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PREFACE 
Project 1123 is a joint project between the Center for Transportation Research at The 

University of Texas and the Texas Transportation Institute at Texas A&M University. The 
project deals with the development of experimental and analytical techniques for the 
nondestructive testing of pavements. This report is the second of three reports from the 
Center for Transportation Research. The report presents the results of numerical parametric 
studies to assess the effect of the position of the Dynaflect or Falling Weight Deflectometer 
loads with respect to the edge of the pavement or the predicted deflection basins. A gen­
eral formulation to obtain the dynamic response of a body with a two dimensional geom­
etry to a three dimensional load has been developed and implemented in a computer pro­
gram. This program was then used to conduct the parametric studies. The report presents 
the formulation, validation of the computer code, and the results of the studies. 

LIST OF REPORTS 

(Note: Report Nos. 1123-1, 1123-2, 1123-3 and 1123-4F have been submitted through 
Texas Transportation Institute of Texas A&M University on their part of the joint Project 
1123. The reports listed below are the reports submitted through the Center for Transporta­
tion Research at The University of Texas at Austin.) 

Report No. 1123-5, "Experimental Study of Factors Affecting the Spectral-Analysis-of-Sur­
face-Waves Method," by Glenn J. Rix, Kenneth H. Stokoe, II, and Jose M. Roesset presents 
the results of field studies of source types, and source-receiver configurations, and the distri­
bution of surface wave motion on SASW measurements. 

Report No. 1123-6, "Effect of Finite Width on Dynamic Deflections of Pavements," by 
Yumin Vincent Kang, Jose M. Roesset and Kenneth H. Stokoe, II, presents the results of 
analytical studies of the effects of the finite width of the pavement and the relative location 
of nondestructive testing devices on predicted dynamic deflections. 

Report No. 1123-7F, "The Falling Weight Deflectometer and Spectral Analysis of Surface 
Waves for Characterizing Pavement Moduli: A Case Study," by R. F. Miner, K.H. Stokoe, II 
and W.R. Hudson, presents the results of a comprehensive field and laboratory study con­
ducted during the construction of an overpass ramp in Austin, Texas. 
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ABSTRACT 

A highway has a finite width in its transverse direction, and the existence of variation in 
material properties between the road and the surrounding soil is not uncommon. A three­
dimensional elastodynamic solution is presented to take into account the variation of mate­
rial properties in the soil-pavement system by using the Fourier superposition technique. 
The pavement, base and subgrade are represented by a finite-element core region. An ex­
pansion technique is used to simulate the infinite lateral soil region. A viscous boundary is 
implemented for a half space condition. The stiffness matrices and point load and disk load 
vectors are obtained in the frequency-wavenumber domain. Parametric studies of the soil­
pavement formulation are conducted to assess the accuracy of the results. 

An investigation of the effects of the lateral boundary on the pavement deflections mea­
sured by various nondestructive testing techniques is presented. The Dynaflect, the Falling 
Weight Deflectometer (FWD), and the Spectral-Analysis-of-Surface-Waves (SASW) methods 
are simulated on three typical in-service pavement sections. The results of the Dynaflect 
tests indicate that the effects of the lateral boundary on the measured deflections are di­
rectly related to: (a) the loading position with respect to the edge of the pavement; (b) the 
thickness of the surface layer; Cc) the lateral stiffness contrast between the road and the sur­
rounding soil; Cd) the height of the ramp, if the test is performed on a ramp. A closer load­
ing position, a larger value of the thickness, a higher contrast, and a larger value of the 
ramp height will result in a larger influence on the deflections. The lateral boundary also 
has a differential influence on different stations which will, in turn, change the shape of the 
deflection basins. The existence of retaining walls is important, especially for the "high" 
ramp. Similar conclusions are reached for the FWD test simulations. The results of the 
SASW tests indicate that some fluctuations may occur in the dispersion curve because of the 
reflected body waves due to the abrupt change in the stiffness at the horizontal interfaces 
between layers. The existence of the lateral boundary causes additional fluctuations, par­
ticularly for long wavelengths. 

KEY WORDS: Finite width pavements, Dynaflect, Falling Weight Deflectometer, Spectral 
AnalYSis of Surface Waves, Finite Elements, Fourier decomposition 

SUMMARY 

The Dynaflect, the Falling Weight Deflectometer and the Spectral Analysis of Surface 
Waves are three procedures commonly used for non-destructive testing of pavements. The 
first two provide the deflections at a number of stations along the pavement caused by a 
steady state dynamic load or an impact. The elastic moduli of the pavement, base and 
su bgrade are then estimated by comparing the measured deflections to those resulting from 
analyses changing the layer properties and iterating until a reasonable match between ex­
perimental and numerical results is found. The analyses are normally performed assuming 
static conditions and ignoring therefore any possible dynamic effects. This is a problem that 
has been investigated in other reports. In addition all analysis programs, whether static or 
dynamic, assume that the pavement system extends to infinity in the two horizontal direc-
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tions and that the deflections are independent of the position of the load with respect to the 
edge of the pavement. In this work the effects of the finite width of a pavement and the 
position of the load are investigated. The formulation and mathematical model to deter­
mine the dynamic response of a body with a two dimensional geometry to a three dimen­
sional load are presented and the results of the computer program are validated by compar­
ing them to those of other established codes when the pavement extends to infinity. 
Parametric studies are then conducted for four different pavement profiles in order to assess 
under what conditions the effect of the finite pavement width may influence significantly 
the deflection basins. 

IMPLEMENTATION STATEMENT 

The results of the parametric studies conducted indicate that the effect of the finite pave­
ment width will be negligible generally when dealing with flexible pavements. It may be 
more important however for stiff pavements depending on the contrast in properties with 
the surrounding soil. It can be significant when dealing with a pavement or an embank­
ment with or without retaining walls. Although experimental verification of these studies is 
needed before providing final recommendations and the number of cases considered is lim­
ited, it would appear from the results that the Dynaflect or Falling Weight Deflectometer 
loads should be placed at least 4 ft from the pavement edge and that this distance should 
increase when dealing with an embankment. Otherwise the values of the moduli predicted 
using the standard backcalculation procedures may be unreliable. 
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CHAPTER 1. INTRODUCTION 

1 • 1 Background 

The determination of the structural capacity of pavements has always been a problem of 

major concern in highway management. A knowledge of the structural condition of the 

pavement provides valuable information for (1) determination of structural adequacy, which 

permits the estimation of the remaining life of the pavement and when rehabilitation should 

be accomplished; and (2) selection of feasible rehabilitation and/or reconstruction 

strategies. The importance of this evaluation in the decision making of many highway and 

airfield agencies has increased recently, as many major highways and airport runways are 

approaching the end of their serviceable lives. 

In practice, the structural evaluation can be performed through two types of testing 

techniques. One is called destructive testing and the other nondestructive testing. 

Destructive testing is often accomplished through coring, test pits and sampling followed by 

field and laboratory tests. It can provide detailed profiling, the extent of deterioration, and 

the material properties including elastic moduli, water content, density, gradation, etc. Four 

main problems associated with destructive testing are (1) the representation of the samples 

over the whole section; (2) the disturbance of the materials caused by the coring and 

sampling; (3) the interruption of normal traffic; and (4) the inability to conduct periodic 

monitoring over a particular section. 

On the other hand, nondestructive testing techniques, in which the structure of the 

pavement is not altered by the testing, can be employed at the same location as often as 

necessary. Figure 1.1 illustrates schematically a nondestructive test. The test is usually 

performed along the longitudinal direction of the pavement (Le., the direction of traffic). 

The response of a pavement due to a quasi-static or dynamic load is generally measured in 

terms of surface deflections. The measured deflections are then analyzed through an 

inversion process to determine the structural adequacy of the pavement. Many methods of 

structural evaluation were originally based on limiting deflection criteria by empirically 

correlating pavement performance with the measured deflections. Increased research 

efforts, however, are under way to develop a more rational and mechanistic approach for 

structural evaluation by the application of multilayered elastic theory to back-calculate the in-
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situ elastic moduli of the pavement from the measured deflections. The estimated in-situ 

moduli can then be used as input in a forward model to calculate the critical stresses and 

strains of the pavement under a given design load configuration. From thiS, the fatigue life 

and the remaining life of the pavement can also be estimated. 

Pavement Width 

I-I 

Figure 1.1 Illustration of nondestructive testing on pavement system 

With today's technology of high speed computers and data acquisition devices, 

nondestructive testing techniques have become more and more promising. A number of 

procedures and associated equipment [e.g. Dynaflect, Falling Weight Deflectometer (FWD), 

and Spectral Analysis of Surface Waves (SASW)] have been developed in recent years. 

However, there are still some problems which have not yet been fully resolved, especially in 

the inversion process. Because of the complexity of the inversion process, efforts have 

been made to understand its feasibility and limitations through the use of forward modelling. 

An appropriate forward model can be used not only as a research tool to study the 

important variables and their associated limitation in the inversion process, but also as a 

design tool to determine the structural adequacy of pavements. 

There are several forward models or theories available for calculating behavior or 

response within a pavement structure due to a given load condition. The elastic multilayered 

theory developed by Burmister (1945) is mainly used for the analysis of flexible pavements, 

while the most frequently used model for rigid pavements is based on Westergaard's theory 

(1926) (to perform analysis of thick elastic plates on a Winkler-type soil). 

A potential problem with these formulations is that they are all based on static loading 

while most of the nondestructive tests are of a dynamic nature. A three-dimensional 

elastodynamic solution obtained by Kausel (1974) was recently applied to nondestructive 

testing of pavements by Roesset and Shao (1986). It was demonstrated that under certain 
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conditions, a static interpretation of dynamic deflections may result in substantial errors. 

The use of Kausel's formulation allows one to obtain dynamic deflections under 

axisymmetric conditions. This is the formulation that has been used until now in the 

dynamic testing of pavements. It assumes therefore that the pavement has infinite 

dimension in the horizontal plane, as shown in Figure 1.2. In other words, it does not allow 

material variation in the horizontal directions. 

Load 

___ 00 

Rigid Rock or Half Space 

Figure 1.2 Schematic diagram of a three-dimensional layered system under 
axisymmetric condition 

In reality, however, a highway pavement h,as a finite width in the transverse direction, as 

shown in Figure 1.1. More importantly, most of the nondestructive testing procedures (The 

Asphalt Institute, 1977; ERES Consultants Inc., 1983) require that on multiple lane facilities, 

the test be performed at least on the outer lane, because it is the heaviest travelled truck 

·lane. As a result, it is important to quantify the effect of the lateral boundary on the measured 

deflections in order to provide recommendations for a more effective use of nondestructive 

testing techniques, 

1.2 Obiectives and Organization 

The principal goal of this report was to develop a mathematical model of soil-pavement 

systems, which can account not only for the dynamic nature of the loading, but also for the 

existing lateral boundary conditions. Studies of the effect of test loading position should help 

to understand the importance of accurate placement of a deflection device. 

An overview of the commonly used nondestructive testing techniques is presented in 

Chapter 2. Emphasis is placed on the key characteristics of each testing technique in order 

to give a firm background of the principles involved. The relative advantages and 

disadvantages of each method are also addressed. 
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In Chapter 3, a new formulation for soil-pavement systems is presented. The soil­

pavement structure is modeled as a layered stratum resting on a rigid rock or half space. The 

material is assumed to be isotropic, homogeneous, and linearly viscoelastic. Fourier 

superposition analysis is applied to the time variable as well as the spatial variable. The 

stiffness matrices and load vector are obtained in the frequency-wavenumber domain. A 

special technique is used to obtain the stiffness matrix: for the infinite lateral region. 

Chapter 4 includes validation of the soil-pavement formulation with Kausel's formulation. 

Parametric studies of key variables are performed to assess the accuracy of the results. The 

sensitivity of the results to various parameters is addressed. 

The application of the soil-pavement formulation to simulate the nondestructive test 

methods is presented in Chapter 5. The potential problems in each testing technique due to 

neglecting the existing lateral boundary conditions and the relation of loading position with 

respect to .the pavement edge are discussed. 

Finally, the major findings are summarized in Chapter 6. Conclusions and 

recommendations are also included. 
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CHAPTER 2. OVERVIEW OF NONDESTRUCTIVE 
TESTING METHODS USED FOR STRUCTURAL 

EVALUATION OF PAVEMENT SYSTEMS 

2.1 Introduction 

In nondestructive testing, the equipment in current use generally provides measures of 

the surface deflections due to an applied load. Because of inherent differences in the loading 

mechanisms, these devices will produce different deflections and hence lead to different 

data interpretations. Based on the type of applied load, nondestructive testing devices can 

be categorized into three groups: slowly moving load, vibratory load and impulse load. 

Table 2.1 gives examples of several devices and their loading characteristics. Detailed 

information on many of these devices can be found in Moore (978) and Epps, et al (986). 

This chapter will discuss the general principles involved in each group as well as specific 

equipment and procedures that are commonly in use. The relative advantages and 

disadvantages of each device will be addressed. 

Table 2.1 Ust of Nondestructive Testing 
Devices 

Category Device 

Slowly Moving Load Benkelman Beam 
Traveling Deflectometer 

Vibratory Load 

Impulse Load 

2.2 Benkelman Beam Test 

Dynaflect 
Road Rater 

Falling Weigbt Deflectometer 
Spectral Analysis of Surface Waves 

The Benkelman beam is the most common equipment used to measure the response of 

pavements due to a slow-moving load. A schematic of the device is shown in Figure 2.1. It 

consists of a simple lever arm attached to a lightweight frame. The probe of the beam is 

placed between the dual wheel of a vehicle axle ballasted to the desired load. The motion of 

the beam is observed on a deflection dial gauge. 
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This equipment has been used for many years. It is commercially available and relatively 

inexpensive. However, a serious problem with this type of measurement is the difficulty in 

obtaining an immovable reference point for making the deflection measurements. Because 

of this problem, the absolute accuracy of this method is questionable. Moreover, it is 

difficult to correlate the nearly static results to the response of pavements to high-speed 

traffic loads. Therefore, no further attention will be paid to this method. 

Axial Load 

_ ...... ·················p~~t 

Pavement 

Measured 
Movement 

Figure 2.1 Schematic of the Benkelman Beam Device (after Lay, 1986). 

2.3 Dynaflect Test 

Although there are different types of vibratory load equipment being used, they all share 

many of the same characteristics. Basically they apply a steady-state sinusoidal force to the 

pavement system. 

Deflections are then measured with inertial motion sensors (either accelerometers or 

velocity transducers, also called geophones). 

One commonly used device is the Dynaflect, as illustrated in Figure 2.2. It employs two 

counter-rotating eccentric masses operating at a fixed frequency of 8 Hz, which results in 

steady-state vibrations that are a sinusoidal function of time. A typical forcing function of the 

Dynaflect is shown in Figure 2.3, where a 1,000-pound peak-to-peak magnitude of dynamic 

force is super-imposed upon a static load of 1,800-pounds. This steady-state vibratory force 

is applied to the pavement through two 4-in. wide,16-in. diameter rubber-coated steel 

wheels which are spaced 20 in. center-to-center (Figure 2.4). Five equally spaced geophones 

at one-foot intervals are used to measure the vertical velocities of the pavement system. The 

signals are then integrated electronically to obtain deflections. 
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Housing and Tow Bar 

Loading Wheels Geophones 

Figure 2.2 The Dynaflect device (from Uddin et aI, 1983) 

a:t 
U .... 
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~ 900 
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,.... ..., 

~ 
Peak-to-Peak 

••••• 111 ••••••• • 'Dynamic Force 
= 1,000 Ibs 

1 

0'--__ ----''--___ '--___ ...... 
0.0 0.1 0.2 0.3 

Time (sec) 

Figure 2.3 Forcing function of the Dynaflect device 

Peak-to-peak dynamic deflections obtained from the array of five geophones form half 

of the deflection basin as illustrated in Figure 2.5. Several basin parameters have been used 

for rating the structural condition of a pavement, such as maximum Dynaflect deflection, 

surface curvature index, basin slope, etc. 

The major advantage of the Dynaflect test compared with the Benkelman beam test is 

that accurate deflection basin measurements can be made with respect to an inertial 

reference frame. In addition, it is very rapid and simple to operate. The total time required 

for making a set of five deflection measurements is about two minutes. 

The major disadvantage associated with the Dynaflect is that only the deflection response 

due to an excitation of 8 Hz is measured. It does not accurately reflect the traffic load in 

terms of its frequency content. However, from the theoretical point of view it is much less 

expensive to simulate the Dynaflect since only one frequency is needed. In addition to the 

limitation of its frequency content, the results of the Dynaflect represent only the global 

7 



response of the entire structure. It does not provide direct information for separation of the 

effects of various layers in the pavement system, and back-calculation of Young's moduli for 

various layers remains problematic. 

Loading Wheels 
Geophones 

No.1 No.3 No.5 

···· .... ···e············ .. · ........ ···a .... ·· .......... · ...... ··a ....... ······ .. · .. ··· .. ··a·· .... ··· .. · .. ···········a .. · .. 
i , 
~ 't" 
I'" "'1 

diameter 16 in. 

I'" ~I... ~I... ~I... ~I 
12 in. 12 in. 12 in. 12 in. 

Figure 2.4 Top view of Dynaflect loading wheels and geophones (after Uddin et aI, 1985) 

2.4 Falling Weight Deflectometer 

In principle, all impact load testing methods generate some type of transient load 

applied to the pavement surface and measure its transient response. The Falling Weight 

Deflectometer (FWD) is the one which is believed to more closely simulate the deflections 

produ~ed by moving traffic wheels. Figure 2.6 shows a schematic diagram of the FWD 

device. Basically it applies an impulse load by dropping a known mass (ranging from 110 to 

660 lbs) from a predetermined height (ranging from 0 to 16 inches). The mass falls on an 

11.8-inch-diameter loading plate which is resting on a 0.22-inch-thick rubber buffer. The 

reSUlting force forms approximately a half-sine wave with a peak magnitude ranging from 

1,500 to 24,000 lbs and a duration of about 25 to 30 msec (Figure 2.7). A properly designed 

mass configuration and buffer characteristics are very important to achieve the desired peak 

stress, the shape and the duration of the FWD force signals. 

The resulting velocity histories vet) due to the impact load are measured by velocity 

transducers located at 0, 1, 2, 3, 4, 5, 6 ft from the center of the loading plate (Figure 2.6). The 

surface deflection history x(t) at each station is then obtained by integrating the 

corresponding velocity along the time axis. The maximum deflection is selected from each 

deflection trace. By connecting the maximum deflection of each station, a deflection basin is 

obtained. 
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.... .. .. .. .. 
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Figure 2.5 Typical Dynaflect deflection basin (from Uddin et ai, 1985) 
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Figure 2.6 Schematic of the FWD device (from Uddin et ai, 1985) 

Since the load applied in the FWD method is transient in nature, it effectively contains 

sinusoidal waves over an extended range of frequencies, Likewise, the deflection measured at 

each station contains all frequencies, Using the Fourier transform, one can decompose the 

time history of the deflection x(t) into its frequency components X (t), That is 

+00 
X (1) = J x(t) e - i 21t 1 t dt (2.1) 

Each frequency component will then represent the steady-state deflection at that 

frequency, Therefore, with only one impact load one can obtain the same information as in a 

number of steady-state deflection tests. This is the main advantage of the FWD over the 
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steady-state deflection tests. In addition, because of its good correlation with the deflections 

induced by traffic loads, this method is widely used nowadays in engineering practice. 

Peak load 

___ I 1.......- 0.025 (sec) 

Figure 2.7 Time history of the FWD forcing function of pavement surface 
(from Uddin et all 1985) 

However, since only the maximum deflection basin of the FWD is being used in practice, 

the FWD technique is like any other type of deflection testing in that the results represent a 

global characterization of the entire structure and do not provide information that can 

readily be used to separate the effects of various layers in the pavement system. In addition, 

for computer simulation it needs essentially either time integration for a time-domain 

solution or all of the frequency components for a frequency-domain solution. Therefore, it is 

more expensive to simulate the FWD than the Dynaflect. 

2.5 Spectral Analysis of Surface Waves Method 

The Spectral-Analysis-of-Surface-Waves (SASW) method is a relatively new method of 

dynamic testing developed to determine shear wave velocities and shear modulus profiles at 

soil sites (e.g. Stokoe and Rix, 1988) and Young's modulus profiles at pavement sites (e.g. 

Nazarian et ai, 1983). Like the FWD method, the SASW method applies a transient impact 

on the pavement surface. However, the SASW method makes use of the theory of surface 

waves in a layered system to interpret the results and differs from other deflection testing 

techniques in many aspects. A brief overview of the SASW method is presented here. For 

more detailed information, the reader is referred to Nazarian and Stokoe (1985a and 1985b). 

The general configuration of the SASW test is shown in Figure 2.8. The source is simply a 

transient vertical impact on the pavement surface. Two vertical receivers are placed on the 
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surface to measure the time records of the surface motions. The output of the receivers is 

simultaneously recorded on a dynamic signal analyzer for future data reduction. The test is 

repeated for different source-receivers spacings. The most common type of geometrical 

arrangements for the source and receivers is called the common receiver midpoint 

geometry, as illustrated in Figure 2.9. 
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. Figure 2.8 General configuration of the SASW test 

The basis of the SASW method is the dispersion of surface waves in a layered medium. A 

plot of phase velocity versus frequency or wavelength is called a dispersion curve. 

The dispersion of surface waves can be easily understood in terms of wavelength. It is 

well known that surface waves decay rapidly with depth below the surface, as shown in 

Figure 2.10. Notice that the vertical axis is the vertical depth normalized with respect to 

wavelength. In a practical sense, this means that waves with short wavelengths (high 
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frequencies) propagate only in the upper layers. They are therefore influenced most by the 

properties of these layers. Waves with long wavelengths (low frequencies), on the other 

hand, travel through deeper layers as well as the near-surface layers. Thus they are influenced 

Legend 

D Receiver 

t Sou~ 
/#/ 

/#/ 

o o 

o o 
Figure 2.9 Common receiver midpoint geometry 

to a large extent by the properties of the deeper layers. Two examples are presented to 

illustrate the dispersive nature of the surface waves. In Figure 2.11a, the shear wave velocities 

of the layers increase with depth, which is very common for many soil or rock sites. The 

same trend can be found in the dispersive curve (Figure 2.11b), where the shear wave phase 

velocities increase as the wavelength increases. For a pavement profile, shear wave velocities 

(Figure 2.12a) decrease usually with depth and the dispersion curve will also decrease with 

depth (Figure 2.12b). 

In data reduction of SASW testing, the time records obtained from the two receivers are 

decomposed into their frequency components, usually by means of an FFT (Fast Fourier 

Transform). The results in the frequency domain are complex functions of frequency, which 

consist of a real and an imaginary part. The results can also be expressed in terms of 

magnitude and phase angle. It is the phase angle spectrum that is used for the dispersion 

analysis. 
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Figure 2.10 Variation of normalized vertical and radial displacements with 
normalized depth for a surface (Rayleigh) wave propagation in 
a uniform half space (from Richart et 0/, 1970) 

Typical Soil or Rock Profile (b} Surface Wave Phase 'klocity 

CS1 <: CS2 <: CS3 

Figure 2.11 Surface wave dispersion in a layered half space for a typical soil or rock 
site 
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(a) Typical Pavement Profile (a) Surface Wwe Phase 'klocity 

Figure 2.12 Surface wave dispersion in a layered half space for a typical pavement site 

For a given frequency, f, the time delay, t, between receivers can be calculated using: 

(2.2) 

where QJ is the phase difference between receivers, expressed in degrees. The surface wave 
phase velocity, CR , is then determined using: 

c = R 

d - d 
2 1 

t 
(2.3) 

in which d1 is the distance from the source to the first (near) receiver and d 2 is the distance 

from the source to the second (far) receiver, as shown in Figure 2.8. The final step in 

calculating the dispersion curve is to determine the corresponding wavelength using : 

CR A. --R - f (2.4) 
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It can be seen that if phase difference and frequency are known, phase velocity and 

wavelength can be easily determined using Eqs. (2.3) and (2.4). By repeating this process for 

other frequencies on each record, a number of data points are obtained, from which the 

dispersion curve can be constructed. 

The final task in SASW testing is to determine the shear wave velocity profile from the 

dispersion curve. This process is called inversion of the dispersion curve or simply 

inversion. There is a crude type of inversion that has been used for many years in which it is 

assumed that the sampling depth is equal to one-half to one-third of the wavelength and that 

the shear wave velocity is equal to 1.1 times the surface wave velocity (Heisey et ai, 1982; 

Richart et ai, 1970). In other words, the shear wave velocity profile can be obtained simply 

by multiplying the scale of the wavelength axis by one-half or one-third and the scale of 

phase velocity axis by a value of 1.1. Once the shear wave velocity profile is constructed, the 

shear modulus and Young's modulus profiles can be obtained, provided that Poisson's 

ratios and mass densities are determined by other means. 

An increasing research effort has been devoted to improving the SASW method. A 

plane Rayleigh wave inversion process was introduced to determine more accurate shear 

wave velocity profiles (Nazarian, 1984). Sanchez-Salinero (1987) performed a theoretical 

study of the appropriateness of assuming plane Rayleigh waves in surface wave testing and 

the effects of different source-receivers configurations. Rix (1988) conducted an extensive 

experimental investigation of factors which affect surface wave testing such as the types of 

source, and the assumption of a fundamental mode in the theoretical displacement 

calculation. In many aspects, the SASW method is still in research and development stages. 

Nevertheless, it is a method which offers a great deal of promise. It provides a tool having a 

rigorous basis for separating the effects of various layers, so that a unique profile and layer 

thickness can be determined with great accuracy. However, the method itself is more 

involved than other testing techniques. It needs more attention to details on how to perform 

the test, and correctness of the phase information both from the theoretical and field study. 

It is hoped that once the system is fully automated, it will be just as fast to perform a SASW 

test as any other nondestructive testing method. 

2.6 Summary 

The general principles of four types of nondestructive testings have been discussed in 

this chapter. They are the Benkelman beam, the Dynaflect, the FWD and the SASW tests. 

The Benkelman beam test has been widely used in practice due to its simplicity and ease of 

testing, in spite of the fact that it is difficult to obtain an immovable reference frame for 

deflection measurements and that static deflections are not well correlated to those induced 

by dynamic traffic loads. 
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The Dynaflect test uses inertial sensors so that accurate deflections can be measured. 

However, only one frequency is being used. The correlation of test results to traffic loads is 

questionable. 

The FWD device generates essentially all frequency components. It has gained 

widespread popularity among highway agencies because of its good correlation with moving 

traffic loads. However, like the Benkelman beam and the Dynaflect tests, the FWD 

characterizes only the entire pavement structure. It does not provide direct information to 

separate the effects of various layers. 

The SASW testing is a relatively new method. Based on the dispersive nature of surface 

waves in a layered medium, it provides direct evaluation of individual layers so that a unique 

profile can be determined. 

Finally, it should be recognized that each testing technique has its own merits, especially 

when considering the integrity of the entire procedure from the field testing to the data 

reduction. It is hoped that with today's technology, the results of nondestructive tests can 

be properly interpreted by analyzing extensive field data and synthetic results and that this 

will, in turn, result in a more rational and mechanistic approach for structural evaluation of 

pavement. 
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CHAPTER 3. MATHEMATICAL FORMULATION OF 
SOIL-PAVEMENT SYSTEM 

3.1 Introduction 

Many problems in the fields of soil-structure interaction, nondestructive testing and soil 

dynamics can be schematically depicted as in Figure 3.1. This system consists of an irregular 

core region and two semi-infinite layered regions. Normally the dimensions of the core 

region are finite. It is therefore rather straightforward to model it with a finite number of 

degrees of freedom. Many well developed discretization procedures like the Finite Element 

or the Finite Difference methods are readily available for this purpose. A more difficult 

question is how to model and analyze the surrounding soil which is essentially an infinite 

medium. For static loading, one simple way is to introduce a fictitious boundary at a distance 

from the core region, where the response is expected to have died out. However, for 

dynamic loading the fictitious boundary will reflect the waves back into the core region 

instead of letting them pass through the interface and propagate toward infinity. One way to 

tackle this problem for solutions in the time domain is to locate the fictitious boundary at a 

distance such that the time of arrival of reflected waves exceeds the time span of interest. In 

many cases this requires the use of a very large mesh which will result in large computer 

memory and execution time. It is therefore desirable to seek some means to reduce the 

number of degrees of freedom necessary to model the whole system without loss of 

accuracy. 

In the literature, special boundaries which can prevent the "false" wave reflections at the 

edges of the core region are normally referred to as nonreflecting, transmitting or 

absorbing boundaries. If the solutions are exact, in the finite-element sense, the boundaries 

are said to be consistent. A number of typical examples can be found in the literature. 

Lysmer and Waas (1972) presented a consistent lateral boundary for time-harmonic waves in 

plane strain or antiplane shear as well as axisymmetric waves in a layered stratum. The 

method was expanded by Kausel (1974) to nonaxisymmetric waves in axisymmetric regions 

of a layered stratum. More general consistent boundaries can also be developed using 

Green1s functions in connection with the boundary integral method (Kausel and Peek, 1982). 

There are also some other types of approximate transmitting boundaries, such as Lysmer-
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Kuhlemeyer, Engquist-Maida, Ang-Newmark, Smith-Cundall, and Iiao-Wong boundaries. A 

comprehensive discussion of these boundaries can be found in Kausel (988). 

Left Lateral Region Core Region Right Lateral Region 

Figure 3.1 Typical three-dimensional structure 

Using the consistent boundary of Waas (972) for a problem with a two dimensional 

geometry and an inplane or antiplane line load, one can determine the displacements in the 

plane as a function of frequency or time. For problems where the geometry is axisymmetric, 

the use of Kausel's (974) consistent boundary allows one to obtain displacements due to 

point, disk or ring loads. This is the formulation that has been used until now in the dynamic 

analysis of pavements, either for the Dynaflect, the Falling Weight Deflectometer or the 

Spectral-Analysis-of-Surface-Waves. It assumes that the pavement has infinite dimension in 

the horizontal plane. 

In reality, however, a pavement has a finite width in the transverse direction (Le. the x­

direction) as shown in Figure 3.2. In the longitudinal direction (i.e., the direction of traffic, 

also the y-direction), one can consider the pavement to have infinite dimension. By 

assuming no structural (material or geometrical) variations in the y-direction, a soil-pavement 

system can be treated as a two-dimensional structure. For a vertical line load uniform in the 
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y-direction, the problem will be a two-dimensional one. The solution can be obtained by 

using Waas' consistent boundary. However, the assumption of a line load is not realistic in 

nondestructive testing for pavements, since it is the variation of deflections along the 

direction of traffic (the deflection basin along the y-direction) which must be modeled, as 

discussed in Chapter Two. For this reason, the load should be modeled as either a point load 

or a disk load in a three-dimensional space. The purpose of the present formulation is to 

derive a solution for the case of a two-dimensional structure subjected to a three­

dimensional load. Most of the concern will be placed on the formulation and investigation of 

Lateral Region Core Region Lateral Region 

I" .. .... 

B .. ... 

z Transverse .... 

------------~~~~ 
Soil 

H 

Figure 3.2 Idealized soil-pavement system 
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soil-pavement systems, although the formulation can be applied equally well to many other 

practical problems which share the same kinds of features, such as tunnel detection, 

material characterization of dams, etc. 

The formulation described in this chapter starts with the layout of the problem and the 

assumptions of material properties in Section 3.2. The soil-pavement structure is modeled as 

a layered system. Each layer is considered to be isotropic, homogeneous and linearly 

viscoelastic. Fourier superposition technique is discussed in Section 3.3. It can be applied to 

both the time variable t and the spatial coordinate y so that a time- and space-dependent 

problem can be transformed into a domain which is independent of time t and coordinate 

y. The formulation of the stiffness matrices for core region, lateral regions, and bottom 

boundary are described in Sections 3.4, 3.5, and 3.6, respectively. Section 3.7 discusses the 

formulation for point and disk loads. The computer implementation is outlined in Section 

3.8. Finally, a summary is included in Section 3.9. 

3.2 Layout of the Problem 

In a system of rectangular Cartesian coordinates (x, y, z), Figure 3.2 depicts an idealized 

pavement system which is surrounded by soil. The soil-pavement system is considered to 

be a horizontally layered stratum of depth H resting over a rigid rock or a half space. The 

core region has finite width B in the x-direction (transverse direction) while it extends to 

infinity in the y-direction (longitudinal direction). It is assumed that the lateral regions extend 

to infinity in both the x- and y-directions. In all the regions, each layer is considered 

isotropic, homogeneous, and linearly viscoelastic. Thus, for a dynamic problem, four 

parameters are needed to characterize the material properties: the mass density p, the 

Lame moduli A and G, and the damping ratio D. Some other material constants can be 

derived from these four basic parameters as follows: 

v = 

E .. 

M 

Cs 

Cp = 

in which 

A 
2(1.. + G) 

G (31.. + 2G) 
A+G 

A+2G 

20 

(3.1) 

(3.2) 
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v == Poisson's ratio, 

E "" Young's modulus, 

M = the constrained modulus, 

Cs = the shear wave velocity, and 

Cp ,. the compression wave velocity. 

It should be noted that the Lame moduli A and G are real numbers for a linearly elastic 

solid. However, for a linearly viscoelastic solid, they are specified as complex-valued 

functions of the frequency ro, which depend on the type of internal dissipation of energy in 

the material. For a linear viscous material, the energy loss per cycle increases linearly with 

frequency. Hysteretic damping, on the other hand, produces an energy loss per cycle that is 

frequency independent, but depends on amplitude of the strains. For low-strain amplitudes, 

damping can be considered to be independent of strain (Hardin and Drnevich, 1972; 

Johnston et at, 1979; Toksoz et at, 1979). In order to maintain the linearity of the solution, 

the amplitude dependence is dropped, using what is normally called linear hysteretic 

damping. In this case, the complex Lame moduli are given by 

A C == A (1 + i20), GC - G (1 + i20) (3.6) 

where A and G are the moduli of the corresponding linearly elastic solid and i == V. Since 

the differential equations which must be satisfied by a time-harmonic displacement field in a 

linearly elastic solid are formally the same as those in a linear viscoelastic material, derivations 

are made for linear viscoelastic solids only. If the results are desired for a linearly elastic 

material, the damping ratio D is set equal to zero. For the reason cited above, the 

superscript "c" will be dropped in what follows, since no confusion should occur. 

3.3 Fourier Superposition Analysis 

One of several methods to study wave propagation phenomena in a linear viscoelastic 

medium is by the superposition of the response to steady-state harmonic excitations. The 

method, known as Fourier superposition, provides an easy way to study complicated 

transient events when the solution to the steady-state problem is known. It should be noted 

that the use of superposition techniques is limited to linear systems. 

Consider a m~dium with an arbitrary shape as shown in Figure 3.3a. The objective of the 

analysis is to obtain the time history of panicle displacement u(t) that would be recorded by 

a receiver at a point B due to an arbitrary excitation pet) applied at a point A.. As a first step 

in the Fourier superposition method, the excitation pet) is decomposed into its different 

frequency components P(ro)by means of a forward Fourier transform (Figure 3.3b) : 
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Figure 3.3 Illustration of the use of Fourier Superposition Analysis 

This also implies that 

+00 

P (m) = f pIt) e- imt dt 

p(t) = 

-00 

, 
21t 

+00 J P (m) Jmt d m 

-00 

(3.7) 

(3.8) 

In these expressions, the symbol t is the time variable in seconds, m is the angular 

frequency in rad/sec, and e is the base of natural logarithms. The two integrals in Eqs. C3.7) 

and C3.8) are known as a Fourier transform pair. 

The second step is to obtain the transfer function H (01) defined as the response of the 

medium due to a unit disturbance. Both the response and disturbance can be any quantity of 

interest, such as displacement, stress, strain, etc. In our case, H (m) is the displacement of 

point B due to a harmonic unit load at point A. (In this case, it can be called also a flexibility 

function.) 

The third step is to obtain the Fourier transform of the displacement, U (01), by 

multiplying the Fourier transform of the force by the transfer function. That is, 
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U (ro) = H (ro) x P (ro) (3.9) 

Finally, the time history of particle motion u(r) can be recovered through an inverse 

Fourier transform 

-too 

u(l) = 2~ f U (ro) e
iOl 

t d ro 

-00 (3.10) 

To make practical use of the frequency domain method described above, it is necessary 

to formulate the Fourier transform pair Eqs. (3.7) and (3.8) so that they can be calculated 

numerically. A discrete Fourier transform (DFD expression is therefore derived with the 

assumption that the input function is periodic with period Tp in order to replace the infinite 

time integral with a finite sum. Therefore Eqs. (3.7) and (3.8) become 

in which 

n. 
N-1 -(21ti _I ) 

P(ron) = ~t L p(t
j
) eN, n = 0, 1, ... , N-1 

j=O 

p(t.) 
I 

n. 
N-1 (21ti-1 ) 

= ~~ L P(O>r,) e N I j = 0, 1, ... , N-1 
n=O 

N = number of sampling points, 

t j - j ~t, 
T 

~t= ~ 
N' 

ron = n ~ro, 
21t 

~ro = T' 
p 

(3.11) 

(3.12) 

The Fast Fourier transform (FFD is an efficient method for evaluating DFT based on the 

numerical algorithm proposed by Cooley and Tukey (1965). Details on Fourier transform 

theory and FFT algorithms can be found in Bracewell (1965) and Brigham (1974). In using 

DFT or FFT, the values of the basic parameters involved (e. g., number of sampling points N, 

time increment ~t and period T ~ have to be properly selected such that a compromise can 

be reached between the accuracy of results and the cost of computation. 
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Before proceeding, it is useful to mention that the Fourier transform technique is not 

restricted to time-dependent functions only. It applies equally well to many other problems 

as long as the system is linear. For time functions, the unit of (temporal) frequency is Hertz 

(cycles per second) and the common symbol is f. Related quantities are the period T p ( ... 1/f), 

and the angular frequency co (= 27tf). If the primary variable for transformation is a spatial 

coordinate, that is a distance, then the frequency will be in units of cycles per distance, and 

is called spatial frequency as opposed to temporal frequency. The parallel quantity to angular 

frequency is the wavenumber, often indicated by the symbol k or m. Thus, a space­

dependent problem can be transformed to its corresponding wavenumber domain. After 

the solution for each wavenumber is obtained, the spatial response can be recovered by 

performing an inverse Fourier transform. Finally, for a time- and space-dependent problem 

such as the one considered in this study, the transform pair can be represented by 

+00 +00 

P(x, Z, m, co) = p(x, Z, y, t) e dt dy A J J -i (cot- my) 

_00_-00 

(3.13) 

+00 +00 • ( 

1 f f A I 01 - my) 
p(x, z, y, t) = 47t

2 
t-'(x, z, m, co) e dco dm 

-00 -00 (3.14) 

where the Fourier transform is applied to the time variable t as well as the spatial variable y. 

The time history of displacement u (x, z, y, t) at any point (x, y, z) can then be written as 

+00 +00 • 
1 J J 0 I (01 - my) u (x, z, y, t) = 47t2 (x, z, m, co) e dco dm 

-00 -co (3.15) 

in which the displacement U (x,z,m,co) can be obtained by 

A A A 
U (x, z, m, co) = H (x, z, m, co) x P (x, z, m, co) (3.16) 

In this expression, H (x,z,m,co) is the transfer function in the frequency-wavenumber 

domain. Instead of keeping the term H (x,z,m,co) in the right-hand side, Eq. C3.16) can be 

rewritten as 

~ (x, z, m, co) x 0 (x, z, m, co) = ~ (x, z, m, co) C3.17) 

where the function S (x,z,m,co) is the inverse of H (x,z,m,co) and can be called the stiffness 

function. Similarly, in a discrete system, the nodal displacements and nodal forces can be 

related as follows: 

"" " S U = P (3.18) 
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where 5 is the dynamic stiffness matrix and P is the load vector. In the Fourier analysis, one 

may find that most of the difficulty lies in the determination of the stiffness matrices (or 

functions). Once the stiffness matrices are obtained, the rest of the analysis is rather 

straightforward. Therefore, in the following sections, emphasis will be placed on the 

derivation of the stiffness matrices. The formulation of the load vector will be described in 

Section 3.7. 

3.4 Formulation of Core Region 

In this section, the formulation of the stiffness matrix for the core region is presented. It 

starts with the discretization of the core region by finite elements, as shown in Figure 3.4. 

Various types of solid elements in a three-dimensional space can be used. Consider a 

generic finite element herein. The element is characterized by its dimensions LU, ~y, and Liz 

and n nodes. Each node has three degrees of freedom: Ui, Vi, and Wi. By assuming the 

displacement shape functions, the relationships between generic displacements and nodal 

displacements can be written as follows 

n 

U (x, Z, Y, t) = L fj U
j 

n 
V (x, Z, Y, t) = Lfj V. 

I 
(3.19) 

I 

n 

W (x, Z, Y, t) = Lfj W 
I 

where u, v, ware the generic displacements at any point of the element in the x-, y-, z­

directions and fi is the shape function for node i. In matrix notation, it can be written as 

U (x, Z, y, t) = NU (3.20) 

where the matrix N of dimension (3x3n) contains the shape functions and the vector U 

contains nodal displacements in the element. By applying the principle of virtual work (see 

Appendix A for more details), it is possible to write the equilibrium equation for a harmonic 

motion at frequency (j) as 

s U =p (3.21) 

where S denotes the dynamic stiffness matrix of the element and P represents the nodal 

forces. 
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For the purpose of performing Fourier transform in the y-direction, it is convenient to 

partition the dynamic stiffness matrix S into four submatrices. Thus, the matrix S is written 

as 

s =[ 
(3.22) 

in which the subscripts "1" and "2" denote the degrees of freedom on the positive face and 

on the negative face in the y-direction, respectively (Figure 3.5a). Assembling the dynamic 
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Figure 3.5 Assembly in the element level 

stiffness matrices of two adjacent finite elements in the y-direction CFigure 3.5b), one can 

write 

5
11 

5
12 

0 U
b 

5
21 

5
11

+ 5
22 

5
12 Ua = 

0 5
21 

5
22 Uc 

where 

"a" denotes the degrees of freedom on face a CLeo at y-O), 

"b" denotes the degrees of freedom on face b CLe. at y= +dy) , and 

"c" denotes the degrees of freedom on face c CLe. at yo. -dy). 

P
b 

Pa 

Pc 
C3.23) 

Let UCm) and PCm) be the Fourier transforms of UCy) and PCy) with respect to the 

coordinate y. That is 
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1\ 
+00 

= f u (y) 
imy U (m) e dy 

-00 (3.24) 

+00 

fo (m) = f P(Y) 
imy 

e dy 

-00 

where m is the wavenumber (circular spatial frequency) corresponding to the coordinate y. 

By applying the Fourier transform to both sides of Eq. (3.23), the following relationship is 

obtained: 

1\ 

5
11 

5
12 

0 U (m) 
b 

1\ 

5
21 

5
11

+ 5
22 

5
12 U (m) = a 

(3.25) 

0 5
21 

5
22 

1\ 1\ 

U (m) P (m c c 

The displacements Llt,(m) and Uc(m) can be written as 

1\ 1\ -im~y 
UJm) = Ua(m) e . 

(3.26) 

D (m) = D (m) e+ i m ~ y 
c a 

Substituting Eq. (3.26) into Eq. (3.25), one can write 

1\ 1\ 1\ 

5 (m) Ua(m) = Pa (m) 
(3.27) 

where 

(3.28) 

It is interesting to note that through this transformation, the dynamic stiffness matrix 

SCm) is a function of the wavenumber m. One can consider the matrix SCm) as the stiffness 

matrix of a strip element which extends to infinity in the y-direction and which relates 

exclusively the nodal displacements in the x-z plane due to the nodal forces in this plane. In 
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this way, it is possible to reduce a three-dimensional problem to a series of two-dimensional 

ones. Thus one can consider only the x-z plane in the rest of formulation. 

Before proceeding, it is worthwhile to discuss the types of finite elements which were 

used in this study. Basically, there is no restriction on what type of element can be 

incorporated in the formulation. The condensation of the stiffness matrix described above 

assumes a linear variation of displacements in the y-direction. On the other hand, one can 

assume either linear, quadratic, or even high order variation of the displacements in the x­

and z-directions. The main concern in selecting an element was the trade off between 

computational time and the sensitivity of the element to the changes of its dimensions (~x, 

~y, and ~z). For example, usually the top layer of a pavement system is very thin compared 

with the width of the pavement. Therefore, one should select an element which will provide 

accurate result for a large ratio of W ~z. On the other hand, for the deeper layers, one may 

want to enlarge ~z (that is, small ratio ~/ ~z ) so that less layers are needed and therefore 

the computational time can be reduced effectively. 

For the reasons above, four types of element were derived and studied. They are called 

"SOLIDS," "SOLID12A," "SOLID12B," and "SOLID16" (see Figure 3.6). Detailed derivation is 

included in Appendix A. Parametric studies of the performance of these elements will be 

discussed in Chapter Four. 

~x 

SOLIDS SOLlD12A 

SOLlD12B SOUD16 

Figure 3.6 Four types of finite elements 
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3.5 Formulation of Lateral Region 

As explained in Section 3.1, it is necessary to formulate a transmitting boundary such that 

its effect on the core region is equivalent to that of an infinite lateral region. Consider a 

layered stratum overlaying a rigid rock or a half space (Figure 3.7). The lateral region is semi­

infinite in the x-direction and infinite in the y-direction. Again the stratum is discretized by 

finite elements. In principle, the technique used to obtain the stiffness matrix for the core 

region can be applied here to the lateral region. However, since the lateral region extends to 

infinity in the horizontal directions, special care has to be taken through the following levels. 

H 

Interface Between Core 
Region and Lateral Region 

00 

Y~' 

Figure 3.7 Discretization of the lateral region 

3.5. r Element Level 

00 

Each element has dimensions ~x, ~y, and ~z. Starting from the stiffness matrix S (Eq. 

3.21), one can obtain the stiffness matrix S (Eq. 3.28) in the wavenumber domain. 
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Figure 3.8 Four types of soil columns 

3.5.2 Column Level 

Once the stiffness matrix s(m) is obtained, one can assemble these matrices into a matrix 

sCm) which will represent the stiffness matrix for a soil column. Depending on the type of 

element adopted, one may end up with different types of soil columns (see Figure 3.8). For 

elements SOLID8 and SOLID12B, there are two vertical nodal arrays which are denoted by 

numbers "I" and "2." For elements SOLID12A and SOLID16, there will be one additional 

mid-array denoted by number "3." Since there are no external loads acting at the mid-array, 

it is possible to eliminate these degrees of freedom by condensation. First, the matrix SCm) 

can be rearranged and partitioned as follows: 

1\ 1\ 1\ 

5 11 5 12 5 13 
1\ 

5(m) = 
1\ 1\ 1\ 

521 5 22 I 5 23 
----1--

1\ 1\ 1\ 

5 31 5 32 I 5 33 (3.29) 
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By eliminating the third nodal array, a new matrix SCm) can be obtained as 

C3.30) 

Therefore, at the column level, one will obtain a matrix SCm) which contains only arrays 1 

and 2 for all types of elements. Figure 3.9a shows a generic soil column which can be 

characterized by its stiffness matrix SCm). One can simply write SCm) as 

5- [5" 5'2] (m) = _ _ 
52' 5 22 

C3.31) 

Notice that the only difference in the matrix sCm) due to the different types of element is 

its size. For SOLIDS and SOLID 12A, each nodal array contains (N+1) nodes, N being the 

number of layers in the stratum. While for SOLID12B and SOLID16, there will be C2xN+1) 

nodes 

3.5.3 Expansion Level 

By assembling two adjacent soil columns in the x-direction (Figure 3.9b), it is possible to 

write the following relationship: 

- - -- Ua Pa 5" 5'2 0 

- - - - - -5 21 52:5" 5 12 Ub = P
b - - - -

0 5 21 5 22 Uc P c 
(3.32) 

where subscripts "a," "b," and "c" denote three nodal arrays in Figure 3.9b. Eliminating again 

array b by condensation, Eq. C3.32) can be rewritten as 

(3.33) 

where 

32 



-4 - - - - -1 -

5" = 5" 5'2 (5" + 5 22) 5 2' (3.34) 

-4 - - - -1 -
5'2 = 5'2 (5" +522 ) 5'2 (3.35) 

-4 - - - -1 -
52, = 52, (5'1 + 522) 5 2' (3.36) 

- - - -I-

5 21 (5" + 5 22 ) 5 '2 (3.37) 

After this process, one will obtain a new stiffness matrix sCm) for a region with width 

equal to 2~x (Figure 3.9c). Repeating this process by using Eqs.(3.34) through (3.37), the 

width of the region will grow with increments 4~x, 8~x, 16~x, and so on. Table 3.1 shows 

the relationship between the number of cycles Nx and the width of the region T x. It can be 

seen that just after a few cycles, the width of the region may be considered as infinitely large 

by providing some material damping (even as little as one percent) to the soil stratum. Then, 

this final stiffness matrix SCm) can be used to replace the infinite lateral region. 

Notice that the expansion process can be also applied to the core region, especially for a 

pavement system, which can be reasonably modeled as a horizontally layered system. A 

simple example is illustrated in Figure 3.lOa where a load is applied on the surface of the 

core region at a distance of 2~ measured from the left interface and at a distance of 4~x 

from the right. To solve the problem, one can start from the stiffness matrix of a pavement 

column (Figure 3. lOb). Through applying the expansion process once, one can obtain the 

stiffness matrix for the left core region (Figure 3.10c), while for the right core region, the 

expansion process would be performed twice.(Figure 3.10d). 

The advantage of using the expansion technique for the core region is that less 

computation time is needed to obtain the global stiffness, especially when the dimension of 

the core region in the x-direction is relatively large compared with the dimension in the z­

direction. However, a disadvantage of using this technique is that the intermediate nodal 

arrays are removed from the process during the condensation. Therefore, the 

displacements at these nodes are not obtained directly. For almost all the cases of 

nondestructive testings, this does not impose any additional computations, since only the 

displacements along the traffic direction (i.e. the y-direction) at the x corresponding to the 

application of the load are of interest. 
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(a) (b) 

a b e 

.i. 

I· 
Ax .. I 

(e) 
a e 

Figure 3.9 Illustration of the expansion level 

Table 3.1 Relation between the number 
of cycles Nx and the total 
width Tx 

N Tx x 

1 24x 

2 4Ax I 

4 16 Ax I 
6 64 Ax 

8 256 Ax 

10 1024 Ax 
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(b) 

(c) 

(d) 

Figure 3.10 Example of the expansion process for the core region 

3.6 Formulation of Bottom Boundary 

Two types of bottom boundary are usually encountered in the modelling. One is much 

stiffer, nearly rigid rock and the other a homogeneous half space. For the rigid rock case, it 

is assumed that all the degrees of freedom at the bottom of the stratum are fixed. Therefore, 

it is quite simple to implement this condition by removing all the degrees of freedom at the 

bottom from the system of equations. Notice that the degrees of freedom at the bottom for 

a soil (or pavement) column should be removed before performing the expansion process. 

To model the half space, a viscous boundary corresponding to the assumption of a 

vertically propagating wave is used herein. This type of boundary is viscous because it 

assumes that stresses can be expressed in terms of velocities, as 

• 
(j = pCp w 

(3.38) 
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(a) 

Figure 3.11 Viscous bottom boundary 

where 0' and 't are the normal and shear stress, respectively; wand u are the normal and 

tangential velocities. Therefore, in this method, the boundary is replaced by infinitesimal 

dashpots oriented normal and tangential to the boundary. Consider a generic finite element 

supported by dashpots at its bottom (Figure 3.11a). The characteristics of each dashpot can 

be expressed as (Figure 3.11 b) 

or for a harmonic motion, 

• 
'rxz = P Cs u, 

• 'tyz = p Cs v, 
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-- i 0) P Cs '!xz = u , 

- i 0) P Cs v, (3.40) 'tyz = 
--

i 00 P Cp O'z = w. 

In matrix notation, Eq. (3.40) can be expressed as 

T = i O)p C U (3.41) 

where 

-
'txz 

-
the vector T = 

'tyz , and 
-
O'z 

Cs 0 0 

the matrix C = 0 Cs 0 

0 0 Cp 

The equivalent nodal forces can then be written as 

(3.42) 

in which the integral is evaluated over the bottom area of the element. Substituting Eq. (3.41) 

into Eq. (3.42), it yields 

where 

Sb = imp f f NTC N dxdy 

y x 

(3.43) 

(3.44) 

Notice that matrix Sb is the dynamic stiffness matrix in the space domain. Once the 

matrix Sb is obtained, it can be treated as an ordinary stiffness matrix. One can get the 

corresponding stiffness matrix ~ in the wavenumber domain by using Eq. (3.28). Then it can 
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be assembled together with those of the finite elements to form the stiffness matrix for a 

soil (or pavement) column. The expansion technique can be applied to get the stiffness 

matrix either for the core region or lateral region with the viscous boundaty acting at the 

bottom. 

In this section, the derivation of the stiffness matrices for the core region, lateral regions 

and bottom boundary has been discussed. These matrices can then be assembled into a 

global matrix S (Eq. 3.18). 

3.7 Formulation of Point Load and Disk Load Vectors 

As mentioned in Section 3.3, for a time- and space-dependent problem it is necessaty to 

transform the excitation load p(x, z, y, t) into its corresponding components in the 

frequency-wavenumber domain so that the system of equations (Eq. 3.18) can be solved for 

each frequency and wavenumber. The transformation from time domain to frequency 

domain is straightforward. Therefore, the discussion will concentrate on the transformation 

from the space domain to the wavenumber domain. 

y 

Figure 3.12 Distributed load in the space domain 

In order to visualize the transformation of the load vector, an example is given here. 

Figure 3.12 shows an arbitraty excitation load P(x,y) acting on the surface of the pavement. 

The equivalent nodal forces P can be found by using 

(3.45) 

where matrix N contains shape functions of the discrete model. In this example, nine non­

zero nodal forces can be seen in Figure 3.13. All the nodal forces acting at x ... -LU can be 

grouped as vector P.l(y) as shown in Figure 3.13. Then through the Fourier transform, one 

can get the load vector P-l(m) as shown in Figure 3.14. The same process can be repeated 

for the load vectors Po(y) and P+ 1(y). Two types of loads are found to be useful for 

nondestructive testing: a point load and a circular disk load. 
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Figure 3.13 Equivalent nodal loads in the space domain 

p (m) P (m) P (m) 
-1 0 +1 

Figure 3.14 Equivalent nodal loads in the wavenumber domain 

3.7.1 Point Load 

Figure 3.15a depicts a harmonic point load acting on the surface. In the discrete model, it 

is a concentrated nodal force acting at the central node of the four surrounding elements. 

Therefore, the only non-zero load vector will be the one acting at x = O. For a point load 

vector, its transform will be constant over all wavenumbers (Figure 3.15b). 

3.7.2 Circular Disk Load 

For a uniform circular disk load with radius R, the equivalent nodal 

360° R 

P = f f N T P r dr de 

0° 0 
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where P is the uniform distributed load equal to P + (1tR2
), P being the total load. Figure 3.16 

illustrates a case where the disk is smaller than the four surrounding elements. With linear 

shape functions assumed, the equivalent nodal forces can be found as 

(a) 

y 

(b) 

m 

_ 4 
_ _ _ _ pR 
P1 =P3 =P7 =P9 = 16,1>illy 

2p R3 P R4 
P2 = P4 = P6 = PB = 3,1x - 8,1>illy 

p (y) 

A 

P (m) 

•• • 

yf!----~___i __ X 

Figure 3.15 Point load in the space and wavenumber domains 
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y 

Figure 3.16 Disk load in the space domain 

3.8 Computer Implementation 

The soil-pavement formulation has been implemented into a computer program called 

"UTPVT" on the computer Cray X-MP/24 at the University of Texas at Austin. The main 

algorithm can be written as follows 

(1) For each frequency, ro: 

a) For each wavenumber, m: 

i) calculate the stiffness matrix s(m,ro) for soil-pavement system; 

ii) calculate the load vector pcm,ro); 

iii) solve Eq. (3.18) :5 U = P for displacements LKm,ro); 

b) Perform inverse Fourier transform to obtain displacements LKy,ro); 

(2) Perform inverse Fourier transform to obtain time-history of displacements LKY,t). 

Notice that the displacements have to be solved for each frequency and wavenumber. 

Therefore, computational time of UTPVT is proportional to the number of frequencies as 

well as the number of wavenumbers. Considerable effort has been made to reduce the 

computational time required. It is noteworthy to mention two major findings here. 

First, it was found that the stiffness matrix 5 in Eq. (3.18) is not symmetric if the 

displacements are { u, v, w }, However, the matrix will become symmetric if the 

displacements are chosen as { u, iv, w }, where the symbol i is equal to -1. Physically, this 

means that in the wavenumber domain the displacement v in the y-direction is 90 degrees 

out of phase with the displacements in the x- and z- directions. Because of this, one can take 

advantage of symmetry to solve the system of equations. The number of operations needed 

is then reduced from approximately 2/3n3 to 1/3n3, for large values of n, where n is the 

number of equations in the system. Also nearly half the memory space is saved in the 

computer. 
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Secondly, the loading condition (both for a point load and a disk load) is symmetric with 

respect to the axis y ... O. In addition, the structure itself is also symmetric with respect to the 

axis y - O. Therefore, all the displacements in the space domain should be symmetric with 

respect to the axis y = O. This implies that the displacements in the wavenumber domain are 

also symmetric with respect to the axis m-O. Consequently, one can compute only the non­

negative wavenumbers and duplicate the negative terms from them. The number of 

wavenumbers needed will then be equal to (Ny + 2) + 1, Ny being the total number pOints in 

the Fourier analysis. 

Figure 3.17 shows the execution time on the Cray computer for several cases. The 

abscissa is the number of layers in the stratum for each case. For all cases, only one 

frequency is considered. The number of cycles in the expansion Nx is equal to 10 and the 

number of Fourier points Ny is 128. The total width of the pavement is 50 ft and the 

dimensions of the finite elements ilx, ily, ilz are all equal to 0.5 ft. It can be seen that the 

execution time is approximately a third-order polynomial. 
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Figure 3.17 Execution time required in program UTPVT 

3.9 Summary 

The mathematical formulation for a soil-pavement system has been presented in this 

chapter. The formulation accounts not only for the dynamic nature of the problem, but also 

for the variation of properties in the soil-pavement system. The system considered consists 

of an irregular core region and two infinite layered lateral regions. The formulation can also 

be applied to many other problems. 

The soil-pavement structure is modeled as a layered stratum resting on rigid rock or a 

half space. Each layer is considered to be isotropic, homogeneous, and linearly viscoelastic 

within each region. The stiffness matrices for the core region and lateral regions are 
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obtained in the frequency-wavenumber domain. An expansion technique is used to obtain 

the stiffness matrix for the infinite lateral regions. A viscous bottom boundary is 

incorporated in the formulation in order to simulatethe half space condition. Point loads and 

circular disk loads are considered. Finally, the formulation was implemented into a 

computer program called UTPVf. 
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CHAPTER 4. VALIDATION AND PARAMETRIC STUDY 
OF SOIL-PAVEMENT FORMULATION 

4.1 Introduction 

When applying a discrete model (like the Finite Element Method), it is important to 

recognize that the results will deviate to some extent from the exact solution depending 

upon the mesh size. The accuracy of the discrete solution can be improved by choosing a 

very small value of the discrete parameters such as time increment, element size, etc. There 

are, however, limits to the size of the mesh if the computational cost is to remain 

reasonable. Hence, it is essential to perform parametric studies using some model problems 

whose solutions are either simple or readily available, to determine suitable values of the 

discrete parameters so that a compromise can be reached between accuracy of the solution 

and costs of computation. 

Point Load or Disk Load 

- __ -00 

Figure 4.1 Schematic of the model problem 

In this chapter, several key parameters in the soil-pavement formulation are investigated, 

such as type of element, number of sampling points, number of cycles for the expansion of 

the lateral regions, element size, material damping, and bottom boundary. The model 

problem shown in Figure 4.1 is selected for the purpose of the investigation. It. is a 

homogeneous and isotropic stratum under axisymmetric loading in a three-dimensional 

space. The stratum extends to infinity in the horizontal plane, has a total thickness H, and 

rests on a rigid rock or a half space. For simplicity, the total thickness H, the shear 
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modulus G, and the mass density p are all assumed to have a value of one. The Poisson's ratio 

v is 1/3. The material damping ratio D is given the values from 0%, 0.1%, 0.5%, 1 % and 2%. 

The excitation force is assumed to be a steady-state vertical load acting on the surface of the 

stratum with unit amplitude. The circular excitation frequencies 0) are equal to 0, 5 and 10 

rad/sec with cyclic frequencies of f - 0 , 0.8, and 1.6 Hz, respectively. The last two 

frequencies correspond to Rayleigh wavelengths of 1.17 and 0.585. 

For a stratum subjected to a vertical point load as in Figure 4.1, the solution can be 

obtained using the Green's functions obtained by Kausel (1981). This solution will be used as 

the reference for our investigation. Notice that in Kausel's solution, linearization of the 

displacement along the z-direction within each layer is assumed. One must therefore 

subdivide the stratum into several sub-layers. The effect of the number of sublayers is 

illustrated in Figures 4.2 and 4.3. This is a case with a frequency 0) of 5 rad/sec and damping 

ratio D of 2%. The point load is applied at y - O. The vertical displacements Ware plotted 

against the horizontal distance y measured from the point of application of the load. It can 

be seen that the 4-layer solution deviates slightly from the 10-layer solution, but the results 

are almost identical for 10 and 16 layers. It should also be noticed that the displacement at y 

- 0 due to a point load should be infinite. 

Further studies showed that the 16-layer solution provides accurate results for the higher 

frequency 0) '" 10 rad/sec. Therefore, in this chapter, the 16-layer solution is used as the 

solution with the Green's functions for frequencies from 0) = 0 to 10 rad/sec. 

4.2 Type of Element 

Four types of elements were introduced in Chapter Three. They are SOLID8, SOLIDI2A, 

SOLIDI2B, and SOUD16 as shown in Figure 3.6. For the case (with D - 2% and 00 = 5 rad/sec) 

mentioned in the previous section, the results obtained with these four elements and those 

from the Green's functions are presented in Figure 4.4 to Figure 4.7. The dimensions of each 

element are assumed to be 1/8 (i.e. Ax=Ay-Az-l/8). The number of sampling points Ny is 

64 and the number of cycles Nx is 10. This means that the total distance Ty for the Fourier 

transform is equal to 8. Due to the symmetry with respect to the coordinate y = 0, only the 

records from y = 0 to y = 4 are presented. 

In Figure 4.4, the real part of the displacements generally matches the Green's function 

solution very well except close to the load. Disagreement occurs at the first two stations (y = 

o and y = 1/8), due to the use of finite elements to simulate a pointload. Theoretically, the 

displacement under the point load is infinite. But in the finite element approach, the 

displacement will always be finite. On the other hand, the imaginary part of the 

displacements matches very well at small distances and starts to deviate at a distance of about 

y=1. 
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Figure 4.2 

Figure 4.3 
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Figure 4.4 

Figure 4.5 
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Figure 4.6 

Figure 4.7 
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A similar trend can be found in elements SOLIDl2A, SOLID12B and SOLID16 as shown in 

Figures 4.5, 4.6 and 4.7. For the elements SOLID12A and SOLID16, more disagreement in the 

real part of the displacements can be seen at distances ranging from y .. 0 to y - 3/S. The 

reason for this is not clear because for elements like SOLID12A and SOLID16 which are 

quadratic in the x-direction and linear in the y-direction, one would have expected the results 

to be at least as good as those with elements which are linear in both horizontal directions. 

In order to srudy the effect of the element aspect ratios (e.g. Ax/~y), further srudies were 

conducted using the element SOLID16. In Figure 4.S, ~y is equal to liS. It can be seen that 

the solution with LU -1/S and ~z .. 1/4 produces a better match than that with LU == 1/4 and 

~z = liS. This implies that the solution is more sensitive to the ratio of ~xl ~y than to the 

ratio ~zl ~y. Since the dimension of ~x is limited by the dimension of ~y, it was felt that 

using linear interpolation in the x-direction was sufficient, whereas using a quadratic 

expansion in the z-direction allowed to increase the vertical dimension without loss of 

accuracy. This point is further confirmed in Figure 4.9 where element SOLID12B is used and 

the result with ~z = 1/2 is still in good agreement with that for ~z = liS. Two major findings 

were described in this section. One was that the solutions which are linear in the x-direction 

show less trouble at small distances. The second is that quadratic interpolation in the z­

direction can be helpful in the sense that a smaller number of layers can be used without 

loss of accuracy. Therefore, it was decided to use the element SOLID12B in this study. 

Further investigation of element SOLID12B will be presented in the following sections. 
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Figure 4.9 
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4.3 Number of Sampling Points 

For a given value of the discrete interval L\y, the number of sampling points, Ny, will 

determine the total distance,Ty, at which the point-load will repeat itself in the y-direction, as 

shown in Figure 4.10. It is dear that for a better representation of a single point load, it is 

better to use as many sampling points as possible so that the influence of the adjacent point 

load is negligible. However, for practical applications, a small number of sampling points is 

preferred in order to cut down the computational costs. In the application of the SASW 

method, the receivers are generally placed at a distance of one to two wavelengths (for the 

surface waves) from the source. In this case, one should choose a value of Ny so that the 

solution is accurate within two wavelengths. For the stratum in the model problem, the 

Rayleigh wavelength A.R is equal to 1.17 for an excitation (J) - 5 rad/sec. The distance of two 

wavelengths will be equal to 2.34. As can be seen in Figure 4.11, the result with Ny == 64 is 

qualitatively in good agreement with the Green's function up to the distance of y == 1. For 
Ny = 128 (as in Figure 4.12), the result is good up to about a distance y ... 2.5 (> 2A.R ... 2.34). The 

Figure 4.11 
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differences between the Green's function solution and the proposed solution are listed in 

Table 4.1. Each error in this table is the arithmetic average of the errors for the real and the 
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Table 4.1 Errors in displacement for 
different number of 
sampling points Ny with D 
= 2%, Ax. fly • 1/8, LU: • 
1/2, Nx = 10, ro • 5 
radlsec 

~ Y 64 128 256 512 
1.125 

(_1 A. R) 6.8% 3.5% 3.2% 3.2% 

2.375 
(-2 A. R) 10.0% ff4.8% 3.8% 3.8% 

imaginary part. For each part, the error is calculated by the difference in displacements 

between the Green's function solution and the discrete solution; divided by the first peak­

to-peak amplitude in the Green's function. For instance, for the real part, the first peak-to­

peak amplitude is equal to 0.387 as shown in Figure 4.11. For Ny - 64, the error is 6.804 at y = 

1.125 (= lA-IV and 10.0% at y - 2.375.(= 2A-IV. While for Ny - 128, the error is 3.5% at y - 1.125 

and 4.804 at y - 2.375. 
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This suggests that at least 128 points be used in order to obtain results with errors of 5% 

or less within two wavelengths. It should be noticed that the accuracy of the results is also 

affected by the value of .6.y relative to the wavelength. This effect will be studied further in 

Section 4.5. 

4.4 Number of Cycles in Lateral Expansion 

For a given discrete interval, .6.x, in the x-direction, the number of cycles in the 

expansion in the x-direction, Nx, determines the total distance Tx of the lateral region under 

consideration in the analysis. Table 3.1 shows the relation between Nx and Tx. For instance, 

Nx - 8 corresponds to a total distance T x = 256 .6.x. 

It is apparent that the use of a larger Nx will simulate better the semi-infinite lateral 

region. Figures 4.12 through 4.15 show the results for values of Nx of 10, 8, 6, and 4, 

respectively. As can be seen, the results with Nx = 8 are identical to those with Nx = 10 and 

they are both in good agreement with the Green's function solution. The solution with Nx = 

6 is slightly less accurate while for Nx - 4, the solution is no longer acceptable. 
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It is interesting to compare the total distances required in both the x- and y-directions 

for an accurate solution. Since Tx represents only one . lateral region (meaning one-sided 

region), it is reasonable to use half of the total distance in the y-direction, Ty , for 

comparison. In these four cases, since .6.x is equal to 1/8, the corresponding values of Tx are 

53 



Figure 4.14 

Figure 4.15 

1.00 

1: 
rf 0.50 
1 
S 
3: 0.00 1:-., 
E ., 
<> 
'" 'E. 
II> 

C5 

0.60 

1: ., 
CL 0.30 
:i 
! 
3: 0.00 

"' E ., 
1ll -0.30 
Q, 
en 

C5 

1.00 

-GreenF. 
- _. NX .. 6 

_ GreenF. 
__ • NX=6 

2.00 3.00 
Distance (Y) 

<4.00 

Comparison of the Green's function and the SOllD12B solutions with Ax • Ay 
• 1/8, Az • 1/2, Nx • 6, Ny • 128, 2 percent damping at frequency 0.8 Hz 

1.00 

=-~ 0.50 CI.. 

-;;; ., 
S 
3: 
J c:: 
'" ~ ., 
'E. 
en a 

o. 

=-
~ o. 
j 
3: O. 
~ 
E 
'" 1ll -0. eL 
II> 

C5 

-0. 
0.00 1.00 

_ GretmF. __ • NX-4 

-GreenF. 
- _. NX-4 

2.00 3.00 
Distance (Y) 

4.00 

Comparison of the Green's function and the SOllD12B solutions with ~ • Ay 
• 1/8, Az • 1/2, Nx • 4, Ny • 128, 2 percent damping at frequency 0.8 Hz 

54 



128, 64, 32, and 16. The number of sampling points, Ny, is equal to 128 with interval Ay =: 1/8. 

The half value of Ty will be 8. The distance ratios TxI(Tyl2) will be 16, 8, 4, and 2, respectively. 

Therefore, in this case the minimum ratio Tx/(Ty/2) required to give accurate results is 

about 8. 

4.5 Element Size versus Wavelength 

So far, only a single frequency (0 = 5 rad/sec has been studied. In this section, different 

frequencies will be considered to assess the effect of the element size relative to the 

wavelength. 

For a better understanding of the nature of a dynamic problem, an example is depicted 

in Figure 4.16 where a one-dimensional harmonic plane wave propagates through a medium. 

The wave is a continuous function with a wavelength A. The wavelength can be determined 

by the properties of the medium and the frequency of the wave. For a given medium, the 

wavelength is inversely proportional to the frequency. The higher the frequency, the shorter 

the wavelength. Therefore, instead of relating the element size to the frequency, one can use 

the ratio of wavelength to element size (wavelength-element ratio). 

CaseA:~y. ~ 

J 

I.. 
CaseB:M=--

8 

/ 
I ... 

Distance 

Distance 

Figure 4. 16 Unear discretization of a harmonic plane wave 

For a discrete model, several discrete points are usually required in one cycle in order to 

represent the wave form properly. For case A with A/ Ay = 4 in Figure 4.16, a four-point 

linear interpolation is used in one cycle. The dashed line shows the discrete solution which 

does not represent well enough the continuous function. For an 8-point linear interpolation 

(case B with A/ Ay =: 8), the representation has improved significantly. From this example, it 
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can be seen that for a good representation of a dynamic problem using linear interpolation, 

it is better to keep the ratio A/ ~y at least within 4 to 8. 

Since the problem in our study is a three-dimensional one, it is necessary to study three 

different wavelength-element ratios, namely, AR/ ~x, AR/ ~y, and AR/ ~z where AR is the 

wavelength of the Rayleigh wave. Since the linear interpolation in both the x- and y­

directions has been adopted for element SOLID12B, it is obvious that one can keep ~ equal 

to ~y. Thus, in our investigation it is necessary to study only two quantities: AR/ ~y and AR/ ~z. 

Figure 4.17 shows the results using ~x - ~y == 1/8 and ~z == 1/2 for frequency (J) = 0 

rad/sec. Since this is a static case, there is no physical meaning for the corresponding 

wavelength. Nevertheless, the results are in good agreement with those using the Green's 

function except close to the load. 

Figures 4.18 and 4.19 show the results for frequency (J) - 5 rad/sec with a corresponding 

wavelength AR ... 1.17. In Figure 4.18 with ~y - 1/4 and ~z "" 1/2, the discrepancy between the 

Green's function solution and the discrete solution is quite noticeable. With ~y - 1/8 and ~z 

= 1/2, good agreement up to 2AR (= 2.34) can be obtained as shown in Figure 4.19 where 

AR/ ~y and AR/ ~z are about 9.4 and 2.3, respectively. Notice that because of the quadratic 

interpolation used in the z-direction, a smaller wavelength-element ratio AR/ ~z can be used 

without loss of accuracy. 

For higher frequency (J) == 10 rad/sec with corresponding wavelength AR = 0.59, the 

results of ~y = 1/8 and ~z == 1/2 are no longer acceptable as shown in Figure 4.20. With ~y "" 

1/16 and ~z = 1/2, the results (Figure 4.21) are still not acceptable. In Figure 4.22 with ~y = 

1/16 and ~z = 1/4 corresponding to AR/~y "" 9.4 and AR/~Z = 2.3, good agreement up to a 

distance of 2AR (= 1.17) is obtained. 

It is suggested, therefore, that to use the ratios AR/~y - 10 and AR/~Z - 2.5 in order to 

obtain good solutions up to two wavelengths. The material damping ratio was assumed to be 

2% for all cases in this section. Detailed investigation of the effect of damping on the 

accuracy of the solution will be addressed in the next section. 

4.6 Material Damping 

In the preceding section, the material damping ratio D was assumed to have a value of 2% 

and so the dynamiC rule with AR/~y "" 10 and AR/~Z = 2.5 was derived. It is expected that this 

dynamic rule can apply well for damping ratios larger than 2%, since more energy per unit 

distance would be dissipated and the displacement would die out faster. It is, therefore, 

interesting to investigate cases with damping ratio less than 2% using this rule. 

Figures 4.23 through 4.25 show the results with zero damping. For zero frequency (as in 

F,igure 4,23), both real and imaginary part are in good agreement with those of the Green's 

function. The imaginary part is zero for all distances since this is a static case, For frequencies 

ro = 5 and 10 rad/sec, the discrepancy becomes significant. 
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Figure 4.21 
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Figure 4.25 
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Figure 4.27 
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non-zero values in the imaginary part. For frequencies ro ... 5 and 10 rad/sec, the imaginary 

part of the discrete solution improves significantly compared with that of zero damping. 

Still the discrepancy is not negligible. 

Figures 4.29 through 4.31 and Figures 4.32 through 4.34 show the results for damping 

ratios D ... 0.5 and 1%, respectively. Generally, it can be seen that the discrepancy decreases 

as the damping ratio increases. For damping ratios less than 2% but more than 0, the 

discrepancy can be reduced by using a number of points Ny larger than 128 and a number 

Nx larger than 10. 

4.7 Half Space BoHom Boundary 

So far, the investigation is done for the cases of rigid rock condition. In this section, the 

half space condition for the bottom boundary will be studied. The half space solution of 

Green's function is obtained by expanding the continuum stiffness matrix (Kausel, 1981). 

This solution will be used here as the reference in order to verify the viscous bottom 

boundary. 

Consider the model problem as shown in Figure 4.1. Instead of a rigid rock, the bottom 

boundary is assumed to be a half space and its has identical material properties as the top 

layer. All materials have two percent damping. The load is a point load at a frequency of 0.8 

Hz. The corresponding Rayleigh wavelength is 1.17. Three cases are presented here as 

shown in Figures 4.35, 4.36, and 4.37, where the thicknesses of the top layer are H=l, 2, and 

3, respectively. For each case, the surface displacements are obtained for both solutions. 

The number of expansion Nx is 10 and the number of Fourier points Ny is 128 for the 

viscous boundary solution. 

It can be seen that there is still some disagreement in both solutions for the case with 

H-1. For H=-2, the discrepancy is practically negligible. However, no further improvement 

can be seen for H==3. Therefore, it was concluded that the discrepancy between two 

solutions becomes insignificant when the thickness H is larger than two wavelengths (=2.34). 

4.8 Disk Load Solution 

The disk load solution will be studied in this section. This is specially important for 

nondestructive testings like the Dynaflect and FWD where the displacements near the load 

are of interest. 

Figure 4.38 shows the vertical displacements due to a disk load with a radius'" 0.0625 at a 

frequency of 0.8 Hz. It can be seen that both solutions are in good agreement even near the 

load. Some small discrepancy can be found at large distances. Figure 4.39 shows the 

displacements in terms of amplitude and phase. Again, they are in good agreement. Some 

deviation in the phase can be seen when the distance is larger than 2.5. 
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Figure 4.31 
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4.9 Summary 

Parametric studies have been conducted in this chapter to investigate key parameters in 

the formulation, such as type of element, number of sampling points, number of extension, 

element size, material damping, and bottom boundary. The element SOLID12B is found to 

be the best type of the element, since it has less trouble at small distances and less number 

of layers is needed to simulate the stratum without loss of accuracy. For damping ratio equal 

to 2% or larger, one can obtain results below 5% error within two wavelengths measured 

from the load by keeping the wavelength-element ratios AR/~y ... 10 and AR/~z = 2.5 and 

using Ny ... 128 and Nx "" 10. For damping ratio less than 2%, it is suggested to use larger values 

for ARI ~y, ARI ~z. Ny. and Nx than those for damping ratio of 2%. With the dynamic rule 

above, the disk load of the soil-pavement formulation is in good agreement with Green's 

function. For half space bottom boundary, it was found that the viscous boundary will be in 

good agreement with Green's function by putting the half space at a depth of two 

wavelengths. 
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CHAPTER 5. APPLICATION OF SOIL-PAVEMENT 
FORMULATION TO NONDESTRUCTIVE TESTS 

5.1 Introduction 

This chapter presents an application of the soil-pavement formulation to the nondestructive 

testing of pavements. The aim of this chapter is to determine the significance of the lateral 

boundary on the measured deflections. 

Three typical in-service pavement sections were selected as the test sites for analysis. They 

are road FM 137 in Paris, Texas; Interstate Highway 10 in El Paso, Texas; and Route 1 in Austin, 

Texas. Detailed information on these sites is included in Section 5.2. The results of the Dynaflect, 

the FWD, and the SASW test simulations are presented in Sections 5.3, 5.4 and 5.5, respectively. 

5.2 Description of the Test Sites 

Figures 5.1 through 5.4 depict the cross-sections of the three test sites selected. For simplicity, 

road FM 137 and Interstate Highway 10 were designated as profile 1 and profile 2. On Route 1, 

the test site was selected on the ramp which is supported by two retaining walls. It was considered 

interesting to investigate the influence of the retairiing walls on the measured deflections. 

Therefore, two profiles were studied for this site. The section without the walls was named profile 

3. The one including the walls was named profile 4. 

Ea.ch pavement section is modeled as a multilayer system surrounded by soiL The layer 

thicknesses of the test sites are given in Table 5.1. No information was available concerning the 

thickness of the subgrade above bedrock for each section. Various thicknesses were assigned for 

analysis as listed in Table 5.1. Complete analyses were done for the Dynaflect test since only one 

frequency is involved, but due to computational costs, only one value of the subgrade thickness 

was used for the FWD and the S.ASW tests. The material properties are also given in Table 5.1. 

For simplicity, Poisson's ratios, the unit weights and the material dampings were assumed to be 

0.333, 120 pef and 2 percent. 

The effect of lateral boundary was studied by varying the test loading position d which is the 

distance measured from the edge of the pavement (Figure 5.1). For the Dynaflect test,S positions 

were studied (d=l, 2, 4, 8, 12 ft). Only three loading positions (d=l, 4 , 12 ft) were used for the 

FWD and the SASW tests. In order to study the effect of neglecting the lateral boundary, the 

deflections of a continuous stratum are also obtained by assuming that the core region (including 
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Table 5.1 Properties of three test sites 
Young's Shear Wave 

Thickness Modulus Velocity 
Site Layer (ft) (ksi) (fps) 

FM 137 Surface 0.25 (3 in.) 431 2,500 
Base 1 44 800 
Subgrade 8, 15, 31 (Dynaflect) 17 500 

15 (FWD, SASW) 

IH 10 Surface 0.833 (10 in.) 5,589 9,000 
Base 0.5 (6 in.) 431 2,500 
Sub-base 1 44 800 
Subgrade 8, 15, 31 (Dynafiect) 14 500 

8 (FWD, SASW) 

Route 1 Surface 0.75 (9 in.) 431 2,500 
Base 0.75 (9 in.) 44 800 
Subgrade 4, 10, 20 (Dynafiect) 17 500 

4 (FWD, SASW) 
Subgrade 5 17 500 
Concrete Walls 5,589 9,000 

the surface layer) extends horizontally to infinity. In other words, there would be no material 

variation in the horizontal directions for the continuous stratum. 

S.3 Simulation of the Dynaflect Tests 

The results of the Dynaflect test simulation on the four test profiles are presented in this 

section. For each profile, three different values of the subgrade thickness were used. The 

subgrade thicknesses h were assumed to be 8,15, and 31 ft for profiles 1 and 2. For profiles 3,and 

4, the subgrade thicknesses were assumed to be 4, 10, and 20 ft . 

Figure 5. 5a shows the deflection basins of profile 1 for h - 8 ft where the unit of the deflections 

(mils) is equal to a thousandth of an inch. In this figure, 6 deflection basins are included. They 

are the basins for the continuous stratum and 5 different loading positions. It can be seen that 

all basins collapse together. This implies that the deflection basins are insensitive to the lateral 

boundary for this profile. Although the lateral stiffness contrast is substantial in the surface layer, 

the thickness of this layer is very thin, compared with other layers. Therefore, the contribution 

of the surface layer to the global stiffness is inSignificant. Also the stiffness contrast between the 

base layer and the surrounding subgrade is not large enough (800:500, in terms of shear wave 

velocity). Thus, the effect of the lateral boundary on the measured deflections is insignificant. 

In order to investigate the differences between defection basins, deflection normalization was 

performed where the basin ofthe continuous stratum was used as the denominator. Figure 5.5b 

shows the normalized deflections for the 5 loading conditions. In this figure, when the normalized 

deflection is greater than one, it implies that the deflection at this station exhibits larger value than 

that of the continuous stratum. For example, in the case of d = 1ft, the deflections at the near 

stations (1, 2, 3, 4) are larger but the deflections at the far stations (5, 6, 7) are smaller than those 
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Figure 5.5 DynaRect deflection basins and normalized deflections at various loading positions 

for Profile 1 with the thickness of subgrade h = 8 ft 

of the continuous stratum. However, the differences are within 3 percent, and they become even 

smaller as the loading pOSition moves away from the edge. 

The results for h == 15 and h == 31 ft are presented in Figures 5.6 and 5.7. Again, the deflection 

basins are insensitive to the lateral boundary. 
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Figures 5.8 through 5.10 show the results for profile 2 with h - 8, 15, and 31 ft. Now the 

influence of the lateral boundary can be seen easily on both the deflection and normalized 

deflection diagrams. For all h's, the differences between basins are around 50 to 70 percent at 
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the position d "" 1 ft. This is due to the large thickness of the surface layer and the large stiffness 

contrast (2500:500) between the base and surrounding subgrade. The differences drop to 30 

percent at d - 2 ft and 10 percent at d - 4 ft. Beyond d - 8 ft, the differences are basically within 

5 percent.It should be noticed that the effect of the lateral boundary is not constant across the 

stations resulting in a change of the shape of the deflection basin. For h = 8 ft and d = 1 ft, the 

difference in deflection is about 70 percent at station 1, but decreases to 60 % for station 7. As 

the sub grade thickness increases, this differential influence seems to be more significant, but it 

decreases as the distance d increases for all thicknesses. 

For profile 3, it can be seen in Figures 5.11a through 5.13a that the deflection basins increase 

when the height of the ramp increases. This is due to the lack of lateral support. From the 

normalized deflection diagram (Figure 5.11b), the difference in deflection can go from 55 to 90 

percent at d = 1 ft for the short ramp. The difference is insignificant for d = 12 ft. For the medium 

and high ramps, the difference becomes more pronounced. For the high ramp with d = 1 ft, the 

difference varies from 80 percent to 125 percent. In this case even for d = 12 ft, the difference 

becomes significant (ranging from 20 to 60 percent). 
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The differential influence of the lateral boundary on the various stations is also more 

important. For instance, there is a difference of 130 percent at station 7 but only 70 percent at 

station 1 for the case with h = 10ft and d ... 1 f1. 

Figures 5.14 through 5.16 show the results for profile 4. Since the core region is supported 

by the concrete retaining walls which are stiffer, the deflections exhibit smaller values when the 

loading position d moves closer to the edge. As the distance d increases, the basin become larger 

and converges to the one of the continuous stratum. The difference in deflections become larger 

again when the height of the ramp increases. The maximum difference between basins is about 

90 percent. 

Comparison of the basins of profiles 3 and 4 are presented in terms of deflection ratio which 

is equal to the deflection of profile 3 divided by that of profile 4. Figure 5.17 shows the deflection 

ratios for three different heights of the ramp. The effect of the lateral concrete walls versus a 

hypothetical free boundary is seen to be very significant. As the height of the ramp increases, both 

the difference in deflections between the two profiles and the differential influence on the stations 
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Figure 5.16 Dynaflect deflection basins and normalized deflections at various loading posi­
tions for Profile 4 with the thickness of subgrade h • 20 ft 

increase. For example, the difference in deflection is about 30 percent at station 1 but 100 percent 

at station 7, even for d = 12 ft. 

5.4 Simulation of the FWD Tests 

Figure 5.1Sa shows the time history of the applied load used for the FWD simulations (a 

triangular impulse with a duration of 30 milliseconds and a peak amplitude of 10,000 lbs) and 

Figure 5.1Sb shows the amplitude of its Fourier transform. Most of the energy is on the range of 

frequencies from 0 to 50 Hz. Figure 5.19a shows, a comparison of the transfer functions obtained 

from the Greens' functions and the UTPvr program at station 2 for a continuous stratum of profile 

3 with subgrade thickness h - 4 ft. Theagreement between the two solutions is quite good, 

especially at the first peak which occurs around 22 Hz. Figure 5.19b shows the time histories of 

the displacements at station 2 for both solutions. They are in excellent agreement. Notice that the 

unit of the deflections for the FWD test is mils per kip (Le. they are divided by a value of 10 to 

refer them to the same force applied in the Dynaflect test later). The time records of all stations 
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Time histories for seven stations in an FWD test on Profile 3 with h = 4 ft and 
loading position d = 1 ft 

for profile 3 at a distance d = 1 ft are presented in Figure 5.20. The rest of the time records can 

be found in Appendix B. Only the peak deflections of the FWD test are presented herein. 

Figures 5.21 through 5.24 show the results for profiles 1, 2, 3, and 4. The trends are generally 

similar to those reported for the simulation of the Dynaflect tests. 
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5.5 Simulation of the SASW Tests 

As mentioned in Cha pter Two, the SASW method uses the phase spectrum for the dispersion 

analysis. It differs from the Dynaflect and the FWD tests in many aspects. Therefore, no 

comparison could be made between the SASW method and other tests. The dispersion curves 

were obtained by using the spacing ratio d2/d1 = 2, as shown in Figure 2.8 and the dl was taken 

to be one wavelength of the surface wave for each frequency. Several phase diagrams for 

receivers other than receivers d1 and d2 are included in Appendix C for whose who may wish 

to perform their own analyses on the dispersion data. 

Figure 5.25a shows the dispersion curve of the continuous stratum for profile 1 with h = 15 

ft. The average surface wave velocity for wavelengths less than 0.25 ft is about 2300 fps. If one 

multiplies this value by 1.1, one obtains a shear wave velocity of 2530, which is close to the shear 

wave veiocityC2500 fps) of the surface layer. Some large fluctuations occur in the dispersion curve 

for wavelengths between 0.25 and 3 ft. Sanchez-Salinero (1987) and Sheu (1987) have observed 

similar phenomena in both theoretical and experimental data. The fluctuations are caused by the 

reflected body waves blended into the measured surface displacements due to the change in 

stiffnesses between layers. Despite the fluctuations, the dispersion curve starts to decrease as the 

wavelength increases and for a wavelength of 10 ft, the wave velocity is about 500 fps. 

Figures 5.25b through 5.25d show the dispersion curves for three loading positions Cd = 1, 

4, 12 ft) along with the curve of the continuous stratum. For d - 1 ft, some very small deviations 

caused by the lateral boundary can be found for short wavelengths from 0.15 to 0.6 ft but the 

results are essentially unchanged in the average below 1 ft. Larger deviations can be seen for long 

wavelengths. This indicates, as expected, that the lateral boundary has more influence on the long 

wavelengths (low frequencies). For d = 4 ft, the deviation in the short wavelengths disappears 

while some minor deviation still remains in the range of long wavelengths. For d = 12 ft, the 

deviation becomes insignificant. 
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Figure 5.25 Dispersion curves of the continuous stratum and three loading positions for 
Profile 1 

Figure 5.26 shows the dispersion curves for profile 2. The average surface wave velocity for 

wavelengths less than 0.83 ft is about 8,200 fps. Large fluctuations can be seen for wavelengths 

between 1 and 2 ft. By vaIYing the loading position, again it was found that generally the lateral 

boundary has more influence on the long wavelengths. 
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Figure 5.26 Dispersion curves of the continuous stratum and three loading positions for 
Profile 2 

Similar comments apply to dispersion curves for profiles 3 and 4 (Figures 5.27 and 28). Figure 

5.29 shows a comparison of the dispersion curves of profiles 3 and 4 for various loading pOSitions. 
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It can be seen that the influence of the reflections from the lateral boundary can be seen easily 

at d - 1 ft and that the existence of retaining walls in profile 4 can cause larger fluctuations in 

the dispersion curves. 
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Profile 4 
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Figure 5.29 Dispersion curves of three loading positions for Profiles 3 and 4 

5.6 Summary 

The application of the soil-pavement formulation to the interpretation of the results of 

nondestructive testing of pavements has been presented in this chapter. The computer program 

UTPVT was used to assess the importance of the lateral boundary on the measured deflections. 

The Dynaflect, the FWD, and the SASW tests were simulated on three actual pavement sections. 

The three test sites are road FM 137, Interstate Highway 10, and the ramp on Route 1. The effects 

of the lateral boundary were studied by varying the testing loading position, d, measured from 

the edge of the pavement. For comparison purposes, the results of a continuous stratum were 

also presented. Different thicknesses of subgrade, h, were assign to each section in order to study 
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also the influence of the depth to bedrock in the Dynaflect test. However, due to the cost of 

computation, only one value was used for the thickness of subgrade in the FWD and the SASW 

tests. 

In the Dynaflect tests, the results indicate that the influence of the lateral boundary on the 

measured deflections strongly depends on: (1) the loading position; (2) the thickness of the 

surface layer; (3) the lateral stiffness contrast between the base and the surrounding soil. A closer 

position, a larger value of the thickness, and a higher contrast will cause a larger influence of the 

lateral boundary. It was found that the basins for all positions are insensitive to the lateral 

boundary on road FM 137. The maximum error induced by neglecting the lateral boundary is 

within 5 percent. Significant error may occur, however, on Interstate Highway 10. At the position 

of d = 1 ft, the error can range from 50 to 70 percent. However, beyond d ... 8 ft, the error drops 

to 5 percent. It was found also that the lateral boundary may have differential influence on various 

stations which will, in turn, change the shape of the basins. This differential influence becomes 

more pronounced when the loading is closer to the edge. 

For the ramp on Route 1, the results show that the error caused by neglecting the lateral 

boundary and the change in the basin shape will increase as the height of the ramp increases. 

The existence of the retaining walls is also important on the measured deflections, especially for 

the high ramp. For example, the error induced by neglecting the walls is still about 30 percent 

at station 1 even when the load is located at 12 ft for the high ramp. 

In general, similar trends can be observed in the FWD tests as were found in the Dynaflect 

tests. For these particular cases studied, the dynamic effects seem to be more important for the 

FWD tests. 

The SASW simulations were conducted based on the spacing ratio of d2/dl ... 2. The results 

indicate that in general the dispersion curve follows the trend of the shear wave velocity profile. 

In the case of the continuous stratum, reflected body waves at the horizontal interfaces resulted 

in large fluctuations in the dispersion curves. The existence of the lateral boundary can cause 

more fluctuations, especially for long wavelengths. 
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CHAPTER 6. SUMMARY, CONCLUSIONS, AND 
RECOMMENDATIONS 

6.1 Summary 

Nondestructive testing for structural evaluation of pavements plays an important role for 

highway engineers in selecting rehabilitation and reconstruction strategies. Many traditional 

methods of structural evaluation are originally based on limiting deflection criteria by 

empirically correlating pavement performance with the measured deflections. Considerable 

efforts are under way to develop a more rational and mechanistic approach for structural 

evaluation. While there are still some problems which have not yet been fully resolved, 

especially in the interpretation of the data from nondestructive tests and in the inversion 

process, an appropriate forward model can be used not only as a research tool to study the 

important variables, but also as a design tool to determine the structural adequacy of 

pavements. 

The three-dimensional elastodynamic solution for a layered half space is the formulation 

that has been used until now in the interpretation of results from dynamic testing of 

pavements. It assumes that each layer has infinite dimension in the horizontal plane. 

Therefore, material variations in the horizontal directions cannot be considered in this 

model. However, a highway road has a finite width in its transverse direction and variation in 

material properties between the road and the surrounding soil is not uncommon. Hence, an 

appropriate model which can account for the existing lateral boundary conditions is 

necessary to assess the Significance of the finite pavement width on the measured 

deflections. 

The primary goal of this study was to develop a mathematical model which could take 

into account not only the dynamic nature of the loads, but also the variation of material 

properties in the soil-pavement system. The soil-pavement structure was modeled as a 

layered stratum resting on bedrock or a half space. The pavement, base and subgrade were 

represented by a finite-element core region. An expansion technique was developed to 

obtain the stiffness matrix for the infinite lateral region. A viscous boundary was 

implemented to simulate the bottom boundary for a half space. Fourier superposition 

technique was applied to both the time variable and the longitudinal spatial coordinate of the 
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road. The stiffness matrices and load vectors were obtained in the frequency-wavenumber 

domain. Point load and disk load solutions were implemented into a computer program 

called UTPVT. 

6.2 Conclusions and Recommendations 

A number of parametric studies were conducted in order to assess the accuracy of the 

formulation, comparing the results to those provided by the Green's functions for the case 

where the material properties are constant in the horizontal direction. From these studies, it 

was concluded that: 

(1) In the study of four types of finite elements developed in this study, the element 

SOLID12B, which is linear in the x- and y-directions and quadratic in the z-direction, 

was found particularly attractive, providing good agreement in results for the 

displacements close to the point load and requiring less layers to simulate the 

stratum without loss of accuracy. 

(2) For damping ratio equal to 2 percent or larger, one can obtain the displacements 

with less than 5 percent error within two wavelengths from the load by keeping the 

element-wavelength ratios AR/ Ax = AR/8y = 10 and AR/8Z = 2.5 and using the Fourier 

points Ny = 128 and number of expansion cycles Nx = 10. For damping ratio less 

than 2 percent, larger values for AR/ Ax, AR/8y, AR/8Z, Ny, Nx, are suggested. 

(3) The half space solution will result in accurate surface displacements by putting the 

viscous boundary at a depth of two wavelengths. 

An investigation of the effects of the lateral boundary on the measured deflections in the 

Dynaflect, the Falling Weight Deflectometer (FWD) , and the Spectral-Analysis-of-Surface 

Waves (SASW) tests was conducted on three typical in-service pavement sections. They are 

road FM137, in Paris, Texas; Interstate Highway 10, in El Paso, Texas; and Route 1 in Austin, 

Texas. The conclusions from the studies of three test sites are: 

(1) In the Dynaflect simulation, the results indicate that the effects of the lateral 

boundary on the measured deflections are directly related to: a) the loading position 

with respect to the edge of pavement; b) the thickness of the surface layer; c) the 

lateral stiffness contrast between the road and the surrounding soil; d) the height of 

the ramp, if the test is performed on a ramp. A closer loading position, a larger 

value of the thickness, a higher contrast, and a larger value of the ramp height will 

result in a larger influence of the lateral boundary. 

(2) The lateral boundary has differential influence on different stations which will, in 

turn, change the shape of the deflection basins. This differential influence becomes 

more pronounced when the loading is closer to the edge. 
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(3) The errors induced by neglecting the lateral boundary are below 5 percent on the 

test site of FM 137. Significant errors may occur, however, on Interstate Highway 10. 

At the loading position of d = 1 ft, the errors are between 50 to 70 percent for 

various stations. Beyond d = 8 ft, the errors are within 5 percent. 

(4) The existence of the retaining walls is important on the measured deflections, 

especially for the "high" ramp. For example, differences of around 20 percent can 

still occur at the outer station even when the load is located at 12 ft from the edge. 

(5) Similar trends were found in the FWD test simulations. 

(6) For these particular sites, dynamic effects seem to be more important in the FWD 

tests than in the Dynaflect tests. The basins of the FWD exhibit larger values than 

those of the Dynaflect. 

(7) The results of the SASW tests indicate that in general the dispersion curve can be 

used to estimate the shear wave velocity profile. However, some fluctuations may 

occur in the dispersion curve because of the reflected body waves due to the 

abrupt change in the stiffness at the horizontal interfaces between layers. The 

existence of the lateral boundary can cause more fluctuations. This effect will be 

more pronounced for "long" wavelengths. 

The effects of the lateral boundary on the measured deflections have been studied here 

through analytical simulations. Correlation of these results with actual measurements is 

necessary. The use of the UTPVT program validated with extensive field data can lead to a 

more rational interpretation of nondestructive test data and better structural evaluation of 

pavement in engineering practice. Finally, the soil-pavement formulation developed in this 

study can be applied to many other problems with 2 dimensional geometry but 3 

dimensional loading, such as tunnel detection, material characterization of dams, etc. 
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Appendix A Formulation of Finite Elements 

A.l General Formulation 

In general, a valid solution in solid mechanics has to satisfy three basic conditions for 

every point in the body under consideration. These conditions are the stress-strain relations, 

the strain-displacement compatibility equations, and the stress equilibrium equations. 

Alternatively, the last condition can be met via the principle of virtual work (Zienkiewicz, 

1977). 

For an isotropic linear elastic medium, the stress-strain relations in a rectangular Cartesian 

coordinate system (x, y, z) are given by 

in which 

G and A. are the Lame moduli; 
(Jx, (Jy' (Jz are normal stresses; 

'txy' 'tyz' 'tzx are shear stresses; 

Ex, Ey, £z are normal strains; and 

Yxy, Yyz, Yzx are shear strains. 

(A.l) 

'txy = GYxy 

'tyz = GYyz 

'tzx = GYzx 
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The compatibility conditions for small strain theory can be defined as 

Ex - au au av 
- ax "fxy = ay + ax 

av av aw 
fy = ay "fyz = az + ay 

(A2) 

aw 
€z = az 

aw au 
"fzx = ax + az 

where u, v, ware the displacements in the X-, y-, and z-directions, respectively. In matrix 

notation, Eqs. (Al) and (A2) can be symbolized as 

(J = D e (A 3) 

e = 9 U (A. 4) 

where 

crx 

cry 

crz 
(J = 

'txy (AS) 

'tyz 

'tzx 

Ex 

Ey 

€z 
e = 

"fxy 

"fyz 

"fzx 
(A 6) 
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Figure A.l A general three~dimen5ional finite element 
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For a general formulation of the displacement-based finite element method, consider a 

general three-dimensional finite element with n nodes (Figure A.l). Each node has three 

degrees of freedom: Ui, Vi, and Wi. Assuming the displacement shape functions, the 

relationships betweengeneric displacements and nodal displacements can be written as 

follows 

n 

U = L f. U. 
1 I 

n 

V = Lf. V. (A.IO) 
I I 

n 

W = Lfj W. 
I 

where fi is the shape function for node i. 

In matrix notation, it can be written as 

u = NU (A.Il) 

where matrix N contains the shape functions with dimension (3x3n) and vector U includes 

nodal displacements in the element. Substitution of Eq. (All) into Eq. (AA) yields: 

e = B U (AI2) 

where matrix B is obtained by differentiation of the shape functions with respect to spatial 

variables. Substitution of Eq. (A.12) into Eq. (A.3) produces: 

(J =DBU (AI3) 

In this equation the matrix product DB gives stresses at any point due to unit values of 

nodal displacements. 

Assume that small virtual displacements 8 U occur at the nodes. The resulting virtual 

generic displacements Become 

8u = N 8U (AI4) 

The virtual strains are 

8e = B8U (A IS) 
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The virtual strain energy 8U can be written as: 

(A.16) 

where the superscript "T" denotes the transpose operation of a matrix or a vector, and the 

volume integral is performed over the entire element. The external virtual work done by the 

nodal forces P and body forces b can be defined as 

5W = OUT P + J 0 U T b dv (AI7) 
v 

By applying the principle of virtual work, that is, 8U = 8w 

JoeTa dv=OUTp + foUTbdV 
v v 

(AlB) 

Then, we can substitute Eq. (A.13) and use the transposes of Eqs. (A.14) and (A IS) to 

obtain 

(AI9) 

and 

(A20) 

Assume that the only contribution of the body force is from the inertial force. Using 

d'Alembert's principle, we can write 

•• b = - pU (A.2I) 

•• 
in which P is the mass density and U are the generic accelerations. Substitution of Eq. (A. I I) 

into Eq. (A.21) produces 

•• 
b = - pNU (A22) 
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Now, by substituting Eq. (A22) into Eq. (A20), we have 

(A23) 

Passing the second term of the right hand side to the left, we have 

•• 
MU +KU =p (A24) 

where 

K = Iv 8
T
D 8 dv (A. 25) 

and 

M = I pNTN dv 
(A. 26) 

v 

MatrixK in Eq. (A.25) is the static stiffness matrix for the element and matrixM in Eq. 

(A.26) is the mass matrix. 

For a steady-state excitation, the nodal forces can be expressed as 

(A27) 

Similarly, the nodal displacements can be written as 

U = U eirot (A. 28) 

Therefore, the nodal accelerations can be obtained by differentiation of Eq. (A28) twice, 

that is 

.. - . 
U = - of U el rot (A 29) 

Next, by substituting Eqs. (A.27), (A.28), and (A.29) into Eq.(A.24) and dropping the term 

eirot from both sides, we have 

s U =p (A. 30) 

where 



(A3I) 

Matrix S in Eq. (A31) is called the dynamic stiffness matrix of the element. 

Conceptually, the integrals in Eqs. (A2S) and (A26) can be obtained by integrating 

explicitly over the entire volume. For some cases, however, it is necessary to use a numerical 

integration technique. An accurate and convenient method for integration is Gaussian 

quadrature. Generally this method requires transforming the spatial variables (x, y, z) in the 

Cartesian coordinate system to a natural coordinate system (~, 11, ~) which has its origin at 

the center of the range of integration. The integral is then replaced by surrunation of the 

integrand computed at specific points and scaled by corresponding weighting factors. 

These specific points are called Gaussian quadrature points or integration points. For more 

details, the reader is referred to Weaver and Johnston (1984). 

Thus, using Gaussian quadrature, Eq. (A2S) can be written as follows 

Finally, we can write 

K = f f f 8 T
D 8 dxdydz 

1 1 1 

= If J 8 T
D 8 iJi dl;d'1d~ 

-1-1-1 

K = ttik ~~F\ {8
T
D 8 IJI }jjk 

I J 
(A3I) 

in which a set of indices (i, j, k) denotes one integration point; Ri' Rj' Rk are the weighting 

factors, as listed in Table AI; IJI is the determinant of the Jacobian matrix, required for 

correct transformation of coordinates. Notice that the term { B D B IJI} is evaluated at 

each integration point. Likewise, Eq. (A26) can be rewritten as 

(A32) 

97 



Table A.1 CoeHicients for Gaussian quadrature (after Weaver and Johnston, 1984) 

n !~Jl1J~ R -1 0.0 2.0 

2 0.5773502692 1.0 

3 0.7745966692 0.5555555556 
0.0 0.8888888889 

4 0.8611363116 0.3478548451 
0.3399810436 0.6521451549 

5 0.9061798459 0.2369268851 
0.5384693101 0.4786286705 
0.0 0.5688888889 

In summary, for any finite element, the static stiffness matrix K and the mass matrix M 

can be obtained by selecting the proper shape functions, determining the integration 

pOints required, and performing the summations of Eqs. (A.31) and (A. 32). 

A.2 Finite Elements Used 

Four types of finite elements have been used in the study. They are called "SOLIDS", 

"SOLIDI2A", "SOLIDI2B", and "SOLIDI6n• Since they are all rectangular solids with 

dimensions equal to LU, ~y, ~z in the x, y, z directions, the Jacobian should be equal to the 

volume of the element. That is, iJi is a constant equal to the product of ~x, ~y, and ~z. For 

compact form, the shape functions are expressed in their natural coordinates (~. 11. ~). 
In the following, the index i represents the nodal number; a set of (~i' 11i' ~i) represents 

the coordinates of the nodal point; and a set of (~, 11, ~) denotes the coordinates of the 

integration point. 

Element SOLIDS 

Figure A.2 shows a SOLIDS element with S nodes where linear shape functions are 

assumed in all directions. Two integration points are userun each direction. The shape 

functions can be written as follows 

For i = 1, 2, 3, 4, 5, 6,7, S 

1 1. = -8 (1~~.) (1+1l1l.) (1+~~.) 
I I I I (A. 33) 

in which the values of (~i' 11i, ~i) are listed in Table A.2. 

Element SOLID J 2A 

Figure A.3 shows a SOLIDl2A element with 12 nodes where the shape functions are 

assumed to be linear in the y- and z-directions and quadratic in the x-direction. Two 

integration points are used in each direction. The shape functions can be written as follows 
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For i = 1, 2, 5, 6, 7, 8, 11, 12 

f =.1 ~ (~+~.) (1+flTl.) (1+~~.) 
i 8 I I I 

For i "" 3, 4, 9, 10 

in which the values of (~it Tlit ~i) are listed in Table A.3 . 

y 

....,----___ x 

z 

; ..... ---~.7-

...... 
,/ 

I 3 
i 

5 I ... 
,/ 

2 

6 

Figure A.2 Element SOUD8 

Table A.2 Nodal Coordinates for 
Element SOLlD8 

Nodal ;j llj ~ i Point - - -
1 -1 1 1 
2 1 1 1 
3 1 1 -1 
4 -1 1 -1 
5 -1 -1 1 
6 1 -1 1 
7 1 -1 -1 
8 -I -1 -1 

y 

99 

x 

I 

9 
:.-.-_4IJ----.:I.11 

2----...--,. 
Figure A.3 Element SOUD 12A 

Table A.3 Nodal Coordinates for 
Element SOLID 12A 

Nodal ;j TIl ~ i Point - - - -1 -1 1 -1 
2 -1 1 1 
3 0 1 -1 
4 0 1 1 
5 1 1 -1 
6 1 1 1 
7 ·1 -1 -1 
8 -1 -1 1 
9 0 -1 -1 

10 0 -1 1 
11 1 -1 -1 
12 1 -1 1 

(A. 34) 

(A. 35) 



Element SOLID 12B 

Figure A.4 shows a SOLID12B element with 12 nodes where the shape functions are 

assumed to be linear in the x- and y-directions and quadratic in the z-direction. Two 

integration points are used in each direction. The shape functions can be written as follows 

For i "" 1, 3, 4, 6, 7, 9, 10, 12 

f. = 8
1 (1+~~.)(1+TJ1l.) ~(~+~.) 

I I I I (A. 36) 

For i = 2, 5, 8, 11 

(A. 37) 

in which the values of (~i' lli' ~i) are listed in Table A.4. 

Element SOLID J 6 
Figure A.5 shows a SOLID16 element with 16 nodes where the shape functions are 

assumed to be linear in the y-direction and quadratic in the x-and z-directions Two 

integration points are used in each direction. The shape functions can be written as follows 

For i ... 1,3, 6, 8, 9, 11, 14, 16 

1 f. = -8 (1~~.) (1 +TTI1.) (1 +~~.) 
I I I I 

- 8
1 (1+~~.) (1+1111.) (1_~2) 

I I 
(A. 38) 

1 2 
- -8 (1-~) (1+1111·) (1+~~.) 

I I 

For i .. 2, 7, 10, 15 

1 2 
1. = -4 (1 + ~~.) (1 +llll.)(1-~ ) 
I I I (A. 39) 

For i = 4, 5, 12, 13 

(A. 40) 

in which the values of (~i' lli. ~i) are listed in Table A.S. 
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Table A.4 Nodal Coordinates for 
Element SOLlD12B 

Nodal 
Sj 'l1j ~j 

Point - - -1 -1 1 -1 
2 -1 1 0 
3 -1 1 1 
4 1 1 -1 
5 1 1 0 
6 1 1 1 
7 -1 -1 -1 
8 -1 -1 0 
9 -1 -1 1 

10 1 -1 -1 
11 1 -1 0 
12 1 -1 1 
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Figure A.S Element SOLID 16 

Table A.S Nodal Coordinates for 
Element SOLID 16 

Nodal 
Sj '11. ~i 

Point I 

-- - - -1 -1 1 -1 
2 -1 1 0 
3 -1 1 1 
4 0 1 -1 
5 0 1 1 
6 1 1 -1 
7 1 1 0 
8 1 1 1 
9 -1 -1 -1 

10 -1 -1 0 
11 -1 -1 1 
12 0 -1 -1 
13 0 -1 1 
14 1 -1 -1 
15 1 -1 0 
16 1 -1 1 



APPENDIX B TIME RECORDS OF THE FWD TESTS 
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APPENDIX C PHASE DIAGRAMS OF THE SASW TESTS 
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