1 
h h 

x Y 
(2D + ex, 1 ' + ex, , 1) xy" 1-, J 1, J-

1,J 

h 
-2 x (D + D ) 

h
3 y" 1 y" 1,J- 1,J 
Y 

2 
h h 

x Y 
(D xy, , 

1,J 

1 y + D +ex, . +ex, , 1) - -h p, , 
xy '+1' 1, J 1, J - 1, J 

1 ,J Y 

(A.18) 

(A.19) 

(A.20) 

(A.21) 



3 
h. . = 
1,J 

1 
h h (2D + 01. • 1 + 01. +1 .) 

xY . +1' 1 , J - 1, J X Y 1,J 

1 
c .. 
1,J 

2 
c .. 
1,J 

3 
c .. 
1,J 

4 
c .. 
1,J 

h 
= J.. (D ) 

h3 x. 1 . X 1-,J 

2h 2 
= - ~ (D + D ) - ----h h (01 1'-1' 

h
3 x. l' X •• X Y , J X 1-,J 1,J 

X 
P .. 

+01 • • + D + D ) - ..2:..W.
h
1 

1,J XYi,j XY i ,j+1 X 

h 
= J.. (D + 4D + D ) 

h
3 x. l' X •• X • +1 . 1- ,J 1,J 1,J 
X 

h 
+ ..2!.. (D + 4D + D ) 

h
3 y.. 1 Y .. y.. +1 Y 1,J- 1,J 1,J 

2 
+ -h h (D + D +D +D 

xy .. 
X Y 1,J xY'+1 . 1 ,J XYi ,j+1 XY i +1 ,j+1 

1 X X ) + 1- Y + 4ot. .) + -h (P. . + P. +1' h (P. . 
1,J X 1,J 1,J Y 1,J 

+ P~ '+1) + S .. 1, J 1,J 

2h 
= - ~ (D + D ) 

h
3 X.. x. 1 . 1,J 1+ ,J 
X 

2 ---h h 
X Y 

X 

(D 
xY'+1 . 

1 ,J 

p. 1 . 1+ .] 
+ D X + 01. . + 01. +1 .) - h 

Yi +1 ,j+1 1,J 1,J X 
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(A.22) 

(A.23) 

(A.24) 

(A.25) 

(A.26) 
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5 
h 

c, = ....:t.. (D ) 
1,j h3 x'+l ' 

x 1 ,j 

d~ 1 (2D +Ci, '+1) = + Ci, 1 ' 1,j h h xy, '+1 1- ,j 1,j 
X Y 1,j 

d: 
2h 

2 = X (D +D ) - -- (D 1,j 
h3 y, , y, '+1 h h xy, '+1 1,j 1,j X Y 1,j y 

y 
p, , 1 

) 
1, J+ 

+D + Cii,j' + Ci 1',j'+1 - h 
XYi +1 ,j+1 Y 

3 d, , 
1,j 

1 
= ----h h (2D ) 

X Y xYi +1 ,j+1 + Ci i +1 ,j + Ci i ,j+1 

h 
e, , = X (D ) 
1,] h3 Yi ,j+1 

Y 

q, , == Q, , 
1,] 1,j 

These equations may be written in matrix notation: 

(A.27) 

(A.28) 

(A.29) 

(A.30) 

(A.31) 

(A.32) 

(A.33) 

where [KJ is the stiffness matrix of the plate. 

given by Eqs A.19 through A.31. The load vector 

The terms in [K ] are 

{Q} is given by Eq A.32. 
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APPENDIX B. EQUATION OF MOTION FOR DISCRETE­
ELEMENT PLATE MODEL 

A free-body diagram of the discrete-element plate model for dynamic 

analysis is shown in Fig Bl. A dashpot, to represent viscous damping, is 

attached to the node point as well as the fixed reference plane. The equation 

of motion for each node is developed by adding the inertia and damping forces 

to the node equilibrium equation (A.18): 

1 2 3 
a, ,w, , 2 + b, ,w. 1 ' 1 + b, ,w, , 1 + b, ,w, 1 ' 1 1,j 1,j- 1,j 1- ,j- 1,j 1,j- 1,j 1+ ,j-

1 2 3 4 
+ c. ,w, 2 ' + c, ,w, 1 . + c, ,w, , + c, ,w'+l ' 1,j 1-,j 1,j 1-,j 1,j 1,j 1,j 1 ,j 

512 
+ c. ,w, 2 ' + d, ,w, 1 ' 1 + d, ,w , '+1 1,j 1+,j 1,j 1- ,j+ 1,j 1,j 

3 
+ d. ,w'+l '+1 + e. .w. '+2 1,j 1,j 1,j 1,j = q .. 1,j 

- M. . 1,j 

2 

( 
d w .. 

dt~' , ) - DF .. 
1,j ( 

dw .. ) 
d~' ] (B.l) 

The new terms in Eq B.l (M. . and DF .. ) are the nodal mass and damp-1,j 1,] 

ing. The units of mass must be lb-sec 2/in and those of damping lb-sec/in. 

It will be convenient to combine the equations of motion for the node 

points and write in matrix form: 

(B.2) 

or in the more familiar form 
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M~,. j 
- MYX 

, i,i>1 

Y 
Mi,!_1 

y /f,y 
M i,i>1 y 

y r)(' Pi,I>1 

Vi,ltl/J 

i ".,w,w 

V· . 

~v7-::~r 
i,l '-i--i-" 

x 

~ _ M;\,. V1hl'l -r- 7-c- f-----:lIt----< 

p.XI • 
I 1+ ,j 

Viol.! 

I M. )W .. t I, I,} 

~ DFi,iWI,i 

Fig Bl. Expanded view and free bodies of dynamic model joint and connecting bars. 

t-' 
o 
o 



In Eqs B.2 and B.3, differentiation with respect to time is conveniently 

represented by the dot above the deflection. 

101 

(B.3) 

The mass matrix [MJ and damping matrix [DFJ are diagonal. This is 

the result of structural idealization given in Fig 3. The mass matrix would 

take a different form if the mass were lumped in the bars. Furthermore, rela­

tive damping would change the form of the damping matrix. 
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APPENDIX C. STEP-BY-STEP NUMERICAL INTEGRATION PROCEDURE 

The equations included in this appendix were derived especially for use 

with the method developed during this study. They are coincidentally a spe­

cialized form of the equations presented by Cox et al (Ref 4) for step-by-step 

analysis of structural systems. 

The numerical integration of the equations of motion is based on the 

assumption that the acceleration varies linearly during each time step. The 

velocity and deflection, therefore, are dependent on the conditions at the 

beginning of the time step and the acceleration at the end of the interval: 

h . w
k 

t .. 
+2 

.. 
wk+l = +2 wk wk+l (c.l) 

h2 
h2 

wk+l = w
k + htwk 

+ t .. t .. 
:3

w
k + '6 wk+l (C.2) 

It is possible to combine Eqs C.l and C.2 with those for time increment k-l 

to k and express the velocity and acceleration as a function of deflection 

and the time increment length ht 
: 

h h 
• • t .. + t .. wk = w

k
_

1 + '2 wk_1 2"wk (C.3) 

h2 h2 

w
k

_l + htw
k

_l 
t •. + t .. wk = +:3 wk_l '6 wk (C.4) 

Subtracting Eq C.4 from Eq C.2, 

= 

105 
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h
2 

+ f (wk+l - wk ) 

The term ht(wk - wk _l ) 

giving 

may be replaced by 

= 

A similar relation between velocity and deflection is found by first 

adding Eqs C.2 and C.4: 

= 

h2 

+ f (wk+l + wk ) 

(c.S) 

(C.6) 

(C.7) 

Next, the terms (w
k 

+ w
k

_l ) and (w
k

+
l 

+ wk) are replaced by Eqs C.3 and 

C.l. Combining terms leads to the relationship between velocity and deflec­

tion 

(C.8) 

The recursive relationship to propagate the solution from one time step 

to the next is developed by writing the dynamic equilibrium relationships at 

time k-l , k, and k+l : 

(C.9) 

(C.IO) 
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(C.11) 

Multiplying Eq C.10 by 4 and then adding Eqs C.9, C.10, and C.11 gives 

(C.12) 

substituting Eqs C.6 and C.B into Eq C.12 gives the following recursive 

relationship for step-by-step recursive analysis: 

3 [ l - - DFJ h
t 

+ [KJ ]{Wk_~ (C.l)) 

As both [MJ and [DFJ are diagonal matrices, only the main diagonal of 

the stiffness matrix is modified by the operations shown in Eq C.13. 

Eq C.13 can be written as 

(C.14) 

The right-hand side of Eq C.13 is combined, giving an equivalent load vector 

{Q~+l}' The terms in the modified stiffness matrix [K'J are given by Eqs 
3 A.19 through A.31 with one exception: for dynamic analysis c.. (Eq A.25) 
1,J 

becomes 
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3 
c .. 
1,J 

h 
= J... (D + 4D + D ) 

h
3 x. l' x .. x . +1 . x 1-,J 1,] 1,] 

h 
+ ~ (D + 4D + D ) 

h~ Yi ,j-1 Yi,j Yi ,j+1 

2 
+ -h h (D +D + D + D 

xy .. 
x Y 1,J 

+4<¥ .. ) +h 
1,] 

x 

XY'+l . 1. , J 

6 3 
+ s. j + -2 M. . + h- DF. . 

1., h 1,J t 1,J 
t 

XYi ,j+1 XYi +1 ,j+1 

(C.15) 
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SLAB 35 GUIDE FOR DATA INPUT -- Card forms 

IDENTIFICATION OF PROGRAM AND RUN (2 alphanumeric cards per run) 

IDENTIFICATION OF PROBLEM (One card each problem) 

Prob No. Description of problem 

I I 
5 II 

TABLE l. PROGRAM CONTROL DATA (Two or more* cards each problem) 

Number of Print Number 
Number of Curves in Option of 

Cards in Table Table Control Monitor 
2 3 4 5 6 7 Switch Stations 

NCT2 NCT3 NCT4 NCT5 NCR6 NCR7 OP MON 

I 
• 10 15 20 25 30 35 •• 50 55 50 

Number of 
Slab Number 

Increments of Maximum 
X Y Time Increment Length Time-Steps Poisson's 

Direction Steps X-Direction Y-Direction Interval Ratio 
MX MY MT HX HY HT PR 

5 10 15 20 30 40 50 10 

* The first two cards of this table are required for each problem. For linear problems (when NCR7 ; 0) the 
third card must be omitted. Monitor stations to be read in are controlled by the first card (MON). 

110 

110 

I 
10 
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Iteration Control Data (Not required for linear problems) 

Maximum Number 
of Iterations 

for any 
Time Step 

ITMX 

6 10 21 

Maximum 
Allowable 

Deflection 
WMAX 

30 

Deflection 
Closure 

Tolerance 
TOL 

40 

Monitor Stations (COntrolled by MON; no cards if MON is blank or as many as 10) 

Station 
X Y" 

MSX MSY 

• 10 I~ 

TABLE 2. ELASTIC PROPERTIES OF THE SLAB (One or more cards for each problem as shown by NCT2 of Table 1.) 

Linear 
From Station Thru Station Foundation 

X Y X Y Bending Stiffness Spring 
Il Jl 12 J2 DXN DYN SN 

I 
6 10 I~ 20 2~ 31 40 ~o 60 

TABLE 3. AXIAL THRUST AND TWISTING STIFFNESS (The number of cards as shown by NCT3 of Table 1.) 

From Station Thru S tati on Axial Thrust Twisting 
X Y X Y X-Direction Y-Direction Stiffness 
Il Jl 12 J2 PXN PYN CTN 

6 10 I~ 20 2~ 31 40 ~o 60 
I-' 
I-' 
I.J1 
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TABLE 4. MASS AND DAMPING PROPERTIES (The number of cards as shown by NCT4 of Table 1.) 

From Station Thru Station Viscous 
X Y X Y Mass Damping 

11 Jl 12 J2 RHON DFN 

'I 
6 10 1$ 20 2$ 31 40 $0 

TABLE 5. STATIC OR DEAD LOADS (The number of cards as shown by NCTS of TABLE 1.) 

From Station Thru Station 
X Y X Y 

11 Jl 12 J2 

• 10 1$ 20 31 

Lateral 
Force 

QN 

40 

Bending Moment About 
X-Axis Y-Axis 

TXN TYN 

$0 60 

TABLE 6. DYNAMIC LOADING (The number of curves in this section is shown by NCR6 of TABLE 1. The number of 
cards in each curve is given by NAM.) 

Dynamic Load Curve Control Card (One card for each curve) 

Num Initial Period ic Num 
of Displ Load of 

Cards of Option Loads Velocity 
for Load for this of moving 

Curve Y-Dir Curve Curve Load 
NAM , JSFT JSYM NDL MSPD 

I 
6 10 1$ 20 2$ 31 40 
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Amplitude Variation Data (NAM cards for each curve, not to exceed 20) 

6 

From 
Kl 

Dynamic 

From 
X 

II 

6 

Time Step 
Thru 

K2 

10 15 

Cont. 
KONT 

20 

Load (NDL cards, 

Station Thru 
y X 

Jl 12 

10 15 20 

Load 
Amplitude 

Multiplier 
DQM 

not to exceed 

Station 
Y 

J2 

25 

30 

20) 

Dynamic 
Load 
DQN 

31 40 

TABLE 7. NONLINEAR SUPPORT DATA (The number of nonlinear curves as shown by NCR7 of TABLE 1. Each curve requires 
three cards.) 

Curve Control Card (One card each curve) 

From Station Thru Station 
X y X Y 

INI JNl IN2 JN2 

6 10 15 20 25 

Curve Data (Two cards for each curve) 

Point Number 
Load Points LP 

Deflection Points MP 

31 

31 

31 

Load 
Mul tiplier 

QMP 

1 2 

35 

35 

I STOP CARD (One blank card of the end of each run) 

40 

40 

40 

Deflection 
Mu It iplier 

WMP 

3 4 

45 

45 

50 

50 

50 

Linear 
Approximation 

SFN 

60 

5 6 

55 60 

55 60 

Num 
of 

Points 
on Crv 

NPC 

n 

Enter 
"1" if 'Curve 
Symmetric 

about 
Origin 

ISYM If = 1, 
[J final deflec-

65 70 tion mus t be 
positive and initial load 
and deflection must be zero 

7 8 9 10 

70 75 .0 

65 70 .0 

J 
10 

t-' 
t-' 
\.0 
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GENERAL PROGRAM NOTES 

The data cards must be in the proper order for the program to run. 

All data except the moving vehicle speed must be in units of pounds, inches, and seconds. Vehicle 
speed is input in miles per hour. 

The variable identification on the guide for data input is consistent with the FORTRAN notation of 
SLAB 35. 

Al12 and 5-space words must be right justified integer numbers: 1- 3 7 61 
All 10-space words are floating-point decimal numbers: ..... 1+ 2 • 3 4 5 E + 0 31 

TABLE 1. CONTROL DATA AND CONSTANTS 

The number of cards in Tables 2 through 5 should be carefully checked in the assembled data deck. 

The number of curves in Tables 6 and 7 should be verified before submitting the deck for a computer run. 

Output 1is~ings for deflection and moment are made for all nodes every OP time steps; in the interval 
between complete listings only monitor station data are printed. 

A single value of Poisson's ratio is input. 
Poisson's ratio values (v and v) x y 

For orthotropic plate analysis, the larger of the two 
is input. 

The deflection closure tolerance has the units of inches. For many plate and slab problems a value in 
the range 10-3 to 10-6 is adequate to insure closure. 

TABLE 2. ELASTIC PROPERTIES OF THE SLAB 

Variables: 

Units: 

X-Direction 
Bending Stiffness 

DXN 

1b-in
2 

in. 

Y-Direction 
Bending Stiffness 

DYN 

1b-in
2 

in. 

The maximum number of cards in Table 2 is 50. 

Linear 
Support Spring 

SN 

1b 
in. 

Data are described by a node coordinate identification as shown in Fig D1. 
..... 
N ..... 



 

 

 

 

 

 

 

 

 

 

 

 This page replaces an intentionally blank page in the original --- CTR Library Digitization Team 



11 

0 
1 
2 
2 
0 
0 
0 
3 

123 

l----- Uniform Axial Compression 

I 
30 in. '\ 

h.=IOin. 

8-r-~-r1'~--~~~---~ 

5 - r-----,;.;.;.;.;.;.;.;.;.;.+.;.;.;.;.;.;.;.;.;.;.;.;.;.;.;.;.;-+--....L.--I 

48in. 

in V-Direction of 600 Ib 
per inch of Width 

Uniform Load q = 20 psi 
Equiv. per Joint Load: 

Q= 20~bz(6xI0)inZ ,n 

= 1200lb 

Plate Stiffne .. 

Ox and D': 300 k-inz 
z in 

Ox,: 210 k~in 
In 

2-r-~-r--~~=F~~~ __ I 8-kip Concentrated Load 

---- I - I---+--+----+--I--~----I---
I I I --1- --r-

Y,J = 0 - ~I --.l..---7---..L-__ 
1
L-_...!1 __ .J

1 
___ --1. 

-1--

X,I:O 2 3 

t f f t 

From Through D and D D Q 
J1 12 J2 x y xy 

0 3 8 3.000E + 05 2.100E + 05 
3 1 7 -1.200E + 03 
3 2 7 -3.600E + 02 
2 2 2 -8.000E + 03 
1 3 1 
0 3 8 

Concentrated Axial Force 
of 10,000 lb •. 

px PY 

+1.000E + 04 
- 6. OOOE + 03 

0 0 8 3.000E + 03 
0 3 8 3.000E + 03 

Note: data incomplete for this sample 

Fig Dl. Example of organization of plate variables and sustained 
forces for data input and sample output. 
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30 An unyielding support is specified by a support spring greater than 10 . 

Data may be distributed to every node in an area by specifying the lower left-hand and upper right-hand 
coordinates. Quarter-values are automatically placed at corner nodes and half-values at edge 
nodes. For line specifications, half-values are placed at the starting and ending nodes. Data 
for a single point will be identified by placing the same node coordinates in both the ''From'' and 
"Thru" co1unms. 

Coordinates 12 and J2 must either be equal to or greater than coordinates 11 and J1 . 

No restrictions are placed on the Table 2 card order. 

Cumulative input is possible (see Fig D1). Data on each card are added to preceding card values. 

TABLE 3. AXIAL THRUST AND TWISTING STIFFNESS 

Variables: 

Uni ts: 

X-Direction 
Axial Thrust 

PXN 

1b 

Y-Direction 
Axial Thrust 

PYN 

1b 

The maximum number of cards in Table 3 is 50. 

Twisting Stiffness 
CTN 

1b-in
2 

in. 

Axial thrusts are bar data, i.e., a single node cannot be used to describe the force. 

Tension is positive (+) and compression negative (-). 

Area and line specifications are available for axial thrust. 

A full value of axial thrust is placed in all bars in the area defined by the ''From'' and "Through" co­
ordinates, including bars which define the edge of the area. 

Twisting stiffness is an area variable and can only be described by area coordinates; 12 and J2 
must be greater than 11 and J1 . 

Data are distributed with full values to all grid areas defined by the ''From'' and "Through" coordinates. 

Data in this table are cumulative. 
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TABLE 4. MASS AND DAMPING PROPERTIES 

Variables: 

Units: 

Node Point 
Mass 
RHON 

Ib-sec
2 

in. 

Node Point 
Damping 

DFN 

lb-sec 
in. 

The maximum number of cards for Table 4 is 50. 

Mass and damping are node data and are described and distributed as Table 2 data; node point, line, and 
area descriptions are available. Quarter values of variables are placed at corners of areas and 
half values of the variables are placed at ends of lines and area edges. 

TABLE 5. STATIC OR DEAD LOAD 

Variables: 

Units: 

Lateral Load 
QN 

lb 

X-Direction 
Couple Moment 

TXN 

lb-in 

The maximum number of cards for Table 5 is 50. 

Y-Direction 
Couple Moment 

TYN 

lb-in 

Variables in this table are node data and are described and distributed as outlined in Table 2. 

TABLE 6. DYNAMIC LOADING 

Variables: 

Units: 

Dynamic Load 
Multiplier 

DQM 
Dynamic Load 

DQN 

lb 

The number of curves in Table 6 cannot exceed 20. 

Speed of Load 
in Y-Direction 

MSPD 

mi 
hr 

As many as 20 points can be used to define each multiplier curve. 
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The maximum number of loads which can be input for a single curve is 20. 

The multiplier curve is developed as shown in Fig D2 with the requirement that at time station zero 
the amplitude mUltiplier must be zero. 

A periodic multiplier is generated by a 1 in JSYM; leaving this field blank produces a nonperiodic 
curve. 

Loads moving in the positive y-direction must be entered with a positive speed while those in the 
opposite direction are negative. 

The loads described are shifted in the positive or negative y-direction the number of stations given by 
JSFT. This feature is used with the moving load capabilities so that a load can be described on 
the slab then shifted to a point where it can run across the slab. 

The loads controlled by the curve are NDL and are input following the multiplier curve. 

Loads can be described for a point, line, or area. Rules for the description of loads are given in 
the discussion of Table 2 data. 

TABLE 7. NONLINEAR SUPPORT DATA 

Variables: 

Units: 

Linear Approximation 
of Nonlinear Curve 

SFN 

lb 
in. 

Scaled 
Foundation Resistance 

LF 

lb 

Scaled 
Foundation Deflection 

MP 

in. 

Each curve consists of 3 cards: a curve control card, a card listing foundation resistance, and a 
card giving corresponding deflections. 

The nonlinear foundation can be described for a point, line, or an area, by the use of x and y­
coordinates. Rules given in the discussion of Table 2 data apply to the distribution process. 

The mUltipliers QMP and WMP are scaling factors for the resistance-deflection points given by LF and 
MP. The curve is constructed as QMP X LF for resistance values and WMP X MP for the deflection. 
Therefore QMP and WMP must not be zero. 

The linear approximation (SFN) will be a positive number. This value cannot be omitted. 

As many as 10 points can be used to define the nonlinear curve. When the symmetry option is requested, 
as many as 19 points can be generated. 
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4 

3 

2 

.. 
Q. 

.:tt. 

,; 
8 0 
..J 

(,) 

E 
0 -I c: 
>-

0 

-2 

-3 

-4 

.4 

Time increment .001 sec 

Time Station Load multiplier for 
From Thru Cont. load of 1000 lb 

Kl 

25 

K2 KONT DQM 

1 0.0 
135 1 -2.500EOO 
200 1 -3.000EOO 
300 1 0.750EOO 
350 0 0.0 

Fig D2. Example of organization of dynamic 
loading for data input. 

131 

.5 

a dynamic 
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The deflection must be input 
positive multiplier and 
decreasing deflections. 
zero. 

in algebraically increasing order. This can be accomplished by using a 
algebraically increasing deflection points or a negative multiplier and 

When symmetry is required the initial resistance and deflection must be 

The load and deflection points (LP and MP) must be scaled integer values of the nonlinear resistance­
deflection curve, with the scaling factors being the load and deflection multiplier values (QMP 
and WMP). An example illustrating the organization of the data is given in Fig D3. 

The curves must be single-valued functions of deflection, i.e., for each deflection there is a unique 
load. 

Cumulative input is available for the nonlinear curves and their linear approximations. The rules for 
distribution of both the curve and the linear approximation follow those given in Table 2; quarter 
values of the variables are assigned to corners of areas and half values to ends of lines and area 
edges. 



 

 

 

 

 

 

 

 

 

 

 

 This page replaces an intentionally blank page in the original --- CTR Library Digitization Team 



-:6 

135 

Li near Approximation 

Point No. Resistance 
I 

10,000 

5,000 

Deflection - w 

-.4 

Point Number 

LP 

MP 

-.2 

QMP 

1.000E+02 

1 

100 

500 

, , 

-spoo 

WMP 

-1.000E-03 

2 

90 

300 

3 

71 

120 

, , 
\ , 

\ 
'6 

-.2 

7 
~-------Q 

SFN 

5.000E+04 

4 

50 

50 

5 

o 
o 

6 7 

-30 - 50 

-150 -400 

Fig D3. Example of organization of foundation resistance­
deflection characteristics for data input. 

-.6 
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APPENDIX E 

SLAB 35 FLOW DIAGRAM AND 
PROGRAM LISTING 
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APPENDIX E. SLAB 35 FLOW DIAGRAM AND PROGRAM LISTING 

The computer program SLAB 35 consists of the main driver program and 27 

subroutines. Twelve of the subroutines were written especially for this pro­

gram while the remaining 15 are part of a solution package for banded linear 

equations described elsewhere (Ref 6). 

A summary flow diagram of the program SLAB 35 is shown in Fig E1. The 

major functions of the program are outlined in this figure. Detailed flow dia­

grams of the main flow program and the 12 subroutines unique to this program 

follow the summary flow diagram. 

Five functions are controlled by the main program: data input and organi­

zation, output, nonlinear control, dynamic load generation, and equation gen­

eration and solution. 

For the data input and organization phase, four subroutines are utilized. 

INTERP9 interprets data input tables and distributes the elastic and dynamic 

properties to plate node points, bars, and areas. STIF1 and STFMX construct 

and store on a disk file the static stiffness matrix. The first generates ma­

trix terms related to bending stiffness and linear foundation springs and the 

second completes the formation with the addition of axial thrust and twisting 

stiffness to the coefficients developed by STIF1. STALD forms the sustained 

static load and dead loads and writes them on a disk file. 

Nonlinear control is performed by a single subroutine, NONLIN4, which com­

pares deflections of two iterations to determine if closure has been estab­

lished. If the solution is not closed within the specified tolerance, a new 

correction load is computed and stored on a disk file. 

At each time station, a new dynamic load is generated by DYNLD, which con­

structs either periodic or nonperiodic multipliers for stationary and moving 

load. 

The generation and solution of equations are controlled by seven subrou­

tines. Two, MASSAC and INERTIA, compute the right-hand side or load vector 

related to previous deflection or acceleration and velocity calculations. 

139 
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READ and 
Table 1. 
Table 2. 
Table 3. 
Table 4. 
Table 5. 
Table 6. 
Table 7. 

PRINT problem information: 
Program control information 
Bending and linear support stiffness 
Axial thrust and twisting stiffness 
Mass and viscous damping 
Dead and sustained loads 
Dynamic loading 
Nonlinear support data 

Compute constants and initialize storage 

r---- DO requested number of time increments 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
~ 

r--
I 
I 
I 

CALL DYNLD - calculate dynamic load 

DO requested number of iterations 

CALL FRIP4 - calculate unknowns deflection or acceleration 

I CALL MASSAC - calculate 
I load (-Mw - DFw) 

I 
I 
I 
I 
t 
I 
I 
I 
I 
I 
I 
I 
I 
I 

no 

no 

CALL NONLIN4 - check for closure; calculate 
new correction load 

no yes 

Fig El. Summary flow diagram of program SLAB 35 (Continued). 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
+ 

I 
I 
I 
I 
I 

~ 
I 
I 
I 
I 
I 
I 
I 

no 

PRINT monitor station deflection, 
moment and reaction 

no yes 

141 

PRINT deflection, 
moment, and reaction 
for all stations 

\._--------

PRINT closure not satisfied in specified number 
of iterations 

Ad'ust load and deflection storage for new time station 

CALL INERTIA - perform matrix additions and 
multiplications for new equivalent load vector 

Return for new problem 

Fig E1. Summary flow diagram of program SLAB 35 (Continued). 



M2 

Three, STAT, DYNAM, and ACCEL, generate the equations and form the load vector, 

and EXCUT directs the solution by selecting the correct equation generator. 

The equations are solved by subroutine FRIP4 which has been described elsewhere 

(Ref 6) and therefore its flow diagram and listing are not included. MASSAC 

computes the products of mass times acceleration and velocity times damping 

for deflection analysis at the first time step. INERTIA computes the matrix 

products on the right-hand side of Eq 3.12. STAT forms the static stiffness 

matrix and constructs the load vector for either static analysis or deflection 

analysis at the first time step. DYNAM formulates the modified stiffness 

matrix and load vector for the general time step. ACCEL forms the modified 

stiffness matrix and load vector for acceleration analysis at the first time 

step. FRIP4 is an equation solver for matrices with five-wide banding. 

In addition to the subroutines noted above, 14 others are used throughout 

the program for matrix and vector operations (Ref 6). 

The output functions were coded in the main program. Printed results are 

moments, reactions, and deflections for either all node points or points 

selected by the program user. 
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FLOW DIAGRAM FOR PROGRAM SLAB 35 

READ and PRINT program identification 

Initialize indices and constants 

1000 
READ problem identification 

Yes 

Terminate 

READ and PRINT Table 1 - Data Control 

No 

READ and control data 

READ and PRINT monitor stations 

Compute program control constants 
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READ and PRINT Table 2 - Bending 
stiffness and linear support springs 

CALL INTERP 91 

2100 
READ and PRINT Table 3 - Axial 
thrust and twisting stiffness 

READ and PRINT Table 4 -
Mass and damping 

Distribute Table 2 
data 

Start formation 
of stiffness 
matrix 

Store bending 
stiffness and 
linear spring 
data on File 4 

Distribute Table 3 
data 

Complete the 
formation of the 
static stiffness 
matrix 

Store axial 
thrust and 
twisting stiff­
ness on File 5 

Distribute Table 4 
data 

Store mass and 
damping on File 7 



2550 
READ and PRINT Table 5 - Static loading i 

2750 
READ and PRINT Table 6 - Dynamic 
load data 

3000' 
Zero storage for linear approx1mat10n 
of nonlinear support 

READ and PRINT Table 7 - Nonlinear 
foundation data 

4000 
Initialize def ection storage, 
W, WTKl, WTM2, and WS 

145 

Distribute Table 5 
data 

Form static load 
vector 

Store static 
load On File 9 

Store linear 
approximation 
on File 18 
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,-- ----- - L.:D:...:O:........::T-=IM=-=----=~r=::........:::..:::::..;;:;.,..,.;;;",,;;;.;::~ 

(---­

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

• 

DO NITR = 

Set switches for multi 1e-1oadin 

CAll.. FRIP4 

Initialize stor­
age files for 
dynamic load, 
load correction, 
and equivalent 
load vectors 

Start solution 
procedure 

Compute dynamic 
loading at time 
step TIM 

Files 6,7,8, 
and 10 through 
18 are rewound 
for the solu­
tion procedure 

Compute unknown 
deflections or 
accelerations. 
FRIP4 calls sub­
routine EXCUT 
which selects 
the coefficient 
matrix and load 
vector 

Accelerations 
have been cal­
culated at 
first time step 

(-MW - DFW) cal­
culated and 
stored for de­
flection analysis 



I I 

I TIM) i NITR) 

Store deflections in WS to compare 
with results of next iteration 

No 

147 

Check for closure 
and compute new 
correction load 
if required 

Rewind files for 
moment and 
support reaction 
calculations 

Set print switch for 
monitor station printout 

Set print switch for complete 
listing or monitor station 
output 

5401 

Compute bending and twisting moment, 
principal moment, and the angle from 
the x-direction to the principal 
moment 

5600 
Compute support reaction 

PRINT node identification, deflection, x 
and y-bending moment, twisting in the 
x-direction, principal moment, support 
reaction, and the angle from x to the 
principal moment direction 

Read bending and 
twisting stiff­
ness, correction 
load on linear 
foundation 
approximation 
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I 

1 TIM) 

I 

l NITR) 

I 

• I 
I 

Yes 

'"-------

PRINT error message - closure not achieved 
in specified number of iterations 

5920 

Wk_1 = Wk 
W

k
_
2 

= Wk_1 

Rewind dynamic 
load and correc­
tion load files 

Move dynamic 
load at k-1 
to k-2 file 

Move correction 
load at k-l 
to k-2 file 

Adjust deflec­
tion for 
following time 
step calculations 

Move dynamic 
load at k to 
k-1 file 



I 
l TIM) 

I 
I 
I 

• I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

5983 

!CALL INERTIAl 

'---------
6000 

Return to statement 1000 
for new problem 

Yes 

149 

Move correction 
load at k to 
k-1 file 

Compute equiva­
lent load vector 
for following 
time step 
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PR!X;RAM 
1 

SLAB 35 I INPUT. OUTPUT. TAPE1, TApE2. TAPE). TAPE4. 

2 
l 

OIMEIo$ION 
1 
2 
) 
4 
5 
6 
1 
a 
9 
A 
B 
C 
o 
E 

DIMENSION 

TAPES. TAPE6, TAPE7, TApEe. TAPE9, TApEIO. 
TAPE11. TAPE12. TApE13. TApEI4. TApE15. 

TAPEl6. TAPE1S 
ANII 3210 
MSYI 101. 

121 501. 
OYNI 501t 
pYNI 501. 
OFN( 501. 
TYNI 501. 

MSPOI 2010 
INII 101t 
JN21 101t 

Lpi 101. 
((.11 20. 201. 

[)QMI 20. 20 I. 
110( 20. 2010 
..1201 20. 201 

AN21 
III 
..121 
SNI 

CTNI 
gNI 

HAMI 
Jsnu 

JN11 
SFNI 
""'I ((,21 

gNLI 
..1101 

((.11120.201 • K22120.20) 

1410 
50 It 
50lt 
501. 
5010 
501, 
201, 
2010 
101. 
101t 
1010 
20. 2010 
10. 19), 
20. 201t 

MSX! 101. 
..Ill 501. 

OXNI 501. 
pXH! 50!' 

RHONI 5010 
TXNI 501. 

JSFT! 201t 
DOH I ZO, 201. 
INZ! 101, 
NpCI 1010 

HOLI 201. 
KONT! 20. 201. 

WNLI 10. 191t 
1201 ZO. 201, 

C • • •• DIMENSIONED FpR A 4 x 15 SLAB 
C *' . . • • • . • DIMENSION O.F I 11. 221. OYFI 11. 221. SSFI 11. 221, 

1 PXFI lit 221. pYFI 11. 22" RHOf'I 11,22" 
2 OFFIll. 2210 Qfl 110 22" 7XFI 11. 22

" 3 TYFI 11. 221. sFFI 11. 22'. Will. 221. 
.. WTMi( 11. 2210 WTM2( lJ, 221. WSI 11. 22

" 5 CTFIll> 221> gOlFI 11. 2210 gllFI n. 221 
DIMENSI~ 11.171. AMI I ,,. AM21 7'. FFI 7', 

1 Ilil 11. 0011 71. 0021 71. OO:U 71. 
2 gill 11. gl21 11. 01'1 71. RHO I 11. 
3 OFI 11. OXI 71. OYI 71. SI 7', 
.. EfM21 11. SFI 71t MI 71. EEM1I 11t 
5 ATMI 71 

0IMEN$ION 811. 71. 8M11 
1 CI 1. 7'. CMll 7. 71t 
2 EI 7. 71t El21 7. 1,. 
3 cel 7. 51. ETlI 7. 110 
.. $KI 7. 91, SSI 7. 31, 
5 DOl 7. 31. DDMll 7. ". 

EQUIVALENCE I WS. gllF I 

7. 71. EPlI 
01 7. 71. 
OTI 7. )). 

EEl 1. 71. 

CH 7. 21 

EQUIVALENCE ox. MI. lOY, EEl. I S. EEM21 
EQUIVALENCE OlF. pYF. OFF, TXF. WTMI I, I ATM. OT I 
EQUIVALENCE OXF. pXF. RHOf'. OF. SFF. ODIF. W I 

UJL9 
22JA9 
22..111.9 

) 16De9 
I1N08 
11N08 
I1N08 
I1N08 
I1N08 
I1N08 
11N08 
]6MY9 
I1N08 
I1N08 
21MY9 
I1N08 
16MY9 
16MY9 
161lY9 
08JLO 
1101'9 
1101'9 
110E9 
110E9 
170[9 
POE9 
170£9 
I?DE9 
1701'9 
1701'9 
1701'9 
1701'9 
170E9 
POE9 
170E9 
11111'9 
170E9 
170E9 
17DE9 
170E9 
170[9 
01N09 
11N08 
llNOIl 
111008 

EQUIVALENCE S$F. CTF. TYF. WTM2 ,. f DXN. PxN. RHON. ON. MSpO 1.23AG9 
29..111.9 
02JLO 
IIN08 
20..109 

1 1 O'l'N. pYN. OFN, TXN, JSFT" ( SN. CTN. TYN. NAM 1 
EQUIVALENCE (Kl. ((.111. I ((,2. K22 I 
COMMuN/lNCRI MX. MY. Mxp2. MxP3. MXP •• Mxp5. Mxp7. 

1 MVP2. MYP3, Myp4. Myp5. Myp1. MT. HT. HY 
COMMON/CONI HXOHY3. HYDHX3. OOHXHY, ODHX. ODHY. PRo OOHT2. 

1 HlIOHY. HYOHX 
COMMuN/Rl1 10((,. 1iL. NF. NT2SW. TIM 
TlpE INTEGER TIM. DP 
TYPE REAL MSPO. (('NTR 
TYPE REAL ((.11. K22 

002HT.06J09 
06JU9 
22..111.9 
1711.1'9 
29JUO 
02AO 

TYPE REAL MOM3. 
1 FORMAT I 52H 

MX3. MCK 
PROGRAM SLAB 35 - MASTER DECK - A.E. KfLLY 

REVISION DATE 29 JUL 10 

18JU9 
20J L9 

I 170E9 
07..111.9 

1 15tH 
10 FORMAT 
2\1 FuRMAT 
30 FORMAT 

IOU FORMAT 
110 FoRMAT 
120 FORMAT 
130 FoRMAT 
140 FORMAT 
145 FORMAT 
150 FORMAT 
155 FORMAT 
U6 FORMAT 
160 FORMAT 

1 
2 
3 
4 
5 
6 

165 FoRMAT 
1 
2 
3 
4 
5 
6 
1 
(j 

SH • 80X. IOHI-----TRIM 07..111.9 
5Hl • 80K. lOHI-----TRIM 07..111.9 

16AS I 07..111.9 
11.5. 5X. 1411.5 I 07JA9 
5X. 615. lOX. 15. 5X. 15 I 1711.1'9 
5K, 315. 41'10.3 1 07..111.9 
5K. 15, 10K. 2ElO.3 I 07..111.9 
;x. 215 I 07..111.9 

( 5X. 1611.5 , 07..111.9 
(/l110H PROS • I 5x. 11.5, 5X. 1411.5 I 07..111.9 
I 17H PROS C CONTOI. I 5x. A5. 5X. 1411.5 106JA9 
C /I 30H TABLE 1. CONTROL DATA 07..111.9 

I 30H NUM CARDS TABLE 2 • 43X. 12. 07..111.9 
30" NUM CARDS TABLE 3 •• ,X. 12. 07..111.9 
30H NUM CARDS TABLE 4 •• 'X. 12. 07..111.9 
30H NUM CARDS TABLE 5 •• 3X, IZ. 07..111.9 
30H NUM CURvES TABLE 6 • 43X. 12. 07..111.9 
30H NUM CURVES TABLE 7 • 43x. 12 101..111.9 
30H NUM INCREMENTS MX. 42X. 13. I 01..111.9 
30H NUM INCREMENTS MY. 42X. ". I 01..111.9 
30H NUM INCREMENTS MT. 42x. '3. I 07..111.9 
30H X INCR LENGTH HX. 35X. EI0.3. I 07..111.9 
30H Y INCR LENGTH HY. 35X. EI0.3. I 07..111.9 
'OH TIME INCR LENGTH HT • 35X, 1'10.3. I 07..111.9 
'OH MAX pOISSONS RATIO • 35X. EI0.3. I 07..111.9 
30H PRINT oPTION 01' • 43X. IZ. I 21MY9 
51H ALL DATA PRINTED EVERy 01' TIME STEPs .1711.1'9 

II I 30H NUM MONITOR STATIONS. 4", 12 107..111.9 
110 FuRMAT I 

1 
30H MAX NUM ITERATIONS • 42X. 13. 07..111., 
'OH MAX ALLOWABLE OEFL • 35X. El0.3. 07..111.9 

2 
115 FORMAT 
180 FORMAT 

1 
1115 FORMAT 
190 FoRMAT 
2 .. 0 FORMAT 
211.1 FoRMAT 
220 FURMAT 
250 FvRMAT 

I 
260 FORMAT 
210 FttRMAT 

I 
275 FORMAT 
2ao FORIoIJIT 

1 
28; FliRM"T 
287 FORMAT 

1 
290 FoRMAT 
291 FOR"AT 

30H CLosuRE TOLERANCE • 35X. EIO.~ 107JA9 
I 40H LINEAR FOUNDATION SPRINGS 107..111.9 
I 30H M~ITOR STATIONS I 07..111.9 

30H X Y 107JA9 
13x. U. 3X. 13 I 07..111.9 
150M HONITOR STATIONS NOT REOUESTEo 107..111.9 
5X. 415. 5X. 3EI0.3 I 07..111.' 
5X. 515 I 16MY9 

( 5x. 315. 1'10.3 , 03..11.9 
I 1151H TABLE 2. ELASTIC STIFFNESS AND SuPPoRT DATA .07..111.9 
II 4tH FROM THRU Ox OY S • 1101..111.9 

( 5X. 2( IX. 12. IX. J3 " 31'11.3 I 07..1"9 
(1151H TABLE 3. AxiAL FDRCES AND TWiSTING STIFFNESS .07..111.9 
II 48H FROM THRU pX py CT. 1107..111.9 

1 51H NO AXiAL FORCE DR TwiSTING STIFFNESS OAT" 103..111.9 
I 1145H TABLE 4. MAS$ AND DAMPING PROPERTIEs 03..111.9 
II 40H FROM THRU RHO OF. I 103..11.9 

C 51H NO MASS OR DAMPING DATA - STATIC PROBLEM 103JA9 
I 1145H TABLE 5. STATIC LOADING ( DEAD LOAD I 03..111.9 
II 48H FROM THRU Q Tx TY.I 103..111.9 

(51H NO STATIC LOADING - INITIAL IIEFLECTION ZEROI03JA9 
I 1145H TABLE 6. DYNAMIC LOADING 112..11'9 



292 FORMAT 
29) fORMAT 

1 
2 
J 

I 
I 

'3X.SOH NO DYNAMIC LOADIMG IN THIS PROBLEM 
I I 17H CURYE NO •• 13. 

4SH NUM CARDS TO DEFINE CURyE 
4SH INITI~L SHifT IN Y DIRECTION 
4SH SYMMETRY OPTION , PERIODic LOAD 

I21MY9 
I 12.1E9 
• !lOt I2.1E9 

4 I SX. S2H If NOT ZERO. PERIODIC AMPLITUDE 

• 110. 12.1E9 
1 • 110, 12.1E9 
MUL TlPL tER12.1E9 

• liD, 12.1E9 A 
S 
8 
C 
6 
7 

.1 
I 
I 
I 
1/ 

294 FORMAT 
29S fORMAT 
Z96 FORMAT 
297 fORMAT 
298 fORMAT 
299 FORMAT 
31.10 F~AT 
301 fORMAT 
310 FORMAT 
no F(JRMAT 
3SS FORHAT 

I 
2 

360 FoRMAT 
370 FORMAT 
no fORMAT 
393 FORMAT 
SSO FORMAT 

1 
2 

SU FORMAT 
SS" F~AT 
S60 FORMAT 

1 
2 
J 

" S 
6 
7 
8 

S61 FORMAT 
S62 FORMAT 
S6S FORJ4AT 
sell FORMAT 
S91 fORMAT 
6L10 fORMAT 

4SH NUM LOADS THIS cuRVE 
37H YELOCITY ( MILES PER HOuR I. 12X 
4SH TIME MULTIPLIER (CONVERTS INTEGER 
4SH INPUT TO A DECIMAL NUM I 
40H TIME LOAD 
40H fROM THRU CONT MULTIPLIER 

ax. 13, SX. 13. 7X. El1.3 • 
16X. 13. 4X. II. 2X. Ell.3 • 
8X, 13. 12X, 11. 2X. Ell.3 1 

.F6.1 .12.1E9 

.EI0.3.02.IL0 
• 02.1LO 

I 02.1LO 
I 103.1149 

0'.1149 
03.1~9 

I SlH • • ... ERROR IN DATA INPUT - DYNAMIC LOADING 
I 40H fROM THRU DYNAMIC LOAD • I 1 
I SIH .. • ... ERROR IN DATA INPUT - ST~ OUT OF ORDER 
SX, 41', 'x. 3EIO.3, 3X. 12. 4X. 11 1 

03.1149 
103.1149 
13.1O9 

106.IA9 
06.1149 

120.109 
06.1149 

( SX. 2C IX. 12. IX. 13 I. 6X. Ell.3 
'ox. lOIS I 
114SH TA8LE 7. HoMLINEAR fOUNDATION CURVEs 

S2H fROM THRU Q~T W-MULT 
2SHG POINTS sYM OPT , I 

• I IZSMR9 
SPRIN06.1A9 

06.1149 
106.11.9 
106.1149 

SX. 21 IX. 12. IX. 13 " lX. 3£12030 6X. 12. 8-. II, I 
ISH Q 1017 
UH W • 1017 
SIH LINEAR PROBLEM - NO NONLINEAR DATA 

106.1149 
106.1149 
122.1149 SOH" .. ... ERROR IN IIOMLIIIEAR DATA 

21H FOR ITERATION 110, I" 07.1L9 
10H THERE ARE. IS. 
SIH sTATIONs NOT CLOSED WITHIN SPECifiED TOLERANCE 

06.1149 
106.1149 
122.1149 SOH OEfLECTlOMl; fALL Off 0-", CuRVE 

SOH COMPUTED OEfLECTIOMS EXCEEDS MAX 
112SH TABLE 7. RESULTS • 

S2H X TWIsT IMG MOMENT • - Y 
'SHNT. - 8ETA ANGLES ARE CLOCKWISE 

LARGEST BETA 
X 

SuPPORT PRINCIPAL lC TO • 

Of TABLE I 122.1149 
I 06.1149 

TWISTING NOME06.1A9 
II 06.1149 

lC 06.1149 
I 06.1149 

Y T1II I ST 106.1149 
I 06.1149 

UH 
UH 
S2H 
3SHNG 
UH 
UHT 
UH 
28H 
2"H 

X • Y DEFL MOMENT MOMENT MOMEN06.1M 
106.1149 
106.1149 

r SX. 12. 
I "/SOH 
I ,,/SOH 

IICll • 0 
NeTl • 0 
NCT ... 0 
Ncn • 0 
NeT6 • 0 
1ICT7 • 0 
Of' • 0 

REACTIOM MOMEIIT LARGEST • 
RESUlTS FOR STATIC AND DEAD LOAD 
RESULTS AT TIME STATION. I' 
CLOSURE OBTAINED IN. I', I,H ITER~TIONS 

IX. 13. 6Ell.,. f6.1 I 
COLSUAE HOT oeT~INED IN SPECIFIED ItERATIOMS 
RETURM THIS AND FOLL01IIING PAGE TO A E KELLY 

106.1149 
l06.1~9 
12.1E9 

130.1149 
122.1149 
17AP9 
17~P9 
17AP9 
17~P9 
17AP9 
17AP9 
17AP9 

MOH • 0 
MX • 0 
MY • 0 
MT • 0 
HX • 0.0 
HY • 0.0 
HT • 0.0 
PR • 0.0 

C .. .... START PROGRAM 
PRINT 20 

C 

ITEST • SH 
READ 1~0. I AN1INI. M • 1. 32 I 
CALL TIC TOC III 

1\,IlO READ 110. /'jPRoe. I AM2IN" M • h 14 I 
IF I NPROS .EO. ITEST I 60 TO 9990 

PRIMT 30 
PRINT 1 
PRINT 150. I AlllINI. N· 1. 32 
PRINT I~S. NPRoe. I AN2INI. N • 1. 1" 1 

C ...... I"'PUT TABLE 1 
PROGRAM CONTROL DATA C 

READ 120. HeTZ. MeT3. NCT4. NeTS. NCR6. NeR7. OPt 
PRINT 160. IICTl. NCT,. MCT4. NeTS. NCR6. NCR7 
READ 130. MX. MY. MT. HX. MY. HT. PR 
PRINT 16S. MX. MY. MT, HX. HY, HT. PRo OP, 

IF I NCR7 .EO. 0 I GO TO 10SO 
READ 140. ITMX •• MAX. TOL 
PRINT 170. ITMX. "'MAX. TOL 

GO TO 1060 
10'0 PRINT 17S 
1060 PRI/'jT 180 

1080 

IF I MOH .EO. 
IF I 14(;" .GT. 
ou 1080 L • 1. 

READ 14'. MSXILI. 
PRIMT 18S. MSXILI. 

CONTINUE 
GO TO 1110 

o I 
10 1 

NON 
MSYILI 
MSYILI 

GO TO 1100 
GO TO 9950 

MON 

( • .... CVMPuTE COHSTA~TS AND PROGRAM CONTROL INDICES 
1100 PRINT 190 
1110 MXP7 • MX + 7 

MYP7 • MY • 7 
MXP, • MX + 5 
MYP~ • MV + 5 
MXP" • MX + " 
MYP4 • MY + " 
MXP3 • MX + 3 
MYP' • MY + 3 
MXPZ • MX + 2 
MVP2 • MY + 1 
MXPI • MX + 1 
MYPI • MY + 1 
IPL • 3 
ODHXHY • 100 I 
HXDHY • HX I HY 

HX .. HV I 

NON 

17AP9 
17AP9 
17AP9 
17AP9 
17AP9 
17AP' 
HAP9 
17AP9 
OISE! 
22.1A9 
0151'8 
OISE! 
01SE8 
0lSE8 
0ISE! 
22.1A9 
01SE8 
01SE8 
OISE! 

ISE8 
OlSE8 
0lSE8 
17AP9 
0lSE8 
0lSE8 
17~P9 
180C8 
18OC8 
18OC8 
OISE! 
OlSE8 

ISE8 
lll.lA9 
18OC8 
015E8 
0lSE8 
0lSE8 
OISEa 
OISEa 
OISEa 

ISE8 
OISEa 
alSEa 
01SE8 
()ISE8 
180(8 
180(8 
OISEa 
0lSE6 
2a.lU 
2a.l~9 

17~P9 

17AP9 
0lSE8 
22.1U 
0lSE8 

,..... 
U1 ,..... 



C 

C 
C 

HYDHX • HY I HX 
HXDHYS • HX I I HY •• ) I 
HYDHX) • HY I I HX •• ) I 
ooHT2 • 1.0 I I HT •• 2 I 
oo2HT • 1.0 I I 2.0 • HT 
ooHX2 • OOHXHY • HYDHX 
ooHY2 • ODHXHY • HXDHY 
ooHX • leO I HX 
ooHY • 1.0 I HY 

II • MXPS 
l2 • MXP7 
l) • NYP7 
NF • ) 
I'll(. • MXP) 
Nl • NYPS 
I'll • 1 
1'12 • ) 
H) • ~ 

, . . . SECTION 2000 - DATA INPUT 
ELASTIC PROPERTIES C 

C 

C 

CAll IOBINI6HREWIND.41 
CALL IObINI6HREwIND.~1 
CAll IObINI6HREWIND.71 
PRINT no 

IF I NCT2 .EQ. o I GO TO "SO 
II' I NCT2 .GT, ~O I GO TO 99S0 
DO 20~0 l • I, NCT2 

READ 200, I1lll. JIIl,. I2ll,. nll', DXNlllo DYNI L1, 51'11 LI 
PRINT 260, I1lll, JIll,. 12Il •• J21l., DXNlllo DYHI l 10 5HI l. 

ZIISO CONTINUE 
CAll INTERP 9 11. JI, 12. J2, DXN, HCT2, DXF, I, 0, 0, l2, 

1 0 · 0 • CAll IHTERP 9 11, JI. 12, J2, DYN. NCU. DYF. I, 0, 0, LZ, 
1 0 • 0 • CAll IHTERP 9 11. JI. 12. J2, 51'1. NCU, 55F. I, 0, 0, L2, 
1 0 • 0 • 

FORN MATRIX COEFFICIENTS RELATED TO OX. DY, AND 5 VALUEs 

CAll 5TIFI I IIXF, DYF, 55F. 51(. • ll, l2, l) 

STORE OX AND DY ON DIs!(' FilES 

NTI(. • NXP) 
DO 2100 J • S. NYPS 

CAll 10BINI~H8RIT( .4,DXFI3,JI.MTI(.I 
CAll 108INI~HWRITE .4,DYFIS.JI,MTI(.' 
CAll 10BINI~WRITE .4,55FI3.JI,HTI(.I 

21UU CONTINUE 
CAll 10BIN 16HWRITER,4 I 

lS, 

lS, 

lS, 

READ TwiSTING STIFFNEsS AND IN-PLANE FORCES - 5£CTION 2200 

OlSE8 
22JA9 
22JA9 
22JA9 
180C8 
16HY9 
16HY9 
12JU9 
12JU9 

15EI 
OlSEI 
015E8 
015E8 
015E8 
015E8 
2SNR9 
OlSE8 
015EB 
015EI 

lSEI 
lSEI 

015£1 
015EI 
lUI 

19AG910 
19AG910 
19AG910 
015EI 
22JA9 
nOCB 
015£B 
OlSEI 
015E8 
015E8 
OS.1U9 
OSJU9 
OS.1U9 
OSJU9 
OSJU9 
OSJU9 
lUI 

015EB 
15EB 

IBoeB 
15EB 

015E1 
lSEI 

19.1oG910 
16HV9 
25AG9Io-
25AG91o-
25AG9I0-
IIOCB 
22AG910 

15EB 
OISEB 

C 

C 

PRINT 210 
IF I Ncn .EO. 0 I 
IF I NCTS .GT. 50 I 
DO l250 l • I. NCT3 

READ 200, 1I1llo Jill .. 121L1, 
PRINT 260, lillI, JIIl', IlIl', 

22S0 CONTINUE 

GO TO 2300 
GO TO 9950 

J2lll. PXNIl', PYNll" CTNIll 
J21ll. PXNIl', PYNll,. CTNlll 

15EA 
015E8 
015E8 
180C8 
015E8 
180C8 
015E8 

2SUU CAll INTERP 9 
I 

11. Jl. 12. J2. PXN. NCT3. PXF. O. 1. O. L2. L3. 
015E8 
05JU9 
05JU9 
05JU9 
05J\J9 
24JU9 
05JU9 

CAll INTERP 9 
I 

I , 0 I 
11, JI, 
o , I I 

CAll INTERP 9 
I 

11. JI. 12. 
o ,0 I 

J2. eTN. NCT). eTF. O. 0. 1. L2. L3. 

23S0 

IF I NCT) .EO. 0 I 
CAll ~TFHX I PXF. PYF, CTF, 

00 2)5u J • 3. HYP5 

PRINT 275 
SK, ll. l2, lS, Ncn I 

CAll 10~INISHwRITE ,5,PXFI3.JI,HTI(.I 
CAll IODINI5HwRITE ,5,PYFI3,JI.HTI(.I 
CAll 10BINISHWRITE ,5.CTFIS.JI,HTI(.I 

CONTiNUE 
CAll 10BIN 16HWRITER,5 I 
CAll IObINI6HREWIND,9. 

READ HA55 AND DAHPING PROP£RTIE5 - 5£CTION 2400 

PRINT 280 
IF I NCT4 .EO. 0 I 
IF I NCT4 .GT. 50 I 
uo 24S~ l • I. hCT4 

KlAO 2WO. lillI, JIll', 121l', 
PRINT 260, IIILI. JULI, 121L1, 

GO TO 2500 
GO TO 9950 

J21l', RHONll', DFNIll 
J2Il,. RHONll', DFNlll 

24~U CONTINUE 
2Suu CALL INTERP 9 

I 
II, JI. 12, 
o ,0 I 

J2, RHON, NCT .... RHOF. 1. O. O. L2. 

015E8 
29JA, 
16HY9 
25AG910-
25AG91o-
25AG91O-
18OC8 
22AG910 
19AG910 

15E8 
015E8 

15E8 
015E8 
015E8 
18OC8 
015E8 
015E8 
015E8 
015E8 

CALL INTERP 9 
I 

II, JI. 12, J2, 

L3 ,27JE9 
05JU9 
27JE9 
05JU9 

DFN, NCT .... OFF. 1. O. O. L2. L1. 

255U 

o • 0 I 
I' I NCT4 .£0. 0 I 
00 2~SU J • S. MYP5 

PRINT 21S 

CAll IOblNI5HwRITE ,7,RHOFI3,JI,HTI(.I 
CALL IOblNI5HWRITE ,7,DFFIS,J',HTI(.I 

CONTINUE 
CALL 10biN 16HWRITER,7 I 

015EI 
180C8 
25AG91O-
25A6910-
180C8 
22AG9J 0 

C ••• READ ~TATIC I DEAO lOAD ANO FURH STATIC lOAD VECTOR 
15E8 

OlSE8 
C 

PRINT 287 
IF 'NCT5 .EO. 0 I 
IF 'NCT5 .GT. 50 I 
00 2650 l • I, NCT5 

READ 2"0, IIILIo JlllJ. 121L1. 
PRINT 260, Illl,. JIIl,. 121LI. 

,6511 CONTINUE 

GO TO 2700 
GO TO 9950 

J21L1. ONILI, TXNILl, TYNILI 
J2Il,. ONll', TXNILI. TYNILI 

l7uO CAll INTERP 9 
I 

11. Jl. 12. J2, CN. NeTS. QF. 1. 0. 0. L2, L3. 
o ,0 I 

CAll INTERP 9 II. Jl. 12. J2. TXN. NCT5.TXF, I. o. o. L2, L3. 

15E8 
0lSE8 
015E8 
180C8 
0lSE8 
015E8 
015E8 
015EB 
05JU9 
05JU9 
05JV9 



C 

I a • a I 
CALL INTERP 9 II. JI. 12, J2. TYN, NCTS.TYF, I. O. O. 1.2. 1.3. 

I 0 ,0 I 
IF I NCT5 .EO. a I PRINT 290 

CALL STALO I OF, TXF, TYF. FF. 1.1. 1.2. 1.3 I 
MKL • MXPI 

DO 2750 J • 4. MYP4 
CALL IOBINI5HWRITE .9. OFI4.JI.MKLI 
CALL 10BINISHWRITE .9,TXFI4.JI.MKLI 
CALL 108INt~HwRITE .9.TYFI4.JI,MKLI 

2150 CONTINUE 
CALL 108IN 16HWRITER.9 I 

C * * * 
C 

READ AND STORE DYNAMIC LOADING IN CORE 
TABLE 6 

( 

C 

PRINT 291 
If I NCR6 .EO. a I GO TO 2995 
If I NCR' .GT. 20 I GO TO 9950 
DO 29SU I. • I, NCR6 

READ 2vO, NAMll', JSFTILI. JSYMlll. NDllll. MSPDILI. TMPL 
PRINT 293. l. NAMILI. JSfTILI. JSYMILI. NDLILI. MSPDIL!. TMPl 

11M • HAMIll 
If I 11M .GT. 20 I GO TO 9950 

KSIII • 0 
KSX • a 
KSI • a 

DO 2940 M • I. NM 
READ 220. Klll.MI. K2(l.MI. KONTll.MI. OOHeL.MI 

KSX • KSIII 
KSW • 2 • KSI + I + KOHTIL.MI 
KSI • KOHlIL.MI 

C * .. .. 
C 

CHECK ORDER Of TIME STATIONS ANO PERIODIC LOAD MULTIPLIER 

2800 
2810 

2830 

2835 

28100 

2845 

2940 

GO TO ( 2810. 2940. 2830. 2840 I, KSW 
If I K2Il.MI .LT. KIIL.MI I GO TO 2980 

PRINT 294. Klll.MI. K2IL.MI. DQM(L.Ml 
GO TO 2940 
If I KSX .EO. 2 
If I K2IL.MI .IT. 

PRINT 295. K2IL.M-II. 
PRINT 295. K21L.MI. 

GO TO 2940 
If I K21L.MI .LT. 

PRlNI 296. KIIL.M-II. 
PRINT 295. K2IL.MI. 

GO TO 29100 
IF I KSX .EO. 2 
If I K2IL.M, .LT. 

PRINT 295. K2IL.M-II. 
GO TO 2940 

, GO TO 2835 
K2IL.M-l1 I GO TO 2980 
KDHTIL.M-II. DOMIL.M-II 
KONTIL.MI. DOMIL.MI 

KIIL.M-II I GO TO 2980 
KONTIL,M-II. DQMIL.M-Il 
KONTIL.HI. OOMIL.MI 

GO TO 2845' 
K2IL.M-l1 I GO TO 2980 
KONTIL.M-I,. OOMIL.M-ll 

IF I K2IL.M, .LT. KIIL.M-II I GO TO 2980 
PRI"T 296. KIIL.M-ll. KONTIL.M-II. DQM(L.M-II 

CONTINuE 
00 2942 MM • I, NM 

05JU9 
05Ju9 
05JU9 
0lSE8 
0 .. M1I9 
19AG910 
17AP9 
25AG9I0-
2SAG91o-
25AG9I0-
180C8 
22AG910 

ISE8 
0lSE8 
0lSE8 

ISE8 
0lSE8 
25MR9 
180(8 
01SE8 
02JLO 
02JLO 
01SE8 
18OC8 
01SE8 
01SE8 
01SE8 
01SE8 
0lSE8 
01S£8 
alSEa 
01SE8 

ISE8 
alSEa 

lS[8 
01SE8 
01SE8 
01SE8 
0lSE8 
OISEa 
0lSE8 
0lSE8 
0lSE8 
01SE8 
01SE8 
OISEe 
0lSE8 
0lSE8 
01SE8 
0lSE8 
0lSE8 
0lSE8 
0lSE8 
01SE8 
0lSE8 
02JLO 

~lIL.MMl • TIIPL 
~2IL.MM) • TIIPL 

2942 
C 

KllIL.MHI 
K22IL.MMI 

CONTINuE 

IF I JSYMILI .NE. 1 1 GO TO 2900 
IF I DONIL .11 .EU. [)WMIL.NMl 1 GO TO 2900 

PRINT 297 
GO TO 9990 

29uo PRINT 298 
NO • NOI.ILI 
00 2945 M. I, NO 

REAO 200. 110IL.MI. JI0IL,N). 12DIL.MI. J20tL.MI. OONIL.M) 
if I 12DIL,MI .LT. 1101L.NI 1 GO TO 2980 
IF I J20IL.Ml .LT. JIOIL,MI I GO TO 2980 
IF I 1l0lL.M) .LT. a I GO TO 2980 
If I 1201L,M) .GT. MX I GO TO 2980 

PRINT 3vl. 110ll.MI • Jl0lL.NI , 12011..MI • J20lL.MI • OONIL.MI 
29 .. 5 CONTINUE 
295v CUNTINUE 

GO TO 3000 
29tio PRINT 299 

(,0(,1 TO 9991.> 
2995 PRINT 292 

C 
( • •• INPUT TABLE 7 - NONI.INEAR O-W FOUNDATION (URVES 
C 

)UIIU PRINT 350 
CALL IOBINI6HREWIND.181 

00 3020 J. I. MyP1 
00 301U I. I, MXP7 

Sffll.JI • 0.0 
3010 CONTINUE 
3020 CONTINUE 

IF I NCR7 .EO. 0 I GO TO 3700 
IF I NCR7 .GT. 10 I GO TO 3995 
00 3600 L • I. NCR7 

READ 30v, INIILIo JNIILI. IN2ILI. J/'I211.1. OMP. WMP. 
1 SFNIL I. NPC! Lit ISYM 

( • •• (HECK STATION ORDER 
C 

3iJ30 

If I IN21LI .LT. INIIL1 1 GO TO 3990 
IF I JN21LI .LT. JNIILI 1 GO TO 3990 

PRI/'IT 355. IN1ILI. JN1ILI. 11'1211.1, JN2(LI. OMP. wNP. 
1 Sf NIL'. NPCILI. ISYM 

/'IP • NPCILI 
IF I NP .GT. 10 GO TO 3995 

READ 310. I LPIJI. J • I. NP 
PRI/'IT 360, I LPIJ1, J • I. NP 
READ 310. I MPIJI. J • I. NP 
PRINT 370. I MPIJ). J • I. NP 

IF I ISYM .EO. 0 I GO TO 3100 

FURM SYMMETRIC U-W CURVES 

IF I LP III I 
IF I MPIII I 

399S. )030. 3995 
3995. 3040. 3995 

02JLO 
02JLO 
02JLO 

ISE8 
19SE9 
19SE9 
01SE8 
01SE8 
19SE9 
16MY9 
16MY9 
16MY9 
16MY9 
16MY9 
28MY9 
28MY9 
23JE9 
l6NY9 
01SE8 
0lSE8 
0lSE8 
015£8 
2511R9 

ISE8 
OlSE8 

ISE8 
lSE8 

19AG910 
01SE8 
0lS£8 
19OC8 
ol$n 
0lSE8 
01SE8 
190C8 
0lSE8 
0lSE8 
0lSE8 
01SE8 

ISE8 
0lSE8 
01SE8 
01SE8 
OlSE8 
01SE8 
190C8 
01SE8 
01SE8 
0lSE8 
OlSE8 
01SE8 

1SE8 
01SE8 

lSE8 
01SE8 
01SE8 



)040 

'060 

'080 

C 
C ••• 
C 

:n00 

)Zuo 
C 
C , . . . 
C 

'''UO 

c ••• 
''''0 

NPCIL' • 2 • NPCILI - I 
NP$ • NPC IL' 

DO ,~ao " • NP. NPS 

If 
If 
IF 
If 

N • " - NP .. I 
ONLIL.", • Q"P 
IIIIlLIL.", • IIIMP 
GIlLIL,N' .GT. 
IIIffi.ILtM, .LT. 
14 .EQ. NP, 
MPIIl, - NPIN-1I 
Il-IlP$+I-N 

• LPINI 
• NPIN, 
0.0 I 
0.0 I 

GIlLIL.N' ONLIL."' 
IIIIlLIL,NI • - WNlIL,"' 

COlI TlIOIUE 
GO TO 11400 

INPUT GEJlf.RAL 0-111 CURVE 

DO '200 14 • 1. NP 
GIlLIL,N' • aMP • LPINI 
~IL,NI • wMP • NPIN' 

GO TO 3995 
GO TO 3995 
GO TO )080 
3995, 3995. 3060 

IF I" .EO. 1 I GO TO '200 
IF I ~IL"" - IIINLIL.N-ll' 3995. 3995. )200 
COliTlIIUE 

FOR" INH IAL ELASTIC $PRING ISF' FOR NONLINEAR CuRVES 

ISW • 0 
J$III • 0 
III • 11lIILI + " 
122 • 11l21L' + " 
Jl1 • JNIIL' + " 
J22 • JIl21L' + " 

IF 122 .6T. III I 
IF I J22 .6T. JII' 
DO )tDO I • Ill. 122 
DO 3"ao J • Jl1, J22 

CNII • 1.0 
CNT • 1.0 

IF ISw .EO. 0 
If JSW .EO. 0 
If J .EO. JII 
If J .EO. J22 
IF I I .fO. III 
IF I I .EO. 122 
GO TO ,,,50 
LINE $PRING IN II DIRECTION 
If I I .EO. III I 
If I I .EO. 122 I 
GO TO '410 
If I JSIII .EO. 0' 
LINE $PRING IN T DIRiCTION 
If I J .EO. Jll I 
If I J .EO. J22 I 

COil • CNII • CN1' 

ISW • 
JSW • 

GO TO , .. "0 
GO TO 3"'0 
CNT • 0.5 
C"T • 0.5 
CNII • 0.5 
CMIC • 0.5 

CNl • 0.5 
C"II • 0.5 

GO TO "'50 

01SE8 
01SE8 
01SE8 
alSEa 
01SE8 
0lSE8 
0lSE8 
01SE8 
0lSE8 
0lSE8 
01SE8 
01SE8 
alSEa 
0lSE8 
01SEa 

I SEa 
0lSE8 

ISE8 
0lSE8 
OISEa 
OISEa 
015E8 
015(8 
015Ea 

ISEa 
lSEa 

OISEa 
ISEa 

alSEa 
OIS[8 
)OJA9 
'OJA9 
30JA9 
)OJA9 
'OJA9 
'OJA9 
'OJA9 
'OJA9 
OISEa 
olSEa 
0lSE8 
0lSE8 
10JA9 
,OJA9 
)OJA9 
30JA9 
015EII 
OISEa 
30JU 
)OJA9 
01SEa 
OISEa 
OISEa 
30J"9 
)OJA9 
OISEI 

SFFII.J, • CON • SFNCLI .. SFFII.JI 
3 .. ao COIITINUE 
)5UO CONTINUE 
'6UO CUNTlNUE 
3680 CONTINUE 

00 3690 J • ). "YP5 
CALL IOBINI5HIIIRITE .la.SFFC3,JI.NTKI 

C 

3b90 CONTINUE 
CALL 10biN 16HWR1TER.181 

GO TO "000 
310u PRINT ,80 

ITNII • 
GO TO '680 

3990 PRINT 299 
GO TO 9990 

399S PRINT 393 
GO TO 9990 

C •••• 5ULUTIUN PROCEDURE 
C 

Io0UO 

"010 
10020 

CONTINUE 
CALL 108INI6HREWINO.IOI 
CALL 108INI6HREWINO.l'" 
CALL IOBINI6HREIilIND.II' 

DO "020 J • 1. NTP1 
DO "010 I • I. "IIP7 

WS Il.J •• 0.0 
WTNIII.J •• 0.0 
WTN2IltJ •• 0.0 
WlltJ, • 0.0 

CONTINUE 
CONTINUE 
DO 1003 ... J • ,. 

CALL IOBINI5HWRITE 
CALL IOBINI5HWRITE 
CALL IOBINI5HWRITE 

""P5 
.10 .WU.J"NTK' 
.I".WU.JI.MTKI 
.II.WI ,.JI.MTK I 

100'0 CONTINUE 
CALL IOBIN 16HWRITER.IOI 
CALL lOBI" 16HWRITER.l'" 
CALL 10BIN 16HWRITER,IlI 

COIITlNUE 
IF I ITNII .EO. 0 I 

NTPI • NT .. 1 
DO 600~ fiN. 1. NTPI 

IT"1 • 1 

CALL DYNLO INAN. J$fT. MSPO • .ISYH. Kll, K22, ~ONf. 
1 liD. JIO. 120. J20. DQN, DDIF, NCR" 

1178 FORN"T IJIOM TINE' ,I .. JI 
10050 PO ~900 NITR • I. IT"X 

C 
C... SET Nl SIllITCH 
C 

10060 

NTlSIll • 0 
IF «NITR .EO. I 
IF I TI" .EO. 2 

ML • -1 
GO TO "090 

G6 TO ,,010 
GO TO .. 080 

DOH. NDL. 
Llo L2. L3 I 

190ca 
0lSE8 
0lSE8 
0lSE8 
16MY9 
19OC8 
25~G9I0-
190C8 
22AG910 

ISE8 
ISEa 

OISEa 
0lSE8 
30.111,9 
OlSE8 
0151'8 
OlSE8 

ISE8 
0lSE8 

ISE8 
0lSE8 
19AG910 
19AG910 
19AG910 
19OC8 
I9OC8 
190C8 
19OC8 
19OC8 
02DE8 
19OC8 
19OC8 
02DE. 
25AG910-
25AG910-
25AG910-
02DEa 
22AG9I0 
22AG9I0 
22AG910 
19AG9I0 
OISEa 
0lSE8 
OISE. 
02JLO 
16M1'9 
10JlO 
OISEa 

151'8 
015E1 

15[8 
0lSE8 
190C8 
0151'8 
lIOC9 
0lsE8 



IF C TIM .GT. 
IL • I 

COIITJNUE 

1 I 

C··. REWlNO FILES FOR FSUB 
C 

C 

tOIlO CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 

108II1C6HR[WIIID.61 
108IMC6HREWIND.T) 
108IMC6IIREwIMO.81 
108IMC6IIREWIMD,101 
108IMC6IIREWlMO,ll1 
108IMC6HR£WIMO.12' 
108I1U6IIIIEIiIMD.UI 
108IHC6HREIiIIlO,~1 
108IM(611I1EWI MO.I" 
108IMI6HR£VIIIO.16. 
lOBI MC6HREWIMO. 1 •• 

CaMPUTE DEFLECTIONS 

GO TO "060 01S[8 
HOC9 
01SEI 

ISES 
01SE8 

ISEI 
19AG910 
19AG910 
19AG910 
19AG910 
19AG910 
19A6910 
19AG910 
19AG9I0 
19AG9I0 
19AG910 
19AG910 

ISE8 
OUEI C ••• 

C ISEI 
CALL FRIP4 ILl. L2. Ll. IlL. A. AMI. AMZ. ATM. B. 8M1. EPI. C.CMl.01SE8 

I O. E, ET2, OT. CC. lOTI. 1010. Fl'. 110 NI. 112, 113. Ot. 01SE8 
2 QOI. Q02. QO]. Olio Oil. OU. Sit. RHO. OF. SF I l~"R9 

IF C TIM .EO. 2' GO TO 'OO~ 01SE8 
GO TO ~090 01SE8 

!l00' 
C 

IF C MT2SW .EO, 1. GO TO '090 27J[9 

C • • • 
C 

lSEa 
SET uP SE;.COtI) PASS OF SOLUTlOIi FOR OlsPLAC£MfIIT AT TIME sTEP lOISU 

!lOlU 

C 

CALL MASSAC ( Lh 1.2. L]. W. RHO, OF. QI 
MUSW • 1 
..... 1 

GO TO ~OOO 

C ••• CUMPUTE 011 - LOAD CORRECTION FOR NONLINEAR FOUNDATION 
C 

'090 COliTlIIIUE 
IICRT. TOL. '100 CALL MOIILIM 4 

1 
Z 

IMI. 1112. JMl. JMZ. CIIk.. WIlL. SFM, 
110 WS. 1iMAlI. Ll. L2. L~h 10. 19. 

] 0111'. IPSW. IPSO. MCOUIIT I 
DO '120 I • 1. "XPT 
DO '110 J • 1. MYPT 

WS(I.J •• 1i11.J) 
~uo 
'UO 

C 

COIIT IIIIUE 
COIITI IIIUE 

CALL 108 I MC6HREWulO.4, 
CALL 108IMC6llREIlI MO.!II 
CALL IOBIMC6HREWIMD.14I 
CALL 108IMI6HREWIIIO.181 

C • •• TEaT FOIl CLOsURE 
C 

IF C IKOUMT 
c 
c •• • 

o GO TO ~200 

IIPC. 

IU8 
01S[8 
OISU 
]OJA9 

I SEa 
ISE8 

OISES 
ISEI 

015E8 
190(8 
01SE8 
190(8 
01SU 
01SEII 
OlSEI 
0lSE8 
OlSEa 
OISEI 

ISE8 
19A6910 
19A6910 
19AG910 
I 9A691O· 
01SE8 

ISE8 
0lSE8 

ISES 
olsn 

C 

C 

PRIIiT ~~O. IIITR, IICOUNT 
IF I IPSIi .EO. I I 
If I IPSO .f.(,h I' 

ILSW • 0 
LSw • 0 

~160 CONTINUE 
IF I MOil .EO. 0 I 
GO TO UOO 

PRINT "2 
PRINT U4 

GO TO ~900 

C • • • 
C 

SET PRIIiT SWITCHES FOR CLOsEO SOLUTIOII 

'2uo ILSIi • 1 
If TlM .EQ. 1 I 
IF OP .EQ. I I 

let • TIM - I 
iCT • let - OP 

if let !U20. ~240. '210 
LSW • 0 

GO TO ~260 
LSW • 

CONTiNUE 
leT • TIM - 1 

C 
C·" • 
C 

PRIM n.u OUTPUT HUDINGS 

UIIO IF I LSW 
PRIIiT ,,, 
PIIIMT 1 

.£Q. o I 

PRINT .'o. I AMIINI. II • I. 32 I 

GO TO '240 
GO TO U40 

GO TO ~no 

PRIIiT I~~. MPROB. I AHlINI. N • I. 14 I 

c 

5310 
5320 

PRINT 560 
IF I TIM .EO. 

PRINT ~62. ICT 
GU TO U20 

PRIIiT 561 
IF I IICII1 .EO. 

PRIMT 5651. MITR 
GO TO 5190 

I I 60 TO HID 

o I GO TO ~390 

c·· · C 
PRINT OMLy MONITOR STATION DATA 

U50 

tJlO ,'9u 
C 

IF I ILSW .[0. 
PRINT S62. leT 

IF I NeR7 .EO. 
PIiINT ~6S. IIITR 

IF (MDfI .EO. 
ioU Tu 5J911 
IF eMOte· .EO. 
COHTlIIUE 

o 

o 60 TO S370 

o GO TO ~9l0 

o GO TO ~900 

C ..... vlTAIH STifFNESS VALUES fOR MOMENT AND REACTIOH CALCULATIONS 
C 

S4UO c·· . 
C 

CUflTlNUE 
READ , fUR 'T - REOO AT .) STATIONS .) AND ,)+1 

ISE8 
OlSE8 
015[8 
015E8 
01SE8 
01S£8 
29JA9 
015£8 
01SE8 

15£8 
015£8 

ISE8 
0lSE8 
01SE8 
17AP9 
19JL9 
I1AP9 
OISEa 
0lSE8 
0lSE8 
0lSE8 
01 SEa 
OISEa 

ISE8 
01sE8 

1 SEa 
015£8 
'OJA9 
015£11 
0lsE8 
01S£1I 

15£8 
01SE8 
01SE8 
01SE8 
0lSE8 
'OJA9 
015£8 
0lSE8 

ISE8 
01SE8 

ISE8 
015E8 
0lSE8 
l7AP9 
01SE8 
0lSE8 
01SE8 
01SE8 
2lMY9 

1SE8 
olSEa 

15E8 
16MY9 
01SEII 

15£8 

,.... 
\Jl 
\Jl 



CALL IOBINI4ItllEAO .... OX ... TlO 2~AG910- C • • • CU"PUTE .. AXI"U" BENDING MO"ENT AND ANGLE FROM X-AXiS TO "AX 0lSE8 ..... 
CALL IOBIIU4ItilEAD .... DX ... TlO 2~AG910- C ISE8 VI 

CALL lOB 1111 4ItilEAD .... DX ... TI(I 2~AG910- AB .. X • ABSI S"x I J3JE9 0\ 

CALL 101llNI4ItllEAO .~.DX."TI(I 2~AG910- AB"Y • ABSI lIMY I 13JE9 
CALL 10811114ltIlEAD .~.DX."TI(I 2~AG910- AB .. XY • ABSI B"XY I J3JE9 
CALL lOBI II I 41tR£A0 .~.DX.MTI(I 2SAG910- C 17DE9 
CALL 10811114ltIlEAO .~.DX.MTI(I 2~AG910- C • • • THIS PROGRAM ~ILL ZERO THE "O"ENT If LESS THAN .000001 17DE9 
CALL lOB 1111 4ItilEAD .~.DX ... TltI 2~AG910- C 17DE9 
CALL 10811114ltIlEAD .~.CT .MXP3I 2SAG910- If I AB .. X .L T • IOE-06 8"X • 0.0 17DE9 
CALL 1081111 4ItilEAD • 1 ... DX."TI(I 6SE910- If AB .. Y .IT_ 10E-06 B"Y • 0.0 17DE9 
CALL 10811114ltIlEAO .11.DX ... TI(I 6SE910- If AB .. XY .IT. 10E-06 I BMXY- 0.0 17DE9 

DO ~.oo J .... MYP .. 01SEI If AB .. X .GJ. AB .. Y 1 GO TO S~~2 J3JE9 
DO '''ZO I. • 10 MXP' 16 .. Y9 If AB"Y .GT. AB .. xY 1 GO TO SS~. J3JE9 

CTII..ZI • CTlI(.1I OISEI ~S~1 !lMOM • ABMllY J3JE9 
, .. ZO COlI TI MIl: OISEI GO TO ~S" J3JE9 

CALL 10811114ltIlEAD ., .OX .MXP3I 2~AG910- ~~~2 If I AS .. X .GT. A!lMXY 1 GO TO S~~6 J3JE9 
CALL 10811114ltIlEAD .~.DX.MXP3I 2~AG9I0- GO TO ~~SI J3JE9 
CALL IOlUII14It1lEAD .~.C ToMXP3I 2~AG910- ~~~. BMOM • AB .. Y 13JE9 
CALL 10811114ltIlEAD .... DX.MXP3I 2SAG910- GO TO ~~,. 13JE9 
CALL 108111141tR£AD .... DY.MXP3I 2SAG910- ~~~6 BMOM • ASMX J3JE9 
CALL IOBIIII~EAD .... S.MXP3I 2~AG910- ~~~8 CUNTINUE J3JE9 
CALL IOBIII14ItilEAD .1 ... 011 ... XP, I 2~AG910- Mel(· B_ • 10E-06 J3JU9 
CALL 10811114ltIlEAO .11. SF,"XP3I 2SAG910- If I ABMX .LT_ MCI( I 8MX • 0.0 13JU9 

~ .. 'O (J;lllTi MIl: 19JU9 If I ABMY .LT. "CI( I BMY • 0.0 13JU9 
JSTA • J - .. OISEI If I A6MXY .LT. MCI( I B"XY • 0.0 J3JU9 

If I LSM .EO. 1 I PRIIiT 10 'OJA9 C J3JE9 
DO ,no I • •• MXP .. 17DE9 C • • • CALC~ATE MAxl_ "OMENT - POSIT I VE OR NEGATIVE J3JE9 

ISlA • I - • I6MY9 C 13JE9 
I. • I - Z 16MY9 (lnR • I IIMX + lIMY 1 • O.~ 30JA9 

If I LSII .EQ. 1 I &0 TO noo OISEI SIDE· I IIMX - lIMY J • o.! 0lSE8 
DO ~~o .. S • 1. MOIl 01SEI RADZ • SIDE • SIO£ + BMXY • B"XY 01SE8 
If I ISlA .EO. MSX IllS I GO TO 'UO OISfII RAD • SCIIIT I RAD2 1 01SE8 
CiCI TO ~~o OISEI If CNTR .GT. 0.0 I GO TO ~S60 13JE9 

'.'0 If I JSlA .EO. MST IMS I GO TO noo OIUI If CNTR .EQ. 0.0 I GO TO ~S60 13JE9 
,~o COliTIIaIE OISEI eMAX • (NTR - RAD 13JE9 

c;o TO ~no OISEI GO TO ~'.2 13JE9 
C ISEI ~~60 eMAX • (NTII + RAD 13JE9 
C • • • CUMPUTE MOMEIIU ANI) REACTlOliS 01SEI ~~62 COIIT IIIU£ 13JE9 
C ISEI C 13JE9 
'~IIO C""TlMlE 01SEI C • •• SPECIAL CASE - ~HEN "x .My AND THE (ASE WHEN "XY • 0 13JE9 

DOIIX • OOttxz • I 
1I11-I.JI - z.O • ~lI.JI + ~C1+I.JI I olSEI C 13JE9 

DOilY • OOHTZ • I 1I11.J-11 - 2.0 • ~11 .JI + ~C1.J+ll 1 OISEI If I SIDE .EQ. 0.0 GO TO S~66 13JE9 
DOIIXT • OOttXHT • I 1IC1-I.J-1I - 1IC1-1.J+1I - ~11+l.j-1I 01SEI If I B"XY .EO. 0.0 GO TO SS68 13JE9 

1 + 1I11+I.J+1 J I I ... 0 OISEI GO TO ~~70 13JE9 
If DXI I( I .6T_ DYI I( I I GO TO ~~20 19 .. Y9 ~~66 If I IIMxY .EO. 0.0 I GO TO ~S69 13JE9 

OPR • DXII(I • PII 21 .. Y9 If I eMXY .GT. 0.0 I GO TO ~S67 13JE9 
GO TO ~no 01SE8 BETA • 0.78S,982 13JE' 

nzo DPII • OYI I( I • PR 19 .. Y9 GO TO ~~IO 13JE9 
'''0 COIITIMII: 01SEI n67 BETA. - 0.7IS'912 13JE9 

IIMII • DXI I. I • DOIIX + DI'R • ODWT 19 .. Y9 GO TO ~SIO 13JE9 
IIMT 

• DPA • 
DOIIX + DYI I( I • ODIIY 19 .. Y9 ~~61 If I B"X .GT. B"Y 1 GO TO ~S69 13JE9 

C ISE8 BETA. I.S707963 13JE9 
DXY • I CTI I( .11 + CTII(+I.11 + CTI I( .21 + CTII(+I.21 1 19MY9 GO TO ~S80 13JE9 

1 I ... 0 01SE8 ~~69 BETA • 0.0 13JE9 
eMilY • - DXY • DOIIXY 13JE9 GO TO S~80 13JE9 

C ISE8 C 13JE9 



C 
5510 

GEN£RA~ CA~CU~ATION OF BETA 

"10M3 • CNTR RAD 
MX) • MOM3 - 8Mx 
BETA. ATAN I 8MXy I MXl I 

C 
C. .. * .. 
C 

CHEC~ WHETHER MAX PRINCIPA~ MOMENT IS MAXIMUM A8S0LUTE MOMENT 

5~80 

5~82 
~581o 

5586 
5590 

!l6vo 
( 

C .. * .. 
C 

IF I CNTR I 
IF I BETA I 

BETA • 
GO TO 5590 

5582. 5590. 5590 
5584, 5584. 5586 

BETA + 1.5707961 

BETA. BETA - 1.5707963 
CONTINUE 

BETA. BETA * 57.29578 
CONTINUE 

COMPUTE REACTION 

REACT. « SFI K 1+ SI K I I * I - WIl,J, 1+ 0111 K I 
PRINT 580. ISTA. JSTA. WII.JI. 8MX, 8My, BMXl,REACT.BMAX.BETA 

C 
5150 
5BvO 

C 

CONTINUE 
CONTINUE 

C * .. * 
C 

(HECK FOR CLOSURi - IF CLOSED PREPARE FOR NEXT TIME STEP 

5900 
C 

IF I IICOVNT .EO. 0 I 
COHTlNUE 

PRINT 591 

GO TO 5920 

C • *. SET DEFLECTIONS FOR NEXT TIME STEP 
C 

5920 

5930 

59100 
5960 

COHTlNUE 
CALL IOBINI6HREwIND.lll 
CALL IOBIHI6HREwIHD.121 
CALL IOBIHI6HREwIND.131 
CALL IOBINI6HREWIND. 110 I 
CALL IOBIHl6HREWIND,I51 
CALL 1081N16HREWIND.161 

00 596u J • 3, MlP5 
IF I TIM .EO. I I 

CALL 1081111~READ ,12 ,OD2.MXP3 I 
CALL 10~IHI5HWRITE .13.0Dl.MXP31 
CALL IOBIH IIoHREAO .15.012.MxP31 
CALL 108IHI5HWRITE .16.0Il.MXP31 

DO 59100 I • " MxP5 
wTM211,JI • WTMIII,JI 
wTMlll,JI • wll.JI 

CONTI HUE 
CONTI HUE 
IF I TIM .EO. I I 

CALL 10bili 16HWRITER.131 
CALL 1081N 16HWRITER.161 
CALL IOBINI6HREwIHO.121 
CALL 108IHI6HREWIHD.151 

GO TO 5930 

GO TO 5970 

13JE'? 
13JE9 
13..1[9 
13..J(9 
13.JE'J 
13JE9 
13..1[9 
13JE9 
13JE9 
13JE9 
13419 
13JE9 
13.JE9 
l3JE9 
13JE9 
13JE9 

ISE8 
0lSE8 

ISE8 
19MY9 
0lSE8 

ISE8 
0lSE8 
0lSE8 

15[8 
0lSE8 

ISE8 
OISEI\ 
0lSE8 

ISE8 
29JA9 
elSEB 

ISE8 
0lSE8 
19AG910 
19AG910 
19AG910 
19AG910 
19AG910 
19AG910 
OISEft 
15AP9 
2'lAG910-
30SE910-
2'lAG910-
2'lAG9IO-
15AP9 
0lSE8 
01SE8 
QISE8 
01SE8 
1'lAP9 
ZZAG910 
2ZAG910 
19AG910 
19AG910 

C 

~91~ UV ~9ti~ J ~ 2. HYP? 
CALL lOcl~'4MREAC .14.~i:~~XP3' 
CAll lOQIN(~rlwRrrf. ~15.Qll.MXP31 
CA~L IObl~(4HREAO .11.r.OI.MXP31 
CAL~ 10BINI;HWRITE ,lZ.OOl.HXP3J 

;9tiO (ONTINVE 
CALL 10BIN 16HWRITER,IZI 
CA~~ IOBI~ 16HWRITER.I;1 

5983 CONTINVE 
IF ( T IH .EO. 1 J GO TO !>99Q 

CALL INERTiA 1 LI. LZ. L3. w. WTMI. WTHZ. AA, B6, CC. 00. 
1 ETI. EEHI. EEHZ. DOl'll. 51'., NI. NZ. "3. SF I 

59~0 CONTiNUE 
6000 CONTiNUE 

CALL Tl( Toe (4) 
GO TO 1000 

9'i~0 PRIIH 3" 
9990 CONTINUE 

PRINT )U 
PRINT I 
PRINT no 
CALL TIC ToC 121 
PRINT 600 
ENO 

I,AP? 
?~AG9rO-
25AG9TO­
]t;.b-G9!O-
25AG9!1')­
~lSE8 

??AG91"l 
Z2AG910 
19AG91ll 
01SE8 
0lSE8 
ZZAG9 
)OJA9 
ZZJA9 
nJA9 
ZZJA9 
22JA9 
ZlJA9 
22JA9 
22JA9 
ZZJA9 
Z2JA9 
2ZJA9 
30JA9 

,.... 
Ul ...... 
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I 
---

I 
I 
I 
I 
I 
I 
I 
~ 
I 
I 
I 
I 
I 
I 
I 
I 
I 

SUBROUTINE INTERP9 

This subroutine performs the distribution 
for data from Tables 2 through 5. 

DOL = 

No 

Initialize storage 
Z(I,J) = 0 

l, Number of cards in 

Adjust node identi-
fication for com-
puter index notation 
and set line and 

!area data switches 

Yes 

No 

No 

table 

Yes 

13000 

700 
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I 
~ Area 

data for Yes 

I 
I 
I 
I 
I Bar 

I 
No data for 

distribution 

I PRINT error 

I message Yes 

I 
I 
I Bar data: 

I Yes check node 
identificcl-

+ tion for 

I axial thrust 

I No 

I Are 

I line data 
No specified for 

I y-direction? 

I Yes Are 
zero? 

I 
I No 

I 
I Are 

I zero? 
Yes 

I Yes 

I 
I 
I 

Termlnate 
program 3000 

I 
700 

I 2000 300 

1 



160 
I 
I 

~ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
+ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 2000 

Terminate 
program 

500 
Adjust node 
index for 
axial thrust 
data 

450 
Adjust node 
index for 
twisting 
stiffness 
data 

,--­
I 
I 

• I 
I 
I 
I 
I 
I 
I 
I 

r­
I 
I 
+ 
I 
I 
I 
I 

Compute distribution 
coefficient CMP for 
area and line data 

Z (I ,J) = Z(1,J) + CMP * D(L) 

L 1500 
---- rC--,O-N-T.l-1NU;;;.;:;.....E~ 

Area data­
check node 
identifica­
tion for 
twisting 
stiffness 

Distribute 
data over 
limits 
defined 
by node 
coordinates 

3000 



, 
~ 
I 
I 

~ 
L ___ _ 1600 

CONTINUE) 

L 2000 
--- ---·-\CONTINUE 

3000 
iRETURN I 

I END J 
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SUllltUUTlIIE IIiTER" I 11 • .II. 12. JZ. O. ICARD. 2. 29JA9 
I IS. lB. 16. LZ. Llh I(x. ICY I05JU9 

OIM£"Sloti 11 ,1,0 I. IZI 50 I • .III ,01, .121 ;0 It 01 50 I. 23AG' 
Z 21 LZ.Ll I OISEa 

COMMUH/INCR, HX. HY. HXPZ. HIPl. MXP_. HXP5. HXP7, liNDa 
I MYPZ. MYP!. MYP_. MYP5. MYP7. NT I1N08 

10 fORMAT 1 I 'OM OATA TYPE NOT PROPERLY DEFINED FOR INTERP 9 10lSE8 
ZO fORMAT I I ~OM ERROR III INPUT Of DATA FOR DISTRI~UTION 10lSE8 
'0 fORMAT I I SIM STATIONS NOT III PROPER ORDER FoR INTE~POLATIONIOISE8 

C • •• lUto STOIIACOI: BLOCr. OISEe 

'0 
100 

00 100 .I • I. MYP? 0lSE8 
00 '0 I • 1. MXP? 0lSE8 

111 • .1, • 0.0 0lSE8 
CONTINUE 0lSE8 
CONTINUE alsEa 
If I ICARD .EO. 0 I GO TO !OOO 0lSE8 

I'L • • 29JA9 
00 2000 L • 10 I (ARD 01 SEe 

If 
If 

111 • JlILI + IPL OISEa 
112 • I2ILI + I'L 0lSE8 
.lYl • .lIILI + IPL OISEa 
.1'1'2 • .l21LI + IPL OISES 
IX2 .LT. IX1 I GO TO "00 0lSE8 
.lVZ .LT. .1'1'1 I GO TO "00 0lSE8 
IS" • 0 alSEa 
.IS" • 0 0lSE8 

If IXZ .liT. 111 1$ •• I 015[1 
If • .1'1'2 .6T. .I'l'l I .I$If • 1 alSEa 

e • •• DISTRIBUTE DATA OYER AREA DEfiNED BY IXI • .lxl. IX2. JXl alSEa 
C ISEa 
e • •• C!e'Cr. fOIl T'\'PE OF DATA Ol$£a 

If I 1$ .liT. 0 I GO TO 700 Olua 
If I 18 .liT. 0 I GO TO lOa OSJ\J9 
If • Iii .liT. 0 I GO TO '00 alSEa 

e • •• TYPE 0# DATA JIOT OfF IIIEO - ERROR 015[8 
PAIIIT 10 OISEa 

GO TO 6000 OUU 
C • •• SET uP IIiTERPOLATION FOR GAID ANO BAR TYPE DATA 0lSE8 

200 If «IClI .1E0. 1 I GO TO Z'O OS JUt 
If 1.I$If .6T. 0 I GO TO SOO 05.1U9 
If I DILl .EO. 0.0 GO TO 2000 12.1U9 
GO TO lU OS.lU9 

no If I 1$If .liTo 0 I GO TO SOD 05.IU9 
If I DILl .EO. 0.0 GO TO 2000 12JU9 

zn PRIIIT 10 0~.lU9 
GO TO 6000 OS.1U9 

,~o If I IS" .1E0. I I GO TO .00 alSEa 
If I OILI .1E0. 0.0 GO TO 2000 02JL9 

PAI~ ~ 01SEa 
GO TO 6000 01SEa 
I' ,.IS" .1E0. 1 I GO TO .'0 Z'JV9 
If I DILl .IEQ. 0.0 I GO TO 2000 02JL9 

PRINT ZO OISES 
GO TO 6000 0lSE8 

111 • IXI + UJV9 
.1'1'1 • .I'\' I + 2lJU9 

( 

;UO IF ICX .EO. 1 I 
IF ICY .EO. 1 I 

ISW • 0 
JSW • 0 

700 00 1600 .I • .1'1'1. JY2 
UO ISOV I • IXI. IX2 

(NX • 1.0 
(MY' 1.0 

IF ISw .EO. a 
IF JSW .EO. a 
IF .I .EO. JYI 
IF .I .EO. JY2 
IF I .EO. lXI 
IF I I .EO. IXl 
(iU TO 11100 

auo IF I I .EO. IXI 
IF I I .[0, IXZ 
(,Q TO 1000 

tuu IF I .IS. .EO. 0 
IF I .I .[0. JYl 
IF • .I .EO, JY2 I 

10uII (MP • (~X • (MV 
llltJI • lll.J' 

lSuO (IMTlNUE 
16uO (IMTIIIUE 
ZOUII CONTINUE 
1000 RETuIi" 
5SUO PRI"T )11 
6000 (UNTIIIUE 

END 

IXI • IXI + I 
JVI • JVI + I 

GO TO 900 
GO TO 800 
'MY • 0.5 
(MY • 0.' 
CMX • a.!> 
CMX • 0.$ 

(NX • 0.5 
eNX • 0.' 

GO TO 1000 
(NY • 0., 
(My • 0.' 

+ CM'" • DILl 

23JU9 
23JU9 
0lSE8 
OISEa 
0lSE8 
01SE8 
01SEa 
0lSE8 
0lSE8 
0lSE8 
0lSE8 
01SE8 
01SE8 
01SE8 
015[8 
015£11 
01S[8 
01SE8 
01SE8 
OlSEII 
01SEII 
0lSE8 
015£8 
015£11 
015[8 
01 SEll 
0lSE8 
OISEa 
29.1109 

...... 
0'\ 
N 



SUBROUTINE STIF1 

This subroutine forms the stiffness 
matrix coefficients for bending 
stiffness and linear support springs. 

r-------
The horizontal 
partition of the 
stiffness matrix 
is identified by 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

• I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

(-----
I 
I 
I 
I 
I 
I 
I 
• I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 

DO I = 3, MXPS 

Compute product of 
bending stiffness 
and Poisson's ratio 
DPR 

Compute and store in 
SK(II,l) thru SK(II,S) 

h ff " 1. t e coe 1C1ents c. . 
5 1, J 

thru c .. , the terms 
1,J 

for the c
j 

submatrix 

Compute and store in 
SK(II,6) thru SK(II,8) 

the coefficients d~ . 
3 thru d, ., 
1,] 

for the d. 
J 

1,J 
the terms 

submatrix 

J and the row in 
the partition by I 

The minimum value 
of the product of 
Poisson's ratio 
and bending 
stiffness is 
determined for 
each node point 
as required 

163 
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P 
I 
I 
I 
I 
+ 
I 
I 
I 
I 
I 
I 
I 
I 

~ 
I 

• I 
I 
I 
I 

Compute and store 
in SK(n,9) the 
coefficient e. ., 

1,J 
the term for the 
diagonal submatrix 
e. 

J 

'-------

\..._-------
3000 

CONTINUE 

Each horizontal 
partition of the 
incomplete 
stiffness matrix 
is written on 
File 9 



SUBROUTINE STIFI lOX. OY. S. STI. LI. L2. L3 1 
OI"ENSIOIt OXI L2.L3.. OYI L2.L3" S( LZ.L3 .. 

I STlI LI. 91 
COMI!uN/lNCRI MX. MY. MxP2. MXP3. MXP4. MXP5. MXP7. 

I MYP2. MYP3. MyP4. MyP5. MyP7. MT 

OISES 
OISES 
30JA9 
IINOS 
IIN08 

COMMON/CONI HXOHY3. HYOHX3. OOHXHY. OOHX. OOHY. PRo OOHT2. 002HT.06JU9 
I HIIDHY. HYOHX 

CALL IOBINI6HREVINO.91 
C • 
C • 
C 

•• THIS SUBROUTINE FORMS THE STIFFNESS MATRIX TERMS ASSOCIATED 
•• wITH OX. OY. AND LINEAR FOuNDATION SPRINGS 

C c·· . 
C 

1110 

200 
_00 

500 

C 
C • • • 
C 

C 
1000 

C C·· · C 
C 
C 
C 

~O 3000 ~ • 3. MYP5 
DO 2000 I • 3. MXP5 

11· - 2 

COMPUTE PRODUCTS OF POISSINS RATIO AND PLATE STIFFNESS 

IF I I .GT. 3 1 
LS • I - I 
LE • I + I 

DO 400 L • LS. LE 

IF 
IF 
IF 

TOPX • OXIL.~I • PR 
TDPY • OYIL.~I • PR 
TOPX .GT. TOPY 
L .EQ. U I 
L .EO. LE I 
OPR2 • TOPX 

c;o TO 400 
OPR3 

c;o TO 400 
OPRI 

CC*TUIUE 
<iO TO 1000 

• ToPX 

• TOPX 

OPRI • OPR2 
OPR2 • DPR3 

GO TO 500 

TOPX • ToPY 
GO TO 200 
GO TO 100 

COMPUTE PRODUCTS OF POIS50NS RATlO AND STIFFNESS FOR NEv STA 

IF ( 

TOPX 
TDPY 
TOP. 
OPR3 

COItTIIlUE 

• DXIl+loJI 
• OYCl+loJI 
.GT. TOPY 

• TOPX 

TOPX • OXII.J+II 
TOPY • OYII.J+II 

IF I TOPX .GT. TOPY 
OPR4 • TOPX 

'PR 
• PR 

• PR 
• PR 

ToPX • TOPY 

ToPX • ToPY 

FOR" MATRIX COEFFICIENTS AT ROW I OF SUB MATRIX J 
STIIII.II TMRU STIIII.51 ARE LITTLE CC TERMS 
STIIII.61 TMRU STIIII •• , ARE LITTLE DO TERIIS 
STIIII.91 IS THE LITTLE EE TERM 

STIIII.II • HYOHX3 • OXII-I.JI 
STIIII.21 • - HYOHX3 • 2.0 • I OXfl-I.JI + OXII.JI I 

06JU9 
19AG910 
OISE! 
0lSE8 

ISES 
OISES 
IlMR. 
OISES 

ISES 
OISES 

ISES 
OlSES 
OISEa 
OISES 
OlsES 
OlSES 
OlSES 
0lSE8 
OISES 
OISES 
30JA9 
OlS£8 
30JA9 
OISES 
30JA9 
OISES 
OISES 
30JA' 
30JA. 

ISES 
OISES 

15ES 
OISES 
OlSES 
OISES 
30JA9 

ISES 
1711R. 
17M1t. 
OlSre 
OISES 
30JA9 

ISES 
OlSES 
0lSE8 
OISES 
OIS£8 

ISEII 
OISES 
OISEa 

C 

I 
2 
3 

-

- OOHXHY • 2.0 • I OPRI + OPR2 1 
STIIII.31 • HYDHX3 • I OX(I-I.JI + 4.0 • OXII.JI + 

OXII+I.JI 1 + 
HXOHY]' OYII.J-II + 4.0' OYII.JI + 

OYII.J+II 1 + 
ODHXHY • s.O • OPR2 + SII.JI 

STIIII._, • - HYDHX3 • 2.0 • I OXII.JI + OXII+I.J, 
- OOHXHY • 2.0 • I OPR2 + OPR3 1 

STIIII.51 • HYOHX3 • OXII+I.JI 
STIIII.61 • OOHXHY • I oPRI + OPR_ 1 
STI(II.71 • - HXDHY3 • 2.0' ( OYII.JI + OYII.J+II 

- OOHXHY • 2.0 • I OPR2 + OPR_ 1 
STIIII.81 • OOHXHY • (OPR3 + OPR_ 1 
STIIII.91 • HXOHY3 • OYII.J+II 

C ••• WRITE STIFFNESS MATRIX ON TAPE 9 By ROVS 
C 

C 

C 

ZUUU CONTINUE 
MTK' 9' IIXP3 

CALL IOBINI5HVRITE .9.STI.IITKI 

30UO CONTINUE 
CALL 1031N 16HVRITER.9 I 
RETURN 
END 

30JA9 
0lSE8 
0lSE8 
0lSE8 
0lSE8 
30JA9 
0lSE8 
30JA9 
0lSE8 
30JA9 
0lSE8 
30JA9 
30JA9 
OISES 

ISE8 
30JA9 

ISES 
17MR9 
19AG910 
25AG91o-

ISES 
OISES 
22AG910 
,ISES 
15£8 
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SUBROUTINE STFHX 

The formation of the static stiffness 
is completed with the addition of 
terms related to axial thrust and 
tWisting stiffness to the coefficients 
computed by Subroutine STIF1. 

No 

r----- DO J ". 3, MYP5 

I 
I 
I 
I , 
I 
I 
I 
I 

r---
I 

I 
I 

• I 
I 
I 

DO I - 3 , MXP5 

Coefficients 
formed by 
Subroutine 
STIll are 
recalled and 
stored in 
SX(II,l) thru 
SX(II,9) 



I I 

IJ) ltD Add axial thrust and 
~ twisting stiffness terms 

1 5 
I I to c. . thru c'. . and 

1.,] 1.,] 

I I store in SK(II, 1) thru 
I I SK(II,5) 

I t 
I I 
t I 
I I 
I I 

Add axial thrust and 
twisting stiffness terms 

1 5 
to d .. thru d .. and 

1.,] 1.,] 

store in SK(II,6) thru 
SK(II,8) 

I I 
I '-----
I 
I 
I 
I 
I 
I 
'------

(--- - '----~~--" 

I 
I 
I 
I 
I 

• I 
I 
I 
I 
I 
I 

167 

Each horizontal 
partition of the 
completed 
stiffness matrix 
is stored on 
File 6 

In the absence 
of axial thrust 
and twisting 
stiffness, the 
stiffness 
coefficients 
are transferred 
from File 9 to 
File 6. 
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~ 6000 
"----- CONTINUE) 



$UBRUUTINE STFMX I PX. PY. 
DIMENSION PXI L2.L3 I. 

CT. SK. ll. L2. l3. NCT) 

1 
COMMuN/lNCRI 

1 

PYI ~2.l3 I. CTI l2.l) I. 
SKI Lit 91 

MX. MY. MxP2. MXP). MXP •• MXP5. M~P1. 

COMMON/CONI 
1 

MYP2. MyP3. MYP •• MyP5. MyP1. MT 
HlIOHY'. HYOHX3, OOHXHY. OOHlI. OOHY. PRo 
HlCOHY. HYOHX 

C C·· . 
C 

COMPLETE fORMATION OF STIFFNESS MATRIX 

CALL 108INI6HREWINO.61 
CALL IOBINI6HREW1NO.9' 

If I NeT' .EQ. 0' 
"TK. 9. "liP, 

DO .000 J • ,. MYP!I 
CALL 108INI4HREAO .9.SK.MTK' 

DO '000 I • 3. MXP!I 
1I·1~2· 

GO TO ~OOO 

ooHT2. 

29JA9 
01SE8 
29JA9 
I1N08 
1 tN08 

002HT.06Ju9 
06JU9 

ISE8 
015ES 

15[8 
19AG910 
1911G910 
015[8 
19AG910 
015[1 
2!>AG91D­
OlSES 
OlSEII 

COMPUTE "ATRIX COEfFICIENTS BASED ON PX. PY. AND CT TERMS 
lUI 

01U8 

1 
2 , 

3000 

... 000 

~OOO 

6000 
10011 

C 

SKllftll • 
SKII 1t2 I • 

SKIII", • 

SKIll •• , • 

$KIll." • 
SKIII.6I • 
SKIII.1, • 

SKill • ., • 
SKIII.91 • 

COMTlI'IUE 

SKIII.1I 
SKIII.21 - DOHlIl4Y • 2.0. I CTII.JI • 

CTII.J.11 I - DOHX • PXII.JI 
SKill." .OOHXHY • 2.0. I CTII.JI + 

CTII.J+11 + CTII+I.J' + CTII+I.J+11 
OOHlI • I PXlI.JI + PlIIl+ltJI 1 + 
OOHY • I PYII.JI + PYIl.J+lI , 

SKIll •• , - OOHXI4Y .2.0 • I CTII.I.JI + 
CTII+I.J+I' , - DOHX • PXII+I.JI 

SKIII.~' 
SKIII.6' + OOH~Y • 2.0 • CTII.J+11 
SKIII.1, - ODHXHY .2.0 • I (TII.J+l' + 

CTII+I.J+11 I - OOHY • PYII.J+11 
SKIII.B' + DOHXHY • 2.0 • CTII+I.J+ll 
SKIII.9I 

CALL IOBINI5HWRI'f .6.SK.MTKI 
CONTINUE 
GO ,0 1000 
00 6000 J • ,. MYP5 

CALL I08INC4HREAO .9.SK.MTK' 
CALL IOBINC'HVRI'f' .6.SK.M'KI 

COMTINUE 
CALL IOBIN 16~ITER.6 1 
RETURN 
E/II) 

I + 

15E8 
29JA9 
29JA9 
01JU9 
29JA9 
015E8 
01JU9 
01JU9 
29JA9 
01JU9 
29JA. 
29JA9 
29JA9 
07JU9 
29JA. 
29JA9 
DUE. 
19AG9IO 
01SU 
OlSE8 
01$E8 
25AG91D-
25AG91D-
015E8 
305[910 
305[' 

ISEI 
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SUBROUTINE STALD 

This subroutine forms the static load 
vector and writes it on File 8. 

,--- DO J = 3. MYP5 
I 
I 
I 
I 
I 
I 
I 
I 

~ 
I 
I 
I 
I 
I 
I 
I 

(---- DO I :: 3; MXP5 

I 
I • I 
I 
\.. ____ r----'--~ 

'------

Each horizontal 
partition of the 
static load 
vector is stored 
on File 8 



C 

5U6RvUfINE 5fAUD I Q. fX. TV, FF. Ll. LZ. L3 I 
DlMEN51UN QI L2.Ll I. fXI LZ.L3 I. TV! L2.L3 I. 
COMMUHIIMCRI MX. MV. MXP2. MXP). MXP4. MXPS. MXP1. 

1 MVP2. MVP3. MyP4. MYPS. M"Pl. NT 
COMMUH/COKI HXOHY3. HVOHX', OOHXHV. DOHX, OQHy. PRo 

1 ItxD+lV. ltV DltX 

29JA9 
FF I Ll I 015E1! 

C • • • 
C 

THIS SUBROUTINE FORMS TH£ STATIC LOAD IItCfOR 

IIM08 
llM08 

OOHTZ. OOZHT.06JU9 
06JU9 

15E8 
015£8 

15E8 
19AG910 
015[8 
01S[8 

c 

1 

CALL I08IHI6HREWIND.8J 
DO 3000 J • ,. MYPS 
DO 2000 1 - J. MXPS 

11-1-2 
FFlIII _ QlhJI 

2000 Ca.TlMUE 

- OOHx • 
OD+lv • 

CALL 10BIH.~ltWRIT£ .I.FF.MXPJ' 
)000 CONTINUE 

CALL IOBIH .6HWRITER,1 , 
RETURN 
EIID 

TXII,JI - TXlt+l.JI I -
fVII.J) - TYII.J+11 ) 

015£11 
01SEI 
01SEI 
01S£1 
~~A69IO­
o15n 
22A69.0 
01S£8 
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1300 

SUBROUTINE NONLIN4 

The correction load for the load iteration 
procedure is computed by this subroutine. 

No 

300 
Check all node points for closure 
within specified tolerance; count 
stations not closed in NCOUNT 

Yes 

No 

50 
Initialize storage for correction load 

QI(I,J) = 0 

Yes 

,----- '--___ -r-_____ o_f_c_u_r_v_e_s_ 

I 
I 
I 

• I 
I 
I 
I 

Adjust external station identification 
for computer coordinate system 

Set line and area s~itches 
for foundation description 

2020 



I 
~(------

I 
I 
I 
I 
I 
I 
I 
I 
I 
~ 

1300 

r-----

Set print switch if deflection greater 
than estimated maximum value 

,----- 2, number of points on curve I ~--~----~~~~~ 

I 
I 
I 

Yes No 

I 
I 
\-

Deflection greater than 
largest deflection point 
on nonlinear curve; set 
print switch for message 

Check for deflection less 
than first point on non­
linear curve; set print 
switch for message 

Determine multiplier for correction 
load; quarter values at corners of areas~ 
half values for ends of line loads and 
area edges 

1500 
Determine resistance developed by 
linear approximation - QS 

Compute the total resistance of station 
J,K from nonlinear curve - QC 

Calculate correction load 
QI(J,K) ; QI(J,K) + CON * (QC - QS) 

'----------

173 

Distribute 
resistance­
deflection 
curves over 
specified area 

Locate deflec­
tion of node 
point J,K on 
nonlinear 
resistance­
deflection 
curve 

2020 
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Write correction 
load on File 14 



.. 

SU8R~TIME MOHLI" 4 I "CRv. TOl. 
1 ISh IS2 • .ISh JS2, 0'10 I/th SF". NPC. 
l. 1/. 1/1,. WMAX. Lh l20 lh l8. 19. 
, 01. IPSW, IPSO. NCOIJIIIT ) 

I)lME"'SICHI l$11 La.. IS21 LIllo .1511 1.810 JS21 lS" 
I "CI Lal. $1'"1 Lal. 
l. 0.1 La. L91. W"I La. 191, 
, we LZ. l'h WI L2. L31. all l20 l)1 

CUMMUN/IMCRI MX. MY. MxP2. MXP3. MXP4. "xP5. NxP7. 
1 MTPZ. MYP" MyP4. MYP5. MyP7. MT 

IP$W .. 0 
IPSWO .. 0 

CALL IOBINI6HRfWIND.141 
C •••• CHECx fOR NONLINEAR OATA 
C 

II' I MCRY .GT. 0 GO TO 300 
MCOUIIT .. 0 

~o 00 200 .I • 1. MrP7 
00 100 I .... MJlP1 

0111 • .11 .. 0.0 
1110 COIITlltUE 
ZOO COIIT I/IU£ 

If I NCOUNT .EO. 0 I GO TO Z020 
GO TO 1200 

300 NCOUNT .. 0 
DO 900 .I .. 4. MrP4 
00 aoo I .. 4. MXP4 

DJf .. ABse WII.JI - WI/II.JI I 
If I DJf .GT. TOL 1 IKOUNT • "COUIIT .. 1 

aoo COIIT 1_ 
900 COIITI_ 

If e IIICOUNT .GT. 0 I GO TO ~O 
GO TO noo 

C • •• STAIIT JNTEIlPOLAUON '011 MEw VALuES or LOAO OR SPRING 011 IIOTH 
1200 DO 2000 I .. 10 IICRV 

MP .. MPCIU 
C... ~ATf COMPuTED DE'lECtION wiTH REsPECT TO INPuT 0 - W CuRVE 

AXl .. JSlell + 4 
R1Z .. JS2eJI + 4 
NY! .. JSlelt + 4 
NY2 .. JS2elt + 4 
I$W .. 0 
JSW" 0 

I' AX2 .GT. NIII I lSW .. 
If e NY2 .GT_ NYI I JSW .. 
DO 1990 .I .. NX1_ NX2 
DO 19ao K .. NYI. NYZ 
WCK .. AIISI WeJ"'" I 
If e WCK .GT. ~ IPSWO .. 1 

KSW .. 0 
DO 1970 L .. 2. NP 
I' e WIJ.XI .GT, VMII,LI I GO TO 1970 
I' «L .GT, 2 I GO TO 120s 

KSW .. 1 
C • •• CHECK'OR POINT 0" LE'T END Of CURYf 

If e WIJ.lq .LT. wN1I,11 I IPSW" 1 

020ES 
0201"8 
llNOll 
111108 
liMOS 
I1N08 
llN08 
I1N08 
11N08 
l1N08 
20JES 
20.1[8 
19AG910 
30JU9 
30.JU9 
30JU9 
30JU9 
30JU9 
30JU9 
)OJU9 
)0JU9 
)OJU9 
30JU9 
30JU9 
30JU9 
30JU9 
30JU9 
30JU9 
30JU9 
30.JU9 
'OJU9 
30J\J9 
30JU9 
170[9 
UNCle 
20JEI 
170[9 
I I NOlI 
11N08 
I1N08 
l1NOI!I 
20.11'8 
2QJES 
20JU 
20JEI 
20JEa 
20JE8 
20JES 
20JU 
lOJl!a 
ZOJEI 
20JEI 
20.11:8 
20.l[a 
170[9 
20JE8 

1210 
1211 

C •• • 

c .. • • 

c·· · 1220 

c • • • 1240 

1250 

c • • • 
151.10 

1970 

1980 
1990 
2u .. 0 
Zu20 

WC • WIJ.lt) - WNII.LI 
51 .. 1 Olul.L-11 - QNI I.LI ) / 1 WNllol-lI - WNn,LI 
C"X • 1.0 
CMY • 1.0 

CO"PuTE a FOil NEXT SULUTION - HALf VALuE AT END STATIONS 
IF I ISW .EO. 0 I GO TO lZ40 
I' I JSW .EO. 0 , GO TO 1220 
ftN AREA LOAD IS CALLED FOR - HALf VALuES READ ALONG EDGES 
I' I .I .EO, NXl I CMII • 0., 
IF I .I .EO. NIIZ I CMl • ~.5 
IF I X .EO. NY1' CMY • 0" 
I' «K .EO. NYZ I CMY • O.S 
0:.0 TO 1250 
I.INE LUAD IN 
If «.I .EO. 

I DIRECTION - uSE HALF VALUES AT END STATIONS 
Nltl 1 (Ml • 0., 

If I .I .EO. Nlt2 J CMl .. 0.' 
GO TO 12S0 
CHECX FQR LINE LOAD 
IF I JSW .EO. 0 I 
IF I X .EO. NY1' 
IF «K .EO, NYZ' 
CONTlNlJE 

CON • CMX • (MY 

IN Y DIRECTION - HALF VALUES AT rND STA. 
GO TO 1250 
CMY • o.S 
(fII!Y • o.~ 

LUAD ITERATION METHOO. NO PARENT PROBLEM IS REOulREo 
os • - WIJ,K' .S'NIII 
QC. ONlhLl .. WC • 51 
011.1.11 • QllJ,ltl + (ON. ( QC - as 

GO TO 1980 
CONnltUE 
I' I XSW ,EO. l' 

IPSW • I 
GO TO 1980 

WC • WIJ.XI - wNII.HP, 
SI • I ON II .NP-II - ONII,NPI , / I WNI I.NP-li -
L • HP 

GU TO 1210 
C,*T IltUE 
C"NTINUE 
CONTINUE 
CONTINuE 
00 12S~ .I • 3. MYP5 

20JE8 
20JE8 
20JE8 
20.1£8 
17DE9 
20.1£8 
20JE8 

20JE8 
20JE8 
20.1£8 
20JE8 
20.1£8 
170£9 
20JE8 
20JE8 
20.1£8 
170E9 
20.1£8 
20JE8 
20JE8 
20JEII 
28MY9 

20JE8 
20JEI 
20JE8 
20JE8 
20JE8 
20JE8 
20JEII 
20.1£11 

1255 
CALL 108IH"HWRITE .14,OI13.JI.M1P31 

CONTINUE 

WNII,NPJ '20JE8 
20JU 
20JE8 
20JEI 
20.1£1 
20JEI 
OlAP9 
03AP9 
19AG910 
020E8 
22AG910 
l1N08 
2OJE8 
20.1[8 

C 

CALL 10BIN IbHWRITER.14' 
CONTINUE 

RETIIRN 
END 
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r-----
I 
I 
I 
I 
• I 
I 
I 
I 
I 

SUBROUTINE DYNLD 

This subroutine computes the dynamic 
loading for each time station. 

No 

Yes 

DO L = 1, Number of load curves 

Compute constants for moving 
load and set indices for 
number of points on multiplier 
curve and dynamic loads 
controlled by curve 

Set all 
QD(I,J) 
equal to 
zero 

Static 
analysis; 
do not 
compute 
dynamic 
load 

5000 



I 

p; 
Yes 

Yes 

No 

Determine period and 
locate the time station 
on the curve 

Yes 

Yes 

No 

200 
The dynamic load multiplier 
(QM) is found by linear 
interpolation of straight 
line curve 

300 
,---- DO M = 1, NlUIlber of loads for curve , 
I 

100 

177 

Periodic 
mu1 tiplier 
curve 

Nonperiodic 
mu1 tiplier 
curve 

5000 
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I 

FD 

~ 
I 
I 
I 
I 
I 
I 
I 

I 
tID 

j 

I 
I 
I 
I 
I 
I 

III = 11 (L ,M) + 4 
II2 = I2(L,M) + 4 
JJ1 = J1(L,M) + 4 

+ JSFT(L) + INCY 
JJ2 = J1 (L,M) + 4 

+ JSFT(L) + INCY 

Yes 

Yes 

,----­
I 
I 
I 
I 
I 
I 
I 
I 
~ 
I 
I 
I 
I 
I 
I 
I 

(--­

I 
I 
I 
I 
4 
I 
I 
I 
I 
I 
I 

Calculate multipliers 
CMX and CMY for 
distribution procedure 

CON .. eM){ * CMY 
QD(I,J) .. QD(I,J) + 

QM * DQN(L,M) * CON 

\... ____ r--...L.......;...~ 

Initialize 
quarter and 
half value 
distribution 
switches 

Adjust node 
identification 
for computer 
index notation; 
add the shift 
and displace­
ment for vehi­
cle speed to 
y-coordinates 

Check for 
load on 
plate 

Calculate 
dynamic 
loading to 
be added to 
station I,J 

5000 

1000 
900 



+ • b 
'--------FF 

I '-______ _ 900 
CONTINUE 

I 
I 
\..._---------

1000 
CONTINUE 

5000 
,--- DO J "" 3, MYP5 

I 
I 
I 
• I 
I 
I 5050 
'----- CONTINUE 

179 

Write 
dynamic 
loading for 
new time 
step on 
File 11 



SUBROUTINE DYNLO t NAM. JSFT. MSPD. JSYM. KI. K2. KONT. DOM. NOL. 19MY9 
S 110 .JI. 12 • .J2. DON. 00. NCR6. LI. L2. L'I 0151:8 

DIM[hSION NAMe 20 I. .JSFTI 20 I. MSPOt 20 I. JS~M( 20 1.015E8 
I Kit 20. 201. K21 20. 201. KONTI 20. 201. NOLI 201. 19Mv9 
2 DOMI 20. 20,. III 20.2010 JII 20.201. 121 20.,o)' 19NV9 
, .J21 20.201. DONI 20.201. 19MY9 
<It 001 l2.L3 I 0lSE8 

COMMON/INCRI MX. MY. MXP2. MXP3. MXP<It. MXP5. MXP1. llNOII 
I MYP2. MYP3. MYP<It. MVP~. MvP1. MT. HT. HV 20.J09 
COMMUN/RII NK. NL. NF. NT2SW. TIM 22JA9 
TYPE INTEGER TIM 111'108 
TYPE REAL MSPD. KNTR. KI. K2 29JUO 

c ISE8 c·· . c 
THIS SU8ROUTINE FORMS THE DVNAMIC LOAD vECTOR FOR TIME ICT 

INITIALIZE DYNAMIC LOAD VECTOR 
OIS£8 
OISE! 

c 
CALL 108INI.HREWIND.III 

DO 100 I • I. MXP? 
00 50 J • I, MYP? 

c 

So 
IuD 

c • 1t • 
C 

C 
C ••• 
C 

C 
C ••• 
c 

110 

DOII • .JI • 0.0 
CONTINUE 
CONTINUE 

CHECK FOR DYNAMIC LOAD 

I' I NCR. .EO. a I 
IF I TIM ,EQ, I I 

COMPUTE DYNAMIC ~OAO MULTIPLIERS 

ICT • TIM - S 
00 1000 L • S. NCR. 

HI! • ""MILl 
OM * 0.0 
DTIM IcT • HT 
KNTR DUM 
lID * NDLeu 
TIMP • 5280. I 300. 
SEC. ICT • HT 
SPED. MSPDILI • TIMP 
OIST • SEC • SPED 
YSTA • OIST I HY 
INCY • YSTA 
YPRT • YSTA - INCV 

CHECK FOIl PERIODIC LOADING 

l' I JSYMeLI .EO. 0 I· 
" C DTJM .LT. Klll .• 111 

GO TO 120 
GO TO 1000 

PERIOO OF DYNAMIC LOADING IN TIME STATIONS 

KPER • K2IL.IiM) - KIIL.II 
If C KNTR .LT, K2IL.NMI I GO TO 200 

KNTR • KNTA - KPER 
(oO TO 110 

IS'II 
l"AG910 
015£8 
0lSE8 
0lSE8 
0lSE8 
0lSE8 

ISES 
OIS[8 

ISES 
0lSE8 
29.JA9 

ISES 
OIS!8 

ISU 
29.JA9 
OISEII 
OIS£8 
OISE!! 
19JUO 
29JUO 
19MV' 
13JU 
03.JL' 
I !JI!9 
13JF.9 
13JE9 
I 'JE9 
U.JE9 

ISEB 
OISEa 

ISE8 
0lsE8 
2'.JUO 

15£11 
0lSE8 
ISE~ 

01SEII 
0lSE8 
alSEa 
0151'8 

C 
C... CHECK TIME STATION IN RANGE OF O-T cuRVE 
C 

120 IF I KIIL.II - KNTR I I~o. 200. 1000 
I~u If I K2IL.NM) - KNTR ) lCOO. 200, 200 

C 
C • •• CuMPuTE AMPLITUDE MULTIPLIER. OM 
C 

C 

2 ... 0 KSI • 0 
00 2~0 M • I, NM 

KSW • 2 • ~SI • I • KONTIL.MI 
K$1 • KOHTlL.M) 

GO TO I 21C. 220. 250. 230 I. KSW 
21~ IF I KNTR .GT. K2IL.MI) GO TO 2S0 

OM • DOMIL.MI 
Gli TO :JOO 

220 If I KNTA .{OT. K2IL.M.II GO TO l~O 
OMI • DOMIL.MI 
OMl • DOMIL.M+lI 
Dlfl • K2Il.M.II - KIIL.MI 
011'2 • KNTR - KIIL.MI 
OM • OMI + I QM2 - OMI I • 0lF2 I DIFI 

GO TO 300 
2,u IF I KNTR .GT. K2IL.M.I} I GO TO 2~O 

OMl • DOI'IIL.MI 
OMl • DOMIL.M+lI 
DIFI • K2IL.M.I) - K2IL.MI 
DIF2 • KMTR - K2IL.MI 
OM • OMI .. I QM2 - OMI I • 011'2 I 01"1 

(oo TO '00 
250 CONTINUE 

C • •• COMPUTE POSITION AND VALUE OF DvNAMIC LOAD 
C 

3vtl CONTINUE 
00 900 M*1 ,NO 

lSI!! * 0 
.JSW • 0 
111 • IIIL,MI + <It 
112 • UIL.MI .. <It 
.J.Jl • .JIIL.MI .. <It .. .JSf1ILI • INCV 
.J.J2 • .J2IL.M, .. ~ .. JSFTll) .. INCV 

IF 112 .GT. III I ISw • I 
IF .J.J2 .GT. .J.Jl I JSW • I 

.J.JSI!! ° 
IF IYPRT I 30~. 31~. 310 

C • •• VPRT NEGATIVE. LOAD MOVIMG IN NEGATIVE v, .JJI • J.JI - I 
30S .J.JSW I 

.J.Jl .JJ I - I 
GO TO 31~ 

C • •• YPRT POSITIVE. LOAD MoviNG IN POSITIVE v • .J.J2 • .J.J2 .. I 
310 .J.JSI!! I 

.J.J2 JJ2 + 
315 CONTINUE 

If I .JJl .GT. MVP<It GO 10 900 
I F I .J.J2 '.L1. <It I GO 10 900 

ISE8 
0lSE8 

ISE8 
01SE8 
0lSE8 

15E8 
0ISE~ 

ISE8 
0lSE8 
0lSE8 
OISEII 
30.JA9 
015£8 
015[8 
0lSE8 
01SE8 
OISU 
010<:9 
OIOC' 
0lOC9 
OISE' 
0lSE8 
015£8 
0lSE8 
0lSE8 
0lSE8 
OlSE8 
0lSE8 
0lSE8 
OISE~ 
OlSEII 

15£11 
IlISE8 

ISEII 
19MV9 
19MV9 
19MV9 
OISE! 
02.JU9 
OZ.JUf 
13Jv9 
13.Ju9 
0lSE8 
01SE8 
29J\jO 
29JUO 
29.JUO 
29.JUO 
29.JUO 
29.JUO 
29.JUO 
29.JUO 
29.JlIO 
29JUO 
06.J09 
06JU9 

..... 
<XI 
o 



C 
C ...... SET INDICES FOR LOAD DISTRIBUTION 
C 

OIl' ABS I YPRT ) 

C 
00 800 I • Ill. 112 
00 780 .I .. .loll, .1.12 

CPRT 1.0 
C"X • 1.0 
CMY .. 1,0 

II' I .I - 10 I 780, 330, '2~ 
US II' I .1- "'1'1"10 ) 330, 330, 780 
no CONTINUE 

If I ISIII .EQ. 0 ) GO TO 1000 
II' I .JSIII .EQ. 0 I GO TO 500 

C " " " AREA LOAD 
II' I .1.1$111 .EO. I I GO TO 350 
II' I .I .EO. .J.Jl CMY 0.5 
II' I .I .EO. .1.12 I C"Y 0.5 

'100 II' I I .EQ. III I CMX 0.5 
II' I I .EO. 112 ) CHX O.S 
GO TO 600 

C " " .. OISTRIBUTIOH fOR MOViNG AREA LOAD 
no II' I MSPD .GT. 0.0 I GO TO 380 

GO TO 390 
360 CMY 0.5 

C"RT 100 - I Olf I 14'1' I 
GO TO ,.0 

370 CPRT 100 - 0.5"10IF/HYI 
GO TO '100 

375 C"Y O.S 
CPRT Dlf/HY 

GO To 3100 
365 CPRT 0.5 + O.S"IDIF/HYI 

GO TO '100 
380 I' 1.1 .EO. .J.J1 GO TO 360 

II' 1.1 .£Q. .J.Jl + 1 GO TO 370 
II' 1.1 .EO, JJ2 1 GO TO 375 
II' I .I .EO. JJ2 - GO TO 36!1 
GO TO 3'-'0 

390 IF I .I .EO. JJI GO TO 375 
II' I J .EQ. .loll .. 1 , GO TO 36~ 
'1' I J .EG. .J.J2 1 GO TO 360 
II' I .I .EQ. .1.12 - GO TO :no 
GO TO 3'-'0 

C " " . CHECK FOR PI$TRIBUTION IN 'I' DIREUIOII 
.. 00 IF I JSII .EO • o 1 GO TO ~~O 

C .. " . LINE LOADING IN 'I' D1RE~TIOH 
II' I JJSII .EG. I I GO TO 430 
II' I .I .EO. .J.Jl I CMy O.~ 
II' I .I .Ea. JJ2 I CMY O.S 
GO TO 600 

C " .. OISTRIBUTION FOR MOviNG Y - LINE LOAD 
'-"0 II' I MSPO .GT. 0.0 I GO TO 460 

GO TO '-'80 
'-'100 C"Y 0.5 

ISE8 
0lSE8 

15£8 
29.JUO 

ISE8 
0lSE8 
0lSE8 
29.JUO 
OISEA 
OISE!! 
29.JLO 
29.JLO 
29JUO 
29JUO 
29.JUO 
29.JUO C 
29JUO 
08.JLO 
29JUO 
29.JUO 
29.JUO 
29.JUO 
29.JUO 
29JUO 
29.JUO 
29JUO 
29.JUO 
29JUO 
10.JLO 
29JUO 
10.JLO C 
lOAO 
10.JLO 
10JLO 
10.JLO 
29.JUO 
29.JUO 
10.JLO 
10JLO 
29JUO 
10JLO 
IO.JLO 
29.JUO 
~9.JUO C 
29JIIO 
29.JUO 
29JUO 
29.JUO 
08JLO 
29JUO 
2'JUO 
29JUO 
29JUO 
29JUO 
Z9JUO 
29J\l0 

CPRT 1.0 - ( DIF I HY ) 

GV TO 600 
4,0 CMY O.~ 

CPRT Olf' HY 
vV TV 600 

"lIv IF I .I .EO. .1.11 ) GO TO 10100 
IF 1.1 .EO. .1.11 .. I ) GO TO 4~0 
IF 1.1 .EQ. .1.12 ) GO TO UO 
IF 1.1 .EO. .1.12 - GO TO 10100 
(,0 TO 600 

1080 IF 1.1 .EO. .1.11 GO TO Io~O 
IF 1.1 .[0. .1.11 .. I ) GO TO ",,0 
IF 1.1 .EO. .1.12 ) GO TO 410O 
IF 1.1 .EO. .1.12 - I I GO TO 450 
GO TO 600 

.... to OlliTRIBuTlOII FUf! LINE LOAD IN X DIRECTION 
~iJO If I J.JSW .EQ. I I GO TO ~05 
~ .. 2 IF , I .EO. III CMX O.S 

IF I I .EO. 112 CMI( 0.5 
c.o TO 600 

, .. 5 IF I Ml)PO .GT. 0.0 GO TO 515 
"V TO 525 

508 CPRT Dlf I HY 
GO TO S02 

S10 CPRT .. 100 - 10lFIHYI 
GO TO 502 

515 If' 1.1 .EO. .loll ) GO TO 510 
IF I J .10. JJ2 I GO TO 508 

525 IF « .I .£0. JJI I GO TO 508 
IF 1 .I .EO • J.J2 I GO TO 510 

to to .. DISTRIBUTIOH FOR CON'ENTRATED LOAD 
550 IF 1 JJ$IoI .EO. I ) GO TO 560 

(,0 TO 600 
560 IF IMSPD .GT. 0.0 GO TO 570 

GO TO ~75 

562 CPRT 1.0 - Olf' I 14'1' 
GO TO 600 

565 CPRT o If' HY 
GO TO 600 

570 IF I J .EQ. J.JI GO TO 562 
GO TO 56~ 

~75 IF I .I .. EO. .1.11 , GO TO 5/>~ 

1.00 TO ~62 
.. to .. CALCULATE CONTRIBUTIVN OF OyNA_IC LOAD TO STATION 
6v" CON CMX • CMY • (PRT 

0011 • .1' .0011 • .11 .. OM • OONIL,M, • CON 
180 CONTINUE 
800 CONTINUE 
900 CONTINUE 

10UO CONTINUE 
~Ot:lO 00 5050 .I • 3.MYP~ 

CALL IOblNI5HIIIRITE .11.0013.JI,MXP31 
5050 CONTINUE 

CALL 10BIN 16HWRITER.Ill 
5060 RETURN 

ENO 

29JUO 
29JUO 
29JUO 
02.JLO 
02.JLO 
02.JLO 
02JLO 
02.JLO 
02.JLO 
02JLO 
02.JLO 
02.JLO 
02JLO 
02JLO 
02.JLO 
02.JLO 
02JLO 
08JLO 
08JLO 
02JLO 
02JLO 
02JLO 
02JLO 
02JLO 
08JLO 
08JLO 
08JLO 
08JLO 
08.JLO 
08.JLO 
02JLO 
02.JLO 
02.JLO 
08JLO 
02JCO 
02JLO 
02.JLO 
02.JLO 
02.JLO 
02JLO 
02JLO 
02JLO 
02.JLO 

1 • .1 02.JLO 
02.JLO 
19MY9 
OlSE8 
OlSE8 
19MY9 
OlSEa 
29.JA9 
2~AG91 0-
29.JA9 
22AG910 
29JA9 
29.JA, 

I-' 
00 
I-' 
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SUBROUTINE MASSAC 

The product of mass and acceleration, is 
added to the product of viscous damping 
times velocity, to calculate the equivalent 
load vector for deflection analysis at the 
first-time step. 

r--­
I 
I 
I 
I 
I 
I 
I 
I 
I 

• I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Compute inertia and 
damping forces 

{QIj} == -[ Mj ] {Wj ,I} 
-f DF.J {w. 11 
~ J J,-, 

\.._----

Recall mass and 
damping data 
from File 7 

Special matrix 
mul tiplication 
and addition 
routines are 
used to evaluate 
the equivalent 
load QI 

Write equivalent 
load on File 10 



C • • 
C 
C 
C 
C 
C 

SUBROUTINE MASSAC ILl. L2. L3. W. RHO. OF. 01 015E8 . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 
THIS SUBROUTINE FORM THE ~OOOCT OF MASS TtI4E5 ACCELERATION AIIO • 

Y1SCOUS DAMPING TIMES YElOCITY TO ADO TO THE RHS OF THE 
EQuiLIBRIUM EOU.TION FOR THE FIRST TIME STEP. THE PR08LE14 
WHICH IS TI1I:I1 SOLVED 15. 

K -W • 0 - JIHOIODOW - OF.OW C 
C • • • • * .. .. • .. .. .. .. .. • .. .. • • • • • • • • • • • • • • • • • • • • • • • 

OIMENSIOII WI L2. L, I. RHO I Ll I. 04'1 Ll h 015E1 
1 011 Ll I 01SE8 

COMMON/IIleRI MX. MY. MXP2. MxP'. MXP4, IIXPS. I4XP1, 11110. 
1 MYP2, MYP', MYP4, MYPS. MyP7. MT 11NOI 
C_NICONI HXOHY'. MYOHXJ, ODHXHY. ooHX. ODHv. PRo OOHT2. oo2Hfo06J\)9 

1 HXQMY. HYDHX 06.1U9 
COMMQM/RI/ 11K, ill. Nf, IIT2SW. TIM 29.J". 
CAlL IOBINI6HRfWIIID,7, 19AG.10 
CALL 108II1I~WIMD,lOI 19AG.10 

C 
C .. .. • COMPUTE MULTIPLIER FOR CONYERTIN6 ACCELERATION TO YFLOCITY 

15£1 
015£8 

C 
~ • 0.2' I 002HT 

DO 2000 .J • 50 MY" 
CALL IOBIIII~EAO ,7,RHO,MXP" 
CALL 1081"1~R£A0 .1.OF,MXP', 
CALL MBFY I RHO. WI' • .J,. 01. Ll. 1.IIK, 1 , 
CALL CFY I QI. Ll, I, 11K. -1.0 , 
CALL CFY I WI' • .J'. LI. 1. 11K, yMP , 
CALL MBFY I OF, WI' • .J,. OF, LI, 1,IIK. 1 I 
CALL AiFY I QI, OF, 01. LI, 1. 11K. -1.0 I 
CAlL 108II1ISHvRITE .IO,DI.MxP', 

2000 COIITlNUE 

lU' 
29,JA' 
015£1 
25A6910 
25A69 I 0-
170E9 
17Of. 
170E' 
170E9 
17Of9 
'OSE9IO-
01SEI 
'05(910 

C 

CALL 108111 16HWRITER.101 
RETUIUt 
!liD 

15£' 
un 

,.... 
co 
w 
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SUBROUTINE INERTIA 

The stiffness, damping, and ma~s matrices are 
multiplied by the deflection vectors for times 
k-l and k-2 to form a portion of the equiva­
lent load vector for the following time step. 

Initialize the storage locations 
for the submatrices 
e. 2' e. 1) and d. 1 J- J- J-

r-­
I 
I 
I 
I 
I 
I 

• I 
I 
I 
I 
I 
I 
I 
I 
I 

Form submatrices 

, c .) d., and e. 
! J J J 

a. , 
J 

b. , 
J 

Read mass and 
damping, stiff­
ness matrix, and 
linear estimate 
of nonlinear 
support 

The submatrices 
a

j 
and b

j 
are 

formed from e. 2 J-
and d. 1 J-



I 
tv 
I 
I 
I 
I 
I 
I 
I 
I 
I 
+ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

5002 
Perform matrix multiplications 
and additions 

[a j ] {-4Wj _2 ,k_l 

+ [b j ] {-4Wj _l ,k_l 

+ [c j ] {-4Wj ,k_l -

+ [d j ] {-4W j +l ,k_l 

+ [e j ] {-4Wj +2 ,k_l 

Wj - 2 ,k-2} 

Wj - l ,k-2} 

Wj ,k-J 

- Wj+l,k-J 

- Wj +2 ,k-2} 

Perform matrix multiplications 
and additions 

:2 [Mj] {2Wj ,k_l - Wj ,k_2} 
t 

h
2 

[ DF .1J {W. k _ 2} 
t J J, 

Adjust submatrices for the following 
horizontal partition calculations 

e· 2 =e· 1 J- J-
e

j
_

l 
= e

j 
d. 1 = d. 

J- J 

L ____ _ 
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t 
a. = e. 2 

J J-

b. 
t 

:::: d
j

_
l J 

A special sub­
routine package 
SUMP4 is utilized 
for the matrix 
multiplication 
and addition 

Write equivalent 
load vector on 
File 10 



SUIIRWTlNE INERTIA ILl. L2. L3. W. WTMI. WTM2. AA. 88. ((. DO. 0lSE8 0011.31 • SKI,,81 0151'8 ,.... 
I EE. EEMI. EEM2. DOMI. SI( • HI. 1'12. 1'13. SF 1 22AG9 GO TO SOOO OISEa (X) 

UIMEIISIOH WI L2. L'" WTMlI L2. L3I. WTMZI L2. L3I. 0lSE8 C 15£8 0\ 
1 ""I Ll ,. 881 Ll. H210 CCiLI. N31< 015[8 C ...... fORM MATRIII AT 1 • 1 01SE8 
2 01)( L 1. H2,. EEl Ll. Hlh fEMII Ll It 3DJA9 C lSE8 
3 EEM2I Ll I. ODl"lI L I.HZ .. SKI Ll. 9 I. SFC LI I 22A6910 10UO CC!I.lI • Sill"" 0lSE8 

COMMVHIINCRI Mil. MY. MXP2. MIIP3. 14111' •• MIIPS. MIIP7. l1H08 C"hZI • SKII •• I 015£8 
I MYP2. MYP). MYP •• MYP5. Myp7. MT 111108 CC II .31 • SKI!.!» 0lSE8 

CQMIIONICONI HICDHYh HYOHII'. DOHXHY. DOHh ooHY. PRo ooH12. 002HT.06.IU9 CC II •• , • 0.0 0lSE8 
1 HXDHY. KYOHII 06.1U9 CCII.51 • 0.0 0lSE8 
COMMvH/Rl1 HK. HL. Nf. HT2SW. TIM 29JA9 C lSEa 
TYPE REAL TIM 19JL9 8811.11 • 001411.,1' OISEa 
CALL IOBIHC6HREWIHO.6, 19,\G910 8811.21 .0014111+1011 0151"8 
CALL IOBIHC6HREWIHO.71 19AG910 B811 .)1 • 0.0 0151"8 
CALL 108IHltHR£WlHO,101 19AG910 C 15[8 
CALL 108IHI6HREWIMO.111 22AG910 01)( Itll • SKlJ.7, 0lSE8 

DO SOO , • 1. MXP' OlSEa 0011.21 • SKIIo .. 015ES 

EEMZ III "' 0.0 OISU 0011.)1 • 0.0 OlSEI 

EEM1UI "' 0.0 OISES GO TO 5000 015£1 
DOtI1C1.1I • 0.0 01sES C lsn 
ODMlIl.21 • 0.0 OISF" C .. .. .. FORM MATRIX AT I • 2 015[8 
DDMI I I.), • 0.0 OISU C IS£I 

500 CONTINUE 015E1 2000 CCII.1I • SKII.21 OlSE. 
lIMP • 6.0 .. OCtiT2 30.JU9 CCII.21 • SKI!.)I OIS[8 

,DMP • 6.0 .. 002HT 30.JU9 CC \I .31 ·SKII •• I 015[8 

C 15[8 CCII •• , • SKII.51 015[8 

C .. .. .. .. FQAM PARTITIONED ROW J OF STIFFNESS MATRIX ANO MULTIPLY 8Y OISU CCII.51 • 0.0 0lSE8 

C .. .. .. .. APPROPRIATE DEFLECTION VECTOR OISEI C 170£9 

C ISEI 8811.11 • DDMlIl-I.21 16JL9 

00 1000 J • ,. MYI'5 olsn 8811.21 • ODMIII.21 IOJL' 
MTIt .9 .. MXP' 19AG910 8811.31 • OOMIII.I.lI IOJL9 

CALL 108IHI4W'IIIEAO .6.SK.MTKI 25AG910- C 14JL9 

CALL 108INI4W'IREAO .11.SF."XP3 1 25AG910- 0011.11 • SltU.6' I.Jl9 

DO !loeo 1 • 1. "XI') 015E1 0011.21 .. SKU." 14.11.' 
MI ... EEM2111 015[1 0011 .31 • SKII.II 1 • .11.9 

EEIII • Sit I 1.91 015U GO TO 5000 IOJL9 
SKII," • SKU.3I • SFIII 22AG910 C lSEI 

If I .EO. 1 I GO TO 1000 CISEI C .. .. .. FORM MATRIX AT I • IUP2 015E1 
IF I .£0. 2 I GO TO 2000 015n C IS!!' 
IF I .EO. IUP2 I GO TO ,000 015E1 '11"'0 CC II .11 • 0.0 0lSE8 
IF I .£0. MlIP3 I GO TO 4000 '015£1 CC II .2 I • SKII,II OlSEI 

C 15£1 CCII.3) • SItIl.21 OlSEI 

C .. .. .. FORM MATRICES AT GENERAL INTERIOR STATIOH 01SU C( II •• ) • Sltll.)) OISEI 

C lUI CCII .51 • Sltll •• , 015£1 
CCII.lI • SKI 1011 0lSE8 , 170[9 
CCU.z, • SItCl.21 015n 8811.11 .. DOMll1-I,31 IOJL9 
CCII.:III ·SItIl.3I 015E1 8811.21 • ODMIII.21 10JL9 

CCII •• ' • Sit I "., olSn 8811 .31 • ODMIII+1 .21 IOJL9 
CCIl.51 • SItIl.51 01SU C I.JL9 

C ISlI 0011.11 ·Sr.II.61 14JL9 
8811.11 • ODM11I-1.,. IOJl9 0011.21 • Sltll,7I I.JL9 
8811.21 • ODMlCh2' Olsn 0011.,. • SKI 10., I.JL9 

881"" • ODMlCl.loII OISEI GO TO SOOO IOJL9 

C 15£1 C ISE8 
0011.11 ·SItIl.61 olsn C ...... FURM MATRIX AT I • Mltp, 0lSE8 
0011,21 • SKII,71 (II!".'!! C ISE8 



C 

C 
C 

"OvO 

5000 
C 
C 

CC 11.11 • 0.0 
CC(I.21 • 0.0 
CC (1.'1 • SKI loll 
CC( It .. , ·SK(I.21 
CCII.51 ·SKII.31 

BBIl.U • 0.0 
BBII.21 • 00101111-1.31 
BBII.3I • 00l0I11 1031 

0011.11 ·0.0 
0011.21 ·SKII.61 
00(1.31 .SKII.7I 

COHTlHUE 

C • • • 
C 

STIFFNESS MATRIX HAS BEEN FORMEO. REAO RHO INTO 1ST COLUMN 
OF SK ANO OF INTO SECONO COLUMN OF SK 

C 

CALL 10BINI"HREAO 
CALL 10eINI~REAO 

.7.SK.MXP31 

.7.SI(ll.21.MXP31 

(. . . . FORM PRODUCT OF K TIMES 1 - "·WTMI - WTM2 
C 

C 
C • 
C • 
C 

CALL RI'll 
CALL CFv 
CALL ASFII 
CALL Mel'li 
CALL RI'll 
CALL CFV 
CALL ASFv 
CALL MeFV 
CALL ASFII 
CALL RFV 
CAll CFV 
CAll ASFV 
CALL MeFV 
CALL ASFV 
CAll RFV 
CALL CFV 
CAll ASFII 
CALL MeFV 
CALL ASFV 
CALL RFV 
CAll CFV 
CAll ASFv 
CALL MeFV 
CALL AS"V 

fORM 
• • 

CALL RFV 
CAll CFV 
CAll AS'V 
CALL MeFV 

SKll.31. WTM1I'.J-21. Ll, 1. HK 1 
SKll.31. Ll. 1. NK. - ... 0 1 
SKll.31. WTM213.J-21. SKll.31. Ll. 1. NK. -1.0 I 
loA. SKll.31. WI3.JI. Ll. I.NK. 1 I 
SKII.31. wTMI13.J-l'. Ll. 1. NK I 
SKll.31. Ll. 1. NK. -".0 1 
SKll.31. WTM213.J-l'. SKll,'" Ll. 1. NK. -1.0 
Be. SKll.]I. SKll ... I. Ll. I.NK., 1 
SKll ... " WI1.JI. WI3.JI. Ll. 1. NK. +1.0 I 
SKll.31. WTMI13.JI. Ll. 1. HK 1 
SKll.31. Ll. 1. HK. - ... 0 1 
SKll.31. WTM211.JI. SKll.]I. Ll. 1. NK. -1.0 
CC. SKll.31. SKll ... I. Ll, I.HK.,) 
SKll ... I. WI].JI. WI3.JI. Ll. 1. NK. +1.0 ) 
SKll.31. wTMI13.J+ll. Ll. 1. NK I 
SKll.31. Ll. 1. HK. - ... 0 I 
SKll.'I. WTM213.J+ll. SKll.31. Ll. 1. HK. -1.0 
00. SKll.31. $Kll ... I. Ll. I.HK. 3 I 
SKll ... I. WI3.JI. W,3.JI. Ll. 1. NK' +1.0 1 
SKll.31. wTMI13.J+21. Ll. 1. NK I 
SKll.31. Ll. 1. NK' -4.0 1 
SKll.31. wTM213.J+21. SKll.31. Ll. 1. NK. -1.0 
Ef. SKll.31. SKll ... I. Ll. I.NK. 1 1 
SKll ... I. WI3.JI. WI3.JI. Ll. 1. NI(. +1.0 

PRODUCT OF RHO TIMES I 
2 • WTMI - WTM2 

ANO 0' TIMES - WTM2 

SKIl.31t WTMII3.JI. Ll. 1. NK 1 
SKI1.310 Ll. 1. NK. 200 I 
SKCl.31t WTM213.JI. SKI1.31. llo 1. NK. -1.0 
SKI1.lI. SKll.31. SKll,"'. Ll. I.NK. 1 I 

0lSE8 
0lSE8 
29JA9 
0lSE8 
0lsE8 

ISE8 
29JA9 
0151'8 
015(8 

15(8 
ISE8 

01SE8 
01sE8 
01SE8 
OlSElI 

lSE8 
0lSE8 
01SE8 

151'8 
25A6910-
25A6910-

15£8 
015£' 

IS!8 
26JLO 
26Jt.O 
26JLO 
26Jt.0 
26Jt.0 
26JLO 
26JLO 
26JLO 
170£9 
170£9 
110[9 
110!9 
110£9 
OUL9 
110E9 
1101'9 
170£9 
110[9 
170£9 
170£9 
170£9 
110(9 
170£9 
170£9 
Isn 

27JE9 
015£8 

ISE8 
1701'9 
110£9 
170[9 
170£9 

C 
C 
C 
C 
C 

C 

CALL CFII SK II ..... Lit I. NK. RMP , 
CALL ASFII SK 11 ... ,. W'C'3.J). tfl'3.J). Li. 1, NI<. .. +1.0 , 
CALL MSFII 51( (1.2l, WTM213.JI. SKIl.31. lI. t .NK. I ) 

CALL CFII SK (10'" L 1. It NK. DMP I 
CALL ASFII SKIl.31t ~i3.J). Wt'3,J" It. 1. HI(. +1.0 I 

•• INERTIA LOAO IIECTOR IS FORMED ANO STORED IN wll,JI 
• • WRITE 01 TAPE nOI AND SHIFT EEMI TO EFM2 AND 

••• EE TO E[MI. SHIFT 00 TO 001011 AND REPEAT FOR NEw 

wt3,JI • 0.0 
W(MXP~.JI • 0,0 

I F I J .GT. 3 I GO TO 5800 
52uO DO 5500 L • 3. MXP5 

W(L.JI • 0.0 
5500 CONTINUE 

GO TO 6000 
5800 IF ( J .fO. MYP~ I GO TO 5200 
6000 CONTINUE 

CALL 10BIN'~HWRIT£ .10.WI3.JI.MXP31 
00 1000 , • 1. MXP3 

££M2111 • [EMIIII 
£EMIIiI • EEIII 
00l0I111.11 • 0011>11 
00MIII.21 • 0011.2) 
OOMIII.31 • 0011.31 

1000 CONTINUE 
8000 CONTINU£ 

C~LL 1061N 16HWRIT£R.l01 
R£TURN 
EHO 

J 

30JU9 
170E9 
170E9 
30JU9 
30JU9 

ISE8 
0lSE8 
01S[8 
015[8 

ISE8 
OUL9 
01Jl9 
30JU9 
30JU9 
30JU9 
)OJU9 
30Jt19 
22JL9 
30JU9 
305£910 
01sE8 
01SE8 
01SE8 
01SE8 
01SE8 
01SE8 
0lSE8 
01SE8 
22A6910 

ISE8 
IsE8 
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SUBROUTINE EXCUT 

This subroutine selects the appropriate 
subroutine to form the deflection coefficient 
matrix and the equivalent load vector. 

Yes 

CALL ACCEL CALL DYNAM 

Check time step 

Check calculation 
at first time step 



c 

SUBRuUTlllf EXCUT , LI, L2, L3, ET2, OT, CC, ETI, EE, 
1 HL, JJ, HI, H2, H" ai, aOl, a02, 
2 all, 012, all, Sit, RHO, OF, SF 

COMMuN/lNCRI Ha, HY, HXP2, MXP3, MXP~, HXP~, MXP7, 
1 HYP2, HyP3, HYP~, MYP5, HyP7, HT 

CUMMuN/COIII HXOHY3, HYOHX3, OOHXHY, OOHX, OOHY, PR, 
1 HXOHY, HYOHX 
COMMON/RII 11K, II~, IIF, IIT2S~, TIM 

FF. 
aD'" 

00HT2. 

TYPE IIITEGER TIM 
OIM€"SION EUI Ll. 1111. 

1 ETlC Ll, 1111. 
OTt Ll. "210 
EEl Ifl. LlI. 
Df'1 Ll I. 

cee LI. II". 
FF' LI It 

2 RHO' Ll I. 
3 01 I Ll I. 
- 001 I L1 I. 
t 0021 Ll I. 003C 
• onl Ll I. OUI 
7 OUI LI I. 
I SKI Ll. 91. SFI Ll 

IF I TIM - 2 I 100. 50. 200 

Ll 
Ll 

I. 
I. 

50 IF I "T2SW .EO. 0 I GO TO '00 
l~v CALL STAT ILl. L2. L'. ET2. OTt CC; fTl. fE. FF. 

1 IlL. JJ. Ill. 112. 1130 or. 011. Sit. SF. 001 
GO TO 500 

200 CALL OVIIAM ILl. L2. L', ET2. OT. CC. ETI. E[. FF. 
1 .... ~. Ill. 112. II" 01. 001. 002. 00" 
2 OU. OU. OU. Sit. RHO. Df'. SI' 

GO TO tOO 
'UO CALL ACCEL ILl. L2. L'. ET2. DT. Cc. ETI. EE. FF. 

1 .... ~. lilt 112. II'. 0010 on. ou. 
2 Sit. RHO. OF. $F 

500 Co.TINU£ 
RETUIUI 
EIID 

015£8 
015[8 
2~"R9 
111108 
IIHOI 

002HT ,06J09 
06JU9 
29JAt 
I I HOI 
111101 
111101 
111108 
llM08 
111101 
111101 
11Il0l 
111101 
25""9 
OISEI 
OISEa 
OISEI 
27JE9 
OISEI 
OISEI 
(lISEI 
25""9 
olSn 
OISEI 
27JE9 
25l1li9 
OISEI 
011E1 
OISEI 
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SUBROUTINE STAT 

This subroutine forms the stiffness matrix 
and load vector for the static analysis and 
the deflection analysis at the end of the 
first time step. 

No 

Initialize storage for 
. b . t d su matr~ces e. 1 an e. 

]- ] 

Adjust matrix identification 
for a new horizontal partition 

t t 
e. 2 = e. 1 

] - ]-

t 
e. 1 ]-

= e. 
] 

e. = SK(L,9) 
] 

Read static 
load, inertia 
and damping 
load, dynamic 
load, and 
correction 
load vectors 

Recall a hori­
zontal partition 
of the stiffness 
matrix and the 
corresponding 
linear approxi­
mation to the 
nonlinear foun­
dation 

The submatrices 
t t 

e. 2 and e. 1 
]- ]-

are replaced by 
t 

what was e. 1 
]-

and e
j 

for the 

preceeding hori­
zontal partition 



No 

1-----­
I 

DO I "" 1, MXP3 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
t 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 5000 

Yes 

Yes 

Yes 

No 

Yes 

1 5 Form c. . thru c. . 
1,] 1,] 

th 
Select terms for the I 

t 
row of d

j
, 

1 
and d. 1 . 1+ , J 

3 2 
d. 1 ., d .. , 
l-,J 1,J 

1000 2000 3000 

191 

Multiple 
loading con­
dition, recur­
sion coeffi­
cients, and 
multipliers 
have been 
formed and 
stored On 
files 

Check row of 
partitioned 
matrix for 
special 
formation 
instructions 

Form the rth 
row of the 
submatrices 

c and d t 
j j 

5001 



192 

I 
CD 
I 
~ 
I 
I 

1000 2000 3000 4000 
Special shifting to organize first two rows 
and last two rows for the solution procedure 

L ____ _ 

5001 
Fonn load 



C 

SUBRUUTINE STAT ILl. L2. L3. ET2. OT. CC. ETI. EE. FF. 
I JJ. NI. N2t N3t 01. Oil. 5"-. SF. 001 I 

COMMvN/lNCRI MX. MY. MXP2. MXP]. MXP~. MXP~. MXP7. 
I MYPZ. MYPlt MYP~. MYP~. MYP7. MT 

COMMUN/CONI HXDHY]. HYOHX3. OOHXHY. ODHX. OOHY. PRo ODHT2. 
1 HXDHY. HYOHX 

COMMUN/RII NK. NL. NF. NT2SW. TIM 
TYPE INTEGER TIM 
OIME~SION ET21 LI. Nil. 

1 Ell I Ll. Nil. 
] 0 I I LI I. 
• SKI Ll. 91. 

OTC LI. N21. 
EEl Nit LII. 
Qill LI ). 

CC I L I. N]I. 
FFI LI " 

SFI LII. OOIILII 

C ••• THIS SUBROUTINE FORMS THE ARRAYS OF MATRix COEFFICIENTS 

ML. 30JA9 
27JE9 
I1N08 
11N08 

002HT.06JU9 
06JU9 
29JA9 
IIN08 
IIN08 
I1N08 
]OJA9 
27JE9 

C 
C 

• • • FOR THE R-I PACKAGE FoR THE SOLUTION OF THE STATIC OEFL 

ISE8 
0lSE8 
0lSE8 

CALL 10BINI~HREAO .8.FF.MXP)1 
CALL 10BINI~REAO .10.01.MXP]) 
CALL 10BINI~REAO .1~.OII.MXP]1 
CALL 10BINI~REAO .11.001.MXP]1 

c ••• 
C 

IF I JJ .GT. NF I 
INITIALIZE STORAGE 

100 

DO 100 L • 1. MXP] 
ETlCL.lI • 0.0 
EECl.LI • 0.0 

CI)ICTlNUE 

GO TO ]00 

c·· . 
)00 

READ JJTH ROW OF STIFFN[SS MATRix SUBMATRIC(S 
MTK • 9 • MXP] 

CALL 10BINI~REAO .6.SK.MTKI 
CALL 10BINI~REAO .18.SF.MXP]1 

C 
C ••• 
C 

700 

C C·· • 
C 

C 

FORM ETZ AND ETI 

DO 700 L • 1. MXP] 
ETZIL.ll • ETIIL.l' 
ETIIL.II • EEll.LI 
EEll.LI • SKIL.91 

CONTINUE 
IF I M1. .EO. - I I 

FORM OT. CC. ANO EE 

DO ~OOO I • I. MXP] 
SKII.3I • SKI I.]) + SFII) 

IF I .Ea. I I 
IF I .EQ. 2 I 
IF I .Ea. MXPZ I 
IF I .EQ. MXP] I 

GO TO 5001 

GO TO 1000 
GO TO ZOOO 
GO TO )000 
GO TO ~OOO 

C ••• 
C 

FORM SUBMATRICES AT A GENERAL INTERIOR STATION 

IF I 

CClI.1I 
((II.ZI 
CClI.]) 
CCCI.3I 

• SKllt1l 
• SKII.21 
• SK I I .]) 

.LT. 1.E-20 CClI.] I • 1.0 

ISE8 
2~AG9IO-
2~AG91o­
]OSE910 
Z5AG910 
IINOB 
Ols[8 

lSE8 
OlSE8 
015[8 
OIS[8 
OIS[8 
015[8 
19AG910 
25AG910 
2~AG910 

15[8 
0lSE8 

ISE8 
01$E8 
OIS[8 
OlSE8 
0lSE8 
OISEA 
30JA9 

15[8 
0lSE8 

ISE8 
0lSE8 
2~MR9 
22MR9 
22MR9 
22MR9 
2ZMR9 

I$E8 
0lSE8 

ISE8 
0lSE8 
0lSE8 
0lSE8 
19MR9 

C 

C C·· • 
C 

10UO 

C 

C C·· . 
C 

20UO 

C 

C 
C • • • 
C 

30UO 

C 

C C·· . 
C 
~001.l 

CClI.~) .5"-11.4) 
CCII.~I • S"-II.~I 

OTCI.1I • SI(CI-lt81 
DTI I .2) • SI(11t71 
OHI.3I ·51(11+1.6) 

GO TO ~OOO 

SHIFT MATRix COEFF FOR CC AND DT TERMS TO LT EDGE - 1 • 1 

CCII.11 
IF I CCII.1I 

CCllt21 
CClI.3I 
CCCI.~1 
CCII.~I 

• SI(II.3I 
.LT. I.E-20 I 

• SKII .~I 
• 51(1 1t~1 
• 0.0 
• 0.0 

OTII.11 • SI(II.7) 
OTCI.ZI • SKII+I.6) 
OTCI.3I .0.0 

GO TO 5000 

CClI.1I • 1.0 

SHIFT MATRIX CUEFF FOR CC TO LT EDGE - I • 2 

CCII.11 • SKII.ZI 
CCII.ZI • SKII.]I 

IF I CCII.ZI .LT. I.E-20 
CCII.)I • SKII.~) 
CCII.~I • SKII.~I 
CCCI.~I· 0.0 

OTII.11 • SKII-I.II 
OTII.21 • SKCI.7) 
OTII.]I • SKII+I.6 1 

GU TO ~OOO 

C((I.2) • 1.0 

SHIFT MATRIX COEFF FOR CC TO RT EOGE - I • MXP2 

CCCI.II 
((11.21 
CCCI .]) 
C((I.~I 

IF 1 CCII .~I 
CCII.~I 

• 0.0 
• 51(11.11 
• SK 11.2 I 
·SKII.]) 

.LT. I.E-20) 
• SKI ( .4) 

OTCI.l) ·SKII-108) 
OTII.ZI • SKII.7) 
OTII.]) • SKII+I.6) 

110 TO ~OOO 

((I I .~) • 1.0 

SHIFT MATRIX COEFF FOR CC ANO OT TO RT EEGE - I • MXP3 

C((I.I) • 0.0 
CClI.21 • 0.0 
CCII.]) .SKII.I) 
CCCI.~1 ·SKII.2) 

01SE8 
01SE8 

ISE8 
0lSE8 
0lSE8 
0lSE8 
01SE8 

ISE8 
01SE8 

ISE8 
0lSE8 
19MR9 
0lSE8 
0lSE8 
01SE8 
01SE8 

ISE8 
0lSE8 
0lSE8 
01SE8 
OISEa 

IsEa 
0lSE8 

ISE8 
0lSE8 
0lSE8 
19MR9 
0lSE8 
01SE8 
0lSE8 

ISE8 
0lSE8 
0lSE8 
0lSE8 
0lSE8 

ISE8 
0lSE8 

ISE8 
0lSE8 
0lSE8 
0lSE8 
OISEB 
19MR9 
0lSE8 

ISE8 
0lSE8 
0lSE8 
0lSE8 
0lSE8 

ISE8 
0lSE8 

ISE8 
OISEB 
01SE8 
0lSE8 
0lSE8 



CClI,51 ·5IUI.3I 01SE8 I-' IF « CCI1.51 .LT. 10£-20 CCO.51 • 1.0 19MR9 1..0 C ISEa +='-
DTlI.l) • 0.0 01SE8 
DTl1t21 • 51: 11-1.81 01SE8 
OHIo3. • 51:11,71 01SE8 

5000 COfiTUIUE 01SEI 
5001 COfITlIlUE 160C9 

00 6000 I • 1. MlP3 I1N08 
FFIII • FFIII + 0(111 + 011111 + ODl111 27""E9 

6000 CONTINUE 015[1 
RETURN ISEI 
END 1 SEll 

C 



SUBROu~INE DYNAM 

This subroutine generates the equivalent 
load vector and matrix coefficients for 
the deflection analysis for the general 
time step. 

Set storage for 
t 

submatrices e. 1 J-
and e. equal to 

J 
zero 

300 

No 

Adjust matrix identification 
for new horizontal partition 

t t 
e. 2 == e. 1 J- J-

t 
e. 1 = J-

e. 
J 

e. == SK(L,9) 
J 
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Recall stiffness 
matrix, mass and 
damping, and 
linear estimate 
of nonl inear 
support 
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No 

Yes 

r------ DO L = 1, MXP3 

Yes 

Yes 

Yes 

Yes 

No 

Multiple-loading 
condition, 
recursion coef­
ficients, and 
multipliers have 
been formed and 
stored On files 

5100 

000 

3000 
2000 

1000 



I 

~ 
I 
I 
I 
I 
• 

r 
t 

Form matrices c. and d. 
J J 

for dynamic analysis; 
mass and damping are 
added to the main 
diagonal of c. 

J 

1000 2000 3000 (4000 

Special shifting to organize 
first two rows and last two rows 17 sO~ion prn 

::y 
\..._------

'1 5000 
CONTINUE) 

5100 
~ 
READ 

Files 8, J 
10 thru 

16 

Form equivalent load vector 
for partition j, q. 

J 

RETURN 

197 

th 
Form L row of 
submatrices c. 

J 
and d

t 
j 

Read all load 
vectors for 
partition j 



SUBRUUTINE DYNAM Ill, l2, l" ET2, DT, ce, E-Tl, EE, FF, 0lSE8 cell,51 • SI(.(L.51 01SE8 I--' 

1 Ml, ~~, Nl, N2, N" 01, DOl, 002, 003, 01SE8 C lSE8 \0 

2 Oil, 012, 01', SK, RHO, OF, SF 25MR9 7uo DTll,ll • SKIl-I,BI 01SE8 
(Xl 

COMMvN/lNCRI MX, MY, MxP2, MXP3, MXP4, MXP5, MXP7, IIN08 DTel,21 • SI(. CL., 7, 01SE8 
1 MyP2, MYP3, MYP4, MyP5, MYP7, MT I1N08 DT Il ,31 • SI(.(L+l,bJ 01SE8 

COMMuNI CONI HXDHY3, HYDHX3, ODHXHY, ODHX, ODHY, PR, ODHT2, OD2HT,06JU9 GO TO 5000 01SE8 
1 HXDHY, HYDHX 06JU9 C lSE8 

COMMUN/RII Nee.., Nl.., HF. NT2SW, TIM 22~A9 C • • • SHIFT MATRIX COEFF FOR CC AND DT TERMS TO IT EDGE, l • I 01SE8 
OIME"SION ET21 l.I, Nl I, DTe l I, H2 I, CCI L1, N3 I, 0lSE8 C lSE8 

1 Elli II , HI I, EEl HI , II " FFI LI 1"OJU9 1000 CCIl,l' • SKIl,31 01SE8 
2 1111 II I, 0011 II I, 0021 II I, 01SE8 IF I CCI l,ll .L T. 1.E-20 CClloll · 1.0 19MR9 , Q03I II I. 0111 II I. OUI II " 01SE8 CCll.21 • SKll.41 01SE8 
4 IIUI II I. SKI ll. 9 I, RHOI LI " 01SE8 CCll," • SKIl,51 01SE8 
S 0'1 II I. 5'1 II I 25MR9 CCll,"1 • 0.0 01SE8 

C lSE8 CCll,51 • 0.0 01SE8 
C • •• • THIS SUBROUllNE FORMS THE STIF'NESS MATRIX AND lOAD VECTOR 01sE8 C lSE8 
C • • • • FOR THE 2HD TO lAST TIME STEP 01SE8 DTll,lI • SKIl,71 01SE8 
C lSE8 DTll,2' .SKll+1061 01SE8 

IF I J,) .GT. H' I GO TO )00 01SE8 DTll,3I • 0.0 01SE8 
00 100 l • I, MIIP' 01SE8 GO TO 5000 01SE8 

£Tlll.11 • 0.0 015E8 C lSE8 
EEIl.ll • 0.0 01SE8 C • •• SHIFT MATRIX COEFF FuR CC TO IT EDGE, l • 2 01SE8 

11111 COIiTJllUf 015£8 C lSE8 
C lSU 20UO CC Il ,11 • SKIl,21 015£8 
C • • • BEGIN FORMULATION Of' SUBMATRICES FOR ,RIP4 SOlUTION o15U CCIl,21 • SKll,3I + 6.0 • I DFIlI • 002HT + RHOILI • 01SU 
C • • • READ J,) TH ROW OF STI'FNESS MATRIX, MASS AND DAMPING 015£8 ODHT2 I 01SU 
C lSE8 IF I CCIl,21 .L T. 1.E-20 I CCll,21 • 1.0 19MR9 

3110 MT .9. MIIP) 19AG9IO CCll,)1 • SKll,4' 01SE8 
CAll 10BIIII ... READ .6.SK,IIItT' 25AG9IO- CCIl,41 ·SKll,51 015£8 
CALL 10BIIII ... RfAD .7.RHO,MXP" 2SAG9IO- CCll,SI • 0.0 01sE8 
CAll I.OBIIII"'READ .70 D',MIIP3I 25AG91O- GO TO 700 015£8 
CAll 10BIIII ... READ .... S'.MIIP3I 2SAG9JO- C lSU 

00 400 l • 1. MJlP, 015£8 C • •• SHIFT MATRIX COEFF FOR CC TO RT EDGE, l • MxP2 01SE8 
fTZll.II • ETlll,11 ,USU C lSE8 
ETlll.II • EEIloll 015E1 'DUO CCll,1I • 0.0 01SE8 
fEIl.ll ·SIUl.9I 015E1 CCIl,21 • SIUl,1I 01SE8 

loUD COIiTJllUf 015£8 CCll,,, • SlUl,21 01SU 

l' I IlL .EQ. -1 GO TO !UOO 015U CCIl,41 ·SKll", + 6.0 • I DFllI • OD2HT + RHOILI • 01SE8 
C 15E1 OOHT2 I 01SU 
C • •• WHEN IlL • 1. 'ORM ENTIRE STI'FNESS MATRlX 01SU IF CCIl,41 .L T. 1.E-20 I C"l,41 · 1.0 19MR9 

C lSEe CC Il,SI • SKIl,41 09MR9 
00 SOOIi l • 1. MIIP' 01SE8 GO TO 700 015£8 

SKll.)' ·SKll,3I + S'll I 2SMR' C lSE8 

l' l .[Q. 1 I GO TO 1000 015£8 C • •• SHIFT MATRIX COEFF FOR CC AND DT TO RT EDGE, L • MlIP3 01SE8 

I' l .EQ. 2 I GO TO 2000 01SE8 C lSE8 

I' l .£Q. MaP2 I GO TO ,000 01SE8 40UO CCll,1I • 0.0 01SE8 

l' l .EQ. MaP, I GO TO 4000 01SE8 CCll,2' • 0.0 01SE8 
C lSE8 CCI l ,,, • SK I l ,11 01SE8 
C • • • FORM CC AIIO DT AT GENERAL INTERIOR STATION 015£8 CCI l ,41 • SKIl,21 01SE8 
C ISEI ceel,5' ·SKll,31 30JA9 

CCll.lI • SKll,lI 0lSE8 IF I ceel,SI .L T. 1.E-20 CCCl,SI • 1.0 19MR9 

ceel.2' • SKIl,21 01SE8 C ISE8 
CCll,)' • SKll.)' + 6.0 • I OF Il I • OD2HT + RHOIL' • 01SE8 DTll,ll • 0.0 01SE8 

ODHT2 , 01SE8 DTel,2' • SKll-1081 01SE8 

I' I Ceel,)' .L T., I.E-20 I Ccel.3 , • leO 19MR9 DTll,31 • SK I l. 71 01SE8 
CCI l .It, • SKll.It, 015£8 5UUO CONTINUE 01SE8 



~100 CONTINUE 
C 
C··. FORM LQAO Y£CTOR - FF 
C 

C 

CALL I081NI4HREAO 
CALL l08INI4HR£AO 
CALL I08INI4HREAO 
CALL I08INI4HREAO 
CALL 108INI4HR£AO 
CALL 108INI4HR£AO 
CALL 108INI4HRUoI) 
CALL 108INI4HREAO 

.10. Ql.MXP3' 

.11.QOloMXP3I 

.12 ,Q02 .MXP)I 

.n.Q03.MXP31 

.14.QIl.MXP,1 

.15,QU.MXP,1 
• a .QI3 ,MXP, I 
,8 .FF .MXP, I 

~99' CONTINU£ 
00 .000 L • 1. MXP' 

"ILl. 6.0 • FFILI + QIILI + OOllLI + QIIILI + 
4.0 • I QOZILI + QI21LI I + 0031LI + 0131LI 1 

.000 CONTINUE 
RETUIIN 
£HI) 

01 SEe 
IS[8 

01SE8 
1$E8 

25AG91o-
25AG910-
25AG91O-
25AG91o-
25AG91o-
25AG91o-
25AG9Io-
25AG9Io-
170E9 
01$EII 
01$[' 
015£11 
01$E' 
01$EII 

1$£' 
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SUBROUTINE ACCEL 

This subroutine organizes the matrix 
coefficients and right-hand side for 
acceleration analysis at the first 
time step. 

No 

Set storage for submatrices 
t e
j

_
l 

and e
j 

equal to zero 

Compute masS and damping 
multipliers 

r--­
I 
I Yes , 
I 
I 

Yes 

I No 

I 

Recall the 
stiffness 
matrix, mass and 
damping, and the 
linear approxima­
tion to nonlinear 
curve 

Form MXP3 rows 
in the partitioned 
stiffness matrix 

Check row for 
special formulation 
instructions 

4000 

3000 



I 

~ 
I 
I 
I 
I 
I 
+ 

Yes 

Yes 

Form modified stiffness matrix 
coefficients for acceleration 

analysis: 
and e. 

J 

t matrices c., d., 
J J 

1000 2000 3000 4000 
Special shifting to organize first and 
last two rows for the solution procedure 

L ___ _ 

Form the equivalent load 
vector q. 

J 
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Recall dynamic 
loading for first 
time step and 
correction loads 
for static condi­
tion and the 
first time step 



C 

SUBRUUTINE ACCEl Ill. l2. l3. E'2. OT. CC. ETI. EE, 
I Ml, JJ, Nio N2. N3. 001. 011, Oil. 
2 SK. RHO. Of. SF 

COMMUN/INCRI MX. MY. MXP2. MXp3. MXp4. MXp5. MXP7. 
I MYpZ. MYP3t MYp ... MYI'5. MYP7. MT 

cOMMON/CONI HXOHY3. HYOHX3. OOHXHY. OOHX. OOHY, pR, 
1 HXDHY. HYOHX 
COMMON/RII NK, H~. Nf, NT2SV. TIM 
TyPE INTEGER TIM 
TYPE REAL KMULT 
DlMENS,ION El2 ( 

I Ell! 
Z 0011 
3 SKI .. 

Ll. HI I. 
LI. HI " 
LI I. 
LI. 9 I. 

Sfl 

Dli l I. H2 I. 
EEl Nt. II I. 
0111 L1 It 

RHO I LI I. 
II I 

01$ES 
27JE9 
25MR9 
llN08 
11N08 

00HT2. 002HT,06JU9 
06JU9 
29JA9 
llNoe 

Ctl LI. 113 I. 
FF I LI I, 

0121 II I, 
Of I LI I, 

I1N08 
01S[8 
0lSE8 
27J[9 
18N08 
27JE9 

C •••• THIS s,ueROUTINE FORMS THE DYNAMIC STIFFNESS 
SoOLUTION OF THE INITIAL ACCELERATION 

MATRI.X FOR THE 
ISE8 

OISEa 
01$Ea 
01$E8 
OISEe 
alSEa 
OISEa 
OlSES 
OISEa 

C •••• 

14)0 
c 

JJJ • JJ - 2 
IF I JJ .GT. NF I 
DO 100 L • I.MXp, 

Ellll.II • 0.0 
EEH.LI • 0.0 

CONTINUE 

GO TO '00 

c ••• ~EGIH FORMULATION OF SU8MATRICES fOR fRIP4 SOlUTIOII 
READ JJ TH ROV Of STlfFHESS MATRIX. MASS 1.110 DAMPING C 

C 

C 

• • • 
,00 MTK • t • 

CALL 10eIHI~REAO 
CALL loellll~REAO 
CALL loeINI~REAO 
CALL 10eINI~REAO 

00 .. 00 L • 1. 
ET21l,1I 
ETUl.II 

CONTINUE 

MXP' 
,6.SK,MTlO 
.7 .RHO.lU(p, I 
.7, OF .MXp3I 
.lhSF,MXp" 

IU(P' 
• ET1ll.11 
• EE IltLI 

C·· • 
C 

fORM CC. DT. AHD EE 

KMULT - 6.0 • DOIiU 
IOIULT - 1.0 I KMULT 
002HT • ".0 • 002HT 
002HT - 1.0 I 002HT 

00 500~ L • 1. MXP' 
SKIL." • SKIl." 
L .EO, 1 I If 

IF 
If 
IF 

+ Sflll 

l .EO, Z I 
l .EO. MXP2 I 
L .EO. MXp, I 

GO TO 1000 
GO TO 2000 
GO TO '000 
GO TO .. 000 

FORM SU8MATRICES AT A GENERAL INTERIOR STATION 

CCll.ll • SKIL.I' • KMULT 
CCIL.21 • SKll.21 0 KMULT 
(Cll.', - $KIL,'I 0 KMUlT + OFlll 0 002HT + RHOILI 

ISEa 
01SEa 
OlSES 

ISEa 
19AG9I0 
25AG9I0 
25AG9I0 
25AG910 
25AG910 
OISEa 
0lSE8 
OlSEII 
OISEa 

1 SEll 
0lSE8 

UEa 
16JU9 
16Ju9 
16JU9 
16J!)9 
0lSE8 
2!1M119 
OlSEa 
0lSE8 
0lSE8 
0lSE8 

IsE8 
0lSE8 

ISE8 
OIS[8 
OISU 
01 sEll 

C 

C 

C c·· . 
C 

11.1\,10 

( 

C 

C 
C ••• 
C 

2"'''0 

C c·· · C 
.. 000 

C 

If I CCll,3) .IT. I.E-20 I CCll",· 1.0 
CCll ... ' • SKll ... 1 0 ~MUlT 
CCIl,51 • SKIl,51 0 ~MUlT 

OTll.l1 • SKIL-I.81 0 KMOlT 
OTIL.21 • SKIl.71 0 KMOlT 
OTll.31 - SKll+I.61 0 KMULT 

EEII.lI • SKll.91 
Cia TO 5000 

o KMUl T 

~HIFT MATRIX COEFF FOR CC ANa aT TERMS TO LT EOGE. L • I 

cell.l1 
IF I cell.lI 

CCll.21 
CCc l.3I 
cell,"1 
CCll.!i1 

• SKll.31 0 KMUlT 
.IT. I.E-20 I Ctll.lI 

• SKll, .. , 0 KMUlT 
• SKll.5, 0 KMUlT 
• 0.0 
• 0.0 

OTll.l1 - SIUl.7I • KMUL T 
OTll.ZI • SKll+I.61 0 KMUlT 
OTll.31 .0.0 

EEII.ll • SKll.9, 
GO TO 5000 

• KMUl T 

SHIFT MATRIX COEfF FOR CC TO IT EDGE. l • 2 

CClL.lI 
CC 11 ... 2) 

If I CCIL.21 
CCll.3I 
t:CIl ... , 
cell.,) 

GO TO 700 

- SKll.21 0 KMUlT 
• SKll.31 • KMUlT + OFlll • 002HT + AMOILI 

.LT. I.E-20 I CCll.21. 1.0 
• SKIL ... , 0 KMUlT 
• SKll.~1 0 KMUl' 
• 0.0 

SHIFT MATRIX COEFF FOR CC TO RT EDGE. l • MXp2 

CCIL.II 
CCIL.21 
CCll.ll 
ceiL ... , 

IF I CCll ... , 
CCll.~1 

(;0 TO 700 

• 0.0 
• SKll.II • KMUlT 
• $KIl.21 • ~MUlT 
• SKll.31 • KMUlT + OFlll 0 002HT + RHOI~' 

.IT. I.E-20' CCIL ... " 1.0 
• $Kll ... , 0 KMULT 

SHIFT MATRIX CDEFF FOR CC AND OT TO RT EDGE. l • MXP3 

CCll.11 
Ctll.21 
CCll.3, 
CCll ... , 
Ctll.51 

IF I CCll.51 

• 0.0 
• 0.0 
• SKll.II • KMulT 
• SKI~.21 0 KMulT 
• SKll,3' • KMUlT 
.IT. I.E-lO I CCll.51· 1.0 

19MR9 
01SE8 
0lSE8 

15E8 
llN08 
IIN08 
IIN08 
IIN08 
IINOI 
0lSE8 

ISE8 
0lSE8 

ISE8 
0lSE8 
19MA9 
0lSE8 
0lSE8 
IUSE8 
0lSE8 

ISEe 
0lSE8 
0lSE8 
0lsE8 
IIN08 
IIN08 
0lSE8 

ISEa 
0lSE8 

ISE8 
015£8 
015[8 
19MR9 
0lsE8 
0lSE8 
alSEa 
0lSE8 

!SEa 
015£8 

lSE. 
0lSE8 
OISEa 
o I SEll 
0lsE8 
19MR9 
OlSE8 
01SEII 

ISE8 
oisn 

ISEa 
015£8 
OISEI 
OISE. 
OlSE8 
0lSE8 
19MR9 

ISE8 

N 
o 
N 



SOuO 
l 

DTIL,11 3: 0.0 
DT(L,21 • S~(L-I,81 • ~MULT 

DT(L,31 • S~(L,71 • KMULT 
EE(l,LI • 0.0 

(ONTINUE 

( • •• FORM THE LOAD VECTOR - FF 
( 

C 

5200 CONTINUE 
CALL 10BIN(4HREAD ,11,ODl,MXP31 
CALL IOBINI4MREAD ,14,OII,MXP31 
CALL IOBIN(4HREAD ,IS,OI2,MXP3' 

DO boDe ~ • I, MXP) 
FFIL, • ODIILl + OIIILl - OIZILI 

6000 CONTINUE 

RETURN 
END 

OD2HT • 4.0 • ODZHT 
002HT I.e I OD2HT 

OISEB 
2SJU9 
2SJU9 
18N08 
0lSE8 

ISEH 
0lSE8 

ISE8 
17DE9 
2SAG910 
2SAG910 
2SAG910-
0lSE8 
27JE9 
0lSE8 
16JU9 
16JU9 

lSEB 
OISEB 

N 
o ....., 
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SUBROUTINE FRIP4 

This subroutine is an IOBIN version of the FRIP4 Five-Wide Recursion-

Inversion Solution Process which is documented in Research Report 56-19, 

!IAn Alegebraic Equation Solution Process Formulated in Anticipation of Banded 

Linear Equations," by Frank L. Endres and Hudson Matlock (Ref 6). IOBIN 

is a CDC system routine which is used for efficient file manipulations. 

These routines are called by FRIP4 and some by subroutines MASSAC and 

INERTIA and are completely documented in Ref 6: 

INVR5 

DCOMl 
INVR6 INVLTl 

MLTXL 

MFFV 

SMFF 

MFFT 

MBFV 

MFB 

ABF 

ASFV 

RFV 

CFV 

Takes inverse of general positive definite matrix 

Takes inverse of symmetric positive definite matrix 

Multiplies full (square) matrix times a full (square) 
matrix or a vector 

Symmetric multiplication of a full times a full matrix 

Multiplies a full times the transpose of a full matrix 

Multiplies a banded (packed) matrix times a full 
matrix or a vector 

Multiplies a full matrix times a banded (packed) 
matrix 

Adds a banded matrix to a full matrix 

Adds or subtracts two full matrices or two vectors 

Replaces a full matrix or a vector by another 

Multiples a full matrix or a vector by a constant 
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SUSR~UTINE FRIP _ Ill. l2. l3. Ml. A. AMI. AM2. ATM. B. BMI. EPI.IINOR 
I C. CMI. D. E. ETl. DT. CC. ETI. EE. FF. W. 101.1'12. 111008 
2 10,.01.001.002.003. Oil. 012. 013. SK. RHO.DF.SFI2~MR9 

C·· • • FRIP I>A - REVISION DATE 16JU9 I SLAB 33 1 16JU9 
C······· THIS GROUP Of 15 SUBROUTINES PROVIDES THE USER wiTH AN 20MY8 
C EFFICIENT GENERAL SPARSELY BANDED EOUATION SOLVER 04JA8 
C ITHE MATRIX IS ASSUMED TO BE SYMMETRIC AND POSITIVE DEFINITEI 12MR8 
C WHICH CAN HANDLE uP TO 5 GROUPS 0' BANDS • EACH 04JA8 
C OF ARBITRARY WIDTH 04JAR 
C •• ••• •• THIS ROUTINE SUPERViSES 14 SUBROUTINES • 13 OF WHICH 20MY8 
C ARE SELF-SUFFICIENT AND COME AS A PACKAGE • THE 04JA8 
C REMAINING ONE GENERATES AND PACKS THE STIFFNESS 04JA8 
C •••• • •• M~TRIX AS OUTLINED IN IN THE APPENDIX OF THE RELATED REPORT 23MR8 
C THIS ROUTINE MUST BE SuPPLIED BY THE USER SINCE 04JA8 
C IT DESCRIBES HIS PARTICULAR PROBLEM 04JA8 
C.·····. I~ THE MAIN PROGRAM THE 'OllOwING PAIR 5HOULD BE EOUIVAlENCED 20MY8 
C I ATM • DT I 20MY8 
C ••••••• SCRATCH TAPES SHOULD BE REOUE5TED FOR TAPES I AND 1 0~MR8 

DIMENSION Aill 1 • AMIIll 1 • AM21l1 1 20MY8 
1 BllI.lII • BMIllI.lII • EPIllI.lII • ATMlll 20MY8 
Z Clll.lll • CMIllI.lII IIllI.lI' ZOMY8 
3 EllI.lII • Wll2.l31 • ET2ell.NII 20MY8 
_ DTlll.NZI CClll.N". £lIllI.NII EEINI.lI' 23MR8 
~ FFllll 23MR8 

DIME"SION Oil lilo ODIC lil. 0021 lil. 0031 Ll', 111008 
I 0111 lil. Olll ll,. 0131 lil. RHOI Lli. 111008 
2 DFI lilo SKIll. 91. SFI II 1 2~MR9 
COMM~N/INCRI MX. MY. MxP2. MXP3. MXP4. MXP5. M_P7. 111008 

I MYPZ. MyP3. MYP_. MYP5. MYP7. MT 11NOR 
COMMONICONI HXOHY', HYDHX3. ODHXHY. OOHX. OOHY. PRo OOHT2. 002HT.06JU9 

I HXOHY. HYOHX 06JU9 
COMMON/RII 10K. Nl."NF. NTlSW. TIM 29JA9 
TYPE INTEGER TIM 111008 
CAll IOBINI6HR£wIND.II 19AG910 
CAll IOSINI6HREWIND.ll 19AG910 
CAll IOBINI6HREwIND." 19AG910 

KZ • NIC. • 10K 19AG91n 
IF! ML I I~. 100. lOa 04JA8 

C SET INITIAL CONDITIONS 04JA8 
lOa DO I" J. I • 10K 0lFE8 

DO 1'0 I. I • 10K 0lFE8 
BII.JI • 0.0 04JA8 
ClI.JI • 0.0 04JA8 
CM1Cl.JI • 0.0 04JA8 
EPIII.JI • 0.0 23MR8 
DII.JI • 0.0 16JU9 

1'0 CONTINUE 04JA8 
I'~ CONTINUE 04JAR 
I_a 00 1'0 I. I • 10K 0lH8 

AliI • 0.0 20MYR 
AMI I II • 0.0 2OMY8 

1'0 CONTINUE 04JA8 
c····················································· ......................... . 
C BEGI" FORWARD PASS SOLVE FOR RECURSION COEFFICIENTS 04JA8 , .............................................................................. . 
C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

180 

210 

220 

l80 

2<,;0 
Jvu 
4vO 

1" ... 0 
C 

DO 100v J = NF • I'll 
JJ • J 

FuRM SUB-MATRICES 
CAll [XCUT Ill. l2. l3. ET2. DT. CC. ETI. EE. FF. Ml. JJ. 

I I'll. 1'12. 1'13. 01. 001. 002. 003. 011. Olz. 013. 
2 SK. RHO. OF. 5F 1 

CALC RFV I AM2. AMI. II • 1 • 10K 
CAll RFV AMI. A • II • I • 10K 

IFI Ml 210. 180. 180 
CAll RFV I BMI. B • II • L1 • 10K 

(,0 TO 220 
READ 0 AND E MULTIPLIERS FRUH TAPE 

CAll IOblNI4HREAD .3.D.K2' 
CAll 10biN I 7HREAD5KP.3.E.K2 1 

':'0 TO 280 
CALCULATE RECuRSION MULTIPLIER E 

CALL RFV IE. EPI. II • II • NK 1 
CALCULATE RECURSION MULTIPLIER EPI 

CALL HBFV I ETI. 8MI. EPh II • II • 10K • 101 , 
CAll ABF I DT • EPI. EPI. II • NK • 102 1 

C~cCULATE RECuRSiON MULTIPLIER 0 
CAll SMFF IE. BMI. 0 • L1 • 10K 
CAll RFV I BMI. CMI. Ll • L1 • 10K 
CALL RF V I C MI. C • l I • L1 • 10K 
CAll MBFV ET2. 8MI. C • L1 • II 
CAll ASFV D. C • 0 • L1 • L1 
CAll ABF CC • 0 • 0 L1. 10K 
CAll INVR6 II • II • 10K 

• 10K • 101 
,NI( +1 
• 103 

CALL (fV I 0 • II • L1 • 10K • -1.1 
C~lCUlATE RECuRSiON COEFFIECENT ( 

CALL MF 8 I 0 • EE • C • l I • 10K • 101 1 
CALCULATE RECuRSION COEFFIECENT B 

(All '.FFT I 0 • EPI. 8 • II • 10K 1 
CALCULATE RECuRSION COEFFIECENT A 

CALL MFFV IE. AMI. A • L1 • I • 10K 
CAcl i48FV I ET2. AM2. ATM. II • I • NK 
CAll ASFV I A • ATM. AM2. II • I • NK 
CAll ASFV AM2. FF • ATM. II • I • 10K 
CAll MF'V D. ATM. A • L1 • I • 10K 

5AVE A COEFFICIENT ON TAPE I 
CAll 108INI6HWRITER.I.A.NKI 

IF 1108INI4HTEST.III 290. 300. 300 
IF I Ml' 400. 600. ~OO 

CALL IObINC7HREADSKP.2.w.K2 1 
CAll IOuINI7HREAOSKP.2.w.K2 1 

• 101 
• +1 

-I 

IF 1I0BINC4HTEST.211 4~0. 1000. 1000 
~A¥E 0 AND E MUlTIPlIER5 ON TAPE 3 

CAll 10bINI~HWRITE .3.D.K21 
CAll 108INC~HWRITE .3.E.K21 
CAll 108110 16HWRITER.3 1 

5AVE BAND C COEFFICIENTS ON TAPE 2 
CAll 1081~16MwRITER.2.B.K21 
CAll IOuINI6HWRITER.2.C.K21 

Cv~TlNUE . . . . . . . . . . . . . . . . . . . . . . . ... . 

OIFER 
04JAR 
04JA~ 

111008 
IINOR 
I1MR9 
20MY8 
20MY8 
04JA8 
20MY8 
04JA8 
17JA8 
2~AG911) 
310C9 
04JA8 
04JAe 
20MY8 
23MR8 
20MY8 
23MR8 
04JA8 
0~MR8 
2OMY8 
20MY8 
20MY8 
2OMY8 
0lFE8 
I~MR8 

20MY8 
04JA8 
20MR8 
04JA8 
23MR8 
04JA8 
20MY8 
20MY8 
2OMY8 
2OMY8 
2OMY8 
04JA8 
19AG910 
18OC9 
180C9 
2~AG910-
16OC9 
ImlC9 
17JA8 • 
2~AG910-
2~A 
22AG910 
17JA8 
19AG910 
19AG91n 
04JA8 

L····················································· ......................... . 

N 
o 
0'\ 



C BEGIN 8AC~WARD PASS COMPUTE RECURSION EOUATION O"JA8 C··················.···.·····.··.···.··· .•....•.•••..•....•.•.•••• _ ...........•• 
CALL IOUINI4H8KSP.IJ 
CALL I08INI.HBKSP.21 
CALL IOaINI~BKSP.21 
CALL RFV I WINF.NLJ. A • LI. I. N~ J 
CALL IOSINI.HSKS,.11 
CALL IOBINI~.K5P.21 
CALL IOBINI4H8KSP.ll 
CALL IOBINllHREAOSK,.I.A.NKI 
CALL IOBINllHREAOSKP.2,B,K21 
(ALL IOBINllHREADSKP,2.C.K21 
(ALL IOBINI4HBKSP.ll 
CALL IOBINI4HBKSP,ll 
CALL IOBINI.HBKSP.ll 
CALL Ml'Fv I B. WINF. NLIt AMI. 1.1, 1. NK J 
CALL ASFV I A, AMI, WINF.NL-II, LI, I, NK. .1 

NLMl • NL - l 
( . . . . .. .. 

DO 2000 L. NF , NLMl 
J • NLM2 • NF - L 

CALL IOBINI4H8KSP,ll 
CALL I08INI~BKSP,ll 
CALL IOBINI~e~p.21 

( RiAO A COEFFICIENT FROM TAPE I 
CALL IOBINI1HREAOSKP.I,A,NKI 

C READ e AND C COEFFICIENTS FROM TAPE 2 
CALL IOBINllHREAOSKP.2,B,~1 
CALL IOBINIlHREADSKP,l.C.K2I 
CALL IOBINI4HBK$P.11 
CALL IOBINI~eKSP,21 
CALL IOBINI.H8~P.21 
CALL MfFV I II. WINF.J.I!, AMI. LI. 1. N~ 
CALL MFFV I C. WINF,J.21. AM2, Lit I, N~ 
CALL ASFV AMlo AM2. AMI. L I ,I ,NK,.1 I 
CALL ASFV I A. AMlo WINr,JI. Ll, 1. NK •• 1 

ZOUD CONtiNUE 
c. • • • • • 

C 

RETURN 
END 

19AG9!0 
19AG9fn 
19AG91!') 
IOAP9 
19AG91!,) 
19AG910 
lUG9ro 
25AGt10-
25AG910-
25AG910-
IUMI!') 
!9AG91/) 
19AG910 
IOAP9 
IOAP9 
20"1"'" ... 
201'4",8 
20MYfI 
19AG910 
19AG91o 
19AG9rO 
a.JA8 
25AG910 
17JA8 
25AG910-
25AG911)­
l"AG91" 
19AG910 
I.AG910 
IOAP9 
10AP. 
2OM"'8 
IOAP9 
Q4JA8 . .. 
"JAil 

04JAA 
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