CALCULATION OF THE ELASTIC MODULIof aTWO LAYER PAVEMENT SYSTEMfrom
MEASURED SURFACE DEFLECTIONSPART II
by
Frank H. ScrivnerChester H. MichalakWilliam M. Moore
Research Report Number 123-6A (A supplement to Research Report 123-6)
conducted
In Cooperation with the
U. S. Department of TransportationFederal Highway Administration
by the
Highway Design Division Research Section Texas Highway Department
Texas Transportation Institute
Texas A\&M University Center for Highway Research The University of Texas at Austin
December, 1971

Preface

This is a supplement to Research Report $123-6$, which was the sixth report issued under Research Study $1-8-69-123$, A Systems Analysis of Pavement Design and Research Implementation. The study is being conducted jointly by principal investigators and their staffs in three agencies -- The Texas Highway Department, The Center for Highway Research, and the Texas Transportation Institute -- as a part of the cooperative research program with the Department of Transportation, Federal Highway Administration.

Previous reports emanating from Study 123 are the following:
Report No. 123-1, "A Systems Approach Applied to Pavement Design and Research," by W. Ronald Hudson, B. Frank McCullough, Frank H. Scrivner, and James L. Brown, describes a long-range comprehensive research program to develop a pavement systems analysis and presents a working systems model for the design of flexible pavements.

Report No. 123-2, "A Recommended Texas Highway Department Pavement Design System Users Manual," by James L. Brown, Larry J. Buttler, and Hugo E. Orellana, is a manual of instructions to Texas Highway Department personnel for obtaining and processing data for flexible pavement design system.

Report No. 123-3, "Characterization of the Swelling Clay Parameter Used in the Pavement Design System," by Arthur W. Witt, III, and B. Frank McCullough, describes the results of a study of the swelling clay parameter used in pavement design system.

Report No. 123-4, "Neveloping a Pavement Feedback Data System," by R. C. G. Haas, describes the initial planning and development of a pavement feedback data system.

Report No. 123-5, "A Systems Analysis of Rigid Pavement Design," by Ramesh K. Kher, W. R. Hudson, and B. F. McCullough, describes thes development of a working systems model for the design of rigid pavements.

Report No. 123-6, "Calculation of the Elastic Moduli of a Two Layer Pavement System from Measured Surface Deflections," by Frank H. Scrivner, Chester H. Michalak and William M. Moore, describes a method for converting Dynaflect deflections to the Young's moduli of a simple pavementsubgrade (two-layer elastic) system.

Report No. 123-7, "Annual Report on Important 1970-71 Research Needs," by B. Frank McCullough, James L. Brown, W. Ronald Hudson and F. H. Scrivner, was produced mainly for the information of the Research Area III Λ dvisory Committee of the Texas Highway Department.

Report No. 123-8, "A Sensitivity Analysis of Flexible Pavement System FPS2," by Ramesh K. Kher, B. Frank McCullough and W. Ronald Hudson, presents a sensitivity analysis performed to establish the plausibility of solutions and relative importance of some of the variadles in FPS2.

The opinions, findings and conclusions expressed in this publication are those of the authors and not necessarily those of the Department of Transportation, Federal Highway Administration.

Abstract

This report is a sequel to a previous one that gave the details of a computer program capable of calculating in situ values of the Young's moduli of a pavement-subgrade (two-layer elastic) system from surface deflections measured at two points located at specified distances from the load wheels of a Dynaflect. The present report describes the effect of a change in the specified location of one of the deflected points on (a) the calculated moduli, (b) the shape of the deflection basin calculated from these moduli and (c) certain wheel load stresses calculated from the moduli at the pavement-subgrade interface. Dynaflect data from flexible highway pavements and rigid airport pavement are used in the calculations.

Key Words: PAVEMENT, DESIGN, MODULUS, DEFLECTION.

One of the tasks undertaken in Study 123 is to investigate the feasibility of the use of linear elasticity theory in a subsystem of the flexible pavement design system now on trial in the Texas Highway Department (2). Such a subsystem would provide estimates of stresses, strains and displacements at critical points within the pavement structrue and subgrade, resulting from passing wheel loads.

But to calculate stresses, strains and displacements, the designer must have at hand estimates of -- among other things -- the in situ value of the elastic modulus of each material to be used in the pavement.

A previous report (1) describes how such moduli may be estimated, by the computer program ELASTIC MODULUS, from surface deflections measured on a simple (two-layer, or pavement-subgrade) type of flexible pavements at two points located at distances of zero and one foot from the centroid of the loaded areas provided by a Dynaflect. In the present report, analyses are presented of the differences in computed moduli encountered when the distance of one of the deflection points is increased from its original value of one foot to two feet. Also presented are the moduli resulting from the use of the Dynaflect on certain rigid pavements. On these the increase in spread between deflection points is found to be necessary to achieve sufficient contrast in the data.

Included with the report is a listing of the computer program, ELASTIC MODLLUS II, used to estimate the moduli of pavement and subgrade from the deflections measured at zero and two feet from the centroid of the Dynaflect loaded area. Also included is a listing of the program, POINT LOAD, which accepts as inputs the moduli of a two-layer pavement system, and the thickness of the upper layer, and computes deflections at points at any desired distances from the centroid of a Dynaflect load.

It was possible to compute from ELASTIC MODULUS II (or from ELASTIC MoldiduS) the moduli of pavement and subgrade, using Dynaflect deflections , observed at only two points, and then, by using these moduli, to predict (by use of POINT LOAD) the entire five-point Dynaflect basin. The predicted basin could then be plotted and compared with the plotted basin actually observed. Frori flots of this type, a subjective judgement could be made of the validity of elasticity theory when applied to simple, two-layer pavement structures.

Besides comparing directly the moduli computed from deflections measured at different pairs of points, and the resulting predicted Dynaflect deflection basins, it was also possible, by use of the computer program BISTRO (supplied by Koniklijke/Shell-Laboratorium, Amsterdam) to compute certain stresses at the pavement-subgrade interface resulting from use of the two sets of moduli. It is these stresses that are of interest in design.

Sources of flexible pavement deflection data were seven 500-foot sections near College Station, Texas. Rigid pavement data were obtained at the Houston Intercontinental Airport by courtesy of airport officials and their consultants.

The report contains many detailed conclusions, which may be summed up as follows.

The Dynaflect in its present form, combined with the computer programs ELASTIC MODULUS II and POINT LOAD, has the potential of becoming a useful method for material characterization in a pavement design system using linear elastic theory as a subsystem, provided that proper heed is paid to instrument error, the inevitable variability of highway materials in place, and the many other uncertainties that enter into a complete pavement design system. ELASTIC: MODULUS II, rather than

ELASTIC MODULUS, is recommended in order to achieve compatibility between moduli found for rigid pavements and those determined for flexible pavements.

Implementation Statement

The programs ELASTIC MODULUS II and POINT LOAD were written in the expectation that eventually the Texas Highway Department's Flexible Pavement Design System will, in the prediction of pavement life, use the stresses, strains and displacements computed at critical points within the structure from the theory of linear elastic layered systems, instead of solely the surface deflections calculated by the present empirical equation. When such a change occurs in the design system, in situ values of elastic moduli will be needed. This need probably can be met, at least to some degree, by the computer programs described herein.

Acknowledgments

For their assistance in obtaining the deflection data indicated velow, the writers are especially grateful to the following personnel and their organizations.

Data from flexible pavements: Dr. Robert E. Long of the Texas liighway Department, Bryan, Texas.

Data from rigid pavements: Col. Harry Fischer of the Houston Intercontinental Airport, Mr. D. E. Aviles of Marillo Engineering and Testing Service, Houston, Texas, and Mr. H. P. Carothers of Lockwood, Andrews and Newnam of Houston.

Thanks are also due Mr. Rudell Poehl and Mr. Neil K. Holley, both of Texas Transportation Institute, for their expert operation of the Dynaflect on the pavements tested.
Page
List of Figures x
List of Tables xi

1. Introduction 1
2. Accuracy Check 5
3. Non-unique Solutions 7
4. Examples of Solutions Provided by
ELASTIC MODULUS II for Flexible Pavements 10
5. Comparison of Moduli Estimated from Geophone 1 and 2 Data with Those Estimated from Geophone 1 and 3 Data 20
6. Computed Versus Observed Dynaflect Deflection Basins for Flexible Pavements 28
7. Comparison of Certain Stresses Computed from Geophone 1 and 2 Data with Those Computed from Geophone 1 and 3 Data. 38
8. Examples of Solutions, Rigid Pavements 46
9. Conclusions 62
List of References 65
Appendix A - Listing of ELASTIC MODULUS II A-1
Appendix B - Listing of POINT LOAD 13-1

List of Figures

Figure Page
1 Relative position of Dynaflect loads and sensors 2
2 Two-layer elastic system loaded at a point on thesurface3
3 Contours of pavement thickness, h, plotted as a function of the ratios E_{1} / E_{2} and $w_{1} r_{1} / w_{3} r_{3}$ 8
4a $\quad E_{1}\left(w_{1}, w_{2}\right)$ compared with $E_{1}\left(w_{1}, w_{3}\right)$ 22
$4 b \quad E_{2}\left(w_{1}, w_{2}\right)$ compared with $E_{2}\left(w_{1}, w_{3}\right)$ 23
5a-5g Computed Dynaflect deflection basins compared with average observed basins, flexible pavements 29-35
6 Simulated tire-pavement contact areas for 9000-1b. dual wheel load 39
7 Comparison of the ratio $\mathrm{E}_{1} / \mathrm{E}_{2}$ computed from Geophones 1 and 2 , with that computed 1 rom Geophones 1 and 3 42
8 Comparison of the major principal stresses in thebase, computed from different pairs of geophones, atthe base-subgrade interface43
9 Comparison of the minor principal stresses in the subgrade, computed from different pairs of geophones, at the base-subgrade interface 44
10a-10k Computed Dynaflect deflection basins compared with observed basins, rigid airport pavements 49-59

List of Tables

Table Page
1 Comparison of ELASTIC MODULUS II with BISTRO 6
2 Summary of restraints used in ELASTIC MODULUS II 9
3 Summary of pavement moduli, E_{1}, computed byELASTIC MODULUS II, flexible pavements11
4 Summary of subgrade moduli, E_{2}, computed byELASTIC MODULUS II, flexible pavements12
$5 a-5 g$ Computer print-outs, ELASTIC MODULUS II 13-19
6 Comparison of moduli computed by ELASTIC MODULUS with those computed by ELASTIC MODULUS II 21
7 Results of analyses of variance identifying sig-nificant differences between $E_{1}\left(w_{1}, w_{2}\right)$ and$E_{1}\left(w_{1}, w_{3}\right)$25
8 Results of analyses of variance identifying signifi- cant differences between $E_{2}\left(w_{1}, w_{2}\right)$ and $E_{2}\left(w_{1}, w_{3}\right)$ 269 Comparison of certain truck wheel load stresses atthe base-subbase interface computed by BISTRO usingmoduli computed by ELASTIC MODULUS and ELASTICMODULUS II . 41
10 Rigid pavement and subgrade moduli, HoustonIntercontinental Airport4711 Subjective rating of agreement between observed andcomputed Dynaflect basins, Houston IntercontinentalAirport .61

FOREWARD

The primary objective of this research project is to develop techniques for the optimal operation of a linked system of multipurpose reservoirs. Linkage of the system may be through normal river reaches, canals, or through pumping in pipelines. In this report a model is developed which utilizes stochastic inflows with the total system subject to certain constraints. This model will be utilized later in an operational study of an existing system.

1. Introduction

Research Report 123-6, "Calculation of the Elastic Moduli of a Two Layer l'avement System from Measured Surface Deflections" (1), describes a computer program, ELASTIC MODULUS, that accepts as inputs the deflections ${ }^{W_{1}}$ and w_{2}, indicated by Geophones 1 and 2 , respectively, of a Dynaflect (see Figure 1) acting on the surface of an idealized, linear elastic, two layer pavement system such as that illustrated in Figure 2. An additional input is the thickness, h, of the top layer. From the three inputs $-w_{1}(m i l s), w_{2}(m i l s)$ and h (inches) -- and the constant distances r_{1} (inches) and r_{2} (inches) from Geophone 1 and Geophone 2 to either load wheel, ELASIIC MODUJUS calculates the moduli E_{1} and E_{2} (both in pounds per square inch) of the two layers.

Because the geometry of a real pavement departs from that assumed in the theory at a lateral distance of only a few feet from the location of the Dynaflect load wheels, it was felt that the two geophones nearest the load would be likely to yield data more consistent with theory than more distant geophones -- hence, the selection of Geophones 1 and 2 in Research Report 123-6 for use in estimating the moduli. However, in the case of portland cement concrete pavements experience has shown that in many cases the deflection basin created by the Dynaflect is so flat that w_{1} and w_{2} frequently differ by an amount only 1 to 3 times the 0.00001 inch sensitivity of the instrument. For this reason, it was decided to investigate the use of Geophones 1 and 3 in ELASTIC MODULUS, since the values of W_{1} and W_{3} had been found to be significantly different, even for rigid airport pavements as thick as 14 inches.

This report, a supplement to Research Report 123-6, describes the investigation and lists the computer program ELASTIC MODULUS II, which

Figure 1: Relative position of Dynaflect loads and sensors. The sensors are usually placed in the outer wheel path, on a line paralleling the center line of the highway.
closely resembles the program described in Research Report 123-6. (see Appendix A). It also lists the computer program POINT LOAD (see Appendix B) which accepts as inputs the moduli E_{1} and E_{2} of a two layer system, the thickness h of the top layer, and the distance r to a point on the surface. From these inputs POINT LOAD computes the surface deflection, w, at the distance r from the load, using the same basic equations and numerical integration methods as those employed in ELASTIC MODULUS. The program POINT LOAD was found useful in determining the degree of agreement between
(1) ELASTIC MODULUS II and the older and more comprehensive program BISTRO, and between
(2) a Dynaflect deflection basin computed from deflections observed at only two points on the pavement, and the entire (five point) basin actually observed.

2. Accuracy Check

As indicated above, the equations and computational procedures used in ELASTIC MODULUS II are the same as those described in Research Report 123-6, and therefore will not be discussed in this report. However, because there were some numerical changes, it was considered prudent to make an accuracy check of ELASTIC MODULUS II against the computer program BISTRO, similar to the check described in Reference (1) for ELASTIC MODULUS. The results are given in Table 1 . As was expected from previous experience with ELASTIC MODULUS, the agreement between ELASTIC MODULUS II and BISTRO was excellent except in the improbable case where the modulus of the pavement layer was assumed to be only one-tenth of the subgrade modulus.

The changes made in ELASTIC MODULUS to produce ELASTIC MODULUS II are summarized below.

MAIN PROGRAM: The restraints listed in Table 2 (next chapter) are used instead of those listed in Table 3 of Reference 1.

SUBROUTINE EMOD: r_{2} (value $=15.62$ inches) was changed to r_{3} (value $=26$ inches): also w_{1} and w_{3} are used in the computations instead of ${ }^{w} 1$ and w_{2}.
(The numbers listed in Table 1 in the column headed "ELASTIC MODULUS II" were actually computed from the program, POINT LOAD. However, since both programs use the same equations and methods for computing surface deflections, the deflections printed out by POINT LOAD are precisely the same as those computed internally, but not printed out, by EIASTIC MoDutus IT.$)$

Table 1: Comparison of ELASTIC MODULUS II with BISTRO

				Compu	Eed Defl	tions (mils)	
				w_{1}		v_{3}	
$E_{1} \quad(\mathrm{psi})$	E_{2} (psi)	E_{1} / E_{2}	h (in.)	$\begin{aligned} & \text { ELASTIC } \\ & \text { MODULUS II } \end{aligned}$	BISTRO	$\begin{aligned} & \text { ELASTIC } \\ & \text { MODULUS II } \end{aligned}$	BISTRO
10,000,000	10,000	1,000	5	0.99	0.99	0.81	0.81
			10	0.52	0.52	0.48	0.48
			20	0.26	0.26	0.26	0.26
			40	0.13	0.13	0.13	0.13
1,000,000	10,000	100	5	1.86	1.85	1.09	1.09
			10	1.07	1.07	0.84	0.84
			20	0.57	0.57	0.51	0.51
			40	0.30	0.30	0.28	0.28
100,000	10,000	10	5	2.65	2.65	0.98	0.98
			10	1.94	1.93	1.06	1.06
			20	1.20	1.20	0.86	0.86
			40	0.74	0.74	0.56	0.56
10,000	10,000	1	5	2.39	2.39	0.92	0.92
			10	2.39	2.39	0.92	0.92
			20	2.39	2.39	0.92	0.92
			40	2.39	2.39	0.92	0.92
1,000	10,000	0.1	5	-0.01	-0.04	0.80	0.80
			10	-0.15	-0.06	0.35	0.35
			20	7.45	7.52	0.42	0.42
			40	14.90	14.90	1.60	1.60

Note: ELASTIC MODULUS II: Point load of 1000 lbs.
BISTRO: Circular loaded area with radius of 1.41 in , pressure of 160 psi, load of 1000 lbs . Both programs: Vertical deflection computed at the points $r=10^{\prime \prime}, z=0$ and $r=26^{\prime \prime}, z=0$.

3. Non-Unique Solutions

As in the case of ELASTIC MODULUS, the posibility exists that non-unique solutions will sometimes arise from the Dynaflect data processed through ELASTIC MODULUS II, and occasionally no solution at all will be possible. These possibilities were investigated by (a) preparing the graph shown in Figure 3 (comparable to Figure 3 of Reference (1)) and -- based on conclusions drawn from the graph -(b) arriving at the constraints shown in Table 2 (comparable to Table 3 of Reference (1)) to be included in ELASTIC MODULUS II. The logic followed in choosing these restraints from a study of Figure 3 is the same as previously described in Reference (1), and need not be repeated here. The coordinates of the points used in plotting the curves in Figure 3 were computed by the program POINT LOAD.

Figure 3: Contours of pavement thickness, h, plotted as a function of the ratios E_{1} / E_{2} and $w_{1} r_{1} / w_{3} r_{3}$.

Table 2: Summary of Information from Figure 3 Used in the Control of the Program, ETASTIC MODULUS II

Measur	Input Data			
$r_{1} \mathrm{r}_{1} / \mathrm{w}_{3} \mathrm{r}_{3}$	Thickness, h (in.)	Unique Solution	Laver Having The Greater Modulus	Program Printout
Greater than 1	Freater than 11.2	Yes	Subgrade	Subg:rade and pavement moduli
Greater than 1	Less than 11.2	No	May be either	'NO UNIQUE SOLUTION'*
Less than 1	Greater than 11.2	Yes	Pavement	Subgrade and pavement moduli
Less than 1	Less than 11.2	No	May be either, but the more probable of two possible solutions is selected	Subgrade and pavement moduli for solution having $E_{1} / E_{2}>1$

* When the experimental data $w_{1} r_{1} / w_{3} r_{3}$ exceeds unity, and h is less than $11.2^{\prime \prime}$, some cases can arise for which no solution at all is possible.

4. Examples of Solutions Provided by ELASTIC MODULUS II for Flexible Pavements

In May, 1968, Dynaflect deflections were measured at ten points in the outer wheel path on each of several $500-\mathrm{ft}$. sections of highways in the vicinity of College Station, Texas. Originally this was done for the purpose of obtaining the "stiffness coefficient" used to characterize materials in the systems approach to the design of flexible pavements now on trial in the Texas Highway Department (2, 3, 4). Later the 1968 data from Geophones $\underline{1}$ and $\underline{2}$ were processed through ELASTIC MODULUS and the resulting moduli were given in Reference (1). Finally, in Tables 3 and 4 of this report, average moduli for each test section resulting from the use of Geophone 1 and 3 data in ELASTIC MODULUS II are given, together with a verbal description of the materials involved. The computer printouts -- one for each test section -- are reproduced in Tables 5a through 5g.

The moduli computed by ELASTIC MODULUS II, and presented in Tables 3 and 4 , will be discussed in the next two chapters, with the main emphasis being placed on comparisons of those moduli with corresponding values previously computed by ELASTIC MODULUS and reported previously in Reference 1.

Table 3: Average Pavement Modulus, E_{1}, for Each of Seven 500-ft. Flexible Pavement Sections of Highways near College Station Texas, using w_{1} and w_{3} Data
 (Deflection measurements made May 21, 1968)

* Measurements were made at 10 locations in each section. Less than 10 solutions occur in cases where $w_{1} r_{1} / w_{3} r_{3}>1$ and $h<11.2^{\prime \prime}$, as indicated in Table 2.

Table 4: Average Subgrade Modulus, E_{2}, for Each of Seven 500-ft. Flexible Pavement Sections of Highways near College Station, Texas, using w_{1} and w_{3} Data
(Deflection measurements made May 21, 1968)

* Measurements were made at 10 locations in each section. Less than 10 solutions occur in cases where $w_{1} r_{1} / w_{3} r_{3}>1$ and $h<11,2^{\prime \prime}$, as indicated in. Table 2 .

Table 5a: Computer print-out for Section 3.

Table 5b: Computer print-out for Section 4.

TEXAS HIGHWAV UEPARTMENT
TISTRICT 17 - DFSIGA SECTIJN
bynaflect offlections and calculatej elastic monuli
THIS PROGRAM WAS RUN - 07/15/71

OICT.	COUNTY
17	ByPLESOAS

CINT. SECI. JOR	HIGHNAY	DATE	DYNAFLEC.T		
1399	1	1	$F M 1361$	$5-21-69$	1

PAV. THICK. $=12.00$ INCHES
SEAL CUAT 0.50 LIMF STAH. SANISTONE 11.50
tan sandy clav subgr 0.0

Table 5c: Computer print-out for Section 5.

TFXAS HIGHWAY GEPARTAEGT
OISTPICT 17 - DESIGN SECTIUN
WYMAFLECT JHFLFCTIPAS AND CALCULATHIELASTIC MODULI

THIS PQOGRAM WAS QUN - $77 / 15 / 71$

DIST.	COUNTY
17	WASHINGTIN

| CONT. SECT. JIG | HIGHWAY | OATF | DYNAFLECT | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 186 | 5 | 1 | SH 36 | $5-21-63$ | 1 |

PAV. THICK. $=19.90$ INCHFS

Table 5d: Computer print-out for Section 12.

TEXAS HIGHWAY DEPARTMENT
OISTRICT 17 - DESIGN SECTION

DYNAFLECT DEFLECTIUNS AND CALCULATED ELASTIC MODULI

THIS PRUGRAM WAS RUN - 07/16/71

DIST.	COUNTY
17	RUBERTSON

CONT.	SECT.	JUB	HIGHWAY	DATE	DYNAFLECT
49	8	1	US 190	$5-21-68$	1

PAV. THICK. $=15.20$ INCHES
HOT MIX ASPH. CONC. 1.25 CEM. STAB. LIMESTUNE 13.95
RED SANDY CLAY SUBGR 0.0

StATION	W1	W2	W3	W4	W W	SC I	**	ES **	**	EP **	REMARKS
$1-\mathrm{A}$	0.680	0.590	0.490	0.390	0.310	0.090		18600.		312700.	
$1-B$	0.680	0.600	0.490	0.390	0.310	0.080		18600.		312700.	
2-A	0.720	0.630	0.510	0.390	0.310	0.090		18200.		271900.	
$2-B$	0.700	0.620	0.490	0.390	0.310	0.080		19100.		264500.	
3-A	0.750	0.050	0.520	0.390	0.300	0.100		18200.		235500.	
3-B	0.760	0.650	0.510	0.390	0.300	0.110		18900.		201700.	
4-A	0.600	0.540	0.450	0.350	0.280	0.060		19500.		433000.	
4-B	0.580	0.520	0.430	0.330	0.880	0.060		20600.		422300.	
5-A	0.620	0.550	0.450	0.350	0.910	0.070		20100.		355600.	
5-B	0.650	0.570	0.470	0.360	0.280	0.080		19400.		331100.	
AVERAGES	0.674	0.592	0.481	0.373	0.419	0.082		19120.		314100.	
STANDARO	DEVIAT	IUN				0.016		793.		75.213 .	
NUMBER OF	POINT	S IN	average	$=$		10		10		10	

Table 5e: Computer print-out for Section 15.

Table 5f: Computer print-out for Section 16.

Table 5g: Computer print-out for Section 17.
5. Comparison of Moduli Estimated from Geophone 1 and 2 Datia with Those Estimated from Geophone 1 and 3 Datia

In Table 6 the average moduli, $\mathrm{E}_{1}\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)$ and $\mathrm{E}_{2}\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)$ for each test section, and the within-section standard deviation, as computed previously by ELASTIC MODULUS using w_{1} and w_{2} data (1), are compared with similar quantities computed by ELASTIC MODULUS II using w_{1} and w_{3} data. Of course, if all assumptions used in the theory were completely valid, and if the instrument error were zero, the average moduli $E_{1}\left(W_{1}\right.$, $\left.w_{2}\right)$ and $E_{1}\left(w_{1}, w_{3}\right)$ (or $E_{2}\left(w_{1}, w_{2}\right)$ and $E_{2}\left(w_{1}, w_{3}\right)$) for each section in Table 6 would be practically identical, and the corresponding withinsection standard deviations would be negligible. That such ideal results were not obtained will be revealed at once by a glance at Table 6.

The results actually obtained will probably surprise no one with previous experience in researching the deflection behavior of real pavements. However, granting that the in situ properties of real base and subgrade materials inevitably change in relatively short distances along and across a highway, one may legitimately ask the question: for a given test section, should $E_{1}\left(W_{1}, W_{2}\right)$ be considered really different from $E_{1}\left(W_{1}, W_{3}\right)$ (or should $E_{2}\left(w_{1}, W_{2}\right)$ be considered really different from $\left.E_{2}\left(w_{1}, w_{3}\right)\right)$, when compared to the variations of these moduli encountered along the 500 -foot test section?

In an effort to answer these questions subjectively, the data in Table 6 were plotted in Figures $4 a$ and $4 b$ to display graphically the difference between the two average values of E_{1} (Figure 4 a) and the two values of E_{2} (Figure 4b) obtained for each test section. The number adjacent to each point identifies the test section. The rectangle surrounding each point is an indication of the scatter of the data

Table 6: Comparison of Moduli Computed from w_{1} and w_{2} with Those Computed from w_{2} and w_{3}

Figure 4a: Comparison of E_{1} computed from w_{1} and w_{2}, with E_{1} computed from W_{1} and W_{3}. The rectangles represent within-section standard deviations of E_{1}, with the mean value plotted at the center. Points shown as triangles indicate that the two moduli are significantly different according to a statistical test.

Figure 4b: Comparison of E_{2} computed from w_{1} and w_{2}, with E_{2} computed from w_{1} and w_{3}. The rectangles represent within-section standard deviations of E_{2}, with the mean value plotted at the center. Points shown as triangles indicate that the two moduli are significantly different according to a statistical test.
obtained along the test section: each dimension of a rectangle is equivalent to two standard deviations of the data used to obtain the average value of the corresponding coordinate of the point shown at the center of the box.

For any test section where none -- or only a small proportion -of a rectangle overlaps the line of equality drawn on Figures 4 a and 4 b , it is reasonable to assume that the difference between a modulus computed from w_{1}, w_{2} data, and one computed from w_{1}, w_{3} data is significantly greater than can be accounted for by random variations in the materials (see, for example, the rectangles for Sections 16 and 17 in Figure 4 a, and those for Sections $4,15,16$ and 17 in Figure $4 b$, the central points of which have been plotted as triangles to indicate a significant difference between $E\left(w_{1}, w_{2}\right)$ and $E\left(w_{1}, w_{3}\right)$.

To confirm subjective conclusions drawn from Figures 4 a and 4 b , analyses of variance were performed. The results are given in Table 7 , where $E_{1}\left(w_{1}, w_{2}\right)$ is compared with $E_{1}\left(w_{1}, w_{3}\right)$, and in Table 8 , where $E_{2}\left(w_{1}, w_{2}\right)$ is compared with $E_{2}\left(w_{1}, w_{3}\right)$. In these comparisons, significance was judged at, a confidence level of 90%. It is of interest to note from the last columns of these tables that, on the average, $E_{1}\left(w_{1}, w_{3}\right)$ exceeded $E_{1}\left(w_{1}, w_{2}\right)$ in the two cases that were significant in Table 7, while the order was reversed -$E_{2}\left(W_{1}, W_{2}\right)$ exceeded $E_{2}\left(W_{1}, w_{3}\right)$-- in the four cases that were significant in Table 8.

Another point to be noted from Table 8 is that although the two methods for computing E_{2} gave statistically different results in four sections out of seven, the differences as judged from a practical or engineering point of view appear small -- at least to these writers.

On the other hand, the difference between the two average values of E_{1}

Table 7: Results of analyses of variance to determine whether the difference between the average values of $E_{1}\left(w_{1}, w_{2}\right)$ and $E_{1}\left(w_{1}, w_{3}\right)$ for a test section are significantly different when
compared to within-section variation.

* First of the two numbers is associated with first modulus, $\mathrm{E}_{1}\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right.$), while the second number applies to the second modulus, E_{1} (w_{1}, w_{3}).
** For 10% level of significance (90% confidence leve1).

Table 8: Results of analyses of variance to determine whether the difference between the average values of $E_{2}\left(w_{1}, w_{2}\right)$ and $E_{2}\left(w_{1}, w_{3}\right)$ for a test section are significantly different when compared to within-section variation.

* First of the two numbers is associated with first modulus, $\mathrm{E}_{2}\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)$.
** For 10% level of significance (90% confidence level).
found for a test section was generally larger (see Table 7), but withinsection variations were also larger, as can be seen by comparing the coefficients of variation given in Table 7 with those shown in Table 8.

Based on the data presented in Figures 4 a and 4 b , and in Tables 6 , 7 and 8 , it is concluded that for the seven flexible pavements studied herein and consisting essentially of two layers (granular base -- some stabilized -- and subgrade),
(1) the elastic modulus of the base of a short, apparently uniform test section, as estimated from Dynaflect data (either Geophones 1 and 2 or Geophones 1 and 3) was much more variable than the subgrade modulus, probably because of the assumption that the subgrade was homogeneous to an infinite deptn;
(2) in several cases (2 out of 7 in the case of the base, 4 out of 7 in the case of the subgrade) the average section modulus estimated from Geophones 1 and 2 differed significantly, according to statistical tests, from the modulus estimated from Geophones I and 3; but
(3) the differences mentioned in conclusion (2) were not very significant in most cases when considered from a practical or engineering point of view.

6. Computed Versus Observed Dynaflect

Deflection Basins for Flexible Pavements

Another method of studying the engineering significance of variations in moduli estimated from Dynaflect data, as well as providing a means for helping the reader to judge the degree of validity of linear elasticity as applied to the flexible pavements discussed herein, is to use the estimated moduli E_{1} and E_{2} to compute a Dvnaflect "deflection basin" that can be compared directly with the real basin observed. At the risk of some repetition the method is described below in step-by-step fashion for clarity.
(1) ELASTIC MODULUS was used to compute E_{1} and E_{2} from Geophone 1 and 2 data at each of the ten test stations (subject to the constraints shown in Table 3 of Reference (1)) in each 500-ft. section. From these results section averages, designated E_{1} $\left(w_{1}, w_{2}\right)$ and $E_{2}\left(w_{1}, w_{2}\right)$, were calculated. These values appear in Tables 7 and 8 , respectively.
(2) In a similar manner (but subject to the restraints shown in Table 2 of this report), the section averages $\mathrm{E}_{1}\left(\mathrm{w}_{1}, \mathrm{w}_{3}\right)$ and $E_{2}\left(w_{1}, w_{3}\right)$ were computed using ELASTIC MODULUS II. These values also appear in Tables 7 and 8 , respectively.
(3) $E_{1}\left(w_{1}, w_{2}\right)$ and $E_{2}\left(w_{1}, w_{2}\right)$ were used in POINT LOAD to calculate the deflections $w_{1}, w_{2}, w_{3}, w_{4}$ and w_{5} for each section at the geophone positions $1,2,3,4$ and 5 , respectively shown in Figure 1. The results are plotted in Figures 5 a through $5 g$ as curves labeled "computed from w_{1} and w_{2} ". In drawing each curve, or basin, the portion to the left of the vertical axis was ommitted, since it was assumed that the omitted portion

Figure 5a: Computed and average observed Dynaflect deflection basins, Section 3. $E_{1}\left(w_{1}, w_{2}\right) \approx E_{1}\left(w_{1}, w_{3}\right)$ and $E_{2}\left(w_{1}, w_{2}\right) \approx$ $\mathrm{E}_{2}\left(\mathrm{w}_{1}, \mathrm{w}_{3}\right)$ by statistical test.

Figure 5b: Computed and average observed Dynaflect deflection basins, Section 4. $E_{1}\left(w_{1}, w_{2}\right) \approx E_{1}\left(w_{1}, w_{3}\right)$ but $E_{2}\left(w_{1}, w_{2}\right)>$ $E_{2}\left(w_{1}, w_{3}\right)$ by statistical test.

Figure 5c: Computed and average observed Dynaflect deflection basins, Section 5. $E_{1}\left(w_{1}, w_{2}\right) * E_{1}\left(w_{1}, w_{3}\right)$ and $E_{2}\left(w_{1}, w_{2}\right) *$ $\mathrm{E}_{2}\left(\mathrm{w}_{1}, \mathrm{w}_{3}\right)$ by statistical test.

Figure 5d: Computed and average observed Dynaflect deflection basins, Section 12. $E_{1}\left(w_{1}, w_{2}\right)=E_{1}\left(w_{1}, w_{3}\right)$ and $E_{2}\left(w_{1}, w_{2}\right) \approx$ $E_{2}\left(W_{1}, W_{3}\right)$ by statistical test.

Figure 5e: Computed and average observed Dynaflect deflection basins, Section 17. $E_{1}\left(w_{1}, w_{2}\right) \approx E_{1}\left(w_{1}, w_{3}\right)$ but $E_{2}\left(w_{1}, w_{2}\right)>$ $E_{2}\left(w_{1}, w_{3}\right)$ by statistical test.

Figure 5f: Computed and average observed Dynaflect deflection basins, Section 16. $E_{1}\left(w_{1}, w_{2}\right)<E_{1}\left(w_{1}, w_{3}\right)$ but $E_{2}\left(w_{1}, w_{2}\right)>$ $\mathrm{E}_{2}\left(\mathrm{w}_{1}, \mathrm{w}_{3}\right)$ by statistical test.

Figure 5g: Computed and average observed Dynaflect deflection basins, Section 17. $E_{1}\left(w_{1}, w_{2}\right)<E_{1}\left(w_{1}, w_{3}\right)$ but $E_{2}\left(w_{1}, w_{2}\right)>$ $E_{2}\left(w_{1}, W_{3}\right)$ by statistical test.
would be a mirror image of the portion shown in the figure. Thus, in theory, the tangent of the curve where it crosses the vertical axis should be horizontal, as indicated in the figures.
(4) $E_{1}\left(w_{1}, w_{3}\right)$ and $E_{2}\left(w_{1}, w_{3}\right)$ were then used in POINT LOAD to calculate the five deflections at the five geophone positions. These results were also plotted in Figures 5 a through 5 g as curves labeled "computed from w_{1} and w_{3} ".
(5) Finally the average values of $w_{1}, w_{2}, w_{3}, w_{4}$ and w_{5} actually observed at the test stations where solutions for the moduli had been obtained, were plotted on Figures 5 a through 5 g as curves labeled "Obs.". In the case of Section 4 (Figure 5b) only two solutions were found using Geophone 1 and 2 data, while four solutions were obtained using Geophone 1 and 3 data: thus for comparing observed with computed data in Figure 5b, it was necessary to plot two "observed" curves, one being the average of two stations (for comparison with the curve computed from Ceophone 1 and 2 data) and the other being the average of four stations (for comparison with the curve computed from Geophone 1 and 3 data). In each of the other figures it was necessary to plot only one "observed" curve.

The distance scale on each of the above mentioned figures has its origin at the position of Geophone 1 between the Dynaflect load wheels, and extends along the line of geophones -- that is, longitudinally along the outer wheel path of the highway. In the caption of each figure the sign, : between two sumbols means that, according to
an analysis of variance (see Table 7 or 8), the moduli represented by the symbols are statistically the same (though actually somewhat different) while the symbols > and < mean "significantly greater than" and "significantly less than", respectively, as determined from an analysis of variance.

Examination of Figures 5 a through 5 g shows that, with the exception of Sections 4 and 17 (Figures 5 b and 5 g),
(1) the deflection basins predicted by use of Geophone 1 and 2 data are nearly the same as those predicted by Geophone 1 and 3 data,
(2) the predicted basins lie reasonably close to the observed curves, and
(3) notwithstanding pavement edge effects and other differences between the assumptions underlying the theory and actual site conditions, linear elasticity may be sufficiently accurate for use as a subsystem in a pavement design system, especially if one considers the many other uncertainties that inevitably enter into such a system.
7. Comparison of Certain Stresses Computed from Geophone 1 and 2 Data with Those Computed from Geophone 1 and 3 Data

Given E_{1}, E_{2}, and h for a linear elastic two-layer system, it is possible, from the computer program BISTRO mentioned earlier, to estimate -- for any point in the structure -- the state of stress resulting from the combined effect of two or more circular loaded areas on the surface of the pavement. This capability of the program was used to make a limited comparison of stresses within the structure caused by the simulated dual wheel load, totalling 9000 lbs., illustrated in Figure 6. Each circular area is acted on by a constant pressure.

As indicated in the figure, BISTRO requires that a set of rectangular coordinates, x and y, be used to identify the position of the center of each load on the plane surface, $z=0$. In addition the radius of each loaded area must be supplied, as well as the coordinates x, y, z of each point within the structure where stresses, strains and displacements are to be computed.

For making a limited comparison of the stress resulting from the use of Geophone 1 and 2 data with that found from Geophones 1 and 3, neighboring points were selected in Layer 1 and Layer 2, located at the base-subbase interface directly beneath the center of one of the loaded areas. Thus, the coordinates used for both points were the same: $\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=\mathrm{h} . \quad$ (Obviously, use of the coordinates $\mathrm{x}=12, \mathrm{y}=0$, $z=h$, would have given the same results).

For the point located in the base material, the major principal stress (the algebraically greatest stress) was chosen for investigation because of the tendency of this stress to be a tension in any case where $E_{1} / E_{2}>1$, believed to be the usual case in two-layer pavement

Figure 6: Plan view of simulated dual wheel tire-pavement contact areas, with parameters used in BISTRO for computing principal stresses at the base-subbase interface.
structures. For the neighboring point in the subgrade, however, the minor principal stress was chosen, as the state of stress there, for the usual case, is compressive, and the stress having the greatest absolute value there is the minor principal stress. The results of the computations, which are based on the average moduli and thickness for each test section given in Table 6, are shown in Table 9, and are also ploted in Figures 7, 8 and 9. The identification number of the test section represented by each point in these figures is shown adjacent to the point.

Figure 7 was included here because of the strong influence of the ratio, E_{1} / E_{2}, on the distribution of stress in a two-layer system. There is a striking similarity between Figure 7 and Figure 4a which demonstrates that lack of agreement between the two sets of ratios, E_{1} / E_{2}, in Figure 7 results almost entirely from lack of agreement between the base moduli $E_{1}\left(w_{1}, w_{2}\right)$ and $E_{1}\left(w_{1}, w_{3}\right)$ apparent in Figure $4 a$.

The point symbols used in Figures 7,8 and 9 reflect the results of the analyses of variance given in Tables 7 and 8 . As might be expected, it is apparent from Figure 7 that the greatest lack of agreement between the two sets of modular ratios occurred in the four test sections (Sections 4, 15,16 and 17) where a statistically significant difference was found between one or both of the two moduli computed from Geophone 1 and 2 data, and those computed from Ceophone 1 and 3 data. The obvious trend was for the Geophone 1 and 3 data to result in higher estimates of the ratio E_{1} / E_{2} in the case of these four sections. It also should be pointed out that these four sections had the highest values of E_{1} $\left(w_{1}, w_{3}\right)$, ranging from 81,900 psi to 314,100 psi, while the remaining values varied from 14,900 to 23,800 , as may be verified by reference to Table 3.

Table 9: Comparison of Certain Stresses at the Base-Subbase Interface
Computed from feophone 1 and 2 Data,
with Those Computed from Ceophones 1 and 3 .

	Base Material	Base Thick. (In.)	$\begin{gathered} \text { Modulus Ratio } \\ E_{1} / E_{2} \end{gathered}$ Computed From		Major Stress In Mate Comput	ncipal (psi)* ase ial, From	Minor Stress In Sub Mate Comput	$\begin{aligned} & \text { incipal } \\ & \text { (psi)* } \\ & \text { grade } \\ & \text { ial, } \\ & \text { d Erom } \end{aligned}$
Section			w_{1}, w_{2}	w_{1}, ${ }^{3}$	$\mathrm{w}_{1}, \mathrm{w}_{2}$	w_{1}, w3	$\mathrm{w}_{1}, \mathrm{w}_{2}$	$\mathrm{w}_{1}, \mathrm{w}_{3}$
3	Red sandy travel	12.0	1.30	1.25	3.3	2.7	-14.3	-14.4
4	Asphalt stabilized gravel	7.5	5.30	9.36	47.4	66.9	-15.6	-12.1
5	Lime stabilized sandstone	11.5	2.23	1.60	12.4	6.7	-12.6	-14.2
12	Sandstone	16.2	0.96	1.06	-3.4	0.4	-8.0	-7.8
15	Cement stabilized limestone	14.0	14.17	16.43	32.6	34.4	-3.6	-3.4
16	Asph. emulsion stab. gravel	6.5	6.30	9.84	57.5	74.3	-15.8	-13.0
17	Iron ore gravel	7.8	2.88	7.19	26.6	55.2	-18.9	-13.0

* Tensile stresses are positive, compressive stresses negative.

Figure 7: Comparison of the ratio, E_{1} / E_{2}, computed from data from different pairs of geophones. Significance data from Tables 7 and 8 .

Figure 8: Comparison of the major principal stresses in the base material at the point $x=0, y=0, z=h$, as computed from data from different pairs of geophones. Significance data from Tables 7 and 8.

Figure 9: Comparison of the minor principal stresses in the subgrade at the point $x=0, y=0, z=h$, as computed from data from different pairs of geophones. Significance data from Tables 7 and 8.

The effect of the choice of geophone data on the computed major principal suress, ${ }^{\prime}$ I, in the base material at the base-subgrade interface is illustrated in Figure 8. Here only three of the four test sections mentioned in the preceding paragraph show an apparently significant lack of agreement -- Sections 4,16 and 17 . The same three sections also exhibit lack of agreement in Figure 9 , where the minor principal stress, 'III, computed from Geophone 1 and 2 data, is compared with that computed from Geophones L and 3.

In summary, it is concluded from the information presented in this chapter that the use of Geophone 1 and 3 data in lieu of Geophones 1 and 2 , resulted, in most cases, in
(1) a greater ratio, E_{1} / E_{2}, which, in turn, led to
(2) a greater tensile stress in the base material at the base-subbase interface, and
(3) a somewhat smaller compressive stress in the subgrade material at the base-subbase interface.
(4) However, in the writers' opinion, the differences in stresses mentioned above were not especially significant when viewed from the vantage point of design and materials enginers familiar with the frequently observed large differences in the measured strength of apparently similar laboratory specimens of base and subbase materials.

8. Examples of Solutions, Pigid Pavements

Site Description: Through the courtesy of airport officials and their consultants, a Texas Transportation Institute team measured Dynaflect deflections on concrete pavements at the Houston International Airport on June 22, 1971.

The airport is situated on the Pleistocene Montgomery formation. The subgrade soils are described as silty sand, sandy silt, clayey sand, clayey silt and expansive silty clay.

Test Details and Results: Dynaflect tests were made at eleven locations, or "test points", on the airport pavements. At each location the load was applied at the center of a $25 \times 25-$ foot concrete slab. Test points were selected on one runway, three taxi-ways and one apron. Slab thicknesses, substructures, Geophone 1 and 3 data, and the moduli computed by ELASTIC MODULUS II at each test point are given in Table 10 . The average values of E_{1} and E_{2}, their standard deviations from their averages, and their coefficients of variation, are given at the bottom of the table.

It can be seen from Table 10 that -- as was previously pointed out in the case of flexible pavements -- the computed values of E_{1} were somewhat more variable than those of E_{2}.

Sensitivity of Computed Moduli to Variations in Measured Deflections: A careful examination of the data given in the columns headed " w_{1} ", " w_{3} ", " E_{1} ", and " E_{2} " in Table 10 will show the extreme sensitivity of the calculated moduli to small changes in either of the measured deflections, w_{1} and w_{3}. For example, if Test Points 34 and 49 are compared, it will be seen that an increase of $0.01 \mathrm{mil}--$ or $1 / 100,000 \mathrm{in} .--$ in w_{1} (with h and w_{3} held constant) resulted in a decrease in the computed value of

Table 10: Data from Houston Intercontinental Airport
(Taken June 22, 1971)
-

Test Point	General Lodation	Substructure	h (in.)	Deflections (mils)		Computed Moduli (psi)		Figure Showing Deflection Basin
				${ }^{W} 1$	W3	E_{1}	E_{2}	
6	Runway 14-32	6 in. sand-she11 subbase	12.0	0.40	0.37	7,494,800	13,000	10a
10	Runway 14-32	on soil excavated to approximately 4 ft . and	12.0	0.50	0.44	3,066,500	14,300	10b
13	Runway 14-32	re-compacted.	12.0	0.52	0.47	4,137,400	11,700	10 c
25	Taxiway A	6 in. sand-shell subbase	12.0	0.40	0.36	5,085,500	15,600	10 d
28	Taxiway A	on soil excavated to approximately 4 ft . and	12.0	0.43	0.39	5,154,900	14,000	10 e
32	Taxiway A	re-compacted.	12.0	0.41	0.36	3,674,300	17,600	$10 f$
34	Taxiway A		12.0	0.40	0.37	7,494,800	13,000	10 g
49	Taxiway B	6 in. sand-shell subbase on soil excavated to approximately 4 ft , and re-compacted	12.0	0.41	0.37	5,099,500	15,100	10 h
56	Taxiway K	9 in. soil-cement subbase	14.0	0.33	0.31	7,831,000	13,600	10 i
63	Taxiway K	on soil excavated to approximately 4 ft . and re-compacted	12.0	0.39	0.35	4,952,600	16,400	10 j
69	North Apron	12 in. soil-cement subbase on soil excavated to approximately 6 ft , and re-compacted	12.0	0.24	0.22	10,975,400	23,000	10k
Average						5,906,000	15,200	
Standard Deviation						2,311,000	3,100	
Coefficient of Variation (\%)						39	20	

E from approximately $7,500,000$ psi to about $5,100,000$ psi, accompanied by an increase in E from 13,000 psi to 15,100 psi. And by comparing \therefore ast Points 25 and 34, it appears that an increase of 0.01 mils in w_{3} (with h and w_{1} held constant) caused an increase in E_{1} from approximately 5,100,000 psi to approximately $7,500,000$ psi, with a corresponding decrease in E_{2} from 15,600 psi to 13,000 psi. Now 0.01 mil is generally considered by Dynaflect users to be the limit of instrument and operator error under ideal conditions: we must conclude, therefore, that the values of moduli -- particularly the value of E_{1}-- found under routine conditions by the method described in this report must be regarded as rather crude estimates in individual tests, and that instrument error should be included as a component of the total variability involved in a pavement design system using the Dynaflect to characterize the materials in terms of elastic constants.

Computed Versus Observed Deflection Basins, Concrete Pavements: A method similar to that described in Chapter 6 for computing w_{1}, w_{2}, w_{3}, W_{4} and W_{5} from given values of E_{1}, E_{2} and h, was employed for comparing computed deflection basins with those measured on the concrete pavements at the Houston Intercontinental Airport. The results are shown in Figures 10a through 10k. Since Geophone 1 and 3 data were used in determining the values of E_{1} and $E_{?}$ employed in computing the theoretical (dashed) curve in each figure, this curve passes through the circled points representing the output of those geophones, i.e., the points ploted at zero and two feet on the distance scale. Thus, in any of these figures, the departure of the dashed line from the remaining three circled points is a partial measure of the difference between the assumptions made in the theory and the actual conditions at the test site, including instrument error.

Figure 10a: Observed deflection basin (solid line through circled points) compared with theoretical basin (dashed line) computed from $E_{1}\left(w_{1}, w_{3}\right)$ and $E_{2}\left(w_{1}, w_{3}\right)$ at Test Point 6. Moduli are given in Table 10.

Figure 10b: Observed deflection basin (solid line through circled points) compared with theoretical basin (dashed line) computed from $E_{1}\left(w_{1}, w_{3}\right)$ and $E_{2}\left(w_{1}, w_{3}\right)$ at Test Point 10. Moduli are given in Table 10.

Figure 10c: Observed deflection basin (solid line through circled points) compared with theoretical basin (dashed line) computed from $E_{1}\left(w_{1}, w_{3}\right)$ and $E_{2}\left(w_{1}, w_{3}\right)$ at Test Point 13. Moduli are given in Table 10.

Figure 10d: Observed deflection basin (solid line through circled points) compared with theoretical basin (dashed line) computed from $\mathrm{E}_{1}\left(\mathrm{w}_{1}, \mathrm{w}_{3}\right)$ and $\mathrm{E}_{2}\left(\mathrm{w}_{1}, \mathrm{w}_{3}\right)$ at Test Point 25. Moduli are given in Table 10.

Figure 10e: Observed deflection basin (solid line through circled points) compared with theoretical basin (dashed line) computed from $\mathrm{E}_{1}\left(\mathrm{w}_{1}, \mathrm{w}_{3}\right)$ and $\mathrm{E}_{2}\left(\mathrm{w}_{1}, \mathrm{w}_{3}\right)$ at Test Point 28. Moduli are given in Table 10.

Figure 10f: Observed deflection basin (solid line through circled points) compared with theoretical basin (dashed line) computed from $E_{1}\left(w_{1}, w_{3}\right)$ and $E_{2}\left(w_{1}, w_{3}\right)$ at Test Point 32. Moduli are given in Table 10 .

Figure 10g: Observed deflection basin (solid line through circled points) compared with theoretical basin (dashed line) computed from $\mathrm{E}_{1}\left(\mathrm{w}_{1}, \mathrm{w}_{3}\right)$ and $\mathrm{E}_{2}\left(\mathrm{w}_{1}, \mathrm{w}_{3}\right)$ at Test Point 34. Moduli are given in Table 10.

Figure 10h: Observed deflection basin (solid line through circled points) compared with theoretical basin (dashed line) computed from $E_{1}\left(w_{1}, w_{3}\right)$ and $E_{2}\left(w_{1}, w_{3}\right)$ at Test Point 49. Moduli are given in Table 10.

Figure 10i: Observed deflection basin (solid line through circled points) compared with theoretical basin (dashed line) computed from $E_{1}\left(w_{1}, w_{3}\right)$ and $E_{2}\left(w_{1}, w_{3}\right)$ at Test Point 56. Moduli are given in Table 10.

Figure 10j: Observed deflection basin (solid line through circled points) compared with theoretical basin (dashed line) computed from $E_{1}\left(w_{1}, w_{3}\right)$ and $E_{2}\left(w_{1}, w_{3}\right)$ at Test Point 63. Moduli are given in Table 10.

Figure l0k: Observed deflection basin (solid line through circled points) compared with theoretical basin (dashed line) computed from $E_{1}\left(w_{1}, w_{3}\right)$ and $E_{2}\left(w_{1}, w_{3}\right)$ at Test Point 69. Moduli are given in Table 10.

After examining Figures 10 a through $10 k$, the writers assigned a subjective rating -- "good" or "bad" -- to the degree of agreement between each theoretical curve and the corresponding measured basin. The results are given in Table 11. As shown at the bottom of the table, 8 of the 11 theoretical curves were rated "good". The greatest disagreement between theoretical and observed basins was found in Figure 10c and 10 h while near perfect agreement appeared in Figures 10d, 10f and 10j.
Table 11: Subjective Rating of "Coodness of Fit" of Theoretical Deflection Basins to Experimental Data, Figures 10 A through 10 K

Summary

Rating	Number	Percent
Good	8	73
Bad	3	27
Total	11	100

9. Conclusions

With regard to certain technical aspects of the computer program ULASTIC MOUULUS II, the following conclusions were drawn.

1. As judged by its agreement with the older and more comprehensive computer program BISTRO, the program ELASTIC MODULUS II is as accurate as required for the job it was designed to perform.
2. Occasionally the possibility of a non-unique solution -- or no solution at all -- will arise from Dynaflect data processed through ELASTIC MODULUS II; however, restraints built into the program inform the user of such cases by printing out appropriate messages.

From Dynaflect data taken on flexible pavement sections, the following conclusions were drawn.
3. The elastic modulus of the base of a 500-ft., apparently uniform test section, as estimated from Dynaflect data, was much more variable than the subgrade modulus, probably because of the assumption that the subgrade was homogeneous to an infinite depth.
4. In several test sections (2 out of 7 in the case of the base, 4 out of 7 in the case of the subgrade) the average section modulus estimated from Geophone 1 and 2 data differed significantly, by statistical tests, from the modulus estimated from Geophone 1 and 3 data.
5. The differences mentioned in Conclusion 4, above, were not, in the opinion of the writers, very significant when considered from a practical or engineering point of view.
6. In five out of the seven sections tested, indications were that
a. Dynaflect deflection basins predicted by use of Geophone 1 and 2 data were nearly the sare as those predicted by use of Geophone 1 and 3 data,
D. the predicted basins lie reasonably close to the observed basins, and
c. linear elasticity may be sufficiently accurate for use as a subsystem in a flexible pavement design system.
7. The use of a Geophone 1 and 3 data, in lieu of Geophones 1 and 2 , for computing base and subyrade moduli resulted, in most cases, in
a. a greater ratio, E_{1} / E_{2}, which, in turn led to
b. a greater computed tensile stress in the base material at the base-subbase interface resulting from the application of a 9000-1b. dual wheel load to the pavement surface, and c. a somewhat smaller compressive stress in the subgrade material at the base-subbase interface.
8. The differences in stress mentioned in Conclusion 7 did not appear to be especially significant when viewed from the vantage point of design and materials engineers familiar with the frequently observed large differences in the measured strength of apparontly similar laboratory specimens of base and subbase materials.

From Dynaflect data taken on concrete pavements at the Houston
Intercontinental Airport, the following conclusions were drawn.
9. After noting the dramatic effect of very small changes in the output of either Geophone 1 or Geophone 3 on the computed modulus of a concrete slab, it was concluded that the values of moduli -- particularly the value of E_{1}-- found by the method described in this report must be regarded as rather crude estimates in individual tests, and that instrument error should be included as a component of the total variability involved in a pavement design system using the Dynaflect to characterize the materials in terms of their elastic constants.
10. Dynaflect deflection basins computed from Geophone 1 and 3 data at 11 test points agreed with the observed data nearly perfectly in three cases, very well in six cases, and rather poorly in two cases.

From all the data studied the following conclusion was drawn.
1i. The Dynaflect in its present form, combined with the computer programs ELASTIC MODULUS II and POINT LOAD, has the potential of becoming a useful method for material characterization in a pavement design system using linear elastic theory as a subsystem, provided that proper heed is paid to instrument error, the inevitable variability of higlway materials in place, and the many other uncertainties that enter into a complete pavement design system. ELASTIC MODULUS II, rather than ELASTIC MODULUS, is recommended in order to achieve compatibility between moduli found for rigid pavements and those determined for ilexible pavements.

List of References

1. Scrivner, Frank H.; Chester H. Michalak and William M. Moore, "Calculation of the Elastic Moduli of a Two Layer Pavement System from Measured Surface Deflections," Research Report 123-6, Texas Transportation Institute, Texas A\&M University, College Station, Texas, 1971.
2. Scrivner, Frank H.; W. M. Moore; W. F. McFarland and G. R. Carey, "A Systems Approach to the Flexible Pavement Design Problem," Research Report 32-11, Texas Transportation Institute, Texas A\&M University, College Station, Texas, 1968.
3. Hudson, W. Ronald; B. Frank McCullough; F. H. Scrivner and James L. Brown, "A Systems Approach Applied to Pavement Design and Research," Research Report 123-1, Highway Design Division Research Section, Texas Highway Department, Austin, Texas; Texas Transportation Institute, Texas A\&M University, College Station, Texas; and Center for Highway Research, The University of Texas at Austin, Austin, Texas, 1970.
4. "Texas Highway Department Pavement Design System, Part I, Flexible Pavement Designer's Manual," Highway Design Division, Texas Highway Department, Austin, Texas, 1970.

Appendix A
Listing of ELASTIC MODULUS II

```
FORTRAN IVflyylala
MA1:
15t=71196
```



```
FropaAif IV filvVRL li
                            !
```



```
        *!0, )10,(口ド(J),J=1,4), lCK
0013
0014
0015
0n16
0017
0018
0019
0020
0021
0022
0023
r TEST FOP WL RF WZ = O, ANO WL LHSS THAV W2
    r
0024 1F(nl(I).FW.O.OR.0つ(1).EQ.0)) GO TO 64
0025
0026
0027
0028
0029
0030
0031
0032
0033
    6FGPMAT( 14,4tl,N7,3x,5(F2.1,F3.2),4x,414,12)
Z
        TF( N.@T. ( ) 「!! TO 555
        IF(VG.GT.O) GU TH 555
    CPPRINT GUTPUT C:ILIMH HEAOIIVGS
    GL FURMAT(/ 7X,'STATION WL W? W3 W4 W5',
        = SCI *% FS #* ** EP % RFMARKC'/I
C
        PRIVT ;1
```



```
    CALCUIATE GEFLPCTIUNS & SCI ( OFFLCCTIONS IN MILS )
    555 क1(1)=01*!!?
        W2([)=0 3*174
        43(|)=0)5*0%
        W4(1)=07*%%Q
        W5(I)=0与*'\1O
        SCI(1)={1(I)-W2(1)
    i
        IF(Al(I).LT.W2(I)) GO TO GO
    r
        AWl =ANl +hl (|)
        Aw2 =AW2 +w2 (I)
        AW3 =AN3 +W3(I)
        AN4 = N^4 + m4(I)
        AN5 = AN5 +N5(1)
        ASCI=ASCI+SCI(1)
    AS?(I)=?.C
r
C
(. TFST FFPF NM UNIGUE SGLUTION
```

-

```
FORTRA:I IV G LFVII. 1%
4AI\
JATH = 71106
```



```
C
C
C CONVFRT Wl & W? TO INCHES
\capO35
0036
C PASS UI, Z, & IMTAL PAVEMENT THICKNESS TQ FMCO,
C
1037
003%
0039
0040
0041
0042
0042
0044
O045
0046
    *l(I) = W1(I) / 1)00.
    w3(1)= 3(1)/1000.
    EMO'G KFTIIOYS UNRJUNUED VALUES IIF PAVEMENT & SURGRADF
    MOIILI AS INP S OAS
```



```
    C
r
i
C FEOMIN PAVFMETT & SUBGRAOE MGOULI TO NEAREST IOO
        OAS = RUNOM( UAS, lON.)
    DAU = N||AM!\ MAP, 100. )
饣
    r. PUT PAVF'隹 & SURCOADE MOHULI IA STIMRAGE
C
    AS2(1)=1:S
    AP2(I)= OAP
C ADO TC THF SMMS GF THE OEFLESTICMS, SCI, PAVFMENT,
C ANJ CUPCHAMO AODULI
O
MASC=AASL+ASP11)
    AAD?=AAD2+A122(1)
C
%
C
C
C
r
C FOMJNO PAVFMEIT & SUBGRADE MODULI TO NEAREST IOO
```



```
    EMOM,
C
-
C
C
    C
-
    N=N+I
C
C
r. PRIVTG:,GTA(I),Wl(1),W2(1),N?(I),W4(1),V'j(1),SCl(II,
\therefore. = AS?(I), AO?\I), (MFM(J),J=1,4 )
```

```
0047
0048
0049
    0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0 0 6 2
    0063
    0064
0065
0066
0067
0068
        PRINT 63,STA(I),N1(I),W2(I),W3(I),W4(I),W5(I),SCI(I),
        * AS?(I), AP?(I), (REM(J),J=1,2)
    63 FORMAT( 7X, 47, IX,G(FG.3), 2Fl0.0, 2X, 244,
        NL=N1 + 1
        IF(NL.LT.3O) 6OTOS88
C}\mathrm{ C SKIP TO NEXT PAGE & PRINT OUTPUT GOLUMN HEADINGS IF
C. THIRTY LINES HAVE BFEN PRINTED
C
    84 CINTINUL
PRINT 5l
c. PRINT 50
C. PRIVI 57,IIIST,COL,COZ,CO3,CO4,ICONT,ISECT,I,JOH,HWYL,
C. HWYL, XLANE, M, IDAY, IYEAR, IDYNA
    C
    PRINT 56, l1IIST, CDI, CO2, CIJ3, CO4
    50 FERMATY T35,'DIST. COUNTY'/T3G,I2,9X, 3A4,A2 /I
        PRINT 57, ICIINT, ISECT,I JOB,HWYI,HWY2,M,IDAY,IYEAR,IDYNA
    57 FURMAT( IIO, CONT. SECT. JOB HICHWAY OATE',
```



```
        PRINT 61
        Nl=0
    88 RONTINUE
    6 C
    C CHECK FUR LAST DATA CARD 4
    c
        IF (ICK.FO.O) GO TO 10
        GO TO 80
    C GO TO BN
    O
    C READ DATA CARD I
    C
    Il RFAO(5,2) IOIST,COL,CO2,CO3,CO4,ICONT,ISECT,IJOR,HWYI,
        * HWY2, XLANE, UO,M,IUAY,IYEAR,IUYNA, (COMM(I),I=1,7)
    G PRINT HEADTNG
    C
        HRINT 5l
    51 FURMAT(11',
    \imath
        PRINT 52
    C 5% FURMAT(33X,'TFXAS HIGHWAY OEPARTMFNT',')
    C
    52 FOR`AT(35X,'TEXAS HIGHNAY DEPARTMENT' /)
    r
        PFEINT 53,IOIST
    C.53 FUR*MAI(3IX,'DISTRICT ',I2,' - DESIGN SHCTIUN',')
```

 ©

$0 \cap 70$

0071

0072
0073

0074

0075

0076
0077
0078

0079
0080
0081
0082
0083
0094
0085
0036

E PPINT 54
C 54 FORMAT(IOX, 'DY'NAFECT OEFLECTIWNS ANA CALCUIATED \quad, $=$ 'FLASTIC :ATDULI ' /)

54 FORAAT(?1X, 'GYMAFLECT DLFLFCTITNS AND (ALGULATFO', * ELASTIC NHDULI ' /
c
C.

GFT GIRCFNT UATH
CALL JATE (IXIIAIE(1), IXDATE(2), IXIIATE(3))
C
PMINT 55,IXOATF
C 55 FUYMATI $30 X$, "THIS PROGRAM WAS RUN. - , 2A3, A2, ,
55 HORAAT ($32 X, 1$ THIS PROGRAM NAS PIIN $-\cdots, 2 N 3, A 211$
C PRIVT 56

PRINT SO, IJIST, COI, CO2, COB, C.144
C PRINT CONTROL INFIRMATION FROM DATA CAQU I
PRINT 57,INIST,COI,C.O2,CO3,CO4, ICONT,ISECT, IJOR,HWYL,

57 FRRMAT $2 X, 12,5 x, 3 \Delta 4, A 2,3 X, 14,4 X, 12,5 X, I 2,2 X, A 4, A 3$, * $\Delta 3,2 x, 12,+-1,12,1-1,12, 九 x, 12 / 1$ PRIST 57, ICONT, ISECT,IJOR,HWY1, HWYZ, M, IDAY, IYEAR, IOYNA

c
c
c INITIALI/F ALL SUMS \& CDUNTERS
$N=0$
$N 1=0$
$N(1)=0$
$A W I=n$.
$\Delta W 2=0$.
$\Delta W 3=?$
$A W^{\prime}+=0$. $\Lambda W S=0$.

```
0093
0094
0095
```

0087 0088 0089 0090 0091 $009 ?$

0096
0097

```
\(\triangle S C I=0\).
\(A A S 2=0\).
\(A A P 2=0\).
\(S P I=0\).
\(S P 2=0\).
SR3 \(=0\).
\(r\)
5. REAI) \& PRINT INFURMATION ON UATA CARO 2
6
\(12 \operatorname{REAO}(5,3)(1, A 1(I), I=1,51, T 1,(\operatorname{La} 2(I), I=1,5), 12\), * (LA3(I),I = L, 5), 「3
00953 FORMATI 5A4,F4.2,5A4,F4.2,5A4,F4.21
```



```
C * (LA3(I),I=1,5), T3
C 59 FURYAT( \(1 X, 5 A 4,1 X, F 5.2,2 X, 5 A 4,1 X, F 5.2,2 X, 5 A 4,1 X, F 5.2)\)
PRINT 59, (LAI(I), I=1,5), T1,(IA2(1),I=1,5),T2
PRINT 59, (LA3(1), \(I=1,5), T 3\)
59 FORMAT (16X, 5A4, \(1 X, F 5.2,5 X, 5 A 4,1 X, F 5.2 / 1\)
GU TO 10
C READ \& PRINT INFORMAIION ON DATA CARD 3, IF PRESENT
o.
13 REAU(5,3) (LA4(I),I=1,5), T4, (LA5(I),I=1,5), T5,
* (L46(I), I=1,5), T6
C PRINT 59, (LA4 (I) , I = 1, 5) , T4, (LA5 (I), I=1,5), T5,
C \(\quad *(\operatorname{LA} 6(I), I=1,5), T 6\)
PRINT 59, (LA4(I),I =1,5),T4, (LAS(I),I=1,5),T5
PRIVT 59, ( LAS(T), \(1=1,5)\), T6
GO TO 10
66 \(\mathrm{NO}=\mathrm{NO}+1\)
\(C\)
\(C\)
\(i\)
print negative sci message
PRIVT B2,STA(I),Wl(I),W2(I),(REM(J), J=1, 4)
```



``` * 'CAICULATIUNS OMITIEI', 4X, 4A4)
\(c\)
\(N 1=N 1+1\)
IFIN1 :IT. 30 , r, O TO 8B
GO TO 84
\(64 \mathrm{NO}=\mathrm{NO}+1\)
C
\(C\)
\(C\)
PRIVT FRROU MESSAGE
PRINT RI,STA(I), (REM(J), J=1,4)
```

```
FURTRAN IV r, LFVEI. İ
MAI:\
3ATF = 71190
```

QI FGRMATI IX, AT, XX, 'MATA ERRGR ASSIJMEG A ZERU VALIIE RE',

```

```

C

```
```

 Nl=N1+L
    ```
        Nl=N1+L
        IF(NI .LT. 30) GO TO A.s
        GO TO $4
r
        GO C!NINT INUF
        N = N + J
        NO = NU + I
        PRINT \Omega5, STA(I), WlII), N2(I), W3(II, W4(I),
                \sqrt{}{(I), SCIII)}
    C. Q5 FOQMATILX, A7, 3X, 5(F5.3,2X ), F5.3, 2X,
        85 FORMATI 7X, A7, LX, 6F6.3, 2X,
            * NG lINIO|EE SILUTIUN' )
        N1 = 'v1 + I
        IF! Nl .LT. 30, GO TO 98
        GOTO $4
    %
    C
    ALL CAROS PLAU FIIF AN ANALYSIS, CALCULATL AVEFAGE
        DEFLFCTIGNSS, AVFRAGE SCI, AVERAOE PAVEMFNT MODULUS,
        AND AVERAGE S!JBGRADE MUDIILUS
        8O PN='4
    NL = N -NL
    C NL IS THF NUMHFK OF TEST POIHTS THAT HAO
    VALIU SOLUTIONS
        IF(Nl.LE. O N| = l
        AWIV = ANL/PN
        An2V = An:2/PN
        AW3V = AW'3/PN
        Ai,4V=AN4/PN
        AW5V = AW5/P唄
        ASCIV=ASCI/P'N
        AAS2V=AAS2/VI
        AAP?V=AAP2/VI
    C. CALCULATE VADJANCE OF SCI, SUBGPADE MUDJLUS & PAVE-
    C MENI MCDULUS
    OO क2 1=1,N
```



```
FIIRTRAN IV R LEVFL I*
MAIN
UATE = 71196
0157 PRINT 92
```

－の2 rnquatl

C
92 FLRMATI IOX，＇W2 UEFLECTION AT GEOPHUNE ？＇）
E
PFINT 93
C． 93 FGRMAT： $5 \times, 1$ W3 UFFLECTIUN AT GEOPHUNE 3＇）
r．
93 FORMATY $10 X$, UEFLECTION AT GEUPHOTNE 3 ＇）
\bigcirc
PRINT 94
C． 94 FORMATI $5 \times, W^{\prime} 4$ DEFLECIION AT GEOPHIDNE 41 I
C．
94 FORMATY LOX，＇W：4 DEFLFCTION AT GEUPHUNE 4＇）
C．
PRINT 95
C． 95 FORMATI 5X．＇W5 0tFLECTION AT GEOPHONE 5＇）
C
75 FURMATY IOX，＇W5 DEFLECTIUN AT GEUPHUNE 5＇）
$こ$
$=96$ FORYATI $5 x$ ，＇SCI SURFACE CUPVATURE INDEX I＇I MIN＇， $=$＇US W21＇ 1
96 FORMAT1 10X，＇SCI SURFACE CURVATJPF INOEX（，I MIN＇，
＊＇US W2）＇）
r．
PRINT 97
C． 97 FORMATI $5 X^{\prime}$＇ES FLASTIC MOUULUS OF THE SUBGRADE FRO＊．
$C=1 M W 1 A N D 32^{\prime} 1$
97 FORッATY LOX：＇FS ELASTIC MOUHLUS OF THE SIIRGRADE FRI＇，
＊＇ 4 wl AlsO ins＇ 1
C
PRINT 9H
C 93 FURMATI 5X，＇FP FLASTIC MODULUS IF THE PAVEMFNT FROM＇，
C．$=$ ，Nl ANO W3＇）
98 FORMATI IOX，＇FP ELASTIC MODULUS UF THE，PAVFMFNT FRO＇， ＊M Wl AMD（43＇
C
GU TO 10
Γ
1000 CONT INJF FN：

SIJBRIUTITNE EMDD

SUBROUTINE EMOD (Wl, W3, H, El, E?)
C
IMPLICIT REAL * 8 ($A-H, 0-2$)
DIMENSION RH(2), FFI 2), Y(4000), DELM1(2),
OELM2(2), JELX1(2), DELX2(2), N(4)
c
DATA P / $1000.000 /$, EP / . OOLDO/
OATA XNO / 6L.ODO /. XKI / 0.01DI) /. XK? / 0.1000/
C
C
C
c
P, XNO, XK1, XK2, R1 \& R2 CAN RE CHANGEO IF UESIRED
INTFGER PLUS
C
C
C
INITIALIZE SWITCHES \& SAVE

R1 = 10.0170
$K_{3}=$ DSQRTI 676.000 1
MIVIJS $=1$
PLUS $=0$
$I S W=0$
SAVE $=0.000$
C CALCILATE R/H, RATIO, \& ACC I ACC IS THE CONVERGENCE
C. CRITERIUN)
r
$\mathrm{FH}(1)=R 1 / H$
$R H(2)=R 3 / H$

$A C C=E R=$ RATIO
$\stackrel{c}{C}$
C
C DO $2 \mathrm{KL}=1$, ?

C Calculate and test delmi

C
r
C
$\operatorname{IF}(X K 1, \operatorname{LE}$ DELMI(KL)) DELMI\{KL)= $=X K 1$
calculate melxl

```
FORTRAN IV G IFVEL 13
    DELYI(KL)= IEELML(KL) & RHOKL)
    % CALCULATH AND TESI DELMZ
    C
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0020
```

c

```
    OEL:^2(KL) = (1.0nO / RH(KLI) * ( 3.0DO /
        * ( XNO - 1.ODO ) )
    C
    IF(XK2 -IK. DFLMZ(KL)) DHLMZ(KL) = XK2
C CALCULATE JELX2
C
    DELX2(KL) = OELM)(KL) * RHIKL)
C. CALCULATE NG. GF INTERVALS FIO SIMPSUN'S RULE FOR
C EACH INTEGRATION. NI & N2 MUST BE OOU INTEGERS.
    N(KL)=1 3.OחO * KH(KL) ) / IJELXI(KL) + 1.000
    IF( (N(KL) / 2, *2 .FQ. N(KL) )
            N(KL)=N(KL) + 1
    C.
    N(KL+1)=(7.000 % RH(KL) ) / OELX2(KL) + 1.0DO
    IF( (N(KL+1) / 2 1*2 .to.N(KL+1))
        N(KL+1) = N(KL+1) + 1
    `
        2 CUNTINUE
        C
C
    gET INITIAL vALUE OF E%/FI AND delta
    0ELTA=0.500
    F2E1=0.00100
    C
C
C
    START ITFRATION LGOP FOR EACH E.2/FI VALIE USEO
        4 CONTINUF
    XN = (1.OOO - F2EL 1 / (1.0OO + E2[1)
    C
C THE FUNCTIUNS FF(1) AND FF(2) (SEE EQN. SI ARE
C CALCULATEO IN THE FOLLUNING DG LOOP.
C
C CALCULATK IRUINATES FUN SIMPSON'S RIJLE FOR FIRST
C INTFGRATICN
```

```
FOPTRAN IV G LFVEL 13 EMOD DATE = 71196 15/3'
0042
0043
0044
0045
0046
0047
0048
0048
0050
0051
0052
0053
0054
0055
0056
    x1=0.0Г0
        00 28 JJ = L,Nl
    Y(JJ) = (V(XN, XMI ) - 1.000) * RESJO(X1)
    XMI = XMI + DELMI(KK)
            XI = X1 + DELXI(KK)
28 CUNTINIJF
C
C
C
```



```
28
r
    C
0036
    C
27 CONTINUE
    CALCULATE IRDINATES FOR SIMPSON'S RIJLE FOR SECOND
    INTEGRATION
    N2 = N(KK + 1)
        XM2 = XN1
        X2 = XL
        OO 27 KL = 1,N2
    Y(NL + KL) = (VI XN, XM2 ) - 1.ODO 1 & BESJO(X2 )
        XM2 = XM2 + OFLM2(KK)
        X2 = X2 + DELX2(KK)
    C SUM ORDINATES TO CALCULATE AREA UNDER THE CURVE OF FIRST
    C
    INTEGRATIUN
    PART 1 = 0.0DO
    PART3 = 0.000
C
C
C
c
0041
C
c
        C
C
        C
r
            C
    N4 IS NO. OF INTERIOR ORDINATES OF FIRST INTEGRATION
        N4}=N1-
    SIMM END URDINATES
        PART2 = Y(L) + 4.000 % Y(NI-I) + YNNI)
        CALCuLATF AREA OF FIRST INTEGRATION.
        AREAI = (12.0DO * DELXI(KK)) / 3.0DO) *
            PART1 + (OFLXI(KK)/3.0DO) % PART2
            C
            C. SUM ORDINATES TO CALCILATE AREA JNOFR THE CURVF DF
            C SECOND INTEGRATION
            C
            C
            C
```

0036
0037
0038
0039
004
004

C
C
$N_{4}=N 1-3$
SUM INTERIUR IRDINATES

```
        DV 26 LLL=2,N4, 2
```

 DV 26 LLL=2,N4, 2
    ```
26 PARTL = PARTI + (2.000*Y(LL) + Y(LL+1))
```

```
26 PARTL = PARTI + (2.000*Y(LL) + Y(LL+1))
```



```
FORTRAR IV O LEVEL. I&
    PLUS = l
        MIVUS = n
0073
0074
0075
    饣
    C. SISN UF FRROH/ IS '+'
    32 PLUS = 1
    IF(MIlNUS .NF. 0 ) GO T0 40
C
    E2EL = F2F1 - DELTA
    IF(F2EL .LE. 0.000) E2FL=0.OOOLOO
    OO TO 4
C
    0081
OOR?
0083
0084
0085
0086
    0087
0088
0089
0090
    0091
0092
    0093
FMOD
DATE = 71196
0076
0077
0078
0079
0080
```

0072

PLUS $=1$
MIVUS $=n$
6 cliat Inuf
$\because \quad$ IEST fur
TEST FUR SIGN ITF FRROR
IFI +RFGY I 30. 31. 32

32 PLUS $=1$
IF (MINUS •NF. O , GO TO 40
$\begin{array}{ll}C & \text { CKRAI! IS FOSITIVE, DFCRFASE } Z Z E I \text { FOK NEXT TRIAL } \\ C\end{array}$
E2HL = F2F1 - DELTA
IF FZEL •LE. 0.000) E2FI = O.OOOLOO
CO TO 4

ERROR WAS ILGATIVE, NOW POSITIVE, CHANGE DELTA
40 DELTA $=0.500$ \# DELTA
IF SAVE .LT. O.ODO) FO TO 42
C
C
C SFT SAVE = EKRIR, DECREASE E2EL FOR NEXI TRIAL
41 SAVE = EPROP
EZEL = EPEL - OELTA
IF(E2EI -LE. 0.000) E2EI = 0.0OOIDO
ri] TO 4
\lessdot
C
C ERROR IS INCPEASING IN PUSITIVE IIIRECTIUN, DECREASE
$[$ E2EI FGR NEXT TRIAL
4?. IF (UARSU SAVF) , GT. ERROR 1 CTU TO 41
E2FI = F2TI - UELTA
IFIE2EI .LI. 0.000) E2EI = 0.000100 .
Gก TO 4

30 MINUS $=1$
IF (PLUS • VF. O, GO TO 45
C
C
C
ERRJR IS NFSATIVE, INGREASE ERFI FOR NFXT TRIAL
F2EL $=[2 F I+$ UFLTA

```
fORTRAN IV G !LVIL 1A
009
0047
0099
0099
0107
```

 0094
    ```
    0094
    0095
    0095
0096 44 CUNTINUE
0096 44 CUNTINUE
C
C
C
C
C CHECK FITR A DIVFRGFNT CONDITION FOR THI: SITUATION
C CHECK FITR A DIVFRGFNT CONDITION FOR THI: SITUATION
C WHEN WATIO IS LESS THAN 1.0 AND H IS LESS THAN IL.2 IN.
C WHEN WATIO IS LESS THAN 1.0 AND H IS LESS THAN IL.2 IN.
0047
0047
0098
0098
0 0 9 9
0 0 9 9
0 1 0 0
0 1 0 0
0101
0101
0102
0102
O103 46 IFIUAHS (SAVE, .GT.OABS (FRRIDR, YSAVE=FRROR
O103 46 IFIUAHS (SAVE, .GT.OABS (FRRIDR, YSAVE=FRROR
0104
0104
0105
0105
0106
0106
0107
0107
0109
0109
0109
0109
0110
0110
0111
0111
0112
0112
0113
0113
    IFIF2E1, -FT, 1.OUO , GO TM 44
    IFIF2E1, -FT, 1.OUO , GO TM 44
    GU TOL
    GU TOL
    r
    r
C
C
r
r
C
C
        IFIH EPF. 11.200, %O Tח 4
        IFIH EPF. 11.200, %O Tח 4
        OELTA = 0.500 # DELTA
        OELTA = 0.500 # DELTA
        F2FL = F2CL - DFLTA
        F2FL = F2CL - DFLTA
        GO TO 4
        GO TO 4
    C [HRIM IS NTCAIIVE NITW, WAS FOSITIVE GEFIJRE, CHANGE
    C [HRIM IS NTCAIIVE NITW, WAS FOSITIVE GEFIJRE, CHANGE
    C DELTA
    C DELTA
    45 DELTA * 0.5DO * OLLTA
    45 DELTA * 0.5DO * OLLTA
        IFI SAVF OTOT. O.(NJO I GU III 47
        IFI SAVF OTOT. O.(NJO I GU III 47
    r.
    r.
    C. TEST FOH FFROR LFSS THAN SAVE
    C. TEST FOH FFROR LFSS THAN SAVE
    C
    C
    C INGREASFE2HI FTR NFXT TRIIAL
    C INGREASFE2HI FTR NFXT TRIIAL
    C
    C
        EPFL = EPFI + UELTA
        EPFL = EPFI + UELTA
        IFIE2E1 .rT, 1.0DO1 GO TO 44
        IFIE2E1 .rT, 1.0DO1 GO TO 44
        OO TO 4
        OO TO 4
    C TEST FOH FRKOR GRFATER THAN SAVE
    C TEST FOH FRKOR GRFATER THAN SAVE
    46 IFIUAHS I SAVE, GT.DABS I FRRIMR, \SAVE = FRROR
    46 IFIUAHS I SAVE, GT.DABS I FRRIMR, \SAVE = FRROR
    47 IF(GABS ( FKKIIO) .GT. SAVE I gO TO 4E
    47 IF(GABS ( FKKIIO) .GT. SAVE I gO TO 4E
    C. ERKJP IS APURUACHING CONVEDGENGF FRGM NFGATIVE SIDE,
    C. ERKJP IS APURUACHING CONVEDGENGF FRGM NFGATIVE SIDE,
    C ERKJR IS APURUACHINGG CONVEQGENGF FRUM NFGATIVE
    C ERKJR IS APURUACHINGG CONVEQGENGF FRUM NFGATIVE
    SAVE = FRQMR
    SAVE = FRQMR
    E2EL = +2E1 + OFLTA
    E2EL = +2E1 + OFLTA
    IF(EZEL .OT. 1.0100 1 Grj T| 44
    IF(EZEL .OT. 1.0100 1 Grj T| 44
        GO TO 4
        GO TO 4
        31 CONTINIF
        31 CONTINIF
    B心0
    B心0
        CINVERGENCE CKITFRI'NN IS MET, CALCIMATE EL & FZ
```

 CINVERGENCE CKITFRI'NN IS MET, CALCIMATE EL & FZ
    ```



```

0001
0002
0 0 0 3
0004
0005
005
<07
008
009
0010
0 0 1 1
C
Z
C
RETURN
0012
0013
0014
0015
REAL FUNCTIGN BESJO* * (x)
A FUNCTIDN TO CALCULATE BESSEL FUNCTION JO(X) USING
POLYNOMIAL APPROXIMATION - REFERENCE HANDBOOK OF MATH.
FUNCTIONS, BUREAU OF STANDARDS, PAGES 369-370
DOUBLE PRECISION X 3, x 32, x 33, x 34, x35, x 36,DCOS,
* DSQRT, DABS, x
CALCULATE X/3 OR 3/X
x3 = x/3.0
IF(X.GT. 3.0) X3 = 3.0/ X
C
C CAlCulate powers of }
C
x 32= x3* 43
\times33=\times32*\times3
\times34=\times32*\times32
x35= X32: X 3 3
x 36 = 人33*x33
C
2 IF (DABS (X) .LE. 3.000) GO TO 3
CAlCULATE beSjO(X) for values dF X Greater Thaif 3
BESJO=11.79788456-.77E-6 * X3 - 0.552740D-O2 :
* X32 - .9512E-04* X33 + .1372370-02 % X34 -
*.72805E-03 * X35 +. 14476E-03 * X36 1 / DSQRT(X) j
* * DCOS(x - .72539816 - .04166397 * x3 - . 3954E-04
* * x 32 + . 2625730-02 x x 3 - .541250-03 * x 34-
* =29333E-03* X35+.13558E-03* x 36 1
C
RETURN

```

0001

0015

REAL FUNCTION BESJO * \(8(x)\)

A FUNCTION TO CALCULATE BESSEL FUNCTION JO(X) USING POLYNOMIAL APPROXIMATION - REFERENCE HANDBOOK OF MATH. FUNCTIONS, BUREAU OF STANDARDS, PAGES 36́9-370

DOUBLE PRECISION \(\times 3, \times 32, \times 33, \times 34, \times 35, \times 36\), DCOS, * DSQRT, DABS, \(X\)

CALCULATE \(x / 3\) OR \(3 / x\)
\(x 3=x / 3.0\)
IFI X.GT. \(3.01 \times 3=3.01 \times\)
calculate powers of \(X\)
\(\times 32=\times 3 * \times 3\)
\(\times 33=\times 32 \div \times 3\)
\(\times 34=\times 32 \times \times 32\)
\(\times 35=\times 32: \times 33\)
\(\times 36=\times 33 \div \times 33\)
2 IF ( DABS \((X)\).LE. 3.000 ) GO TO 3
Calculate besjo( \(x\) ) for values dF \(X\) greater thais 3
BESJO \(=11.79788456-.77 E-6 \quad * x 3-0.552740 D-02 *\)
* X32-.9512E-04*X33+.1372370-02 * X34-
*. \(72805 E-03=\times 35+.14476 E-03 * \times 36\) / / DSQRT (X) ,
* : x \(\times 32+.2625730-02 * x 33-.541250-03=x 34-\)
*. 29333E-03* X \(35+.13558 E-03 * \times 361\)
\(c\)

C CALCULATE bESJO \((x)\) FOR VALUES OF \(x\) LESS THAN 3
3 BES JO=1.0 - \(2.2499997 * \times 32+1.2656203 * \times 34\)
* - . \(3163866 * \times 36+.0444479 *(\times 34 * \times 34)\) -
*. \(0039444 *(\times 35 * \times 35)+.000210 *(\times 36 * \times 36)\)
C
RETURN
END
```

0001 REAL FUNCTIONV * 8 (XN , XM)
0002
C
C V - A FUNCTION OF 'E2EL', AND 'M'
C 'E2EI' IS THE E2/EI RATIO, TESTED FROM .001 TO 1000.
C 'M' TESTED USING VALUES FROM 0.0 TO 150. WHICH IS
C 10* (R/H)
C
C
C V APPROACHES }1\mathrm{ FOR LARGE VALUES OF M
0003
0003
C
C
C CALCULATE EXPONENTIALS
0 0 0 5
0 0 0 6
C
C
0 0 0 7
0 0 0 8
0009
V = 1.0
IF(XM .GT. 30) RETURN
EXPM2M = DEXP 1 -2.000 * XM 1
EXPM4M= EXPM2M*EXPM2M
CALCULATE FUNCTION V FOR THE XN \& XMI OR XMZ VALUES
C
RETURN
END

```

Appendix B
Listing of POINT LOAD

```

P IS THE POINT LOAD.
H IS THE THICKNESS OF LAYER 1.
EL AND E2 ARE YOUNG'S MODULI FOR LAYERS 1 AND 2 RESPECTIVELY.
POISSON'S RATIO IS 0.5 THROUGHOUT.
W IS THE SURFACE DEFLECTION AT THE DISTANCE R FROM THE LOADED PUINT.

```

```

IT IS CALCULATED BY MEANS OF THE FOLLOWING EQUATIONS --

1. N=(1-E2/E1) / (1 + E2/E1).
2. V(M,N)=(1 + 4*N*M * EXP(-2**) - N*N*EXP(-4*M)) /
(1-2*N * (1 * 2*M*M) \# EXP(-2*M) \& N*N * EXP(-4*M)).
3. }X=MR/H
4. U(M,N;R/H)= (V(M,N) - 1) \# JO (X), WHERE JO IS A BESSEL FUNCTION,
FIRST KIND, ZERO ORDER.
5. AREA 1 = THE INTEGRAL OF U * DX FROM X = 0 TO 3R/H.
6. AREA 2 = THE INTEGRAL OF U * DX FROM }X=3R/H TO 1OR/H.
7. F = 1 * AREA 1 * AREA 2.
THE PROGRAM OUTPUT INCLUDES THE E2/EI AND R/H RATIOS USED IN THE CALCULATION,
THE FUNCTION F. AND THE DEFLECTION W.
THE PROGRAM INPUTS ARE AS FOLLOWS --
8. NO, THE MINIMUM NUMBER OF ORDINATES CALCULATED BETHEEN ZEROS OF JO(X), IN
THE CALCULATION BY SIMPSON'S RULE OF AREA I AND AREA 2. NO IS AN ODD
NUMBER, USUALLY 61.
9. Kl, THE MAXIMUM VALUE OF DELTA M IN THE INTERVAL M = OTO M=3.
K1 USUALLY = 0.01.
10. K2, THE MAXIMUM VALUE OF DELTA M [N THE INTERVAL M = 3 TO M=10.
K2 USUALLY = 0.10.
11. EL, DEFINED ABOVE.
12. E2, DEFINED ABOVE.
13. R, DEFINED ABOVE.
14. H. DEFINED ABOVE.
15. P, DEFINED ABOVE.
FOR PREDICTING DYNAFLECT DEFLECTIONS INPUT THE FOLLOWING--
R(INCHES) = 10.0, 15.62, 26.0, 37.36, 49.0.
P (POUNDS) = 1000.
```
prugram to compute surface deflectiuns, given the
elastic moduli and the thickness of the pavement layer
```

```
            IMPLICIT REAL * B (A-H, O-L)
```

 IMPLICIT REAL * B (A-H, O-L)
 DIMENSION E2EI(30), RH(20), Y(4000), R(15), H(50), FF(20),
 FRAT(10), DATA(20), El(30), E2(30), W(15)
 DATA P / 1000.0DO /
 DATA CHK /'END !/
 WRITE (6,215)
 215 FGRMAT('1.,21(/),45X,42('*'),2(/45x,'**,40X,'*!)/45X,
 + ** TEXAS TRANSPORTATION INSTITUTE *'/45X,
    ```

```

 '*',40X,'*'/45x,**',10X,'SURFACE DEFLECTIONS*,10X,**'/45X,
 * * 1,40x,
 /'*'/45x,'*',18x,'OF A',18X,'*'/45x,'*',40x,'*'/45x,
 **', 12X, 'THO-LAYER SYSTEM', 12X,'*'/45X, '*', 40X, '*'/ /45X,'*', 10X,
 = 'LOADED AT A POINT',10X,'*'/45X,'*',40x,'*'/45X,
    ```

```

 42{'*'))
 WRITE(6,230)
 230 FORMATI'1', 41X. "TWO-LAYER SYSTEM--POINT LOAD--SURFACE DEFLECTIO
 INS' /)
 SET UP NO. OF INTERVALS AND ACCURACY FOR EACH INTEGRATION. MAIA
 225 FORMATI'1'I
 MA IN
 c
THE VALUES OF RADIUS CAN BE CHANGED TO ANY DISTANCE
AT WHICH A DEFLECTION IS TO BE CALCULATED
R(1) = 10.000
R(2) = DSQRT(244.000)
R(3) = DSQRT(676.000)
R(4) = DSQRT(1396.000)
R(5) = DSQRT(2404.0DO 1
c
6 READ(5,103) (DATAII), I = 1, 20)
103 FORMAT(20A4)
IF(DATA(II ,EQ. CHK) GJ TO I
WRITE(6,231) (DATA(I), I = 1. 20)
231 FORMAT\L5X, 20A4)
GOTO 6
READ(5,100,END=50) XNO, XK1, XK2
100 FORMAT(3F1O.5)
READ IN El, E2 \& H VALUES.
4 CONTINUE
READ(5,101,END=50) NE1, (E1(J),J=1, 9)

```




REAL FUNCTION BESJO * 8 ( x )
\(C\)
\(c\)
\(c\)
\(c\)
\(c\)
\(c\)
\(c\)

C
C
C
CALCULATE X/3 OR 3/X
\(x 3=x / 3.0\)
IFI X.GT. 3.01 X3 = 3.01 X
calculate powers of \(x\)
\(\times 32=\times 3 * \times 3\)
\(\times 33=\times 32 * \times 3\)
\(\times 34=\times 32 * \times 32\)
\(\times 35=\times 32 * \times 33\)
\(\times 36=\times 33 * \times 33\)
c
2 IF ( DABS (X) .LE. 3.000 ) GO TO 3
Calculate besjo (x) for values of x greater than 3
BESJO=(1.7978845t-.77F-6 * X3 - 0.552740D-02 *
* X32 - . 9512E-04 * X33 + . 1372370-02 * X34 -
* . 72805E-03 * X35 + . 14476E-03 * x36 ) / DSQRT (x) )
* * DCOS ( x - . 78539816 - . 04166397 * X3 - . 3954E-04
* * X 32 + .262573D-02 * X33 - .54125D-03 * X34 -
*. \(29333 \mathrm{E}-03\) * X35 +. \(13558 \mathrm{E}-03\) * X36 )
C
c
C Calculate besjo (x) for values of \(x\) Less than 3
3 BES JO= 1.0 - 2.2499997 * X32 + 1.2656208 * X34
* - . 3163866 * X36 + . 0444479 * ( X34 * X34 ) -
*. 0039444 * ( \(\times 35\) * \(\times 35\) ) +.000210 * ( x36 * X36)
c
RETURN
END
```

FORTRAN IV G LEVEL I8
0001 REAL FUNCTIONV * 8 (XN , XM)
C
0002
C
C V - A FUNCTION OF 'EZEI', AND 'M'
C 'E2E1' IS THE E2/EI RATID, TESTED FROM .O01 T0 1000.
C 'M' TESTED USING VALUES FROM 0.0 TO 150. WHICH IS
C 10*(R/H)
C
C
C V APPROACHES I FOR LARGE VALUES OF M
0003
V = 1.0
IF(XM.GT. 30, RETURN
0004
0005
0006
0007
0008
C
0009
CALCULATE EXPONENTIALS
C
C
C
EXPM2M = DEXP (-2.ODO* XM)
EXPM4M= EXPM2M*EXPM2M
C
C
CALCULATE FUNCTION V FOR THE XN \& XMI OR XM2 VALUES
DOUBLE PRECISION XN, XM, EXPMZM, EXPM4M, DEXP
C
V = 1 1.ODO + 1 4.000 * XN * XM * EXPM2M 1-
* (XN te XN *EXPM4M)) / (1.000- (2.000 \& XN
* * (1.ODO + 2.ODO * XM * XM) * EXPM2M 1 +
* (XN * XN * EXPM4M))
RETURN
END

```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 0.139 & 1.205 & 6.82302 & 81910. & 11400. & 8.30 & 10.00 & 0.1988620-02 \\
\hline & 1.882 & 7.98281 & & & & 15.62 & 0.1489480-02 \\
\hline & 3.133 & 8.20060 & & & & 26.00 & 0.9192790-03 \\
\hline & 4.502 & 7.74196 & & & & 37.36 & \(0.603926 \mathrm{D}-03\) \\
\hline & 5.907 & 7.40308 & & & & 49.03 & 0.4400680-03 \\
\hline
\end{tabular}```

