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EXECUTIVE SUMMARY 

Commercial vehicle operations consume a vast quantity of economic and environmental 

resources. Profit margins in the trucking industry are thin, typically less than six percent and often 

as low as one percent of company revenues. Improvements in operating efficiency lead directly to 

service improvements and increases in carrier profitability and may result in reduced prices for 

shippers and, ultimately, in reduced costs to consumers. Transportation cost represent as much 

as twenty percent of consumer purchases; even a small reduction in these costs can result in 

significant savings. In addition to improving the operational efficiency and hence profitability and 

customer responsiveness of operations, improving the energy efficiency of commercial vehicle 

operations can impact overall energy consumption. 

The U.S. Department of Transportation estimated that the cost of domestic, intercity freight 

transportation in 1995 was almost 220 billion dollars; and the combined cost of intercity and local 

trucking operations was 348 billion or approximately 5 percent of the 1995 Gross Domestic 

Product (GDP). In addition, it is estimated that motor vehicle fuel purchases in the same year 

accounted for 15 percent of common carrier operating expenses, or about 52.2 billion dollars 

nationally. Advances in Intelligent Transportation Systems (ITS) technologies for commercial 

vehicle operations offer opportunities for reducing the overall resource consumption of these 

operations. 

The use of automatic vehicle location, real-time communication technologies, along with on

board and dispatch center GIS and database management systems offer significant opportunities 

for improving the efficiency of commercial vehicle operations. Taking full advantage of these 

technologies requires the development of tools specifically tailored to information intensive 

operations. This study has developed a family of operational tools specifically tailored to such 

operations. These include computer-based dynamic load acceptance and load assignment 

methods for truckload trucking operations. 

An extensive simulation testbed is described for the performance evaluation of these 

methods, under various demand pattern assumptions and informational scenarios. Extensive 

numerical tests suggest that the dynamic assignment and dispatching methods developed in this 

study will perform well, both with respect to customer service and cost measures. 
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ABSTRACT 

Intelligent Transportation Systems (ITS) harness advanced communications and 

computation technologies in order to make transportation systems more efficient. This work is 

concerned with the application of ITS to commercial vehicle operations and freight mobility; it 

identifies and investigates potential uses of real-time information for the efficient management of 

carrier operations. 

In truckload and less-than-truckload operations, carriers typically know only a portion of 

the loads that must be moved more than a few hours before the moves must take place. 

Therefore, the assignment of an available driver to a load takes place in real-time or shortly after 

the request is received. The load acceptance decision made by a carrier must also be executed in 

real-time, and may have a significant impact on the carrier's ability to accept other loads requested 

in the near future. In this context vehicle to load assignments as well as the sequence in which 

loads are to be served may be revisited as demands unfold and traffic network conditions change. 

Because of the speed with which decisions must be made, the number of possible choices and 

the fact that the system is changing dynamically and often, unpredictably, locally oriented decision 

rules offer a promising alternative to approaches seeking global optimality or those which take into 

account long term or forecast information. 

The main hypotheses examined are, that real-time information on vehicle locations and 

demands can increase the efficiency of carrier fleet operations with respect to measures of 

trucking company profitability and responsiveness to customer requests, and, that real-time 

operational strategies perform well, compared to those requiring less real-time information, under 

certain conditions with respect to fleet size, level of demand and service deadlines. Operational 

strategies which take advantage of real-time information and, which include methods to perform 

load acceptance, assignment and re-assignment are examined both analytically, and in simulation 

framework developed to test these and related strategies under a variety of operating 

assumptions. Quantitative estimates of the benefits of real-time information for vehicle 

assignment and routing decisions for trucking operations are developed. 
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CHAPTER ONE: INTRODUCTION 

PROBLEM STATEMENT 

This work identifies and investigates potential uses of real-time information for the efficient 

management of carrier operations. In truckload and less-than-truckload (L TL) operations, carriers 

typically know only a portion of the loads that must be moved more than a few hours before the 

loads are to be moved. The assignment of an available driver to a load takes place in real-time or 

shortly after the request is received. The load acceptance decision made bya carrier must also 

be executed in real-time, and may have a significant impact on the carrier's ability to accept other 

loads requested in the near future. This research explores ways to make "good" assignment, and 

ultimately load acceptance decisions, that lead to overall cost effective operations, but rely on 

local (current) rather than long term or forecast information. 

In this context, vehicle to load assignments as well as the sequence in which loads are to be 

served may be revisited as demands unfold and traffic network conditions change. Because of 

the speed with which decisions must be made, the number of possible choices, and the fact that 

the system is in a constant state of flux, locally oriented decision rules offer a promising 

alternative to approaches seeking global optimality. These local decision rules are primary to this 

research and can take several forms: first, the decision time frame may be local, so that only 

current information is employed; second, the decision region may include a "local" or logical 

subset of vehicles or of demand locations; in addition, if a current solution is to be modified rather 

than completely re-generated when new demands are accepted, service is completed, or 

changes in driver and vehicle availability and traffic network occur, then the decision region may 

be limited to assignments which differ in small ways from the current assignments. In summary, 

such decision rules are local with respect to one or more of the following: temporal, spatial, or 

algorithmic considerations. 

MOTIVATION 

Commercial vehicle operations consume a vast quantity of economic and environmental 

resources. Profit margins in the trucking industry are very thin, typically less than five percent and 

often as low as one percent of company revenues [Association of American Railroads, 1992]. 

Improvements in operating efficiency lead directly to increases in carrier profitability and may 

result in reduced prices for shippers and, ultimately, in reduced costs to consumers. 

Transportation costs represent as much as twenty percent of consumer purchases; even a small 



reduction in these costs can result in significant savings [Sampson et ai, 1985]. In addition to the 

benefits of improving the operational efficiency and hence profitability and customer 

responsiveness of operations, improving the energy efficiency of commercial vehicle operations 

can impact overall energy consumption. In trucking operations alone, a reduction in overall travel 

of even a few percentage points would represent a significant savings to both suppliers and 

consumers of such services. The U.S. Department of Transportation estimated that the cost of 

domestic, intercity freight transportation i,n 1991 was 167 billion dollars, and the combined cost of 
" intercity and local trucking operations was 278 billion or 4.9 percent of the 1991 Gross National 

Product (GNP). In addition, it is estimated that motor vehicle fuel purchases in the same year 

. accounted for 7.9 percent of common carrier operating expenses, or about 8.7 billion dollars 

nationally [Schmitt and Feinberg, 1994]. Advances in Intelligent Transportation Systems (ITS) 

technologies for commercial vehicle operations offer opportunities for reducing the overall 

resource consumption of these operations. Telecommunications and information technologies 

provide opportunities for using real-time information to enhance the productivity, performance, 

and energy efficiency of the commercial transportation sector. Achieving the benefits of real-time 

information requires the development of fleet operating strategies, including vehicle assignment 

and dispatching rules with more flexibility than those currently in use, along with suitable decision 

support methodologies. 

The area of vehicle routing and scheduling, including dynamic vehicle allocation and load 

assignment models, has evolved rapidly in the past few years, both in terms of underlying 

mathematical basis and actual commercial software tools. While these approaches may well be 

adaptable to operations under real-time information availability, they are at present unable to take 

full advantage of such information because their underlying formulations do not recognize 

possible decisions that are only meaningful under real-time information. 

There is currently little methodology in the literature intended specifically for truckload or 

other surface carrier operations under the kind of real-time information possible with emerging 

technologies. This lack of methodological development applies to analysis of carrier operations to 

evaluate the effectiveness of real-time information, as well as to actual tools that could be used by 

carriers to take advantage of such information. However, this work is a part of a rapidly growing 

area of exploration. The field of logistics, driven by the increase in real-time information 

availability in transportation and supply chain management systems, has witnessed explosive 

growth in the past few years. Interest in the development of dynamic models of fleet operations 

and of fleet management systems which are responsive to changes in demand, traffic network 
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and other conditions is emerging in many industries and for a wide variety of applications 

[Desrosiers et al 1995, Powell, Jaillet & Odoni, 1995]. 

RESEARCH CONTEXT: TRUCKLOAD CARRIER FLEET OPERATIONS 

The context for this research is truckload carrier fleet operations in which each assignment 

involves a vehicle moving a single load from the load origin to the load destination. We expect 

that the results of this inquiry will lend insight to other fleet management problems. The problem 

studied involves the management of a fleet of vehicles over a typically wide geographic region 

over time. It is assumed that the vehicle fleet is under the control of a central authority, the 

dispatcher. Some carrier companies own the vehicles in their fleet, some employ the services of 

owner-operator drivers, and others maintain a fleet of both company drivers and owner-operators. 

We ignore these distinctions, which are not essential for the operational strategies considered 

here, and assume that a central authority has the responsibility for directing the movements of 

vehicles in their fleet. Several equipment types may be available: tank vehicles for transporting 

petroleum and other chemical products, refrigerated units for carrying perishable items, flat bed 

vehicles for carrying, among others, irregularly shaped items and lumber, and, standard or drop 

frame trailers. In this analysis it is assumed equipment types are homogeneous or at least 

substitutable. This is without loss of generality and in keeping with the goal of exploring decision 

rules that are "Ioca"y oriented". We further ignore the additional complexity of single and double 

trailers and of loads which are carried in shipper owned trailers. The assumption is that a driver 

and vehicle combination includes a trailer that is loaded and unloaded at customer sites. In 

addition, this research does not take into account federal regulations concerning, for example, the 

length of time a driver may be on duty or driving. That level of detail, while essential for the 

successful development of implementable fleet management systems, is beyonc:i the scope of this 

research. 

Once a vehicle is loaded at a customer site, it cannot provide service to another customer 

until unloaded, typically at the destination point of the load. An exception to this assumption 

would be in the case of a load swap where two or more drivers meet at some point en-route and 

either swap trailers or unload a whole load. Those scenarios are not explicitly included in this 

investigation. Scenarios in which a" vehicles are equipped with a continuous Automatic Vehicle 

Location (AVL) system are examined. All vehicles are also equipped with continuous two-way 

communications devices which allow driver to dispatcher communication to take place within a 

short period of time. These technology equipped operations are compared with operations in 

which real-time communication and vehicle location and status updates are not possible. Further, 
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in the technology equipped scenarios it is assumed that the dispatch center(s) have a means to 

display the current locations of all vehicles, typically with a digital map and a GIS (Geographic 

Information System) interface. 

Demands for service are highly stochastic, with carriers typically knowing less than half of 

the loads to be moved more than a few hours before they are to be picked up [Powell, 1988]. 

Other aspects of carrier fleet operations may also have a high degree of variability. Travel times 

may vary significantly, due to unexpected congestion, road closures, weather or equipment 

failures. The time spent at loading and unloading points may also vary. This variability is not 

explicitly included in formulations of the problem presented in this research. Rather than work 

with stochastic representations of travel and loading and unloading times explicitly (Le. by 

estimating a probability distribution for these times), these times are considered known. 

However, when actual conditions vary from those expected, the real-time dispatching systems we 

envision are designed to react to the unexpected. Of significant interest to this research is the 

extent to which different assignment strategies are able to react to changes 'and the effectiveness 

of their response as changes occur. 

The carrier operations planning process can be viewed in two parts. First there is the need 

to manage the supply of vehicles and drivers to provide timely service to customers. The supply 

problem includes the assignment of drivers to known loads, reassignment as changes in 

demands, driver and vehicle availability and traffic network conditions occur, and the repositioning 

of idle vehicles in anticipation of future demands. Related to this is the need to effectively 

manage customer requests for service. The load management problem includes both the 

decision to accept (or reject) requested loads for service and the active solicitation of loads in 

regions in which the supply of vehicles to provide service currently exceeds or will soon exceed 

demands. The context of truckload trucking and other dynamic fleet operations is such that it is 

not possible to serve all requested demands at all times [Powell, Jaillet & Odoni, 1995]. It may be 

necessary to turn down requests for service if time window, regional or system wide capacity 

constraints cannot be met. In general, carriers have the ability t6 refuse customer demands with 

little risk of loss of customer good will. This increases the importance of making careful load 

acceptance and solicitation decisions. When some loads are likely to be refused, the problem of 

effectively choosing the subset of loads to serve has significant effect on the profitability and 

efficiency of an operation. 

The load acceptance and driver-to-Ioad assignment processes may be tightly or loosely 

coupled, or tackled separately. In general they are separated; the load acceptance decision must 

be made when a request arrives while, in principle, loads may be assigned to a driver at any time 
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after the request is received. Shippers call a carrier requesting that a vehicle be available at a 

pickup location on a specific day, at a specific time, to carry a load to a specific destination. The 

carrier must decide quickly whether to accept a request to move the load. Advances in 

computing technology and scheduling and assignment heuristics offer opportunities for coupling 

the acceptance and assignment process or at least using information about the estimated cost 

and feasibility of providing service in the load acceptance decision. Assuming the carrier has 

accepted the load, a vehicle (and driver) moves the load from its origin to its destination and 

unloads, at which time the carrier must decide what to do with the vehicle. It may be assigned to 

another load, repositioned to another region in anticipation of future loads in that region, or held in 

anticipation of future loads in the destination region. A carrier is paid a revenue proportional to 

the distance of the length of the haul. Loads may have firm or somewhat flexible pickup 

deadlines. A carrier may decline a load, but it may not accept a load unless it can meet the 

agreed upon deadlines. 

Load Acquisition and Acceptance 

Load acquisition may be active or passive. Carriers may simply wait for shippers to call with 

requests for service or they may identify regions in which supply exceeds demand or in which 

excess capacity will be available in the near future and actively seek loads originating in regions 

with excess capacity. Once a shipper has requested that a load be moved, the carrier must 

decide whether or not to accept the load. This decision may be based upon feasibility only. That 

is, a carrier may choose to accept all feasible loads, in which case the carrier must have a way to 

assure that the fleet can move the load, along with previously accepted loads, within the agreed 

upon time. Or, the decision may be based on an estimate of the cost of providing service and on 

expectations about (near) future requests. An estimate of the revenue potential of the load may 

be used both to make the load acceptance decision, and in some cases to trigger price 

negotiations. Ideally, the current or near-term state of the system with respect to the availability 

and location of vehicles should be used to update revenue estimates as changes in the system 

occur. 

The profit realized for each loaded movement is highly dependent upon driver proximity and 

availability at the time the load is moved. In addition, each movement affects the ability of 

individual drivers or a fleet of drivers to respond to near-term demands for service. Many 

companies make an effort to predict where and when excess supplies (vehicles and drivers) will 

be available; some employ load acquisition strategies which discount empty movements in 

regions that would otherwise require excessive dead-head movements. However, more 
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comprehensive pricing and load acquisition strategy which takes the current and predicted near 

term state of the system into account could lead to increased productivity. This could be 

accomplished in many ways. For example, demands for services could be forecast over time; 

based on these forecasts the surpluses and deficits in each region or traffic lane could be 

estimated. These surpluses and deficits could be used to calculate the estimated return on each 

load, adjusted with the expectation that loaded vehicles moving in particular lanes will be needed 

at their destination locations or, once empty, repositioned to other locations. These revenue 

projections could be used internally to identify regions or traffic lanes that should be targeted for 

aggressive load acquisition and could also be used to adjust the prices charged shippers. 

Unfolding demands could be compared with forecast demands and dispatchers and managers 

made aware of unexpected fluctuations. Powell [1985] has suggested several ways to forecast 

demands and has employed these forecasts both for solving a rolling horizon stochastic 

programming formulation of the dynamic vehicle allocation (driver to load and region assignment) 

problem and to estimate the marginal cost (and hence expected return) for movements. Powell 

explored marginal cost estimation which relies on solving either a deterministic or stochastic 

formulation of the vehicle allocation problem and found that although the output from the 

stochastic (and non-linear) version of the model produced useful results, that these were difficult 

to extract from the model without re-optimizing under many different scenarios. While this and 

related approaches may indeed lead to the development of valuable insights for carrier 

companies, it will likely not lead to an approach that can be employed in real-time. 

Issues in load Assignment and Re-assignment 

As discussed in the previous section, when a request for service arrives, carrier fleet 

managers decide whether or not to serve the load. This decision may be made immediately, or 

within a very short time after the request for service is received. After acceptance, the load is 

either immediately assigned to a particular vehicle or it is sent to a pool of accepted but 

unassigned demands for future assignment. The question of how best to handle the tradeoffs 

between immediate assignment to a vehicle and assignment to a pool is of significant importance 

to this research. Issues addressed arise in scheduling and assignment in many different fleet

management contexts as well as other distributed or fixed location service systems. Two 

scenarios, one in which loads are held in a large common pool of accepted demands until 

assignment to a particular vehicle close to the time at which service is scheduled to begin, and 

another, in which most accepted demands are assigned to a particular vehicle's queue offer 

different advantages. The ability to make confident load acceptance decisions-oat least when 
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utilization rates are high--requires that loads be assigned, at least temporarily, to an individual 

driver or to a small pool of drivers. The ability to create even very short "routes" (sequences of 

loads to be served) can lead to significant efficiencies in terms of empty distances traveled. 

It is possible to achieve the flexibility of a pooled queue of demands while at the same time 

achieving the economies of generating short "routes" of assigned loads. In these instances, a 

priori tours that include all accepted service requests are constructed but may be modified as 

changes occur. The issue of how to best rnodify assignments in a real-time environment is 

central to this research. Real-time assignment strategies which rely on route insertion can be 

extremely efficient. Feasible insertion points can be identified within seconds and all feasible 

insertion points can be evaluated for efficiency within a comparable period of time. However, 

considering the re-ordering of routes at the same time as the addition of new loads is 

computationally expensive; the identification of (cost effective) load swaps between vehicles can 

be even more so. These assignment techniques lead, in most cases to more efficient 

assignments, but, rather than explore all alternatives, either the feasible set, or the most 

promising subset of options should be identified a priori. Decision rules which are local in a 

temporal, spatial, or algorithmic sense are amenable to the realities of real-time decision 

processes. The decision time frame may be local, so that only current information is employed. 

The decision region may include a "local" or logical subset of vehicles or of demand locations 

generally chosen by geographic location. If a current solution is to be modified rather than 

completely re-generated when new demands are accepted, service is completed, or changes 

driver and vehicle availability and traffic network occur, then the decision region is limited to local 

decisions in the region of the current solution. Each of these techniques results in the 

identification of small versions of the problem; in some cases these problem instances may be 

solved optimally (with respect to the chosen criteria) in real-time. 

RESEARCH OBJECTIVES 

Primary Objectives 

The primary objectives of this research are to: 

1. State, formulate and analyze the driver assignment (or dynamic vehicle allocation and 

routing) problem in a way that explicitly takes real-time information on vehicle locations 

and demands into account. 

2. Develop operations research methodologies to assist with dispatching, load acceptance, 

and dynamic pricing strategies and to test these methodologies under the assumption of 

the availability of real-time information on vehicle locations and demands. These 
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methodologies employ real-time information to enhance system productivity and 

performance under a variety of operating assumptions. 

3. Develop a simulation framework to analyze carrier fleet operations under real-time 

information and to evaluate the effectiveness of strategies developed. 

4. Provide quantitative estimates of the benefits of real-time information for vehicle 

assignment and routing decisions for trucking operations. 

Main Hypotheses 

Related to the objectives mentioned above, two main hypotheses are tested, both through 

analytical and simulation investigation. These are: 

1) Real-time information on vehicle locations and demands can increase the efficiency of 

carrier fleet operations with respect to measures of trucking company profitability and 

responsiveness to customer requests or desires. 

2) Real-time assignment rules perform well, with respect to those requiring less real-time 

information, under certain conditions with respect to fleet size, level of demand and 

pickup deadlines. 

In investigating these hypotheses, the following questions are examined: 

• How can operations take advantage of real-time information on vehicle locations and 

demands? 

• How do assignments triggered by changes in the system compare to assignments triggered 

by the passing of time or of an accumulation of loads or idle vehicles? 

• How do local assignment rules compare to assignments generated with the benefit of perfect 

hindsight? 

• Which local assignment rules appear to perform best and under what conditions do they 

exhibit relative advantages? 

RESEARCH APPROACH 

The focus of this research is operational strategies that require varying degrees of real-time 

information and communication. The performance of these strategies is examined in a simulation 

framework. Prior to that investigation, analytic models of the dynamic vehicle allocation and 

routing problem are developed; these explore several load assignment strategies and focus on 

dynamic dispatching strategies that are outside the norms of typical carrier fleet operations. In 

particular, the diversion of en-route vehicles is examined. This strategy involves diverting a 

vehicle en-route to a pickup location to make an immediate pickup of a more time-sensitive load, 

or of a load that (when sequenced first) will improve the efficiency of the vehicle's travel route. 
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Strategies allowing en-route diversion are examined in detail, beginning with the operations of a 

single vehicle. Extending this analysis to vehicle fleets, the increase in the ability of a fleet to 

respond to time-sensitive demands under real-time information is estimated, again with the help 

of simplifying assumptions. Following a similar line of reasoning, a model of carrier fleet 

operations as a distributed queueing system is introduced in order to examine how congestion 

effects the ability of a fleet to respond quickly to requests for service and, to identify the tradeoffs 

between pooled demands and those assigned to individual vehicle "queues". 

The simulation framework allows for evaluation of the expected performance of assignment 

and load acceptance strategies under a variety of conditions. Emphasis is placed on examining 

rather small instances of the problems, under idealized conditions, in an effort to gain insight into 

the relative merits of flexible assignment strategies and of the benefits to carrier fleet operations 

of real-time information on vehicle locations, demands and traffic network conditions. "Real-time" 

operational strategies, consisting of two load acceptance strategies and four assignment 

strategies are compared to five less information intensive "base case" operational strategies in 

which the same simple load acceptance policy is followed. In addition, for a single vehicle, the 

performance of one of the real-time assignment strategies is compared to that of a perfect 

hindsight solution. Simulation experiments examine the performance of these operational 

strategies in scenarios in which fleet sizes vary, demand intensities range from one in which five 

to fifty percent of requests must be turned away to one in which vehicles spend nearly half their 

time idle, and service requests mayor may not have associated pickup deadlines. The long run 

expected performance of these strategies in terms of several measures of effectiveness is 

estimated. 

RESEARCH SCOPE 

A key assumption in this work is that requests for service arrive over time and that 

assignment decisions are made on a continuous basis as outcomes are observed. No a priori 

information on the location or timing of future service requests is considered. Two of the "base 

case" strategies examined, which determine assignments using a classical bipartite assignment 

approach, allow demands to accumulate ina pool prior to assignment. In none of the strategies 

examined are demands forecast. This assumption is made with the understanding that not all 

successful carrier fleet operations provide service to immediate requests, and, that even in an 

operation providing (immediate) demand responsive service, some fraction of the loads to be 

moved would be known in advance. The eventual goal of this work is the inclusion of heuristics 

identified in an overall dispatching system capable of generating both immediate and longer term 
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operating plans. The research in this report, however, is limited in scope to the evaluation of 

dynamic dispatching heuristics. This research does not explicitly address the issue of how to best 

incorporate the assignment of service requests arriving dynamically over time with demands 

known well in advance. Such investigation, which would examine the performance of local 

assignment heuristics relative to and in conjunction with "global" optimization systems, in which 

solutions are generated as changes in the system occur, is a topic of future and continuing 

research. 

Closely related to the issue of scope is the question of how to best evaluate the performance 

of dispatching strategies. The choice of evaluation criteria is more difficult in a dynamic operation 

than in a static one. Several benchmark solutions are examined. One, which provides an upper 

bound on system efficiency involves the assignment of loads to available vehicles in the order in 

which they arrive, without regard to current vehicle locations. Another, which provides a lower 

bound on the distance traveled to provided service to a fixed set of loads, requires the 

development of solutions with the benefit of perfect hindsight. Because cost or feasibility based 

load acceptance rules confound the issue of comparing real-time solutions to perfect hindsight 

solutions, a comparison is made between the long run average cost of serving set of randomly 

generated loads and the corresponding long run average cost when the real-time assignment 

strategies are applied. The number of loads in the sets are equal to the average number of loads 

served per week in the real-time assignment strategies. Chapter 3 provides a discussion of 

criteria used to evaluate the performance of assignment strategies. These are further defined, in 

the context of evaluation of the relative performance of strategies examined in simulation 

experiments, in Chapter 5. I n some cases, these criteria are linked to those used to make 

assignment decisions; in others, a lower level proxy for a higher level objective is used in the 

decision process. 

REPORT ORGANIZATION 

This report is organized in the following manner. Following this introductory chapter, chapter 

2 presents a review of related work in the literature and covers other necessary background 

information. The second chapter begins with a brief discussion of the growth of the carrier fleet 

industry and its current state, especially with regard to the nature of competition and demands for 

increasingly responsive customer service. This is followed by an introduction of the relevant 

technologies involved in the application of intelligent transportation systems (ITS) advances to 

commercial vehicle operations (CYO), and discussion of the "state of the art" applications of 

these technologies in commercial fleet management. CYO applications of ITS technologies are 
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introduced and briefly reviewed, and the ITS CVO strategic program plan of ITS America 

presented. Finally, a review of the literature most relevant to this research is discussed and the 

work placed in context. 

Chapter 3 introduces the conceptual and theoretical framework for the analysis of dynamic 

dispatching strategies for carrier fleet operations under real-time information. The problem is 

defined in finer detail than in the introductory chapter and assumptions are made explicit. 

Operational strategies examined in simulation experiments are presented formally, along with 

mathematical formulations of problems investigated. 

Chapter 4 discusses analytic investigations of carrier fleet operations under real-time 

information, lending insight to the spatial and temporal considerations of carrier fleet operations 

and dynamic dispatching systems. A strategy of diverting an en-route vehicle to make an 

immediate pick-up of a more time-sensitive load, or of a load that when sequenced first will 

improve the efficiency of the vehicle's route is introduced; the increase in the ability of a fleet to 

respond to time-sensitive demands under real-time information is estimated, with the help of 

simplifying assumptions. The findings suggest that allowing continuous updates on the location 

and status of all vehicles in the fleet, coupled with flexible assignment strategies can significantly 

increase the ability of the fleet of vehicles to respond immediately to new requests. Related to 

this, carrier fleet operations, a distributed service system, are modeled as an M/G/k queue. A 

model examining the extent to which congestion affects the ability of a fleet to respond quickly to 

requests for service is introduced. The model supplies an upper bound on the average wait time 

for service under varying congestion levels. While the upper bound is quite loose in some cases, 

it does provide insight into methods for estimating congestion levels that are operationally 

attractive. 

Chapter 5 contains the experimental design followed; a map of the simulation experiments is 

provided, along with a detailed description of the nine assignment strategies and three load 

acceptance rules compared and the methods of comparison used. The key factors in the 

experiments are: the operational strategy (combination of load acceptance rule, and assignment 

strategy) selected, fleet size, demand intensity and, in the real-time operational strategies, the 

presence and distribution of deadlines for pickup. 

The presentation and analysis of simulation results is the topic of chapter 6. In this chapter 

results of the simulation experiments comparing the five "base case" and four "real-time" 

assignment strategies are discussed. The operating environment is by definition dynamic in all of 

the scenarios examined. Service requests arise over time; the load acceptance decision must be 

executed when the request for service is received; current load acceptance decisions impact the 
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ability of the fleet to accept future assignments. The "base case" strategies are intended to 

represent operations that are less information intensive while the "real-time" strategies rely on 

continuous driver to dispatcher communication and location and status information for all vehicles 

in the fleet. Operational strategies are compared over a set of system profitability measures, as 

well as in terms of their ability to provide satisfactory service to customers. The primary 

evaluation criteria are: the length of the average empty distance driven between loaded moves, 

the average and associated variability of wait time for service, and, an estimate of the operating 

profit generated per driver per week under a set of profit model assumptions. Results indicate 

that the real-time operational strategies perform well, when compared to the less information 

intensive cases when evaluated with respect to both profitability and customer service measures 

underrealistic demand scenarios. Under very high demand the base cases fare well. Infact, one 

of the least information intensive base cases, a purely greedy assignment rule, provides the best 

performance with respect to most criteria when the system is over capacitated. In more moderate 

demand environments the real-time strategies perform much better with respect to the criterion of 

customer wait time for service, and perform well with respect to profitability; the base case with 

the best performance is a quasi real-time strategy which requires continuous two-way driver to 

dispatcher communication. 

The final chapter summarizes the results of the report, provides conclusions and makes 

recommendations for continuing research. 
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CHAPTER 2 BACKGROUND REVIEW 

INTRODUCTION 

Chapter 2 reviews background material relevant to the modeling of carrier fleet operations 

under real-time information. Chapter 2 begins with a brief discussion of the growth of the carrier 

fleet industry and of the current state of the industry, especially with regard to the nature of 

competition and demands for increasingly responsive customer service. It expands to introduce 

some of the intelligent transportation systems (ITS) technologies relevant to commercial vehicle 

operations (CVO). 

Chapter 2 also presents a review of the operations research literature that is most relevant to 

this research. Placing this research in context has posed a significant challenge. Obvious 

connections exist, for example, to the standard vehicle routing literature and to research on time

constrained vehicle routing. In most cases, however, these now comprehensive bodies of 

literature focus on problems in which the locations and magnitude of demands are known. In 

addition, most vehicle routing problems involve the assignment of a fairly large number of 

customers to a single vehicle route, while the quasi "routes" assigned in this application (truckload 

trucking operations) tend to be short, containing at most three to five customers, and in some 

cases containing only one or two. There is a natural affinity too, to the stochastic routing 

problems that have also been addressed in the literature [for example, Jaillet and Odoni, 1988; 

Bertsimas, Jaillet & Odoni, 1990] but in general these have been two-stage optimization problems 

in which the goal is to produce a robust a priori solution to a stochastic problem. Most of that 

literature has as its focus the generation of solutions that are optimal in the expected sense. The 

issue of how the system reacts as the demands unfold is closer to the core of this research and is 

rarely addressed in the literature. Powell [1988], and co-workers, have explored the problem of 

allocating vehicles to loads and demand regions using various stochastic programming 

approaches. Indeed, much of their work has examined the general problem we are interested in-

the assignment of vehicles to loads in the context of truckload trucking. However, the approach 

adopted in that extensive body of work is different from the one we are taking. That approach (or, 

more properly, family of approaches) involves formulating and solving a two-stage or m-stage 

(with m greater than 2) stochastic program with recourse. In that work, recourse strategies, used 

to react when realizations of actual demands (and supplies of vehicles to meet demands) differ 

from the "expected" demands, are a side issue in the analysis. One can argue that our research 

harkens back to the beginning of the development of algorithms for vehicle routing and 

scheduling in which the limitations of computers of the day led to the development of greedy 
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approaches and local improvement heuristics [Fisher, 1995]. In some cases, the time limitations 

placed on the generation of real-time problems are formidable. Despite relatively fast and 

efficient computers and significant advances in heuristic and exact algorithms available for static 

vehicle routing and scheduling problems, standard approaches are likely unable to yield the most 

efficient solutions to their dynamic counterparts. In highly dynamic systems, developing 

strategies to react efficiently as customer requests and network conditions unfold may prove to be 

more important than determining the expected outcome. Furthermore, a strategy which may be 

optimal in the expected sense may, under certain realizations of the system, perform much worse 

than a simple strategy for reacting to actual conditions as the system evolves. 

THE MOTOR CARRIER INDUSTRY: A BRIEF HISTORICAL PERSPECTIVE AND CURRENT 

STATE OF THE INDUSTRY IN THE U.S. 

This research is concerned with the modeling of carrier fleet operations and the successful 

implementation of available technologies in these operations. While not directly related to this 

study. the emergence in recent years of a fiercely competitive and customer service driven 

environment, one which parallels developments in other service industries, has been driven by 

the forces of deregulation. To that end, a brief history of the trucking industry in the U.S. is 

provided to place the current operating environment in perspective. 

This section briefly outlines the fascinating history of developments in the carrier fleet 

industry in the U.S.. We do not presume to mention all of the interesting events and 

developments that have helped to form the wide and varied enterprise of commercial trucking. 

The industry has been studied extensively by economists, sociologists, experts in the law and, in 

recent years, operations researchers and transportation engineers. The history of the many 

technologies which fueled the development of the industry, trucking culture, and the role of 

commercial freight operations in the growth of agricultural and manufacturing centers has also 

been explored. 

The Development of the Motor Carrier Industry in the U.S. 

The commercial trucking industry began during the first quarter of the twentieth century 

when the development of passable roads and the use of motorized transportation in logistics 

operations during the first world war led to the broad acceptance of motorized transportation as a 

practical alternative to horse drawn carriage. By the late 1920's, the commercial trucking 

industry, which grew as the interstate highway system developed, was competing directly and 

successfully against a declining railroad industry for short, medium length and even long-haul 
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traffic. Significant improvements in the economy, mechanical performance and comfort provided 

by new vehicles further propelled the rapid growth of the industry [Thomas, 1971]. 

The Introduction of Regulation 

The Interstate Commerce Commission (ICC) was created in 1887 with the goal of protecting 

shippers from discriminatory pricing by railroads. The politics leading to the creation of the 

commission are under debate even today (for a comprehensive analysis see [Rothenberg, 1994]), 

but one widely held view is that a primary motivation was to ensure that small shippers and small 

communities would be provided service at reasonable rates. This apparent cross-subsidization (a 

means of using regulation to compensate one set of customers at the expense of others) of small 

shippers and small communities was not unique to the railroad industry. 

During the first two decades of the twentieth century, neither automotive technology nor the 

system of roads in the country provided commercial trucking with many competitive advantages 

over rail or even barge operations for large scale movements of freight. However, as conditions 

and technologies improved, there was increasing pressure from the railroad industry, from the 

largest trucking companies, and perhaps, from the ICC itself to regulate this relatively new 

industry. Compounding the competitive issues between modes was a sharp reduction in 

economic opportunities during the depression. This, coupled with relatively low start up costs, ·Ied 

to a marked increase in the number of entries in to the owner-operator business. These smaller 

outfits, typically barely surviving economically, threatened the economic well being of both the 

railroads and large trucking companies at a time when freight was scarce overall due to the 

depression. In 1935, after nearly ten years of lobbying by the forces mentioned above, the U.S. 

Congress passed the Motor Carrier Act of 1935 [Rothenberg, 1994; Sampson et ai, 1986; 

Thomas, 1971]. From 1935 until Congress's passage of the Motor Carrier Act of 1980, which 

greatly reduced trucking industry regulation, the ICC exercised control of trucking entry 

requirements, rates, mergers and in some cases routes. During that time, the industry was 

divided into three principal types of carriers: common, contract and unregulated. Common 

carriers engaged in for-hire transport over fixed or irregular routes and, required to obtain 

operating certificates from the ICC, were the most heavily regulated. Rates had to be filed thirty 

days before changes were allowed and were required to be reasonable and not unjustly 

discriminatory; standards were set for safety, equipment, employee qualifications and allowable 

work hours. Contract carriers, working under agreements with a small number of shippers (at one 

point no more than eight) were less carefully monitored than common carriers, although mergers 

and acqu;sitions had to be approved by the ICC. Finally, the Motor Carrier Act of 1935 defined a 
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class Of not-for-hire or private carriers unregulated and immune from all regulations but those 

concerned with safety [Rothenberg, 1994, Thomas, 1971]. Small carriers or owner operators who 

faced barriers to entry into the market in addition to regulations found it difficult to compete with 

medium-sized and large carriers even in some niche markets where their costs were lower; the 

regulation of rates made them unable to compete on price. Railroads and the largest carriers 

benefited from regulation which artificially raised rates, limited competition and added significant 

administrative overhead. While regulation led to an increase in rates charged shippers, it also 

ensured service to those who might have been overlooked or overcharged in the absence of 

regulation. The largest shippers, the ones that would have been most likely and successful at 

launching a complaint about inflated rates, were more likely to create their own, unregulated, 

private fleets [Rothenberg, 1994]. 

A Deregulated Environment: the Emergence of Fierce Competition 

Since the passage of the Motor Carrier Act of 1980 and the subsequent dissolution of the 

Interstate Commerce Commission in January of 1996, the industry has seen broad and sweeping 

changes. The effects of deregulation on truckload operations was even more marked than the 

corresponding effects on the less-than-truckload segment. While the fixed costs of entry into the 

L TL market are fairly high, requiring geographically dispersed terminals for all but small, local 

operations, the fixed costs of entering the truckload market include only the application fee for a 

license, a vehicle lease and the cost.of insurance. Hence, deregulation allowed for the entry of 

thousands of new, generally non-union carriers and had an impact on the very structure of the 

industry [Corsi, 1993]. Since deregulation many private fleets have been eliminated and their 

tasks turned over to more competitive common carriers [American Trucking Associations 1987]. 

A leading industry analyst [Corsi, 1993] believes that far more opportunities exist to convert 

private (shipper owned) fleets into common carrier operations. In the competitive post-regulation 

market profit margins are even tighter than before [American Trucking Associations 1976, 1986]. 

Carriers are increasingly competing on service reliability and on-time performance in addition to 

cost. One of the principal arguments for the deregulation of the industry was that regulation was 

preventing carriers from offering shippers new and innovative services. Barriers to entry in the 

industry preserved the status quo and did not encourage innovation. 

The years since deregulation have seen carriers competing more and more on service. 

Increasingly, carriers are offering logistics services that were neither required in a regulated 

environment nor possible before the development of reliable two-way communication, electronic 

data interchange, automatic vehicle location/identification and geographic information systems 
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technologies. The ability to attract agreements with "core" shippers (shippers that request 

movements from a particular carrier first), which can help to smooth the fluctuation of requests for 

service, depends heavily on the carriers' ability to provide reliable service. The availability of 

technologies, coupled with the popularity of just-in-time manufacturing systems and consumer 

demand for fresh perishable products and immediate delivery has further increased requirements 

for reliable and demand-responsive service. 

This research is motivated by the increasing importance of providing reliable service that is 

responsive to shippers' needs for time-sensitive delivery at reasonable cost. ITS technologies 

and related fleet management decision support tools increase carriers' ability to compete 

effectively in meeting customer needs. 

COMMERCIAL VEHICLE OPERATIONS APPLICATIONS OF INTELLIGENT 
TRANSPORTATION SYSTEMS TECHNOLOGIES 

Intelligent Transportation Systems (ITS) involve the use of advanced communications and 

computation technologies in order to operate transportation networks more efficiently. The area 

of commercial vehicle operations or freight mobility has received relatively little attention in the 

research community when compared to research and implementation of travel and traffic 

management; however, evo applications of ITS have achieved some early successes. It may be 

years before the cost of in-vehicle ITS technologies drops to a level acceptable to significant 

numbers of individual drivers a,!d before efficient network-wide traffic management systems are in 

place. In contrast, commercial vehicle fleets have a significant economic incentive to seek to 

improve operational efficiency wherever possible. Furthermore, while a network traffic controller 

can suggest routes for individual drivers or classes of drivers, they cannot (in most cases) 

mandate the routes drivers will take. Members of vehicle fleets, on the other hand, generally 

accept directions from a central authority and hence react in a predictable fashion. In addition, 

the largest vehicle fleets involve a much smaller number of vehicles than even the smallest of 

traffic networks. Some of the issues addressed in commercial applications of ITS technologies 

correspond to more general work in ITS. Commercial vehicle operators and fleet managers wish 

to find the most efficient travel paths in the network. Advances in safety, centered on both 

vehicles and the roadway, are of significant interest to commercial users. Electronic payment 

services of tolls will save commercial users time en-route. In addition to all of the benefits of ITS 

experienced by individual (non-commercial) users of the transportation network, fleet managers 

and commercial drivers alike will benefit from the increased efficiency possible with automated 

fleet and freight management systems. 

17 



Central to this research is the assumption that, in the technology-equipped scenarios, all 

vehicles are equipped with some kind of continuous Automatic Vehicle Location (AVL) systems, 

typically GPS or geosyncronous satellite based; that all vehicles are equipped with continuous 

two-way communications devices; and that driver to dispatcher communication takes place within 

a short period of time. We compare these technology-equipped operations with ones in which 

real-time communication and vehicle location and status updates are not possible. Further, in the 

technology-equipped scenarios, it is assumed that the dispatch center(s) have a means to display 

the current locations of all vehicles typically with a digital map and a GIS (Geographic Information 

System) interface. The technologies employed in CVO ITS applications are briefly reviewed in 

the next section. 

Technologies 

The primary technological advances affecting commercial vehicle operations have been in 

automatic vehicle identification, automatic vehicle location and two-way communication systems. 

Related advances in computer technologies for both on-vehicle and home office use, geographic 

information systems (GIS) and Electronic Data Interchange (EDI) technologies have also 

impacted the way carriers operate [Mobility 2000, 1990]. 

Automatic Vehicle Identification. Transponder and associated reader technologies with 

both read-write and read-only capability and are widely in use. AVI technologies have many 

applications for commercial vehicle operations. Electronic toll systems employ time-saving AVI 

technologies. A VI systems installed at terminal entrance and exit gates allow L TL companies to 

monitor the movements of their drivers and equipment. Commercial vehicle electronic clearance 

and weigh-in-motion systems rely on A VI technologies. 

Automatic Vehicle Location. Several viable options are available to perform automatic 

vehicle location. GPS, satellite-based Global Positioning System technology is the market leader 

and likely to gain ground in the next few years as differential GPS (DGPS) systems, which 

combine both satellite triangulation and ground based correction signals to enhance accuracy, 

become more widely available, and, accuracy problems in urban environments are solved. 

However, for trucking operations, which generally require less than the 1-5 meter accuracy of 

typical GPS systems, systems which use signals from ground based radio towers (like the 

Motorola Specialized Mobil Radio (SMR) system) coupled with Loran-C, a ground-based radio 

navigation system, or, those which use geo-synchronous satellites (for example the QUALCOM 

Omnitracs system) to perform both communication and tracking are widely in use [Jacobs, 1991, 

18 



EnRoute Technology, 1993]. These systems have been geared towards trucking applications 

and until recently, the 500-1000 meter accuracy they provide has been considered sufficient by 

most (long distance trucking) users. However, applications which include navigation, either on

board or at the central location, require more accurate position estimates in order to perform 

street-level calculations. In addition to geo-synchronous satellites and Loran-C, proximity beacon 

systems use strategically located short-range transmitters to periodically identify the locations of 

tracked vehicles. Identification may be made when a vehicle passes by a single beacon on the 

roadside or by triangulation of three or more signals. In addition to these basic systems, dead 

reckoning, map- matching and map-aiding techniques may be used to improve accuracy and 

cellular signals may be employed in triangulation schemes [Brown, 1992, Rothblatt, 1992, 

En Route Technology 1993]. 

Two Way Communication. Feasible options for two-way communications systems are 

even more numerous than those for vehicle location. Communication links available for this 

purpose differ in cost and sophistication. VHF, cellular, digital cellular or satellite links are all 

reasonable alternatives. The link used typically depends upon the desired frequency of 

communication and the distance between the dispatch center and the vehicles. Some 

communications systems allow for the transmission of character based messages only while 

others allow the transmission of both voice and data. 

Other Related Technologies. Advances in computers, both for on-board and dispatch 

center use, are propelling the development of ITS systems for commercial vehicle operations. 

The state of the art in navigation and dispatching algorithms have continued to be more 

computationally efficient, and computing power has improved at an even faster rate. In addition, 

advances in database management and geographic information (GIS) systems have led to the 

development of sophisticated record-keeping and display systems. Continuing advances in 

spatial and temporal database management and econometrics methods to analyze data will lead 

to improved demand forecasting methods. Properly bundled, these technologies should lead to 

improvements in the efficiency and reliability of carrier fleet and other freight operations. 

ITS America CVO Program Plan 

The national ITS program plan describes the ITS program in the following way: 

"The Intelligent Vehicles Highway Systems [ITS] program applies 

advanced and emerging technologies in such fields as information 

processing, communications, control and electronics to multimodal surface 
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transportation needs. If these technologies can be effectively stimulated, 

integrated, and deployed, our society can benefit from more efficient use [of] 

our infrastructure and energy resources; make more informed choices about 

modes of travel and route alternatives; achieve improvements in safety, 

mobility, accessibility, and productivity; and reduce harmful environmental 

impacts, particularly those emanating form traffic congestion."[ITS America, 

1994] 

The development of fleet management systems for commercial vehicle operations holds 

particular promise as an application of ITS technologies which may be deployed on a small scale 

with little or no governmental involvement and which will have clear immediate economic benefits 

for users in addition to reducing energy consumption and pollution. The five primary goals of the 

ITS program are to improve safety, increase efficiency, reduce energy and environmental impact, 

enhance productivity and enhance mobility of transportation. Fleet management tools which 

incorporate real time assignment strategies with geographic information systems, automatic 

vehiGle location and communication technologies can help to meet all five of these goals. 

evo User Services. The six CVO user services described in the National Program Plan for 

Intelligent Transportation Systems are [ITS America, 1994] : 

1) Commercial Vehicle Electronic Clearance facilitates domestic and international border 

clearance, minimizing stops. Transponder equipped vehicles will be able to have their 

safety status, credentials and weight checked at mainline speeds. Safe, legal vehicles 

with no outstanding out-of-service citations will be allowed to pass inspection/weigh 

facilities without stopping. In addition to facilitating the movement of safety and 

regulation compliant vehicles this service should allow inspectors to concentrate their 

attention on those vehicles likely to need such attention. 

2) Automated Roadside Safety Inspection facilitates roadside inspections by allowing real

time access to the safety and performance record of carriers, vehicles and drivers. Such 

access helps to determine which vehicles and drivers should be stopped for inspection. 

In addition to significantly improving the record keeping process and the speed of 

- gathering information, previously identified problems can be monitored and many 

manual steps in the inspection process can be automated and improved through the use 

of sensors and diagnostics. 
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3) On-Board Safety Monitoring is intended to reduce driver and equipment related 

accidents by facilitating the automated sensing of the safety status of a commercial 

vehicle, cargo and vehicle at mainline speeds. Critical vehicle components are 

monitored as is driving time, driver alertness. It is intended that a warning about unsafe 

conditions would be provided first to the driver and then to the carrier and roadside 

enforcement officials. 

4) Commercial Vehicle Electronic Processes Service provides for the electronic purchasing 

of credentials and automated mileage and fuel reporting and auditing. This provides the 

carrier with the capability of electronically purchasing annual and temporary credentials 

via a computer link. This will replace paperwork and reduce both carrier and state 

agency processing time. 

5) Hazardous Materials Incident Response provides an immediate description of hazardous 

materials to emergency responders. The service will improve the safety of shipments ~f 

hazardous materials by providing enforcement and response teams with timely, accurate 

information on cargo contents to enable them to react quickly and correctly in 

emergency situations. 

6) Commercial Fleet Management is the least well defined user service discussed in the 

national ITS program plan. Significant institutional issues remain to be worked out 

before this user service is put in place in a large scale fashion. This service provides 

communications between drivers, dispatchers and intermodal service providers. Traffic 

information will help drivers to avoid congested areas and would improve the reliability 

and efficiency of carrier operations. It is widely believed that most ITS services that 

benefit commercial vehicle operations only will be developed by individual companies or 

private sector consortiums. While it may be in the best interest for the public sector to 

provide some services directly to commercial vehicles most will be paid for and 

developed by fleet operators themselves. 

The issues addressed in this research fall into the category of Commercial Fleet 

Management and are intended for use in conjunction with commercial vehicle electronic 

clearance, automated roadside safety inspection, on-board safety monitoring, automated 

commercial vehicles administrative processes and hazardous material incident response to form 

a fully equipped intelligent commercial transportation system. Commercial fleet managers may 

pick and choose from a wide variety of applications and technologies in order to develop 

intelligent transportation systems that best meet their needs and resources. In many cases, once 

an initial investment in technologies is made (on-board computers, two-way communication 
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systems, automatic vehicle identification or location systems) the cost associated with further 

increasing functionality is relatively small. 

MODELING OF FLEET OPERATIONS 

This section presents a review of relevant literature on the modeling of fleet operations. 

Early work on the modeling of distributions systems is introduced followed by a general 

discussion of dynamic fleet management. Research on classical vehicle routing and vehicle 

routing with time windows problems are mentioned for completeness, as is the large body of 

research (typically involving stochastic programming formulations) on dynamic vehicle allocation 

problems. 

The modeling of distribution systems has received increasing attention since the late 1950's. 

Eilon, Watson-Gandy and Christofides [1971] introduce the main problems of concern in 

distribution management and, in addition to introducing important problem formulations and 

analyses, carefully review early literature on several problems of keen interest to this research: 

the traveling salesman problem; vehicle scheduling; and expected distances in distribution 

problems. These three problems, along with the modeling of vehicle loading strategies, form the 

foundation for early work in the modeling of fleet operations. In some respects, early efforts to 

model distribution systems for the purpose of deriving fundamental insights and principles are 

closer to the research presented in this report than some more recent work aimed and finding 

solutions to specific instances of vehicle routing and dynamic vehicle allocation problems. In 

spite of the observation that in general, problems addressed early on were restricted to static 

problems in which customer locations and demands are known, the greedy approaches to load 

assignment and route generation as well as the explorations of "efficient" local search heuristics 

conceptually binds our work to these earlier counterparts. 

The truck dispatching problem is first defined in a paper by Dantzig and Ramser [1959] in 

which the goal is the near-optimal routing of a fleet of gasoline delivery trucks between a supply 

terminal and the service stations served by the terminal. This and other early work focused on 

static problems, even under a loose definition of dynamic problems [Powell, Jaillet & Odoni, 

1995], as those in which one or more parameters is a function of time. The methods described in 

Eilon, Watson-Gandy and Christofides's book on determining expected distances in distribution 

problems were an early attempt to take into account the effects of the stochasticity of demand 

locations. The analyses of en-route diversion in a circular work area discussed in chapter 4 of 

this document follows a similar line of reasoning. A paper by Knight and Hofer [1968] which 

describes a manual scheduling approach, introduces the concept of allocation and subsequent 
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routing of vehicles when time window constraints exist and the time spent performing service at 

each call location is sufficiently long so that only a small number of calls can be assigned to each 

vehicle at a time. While far from a real-time application, the idea here is to group (allocate to a 

vehicle) calls which should logically be made by the same vehicle and then to order these in the 

most cost effective (from a distance traveled point of view) and time-window feasible way. The 

approacn described in the paper is close in nature to the approach followed in this research. A 

difference is that long assignments (typically 1 to 2 days) in the truckload trucking application 

cannot be as easily identified for convenient mutual allocation because of the geographic 

separation of origin and destination locations. 

Dynamic Fleet Management 

Psaraftis [1988] provides an extensive review of dynamic vehicle routing problems and 

places these within the broader area of traditional vehicle routing and scheduling. Earlier, 

Bookbinder and Sethi [1980] present a survey of early work on the problem of selecting, at each 

instant in time, the optimal flow of commodities to various network sources and sinks so as to 

minimize the total cost of transportation. They briefly explore applications with stochastic 

demands, for example, the delivery of home heating oil, as well as travel paths with stochastic 

time delays. Oejax and Crainic [1987] present a review of models concerned with empty flows 

and fleet management models, many of them concerned with the dynamic aspect of freight 

transportation operations. Golden and Assad [1986} present developments in formulations and 

solution approaches for vehicle routing problems under many different operational assumptions; 

Powell [1988] presents alternative formulations for the dynamic vehicle allocation problem; Jaillet 

[1988] and Bertsimas, Jaillet and Odoni [1990] discuss solutions for the probabilistic traveling 

salesman problem. 

Powell, Jaillet and Odoni [1995] present a review of research concerning stochastic and 

dynamic networks and routing and Gans and van Ryzin [1996a, 1996b} develop methods for 

analyzing the efficiency of dynamic dispatching operations. Their analysis draws heavily on 

queueing theory, modeling a depot-centered dispatching operation as a GIIGI/1 queue (in the 

single vehicle case). The more recent paper analyzes a general model of dynamic vehicle 

dispatching which seeks to capture the effect of congestion on system efficiency. Dispatching 

heuristics in which loads are serviced in batches are examined in order to generate an analytically 

tractable upper bound on the expected work in the system. These heuristics are not applied 

directly to dynamic dispatching problems but insights gained are used to develop more practical 

dispatching heuristics. 
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Two dispatching heuristics based on the analyses are suggested. In the first, a linear 

program in which system work is minimized is solved. Dual prices from the optimal solution of the 

LP are used to select the route (column in the LP) to execute. After completion of the selected 

route, the remaining routes are 'priced out' and the most attractive chosen for immediate 

execution. A second heuristic employs a similar approach but uses the dual prices from the 

solution of a different LP, one which gives a lower bound on the system work, to pick the next 

route to· execute. The performance of these policies relative to two simple 'straw' policies are 

compared and are shown to be favorable. Their analysis introduces a novel approach to 

modeling dynamic dispatching systems and provides a method of estimating the efficiency of 

these systems by the total work remaining in the system. Another analysis of carrier "Heet 

operations modeled as a system of queues is found in Tijms [1986]. This analysis uses a model 

of a distributed service system as an M/G/oo queue and provides a bound on the delay. These 

results are used to determine the best allocation of vehicles toa set of fleets under conditions of 

stochastic demands. 

The efficient management of fleets of trucks has been explored as early as 1959, when 

Dantzig and Ramser [1959] discussed linear programming based formulations for the near

optimal routing of a fleet of delivery trucks. The routing and scheduling of private (company) 

fleets and of less-than-truckload (L TL) operations has been addressed many times and in many 

different contexts in the past few years, but the truckload common carrier application has not 

received as much attention, except for the extensive work of Powell. However, the lessons 

learned and approaches taken in the related freight and fleet management problems lend 

significant insight into possible solution approaches for the dynamic vehicle allocation problem 

under real-time information. In particular, formulations for fleet management problems that treat 

individual vehicles separately, rather than as part of aggregate network flows, are well suited to 

modeling operations under real-time information. In order to take advantage of real-time 

information on vehicle and demand locations and the current state of the traffic network, individual 

vehicles and demands for service should be uniquely identified, rather than viewed as part of 

larger regional flows. 

Although Powell [1996] introduces a hybrid formulation of the dynamic vehicle allocation 

problem suitable for the truckload carrier application in which vehicles are modeled individually in 

an assignment network and flows are predicted in an aggregate manner in a forecast network, 

most work on the DVA problem to date relies on stochastic (or stochastic-dynamic) programming 

formulations, which explicitly incorporate the stochastic nature of both future supplies of vehicles 

and demands for service. An alternative approach is one in which a smaller, simpler problem 
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(than the stochastic programming formulations) is solved often, and in response to unfolding 

customer demands. This approach gives little (if any) attention to future uncertainties. It relies 

instead on the fact that the problem will be re-solved when accepted demands for service, vehicle 

availability, and in some cases, travel network conditions change. Because demands for service 

are generally time-constrained, formulations of the real-time problem may share many similarities 

with the classic Vehicle Routing Problem with Time Windows (VRPTW). The main differences 

are in the length of the average moves made, a typically smaller number of customers, and in the 

fact that in most OVA problems it is assumed that a vehicle, whether it be a truck,taxi or rail car, 

is dedicated to performing work for a single customer at a time, and that not until a job is 

complete is the vehicle available to take on another assignment. The next section provides a brief 

review of the extensive literature on the classical vehicle routing problem and the vehicle routing 

problem with time windows followed by a discussion of and approaches to modeling dynamic 

vehicle allocation problems. 

Classical Vehicle Routing and Vehicle Routing with Time Windows 

The vehicle routing problem (VRP) has been studied extensively in the literature. Bodin et 

al. [1983], Christofides [1985], and Golden and Assad [1988] and most recently Fisher [1995], 

provide extensive surveys of the different types of vehicle routing problems and solution 

techniques employed to solve them. These problems have been divided into three categories: 1) 

routing, 2) scheduling, and, 3) routing and scheduling, and have been classified by various 

characteristics: fleet size (one or more vehicles), fleet type (heterogeneous or homogeneous), 

number of depots (one or more), nature of demands (deterministic or stochastic), vehicle capacity 

restrictions, maximum route times, operations (pickup, delivery, service, mixed), costs and 

objectives [Bodin et. ai, 1983]. 

Routing problems are primarily concerned with the spatial aspects of the problem while 

scheduling problems focus on temporal aspects. Problems in which both spatial and temporal 

aspects are important constitute the routing and scheduling class. 

The general vehicle routing problem with time windows (VRPTW) involves the design of a 

set of minimum cost routes originating and terminating at a central facility (depot) for a fleet of 

vehicles which services a set of customers with known demands and in which each demand for 

service must be started and/or completed within a given time interval. For instance, the vehicles 

may make up a service fleet such as utility, or telephone repair. In such applications, the vehicles 

are not assumed to be subject to capacity constraints although they may be subject to maximum 

length-of-day constraints. Another formulation of the problem, one in which the vehicles 
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themselves are capacitated, corresponds to a package pick-up and delivery problem. The 

objective in solving this problem is to design a complete tour for each vehicle, starting from and 

ending at the depot and servicing each customer within its assigned time window at a minimum 

cost. 

The vehicle routing problem with time windows has not been as broadly studied in general, 

although specific problems have been addressed. Dumas, Solomon and Soumis [1991] address 

time-constrained routing and scheduling problems; Solomon [1987] provides an overview of 

heuristic solution approaches for the VRPTW; and, Solomon and Desrosiers [1988] present a 

survey of approaches and advances made for the VRPTW and also related problems including, 

among others, the time window constrained traveling salesman problem, the shortest path 

problem, the minimum spanning tree problem, and the pickup and delivery problem. Christofides, 

Mingozzi and Toth [1981] and Baker [1983] propose branch and bound and dynamic 

programming based optimization approaches to solve the single vehicle TSPTW while Kolen, 

Rinnooy Kan, and Trienekens [1987] introduce a branch and bound method for solving the 

capacity constrained multi-vehicle problem. Koskosidis, Powell and Solomon [1992] present an 

optimization based mixed integer formulation that extends to the VRPTW Fisher and Jaikumar's 

[1981] algorithm for solving a standard VRP. 

Bodin et al [1983] classify solution strategies for vehicle routing as: (1) Cluster first-route 

second. (2) Route first-cluster second. (3) Savings/lnsertion, (4) Improvement exchange. (5) 

Mathematical-programming-based (6) Interactive optimization and (7) Exact approaches. The 

added complexity of time window constraints mean that many of the methods devised for the 

standard VRP do not work well for the VRPTW. For example, a cluster first-route second strategy 

that groups demands by proximity would likely not produce time-feasible subsets for routing. 

Likewise, a route first-cluster second strategy in which a large route is partitioned into multiple 

routes would not be applicable since time window constraints would preclude the possibility of 

building the large route to begin with.. However. heuristic methods based on savings insertion 

and improvement exchange have been used with success on even large problems, and math 

programming based optimization methods have been successful on some medium sized 

problems. Exact approaches have been less successful in general because of the size and 

inherent complexity of most problems. Interactive optimization methods have potential but in 

large difficult to solve problems would best serve as an addition to another route construction 

method. In some vehicle routing and VRPTW problems (such as the service fleet problem 

mentioned) travel and service times may be stochastic. The next section presents issues of 
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interest in vehicle routing problems in which the system evolves over time. In general, one or 

more aspects of the system is stochastic. 

Dynamic Vehicle Routing 

Dynamic vehicle routing typically refers to the dispatching of vehicles to serve multiple 

demands for service in a real-time manner. Vehicles, for example, may be performing pick-up 

and delivery services; they may be repair vehicles, delivery vehicles or taxicabs. The chief 

characteristic of these problems is that, like the dynamic vehicle allocation problem described in 

chapter 2. a (sometimes large) fraction of the demands become known as the work period goes 

on. Psaraftis [1988) presents a review of dynamic vehicle routing problems and points out that 

although published research on vehicle routing was abundant. until that time very little had been 

published on dynamic vehicle routing problems. Psaraftis identifies the main differences between 

static and dynamic vehicle routing. In dynamic problems: (1) Time dimension is essential; (2) 

Problem may be open-ended; (3) Future information may be imprecise or unknown; (4) Near-term 

events are more important; (5) Information update mechanisms are essential; (6) Resequencing 

and reassignment decisions may be warranted; (7) Faster computation times are necessary; (8) 

Indefinite deferment mechanisms are essential (this point applies to problems where time 

windows and deadlines are loose constraints); (9) Objective function may be different; (10) Time 

constraints may be different; (11) Flexibility to vary vehicle fleet size is lower; and (12) Queueing 

considerations may become important. Most of these points apply directly to the dynamic 

assignment problem for carrier fleet operations. The main difference between what are 

considered vehicle routing and vehicle assignment problems are the length of time to perform 

service and the relative number of assignments that each vehicle is responsible for at a given 

time. In the dynamic vehicle routing problem, multiple customer orders are assigned to each 

vehicle; in dynamic allocation, the vehicle can serve only one customer at a time and the number 

of current assignments for each vehicle is one or a very small number. Psaraftis points out the 

importance of developing techniques to perform local updates on routes and assignments 

coupled with good initial solutions. These concepts apply directly to the real-time formulations of 

the dynamic vehicle allocation and routing problem for carrier operations examined in this 

research. 

Powell, Jaillet and Odoni [1995) present a survey of dynamic network models. They identify 

the general issues associated with modeling dynamic problems and list the following key 

decisions to be made: Deterministic vs. stochastic; Myopic vs. dynamic; Choice of objective 

function; The planning horizon; and, Spatial and temporal aggregation. These questions are 
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coupled with the following issues: 1. Developing accurate models under uncertainty; 2. 

Identifying 'efficient' formulations; 3. Design of efficient solution algorithms; 4. Planning horizons 

and truncation errors; 5. Errors due to spatial and temporal aggregation; and 6. Evaluating a 

stochastic and dynamic model. While most of the research presented in this document leans 

toward deterministic and myopic models which are solved repeatedly over a short horizon, 

thereby sidestepping some of the complexities of dynamic (and hence typically stochastic) 

models, the issues identified in this survey offer an insightful method of examining and evaluating 

real-time routing and assignment systems. 

Dynamic Vehicle Allocation 

The dynamic vehicle allocation problem has been studied extensively by Dejax and Crainic 

[1987], Powell [1986, 1987, 1988, 1994], Frantzeskakis and Powell [1990] and Cheung and 

Powell [1995]. The DVA problem involves managing a large fleet of vehicles over time to 

maximize profits. This problem arises in many different contexts. Carrier (trucking fleets), 

railroads, maritime shipping companies, taxi fleets and auto or truck rental companies all must 

solve vehicle and container allocation problems. The problem is dynamic because the allocation 

of vehicles at any time affects the state of the system in the future. The problem is typically 

stochastic, because future demands may not be anticipated with certainty. 

Deterministic Assignment. Powell [1988] presents a review of alternative formulations for 

the DVA. These include deterministic transshipment networks, stochastic/nonlinear networks, 

Markov decision processes and stochastic programming formulations. Some of these willbe 

discussed in later sections. Powell [1994] discusses state-of-the-art formulations for the DVA 

applied to truckload trucking. In particular, a hybrid of the deterministic assignment and 

stochastic-dynamic models which may be promising for real-time implementations is introduced. 

The following is a simple, static formulation of the DVA problem as an assignment problem; the 

sum of the cost of moving vehicles to meet known demands, added to the cost of holding vehicles 

in anticipation of future demands and the penalties incurred for refusing to carry certain loads is 

minimized subject to the constraints that all drivers must be assigned to a load or held in a region, 

and that all loads must be assigned to a driver or refused. This formulation and related modified 

formulations are discussed in chapter 3. It is introduced next: 
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penalty cost of not assigning any drivers to load .c, 
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Let L be the number of loads, 

K be the number of available drivers (vehicles), 

cost for driver k to serve load R, 

holding cost for driver k (cost of not assigning driver k to any loads), 

Decision variables: 

1 if driver k is assigned load R, 

o otherwise. 

Then the problem of assigning drivers to loads may be stated as: 

(2.0) 

subject to: 

for R = 1,2, ... ,L (2.1) 
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for k=1.2 ..... K (2.2) 

for i! = 1.2 ..... L. k=1.2 ..... K (2.3) 

Constraints (2.1) specify that a load may be assigned at most one driver. (2.2) specify that 

each driver is assigned at most one new load. while (2.3) ensure the non-negativity of decision 

variables. This simple assignment model expresses many of the important aspects of the 

problem and is computationally efficient. It includes the costs of moving empty or holding drivers 

in an area, as well as the costs of refusing (or not accepting) a load to be moved. The model 

does not capture the uncertainty of future demands for service, nor deal with the problems 

associated with solving a 'snapshot' problem. Nor does it include the possibility of moving an 

empty vehicle to another region to be held in anticipation of future demands. In addition. this 

formulation does not allow a driver to be assigned a sequence of loads although an appropriate 

pre-processing step could be introduced in an effort to "chain" loads that should logically be 

moved in sequence by the same driver. These chains would then be considered by the 

assignment model to be a single load. This model allows for a fairly high degree of operational 

realism as it is possible to incorporate many objectives into the cost structure. Waiting loads may 

be discounted. the cost for a particular driver to move a particular load or class of loads may be 

discounted, the penalty for not assigning a driver who has been idle for some time can be 

increased etc. 

Deterministic and Stochastic Dynamic Models. The hybrid model for dynamic assignment 

introduced in Powell [1994] offers a promising alternative. This model has two components. The 

first is a static assignment model with assigns specific drivers to specific loads. Individual loads 

and drivers are represented by nodes in the network and arcs representing the assignment of 

drivers to loads. This model has the advantage of allowing a high degree of operational realism. 

The second model is a dynamic network which works at an aggregate level and includes forecast 
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demands in addition to known but not yet serviced loads. Loads which are ready for immediate or 

near term pickup are represented by an origin node in the assignment network and a destination 

node in the forecast network. In addition to the (loaded) links connecting origin-destination pairs, 

empty repositioning links connect drivers with regions in the forecast network. A complete 

description of the model is found in Powell [1994]. 

SUMMARY 

Chapter 2 presents a review of background relevant to the operations and modeling of 

carrier fleet operations under real-time information. A brief history of the U.S. trucking industry 

discusses some of the reasons for heightened competitiveness in the past few years and 

introduces the principal technologies and capabilities of ITS for commercial vehicle operations. 

The literature review that follows shows how this research, which examines greedy approaches to 

load assignment as well as "efficient" local search techniques and exact approaches for the 

routing of vehicles through a small number of assignments in the presence of time window 

constraints, builds on a large body of work. Early work on the modeling of distributions systems is 

introduced followed by a discussion of dynamic fleet management in general. Research on 

classical vehicle routing and vehicle routing with time windows problems are discussed as is 

research on dynamic vehicle allocation problems. Most work in the published literature on the· 

truckload trucking application has had as its subject the development of large-scale stochastic 

programs. While that important body of work is mentioned for completeness, the approach 

followed in this research is fundamentally different in its underlying rationale. 

The next chapter introduces the conceptual and theoretical framework for the analysis of 

dynamic dispatching strategies for carrier fleet operations under real-time information. Modeling 

assumptions related to the dynamic load acceptance and vehicle to load assignment process are 

made explicit. Mathematical formulations of the real-time assignment sub-problem of the 

dynamic vehicle allocation and routing problem, including those implemented in simulation 

experiments are presented. 
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CHAPTER 3 CONCEPTUAL FRAMEWORK 

INTRODUCTION 

Chapter 3 introduces the conceptual and theoretical framework for the analysis of dynamic 

dispatching strategies for carrier fleet operations under real-time information. The dynamic load 

acceptance and vehicle to load assignment process for carrier fleet operations, introduced in 

chapter 1 is defined in finer detail than in the introductory chapter, and simplifying assumptions 

made for the purpose of modeling these operations are made explicit. In chapter 3, a simple 

model for estimating the costs associated with carrier fleet operations is introduced, along with 

the methods used in this study to evaluate the performance of assignment strategies. Also, 

several mathematical formulations of the real-time assignment sub-problem of the dynamic 

vehicle allocation and routing problem are introduced under different assumptions regarding the 

availability of real-time information on vehicle locations, demands and traffic network conditions, 

and the flexibility of current assignments. Assignment strategies investigated vary in terms of the 

length of "look ahead" time they include and in the extent to which they allow existing 

assignments to be modified. Some allow only small modifications while others consider 

generating completely new assignments when new demands arrive, travel network conditions 

change or when the status of one of more driver or vehicle changes. This work focuses primarily 

on flexible assignment strategies which allow modification of existing assignments but, in the 

interest of computational efficiency do not seek to evaluate all possible assignments. 

Simulation plays a central role in the examination of the behavior of various load 

acceptance, assignment and re-assignment strategies. Potential for the development of 

analytical models (along the lines of the models discussed in chapter 4) is limited: inherent 

complexities of the problem must be ignored in the interest of tractable analysis. Analytic 

investigations rely on identifying simplified problem instances, from which inferences about more 

general problems can be drawn. In chapters Sand 6, the analysis begun in chapter 4 is extended 

in a simulation framework. Typical assignment rules result in service times that are neither 

deterministic nor identically and independently distributed (liD) random variables, rendering 

analytic investigation impractical. For this reason, extensive use of simulation is made to 

investigate the performance of fleet operating strategies, including load acceptance, assignment 

and re-assignment strategies. The next section provides a motivation for developing decision 

rules for real-time fleet management that are "locally oriented". This is followed by the context for 

and definition of the problem examined. 
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LOCALLY ORIENTED LOAD ACCEPTANCE AND ASSIGNMENT HEURISTICS 

This research has as its primary goal identifying decision rules for load acceptance and 

assignment that are locally oriented but result in long term efficiency. Decision rules can be local 

with respect to one or more of the following: temporal, spatial, or algorithmic considerations. The 

decision time frame may be local, so that only current is information is employed; the decision 

region may include a "local" or logical subset of vehicles or of demand locations, chosen for 

geographic proximity, substitutability, customer preference or driver domicile; in addition, if a 

current solution is to be modified rather than completely re-generated when new demands are 

accepted, service is completed, or changes driver and vehicle availability and traffic network 

occur, then the decision region is limited to local decisions in the region of the current solution .. 

Local decision rules are of particular interest in systems in which problems tend to be very 

large, decisions must be made quickly and information about the future is incomplete or 

imprecise. Under most conditions, information available to dispatchers is limited both spatially 

and temporally. Demand forecasts may be constructed to provide limited insight into how the 

system will evolve, however, ability to accurately predict demand is limited. 

Because of relatively limited accurate information available about the future, and potentially 

extensive information available about current conditions, it is desirable to identify and exploit 

"locally oriented" real-time dispatching strategies. With perfect hindsight, over time, solutions of 

global, system-wide assignment problems would naturally out-perform those chosen by local 

decision processes. Effective solution approaches to solving very large static vehicle routing and 

assignment problems have been developed over the years. In a dynamic environment, however, 

demands may not be predictable and traffic network conditions as well as driver/vehicle 

availability can change, sometimes dramatically. In such an environment "good" local decision 

rules, coupled with the ability to react quickly as changes in demands, traffic network conditions 

and driver/vehicle availability occur may offer the most effective way to provide reliable and 

(customer demand) responsive service. 

This research examines several operational strategies that make use of local decision rules. 

Various assignment techniques are examined analytically as well as through simulation. A subset 

of these involve single rather than multiple load assignment processes. That is, rather than 

accumulate loads in batches for simultaneous assignment to vehicles, loads are assigned, one at 

a time, as soon as they arrive. The choice of purely sequential, rather than simultaneous 

assignment methods is guided by the nature of the problem and an operational framework driven 

by changes that occur in a continuous manner, rather than at pre-specified decision instances. 

However, when more than one unassigned load is allowed to wait until an assignment is made, 
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then simultaneous methods offer opportunities for improvement. . Both exclusively sequential 

assignment rules and applications of classical assignment algorithm are discussed in chapter 5 

and results for a simulation based analysis of the performance of these is presented in chapter 6. 

Three assignment rules that evaluate the fit of a candidate load with loads already assigned 

to vehicles are examined. For each vehicle, a measure of the fit of the candidate load is 

calculated, based on one of three objective function proxies. The first is the ratio of empty to 

loaded distances that must be traveled in order for the vehicle to serve the candidate load, along 

with other loads currently assigned. The second is simply the total empty distance that the 

vehicle must cover in order to serve the candidate load and loads currently assigned. The third is 

the marginal cost, calculated as the cost of the additional empty move, that the vehicle will incur 

while serving the candidate load. In each case the "best" (least empty distance, pickup deadline 

feasible) ordering of loads is evaluated and the load assigned to the vehicle with the best ranking 

on the measure. Assignment decisions made under this and other local decision rules can lead 

to inefficiencies with respect to distances traveled to provide service. Figure 3.1 provides an 

example of this. Two vehicles have loads assigned when a candidate load enters the picture. 

The new assignment is chosen by adding the load to the "route" including the candidate load and 

previously assigned loads with the lowest ElL ratio. In the example chosen, this greedy 

assignment leads to higher overall empty movements than a rule that takes both vehicles into 

account might provide. Despite the ease with which such examples can be constructed, the long 

term performance of this simple rule is quite good. Simulation experiments have shown that in 

the presence of pickup deadlines, and over a horizon that spans a more than just a few loads, this 

greedy decision rule works fairly well. The three decision rules used to make final load to vehicle 

assignments in the real-time assignment strategies under investigation are outlined in this 

chapter; their performance in simulation experiments discussed in chapters 5 and 6. 

PROBLEM CONTEXT: TRUCKLOAD CARRIER FLEET OPERATIONS 

In this section the context for this research is specified in greater detail than in chapter 1, 

where it was introduced. The carrier operations planning process is examined, a model of 

operational costs the primary objectives related to carrier fleet management are introduced, and 

mathematical formulations for the cost model and measures for these objectives are given in 

chapter 3. 
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Figure 3.1 Example of poor short term performance of a local"greedy" decision rule 

The context for this research is truckload carrier fleet operations in which each assignment 

involves a vehicle moving one load at a time from the load origin to the load destination. The 

problem studied involves the management of a fleet of vehicles over a typically wide geographic 

region over time. An assumption of this research is that the fleet of vehicles is under the control 
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of a central authority, the dispatcher. The management issues addressed are limited to the 

acceptance (or rejection) of customer requests for service and the allocation of vehicles to loads 

and to empty repositioning moves. Some carrier companies own the vehicles in their fleet, some 

employ the services of owner-operator drivers, and others maintain a fleet of both company 

drivers and owner-operators. We ignore these distinctions, which are not essential for the 

operational strategies considered here, and assume that a central authority has the responsibility 

for directing the movements of vehicles in its fleet. Several equipment types may be available; 

this analysis assumes however, that equipment types are homogeneous or at least substitutable. 

We further ignore the additional complexity of single and double trailers and of loads that are 

carried in shipper-owned trailers. The assumption is that a driver and vehicle combination 

includes a trailer that is loaded and unloaded at customer sites. In addition, this research does 

not take into account federal, union or company regulations concerning, for example, the length of 

time a driver may be on duty or driving. That level of detail, while essential for the successful 

development of implementable fleet management systems, is beyond the scope of this research. 

We further ignore the complications that might arise if some vehicles are driven by teams of two 

drivers rather than individuals. 

It is assumed that once a vehicle is loaded at a customer site, it cannot provide service to 

another customer until unloaded, typically at the destination point of the load. An exception to this 

assumption would be in the case of a load swap where two or more drivers meet at some point 

en-route and either swap trailers or unload a whole load. While this research examines en-route 

diversion and re-assignment of empty vehicles, we do not explicitly examine loaded vehicle re

assignment strategies; this may be examined in future research. Scenarios in which all vehicles 

are equipped with a continuous Automatic Vehicle Location (AVL) system as well as devices 

allowing for two-way driver to dispatcher communication are examined. These technology

equipped operations are compared to those in which real-time communication, vehicle location 

and status updates are not possible. Further, though not essential to this investigation, it is 

assumed, in the technology-equipped scenarios, that the dispatch center(s) has a means to 

display the current locations of all vehicles, typically with a digital map and a GIS (Geographic 

Information System) interface. 

Demands for service are highly stochastic. Other aspects of carrier fleet operations may 

also have a high degree of variability. Travel times may vary significantly, due to unexpected 

congestion, road closures, weather or equipment failures. The time spent at loading and 

unloading points may also vary. We do not explicitly include this variability in our formulations of 

the problem. Rather than work with stochastic representations of travel and loading and 
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unloading times explicitly (i.e. by estimating a probability distribution for these times) we assume 

that these values are known. In fact, the current values will be known through relatively frequent 

updates made possible by real-time information systems deployed as part of the ITS architecture. 

When actual conditions vary from those expected, the real-time dispatching systems envisioned 

are designed to react to the unexpected. 

The Carrier Operations Planning Process 

The carrier operations planning process can be viewed in two parts. First, there is the need 

to manage the supply of vehicles and drivers to provide timely service to customers. The supply 

problem includes the assignment of drivers to known loads, reassignment as changes in 

demands, driver and vehicle availability and traffic network conditions occur, and the repositioning 

of idle vehicles in anticipation of future demands. Related to this is a second problem - the need 

to effectively manage customer requests for service. The load management problem includes 

both the decision to accept (or reject) requested loads for service and the active solicitation of 

loads in regions in which the supply of vehicles to provide service currently exceeds, or is 

anticipated to exceed demand. The context of truckload trucking and other dynamic fleet 

operations is such that it is not possible to serve all requested demands at all times [Powell, 

Jaillet & Odoni, 1995]. It may be necessary to turn down requests for service if time window, 

regional or system wide capacity constraints cannot be met. Careful load acceptance and 

solicitation decisions are therefore very important. When some loads are likely to be refused, the 

problem of effectively choosing the subset of loads to serve has a significant effect on the 

profitability and efficiency of an operation. 

The load acceptance and driver to load assignment processes may be tightly or loosely 

coupled, or tackled separately. In principle, they are separated, because the load acceptance 

decision must be made when a request arrives, whereas loads may be assigned to a driver at any 

time after the request is received. Shippers call a carrier requesting that a vehicle be available at 

a pickup location on a specific day, by, or within a specific time, to carry a load to a specific 

destination. The carrier must decide quickly whether to accept the request. Advances in 

computing technology and scheduling and assignment heuristics make it possible to couple the 

acceptance and assignment processes or to use information about the estimated cost and 

feasibility of providing service in the load acceptance decision. Assuming the carrier has 

accepted the load, a vehicle (and driver) moves the load from its origin to its destination and 

unloads, by which time the carrier must decide what to do next with the vehicle. Under some 

operational strategies, a vehicle may be assigned a sequence of tasks to follow. If no appropriate 
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assignments are available, the idle vehicle may be repositioned to another region in anticipation 

of future loads in that region, or held in anticipation of future loads in the destination region. 

Loads may have firm or somewhat flexible pickup deadlines. A carrier may decline a load, but it 

may not accept a load unless it can meet the agreed upon deadlines. A carrier is paid a revenue 

proportional to the length of the haul and may also receive a small fixed revenue for each load 

(not proportional to distance). 

This research examines several operational strategies, defined as the combination of a load 

acceptance strategy, and an assignment strategy, which may include re-assignment as well. In 

some, the load acceptance and assignment processes are separate; in others, they are coupled. 

The next section presents a simple model of the cost structure for carrier fleet operations. 

This model is intended to be explanatory and to introduce the costs used in the evaluation of the 

performance of operational strategies in this analysis. 

Operating Costs 

The cost structure for carrier fleet operations can be fa.irly elaborate: in this research, we 

make simplifying assumptions that retain the essence of the impacts of operational changes on 

costs. Costs have been separated into higher level fixed costs, fixed costs associated with each 

vehicle/driver combination and operational costs that vary with the distance driven. 

Any discussion of costs, revenues and estimates of operating efficiency must address the 

issue of the time period for evaluation. An evaluation of the performance of a fleet of vehicles 

over several years would include in its analysis the longer term costs of maintaining a central 

control facility while a study of an assignment strategy over a one month period would focus on 

short term costs including driver wages, fuel, etc. that are directly affected by the performance of 

that strategy. If the evaluation period is rather short, the effect of the end (or beginning) of the 

time horizon on performance indices measured over the period of evaluation may be dramatic. 

An operating strategy might perform quite well over a day or a week, but could have disastrous 

long term performance if, for example, it sent many of the drivers on long loaded moves to 

regions where there was little hope of picking up a new load upon delivery. 

Several time horizons are chosen for this study. In some cases the long-run expected 

performance of a set of dispatching rules is examined in a simulation framework, requiring an 

artificially long time horizon of as much as several years to guarantee that steady state results 

can be examined. In most cases, a shorter time horizon, generally twenty-six weeks long is 

sufficient to provide steady state performance estimates. In a typical truckload operation, drivers 

(or teams of drivers) are on the road for three to six weeks without returning to their home 
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locations for an extended break. The longer, twenty-six week horizon is chosen to insure that 

system startup effects are mitigated. 

This study ignores fixed costs not associated with individual driver/vehicle combinations. 

The assumption here is that day to day operations will not effect the size of the dispatch, 

marketing and management teams and that new facilities will not be erected or old ones sold or 

abandoned in the short term. Were there a compelling reason to include the fixed costs of 

operation in similar analyses, these could be apportioned to vehicles and added to that 

component of vehicle cost not related to distance traveled. 

Driver compensation schemes vary across companies, from a simple payment proportional 

to loaded distances traveled to compensation which includes payment for distances driven, 

bonuses for safe driving, compensation for layovers, time spent loading and unloading, multiple 

stops, and premiums for short distance loads. The compensation for loaded and empty traveled 

distances may be equal, or may be very different. This study makes the assumption that drivers 

are compensated for both time and distance traveled and that loaded and empty travel are 

compensated at the same rate. This study does not differentiate between single drivers and 

teams of drivers. Further, we assume that all drivers are compensated at the same rate. We 

make the assumption that drivers are paid a fixed amount for each day worked, and on top of that 

are paid for distance traveled. Idle time is accounted for by the fixed daily charge for each driver. 

Costs associated with the vehicle are fixed costs per day and operating costs proportional to 

distance driven. As mentioned in the previous paragraph, in an analysis of costs in the short run, 

fixed costs would likely not include a proportion of the cost of maintaining a management team 

and depot location. In a long term analysis the fixed costs per vehicle could be increased to 

reflect this cost. These costs are discussed in finer detail later in this chapter. 

A simple model of profit over a fixed time horizon given by: 

Revenue 
- (empty travel cost) 
- (loaded travel cost) 

Profit - (handling cost) 
over all loads served - (daily vehicle charges) 

- (daily driver charges) 
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The management of a carrier fleet company has several (often competing) objectives. While 

carriers wish to maximize profits, they also want to meet shipper expectations. For some 

companies, environmental concerns are important. Reducing costly and irritating service delays 

may also lead to a reduction in the contribution to congestion (and hence pollution) made by a 

vehicle fleet. In addition, keeping drivers satisfied is an increasingly important objective. Driver 

turnover in the truckload portion of the industry is high. Training and monitoring new drivers is 

costly as is finding qualified replacements for departing drivers. These objectives and the 

measures used to evaluate them in this analysis are discussed in the next section and outlined in 

table 3.1. 

Objectives 

The primary objectives related to carrier fleet operations are to maximize carrier profitability 

and service quality. Two secondary objectives are to minimize environmental impact and to 

achieve driver satisfaction. Table 3.1 lists these objectives and some related measures of 

effectiveness. In chapter 3 a profit model is introduced and the measures are defined 

mathematically. The measures introduced here are used to evaluate the set of operational 

strategies outlined in chapter 5 and examined in chapter 6. As mentioned in the preceding 

section, some of tHese are competing or even conflicting objectives. For example, the objective 

of maximizing the ability of a fleet to respond to time-sensitive demands might be achieved by 

rejecting all loads that do not require immediate service, in order to keep a sufficient subset of the 

fleet available to accept time-sensitive loads. Such an operational strategy would be in conflict 

with the objective of maximizing revenue earned. 

The next section provides a definition of the problem examined in this research, for which 

the various measures of performance (objective attainment) are subsequently defined. 

PROBLEM DEFINITION 

Mentioned in chapter 3, the carrier operations planning process contains two related 

problems: the problem of assigning loads to drivers and the problem of accepting or rejecting 

requests for service. Both are discussed in this section along with mathematical definitions for 

the measures listed in table 3.1. 'A general model of the carrier operations planning problem is 

presented and a mathematical representation of the cost model used in this research is 

presented. The cost model, is introduced and presented in chapter 3. 
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TABLE 3.1 OBJECTIVES AND MEASURES 

Issues Objectives Measures 

• maximize prot it 1) operating profit 
(revenue - cost) (revenue - cost) over 

• maximize revenue tixed time horizon 

• minimize empty 
2) revenue earned over 

Profitabili ty distances traveled to 
fixed time horizon 

provide service 3) ratio of empty to loaded 
distances traveled 

• maximize ability to 4) fraction of requested 
serve loads and high high revenue and overall 
revenue loads loads accepted 

• minimize 5) average wait time for 
shipper wait time service and associated 

• minimize missed 
variability 

Service Quality pickup deadlines 6) fraction of pickup 
deadlines missed 

• maximize ability of the 
7) fraction of requested fleet to respond to 

requests for immediate or time sensitive loads and 
near term pickup overall loads accepted 

• minimize 8) ratio of empty to Environmental fuel consumption loaded distances 
Impact • minimize contribution traveled 

to congestion 

• achieve reasonable 9) fraction of time spent 
driver compensation moving loaded 

Driver 
10) variability of time Satisfaction • achieve fairness in 

load assignment 
spent moving empty 
and loaded, across a 
neet 
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The General Model 

Service requests arrive at a central location over time. The carrier must decide immediately 

whether to provide service to a requested load. If accepted the load must be assigned to a driver 

for service. Loads may have associated time windows for pickup and/or delivery. 

Each request for service and accepted load has an associated attribute record which 

includes, at a minimum, the exact location of the origin and destination points, handling time 

(loading and unloading), the earliest and the latest pickup times for the load. Load attributes (for 

both requested and accepted loads) might also include equipment requirements, preferences for 

a particular driver, etc., but these are not included in this analysis. 

Each vehicle/driver combination also has an associated attribute record containing 

information about the exact current location of the vehicle, the state of the vehicle (moving 

loaded, moving empty, idle and available, idle and unavailable) the equipment type currently in 

use by this driver, the driver's domicile location, salary, seniority and other relevant 

characteristics. 

In the general model presented, a carrier may accept more loads than it can feasibly serve. 

In that case, loads must be served by out of fleet drivers. The carrier accepting the load receives 

the revenue asso~iated with the load but must pay a fee, proportional to the loaded distance 

associated with the load, to the out of fleet driver. 

A schematic of the carrier fleet operations process in which requests for service are filtered 

through a load acceptance process and then accepted loads assigned to vehicles for service is 

shown in figure 3.2. 

Revenue, Cost and Profits Under Given Assumptions 

The following assumptions are made with respect to the costs and revenues associated with 

providing service. 

1) Service requests are received for a total of N loads to be served during a period of H 

days. 

2) K vehicles are in the fleet and all vehicles are in service for all of the H days. 

3) Drivers are compensated for time, measured in days, and for distance traveled. 

4) Vehicle costs are assessed for time, measured in days, and for distance traveled. 

5) A penalty cost, p, is assessed per unit distance for loads accepted for service but served 

by out of fleet drivers. 
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6) Vehicles are in service continuously. Breaks and trips off duty are not accounted in this 

analysis. 

7) Revenue has two components, a fixed component and a component linearly related to 

loaded distance traveled. 

Figure 3.3 shows the relationship between fixed revenue and revenue proportional to 

distance traveled. 

I 

Service 
Requests 

Accepted Loads 

Current State of System 

Predicted Near Term State of System 

Vehicles 

Deadline for pickup at load origin Vehicle states 

tight 

W,*"iitt_nl 

----------I .. ~ loose 

_ Moving Loaded 

~ M()ving Empty 

I?22J Idle and Available 

c=J Idle and Unavailable 

Figure 3.2 Schematic of carrier fleet operations 
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Loaded Distance 

Figure 3.3 Revenue earned for each load carried 

The following cost model is developed under these assumptions. 

Operating Costs 

Driver costs: 

$W1 per unit distance for loaded moves, 

$W2 per unit distance for empty moves, 

$W3 per unit time spent loading and unloading, 

$W4 per day 

Vehicle Costs 

$v1 per unit distance (loaded or empty) driven, 

$v2 per day 

Penalty for not servicing accepted loads: 

$P1 per unit distance (length of load), 

$P2 per load but not accepted for service (opportunity cost associated with each load) 

Let 

. _ {l, load j is accepted for service 
y] - 0, otherwise 
~ _ {l, load j is served by driver k directly after load i 

Xl] - 0, otherwise 

Letting eij represent the empty distance between the destination point of load i and the origin 

location of load j, 

dj the loaded distance associated with load j, 
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hj the handling time associated with load j. and. 

aj and bj the earliest and latest allowable pickup times at the origin location of load j, 

the components of cost may be expressed in the following way: 

K N N 

(wI + VI) LLLdjxti + 
k=lj=1 i=1 

(loaded movement cost) 

K N N 

(w2 + VI) LLLejjxt + 
k=lj=l i=l 

(empty movement cost) 

K N N 

W3LLLh j xti + 
k=lj=1 i=l 

(loading and unloading cost) 

(W4 +v2)HK+ 

(vehicle and driver daily costs) 

N K N 

PILd/Yj - LLx~) 
j=l k=li=1 

(penalty cost for loads accepted but served by out of fleet drivers) and 

N 

P2L(1- Yj) 
j=1 

(penalty cost (opportunity cost) for not accepting a requested load) 

Then the profit (loss) may be given by: 

K N N K N N 
(wI + VI) LLLdjxti + (W2 + VI) LLLeijxt + 

k=lj=1 i=l k=lj=l i=l 
N K N N 

(3.1a) 

(3.1 b) 

(3.1 c) 

(3.1d) 

(3.1 e) 

(3.1f) 

L(r'j +d/'j)Yj - W3LLLh j xti +(W4 +v2)HK + (3.2) 
j=l k=lj=l i=1 

N K N N 
PILdj(Yj - L,Lxti)+p2L,(1-Yj) 

j=1 k=l i=l j=l 
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Under the assumption that the objective is to maximize the profit generated by the system, 

equation (3.2) defines an overall objective function for the operation. 

A set of fairly simple performance measures related to equation (3.2) may be calculated. The 

revenue over the time horizon (measure 2) in table 3.1, is given by equation 3.3 and the revenue 

per vehicle per day may be calculated directly by dividing by HK, as in equation 3.4. 

N 

L(r'j +d/'j)Yj (3.3) 
j=l 

(3.4) 

The sum of the empty and loaded distances traveled may also be calculated as: 

and, 

K N N 

""" "" e··x~ L..J L..J L..J IJ· IJ 
k=li=lj=l 

(3.5) 

(3.6) 

Under certain conditions minimizing the overall empty distances traveled is equivalent to 

maximizing profit generated in the system. 

Dropping the general assumption that some loads may be served by drivers outside the 

fleet, and rewriting (3.2) to represent the cost, revenue and profits associated with a single load j 

which was served directly after load i and by the same driver as load i, 

Costjli = dj(Wl +vl)+eij(w2 +Vl)+W3hj 

Revenuejli = r'j +d/'j 

Profitjli =r' j +d/'j -[ dj(WI + VI) + ei/w 2 + VI) + W3hj] 

(3.7) 

(3.8) 

(3.9) 

Equation (3.7) sums the costs associated with the loaded distance of the move (vehicle 

costs per unit distance traveled and driver wages per unit loaded distance traveled), the costs 

associated with the empty distance traveled to make the pickup (vehicle costs per unit distance 
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traveled and driver wages per unit empty distance traveled), and the hourly rate earned by the 

driver for loading and unloading multiplied by the handling time for the load. Equation (3.8) sums 

the revenue associated with the load, both a fixed revenue and a revenue proportional to 

distance. The profit can be split further into a fixed amount which is not dependent upon the 

order in which the load is served and the variable amount which is dependent upon the location of 

the previous load's destination. 

(3.10) 

Since r' j -W3hj + dj{r"j -wI - VI) is fixed for each load, that portion of costs which 

comes under carrier control after a loadis aocepted is eij{w2 + vI). Since (w2 + v1) is assumed 

fixed, then minimizing eij' the empty distance traveled in serving load j, is equivalent to 

maximizing the revenue earned for that load. For a fixed set of loads, minimizing the overall 

empty distances traveled to provide service is equivalent to maximizing the overall profit. If the 

operating revenue for a fixed set of loads can be calculated then the corresponding maximum 

empty travel distance for which the (sub)system will be profitable may also be calculated. 

Figure 3.4 illustrates the decrease in operating profit corresponding to an increase in empty 

distance traveled. While minimizing empty distance traveled also maximizes profit when the set 

of loads to be served is fixed, such a policy would simply refuse to serve all loads when loads can 

be rejected. Under these conditions minimizing empty distances does not result in profit 

maximization. In an operation that is required to reject a certain fraction of loads, or one that is 

free to reject less profitable loads, the ratio of empty to loaded distances traveled is a better profit 

indicator. This measure is calculated as in equation (3.11). 

KNN 

""" e··x~ L.J L.J L.J IJ IJ 
k=lj=1i=l 

(3.11 ) 

The ratio of empty to loaded distances traveled (ElL ratio) is a reasonable measure of 

efficiency under the assumption that loads are accepted either based on feasibility only or on 

rejection criteria that, while seeking to eliminate extremely poor loads, accept most feasible 

requests. 
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high fixed 
(revenue-cost) 

moderate fixed 
(revenue-cost) 

Empty Distance 

Figure 3.4 Operating profit vs. empty travel distances 

A break-even point for (operating) profitability may be estimated in the following way for 

single load: 

(3.12) 

Making a simplifying assumption, namely that the handling costs are offset by the fixed 

revenue earned for each load moved we obtain: 

(r",-wl -VI) e·· 
J >..2!.. 

(W2 + VI) dj 
(3.13) 

A further simplifying assumption that the empty and loaded driver costs (W1 and W2) are 

equal yields: 

(3.14) 

N N 
Noticing that I.,djYj = I.,dj when all requested loads are accepted, and, generalizing 

j=l j=l 

(3.14) to a set of loads and fleet of drivers yields: 
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N N N 

L,(dl"j)-(Wl +Vl)L,dj > (WI +Vl)L,dj (3.15) 

j=1 j=1 j=1 

Referring to 

K N N N N 
L L L eijX~ as E, .I. rj as R", and, L d j as D yields: 
k=Ij=l i=l j=l j=1 

(3.16) 

For example, if Rj(Wl + vI)' the ratio of revenue earned per loaded distance traveled to 

the cost per distance is equal to 1.5, then for the operation to be profitable the ratio of empty to 

loaded moves must be no greater than 0.5. Similarly, the ratio of empty and idle time to loaded 

time may be estimated. Access to historical data about loads moved allows the calculation and 

comparison of several measures of overall effectiveness. 

Furthermore, letting ti represent the time at which the load was picked up at its origin 

location, it may be useful to calculate the average time between the earliest allowable pickup time 

and the time when the load was picked up, the maximum time after the allowable time, and the 

fraction of pickup deadlines missed. With {ai, and bi} representing the allowable window for 

pickup at the load origin, the average time between the actual pickup and earliest allowable 

pickup is represented by: 

N 

L,Ctj -a) 
j=l 

N 
(3.17) 

And, defining a variable mi = 1 if the pickup deadline is missed, that is (ti > bi), and 0 

otherwise, then 

N 

L,mjCbj -tj) 
j=1 

N 

.I.mj 
j=1 

(3.18) 

represents the average lateness for loads that were pickup late. These equations can be 

modified easily to exclude loads turned over to non-fleet drivers. 
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The next section presents the specifications and formulations of the dynamic fleet 

operational strategies of interest. 

DYNAMIC FLEET OPERATIONAL STRATEGIES: SPECIFICATION AND FORMULATIONS 

A diagram of a dynamic fleet management system is shown in figure 3.5. In such a system, 

initial vehicle to load assignments are generated, in some cases taking predictions of (near-term) 

future requests for service into account. Strategies for reacting to changes as they occur are 

incorporated in a dynamic assignment sub-system. The next section discusses the load 

acceptance problem and defines the three load acceptance strategies included in operational 

strategies (the combination of a load acceptance rule and assignment strategy) examined in the 

simulation experiments. Chapter 3 also discusses the real-time assignment problem and, where 

necessary, introduces mathematical formulations for the assignment strategies examined in 

simulation experiments .. 

The Load Acceptance Problem 

Shippers with loads to be moved call a carrier requesting that a vehicle be available at a 

pickup location on a specific day, at a specific time, to carry a load to a specific destination. 

Loads may have firm or somewhat flexible pickup deadlines. A carrier may decline a load, but it 

may not accept a load unless it can meet the agreed upon deadlines. 

Load acceptance decisions must usually be made immediately. A potential benefit of the 

use of electronic data interchange (EDI) technologies or electronic mail for load request is that the 

few minutes gained from more efficient communication methods may allow carriers to make 

better decisions. Carriers typically accept only loads that they believe can be served within the 

agreed upon time. One way to assure that pickup deadlines can be met is to identify a driver to 

which the requested load may be feasibly assigned. This process may be fairly simple when 

utilization rates are low, but when a fleet of vehicles is already working at near capacity this may 

be computationally difficult and time consuming. From the point of view of the development of 

computer aided decision tools for carrier fleet c>;perations, several methods could be used to 

estimate costs and to ensure feasibility. The ability to make good feasibility and cost estimates 

hinges on the assumption that all accepted loads are at least temporarily assigned to a specific 

driver (or in some cases a small sub-'fleet of drivers) so that these estimates can be based on the 

near future (expected) locations of drivers and vehicles. 

Pool and Queue Limit Based Load Acceptance. When loads do not have explicit pickup 

deadlines, system and individual vehicle capacity limits (referred to as pool and queue limits, 
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respectively) are used to limit the average wait time for service. Operational strategies examined 

in this research in which loads are assigned to individual vehicle queues assume that an 

individual vehicle may have no more than five loads waiting in its queue, while those in which 

loads are assigned to a pool of accepted but unassigned loads limit the total number of waiting 

loads to five times the number of vehicles. While this method provides no guarantee, it can be 

shown that imposing such limits significantly reduces both the average wait time and associated 

variability of wait times for service in systems where demand exceeds service capacity (figure 6.3 

in chapter 6 illustrates this point). 

While keeping average service times within an "attractive" range is a reasonable goal, unless 

considered explicitly, wait times for service for a fraction of customers may be unacceptable even 

if mean wait time remains within an acceptable range. When loads do have explicit pickup 

deadlines or time window constraints, it may be necessary to assign arriving loads to particular 

vehicles and to sequence the loads assigned to minimize the distance traveled to provide service 

within given time constraints. The cost and feasibility based load acceptance rules included in 

operational strategies examined use this approach. 

An alternative to such a strategy is introduced here, but not implemented in the operational 

strategies examined. A priority system can be maintained for the queue of arriving demands and 

priorities based upon pickup deadlines. Loads can be considered for assignment based solely 

upon their priority in the queue or, alternatively, on criteria that take both priority and cost to 

provide service (generally dependent on the geographic locations of the vehicle and the load 

origins) into account. However, such methods do not guarantee that deadlines will be met. 

Pooled VS. Individual Queues .. A system that provides a guarantee that pickup deadlines 

will be respected is one in which loads are assigned to individual vehicles based on explicit 

examination of feasibility upon arrival. In these circumstances, vehicles maintain individual 

queues. Instead of multiple vehicles and a pooled queue, such a system has multiple servers 

and multiple queues (figure 3.6). It is well known that average waiting times in pooled queue 

systems are in general lower than those in corresponding multiple queue multiple server systems. 

In the system of interest in this research, however, wait times under the pooled queue scenario 

are not necessarily less than those in the individual queue cases because once assigned, loads 

may be efficiently sequenced, resulting in lower service times, and loads may be assigned to 

individual vehicle queues with both feasibility and efficiency in mind. 
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Carrier Fleet Operations 

Known/predicted 
driver/vehicle availability 

associated attributes 
• equipment type 
• time on road 
• domicile 
• etc. 

Known/predicted 
demands for service 

a<;sociated attributes 
• equipment required 
• time windows 
• location 

Pool of accepted demands 

New demands 

Unsatisfied demands 

Traffic conditions 

Changes in driver 
availability 

Figure 3.5 Overview of dynamic carrier fleet operations. 
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Server 1 Server 2 • • • Server n 

Server 1 Server 2 • • • Servern 

Figure 3.6 Diagram of mUlti-queue and pooled queue multi-server system. 

While assigning loads to individual vehicles immediately upon arrival of the request for 

service provides a guarantee that pickup deadlines can be met, if deadlines are not binding 

opportunities more efficient future assignments may be lost. 

An important question is how best to handle the tradeoffs between immediate assignment to 

a vehicle and assignment to a pool. Two scenarios, one in which loads are held in a large 

common pool of accepted demands until assignment to a particular vehicle shortly before service 

begins, and another in which most accepted demands are assigned to an individual drivers' 

queue are investigated. The base cases and the acceptance rules based upon system capacity 

alone are an example of the former while the real-time scenarios examined, in which load 

acceptance is based upon deadline feasibility is an example of the latter. A diagram of these is 

shown in figure 3.7. 

Feasibility Based Load Acceptance. One method to ensure that a requested load is 

feasibly served relies on the identification of feasible insertion points in individual drivers' queues. 

Each accepted load is assigned to the most cost effective queue. These "virtual" assignments 

are maintained for all accepted loads, but may be changed later, assuming all service constraints 

can still be met. A list of feasible insertion points can be quickly generated to make a load 

acceptance decision. 
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Scenario 1 - loads retained in pool until service begins 

Vehicle 1 

Vehicle 2 

1N,~~~II,#.'il@I J,';;'&jl'~1lttll;$*,\iq§1 tt~,*s'1ll 

t~'!iit>t~tl K'%1'lt%lw I*~'W_I W%%tw_l lf}tRA~m 

Pool of accepted demands 
rnl~~'",,'l1:kWr,,>~::::l~~;II%_l~,;II~\*~'1liII*i_'%1<*,"l1 r:-,i;\1::;r:%!""KwW~~~O::;:,"';~* 

1i$s1~~;t1 I,~y,,,,!tW,~~lliM~:*~1 H~$~~j1 t%t1,~~1 

Vellicle 3 ""');:.~l,'4~r~~w~'il 

Vehicle k 

Scenario 2 - most loads assigned to a vehicle queue 

l'ilii~;%LI t )/4W;l;21 
Pool of accepted demands 

l~i~,*"II~it$i~~j 

Vehicle 1 f~1,~~~i\%~UjWt~. 

Vehicle 2 ! ~~,,*,I#-~t¥'\f;kilt\~ *t;~II'~lttl 

Vehicle 3 

Vehiclek 

••• In service f~i51 Waiting for service 
(candidate for 
re-assigrunent) 

,--_ ...... 1 Available slot in 
queue 

Figure 3.7 Pooled vs. individual vehicle queue assignment strategies 

A more computationally intensive approach would solve for the most cost effective insertion 

point when loads may be re-ordered. This approach is used in the real-time operational 

strategies implemented in this research and is discussed in greater detail later in this chapter, in 

the context of driver to load assignment. A traveling salesperson problem with time windows 

(TSPTW) may be generated and solved for each driver likely to be a feasible choice. The 

mathematical formulation of this problem follows: 
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For each driver k in a subfleet of drivers likely to be able to accept a certain assignment, 

currently assigned loads are indexed by their current service order. Let: 

n be the number of loads currently assigned to driver k, 

ck the cost for driver k to serve currently assigned loads (zero if no loads are assigned), 

c~ = cost for driver k to serve load I along with currently assigned loads, 

et = cost for driver k to serve load j after load i (empty movement cost), with efo = 0 for all 

locations i = 1 , ... ,n+ 1 (no cost for the return to the starting location), 

aj = earliest pickup time (arrival time at origin) for load j, 

bj = latest pickup time (arrival time at origin) for load j, 

Tij = time needed to travel empty from the destination of load i (or current vehicle location, 

for i = O) to the origin of load j, with TiO = 0 for all loads i = 1, ... ,n+1. 

'ti = time needed to complete the loaded portion of load i. 

Decision variables: 

x~ = 1 load j is served directly after load i, by vehicle k 
IJ . 

x~. = 0 otherwise, 
IJ 

tj = scheduled time to arrive at the origin of load j. 

Then 
n+l n+l 

c~ = min" "e~x~ .{. L; L; IJ IJ 
i=O j=O 

n+l 
s.t. Lx~=1 

i=l 

n+l k n+l k 
LXii = LXii for all loads I = 1 to n+1 and starting location 0 

i=O j=O 

(3.19) 

(3.20) 

(3.21) 

ti + 'ti + Tij - tj ~ Mij (1- xtt) for all loads served by dliver k (3.22) 

whereM .. = max(b· + 'to + T· - a· 0) IJ 1 1 IJ J ' 

and load .e is the n+ 1st load assigned to dliver k. 

The objective is to find the minimum cost feasible ordering of loads. Constraints (3.20) 

specify that each load must be served exactly once, while constraints (3.21) ensure flow 

conservation. Constraints (3.22) specify that all loads must be served within assigned time 

windows and ensure sub-tour elimination. 
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As mentioned earlier, a key assumption is that after a load is accepted for service, it is 

assigned immediately, at least temporarily, to an individual driver. While temporary and 

permanent assignments need not be identical to the assignment used to determine feasibility in 

the load acceptance process, the assignment decision must be made soon after acceptance so 

that new acceptance decisions will not jeopardize the feasibility of already accepted loads. There 

is no reason that load acceptance decisions, which look for at least one feasible assignment, 

cannot be made more than one at a time, but the approach outlined in this section requires that at 

most one new load is assigned to each vehicle at a time. Loads arriving at the same time that 

should be logically served by the same driver must either be considered sequentially or coupled 

in a preprocessing step. The preprocessing to couple loads can be performed manually by a 

dispatcher or may be automated. 

Profit Based Load Acceptance. Continuing with the formulation provided above, the 

profitability of a load that may be feasibly served can be estimated. The cost for driver k to serve 

load I may be calculated as the ratio of the empty cost to revenue or the marginal cost of serving 

load I, in addition to already assigned loads (c~ - ck ). Under the assumption that operating cost 

is closely related to distance traveled, one proxy for the profitability of a load is the ratio of the 

empty distance attributable to I to the loaded distance associated with the load or, (c~ - ckJ{ . 

The load may then be accepted for service if this ratio does not exceed pre-determined or 

dynamically updated thresholds. For example, an underutilized fleet might be willing to move less 

profitable loads than one operating at near capacity. Chapter 6 addresses results of simulation 

experiments which investigate the effects of more or less restrictive load acceptance thresholds. 

The next section discusses the real-time assignment problem and specifies strategies 

examined in the simulation experiments. 

The Real-Time Assignment Problem 

The real-time assignment sub-problem of the dynamic vehicle allocation and routing problem 

is concerned with assigning newly arriving loads to specific drivers and with modifying existing 

assignments as changes in the system occur. Assignment strategies examined in this study vary 

primarily in the maximum number of loads that may be assigned to a vehicle at any time and, in 

the extent to which existing assignments may be modified. Some permit drivers to be assigned a 

small queue of loads, while others restrict the assignment of loads to idle vehicles; some allow 

only incremental modification of existing assignments while others consider generating 

57 



completely new assignments when new demands arrive or the status of one of more driver or 

vehicle changes. 

Flexible operational strategies which allow for the modification of existing assignments but 

which, in the interest of computational efficiency, do not seek to evaluate all possible assignments 

are of primary interest in this research. A significant operational benefit of real-time information 

on vehicle locations and demands, coupled with "seamless" dispatcher to driver communication, 

is the ability to dynamically assign vehicles to time-sensitive demands, or to recently requested 

loads that would be more efficiently served immediately. Two modification strategies, en-route 

diversion and real-time load swapping are investigated. En-route diversion is concerned with 

reassigning a vehicle en-route to a pickup location to provide immediate service to a more time

sensitive load, or of a load that (when sequenced first) will improve the efficiency of the vehicle's 

travel route. Tables 3.2 and 3.3, presented after the definition of the strategies provided in the 

next two sections, contrast some of the characteristics of the operational strategies examined. 

Base case strategies are intended to represent operations with limited real-time information 

requirements while the real-time operational strategies require continuous information updates 

and communication. 

Five assignment strategies examined are considered base case strategies. A strategy is 

defined as a base case strategy if, once an assignment is made, it is carried out with no changes 

in either the vehicle assignment or the order in which service will be provided by the vehicle. The 

four real-time assignment strategies require continuous updates on all vehicle locations and 

demands and service order. As defined, only the real-time operational strategies have the ability 

to take pickup deadlines (or time windows for servi~e) explicitly into account and only the real

time assignment strategies allow the re-sequencing or re-assignment of currently assigned loads. 

Base Cases. Two of the five base case strategies are intended to provide a benchmark for 

real-time assignment systems. The "first called first served" assignment method should provide 

an upper bound on reasonable assignment rules while the traveling salesperson tour through 

points representative of those served in a week should provide a lower bound on the distance 

traveled to provide service. 

First Called First Served (FCFS). This strategy assumes that loads are assigned to 

available vehicles in the order in which they arrive. Accepted service requests are added to a 

queue of requests upon arrival; when a vehicle becomes available it is assigned the first load in 

the queue. If one or more vehicles are idle when the request arrives it is assigned to the vehicle 

that has been idle longest. The driver must contact the dispatch center upon completion of 

58 



service and the dispatch center must be in communication with the driver that has been idle 

longest. 

Nearest Origin Assignment (NO). Accepted loads enter the pool of unassigned loads. It is 

assumed that upon completion of an assignment, drivers contact the dispatch center for a new 

assignment. Loads arriving when one or more vehicles are idle are assigned to the nearest idle 

vehicle. Drivers must contact the dispatch center upon completion of service and the dispatch 

center must be in communication with all idle drivers. 

Classical (Bipartite) Assignment. The classical (or general) assignment problem is as 

follows (see for example, [Ahuja, Magnanti & Orlin 1993]): Given two equally sized sets N1 and 

N2 , a collection of pairs A c Nl X N2 , representing possible assignments, and a cost Cij 

associated with each (i, j) E A, the goal is to pair, at the minimum possible cost, each object in 

N1 with exactly one object in N2. In this application, the sets N1 and N2 represent loads and 

vehicles, respectively. When the number of loads is not equal to the number of vehicles, dummy 

loads or vehicles are added to the smaller set and assigned infinite costs. 

The following is a simple formulation of this assignment problem. This problem is solved 

at pre-specified times for all available vehicles. Vehicle availability is defined to include vehicles 

currently idle or those that will become idle at a user-determined time into the next assignment 

stage. Loads are accumulated in a pool of accepted loads between assignment epochs. Loads 

not assigned because of an insufficient number of available vehicles are candidates for 

assignment again at the next assignment epoch. As mentioned in chapter 2, Powell [1994] 

discusses a similar static formulation of the Dynamic Vehicle Allocation (OVA) problem as a 

deterministic assignment problem. If the number of loads exceeds the number of available 

drivers, it may be necessary to limit candidate loads to a set of L loads which include those that 

have been waiting the longest or which have the nearest desired pickup times. The simulation 

experiments described in chapter 5 and for which results are discussed in chapter 6 are based on 

a simpler formulation of this problem which does not include penalties for not assigning drivers 

and loads. The general formulation is presented here, followed by the formulation examined in 

the simulation experiments: 
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Let L be the number of loads considered at this stage, 

K = the number of available drivers (vehicles), 

C~ = cost for driver k to serve load I: relating this to earlier expressions found in section 

3.3.2. d = (wz + Vl)ek • where ek is the empty distance associated with movihg from the 
~ Of Of 

current location of vehicle k and the origin of load I. and, W2, V1 are the empty driver and vehicle 

costs charged per unit distance, respectiyely. 

Cf = penalty cost of not assigning any drivers to load I, 

C~ =holding cost for driver k (cost of not assigning driver k to any loads), 

Decision variables: 

x~ = 1 if driver k is assigned load I, 

x~ = 0 otherwise, 

Then the problem of assigning drivers to loads may be stated as: 

min ~ ~C}X}+C~[l- ~X~ )++-~X~ 1 (3.23) 

subject to: 

K 

Lx~Sl for 1= 1,2, ... ,L (3.24) 
k=l 

for k=1 ,2, ... ,K (3.25) 

x~ ~O for 1= 1 ,2, ... ,L; k=1,2, ... ,K (3.26) 

Constraint (3.24) specifies that a load may be assigned at most one driver, (3.25) specifies 

that each driver is assigned at most one new load, while (3.26) ensures the non-negativity of 

decision variables. The cost C~ may include a penalty for loads not picked up before their latest 

pickup time and the cost of not assigning a load 
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Formulation Examined in Simulation Experiments. 

The simpler formulation actually implemented in the simulation experiments is the following: 

K L 
minI. I.c~x~ (3.27) 

k=1 £=1 

subject to: 

for I = 1,2, .. ,L (3.28) 

for k=1 ,2, .. ,K (3.29) 

K L 
I. I. x~ = min{L, K} for I = 1,2, .. ,L; k=1,2, .. ,K (3.30) 

k=l £=1 

for I = 1 ,2, .. ,L; k=1,2, .. ,K (3.31) 

Rather than penalize loads not picked up and drivers not assigned to loads, constraint (3.30) 

simply requires that either all available drivers are assigned loads when the number of loads 

exceeds the number of available drivers, or, that all loads awaiting service are assigned drivers 

when the number of available drivers exceeds the number of available loads. 

Two applications of this assignment method are examined. These applications vary with 

respect to the assignment trigger and the subset of vehicles considered candidates at each 

assignment period. The fundamental strategy is as follows: 1) Loads accumulate over time in a 

pool of accepted loads; 2) At decision points loads are assigned to idle vehicles or in some cases 

vehicles that will become idle in the near future. Exactly m assignments are made where m = min{ 

available loads, available vehicles }; the assignment that minimizes the overall distance from the 

current (or next available) location of the vehicles to the origin locations of the loads is chosen. 

Time triggered bipartite assignment (BA T(a)). Assignments are triggered by fixed, evenly 

spaced assignment points. Fixed assignment points are separated by a length of time aDL where 

a is a real number in the interval (0, 2) and DL is the average duration of loaded moves. Figure 

3.8 provides a time-line highlighting assignment points in this case. 
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Figure 3.8 Diagram of assignment points 

This method may be applied with a look ahead strategy in which, in addition to considering 

currently idle vehicles for assignment, vehicles that are expected to become idle a specified 

fraction of the way between the current assignment point and the next assignment point are 

included in the set of candidate vehicles. 

State Triggered Bipartite Assignment (BAS(b)) In state triggered or state-based bipartite 

assignment, assignments are made when the number of loads awaiting service is equal or 

greater than a multiplier b times the number of idle vehicles, or, when the number of idle vehicles 
c-

is equal to the same multiplier times the number of waiting loads: for example, when the number 

of loads exceeds {O, 1, 2, .. } times the number ofidle vehicles. 

Asymmetric TSP (ATSP) The solution of a Multiple (Asymmetric) Traveling Salesperson 

Problem provides a lower bound on cost of solutions in the real-time operational strategies 

examined. Rather than solve the MTSP, an asymmetric Traveling Salesperson Problem is solved 

for a set of loads and a single vehicle. This case is used to generate a benchmark for single 

vehicle operation of the real-time operational strategies examined. A problem based on a set of 

randomly generated loads of approximately the same number of loads served per vehicle per 

week is solved and the expected distance traveled under a perfect hindsight (or perfect look

ahead) assignment estimated. The objective is simply to minimize the empty distances traveled. 

This bound is compared to the performance in systems in which loads become known over time. 

One formulation of the TSP problem is as follows: 

Let n+ 1 be the number of loads to be ordered. 

eij = cost to serve load j after load i or, where i = 0, is the current location of the vehicle 

(empty movement cost) and eiQ = 0 for all loads i = 1 , .. ,n+ 1. 
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Decision variables: 

x.. = 1 load j is served directly after load i 
IJ 

X = 0 otherwise, 
ij 

The objective is to find 
n+1 0+1 

min L, L,eilij (3.32) 
i=O j=O 

n+l 

s.t. L,xij = 1 (3.33) 
i=O 

n+1 0+1 

L X it' = LX ei for all loads f = 1 to n+ 1 and starting location 0 (3.34) 
i=O j=o 

The objective is to find the minimum cost ordering of loads. Constraint (3.33) specifies that 

each load must be served exactly once, while constraints (3.34) ensure flow conservation. 

Information Requirements, Advantages and Disadvantages of Base Case Assignment 

Strategies. The information requirements of the five base case strategies vary. Under FCFS 

assignment, the driver must communicate with the dispatch center upon completion of service. 

The dispatcher need not know the current location of the driver to make the next assignment. If 

no loads are available when the driver completes service, then the dispatch center must be able 

to contact idle drivers with new assignments in the order in which they became idle. 

Under NO assignment, the driver must initiate contact with the dispatch center upon 

completion of service and the dispatch center must know the driver's location at that time. If no 

loads are available when the driver completes service, the dispatch center must be able to 

contact all idle drivers when loads arrive to the system. 

Under time-triggered bipartite assignment, the locations of all available drivers (vehicles) 

must be known before each assignment step so that costs may be estimated. Whenever a 

vehicle becomes available to move another load its location must be known and it must be in 

communication with the dispatch center in order to receive directions to pick up a new load. 

Continuous driver to dispatcher communication is generally not needed, since drivers need only 

communicate when they are ready for a new assignment or at pre-specified assignment times. 

Furthermore, if look ahead is allowed the location and status of each vehicle must be known (or, 

predicted with a high degree of certainty) at each assignment period. Because of its additional 

information needs, BAT(a) with look ahead could be termed a quasi real-time assignment 

method. 
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The ATSP solved to provide a benchmark is a purely static assignment method. All loads 

are known at the beginning of the assignment period. A tour is formed and the vehicle is 

dispatched. 

Under time-triggered bipartite assignment, when near-idle vehicles are included in the 

assignment stage, the locations of vehicles must be known at all times. The dispatch center must 

have continuous communication with idle drivers. State-triggered bipartite assignment is also a 

quasi real-time assignment method. However, since once assigned, neither the order in which 

loads are served nor the driver to which they are assigned are open to change, state-based 

assignment is included in the set of base case assignment strategies. 

The primary advantage of the FCFS and NO assignment methods is their simplicity. No 

real-time information other than the location of an available driver when the driver is ready for the 

next load is needed. Since a driver will typically contact the dispatch center upon completion of 

service (or upon arrival at the load destination), this information is readily available. Time-based 

bipartite assignment, with no look ahead, and with assignment periods separated by a reasonable 

length of time has light information and communication requirements also. The A TSP is included 

merely because it is used to generate a lower bound on the average distance traveled to provide 

service under other strategies. 

Another advantage of the classical assignment method is that despite its simplicity a fairly 

high degree of operational realism may be expressed. Powell [1994] discusses this aspect of the 

simple static assignment problem for the DVA and describes many ways that driver and 

dispatcher desires can be incorporated into the costs. Holding costs may be applied to reduce 

the likelihood that a particular driver is idle, or applied across the board if keeping all drivers 

working is more important than reducing empty distances traveled. Since drivers are modeled 

individually, preferences for assigning a driver or subset of drivers to certain loads may be easily 

incorporated. 

The primary drawbacks of all but the ATSP base cases are that only one new load is 

assigned to a driver at a time and that there is no guarantee or even expectation that pickup 

deadlines will be respected. In addition, it can be shown that under some conditions (moderate to 

low demand, for example) the ordering of even a small number of loads can lead to reduced 

empty distances traveled. Base case assignment methods preclude the generation of such 

"routes". The first called first served process is clearly not efficient and is presented as a 

benchmark case. The nearest origin assignment can be shown to be very efficient in the limiting 

case where the number of loads to be served is very high. However, this assignment method 

performs less well at typical congestion levels. In addition, in all but the ATSP case the decision 
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rule takes only the length of the next empty move into account when assigning vehicles, leaving 

drivers open to possibly long empty moves after completion of the assigned load. 

Conditions under which the nearest origin assignment performs fairly well are examined in 

l! chapter 4. Simulation experiments designed to analyze the performance the five base case 

assignment rules are described in chapter 5, and their results are presented in chapter 6. 

Assignment Under Real-Time Information. In this section, a formulation for a modified 

bipartite assignment problem in which service time constraints are met is introduced. The 

following assumptions are made. A feasible and cost efficient assignment of drivers to loads has 

been constructed for an initial set of accepted requests for service. If there are more service 

requests than available vehicles then some vehicles may have an associated pseudo-route of 

assigned loads. As new service requests are accepted or changes in driver and vehicle 

availability occur, these new loads are added to current driver to load assignments. 

The formulation is very similar to the one introduced in chapter 3 except for one important. 

modification of the cost function to include previously assigned loads. Specifically, the cost 

function term c~ is now the cost for driver k to serve load I and currently assigned loads, 

whereas previously it only applied to load I. The terminology and formulation are otherwise 

identical to those of chapter 3. 

The main difference in the underlying assumptions is that drivers may already have a set of 

assigned loads. This formulation allows for the insertion of a load into a driver's queue of 

assigned demands. The cost c~ represents the cost for driver k to serve all currently assigned 

loads and the candidate load. Holding costs c~ are equal to zero for drivers with other 

assignments and non-zero for idle drivers. 

Assignment costs, c~ , must be updated whenever changes in the system occur. These are 

updated by calculating the cost of inserting candidate loads into each driver schedule, given the 

current location and status of the vehicle. The assignment costs come from the solution of 

another sub-problem. For each driver and each candidate load, the least cost (time window 

feasible) tour must be found. This problem may be formulated as an integer linear program and 

is an instance of a traveling salesperson problem with time windows (TSPTW) with asymmetric 

costs (the cost to serve load i after load j is not the same as the cost to serve load j after load i). 

The basic formulation is modified to take into account the fact that the origin and destination 

location for loads are different, and for the associated loaded travel time. For a detailed 

discussion of the general (m-vehicle) VRPTW and TSPTW see for example, Desrosiers et al. 

[1995]. 
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Formulation Examined in the Simulation Experiments. As in the last section. a simplified 

adaptation of this formulation is examined in a simulation framework. Only one load is considered 

for assignment at a time. The TSPTW sub problem is solved by complete enumeration for each 

vehicle's current assignments and the candidate load. In each case, pickup deadlines are viewed 

as hard rather than soft constraints. En-route diversion is possible under each of these rules. 

When en-route diversion is allowed the current queue of assigned loads will include the first load 

in the queue, assuming the load had not been picked up: otherwise the current queue will include 

all but the first load in the queue. When en-route diversion is allowed this strategy is referred to 

as DRc; when en-route diversion is not allowed it is referred to as DCRc. This is the case 

regardless of the local assignment rule used to make the final assignment. 

Rule 1) Least empty to loaded ratio assignment 

Let c~represent the empty distance associated with the least empty distance, deadline 

feasible ordering of loads currently assigned to vehicle k and candidate load I. Let d~ represent 

the corresponding loaded distance. Then, the candidate load I is assigned to the vehicle for 

which { %} is lowest. 

Rule 2) Least additional distance assignment 

Let ck represent the empty distance associated with the queue of order loads currently 

assigned to vehicle k. Again. c~ represents the empty distance associated with the least empty 

distance, deadline feasible ordering of loads currently assigned to vehicle k and candidate load I. 

Then, the candidate load I is assigned to the vehicle for which {c~ - ck } is lowest. 

Rule 3) Least overall empty distance assignment 

The candidate load is assigned to the vehicle for which c~ is lowest. 

The relative merits of these three decision rules are examined under simulation. 

Experiments performed are outlined in chapter 5 and results presented in chapter 6. 

Information Requirements, Advantages and Disadvantages of Approaches Allowing 

En-route Diversion But Not Re-assignment of Loads. Assignment strategies allowing en

route diversion require continuous driver to dispatch center communication in addition to real-time 

vehicle location and status updates. 
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The current state of the driver (and vehicle) is taken into account; the current location of the 

driver is taken as node zero and constraints (3.34) are modified so that ta,the arrival time at node 

zero, is assumed to be the current time. For en-route (and not divertable) drivers and loaded 

drivers this time may be taken as the expected time at the destination location of the current load 

and· the corresponding location information may be updated accordingly. Similarly, this 

formulation permits the diversion of en-route vehicles without increasing the complexity of 

evaluation of alternatives. Since assignment costs are based on the current location of the 

vehicle, no distinction need be made between en-route and idle vehicles. 

This approach also presents some difficulties. First, it only allows the assignment of one 

new load to a driver at a time. While this restriction increases the likelihood of finding an optimal 

solution for the problem quickly, the optimized problem is a local, rather than a global problem. 

Examples may be readily constructed to illustrate the fact that the most efficient solution would 

assign more than one new load to a single driver. However, if the initial assignments are made 

well, it may be that the addition of loads to drivers' schedules in real-time will produce good 

solutions. In addition, if it is clear that a set of loads ought to be served by the same driver, then 

these loads could be combined into a single load. Second, although en-route diversion is 

considered, and the order in which loads are served (within time constraints) is considered 

flexible, this strategy does not consider the re-assignment of previously assigned loads to other 

vehicles. Examples in which the most cost effective and efficient solution would remove an 

assignment from a driver and divert the driver to make another pickup can easily be constructed. 

Finally, this formulation does not explicitly identify empty repositioning moves for idle drivers. 

In the next section, a dynamic assignment strategy which allows re-assignment of loads from 

one vehicle to another is presented. 

Dynamic Assignment and Re-assignment 

As in the previous section, the assumption is made that a feasible and cost efficient 

assignment of drivers to loads has been constructed for an initial set of accepted requests for 

service. The difference here is that as demands arrive or changes in driver and vehicle 

availability occur, previously assigned loads are re-evaluated. This re-evaluation is performed in 

two ways. The most flexible approach views the load assignment problem as a multi-vehicle 

TSPTW problem like the single vehicle TSPTW outlined earlier. This m-TSPTW varies from the 

standard definition in that vehicles are not assumed to begin at a single location. The basic 

problem is as follows: 
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Let n+ 1 be the total number of loads to serve. 

e~ = cost to for driver k to serve load j after load i, with e~j is the cost of moving from the 

current location of driver k to the origin location of load j, and efo = 0 , for all loads i = 1 , .. n (the 

cost of returning to the starting location of driver k). 

aj = earliest pickup time (arrival time at origin) for load j, 

bj = latest pickup time (arrival time at origin) for load j, 

Tij = time needed to travel empty from the destination of load i (or current vehicle location (i 

= 0» to the origin of load j. 

'ti = time needed to complete the. loaded portion of load i. 

This time may also include loading and unloading time associated with load i. 

Decision variables: 

Then 

s.t. 

x~ = 1 load j is served directly after load i, by vehicle k 
IJ 

x~. = 0 otherwise, 
IJ 

tj = scheduled time to arrive at the origin of load j. 

n+l n+l 
k ·LLkk CD =mm e·· x·· 
<. IJ IJ 

i=O j=O 

K n+l 

LLxti =1 
k=li=O 

n+l k n+l k L x iR = LX €i for all loads I = 1 to n and starting location 0 

i=O j=O 

t· + 'to + T.. - t· < M·· (1- x~) for all loads served by driver k 1 1 IJ J - IJ IJ 

where M·· = max(b· +'t. +T.. -a· 0) IJ 1 1 IJ J ' 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

The objective is to find the minimum cost feasible assignment of loads. Constraints (3.43) 

specify that each load must be assigned to exactly one vehicle's route, while constraints (3.44) 

ensure flow conservation. Constraints (3.45) specify that all loads must be served within 

assigned time windows and ensure sub-tour elimination. 
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Information Requirements, Advantages and Disadvantages of Approaches Allowing 

Both En-route Diversion and Re-Assignment of Loads. This approach requires continuous 

driver to dispatch center communication in addition to real-time vehicle location and status 

updates. It allows significant changes in assignments to be made as new demands arrive and 

traffic network conditions change. It requires no more information than the approach outlined in 

the previous section. The current state of vehicles may be easily taken into account by the 

addition of K dummy loads, one for each driver. For idle or en-route (but empty) drivers the 

pickup time at this dummy node is taken to be zero (as is the loaded time for the load) and for 

loaded drivers this time is taken to be the expected time at the destination for the load currently in 

service. 

Although there has been a significant effort among researchers to develop techniques to 

solve VRPTW and m-TSPTW problems efficiently in the past few years, the VRPTW is well 

known to be NP-complete. Even small instances of this problem are difficult and time-consuming 

to solve. This approach does not explicitly consider the repositioning of idle vehicle, this must be 

tackled in a separate step A more realistic approach would involve a load swapping heuristic 

which would intelligently chose loads to include in the decision process, or at the very least would 

identify a small subset of vehicles and loads to be candidates for load-swapping. 

Alternative Approach Examined in Simulation Experiments. A less computationally 

complex re-assignment method identifies loads with flexible pickup deadlines and returns them to 

the pool of demands for re-assignment. A difficulty is that if more than one load is returned to the 

pool, then new assignments could be infeasible, if the decision process is not reversible. A 

method in which loads are returned to the pool and immediately re-assigned to the current best 

vehicle is shown, in Chapter 6, to be surprisingly effective in improving assignments. The 

success of this purely local, and not particularly intelligent re-assignment method in which 

feasibility is maintained at all times suggests that more sophisticated methods should be 

examined and that route improvement techniques, well known in the vehicle routing literature, 

offer significant promise in this application. 

In simUlation experiments this strategy is referred to as DR, when en-route diversion is 

allowed, in addition to re-assignment, and as OCR when en-route diversion is not allowed. 
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TABLE 3.2 CHARACTERISTICS OF BASE CASE OPERATIONAL STRATEGIES 

Characteristics of Base Case Strategies 

~ BAT(ex) FCFS 
Method NO BA T( ex - with look ahead) 

BAS(~) 
Characteristics 

Location of idle vehicles 
at assignment points. 
Ability to communicate Location of idle 

Information! with idle vehicles at vehicles, ability to 
Communication assignment points. communicate with idle 
Requirements Under look ahead-location vehicles at all times. 

of all vehicles at 
assignment points, ability 
to communicate with 
vehicles as they become 
idle. 

Assignments Fixed assignment periods, State of system, driver 
triggered by ploedicted future availability 

availability 
Load acceptance Based on estimate of system capacity 
methods 

Length of Length of longest load currently in service 
planning horizon (typically less than one day) 

Management of Demand pool Demand pool, or 
accepted requests ordered queue 

Resequencing 
no no possible? 

En-route diversion 
possible? no no 

Re-assignment of 
loads possible? 

no no 
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TABLE 3.3 CHARACTERISTICS OF REAL-TIME OPERATIONAL STRATEGIES 

Characteristics of Real-Time Assignment Strategies 

~ Method 
DCRc DRc DCR,DR , 

Characteristics 

Information! Continuous status and location information for 
Communication whole fleet and continuous driver to dispatcher 
Requirements communication 

Assignments Start of period (i.e. day), load 
triggered by acceptance, changes in driver or vehicle availability 

Load Feasibility guaranteed by (pseudo )route 
acceptance construction, estimated profitability of providing 
methods selvice based on cun'ently accepted loads 

Length of Time until all cUlTently accepted loads 
planning horizon are served (typically one to two days) 

Immediate assignment to Immediate assignment to 
Management of individual vehicles individual vehicles, 
accepted requests subject to change 

Resequencing yes yes 
possible? 

En-route diversion yes yes 
possible? 

Re-assignment of no 
loads possible? yes 
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SUMMARY 

This chapter has introduced the conceptual and theoretical framework for the analysis of 

dynamic dispatching strategies for carrier fleet operations under real-time information. The 

problem has been defined and the assumptions made explicit. A simple cost model and the 

motivation for its specification is described, as are the evaluation criteria for the performance of a 

real or simulated dispatching system. Mathematical formulations for the three load acceptance 

and nine assignment strategies, components of the operational strategies examined in the 

simulation experiments of chapters 5 and 6 are provided. The next chapter provides analytical 

examinations of en-route diversion and an estimate of the increase in the availability of a fleet of 

vehicles to respond to time-sensitive demands under real-time information. In addition, a model 

of carrier fleet operations as an M/G/k queue is presented. 
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CHAPTER 4 ANALYSIS OF CARRIER FLEET OPERATIONS UNDER 
REAL-TIME INFORMATION 

A central focus of this research is to identify and test ways in which operations might change 

in order to take advantage of real-time information. In this chapter, idealized instances of the 

driver to load (and load to driver) assignment problem are examined. These provide insight into 

dynamic dispatching strategies that are outside the current practices of typical carrier fleet 

operations. The common thread in the analyses of this chapter is the examination of how, in a 

system in which customer requests arrive stochastically over time and space, to provide service 

within a reasonable length of time to all customers while at the same time maintaining the 

flexibility to respond to requests that require immediate service. Chapter 4 discusses a strategy 

of diverting a vehicle en-route to make an immediate pick-up of a more time-sensitive load, or of a 

load that (when sequenced first) will improve the efficiency of the vehicle's travel route is 

introduced. Strategies allowing en-route diversion are examined, beginning with the operations of 

a single vehicle. Moving from a single vehicle to fleets of various sizes, the increase in the ability 

of a fleet to respond to time-sensitive demands under real time information is estimated, again 

with the help of simplifying assumptions. Related to this is the issue of how congestion affects 

the ability of a fleet to respond quickly to requests for service. 

Queueing models provide a natural approach to analyzing service systems under 

congestion. Of considerable importance in dynamic fleet management is how congestion and the 

spatial and temporal variability of demands should be managed (Psaraftis [1988], Powell, Odoni 

and Jaillet [1995]). Like many spatially distributed service systems, heavily utilized systems offer 

sometimes significant economies with respect to distances traveled to provide service. However, 

customers must still be served within a "reasonable" length of time. A queueing model of the 

system may be used to estimate target congestion/utilization levels for the system. These target 

values can be used in the load acceptance decision process and in the assignment of loads to 

individual vehicles or sub-fleets. A system with Poisson arrivals and a general service distribution 

is examined. An approach for generating an upper bound on the efficiency (measured as the 

average wait time for service to begin) for a fleet of vehicles is developed and the conditions 

under which this bound is relatively tight are discussed. 

The analysis begins with an M/G/1 (single server) system in which service times are 

approximatelyl independently and identically distributed (110) variables. The relationship between 

1 Service times are only approximately lID because consecutive customers share a geographic location - the 
destination point of the last load served is the st<'U1ing point for the empty move of the next load served. 
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such a system and systems in which there exist systematic dependencies between service times 

and the number and geographic locations of customers waiting for service is examined. It is 

shown that while analytic approximations for M/G/1 systems with independent travel times do not 

provide accurate estimates of the performance of the kinds of fleet assignment strategies of 

interest here, that they do provide bounds on the efficiency of such systems. This relationship is 

demonstrated directly for a single vehicle and generalized for the multi vehicle, M/G/k system. 

The discussion in this chapter is limited to assignment rules in which vehicles are assigned at 

most one load at a time and in which pickup deadlines, if they exist, are not honored explicitly. 

Strategies in which vehicles receive multiple load assignments and those addressing time 

windows and pickup deadlines are discussed in chapters 5 and 6. Simulation results related to 

the analysis introduced are examined in chapter 6. Limited simulation results are presented as 

well, as that analysis does not fit neatly into the experimental framework outlined in chapter 5. 

Limited simulation findings are necessary for the discussion of assignment strategies that lack the 

(approximate) 110 assumption for the service times. 

INTRODUCTION TO EN-ROUTE DIVERSION 

Because of the length of some empty moves made to pick up loads, it is possible that new 

information on demands to be serviced may arrive while a driver is en-route to a pick-up. 

Assuming time windows for movements are flexible, this new demand information may be used to 

order demands in such a way as to reduce empty miles driven. Quasi continuous dispatcher to 

driver communication makes possible the en-route diversion of a driver moving to a pick-up 

location to an alternative load, thereby inducing a re-sequencing or re-assignment of the original 

load. Such diversion strategies are not generally feasible under current operations because 

dispatcher-driver communication takes place at discrete instances only, typically at a load pick-Up 

or delivery point. 

The relative improvement possible under this strategy depends on the relative locations of 

the alternative pick-Up and delivery points. Under some distributional assumptions about the 

locations of these points, we are interested in the probability that diverting the driver to a new 

demand while en-route to a previously assigned pick-up will be beneficial. Results and related 

insights from the investigation of single vehicle diversion strategies are discussed in the next 

section. 

Section 4.3.2 includes a discussion of the extent of the lack of independence of consecutive service times 
and the impact of the approximation on the analysis. 
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Diversion Probabilities Under Simple Assumptions: A Single Vehicle 

Beginning with the most basic case, while a driver is en-route to a load origin, information 

about another load (and in this initial case, only one other load) to be moved becomes available. 

The following questions are addressed: what is the probability, given various diversion decision 

rules, that the driver will be diverted to serve the new load first? What is the probability that 

following such diversion decision rules will result in a reduction of overall distance traveled? And, 

what is the associated expected reduction in distance traveled? 

To clarify, consider in Figure 4.1, a vehicle that begins at the center, c, of a circle and moves 

toward the origin of a loaded movement between points x1 and x2, where these points are 

uniformly and randomly generated over the area of the circle. Given a diversion point (the point 

at which another load to be moved becomes available) some fraction of the distance from the 

center of the circle and origin x1 , the probability that the distance between the diversion point to a 

new origin x3 will be less than the distance from the diversion point to originx1 is first derived. 

Let a, 0 ~ a ~ 1 denote the fraction of the distance from the center to x1 traveled to reach the 

diversion point. The probability that the distance from the diversion point to the new origin is less 

than to the old origin is given by 

(1-a)2/2, as shown hereafter. 

Let B(c,r) denote the circle of center c and radius r, and d(x,y) the Euclidean distance 

between points x and y. Consider two random points in B(c,r), say x1 and x3. For 0 ~ a ~ 1, let 

W1 (a) be the point on the segment (c, X1) such that d(c,W1 (a» = a(d(c, x1 ». Define the following 

two random variables Y1 = d(W1(a). X1) and Y2 = d(W1(a), x3), where Y1 and Y2 represent the 

distances from the potential diversion point to the current and potential load origins. 

Let Z be the radial distance of W1 (a) so Z = d(c,W1 (a» and fz(.) be its probability density 

function. With ZJa = d(c, X1), fz(.) = 2z1a2. 

P(Y2 < Y 1) = 

f p(Y2 <Y1IZ=z)fz(z)dz= fp(X3 eB(W1(a),zja-z»fz(z)dz (4:1) 

Since W1 (a) is a random point in B(c,a), 
a 

P(Y2 <Y1)= f«(l-a)z/a)2(2z/a2)dz=(1-a)2 12. 
o 

(4.2) 

Under a myopic strategy of diverting to the new demand origin, X3, if it is closer to the 

diversion point than origin X1, (1- a)2 1 2 represents the fraction of loads for which diversion is 

selected. This probability (P(Y2 < Y 1» is shown graphically as a function of the diversion point 

location parameter, a, in Figure 4.2. However, under this myopic strategy, even if we evaluate 
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the diversion decision at point a = 0, the resulting average savings (determined through 

simulation of the system described) in terms of reduced distance traveled while serving the two 

loads is less than one percent, and, diverting at points further downstream actually results in a 

slight increase in traveled distance, on average. -----
x 

2 

Center c 

Figure 4.1 Diversion example 

0.5 

0.4 

0.3 
P(Y2<Y 1) 

0.2 

0.1 

0 

0 
0.5 1.0 

Diversion Point Fraction (a) 

Figure 4.2 Probability of diversion under myopic strategy: P(Y 2 < Y 1) = (1-a)2/2 
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A more plausible diversion strategy would also consider the relative distances between the 

destination point of the first movement and the origin point of the next load. In Figure 4.1 these 

are given by d(X2,X3) and d(X4,X1). In this case diversion is chosen if, 

(4.3) 

While it is possible, using analytic methods, to derive insights into the behavior of certain 

strategies (diversion strategies for example), the fact that each move is dependent upon the 

moves that precede it make such derivations impractical under all but the simplest assumptions. 

For this reason, performance measures, including the probability that employing diversion will be 

beneficial, are evaluated through simulation of such diversion strategies over service horizons of 

varying lengths, under different arrival stream distributions, and under load acceptance rules that 

either require all loads to be serviced, or allow less profitable loads to be rejected. The scenarios 

examined are not intended to replicate actual operating conditions, but to provide a simplified 

representation that allows derivation of basic insights into the potential benefits of real-time 

information and the factors that affect these benefits. In addition, this examination is intended to 

assist in the identification and design of strategies that merit evaluation under more realistic 

operating conditions. An examination of the effects of allowing en-route diversion are discussed 

in Chapter 6. 

ABILITY OF FLEET TO RESPOND TO TIME-SENSITIVE DEMANDS 

A primary operational benefits of real-time information on vehicle locations and demands, 

coupled with "seamless" dispatcher to driver communication, is the ability to dynamically assign 

vehicles to time-sensitive demands, or to recently requested loads that would be more efficiently 

served immediately. The diversion strategy is explored for vehicle fleets in several contexts. 

Figure 4.3 depicts a time history of the operational states of each vehicle in a given fleet. 

Four states are possible: moving loaded, moving empty, idle and available, and idle and 

unavailable. 

In figure 4.3, assume that a new load has been accepted at the time marked by the first of 

the two vertical lines. With en-route diversion allowed, three of the vehicles shown would be 

considered candidates for immediate dispatch to the load. Without en-route diversion, only 

vehicle 3 in the diagram would be a candidate, since the other vehicles are moving toward pick

up points or moving loaded. It can be observed from this figure that the possibility of re-assigning 

vehicles during empty travel states can offer a significant increase in operational flexibility by 

increasing the availability of vehicles for real-time diversion or re-assignment at any time. 
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Vehicle k 

Vehicle 3 

Vehicle 2 

Vehicle 1 

Moving 
Loaded 

Moving 
Empty 

I" ......... : .. : .. : .. J Idle and 
.... : .. :.:.: .. : .. ::.. Available 

Figure 4.3 A record of vehicle states 

Time 

D . Unavailable 

To illustrate this point, we consider the idealized situation of a steady state in which the 

duration of each empty or loaded move and the idle time between loaded and empty moves are 

constant, independent of the load and of the vehicle. Let E denote the duration of each empty 

move, L the duration of each loaded move, and U the time spent idle (unassigned) between 

loaded and empty moves; in addition, let e = (U+E)/L and u = U/L. In this illustration, the 

distinction between idle and available and idle and unavailable is not made, with no loss of 

generality. 

Assume, for illustration purposes, a constant e = 1 so that each vehicle is moving empty or is 

idle 50% of the time. With two vehicles, each with e = 1, the fraction of time when at least one 

vehicle is available to divert varies from 1.0 in the case where vehicle 1 is always loaded during 

the period when vehicle 2 is idle or empty (case a in figure 4.4) to 0.50 in the case where the 

loaded and empty moves of vehicles 1 and 2 overlap completely (case b in Figure 4.4). The more 

general case in which an offset, to' separates the start of the loaded move for vehicle 2 from the 

start of the loaded move for vehicle 1 is shown as case c in Figure 4.4. 
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Figure 4.4 Overlap of vehicle states 

Let to = toiL represent the "relative offset"; for a given to' the conditional probability that at 

least one vehicle is available to divert is given by: 

Proba(at least one vehicle available to divert I to) = 0.5 + toO.5 (4.4) 

If we further assume that the times at which vehicles begin the loaded portion of their 

respective assignments are independent (i.e. no synchronization), and that to is uniformly 

distributed between a and 1 (with pdf ftO(x) = 1.0 for 0:::; x :::; 1), then for the two vehicle 

example shown in Figure 4.4 (case c), the conditional probability is given by: 
1 

Proba(at least one vehicle able to divert) = j[O.5 + (x)O.5] fro(x)dx 
o 

1 

= j[O.5 + (x)O.5] dx = 0.75 
o 
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BeY9nd the special cases of figure 4.4, with two vehicles and e = 1, vehicle availability for 

immediate dispatching can be quantified for a fleet of n vehicles and general e, but still under the 

assumptions of (1) steady state with constant duration of Land U+E, and (2) independence of the 

states associated with a particular vehicle (empty, loaded, or idle) of the states of other vehicles. 

The increase in vehicle availability under real-time information can be estimated by calculating the 

respective probabilities that at least one vehicle is a candidate for immediate assignment to a load 

under the diversion strategy possible with real-time information, and, without real-time 

information. Under the former, the probability that a given vehicle is available for immediate 

dispatch to a random call is given by the fraction of time that the vehicle is idle or moving empty, 

or e/(1 +e). Without real-time information, a vehicle is available for immediate dispatch only when 

idle, so the corresponding probability is U/(1 +e). For a fleet of n vehicles, the probability that at 

least one vehicle is available for immediate response is equal to [1- Proba(no vehicles available)]. 

Under the above assumptions and for the diversion strategy under real-time information this 

probability is given by 

l_(l __ e )D 
l+e 

Without real-time information, the corresponding probability is given by: 

l-(l __ U )11 
l+e 

(4.6) 

(4.7) 

The number of vehicles available at a given time is a binomially distributed random variable 

with expectation equal to n(eI(1+e» in the case with real-time information and n(u/(1+e» in the 

case without. 

Naturally, values for u and e will vary significantly, depending upon the demand stream and 

assignment strategies employed. The probability that at least one vehicle is available to divert 

are given in Table 4.1 for two sets of values: 

(1) u = 0.4 and e = 1.0, which corresponds to a relatively low demand environment with high 

idle time, and (2) u = 0.182 and e = 0.818, corresponding to relatively higher demand and more 

efficient operation. 
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TABLE 4.1 PROBABILITY OF VEHICLE AVAILABILITY WITH DIVERSION ALLOWED 
AND WITHOUT 

u = 0.4 e = 1.0 Less Efficient Operation 

no diversion diversion 

1_(I_-U r 1_(I_-e J % increase 
n l+e l+e 

3 0.488 0.875 79.3 

6 0.738 0.984 33.3 

9 0.863 0.998 15.6 

12 0.931 -1.00 7.4 

15 0.965 -1.00 3.6 

u = 0.182 e = 0.818 More Efficient Operation 

no diversion diversion 

1-(l_-U r l_(l_-e J % increase 
n l+e l+e 

3 0.271 0.834 207.7 

6 0.469 0.972 107.3 

9 0.613 0.999 63.0 

12 0.718 -1.00 39.3 

15 0.794 -1.00 16.4 

• • • • 
• • • • 
• • • • 

75 -1.00 -1.00 0.0 
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As shown in the table, even without en-route diversion, the probability that at least one 

vehicle is available to Serve a load immediately increases rapidly with the size of the fleet. 

However this probability, and the expected number of available vehicles, is always higher under 

the diversion strategy with real-time information and increases more rapidly with fleet size. The 

increase in availability with the diversion strategy may be as high as 200% with very few vehicles 

(n = 3), but drops off rapidly to more realistic levels as n increases. This increase in the number 

of available vehicles is important because of the associated reduction in the expected distance 

from the origin location of the new load to the nearest available vehicle. The ability to divert 

increases the likelihood that the load can be served immediately and efficiently (from a travel 

distance point of view). This is illustrated in Figure 4.5, where in one case five of the vehicles are 

available to pick up a new demand and in the other only two are candidates for immediate 

assignment. 

0 
, I ,0 

• I 
0 I I 

~,¥ 

• • 
. ,0 

• I 
• 

~/. 0 

/ 

• 

• unavailable vehicle 

o available vehicle 

• 

• 
• 

• 

Figure 4.5 Distance from a new demand to available vehicles 

In general, when m vehicles are uniformly distributed over unit a circle, the expected value of 

the distance from a randomly generated point and the nearest available vehicle can be 

approximated by (see for example, Larson and Odoni [1981]) 

O.2~2:2 . (4.8) 

This value is shown as a function of m, the number of points in figure 4.6. 
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Of course, an available vehicle will not always be diverted to the new load, especially if it is 

en-route to pick up a load. A decision rule must be devised to determine whether to divert or not. 

Continuing our analysis of highly idealized situations, we first consider the myopic, greedy 

decision rule under which a vehicle will divert from its current (next) load to service a new load if 

the origin location of the new load is closer to the vehicle than the origin location of its current 

next load. Under this rule, a diversion will take place when the origin location of the new load falls 

within a circle with a radius equal to the distance remaining to the current load origin. In this 

case, the new load is said to be within the reach of the vehicle. In Figure 4.7, the vehicle en-route 

to load 12 (with travel trajectory marked by thin arrow) would be a candidate from the point of view 

of proximity and time availability to divert to load 13 while the vehicle moving empty toward the 

origin of load 11 would be a candidate from the point of view of time availability only. 
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Figure 4.6 Expected distance between a randomly generated point and the closest of m 
randomly generated points in a circle. ' 

83 



Figure 4.7 Circles of diversion 

We extend the analysis to include the probability that at least one vehicle is available, with 

respect to both time and distance, to serve a newly requested load. Under our assumption that 

the vehicle states (and the state transition times) are independent, the expected distance from 

each vehicle to its load origin is uniformly distributed over the length of the empty distance 

traveled. Letting b represent the (steady state) length of an empty move, we assume that, at the 

time a new load is accepted, the distance remaining from a current vehicle location to the origin of 

its next load (for those vehicles moving empty) is uniformly distributed over [0,13]. Restricting 

ourselves to the interior of the work area (in order to avoid boundary effects and to keep 

independence between vehicles) it is not difficult to see that the probability that a new demand (in 

the interior of the work area) will be within the reach of a given vehicle is 

(4.9) 

(since R, the radius of the work area is 1). Denoting this probability Pp (for proximity), and 

assuming independence between vehicles, the probability that there is at least one vehicle within 

reach of this new load is then 1- (1- P p r and the number of vehicles within reach of the new 

load may be estimated as a binomial random variable B(n, Pp). We showed earlier that the 
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probability that an individual vehicle is available, from the point of view of time, to respond to a 

new load is given by e/(1 +e) in the case where we allow diversion. Since the probability that an 

individual vehicle is available in the case where diversion is not allowed is u/(1 +e), the additional 

fraction of the fleet available is (e-u)/(1+e). Keeping in mind that all idle vehicles are considered 

close enough to respond to all new loads, but that en-route vehicles are within reach of a new 

load only if the new load is closer to the vehicle than the next load to which the vehicle was 

assigned, and, letting Pa = e/(1+e) and Pa' = u/(1+e) for (time) availability, then the expected 

number of vehicles available and close enough to respond to a new load, is given by 

E[vehicles available to respond] == n[Pp(Pa-P'a) + P'al (4.10) 

While the expected additional vehicles available to respond when diversion is allowed is 

given by 

E[additional vehicles available to respond] = nPp(Pa-P'a). (4.11 ) 

Of course, the assignment of a demand to a particular vehicle, and its sequencing depend 

on the load's characteristics (e.g. time sensitivity) and its ability to fit in well with a set of loads. 

Analysis of the probability and associated benefits (measured in terms of reduction of overall 

distance traveled to serve a set of loads) for a single vehicle indicate that both the probability and 

associated benefits increase when a (short) sequence is used to estimate the benefit (or cost) of 

a diversion decision (Regan, Mahmassani & Jaillet [1995]). With a single vehicle, diversion from 

a previously assigned load requires a corresponding return to serve the load in the (near) future. 

However a fleet of vehicles offers many choices of how to arrange the loads. In addition, if a 

vehicle is assumed to have an associated (short) queue of assigned demands, the addition of a 

new load to a queue could change the order of a queue in many different ways. Figure 4.8 

illustrates some of the possibilities in the simplest case. Vehicles v1 and V2 are en-route to loads 

11 and 12 respectively when the request to move load 13 arrives. If we assume that each vehicle 

will serve at least one of the loads there are 12 possible ways to (re)assign the three loads. In 

general, with two vehicles and n loads there are (n + l)n! ways to arrange the loads if all 

possibilities are allowed and (n -l)n! ways to arrange the loads if we assume that each vehicle 

must serve at least one load. Although logical methods may be constructed to evaluate the most 

likely choices, with even a small number of vehicles and loads the possibilities are huge. 

Because of the complexity of the problem, a simulation model is used to facilitate the 

examination of the effect of allowing diversion and other flexible, real-time dispatching strategies 
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for fleets of vehicles. The simulation model is described in chapter 5, experiments performed are 

outlined and results discussed in chapter 6. 

In the next section the examination of the ability of a fleet to provide timely service continues. 

Systems without explicit pickup deadline or time windows for service are of interest here too. 

Instead of focusing on the ability of a fleet to provide immediate service as in the previous section, 

the expected performance of a fleet providing truckload pickup and delivery services is modeled 

as a distributed queueing system with Poisson arrivals of requests for service, a general service 

distribution and k vehicles to provide service. This model allows the estimation of bounds on the 

expected wait time in the system under various assignment rules. For a single server system with 

some restrictions on the distribution of service times, extensive performance measures can be 

obt1ined. 

CONGESTION EFFECTS: CARRIER FLEET OPERATIONS AS A DISTRIBUTED QUEUING SYSTEM 

The purpose of this investigation is to examine the effects of congestion in a distributed 

service system. Queuing models offer a natural approach for analyzing service systems under 

congestion. This investigation considers a stream of customer requests which arrive at a 

dispatch center. Each request represents a single load (full truckload) to be moved from its point 

of origin to its destination. Such a system may be modeled as a queuing system in which 

requests for service are filled by identical spatially distributed (and mobile) servers. For the 

purposes of this analysis it is understood that service begins, not when the load is picked up, but 

when a vehicle begins moving towards the pickup location. Since each service time has two 

parts, empty and loaded, it is necessary to attribute an empty movement to each loaded move. 

The empty movement in this case corresponds to the setup time present in many manufacturing 

processes. 

This analysis begins with an M/G/1 (single server) system in which service times are 

approximately independently and identically distributed (110) variables. The relationship between 

such a system and systems in which there exist systematic dependencies between service times 

and the number and geographic locations of customers waiting for service is examined. It is 

shown that while analytic approximations for M/G/1 systems with independent travel times do not 

provide accurate estimates of the performance of the kinds of fleet assignment strategies of 

interest here, thaUhey do provide bounds on the efficiency of such systems. This relationship is 

demonstrated directly for a single vehicle and generalized for the multi vehicle, M/G/k system. 

The discussion in this chapter is limited to assignment rules in which vehicles are assigned at 

most one load at a time and loads to not have associated pickup deadlines. Strategies in which 
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vehicles receive multiple load assignments and those addressing time windows and pickup 

deadlines are discussed in Chapters 5 and 6. 

/ 
~ 

--

Figure 4.8 Examples of assignmentlre-assignment possibilities 

Preliminaries 

Tijms [1986] employs an M/G/k queuing model of full truckload operations to determine the 

allocation of vehicles to sub-fleets with the goal of providing "uniform" service to customers. The 

analysis resorts to approximating the M/G/k queue with either an M/G/oo or M/G/k queue where 

the service rate is Erlang distributed. More recently, Gans and van Ryzin [1996b] have 

investigated the causes and nature of congestion in dynamic dispatching systems by modeling a 

single vehicle, single origin-multiple destination system as a GI/GI/1 queue. In their investigation, 

loads arrive in batches at epochs and then are dispatched (again in batches) to routes. A single 

service completion is marked by the completion of a route, which involves the transport of one or 
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more loads to one or more destination locations. Dispatching heuristics in which loads are 

serviced in batches are examined in order to generate an analytically tractable upper bound on 

the expected work in the system. 

The analysis of multiple server queuing systems tends to be very complicated, although 

simplifying assumptions allow for the approximation of key performance measures. Such 

analysis typically relies upon the assumption of independence of individual service times. This 

assumption is difficult to justify when reasonable dispatching strategies are applied in a spatially 

distributed service system because consecutive service times tend to be systematically 

dependent. Analytic approximations of system performance measures are derived with the 

independence assumption (see, for example Nozaki and Ross [1978]). Extending or applying 

these results to a system in which service times are not independent requires careful analysis and 

justification. In the next section the significance of the assumption of independent service times is 

addressed. 

Significance of the Independence Assumption - Work in the M/G/1 and M/GIk System. 

This analysis begins with the M/G/1 case. A single vehicle, truckload trucking system is analyzed 

under the assumption that loads (service requests) are served in a First Called First Served 

(FCFS) manner. This assignment strategy possesses the property that consecutive service times 

are approximately independent. The extent to which service times are only approximately 

independent is addressed in the section to follow. The independence criterion is important for the 

following reason (Wolff [1989] p. 278): An important concept in the analysis of queues under 

general service distributions is the work in system. The work in system at any epoch, t;;:: 0 is 

defined as the sum of the service times of all customers in queue and the remaining service times 

of all customers in service. Following the definition of Wolff [1989], letting V(t) represent the work 

in the system at time t, when service times are independent, V(t) has a simple representation. At 

each arrival epoch, V(t) experiences an upward jump. Between arrivals, V(t) decreases 

continuously as long as V(t)is positive. (See figure 4.9). 

The derivation of analytic estimates of performance measures relies upon the predictable 

behavior of the system and the fact that an additional request may add to the work in the system 

but does not change the length of time needed to clear the previously accepted requests. The 

wait time in the system and in the queue as well as the average number of requests in the system 

and in the queue are calculated based upon this characterization of the work in the system. 

When service times are not liD variables, the arrival of a new service request can impact the 

amount of work already in the system. 
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Figure 4.9 Work in M/G/1 queue under independence assumption 

(Re-drawn from Wolff [1989] p. 279) 

It can be shown that system efficiency under more "intelligent" assignment heuristics is 

bounded from above by the performance of the system under the FCFS strategy. Empirical 

estimates of the performance of an M/G/1 or M/G/k system under assignment rules that do not 

obey the independence assumption may be obtained through simulation. While these estimates 

allow for the identification of congestion levels that result in reasonable wait times and service 

costs, and help to characterize system performance, it may be useful at times to have analytic 

bounds available. Both analytical and empirical estimates of the efficiency of M/G/1 and M/G/k 

queueing systems are presented in the next several sections. 

A Single Vehicle and the M/G/1 Queue 

A precise definition of an M/G/1 queuing system is one in which customers arrive according 

to a Poisson arrival process, there is a single server, all blocked customers wait until served, the 

server cannot be idle when there is a waiting customer, and, service times are identically 

distributed, non-negative random variables, independent of the arrival process and each other. 

Let us assume that loads are serviced by a single vehicle, operating in a circular work area 

and that demands arise according to a Poisson distribution over time and a uniform distribution 

over space (a Poisson point-process). Requests for service arriving when the vehicle is idle are 

served immediately. E[D] represents the distance between two independently and uniformly 

generated points inside a unit circle; 111 is the average time between arrivals and E[S] the 

expected service time. Assuming that all requests for service are accepted and that service takes 

place according to a discipline that does not order loads with respect to geographic location, the 
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time to complete service may be expressed as the sum of two random variables, SE, the time 

spent traveling empty to pick up a load and SL, the time spent traveling loaded. 

(4.12) 

Under the given conditions and the assumption that each unit of distance traveled requires 

one unit of time, the expected value of each of these two random variables is the time needed to 

traverse the distance between two points randomly generated in a circle. E[SE] = E[SLl = 0.905 

and may be derived in the following way(Elion, Watson-Gandy and Christofides [1971] p. 154): 

Assume that points P1 and P2 have polar co-ordinates (r1,4>1) and (rz,4>z) respectively, 

and that in the general case the circle has radius a. 

aa2nZn 

Then E[D] = f f f f CDfr/ r/ ¢/¢2 )dr1dr1d(/>td4>z 
00 0 0 

= 8a =0.905a 
5{r(5j2)}Z 

(4.13) 

(4.14) 

(4.15) 

Continuing along these lines, the variance of the distance <15 may also be obtained. 

<15 = E[D2] - E[Df and 

a a Zrr2rr 

E[D2] = II I JCD2fr/r/¢/¢2)drldrld4>ld4>z (4.16) 

000 0 

(4.17) 

(4.18) 

For the special case of the unit circle E[D] = 0.905 and E[DZ] = 1.0 so 

crb = cr~ = crt = 0.181 (easily verified by simulation). Under the assumption that traversing 

one unit of distance requires one unit of time, E[SE] = E[SLl = E[D]. While 
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E[S] = E[SE] + E[Sd = 1.81. A mentioned previously, service times that share a point are only 

approximately independent. This applies in the case of consecutive service to separate 

customers and also to service to a single customer, which is the sum of two moves which share a 

point, the origin location of the load served. Simulation of the system under FCFS assignment 

yields the following value: cr; = 0.397 * cr~ + cr[. The covariance is quite small, (0.0175) and 

the correlation coefficient Corr(SE,SL) = 0.048. 

We present as further evidence that FCFS service very nearly satisfies the independence 

assumption the simulation results and presented in figure 4.10, in which an M/G/k system is 

simulated and values of key performance measures compared to two known approximations 

developed under the assumption of independent service times. Simulation values very closely 

represent values obtained under the known approximations. While FCFS service does not 

precisely preserve the independence assumption, service times are not systematically dependent 

on the number and location of waiting customers. 

Letting E[S] and E[S2] represent the first and second moments of the service time and r = 

IE[S], the traffic intensity or utilization rate (sometimes, called congestion level) of the system, 

some important service performance measures can be approximated (see, for example Larson 

and Odoni [1981], Ross [1981 D. 

Po, the probability that a randomly arriving customer (request for service) finds the system 

empty is given by: 

Po=1-r. (4.19) 

W q , the average length of time a user spends in the queue 

W = AE[S2] 
q 2(1- AE[SD . 

(4.20) 

Lq the average number of requests for service already in the queue (not including the 

request being serviced), 

(4.21) 

W , the average length of time a user spends in the system, 
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W = Wq + E[S] = AE~S2] + E[S]. 
2(1- E[S]) 

(4.22) 

L. the number of requests for service already in the system when a randomly arriving 

request for service arrives, 

L = AW = A?E[S2] + AE[S]. 
2(1-AE[SJ) 

(4.23) 

Representative values of these performance measures are presented in table 4.2, for 

varying rates of arrivals of requests for service. These are obtained by applying equations (4.19)

(4.23) but may also be found by simulating an M/G/1 system with the specified characteristics at 

steady state. Estimates of system performance measures can be used to define the most 

"attractive" congestion levels for the system, and to turn away loads that can not be served within 

a reasonable period of time. An "attractive" congestion level results in relatively short empty 

distances traveled (in this case short service times) and few idle periods, but, at the same time 

does not result in unreasonable wait times for service. Adding a measure of physical realism to 

the system, the circle is assumed to have a radius of 250 miles and the wait time is given in hours 

as well as general "units". The average loaded move is then 226 miles long and the wait time in 

hours can be estimated under the assumption that travel takes place at a constant speed of 50 

miles per hour. We assume in this example that handling times are zero and that the server is 

never unavailable. 

TABLE 4.2 SYSTEM PERFORMANCE MEASURES FOR M/G/1 WITH FCFS ASSIGNMENT 

P E[S] cr: L Lq W Wq W(hours) Wq(hours) 

0.73 1.81 0.397 1.88 1.14 4.62 2.81 23.11 14.05 

0.76 1.81 0.397 2.12 1.36 5.04 3.23 25.21 16.15 

0.79 1.81 0.397 2.45 1.66 5.62 3.81 28.12 19.06 

0.82 1.81 0.397 2.90 2.08 6.42 4.61 32.09 23.03 

0.85 1.81 0.397 3.51 2.66 7.48 5.67 37.42 28.36 

0.88 1.81 0.397 4.46 3.58 9.19 7.38 45.96 36.91 

0.91 1.81 0.397 5.98 5.07 11.91 10.10 59.55 50.49 

0.94 1.81 0.397 8.00 8.94 17.26 15.40 86.28 77.22 
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MlGJ1 Results and More Efficient Assignment Heuristics 

While in a few applications it may be practical to serve customers in a first come first served 

(FCFS) manner, or even a last come first served (LCFS) manner, in a spatially distributed service 

system it is more efficient to serve customers (to move loads in this case) in an order which 

reduces the overall distance traveled. In this section a simple assignment strategy, nearest origin 

assignment is presented. The efficiency of a single vehicle service system under this rule is 

compared with that of a similar FCFS service system. It is shown in the next section that the 

M/G/1 system with FCFS service provides analytically tractable upper bounds on more efficient 

systems in which performance measures may be simulated but not obtained analytically. The 

assignment strategy introduced for comparison assumes that the available vehicle is assigned to 

the load in queue with an origin location nearest to the current location of the vehicle. Before 

discussing the nearest origin assignment we describe the simulation used to estimate system 

performance. 

The Simulation Framework. The simulation assumes a circular geographic region in which 

origin and destination locations are uniformly and independently distributed over the region. 

Demands arrive according to a Poisson process. The simulation horizon is 2600 simulation 

weeks. The choice of a long simulation horizon is made so that steady state values of key 

performance measures can be estimated. Values of key performance measures are aggregated 

over the second half of the simulation horizon, after the system has been in service for 1300 

simulation weeks. While not absolutely ensuring steady state, results under the FCFS policy 

closely match those that can be estimated using known, closed-form approximations of key 

performance measures (table 4.2). The average number of customers in the system is measured 

upon the arrival of each new load (customer) and these values aggregated over all arrivals 

following the half-way point in the simulation. Applying the assumption that Poisson arrivals see 

time averages (PASTA in Wolff [1989] p. 293» these estimates are assumed to represent the 

overall system averages. 

Comments on Nearest Origin Assignment. The following nearest origin assignment 

strategy is analyzed: loads are generated by a Poisson point process on a unit circle; a single 

vehicle provides service to the loads; a queue of infinite length is allowed to form; all loads in the 

queue are candidates for assignment when the vehicle becomes available; loads do not have 

explicit time windows for service or pickup deadlines; if no loads are awaiting service when a 

vehicle becomes available it remains at the destination location of its last load served until it 
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receives another assignment. Assuming, as before, that each unit of distance traveled requires 

one unit of time, the expected service time may be calculated in the following way. 

Let E[Sfcfsl represent the expected time to complete service under the FCFS policy and 

E[Snol the expected time to complete service under the nearest origin strategy. Then SEfcfs 

represents the empty portion of service time and SL the· loaded portion of service time. Let Ls 

represent the number of customers in the system and Lq the number of customers (loads) in the 
queue. In addition, let P.e = lim Pr {upon arrival of a customer there are I customers in/the 

t~oo 

system}. In a system with Poisson arrivals this can be shown to be equal to the long run 

proportion of time in which there are I customers in the system and 1-1 customers in the queue. 

Then, the expected service time (with no limit on the number of loads allowed in the queue and all 

queued loads considered candidates for all assignments) is: 

{from (4.12» 

00 

E[Sno] = L P lE[SEnoiLs = R] + E[Sd 
£1=0 

(4.24) 

E[SLl is known (0.905), and equal in all cases examined, and E[SEnoILs = R] is a 

monotonically decreasing function in I, representing the expected distance between a randomly 
generated point in a circle and 1-1 other randomly generated points in a circle. E[SE," 1Ls = i] is 

well approximated by O.2~ 2,,2 (equation (4.2). figure 4.6) when I is greater than one. II will be 
i-I 

argued below that this is equal to E(Sfcfsl when I is equal to one. 

Proposition 4.1: The expected service time E[Snol under the nearest origin assignment 

rule is bounded from above by E[SfcfsJ. the expected service time under the FCFS strategy. 

Proof: 

From (4.12) and (4.23) we have 

E[Sl = E[SEl + E[SLJ and 
00 

E[Sno] = L P lE[SE .. 1Ls = i] + E[Sd 
l=O 

We wish to show that E[Sno]::;; E[Sfcfs] or, that 
00 

L PeE[SEnoILS = .e]+E[Sd~E[SEfcfs]+E[SL] or, that 
£=0 
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L P £E[SE no 1Ls = £]::; E[SEfcfs] since the expected time spent loaded does not change 
£=0 

under different assignment policies. 

To show this it is observed once more that for each arriving customer, the expected service 

time for the next load served is the sum of the expected time spent loaded and the expected time 

spent moving empty. If the system is empty when the customer arrives, then the expected 

service time of the next customer (the arriving customer in this case) will be the same as under 

the FCFS policy. If the vehicle is in service, the expected empty service time for the next load 

served will be the expected time to traverse the distance between a randomly generated point 

(the destination of the load currently in service) and the one or more loads in queue when service 

has been completed. This expected time is less than or equal to the expected time under the 

FCFS policy. Therefore, the proof is completed and, 

(4.25) 

In order to ensure that the performance measures for the M/G/1 queue with FCFS service 

can be used to generate bounds on the performance of a similarly configured M/G/1 queue with 

nearest origin assignment we would need to show that the 2nd moment of the service time is also 

less than or equal to that under the FCFS assignment. Estimates for the wait time for service, 

and the expected number in queue (and in the system), rely only on the first and second 

moments of the service time distribution when requests for service are generated by a Poisson 

process. A simple simulation of the nearest assignment strategy and the system described yields 

the results shown in table 4.3. Comparing the standard deviation of service in the simulated 

system with that of the FCFS assignment (table 4.2) it may be observed that in all cases shown 

the standard deviation is lower. The coefficient of variation remains essentially constant across 

experiments with different congestion levels. 

Simulation results indicate that under the nearest origin heuristic both E[S] and cr; decrease 

as congestion increases. This is because the number of customers waiting for service increases

-leading to more selection opportunities at each assignment epoch. The reduction in E[S] as the 

number of customers in the queue (congestion) increases in displayed in Figure 4.10. 
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Table 4.3 Simulation estimates of system performance measures for an M/G/1 system 

under nearest origin assignment 

p E[S] (j2 
s L Lq W Wq W(hours) Wq(hours) 

0.73 1.69 0.381 1.57 0.83 3.61 1.92 18.05 9.58 

0.76 1.68 0.379 1.72 0.96 3.79 2.11 18.95 10.56 

0.79 1.66 0.375 1.91 1.12 4.01 2.35 20.05 11. 75 

0.82 1.64 0.370 2.13 1.31 4.27 2.63 21.35 13.15 

0.85 1.61 0.364 2.43 1.58 4.62 3.01 23.10 15.05 

0.88 1.58 0.356 2.81 1.94 5.07 3.49 25.35 17.45 

0.91 1.54 0.345 3.35 2.44 5.70 4.15 28.48 20.75 

0.94 1.50 0.331 4.12 3.18 6.59 5.09 32.95 25.45 

MlGl1 approximations for the wait time in the system and in queue and the expected number 

of customers in the system and in queue shown in equations (4.20)-(4.23) do not provide 

accurate estimates of the wait time and queue length because they are derived under the 

assumption of independence of consecutive service times. For comparison, equations (4.20)

(4.23) are applied to the first and second movements of the service times measured using 

simulation, and are displayed in Table 4.4. These results clearly do not match the simulation 

results in Table 4.3 (obtained under the assumption that Poisson arrivals see time averages 

(PASTA in Wolff [1989] p. 293». It is assumed as before that one unit of distance traveled 

requires one unit of time and that these values are converted into hours by assuming that the 

radius of the circle is 250 miles long and that travel speeds are a constant 50 miles per hour. 

Comparison of tables 4.2 and 4.3 illustrate the significant increase in efficiency when a 

nearest origin assignment strategy is applied over FCFS assignment. Wait time in the FCFS 

system is one and a half to three times the average wait for service under nearest origin 

assignment. A reasonable goal might be that the mean time to complete service be less than 24 

hours: in that case the system in which the nearest origin assignment is used can run at a 

utilization rate of 85% while the FCFS system can only safely operate at a rate of 73%. 

Table 4.5 offers a comparison of wait times for service displayed in tables 4.2-4.4. 

Comparing tables 4.2, 4.3 and 4.4 it may be observed that 

{W, W q } no(from simulation) < 

{W, W q} approximation (with E[S] and E[S2] from ~imulation of NO) < 

{W, W q } approximation of FCFS 
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The comparison indicates that M/G/1 approximations applied using the first and second 

moments measured through simulation provide tighter bounds on the performance of the system 

than do the approximations based upon FCFS service and approximate independence of service 

times. 

E[S] and average number of customers in queue vs. utilization (p) 

---O-E[S] 

--Avg customers in (Jueue 
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Figure 4.10 E[S] and the average number of customers in queue (Lq) 
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TABLE 4.4 APPLICATION OF M/G/1 PERFORMANCE MEASURE APPROXIMATIONS 
UNDER THE ASSUMPTION OF 110 SERVICE TIMES. E[S] AND E[S2] OBTAINED THROUGH 

SIMULATION 

P E[S] (j2 
s L Lq W Wq W(hours) Wq(hours) 

0.73 1.69 0.381 1.89 1.15 4.34 2.65 21.72 13.27 

0.76 1.68 0.379 2.14 1.38 4.71 3.03 23.54 15.16 

0.79 1.66 0.375 2.47 1.68 5.19 3.53 25.96 17.67 

0.82 1.64 0.370 2.92 2.10 5.84 4.20 29.19 21.00 

0.85 1.61 0.364 3.56 2.71 6.76 5.14 33.78 25.72 

0.88 1.58 0.356 4.52 3.64 8.14 6.56 40.69 32.78 

0.91 1.54 0.345 6.09 5.18 10.36 8.81 51.79 44.06 
0.94 1.50 0.331 9.03 8.07 14.41 12.91 72.05 64.53 
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TABLE 4.5 COMPARISON OF SIMULATED AND ESTIMATED WAIT TIME FOR SERVICE 
UNDER NO AND FCFS ASSIGNMENT 

p = 0.73 

cr2 - - - -
E[S] W Wq W(hours) Wq(hours) 

s 

I. 1.69 0.381 3.61 1.92 18.05 9.58 

II. 1.69 0.381 4.34 2.65 21.72 13.27 
III. 1. 81 0.397 4.62 2.81 23.11 14.05 

p = 0.79 

cr 2 - - - -E[S] W Wq W(hours) Wq(hours) 
s 

I. 1.66 0.375 4.01 2.35 20.05 11.75 

II. 1.66 0.375 5.19 3.53 25.96 17.67 
III. 1. 81 0.397 5.62 3.81 28.12 19.06 

p = 0.85 

0 2 - - - -
E[S] W Wq W(hours) W q (Iwurs) 

.~ 

1. 1. 61 0.364 4.62 3.01 23.10 15.05 
II. 1. 61 0.364 6.76 5.14 33.78 25.72 
III. 1. 81 0.397 7.48 5.67 37.42 28.36 

p = 0.91 

E[S] 0 2 W Wq W(bours) W q(hnurs) 
s 

1. 1.54 0.345 5.70 4.15 28.48 20.75 
II. 1.54 0.345 10.36 8.81 51 79 4406 
III. 1. 81 0.397 11.91 10.10 5955 5049 

I. Nearest Origin (simulated) (table 4.3) 

II. Approximation with E[S] and E[S 2] from simulation of NO (table 4.4) 

III. Approximation of FCFS (table 4.2) 

In the next section the analysis of a single vehicle is extended to a fleet of vehicles. Instead 

of an M/G/1 queue we examine an MlG/k queue, where k is the number of vehicles in the fleet. 
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A Vehicle Fleet and the M/G/k Queue 

The M/G/k queue presents even more challenge than its singer server counterpart -

approximations are only available for special cases. Again, the examination of such a system 

under simplifying assumptions may be useful. 

We begin with the following assumptions: again, customers arrive according to a Poisson 

point process; when fleets of varying sizes are examined, we assume that the arrival rate of 

requests for service is proportional to the number of vehicles in the fleet; service times are 

independent random variables -- the service rate is directly proportional to the number of servers 

(vehicles) in the fleet; all customers may be accepted into the queue. 

While the convenient expressions corresponding to (4.20)-(4.23) are not known for the 
M/G/k system, several approximations for W q , the wait time in queue (from which other 

performance measures may be estimated), have been developed. Nozaki and Ross [1978] 

present several such approximations. These are examined in the next section. 

Approximations for the Average Wait in Queue in an M/G/k System. The following 

approximation is derived in Nozaki and Ross[1978] and is consistent with the assumptions listed. 

It is suggested (in the paper) that this approximation is also valid when there is a limit on the size 

of the queue allowed to form. It is applied here with the assumption that all requests for service 

can be accommodated in the queue and the analysis is restricted to arrival rates that do not (in 

simulation experiments) result in refusal of requests for service. 

A.kE[S2](E[S])k-l 
W=--------=----'---"--'-----------= 

q 2(k -1) !(k _ A.E[S])2[~1 (A.E[S])j + (A.E[S])k ] to j! (k -l)!(k - A.E[S]) 

(4.26) 

In addition, a heavy traffic approximation offered in Kingman [1965] is provided by Nozaki 

and Ross [1978]. For the case of Poisson arrivals and for A.E[S] = k , this approximation is: 

(4.27) 

For smaller vehicle fleets r, the utilization rate is lower to ensure that all requests for service 

may be accommodated The approximations are evaluated for various values of k (the number of 

servers-vehicles in the fleet) and the resulting approximations displayed in tables 4.6 and 4.7. 

Values of E[S} and E[S2] ljsed in the Nozaki and Ross and Kingman approximation equations are 
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those obtained through simulation of the system under FCFS assignment. The approximation 

results are compared to those measured from the simulation of the system under FCFS 

assignment. Requests (loads) are assigned in the order in which they arrive. When a server 

becomes idle, it is assigned the first load in the queue. The Nozaki and Ross approximation 

provides a very accurate approximation for the FCFS system while the Kingman approximation is 

also quite close. 

60.0 

50.0 

40.0 

til a.. 30.0 = 0 
..c 

20.0 

10.0 

0.0 

Wait time in MlGIk queue -- two approximations and simulation of 
FCFS Assignment with p = 0.91 and smaller fleet sizes 

.~ N ozaki & Ross Approximation 

fZJ Simulation 

• Kingman Heavy Traffic Approximation 

1 2 3 5 10 20 30 

fleet size(servers) 

Figure 4.11 Approximation of average wait time in queue with approximations of Nozaki & Ross 
and Kingman and Simulation of FCFS assignment (smaller fleet sizes) 
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TABLE 4.6 COMPARISON OF N&R AND KINGMAN WAIT TIME APPROXIMATIONS WITH 
SIMULATION OF FCFS ASSIGNMENT 

k P 
1 0.91 

2 0.91 

3 0.91 

4 0.91 

10 0.91 

20 0.91 

30 0.91 

7.0 

6.0 

5.0 

rn 

""" 4.0 = 0 .c 
3.0 

2.0 

1.0 

0.0 

E[S] (j2 
S 

AE[S] WN&R W sim W King WN&R (lITS) W sim (hrs) W King (hrs) 

1.81 0.397 0.91 9.79 9.79 11.70 48.9 48.9 58.5 

1.81 0.397 1.81 4.65 4.66 5.84 23.3 23.3 29.2 

1.81 0.397 2.72 2.98 3.01 3.89 14.9 15.05 19.5 

1.81 0.397 4.53 1.65 1.68 2.31 8.3 8.4 11.6 

1.81 0.397 9.07 0.75 0.75 1.18 3.7 3.9 5.9 

1.81 0.397 18.12 0.31 0.31 0.59 1.6 1.6 2.9 

1.81 0.397 27.17 0.18 0.19 0.39 0.9 1.0 1.9 

Wait time in M/G/k queue -- two approximations and simulation of 
FCFS Assignment with p = 0.98 and larger fleet sizes 

f±ill Nozaki & Ross Approximation 

m Simulation 

• Kingman Heavy Traffic Approximation 

40 50 60 70 80 90 100 

fleet size(servers) 

Figure 4.12 Approximation of average wait time in queue with approximations of Nozaki & Ross 
and Kingman and Simulation of FCFS assignment (larger fleet sizes) 
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TABLE 4.7 COMPARISON OF N&R AND KINGMAN WAIT TIME APPROXIMATIONS WITH 
SIMULATION OF FCFS ASSIGNMENT FOR LARGER FLEETS AND HIGHER UTILIZATION 

k P E[S] 2 
O's AE[S] WN&R W.ilIl W King WN&R (hr.) Wsim(hr.) W King(hrs) 

40 0.98 1.81 0.397 39.18 1.05 0.89 1.26 5.25 4.45 6.30 

50 0.98 1.81 0.397 48.97 0.83 0.74 1. 01 4.15 3.70 5.05 

60 0.98 1.81 0.397 58.77 0.68 0.69 0.84 3.40 3.45 4.20 

70 0.98 1.81 0.397 68.56 0.57 0.56 0.72 2.85 2.80 3.60 

80 0.98 1.81 0.397 78.36 0.49 0.49 0.63 2.45 2.45 3.15 

90 0.98 1.81 0.397 88.15 0.43 0.40 0.56 2.15 2.00 2.95 

100 0.98 1.81 0.397 97.95 0.38 0.39 0.50 1.90 1.90 2.50 

M/G/k Results and More Efficient Assignment Heuristics. The comparison of nearest 

origin assignment to the FCFS strategy for an M/G/1 queue presented mentions that analytic 

approximation of a queuing system with an assignment rule in which service times are 

systematically dependent on the state of the system are not apparently possible. This too is the 

case in the M/G/k system. Approximations are based upon variations of the following 

approximation assumption (Nozaki and Ross[1978]) 

• Let Ge denote the equilibrium distribution of G ... 

Approximation assumption (AA). Given that a customer arrives to find i busy servers, i > 0, 

then at the time he enters service, the remaining service times of the other i-d(i,k) customers 

being served has a joint distribution that is approximately that of independent random variables 

each having distribution Ge." 

However, in the nearest origin assignment applied to a fleet of vehicles, we assume that 

upon completion of service a vehicle is assigned the closest load in the queue. This means that 

G and Ge, the service time distribution, is highly dependent upon both the number of servers and 

the number of loads in queue. This implies that the service rate is systematically related to the 

number of busy servers (which is in turn related to the number of customers in queue). So, the 

independence assumption stated above and other related assumptions are not valid. 

Unfortunately these imply that approximations for the MlG/k system cannot be applied in this 

case. We find however, that just as approximations for key performance measures in the system 

provided a bound on the performance of the system under the nearest origin strategy, so do the 

approximations for the average wait time in queue provide bounds on the performance of the 

M/G/k queue with the nearest origin strategy. The applicability of these bounds depends upon 

the congestion level of the system. While Kingman's approximation is a heavy traffic 
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approximation, both the Nozaki & Ross and Kingman approximations provide a tighter bound on 

the wait time in system when applied to a relatively less congested system under the nearest 

origin strategy. This may be observed in figures 4.12 and 4.13 for two utilization rates: 0.99 and 

0.97. While these are not typical congestion levels, they are selected in order to compare the 

simulated system under nearest origin assignment to the Nozaki and Ross and Kingman 

approximations which are explicitly derived for systems under heavy traffic. In a less congested 

system the performance of the nearest origin strategy approaches that of a system with FCFS 

assignment. 

Applying the Bounds on Wait Time to "Actual" Systems. Despite the lack of 110 service 

times, the approximations of wait time in system may be useful for generating bounds on the wait 

time in the system. The mean and variance of service times may be measured from actual data, 

and target utilization regions identified. Load acceptance policies may be adapted to actual 

conditions in the system and load acceptance or assignments to sub-fleets of vehicles made 

accordingly. In the absence of explicit pickup deadlines, carrier fleet operators must still provide 

service to customers fairly quickly. While the development of bounds on wait time, and methods 

to estimate attractive congestion levels for distributed service systems introduced here is 

incomplete, it does offer a starting point for this type of analysis. 

Behavior of Nearest Origin Assignment as r -7 1. It is of interest to know how the 

nearest origin assignment strategy performs in the limit. The expected time to complete service 

can be shown to be between two bounds: 

E[SLJ < E[SnoJ::; 2E[SLl (4.28) 

where E[Sd is the expected time to complete the loaded portion of the movement. This 

relationship is evident from the fact that if the nearest load to a vehicle was always at the exact 

location of the vehicle then the distance traveled empty would be zero, and by the fact that in the 

FCFS or other assignment policy not tied to geographic location the expected time to complete 

the empty movement is equal to the expected time to complete the loaded movement. The 

discussion to follow shows that in the limit, as the number of loads in queue increases without 

bound, the expected length of the empty movement goes to zero. Of more immediate interest 

however, is the fact that the service rate increases with increasing congestion. That is, as 

congestion increases the service rate also increases (the time needed to complete service 

decreases). As the queue grows, the service rate increases and at steady state there exists a 

rather long queue (for a large fleet of vehicles) but the wait time in this queue may be fairly short. 
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Limited simulation results are presented to demonstrate these findings because of the 

complexities of solving for E[Snol. To approximate E[Snol equation (4.24) 

~ = o 
.c 

Wait time in MlG/k queue -- two approximations with E[S] and 

E[S2] from simulation and simulation of nearest origin assignment 
with p = 0.99 and larger fleet sizes 

E!1 . Nozaki & Ross Approximation 
30.0 

Ii] Simulation 

25.0 • Kingman Heavy Traffic Approximation 

20.0 

15.0 

10.0 

5.0 

0.0 
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fleet size(servers) 

Figure 4.13 Average wait time in queue from simulation of nearest origin assignment and 
application of N&R and Kingman approximations with utilization = 0.99 
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Wait time in MlGIk queue -- two approximations with E[S] and 

E[S2] from simulation and simulation of nearest origin assignment 
with p = 0.97 and larger fleet sizes 
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Figure 4.14 Average wait time in queue from simulation of nearest origin assignment and 
application of N&R and Kingman approximations with utilization = 0.97 

00 

E[Sno] = I. P£E[SEnoIL = R] + E[SL] would need to be solved. 

£=0 

Although (4.24) was derived for the single server case it may be generalized to those with 

multiple servers. Solving (4.24) requires the estimation of the long run probabilities that a certain 

number of loads will be in the system. Estimating these long run probabilities in even an M/G/1 

system is not trivial. While in the single server case this may possible, using fairly extensive 

numerical integration (Van Hoorn [1984] p.1 01), when the service time function is well defined, 

and, more easily in the special cases of deterministic, Erlang and Exponential service time 

functions, the first and second moments of the service time alone provide insufficient 

characterization of the function. In an M/G/k system these values may be measured but not 
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approximated in closed form. Without attempting this directly we present the following simulation 

results. 

A fleet of 300 vehicles are simulated in a circular work area. Demands are generated from a 

Poisson point process at a rate proportional to the number of vehicles. A queue of up to 1500 

customers is allowed to form over a horizon in which between 2400 and 3600 customers are 

served by each vehicle. The simulation is limited to demand arrival rates in which no loads are 

turned away. The average wait time and number of customers in queue is measured, after a 

substantial start up period (1200-1800 customers served per vehicle). Figures 4.15 and 4.16 

show that E[S] is highly sensitive to average number of customers awaiting service. 

While the systematic dependency between the number of customers waiting in the queue 

and the rate of service under the nearest origin assignment rule may be an extreme case, many 

systems will exhibit an increase in efficiency as the density of customers and servers increases. 

A verage number of loads in queue and E[S] for a 300 vehicle fleet 
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Figure 4.15 Land E[Sno] for highly congested systems 
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A common question throughout this chapter is the question of how, in a system in which 

customer requests arrive over time, to provide service in a timely fashion to all customers and 

immediately to those requests that are particularly time-sensitive. The first section of Chapter 4 

introduced a strategy of diverting a vehicle en-route to make an immediate pick-up of a more 

time-sensitive load, or of a load that (when sequenced first) will improve the efficiency of the 

vehicle's travel route is introduced. Simulation results which extend the analysis are discussed in 
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Chapter 6. Moving from a single vehicle to fleets (and subfleets) of various sizes, the increase in 

the ability of a fleet to respond to time-sensitive demands under real time information is 

estimated, again with the help of simplifying assumptions. 

1.5 

1.4 

QJ 1.3 
e 

E= 
1.2 

1.1 

1.0 

0.9 

E[S] with nearest origin assignment for 300 vehicle fleet 

~ avg. time between requests 

~ E[S] 

0.969 0.983 0.992 0.998 0.999 0.999 

Utilization p 

Figure 4.16 E[ Sno] with nearest origin assignment 

Carrier fleet operations are modeled as a distributed queuing system. A system with 

Poisson arrivals and a general service distribution is examined. An approach for generating an 

upper bound on the efficiency (measured as the average wait time for service to begin) for a fleet 

of vehicles is developed and the conditions under which this bound is relatively tight are 

discussed. 

The next chapter describes the design of experiments used to analyze the performance of 

the operational strategies described in the previous chapter. 
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CHAPTER 5 EXPERIMENTAL FRAMEWORK AND DESIGN 

In this chapter, the simulation framework developed to evaluate the performance of the 

dynamic dispatching and load acceptance strategies of interest is discussed, and the specific 

strategies examined are described. The use of simulation makes possible the evaluation of these 

strategies under a wide spectrum of scenarios with respect to realizations of demands for 

services, information availability, and communication capabilities. In addition, a carrier fleet 

operation may be simulated over a long time horizon and the expected performance of strategies 

estimated. While the experiments performed in this research may lack realism in certain 

respects, the simulation framework provides a testbed for exploring important questions and for 

defining and investigating operational strategies for fleet management under real-time 

information. In this analysis, five base case assignment strategies are compared with four local 

assignment strategies which rely on continuous dispatcher to driver communication and position 

updates. An assignment strategy, when applied in conjunction with a load acceptance strategy, 

defines the operational strategy for the given fleet. Both the real-time and base case operational 

strategies examined are relatively simple, relying solely on current (not forecast) information. 

These operational strategies were presented in detail in chapter 3. 

The simulation framework is deterministic with stochastic inputs. Results for the same input 

data will be identical in multiple simulation runs. Individual Monte Carlo realizations are randomly 

generated and the results aggregated over a sufficient number of simulation realizations to 

provide statistically robust estimates of the performance measures of interest. The performance 

of vehicle fleets under the operational strategies is studied over long service horizons to gain 

insight into the average or steady state behavior of each strategy. 

Chapter 5 describes the operational strategies examined. Introduced in chapter 3, two of 

the real-time assignment strategies investigated allow the re-assignment of previously assigned 

loads to other vehicles in addition to the resequencing of loads already assigned within an 

individual vehicle's queue of assignments. The others allow the resequencing of previously 

assigned loads within an individual vehicle's queue only. 

Chapter 5 also provides a description of the simulation framework including input parameters 

and results reported. A more detailed description of the simulation from a procedural point of 

view is provided in Appendix I. 

In Chapter 5 four sets of experiments are outlined. This evaluation seeks to: 1) Investigate 

the performance of the base case strategies under different demand levels and implementation 
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scenarios, including, quasi real-time applications of the base case assignment strategies; 2) 

Evaluate the relative performance of real-time assignment strategies; 3) Compare the real-time 

assignment strategies to the base case assignment strategies; and, 4) Estimate the benefits of 

real-time information. The assignment strategies examined include some scenarios that consider 

explicit service (pickup) deadlines and some that do not. This research is most interested in time

constrained operations. The unconstrained cases are examined to explore the tradeoffs 

associated with honoring and offer an additional benchmark for measuring system efficiency. 

As stated in chapter 1, the main hypothesis is that real-time information on vehicle locations 

and demands can increase the efficiency of carrier fleet operations with respect to measures of 

trucking company profitability and responsiveness to customer requests. A related hypothesis is 

that real-time assignment rules perform well, with respect to those requiring less real-time 

information and communication, under certain conditions with respect to fleet size, level of 

demand and pickup deadlines. In order to test these hypotheses and to identify those conditions' 

under which real-time assignment strategies perform better or worse than their less information 

intensive counterparts, the comparisons described are performed. 

OPERATIONAL STRATEGIES EXAMINED 

A set of operational strategies are examined; each of these includes one of three load 

acceptance strategies and one of nine assignment strategies. The load acceptance arid 

assignment strategies are outlined here. Figures 5.4 and 5.5 provide diagrams of the full 

operational strategies examined under simulation. Assignment strategies (formulated in Chapter 

3) are discussed in Chaper 5, before load acceptance strategies (discussed in Chaper 3). This 

order is chosen because two of the three load acceptance strategies are applied after a feasible, 

least cost assignment has been identified. As explained in Chaper 5, the rule used to determine 

the "least cost" solution varies across experiments. 

Assignment Strategies 

Assignment strategies are classified as either base case strategies or real-time information 

strategies. The separation is admittedly somewhat arbitrary. A strategy is defined as a base 

case strategy if, once an assignment is made, it is carried out with no changes in either the 

vehicle assignment or the order in which service will be provided by the vehicle. The real-time 

operational strategies require continuous updates on all vehicle locations and demands; in some 

cases these allow load to vehicle assignments to change as conditions unfold. In the operational 
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strategies examined, only the real-time information strategies have the ability to take pickup 

deadlines (or time windows for service) explicitly into account. 

Two of the five base case strategies are intended to provide a benchmark for real-time 

assignment systems. The "first called first served" assignment method should provide an upper 

bound on reasonable assignment rules; the generation of the optimal traveling salesperson tour 

through points representative of those served in a week provides a lower bound on the distance , 

traveled to provide service. Descriptions and where applicable, formulations, of the base case 

assignment strategies were provided in chapter 3. 

Base Case Strategies First Called First Served (FCFS) • This strategy assumes that loads 

are assigned to available vehicles in the order in which they arrive. Service requests are added 

to a queue of requests upon arrival; when a vehicle becomes available it is assigned the first load 

in the queue. If one or more vehicles are idle when the request arrives, it is assigned to the 

vehicle that has been idle longest. Drivers must contact the dispatch center upon completion of 

service and the dispatch center must be in communication with the driver that has been idle 

longest. 

Nearest Origin Assignment (NO) Accepted service requests enter the pool of unassigned 

loads. Upon completion of an assignment, the driver contacts the dispatch center for a new 

assignment, at which time an assignment is made to the nearest accepted and unassigned load. 

Loads arriving when one or more vehicles are idle are assigned to the nearest idle vehicle. 

Drivers must contact the dispatch center upon completion of service and the dispatch center must 

be in communication with all idle drivers. 

Classical (Bipartite) Assignment. The fundamental strategy examined is: 1) Loads 

accumulate over time in a pool of accepted loads; 2) At specified decision points, loads are 

assigned to idle vehicles, or in some cases to vehicles that will become idle at some time in the 

future, prior to the next assignment point. Exactly m assignments are made where m = min{ 

,available loads, available vehicles }; the assignment that minimizes the overall distance from the 

current (or next available) location of the vehicles to the origin locations of the loads is chosen. 

As discussed in chapter 3, two separate applications of this assignment technique are examined; . 

these are considered separate assignment strategies because their information requirements 

differ. In the first case, the trigger for assignment is the passage of time, while in the second, 

assignments are triggered by the state of the system, where the state refers to the ratio of idle 
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vehicles to available loads. These two cases are referred to as time-based and state-based 

bipartite assignment (BAT{a) and BAS{b», respectively. 

Time-Based Bipartite Assignment (BAT(a» Assignments are triggered by fixed, evenly 

spaced assignment points. Fixed assignment points are separated by a length of time aDL where 

a is a real number in the interval (0, 2) and DL is the average duration of loaded moves. 

State-Based Bipartite Assignment (BAS(b)) Assignments are triggered when the number of 

loads awaiting service is equal to or greater than a multiplier b times the number of idle vehicles, 

or, when the number of idle vehicles is equal to b times the number of waiting loads (for example, 

when the number of loads exceeds {O, 1, 2, .. } times the number of idle vehicles). In general, b 

need not be an integer; however, in our analysis we examine integer values ofb only. In the case 

b = 0, assignment is performed whenever any loads are waiting for service and at least one 

vehicle is idle. BAS(O) approximates nearest origin assignment. 

Cases examined are chosen to highlight the tradeoffs between immediate and delayed 

assignment of vehicles to loads. Time-based bipartite assignment (BAT(a» with a close to zero 

approximates nearest origin assignment. In addition, a system in which "look ahead" is permitted 

is examined. When "look ahead" is allowed, vehicles that will become idle within a fraction of the 

time between the current and the next scheduled assignment are included in the current 

assignment. Comparing the performance of BAT(a), with and without look ahead, allows for the 

examination of the tradeoffs of including more vehicles in the current assignment, but in which 

future opportunities may be excluded. 

State-based assignment (BAS(b» represents a quasi-real-time implementation of the 

bipartite assignment heuristic in which assignments are made when the system reaches a pre

specified state. This adaptive assignment method exhibits several advantages. It leads to better 

utilization under moderate demands; both the expected value of wait times for service and the 

variability of these times are lower than in the time-triggered assignment case. 

Asymmetric TSP (ATSP). An asymmetric Traveling Salesperson Problem is solved for a set 

of loads and a single vehicle. This case is used to generate a benchmark for the real-time 

information cases. A problem based on a set of randomly generated loads of approximately the 

same number of loads served per vehicle per week is solved and the expected distance traveled 

under a perfect hindsight (or perfect look-ahead) assignment estimated. The objective is to 

minimize the empty distances traveled. This bound is compared to the performance of strategies 

112 

----------------------



applied when loads become known over time. A mathematical formulation for the A TSP is 

provided in chapter 3. 

Assignment Strategies Under Real-Time Information. Four different strategies are 

examined. These all require real-time information on the status and location of vehicles and 

demands, and differ in the extent to which assignments are flexible with respect to re-ordering 

and re-assigning loads. Figure 5.1 illustrates the process followed under all four strategies. In all 

cases, when a service request arrives, the new load is assigned immediately to the least-cost, 

deadline-feasible vehicle. As discussed in chapter 3, these assume that for each vehicle, a 

TSPTW sub-problem is solved for the vehicle's current load assignments and the candidate load. 

The empty distance associated with the feasible ordering which minimizes the empty distance 

traveled is the cost associated with the assignment. Then, one of three decision rules is applied 

to make the final load to vehicle assignment. If the load can be served within its pickup 

constraints, it is assigned to the feasible vehicle for which the addition of the new load results in 

the: 

Least Empty to Loaded Ratio Assignment (ELR). lowest empty to loaded ratio, 

Least Overall Empty Distance Assignment (SED). overall empty distance to travel, 

Least Additional Empty Distance Assignment (OED). or, the least increase in empty 

distance to travel. 

The four assignment strategies differ with respect to two factors, (1) whether or not en-route 

diversion is allowed, and (2) whether or not re-assignment of loads from one vehicle to another is 

allowed. They are described next. 

No-en-route diversion or re-assignment of loads (OCRC) 

In the first case, it is assumed that once loads are assigned to a vehicle they will be served 

by that vehicle and that once a vehicle begins moving empty towards a pickup location it will 

continue on to make that pickup next. 

En-route diversion only (ORC) 

This alternative allows for the diversion of an en-route vehicle to pick up another load, 

provided the same vehicle is able to provide service to the original load within its specified time 

constraints. 
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Re-assignment of loads (OCR) 

In this case, en-route diversion is not allowed. However the re-assignment of currently 

assigned loads to alternative vehicles is allowed. The generation of completely new solutions is 

not examined; rather, a much simpler re-assignment strategy in which loads are considered, one 

at a time, for re-assignment to other vehicles is examined. 

The re-assignment rule is the following: after an assignment of a newly arriving load is made 

to a vehicle in the system, the last load assigned to each vehicle which has more than two loads 

assigned is a candidate for re-assignment to another vehicle. The load is removed and becomes 

a candidate, as though it were a newly arriving load, for re-assignment. This re-assignment 

process removes at most one load from each vehicle at each re-assignment point (the point 

directly following the assignment of a newly arriving load). 

En-route diversion & re-assignment of loads (DR) This alternative allows both the 

diversion of en-route vehicles and the re-assignment of loads. 

Load Acceptance Strategies 

The load acceptance strategies, outlined in chapter 3, are discussed here in the context of 

the experiments performed. In all cases, load acceptance decisions are made immediately after 

the arrival of the request for service in the system. The load acceptance strategies are listed in 

order of increasing restrictiveness. In the base cases, only the system capacity check is used. In 

the real-time strategies, in scenarios without time constraints (pickup deadlines), the system 

capacity check is all that is required; with time constraints, the feasibility based load acceptance 

process is invoked. In some cases, profit based load acceptance, an extension of the feasibility 

based acceptance process is used to reject less attractive loads -- those that cannot likely be 

served economically. 

System and vehicle capacity check prior to load acceptance/rejection. In all 

operational strategies examined, a simple capacity check is performed. In the base case 

strategies, if the number of loads waiting in the system exceeds a pre-specified number (generally 

five times the number of vehicles) then the load is refused service. In the corresponding real-time 

strategies, the maximum number of loads that may be assigned to an individual vehicle at once is 

limited by a maximum queue length. In scenarios examined, this number is five, so that, as in the 

base cases, the maximum number of loads waiting for service is five times the number of 

vehicles. 
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The other two load acceptance strategies require that the feasible, least cost, assignment 

of the candidate load to a vehicle be identified before a decision can be made. Under feasibility 

based load acceptance, if such an assignment can be found, then the load is accepted. Under 

profit based load acceptance, an additional requirement must be satisfied prior to the acceptance 

or rejection of a candidate load. 

Service Request origin, destination, latest pickup 

All vehicle, jcapacity? Yes ----I ... ~ Refused 

No 

l 
1) for each vehicle, the empty dist.'U1ce associated with the least empty distance "route" 
including the candidate vehicles is calculated (along with the "route") 

idle? 
No 

\ 
Yes 

I 
LED = dist(current location to origin) non-idle vehicles have an ordered queue of accepted loads 

ri%ii111""rl ' I I I I 
~ status?----..... 

moving empty moving loaded 
en-route d.iversion allowed? + 

Yes No 

JI' "-LED = empty distance associated with LED = empty distance associated with lea<;t 
least distance TSPTW solved for all loads in distance TSPTW solved for all except the first load 
the queue l . ~ in the queue 

2) at least one fea<;ible assignment ?.......- Yes No ... Refused 
3) for each vehicle for which a fe.:'lsible a<;signment exists, the cost of the (l<;signment is calculated 

local 11Jle? ELR LED L\ED ...----- , ~ 
LED is divided by the loaded distance LED from 1) The difference in LED with and without 
associated with the cand~ute , the ~oad is calculated 

4) the least {ELR, LED,L\ED} (feasible) vehicle is selected 

5) for vehicle selected --L\EDllength of c!ndidate loaded move < Acceptance Threshold? 

Yes No ----1..--- Refused , 
Accepted and assigned to selected vehicle 

Figure 5.1 The process followed by the real-time operational strategies 
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Feasibility based load acceptance An explicit feasibility check is performed prior to load 

acceptance or rejection. Discussed in chapter 3, a deadline-feasible insertion point (including 

addition to the end of a schedule) is identified for each vehicle for which such an insertion point 

exists. If no feasible insertion point can be found, the load is refused service. The procedure for 

finding a feasible insertion point is equivalent to performing an assignment for the load. If the 

assignment is made successfully the load is accepted (and assigned). If no feasible assignment 

is found, the load is refused service. 

Profit based load acceptance. Once feasibility has been established, in the manner 

described above, an estimate of the profitability of the candidate load is made in the following 

way: 1) The "best" deadline~feasible assignment of the load is found. 2) The ratio of the empty 

distance attributable to the load and its loaded distance is calculated, where the empty distance 

attributable is defined as the difference between the empty distance associated with the vehicle's 

route, with and without the candidate load. This estimate is compared to a threshold value, below 

which loads are refused service. Outlined in chapter 3, several acceptable proxies exist for profit 

estimation. Simulation experiments included in this analysis use an estimate of the ratio of the 

empty to loaded distances (ElL) attributable to a candidate load to make the acceptance or 

rejection decision. Loads with an ElL ratio higher than the threshold value are rejected. The long 

run ElL ratio for the system varies from 0.08 to 0.50, with most values around 0.30. Threshold 

values applied should be sensitive to the congestion level of the system The values used in this 

analysis vary from 0.5 to 1.2. Loads with an (attributed) ElL ratio higher than the threshold value 

are rejected. A threshold rule with parameter 1.2 would accept all but the most inconvenient 

loads into the system, while a rule applied with parameter 0.5 would reject all but the loads that fit 

well with already accepted loads. 

Under the real-time operational strategies, whenever a load is accepted into the system it is 

immediately assigned to a vehicle. In fact, the load acceptance and assignment processes are 

coupled. As discussed in Chaper 3, while these processes need not necessarily be coupled, this 

coupling ensures that future load acceptance decisions do not jeopardize the feasibility of already 

accepted loads. 

SIMULATION FRAMEWORK 

The simulation allows tests of alternative operational strategies under different scenarios 

regarding the demand pattern and information availability. In this section, the principal elements 

and defining parameters of the simulation framework are described. In addition, the profit model 
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used to evaluate the profitability of the operational strategies is discussed, followed by an 

explanation of those simulation parameters that vary across experiments and the method used to 

verify the statistical significance of results. 

The principal elements of the simulation are the dispatch center, from which all decisions are 

made, a set of vehicles, and a set of requests for service. 

Principal parameters of the simulation are: 

• Demand arrival pattern 

• Number of vehicles 

• Load acceptance strategy 

• Assignment strategy 

The dispatch center operates according to an operational strategy, including a load 

acceptance strategy and an assignment strategy (which may also include the re-assignment of 

previously assigned loads). 

Service requests are randomly generated according to a specified space-time stochastic 

process (or according to a pre-set schedule), and are characterized by the following attributes: 

time of request 

a load origin location (x, y or lat, long coordinates) 

a load destination location 

a service time window (we WI, for earliest and latest pickup times). In all cases it is , 

assumed that the earliest time of pickup is the time at which the request was received. 

At each instant, each vehicle has an associated status, which may be one of the following: 

movi ng loaded, 

moving empty, 

idle and available to accept assignments, 

or unavailable to accept assignments. 
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Only the first three of these are used in the simulation experiments discussed. Vehicles are 

assumed to be in service continuously. 

High Level Specifications 

The simulation experiments performed are governed by the following high level 

specifications. 

i) The geographic region is a circle of radius 250 miles. 

ii) The travel metric is Euclidean. 

iii) The demand arrival process is a Poisson point process, origin and destination locations 

are uniformly and independently distributed over the circular work area. 

iv) It is assumed that travel takes place at a constant speed of 50 miles per hour. 

v) As a result of i) - iii) the average distance traveled loaded is approximately 226 miles. 

Applying iv) the average duration of a loaded movement is 4.525 simulation hours. 

vi) Each week contains 70 hours of work time. All vehicles are in service (but sometimes 

idle) at all times. The maximum distance that can be driven in a week is therefore 3500 

miles. 

The profit model applied is another high level specification of the simulation framework. 

Because it requires more clarification than i) - vi), a section in the next chapter is devoted to its 

explanation. 

Implementation of the Profit Model 

Chapter 3 introduces a general operating profit model for carrier fleet operations in which 

profit is equal to revenue earned (which includes both a fixed portion and a portion proportional to 

loaded distances traveled) minus a set of operating costs. A simple expression for the operating 

profit is given below. 
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Revenue 
- (empty travel cost) 

Profit = r 
over ullloads served 

- (loaded travel cost) 
- (handling cost) 
- (daily vehicle charges) 
- (daily driver charges) 

The model implemented in the simulation experiments is closely related to this model but 

makes the assumption that fixed revenue earned per load served is approximately equal to 

handling costs. This simplifies the model so that only revenue generated per distance traveled, 

empty and loaded travel costs, and weekly vehicle and driver costs are included. The following 

parameter values are assumed. 

Revenue earned per loaded distance traveled = $1.20 per mile 

Cost incurred per distance traveled (empty or loaded) =$0.57 

(It is assumed that $0.30 would be paid to the driver and that $0.27 would be the marginal 

cost per mile for using the vehicle). 

The fixed cost per week for each vehicle is $300.0 

The fixed cost per week for each driver is $300.0 

While a serious effort has been made to develop a simple but reasonable cost model. many 

different values within a range would have been acceptable. The most recent version of 

American Trucking Trends (American Trucking Associations [1996] p. 22) estimates that in 1995 

the overall cost per mile to provide service was $1.302. Excluding interest, depreciation. 

management and overhead. $0.915 of this amount can be attributed to operating cost. while the 

remaining $0.387 is attributable to fixed cost or overhead. Values provided are aggregated over 

both the truckload and less-than-truckload (L TL) segments of the market. With industry profit 

margins typically two to four percent (American Trucking Associations [1996]. Association of 

American Railroads [1992]). average revenue earned per (loaded) mile, would need to be in the 

range of $1 .60 and $1.80 for an operation to remain profitable. 

Both the cost and revenue associated with truckload operations are less than those 

associated with LTL operations. In the cost model implemented. a fleet working at %50 utilization 

would incur operating costs of $0.91 per mile while at %100 utilization the cost is $0.74 per mile. 
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The $1.20 value selected as a representative revenue earned per mile is reasonable for a 

truckload operation. 

In the simulated system, a driver at 100% utilization would travel 3500 miles per week. 

Figure 5.2 shows how the break-even point for operating profitability varies with utilization and the 

fraction of time spent performing revenue generating work. Time spent moving empty is included 

in the fraction of time utilized, but only the fraction of time spent loaded generates revenue. For 

example, under this model a fleet that is 100% utilized can remain profitable when only 62% of its 

time is spent moving loaded (an ElL ratio of 0.61), while a fleet that is only 50% utilized must 

spend about 78% of its travel time loaded (an ElL ratio of 0.28). 

Premiums for Meeting Pickup Deadlines Systems in which loads have associated pickup 

deadlines that must be met will usually operate at lower utilization levels (for the same overall 

demand) than those in which deadlines are either non-existent or non-binding, since some 

service requests must be refused. In those systems a premium is assumed to be earned 

depending upon how the stringent the deadline is. In the simulation experiments systems 

investigated have the following deadlines {2, 4, 6} or {4, 8, 12} hours where the average loaded 

move has a duration of approximately 4.5 hours. Premiums are fixed charges that vary with the 

pickup deadline requested. Premium charged are: {$68.88, $54.30, $40.73, $27.15, $13.58} for 

{2, 4, 6, 8, 12} hour pickup deadlines. These values correspond to a percentage {25, 20, 15, 10, 

5} of the price charged for the average loaded move. 

Variable Parameters 

The vector {la, a, k, h, r, w, i} specifies the variable parameters of the simulation. 

la is the load acceptance rule applied, 

a is the assignment rule used, 

k is the number of vehicles in the fleet, 

h is the simulation horizon (in simulation weeks), 

w is a vector of pickup deadlines and associated fraction of requests in each deadline 

category, 

r is the rate of aJrival of requests for service per vehicle, and, 

i is the minimum number of simulation iterations over which results are aggregated. 
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Figure 5.2 Variability of the break-even point for operating profitability as a function of the 
utilization and revenue producing work performed 

Each of the input parameters may take on several values. While many values are possible, 

analysis presented here is limited to the following set of values. The range of values is intended 

to provide opportunities for examining the operational strategies of interest under different 

conditions, primarily with respect to intensity of demand. In addition, time constraints imposed 
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range from none at all to moderate to very restrictive. These are designed to lend insight into the 

behavior of systems with more or less underlying flexibility and to allow for the testing of flexible 

dispatching strategies under varying conditions. 

la: Three choices are examined, these represent capacity check, feasibility check, 

and profit based load acceptance. 

a: Nine choices are defined in chapter 5 as 

{FCFS, NO, BAT(a), BAS(b), ATSP, OCRc, ORC, OCR, DR}. 

k: The fleet sizes examined are {1 , 2, 5, 10, 20, 50, 100, 300} 

vehicles. 

h: The length of the horizon is limited to {26, and 2600} simulation weeks. 

w: The vector of pickup deadlines and associated fraction of demand in each 

category takes on three values, {tight, medium, none} corresponding to {(no deadlines; 1.0), 

111 
(2, 4, 8 hours; -,-,-), 

333 
1 1 1 

(4, 8, 12 hours; '3'3"3)} 
r: The average rate ofarrival of service requests is assigned one of three values, {rapid, 

medium, slow}. In the case with Poisson distributed arrivals the rates selected are: {0.200, 

0.1333, 0.100} service requests per vehicle per hour. Alternatively expressed as {5, 7.5, 10} 

simUlation hours between requests, on average, per vehicle. 

i: The minimum number of simulation iterations (consecutive, independent realizations) is 

100. Where possible simulations are performed for a larger number of iterations. 

Results Reported 

Chapter 3 discusses a set of objectives held by carrier fleet operators and table 3.1 outlines 

associated performance measures of interest. The performance measures in the three 

categories of interest, namely, profit, customer service and other operational considerations are 

listed. These measures are: 

Profit Measures 

• Revenue generated by the fleet per week and by each vehicle per week. 

• Operating costs incurred, per week and per vehicle per week. 

• Operating profit generated by the fleet per week and per vehicle per week. 

• Ratio of time spent empty to time spent loaded and ratio of time spent idle and empty to 

time spent loaded. 
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• Overall fraction of time vehicles spent moving empty, moving loaded and idle. 

• Mean and standard deviation of the length of loaded, empty and combined loaded and 

empty movements. 

• Fraction of loads served falling into each of the pickup deadline categories. For example, if 

w = {4, 8, 12 hours; .!..).).} then this result might be reported as {0.321, 0.339, 0.339} if 
333 

more tight pickup deadline loads were refused service than those with less tight pickup deadlines. 

Customer Service Measures 

• Mean and standard deviation of the wait time for service. (Time between arrival of the 

request and pickup) 

• Mean and standard deviation of the number of customers waiting for service. 

• Overall fraction of service requests accepted. 

• Fraction of loads served falling into each of the pickup deadline categories. 

• Fraction of pickup deadlines missed (for assignments not respecting deadlines explicitly) 

Other Measures 

• Mean, and standard deviation of loaded and empty distances traveled for vehicles across 

the fleet. This is a measure of the equality of assignments across vehicles. 

• Fraction of assignments or service requests effected by particular sub-strategies. For 

example, if loads are rejected, not for infeasibility exclusively but because a profit based 

load acceptance rule is applied, then the fraction of requests for which this is the case are 

reported. Similarly, if en-route diversion is allowed, the fraction of assignments involving 

en-route diversion are recorded. 

A subset of these are the focus of analysis of simulation results addressed in chapter 6. 

These are listed here, roughly in order of importance. 

• Mean and standard deviation of the average length of loaded, empty movements. 

• Mean and standard deviation of the average wait time for service. 

• Ratio of time spent empty to time spent loaded. 

• An estimate of the operating profit generated per vehicle per week. 

• Fraction of loads served falling into each of the pickup deadline categories. 

• Fraction of pickup deadlines missed (for assignments not respecting deadlines explicitly). 

• Mean, and standard deviation of loaded and empty distances traveled for vehicles across 

the fleet. 

• Fraction of assignments or service requests effected by flexible assignment strategies. 
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EXPERIMENTS PERFORMED 

This section contains a description of the experiments performed. Figure 5.3 contains a 

diagram of the so-called base case operational strategies examined while figure 5.4 shows the 

real-time operational strategies examined. Each branch on the trees displayed shows a different 

operational strategy. Most of the branches in the tree uniquely define a method of handling the 

acceptance and assignment of requests for service. Notable exceptions to this rule are the base 

cases BAT (a) , BAS(b), which actually specify a family of assignment strategies which vary with 

different values of a and b, the parameters that determine the frequency with which assignments 

are made. 

All of the experiments described here were performed with a simulation horizon of twenty-six 

simulation weeks. Unless otherwise specified, simulations are performed for a minimum of one 

hundred iterations. 

Comparison A - Four Base Cases 

In this analysis, the first four base cases are compared. Experiments extend the results 

discussed in chapter 4 in which first called first served assignment is compared with nearest 

origin assignment. Chapter 4 also describes a model of carrier fleet operations as an M/q/k 

queue. Results are drawn from experiments conducted with extremely high utilization levels and 

for fleets of up to three hundred vehicles. A simulated system is compared to analytical heavy 

traffic approximations for the M/G/k queue. The utilization rate in the system takes on values very 

close to one hundred percent in order to perform the comparison. While performance 

measures can be obtained at these utilization rates, there is little indication that such a system is 

stable or that the values are obtained at steady state. Simulation experiments here complement 

that analysis. They allow the estimation of performance measures in a more stable range, and, 

facilitate the comparison of base case assignment rules to other heuristics. Overall efficiency and 

the effects of moderate congestion on the wait time for service, size of queue and the length of 

service time (related to the empty distances traveled) are of interest. While it is assumed that 

serving customers as quickly as possible is a goal, explicit service deadlines are not enforced. 
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Tree of load acceptance strategies and assignment strategies 
(base cases) 

Capacity Check 

FCFS NO BAT(a) 

o 0) 

FCFS = first called first served 
NO = nearest origin 

BAS(~) 

BAT(a) = time triggered bipartite assignment 
BAS(13) = state triggered bipartite assignment 
A TSP = assymmetric traveling salesperson problem 

Figure 5.3 Tree of base case operational strategies 
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Tree of load acceptance strategies, assignment strategies and 
decision rules (real-time cases) 

Protit 
Estimation 

Feasibility 
Check 

ELR ELR ELR ELR ELR ELR 

CD (j) CD 0@ (0 
DCRC = no en-route diversion, no re-assignment 
DRc = en-route diversion, no re~assignment 
ncR = no en-route diversion, no re-assignment 
DR = en-route diversion & fe-assignment 

ELR = least empty to loaded ratio assignment 
LED = least overall empty distance assignment 
.!lED = least additional empty distance assignment 

ELR 

@ 

Figure 5.4 Tree of real-time operational strategies 

ELR 

The cases examined which include pickup deadlines are of interest as a comparison to cases in 

which deadlines must be satisfied. Cases examined for alternatives 1-4 (in figure 5.3) are shown 

in figure 5.5. Fleet sizes are limited to 10, 20 and 50 vehicles, not because of an inherent 

limitation in the simulation framework; rather, because the compact region served and the 
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demand arrival pattern which specifies that origin and destination locations are generated 

uniformly (and independently) on a circle makes an analysis with smaller fleets more meaningful 

than one with larger fleets. 

The Effect of Limiting Pool Size. The capacity check for load acceptance specifies that 

the number of loads waiting for service is no more than 5 times the number of vehicles in service. 

In the scenarios chosen for examination, this is a binding limit in the heavy demand scenarios 

only. However, in heavy demand cases the limit on pool size can have significant consequences. 

The effect of this limit is examined in a set of additional simulation experiments which are 

discussed in chapter 6. 

Immediate Versus Delayed Assignment. The tradeoffs between immediate and delayed 

assignment of loads to idle vehicles is another topic addressed in chapter 6 that does not fit 

neatly into the experimental design presented in chapter 5.. Both bipartite assignment strategies 

are of interest in this analysis and results of simulation experiments in which a, b, fleet sizes and 

intensity of demand vary are discussed. 

Comparison B - Local Assignment Strategies Requiring Real-Time Information 

The four local assignment rules outlined in chapter 5 are compared. In each case the 

performance of three decision rules which assign loads to drivers in which empty to loaded ratio, 

additional empty distance, and, the overall empty distance is least are examined relative to the 

performance measures outlined in chapter 5. Local assignment rules that incorporate real-time 

information on vehicle locations, the status of the fleet the location and characteristics of service 

requests and explicit pickup deadlines are of interest here. The performance of decision rules 

based on a set of objective function proxies is examined relative to a set of higher level 

objectives. Cases 6 to 9 in figure 5.4 are the focus of this examination. The complete set of 

experiments shown in figure 5.5 are conducted for alternatives 6 and 10, with selected 

experiments conducted for alternatives 7, 8 and 9 and for alternatives 11, 12 and 13. Alternatives 

11, 12 and 13 are identical except that load acceptance thresholds based on the predicted profit 

associated with candidate loads are applied. As in the experiments described in the previous 

section, fleet sizes are limited to 50 vehicles because the service region selected for this analysis 

is compact. In addition, the computational requirements (time requirements) of simulation 

experiments, which are conducted for a 26 week horizon and are repeated a minimum of one 

hundred times for each scenario examined limit the size of the fleets. Incorporating promising re-
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assignment heuristics into actual fleet management systems (which must accommodate fleets as 

much as two orders of magnitude larger) would not be computationally or practically infeasible. 

Comparison C - Local Assignment Strategies Requiring Real-Time Information and 
our Base Cases. 

In this analysis the performance of -the real-time information cases is compared to the first 

four base cases outlined in chapter 5. As mentioned in the discussion of comparison A, although 

pickup deadlines are not explicitly handled in the base case scenarios, (alternatives 1-4 in Figure 

5.3), experiments in which pickup deadlines are assigned but not honored are examined. 

Experiments conducted are shown in figure 5.5. 

Comparison 0 - Local Assignment Rules and Solutions To Corresponding 
Asymmetric Traveling Salesperson Problems (Examination Of a Single Vehicle) 

A single vehicle is examined here. Assignments do not have deadlines for pickup. Sets of 

randomly generated loads of the size of the number of loads typically served per vehicle per week 

are assigned and the average empty distance traveled to provide service compared to the 

average empty distance traveled under the real-time assignment rules, but in which demands 

become known over time. 

CONVERGENCE CRITERIA 

Two separate convergence criteria are used in the simulation. These serve different 

purposes. The first criterion is used to determine the point at which the system is approaching 

steady state; this criterion is applied within every iteration. The second convergence criterion is 

used to determine the point at which a sufficient number of iterations have been run, ensuring that 

the values of performance measures, aggregated over all iterations, have converged to their true 

average values. The iterations are independent. Random variables are drawn from a distribution 

beginning with a different (randomly generated) seed. Performance measures are obtained for 

each iteration and are aggregated over all or part of the simulation horizon. Then, they are 

aggregated over the set, or a subset, of iterations. If an individual iteration fails to meet the 

steady state convergence test, values of the average and standard deviation of wait time and of 

the average number of customers in the system and awaiting service are not included in the 

aggregate statistics provided at the end of the full set of iterations. 

If convergence was not reached in any other individual iterations, the simulation would stop 

soon after the minimum number of iterations because the value of aggregate performance 

measures would never change. 
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Fleet Size Demand Arrival Rate Deadlines for Pickup 
Tight 

Rapid Medium 

None 

Tight 

Moderate Medium 

None 

Tight 

Slow Medium 

None 

Tight 

Rapid Medium 

None 

Tight 

20 Vehicles Moderate Medium 

None 

Tight 

Slow Medium 

None 

Tight 
Rapid 

Medium 

None 

Tight 

50 Vehicles Moderate 
Medium 

None 

Tight 

Slow Medium 

None 

Figure 5.5 Set of experiments for comparisons A, Band C. 
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The steady state convergence criterion is the following: 

1) The simulation horizon is split into ten even slices. The average wait time for service, a 

key performance measure, is calculated for each time slice. If the difference in the average wait 

time for service in consecutive time slices is less than five percent in three time slices, it is 

assumed that the system is approaching steady state and performance regarding the average 

and variability of the wait time for service and average number of customers in the queue are 

calculated from that time slice to the end of the horizon. 

Figure 5.6 illustrates the convergence checking process. 

Letting Wi+1 represent the average wait for service in the cl-fltiSt WVleti'mice, 

overall average over the first i time slices. 

(W· -w· 1)/ 
If 1 1+ Iw i < O. OS a counter is incremented. 

When the counter has been incremented three times then the span for the observation 

period for the average and standard deviation of wait time for service and average number of 

customers in the system and awaiting service begins. This observation period lasts until the end 

of the simulation horizon (the end of the iteration). 
time~ 

~ Average wait time measured for this time slice 

Overall average of wait time measured over these time slices 

Figure 5.6 Diagram of application of first convergence criterion 

The stopping criterion is the following: 

2) If, after the minimum number of iterations (typically 100), the values of key performance 

measures,aggregated over iterations performed up to that point, do not change by more than one 

tenth of one percent in five consecutive iterations, it is assumed that the system has converged. 

The performance measures tested are the average empty and loaded distances traveled over the 

iterations run so far. Typical simulation experiments converge within ten to thirty iterations after 

the initial one hundred. A diagram is provided for this second convergence criterion in figure 5.7. 
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Letting E i+1 and Li+l represent the average empty and loaded distances traveled in the first 

i+ 1 iterations, a counter is incremented if 

If this relationship is observed in five consecutive iterations then the simulation stops. 

/min+l 
convergence checking begins after 
the minimum number of iterations 

iterations 

Figure 5.7 Diagram of application of second convergence criterion 

The second convergence criterion is binding less often than the first. Experiments that 

converge with respect to the second criterion do not necessarily converge with respect to the first. 

For certain interarrival times and less consistent assignment strategies, only a small fraction 

of iterations pass the test of steady state convergence. The factors that affect whether the 

system reaches steady state or not are, level of congestion, fleet size, pickup deadlines, and, 

stability of the assignment rule. If the rate of arrival of requests for service is such that r, the ratio 

of the rate of arrival of requests (per vehicle) divided by the average service rate, is very close to 

1.0, there is no guarantee that steady state will ever be reached. On the other hand, if the rate of 

arrival of requests for service is so high that the system is always running at its maximum 

allowable capacity and requests are being turned away then (r > 1.0 but r experienced :::: 1.0), 

and as a result the system does display steady state behavior. Under heavy demand intensity, 

the limit on the number of loads that may be waiting for service at any time eliminates oscillatory 

behavior in the number of loads in the system. 

Results discussed in chapter 6 are all drawn from experiments in which steady state 

convergence was obtained (in addition to the simulation-stopping criterion). Although it should be 

possible to construct scenarios in which convergence, as defined, is not obtained, for any number 

of iterations, no such cases were observed. While in some experiments steady state 
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convergence was not obtained when the minimum number of iterations was set at 100, when this 

was raised toa higher limit, generally 250, no non-convergent scenarios were observed. 

TESTS OF STATISTICAL SIGNIFICANCE OF RESULTS 

Where applicable the statistical significance of results is reported. In each set of 
,\ 

experiments, the mean value of the performance measures is reported. The significance of the 

differences if these mean values for different scenarios is tested at significance levels of five and 

one percent with the following test for the difference between two means: 

Letting m1 and m2 represent the mean values of a performance measure under the two 

different scenarios, xl and x2 the sample means of the corresponding performance measures, 

s1 and s2 the sample standard deviations of the performance measures and m1 and m2 the 

number of simulation iterations performed. 

Null Hypothesis: Ho: III -112 = () 

Confidence Interval P X1- )(2 < Za = 1- ex 
~+~ 
fi 1 fi2 

With the exception of the number of miles driven over the simulation horizon, the standard 

deviation of all quantities of interest (expressed in simulation units, rather than physical units 

(miles, hours) is less than one. For simulations performed over one hundred iterations the 

denominator of the test statistic is no larger than 0.141. Differences in mean values of measured 

quantities (measured again, in simulation units, rather than physical units) of 0.328 units, or, (82 

miles, 1 .64 hours) are significant at a level of one percent. In some experiments clear trends may 

be inferred from the simulation results but the differences in some measured quantities (for 

example, the average empty distances traveled to provide service) may not be statistically 

significant. Where applicable this is noted. 

SUMMARY 

This chapter provides a description of the load acceptance, assignment and re-assignment 

strategies examined and the simulation framework used to investigate them. The four primary 

sets of experiments are outlined. These are designed to facilitate an investigation of the 

performance of locally oriented real-time assignment rules relative to other locally oriented real

time assignment rules; of the performance of four bases cases rules that do not rely on real-time 

information updates; of the performance of these locally oriented real-time assignment rules 
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relative to the base cases; and, of the performance of real-time assignment rules relative to an 

assignment rule in which a full week's loads (for a single vehicle) are known a priori. This last 

case is comparable to an analysis of assignments with perfect hindsight. The discussion of the 

simulation and experiments performed in this chapter was primarily descriptive in nature. A 

detailed description of the procedural details is provided for the interested reader in Appendix I. 
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CHAPTER 6 ANALYSIS OF ASSIGNMENT STRATEGIES: 
EXPERIMENTAL RESULTS 

INTRODUCTION 

In this chapter the results of the experiments described in chapter 5 are examined. This 

introductory section, in addition to providing a blueprint of the examination of results, is used to 

highlight some of the more significant findings. 

Beginning with a comparison of the first four base case assignment strategies, FCFS, NO, 

BAT(a), and BAT(b), the effects of imposing a limit on the number of loads that may reside in the 

pool at one time, and, the effects of delayed vs. immediate assignment of loads to waiting 

vehicles are examined. Introduced in chapter 5, results discussed in Chapter 6 pertaining to the 

application of the bipartite assignment technique illustrate the impact of the pool size limit and of 

varying the length of time between the generation of consecutive assignments. Performance 

varies significantly across differing assignment periods. 

In chapter 6, the real-time operational strategies are examined. The performance of the 

four assignment strategies, each requiring varying degrees of operational flexibility are 

investigated with and without deadlines for service (pickup) and, in the case of heavy demand, 

with and without profit based load acceptance rules. In chapter 6, the relative performance of the 

three local rules, defined in chapter 5, for assigning loads to vehicles (within the four real-time 

information strategies) is shown to vary across demand levels, pickup deadlines and system 

flexibility. None of the three rules dominates absolutely. Results of an extended set of simulation 

experiments performed over additional levels of demand intensity are examined. The relative 

strengths and weaknesses of the three local assignment rules are also discussed. 

An examination of the effect of allowing en-route diversion and re-assignment of loads on 

operational efficiency is presented in chapter 6. A section later in the chapter 6 is devoted to the 

benefits of applying profit based load acceptance rules, particularly in an environment where 

demand exceeds operating capacity. 

Chapter 6 also compares the real-time strategies to the base cases. Without deadlines for 

service, and under heavy demand, the two closely related base case assignment methods, time 

and state based bipartite assignment, out-perform the real-time cases with respect to both wait 

time for service and the average empty distance driven to provide service. In fact, when 

demands are high and no pickup deadlines are in place, even the nearest origin strategy out

performs the real-time information cases. The variability of wait times, however, is somewhat 

lower under the real-time assignment strategies. These very high demand scenarios are 
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intended to provide an upper bound on the efficiency of the bipartite and nearest origin 

assignment cases. 

Even in the absence of pickup deadlines, under moderate and low demand, results of the 

comparison of the base cases to the real-time cases differ from results generated under 

(artificially) high demand. Under moderate and low demand levels, the real-time cases, in which 

multiple loads are assigned to a single vehicle, can be more efficient than the base cases, with 

respect to the empty distances driven to provide service and hence the profitability of the system. 

In some cases, wait time for service is higher. 

The chief advantage of the real-time cases is that pickup deadlines are met. As designed, 

the base cases do not explicitly handle pickup deadlines. If loads are assigned such deadlines at 

least thirty percent and sometimes closer to one-hundred percent of the loads are served long 

after their deadlines have passed. 

Discussed first in chapter 6, the relative performance of the real-time strategies under high 

demand is significantly improved by the application of a profit based load acceptance rule. 

The combined effect of allowing en-route diversion, real-time load re-assignment and profit 

based load acceptance rules can be shown to improve efficiency, measured by the distances 

traveled to provide service, while wait times for service and associated variability are kept low by 

pickup deadline constraints. Under real-time information fleets can be at once profitable and 

responsive to customers needs for rapid response to service requests. 

COMPARISON A - FOUR OF FIVE BASE CASE ASSIGNMENT STRATEGIES 

This section is concerned with a comparison of four of the five base case strategies: 1) first 

called first served assignment, 2) nearest origin assignment, 3) time triggered bipartite 

assignment and 4) state triggered bipartite assignment. The experiments outlined are intended to 

test the performance of the base case strategies against each other. The first called first served 

strategy is inefficient in spatially distributed service system applications but it is included here as 

a benchmark case. The expected empty and loaded distances under the assumption of uniform 

origin and destination locations, and the variance of these distances were derived for the FCFS 

policy in chapter 4. As discussed in the same section, in the single vehicle case, performance 

measures can be estimated with a high degree of accuracy using fundamental queueing 

relationships and the first and second moments of the service time. The nearest origin 

assignment also has some attractive analytic properties, discussed in chaper 4. As will be clear 

from results presented in the next few sections, nearest origin assignment performs well under 

very high demand but less well in less congested systems. The performance of bipartite 

assignment varies widely depending upon the intensity of demand and the specific 
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implementation selected, particularly with respect to the length of time between consecutive 

assignments. 

FCFS Assignment 

As mentioned above, first called first served assignment is included here as a benchmark 

because it is well-defined, possesses analytically known properties, and its performance is 

predictable: the average lengths of the empty and loaded moves are equal, the variability of wait 

time is low relative to other assignment strategies examined, and, the length of time unserved 

loads have been in the queue at the end of the simulation horizon is approximately half of the 

average wait time for service. This last result confirms that wait times for service are not longer 

for loads left in the pool than for those served, an observation that follows directly from the 

character of FCFS assignment, in which no loads are preferred over any others. This is not the 

case under the other strategies examined. As may be observed in figure 6.1, the average wait 

time over all loads accepted into the queue and the average wait time for loads left in the queue 

at the end of the simulation horizon are consistent across fleet sizes. This assignment method is 

not practical under most realistic cost models as the cost to provide service exceeds potential 

revenues. 
Average wait time for service 

and average time that loads in queue have been waiting at the 
end of the simulation hOlizonunder FCFS assignment 

three demand levels, three neet sizes 

12 

D E[Wait] 

IZl E[Wait Remaining Loads] 

high medium low high medium low high medium low 
demand level 

10 vehicles 20 vehicles 50 vehicles 
fleet size 

Figure 6.1 Average wait time for service and average time in queue for loads not served at the 
end of the simulation horizon under FCFS assignment 
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Nearest Origin Assignment 

The nearest origin assignment strategy was introduced in chapter 4 and defined again in 

chapter 5. The purpose of the discussion in chapter 4 was to compare the performance of a 

system under nearest origin assignment to heavy traffic approximations for system performance 

measures derived for M/G/k queueing systems. Nearest origin assignment performs best in high 

demand environments where the number of choices of loads to assign each vehicle is high; it 

performs fairly well in low demand environments where the number of idle vehicles available to 

serve each incoming service requests is high; it fares least well, both in absolute and comparative 

terms when demands are not so low that many vehicles are available to be assigned loads and 

not so high that the pool of unassigned demands is fairly large. Unlike the classical assignment 

strategy in which at pre-defined times, or, alternatively, when the system reaches a certain state, 

all accumulated loads are candidates for simultaneous assignment to available vehicles, nearest 

origin assignment assigns loads to the nearest idle vehicle upon arrival to the system when the 

pool is empty; when the pool is not empty each arriving load joins the pool and becomes a 

candidate for assignment immediately. However, when demands are heavy, the variability of wait 

times can be high. Without safeguards to guarantee that all loads are served within a reasonable 

length of time, an unattractive load (say on the periphery of the circle in this case) can languish 

indefinitely. The average length of time that loads not served by the end of the simulation horizon 

have been waiting can be more than twice the wait time for served loads; the associated standard 

deviation more than three times that of served loads. Figure 6.2 shows the average wait times for 

service and wait times in pool for loads not served at the end of the simulation horizon, under 

different demand intensities and different fleet sizes. It may be observed that although the 

average wait times under NO are less than those under FCFS the average length of time in pool 

for loads not served by the end of the simulation horizon may be higher, under heavy demands, 

than under FCFS assignment. In addition, while the average wait time for service decreases with 

an increase in fleet size, the wait times for loads remaining in the pool at the end of the simulation 

horizon do not decrease. 

Performance of Classical (Bipartite) Assignment: Tradeoffs Between Immediate and 
Delayed Assignment of Loads to Vehicles 

Central to this research is the issue of immediate versus delayed assignment of loads to 

vehicles. When service requests arrive to the system over time it may be advantageous to avoid 

assigning loads until more information is available; on the other hand, throughput may be 

increased by serving requests as soon as possible, thereby freeing drivers to accept new 

assignments. In this section, the third and fourth base cases are examined in order to explore 
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these tradeoffs in detail. Mentioned in chapter 5, these experiments do not fit neatly into the 

experimental design constructed for comparisons of different operating strategies. The 

examination here is intended to bring to the forefront issues that are of importance to the overall 

analysis and to clarify the choices of parameter values (a and b) used in the simulation 

experiments to forrow. 
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Average wait time for service 
and average time that loads in queue have been waiting at the 

end of the simulation horizon under NO assignment 
three demand levels, three neet sizes 
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6 

4 

2 

0 

[] E[Wait] 

1m E[Wair Remaining Loads] 

high medium low high medium low high medium low 
demand level 

10 vehicles 20 vehicles 50 vehicles . 
fleet size 

Figure 6.2 Average wait time for service and average time in pool for loads not served at the end 
of the simulation horizon under NO assignment 

The cases examined are chosen to highlight the tradeoffs between immediate and delayed 

assignment of vehicles to loads. BAT(a) with a close to zero approximates nearest origin 

assignment. In addition, a system in which "look ahead" is permitted -- that is, vehicles that will 

become idle within a fraction of the time between the current and the next scheduled assignment 

are included in the current assignment -- allows for the examination of the tradeoffs associated 

with including more vehicles in the current assignment. The latter would on one hand lead to a 

superior solution in terms of greater efficiency (due to more loads and more vehicles and hence 

lower cost assignments) while, on the other hand excluding future opportunities. BAT(a) with look 

ahead could properly be termed a quasi real-time assignment strategy since accurate information 

about the current and near term status and location of vehicles is needed. BAS(b) represents 

another quasi-real-time implementation of the bipartite assignment heuristic in which assignments 
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are made when the system reaches a pre-specified state. This adaptive assignment method 

offers advantages under moderate and low demands and can reduce the variability of wait times 

for service. 

Heavy Demand and the Restriction on Pool Size. As described in chapter 5, the 

maximum allowable number of loads in the system is restricted to a fixed number. The limit 

chosen for the experiments conducted is five times the number of vehicles in the fleet. One 

reason for this particular limit is that the resulting maximum number of loads in the system 

corresponds to the limit in the real-time strategies examined. In addition, and more importantly, 

operational issues favor a limit on the number of loads in the pool. TheJimit is non-binding under 

moderate and low demand but causes rejection of requests under heavy demand. When less 

restrictive limits are imposed the average distance traveled empty goes down, but the wait time 

for service, the variability of that wait time and the length of time loads not served at the end of 

the service horizon have been waiting is very high. Figure 6.3 shows the first and second 

moments of wait time and the average length of time remaining loads had been in the pool at the 

end of the simulation horizon for pool limits of 5, 10 and 15 times the number of vehicles. Results 

for both time based and state based bipartite assignment are shown. Parameters a and bare 

assigned representative values chosen for simulation experiments under heavy demand. 

Numbers are shown relative to the length of the average loaded move. The 18- 30% increase in 

profitability that results from a reduction in the average empty distance does not justify the 

increase in wait times experienced. 

Throughput Maximization: a -? 0 and Nearest Origin Assignment. In a high demand 

environment, and in a compact service area, the goal of maximizing throughput dominates. 

When loads to not have associated pickup deadlines and demands for service exceed the ability 

of the fleet to provide service, the pool of loads waiting to be served will contain many candidate 

loads. In the system examined in this study, it appears that the purely "greedy" (because it looks 

for the best next load for one vehicl,e at a time and takes only the distance to the origin location of 

loads into account) nearest origin assignment, in which vehicles are assigned loads as soon as 

they complete service, provides the best overall utilization. Empty distances traveled can be 

reduced slightly by allowing loads to accumulate, but overall throughput decreases. Chapt 

er 6 presents simulation results that examine the system with a modification in which vehicles that 

will become idle a fixed fraction of the between the current and next assignment period are 

included as candidates for assignment. This look ahead can be shown to significantly improve 
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throughput under high demand. In this section we do not consider look ahead policies and 

merely examine the performance of the system when the parameter a takes on various values. 

BA T(0.5) and BAS(2.0) 
10 vehicle fleet, 50 100 150 load limit on the pool size, heavy demand 

a verage wait time for service, 
standard deviation of wait time for service and average length of time loads 
remaining in the pool at the end of the simulation horizon had been waiting 
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Figure 6.3 Wait time and variability of wait time - pool limits of 5,10 and 15 times the fleet size 
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Figure 6.4 shows how empty distance decreases as the time between assignments 

increases. Of course, there is an associated increase in wait time, shown in figure 6.5. The 

performance of the nearest origin assignment is included in all figures as a benchmark for 

comparison. Under the conditions described here, larger values of a (longer times between 

assignments) means that more loads are turned away and that on average vehicles spend more 

time idle. Figure 6.6 shows how the operating profit generated decreases as a increases. 

Figures 6.7 and 6.8 illustrate the corresponding increase in idle time and decrease in the fraction 

of service requests accepted as the time between assignments increases. 

More Choices: More Efficient Solutions. In contrast to the very high demand scenario, 

when the demand level allows all requests to be served, the goal of serving efficiently dominates. 

This may require waiting to assign loads until an efficient assignment is possible. In some cases, 

throughput may actually be increased by waiting until a sufficient number of loads are available 

for assignment (an increase in idle time may be traded off for reduced empty travel time). If 

demand for service is very low, more of the fleet is available to provide service to requested loads 

so the likelihood that an immediate efficient assignment can be found is higher than in the 

moderate demand case. Figure 6.9 shows the reduction in average empty distance traveled as 

the number of loads included in an assignment increases. The curves shown in the diagram 

provide a lower bound on the distances traveled in the system examined. The results are 

generated (through simulation) in the following way: 1) before an assignment, exactly PL loads 

are generated, uniformly and independently over a circle, where PL is the limit on the pool size. 

2) An assignment is generated, matching V vehicles with the PL loads. The loads chosen in the 

best solution are served, the rest are discarded. 3) When the V loads have all been served, each \ 

by a different vehicle, steps 1) • 3) are repeated. Vehicles remain at the destination point of loads 

served between assignments periods; they are assigned a new load in every assignment period. 

Empty distances traveled are presented as the ratio of the average empty distance traveled to the 

average distance traveled loaded. 

Moderate Demand: Conflicting Criteria. In a moderate demand environment conflicting 

criteria should be taken into account. Satisfying as many service requests as possible is 

important, as is providing service within a reasonable amount of time. As mentioned in the 

previous section, allowing demands to accumulate for short periods can lead to more efficient 

driver to load assignments but results in an increase in wait time for service and in some cases, a 

decrease in the ability of the fleet to provide service to future requests· resulting in a reduction of 

operating revenues and profits. Figure 6.10 shows the reduction in the length of the average 
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empty move as the time between consecutive assignments increases, while figure 6.11 illustrates 

the corresponding increase in wait time for service that accompanies this reduction. Results for 

the nearest origin assignment are included here too. It may be observed in figure 6.12, that 

operating profit increases as the time between assignments increases, up to a point. The 

decrease that is observed for a values of 1.5 and 2.0 is a result of turning loads away -- a 

decrease in throughput. The fraction of loads accepted is shown in Figure 6.13. 
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Figure 6.4 Empty distance as the time between assignments increases 
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Figure 6.5 Wait time for service as time between assignments increases 
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"Look ahead" Policies. In a moderate demand environment, including vehicles that will 

become available within a fraction of the time between the current and the next scheduled 

a~signment time can lead to a reduction in the average wait time for service. This reduction 

comes at a price however, as future opportunities for cost effective assignments may be missed. 

Results of numerical experiments involving "look ahead" policies suggest that a look ahead period 

near one half of the assignment period yields the most attractive combination of a reduction in the 

mean and standard deviation of wait time and a relatively small increase in the average distance 

traveled to provide service. Figure 6.14 offers a comparison of the average empty distance 

traveled to provide service and average wait time under three policies. In the first, only idle 

vehicles are considered for assignment; in the second, vehicles that are to become idle halfway 

between assignment periods are also considered; while in the third, vehicles that will become idle 

any time before the next assignment period are considered for assignment. Figures 6.15 and 

6.16 compare the half look ahead policy to the no look ahead policy over a wide range of values 

of a. While the half look ahead policy is dominated, in this moderate demand scenario, with 

respect to operating profit generated by the no look ahead policy, it performs nearly as well for 

large values of a. For a = 1.5, for example, the operating profit generated is quite close to the no 

look ahead case and the average wait time is less than half the wait time in the no look ahead 

case. 

Under heavy demand, employing a half look ahead policy appears to improve performance 

with respect to all criteria of interest except the average distance traveled empty, which increases. 

The reason for its success is that when demand is heavy, assigning more loads in the current 

assignment does not significantly reduce future opportunities. By the time the next assignment 

period arrives most loads assigned in the last period will have been replaced by new arrivals. 

Under heavy demand, vehicles spend less time idle under the look ahead policy, resulting in 

higher operating profits. The increased throughput achieved more than makes up for the 

additional time spent moving empty and results in a decrease in the average time spent waiting 

for service. Figures 6.17 and 6.18 compare the profitability and average wait time under the half

look ahead policy when demand is heavy to one in which only idle vehicles are candidates for 

assignment. The time between assignments in each case is half the duration of the average 

empty move (a = 0.5). The improvements in performance of the system examined under high 

demand and the half look ahead policy are consistent across fleet sizes. Figure 6.1 9 shows the 

improvement in profitability, reduction in wait time and increase in empty distance traveled to 

provide service that results when the half look ahead policy is compared to the no look ahead 

policy for fleets of 10, 20 and 50 vehicles. 
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Assignments Triggered by Excess Idle Vehicles or Waiting Loads. An examination of 

state-based bipartite assignment (BAS(b», outlined in Chapter 5, is presented here. Assignments 

are triggered when the number of loads awaiting service is equal to a multiplier b times the 

number of idle vehicles. Assignments are also triggered when the number of idle vehicles is 

equal to b times the number of waiting loads. The combination of two triggers is designed to limit 

the time loads wait for service, both when demand is moderate or heavy (the former trigger is 

active) and when it is low (the latter trigger is active). The choice of a single trigger, rather than 

two different parameters, is admittedly arbitrary. It may well be that sensitivity analysis would 

reveal a choice of two parameters that would perform better than the single one. We leave that a 

subject of future research. 

The simulation results discussed focus primarily on scenarios where demand is moderate. 

Because of the limitation placed on the number of loads allowed in the pool, the pool is always 

nearly full under high demand. As a result, the ratio of vehicles to waiting loads is nearly always 

the same; under high demand, the steady state performance of BAS (b) does not vary with b. 

Figure 6.20 illustrates the uniformity of performance of BAS(b), relative to four performance 

measures, for three values of b. 

In the moderate demand environment examined, simulation results echo those in which fixed 

assignment periods of varying length are examined - the average distance driven to provide 

service is lower when the assignment is triggered less often (higher b), the average wait time for 

service, higher. Figures 6.21 and 6.22 illustrate this relationship. The stable region for this 

assignment rule is limited to cases where b is less than or equal to the multiplier which specifies 

the maximum number of loads in the pool. In this investigation, that number is five, that is, the 

maximum number of loads allowed in the pool is five times the number of vehicles. The reason 

for this limitation is that when the system begins all vehicles are idle; the first assignment is made 

when the number of loads in the pool is equal to b times the number of vehicles. If b is greater 

than the multiplier that specifies the pool size, a situation quickly arises in which the moderate 

and heavy demand trigger (PL greater than or equal to bV) is never initiated. The operating profit, 

shown in figure 6.23, does not drop off after a point, as it does when the time between 

assignments is increased in the moderate demand case. Because assignments are triggered by 

an accumulation of loads, in the stable region examined, loads are not turned away because of 

lack of capacity. 
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four criteria - average empty distance traveled, 
average wait time for service, 

standard deviation of wait time for service, and, 
average operating profit generated per vehicle per week 

10.00 -

9.00 -

8.00 -

7.00 -

6.00 -

5.00-

4.00-

3.00 -

2.00 -

1.00 -

BAS(I.0) 
$768 

l!2n E[Empty Distance] 

[&1 E[Wait] 

• a[Wait] 

BAS(3.0) 
$770 

BAS(5.0) 
$766 

Figure 6.20 Performance of BAS (b) under high demand relative to four measures 
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Figure 6.23 Operating profit under BAS(b) as accumulation of loads increases 

,Summary of Bipartite Assignment Performance and Selection of Cases for Further 

Comparison. The discussion and simulation results presented in this section point out the extent 

to which the performance of the system under these closely related assignment strategies varies. 

Figures 6.24-6.27 present results from simulations of both time-based and state-based 

assignment periods and show that neither rule strictly dominates the other. Assignment based on 

the state of the system possesses clear advantages in systems in which demands fluctuate in an 

unpredictable manner, while time-based assignment which requires less unplanned driver to 

dispatcher communication may perform quite well, when an appropriate assignment period is 

chosen and under a stable request arrival pattern. As examined in chapter 6, a look ahead policy 

can improve the efficiency of time based assignment under high demand. 

The cases chosen for comparison to the real-time information cases are BAT(a) and BAS(b), 

with b = 2.0 in all cases and a = 0.50, 0.75 and 1.25 under high moderate and low demand. 

Summary of Base Cases Comparisons 

Figures 6.28 to 6.36 present a comparison of the performance of FCFS, NO and bipartite 

assignment strategies with respect to four criteria, average empty distance, average wait time for 

service, standard deviation of wait time and operating profit generated. In may be observed that 

under heavy demand the nearest origin strategy performs best with respect to all four criteria, but 

that its relative advantage over BAS (b) decreases with larger fleet sizes. In the limit, as a 

approaches zero, BAT (a) approximates NO. Similarly, under heavy congestion BAS(b), for any 

value of b approaches NO. The value of 0.50 is chosen for a in the high demand scenario 

because the corresponding frequency of assignments, generated every 2.26 simulation hours, is 

a more representative value than a close to zero. A half look ahead policy is beneficial in all of 
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the high demand scenarios examined, but does not achieve the efficiency (and high throughput) 

of NO and BAS(b). 
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Comparison of Base Case Assignment Rules Under Heavy Demand 
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Figure 6.28 Comparison of base cases ~ heavy demand - 10 vehicles 
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Figure 6.29 Comparison of base cases - heavy demand - 20 vehicles 
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Comparison of Base Case Assignment Rules Under Heavy Demand 
50 vehicle fleet 
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Comparison of Base Case Assignment Rules Under Moderate Demand 
20 vehicle fleet 
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Figure 6.32 Comparison of base cases - moderate demand - 20 vehicles 

163 



Comparison of Base Case Assignment Rules Under Moderate Demand 
50 vehicle fleet 
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Figure 6.33 Comparison of base cases - moderate demand - 50 vehicles 
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Comparison of Base Case Assignment Rules Under Low Demand 
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Figure 6.34 Comparison of base cases - low demand - 10 vehicles 
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Comparison of Base Case Assignment Rules Under Low Demand 
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Figure 6.35 Comparison of base cases - low demand - 20 vehicles 
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Comparison of Base Case Assignment Rules Under Low Demand 
50 vehicle fleet 

four criteria - average empty distance traveled, 
average wait time for service, 
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Figure 6.36 Comparison of base cases - low demand - 50 vehicles 

Under moderate demand, both BAT(a) and BAS(b) are significantly more efficient, from a 

distance traveled point of view, than nearest origin assignment. However, under moderate 

demands, wait times under these strategies exceed those under nearest origin assignment. 

BAT(0.75) is more profitable than BAS(2.0) but results in longer and more variable wait times for 

service for fleets of 10 and 20 vehicles but is less profitable and results in shorter and less 

variable wait times than BAS(2.0) for fleet of 50 vehicles. The reason for the switch is that the 50 

vehicle system is more efficient, so its effective congestion (measured as the ratio of loads to 

vehicles), is less than in the 10 and 20 fleet systems at the same level of demand. So for the 

same value of a, the systems perform somewhat differently. A slightly larger value for a would 

result in the same relative performance as seen with a = 0.75 and 10 and 20 vehicle fleets. 

When demand for service is low, BAS(2.0) performs well, especially with smaller fleet sizes, 

because it allows sufficient demands to accumulate before making · an assignment. A time

triggered assignment rule that would achieve the same efficiency with respect to distance 

traveled would have higher variability with respect to wait times for service. When the fleet size is 
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larger, BAT(1.25) performs better because the larger fleet increases the chance of finding a good 

solution in each assignment period. 

Statistical Significance of Observed Differences. Tables 6.3, 6.4 and 6.5 show the 

conditions under which differences in observed values of the average empty distance traveled to 

provide service and the average wait time for service are statistically significant when a test with a 

level of 1 %. It is important to note that the performance of the bipartite assignment strategies 

varies widely. Statistical significance of performance relative to two primary criteria, average 

empty distance and wait time for service. are provided. 

TABLE 6.1 STATISTICAL SIGNIFICANCE OF OBSERVED DIFFERENCES IN TWO KEY 

PARAMETERS, UNDER HIGH DEMAND 

A verage Empty Distance 

High Demand FCFS NO BAT(O.5) BAS(2.0) 

1 

FCFS Y Y Y 

NO Y N N 

BAT(O.5) Y N N 

BAS(2.0) Y N N 

Wait Time For Pickup 

High Demand FCFS NO BAT(O.5) BAS(2.0) 

FCPS Y Y Y 

NO Y 
" 

Y N 

BAT(O.5) Y Y N 

BAS(2.0) Y N N 
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TABLE 6.2 STATISTICAL SIGNIFICANCE OF OBSERVED DIFFERENCES IN TWO KEY 
PARAMETERS, UNDER MODERATE DEMAND 

A verage Empty Distance 

Mod Demand FCFS NO BAT(O.75) BAS(2.0) 

FCFS Y Y Y 

NO Y Y Y 

BAT(O.75) Y Y N 

BAS(2.0) Y Y N 

Wait Time For Pickup 

Mod Demand FCFS NO BAT(O.75) BAS(2.0) 

FCPS Y Y Y 

NO Y Y Y 

. BAT(O.75) Y Y Y 

BAS(2.0) Y Y Y 

COMPARISON B - LOCAL ASSIGNMENT STRATEGIES REQUIRING REAL-TIME 

INFORMATION. 

In this section we compare the performance of the four real-time assignment strategies 

outlined in chapter 5. 

Chapter 6 examines the relative performance of the three local decision rules used to make 

final assignment decisions under each of the four assignment strategies. Following that analysis. 

the effects of allowing en-route diversion. reassignment of loads. and profit based load 

acceptance are examined. 

Three Local Decision Rules 

Within each of the four local assignment strategies (assignment without en-route diversion or 

load re-assignment (OCRC). assignment with en-route diversion alone (ORC). assignment with 

load re-assignment alone (DCR), and assignment with both en-route diversion and load re

assignment (DR». three local decision rules are examined. The local decision rules assign loads 

to the feasible vehicle for which an assignment including the candidate load has the: lowest 
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empty to loaded ratio (ELR); least overall empty distance to travel (SED); and, the least increase 

in empty distance to travel (DED). 

TABLE 6.3 STATISTICAL SIGNIFICANCE OF OBSERVED DIFFERENCES IN TWO KEY 
PARAMETERS, UNDER LOW DEMAND 

A verage Empty Distance 

Low Demand FCFS NO BAT(1.25) BAS(2.0) 

FCFS Y Y Y 

NO Y Y Y 

BAT(1.25) Y Y N 

BAS(2.0) Y Y N 

Wait Time For Pickup 

Low Demand FCFS NO BAT(1.25) BAS(2.o) 

FCFS Y N Y 

NO Y Y Y 

BAT(1.25) N Y Y 

BAS(2.0) Y Y Y 

No En-route Diversion, No Re-assignment of Loads. The performance of these rules 

varies much less in deadline-constrained scenarios that in unconstrained scenarios. When 

pickup deadlines are moderate, rule SED out-performs the others in all cases; when pickup 

deadlines are tight it out-performs the other rules but differences are much smaller. Figures 6.37 

and 6.38 illustrate the relative performance of these three rules under different levels of demand, 

with and without pickup deadlines. The criterion for evaluation shown in figure 6.37 is the 

average empty distance moved. This appears to be the most robust indicator of the overall 

effectiveness of the system when comparing cases with the same pickup deadline distribution 

and the same demand arrival patterns when a capacity or feasibility only load acceptance rule is 

used. (Under a profit based load acceptance rule the ratio of empty to loaded distances can be 

better estimator of efficiency). The criterion for evaluation in figure 6.38 is the average wait time 

for service. 
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It may be observed in figures 6.37 and 6.38 that the relative performance of the three 

assignment rules is not consistent over varying levels of demand in the unconstrained systems. 

Simulation experiments across a set of more finely discretized demand levels illustrate this 

behavior more clearly. Figure 6.39 present the simulation results, for a fleet of 10 vehicles, and 

demand levels ranging from low to high, where the low and high demand levels correspond 

exactly to the definitions used elsewhere in the chapter. Three evaluation criteria are presented: 

average empty distance, average wait time for service, and, average operating profit generated 

(per vehicle, per week). 

These results show that rule SED results in uniformly lower wait times for service. This 

follows directly from the fact that SED loads the vehicles more evenly, in what might be described 

as a "round robin" fashion, rather than loading only a subset of the fleet when demand is 

moderate or light. 

What is most interesting, is the variability of the performance of SED with respect to the 

criteria of empty distance driven and hence, operating profitability (displayed in the graph on top 

in figure 6.39). It may be observed in figure 6.40, which presents corresponding results for the 10 

vehicle, moderate deadline constrained case, that this variability is not observed when pickup 

constraints are in place. In the time constrained system, SED performs better than competing 

assignment rules with respect to all criteria. The reason SED is well suited to the pickup 

constrained assignment is the same reason the wait times are lower in the unconstrained cases; 

in pickup constrained cases the number of loads assigned to each vehicle "route" will be limited, 

even in the high demand scenarios. The behavior dictated by the constraints is the same 

behavior followed by the SED assignment rule in scenarios without time constraints. 

The question remains: why does SED perform well at high demands, and so poorly at 

moderate demand levels in the unconstrained scenario? The answer may be found in figure 

6.41, which displays the average empty distance driven as a function of r, ·the average rate of 

arrival of requests (per vehicle), divided by the average service rate. Under moderate demand, 

ELR and DED perform well by capitalizing on route building opportunities for a subset of vehicles. 

These compact routes tend to result in lower distances traveled. However, as r approaches 1.0, 

the queue limit on each vehicle becomes a binding constraint and fewer vehicles are available to 

take new requests. SED, on the other hand, loads vehicles evenly so that even as the system 

nears its maximum capacity there are several feasible choices for each new service request. 

SED takes a steep downturn in efficiency (increase in empty distance) when the capacity limit is 

reached -- in other words for r > 1.0. At that point none of the assignment rules performs much 

better than the others -- all are equally constrained. 
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A verage empty distance under ELR, LED and ~D assignment rules 

strategy DCRc, three demand levels, three distributions of pickup deadlines, 
10 vehicle fleet. feasibility only load acceptance rule 
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Figure 6.37 Comparison of average empty distance: three assignment rules under assignment 
strategy DCRc, no load acceptance thresholds applied, 10 vehicle fleet 
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Average wait time for service under ELR, LED and AED assignment rules 

strategy DCRc, three demand levels, three distributions of pickup deadlines, 
10 vehicle fleet. feasibility only load acceptance rule 
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Figure 6.38 Comparison of wait time for service: three assignment rules under assignment 
strategy OCRc, no load acceptance thresholds applied, 1 0 vehicle fleet 
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The observation that the relative performance of the assignment rules is due to changes in 

the congestion level of the system suggests that comparisons performed over different fleet sizes 

might yield different conclusions. In experiments performed the overall rate of service requests is 

proportional to fleet size so larger fleets have a higher geographic concentration of demands. 

These more heavily congested systems should favor SED assignment, while less congested 

systems should favor the assignment rules which build routes. This may be observed in figure 

6.42, which illustrates the difference in the relative performance of the three rules across fleets of 

2, 5, 10 and 20 vehicles. Figures 6.43 and 6.44 present simulation results over more finely 

discretized demand levels for fleets of five and twenty vehicles. While the general trends 

observed correspond to those in figure 6.39, for a fleet of 10 vehicles, there are marked 

differences. Because the system is less congested with a fleet of five vehicles, the region over 

which SED is dominated with respect to profitability and distance traveled is longer than in the ten 

vehicle scenario; in the twenty vehicle scenario SED dominates at all demand levels, but less so 

when demand is low. 

Figure 6.45 displays the performance of SED assignment relative to r, for all three fleet 

sizes. The same general pattern may be observed, but with a progressive muting effect, due on 

increase in the overall congestion of the system corresponding to an increase in fleet size. 

In most cases, observed differences in the performance of the assignment rules are not 

statistically significant (at a meaningful level) except with respect to the wait time for service. 

However, most of the scenarios examined in this section have been simulated over 1000 

iterations and clear patterns of differences have emerged. 

En-route Diversion, Re-assignment of Loads. Chapter 6 address the effects of allowing 

en-route diversion and re-assignment of loads. Of interest is the relative performance of the local 

assignment rules with and without the flexible assignment strategies, en-route diversion and re

assignment of loads. Tables 6.3 and 6.4 illustrate the difference in the performance of the three 

local decision rules, with and without pickup deadlines, for each of the four real-time assignment 

strategies, for three criteria: the average distance traveled empty, the average wait time for 

service and the operating profit generated. Noticeable about these tables is the same absence of 

consistency examined in the last section for the OCRc assignment strategy, namely, that in the 

absence of pickup deadlines no assignment rule dominates in all cases. As mentioned in the last 

section, when pickup deadlines are in place, SED, which loads vehicles more evenly, thereby 

opening up future opportunities to find assignments fordeadline-constrained service requests, is 

the best performer with respect to aU criteria examined. In some cases however, these 
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Extended analysis of relative performance of 
ELR, LED and.1ED assignment rules 

strategy DCRc, no pickup deadlines, 
10 vehicle fleet, varying intensity of demand 
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Figure 6.39 Relative performance of ELR, SED and DED across a set of finely discretized 
demand levels - 10 vehicle fleet, no pickup deadlines 
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Figure 6.40 Relative performance of ELR, SED and OED across a set of finely discretized 
demand levels· 10 vehicle fleet, with pickup deadlines 
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differences may be quite small, and not statistically significant, even when one thousand 

realizations of the simulation program are evaluated. Under tight pickup deadlines there are few 

feasible solutions, hence all three decision rules tend to make the same assignments. 

Differences in performance may be barely noticeable. Performance is examined with respect to 

each of the criteria, average empty distance, average wait time for service and operating profit 

generated and is expressed as a percent of the value in the best case. 

Average Empty Distance under rules ELR, LED, and ilED 

strategy DCRc, with and without pickup deadlines, for a 10 vehicle fleet 
as a function of p, the arrival rate (per vehicle)/average service rate 
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Figure 6.41 Average empty distance under rules ELR, SED and DED as a function of 
utilization level, (when r> 1, experienced r"" 1.0 ) 
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A verage empty distance under ELR, LED and ~D assignment rules 
2 to 20 vehicle fleets 
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Effect of En-route Diversion 

In this section, the effect of allowing the en-route diversion of vehicles is examined. The 

focus of this examination are assignment strategies OCRc and DRc (cases 6 and 7 in figure 5.4). 

When en-route diversion is allowed, it is chosen a fraction of 0 to 0.20 times per load served in 

the cases examined. En-route diversion is chosen with much more frequency without pickup 

deadlines than with moderate or tight deadlines. When pickup deadlines are binding constraints 

the system lacks the flexibility to divert a driver en-route to an already assigned load to a newly 

arriving load. In fact, when pickup deadlines are tight en-route diversion takes place less than 

once for every one hundred loads served. 
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TABLE 6.4 RELATIVE PERFORMANCE OF THREE LOCAL DECISION RULES WHEN 
INCORPORATED WITH FOUR REAL-TIME ASSIGNMENT STRATEGIES. NO PICKUP 
DEADLlNES,10 VEHICLE FLEET 

~~~~~ DCRc DRc DCR DR 
~~~ 

E[E] E[W] $ E[E) E[W] $ E[E] E[W] $ E[E] E[W] $ 

ELR 107% 104% 83% 109% 104% 81 % 108% 105% 89% 111% 107% 86% 

1:ED - 102% - 103% - 96% - - - - - -
~ED 103% - 91% - 101% - 106% 103% 92% 105% 105% 94% 

'!o..~ 

~~-(.~ ~~ DCRc DRc DCR DR 
~o ~~ 

~!l; 
E[E] E[W] $ E[E] E[W] $ E[E) E[W] $ E[E] E[W] $ 

ELR 101 % 242% 95% 115% 354% 79% 101 % 227% 97% 108% 218% 90% 

1:ED 107% - 83% 124% - 68% 121% - 69% 129% - 66% 

L1ED - 317% - - 376% - - 232% - - 253% -

'.04 ~~~ DCRc DRc DCR DR 
~~~ 

E(E] E(W] $ E(E] E[W) $ E[E] E[W] $ E[E] E[W] $ 

ELR 101 % 278% 50% 114%284% 30% 106% 251% 68% 110% 246% 64% 

1:ED - - - 114% - 24% 114% - 29% 119% - 32% 

~ED 102% 461 % 19% - 316% - - 260% - - 315% -

ELR = least empty to loaded ratio E[E] = average empty distance traveled 
1:ED = least overall empty distance E[W] = average wait time for service 
MD = least additional empty distance $ = operating profit 

DCRc = no en-route diversion, no re-assignment 
DRc = en-route diversion, no re-assignment 
DCR = no en-route diversion, re-assignment 
DR = en-route diversion & re-assignment 
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TABLE 6.5 RELATIVE PERFORMANCE OF THREE LOCAL DECISION RULES WHEN 
INCORPORATED WITH FOUR REAL-TIME ASSIGNMENT STRATEGIES. MODERATE 

PICKUP DEADLINES, 10 VEHICLE FLEET 

~~~~~ DCRc DRc DCR DR 

~fl,~ 
E[E] E[W] $ E[E] E[W] $ E[E] E[W] $ E[E] E[W] $ 

ELR 106% 111% 88% 106% 111% 84% 106% 111 % 88% 105% 111% 70% 

LED - - - - - - - - - - - -
.illD 103% 109% 93% 103% 109% 92% 104% 109% 93% 103% 109% 73% 

'!<.fl, 

l>fl,~~ ~~ DCRc DRc DCR DR 
~~ ~~ 

~e; 
E[E] E[W] $ E[E] E[W] $ E[E] E[W] $ E[E] E[W] $ 

ELR 107% 117% 87% 107% 116% 94% 107% 117% 88% 106% 115% 88% 

LED - - - - - - - - - - - -
LlED 112% 120% 91% 104% 114% 96% 112% 120% 91 % 104% 113% 92% 

'-~~ ~?:> DCRc DRc DCR DR 

~~ 
~e; 

E[E] E[W] $ E[E] E[W] $ E[E] E[W] $ E[E] E[W] $ 

ELR 106% 118% 85% 106% 118% 83% 106% 118% 85% 106% 117% 80% 

LED - - - - - - - - - - - -
LlED 103% 122% 74% 103% 114% 92% 103% 122% 89% 105% 114% 85% 

ELR = least empty to loaded ratio E[E] == average empty distance traveled 
LED = least overall empty distance E[W] == average wait time for service 
dED = least additional empty distance $ == operating profit 

nCRc == no en-route diversion, no re-assignment 
nRC == en-route diversion, no re-assignment 
nCR = no en-route diversion, re-assignment 
DR· == en-route diversion & re-assignment 
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En-route diversion is also selected much more often under high demand levels. When demands 

are moderate or low there is often an idle and available driver to provide service. When demands 

are high it may be that the only driver(s) that can serve a load within its time constraints must be 

diverted to perform the service. Figure 6.46 shows how the rate of diversion varies across 

demand levels (rates of arrivals of requests) and assignment rules for a 10 vehicle fleet. The 

simulation results strongly suggest that allowing en-route diversion can improve the efficiency of 

an operation, both with respect to distance traveled empty, wait time for service and profitability. 

Figures 6.47 - 6.49 show the fairly dramatic increase in efficiency observed for simulation 

experiments conducted without pickup deadlines, figures 6.50 and 6.51, the corresponding minor 

increase in efficiency observed for systems in which loads have associated pickup deadlines. 
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Effect of Re-Assignment of Loads 

An advantage of systems incorporating real-time communication is that loads assigned to 

one driver can be re-assigned to another, even if the first driver has been notified of the 

assignment. The simulation experiments discussed here explore a very simple re-assignment 

strategy. Under this strategy, after each newly arriving load is assigned, all vehicles are 

examined for load re-assignment. For each vehicle that has been assigned more than two loads, 

the last load is removed. This load is then a candidate for assignment to any vehicle. The "best" 

assignment is found, and if this assignment leads to a reduction in the overall empty distance 

traveled it is accepted. The best overall assignment is defined in the same way as it is for newly 

arriving loads. That is, once deadline feasibility is established, one of the three local decision 

rules is used to make the final assignment. The new assignment must pass one more test before 

the switch is final. The sum of the empty distances in the "routes" of the affected vehicles must 

be less after the switch than it was prior to the switch. Otherwise, the load is re-assigned to the 

vehicle from which it was removed. Loads can be assigned to a different vehicle up to five times 

(not a binding constraint in the systems examined), a vehicle may only have one load removed in 

each iteration of the rule. 
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Figure 6.49 Operating profit, with and without en-route diversion, without pickup deadlines 

This is clearly not an example of the best re-assignment rule. Intuition suggests that other 

local route improvement heuristics (2-opt or 3-opt for example) should be more beneficial. 

Improvements found using even this simple rule are significant. Reductions of more than 25% in 

the average empty distance traveled are observed in cases without deadline constraints, along 

with a corresponding reduction in the average wait time for service. Reductions are not uniform 

across demand levels or assignment rules however. The greatest improvements are found in the 

high demand case, which is more likely to have more candidates for reassignment. 

Improvements measured in the pickup deadline constrained cases examined were not statistically 

significant, although it appears that allowing re-assignment leads to a small improvement in 

system efficiency. Once a load is assigned in the deadline constrained cases, it is unlikely that 

another feasible assignment that is more efficient can be found. In the cases examined with tight 

pickup deadlines, no loads were re-assigned. Figure 6.52 displays the extent of the reduction in 

empty distances traveled to provide service when re-assignment is allowed when loads do not 

have associated pickup deadlines. The average empty distance moved under each of the three 

local decision rules under three levels of demand intensities is also shown with and without re

assignment of loads. It may be observed that the ELR and DED assignment rules benefit much 
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more from the re-assignment rule under moderate and low demand than the SED rule; in fact, 

SED, which dominated, with respect to the criterion of empty distance traveled without re

assignment, is no longer the most attractive option. Under SED, in a moderate and low demand 

environment, vehicles are loaded more evenly than other the two other rules. This even loading 

of vehicles precludes re-assignment under the re-assignment rule described. Pickup deadlines 

force the even loading of vehicles and as a result, the trading off of dominance between 

assignment rules was not observed in time-constrained systems examined. 
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Figure 6.50 Average empty distance traveled, with and without en-route diversion, with moderate 
pickup deadlines 
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Figure 6.51 Average wait time for service, with and without en-route diversion, with moderate 
pickup deadlines 

Combined Effect of En-Route Diversion and Re-Assignment of Loads 

In this section, the combined effect of allowing en-route diversion and re-assignment of loads 

is examined. When both are allowed, these strategies are invoked in the following way: 1) when 

a request for service arrives, an attempt is made to assign the load to a pickup deadline feasible 

route, 2) the route is chosen based on whichever local assignment rule, ELR, SED, or OED, is in 

use, vehicles en-route to a pickup location are candidates for immediate assignment to the new 

load. 3) After an assignment is made, each vehicle is considered for load re-assignment, which, 

for the candidate vehicle amounts to load removal. 

The combined effect of allowing en-route diversion and re-assignment of loads is significant

particularly when there are no pickup deadlines. The flexibility of the system in these cases 

allows the flexible assignment strategies to be evoked more often and with impressive results. 

With deadlines, the benefits are tangible in some cases, but damped because opportunities for 

re-assignment are scarce. Figure 6.53 shows the reduction in empty distance traveled when en

route diversion and load re-assignment are employed in the no-pickup deadline case, while figure 

6.54 shows the corresponding increase in operating profits earned - in the high demand case an 
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increase of nearly 80%. Increases are observed in the low demand scenario as well. Under low 

demand the operating profits earned are very low (typically $10-50 per vehicle per week). In 

those cases a small increase can be a very large percentage increase and expressing it in this 

form exaggerates the actual increase. 

Reduction in empty distance traveled when re-assignment is allowed 
10 vehicles, three demand levels, three assignment rules, 
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Figure 6.52 Percent reduction in empty distance traveled when re-assignment is allowed and 
corresponding average empty distance 
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Effect of Profit Based Load Acceptance Decisions 

When demand is high a fraction of requested loads must be refused service. Rejecting 

loads on the basis of their expected profitability can lead to significant improvements, both in 

overall throughput and profitability. Described in chapter 5, the "best" assignment for the load is 

found using one of the three assignment rules: least empty to loaded ratio assignment, least 

overall empty distance assignment and least additional empty distance assignment. After this 

assignment is chosen, the ratio of the additional empty distance attributable to the new load to the 

loaded distance associated with the load is calculated. If this ratio exceeds a pre-specified 

threshold the load is rejected. The calculation is performed as soon as the request is received 

and takes seconds or a fraction of a second to perform. A waiting customer is given a decision 

immediately. The overall ratio of empty to loaded distances traveled in the cases evaluated 

varies from 0.08 in highly efficient systems to 0.50 in less efficient systems. In the systems 

examined, thresholds between 0.5 and 1.2 produce the best results, with lower thresholds 

rejecting too many loads and higher thresholds leading to the rejection of too few. The choice of 

the best threshold value varies with the assignment rule applied the demand intensity and differs 

across systems allow en-route diversion and those that do not. 

The empirical analysis presented in this section suggests that the thresholds applied perform 

better when en-route diversion is allowed, and that the threshold value should be set lower in 

those cases than when en-route diversion is not allowed. The reason that more restrictive values 

should be used with en-route diversion and lower values without is that, on average, the number 

of loads sequenced with a candidate load will be higher under the diversion strategy than under a 

strategy that does not allow diversion. Under diversion, for empty vehicles, the current first load 

in the queue is a candidate for re-sequencing. without diversion, it is not. The difference in the 

average ElL ratio when one more load is sequenced is significant, especially when few loads are 

sequenced (Regan, Mahmassani & Jaillet [1996] provide a diagram illustrating the difference). 

The average ElL ratio for longer routes will be lower than the ElL ratio of even slightly shorter 

routes. Increases in profitability of up to 80% may be attained. Figures 6.55 and 6.56 show this 

dramatic effect and illustrate the fact that the appropriate choice of such thresholds varies from 

system to system. 
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Pickup deadline constrained scenarios also benefit from the use of carefully chosen load 

acceptance thresholds. Under heavy demands, systems under time constraints can benefit 

significantly from turning away inconvenient (and hence, unprofitable) loads. Figures 6.57 and 

6.58 compare the operating profit and empty to loaded ratio for systems of 10 and 20 vehicles in 

which demands have pickup deadlines drawn from the moderate distribution, and both en-route 

diversion and re-sequencing of loads are allowed under feasibility only and profit based load 

acceptance. Under profit based load acceptance the thresholds applied were 0.8, 1.0 and 1.2 for 

heavy, moderate and low demand levels (rapid, moderate and slow rates of requests for service) . . 

As expected, the greatest reduction in ElL and increase in profits are observed in the heavy 

demand case. Under moderate and low demand applying the threshold rule improves the ElL 

ratio but does not significantly improve profitability. When premiums are applied for serving loads 

with deadline constraints, under the threshold values applied, feasibility based load acceptance 

can in fact perform better. The reason is simple-applying a premium means a fixed charge is 

earned for serving loads. Some of the loads refused by the profit based acceptance rule, would 

in fact be profitable. Including the premium in the load acceptance decision would eliminate many 

refusals of profitable loads. 
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A verage operating profit and ratio of empty to loaded distance traveled 
strategy DR with rule LED 
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Average operating profit and ratio of empty to loaded distance traveled 
strategy DR with rule LED 
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In addition, with pickup deadlines in place, applying a profit based load acceptance rule can 

lead to an increase in the fraction of loads with tighter deadlines accepted. In simulation 

experiments in which deadlines associated with loads were chosen randomly from a distribution 

of three values, the fraction accepted that were from the tight or moderate categories rose, while 

the fraction accepted in the loose category fell. This was despite the fact that the profit measure 

used did not take the pickup deadlines (and resulting profitability under the cost model 

implemented) into account. The deadlines were not a factor in the acceptance process, the 

distribution changed because as a result of rejecting less attractive loads the system became 

more efficient and the tight deadline loads were more likely to be feasible. Figure 6.59 illustrates 

the difference in the distribution of pickup deadlines associated with accepted loads with profit 

based load acceptance and without. The distribution of requests is 

(tight, medium, loose; .!.) .. ,.!.), corresponding to (4,8,12 hours; .!..!..!.) in the 
3 3 3 3'3'3 

moderate pickup deadline case. It should be noted that this result does not hold in all cases. 

The choice of the load acceptance threshold makes the difference; the threshold value must be 

neither to high or too low. Choosing the best threshold requires significant sensitivity analysis. 

Distribution of deadlines for accepted loads 
with feasibility only acceptance and with profit based load acceptance 

strategy DR, rule LED, 10 vehicles, moderate deadlines, heavy demand 

47% 

tight medium loose tight medium loose 

Feasibility only acceptance Profit based acceptance 

Figure 6.59 Increase in tight deadline loads accepted with profit based load acceptance 
- 10 vehicle fleet, DR applied with SED, moderate deadlines, heavy demand 



Ability to Respond to Pickup Deadlines 

Perhaps the most important feature of the real-time operational strategies examined is the 

ability to take pickup deadlines into account, both in load acceptance and assignment decisions. 

With pickup deadlines in place, loads that cannot be served within their associated constraints 

must be turned away. Figure 6.60 compares the fraction of service requests accepted with and 

without pickup deadlines while figure 6.61 illustrates the effect that the (effective) reduction in 

demands has on profitability. When premiums are applied in the pickup constrained cases the 

systems can be more profitable than those without pickup constraints. 

Fraction of requests for service accepted without pickup 
deadlines, with moderate deadlines and with tight deadlines 

1.00 

0.90 

0.80 

0.70 

0.60 

0.50 

example shown is for rule LED and strategy DRc 
results are representative of all cases 

No Deadlines Moderate 

Deadlines 

Demand Level 

l:DI High 

Ii] Moderate 

• Low 

Tight 

Deadlines 

Figure 6.60 Fraction of service requests accepted with and without pickup deadlines 
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Performance with Respect to Even Assignments of Loads to Vehicles 

A performance measure specified in chapter 5 is the mean, and standard deviation of loaded 

and empty distances traveled for vehicles across the fleet. The coefficient of variation of empty 

and loaded distances traveled are examined, and, while the real-time operational strategies 

examined here do not achieve the nearly perfectly even loading of loads to vehicles that all three 

of the base cases do, the differences are so small as to be insignificant. Over a26 week horizon, 

no matter what the fleet size and with or without pickup deadlines, the maximum coefficient of 

variation observed for either empty or loaded distances traveled across the fleet is under ten 
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percent; in most cases it was closer to two-three percent. Without taking that objective explicitly 

into account. it is satisfied by these assignment rules. 

Summary of Real-Time Cases 

Three interesting points can be made about the relative performance of the real-time 

information scenarios examined. The first is that deadline constrained cases do not benefit from 

flexible assignment strategies as much as might be expected and that in unconstrained scenarios 

flexible assignment strategies seem to be the key to generating cost effective. customer 

responsive and profitable assignments. The second point is that although in deadline constrained 

cases the choice of the assignment rule is clear (SED - least overall empty distance assignment 

dominates the others). in the unconstrained case the "best" rule varies with the demand level and 

whether flexible assignments are allowed. Even within a specific assignment strategy, for 

example one in which en-route diversion and re-assignment of loads is allowed, SED is the 

preferred choice under high demand but is dominated by OED, least addition empty distance 

assignment under moderate or low demand when fleet sizes are small. A third observation is that 

when the criterion for evaluation is the ratio of empty to loaded distances traveled, the assignment 

rules which minimize the overall empty distance traveled and the additional empty distances 

traveled perform better. in most every case than the rule which seeks to assign loads to the 

vehicle with the minimum empty to loaded ratio. 

The relative lack of benefits observed in the deadline constrained cases notwithstanding. en

route diversion and re-assignment of loads offer opportunities for improving efficiency. 

Operations where some loads are deadline constrained and some are not are likely to offer 

opportunities to benefit from these flexible assignment strategies and at little cost to the system 

operators and drivers. Since en~route diversion is used little, there is little evidence to support the 

fear that without additional constraints that a system allowing en-route diversion might divert the 

same driver over and over again, forcing that driver to incur many more empty moves that loaded 

ones. The significant benefits observed from the implementation of a very unsophisticated re

assignment rule beg the development of methods which are even more effective. Such methods 

abound in both the vehicle routing and scheduling literature and are in use in many automated 

(but generally static) dispatching systems. Finally, particularly in high demand cases, the 

implementation of simple cost or profit based load acceptance rules lead to significant 

improvements in system efficiency. The successful implementation of such rules depends upon 

careful tuning of the rule for the congestion levels observed (and in some cases, desired). 
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COMPARISON C - COMPARISON OF BASE CASES TO REAL-TIME INFORMATION CASES 

Rather than compare all of the base cases with each of the real-time information cases, the 

real-time operational strategies with the best performance are compared to the best performing 

base cases. Two cases, one, without pickup deadlines in which strategy OCRc is applied with the 

SED and OEO rules, and another, with moderate pickup deadlines, in which OR is applied with 

SED and profit based load acceptance, are compared to the base cases NO, BAT(a), BAT(a -

with half look ahead) and BAS(b). Results vary over fleet sizes so the comparison is presented 

for the ten, twenty and fifty vehicle fleets. 

No Pickup Deadlines 

At high demand, with no pickup deadlines, the nearest origin assignment method 

significantly outperforms any of the "real-time" assignment rules examined. The quasi real-time 

base case strategies, BAT(a - with look ahead) and BAS(b) also perform well. Figure 6.62 

provides diagram showing the relative performance of these assignment strategies with respect to 

empty distance traveled, average and standard deviation of wait time and operating profitability. 

Results are shown for ten and twenty vehicle fleets. Results for fleets of fifty vehicles are not 

shown because the computation complexity of the fifty vehicle, high demand scenario proved too 

high to simulate over a sufficiently large number of iterations. Demands so high that the system 

is always working at capacity are unusual. Under moderate and low demands the OCRc strategy, 

the least intelligent of the real-time assignment strategies, is competitive with the base cases, 

including the quasi real-time base cases. Figures 6.63 and 6.64 display corresponding results 

under moderate and low demand. 

Relative Performance with Pickup Constraints 

When pickup deadlines are respected, under the real-time strategies a significant fraction of 

requests must be turned away. As a result, under high demand, the real-time strategies generate 

less operating profits, with or without the selected premiums meeting pickup deadlines. Under 

moderate or low demand these strategies generate higher profits than the base cases - even the 

quasi real-time assignment cases. 

In addition, as defined, the base case assignment strategies are incapable of satisfying 

pickup deadlines. To construct a case for comparison. Loads are assigned pickup deadlines, 

considered soft constraints, from the moderate pickup deadline distribution examined in the real

time assignment strategies. In these cases, roughly half of the loads aJe not served within their 

201 



deadlines and on average the deadlines are missed by more than twice the duration of the 

average loaded move. 

Comparison of Base Cases and Real-Time · Strategy DCRc with LED 
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Figure 6.62 Relative performance of the base cases and DCRc with SED under high demand 
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Comparison of Base Cases and Real-Time Strategy DCRc with LED 
no pickup deadlines, 10 and 20 vehicle neets, low demand 
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Figure 6.65 illustrates the relative performance of the NO, BAT(0.5), BAT(0.5) with half look 

ahead, BAS(2.0), and DR assignment strategies under high demands. While the operating profit 

in the DR assignment strategy is not competitive with the others, the wait time and variability of 

wait time for service is nearly an order of magnitude lower. Operating profits are shown with and 

without premiums applied for deadline compliance. The differences in profitability under high 

demands are less for larger fleets, as are the magnitude of the differences in wait time. Under 
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moderate and low demands (figures 6.66 and 6.67), and for larger fleet sizes, the real-time 

assignment strategy (which includes profit-based load acceptance) is competitive, even without 

premiums applied. For an operation designed to provide service to time sensitive customers, the 

real-time assignment strategy is preferable to the base cases. 
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Figure 6.67 Relative performance of the base cases and DR with SED under low demand 
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COMPARISON 0 - COMPARISON OF REAL-TIME ASSIGNMENT STRATEGY TO SOLUTIONS 
CORRESPONDING TO ASYMMETRIC TSP PROBLEMS 

In this case the measure of interest is the average empty distance driven to provide service. 

The average number of loads served per week is B.OB in the real-time information case. With 

only one vehicle, the local assignment rules do not have an effect on the solution. With no pickup 

deadlines, loads are accepted into the system if there are less than five loads already awaiting 

service. This constraint is rarely binding under moderate arrivals. The ratio of the average empty 

distance traveled to provide service in the real-time solution to the A TSP solution in which eight 

loads are ordered and serviced each week is approximately 0.69 to 0.43. The real-time solution 

is 60% less efficient than the ATSP solution. 

SUMMARY 

The real-time assignment methods examined offer opportunities to provide service to time 

sensitive customers. Pickup deadlines can be met within the framework of a profitable operation. 

For larger fleets, the performance of the best real-time assignment strategy results in higher 

operating profits than even the most profitable "base" case -- and meets customer service needs. 

If customers can be persuaded to pay a premium for fast and reliable service then 

opportunities for improving profitability are even more significant. Even without extracting 

premium prices, companiesoffering guaranteed pickups within requested deadlines might attract 

more customers and improve their profitability by improving utilization of the fleet. The simulation 

results presented show that using these flexible assignment methods, a company can provide 

much better service to customers and at the same time remain nearly as profitable in most cases 

examined and more profitable in some cases as those providing significantly less responsive 

service. 

The flexible assignment strategies, en-route diversion and re-assignment of loads have 

demonstrated promise when applied in no-deadline, mixed deadline or loose deadline 

environments. The re-assignment method implemented in this study is clearly sub-optimal. Its 

impressive performance encourages the development of more intelligent re-assignment methods 

and those suited to an environment in which pickup deadlines are binding. A simple load 

swapping rule which identifies loads with similar deadlines and looks for opportunities to re-assign 

them to different vehicles would be the obvious choice. 

In unconstrained scenarios, the performance of the local assignment rules applied under the 

real-time operational strategies are highly sensitive to the congestion level of the system and 

individual vehicle queue limits imposed. Results suggest that a hybrid system, which would 
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choose the assignment rule based on the current congestion level of the system might result in 

increased efficiency, when compared to the appJicatipn of anyone of the assignment rules. 

The final chapter of this dissertation presents a summary of findings, and makes 

recommendations for future research. 
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Chapter 7 Conclusions 

SUMMARY OF FINDINGS 

The primary objectives and hypotheses examined in this research were outlined in chapter 

one. Each of these is reviewed and related conclusions and findings from the examination is 

discussed. 

The first two objectives were to state, formulate and analyze the driver assignment (or 

dynamic vehicle allocation and routing) problem in a way that explicitly takes real-time information 

on vehicle locations and demands into account, to develop operations research methodologies to 

assist with dispatching, load acceptance, and dynamic pricing strategies and to test these 

methodologies under the assumption of the availability of real-time information on vehicle 

locations and demands. 

A set of four real-time assignment methods were formulated and examined, along with three 

lower level decision rules. These four are all intended for use in operations requiring demand 

responsive service to customers with explicit service deadlines. 

Specified in the third stated objective of this research, a simulation framework has been 

developed to analyze carrier fleet operations under real-time information and to evaluate the 

effectiveness of strategies developed. Results of the evaluation of these real-time assignment 

heuristics demonstrate the benefits associated with flexible dispatching strategies which require 

continuous updates on the current status of customers and vehicles and which benefit from 

continuous communication between a central authority, the dispatch center, and the same . 

. Dispatching strategies which explicitly honor customer pickup deadlines are shown to be 

competitive with base case assignment strategies which cannot honor such deadlines and in 

which wait times for service can be unreasonable. The real-time assignment strategies are 

competitive, with respect to the criterion of operating profits earned, with a quasi real-time, state

based bipartite assignment method, the most effective of the less information intensive strategies 

examined. In addition, when premiums are awarded in pickup constrained cases the real-time 

assignment strategies significantly out-perform the base cases; as defined, the base case 

strategies can offer no such guarantee that deadlines will be met. 

Meeting objective four, to provide quantitative estimates of the benefits of real-time 

information for vehicle assignment and routing decisions for trucking operations poses significant 

difficulties. A recent study conducted by the American Trucking Association Foundation [1996, p. 

22] estimates the benefit/cost ratio of mobile communication systems alone at between 1.5:1 to 
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5.0:1. The study does not quantify the benefits of computer aided dispatching and routing, but 

mentions that 14, 46 and 74 percent of small, medium and large trucking companies, 

respectively, have invested in such systems and that the benefits appear to far outweigh the 

costs. The kinds of dispatching heuristics developed in this research should lea9 to even greater 

benefits. 

Analysis shows that the performance of the real-time information assignment heuristics 

varies significantly over demand levels and the distribution of pickup deadlines. What is clear is 

that the wait time for service can be reduced by more than 2-5 times when loads are assigned 

deadlines for pickup over the most efficient corresponding cases which do not rely on real-time 

information. This is a significant benefit to both customers and companies, who benefit from 

improved customer relations. While under extremely high demand the simplest of the base cases 

performs better than the real-time operational strategies, under more reasonable demand levels 

the real-time strategies can be as efficient and in some cases slightly more efficient than the base 

cases, with respect to the cost to provide service. 

The first hypothesis of this research, namely that real-time information on vehicle locations 

and demands can increase the efficiency of carrier fleet operations with respect to measures of 

trucking company profitability and responsiveness to customer requests or desires has certainly 

been demonstrated, particularly with respect to responsiveness to customer requests or desires. 

The second, that real-time assignment rules perform well, with respect to those requiring less 

real-time information, under certain conditions with respect to fleet size, level of demand and 

pickup deadlines has also been demonstrated. The conditions under which they perform well 

have been identified as: fairly large fleet sizes, moderate to low d~mands and time-constrained 

pickups. 

RECOMMENDATIONS FOR FUTURE RESEARCH 

The key issues and recommendations for further research are presented here. The first two 

have broad applicability to fleet operations management, while the rest are direct at extensions of 

the current work. 

-Extension of observations and dispatching strategies to related real-time fleet management 

systems 

Less than truckload operations and truckload operations providing service to intermodal 

terminals (including, rail, maritime and air terminals), are of particular interest. Assignment 

strategies developed may also be directly applicable to other dynamic fleet management systems 

(for example, taxi fleets, dial-a-ride and local courier operations). 
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-Development of approximations for performance measures in distributed queueing systems 

Such approximations, coupled with tighter bounds on key performance measures (average 

wait time for service, for example) would be very useful to both long term, and day-to-day fleet 

operations management. 

-Identification of efficient re-assignment (load swapping) heuristics 

Many of the route improvement heuristics developed to solve multiple traveling salesperson 

or vehicle routing problems could be applied directly. Some obvious choices are 2-opt, 3-opt or k

opt load swapping in which likely candidates for swapping are identified by the similarity of their 

associated time windows. 

-Development and implementation of hybrid assignment strategies, combining the strengths 

of the best performing strategies identified so far 

The assignment strategy formulated in chapter 3 in which costs in the bipartite assignment 

step represent the cost associated with the optimal solution of a TSPWT sub-problem has 

significant promise. 

-Further examination of the extent to which congestion of demand and vehicle locations 

determines the effectiveness of the assignment strategies described in this research 

Of particular interest is the robustness of local assignment strategies under more varied 

conditions with respect to the dispersion of locations of customers and demands. Performance 

when pickups and deliveries are clustered, both geographically and temporally should be 

examined. 

-Tests of identified dispatching heuristics over a more natural geographic region and across 

a set of known demands or demands generated from a model which includes realistic origin

destination locations and demand levels 

Implementing these models in a geographic information system is a natural extension. 

Regional or national freight demand data could be used to build a model to a more realistic 

demand arrival pattern. 

-Extension of pickup deadlines to time constraints which include time windows for pickup 

and delivery 

-Examination of the effects of queue and pool limits under heavy demand 
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In particular, the extent to which limits chosen effect the relative performance of assignment 

strategies and local assignment rules should be investigated. 

-The development of cost models that represent industry practice 

Customer willingness to pay a premium for timely service should be investigated. 
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Appendix I Simulation Details 

In this section the details of the simulation framework and of the implementation of 

assignment strategies in a simulation framework are discussed. 

Three separate simulation programs are described. These include: the simulation of the 

nearest origin assignment strategy, of which first called first served is a special case; simulation of 

the bipartite assignment strategy; and, simulation of the real-time assignment strategies. 

The simulation is deterministic, with stochastic inputs. It is event based. The simulation was . 

developed in C. Experiments were conducted on a DEC Alpha workstation. Three separate 

simulation programs are used to conduct the experiments discussed in this chapter. Pseudo 

code is included for each of these programs. The full code for the Hungarian Assignment 

Algorithm is included (Supplied by Kishore Sarathy, former Ph.D. Candidate, University of Texas, 

Department of Operations Research). 

A.1.1 COMMON FEATURES OF SIMULATION PROGRAMS 

1) All simulations begin at rest, with all vehicles at the center of the circular work area. 

2) Vehicles travel around circular work area at a speed of one unit of distance per unit of 

time. 

3) Demands arrive according to a Poisson Distribution. The time between arrivals is a 

parameter input to the simulation. 

4) The number of vehicles is a parameter to the system. 

Recipes in C Example book, Flannery, Teukolsky and Vettering[1988)) 

215 



A.1.2 SIMULATION OF NEAREST ORIGIN ASSIGNMENT ALGORITHM (INCLUDES FCFS 
ASSIGNMENT) . 

if FCFS maxToSearch = 1; /* loads are kept in the pool in the order of arrival to the system */ 
else maxToSearch = maxPL; 

/************* Begin Simulation *******************/ 

iteration = 0; 
while (iteration < Maxlterations and ConvergenceTest1 == FALSE) 
{ 

iteration = iteration+ 1 ; 
function intialize variablesO; 

while (nextEventTime < EndOfHorizon) 
{ 

for (all vehicles) 
{ 

while (loadslnPool > 0) 
{ 

if (currentVehicie is Idle) 
{ 

function selectClosestLoadinFirst 
MaxToSearchSlotslnPoolO; 

assign LoadSelected to currentVehicle; 
remove LoadSelected from Pool; 

function getNextEventO; 

while(nextEventType == PICKUP and nextEventTime < EndOfHorizon) 
{ 

elapsedTime = nextEventTime; 
function Update Vehiclel nvolvedlnNextEventO; 

function getNextEventO; 
} 

if (nextEventType == DELIVERY && nextEventTime < EndOfHorizon) 
{ 

} 

function selectClosestLoadinFirst 
MaxT oSearchSlotsl nPoolO; 

assign LoadSelected to currentVehicle; 
remove LoadSelected from Pool; 
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if (nextEventType == ServiceRequests && nextEventTime < EndOfHorizon) 
{ 

elapsedTime = nextEventTime; 
for all vehicles 
{ 

function undateVehiclePositionO; 

if (ConvergenceTest2 == TRUE) 
{ 

check and record number of customers in the Pool 
and in the system; 

if (ioadslnPool < maximumAllowableLoads) 
{ 

function sendLoadToPoolO; 

if (loadslnPool == 1 && idleVehicles) 
j* load just sent to empty pool - assign to nearest idle vehicle *j 
{ 
if (NO) 
{ 

} 
function selectClosestldleVehicleO; 

elseif (FCFS) 
{ 

function selectLongestidleVehicleO; 
} 
assign to Vehicle Selected; 
remove Load From Pool; 
} 

else rejectRequestForService; 
function getNextEventO; 

if (nextEventTime > EndOfHorizon) 
{ 

} 

elapsedTime == EndOfHorizon; 
{ 
for all vehicles in fleet 

function undateVehiclePositionO; 

/*** END OF ITERATION ***j 
function sumResultsOfiterationO; 

} function printResultsOfSimulationO; 

j*** END OF SIMULATION ***/ 
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A.1.3 SIMULATION OF CLASSICAL ASSIGNMENT ALGORITHM 

/*** BEGIN SIMULATION OF SYSTEM WITH ASSIGNMENT ALGORITHM ***/ 

iteration = 0; 

{ 

While (iteration < Maxlterations and ConvergenceTest1 == False) 

{ 

iteration = iteration +1; 

function initialize variablesO; 

While (nextEventTime < EndOfHorizon) 

{ 

function getNextEventO; 

/**** next event is a change in vehicle status ****/ 

While (nextEventType != ServiceRequest && TimeToPerformNextAssignment < elapsedTime && 

nextEventTime < EndOfHorizon) 
{ 

if (ConvergenceTest2 == TRUE) 
{ 

check and record number of customers in queue and in system; 
} 

elapsedTime = nextEventTime; 

function updateVehiclelnvolvedlnNextEventO; 
/*** update position and status of vehicle involved in the next 

event (a change of status) ***/ 
if (NextEvent is change from loaded to idle state) 
{ 
if (STATE_BASED ASSIGNMENT AND idle_vehicles < bPL) 
Time ToPerformNextAssignment = elapsedTime; 
} 
fuction getNextEvent(); 

elapsedTime = nextEventTime; 

/**** NEXT EVENT IS A REQUEST FOR SERVICE ****/ 

if (PL > maxPL) /* loads in pool exceeds allowable number */ 
{ 

rejectLoad; 
} 

. elseif (elapsedTime < EndOfHorizon) 
{ 

function sendLoadToPoolO; 
if (STATE_BASED ASSIGNMENT AND PL > b(idle_vehicles» 

Time ToPerformNextAssignment = elapsedTime; 
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for all vehicles in fleet 
{ 

function updateVehiciePositionO; 

if (elapsedTime > TimeToPerformNextAssignment) 
{ 
if (idle or nearldle vehicles> 0 && PL > 0) /* if vehicles and loads to assign *1 
{ 

function assignLoadsO; 
update Time ToPerformNextAssignment; 

} 
if (nextEventTime > EndOfHorizon) 
{ 

elapsedTime = EndOfHorizon; 
{ 
for all vehicles in fleet 

function undateVehiclePositionO; 

function sumResultsOflterationO; 
iteration = iteration + 1 ; 

}/*** END OF ITERATION ***1 

function printResultsofSimulationO; 

}/*** END OF SIMULATION """I 
/********************************************************************** 

function assignLoadsO -- calls bipartite assignment code 

**********************************************************************/ 

function assignLoadsO 
{ 

n = MAX(numberOfLoadslnPool, NumberOfldleVehicles) 

Allocate (CostMatrix,VehicleArray, LoadsArray, Uvector,Vvector,Xvector); 

Populate CostMatrix; /*** distances from vehicle location for idle vehicles, 
next idle location for busy vehicles ***1 

Populate VehicleArray, LoadsArray; /* .. * for vehicles, 
loads underconsideration ...... I 

function assO; /*** Perform Hungarian Assignment ***1 

for (i = 0; i < n; i++) /*** If loads considered exceed vehicles, no load can be 
assigned to vehicle[i] "**1 

if (vehicle[i] has been assigned a load) 
t 

current Load = 10adsArray[x[i]]; 
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function AssignLoadO; /*** Assign CurrentLoad to 
Vehicle i *** j 

remove currentLoadFromPool; 

} 
Free allocation space; 
} 

/* •• **********************************************************************/ 

/*****************~********************-*********************************** 

File 
Author 
Project 
Topic 

: assign.c 
: Kishore Sarathy 
: Vehicle Routing Problem 
: Assignment problem 

Description : This file contains a program to solve an assignment problem 
using the Hungarian method. This implementation is for dense 
graphs and expects the costs or distances to be specified as 
a matrix. The function assign is to be called to obtain 
solution for the assignment problem. 

Input : Distance matrix, addresses of arrays for dual variables. 
NOTE: Allocation of space for these vectors is done inside 
this function. 

Output : Reduced cost matrix, (the cost matrix is modified directly) 
vectors of dual variables. 

WARNING : Cost matrix is modified inside this routine. Send a copy if 
want it preserved. 

*****.*******************************************************************/ 

#include <stdio.h> 
#include "myStdefs.h" /* include the standard definitions *j 
#define ASSFILE /* define to include the definitions of variables *j 

/* from header file *j 
#include "ass.h" /* include header file for ass.c *j 
#include "errmsg.h" 
#include "nrutil.h" 

/* -------------------------------------------------------------------
init - initializes variables and arrays for assignment algorithm 

----------------------------------------------------------"----------* j 
int init (int **c, int *U, int *V, int n) 
{ 

int i, j, 
mincol, 
minrow; 

Optimal = FALSE; 

cLbls = ivector(O,n); 
rLbls = ivector(O,n); 
rMatch = ivector(O,n); 
cMatch = ivector(O,n); 
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for (i ::: 0; i < n; i++){ 

} 

cLbls[i] = rLbls[i] = UNLABLD; 
rMatch[i] = cMatch[i] = UNMATCHD; 
Uri] = V[i] = INF; 

for (i = 0; i < n; i++) { 
for G = 0; j < n; j++) 

if (U [i) > c[ilO)) { 
Uri] = c[i][j]; 
mincol = j; 

} 
if «rMatch[iJ == UNMATCHD) && (cMatch[mincol] == UNMATCHD)) { 

rMatch[i] = mincol; 
cMatch[mincol] = i; 

} 
for G =0; j < n; j++) 

if (c[iJOl != INF) 
c[i][j] -= U[i]; 

for G = 0; j < n; j++) { 
for (i = 0; i < n; i++) 

if (V[j] > c[i][j)) { 
VOl = c[i][jJ; 
minrow= i; 

} 
if «cMatch[j] == UNMATCHD) && (rMatch[minrow] == UNMATCHD) { 

cMatchUl = minrow; 
rMatch[minrowJ = j; 

} 
for (i = 0; i < n; i++) 

if (c[iJOl 1= INF) 
c[i][j] -= VOl; 

} 
} 

/*-------------------------------------------------------------------
improve - improves the current assignment 

-----------------------------------------------------------~---------* / 
int improve(int **c, int *u, int *v, int n) 
{ 

int i, j, root, FoundPth = FALSE, tnode; 

for (i = 0; i < n; i++) 
rLbls[i] = cLbls[i] = UNLABLD; 

for (root = 0; (rMatch[rootJ != UNMATCHD)&&(root < n); root++) 
, 

if (root == n) 
Optimal = TRUE; 

else { 
augPath(c, n, root, &tnode, &FoundPth); 
if (FoundPth) 

swapMatchng(root, tnode); 
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} 

else { 
update(c, u, v, n); 

} 

/* -------------------------------------------------------------------
augPath - Finds an augmenting path 

-------------------------------------------------------------------* / 
int augPath(int **c, int n, int start, int *tail, int *found) 
{ 

}, 

int i; 

for (i = 0; (i < n)&&(!(*found»; i++) 
if ( (!c[start][i]) && (cLbls[i] == UNLABLD) ) 

if (cMatch[i] == UNMATCHD) { 
rLbls[start] = i; 
*tail = i; 
*found = TRUE; /* An augmenting path has been found */ 

} 
else { 

rLbls[startJ = i; 
cLbls[i] = cMatch[i]; 
augPath(c, n, cMatch[iJ, tail, found); 

} 

if «i == n) && (!(*found»){ 
rLbls[startJ = INF; 

/* *tail = start; */ 
} 

/* -------------------------------------------------------------------
swapMatchng - Swap the current matching when an augmenting path 

is found 
---------------------------------------------------------------------* / 
int swapMatchng (int root, int tip) 

{ 
int done = FALSE, i = root; 

while (!done) { 

} 
} 

if (rLbls[i] == tip) 
done = TRUE; 

rMatch[i] = rLbls[i]; 
cMatch[rLbls[ilJ = i; 
i = cLbls[rLbls[i]J; 

/* ------------~-------------------------------------------------------
update - update dual variables and cost matrix after swapping 

---------------------------------------------------------------------* / 
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int update(int **c, int *u, int *v, int n) 

{ 

} 

int i, j, delta = INF; 

for (i = 0; i < n; i++) 
for 0 = 0; j < n; j++) 

if ( (c[i][j1) && (rLbls[i] != UNLABLD) && (cLblsUl == UNLABLD) ) 
delta = MIN(delta, c[iJO]); 

for (i = 0; i < n; i++) { 

} 

if (rLbls[i] != UNLABLD) 
uri] += delta; 

if (cLbls[i] != UNLABLD) 
v[i] -= delta; 

for (i = 0; i < n; i++) 
for 0 = 0; j < n; j++) 

if ( (rLbls[i] != UNLABLD) &&(cLblsUl == UNLABLD) 
&& (c[i][j] != INF) ) 
c[i][j] -= delta; 

else if { (rLbls[i] == UNLABLD) && (cLbls[j] != UNLABLD) 
&& (c[i][j] != INF) ) 

c[im] += delta; 

r -----------------------------------------------------------------------
assign - find an optimal assignmnet 

-------------------------------------------------------------------"----* / 
int assign(int **C, int N, int *U, int *V, int *X, int *Z) 

{ 
int i, j; 
r printf("INITIALlZATION BEGINNING \n"); fflush(stdout); */ 

init(C, U, V, N); 
r printf("INITILIZA TION COMPLETE\n"); */ 

while (!Optimal) 
{ 

r printf("CALLING improve\n");*/ 
improve(C, U, V, N); 

} 

} 
for ( i = 0, *Z = 0; i < N; i++) 

{ 

} 

*Z += (U)[i] + (V)[i]; 
Xli] = rMatch[i]; 

free _ivector{ rMatch, 0, N); 
free_ivector{rLbls,O,N); 
free_ivector(cLbls,O,N); 
free_ivector(cMatch,O,N); 
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A.1.4 SIMULATION OF ASSIGNMENT UNDER REAL-TIME INFORMATION 

/*** BEGIN SIMULATION OF SYSTEM WITH REAL-TIME ASSIGNMENT ***j 

iteration = 0; 

{ 

While (iteration < Maxlterations and ConvergenceTest1 == False) 

{ 
iteration = iteration+ 1 ; 
function initialize variablesO; 

while (next Event Time < EndOfHorizon) 
{ 

function getNextEventO; 

while(nextEventType != REQUEST && nextEventTime < HORIZON) 
{ 

if (ConvergenceTest2 == TRUE) 
{ 

check and record number of customers in all queues and in 
system; 

elapsedTime = nextEventTime; 

function updateVehicie InvolvedlnNextEventO; 
/*** update position and status of vehicle involved in the next 

event (a change of status) ***j 
fuction getNextEventO; 

elapsedTime = nextEventTime; 

if (nextEventType == REQUEST nextEventTime < EndOfHorizon) 
{ 

for all vehicles /* update location *j 
{ 

function undateVehiciePositionO; 
} 

/* Load is Accepted -- at least temporarily -- now find a feasible assignment *j 

minCost = BIGCOST; 
cost = 0; 
SED=O; 
minCostVehicie = 0; 
feasible = FALSE; 
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} 

} 

for all vehicles /* This is where en-route diversion comes in */ 
{ 

calculate SED associated with best feasible ordering of currently 
assignmed loads and candidate load 

/* if ordering is both pickup deadline feasible and ELRatio attributable to 
candidate load is less than the THRESHOLD for acceptance */ 

if «SED < BIGCOST) && 
«SED - previous SED)/(Loaded Distance of Candidate Load) < THRESHOLD» 
{ 

feasible = TRUE; 
switch(MEASURE) 
{ 

} 

case ELRATIO: 

cost = SED/SLD 
break; 

case SED: 

cost = SED; 
break; 

case OED: 

cost = SED - previous SED 

if (cost < minCost) 
{ 

} 

minCostVehicie = currentVehicle; 
minCost = cost; 

if (feasible == TRUE) /* assign and resequence loads */ 
{ 
function assign ToQueueofminCostVehicle; 
/* if re-assignment of loads is allowed-

check each load for re-assignment now */ 
} 
else loadisRejected; 

function sumResultsOflterationO; 
iteration = iteration + 1 ; 

}/*** END OF ITERATION ***/ 

function printResultsofSimulationO; 

}/*** END OF SIMULATION ***/ 
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