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PREFACE

A finite element procedure for the analysis of complex bridge structures
which may be idealized as an assemblage of one and two-dimensional elements
has been presented. This procedure accounts for the effects of severely
skewed supports, curvature along the bridge center line and the cross sectional
shape as they influence the structural response,

Program SHELL was used to perform two demonstration analyses, Several
individuals have made contributions in developing and testing this program
over a period of several years, With regard to this project special thanks
are due to John Panak, Hasan Akay, M. R. Abdelraouf and Steve Spoor. In
addition, thanks are due to Nancy L, Pierce and the members of the staff of
the Center for Highway Research for their assistance in producing this

report,
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ABSTRACT

This research focused on the application of finite element computer
programs to complex bridge structures which may be idealized as an assem-
blage of one and two-dimensional elements, Each two-dimensional element
may be either triangular or quadrilateral in shape, They may be arbitrarily
located in space by merely specifying the coordinates at the corners of the
elements., Each element contains a membrane and a bending stiffness. Assem-
blages of these elements are able to effectively represent three-dimensional
structural behavior for a detailed determination of stresses and deflections
for a wide range of highway structures,

Demonstration analyses were performed on two highway bridges under the
action of dead and 1ive loads including prestressing forces. The influence
of severely skewed supports, curvature along the bridge center line, lateral
bracing and transverse diaphragms and concrete placing sequences on the
structural response was studied. In addition, a buckling analysis of an
interior steel girder was made in an effort to gain insight into bracing and
stiffener requirements., A preliminary investigation of the influence of ther-
mal stresses caused by daily variations in temperature was undertaken, The
problem of temperature induced stresses is being addressed in more detail in

a current project,

KEY WORDS: static, buckling, highway bridges, finite element, skewed

supports, computer program.
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SUMMARY

Static and buckling computer programs have been applied to problems of
current practical importance to the Texas Highway Department. Program SHELL
which was used most extensively in the study is applicable to highway
structures which may be idealized as an assemblage of one and two-dimensional
elements, Complex geometries and supporting arrangements may be systematically
treated inasmuch as elements and nodes can be arbitrarily positioned in space,
This program was highly developed at the onset of this work. It was further
modified and extended during the course of the research to enhance its appli-
cation to highway structures.

A similar program, SHELL6 was used for check purposes, It is based on a
six-degree-of-freedom nodal system of displacements while only five are used
for program SHELL. Results from the two programs were in close agreement,
During the latter part of the project, program SHELL was modified to account
for six-degrees-of-freedom. The resulting program (PLS6DOF) reduces the
required input but requires more storage and computation time than program
SHELL. Program MESHPLT was developed to enable the user to check his input
data. Moreover, a CAL-COMP plot routine was added for the purpose of plotting
the finite element mesh., Program BASP was used for the buckling analyses.

Demonstration analyses were made for two highway bridges. The key results
from these analyses are presented in this report, Input fequirements and the
associated output for an example problem are described in detail. The demon-
stration analyses were performed in close coordination with the engineers of
the Bridge Division at the Texas Highway Department to enable continuing
application of program SHELL for structures requiring this general treatment,.
The generality of programs SHELL and PLS6DOF allows one to determine analyti-
cally the structural response of proposed complex geometries for construction;
thus enhancing the implementation of new bridge types which may be both

efficient and pleasing in appearance,

vii



This page replaces an intentionally blank page in the original.
-- CTR Library Digitization Team



IMPLEMENTATION STATEMENT

A finite element computer program (SHELL) for analyzing structures which
may be idealized as an assemblage of one and two-dimensional flat plate ele-
ments has been modified and extended during the course of this research. The
CDC 6600 computer at the University of Texas was used for this purpose., The
final version of program SHELL has also been adapted to the IBM computer
facilities of the Texas Highway Department. 1In particular this report

contains:

a) The Documentation of Program SHELL (Chapter 4)
b) An Example Problem for Input and Output (Appendix 1)
c) A Listing of the IBM Version (Appendix 2)

for the purpose of in-house use by the Texas Highway Department. Also, the
two demonstration analyses which were performed and described herein should
expedite the future use of this program. Programs BASP, MESHPLT and PLS6DOF
which were not adapted to the computer facilities of the Texas Highway
Department are available upon request., Program SHELL6 has been listed in a
previous report,

The program is not restricted to any particular geometric form; thus the
input requirements are quite substantial, Mesh generation options, however,
which are an integral part of the program reduce and simplify the data pre-
paration for a given problem,

All aspects of the demonstration analyses are successful. However,
current research being performed under Research Project 3-5-74-23 clearly
indicates a deficiency in the manner in which the temperature was repre-
sented, In particular the temperature distribution in a bridge slab is
non-uniform over its depth, The ability to account for the non-uniform tem-
perature distribution has recently been incorporated into PLS6DOF and is
currently being evaluated, It is anticipated that the final version of
PLS6DOF will be adapted to the Texas Highway Department computer facilities
at the end of Research Project 3-5-74-23, This will provide the user with a

choice of programs to use depending on the structure being analyzed.
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CHAPTER 1. INTRODUCTION

Nature of the Problem

This report is intended to summarize the results of the research project
"Static and Buckling Analysis of Highway Bridges by Finite Element Procedures,"
which was conducted during the period August 1, 1971, to August 31, 1973, under
the sponsorship of the Texas Highway Department and the Federal Highway
Administration. This project was motivated by the need for a general analysis
procedure which would be applicable for predicting structural response of
complex bridge structures.

Current bridge construction practice includes a variety of cross section
types used in various plan configurations that require the use of a rather
general procedure if a representative and accurate static analysis is to be
made. The shape of the cross section when combined with either variable skew
supports or curvature along the bridge center line is a source of three-
dimensional structural response. In addition this behavior may be accentuated
for bridges with widely spaced steel girders which are laced with complex
diaphragms forming an integral three-dimensional structural assemblage with the
slab and girders. Furthermore, the structural behavior is influenced by
loadings which are eccentric to the bridge center line, thermal stresses caused
by daily variations in temperature and buckling in regions having thin struc-
tural elements subjected predominately to compressive stresses.

The degree of accuracy in computing stresses, displacements, and buckling
characteristics for such structures depends on how accurately the structure
may be idealized as an assemblage of structural elements. To this end, the
use of finite elements having arbitrary shape and position in space is
required, together with the associated necessity that the individual elements
have adequate stiffness properties so that the structural response may be
accurately determined. Fortunately, highly developed finite element analysis
programs were available at the onset of this work, Thus only minimal modifi-

cations and extensions were necessary to address problems of current interest.



Review of Analysis Procedures

Historically highway bridges have been analyzed as continuous beams,
When more detail is required to represent the shape of the c¢ross section and
supporting arrangement, the actual structure is often idealized as a two-
dimensional plate structure or an assemblage of individual plates representing
the slab and supporting girders. These idealizations for a typical slab-
girder cross section are shown in Fig 1. Several analysis procedures are
available for these idealizations, They may be grouped into four categories

according to the structural idealization:

. equivalent flat plate idealization (Fig 1b),
equivalent plate and beam idealization (Fig lc),
folded plate method (Fig 1d), and

. finite element method (Fig 1d).

1
2.
3.
4
The literature on analysis procedures for the four categories is extensive

and will not be reviewed in detail here., However, characteristics of each
category will be discussed and representative analysis procedures will be
cited,

The equivalent flat plate idealization involves "smearing" the variable
cross section properties into an equivalent uniform plate as shown in Fig 1b,
Trangverse and longitudinal bending stiffnesses are assigned empirically and
the uniform plate is analyzed as a two-dimensional plate structure. An
alternative idealization consists of empirical assignment of variable inertias
for the slab, girders, and parapets as shown in Fig lc. The resulting ideali-
zation is then analyzed as a plate with embedded beams in which the geometric
center lines of the equivalent composite beams representing the parapets and
girders are assumed to lie in the plane of the equivalent plate, Thus, both
procedures approximate the eccentrically connected parapets and girders by a
two-dimensional structural system. Analysis procedures for skewed anisotropic
slabs are discussed extensively in Ref 1 by a finite element method and in
Ref 2 by a discrete element technique. The principal shortcoming of either
of the above procedures lies in the difficulty of assigning inertias to the
equivalent system to accurately model the actual behavior. Furthermore, these
analyses only yield bending moments in the equivalent bending structure which

only approximates the actual distributions of longitudinal and transverse



(a). Slab-girder section.

(b). Equivalent flat plate idealization.

I S B

(¢). Equivalent plate and beam idealization.

(d)., Folded plate and finite element idealization,

Fig 1. Typical slab-girder section and various idealizatious.



stresses over the depth of the cross section,

The folded plate method, as described for example in Ref 3, is an effi-
cient and accurate procedure for analyzing structures consisting of inter-
secting plates. TFor example, this procedure would provide a more accurate
analysis of the cross section of Fig la as compared to the equivalent flat
plate and beam idealizations as described above. This procedure necessitates’
a structural idealization as shown in Fig 1d and is able to accurately
determine the distribution of stress over the cross section. Unfortunately,
the folded plate method is based on a number of simplifying assumptions which
limit its application to structures having regular geometries and supports,
and so this method is essentially confined to treating cross sections which
are constant over the entire bridge and to plan configurations which are
rectangular,

The finite element method is now a highly developed procedure for the
analysis of complex structures, Even this procedure introduces approximations
in the manner in which the structure is idealized and the subsequent evaluation
of the stiffness properties of the idealized structure. When planar elements
are used, the structural idealization is similar to the folded plate method
but is generalized by merely subdividing the structure into several elements
or pleces in both the transverse and longitudinal directions. The accuracy
and range of application of a particular procedure must be evaluated in light
of the approximations introduced in the formulation (i.e., element shapes and
their stiffness properties). Representative procedures applicable to a class
of highway structures may be found in Refs 4 and 5.

The subject finite element procedure was an outgrowth of an effort to
analyze curved shell structures (6,7,8,9) as an assemblage of planar tri-
angular and quadrilateral elements. Since the shape of the individual
elements and their orientation in space are arbitrary, they may be assembled
to represent structures with arbitrary geometric forms. This procedure which
has been further refined not only for static analysis (10) but also for

structural'buckling (11,12,13,14) was selected for this work.

Objectives of the Study

The application of static and buckling computer programs to study problems

of current practical importance to the Texas Highway Department was the central



objective of this research. Demonstration analyses were performed on the
structures shown in Figs 2 and 3. Emphasis was placed on accurately modeling
these structures as an assemblage of one and two-dimensional finite elements
in determining the displacements and stresses under the action of dead and
live loads including prestressing forces,

Demonstration analyses were made for the two highway bridges to determine
the applicability of the subject procedure to complex bridge structures,
These studies were performed in close coordination with the engineers of
the Bridge Division of the Texas Highway Department. In addition to gaining
insight into the static and buckling structural response of a special class
of bridge structures, the experience thus gained could enable continuing
application by the Texas Highway Department and others for structures

requiring this general treatment,

The Demonstration Analyses

The gull-winged girder of Fig 2 was analyzed for dead load, prestressing
forces and three live load cases. This structure is a post-tensioned railway
structure continuous over three severely skewed supporting bents. The struc-
ture is slightly curved. A companion analysis was made for a straight
structure with orthogonal supports. The final results showed that the be-
havior of the actual structure was significantly different from the assumed
one, It was concluded that the severely skewed supports were the principal
source of the differing behavior. 1In general, it was found that the skewed
structure had smaller deflections than the straight orthogonally supported
structure,

A second demonstration analysis was performed on a bridge having three
widely spaced girders braced with truss-type diaphragms. It is continuous
over three spans with skewed supports. The plan view and cross section are
shown in Figs 3a and 3b, The structural idealization consisted of two-
dimensional elements for the slab and the webs of the girders while the
flanges of the girders, vertical stiffeners, lateral bracing and transverse
diaphragms were represented by one-dimensional (truss) elements. A total of
584 nodal points and 1629 elements were included in this mesh layout.

This bridge was analyzed for dead load by simplifying the actual placing

sequence to two placings, Also two live load cases were considered, Analyses



(a). Plan view.

Post-Tensioning Ducls

(b)., Section A-A.

Fig 2. Post-tensioned curved bridge.
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Fig 3.

Skewed bridge with widely spaced girders.



were made with and without lateral bracing and transverse diaphragms. Also,
a two-dimensional idealization (14) was employed in an effort to determine
the effect of the skewed supports on the structural response. Analyses
were also made for two assumed sets of temperatures as shown in Fig 4. The
temperature gradient was assumed to be linear over the depth of the cross
section. It was concluded that skewed supports had little influence on the
overall structural response,

Also a buckling analysis of the interior girder (Fig 3c) of the three-
girder bridge was made using the procedure of Ref 14. The buckling analysis
was made for total dead load without regard to placing sequences. Several
refinements in the mesh were used due to the highly localized nature of buck-
ling in the web of the girder. Analyses were made with and without the
longitudinal half-stiffener., Comparison of the results clearly indicated the

importance of this stiffener in increasing the load at which the web buckles.
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CHAPTER 2. METHOD OF ANALYSIS

General

The program which was used most extensively in this research is called
SHELL. As stated earlier, this program was available for the study since it
had already found a wide range of applications for shell structures which
could be idealized as an assemblage of two-dimensional flat plate elements
to approximate the shell surface., These elements may be either triangular or
quadrilateral in shape, They may be arbitrarily located in space by merely
specifying the coordinates at the corners of the element. Each element con-
tains a membrane stiffness and a bending stiffness. These stiffnesses are

uncoupled at the element level.

The Structural Idealization

In order to apply this program to highway bridges, the bridge must first
be idealized as an assemblage of two-dimensional elements. In most cases,
this is done on an intuitive basis. For example, the finite element ideali-
zation of the cross section of the gull-winged structure of Fig 5a is taken
as the mid-surface of the slab and the sloping sides. Thus, the juncture
regions of the slab and the sloping sides are only approximated by the mid-
surface representation. The finite element idealization for the cross section
of the Fig 5b was taken as the mid-surface of the slab and the webs of the
girders., In addition, the stiffness of the flanges was simulated with truss
elements located at the mid-depth of the flanges. 1In this case, the mid-
surface of the slab and the truss do not coincide. Thus the truss elements
were shifted up to the mid-surface of the slab. 1In this case, the cross-
sectional moment of inertia of the finite element idealization differed from
that of the actual cross section by 2.9 percent, While the finite element
idealizations described above are relatively straight-forward, more thought
may have to be given, for example, in the case of the cross section of Figs

6a and b. The difficulty here lies in the region of the slab, sidewalk and

11
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mid surface of
sloping sides

t, mid surface of slab

a. Concrete section.

® Truss elements simulating the fiange

O Shifted position of truss elements

b. Concrete and steel section.

Fig 5. Finite element representations for
bridge cross sections.
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parapet. Two possible idealizations are shown in Fig 6. These kinds of
approximations in the structural idealization could be overcome by using
three-dimensional finite elements with a heavy penalty paid in computation

effort,

General Features of Program SHELL

The theoretical development for program SHELL is available in Ref 7. The
program resulting from that work (7) was extended and documented in Ref 8,
The principal extensions included element pressure load and mesh generation
options for simplification of input data, Additional features were incorpo-

rated into the program and described in Ref 10. These included:
Variable thickness over the individual elements,
. Orthotropic material properties,
Overlay features,

1

2

3

4, Element distributed loads (gravity forces),

5. Iterative procedure for improving the displacement solution, and
6

. Calculation of reactive nodal point forces.

The above versions of SHELL employed a five-degree-of-freedom (DOF) nodal
system of displacements. The five-DOF consisted of three translations but
only two rotations at each node point. While the five-DOF system yields economy
in the solution process as compared to a six-DOF system, judgement is required
in selecting the orientation of the two nodal rotations. This is discussed
in more detail in Chapters 4 and 5.

During the course of this work the following were incorporated into

program SHELL:

7. The capacity of the program was increased to accommodate
800 nodes and 1200 elements,

8. Truss elements were added.

9. An improved membrane element (QM5) was added.

10. A mechanism to account for linear variations in temperature
over the elements mid-surface was added.

11. An option was made available for the calculation of element

principal stresses.
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Finite element idealization

f Finite element idealization

Fig 6. Two possible finite element idealizations
for slab, sidewalk and parapet.
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12, Nodes with zero stiffness in the equilibrium equations were
made acceptable (this was useful in analyzing the placing

sequences for the three-girder bridge).

The CDC version of this program has been adapted to the IBM computer facili-
ties of the Texas Highway Department., A documentation of the program and

a listing of the IBM version are included in this report.

Other Computer Programs Used in the Research

In addition to Program SHELL, four other programs were used during the
course of this research, General characteristics of each are described
below,

Program SHELL6 -- This program employs the same structural idealization

as SHELL. It has an option which enables the use of a refined membrane and
bending element in the analysis. It employs a six~DOF nodal system of dis-
placements, This program was useful in this work in assessing the effects

of the five-DOF of SHELL for the gull-winged girder. This was accomplished by
comparative analyses using both programs. SHELL6 is based on isotropic
material properties and constant element thickness, The theoretical develop-
ment, user's guide and program listing may be found in Ref 15,

Program PLS6DOF -- This program was developed during the course of this

research, 1Tt is identical to SHELL in all respects except that an element
stiffness was added so that all three rotations could be dealt with in the
analysis, thus resulting in a six-DOF nodal system. The chief attribute of
PLS6DOF as compared to SHELL is the fact that a set of rather cumbersome
inputs (those required to define the two rotations in SHELL) have been elimi-
nated. It should be noted that PLS6DOF is currently being extended to include
a more accurate representation of nonlinear temperature gradients through the
element's thickness. This is being accomplished in Research Project 23,
"Temperature Induced Stresses in Highway Bridges by Finite Element Analysis
and Field Tests," TImplementation of the final version of this program will
thus enable the use of either a five or six-DOF nodal system in the analysis.
The manner in which the additional stiffness was specified is described later

in this report.
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Program MESHPLT -- This program was developed to enable the user to

check his input data before performing an analysis with either SHELL or
PLS6DOF. To this end, the portions of these programs which read and print
the data required to describe a finite element idealization were extracted

to form MESHPLT. Moreover, a CAL-COMP plot routine was added for the purpose
of plotting the finite element mesh. By exercising the appropriate option,

a region of the mesh can be isolated and plotted to a larger scale. The
plotting capability is very valuable in insuring that the elements and nodal
coordinates have been correctly specified.

Program BASP -- This program is based on a two-dimensional structural

model which consists of plate elements and one-dimensional beam elements.
It may be used for an in-plane stress analysis as well as an out-of-plane
buckling analysis. The development of this program may be found in Refs 1l
and 14, It was further extended during the course of this work to enable
mesh refinement in regions exhibiting local buckling as well as plotting of
the finite element mesh. It was used in this project to determine the
buckling characteristics of the interior girder of the three-girder bridge

of Fig 3.

Summary of Order of Presentation

General characteristics of the analysis procedures have been described
above., Since the emphasis of this project centered around using existing
programs to address problems of current importance, much of the background
information on the subject programs is contained in the previously cited
references., However, for continuity in the presentation as well as bringing
to light the developments as a result of this project, the finite elements
used in Programs SHELL and PIS6DOF are described in the subsequent
chapter. This is followed by documentation for SHELL and the results from

the demonstration analyses.



CHAPTER 3. THE FINITE ELEMENT IDEALIZATION

General

In addition to the approximations introduced by the structural ideali-
zation that applies to any structural analysis problem, the finite element
method includes another approximation which is due to the manner in which the
stiffness properties of the individual elements are evaluated. Element
stiffnesses are constructed by permitting the element to undergo prescribed
sets of displacement patterns. Inasmuch as the structure is divided into
several elements, the behavior of the entire structure can in general be
closely approximated by using "simple" displacement patterns for each element.
In this context "simple" displacement patterns are generally understood to
mean linear variations of in-plane displacements (for the membrane stiffness)
and cubic variations for out-of-plane displacements (for the bending stiff-
ness). This results in a five-DOF nodal system for the element consisting of
two in-plane translations for the membrane stiffness and one out-of-plane
translation and two in-plane rotations for the bending stiffness,

Refined elements result from using more '"complex'" displacement patterns.
This generally results in an improvement of the element stiffness properties
but additional degrees-of-freedom are introduced. With this approach fewer
elements are required to achieve the desired accuracy. This advantage is
offset when the structural idealization itself governs the number of elements
required to accurately model the geometry and supporting arrangements of a
particular structure. The approach used in developing the subject procedures
was based on "simple' displacement patterns. In this regard, however, care
was exercised in selecting elements with improved stiffness properties while

maintaining a five-DOF nodal system of displacements,

Finite Elements for Program SHELL

This program allows the use of triangular elements or quadrilateral
elements. The quadrilateral element should be used when possible because its

stiffness properties have been shown to be superior to that of the triangle.

17
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The triangle was maintained only because it is sometimes required in the
structural idealization., The membrane stiffness is based on plane stress
while the bending stiffness follows from the Kirchhoff plate bending
assumptions,

The Triangular Element -- The membrane stiffness of the triangle is

derived from linear displacement patterns as shown in Fig 7. Each corner

has two in-plane DOF. This element is called the CST (Constant Strain Tri-
angle), The bending stiffness of the triangle is constructed from cubic
displacement patterns as shown in Fig 8. This element was presented in Ref 16
and is termed the HCT (after Hsieh, Clough, and Tocher). It has 3 DOF at

each corner consisting of a normal translation and two in-plane rotations,
Cubic displacement functions are assigned to each sub-element of the triangle,
thus resulting in 27 generalized coordinates for the triangle. The reduction
to 9 DOF is accomplished by applying internal compatibility constraints
between the sub-elements, This element is fully compatible for plate bending
problems since the normal slopes along the element edges are constrained to
be linear.

The Quadrilateral Element -- Two versions of the quadrilateral element

are contained in SHELL as indicated in Figs 9 and 10. 1In each case its
bending stiffness consists of four HCT's. Thus the bending DOF are three

at each corner node and the central interior node. The membrane stiffness

for the quadrilateral of Fig 9 is a result of an assemblage of four triangles.
The stiffness of each triangle is derived from quadratic displacement func-
tions and by constraining the four external sides of Fig 9 to displace
linearly., The quadratic functions for Triangle 1 and its DOF system are
shown in Fig 11, This element has 12 DOF (two at each corner node and at
each mid-side node) and is termed the LST (Linear Strain Triangle (17)). The
stiffness of Triangle 1 (Figs 9 and 12) results from setting u, = (u1 + u2)/2
and v, o= (v1 + v2)/2 in Fig 11. This eliminates the 2 DOF at the external
mid-side node (i.e., Point 0 in Fig 11), and the resulting triangle has 10
DOF as shown in Fig 12, This element is called the CLST (Constrained Linear
Strain Triangle (6)). For the assembled quadrilateral of Fig 9, there are

33 DOF (15 bending DOF and 18 membrane DOF). The 13 DOF contained in the
interior of the element are eliminated by static condensation; thus the

condensed element has 20 DOF (five at each exterior corner node).
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Fig 7. Constant strain triangle with 6 degrees of freedom.
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Fig 9.

Planar quadrilateral with 33 DOF,
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The membrane stiffness of the quadrilateral of Fig 10 is constructed
from bi-linear polynomials with one additional higher term in each expansion
as shown in Fig 13. These expansions cause each edge to displace linearly.
Since each expansion has five terms, a total of 10 DOF are necessary. They
consist of 2 DOF at each corner and the central interior point. This element
was presented in Ref 18 and was referred to as the QM5. The assembled quad-
rilateral of Fig 10 has 25 DOF. The 5 DOF of the central interior node are
eliminated by static condensation.

The QM5 is very effective in capturing bending modes of deformation that
occur, for example, in the web of I-beams in flexure. Further, its stiffness
properties remain acceptable with increasing aspect ratios (a/b). Aspect
ratios up to 4 to 1 have been found acceptable. On the other hand, its stiff-
ness properties deteriorate when the element geometry differs markedly from
a rectangle, As a general guideline, the quadrilateral of Fig 10 is recom-
mended when the element geometry is mnearly rectangular while the quadrilateral
of Fig 9 should be used for highly skewed quadrilaterals.

The Qut-of-Plane Rotational Stiffness for Program PLS6DOF, The planar

elements previously described have only five-DOF at the element level. In
program SHELL only five-DOF were maintained in describing the stiffness of
the element assemblage. These DOF are described in Secs, 1.2 and 1.4, 1In
order to include, in a systematic way, six~-DOF for the stiffness of the
element assemblage an approach similar to that of Refs 19 and 20 was employed.
This approach yields a rotational DOF normal to the element (about the z-axis)
at each corner as shown in Fig 14; thus giving rise to six-DOF at the element
level, These rotational DOF follow from a fictitious set of rotational
stiffness coefficients which are assigned to the element (19). These rota-
tional stiffness coefficients were constructed such that equilibrium is

preserved in element coordinates and were defined for the triangular element

as:
M, 1 ~0.5 -0.5 0,
Mzz = o EtA 1 -0.5 Gzz
M3 sym 1 8,3
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and for quadrilateral element as:

M, 1.5 -0.5 =-0.5 -0.5 6,1 1
M 1.5 -0.5 -0.5 )
9 22 > = o E tA 22 >
M, 1.5 -0.5 6,4
LMZ4 ‘ _sym 1.5_ ~ 024 ‘

where E 1is the elastic constant
A 1is the area of the element
t 1s the average thickness over the element

o 1s a constant

The effects of varying @ between very wide limits have been shown to be

quite small (20). A value of @ = 0.02 was selected for use in PLS6DOF.
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CHAPTER 4. DOCUMENTATION OF PROGRAM SHELL

Purpose and Programming Information

The purpose of this finite element computer program is to provide a
general capability for the analysis of complex structures which may be
idealized as an assemblage of one and two-dimensional elements. The
analysis includes the determination of nodal displacements, element stress
and moment resultants, element stresses and principal stresses and nodal
point reactions, Arbitrary loadings and support conditions, as well as
variable thickness over the individual elements and orthotropic material
properties, may be accounted for. Temperature effects may be approximated,
In this regard, temperature is linear over the element's mid-surface but
constant over its thickness. This program has been designed for large
capacity; 800 nodes and 1200 elements are possible in the structural ideali-
zation. Automatic mesh generation options reduce and simplify the task of
preparing input data to the program.

The program is written in FORTRAN IV, It is divided into a main program
and 35 subroutines. Overlay features are utilized to save storage. There
are four overlays which are called sequentially by the resident (MAIN) pro-
gram. Six FORTRAN logical units are used for intermediate storage during
the execution of the program, DOUBLE PRECISION is used for all real variables

in the IBM version presented in this report.

Use of the Program

1.1 Mesh Construction, A finite element mesh is obtained by subdividing

the structure into quadrilateral or triangular elements., An example of a
finite element mesh for a typical segment used in segmental bridge construc-
tion is shown in Fig 15. Element nodes lie in the mid-surface of the
individual plates comprising the segment. Although the exact proportions of
the individual elements are arbitrary, care should be taken to insure that

the element proportions do not become overly exaggerated,

27
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)

a. Partial three-dimensional view.

b. Partial finite element idealization.

Fig 15, Box girder bridge.
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The nodal point numbering should run in the direction with the smallest

number of elements as shown in Fig 15 in order to minimize the nodal point

half band width (maximum element nodal difference plus one) of the entire

assemblage, The program is dimensioned for a maximum nodal point half band

width of 20, The element numbering should follow the general path of the
nodal point numbering to insure successful formation of the structural stiff-
ness of the assemblage. Recommended nodal and element numbering for the
typical segment is shown in Fig 15.

When the entire mesh or a portion of it has the same number of sub-
divisions in two directions throughout as shown in Fig 16, a reduction of
the required input is possible. The assumed nodal and element numbering for
a mesh of this type, which is referred to herein as a regular mesh, is illu-
strated in Fig 16, Element nodal point numbers for a regular mesh may be
generated with a single input data card as described in Sec. 2.5. Element
nodal points I, J, K and L are numbered counterclockwise with node I having
the smallest number as illustrated for element 1 in Fig 16 for a regular
mesh, Regular meshes should be used when possible. This simplifies the
required input, thereby reducing possibilities of error in preparing the
input data, Moreover, regular meshes usually result in minimum nodal point

half band width, hence reducing storage and the computation time for a given

problem,

The mesh may require refinement, i.e., reduction in element size, in
regions having steep stress and moment gradients. A regular mesh is graded
by a gradual decrease in element sizes. In addition, a mesh may be graded
by the use of triangular elements. However, this type of gradation results
in "branches" of the nodal numbering sequence which increases the nodal point

half band width; thus limiting the usefulness of this refinement procedure.

1.2 Coordinate Systems, A global coordinate system x, y, z, for example,

as shown in Fig 17, must be chosen for the structure which is to be analyzed.
This choice is arbitrary; however, simplification of input nodal coordinates
usually dictates the proper orientation for this coordinate system.
In addition, another set of coordinates £ > gz and €4 (Fig 17),
called surface coordinates, must be selected. This coordinate system is used
to characterize the two rotations of the five-DOF nodal system (also see Sec. 1.4),

The rotation about 2, is assumed to be zero; thus care should be exercised
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coordinate systems for box girder bridge.
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in selecting its orientation. TFor points where all adjacent elements form a

plane, should be normal to that plane. In this case the five-DOF nodal

g
system dozs not introduce any additional approximations since only five-DOF were
used in the construction of the individual element stiffnesses, On the other
hand for points where all elements at a point are not contained in a single
plane, g3 should be located in the direction of the smaller of the three
rotations to minimize the rotational constraints imposed by the omission of

the third rotation. One possible orientation of the surface coordinates for
the typical segment is shown in Fig 17. 1In this case §3 is directed
vertically at the juncture of the horizontal and sloping plates. For gravity
loads this is a good selection since the actual rotation about the gravity

axis is in all likelihood a small effect. Furthermore, this simplifies the
required input (see Sec., 2,4), As an additional note, if the sloping plates

of Fig 17 were subdivided into more than one element, §3 should be speci-
fied normal to the nodes contained on the interior of the sloping plates.

Local coordinates (X, ¥, and Z) for each triangle are constructed auto-
matically by the program as shown in Fig 18, This coordinate system is
referred to as element coordinates and is defined as follows: The coordinate
X 1is directed along side I-J while the coordinate ¥ 1lies in the plane of
the element and is directed toward node K . The coordinate Z 1is con-
structed normal to the plane of the element to complete a right-handed
system for the coordinates X , ¥ and 7Z .

Another local coordinate system (ﬂl , ﬂz , and ﬂ3) for each quadrilateral
is constructed automatically as shown in Fig 19. This coordinate system is
referred to as m-coordinates and is constructed as follows. The coordinate,

T, » bisects sides I-L and J-K, while ﬁz bisects sides I-J and K-L. Positive
directions for ﬂl and ﬂ2 are shown in Fig 19, Subsequently, ﬂ3 is constructed
normal to the 1%_-n2 plane and then My is taken normal to the ’nl-ﬂ3 plane to
complete the right handed system (nl, Ny ﬂ3).

These two local systems, i.e., element and f-coordinates, must be con-
sidered in specifying orthotropic material orientations and element distributed
loadings, and also, in determining the orientations of stress and moment
resultants which are output by the program,

1.3 Finite Element Types. In addition to a truss element, three types

of finite elements are available in the program, all of which include mem-

brane and bending stiffnesses.
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a, Triangular Element
Membrane stiffness . . . Constant strain triangle (CST)
Bending stiffness ., . . Fully compatible plate bending element
after Hsieh, Clough and Tocher (HCT).

b. Nonplanar Quadrilateral Element
Membrane stiffness . . . An assemblage of four linear strain
triangles with linear displacements
along exterior sides (CLST).
Bending stiffness . . . An assemblage of four bending elements

as per a. above.

c¢c. Planar Quadrilateral Element
Membrane stiffness . . . A refined membrane element (QM5).

Bending stiffness ., . . Same as for nonplanar quadrilateral,
d. One-Dimensional Element . . . Axial stiffness only.

The superior stiffness properties of the quadrilateral versus the tri-
angle motivate the general use of the quadrilateral.

1.4 Nodal Point Degrees of Freedom and Base Coordinates, A five-

degree-of-freedom nodal point displacement system for the assemblage is
utilized, These five degrees of freedom consist of three linear translations

and two rotations, and are defined as follows:

D1 = Translation in either global x-dir, or surface Eq - dir. |
D2 = Translation in either global y-dir, or surface gz-dir.’
D3 = Translation in either global z-dir. or surface 53 -dir, |
D4 = Rotation about £y coordinate. ,

D5 = Rotation about €, coordinate.

It should be noted that all translations are either in global coordinates or
surface coordinates.

Base coordinates are defined as the coordinates in which the five
degrees of freedom at each nodal point of the assemblage are expressed.
From the above description, it is evident that the two options for base
coordinates are:

a, Global coordinates for the three translations and surface

coordinates for the two rotations.
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b. Surface coordinates for both the three translations and the

two rotations,

1.5 Element Distributed Loads. Equivalent nodal forces are automatically

generated for element unit weight and pressure load for each element of the
assemblage, Only translational nodal force components are considered to
result from element weight and pressure load, The element nodal forces are
computed by assuming linear variations of in-plane and out-of-plane dis-
placements over each triangle and each subelement of the quadrilateral, The
nodal forces resulting from both shell weight and pressure are assumed to be
LGAD CASE 1 (see Sec, 2,13); hence, input nodal forces which are designated
as LOAD CASE 1 will be superimposed onto the loads resulting from shell
weight and pressure loads,

Element unit weight is considered uniform over each triangle and each
quadrilateral in the idealization, but may have a different value for each
element., Element weight per surface area is computed by multiplying the
element unit weight by the element thickness at each corner of the triangular
element and each subelement of the quadrilateral, Therefore, a linear varia-
tion in element weight is accounted for in the program. Positive element
weight is assumed to act in the positive global z-direction.

The pressure load is assumed to act normal to each triangular element.
For the quadrilateral, the pressure load is assumed to act normal to each
of the four subelements. Input positive pressure is assumed to act in the
z-direction for the triangle while input positive pressure for the quadri-
lateral is assumed to produce loads in each subelement which act in the
positive M3 direction for a planar quadrilateral. For a nonplanar quadri-
lateral positive pressure on each subelement produces loads which have
positive components in the direction of N3 3 however, in this case, com-
ponents will result in the ﬂl =My plane, since the normal component for
each subelement is not exactly parallel to Ny - The pressure load may vary
linearly over each triangular element and linearly over each subelement of
the quadrilateral since the pressure at the central interior node is taken
as the average of the pressure at the four exterior nodes. See Figs 18 and
19 for triangular and quadrilateral coordinate definition.

Temperature effects are accounted for by computing "equivalent" element
nodal point forces from the specified temperatures. For the triangle the

temperature is assumed linear over its mid-surface and the "equivalent" forces
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are computed using the displacement patterns of the constant strain triangle.
Equivalent forces for each of the four triangles comprising the quadrilateral
are computed in the same way, As previously stated, the temperature is
assumed to be constant over the thickness of the element. Temperature is
specified by node point and thus the corners of elements sharing a common node
have the same temperature, The reference temperature is assumed to be zero,

1.6 Orthotropic Material Properties. The principal elastic axes for

the orthotropic properties are %, ¥, Z, as shown in Figs 18 and 19. The
principal elastic axes may have arbitrary orientation with respect to the
quadrilateral and triangular coordinates as shown in Figs 18 and 19. The
angle, ANG, between the principal elastic axes and element coordinates is
measured from the principal elastic axis, X to T and X for the quadri-
lateral and triangle, respectively. ©Positive angles are indicated in Figs
18 and 19.

The stress-strain relation referred to the principal elastic axes 1is

[ oz [ B, X EV_ /X o] [ % ]
1 212
) cy r El\)Z]./X Ez/X ‘ < €y r
[ rxy | - . Gyo | vxy
where
El’ E2 are principal elastic moduli in the X and ‘§ directions,
respectively;
v12’ Vor = Poisson's ratios (EZ\J12 = E1v21)
X = (1=vypVyp)
G is the shear modulus.

12



37

To simplify the input, the following material constants will be defined

E =:/Eq§;_ mean modulus;
p = E1/E2 modulus ratio;
v =VFJIEGEI mean Poisson's ratio;
Vo2 T [E/(2G12)] -1 fictitious Poisson's ratio associated
with G12.

The in-plane stress-strain relation in the principal elastic axes

becomes
ox vp v . ex
0; = £ 2 v /ve ) ey
Ly Ly
TXY : 2(Tvgy,) Yxy

The moment curvature relation is obtained by multiplying this matrix by
t3/12 , where t is the plate thickness, and by associating a factor of
two with the twisting curvature.

If the material is isotropic, E1 = E2 =E , Vig = Vop = vV =y
and p = 1.0. For the isotropic case, ANG (Figs 18 and 19) is arbitrary

and should be input as zero or simply left blank.



38

Preparation of Input Data

Abbreviations: A
I

2,1 Title Card (A) -

2.2 Control Card

Cols. 1- 4
5- 8

17-20
21-24

25-28

29-32
33-36

37-40

(1)
(D)
(1)
(1)

(D)
(D)

(D)

(1)
(D

(1)

alphanumeric field.

integer value (must be packed to
the right of the field).
floating point number (must be

punched with a decimal).

Alphanumeric information for problem identificationm,

NUMEL
NUPTS
NUBPTS

IBANDP

NDFRE =
IFLAG

NUMAT =

ISHEAR
NRED

IREACT

NOTE:

Number of elements (2000 max)
Number of nodal points (800 max)
Number of points with displacement
boundary conditions (100 max)

Nodal point half band width: Max,

element nodal difference +1 (20 max)
Nodal point degrees of freedom = 5
Base coordinates for translatioms;
If 0, translations are in global
coordinates.

If 1, translations are in surface
coordinates.

Number of different material types
(30 max)

This field must be left blank.
Number of cycles for correcting
displacement solution;

If 0, no correction is made.
Specifies if the nodal forces and
reactions are to be printed;

If = 0, reactions are suppressed

If > 0, reactions are printed
IREACT MUST BE INPUT AS ZERO IF MORE
THAN ONE LOAD CASE IS SPECIFIED.
(see Sec., 2.13)
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41-44 (1) LPROB Specifies 1f another problem is to
follow:

If 0, this is the last problem,
If 1, another problem follows.

45-48 (I) TIGEN IGEN, which may have values of
0,1,2,3 or 4, governs the level of
output desired, for example,
when IGEN = 0, maximum amount of
output is obtained,
when IGEN = 4, minimum amount of
output is obtained,

49-52 (1) 1ISIG Specifies whether element stress
and moment resultants or element
stresses and principal stresses are
to be printed, Refer to Appendix 1
for definitions of the quantities,
If 0 stress and moment resultants
are printed.

If 1 stresses and principal stresses

are printed,

2.3 Nodal Coordimate Cards. One card per nodal point, except when mesh

generation options are used., These cards need not be input in numerical
sequence; however, the node having the largest number must be input
last.
Cols. 1- 4 (I) Nodal point number,

18-24 (F) Global x-coordinate.

25-31 (F) Global y-coordinate.

32-38 (F) Global z~coordinate,

For generation options see Nodal Coordinate Generation (Secs. 3.1-3.6),

2.4 Surface Coordinate Direction Cosine Cards, The surface coordinate

direction cosines as described in Sec, 1.2 are specified by this set of cards,
From the input cosines described below, Eq is automatically constructed by
a cross-product of 3} and Ez , and Eqp is then determined by the cross-

product of Eq and gl to insure a right-handed orthogonal system,
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When none of the generation options of Secs, 3.1-3,6 are used, one card
per nodal point is required. When the options of Secs., 3.1-3.6 are exercised,
each point for which coordinates are generated will also be assigned direction
cosines, If only some of the nodes are generated as per Secs. 3.1-3.6, the
direction cosines must be input for all other nodes, These cards need not be
input in numerical sequence. A blank card must be used to terminate this

data set,

Cols. 1- 4 (I) Nodal point number I
5- 8 (I) LIM
9-12 (I) MOD
18-24 (F) Component in global x-dir, of unit vector gl *

25-31 (F) Component in global y-dir, of unit vector gl
32-38 (F) Component in global z-dir. of unit vector gl
39-45 (F) Component in global x-dir, of unit vector EZ *k
46-52 (F) Component in global y-dir. of unit vector 52

53-59 (F) Component in global z-dir. of unit vector Ez
*If Cols, 18-38 are left blank, input cosines for g, are suppressed,
**1f Cols. 39-59 are left blank, input cosines for Ez are suppressed,
The suppression option allows one to redefine one set of previously
established cosines (either from input or generation options) without
changing the other at a given point,

If LIM> I and MOD » 0 , then the direction cosines of points
I +MOD, I + 2%MOD, ... ., LIM

will be set equal to these specified for point I.

2.5 FElement Nodal Point Number Cards, One card per element, except

when mesh-generation options are used, These cards need not be input in numeri-

cal sequence; however, the element having the largest number must be input last.

Cols, 1- 4 (I) Element Number N
5- 8 (I) Element nodal point I
9-12 (I) Element nodal point J
*%13-16 (I) Element nodal point K
%17-20 (I) Element nodal point L

21-24 (1) ©NINCV = number of elements in direction of nodal

numbering, see Fig 16.
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25-28 (I) NINCH = number of layers with similar element
nodal numbering, see Fig 16.

*A triangular element is assumed if Cols, 17-20 are left blank,

*%A truss element is assumed if Cols., 13-20 are left blank.

If NINCV>0 and NINCH > 0 , a regular mesh will be constructed for
the quadrilateral elements N through N+ NINCVANINCH -1 , as shown in
Fig 16. Care should be taken to order the node numbers I, J, K, and L for
the N'th element as shown in Fig 16,

See Secs. 4,1-4,2 for additional generation options.

2.6 Element Material Table, One card per element type must be input,

Material properties are assumed constant over each individual element. See

Sec. 1,6 for definition of terms used below.

Cols, 1- 4 (I) Element material type
11-20 (F) Mean modulus = /EIE;
21-30 (F) Modulus ratio = E1/E2
31-40 (F) Mean Poisson's ratio i//GI;G;—
41-50 (F) Fictitious Poisson's ratio = 1;/?;?;/(2G124 -1
51-60 (F) Field must be left blank
61-70 (F) Field must be left blank

71-80 (F) Thermal coefficient of expansion

2,7 Element Property Cards, One card per element, except when mesh

generation options are used. These cards need not be input in numerical

sequence; however, the element having the largest number must be input last.

Cols. 1- 4 (I) Element number N

5- 8 (I) Element material type (see Sec. 2.6)

9-12 (I) LIM

13-16 (I) MOD

17-20 (1) Specifies type of membrane stiffness for the
quadrilateral,
If 0 , four CLST's are used (see Sec. 1,3b),
If 1 , a QM5 is used (see Sec. 1,3c)

21-30 (F) Thickness at node T (or cross-sectional area

for a truss member),.

31-40 (F) Thickness at node J
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41-50 (F) Thickness at node K

51-60 (F) Thickness at node L

61-70 (F) ANG = Angle in degrees between principal elastic
axis and element coordinates; see Figs 18
and 19,

If LIM>N and MOD » 0 , then the element type, thicknesses and
ANG of elements

N+MOD, N+ 22M0D, .,.., LIM

will be set equal to those specified for element N .

2.8 Element Digtributed Load Cards. One card per element, except when

mesh generation options are used, Loads acting on all elements must be
gpecified (elements with zero loads mugt be included). These cards need
not be input in numerical sequence; however, the element having the largest

number must be input last,

Cols. 1- 4 (I) Element number N
5- 8 (I) LIM
9-12 (I) MOD
21-30 (F) Element unit weight (positive in global z-direction.)
31-40 (F) Pressure at node I
41-50 (F) Pressure at node J Note: See Sec. 1.5 for
51-60 (F) ©Pressure at node K sign conventions

61-70 (F) Pressure at node L

If LIM >N and MOD » 0 , then the element unit weight and pressures

of elements
N+MOD , N+ 2%MOD, ...., LIM

will be set equal to those specified for element N .

2.9 ¥Nodal Temperature Cards.

Cols. 1- 4 (I) Nodal point number I
5- 8 (I) LIM
9-12 (I) MOD
16-25 (F) Temperature at Node I



If LIM>1I

I+ MOD , I + 2%MOD,

e ¢ o o 9

will be set equal to those specified for Node I.

LIM

and MOD - 0 , then the temperature at points
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Temperatures need not be

input in numerical sequence but they must be specified for all nodes. A

blank card must be used to terminate this data set,

2.10 Boundary Condition Cards.

One card per nodal point having a

specified displacement component (whether zero or nonzero), except when mesh

generation options are used.

numerical sequence,

Cols. 1-

4
7
8
9

10

11
13-16
17-20
21-30
31-40
41-50
51-60
61-70

(1)
(1)
(D
(I)
(1)
(1)
(1)
(1)
(F)
(F)
(F)
(F)
(F)

Nodal

1
1
1
1
1

for
for
for
for

for

Boundary

condition

The five degrees of freedom

point number I

specified
specified
specified
specified

specified

LIM

MOD

Specified
Specified
Specified
Specified
Specified

*Specified value may

If LIM>1I and MOD > O ,

I+ MOD , I + 2%MOD,

value
value
value
value

value

value for
value for
value for
value for

value for

for D1*
for D2
for D3
for D4
for D5

be nonzero.

then values for points

e o 9

cards need not be input in

are ordered as follows:

D1;
D2;
D3;
D4
D5;

o O © O ©

LIM

will be set equal to those specified for element I.

2.11 Control Card for Elastic Supports.

Cols.

2.12 Spring Constant Cards.

1- 4 (1)

otherwise
otherwise
otherwise
otherwise

otherwise

Number of points with elastic supports (Max. 50)

If the number of points with elastic

springs is specified as zero no cards are required for this set,

need not be input in numerical sequence.

These cards



Cols. 1- 4 (I) Nodal point number I

5- 8 (I) LIM

9-12 (I) MOD

21-30 (F) Spring constant for D1 displacement
31-40 (F) Spring constant for D2 displacement
41-50 (F) Spring constant for D3 displacement
51-60 (F) Spring constant for D4 rotation
61-70 (F) Spring constant for D5 rotation

If LIM>1 and MOD > O , then values for points
I+MOD, I+ 2*MOD, . ..., LIM

will be set equal to those specified for node I. This set is terminated
when the number of points specified in Sec 2.11 have been input.

2,13 Control Card for Nodal Point Toads A maximum of three independent

load cases for a single problem may be specified on this card. A blank card

must follow this card.

Cols. 1- 4 (I) Number of independent load cases (must be at least 1)
5- 8 (I) Number of loaded nodes for load case 1
9-12 (I) Number of loaded nodes for load case 2
13-16 (I) Number of loaded nodes for load case 3

Joints with all five applied force components equal to zero need not be
included as a loaded joint. Nodal forces are input as described below.

2.14 Nodal Point Toad Cards. Input nodal forces correspond in an

energy sense to the nodal point displacement components, 1i.e., PiDi ,
i = 1,5 . The number of input cards for each load case must equal the
number specified in Sec. 2.13 above, except when mesh generation options

are used, The input format for each load case is as follows:

Cols, 1- 4 (I) Nodal point number I

5- 8 (I) LIM

9-12 (I) MoD

21-30 (F) Value of Pl which corresponds to Dl
31-40 (F) Value of P2 which corresponds to D2
41-50 (F) Value of P3 which corresponds to D3
51-60 (F) Value of P4 which corresponds to D4
61-70 (F) Value of P5 which corresponds to D5



These cards need not be input in numerical sequence, but all cards

for each load case must be grouped together, in the sequence:
1, 2, 3.

If LIM>1I and MOD > 0 , then loads for points;
I +MOD , I+ 2¥MOD, ,...,, LIM

will be set equal to those specified for point I,

Load case

45
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Nodal Coordinate Generation

The previous section provided a general input format by which all
the information which is necessary to completely define a given problem
is input via data cards. The generation options in Secs, 3,1-3.6 and
Secs. 4,1-4,2 are intended to simplify and to reduce the amount of that
required input.

Six types of automatic generation options are available. The first
four types treat surface generations which occur frequently in
structures; straight lines, circular arcs, parabolas and ellipses. Nodal
numbering along each generator must be in increasing order and the
difference between adjacent nodes must be constant over the entire
generator. The fifth and sixth types of generation are useful when
the coordinates of a set of points may, by comstant increments (in
nodal numbering and global coordinates), be defined from a previous
set of points which have been input.

If any of these six types of generation are used, then two sets
of direction cosines are generated. The procedure for the generation of
these direction cosines is described below for each type of coordinate
generation. In many cases, these generated direction cosines will
correspond with the chosen surface coordinates 3 and E, , thereby
eliminating the need of inputting these direction cosines; in other cases,
the generated direction cosines will have to be replaced by manually com-~

puted values.
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3.1 Straight Line (Fig 20).

Cols. 1- 4 (I) Node I of straight line
5« 8 (I) Node J of straight line

]

9-12 (I) Increment between successive nodes = K
16 (I) =1
18~24 (F) Global x~coordinate of point
25-31 (F) Global y-coordinate of point
32-38 (F) Global z-coordinate of point
39-45 (F) Global x-coordinate of point
46-52 (F) Global y-coordinate of point
53-59 (F) Global z-coordinate of point

L R AT T . . I |

The straight line is subdivided into (J-I)/K equal parts and the inter-
mediate global nodal coordinates are computed.
The two sets of direction cosines are computed by
Assuming gl is in the direction from point I to point J.
Assuming §2 lies in the x-y plane and is normal to the line
obtained by projecting line I-J onto the x-y plane, i.e., §2 =y

(Fig 20), and by ensuring a right-~handed system for X, y, Z.

For example, if the numbering had required a reversed direction for x and
hence gl , then y and £, would be reversed in order to maintain a
right~handed system without changing the direction of Eq - In the case
where gl is parallel to =z (either direction), then Eoy is assumed to

be in the same direction as the global y-coordinate.
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P

y=¢,
X = PROJECTION
— OF X INTO
J x-y PLANE
1
Zan »x
/ X =¢,
J-1 J
I1+2
I+1
I

EQUAL INCREMENTS ALONG STRAIGHT LINE

Fig 20. Straight line.

m = -MID-POINT OF CIRCULAR ARC

I+

I
EQUAL INCREMENTS ALONG CURVE

Fig 21. Circular arc,



3,2 Circular Arc (Fig 21).

Cols, 1- 4 (I) Node I of circular arc

5- 8 (I) Node J of circular arc

9-12 (I) Increment between successive nodes = K
16 (I) =2

18-24 (F) Global x-coordinate of point

25-31 (F) Global y-coordinate of point

32-38 (F) Global z-coordinate of point

39-45 (F) Global x-coordinate of point

53-59 (F) Global z-coordinate of point
60-66 (F) Global x-coordinate of point
67-73 (F) Global y-coordinate of point

I
I
I
m
46-52 (F) Global y-coordinate of point m
m
J
J
74-80 (F) Global z-coordinate of point J

The circular arc is subdivided into (J-I)/K parts of equal arc length

and the intermediate global nodal coordinates are computed. The local

49

right-handed Cartesian coordinate system X, ¥y, Z is constructed as follows:

X is positive from I to J.

Zz is positive from n, a point equidistant from I and J, to
point m, the midpoint of the circular arc.

y is established by a cross-product of X and z (+inward as

shown in Fig 21).

Surface coordinate direction cosines are computed by assuming

d.

3 lies in the plane x-Z and is tangent to the circular arc at
each node. It is directed along the arc going from I to J.

E, 1is assumed to be in the positive direction of §. Note that
if the nodal point numbers had increased from right to left in

Fig 21, y, and hence €2 , would be positive outward.

The circular arc may have an arbitrary orientation with respect to

the global coordinates.
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3.3 Parabola (Fig 22),

Cols.

1- 4 (I) Node 1 of parabola

5~ 8 (I) Node J of parabola

9-12 (I) Increment between successive nodes = K

16 (I) =3

18-24 (F) Global x-coordinate of origin point 0
25-31 (F) Global y-coordinate of origin point 0O
32-38 (F) Global z-coordinate of origin point 0O
39-45 (F) Local X-coordinate of point I
46-52 (F) Local X-coordinate of point J
53-59 (F) Largest absolute value of Ei and Z,

60-66 (F) Counterclockwise angle  (in degrees) from x to

The horizontal distance between I and J is subdivided into (J-I)/K

equal intervals and the intermediate global nodal coordinates are com-

puted.

The local coordinate system X, ¥, and z is constructed as follows:

X

[N

c. 'y

Xx-

is positive in the direction from I to J
is parallel and in the same direction as z
forms a counterclockwise angle of w + 90° from the global

axis

Surface coordinate direction cosines are computed by assuming

d. g

lies in the plane %X-z and 1is tangent to the parabola at each

node. It is directed along the parabola going from I to J

e. &,

is parallel to and in the same direction as y

il
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o - 5
I+l
RN
RESTRICTION:Z PARALLEL

TO z.

e

EQUAL INCREMENTS ALONG X

Fig 22, Parabola

B i

EQUAL INCREMENTS ALONG CURVE

Fig 23. Ellipse.
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point 0
point 0
point 0

i

3,4 Ellipse (Fig 23).
Cols, 1- 4 (I) Node I of ellipse
5- 8 (I) Node J of ellipse
9-12 (I) Increment between successive nodes = K
16 (I) =4
18-24 (F) Global x-coordinate of origin
25-31 (F) Global y-coordinate of origin
32-38 (F) Global z-coordinate of origin
39-45 (F) Local x-coordinate of point I
46-52 (F) Local x-coordinate of point J
53-59 (F) Distance, a , from 0 to ellipse along
60-66 (F) Distance, b , from 0 to ellipse along %
67-73 (F) Counterclockwise angle from x

to ¥ in degrees

The ellipse arc length between nodes I and J is subdivided into

(J-1)/X equal arc lengths and the intermediate global nodal coordinates

are computed.

The local coordinate system %X, ¥, and Z is constructed as follows:

x is positive in the direction from I to J

z is parallel and in the same direction as z

¢, ¥ forms a counterclockwise angle of w + 90° from the global

x=-axis.

Surface coordinate direction cosines are computed by assuming

d. 51 lies in the plane %-% and is tangent to the ellipse at each

node. It is directed along the parabola going from I to J

e. 52 is parallel to and in the same direction zs 5.

Restriction: % must be parallel to the global z axis and angle I0J<180°
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3.5 Incremental Generation -- TYPE 1,

Cols. 1- 4 (I) Node I of generator
5- 8 (I) Node J of generator
9-12 (I) -MOD, where MOD =Nodal difference of adjacent generators
13-16 (I) -LIM, where LIM =Number of new lines to be generated
18-24 (F) XINC
25-31 (F) YINC
32-38 (F) ZINC

Increment in x-dir. from old to new generator

Increment in y-dir, from old to new generator

Increment in z-dir. from old to new generator

This card causes (J-I)*LIM points to be generated as follows:

Re = Xy _yyopXINCKL (€r = g mop
Ve = Yoy tYINCHL AND (E)x = (&)x_mop
Zy = Zy_yoptZINCHL (€3)x = (83)k_mop

where L =1, 1, LIM and K = (I+MOD*(L-1)), 1, (J+MOD*(L-1)).

This option assumes that XINC, YINC, and ZINC are constant for all
generators considered. Also nodal numbering as for a regular mesh is
assumed as shown in Fig 24, Assuming that Line 1 (Fig 24) had been
generated, then the following would generate the remaining Lines 2-6:

I=5,J=8, MOD =4, LIM = 5 and

= - = - = -7
XINC X5 Xl , YINC Y5 Y1 , ZINC 25 1

3.6 Incremental Generation -- TYPE 2,

Cols. 1- 4 (I) Node I of generator
5- 8 (I) Node J of generator
9-12 (I) MOD (same as for TYPE 1)
13-16 (I) -LIM, where LIM =Number of new lines to be generated
18-24 (F) XINC
25-31 (F) YINC same as for TYPE 1
32-38 (F) ZINC

This card causes ((J-I)/MOD)*MOD*LIM points to be generated as follows:

X = X, +XINC*L €k = gy
Y g = Y HYINCHL and (€ = (8¢ 1
Zg= Zp_tZINCHL (Eyk = (1

where L =1, 1, LIM and K = (I+L-1), MOD, (J+L-1)
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Line | Line 2 Line 3 Line 4 Line 5 Line 6
’1' [ [ /
q 8 [ 16 20 24
3 7 ] 15 19 23
2 6 10 14 18 22
2@ 5 ) 13 17 21 X
Fig 24, Sample for nodal point generation.
{
—»Line 4
q 8 12 16 20 24
3 7 T 15 9 23 > Line 3
2 6 10 14 18 - Line 2
7 {] 5 9 13 7 21 X Line |

Fig 25.

Sample for nodal point generation.



As for TYPE 1 a regular mesh is assumed as shown in Fig 25; however,
TYPE 2 generates lines opposite to the direction of nodal numbering.
Assuming that Line 1 (Fig 25) had been generated, then the following would

generate the remaining lines 2-4:

I=2,J=22, MD =4, LIM = 3

55



56

Element Nodal Point Number Generation

4,1 TYPE 1. If M element cards are omitted with WNINCV =NINCH =0
in Sec., 2.5, these missing elements will be generated by increasing the
nodal numbers I, J, K, L of each of the preceding elements by 1.

4,2 TYPE 2. If on the card for element N  (Sec. 2.5) we specify

Cols. 21-24 (I) ~MOD
25-28 (I) NLAY
29-32 (I) LASTEL

then elements N-+NLAY , N+ 2*NLAY, ., ..., LASTEL will be constructed by
adding MOD to the nodal numbers of each preceding element. If LASTEL
equals NUMEL , the input of the element nodal point numbers will be

terminated,



CHAPTER 5., THE DEMONSTRATION ANALYSES

The Gull-Winged Girder

Summary. The post-tensioned railway bridge which was considered has a
cross section as shown in Fig 26a with a constant thickness of 3.0 feet., 1In
plan, the bridge center-line follows a horizontal circular curve with a
radius of 616.4 feet, The bridge is continuous over two spans with two over-
hanging ends as shown in Fig 26b., The center line span length between
supports of the left span was 93.565 feet while that of the right span was
78.879 feet. The bridge was assumed to be isotropic with a Young's modulus
of 0.6192 x 106 ksf and a Poisson's ratio of 0,15,

An analysis was made using program SHELL with the finite element ideali-
zation shown in Fig 27. 1In this idealization eight divisions were used
transversely and 29 divisions longitudinally. The longitudinal divisions
are in the form of two equal divisions for the left end overhang, 14 equal
divisions for the left span, 12 equal divisions for the right span, and one
division for the right end overhang. The transverse dividing lines are
parallel to the support lines in the slab part of the bridge while in the
wings these lines lie in radial planes. Thus skewed quadrilateral elements
are used in the slab part while rectangular elements were used in the two
wings.

In addition, analyses were made using program SHELL6 (15) and PLS6DOF
utilizing the same mesh as described above. These solutions were in agree-
ment within expected small differences, The differences were primarily due
to the difference in the membrane element stiffness evaluations in the
programs as well as the nodal point degrees of freedom considered (five-DOF for
SHELL and six-DOF for SHELL6 and PIS6DOF),

Another analysis was made, using program SHELL6, in which the elastic
properties of the supports were taken into consideration. This analysis was
carried out for the‘case of dead load plus prestressing forces and it gave
considerable change in the deflections compared to those with rigid supports

while the stresses were not significantly changed. This happened because the
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Fig 26,

Gull wing bridge.
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change in the deflections is in the form of approximately uniform downward
settlement of the supports.

The effects of skewed supports and curvature were evaluated by analyzing
a straight bridge (with orthogonal supports) having the same cross-sectional
dimensions and span lengths as the bridge in question. The straight bridge
was analyzed by using SHELL and SHELL6 as well as a straight beam-column
analysis using program BMCOL 51 (21). Comparisons of deflections from the
three analyses of the straight bridge were very favorable,

Coordinate Systems and Finite Elements. The global coordinates x , ¥y

and z which were used in the analysis are shown in Fig 27a. Nodal point
coordinates and the computed nodal point displacements are expressed in
global coordinates. 1In the analysis using program SHELL, the surface coordi-

nates gy and Eq were selected to be in the x, y and z

Eq »
directiois respectively. The constraints of the five-DOF of SHELL for this
structure were shown to be small, The QM5 was used for the membrane stiff-
ness of the quadrilaterals comprising the wings while four CLST's were
employed for the skewed quadrilaterals of the slab, All fifteen points

along the skewed supports were supported in the vertical direction. In order
to make the structure stationary in the horizontal plane, which is a require-
ment of the analysis procedure, the horizontal displacements (in the x- and
y-directions) at the five points along the central support were set to zero.

All other points were allowed to displace In the x-y plane.

The Applied Loads. The bridge was subjected to three types of loads:

(a) distributed loads, (b) concentrated loads and (c) prestressing forces.

(a) The distributed loads consist of the weight of the concrete
and the weight of the track and ballast, The weight of the
concrete (150 1bs/ft3) was input as element unit weight,
This value was input with a negative sign, since it is
acting in the opposite direction of the global z-axis
(see Sec, 1.5). The weight of the track and ballast was
assumed to be uniformly distributed on the horizontal
portion of the finite element idealization. The total

weight of the ballast and track is listed below:

Ballast weight = 2,262 k/ft
Track weight = 0.200 Kk/ft
Total weight = 2.462 k/ft



(b)

(c)
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thus producing an equivalent distributed load of

2.462/16.82 = 0,1464 k/ft2 . This weight was input as

a pressure load with a negative sign since it is in the
opposite direction of T3 (see Sec. 1.5).

The concentrated loads consist of the train loads or live
loads. Three positions of the train were considered.

These positions were determined by using a BMCOL 51 analysis

(21) to give the following maximum effects.

i - The maximum positive bending moment in the
long span. This position is as shown in
Fig 28a and is denoted live load case #1.
ii - The maximum positive bending moment in the
short span. This is live load case #2 and
it is as shown in Fig 28b.
iii - The maximum negative bending moment. This
is live load case #3 and it is as shown in

Fig 28c.

For each of the load cases, the wheel loads were replaced
by proportional loads (based on tributary areas) acting at
the nodal points. These were calculated by hand and input
as described in Sec. 2.13 and 2,14.

The prestressing forces were also converted to equivalent
nodal forces by hand calculations. The profile of the
cable used in this structure was controlled by the varia-
tion of the external moment as computed from the effect of
dead load and live loads. The analysis of the prestressing
force was accomplished by replacing the forces along the
cable by equivalent uniform loads. Forces after losses
were used in the analysis. An equivalent uniform load is
applied to the structure in those regions where the cable
has non-zero curvature. The total force for a typical

region is given by

W

2F Sin 92- < o

- ¥
and w o= L
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where W = total force,
w = equivalent uniform distributed load,
F = average prestressing force after losses,
L = 1length being considered, and
8 = change of slope of cable in length L .

Since friction loss and other losses are taken into account the pre-
stressing force will not be constant but will vary along the length of the

tendon. Thus to simplify the analysis an average force, F after losses

>
was used in the above equation. The prestressing forces were applied as
concentrated forces at the adjacent nodal points by proportion., A portion of
the side-view and a cross section of the idealized structure are shown in Fig
30. Equivalent vertical forces, Pl , at each wing are computed first. For

example, the force acting at point a (Fig 30b) is

P1 = WX 1ij
where P1 = vertical force
1ij = half of the length between nodes i and

j , for this case, 102 and 120 respectively

Since the wings are inclined, the force due to prestressing must there-
fore lie in the direction of the force P as shown in Fig 30b. The slope
of both wings is 1:3; therefore a horizontal force P, equal to one-third
of the vertical force, Pl , also exists at point a . These two forces are
then proportioned to nodal points 110 and 111.

This structure is curved in plan; therefore, the prestressing force

produces uniform radial force. This force can be computed as

H
P TR
where H = average of horizontal forces at each end,
R = radius of curvature,
p = uniform radial force,

After the component p was computed, the above procedure was applied to
obtain the input nodal forces. The forces thus obtained are in the radial
direction which necessitates a transformation into the global x- and y-

directions for the computer input. In addition to the prestressing forces



100

101

102

C.G.S. Line
109 8 /-” 127

110 19 -2

d.

i 120 129

Partial left wing elevation.

nr

'T Heé
!
9-

Fig 30.

b. Cross section .

Finite element idealization.

65



66

described above, nodal forces were used at the ends of the bridge to simulate
the end effects of the tendonms.

The load Cases, Five load cases were considered for analysis as follows:

1. Dead load. This load case cannot exist by itself, but
was used in the early studies for the purpose of com-
parison of results of the different computer solutions.

2. Dead load plus prestressing forces.

3. Dead load plus prestressing forces plus live load case #1
(with the train mainly on the long span).

4, Dead load plus prestressing forces plus live load case #2
(with the train mainly on the short span).

5. Dead load plus prestressing forces plus live load case #3

(with the train loads covering the two spans).

Summary of the Results. The results of the analyses for the five load

cases listed above are summarized as follows:

Load Case 1., The finite element solutions by program SHELL6 and program
SHELL were very close. Program SHELL yielded a slightly stiffer behavior
(with a maximum difference of about 2.67% in the deflections). The deflections
along the center line of the bridge as computed by the finite element solu-
tions are very close to the beam-column solution (for the straight bridge)
in the short span while considerable difference (about 21%) occurs in the
long span. Also considerable twisting deformations are indicated in the two
spans by the finite element solutions. It was felt that these differences
are due to the stiffening effect of the skewed supports and the effect of
the curvature. This was confirmed by the results of the finite element
solutions of the straight bridge which were very close to the beam-column
analysis,

Load Case 2, (D.L. + P/S). The two finite element solutions for this

case were quite close and yielded a maximum upward deflection of 0.28 inch
in the long span (at left wing and slab juncture) and 0.17 inch upward in the
short span (at right wing and slab juncture). Considerable torsional defor-
mations, similar to those under dead load, are apparent in both spans.

The maximum compressive stress under this loading condition is located

in the longitudinal direction at location (A) as shown in Fig 3la and equals



(c)
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1430 psi. In the longitudinal direction a maximum of 167 psi tensile stress
(location (B), Fig 3la) was computed at the top of the right wing in the
short span, In the transverse direction tensile stresses of considerable
magnitude were computed at and near the supports, The maximum tensile stress
occurs at the middle support and equals 306 psi (principal stress) (location
(C), Fig 3la).

Load Case 3, (D.L. + P/S + L.L. #1). The two finite element solutions

gave small downward deflections in the long span (where the L.L, exists) and
upward deflections in the short span with a maximum value of 0.22 inch along
the right wing. Here some twisting deformations were evident.

The maximum compressive stress for this case was 1010 psi and occurred
at location (A), Fig 31b. Considerable tensile stresses result at the same
locations as for load case 2. At the top of the right wing in the short
span, the longitudinal tensile stress reached a maximum value of 390 psi and
at the middle support the maximum tensile stress was 349 psi (principal
stress)., The variations along the bridge of the longitudinal stresses at
the top of the wings and at the centerline of the bridge for this case are
as shown in Fig 32,

Load Case 4., (D.L. + P/S + L.L. #2). This load case produced the

largest deflection (upward) in the long span. The maximum value of deflection
was 0.31 inch at the left wing and slab juncture. Again considerable twisting
deformations were observed. 1In the short span (the loaded span), the maximum
downward deflection is 0.10 inch.

Still no severe compressive stresses were evident for this case (the
maximum value is 1320 psi in the longitudinal direction location (A) in
Fig 31c). In the longitudinal direction a maximum tensile stress of 222 psi
occurred at location (B) in Fig 31c at the top of the wing. Considerable
tensile stresses were observed also in the transverse direction at the middle
support (location (C), Fig 31lc) the maximum value of the tensile stress was
348 psi (principal stress) and at location (D), Fig 31lc it was 262 psi
(principal stress).

Load Case 5. (D.L. + P/S + L.L. #3). This load case produces the least

deflections over the entire bridge. Small deflections (upward) occur in the
short span, with a maximum of 0.087 inch. The deflection in the long span

was 0.038 inch upward,
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The maximum compressive stress in this case was 1070 psi in the
longitudinal direction at location (A), Fig 31d. No tensile stresses are
shown in the longitudinal direction., 1In the transverse direction, con-
siderable tensile stresses are calculated at the supports and around mid-
span sections, At the middle support a maximum value of tensile stress of
342 psi (principal stress was observed (location (B), Fig 31d); at the
middle of the long span a maximum value of 246 psi (principal stress)
(location (C), Fig 31d); and at the middle of the short span (location (D),

Fig 31d) a maximum value of about 212 psi (principal stress) was computed,

The values of stresses for all the cases discussed above are those
obtained by program SHELL. Program SHELL6 gave slightly different values
for stresses which were usually somewhat higher than those given by program

SHELL.

The Three Girder Bridge

The Structural Idealization. This bridge has three widely spaced girders

braced with truss-type diaphragms, It is continuous over three skewed
supports. The plan view and cross section are shown in Figs 33a and 33b.
Also, the idealized cross section which was used in the finite element
analysis is shown in Fig 33c. As stated earlier this idealization is about
two percent stiffer than the actual cross section of Fig 33b, since the
length from the mid-depth of the concrete slab to the mid-depth of the bottom
flange of the girder was considered as the depth of the idealized structure.
In the analysis, the slab and the webs of the girders were idealized with
two~dimensional elements while the flanges, the vertical stiffeners, the lateral
bracing system and the diaphragms were idealized by one-dimensional (truss)
elements, The mesh layout for the slab and the upper girder is partially
shown in Fig 34a and Fig 34b respectively. The QM5 was used for the membrane
stiffness of all the quadrilaterals, It should be noted that only one element
was used over the depth of the girders. A plan view of the wind bracing is
partially shown in Fig 35a while the idealization of a typical diaphragm is
depicted in Fig 35b., A total of 584 nodal points and 1629 elements were
included in the mesh layout. This idealization was analyzed by program

SHELL.
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The Dead Load. The dead load included the steel weight and the weight

cof the concrete. 1In the actual construction of the slab six placing sequences
were employed as shown in Fig 36a., To simplify the finite element analysis,

the actual placing sequence was approximated by two placing sequences as

shown in Fig 36b. The first placing sequence included most of the exterior
panels (Fig 36b) while the second sequence included all remaining concrete
panels. While a sequence of concrete is being placed it is assumed to have

no stiffness, however, previous placements were assumed to be set and their
contribution to the structural stiffness was considered. 1In the analysis the
concrete was considered to have equal stiffness in both tension and compression,

The Live T.oad. Lane loads consisting of a uniform load per linear foot

of traffic lane combined with either one or two concentrated loads were con-
sidered. As shown in Fig 37a. The uniform and concentrated loads were
further considered to be distributed over a ten foot transverse width. Three
lanes were loaded and positioned transversely as shown in Fig 37b. The loads
were positioned for maximum positive moment as shown in Fig 37c¢ and for
maximum negative moment as shown in Fig 37d. By considering reduction of
load intensity due to three lanes being loaded and impact factors according
to AASHO specifications the load intensities shown in Figs 37c and 37d were
obtained.

The Assumed Temperature Gradient, The estimated set of temperatures

which were considered are shown in Fig 4a and 4b. They were assumed to be
constant over the length of the bridge and were assumed to vary linearly

over the depth of the section. Although the assumed differential temperatures
of 30°F (Fig 4a) and 40°F (Fig 4b) correspond with results reported in Ref 22,
the distribution of temperature over the bridge section is nonlinear. Most

of the temperature change takes place in the top portion of the slab, The
nonlinear characteristics of temperature over the depth is currently being
addressed in the previously mentioned Research Project 23.

Summary of the Static Analyses. A total of six load cases were analyzed

using program SHELL which are described below and summarized in Table 1.

Load Case 1. The loads applied included the weight of the concrete
from the first placing sequence (Fig 36b) and the steel weight. Deflections
and stresses for Load Case 1 are plotted in Figs 38 and 39, The maximum

downward deflection was 0,97 ft in span A-B (see Table 1), The maximum
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tensile and compressive stresses in the bottom wing of the girder were 18.5
and -10.2 ksi respectively, It is of interest to note that all three girders
behave in the same manner and deflect almost the same amount. As a point of
interest, another analysis was made without the diaphragms and wind bracing.
The results are partially shown in Fig 38. The deflected shape of the
middle girder is increased while the deflected shape of the exterior girders
is decreased. This is due to the fact that without the diaphragms a larger
portion of slab weight is transferred to the middle girder than to either of
the exterior girders,

Load Case 2, This load case includes the loads of load Case 1 plus
the weight of the concrete of the second placing sequence (Fig 36b). Thus
all dead loads are included in this load case. Deflections and stresses for
Load Case 2 are plotted in Figs 40 and 41, As shown in Table 1, the maximum
dead load deflection is 1,04 ft while the maximum tensile and compression
stresses in the bottom wing of the girder are 15.1 and -20.4 ksi respectively.

Load Case 3. This analysis was made for live loads positioned for
maximum positive moment in the central span as shown in Fig 37c. Key results
for live load only are given in Table 1. Stresses and deflection are con-
siderably less than those produced by dead load.

Load Case 4, TFor this load case the live loads were positioned for
maximum negative moment at the first interior support as shown in Fig 37d.
Refer to Table 1 for maximum deflections and stresses caused by this set of
live loads.

Load Cases 5 and 6. Load Case 5 is a result of the assumed tempera-

tures of Fig 4a while Load Case 6 is a result of the temperatures of Fig 4b.

A plot of the vertical deflection resulting from Load Case 5 is shown in Fig
42 while a plot of longitudinal stresses in the bottom flanges of the girders
is shown in Fig 43. From these plots three-dimensional behavior is evident.
For example, the longitudinal stresses change from tension (upper girder) to
compression (lower girder), The largest tensile stress in the bottom flange
for this load case was 7.2 ksi which is approximately one-half of the corre-
sponding stress due to dead load. For the uniform gradient in the transverse
direction (Load Case 6) beam behavior predominated, Each of the bottom flanges
were in tension over the entire bridge length with a maximum tensile stress

of 8.5 ksi. Key results for Load Cases 5 and 6 are summarized in Table 1.
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TABLE 1

K A .Y A
A B c D
Finite Element Analysis
NO LOAD MAX, VERTICAL DEFL. (FT.) MAX, LONG, STRESSES (KSI. )*
* CASE Span A-B Span B-C Span A-B Span B-C Point B
1 Seqo NO. 1 - 0197 + 0.38 + 18.5 0 - 10.2
2 DL - 0,53 - 1,04 + 13.4 + 15.1 - 20.4
3 |LL. No. 1 + 0,1 - 0.29 - 4.2 + 4.3 - 3.0
4 | LL. No, 2 - 0.04 - 0,22 + 1.9 4+ 3.8 - 4,2
Uneven
5 | Temperature| + 0.035 - 0.03 + 7.2 + 7.2 + 5.1
Rise
T Event .
g | emperaturel ., 4 gs5 - 0,055 + 8.0 + 8,2 + 5.1
Rise

% These are stresses along the bottom of the girder,
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A Two-Dimensional Analysis of the Actual Placing Sequence. As previously

stated the above results were obtained by considering only two placements as
shown in Fig 36b, 1In an effort to evaluate the influence of this approxi-
mation, an independent analysis for dead load was made in which the central
girder and a participating portion of the slab was idealized as a two-dimen-
sional structure and analyzed by the procedure of Ref 14, The participating
portion of the slab was adjusted so that the two-dimensional idealization
had approximately one~third of the total moment of inertia of the actual
cross section, Also one-third of the total load was used in the analysis.
In this analysis, all six concrete placing sequences as shown in Fig 36a
were considered step-by-step. 1In addition a comparative analysis was made
for the sequence of Fig 36b, For comparison some results from the three
analyses are listed in Table 2, Since the two-dimensional treatment is quite
similar to considering the bridge as a three span beam, comparison of rows
one and two (Table 2) is a relative indicator of the influence of the skewed
supports. These results indicate that this influence is quite small since it
is in the order of five to ten percent. As evidenced by the results of
rows two and three, the simplified placing sequence of Fig 36b is reasonably
accurate, The largest difference of the values of Table 2 takes place in the
top portion at mid-span.

Buckling Analysis. The interior girder of the previously discussed

three girder highway bridge was analyzed for buckling using the linear buck-
ling program of Ref 14, A two-dimensional idealization as previously
described was used which consisted of the girder and a participating portion
of the slab., The slab was assumed to have gained its full stiffness and the
concrete placing sequence was neglected, Since the two-dimensional ideali-
zation is symmetric about mid-span, it was possible to use only half of the
bridge in the analysis as shown in Fig 44a. The two-dimensional idealization
was first analyzed for total dead load. The top and bottom flanges were
assumed to be fully braced laterally at the diaphragms with only the dia-
phragm stiffeners included in this analysis. This analysis predicted local
web buckling in the haunch region near the interior support. The results
indicated that this local buckling would occur at 83 percent of the dead
load.



TABLE 2,

Comparison of dead load analyses using
two and three-dimensional idealizations.

Source of
analysis

Max, Vertical Defl. (ft)

Max, Long. Stresses (ksi)
(top)

Max, Long. Stresses (ksi)

(bottom)

Span A-B

Span B-C

Span A-B

Span B-C

Point B

Span B-C

Point B

Program SHELL
(two placing

sequences are
used)

-0.53

-1.04

-20.6

-18.2

+19.2

+15.1

-20.4

Central Girder
analysis (two
placing sequences
are used)

-0,59

-1,07

-21,6

-18.1

+21.5

+14.5

-21.7

Central Girder
analysis (six
placing sequences
are used)

"00 52

-1.02

-22,2

-12.9

+20.6

+15.3

-20,2
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Due to the localized nature of this buckling a more detailed analysis of
the haunched portion of the girder was performed. Also, by isolating this
region, an assessment of the roles of the intermediate and longitudinal
stiffeners could be made. Two different meshes were used to study the
haunch region as shown in Fig 44b and 44c. Displacements at the boundaries
(sections A-A and B-B) for the static analyses were obtained from the results
for the entire girder. Full lateral bracing was again assumed for the top
and bottom wings at the diaphragms. The intermediate half-stiffeners were
included in the first analysis using Mesh 1 (Fig 44b). Since the buckling
program requires the stiffeners to be symmetric about the web, an equivalent
width was used to produce symmetry and the same lateral inertia as the
original half-stiffener. By including the intermediate stiffener, buckling
occurred at 92 percent of the dead load. An analysis was then performed
including both the intermediate and longitudinal half-stiffener. The width
of the longitudinal sitffener was modified in the same manner as the inter-
mediate stiffener. By including both stiffeners, it was predicted that
buckling would occur at 1,74 times the dead load. This result clearly
indicates the importance of the longitudinal stiffener, 1In both of the above
results, local web buckling occurred near the support.

Mesh 2 as shown in Fig 44c was also used to study the haunch region.

For this study, triangular elements were incorporated into the buckling
program, These triangles can have from zero to three mid-side nodes and are
useful for mesh grading to more carefully study critical regions. The results
using this mesh with all stiffeners included indicated that buckling would
occur at 1.63 times the dead load. The buckled mode shape plotted along the
mid-depth of the web is shown in Fig 45, Also shown in this figure is the
buckled cross section. Both plots illustrate the localized nature of the
buckling.

The interior girder was also analyzed for dead load plus live load. A
10 percent impact factor was used with 1.57 lanes of live load going to the
interior girder. The buckling load was computed to be 1.53 times the com-
bined dead load plus live load. Again, the girder buckled locally in the

same region,
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CHAPTER 6., CONCLUSIONS AND RECOMMENDATIONS

Program SHELL has been shown to be an effective tool for predicting
structural response of complex highway bridges subjected to static loadings
and prestressing forces, The program can be used to determine the effects of
severely skewed supports, curvature along the bridge center-line, and the
influence of the shape of the cross section. Demonstration analyses were
performed on a gull-wing girder bridge and a three-girder bridge to illustrate
the capabilities of the program. It was concluded that the severely skewed
supports had considerable influence on the state of stress and displacement for
the gull-winged girder bridge. This structure was generally stiffer than a
similar straight structure with orthogonal supports. In contrast the effect
of the skewed supports on the behavior of the three-girder bridge was quite
small, This is attributed to the fact that this is a slender structure for
which beam action is predominate, The influence of the transverse diaphragms
and wind bracing on the overall response was found to be small.

In addition, program BASP was demonstrafed to be useful in determining
the buckling response of steel girders. This program can be used to determine
the effect of stiffeners and lateral bracing on the buckling load. For the
steel girder and the participating portion of the slab considered, local
buckling of the web in the haunch region predominated. The longitudinal
half-stiffener was the primary source for preventing web buckling under
dead load.

Program SHELL was also used to study the effects of two assumed tempera-
ture distributions on the three-girder bridge. The temperature was assumed
to be uniform through the thickness of the elements. Tensile stresses
resulting from these assumed distributions were found to be approximately
one-half of the corresponding stresses due to dead load. However, current
research being performed under Research Project 3-5-74-23 has found that
the distribution through the bridge slab thickness is non-uniform., Thus, the
assumption used in this temperature study is not wvalid, It is recommended

that the temperature option in program SHELL not be used for thick concrete
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slabs or beams. The non-uniform temperature approximation has recently been
incorporated into program PLS6DOF and is currently being evaluated, It is
anticipated that this program will be adapted to the Texas Highway Department
computer facilities at the end of Research Project 3-5-74-23,
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Appendix 1. An Example Problem for Input and Qutput

A simply supported square slab subjected to both uniform biaxial and
vertical pressures as shown in Fig 46 was selected to illustrate the required
input and the interpretation of output for program SHELL. The concrete slab
was assumed to be isotropic with a modulus of elasticity of 4)(106 psi and
a Poisson's ratio of 0.15., By taking advantage of symmetry of the structure
only one-fourth of the plate was used in the finite element idealization.
This idealization which is depicted in Fig 47 included 16 elements and 25
nodal points, The 4Xx4 mesh was used since in this case it gives a
sufficiently accurate solution. The vertical displacement at the center of
the plate differed from the exact solution (23) by approximately 2.7% while
the maximum resultant force (lb, in/in) differed by approximately 2,5%.

Two sets of input data were used as shown in Table 3. The only difference
in the inputs appears on the second card (i.e. the value for ISIG of Sec. 2.2).
The first set of input data of Table 3 used the option of membrane stress and
bending resultants having the units of force and moment per unit length of
mid-surface respectively. The second set of input data of Table 3 used the
option to compute fiber stresses having the units of force per unit area,
These stresses thus include the effects of both membrane and bending actions.
Details of interpreting the stresses will be discussed later.

In preparing the input data it is advisable to use as many generation
options as possible to minimize the coding time and reduce the coding errors.
For example with regard to the nodal coordinate cards (the third card in each
set of input data of Table 3), Sec. 3.1 of the data input guide was used to
generate nodal point coordinates along the x-axis (Fig 47). Then, on the
fourth card, Sec. 3.6 was used to generate all the remaining nodal point
coordinates, With these mesh generation options the surface coordinates,

Eq and £, were set to coincide with the x and y-axes respectively

(Fig 47). Therefore the surface coordinate direction cosine cards, Sec. 2.4,
were not necessary. Again on the sixth card, only one data card was required
to generate all 16 elements' nodal point number by following the description

of Sec., 2.5 for a regular mesh.
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With regard to the boundary condition cards, Sec. 2.10, care must be
exercised in specifying the correct boundary conditions since only one-fourth
of the plate was used in the analysis, Referring to Fig 47 at nodal points
1, 2, 3, 4 and 5, because of the symmetry, the displacement in the x-direction,
D1, and the rotation about gz , D5, are zero. Also at nodal points 1, 6, 11,
16 and 21 the displacement in the y-direction, D2, and the rotation about Eqs
D4, are zero, For nodal points 5, 10, 15, 20, 21, 22, 23, 24 and 25 which
were on the top of the support the vertical displacement, D3, is zero. In
addition the rotation about Ey > D5, is zero at points 5, 10, 15, 20 and 25
while the rotations about £y > D4, is zero at points 21, 22, 23, 24 and 25.
Lines 12 to 19 in each set of input data of Table 3 contain all these speci-
fied boundary conditions,

The uniform pressure along the boundary was input as concentrated forces
applied at the nodal points as described in Secs. 2.13 and 2.14, For example,
at nodal points 10, 15 and 20 the concentrated force in the y-direction, P2,
was -300%x 6 X 30 = -54000 1b and was input as shown on line number 24 in the
tables. Also at points 5 and 25 a concentrated force of -27,000 1b in the
y-direction were used., Concentrated forces in the x-direction at points 21,
22, 23, 24 and 25 were computed and input in the same manner.

The output obtained by executing the first set of input data of Table 3
on the CDC 6600 at the University of Texas at Austin is contained in Tables
4 through 10. With regard to the second set of input data of Table 3, only
the portion of the output relating to stresses is listed since the remaining
output (except for ISIG) would be identical to the first set of input data.
This portion of output is contained in Tables 11 and 12, Each section of
input data is generally echo printed for check purposes followed by a complete
listing in tabular form. For example, in Table 4 three lines were used to
echo print the input required to define the coordinates of the twenty-five
nodal points while the complete listing of the twenty-five nodal point
coordinates are printed in the lower portion of Table 4, All echo and com-
plete listings are contained in Tables 4 through 6.

Nodal point displacements are listed in Table 7. At each node five
displacements are given, They consist of three translations (D1, D2 and D3)

and two rotations (D4 and D5). The three translations (D1, D2 and D3) are
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in the global (x, y and z) directions since IFLAG =0 was used on the control
card of Sec., 2,2 in the data input guide. The two rotations (D4 and D5) are
about the surface coordinates (gl and 52) respectively as shown in Fig 47.
For example at node 1 the only nonzero displacement was the vertical trans-
lation (D3) which has a magnitude of -0,177251 inch.

Nodal forces including reactions are also listed in Table 7. Trans-
lational forces (Rl, R2 and R3) are in the direction of D1, D2 and D3
respectively, The nodal point moments (R4 and R5) share the same sign con-
vention as D4 and D5. For example at node 25, the vertical reaction, R3, is
-3652.0 1bs. The minus sign indicates that this reaction is in the opposite
direction of the global z-axis.

As mentioned previously, there are two options available to the user in

program SHELL for printing out the stresses, i.e.,

a) stress resultants (force and moment per unit length
of mid-surface)

b) stresses and principal stresses (force per unit area)

A) Stress Resultants
At a typical point the output stress resultants are as
shown in Fig 48 and they are in the form of the two in-plane
axial forces (N1,N2), the in-plane shearing force (S), the
two bending moment components (M1,M2) and the twisting moment
(M12). Stress resultants are referenced to element coordinates

(nl, My and n3). Positive directions are shown in Fig 48,

B) Stresses and Principal Stresses

At a typical point the output stresses are as shown in
Fig 49 and are in the form of the two in-plane normal stresses
(gl, 02), and an in-plane shearing stress (r). These stresses
are also referenced to the element coordinates (nl, nz and n3)
with positive directions shown in Fig 49. These stresses are
printed at the top (upper surface in the M3 direction) and
bottom fiber of the element as shown in Tables 11 and 12,
Principal stresses are computed only at the central interior

node of the quadrilateral element and printed as shown in
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Table 12, This orientation is given in terms of the angle
between the minimum stress and ﬂl-direction, as shown in

Fig 50.

Stress resultants in the computer output (Tables 6, 7 and 8) using the
first set of input data from Table 3 are forces and moments per unit length
at the locations defined by the nodal point numbers since ISIG =0 was used
on the control card (Sec., 2.2 in the data input guide). Two sets of stress
resultants are given, The first set (Table 5 and 6 represent stress
resultants printed element by element. Node 0 defines the location at the
centroid of the element. The second set (Table 9) represents the average
value of nodal stress resultants, It should be noted that they are referenced
to surface coordinates (gl and 52). For example at nodal point 1, the mag-
nitude of the average stress resultants and their directions are shown in
Fig 5la.

With regard to the second set of input data of Table 3 (ISIG =1), output
stresses have the unit of forces per unit area. Two sets of stresses are
given. The first set (Tables 1l and 12) represent stresses acting at the top
and bottom surfaces printed element by element. Stresses at nodal point 1
are shown on Fig 51b., The second set (lower portion of Table 12) represent
principal stresses computed at the centroid of each element at both the top
and bottom surfaces. Principal stresses and their directions at the bottom
surface of element 1 are shown on Fig 5lc.

To demonstrate the relationships between stress resultants, stresses and
principal stresses the following calculations are presented. At the centroid

of element 1, the stress resultants are

M2

= =2295 1b in/in
ML = -2295 1b in/in
M12 = 64,2 1b in/in
N1 = -3600 1b/in
N2 = -1800 1b/in
s = 0 1b/in
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Tmax = 82.9 'b/mz

oo Tmin = 217.91%/in?
Ay . - —7

i
--u LG: 2.04°

|

¢} Principa!l stresses at bottom surface ot centroid of element |

Fig 51, Stresses and principal stresses,



104

For a cross section of unit width and a thickness of 6 inches, the

section properties were as follows

Cross-sectional area (A)

Section Modulus (S)

Therefore,

Due to

Due to

Due to

Due to

Finally, by combining both the out-of-plane and

top surface

bottom surface

o IR =2 @l

+
Cm " %n1

+
Cm Cn2

1.0x6.0

- 6
L 1.0x6.00%2 = 6
- T382.5
- - 600
= - 300
- +10.7

-382.5 + (-600)

-382.5 + (-300)

10.7 + (0)

382.5 + (-600)

382.5 + (-300)

-10.7 + (0)

1b/in?
lb/in2
1b/in?
lb/in2

in-plane stresses, we have

-982.5 1b/in?
2
-682.5 1b/in

10.7 1b/in?

-217.5 1b/in?
82.5 1b/in°

-10.7 1b/in?

These values should be compared with element 1 (node 0) of Table 12.

Now the principal stresses were calculated by using

+ 0
x_ ¥
2

Ox = O W2
2

+1'2
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For example, at the bottom surface of the mid-node inside element 1,

) _ ) 2
.- 217.52+ 82.5 i«//( 217-52 82-5> + (-10.7)2

= -67.5 + 150.4

2
Therefore, Omax 82.9 1b/in
- -217.9  1b/inZ
Cmin *
= 150.4 1b/in?
Tmax *
_ -1 (-2 x 10,7
28 = tan —_:566_—_>
-1
= tan 0.0713
= 4,08°
6 = 2.04°

The magnitudes and directions of these stresses are shown on Fig 5lc.
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TABLE 5 TABLE 6

SURFACE DYKFLTIONS CUSINES. BOUNDARY CANDTTIONS OF POINMTS HAVING SPE~TITIFD DISPLS.

RrT, Fix ExY E17 E2x E2Y 27 PTa 1 2345 O ne2 D1 ne D5
1 1,00000  0,00000 0,00000 -0,0000n 1,00000 0ef0idnn 11y 61 1 «n, “h 0, -fie -0,
2 Yionacd  d,en080 0,00000 ~n,00000 1,00000 nl.00000 210061 W0, -0 -0, -l -0,
3 1,00000 0,00000 0,00000 ~0,00800 1,00000 oeBp00n00 310061 «0, -0 -y =N -0,
4 1,00000 0,00000 0,06000 «t,00000 1_00000 n.60000 4 1 00401 -0, -0, -0, -fe -G,
8 1,00000  0,00000 0,00000 =0,00060 1,00000 000000 1 01 01 w0, -0 -0, “ny -0,
6 1,00000 0.006000 0,0000G «n 08008 1,00000 6.000060 60101 0 =0, -0 -0, -he -0,
7 1.,00000 0,00000 0,00000 =0,00008 1,00000 0e00000 ITey o1 0 -0, 0. -0, . b,
8 1.,00000 0,00000 0,00000 «0en0060 1,00000 0e000D0 16 0 v 01 0 =0, 0 -0, -0 0
] 1.00000 0,00000 0,00000 ~0,00580808 1,00000 0,00000 10601V 01 =9, e -3, -0 -0,

1n 1.90000 0,0n000 0,00000 =0,00000 1,00000 0n,00000 1 an 1 01 =0, ~fla -G, "0s ~0.
N 1.80000 Q00000 0,.00000 «0.00008 1.,00800 0.00000 20 6 a ) A <D, “Oe -0, “le ~0.
12 1,00000 0.00000 0400000 «0,00000 1.00008 0400000 21 8 1 1 ) 0 =0, “fa -0, ~-fe -,
13 100800 0,0n000 0,00000 «0.00000 1,00000 0.00000 22 on 1 p 0, ~Ga -0, -0 =0,
14 1.00000 0400000 0,00000 =0.000n0 1,00000 1n.00000 23001 v n =0, =0, -0, -fiy -0,
15 1400000 0.00000 0,00600 =0,00000 1,00000 0.00000 24 0 01 1V 0«0, -0, -0, -0, -0
16 1.00000 0.,00000 0,00000 =~0.00000 1,00000 o6.00000 25 0 6 1 1 1 ~0, =D wls 23 0,
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25 1.00090 ozgfmoo 2.00000 -::ooggn %:ooggo g.noouo DUPLTCATTON NF IXPHT NODAL FORCES<LOAD CASF wNO, 1
PTe LIm uor Pl B2 (] P4 P5
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3 3 8 49 4 1 0 6.000E%00 A,000F*00 62000E+00 64000ES0r ~0e0~0s 21 =0 =9 ~5e4N00E¢D4mtr, -0, -fe e
% 4 9 1a 5 1 0 6,000E000 6,000F+00 H,000E+00 6,000400 <DeO=0.
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TABLE 7

TABLE 8

ELEMENT STRESS RESULANTS FOR LOAD CASF )

M2 My

ELEMENT ~O, 1

w2 JA0F+NT =2,380Fe07
~24294F*03 =2.2676%0]
«2e183F003 =2.1B3E+0n1
=Ze2HTF¥0T P, 294Fen3
=Z22295F¢03 ~24P95Eend
ELFMENT HO, ?

w2e164F+03 «P2.272F+02
=Z2.091Fen a2, 170Een2
=14765F*03 ~1.890Een3
=14835Fen3 =1.,986E03
~1.978BF +03 «2,094F¢03
ELEMENT NGO 3

~1e530Fen3 w1.913€¢03
~1.503F%03 «1,A3IE+03
~1,06AF+n3 =1.271E+03
=1s117F+03 =) +334€+03
=1s364F*03 =1 a603E«03

ODISPLACENMFNTS FOR (0AD CASF 1 INTTI&L SOLUTION
NONE  m nz n3 04 B3
1 0. O ~1.77251E~01 0. fe
2 0. =1 457500603 =1,646TIF=01 Ae4NEISFE=04 0.
3 o, =3.15000E-03 ~1,27907E~01 1«b1375E=03 0.
4 o, ~4,72500E-03 w7 O4BAE~02 5,21788E.0% 0,
5 0. ~6,30000E-01 o, 2+45190Ew03 0,
& =4, 36750E«03 o, ~1,64873E=01 Qe B, 406IRE~04
T =4, 16200E"N3 7 ,STHONE=03 =1,53016E~01 779363k =04 =7,79363E =04
B =4,182%0E~03 =3,15000E=03 «], ING14E=n] 1+49793Ew0d =6,01723E~04
9 ek 1APROE=03 ~4 ,T2S00E203 =6,552]14Fwn? 5. 057RSELDD «3,2B642E=04
10 =4,16250E=03 =4,30000€-03 0, 2+2B236E03 0.
11 =8,32800E=03 o, «1,2T907E«01 e ~1+61375E=03
12 =8,37500E=03 =1,57500E«03 m] IAG14Fan]  £.01723F w04 =1,49793E~03
13 =8,32500E=03 =1.15600E~03 «9,25516F«n2 1416040E=03 «1,186040E=03
14 ~8,32500E~03 =4,72500E~03 ~5,11018F=02 T400100E«03 »4,38212€=04
15 =8,32500E=03 -5,300006-03 o, FoTBI24Em03 04
16 =1,24R75E=02 0. “T 0APRAE=N? N 2421 2B%E~03
17 =1,24B75E6=02 «1,57500E~03 =6,58214Ewn2 2.20642€=04 ~2,05785€=03
18 «1,24875E=02 «3,15000Ew03 ~5,11018F=n2 £»36312E«04 «]1,60300E=03
19 =1,P4875E=02 «4,72500Ew03 =2 830768E=02 Av856I0E04 ~B.856I8E=04
20 «1,74A75E~02 -6,30000E~03 0, 989420604 0.
21 «1,66S5006-02 0, 0, Ne «2,A5190E=03
P? ~1,66500E~02 =1 ,57500€-03 O, fe =22 PAZIAF=0)
23 -1,64500E-02 «3,15000E-03 0, ne "] 476324E~03
24 =1,66500F=02 «4,72%00€.03 0, Na »9,089420E~04
PS5 =) ,66500E=02 =6,30000E-03 o, e 0
KODAL FORCFS INCLUDING REACTIONS LOAD CASE H
PTe R1 R2 R3 Rr& RS
1 Se40n0D204 2.70000404=2,2600D+02~3069740+04 3,69740004
2 108000405 6479310=10~4,50000+02 145729D0=-0R 6,8957D+04
3 1.0800D¢08 1.3200p6m05~4,%0000+02 5§,75240<09 5,4253N+04
& 1.0R00D*05 2.94B10=00=4,50000+02~2.59130=09 3,08)10%04
£ 540000¢08=2,70000+04 1,32770403"8494310=1n=4.23060+03
s 2.R1560=09 Ko4000D*04w6,50000s02%6489570+04~3,2R¢ 7D~08
7 4,43450%09 8.30300%109,0000D02 1+09050=0A=6 2R18N=08
8 4,17500=09 1.B18TD~09~9.06000402 2455020~10=4,403D~08
L] 223562009 4.0806Dw09=9,060004+02%1411430=09=1.,17990=0A
10 1.14BT0=09=5,4000n+04 2,53700403 2,93730-09 1.25650+03
11 B.20740=09 S A00002 04=4,50000e02-8,42630004~7,6480D=0R
12 7.40290=09 5.6070n=10~9,00000402 2.8626N=09=8,64092N-08
13 9469650009 1.TTB8DA9«9,000De02 14+9140D=08=5,7373D=08
14 Te10230%09 4,92560=09+9,0000002 1.,08150«08-2,6352D=08
15 4.67130=058.40000404 2,145630,03 1.18430-05 2,79%6Ds03
16 535225009 5.4000n+04=4,80000402-3.08]10+06=8,56730=09
17 78113008 1.06360%09=9,0000Ds02 &«TO0RIN=09=1.04020=0R
18 T+68420+09 2.34370=09=9,00000,02=2,71920=109=3.34760=08
19 8.92500+09 3410830=09=9,0000D902 4407640=09=1.n]1820=0R
20 B.?8890»10=5.4000n0¢04 },32800.03 1.99780=09 5,4054D+03
21 ~5,40000404 2.7000D+04 1,37720603 4.23090+03 3,12450-09
22 ~14086GOD*USILTTH20=10 2,53700¢03%1 425550403 1,40050~00
23 w1008 4,8359nw10 2,1463N603=2 , THEED+ N3] .08 TN=09
24 «1e01BO00205 141017009 1,32800+03«5,4084D+03w]44571D=0%9
25 »5,40000%06=2.70000+04=3,6%200+03+1:56R3ID+03 3,5683N+03

ELEMENY ND,
=R, 13Fen?
«T,883F¢n?
=1, 499Feng
“1.707F*02
~h9T2F 002
ELEMENT NO,
“2,272F*03
~)1.986F*0)
-1e890F¢03
“2,170F*00
-2, 094F+03
ELEMENT NO,
~24,068F¢03
],820F+03
=1,533Fen3
wle767F+00
~1eB)2Fen3
ELEMENT KO,
«14559Fen3
~1.395p+02
-9, 265F 402
«1.087F%03
-1 256F€n3
ELEMENT NO,
-Ts712Fea2
=72 20BF+0?
«1.134F402
~1.786F €02
-4, 806F+02
ELEMENY NO,
~12913Fen3
=12334Fenl
-14271p+0n3
~14R33Fend
~1,803F903
ELEMENT NO,
=1.749F+02
-le234Fend
wl,041F+03

A
] 148E403
«1410PE+03
wlo120E¢02
=) 380E¢ 02
-6, 3IB0E«0?
L)
w2alb4Eand
=1.A35E+0)
~12T65E¢03
w2 H91E+ DI
«1:978F 403
6
-2,06BE» 03
=]l T6TEeN3
~14533403
w14 BZ20Fen3
=1.8126403
k4

«]sTHGEs03
«14512E+03
»1.041E03
]+ PILES03
~1»399Een3
a
=1 H5BE«03
-9 39F+ 02
=T A6AE«0]
] s 169Fen2
«Seb19E07
<
=1 R30E+NI
=1e117E¢n3
=1s068E+03
«Y 4 G583Fen3
=1,364F.03
10
=1.559Een3
=1.087E+«n3
~3 ¢ 26DE+ 07

¥

=1eT74E+0]
B.931E+0}
1eSa9€+02
5.931E+0}
6,432E401

2,7P2Een1
Reb89F 202
3,522E%02
F.502Ee01
1,859E+02

TehRZE0]
4,377Ev02
S5e0P6E+02
1,205E+02
2.8%1E%02

1.207€en2
§,4526602
5,701E+02
1.3721F+p2
3,425E402

#.722E401
9502E¢ 0%
3.522E+02
2,659E¢ 02
1. 859€+02

J.182gv02
S,329€402
T.662E402
S5,329E+02
S.402E¢02

5,791E+02
G144E402
1.089E«n3
Ta350Ee02
B.337E%02

T+ T725E+082
1+1&7E*n3
1.239€¢03
8,259E+n2
1.0n7E¢03

T2622€+01
1.205E% 02
©,076E+02
4.377E+02
2,851E+02

S5.791E+n2
7.350E+02
. 1.089E+03

N1

~31.600Ee03
«1,600E403
~3.,4800F+03
*2+.600EF03
*3.800E+403

~3,600E603
~3.600E403
=3.800€+03
=3.,600E40%
=3 60NE03

=3,600E403
“3s800E«03
*3.600E+03
=3.400E+0)
=3.600E4+03

»3,600E03
«1,&00E+03
~3,600E«03
=2,500F03
=3,600E¢03

=34600E+03

=3,600€403

=3,600€+03
=3,6800€+03
=3.600E+02

=3.600E+03
*3.600F+073
~3,600E403
=1,600F+023
-3.600E+03

=3,600E¢03
=3, 600F+03
~3.600E403
=3.60nE+ 03
=3.600E003

=3.600E+03
=3.800Fe07%
=3,600E¢03
=3R0DE« 03
~3.500E403

=3.600E+03
~3.600E+07
«3,600E+403
=3.600E+073
~3.600F+03

=31,600E+03
=1,606E«03
«3.600E+07

N2

«1+800E¢03
~14B00E«N]
=1sB00E*nI
=1e8n0E¢03
-1+800E¢n3

~1+B00E~03
~1.880E083
«1.800E+03
-1.800E+03
«~1.800E+03

~1e800E*03
«leRo0E+n3
=i+800£¢03
=1¢8008+03
~1+800E%03

=1.8n0E¢03
~1+800E¢n3
=1e800E+03
«le800E*n
«14800E%03

~1¢B00E¢H3
-}u800E¢ 03
-14800E¢n3
<14800E¢03
«1eB00E*NI

-l e BHOE+N]
~1.RQ0E* 3
«1s800E¢n3
m1leB00E*N3
~1eBODE*03

=19B00E+0I
=12800£¢03
«1sB00E*n]
~1.800E%03
~1+800E*n3

~1+800E*n3
=le8nPE+Q)
w1.B00E+n3
~1+B00F*n3
-1s800Eend

«148n0E+03
wleBnOES N3
=1:800E¢03
~1.800Ee03
~148n0E003

~1eBOOE+0]
~1.R00F*02
-1a800E¢03

T
Q
2
o

~2,263E-32
44073E=y)
~3e620E-11
=9.051€=12
4.356E-11

b4
o
pel

=3 ,051FE~12
=T 7S5E~25
=3,620E=11
“G,051F=12
~2,036E~11

z
[
@

~9,051E=11

J.6206-11

~1e287E=10

=5,430E=1]

S5e430E~1)
NG

-8, 346E=11
7.261E-11
=7, 755F=25%
“94081E12
3,1688=1)

x
=
k=4 =] fond =2
DOPNEMOBWNNMONGR = PITORDOGFMD P OB WM D WO N TD N B

5,200E=%1

lo04)E=10

=1,539E=1¢

~B,146F~11

l.188E=10
N

——

2
3

9,051E~11
Se430E~11
=5,430E~11
*3620E=] )
“9,051E~11

—

z
pd

«3,620E~11
=3,102F=20
-24172E=10
“leBBEF=10

3.820F=11

-

MODE

Te241F-11 9
1«B10F=10 14
3,620E-11 1%
“Te241F~11 18
1177610 [
NODF

1o946E=10 1}
2.172E~10 &
~1.810E=11 17
~2«0RPF=10p 17
1.103E~30 o
NODE

2.534F=30 12
1.8106»10 17
~1.830F=20 1R

801



TABLE 9

=14512F*03
=12399F¢n7
ELEMENT ND,
~14332F 03
~9,68%F«n2
=6, 2B6F ¢ 02
~9¢833F+n2
~9,852Fen2
ELEMENT NO,
-6 ,584F «n2
~5.285F+n2
~4 ,908F« 0
1, 725F+02
3 GBTFen2
ELEMENTY KO,
=l la8Fan3
=1, 250F%0p
~14120F ¢n?
“1510BF¢n3
“64380F 02
ELEMENT NO,
~1.0%8Fen3
=1.189F 002
=Te864F* 0]
=9, 393F a2
~S.619Fen?
ELEMENT NO,
~B 28TF402
~3,129F+q1
1.926F+00
=6,372F*n2
=4, 029F 202
ELEMENT KO,

=14795FE+073
~1.256E¢02
1
~1:332Fen3
»G.533E+ 02
~Ge28hEen2
~5,68%F« 02
~3.852E+02
12
w8 ZSTEe 7
~6e372E902
1492RE+nD
=3, 129€+0]
»6.D29E s 02
11
«H.113Es02
w2 T0IF+N2
~] 4 498F «n?
~T+583F+ 07
b GT2E+D2
14
~TaT12E002
w1.78hEe Q2
~lelJ4E o2
~T4202Ee02
wALHUEEXQ2
15
-&.584E 02
=1 T2SE 202
w4 o Q05Fap1
-5, 285F 02
«3.68 602
16

4 2OTFen? wé PRTF 02
~B,0G1F>0]1 ~1.265F 02
4,647F001 4.64TF )
] 4 2ETF 407 =S DFIF 401
=1 e540F ¢n? w] 5498602

Felospeny
Re37Eep2

14033F+03
1+291F+03
1.5A8E«03
1.7291E+03
1+3n3E+03

1:369E+03
1,620E+03
1.805E+03
1.4&46E403
1<592E+01

1,207€+02
Le321E+02
S.7niE+07
5.402E+02
3e425E402

Te725E402
8.2%9E+02
1e239€4+023
1¢1867E+03
1.00TE203

1.349E+03
124A6E+ (3
1.B05F«03
1.890E+03
1.592€+03

1.,823E+03
14952E+03
2.199€+03
1.952€+ 02
1.995E+03

“3.600Fen
~1ab00NFe0

~3HONF 07
~3+600F «03
" JehOOF 20T
=1, h00ES 0
~3,600F+03

~14600F+03
3. K00F+03
=3e600Fa03
~3e600Fe0
*3.600F+07

~1.600F« 03
=1,600F+073
~3.606E«03
“3,600F+03
m3.600F403

~3e600F«07
“FA0NE0T
=3e800F 407
*Y.400E+03
~Y.60nFe03

*3, 000803
=3, A00Fs 03
~3.600F40%
=3,600F203
=3 . 600F»03

=3.600E+03
=3.600F+03
=3.600F«0)
“3,600F+07
»3,600NFe 03

~1a300F*n)
«l«AphE+nd

~1+800E+03
»1+RA0E*n3
wlaB00E*Nd
w14800E+a3
~1«800E+03

=1asRA0E*nT
=1.R00E+03
«~1.ROCE*D3
~1«B800Eea3
~1RONE+N3

wleBOOF ORI
~1e800F 203
~leBADNESND
«1eRANOE*D3
«1aB00E*03

~1aA800E+n3
= A HNAE+N]
~14RNOE*N3
w} «ROOE*a3
w12800E*n3

-1eBO0E+03
«12BO0E*03
wleBOOE+n3
w1l ROOF 0D
wleBODESD

~1.B00E+03
«lsWO0E*n3
«l«BOOE*R3
»1.AN0E»0]
wloeRODE#43

“1.448E=1p 17
“le91PF~10 0
NOOF

1.8106=11 13
1. 0RGE=1D 18
-2.896E=10 19
~2,534F~10 14
“1.0418=10 ©
NONE
2.1726~10 14
3.620F-11 19
~2,1128=10 20
-1.088E-10 1%
1.8108-10 0
HnE

Lo OBBE=10 1A
2.941E-10 21
~1.991€~10 22
-2.7185€=11 17
2,727€<10 0
HODRE

1e267E=30 17
-5.430F=11 27
-84154F=10 23
=5.43NF =Y 1R
~§,051F=12 0

=3,620£~-11 18
=3.051E£-11 23
=3.068F=10 24
~1.086F=10 19

1.855€=1¢0 0

1.810F«10 19
2.172E=10 2%
~2.172E=10 2%
~1.0R6F=tn ?n
«5,430E-11 0

TABLE 10

AVERAGFN NnDAL

NODE

- TRV IR R R UL VE g

[

ne
~2.380F+03
=2,215F+03
«1,723F«03
«Q ., 639F 402
=1.70TFe0?
=2.,2A3F+03
-2, 1P8F 03
«1,668F 403
=~9,311F«0?
«1,643Fen2
=1.949F4+0)
»1,823Fen3
wi h83FeN]
-8,167F»02
=) ,429Fe02
=1.P41F+03
=1, 148F»03
G, 430F 007
«5,560F+02
~8,795F+01
=1.250F«02
“1.145Fe02
«8,296F+0]
-2, 64GF 01
4, 64TF«1
Tenn30
Ae7940
45710
D270

HYRFSS RESUL TANTS W WaT 4 SURFACE

1
=2,380E+01
~2.7R3E203
»1.949E+03
=1,241FeD3
»1.250F+02
~2.215E+03
~2.128E+03
=1,8p23F*03
~1.168E+03
=12145E+02
=1.733E+03
L LYY XY k]
~1+643F+03
=9.439E¢02
“B,796E+0]
“9.63%E+02
~94311E+02
“R,14TE+02
5. 560F 02
~Z b45E0]
~1,7076402
~l1e843E602
~14429E02
~B,798E+01
4 BaTE*D]

MYz
=1.774F001
4,3726F+n)
Bekb2pe0)
1.206F 202
132102
42326E001
2eB12Fe0?
4,755F«07
G ITEE+ 0P
6.980F2 02
B abZFen)
4.755F+02
5. 069F+02
1.229€¢03
1.353F+03
1.206Fe0?
6.3T6F+02
1.229F+01
1.693F+03
1.879f+0Y
1.321gs02
6.980F+02
1.353F+02
1.879p+93
2.00%Fe03

Ny
~Fa6D0E203
=3, 40aF 403
~3,600E403
=3, 8006403
*~3,600E+03
A 600ED]
~3.600F+ 03
=3,600E,03
3 H0NEL 03
~3.600F+03
~3,400€003
*~3,600F403
~3.600E403
=3, A00Fs 03
*3.600F 402
=3.A00E,03
»3+4600E403
Y 6006603
=3,600F«03
34400403
=3.400E.03
w3, K00Ee 03
“1,800F403
=3,&00E03
~2, 6006603

COTRNIMATES s L QAN CASFE

N2
=1,800F+03
=1+800E+03
=1.800E403
~1.800E+03
=1e8n0F+03
~1+800E«03
=1.8n0F+03
=1,800€e07
«14800F+07
=14800E4+073
-14800E+03
w1e8n0Fe03
«1+8n0E+07
~148n0E+03
=1,800F+03
-} «Bn0E+03
-1 ¢B8pOE+G3
wl B06E007
«1,8B00F«03
=1.800E403
=1 ,800E+03
“1,800F«01
~1<800E403
«1+BUOE+0Y
w]+BOOE«03

S
~Ze263E~12
G N5 1Ee P
“4.978E=1)
~Be TRBE~11
=5, 051E=12

4eh3BE-TY
6. TRBE=12
~1.810€~11
“2.263E~11
=3, 620F=11

1,493E-10
=] «358E~11
~4.,5p5€=11
~1e810E~1)
=3.620E=11

1:670F~1 0

6.562E~11
=46 ,073E-\1
=4 525E~11
=12629E-10

2.941F~10
~1.267E-10
=3.530E~12
~1e4aBF=10
=2+172E~10

601



TABLE 11

ELEMENT ST
N1

ELEMENT NO.
=-9,966F+02
=3.823F¢n2
~9.638F*0n2
=9.778F*02
=9 ,826F+n?
ELEMENT NO,
=9,607F+02
=9,485F+0?
=8,941F+02
=9,0%9F+n2
=9.297F+02
ELEMENT NO,
=B.T16F+02
-8,638F+0n?
=T.7BOF*02
=7.861F*n2
«8,273F+n2
ELEMENT NO,
=7.352F¢02
=T7+331F+02
=6,250F+n2
=6.285F+02
=6,829F+02
ELEMENT NO,
~9,787F+n2
=9,309F+02
“9.149F+02
=9.616F+02
-9 ,490F+02
FLEMENT NO,
=9.,446F 02
=9.033F+02
=R,555F+n?
=R,945F+0?
=9.019F+02
ELEMENT NO,
-8.599F+02
=B8,325F+0?
=T.544Fn?
=7.812F+02
=R,094F+02
ELEMENT NO,
=T7¢285F+02
=T7+201F+02
-60189F+(2
=64298F+n2
=6eT768F*02
ELEMENT NO,
-9,188F+02
=R ,223F+02
=8,119F+n2
=9, 056F+02
~B,6T1F*+n2
ELEMENT NO,
~8,914F+02
=B.0S6F+N?
«T.735F+n2

RESSES
N2

1
=6.966Fe02
=6eTTRE+02
=6e63BE*n2
~6eR23F*+02
whoH26E+02

?
=64 TBTE«2
=6.616E40?
=6.149F+ 2
=6+308FE+02
=6:490F+02

P |
=6.188E+02
=64056F¢n2
=K«119E+02
«5.223€E+02
=5.671F+0?

4
=4.913F+02
=4 A4TF e 02
=3.,187E+02
=3.208F+0?
~4.N63Fs02

[
=hoHhO0T7E+02
=6.059E+02
=5.941£4n7
«6+4BSE 42
=6.297E+02

6
£ 44bE+ 02
=5.945E+02
=5.555E+02
=€.043Fen2
=6:019E+02

7
~5.914Een2
=6:521F+02
=4,735F«02
=5.056F+0n2
=5.331F+02

R

=4,764E+02
=4 566E+p2
=3,124E+02
=3.19SE+02
=3.937F+02
9
=5,716E+n2
~4,B0]1F+n2
=4, 7ROF+0?
~F.638F+02
=5.273E+02
10
=5.,594F+ 02
=4 ,A12E+9?
=4,544F002

(TNP=KOTTOM)

S

~2,957€+00
9+8ARSE*N0
2.,501E+01
9«ARSE+NQ
1.070E+01]

4,536E+nn
4,431E+0)
S5.B870E¢01
1.5A4Fen]
3.,099E+01

1.237F+01
Te296E+0)
Be376E+01]
24009E401
4.7c2E+0)

2.012E+01
9.003E+01
9.501E+01
2.202E%01
S.TN9F+0Q1

4.536E+00
1.5R4E+0]
5.870E+01
4a431E+0]
3,099€401

5.303E+01
8.B82E+n]
1.277F+02
B.HARE* 0]
9.003E+01

9.651E+01
1.524E+02
1,815E+02
1.225E+02
1.390E+02

1.288E+02
1094SE+02
2.065€+02
1e376E+02
1.678E+02

1,237€+01
2,009E+01
8,376E+0]
T.296E+0]
4,752E+01

9.651E+01
1.225€+02
1.815E+02

FOR LOAD rASE

N

=24034E+02
=2.177F+0?
=?4362E+07
=2e227F+07
=2.174F+02

=2.393FE+07
=2.515F+02
-3.059F+02
~2.941F+ N2
=?«703E+0?

=3,284E402
=3.,362F+07
~4.220E402
=44139F+02
=3,727E+02

-4 .64K4E402
-4 ,669F+ 07
=5.750F+ 02
=5.715F+ 02
=S.171E+02

=2.213€+ 02
=2.691€+02
=?+851€+02
~?.384E407
=24510€+02

=2,554E402
=2.967E407
=3,445F402
=3.055E 07
-2.981F+07

=3.401E+02
=3.6TSE+02
=4.456F402
~4.18RF+ 02
=3.906E+0?

~4.T15€E+0?
“44799F+ 02
=S.811E+02
=5.702€+ 02
=5.232E+02

=2.812€+02
=3.7TTE+0?
=3.881F+02
=P.944F+0?
=3,329F+02

=3, 084F+ 02
3. 946F ¢ 07
~4.265F+ 02

1
NP

9.660E¢n)
T+7R1E*n})
6379 0]
8e293E+0nl
84237E+01

T+872E+01
6.159€+01
1e494E%q)
3.N93E+n!
4e7208E%n)

1.8R3E+n1
S5.572E+n0
=80812E+01]
-7«76RE*n]
=34292E*r)

=1.087E+02
«1+153E+02
-2+B13E+n2
=2¢792E+ 02
»1e937€+n2

6eNKBE*n]
S.B96F+n0
-5«B70E+00
4.864E+n]
29758401

4e462€+01
«5.509E400
-4 s44BE*0n)
3.309E*00
1:919E+n0

«8,568E+00
«44,794E% 0]
~1.265E+02
=9¢477€¢n]
-64690E+01

=1e236E+02
=16434F+02
=2+B76E+02
=2+80SE*n?
=23 063E+ 02

«24B35€E+0]
=14139€E+n2
=14220€%02
a3.h16E+01
=Te26BE+ 0]

=hoN)14E+q]
=1+1RBE+N2
~1e456E+02

NODE

2.957E+n0
=9+885F%n0n
=2+581F+01
~24BASE* 00
=l.070E*01
NOD
~4,536E+00
~4.431E+m
=5.B870E+n1
=1,584F¢0n1
=3.09%E+01
NOD
=1.237F4+0)
~74296E 401
=8,376E+01]
=2.009€+01
=44 I1S?E*0]

1

]

7

?

0

E

2

7

R

2

0

F

3

[

]

4

0
NODF
=24012E+01 “
=9,003E+01 9
~9.501E+01 10
«2.202E+0]) 5
=5,709F«0] 0
MONE
=4,536F+00 6
=1.584E+p]1 11
=5.870E401 12
~4e431E+0) L4
~3.099€+01 0
MODF
=5.3n3€E+01 7
~R.BB82E+n)1 12
=1.,277E+02 13
=8.8R2E+0] R
=94003E+0] 0
NODF
=9,651E+n] H
=1,524F+07 13
-1+B15E+02 14
=1.225F+02 Ll
=1.390E+0C 4l
MODE
=14°88F+02 9
=1.945E+02 14
“2.065F%02 15
=1+376E¢02 10
~1e6T7BE*O? c
NODE
=14237E+0]1 11
=2,N09E+p1 16
-8,376F¢01 17
=7.296F+0] 12
-4, 752F+0} o
NOPF
=9,6S1E+0] 12
=1,225F+02 17
=1.,A18F+n2 1R

TABLIE 12

=8.521F*07 =94325E¢02 1.524E¢N2 =3,479F+02 «6.753E¢n1 =~1,524E¢02 113
=A¢33]1F+N2 =5.094Fen2 1.,3Q90E+02 ~3.560E+02 =9.058E¢0]1 =-1,390F¢02 0
ELEMENT NO, 1) NODE
~08,220F+02 =5,220E+02 14721F¢02 =3,7B0F+07 =T«8N2E¢0) ~1,721E¢02 13
=Te614F+02 =6,589E¢02 Q41516402 =4.3B6F¢02 «1+4411E+02 =2.151E¢02 1R
=To04BF+02 =4.048F¢02 2.613E402 =4,952F+07 =1.952E402 =2.613F+p2 19
=T7e589F+ N2 =4,614F«02 2,151F¢02 =4,411E+407 =1.3R6E+n2 =2,151F¢02 14
=T0642F+02 =40642E+02 24171E+02 =4435BE+02 -1+358E%02 =24171E¢n2 0
ELEMENT NO, 12 NODE
~Te097F+07 =4«37RE+02 2.281E+02 -4.903E+02 -1.622E+02 =2,281E+02 14
=6,BRIF*N? =4.062F+en2 248)6E+N2 ~5,119F+02 =1+93BE+N2 =2,R16F¢n2 19
~6,082F¢07 =24997E+N2 3I,009E+02 =S5,91AFE+02 =3,003E+02 =3,009E¢02 20
«6,287F+02 =3.152F+02 244436402 =5.T13IF+ 02 «24B4aBE+02 w2,443E¢02 15
=6,611Fen2 =3,6T2k+02 2.653E+N2 =5.389F+0? =2032BE+02 =2,653E+02 0
FLEMENT NO. 13 NODF.
=Te913F+02 =44352E+02 24012E+0] =4.087E+02 «10648E+02 =2,012E¢01 16
=6,208F+02 «3,285F+02 2.202E401 =5,792F« 0P 2.715E+92 =-2,202E+0]1 21
=6, 1BTFe0N2 =3.250E+02 9e¢S01E+0]1 =5,813F+02 =2.,750E¢n2 =9,501F+n1 22
=T.BATF*02 =44331E02 9.003E+N) =4,153F+07 .1e689E+02 =9,003F+0) 17
~T4063F+02 =3.829E402 5.709E+0]1 ~4,93T7F+02 =2¢171E+02 =5.,709E+01 0
ELFMENT NO, 14 NODF
“TeTOAF+4N2 =4o?85E+02 10288E+02 =4,236F+02 =~1:715E¢N2 =]1,28BE+02 17
“6,195F+02 =2.,298F+n2 1.376F+02 =8.B0SF+02 =2.702E¢N2 ~1,376FE+02 22
“6o124F%02 =3¢)BIE+N2 2,065E+02 =5,8TAE+0? =2.B11E¢052 =2,065E¢02 23
=TeS66F+02 =4.201E+402 1,945€402 =4,434E+07 -1.799E¢p2 ~1,945E¢02 18
~6,937F+02 =3.768E+02 1.,678E402 =5,063F+07 «2:272E¢02 =1,6TAE«02 0
ELEMENT N0, 15 NODE
“Te37BF*02 =4.09T7E+02 2,2Bl1E+02 =4,622E+0? -1.903E¢n2 -2,281E+02 18
~6,152F¢02 =2.2BTE«0? 2,443E¢02 ~5,R4AE+ 07 -2,713Een2 =-2,443E+02 23
=5,997F¢0? =3.082F+02 3,009E+02 ~6.003E+07 =2.9)18E+02 ~3,009E+02 24
=7¢082F+02 =3.A81F+02 R2.B]16F+02 =4.938F+02? -2¢119€+02 ~2.R16E*02 19
=6,672F+N2 =3,611Fen2 2.653E+02 =5,328F+07 =2.,389E+n2 ~2,653E+02 0
ELEMENT NO, 16 NODE
~6,716F+02 =3.716E+02 3.,039€+02 =5,2B4F+N2? =2,2R4E+02 =3,039€+02 6
=6,0B5F+02 =3.211E402 3.,263E+02 ~8,915F+02 «2.789€+02 ~3,253F¢02 24
=6,923IF+02 ~24923E+02 3.499E+02 =6,077E+02 -3.077E+02 =3,499E+92 25
“6,211F+02 =,0BFE+02 3,2%3E+02 =5,7B9E+02 -2.915€+02 =3,253E+02 20
=6.25AF N2 =3.29RE+4N2 3.324E+0?7 =5.742F+02 =2,742E+02 =3,324E¢02 o
PRINCTPAL STRESSES (TOP-ROTTOM) FOR LOAN CAGE 1
ELEM <MaX SMIN TMAy ANG SMAY SMIN
1 =6, 822F+02 =9.R29E402 1.504£+p2 =2+041E400 B.295E40)1 =24178F+02
? ~6.456F+02 *9.371E402 1,43BE+02 ~6,224F400 Se196F+0]1 ~2,732E+02
3 =5,5RTE+02 =8,36TE¢C02 14385F+02 =1¢Q03E+0]) «2,699E¢0) =-3,792E¢02
4 =3,950F+02 =6.942E402 1,496F+02 *]1,1P2E+0]1 =1.819E¢02 «5,269E¢02
S «6,2A8F+02 =9.,520E+02 1,626F+02 =5,493€400 3,313E¢0]1 =~2,544E402
6 =5,.770F+02 =9.2769E+402 1.749E+02 ~1,540E.01 2.686E«0) -3.,230F¢02
7 =4,7S3F+02 =R.672E+02 1.959F+02 '2.258Eo°1 =1:544F*01 ~4,421F¢02
B =3.157F+02 =TeS54BE¢02 2.195E+402 *2.499F+0] =1:340E¢02 ~5.956E¢02
Q ~S,20BF+07 ~BeTICE*02 1.T64E+02 =T.A14E+00 =6,427E¢0]1 ~3.,4]13E+02
10 ~4,579F+02 =R.846F+02 2133F+02 =2,03PE«0]1 =3.279F¢0] =~4.247E¢02
11 =3,503F+02 =8.7B1E+02 2.679E+02 =2,76RAE+0] =2,193E+0)1 =5,497E+02
12 =2,10RAF+02 =R,)175E+02 3.033F+0?7 =3.051E+0]1 =7.957E+01 =~6.922€+02
13 =3.731F+02 =T4161E402 1e715F+02 =94720E+00 ~24058F+02 =5.050E+n2
14 =3.N46F+02 =7.660E*02 2.308E+0N2 ~2.332E+0] =-1.452E402 =5.843F+0?
15 =2.07AF+N2 =A,204E402 3.063F+n2 =3.001E40]1 =B.264F¢0] =6.,R92F+02
16 =1, 111F+0?7 =R 4056402 3.64TE+02 =3.286E+40]1 =5.949E+01 =7.889€+02

147R70
AeRTHD
464390
2+1520

THAX
1504E+02
1626E+02
1+T64E+02
1.715€+02
1+438E+02
1. 769E+02
24133E+02
24308E*02
14385€¢02
1+959E+0?
2.639E4+02
3.N63E*02
1e496E¢02
2e195E+02
34033E¢02
3.64TESC?

ANG
2+041E*0G
S.493F%00C
Te814E*00
9.720F+00
64224F+00
14549E+01
24032E+01
2¢332F%01
1+003E+0)
2+758F*0]
2.7T6RE* 0}
3.0n01F*0])
1+122E%01
2493E°01
3.051E%0!
3.286E+0]

01T
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DISCLAIMER

Although the authors have personally tested the program listed in
Appendix 2, no warranty, expressed or implied, is made by the authors or any
representatives of The University of Texas as to the accuracy, completeness,

reliability, usability, or suitability of the computer program and its

associated data and documentation. No responsibility is assumed by the

authors or any representatives of The University of Texas for incorrect

results or damages resulting from the use of the program.
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CNULL PROGRAM MAIN ( INPUT»OUTPUT»TAPEL»TAPEZ2»TAPED» TAPE4TAPESsTAPES] LMB
CovossTHIS VERSIDN OF THE SHELL PROGRAM HAS BEEN MODIFIED TO RUN ON THE LME
< IBM 360 AT THE TEXAS HIGHNAY DEPARTMENT. ALL REAL VARIABLES ARE LMB
< DOUBLE LENGTH AND INTEGER VARIABLES STANDARD LENGTH. BOTH SEQUEN-LNB
C TIAL AND DIRECT ACCESS DATA SETS ARE UTILIZED. LMB
CuvnssTHE LATEST REVISION DATE FOR THIS VERSION IS 8 AUG 1973 ...
IMPLICIT REAL®E (A-HeO=2) LMB
< DEFINE FILE 8(5,8000+LeNAV]1}s 9(5:800¢L1NAV2) LME
DEFINE FILE B(50+8000+LsNAVI)s 9(50+800:LsNAY2) LMB
CoaussDEFINE FILE B( NZ oM2eLINAVI) s SINBLOCIMLILINAVZ] .ss LMB
c WHERE NELOC = NUPTS/IBANDP { ALWAYS ROUND UP )
< N2 = NBLOC*MBAND
[ MZ = GMBAND
C ML = BeMBAND®LVECT LHB
< MEBAND = IBANOPSNOFRE Lmg
c LVECT = NO.» OF LODAD CASES LMB
COMMON NWORDS (266000 LB
COMMON/CY/NUMEL « NUP TS+ NUBP TS« TBANDP « MBAND « NBLOCsNDFRE » IFLAG» NUMAT
COMMON/SS/TGEN» ISHEAR » JSHEAR yNRED » IREACT yNTRUSS ISIG
COMMON /BTAPE/ LCPJ{100) yMCPJ(100) LB
DIMENSION ITITLE(20)4C(5)
EQUIVALENCE (ISMEARSND) v INRED¥N23y (IREACT+N3)
CALL ERRSET (20842564141} LMY
1 READ 1002+ITITLE LMB
PRINT 1003+1TITLE LM
00 50 Islsl00 LMB
LCPULD) = 1 LMB
S0 MCPJID) = ] LHB
1002 FORMAT (20A4)
1003 FORMAT (2H1 +20A4)
READ  JOWNUMEL yNUPTSoNUBPTS» IBANDP «NDFRE+ IFLAGsNUMATsNL 9N29N3sN&»
. IGENsIS16
JSHEAR = NI
PRIMT 31sNUNEL s NUPTSsNUBPTS s IBANDP ¢NDFRE + IFLAG sNUMAT s N1 s N2sN3sNé o
. IGEN» ISIG
HBAND= IBANDP®NDF RE
NBLOC =(NUPTS*NDFRE) /MBAND
IF { (MBAND*NBLOC~-NURPTS®NDFRE] ,NELO) NBLOC=NBLOCe]
REWIND 1 LME
REMINOG 2 M8
REWIND 3 LME
REWIND 4 LMy
CALL OVER) LME
CALL OVER2 LM
CALL OVER3 LMB
IF (I8EN.GT.3) 60 TO 3
CALL OVERs LB
3 CONTINUE LME

30 FORMAT (1314

31 FORMAT ( 9H NUMEL =:]15/9H NUPTS =,:]15/9H NUBPTS =+I18/9H IBANDP =,

+ 157 9H NOFRE =4I5/9M IFLAG =+I5/9H NUMAT #,15/9H ISHEAR =,
«157 91 NRED =3 1S/ IRECT =:15/9H LPROB =:15/9H IBEN xy
157 oM IS16 #5151}
S0 FDRMAT ( Fl3.s }
IF { Ne,GT,0 ) 80 To 1
2 STOP
END

6/2%
7710
1710
T/10
1710

1709
JJP
JJdP

T/09
1709
7/09
7/03

7703
7703

6/26
6s26
6726
6726
1/09
1709
1/09

1709
7709

o

» w N

ot

-

SUBROUTINE QTAPE { MQsNTAPE.P,Q»ICHOL

IMPLICIT REAL®8 (A=He0~Z) LMb 7709
COMMON/CV/NUMEL +NUPTS sNUBPTS, 1BANDP s NBAND + NBLOC s NDFRE , IFLAGLVECT
COMMON/BTAPE/ LCPJL100)+MCPI(100}

DIMENSION P(1)e@(1}
NoORDS=MBANUSLVECT
IF ( I1ABS{MQ},.6T,]1 3
DO & N=1,NBLOC

IF(t MR.EQ.~1 )} READ (NTAPE) (Q(1)+1=])sNNORDS}
IN=0

IF { uQ.EQ. 1}
IF { MR.EQ.=1 }
LeK+MBAND~1

DO 3 I=lyLVECT
0O 2 JzKsi
IN=INe]

IF ( MQ.6T.0 )
IF ( M@aLT«0 )
CONTINUE
K=K+4250
LEK«MBAND=1
IF{ MQ.EQ.]
CONTINUE
GOT0 8

IF({ MQ.EQe~2 ) READ (NTAPE) (Q(I)»1x],NWORDS)

IF ( MQ.EQ.+«3 ) CALL IOBIN (THREADSKPsNTAPE»QeNWORDS,MCPJ{ICHOL) )
IF(MQ.EQe=3) READ (NTAPEIMCPUUICHOLIIIQII) o931 o NWORMS) - MK
IN =0

K =]

L = MBAND

DO 7 IxleLVECT
DO 6 ysKsl
INsINe]

IF ( WQ.6T.0 )
IF ( MQ.LT.0 ¥
CONTINUE
K=K+100
L=K+MBAND~]
IFC MQ.ER.2 ) WRITE (NTAPE! (G{I}s]lm]¢NWORDS)

IF ( HO.EQs 3 3 CALL TOBIN ( OGHNRITERNTAPE.QsNNOROS,MCPI{ICHOL) )
IFIMQ.EQ. 3 WRITE (NTAPEIMCPJUUICHOL}) {QUI}+1=]1+NWORDS) LME
RETURN

END

60 10 5

LMl 6726

K= {N=-]1}%MBAND+]
K={NBLOC=N}*MBAND*]

GUINY =P (J)
P J1=QUINY

} WRITE (NTAPE) (Q(I)+Ix1+NWORDS) LMB 6/26

LMB 6/26

QUINI=P( )
Pt Y=g UINI

LMB &6/26

Clt



SUBROUTINE RLOAD
IMPLICIT REAL®8

COMMON/CVY/NUMEL s NUPTS ¢+ NUBPTS » IBANOP s MBAND o NBLOC « NOFRE » LFLAGsLVECT

DIMENSION R(1)
N=NUPTS®NDF RE

D0 1 Lv=L1sL2
I=(LV=1)*]D1Me5e
IPN =1 « N -1
1F (MQ.GT.0) WR1
IF (MQ.LT.0) REA
1F ( MQ.GT.0 )
RETURN

END

SUBROUTINE wIND
REWIND NTAPE
RETURN

ENO

( MQyNTAPEsRyL1sL2+IDIM )
(A=Hs0-Z)

1
TE (NTAPE) (R(IL)«II=I+1PN)

D (NTAPE) (R(11}s1I=I+IPN)
CALL WIND ( NTAPEsZ )

( NTAPEZIRECO )

LMB 7/09

LME 6726
LMB 6726
LMb 6726

LMB 6/26

SUBROUTINE DVERI
IMPLICIT REAL®*8 (A-H,0~2)
COMMON/CV/NUMEL +NUPTSsNUBPTS s IBANDP s MBAND+NBLOCsNDFRE s 1IFLAG+ NUMAT
COMMON/SS/IGEN+ ISHEARy JSHEAR+NRED ¢ IREACT ¢NTRUSS+ISIG
COMMON KQ(4) s NODES+QUADT sSMAT (7+30) sEMsRMsVMsGMs01+02
1 XQ(3+800)sDIR(6sBO1)sU(9)sS(201)+T(393)4E1(3),
2 E2(3) o THIS) s TPC(6) oX(4)sY(4)92(4)sD11+sD12+D224D334G19G2
3 D1(3¢4)+D2(344)+ELOADI(S5) +IB(8B01)+ IDUMMY,TEMP (800)
DIMENSION DMAT(6)
DIMENSION IQ{4+2000)sITYPE (2000)+QTYPE(2000),
1 TMAT (5+2000) »DISTLD(5,2000)
DIMENSION TH58(58)
CNULL EQUIVALENCE (TH,THS58)
EQUIVALENCE (TH(1)s THS58(1)} )
EQUIVALENCE (SMAT(1)+1Q(1))+(XQ(1)+ITYPE(1)+sDISTLO(1))
1 »(XQ(20011+QTYPE(1))+{DIR(1601)+THAT(1))
CNULL EQUIVALENCE (EMsDMAT) »
EQUIVALENCE (EMy DMAT(1) )
1 (VI aXI) o (UI2) o YT} o (ULIY2ZT) o (UL 9XUY 2 LUIS) oY) s (U(6) 92U}
2 (UIT) o XK o (ULB) o YKI 9 (ULD) o ZKI o (ULL) o X0) 9 {UL2) 2Y0) o (UL3)+Z0)
3 (U(4)4BI) o (U(5)eBUI s (U(T)s W) (ULE)s A)g(U(T7)y B}y (UIB)s O)
LOGICAL TEST1.TEST2
INTEGER QTYPEsQUADT
00 80 I=1,801
80 DIRI6,IV=0.
PI=3,1415926535898
Cesos s GENERATE NODAL COORDINATES AND DIRECTI1ON COSINES.
PRINT 900
1 READ 905I1sJJslUsIB0sU
IF ( IG0.LE.O ) PRINT 30,11+sJUsIJs160s(U(I}sIx143)
IF ( I604EQel 3} PRINT 31sIIsJJsIJUsIGOs{ULINsI=146)
IF ( 1G0.GT.1 )} PRINT 91411+JJslJsIGOU
IF(IGO.LT.0) GOTO 17
160=160+1
IF (IJ .6T.0) XINC = (Ju=-1I)/1V
GOTO ( 29 4y B+10+12)4+160
2 DO 3 I=1,3
3 XQ(I, 111 =UtT)
IF(II-NUPTS) 145151
CersseSTRAIGHT LINE.
4 XJ=xJ=-xI
YJ=YJy=-YI
2J=70-21
XL=0SQRT(XJoa2eY j80247 j%e2)
XD=XJ/XINC
YD=YJ/XINC
2ID=ZJ/X1INC
DO S I=1lsJdusly

LME
LmMB

LmMB

LMB
LmB
JUP
LMB
LMB

JJP

LuB
LMB

7/09
7/09

627

6/26
6/26

7/02
7702

22MARTS

911



KINCu (I~111 710
XG(lvIdeX1sXDeXINC
XQ{2o13=Y1sYDRXINC

5 X0U3s]3=7]eZDeXINC
SAeDSQRT (XJ*XJ+YI*YJ)
DO 7 I=llsddsid
OIR(1eD)aXJ/XL
DIR(241)=YJ/XL
DIR(3+1)=ZJ/RL
IF(SG.EQ..0) GOTO ¢
DIR{4s 11 ==YI/SG
OIR(SeI}= XJ4/50
GOYO 7

6 DIR(4s1)=0.
OIRtS+ 1) =1,

7 CONTINUE
6070 19

Coure o CIRCULAR CURVE

8 DIU=DSQRT{(XI~XJI®#2e(Y]Imyiresels(Z]-7 )02}
DIL=DSARTI{X]=XK} #8201 Y]~YK}®e2e(2]-7K}®22} /2,
DJL=DSQRT (DI yra2«0] we2}
DEL=PI -2« *OATAN(DILZOJL)
AL=(XIeXK} /2,
YLILYI4YK) /2,
ZL=(Z1+2ZK) /2,
/= DIJ/DSIN(QELZ24)
Tllslr={XKeXi ) /OIL
T2y 1) =(YKeYL) /DIL
Tt3e )= (2ZK=ZL) /DIL
TilsZi= tAJd=XL Y 7DUL
Tt2eZ)=1YJ =YL} /DJL
TE3e2)=(2Ud-200 20WL
Tile332 TE2:1)%T(392)~T(2,2)%T1301)
TE2e3)a~T(lal1®T{34236T([,2)9T(3: 1}
Ti3e3s TI1el)*T(2421=T(122)%T1201)
CONSTRDSORTIT(1+318024T{2,3)12824T(343)0¢e2)
AINC=DEL/XINC
DO 9 1=11s3dsld
XINC=(1=-11)714
ANG=ATHC*XINC
DX=R®DSINIANG) *UCOS(DEL=ANG)
DYSR*DSIN(ANG) *DSIN(DEL-ANG)
XQE2oI)=XT+T(1a11¥DX4T {242} DY
XQ(291)=Y1eT(24119DX+T (242)90Y
XG(I» =TI+ T (3911 #0KeT(3,2)40Y
C=DCOS(DEL=2, *ANG)
DEOSINCOEL -2, #ANG)
DIRCI+I =T(Ls11%CeT(Iv2) 0D
DIR(2911wT (2011 ¥CeT(202) %D
DIR{I+ 11 =T13,11%CeT(3,2)4D
DIR(A 4] =wT (]3] 7CONST
DIR{S+1)==T(2+3) /CONST

9 DIRtB 11 ==Y (3033 7CONST
6070 19

Conne-PARABOLA.

10 IF(DABS{BI).6T.DABS(BJ})} CDNSTsZJABIwe2
1F{DABS(BJ) +GE.DABS(BI)) CONSTaZUsBuwe?
D1J=0DABS (81) +0ABS18BY)
waN*P1 /180,

Cw=DCOSiw}
SwaDSIN(wW}
OINC=DIJ/XING

00 11 I211sddeld

XINC=t(I~11)/10
OX=814DINC*XINC
XQ{1e1)=X0+DX*Cy
AQL2e11=Y0eDXPSH
XGEIp11=20+CONSTROX*DX
ANG=DATAN (2, sCONSToUX ]
DIR{1« 1) =CWeDCOS{ANG)
DIRt2¢1} =5u*DCOS{ANG)
DIRIIL 1) =DSINCANG)
OIR{4¢]}=~5u

11 DIRIS+1)= Cu
6OTO 14

CovwewELLIPSES

12 AZ=A%A
B2=Heh
AB=2A/B
BA=H/A
ATE=A®H
w=DE*PI/180.
SW=DSIN (W)
Cu=DCOS (W)
1FAC=20u
FAC=IFAC
XK=B2/DSQRTIAZ+B2)
Z1=ABSDSQRT(L2-B1%81)
IJ=ABDSORT (B2-BU*BJ)
Wl=ePl/2,.
Wi= Pl/7ce
1FiZ1.6T..0) wi=DATANIBIZZ])
IFEZU.6T..01 WusDATANIBJIZ/Zd)
Ow= twJ=-w]l) /FAC
wC=Pl/2. -~ml=DW
St1)=0.
00 11 Isi,IFaAC
SeC=0SININC)
CWC=0COStul)
Rz ATB/DSQRY (B2oSWCeSHCeAZsCuCoCul)
OX=R*CWC~BI1
OZ=R*SWC~Z1
SEI+11=S{11+DSQRT(DX=DX+DZ*D2)
BIxGleDX
ZlxZ1+4D4
13 wC=w{-0n
DS=S{IFACII ZXINC
ST=0,
WC=R1/2. wul
14 DO 15 K=121FAC
JEKe
IF(S(J) «GELST) GOTO 16
15 CONTINUE
16 AINC= =2
AINC®AINCODW
ANG®WC~AINC= ((ST=S{d=1}1/(5(J)~Sty=11])s0w
SSmDSIN (ANG)
CCeDCOS LANG?
R» ATB/DSQRT(B29SSeSS+A2*LC*(()
IRDABS tReCC)
2R=DABS (R*S5)
Q@ = DABSI(CC) LMl
IFIXRLLELXRKY ANGT=-QeDATAN( (AB®XR)} /DSGRT (B2-XR¢XR) ]
IF(XR.GT XK} ANGT=-Q®IP]/2, «DATAN(BA®ZH/DSQRT{(A2-ZIH®IRI}}
Sa = DABS (A} LB
XGL{1eII)BX0eXROC WG

L1l



XG(2s113SYO+XRESHQ
XQ{3+11)=70+ZRR3

DIRC1» I1)=DCOS{ANGT) #Cu®sa
DIR(2,»I11=DCOSIANGTI®SH®5,
DIR(3«I11=0SIN{ANGT) #54
DIR{&sI1) =-S5«

D.R{BsIII= CW

IF(I1.EQ,.JJ)  GOTO 19

I1=I1ely

ST=ST+DS

GOTO 1«
Casees s REPEATED NODAL COORDINATESAND EI COSINES,
17 160=1ABS (160}

IF ¢ lJa.LEW1 } I=1ABStIN
IF © IJeLEal ¥ Tu=1
IF € 1J.6T.1 3 1I=1
J1=0
20 00 18 J=llvddvrly
00 18 L=1+3
DIRIL +JI=DIRIL sJ~1)
DIR(L*3sJ)=DIRIL«30u=1)
1%} XQ{L e JISRQ Ly J~1) UL}
JI=JIs]
IF { JI.6E.160 ) 60 TO 19
11=11+1
NRENNDS {
G60TO 20
19 IFC{JJL T4 NUPTS) JAND G (ET. LT NUPTS) 1 GOTO ]
Cossaa INPUT DIRECTION COSINES FOR ARBITARY NODAL POINTS.
51 PRINT 901
53 READ 95emeLIMaMOPEL sER
PRINT 33s My LIMs MOPy E14 E2
IF{ M LEL0) GOTO 57
TEST)=DABS(EL {111 vDABSIEL (2)) «DABSIEL{3))46Tuat
TEST2=DABS(E2(1)1)+DABSIER (2)) «DAUSIEZ(3) ) 4GTa00
IF{MOP.LELD) LIM=M
IF(MOP.LELO) MOP=]
DO S2 L=MeLIMsMOP
D0 52 K=1:2
IFATESTL) DIRIK » LI®EL(K)
S2 IFUTEST2) DIR(Ke3s LISERIK)
GOTO 53
57T L = 3 * NUPTS
WRITE (3) Xx@ LMB 6726
WRITE (3) DIR LMB 6/26
Ceeves INPUT MESH,
FRINT 902
89 READ 93sJdJde (1G{TsJdudeInled) sMOUL P NLAY s LASTEL
PRINT 193edds (IG(Isdud) sI=1es) «MODLINLAYLASTEL
193 FORMAT (B{lXs1%))
IF { JJ +EGe NUMEL ) 607D 66
IF ( NLAY .€Q« 0 1 60 TO 59
62 11=JdJ
IF( MODL ) 69e6D,64
&0 IF(11.EQ.NUMEL) GOTO 66
READ  93+s0Je {IQ{I203)21=144) +MODLINLAYSLASTEL
PRINTIF393Je {1G{T2JJ) sIS1+81 +HOULWNLAYSLASTEL
IF{II+1.EGudd)  GLTO 62
JE=Jge2
BO 63 Jy=lleuk
DO 63 K=lss
63 18K J*132]QEIKeJ) €]}
1F{Jdd  ~NUMEL] &&+664+66

66 JFAC=IGQ(LsII)~]
DO 65 I=1sNLAY
N= (MO0t +1 (=1}
DO 65 J=1.MODL
IG(LsIT)=MeJ+IFAC
1Q(4:11)=1Q11+111 4}
1G(2,111=1GQ(4+1])+M00L
1G(3.111=1G{2+11) ¢}
65 1I=11¢1
IFtII-1 = NUMEL} S59:66:66
69 II=JJeNLAY
DO 72 J=I1T1+LASTELsSNLAY
L=J~NLAY
00 70 K=lsé
70 IQ(Ks W3 =1GIKL}=MODL
IF ¢ IG{3sL1.LE-0) 1Q(3,u5=0
IF ¢ Ia{ésL3.LESD ) IGts,ui=0
72 CoNTINUE
IFILASTELLLT NUMEL) GDTO 59
66 PRINT 4903
DG 1100 I = 1s NUMEL
00 1000 4 % 1y 4
1000 KQ(Jy = 1Ay}
1100 WRITE (1) KO
Covses INPUT MATERIAL TYABLE.
DO 67 IIs1oNUMAT
READ 100+I+¢SMAT(UsEd s u=ls?)

67 PRINT 96912 (SMAT(Jel)ruxmleT}
Caweeo INPUT ELEMENT PROPERTY CAROS,
PRINT 906

15 READ 97 eIl o JUsLIMeMODL oKKy iDMAT (I} e I=145)
PRINT 98411 sJJsLIMiMODL sKKe (OMAT (T} elx1+5)
IF(LIMLLEZO)  LIMx]]

IF(MODL.LEL0)  MODL*)
DO 7)1 I=11,LIMsNODL
ITYPELTLY = ud
QTYPE(]) = KK

DO 71 J=keH

T1 TMAT LU T =DMAT (J)
IF(LIMLLTWNUMEL) GOTO 75
DO 2200 1 = )l» NUMEL
MTYPE = ITYPE(])

QUADT = QTYPE(I)
WRITE (2) MTYPE»QUADT
00 2000 W = 1y 5
2000 DMAT(J)Y = TMAT (Jel}
2200 WRITE (2} (DMAT(JU}+Jz1+S)
Cevens INPUT DISTRIBUTED DADS ON ELEMENTS.
PRINT 35

40 READ 36s11» LIMsMODL » (DMAT LI} o I=1»5)
PRINT 37411y LIMsMODL s (DMAT (I} »I%155)
IF(LIMaLEWDY L IM=II
1F (MODLLEL D)  MOUL=1
DO 41 I=11sLIM»NODL
DO 41 J=1yS

41 DISTLDtJs ) =0MAT ()

IF(LIM LT NUMEL) GOTO 40
DO 4400 I = 1+ NUMEL
DO 4000 J = Le 5
4000 DMATIJ) = DISTLD(Us [}
4400 WRITE (&} (UMAT(J)»Jd=lsD)
CALL WINDI(3+D)
CALL WIND(1+3)

LMY 6/26

LMB 7707
LM 7s02

LMy &/726

LME 6776

LMB 6/26

811



1

T4

16

CALL WIND(2+3)
CALL WIND(443)

L =23

* NUPTS

READ (3) xo

READ

{3) oIr

CALL WINDI(3,1)
DO 6000 I = 1y B0O1
5000 IB(1Y = ¢
Cennee INPUT TEMPERATURE CHANGES

PRINT

300

301 READ 30Z2sMsLIMsMOP.TEN
IF (M.LE.0} 60TO 777

PRINT

303 ML IMIMOPS TEN

IF{NOP,LE.O} LIM=M

IF(MDPLLELO)  MOP=]

0D 304 L = MeLIMsMOP
304 TENP(L)=TEM

G0 10
Tr IF
T3 PRINT
PRINT
DO T4
PRINT
PRINT
PRINT
00 T8
PRINT
PRINT
PRINT
1T 0O 83
READ
READ
00O 8%
85 DWAT(

READ
READ

301
(IBEN 6T, 2) GO TO 77
904
T80
I=14NUPTS
G2olwiXG(JrT) e dmls3)«TEMP (]}
101
T02
I=]1,NUPTS
32¢ I (DIRISe T D o udmlnd}
%05
703
Mx] s NUNEL
t1y Keg
(2} MTYPEQUADT
I=1s¢4
1I=SMAT (1 «MTYPE)
Gl = SMAT{S«MTYPE}
G2 = SMAT(6MTYPE)

TPC(BI®(SMAT(ToNTYPE)SEM) 7 {24 . % (1. ~VM}}

TEC (63 =SMAT(T«MTYPE)
2y TH
(4) ELOAD

NODESe4

1F (xa
IF{KQ
DO B2

(4)+LE.Q0) NODES=3
(1) oLE O ANO KO (&) JLELO)
J=1¢NODES

K=G LS

IF (NODES.EQ.2)
CleDSQRT
C2=0S0QRY

00 81

60 TO 600

L=1.3

DLILy S =DIRILIK) /CY
A1 D2(LsJ)=DIR(L+3+K)/C2
600 X =XQL1K)

YN =XG(2+K)

Z{SH=X0(34K)

TPCJ

ysTERP(K)

82 IR(K)=IB(K)e]

IF

PRINT 94 sMysKQeMTYPE yQUADT y THy TRC (6]}
T8 IF (NODES.GT,.2)

THI2)
60 To

(IGEN .6T.2) GO TO 78

GO TO s10
= EM
&2¢

610 TH(S)I=TH(5)*P1/180.

D=EM/

{le=vMsyny

NODES = 2

{ DIR(IAIO) #R2+DIR(2K) ##Z2eDIR{I4KI#82 )
( DIR(ASK)I##2eDIRIS,K) ##2eDTIRCE K #U2 )

LNg
LNB

6s26
6/26

Z2MARTS

LMB
LNB

LmB
M8

LNB
LMB

LmB
LMB

LMB
L~B

r702
T702

T/02
T702

Y702
T/02

6726
6/26

6726
6726

27HARTS

620
83

19

a4
$0
91
92

95
96

98
150
%60
901
802
903
904
T00
To1
102

D11=DsDSQRT(RM}
D22=D/DSART (RM}
D33=20#{)awYHBYMI® . /() . s GM)
DI2=DwyM
WRITE (3) KG+MODES,QUADT
WRITE (3) Tw58
CALL WINDIl41}
CALL WINDI(Z2:1)
CALL WINO(As]}
CALL WIND { 3.3

IF (IGEN.GT.Y) 60 T0 79
PRINT B4¢(IBUIY«Ixl4NUPTS)
CONTINUE
MRITE (23 IB
CALL WIND ¢ 2+¢3 %
CALL SEARCH
FORMAT (1HD,6012)
FORMAT { 4I4«1Xe9F7.3 )
FORMAT { 414+2X«1P3E1244/18X+1P3ELI2.4/1BX21P3EI2.4 )
FORMAT { I4,2XsIPAELZ.4 )
FORMAT (B14)
FORMAT (1Xs5144212+1PAE10,3+F6.1+1PE]10.3 )
FORMAT { 3144+5Xs6F7,5 )
FORMAT ( T442XeIPTEL12.4 )
FORMAT (B1445F 10,0}
FORMAT (1XeB5T4+2X¢1PSEL1Z2,4 )
FORMAT { 144¢6XoTF10.0 )
FORMAT (4610 DUPLICATION OF INPUT NODAL COORDINATE CARDS. )
FORMAT (/53K DUPLICATION OF INPUT SURFACE DIRECTION COSINE CARDS.)
FORMAT (/7494 OUPLICATION OF ELEMENT NODAL PDINT NUMBER CARDS. )
FORMAT (40HODUPLICATION OF ELEMENT MATERIAL TABLE. )
FORNAT (4THONODAL COORDINATES AND TEMPERATURE DIFFERENCES. )
FORMAT (&M PTay3Xy 1HXe1)1Xo MY s 11X IHZ 411X SHTEMPL)
FORMAT (2BHOSURFACE DIRECTIONS COSINES. )
FORMAT ( 4H PT.96XsIHEIX 96X+ IHELY 46Xy INELZ

SXy IHE2X s 6X s IHER2Y 26X s IHE2Y )

LMB 6726
LMB 6726

LMB 6726

.
205 FORMAT(64MDEL e NOJ+EL. NODE NOSeoMNATL. TYPE2T4ELe TYPE=SEJ+ELTHICKNZ2ZMARTS

<ESSeANGe 1O0HTHER,COEF .}

22MARTS

T03 FORMATLIXsAH ELav3XeIHIs3Xe1HS 33X IHKIXEHL T Ev3X92HTI+8X+2HTJe 22MARTS

906
30
31
32
33
s
36
37
303
360
302

BXy2HTKSBXe2HTLBXs L IHANG  ALPHA )
FORMAT [ 39HODUPLICATION OF ELEMENT PROPERTY CARDS.)
FORMAT ( 4T4+2X41P3E12.4 )

FORMAT ( A1642X91P3E12.44/7418Xs1P3EL2.0 )
FORMAT ( T4,2X¢6F9.5

FORMAT { 314+4Xs6F9.5 )

FORMAT (2THOELEMENT DISTRIBUTED LOADS. ¥
FORMAT { 314+8Xs5F10,0 )

FORMAT (1Xy3I14410X+1PSELR,4 )

FORMAT (1X231432X1PEL1Z.4)
FORMAT (4 THOOUPLICATION OF INPUT NODAL TEMP, DIFFERENCES,
FORMAT (31443X2F10.0)

RETURN

END

611
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91

SUBROUTINE SEARCH
IMPLICIT REAL®B (A«H.0-2)

COMMON/SS/IGENs ISHEAR» JSHEAR «+NRED+ IREACT s NTRUSS, ISIG
COMMON/CY/NUMEL « NUPTS « NUBPTS + IBANOP s MBAND s NBLOC s NOFRE s IFLAG» NUMAT
COMMON TQ41, IB(BOLYJOUMMYs LLJG(BOO) s QGI20+41)

DIMENSION INTEG(2426)
EQUIVALENCE {INTEG+IO)
INTEGER &
00 3¢ I=1,2426
INTEG(I) = o
READ (2} IB
IXK = 1
DO 50 LZ = ls NUMEL
READ (1) Ia
NODES = 4
IF {IQi4).LE.0) NODES = 3
IF (IG(3).LE.0) NDOES = 2
00 4 I1 = 1, NODDES
I = 1G(ID)
IB(I) = IB(I) - 1
DO 4 JJ = 1. NDDES
JdoEIQUIN) - IK ¢ ]
IF U JQUJUL6T.1 ) GOTO 4
DO 1 LL = 1+ IBANDP
IF U QiLLed) EQW0 ) QfLLsJ) = I
IF ( GULL+J).EQ.1 ) GDTO 4
CONTINUE
COMTINUE
IF ¢ I8(IK).6T.0 ) 6GOTO S0
DO 8 1 = 1s IBANDP
IF { 6tl+1).EQ.0 ) G&GOTO 9
1T =X
IF 1 IK.EQal 3 LLJQUIKY = IT
IF { IKWG6T.1l 3 LLJG(IK) = LLgQtIx=~1y + IT
PRINT Sls LLJGUIK]
IF (1GEN.GT.1) 60 Y0 7
PRINT 911K (QUI+1)+0%]117 3
IF  1IK.EQ.NURTS} GO TO 50
IF  {IK.EQ.NUPTS) 6O TO 50
DO 5 1 = le 40
DD 5 U = 1. IBANDP
Gldel) = QideIel)
IK = IK » }
IF ¢ ISCIK).EQ.D ) GOTO 10
CONTINUE
CALL WINO & 141 )
CALL WIND ( 221 1}
READ (2) 1B
WRITE (1) IR
WRITE (13 LLJQ
CALL WIND ¢ 103
CALL WIND  2+1 )
FORMAT (1016 )
RETURN
END

LMB

LMB
LMB
LHB

LMB
LMg
LMB

LME
LMB
LMEB

1/0%

6727
6725
6/25

6725
6725
&/26

&/26
T/02
r/02

22MARTS
Z2MARTS
22MAR7S
22MARTS
ZZMARTS

LMB 6/26

LHB
LMB

6/26
6/26

c
¢

2
3

SUBROUTINE OVER2
IMPLICIT REAL®*B (A-H,0-2)

COMMON/CY/NUMEL sNUP TS NUBPTS  IBANDP +MBAND « NBLDC A NDFRE« IFLAGLLVECYT
COMMON/S55/7IGENs ISHEAR + JSHEARSNRED S IREACTINTRUSSSISIG

COMMON LLJG(B0O)

COMMON

OIMENSION TH58(58)
INTEGER Q+QUADT

EQu
EGU

DINDFRE®#246425) s IBD{NUBPTSsNOFRE+ 1 ¢) BC (NUBPTS oNOFRE) » TBC (NUPTS)
IB{NUPTS) +P{NUPTS  NOFRE) sRINDFRE) + I1QGs Xs Y+ Z (NODES) .«
DATA DX/Levé®0er000)1093%0,02%0000002%00¢3%0,4)490404%000ls/

IVALENCE (LLJQ+P) 4 (P>CQI)
IVALENCE (THQ.THS8)

Conewe INITIALIZE BLANK COMMON (EXCEPT IB).

bo

1 I=1,3848

1 LLJQery =0
00 2 I=1+5
00 2 J=1s200
2 BC(JsI) = 0,0
00 & I=1.9520

&

3

w

74

79
155

21

24

Px}
oo

1) = 0.0
3 I=1.50

ISPRNGII) = ©
READ €11 I8

READ (1) LLJQ
CALL WIND ( 1s1

IK=

1

PRINT 82
PRINY 83

L=0

L=iel

READ B0+ {IBD (LK) ¢Kx1eB) «LIMeMOP, {BCLILIK) sXK=105)
PRINT BLe(IB0(LeKIoRK=14H)+LIMIMOPs (BCILsKI oKZ195)

IF(L.FR.NUBPTS) GOTO 74
IF (MOP) 72748
KZIBD L 1) eMOP

D0 70 I=KsLIMsMOP

L=Ls]

180

{Leli=]

DO 76 J=1.5

180

tLedel)=IBD{L~10Jo )

BC(LsJI=BC(L=1s)
IF(L.LT.NUBPTS) GDTO 7

IF  (IGEN +GTs 2) GO 7O 155

PRINT %0

PRINT 91

DO 79 L=1«NUBPYTS

PRINT 89+ (IAD (LX) +K=146) 4 (HCIL oK sK=145}
READ BO+NSPRNG

IF

(NSPRNGJLE. 0) 6070 15

PRINT 29

L=0

L=Lel
READ 22+ ISPRNG(L) sLIMaMOP» (SPRING(KeLI+K=1s5)
PRINT 23» ISPRNG(L) sL1MaMOP & (SPRINGIK+L) 2K=15)

IF
IF

(L.EQ.NSPRNG) 60T0 1S
(MOP) 21421424

x=ISPRNG (L} *MOP
DO 28 1 = KsLIMeMOP

IB(BO1) 2 IG{4) +NODES+QUADT 2 IX1+IBO(200:6)IBC (8001012401
1BCI200,5) sPXIIT971) +THR {4 sANGLTPCIE I o X L&) ¢ Y{4) 2214} 4011

D122 022 D33+ Gls 629 C(39063s El3es)s GMy QP 4D
PX2(1109)e TGI3s3+4)s PXI(I6)+SPRING(5:50) 4 ISPRNG (S50}
DIMENSION P({54850+3) +R(5)1»DX{5+s51+LO0ADSII}CRIIZTSD)

LMB 7709
LMB 7709

LMB 6/25
LMB 6/25
LMB 6/26
LMB 7/02
LMB 6728
LMB 6/26

LMB s/25

LMB &/28
LMB &6/28
LMB 6728
LMB 6728
LMB 6/28
LMB 6725
LME 6725
LME8 6/26
LMB 6726

22MARTS

22MARTE

0¢t



25 SPRING(JeL)=SPRINGtUsL~1}

IF{LLLTNSPRNG) &OTO 21
IF (IGEN.BT+06) GOTO 15
PRINT 26
PRINY 27

DO 28 L = 14NSPRNG
28 PRINT 35+ ISPRNG(L) » (SPRINGIK L} +K=145}
15 READ SO+LVECTLOADS»UPL
PRINT S51sLVECTLOAOSUPL
50 FORMAT { 41444XsF10.3 )
5) FORMAT (/41K NUMBER OF INDEPENDENT LOAD CASES
41M NUMBER OF LOADED NODES FOR LOAD CASE 1
61H NUMBER OF LOADED NODES FOR LOAD CASE 2
41H NUMBER OF LOADED NDOES FOR LOAD CASE 3
24H UNIFORM VERTICAL LDAD = 1PE12.4 )
00 9 I=1sNUBPTS
J2IBOtIe1}

9 18C(N=}] )
READ 85+ISKIP,JSKIP
PRINT B85+ISKIPJSKIP

IF (IGEN.LTW2)

MTRUSS=0

NGBLOC = O

DO 10 LZ=1+NUMEL

READ (3) IG+NODES+QUADT

READ (3} THS58

IF { NODES.EQ.2 3} NTRUSS=sNTRUSSel

IF (INODES.EQ.2} a0 Y0 s00

PO 20 I=1.:NDDES

TGils1s12=C(1a1

TGL1e2:¢13201(2.1)

TG{)le3e1)=CH34 1

TG(3sleld= CL2¢1)BELI+1I=CLI4])*EL2s1}

T613+2s11==Ci1s122E(Il)0C(I0II*ELLST)

TG(3e3s])= CLLIIBE(Zy1)wC2p])%E(L ]

CONSTEDSORT(TG (3014 1) *%20TG(I9241)9%2+TG(343,]1)002)

TG(39191)=TG(341+1)/CONSY

TG(342+112TG(342+1) 7CONSY

TGi3s3+1)=TG(39341)7CONSTY

TG(2s1910® TG(1e3+1)#TGI3 42411 =T6(142+s112TG(343,1;

TG{292+1)==T6(19321)2TGI301el)+TGI141+41)8T6i3,351
20 TG(24391)= TGII92o010TCIA3 01l ~TG(1s1411®TGE30241)
600 CALL ODSHEL ¢ ISHE AR JSHEARLZ o ISKIPs JSKIP 1}
10 CALL SUBSPR (IK+NSPRNGYNOBLOC)

PRINT 87

CALL WIND { 1.2}
CaLL WINO & 341 3
CALL WIND { 443 )

CALL RLDAD [ 1+3+P¢1+LVECT 850
JK=NBLOC* IBANOP
IFIIKaGTeuK} GOTO 31
K=1
IKalK«l
0O 30 I=IKsuK
a1y = 1
WRITE (2) Kyl
WRITE (2) DX
30 WRITE (23 o0x
Cownes INITIALIZE ENTIRE BLANK COMMON,( EXCEPY LOADS(3) ),
31 00 36 1=1,12750
36 CO1(I} = 0.0
00 11 L=)lsNUPTS
I={L~1)*NDFRE~]
JE1eB8500

LI ]

157
157
13-74
157

LMB &6/26
LMB 6726

LMB 7/05
LM8 7/05

SN = JeNDFRE~1 L#B8 6/26
READ (43 (CALUK)K=ueUN} LMB 6726
JN = TeNDFRE-] LME 6726
11 READ {4) (CQLIK)}aK=14UN) LMY 6/26

41 DO 40 I=1+NUPTS
DO 40 J=1«NODFRE
DO 40 K=1ls2
40 PidelsK) = Prdrla3) o PidslsK)
DO 73 1=1.LVECTY
1I=1
1F (LOADS (1) L LE. D)
PFRINT 8441
PRINT 86
READ 1000sMsLIMsMOPIR
PRINT 85¢MyL IMsMOP,R
IF(MOP(LEO) LIM=m
IF {MOP.LELO) MOPal
DO 72 L=MeL IMamOP
11=11+¢1
DO 72 k=115
T2 PikKslLel) = P(KsLsI) & R}
IF111.LELLOADSIIIY GOYO 71
73 CONTINUE
CALL RLOAD  1¢2+Ps14LVECT 850 1
DO 14 Lv=1«LVECT
IFLIGENBT 23
PRINT 92.L¥
PRINT 86
PRINT 88y (Lo (PLJIslLoLV)2Iml «NDFREI sL*1sNUPTS)
14 CONTINUE
CALL WIND { 243
CALL WIND ( 441
CALL QTAPE ( lr4sPePX240 )
B0 FORMAT ( T4+2Xs511s1X921495F10.0 )
81 FORMAT ( JaslXeSI1s1Xe21441Xs1P5E10.3)
82 FORMAT (ATHODUPLICATION OF INPUT BOUNDARY CONDITION CAROS./
. SIH D1+D2 AND D3 ARE TRANSLATIONS IN BASE COORDINATES./
. 48H 04 AND 05 ARE ROTATIONS IN SURFACE COORUINATES. )
83 FORMAT(234 PT, 12345 LIM MOD D1 +8X2HD2+8X2HDI s BX2HU4+8X2HDS)
B4 FORMAT (4GHOOUPLICATION OF INPUT NODAL FORCESsLOAD CASE N0.15)
B85 FORMAT ( 31643Xs1PBE]1.4 )
86 FORMAT (12H PT. LIMN MODs4X4+ZHPL1 1 9X2HPZ 1 IX2HPI 1 9X2HPA, GXZHPS )
87 FORMAT(SO0HOPOINTS CONTAIREU IN EQUIL.EQS.sRIBHT OF DIAGONAL./
. ™ EQ. 3
1000 FORMAT ( 314+8X+5F10,.0 }
B8 FORMAT(I#4»11Xs1P5E11.4}
89 FORMAT { 14#¢512+1Xs1PSELL .4
90 FORMAT (SS5HOBOUNDARY CONDITIONS OF PDINTS HAVING SPECIFIED DISPLS.)
91 FORMAT (16H PTe 1 2 3 4 & 2HD1+9X2HDZ2sIXZHDI s IAZHOA, 9X2HDS )
92 FORMAT(4IHOTOTAL APPLIED NODAL POINT FORCESLOAD CASEIT)
26 FORMAT (54HOBOUNDARY CONDITIONS OF POINTS HAVING SPECIFIED SPRING
«l11H CONSTANTS. )
27 FORMAT (4K PTesSX2HD1 s 9X2MO2+3X2HD I+ IXZHDA»IXZHDS )
29 FORMAT (I9HODUPLICATION OF INPUT SPRING CONSTANTS. /
S1TH PTe LIM MOD D1+AXZHD2+8X2HD39B8X2HD4+EX2HDS )
22 FORMAT {31448X+5F10.0)
23 FORMAT (1641Xs21491X,1P8E10,3)
35 FORMAT (I14:4Xs1P5E11.4)
RETURN
END

GOTO 73

7

—

GO 1O 1%
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SUHROUTINE SUHSPR (IKsNSPRNGeNQGBLOC)

IMPLICIT REAL®6 (A-He0-2) LMB 7/09
COMMON/CY/NUMEL +NUPTS «NUBPTS s IBANDP s MBAND s NBLOC+NDFRE + IFLAGSLVECT
COMMON/SS/IGENs ISHEAR« JSHEARWNRED s IREACToNTRUSS» ISIG

COMMON LLJQ(BD0)

COMMON  IB(801)s 10(4)s NODESy IX1(2002)s QU260 ) PX1(1000),

1 D{259240 )0 PX21125)s PMI(5425)s St37+37)y PT(37)
2 PX3(1614)sSPRING(54501)+ISPRNG(50) LMB 6/25
INTEGER @

DO 4 1I=1+NODES

I=I1Q(II)

L=(II=1)5

K=]=IK+1

PMI1sK)aPT(Le]) +PHM (1K)
PM(29K) =PT(Le2) +PM(29K)
PM(IeK)=ZPTIL+3) +PM{3IK)
I8« =I8tI) =1

DO & JJ=1»NODES

J=1Q(JJ)

IF(J.GY.I} GOTD &
NB=LLJO(J)

IF(JeGTal} NB=NB=LLJGtJ=1)
LLCJU=0

IF(Je6Tel} LLCUSLLIG(U=1) =NGBLOC
00 1 LL=1sNB
IF ( Q(LLCJ+LL) «EQ.0 }
IF ( QULLCU+LL) «EGeI )
CONTINUE
1S=(I1=-1)*NDFRE
JS=(JJ=1) *NDFRE
DO 3 IC=1+NDFRE
N=ICeJS
MN={IC~1)*NDFRE
00 3 IR=1.NDFRE
M=IR+¢IS
MN=MN+]
D(MNsLLCJU+LL) = D(MNsLLCU+LL) + S{M«N}
CONTINUE
IF(IB(IK).GT.0) GOTO 6
IT=LLJQ(IK) =NQBLOC

IF (IGEN.GT.1) 60 To 7
PRINT S1eIKs(QtI)sI=z10IT)

CALL BLAYER (IKsNSPRNG»IT)

QULLCJ+LL)Y =1
6070 2

IF ( IKeEQNUPTS ) GO TO 6
IS = IT « 1

DO S I = IS, 240

QUI=IT) = G(I)

DO 5 K=1925

DIKsI=-IT) = DI(K»I)
NQ@BLOC=LLJQ(IK)

IK=IKel

IF ( IB(IK).EQeD ) 6070 10
FORMAT(TIT)

RETURN

END

SUBROUTINE BLAYER (JsNSPRNG.IT)
IMPLICIT REAL®8 (A~H:0-2)
COMMDN/CV/NUMEL sNUPTSeNUBP TS+ IBANDP y MBAND s NBLOCsNDFRE » IFLAGLVECT

COMMON  1X11(1608)418D(20046)9 IBC(B00)s GR(240)s BC(200+5)s
1 DD (5454240) 0P (502514 PM(5:25)s PX1(1369)y PT(37)s
2 PX2(1614) +SPRING(5+¢50) ¢ ISPRNG(50)

INTEGER QQeXoYe2
DO 40 II = 1,IT
I=Qa(ID)
IF ( 1.E0.0 ) GOTO «0
IF (I.NE+.J .0OR. NSPRNG.LE.O)
DO 32 L = 1+NSPRNG
IF (ISPRNG(L) oNE. )
DO 33 M = 14NDFRE
33 DD(MsMyII) = DD(MoMsII)*SPRING (ML)
32 CONTINUE
40 CONTINUE

GOTO 40

GOTO 32

LT=25e]T

WRITE (2) IT«(QQUIT)oII=1,IT)

WRITE (2) (C(DD(IToLoMIoII=1s5) el =1e5)eM=]yIT)

1 00 10 II=1,IT

I=ea(1I

IF(I.EQ.0) GOTO 10

x=I18C(D)

Y=IBC(J)

2=1=del
Covsesnnnecssssosceorussansoceccasseccccccseosnssossscncsssssnsnscescccnsssses

IF(I. «OR.X.EQ.0) GOTO ¢

CeeeosMODIFY LOAD VECTOR FOR BoC. ON UPPER BLOCKS.cessoovsosascocsscsnnss
DO 3 L=1+NDFRE
IFCIBD(XoL*]l) aEQ.O)
DO 2 M=].NDFRE

2 P(Mel)=P(Ms1) = DD(LoMsIT)®BC(XsL}

3 CONTINUE
Crvvavsaoceesoneoeereenveesesesessnscesessesesecssosseccsonsosennsncstocssnntoon

4 IF(YL,EQs0) GOTO 7

CeoveoeMOOIFY LOAD VECTOR FOR BoC. ON LOWER BLOCKSceeesscvocesccosrcscscee
DO 6 L=1+NDFRE
IFCIBD(YsL+]1) sEQ.O)
DO 5 M=1sNDFRE
P(Ms2)=P (M2} =DD(MeLsII)®BC(YsL)

5 DD(MsLs112=0.
6 CONTINUE

Casenconsvssaoencscsniesessnsncscttnssontttosssscsadnsocneccctonssornsssoae

7 IF(X.EQ.0) GOTO 10
DO 9 L=1sNDFRE
IF(IBD(XeL+]) .EQ.O)
DO 8 M=1sNDFRE
DD(L+MsI1)=0.

8 IF(1eEQeJeANDoL.EQ.M)

9 CONTINUE

C ot eonenondnnneenesaresorracstececeesvnstateososentsassossssnnsssessssosnsson

10 CONTINUE
ZEROx0,001
DO 990 K = 1.IT
IF (QQ(K)«NE.J) 6O TO 990
D0 900 I =1+NDFKE
IF (DD(IeleK)aLELZEROD)
900 CONTINUE
990 CONTINUE
wRITE (2}
IF{Y.EQ.0)

6070 3

GOTO 6

GOTO 9

OD(MeLoIIN=1.

DD(I+IsK) =100

(C(DDCIToLsMIoII=10a5)sL=105)sM=]lsIT)
GOTO 14

LMB 7/09

LMB 6725

LMB 6726
LMB 6726

LMB 6/26

44\



11
14

DO 11 K=1.NOFRE
IFLIBO(Y K1) EQul) PMIKs1I=0,
IFLIBDIY K 11 EQal) PIKel) = BCUY XD
WRITE (&) (Pilsl)el=145}

WRITE (&) (PM(I+1)oI=145)

DO 12 I=1+24

DD 12 X=1sNDFRE
PMIKs 1) =PN{KsIel}
PiKeII=P{XKsJel}

RETURN

END

LMB 6/26
LMy 6726

SUBROUTINE QDSHEL ISHEARSJSHEARLZs ISKIP+JSKIP )
IMPLICIT REAL#8 (A«H,0-2) LHB
COMMON 7CV/NUMEL +NUP TS NUBPTS s IBANDR s MBARD S NBLOCY NDFRE+ IFLAG«LVECT
COMMON LLJQ (800}
COMMON  IX1{801)e 10(4)'NODES+QUADT: NTRI. IX2(22603, PX1(7250),
S137+37)s PT(37)s TH(3)s AD(344) s BD(344) 4
TO(3936)y TRI3+36)s T{3+3e6)s XMGI323543s THU(41+ANGe
TPCI6)s X&)y YI&)y 2(4)s D11y D12s D22y D33 Ble 625 PA3(24),
GMe QP (&) AREAs Bi33s A(3)s XM{3s3)e STE15¢15)s PXE(S06],
XS1292) s SCOND(159604) s TG(3e394) s TO(3s3)e TOIS(3+353)
TRDT 343031 X1e Yl 215 X2+ Y2s 22+ X3 ¥Y3s 234
PEC(3sS)e Ple P2y P3+s Dl D25 D3+ 0le Q2» Q3+PX5(300)
Cotensnescesnsesnnssnasernrsecssosnssssosnasensnsessasnasasvenanssassnsancs
DIMENSION LOCS103+TX(303)IPEAK{I4) +LOCB115»4)400CA(3+s5e%)

1 LOCNIS) o TP {9} +TENP (3)

DIMENSION TH23(23)+TH324(324)+5481(481) LMB
EQUIVALENCE (THQ+sTH23) o (THM(3)+TH324) 2 (S(1+21) +S4B1) LMY
EQUIVALENCE (X1sTX) o iP) s TP}

OATA  LOCG /

1 1o 2y 39 &9 Te B921122:23028429135526027434,

2 Ge Ts BellsI2013+21422+23+30931136428+29+35,

3 1101201351691 7918921922¢23:329330370304319236.

& 165174185 1 24 3921422923.2612T 434432433437 7/

DATA LOCB / 14s 29 3+ 4+ 5+ 60 75 By 9010+21+22423+24425,

1 63 Ty Be FeI0011012¢13414¢15421422423+9244250
11512013014218¢16117+1B¢19¢20421022+23924.25:
1621741841920 1o 29 34 %9 5421122523024425 ¢/

DATA LOCS 7 112+6e7011012e16017921422 7
OATA LOCR/123:5:7+¢9/y IPERM /24344917
REAL®B NU»NORM LME
INTEGER QuADY LMB
Caenosnsoeansevesessessassassseassesssnnassssrssatesssnssannosssvsossorase
Craoeos TRANSFORMATION MATRICESeueonovennsrsasnscsvesrnnvacssosessesoncnss
CoveeaTtI03vA)anevaeeFROM Z TO 2ZBARsesovsessnsanvesosnnennssosassvsasssnss
ConeoeTO{313)anccnaceFROM 7 TO X0ossasnsovoarassrsrsssorssrecsanscssscores
CoooosT6(30208) 400eseFROM 7 YO 2%.0cecvcascnorssnosrersssconssssassvanas
CoooosTROT(39¢393)0aeeFROM Z% TO ZBARsesssacannecscocesrssnspsecvosnnsnes
CovoweTDIS(393¢3)0eeeFROM 2B TD ZBAR.vseseceencosasssocsnsosssscsrcnsansce
ConoaesTlIt3v4)sucaseeFROM 28 TO Z0sevvvnonontsvsnenoras
CounseoCOMPUTE INTERNAL MID POINT COORDINATES IF QUAD..,...

00 160 I =1+37

BT(I)=0.

DO 160 J =1+37

160 S(1ed) = 0«
IF ¢ NODES.6T.2 1 &OTO Sq0
CALL TRUSS { IQeXsYoZsTHA(L) «THQ{Z) sS5+PAT+GMsTPC

o O UL A NS e

2
3

IEE YT Y Y TR
csesssrsenccoe

T1/09

6726
6/26

T/09
rs02

WRITE {13 IQ.NODES.QUADT,NTIRI LME 6726
WRITE 1) THZ3 LMB 6/26

6070 1001
500 NTRI=4

1IF(IQ(43LT.1) NTRI=]
IFINTRI.EQ.1) [IADD=10
IF(NTRI,EQ.4) 1ADD=20
IF (NTAI.EQ.1} TEMP {31 =TPC (3}
IFINTRILEQe4) TEMR(3)=0,25%1TPCILI+TRCL2)+TPCI3}TPC(4)}
IFINTRILEQ.1} THiI3)=THQ(3)
IFINTRICEQ.4) TH(IIm(THQLLI »THA(Z) *THQ(I} +THQ (&)} /4,
DO 10 I=1+3

10 LOCQ(I+341)=TADDS]
DD 11 I=1.5

11 LOCB(1+1041)=1ADDs]
IF « B11l .GE. +000001 ) 60 YO 1100
XMQ{lelel} = 0.0

£t



XMG{252s1) = 0,0
60 YO 1040
1100 xC=x1(33
YC=Y (3
2C=213)
TP(3)=0P{3)
IF(NTRILEQ.1) GOTO 700
xc 0.25%{X{1)eX(2)oX{3)eX {4}
YC Qo208 1Y (1)sY 12} {3)0Y (4]}
IC = 025%{Z{110212)¢2{3)1+21(5%))
TP{3)=.25%{QP (1) +QP(21+QP {31 +QP (48}

LI T3 )

Cornew o COMPUTE ELEMENT DIRECTION COSINESs TULedshluancneossotnrrnnsnsance

700 DO 130 N = 1eNTRI
M 2 IPERMINY

X1 = X{M}=X{W)
YiI = Y{M}=Y{N}
21 = Z(M}«Z(N)
X2 = XC = X{N}
Y2 = YU ~ Y{(N}
22 = IC = ZiN)

511 = XleX]lsy¥leyle2le7)
$12 = X1#xX2+v1%Y2+471%22
522 = XR®X2eY2#Y2eZ22072
€osl12 = «512/511

Xe = xg + X1eCOS12

Y2 = Y2 ¢ Y]e(CDS12

22 = 12 « Z1%C0S12

§1 = DSQRT(S11)

$2 3DSORT(X2#XZeT2#Y2e22#22)

TilsleN) = X1/S1

Ttle2eN) = YI/S1

Tls3eN) = Z1/51

T(2s1aN) = X2/52

T(Ze24N} = Y2/52

T(293sN) = Z2/52

TI321eN1 = T{Lr2eRIFT(243eM) = Ti123sNI*T(Z242:N)

T(392eN) 5 T(Ls3eMIBTLZ2s1oN] = TUlleleNISTI243e¢N}

Ti3edsN) 2 TUleloNIPT(2424N) = T{1+2:NI#T12414N?
ConnvelOMPUTE A7S AND B'Secvmesessccscrevsarssostsaasasnsveessssraossasvos

AD(Z2eN) = S1%*CDS12

AD(3IsN} = S]

ADTIeN} = =AD(3IsN}I~AD(Z¢N)

BO{leN} = ~(522¢C0812%S12) /52

BO (2N} = ~AD(I+N)

130 BD(3WN) = D,
CeosseDIRECTION COSINES FOR MID POINT IF ELEMENT 1S & TRIvusesvornrnsans
DO 900 I=1,3
DD 900 J=1,3
EM{lsJdIn0.
TO(Is D) =TG(1sde3)
$00 TDISIIsue3d= Tiledely
IF(NTRILEQ«]} GOTO 701
CeeaasCOMPUTE DIRECTION COSINES OF NL1sN2 PLANE« ccusccrenncencnsnrsrasons
CALL QDCOS ( 4aXe¥s2+70 )
CennsaSUM OVER 4 TRIS. IF QUAD OR | TRI. IF ELEMENT 1S A TRIcevnoensnnan
TH1 GO 301 NT = 1WNTRI
Nl = NT
N2 = [PERM(N])
TRILY=THO{N])
TH(2)=THQ (N2)
TEMP (1) =TRPC(N])
TEMP (2)=TRC (N2}
TP{1)=QPINL)

TR {2)=QP tN2)
Cesra e COMPUTE TRANSFORMATIONS FOR EACH POINT OF TRIANGLEwwcoravsccsnesnnn
DO 200 I = 13
TR{Ie33=TH{])*GM
TPLI+61=T{Is3sNT)
A{I} = AD{I+NT)
B(I) = BD{I«NT}
Tl = TUI»1aNT}
T2 = T{1s2sNT}
T3 = TLLe¢3eNT)
DO 200 J = 13
TROT{LsJdsl) = TI®TG(JsleNL) + T20TG{JSs2:N11 ¢ TI®TGIJyIsN])
TROT(IsJe2) = TI®TGiJalsN2) ¢ T2HTG{UI2:N2) o T3I#TG(J93IeN2)
TROTIXeds3) = TI®#TO(Jel) » T2%#T0(Js2) ¢ TI*TO0(Je3)
IF(NTRI.EQuAORLIFLAGLERQ.]L) TOIStIedeIN=TROT(I4de )
IF (IFLAG.EW.D) GO TO 160
TDIS(1edel) = TROT(IeUsl)
TDIS(IsJrZ2) = TROT(LleJe2)
G0 TO 200
180 TDIS(IsJdel) = TiladeNT)
TOIS(IsJe2) = TUleJeNT}
200 CONTINUE
CaoesoSTORF BASE TRANSFORMATION MATRICESseeeseccssoseceasnsssesaccscncsn
C=DCOS 1 ANG |}
R=DSIN { ANG }
IF(NTRILEQ.l) GOTO 201
CC=TOIS{lels )
AR=TDIS(1+2: 1)
CS=DSQRT(CC*CCoRR*RR}
cCc=CCrCs
RR=RR/CS
C= CC#DCOS{ANG) ~HR®DSIN{ANG)
R= CCH#DSIN(ANG} +RR#DCOS (ANG)
201 CALL SSTOMS { CeReDI1sD125D22+sD33+XM )
XStlsl)=61
X5(2+21=62
X511+23=0.
X5{2+11=0.
KK=({NT~11%¢
DO 1 K=1.3
LSKKe (K~1}43
DO 1 JU=1»3
XMQ (K JeNT) =XM{KA I}
JLEJdel
DO 1 I=l»3
TO(IsJLI=TDIS(IsdeK)
1 TRIIsULI=TROT (10 dsK)
CueeesADJUST TDIS FOR TRANSFORMING TO N COORDINATESssssvencsccssccescass
IF(NTRICEG.1} GOTG 3
00 2 I=z].3
00 2 J=I.3
TDIS(IoJe 1I=TDISLaJe )
2 TDIStEsJs2)3TDIS(10de3)
CoaveaaCOMPUTE AREA OF THIANGLE coosasnvsoososonaacesoscsassonsanssssassess
3 AREA = A(2)9A(2) - A(2)*8(3)
CeaaesFORM AND TRANSFORM MEMBRANE STIFFNESS TO BASE SYSTEM IF A TRI.vaee
CenaeeFORM AND TRANSFORM MEMBRAME STIFFNESS TO 20 SYSTEM If A QUAD..«»
IF ¢ QUADT.GT.0 } GOTO 5000
IF(NTR1.EQ.1) CALL CLSTIO (3.3)
IF(NTRIJEG.4) CALL CLSTIO (5.1
1END=3
IF{NTRI.EG.4) IEND=5
DO 2T 1I=1+1END

1Al



I=LOCM(II) CeesssELIMINATE TRANSL. COMPONENTS NORMAL TO N1sN2 PLANE OF MIDSIDE NODE

IF(IT.LT.4)  IL=11 DO 34 I=1,37
DO 27 Ju=Ils11 S(Is 3)=S{Is 3)+S{1+34)72,
J3LOCM(JJ) S(Is B)=S(I» B)+S(1435)/2,
IF(JJelTet)  UL=JJ S(I+13)=S(I1,13)+S(1436)72,
Ls=1 S(Is18)=S(1,18)¢S(1437)/2,
DO 27 K=ls3 34 S(1+23)=S(1423)+(S(I1,34)¢S(14351+S5(1436)+S5(1,37))1/2,
N=LOCQ (KyJJsNT) DO 35 J=1,37
HI=ST(I sJ)RTDIS(1eKoJLI@ST(I +Us1)®TDIS(24KyJL) SC 3sU)mS( 39J)*S(344J1 /2,
H2=ST(I+1lsJ) *TDIS(leKsJL)+ST(I+1su*s1)#TDIS(2sKsdL) S{ ByJ)=S( BsJ)+S(35+J)/2.
IFI1.EQ.J) LS=K S{130U)55(13,J)+S(369J) 72,
DO 27 L=LS,3 S{1BsJ)2S 18y} +S(374J) 72,
M=LOCO(LsIIsNT) 35 S(2341J1=5(234J)+(S{34+J)+5({35:J)+5(36+J)+S(3740)) /2,
S(MsN)=S(MsN)«TDIS (1oL IL)®H1+TDIS (2, IL) ®HR GOTO S004
S(NeM) =S (MsN) 5001 DO 5002 I=I+4
FORM AND TRANSFORM PLATE STIFFNESS TO BASE SYSTEM IF A TRIeceessess Q1 = x(D) LMB 7/02
FORM AND TRANSFORM PLATE STIFFNESS TO Z0 SYSTEM IF A QUADesseess 02 = v(I) LMB 7/02
IF € LZ.LTJISKIP «ORe LZ.GT«JSKIP ) GOTD 6002 83 = z(I) LMB 7702
GOTO 301 X(I)=T0(1s1)®Q1¢T0(1,2)#Q2+T0(1+3)*Q3
CALL SLCCT ( 9sISHEARNT ) 5002 Y(I)=T0(2+1)9Q1+T0(2,2)902+T0(2+3)G3
D0 300 II = },3 CALL SSTQM5 (DCOS(ANG) yDSIN(ANG) »D11+D124D22+D330XM )
K = 3e11 -~ 2 DO 5005 I=1,3
KK = 5%(I[=1) DO 5005 J=1+3
DO 300 JJ = I1.3 5005 XM(IsJ)TXMQ(IsJdsl)®TH(3)
L= 3899 - 2 CALL QMSSTF ( XsYsXMeST )
LL = 5#(Jy-1) DO 5003 I=1,10
DO 300 M = ],5 11=L0CS (1
J=LL *+ M DO 5003 J=1+10
JS = LOCB(JNT) JJIBLOCS {J)
IF (M.67.3) GO TO 270 5003 S(IIsJJI=S(ITedJ) +ST{IsJ}
T3 = TDIS(3eMsgJ) DO 5500 I = l» 164 5
Hl = ST(Ks L)®T3 PT(I} = PTL]) + PT(21)/4.
H2 = SY(KeleL)®T3 5500 PT(I+1) = PT(Iel) + PT(22)/6,
H3 = ST(K+2sL)*T3 PTI21) £ 0.0
G0 TO 280 PT(22) = 0.0
270 T1 = TROT(1leM=3sJJ) CeeassCONDENSE INTERNAL DEGREES OF FREEDOMsseocoscccoscevsessasvsssasanaase
T2 = TRDT(2yM=35JJ) 5004 IF ( LZeLT.ISKIPeORLLZ.6T.JSKIP } GOTO 6001
Hl = ST(Ks L+1)®T1 « ST(Ks Le2)®T2 DO 6000 J=23+25
H2 = ST(KelslLel)®T1 « ST(Kel,Le2)0T2 D0 6000 I= 1433
H3 = ST(K+2sL+1)8T1 + ST(Ke2sLe2)9T2 S(IsJ1=0,
280 DO 300 N = 145 StJsIr=o,
1 = KK ¢+ N IF ( 1,EQed ) S(Isddmle
IF (1.6T+J) GO TO 300 6000 CONTINUE
IS = LOCB{IsNT) 6001 NDOFQ = 33 LMB 7702
IF (N.6T.3) GO TO 290 1IF ( QUADT.GT.0 } NDOFQ=25 LMB 7702
S{ISsJS) = S(ISsJS) + HI®TDIS(3sNsID) NDOFC = 13 LMB 7702
60 TO 295 IF (QUADT.GT.0) NDOFC = S LMB 7702
290 S{IS»JS) = S(ISsJS) + H28TROT(14N=3sII) + H3I®TROT(2sN-3,11) DO 400 N =1,NOOFC
295 SIJSeIS) = S(1S5+JS) K=NDOF 0~N
300 CONTINUE LeK+1
CALL NLOAD (Q1+Q2+03+P1sP2+P3+D19sD2+sD3sPEsAREAIAIBITEMPsTPC(5) s TH) PIVOT = S(LsL)
DO 800 I=1,3 DO 400 I = 1K
K=l C = S(I,L)/PIVOT
IF (NTRILEG.#) K=3 PT(I)=PT(1)-C®PT (L)
QI=PE(1+1) S(Isl) = C
02=PE(2+ 1) DO 400 J = I.K
03=PE (34 1) S(Isd) = StleJ) = CoS(Lsd)
DO 800 Uz1,+3 400 S(JsI) = StIsu}
L=LOCQ(Js I4NT) CoveesESTABLISH TRANSFORMATION FROM BASE COORDSe TO N1sN2 PLANEseosssosee
800 PT(L)=PT(L)+TDIS(1sJsK)®Q1+TDIS(25UsK)®Q2¢TDIS(35JsK) *03 IF(IFLAGJEQ.1) GOTO 39
301 CONTINUE DO 38 L=1s4
IF(NTRILEG.1) GOTO 1000 0D 38 I=1.3
IF ( QUADT.GT.0 ) GDTO 5001 DO 38 J=1+3

YA



38 T(IeJdoLI=TO(I D) SUBROUTINE TRUSS{IQeXsYsZsAREASEsSsPTsGMsTEMP)

GOTO 41 IMPLICIT REAL®8 (A=Hs0=-2) LMB 7/09
39 00 40 L=1s4 OIMENSION IQ(4)s X(4)s Y(4)y Z(4)y S(37+37)+PT(3IT)
DO 40 I=1,3 OIMENSION A(34+3)s LQ(6)s TEMP(6) 22MARTS
DO 40 Jals3 DATA LQ 7/ 3%0,3%2 / . 22MARTS
T(IsJsL)=0. EQUIVALENCE (AC1yl)sX1)slA{2s1)9Y1) o (A(301)9Z1)
DO 40 K=1,3 . 1 (A(192)9X2) s [AL292)sY2) 9 1A(3+2)922)
40 T(lodsL)ZT(IodsL)+TO(IsK)I®TG(J9KsL) 2 (A(193)9X3)9(A(293)1Y3)91{A(3+3)+23)
Ceeeee TRANSFORM THE 4 EXTERIOR NODES TO THE 8ASE SYSTEMeceveocosccvccces REAL®8 LoL1sL2sL3s1Y,1Z LMB 7/09
41 K=0 : DO 1 I=1,37
DO 43 I1=1+1645 DO 1 U=1s37
K=K+1 1 StlsJ)=0.
DO 42 I=1s3 L=DSORT((X{1)=X(2))®824(Y(1)=Y(2))®824(Z(1)=2(2)) 002}
DO 42 JU=le3 L1=E/L
42 TX(IeD)=TU(IsJsK) L2=E/L*e2
Q1=PT(I1 L3=E/L**3
Q2=PT(II+1) S( 1y 1)=AREA®L]
Q3zPT(II+2) S( 6 1)==AREA®L]
PT(I] )=X1leQleYl®Q2+Z1#Q) SC 1y 6)uS{ 69 1)
PT(I1+1)=X29Ql+Y28Q2+22%Q3 S( 69 6)=AREAS®L]
PT(II+2)=R32Q1+Y38Q2+234Q) LlzX(2)=X(1)
DO 43 I=II,20 L2=Y(2)=Y(1)
F=S(IsyII ) L3=Z(2)~2(1)
6=S(Is11+1) H1sDSQRT(L1882+ 2082)
H=S(1s11+2) Cl=l,
SileIl I=FoX1eGaYleHsZ] Sl=0,
S(lel1l+]1)=FoX2+GoY2oHeZ2 IF(H1.,6T..000001) Cl=L1l/H1
43 S(Is11+2)mFax3+68Y3sHe23 IF(H1.6T..000001) S1=L2/H1
K=0 c2=H1/L
DO 45 II=3,18,5 S2=-L3/L
K=K+l AllslymLl/L
DO 44 I=1,3 A(ls2)sL2/L
DO 44 U=zle3 A(l+3)=L3/L
44 TX(JyDI=TUT9UsK) Al(251)==S]
DO 45 U=lsll Al2y2)= C1
F=S(11~2+J) A(2+3)= 0,
6=S(1I=1eJ) A(3s1)2C1852
H=S(II o) A(342)= S1les2
S(II=23J)=X18F +X28GeX3®H A(3,3)=C2
S(II=19J)2Y18F+Y283+Y3%H DO 4 1I=1y 643
4S S(I1 sJISZISF+Z29G+Z3%H N = II « LQ(ID)
00 46 JUx1+20 : 00 4 I=II, 6
DO 46 I=J»20 M= 1 e« LQUID
46 StJy1)=S(IsD) FxS(My N )
1000 WRITE (1) IQsNODESsQUAOTsNTRI LMB 6/26 G=S(M» Nel)
TPC(S)=TEMP (3) HaS (My N+2)
WRITE (1) TH324 LMB 6/26 SiMy N )=Fax]leGovleHaZ]
IF(QUAOT.GY.0) WRITE (1) X»Y LM 6726 S{My Nel)=FaX2+GoY2+HE72
IF (JSHEAR.EQ.6) WRITE (1) SCOND LMB 6726 4 S(My Ne2)=Fax3eGaYIeHeZ3
IF (NODES.EQ.4) WRITE (1) S4Bl LMB 6/26 DO 5 II=3y 643
IF (NODES.EQe4) WRITE (1) (PT(I)sIx21,+33) LMB 6/26 M= T1 » LQUID)
1001 RETURN 00 S5 U=1,s11
ENOD N = J + LQY

F=S5( M=2;N)
G=S( M=1sN)
H=S{ W 4N)
S Me2sN)=FOX]eGoY]eHoZ]
S{ H=1sN)=FOX2+GoY2+H#Z2
S SC M yNI=FeX3+GoY3IeH023
DO 6 J=1,10
DO 6 I=Jsl0
6 S(Jy1)=S(1s))
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AVTR = 0,58 (TEMP ()} o TEMP(2))
PP= ES®TEMP (6) SAREA®AVTP

00 10 114645

PPampp

PTi1)uppac2ac)

FT(I+11aPPac2es])

PT{I+2]= (PP#52} +GHSLSAREA®D.5
RETURN

END

SUBROUTINE SSTOMS { CeRe011+D12+D22403342M )
IMPLICIT REAL®8 (A=M»0=2)

OIMENSION XM (3+3)

Seufess

ChuCong

S2C2=RARNCHC

SCA=Re(ss]

S3CaRse3sl
XML{1:1)mCa%D) 1 +5480225202%(2,8012+44%032;
XM(2¢110(S4eC4)8D]12482028(D11D22~4.0D33)
XM{32]11=5C38(-0]1]1¢D12+2.50333+S3CH{~D12+D22~2.D2)
KM(2s2)nSA%0]1]10CaABD2252C2#(2.%D12+4,2033)
KM{392)=5CI%(-D12+D22-2.9D33) +SICH{~D11+012e¢2,9p33)
XW{3,31=2(C4+54)%DIIe52C2# (D112, 2D]12eD22+2,9D33}
XHI1.2)3XM(2,1)

XME1s3)=XM{3,1)

XM{293)2XM(3,+2)

RETURN

END

2ZMARTS
22MARTS
22MARTS
22MARTS
22MARTS
22MARTS
22MARTS
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SUBRDUTINE QMSSTF ( X+YsDDsQQ )

IMPLICIT REAL®E (A=Hy0-7)

OMS MEMBRANE STIFFNESS MATRIX FOR A GENERAL QUAD

OIMENSION X(4)+¢Y(4)4DD{3+31+0Q0(15+15)
DIMENSION QC13+s101+sSS(43,TT {4}
OATA 85 /=lesleslas=1e/s T Folus=laglevlae/

00 6 I=1415

DO & J=1+15
QGiIedt = 040
R12 = X11) = X(2)
R13 Xtly - x(»
Rls X{1} = Xi4)
R23 xX{2y - X3
RZ4& X2} =~ Xta)
R3s X{3) = Xta}
e Yil} - Y(2)
13 = Y(1} - Y
4 Yil} = Y{&)
723 Y2y - ¥
224 Yi2) - Yia)
234 = Y{3) = (4}
VOL=R13I*Z24-R246213

B ENERUN

CALL QMS5C2 ( RI3ZeR2ZA97ZII97244VOL o XBIXEXT o XB4¥S4T04YTHYH

D0 30 JI=l.a
SaSStI11#0.577350269189626
T=TT(II)®0.577350269189626

CALL OMSCY ( SsTsR124R1I34R1IAsR2IVRC4 RIS Z12:Z13+214+72307244734,
VOLsXEs X2 X3 X80 XCrY1aY2s YD YA YO AJAC, X110 X (2)
X (I e XTI sY UL aY 2D oY (3)r Y4}

FORM STIFFNESS QQ
00 10 I =143
D1 = DOtIs1)*XJAL
D2 = DOUIs2)*xJAC
Oa = DDII3)*XJAC
QC{Is1}= D1#Y]eDawX5
QC{Ie3}= D1#YZepbexe
QC(I.5)= D1eY3eD4ux7
GCLI-T= Di*Y4eD4uxs
GCiIe9)m D1eYC
QC(1e2}= D2eX]1+DheYS
QC(Isddm Daex2+DoeY6
LCtIsb) = D28x3+paeY?
QCtI+8) D2eXx4eDé®YS
QCi{Is10= D2exc
CONTIRUE
DO 20 I=lsid
D1=GC(L+1}
D2=QC12, 1}
DA=QC(3.1)
QQ(1,1)mQQ(Ls ]} oD1oY12DASXS
QQ(3,11=00(3: 1) +D14Y2+Dé8Xe
CQ(Ss1)=QQ{S+ 1) +D1*Y 30487
BOtT+1)%QQUT 1) +D1#Y4sD40xE
QU 11 =009, T)eDisYC
QUI2:1)=DQ(24]) +D28X 1 +DaSYS
QULsy11=0Q(441)0D28X2eDasye
Q06211200164 1)4D28XA+DESYT?
0G(B+I1=QQ(B1)+D28X4sD4oYE
QU101 =QG(10+]) 2D28XC
CONTINUE

CONTINUE
RETURN
END

LHB 7/09

LMB 6725
LMe 6725
LMB 6725
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SUBRDUTINE GMBC) { SyTsRIZ«RIZ+RI4sR2IVR24 RIGZ124Z13+42140223
22442349V0L o X1+ X2eX3aXasXCoY1aY29Y3s Y44 YO e XJAC:R1I2R2
RIsR4¢21422+23424

THIS ROUTINE 1S CALLED HyY QM5 STIFFNESS AND STRESS ROUTINES

IMPLICIT REAL®E (A=H40=2}

XJ TVOLOS*(RIASZIZ-RIZHZI41+T# (R23I%/16~R]14%723}

XJAC=XJ/Be O

SM=],0-S

SP=],008

TH=1,0=-T

TPzl o0

X1z (=R24*RI4%SeR23I2TY /XS

X2=( R13=R34%5~R16e®T)/XJ

X3=( R24~RIZ*SeR]4¢T)I/XJ

X4=(=R13+RIZ#GR234T) /X

Yi={ 224~234%5-223%T)/XJ

Y2={=2130234%5e2142T)/XJ

Y32(=2244212¢52148T)/XJ

Ya=( Z13=Z129S+2230T)/XJ

RS=0 268 («THRR] + TMSRZ2+ TP a3~ TP*R4}

Z5%0 . 25¢ {~TMEZ o TMRZ2+TPHZ3~TP#Z4)

RT=0.25% {~SMH*R1~SPRR2+SP*RI+ SMER4)

ZTx025% {~SM#Z L ~5P*22eSPH* 2T e5M¥ 24

XC2=2.0# {TRSHESPRRS-Se TROTPERT | /X JAL

YCF 2.0% (TOSH#SPRISSeTMRTRe2T) /X JAT

RETURN

END

SUBROUTINE GMSC2 { RI3sRZ4»213+2249YOL s XS e X6 XTsXBo¥SsYHaYT4Y8 |
IMPLICIT REAL#B (a~H+Ow2)
THIS ROUTINE IS CALLED BY QM5 STIFFNESS AND STRESS ROUTINES
YS = Z24/VOL
X6 = R13/V0L
X7 = R24/¥0L
Y8 = Z13/7%01
X5 ==XT
Y6 =-YB
Y7 =-YS
X8 ==X6
RETURN
ENp

LMB 7709

i

LMB 7709

e
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SUBROUTINE CLST10 {(LNODES.LSIDES)

IMPLICLT REAL®8 (A~H,0«7)

COMMON LLJO{80O)

COMMDN  1X1(3048)s PX11(8656)s THI3)e PX2(370)+ AREAs B(3+2)
1 XM{3edle SOI5015) 0 X{3s52s Y3951 s Xls X2+ X3y Xés XS5
2 X&s X7+ X8s X9y Ya4s Y5 Y&s Y7¢ YBs YFy T{3¢3}),
3 TUlt3+5)rs TU2(3+5), PX3I{1216)

OIMENSION Ut3e502)9VI(9) W6} ,LOL10)IPERM(I)

EGUIVALENCE (X1yV o (Y4 oW o (K+UFs (TH{LI »T1 o (TH(2)sT2) 2 {THI3) 4T3}

DATA  LO/1+3+5¢7999204¢648+10/2IPERMA 24351/

FAC=1.,7{120,%AREA)

Tils11=(6228T1e2,#T2+2,#T3)8FAL

T(1s2)Z(2%T1e2.#T2¢ T3)*FAC

T{1s33=(2.%71 T2¢2,¢T3)8F AL

TI24212(2,8T106,4T2¢2,2T3)#FAC

Ti2e3)=1 T1¢2,8T2¢2,.%T31#FAC

TL393m(24#T142.%#T2+6,2T3)#FAC

Ti(2s1)=T1s2)

Te3s0)=2T7(1s3)

Ti3+2)=T(24)

D0 1 I=l1s2

Ullslel)= BllelI=~2.%B13s1)

Ui2slelds BtleId

Ui3slallz =Bl

Uile2413= B241)

Ut2e20I1% Bi2+11-2.%B(391)

Ul392eI)==B(2s]}

Ulls3+s11==B{3:12

Ui2e3sIt==Bi3+])

UtIe3rI1=3281(341)

Ullsael)=sO.

U(2s4s I3 x4, #B(3.])

Ut3sdsIixs.%8124])

UlleSel1=4,#B(3,1)

U{2sBe13=0,

Ut3:5s11=a.#B(1.])

IF¢(LSIDES.EQ.1) GOTO 11

DO 10 Me2.LSIDES

L=IPERM{M)

D0 10 I=le3

00 19 x=l.2

UtIoMaKIFUIT o MeK)oU{IsMe24K) .5

UlTeL oK) SUITyLeK) oUL{ s Me2,K) 8,5

D0 2 I=143

DO 2 J=1sLNODES
TULtIsU) =0,

TU2(TeJ) =0,

D0 2 K=143
TULELe NI ETUL (13 o T {I4KI®X(KeJ)

LMg 7/09
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TU2(1+J)=TU2(L U} *T (14K)*Y (K J)

00 5 J=1+LNODES

M=L0(J)

L=L0(Js5)

D0 3 N=l1»3

Ui=TUL (N J)

U2=TU2 (N J)

VIN 1eXM(lsl)®UleXM(3s1)U2

VIN*3)3XM({2+1)2Ul +XM(3s2)2U2

VINSEI=XM(391)®U] +XM(3,3)202

WIN )=XM(252)®%U2+XM(3s2)*U]

WINe3)3XM(3+2)%U2+XM(3+3) U1l

00 4 1=J.LNODES

N=LO(I}

KaLQ(I+5)

SINsM)IZX (1o D) ®X1aX(221)OX2oX {3311 OX30Y (1a])oXToY(2:[)0XBeY(3s])®X9
S(MsN)IES(NwM)

S(KsL)IEY (19 1)®YaoY (241)®Y5eY(30])®Y6eX(1o)oYToX{2+])®YBOXI3s])®Y9
S(LsK}=S(KsL)

D0 5 I=1sLNODES

K=LO(I+5)

SIKeMIZY (1ol ) ®X4oY (29]1)®X50Y (34])®X6sX{1s1)OXToX(2+1)2XBeX(32]1 X9
S(MyK)=S(KeM)

RETURN

END

150

SUBROUTINE SLCCT ( NBF +NSFsNT )
IMPLICIT REAL®8 (A~H+0~Z) LMy
COMMON LLJQ(800)
COMMON  IX1(3048)s PX1(B656)s TH(3)s PX2(370)y AREAs B(3)o
A(3) e XM{393)y ST(15915)r PX3(84)y P{21+15}y HI21)»
U2 Q(396)0 TX(3)s TY(3)s HTI3)s T(3+393)» AS(393)s
XS{292)9 SCOND(15+604)y PX4(432)
DIMENSION IPERM(3) +NKN(4,43)
DATA IPERM/2+3+1/9+ NKN/2+5+3169 B22+993r Se896+9/
NDF =NBF + NSF
TO = (Tr (L) eTH (2)TH
FAC = To®®3®AREA/15120.
00 150 I = 1.3
J = IPERML(])
K=IPERM(J?
X = A(l)e®2eg(]) w02
UCL) = =(a(l)®a(J)eB()®B (NI /X
X =0SQRT ()
HT{(l) = & .0%AREA/X
TY(I) = =0.5*B(1)}/X
TX(1) = 0.5%A(I)/x
Al A(l)/AREA
ACJ) /AREA
B{(I)/AREA
B(J}/AREA
Q(leI) = pledl
Q2. = Al®aA)
0(3,1) = 2.%Al®d}
Qlleled) = Bled2

w N

(3)) /73,

@®
-
wnanen

Qt241+3) «TAl®A2

Q(3e1e3) C.®(A1®B2+A2"B1])

AS(IsI) = TO/20.+TH (1)/30.

QS (JsK) = TU/20.-TH (1)/120,

QSiKeJd) = Q5(JK)

X=TH {1)/T0

Y=TH (N /70

X2=XKe®2

Y2=Yese2

XYzXxXey
Tilolel)=X20(10.0K06e®Y26,) Y28 (340X 0Y2],)e3.%NsYe3,0xY],
T(202¢1)1=X20(X03,8Y0],)oY20(6.%X210.2Y06,)oKe3,.2Ye3,8xY0],
T(303e])EX28 (XOY*3.)0Y2R(XoY03,)26.8X06.2Y+3,2XT+]0,
T(le2e[)1=SR2% (24P X03.0Y01,5)0Y28(3a®Ke2,8Y0].5)oKeYo2,0XYe,5
TClo34) X2 (2.9X0]1.58Y03,) Y20 (X*.50Y0 ]} e3,8Ke]l,0%Ye,%xY02,
Ti29301) X2 (aOPXOY 10} oY20 (150K 02.0Y43,)0]1.50K03,0Y02,2XY02,
T(2e191)=T (14201

T(3ele)=T 131

Ti3+2e11=T(2+301)

DO 200 I = 1,3

J = IPERM(])
K = IPERM{J)
I1 = 3=]
JJ = 3%y
KK = 3®K
Al = AatD)
A2 = Atd)
A3 = A(K)
Bl = B(I)
B2 = 8(N
83 = B(K)
ul = uth
uz =
Ul = UIK)

T/09
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200

Wl = 1l.=-Ul

w2 = l.-U2

w3 = l.~U3

81D = 2.%Bl

820 = 2.°82

B3D = 2.%83

AlD = 2.e*al

K20 = 2.%A2

A3D = 2.%A3

€21 = Bl1-B3#y3

C22 = =-BlD+B2*w2+B3ey3
C31 = Al=A3sy3

C32 = ~AlDeA2ow2+A30U3
C51 = B3ew3-B2

€52 = B20~B3*wi-pleul
C6l = A3*W3I-A2

C62 = A2D-Ai*w3-aleUl
C8l1 = B83-B2D-B2eU2
€82 = B1D-Bi+Blowl
C91 = A3-A2D-a2%U2
C92 = AlD-A3e+alsw])

DO 200 N = 1,3

L = 6®%{]=1) ¢ N

= AiNeJ)
Q33 = QINsK)}
-

Q(NsI+3)
QA(NeJ+3)

Q31 = Q(NsK*3)
02333 = Q23-Q33
Q3133 = @Q31-433

P(L v11-2}
PiL o I1I=1)
P(L oI )
PL 1JJ=2})
PIL s JJd=1)
P(L oJJ )
PL 1 KK=2)
P(L ' KK-1)
PL oKK )
PIL 219 )
PlL 1J*9 )
PlL 1K*9 )
P(L*3 »11=2)
PIL+3 »II-1)
P(L<3 »II
PlL*3 sJJ=-2)
PLe*3 sJdJu-1}
P(Le3 »JuJ )
PlL*3 skK-2)
P(L+3 +KK=1)
P(L+3 o+KK )
P(L*3 91+9 )
PIL*3 +J*9 )
PIL*3 +K*9 )
P(N*18y11-2)
P(N*1ByRK-1)
PINe18yKK )
P(N*18BsKey )
NK = 12 - NBF
IF (NKJLE.O)

6. (=Q11+w2®Q33+U3%Q@2333)

C210023+C222033-830%Q12+820%Q31
C31#Q23+C3292Q33~-A30%Q12+A209Q3!L

6.2(Q22+W320uc333)
C512Q2333+830%Q22
C61202333+A3D%Q22
6.%(1,+U2)%Q33
c8l®ai3

C91%a33

0.

HT(J)*Q33

HT {K)®Q2333
6e®(Q11+U3203133)
C21#Q23133-830+G11
C31#Qa3133-A3D%G11
6.®(~-022+U1%Q33+w3*Q3133)

C51#Q31+C522033+u30%012-B1D*Q23
ColeQ31+Co2#033+A3D%Ql12-A10%Q23

Ge®tloewl)®@3l
€82*Q33

€C922Q33

HT (1)*Q33

0.

HT (K)*Q@3133
2.2(Q11+U32Q12+w2%Q31)

({81D-82D)*033+CB822Q23+C81%Q31)/3,
((A1D=-A2D) #w33+C92*Q23+C91%Q31)/3,

HT (K)®Ql2/3,

60 TO 240

DO 220 N = leNK

K =13 = N

220
240

260
300

340

360

380

400

550

600

700

1000

DO 220 L = lea

J = NKN(LsN)

IF (L.LEL2) C = TX(K=9)
IF (L,GT«2) C = TY(K-9)
DO 220 1 = 1,21

PlIsJd) = P(lsJd) ¢ CoPL]sK)
IF(NSF.LE.O0) GOTO 300
DO 260 K = 1.3

J = K + NBF

L = 3*K

Al = AIK)/AREA

Bl = B(K)/AREA

D0 260 I = 14193

P(Ieleded) =P(lelsL=1)
P(Ie2+J¢3) =P(l1e2sL=1) <
DO 400 J=1sNDF

DO 340 L=19+21

H({L)=0.

DO 340 M=1+3

N= (M=4)®6 el

H{N )= T(lelsMI®P(NsJ
H(N+3)= T(2e1sM)I®P(NyJ
HIL )SH{L)*T(3+s1sMI®P(NsJ
DO 360 N = 14193

UIN D uXM(ls 1) #H(N) ¢XM(2y]
UCN®1)=XM{24 1) #H(N) ¢ XM(242
UIN*2)=XM(3s]1)®H(N) *XM{3s2
D0 400 I = 14

X = 0,

DO 380 N = 1,21

X = X ¢ UINI®P(N, 1)
ST(IsJ) = X®FAC

ST(JeI) = ST(1le )

IF (NSF.LE.O) GOTO 1000

PO 550 K = 1,3

1 = K « NBF

DO S50 L = 13

FAC = QS(KsL)®AREA

J £ L * NBF

P(I od ) = P(I oL ) «
Pllelsd ) = PllelsL )
Plle2yd ) = PUIe2sL ) ¢
PGl sJe3) = =P(I »L=1}

ST(I +J ) = STUI +J )
ST{I¢394+3) = ST(1+34J¢3)
ST(I +Je3) = ST(I +JeI)
STiJe3sl ) = ST(L +J*3)
DO 600 N = 146

K = 15 -« N

L=Ksel]l

PIVOT = ST(L,L)

D0 600 I = 1sK

C = STtIsL)/PIVOT
ST(I»L) = C

DO 600 J = I»K
STiIed)aSTIIsJ1=CoST (LS}
ST(Je1)=ST (L)

DO 700 I=1915

DO 700 J=1.+6
SCOND(IsJsNT)=ST(1sJ*9)
RETURN

END

81
Al

Al
81

12T (1s2sMIBP(Ne39J)*T(1s3eM)*P (Lo J)
YeT(202sMI®PINe39J) *T(2+3sM)*P (Lo J)
YeT(302eMI®PINeIsU) T (393sM)®P (L)

JEH(NeL) XM (39 1) ®H (N2}
YOEHIN®L) e XM (392) PH(N+2)
JOH(Ne1)} +XM{393) #H(N2)

« FAC®XS(l.1)
e FAC®XS(2+2)
* FAC®XS(1s2)

0¢T
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SUBROUTINE QOCOS (NeXoYeZsT)
IMPLICIT REAL®8 (A=H,0-7) LMb 7709

THIS SUBROUTINE COMPUTES THE OIRECTION COSINES OF THE LOCAL
ELEMENT SYSTEM OF A QUADRILATERAL (N=4) OR SINGLE TRIANGLE (N=1)

DIMENSION X(1)s Y(l)e Z{1)» TID)

X1l = X(2Y+X(3)=K{N)=X(1}
Y1 = Y(2)eY (D) =Y(N)=Y (]}
Z1 = Z{(2)+Z(3)=-Z(N)=Z(1}
X2 = X{(3)+X(NI=K(1)=X(2)
Y2 = Y{(3)eY(N)=Y(1)=Y(2)
Z2 = ZIeZiN)=Z()=Z(2)
Sl = K1##Z2eY]wse2e7]0e2

C 3 (X1#X2eYLl®Y2eZ]1®72)/S]
X2 = X2 = C#X]

Y2 = Y2 = C®Y]

Z2 = 22 - CeZ1

S1 =DSQRT (s1)
S2 =0SART (XZ2#n2eY2He2e7000y)

X1 = X1/81

Yl = Y1/S1

Zl = 21/S81

X2 = Xxersse

Y2 = Y2rsse

2 = Z2/52

T(1) = al

T2) = X2

T(3) = YleZ2-ygez7]
T(4) = Y1

T(5) = Y2

T(6) = Zlexzg-22%x1
T(7) = Z1

T(8) = Z2

T(9) = X1®Y2-Xx2eY]
RETURN

END

-
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SUBROUTINE NLOAD ( XsYsZsP1lsP2+sP3+s01+D2+s035PEsAREA

AsByTEMPSFACHYTH)
IMPLICIT REAL®8 (A~H,0-2)
DIMENSION PE(3+5)9Q(3s3)+TEMP(3)+sTH(3)sA(3)+B(3)
Gtlsl)=Dli®x
Qtls2)=D2%X
Q(ls3)=D3*x
B(2s1)=DleyY
Qt2es2)=02%Y
Q(2+3)3D3=Y
G(3s1)=012ZspP]
Q(3s2)=D2®ZsP2
Q(3+13)=0D32Z+p3
D=AREA/24.
DO 1 I=1,3
PE(I+1)=(2.%Q(1s1)» Q(Ie2)» Q(I+3))*D
PE(Is2)=¢( Q{Is11+2,2Q(Js2) Q(I+3))*0
PE(Is3)=( Q(Isl)e Qlls2)+2,2Q(1+3))%0
SUMF =0,
TP=TEMP (1) +TEMP (2} +TEMP (3)
D0 10 I = 1,3
SUMF = SUMF+TH(I)®(TP+TEMP{I))
FACT=FAC®SUMF
DO 20 I =1,3
PE(1+1)=FACT®B(I)+PE(]1,])
PE(2y1)xFACT®A (1) +PE(2,41)
RETURN
END

LMB 7/09
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SUBROUTINE QVER3
IMPLICET REAL®B (A=HsO~2)
COMMON/CV/NUMEL yNUPTSyNUBPTS s IBANDP « MBAND » NGLGC s NOFRE » NODES s LVECT
COMMON/SS/IGER [SHEAR ¢ JSHEARsNRED» IREACTsNTRUSS s ISIG
COMMON MaNsPX1oP 1100y 3181100y 3)5AL100.000)y G130
OIMENSION PV(5:850,3)
EQUIVALENCE (P(lel}sPyuilalel)y
IRED=0
M=MEAND
=NBLOC
MizM-]
DO 1 Isl.M
DO 1 JrleM
Allsd)=00
CALL CHOL M1
CALL WIND (1+4)
CALL FPASS | M1 )
CALL BPASS { M1 )
CALL QTAPE (=1s84PYs040 )
CALL WIND { 341 )
CALL RLOAD { 1e3+PVy)eLVECT 850 )
IF (LVECT.EQ. 1) GO TO 4
DO 8 LVel,LVECY
PRINT 13, LV
PRINT 11
DO 8 X=l«NURPTS
PRINT 12+K¢ PV KoLV} sJm] +NDFRE}
60 To 20
IRED=IRED~]
CaLL RESID 1 MI+IREDsNRED.IREACT
IF { IRED.LT.NRED > 80TD &
FORMAT {SHONODE2X,2H0O1 11Xe2HD2 11X+2HD3 11X+2HDE 11X42HDS)
FORMATII4+1PSEL13.8)
FORMAT {1H]» 28HDISPLACEMENTS FOR LOAD CASE 1S,17H IMITIAL SOLUTION)
RETURN
END

LMg 7709
LM 7709

-
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SUBROUTINE FORMK{I1+M1}

IMPLICIT REAL®8 (A-t,0-7)

COMMON/CV/NUMEL e NUPTS s HUBP TS+ IBANUP s MBAND e NBLOC s NDFRE ¢ NODES s LVECT

COMMON/SS/IGENs ISHEAR « JSHEARSHNREU» IREACT I NTRUSS«ISIu

COMMON MyN »PXRI+P L1000 31481100y 31sa11005100)20(5:54203+G1203
E(5:5,201

IMTEGER @

00 1 I=lsMl

K=le]

DO 1 J=K+MBAND

Atlsd)=0,

00 2 J=1.MEaND

A{NGANDsJ] =0,

E (TI~1) 8 18ANUP

DO 7 IK=1vIBANDP
IF (IGEN.GT.0)

PRINT 906+IKs]1

READ (2) ITstQ(D)eI=1s1V)

LT=25%17

READ (2) ((E(ledoKisIxleB)ouzlebioksloIT)

READ (2) (({DilsJeK)sI=ls8Biad=1sH)aKxlyIT)

00 T K=1917

1X={Q{K}=JJ=} } *NDFRE

A= (JK=1) #NOFRE

11=NDFRE

IF{1x.6E« WBAND}

DO 7 L=1«NDFRE

IF{IXEQJX}

LXsiXel

00 7 I=lsI}

LEL NI L

ALLXsMX 20 (Lo IsK) *AILXMX}

FORMAT (214)

RETURN

END

60 70 3

IXsIX-M8AND

Ii=tL

LME 7/09
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SUBROUTINE CHOL (M1)

IMPLICIT REAL®8 (A-H,0-2)

COMMON/CV/NUMEL yNUPTS ¢yNUBP TS+ IBANDP + MBAND » NBLOC yNDFRE s NOOESsLVECT

COMMON/SS/IGENY ISHEAR s JSHEAR s NRED» IREACToNTRUSSHISIG

COMMON MoeNsPX19P {100y 3)4B(100s 3)9A(100+100)

D0 11 ICHOL=1sN

CALL FORMK(1CHOLM1)
IF (IGEN.GT.Q)

PRINT 20sICHOL

DO S J=1eM

Ll=u=~1

DO 5 I=JsM

SUM = 0,

IF(J.EQ. 1)

D0 3 L=1sL1

SUM = SUM+A(JsL)®A(IsL)

IF(1.EQsJ)  A(LlvJ) =DSQGRT(A(IsJ)=5UM)

IF(1NEWJ) Allvd) = (A{lsU)=SUMIZALUND)

BEGIN DECOMPOSITION OF LOWER TRIANGLE CASE 1

IF(ICHOL.EQ.N) GOTO 8

DO 7 I=1sM1

Kla]lel

DO 7 J=KlM

K2ay~]

SUM=0,0

IF(K1.GT.K2)

D0 6 K=K1lsK2

SUM 3 SUM+A(JsK) ®A(]4K)

ALIsJ) = (A(L1eU)=SUM) /A LU}

CALL INOUTA ( lsICHOL )

IF(ICHOL.EQ.N) 6GOTO 11

DO 10 J=x1leM]

00 10 I=ueMl

Kl=lel

SUM=0,

D0 9 KxzKlsM

SUMESUM+A (JsK) ®A(I4K)

A(IsJ)==SUM

CONTINUE

FORMAT(IS)

RETURN

END

GO TO 12

GOTO 4

6070 7

LMB 7/09
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SUBROUTINE INOUTA (1GOsICHOL)
IMPLICIT REAL®8 (A-H»0-2)
COMMON MsNsPX1sP(10093)9B(100+3)9A(100+100)
DIMENSION X(10000)
EQUIVALENCE (A(l91)eX(1})
COMMON /BTAPE/ LCPUL100) +MCPU(100)
GO TO (1e43)4160

K =0
DO 2 J=1M
DO 2 I=1+M —
K=K<
X(K} = A(I W)
WRITE(8:LCPU(ICHOL)) (IX(I)sI=1sK)
GO TO »
K = M&M
READ (8:LCPUICHOL)) (X(I)sI=]lsK)
K = MeM < 1
L=Mc<l1
DO S J=1lM
DO S I=1+M
K=K=1
A(L=IsL=~J) = X(K)
RETURN
END

SUBROUTINE FPASS ( M1 )

IMPLICIT REAL®8 (A=Hy0-2)

COMMON/CY /NUMEL s NUPTS s NUBPTS » IBANDP » MBAND » NBLOC + NDFRE « NODESs LVECT
COMMON / BTAPE / LCPJ(1001s MCPJ(100)
COMMON MoNsPX19P(100s 3)+B1100s 31 +A(100+10024Q(300)
CALL WIND ( 443 )

CALL QTAPE (~294sPsQs0 )

DO 4 ICHOL=1sN

CALL INOUTA ( 2.ICHOL )

DO 20 Lv=1.LVECT
BULaLVI=P(loLV)IZALL])

00 2 LV=1sLVECT

00 2 [=2+M

K=I-1

00 1 J=1sK
PLIsLVIZP(IsLVI=A(I+J) *B(JsLV)
8(IsLVI=P(IsLV)/A(I ]

IF(ICHOL.EW.N)  GOTO 4

CALL QTAPE (=2+4+P+Q10 )

DO 3 Lv=1+LVECT

DO 3 I=leMl

L=lel

DO 3 J=LM
P{IsLVISPIToLVI=A(T ) *B(JsLV)

CALL OTAPE [ 3+9+8+Qe¢ICHOL )

CALL WIND (3+4)

CALL WIND { 4.1 )

RETURN

END

LMB 7/09
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SUBROUTINE SwITCH
IMPLICIT REAL®8 (A~Ho0=Z)
COMMON/CV/NUMEL s NUPTSyNUBP TSy IBANDF « MBAND s NBLOC » NOFRE + NODES s LVECT
COMMON MaNePX1sP(100y 31 +8(100 3)sAC(100,100)
MD=M/Z

Mzl

GO 1 I=1leMD
LiaM=]¢]

DO 3 L¥=1lsLV¥VECT
C=PL{IsLY}
PEl+LV)=PILIsLY)
PiLIsLV2=C
WJapg-1

00 1 J=1l,MJ
LJSsM=Jgel

C=htdsl)
AldsIY=a(LIsLJ}
AlLTsLJ)=C
CONTINUE

MJ=ms ]

DD 2 1=1,MD
LimM=Te]

LNEL NS

Judzle]

DO 2 JsJddeMd
LJ=m=gel

Cx=A{Isd)

Allsd} = ALLJSLYY
A{LJoLl) = C
CONTINUE

RE TURN

END

LME 7709

Swn
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SUBROUTINE BPASS (M1}

IMPLICIT REAL®*8 (A~H+0-1)
COMMON/CY/NUMEL o NUPTS s NUBP TS« IBANOP +MBAND « NBLOC yNDFRE S NODES ¢ LYECT
COMMON 7 BTAPE /7 LCPJ{I00) s MCPJ(100]
COMMON MyNsPX1sP (100, 31,8(100s 33 080100,1003,0(300)
00 7 Il=1sN

ICHOL=Ne1~11

CALL INQUTA ( 2Z2sICHOL 1}

CALL QTAPE (~3+9+PsGsICHOL
CALL SWITCH

IFtI1.€Q.1) 60OTO 3

DO 2 LVY=1+LVECT

DO 2 I=1sM]

L=l+1

DO 2 J=LMm
PLIsLVISP (Lol VI=A{L2J)*#BLJsLY)
DO 10 Ly=1lsLVECT
BUleLVI=P(1aLV)/ALLs])

DO 5 LV=1,LYECT

D0 S I=2sm

K=i=l

DO 4 J=lsk
PLISLYI=P(IeLYI=AtLaJ}*B sl Y)
BiIsLVI=P(lelV)/alI 1)

DO & Lv=1l,LVECT

DO 6 [21.M

[Z=M=-1+1

PilsLVIaB{IZsLY}

CALL QTAPE ( 2+4+Pe@el )

CALL WIND ¢ 4,3}

RETURN

END

LMy 7709
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SUBROUTINE RESIO { MI+IRED+NRED+IREACT )

IMPLICIT REAL#E (A~MeO=2)

COMMON/CY/NUMEL o NUPTS o NUBPTS 2 IBANDP » MBAND s NBLOC » NOFRE s NODES » LVECT
COMMON IX1(2}9PX2sB(5+B504+1)R(54800)

DIMENSION Y (54850}

EQUIVALENCE (R{Llsy1l)eY{lel})

IF ( 1RED.NE,) ) GOTO 21

00 8 LV=lsLVECT

PRINT 13sLV

PRINT 11

DO B K=1l+NUPTS

PRINT 12:Ks{ B(JeKsLV)oJ=]NOFRE?

If ( NRED.EQ.0 } GOTO &

DO 2 LV=IsLVECT

CALL QLAYER ( LV¥e0 )

CALL RLOAD («1+2+BylelVs850 )

DO 2 I=1.NUPTS

00 2 J=1+NOFRE

X=B(JsIsl V)

Bi{Js oL VIZXerRide])

CALL WIND { 441 )

CALL QTAPE ( leasBsPX1s0 )

CALL FPaASS t M1

CALL BPASS ({ M1 }

CALL QTAPE {«~1s4+BsPXis0 )

CALL WIND ¢ 341 3

DO & Ly=1,LV¥ECT

CALL RLOAD (=1+34Ysls1+850 )

DO & K=l NUPTS

DO & L=1,NDFRE

BILsKsLYISOILs KoL VIoYI{L#K)

00 7 LV=1sLVECT

PRINT 10,LVsIRED

PRINT 11

DO 7 K=1+NUPTS

PRINT 124Ko( BidsKeLV)svd=1+NDFRE)

CALL WIND { 3,] )

CALL RLOAD ( 1+3sHBe1sLVECT+850 )

DO & LY=1sLVECT

IF ( IRED.GE.NRED.AND.IREACT.8T+¢ } CALL QLAYER | LVl )
CONTINUE

FORMAT (1H1»2THOISPLACEMENTS FOR LOAD CASEIS,15H ITERATION NO. +15)
FORMAT (SHONGDE 2X+2HD1 11XeZHMD2 11Xs2HD3 11Xs2HD% 11Xe2HD5)
FORMAT (I4s1PSE13.4)

FORMAT (1M1 9 27THDISPLACEMENTS FOR LOAD CASEIS)1TH INITIAL SOLUTION)
RETURN

END

-
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SUBRDUTINE GLAYER ( LV+IPRINT )

IMPLICIT REAL®8 (A=-H»0=2)

COMMON/CV/NUMEL ¢ NUPTSyNUBP TS y TBANOP » MBAND s NBLOC « NDFRE + NODES+LVECT
COMMON IX1(2)9PX1sB(SsB5041)+R{S5+800) «+DM(S+542039D0(5,5:20)518(20)
COMMON/SS/IGEN ISHEARy JSHEARYNRED» IREACT yNTRUSSs ISIG

CALL WIND ( 241 1

00 1 I=1sNUPTS

DO 1 J=1+NOFRE

Ri{Je 11 =0a

NUEQS=NBLOC*IBANDP

DO T JS1eNUEQS

READ {2) IT»tIQ{I)elm)elT:

LT=25217

1F ( IPRINTZEQ.CG } READ (2) ({{DMUI;L K)o Im1 51021 +5)eK=1+1T) LMB
1F 1 IPRINTLEQ.O } READ (2} ({(DD{IsLeX)slx135)lx]leBiaK=lsIT) LMB
IF { IPRINTLEQ.] } READ (2) (((DD{IeLoK)elxlsS)sbl®le5)sK=1+1T7) LMB
IF ¢ IPRINT.EG.] ) READ (2} (((DM{IsLsKIeI=1sS)+L=125)sK=1elT} LM
IF { J.GT.NUPTS } 6070 7

00 & II=1.17

I=1Q¢11}

IF { 1«EQ.J } 6070 3

DO 2 L=1sNDFRE

DO 2 Ksl+NDFRE

RiKedl = RIKsJI+D0{LeKe 11328 IL 1oL V)

00 & L=xlsNOFRE

DG & K=1oNDFRE

R(Kel) = R(KsIIAD0IKsLsIDI*BHiL s sl V)

CONTINUE

IF { IREACT.EQ.D } GOTO 6

PRINT 10sLV

PRINT 11

DO & K=1sNUPTS

PRINT 122Ks (R{JsK)» Jul s NDFRE)

FORMAT ( 1N1+42HNDDAL FDRCES INCLUDING REACTIONS LOAD CASEY1S
FORMAT ( 4H PT.12Xs2HR)IOX s Z2HR29X+2HRIVX ¢ 2HR4GX s 2HRS )
FORMAT ( 14311Xe1P50114%

RETURN

END

LMB 7/0%
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SUBROUTINE OVER# LMB 7/09
IMPLICIT REAL®8 (A=H;0~7) LMB 7709
COMMONZCY/NUMEL yNUPTS s NUBP TS » IBANDP » MBARD +NBLOC +NDFRE s IFLAGLVECT
COMMON/SS/TGEN ISHEAR JSHEARSHRED » IREACT«NTRUSSISIS
COMMON  1G{4&)s NOUESs NTYPE«NOUADs NTRIs 1C(B00}s 8X(5,800),
PP{a00s6) s Ul ADI3s%3 s BDI3ssely TDI3+36)s TR(3+36)
TQ13e30%) s XMO(39394) « THISI»TPCIbIe PXITI30)e S{37+133,
PTU13)s PX2¢152)s DB(S)s XM{JIs3} s XBL3+s3)» 5M(3:3)s
SB(3+s3)s ZT(3e3s4) e G1{I934%)1 2013451 GOI3e5) 0
SCOND{15s6981 s PXI{VIeXIA) oY (&}
DIMENSION SIGNI2)+SI6{3¢2)+ST{8)+DURIL23)»0UIRA(I24)
EQUIVALENCE (DUsQUZI(1Y 1« (OU»DU3ZSA(1)
DATA SIGN/1es~1e/
CALL WINO ( 291
CALL WIND ( 3.3 3
CALL WIND € 451 )
00 7 Lv=lsLVECT
CaLL #INO ( 1sD)
IF ¢ NTRUSS,.EQ.NUMEL 1} GOTD 56
CALL RLOAD (=1+3+BXsleleB00 3
Cooees INITIALIZE PP+THE MATRIX STORING AVERAGED MOMENTS AND STESSES,.s«s
00 1 I=1+NUPTS
1ICih=0
00 1 J=146
1 PPilsJi=0,.
CeeaneSUM OVER NUMBER OF ELEMENTS.co0vvssvorsnoonosscasnrscssrnersausscen
IF t ISI5G +GT. 0 ) 60 TO 800
PRINT 90.Lv
PRINT 93
60 TO 56
800 PRINT 801sLYV
PRINT B02
NEL = @
56 DD 50 JaelsNUMEL
READ (1) IQ.NODES «NTYPE +NQUAD
IF ( NODES.GT.2 ) GOTO S5
READ (1) Du23
I1Q(3)1=uQ
IF ( LV.EQel ) WRITE (2) (1Q(I)eI=143)40U23
GOTO 50
55 READ (1) 0Qu32a
TH{S) = DU
IF  NTYPE.GT.0 ) READ (1) XoY
00 8 I=1+NODES
K=latl)
8 ICIK)I£ICiK)»)
IF { ISHEAR.EQ.6 1 HREAD (1) SCOND
1F { NDDES.EG.% } READ (1) S
IF | NDOES.EQ.4 ) READ (13 PT
Coens o COMPUTE INTERIOR NOOAL PT. OISPL. FOR QUAD. AND NODAL PT. OISPL. F
CoesveTRI. IN ELEMENT COOHOSsoseccsccvaonnrcanasrensotascsssssnssaranssnns
IF (TH{(5)1.LT..000001l} B0 TO SO
IF (XM@E32leliolTas001 LOR. XMQ{Z2429114LT.0013 GO TD S0
CALL GDISPL
CooossCOMPUTE AND TRANSFORM ELEMENT STRESSES AND MOMENTSswsswworsnsensen
00 11 J=1+5
11 DB{JI=TH(JI®*3/12,
DO 10 NTRI=1.NQUAD
IF { NTYPELLE.O 3 CALL MEMBR
IF { NTYPELGT.0 )} CALL MEMBG { NTRISXsYsPT XNLTPC }
CALL NOMTR { 9 ISHEAR }
D0 6 I=1.3
D0 6 J=1,3

W ) e

SBils D=0,
SMiledi=0.
00 & K=1+3
SB{IsJ) =SB s JIoXMO{I e KINTRII®XB (Ko d)
6 SMITsJI=SMIlsJ)*XMU(] +KoNTRLI ®XM(Ks )
K=NTHI
KKz (NTR1~1)%9
00 10 J=l1.3
L=KK»{J=1123
NSs]
IF { NS.GT.0 )  L=KKet
C=TRilsLo 1)
ReTR{1leL*2)
CSaDSORT((ee2sRoe2)
€=C/C5
R=R/CS
[or-2iol ¢
S2=ReR
SC=ReC
CamMse=Le~52
FxSM{lsJ}
GREM (29}
HESM{3eJ)
IF{NTYPE.LE.CG} GO TO 30
ZT(1sJeK)=F
IT{24J9K) =6
ZT{39deKi=H
GD To 40
30 ZTileJeK)ISC2RF+S2#6-2.#5CaN
ITI29JsK) =S2SF+C2*Ge2,#SCoH
ZT(39JeK) 25Co(F=G) +C2MS 20K
40 FxSB(1s0)
6=58(2¢J)
HESB(3+J)
Gl(lasJrsK)ZCRRF +S20G=2,95CoH
Gl(29JsK)=S2OF 2 (28Go2,05C
10 Gli3+JeKI3SCH(F=G)+L2M52%H
IF(NDDES.EQ.4) GOTD 13
00 12 J=1.3
00 12 I=1,3
GG{l+dI=Gl(leJs11oDB (L)
12 201+ s2T(Lvdel}oTHIN)
GOTOo 1S
13 00 14 I=1,3
Coeee s COMPUTE AVERAGE MOMENTS AND STRESSES FOR QUADssssseessnsesesnssers
GO{Is13=IGl(Isls1)oB1(Ts2,41)",5208(1)
GU{les2)=(G1(I+2911+G11Is1s21 32,5408 (2}
GR{Is3)=(61(1s242)12611{Ts1+31)9,5%08(3)
GQUIs%IR(G1(I+243)+G1CIslsn) P, SeDB (4}
GQIIsSIZ(GI(To3ul1 oGl CIo3e2)2G1 (12393381 (1344130, 254081(5)
20(Ie13={2T(Ts1013o7ZT{1024) 10, 5¢TH(]1}
2QUIs2)=(ZT{1+2+11¢ZT1Ls12112.5¢TH{2Y
20133 =(2T(I+2+21¢ZT {15 153118, 50TH{I}
Z0{Io%)={2ZT{102+332ZT(lelst} e, 5*Trii4]
14 Z0(I451=(ZT (193913 02TE10342)2ZT 110321 ¢TT{Is304) 1. 25%TH{S)
CouseoADD NODAL PT. MOMENTS AND STRESSES IN PPuvsvesnsnsssssontnsanrevnsen
15 DO 16 J=1sNODES
KxIg(J}
80 16 L=1,3
M= 3
PPIKsLIZPPIKsL) +6U (L J}
16 PPIK+MI2PP(KeM)2ZQiL+J)
ConssePRINT AYERAGE MOMENTS AND STRESSES FOR QUADscwvresssvessssvonnvons

9¢1



PRINT 101,00

CaLL WIND ( 4,3 )
DO 822 LV = 1sLVECT

NPTE3 PRINT 8204LV
IF {NO ok} NPT !
{ DES.Eg 2 =5 PRINT 821
r . . . DO 822 JJu = 1sNEL
IF(NPT.EQe5.AND.IBEN,GBT,2) NQ 5 READ (&) J§

IF ¢ ISI6 .6T. 0 ) 6O TO 60
DO 3 L = NGe NPT
Hx0
TF{LLTaS) M=IG(L)
3 PRINT 20+ 46QUIsJ e d2lsl) s Imle33 o LEZOITa D) 0Bl 4L eI=1,3) M
GO TO 50

823
822

READ (&) (ST(I1sl=1r4)}
READ(A) (ST11)s1=x5.8)
PRINTY 8235009 (ST(1}eI=1+8}
FORMAT (l4+1PBEL].3}
CONTINUE

60 conTINGE 824 CONTINUE
CeuessCONPUTE STRESSES AT EACH NODE IF ( NTRUSS,£8.9 1 oTe 8060
DO B1 LL = NO.NPT CALL MIND ¢ 301 )
DO 80 11 = 12 -
CevesaTORP(II51) s ROTTOMIII=Z) 825 00 100 LhTheLvecy
00 80 IL = 1+3 BRINT oasLy —
80 SIG(ILsIl)e ZQUILSLL)/ZTH(LL) {6QCILSLLI*6,/THILL) **23#SIGNIIT) CALL RLOAD { =1+3sBXs1¢1+800 )
M=
DO 600 JO=1.NTRUSS
IF (LL.LT.5 ) MeIQ(LL) CALL AKTAL € Ga12+BX )
PRINT B10s C({SIGUILeTIdaTL®1s3)sIInlu2)eM IF € G,LT.0,0 ) PRINT 95,10(3) 0
810 FORMAT (1P6E11.3,14) IF { G.GE.0.0 ) PRINT 96,1613)40
IF { LLLLT.NPT) 60 Ta 81
600 CONTINUE
IF { NPT,EQ.5 | GOTO 82 700 CONTINUE
c.....agsggsgerzlfgﬂsss RESULTANTS FOR TRI. ELEMENT G0 FORMAT(2M1 +3BHELEMENT STRESS RESULANTS FOR LOAD CASE+14)
= 101 FORMAT (12H ELEMENT NO,14»50Xs4HNODE)
BA(ILYS) = (GQUIL2)) eGR(ILs2)e6Q(ILIINI/3, 91 FORMAT (70M1AVERAGED NODAL STRESS RESULTANTS»WeR.TesSURFACE COORDI

85 2Q(ILsS5r = (2QUILe1)+2Q(IL«2)02G{ILv3)) /3,

INATES »LUAD CASEsI4)

TH{S) = (THIL)+TH{2)+TH{3) 1 /3.
82 CONTINUE

WRITE (4) UG

NEL = NEL+)

G2 FORMAT (SHONODE 2X+2HMZ GXs2HM1 9X+3HMIZ BXe2HN1 SKs2HNZ 9X¢1HS)
93 FORMAT (1MD 2XKs2HMZ 9X+2MM1 SXsIHM1Z BX+2HNL1 IXy2HNZ 9K+ 1HS /)
G4 FORMAT(IMITK 43HAKIAL STRESSES FOR TRUSS ELEMENTS LOAD CASE.14 1}

D0 8% I1 = 1.2
DO B4 L = 1.3

84 SIGUILSTIII=ZQUILISI/TH(S5) ¢(GRIILISI*64/TH(SI#®2)eSIGN(I])
FACL = (SIGUL1eII)eSIG(2+111120,5

95

96

FORMAT { TX.23HAXTAL STRESS FOR MEMBERsIS.4r IS 1PE12.44,
. 124 COMPRESSION )

FORMAT [ TXy23HAXIAL STRESS FOR MEMBER.IS,4H 1S 1PE12.4s
a B TENSION )

FACZ =DSQRT(((SIG{1+111-S1G{2+111)*0,5222+51G(3.11)0e2) ;33 :g:::;‘;§§;§96511-3'

2:?: = i:ﬁ}:i:éé 801 FORMATIZHI +43HELEMENT STRESSES (TOP-BOTTOW) FOR LOAD CASEslé)

TMAX = (SMAX=-SMIN3/2 802 FORMAT {1HO 2K e2HN] sFXe2HNZ o 10X 1HSsBK e ZHNL s FX e ZHNZ 99X 1HS /)

16 (SMIN +£G. SIG(2:11)) GOTQ 87 820 FORMAT (2Nl +45HERINCIPAL STRESSES (TOP-BOTTOM) FOR LOAD CASE.14)
2957 D 821 FDRMAT (SHOELEMs2X+4r1SMAKs 7K+ 4HSHINSBXsaHTMAX 45X IHANG s BX s 4HSKAK s

ANG=~ 57 ,295779513%0DATAN(SIG{I+I1)/(SI6G(2¢11)~SMIN})
GQ To BS
87 ANG = 350,
RB WRITE (4) SHAXsSMINsTMAK:ANG
83 CONTINUE
81 CONTINUE
50 CONTINUE
20 FORMAT {1P6E11.3414)
IF { NTRUSS,EG.NUMEL } GOTO 82%
IF tIGEN.GT.2) 60 T0 7
IF ¢ ISI6 +6T. 0) G6OTC 7
PRINT 91.LY
PRINT 92
DO S I=1.NUPTS
XP=1C(I)
IF (XP.EG.0.) 60 T@ 5
00 & J=1+6
& PP(Is23=PP{]eJ}/xP
PRINT 110415t (PP (KsL)el=1s61eKx]y])
5 CONTINUE
7 CONTINUE
IF ( ISIG.LE.O) GOTO 824

22MARTS

8000

«TKy AHSMINLBXe4rTHAX o 5X e INANG)
RE TURN
END

LET



SUBRDUTINE GDISPL
IMPLICIT REAL®8 {a=t,0~2)
COMMON EGUA) 4 JX1(11 yNTYPE/NQUADIX2(801) sB(S5,800) +yPXLL4825),

1 TU(3436) s TRII136)s TA(3I93sddly PX2(4T)e UM(Seé)y
2 VMIS¢a)s BP(Deals PRI(5B)s S{3TH413}s PT(II)y R2{1D),
PLA9)y DISsSedds PRAISID)
1P=1Q1)
JP=la ey
KP=1Q13}

IF (NGUAD«EQ.%) GOTO 10
DO 11 I=1,+%
DlIsdlelt=BIlsIPY
DYool =B{1.JP}

11 D(Is3e 1) =R(IKP}
GOTO 12

16 LP=alGis)

CessesGROUP DISPL. OF CORNER NODES IN Powssssssesssvensesntsvssocnssasens

DO 1 M = }e3
Pin 1ETQIMa Lo 13 *B{LsIPI*TQUIMZ» 1) *B {2+ IPI«TQU(My 3, 1) 2B (3 1P}
PIMeE 1=TQ(My 122128 e P)+TR(Ms2+2)BL2+JP)eTQM3+2) 2B{3s P}
PiMe10)=TQ(Me 131 PR (1 +KPIeTQIMI2+3)PBI2+KP)oTRIMy303) #BI32KP}
1 Plrel5)=TUiMelob) #BL1+LPIeTOIMI244)FBIZ2+LPI«TQ(Ma3¢4)%6(3LP}
DO & M=4e>
M 158 (Ms 1P}
PiMes 1B (M JF}
P{M+10)=BiMKP}
4 P(M+15) =B M P)

CreooeCOMPUTE DISPL. AT INTERIDR NODESccosssnnsucrcnorssnsssnsvocssonnss

DO 13 I=6s13

13 R2(1)=0.0
NDOFC = 13
IF { NTYPELGTW0 3 NDDFC = &
DO 3 I=lsNDOFC
L=19«1
R2{Iy=PT L) 7SIL*1s 1)
DO 2 K=laL

2 R2UIISRZI11-S(Ke])*P (K}

3 P{ls20y=R2(D)

CoeessSTORE ALL THREE DISPL, CDMPONENTS AT MID SIDE NODES IN Pusessreence

DO S I=leé
J={I-1)1e2
Kz{I-11%3
P{K+2&)}=R2{J*6)

S PIKe2TI=R2(JeT)
P(2AY={P{ 31eP{23)1/2,
P(31)=(P( 8)eP(23)) /2,
PIS)=tPU13)+p (231172,
P{ITI=(PL1B)I+P{E311/24

LM8 7709

LHg 7/02
LM 7702

CoveasSTORE UISPL. COMPONENTS FOR EACH TRI. IN Dssssevosersosecncccennan

DO & I=14S
Dilslsls=BileIP)
Dils2s11=8¢TyuP)
Dilobosli=bi(Ie28)
DeIsSel1aP {425}
Diledsa=kitle2m)
DEls1e2)=6(1sJP)
Dtle2s2108114KP)
D(lsas2)=Pile3l)
DilsSe2)=files)
Dtls3v2)=Pile20}
Dil+1e3)=BEI+KkP}
Dtlv2s3)=B(I+LP)
Dilsas3)=P(Iv34}
D{IeS5s3)1=2P (131}
D(I+3+3)2P (120}
DiIsledi=BllelP)
D(fs2réimnileIpP)
Dilsérbyz=P(1e25)
DiJsSes1=P (1+34)

& DUle3s4)¥=P {120}

Cunooo TRANSFORM NODAL PT, DISPLe YO ELEMENT COORDSsssorrnoevsnveonaocens

12 DO 8 K=1eNQUAD
KK= (K=1)8G
0O 7 J=1lsn
IFtJslTad} LRKKe(gw]l)*3
UM (U KI=TDILel* 13 %D (Lo JdsKIeTD (5L +2)*D (29 JsKieTD1sLe3)#D(3» s K}
YMEJaK)ETD{23 Lo 1) *D{LsdoK) ¢TD(23L+21 2D (20 UsK)+TO(2eLo318D{3¢dsK)
IF(J.6T43} GOTO 7
I=(J=1)%3
BP{IeloK)=TD(3sLel ) ®D (10 JeK) e TOI34Lo2I*D{2sJsK)oTD (3L o3} #D{3s0aK?
BPLI+2sKI=TRILAL#1}#D{4>JyKI*TRIL L2} #D1SeurK)
BP{I+34KI=STRI2sL*11#D(AnJdsKIi*TRIZ4L+2)*D{SsUsK)

T CONTINUE

8 CUDNTINUE
DD 20 Ivles
d={l=-11e2
K=({-11%5
PT{Jel)=RPIK+1)

20 PT{Js2) =P (K2}
RETURN
END

8¢1



SUBROUTINE mEMBK
IMPLICIT REAL®B (A=H20-2)
COMMON  IX11(9) ¢NTYPE+NGUADSNTRIZIX2(B00)} +PX1{8801L)AD(344),
i BO(344)y PX2(293)4TPCI6) s UMISs4)y VM(S443s PX3(36)9 UIS)
2 VIS)e PR&IOYG)y XMI3s3) s PXG(496)
CuveesBROUP MEMBRANE DISPLe IN U AND Veanosvecesacansansscsocenasnsoscses
DO 1 I=145
UL sUMITeNIRT)
1 VD) sVMITeNTR]Y
CosaseMODIFY STHATIM DISPLY MATRIX IF ELEMENTT IS A CS5Tasueesssonossscnss
IF (NQUADJEQ.®)  GOTO 2
UtA)=(UL2)sUL3)) /20
VRI=(VI2) eV ) /2y
US)I=(Utlleut3d) ) sée
VIS =V ev(3)) /2,
CouvodCOMPUTE STRAINS IN X DIReuensnsococsnssnnonctononsrssnnnsnoscnnose
2 AREAZ==14/ (ADCIGNTRII*BO(1NTRI))
E=BD (LaNTRI) AREAZ
A=AD (1 oNTRI} *AREAZ
C=AD(24NTRI) ®AREAZ
D*AD (J9NTRI) ®AREAZ
ITEST= NIRIo}
IF (IVEST.GT.4) [ITEST=]
XMI=TRPC{6) *TPCINTRI)
AM2=TPC (G *TPCIITEST)
XM3=TPCI6)#TPCIS)
XMELs LI (U1 ~Ut2})%E~XM]
KMI1g2)= (U1 m{2) F*EwXHR
XMULs )= tmlUl]) o204, (w4} +U15) )} *E~XMH3
CavsesaCOMPUTE STRAINS IN ¥ DIRssesuvnnnssrsnvvasanconssnsansnsossssocssss
XMIZv 1= (A~2,%0)#V (1) oC*V(2)=DOV (I} +6,4D*V(5) ~XM]
XM{292)=A®Y (1) ¢ (Cn2.%D) #V(2)=DRV(3) +4, DOV (&) =XN2
XM{293)=wAOVI])=COV 2] ¢, 2D0Y (I) +h,#0RV(4) +4,#a8V (5)-XM3
CasnwsCOMPUTE SHEAR STRAINSuoweneesscnvevnrosssvsssvrscacnsssbsnsnssosssss
XME391)2AVILI-VIZ)II®E« (A=, oD 201} +CHU(2) ~D*U (3) &, #DSU (5)
XME3p 22 (VI1I=VI2IIRE«A®U (L) v (Cm2, 201 OUL2)=DOU(I) 24, #D*U (&)
KMIZa 3= i~V i1 4V I2) 2R, #{mV{RIIVIBIJIOE
1 =ARUI)I=CRUIZ) 43, %0%U (3] ¢4 #0PULA) ch, o800 (5)
RETURN
END

W

e

120

140

SUBROUTINE MOMTR ( NBFsISHEAR )

IMPLICIT REAL®B (A~H40~2)

COMMON  IX1(7)9 NTRI,y IX2(800)s FXL{BBOL)s AD(3v4)y 8D(3s4)
1 PXP(339)y BP{9Os6)y PX3(10)s R(12)s ALy B3y U3
2 HT(3)e TX(3)s TY(3)y GU3+6)s PX4(660)s XBU3,3),
3 PXS(120)» SCOND(15y644)s Cl6)y D(I)

DIMENSION 1PERM(3) sNKN{24+3)

DATA IPERM/24341/9 NKN/Z2+59 Bs2s Se8/

00 2 I=1.9

R(I}=BP(I+NTRI)

IF t ISHEAR.NE.6) GOTD 10

B0 6 I=l+06

Ctlr=0.

L= 8e¢]

DO 3 K=lsL

CeI}=CiT)-SCOND(KsI+NTRLI#R(X)

RiJe9=CL])

Ri{2)=R(2)=C(4)

R{S)=R{5)=C(5S)

R{B)=R(BI~C{®&)

RI=R{AI+CLD)

RiG)=RLGI«CL2)

RIPI=R{9)I+C()

DO 1 I=1l.3

DiI} =0,

B(I=BD(1+NTRI}

ACL)=AD{I+NTRI}

IF t ISHEAR.NE.S6} G010 S

B0 & J=1+3
0tly=Delye8 (U} =C LY}
Di21=0(2 a1 =C{J=3)
Qi31=D(31eA(JIEC(JIeBIJI*C I+ D)

AREA = A(3)#3(2)-A(2)*B(3}

00 128 I = 1,3
J s IPERMIID)

X = AUI}®®2eB(]I)»n2
Uil = =(atl)®A(J)eBIII®BII) /X
X =DSQRTix)

TXily = 0.,5%a{l3/X
TYil) = ~0.52B(I)/X
HY ()Y =  4,U%AREA/X
21 = ALI}ZARER

81 BtIYsarEa

82 AtJY/AREA

B2 = BtJ)/AREA
Gil+]) = 8leB]
etz = Aleal
Qi3+ = 2.%AleH]
Qilsle3) = 2,%81e82

LS IS}

Qf2ele3) EMYSE T ¥

Gl3sleD) 2.#(A1*B2ea208]]

4 = 12 ~ NBF

IF tMLE.0) GO TO 160

00 140 N = 1M

K s 13 - N

L1 ® NENULsN)

L2 = NENIZ2sN)

RIK) 2 (RELIISRILZ)I#TXIK=F1+ (RILILI*RILE*1}) *TY (K=9)

LMB 7709

6¢1



160 DO 200 1 = 153 SUBROUTINE MEMBG(NTRI e XsY»PsXMs TENP)
J o= IPERN(I) THPLICIT REAL®S {A=HeO=2) Lup T/09
K = IPERM(J) DIMENSION X{4)s Y(4)s PL13)s XM(3s3)+TENP(6)
11 = 38] OIMENSION EPSX(4)s EPSY(4), S514)¢ TT(4)s LOC(2s4)
JJd = 3%y OATA LOC 7 1o _2v 29 3+ 39 &y by 1 7
KK = 38K DATA 85 /=losleslas~less TT F=lus=laslonla/
A2 = A(D) IFINTRL.GT.1) GO TO 300
Ad = A(x} RIZ = X{1) - X(2)
B2 = B(J) fl3 = X{1) = X(3)
83 = BiK) : R4 = X{1) - X(4)
vz = utd) R23 = X(2) - X{(3j
U3 = UK} R24 ® X(2) = X{4)
¥2 = l.=u2 R34 = X(3) - Xi&)
W3 = 1.-U3 Zl2 = Y{l) = ¥{2)
C21 = ={2.eWN2)#82=(2.+U3) 283 Z13 = Y{1) = ¥Y{3)
22 = B2ew2-B3%U3 Zl4 = Y{1} ~ Y(4)
C3L x =(2.4W21%A2~(2,+U3) #A3 223 = Y2} - Y}
C32 = A2ewz=A3%U3 Z24 = Y(2) - Y(&)
C5) = 4,e83~BR+B3ew3 Z34 = Y13) - Y(4)
€52 = B2-83*W3 VOL=R13%724~R24%213
€61 & 4,.%A3~ARea3%W3 CaLL GM5CZ { RIFsR24+Z1IoZ24¥OL XD+ XBsXT9XBr YS+Ybs¥T+Y8
C62 = A2-A3®N3 EPSXY = XSOP(11sYSPP(2)oXERP (I +TE#P (41 +XTOP (51 4YTOPIB) e XE®P (T} +
C81 = 83-4,*B2-82%y2 . Y8*P(B)
CB2 = B2%U2-B3 Do o208 I = 1y 4
€91 = RI~k ®AZ-A26U2 CALL fM5C1 € SS(L1TTL1IsRIZeRIBIRI4/\RZIAR49AI42129Z13+7144223s
€92 = AZ#*U2-A3 . 724902342 0L s X1 s X2 X3e X s XCoY1aY2e¥3s Yoo YCoXJACIALL)
€021 = -B2=(3.+U3}*B3 . K219 X{3) o X (4T LI oY (2) 0¥ ()Y 4} )
€022 = 83+(3,+w2)982 EPSXLI) = YI®R{11+YZ0P{31+734P{5)sY48P(T)
C031 = =A2=(J,+u3)*A3 200 EPSY(1) = XL#P(Z)+X28P(4)+XI®PL6) vX4#P(8)
€032 = A3+(3.+W2)%A2 SXAV = [ EPSX(1)+EPSX(2) +EPSX(I)SEPSX(4) 1 ® 0.25
DO 200 N = 193 SYAV = ( EPSY(11+ERPSY(2)«EPSY(3)+EPSY(4) ) # 0.25
Q11 = QINYID) 300 00 400 I=142
Q22 ® Q(NsJ) L = LOC(IsNTRI)
Q33 = Q(NsK) XM(1sT1)2EPSKILI-TEMP(6) *TEMP (L)
Q12 = QINyI+3} XM{2sTI=ERPSYILI~TENP(O)®TEMNP (L}
023 = Q(NsJe3) 400 XMI3s1} = EPSXY
831 = Q(NsK+3} XMils3)=SXAV=-TEMP (6} STENP(5)
6l = 022-033 XM{2y3)12SYAV-TEMP (6] TEMP (51
0z = Q22-023 XM {3+3) = EPSXY
03 = Q33~Q23 RETURN
04 = 023+4Q1 ENO
05 = ©23-Q1

XRU(NsT) = (~6.%Q11+3.,%((U3I~N2) %G1+ {U3*N2)I*C23))I*RI1]=-2)
+ 16,0022+ 3, %4IRQAIPRIJU~E) +» (6.4Q33+3,%U2*Q5) *RIKK~2}
SE{C2InALeC2290Q23+4,*(B2*Q3]1-B3%Q12)) *RIII-1}
¢ (CILRQ]+CI20Q23+4,2{A29031~232Q12)) 8«11}
« (C512Q22+CS20u3) *RUJSU~1) + (CH12Q224C62203) SR{ID
« (CBI®Q33+C82%42) #R{KK=]1} + (C9]1%033+C02#02) *RIKK)
> HT(KI®QASR(K+2} + HT{J)2Q5*R(J+9) ) /2.
200 XBIN+I11=~XB(NsI)~DIN) 7ARES
RETURN
END

O B G B
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Imp
X
XJA

SM=

ROUTINE OMSEL ( SeToRIZeRIZGRIIR2I1R243R34+2120Z13021402230
2244234, VOL X1 o X2eX3sX4sXCoY1r Y29 YT Yae YCoXJATIRIWRZ
R3eR4sZ1922+23474 )

THIS ROUTINE IS CALLEO BY QMS STIFFNESS AND STRESS ROUTINES

LICIT REAL®B (A~H10-Z)

2YOL+S* (RIASZL2-R1I22734) +To(R23%714~R]142223)

C2XJ/840

1.0~5

SP=1.0+5
TM=) o 0=T
TP=].0e7
X[=(=RZA+RIASS+R2IBTI /XS
X2={ RI3~R3I4%S=RIA#T} /XS
XIn( RZA-RI2#S+RIASTI /NS
X4z (wR]13I+R]2#5=R2I*T) /XJ

Yim( Z24~23495-2238T) /4J

Y25 (~Z13+234%SeZ14%T) /X
Y3=(»224421205=714%T)/XJ

Y4m({ 213=72]1295+223%T)/%J

RE®0,25% (~«THORL+THRR2+ TPERI-TP*R4}
ISEQ .25 (= THSZ1 ¢ THSZ2 o TPEZI-TPSZ4)
RY=0,25# (=GM#R] =~SPOR2+SP#RI> SMERA}
ZT=0. 258 (mGMBZ ] ~SPO22+SPR23+SHSZ4)
XC=mZ o 0* (TRGMESPSRS~SETHRTP#RT} /XJAL
YOm Z. 0% {TRSHESPRZIS~SETMSTPRIT) 7XJAL
RETURN

ENO

SUBROUTINE OMSCZ { RIZ«R24+213+Z242VOL X520 X60XT1XB2Y52 Y6+ Y75 YB

1Mp

Y5
x6
x?
v8
x5
6
Y?
x8

LICIT REAL®B (A~HeD=2)
THIS ROUTINE IS CALLEOD BY GMS STIFFNESS AND STRESS ROUTINES

= 224/¥0L

= R13/v0L

= R24/YOL

= Z13/¥0L

==x7

=-Y8

=-Y5

=-X6

RETURN

END

LMEB 7709

LME 7/09

SUSROUTINE AXIAL ( Qa1UsBX )

IMPLICIT REAL®A (A-rie(Q-2Z)} LMp 7,09
COMMON /aX/ THR(4) 1 ANGsTRPCIBI s X (4] oY (4102 1(4)
DIMENSION LRt4Y »8X(5.800) s THR23(23)
EQUIVALENCE (THR(I1«THR23(1)}
HEAD (2) tIG()1)«1=153)sTHQRZ3
XP=XKi21=-X11)
YP=Y (2Y=Y (1)
ZP=Zip)~Z (1)
Q=DSGRT{ XPeXPeYPaYReZPoZP )
XI=kPIQ
X2=¥P/G
X3=2p/0Q
M={G {1}
N=2I1Q{21
XR=BX{laN)~BX (1M}
YREBX(ZaNI ~BX(22M)
ZR=BR{3+NI«BX (JoeM)
S(RKIPXREXZRYR+AZRZRI*THAIL 1 /0
TEMP=0, 58 (TRC (1) eTPCI2) )
QISTHQIZI®TRCIGI*TEMP
G = y~Qi
RETUEN
EnD
//P224132% J0OH 12255980 lsssl) e t0=bbR TRACOR JUP P TIME=] 9 CLASS=RY
/7 REGIONZ24 UKyMSGLEVEL=(1+1)
//STEPL EXEC FORTGLG»
44 PARM, LKEUS OVLY s LISTLET«MAP»SIZE= (128K 24K

/ZLKEDWSHELLT DD DEN=DGS . JIPLONE +DLSP= (OLDKEEP)
J/LKED.SYSIN bu b
INCLUDBE SHELLT(SHELL7sQTAPEsRLOAUYWIND ¢OVEH] o SEARCHyOVERZ e SUBSPRy X
BLAYERSWUSHELy TRUS S SSTUMD «GMDSTF 2 QM5C 1+ QMOHC24CLSTI O X
SLCCT+QUCOSyNLOADYOVERIFORMEK2CHOL v INOUTASFPASSsSWITCHs X
BPASSsRESIDyQLAYER + QVER4 2 GUISPL e MEMBR +MOMTRoMEMBWAXTAL)
ENTRY SHellL?
INSERT SHELL72GTAPE s RLOAD + WINDSGMEC) «QGMSL2
OVERLAY aLbPrA
INSERT OVERI»SEARCH
UVERLAY ALPHA
INSERT OVEKRZsSUHSHHeHBLAYERyQDSHEL + TRUSS» SSTAMH AMESTE X
CLSTI0sSLCCT»QDCOSHNLOAD
OVFRLAY ALPHA
INSERT QVERJIoFOHMK « CHOL » INQUTARFPASS +SWITCHeBPASSsRESIUIQLAYER
OVERLAY ALPHA
INSERT OVER4sGDISPL +MEMBR »MOMTR ¢MEMBG» AXTAL

/.

7/GO.FTOIF006]1 D0 DSN=4FILEI sUNIT=SYSDA+SPACE=(CYL {1y 1) sRLSE) 4

4 DISKH=(NEWsDELETE) sDEB= (BUFNO=] s RECFM=YSy LRECL=5004 +BLKS1ZE=5008)
//G0,FTO2F00] DU DSN=&FILE2)UNIT=SYSDAsSPACE=(CYLa (]l eRLSE)

77 DISP= (NEWeDELETE) sOCB={BUFNO= | » RECFMYS sLRECL=5004 +BLKSI 2ZE=5008)
#7G0FTO3FU0]l Do DSN=BFILE3+UNIT=5YSDA+SPACE=(CYLy (12 1) «RLSEY

174 D)}SP={NEWsDELETE} +UCA= (BUFNO=) »RECFM=VSLRECL=5004 +BLKSIZE=S008)
£7GOLFTO6FQ01 LD BSN=AFILE4sUNIT=2SYSDASSPACE={CYLy (141} sRLSE) s

/7 DISPS{NEW,UELETE} s DCH= (BUFNO=] «RECFM=VS s LRECL=8004 BLKS12E=5008)
//GOJFTOBFOCL LD DSN=LFILES,UNIT=SYSDA»SPACE={CYLet1el) )y

7/ D1SP= (NEWsDELETE) »DCB= (BUFNO=1 s RECFM=VSLRECL=B04yBLKSIZE=H08]
//60.FTO9F00) OU  OSN=4FILEF UNIT=SYSDA»SPACE=(CYLv (10l )y

’ DISP=INEwsDELETE) +DCH= (BUFNO=T +RECFM=VSsLRECL =24 04 +BLKSIZE=2408]
£7GOLSYSIN [F38] - DATA FUR SHELLT FOLLOWS

71
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