
Technical Report Documentation Page

1. Repar' No. 2. Covernment Acct!!$slcn No. 3. Recipien". Co.olog No.

FHWA/TX-92+1139-1F

4. Tille and Sub'itle

INTERACTIVE GRAPHICS INTERSECTION DESIGN
SYSTEM: FIRST-STAGE DEVELOPMENT

,5. Repor' Date

November 1991
1 6 . Performing Organization Code

--:.----;-:-;--~---:=-----::____=__:_--_::___:_--_=____::__---_:_-_:_---__i 8 P e rformi" 9 0 rgCH' I Z at i on R e For t No.
i 7. Author i

.) Thomas W. Rioux, Robert F. Inman, Charles H.
Berry, Jr., Clyde E. Lee, and Randy B. Machemeh1 Research Report 1139-lF

9. Perfarmin; Organization Name and Addre ..

Center for Transportation Research
The University of Texas at Austin
Austin, Texas 78712-1075

10. Work Unit No. (TRAIS)

II. Contrae. or Gran' No.

Rsch. Study 3-8/18-89/1-1139

r.-:--:------------:---:-:------------------.....j 13. Type a f Report and Period Covered
12. Sponsoring Agency Name and Addre ..

Texas Department of Transportation
Transportation Planning Division
P. 0, Box 5051
Austin, Texas 78763-5051
IS. Supplementary Nate.

Final

14. Spon.oring Agency Code

Study conducted in cooperation with the U. S. Department of Transportation, Federal
I Highway Administration

Research Study Title: "Interactive Graphics Intersection Design System ll

16. Ab.tract

The reported research establishes a versatile foundation for initial and future
development of an Interactive Graphics Intersection System (IGIDS). Functional
requirements, basic capabilities, and computer program structure for the system are
established. Candidate hardware and software system components were identified and
evaluated for selection of suitable examples used in the first-stage development.
An extensive amount of programming was accomplished interfacing the example graphics
engine (MicroStation), database engine (Informix), and intersection analysis program
(TEXAS Model for Intersection Traffic). Provisions were incorporated to allow
implementation of several other computer applications as the need arises. The
research demonstrates the feasibility of integrating computer hardware and software
components into a user-friendly interactive graphics system supporting the inter­
section designer.

17. Key Wards

Interactive Graphics Intersection Design
System (IGIDS), computer program,
hardware, software, co~ponents, inter­
face, development, database, analysis

No restrictions. This document is
available to the public through the
National Technical Information Service,
Springfie 1d, Vi rginia 22161.

19. SeClolrity Clonif. (al ,hi. report) 20. Security Clossil. (01 thi, pogel 21. No. of Page. 22. Price

Unclassified Unclassified 52

Form DOT F 1700.7 (8-72) Reproduction of completed page authori~ed

INTERACTIVE GRAPHICS INTERSECTION DESIGN
SYSTEM: FIRST-STAGE DEVELOPMENT

by

Thomas W. Rioux
Robert F. Inman

Charles H. Berry, Jr.
Clyde E. Lee

Randy R Machemehl

Research Report 1139-1F

Interactive Graphics Intersection Design System
Research Project 3-8/18-89/1-1139

conducted for

Texas Department of Transportation

in cooperation with the

U.S. Department of Transportation
Federal Highway Administration

by the

CENTER FOR TRANSPORTATION RESEARCH

Bureau of Engineering Research

THE UNIVERSI1Y OF TEXAS AT AUSTIN

November 1991

NOT INTENDED FOR CONSTRUCTION,
PERMIT, OR BIDDING PURPOSES

Clyde E. Lee (Texas No. 20512)

Randy B. Machemehl (Texas No. 41921)

Research Superoisors

The contents of this report reflect the views of the authors, who are
responsible for the facts and the accuracy of the data presented herein.
The contents do not necessarily reflect the official views or policies of the
Federal Highway Administration or the Texas Department of Transporta­
tion. This report does not constitute a standard, specification, or regula­
tion.

There was no invention or discovery conceived or first actually re­
duced to practice in the course of or under this contract, including any
art, method, process, machine, manufacture, design or composition of
maUer, or any new and useful improvement thereof, or any variety of
plant which is or may be patentable under the patent laws of the United
States of America or any foreign country.

ii

PREFACE
Research Study No. 3-18-88-1139, "Interactive Graphics Intersection Design System OGIDS)," was initi­

ated in 1988 as a three-year study to define an operational framework for the initial development of a
computer-aided intersection analysis and design system. The primary objective of the first-stage develop­
ment was to identify, evaluate, select, and develop appropriate computer hardware and software that
could support engineers in analyzing, designing, and modifying intersections. Emphasis would be placed
on using existing interactive computer-graphics and simulation techniques as much as feasible and on de­
veloping computer programs to interface selected basic components of the system. When necessary, spe­
cial computer programs would be written, or adapted, to support activities in the intersection design and
operational-analysis process as identified by the study advisory contact individuals.

Throughout the study, communications with these individuals provided valuable guidance to the di­
rection of the research. Beginning in the fall of 1990, an experienced design engineer, Charles H. Berry,
Jr., joined the research study team as a participant in the new graduate education program of the State
Department of Highways and Public Transportation (now TxDOT). As a full-time graduate student, Mr.
Berry was able to participate actively in all aspects of the study and apply his personal experience to
[GIDS development. He made many significant suggestions, and, as part of his contribution to the study,
conducted a survey of intersection designers in the Department to determine the useful and needed fea­
tures for the system. These features were prioritized and are being considered strongly in subsequent de­
velopment phases of the system.

The objectives of Research Study No. 1139 have been realized and are reported herein. Further devel­
opment and refinement of IGIDS is being accomplished in Research Study No. 3-18-92-1308, "Interactive
Graphics Intersection Design System." A versatile foundation for a computer-aided design system to sup­
port engineers in designing and analyzing new intersections and in modifying existing ones has been es­
tablished.

LIST OF REPORTS
Research Report 1139-1F, "Interactive Graphics Intersection Design System: First-Stage Development,"

by Thomas W. Rioux, Robert F. Inman, Charles H. Berry, Jr., Clyde E. Lee, and Randy B. Machemehl, re­
ports on the three-year study to define an operational framework for the initial development of a
computer-aided intersection analysis and design system.

ABSTRACT

The reported research establishes a versatile foundation for initial and future development of an Inter­
active Graphics Intersection System (IGIDS). Functional requirements, basic capabilities, and computer
program structure for the system are established. Candidate hardware and software system components
were identified and evaluated for selection of suitable examples used in the first-stage development. An
extensive amount of programming was accomplished interfacing the example graphics engine
(MicroStation), database engine (Informix), and intersection analysis program (TEXAS Model for Intersec­
tion Traffic). Provisions were incorporated to allow implementation of several other computer applications
as the need arises. The research demonstrates the feasibility of integrating computer hardware and soft­
ware components into a user-friendly interactive graphics system supporting the intersection designer.

SUMMARY

Intersection design is a complex process involving a number of different disciplines in transponation
engineering. Elements of transportation planning, traffic engineering, and geometric design contribute to
the process of designing the beSt practicable facility for handling traffic at an intersection. An integrated,
interactive-graphics-based computer system capable of coordinating selected intersection design applica­
tions into a single package will provide a useful tool for the intersection designer.

This report describes first-stage development of the Interactive Graphics Intersection Design System
(IGIDS). The requirements, capabilities and structure of IGIDS were determined in the research in addi­
tion to defining the type of computer programming necessary for computer graphics and database soft­
ware management. Use of existing computer applications is emphasized throughout. System development
establishes a sound basis for the continued expansion of IGIDS to incorporate additional computer-aided
intersection design tools. Modular implementation of design and analysis applications allows staged sys­
tem development.

IGIDS controls associated graphics and database applications through a higher-level programming lan­
guage and allows the designer to describe intersection components using either IGIDS or graphics­
application commands. Intersection design and analysis applications are accessed through IGIDS to create
multiple design alternatives. IGIDS will handle at least five intersection design alternatives. Analysis of the
traffic operational aspects of each alternative is achieved by accessing one or more of the analysis pack­
ages supported with convenient commands in the system.

MicroStation is the graphics application, Informix is the database engine, and the TEXAS Model for
Intersection Traffic is the intersection analysis program selected for initial development of IGIDS. Provi­
sions have been made so that additional applications can be implemented as the need arises. The re­
search demonstrates the feasibility of integrating computer hardware and software together into a user­
friendly, interactive-graphics system supporting the intersection designer. Further development of the
first-stage IGIDS incorporating user-identified enhancements and emerging technology will provide practi­
cal, productive, and efficient support for designing new intersections and modifying existing ones.

IMPLEMENTATION STATEMENT

The first-stage development of an Interactive Graphics Intersection Design System (IGIDS) has linked
together selected computer hardware and software components into a system that supports the engineer
in analyzing and designing new intersections or in modifying existing ones. A solid and versatile frame­
work for a comprehensive computer-aided intersection design system has been structured, and one ex­
ample of each of the major system components has been implemented at this time to demonstrate system
workability. A recent survey of Department design engineers indicated a number of additional features
which are desired for IGIDS. These have been prioritized, and further development to incorporate them
into the system is being accomplished under Research Study No. 3-18-92-1308, "Interactive Graphics Inter­
section Design System, n a two-year study which began in September 1991. As this study progresses, it will
be desirable to test IGIDS in a few sample situations to guide the system development to a fully­
operational status. At this time, the objectives of Research Study No. 1139 have been realized and the re­
search results have been documented in this repon, but IGIDS awaits further development before it is
ready for implementation into intersection design practice.

iv

TABLE OF CONTENTS

PREFACE.. iv
LIST OF REPORTS... iv
ABSTRACT ... iv
SUMMARY ... v
IMPLEMENTATION STATEMENT... v

CHAPTER 1. INTRODUCTION

BACKGROUND
OBJECTIVES........ 1
OVERVIEW ... 1
CONCEPTUAL DESIGN ... 2
ABBREVIATIONS ... 4
TERMINOLOGy.... 5
SUMMARY .. 5

CHAPTER 2. INTERSECTION DESIGN

OVERVIEW ... 6

FUNCDONAL DESIGN PRINCIPLES ... 6
Minimize the Number of Conflict Points .. 6
Simplify the Geometry of Conflict Areas 6
Limit the Frequency of Conflicts ... 6
Minimize the Severity of Conflicts .. 7
Levels of DeSign 0 ••••••••• •• ~. 0"' ••••••••••••••••••••••••••••••••• '0' •••••••• 0 •• 0 •••••••• "0 •••••••••••••••••••••••••• 0_....... i
Planning Level.. 8
Operational Level .. 8

DESIGN PROCEDURE.. 9
Obtain and Analyze Traffic Data to Detennine Design Hour Volume (DHV) and
Movement Volumes ... 11
Obtain Physical Site Data....... 11
Detennine Location, Functional Class and General Design Features of Nearby Roadways
and Development That May Affect Design ... 12
Prepare Preliminary Sketches of Alternatives .. 12
Analyze and Evaluate Alternatives and Select Two or More of the
Better Ones 13
Prepare Preliminary plans and Profiles for Alternatives Selected
In Step 5 ... 13
Evaluate Each Alternative with Respect to Desired Features... 15
Prepare Preliminary Cost Estimates for Each Alternative .. 16

v

Determine User Cost 16
Perf anTI Joint Analysis of Values from Steps 7, 8, and 9 and Determine Best Plan 16
Final Design of Selected Alternative....................................... 17

SL'M~Y OF INTERSECTION DESIGN.. 20

CHAPTER 3. IGIDS SYSTEM DESIGN

GRAPHICS ENGINE ... 22
DATABASE ENGINE .. 22
OPERATING SYSTEM .. 22
COMPUTER SOFTWARE LANGUAGE FOR IGIDS ... 23
SOFTWARE CODING STANDARDS 23
COMPUTER HARDWARE .. 28
ANALYSIS PROGRAMS .. 29
IGIDS MAIN STRUCTURES .. 29
OBJECT-ORIENTED PROGRAMMING TECHNIQUES 32
MULTIPLE INTERSECTION ALTERNA11VES .. 35
LEVEL ASSIGNMENTS.. .. 35

CHAPTER 4. IGIDS FUNCTIONAL DESIGN

USER INTERACTION WITH COMMANDS............ 35
DATA BASE "SAVE" OPTIONS .. 41
IGIDS COMMANDS .. 41
SUMMARY .. 42

REFERENCES .. ,. 44

vi

CHAPTER 1.

BACKGROUND

Intersection design is a complex process that
involves a number of different disciplines in trans­
portation engineering. Elements of transportation
planning, traffic engineering, and geometric design
contribute to the process of designing the best
practicable facility for handling traffic at an inter­
section. Traditionally, the design engineer has re­
lied upon the application of manual, or sometimes
computer-aided, procedures to determine the most
appropriate alternative that satisfies the objectives.
When computer-assisted tools that support inter­
section design have been used, they have usually
required individual application with awkward
transfer of data between programs as the design
progresses. An integrated, interactive graphics­
based system that is capable of coordinating sev­
eral selected computer applications into a single
package would provide a useful tool for the inter­
section designer. An overall system that facilitates
the use of different applications while also mini­
mizing the cumbersome transfer of data from pro­
gram to program would Significantly improve the
process.

In September 1988, the Center for Transporta­
tion Research at The University of Texas at Austin,
in cooperation with the Texas Department of
Transportation and the Federal Highway Adminis­
tration, entered into an agreement under the Co­
operative Highway Research Program to study the
development of an Interactive Graphics Intersec­
tion Design System (IGIDS). The objective of the
study was to define the requirements, capabilities,
and structure of the system. Current and emerging
technology would be implemented to utilize fea­
tures such as interactive graphics. Data -necessary
for execution of different computer analysis appli­
cations would be stored and retrieved automati­
cally from a common database. The system would
be versatile and user-friendly. Its development
would support the use of different types of com­
puter hardware. Utilization of existing computer
software applications would avoid duplication of

INTRODUCTION

1

development efforts. The basis for this system is
the subject of this report

OBJECTIVES

The ultimate objective of this study is the de­
velopment of an Interactive Graphics Intersection
Design System (IGIDS) which assists engineers in
the analysis and design of isolated at-grade inter­
sections, including diamond interchanges. The dif­
ferent functions which IGIDS would perform were
identified early in the study. That identification
evolved into definition of the requirements and ca­
pabilities of selected functions which the auto­
mated system would support Modular implemen­
tation of computer applications was structured to
permit staged system development. Candidate
computer hardware, operating systems, and soft­
ware applications were selected after a thorough
investigation was made to determine their capabili­
ties, their limitations, and their compatibility with
other system components. Conceptual develop­
ment then proceeded to writing the computer
code necessary for managing the various IGIDS
system components so that the desired functions
could be realized. The objective of IGIDS first­
stage development was to establish a solid founda­
tion for continual evolution and expansion of a
useful and practical computer-aided intersection
design system.

OVERVIEW
Determination of functional performance was

achieved through examination of the conventional
intersection design procedure. Analysis of the dif­
ferent activities involved in intersection design, to­
gether with the general order in which they are
accomplished, identified functions which should
be incorporated into the IGIDS system.

The selection of system hardware and software
components was based on how each component
relates to the intersection design process in addi­
tion to ensuring access to IGIDS through the type
of hardware that is currently used by many public

and private design professionals. IGIDS requires
an operating system which allows multi-tasking
(the concurrent operation of multiple programs).
The selection of the operating system which satis­
fies that requirement is described in this report.

Generic requirements for the system hardware
components were designed to permit use of
equipment from different manufacturers. Develop­
ment of the first-stage version of IGIDS has pro­
ceeded on Intergraph Corporation's workstation
hardware. Intergraph equipment was selected for
its versatility and widespread use among public
and private engineering professionals. Additional
hardware will be supported in subsequent devel­
opment of the system.

The software needed to perform the graphics
and database operations of IGIDS was selected for
its availability on different types of equipment on
which the system would Likely be used. The first­
stage version of IGIDS supports the MicroStation
graphics application from Bentley Systems, Incor­
porated. The database currently utilized by IGIDS
will be upgraded to increase its versatility in sub­
sequent stages of system development.

Recently, a survey that was conducted to guide
the future development of IGIDS identified several
important features for possible implementation.
Those design and analysis features which support
the intersection design process were evaluated and
prioritized for future development [39]. Compatibil­
ity with other computer applications which
complement the use of IGIDS can be accom­
plished through continued coordination and plan­
ning.

The combination of the hardware components,
operating system, interactive graphics and database
applications, together with design and analysis
software that support intersection design, will pro­
vide a useful tool for the engineer. The first-stage
development of IGIDS has established a basis for
the continued expansion of the system to incorpo­
rate additional computer-aided intersection design
tools.

CONCEPTUAL DESIGN
The Interactive Graphics Intersection Design

System (IGIDS) is intended to assist the engineer
in analyzing and designing individual, at-grade,
vehicular-traffic intersections, including diamond
interchanges. This involves the development of
computer-aided tools for defining the geometry of
the intersection, the location and type of traffic
control devices, and the traffic flow conditions.
When implemented, IGIDS will provide a conve­
nient and user-friendly interface for storing and ac­
cessing the data needed to execute several analysis

2

and design software packages, and provIsIons will
be made for adding or developing related expert
systems.

Figure 1.1 illustrates the various software com­
ponents which comprise IGIDS as it is perceived
in the first stage of development. The functional
requirements for each component, and the interre­
lationship with other components currently in­
cluded in the design of the system are discussed
briefly here; more detail about the system design
is presented in Chapters 3 and 4.

IGIDS will use a graphiCS engine (software) to
perform all interactive graphics operations and to
maintain the graphics-engine database. IGIDS soft­
ware will operate above and drive the graphics
engine through a higher-level language interface.
IGIDS will allow the user to switch easily between
executing IGIDS commands and graphics-engine
commands. The commands available within the
graphics engine will be used for this purpose as
much as possible. IGIDS will not provide any plot­
ting capabilities, but will rely upon the graphics
engine to perform these operations.

IGIDS will use an SQL-compliant, relational
database engine to perform all database storage,
retrieval, and reporting operations and to maintain
the IGIDS relational database. IGIDS software will
operate above and drive the database engine
through a higher-level language interface. IGIDS
will not proVide any specialized reporting func­
tions but will rely upon the database engine for
this. IGIDS will save all modifications to the IGIDS
relational database immediately after each IGIDS
command has been executed, or at user-specified
times.

IGIDS will handle at least five alternative de­
signs for an intersection. Existing intersection con­
ditions will normally constitute one alternative.
Each alternative, and its major graphical compo­
nent groupings, will be placed on a separate
graphical level (or plane), so that it can be dis­
played independently - or not displayed in a par­
ticular view - by the graphics engine. IGIDS will
allocate a user graphical level (or plane), and a
scratch graphical level (or plane). All, or part, of
an intersection alternative can be copied to an­
other alternative, and all, or part, of an intersec­
tion alternative can be modified by IGIDS com­
mands.

In its first-stage development, IGIDS graphics
will be two-dimensional in plan view and will use
a state-plane-coordinate system with no pro­
grammed impediments to a future three-dimen­
sional system. Coordinates, distance, and other real
numeric data will be stored as 16-significant-digit,
64-bit, double-preciSion, floating-point variables in

GraphicKngine
(Software)

Drafting /Digitiz.ing

MicroSlalion

AutoCAD

Other

U$Elr
Interface

GraphicKngine
Database

IIGIDS Elements)
(Other Elemenlsl

(

(

(

IGIDS
(Software]

CAD Intlilrface)

sal Interface)
Design Tooh)

Inter$Elction
Analysis
Programs

I TEXAS Model I
I Highway Capacity Software

IGIDS Relational
Database

IIGIDS Dalol

I SOAP 1

I Other I

Database Engine
(Software)

Query/Report

Informix

Oracle

Other

Figure 1.1 Components of the Interactive Graphics Intersection Design System (IGIDS)

lS Nov91

feet. All angular data will be stored as the same
type variables, but in degrees. All counter, or
indexing-type, numbers will be stored as 10-
significant-digit, 32-bit, integer-variables. All other
integer numbers with no perceived possibility of
exceeding several hundred will be stored as 5-
significant -digit, 16-bit, intege r-varia bles.

IGIDS will use hierarchical geometry. This
means that an item will comprise only one parent
item and may have zero or more children items.
An item can have more than one parent item type,
with the type of parent being associated with the
attributes of an item. An item can have more than
one category of children. The number of children
items accommodated in IGIDS must be virtually in­
finite. Each parent item will maintain the current
number of children items and have a pointer to
the beginning and ending child items for each cat­
egory of children. Each item will have a pointer to
the previous, and to the next, item on the list.
Most of the higher-level items will serve to group
the children items, and only the lowest-level items
will have a graphical representation. Any proce­
dure applied to an item will be applied automati­
cally to all of the children of the item.

IGIDS will use relational geometry. Both the
absolute and the relative definition of an item will
be calculated and stored. The user can enter an
item using a relative definition, and the absolute
definition will be calculated; or, the user can enter
an item using the absolute definition, and the rela­
tive definition will be calculated. IGIDS will define
the relative item for each type of item. IGIDS will
calculate the station and the offset of a coordinate
from the leg centerline for all items that are chil­
dren of the leg. Only IGIDS commands can be
used to manipulate the geometry because of the
need to update the data in the IGIDS relational
database. IGIDS will minimize forcing the user to
enter data in a defined order or sequence. To ac­
complish this objective, IGIDS will automatically
sort each list of children items as new children
items to be added to the list so that the user can
enter geometry data items in any order. IGIDS will
automatically set the direction of any entered
graphical item so that it will be in conformance
with the sorted direction of the list of which it is a
part

Each IGIDS graphical item in the graphics­
engine database will contain the ID of the corre­
sponding item in the appropriate structure and
IGIDS relational database table where the attribute
data will be stored. The type of the graphics­
engine element (arc, line, or text) will be used to
determine the item type (segment or text) and,
therefore, relate it to the appropriate structure or
IGIDS relational database table. The ID will be a

4

unique number defined by IGIDS and will be the
entry number, the instance number, or the row
number in the appropriate structure and IGIDS
relational database table. Given an ID, IGIDS can
search the graphics-engine database or access the
appropriate structure or IGIDS relational database
table for the specified item. The higher-level
(grouping) items may not have a graphical repre­
sentation.

The IGIDS relational database will be the mas­
ter database. All graphics and attribute data items
will be contained in the IGIDS relational database,
and the value stored there will have precedence
over any other value. Thus, the graphics-engine
database can be deleted, and IGIDS will be able
to re-create the graphics previously entered into
IGIDS. Coordinate, distance, angular, and other
data in the IGIDS relational database will be con­
sidered the definitive values. IGIDS will always
use the values in the IGIDS relational database for
all calculations. IGIDS will keep the entire IGIDS
relational database in memory within the IGIDS
software so that no disk I/O will be involved in
reading a data item; this will allow the software to
operate as fast as possible.

Intersection analysis and design software pack­
ages will be executed when the user selects from
a menu the software package to be run. IG IDS
will check the IGIDS relational database for the
appropriate data and prompt the user for any
missing data. IGIDS will then extract data from the
IGIDS relational database and build the required
input files for the software package that was se­
lected. The software package will be executed by
the IGIDS operating system as an external or
background process, and the user may then use
graphics-engine commands to present the output
from the executed software package for review.
When appropriate, the output from the software
package will be displayed by IGIDS.

ABBREVIATIONS
Several abbreviations are used throughout this

document. The following list is included here for
the convenience of the reader.

(1) AASHTO - American Association of State
Highway and Transportation Officials

(2) AT&T - American Telephone and Telegraph
(3) CAD - Computer Aided Design
(4) CPU - Central Processor Unit
(5) DEC - Digital Equipment Corporation
(6) DOT - Department of Transportation
(7) ID - identification; the ID is a unique num­

ber defined by IGIDS and is the entry num­
ber or instance number or row number in the
appropriate structure and IGIDS relational
database table

(8) ID_NULL is a "#define" constant which stands,
for an invalid ID and has a value of -1

(9) IGIDS - Interactive Graphics [ntersection De­
sign System

(10) IGrds AASHTO's Interactive Graphics Road-
way Design System

(11) ISAM - Indexed Sequential Access Method
(12) MS-DOS - Microsoft's Disk Operating System
(13) NULL - a pointer to void with a value of

zero which is an invalid address
(14) OSF - Open Software Foundation
(15) OS 1 - Operating System 1
(16) SQL - Structured Query Language

TERMINOLOGY
Several terms have been adopted and used

throughout this document. The following list com­
prises those with specific application to the first­
stage development of IGIDS.

(1) "Graphics engine" refers to the commercial
CAD software package which performs all in­
teractive graphics operations and maintains
the graphics-engine database; example graph­
ics engines include Intergraph's MicroStation
and Autodesk's Autocad,

(2) "Graphics-engine database" refers to the data­
base or external file maintained by the graph­
ics engine; the graphics-engine database con­
tains graphics-engine elements.

(3) "Graphics-engine element" refers to an entry
in the graphics-engine database which de­
fines displayable graphics such as an arc, a
line, and text

(4) "Database engine" refers to the commercial
SQL relational database software package
which performs database storage, retrieval,
and reporting operations and maintains the
IGIDS relational database; example database
engines include Informix and Oracle.

(5) "IGIDS relational database~ refers to the SQl
relational database maintained by IGIDS
through calls to the database engine; it con­
tains the IGIDS relational database tables.

(6) "IGIDS relational database table" refers to a
table or entity within the IGIDS relational da­
tabase; the IGIDS relational database table
contains attributes or columns and instances
or rows; the IGIDS relational database table
is stored and referenced first by instance or
row and finally by attribute or column.

(7) "IGIDS relational database attribute or col­
umn" refers to a single piece of information

.5

stored for each IGIDS relational database
instance or row; the IGIDS relational data­
base attribute or column may also be thought
of as a column heading where every instance
or row has the same information type; the in­
formation type may be an integer value, a
real numeric value, or a character string; each
entry in the IGIDS relational database table
will have to be read to get the value of an
IGIDS relational database attribute or column
for each instance or row.

(8) "IGIDS relational database instance or row'
refers to a single entry in the IGIDS relational
database table which contains the value for
each IGIDS relational database attribute or
column; a single entry in the IGIDS relational
database table will have to be read to get the
value of an IGIDS relational database in­
stance or row,

(9) "Declaration" refers to places where the na­
ture of the variable is stated but no storage is
allocated.

(10) "Definition" refers to the place where the
variable is created or assigned storage.

SUMMARY
The reported research has established a versa­

tile foundation for initial and future development
of an Interactive Graphics Intersection Design Sys­
tem (IGIDS), functional requirements, basic capa­
bilities, and computer program structure for the
system have been defined, Candidate hardware
and software components for support by the se­
lected system have been identified and evaluated,
and suitable examples have been chosen for use
in the first-stage development. An extensive
amount of computer code has been written for
IGIDS to interface an example graphics engine
(MicroStation), database engine (Informix), and
intersection-analysis program (TEXAS Model for In­
tersection Traffic). Provisions have been made for
supporting several other existing and potential
products as the need arises. The research demon­
strates the feasibility of integrating computer hard­
ware and software into a user-friendly interactive
graphics system supporting the intersection de­
signer. Further development of the first-stage
IGIDS system to incorporate user-identified en­
hancements and emerging technology will provide
a practical, productive, and efficient aid for design­
ing new intersections and modifying existing ones.

CHAPTER 2. INTERSECTION DESIGN

OVERVIEW Minimize the Numher 01 Conllief Points

The fact that conflicting traffic movements
share the same area of pavement in an intersection
has long been a concern of the highway designer.
Various methods of maximizing capacity and as­
signing the right-of-way for [raffic in at-grade inter­
sections have been used, but the key element to
every intersection design is con[rolling traffic con­
flicts. The various stages through which intersec­
tion design normally progresses in order to con[rol
these conflicts are discussed here as they provided
a basis for defining the functional requirements for
an interactive graphics intersection design system.

In the literature, different authors present the
levels of intersection design with varying empha­
sis. Leisch [22] covers planning and general design
techniques in considerable depth, NCHRP Report
279 [11] concentrates on conceptual and opera­
tional design of channelization and AASHTO [1]
provides the most detail and up-to-date informa­
tion on operations, concen[rating on final design.
This chapter reviews conventional intersection de­
sign procedures and provides information on
analysis methods. It analyzes the procedures in­
volved in intersection design and describes a
framework upon which an automated design sup­
port system can be developed. Subsequent chap­
ters directly address the intersection analysis pro­
cedures and how they may be applied to IGIDS.

FUNCTIONAL DESIGN PRINCIPLES

The functional design principles of intersection
design 116] describe the overall objecttves of an ef­
fective design. The ptinciples are stated as follows!

1. Minimize the number of points of conflict.
2. Simplify the geometry of conflict areas.
3. Limit the frequency (or duration) of conflicts.
4. Minimize the severity of conflicts.

The principles essentially present intersection
design as the management of traffic path conflicts.
They are expanded upon in the follOwing sections
with descriptive examples where appropriate.

6

The nature of an intersection inherently creates
conflicts in traffic paths. Conflict has been defined
as the demand for a common space on the road­
way by two or mClre users [11]. Conflict points are
therefore the locations of those common spaces on
the roadway created by various traffic paths. The
general types of conflict are crossing, diverging,
and merging. Leisch [22] also includes the weaving
conflict in his description. All are commonly found
at intersection locations as illustrated in Figure 2.1.

The number of conflicts at an intersection
should be limited to only those necessary for its
efficient operation. Their number increase with the
number of legs and allowed movements at an in­
tersection. Reduction in the number of legs or al­
lowed movements will decrease the number of
conflict points.

Simplify 'he Geome,ry 01 Conllief Areas

Roadway geometrics should simplify the con­
flict areas by avoiding unnecessary changes in
alignment, profile or use of more than four inter­
section legs. Simplicity is the key to intuitive driver
understanding of desired paths and interpretation
of traffic control. Geometry and channelization
should compliment the traffic control scheme to
increase driver understanding and reduce the
chance of a collision.

Limi, 'he Frequency 01 ConRicts

Conflict frequency can be reduced by decreas­
ing the number of conflicts or minimizing the
amount of time a vehicle path conflicts with an­
other. An example of decreasing the number of
conflicts is provision of a left-turn lane so turning
traffic no longer slows or stops on a through­
traffic lane. Roadway geometry toat produces a
near-right-angle intersection limits the frequency of
conflict by minimizing the time the vehicles are
subjected to conflicting paths. Figure 2.2 illus[rates
the concept of conflicting paths at two-way inter­
sections.

B. Diver9ing

D. Weaving

C. Merging

Figure 2.1 Traffic paths showing traffic movement types

Minimize the Severity 01 Conflicts

The geometry of an intersection affects the se­
verily of possible collisions. Through traffic should
cross an intersection at near right angles to reduce
the time the vehicle is exposed to the conflict
area. Merging or diverging traffic should enter or
exit at flat angles to prevent excessive speed re­
ductions on the through lanes. The flat angles also
permit merging traffic additional time to select an
appropriate gap which can be of a shorter length
since a merging vehicle is able to adjust to the
speed of the through traffic stream. Similarly, di­
verging traffic movements made at flat angles can
be achieved at speeds near those of through traffic
preventing conflicts due to speed differences.

Leve/5 01 De5ign

Intersection design can be separated into two
basic levels, planning and operational, as ex­
plained by Leisch £221. The operational level can
be further divided into preliminary design and fi­
nal design.

7

Figure 2.2 Conflicting travel path at four-way
two-leg intersection [11]

As a project progresses through these levels,
the degree of detail and the refinement of results
increase. The information required to complete
each level also changes. When approached in a
systematic manner, design can avoid costly rework
by managing inputs and analyses within appropri­
ate limits for the particular level of design per­
formed. The designer must also consider the depth
of investigation warranted in each of the levels of
design as determined by the project's complexity,
cost and value of possible benefits.

The objective of intersection construction or
reconstruction is to solve a problem identified and
defined early in the planning stage. Various alter­
natives are developed and analyzed during the
planning level in order to select two or three that
meet the desired objectives so they can subse­
quently be analyzed at the preliminary design
level. The selected alternatives are expanded and
analyzed to determine the best alternative for sub­
sequent final design-level development. A more
detailed description of information requirements
and design detail is explained in the following sec­
tions. The levels are diagramed to show their rela­
tionships in Figure 2.3.

I Planning level I

I Preliminary Design I

I Final Design I
Opera~onallevel

Figure 2.3 Levell of delign (Ihowlng the chron­
ological relationlhip of the level.,

Planning Level

The overall objective of design at the planning
level is to select two or three design alternatives
from a number of possible alternatives for more
detailed analysis in the preliminary design. Analy­
sis in the planning level must recognize that a
more detailed review will take place in succeeding

8

levels. Preliminary design will be performed only
on the cases selected from the planning level that
meet the established criteria.

The planning level must consider all significant
factors in order to produce satisfactory results.
Planning should provide for expected traffic vol­
umes, service quality, staged construction, drainage
requirements, construction traffic control plans,
constructability, maintainability, special circum­
stances, and coordination with organizations out­
side the designer's own organization. Additionally,
planning should consider construction specification
requirements especially their methods of construc­
tion and payment.

All the alternatives developed in the planning
level are analyzed with respect to established ob­
jectives in order to select two or three for prelimi­
nary plan development, The degree of refinement
of these analyses must recognize that further
analysis is pending, For example, a commonly
used rule-of-thumb for establishing preliminary
cost is that 20% of the construction items (the ma­
jor items) constitute 80% of the construction cost.
Caution must be exercised not to exclude any ma­
jor cost items since this would significantly affect
the outcome of the analysis.

Planning should determine such things as ba­
sic design criteria, physical site data, basic hori­
zontal alignment, traffic volumes, lane use, and
consideration of drainage, environment, construc­
tion traffic control, operations and special circum­
stances. Details of the procedure are discussed in
the section entitled Design Procedure.

Operational level

The operational level of design is intended to

develop more refined details of the intersection
design alternatives selected in the planning pro­
cess and produce the construction plans, specifica­
tions and estimate. In the context of this investiga­
tion both preliminary and final design are included
under the operational level. An important consid­
eration is to adapt the refinement of information
required to its particular level of design to avoid
rework or redundancy, thereby optimizing the de­
sign process without sacrificing the quality of the
design. The following sections describe both pre­
liminary and final design while outlining typical
levels of refinement used in each case.

Preliminary Design. The objective of prelimi­
nary design is to determine the optimum alterna­
tive from those selected in the planning level for
continued development in final design. The proce­
dure is more detailed than the planning level and
requires additional information with a higher de­
gree of refinement. More numerical analysis is

required as compared to the conceptual analysis
details required in the planning level. Preliminary
design extends the degree of refinement
sufficiently to determine a single selection for final
design development. Care should be exercised to
prevent rework by analyzing only enough detail to
determine the optimum alternative, without ex­
cluding or neglecting significant considerations.
The alternative selected from the preliminary de­
sign level is further developed in the final design
stage.

The designer has a significant amount of infor­
mation already available from the planning level
analysis. The planning level analysis determines
basic design criteria, physical site data, basic hori­
zontal alignment, channelization, design hourly
volumes, movement volumes, right-of-way require­
ments, and basic consideration of drainage, envi­
ronmental concerns, construction traffic control,
constructability, maintainability, staged construc­
tion, specifications, and any special circumstances.
The designer should expand on some of these fac­
tors and develop others as required within the
preliminary design level. Details of the procedure
are addressed in the section Design Procedure.

Final Design. The objective of final design is
to produce the construction plans, specifications,
and estimate from the :llternative selected as a re­
sult of the preliminary design. A significant amount
of information is available from previous work. If
managed efficiently, that information can be used
directly in producing the final design and con­
struction plans without a Significant amount of re­
work or redundancy.

Final design includes complete detailed devel­
opment of geometrics, profile, channelization,
drainage, traffic control (both permanent and for
construction), and payment quantities for develop­
ment of the construction cost estimate. The
amount of detail required varies with the complex­
ity of the intersection design. Sufficient accuracy
and refinement is necessary, however, to satisfacto­
rily develop the details necessary for construction.

DESIGN PROCEDURE

This section details the various steps required
to achieve an intersection design with references
to the levels of design described previously. The
procedure can be used to determine a rational ap­
proach to design which can later be applied to an
automated system. The information requirements
are deliberately managed to provide a quality de­
sign, streamline the process, and prevent rework
or redundancy. Some of the procedures may seem
intuitive, but a detailed description of the process
is necessary to commit to purposeful planning of

9

the actions required in design to prevent unneces­
sary procedures and emphasize those that create a
quality design.

A variety of elements are used to meet the ob­
jectives of intersection design including traffic con­
trol, traffic islands, street closures, roadway align­
ment, auxiliary turn lanes, traffic markings, signs,
and signals. The elements are concurrently consid­
ered with vehicle operation characteristics, driver
beha vior, and safety considerations. Because all
these elements interact to affect the capacity of an
intersection and the quality of its service, design is
achieved through analysis of possible alternatives.
A procedure is suggested in the Traffic Engineer­
ing Handbook [9] for the design of intersections
and repeated here:

L Obtainment and analysis of traffic data to de­
termine design-hour volumes for all through
and turning movements, including future ex­
pansion.

2. Obtainment of physical data for the site, in­
cluding maps showing topography and cul­
ture, and plates showing existing buildings
and those likely to exist in the future.

3. Determination of the location, type and gen­
eral design features of all highways, and
other development, both existing and
planned, in the area which may have a bear­
ing on the design.

4. Preparation of study sketches for several
likely intersection schemes that are suitable
to meet traffic needs and are practical for the
site and design controls.

5. Analysis of alternate schemes and selection of
the better two or more for further study and
for preparation of preliminary plans and pro­
files.

6. Preparation of preliminary plans and profiles
for the alternates selected under step 5.

7. Evaluation of each alternate preliminary plan
with respect to design features, capacity vs.
volume, operational characteristics (including
suitability for effective signing), overall adapt­
ability, maintenance of traffic during con­
struction, and suitability to stage construction.

8. Calculation of preliminary cost estimates for
each alternate preliminary plan, including
land acquisition, clearing the site, construc­
tion, maintenance, utility changes, mainte­
nance of traffic during construction, etc.

9. Calculation of road-user costs and road-user
benefit ratios for each alternate preliminary
plan.

10. Joint analysis of values from steps 7, 8, and 9
to reach conclusions as to the preferred plan.

Table 2.1 Design procedure
(showing the relationship of design levels to the design procedure,

Level Activity

Planning Level 1. Obtain and Analyze Traffic Data
2. Obtain Physical Site Data
3. Determine Location, Type, and Features of

Area and Highways
4. Prepare Study Sketches
5. Analyze Alternates to Select Best 2 or 3

Operational Level
Preliminary Design 6. Prepare Preliminary Plans for Selected Alternatives

7. Evaluate Each Alternative
8. Calculate Preliminary Cost Estimate
9. Calculate User Cost and Benefits

10. Analyze Alternatives and Select Best One

Final Design 11. Prepare Construction Plans, Specifications and Estimate

11. Final design, including preparation of con­
struction plans, specifications, and estimates.

The procedure consists of a multitude of tasks
including traffic volume determination, traffic con­
troL capacity, level of service, construction traffic
control, construction, maintenance and user cost
estimates. All the tasks must be considered concur­
rently during design and many of the tasks are in­
ter-related requiring that the design procedure be
achieved through an iterative process. The process
assumes a design which is analyzed and compared
to other alternatives and the desired service char­
acteristics. An optimum design is selected from the
alternatives investigated. The procedure outlined
above can be classified into the design levels dis­
cussed earlier and illustrated in Table 2.1.

Intersection design can be supported by a bat­
tery of computer software analysis packages and
manual methods specifically developed to provide
a designer with information from which to make
comparisons and decisions. The analysis proce­
dures are combined with manual or computer­
aided-drafting techniques to produce the numerical
analyses and drawings necessary for the design of
an intersection. The design steps are individually
analyzed with references made to the degree of
refinement required within each step in order to
describe the intersection design process. The pro­
cedure will later be used to develop a plan for an
automated design system.

Before proceeding into additional design work
the primary objective is to identify and define the
problem to be solved by the improved intersec­
tion. Is the problem one of capacity, safety, envi­
ronmental concern, a combination of these or
something totally different? This step is intuitive
yet critical in determining the objectives of the
proposed design work. Information at this level

10

should be specific enough to permit analysis of
the alternatives and comparison to the objective (s).

The next step is to establish the basic design
criteria. Table 2.2 lists typical criteria used to
develop intersection design. These criteria can be
established by the individual designer, or by com­
mittee consensus, to help prevent critical changes
to basic values once design has begun. The ensu­
ing design is based on the basic design criteria at
a fundamental level. Subsequent revision to estab­
lished values can create a significant amount of re­
work. To help prevent unnecessary rework some
organizations use a Preliminary Planning Confer­
ence to establish basic design criteria in addition
to collecting other information [35]. The confer­
ence attendees include representatives from vari­
ous departments who can contribute to developing
an informed dedsion.

Table 2.2 Basic design criteria. Typical list of
values to establish before proceed­
Ing to design

Functional Class Intersecting Roadways
Design Year
Design Speed
Present Average Daily Traffic (ADn
DeSign Year ADT
Desired Level of Service (LOS)
Minimum Acceptable LOS
Design Vehicle(s)

The description of the design process is
supplemented with information to identify impor­
tant points and information requirements. The fol­
lowing sections describe each step and relate them
to the level of design in which each exists. The re­
lationship will show the order in which informa­
tion is processed and the degree of refinement
necessary as the design develops. The first three

sections describe procedures whose order can ~;;:

changed or accomplished concurrently. The
primary objective is to make the information avail­
able before continuing into detailed design. The
procedure can be automated to create an effective
tool for the intersection designer.

Obtain and Analyze Traffic Data to
Determine Design Hour Volume (DHV)
and Movement Volumes

The designer needs to acquire the traffic and
turning movement volumes from one of a number
of sources which usually depends on the practice
of the design organization. Traffic information may
be provided from another office within or outside
the organization or the designer may be. required
to develop the information personally. With either
of these two methods, or something in between,
volumes for each leg of the intersection will be
used in design. If current traffic counts are avail­
able, an acceptable means of determining the
design-year volumes will be necessary. Most fre­
quently the design horizon is twenty years.
Growth factor or exponential growth are two com­
mon means of determining the design-year value
for traffic volumes. If volumes are provided to the
designer, they are commonly in the form of future
traffic volumes.

Movement volumes from network planning
studies should not be used in the preliminary de­
sign level of intersections. Movements determined
from the various traffic assignment techniques are
not accurate enough for microscopic analysis of in­
tersection operations. The values derived from
planning studies are more suitable for analysis on
the system level for an entire network rather than
an individual intersection.

Data should be presented in a manner that
specifically defines whether the volumes are
current-year or design-year values. The presenta­
tion style should clearly signify the total values,
movements breakdowns and legs they are associ­
ated with to prevent misunderstanding or use of
improper values on a specific leg. A sketch should
be made with the movement volumes represented
schematically in a clearly-understood manner to
prevent errors. Frequently North is chosen as fac­
ing the top of a sheet or the center line of the ma­
jor roadway is chosen to run from left to right on
the width of a sheet. The roadway names should
be annotated along with the cardinal directions or
a north arrow. This procedure will help to prevent
confusing volumes and legs at a later stage which
could cause rework of the design.

11

Obtain Physical Site Data

There are many sources from which to obtain
site data. The range can be described by an ex­
ample of having a topographical map of the area
at the desired scale provided to the designer at
their request to requiring an on-site visit person­
ally by the designer before developing design al­
ternatives. Indeed the range varies, and different
organizational structures support methods some­
where within the range. This section will not de­
scribe where to obtain the information rather it de­
scribes the type of information necessary in order
to develop design alternatives.

Physical site data should include all elements
within the vicinity of the proposed intersection
that will significantly affect its design. The degree
to which the location of the intersection is already
known determines the definition of vicinity. If the
location is not well defined a preliminary topo­
graphic survey will serve temporarily until more
detailed information is required. Physical elements
such as buildings, roadways, pavements, utilities,
drainage structures, fence lines and other struc­
tures should be included in the topographic sur­
vey. Physical survey control points such as perma­
nent monuments should also be included to
provide a permanent reference for the survey.

Once the information is collected, it should be
mapped to scale so a two dimensional representa­
tion can be established. The scale selected should
match that to be used for development of prelimi­
nary design sketches of design alternatives. Trans­
parent overlays of the design alternatives can be
used to show the relationship of the proposed de­
sign to the existing physical elements.

The Preliminary Planning Conference can be
helpful in determining physical site data. Terrain,
foundation materials, existing right-of-way, utilities,
and existing structures are located and their effects
are determined. Multiple inputs at this level of in­
vestigation are important to prevent subsequent
problems or rework. Inappropriate designs are
ruled out and as many appropriate designs as pos­
sible are proposed for further analysis. The contri­
butions of the group at an early stage are invalu­
able since departmental specialization can provide
important information not easily obtained across
department, geographic or specialty lines. The in­
formation can be extremely valuable to project de­
velopment plans by preventing rework or delays
and encouraging an informed approach to the so­
lution of the problem.

Determine Locationl Functional Class
and General Design Features of Nearby
Roadways and Development That May
Affect Design

Determination of roadway functional classifica­
tion (or functional usage) along with the surround­
ing land use allows the designer to produce an in­
formed decision on the probability of specific
growth rates in determining future traffic projec­
tions and increased capacity. Examination of each
factor allows the designer to analyze the big pic­
ture in relating the intersection to its environment.
The analysis will help indicate what degree of
staged construction should be recommended or
whether ultimate development is required at the
time of initial construction.

Usual sources for determining this information
include state or local network maps, and master
plan studies adopted by the area governments. Of­
ficial documents can be supplemented with private
development plans, however, caution should be
exercised to assure the reliability of the informa­
tion with respect to whether improvements will be
implemented.

Prepare Preliminary Sketches of
Alternatives

Preliminary sketches begin as single-line sche­
matics similar to signal phase drawings that ad­
dress the needs determined by traffic volumes and
site investigation. The Single-line schematics evolve
into required numbers of lanes and their usage. A
preliminary capacity analysis is appropriate at this
stage where average service capacities per lane are
used to determine the approximate number of
lanes that will be required on each leg of the in­
tersection. Through-traffic volumes are assumed to
reverse for the opposite direction of peak flow; so,
the number of through lanes on the same roadway
are equal in both directions. The number of auxil­
iary lanes, however, can be different on each ap­
proach due to turning demand. A staged develop­
ment plan can be investigated at this level
although it will be directly addressed later.

Preparation of the preliminary sketches re­
quires sufficient information to compare each alter­
native to the stated objectives for selection of two
or three alternatives for more detailed develop­
ment. Until reaching the more refined develop­
ment in the preliminary design, preliminary
sketches should be kept to a minimum with only
enough detail to define the intent. Sketches should
be to scale, but "free hand" sketch quality is rec­
ommended by Leisch [221 to minimize develop­
ment time. Typical design elements include

12

channelization, traffic control, pavement width,
lane deSignation, signing, drainage, construction
traffic control plan, and cost estimates.

Intersection angles are analyzed for compli­
ance with functional design principles. Crossing
paths should intersect at near right angles and
merging paths should intersect at flat angles. Con­
sideration of the effects of vertical alignment com­
bined with the horizontal alignment should also be
made at this level for critical or complex designs.

Once one or more basic alignments are estab­
lished the design hour volume (DRV) and move­
ment volumes (left, through, right) are superim­
posed on the diagrams. If the number of lanes are
known service capacity can be determined or if
service capacity per lane is known the number of
required lanes can be determined. Either of these
approaches will establish the plan width of the in­
tersection to determine approximate right-of-way
requirements.

Channelization is a major consideration and
deserves additional explanation. The "Intersection
Channelization Design Guide" [111 provides nine
recommended principles of channelization that are
repeated below:

1. Undesirable or wrong-way movement should
be discouraged or prohibited through chan­
nelization.

2. Desirable paths for vehicles should be clearly
defined by all elements of the intersection.

3. Desirable and safe vehicle speeds should be
encouraged by the design of the intersection.

4. The design of the intersection should wher­
ever possible separate points of conflict.

5. Traffic streams should cross at near-right
angles and merge at flat angles.

6. The design of the intersection should facili­
tate the movement of high priority traffic
flows.

7. The intersection should facilitate its scheme
of traffic control.

8. The intersection should accommodate decel­
erating, slow, or stopped vehicles outside
higher speed through traffic lanes.

9. Safe refuge from motor vehicles for pedestri­
ans, handicapped, and others should be pro­
vided where appropriate.

The report's repeated use of the word "should"
implies recommended usage and not a require­
ment. This author believes its use suggests the de­
sire to provide information guidelines without un­
duly increasing the liability of a designer. This is
caused, it is believed, by the current litigious envi­
ronment of our society.

The guide [ll] continues by providing a list of'
various elements of channelization design used to
achieve the previously stated principles as follows:

1. Designation and arrangement of rrartk lanes
2. Traffic islands
3. Median dividers
4. Corner radii
5. Approach geometry
6. Pavement tapers and transitions
7. Traffic conrrol devices (signs, signals, etc)

A good channelization plan reinforces the se­
lected traffic control devices. The geometry,
channelization and traffic control are all closely
related. Changes in one usuaHy affect the others.
Table 2.3 [11] illustrates the relationship between
the design elements and channelization principles.

Analyze and Evaluate Alternatives and
Select Two or More of the
Better Ones

Analysis of the alternatives developed in the
previous steps should be limited to determining
two or three alternatives that best meet the desired
objective to solve the problem at the intersection.

The Highway Capacity Manual (HCM) [2] de­
scribes a planning-level capacity analysis for sig­
nalized intersections. The procedure provides basic
information related to the suitability of a design
with respect to capacity. The alternative either ex­
ceeds capacity, is near capacity or is under capac­
ity. Stop sign conrrolled roadways can be analyzed
by procedures given in HCM Chapter 10, or all­
way-stop control can be analyzed by the method
proposed by Kyte [171. These procedures are sup­
ported by computer software analysis programs.

The selected planning-level alternatives should
be developed for analysis in the preliminary de­
sign. The designer should resist the temptation to
stop developing planning-level alternatives once
an "obviously" optimum design is reached since
this will suppress achievement of better designs
which may require innovative solutions. General
consideration should be given to financial con­
straints at this level, but they should not be too
detailed since cost will be addressed in the next
level of design development.

Environmental considerations such as air,
noise, water, and wetlands will also have an effect
on the design selected so these items must be
considered in the planning level. The 1990 Air
Quality Bill could have a significant effect on plan
development, especially in areas where air quality

13

standards have not been met. Likewise additional
analysis procedures will be required to- address
surface runoff water quality as proposed by the
Environmental Protection Agency (EPA).

Leisch [221 recommends only overall aspects
be considered at the planning stage, with visual or
mental checks of the more specific aspects,
AASHTO states capacity is one of the most impor­
tant considerations in intersection design [ll. The
priorities and weights of the desired attributes for
use in ranking alternatives can be determined ei­
ther objectively or subjectively. Which ever
method is selected for comparison, the alternatives
developed in the planning level will be compared
to each other and the best two or three will be se­
lected for further investigation.

The selection of the best two or three alterna­
tives is the last activity included in the planning
level. A flow chart describing the procedure to this
stage is provided in Figure 2.4.

Prepare Preliminary plans and Profiles
for Alternatives Selected
In Step 5

Initially the physical site conditions should be
reverified and subsequently expanded upon, espe­
cially for urban projects. Utilities or other physical
elements not previously considered must be ana­
lyzed for their possible impact on the design.
Drainage requirements should be reviewed to con­
tinue development of the basic drainage plan for
each alternative. The profile considered in the
planning level is assigned approximate elevations
that complement the horizontal alignment and
drainage requirements. The drainage plan is con­
sidered in the development of the profile to mini­
mize cost yet function effiCiently. Intersections
usuaUy have flatter grades than the open highway
so additional drainage structures are frequently re­
quired to prevent undesirable ponding on the
roadway, especially when curbs are provided. De­
tailed location of structures, however, is tempo­
rarily deferred until precise roadway widths, cross
section elements and profiles are determined. For
reconstruction projects, the drainage plan is usu­
ally controlled by existing requirements to match
existing profile control points such as driveways,
utilities or adjacent drainage facilities.

Lanes, shoulders, curb, transverse slope and
other cross section elements not established in the
planning level are now determined. Usually the
same cross section information is used in the
analysis of all the preliminary design alternatives
although not necessarily always. The cross section

Table 2.3 Relationship between design elements and channellratfon principles
from "Intersection Channel/ration Design Guide" [11]

Traffic
Prindples Lanes

Prohibit Movements
Define Vehicle Paths
Promote Safe Speeds
Separate Conflicts
Cross and Merge Angle
Facilitate Priority Movements
Facilitate Traffic Control
Accommodate Slowing Vehicles
Safe Pedestrian Refuge

Define Establish
Problem --- Objectives

Nole 1 : Sketches Should Include:
Curvature
Channelization
lanes, Tapers, and Transitions
Curb Returns
Approx Vertical Pro~le
Approx Drainage Str locations
General Traffic Control Scheme
Signs and Pavement Markings

X
X
X

........

Traffic
Islands - X

X

X
X

X

X

Obtain and
Analyze

Traffic Data

Obtain
Physical
Sile Data

Delermine
Area and
Highway
Features

Pavement
Median Corner Approach Tapers/
Dividers Radius Geometry Transition

X X X
X X X X

X X X
X X
X X X

X X
X

X
X X

Prepare
Formulale r--- Planning

~ Alternatives Sketches
(Note 1)

Nole 2: General Analysis Includes:

Satisfaction of Objectives
Estimated Cost
lane RS<::!uiremenb and Usage
Capacity and level of Service
Righl-of..Way Requirernenb
land Use Impacb
lane Continuity
Construction Requirernenb
Environmental Concerns
Consider Special Circumstances

Figure 2.4 Planning levef-cleslgn procedure flow chart

14

Traffic
Control
Devices

X

X

X
X

X

Analyze
Alternatives

to Select
Best 2 or 3

(Note 2)

To
Preliminary

Design

information will establish the usual roadway sec­
tion which may be supplemented by auxiliary
lanes, channelization or special transit facilities.

Consideration is also given to use of the inter­
section by traffic other than motor vehicles such as
pedestrians, handicapped persons (for wheelchair
access) and bicycles in continued development of
the design. Common factors include roadway
crossing width for pedestrians, wheelchair ramps
and sidewalk locations for handicapped persons
and special lane designations for bicycles.

The channelization developed in the prelimi­
nary sketch should be reviewed and described suf­
ficiently to provide a clear representation of the
intersection. The principles of channelization
should be followed. Channelization design should
meet the objectives of optimizing the operational
quality of the intersection, increasing its safety by
minimizing accidents and decreasing accident se­
verity.

Evaluate Each Alternative with Respect
to Desired Features

Operational characteristics are analyzed to de­
termine speed requirements of the turning move­
ments. High-volume turning movements should be
given specific consideration. High speed turns re­
quire large radii and should be designed for op­
erational speeds which approximate 0.7 of design
speed. Low-speed turns (speed less than 10 mph)
require pavement edge designs to accommodate
vehicles operating at their minimum turning radii
and maximum off tracking paths. The decision
should be made on which type of turn to accom­
modate. High-speed turns typically require more
right-of-way and channelization to define the de­
sired vehicle path. Low-speed turns, however, pro­
vide lower capacity and cause vehicles to slow be­
fore turning, thus affecting safety by causing
differences in operating speeds. Once the decision
has been made which type of turn to provide, the
intersection radii, turning roadway widths and su­
perelevation rates can be established.

The geometric design of intersection radii,
turning roadway widths and superelevation rates
can be established once the speed-curvature infor­
mation is determined. The preliminary plan level
should detennine the magnitude and geometric lo­
cation of the radii to analyze affects to the site but
survey quality locations are usually not required
until the final design stage. Vehicle turning tem­
plates and AASHTO policy [1] are used to deter­
mine intersection radii for the design vehicle. The
results should be accurate enough [0 represent the
intersection design alternative in a scaled drawing

15

so effects of the topography, roadway alignments
and right-of-way can be determined.

An initial review of right-of-way requirements
should be performed before proceeding further.
The review is intended to use roadway alignments,
lane configurations, widths, channelization and
border requirements for establishing the approxi­
mate right-of-way lines so the effect on physical
site elements can be analyzed. At this level the
right-of-way analysis should be used to identify
significant elements requiring adjustment. Recom­
mended clearances are used in approximations
since the precise locations of right-of-way lines
will be determined upon identification of the alter­
native selection for final design. At this level the
right-of-way analysis is primarily used to identify
problems that affect further plan development. In­
spection should include ground level, underground
and overhead obstructions, any of which can affect
design. The designer may typically want to be
within five feet of the final right-of-way location.

Construction traffic control should be evalu­
ated next especially if the intersection involves re­
construction of an existing facility. Provisions must
be made to provide for existing traffic either
through or around the construction area. The con­
struction traffic control plan (TCP) accounts for
traffic patterns and construction phases to provide
for concurrent activities in the travel lanes and the
construction area. The simplest TCP is to provide
an alternate route, detour traffic and close the in­
tersection during construction. The analysis should
determine if the additional traffic on the detour
route will degrade the quality of service or safety
considerations beyond an acceptable limit. De­
tours, however, are frequently not possible and it
may be necessary to allow traffic through the in­
tersection area during construction. A traffic capac­
ity analysis is recommended to assure acceptable
quality of service is achieved. Many methods are
used to accomplish a TCP including staged con­
struction, realignment of traffic lanes, narrowing
lanes, over-constructing [0 provide additional room
for lanes, modifying signal timing, night construc­
tion, and others. Different geographic areas may
have preferences for methods that work in their
particular applications. Various methods may be
justified to accommodate the TCP. If necessary,
each procedure can be included in the economic
analysis of the particular design alternative. Since
the TCP itself can have alternatives it is possible to
get multiple TCP alternatives for each intersection
design alternative, for example, alternative Design
1 with TCP alternatives a, b, and c, and alternative
Design 2 with TCP alternatives d, e, and f.

Once the geometric layout of the intersection
is decided, the designer can proceed to a prelimi­
nary design of the permanent traffic control and
perform an operational analysis to determine the
level of service (LOS). This step applies to all traf­
fic control schemes to some degree but is usually
emphasized for signalized intersections. The traffic
signal timing plan is designed using traffic vol­
umes, lane designations and movement volumes,
which have already been established. Manual
methods, charts, and computer software are fre­
quently used to support signal timing design. With
the data, the ratio of green time to cycle length
can be calculated, so the capacity and level of ser­
vice (LOS) of each approach can be determined.

A more detailed investigation of right-of-way
requirements is now in order. The designer should
be able to determine' whether the design alterna­
tive will fit within proposed right-of-way limits or
determine the amount of right-of-way required to
construct the alternative. A second review of the
construction traffic control requirements is also
recommended especially if construction will be ac­
complished under traffic conditions. The second
review is intended to identify and solve any prob­
lems with the geometric features developed since
the earlier review. The second review should be
more in depth than before.

Although safety is always a consideration of
design, a deliberate review for safety aspects is
warranted and should be undertaken at this stage.
The channelization principles discussed earlier in­
clude some safety criteria and now that the design
alternative is nearly complete, an overall safety
analysis can be performed. Since many of the
channelization principles apply only to specific ar­
eas of interest, the 'Overall configuration of the in­
tersection should be investigated and rated once
the complete geometry is determined. This step
becomes even more critical when complex inter­
sections, higher speeds, or a high degree of
channelization are proposed. A three-dimensional
analysis supported by manual drafting techniques,
computer-aided drafting or mental images can be
utilized to help discover sight obstructions, compli­
cated channelization or other detrimental features
occasionally designed into a complex intersection.

Additional intersection elements should be de­
signed before continuing such as basic signing,
pavement markings, and lighting. The amount of
detail required to establish the designs should sup­
port the preliminary nature of developrpent to this
point. Sufficient information is necessary to deter­
mine a reasonable cost of the work.

16

Prepare Preliminary Cost Estimates lor
Each Alternative

Preliminary cost estimates should include con­
s~ruction and operational costs to effectively com­
pare preliminary design alternatives. Construction
costs should include right-of-way, right-of-way
preparation, and construction specification items.
Operational costs should include maintenance
items such as overlays, crack sealing, and miscella­
neous items such as power requirements for light­
ing and traffic control systems. The time period for
the operational costs may also be needed to amor­
tize dollar values in the selected economic analysis
procedure.

Determine User Cost

User costs are usually associated with intersec­
tion delay determined in capacity analysis and a
unit cost or value of travel time related to fuel
consumption, vehicle depreciation and mainte­
nance. User cost can also include collisions or
more conceptual costs such as traffic fatalities,
aesthetics, or community values. A value can be
determined per unit of measurement so the total
user cost can be calculated for each design alter­
native. The total values are then associated to their
respective design alternative for analysis in the
next step.

Perform Joint Analysis 01 Values from
Steps 7, 8, and 9 and Determine 8est
plan

The preliminary design for each intersection
design alternative is now complete enough for
economic analysis. Design has determined quanti­
ties of construction items. Capacity analysis deter­
mined user benefits in reduced delay, expected re­
ductions in accidents, or other measurements and
an estimate of the operation costs can be estab­
lished. The benefit-to-cost ratio (b/c) , eqUivalent
uniform annual cost (EUAC), or present worth
(PW) economic analysis procedures can be used to
assign an objective value to each intersection de­
sign alternative for economic comparison. Any
number of analysis procedures can be selected.
Some organizations have requirements regarding
which method should be used. The objective,
however, is to use a common measurement device
to compare multiple alternatives in order to select
the most effective solution. The desired objective
may influence the selection of an economic

.,-)

analysis procedure. The alternative selected by lfie
comparison is the design that will continue into
the final design level to develop the construction
plans specifications and estimate for the intersec­
tion.

The results of the economic analysis will yield
a single selection for development in the final de­
sign level. It is recommended that once this infor­
mation is available any additional right-of-way re­
quired for construction should be described
sufficiently for acquisition procedures to begin.
Since right-of-way requires a significant time pe­
riod to acquire, the procedure should begin as
soon as possible. Once a preliminary design alter­
native is selected for final design development all
the necessary information is available to proceed.
It is also possible that the appropriate information
such as intersection location and right-of-way re­
quirements is determined at an earlier stage. Right­
of-way acquisition, which includes plans of re­
quired right-of-way, legal descriptions, and
appropriate surveys, should begin at the earliest
possible opportunity. Immediately following selec­
tion of the optimum preliminary design alternative
is probably the latest time project development
would like to begin the process. Caution should

2 ar 3 Prepare Selections
from r--- Preliminary r--Plans Planning (Note 1) Level

~

Note 1: Evaluation Indudes:
Construction Methods
Construction Control Plan
Capacity and Level of Service
Coordination with Nearby Intersections
Benefit and Cast Analysis

Calculate
Preliminary

Cast
Es~mates

Calculate
User Cost

and
BeneFits

Combined Horizontal and Vertical Alignments

r--

be exercised in proceeding too early before sub­
stantial information is available to prevent prema­
turely acquiring too' little right-of-way. This is
especially important for' urban construction in
densely populated areas where right-of-way costs
can be very high. For rural projects where right-of­
way is usually less costly, a more conservative
view can be taken in acquiring sufficient area for
future development.

The selection of the best alternative is the last
activity included in the operational level for pre­
liminary design. A flow chart describing the proce­
dure to this stage is provided in Figure 2.5.

Final Design of Selected Alternative

The objective of the final design level is to de­
velop the plans, specifications and estimate
necessary to construct the proposed improvements.
The information developed in the preceding levels
is expanded upon to develop the design without
rework or redundancy. The 1990 AASHTO Policy
on Geometric Design of Streets and Highways [lJ
provides a very good description of requirements
for geometric design and serves as a good

Evaluate Prepare Alternatives Ta

r....- and Select --- Planning

---- Final Sketches
the Best One (Note I) Design

(Nole 2)

Note 2: Preliminary Plans Indude:
Righklf.Way Requirements
Land Use Considerations
Graphically Sketch Horizontal Alignment to Scale
Graphically Sketch Vertical Alignment
Use Approximate Elevations
Cross Section and Related Informatian
Drainage Plan
Pedestrian, Wheelchair, and Bicycle Items
General Construction Traffic Control Plan

Figure 2.5 Operational level-design procedure flow chart for preliminary design

17

reference for recommended practice. The principal
aspects are discussed in the following paragraphs.

The preliminary design of the intersection has
established the intersection configuration. The in­
formation will be used to develop details
necessary for ultimate development. A review of
the existing physical features at the site is appro­
priate at this stage to assure that the design con­
forms to expected results. A review of significant
details in the design is also recommended because
it is much easier to make corrections here than at
any later stage. A conceptual yet deliberate overall
review will be time well spent.

Before proceeding to more details the designer
should consider special or unusual conditions and
how they may affect the final design of the facil­
ity. Special notes can be made for later reference
once design of affected elements is reached.
A general perspective of the intersection is helpful
in determining effects from unusual conditions.

The alignment established in the preliminary
design level was essentially determined by graphi­
cal procedures. It is necessary to detlne the align­
ment with coordinates so additional features and
elements of the intersection can be related to the
survey center line(s). The center line should be
referenced to permanent monuments with either a
State Plane Coordinate System or relative project
coordinates depending on the complexity of the
construction and the needs of the designer. Bear­
ings or azimuths are calculated for individual
alignments. Horizontal curvature is also described
once overall tangent alignments are established.
Horizontal points of intersection (PI's), points of
tangency (PT's), points of curvature (PC's) and if
necessary points on tangent (POT's) are located by
coordinates and referenced to the center lines by
station. The horizontal control of the intersection
is an important component of the design because
many design elements are referenced to it. Ex­
treme care should be exercised in assuring proper
descriptions are made or a substantial amount of
work may have to be redone later.

Construction materials affect some of the de­
sign elements therefore it will be necessary to de­
scribe some materials in sufficient detail for design
to continue. The paving material and type of curb,
for example, affect the location of the pavement
edges. Concrete pavement is typically placed to
the back of the curb while asphaltic concrete
pavement can be placed to the inside or outside
edge of the curb or somewhere beyond the back
of the curb. Precast elements such as inlet boxes
may require additional pavement area ·or special
pavement considerations. Consideration and delib­
erate review will help to prevent rework of af­
fected areas. at a later stage.

18

The cross section developed in the preliminary
design level is used to· develop the horizontal and
vertical (profile) control of the intersection. Once
the designer has established the cross section ele­
ments they can be used to define the locations of
pavement edges. Those edges not parallel to the
center line should be defined with sufficient detail
to accurately describe their location. Frequently
pavement edges are not parallel to the center line
near intersections due to pavement tapers, auxil­
iary lanes, channelization, drainage structures, or
transit facilities. Since it will be necessary to later
investigate pavement edge profiles, the location of
the edges should be defined with respect to the
alignment center line or profile grade line. Al­
though pavement edge elevations are frequently
shown in intersection plans, their profiles should
be reviewed especially if not specifically provided
in the construction plans to assure smooth lines
and grades that drain. The pavement edge align­
ments will also serve in construction staking for
curb and gutter placement or to define pavement
limits.

Median and turn-island edges are located for
reasons similar to those for pavement edges. For
curbed islands, it is necessary to designate curb lo­
cations, while for unpaved or flush islands it is
necessary to define the pavement edges for con­
struction staking. Various methods can be used to
locate the islands, but whichever are chosen, the
plan presentation style should provide a complete
yet concise representation of the layout for con­
struction. Station and offsets to the center line are
frequently provided since alignments have been
previously established with survey monuments.
Tabular presentation can also be used to help pre­
vent cluttering the design drawings with additional
text Standard designs from a detail sheet are fre­
quently not practical since alignment of
channelization is specific to a location and does
not lend itself to standardization.

The design then proceeds to the vertical con­
trol elements of the geometric plan. The center
line vertical profile is designed to provide suffi­
cient sight distance, drainage, driving comfort, and
to match existing conditions when necessary. The
vertical control elements should complement the
horizontal control elements, as described in the
AASHTO Policy 111, to prevent undesirable lines of
sight or hazardous conditions. Design of the verti­
cal profile should also account for drainage, exist­
ing physical requirements, and the interaction of
the roadway cross slopes on the various intersec­
tion legs. The intersecting roadways' profiles and
cross slopes frequently form warped planar sec­
tions different from their typical roadway sections.
A constant cross section through the intersection is

',it!
not required, but a smooth plane is necessary for?
satisfactory operation, rideability and safety. When
all the intersection legs cannot be accommodated
with their usual cross sections the major roadway
controls. The center line profile grade, cross slope,
superelevation, and pavement width are used to
determine the profile of the pavement edge. Pave­
ment edge profiles are established from calculated
values and smoothed to provide a desirable profile
for drainage and aesthetics. They should conform
to minimum or desirable drainage requirements to
minimize runoff ponding within the vicinity of the
intersection.

Once pavement elevations are determined the
drainage structures roughly located in the prelimi­
nary design stage are permanently located to
prevent undesirable encroachment of flow along
the pavement edge onto the driving lanes. The in­
let structures should be spaced as needed along
profile tangents and at pavement low points
(sumps). The connecting conduits are subsequently
located to minimize material, labor and effects to
existing underground facilities such as utilities.
When locating these elements consideration should
be made for other ground penetrations not yet de­
signed such as other storm drain networks, relo­
cated utility services, or foundations for signals,
lighting, and large signs.

The size of the drainage inlets and conduits
are determined next. Since intersection design usu­
ally involves smaller drainage areas Oess than 300
acres) the Rational Method is usually used with
appropriate runoff coefficients and times of con­
centration. When the conduit sizes and top of inlet
and outlet elevations are determined, the design of
the underground system can proceed to determine
invert and soffet elevations for inlets, junctions,
and conduits. Clear cover over pipe conduits is
frequently a critical consideration. Standard pipe
sizes are recommended for economic reasons but
odd sizes, arch or elliptical pipes can be used for
critical situations. Different bedding methods can
be used to strengthen conduits that are located
near the surface to strengthen them but these
methods should be avoided when possible for
economic reasons. Excavations in excess of five
feet of depth require a positive means of trench
protection from cave in during construction. Vari­
ous methods can be employed such as shoring,
movable box protection, or laying back the exca­
vation slopes where soil conditions and space per­
mit. An economic analysis of the alternatives may
be necessary for large drainage systems or com­
plex situations with substantial savings potential.

The traffic control scheme determined in the
preliminary design level should be finalized. Traf­
fic signal control is the most complicated method

19

and it will be addressed here since stop or yield
control methods principally involve sign placement
and pavement marking. The major elements of the
signal design after the signal timing plan has been
decided are the determination of mast arm lengths,
and locations of supports, controller cabinet, con­
duit, junction boxes, pull boxes, and traffic detec­
tors where applicable. Many of the installations are
underground and must be coordinated with loca­
tions of other underground components. Since
mast arms increase in cost with increases in
length, if a signal support foundation conflicts with
another underground element it may be best to re­
locate the other element depending on the cost
differences. Conduit runs are relatively inexpensive
to construct before pavement materials are placed
so conservative estimates on the amounts or sizes
needed are usually cost-effective over the life of a
facility. The conduits are relatively fragile, how­
ever, when confronted with the types of equip­
ment used in highway construction. When con­
structed early in the project they should be well
referenced and marked. Conduits destroyed by
construction operations and not replaced before
paving will require a great deal more effort and
cost to be replaced. Recommended maximum run
lengths between junction boxes or pull boxes
should be adhered to so problems do not develop
when placing electrical conductors.

Intersection appurtenances include such items
as fixed source lighting, bus stops, sidewalks, and
wheelchair ramps. Lighting is the most important
of these features because it involves safety.
Isofootcandle templates are available from lighting
manufacturers for use in determining the locations
of lighting supports. A print of the plan view and
appropriate illumination templates are used to as­
sure sufficient coverage by the light sources.
Power cables are designed for specific loads and
run lengths. They can be underground or over­
head. Care should be exercised in locating the
light poles to minimize the probability of being
struck by an errant vehicle. The 1990 AASHTO
Policy [1] recommends that break-away light foun­
dations not be used in busy commercial areas es­
pecially when significant pedestrian traffic is ex­
pected since the secondary impact caused by a
falling light support could create more damage
than the initial impact with the vehicle. Bus stops,
sidewalks and wheelchair ramps should be closely
coordinated since they all affect pedestrian traffic.
Their layouts should complement each other.

Interfaces and interactions between design ele­
ments should be investigated to help prevent
problems especially during the construction or op­
eration stages. Since typical conditions are fre­
quently used in design, interfaces of dissimilar

components or materials are somelimes over­
looked. A deliberate effort should be made (0 as­
sure elements or components connect, react, or
abut correctly. A typical example may be the
specification of a joint seal material that is incom­
patible with the pavement. The two should have
been considered simultaneously for compatibility.

Miscellaneous items typically involve project
specific requirements that enhance the intersection
yet may not significantly affect its operations or
safety. A regional or municipal requirement may
create additional construction items not typically
considered in intersection design. Municipal fran­
chise agreements with utilities may require addi­
tional empty conduits be placed with any utility
modifications. Significant increases in underground
placements could affect clearances between
fa cilitie s.

Once the design is complete, the payment
quantities should be calculated for the purpose of
inclusion in the construction cost estimate. Quanti­
ties determined in the preliminary design level are
helpful to assure that major items are not omilled
from the final design quantity estimate. Addition­
ally, approximate quantities measured by scaling
or similar means can be prepared as the different
segments in final design are completed. The ap­
proximate quantities are useful for updating the
preliminary design estimate on a regular basis and
as a check of final calculated quantities at the con­
clusion of the plan work. A methodical approach
is used to prevent duplication or omission of
quantities for payment. Estimates tabulated by plan
sheets, sections, work divisions or functions can
be used. An automated computer-based procedure
is helpful in preventing math errors and transpos­
ing data. The presentation format for the estimated
quantities varies, but a summary of the quantities

20

by location is useful in determining material re­
quirements and identifying discrepancies between
field measured quantities and office estimates.

Once all the information is compiled, it can be
transferred to the contract documents. The Texas
Department of Transportation utilizes an auto­
mated system for transferring information from the
estimate prepared in the design stage (0 a plan
sheet format of estimated unit quantities.

The completion of the contract documents is
the last activity included in the operational level
for final design. A flow chart describing the proce­
dure (0 this stage is provided in Figure 2.6.

SUMMARY OF INTERSECTION DESIGN

Intersection design basically is the manage­
ment of traffic conflicts in the intersection area by
providing appropriate geometric and traffic control
features. It progresses through different levels of
design where, at the planning level, the number of
considerations is initially very high and attention is
given mostly to generalized details. As design pro­
ceeds to the operational level, the number of con­
siderations is somewhat reduced, but the level of
detail required for each consideration increases.
The conclusion of operational level design is final
design where individual considerations are ac­
counted for in great detail.

If managed in a deliberate manner, design in­
put and output progress (Oward the end result effi­
ciently while minimizing rework or redundancy in
the process. To support the engineer in various
phases of the intersection design and decisi'on­
making process, the development of a computer­
aided interactive-graphics system has been initi­
ated. Details of the cO!llponents of this system are
addressed in subsequent sections of this report.

Ufo n vora bl R . e eVlew

t I
Selection Overall

from
f------

Review of
Preliminary Selected

Design Allernative

Nola \: Definition Includes:
Pavement Edges
Curbs
Medians

. Islands

Prepare
Fram

Figure r... Plan and
PraFile

2.6a
Sheets

Nate 3. Appurtenances Include.
lighting
Sidewalks
Wheelchair RamI»
Bus Staps
Olhen as Required

F r- avora bl R' ;j e eVlew··"'.

Analyze and
Calculate

Coordinate
Note Special Geometry of

Circumslances - Horizonlal
In Consider Alignment

Adjust
Harizonlal

and/or
Verlical

Alignments

Nate 2: Evaluatian Includes:
Sight Dislances
Drainage Requirements
Match Existing Where Necessary
Complement Horizonlal Alignment

Locate Size and
~ Drainage ---- De~ign

Structures Drainage

Complete locate
Traffic r---- Traffic
Cantrol Control
Scheme Equipment

locate
and Design

Appurtenances
[Nate 31

Define
Calculate
Vertical

r--- limits of Alignment
Construction and Verify

(Note \)
(Note 2)

Evaluate
Horizonlal

Unsatisfoclary
and Verlical
Alignment

Evaluation Combination

Sotisfoclory
Evaluatian I

To
Figure
2.6b

Prepare Final

r'-
Construction

Cost
Estimate

Account far all
Construction

:--- Work wilh r----
Cantract

Payment Iiams

Assemble
Canstruction

~ Plans,
Specifications,
and Estimate

figure 2.6 Operational level-de.lgn procedure flow chart for final de.ign

21

CHAPTER 3. IGIDS SYSTEM DESIGN

GRAPHICS ENGINE

Several good graphics engines (CAD software
packages) which operate on popular workstations
are available from different manufacturers. Each
provides an interface with selected workstation
hardware and has numerous command~ to create,
display, modify, manipulate, delete, save, and plot
graphical data. The CAD software packages gener­
ally maintain an external graphics-engine database
containing graphics files which may be saved from
session to session. The CAD software packages
also provide functions for reading and writing vari­
ous standard graphics-engine database exchange
formats. These CAD software packages are being
constantly enhanced and corrected by a permanent
staff of programmers in response to user requests.
IGIDS software has been developed, or wi1l be de­
veloped, to interface with chosen graphics en­
gines.

Several criteria were established for choosing
graphics engines with which to interface IGIDS.
The graphics engine would have to (1) offer a
higher-level language, real-time interface so that
the IGIDS software could operate above and drive
the graphics engine software, (2) allow IGIDS to
take control of the interactive graphics worksta­
tion, (3) allow the user to switch easily between
executing IGIDS command .. and graphics-engine
commands, (4) provide plotting capabilities to nu­
merous plotter devices, (5) be used by many state
DOTs and by many design professionals, (6) oper­
ate on several moderately-priced workstations from
different manufacturers, and (7) have a graphics­
engine reference database capability. IGIDS makes
calls to defined generic graphics functions. A li­
brary of generic gra phics functions has been, or
will be, developed for each selected graphics en­
gine. The graphics engines chosen for IGIDS are
Intergraph's MicroStation and Autodesk's Autocad.
First-stage development has been on Intergraph's
MicroStation.

22

DATABASE ENGINE

A number of database engines (SQL, relational
database software packages) which can operate on
popular workstations are available on the market.
Each provides an interface with the workstation
operating system and the on-disk storage. The SQL
database software packages maintain an external
database engine containing the data which may be
saved from session to session. In developing
IGIDS, interfacing software has been written to ac­
cess selected database engines.

The criteria that were established for choosing
candidate database engines required that such an
engine would (1) offer a higher-level language,
real-time interface so that the IGIDS software
could operate above and drive the database en­
gine software, (2) be compatible with the graphics
engines interfaced to IGIDS, (3) allow IGIDS to
take control of the interactive graphics worksta­
tion, (4) allow the user to easily switch between
executing IGIDS commands and database engine
commands, (5) provide reporting capabilities to
numerous output devices, (6) be used by many
state DOTs and by many design professionals, and
(7) operate on several moderately-priced worksta­
tions from different manufacturers. For IGIDS a list
of generic database functions which perform the
requested database operation has been, or will be,
developed for each selected database engine. 1lle
database engines chosen are Informix and Oracle.
Initial development has been on Informix.

OPERA'rlNG SYSTEM

Many operating system alternatives are cur­
rently available. Most large computer companies
offer proprietary operating systems developed by
the computer company to operate only on their
own machines, and they often offer operating sys­
tems that adhere to international standard~, gov­
ernment standards, or standards developed by a

consortium of competing computer companie~;:
The operating systems may be designed for batch
operation, on-line transaction processing, real-time
process comrol, and/or interactive operation. The
operating systems may sUppOrl a single user or
mulliple users. They may allow only one process
to be memory-residem and active at one time (ex­
ample: MS-DOS), allow many processes (0 be
memory-residenr and allow the user (0 designate
which process is active (example: Apple's Macin­
tosh MultiFinder), or allow many processes (0 be
memory-resident and allow the operating system
to designate which process is aclive through a
scheduling algorithm so that the processes share
the CPU through mulli-tasking (example: DEC's
VMS and AT&T's Unix). The operating system may
sUPPOrl virlual memory addressing or direct
memory addressing.

The criteria for choosing an operating system
for use by IGIDS included the fact that it would
have to (1) be designed for batch operation and
interactive operation, (2) sUppOrl multiple users,
(3) allow many processes to be memory residenr
and allow the operating system to designate which
process is active through a scheduling algorithm so
that the processes share the CPU through multi­
tasking, (4) support virtual memory addressing
with large real memory, (5) support all graphics
engines interfaced to IGIDS, (6) support all data­
base engines interfaced to IGIDS, (7) support
higher-level language interfaces used by the graph­
ics and database engines imerfaced to IGIDS, (8)
sUppOrl computer software languages used by
analysis programs interfaced to IGIDS, (9) support
the computer software language chosen for IGIDS,
(10) be used by many state DOTs and by many
design professionals, and (11) operate on several
moderately priced workstations from differenr
manufacturers. The operating system chosen for
initial implementation was AT&T's Unix, or a Unix
clone. OSF's OS1 has been selected for support at
a later time.

COMPUTER SOFTWARE LANGUAGE FOR
IGIDS

A computer software language may be (1) an
assembly language where one statement in the
language is translated into one machine instruc­
tion, takes the most language statements to accom­
plish a given task, is designed to operate on one
computer's machine instruction set, and is gener­
ally defined by the computer company manufactur­
ing the computer; (2) a macro language where one
statemenr in the computer software language is
translated into one or more computer machine in­
structions, takes the second most computer

23

software language statements to accomplish a
given task, is designed to operate on one
computer's machine instruction set, and is gener­
ally defihed by the computer company manufactur­
ing the computer; or (3) a higher-level language
where one statemem in the computer software lan­
guage is translated into many computer machine
instructions, takes the least computer software lan­
guage statements to accomplish a given task, is
designed to operate on many computer machine
instruction sets, and is generally defined by an in­
ternational standard.

A higher-level computer software language
called C was chosen for IGIDS. This language can
(1) be supported by all graphics engines interfaced
to IGIDS, (2) be supported by all database engines
interfaced to IGIDS, (3) be supported by the oper­
ating system, (4) be applicable to engineering and
geometric calculations, (5) be a state-of-the-art
computer software language, (6) be defined by an
international standard, (7) allow the allocation and
use of dynamic memory at execution time through
the use of pointers, (8) support 16 significant dig­
its, 64 bit, double precision floating point arith­
metic, (9) support 10 significant digits, 32 bit, inte­
ger arithmetic, (10) support 5 significant digits, 16
bit, integer arithmetic, (11) allow the inclusion of
global variable declarations and definitions from
an external file, (12) allow upper and lower case
characters in input and output records, and (13)
be used by many state DOTs and by many com­
puter software development professionals.

SOFTWARE CODING STANDARDS

Computer software coding standards are
strongly recommended, as they result in computer
code that is consistent, easily understood by an­
other programmer, and easier to maimain. Once a
coiling standard becomes familiar, the programmer
develops an expectation of the manner in which
the computer code should look, and non-conform­
ing items are easily detected.

The standard adopted for IGIDS specifies that
all items in a list should appear in alphabetical or­
der. This standard applies to "#include" statements,
in-line macro definitions, "#define" statements,
function prototypes, "typedef" statements, variable
declarations and definitions, structure declarations
and definitions, union declarations and definitions,
and most other list items. The exception to this
standard is to list items in hierarchical order where
appropriate. This standard has the advantage that
items can be found more easily and logically.

The standard also specifies that each function
should be contained in its own source file and
that the source file name should be a unique sub-

set of the function name. This standard has the ad­
vantage of minimizing the size of each source file,
thus making backup and editing of the function
easier. A programmer may modify a single func­
tion without disturbing others; the function can be
individually compiled; there is a corresponding ob­
ject file for each source file; a single function can
easily be tested; and searching for a string within
all functions will display the source file name
(function name) for each string match, thus
indicating the string usage. This standard has the
disadvantages that the function names are limited
in size by the largest unique file name size (cur­
rently 14 characters on AT&T's Unix), and that the
programmer must potentially edit multiple source
files to change a variable used in multiple func­
tions.

All IGIDS core software global declarations
and definitions should be contained in a single in­
clude source file. A declaration refers to places
where the nature of the variable is stated but no
storage is allocated, while a definition refers to the
place where the variable is created or assigned
storage. This standard has the advantages that
there is only one include source file to maintain, it
eliminates errors caused by differences in declara­
tions, and searching for a string within a single
function or all functions will display only where
the string is referenced or used, as opposed to
where the string is also declared or defined. Addi­
tionally, making a change in the single include
source file will cause all functions which include
that source file to be compiled using the make
command. The authors also decided that all graph­
ics engine software global declarations and defini­
tions should be contained in a single include
source file and that all database engine software
global declarations and definitions should be con­
tained in a single include source file.

All global declarations, definitions, and vari­
ables should be contained in the include source
files. The include source file may contain: "#in­
clude" statements for other include source files
needed by the functions, in-line macro definitions,
"#define" statements, function prototypes,
"typedef" statements, variable declarations and
definitions, structure declarations and definitions,
and union declarations and definitions. Techniques
would be used so that once included in a compile,
the include source file would not be included
again even though it was requested additional
times.

All compiled IGIDS core functions are con­
tained in a single object library. This standard has
the advantages that a single function can be easily
modified and tested without changing the function
in the library, and the linked image contains only

24

the functions called. This standard has the disad­
vantages that the link process may have to include
the object library several times to accommodate
the unsatisfied externals, and the archive command
must be used to replace object files in the object
library. The authors also decided that all compiled
graphics engine functions and compiled database
engine functions should each be contained in a
single object library.

Each function name should begin with "igids_"
and contain a maximum of 18 upper and lower
case characters (6 characters for "igids_" and 12
characters for the rest of the function name). In
addition, the file name for the function's source
file is 12 characters for the rest of the function
name followed by ".c" and the file name for the
function's object file is 12 characters for the rest of
the function name followed by ".0". Finally, there
should be two consecutive blank lines at the end
of the source file and no other occurrence of two
consecutive blank lines in the source file. This
standard has the advantages that the function
name can be descriptive of the operations per­
formed, there should be minimal conflicts with
function names from other software, one can
readily distinguish the IGIDS functions from oth­
ers, the source files may be concatenated into one
large file and later broken into individual files, and
the end of each function is standard and thus can
be easily located while editing. Example function
names are shown in Table 3.1.

Table 3.1 Example function name.

igids_addLegCIKey
igids _ bitset
igids_dbload
igtds_delSegCntrln
igids_ drwarc
igids_errmsg
igids_lansrt
igidsJoadAltLib
igids_moveLegLatcl
tgids_ openInterNew
igids_recreatelnt
igids_search
igids_segswp
igids_selLanOutNxt
igids_set_keyPun
igids_tumTemplate
igids_tx_mdl
igids_vnumdf

Each variable name should begin with a five
character prefix, followed by the name, optionally
end with a four character suffix, and contain a
maximum of 31 upper and lower case characters.
The five character prefix would be a single

character indicating the scope of the variable, faW
lowed by two characters indicating the variable
type, followed by a single character indicating the
dimension of the variable, and terminated with an
"_" character. Each variable that is a pointer would
have the mandatory four character suffix "_ptr" for
pointer to a variable or "_pfn" for pointer to a
function. The single character scope would be: "g"
for global static, "I" for local dynamic, "p" for pa­
rameter dynamic (parameters to the function), as"
for local static, "s" for structure member, "u" for
union member, or "z" for zone. The two character
type would be: "ch" for a single character, "cz" for
character string zero (null) byte terminated, "df"
for double floating point, "fs" for file stream, "si"
for signed int, "sl" for signed long, "ss" for signed
short, "td" for typedef variables, "uc" for unsigned
char, "ui" for unsigned int, "ul" for unsigned long,
"us" for unsigned short, or "vo" for void. The
single character dimension would be "a" for array
or "v" for single variable. This standard has the ad­
vantages that the variable name can be descriptive
of the data storage; a programmer can readily dis­
tinguish the scope, type, and dimension of the
variable and whether the variable is a pointer; the
parameters to a function are treated in a special
manner; and errors in formal parameter types not
matching actual parameter types is reduced. Ex­
ample variable names are presented in Table 3.2.

Table 3_2 Example variable names

gslv _dest_seg..id_num
gstv _intecentry _ptc->sslv _num_alters
gstv _altecentry _ptc->scza_desc
gstv _leg..ent_ptr->ssla_nurn_lanesfLANE_INBI
gstv _lane_ent_ptr->sdfv_ width
gstv _seg.. ent-ptr->ssl v _iosc_nag
gstv _text_ent_ptr->sslv _font
Idfv _initial_angle
Ifsvjile_ptr
Isiv _list_modified
Islv _retum_code
Issv_i
Istv _previous_leg..ptr
Itda_caroslTX_MAX.. CARDSI
luCY_byte
pczv_error_message-ptr
pdfv _sweep_angle
psiv _med_ width
pslv _usecid_num
pucv _ bit_mask_ptr
sczaJue_name[FILE_NAME..NC+ll
ssiv _number_oCoutbound_lanes
sslv _resetfunc_pfn
sssv _save_command_stage
suna_elementf21
ztdv _statedata

25

Each function that could directly detect an er­
ror or call a function that could return an error
must return a signed long error code indicating
successor failure. All other functions could return
nothing (void) or could return a value. A function
that properly completed would return an error
code of "RETURN_SUCCESS", while a function that
detected an error would return an error code of
"RETURN_NON_FATAL_ERROR" for non-fatal (user
recoverable) errors or return an error code of
"RETURN]ATAL_ERROR" for fatal (programming)
errors. A function that called a function that re­
turned an error would deal with the error or re­
turn the error code. It would be the responsibility
of the function detecting the error to issue an ap­
propriate error message and the detecting function
name. It would be the responsibility of a function
that called a function that returned an error to is­
sue the calling function name (i.e. provide a trace
back for the error).

Virtually all constants should be coded using
the symbolic name capability within C. The syntax
of the symbolic name statement is "#define", fol­
lowed by the name, and followed by the replace­
ment string. Subsequent occurrences of the name
in the source code (not in quotes and not part of
another name) are substituted with the replace­
ment string before compilation of the source code
is initiated. Additionally, the name used in the
"#define" statement should be upper case charac­
ters only, all constants used in more than one
function for the same purpose should be defined
in the global include source file, and local "#de­
fine" statement names should be prefixed with
" LOCAL_" . Usages of this feature include dimen­
sions for arrays, index values for arrays, switch
case statement values, function return values, in­
line macro definitions, and state or stage values.

This standard has the advantages that errors
caused by different values being used for the same
purpose are greatly reduced or eliminated, the
meaning of constants is more readily conveyed,
and the source code becomes more self-document­
ing. Additionally, the symbolic name capability
may also be used for in-line macros. The syntax of
the symbolic macro statement is "#define"; fol­
lowed by the macro name, "(", the macro
parameter(s), and H)"; and followed by the replace­
ment string. The authors decided to allow both
upper and lower case characters in the name for
the symbolic macro statement. Example "#define"
statements are illustrated in Table 3.3.

The following statement order and syntax was
chosen for all functions:

(1) u#include" statement(s) starting in column 1
and followed by 1 blank line

Table 3.3 Example HIDefine" Statement,

... define ALTER_DESC_NC (size_O 80

... define AL TER_PROCALT (long)

... define AL TER_PROC_LEG (long) 2

... define ALTER]ROC_TXT (long) 4

... define ALTER_PROC_ALL (long) 7

... define CONCENlRIC_RADIUS_MINIMUM 50.0
#define FILE_NAME_NC (size_t) 127
#define ID_NIn.L (long) -1
#define LANE_INB (long) 0
#define LANE_Our (long)
#define LANE_LEN GTH_MINIMUM 10.0
... define LANE_ WIDTH_MINIMUM 8.0
#define LANE_ WIDTH_MAXIMUM 16.0
#define LOCAL]ILE_NAME_NC (size_t) 127
#define RETURN_SUCCESS (long) 0
#define RETURN_NON]ATAL_ERROR (long)
#define RETURN]ATAL_ERROR
#define max(a,b)

(2) "type function_name (function_parameter(s)"
statement starting in column 1

(3) "type function_parameter; /* comment * I"
statement(s) starting in column 1

(4) "(n in column 1
(5) comment statement(s) starting in column 3

describing the purpose of the function and
followed by 1 blank line

(6) comment statement(s) starting in column 3
describing the global input requirements and
followed by 1 blank line, if required

(7) comment statement(s) starting in column 3
listing the function(s) which call the function
and followed by 1 blank line

(8) comment statement(s) starting in column 3
listing the function(s) called by the function
and followed by 1 blank line, if required

(9) local "#define" statement(s) starting in column
3 and followed by 1 blank line, if required

(0) local structure(s), union(s), and variable(s) in
alphabetical order starting in column 3 and
followed by 1 blank line, if required

(11) function code block(s) starting in column 3; a
function code block includes (a) comment
statement(s) starting in column 3 describing
the purpose of the foHowing code, (b) com­
puter code starting in column 3, and (c) 1
blank line

(12) "return;" or "return (RETURN_SUCCESS);"
statement starting in column 3 if not condi­
tionally returned in the preceding code

(13) 1 blank line, "returnjatal_error:" starting in
column 3, 1 blank line, "igids_detmsg ("
function_name ");" starting in column 3, and
"return (RETURN_FATAL_ERROR);" starting in
column 3, if required

26

(long) 2
(((a)>(b»?(a):(b»

(14) 1 blank line, "return_non_fatal_error:" starting
in column 3, 1 blank line, "igids_detmsg ("
function_name ");" starting in column 3, and
"return (RETURN_NON]ATAL_ERROR)j" start­
ing in column 3, if required

(15) 1 blank line, "return_returned_error:" starting
in column 3, 1 blank line, "igids_trcmsg ("
function_name ");" starting in column 3, and
"return (!slv _return_code);" starting in column
3, if required

(16) "J" in column 1
(17) 2 blank lines

Within the function code, 2 spaces would be
used for indention. No tab characters would be in
the code. The standard maximum line length
would be 80 characters for functions and include
source files. The comments for lines within include
source files may be extended to 132 columns. The
opening "{" and closing "I" for the "do", "for", "if',
"switch". and "while" statements would start in the
same column directly below the first character of
the "do", "for", "if", "switch", or "while" statement
and all code between the opening "{" and the
closing "J" would be indented 2 spaces. The open­
ing "{" and the closing "}" would be used even
when there is only one statement between them
except an "if' statement without an "else" that
does not exceed the standard maximum line
length. The "else" for the "if" statement would start
in the same column directly below the first charac­
ter of the "if". The following is an example of a
nested "if" and "else":

if (aaa == bbb)
{

if (ccc == ddd)
{

www = XXX;

else
(

www = yyy;

zzz = C3.0·www) + 0.5;

The "switch" and "case" statement is preferred
over the "if' and "else" statement when there are
more than 2 choices. The "case" and "default" for
the "switch" statement would be indented 2 col­
umns below the first character of the "switch'
statement. The code and any "break;" statementCs)
would be indented 2 columns below the first char­
acter of the "case" or "default" statement. The fol­
lowing is an example of a "switch" and "case":

switch Cpslv _function)
(

case FUNCT_ADD_DBE:
Islv _return_code = igids_alter_add_dbe 0;
if CIs Iv _return_code != RETURN_SUCCESS)
{

goto return_returned_error;
}

break;
case FUNCT_CPY_DBE:

Islv _return_code = igids_alter_cpy-dbe 0;
if CIslv _return_code != RETURN_SUCCESS)
(

go to return_returned_error;
)

break;
default:

sprintf (gcza_err_msg,
"Undefined function" %Id",
pslv _function);

igids_error C gcza_err_rnsg)j
goto return_fatal_error;

For statements within a block of code, the "="s,
";"s, and any comments at the end of a line should
be aligned if reasonable. There should be no
blank space before the ";" statement terminator un­
less needed for alignment. For a statement contin­
ued onto another line, the continued IineCs) would
be indented a minimum of 2 columns and prefer­
ably lined up with the first parameter following a
"C", "=", or "+". The following are examples of
these computer software coding standards:

Islv _se&-id_num = gslv _se&-id_num ;
I· save global id num ·1
Islv _id_num_blink = Islv _se&-id_num ;
I· set .local blink ·1
sprintf C gcza_err_msg,"Undefined function" %Id",

pslv _function);
!dfv _dx .. gstv _se&-ptr[Is!v _se&-id_numl.sdfv _be&-x

-ldfa_reCe nd_x[lsiv _endl

There should be no blank spaceCs) at the end
of any line. For comma separated lists of argu­
ments, there should be no blank spaces before or
after the comma unless needed for alignment
purposes, whereas for comma separated state­
ments, there should be 1 blank space before and
after the comma. For the separating ";" within the
"for" statement, there should be 1 blank space be-

. fore and after the H;". Finally, there should be 1
blank space before and after an opening "C" and
the closing ")" while there should be no blank
spaceCs) before or after the opening "[" or the
closing "1" unless needed for alignment. Function
references which do not have parameters would
not have any space between the "C" and the ")" as
in "0". The following are examples:

27

Islv _return_code"igids_intchk COI,gslv _dim_inters-I);
for CIsiv_i=O, Isiv_j=O; Isiv_i<lsiv_n; Isiv_i++,1sivj-)
Isla_ref_id_num[LOCAL_SEG_BEGl=gslv_se&-id_num;
Islv _return_code = igids_segsta 0;

IGIDS keeps the entire IGIDS relational data­
base in memory within the IGIDS software so that
no disk 1/0 will be involved in reading a data
item, thus making the software operate as fast as
possible. Each IGIDS relational database has a cor­
responding structure within IGIDS with an instance
of the structure for each entry or row in the IGIDS
relational database table. Each IGIDS relational da­
tabase attribute or column within an IGIDS rela­
tional database table would have a corresponding
variable within the structure. Because of this last
requirement, variables of type "int" should not be
used because the number of bytes for an "int" can
be different from workstation to workstation. Each
structure and IGIDS relational database table
would contain an attribute or column which indi­
cated whether the entry or row had been modified
since the last time that the internal copy of the
IGIDS relational database was written to the exter­
nal copy. IGIDS would allow the user to select be­
tween updating the IGIDS relational database after
each command or at user requested times.

Many computer software languages, including
C, support the concept of a structure. A structure
is a collection of one or more variables, possibly
of different types, grouped together under a single
name for convenient handling. Structures are
called "records" in some computer software lan­
guages. Structures help to organize complicated
data because they permit a group of related vari­
ables to be treated as a unit instead of as separate

enlltles. The variables named in a structure are
called members. The liberal use of structures is
strongly supported by the authors.

Some higher-level computer software lan­
guages require the declaration of all variables at
compile time and thus have a fixed maximum
problem size, whereas others, including C, allow
the allocation and use of dynamic memory at ex­
ecution time through the use of pointers and thus
the maximum problem size is limited only by the
virtual address space available from the operating
system. This execution-time allocation and use of
memory was established as one of the criteria for
choosing a higher-level computer software lan­
guage for use by IGIDS. The liberal use of
execution-time allocation and use of memory is
strongly supported to generate what might be
called dimensionless programming.

At compile time, IGIDS declares a pointer to a
structure, a variable for the current allocation of
instances of the structure, and a variable for the
current use of instances of the structure. Since all
reference to the structure is through the pointer,
IGIDS can change the value of the pointer at ex­
ecution time to reference different areas of
memory. During the initialization phase at execu­
tion time, IGIDS requests the operating system to
allocate memory for an initial number of structure
instances, say 20, set the pointer to the address of
this initial memory, set the rurrent allocation to 20,
and set the rurrent use to O. During normal execu­
tion, IGIDS uses these instances until there is a
need for the 21st instance. IGIDS then requests the
operating system to allocate memory for a new
number of structure instances, say 30, copy the
data from the 20 instances into the first 20 in­
stances of the 30 instances, sets the pointer to the
address of this new memory, returns the memory
occupied by the original 20 instances to the oper­
ating system for further allocation, sets the rurrent
allocation to 30, and allows the program to con­
tinue. This process can be repeated until the vir­
tual address space available to IGIDS is exhausted.
The amount of virtual address space available to a
process can normally be set within the operating
system and the maximum is generally 1 to 4 bil­
lion bytes. The advantage of this technique is hav­
ing virtually no limits within the program. The dis­
advantages of this technique are the increased
execution time because of pointer addressing as
opposed to direct addressing, the increased execu­
tion time because of the need to check the alloca­
tion each time another instance is needed, the in­
creased execution time because of allocation and
reallocation of dynamic memory, the need to ini­
tialize the allocated memory at execution time, and
the increased risk of program failure by

28

referencing memory outside the allocation range of
the structures.

To overcome the increased risk of program
failure by referencing memory outside the alloca­
tion range of the structures, a function (named
"igids_xxxchk" where "xxx" is the 3 character
structure name and "chk" stands for "check") was
developed for each structure. It checks to ensure
that an index number is in the range from zero
through the current number of structure instances
allocated minus one and in the range from a mini­
mum value (normally zero) through a maximum
value (normally the current number of structure in­
stances in use minus one). Additionally, when an
instance of a structure is no longer needed and
can normally be deleted, that instance is added to
a linked list of deleted instances for the structure
(last added is first used and first added is last
used) and the instance is marked as deleted. When
a new instance of a structure is needed, first the
deleted instances are used, then the allocated but
unused instances are used, and finally additional
instances are allocated from the operating system.

If possible, IGIDS was to be limited only by
the graphical engines or the database engines. The
graphical engines have a finite number of graphi­
cal levels, or planes, for separating the graphics
and the database engines have no known limita­
tions. The number of alternatives is limited by the
minimum number of graphical levels, or planes,
available on all graphics engines divided by the
number of graphical levels, or planes, allocated
per alternative. Currently, MicroStation has a limit
of 63 graphical levels or planes and IGIDS has al­
located 4 graphical levels or planes per alternative;
therefore, IGIDS is rurrentiy limited to 15 alterna­
tives.

COMPUTER HARDWARE

Many workstations are available on today's
market and the choice of a particular vendor's
workstation should be one of the least important
considerations in influencing the IGIDS system de­
sign. The IGIDS system design attempts to avoid
anything that might exclude any vendor's worksta­
tion.

Several criteria were established for assisting
the user in choosing an IGIDS workstation, based
on experience with software packages similar to
IGIDS, experience with MicroStation and Autocad,
and experience with Informix and Oracle. The
workstation should (1) support the user's choice
for a graphics engine, (2) support the user's choice
for a database engine, (3) support the operating
system, (4) have a minImum performance of an
Intel 386sX based computer system with math

coprocessor, (5) have a minimum of 1 screen witft!
a preference for 2 screens, (6) have a minimum
screen resolution of 72 dots-per-inch with a prefer­
ence for 100 dots-per-inch, (7) have a minimum
screen size of 15 inches diagonal with a prefer­
ence for 19 inches diagonal, (8) have a minimum
of 32 colors for the largest screen with a prefer­
ence for 256 colors for the largest screen, (9) have
a pointing device (either the absolute positioning
cursor or the relative movement mouse), (10) have
a minimum of 2 megabytes of physical memory
with a preference for 8 megabytes of physical
memory (the user should acquire as much physical
memory as can be afforded and justified to keep
the graphics engine database and the IGIDS rela­
tional database memory resident), (11) have a
minimum of 40 megabytes of hard disk with a
preference for 300+ megabytes of hard disk (this
will depend upon the size and quantity of the
user's files), (12) have a 1.2 megabyte or 1.44
megabyte floppy disk drive, (3) optionally have
networking hardware and software, (4) be moder­
ately priced, and (15) be used by many state
DOTs and by many design professionals.

ANALYSIS PROGRAMS

Engineers sometimes use computer software
packages in the analysis and design of individual,
at-grade, vehicular-traffic intersections and dia­
mond interchanges. Intersection geometry, location
and type of traffic control devices, and traffic flow
conditions must be defined in order to use these
computer aids. Criteria for selecting the intersec­
tion analysis and design software packages to be
interfaced by IGIDS include the following consid­
erations. Packages chosen to run external to IGIDS
should 0) be supported by the operating system,
(2) accept all necessary input from input file(s)
without user interaction, (3) generate results into
output file(s) , (4) be moderately priced, (5) be
readily available, and (6) be used by many state
DOTs and design professionals. Packages chosen
to run internally within IGIDS should (1) benefit
from a closer relationship with IGIDS, (2) be avail­
able in source code without copyright infringe­
ment, (3) be supported by the operating system,
(4) be supported by the computer software lan­
guage, and (5) be used by many state DOTs and
by many design professionals. External programs
chosen are the TEXAS Model for Intersection Traf­
fic and the Highway Capacity Software. The only
internal program that has been implemented in
IGIDS is the Texas Truck Off-tracking Model.

29

IGIDS MAIN STRUCTURES

IGIDS uses hierarchical, relational geometry
and keeps the entire IGIDS relational database in
memory. Additionally, a criterion established for
the operating system was that it support virtual
memory addressing with large real memory. A cri­
terion established for the computer software lan­
guage for IGIDS was that it allow the allocation
and use of dynamic memory at execution time
through the use of pointers. Finally, computer soft­
ware coding standards were established which re­
quire that each IGIDS relational database table
have a corresponding structure within IGIDS with
an instance of the structure for each entry or row
in the IGIDS relational database table. Each IGIDS
relational database attribute or column within an
IGIDS relational database table has a correspond­
ing variable within the structure. Each IGIDS rela­
tional database table contains an attribute or col­
umn which indicates whether the entry or row had
been modified since the last time that the internal
copy of the IGIDS relational database was written
to the external copy.

The primary structures (IGIDS relational data­
base tables) are intersection (inter or int), alterna­
ttve (alter or alt), leg, lane (Ian), segment (seg),
and text (txt). The ID is the number that is used to
index the particular entry of the array of structures
of the same type. The IDs start at 0 and are posi­
tive integers. The "#define" constant ID_NULL
stands for an invalid ID and has a value of -1. The
hierarchical relationships developed for these
structures are shown in Table 3.4.

The intersection, alternative, leg, lane, seg­
ment, and text structures each contain a flag to in­
dicate whether the instance has been modified
since the last time that the internal copy of the
IGIDS relational database was written to the exter­
nal copy. Each list of instances has the ID of the
beginning instance or ID_NULL if there are no in­
stances on the list, the -ID of the ending instance
or ID_NULL if there are no instances on the list,
and the number of instances on the list. This
doubly-linked list allows IGIDS to traverse a list
from beginning to end or from end to beginning,
allows a list to be traversed from any instance for­
ward to the end or backward to the beginning,
and allows for easy insertion/deletion of an in­
stance to/from a list. For each structure, a global
variable is defined for a single temporary instance
or entry of a structure and a single input instance
or entry of a structure. Additionally for each struc­
ture, a global pointer is defined for the array of

Table 3.4 Hierarchical relationship of primary structures

Intersection:
list of alternative IDs
other intersection attributes

Alternative:
parent intersection 10
list of leg IDs
list of text IDs
other alternative attributes

Leg:
parent alternative 10
list of centerline segment IDs
list of inbound lane IDs
list of outbound lane IDs
other leg attributes

Lane:
parent leg ID
list of inner edge segment IDs
list of outer edge segment lOs
list of stop line segment IDs
other lane attributes

strucrures (this poimer is only modified by the al­
location and reallocaCion functions), for a single
instance or emry of a struc£ure (usually the in­
stance or entry to work with), for a single tempo­
rary instance (initialized to poim (0 the single tem­
porary instance), and for a single input instance
(initialized to point to £he single input instance or
entry of a strucrure). The inpm instance or entry
of a structure is used by IGIDS to store data until
all necessary data are defined by the user, and
then it is added (Q the main group. Finally, a "#de­
fine" conslam is defined for the size, in bytes, of a
single instance or emry of a struc£ure.

The al.ternative, leg, lane, segmem, and text
struc£ures each comain a flag to indicate whe£her
£he instance or entry is in-use or deleted, as well
as £he ID of the previous entry on £he list (back­
ward link or blink), the ID of the next entry on
the list (forward link or Oink) or ID _NULL if the
entry is last or first on the list, and the ID of the
parem. This doubly-linked list allows IGIDS to
traverse a list from any instance or entry forward
to the end or backward to the beginning and al­
lows for easy insertion/deletion of an instance or
entry.

Segment:

30

parent legllane ID
list of text IDs
other segment attributes

Text:
parent alternative/segment 10
other text attributes

There is only one instance of £he imersection
structure, and its ID is O. In addition to the at­
tribmes listed above, £he imersection structure con­
lains many one-of-a-kind attributes such as:

(1) £he maximum gap between segmems; the se­
lected alternative ID;

(2) the global next ID (available for use) for al­
ternative, leg, lane, segment, and text;

(3) the global maximum ID (memory allocated
but unused) for alternative, leg, lane, seg­
mem, and text; the global number of in­
stances (currently in use) for alternative, leg,
lane, segment, and text;

(4) the graphics level or plane for the user and
scratch;

(5) the beginning level or plane for alternatives;
(6) the number of levels or planes for alterna­

tives; the relative level or plane for
cemerlines;

(7) £he relative level or plane for lanes;
(8) the relative level or plane for traffic control;
(8) the relative level or plane for texts; and
(9) the imersection description provided by the

user.

The intersection structure itself has no
displayable graphics.

The number of alternatives is limited by the
minimum number of graphical levels, or planes,
available on all graphics engines divided by the
number of graphical levels, or planes, allocated
per alternative. Currently, MicroStation has a limit
of 63 graphical levels, or planes, and IGIDS has al­
located 4 graphical levels or planes per alternative;
therefore, IG IDS is limited to 15 alternatives. Thus,
there are zero to 15 instances of the alternative
structure. In addition to the attributes listed above,
the alternative structure contains:

(1) the center x and y coordinate,
(2) the alternative number 0->2 billion) provided

by the user,
(3) the beginning level or plane for the alterna-

tive; the selected leg ID; the selected lane ID,
(4) the selected segment ID,
(5) the selected text ID,
(6) the alternative description provided by the

user, and
(7) the alternative application data.

The alternative structure itself has no
displayable graphics. IGIDS automatically sorts the
list of legs of an alternative using the centerline
absolute angle of the leg converted to an azimuth
(north is zero degrees and clockwise is positive),
starting at north, and traversing clockwise.

There are zero to any number of instances of
the leg structure. In addition to the attributes listed
above, the leg structure contains:

0) the centerline absolute angle, distance and
offset from the inte rsection center, station
number at intersection center, and direction
for station numbers (increasing or decreas­
ing);

(2) the tie point x and y coordinate;
(3) the leg number 0->2 billion) prOvided by the

user;
(4) a flag indicating whether the centerline seg­

ments are completed; the selected centerline
segment ID;

(5) the selected lane ID;
(6) the leg description provided by the user; and
(7) the leg application data.

The leg structure itself has no displayable
graphics. The centerline is a connected list of seg­
ments. IGIDS automatically sorts the list of center­
line leg segments using the distance from the in­
tersection center, starting at the segment end
nearest the intersection center, and traversing away
from the intersection center. IGIDS automatically

31

sorts the lists of inbound and outbound lanes of a
leg using the beginning offset from the centerline
of the first segment of the inner edge of the lane,
starting at the lane nearest the median and farthest
from the curb (lane 1), and traversing away from
the median toward the curb (lane N) (left to right
in the direction of travel). IGIDS also assigns the
lane number O->N) to each lane after sorting the
lists of inbound and outbound lanes.

There are zero to any number of instances of
the lane structure. In addition to the attributes
listed above, the lane structure contains:

(1) the lane width at the intersection;
(2) the lane length;
(3) the centerline station for the intersection end

of the lane, the beginning and ending of any
blockage, and the end of the lane;

(4) the relative distance and direction from the
tie point;

(5) the tie point x and y coordinate and absolute
angle;

(6) the lane number O->N) calculated by IGIDS
from median lane (lane 1) to the curb lane
(lane N);

(7) a flag indicating whether the lane is inbound
or outbound;

(8) 3 flags indicating whether the inner edge,
outer edge, and stop line edge are com­
pleted;

(9) the selected segment ID; and
(0) the lane application data.

The lane structure itself has no displayable
graphics.

The inner edge, outer edge, and stop line are
connected segment lists. IGIDS automatically sorts
the lists of inner and outer edge segments of a
lane using the distance from the intersection cen­
ter, starting at the segment end nearest the inter­
section center, and traversing away from the inter­
section center. IGIDS automatically sorts the list of
stop line segments using the distance from the
stop line segment end, with the minimum offset
from the leg centerline (the stop line segment end
nearest the median and farthest from the curb),
starting at the stop line segment end with the
minimum centerline offset and traversing away
from the median toward the curb (left to right in
the direction of travel).

There are zero to any number of instances of
the segment structure. A segment is an arc or a
line. In addition to the attributes listed above, the
segment structure contains the following auributes:

0) relative distance and direction from the tie
point;

(2) for the beginning end of the segmem, the
relative angle, the cemerline station and off­
set, the absolute angle, and the x and y coor­
dinate;

(3) for the ending end of lhe segmem, the cen­
terline station and offset, the absolute angle,
and the x and y coordinate;

(4) the 4 parameters defining the segment geom­
elry;

(5) the segmem number (1->N) calculated by
IGIDS from the beginning end (1) [Q the end­
ing end (N) depending on the type of seg­
mem list (inner edge, outer 'edge, stop line,
and centerline)j

(6) a flag indicating whether the segment is an
arc or a linej

(7) a flag indicating whether the segment is an
inner edge, outer edge, stop line, or cemer­
line (which defines whelher the segmem par­
ent is a leg or a lane); and

(8) lhe selected text 10.

For an arc segmem, the 4 parameters are lhe
radius, the sweep angle, the center x coordinate,
and lhe center y coordinate. For a line, the first
parameter is the length of the line, and the re­
maining 3 parameters are not used. The segment
structure i(Self has displayable graphics.

There are zero [0 any number of instances of
the text structure. In addition [0 the auributes
listed above, the text structure comains:

(1) lhe text angle,
(2) lhe text height,
(3) lhe text width,
(4) lhe lower left x and y coordinate,
(5) lhe four parameters for the text,
(6) a flag indicating whelher the text parem is an

alternative or a segmem, and
(7) the number of characters, lhe text font, and

lhe text string.

For alternative text, the 4 parameters are the
absolute angle for the lower left x/y coordinate,
lhe distance for the lower left xly coordinate, lhe
absolute text angle, and parameter 4 is not used.
For segment text, the 4 parameters are the relative
angle for the lower left x/y coordinate, lhe dis­
tance for the lower left x/y coordinate, the abso­
lute/relative text angle, and a flag indicating
whether the text is at an absolute angle or at an
angle relative to lhe segmem. The text structure it­
self has displayable graphiCS.

32

OBJECT-ORIENTED PROGRAMMING
TECHNIQUES

Object-oriemed programming techniques have
been used throughout IGIDS developmem. Al­
lhough C++ is available, it was not used because it
is not defined by an imernational standard.

IGIDS uses hierarchical, relational geometry.
The primary structures or IGIDS relational database
tables are intersection (int), alternative (alt), leg
(leg), lane (lan), segment (seg), and text (txt).
There is a global variable for each structure indi­
cating lhe current instance or row. Each structure
has a list of IDs of its children and its parem. This
feature allows traversal of the structure hierarchy.

IGIDS has complememary functions which set
lhe parent and child for a structure instance, and,
lhrough function calis, automatically propagate up
or down the hierarchy. Every structure except in­
tersection has a parent and a flag indicates the
parent structure.

Every structure except text has a child struc­
ture allhough list of children may be empty. There
may be more lhan one child for a structure thus
the function checks each list of children umil it
finds a particular child instance. These functions
are respectively named "igids_xxxspr" and
"igids_xxxsch" where xxx is a character structure
name and "spr" and "sch" indicate set parent or
set child, respectively.

There is a corresponding function which sets
lhe database entry called "igids_xxxsdb.·'

The appropriate "igids_xxxspr" or "igids_
xxxsdb" functions yield the anributes (or columns)
of the parent structures but the programmer must
know the structure that contains the aUribute or
column that is needed. As an example, suppose
that "gslv_seg_id_num" is set to the ID of a seg­
ment and that the programmer called the
"igids_segspr" function, then the x coordinate of
the center of the intersection for the segment's
parent alternative would be referenced by
"gstv _alter_ent_ptr->sdfv _center_x".

The primary structures or IGIDS relational
database tables are intersection, alternative, leg,
lane, segment, and text. The primary operations to
be performed on those structures are:

(1) add a database entry (FUNCT_ADD_DBE),
(2) copy a database entry (FUNCT_CPY_DBE),

delete a database entry (FUNCT_DEL_DBE),
(3) initialize the database (FUNCT_INCDBE)

(only valid for lhe intersection structure),

(4) select a database entry (FUNCT _SEL_DBE),
(5) calculate the graphics for a database entry

(FUNCT_CAL_GRA),
(6) draw the graphics for a database entry

(FUNCT_DRW_GRA),
(7) erase the graphics for a database entry

(FUNCT_ERS_GRA), highlight the graphics for
a database entry (FUNCT_HIL_GRA), and

(8) calculate the station and offset for a database
entry (FUNCT _CAL_STA) (only valid for a leg,
a lane, and a segment structure).

The only operations that can be performed on
the intersection structure are initialize the database
(FUNCT_INCDBE), draw the graphics for a data­
base entry (FUNCT_DRW_GRA), and erase the
graphics for a database entry (FUNCT_ERS_GRA).
All operations can be used with all structures ex­
cept as noted. Table 3.5 summarizes the relation
between primary operations and the structures.

Table 3.5 Relationlhip between primary
operationl and Itructurel

Primary Operation int alt .5 Ian :5
FUNCT_ADD_DBE no yes yes yes yes
FUNCT_CPY _DBE no yes yes yes yes
FUNCT _DEL_DBE no yes yes yes yes
FUNCT_INCDBE yes no no no no
FUNCT_SEL_DBE no yes yes yes yes
FUNCT_CAL_GRA no yes yes yes yes
FUNCT_DRW _GRA yes yes yes yes yes
FUNCT_ERS_GRA yes yes yes yes yes
FUNCT_HIL_GRA no yes yes yes yes
FUNCT _CAL_STA no no yes yes yes

IGIDS Objects

alternative

legs of an alternative
texts of an alternative
leg

txt

yes
yes
yes
no
yes
yes
yes
yes
yes
no

An object is a single instance of a structure
and all its children (su ch as a leg or an inbound
lane) or a list of children and all of their children
(such as the centerline segments of a leg). To al­
low the user to select an object by pointing at it;

(1) the user chooses the appropriate command
which defines the operation to perform and
the object type (such as rotate leg),

(2) the user points at some displayable graphics
(arc, line, or text) for the object (such as the
center line segments of the leg; the inner
edge, outer edge, or stop line segments of an
inbound or outbound lane for the leg; or text
attached to a segment of the leg),

(3) the graphics engine searches the graphics­
engine database and gives IGIDS the ID from
the graphics-engine element that the user se­
lected,

(4) based upon the ID and the type (arc, line, or
text) of the graphics-engine element, the ap­
propriate Uigids_xxxspr" function is called,

(5) IGIDS checks to confirm that the selected
structure(s) refer to the requested object
(automatically rejecting the graphics-engine
element if it does not refer to the requested
object and repeating the process starting at
(3)), and

(6) IGIDS highlights the selected object for ac­
ceptance or rejection by the user.

The following is a list of the IGIDS objects
and the corresponding "#define" object type:

"IDEFINE" Object Types
OB]ECCALT_ALL

OB]ECCALT _LEGS
OBJECT_ALT_TXTS
OBJECT_LEG_ALL

one

aU
aU
one
aU
aU
aU

centerline segments
inbound lanes
outbound lanes

of a leg
of a leg
of a leg

lane
lane
lane

one
one
one
aU
aU
aU
one
one
one
one
one

inbound
outbound
inner edge
outer edge
stop line

segments of a lane
segments of a lane
segments of a lane

OBJECT _LEG_ CNTRLN_SEGS
OBJECT _LEG_INBLAN_LANS
OBJECT_LEG_OlITLAN_LANS
OBJECT _LAN_ALL
OBJECT_LAN_INBLAN_ALL
OBJECT_LAN_OunAN_ALL
OBJECT _LAN_INNEDG_SEGS
OBJECT_LAN_OlITEDG_SEGS

OBJECT_LAN_STOPLN_SEGS
OBJECT_SEG_ALL

aU
one
one
one

segment
inner edge segment
outer edge segment
stop line segment
centerline segment
texts of a segment
text
alternative text
segment text

33

OBJECT _SEG_INNEDG_ALL
OBJECT_SEG_OlITEDG_ALL
OBJECT_SEG_STOPLN_ALL
OB]ECT_SEG_CNTRLN_ALL
OBJECT_SEG_TXTS
OBJECT_1XTfiL
OBJECT_TXT_ALT_ALL
OBJECT_TXT _SEG_ALL

In order to allow IGIDS to perform an operation on a structure or one or more selected children, a
global processing mask (a bit mask; true "" process, false = do not process) was created
(gslv _proc_mask). Functions, such as delete database entry for the leg, conditionally process the opera­
tion on each list of children or conditionally process the operation on the entry itself based upon the
value of a bit in the global processing mask. The first processing mask is for the structure instance itself
and uses bit 0 (value = 1). The "_ALL" processing mask is a bitwise "or" of all the possible values for a
particular structure. The following is a list of the global processing masks and the corresponding "#de­
fine" name:

Processlllg Mask
process intersection only

process intersection alternatives
process intersection and all children
process alternative only
process alternative legs
process alternative texts
process alternative and all children
process leg only
process leg centerline segments
process leg inbound
process leg outbound

lanes
lanes

process leg and all children
process lane only

Name

INT]ROC_INT
TNT]ROC_ALT
lNT]ROC_ALL

process lane inner edge
process lane outer edge
process lane stop line

segments
segments
segments

AL TER]ROC_ALT
ALTER]ROC_LEG
ALTER]ROC_TXT
ALTER]ROC_ALL
LEG]ROC_LEG
LEG]ROC_CNfRLN
LEG]ROC_INBLAN
LEG]ROC_OUI1AN
LEG_PROCj.LL
LANE_PROC_LANE
LANE_PROC_lNNEDG
LANE]ROC_OlITEDG
LANE]ROc_sroPLN
LANE]ROC_ALL
SEG]ROC_SEG
SEG]ROC_TXT
SEG]ROC_ALL
TEXT]ROC_TXT
TEXT]ROC_ALL

process lane and all children
process segment only
process segment texts
process segment and all children
process text only
process text and all children

The traditional computer programming ap­
proach is to write a function wherein the opera­
tion is primary and the object is secondary. Each
function knows how to perform the operation on
every object. When the programmer wants to add
another object, each function that performs an op­
eration has to be modified to perform the opera­
tion on the new object. When the programmer
wants to add another operation, a new function
has to be developed which knows how to perform
the operation on all objects.

The object-oriented programming approach is
to write a function wherein the object is primary
and the operation is secondary. Each function
knows how to perform every operation on the ob­
ject. When the programmer wants to add another
object, a new function has to be developed which
would know how to perform all operations on the
object. When the programmer wanted to add an­
other operation, each function would have to be
modified to perform the new operation on the
object.

The approach adopted in IGIDS is to develop
a function for each object which dispatched the
operation to the appropriate function(s) and to de­
velop a function for each object-operation combi­
nation where there was actually something to be

34

done other than perform the operation on all chil­
dren. IGIDS has a function (named "igids_xxx"
where "xxx" is the three-character structure name)
which takes as a parameter the "FUNCT_" opera­
tion to be performed and dispatches the specified
operation to the appropriate function(s). Addition­
ally, IGIDS has a function (named "igids_xxxyyy"
where "xxx" is the three-character structure name
and "yyy" is "adb" for FUNCT_ADD_DBE, "cdb"
for FUNCT_CPY_DBE, "cgr" for FUNCT_CAL_GRA,
"ddb" for FUNCT_DECDBE, "dgr" for
PUNCT_DRW _GRA, "egr" for FUNCT_ERS_GRA,
"hil" for FUNCT_HIL_GRA, "sdb" for
FUNCT_SEL_DBE, and "sta" for FUNCT_CAL_STA)
which performs operation "yyy" on structure "xxx".
Finally, IGIDS has a function (named
"igids_xxxpgf' where "xxx" is the three-character
structure name and "pgf" stands for "process ge­
neric function") which performs the specified
"FUNCT _" operation on the selected "_PROC_"
structure instance or entry. These "igids_xxxpgf"
functions are used to perform an operation on all
children. Currently, there is an "igids_xxxpgf"
function for the intersection, alternative, leg, lane,
and segment structures or IGIDS relational data­
base tables.

CHAPTER 4. IGIDS FUNCTIONAL DESIGN

MULTIPLE INTERSECTION ALTERNATIVES

IGIDS allows for analysis and design of a
minimum of five intersection alternatives. This ca­
pability was accomplished by ordering the hierar­
chical parent-child relationship as intersection­
alternative-leg. Currently, MicroStation has a limit
of 63 graphical levels, or planes, and IGIDS has al­
located 4 graphical levels or planes per alternative;
therefore, IGIDS is currently limited to 15 alterna­
tives. Commands were developed to copy or
modify all or part of an alternative. Additionally,
commands were developed to display or not dis­
play an entire alternative.

LEVEL ASSIGNMENTS

Each alternative and the major graphical com­
ponent groupings of the alternative were to be
placed on separate graphical levels or planes so
that they could be independently displayed or not
displayed in a particular view. IGIDS allocates a
user graphical level or plane and a scratch graphi­
cal level or plane and allows the user to display
or not display graphiCS by alternative and items.
These capabilities were accomplished by defining
the following attributes in the IGIDS relational data
base table and by assigning them the values
shown in Table 4.1.

Additionally, commands were developed which
allowed the user to display or not display an en­
tire alternative and to individually display or not
display the centerline, lanes, traffic control, and
text for an alternative.

USER INTERACTION WITH COMMANDS

IGIDS uses an interactive event-driven user in­
terface. The generic inputs required to be available
from the graphics engine are (1) command selec­
tion, (2) coordinate entry, (3) reset entry, and (4)
keyboard entry.

Command selection could be by user keyin,
function key activation, screen menu selection, or
digitizer menu selection. The net result of a com­
mand selection is that IGIDS can detect that a
command has been selected, that IGIDS can deter­
mine whether the command is a graphics engine
command or an IGIDS command, and that IGIDS
can get the command name or command number
for an IGIDS command. The actual event causing
the command selection is not important to IGIDS.

Coordinate entry could be by user keyin, func­
tion key activation, mouse button activation, or
cursor button activation. The net result of a coor­
dinate entry is that IGIDS detects that a coordinate
entry has been performed and that IGIDS can get
the coordinate value in real world coordinates.
The actual event causing the coordinate entry is
not important to IGIDS.

Reset entry could be by user keyin, function
key activation, screen menu selection, digitizer
menu selection, mouse button activation, or cursor
button activation. The net result of a reset entry is
that IGIDS can detect that a reset entry has been
performed, but the actual event causing the reset
entry is not important to IGIDS. Keyboard entry
could be by user keyin or function key activation.

Table 4.1 A5signed graphical altrlbutes and value.

Attribute Name Description Value
--

:;slv _lev_user Level for user graphics 1
sslv_lev_scratch Level for scratch graphics 2
sslv _begJev _alter Beginning level for alternatives 3
sslv _numJev _alter Number of levels for alternatives 4
:;slv _reI_lev_center Relative level for centerlines 0
sslv Jel_lev _lanes Relative level for lanes 1
sslv _reI_lev _tc Relative level for traffic control 2
sslv _relJev _text Relative level for texts 3

35

The net result of a keyboard entry is that IGIDS
can detect that a keyboard entry has been per­
formed and that IGIDS can get the character string
that was entered. The actual event causing the
keyboard entry is not important to IGIDS.

Each command is processed by a single func­
tion. To accomplish this, the concept of a process­
ing stage was developed. The processing of a
command would proceed from stage to stage until
the command was completed or the user selected
another command. The global variables were de­
fined to implement processing of commands by
stages as shown in Table 4.2.

IGIDS knows the function to call (a large
"switch" and "case" statement in function
"igids_prccmd") and the stage number to set
(STAGE_l) when the user selects a command
which is an IGIDS command. IGIDS maintains a
pointer to the function to be called and the stage
number to be set when the user performs a coor­
dinate entry, reset entry, or keyboard entry. The
pointers to functions are paired with the previ­
ously discussed global stage variables. The follow­
ing zone variables were defined to maintain a
pointer to the function to be called:

Response Event Event Description ------
C"sslv _datafunc_pfn) data button coordinate entry
«gslv _home_pfn) high-level return
C-sslv _keyinfunc_pfn) keyin keyboard entry
C' gslv _reenter_pfn) re-enter last data
('sslv Jesetfunc_pfn) reset button reset entry
('gslv Jeturn_pfn) low-level return

IGIDS basically is in an event loop waiting for
the user to perform a (1) command selection, (2)
coordinate entry, (3) reset entry, or (4) keyboard
entry. Upon the graphics engine notifying IGIDS
that the user has performed one of these events,
IGIDS sets the global stage number to the appro­
priate value and calls the designated function.
Upon return from the designated function, IGIDS
waits for the user to perfonn another entry and
the process begins again. The generalized event
loop processing is illustrated in Figure 4.1.

It is thus the responsibility of a command
function to designate at each stage of processing
the appropriate function and stage for a coordinate
entry, reset entry, and keyboard entry. Most of the
time in IG IDS, the reset entry is used to reject a
selection. Normally, the coordinate entry and key­
board entry events are mutually exclusive at a
given stage of processing for a command so that
a function and stage are designated to output a
message to the user that invalid input has been re­
ceived and dismissed. The general processing of a
command is illustrated in Figure 4.2.

36

IGIDS implements both noun/verb and verb/
noun command processing. In noun/verb com­
mand processing, the user selects the object to be
operated upon (uses the selected object or selects
a new object), selects the operation to be per­
fonned, and finally accepts or rejects the high­
lighted object. An example of noun/verb command
processing is "leg rotate". In verb/noun command
processing, the user selects the operation to be
perfonned by initiating the command, selects the
object to be operated upon by pointing, and fi­
nally accepts or rejects the highlighted object. An
example of verb/noun command processing is "ro­
tate leg". IGIDS provides a toggle between noun/
verb and verb/noun command processing. Since
the noun/verb command processing uses the se­
lected object, more methods of choosing the ob­
ject are available with noun/verb command pro­
cessing. The generalized code to implement both
noun/verb and verb/noun command processing is
illustrated in Figure 4.3.

IGIDS was to allow the user to back up to
previous input entry. This was accomplished by
defining the following global variables (as previ­
ously discussed) and by developing a command to
set the global stage to the re-enter stage and ex­
ecuting the re-enter function:

gsiv _stage_reenter
(-gslv _reenter_pfn)

re-enter last data stage
o re-enter last data funct

It is thus the responsibility of a command
function to designate at each stage of processing
the appropriate function and stage for an input re­
entry operation.

IGIDS allows the user to cancel an IGIDS
command and to choose another IGIDS command
at any point. These features were accomplished by
making all commands collect input and store the
data in global or static variables until all necessary
input was received. Additionally, upon receiving a
request for a graphics engine immediate command
or an IGIDS immediate command, IGIDS can save
the state of IGIDS command processing, execute
the immediate command, restore the state of
IG IDS, and continue processing the interrupted
IGIDS command. An immediate command is one
that may interrupt another command. The state of
IGIDS command processing is the current values
for the stage and function variables as discussed
earlier.

IGIDS allows the user to switch between
IGIDS commands and graphics engine commands.
This was accomplished by IGIDS filtering all event
loop data and sending the graphics engine data to
the graphics engine for final processing.

Table 4.2 Global variables and stage definitions

Variable Name Description

gsiv_stage current command stage
gsiv _stage_datapt data button stage coordinate entry
gsiv _stage_home high-level return stage
gsiv _stage_keyin keyin slage keyboard entry
gsiv _stage_re-enter re-enter last data stage
gsiv _slagejesel reset button slage reset entry
gsiv _slage_return low-level return stage

The following slages were defined:

Variable Name

STAGE_O
STAGE_l
STAGE_2
STAGE_3
STAGE_4
STAGE_5
STAGE_6
STAGE_7
STAGE_8
STAGE_9
STAGE_lO
STAGE_l1
STAGE_12
STAGE_13
STAGE_14
STAGE_15
STAGE_16
STAGE_17
STAGE_18
STAGE_19
STAGE_20
STAGE_END_COMMAND

Description

Command Processing Stage Number 0 (special)
Corrunand Processing Stage Number 1
Corrunand Processing Siage Number 2
Corrunand Processing Siage Number 3
Corrunand Processing Stage Number 4
Corrunand Processing Siage Number 5
Corrunand Processing Siage Number 6
Corrunand Processing Stage Number 7
Command Processing Siage Number 8
Corrunand Processing Stage Number 9
Corrunand Processing Stage Number 10
Corrunand Processing Siage Number 11
Command Processing Siage Number 12
Corrunand Processing Stage Number 13
Command Processing Stage Number 14
Command Processing Stage Number 15
Corrunand Processing Siage Number 16
Command Processing Stage Number 17
Command Processing Stage Number 18
Corrunand Processing Stage Number 19
Corrunand Processing Stage Number 20
Command Processing Stage Number 99

37

ISiv_dispatchtype =! MS_TERMINATE;
gsiv_exit_session = FALSE;

while C C Isiv_dispatchtype != MS3ER..\1INATE) &&
C ! gsiv _exit_session))

Wait_focevents C USER_EVENT,&lsiv_event);
if C Isiv_event & USER_EVENT)
I

Get_user_event_data C &lsiv_i);
dispatch_asynch_request C &lsiv _dispatchtype);
switch C Isiv_dispatchtype)
I

case MS_INPUT:
if C inputjor_igids)
{

switch C ztdv _statedata.stdv _iqel.hdr.cmdtype)
{

case DATAPNT: jO coordinate entry OJ
gsiv _stage - gsiv_stage_datapt;
C°ztdv _statedata.sslv _datafunc_pfn) 0;
break;

case KEYIN: jO keyboard entry OJ
gsiv _stage = gsiv _stage_keyin;
COztdv _statedata.sslv _keyinfunc_pfn) 0;
break;

case RESET: jO reset entry OJ

gsiv _stage - gsiv _stage_reset;
C°ztdv _statedata.sslv _resetfunc-pfn) 0;
break;

default:
igids_wrnmsg C "UndefIned cmdtype");
break;

I jO end switch C cmdtype) • j

else jO ! inputJoUgids OJ

I
jO NOT OURS - forward it OJ

break; jO end case MS_INPUT OJ

case EXECUTE:
igids_prccmd 0;
break; j. end case EXECUTE OJ

default:

jO command selection OJ

igids_WDUnsg C 'UndefIned dispatchtype");
break;

1 jO end switch C lsiv_dispatchtype) OJ
} I" end if C Isiv_event & USER_EVENT) OJ
jO end while (C lsiv_dispatchtype !- MS_TERMINATE) && OJ
jO C ! gsiv _exit_session

)) .j

Figure 4.1 Generalized event loop

38

long· igids_coIlunand ()
[

top:
igids_cmdmsg ("command message");

swil:ch (g..iv_stage)
{

igids_seCdatPun (igids_badEnt,STAGE_O);
igids_set_keyPun (igicb_keyFun,STAGE_I);
igids_secresFun (igids_command,STAGE_1);
igids_secretPun (igids_command,STAGE_2);
igids_prrnmsg ("keyboard entry - input 1:');
break; /. wait for user input ./

case STAGE_2:
if (data_noCok)
(

19ids_ wrnmsg ('data not ok');
gsiv_stage - STAGE_I;
goto top;

/. save data in static or global variable for later use • /
igids_secrenFun (igids_command,STAGE_1);

case STAGE3:
igids_secdatPun (igids_datFun,STAGE_l):
igids_set_keyPun (igids_badEnt,STAGE_O);
igids_set_resFun (igids_command,STAGE_l);
igids_secretPun (igids_command,STAGE_ 4);
igids_prrnmsg ("coordinate entry - input 2");
break: /. wait for user input ./

case STAGE_ 4:
if (dataJloCok)
{

igids_wrnmsg ("data not ok");
gsiv_stage = STAGE_3;
goto top:

/. save data in static or global variable for later use • /
igids_seuenFun (igids_command,STAGE_3);

case STAGE_5:
/. process conunand with saved input· /
igids_infmsg ('command completed");
gsiv_stage = STAGE3; /. to re-cycle on last input ./
goto top;

default:
igids_emnsg ("programrriing error in conunand");
goto return_fatal_error:

return (RETURN_SUCCESS):

igids_detmsg ("igids_command");
return (IUITURNJATAL_ERROR):

Figure 4.2 Command proceulng

39

long igids_corrunand ()
(

if (gsiv_noun_verb && (gsiv _stage ... STAGE_I))
(

top:
igids_cmdmsg ("command message");

switch (gsiv _stab't!)
(

case STAGE_I:
r select object • /

case STAGE_2:
r hilite and accept selected object' /
if (selected_object_nocaccepted)
[

gSiv_stage - STAGE_I;
goto top;

case STAGE3:
/. process remainder of command • /
break;

default:
igids_ernnsg ('programming error in command");
goto return_fatal_error;

return (RETURN_SUCCESS);

igids_detmsg ("igids_command");
return (RETURN_FAT.U_ERROR);

Figur. 4.3 Generalized code for noun/v.rb, verb/noun processing

40

DATA BASE nSAVE" OPTIONS

IGIDS saves all modifications to the IGIDS re­
lational data base after each IGIDS command is
executed or at user-specified times. This will be
accomplished by allowing the user to specify auto­
matic (after each command) and manual (upon
user request) updating. Additionally, each structure
and IGIDS relational data base table would contain
an attribute or column which indicated whether
the entry or row had been modified since the last
time that the internal copy of the IGIDS relational
data base was written to the external copy.

IGIDS COMMANDS

The following is an initial list of major com­
mands to be incorporated in IGIDS:

add
copy
delete
end
hilHe
key-in
load
modify
move
noun-verb
recreate
re-enter data
rotate
save to
select
show information
show station/offset
tools
verb-noun
view

The following is an initial list of commands to
be incorporated in IGIDS:

add alternative
add leg centerline by keyin
add leg centerline from scratch level
add inbound lane by keyin
add outbound lane by keyin
add inbound lane header from scratch level
add inbound lane inner edge segments from

scratch level
add inbound lane outer edge segments from

scratch level
add inbound lane stop line segments from

scratch level
add outbound lane header from scratch level

41

add outbound lane inner edge segments from
scratch level

add outbound lane outer edge segments from
scratch level

add outbound lane stop line segments from
scratch level

add text on alternative from scratch level
add text on alternative by keyin
add text on segment from scratch level
add text on segment by keyin
copy alternative
copy leg
copy text on alternative
copy text on segment
delete alternative
delete leg
delete inbound lane
delete outbound lane
delete inner edge segment
delete outer edge segment
delete stop line segment
delete text on alternative
delete text on segment
end IGIDS
hilite current alternative
hilite current leg
hilite current leg centerline
hilite current leg inbound lanes
hilite current leg outbound lanes
hilite current lane
hilite current lane inner edge segments
hilite current lane outer edge segments
hilite current lane stop line segments
hilite current segment
hilite current text
key-in "yes"
key-in "no"
key-in default
load from TEXAS Model file
load from data base
load standard 3X2 intersection
load standard 3X3 intersection
load standard 4X2 intersection
load standard 4X3 intersection
load standard 4X4 intersection
load standard 5X4 intersection
load standard 5X5 intersection
load standard 6X4 intersection
load standard 6X5 intersection
load standard 6x6 intersection
load standard 7X4 intersection
load standard 7X5 intersection
load standard 7X6 intersection
load standard 7X7 intersection
load standard 4T2 intersection
load standard 4T3 intersection
load standard 4T4 intersection

modify intersection
modify alternative
modify leg
modify lane
modify text on alternative
modify text on segment
move alternative
move leg longitudinal
move leg lateral
move lane longitudinal
move lane lateral
move text on alternative
move text on segment
noun-verb
recreate intersection
recreate alternative
re-enter data
rotate alternative
rotate leg
rotate text on alternative
rotate text on segment
save to TEXAS Model file
save to data base
select alternative current
select alternative by ID
select alternative by data point
select alternative next
select alternative previous
select leg current
select leg by ID
select leg by data point
select leg next
select leg previous
select lane current
select lane by data point
select lane next
select lane previous
select inbound lane by ID
select inbound lane next
select inbound lane previous
select outbound lane by ID
select outbound lane next
select outbound lane previous
select segment current
select segment by ID
select segment by data point
select segment next
select segment previous
select text current
select text by ID
select text by data point
select text next

42

select text previous
show information full
shovt information short
show station/offset
tools TEXAS Model graphics
tools tum template for P
tools tum template for BUS
tools tum template for ABUS
tools tum template for SU
tools tum template for WB40
tools tum template for WB50
tools turn template for WB60
tools tum template for WB62
tools tum template for RMD
tools tum template for WBl14
tools tum template for WB96
tools tum template for PT
tools tum template for PB
tools tum template for MH
verb-noun
view all alternatives on
view all alternatives off
view current alternative on
view current alternative off
view current leg centerline on
view current leg centerline off
view current lane on
view current lane off
view current text on

SUMMARY

First stage implementation of the functional
design described within this chapter has been
completed. The IGIDS System which has evolved
is a very useful planning tool but wiII require
second-stage implementation before it becomes the
planned computer-aided design tool.

The first-stage system operates on an
Intergraph workstation using MicroStation and
Informix as graphics and database engines. The
system permits interactive computer assisted sketch
planning of major intersection components. A typi­
cal line drawing of leg, lane, and other geometric
elements as produced by the first stage system is
provided as Figure 4.4. The system provides easy
access to the TEXAS Model and TXTOM analysis
packages.

As indicated earlier, the complete IGIDS Sys­
tem will provide significantly more design and
analysis capability than the first stage system.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Leg 1

I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

! I

Leg 3

Standard 4 x 4

Figure 4.4 Major intersection elements al depicted by Phase 1 IGIDS screen graphiCi

43

: REFERENCES

1. A Poltcy on Geometric Design of Highways
and Streets 1990, American Association of
State Highway and Transportation Officials,
Washington, D.C.

2. Highway Capacity Manual 1985, Transporta­
tion Research Board Report 209.

3. SOAP84 (Review Manua!), Implementation
Package, US Government Printing Office,
1985-501-737-20.130, January 1985.

4. Chang, Edmond Chin-Ping, "Interactive Inter­
section Design Using an Expert Systems
Approach," Transportation Research Board,
Transportation Research Record 1239, 1986.

S. Fambro, Daniel B., J. M. Mason, Jr., and N. S.
Cline, "Intersection Channelization Guide­
lines for Longer and Wider Trucks," Trans­
portation Research Record 1195, pp 48-63,
1988.

6. Highway Design Division Operations and Pro­
cedures Manual (Rev. 1-81), Texas State
Department of Highways and Public Trans­
portation, Appendix D, "Capacity and
Level of Service."

7. Highway Design Division Operations and Pro­
cedures Manual (Rev. 1-81), Texas State
Department of Highways and Public Trans­
portation, Part IV, Rev. Feb 20, 1987.

8. Highway Capacity Manual 1965, Highway
Research Board Special Report 87, Chapter
6.

9. Traffic Engineering Handbook, 3rd. ed., Insti­
tute of Traffic Engineers, Washington, D.C.,
1965, P 662.

10. Transportation and Traffic Engineering Hand­
book, 2nd ed., Institute of Transportation
Engineers, Washington, D.C., pp 605-609.

44

11. Intersection Channelization Design Guide, Na­
tional Cooperative Highway Research Pro­
gram Report No. 279, Transportation
Research Board, National Research Council,
1985.

12. Stover, Vergil G., and F. J. Koepke, Transpor­
tation and Land Development, Institute of
Transportation Engineers, Prentice Hall,
1988.

13. Homburger, Wolfgang S. and J. H. Kell, "Fun­
damentals of Traffic Engineering," 12th Ed.,
University of California at Berkeley, Insti­
tute of Transportation Studies, 1988. Re­
port No. UCB-ITS-CN-88-1, Chapters 20
and 21.

14. "Design Criteria for Left Turn Channelization,"
l1E journal, Institute of Transportation En­
gineers, Feb 1981.

15. Simkowitz, Howard J., "Integrating Geo­
graphic Infonnation System Technology
and Transponation Models," Transportation
Research Board, National Research Council,
Transportation Research Record 1271, 1990,
pp 44-47.

16. Traffic Engineering Handbook, 4th Ed., Insti­
tute of Transportation Engineers, Chapter 6
"Geometric Design," pp 113-128, 1991.

17. Kyle, Michael, "Estimating Capacity of an AU­
Way-Stop-Controlled Intersection," Trans­
portation Research Record 1287, 1990.

18. Messer, C. J., and D. B. Fambro, A Guide for
Designing and Operating Signalized Inter­
sections in Texas, Texas Transportation In­
stitute Research Report 203-1, 1975.

19. Hugo, F., J. T. O'Connor, and W. V. Ward,
Highway Constructability Guide, Center for
Transportation Research, Bureau of Engi-

neering Research, The University of Texas
at Austin, 1990.

20. Evaluation of Design Effectiveness, Construc­
tioo Industry Institute, The University of
Texas at Austin. 1986.

2 L Vehicle Tumlng Charactens/tcs for Use in Geo­
metric Design, Texas State Department nf
Highways and Public Transportatinn, 1987.

22. Jack E. Leisch & Associates, Planning and De­
sign GUide At-Grade Intersections, 1981,
Rev. 4/15/88, Evaoston, Illinois.

23. Riggs, James L., "What's the Score?, The Mili­
tary Engineer, Sept-Oct 1985, Vol 77, No.
503, pp 496-499.

24. CEAL User's Manual, Civil Engineering Auto­
mation Library. CLM/Systems Inc., p 2.376
ff, 1991.

Highway Capacity Software User's Manual,
U.S. Department of Transportation, Federal
Highway Administration, Jan 1987, Revised
Nov 1987, Chapters I, 2, 9, and 10.

26. Highway Capacity Software Signalized In-
tersecttons, Release 2, McTrans Center, Uni­
versity of Florida, 1990.

27. Arterial Timing Optimization Usirlg PASSER 11-
90 - Program User's Manual, Revised
Draft, June 30, 1991, Research Report 467-
2F, Texas Transportation Institute, Texas
A&M University.

28, A Report on the User's Manual for the lvticro­
computer Version of PASSER III-88, Re­
search Report 478-1, Texas Transportation
Institute, Texas A&M University, September
1988.

29. TRANSYT-7F User's Manual, Transportation
Research Center, University of Florida, Oct
1988.

30. Lee, Clyde E., et al, The TEXAS Model for In-
tersection Traffic User's Guide, Research

45

Report 184-3, Center for Transportation
Research, Bureau of Engineering Research,
The University of Texas at Austin, July
1977.

31. Lee, Clyde E., et ai, User-Friendly TEXAS
Model - Guide to Data Entry, Research
Report 361-1F, Center for Transportation
Research, Bureau of Engineering Research,
The University of Texas at Austin, Nov
1985.

32. Clyde E., et ai, The TEXAS Model Version
3,0 (Diamond Interchanges), Research Re­
port 443-1F, Center for Transportation Re­
search, Bureau of Engineering Research,
The University, of Texas at Austin, January
1989.

33. Wallace, C. E" and Kenneth G. Courage, Ar­
terial AnalysiS Package (AAP) .User's Guide,
Vol 2 of a Series Prepared for FHWA by
Courage and Wallace, Gainsville, Florida,
Dec 1990,

34, TRAF-NETS/M User's Manual, U.S, Department
of Transportation, Federal Highway Admin­
istration, Nov 1989.

35, Level III Design Training - Preliminary De­
sign, Texas State Department of Highways
and Public Transportation, Austin, Texas.

36. MicroStalton 32 User's GUide, Bentley Sys­
tems, Inc., and Intergraph Corporation,
Huntsville, Alabama, 1991.

37. Personal Interview with Ms. Judy Skeen, Man­
ager of Engineering Devlopment, Texas
Department of Transportation.

38. Catalog, McTrans Center for Microcomputers
in Transportation, University of Florida,
Gainesville, Florida, June 1991.

39. Berry, Charles H., A Development Plan for the
Interactive Graphtcs Intersection Design
System (IGIDS)," Master's Thesis, The Uni­
versity of Texas at Austin, Dec 1991.

	Front Matter

	Technical Report Documentation Page

	Title Page

	Preface

	List of Reports

	Abstract

	Summary

	Implementation Statement

	Table of Contents

	Chapter 1. Introduction

	Background

	Objectives

	Overview

	Conceptual Design

	Abbreviations

	Terminology
	Summary

	Chapter 2. Intersection Design

	Overview
	Functional Design Principles

	Minimize the Number of Conflict Points
	Simplify the Geometry of Conflict Areas

	Limit the Frequency of Conflicts

	Minimize the Severity of Conflicts

	Levels of Design

	Planning Level

	Operational Level

	Design Procedure

	Obtain and Analyze Traffic Data to Determine Design Hour Volume (DHV) and Movement Volumes

	Determine Location, Functional Class and General Design Features of Nearby Roadways and Development that May Affect Design

	Prepare Preliminary Sketches of Alternatives

	Analyze and Evaluate Alternatives and Select Two or More of the Better Ones

	Prepare Preliminary Plans and Profiles for Alternatives Selected in Step 5

	Evaluate Each Alternative with Respect to Desired Features

	Prepare Preliminary Cost Estimates for Each Alternative

	Determine User Cost

	Perform Joint Analysis of Values from Steps 7, 8, and 9 and Determine Best Plan

	Final Design of Selected Alternative

	Summary of Intersection Design

	Chapter 3. IGIDS System Design

	Graphics Engine

	Database Engine

	Operating System

	Computer Softward Language for IGIDS

	Software Coding Standards

	Computer Hardware

	Analysis Programs

	IGIDS Main Structures

	Object-Oriented Programming Techniques

	Chapter 4. IGDS Functional Design

	Multiple Intersection Alternatives

	Level Assignments

	User Interaction with Commands

	Data Base "Save" Options

	IGIDS Commands

	Summary

	References

