CALCULATION OF THE ELASTIC MODULI

of a

TWO LAYER PAVEMENT SYSTEM

from

MEASURED SURFACE DEFLECTIONS PART II

by

Frank H. Scrivner Chester H. Michalak William M. Moore

Research Report Number 123-6A (A supplement to Research Report 123-6)

conducted

In Cooperation with the U. S. Department of Transportation Federal Highway Administration

by the

Highway Design Division Research Section Texas Highway Department

> Texas Transportation Institute Texas A&M University

Center for Highway Research The University of Texas at Austin

December, 1971

Preface

This is a supplement to Research Report 123-6, which was the sixth report issued under Research Study 1-8-69-123, A Systems Analysis of Pavement Design and Research Implementation. The study is being conducted jointly by principal investigators and their staffs in three agencies -- The Texas Highway Department, The Center for Highway Research, and the Texas Transportation Institute -- as a part of the cooperative research program with the Department of Transportation, Federal Highway Administration.

Previous reports emanating from Study 123 are the following:

Report No. 123-1, "A Systems Approach Applied to Pavement Design and Research," by W. Ronald Hudson, B. Frank McCullough, Frank H. Scrivner, and James L. Brown, describes a long-range comprehensive research program to develop a pavement systems analysis and presents a working systems model for the design of flexible pavements.

Report No. 123-2, "A Recommended Texas Highway Department Pavement Design System Users Manual," by James L. Brown, Larry J. Buttler, and Hugo E. Orellana, is a manual of instructions to Texas Highway Department personnel for obtaining and processing data for flexible pavement design system.

Report No. 123-3, "Characterization of the Swelling Clay Parameter Used in the Pavement Design System," by Arthur W. Witt, III, and B. Frank McCullough, describes the results of a study of the swelling clay parameter used in pavement design system.

Report No. 123-4, "Developing a Pavement Feedback Data System," by R. C. G. Haas, describes the initial planning and development of a pavement feedback data system.

Report No. 123-5, "A Systems Analysis of Rigid Pavement Design," by Ramesh K. Kher, W. R. Hudson, and B. F. McCullough, describes the development of a working systems model for the design of rigid pavements.

Report No. 123-6, "Calculation of the Elastic Moduli of a Two Layer Pavement System from Measured Surface Deflections," by Frank H. Scrivner, Chester H. Michalak and William M. Moore, describes a method for converting Dynaflect deflections to the Young's moduli of a simple pavementsubgrade (two-layer elastic) system.

i

Report No. 123-7, "Annual Report on Important 1970-71 Research Needs," by B. Frank McCullough, James L. Brown, W. Ronald Hudson and F. H. Scrivner, was produced mainly for the information of the Research Area III Advisory Committee of the Texas Highway Department.

Report No. 123-8, "A Sensitivity Analysis of Flexible Pavement System FPS2," by Ramesh K. Kher, B. Frank McCullough and W. Ronald Hudson, presents a sensitivity analysis performed to establish the plausibility of solutions and relative importance of some of the variables in FPS2.

The opinions, findings and conclusions expressed in this publication are those of the authors and not necessarily those of the Department of Transportation, Federal Highway Administration.

Abstract

This report is a sequel to a previous one that gave the details of a computer program capable of calculating in situ values of the Young's moduli of a pavement-subgrade (two-layer elastic) system from surface deflections measured at two points located at specified distances from the load wheels of a Dynaflect. The present report describes the effect of a change in the specified location of one of the deflected points on (a) the calculated moduli, (b) the shape of the deflection basin calculated from these moduli and (c) certain wheel load stresses calculated from the moduli at the pavement-subgrade interface. Dynaflect data from flexible highway pavements and rigid airport pavement are used in the calculations.

Key Words: PAVEMENT, DESIGN, MODULUS, DEFLECTION.

Summary

One of the tasks undertaken in Study 123 is to investigate the feasibility of the use of linear elasticity theory in a subsystem of the flexible pavement design system now on trial in the Texas Highway Department (2). Such a subsystem would provide estimates of stresses, strains and displacements at critical points within the pavement structrue and subgrade, resulting from passing wheel loads.

But to calculate stresses, strains and displacements, the designer must have at hand estimates of -- among other things -- the in situ value of the elastic modulus of each material to be used in the pavement.

A previous report (1) describes how such moduli may be estimated, by the computer program ELASTIC MODULUS, from surface deflections measured on a simple (two-layer, or pavement-subgrade) type of flexible pavements at two points located at distances of zero and one foot from the centroid of the loaded areas provided by a Dynaflect. In the present report, analyses are presented of the differences in computed moduli encountered when the distance of one of the deflection points is increased from its original value of one foot to two feet. Also presented are the moduli resulting from the use of the Dynaflect on certain rigid pavements. On these the increase in spread between deflection points is found to be necessary to achieve sufficient contrast in the data.

Included with the report is a listing of the computer program, ELASTIC MODULUS II, used to estimate the moduli of pavement and subgrade from the deflections measured at zero and two feet from the centroid of the Dynaflect loaded area. Also included is a listing of the program, POINT LOAD, which accepts as inputs the moduli of a two-layer pavement system, and the thickness of the upper layer, and computes deflections at points at any desired distances from the centroid of a Dynaflect load.

iv

It was possible to compute from ELASTIC MODULUS II (or from ELASTIC MODULUS) the moduli of pavement and subgrade, using Dynaflect deflections observed at only two points, and then, by using these moduli, to predict (by use of POINT LOAD) the entire five-point Dynaflect basin. The predicted basin could then be plotted and compared with the plotted basin actually observed. From plots of this type, a subjective judgement could be made of the validity of elasticity theory when applied to simple, two-layer pavement structures.

Besides comparing directly the moduli computed from deflections measured at different pairs of points, and the resulting predicted Dynaflect deflection basins, it was also possible, by use of the computer program BISTRO (supplied by Koniklijke/Shell-Laboratorium, Amsterdam) to compute certain stresses at the pavement-subgrade interface resulting from use of the two sets of moduli. It is these stresses that are of interest in design.

Sources of flexible pavement deflection data were seven 500-foot sections near College Station, Texas. Rigid pavement data were obtained at the Houston Intercontinental Airport by courtesy of airport officials and their consultants.

The report contains many detailed conclusions, which may be summed up as follows.

The Dynaflect in its present form, combined with the computer programs ELASTIC MODULUS II and POINT LOAD, has the potential of becoming a useful method for material characterization in a pavement design system using linear elastic theory as a subsystem, provided that proper heed is paid to instrument error, the inevitable variability of highway materials in place, and the many other uncertainties that enter into a complete pavement design system. ELASTIC MODULUS II, rather than

v

ELASTIC MODULUS, is recommended in order to achieve compatibility between moduli found for rigid pavements and those determined for flexible pavements.

Implementation Statement

The programs ELASTIC MODULUS II and POINT LOAD were written in the expectation that eventually the Texas Highway Department's Flexible Pavement Design System will, in the prediction of pavement life, use the stresses, strains and displacements computed at critical points within the structure from the theory of linear elastic layered systems, instead of solely the surface deflections calculated by the present empirical equation. When such a change occurs in the design system, in situ values of elastic moduli will be needed. This need probably can be met, at least to some degree, by the computer programs described herein.

Acknowledgments

For their assistance in obtaining the deflection data indicated below, the writers are especially grateful to the following personnel and their organizations.

Data from flexible pavements: Dr. Robert E. Long of the Texas Nighway Department, Bryan, Texas.

<u>Data from rigid pavements</u>: Col. Harry Fischer of the Houston Intercontinental Airport, Mr. D. E. Aviles of Marillo Engineering and Testing Service, Houston, Texas, and Mr. H. P. Carothers of Lockwood, Andrews and Newnam of Houston.

Thanks are also due Mr. Rudell Poehl and Mr. Neil K. Holley, both of Texas Transportation Institute, for their expert operation of the Dynaflect on the pavements tested.

<u>Table of Contents</u>

Page

,...

.

-

.

-

-

*

List	t of Figures	х
List	t of Tables	xi
1.	Introduction	1
2.	Accuracy Check	5
3.	Non-unique Solutions	7
4.	Examples of Solutions Provided by ELASTIC MODULUS II for Flexible Pavements	10
5.	Comparison of Moduli Estimated from Geophone 1 and 2 Data with Those Estimated from Geophone 1 and 3 Data	20
6.	Computed Versus Observed Dynaflect Deflection Basins for Flexible Pavements	28
7.	Comparison of Certain Stresses Computed from Geophone 1 and 2 Data with Those Computed from Geophone 1 and 3 Data	38
8.	Examples of Solutions, Rigid Pavements	46
9.	Conclusions	62
List	t of References	65
Арре	endix A - Listing of ELASTIC MODULUS II	A-1
Αрре	endix B - Listing of POINT LOAD	B-1

<u>List of Figures</u>

Figure		Page
1	Relative position of Dynaflect loads and sensors	2
2	Two-layer elastic system loaded at a point on the surface	3
3	Contours of pavement thickness, h, plotted as a function of the ratios E_1/E_2 and w_1r_1/w_3r_3	8
4a	E_1 (w ₁ , w ₂) compared with E_1 (w ₁ , w ₃)	22
4ъ	E_2 (w ₁ , w ₂) compared with E_2 (w ₁ , w ₃)	23
5 a- 5g	Computed Dynaflect deflection basins compared with average observed basins, flexible pavements	29-35
6	Simulated tire-pavement contact areas for 9000-1b. dual wheel load	39
7	Comparison of the ratio E_1/E_2 computed from Geophones 1 and 2, with that computed from Geophones 1 and 3 .	42
8	Comparison of the major principal stresses in the base, computed from different pairs of geophones, at the base-subgrade interface	43
9	Comparison of the minor principal stresses in the subgrade, computed from different pairs of geophones, at the base-subgrade interface	44
10a-10k	Computed Dynaflect deflection basins compared with observed basins, rigid airport pavements	49-59

.

.

.

List of Tables

4

.

Table		Page
1	Comparison of ELASTIC MODULUS II with BISTRO	6
2	Summary of restraints used in ELASTIC MODULUS II .	9
3	Summary of pavement moduli, E ₁ , computed by ELASTIC MODULUS II, flexible pavements	11
4	Summary of subgrade moduli, E ₂ , computed by ELASTIC MODULUS II, flexible pavements	12
5a-5g	Computer print-outs, ELASTIC MODULUS II 1	3-19
6	Comparison of moduli computed by ELASTIC MODULUS with those computed by ELASTIC MODULUS II	21
7	Results of analyses of variance identifying sig- nificant differences between E_1 (w_1 , w_2) and E_1 (w_1 , w_3)	25
8	Results of analyses of variance identifying significant differences between E_2 (w_1 , w_2) and E_2 (w_1 , w_3)	26
9	Comparison of certain truck wheel load stresses at the base-subbase interface computed by BISTRO using moduli computed by ELASTIC MODULUS and ELASTIC MODULUS II and a statement of the statement of the statement	41
10	Rigid pavement and subgrade moduli, Houston Intercontinental Airport	47
11	Subjective rating of agreement between observed and computed Dynaflect basins, Houston Intercontinental Airport	61

FOREWARD

The primary objective of this research project is to develop techniques for the optimal operation of a linked system of multipurpose reservoirs. Linkage of the system may be through normal river reaches, canals, or through pumping in pipelines. In this report a model is developed which utilizes stochastic inflows with the total system subject to certain constraints. This model will be utilized later in an operational study of an existing system.

<u>1</u>. <u>Introduction</u>

Research Report 123-6, "Calculation of the Elastic Moduli of a Two Layer Pavement System from Measured Surface Deflections" (1), describes a computer program, ELASTIC MODULUS, that accepts as inputs the deflections w_1 and w_2 , indicated by Geophones 1 and 2, respectively, of a Dynaflect (see Figure 1) acting on the surface of an idealized, linear elastic, two layer pavement system such as that illustrated in Figure 2. An additional input is the thickness, h, of the top layer. From the three inputs -- w_1 (mils), w_2 (mils) and h (inches) -- and the constant distances r_1 (inches) and r_2 (inches) from Geophone 1 and Geophone 2 to either load wheel, ELASTIC MODULUS calculates the moduli E_1 and E_2 (both in pounds per square inch) of the two layers.

Because the geometry of a real pavement departs from that assumed in the theory at a lateral distance of only a few feet from the location of the Dynaflect load wheels, it was felt that the two geophones nearest the load would be likely to yield data more consistent with theory than more distant geophones -- hence, the selection of Geophones 1 and 2 in Research Report 123-6 for use in estimating the moduli. However, in the case of portland cement concrete pavements experience has shown that in many cases the deflection basin created by the Dynaflect is so flat that w_1 and w_2 frequently differ by an amount only 1 to 3 times the 0.00001 inch sensitivity of the instrument. For this reason, it was decided to investigate the use of Geophones 1 and 3 in ELASTIC MODULUS, since the values of w_1 and w_3 had been found to be significantly different, even for rigid airport pavements as thick as 14 inches.

This report, a supplement to Research Report 123-6, describes the investigation and lists the computer program ELASTIC MODULUS II, which

2日

Figure 1: Relative position of Dynaflect loads and sensors. The sensors are usually placed in the outer wheel path, on a line paralleling the center line of the highway. closely resembles the program described in Research Report 123-6 (see Appendix A). It also lists the computer program POINT LOAD (see Appendix B) which accepts as inputs the moduli E_1 and E_2 of a two layer system, the thickness h of the top layer, and the distance r to a point on the surface. From these inputs POINT LOAD computes the surface deflection, w, at the distance r from the load, using the same basic equations and numerical integration methods as those employed in ELASTIC MODULUS.

The program POINT LOAD was found useful in determining the degree of agreement between

- ELASTIC MODULUS II and the older and more comprehensive program BISTRO, and between
- (2) a Dynaflect deflection basin computed from deflections observed at only two points on the pavement, and the entire (five point) basin actually observed.

2. Accuracy Check

As indicated above, the equations and computational procedures used in ELASTIC MODULUS II are the same as those described in Research Report 123-6, and therefore will not be discussed in this report. However, because there were some numerical changes, it was considered prudent to make an accuracy check of ELASTIC MODULUS II against the computer program BISTRO, similar to the check described in Reference (1) for ELASTIC MODULUS. The results are given in Table 1. As was expected from previous experience with ELASTIC MODULUS, the agreement between ELASTIC MODULUS II and BISTRO was excellent except in the improbable case where the modulus of the pavement layer was assumed to be only one-tenth of the subgrade modulus.

The changes made in ELASTIC MODULUS to produce ELASTIC MODULUS II are summarized below.

MAIN PROGRAM: The restraints listed in Table 2 (next chapter) are used instead of those listed in Table 3 of Reference 1. SUBROUTINE EMOD: r_2 (value = 15.62 inches) was changed to r_3 (value = 26 inches); also w_1 and w_3 are used in the computations instead of w_1 and w_2 .

(The numbers listed in Table 1 in the column headed "ELASTIC MODULUS II" were actually computed from the program, POINT LOAD. However, since both programs use the same equations and methods for computing surface deflections, the deflections printed out by POINT LOAD are precisely the same as those computed internally, but not printed out, by ELASTIC MODULUS II.)

				Compu	ited Defle	ctions (mils)		
				wı		<u></u>		
E _l (psi)	E ₂ (psi)	E ₁ /E ₂	h (in.)	ELASTIC MODULUS II	BISTRO	ELASTIC MODULUS II	BISTRO	
10,000,000	10,000	1,000	5	0.99	0.99	0.81	0.81	
			10	0.52	0.52	0.48	0.48	
			20	0.26	0.26	0.26	0.26	
			40	0.13	0.13	0.13	0.13	
1,000,000	10,000	100	5	1.86	1.85	1.09	1.09	
			10	1.07	1.07	0.84	0.84	
			20	0.57	0.57	0.51	0.51	
			40	0.30	0.30	0.28	0.28	
100,000	10,000	10	5	2.65	2.65	0.98	0.98	
,	,		10	1.94	1.93	1.06	1.06	
			20	1.20	1.20	0.86	0.86	
			40	0.74	0.74	0.56	0.56	
10,000	10,000	1	5	2.39	2.39	0.92	0.92	
~ *			10	2.39	2.39	0.92	0.92	
			20	2.39	2.39	0.92	0.92	
			40	2.39	2.39	0.92	0.92	
1,000	10,000	0.1	5	-0.01	-0.04	0.80	0.80	
	,		10	-0.15	-0.06	0.35	0.35	
			20	7.45	7.52	0.42	0.42	
			40	14.90	14.90	1.60	1.60	

Note: ELASTIC MODULUS II: Point load of 1000 lbs. BISTRO: Circular loaded area with radius of 1.41 in., pressure of 160 psi, load of 1000 lbs. Both programs: Vertical deflection computed at the points r = 10", z = 0 and r = 26", z = 0.

. .

۰ ۲

.

.

1

.

3. Non-Unique Solutions

As in the case of ELASTIC MODULUS, the posibility exists that non-unique solutions will sometimes arise from the Dynaflect data processed through ELASTIC MODULUS II, and occasionally no solution at all will be possible. These possibilities were investigated by (a) preparing the graph shown in Figure 3 (comparable to Figure 3 of Reference (1)) and -- based on conclusions drawn from the graph --(b) arriving at the constraints shown in Table 2 (comparable to Table 3 of Reference (1)) to be included in ELASTIC MODULUS II. The logic followed in choosing these restraints from a study of Figure 3 is the same as previously described in Reference (1), and need not be repeated here. The coordinates of the points used in plotting the curves in Figure 3 were computed by the program POINT LOAD.

Figure 3: Contours of pavement thickness, h, plotted as a function of the ratios E_1/E_2 and w_1r_1/w_3r_3 .

•

.

. .

.

٠

.

 ∞

r I

Measure	d Input Data					
w_1r_1/w_3r_3	Thickness, h (in.)	Unique Solution	Layer Having The Greater Modulus	Program Printout		
Greater than l	Greater than 11.2	Yes	Subgrade	Subgrade and pavement moduli		
Greater than 1	Less than 11.2	No	May be either	"NO UNIQUE SOLUTION"*		
Less than 1	Greater than 11.2	Yes	Pavement	Subgrade and pavement moduli		
Less than l	Less than 11,2	No	May be either, but the more probable of two possible solu- tions is selected	Subgrade and pavement moduli for solution having $E_1/E_2 > 1$		

.

.

.

.

Table 2: Summary of Information from Figure 3 Used in the Control of the Program, ELASTIC MODULUS II

•

*

* When the experimental data w_1r_1/w_3r_3 exceeds unity, and h is less than 11.2", some cases can arise for which no solution at all is possible.

5

.

<u>4.</u> Examples of <u>Solutions</u> Provided by <u>ELASTIC</u> <u>MODULUS</u> <u>II</u> for <u>Flexible</u> <u>Pavements</u>

In May, 1968, Dynaflect deflections were measured at ten points in the outer wheel path on each of several 500-ft. sections of highways in the vicinity of College Station, Texas. Originally this was done for the purpose of obtaining the "stiffness coefficient" used to characterize materials in the systems approach to the design of flexible pavements now on trial in the Texas Highway Department (2, 3, 4). Later the 1968 data from <u>Geophones 1 and 2</u> were processed through ELASTIC MODULUS and the resulting moduli were given in Reference (1). Finally, in Tables 3 and 4 of this report, average moduli for each test section resulting from the use of <u>Geophone 1 and 3</u> data in ELASTIC MODULUS II are given, together with a verbal description of the materials involved. The computer printouts -- one for each test section -- are reproduced in Tables 5a through 5g.

The moduli computed by ELASTIC MODULUS II, and presented in Tables 3 and 4, will be discussed in the next two chapters, with the main emphasis being placed on comparisons of those moduli with corresponding values previously computed by ELASTIC MODULUS and reported previously in Reference 1.

Table 3: Average Pavement Modulus, E_1 , for Each of Seven 500-ft. Flexible Pavement Sections of Highways near College Station Texas, using w_1 and w_3 Data

•

.

.

• •

(Deflection measurements made May 21, 1968)

			Pa Thic	kness, h	Pavement Modulus, E1					
Test Section	Pavement Materials and Thicknesses			Standard Deviation	No.* Solutions	Average Value (PSI)	Standard Deviation	Coefficient of Variation (percent)		
15	1.2" Asph. Conc.	14.0" Cement stabilized limestone	15.2	1.2	10	 314,100	75,200	24		
4	0.5" Seal Coat	7.5" Asphalt stabilized gravel	8.0	0.4	4	110,500	90,400	82		
16	1.0" Asph. Conc.	6.5" Asph. emulsion stab. gravel	7.5	0.4	10	109,300	19,700	18		
17	0.5" Seal Coat	7.8" Iron ore gravel	8.3	0.7	10	81,900	47,700	58		
5	0.5" Seal Coat	11.5" Lime stabilized sandstone	12.0	2,8	10	23,800	15,400	64		
3	0.5" Seal Coat	12,0" Red sandy gravel	12.5	1.0	10	23,700	11,600	49		
12	3,7" Asph. Conc.	16.2" Sandstone	19.9	0.5	10	14,900	3,300	22		

.

1

* Measurements were made at 10 locations in each section. Less than 10 solutions occur in cases where $w_1r_1/w_3r_3 > 1$ and h < 11.2", as indicated in Table 2.

Table 4: Average Subgrade Modulus, E_2 , for Each of Seven 500-ft. Flexible Pavement Sections of Highways near College Station, Texas, using w_1 and w_3 Data

-

~

.

.

(Deflection measurements made May 21, 1968)

Subgrade Modulus, E₂

*

.

Test	Thickness	Subgrade M	No.*	Average Value	Standard	Coefficient of Variation	
Section	Investigated	Description	Formation	Solutions	(PS1)	Deviation	(percent)
15	32"	Red sandy clay, some gravel	Stone City	10	1 9, 120	7 9 3	4
3	23 ^u	Sand over clay	Spiller Sandstone Member of Cook Mountain Formation	10	18 ,98 0	1297	6
5	24"	Tan sandy clay	Cadde11	10	14,840	1597	11
12	22"	Black stiff clay	Lagarto	10	14,010	978	7
4	25"	Grey sandy clay	Spiller Sandstone Member of Cook Mountain Formation	4	11,800	1268	11
17	21"	Grey sandy clay	Spiller Sandstone Member of Cook Mountain Formation	10	11,400	1201	11
16	18"	Brown clay	Alluvium deposit of Brazos River	10	11,110	528	5

* Measurements were made at 10 locations in each section. Less than 10 solutions occur in cases where $w_1r_1/w_3r_3 > 1$ and h < 11.2", as indicated in Table 2.

· •

\$

DISTRICT 17 - DESIGN SECTION

DYMAFLECT OFFLECTIONS AND CALCULATED ELASTIC MODULI

THIS PRUGRAM WAS RUN - 07/15/71

DIST.	COUNTY
17	BRAZOS

CUNT.	SECT.	JUR	HIGHWAY	DATE	UYNAFLECT
1560	1	1	FM 1687	5-21-68	1

PAV. THICK. = 12.50 INCHES

•

	SLAL C	CHAT	0.50	RED SANDY	GRAVEL	12.00
--	--------	------	------	-----------	--------	-------

GREY & BRAN SAND SUB 0.0

STATION	W 1	W 2	#3	W4	₩5	SCI	* *	ΕS	**	* *	ΕP	**	REMARKS
1 – A	1.170	0.770	0.520	0.310	0.219	0.400		191(00.		394	00.	
1 - 3	1.140	0.770	0.510	0.310	0.213	0.370		1960	0.		416	00.	
2 - A	1.290	0.340	0.490	0.300	0.204	0.450		1860)0.		175	00.	
2 - d	1.200	0.840	0.490	0.300	0.201	0.360		1950)0.		265	00.	
3 - A	1.140	0.770	0.470	0.300	0.195	0.370		204)0 .		290	00.	
3 - 3	1.110	0.770	0.460	0.300	0.201	0.340		209(00.		304	00.	
4 - 4	1.470	0.960	0.490	0.329	0.222	0.510		1650	00.		84	00.	
4 - B	1.380	0.900	0.470	0.310	0.213	0.430		1750	10.		- 98	00.	
5 - 4	1.290	0.870	0.500	0.340	0.231	0.420		1850)0.		192	00.	
'5 – В	1.260	0.800	0.460	0.310	0.219	0.460		1920	00.		148	00.	
AVERAGES	1.245	0.829	0.486	0.310	0.212	0.416		189)	30.		236	60.	
STANDARD	DEVIAT	FI ON				0.057		129	٠7.		116	09.	
NUMBER OF	POIN	IS IN 4	AV ERAGE	=		10		1	0			10	
W 1	DEFLEC	TIGN A	T GEUS	PHONE 1	L								
W 2	DEFLEC	TIDN A	AT GEOR	чо∿⊧ 2	2								
W 3	DEFLEC	TTON 4	AT GEOR	HONE B	3								
₩4	DEFLEC	CTION #	AT GEOR	илығ 4	+								
W 5	DEFLEC	CTION #	AT GEOR	PH:3NE €	5								
SCI	SURFAC	CE CURV	ATUPE	INDEX	(w1 M	ALNUS 4	(2)						
⊦s	FLASTI	C MUDU	ILUS OF	тче я	SURGRAE	DE ERON	v (4)	ΔN) W3	3			
FP	FLASTI	IC MODU	JLUS OF	THE F	PAVEMEN	FR (DM	1 W]	AN!) vr:	<u>,</u>			

Table 5a: Computer print-out for Section 3.

DISTRICT 17 - DESIGN SECTION

DYNAFLECT DEFLECTIONS AND CALCULATED ELASTIC MODULT

THIS PROGRAM WAS RUN - 07/15/71

		015T. 17	C () 8 R	UNTY AZOS	
CUNT. 2824	SEC T 2	JOP 1	HIGHWAY FM 2776	DATE 5-21-68	DYNAFLECT 1
			PAV. THI	CK. = 8.00	INCHES

SEAL COAT 0.50 ASPHALT STAB. GRAVEL 7.50

GPEY SANDY CLAY SURG 0.0

STATION	v: 1	W2	₩3	W4	W5	SCI	** ES	**	* *	ЕP	**	REMARKS
1 – A	1.650	1.200	0.870	0.660	0.500	0.450	124	00.	1	1889	00.	
1 - B	1.560	1.110	0.810	0.610	0.490	0.450	133	00.	1	1885	00.	
2 – A	2.310	1.470	0.930	0.710	0.530	0.840	107	00.		369	00.	
2 - B	2.310	1.410	0.900	0.670	0.510	0.900	108	00.		276	00.	
3 - A	2.430	1.500	0.930	0.670	0.490	0.930	NO UN	LOUE	Sr	DLUT	TON	
3 – B	2.490	1.530	0.930	0.670	0.500	0.960	NO UN	LOUF	-51) UT	TCN	
4 – A	2.490	1.470	0.900	0.640	0.480	1.020	NO UN	TOUL	S	LUT	TUN	
4 - B	2.430	1.410	0.840	0.610	0.470	1.020	NO UN	LOUE	S	JUT	LON	
5 - A	2.340	1.440	0.870	0.620	0.450	0.900	NO UN	IQUE	S	JLUT	TON	
'5 - B	2.430	1.470	0.930	0.650	0.470	0.960	NO UN	LOUE	Si	DLUT	100	
AVERAGES	2.244	1.401	0.891	0.651	0.489	0.843	118	00.	1	1104	75.	
STANDARD	DEVIA	TTO.				0.214	12	68.		904	06.	
NUMBER G	F POIN	TS IN	AVEFAG	. =		10		4			4	
W 1	DEFLEC	CTION	AT GEOI	PHONE 1	L							
W2	DEFLEC	CTION	AT GEOI	PHONE 2	2							
W3	DF FLF(CTION /	AT GEG	PHONE	3							
W4	DEFLEC	CTI DM D	AT GEUI	PHONE 4	4							
W 5	DEFLEC	CTION /	AT GEOM	PHONE	5							
SCI	SURFA	CE CUP	VATURE	INDEX	(W1 M	INUS N	d2)					
ΓC	EL ACT'	te auni	HER DO	TUE C	LIBCEAL	יח בי בא	A 141 AN	0 43				

FS FEASTIC MUDULUS OF THE SUBGRADE FROM W1 AND W3 EP ELASTIC MUDULUS OF THE PAVEMENT FROM W1 AND W3

Table 5b: Computer print-out for Section 4.

DISTRICT 17 - DESIGN SECTION

DYNAFLECT DEFLECTIONS AND CALCULATED ELASTIC MODULE

THIS PROGRAM WAS RUN - 07/15/71

			0IST. 17		COUNTY BUPLES	Y SON						
	CONT. 1399	SEC1. 1	JOB 1	H1GHWA FM 136	VY [51 5-	DATE -21-	-68	[) YN A	AFLE 1	C T	
				PAV. 1	ніск.	= 1	2.0	0 1	сне	S		
	SEAL CO	4 T	0.	50	LIME	ST 4	₩В.	S ANI)STC	DNE	11.50	
	TAN SAN	DY CLAY SUE	BGR 0.	0								
STATION	мί	w2 w3	W 4	W5	SC I	**	ΕS	**	* *	ΕP	**	REMARKS
1 - A 1 - B 2 - A 2 - B 3 - A 3 - B 4 - A 4 - B 5 - A 5 - B AVERAGES	$\begin{array}{c} 1.500 & 1 \\ 1.560 & 1 \\ 1.650 & 1 \\ 1.440 & 1 \\ 1.500 & 1 \\ 1.440 & 0 \\ 1.500 & 1 \\ 1.380 & 0 \\ 1.920 & 1 \\ 1.800 & 1 \\ 1.569 & 1 \\ \end{array}$.110 0.719 .230 0.780 .200 0.670 .050 0.640 .050 0.600 .990 0.580 .050 0.560 .990 0.540 .260 0.650 .140 0.630	0.470 0.480 0.400 0.380 0.370 0.370 0.340 0.330 0.400 0.420 0.396	0.330 0.330 0.243 0.246 0.267 0.261 0.216 0.213 0.280 0.310 0.270	0.390 0.330 0.450 0.450 0.450 0.450 0.450 0.660 0.660 0.660		144 133 142 156 158 164 160 172 123 132	00. 00. 00. 00. 00. 00. 00. 00. 00.		437 529 194 347 214 134 190 58 76 237	00. 00. 00. 00. 00. 00. 00. 00. 00. 00.	
STANDARD NUMBER OF W1 W2 W3 W4 W5 SCI ES EP	DEVIATI POINTS DEFLECT DEFLECT DEFLECT DEFLECT SURFACE ELASTIC ELASTIC	UN IN AVERAGE ION AT GEOP ION AT GEOP ION AT GEOP ION AT GEOP CURVATURE MODULUS OF MODULUS OF	PHONE 1 PHONE 2 PHONE 3 PHONE 4 PHONE 4 PHONE 5 INDEX INDEX INDEX INDEX INDEX	GUBGRAC Subgrac	0.112 10 MINUS V DE FROM IT FROM	N2) 4 W1 4 W1	15 . AN . AN	97. 10 D W ³ D W ³	k 3	153	52 . 10	

Table 5c: Computer print-out for Section 5.

.

DISTRICT 17 - DESIGN SECTION

DYNAFLECT DEFLECTIONS AND CALCULATED ELASTIC MODULI

THIS PROGRAM WAS RUN - 07/15/71

DIST.	COUNTY
17	WASHINGTON

CONT.	SEC T.	JOB	HIGHWAY	DATE	DYNAFLECT
186	5	1	SH 36	5-21-63	1

PAV. THICK. = 19.90 INCHES

٠

.

•

	HOT MIX ASPH. CONC.				3.75	STONE				16.15		
	BLACK	CLAY	SUBGRA	ĐE	0.0							
STATION	w! 1	W2	3	44	₩5	SCT	** ES	**	* *	ΕP	**	REMARKS

1 -	۸	1.680	1.020	0.610	9.420	0.300	0.660	14800.	13100.	
1 -	8	1.830	1.090	0.610	0.420	0.310	0.750	14300.	10800.	
2 -	A	1.740	1.080	0.670	0.470	0.360	0.660	13700.	13700.	
2 -	B	1.950	1.170	0.690	0.490	0.370	0.780	13000.	10900.	
3 -	Α	1.680	1.380	0.680	0.500	0.380	0.600	. 13700.	15400.	
3 -	8	1.710	1.080	0.670	0.480	0.370	0.630	13800.	14300.	
4 -	А	1.580	1.110	0.750	0.570	0.460	0.570	12700.	18300.	
4 -	8	1.560	1.030	0.730	0.550	0.440	0.480	13200.	21600.	
5 -	Д	1.500	0.960	0.590	0.440	0.330	0.540	15700.	16500.	
.5 -	.3	1.590	0.990	0.600	0.430	0.330	0.600	15200.	14600.	
AVED	ACEC	1 402	1 04.5	0 4 4 0	1) 477	0 345	0 6 2 7	14010	14020	
AVER	AGES	1.092	1.000	0.000	0•4rr	0.303	0.027	14010.	14920.	
STAN	DARD	DEVIAT	ION				0.091	978.	3286.	
NUMB	EP OF	PUINT	S I.4 /	VERAGE	=		10	1.0	10	
W	1	DEELEC	TION A	T GEDE	HONE 1	1				

 W2 DEFLECTION AT GEOPHONE 2 W3 DEFLECTION AT GEOPHONE 3 W4 DEFLECTION AT GEOPHONE 4 W5 DEFLECTION AT GEOPHONE 5 SCI SUPFACE CURVATUPE INDEX (W1 MINUS W2) ES ELASTIC MODULUS OF THE SUBGRADE FROM W1 AND W3 EP ELASTIC MODULUS OF THE PAVEMENT FROM W1 AND W3 	79 L	DEFLECTION AF GEORGAN I	
 W3 DEFLECTION AT GEOPHONE 3 W4 DEFLECTION AT GEOPHONE 4 W5 DEFLECTION AT GEOPHONE 5 SCI SUPFACE CURVATURE INDEX (W1 MINUS W2) ES ELASTIC MODULUS OF THE SUBGRADE FROM W1 AND W3 EP ELASTIC MODULUS OF THE PAVEMENT FROM W1 AND W3 	W2	DEFLECTION AT GEOPHONE 2	
W4 DEFLECTION AT GEOPHONE 4 W5 DEFLECTION AT GEOPHONE 5 SCI SUPFACE CURVATURE INDEX (W1 MINUS W2) ES ELASTIC MODULUS OF THE SUBGRADE FROM W1 AND WS EP ELASTIC MODULUS OF THE PAVEMENT FROM W1 AND WS	W3	DEFLECTION AT GENPHONE 3	
W5 DEFLECTION AT GEUPHONE 5 SCI SUPFACE CURVATURE INDEX (W1 MINUS W2) ES ELASTIC MODULUS OF THE SUBGRADE FROM W1 AND WX EP ELASTIC MODULUS OF THE PAVEMENT FROM W1 AND W3	W4	DEFLECTION AT GEOPHONE 4	
SCI SUPFACE CURVATURE INDEX (W1 MINUS W2) ES ELASTIC MODULUS OF THE SUBGRADE FROM W1 AND WX EP ELASTIC MODULUS OF THE PAVEMENT FROM W1 AND W3	W5	DEFLECTION AT GEOPHANE 5	
ES ELASTIC MODULUS OF THE SUBGRADE FROM WI AND WA EP ELASTIC MODULUS OF THE PAVEMENT FROM WI AND WA	SCI	- SUPFACE CURVATURE INDEX (W1 MIN	IUS W2)
EP ELASTIC MUDULUS OF THE PAVEMENT FROM #1 AND #3	E S	ELASTIC MODULUS OF THE SUBGRADE	FROM W1 AND WS
	EP	ELASTIC MUDULUS OF THE PAVEMENT	FROM #1 AND #3

Table 5d: Computer print-out for Section 12.

DISTRICT 17 - DESIGN SECTION

DYNAFLECT DEFLECTIONS AND CALCULATED ELASTIC MODULI

THIS PRUGRAM WAS RUN - 07/16/71

1				DIST. 17		COUNT ROBER	Y TSOI	N					
	CONT 49	. St	8 8	JOB 1	HIGHWA US 190	AY) 5	DAT -21-	E -68	Ľ	YNA	FLE 1	CT	
					PAV. 1	гніск.	= :	15.20	NI C	ICHE	S		
	HOT MI	X ASPH	H. CONC	. 1.	25	CEM.	ST/	AB. 4	_ I ME	sto	NE	13.9	5
	RED SA	NDY CL	AY SUE	BGR 0	.0								
STATION	w 1	W2	W3	₩4	₩5	SC I	**	ES	**	**	ΕP	**	REMARKS
1 - A	0.680	0.590	0.490	0.390	0.310	0.090		1860	00.	3	127	00.	
1 - B	0.680	0.600	0.490	0.390	0.310	0.080		1860	00.	3	127	00.	
2 - A	0.720	0.630	0.510	0.390	0.310	0.090		1820	.00	2	719	00.	
2 — В	0.700	0.620	0.490	0.390	0.310	0.080		1910	.00	2	645	00.	
3 - A	0.750	0.050	0.520	0.390	0.300	0.100		1820	.00	2.	355	00.	
3 - B	0.760	0.650	0.510	0.390	0.300	0.110		1890	00.	2	017	00.	
4 - A	0.600	0.540	0.450	0.350	0.280	0.060		1950	00.	- 4	3 3 0	00.	
4 - B	0.580	0.520	0.430	0.330	0.880	0.060		2060	00.	4	223	00.	
,5 - Α	0.620	0.550	0.450	0.350	0.910	0.070		2010	00.	3	556	00.	
5 - B	0.650	0.570	0.470	0.360	0.280	0.080		194(00.	3	311	00.	
AVERAGES	0.674	0.592	0.481	0.373	0.419	0.082		1912	20.	3	141	.00.	
STANDARD	DEVIAT	ION				0.016		79	93.		75,2	13.	
NUMBER OF	= POINT	S IN A	VERAGE	=		10]	10			10	
U I	DEFLEC	TION 4	AT GEOR	HONE 1	I			`					

W2 DEFLECTION AT GEOPHONE 2 DEFLECTION AT GEOPHONE 3 DEFLECTION AT GEOPHONE 4 DEFLECTION AT GEOPHONE 5 W3 W4 ₩5 SURFACE CURVATURE INDEX (WI MINUS W2) ELASTIC MODULUS OF THE SUBGRADE FRUM W1 AND W3 ELASTIC MODULUS OF THE PAVEMENT FRUM WI AND W3 SCI ES EΡ

Table 5e: Computer print-out for Section 15.

DISTRICT 17 - DESIGN SECTION

DYNAFLECT DEFLECTIONS AND CALCULATED ELASTIC MUDULI

THIS PROGRAM WAS BUN - 07/15/71

DIST.	COUNTY
17	BRAZOS

CONT.	SECT.	JAR	HIGHWAY	DATE	DYNAELECT
1560	1	1	FM 1687	5-21-68	1

PAV. THICK. = 7.50 INCHES

ASPHALT SURFACING 1.00 ASPH EMUL STAB GRAVE 6.50

BRUWN CLAY SUBGRADE 0.0

STATION	w 1	W2	W 3	N 4	W5	SC I	**	FS **	* *	ΕP	**	REMARKS
1 - A	2.160	1.500	0.960	0.660	0.520	0.660		10900.		861	.00.	
1 – B	2.130	1.530	0.960	0.650	0.510	0.600		10900.		930	00.	
2 - A	1.920	1.410	0.930	0.640	0.490	0.510		11500.		1405	500.	
2 – В	1.860	1.350	0.900	0.630	0.500	0.510		11800.		1443	500.	
3 – A	2.040	1.470	0.930	0.630	0.490	0.570		11300.		1023	100.	
3 – B	2.070	1.500	0.960	0.650	0.500	0.570		11000.		1092	00.	
4 – A	2.220	1.620	1.020	0.670	0.490	0.600		10300.		970	00.	
4 - 3	2.220	1.590	1.020	0.650	0.490	0.630		10300.		970	00.	
5 - A	1.980	1.380	0.900	0.610	0.470	0.600		11700.		1038	800.	
<u>5</u> – н	1.980	1.440	0.930	0.610	0.460	0.540		11400.		1201	.00.	
AVERAGES	2.058	1.479	0.951	0.640	0.492	0.579		11110.		1093	30.	
STANDARD	DEVIA	FIDN				0.049		528.		197	23.	
NUMBER O	F POIN	ES IN A	AV ERAG	=		10		10			10	
₩1	DEFLEC	CTEON /	AT GEOU	РНОМЕ П	1							
W2	DEFLEC	TTON /	NT GEOR	HONE 2	2 .							
WЗ	DEFLEC	CTION /	AT GEOR	PHONE	3							
W4	DEFLFO	CTIDN /	AT GEOD	HONE 4	4							

W5 DEFLECTION AT GEOPHONE 5 SCI SURFACE CURVATORE INDEX (W1 MINUS W2) ES ELASTIC MODULUS OF THE SUBGRADE FROM W1 AND W3 EP FLASTIC MODULUS OF THE PAVEMENT FROM W1 AND W3

Table 5f: Computer print-out for Section 16.

DISTRICT 17 - DESIGN SECTION

DYNAFLECT DEFLECTIONS AND CALCULATED ELASTIC MODULI

THIS PROGRAM WAS RUN - 07/15/71

			DIST. 17	COUNTY BRAZOS							
	CÜNT. 540	SECT. 3	CT. JOB 3 1		HIGHWAY I FM 974 5-		DATE [+21-68		DYNAFLECT I		
				PAV.	тніск.	=	8.30	INCH	HES		
	SEAL COM	Τ	0	• 50	IRON	() R[E GP A	VEL.		7.9	0
	GREY SANDY CLAY SUBG 0.0										
STATION	nl h	12 W3	W4	₩5	SCI	* *	ES :	¢¢ \$	* [P	**	REMARKS
1 - 4	2.400 1.	530 0.96	0 0.680	0.500	0.870		10300).	298	00.	
1 - 3	2.250 1.	440 0.90	0 0.630	0.480	0.810		11000	Э.	318	00.	
2 – A	1.770 1.	170 0.82	0 0.500	0.480	0.600		12800	Э.	929	00.	
2 - 8	1.800 1.	200 0.82	0 0.620	0.490	0.600		12700	Э.	846	00.	
3 - A	1.650 1.	170 0.94	0.640	0.510	0.480		12700).	1481	00.	
3 – റ	1.590 1.	170 0.84	0.510	0.510	0.420		12800	2.	1779	00.	
$4 - \Delta$	2.250 1.	470 0.99	0 0.750	0.600	0.780		10400	Э.	576	00.	
4 - B	2.340 1.	590 1.05	0 0.790	0.630	0.750		9900).	606	00.	
5 - A	2.220 1.	470 C.99	0 0.710	0.550	0.750		1050).	620	00.	
.5 – В	2.100 1.	410 0.96	0 0.680	0.530	0.690		10900).	738	00.	
AVERAGES	2.037 1.	362 0.91	7 0.671	0.528	0.675		11400	.	819	10.	
STANDARD	DEVIATIO) N			0.146		1200	l.	476	76.	
NUMBER D	F POINTS	IN AVERA	GE =		10		1 (C		10	
ы: 1	DEELECTI	IN AT GE	GPHONE	1							
w 2	DEFLICTI	ION AT GE	OPHONE	2							
W 3	DEFLECTI	ION AT GE	OPHONE	3							
W4	DEFLECTI	ION AT GE	OPHONE	4							
₩5	DEFLECTI	UN AT GE	OPHONE	5							
SCI	SURFACE	CURVATUR	E INDEX	(W1	MINUS	¥2)					
E S	ELASTIC	MODULUS	OF THE	SUBGRA	DE FRU	M W]	L AND	43			
E P	FLASTIC	HODULUS	OF THE	ρλνεμε	NT FRO	м и]	L AND	₩3			

Table 5g: Computer print-out for Section 17.

5. <u>Comparison of Moduli Estimated from Geophone 1 and 2 Data</u> with Those Estimated from Geophone 1 and 3 Data

In Table 6 the average moduli, $E_1 (w_1, w_2)$ and $E_2 (w_1, w_2)$ for each test section, and the within-section standard deviation, as computed previously by ELASTIC MODULUS using w_1 and w_2 data (1), are compared with similar quantities computed by ELASTIC MODULUS II using w_1 and w_3 data. Of course, if all assumptions used in the theory were completely valid, and if the instrument error were zero, the average moduli $E_1 (w_1, w_2)$ and $E_1 (w_1, w_3)$ (or $E_2 (w_1, w_2)$ and $E_2 (w_1, w_3)$) for each section in Table 6 would be practically identical, and the corresponding withinsection standard deviations would be negligible. That such ideal results were not obtained will be revealed at once by a glance at Table 6.

The results actually obtained will probably surprise no one with previous experience in researching the deflection behavior of real pavements. However, granting that the in situ properties of real base and subgrade materials inevitably change in relatively short distances along and across a highway, one may legitimately ask the question: for a given test section, should E_1 (w_1 , w_2) be considered really different from E_1 (w_1 , w_3) (or should E_2 (w_1 , w_2) be considered really different from E_2 (w_1 , w_3)), when compared to the variations of these moduli encountered along the 500-foot test section?

In an effort to answer these questions subjectively, the data in Table 6 were plotted in Figures 4a and 4b to display graphically the difference between the two average values of E_1 (Figure 4a) and the two values of E_2 (Figure 4b) obtained for each test section. The number adjacent to each point identifies the test section. The rectangle surrounding each point is an indication of the scatter of the data

		E, (psi)					E ₂ (
		Average Value		Standard Deviation		Average Value		Standard Deviation		Pavement Thickness (In.)		
	Section	(w_1, w_2)	(w_1, w_3)	(w_1, w_2)	(w_1, w_3)	(w_1, w_2)	(w_1, w_3)	(w_1, w_2)	(w_1, w_3)	h —	Standard Deviation	
	3	24,700	23,700	6,000	11,700	19,000	19,000	1,600	1,300	12.5	1.0	
	4	78,900	110,500	8,200	90,400	14,900	11,800	850	1,300	8.0	0.4	
	5	32,300	23,800	15,100	15,400	14,500	14,800	1,400	1,600	12.0	2.8	
	12	13,900	14,900	2,700	3,300	14,400	14,000	900	1,000	19.9	0.5	
21	15	283,200	314,100	76 ,00 0	75,200	20,000	19,100	900	800	15.2	1.2	
	16	73,900	109,300	13,800	20,000	11,700	11,100	680	500	7.5	0.4	
	17	36,600	81,900	25,000	47,700	12,700	11,400	1,700	1,200	8.3	0.7	
	Overall											
	Average	77,600	96,900	21,000	37,700	15,300	14,500	1,100	1,100			

`

Table 6: Comparison of Moduli Computed from w_1 and w_2 with Those Computed from w_1 and w_3

í r

a . .

Figure 4a: Comparison of E_1 computed from w_1 and w_2 , with E_1 computed from w_1 and w_3 . The rectangles represent within-section standard deviations of E_1 , with the mean value plotted at the center. Points shown as triangles indicate that the two moduli are significantly different according to a statistical test.

Figure 4b: Comparison of E_2 computed from w_1 and w_2 , with E_2 computed from w_1 and w_3 . The rectangles represent within-section standard deviations of E_2 , with the mean value plotted at the center. Points shown as triangles indicate that the two moduli are significantly different according to a statistical test.

obtained along the test section: each dimension of a rectangle is equivalent to two standard deviations of the data used to obtain the average value of the corresponding coordinate of the point shown at the center of the box.

For any test section where none -- or only a small proportion -of a rectangle overlaps the line of equality drawn on Figures 4a and 4b, it is reasonable to assume that the difference between a modulus computed from \mathbf{w}_1 , \mathbf{w}_2 data, and one computed from \mathbf{w}_1 , \mathbf{w}_3 data is significantly greater than can be accounted for by random variations in the materials (see, for example, the rectangles for Sections 16 and 17 in Figure 4a, and those for Sections 4, 15, 16 and 17 in Figure 4b, the central points of which have been plotted as triangles to indicate a significant difference between E (\mathbf{w}_1 , \mathbf{w}_2) and E (\mathbf{w}_1 , \mathbf{w}_3).

To confirm subjective conclusions drawn from Figures 4a and 4b, analyses of variance were performed. The results are given in Table 7, where $E_1 (w_1, w_2)$ is compared with $E_1 (w_1, w_3)$, and in Table 8, where $E_2 (w_1, w_2)$ is compared with $E_2 (w_1, w_3)$. In these comparisons, significance was judged at a confidence level of 90%. It is of interest to note from the last columns of these tables that, on the average, $E_1 (w_1, w_3)$ exceeded $E_1 (w_1, w_2)$ in the two cases that were significant in Table 7, while the order was reversed -- $E_2 (w_1, w_2)$ exceeded $E_2 (w_1, w_3)$ -- in the four cases that were significant in Table 8.

Another point to be noted from Table 8 is that although the two methods for computing E_2 gave statistically different results in four sections out of seven, the differences as judged from a practical or engineering point of view appear small -- at least to these writers.

On the other hand, the difference between the two average values of ${\rm E}^{}_1$
Section	Number Test Stations Used	Average Value of Modulus (psi)		()	DF	DF	Description	Are the Moduli	Chan Jami	Coeff.	Significantly
		E_1 (w ₁ , w ₂)	E_1 (w ₁ , w ₃)	F Ratio	Numerator	Denominator	F Ratio**	Different?	Dev. (psi)	Var. (%)	Modulus
3	10	24,720	23,660	0.07	1	18	3.01	No	9,239	38	Neither
4	2, 4*	78,900	110,475	0.02	1	4	4,54	No	78,402	78	Neither
5	10	32,340	23,760	1.59	1	18	3.01	No	15,230	54	Neither
12	10	13,900	14,920	0.58	1	18	3.01	No	2,990	21	Neither
15	10	283,180	314,100	0,83	1	18	3.01	No	75,664	25	Neither
16	10	73,910	109,330	21.61	1	18	3.01	Yes	17,038	19	E ₁ (w ₁ , w ₃)
17	8, 10*	36,600	81,910	5.91	1	16	3.05	Yes	39,306	64	E_1 (w ₁ , w ₃)

Table 7: Results of analyses of variance to determine whether the difference between the average values of E_1 (w_1 , w_2) and E_1 (w_1 , w_3) for a test section are significantly different when compared to within-section variation.

• •

.

.

A **x**

* First of the two numbers is associated with first modulus, E_1 (w_1 , w_2), while the second number applies to the second modulus, E_1 (w_1 , w_3). ** For 10% level of significance (90% confidence level).

.

,

	Number Test	Average of Modul	Value us (psi)	0	DF	DF		Are the Moduli	G (1 1	Coeff.	Significantly
Section	Used	E_2 (w ₁ , w ₂)	$\frac{E_2 (w_1, w_3)}{2}$	F Ratio	Numberator	Denominator	F Ratio**	Different?	Dev. (psi)	Var. (%)	Larger Modulus
3	10	18,970	18,980	0.00	1	18	3.01	No	1,429	8	Neither
4	2, 4*	14,900	11,800	9.25	1	4	4.54	Yes	1,177	9	E_2 (w ₁ , w ₂)
5	10	14,480	14,840	0,28	1	18	3.01	No	1,508	10	Neither
12	10	14,420	14,010	0.99	1	18	3,01	No	922	6	Neither
15	10	19,990	19,120	5.10	1	18	3.01	Yes	862	4	E_2 (w ₁ , w ₂)
16	10	11,740	11,110	5.37	1	18	3,01	Yes	608	5	E ₂ (w ₁ , w ₂)
17	8, 10*	12,700	11,400	3,59	1	16	3.05	Yes	1,446	12	E_2 (w ₁ , w ₂)

. .

۰.

•

Table 8: Results of analyses of variance to determine whether the difference between the average values of $E_2(w_1, w_2)$ and $E_2(w_1, w_3)$ for a test section are significantly different when compared to within-section variation.

* First of the two numbers is associated with first modulus, ${\tt E}_2$ $({\tt w}_1,\,{\tt w}_2)\,.$

** For 10% level of significance (90% confidence level).

.

•

.

found for a test section was generally larger (see Table 7), but withinsection variations were also larger, as can be seen by comparing the coefficients of variation given in Table 7 with those shown in Table 8.

Based on the data presented in Figures 4a and 4b, and in Tables 6, 7 and 8, it is concluded that for the seven flexible pavements studied herein and consisting essentially of two layers (granular base -- some stabilized -- and subgrade),

- (1) the elastic modulus of the base of a short, apparently uniform test section, as estimated from Dynaflect data (either Geophones 1 and 2 or Geophones 1 and 3) was much more variable than the <u>subgrade</u> modulus, probably because of the assumption that the subgrade was homogeneous to an infinite depth;
- (2) in several cases (2 out of 7 in the case of the base, 4 out of 7 in the case of the subgrade) the average section modulus estimated from Geophones 1 and 2 differed significantly, according to statistical tests, from the modulus estimated from Geophones 1 and 3; but
- (3) the differences mentioned in conclusion (2) were not very significant in most cases when considered from a practical or engineering point of view.

<u>6.</u> <u>Computed Versus Observed Dynaflect</u> <u>Deflection Basins for Flexible Pavements</u>

Another method of studying the engineering significance of variations in moduli estimated from Dynaflect data, as well as providing a means for helping the reader to judge the degree of validity of linear elasticity as applied to the flexible pavements discussed herein, is to use the estimated moduli E_1 and E_2 to compute a Dynaflect "deflection basin" that can be compared directly with the real basin observed. At the risk of some repetition the method is described below in step-by-step fashion for clarity.

- (1) ELASTIC MODULUS was used to compute E_1 and E_2 from Geophone 1 and 2 data at each of the ten test stations (subject to the constraints shown in Table 3 of Reference (1)) in each 500-ft. section. From these results section averages, designated E_1 (w_1, w_2) and E_2 (w_1, w_2) , were calculated. These values appear in Tables 7 and 8, respectively.
- (2) In a similar manner (but subject to the restraints shown in Table 2 of this report), the section averages E_1 (w_1 , w_3) and E_2 (w_1 , w_3) were computed using ELASTIC MODULUS II. These values also appear in Tables 7 and 8, respectively.
- (3) $E_1 (w_1, w_2)$ and $E_2 (w_1, w_2)$ were used in POINT LOAD to calculate the deflections w_1, w_2, w_3, w_4 and w_5 for each section at the geophone positions 1, 2, 3, 4 and 5, respectively shown in Figure 1. The results are plotted in Figures 5a through 5g as curves labeled "computed from w_1 and w_2 ". In drawing each curve, or basin, the portion to the left of the vertical axis was ommitted, since it was assumed that the ommitted portion

Figure 5a: Computed and average observed Dynaflect deflection **basins**, Section 3. E_1 (w_1 , w_2) $\approx E_1$ (w_1 , w_3) and E_2 (w_1 , w_2) $\approx E_2$ (w_1 , w_3) by statistical test.

Figure 5b: Computed and average observed Dynaflect deflection basins, Section 4. E_1 (w_1 , w_2) $\approx E_1$ (w_1 , w_3) but E_2 (w_1 , w_2) > E_2 (w_1 , w_3) by statistical test.

Figure 5c: Computed and average observed Dynaflect deflection basins, Section 5. E_1 (w_1 , w_2) * E_1 (w_1 , w_3) and E_2 (w_1 , w_2) * E_2 (w_1 , w_3) by statistical test.

Figure 5d: Computed and average observed Dynaflect deflection basins, Section 12. $E_1 (w_1, w_2) \approx E_1 (w_1, w_3)$ and $E_2 (w_1, w_2) \approx E_2 (w_1, w_3)$ by statistical test.

Figure 5e: Computed and average observed Dynaflect deflection basins, Section 17. $E_1 (w_1, w_2) \approx E_1 (w_1, w_3)$ but $E_2 (w_1, w_2) > E_2 (w_1, w_3)$ by statistical test.

Figure 5f: Computed and average observed Dynaflect deflection basins, Section 16. E_1 (w_1 , w_2) < E_1 (w_1 , w_3) but E_2 (w_1 , w_2) > E_2 (w_1 , w_3) by statistical test.

Figure 5g: Computed and average observed Dynaflect deflection basins, Section 17. E_1 (w_1 , w_2) < E_1 (w_1 , w_3) but E_2 (w_1 , w_2) > E_2 (w_1 , w_3) by statistical test.

would be a mirror image of the portion shown in the figure. Thus, in theory, the tangent of the curve where it crosses the vertical axis should be horizontal, as indicated in the figures.

- (4) E₁ (w₁, w₃) and E₂ (w₁, w₃) were then used in POINT LOAD to calculate the five deflections at the five geophone positions. These results were also plotted in Figures 5a through 5g as curves labeled "computed from w₁ and w₃".
- (5) Finally the average values of w_1 , w_2 , w_3 , w_4 and w_5 actually observed at the test stations where solutions for the moduli had been obtained, were plotted on Figures 5a through 5g as curves labeled "Obs.". In the case of Section 4 (Figure 5b) only two solutions were found using Geophone 1 and 2 data, while four solutions were obtained using Geophone 1 and 3 data: thus for comparing observed with computed data in Figure 5b, it was necessary to plot <u>two</u> "observed" curves, one being the average of two stations (for comparison with the curve computed from Geophone 1 and 2 data) and the other being the average of four stations (for comparison with the curve computed from Geophone 1 and 3 data). In each of the other figures it was necessary to plot only one "observed" curve.

The distance scale on each of the above mentioned figures has its origin at the position of Geophone 1 between the Dynaflect load wheels, and extends along the line of geophones -- that is, longitudinally along the outer wheel path of the highway. In the caption of each figure the sign, *, between two symbols means that, according to

an analysis of variance (see Table 7 or 8), the moduli represented by the symbols are statistically the same (though actually somewhat different) while the symbols > and < mean "significantly greater than" and "significantly less than", respectively, as determined from an analysis of variance.

Examination of Figures 5a through 5g shows that, with the exception of Sections 4 and 17 (Figures 5b and 5g),

- the deflection basins predicted by use of Geophone 1 and 2 data are nearly the same as those predicted by Geophone 1 and 3 data,
- (2) the predicted basins lie reasonably close to the observed curves, and
- (3) notwithstanding pavement edge effects and other differences between the assumptions underlying the theory and actual site conditions, linear elasticity may be sufficiently accurate for use as a subsystem in a pavement design system, especially if one considers the many other uncertainties that inevitably enter into such a system.

7. Comparison of Certain Stresses Computed from Geophone 1 and 2 Data with Those Computed from Geophone 1 and 3 Data

Given E_1 , E_2 , and h for a linear elastic two-layer system, it is possible, from the computer program BISTRO mentioned earlier, to estimate -- for any point in the structure -- the state of stress resulting from the combined effect of two or more circular loaded areas on the surface of the pavement. This capability of the program was used to make a limited comparison of stresses within the structure caused by the simulated dual wheel load, totalling 9000 lbs., illustrated in Figure 6. Each circular area is acted on by a constant pressure.

As indicated in the figure, BISTRO requires that a set of rectangular coordinates, x and y, be used to identify the position of the center of each load on the plane surface, z = 0. In addition the radius of each loaded area must be supplied, as well as the coordinates x, y, z of each point within the structure where stresses, strains and displacements are to be computed.

For making a limited comparison of the stress resulting from the use of Geophone 1 and 2 data with that found from Geophones 1 and 3, neighboring points were selected in Layer 1 and Layer 2, located at the base-subbase interface directly beneath the center of one of the loaded areas. Thus, the coordinates used for both points were the same: x = 0, y = 0, z = h. (Obviously, use of the coordinates x = 12, y = 0, z = h, would have given the same results).

For the point located in the base material, the major principal stress (the algebraically greatest stress) was chosen for investigation because of the tendency of this stress to be a tension in any case where $E_1/E_2 > 1$, believed to be the usual case in two-layer pavement

Figure 6: Plan view of simulated dual wheel tire-pavement contact areas, with parameters used in BISTRO for computing principal stresses at the base-subbase interface.

structures. For the neighboring point in the subgrade, however, the minor principal stress was chosen, as the state of stress there, for the usual case, is compressive, and the stress having the greatest absolute value there is the minor principal stress. The results of the computations, which are based on the average moduli and thickness for each test section given in Table 6, are shown in Table 9, and are also plotted in Figures 7, 8 and 9. The identification number of the test section represented by each point in these figures is shown adjacent to the point.

Figure 7 was included here because of the strong influence of the ratio, E_1/E_2 , on the distribution of stress in a two-layer system. There is a striking similarity between Figure 7 and Figure 4a which demonstrates that lack of agreement between the two sets of ratios, E_1/E_2 , in Figure 7 results almost entirely from lack of agreement between the base moduli E_1 (w_1 , w_2) and E_1 (w_1 , w_3) apparent in Figure 4a.

The point symbols used in Figures 7, 8 and 9 reflect the results of the analyses of variance given in Tables 7 and 8. As might be expected, it is apparent from Figure 7 that the greatest lack of agreement between the two sets of modular ratios occurred in the four test sections (Sections 4, 15, 16 and 17) where a statistically significant difference was found between one or both of the two moduli computed from Geophone 1 and 2 data, and those computed from Geophone 1 and 3 data. The obvious trend was for the Geophone 1 and 3 data to result in higher estimates of the ratio E_1/E_2 in the case of these four sections. It also should be pointed out that these four sections had the highest values of E_1 (w_1 , w_3), ranging from 81,900 psi to 314,100 psi, while the remaining values varied from 14,900 to 23,800, as may be verified by reference to Table 3.

Table 9:	Comparison of Certain Stresses at the Base-Subbase	Interface
	Computed from Geophone 1 and 2 Data,	
	with Those Computed from Geophones 1 and 3.	

· •

. .

		Base Thick. (In.) 12.0	Modulu E _l Comput	s Ratio /E ₂ ed From	Major Principal Stress (psi)* In Base Material, Computed From		Minor ^p rincipal Stress (psi)* In Subgrade Material, Computed From		
Section	Base Material		w ₁ , w ₂	W1, W3	w 1, w 2	w1, W3	w1, w2	w1, W3	
3	Red sandy gravel		1.30	1.25	3.3	2.7	-14.3	-14.4	
4	Asphalt stabilized gravel	7.5	5.30	9.36	47.4	66.9	-15.6	-12.1	
5	Lime stabilized sandstone	11.5	2.23	1.60	12.4	6.7	-12.6	-14.2	
12	Sandstone	16.2	0.96	1.06	-3.4	0.4	-8.0	-7.8	
15	Cement stabilized limestone	14.0	14.17	16.43	32.6	34.4	-3.6	-3.4	
16	Asph. emulsion stab. gravel	6.5	6.30	9.84	57.5	74.3	-15.8	-13.0	
17	Iron ore gravel	7,8	2.88	7.19	26.6	55.2	-18.9	-13.0	

* Tensile stresses are positive, compressive stresses negative.

Figure 7: Comparison of the ratio, E_1/E_2 , computed from data from different pairs of geophones. Significance data from Tables 7 and 8.

Figure 8: Comparison of the major principal stresses in the base material at the point x = 0, y = 0, z = h, as computed from data from different pairs of geophones. Significance data from Tables 7 and 8.

Figure 9: Comparison of the minor principal stresses in the subgrade at the point x = 0, y = 0, z = h, as computed from data from different pairs of geophones. Significance data from Tables 7 and 8.

The effect of the choice of geophone data on the computed major principal stress, $\sigma_{\rm I}$, in the base material at the base-subgrade interface is illustrated in Figure 8. Here only three of the four test sections mentioned in the preceding paragraph show an apparently significant lack of agreement -- Sections 4, 16 and 17. The same three sections also exhibit lack of agreement in Figure 9, where the minor principal stress, 'III, computed from Geophone 1 and 2 data, is compared with that computed from Geophones 1 and 3.

In summary, it is concluded from the information presented in this chapter that the use of Geophone 1 and 3 data in lieu of Geophones 1 and 2, resulted, in most cases, in

- (1) a greater ratio, E_1/E_2 , which, in turn, led to
- (2) a greater tensile stress in the base material at the base-subbase interface, and
- (3) a somewhat smaller compressive stress in the subgrade material at the base-subbase interface.
- (4) However, in the writers' opinion, the differences in <u>stresses</u> mentioned above were not especially significant when viewed from the vantage point of design and materials enginers familiar with the frequently observed large differences in the measured <u>strength</u> of apparently similar laboratory specimens of base and subbase materials.

8. Examples of Solutions, Rigid Pavements

<u>Site Description</u>: Through the courtesy of airport officials and their consultants, a Texas Transportation Institute team measured Dynaflect deflections on concrete pavements at the Houston International Airport on June 22, 1971.

The airport is situated on the Pleistocene Montgomery formation. The subgrade soils are described as silty sand, sandy silt, clayey sand, clayey silt and expansive silty clay.

<u>Test Details and Results</u>: Dynaflect tests were made at eleven locations, or "test points", on the airport pavements. At each location the load was applied at the center of a 25 x 25-foot concrete slab. Test points were selected on one runway, three taxi-ways and one apron. Slab thicknesses, substructures, Geophone 1 and 3 data, and the moduli computed by ELASTIC MODULUS II at each test point are given in Table 10. The average values of E_1 and E_2 , their standard deviations from their averages, and their coefficients of variation, are given at the bottom of the table.

It can be seen from Table 10 that -- as was previously pointed out in the case of flexible pavements -- the computed values of E_1 were somewhat more variable than those of E_2 .

Sensitivity of Computed Moduli to Variations in Measured Deflections: A careful examination of the data given in the columns headed " w_1 ", " w_3 ", " E_1 ", and " E_2 " in Table 10 will show the extreme sensitivity of the calculated moduli to small changes in either of the measured deflections, w_1 and w_3 . For example, if Test Points 34 and 49 are compared, it will be seen that an increase of 0.01 mil -- or 1/100,000 in. -- in w_1 (with h and w_3 held constant) resulted in a decrease in the computed value of

Table 10: Data from Houston Intercontinental Airport

-

.

٠

٠

4

.

(Taken June 22, 1971)

•

Toot	Conoral		h (in.)	Deflections (mils)		Computed Modu	Figure Showing Deflection	
Point	Lodation	Substructure		<u>w1</u>	w ₃	<u>E1</u>	<u>E2</u>	Basin
6	Runway 14-32	6 in. sand-shell subbase	12.0	0.40	0.37	7,494,800	13,000	10a
10	Runway 14-32	on soil excavated to	12.0	0.50	0.44	3,066,500	14,300	10ъ
13	Runway 14-32	re-compacted.	12.0	0.52	0.47	4,137,400	11,700	10c
25	Taxiway A	6 in. sand-shell subbase	12.0	0.40	0.36	5,085,500	15,600	10 d
28	Taxiway A	on soil excavated to approximately 4 ft. and	12.0	0.43	0.39	5,154,900	14,000	10e
32	Taxiway A	re-compacted.	12.0	0.41	0.36	3,674,300	17,600	10f
34	Taxiway A		12.0	0.40	0.37	7,494,800	13,000	10g
49	Taxiway B	6 in. sand-shell subbase on soil excavated to approximately 4 ft. and re-compacted	12.0	0.41	0.37	5,099,500	15,100	10h
56	Taxiway K	9 in. soil-cement subbase	14.0	0.33	0.31	7,831,000	13,600	10i
63	Taxiway K	on soil excavated to approximately 4 ft. and re-compacted	12.0	0.39	0.35	4,952,600	16,400	10j
69	North Apron	<pre>12 in. soil-cement subbase on soil excavated to approximately 6 ft. and re-compacted</pre>	12.0	0.24	0.22	10,975,400	23,000	10k
				Average		5,906,000	15,200	
			Standard Deviation			2,311,000	3,100	
	Coefficient of Variation (%)						20	

-

 E_1 from approximately 7,500,000 psi to about 5,100,000 psi, accompanied by an increase in E from 13,000 psi to 15,100 psi. And by comparing lest Points 25 and 34, it appears that an increase of 0.01 mils in w_3 (with h and w_1 held constant) caused an increase in E_1 from approximately 5,100,000 psi to approximately 7,500,000 psi, with a corresponding decrease in E_2 from 15,600 psi to 13,000 psi. Now 0.01 mil is generally considered by Dynaflect users to be the limit of instrument and operator error under ideal conditions: we must conclude, therefore, that the values of moduli -- particularly the value of E_1 -- found under routine conditions by the method described in this report must be regarded as rather crude estimates in individual tests, and that instrument error should be included as a component of the total variability involved in a pavement design system using the Dynaflect to characterize the materials in terms of elastic constants.

Computed Versus Observed Deflection Basins, Concrete Pavements: A method similar to that described in Chapter 6 for computing w_1 , w_2 , w_3 , w_4 and w_5 from given values of E_1 , E_2 and h, was employed for comparing computed deflection basins with those measured on the concrete pavements at the Houston Intercontinental Airport. The results are shown in Figures 10a through 10k. Since Geophone 1 and 3 data were used in determining the values of E_1 and E_2 employed in computing the theoretical (dashed) curve in each figure, this curve passes through the circled points representing the output of those geophones, i.e., the points plotted at zero and two feet on the distance scale. Thus, in any of these figures, the departure of the dashed line from the remaining three circled points is a partial measure of the difference between the assumptions made in the theory and the actual conditions at the test site, including instrument error.

Figure 10a: Observed deflection basin (solid line through circled points) compared with theoretical basin (dashed line) computed from E_1 (w_1 , w_3) and E_2 (w_1 , w_3) at Test Point 6. Moduli are given in Table 10.

Figure 10b: Observed deflection basin (solid line through circled points) compared with theoretical basin (dashed line) computed from E_1 (w_1 , w_3) and E_2 (w_1 , w_3) at Test Point 10. Moduli are given in Table 10.

Figure 10c: Observed deflection basin (solid line through circled points) compared with theoretical basin (dashed line) computed from E_1 (w_1 , w_3) and E_2 (w_1 , w_3) at Test Point 13. Moduli are given in Table 10.

Figure 10d: Observed deflection basin (solid line through circled points) compared with theoretical basin (dashed line) computed from E_1 (w_1 , w_3) and E_2 (w_1 , w_3) at Test Point 25. Moduli are given in Table 10.

Figure 10e: Observed deflection basin (solid line through circled points) compared with theoretical basin (dashed line) computed from E_1 (w_1 , w_3) and E_2 (w_1 , w_3) at Test Point 28. Moduli are given in Table 10.

Figure 10f: Observed deflection basin (solid line through circled points) compared with theoretical basin (dashed line) computed from E_1 (w_1 , w_3) and $E_2(w_1$, w_3) at Test Point 32. Moduli are given in Table 10.

Figure 10g: Observed deflection basin (solid line through circled points) compared with theoretical basin (dashed line) computed from E_1 (w_1 , w_3) and E_2 (w_1 , w_3) at Test Point 34. Moduli are given in Table 10.

Figure 10h: Observed deflection basin (solid line through circled points) compared with theoretical basin (dashed line) computed from E_1 (w_1 , w_3) and E_2 (w_1 , w_3) at Test Point 49. Moduli are given in Table 10.

Figure 10i: Observed deflection basin (solid line through circled points) compared with theoretical basin (dashed line) computed from E_1 (w_1 , w_3) and E_2 (w_1 , w_3) at Test Point 56. Moduli are given in Table 10.

Figure 10j: Observed deflection basin (solid line through circled points) compared with theoretical basin (dashed line) computed from E_1 (w_1 , w_3) and E_2 (w_1 , w_3) at Test Point 63. Moduli are given in Table 10.

Figure 10k: Observed deflection basin (solid line through circled points) compared with theoretical basin (dashed line) computed from E_1 (w_1 , w_3) and E_2 (w_1 , w_3) at Test Point 69. Moduli are given in Table 10.

After examining Figures 10a through 10k, the writers assigned a subjective rating -- "good" or "bad" -- to the degree of agreement between each theoretical curve and the corresponding measured basin. The results are given in Table 11. As shown at the bottom of the table, 8 of the 11 theoretical curves were rated "good". The greatest disagreement between theoretical and observed basins was found in Figure 10c and 10h while near perfect agreement appeared in Figures 10d, 10f and 10j.
Fígure Number	Test Point Number	Subjective Rating	
10A	6	Good	
10B	10	Bad	
100	13	Bad	
10D	25	Good	
10E	28	Good	
10F	32	Good	
10G	34	Good	
10н	49	Bad	
101	56	Good	
10J	63	Good	
10K	69	Good	

Table 11: Subjective Rating of "Goodness of Fit" of Theoretical Deflection Basins to Experimental Data, Figures 10A through 10K

	Summary	
Rating	Number	Percent
Good	8	73
Bad		_27
Total	11	100

.

9. Conclusions

With regard to certain technical aspects of the computer program ELASTIC MODULUS II, the following conclusions were drawn.

- As judged by its agreement with the older and more comprehensive computer program BISTRO, the program ELASTIC MODULUS II is as accurate as required for the job it was designed to perform.
- 2. Occasionally the possibility of a non-unique solution -- or no solution at all -- will arise from Dynaflect data processed through ELASTIC MODULUS II; however, restraints built into the program inform the user of such cases by printing out appropriate messages.

From Dynaflect data taken on flexible pavement sections, the following conclusions were drawn.

- 3. The elastic modulus of the <u>base</u> of a 500-ft., apparently uniform test section, as estimated from Dynaflect data, was much more variable than the <u>subgrade</u> modulus, probably because of the assumption that the subgrade was homogeneous to an infinite depth.
- 4. In several test sections (2 out of 7 in the case of the base, 4 out of 7 in the case of the subgrade) the average section modulus estimated from Geophone 1 and 2 data differed significantly, by statistical tests, from the modulus estimated from Geophone 1 and 3 data.
- 5. The differences mentioned in Conclusion 4, above, were not, in the opinion of the writers, very significant when considered from a practical or engineering point of view.

- 6. In five out of the seven sections tested, indications were that
 - a. Dynaflect deflection basins predicted by use of Geophone 1 and
 2 data were nearly the same as those predicted by use of
 Geophone 1 and 3 data,
 - b. the predicted basins lie reasonably close to the observed basins, and
 - c. linear elasticity may be sufficiently accurate for use as a subsystem in a flexible pavement design system.
- 7. The use of a Geophone 1 and 3 data, in lieu of Geophones 1 and 2, for computing base and subgrade moduli resulted, in most cases, in a. a greater ratio, E_1/E_2 , which, in turn led to
 - b. a greater computed tensile stress in the base material at the base-subbase interface resulting from the application of a
 9000-lb. dual wheel load to the pavement surface, and
 - c. a somewhat smaller compressive stress in the subgrade material at the base-subbase interface.
- 8. The differences in <u>stress</u> mentioned in Conclusion 7 did not appear to be especially significant when viewed from the vantage point of design and materials engineers familiar with the frequently observed large differences in the measured <u>strength</u> of apparently similar laboratory specimens of base and subbase materials.

From Dynaflect data taken on concrete pavements at the Houston Intercontinental Airport, the following conclusions were drawn.

- 9. After noting the dramatic effect of very small changes in the output of either Geophone 1 or Geophone 3 on the computed modulus of a concrete slab, it was concluded that the values of moduli -- particularly the value of E₁ -- found by the method described in this report must be regarded as rather crude estimates in individual tests, and that instrument error should be included as a component of the total variability involved in a pavement design system using the Dynaflect to characterize the materials in terms of their elastic constants.
- 10. Dynaflect deflection basins computed from Geophone 1 and 3 data at 11 test points agreed with the observed data nearly perfectly in three cases, very well in six cases, and rather poorly in two cases.

From all the data studied the following conclusion was drawn.

11. The Dynaflect in its present form, combined with the computer programs ELASTIC MODULUS II and POINT LOAD, has the potential of becoming a useful method for material characterization in a pavement design system using linear elastic theory as a subsystem, provided that proper heed is paid to instrument error, the inevitable variability of highway materials in place, and the many other uncertainties that enter into a complete pavement design system. ELASTIC MODULUS II, rather than ELASTIC MODULUS, is recommended in order to achieve compatibility between moduli found for rigid pavements and those determined for flexible pavements.

List of References

- Scrivner, Frank H.; Chester H. Michalak and William M. Moore, "Calculation of the Elastic Moduli of a Two Layer Pavement System from Measured Surface Deflections," Research Report 123-6, Texas Transportation Institute, Texas A&M University, College Station, Texas, 1971.
- Scrivner, Frank H.; W. M. Moore; W. F. McFarland and G. R. Carey, "A Systems Approach to the Flexible Pavement Design Problem," Research Report 32-11, Texas Transportation Institute, Texas A&M University, College Station, Texas, 1968.
- 3. Hudson, W. Ronald; B. Frank McCullough; F. H. Scrivner and James L. Brown, "A Systems Approach Applied to Pavement Design and Research," Research Report 123-1, Highway Design Division Research Section, Texas Highway Department, Austin, Texas; Texas Transportation Institute, Texas A&M University, College Station, Texas; and Center for Highway Research, The University of Texas at Austin, Austin, Texas, 1970.
- 4. "Texas Highway Department Pavement Design System, Part I, Flexible Pavement Designer's Manual," Highway Design Division, Texas Highway Department, Austin, Texas, 1970.

Appendix A

•

.

٠

-

Listing of ELASTIC MODULUS II

FURTRAN	ТА С СКАСТ	13	MA1 4	DATE = 71196	15/3
	Ç.				
	• (I	ELASTIC MODULUS	II MAIN PROGRAM ()	FOR W1 AND W3)	
0001	ب ج *	DIBENSION STA AP2(200),LA W5(200), AS2 IXDATE(3),C	(200), 21(200), 22() 1(5), 142(5), 143(5 (200), 12(20), 12() 64M(7), 25M(4)	200),W3(200),%4(200),),L44(5),L45(5),LA6(5), (200),	
0002	- -	PEAL * H STA,	BAS , DAP, DBLE		
		AUTE THE P Putput en a t Paper USE the Pulumn 1.	RINT & FGRMAT STA /2 X 11 PAPER. FO PRINT & FORMAT S	TEMERTS ARE FOR OR OUTPUE ON 11 × 14 TATEMENTS WITH TOT IN	
	çoc s	STATEMENT FUN	CTION TO ROUND •X	TO NEAREST TEVENT	
0003	, *	RUUND(X, EVE * EVEN	t) = AINT((X	+ FVCN * .5) / EVEN)	
0004	C 10 (CONTINUE			
	C F	CAD CAPD CH	E & REMAINDER UP (CARD 11110 A - ARRAY	
0005	, t	≥EAJ(5,1,EN©=	(1000) NCARD, (A	(1), 1 = 1 , 20)	
0006 0007	(. 1 4 (-ORMAT(13, 1 DALL CORE (944, A1) A, 90)		
	C C	TEST FOR DATA	1 0°543		
0009	Ĺ.	IF (ACARD.FC.1	.00) Gu 10 11		
	C · · ·	TESE EDR. CATA	CAPD 2		
0009		LE (NCARD .E.) . 2	200) 60 TC 12		
	ć	TEST FOR DATA	CAPD 3		
0010	· ,	IF (NCAPH.EQ.3	100) GO TO 13		
	C ····	I IS A PRINTE	R TO DATA IN STOP	۸GF	
0011	14	[=\\+ [

,

•

.

.

.

FOR TRAME IV	GIEVEL 13	MAIN	DATE = 71196	15/3
	ſ			
	C READ	DATA CARD 4		
0012	ר א ח4, א ח4, אחס,סן	5,6) ICONT,ISECT,M,IDAY 05, 96, 07, D8, 0,{PEM(J),J=1,4),ICK	', [YEAP, STA(]),D1,D2,D3	•
0013	6 FORMA	T(14,412,47,3X, 5(F	2.1,F3.2),8X,444,[2]	
0014	TE(N	.GT. 0) 60 TO 555		
0015	TE (NG	.GT.0) GU TO 555		
	C PRINT C	OUTPUT COLUMN HEADINGS		
0016	PRINT	61		
	C 61 FORMA C = !\\5 C	T(/,1X,'STATION W1 SCI ** ES ** **	NZ N3 N4 EP ≉≉ REMARKS!/	•••
0017	61 FBRMA = *	T(/ 7X,'STATION W1 SCI ** ES ** ** EP	₩2 ₩3 ₩4 ₩5* ** REMARKS!/)	,
	C CALCU	LATE DEFLECTIONS & SCI	(DEFLECTIONS IN MILS)
0018	555 W1(I)	=01*D2		
0019	W2([)	=1) 3*1)4		
0020	W3(1)	=05*06		
0021	W4(1)	=D7*D8		
0022	₩5(I)	=D9*910		
0023	SCI(1	$) = \alpha 1 (1) - \omega 2 (1)$		
,	C TEST	FOR WI OR W2 = 0, AND W	ILLESS THAN #2	
0024		1(I).FQ.0.0R.W2(1).EQ.0	I) GO TO 54	
0025	IF(W1	(I).LT.W2(I)) G0 T0 66		
0026	. AWI =	A = 1 + h 1 (1)		
0027	AW2 =	AW2 +W2 (I)		
0028	AW3 =	AW3 +W3(1)		
0029	A // 4 =	Λ x4 + W4(I)		
0030	A k 5 =	AW5 +W5(1)		
0031	ASCI=	ASCI+SCI(I)		
0032	AS211) = 0.0		
0033	AP211) = 0.0		
	C C			
	C TEST	FOR NO UNIQUE SOLUTION		
	с, у			
	ſ			

•

•

•

,

•

.

FOPTRAN	TV G LEV	/FL 13	MAIN	DATE = 71196	
0034	-	IF((V1(T) = .3T. 1.0	* 10.0) / (W3(I) .AND. DP .LE.	* SURT(670.0)) 11.1) 60 TQ 60	
	C C C	CUNVERT W1	६ พ.३ TO INCHES		
0035 0036	r	W1(1) = W W3(1) = W	1(1) / 1000. 3(1) / 1000.		
		PASS RI, 23 Emod Return Moduli As	, & TOTAL PAVEMENT S UNRJUNDED VALUES DAP & DAS	THICKNESS TO EMOD, OF PAVEMENT & SUBGRADE	
0037	I	CALL LMUD (DPEE(W1(1)), DBEE(W3(I)), OBLE(DP),DAP, DAS)	
		CONVERT WI	E WR TO MILS		
0038 0039	C	₩1(I) = ₩1(₩3(I) = ₩3([) * [000. [) * 1000.		
		RUUND PAVEN	ENT & SUBGRADE MODU	t1 TO NEAREST 100	
0040 0041		DAS = ROU DAP = ROU	ND(UAS, 100.)		
		PUT PAVEMEN	T & SUBORADE MUDULI	IN STORAGE	
0042	0	AS2(I) =	115		
0043	ſ	AP2(I) =	P)AP		
	C C C	ΑΦΝ ΤΟ ΤΗΕ ΑΝΟ SUPGPAD	SUMS OF THE DEFLECT C MODULI	LOWS, SCI, PAVEMENT,	
0044		AAS2=AAS2+A	\$2(1)		
0045	C C	ΔDD TO N, F	HE NUMBER OF VALUE.	TEST PUINTS	
0046		N=N+1 Primt A LTH	F OF OUTPUT		
	C C C	PRINT 63,51 = AS2(1), AP 63 FORMAT(IX,	A(T),W1([),W2(1),W3 2(T), (REM(J),J=1, A7, 3X, 5(E5.3,2X)	(T),₩4(1),∀5(1),SCT(TI, 4 } • F5.3,2F11.0,5X,4A4)	

15/3

FORTRAN	IV G LF	VFL 13	MAIN	0ATE = 71196	15/3
	r				
0047		PRINT 63,	STA(I), W1(I), W2(I), W3	(I),W4(I),W5(I),SCI(I),	
00/8		<pre># ASZ(I);</pre>	ΑΡΖ(Ι], {REM(J),J=L,Ζ. /ν λ7 ιν ζίες 3\ 3ΕΙΟ) 0.2¥.2A/	
0048		-55 FURMALL I	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• 1 • 2 × • 2 4 4	
0049					
0050	c	IF (NL+L)+	307 60 10 88		
	i c				
	c c	TUIDIN I U	NES HAVE REEN DUINTED	OF COLONA HEADINGS IF	
	L C	IMIXIY LI	NES HAVE STEN PRINTED		
0051	C.	94 CONTINUE		`	
0051		DRINT 51			
00.92	r	DRIMT 50			
	r	PRINI 57.	10151-001-002-003-004	.ICONT.ISECT.LOB.HWYL.	
	c c	★ H₩Y2. XI	ANE. M. IDAY. IYEAR.	IDYNA	
	C.	·		• • • • • • •	
0053	C	PRINT 56.	101ST. COL. CO2. CO3	• CO4	
0054		56 FORMATE T	35. DIST. COUNTY	Y'/ T36, I2,9X, 3A4,A2 /)	
0055		PRINT 57.	ICUNT. ISECT.IJOB.HW	YL, HWY2, M, IDAY, IYEAR, IDYN	Α
0056		57 FURMATE T	19. CONT. SECT.	JOB HIGHWAY DATE'.	
0.05-		• 0	YNAFLECT' / T19,14,21	7,4X, A4, A3, [4, 2(*-*, [2), [9 /)
0057		PRINT 61			
0058		N1 = 0			
0059		88 CONTINUE			
	C				
	С	CHECK FUR	LAST DATA CARD 4		
	C				
0060		IF (ICK.F	Q.0) GU TU 10		
0061		GO TO 80			
,	Ċ				
	C	READ DAIA	CARD I		
00()	C				
0062		LL FFAU(5+2)	THE HE M THAN THEAD	TOYNA (COMMITS I-) 7)	
0043			ANC, DP , PH , DAT , $ITEAR$, to 244 by the 212 by	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
0003	~	Z FURMAIN	12+34+47+14+212+44+	AJ #AJ #1 J # 2 # 41 2 # 1 A #1	
	c	DDINT HEA	DING		
	C C				
0064	C C	PRINT 51			
0065		51 EDRMAT(1	1 •)		
0003	c	JI TORIALL	* /		
0066	0	PRINT 52			
0000	С	52 FURMAT(33	X. TEXAS HIGHWAY DEPA	RTMENT	
	С		-		
0067		52 FORMAT(35	X, TEXAS HIGHWAY DEPA	RTMENT 1 /)	
	C				
0068		PRINT 53,	IDIST		
	C	53 FURMAT(31	X, 'DISTRICT ', I2, ' - (DESIGN SECTION +,/)	

ь

.

-

.

FORTRAN	IV G LEV	FL 13	MAIN	DATE = 71196	15/1
	C				
0069	C	53 FPRMAT(33X,	+DISTRICT +,12,1 -	DESIGN SECTION! /)	
0070	C	PPINT 54 54 FORMAT(19X,	, DYNAFLECT DEFLECTI	UNS AND CALCULATED ',	
	C C	= 'ELASTIC 2	INDULI ' /)		
0071	r.	54 FORMAT(21X, * MELASTIC M	FOYNAFLECT DEFLECTI Moduli (7)	ONS AND CALCULATED ',	
	C C	GET CURPENT	DATE		
0072	r	CALL DATE (IXDATE(1), IXDATE(2), IXDATE(3))	
0073	C	PRINT 55,1X 55 EURMAT(30X,	(DATE ,•THIS PROGRAM WAS R	UN - ', 243,42 /)	
0074	Ç	55 FORMAT(32X,	, THIS PROGRAM WAS P	UN - ', 2A3,A2 /)	
		PRINT 56 56 FORMAT(1X, ★' JOB H	POIST. COUNTY TIGHWAY DATE	CONT. SECT.', DYNAFLECT')	
0075	(,	PRINT 50, I	DIST, COL, CO2, CO3	• CU4	
	C	PRINT CONTR	OL INFORMATION FROM	DATA CARD 1	
,		PRINT 57,17 + HWY2, XLAN 57 FORMAT(2X,)IST,COI,CO2,CO3,CO4 4F, M, IDAY, IYEAR, 12,5X,3A4,A2,3X,I4,	, ICONT, ISECT, IJOB, HWY1, IDYNA 4X, I2, 5X, I2, 2X, A4, A3,	
	C C	¥ Δ3, 2X, 12	<u>/</u> ,/, 12,/, 12,	5X, 12 /)	
0076	C	PRINT 57, I	CONT, ISECT, IJOB, HW	Y1,HWY2,M,IDAY,IYEAR,IDYN	NA
0077 0078	r	PRINT 58,(0 58 FORMAT(10X,	COMM(I),I=1,7),DP ,774,2X,'PAV. THICK.	= ',65.2, 1NCHES' /)	
	C C	INITIALIZE	ALL SUMS & COUNTERS		
0079 0080 0081	-	N = 0 N 1 = 0 N 0 = 0			
0082		AW1 = 0			
0084 0085		∆₩3=(°. ∧₩4=0. ∧₩5~0			
0.000					

FORTRAN I	V GLEVEL 18	MAIN	DATE = 71196	15/3
0087	ASCI=0			
0088	AAS2=0.			
0089	AAP2=0			
0090	SPI = 0			
0091	SP2= 0			
0092	SP3= 0			
0072				
0093		0		
0095				
	c READ G	PRIM INFORMATION ON DAT	A CANE Z	
00.07		2) (1A1/1) 1-1 5) T1 (1A	2/1) 1-1 5/ 72	
00.94		- 57 - 11. AI(1791-1957911911A - 1 - 1 - 5 - 73	2(1) + (= 1 + 5) + 12 +	
0005	₹ (LA3)	1 + L = L + D + + + + + + + + + + + + + + + + +	(5 (2)	
0095	3 FURMATI	DA4+F4+Z+DA4+F4+Z+DA	4++4+2+	
	C PRINT	9, (LAI(1), 1=1, 5), (1, (LAZ	(1), 1 = 1, 5), 12,	
	C ¥ [L43()	1,1=1,51, 13		
	C 59 FURMAT	1X,5A4,1X,E5.2,2X,5A4,	1X,F5.2,2X,5A4,1X,F5.2)	
	C			
0096	PRINT	9,(LA1(I),I=1,5),T1,(LA2	(I),I=1,5),T2	
0097	PRINT 5	9, (LA3(1), I=1,5), T3		
0098	59 FORMATI	16X, 5A4, 1X, F5.2, 5X,	5A4, 1X, F5.2/)	
0099	GU TO 1	0		
	С			
	C READ &	PRINT INFORMATION ON DAT	A CARD 3, IF PRESENT	
	C.			
0100	13 READ(5)	3) (LA4(I), I=1,5), T4, (L	A5([), [=1, 5), T5,	
	* (L46()),I=1,5), T6		
	C PRINT S	9, (LA4(I), I=1,5), T4, (LA5	([),[=1,5),T5,	
	C * (LA6((),[=1,5), T6		
	C			
0101	PRINT	9. (1 A4(I).I=1.5).T4.[1 A5	(1),1=1.51.15	
0102	PRINT	$9 \cdot (1 A f(1) \cdot 1 = 1 \cdot 5) \cdot 16$		
0103	GO TO 1	0		
0104	66 NO = NO	2+1		
0104	r 00 M0 - M			
	C PRINT N	EGATIVE SCT MESSAGE		
	C INTERES	RUATIVE SUL LESSAGE		
0105		2 STATES WITTE WOLTS TO	M(1) = 1 = 0	
0105	92 EODAT	1 Y A7 2 Y E5 1 2 Y E5 3.2 Y	INCONTINE SOL DIMER 4	
0108	02 FURMAT	LAYMIYJAYI '+JYZAYEJ+JYZA NATTINC OMITTEDI AV 68	THEORITYE SCI OTHER 'T	
	* *****	FLATIONS UMITTED. 1 4X1 4A	4)	
0107	U NI - NI + 1			
0108				
0100				
0110	60 TU 66 NO - M	07) 1 1		
0110	r 04 NU = NU	ι τ 1		
	ע ר ההזטיד ה	ODOD MESSACC		
	C PRIMIT	AND TESSAUL		
0111		1 STA(1) 4054441 1-1 41		
0111	FS101	· _ # J A(_ / # \ NE/3(J / # J - [# #]		

.

.

•

*

FURTRAN	IV G LEVEL	18	MAIN	DATE = 71196
0112	۹լ	F()RMAT(1X,^ ≄ ≛4) FCR W1 (7,3X,1DATA ERRUR ASS DR 921, 5X, 4A4)	UMED A ZERO VALUE RE',
0113	C	$N_{1} = N_{1} + 1$		
0114				
0115			30 1 00 1 0 30	
0115	C C	00 10 54		
0116	60	CONTINUE		
0117		N = N +	1	
0118		NO = NU +	1	
0119		PR1NT 85, S ¹ W5(1), SC	ΓΑ(Ι), W1(Ι), W2(Ι), Ι(Ι)	W3([), W4(I),
	C 85 C	FORMAT(1X, A	7, 3X, 5(F5.3,2X),	F5.3, 2×,
0120	85	FORMAT(7X,) • NG UNIQUE	A7, 1X, 6F6.3, 2X, SULUTION!)	
0121		N1 = N1 +	1	
0122		JE(N1 .LT.	30) GO TU 88	
0123		GO TO 84		
		ALL CARDS PL DEFLECTIONS, AND AVERAGE S	AD FOR AN ANALYSIS, Average sci, averag Subgrade Mudulus	CALCULATE AVERAGE Ge pavement modulus,
0124	80	PN=N		
0125		N1 = N -	NC	
	С			
·	C C C	NI IS THE NO VALID SOLUTIO	UMBER OF TEST POINTS ONS	ς τηντημού
0126		IF(N1 .LE.	0) N1 = 1	
0127		AWIV= AWI/PN		
0128		$\Lambda w 2V = \Lambda w 2/PN$		
0129		AW3V= AW3/PN		
0130		$\Delta W4V = \Delta W4/PN$,
0131		AW5V= AW5/Ph		
0132		ASCIV=ASCI/P	N	
0133		AAS2V=AAS2/N	1	
0134		AAP2V=AAP2/N	1	
	C.			
	С	CALCULATE VA	PIANCE OF SCI, SUBGE	ADE MUDULUS & PAVE-
	С	MENT MODULUS		
	Ċ			
0135		DO 62 1=1.N		
0136		IF(41(I).FQ.).0R.w2(I).EQ.0) GU	TO 62

15/3

.

FORTRAN IV	G LEVEL	18		MAIN	DATE = 71196	15/3
0137		SR1= SP1+	HILASCIV- S	CI(I))**2)		
0138		IF(AS2()	() .EO. O	.0) GO T	3 62	
0139		SR2= SR2+	+ ((AAS2V-AS	2(1))**2)		
0140		SR3 = SR3 +	H (AAP2V- A	P2(1))**2)		
0141	62	CONTINUE				
	C.					
	č	PRINT AVE	PRAGES			
	č					
0142	č	PRINT 65	AW1V.AW2V.	ANSV. AWAV. A	Α5ν.Δ5ςτν.ΔΔ52ν.ΔΔΡ2ν	
	C 65	FORMATIZ	IX. JAVERAGE	St. 612X. E	5.3). 2E11.0)	
	r r		IN ATTANCE	5 , 012/1	, , , , , , , , , , , , , , , , , , ,	
0143	65	EORMATLY	7Y. MAVEDA	CEST. ATEA	31. 2510 0 1	
0140	رن ۲	TOROGATAZ				
	C C			DEVINTION OF		
	c		AND DAVENE	NT MODULUS	- 301, 3000 ADF	
	C.	AUDULUS .	AND PAVENE	NT MODULUS		
	C.					
	C C					
	C C	SKIP THE	CALCULATIO	N IF UNLT UP	NF UDSERVATION	
01//	L	151 00				
0144		151 PN 4		GU IU 90		
0142	c	261 =	20K112K111	PN-LII		
01//	L	1 = 1		00 TO 00		
0146	6	AFT NI .	•LE• 1 }	GU 10 90		
	L	650				
0147		SE2 =	SURTISEZIC	NI-1))		
 0145		5F3 =	2081128371	NI-111		
	C C			TIONS		
	C C	DRIME 211	ANDARD DEVI	ALIUNS		
01/0	L.			2		
0149	с л ,	PRINT / L	SE1 + SE Z + SE			
		FURMAIL	LX, STANDAR	U DEVIATION	• • 2 (X • F 5 • 3 • 2 F 1 1 • 0)	
0150	ι,		74	DO DENTATIO		
0150	<i>(</i> 1	FURMAL	TX, STANDA	RU DEVIATIO	N', 20X,F6.3,2F10.01	
	L aa	CONTINUE				
0151	40	CUNTINUE				
0152			EQALIN	1 = 1		
0153		BRINE 001	N NI NI			
	C 99	FURMAL(1)	(NUMBER U	F PUINIS IN	AVERAGE = 1	
	C :	= 10X, 21	(10, (11)			
	C					
0154	đà	FORMATI	TX, NUMBER	OF PUINES	IN AVERAGE = !.	
		= 114, 19	, 110)			
0155	ſ	00107 01				
0155	c	PRINT 91	· · · · · · · ·			
	U 91	FURMALE /	'+5×,*WI	UEFLECTION /	AT GEUPHUNE I')	
015/	L AL			UPELECTION.		
0120		FURMAL(/)	L9. 7, * W L	UFFLFUIIUN /	AT GEOPHONE I')	
	C.					

FURIRAN	IV O LEVEL	. 14	MAIN	DATE = TLL96	1573
0157	C 92	PRINT 92 2 FORMAT(5X+172	DEFLECTION A	GEOPHONE 2')	
	č				
0158	92 C	2 FURMAT(10X, W2	DEFLECTION AT	GEOPHONE 21)	
0159		PRINT 93			
	C 93 C	BEDRMAT(5X; W3	DEFLECTION	AT GEOPHUNE 3")	
0160	93 C	B FORMAT(10X, W3	DEFLECTION AT	GEUPHONE 311	
0161		PRINT 94			
	C 94 C	FORMAT(5X, W4	DEFLECTION	AT GEOPHONE 4")	
0162	94 C	FORMAT(lox, W4	DEFLECTION AT	GEOPHUNE 4')	
0163		PRINT 95			
	C 95 C	FORMATI 5X, 195	OFFLECTION /	AT GEOPHONE 51)	
0164	95 C	5 FURMAT(10X, W5	DEFLECTION AT	T GEUPHONE 51)	
0165		PRINT 96			
	C 96 C	5 FORMAT(5X, 'SCI = 'US W2)')	SURFACE CUPV	ATURE INDEX [W1 MIN",	
0166	96	<pre>5 FORMAT(10X,'SC1 * 'US W2)')</pre>	SURFACE CURV	ATURE INDEX (W1 MIN',	
	C				
0167		PRINT 97			
	C 97 C	= 'M W1 AND 32')	ELASTIC MUDULUS	S OF THE SUBGRADE FRO*,	
0168	97	/ FORMAT(10X+'ES * 'M W1 AND W3')	ELASTIC MODUL	LUS OF THE SUBGRADE FRO!	,
	С				
0169		PRINT 98			
	C 98 C	3 FORMAT(5X,'EP = ' /1 AND W3')	FLASTIC MODULUS	5 OF THE PAVEMENT FROM .	
	С				
0170	98	3 FORMAT(10X,'EP ★ 'M W1 AND W3')	ELASTIC MUDUL	LUS OF THE PAVEMENT FROT	,
01 7 1	С				
0171	ſ	CO IO TO			
0172	1 000	CONTINUE			
0173	2000	FND			

FORTRAN	IV G LEVEL	13	MAIN	DATE = 71196	15/3.
		SUBROUTINE EMOD			
0001		SUBROUTINE EMOD (W1, W3, H, E	1, E2)	
0002 0003	C	IMPLICIT REAL * 8 DIMENSION RH(2), DELM2(2), DELX1(2	(A-H, O-Z) FF[2], Y(400 2), DELX2(2),	0), DELM1(2), N(4)	
0004 0005	C	DATA P / 1000.00 DATA XNO / 61.000	DO / , EP / .0 /, XK1 / 0.01D	0100/ 0 /, XK2 / 0.1000 /	
0006		INTEGER PLUS	KI G KZ LAN PE	CHANGED IF DESIRED	
0007 0008 0009 0010 0011	C	R1 = 10.000R3 = DSQRT(676.0MINUS = 1PLUS = 0ISW = 0	000)		
0012	с с с	SAVE = 0.000 CALCULATE R/H, RATI CRITERION)	10, & ACC (AC	C IS THE CONVERGENCE	
0013 0014 0015 0016	C	RH(1) = R1 / H RH(2) = R3 / H RATIO = (W1 * R ACC = ER * RATIO	l) / (w3 * R	3)	
0017	C C	DO 2 KL = 1 , CALCULATE AND TEST	2 DELMI		
0018	с к	DELM1(KL) = (1.000 * (XNO - 1.000))	0 / RH(KL)) *	(3.0D0 /	
0019		IF(XK1 .LE. DEL! Calculate pelx1	M1(KŁ)) DELM	1(KL) = XK1	

•

•

•

.

FURTRAN	IV G LEVEL	13	E M	00	DATE = 71196
0.0 2 0	c	DELX1(KL)	= DELM1(KL	.) * R	H(KL)
	C. C.	CALCULATE	AND TEST DEL	M2	
0021		DELM2(KL) ≠ (XNO -	= (1.000 / 1.000))	RH(KL))	* (3.000 /
0022	c C	IF(XK2	.lt. DELM2(⊭	(L)) D	tLM2(KL) = XK2
	C C	CALCULATE	DELX2		
0023	C C	DELX2(KL) CALCULAT EACH INTE	= DELM2(KL E NO. OF INTE GRATION. N1	.) ≉ R RVALS F & N2 MU	H{KL} UP SIMPSON'S RULE FOR ST BE ODD INTEGERS.
0024	C.	N(KL) = (3.000 * 8818		$0 \in [X] (K[) + 1 0 0 0$
0025	c	IF((N(KL N(KL)) / 2) * 2 = N(KL) +	•FQ• N 1	(KL))
0026	C.	N(K(+1) -	(7 000 ± 21		Z DELX2(KL) + 1 000
0027		IF((N(KL N(KL+1)	+1) / 2) * 2 = N(KL+1)	+ 1	N(KL+1))
0028	C 2 C	CONTINUE			
	C C C	GET INITI	AL VALUE OF E	2/E1 AN	D DELTA
0029	Č,	DELTA =	0.500		
0030	C C	E2E1 =	0.00100		
	Ċ C	START ITE	RATION LOOP F	OR EACH	E2/F1 VALUE USED
0031	4	CONTINUE			
0032	C	XN = (1.000 - F28	1)/	(1.000 + E2E1)
	C C C	THE FUNCT CALCULATE	IONS EF(1) AND IN THE FOLL	ID FF(2) LUWING D	(SEE EQN. 5) ARE G LOOP.
0033	C C	DO 29 K	K = 1 ,	2	
	C C C	CALCULAT INTEGRATI	E ORDINATES F On	OR SIMP	SON'S RULE FOR FIRST
0034	c .	N1 = N(KK)		
0035	C C	XM1 = 0	• 000		

DATE 71107

15/3:

.

FOPTRAN	IV G LEVEL	18	EMOD	DATE = 71196	15/3
0036		X1 = 0.	000		
0037		DO 28	JJ = 1, N1		
0038		= ([[]Y	(V(XN, XM1) - 1.0))DO) * BESJO(X1)	
0039		XM1 = X	M1 + DELM1(KK)		
0040		×1 =	X1 + DELX1(KK)		
0041	28 r	CUNTINU	F		
	c c		E ORDINATES FOR SIMPSON	S RULE FOR SECOND	
	C C	INTEGRATI	ON	S ROLL TOR SECOND	
	c c	INTEONATI			
0042	1,	$M_2 = M_1$	KK + 1 1		
0042	C	12 - 31			
0043	L	YM2 -	X M 1		
0045		¥2 =			
0045		00 27	KI = 1.N2		
0045			A = (V(YN, YM2)) =	- 1 000 1 + BESIOL X2 1	
0040			7 - (V(AN) AMZ 7 - YM2 - DELM2(XK)		
0047		XM2 -			
0048	2 7		AZ Y DELAZINNI		
0049	۲ <u>۲</u>	CONTIN	UE		
	C C			UNDED THE CHOVE OF FIRST	
	L C	JUT URDIN	ATES TO CALCULATE AMEA	UNDER THE CORVE OF FIRST	
	L C	INTE GRATI			
0050	L		0.000		
0050		PARII =	0.000		
0051	c	PARIS =	0.000		
	L C		OF INTENTOR CONTRATES	OF CLOSE INTERDATION	
	L C	N4 15 NU.	UP INTERIUR URDINATES	OF FIRST INTEGRATION	
0050	٢,	N/ - N			
0092	C	N4 = N	1 - 3		
•	C				
	(, (SUM INTER	TUR URDINATES		
	U	D.3 1/	h = 2 $h = 2$		
0053	27	00 20	LL = 2 + N4 + 2		
0054	20	PARTI =	PARTE + 1 2.000 + 11	LL) + +(LL+1))	
	L C		DUTHATEC		
	L C	SUM END U	RUINATES		
0055	L	0407 0 -	V/11 · / 000 * V/h	1 1 1 1 1 V KAN 1 1	
0035	r	PARIZ -	T(1) + 4.000 + T(A		
	l,			TION	
	L r	CALCULAT	E AREA OF FIRST INTEGRA		
0054	L		12 000 + DELVILEN) / 2		
0050		$\frac{AKEAI}{DA0T} = 1$	$12.000 + 000 \times 0000 + 3$		
	c	PAKII +	- U DELALIANA / 3.0007 *	FARIC	
	с С			HNDED THE CHOVE OF	
	с r		NATES TO CALUULATE AREA	VONDER THE CORVE OF	
	с С	SECOND 1	NIEGRALIUN		
	L C				
	L				

FORTRAN	IV G LEVEL	. 13	E™0D	DATE = 71196	15/3:
	0 0 0	THE LAST OR Ion is also	DINATE OF THE FIRST I THE FIRST ORDINATE O	NTERVAL OF INTEGRAT- F THE SECOND INTERVAL	
		N5 IS THE P INTERIOR OF	OSITION IN THE Y VECT DINATE OF THE SECOND	OR OF THE FIRST INTEGRATION INTERVAL	
0057	ſ	N5 = N1 +	2		
	C C C	NG IS THE P Interior Gr	OSITION IN THE Y VECT DINATE OF THE SECOND	UR OF THE LAST Integration interval	
0058	, C	N6 = N2	- 3 + N1		
	с С	SUM INTERIÚ	RORDINATES		
0059		00 25	LM = N5 , $N6$, 2		
0060	25 C	9 PART3 = P	ART3 + { 2.0D0 * Y(LM) + Y(LM+1))	
	C C	SUM END ORD	INATES		
00 61		PART4 = Y	(N1+1) + 4.000 + Y(N1)	+ N2 - 1) + Y(N1 + N2)	
		CALCULATE	AREA OF SECUND INTEGR	ATION.	
0062	C	AREA2 = ((2 PART3 + (•000 * DELX2(KK)) / 3 DELX2(KK) / 3•0D0) *	• 000) * PART4	
	C C	CALCULATE	THE FUNCTION.		
0063	U	FF(KK) =	AREA1 + AREA2 + 1	. 000	
0064	2 م 2	CONTINUE			
	C C	CALCULATE F	1/F3 AND CHECK FOR CU	NVERGENCE	
0065		F1F3 = FF	(1) / FF(2)		
0066		ERROR = F	LF3 - RATIO	T O D	
0067	r	IF (DABSI ER	ROR F.LI. AUL F GU	10/ 31	
	с с	SET ISW AND	SAVE ON FIRST TIME T	HROUGH ITERATION LOOP	
0068		IF (ISW .NE	. 0) GO TO 6		
0069		1 S 🖬 = 1			
0070		SAVE = FR	POR		
0071	<i>c</i>	EF (ERROR	•LT• 0.0D0) G0 Th	6	
	C C	STON OF FID			
	C C	STON DE FLE	3 F. F. F. U.S. 13 171		

FORTRA	N IV G	LEVEL	13	FM	OD	DATE = 71196	
0072 0073 0074		6	PLUS = MINUS = CONTINUE	1 0			
		Ċ	TEST FOR	SIGN OF ERROR			
0075		c	IF(ERPOR	2 30, 31, 3	S		
		C C	SIGN UF F	RROP IS '+'			
0076 0077		32	PLUS = IF(MINUS	1 5 .NF. 0) GO	TO 40		
		C C	ERROP IS	POSITIVE, DEC	REASE E2E1 FO	DR NEXT TRIAL	
0078 0079 0080		с	E2E1 = IF(E2E1 GO TO	E2E1 - DELT •LE• 0•900 4	A) E2F1 = (0.000100	
		C C	ERROR WAS	S NEGATIVE, NO	W POSITIVE, O	CHANGE DELTA	
0081 0082		40 C	DELTA = IF(SAVE	0.500 * DE .LT. 0.0D0	LTA) GO TO 42	2	
		C C	SET SAVE	= EKROR, DECR	EASE E2E1 FO	R NEXT TRIAL	
0083 0084 0085 0086		41 C	SAVE = E2E1 = IF(E2E1 GD TD 4	EPROR EPEL - DELTA .LE. 0.0D0) E2E1 = (0.000100	
		с С С	ERROR IS E2E1 FOR	INCREASING IN NEXT TRIAL	POSITIVE DIF	RECTION, DECREASE	
0087 0088 0089 0090		42	IF(DABS(E2EL = IF(E2E1 GO TO 4	SAVE) .GT. E E201 - DELTA .LF. 0.000	RROR) GO 1) E2E1 = (FC 41 0.000190/	
		č	SIGN OF E	PROP IS			
0091 0092		30 C	MINUS = IF(PLUS	1 .\⊦.0) G⊓	TO 45		
		č	ERROR IS	NEGATIVE, INC	REASE E2F1 FC	OR NEXT TRIAL	
0093		C	E2E1 =	EZF1 + DELT	۵		

•

•

•

•

15/3

FORTRAN	IV G EEV	11	18		EM	ab		UATE = 71196	
0094 0095	r,		1F1 F2E1 GO T() 4	•91•	1.000) GO	t o (44	
0096	C C	44	CUNTINUE						
			CHECK FOR WHEN PATE	A DIV O IS L	ERGENT ESS THA	CONDIT N 1.0	ION FO AND H	OR THE SITUATION IS LESS THAN 11.2	IN.
0047	ι.		TEL H .C	F. 11	. 200)	60 T	n 4		
0099			DELTA =	0.500	* DE	LTA			
0099			E2E1 =	E2E1	- DELT	٨			
0100			GU TU 4						
			ERROR IS Delta	NEGATI	VE NOW,	WAS P	05171	VE BEFURE, CHANGE	
0101 0102	c.	45	DELTA = TEC SAVE	0.5D0 .GT.	≠ DE 0∙000	LTA) GU	1. 1.	47	
	с, С С		TEST FOR	EPROR	LESS TH	AN SAV	E		
0103	_	46	IFIDABS (SAVE) .GT.	DABS 1	FRRD	R))SAVE = FRROR	
			INCREASE	E211 F	DR NEXT	TRIAL			
01 04 010 5 0106			E2E1 = TF{ E2E1 GO TO 4	E201 +9T+	+ UELT 1.0D0	A) GO	ŤŬ 4	44	
	C C C		TEST FOR	FRROR	GREATER	THAN	SAVE		
0107		47	IF (DABS (ERRING) .GT	SAVE) 60	D TU 46	
			ERRUR IS Set save	APPRUA = ERRO	CHING C R, INCR	ONVEPG EASE E	ENCF 1 2 E1 FI	FRUM NEGATIVE SIDE; DR NEXT TRIAL	
0109 0109 0110 0111	(.		SAVE = E2EL = IF(E2E1 G0 T0 4	ERROR F2E1 .GT.	+ DELT 1.000	A) GD	TU 4	*4	
0112	C	51	CUNTINUE				. .		
	C C		CONVERGEN	ICE CKI	TERION	ES MET	, CAL	SULATE EL & E2	
0113	<u>~</u>		E1 = (3.0)	ייד הס <u>(</u>	* F⊢(1))/ (4	•090 -	* 3.1415900 *W1*R1)	

15/3

FORTRAN	IV G	LEVEL	18				EMOD	DATE = 7	1196	15/3
0114			E2	=	E2F1	\$ Fl				
		Ç								
		С.								
		C								
0115			RET	URN						
0116			END							

FORTRAN	IV G LE	VEL 18	BESJO	DATE = 71.068
0001	ſ	REAL FUNCTI	ON BESJO * B (X)	
	C			
	С	A FUNCTION	TO CALCULATE BESSEL F	FUNCTION JO(X) USING
	C	POLYNOMIAL	APPROXIMATION - REFER	RENCE HANDBOOK OF MATH.
	C	FUNCTIONS,	BUREAU OF STANDARDS,	PAGES 369-370
0002	L	DOUBLE PREC	ISION X3. X32. X33.	X34. X35. X36.DCDS.
0001		* DSQRT DA	BS• X	
	С		•	
	С	CALCULATE X	/3 DR 3/X	
	С			
0003		X3 = X/3.0		
0004	-	IF(X.GT. 3	$\cdot 0$) X3 = 3 $\cdot 0/X$	
	C			
	C C	CALCULATE P	UWERS UP X	
0005	L	¥22- ¥2±¥2		
00000		X33=X32#X3		
0007		X34=X32*X32	,	
0008		X35=X32*X33		
0009		X36=X3 3 *X33		
	С			
0010		2 IF (DABS (X) .LE. 3.000) GO	TO 3
	9			
	C	CALCULATE B	ESJO(X) FOR VALUES OF	F X GREATER THAN 3
0011	ί	DES10-11 70	700/66 776 4 42	
UOII		DE3JU=((.7)	100400°•11⊑°0 ∧ ∧0 2⊑_04 ± ¥33 ± 13723°	-0.5527400-02
		* .72805F-03	* X35 + 14476F-03	* X36) / DSORT(X) \
		* * DCUS(X	7853981604166	397 * X3 - 3954F-04
		* * X32 + .2	62573D-02 * X3354	41250-03 * X34 ~
L.		* .29333E-03	* X35 + .13558E-03 *	* X36)
	С			
0012		RETURN		
	С			
	C	CALCULATE B	ESJO(X) FOR VALUES OF	E X LESS THAN 3
0010	L,		3 3400007 * X32	1 1 2/ E/ 200 + V2/
0015	5	DES JU- 1.0 * - 3163866	$= 2 \cdot 2 + 9 \cdot 9 \cdot 9 \cdot 7 + 3 \cdot 2 \cdot 5 \cdot 5$	+ 1.2000200 $+$ 854
		* .0039444 *	$(X35 \times X35) + .000$)210 × (X36 × X36)
	C.			
0014	2	RETURN		
0015		E ND		

•

.

.

•

FORTRAN	IV G	LEVEL	18	V		DATE = 71068
0001		C	REAL	FUNCTION V * 8 (XN , XM)	
0002		c	DOUBL	E PRECISION XN,	XM, EXPM2M, EXP	PM4M, DEXP
			V - A 'E2E1 'M' T 10 *	FUNCTION OF •E21 • IS THE E2/E1 R/ ESTED USING VALUE (R/H)	El', AND 'M' Atio, tested fro Es from 0.0 to 1	0M •001 TO 1000• 150• Which is
		С С С	V APP	ROACHES 1 FOR LAP	RGE VALUES DF M	
0003		-		V = 1.0		
0004		с с с	CALCU	LATE EXPONENTIALS	S	
0005		-	EXPM2	M = DE, XP (-2.0)	ODO * XM)	
0006		C C C	CALCU	M= EXPM2M*EXPM2M	FOR THE XN & XM]	OR XM2 VALUES
0007		, , , ,	V = * (XN * * (* (X	(1.0D0 + (4.00 * XN * EXPM4M) 1.0D0 + 2.0D0 *) N * XN * EXPM4M)0 * XN * XM * E) / (].000 - (M * XM) * EXF))	EXPM2M) - - { 2.0D0 * XN ?M2M } +
0008		ι	RETUR	N		
0009	•		END			

•

.

<u>Appendix</u> <u>B</u>

4

۰.

.

.

.

Listing of POINT LOAD

* *
+ IEXAS IKANSPUKIALIUN INSTILUTE +
* PAVEMENT DESIGN DEPARTMENT *
* *
* SURFACE DEFLECTIONS *
* OF A *
* *
* TWO-LAYER SYSTEM *
* LOADED AT A POINT *
* (POISSON'S RATIO = 1/2) *
*

,

•

TWO-LAYER SYSTEM--POINT LOAD--SURFACE DEFLECTIONS

P IS THE POINT LOAD. H IS THE THICKNESS OF LAYER 1. E1 AND E2 ARE YOUNG'S MODULI FOR LAYERS 1 AND 2 RESPECTIVELY. POISSON'S RATIO IS 0.5 THROUGHOUT. W IS THE SURFACE DEFLECTION AT THE DISTANCE R FROM THE LOADED PUINT. THE FUNCTION F IS DEFINED AS F(E2/E1,R/H) = (4 + PI + E1 / 3 + P) + (W + R). IT IS CALCULATED BY MEANS OF THE FOLLOWING EQUATIONS --N = (1 - E2/E1) / (1 + E2/E1).1. V(M,N) = (1 + 4*N*M * EXP(-2*M) - N*N * EXP(-4*M)) /2. (1 - 2*N * (1 + 2*M*M) * EXP(-2*M) + N*N * EXP(-4*M)). 3. X = MR / H. U(M,N,R/H) = (V(M,N) - 1) + JO(X), WHERE JO IS A BESSEL FUNCTION,4. FIRST KIND, ZERO ORDER. 5. AREA 1 = THE INTEGRAL OF U + DX FROM X = 0 TO 3R/H. AREA 2 = THE INTEGRAL OF U * DX FROM X = 3R/H TO 10R/H. 6. F = 1 + AREA 1 + AREA 2. 7. THE PROGRAM OUTPUT INCLUDES THE E2/E1 AND R/H RATIOS USED IN THE CALCULATION. THE FUNCTION F, AND THE DEFLECTION W. THE PROGRAM INPUTS ARE AS FOLLOWS --NO, THE MINIMUM NUMBER OF ORDINATES CALCULATED BETWEEN ZEROS OF JO(X), IN 1. THE CALCULATION BY SIMPSON'S RULE OF AREA 1 AND AREA 2. NO IS AN ODD NUMBER, USUALLY 61. 2. KI, THE MAXIMUM VALUE OF DELTA M IN THE INTERVAL M = 0 TO M = 3. K1 USUALLY = 0.01. K2, THE MAXIMUM VALUE OF DELTA M IN THE INTERVAL M = 3 TO M = 10. 3. K2 USUALLY = 0.10.4. E1, DEFINED ABOVE. 5. E2, DEFINED ABOVE. 6. R, DEFINED ABOVE. 7. H. DEFINED ABOVE. P, DEFINED ABOVE. 8. FOR PREDICTING DYNAFLECT DEFLECTIONS INPUT THE FOLLOWING--R (INCHES) = 10.0, 15.62, 26.0, 37.36, 49.0.

P(POUNDS) = 1000.

[RAN	١v	GL	EVEL	18	MAIN	DATE	= 71342	09/32/52
				PROGRAM TO COMPU	ITE SURFACE DEF	LECTIONS. GI	VEN THE	
		с с с		ELASTIC MODULI A	ND THE THICKNE	SS OF THE PA	VEMENT LAYER	ર
01 02				IMPLICIT REAL * DIMENSION E2E FRAT(10) •	8 (A-H, D-Z) 1(30), RH(20), DATA(20) , E1(Y(4000), R(30), E2(30),	15), H(50), W(15)	FF(20), MAIN
03 04 05				DATA P / 1000.0D DATA CHK /'END ' WRITE(6.215)	0 /			
56			215	FORMAT(*1*,21(/ + * TEXAS TR + **,40X,***/45X),45X,42("*"), ANSPORTATION I (,"*",7X,"PAVEN (,"*",10Y,"SUPE	2(/45X, "*", 4 NSTITUTE NENT DESIGN D	0X, ***) / 45X **/ 45X, EPARTMENT*, 1 LONS*, 10Y, **	, 7X , ***/45X , **/45X .
				<pre>'*';40X; '*';40X; '*';45X;'*';18X '*';12X; 'TWO-L</pre>	AYER SYSTEM',1	*/45X, ***, 40 2X, ***/45X,*	X, ***/45X, **,40X, ***/4	+•/+J∧; 45X;***;10X;
			=	<pre>* 'LOADED AT A</pre>	POINT",10X,"" ON""S RATIO =	''/45X,'*',40 1/2)',9X,'*'	X;***/45X; /45X;***;40)	X,†*†/45X,
27 28			230	WRITE(6,230) FORMAT('1', 41X NS' /	. TWO-LAYER S	YSTEMPOINT	LOADSURF	ACE DEFLECTIO
09		c c	225	SET UP NO. OF FORMAT('1')	INTERVALS AND	ACCURACY FOR	EACH INTEG	RATION. MAIN MAIN
		0 0 0		THE VALUES OF RA AT WHICH A DEFLE	DIUS CAN BE CH CTION IS TO BE	ANGED TO ANY CALCULATED	DISTANCE	
10				R(1) = 10.000)			
11				R(2) = DSQRT(24) $R(3) = DSQRT(67)$	4.0D0) (6.0D0)			
13				R(4) = DSQRT(13)	196.0D0)			
14		~		R(5) = DSQRT(24)	04.0D0)			
15		L	6	READ(5,103) (D	ATA(I), I =	1,20)		
16			103	FORMAT(20A4)	· · · · · ·			
17				IF(DATA(1) .EQ.	CHK) GO TO	1		
19			231	FORMAT(15X, 2044		1 1 20 1		
20				GO TO 6				
21			1	READ (5,100,END=5	50) XNO, XK1,	XK 2		MA TA
22		c	100	READ IN EL. E2 6	H VALUES.			MAIN
23			4	CONTINUE				
24				READ (5,101,END=5	50) NEL, (EL(J), J = 1 .	9)	

.

.

.

TRAN	IV G LEVEL	18 MAIN DATE = 71342	09/32/52
25		IF(NE1 .LE. 9) GO TO 11	
26		READ(5,102) (E1(L), L = 10, NE1)	
27	11	READ(5,101,END=50) NE2, $(E2(J), J = 1, 9)$	
28	101	FORMAT(13, 3X, 9F8.0)	
29		IF(NE2 .LE. 9) GU IU 2	
30		READ(5,102) (E2(L), $L = 10$, NE2)	
31	2		MAIN
32	102	FURMAIL 0A, 9F0.0 /	
30		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
35		READ(5,102) (H(N), M = 10, NH)	
36	3		MAIN
50	c 2	CALCULATE E2/E1 RATIOS	
37	-	DO 12 M = 1 , NE1	
38		$E_{2E1}(M) \approx E_{2}(M) / E_{1}(M)$	
39	12	CONTINUE	
40		WRITE(6,225)	
41		WRITE(6,206)	
	C	SELECT EACH E2/EL RATIO AND CALCULATE BIG N FOR EACH RATE	D. MAIN
42		KOUNT = 0	MAIN
43		DO 30 JI = 1, NE2	MAIN
44		DO 30 JJI = 1, NH	
45		LSW = 0	MAIN
46	~	XN = (1.0 - E2E1(JI))/(1.0 + E2E1(JI))	MAIN
	L C	CALLULATE DELTA MI, DELTA MZ, DELTA XI, & DELTA XZ FUR EAU	H K/H KMAIP
	د د		
		DE DEELECTIONS TO BE CALCULATED	
	č		
47	J.	DD 32 1K = 1.5	
48	32	RH(LK) = R(LK) / H(JJI)	MAIN
	C		
	С	THIS DO LOOP SHOULD GO FROM ONE TO THE NUMBER	
	С	OF DEFLECTIONS TO BE CALCULATED	
	С		
49		DO 29 KK = 1, 5	
50		DELM1 = (1.0 / RH(KK)) * (3.0 / (XNO - 1.0))	MAIN
51		IF(XK1 .LE. DELM1) DELM1 = XK1	MAIN
52		DELX1 = DELM1 * RH(KK)	MAIN
53		UELM2 = (1.0) / KH(KK) = (3.0) / (XNO - 1.0))	MAIN
54		IFLANZ OLEO UELMZJ UELMZ = ANZ DELVZ - DELMZ + DU(VV)	MAIN
22	c	CALCULATE NO. OF INTERVALS FOR SIMPSON'S RULE FOR FACH INT	TAIN AIAMOITAGO
56	v	N1 = (3.0 * RH(KK)) / DELX1 + 1.0	MAIN
57		IF((N1 / 2) * 2 .EQ. N1) N1 = N1 + 1	MAIN
58		N2 = (7.0 * RH(KK)) / DELX2 + 1.0	MAIN
59		IF((N2 /2) * 2 .EQ. N2) N2 = N2 + 1	MAIN
	С	CALCULATE ORDINATES FOR SIMPSON'S RULE FOR FIRST INTEGRATION	ON. MAIN

.

4

TRAN	IV G LEVEL	18 MAIN	DATE = 71342	09/32/52
60		XMI ≠ 0.0		MAIN
61		AI = 0.0		
62		$\frac{1}{20} = \frac{1}{20} $	- 1 000 1 * 95510 / 71 1	ma in
66			- 1.000 I + 86330 (AL)	MA 7 A
65		$X_1 = X_1 + DE[X_1]$		MAIN
66	28			MAIN
00	r 20	CALCHATE ORDINATES FOR	SINDSON'S BUILE EOR SECOND	INTEGRATION. MAIN
67	U U	XM2 = XM1 - DFLM1	STAFSON S ROLL TOR SECOND	INTEGRATION: HAIP
68		$x_2 = x_1 - \text{DELX1}$		
69		DO 27 KI = 1.N2		MATN
70		Y(N) + K(J) = (V(X) + V(X))	XM2) - 1.000) * BESJO (X2)
71		XM2 = XM2 + DELM2		MAIN
72		X2 = X2 + DELX2		MAIN
73	27	CONTINUE		MAIN
	2	SUM ORDINATES TO CALCUL	ATE AREA UNDER THE CURVE OF	FIRST INTEGRATMAIN
74	•	PARTI = 0.0		MAIN
75		PART3 = 0.0		MAIN
76		N4 = N1 - 3		MAIN
17		DU 26 LL = 2 , N4, 2		MAIN
78	26	PARTI = PARTI + (2.	0 * Y(LL) + Y(LL+1))	MAIN
19		PART2 = Y(1) + 4.0	* Y(N1-1) + Y(N1)	MAIN
	С	CALCULATE AREA OF FIRST	INTEGRATION.	MAIN
80		AREA1 = {(2.0 * DELX	1) / 3.0) * PART1 + {DELX1	/3.0) * PART2 MAIN
	Ω	SUM ORDINATES TO CALCUL	ATE AREA UNDER THE CURVE OF	SECOND INTEGRAMAIN
81		N5 = N1 + 2		MAIN
82		N6 = N2 - 3 + N1		MAIN
83		DD 25 LM = N5 + N6	, 2	MAIN
84	25	PART3 = PART3 + (2.0	* Y(LM) + Y(LM+1))	MAIN
85		PART4 = Y(N1+1) + 4.0	$* Y{N1 + N2 - 1} + Y{N1 + }$	N2) MAIN
	, C	CALCULATE AREA OF SECON	D INTEGRATION.	MAIN
86		$AREA2 = \{(2.0 + DELX2)\}$	/ 3.0) * PART3 + (DELX2 /	3.0) * PART4 MA[h
	С	CALCULATE THE FUNCTION.		MAIN
87		FF(KK) = AREA1 + AREA	2 + 1.0	MAIN
8 8		W(KK) = (3. * P * FF(KK)))) / (4. * 3.14159 * E1(J	1) * R(KK)
89		IF(LSW .EQ. 1) GO T	0 42	MAIN
30		WRITE(6,200) E2E1(JI), R	H(KK), $FF(KK)$, $EI(JI)$, $E2(J$	1), H(JJI),
~ .	200) R(KK), W(KK)		3 517 3 48
A.T.	200	FURMAILF18.3+ FI1.3+ 3A	9 014+09 PIU+U9 PII+U9 PIZ4	2, 111.2, 01,
02				MATN
92				HAIN
94	43	WRITE(6.201) RH(KK) - FF	{KK), 8(KK), H(KK)	
95	201	FORMATE F29.3. 3X. G14.	6. 33X. F17.2. 6X. G14.6	/)
96	201	CONTINUE	e, bony titly ony offic	- , μ ΜΔΓΝ
97	2,	LSH = 0		(10 L))
98	31	CONTINUE		MAIN
99	41	WRITE(6,225)		MAIN

B-6

TRAN IV G LEVEL		18	MAIN	DATE = 71342	09/32/52	
00	43	WRITE(6,206)				MAIN
01	206	FORMAT! 10X+** E2 ** ***** H	E2/E1 * ** R/H ***** ***** R	** ***** F ***** ** ***** ***** W *****	El **	** }
02	30	CONTINUE				MAIN
03		GO TO 4				
04	50	WRITE(6,225)				MAIN
05		STOP				MAIN
06		END				MAIN

FORTRAN	IV G	LEVE	L 18	BESJO	DATE = 71068
0001		C	REAL	FUNCTION BESJO * 8 (X)	
		C			
		C C	POLYN	OMIAL APPROXIMATION - REFER	UNCTION JO(X) USING ENCE HANDBOOK OF MATH.
		с с	FUNCT	IONS, BUREAU OF STANDARDS, I	PAGES 369-370
0002		c	DOUBL ≉ DSC	E PRECISION X3, X32, X33, X RT, DABS, X	34, X35, X36,DCOS,
		c c	CALCU	LATE X/3 OR 3/X	
0003			X3 =	X/3.0	
0004		C.	IF()	$GT \cdot 3 \cdot 0$ X3 = 3 $\cdot 0$ / X	
		с с	CALCU	LATE POWERS OF X	
0005			X 32=	X3*X3	
0006			X33=>	32*X3	
0007			X34=>	32*X32	
0008			X 35 = >	32*X33	
0009		r	X36=X	33*X33	
0010		0	2 IF (DABS (X) .LE. 3.0D0) GO	TO 3
		C C	CALCU	LATE BESJO(X) FOR VALUES OF	X GREATER THAN 3
0011			BESJC	=((.7978845677E-6 * X3 9512E-04 * X33 + .137237	- 0.552740D-02 *
			* . 728	05E-03 * X35 + 14476E-03 *	x_{36} / DSORT(X))
			* * DC	05(X785398160416639)	97 * X3 - 3954E-04
			* * X 3	2 + .262573D-02 * X3354	$125D-03 \times X34 -$
L			* .293	33E-03 * X35 + .13558E-03 *	X36)
		С			
0012		-	RETUR	N	
		C	6 1 1 6 1		
		C C	LALCU	LATE BESJU(X) FUR VALUES UP	X LESS THAN 3
0013		L a	DEC	$\Lambda - 1 \Lambda = 2 2400007 \pm 322$	+ 1 2656208 × X34
0015		5	* - 2	$163866 \times 336 + 0444479 \times ($	X34 * X34) -
			* 003	9444 * (X35 * X35) + .000	210 * (X36 * X36)
		C			
0014		-	RETUR	N	
0015			END		

2

٠

.

FORTRAN IV G LE	VEL 18 V	DATE	= 71068
0001 C	REAL FUNCTION V * 8 (XN , XM)	
0002	DOUBLE PRECISION XN,	XM, EXPM2M, EXPM4M,	DEXP
	V - A FUNCTION OF 'E2E 'E2E1' IS THE E2/E1 RA 'M' TESTED USING VALUE 10 * (R/H)	1', AND 'M' TIO, TESTED FROM .OC S FROM 0.0 TO 150. V)1 TO 1000. HICH IS
	V APPROACHES 1 FOR LAR	GE VALUES DF M	
0003 0004 C	V = 1.0 IF(XM .GT. 30) RETURN	
C	CALCULATE EXPONENTIALS		
0005 0006	EXPM2M = DEXP (-2.0) Expm4M≃ EXPM2M≉EXPM2M	DO * XM)	
C C	CALCULATE FUNCTION V F	OR THE XN & XM1 OR X	M2 VALUES
0007	V = (1.0D0 + (4.0D) * (XN * XN * EXPM4M) * * (1.0D0 + 2.0D0 * Xi * (XN * XN * EXPM4M)	0 * XN * XM * EXPM2M) / (1.000 ~ (2. M * XM) * EXPM2M))	I) ODO * XNI +
C 0008 0009	RETURN END		

i.

ŧ,

* E2/E1 *	** R/H **	***** F *****	** E1'**	** E2 **	***** H *****	**** 8 *****	***** 2 *****
0.139	1.205	6.82302	81910.	11400.	8.30	10.00	0.1988620-02
	1.882	7.98281				15.62	0.1489480-02
	3.133	8.20060				26.00	0.9192790-03
	4.502	7.74196				37.36	0.603926D-03
	5.907	7.40308				49.03	0.440068D-03

٠

Ł