1. Repart No.	2. Government Accession No.	I O D Caralas N
1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
CFHR 3-8-75-177-1		[
4. Title and Subtitle DRYING SHRINKAGE AND TEMPERATURE DROP STRESSES IN JOINTED REINFORCED CONCRETE PAVEMENT		5. Report Date
		May 1976
		6. Performing Organization Code
	7 7 7 7 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	
7. Author's) Felipe Rivero-Vallejo and B. Frank McCullough		8. Performing Organization Report No.
		Research Report 177-1
9. Performing Organization Name and Address		10. Work Unit No.
Contag for Highway Bosses	•	
Center for Highway Research The University of Texas at Austin Austin, Texas 78712		11. Contract or Grant No.
		Research Study 3-8-75-177
		13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address		
Texas State Department of Highways and Public		Interim
·	portation Planning Division	
P. O. Box 5051	or on around the property	14. Sponsoring Agency Code
Austin, Texas 78763		
MUSCIII, ICAAS /0/03		

15. Supplementary Notes

Study conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration. Research Study Title: "Development and Implementation of the Design, Construction and Rehabilitation of Rigid Pavements"

16. Abstract

This report deals with the development of a computerized system for analyzing and designing concrete pavement slabs subjected to drying, shrinkage, and drop in temperature stresses with time.

The system is capable of analyzing a given jointed reinforced concrete pavement slab design for crack occurrence. It is also capable of designing either a reinforced or a non-reinforced slab.

It has been found that the main factor acting in crack generation is the friction between the slab and the underlaying pavement course, with higher stresses in the slab occurring with higher friction values.

This work is a useful tool in the study of cracking in concrete pavement slabs because it is relatively simple to superimpose the stresses due to drying, shrinkage, and drop in temperature on the stresses generated by factors such as wheel load, warping, etc. in order to get a more realistic "state of stress" in the slab.

17. Key Words 18. Distribution Statement jointed reinforced concrete pavement No restrictions. This document is slabs, computer program JRCP-1, drying available to the public through the shrinkage and drop in temperature crack-National Technical Information Service, ing, crack width, crack occurrence, Springfield, Virginia 22161. subbase friction 20. Security Classif. (of this page) 21. No. of Pages 22, Price 19. Security Classif. (of this report) 182 Unclassified Unclassified

DRYING SHRINKAGE AND TEMPERATURE DROP STRESSES IN JOINTED REINFORCED CONCRETE PAVEMENT

by

Felipe Rivero-Vallejo B. Frank McCullough

Research Report Number 177-1

Development and Implementation of the Design, Construction and Rehabilitation of Rigid Pavements

Research Project 3-8-75-177

conducted for

Texas
State Department of Highways and Public Transportation

in cooperation with the U. S. Department of Transportation Federal Highway Administration

by the

CENTER FOR HIGHWAY RESEARCH
THE UNIVERSITY OF TEXAS AT AUSTIN

May 1976

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

PREFACE

This report summarizes the results of a study to determine the effects of a drop in temperature and of drying shrinkage on the occurrence of cracks in a jointed concrete pavement. The purpose of this work was to develop a computerized method to analyze, or design, either a reinforced or a non-reinforced pavement slab.

The project is being conducted at the Center for Highway Research, The University of Texas at Austin, as part of the Cooperative Highway Research Program sponsored by the State Department of Highways and Public Transportation and the Federal Highway Administration.

This report would not have been possible without the help and assistance of many people. I also acknowledge Dr. W. R. Hudson, member of my graduate supervising committee. Special appreciation is extended to Mr. Thomas Hainze for his friendly help concerning the correction and analysis of the computer program. Thanks are also due to Mrs. Marie Fisher who has collaborated at different stages of this work.

Felipe Rivero-Vallejo
B. Frank McCullough

Austin, Texas August 1975

LIST OF REPORTS

Report No. 177-1, "Drying Shrinkage and Temperature Drop Stresses in Jointed Reinforced Concrete Pavement," by Felipe R. Vallejo and B. Frank McCullough, describes the development of a computerized system capable of analysis and design of a concrete pavement slab based on drying shrinkage and temperature drop, August 1975.

ABSTRACT

This report deals with the development of a computerized system for analyzing and designing concrete pavement slabs subjected to drying, shrinkage, and drop in temperature stresses with time.

The system is capable of analyzing a given jointed reinforced concrete pavement slab design for crack occurrence. It is also capable of designing either a reinforced or a non-reinforced slab.

It has been found that the main factor acting in crack generation is the friction between the slab and the underlaying pavement course, with higher stresses in the slab occurring with high friction values.

This work is a useful tool in the study of cracking in concrete pavement slabs because it is relatively simple to superimpose the stresses due to drying, shrinkage, and drop in temperature on the stresses generated by factors such as wheel load, warping, etc. in order to get a more realistic "state of stress" in the slab.

KEY WORDS: jointed reinforced concrete pavement slabs, computer program JRCP-1, drying shrinkage and drop in temperature cracking, crack width, crack width, crack occurrence, subbase friction.

SUMMARY

A computerized system to analyze a concrete pavement slab for drying shrinkage and drop in temperature stress with time has been developed.

The main purpose of developing the system was to search for possible cracking of the slab. The system was capable of

- (a) analyzing a given slab design (length, width, thickness, steel percentage, etc.), checking the width of the cracks and the steel stresses against maximum values;
- (b) designing the percent reinforcement for a concrete pavement slab, based on a maximum allowable crack width and stress in theesteel; and
- (c) designing a non-reinforced concrete slab.

This option will result in a slab length that will not give a cracked slab.

IMPLEMENTATION STATEMENT

This study resulted in a mathematical model that can be used to design more reliably the reinforcement steel for jointed reinforced concrete pavement. A computer program has been prepared that can be used now by the Highway Design Division of the State Department of Highways and Public Transportation. In order to obtain maximum utilization of this computer program, the following implementation steps are recommended.

- (1) A range in temperature conditions should be selected on the basis of Texas geographic areas to be used for studying variations in performance with respect to temperature and shrinkage cracking. These geographic areas should be the same as those recommended for implementation of computer program CRCP-1.
- (2) The wheel load stresses should be superimposed on those predicted by temperature changes and drying shrinkage. There is evidence from studies of concrete pavement that wheel load stresses may influence the formation of transverse cracks, especially during the early life of the pavement.
- (3) A user's manual should be prepared for the State Department of Highways and Public Transportation, to permit field usage of the program. The operating manual in Appendix 1 of this report could be used as a guideline.
- (4) The temperature data developed in connection with recommendation (2) should be used to develop a range of solutions, crack widths, crack spacings, and steel stresses for different material properties.
- (5) The information from (4) should be used to develop a design manual for CRCP that would reflect more variables than are taken into account at the present time; in this way, the performance level of CRCP would be improved.

TABLE OF CONTENTS

PREFACE
LIST OF REPORTS
ABSTRACT AND KEY WORDS
SUMMARY
IMPLEMENTATION STATEMENT
CHAPTER 1. INTRODUCTION
The Need
CHAPTER 2. CONCEPT OF CRACKING
The Problem
CHAPTER 3. THEORY
Shrinkage
Thermal Coefficient
CHAPTER 4. GEOMETRIC MODELS
Assumptions
Basic Equations for Model-1
General Equilibrium 31 Compatibility Equations for Model-1 34 Shrinkage 34 Drop in Temperature 37 Friction 39 Movement of Concrete 43 Joint width 45
Basic Equations for Model-2

	Bond Slip Zone Equation	46
	Summary of Equations	54 56
	Solution of the Basic Equations	61
	Model-1	61 64 64
	Steel Design	66 70
СНАРТ	ER 5. REINFORCMENT ANALYSIS PACKAGE	
	The Input Data	73 75 75
СНАРТ	ER 6. STUDY OF VARIABLES	
	Study of Subbase Friction	77 77 77
СНАРТ	ER 7. CONCLUSIONS, RECOMMENDATIONS AND IMPLEMENTATION GUIDELINES	
	Conclusions	87 88 88
REFEF	ENCES	89
APPEN	DICIES	
	Appendix 1. Operating Manual for Program JRCP-1	91 103 109 153
THE A	UTHORS	165

CHAPTER 1. INTRODUCTION

In 1921 and 1922, the Pittsburg, California, Road Test was designed and performed to determine the efficiency of both reinforced and non-reinforced pavement of varying design. The results indicated that longitudinal joints were effective in preventing longitudinal cracks.

Although concrete pavements were first used in about 1900, uncontrolled cracking caused problems for many years. As a result, joints were introduced to control cracking. From 1930 through 1936, the Bureau of Public Roads conducted the Arlington Test Road at Arlington, Virginia. The results supplied much of the basis for modern pavement design criteria (Ref 1).

In the late 1930's, many highway engineers became concerned about the use of contraction joints where expansion joints were also used. The use of dowels in closely spaced contraction joints and other problems in the jointing of pavements were also studied in view of service records. To study these questions, the Bureau of Public Roads authorized the construction of long-range experimental road tests in California, Kentucky, Michigan, Minnesota, Missouri and Oregon. After World War II, research programs in several phases of pavement technology were intensified to meet the ever-increasing demand of postwar traffic; two of the more significant programs are the Maryland Road Test (HRB SR-21) and the AASHO Road Test (SR 61E).

At the present time, significant concrete pavement research is directed toward the study of transverse cracking, which is a major contributor to pavement deterioration. Cracking in jointed reinforced concrete pavement is a prime factor leading to a reduction in pavement performance, depending on crack width. Water percolation, spalling, loss in load-carrying capacity, and pumping are some of the distress manifestations which vary with cracking in a slab.

Extensive research has been done to determine causes of cracking. It has been found that cracks occur when the tensile strength of the concrete is exceeded by the stresses generated by internal and external forces. The external forces are basically due to wheel loads, and the internal forces are due

to temperature changes (curling, shrinkage) and loss in moisture. Warping and curling have been studied at Purdue University and in many other places; the load effect has been studied at The University of Texas, but shrinkage in jointed pavements still has not been studied.

THE NEED

Concrete pavement is generally classified as either plain, continuously reinforced (CRCP), or jointed reinforced concrete pavement (JRCP). Reinforced concrete was recommended in 1914 to counteract cracking caused by thermally induced expansion and contraction. In 1916 it was recommended that all concrete roads be reinforced and specifications were written to cover several problems. In 1931, the common pavement slab was of the thickened edge design, and contained 30 to 69 pounds of steel, wire mesh, or bar mat per 100 square feet. Reinforcement design for rigid pavement is based on the concept that since it is often not economically possible to prevent the formation of cracks, it is necessary to control the opening of cracks in such a manner that the original load-carrying capacity of the slab is preserved. If the crack is permitted to open, contact between the faces of the crack is lost, with a corresponding loss in shearing resistance, and continued application of load results in progressive breakage. Since the main function of steel reinforcement in rigid pavement is to hold the interlock faces of the concrete at a crack in tight contact to provide for good load transfer, and to avoid water entering and washing out the subbase material, it is only necessary to furnish sufficient steel area to resist the forces tending to pull the crack faces apart. These forces develop when the slab tends to shorten as a result of a drop in temperature, concrete shrinkage, or moisture reduction. As the slab contracts, the movements are resisted by the friction between the slab and the underlying subgrade or subbase. The resistance to movement produces a direct tensile stress and may cause the concrete to crack. As soon as the concrete cracks, the tensile stress is transferred to the steel reinforcement.

In order to obtain the benefit of a better pavement design, reliable predictions of shrinkage and temperature stresses are required to complete the study of the pavement slab stresses. The reinforced slabs are designed to control random cracks; in other words, to minimize crack openings so that load transfer is provided by the aggregate interlock, thereby avoiding the distress manifestations tha could lead to total deterioration. Stresses in the

manifestations that could lead to total deterioration. Stresses in the pavement are caused by different factors such as:

$$\sigma_{\text{concrete}} = \sigma_{\text{load}} + \sigma_{\text{curling}} + \sigma_{\text{moisture shrinkage}} + \sigma_{\text{drop in temperature}}$$

The crack formation mechanism is represented conceptually in Fig 1.1. Cracking of the concrete slabs occurs when the tensile stresses generated by external and internal forces exceed the concrete tensile strength. Obviously cracking will occur only with tension or contraction, with expansion not being a problem. Therefore, the concrete slab will experience cracking when at some time the tensile stresses are greater than the tensile strength of the concrete. If at some time the combination of tensile stresses due to load, curling, shrinkage, and drop in temperature exceeds the tensile strength cracking will occur. This can be represented in the following conceptual equation:

$$(\sigma_{load} + \sigma_{curling} + \sigma_{shrinkage} + \sigma_{drop in temperature}) > f_{concrete}$$

Temperature drop is defined as the daily drop in temperature from the curing temperature. As previously mentioned, stresses due to load and curling have been studied; remaining for study are the shrinkage and drop in temperature stresses. The need for studying shrinkage and drop in temperature became apparent when slabs at the Dallas-Fort Worth Regional Airport experienced a range of transverse cracking. From the study of such cracks (Ref 2), it can be seen that the combination of slab movement with subbase type is the cause of the cracks. Slab length or joint spacing was varied from 37.5 to 75 feet, and it was found that joint spacing of 37.5 feet gave a reduced cracking. Initially the construction engineers hypothesized that by changing the amount of steel the problem would be solved, but in order for the steel to be effective, cracks must be present. Several subbase conditions were tried to study their effect on cracking. The studies confirmed the hypothesis that the stresses in the concrete would increase with increased sub-grade friction and joint spacing. For the low sub-grade friction, it can happen that no crack occurs, but, the movement of the slab still exists, leading to a joint width

Fig 1.1. Graphical representation of a concrete pavement slab distress mechanism.

Fig 1.2. Summary of the findings of the Dallas-Ft. Worth study (Ref 1).

that can be harmful. In Fig 1.2, a brief graphic summary of the findings of Austin Research Engineers, is presented. In this figure, percent cracking is defined as the percent of slabs expressing one or more transverse cracks at or near mid-span. The distribution diagram shown on the right of the figure is a hypothetical condition based on percent cracking; thus, if one hundred percent cracking is reported, then the concrete tensile stress due to volume change must be greater than the concrete tensile strength for every slab, that is, the ratio must be greater than 1.0.

The restriction of slab movement will also be increased if the dowels at joints are not greased or have poor alignment as shown in Fig 1.3. This means that dowels hold the slab when it tends to contract, thus creating additional stresses that are very difficult to predict because of the infinite number of positions in which the dowels can be placed.

OBJECTIVES

This report describes studies of the stresses induced in the pavement due to shrinkage and drop in temperature in an effort to make a more complete and realistic study of the concrete stresses, and also to have a better feeling of how the stresses are going to be affected by the combination and interaction of shrinkage, drop in temperature, slab length, subbase friction, and concrete characteristics.

The concrete slab will experience contraction movements due to drying shrinkage and drop in temperature; those movements will be restrained by the reinforcing steel, and the subbase friction; the restraint provided by dowels and tie bars is not taken into account.

SCOPE OF THE STUDY

This study is focused on the effects of drying shrinkage and drop in temperature in the crack formation in a concrete pavement slab. The study is intended to provide a useful tool in the design and analysis of jointed concrete pavement. As previously discussed, the concrete contraction movement will be restrained by the reinforcing steel and the subbase friction, the last parameter being the most important one in the development of cracks. The goal of this study was to develop a computerized model capable of analyzing either a reinforced or a non-reinforced slab for temperature drop and drying shrinkage stresses.

Fig 1.3. Forces generated by poorly placed dowels in a contracting slab.

This first chapter of the report is intended to introduce the reader to the subject. Chapter two gives a general view of the cracking mechanism in concrete. Chapter three deals with the theory and background on which the study is based, explaining in a comprehensive manner the shrinkage and drop in temperature phenomenona as well as concrete properties related to the study. Chapter four describes the mathematical approach used in the solution of our problem, including the geometric models as well as the solutions. Chapter five gives a description of the computer program and its usefulness.

CHAPTER 2. CONCEPT OF CRACKING

A brief conceptual explanation of why jointed reinforced concrete pavements crack is helpful to a better understanding of the problem. Cracking results when the concrete-tensile stress produced by contraction volume changes resulting from temperature drop, concrete shrinkage or both, exceeds the tensile-strength of the concrete which increases with time. The drying shrinkage is the reduction in length obtained when a saturated sample is dried under certain conditions; drying shrinkage depends on the cement and, in particular, certain conditions, including fineness, the richness of the mix, the water/cement ratio and the kind of curing, especially at early ages. The rate at which movement or shrinkage takes place depends on the permeability of the concrete. Drying shrinkage generally decreases as the strength of the aggregate increases (Ref 3).

It is fairly well established that shrinkage takes place over considerable time and the rate of increase of shrinkage decreases with time. The following figures have been given by Patten (Ref 3) to indicate the ranges of shrinkages at different times after placement:

after 2 weeks, 14-34 percent of the 20-year shrinkage; after 3 months, 40-80 percent of the 20-year shrinkage; and after 2 years, 66-85 percent of the 20-year shrinkage.

In Fig 2.1 approximatly average curves for the shrinkage strains for concrete made from ordinary portland cement, rapid hardening portland cement, and high alumina cement are given. It should be pointed out that the steepest portion of the curves occurs between time of placing and two months, emphasizing the importance of drying shrinkage in crack formation at an early concrete age (Ref 3). The volume changes alone do not produce stresses, but they occur as a result of the restriction provided by the friction between concrete and subbase. This may be seen in Fig 2.2 where two friction subbases, one low and the other high, are plotted (Ref 2). Stresses can be set up in rigid pavements as a result of uniform temperature changes which cause the slab to contract or expand. If a slab cools uniformly, a crack will generally occur at about the center of

Fig 2.1. Shrinkage strains for three types of cement, after Glanville (Ref 3).

Fig 2.2. Longitudinal stress distribution in a concrete slab prior to and at cracking (Ref 2).

the slab. Shrinkage of the concrete also causes the same phenomenon to occur. In order to generate frictional resistance during contraction, movement between slab and subgrade must occur, which means the slab is going to slide when contracting. Research Studies indicate minimum displacement of 0.06-inches is need for friciton to be fully developed (Ref 4). The slab movement will be in a decreasing pattern going from a maximum at its free end to zero (no movement) at a point in the interior, where the maximum concrete tensile stress will develop. Kelly (Ref 4) has suggested, based on results of "tests", that fully mobilized frictional resistance is realized for the distance ($\frac{L}{2} - x$) as shown in Fig 2.3, but from there to the geometric center of the slab, the shape of the stress distribution is parabolic. From this, it is obvious stresses due to frictional resistance in slabs will vary with slab length, but it is doubtful whether or not, on short slabs, sufficient friction will be developed to cause tensile stresses in the concrete that can lead to a distress manifestation (cracking).

THE PROBLEM

As discussed previously, the cracking occurrence in concrete slabs for pavements is a direct function of time, that is, the concrete slab will gain strength with time and also will contract due to temperature drop and drying shrinkage; both of which are also functions of time. The drop in temperature will be the difference between setting temperature and the lowest daily recorded temperature. This study is based on the early age of the concrete, from placement to 28 days, when concrete is approaching its full strength.

This study then is based on the need to find the stresses that the concrete is going to have with time and to determine if those stresses will produce a crack at or near maximum values. After knowing the concrete tensile stress distribution for a specific time and knowing the concrete tensile strength for that same time, it is fairly easy to predict a crack (Fig 2.4(a)); then, if a crack happens to occur, it is necessary to find the new concrete tensile stress distribution, which is going to be different from the previous one, because at the crack the concrete will have no stress, Fig 2.4(b); then by comparing this new stress pattern against concrete strength, more possible cracks can be detected, Fig 2.4(c).

Fig 2.3. Mobilized frictional resistance distribution (Ref 4).

(a) Concrete slab prior to cracking

(b) Concrete slab after first crack

(c) Concrete slab after second crack

Fig 2.4. Crack occurrence in a concrete slab.

The present work will only analyze the possible occurrence of two cracks in the slab, because it is felt that the first crack will be the one with the worst conditions, namely excessive crack width.

Therefore, the first task is to find the concrete stresses at each time. To do this, it is necessary to remember that those stresses are going to be a direct function of frictional resistance, which is going to depend on the slab movement, and themovement depends on slab length, drying shrinkage and temperature drop. The task now is to relate all these factors and predict the concrete stress.

CHAPTER 3. THEORY

Temperature drop and shrinkage are variables with time, as is the concrete strength; therefore, the problem is to relate the state of stresses in the slab at every time, from the concrete placement until the concrete gains its full strength. The solution is to find the stress in the concrete due to shrinkage and temperature drop at several time increments, and then compare this stress with the concrete strength also at that time as illustrated in Fig 3.1. At times, shrinkage and temperature drop alone will not cause cracking, but, if we superimpose the stresses due to load, warping or curling, they can produce stresses higher than the concrete strength.

At an early age concrete, the cracking pattern is due basically to the external forces generated by restraint of contractional movements developed by shrinkage and drop in temperature. The restraint is provided by the type of subbase friction and the reinforcing steel and thus generates tensile stresses in the concrete. This phenomenon can be better understood by observing the concrete behavior information taken from Ref 4 which tells us that:

"When cement is mixed with water to form a soft paste, it gradually stiffens until it becomes a solid. The cement is said to have set when it has gained sufficient rigidity to support an arbitararily defined pressure, after which it continues for a long time to harden. The water in the paste dissolves material at the surfaces of the cement grains and forms a gel which gradually increases in volume and stiffness. This leads to a rapid stiffening of the paste two to four hours after water has been added to the cement. Hydration continues to proceed deeper into the cement grains, at decreasing speed, with continued stiffening and hardening of the mass. In ordinary concrete the cement is probably never completely hydrated. The gel structure of the hardened paste seems to be the main reason for the volume changes which are caused in concrete by variations in moisture, such as the shrinkage of concrete as it dries. According to H. Rusch, for complete hydration of a given amount of cement, an amount of waterequal to about 25 percent of that of cement by weight, is needed chemically. An additional 10 to 15 percent must be present, however, to provide mobility for the water in the cement paste during the hydration process so that it can reach the cement particles, this makes for a total minimum water-cement ratio of 0.35 to 0.40 by weight and this ratio corresponds to 4 to gallons (15.14 - 17 lts) of water per sack of cement. Any amount of water above the 25 percent consumed in the chemical reaction produces pores in the cement paste. The strength of the hardened paste decreases

Fig 3.1. Flow chart to relate concrete strength and concrete stresses due to shrinkage (Z) and drop in temperature (ΔT) as a function of time.

in inverse proportion of the fraction of the total volume occupied by pores. This is why the strength of the cement paste depends primarily on, and decreases directly with, increasing water cement ratio" (Fig 3.2).

SHRINKAGE

As discussed above, any workable concrete mix contains more water than is needed for hydration. If the concrete is exposed to air, the larger part of this free water evaporates in time, the rate and completeness of drying depending on ambient temperature and humidity conditions. As the concrete dries, it shrinks in volume, probably due to the capillary tension which develops in the water remaining in the concrete. Now, if dry concrete is immersed in water, it expands, regaining much of the volume loss from prior shrinkage. Shrinkage, which continues at a decreasing rate for several months, is a detrimental property of concrete in several aspects. When not adequately controlled, it will cause unsightly and often detrimental cracks. In structures which are statically indeterminate, it can cause large and harmful stresses. So, the chief factor which determines the amount of final shrinkage is the unit water content of the fresh concrete, as illustrated in Fig 3.3.

It is evident from this, that the chief means of reducing shrinkage is to reduce the water content of the fresh concrete to the minimum compatible with the required workability. In addition, careful and prolonged curing is helpful for shrinkage control (Ref 4). Values of final shrinkage for ordinary concretes are generally in the range of 0.0002 to 0.0007 inch per inch, depending on initial water content, ambient temperature and humidity conditions, and the nature of the aggregate (Ref 7). Highly absorptive aggregates, such as some sandstones and slates, result in shrinkage values twice those obtained with less absorptive materials such as granites and some limestones. Some lightweight aggregates, in view of their great porpsity, easily cause much larger shrinkage than ordinary concretes. Hansen and Matlick (Ref 6) made studies of the variability of shrinkage with time. According to them, this variation is a hyperbolic function of time, which can be expressed mathematically as follows:

$$\frac{Z_t}{Z_f} = \frac{t}{M+t} \tag{3.1}$$

Fig. 3.2. Relationship between concrete strength and W/C ratio (Ref 4).

Fig. 3.3. Relationship between drying shrinkage and unit water content (Ref 4).

$$\frac{Z_t}{Z_f} = \frac{t}{M+t} \tag{3.1}$$

$$M = 26e^{0.36} \left(\frac{v}{s}\right) \tag{3.2}$$

e = base of Naperian log,

t = time in days after concrete setting

v = volume of the member (inches³),

s = exposed surface area (inches²),

 Z_{+} = drying shrinkage at time t , nad

 Z_f = final drying shrinkage.

For concrete slabs with dense graded and chemically stabilized sub-bases, the drying occurs from the top surface; thus the $\left(\frac{v}{s}\right)$ ratio equals to the concrete thickness D, resulting in the following relationship:

$$z_{t} = \left(\frac{t}{26e^{0.36D} + t}\right) z_{f}$$
 (3.3)

Using the above equation and having the final drying shrinkage, the drying shrinkage for any time t can be obtained for a slab with D thickness. The slab thickness is a function of the loads that are going to act on the pavement.

TEMPERATURE CHANGES

Concrete expands with increasing temperature and contracts with decreasing temperature. The effects of such volume changes are similar to those caused by shrinkage. That is, temperature contraction can lead to undue cracking particularily when superimposed with shrinkage; in indeterminate structures, deformations due to temperature changes can cause large and occasionally harmful stresses. The coefficient of expansion varies somewhat, depending on the type of aggregate and richness of mix. It is generally within the range

of 0.000004 to 0.000006 inch per inch per degree Fahrenheit (Ref 8). A value of 5.5×10^{-6} is generally accepted as satisfactory for calculating stresses and deformations caused by temperature changes. Other factors besides type of aggregate and richness of the mix that cause the coefficient of expansion of thermal coefficient to vary are temperature range, water-cement ratio, concrete age, and relative humidity.

That work assumes that the temperature distribution in the concrete slab is constant, with depth as an approximation. Tomlinson's work demonstrates that this assumption is not true in reality. Tomlinson's theory assumes the temperature varies according to a simple harmonic law. The temperature (θ) at any given depth (x) below the surface at any time (t) is obtained by means of the following relationships:

$$\theta = \theta \circ e - \frac{x}{h} \sqrt{\frac{\pi}{T}} \sin \left(\frac{2\pi}{T} t - \frac{x}{h} \sqrt{\frac{\pi}{T}} \right)$$
 (3.4)

and

$$\theta o^* = \frac{1.5 \theta_{a \text{ max}} - \theta_{a \text{ min}}}{2}$$
 (3.5)

where

 θ_0 = amplitude of the temperature cycle at the free surface of the slab,

e = base of Naperian log,

h = diffusiveness of the concrete in inches²/hour,

= thermal conductivity heat capacity per unit volume

T = periodic time of the temperature cycle (24 hours for the daily cycle),

 $\theta_{a \text{ max}}$ = maximum air temperature on a particular day, and

 $\theta_{a \text{ min}}$ = minimum air temperature.

^{*}Valid only for a six inch slab

CONCRETE PROPERTIES

Besides shrinkage, other concrete properties in which we are interested for the scope of this work are: thermal coefficient, strength, modulus of elasticity and bond.

Thermal Coefficient. The thermal properties of concrete are primarily a heat transfer process, extracting the excess heat from the concrete keeping the differential volume change at a minimum.

The mineralogical composition of the aggregate is the chief factor affecting the thermal properties of the concrete. From Ref 6, Table 3.1 can be used for recommended values for the thermal coefficient. Other factors are richness of the mix, relative humidity, water-cement ratio, concrete age, and temperature range.

Strength, Modulus of Elasticity and Bond. These three properties are related, and are functions of time. Knowing the tensile strength-time relationship, the flexural strength, the compressive strength, the bond stress, and the modulus of elasticity can be obtained as follows (Ref 7).

The split-tensile strength has a relation with the flexural strength that depends on the coarse aggregate type of the concrete:

Concrete Type	Ratio of Split-tensile * Strength to Flexural Strangth
Grave1	5/8
Limestone	2/3
Light-weight Aggregate	3/4

To have a clearer understanding of how to find the compressive strength, bond stress and modulus of elasticity of the concrete, a step-by-step summary will be discussed (Ref 7).

- (1) Find the flexural strength using the above relationship.
- (2) Find the compressive strength (f_c) by using

^{*}Average value

TABLE 3.1. CONCRETE THERMAL COEFFICIENT AS DEPENDENT OF AGGREGATE TYPES (Ref 6)

Type of Coarse Aggregate	Concrete Thermal Coefficient (10 ⁻⁶ in/in/°F)
Quartz	6.6
Sandstone	6.5
Grave1	6.0
Granite	5.3
Basalt	4.8
Limestone	3.8

$$f_{c}' = \frac{4000 f_{r}}{1000 - f_{r}}$$
 (3.6)

 f_r = flexural strength (psi) and f'_c = compressive strength (psi).

(3) Compute modulus of elasticity of the concrete by

$$E_{c} = \gamma^{1.5} 33 \sqrt{f_{c}^{\dagger}}$$
 (3.7)

where

 γ = unit weight of the concrete (pcf) and E_c = modulus of elasticity of concrete (psi).

(4) Compute the bond stress by using

$$\mu = \frac{9.5\sqrt{f_c}}{\phi} \tag{3.8}$$

where

 μ = bond stress (psi) and ϕ = bar diameter (inches).

If age-tensile strength data cannot be provided, the solution may still be possible if the 28-day compressive strength is provided, and used with the United States Bureau of Reclamation formula (Ref 3) which gives the percent of the 28-day compressive strength for various intermediate ages as seen in Fig 3.4.

Fig 3.4. Average variation of compressive strength of concrete with age (Ref 3).

From this, it is clear that the concrete compressive strength can be known for each day and the modulus of elasticity for each also can be obtained applying the equation previously mentioned:

$$E_c = \gamma^{1.5} 33 \sqrt{f_c'}$$
 (3.7)

CHAPTER 4. GEOMETRIC MODELS

In Jointed Reinforced Concrete Pavement (JRCP), crack occurrence is due primarily to internal stresses induced by changes in temperature and drying shrinkage. A set of basic equations that describe the stress variations with time is developed in the following sections. The externally induced stresses due to wheel load and other factors are not within the scope of this study, but the stress solutions due to other factors can be easily superimposed.

Two models are necessary for the derivation of the basic equations to represent the behavior of the slab. A JRCP slab is a symmetrical element with each portion having a free end and a fixed end at the centerline of the slab where no movement will occur as graphically represented in Fig 4.1. This model is termed Model-1, and is used to determine the first crack occurrence. If a crack occurs using this model, the behavior of the slab will be different, because there will be two concrete free ends, but the steel is fixed in one end, creating the need of a different model, this model to be termed as Model-2, and is graphically represented in Fig 4.2.

ASSUMPTIONS

In order to solve the problem, the following assumptions are made:

- (1) The steel and concrete are linearly elastic.
- (2) A crack occurs when the concrete stress is equal to or exceeds the concrete strength.
- (3) After cracking, the concrete stress at the crack is zero.
- (4) The relative movement between concrete and reinforcing steel is zero in the fully bonded sections.
- (5) The frictional resistance to movement of dowels and tie bars is neglected.
- (6) Temperature variations and drying shrinkage are distributed uniformly throughout the slab.
- (7) Material properties are independent of space.
- (8) The friction force-displacement curve is elastic.
- (9) The steel is placed at the neutral axis of the slab.

Fig. 4.1. JRCP Geometric model, namely Model-1.

Fig. 4.2. JRCP Geometric model used to search for the second crack, namely Model-2.

SIGN CONVENTION

- (1) Tension is positive.
- (2) Friction forces in the x-direction are positive.
- (3) Temperature drop is defined as the difference between the temperature at which the concrete set and the minimum temperature at the time of consideration.
- (4) Movements in the x-direction are positive.

Basic Equations for Model-1

For modeling the interaction between concrete, steel and the underlying soil when subjected to drying shrinkage and drop in temperature contractions, the several equations were developed. The concepts developed in Ref 7 for a continuously reinforced concrete pavement were taken as a starting point to solve the geometric Model-1. These equations can be categorized into the following groups:

- (1) general equilibrium, and
- (2) compatibility,
 - (a) shrinkage,
 - (b) temperature drop, and
 - (c) friction.

General Equilibrium. A free body diagram for Model-1, and stress distribution in the steel and concrete for a given drying shrinkage strain (Z) and temperature drop (ΔT) are shown in Fig 4.3. The steel stress in the fixed end of the model might be tension or compression, depending on the magnitude of the shrinkage and drop in temperature. The concrete stress is always in tension, going from a maximum at the fixed end to zero at the free end; $\Sigma F_{\mathbf{x}} = 0$ must be satisfied for equilibrium of the system, gives:

$$\Sigma \mathbf{F}_{\mathbf{x}} = 0$$

$$F_c + F_s = \int_0^x F_i dx$$

(a) Model-1

(b) Free-body diagram of Model-1

(c) Stress distribution in concrete

(d) Stress distribution in steel

Fig. 4.3. Free body diagram and corresponding stress distribution of Model-1.

or

$$F_c + F_s - \int_0^x F_i dx = 0$$
 (4.1)

where

 F_c = force in the concrete (1b),

F = force in the steel (1b), and
F = friction force per unit length along the slab,

= friction force per unit length per unit width.

As we are interested in determining the stresses, then equation 4.1 may be transformed to a stress equation by

$$A_{c}\sigma_{c} + A_{s}\sigma_{s} - \int_{0}^{x} F_{i}^{\dagger} dx = 0$$
 (4.2)

where

 σ_c = stress in the concrete, psi,

 σ_s = stress in the steel, psi,

 A_s = cross-sectional area of longitudinal steel, in², and

= cross-sectional area of concrete, in².

For a unit width slab (L), equation 4.2 can be rewritten as

$$D\sigma_{c} + \frac{A_{s}}{L}\sigma_{s} - \int_{0}^{x} F_{i} dx = 0$$

D = slab thickness (inches).

Therefore, dividing by D , the equation becomes

$$\sigma_{c} + \frac{A_{s}}{L A_{c}} \sigma_{s} - \frac{\int_{o}^{x} F_{i} dx}{D} = 0$$

L = slab width.

Substituting

$$p = \frac{A_s}{A_c} = \frac{A_s}{D \times L}$$

implies

$$\sigma_{c} + p\sigma_{s} - \frac{\int_{0}^{x} F_{i} dx}{D} = 0.$$
 (4.3)

Compatibility Equations for Model-1. The compatibility equations reflect the influence of the interaction between the slab contraction due to shrinkage and drop in temperature and friction in the concrete and steel stresses. For a more clear understanding, separate equations are derived for shrinkage and temperature drop, and then the principle of superimposition is applied to account for the total effect. In the development of the equations for shrinkage and drop in temperature, it was assumed there was no relative movement between concrete and steel.

(1) Shrinkage. The development of an equation is achieved by first assuming no bond between steel and concrete; that means that if the concrete contracts in the horizontal direction, no strain will develop because there is no restraint to that movement. But, if the restraint provided by the reinforcing steel (Fig 4.4) is taken into account, the concrete and the steel will experience strains, and the following relationship exists:

$$\epsilon_{cz} + \epsilon_{sz} = z$$

where

(a) State of no shrinkage

(b) Shrinkage without bond between two materials

(c) Shrinkage for a fully bonded condition

Fig. 4.4. Reinforced member behavior when subjected to a uniform shrinkage Z.

Z = free drying shrinkage strain of concrete,

 $\epsilon_{\rm cz}$ = concrete strain due to shrinkage (strain of concrete due to restraint of steel),

 ϵ_{8Z} = steel strain due to shrinkage (strain of steel due to shrinkage of concrete).

The concrete will be in tension, and the steel in compression, then according to the sign convention

$$Z = \epsilon_{CZ} + \epsilon_{SZ}$$

Converting to stress with sign convention (tension is positive),

$$Z = \frac{\sigma_{cz}}{E_{c}} + \left(\frac{\sigma_{sz}}{E_{s}}\right)$$

rearranging terms,

$$\frac{\sigma_{cz}}{E_c} = z + \frac{\sigma_{sz}}{E_s}$$

1et

$$n = \frac{E_s}{E_c}$$

solving for $\boldsymbol{\sigma}_{\text{cz}}$,

$$\sigma_{cz} = E_c Z + \frac{\sigma_{sz}}{n}$$
 (4.5)

 σ_{cz} = stress in the concrete due to shrinkage, Z,

 σ_{sz} = stress in steel due to shrinkage, Z,

E = elastic modulus of concrete,

n = modulus ratio, and

 E_s = elastic modulus of steel.

(2) <u>Drop in Temperature</u>. The variations in temperature tend to cause volume changes in both the steel and the concrete. As the air temperature goes below the casting temperature, the material contracts and induces tensile stresses in the concrete. In this work, both steel and concrete thermal properties are characterized by the linear coefficient of contraction or expansion. As previously pointed out, the aggregate type governs the concrete thermal coefficient.

To solve the problem, the concrete and steel are assumed to be fully bonded, meaning that both materials will have the same movement. From Fig 4.5 for a unit length slab, the following may be derived:

$$\epsilon_{c \triangle T} - \epsilon_{s \triangle T} = \Delta T (\alpha_{c} - \alpha_{s})$$

$$\epsilon_{c \triangle T} = \Delta T (\alpha_{c} - \alpha_{s}) + \epsilon_{s \triangle T}$$
(4.6)

where

 $\epsilon_{\Delta \Lambda T}$ = strain in the concrete due to a temperature drop ΔT ,

 $\epsilon_{\text{s} \wedge T}$ = strain in the steel due to a temperature drop $\triangle T$,

 $\triangle T$ = drop in concrete temperature (°F),

 α_{c} = concrete linear thermal coefficient (/° F), and,

 α = steel linear thermal coefficient (/°F).

For a stress equation, equation 4.6 can be written

$$\sigma_{c\triangle T} = \Delta T (\alpha_c - \alpha_s) E_c + \frac{\sigma_{s\triangle T}}{n}$$
 (4.7)

(a) Undisturbed state

(b) Contraction due to ΔT with complete slippage between concrete and steel. No restriction condition

(c) Contraction due to ΔT with no slippage between concrete and steel.

Fig 4.5. Reinforced element subjected to uniform temperature drop ΔT .

$$^{\sigma}$$
 c \triangle T = stress in the concrete due to \triangle T (psi), $_{\sigma}$ s \triangle T = stress in the steel due to \triangle T (psi).

If the principle of superimposition is applied to the concrete and steel stresses due to Z and $\triangle T$, the total stress can be predicted as follows:

$$\sigma_{\mathbf{c}} = \sigma_{\mathbf{c}\mathbf{z}} + \sigma_{\mathbf{c}\triangle T}$$

$$\sigma_{\mathbf{s}} = \sigma_{\mathbf{s}\mathbf{z}} + \sigma_{\mathbf{s}\triangle T}$$

Substituting the values of $\sigma_{\mbox{cz}}$ and $\sigma_{\mbox{c}\triangle\,T}$ from Eqs 4.5 and 4.7,

$$\sigma_{c} = \frac{\sigma_{s} + E_{c}[Z + \triangle T (\alpha_{c} - \alpha_{s})]}{\pi}$$
 (4.8)

Equation 4.8 represents the effects of shrinkage and drop in temperature in the concrete slab.

(3) <u>Friction</u>. When a concrete slab contracts due to loss in moisture and drop in temperature, the local movement of the slab increases from zero at the geometric center of the slab to a maximum at the edges as shown in Fig 4.6. This movement, if restrained, will produce stresses in the slab as happens when the base friction acts. The stresses produced in the slab by the base restraint will decrease from a maximum at the geometric center of the slab to zero at the free edges. Therefore, tensile stresses will be generated by this restraint to the slab, increasing the tensile stresses created by the reinforcing steel which also restrains the contraction of the concrete.

The frictional resistance increases with movement; therefore, its effect should be represented by the complete curve defining the friction-movement relationship. Considering the free body diagram of a slab element of length dx , which experiences a movement Y_c and a corresponding friction force F_i (Fig 4.7), then $\Sigma Fx = 0$ gives

Fig 4.6 Effect of the restraint provided by the subbase on a concrete slab.

(a) Free body diagram of element A.

(b) Concrete movement

Fig. 4.7. Free body diagram of an element in Model-1.

$$dFc + dFs = -Fi'dx$$

or expressed into a stress equation:

$$A_{c}d\sigma_{c} + A_{s}d\sigma_{s} = -F'_{i}dx$$

$$d\sigma_{c} + pd\sigma_{s} = -\frac{F_{i}}{D} dx \qquad (4.9)$$

but from Eq. 4.8 and since material properties are assumed to be independent of space (assumption 7) we conclude:

$$\sigma_{c} = \frac{\sigma_{s}}{n} + E_{c}[Z + \Delta T (\alpha_{c} - \alpha_{s})]$$
 (4.8)

Differentiating, with respect to x,

$$\frac{d\sigma}{dx} = \frac{d\sigma}{dx} \times \frac{1}{n} + 0$$

and solving for $d\sigma$

$$d\sigma_{s} = nd\sigma_{c} \tag{4.10}$$

Substituting into equation 4.9

$$d\sigma_c + pnd\sigma_c = \frac{F_i dx}{D}$$

$$\frac{\mathrm{d}\,\sigma}{\mathrm{d}x} = \frac{\mathrm{F}_{\mathrm{i}}}{\mathrm{D}} \frac{1}{(1+\mathrm{pn})} \tag{4.11}$$

With equation 4.11, the inclusion of the friction forces into the generalized system of equations is possible.

Equation 4.11 shows the concrete stress changes at a rate along the slab, which is a function of the frictional resistance between the base and the slab.

(4) Movement of Concrete. The local movements of the slab are required in order to compute the frictional resistance. As pointed out before, different points along the slab will experience different movements which go from a maximum value at the free edges to zero at the geometric center of the slab.

The slab movement can be obtained when superimposing the movements due to shrinkage and drop in temperature as follows:

for shrinkage:

$$\frac{\mathrm{d}Y}{\mathrm{d}x} = \epsilon_{\mathrm{CZ}} - \mathrm{Z}$$

Integrating:

$$Y_{cz} = \int_{0}^{x} \varepsilon_{cz} dx - Zx + k_{1}$$
 (4.12)

for temperature:

$$\frac{d Y_{c \triangle T}}{dx} = \epsilon_{c \triangle T} - \alpha_{c} \triangle T$$

Intergrating:

$$Y_{c\triangle T} = \int_{0}^{x} \varepsilon_{c\triangle T} - \alpha_{c}^{\triangle Tx} + k_{2}$$
 (4.13)

Thus,

$$Y_{c} = Y_{c \wedge T} + Y_{cz} \tag{4.14}$$

 Y_{cz} = concrete movement due to shrinkage (inches) $Y_{c\triangle T}$ concrete movement due to drop in temperature (inches) Y_{c} = total concrete movement at the joint due to Z and $\triangle T$ (inches), and X_{1}, X_{2} = constants of integration.

Then, from 4.12, 4.13, and 4.14

$$Y_{c} = \int_{0}^{x} \varepsilon_{c \triangle T} dx - \alpha_{c} \triangle Tx + \int_{0}^{x} \varepsilon_{cz} dx - Zx + k_{2} + k_{1}$$

Ιf

$$\epsilon_{c} = \epsilon_{c\triangle T} + \epsilon_{cz}$$

$$k_{3} = k_{2} + k_{1}$$

then

$$Y_c = \int_0^x \epsilon_c dx - (Z + \alpha_c \triangle T)x + K_3$$

But at x = 0, $Y_c = 0$.

Therefore,

$$Y_{c} = \int_{0}^{x} \varepsilon_{c} dx - (Z + \alpha_{c} \triangle T) x \qquad (4.15)$$

or if expressed into a stress equation,

$$Y_{c} = \int_{0}^{x} \frac{\sigma_{c}}{E_{c}} dx - (Z + \alpha_{c} \triangle T) x \qquad (4.16)$$

(5) <u>Joint Width</u>. From equation 4.15, it is possible to evaluate the joint width, by integrating at $x = \frac{x}{2}$ as follows:

$$Y_{j} = \int_{0}^{\frac{\pi}{2}} \frac{\sigma_{c}}{E_{c}} dx - (Z + \alpha_{c} \Delta T)x$$

But Y_c will be the concrete movement of one half of the slab, thus if ΔX is the joint width, it can be written that

$$\Delta X_{j} = 2 Y_{c} = 2 \left(\frac{\sigma_{c}}{E_{c}} \frac{\overline{x}}{2} - (Z + \alpha_{c} \Delta T) \frac{\overline{x}}{2} \right)$$

$$\Delta X_{j} = \overline{x} \left[\frac{\sigma_{c}}{E_{c}} - (Z + \alpha_{c} \Delta T) \right]$$
(4.17)

where

 ΔX = joint width (inches), and

 \overline{x} = total length of the slab (inches).

It is very important to know the width of a joint, because limiting it to a maximum value that will provide load transfer and avoid percolation, the design of the required steel percentage to produce that condition can be determined using a trail and error procedure.

With the equations previously developed, Model-1 can be solved for stresses, strains, movements and joint width, but these equations are not sufficient enough to solve Model-2 which is required after the first crack occurs.

Basic Equations for Model-2

After the first crack occurs, Model-1 will change into Model-1 plus Model-2, because the portion of the slab going from the crack to the free end will have one end with longitudinal steel in the crack resisting and the other end free. A problem of bond development length is present at the crack, because the steel requires some finite length to transmit the stress to the concrete. Both ends will contract, but the one with the steel, in a fixed

condition, will have more restraint. Consequently, the point of zero movement will be more towards the crack side as represented in Fig 4.8.

From Fig 4.9 the need for Model-2, that consists of a portion of the slab with a fixed end can be seen. The boundary conditions for Model-2 are similar to the model developed in Ref 7 to solve a continuously reinforced concrete pavement.

The basic equations for Model-1 are also useful for this model taking into account the signs, but they are not sufficient to solve the problem. As previously discussed, the steel stress at the crack will be transmitted to the concrete through a development length or a bond slip length. The steel at the crack is under considerable tension since the concrete provides no resistance. However, beyond the crack, the concrete does resist moderate amounts of tension stresses, reducing the tensile forces in the steel, creating a variable force in the bar. From this, it can be seen that an equation for this bond slip zone is needed.

Bond Slip Zone Equation. Since the steel bar must be in equilibrium, the change in bar force is resisted at the contact surface between concrete and steel. From the free body diagram in Fig 4.10 for the steel bar, $\Sigma_{\mathbf{F}} = 0 \quad \text{yields:}$

$$F_{s} - (F_{s} + dF_{s}) + Udx = 0$$

where

U = average bond force per unit length of the slab.

Therefore:

$$\frac{\mathrm{dF}_{\mathrm{S}}}{\mathrm{dx}} = \mathrm{U} \tag{4.18}$$

Since

$$U = \mu \Sigma_{0}$$
 (4.19)

Fig 4.8. Behavior of the slab after the first crack.

Fig 4.9. Geometric models needed to search for the second crack.

Fig. 4.10. Free body diagram of an element in the bond slip zone of Model-2.

$$\mu$$
 = bond stress; $\mu = \frac{9.5 \sqrt{f'_c}}{\phi}$,

 f'_c = compressive strength of concrete,

 Σ = perimeter of the bar(s).

bar diameter.

Substituting the value of U from Eq 4.19 into Eq 4.18

$$\frac{dFs}{dx} = \mu \Sigma o \qquad (4.20)$$

and transforming equation 4.20 to a stress equation using

$$Fs = \sigma_{s}A_{s}$$

yields

$$A_{s} \frac{d\sigma s}{dx} = \mu \Sigma o$$

and

$$\frac{d\sigma}{dx} = \frac{\mu \Sigma o}{As}$$

Since

$$A_{s} = \frac{\pi \phi^{2}}{4}$$
and
$$\Sigma_{o} = \pi \phi$$

then

$$\frac{d\sigma_{s}}{dx} = \frac{\mu\pi\phi}{\frac{\pi\phi}{4}} = \frac{4\mu}{\phi}$$

Therefore:

$$\frac{d\sigma_{s}}{dx} = \frac{4\mu}{\phi} \tag{4.21}$$

For a constant bond stress μ , the variation of the distribution of steel stress in the bond slip zone is linear. The slope in the concrete stress curve in the bond slip zone also depends on the bond properties; then, if $\Sigma F_{x} = 0$ is applied to the concrete element in Fig 4.10, the following is obtained:

$$F_{c} - (F_{c} + dF_{c}) - F'_{i}dx - Udx = 0$$

$$dF_{c} + F'_{i}dx + Udx = 0$$

$$dF_{c} = -F'_{i}dx - Udx$$

$$\frac{dF_{c}}{dx} = -F'_{i} - U$$

Since

$$p = \frac{A_s}{A_c}$$
 and $\sigma_c = \frac{F_c}{A_c}$

then

$$\frac{d\sigma_c}{dx}, A_c = -F_i' - \mu \Sigma_o$$

$$\frac{d\sigma_{c}}{dx} = \frac{F_{1}'}{A_{c}} - \frac{\mu p \Sigma_{o}}{A_{c}}$$

$$\frac{d\sigma_{c}}{dx} = \frac{-F_{1}'}{A_{c}} - \frac{\mu p \pi \phi}{\frac{\pi \phi}{4}}^{2}$$

$$\frac{d\sigma_{c}}{dx} = \frac{-F'_{i}}{A_{c}} - \frac{4\mu p}{\phi}$$

For a unit width slab Ac = $D \times 1$, then

$$\frac{d\sigma_{c}}{dx} = -\frac{F_{1}}{D} - \frac{4\mu p}{\phi} \tag{4.22}$$

The shape of the concrete stress curve can be linear if the maximum frictional resistance force is developed, because the slope of that curve is a function of bond as well as bond properties as can be seen in Eq 4.22.

Also, the general equilibrium for Model-2 is different than the one for Model-1, because of the steel being fixed at one end of the slab. Figure 4.11 shows the free-body diagram for Model-2, and solving for equilibrium of the system, $\Sigma Fx = 0$ yields

$$F_{so} + F_{co} - F_{sc} - \int_{0}^{x_{c}} F'_{i} dx = 0$$
 (4.23)

where

 F_{so} = force in the steel at point of zero movement (lb),

 F_{co} = force in the concrete at point of zero movement (1b),

 F_{sc} = force in the steel at the crack (lb), and

 F_i = friction force per unit length along the slab (lb/in).

Transforming Eq 4.23 to a stress equation,

$$A_{s}\sigma_{so} + A_{c}\sigma_{co} - A_{s}\sigma_{sc} - \int_{o}^{x} f'dx = 0$$
 (4.24)

Fig 4.11. Free-body diagram and corresponding stress distribution of Model-2.

and for a unit width slab

$$p\sigma_{so} + \sigma_{co} - p\sigma_{sc} - \frac{\int_{o}^{x} Fidx}{D} = 0$$

or

$$\sigma_{co} + p\sigma_{so} = p\sigma_{sc} + \frac{\int_{o}^{x} Fidx}{D}$$
 (4.25)

At transverse cracks, local lateral movement will not be experienced by the steel. This means that the length of the steel bars will remain constant with temperature changes, then,

$$\epsilon_s = \alpha_s \Delta T$$

for x,

$$\int_{\mathbf{0}}^{\mathbf{a}} \mathbf{e}_{\mathbf{s}} d\mathbf{x} = \alpha_{\mathbf{s}} \mathbf{a} \triangle \mathbf{T}$$

$$\int_{a}^{b} \mathbf{e}_{\mathbf{g}} d\mathbf{x} = \alpha_{\mathbf{g}} b \triangle \mathbf{T}$$

where

 X_{c} = the distance between the first crack and the point of zero movement.

Since

$$X_c = a + b$$

substituting for a + b,

$$\int_{0}^{a} \varepsilon_{s} dx + \int_{a}^{b} \varepsilon_{s} dx = \alpha_{s} \triangle T X_{c}$$

and

$$\sigma_s = \epsilon_s \cdot E_s$$

therefore

$$\int_{0}^{a} \sigma_{s} dx + \int_{a}^{b} \sigma_{s} dx = E_{s} \sigma_{s} X_{c} T$$
 (4.26)

where

a = fully bonded length of X_c,
b = bond slip zone.

Summary of Equations

A summary of equations for each model follows to clarify for the reader which equations apply to each model:

Mode1-1:

(1) Equilibrium

$$\sigma_{c} + p\sigma_{s} - \frac{\int_{0}^{x} F_{i} dx}{D} = 0$$
 (4.3)

(2) Concrete stress due to shrinkage and drop in temperature

$$\sigma_{c} = \frac{\sigma_{s}}{n} + E \left[Z + \Delta T (\alpha c - \alpha s) \right]$$
 (4.8)

(3) Friction

$$\frac{d_{\mathcal{O}_{\mathbf{C}}}}{d\mathbf{x}} = \frac{-\mathbf{F}_{\hat{\mathbf{I}}}}{\mathbf{D}} \times \frac{1}{(1+\mathbf{pn})} \tag{4.11}$$

(4) Concrete movement at joint

$$Y_{c} = \int_{0}^{x} \frac{\sigma_{c}}{E_{c}} dx - (Z + \alpha c \Delta T)x \qquad (4.16)$$

(5) Joint width

$$\Delta X_{j} = x \left[\frac{\sigma_{c}}{E_{c}} - (Z + \alpha c \Delta T) \right]$$
 (4.17)

Mode1-2:

(1) Equilibrium

$$\sigma_{co} + p\sigma_{so} - p\sigma_{sc} + \frac{\int_{o}^{x} F_{i} dx}{D}$$
 (4.25)

(2) Concrete stress due to shrinkage and drop in temperature,

$$\sigma_{c} = \frac{\sigma_{s}}{n} + E_{c}[Z + \Delta T (\alpha_{c} - \alpha s)]$$
 (4.8)

(3) Friction,

$$\frac{d\sigma_c}{dx} = -\frac{F_i}{D} \times \frac{1}{(1+pn)} \tag{4.11}$$

(4) Crack width

$$\Delta X_{c} = 2 \left[\int_{0}^{x_{c}} \frac{\sigma_{c}}{E_{c}} dx - (Z + \alpha_{c} \Delta T) X_{c} \right]$$

(5) Steel boundary conditions

$$\int_{0}^{a} \sigma_{s} dx + \int_{a}^{b} \sigma_{s} dx = E_{s} \alpha_{s} X_{c} \Delta T$$
 (4.26)

The Approach

The work done in Research Project NCHRP 1-15 (Ref 7) reduced the degree of difficulty in solving this problem. The mathematical model developed in the above research project corresponds to the Model-2 and makes the solution of this work less problematic.

The first step in solving this problem is to search for the time and slab position at which the crack will occur. The approach used will be to divide the slab length into N number of increments and solve the basic equation for Model-1 (N/2) times for a fixed time and change the length of the model by adding one ΔX to the previous one for each new cycle, as illustrated in Fig 4.12. This means that for a given time, the concrete stress-distance relationship will be known and will change with time as shown in Fig 4.13.

To know if cracking of the slab is going to occur, the concrete stress-distance relationship for each time is equated to the concrete strength at the corresponding time. The remaining equation is solved for distance, and this distance is compared with $\overline{x}/2$ and if it is equal or less, a crack is going to occur. If the distance is greater than $\overline{x}/2$, there will be no crack.

If a crack does occur, say at time t₁, then the problem changes into a different one, because now the slab will have only the steel at the crack. This steel bar takes all the tensile stresses generated at that point, and then throughout the bond-slip zone, the concrete receives part of the total tensile stresses. Due to shrinkage and temperature drop, this portion of the slab will tend to contract. The restraint to the movement of contraction at the free end will be provided by the friction resistance between slab and base, and by the reinforcing steel. At the other end, that is where the first crack occurred, the same restrictions as for the other end apply plus the restriction given by the steel that is fixed to the other face of the crack as shown in Fig 4.14.

It is obvious that the solution for the second crack is not possible to achieve by using one model. The approach to find the solution is to solve Model-1 and Model-2 separately for the time which follows the occurrence of the first crack. Then find the corresponding curves for each model of the concrete stress-distance relationship (Fig 4.15a) and then find the

Fig. 4.12 Change in length of the model, increasing ΔX by ΔX each time.

Fig 4.13.: Concrete stresses with time.

(a) View of slab after ftrst crack.

(b) Right portion of slab after first crack

(c) Contraction movement of slab portion

Fig. 4.14. Slab portion after first crack.

Concrete stress-distance curves for Model-1 and Model-2.

Fig. 4.15. Method used to search for the second crack.

intersection point of the two curves. Now, the maximum concrete stress can be found that will correspond to the point of zero movement (Fig 4.15b). A crack can be detected by comparing the maximum stress with the concrete tensile strength at the same time.

SOLUTION OF THE BASIC EQUATIONS

As the primary purpose of this work is to search for cracks in jointed reinforced concrete pavement slabs, knowing that a crack is going to occur if the concrete tensile stress is greater than the concrete tensile strength, the equations will be solved first for the stress in the concrete as follows:

Mode1-1

Solving Eq 4.8 for σ_s yields

$$\sigma_s = n\sigma_c - nE_c[Z + \Delta T(\alpha_c - \alpha_s)]$$

and substituting $\sigma_{_{\mbox{\scriptsize S}}}$ into Eq 4.3 yields

$$\sigma_c + pn\sigma_c - pnE_c[Z + \Delta T(\alpha_c - \alpha_s)] - \frac{\int_0^x F_i dx}{D} \approx 0$$

Solving for σ_c

$$\sigma_{c} (1 + pn) = pnE \left[Z + \Delta T (\alpha_{c} - \alpha_{s}) \right] + \frac{\int_{o}^{x} F_{i} dx}{D}$$

$$\sigma_{c} = \frac{pnE_{c}[Z + \Delta T(\alpha_{c} - \alpha_{s})] + \frac{\int_{o}^{x} F_{i} dx}{D}}{[1 + pn]}$$
(4.27)

Using the friction-movement relationship provided by the user, and using Eq 4.16, the friction force can be obtained, thus Eq 4.27 can be solved. An iterative procedure must be used, because the concrete movement is a direct function of the concrete stress, and the concrete stress is dependent on the

friction force. Using the findings from Research Project NCHRP 1-15, this problem was solved by using a binary search technique by which the concrete stress is computed by assuming $F_1=0$ and then the concrete movement Y_1 is computed using that concrete stress. Movement Y_1 is then used to determine F_s from the experimental curve, with F_2 being the upper boundary. The basic equation is again solved for concrete stress using F_2 and computing the concrete movement Y_2 , which will correspond to F_3 , the lower boundary, from the experimental curve. Now, F_4 will be the arithmetical average of F_3 and F_2 . To determine the relative location of F_4 with respect to the closure point, Y_4 is computed and compared with the experimental Y_{4e} that corresponds to F_4 . If Y_4 is greater than Y_{4e} , then F_4 to find F_5 , and if Y_{4e} is greater than Y_4 , then F_4 is above the closure point, and then F_5 will be the average of F_3 and F_4 , and continue to relative closure (Fig 4.16).

Then the values of σ_c and F_i corresponding to the friction-movement closure point are used to compute the stress in the steel by using the following equation:

$$\sigma_{s} = \frac{\int_{0}^{x} \mathbf{f} \, \mathrm{d}x}{pD} - \frac{\sigma_{c}}{p}$$
(4.28)

With the above information, Model-1 is solved for any point along the slab.

The method of attack to search for a crack consists of the following steps:

- (1) Divide the total slab length into N number of increments to have an increment length equal to $\Delta X = \overline{x}/N$,
- (2) for a given time, solve Model-1 for a distance equal to ΔX , the increment length
- (3) increment the Model-1 length into another ΔX and solve for $\sigma_{_{\mbox{\scriptsize C}}}$ and $\sigma_{_{\mbox{\scriptsize C}}}$,
- (4) continue incrementing ΔX by one ΔX and compute σ and σ until ΔX is equal to half the total slab length,
- (5) having the stress in the concrete for each ΔX , an equation relating σ_c = f(distance) is computed,

Fig. 4.16. Binary search technique as applied to frictional resistance-movement curve.

- (6) substitute the value of σ_c in the above equation by the concrete strength f_t at that time and find the corresponding distance, Dist = $f(f_t)$, and
- (7) if that distance is greater than half the slab length, no crack will occur at that time, but if the distance is less than or equal to half the slab length, then a crack occurs at that same distance.

This process is shown in the flow diagram in Fig 4.17.

Model-2

For information on how Model-2 is solved, the reader is referred to Ref 7 where a complete discussion and explanation of the solution of the Model-2 is given.

If the first crack occurs, say at time $\ \,$ then, Model-1 is used as described above for time $\ \,$ t8 , and Model-2 is also solved for that time $\ \,$ t8 .

The solution of Model-2 is achieved by using the solution given by Research Project NCHRP 1-15 (Ref 7) to the CRCP model and is the same as for Model-2. The only variation is that the concrete stress is computed for each ΔX until ΔX is equal to half the length between the crack and the free end. At the end of each time, there will be a stress-distance relationship, and when intersected with the one for Model-1 at the same time (age), it will indicate the magnitude and location of the maximum concrete stress for that age, so that when compared with the concrete strength at the same age it will indicate if a second crack wll occur.

Combining Models 1 and 2

- (1) Model-1 is solved for concrete stress at any point along the slab for one-half the slab length using the first five steps of the procedure described previously.
- (2) Model-2 is solved for concrete stress at any point along the slab for one-fourth the slab length using procedure described in NCHRP 1-15 Report.
- (3) The stress distance relationships from Models-1 and 2 are equated to find the point of zero movement. The distance point of intersection from the Model-1 relationship is designated as distance from joint to point of zero movement (x_i). The equivalent movement from Model-2 is designated as distance from crack to point of zero movement (x_i).
- (4) The concrete stress at the point of equal movement is checked against the concrete strength at that time. If the concrete strength is exceeded, a crack is assumed at that point. Its width is computed and the procedure halts.

Fig. 4.17. Flow diagram for the search for the first crack.

(5) If the concrete strength is not exceeded at the point of zero movement, the time is incremented. This procedure continues until the concrete strength is exceeded, the concrete reaches full strength, or the steel stress at the first crack rises above a specified maximum.

If the concrete reaches full strength, the procedure is performed one more time using the minimum temperature expected for the area to test the stresses in the steel and concrete.

If the specified maximum (.75 X yield stress) is exceeded by the steel stress at the crack, a message is printed and the problem terminates.

STEEL DESIGN

The methods currently used to determine the percent reinforcement for the JRCP originated from several questionable assumptions and limitations, and the present pavements are having different performance problems. To explain and avoid the performance differences, a better qualitative evaluation is required.

The subgrade drag theory is the most recent approach in the solution of the reinforcing steel design, and because of that, the present work will use this method as a first approximation to find the steel percentage that will hold the cracks tightly together.

The process will be as follows:

(1) Compute steel percentage by subgrade drag theory (Ref 19).

$$p = \frac{LF}{2f_S} \times 100 \tag{4.29}$$

where

p = percentage steel required (cross-sectional area) (percent),

L = distance between free edges (feet),

 $f_c = allowable$ working stress in steel (0.75 of yield strength),

F = friction factor of subbase.

- (2) With the computed steel percentage, analyze the slab and search for a crack, and if a crack does not occur, remove the steel.
- (3) If a crack occurs, check crack width, and if it is less than the maximum crack width, the steel design is checked for stress versus strength.

- (4) If a crack occurs, check crack width, and if it is greater than the maximum crack width, the steel percentage is increased in half of its previous value and is checked again.
- (5) If a crack occurs, and the crack width is within the range, the stress in the steel at the crack is checked for its allowable working strength, and if the stress is greater than its allowable working strength, the steel percentage is increased by half of its value and checked again.

Table 4.1 suggest values of the friction factor F for use in equation 4.28. When the steel percentage using the maximum crack width criteria is obtained, the steel spacing is computed by means of the following relationship (Ref 19):

$$Y = \frac{A_B}{D \times p} \times 100 \tag{4.30}$$

where

p = percentage steel required,

D = slab thickness (inches),

 A_B = cross-sectional area of steel bar or wire (square inches),

and

Y = center to center spacing (inches).

The procedure used can be explained as follows. Each time the slab length is divided into NT increments; for each increment the concrete and steel stresses are solved. At the completion of the study of half the slab length, a stress equation as a function of slab length is obtained by using the stress values of each increment. So, for each day there will be a stress-distance relationship. The concept used to search for a crack was to equate the stress equation with the value of the strength of the concrete at the same time; then, by solving the equation for distance, the distance at which the concrete stress is equal to the concrete strength is obtained, and if that distance is less than or equal to half of the slab length, a crack will occur at that distance; but, if the distance obtained is greater than half of the slab length, there will be no crack (Fig 4.18).

TABLE 4.1. RECOMMENDED FRICTION FACTORS (Ref 19).

Subbase Type	Subbase Friction Factor	
Surface Treatment	2.2	
Lime Stabilization	1.8	
Asphalt Stabilization	1.8	
Cement Stabilization	1.8	
River Gravel	1.5	
Crushed Stone	1.5	
Sandstone	_s 1.2	
Natural Subgrade	0.9	

Note: These are approximate values derived from experimental observations. The friction factors in this table cannot be equated with the slab-base friction relationship required to properly characterize the restraint forces.

Fig. 4.18. Search for first crack.

If a crack occurs, the corresponding crack width is calculated and compared with a maximum allowable value of crack width*; when the crack width is within this range, the program will change to the Model-2 at the time when the first crack occurred; the stress in the steel is obtained and is checked against the steel strength, and if the stress is greater or equal to the allowable working strength, the steel percentage is increased and the analysis starts again. If the stress in the steel is less than its allowable working stress, the program continues searching for the second crack occurence for the following day. The solution for the second crack occurrence is achieved by solving Model-1 and Model-2, as previously discussed. At the intersection of these two curves, the value of the maximum concrete stress is obtained; then, by comparing this value with the concrete strength for that same time, it is possible to see if a second crack is going to appear, following the computation of the width of that second crack. If a second crack occurs, the crack width of this secon crack is checked by using the above procedure, and then the program is terminated. If either the first or second crack width is not within the range, the steel percentage will be changed, incrementing its value in P/2 if the crack width is greater than it maximum value, or reducing its value in P/2 if the crack width is less than 0.012 inch. Then the new design is analyzed again starting from day The program is finished when both the first and second crack widths are within the specified range and the stress in the steel at the crack is less than its allowable working strength.

NON-REINFORCEMENT DESIGN

For possibly obtaining a less expensive pavement slab, a design procedure for non-reinforced slabs was included in the program. This design procedure will give a slab length which will provide a non-cracked slab, which is the desired state of a non-reinforced pavement slab. In order to get a realistic design, the slab is analyzed at each time until the twenty-eighth day, and if for each of the days the concrete stress curve intersects the

 $^{^{\}star}$ Maximum value for crack width is provided by the user.

concrete strength curve between 0.50 and 0.75 of the slab length, this slab length will be taken as optimum and is the one that will be given as the result (Fig 4.19).

Fig 4.19. Criteria used for the non-reinforced slab design.

CHAPTER 5. REINFORCEMENT ANALYSIS PACKAGE

The computer program developed is designated by JRCP-1. The number 1 signifies that this is the first version of the chronological sequence intended for future development.

The program is written in FORTRAN IV computer language for the Control Data Corporation 6600 digital computer, which has a 60-bit word length. The compile time for the basic program is less than 12 seconds. If desired, normal operating decks may be compiled on binary cards, thus reducing compiler time in the computer significantly. The exact storage requirement for the program presently is 60,000 locations. The program can be adapted for use with the IBM 360/370 computer by very slight modifications.

The time required to run problems varies, of course, with the complexity of the system, e.g., the nature of the friction-movement relationship, the variation of the concrete strength with time, increment length, and the number of iterations required to obtain the desired accuracy and the option being used. To give a general idea of the operating time, for a relative closure tolerance of one percent and an average problem similar to the sample problems in the report, the computer time is in the range of 70 to 80 seconds for the steel design option. By considering the number of nonlinearities involved in the encountered problem it can be concluded that the algorithms developed in the various nonlinearities provide extremely fast convergence. The cost of seconds of computer time is negligible compared to the benefits derived from the fact that this computer program provides a new and better way of solving highly complex JRCP problems.

THE INPUT DATA

The format used for inputting data into the program is arranged as conveniently as possible. The problem input deck starts with two cover cards which identify the program and the particular run being made. The information on these cards is alphanumeric and is used to denote projects, coding dates, a

description of the problems being run, etc. After these two alphanumeric cards the following cards come in this order:

- (1) Problem number card with alphanumeric description of the problem.
- (2) Slab Dimensions one card. This card includes the length of the slab, the width of the slab, the friction factor used to compute the initial percent of steel, the maximum allowable crack width, the steel design option and the non-reinforcement option. The format and units used are fully described in the user's guide (Appendix 1). It is important to point out that even if the non-reinforcement option is used a slab length must be provided.
- (3) Steel Properties one card. Information on this card includes the type of longitudinal reinforcement, bar diameter, yield stress, modulus of elasticity, thermal coefficient, and spacing of transverse wires in the case of deformed wire fabric. The format used to input the required information is shown in the Guide for Data Input in Appendix 1.
- (4) Concrete Properties two or more cards. The first card contains the slab thickness, thermal coefficient, final or total drying shrinkage, unit weight, and 28-day compressive strength. On the second card is Age-Tensile Strength relationship; if unavailable, the data will be generated internally using the recommendations suggested by the United States Bureau of Reclamation.
- (5) Slab-Base Friction Relationship. The number of cards is variable depending on the number of points defining the F-y relationship. It is worth noting that according to the sign convention adopted in this study, the input movements should be negative and the friction forces should be positive. The program assumes a symmetric curve with respect to the origin.
- (6) Temperature Data. This part of the input data deals with the analysis period directly after concrete placement where the average curing temperature and the minimum daily temperature for the desired number of days are input. The number of cards required is variable and depends on the number of data points.
- (7) Maximum Iterations and Closure Tolerance one card. The primary objective for the maximum number of iterations is to prevent excessive computation. Most pavement problems should close to a reasonable tolerance within ten iterations; an allowed maximum of 20 is usually adequate. Relative closure tolerance is used for all the nonlinearities involved in the problem. It should be expressed in percent. If the tolerance is unreasonably small, closure may be difficult to achieve. A value of one percent is recommended.

PROGRAM OPTIONS

In order to obtain the major benefit of the program capability, the user is provided with three options. The options are as follows:

- (1) Analysis of a given design. The user by using this option can analyze a given design (slab dimensions, steel percentage) for crack occurrence and crack width. Also, when there is a crack, the program will tell the user if the crack width is bigger than the maximum allowable value of crack width for aggregate interlock provided by the user.
- (2) Steel reinforcement design. For a given slab geometry, the program designs the steel for two differen kinds of reinforcement, deformed bars and deformed wire mesh. The steel design is based on the concept of having a crack width between 0.023 inch and 0.012 inch.
- (3) Design of the required length for a non-reinforced slab. Given a tentative slab length, the program will analyze the slab for a non-crack occurrence state, and will give the optimum length for that case, based on the concept of optimization for non-reinforced slab length previously discussed.

ADDITIONAL RESEARCH NEEDED

A basic theoretical procedure which analyzes the effects of drying, shrinkage, and drop in temperature in a concrete pavement slab (either reinforced or non-reinforced) has been developed; it is a useful tool to the man trying to simulate nature with theory. The design procedures developed tend to be more realistic, but in order to make a real, or better said, more real, representation of the "real world conditions," the following points need to be studied:

- (1) frictional resistance of the sub-base layer,
- (2) the inclusion of the restriction to movement of the slab provided by the dowels,
- (3) variability of concrete properties,
- (4) prediction of the concrete temperature from air temperature,
- (5) effects of the slab movement in the transverse direction,
- (6) addition of load and warping stresses, and
- (7) field studies to test the reliability of the program.

CHAPTER 6. STUDY OF VARIABLES

The purpose of this chapter is to describe how temperature drop and subgrade friction influence the concrete tensile stress pattern. These two factors are considered to be the most important for the scope of this study. Also, a graph of steel stress at the crack versus time is presented to emphasize the importance of having the steel stresses checked versus its allowable working stress each day.

STUDY OF SUB-BASE FRICTION

It is important to note as shown in Figs 6.1 through 6.4, the concretetensile stress versus the number of increments in which the slab length was divided is plotted for high and low sub-base frictions. The increment numbers start at the joint and increase toward the center. The large difference in the stress levels demonstrates the great effect the sub-base friction has on the crack occurrence in the concrete slab. For this graph, all elements except daily drop in temperature remain constant for each sub-base friction.

STUDY OF DROP IN TEMPERATURE

For this study, all the factors, but temperature drop, were held constant for each day. The concrete-tensile stresses versus the number of increments were plotted for drops in temperature of ten and thirty degrees Farenheit as shown in Figs 6.5 and 6.7. From these figures it can be seen that for large drops in temperature, the concrete-tensile stresses may exceed the concrete-tensile strength, leading to a crack formation.

STUDY OF THE STRESSES OF THE STEEL AT THE CRACK

After a crack occurred in the concrete slab, the reinforcing steel was subjected to the tensile stresses that the concrete had before the crack, and, at the crack, the only element capable of resisting the tensile stresses was the reinforcing steel. As the slab attempted to contract with time, the tensile

Fig 6.1. Concrete tensile stress for two sub-base frictions at the first day after concrete placement.

Fig. 6.2. Concrete tensile stresses for two sub-base frictions at seven days after placement.

Fig. 6.3. Concrete tensile stresses for two sub-base frictions at 14 days concrete placement.

Fig. 6.4. Concrete tensile stress for two sub-base frictions after 28 days of concrete placement.

Fig. 6.5. Concrete tensile stresses for two drops in temperature at the first day after concrete placement.

Fig. 6.6. Concrete tensile stresses for two drops in temperature after seven days of concrete placement.

Fig. 6.7. Tensile stress of the steel at the crack.

pattern of the tensile stress of the steel at the crack emphasized the importance of checking the tensile stress of the steel at the crack against its allowable working stress on a daily basis.

CHAPTER 7. CONCLUSIONS, RECOMMENDATIONS AND IMPLEMENTATION GUIDELINES

Cracking in a jointed reinforced concrete pavement is a prime factor leading to the reduction in pavement performance depending on the crack width. Water percolation, spalling, loss of laod carrying capacity, and pumping are some of the distress manifestations which vary with cracking in the slab. This study focused on developing a design analysis package that would consider the effects of drying shrinkage and drop in temperature to minimize the effect of transverse cracks in jointed concrete pavement.

CONCLUSIONS

Based on this study the following conclusions are warranted:

- (1) The subgrade drag theory currently used for the design of longitudinal reinforcement in a jointed reinforced concrete pavement is inadequate for the range of subbase conditions currently in use throughout the U.S. The present method makes unrealistic static assumptions in computing the required steel, whereas the joint width and crack width function vary immediately with changes in temperature and shrinkage. Although the primary mode of failure for these paveements is at transverse cracks and joints there is no control in the present methods for crack width or joint width.
- (2) A computer program (JRCP-1) developed in this study more realistically models the complex interaction and movement characteristics between the concrete slab and the subbase layer at their interface. The crack width, longitudinal steel stress, and the concrete stress are predicted as a function of temperature and concrete drying shrinkage. The maximum crack width information developed in connection with NCHRP 1-15, "Design of Continuously Reinforced Concrete Pavements for Highways," may be used with this program to design jointed concrete pavements.
- (3) The program internally examines the occurrence of three cracks in the slab. The first crack (model 1) is assumed to occur near the center of the slab; the second crack and third crack (model 2) are assumed to occur between the middle of the slab and the free joints.
- (4) The program has the capability of providing the user with the following three options:

- (a) analysis of a given design, crack occurrence and crack width,
- (b) steel reinforcement designed for a given slab geometry in environmental conditions, and
- (c) the design of the required maximum length for a non-reinforced slab to eliminate the possibility of intermediate transverse cracking.
- (5) A limited sensitivity analysis in the program shows that subbase slab friction characteristics and the tmperature conditions during curing have a large influence on the occurrence of crack, resulting crack width and the resulting steel stress at the crack.

RECOMMENDATIONS

Based on the study the following recommendations are made:

- (1) The wheel load stresses should be superimposed on thise predicted by temperature changes and drying shrinkage. There is evidence from studies of continuously reinforced concrete pavement that wheel load stresses may influence the formation of transverse cracks, especially during the early life of the pavement.
- (2) A range in temperature conditions should be selected on the basis of geographic areas in Texas to study variations in performance with respect to temperature and shrinkage cracking. These geographic areas should be the same as recommended for implementation of computer program CRCP-1.
- (3) The stochastic variations of cracking should be approximated in the program by using standard deviations of the more important inputs and a random generator to simulate this variation.

IMPLEMENTATION GUIDELINES

The following steps are recommended for implementation of the computer program after recommendation (1) has been completed:

- (1) A user's manual should be developed for the SDHPT using the operating manual for program JRCP-1 in Appendix 1 as a guideline.
- (2) The temperature data developed in connection with the recommendation (2) should be used to develop a range of solutions, crack width, crack spacing, and steel stress for different material properties.
- (3) The information from the preceding number should be used to develop a design manual for CRCP that would reflect more variables than taken in to account at the present time; thus the performance level of CRCP would be improved.

REFERENCES

- 1. Foster, James A., "The Durability and Low Annual Cost of Concrete Pavements in U. S. A.," paper presented at the International Concrete Roads Congress, Rome, Italy, 1957.
- Austin Research Engineers, Inc. Report FC-1/5, "Mid-Span Cracking Investigation for the Jointed Reinforced Concrete Pavement of the Dallas-Fort Worth Regional Airport," July 1972.
- 3. Orchard, D. F., "Concrete Technology," Volume 1, Properties of Materials, John Wiley and Sons, 1973.
- 4. Winter, George et al., "Design of Concrete Structures," McGraw-Hill, Inc. International Student Edition, 1964.
- 5. Concrete Manual, Seventh Edition, U. S. Department of the Interior, Bureau of Reclamation, Denver, Colorado, 1966.
- 6. "Mass Concrete for Dams and Other Massive Structures," Journal of the American Concrete Institute, Proceedings, Vol 67, April 1970.
- 7. Hudson, W. R., B. F. McCullough, Adnan Abou-Ayyash, and Jack Randall, "Design of Continuously Reinforced Concrete Pavements for Highways," Research Project NCHRP 1-15, Center for Highway Research, The University of Texas at Austin, August 1974.
- 8. Villalaz, Carlos Crespo, "Vias Terrestres y Aeropistas," Impresos Tecnicos y Tesis, Monterry, N. L. Mexico, 1972.
- 9. Large, George E., "Basic Reinforced Concrete Design: Elastic & Creep,"
 The Ronald Press Company, 1975.
- 10. Yoder, E. J., "Pavement Design," John Wiley, 1965.
- 11. Powers, T. C., "Causes of Volume Change," <u>Journal</u>, Portland Association Research and Development Laboratories, January 1959.
- 12. Neville, A. M., "Properties of Concrete," John Wiley, 1963.
- 13. Troxell, G. E., and H. E. Davis, "Composition and Properties of Concrete," McGraw-Hill, 1970.
- 14. Lea, F. M., "The Chemistry of Cement and Concrete," Edward Arnold, Glasgow, 1970.
- 15. Price, G. E., "Curling of Rigid Pavement Slabs due to Temperature Differentials," Thesis, The University of Texas, 1967.
- 16. Harr, M. E., and G. A. Leonards, "Warping Stresses and Deflections in Concrete Pavements," Highway Research Board Proceedings No. 44, 1963.
- 17. Bradbury, R. D., "Reinforced Concrete Pavements," Wire Reinforcement Institute, Washington, D. C., 1968.

- 18. Lydon, F. D., "Concrete Mix Design," Applied Science Publishers, Ltd., London, 1972.
- 19. "ASSHTO Interim Guide for Design of Pavement Structures," 1972.
- 20. Elver, R. H., and M. Shafi, "Analysis of Shrinkage Effects on Reinforced Concrete Structural Members," A. C. I. Journal, January 1970.
- 21. Kelley, E. F., "Application of the Results of Research to the Structural Design of Concrete Pavements," <u>Public Roads</u>, Vol. 20, No. 5, July 1939.
- 22. McCullough, B. F., and T. F. Swell, "An Evaluation of Terminal Anchorage Installations on Rigid Pavements," Texas Highway Department, Research Project 1-8-63-39. Report No. 39-4(F), September 1966.

APPENDIX 1

OPERATING MANUAL FOR PROGRAM JRCP-1

APPENDIX 1. OPERATING MANUAL FOR PROGRAM JRCP-1

Program Operation

The general procedures followed in the program are described in the attached flow chart. A problem number card at the beginning of each problem controls the start of the solution. Unless an error occurs because of unacceptable data, the program will work any number of problems in sequence, finally stopping when a blank problem number card is encountered.

The data deck starts with two cover cards used to identify the program and the particular run being made. The problems to be solved together in one run are stacked behind the cover cards in sequence as illustrated in Fig. Al.1. Each problem consists of one problem number card with alphanumeric description of the problem. This is followed by slab properties, steel properties, concrete properties, slab-base friction relationship, temperature data, minimum allowable number of iterations, and tolerance for relative closure.

Guide for Data Input

The following pages provide a guide for Data Input. It should be expected that revisions of these forms and instructions will be developed in the future and may supersede the present versions.

Fig Al.1. Assembly order for JRCP-1 program deck with data, ready to run.

JRCP-1 - GUIDE FOR DATA INPUT -- Card forms

IDENTIFICATION OF PROGRAM AND RUN (2 alphanumeric cards per run)

Description of Run

80

IDENTIFICATION OF PROBLEM (one card each problem; program stops if PROB NUM is left blank)

PROB NUM

A5 Description of Problem (alphanumeric)

SLAB DIMENSIONS

FT FT lb/in/in

FT SLAB LENGTH	FT SLAB WIDTH	NUMBER OF INCREMENTS	lb/in/in FRICTION FACTOR	IN CRWM	ISTDS	NRF
F8.4	F8.4	15	F8.4	F8.4	12	12
8	1	6 21	29	37	41	43

slab length must be understood as transverse joint spacing

STEEL PROPERTIES (one card each problem)

ITYPER	PERCENT REINFORCEMENT	in ² BAR DIAMETER	(PSI) YIELD STRESS	(PSI) ELASTIC MODULUS	/ ^O F THERMAL COEFFICIENT	TRANSVERSE WIRE SPACING*
15	E10.3	E10.3	E10.3	E10.3	E10.3	E10.3
<u> </u>	H	21	31	41	51	61 70

ISTDS = 0 for analysis of a given design (user needs to input percentage of steel and slab dimension)

 $^{^{}f *}$ Required only in the case of deformed wire fabric analysis.

JRCP-1 - GUIDE FOR DATA INPUT -- Card forms

NRF = 0 if ISTDS = 0 or 1

NRF = 1 if non-reinforcement option is used (design optimum slab length for non-reinforced slab)

ITYPER = 1 for deformed bar

ITYPER = 2 for deformed wire fabric

CRWM = Maximum allowable crack width, inches.

CONCRETE PROPERTIES

CONSTANTS (one card each problem)

(IN) SLAB THICKNESS	/ ^O F THERMAL COEFFICIENT	(IN/IN) DRYING SHRINKAGE STRAIN	UNIT WEIGHT OF CONCRETE (pcf)	(PSI) 28-DAY COMPRESSIVE STRENGTH*	TENS. STRENGTH FLEX. STRENGTH
E10.3	E10.3	E10.3	E10.3	E10.3	E10.3
i i	21	31	41	51	61 70

AGE-TENSILE STRENGTH RELATIONSHIP

11	16	21	26	31	36	41	46	5 i	56	61	66	71	76	80
F5.1	F5.1									F5.1	F5.1			T
AGE(8)	TS(8)			•						AGE(NTS		rs)	_	

NTS = 0, if no tensile strength data is available (data are generated).

NTS = Total number of points on Age-Strength relationship (maximum is 20).

AGE(I) = Age of concrete in days.

TS(I) = Tensile strength in psi.

^{*}Not required if Age-Tensile Strength data are provided.

JRCP -1 - GUIDE FOR DATA INPUT -- Card forms

SLAB-BASE FRICTION RELATIONSHIP (F-y curve)

- F(I) = Force per unit length (lb/in/in).
- y(I) = Movement (inches).

^{*}Only the solid portion of the curve need to be defined; the dotted portion is generated by symmetry with respect to the origin.

JRCP-1 - GUIDE FOR DATA INPUT -- Card forms

TEMPERATURE DATA

Average curing temperature and minimum daily temperature (OF)

TD(15) TD(16)						TD (NTEM	(P)	_		1		
F5.1	F5.1							F5.1						
U	16	21	26	31	36	41	46	51	50	61	66	71	76	80

CURT - Average curing temperature of concrete, *f.

NTEMP = Number of days.

TD(I) = Minimum daily temperature, of.

Minimum temperature expected after concrete gains full strength

F5.1

ITERATIONS AND TOLERANCE CONTROL

MAXITE	TOL
15	F5.1
1	6 10

MAXITE - Maximum number of iterations .

TOL = Relative closure tolerance in percent.

STOP PROGRAM One blank card to end program

GENERAL PROGRAM NOTES

The data cards must be stacked in the proper order for the program to run.

All integer format and E format numbers must be right justified.

The problem number may be alphanumeric.

Sign convention adopted is as follows:

- (1) tension is positive,
- (2) friction forces in the positive x-direction are positive,
- (3) movements in the positive x-direction are positive, and
- (4) temperature drop at a given time is defined as the difference between the temperature at which concrete has set and the temperature at that time.

SLAB DIMENSIONS

Only one card is required per problem. This card includes the commands to use the steel design option or the non-reinforcement option. The slab length must be always provided, even if the non-reinforcement option is used. The units are slab length, feet, slab width, feet, maximum allowable crack width, inches.

STEEL PROPERTIES

Only one card is required per problem. Program JRCP-1 has the capability of analyzing the most commonly used types of longitudinal reinforcement, deformed bars and deformed wire fabric. The desirable type of reinforcement can be specified by ITYPER option. ITYPER = 1 is for deformed bars while ITYPER = 2 is for deformed wire fabric. The units to be used are pounds and inches. The unit of temperature used in the analysis should be degrees Fahrenheit in the thermal coefficient and temperature data.

CONCRETE PROPERTIES

The input of concrete properties consists of two or more cards. The first card has slab thickness, thermal coefficient, final drying shrinkage, unit weight, and 28-day compressive strength. Units are <u>pounds</u> and inches except for unit weight of concrete, where pounds per cubic foot should be used. In case the thermal coefficient and/or final drying shrinkage of the concrete mix used are not available, Fig 3.3 contains recommended values obtained from the present state-of-the-art.

The second card contains the age-tensile strength relationship of the concrete. If these data are not provided, the recommendations given by the United States Bureau of Reclamation will be used to generate the age-tensile strength relationship. In this case, the 28-days compressive strength of concrete is required, and NTS should be zero.

SLAB-BASE FRICTION RELATIONSHIP (F-y curve)

Various relationships can be input to define the F-y curve used in the computations. Regardless of the type of curve, symmetry is assumed with respect to the origin of the axes. This implies that only one portion of the curve is needed, while the remainder is generated by the program.

The three types of frictional resistance relationships are: straight line, parabola, and multilinear curves. The desired relationship is specified by the control IFY, where a value of one, two, or greater than two indicates that the F-y curve is a straight line, parabola, or multilinear relationship, tespectively. In the case of a straight line or a parabola, only one point is required to define the curve. This point is where sliding occurs. If the multilinear curve is used, then the first point should be the origin F(1) = 0, y(1) = 0, while the last point [F(IFY), y(IFY)] should be sliding. The force should be expressed in lbs/in^2 and the movement in inches.

TEMPERATURE DATA

In the temperature data, the average curing temperature and the minimum daily temperature over a period of NTEMP days should be specified. NTEMP should be equal to the time when the tensile strength reaches its maximum value, as specified in the Age-Tensile Strength relationship. If no tensile strength data are available, then as discussed previously, strength values will be generated by the program, in which case NTEMP should be 28 days, and 28 minimum daily temperatures will be required.

One more piece of information is required for the analysis: minimum temperature expected after concrete gains full strength.

MAXIMUM NUMBER OF ITERATIONS AND CLOSURE TOLERANCE

The maximum number of iterations should be set to prevent excessive computation. Most jointed concrete pavement problems should close to a reasonable tolerance within 10 iterations; an allowed maximum of 20 is usually adequate.

The closure tolerance is <u>Relative</u> closure and should be expressed in percent. If it is unreasonably small, closure may be difficult to achieve. <u>For many structural road problems</u>, <u>a value of one percent is</u> satisfactory.

APPENDIX 2

GLOSSARY OF NOTATION FOR COMPUTER PROGRAM JRCP-1

APPENDIX 2. GLOSSARY OF NOTATION FOR COMPUTER PROGRAM JRCP-1

NOTATION FOR JRCP-1 PROGRAM

AAA Counter for the number of iterations for friction closure

AGE Age of concrete generated by program

AGEU Age of concrete input by user
ALPHAC Thermal coefficient of concrete
ALPHAS Thermal coefficient of steel
ANTEMP Last day on time temperature curve

BAD Counter to indicate friction closure

BHIGH Spacing of transverse wire in deformed wire fabric

BLOW Half spacing of transverse wires

BONDL Bond or development length

COMSTR Compressive strength of concrete

CONSTR() Concrete stress

CRACKW1 Width of the first crack CRACKW2 Width of the second crack

CURTEMP Curing temperature

DELTAT Drop in temperature at any time
DELTATM Maximum drop in temperature
DIA Diameter of individual bar

DELTAX Increment length

DIF() Difference between two successive iterations

DT() Daily temperature

DIST Distance between free edge and first crack

EC Modulus of elasticity of concrete
ES Modulus of elasticity of the steel

F() Friction force FEXP() Flexural strength

FLESTRN Flexural strength of concrete

FOUT Value of flexural strength calculated by linear interpolation

FPC Compressive strength
FU Maximum friction force
FY Yield stress of the steel

FRF Friction factor for the AASHO steel equations

IFY Number of points defining the friction movement curve

INDEX Closure control

ITEB Counter for the number of iterations on bond length

ITYPER Option for the type of reinforcement

ISTDS Option for steel design L Length of JRCP-1 Model

MA1 AAA-1

MAXITE Maximum allowable number of iterations

N Index for reading data

NPROB Problem number (stops if blank)

NT Total number of increments in the JRCP-1 Model

NTEMP Number of daily temperatures

NTP1 NT+1

NRF Option for non-reinforcement design
Percent longitudinal reinforcement
Percent transverse reinforcement

PERCENT Percentage of 28-day flexural strength

REFF Upper bound on FU
SS() Steel strain
STRAIN() Concrete strain
STRESSS() Steel stress

STRNMUL Transformation factor between tensile and flexural strength

STRSCO Concrete stress at point of zero movement

STRSC1 Concrete stress for Model-1 STRSC2 Concrete stress for Model-2

THICK Slab thickness TIME Time in days

TOL Tolerance for closure criteria

UNWT Unit weight of concrete VDS Volume to surface ratio

W Slab width
XBAR Slab length

Y() Concrete movement

YEXP() Movement on the frictional-resistance curve

YP() Movement for testing criteria

YPITE() Movement from the previous iteration

YST Center to center spacing for transverse steel

Z Drying shrinkage at any time

ZTOT Total drying shrinkage

C------Notation for subroutine DFBARF

A Length of the fully bonded section in the JRCP Model
AA Coefficient of the square term in quadratic equation
AAAAA Summation of area under the steel stress diagram
ANA Number of stations in the fully bonded section
A1,A2,A3 Magnitude of areas under the steel stress diagram
BB Coefficient of the linear term in quadratic equation

BONDCON Bond constant

BONDLC Computed bond length

CC Constant term in quadratic equation C1,...,C9 Coefficients in the solution of equations

DELTA Magnitude of delta for the solution of quadratic equation
DENO Constant used for computing the slope of the steel curve
E Distance in the fully bonded section of the JRCP Model

LOCMAX Location of maximum concrete stress

NA Number of increments

NAM1 NA - 1 NAP1 NA + 1 NAP2 NA + 2

RATIO Ratio of modulus of elasticity of steel to that of concrete

ROOT1 Positive root of the quadratic equation ROOT2 Negative root of the quadratic equation

SIGMASB Stress in the steel between cracks
SIGMASC Stress in the steel at the crack
SUM1 Summation for solution of equations

SUM2 Summation of the slopes to the steel stress distribution

U Bond Stress

C-----Notation for subroutine DFBAR

AA Coefficient of the square term in quadratic equation

B Bond length

BB Coefficient of the linear term in quadratic equation

CHECK Check for solution of equations CONCRES Concrete stress between cracks

DD Constant term in the quadratic equation
DEL Value of delta in quadratic equation

R2, R6 Roots of quadratic equation

STRAREA Area under the steel stress distribution STRC Stress in the concrete between cracks STRSB Stress in the steel between cracks STRSC Stress in the steel at the crack

APPENDIX 3

COMPUTER PROGRAM

APPENDIX 3. COMPUTER PROGRAM

```
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
                                                                                       RUNW VERSION FEB 74 16.51.06. 23 JUL 75
                                                                                                  553 FORMAT(/+10X+* NON-REINFORCEMENT OPTION *+/)
                                                                                          154
               PROGRAM JRCP1 (INPUT.OUTPUT)
                                                                                                  554 FORMAT(/+10X+* SLAB ANALYSIS OPTION *+/)
                                                                                          154
     3
               DIMENSION AN1(40), AN2(18)
               DIMENSION F (501) + SUM (501) + AGE (8) + PERCENT (8)
                                                                                                С
                                                                                                       INPUT STEEL PROPERTIES
               COMMON /BLOCK1/ RATIO.THICK.P.FF.STRAINC.ES.NTP1.U.DIA.UNWT
               COMMON /BLOCK2/ SS(501) + AAA+WS(501) + MAXITE+CRACKW
                                                                                          154
                                                                                                       READ 560. ITYPER.P.DIA.FY.ES.ALPHAS.BHIGH
               COMMON /BLOCK3/ XBAR, STRSC. STRSB, STRC. IBABY, ITEB
                                                                                          176
                                                                                                       PRINT 580
               COMMON /BLOCK4/ AL(SOI) +STRAIN(501) +CONSTR(501) +STRESSS(501)
                                                                                          202
                                                                                                       PRINT 570
                                                                                                       PRINT 580
               COMMON /BLOCKS/ FEXP(10) . YEXP(10) . FRICHUL . NT. FU. 1FY
                                                                                          206
                                                                                                          IF (ITYPER.EQ.I) PRINT 590
               COMMON /BLDCK6/ ALPHAC+ALPHAS+EC+FPC+TIME+EP+TOL+ITYPER
                                                                                          212
                                                                                                          IF (ITYPER.EQ.2) PRINT 600
               COMMON /BLOC28/ Y(501) . REFF (501) . YP(501) . H. ICLOSER . YPITE (501)
                                                                                          550
                                                                                                          IF (ITYPER.LT.1.OR.ITYPER.GT.2) GO TO 450
               COMMON /BLOCK9/ STX.STY.PSX.PSY.ITE
                                                                                          226
                COMMON /BLOCK10/ NSTRN. VDS. AGEU (20) . TENSION (20) . STRNMUL
                                                                                          236
                                                                                                       PRINT 610, P.DIA.FY.ES.ALPHAS
                                                                                                                P=P/100.
               COMMON /BLOCK12/ DT(50) +NTEMP+NTIFLAG+UPINC+DOWNINC
                                                                                          253
                COMMON/BLOCKA/Z.YP1.Y1(501).DELTAX.DELTAT.TEMP1.REFF1.YPITE1.W
                                                                                                       INPUT CONCRETE PROPERTIES
               COMMON/BLOCKB/BHIGH.BLOW.YSL.PZ.YST.
                COMMON/BLOCKC/STRSC1 (501) +STRSS1 (501) +INC+FRF+FY+L
               DATA AGE/0.,1.,3.,5.,7.,14.,21.,28./
                                                                                          255
                                                                                                       READ 620. THICK: ALPHAC: ZTOT: UNWT: FPC: STRNMUL
                DATA PERCENT/0.,15.,38.,53.,63.,82.,94.,100./
                                                                                          274
                                                                                                      PRINT 580
                                                                                          300
                                                                                                       PRINT 630
                INTEGER AAA
                                                                                          304
                                                                                                       PRINT 640. THICK.ALPHAC.ZTOT.UNWT.FPC.STRNMUL
                REAL L
                                                                                          310
                                                                                                       INPUT AGE-TENSILE STRENGTH RELATIONSHIP
               PROGRAM AND PROBLEM IDENTIFICATION
                                                                                                c
                                                                                          330
                                                                                                           IF (STRNMUL.EQ.0.0) STRNMUL=1.0
         С
                READ 510. (AN1(N).N=I.40)
                                                                                                       NSTRN DESIGNATES WHETHER AGE-STRENGTH RELATIONSHIP IS AVAILABLE
    12
          10
                CONTINUE
    12
22
24
24
30
                READ 520, NPROB, (ANZ(N),N=1,18)
                                                                                                                NSTRN = 1 AGE-STRENGTH DATA IS PROVIDED
                   IF (NPROB-ITEST) 20.450.20
                CONTINUE
                                                                                                       READ 660. NSTRN.(AGEU(I).TENSION(I).I=1.7)
                                                                                          332
                PRINT 530
                PRINT 540, (AN1(N),N=1,40)
                                                                                          350
                                                                                                          IF (NSTRN.GT.7) READ 650, (AGEU(I).TENSION(I).I=8.NSTRN)
                PRINT 550. NPROB. (ANZ(N).N=1.18)
                                                                                          367
                                                                                                                TENS=TENSION (NSTRN)
    36
                                                                                          371
                                                                                                          IF (NSTRN_FQ.0) 60 TO 30
                READ SLAB DIMENSIONS AND DESIGN FLAGS
                                                                                                       PRINT 670. ((AGEU(I).TENSION(I)).1=1.NSTRN)
                                                                                          372
                                                                                          406
                                                                                                          GO TO 60
                READ 555. XBAR.W.NT.FRF.CRWM.ISTOS.NRF
     46
                                                                                          407
                                                                                                      CONTINUE
     72
                PRINT 580
                                                                                          407
                                                                                                       PRINT 680
                                                                                                       PRINT 690
     76
                PRINT 556
                                                                                          413
                                                                                                       DO 50 I=1.8
    102
                PRINT 580
                                                                                          417
                PRINT 557.XBAR.W.NT.FRF.CRWM
                                                                                          421
                                                                                                                DUMDUM=FPC+PERCENT(I)/100.
   106
                                                                                                             (DUMDUM.EQ.O.) GO TO 40
   124
                XBAR=XBAR+12.
                                                                                          424
                                                                                          425
                                                                                                                DUMDUM=STRNMUL+3000./(3.+12000./DUMDUM)
            557 FORMAT(//.15X.22H SLAB LENGTH
    126
                                                       = .E10.3./.
                           15x+22H SLAB WIDTH
                                                                                          431
                                                                                                 40
                                                       = .E10.3./.
                           15X.22H NUMBER OF INCREMENTS= .15./.
                                                                                                       PRINT 700, AXE(I) DUMDUM
                                                                                          431
                                                                                                      CONTINUE
                                                                                                 50
                                                                                          441
                           15X,22H FRICTION FACTOR
                                                       = .E10.3./.
                                                                                                                TENS=STRNMUL+3000./(3.+12000./FPC)
                                                                                          443
                           15x,22H MAX. CRACKWIDTH
                                                       = .E10.3.///)
                IF (ISTDS.EQ.1) PRINT 551
                                                                                          450
                                                                                                 60
                                                                                                       CONTINUE
    126
                IF (NRF.EQ.1) 7RINT 553
    133
                IF (NRF.NE.1.AND.ISTDS.NE.1)PRINT 554
                                                                                                       INPUT SLAB-BASE FRICTION RELATIONSHIP ** (FORCE-DISPLACEMENT**)
    141
            555 FORMAT (2F8.4,15,2F8.4,312)
    154
            556 FORMAT( 10X+1H*+46X+1H*+/+
                                                                                                       FORCE-DISPLACEMENT RELATIONSHIP
    154
                     10X.48H*
                                              SLAB OIMENSIONS
                                                                              •./,
                      10X.1H*.46X.1H*)
                                                                                          450
                                                                                                       PRINT 710
            551 FORMAT (/+10x++ STEEL DESIGN OPTION ++/)
                                                                                                       READ 730. IFY. (FEXP(I).YEXP(I).I=1.7)
    154
                                                                                          454
```

JRCP1

JRCP1

```
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
                  IF (IFY.GT.7) READ 720+ (FEXP(I)+YEXP(I)+I=8+IFY)
   472
   511
                  IF (IFY.EQ.1) GO TO 70
                  IF (IFY.EQ.2) GO TO 80
   513
                  IF (1FY.GT.2) GO TO 90
   515
              CONTINUE
          70
   517
                        FRICHUL=FEXP(1)/YEXP(1)
   517
                        FU=FEXP(1)
   521
   522
523
                  GO TO 100
          80
              CONTINUE
                        FRICHUL=SQRT(AGS(1/YEXP(1)))*FEXP(1)
   523
   532
                        FU=FEXP(1)
   533
                  GD TO 100
               CONTINUE
   533
          90
   533
                  IF (FEXP(1).NE.0.OR.YEXP(1).NE.0.) GO TO 450
          100 CONTINUE
   541
                  IF (IFY.EQ.2) PRINT 750+ FEXP(1)+YEXP(1)
   541
                  IF (IFY.EQ.1) PRINT 740. FEXP(1).YEXP(1)
   553
                  IF (IFY.GT.2) PRINT 760. ((FEXP(1).YEXP(1)).I=1.IFY)
   565
               INPUT MAXIMUM DAILY DROP IN TEMPERATURE
   604
               READ 770. CURTEMP.NTEMP.(DT(I).1=1.14)
                  IF (NTEMP.GT.14) READ 780. (OT(I):1=15.NTEMP)
   616
               PRINT 800
   633
               PRINT 790. CURTEMP
   637
    645
               PRINT ALC
               DO 110 1=1.NTEMP
    651
                        TEM7T=OT(I)
    653
                        DT(1) =CURTEMP-DT(1)
    655
                   IF (AT(1).LT.0) DT(1)=0.
               PRINT 820. I.TEMPT.DT(I)
    662
               CONTINUE
          110
         C
                INPUT MINIMUM TEMPERATURE AFTER
                CONCRETE GAINS FULL STRENGTH
                READ 830. DESTATM
    677
                PRINT 840, DELTATH
    704
                        DELTATH=CURTEMP-DELTATH
    712
                READ 850. HAXITE.TOL
    714
                PRINT 860
    724
                PRINT 870. MAXITE.TOL
    730
                *********************
                    INITIALIZE PARAMETERS
                **********************
                        IFIN1SH=0
    740
                         TOL=TOL/100.
    741
               CONT INUF
           120
                   IF (IFINISH.EQ.0) GO TO 130
    743
                PRINT 530
    744
                PRINT 540. (AN1(N).N=1.40)
    750
                PRINT 550. NPROB. (ANZ(N).N=1.18)
    756
                   IF (IFINISH.EQ.1) PRINT 480
    766
    774
           130 CONTINUE
```

```
IF (ITYPER.EQ.2) ICLOSER=1
777
1001
                      IBABY=0
1002
                      IBXBAR=0
1003
                      IENDONE=0
1004
                      ITE8=0
             NTP1=NT+1
1005
                      18=1
1007
             VDS=THICK
1010
1011
                      EP=1.E-9
1013
                      AAA=1
1014
                      RLOW=BHIGH/2.
             CONTINUE
1016
             CALL DRIVER (NRF+1STDS+ZTOT+F+SUM+CRWM)
1016
             1F(15T05.NE.1.0.NRF.EQ.1)GOTO 450
1022
             PREPARE FOR PRINTING RESULTS IF STEEL DESIGN OPTION CHOSEN
       ¢
1032
             AB#3.1416+DIA+D1A/4.
1035
              PmP+100.
1036
              YSL =AB+100./(THICK+P)
1042
             PRINT 880 . P.YSL
        480 FORMAT (62X+9H MAXIMUM +/+ 2X+23H TIME TEMP DRYING +
1051
                                                     CONCRETE STRESS IN ./.
                   53H TENSILE CRACK CRACK
                   1x+51H (DAYS) DROP SHRINKAGE STRETH SPACING WIDTH +
                                    THE STEEL ./)
                   4x.22H STRESS
        490 FORMAT ( 2X.F5.2.2X.F5.1.2X.E10.3.2X.F5.1.3X.F6.1.
1051
                  1x.F10.3.2(2x.E10.3))
        510 FORMAT ( 20A4)
1051
1051
        520 FORMAT (A5.5X.17A4.A2)
        530 FORMAT (SHI +76X+10H1----TRIM)
1051
1051
        540
             FORMAT (1X+20A4)
1051
        550 FORMAT (//+5H PROB+/+A5+5X+17A4+A2+//)
            FORMAT (15.5X.6(E)0.3))
        560
1051
        570 FORMAT (10X+1H*+46X+1H*+/+
1051
                                         STEE: PROPERTIES
                                                                         0./.
                  10x.48H*
                  10x.1H*.46X.1H*)
        580 FORMAT (10X+48(1H*))
1051
        590 FORMAT 1//+15X+39H TYPE OF LONGITUDINAL REINFORCEMENT IS +/+
1051
                        26X.14H DEFORMED BARS)
1051
        600
            FORMAT (//+15X+39H TYPE OF LONGITUDINAL REINFORCEMENT IS +/+
                        23X+21H DEFORMED WIRE FABRICE
            FORMAT (//-15x-24H PERCENT REINFORCEMENT =+E10.3+/+
1051
        610
                        15X.24H BAR DIAMETER
                                                      =+E10.3+/+
                        15X.24H YIELD STRESS
                                                      = .F10.3./.
                        15x.24H ELASTIC MODULUS
                                                      = • E10 . 3 • / •
                        15x+24H THERMAL COEFFICIENT =+E10.3+///)
1051
        620 FORMAT (10X.6E10.3)
        630 FORMAT (10X+1H*+46X+1H*+/+
1051
                                        CONCRETE PROPERTIES
                  10X+48H*
                                                                         **/*
                  10x+1H*+46X+1H*)
1051
        640
            FORMAT (//+15X+22H SLAB THICKNESS
                        15x.22H THERMAL COEFFICIENT =.E10.3./.
                        15X+22H TOTAL SHRINKAGE =+E10.3+/+
15X+22H UNIT WEIGHT CONCRETE=+E10.3+/+
            3
                        ISX,22H COMPRESSIVE STRENGTH=+E10,3:/+
```

RUNW VERSION FEB 74 16.51.06. 23 JUL 75

```
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
                                                                                                    RUNW VERSION FEB 74 16.51.06. 23 JUL 75
                               15x+22H (TENS/FLFX)RATIO =+F10.3.//)
                                                                                                       1051
                                                                                                                 940 FORMAT (//+10x+* ERROR IS DETECTED *+/+
  1051
           650 FORMAT ((10X+)4F5.0))
                                                                                                                              10x.º FRICTION-MOVEMENT CURVE INPUT IS WRONG +>/+
           660 FORMAT (15.5%.14F5.0)
  1051
                                                                                                                              10x.* F(1) AND Y(1) SHOULD BE ZEROS *./.
                FORMAT (//+15X+40H TEN51LE STRENGTH DATA AS INPUT BY USER +//+
  1051
                                                                                                                              10x. PROGRAM IS TERMINATED .
                              14X+16H AGE+ TENSILE +/+
13X+18H (DAYS) STRENGTH +/+
                                                                                                                950 FORMAT (//+10X+* ERROR IS DETECTED **/+
1 10X+*TYPE OF PERCENT REINFORCEMENT OPTION IS NOT RIGHT**/+
                                                                                                       1051
                              (15X.F5.1.2X.F5.1))
                                                                                                                         10X.*!TYPFR=*.15)
           680 FORMAT (14X,22H TENSILE STRENGTH DATA,/,15X,21(1H+))
  1051
                                                                                                       1051
                                                                                                                960 FORMAT (//+10x++ PROGRAM IS TERMINATED + ITE = ++15)
  1051
           690 FORMAT ( /+15X+43H NO TENSILE STRENGTH DATA IS INPUT BY USER +/+
                                                                                                       1051
                                                                                                                  450 CONTINUE
                           15%.49H THE FOLLOWING AGE-TENSILE STRENGTH RELATIONSHIP
                                                                                                       1051
                                                                                                                      FNO
                           15X.46H IS USED WHICH IS BASED ON THE RECOMMENDATION ./.
                           15X+37H GIVEN BY U.S. BUREAU OF RECLAMATION .//.
                           15X+15H AGE+ TENSILE +/+
14X+17H (DAYS) STRENGTH +/)
           700 FORMAT (13X. 2(2X.F5.1))
  1051
  1051
           710 FORMAT ( />10X,48(1H+),/,10X,1H+,46X,1H+,/,
                        10x+1H++5x+35H SLAB-BASE FRICTION CHARACTERISTICS+6x+1H++/+
                        10X+1H++14X+17H F-Y RELATIONSHIP+15X+1H++/+10X+1H++/46X+1H++/+
                        10x,48(1H+),//)
  1051
           720 FORMAT ((10X-14F5-2))
           720 FORMAT ((10x+14+5+2))
730 FORMAT (15x-5x+14F5.2)
740 FORMAT (15x-41HTYPE OF FRICTION CURVE IS A STRAIGHT LINE+//+
1 15x+24H MAXIMUM FRICTION FORCE=+2X+F6-3+/+
  1051
                      15x.24H HOVEMENT AT SLIDING =.2x.F6.3)
  1051
           750 FORMAT (15X.36HTYPE OF FRICTION CURVE IS A PARABOLA.//.
           1 15x-24H MAXIMUM FRICTION FORCE = 2x, F6.3),
2 15x-24H MOYEMENT AT SLIDING =>2x, F6.3)
760 FORMAT (15x, 45HTYPE OF FRICTION CURVE IS A MULTILINEAR CURVE, //+
 1051
                       15x+5H F(I)+2X+5H Y(I)+//+(15X+F6.3+2X+F6.3)+//)
           770 FORMAT (F5-1-15-14F5-1)
           780 FORMAT ((10x-14F5-1))
  1051
           790 FORMAT ( 14X+20H CURING TEMPERATURE=+F5.1+//)
  1051
           800 FORMAT (///-10X-30(1H+)-/-
  1051
                        10X+1H+,28X+1H+,/+
                        10X.30H
                                        TEMPERATURE DATA
                                                                   **/*10X*1H**28X*1H**/*
                        10X+30 (1H+)+//)
  1051
           810 FORMAT (20X, 7HMIN]MUM, 6X, 7HOROP IN./.
                       10x+3HDAY+SX+11HTEMPERATURE+2X+11HTEMPERATURE+/}
           820 FORMAT (10X+(13+8X+F5-1+8X+F5-1))
                 FORMAT (10X,F5.1)
  1051
           840 FORMAT (/+14x-36H MINIMUM TEMPERATURE EXPECTED AFTER +/
1 14x-36H CONCRETE GAINS FULL STRENGTH =-F
  1051
                              20H DEGREES FARENHITE .//)
            850 FORMAT (15.F5.1)
  1051
  1051
           860 FORMAT (//+10x+48(lH+)+/+10x+1H++46X+1H++/+10X+1H++6X+
                          33H ITERATION AND TOLERANCE CONTROL .7X.1H+./.
                          10X+1H++46X+1H++/+10X+48(1H+)+///)
           870 FORMAT (10%,40H MAXIMUM ALLOWABLE NUMBER OF ITERATIONS=,15 ,//
1 10%-28H RELATIVE CLOSURE TOLERANCE=.F5,1. 8H PERCENT.//)
880 FORMAT(1%,* LONGITUDINAL STEEL = *.EIO.3,* PERCENT. *,/,
  1051
  1051
           1 * SPACED = ***E10.3** FERCENTE TO CENTER TO CENTER ***//)
900 FORMAT (10X+15+2X+F5.1+2X+4(E10.3+2X+))
  1051
           910 FORMAT (//+10x+374 FOR ALLOWABLE NUMBER OF ITERATIONS, +/+
1 10x+36H THE SOLUTION DOES NOT CLOSE ON THE .
  1051
                               10X.24H STRESS STRENGTH CURVE. ./.
```

10X+24H PROGRAM IS TERMINATED. +)

JRCP1

JRCP1

RUNW VERSION FEB 74 16.51.06. 23 JUL 75

PROGRAM LENGTH INCLUDING I/O BUFFERS 6410

FUNCTION ASSIGNMENTS

START OF CONSTANTS

JRCP1

		NT	ASS I GNMENT	'S								
	10	-	12	20	-	24	30	-	407	40	-	431
	60	-	450	70	-	517	80	-	523	90	-	533
	100	-	541	120	-	743	130	-	774	140	 .	1016
	450	-	1051	480	-	1201	490	-	1231	510	-	1243
-	520	-	1245	530	-	1250	540	_	1254	550	•	1256
	551	-	1151	553	-	1156	554	-	1163	555	-	1125
	556	-	1131	557	_	1065	560	_	1263	570	-	1266
	580	-	1306	590	_	1311	600	-	1324	610		1337
	620	-	1400	630	-	1403	640	-	1423	650	•	1472
	660	-	1475	670	-	1500	680	-	1530	690	-	1536
	700	-	1603	710	-	1606	720	•	1635	730	•	1640
	740	-	1643	750	-	1665	760	-	1707	770		1724
	780	-	1727	798	-	1732	800	-	1740	810	-	1767
	820	-	2004	830	-	2010	840	-	2013	850	-	2035
	860	-	2037	870	-	2061	880	-	2077	900	-	2114
	910	-	2121	940	-	2152	950	-	2202	960	-	2222
	EXTERN	AL S	AND TAGS									
	INPUTC	-	500200	OUTPTC	-	S00300	SORT	-	500400	ORIVER	-	500500
	ENO	-	500600	GENTRY	-	500100						
			ES AND LENG									
	BLOCKI		12001	Brocks	-	1755C02				BLOCK4	•	3724C04
	BLOCK5	-	30005	BL OCK6	-		BLOCKS					5010
	BLOCKI			BLOCK 1	2*	66012	BLOCKA	-	775013	BLOCKS	*	6C14
	BLOCKC	-	1756C15									
		_										
			ASSIGNMENTS									
	AAA	-	765C02		-	4343	AGE	-	4300	AGEU	•	2011
	AL	-		ALPHAC			ALPHAS	-		ANTEMP	-	4337
	AN1	~	2234	AN2	-	2304	BHIGH	-		BF O.≅	-	1014
	CONSTR		1752004		-	4324	CURTEM		4333	DELTATH	!-	4335
	DIA	_	10001		-		DUMDUM	-	4332	EP	-	5006
	ES	-	5001		-	2326	FEXP	-	0005		•	3006
	FRF	-	1753C15		L	24005		-	26005		-	1754C15
	I	-	4330	18	-	4342	IBABY	-		IBXBAR	•	4340
	ICLOSE		2740007		E-	4341	IFINIS	H	4336	IFY	•	27005
	ISTOS	-	4325	1 TEQ	•		ITEST	-	4321	ITYPER	•	7006
	L	-	1755C15		-	1753002		G-	5C 14		*	4322
	NEGT	-	4320	NPROB	-	4323	NRF	-	4326	NSTRN	•	0011
	NT	-	25C05		-	62012		-	6001		-	2C01
	PERCEN'		4310	REFF	*	765007		-		STRAIN		765C04
	STRESS		2737004					-		STRSSI		765C15
	SUM	-	3313	TEMPT	-	4334	TENS	-	4331	TENSION	-	26C11
	THICK	-	1001		-		UNWT	-	11001		-	1011
	¥	-	774C13		-	766002		-	0003		-	0C07
	YEXP	-	12005		-	1752007	YPITE	-	2741007	YSL	-	2C14
	Yl	-	2013	7101	•	4327						

JRCP1

RUNW VERSION FEB 74 16.51.06. 23 JUL 75

SPACE REQUIRED TO COMPILE -- JRCP1 40200

START OF TEMPORARIES

START OF INDIRECTS

START OF VARIABLES

2227

2234

```
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
```

```
113
                                                                                                        PRINT SAG. CRACKWI.TIME
            SUBROUTINE DRIVER (NRF. ISTDS. ZTOT. F. SUM. CRWM)
                                                                                          123
                                                                                                       IF (MODEL AG. EQ. 1) RETURN
            DIMENSION F (501) - SUM (501)
                                                                                                   250 150-1
                                                                                          131
ii
            COMMON/BLOCKI/RATIO+THICK+P+FF+STRAINC+FS+NTPI+U+OIA+UNWT
                                                                                                       CALL MODEL 2 (F. BONDL . Z. OFL TAT. SUM. INDEX. STRMAX. ISC)
                                                                                          132
            COMMON/BLOCK2/ SS(501)+AAA+WS(501)+MAXITE+CRACKW
11
                                                                                          141
                                                                                                        I -YOAD
            COMMON/BLOCK3/ XBAR+STRSC+STRSB+STRC+IBABY+ITEB
11
                                                                                          143
                                                                                                       DIFF=STRSC-0.75*FY
            COMMON/BLOCKS/ FEXP(10) +YEXP(10) +FRICMUL +NT+FU+IFY
11
                                                                                          146
                                                                                                       IF (DIFF.GT.0.1) GOTO 200
            COMMON/BLOCKS/ ALPHAC.ALPHAS.EC.FPC.TIME.EP.TOL.ITYPER
11
             COMMON /BLOCKS/ Y(501).REFF(501).YP(501).H.ICLOSEB.YPITE(501)
11
                                                                                                       SUB-LOOP ON TIME FOR CRACK 2
11
            COMMON/BLOCKO/STRSC2(50)1.01ST
îĩ
            COMMON/BLOCKA/Z,YP1,Y1(501),OELTAX,DELTAT,TEMP1,REFF1,YPITE1,W
                                                                                          155
                                                                                                       ITIME=ITIME+1
            COMMON/BLOCKB/BHIGH.BLOW.YSL.PZ.YST.MOOFLAG
11
                                                                                          156
                                                                                                        TIME=FLOAT (ITIME)
            COMMON/BLOCKC/STR5C1 (501) +STRSS1 (501) +INC+FRF+FY+L
ĩĩ
                                                                                          160
                                                                                                        IF (TIME.GT.28.0) GOTO 220
            COMMON /BLOCK12/ DT(50) *NTEMP*NTIFLAG*UPINC*DOWNING
                                                                                          163
                                                                                                        DEL TAT=DT (ITIME)
                                                                                                       CALL FORWARD (TENSTRN-7TOT-7)
                                                                                          164
            L=XBAR
11
                                                                                          166
12
            IP=0
                                                                                          167
                                                                                                        CALL MODEL 1 (TIME . IS. INT)
13
            TES-A
                                                                                          172
                                                                                                       ISC=0
14
            IF (NRF.NE.1) XOTO 5
                                                                                          173
                                                                                                       CALL MODEL2 (F.BONDL.Z.DELTAT.SUM.INDEX.STRMAX.ISC)
16
            P=0.
                                                                                          204
                                                                                                       I = XRAR
17
            GOTO 10
                                                                                          210
                                                                                                       H=L /NT
17
          5 IF (ISTOS.NE. 1160TO 10
                                                                                                       CALL STRSCO(STRSCON)
                                                                                          212
21
            CALL STOS (FRW. FY. W)
                                                                                          214
                                                                                                        IF (TENSTRN.GT.STRSCON) GOTO 250
23
         10 CONTINUE
                                                                                          223
                                                                                                        TENSTRN=STRSCON
23
            ITIME = 0
                                                                                                       CALL DISTI (DIST. TENSTRN. IGB)
                                                                                          223
24
         20 CONTINUE
                                                                                                       CALCULATE THE SECOND CRACK WIDTH
            MAIN LOOP ON TIME
                                                                                          226
                                                                                                       CRACKW2=AB5((STRSCON*DIST)/2.-2.*(7.ALPHAC*DFLTAT))
24
            ITIME=ITIME+1
                                                                                          235
                                                                                                       IF (CRACKW2.GT.CRWM) GOTO 260
            TIME=FLOAT (ITIME)
                                                                                          244
                                                                                                        ISC=1
            IF (TIME .GT . 28 . 0) GOTO 30
                                                                                          245
                                                                                                        CALL MODEL2(F.BONDL.Z.DELTAT.SUM.INDEX.STRMAX.ISC)
36
            DELTAT=DT(ITIME)
                                                                                                       L=XBAR
37
            168=0
                                                                                                       H=L/NT
40
            CALL FORWARD (TENSTRN. ZTOT. Z)
                                                                                          260
                                                                                                       DIFF=STRSC-0.75*FY
42
            15=0
                                                                                                       1F (DIFF - GT - 0 - 1160TO 200
                                                                                          263
            CALL MODELI (TIME . IS. INT)
43
                                                                                                       PRINT 300 TIME CRACKW2 DIST
                                                                                          272
                                                                                                   300 FORMAT (29H SECOND CRACK OCCURS AT TIME +F8.4+16H WITH A WIDTH OF +

1 F8.4+7+36H AT A DISTANCE FROM THE FREE EDGE OF +E10.3)
46
            CALL DISTI (DIST. TENSTRN. 168)
                                                                                          303
51
             IF (NRF.EQ.1)XOTO 50
57
             IF (IGB.EQ.1) XOTO 27
                                                                                          303
                                                                                                       RETURN
                                                                                          304
                                                                                                    30 IF (NRF.EQ.1) XOTO 35
62
            IF (DIST.NE.XBAR/2.) GO TO 20
45
            INC*DIST/H
                                                                                          314
                                                                                                       IF (ISTOS.EQ.1)GO TO 38
                                                                                          316
                                                                                                       PRINT 510
            CALCULATE FIRST CRACK WIDTH
                                                                                                   510 FORMAT (/+5X+34HNO CRACK OCCURS AT END OF 28 DAYS.)
                                                                                          321
                                                                                                       RETURN
            DUM=DIST-(INC+H)
                                                                                                    35 CONTINUE
                                                                                          322
71
            IF (DUM.EQ. 0.) GOTO 123
                                                                                          322
                                                                                                       PRINT 520 J
72
             YC=DUM* (Y1 ([NC+1)-Y1 ([NC))/H
                                                                                          330
                                                                                                       RETURN
77
            GOTO 12
                                                                                                   200 IF (IFS.EQ.1) GOTO 70
                                                                                          331
77
        123 YC=Y1 (INC)
                                                                                          337
                                                                                                       dF (1STDS.EQ.1)GOTO 270
101
         12 CRACKWI=2. *ASS(YC)
                                                                                          340
                                                                                                       PRINT 210.STRSC.TIME
            IF (CRACKWI.GT.CRWM) GOTD 70
104
                                                                                                   210 FORMATIZON STRESS IN THE STEEL . E10 . 3 . 25H IS GREATER THAN ITS WORK
                                                                                          347
             IF (CRACKWI.GT.0.00100) GOTO 45
107
                                                                                                      1.20HING STRENGTH AT TIME.F8.4)
112
            IF (ISTOS.EQ.1) GOTO 38
                                                                                          347
                                                                                                       RETURN
         45 CONTINUE
113
                                                                                          350
                                                                                                   220 CONTINUE
```

DRIVER

DRIVER

```
RUNW VERSION FER 74 16.51.06. 23 JUL 75
           230 FORMATIAGH AT THE END OF 28 DAYS NO SECOND CRACK OCCURS 1
   354
   354
                DETHION
   355
           260 CONTINUE
   355
                IF (15TD5.EQ.1)GOTO 270
                PRINT 280.CRACKW2.TIME
   363
           280 FORMAT (13H SECOND CRACK+F8.4.51H IS WIDER THAN NAXINUM ALLOWABLE C
               IRACKWIDTH AT TIME .F8.41
   372
            50 CONTINUE
   373
                IF (DIST.LE.XBAR/2.)GOTO SI
   373
   402
                IF (DIST.GT.0.75*XBAR) GOTO 52
   406
            520 FORMAT(/.1%.*FOR THE GIVEN INPUT DATA. THE LENGTH OF THE NON-*
   406
              1 ./. * REINFORCED SLAB IS *.E10.3.* INCHES.*)
             51 CONTINUE
   406
                ADJUST LENGTH FOR NON-REINFORCED.
          Ċ
   406
                L=L-L/2.
                GOTO 10
   411
             52 CONTINUE
   411
                L=L+L/2.
   411
                GOTO 10
   414
             60 CONTINUE
   414
                PRINT 530 - CRACKWI . TIME . STRSCI (INC)
   414
           PHINI 3301 CHALMBINITHE STREET THE STREET THE STREET THAN MAXIMUM ALLOWABLE CRACKWIDTH AT TIME 2F8-4+/-26H WITH A CONCRETE STRESS OF +F8-4)
   426
   426
                RETURN
   427
             70 CONTINUE
   427
                 IF (ISTOS.NE. 1) GOTO 60
   435
                1P=1P+1
   436
                 IF (IP.GT.MAXITE)GOTO 14
                 ADJUST STEEL PERCENTAGE FOR STEEL DESIGN OPTION
                 P=P+P/2.
   443
                 GOTO 10
            540 FORMATIZAH WIDTH OF FIRST CRACK IS +F8.4.7H INCHES.8H AT TIME.
    444
                       F8.4.7H DAYS. 4//)
             38 IF (IFS.EQ.1) XOTO 18
    444
                P=P-P/2.
IF(P.EQ.0.)G6TO 39
    446
    451
                 IF(P.LE..00005)P=0.
    451
                GOTO 10
   454
455
            270 CONTINUE
                 SA=THICK+P
   455
    457
                 SFC=STRSC+SA
    461
                 SA=SFC/(0.75+FY)
    464
                 P=SA/THICK
    466
                 1F5=1
                GOTO 10
   467
             IA PRINT 915
   467
            915 FORMATICAL FOR THE GIVEN SLAB LENGTH. THE PERCENT OF STEEL WAS *
   473
                   *DICTATED BY THE STEEL **/ ** STRESSES AND NOT BY CRACKWIDTH. **
```

DRIVER

RUNW VERSION FEB 74 16.51.06. 23 JUL 75

27 CALL INTRSCT (TENSTRN. IS. INT. YC. DIST. ZTOT. ISTOS)

1 ./. . INCHES WITH PERCENT STEEL = .. E10.3)

550 FORMAT(7+3X+* NO STEEL IS NEEDED, WIDTH OF FIRST CRACK = *+E10.3+

920 FORMAT (* FOR THE MAX NUMBER OF ITERATION THE STRESS IN THE STEEL.

1 */** AT THE CRACK IS **E10.3.* PSI, AT TIME **F8.4*/)
910 FORMAT(3x.*SLAB LENGTH NEEDS TO BE REDUCED*CRACK#) = **E10.3.*

DETHION

IGB=0

39 CONTINUE

GOTO 12

GOTO 1000

GOTO 1000

P=P=100.

1000 CONTINUE

END

PRINT SEG. CRACKWI

* INCHES. *,/)

14 IF(STRSC.LE.0.75*FY)GOTO 15

15 IF (CRACKWI.LE.CRWNIGOTO 45

PRINT 920.STRSC.TIME

PRINT 910 CRACKWI .P

PRINT 920.STRSC.TIME

473

474

507

510

514

514

522

522

526 532

541

545

550

551

561

571

571

```
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
                                                                                         RUNN VERSION FEB 74 16.51.06. 23 JUL 75
SUBPROGRAM | ENGTH
                                                                                                         SUBROUTINE MOOFLI(TIME+IS+INT)
 1043
                                                                                                         COMMON /BLOCK1/ RATIO.THICK.P.FF.STRAINC.ES.NTP1.U.DIA.UNWT
FUNCTION ASSIGNMENTS
                                                                                                         COMMON/BLOCKS/FEXP(10) . YEXP(10) .FRICMUL .NT.FU.IFY
                                                                                                         COMMON/BLOCK2/ 55(501) .AAA.WS(501) .MAXITE.CRACKW
STATEMENT ASSIGNMENTS
                                                                                                         COMMON/REOCKA/Z.YP1.Y1(501).DFLTAX.DFLTAT.TFMP1.RFFF1.YPITF1.W
                                                                                                         COMMON/BLOCKC/ STRSC1(501).STRSS1(501).INC.FRF.FY.L
                                    23
                                                        101
                                                                             526
                     10
15
                                   467
                                                         24
                                                                27
                                                                             474
                                                                                                         COMMON /81 OC2D/ STRSC2 (S01) +DIST
             545
                     18
                                          20
30
             304
                                   322
                                          วล
                                                        444
                                                                39
                                                                             514
                                                                                                         COMMON/BLOCKB/ Y (501) . REFF (501) . YP (501) . H. ICI OSEB. YP (TE (501)
                     35
45
                                   373
                                                        406
                                                                              411
                                                                                                         REAL L
             213
                     50
                                          51
                                                                52
60
                                                         77
                                                                                                         IF (INT.EQ.1) XOTO 40
             414
                     70
                                   427
                                           123
                                                                200
                                                                             331
                                                                                              6
                                                                             131
                                                                                                   c
                                                                                                         INITIALIZE LOOP PARAMETERS
210
             626
                     220
                                   350
                                           230
                                                        641
                                                                250
260
             355
                     270
                                   455
                                           280
                                                        650
                                                                300
                                                                             602
                                                                                             10
                                                                                                         INC=0
510
              620
                     520
                                   662
                                           530
                                                        676
                                                                540
                                                                              720
                                                                                                         H=L/NT
                                                                                             ñi
550
              752
                     910
                                   1002
                                           915
                                                                920
                                                                              765
                                                                                                         DEL TAX=0.0
                                                                                             ĩã
1000
                                                                                                   c
                                                                                                     MAIN LOOP ON INCREMENT.
10 OELTAX=OELTAX-H
                                                                                             14
                                                                                                         INC*INC+1
IF (DELTAX.GT.L) RETURN
EXTERNALS AND TAGS
                                                                                             16
STOS - S00100
OUTPTC - S00500
                     FORWARD- 500200
                                          MODEL1 - 500300
STRSCO - 500700
                                                                DIST1 - 500400
                                                                                             20
                     MODEL2 - 500600
                                                                INTRSCT- SOLOGO
                                                                                             23
                                                                                                         IF (15.NE.1) G6TO 40
END
      - 501100
                                                                                             25
                                                                                                         IF (DELTAX.GT.DIST) RETURN
                                                                                                     40 F0*0.0
BLOCK NAMES AND LENGTHS
                                                                                                         CALL STRSCS (FO)
                                                                                             33
BLOCK1 -
               12C01 BLOCK2 -
                                  1755C02 BLOCK3 -
                                                           6C03 BLOCKS -
                                                                               30C04
                                                                                                         CALL FRICI(FI)
                                                         766C07 BLOCKA -
                                                                                                         REFE1=F1
               10C05 BLOCK8 -
                                  3726C06 BLOCKD -
                                                                              775010
                                                                                             35
BLOCK6 -
BLOCKB -
                                  1756C12 BLOCK12-
                                                         66C13
                                                                                                         CALL STRSCS (F1)
                6C11 BLOCKC -
                                                                                                         CALL FRICI(F2)
                                                                                             40
                                                                                             42
                                                                                                         F3=(F1+F2)/2.
VARIABLE ASSIGNMENTS
                                                                                             45
                                                                                                      20 CONTINUE
ALPHAC -
                OCOS BONDL -
                                   1033
                                          CRACKWI-
                                                        1031
                                                               CRACKW2-
                                                                             1040
                                                                                                         CALL BACFRC1(F3)
DELTAT -
              770C10 DIFF
                                   1036
                                           DIST
                                                        765C07 DT
                                                                                0013
                                                                                             45
                                                                             1754C12
                                                                                                         CALL STRSCS(F3)
DUM
             1027
                     FEXP
                                     OCO4 FRE
                                                        1753C12 FY
             2737C06 IFS
                                                                             1752012
                                                                                             51
                                                                                                         CALL CLOSE ! (INDEX.F3)
                                   1021
                                           IGR
                                                        1023
                                                               INC
INDEX -
             1034
                     INT
                                   1026
                                           ÎP
                                                        1020
                                                                15
                                                                             1025
                                                                                             53
                                                                                                         IF (INDEX.EQ.1) GOTO 30
```

1753002

1035

765C06

0007

4C05

0006

2741006

1755cl2 HAXITE -

1001 TIME

Y 5000

1752C06 YPITE

OCO2 STRMAX -

OCIZ STRSC2 -

2C01 REFF

START OF CONSTANTS

ISC -

٧C

YI

STRSC -

STRSS1 -

START OF TEMPORARIES

1032

1041

1030

ITIME

1003 STRSCON-

YEXP

765C12 TENSTRN-

SCII NT

774C10 WS

aclo z

1022

1042

1037

1024

25C04 P

766C02 X848

12C04 YP

0010

55

STRSC1

THICK -

START OF INDIRECTS

START OF VARIABLES

SPACE REQUIRED TO COMPILE -- DRIVER 35600

DRIVER

HODEL 1

57

61

64

64

66

67

75

CALL BINRYFI (F3)

IF (INT.EQ. 1) RETURN

IF(P.EQ.O.)GGTO 10 STRSS1(INC)=F3*DELTAX/(P*THICK)-STRSC1(INC)/P

GOTO 20

GOTO 10

FND

30 CONTINUE

105

FUNCTION ASSIGNMENTS
STATEMENT ASSIGNMENTS

10 - 14 20 - 4
EXTERNALS AND TAGS

STRSCS - 500100 FRIC1 - 500200 BINRYF1- 500500 END - 500600

BLOCK NAMES AND LENGTHS
BLOCK1 - 12C01 BLOCK5 BLOCKC - 1756C05 BLOCK0 -

VARIABLE ASSIGNMENTS
DELTAX - 767C04 DIST - 765C06 FEXP - 101 F2 - 102 F3 - 1104 L - 1752C05 INDEX - 104 L - 765C07 REFF1 - 76

STRSC1 - 0005 STRSC2 - WS - 766003 Y - YPITE - 2741007 Y1 -

START OF CONSTANTS 76 START OF TEMPORARIES

START OF INDIRECTS

77

33000

100 START OF VARIABLES

100
SPACE REQUIRED TO COMPILE -- MODEL1

RUNW VERSION FEB 74 16.51.06. 23 JUL 75

```
SUBROUTINE GISTI (DIST.TENSTRN.IGB)
            COMMON /BLOCK3/XBAR.STRSC.STRSB.STRC.IBABY.ITEB
            COMMON /BLOC25/FEXP(10) .YEXP(10) .FRICHUL .NT .FU . IFY
            COMMON /9LOCK8/Y(501) . REFF(501) . YP(501) . M. ICLOSE8 . YPITE(501)
            COMMON /BLOC2C/STRSC1(501) .STRSS1(501) .INC.FRF.FY.L
            00 10 J=1.NT
            IF (ABS (TENSTRN) . LE . ABS (STRSC1 (J))) GOTO 20
         10 CONTINUE
13
16
17
20
22
35
            DIST=0.75*XBAR
            RETURN
         20 IF (J.EQ. 1) GOTO 30
            DUMDUM=(STRSC1(J)-STRSC1(J+1))/(ABS(H*J)-ABS(H*(J-1)))
            DIST=ABS(H*(J-1)) + (ABS(TENSTRN)-STRSC1(J-1)) /DUMDUM
47
52
53
54
            IF (DIST.GE.XBAR/2.) RETURN
         30 IGB=1
            RETURN
            END
```

40

1755C03 BLOCKA -

0C02 F0

765005 THICK -

3726007

103

1755C05 NT

772004 55

12C05 Ab

CLOSE1 - 500400

BACFRC1- 500300

30C0S BFUCKS -

OCO6 STRSS1 -

OCOT YEXP

2004

766C06 BLOCK8 -

30

775C04

100

2737C07

25002

0003

```
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
                                                                                      RUNW VERSION FEB 74 16.51.06. 23 JUL 75
SUBPROGRAM LENGTH
                                                                                                     SUBROUTINE STRSCO(STRSCON)
                                                                                                     COMMON /RI OCKR/Y (501) . REFE (501) . YP (501) . H. ICI OSEB. YPITE (501)
FUNCTION ASSIGNMENTS
                                                                                                     COMMON /BLOCKC/STRSC1(501) .STRSS1(501) .INC.FRF.FY.L
                                                                                                     COMMON /BLOC2D/STRSC2(501) +DIST
STATEMENT ASSIGNMENTS
                                                                                                     REAL LONG . M . M1
                                                                                                  DELTAX=0.0
             20 30
                                   52
                                                                                                     LONG= (0.50 DIST) -DELTAX
EXTERNALS AND TAGS
END - 500100
                                                                                                     MIS=0
                                                                                          10
                                                                                                     CALL STRSC12 (MIS+STRSC01+STRSC02+LONG+-L+I)
BLOCK NAMES AND LENGTHS
                                                                                                     MIS=1
                                                                                          14
BLOCK3 -
               6001 BLOCKS -
                                   30C02 BLOCK8 -
                                                     3726C03 BLOCKC -
                                                                          1756C04
                                                                                                     CALL STRSC12 (MIS+STRSC01+STRSC02+LONG+.1+I)
                                                                                                     DIFF=STRSCO1-STRSCO2
IF(DIFF)20+30+40
                                                                                          51
VARIABLE ASSIGNMENTS
                                                                                                  20 DELTAX=DELTAX+H
GOTO 50
30 STRSCON=STRSCO1
              66 FEXP
                                  0C02 H -
765C03 STRSC1 -
0C03 YEXP -
                                    0C02 H
                                                     2737C03 J
DUMDUM -
                                                                            65
                                                                                          26
30
              25C02 REFF -
                                                        0C04 STR5S1 -
                                                                           765C04
XBAR -
                                                                                          31
               0C01 Y
                                                       12C02 YP
                                                                          1752003
YPITE -
            2741C03
                                                                                          32
                                                                                                     RETURN
                                                                                          33
                                                                                                  40 Ml=-((STRSC1(I)-STRSC1(I-1))/H)
                                                                                                    START OF CONSTANTS
                                                                                          37
    55
                                                                                          42
                                                                                                     R=STRSC2(J)
START OF TEMPORARIES
                                                                                                  46 STRSCON=(B-B1*M/M1)/(1-M/M1)
    57
                                                                                          46
                                                                                          56
56
                                                                                                     RETURN
                                                                                                  45 M=$TRSC2(J+1)/H
START OF INDIRECTS
    65
                                                                                          61
                                                                                                     B=0.
                                                                                          62
                                                                                                     GOTO 46
START OF VARIABLES
                                                                                                     END
    65
SPACE REQUIRED TO COMPILE -- DISTI
```

STRSCO

```
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
                                                                                        RUNW VERSION FEB 74 16.51.06. 23 JUL 75
SUBPROGRAM LENGTH
                                                                                                        SUBROUTINE STRSC12(MIS+STRSC01+STRSC02+LONG+J+I)
   102
                                                                                             11
                                                                                                        COMMON /BLOC25/FEXP(10) +YEXP(10) +FRICHUL+NT+FU+IFY
FUNCTION ASSIGNMENTS
                                                                                            ìΙ
                                                                                                        COMMON /BLOCK8/Y(501) . REFF(501) . YP(501) . H. ICLOESB. YPITE(501)
                                                                                            11
                                                                                                        COMMON /BLOCKC/STRSC1(501)+STRSS1(501)+INC+FRF+FY+L
STATEMENT ASSIGNMENTS
                                                                                            11
                                                                                                        COMMON /BLOCZO/STRSC2(501) +DIST
                                                                                            11
11
12
17
                     30
                                    31
                                                         33
                                                               45
                                                                              56
                                                                                                        REAL LONG
20
               26
                                          40
                                                                                                        DO 100 J=1+NT
IF(ABS(LONG-J=H).LT.0.10)GOTO 110
46
                     50
               46
                                                                                                    100 CONTINUE
EXTERNALS AND TAGS
STRSC12- S00100
                    END
                            - 500200
                                                                                             21
                                                                                                        ILONG=LONG
                                                                                            22
                                                                                                        1F(1LONG.FQ.0)GOTO 120
BLOCK NAMES AND LENGTHS
                                                                                                        PRINT 80
            3726C01 BLOCKC -
                                                                                            26
                                                                                                        PRINT 85.LONX.H
                                  1756C02 BLOCKD -
                                                        766C03
BLDCKB -
                                                                                            41
                                                                                                     85 FORMAT(* IN STRSC12 *.* LONG = *.E10.3.* H = *.E10.3)
                                                                                                     80 FORMATIAON ERROR IS DETECTED DISTANCES ARE WRONG )
VARIABLE ASSIGNMENTS
                                                                                            41
                                                                              77
                                                                                            41
                                                                                                        STOP 100
              101
                                   100
                                          DELTAX -
                                                               DIFF
              765C03 H
                                                                                                    110 CONTINUE
DIST
                                  2737C01 1
                                         1 -
H15 -
                                                                              75
                                                                                            43
LONG
              66
                                    67
                                                         72
                                                                              70
                                                                                            43
                                                                                                        IF (HIS.NE.1) XOTO 140
                                                                                            51
65
76
76
                                                                                                        DUMDUM=(STRSC2(J)-STRSC2(J-1))/(ABS(H*J)-ABS(H*(J-1)))
              765C01 STRSC01-
                                          STRSCO2-
                                                               STRSC1 -
                                                                               0002
STRSCZ -
                0C03 STRSS1 -
                                                          OCO1 YP
                                                                            1752C01
                                                                                                        STRSCO2=STRSC2(J-1) + DUHDUM* (ABS(LONG) - ABS(H*(J-1)))
                                   765C02 Y
YPITE -
             2741C01
                                                                                                    140 CONTINUE
                                                                                            76
START OF CONSTANTS
                                                                                                         I=(NT+1)/2-J
                                                                                                        DUMDUM=(STRSC1([+1)-STRSC1([))/(ABS(H*J)-ABS(H*(J-1)))
STRSC01=STRSC1([)+DUMDUM*(ABS(H*J)-ABS(LONG))
                                                                                            101
    63
                                                                                           113
                                                                                                        RF TURN
START OF TEMPORARIES
                                                                                            151
                                                                                                    120 STRSC02=0.
                                                                                            122
                                                                                            123
                                                                                                        J≖0
START OF INDIRECTS
                                                                                            123
                                                                                                        I=(NT+1)/2
                                                                                            125
                                                                                                        STRSCO1#STRSC1(1)
    66
                                                                                           127
                                                                                                        RETURN
START OF VARIABLES
                                                                                                        END
```

STRSC0 STRSC12

SPACE REQUIRED TO COMPILE -- STRSCO

```
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
SUBPROGRAM LENGTH
                                                                                                         SUBROUTINE INTRSCT(TENSTRN+IS+INT+YC+DIST+ZTOT+ISTDS)
   160
                                                                                                        COMMON/BLOCK2/SS(501) . AAA. WS(501) . MAXITE . CRACKW
                                                                                             12
                                                                                             12
                                                                                                         COMMON/BLOCK3/XBAR+STRSC+STRSB+STRC+IBABY+ITEB
FUNCTION ASSIGNMENTS
                                                                                                         COMMON/BLOCK9/STX+STY+PSX+PSY+1TE
                                                                                             12
                                                                                                         COMMON/BLOCKC/STRSC1(501) + STRSS1(501) + INC+FRF+FY+L
STATEMENT ASSIGNMENTS
                                                                                             12 12 12
                                                                                                         COMMON/BLOCK6/ALPHAC.ALPHAS.EC.FRP.TIME.EP.TOL.ITYPER
                                   133
                                                         43
                                                               120
                                                                             122
             141
                                          110
                                                                                                         COMMON/BLOCK5/FEXP(10) + YEXP(10) + FRICHUL + NT + FU + IFY
140
               76
                                                                                                         COMMON/BLOCKA/Z, YP1.Y1(501).DELTAX.DELTAT.TEMP1.REFF1.YPITE1.W
                                                                                                         INC=NT/2
EXTERNALS AND TAGS
                                                                                                         YITEMP=STRSC1(INC)
                                                                                             13
                    STOP - S00200
                                          END
                                                 - 500300
OUTPTC - S00100
                                                                                             15
                                                                                                         X1=TENSTRN
                                                                                             16
                                                                                                         TIME=TIME-0.5
BLOCK NAMES AND LENGTHS
                                                                                             20
                                                                                                         IDT=0
               30C01 BLOCKB -
                                  3726C02 BLOCKC -
                                                       1756C03 BLOCKD -
                                                                             766C04
BLOCKS -
                                                                                             21
                                                                                                        CALL DELTEM1 (TIME + DELTAT)
                                                                                             23
                                                                                                         CALL FORWARD (TENSTRN+Z+ZTOT)
VARIABLE ASSIGNMENTS
                                                                                             31
33
40
                                                                                                         DELTAX=XBAR/2.
DUMDUM -
              157
                    FEXP
                                      0C01 H
                                                        2737C02 ILONG -
                                                                              156
              25C01 REFF
                                                                                                         INT=1
                                   765C02 STRSC1 -
                                                           OCO3 STRSC2 -
                                                                                0C04
                                                                                                         ITE=1
STRSS1 -
              765C03 Y
                                     OCOZ YEXP -
                                                          12C01 YP
                                                                             1752C02
                                                                                                        CALL MODEL1(TIME.IS.INT)
IF(IDT.EQ.1)XOTO 30
X2=TENSTRN
                                                                                             41
YPITE -
            2741C02
                                                                                             42
                                                                                             50
START OF CONSTANTS
                                                                                             51
                                                                                                         Y2=STRSC1(INT)
   130
                                                                                             53
                                                                                                         IF (TIME.LE.O.1)GOTO 80
                                                                                             55
60
62
                                                                                                         IF(Y2-X2)20.30.10
START OF TEMPORARIES
                                                                                                      10 TIME=TIME-0.1
   147
                                                                                                        GOTO 50
                                                                                                      20 X2=TENSTRN
                                                                                             63
START OF INDIRECTS
                                                                                                          Y2=STRSC1(INC)
   156
                                                                                             66
                                                                                                         01F=(Y2-X2)/X2
                                                                                             71
                                                                                                         IF (ABS (DIF) . 3E. TOL) GOTO 30
START OF VARIABLES
                                                                                             74
                                                                                                         ITE=ITE+1
   156
                                                                                                         IF (ITE.GT. MAXITE) GOTO 35
                                                                                            100
                                                                                                         CALL GETHE (X1, Y1TEMP, X2, Y2, FOUT)
 SPACE REQUIRED TO COMPILE -- STRSC12
                                                                                            103
                                                                                                         TENSTRN=FOUT
 33200
                                                                                            110
                                                                                                        CALL BACKTIM (TENSTRN.ZTOT.Z)
                                                                                            112
                                                                                                        CALL OELTEM1(TIME.DELTAT)
CALL MODEL1(TIME.IS.INT)
                                                                                            114
                                                                                            121
                                                                                                        GOTO 20
                                                                                                      30 INT=0
                                                                                            125
                                                                                            126
                                                                                                        DIST=XBAR/2.
                                                                                            127
                                                                                                         YC=Y1(INC)
                                                                                            131
                                                                                                        RETURN
                                                                                            132
                                                                                                      80 TIME=0.33
                                                                                                         IDT=1
                                                                                            134
                                                                                                         IF (ISTDS.EQ.1) GOTO 50
                                                                                            135
                                                                                                        PRINT 400
                                                                                            137
                                                                                                    400 FORMATI* SLAB GETS A CRACK RIGHT AFTER CONCRETE PLACEMENT *
                                                                                            142
                                                                                                        1 ./... THE TIME IS ASSUMED TO BE 0.33 DAYS. *./)
                                                                                            142
                                                                                                        GOTO 50
                                                                                                     35 CONTINUE
                                                                                            146
```

146

156

156

PRINT 355.ITE.MAXITE

355 FORMAT (* THE SOLUTION DID NOT CLOSE IN INTRSCT. *. 13.13.//)

INTRSCT

STRSC12

```
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
                                                                                            RUNW VERSION FER 74 16.51.06. 23 JUL 75
SUBPROGRAM | ENGTH
                                                                                                            SUBROUTINE STOS (FRF.FY.W)
   221
                                                                                                            COMMON/BLOCKI/RATIO+THICK+P+FF+STRAINC+ES+NTPI+U+DIA+UNHT
FUNCTION ASSIGNMENTS
                                                                                                             COMMON/BLOCK3/XBAR.STRSC.STRSB.STRC.18ABY.ITFB
                                                                                                            COMMON/BLOCK6/ALPHAC+ALPHAS+EC+FPC+TIME+EP+TOL+ITYPER
STATEMENT ASSIGNMENTS
                                                                                                            COMMON/RLOCKB/BHIGH+RLOW+YSI +P2+YST+MOOFLAG
10
               60
                      20
                                            30
                                                          125
                                                                  35
                                                                                 146
                                                                                                            REAL L
                                     63
               21
                                                                   400
                                                                                 165
                      80
                                    132
                                            355
                                                           202
                                                                                                            F5=0.75+FY
                                                                                                10
EXTERNALS AND TAGS
                                                                                                            P=L=FRF/12.*FS)
                                                                                                11
DELTEM1- 500100
BACKTIM- 500500
                                                                                                            AB=3.1416/4*DIA**2
                      FORWARD- S00200
                                            MODEL 1 - 500300
                                                                  GETHE - 500400
                                                                                                14
                      OUTPTC - 500600
                                            FNO
                                                   - 500700
                                                                                                            P2=#*FRF*100.0/(2.*F5)
                                                                                                23
                                                                                                             IF (ITYPER.EQ. 1) GOTO 10
                                                                                                25
                                                                                                            BHIGH=AB/(THICK*P2)
BLOCK NAMES AND LENGTHS
BLOCK2 - 1755C01 BLOCK3 -
BLOCK6 - 10C05 BLOCK5 -
                                       6C02 BLOCK9 -
                                                            5003 BLOCKC -
                                                                               1756004
                                                                                                30
                                                                                                            PRINT 500 . P2 . BHIGH
                                                                                                37
                                                                                                            BLOW=BHIGH/2.
               10005 BLOCK5 -
                                      30C06 BLOCKA -
                                                           775C07
                                                                                                41
                                                                                                            RETURN
                                                                                                         10 YST#AB*100./(THICK*P2)
VARIABLE ASSIGNMENTS
                                                                                                42
DELTAT -
              770C07 DELTAX -
                                     767C07 DIF
                                                           217
                                                                  FEXP
                                                                                   0006
                                                                                                46
                                                                                                            PRINT 510.P2.YST
FOUT -
              220 IDT -
4003 MAXITE -
                                                          1752004 15105 -
                                                                                                55
                                                                                                            RETURN
                                    214 INC
                                    1753C01 NT
                                                                                   0001
                                                                                                        500 FORMAT(* FOR ITYPER EQUAL TO 2. THE TRANSVERSE STEEL IS *.E10.3.
ITE
                                                            25C06 SS
                                                                                                56
STRSC1 -
                0C04 STRSS1 -
                                     765C04 TIME
                                                             4C05 TOL
                                                                                   6005
                                                                                                           * PERCENT SPACED.**/**E10.3** INCHES CENTER TO CENTER.*)
                                                                                                        1 * PERCENT SPACED.**/**E10.3,* INCHES CENTER TO CENTER.*)
510 FORMAT(* FOR ITYPER EQUAL TO 1, THE TRANSVERSE STEEL IS *,E10.3,
1 * PERCENT SPACED.*,E10.3,/,* INCHES CENTER TO CENTER.*)
ENO
              766C01 XBAR -
                                       0C02 x1
                                                                                                56
MC.
                                                           213
                                                                  X2
                                                                                 215
               12C06 Y1
                                       2CO7 YITEMP -
YEXP
                                                           212
                                                                  Y2
                                                                                 216
                0007
                                                                                                56
START OF CONSTANTS
```

INTRSCT

START OF TEMPORARIES

START OF INDIRECTS

START OF VARIABLES

SPACE REQUIRED TO COMPILE -- INTRSCT

210

```
RUNH VERSION FEB 74 16.51.06. 23 JUL 75
SUBPROGRAM LENGTH
  123
FUNCTION ASSIGNMENTS
STATEMENT ASSIGNMENTS
EXTERNALS AND TAGS
OUTPTC - 500100
                  END - 500200
BLOCK NAMES AND LENGTHS
BLDCK1 - 12001 BLOCK3 -
                                  6C02 BLDCK6 -
                                                    10C03 BLOCKB -
                                                                        6C04
VARIABLE ASSIGNMENTS
            122 BHIGH -
121 ITYPER -
                                  0C04 8L0₩ ~
                                                     1CO4 DIA
                                                                       10001
                                  7C03 L
                                                   120 P
                                                                        2C01
              3CO4 THICK -
                                  1COL XBAR ~
                                                     0C02 YST
START OF CONSTANTS
START OF TEMPORARIES
  117
START OF INDIRECTS
   120
START OF VARIABLES
   120
SPACE REQUIRED TO COMPILE -- STDS
 32700
```

RUNW VERSION FEB 74 16.51.06. 23 JUL 75

3

3 12 26

35

SUBROUTINE STRSCS(FRIC1)

COMMON/BLOCK(/RATIO+THICK+P+FF+STRAINC+ES+NTP1+U+DIA+UNWT

COMMON/BLOCK6/ALPHAC+ALPHAS+EC+FRP+TIME+EP+TDL+ITYPER

COMMON/BLOCK6/ALPHAC+ALPHAS+EC+FRP+TIME+EP+TDL+ITYPER

COMMON/BLOCKC/STRSC1(501)+STRSS1(501)+INC+FRF+FY+L

DUMDUM=FFIC1*DELTAX/(THICK+(1+P*ES/EC))

STRSC1(INC)=DUMDUM+P*ES*(Z+DELTAT+(ALPHAC+ALPHAS))/(1+P*ES/EC)

Y1(INC)=STRSC1(INC)*DELTAX/EC-DELTAX*(ALPHAC*DELTAT+Z)

RETURN

END

STRSCS

```
RUNW YERSION FEB 74 16.51.06. 23 JUL 75
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
SUBPROGRAM LENGTH
                                                                                                           SUBROUTINE FRICT(FA)
    41
                                                                                                           COMMON/ALOCKS/FEXP(10) +YEXP(10) +FRICHUL +NT+FU+IFY
                                                                                                           COMMON/BLOCKA/Z, YP1.Y1(501).DELTAX.DELTAT.TEMP1.REFF1.YPITE1.W
COMMON/BLOCKC/STRSC1(501).STRSS1(501).INC.FRF.FY.L
FUNCTION ASSIGNMENTS
                                                                                                           IF (IFY.EQ.1) X0TO 10
STATEMENT ASSIGNMENTS
                                                                                                           IF (IFY.EQ.2) X0TO 40
                                                                                                           GOTO 90
EXTERNALS AND TAGS
                                                                                                        10 CONTINUE
END - 500100
                                                                                                           SLOPE=FRICHUL
                                                                                                           FA=Y1 (INC) *SLOPE
                                                                                               11
BLOCK NAMES AND LENGTHS
                                                                                                           IF (ABS (FA) . LE. FU) RETURN
                                                          775C03 BLOCKC -
BLOCK1 -
              12C01 BLOCK6 -
                                      10C02 BLOCKA -
                                                                               1756004
                                                                                               13
                                                                                                           IF (FA.GT.O.O)FA=FU
                                                                                               16
VARIABLE ASSIGNMENTS
                                                                                                           IF (FA-LE.O.O) FAS-FU
                                                                                               21
ALPHAC -
                OCO2 ALPHAS -
                                      1002 DELTAT -
                                                          770C03 DELTAX -
                                                                                767C03
                                                                                               24
25
25
30
35
36
                                                                                                           RETURN
                                                                               1752004
                                                                                                        40 CONTINUE
               40 EC -
2001 STRSC1 -
                                       2002 ES
                                                          5C01 INC -
765C04 THICK -
DUMDUM -
                                      0004 STRSS1 -
                                                                                  1001
                                                                                                           IF (Y1 (INC) . GT. 0.0) GOTO 50
                                                                                                           FA=FRICHUL*SQRT(ABS(Y1(INC)))
Y 1
                2C03 Z
                                       0C03
                                                                                                           GOTO 60
                                                                                                        50 CONTINUE
START OF CONSTANTS
                                                                                               36
44
                                                                                                           FA=-FRICMUL*SQRT(Y1(INC))
    36
                                                                                                        60 CONTINUE
                                                                                               44
50
                                                                                                           IF (ABS (FA) .LE.FU) RETURN
START OF TEMPORARIES
                                                                                                           IF (FA.GT.O.O) FA=FU
    36
                                                                                               53
56
57
57
                                                                                                           IF (FA.LT.O.O)FA=-FU
                                                                                                           RETURN
START OF INDIRECTS
                                                                                                        90 CONTINUE
     40
                                                                                                           DO 100 J#1+IWY
                                                                                                           IF (ABS(Y1(INT)).LT.ABS(YEXP(J)))GOTO 110
START OF VARIABLES
                                                                                               61
67
                                                                                                       100 CONTINUE
                                                                                               72
                                                                                                           FA#FEXP(JFY)
SPACE REQUIRED TO COMPILE -- STRSCS
                                                                                               73
73
 32600
                                                                                                       110 CONTINUE
                                                                                               73
                                                                                                           DUMDUM=(FEXP(J)-FEXP(J-1))/(ABS(YEXP(J))-ABS(YEXP(J-1)))
                                                                                              102
                                                                                                           FA=FEXP(J-1) +DUMDUM+(ABS(Y1(INC))-ABS(YEXP(J-1)))
                                                                                              112
                                                                                                       120 CONTINUE
                                                                                                           IF (Y1 (INC) .GT.O.O)FA=-FA
                                                                                              112
                                                                                                           RETURN
                                                                                              115
                                                                                                           END
                                                                                              116
```

FRIC1

RUNW VERSION FEB 74 16.51.06. 23 JUL 75 SUBPROGRAM LENGTH 125

RUNW VERSION FEB 74 16.51.06. 23 JUL 75

SUBROUTINE BACFRC1(F3)

12		" LEN	3117									
FUNCT	ION	ASSIG	MENT!	5								
STATE	MENT	ASSI	GNMEN'	rs								
10	-		7	40	-	25	50	-	36	60	-	44
90	-		57	110	-	73	120	-	112			
EXTER	RNALS	AND	TAGS									
SORT	-	5001	00	END	-	500200						
BLOCK	(NAM	ES AN	D LEN	GTHS								
BLOCK	(5 -		30C01	BLOCKA	-	775C02	BLOCKC	-	1756C03			
VARIA	ABLE	ASSIG	NMENT:	5								
DUMDL	JM -	1	24	FEXP	-	0C01	FRICMU	L-	24C01	FU	-	26C01
1FY	-		27C01	INC	-	1752003	J	-	123	SLOPE	-	122
STRS	cı -		0C03	STRSSI	-	765C03	YEXP	-	12001	Y1	-	2002
	T OF 17	CONST	ANTS									
_	T OF 17	TEMPO	RARIE	s								
STAR	T OF	INDIR	ECTS									

```
COMMON /BLOC25/FEXP(10) +YEXP(10) +FRICMUL +NT+FU+IFY
COMMON/BLOCKA/Z+YP1+Y1(501) +DELTAX+DELTAT+TEMP1+REFF1+YP1TE1+W
  3
                         IF (FRICHUL.EG.O.O) RETURN
                 IF (FRICNUL.ED.G., 0) RETURN

IF (IFY, EG.) INOTO 40

IF (IFY, EG.) XOTO 60

DO 10 J=1.IFY

IF (ABS(F3)-LT.ABS(FEXP(J))) GOTO 20

10 CONTINUE

YP1=YEXP(IFY)

RETURN

20 CONTINUE

DIMMINS (FEXP(I)-FEXP(I-1)) //ABS(YEX
  5
11
12
16
20
22
22
22
31
37
41
42
44
50
51
                         DUMDUM=(FEXP(J)-FEXP(J-1))/(ABS(YEXP(J))-ABS(YEXP(J-1)))
YP1=ABS(YEXP(J-1))+(ABS(F3)-FEXP(J-1))/DUMDUM
                         IF (F3.GT.0.0) YP1=-YP1
                   40 CONTINUE
                         YP1=F3/FRICMUL
IF(ABS(F3).GE.FU)YP1=YEXP(1)
                  RETURN
60 CONTINUE
                         YP1=(F3/FRICHUL)**2
1F(ABS(F3)*GE*FU)YP1=YEXP(1)
1F(F3*GT*0*0)YP1=*YP1
51
53
60
63
                         RETURN
                         END
```

SPACE REQUIRED TO COMPILE -- FRIC1 33100

FRICI

122

START OF VARIABLES

BACFRC1

```
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
SUBPROGRAM LENGTH
   70
FUNCTION ASSIGNMENTS
STATEMENT ASSIGNMENTS
20 - 22 40
EXTERNALS AND TAGS
FND - 500100
BLOCK NAMES AND LENGTHS
BLOCKS - 30C01 BLOCKA -
                              775002
VARIABLE ASSIGNMENTS
DUMDUM -
IFY -
Y1 -
            67 FEXP -
                                0C01 FRICHUL-
                                                 24C01 FU
                                                                   26001
                               66 YEXP -
                                                 12C01 YP1
                                                                    1005
             5005
START OF CONSTANTS
   65
START OF TEMPORARIES
   65
START OF INDIRECTS
   66
START OF VARIABLES
   66
SPACE REQUIRED TO COMPILE -- BACFRCI
 32700
```

BINRYF1

RUNW VERSION FEB 74 16.51.06. 23 JUL 75

REFF1*F3

RETURN

RETURN

10 CONTINUE

END

3

10

11

14

14

17

SUBROUTINE BINRYF1(F3)

F3=(3.0F3-TEMP1)/2.

F3=(REFF1+F3)/2.

SUBROUTINE BIRKT: (F3)
COMMON/BLOCKAZ*+YP1+Y1(501)+DELTAX+DELTAT+TEMP1+REFF1+YPITE1+W
COMMON/BLOCKC/STRSC1(501)+STRSS1(501)+INC+FRF+FY+L
IF(YP1+G1-Y1(INC1)GOTO 10
TEMP1=REFF1

```
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
                                                                                       RUNW VERSION FEB 74 16.51.06. 23 JUL 75
SUBPROGRAM LENGTH
   23
                                                                                                       SUBROUTINE C30SE1(INDEX+F3)
                                                                                                       COMMON/BLOCK2/SS(501) + AAA+WS(501) + MAX1TE+CRACKW
                                                                                                       COMMON /BLOCK6/ ALPHAC.ALPHAS.EC.FRC.TIME.EP.TOL.ITYPER
FUNCTION ASSIGNMENTS
                                                                                                       COMMON/BLOCKA/Z.YP1.Y1(501).DELTAX.DELTAT.TEMPI.REFF1.YP1TE1.W
                                                                                                        COMMON/BLDCKC/STRSC1(501)+STRSS1(501)+INC+FRF+FY+L
STATEMENT ASSIGNMENTS
                                                                                                       INTEGER AAA
10
                                                                                                       INDEX=0
                                                                                                       BAD=1.
EXTERNALS AND TAGS
                                                                                                       IF (AAA.EQ.1) XOTO 50

    S00100

                                                                                                       IF (Y1 (INC) . EQ. 0. 0) GOTO 10
                                                                                            11
BLOCK NAMES AND LENGTHS
BLOCKA - 775C01 BLOCKC -
                                                                                            12
                                                                                                       IF (ABS(Y1(INT)).LT.1.E-06)GOTO 10
                                  1756002
                                                                                            16
                                                                                                       DIF1=(Y1(INC)-YPITE1)/Y1(INC)
                                                                                            21
                                                                                                       IF (ABS(DIF1) .GT.TOL) BAD=BAD-1.
VARIABLE ASSIGNMENTS
                                                                                                    10 CONTINUE
                                                                                            26
32
32
33
34
34
36
41
INC - 1752C02 REFF1 - TEMP1 - 771C01 YP1 -
                                   772C01 STRSC1 -
                                                          OCO2 STRSS1 -
                                                                             765C02
                                                                                                       IF (BAD.GT.1.) GOTO 50
                                                                                                       INDEX=1
                                     1C01 Y1 -
                                                          2C01
                                                                                                       AAA=1
                                                                                                    RETURN
50 CONTINUE
START OF CONSTANTS
    20
                                                                                                       AAA=AAA+1
START OF TEMPORARIES
                                                                                                       IF (AAA.GT.MAXITE)GOTO 70
                                                                                                       MA1=AAA-1
                                                                                                       YPITE1=Y1(INC)
START OF INDIRECTS
                                                                                            43
                                                                                                   110 FORMAT(* MA1 IS*+I5+*BAD IS*+F5+1+* AAA IS *+I5)
                                                                                            43
                                                                                                       RETURN
    23
                                                                                                    70 CONTINUE
                                                                                                       PRINT 120
START OF VARIABLES
                                                                                            44
50
                                                                                                       PRINT 110.MA1.BAD.AAA
    23
                                                                                                   120 FORMATI® IN SUBROUTINE CLOSE1 THE SOLUTION DID NOT CLOSE®)
SPACE REQUIRED TO COMPILE -- BINRYF1
```

CLOSE1

BINRYF1

```
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
SUBPROGRAM LENGTH
  110
FUNCTION ASSIGNMENTS
STATEMENT ASSIGNMENTS
                                                                          67
                                  34
                                        70
                                                            110
              26
10
120
              76
EXTERNALS AND TAGS
OUTPTC - 500100
                    END
                           - $00200
BLOCK NAMES AND LENGTHS
                                                                        1756C04
                                                     775C03 BLOCKC -
BLOCKS -
           1755C01 BLOCK6 -
                                  10C05 BLOCKA -
VARIABLE ASSIGNMENTS
                                                            INC
                                                                         1752C04
                                        DIF1 -
                                                     106
AAA -
MAXITE -
             765C01 8AD
                                  105
                                                       OCO1 STRSC1 -
                                                                           0C04
            1753C01 MA1
                                  107
                                        55
                                                      766CO1 YPITEL -
                                                                         773C03
STRSS1 -
             765C04 TOL
                                   6002 WS
Y)
               2003
START OF CONSTANTS
    63
START OF TEMPORARIES
   104
START OF INDIRECTS
   105
START OF VARIABLES
   105
 SPACE REQUIRED TO COMPILE -- CLOSE1
  32700
```

```
SUBROUTINE FORWARD (TENSTRN.ZTOT.Z)
            ***************
     C
                THIS SUBROUTINE CALCULATES THE TIME DEPENDENT VARIABLES FROM
     C
                WHICH THE SLAB RESPONSES ARE COMPUTED. LINEAR INTERPOLATION
           IS USED TO GET FLEXURAL STRENGTH FROM AGE OF CONCRETE .
           COMMON /BLOCKI/ RATIO.THICK.P.FF.STRAINC.ES.NTP1.U.DIA.UNWT
           COMMON /BLOCZZ/ SS(501) + AAA+WS(501) + MAXITE+CRACKW
            COMMON /BLOCK3/ XBAR+STRSC+STRSB+STRC+IBABY+ITEB
           COMMON /BLOCK4/ AL (501) .STRAIN(501) .CONSTR(501) .STRESSS(501)
           COMMON /BLOCKS/ FEXP(10) . YEXP(10) . FRICMUL . NT . FU . IFY
           COMMON /BLOC26/ ALPHAC.ALPHAS.EC.FPC.TIME.EP.TOL.ITYPER
            COMMON /BLOCKB/ Y(501) . REFF(501) . YP(501) . H. ICLOSEB . YPITE(501)
            COMMON /BLOCK10/ NSTRN+VDS+AGEU(20)+TENSION(20)+STRNMUL
            DIMENSION PERCENT(8) + AGE (8)
           DATA PERCENT/0..15..38..53..63..82..94..100./
           DATA AGE/0.+3.+3.+5.,7.+14.,21.+28./
            INTEGER AAA
               IF (NSTRN+GT.0.) 50 TO 30
10
           DO 10 1=1.8
11
11
               IF (TIME.3E.AGE(I)) GO TO 20
            CONT INUE
14
      10
           PRINT 80. TIME
16
24
27
               GO TO 70
            CONT INUE
      50
                     PERCOM=(PERCENT(J)=PERCENT(J+1))/(AGE(J)=AGE(J-1))
27
34
                     PERTOM=PERCENT(J-1)*PERCOM*(TIME-AGE(J-1))
COMSTR=PERCOM*FPC/100
40
                    FLESTRN=3000./(3.+12000./COMSTR)
42
                     TENSTRN=FLESTRN*STRNMUL
47
               GO TO 60
50
      30
           CONT INUF
            DO 40 1=1.NSTRN
52
52
                     J=[
               IF (TIME.3E.AGEU(I)) GO TO 50
55
       40
            CONT INUE
60
            PRINT 80, TIME
65
              GO TO 70
           CONT INUF
70
      50
            COMPUTE SLOPE BY LINEAR INTERPOLATION
      C
                     SLOPE=(TENSION(J)-TENSION(J-1))/(AGEU(J)-AGEU(J-I))
70
                     TENSTRN=TENSION (J-1) +SLOPE* (TIME-AGEU(J-1))
75
                     FLESTRN=TENSTRN/STRNMUL
101
102
                     COMSTR=(12000.*FLESTRN)/(3000.-3.*FLESTRN)
106
      60
           CONTINUE
      C
106
                     EC=33.*(UNWT**1.5)*SQRT(COMSTR)
                     RATIO=ES/EC
116
                    U=9.5*SQRT(COMSTR)/DIA
117
                IF (U.GT.800.) U=800.
124
```

```
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
                                                                                    RUNW VERSION FEB 74 16.51.06. 23 JUL 75
                                                                                    SUBPROGRAM LENGTH
  131
                        SHRN=26.*EXP(0.36*VDS)
  137
                        Z=(TIME/(SHRN+TIME))*ZTOT
                                                                                       242
   143
               RETURN
                                                                                    FUNCTION ASSIGNMENTS
   144
              CONTINUE
         80
              FORMAT (//+10x+*ERROR IS DETECTED IN SUBROUTINE FORWARD*+/+10x+
  144
             1 *TIME ENCOUNTERED IS GREATER THAN MAXIMUM AGE PROVIDED BY THE USE
                                                                                    STATEMENT ASSIGNMENTS
                         10x.*TIME =*.E10.3./.
                                                                                    20
70
                                                                                                                                                              106
                                                                                                  27
                                                                                                                       50
              2R*/+
                                                                                                                            50
                         10X+*PROGRAM IS TERMINATED*)
                                                                                                 144
                                                                                                                      161
   144
               END
                                                                                    EXTERNALS AND TAGS
OUTPTC - S00100
END - S00500
                                                                                                        SQRT - S00200
                                                                                                                            RBAREX - S00300
                                                                                                                                                        - 500400
                                                                                                                                                 EXP
                                                                                    BLDCK NAMES AND LENGTHS
                                                                                    BLOCK1 -
                                                                                                  12C01 BLOCK2 -
                                                                                                                    1755C02 BLOCK3 -
                                                                                                                                            6C03 BLOCK4 -
                                                                                                                                                             3724C04
                                                                                                                                         3726C07 BLOCK10-
                                                                                    BLOCK5 -
                                                                                                                      10C06 BLOCK8 -
                                                                                                                                                               53C10
                                                                                                  30C05 BLOCK6 -
                                                                                    VARIABLE ASSIGNMENTS
                                                                                    AAA -
                                                                                                 765C02 AGE
                                                                                                                     223 AGEU -
                                                                                                                                            2C10 AL
                                                                                                                                                                0C04
                                                                                    COMSTR -
                                                                                                 236 CONSTR -
5C01 FEXP -
                                                                                                                     1752C04 DIA
                                                                                                                                           10C01 EC
                                                                                                                                                                2C06
                                                                                    ES =
                                                                                                                       OCOS FLESTRN-
                                                                                                                                          237 FPC -
0C10 PERCENT-
                                                                                                                                                                3C06
                                                                                                                      234 NSTRN -
                                                                                                                                                              213
                                                                                    PERCOM -
                                                                                                        RATIO -
                                                                                                                       OCO1 REFF -
                                                                                                 235
                                                                                                                                          765C07 SHRN
                                                                                                                                                              241
                                                                                    SLOPE -
                                                                                                                                          765CO4 STRESSS-
                                                                                                 240 55
                                                                                                                       OCO2 STRAIN -
                                                                                                                                                             2737C04
                                                                                    STRNMUL-
                                                                                                  52C10 TENSION-
                                                                                                                       26C10 TIME -
                                                                                                                                           4006 U
                                                                                                                                                                7C01
                                                                                    UNWT -
                                                                                                  11C01 VDS
12C05 YP
                                                                                                                       1C10 WS
                                                                                                                                          766C02 Y
                                                                                                                                                                0C07
                                                                                                                    1752C07 YPITE -
                                                                                                                                         2741C07
                                                                                    START OF CONSTANTS
                                                                                      145
                                                                                    START OF TEMPORARIES
                                                                                       210
                                                                                    START OF INDIRECTS
                                                                                       213
                                                                                    START OF VARIABLES
```

FORWARD

FORWARD

213

33500

SPACE REQUIRED TO COMPILE -- FORWARD

```
SUBROUTINE MODEL2 (F.BONDL. Z.DELTAT. SUM. INDEX. STRMAX. ISC)
 13
             DIMENSION F (501) + SUM (501)
             COMMON /BLOCKI/ RATIO.THICK.P.FF.STRAINC.ES.NTP1.U.DIA.UNWT
 13
 13
             COMMON /BLOCKZ/ SS(SO1) . AAA . WS(SO1) . MAXITE . CRACKW
             COMMON /BLOC23/ XBAR+STRSC+STRS8+STRC+IBABY+ITEB
 13
             COMMON /BLOCK4/ AL (501) +STRAIN(501) +CONSTR(501) +STRESSS(501)
 13
 13
             COMMON /BLOCKS/ FEXP(10) +YEXP(10) +FRICHUL+NT+FU+IFY
 13
             COMMON /BLOCK6/ ALPHAC.ALPHAS.EC.FPC.TIME.EP.TOL.ITYPER
             COMMON /8LOC28/ Y(501) . REFF (501) . YP(501) . H. ICLOSE8. YPITE (501)
 13
 13
             COMMON /BLOCK9/ STX.STY.PSX.PSY.ITE
 13
             COMMON /BLOC214/ IFINISH
             COMMON /BLOCKC/ STRSC1(501) +STRSS1(501) + INC+FRF+FY+L
 13
 13
             COMMON /BLOCZD/STRSC2(S01)+D15T
 13
             REAL NEGT
 13
             INTEXER AAA
 13
             REAL L
             IF (ISC.EQ.1) GOTO 15
 13
 15
             INC=2
             GH=XBAR/NT
 16
 20
            L=0.0
 21
          18 L=GH+L
 23
25
             H=L/NT
             INC=INC+1
 27
27
27
             GOTO 16
          15 CONTINUE
             L=DIST/2.
 31
             H=L/NT
 33
             INC=NT/2
 34
         16 CONTINUE
             DO 10 I=1.NTP1
 36
                      Y(I) =REFF(I) =YP(1) =AL(I) =F(I) =0.
 54
                      S$(I)=STRAIN(I)=CONSTR(I)=STRESSS(I)=0.
 66
            CONTINUE
       10
 70
                 IF (ITYPER.EQ.1) CALL DEBAR (BONDL.STRMAX.Z.DELTAT)
100
                 IF (ITYPER.EQ.2) CALL OFWIRE (BONDL, STRMAX, Z.OELTAT)
110
                IF (BONDL.GE.L) GO TO BO
             IF (L.GT.0.75*DIST) GOTO 88
113
117
                      STRAINC=STRMAX/EC
             CALL STRGENE (BONDL)
121
             CALL SIMPSPE (STRAIN, NTP1, H.SUM)
122
131
             CALL CONMOV (SUM. Z.DELTAT)
137
             CALL FRIC (F)
             DO 20 J=1.NTP1
151
                      REFW(J)=F(J)
153
             CONT INUE
                 IF (ITYPER.EQ.1) CALL DEBARF (F.BONDL.STRMAX.7.DELTATI
167
                 IF (ITYPER.EQ.2) CALL OFWIREF (F.BONDL.STRMAX.Z.DELTAT)
201
             IF (BONDL . GE . 3) GOTO BO
             CALL SIMPSPE (STRAIN+NTP1+H+SUM)
204
             CALL CONMOV (SUM.Z.DELTAT)
207
215
             CALL FRIC (F)
222
             00 30 J=1.NTP1
227
                      F(J)=(REFF(J)+F(J))/2.
233
       30
            CONTINUE
235
             CALL SIMPSPE (F.NTP1+H.SUM)
```

```
240
                      FF = SUM (NTP1)
             CONTINUE
246
246
                IF (AAA-LT-MAXITE) GO TO 50
             PRINT 90. AAA
25 l
256
             PRINT 100
262
             PRINT 110, (I,AL(I),REFF(I),YP(I),Y(I),F(I),I=1,NTP1)
335
             STOP
337
             CONTINUE
337
             CALL BAKFRIC (F)
344
                 IF (ITYPER.EQ.1) CALL OFBARF (F.BONDL.STRMAX.Z.DELTAT)
361
                 IF (ITYPER.EQ.2) CALL DEWIREF (F.BONDL.STRMAX.Z.DELTAT)
373
             IF (BONDL.GE.3) GOTO 80
376
             CALL SIMPSPE (STRAIN.NTP1.H.SUM)
        201 FORMAT(10X+*BONDL IN MODEL2 =*+E10.3+//)
401
401
             CALL CONMOV (SUM. Z. DEL TAT)
             CALL CLOSE (NTP1.INDEX.F)
407
415
               IF (INDEX.EQ.1.AND.ICLOSEB.EQ.I) GO TO 70
430
             CALL BINARYF (F)
431
             CALL SIMPSPE (F.NTP1.H.SUM)
437
                     FF=SUH(NTP1)
445
                GO TO 40
446
       70
            CONTINUE
             STRSC2(INC)=STRMAX
446
451
             IF (ISC.EQ. 1) RETURN
453
            IF(L.LE.015T/2.)GO TO 18
457
         88 DELTAX=L
      С
            PRINT 161
461
        161 FORMAT(10x+*STRSC2*+9x+* INC *+/)
      C
             PRINT 160. (STRSC2([).1.[=1.INC)
             RETURN
461
461
            CONT INUE
461
             STRSC2 (INC) #STRMAX
            IF(ISC.EQ.1)RETURN
IF(L.LE.0IST/2.)GOTO 18
464
466
472
         B1 CONTINUE
472
            PRINT 150
476
             RETURN
477
        ISO FORMAT(//+10X+* BOND LENGTH IS GREATER THAN DIST.*)
477
        160 FORMAT(10X+E10.3+SX+15)
477
       90 FORMAT (//+IOX+*RESULTS FOR ITERATION *+ 15+/)
       100 FORMAT (/+12X+*1*.7X.*AL(1)*.7X.*REFF*.9X.*YP*,11X.*Y*,11X.*F*./)
477
477
       110 FORMAT (10X.15.5(2X.E10.3))
477
       130 FORMAT ( 10x. STRMAX = .E10.3)
       140 FORMAT (//+15X+* FOR TIME OF * +E10+3+/+
477
              10X+*SHR1NKAGE=*+E10.3+/+
              10X. DELTAT = . E10.3)
477
```

```
RUNH VERSION FEB 74 16.51.06. 23 JUL 75
SUBPROGRAM LENGTH
  613
FUNCTION ASSIGNMENTS
STATEMENT ASSIGNMENTS
15
                                   34
                                        18
                                                       21
                                                             40
                                                                          246
              27
                    16
50
             337
                    70
                                  446
                                         80
                                                      461
                                                             61
                                                                          472
88
             457
                    90
                                  530
                                         100
                                                      535
                                                             110
                                                                          544
130
             550
                    140
                                  554
                                         150
                                                      517
                                                             160
                                                                          525
             513
                    201
EXTERNALS AND TAGS
                    DFWIRE -
                               500200
                                         STRGENE- S00300
                                                             SIMPSPE- S00400
DFBAR - 500100
CONMOV - 500500
                    FRIC -
                               500600
                                        DFBARF - 500700
                                                             DFW1REF- 501000
OUTPTC - 501100
BINARYF- 501500
                    STOP
                               501200
                                         BAKFRIC- 501300
                                                             CL05E - $01400
                    END
                               501600
BLOCK NAMES AND LENGTHS
              12C01 BLOCK2 -
                                 1755C02 BLOCK3 -
                                                        6C03 BLOCK4 -
                                                                         3724C04
BLOCK1 +
BLOCKS -
              30C05 BLOCK6 -
                                   10C06 BLOCK8 -
                                                     3726C07 BLOCK9 -
                                                                            5C10
               1CII BLOCKC -
                                 1756C12 BLOCKO -
                                                      766C13
BLOCK 14-
VARIABLE ASSIGNMENTS
                                    0C04 CONSTR -
                                                     1752C04 DELTAX -
             765C02 AL
765C13 EC
                                                                           612
444
DIST
                                    2C06 FEXP -
                                                        0C05 FF
                                                                            3001
                                                      618
                                                                         2740C07
                                                             ICLOSEB-
                                 2737C07 I
              607
            1752C12 1SC
                                                       7C06 J
INC
                                         ITYPER -
                                                                          611
            1755C12 MAXITE -
                                 1753C02 NEGT -
                                                      606
                                                             NT
                                                                           25C05
                                                        OCOZ STRAIN -
NTPI
               6COL REFF
                                  765C07 SS
                                                                           765C04
STRAINC-
                4C01 STRESSS-
                                 2737C04 STRMAX -
                                                             STRSC1 -
                                                                            0012
STRSC2 -
                OC13 STRSS1 -
                                  765C12 WS
                                                      766C02 XBAR
                                                                            0C03
                OCO7 YEXP
                                                     1752C07 YPITE
                                                                         2741C07
                                   12C05 YP
```

START OF CONSTANTS

START OF TEMPORARIES

START OF INDIRECTS

START OF VARIABLES

SPACE REQUIRED TO COMPILE -- MODEL2. 35100

RUNW VERSION FEB 74 16.51.06. 23 JUL 75

```
SUBROUTINE CONMOV (SUM.Z.OELTAT)
          Ç
              THIS SUBROUTINE COMPUTES THE MOVEMENT OF THE CONCRETE AT
              EVERY STATION . THE MOVEMENT IS COMPUTED FROM THE DEVELOPPED
          DIFFERENTIAL EQUATION .
    C
          DIMENSION SUM ($01)
          COMMON /BLOCK1/ RATIO+THICK+P+FF+STRAINC+ES+NTPI+U+DIA+UNWT
          COMMON /BLOCK2/ SS(501)+AAA+WS(501)+MAXITE+CRACKW
          COMMON /BLOC23/ XBAR, STRSC, STRSB, STRC, 1BABY, 1TEB
          COMMON /BLOCK4/ AL (501) + STRAIN(501) + CONSTR(501) + STRESSS (501)
          COMMON /BLOCKS/ FEXP(10) . YEXP(10) .FRICHUL.NT.FU
          COMMON /BLOCK6/ ALPHAC+ALPHAS+EC+FPC+TIME+EP+TOL
          COMMON /BLOC28/ Y(501) . REFF (501) . YP (501) . H. 1CLOSEB . YP1TE (501)
          INTEGER AAA
          DO 10 I±1.NTP1
                  Y(1) =SUM(1) =AL(1) + (ALPHAC+DELTAT+Z)+Y(1)
             IF (ABS(Y(I)).GT.1.) GO TO 20
15
          CONTINUE
22
     10
24
          RETURN
24
     20
          CONTINUE
24
          PRINT 50. (Y(1):1=1-NTP1)
37
     50
         FORMAT (/-10X+47H MOVEMENTS GREATER THAN 1 INCH ARE ENCOUNTERED .
               10x.8(2x.E10.3))
37
          END
```

MODEL 2

CONMON

```
SUBROUTINE C30SE (N,INDEX,F)
      С
                THIS SUBROUTINE IS USED WITH THE BINARY TECHNIQUE
      С
                OF MOVEMENT CLOSURE
            COMMON /BLOCK2/ SS(501)+AAA+WS(501)+MAXITE+CRACKW
            COMMON /BLOCK4/ AL (501) + STRAIN (501) + CONSTR (501) + STRESSS (501)
            COMMON /BLOCK6/ ALPHAC+ALPHAS+EC+FPC+TIME+EP+TOL+ITYPER
            COMMON /BLDC28/ Y(501) +REFF(501) +YP(501) +H+ICLOSEB+YPITE(501)
  6
            DIMENSION DIW(501) +F (501)
            INTEGER AAA
                      INDEX=0
                      BAD=1.
               IF (AAA.EQ.1) GO TO 50
 10
 12
            DO 20 I=2.N
 13
               IF (Y(I).EQ.0.) GO TO 10
               IF (ABS(Y(I)).LT.1.E-06) GO TO 10
 14
 20
                     DIF(I) = (Y(I) - YPITE(I))/Y(I)
 23
                 IF (ABS(DIF(I)).GT.TOL) BAD=BAD+1.
            CONTINUE
 31
31
            CONTINUE
 34
               IF (BAD.GT.1.) GO TO 50
 37
                     INDEX=1
37
                      AAA=1
            RF TURN
40
 41
       50
            CONT INUE
 41
                      AAA=AAA+1
               IF (AAA.GT.MAXITE) GO TO 70
43
 46
                     MA1=AAA-1
46
            DO 60 I=1.N
50
                     YPITE(I)=Y(I)
            CONTINUE
 52
54
            RETURN
54
       70
            CONTINUE
54
            PRINT 120
60
            PRINT 110, MAI, BAD, AAA
72
            PRINT BO
            PRINT 130, ((1,Y(1),YPITE(1),OIF(1),SS(1),STRESSS(1),STRAIN(1),
 76
                  CONSTR([) +F([)) +[=1+N)
       80 FORMAT (//+28X++ Y
154
                                            YPITE
      110 FORMAT (//-10x+* SOLUTION OIO NOT CLOSE FOR ITERATION*,15+/*
1 10x**THE NUMBER OF POINTS THAT DID NOT CLOSE ARE*,F10.0+/*,
2 1H1**//-10x** RESULTS FOR ITERATION *,15+//)
154
       120 FORMAT (//10xx* RESOLUTION DID NOT CLOSE *,//)
130 FORMAT ( 20x*15*8(2x*E10*3))
154
154
154
            FND
```

```
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
RUNN VERSION FEB 74 16.51.06. 23 JUL 75
SUBPROGRAM LENGTH
                                                                                                       SUBROUTINE BAKFRIC (F)
 1217
                                                                                                       DIMENSION F (501)
                                                                                                       COMMON /BLOCKI/ RATIO+THICK+P+FF+STRAINC+ES+NTP1+U+DIA+UNWT
FUNCTION ASSIGNMENTS
                                                                                                       COMMON /BLOCZZ/ SS(SO1)+AAA+WS(SO1)+MAXITE+CRACKW
                                                                                                       COMMON /BLOCK3/ XBAR+STRSC+STRSB+STRC+IBABY+ITEB
STATEMENT ASSIGNMENTS
                                                                                                       COMMON /BLOCK4/ AL (501) + STRAIN (501) + CONSTR (501) + STRESSS (501)
              31
                    20
                                   16
10
                                                                                                       COMMON /BLOCKS/ FEXP(10) . YEXP(10) . FRICHUL . NT. FU. IFY
                                                                            221
             162
                    110
                                  170
                                          150
                                                       213
                                                              130
                                                                                                       COMMON /BLOCZ6/ ALPHAC+ALPHAS+EC+FPC+TIME+EP+TOL+ITYPER
                                                                                                       COMMON /BLOC28/ Y(501) . REFF (501) . YP (501) . H. ICLOSEB . YPITE (501)
EXTERNALS AND TAGS
                                                                                                       INTEGER AAA
OUTPTC - 500100
                    END
                            - 500200
                                                                                                           IF (FRICHUL.EQ.O.O) RETURN
                                                                                                           1F (1FY.EQ.1) GO TO 40
BLOCK NAMES AND LENGTHS
                                 3724C02 BLOCK6 -
BLOCK2 - 1755C01 BLOCK4 -
                                                        10C03 BLOCK8 -
                                                                           3726C04
                                                                                                           1F (1FY.EQ.2) GO TO 60
                                                                                                       DO 30 1=1.NTP1
                                                                                            12
                                                                                                       00 10 J=1.1FY
VARIABLE ASSIGNMENTS
                                                                                                           IF (ABS(F(1)).LT.ABS(FEXP(J))) GO TO 20
                                                                           1752C02
             765C01 AL
                                    OCOS BAD
                                                      1214
                                                              CONSTR -
                                                                                            13
                                                                                                      CONTINUE
YP(I)=YEXP(IFY)
                                 1215 MAXITE -
0C01 STRAIN -
                                                                                            ΣĨ
                                                      1753C01 MAI -
                                                                           1216
DIF
             227 I
                                                       765CO2 STRESSS-
                                                                           2737C02
                                                                                            23
25
REFF
             765C04 SS
                                                                                                          GO TO 30
TOL
               6C03 WS
                                   766C01 Y
                                                         OCO4 YP
                                                                           1752C04
                                                                                            25
25
34
45
                                                                                                  20
                                                                                                       CONTINUE
YPITE -
            2741C04
                                                                                                                DUMDUM=(FEXP(J)-FEXP(J-1))/(ABS(YEXP(J))+ABS(YEXP(J-1)))
YP(1)*ABS(YEXP(J-1))+(ABS(F(1))-FEXP(J-1))/DUMDUM
START OF CONSTANTS
                                                                                                           IF (F(1).GT.0) YP(1)=-YP(1)
   155
                                                                                            50
53
53
                                                                                                  30
                                                                                                       CONTINUE
                                                                                                       RETURN
START OF TEMPDRARIES
                                                                                                  40
                                                                                                       CONT INUE
   224
                                                                                            53
                                                                                                       DO 50 I=1.NTP1
                                                                                           55
                                                                                                                YP(1)=F(1)/FRICMUL
START OF INDIRECTS
                                                                                                           IF (ABS(F(1)).GE.FU) YP(1)=YEXP(1)
  ,227
                                                                                            60
                                                                                           66
71
71
                                                                                                  50
                                                                                                       CONT INUE
START OF VARIABLES
                                                                                                       RETURN
   227
                                                                                                  60
                                                                                                       CONTINUE
                                                                                                       DO 70 1=1.NTP1
                                                                                           71
                                                                                            73
                                                                                                                YP(1)=(F(1)/FR1CHUL)**2
SPACE REQUIRED TO COMPILE -- CLOSE
                                                                                                            IF (ABS(F(1)).GE.FU) YP(1)=YEXP(1)
                                                                                            76
 33300
                                                                                           104
                                                                                                           IF (F(1).GT.0) YP(1)=-YP(1)
                                                                                          110
                                                                                                       CONTINUE
                                                                                          113
                                                                                                       RETURN
                                                                                          113
                                                                                                       END
```

BAKFRIC

```
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
SUBPROGRAM LENGTH
                                                                                                         SUBROUTINE BINARYF (F)
  121
                                                                                                         DIMENSION F (501)
                                                                                              3
                                                                                                         COMMON /BLOCKI/ RATIO.THICK.P.FF.STRAINC.ES.NTPl.U.DIA.UNWT
COMMON /BLOC22/ SS(501).AAA.WS(501).MAXITE.CRACKW
FUNCTION ASSIGNMENTS
                                                                                              3
                                                                                               3
STATEMENT ASSIGNMENTS
                                                                                                         COMMON /BLOCK3/ XBAR, STRSC, STRSB, STRC, IBABY, ITEB
              25
                                    50
                                                          53
                                                                50
                                                                                                         COMMON /BLOCK4/ AL (501) + STRAIN(501) + CONSTR(501) + STRESSS (501)
                                   110
                                                                                                         COMMON /BLOCKS/ FEXP(10) . YEXP(10) . FRICHUL . NT . FU . 1FY
                                                                                                         COMMON /BLOC26/ ALPHAC.ALPHAS.EC.FPC.TIME.EP.TOL.ITYPER
                                                                                                         COMMON /BLOCK8/ Y(501) + REFF(501) + YP(501) + H+ ICLOSE8 + YPITE(501)
EXTERNALS AND TAGS
                                                                                                         COMMON /BLOC29/ STX+STY+PSX+P5Y+ITE
END - 500100
                                                                                                         DO 30 [=1,NTP]

IF (YP(1)+GT.Y(1)) GO TO 10

TEM7=REFF(1)
BLOCK NAMES AND LENGTHS
BLOCK1 -
               12C01 BLOCK2 -
                                  1755C02 BLOCK3 -
                                                           6C03 BLOCK4 -
                                                                             3724004
                                                                                             11
BLOCK5 -
               30C05 BLOCK6 -
                                    10C06 BLOCK8 -
                                                        3726C07
                                                                                             12
                                                                                                                   REFW(I)=F(I)
                                                                                             14
                                                                                                                   F(I)=(3*F(I)-TEMP)/2.
                                                                                             21
21
                                                                                                             GO TO 20
VARIABLE ASSIGNMENTS
AAA
                                      0C04 CONSTR -
                                                        1752C04 DUMDUM -
                                                                              120
                                                                                                    10
                                                                                                         CONTINUE
              765C02 AL
                                   24C05 FU -
117 NTP1 -
                                                                                             21
25
                                                                                                                   F(I)=(REFF(I)+F(I))/2.
FEXP
                0C05 FRICMUL-
                                                          26C0S I
                                                                              116
                                                                                                         CONTINUE
                                                           6C01 REFF
                                                                                                    20
                                                                              765C07
1FY
               27C05 J
                                                                                                         CONTINUE
55
                OCO2 STRAIN -
                                    765C04 STRESSS-
                                                        2737C04 WS
                                                                              766C02
                                                                                             25
                                                                                                    30
                OCO7 YEXP -
                                    12C05 YP
                                                        1752C07 YPITE -
                                                                              2741C07
                                                                                             30
                                                                                                         RETURN
                                                                                             30
                                                                                                         END
START OF CONSTANTS
   114
START OF TEMPORARIES
   114
START OF INDIRECTS
   116
START OF VARIABLES
```

116

33100

SPACE REQUIRED TO COMPILE -- BAKFRIC

```
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
                                                                                 RUNW VERSION FEB 74 16,51.06. 23 JUL 75
SUBPROGRAM LENGTH
                                                                                                SUBROUTINE DWBARF (F.BONDL+STRMAX+Z+DELTAT)
   36
                                                                                                ******************************
                                                                                          C
                                                                                                    THIS SUBROUTINE SOLVES FOR THE STRESS IN THE STEEL AT THE CRAC
FUNCTION ASSIGNMENTS
                                                                                                    AND BETWEEN CRACKS. IT IS USED IN THE CASE OF DEFORMED BARS S
                                                                                                    THE DEVESOPMENT LENGTH CRITERIA OR BOUNDARY CONDITION IS IMPOS
STATEMENT ASSIGNMENTS
                                                                                                    IN THE SOLUTION OF THE BASIC EQUATIONS.
                                 25
                                      30
                                                    25
             21 20
                                                                                                EXTERNALS AND TAGS
                                                                                     10
                                                                                                DIMENSION F (SOI) +SUH (501)
END
     - 500100
                                                                                                COMMON /BLOCKI/ RATIO.THICK.P.FF.STRAINC.ES.NTPI.U.DIA.UNWT
                                                                                     10
                                                                                     10
                                                                                                COMMON /BLOCZZ/ SS(SOI) + AAA+WS(501) + MAX1TE + CRACKW
BLOCK NAMES AND LENGTHS
                                                                                     10
                                                                                                COMMON /BLOCK3/ XBAR+STRSC+STRS8+STRC+1BABY+ITEB
                               1755C02 BLOCK3 -
                                                     6003 BLOCK4 -
                                                                      3724C04
              12C01 BLOCK2 -
                                                                                     10
                                                                                                COMMON /BLOCK4/ AL (501) + STRAIN (501) + CONSTR (501) + STRESSS (501)
BLOCKS -
              30C05 BLOCK6 -
                                 10C06 BLOCK8 -
                                                  3726C07 BLOCK9 ~
                                                                        5C10
                                                                                                COMMON /BLOCKS/ FEXP(10) . YEXP(10) .FRICHUL .NT .FU . IFY
                                                                                     10
                                                                                     10
                                                                                                COMMON /BLOC26/ ALPHAC+ALPHAS+EC+FPC+TIME+EP+TOL+ITYPER
VARIABLE ASSIGNMENTS
                                                                                                COMMON /8LOC28/ Y15011+REFF (501)+YP (501)+H+ICLOSE8+YPITE (501)
              OCO4 CONSTR -
                               1752C04 FEXP
                                                     0C05 I
                                                                                     10
AL -
                                                     OCO2 STRAIN -
                                                                       765C04
               6C01 REFF -
                                765C07 SS
                                                                                     10
                                                                                                COMMON /BLOC27/ SIGNASC+SIGNASB+NA+NAP1+E+A+S+DENO+NAP2
STRESSS-
           2737C04 TEMP -
                                                   766C02 Y
                                                                        0C07
                                                                                     10
                                                                                                COMMON /BLOC214/ IFINISH
                               1752C07 YPITE -
                                                  2741C07
                                                                                     10
                                                                                                INTEGER AAA
YEXP
             12C05 YP
                                                                                     10
                                                                                                REAL L
START OF CONSTANTS
                                                                                     10
                                                                                                         ICL6SEB=0
                                                                                     11
                                                                                                        A=A3(NTP1)-BONDL
    31
                                                                                     13
                                                                                                  IF (A.LE.O.) GO TO 30
START OF TEMPORARIES
                                                                                     14
                                                                                                         NA=A/H+1+EP
                                                                                     21
                                                                                                        E=A-AL (NA)
    33
                                                                                     23
                                                                                                  IF (NA.GT.NT) GO TO SO
START OF INDIRECTS
                                                                                     26
                                                                                                        NAP1=NA+1
                                                                                     27
                                                                                                         NAP2=NA+2
    34
                                                                                     30
                                                                                                         NAM1=NA-1
                                                                                     31
                                                                                                         DEN6=THICK+(P+1./RATIO)
START OF VARIABLES
                                                                                                         SLOTE(I) = - F(I) / DENO
                                                                                     35
                                                                                                         SUM1 = G.
                                                                                     36
SPACE REQUIRED TO COMPILE -- BINARYF
                                                                                                        SUM2#0.
                                                                                                DO 10 [=1.NAM]
                                                                                     37
 32600
                                                                                                         SUM1=SUM1+(2*NA-(2,*1+1))*(-F(1)/DENO)
                                                                                     40
                                                                                     54
                                                                                                         SUM2=SUM2+(-F(I)/DENO)
                                                                                     60
                                                                                           10
                                                                                                CONTINUE
                                                                                                DEFINE CONSTANTS
                                                                                     62
                                                                                                         5=-W(NAP1)/0EN0
                                                                                     64
67
                                                                                                         BONDCON=DIA/(4.*U)
                                                                                                         ANA=NA
                                                                                     70
                                                                                                         C1=1.*1./(RATIO*P)
                                                                                     74
                                                                                                         CZ=EC+(Z+DELTAT+(ALPHAC-ALPHAS))/P
                                                                                                         C3=FF/(P+THICK)
                                                                                    101
                                                                                    103
                                                                                                         C4=C2=C3
                                                                                    105
                                                                                                         C5=H*SUM2+S*E
                                                                                    110
                                                                                                         C6*H*H*SUM1/2.
                                                                                    113
                                                                                                         C7=(ANA-1.)*H
                                                                                                         C8=H*SUM2*E+S*E*E/2.
                                                                                    115
                                                                                    121
                                                                                                         C9=-C4/C1+C5
                                                                                                DEFINE QUADRATIC EQUATION CONSTANTS
```

BINARYF

```
124
                     AA=BONDCON+(1.+1.//C1*C1))/2.
                     BB=(C7+E)/C1+BONOCON*C9/C1
130
             CC=KALPHAS*AL(NTP1)*DELTAT*ES-C4*(C7+E)/C1+C6+C8-BONDCON*C9+C9/2.
135
      c
152
                     OELTA=88*88-4.*AA*CC
156
               IF (DELTA-LT.O.) GO TO 60
      c
                     ROOT1=(-BB+SQRT(DELTA))/(2.*AA)
157
                     ROOTZ=(-BR-SQRT(DELTA))/(2.0AA)
165
173
               IF (ROOT2.6T.0.) 60 TO 40
                     51GMASC=ROOT1
201
202
                      SIGMASB=(SIGMASC-C4)/C1
                      BONDLC=(SIGMASC-(SIGMASB+C5))+BONDCON
205
211
        201 FORMAT(10x+*BONOLC = *+E10.3+/+10x+*SIGMASC = *+F10.3+/
                    10X+*SIGMASB = *,E10.3+/+10X+*C5
                                                       = *.E10.3./
                   10x+*SDNDCON = *+E10,3+//)
DUM=(BONDLC-BONDL)/BONDLC
211
                IF (ABS(DUM).LE.TOL) ICLOSE8=1
213
220
                IF (ICLOSEB.EQ.1) ITEB=0
223
                     ITES=ITEB+1
225
                IF (ITEB.XT.MAXITE) GO TO 20
230
                     RONDL =BONDLC
        202 FORMAT(10x+*BONDL IN DEBARE **+E10.3+//)
230
            COMPUTE AREAS FOR SUMMATION CHECK
      C
230
237
                      A1=H*((2.*ANA-2.)*SIGMASB+H*SUM1)/2.
                      A2=SIGMASB*E+H*SUM2*E+S*E*E/Z.
                      A3=(SIGMASB+C5+SIGMASC)+BONDL/2.
245
252
                      EA+SA+IA=AAAA
      c
255
                     DUMZ=ALPHAS*AL (NTP1) *DELTAT*ES
260
               IF (ABS(AAAA-DUMZ) GT.1.E-5) GO TO 70
            CALL POIRES (F.BONDL.STRMAX.LOCHAX.Z.DELTAT)
265
            RETURN
270
       20
            CONT THUE
271
271
            PRINT 90. ITER
277
               GO TO 80
303
       30
            CONT INUE
303
            PRINT 100. A
311
               GD TO 80
            CONTINUE
315
       40
315
            PRINT 110. DELTA.ROOTI.RODT2
327
               GO TO 80
333
       50
            CONTINUE
             PRINT 120, NAINT
333
343
               GO TO 80
347
       60
            CONT INUE
347
            PRINT 130. DELTA
355
       70
            CONTINUE
355
            PRINT 140. DUMZ.AAAA
365
       60
            CONTINUE
            FORMAT (//+10x+* SOLUTION DID NOT CLOSE BY ITERATING DN BOND *.
365
       90
                  *LENGTH IN SUBROUTINE DEBARE*,/, 10X, *PROGRAM IS TERMINATED*,
                  /+10X+# ITEB=++15)
       100 FORMAT (//+10x+*ERROR IS DETECTED IN DEBARF*,/+
365
```

RUNW VERSION FEB 74 16.51.06. 23 JUL 75

DFBARF

RUNH VERSION FEB 74 16.51.06. 23 JUL 75

. FND

365

365

365

365

10X+*A 1S NEGATIVE AND=**E10.3)

10X+* DELTA IS NEGATIVE AND=*+E10.31

10X.* DUM2=*.E10.3.5X.* AAAA=*.E10.31

140 FORMAT (/.lox.* ERROR IS DETECTED IN SUBROUTINE DEBARE*./.

10X.* ERROR IS DETECTED IN SUBROUTINE DERARE.ROOTS IS POS. ..

10X+*ROOT1=*+F10.3+/+

10X,*ROOTZ=**F10.3*/*

110 FORMAT (//+10X+*OELTA=*+E10.3+/+

120 FORMAT (/.20x. ERROR IS DETECTED +./.

120 FORMAI (//2014* ERROR 15 DETECTED *//*
1 100.* NA = *+15.103.* NT = *+15)
130 FORMAI (/+103.*ERROR 15 DETECTED**/*

1 10X.* DUM2 IS NOT EQUAL TO AAAA*./.

DFBARF

```
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
RUNW VERSION FE8 74 16.51.06. 23 JUL 75
SUBPROGRAM LENGTH
                                                                                                       SUBROUTINE OWBAR (BONDL.STRMAX.Z.DELTAT)
  1613
                                                                                                С
FUNCTION ASSIGNMENTS
                                                                                                c
                                                                                                       THIS SUBROUTINE COMPUTES THE STRESSES AND STRAINS IN THE CONCRETE
                                                                                                       STEEL DUE TO A TEMPERATURE OROP AND/OR SHRINKAGE .
                                                                                                С
STATEMENT ASSIGNMENTS
                                                                                                       THE EQUATIONS ARE WRITTEN FOR A FRICTIONLESS SYSTEM
                                                       315
                                                                            333
20
             271
                     30
                                   303
                                          40
                                                              50
              347
                     70
                                   355
                                          80
                                                       365
                                                              90
                                                                            423
                                                                                                       COMMON /BLOCK1/ RATIO+THICK,P+FF,STRAINC+ES+NTP1+U+DIA+UNWT
                                   456
                                          120
                                                       511
                                                              130
                                                                            525
                                                                                                       COMMON /BLOCK2/ SS(501) + AAA+ WS(501) + MAXITE + CRACKW
100
              443
                     110
                                   373
                                                                                                       COMMON /BLOC23/ XBAR+STRSC+STRSB+STRC+IBABY+ITEB
                     201
                                                                                                       COMMON /BLOCK4/ AL (501) + STRAIN (501) + CONSTR (501) + STRESSS (501)
EXTERNALS AND TAGS
                                                                                                       COMMON /BLOCK5/ FEXP(10) + YEXP(10) + FRICHUL + NT + FU + IFY
                                                                                                       COMMON /BLOC26/ ALPHAC+ALPHAS+EC+FPC+TIME+EP+TOL+ITYPER
SQRT - S00100
                    POIRES - SO0200
                                          OUTPTC - 500300
                                                              FNO
                                                                      - 500400
                                                                                                        COMMON /BLOTKC/STRSC1(501),STRSS1(501),INC.FRF.FY.L
                                                                                                       COMMON /BLOC28/ Y(501) + REFF(501) + YP(501) + H+ ICLOSEB + YPITE(501)
BLOCK NAMES AND LENGTHS
                                                                           3724C04
BLOCK1 -
               15C01 BFOCK5 -
                                  1755C02 BLOCK3 -
                                                         6C03 BLOCK4 -
                                                                                                       COMMON /BLOC20/ STRSC2(501).DIST
BLOCK5 -
               30C05 BLOCK6 -
                                    10C06 BLOCK8 -
                                                      3726C07 BLOCK7 -
                                                                             11C10
                                                                                                       INTEGER AAA
BLOCK14~
                                                                                                       REAL L+L2
                                                                                                       L2=L+2.
                                                                                                          IF (Z.LT.O.OR.OELTAT.LT.O.) GO TO 40
VARIABLE ASSIGNMENTS
                                                                                           11
                5C10 AA
                                  1575
                                          AAA
                                                        765C02 AAAA
                                                                           1610
                0C04 ALPHAC -
                                     OCO6 ALPHAS -
                                                                           1563
                                                                                                           COMPUTE CONSTANTS
                                                         1CO6 ANA
                                                                                                С
                                                                           1576
             1605
                     A2
                                  1606
                                          A3
                                                       1607
                                                                                                                C1=(RATIO+P)/(1.+RATIO+P)
BONOCON-
             1562
                     BONDLC -
                                  1603
                                                       1577
                                                              CONSTR -
                                                                           1752C04
                                                                                           17
                                                                                                                C2=(ES*Z)/(1.+RATIO*P)
Cl
             1564
                                  1565
                                          C3
                                                       1566
                                                                           1567
             1570
                                  1571
                                                       1572
                                                                           1573
                                                                                           27
                                                                                                                 C3=(1.-C1)+0IA/(4.+U)
Č9
             1574
                                  1600
                                          0EN0
                                                         7C10 0IA
                                                                             10C01
                                                                                           33
                                                                                                                 C4=C2+DIA/(4.+U)
                     DELTA
                                                          4C10 EC
                                                                              SC06
                                                                                           36
                                                                                                                 AA=C3-C1+C3
DUM
             1604
                     DUM2
                                  1611
                                     SCOL FEXP
                                                                                           40
                                                                                                                BB=L2*C1-C1*C4+C2*C3+C4
ĒΡ
                5C06 ES
                                                         0C05 FF
                                                                              3C01
             2737C07 I
                                          ICLOSEB-
                                                       2740C07 ITEB
                                                                              5C03
                                                                                           45
                                                                                                                00=-ES*L2*0ELTAT*ALPHAS-L2*C2*C2*C4
                                  1561
н
                                                                              2C10
                                                                                           53
57
                                                                                                                DELTA=BB*BB-4.*AA*DD
             1555
                     LOCHAX -
                                  1612
                                          MAXITE -
                                                       1753C02 NA
                                                                                                          IF (DELTA-LT.O.) GO TO 90
                                                                              25C05
NAM1
             1556
                     NAP1
                                     3C10 NAP2
                                                         10C10 NT
                                                         OCOL REFF
                                                                            765C07
                6C01 P
                                     2C01 RATIO -
 NTP1
                                                                                                         STRSC= STRESS IN THE STEEL AT THE CRACK
STRSB= STRESS IN THE STEEL BETWEEN CRACKS
 ROOT 1
             1601
                     ROOT2
                                                          6C10 SIGMASB-
                                                                              1C10
                                  1602
                                     OCO2 STRAIN -
                                                                           2737C04
SIGMASC-
                0C10 55
                                                        765C04 STRESSS-
                                                                                                         STRC= STRESS IN CONCRETE
              570
                                          SUM2 -
                                                       1560
                                                             THICK -
                                                                              1001
 SUM
                     SUM1
                                  1557
                6C06 U
                                                       766C02 Y
 TOL
                                     7C01 WS
                                                                              0C07
                                                                                                                STRSC=(-BB+(DELTA++0.5))/(2.+AA)
               12C05 YP
                                  1752C07 YPITE -
                                                       2741C07
                                                                                           61
YEXP
                                                                                           67
                                                                                                                 STRSB=C1+STRSC-C2
START OF CONSTANTS
                                                                                           71
                                                                                                                 STRT=STRSB/RATIO+EC+Z
                                                                                           75
                                                                                                                B=(STRSC-STRSB)+01A/(4.0+U)
   366
                                                                                           101
                                                                                                          IF (B.LE.O.) GO TO 30
START OF TEMPORARIES
                                                                                          103
                                                                                                                CHE=(L2-2.+B)+STRSB+(STRSC+STRSB)+B
                                                                                                                CHETK=CHE-ES*L2*DELTAT*ALPHAS
   562
                                                                                          111
                                                                                                          1F (ABS(CHECK).GT.1.E-2) GO TO 70
                                                                                          115
START OF INDIRECTS
                                                                                                           CHECKING THE SOLUTION BY SOLVING FOR CONCRETE STRESS FIRST
   570
                                                                                                C
                                                                                          121
                                                                                                                C11=0[A/(4.*U*P*P)
 START OF VARIABLES
                                                                                           125
                                                                                                                C12=2. *L2*RATIO/2.
                                                                                           130
                                                                                                                cl3=2.*L2*E5*Z/2.
    570
                                                                                           132
                                                                                                                C14=2.*ALPHAS*L2*ES*DELTAT/2.
 SPACE REQUIRED TO COMPILE -- OFBARE
                                                                                                                DEL=C12*C12+4.*C11*(C13.C14)
                                                                                          135
                                                                                           142
                                                                                                                 CONCRES= (-C12+SQRT (DEL))/(2.*C11)
  34600
                                                                                                                 R2=(-BB-SQRT(DELTA))/(2.*AA)
                                                                                           150
                                                                                           156
                                                                                                                 R4=C1+R2-C2
```

161

R6=R4/RAT10+EC*Z

OFBARF OFBAR

3

```
RUNW VERSION FEB 74 16.51.06, 23 JUL 75
                    IF (R6.GT.0) GO TO 50
   167
                    IF (R2.GT.0) GO TO 50
   171
   173
           10
                CONTINUE
                   IF (ABS(STRC-CONCRES).GT.1.E-7) GO TO 80
   173
                * END OF ASOVE CHECK
   201
          20
                CONTINUE
                     COMPUTE AREA UNDER STEEL STRAIN DIAGRAM FOR THE ASSUMED
          C
                     FRICTIONSESS SYSTEM
          C
   201
                           DUM1=L-8
   203
                          STRAREA=DUM1*STRSB/ES+(STRSB+STRSC)*B/(2.*ES)
                    IF (ABS(STRAREA-ALPHAS*DELTAT*L).GT.1.E-7) GO TO 100
   214
                          STRMAX=STRC
   223
          C
   224
                           STRAINC=STRC/EC
   225
                           80NDL=8
   226
                RETURN
   226
           30
                CONT INUE
   226
                 PRINT 140. B
   234
237
                    GO TO 110
                CONTINUE
           40
   237
247
252
                PRINT 150. Z.DELTAT
GO TO 110
           50
                CONTINUE
   252
                 PRINT 160. R2.R4.R6
    264
                    GO TO 110
   267
267
315
323
                 CONTINUE
                 PRINT 120. P.DELTAT.Z.XBAR.STRSC.STRSB.STRC.EC.B
                 PRINT 180. CHECK
                    GO TO 110
                 CONTINUE
    326
           80
    326
                 PRINT 120. P.DELTAT. Z. XBAR. STRSC. STRSB. STRC. EC.B
    354
                 PRINT 190
    360
                    GO TO 110
    363
           90
                 CONTINUE
    363
                 PRINT 200
    367
           100 CONTINUE
    367
                 PRINT 210
    373
                 PRINT 220, STRAREA
           110 CONTINUE
    401
           120 FORMAT (//+10x+* PERCENT REINFORCEMENT
    401
                                                                   =*.E10.3./.
                             10X+* TEMPERATURE DROP
                                                                   =*.E10.3./.
                             10X+*SHRINKAGE
                                                                   =*.E10.3./.
                             10X+* CRACK SPACING
                                                                   =*,E10.3,/+
                             10X+* STEEL STRESS AT CRACK =*.E10,3./.
10X+* STEEL STRESS BETWEEN CRACKS =*.E10.3./.
                             10X+* CONCRETE STRESS
                                                                   =*.E10.3./.
                             10X+*CONCRETE HODULUS
                                                                   =*.E10.3./.
                             10X. DEVELOPMENT LENGTH
                                                                   =*,E10.3.//)
            140 FORMAT(//.10%.*ERROR IS DETECTED IN SUBROUTINE DEBAR*./.
1 10%.*BEND LENGTH IS NEGATIVE AND=*.E10.3./.
    401
                        10x .* PROGRAM IS TERMINATED *)
```

401 150 FORMAT (//-10x+* ERROR IS DETECTED IN SUBROUTINE TEMPSHR *,

1 10x** Z = *.E10.3*/*,

2 10x** DELTAT = *.E10.3)

401 160 FORMAT (//-10x** PERROR IS DETECTED IN SUBROUTINE TEMPSHR *

1 10x** STEEL STRESS AT CRACK = *.E10.3*/*,

2 10x** STEEL STRESS BETWEEN CRACK = *.E10.3*/*,

3 10x** CONCRETE STRESS = *.E10.3*/*,

401 180 FORMAT (//-, 10x** ROOTS DO NOT SATISFY EQUATION) *,/*, 10x*

RUNW VERSION FEB 74 16.51.06. 23 JUL 75

END

401

401

1 * CHECK= * • E10.3)

401 210 FDRMAT (/*10X.*SDMETHING IS WRONG, THE AREA UNDER STEEL STRAIN DI 1AGRAM IS NOT EQUAL TO ALPHAS X DELTAT X XBAR / 2**/)
401 220 FORMAT (//*10X.* AREA UNDER STEEL STRAIN DIAGRAM FOR FRICTIONLESS 1SLAB * **£10.3*/)

190 FORMAT (//+10X+* SOLUTION ONE DOES NOT MATCH SOLUTION TWO *)
200 FORMAT (//+30X+*DELTA IS NEGATIVE*)

DFBAR

```
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
SUBPROGRAM LENGTH
   713
FUNCTION ASSIGNMENTS
STATEMENT ASSIGNMENTS
             173
                                  201
                                         30
                                                      226
50
                                  267
                                         80
                                                      326
             252
                     70
             367
                                  401
                                                       413
100
                                         120
                     110
                                         180
150
                                  551
                                                      603
             530
                     160
200
             623
                     210
                                  627
                                         220
                                                       644
EXTERNALS AND TAGS
                    SORT
RBAREX - SOOLOO
                          ~ 500200
                                         OUTPTC - 500300
BLOCK NAMES AND LENGTHS
                                 1755C02 BLOCK3 -
                                                        6C03 BLOCK4 -
BLOCK1 -
              12C01 BLOCK2 -
```

BLOCK5 -30C05 BLOCK6 -10C06 BLOCKC -1756C07 BLDCK8 -3726C10 BLOCKO -766C11 VARIABLE ASSIGNMENTS OCO4 ALPHAS -765C02 AL IC06 AA 671 AAA 675 88 672 CHE CHECK -677 CONCRES-705 CONSTR -1752C04 C1 665 700 CII C12 701 013 703 666 702 CIA CZ 704 C3 667 CA 670 00 673 DEL 10C01 DUM1 711 2C06 674 AIA £C.

DELTA SCOL FEXP 0005 (1755C07 L2 £5 664 OCOL REFF 765C10 R2 706 2C01 RATIO OCOZ STRAIN -765C04 **R4** 707 R6 710 SS STRAINC-4C01 STRAREA-712 STRC 3CO3 STRESSS-2737C04 STRSB 2C03 STRSC -1C03 STRSCI -OCO7 STRSC2 -OCII STRSSI 765C07 U 7C01 WS 766C02 XBAR -0C03 OCIO YEXP 12C05 YP 1752C10 YPITE -2741C10 START OF CONSTANTS

402 START OF TEMPORARIES 654

START OF INDIRECTS 664

START OF VARIABLES 664

SPACE REQUIRED TO COMPILE -- OFBAR

RUNW VERSION FEB 74 16.51.06. 23 JUL 75

```
SUBROUTINE GETME (X1.Y1.X2.Y2.FOUT)
    c
          *********************
    C
             THIS SUBROUTINE SOLVES FOR THE POINT OF INTERSECTION OF TWO ST
             LINES . WHERE ONE OF THE LINES IS YER .
    С
             THIS VERSION OF THE PROGRAM JOINS THE NEW POINT TO THE POINT
    C
    ¢
             ON THE OTHER SIDE OF THE YEX LINE .
          PSX AND PSY ARE STORED VALUES
             BELOW THE EQUALITY LINE
             STX AND STY ARE STORED VALUES
             ABOVE THE EQUALITY LINE
    С
10
          COMMON /BLOCK2/ SS(501)+AAA+HS(501)+MAXITE+CRACKW
10
          COMMON /ALOCK9/ STX.STY.PSX.PSY.ITE
10
             IF (ITE.EQ.2) GO TO 10
12
             IF (x2-Y2) 40,40,20
14
     10
         CONTINUE
14
                  DUHX2=PSX=X1
16
17
                  OUNY2=PSY=YI
            GO TO 30
20
20
     20
         CONT INUE
                  OUMX2=PSX
52
                  DUMY2=PSY
23
23
25
     30
         CONTINUE
                  DUMX1=STX=X2
                  DUMY1*STY*Y2
26
27
            GO TO 50
     40
         CONTINUE
27
31
                  OUMX1=STX
                  DUMY 1=STY
32
                  DUHX2=PSX=X2
34
35
                  DUMY2=PSY=Y2
35
          FOUT=(DUMX2*DUMY1-DUMX1*DUMY2)/((DUMX2*DUMX1)-(DUMY2-DUMY1))
44
          RETURN
45
          END
```

GE THE

237

363

506

614

- 500400

40

90

140

190

ENO

```
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
SUBPROGRAM LENGTH
                                                                                                         SUBROUTINE FRIC (F)
    55
                                                                                                         DIMENSION F(501)
FUNCTION ASSIGNMENTS
                                                                                              3
                                                                                                         COMMON /BLOCKI/ RATIO.THICK.P.FF.STRAINC.ES.NTP1.U.DIA.UNWT
                                                                                                         COMMON /BLOCK2/ SS(501) + AAA+ WS(501) + MAXITE + CRACKW
                                                                                                          COMMON /BLOC23/ XBAR+STRSC+STRSB+STRC+IBABY+ITEB
STATEMENT ASSIGNMENTS
                                                                              27
                                                                                                         COMMON /BLOCK4/ AL(501) +STRAIN(501) +CONSTR(501) +STRESSS(501)
               14
                                    20
                                          30
                                                         23
                                                                40
10
                                                                                                          COMMON /BLOCKS/ FEXP(10) YEXP(10) FRICHUL NT FU FIFY
                                                                                                         COMMON /BLOCK6/ ALPHAC.ALPHAS.EC.FFC.TIME.FP.TOL.TIYPER
COMMON /BLOCE8/ Y(501).REFF(501).YP(501).H.ICLOSEB.YPITE(501)
EXTERNALS AND TAGS
                                                                                                          INTEGER AAA
END - 500100
                                                                                                                   BEYOND=0.
                                                                                              3
BLOCK NAMES AND LENGTHS
BLOCK2 - 1755C01 BLOCK9 -
                                                                                                            IF (IFY.EQ.1) GO TO 10
IF (IFY.EQ.2) GO TO 40
                                     5002
                                                                                              6
                                                                                                             IF (IFY.GT.2) GO TO 90
VARIABLE ASSIGNMENTS
                                                                                                         CONTINUE
                                                                                              11
               53 DUMX2 -
                                         DUMY1 -
                                                         54
                                                               DUMY2 -
                                                                               52
DUMX1 -
ITE -
                                                                                                                   SL07E=FRICMUL
                4C02 PSX -
                                                          3C02 5S
                                                                               0001
                                                                                              11
                                     2002 PSY
                0C02 STY
                                     1C02 WS
                                                        766C01
                                                                                                         COMPUTE FRICTION FORCES FROM STRAIT LINE GRAPH
                                                                                                   С
                                                                                                   С
START OF CONSTANTS
                                                                                                         00 30 I=1.NTP1
                                                                                              13
    46
                                                                                                                 F(1)=Y(1) *SLOPE
                                                                                              14
                                                                                              17
                                                                                                             IF (ABS(F(I)).LE.FU) GO TO 20
START OF TEMPORARIES
                                                                                                              IF (F(I)+GT.0.0) F(I)=FU
                                                                                              23
    46
                                                                                              27
33
                                                                                                              IF (F(1)+LT.0.0) F(1)=-FU
                                                                                                         CONT INUE
START OF INDIRECTS
                                                                                              33
                                                                                                    30
                                                                                                         CONT INUE
    51
                                                                                                            GO TO 140
                                                                                              36
                                                                                              36
                                                                                                         CONTINUE
START OF VARIABLES
    51
                                                                                                         COMPUTE FRICTION FORCES FROM PARABOLA
                                                                                                   С
SPACE REQUIRED TO COMPILE -- GETHE
                                                                                              36
                                                                                                         DO 80 I + 1 + NTP1
 32600
                                                                                                   С
                                                                                                             IF (Y(1).XT.0.) GO TO 50
                                                                                              40
                                                                                              43
                                                                                                                  F(1)=FRICMUL=SQRT(ABS(Y(1)))
                                                                                              52
                                                                                                             GO TO 60
                                                                                              52
52
                                                                                                        CONTINUE
                                                                                                                   F(I)=-FRICMUL=SQRT(Y(I))
                                                                                                         CONT INUE
                                                                                              61
                                                                                                    60
                                                                                                            IF (ABS(F(1)).LE.FU) GO TO 70
                                                                                              61
                                                                                                              IF (F(1).GT.0.0) F(1)=FU
                                                                                              66
                                                                                                              IF (F(I),LT.0.0) F(I)=-FU
                                                                                              75
                                                                                                    70
                                                                                                         CONT INUE
                                                                                              75
                                                                                                         CONTINUE
                                                                                             100
                                                                                                            GO TO 140
                                                                                             100
                                                                                                         CONTINUE
                                                                                                         COMPUTE FRICTION FORCES FROM INPUT POINT CURVE
                                                                                             100
                                                                                                         DO 130 I=1.NTP1
                                                                                             102
                                                                                                         DO 100 J=1.IWY
                                                                                                            IF (ABS(Y(I)).LT.ABS(YEXP(J))) GO TO 110
                                                                                             103
                                                                                                    100 CONTINUE
                                                                                             110
                                                                                                                   BEYOND=BEYONO+1.
                                                                                             113
                                                                                             115
                                                                                                                   F(I)=FEXP(IFY)
                                                                                             116
                                                                                                             GO TO 120
```

FRIC

GETME

```
RUNK VERSION FER 74 16.51.06. 23 JUL 75
                                                                                     RUNW VERSION FEB 74 16.51.06. 23 JUL 75
                                                                                     SUBPROGRAM LENGTH
          110 CONTINUE
  117
                        DUMDUM=(FFXP(J)+FFXP(J-1))/(ARS(YFXP(J))-ARS(YFXP(J-1)))
                                                                                        245
                        F(I)=FEXP(J-1)+DUMDUM*(ABS(Y(I))-ABS(YEXP(J+1)))
  137
         120 CONTINUE
                                                                                     FUNCTION ASSIGNMENTS
                   IF (Y(1).GT.0.0) F(1)=-F(1)
                                                                                     STATEMENT ASSIGNMENTS
         130 CONTINUE
  143
                                                                                                                                                               36
75
143
                                                                                     10
                                                                                                   11
                                                                                                         20
                                                                                                                       33
                                                                                                                              30
                                                                                                                                           75
137
                                                                                                                                                  80
                                                                                     50
                                                                                                         40
                                                                                                                      61
117
                                                                                                                              70
                   COMPUTE THE TOTAL FRICTION FORCE
                                                                                                  52
                                                                                                                                                  130
                                                                                     ō٨
                                                                                                         110
                                                                                                                              120
                                                                                     140
                                                                                                                                           227
   146
          140 CONTINUE
                                                                                                  146
                                                                                                         190
                                                                                                                       212
                                                                                                                              200
                  IF (BEYOND.GT.O.) PRINT 190+ REYOND
   146
   156
                                                                                     EXTERNALS AND TAGS
                       FF=0
  157
161
170
               DO 150 1=1+NT+2
                                                                                     SQRT - S00100
                                                                                                        OUTPTC - $00200
                                                                                                                              END
                                                                                                                                    - S00300
                       FF=FF+(F(1)+4.*F(1+1)+F(1+2))*H/3.
          150 CONTINUE
                                                                                     BLOCK NAMES AND LENGTHS
               IF (LONGTR.NE.100) RETURN PRINT 200, FW
                                                                                     BLOCK1 -
                                                                                                   12C01 BLOCK2 -
                                                                                                                     1755C02 BLOCK3 -
10C06 BLDCK8 -
                                                                                                                                             6003 BLOCK4 -
                                                                                                                                                              3724C04
  173
                                                                                     BLOCK5 -
                                                                                                   30C05 BLOCK6 -
                                                                                                                                          3726C07
  175
  203
               RETURN
   204
          190 FORMAT (//+10x+*IN COMPUTING THE FRICTION FORCES FROM MOVEMENTS*+/
                                                                                     VARIABLE ASSIGNMENTS
             1. 10x.F5.0.* POINTS EXCEEDED THE MAX MOV ON F-Y CURVE*)
                                                                                     AAA
                                                                                                  765C02 AL
                                                                                                                         OCO4 BEYOND -
                                                                                                                                           237
                                                                                                                                                  CONSTR -
                                                                                                                                                              1752004
          200 FORMAT (/.lox. TOTAL FRICTION FORCE FROM FRIC = .E10.3)
   204
                                                                                     DUMDUM -
                                                                                                        FEXP
                                                                                                                         0C05 FF
                                                                                                                                            3C01 FRICMUL-
                                                                                                                                                                24C05
   204
               END
                                                                                     FÜ
                                                                                                   26C05 H
                                                                                                                     2737C07 I
                                                                                                                                                  IFY
                                                                                                                                                                27C05
                                                                                                        LONGPR -
                                                                                                                      244 NT
240 SS
                                                                                                                                            25C05 NTP1
                                                                                                                                                                 6C01
                                                                                                  242
                                                                                                  765C07 SLDPE -
                                                                                     REFF
                                                                                                                                             OCOZ STRAIN -
                                                                                                                                                               765C04
                                                                                                                      766C02 Y
                                                                                                 2737C04 WS
                                                                                                                                             OCOT YEXP -
                                                                                     STRESSS-
                                                                                                                                                                12005
                                                                                                 1752C07 YPITE -
                                                                                                                     2741C07
                                                                                     START OF CONSTANTS
                                                                                        205
                                                                                     START OF TEMPORARIES
                                                                                        234
                                                                                     START OF INDIRECTS
                                                                                        237
                                                                                     START OF VARIABLES
                                                                                        237
                                                                                     SPACE REQUIRED TO COMPILE -- FRIC
```

FRIC

33500

```
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
```

```
SUBROUTINE DWWIREF (F.BONDL.STRMAX.Z.DELTAT)
                                                                                       140
                                                                                                             SIGMASB=DUMI/DUM2
10
                                                                                                             SIGMASC=C1*SIGMASB+C2-C3
            DIMENSION F (501) + SUM (501)
                                                                                       142
            COMMON /BLOCZI/ RATIO.THICK.P.FF.STRAINC.ES.NTPI.U.DIA.UNWT
10
10
            COMMON /BLOCK2/ SS(501) . AAA. WS(501) . MAXITE . CRACKW
                                                                                                        CHECK FOR THE SUMMATION OF STEEL STRESSES UNDER THE
            COMMON /BLOCZ3/ XBAR+STRSC+STRSB+STRC+1BABY+ITEB
10
            COMMON /BLOCK4/ AL (501) .STRAIN(501) .CONSTR(501) .STRESSS(501)
10
                                                                                       145
                                                                                                             A1=(((2.*ANA-2.)*SIGMASB*H*SUM1)*H)/2.
            COMMON /BLOCKS/ FEXP(10) + YEXP(10) + FRICHUL + NT + FU + IFY
10
                                                                                                             AZ=(2.*5]GMASB.2.*H*5UMZ.5*E)*E/2.
10
            COMMON /BLOCKS/ ALPHAC+ALPHAS+EC+FPC+TIME+EP+TOL+ITYPER
                                                                                       154
10
            COMMON /BLOCZ7/ SIGMASC+SIGMASB+NA+NAPI+E+A+S+DENO+NAPZ
                                                                                       161
                                                                                                             A3=(S1GMASB+H*SUM2+S*E+S1GMASC)*BONDL/2.
10
            COMMON /BLOC28/ Y(501) + REFF(501) + YP(501) + H+1CLOSEB + YP1TE(501)
                                                                                       171
                                                                                                             EA+SA+1A=1MUG
                                                                                                             DUMZ=ALPHAS+AL (NTP1)+DELTAT+ES
            REAL L
                                                                                       174
            INTEGER AAA
                                                                                       177
                                                                                                             SMUG-IMUG=EMUG
                                                                                                       IF (485(DUM3).GT.1.E-4) GO TO 70
                                                                                       201
     c
                COMPUTE THE STRAINS DUE TO FRICTION FORCES DEVELOPED
                                                                                                        COMPUTE THE STEEL AND CONCRETE STRAIN AT EVERY INCREMENT
     С
                DUE TO SLAB HOVEMENT
                                                                                                        THE STRAIN IS COMPUTED IN THE BONDED AND UNBONDED SECTIONS
                     EP=1.E-9
11
                     A=A3(NTP1)-BONDL
                                                                                                    CALL POIRES (F.BONDL.STRMAX.LOCMAX.Z.DELTAT)
                                                                                       205
14
               IF (A.LE.O.) GO TO 50
                                                                                                   CONT INUE
                                                                                       210
                                                                                              40
15
                     NA=A/H+1+EP
                                                                                                    RETURN
                                                                                       210
22
24
                                                                                              50
                                                                                                   CONTINUE
                     E=A-AL (NA)
                                                                                       511
                                                                                                    PRINT 130. A
               IF (NA.GT.NT) GO TO 60
                                                                                       211
27
27
      10
            CONT INUE
                                                                                       217
                                                                                                       GO TO 80
                      NAP1=NA+1
                                                                                       223
                                                                                                   CONTINUE
31
                      NAPZ=NA+Z
                                                                                                    PRINT 140+ NA+NT
                                                                                       223
33
                      NAH1=NA-1
                                                                                                       GO TO 80
                                                                                       233
34
                     NAMZ=NA-Z
                                                                                              70
                                                                                                   CONTINUE
                                                                                       237
                COMPUTE THE SLOPE TO THE STEEL STRAIN DISTRIBUTION CURVE BY
                                                                                                    PRINT 150. SIGMASC.SIGMASB.DUM1.DUMZ.DUM3
                                                                                       237
35
                     DEN6=THICK*(P+1./RAT10)
                                                                                                   CONTINUE
                                                                                       255
                                                                                              130 FORMAT (//+10x.*ERROR IS DETECTED IN DEWIREF*+/+
                                                                                       255
                DIVIDING THE FRICTION FORCE BY DENO AND CONSIDERING THE
                                                                                              1 10x+*A IS NEGATIVE AND =*+E10.3)
140 FORMAT (/+20x+* ERROR IS DETECTED *+/+
                SIGN CONVENTION ADOPTED IN THIS STUDY
     ¢
                                                                                       255
      č
                                                                                                              10x.* NA = *+15+10X+* NT = *+15)
      C
                                    SLOPE(I) = - F(1) / DENO
                                                                                       255
                                                                                               150
                                                                                                    FORMAT (//+20x+ * ERROR IS DETECTED * +/+
                                                                                                               TOX. . STEEL STRESS AT CRACK
41
                      SUM 1 = 0.
                                                                                                                                                    ***E10.3*/*
                     SUM2=0.
                                                                                                               10x. * STEEL STRESS BETWEEN CRACKS =**E10.3./.
42
43
            1MAM 1=1 05 00
                                                                                                               LOX. * SUMMATION OF A1.A2.AND A3
                                                                                                                                                   =*.E10.3./.
                                                                                                               LOX. . ALPHA L DELTAT ES
                                                                                                                                                    =*,E10.3,/,
44
                     SUMI=SUMI+(2*NA+(2.*[+1))+(-F(1)/DENO)
                                                                                                               10x. . ABSOLUTE DIFFERENCE
                                                                                                                                                    =* .E10.3)
60
                     SUM2=SUM2+(-F(I)/DENO)
            CONTINUE
                                                                                       255
                                                                                                   END
64
      20
     C
                DEFINE CONSTANTS FOR SOLUTION OF EQUATIONS
                      C1=1.+1./(P*RATIO)
71
                      C2=((Z+DELTAT+(ALPHAC-ALPHAS)) *ECI/P
                     C3=FF/(P*THICK)
101
                     S=-F (NAP1)/DENO
                SOLVE FOR STRESS IN STEEL BETWEEN CRACKS AND AT CRACK
            DUM1=ALPHAS*AL (NTP1) *DELTAT*ES-H*H*SUM1/2.-E*H*SUM2~S*E*E/2.-(H*
104
                  SUM2.5*E.C2-C31*BONDL/2.
126
                     ANA=NA
                     DUM2=H*(2.*ANA-2.)/2.*E+((1.*C1)*BONDL)/2.
130
```

OFWIREF OFWIREF

```
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
SUBPROGRAM LENGTH
                                                                                                SHRROHTIME OWNIER (RONGL STORAY . 7. DEL TAT)
 1374
                                                                                                c
                                                                                                    THIS SUBROUTINE SOLVES FOR THE STRESS IN THE STEEL AND
FUNCTION ASSIGNMENTS
                                                                                          С
                                                                                                    CONCRETE FOR DEFORMED WIRE FABRIC -NO FRICTION FORCES
STATEMENT ASSIGNMENTS
                                                                                                    ARE CONSIDERED IN THE SOLUTION
                                                                                                223
                                       50
                                                   211
                                                          60
10
             27
                                210
                                                          140
                                                                       277
                                                                                                COMMON /81 OCK) / RATIO. THICK . P. FF. STRAINC . FS. NTP1 . II. DIA. INNET
                                       130
                                                   264
            237
                   80
                                255
                                                                                                COMMON /800022/ $$($011-444-45($01)-MAXITE+CDACK4
150
            313
                                                                                                COMMON /RLOCK3/ XRAR-STRSC-STRSB-STRC-TRARY-TTER
                                                                                                COMMON /REOCKA/ AL (501) - STRAIN (501) - CONSTR (501) - STRESS (501)
EXTERNALS AND TAGS
                                                                                                COMMON /BLOCKS/ FEXP(10), YEXP(10), FRICMUL, NT, FU, IFY
POIRES - 500100
                   OUTPTC - 500200
                                       END
                                              - 500300
                                                                                                COMMON /BLOCZ6/ ALPHAC.ALPHAS.EC.FPC.TIME.EP.TOL.ITYPER
                                                                                                COMMON /BLOCZD/ STRSC2(501) DIST
BLOCK NAMES AND LENGTHS
BLOCKI -
              12001 BLOCK2 -
                               1755C02 BLOCK3 -
                                                      6003 BLOCK4 -
                                                                      3724C04
                                                                                                COMMON /BLOC27/ SIGMASC+SIGMASB+NA+NAP1+E+A+S+DFNO+NAP2
                                                     11007 BLOCKS -
                                                                      3726C10
                                                                                                COMMON /BLOC28/ Y(501) + REFF (501) + YP (501) + H+ ICLOSER + YP ITE (501)
                                 10006 BLOCK7 -
BLOCK5 -
              30C05 BLOCK6 -
VARIABLE ASSIGNMENTS
                                                     OCO4 ALPHAC -
                                                                                                DEFINE CONSTANTS
                                                                         0006
               SCO7 AAA
                                 765C02 AL
                                                                      1370
                                                                                          r
ALPHAS -
               1C06 ANA
                                1365
                                                   1367
                                                          A2
                                                                                                         C1=EC+Z+FC+DELTAT+(ALPHAC-ALPHAS)
43
                    CONSTR -
                                1752C04 C1
                                                   1361
                                                          CZ
                                                                      1362
            1363
                    DENO
                                  7C07 DUM1
                                                          SMUO
                                                                      1366
                                                                                     13
                                                                                                         C2=ALPHAS+L+DELTAT+E5
EMUG
            1372
                                  4C07 FC
                                                      2C06 EP
                                                                         5006
                                                                                     16
                                                                                                         C3=80NDL/(2.*RATIO) .P*L
              5001 FEXP
                                                                      2737C10
                                  OCOS FF
                                                      3C01 H
FS
                                     LOCHAX -
            1360
                                1353
                                                   1373
                                                                         2007
                                                                                          r
                                                                                                         SOLVE FOR STRESSES
                                                      3CO7 NAPZ
                                                                                                         STRC=(CI+P+L+C2+P/RATIO)/C3
NAMI
                    NAM2
                                                                        10007
                                                                                     22
            1354
                                1355
                                       NAP1 -
              25C05 NTP1
                                                                                                         STRSB#(-C1+BONDL/2.+P+C2)/C3
                                  6C01 P
                                                      2CO1 RATIO
                                                                                     26
33
                                                                         0001
                                  6C07 SIGMASR-
DEFE
             765010 5
                                                      1007 SIGMASC-
                                                                         0007
                                                                                                         STRSC#(CZ/RAT10+C1+(L-80NOL/2,)+P*C2)/C3
               OCOZ STRAIN -
                                765C04 STRESSS-
                                                   2737C04 SUM
                                                                       366
                                                                                                         STRMAX=STRC
55
                                                                                     47
                                                                        766C02
SUM1
            1356
                   SUM2
                                1357
                                      THICK -
                                                      1001 WS
               OCIO YEXP
                                  12C05 YP
                                                   1752C10 YP1TE
                                                                      2741C10
                                                                                                CHECK EQUILISRIUM - EQUATION 1
START OF CONSTANTS
                                                                                                         DUM1=STRC+P*STRSR
                                                                                     45
                                                                                                        DUMZ=P*STRSC
   256
                                                                                                   IF (ABS(DUH1-DUM2).GT.1.E-5) GO TO 10
                                                                                     46
                                                                                     53
54
55
55
73
                                                                                                         SRAINC=STRC/EC
START OF TEMPORARIES
                                                                                                RETURN
   361
                                                                                                CONTINUE
                                                                                           10
START OF INDIRECTS
                                                                                                PRINT 20. STRC.STRS8.STRSC.DUM1.DUM2
                                                                                           20
   366
                                                                                                FORMAT (//+10X+* ERROR 15 DETECTED *+/+
                                                                                                          10x. * EQUILIBRIUM IS NOT SATISFIED **/.
START OF VARIABLES
                                                                                                          10x.* STRC = *.E10.3.5x.* STRSB = *.E10.3.5x.* STRSC =*
                                                                                                          E10.3./.10X.* DUM1 = *.F10.3.5X.* DUM2 = *.F10.3)
   366
```

DEWIREF

34100

SPACE REQUIRED TO COMPILE -- DEWIREF

DEWIRE

73

END

```
SUBROUTINE POIRES (F.BONDL.STRMAX.LOCMAX.Z.DELTAT)
            DIMENSION F (501) - SUM (501)
            COMMON /BLOCKI/ RATIO.THICK.P.FF.STRAINC.ES.NTP1.U.DIA.UNWT
ii
            COMMON /BI OC22/ SS(501) + AAA+ WS(501) + MAXITE + CRACKW
11
            COMMON /BLOCK3/ XBAR.STRSC.STRSB.STRC.IBABY.ITER
ii
            COMMON /BLOCK4/ AL (501) .STRAIN(501) .CONSTR(501) .STRESSS (501)
11
            COMMON /BLOCKS/ FEXP(10) . YEXP(10) . FRICHUL . NT. FU. IFY
11
            COMMON /RI DC26/ ALPHAC . ALPHAS . EC . FPC . TIME . EP . TOL . ITYPER
ii
            COMMON /BLDCK7/ SIGMASC+SIGMASB+NA+NAP1+E+A+S+DENO+NAP2
11
            COMMON /BLOC28/ Y(501) . REFF (501) . YP (501) . H. ICLOSEB . YPITE (501)
11
            INTEGER AAA
11
ii
            REAL L
     c
11
                      II=NAP2
                      SUM 3=0.
12
13
                      SUM4=0.
                      STRESSS(1)=SIGMASB
14
15
                      SS(1)=STRESSS(1)/ES
17
                      STRAIN(1)=SS(1)+Z+DELTAT+(ALPHAC-ALPHAS)
                      CONSTR(1) =STRAIN(1) +EC
23
                      LOCMAX=1
26
                      STRMAX=CONSTR(1)
     С
27
            DO 20 I=2.NA
                      STRESSS(I) =STRESSS(I-1) +H+(+F(I)/DENO)
30
                      SS(I) *STRESSS(I)/ES
36
                      STRAIN(I)=SS(I)+Z+DELTAT*(ALPHAC-ALPHAS)
41
46
                      CONSTR(I)=STRAIN(I) *EC
                IF (CONSTR(I).LT.STRMAX) GO TO 10
50
53
                      STRMAX=CONSTR(I)
54
54
                      LOCMAX=1
            CONTINUE
       10
                      SUM3=SUM3+(SS(I)+SS(I-1))+H/2.
54
                      SUM4=SUM4+(STRESSS(I)+STRESSS(I-1))+H/2.
62
70
       20
            CONT INUE
73
                      ADDI#STRESSS (NA) +S*E
                      ADDIAR = (STRESSS (NA) +ADDI) =E/2.
 76
                      SUM3=SUM3+(ADDIAR)/ES
101
103
                      SUM4=SUM4+ADDIAR
                      SLO7F2#1SIGMASC-ADDI)/BONDL
105
                      ADDIC=ADDI/ES+Z+DELTAT+(ALPHAC-ALPHAS)
107
                      SLO7ECC=-ADDI/BONDL
114
                      STRESS (NAP1) = ADDI+ (AL (NAP1) - A) *SLOPE2
115
                      SS(NAP1)=STRESSS(NAP1)/ES
124
            STRAIN(NAP1) =ADDIC=F(NAP1) +H/(THICK+EC) -(STRESSS(NAP1) -ADDI)+P/EC
126
                      CONSTR (NAP1) = STRAIN (NAP1) *EC
142
144
                IF (CONSTR(NAP1).LT.STRMAX) GO TO 30
147
                      STRMAX=CONSTR(NAP1)
150
                      LOCHAX=NAP1
150
       30
            CONTINUE
                      SUM4=SUM4+(STRESSS(NAP1)+ADDI)*(AL(NAP1)-A)/2.
150
                      SUM3=SUM3+(STRESSS(NAP1)+ADDI)+(AL(NAP1)-A)/(2.*ES)
160
171
                 IF (NA.EQ.NT) 11=NAP1
            DO 50 1=[[.NTP]
175
177
                      STRESSS(I) = ADDI + (AL (1) - A) * SLDPE2
```

POIRES

DEWIRE

```
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
                                                                                     SUBPROGRAM LENGTH
                        SS(I)=STRESSS(I)/ES
               STRAIN(1) =STRAIN(1-1) -F(1) *H/(THICK*EC) -(STRESSS(1)-STRESSS(1-1)) *
                                                                                      1267
   210
                     P/EC
                                                                                     FUNCTION ASSIGNMENTS
                        CONSTR(I)=STRAIN(I)*EC
   224
   227
231
232
                  IF (CONSTR(I) LT.STRMAX) GO TO 40
STRMAX=CONSTR(I)
                                                                                     STATEMENT ASSIGNMENTS
                                                                                                   54 30
                                                                                                                       150
                                                                                                                                           233
                        LOCMAX=I
   233
233
241
247
251
               CONTINUE
                         SUM3=SUM3+(SS(I)+SS(I-1))*H/2.
                                                                                     EXTERNALS AND TAGS
                                                                                     END - 500100
                         SUM4=SUM4+(STRESSS(1)+STRESSS(1-1))+H/2.
          50
               CONTINUE
                                                                                     BLOCK NAMES AND LENGTHS
               RETURN
   252
               END
                                                                                     BLOCK1 -
                                                                                                   12C01 BLOCK2 -
                                                                                                                      1755C02 BLOCK3 -
                                                                                                                                             6C03 BLOCK4 -
                                                                                                                                                               3724004
                                                                                     BLOCK5 -
                                                                                                   30C05 BLOCK6 -
                                                                                                                        10C06 BLOCK7 -
                                                                                                                                             11C07 BLOCK8 -
                                                                                                                                                               3726010
                                                                                     VARIABLE ASSIGNMENTS
                                                                                                    SCOT AAA
                                                                                                                       765C02 ADDI -
                                                                                                                                          1262 ADDIAR -
                                                                                                                                                               1263
                                                                                     ADDIC -
                                                                                                                                             OCO6 ALPHAS -
                                                                                                  1265 AL
                                                                                                                         OCO4 ALPHAC -
                                                                                                                                                                  1 CO 6
                                                                                     CONSTR -
                                                                                                 1752C04 DENO
                                                                                                                         7007 E
                                                                                                                                             4007 EC
                                                                                                                                                                  2C06
                                                                                     ٤S
                                                                                                    5CO1 FEXP
                                                                                                                         0C05 H
                                                                                                                                           2737C10 I
                                                                                                                                                               1561
                                                                                                 1256 L
10C07 NT
                                                                                     11
                                                                                                                      1255 NA
25005 NTP1
                                                                                                                                             2C07 NAP1
                                                                                                                                                                  3C07
                                                                                     NAP2 -
                                                                                                                                             6C01 P -
1C07 SIGMASC-
                                                                                                                                                                  SCOI
                                                                                                                         6C07 SIGMASB-
                                                                                                  765C10 S
                                                                                                                                                                  0C07
                                                                                     SLOPECC-
                                                                                                 1266 SLOPE2 -
                                                                                                                      1264 $5
                                                                                                                                             OCO2 STRAIN -
                                                                                                                                                                765C04
                                                                                     STRESSS-
                                                                                                 2737C04 SUM
                                                                                                                       270
                                                                                                                              SUM3
                                                                                                                                          1257 SUN4 -
0C10 YEXP -
                                                                                                                                                               1260
                                                                                                                       766C02 Y
                                                                                     THICK -
                                                                                                    1001 WS
                                                                                                                                                                 12005
                                                                                                 1752C10 YPITE
                                                                                                                      2741C10
                                                                                     START OF CONSTANTS
                                                                                        253
                                                                                     START OF TEMPORARIES
                                                                                        255
                                                                                     START OF INDIRECTS
                                                                                        264
                                                                                     START OF VARIABLES
                                                                                        270
                                                                                     SPACE REQUIRED TO COMPILE -- POIRES
```

POIRES

34000

```
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
                                                                                                    SUBPROGRAM LENGTH
                  SUBROUTINE SIMPSPE (Y.N.H.SUM)
                  DIMENSION Y(N) . SUM (N)
          c
c
c
                                                                                                    FUNCTION ASSIGNMENTS
                      THIS SUBROUTINE COMPUTES THE AREA UNDER A DISTRIBUTION USING SIMPSONS RULE WITH A SPECIAL MODIFICATION % \left( 1\right) =0
                                                                                                    STATEMENT ASSIGNMENTS
          C
     7
                  DO 10 I=1.N
                                                                                                    EXTERNALS AND TAGS
END + S00100
    10
12
14
15
20
20
                            SUM (1) =0.
                  CONTINUE
                            SUM(1)=0.
Al=(Y(1)+Y(2))*H/2.
                                                                                                    BLOCK NAMES AND LENGTHS
                            AOLD=A1
                                                                                                     VARIABLE ASSIGNMENTS
                             SUM(2) =AOLD
                                                                                                                     56 AOLD
                                                                                                                                                                     55
                                                                                                                                                                                             52
                                                                                                                                                   AS
                                                                                                                                                                           A1
    21
                             N#1=N-1
                                                                                                                             NH1
                                                                                                                                             54
          c
    23
24
33
35
40
41
44
                  144.5=1 02 00
                                                                                                    START OF CONSTANTS
                            Z+NMI
AS=(Y(I-1)+4,*Y(I)+Y(I+1)}*H/3
A=AS-AOLD
SUM(I+1)=SUM(I)+A
                                                                                                         45
                                                                                                    START OF TEMPORARIES
                             AOLD=A
                                                                                                         47
                  CONT INUE
            20
                  RETURN
                                                                                                    START OF INDIRECTS
                  END
                                                                                                         51
                                                                                                    START OF VARIABLES
                                                                                                        51
                                                                                                    SPACE REQUIRED TO COMPILE -- SIMPSPE
```

SIMPSPE

32500

```
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
```

```
SUBROUTINE STRGENE (BONDL)
           THIS SUBROUTINE GENERATES THE STRAIN IN THE CONCRETE AT
    С
                                                                               FUNCTION ASSIGNMENTS
              EVERY STATION IN THE FRICTIONLESS SLAB .
    С
          RESULTS OF SUBROUTINE TEMPSHR ARE USED - ( NO FRICTION )
                                                                               STATEMENT ASSIGNMENTS
    C
    C
                                                                               10
          COMMON /BLOCKI/ RATIO.THICK.P.FF.STRAINC.ES.NTP1.U.DIA.UNWT
          COMMON /BLOC22/ $5(501)+AAA+WS(501)+MAXITE+CRACKW
                                                                               EXTERNALS AND TAGS
          COMMON /BLOCK3/ XBAR+STPSC+STRSB+STRC+IBABY+ITEB
                                                                               END - 500100
          COMMON /BLOCK4/ AL (501) +STRAIN (501) +CONSTR (501) +STRESSS (501)
           COMMON /BLOCKS/ FEXP(10), YEXP(10), FRICHUL, NT, FU, IFY
                                                                               BLOCK NAMES AND LENGTHS
          COMMON /BL0026/ ALPHAC:ALPHAS:EC,FPC;TIME:EP;TOL:ITYPER
COMMON /BL0028/ Y(501):REFF(501):YP(501):H-ICLOSEB:YPITE(501)
                                                                                             12C01 BLOCK2 -
                                                                                                               1755C02 BLOCK3 -
                                                                               BLOCKI -
                                                                                                                                      6003 BLOCK4 -
                                                                                                                                                       3724C04
                                                                               BLOCK5 -
                                                                                             30C05 BLOCK6 +
                                                                                                                 10006 BLOCK8 -
                                                                                                                                   3726C07 BLOCKC -
                                                                                                                                                       1756C10
           COMMON /BLOCZC/ STRSC1(501) +STRSS1(501) +INC+FRF+FY+L
3
           INTEGER AAA
                                                                               VARIABLE ASSIGNMENTS
           REAL L
                                                                                                                765C02 AL
                                                                                                                                      0C04 CONSTR -
                                                                                                                                                       1752004
                                                                                             34 AAA
                                                                               ΕĊ
                                                                                              2006 FEXP
                                                                                                                                   2737C07 HH
                                                                                                                  0C05 H
                                                                                                                                                         35
3
                    A=L-BONOL
                                                                                                                                      6C01 REFF
                                                                                                                                                        765C07
                                                                                                               1755C10 NTP1
                                                                                             36
                                                                                                  Ł
5
7
                    HH=-H
                                                                                              0C02 STRAIN -
0C10 STRSS1 -
                                                                                                                                      4COL STRESSS-
                                                                                                                765C04 STRAINC-
                                                                                                                                                       2737C04
                                                                               55
          00 20 1=1.NTP1
                                                                               STRSC1 -
                                                                                                                765C10 WS
                                                                                                                                    766C02 Y
                                                                                                                                                          0C07
                                                                                             12C05 YP
    С
                                                                                                               1752C07 YPITE -
                                                                               YEXP
                                                                                                                                   2741C07
10
                    STRAIN(I)=STRAINC
15
                    AL(I)=HH+H
                                                                               START OF CONSTANTS
15
                    HH=AL(1)
                                                                                   33
              IF (AL(I) +LE+A) GO TO 10
16
20
                   STRAIN(I) = STRAINC-STRAINC (AL (I) -A) / BONDL
                                                                               START OF TEMPORARIES
24
      10
                                                                                   33
24
                    CONSTR(1) =STRAIN(1) *EC
                                                                               START OF INDIRECTS
27
      20
          CONT INUE
31
           RETURN
                                                                                   34
32
           END
                                                                               START OF VARIABLES
                                                                                   34
                                                                               SPACE REQUIRED TO COMPILE -- STRGENE
```

RUNW VERSION FEB 74 16.51.06. 23 JUL 75

SUBPROGRAM LENGTH

STRGENE

STRGENE

RETURN

END

CONTINUE

SHRN=26.*EXP(0.36*VOS)

Z=(TIME/(SHRN+TIME))*ZTOT

10x . *PERCOM =* £10.3./.

2AXIMUM STRENGTH PROVIDED BY THE USER* . / . 10x . * TENSTRN=* . E10.3 . / .

10x . * PROGRAM IS TERMINATED*)

10x . * PROGRAM IS TERMINATED*1

FORMAT (//+10x+*ERROR IS DETECTED IN SUBROUTINE BACKTIM.**/* 1 10x,*THE COMPUTED PERCENT COMPRESSION IS GREATER THAN 1 2E MAXIMUM PERCENT AVAILABLE**/>

FORMAT (//+10x+*ERROR IS DETECTED IN SUBROUTINE BACKTIM.*+/+

10x. THE COMPUTED TENSILE STRENGTH IS GREATER THAN THE

124

124

132

136

137

137

137

137

6.0

70

80

90

С

```
SUBROUTINE BACKTIM (TENSTRN, ZTOT, Z)
            **************************************
                THIS SUBROUTINE CALCULATES THE TIME DEPENDENT VARIABLES FROM
     С
                THE COMPUTED STRENGTH ON THE LINE OF EQUALITY OF STRESS -
                STRENGTH CURVE .
            ***********
           DIMENSION PERCENT(8) + AGE (8)
           COMMON /BLOCZI/ RATIO.THICK.P.FF.STRAINC.ES.NTP1.U.OIA.UNWT
           COMMON /BLOCKZ/ SS(SO1)+AAA+WS(501)+HAXITE+CRACKW
           COMMON /BLOC23/ XBAR.STRSC.STRSB.STRC.18ABY.ITEB
            COMMON /BLDCK4/ AL (501) +STRAIN(S01) +CONSTR(501) +STRESSS(501)
            COMMON /BLOCKS/ FEXP(10) . YEXP(10) . FRICHUL. NT. FU. IFY
            COMMON /BLOCKS/ ALPHAC+ALPHAS+EC+FPC+TIME+EP+TOL+ITYPER
           COMMON /BLOC28/ Y(501) +REFF(501) +YP(501) +H+1CLOSEB +YPITE(501)
            COMMON /BLOCKTO/ NSTRN. VDS. AGEU(20) . TENSION(20) . STRNHUL
           DATA AGE/0..3..3..5..7..14..21..28./
           DATA PERCENT/0..15.,38..53..63..82..94.,100./
 6
            INTEGER AAA
            IF (NSTRN.GT.O.) GO TO 30
                     FLESTRN=TENSTRN/STRNHUL
 10
                     COMSTR=(12000.*FLESTRN)/(3000.-3.*FLESTRN)
 11
 15
20
27
30
                     PERTOM=(COMSTR/FPC) *100.
EC=33.*(UNWT**1.5) *SQRT(COMSTR)
                     PATIO=FS/FC
                     U=9.S*SQRT(COMSTR)/DIA
 35
                IF (U.GT.800.) U=800.
           00 10 1=1.8
 42
44
44
47
51
57
62
62
67
73
73
               IF (PERCOM.LE.PERCENT(1)) GO TO 20
           CONTINUE
            PRINT 80. PERCOM
               GO TO 70
           CONTINUE
                     TIME=(PERCENT(J)-PERCENT(J-1))/(AGE(J)-AGE(J-1))
                     TIME = AGE (J-1) + (PERCOM-PERCENT (J-1))/TIME
               GO TO 60
      30
            CONTINUE
            COMPUTE THE TIME CORRESPONDING
     ¢
            TO TENSILE STRENGTH
 73
75
            DO 40 I=1.NSTRN
               IF (TENSTRN.LE.TENSION(I)) GO TO SO
75
100
            CONTINUE
            PRINT 90, TENSTRN
103
               GO TO 70
110
113
            CONTINUE
            COMPUTE SLOPE BY LINEAR INTERPOLATION
                     TIME = (TENSION(J) - TENSION(J-1))/(AGEU(J) - AGEU(J-1))
113
                     TIME=AGEU(J-1) + (TENSTRN-TENSION(J-1))/TIME
120
```

BACKTIM BACKTIM

```
RUNW VERSION FEB 74 16.51.06. 23 JUL 75
```

SUBPROGRAM LENGTH

FUNCTION ASSIGNMENTS

```
STATEMENT ASSIGNMENTS
                                                                      124
            62
137
                                73
                                                   113
                                                          60
70
                   80
                                154
                                      ٩n
                                                   213
EXTERNALS AND TAGS
SQRT - 500100
FND - 500500
                   RBAREX - 500200
                                      OUTPTC - $80300
                                                                - 500400
BLOCK NAMES AND LENGTHS
             12C01 BLOCK2 -
                               1755C02 BLOCK3 -
                                                     6003 BLOCK4 -
                                                                     3724004
BLOCK1 -
BLOCK5 -
             30C05 BLOCK6 -
                                10006 BLOCK8 -
                                                  3726C07 BLOCK10-
                                                                       53C10
VARIABLE ASSIGNMENTS
                                                                        0C04
AAA
            765C02 AGE
                                264
                                      AGFU -
                                                     2C10 AL
            275 CONSTR -
                               1752C04 DTA
                                                    10001 FC
                                                                        2006
COMSTR -
              5CO1 FEXP -
                                  0C05 FLESTRN-
                                                                        3006
                                                   274
                                                         FPC
ES
                                                    OCIO PERCENT-
            277
                                      NSTRN -
                                                                       254
                                300
                                                   765C07 SHRN -
                                                                      301
PERCOM -
                  RATIO -
                                 OCO1 REFE -
            276
                                                                       52C10
                                                  2737C04 STRNMUL-
SS
              OCOZ STRAIN -
                                765C04 STRESSS-
TENSION-
             26C10 TIME -
                                                     7001 UNMT -
                                 4006 U
                                                                       11C01
VDS
              1010 WS
                                766C02 Y
                                                     OCOT YEXP
                                                                       12005
```

2741007

START OF CONSTANTS

START OF TEMPORARIES

START OF INDIRECTS

START OF VARIABLES

SPACE REQUIRED TO COMPILE -- BACKTIM 33500

1752C07 YPITE -

RUNW VERSION FEB 74 16.51.06. 23 JUL 75

DELTEMI

```
SUBROUTINE DELTEM) (TIME.DELTAT)
    С
    č
               THIS SUBROUTINE RETURNS THE TEMPERATURE DROP AT NON-
    č
               INTEGER TIMES.
    Ċ
           COMMON /BLOCK12/ DT(50) *NTEMP*NTIFLAG*UPINC*OOWNING
           DO 10 ITIME=1.NTEMP
                   REASTI=FLOAT(ITIME)
10
              IF (REALTI.GT.TIME) GO TO 20
13
           CONTINUE
      10
           PRINT 130. TIME.REALTI
24
           STOP 66
      20
           CONTINUE
26
           DTIME=TIME-(REALTI-1)
           IF (DTIME.EQ.0.) GOTO 40
34
35
           OELTAT=DT(ITIME) *OTIME
           RETURN
36
        40 DELTAT=DT(ITIME)
40
           RETURN
40
       130 FORMAT (* FREOR IN DELIEM) TIME = **F10.3**REALTI = **F10.3)
```

BACKTIM

```
SUBPROGRAM LENXTH
                                                                                              SUBROUTINE DELTEMP (TIME DELTAT)
                                                                                              C
                                                                                                 THIS SUBROUTINE CONTAINS THE INCREMENTAL TECHNIQUE
FUNCTION ASSIGNMENTS
                                                                                                 FOR TEMPERATURE TIME DATA. A SINE WAVE IS FIT
                                                                                                 THROUGH EACH DAY. THE ROUTINE HAS THREE OPTIONS.
                                                                                        Ç
STATEMENT ASSIGNMENTS
                                                                                        C
                  40
                                36
                                      130
             26
                                                                                                 DELTEMP INCREMENTS UP BY UPING IF NTIFLAG = 1
                                                                                                  INCREMENTS DOWN BY DOWNING IF NTIFLAG = -1
EXTERNALS AND TAGS
                                                                                              IT GIVES THE TEMPERATURE DROP AT TIME IF NTIFLAG = 0
OUTPTC - S00100 STOP - S00200
                                      END
                                            - 500300
                                                                                              COMMON /BLOCK12/ DT(50)+NTEMP+NTIFLAG+UPINC+DOWNINC
BLOCK NAMES AND LENGTHS
                                                                                                      PI=3.14159265359
BLOCK12-
            66C01
                                                                                              DO 10 ITIME=1.NTEMP
                                                                                                      REASTI=FLOAT(ITIME)
VARIABLE ASSIGNMENTS
                                                                                   10
                                                                                   12
                                                                                                 IF (REALTI.GT.TIME) GO TO 20
                                                         NTEMP -
                                                                      62C01
DT -
REALTI -
              OCO1 DTIME -
                                55
                                      ITIME -
                                                   53
                                                                                              CONTINUE
                                                                                   15
                                                                                         10
                                                                                   17
                                                                                              PRINT 130, DELTAT, TIME
                                                                                              STOP 66
                                                                                   26
START OF CONSTANTS
                                                                                             CONT INUE
                                                                                   30
                                                                                         20
   41
                                                                                                 IF (TIME.GT.REALTI-.75.A.TIME.LT.REALTI-.25) GO TO 30
                                                                                   30
                                                                                   45
START OF TEMPORARIES
                                                                                                      DELTAT=0.
                                                                                                 60 TO 40
                                                                                   46
   52
                                                                                   46
                                                                                         30
                                                                                             CONTINUE
                                                                                   46
                                                                                                      DELTAT=DT(ITIME) *SIN((TIME-REALTI+.75) *2.*PI)
START OF INDIRECTS
                                                                                   57
57
                                                                                         40
                                                                                              CONTINUE
   53
                                                                                                 IF (NTIFLAG) 100+80+50
                                                                                   61
                                                                                             CONTINUE
                                                                                         50
START OF VARIABLES
                                                                                                      DEL TAT = DEL TAT + UP INC
                                                                                   61
                                                                                   63
                                                                                                 IF (TIME.XT.REALTI-.5) GO TO 90
                                                                                                 IF (DELTAT.GE.DT(ITIME) +UPINC-1.E-7) GO TO 90
                                                                                   70
SPACE REQUIRED TO COMPILE -- DELTEM1
                                                                                                 IF (DELTAT.LE.DT(ITIME)) GO TO 120
                                                                                   74
 32500
                                                                                   76
                                                                                             CONTINUE
                                                                                   76
                                                                                                      DELTAT=DT(ITIME)
                                                                                              CONTINUE
                                                                                  100
                                                                                                       TIME=REALTI-.5
                                                                                  100
                                                                                  102
                                                                                         80
                                                                                              CONTINUE
                                                                                              RETURN
                                                                                  102
                                                                                         90
                                                                                             CONTINUE
                                                                                  103
                                                                                                      REASTI=REALTI+1.
                                                                                  103
                                                                                  105
                                                                                                      ITIME=ITIME+1
                                                                                                       DELTAT=DELTAT-UPINC
                                                                                  107
                                                                                  111
                                                                                                 IF (ITIME+GT-NTEMP) GO TO 70
                                                                                  114
                                                                                                 IF (DELTAT.GE.DT(ITIME)) GO TO 60
                                                                                  116
                                                                                                 60 TO 120
                                                                                         100 CONTINUE
                                                                                  116
                                                                                                      DELTAT=DELTAT-DOWNING
                                                                                  116
                                                                                                 IF (DELTAT) 110,110,120
                                                                                  120
                                                                                         110 CONTINUE
                                                                                  121
                                                                                                      DELTAT=0.
                                                                                  121
                                                                                                 IF (TIME+LE-REALTI-.5) TIME=REALTI-.75
                                                                                  122
                                                                                  130
                                                                                                 IF (TIME.GT.REALTI-.5) TIME=RFALTI..25
                                                                                              RETURN
                                                                                  135
                                                                                         120 CONTINUE
                                                                                  136
                                                                                                      TPLUS=ABS(ASIN(OELTAT/DT(ITIME))/(2.*PI)-.25)
                                                                                  136
                                                                                                 IF (TIME+LE.REALTI-.5) TPLUS=-TPLUS
                                                                                  151
```

DEL TEMP

RUNW VERSION FEB 74 16.51.06. 23 JUL 75

RUNW VERSION FEB 74 16.51.06. 23 JUL 75

RUNW VERSION FEB 74 16.51.06. 23 JUL 75

156	TIME=REALTI+TPLUS5
161	RETURN
161	130 FORMAT (* END OF TEMPERATURE ARRAY ENCOUNTERED*,/,* DELTAT =*.F6.3
	1,* TIME =*,F6.3)
161	FND.

RUNW VERSION FEB 74 16.51.06. 23 JUL 75

SUBPROGRAM LENGTH 213

FUNCTION ASSIGNMENTS

STATE	MENT	ASS I GNHE	NTS								
20	-	30	30	-	46	40	-	57	50	-	61
60	-	76	70	-	100	80	-	102	90	_	103
160	-	116	110	-	121	120	-	136	130	-	174
EXTER	NALS	AND TAGS									
OUTPT	C -	500100	STOP	-	500200	SIN	-	500300	ASIN	-	500400
END	-	500500									
BLOCK	NAM	ES AND LE	NGTHS								
BLOCK	12-	6600	ì								

VARIABLE ASSIGNMENTS
DOWNINC- 65C01 DT
NTIFLAG- 63C01 PI DOWNINC-NTIFLAG-UPINC -62C01 212 0C01 1TIME -207 REALTI -NTEMP -TPLUS -64C01

START OF CONSTANTS 162

START OF TEMPORARIES 204

START OF INDIRECTS 207

START OF VARIABLES 207

SPACE REQUIRED TO COMPILE -- DELTEMP 33200

DELTEMP

DELTEMP

APPENDIX 4

SAMPLE PROBLEMS

APPENDIX 4. SAMPLE PROBLEMS

T OF PROGRAM-MODEL1

***	*************	*
*	SLAR DIMENSIONS	#
*		*
****		w
	CLAD LENGTH - C AGE AV	
	SLAB LENGTH = 6.000E+01 SLAB WIDTH = 2.400E+01	
	NUMBER OF INCREMENTS= 100	
	FRICTION FACTOR = 2.000F.00 MAX. CRACKWIDTH = 3.000E-02	
	MAX. CRACKWIDTH = 3.000E-02	
NON-	-REINFORCEMENT OPTION	
****	******************************	#
*		4
•	STEEL PROPERTIES	4
	` ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	8 8
*****		_
	TYPE OF LONGITUDINAL REINFORCEMENT IS ULFORMED BARS	
	DEFORMED HARS	
	PERCENT REINFORCEMENT = 0.	
	BAR DIAMETER = 6.250E-01 YIELD STRESS = 6.000E+04	
	ELASTIC MODULUS = 2.900E+07	
	THERMAL COEFFICIENT = 5.000E-06	

# #		ë ë
#		#
***	*****************	Þ
	SLAB THICKNESS = 1.000E+01	
	THERMAL COEFFICIENT = 6.000E-06	
	TOTAL SHRINKAGE = 4.000E-04	
	UNIT WEIGHT CONCRETE= 1.440F+02 CCMPRESSIVE STRENGTH= 4.000F+03	
	(TENS/FLEX)RATIO = 6.666F=01	

TENSILE STRENGTH DATA

NC TENSILE STRENGTH DATA IS INPUT BY USER THE FULLOWING AGE-TENSILE STRENGTH RELATIONSHIP IS USED WHICH IS BASED ON THE RECOMMENDATION GIVEN BY U.S. BUREAU OF RECLAMATION

AGE. TENSILE (DAYS) STRENGTH

0.0 0.0 1.0 86.9 3.0 183.6 5.0 230.9 7.0 257.6 14.0 300.3 21.0 323.0 28.0 333.3

SLAB-BASE FRICTION CHARACTERISTICS
FRY RELATIONSHIP

TYPE OF FRICTION CURVE IS A STRAIGHT LINE

MAXIMUM FRICTION FORCE= 3.000 MCVEMENT AT SLIDING = -.010

PERPERATURE DATA

CURING TEMPERATURE= 75.0

	MINIMUM	DROP IN
DAA	TEMPERATURE	TEMPERATURE
1	55.0	20.0
2	55.0	20.0
3	55.0	20.0
4	55.0	20.0
5	55. 0	20.0
6	55.0	20.0
7	55.0	20.0
8	55.0	20.0
9	55.0	20.0
10	55.0	20.0
11	55.0	20.0
12	55.0	20.0
13	55.0	20.0
14	55.0	20.0
15	55.0	20.0

1.	^	^
16	55.0	20.0
17	55.0	20.0
18	55.0	50.0
19	55.0	50.0
20	55.0	20.0
21	55.0	50.0
55	55.0	20.0
53	55.0	20.0
24	55.0	50.0
25	55.0	50.0
26	55.0	20.0
27	55.0	50.0
28	55.0	20.0

MINIMUM TEMPERATURE EXPECTED AFTER

CONCRETE GAINS FULL STRENGTH = 0 DEGREES FARENHITE

MAXIMUM ALLOWABLE NUMBER OF ITERATIONS= 20
PELATIVE CLOSURE TOLERANCE= 1.0 PERCENT

FOR THE GIVEN INPUT DATA: THE LENGTH OF THE NON-REINFORCED SLAB IS 1.800E+02 INCHES.

T OF PROGRAM-MODEL1

	*
***	**************
*	,
*	SLAR DIMENSIONS
.₩	
***	***************
	SLAB LENGTH = 6.000E.01
	SLAB WIDTH = 2.400E+01
	NUMBER OF INCREMENTS= 100
	FRICTION FACTOR = 2.000E+00 MAX. CRACKWIDTH = 3.000E-02
	- 200005-05
	CARCH ADDING
SIEE	L ESIGN OPTION

4	·
#	STEEL PROPERTIES
ė.	<u>-</u>
***	*****
	TYPE OF LONGITUDINAL PEINFORCEMENT IS
	DEFORMED BARS
	PFRCENT REINFORCEMENT = 0.
	BAR DIAMETER = 6.25 nE-01
	YIELD STRESS = 6.000E+04
	ELASTIC MODULUS = 2.900E+07
	THERMAL COEFFICIENT = 5.000E-06

4	· · · · · · · · · · · · · · · · · · ·
4	CONCRETE PROPERTIES
₩	
***	****************
	SLAB THICKNESS = 1.000E+01
	THERMAL COEFFICIENT = 6.000F-06
	TCTAL SHRINKAGE = 4.000E=04
	UNIT WEIGHT CONCRETE= 1.440E+02
	CCMPRESSIVE STRENGTH= 4.000E.03
	(TENS/FLEX) HATIO = 6.666F-01
	\\LN3/ LEA/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

TENSILE STRENGTH DATA

NO TENSILE STRENGTH DATA IS INPUT BY USER THE FULLOWING AGE-TENSILE STRENGTH RELATIONSHIP IS USED WHICH IS BASED ON THE RECOMMENDATION GIVEN BY U.S. BUREAU OF RECLAMATION

AGE, TENSILE (DAYS) STRENGTH

0.0 0.0 1.0 86.9 3.0 183.6 5.0 230.9 7.0 257.6 14.0 300.3 21.0 323.0 28.0 333.3

SLAB-BASE FRICTION CHARACTERISTICS

F-Y RELATIONSHIP

TYPE OF FRICTION CURVE IS A STRAIGHT LINE MAXIMUM FRICTION FORCE 3.000

-.010

CUDING TEMPERATURE # 75.0

MOVEMENT AT SLIDING =

	MINIMUM	DROP IN
DAY	TEMPERATURE	TEMPERATURE
1	55.0	20.0
2	55.0	20.0
3	55.0	20.0
4	55.0	20.0
5	55.0	20.0
6	55.0	20.0
7	55.0	20.0
8	55.0	20.0
9	55.0	20.0
10	55.0	20.0
11	55.0	20.0
12	55.0	20.0
13	55.0	20.0
14	55.0	20.0
15	55.0	20.0

16	55.0	20.0
17	55.0	20.0
18	55.0	20.0
19	55.0	20.0
20	55.0	20.0
21	55.0	20.0
55	55.0	20.0
23	55.0	20.0
24	55.0	20.0
25	55.0	20.0
26	55.0	20.0
27	55.0	20.0
58	55.0	20.0

MINIMUM TEMPEHATURE EXPECTED AFTER
CONCRETE GAINS FULL STRENGTH = 0 DEGREES FARENHITE

eastar

MAXIMUM ALLOWABLE NUMBER OF ITERATIONS= 20
RELATIVE CLOSURE TOLERANCE= 1.0 PERCENT

WICTH OF FIRST CRACK IS .0087 INCHES AT TIME .4p60 DAYS.

WICTH OF FIRST CRACK IS .0093 INCHES AT TIME .5048 DAYS.

WICTH (F FIRST CRACK IS .0095 INCHES AT TIME .5000 DAYS.

AT THE FND OF 28 DAYS NO SECOND CRACK OCCURS LONGITUDINAL STEEL = 7.173L-01 PERCENT. SPACED = 4.277E+00 INCHES CENTER TO CENTER

T OF PROGRAM-MODEL1

***	***********************
4	
*	SLAB DIMENSIONS
***	*****************
	- · · · · · · · · · · · · · · · · · · ·
	SLAB LENGTH = 6.000E+01
	SLAB WIDTH = 2.400E+01 NUMBER OF INCREMENTS= 100
	FRICTION FACIOR = 2.000E+00
	FRICTION FACIOR = 2.000E+00 MAX. CRACKWIDTH = 3.000F+02
SLAB	ANALYSIS OPTION

	# # # # # # # # # # # # # # # # # # #
*	STEEL PROPERTIES
•	•

	TYPE OF LONGITUDINAL REINFORCEMENT IS
	DEFORMED RARS
	PERCENT REINFORCEMENT = 2.000E-01
	BAR DIAMETER = 6.250E-01
	YIELD STRESS = 6.000E+04
	ELASTIC MODULUS = 2.900E+07
	THERMAL COEFFICIENT = 5.000E-06

*	CONCHETE PROPERTIES
	or total and the trick and the
***	****
	SLAB THICKNESS = 1.000E+01
	THERMAL COEFFICIENT = 6.000F-06
	THERMAL COEFFICIENT = 6.000F-06 TOTAL SHRINKAGE = 4.000F-04
	THERMAL COEFFICIENT = 6.000F-06 TOTAL SHRINKAGE = 4.000F-04 UNIT WEIGHT CONCRETE= 1.440F+02
	THERMAL COEFFICIENT = 6.000F-06 TOTAL SHRINKAGE = 4.000F-04

TENSILE STRENGTH DATA

NO TENSILE STRENGTH DATA IS INPUT BY USER THE FOLLOWING AGE-TENSILE STRENGTH RELATIONSHIP IS USED WHICH IS BASED ON THE RECOMMENDATION GIVEN BY U.S. BUREAU OF RECLAMATION

AGE. TENSILE (DAYS) STRENGTH

0.0 0.0 1.0 86.9 3.0 183.6 5.0 230.9 7.0 257.6 14.0 300.3 21.0 323.0

28.0 333.3

TYPE OF FRICTION CURVE IS A STRAIGHT LINE

MAXIMUM FRICTION FORCE 3.000
MCVEMENT AT SLIDING = -.010

CURING TEMPERATURE= 75.0

DAY	MINIMUM TEMPERATURE	DROP IN TEMPERATURE
1	55.0	20.0
		20.0
5	55.0	20.0
3	55.0	20.0
4	55.0	20.0
5	55.0	20.0
6	55.0	20.0
7	55.0	20.0
8	55.0	20.0
9	55.0	20.0
10	55 • 0	20.0
11	55.0	20.0
12	55.0	20.0
13	55.0	50.0
14	55.0	20.0
15	55.0	20.0

16	5 5 • 0	20.0
17	55.0	20.0
18	55.0	20.0
19	55.0	20.0
50	55.0	20.0
21	55.0	20.0
22	55.0	50.0
53	55.0	20.0
24	55. 0	20.0
25	55.0	20.0
26	55.0	20.0
27	55.0	20.0
28	55.0	20.0

MINIMUM TEMPERATURE EXPECTED AFTER
CONCRETE GAINS FULL STRENGTH = 0 DEGREES FARENHITE

ITERATION AND TOLFRANCE CONTROL #

MAXIMUM ALLOWABLE NUMBER OF ITERATIONS= 20
RELATIVE CLOSURE TOLERANCE= 1.0 PERCENT

STRESS IN THE STEEL 4.883E+04 IS GREATER THAN ITS WORKING STHENGTH AT TIME 3.000

THE AUTHORS

Felipe Vallejo-Rivero was born in Huauchinango, Puebla, Mexico, on January 20, 1950, the son of Rosa Lilia Rivero de Vallejo and Felipe Vallejo Perez. After completing high school at "Colegio Humboldt de Puebla," Puebla, Puebla, Mexico, in 1967, he entered Instituto Tecnologico y de Estudios Superiores de Monterrey, Monterrey, Nuevo Leon, Mexico. He received the degree of Civil Engineer from the Instituto Tecnologico y de Estudios Superiores de Monterrey, Monterrey, Nuevo Leon, Mexico. Felipe Vallejo-Rivero worked as resident Engineer and work-coordinator for a private contractor firm in highway construction in the State of Puebla, Mexico.

He was awarded with a scholarship from the Asociacion Mexicana de Caminos through a special agreement between that agency and the Transportation Department of The University of Texas at Austin.

He attended the Intensive English Program for Foreign Students at The University of Texas at Austin.

Felipe Vallejo-Rivero is presently concerned with graduate studies in The Graduate School of Civil Engineering in The University of Texas at Austin, and also assists in the research of rigid pavement performance at the Center for Highway Research at The University of Texas at Austin.

B. Frank McCullough is an Associate Professor of Civil Engineering at The Unviersity of Texas at Austin. He has strong interests in pavements and pavement design and has developed design methods for continuously reinforced concrete pavement currently used by the State Department of Highways and Public Transportation, U. S. Steel Corporation, and others. He has also developed overlay design methods now being used by the FAA, U. S. Air Force, and FHWA. During nine years with the State Department of

Highways and Public Transportation he was active in a variety of research and design activities. He worked for two years with Materials Research and

Development, Inc., Oakland, California, and for the past eight years for The University of Texas at Austin. He participates in many national committees and is the author of over 100 publications that have appeared nationally.