Delse (Retain) CLYDE E. LEE The University of Texas CENTER FOR HIGHWAY RESEARCH 242 Engineering Science Building Austin, Texas 78712 # DEPARTMENTAL RESEARCH Report Number: \$\$ 5.0 TRAFFIC VOLUME ANALYSIS OF URBAN FREEWAYS > Center For Highway Research Library TEXAS HIGHWAY DEPARTMENT #### TRAFFIC VOLUME ANALYSIS OF URBAN FREEWAYS Prepared By Kenneth W. Heathington and Paul R. Tutt Interdepartmental Research Texas Highway Department In Cooperation With The U.S. Department of Commerce, Bureau of Public Roads September 1966 Cemer For Highway Research Library #### ACKNOWLEDGEMENTS The writers wish to express their appreciation to Messrs. Charles Davis and T. H. McWherter of the Planning Survey Division of the Texas Highway Department for their help in securing the data that was used in this study. Also thanks is extended to Mr. Jim Thomas and Harvey J. Treybig of the High-way Design Division Texas Highway Department, for the proofreading and reviewing of this report. #### TABLE OF CONTENTS | Chapter | | Page | |---------|---|------| | I. | INTRODUCTION | 1 | | II. | DATA COLLECTION | 3 | | III. | CALCULATION PROCEDURE | 8 | | IV. | TRAFFIC VOLUME RELATIONSHIPS ON URBAN | 10 | | v. | TRAFFIC VOLUME DISTRIBUTION BY LANE ON URBAN FREEWAYS | 18 | | VI. | CORRELATION OF SHORT-TIME COUNT VOLUMES TO VOLUMES OF LONGER TIME INTERVALS | 51 | | VII. | ESTIMATING PEAK PERIOD VOLUMES | 101 | | VIII. | CONCLUSION | 104 | | | REFERENCES | 106 | | | APPENDIX 1 | 107 | #### LIST OF FIGURES | Figure | | Page | |--------|--|-----------------| | 1. | Texas Cities in Which 5-Minute Counts Were Made in 1963 and 1965 | 4 | | 2. | Location of Individual 5-Minute Count Stations in Each City | 5 , 6, 7 | | 3-32. | Traffic Volume Distribution by Lane on Urban Freeways | 21-50 | | 33• | Volume Correlation by Direction | 5 7-7 6 | | 34. | Total Volume Correlation | 77-96 | | 35• | Estimating Inbound Peak Hour Volume | 103 | #### LIST OF TABLES | [able | | Page | |-------|---|------| | 1. | Traffic Volumes and Facility Characteristics at the 1963 and 1965 Texas 5-Minute Count Locations | 15 | | 2. | Comparison of 24-Hour Volumes from 5-Minute Counts to Average Daily Traffic from Permanent Traffic Counters | 16 | | 3• | Statistical Results of Correlation of Short-Time Counts to Long-Time Counts for Directional Volumes | 97 | | 4. | Statistical Results of Correlation of Short-Time Counts to Long-Time Counts for Volumes in Both Directions | 98 | | 5• | Average Values of Factors to Expand Short-Time Counts to Long-Time Counts for Directional Volumes | 99 | | 6. | Average Values of Factors to Expand Short-Time Counts to Long-Time Counts for Volumes in Both Directions | 100 | #### CHAPTER I #### INTRODUCTION To properly design and to evaluate the traffic movement on any section of freeway, highway, or arterial street, it is necessary to determine a traffic volume for a number of specific periods of time. In urban areas these specific periods of time are generally of short duration. These short-time periods are peak periods ranging from about five minutes to about two hours. Also, it is necessary to know the 24-hour daily traffic volume that will occur during a given day on a given facility. The distribution of the traffic volume by lane is an important consideration in design. All of these characteristics should be ascertained in order to be able to carefully design and operate a facility. In 1963 traffic volumes in 5-minute intervals were manually recorded at nineteen urban locations in six Texas cities. This 1963 data were analyzed and reported in "An Analysis of Peak Period Freeway Volume Characteristics." In 1965 traffic volumes in 5-minute intervals were recorded with traffic actuated equipment at fifteen urban locations in six Texas cities. This study of the 1965 data was made to ascertain the reliability of the 1963 data to expand short-time peak volumes to volumes of longer time intervals. From the 1963 and 1965 data, a method to predict the peak hour volume in the inbound direction from the 24-hour traffic volume has been developed. The distribution by lane of the directional volumes for each 5-minute interval is graphically displayed. The results of the analysis of the 1965 data generally show good correlation in the development of expansion factors for the locations under study. A statistically acceptable expansion factor has been determined and reported for various short-time peak volumes. These expansion factors are very close to those developed from the 1963 data. Thus, over a two year period, the peak period volume characteristics of the urban freeways under study have followed a consistent pattern which can be described by various mathematical relationships. #### CHAPTER II #### DATA COLLECTION The data for this research study were provided by the Planning Survey Division of the Texas Highway Department. Traffic actuated detectors were used at fifteen locations on controlled access facilities in Houston, San Antonio, Austin, Beaumont, Dallas, and Fort Worth. Figure 1 shows the location of these Texas cities. All counts were taken during the five-day work week (Monday through Friday) in the summer of 1965. The counts were made for 5 minute intervals by direction and by lane at each location. Location of the 5 minute count stations in the various cities are shown in Figures 2.A through 2.C. All of these stations were located on controlled access facilities where the number of lanes varied from four to ten. FIGURE I TEXAS CITIES IN WHICH FIVE MINUTE COUNTS WERE MADE IN 1963 AND 1965 LOCATION OF INDIVIDUAL FIVE MINUTE COUNT STATIONS IN EACH CITY FIGURE 2.A LOCATION OF INDIVIDUAL FIVE MINUTE COUNT STATIONS IN EACH CITY FIGURE 2.B BEAUMONT HOUSTON LOCATION OF INDIVIDUAL FIVE MINUTE COUNT STATIONS IN EACH CITY FIGURE 2.C #### CHAPTER III #### CALCULATION PROCEDURE In the analysis, the traffic volumes by lane for each 5-minute period during a 24-hour period in the inbound and outbound directions were utilized. This information from each station was coded onto data processing cards and electronic data processing equipment was used for the necessary calculations. The results of the calculations are shown in Appendix 1. At each station, the peak 5-minute, peak 10-minute, peak 1-hour, peak 2-hour, and the total 24-hour volumes were determined. The beginning time of the occurrence of each of these peak periods was determined and is shown in Column (1) of the tabulations in Appendix 1. Each of these peaks was determined for the inbound and outbound directions, for the inbound A.M. and outbound A.M. directions, and for the inbound P.M. and outbound P.M. directions. Approximately eleven determinations were made for each peak period selected for study. The volume during the peak period under consideration was determined and the opposing volume during this same period of time was computed. These two volumes are shown in Columns (2) and (3) respectively. These were added together to obtain the total volume for that peak period; the sum is shown in Column (4). The directional distribution, or split, is found in Column (5). The volume, Column (2), of each peak period was then divided by the total inbound 24-hour volume to obtain the values listed in Column (6). Column (7) shows the peak volume listed in Column (2) divided by the total outbound volume for the 24-hour period. Column (8) shows the peak volume listed in Column (2) divided by the total of the inbound and outbound volumes for the 24-hour period. It was also desirable to determine the relationship of each of the peak periods to the peak hour. Column (9) represents each peak volume divided by the volume of the peak hour in the inbound direction; whereas, Column (10) is the peak volume divided by the volume during the peak hour in the outbound direction. Column (11) shows the ratio of the peak volume to the volume in both directions during the inbound peak hour. The ratio of the peak volume to the volume in both directions recorded during the peak hour in the outbound direction is shown in Column (12). Columns (2) through (12) represent the basic calculations that were made from the 5-minute count data. It was from these calculations for each of the fifteen count stations that the relationship of short-time counts to longer periods of time was determined for the 1965 data. #### CHAPTER IV #### TRAFFIC VOLUME RELATIONSHIPS ON URBAN FREEWAYS Comprehensive traffic data from field studies are essential to engineering analysis for location and design. This fact is accepted by all design personnel in the highway field. The data presently considered to be essential are: - 1. ADT Average Daily Traffic - 2. DHV Design Hour Volume - 3. K Ratio of DHV to ADT - 4. D Percent of Traffic in Heavier Direction of flow - 5. T Percent Trucks During the Design Hour The "K" factor generally varies from 12 to 14% for freeways in urban areas. The maximum hourly volumes in urban areas average from 1.2 to 1.4 times the thirtieth highest hourly volumes. The directional distribution or split (D) is generally accepted to be approximately 55 to 60% in urban areas, with a tendency toward 50% likely as the urban development becomes more concentrated. The "T" factor, or the percent of DHV made up of trucks in urban areas, is generally 3 to 7%.2 The DHV should be representative of the traffic flow expected for some future year. Inherent in any projection into the future are the possibilities of major changes that cannot be forecast; therefore, in order to have the best possible forecast one must utilize the best data and forecasting techniques available. This dictates that all basic data such as ADT, DHV, D and T must be as precise as practicable. It should be noted that
the thirtieth highest hour has been used in the past as the DHV for most facilities. In rural areas this has been accepted as a practical and reasonable approach. In large metropolitan areas, the use of the thirtieth highest hour as the basis for design is considered an out dated practice by most authorities. The volume of vehicles using the facilities during peak demand periods in urban areas are of such magnitude that the use of the thirtieth highest hour as the Design Hourly Volume normally results in traffic congestion of considerable magnitude and duration. It has become apparent to those responsible for the design and regulation of urban traffic that a design volume other than the thirtieth highest hour volume is required to obtain a satisfactory level of service. One approach to the derivation of a design volume is to study the existing characteristics of peak volumes existing in an area and from analysis of these studies determine a practical design volume. The selection of a design volume for an urban area should take into consideration the magnitude and duration of various peak periods, the financial status of participating agencies, and should be coordinated with planned improvements of other facilities in the area. Perhaps the ideal approach to data collection for design studies would require maintaining continuous 365 day a-year count stations in all areas, with equipment capable of recording 5-minute volumes by lane and direction. Since this type of operation is not economically feasible, an acceptable substitute is needed. An investigation was made of the characteristics of various periods to determine a peak period of short duration that could be expanded to an acceptable volume of longer duration. Traffic volumes were manually recorded in 5 minute intervals on nineteen urban freeway locations in Texas in 1963. The result of the analysis of these data were reported in "An Analysis of Peak Period Freeway Volume Characteristics." 1 Correlations by other agencies have related short-time count volumes to longer volumes of time intervals. Moskowitz and Newman of the California Division of Highways have shown the relationship of the peak 5-minutes to the peak hour for different urban area sizes.³ Drew and Keese of the Texas Transportation Institute show the relationship of the peak 2-hour period to the peak hour period for ninety-five studies in several states.⁴ Carll and Homburger of the University of California, Berkeley, have studied three facilities in California and have illustrated the relationship of the peak hour to the 24-hour volume. They have also made a 6-minute count and expressed this volume as a ratio to the 24-hour directional volume.⁵ The Bureau of Public Roads has stated that a 24-hour volume in an urban area on a weekday can be considered the same as the ADT with a \pm 10% standard error of the estimate. This concept expressed by the Bureau of Public Roads can be a valuable tool for estimating the ADT. This study of traffic volumes recorded in 5-minute intervals in 1965 at fifteen urban locations in Texas is broken down into three areas of correlation, which are: - 1. Volumes in the inbound direction - 2. Volumes in the outbound direction - 3. The combined volumes in both directions A comparison of the 24-hour volume taken from the 5-minute counts to the calculated ADT, which was furnished by the Planning Survey Division of the Texas Highway Department, for each count station has been made. The analysis of the 1965 5-minute count data has been performed to validate the reliability of the relationships developed from the 1963 5-minute count data that were reported in "An Analysis of Peak Period Freeway Volume Characteristics." However, there are some additional relationships developed from the study of the 1965 5-minute count data. Several traffic volumes and related characteristics of Texas urban freeways are shown in Table 1. This table includes the data from the 1963 and 1965 5-minute count stations. It is noted that of the fifteen urban count stations in 1965, the traffic volume during the peak A.M. and P.M. hours exceeds the practical capacity at eight of the locations. In 1963 only at five locations of the nineteen count stations did the traffic volumes exceed the practical capacity of the facility during the peak hours. The beginning of the peak A.M. and P.M. hours remains approximately the same in 1965 as it was in 1963. The percentage that the peak 5-minute volume is of the peak hour for the A.M. period ranges from 9.4 to 12.3% for the 1963 data and from 9.0 to 12.0% for the 1965 data. The percentage that the peak 5-minute volume is of the peak hour for the P.M. period ranges from 9.2 to 13.7% for the 1963 data and from 8.8 to 11.4% for the 1965 data. The percentage that the peak 5-minute volume is of the peak hour for the 1965 data is slightly less than this percentage for the 1963 data. As the practical capacity is exceeded during the peak hour, the percent that the 5-minute peak volume is of the peak hour should decrease because the 5-minute volume cannot increase due to capacity limitations. The peak 5-minute rate of flow ("F") varies from approximately 1.2 for large metropolitan areas to 1.4 for the smaller cities. The rate of flow ("F") should decrease as the peak hour volume approaches practical capacity because the 5-minute volume cannot increase due to capacity limitations. Table 2 shows the comparison of 24-hour volumes measured at the 5-minute count stations to the ADT calculated from data recorded at permanent count stations. Of the seventeen stations for which the ADT was available for 1963, the 24-hour volume calculated from the 5-minute manual counts deviated from the ADT by + 10% or less at twelve stations. The calculated 24-hour volume at two locations deviated 11.3 and 11.0% from the ADT. Of the ten stations for which the ADT was available for 1965, the 24-hour volume calculated from the 5-minute counts deviated from the ADT by \pm 10% or less at seven stations. The calculated 24-hour volume at two locations deviated by 10.4 and 11.9%. Table 1 # Traffic Volumes and Facility Characteristics At The 1963 and 1965 Texas 5-Minute Count Locations | City | 1960
Population | Count | Capacit | ty Data
P.M. ** | Number
of | Distance
Count | A.M. Peak
Hour Begins | P.M. Peak
Hour Begins | % 5 Min.
Peak is of A.M. | | *AM | *PM | |-------------|--------------------|--------|--------------|---------------------------------------|--------------|---------------------------------|--------------------------|--------------------------|-----------------------------|------------------------|---------------------|---------------------| | | In
Thousands | Number | 1963 1965 | 5 1963 1965 | Lanes | Station is From
CED in Miles | 1963 1965 | 1963 1965 | Peak Hour
1963 1965 | Peak Hour
1963 1965 | Factor
1963 1965 | Factor
1963 1965 | | Austin | 187 | 105 | - + | , , , , , , , , , , , , , , , , , , , | 4 | 3 | 7:15 7:15 | 16:35 16:35 | 11.9 11.1 | 11.3 10.3 | 1.43 1.33 | 1.35 1.24 | | Austin | 187 | 129 | - | , ₁ | 6 | 3 | 7:05 | 16:45 | 11.9 | 11.8 | 1.42 | 1.43 | | Aust1n | 187 | 132 | - | - 2 | 6 | 3 | 7:05 | 16:35 | 11.9 | 13.7 | 1.43 | 1.64 | | | | | _ | *** | | | | | | | | | | Beaumont | 119 | 115 | | | 4 | 2 | 7:10 7:15 | . 16:50 16:20 | 11.3 10.3 | 12.2 11.4 | 1.35 1.24 | 1.46 1.36 | | Beaumont | 119 | 117 | · <u>.</u> . | _ ; | 4 | 2 | 6:20 | 16:20 | 10.3 | 12.0 | 1.24 | 1.45 | | | 4 | | | | | | | | - | | | 3 | | San Antonio | 642 | 94 | + + | + + | 4 | 2 | 7:00 7:10 | 16:40 16:55 | 10.3 9.0 | 9.4 9.8 | 1.24 1.08 | 1.13 1.18 | | San Antonio | 642 | 106 | + + | + + | 4 | 2 | 6:50 6:55 | 16:40 16:35 | 10.8 9.7 | 9. 8 9.4 | 1.29 1.17 | 1.17 1.12 | | Sen Antonio | 642 | 108 | | . L | 4 | 2 | 7:10 7:05 | 16:30 16:35 | 10.1 9.8 | 11.1 9.4 | 1.20 1.18 | 1.33 1.13 | | Fort Worth | 503 | 109 | · <u>·</u> _ | | ,
, , 6 | 1 | 7:00 7:10 | 16:35 16:40 | 10.1 10.8 | 10.1 10.4 | 1.21 1.29 | 1.21 1.24 | | Fort Worth | 503 | 122 | | ` | 4 | 6 | 6:55 | 16:55 | 11.8 | 12.8 | 1.41 | 1.53 | | Fort Worth | 503 | 130 | - · · · + | - + | , 4 | 3 | 7:10 7:15 | 16:35 16:40 | 10.6 12.0 | 11.1 10.1 | 1.27 1.44 | 1.33 1.21 | | | | | | | | | | | | | | | | Dallas | 932 | 93 | + + | + + , | 6 | 1 | 7:10 7:00 | 16:35 16:35 | 9.4 9.7 | 9.2 8.8 | 1.13 1.16 | 1.10 1.06 | | Dallas | 932 | 126 | | r- _j - : | 10 | 3 | 7:20 7:15 | 16:35 16:45 | 9.6 9.2 | 9.5 9.4 | 1.15 1.10 | 1.14 1.12 | | Houston | 1,140 | 89 | + , + | + + | 6 | 1 | 6:50 7:00 | 16:25 16:10 | 10.5 9.2 | 9.9 9.2 | 1.26 1.10 | 1.19 1.10 | | Houston | 1,140 | 99 | + + | + + | 6 | 5 | 6:35 6:35 | 17:00 16:25 | 10.4 9.7 | 9.7 9.0 | 1.25 1.17 | 1.16 1.08 | | Houston | 1,140 | 1,01 | T- T- | _ | 6 | 6 | 7:30 | 16:35 | 12.3 | 9.2 | 1.47 | 1.10 | | Houston | 1,140 | 104 | _ ' | - | 6 | 6 | 6:40 | 16:35 | 10.5 | 9.2 | 1.26 | 1.11 | | Houston | 1,140 | 124 | | | 6 | 1 | 7:00 6:25 | 16:35 16:35 | 9.6 9.3 | 10.7 9.3 | 1.16 1.12 | 1.29 1.11 | | Houston | 1,140 | 125 | | | 4 | 18 | 6:40 | 17:00 | 11.8 | 11.3 | 1.42 | 1.36 | | Houston | 1,140 | 139 | | | 10 | 2 | 7:15 | 17:20 | 9.6 | 10.0 | 1.15 | 1.20 | | Houston | 1,140 | 141 | _ | _ | 8 | . 8 | 7:05 | 16:50 | 9.7 | 10.2 | 1.16 | 1.23 | | Houston | 1,140 | 142 | + | + | 8 | 3 | 6:50 | 16:35 | 9.7 | 9.6 | 1.16 | 1.15 | [&]quot;F" Factor determined as follows: F= Peak 5-Minute Volume x 12 Feak Hour Volume A "-" indicates the peak hourly volume in the peak direction exceeds the practical capacity. A "-" indicates the peak hourly volume in the peak direction is less than the practical capacity. COMPARISON OF 24-HOUR VOLUMES FROM 5-MINUTE COUNTS TO AVERAGE DAILY TRAFFIC FROM PERMANENT TRAFFIC COUNTERS TABLE 2 | Station | Permane | ! From
int Counte
lata
1965 | r From | r Volume
5-Minute
it Data
1965 | | Cerence
nicles)
1965 | D iffe
(%
1963 | | |----------|------------------
--------------------------------------|-----------------|---|----------------|----------------------------|-----------------------------|-------------| | 0- | o | | | | | | – 1 | | | 89 | 96,818 | 107,128 | 102,052 | 116,920 | 5 , 234 | 9,792 | 5•4 | 9.1 | | 93 | 62,751 | 72 , 579 | 71,530 | 78,490 | 8,779 | 5,911 | 14.0 | 8.1 | | 94 | 56,026 | 58,687 | 60,902 | 62,290 | 4,876 | 3,603 | 8.7 | 6.1 | | 99 | 85 , 682* | 92,440 | 88,078 | 100 , 515 | 2,396 | 8,075 | 2.8 | 8.7 | | 101 | ×× | ** | 56 , 265 | ** | V | | | | | 104 | ×× | ** | 30,463 | ** | | | | | | 105 | 36,370 | ×× | 39 , 253 | 46 , 825 | 2,883 | | 7.9 | | | 106 | 44,627 | 49,323 | 46,905 | 55 , 170 | 2,278 | 5,847 | 5.1 | 11.9 | | 108 | 37 ,79 8 | 40,578 | 42,063 | 44,805 | 4 , 265 | 4,227 | 11.3 | 10.4 | | 109 | 54,807 | 58 , 889 | 58 , 328 | 63 , 185 | 3,521 | 4,296 | 6.4 | 7•3 | | 115 | 23,881 | 30,078 | 24 , 532 | 33,085 | 651 | 3,007 | 2.7 | 10.0 | | 117 | 19 ,12 9 | ** | 22,111 | ** | 2,982 | | 15.6 | | | 122 | 9,979 | ×× | 12,128 | ×× | 2,149 | | 21.5 | | | 124 | 40,666 | 42,312 | 40,485 | 43,475 | -181 | 1,163 | -4 | 2.7 | | 125 Rure | 1 6,599 | ×× | 7,165 | . * * | 566 | | 8.6 | | | 126 | 56,527 | 72,797 | 61,847 | 83 , 385 | 5,320 | 10,588 | 9.4 | 14.5 | | 129 | 34,302 | * * | 33 , 156 | ** | -1,146 | | 3•3 | | | 130 | 46 , 506 | 50 , 435 | 48,948 | 5 ¹ 4 , 375 | 2,442 | 3,940 | 5•3 | 7.8 | | 132 | 27,772 | ×× | 30,821 | ×× | 3,049 | | 11.0 | | ### TABLE 2 (Continued) | Station | Permane | From
nt Counter
ata | From | r Volume
5-Minute
nt Data | | erence
icles) | D iffe r | rence | |---------|---------------|---------------------------|----------------|---------------------------------|------|------------------|-----------------|-------| | | 1963 | 1965 | 1963 | 1965_ | 1963 | 1965 | 1963 | 1965 | | 139 | ** | 75,442 | ** | 85,030 | | 9,588 | | 12.7 | | 141 | ** | 40,522 | ** | 44,770 | | 4,248 | | 10.5 | | 142 | ** | 71,222 | X X | 75,885 | - | 4,663 | | 6.5 | ^{*1965} Data ^{**} Data Not Available #### CHAPTER V ## TRAFFIC VOLUME DISTRIBUTION BY LANE ON URBAN FREEWAYS Figures 3 through 32 represent the traffic volume distribution by lane at the fifteen 5-minute count locations in 1965. Each 5-minute volume for each lane was expanded to an hourly flow rate by multiplying each volume by 12. The data on this subject is very meager and does not lend itself to very definite conclusions. The number of locations and the number of lanes at each location are as tabulated below: | Number of Freeway
Lanes | Number of Locations
Studied | |----------------------------|--------------------------------| | 14 | 6 | | 6 | 5 | | 8 | 2 | | 10 | 2 | In addition to the fact that the amount of data is small, it is evident that certain of the locations have been influenced by factors peculiar to that particular location. This, of course, further confirms the fact that lane distribution is extremely sensitive to location and a means, such as television surveillance, will be required to determine what can be expected as the free-way flow is influenced by various factors such as ramps, grades, etc. However, several items are evident in this data which do justify comment. In general, the locations which represent relatively normal freeway flow tend to follow earlier conclusions along these lines. This would be that the percent of traffic in the right hand lanes tends to be higher at low total volumes and that as the volume on the freeway increases, the percentage of traffic in the left hand lanes tends to increase to the point that a 35-35-30 distribution will prevail at volumes in the vicinity of the design capacity of a six lane freeway. The traffic volumes on the eight and ten lane locations studied have not as yet reached capacity and at least two of these locations are definitely influenced by incomplete freeway connections near the point where the data was taken. The figures, however, do not show any decrease in traffic volumes on the fourth and fifth lanes as has been suspected by some authorities on freeway operation. At this point, no attempt has been made to relate this data to the Level of Service concept advocated in the recently published Highway Capacity Manual.⁸ As more data becomes available, however, it is our intention to determine what, if any application is possible here. TRAFFIC VOLUME DISTRIBUTION BY LANE ON URBAN FREEWAYS LAME ON URBAN FREEWAYS TRAFFIC VOLUME DISTRIBUTION BY LANE ON URBAN FREEWAYS FIGURE 22 TRAFFIC VOLUME DISTRIBUTION BY LANE ON URBAN FREEWAYS ## CHAPTER VI ## CORRELATION OF SHORT-TIME COUNT VOLUMES TO VOLUMES OF LONGER TIME INTERVALS Figures 33.A through 33.T and Figures 34.A through 34.T represent the correlation of short-time counts to long-time counts. These figures were derived from the calculations found in Appendix 1. Figures 33.A through 33.T show the relationships derived for inbound and outbound directions; whereas, Figures 34.A through 34.T express the relationship for the total volumes in both directions. In each of these figures the short-time counts fell within the time interval of the long-time counts. The regression equation is shown on each figure. In Figures 33.A and 33.B the 5-minute peak volume is plotted against the 10-minute peak volume for the inbound and outbound direction respectively. The slope of the regression line for the inbound direction is 1.96 and for the outbound is 1.95. If the Y-intercept of each regression equation is omitted, then the reciprocal of the slope will be an approximation of the percent that the short-time count volume is of the long-time count volume. Therefore, the 5-minute peak volume in the inbound direction will be approximately 51.02 percent $(\frac{1}{1.96} \times 100)$ of the 10-minute peak volume. The 5-minute peak volume in the outbound direction will be approximately 51.28 percent $(\frac{1}{1.96} \times 100)$ of the 10-minute peak volume. Thus, the 1.95 5-minute peak volume will be approximately 51.15 percent $(\frac{51.02 + 51.28}{2})$ of the 10-minute peak volume regardless of direction of the traffic flow. In Figures 33.C and 33.D the 5-minute peak volume is plotted against the peak hour volume for the inbound and outbound directions respectively. The slope of the regression line for the inbound direction is 10.92 and for the outbound direction is 10.87. The 5-minute peak volume in the inbound direction is approximately 9.16 percent of the peak hour volume. The 5-minute peak volume in the outbound direction is approximately 9.20 percent of the peak hour volume. The average value that the 5-minute peak volume will be of the peak hour volume, regardless of the direction of the traffic flow, is 9.18 percent. Figures 33.E and 33.F represent the relationship of the 5-minute peak volume to the 2-hour peak volume for the inbound and outbound directions respectively. The slope of the regression line in Figure 33.E is 19.00 and in Figure 33.F is 19.10. The 5-minute peak volume is approximately 5.26 percent of the 2-hour peak volume for the inbound direction. For the outbound direction the 5-minute peak volume is approximately 5.24 percent of the 2-hour peak volume. As an average value, the 5-minute peak volume is 5.25 percent of the 2-hour peak volume. Figures 33.G and 33.H show the relationship of the 5-minute peak volume to the 24-hour volume for the inbound and outbound directions. The coefficient of determination is 0.572 for the inbound relationship and 0.509 for the outbound relationship. It is seen from Figures 33.G and 33.H that there is considerable scatter of the data about each linear regression line. From these data on urban freeways in Texas, it is seen that a simple linear projection of a short-time count of 5-minute duration to a long-time count of 24-hour duration by direction does not produce the desired accuracy. Figures 33.I and 33.J represent the relationship of the 10-minute peak volume to the hourly peak volume for the inbound and outbound directions. The slope of the regression line for the inbound and outbound direction is 5.59. The 10-minute peak volume will be approximately 17.89 percent of the hourly peak volume for either the inbound or outbound direction. In Figures 33.K and 33.L the 10-minute peak volume is plotted against the 2-hour peak volume for the inbound and outbound directions. The slope of the regression line in Figure 33.K is 9.71 and in Figure 33.L is 9.88. The 10-minute peak volume will be approximately 10.30 percent of the 2-hour peak volume for the inbound direction and 10.12 percent for the outbound direction. Figures 33.M and 33.N represent the relationship of the 10-minute peak volume to the 24-hour volume for the inbound and outbound directions. The coefficient of determination is 0.563 for the inbound relationship and 0.559 for the outbound relationship. It is seen from Figures 33.M and 33.N that there is considerable scatter of data about each linear regression line. From these data on urban freeways in Texas, it is seen that a simple linear projection of a short-time count of 10-minutes duration to a long-time count of 24-hour duration by direction would not produce the desired accuracy. Figures 33.0 and 33.P show the relationship of the peak hourly volume to the 2-hour peak volume. The slope of the regression line in Figure 33.0 and in Figure 33.P is 1.77. The peak hourly volume will be approximately 56.50 percent of the 2-hour peak volume regardless of the direction of traffic flow. In Figures 33.Q and 33.R the peak hour volume is plotted against the 24-hour volume in the inbound and outbound direction. The coefficient of determination of the regression line in Figure 33.Q is 0.639 and
in Figure 33.R is 0.607. Again it is seen that for the urban freeways studied, a simple linear expansion of a peak hour volume to a 24-hour volume would not produce the desired results. Figures 33.S and 33.T represent the linear relationship of the 2-hour peak volume to the 24-hour volume for the inbound and outbound direction. The coefficient of determination of the linear regression line in Figure 33.S is 0.723 and in Figure 33.T is 0.724. While these coefficients of determination are higher than the ones for the shorter time intervals, a simple linear expansion of a 2-hour peak volume to a 24-hour volume is not as good as would be desired. Figures 34.A through 34.T represent the correlation of short-time counts to long-time counts for volumes in both directions. The linear relationships developed for volumes recorded in both directions during a specific peak period generally produce about the same accuracy as the relationship of directional volumes recorded during selected peak periods. However, there are some linear relationships that definitely improve when using volumes in both directions. Figures 33.G and 33.H show the correlation of the 5-minute peak volume to the 24-hour volume for the inbound and outbound direction. It was noted that the coefficient of determination was 0.572 and 0.509 for the inbound and outbound relationship respectively. Figures 34.G and 34.H show the correlation of the 5-minute peak volume in both directions during the inbound and outbound 5-minute peak period with the 24-hour volume in both directions. The coefficient of determination for the linear regression line in Figure 34.G is 0.852 and in Figure 34.H is 0.916. This is an improvement over the directional relationships. Therefore, a 24-hour total volume for both directions could be predicted with reasonable accuracy from a volume recorded in both directions during the inbound or outbound peak 5-minutes. Figures 33.M and 33.N represent the relationship of the 10-minute peak volume to the 24-hour volume for the inbound and outbound directions. The coefficient of determination is 0.563 for the inbound relationship and 0.559 for the outbound relationship. Figure 34.M represents the relationship of the 10-minute volume in both directions during the inbound peak 10-minutes to the 24-hour volume in both directions. Figure 34.N represents the relationship of the 10-minute volume in both directions during the outbound peak 10-minutes to the 24-hour volume in both directions. The coefficient of determination for the linear regression line in Figure 34.M is 0.877 and in Figure 34.N is 0.921. Again it is seen that when a simple linear relationship is used to project short-time count volumes to a 24-hour volume, volumes in both directions during a given peak period should be used. Figures 33.S and 33.T represent the linear relationship of the 2-hour peak volume to the 24-hour volume for the inbound and outbound directions. The coefficient of determination of the linear regression line in Figure 33.S is 0.723 and in Figure 33.T is 0.724. Figures 34.S and 34.T represent the linear relationship of the 2-hour volume in both directions during the inbound and outbound peak 2-hour period to the 24-hour volume in both directions. The coefficient of determination of the linear regression line in Figure 34.S is 0.932 and in Figure 34.T is 0.950. When estimating a 24-hour volume from a short-time count volume by simple linear methods, volumes in both directions should be used. Table 3 lists the coefficient of determination, coefficient of correlation, and the standard error of the estimate for the linear regression relationships shown in Figures 33.A through 33.T. Table 4 lists the coefficient of determination, coefficient of correlation and the standard error of the estimate for the linear regression relationships shown in Figures 34.A through 34.T. Table 5 lists the percent that the short-time count volume will be of the long-time count volume for directional volumes. The reciprocal of the slope of each of the linear regression lines in Figures 33.A through 33.T was calculated and is expressed as a percent in Table 5. Table 6 lists the percent that the short-time count volume will be of the long-time count volume for volumes in both directions. Again the reciprocal of the slope of each of the linear regression lines in Figures 34.A through 34.T was calculated and is expressed as a percent in Table 6. VOLUME CORRELATION BY DIRECTION FIGURE 33.A VOLUME CORRELATION BY DIRECTION FIGURE 33.B VOLUME CORRELATION BY DIRECTION FIGURE 33. C VOLUME CORRELATION BY DIRECTION FIGURE 33. D VOLUME CORRELATION BY DIRECTION FIGURE 33. E VOLUME CORRELATION BY DIRECTION FIGURE 3 3. F VOLUME CORRELATION BY DIRECTION FIGURE 3 3. G VOLUME CORRELATION BY DIRECTION FIGURE 33.H VOLUME CORRELATION BY DIRECTION FIGURE 3 3. I VOLUME CORRELATION BY DIRECTION FIGURE 33.J VOLUME CORRELATION BY DIRECTION FIGURE 33.K VOLUME CORRELATION BY DIRECTION FIGURE 33.L VOLUME CORRELATION BY DIRECTION FIGURE 33.M VOLUME CORRELATION BY DIRECTION FIGURE 33.N VOLUME CORRELATION BY DIRECTION FIGURE 33.0 VOLUME CORRELATION BY DIRECTION FIGURE 33.P VOLUME CORRELATION BY DIRECTION FIGURE 33.Q VOLUME CORRELATION BY DIRECTION FIGURE 33. R VOLUME CORRELATION BY DIRECTION FIGURE 33. S VOLUME CORRELATION BY DIRECTION FIGURE 33. T TOTAL VOLUME CORRELATION FIGURE 3 4. A TOTAL VOLUME CORRELATION FIGURE 34.B TOTAL VOLUME CORRELATION FIGURE 34.C TOTAL VOLUME CORRELATION FIGURE 34.D TOTAL VOLUME CORRELATION FIGURE 34.E TOTAL VOLUME CORRELATION FIGURE 34.F TOTAL VOLUME CORRELATION FIGURE 34. G TOTAL VOLUME CORRELATION FIGURE 34.H TOTAL VOLUME CORRELATION FIGURE 34. I TOTAL VOLUME CORRELATION FIGURE 34. J TOTAL VOLUME CORRELATION FIGURE 34.K TOTAL VOLUME CORRELATION FIGURE 34.L FIGURE 34.M FIGURE 34.N TOTAL VOLUME CORRELATION FIGURE 34.0 TOTAL VOLUME CORRELATION FIGURE 34.P TOTAL VOLUME CORRELATION FIGURE 34. Q TOTAL VOLUME CORRELATION FIGURE 34. R TOTAL VOLUME CORRELATION FIGURE 34. S TOTAL VOLUME CORRELATION FIGURE 34. T TABLE 3 STATISTICAL RESULTS OF CORRELATION OF SHORT-TIME COUNTS TO LONG-TIME COUNTS FOR DIRECTIONAL VOLUMES | Coefficien of Figure Number Determinati | | | Coefficient
of
Correlation | | Standard
Error of the
Estimate | | | |---|--------------|-------|----------------------------------|-------|--------------------------------------|------|--| | | 1963 | 1965 | 1963 | 1965 | 1963 | 1965 | | | 33.A | * | •998 | * | •999 | * | 11 | | | 33.B | * | •996 | * | •998 | * | 14 | | | 33.C | .980 | .963 | .990 | .981 | 190 | 263 | | | 33.D | . 971 | •972 | .985 | .986 | 223 | 200 | | | 33.E | * | .912 | * | •955 | * | 726 | | | 33.F | * | .926 | * | .962 | * | 581 | | | 33.G | * | •572 | * | .756 | * | 7637 | | | 33.H | * | •509 | * | .713 | * | 7864 | | | 33.I | .985 | .969 | .992 | .984 | 168 | 243 | | | 33.J | •972 | .980 | .986 | .990 | 221 | 170 | | | 33.K | * | •916 | * | •957 | * | 711 | | | 33.L | * | •945 | * | •972 | * | 502 | | | 33.M | * | .563 | * | •751 | * | 7714 | | | 33.N | * | •559 | * | .747 | · X | 7453 | | | 33.0 | .984 | .981 | •992 | •991 | 306 | 336 | | | 33.P | •993 | .967 | •997 | .983 | 201 | 390 | | | 33.9 | •934 | .639 | .966 | • 799 | 3105 | 7013 | | | 33.R | .940 | .607 | .969 | •779 | 2884 | 7030 | | | 33.S | .960 | .723 | .980 | .850 | 2408 | 6145 | | | 33.₺ | •953 | . 724 | .976 | .851 | 2556 | 5893 | | ^{*} Not Calculated for 1963 Data TABLE 4 STATISTICAL RESULTS OF CORRELATION OF SHORT-TIME COUNTS TO LONG-TIME COUNTS FOR VOLUMES IN BOTH DIRECTIONS | Figure Number | of | | 0 | icient
f
lation | Erro | ndard
r of the
timate | |---------------|------|--------------|------|-----------------------|------|-----------------------------| | | 1963 | 1965 | 1963 | 1965 | 1963 | 1965 | | 34.A | * | •994 | * | •997 | * | 27 | | 34.B | * | •989 | * , | •995 | * | 34 | | 34.C | .974 | . 981 | .987 | .990 | 364 | 289 | | 34.D | .983 | .968 | .992 | .984 | 293 | 336 | | 34.E | * | .944 | * | •971 | * | 893 | | 34.F | * | .926 | * | .962 | * | 987 | | 34.G | * | .852 | * | .923 | * | 8792 | | 34.Н | * | •916 | * | •957 | * | 6607 | | 34.I | .984 | .981 | .992 | •990 | 283 | 287 | | 34.J | •977 | .976 | .988 | .988 | 348 | 292 | | 34.K | * | •949 | * | •974 | * | 852 | | 34.L | * | .947 | * | •973 | * | 831 | | 34.M | * | .877 | * | •937 | * | 8004 | | 34.N | * | .921 | * | . 960 | * , | 6425 | | 34.0 | •985 | .986 | .992 | •993 | 491 | 452 | | 34.P | .991 | .971 | •995 | .986 | 409 | 614 | | 34.Q | .950 | .893 | •975 | •945 | 5310 | 7463 | | 34.R | •973 | .927 | .986 | .963 | 3919 | 6160 | | 34.S | •975 | •932 | .987 | •965 | 3748 | 5973 | | 34.⊤ | .984 | .950 | .992 | •975 | 2961 | 5095 | ^{*} Not Calculated for 1963 Data TABLE 5 Average Values of Factors to Expand Short-Time Counts To Long-Time Counts for Directional Volumes | | | | Percent | | |------------|---|--------------|---------|--------------| | | | 1963 | | 1965 | | | | | | | | 5-minute | peak volume is of 10-minute peak volume | v | | 53. 0 | | | inbound outbound | * | | 51.0
51.3 | | | Od CDOdiid | • | | 71.0 | | 5-minute | peak volume is of peak hour volume | | | | | | inbound | 9.9 | | 9.2 | | | outbound | 9.0 | | 9.2 | | 5-minute | peak volume is of 2-hour peak volume | | | | | у-штиче | inbound | * | | 5.3 | | | outbound | * | | 5.2 | | | | | | | | 5-minute | peak volume is of 24-hour volume | * | | a 1. | | | inbound
outbound | * | | 1.4
1.3 | | | ousbound | ^ | | 1.3 | | 10-minute | e peak volume is of 1-hour peak volume | | | | | | inbound | 19.2 | | 17.9 | | | outbound | 17.3 | | 17.9 | | 10-minute | e peak volume is of 2-hour peak volume | | | | | TO-MILIA O | inbound | * | | 10.3 | | | outbound | * | | 10.1 | | | | | | | | 10-minute | e peak volume is of 24-hour volume
inbound | * | | 0 17 | | | outbound | * | | 2.7 | | | | | | • → |
| Peak hou | r volume is of 2-hour peak volume | | | | | | inbound | 55.2 | | 56.5 | | | outbound | 54.3 | | 56.5 | | Peak hour | r volume is of 24-hour volume | | | | | | inbound | 11.0 | | 14.4 | | | outbound | 11.3 | | 13.3 | | 0 he | agle volume de of Oli Jesses surlama | | | | | ∠-nour pe | eak volume is of 24-hour volume
inbound | 19.9 | | 24.3 | | | outbound | 20.7 | | 22.1 | | | | | | | ^{*} Not Calculated for 1963 Data TABLE 6 Average Values of Factors to Expand Short-Time Counts To Long Time Counts For Volumes In Both Directions | | | Percent | |---|--------------|--------------| | | 1963 | 1965 | | 5-minute peak volume is of 10-minute peak volume inbound outbound | *
* | 49.3
52.4 | | 5-minute peak volume is of peak hour volume inbound outbound | 9.5
9.4 | 8.3
9.3 | | 5-minute peak volume is of 2-hour peak volume inbound outbound | * | 4.7
4.9 | | 5-minute peak volume is of 24-hour volume inbound outbound | * | 0.8 | | 10-minute peak volume is of 1-hour peak volume inbound outbound | 18.5
17.9 | 17.0
17.8 | | 10-minute peak volume is of 2-hour peak volume inbound outbound | *
* | 9.5
9.3 | | 10-minute peak volume is of 24-hour volume inbound outbound | *
* | 1.6
1.5 | | Peak hour volume is of 2-hour peak volume inbound outbound | 55.2
53.8 | 55.6
52.6 | | Peak hour volume is of 24-hour volume inbound outbound | 9.1
9.4 | 9.6
8.5 | | 2-hour peak volume is of 24-hour volume inbound outbound | 16.4
17.5 | 17.0
16.2 | ^{*} Not Calculated for 1963 Data ## CHAPTER VII ## ESTIMATING PEAK PERIOD VOLUMES In estimating traffic volumes for design purposes, frequently a 24-hour volume in both directions will be projected into the future by various methods. From this projected 24-hour volume, a peak hourly volume or peak 2-hour volume will be estimated. This study of urban freeways in Texas is designed to show the relationship of short-time count volumes to volumes of longer time intervals. From this study an evaluation of present methods of estimating peaking characteristics can be made. A method was developed for estimating the peak hour volume in the inbound direction from the 24-hour volume in both directions. Figure 35 shows the relationship of the peak hour volume in the inbound direction to the 24-hour volume in both directions. It is seen from Figure 35 that the logarithm of the 24-hour volume in both directions is plotted as the abscissa while the square root of the inbound peak hour volume divided by an age factor is plotted as the ordinate. All of the data taken in 1963 and 1965 appear in Figure 35. The age factor was determined for each location from the length of time the facility had been opened to traffic to the time the 5-minute counts were made. The selection of age factors were chosen from those that resulted in the highest coefficient of determination and lowest standard error of the estimate. The facilities under study were given an age factor as follows: - 1. 0-5 Years in Operation = 1.35 - 2. 6-15 Years in Operation = 1.00 - 3. 16 and Over years in Operation = 0.90 The coefficient of determination, coefficient of correlation, and the standard error of the estimate for the relationship shown in Figure 35 is 0.928, 0.963, and 3.32 respectively. The coefficient of determination and the standard error of the estimate when using an age factor of 1.0 for any length of time that the freeway has been opened to traffic is 0.853 and 4.85 respectively. Therefore, the age factor is not as critical as might be thought. The regression equation is: $$Y = -217.82 + 57.79 (X)$$ Where: $$Y = \left(\frac{\text{Inbound Peak Hour Volume}}{\text{Age Factor}}\right)^{\frac{1}{2}}$$ Rearranging the equation to solve for the inbound peak hour volume let: IPHV = Inbound Peak Hour Volume AF = Age Factor $V = Log_{10}$ (24-Hour Volume in Both Directions) Thus $$\left(\frac{\text{IPHV}}{\text{AF}}\right)^{\frac{1}{2}} = -217.82 + 57.79 \text{ (V)}$$ Which simplifies to: IPHV = $$47445.55$$ (AF) - 25175.64 (AF) (V) + 339.68 (AF) (V)² Οľ IPHV = AF $$(47445.55 - 25175.64 (V) + 3339.68 (V)^2)$$ Thus an acceptable estimate of the inbound peak hour volume can be made from the 24 - hour volume in both directions. ESTIMATING INBOUND PEAK HOUR VOLUME Figure 35 ## CHAPTER VIII ## CONCLUSION It is evident from the data presented that traffic counts of short duration can be used to estimate the traffic volumes for longer time intervals, the resulting volumes being well within the limits necessary for design purposes. Also peak period volumes of short duration can be estimated from longer time intervals such as the 24-hour daily volume. This can be a very valuable tool when selecting a Design Hourly Volume. In the design of urban freeways in Texas, peak period volumes can be estimated along the guide lines in this report. The peak hour volume in the inbound direction can be estimated by: IPHV = AF $$(47445.55 - 25175.64(V) + 3339.68(V^2))$$ Where: IPHV = Inbound Peak Hour Volume AF = Age Factor $V = Log_{10}$ (24-Hour Volume in Both Directions) The inbound peak hour volume calculated from this equation is not intended to be used as the Design Hourly Volume, but is to be used as a comparison with the DHV. Using a DHV comparable to the volume given in this equation would generally result in more congestion over a longer period of time than would be desirable. Estimating a short-time volume from a 24-hour volume simply gives the designer a reference from which to work. The peak period volumes estimated from long-time count volumes are those volumes that these facilities are actually experiencing. A DHV should incorporate a margin of safety related to the length of time of congestion that will be tolerated. Other peak periods of shorter duration than one hour can be estimated from the linear regression equations given in this report. Peak period volumes of short duration will be approximately related to volumes of longer duration by the percentage factors shown in Tables 5 and 6. These volumes listed in Tables 5 and 6 should be used as approximations for quick estimates. The appropriate regression equation can be used to caculate the final volumes. Additional data should be collected to study the distribution of volumes by lanes. Geometric characteristics of the freeway at the location of any 5-minute count location should be observed and related to any traffic volume distribution. A coordinated system of 5-minute count stations systematically and statiscally located and operated in urban locations throughout the State of Texas would provide the needed information. These should include 5-minute count stations operating in some of the smaller cities --- possibly down to 10,000 population. An analysis of 5-minute count data should be made to determine any variance in directional distribution between a radial or circumferential facility. The location of the 5-minute count stations should be carefully selected to reflect any differences that may exist. There are many additional avenues of investigation of the basic data still unexplored. There are many additional factors which may have an influence on the peak period characteristics. These include the relative location of entrance ramps, exit ramps, the number of lanes, capacity, the width of median, the height of curb, progression to high-speed lanes, the population of urban areas, the distance from the CBD, etc. These variables should be investigated to determine their influence in the expansion of short-time count. ## REFERENCES - 1. Heathington, Kenneth W., and Jones, Andrew D., "An Analysis of Peak Period Freeway Volume Characteristics", Texas Highway Department, August, 1965. - 2. "A Policy on Arterial Highways in Urban Areas", American Association of State Highway Officials, 1957. - 3. Moskowitz, Karl and Newman, Leonard, Traffic Bulletin No. 4, "Notes on Freeway Capacity", Department of Public Works, Division of Highways, State of California, July, 1962. - 4. Drew, Donald R. and Keese, Charles J., "Freeway Level of Service as Influenced by Volume and Capacity Characteristics", Highway Research Board Paper, January, 1965. - 5. Carll, Richard R., and Homburger, Wolfgang S., "Some Characteristics of Peak Period Traffic", Highway Research Board Paper, January, 1962. - 6. Bureau of Public Roads, "Guide for Traffic Volume Counting Manual", U.S. Department of Commerce, February, 1965. - 7. Tutt, Paul R., "Traffic Volume Distribution by Lanes on Texas Freeways," Texas Highway Department, June, 1961. - 8. Highway Capacity Manual, Special Report 87, Highway Research Board, Washington, D. C., 1965. APPENDIX 1 TRAFFIC VOLUME ANALYSIS STATION 89 IN HOUSTON ON GULF FREEWAY NORTHEAST OF BRILEY STREET SIX LANES | | | | DATA | | | | DAILY | | HOUR | LY | VOLUME/ | VOLUME/ | |---|--|--|--|--|--|--|--|--|--|--|--|--| | | TIME
(1) | VOLUME
(2) | OPPOS.
VOLUME
(3) | TOTAL
Volume
(4) | SPLIT
(5) | VOLUME/
TOTAL
IN VOL
(6) | VOLUME/
TOTAL
OUT VOL
(7) | TOTAL | VOLUME/
PEAK HR
IN
(9) | VOLUME/
PEAK HR
OUT
(10) | DURING | DURING | | FIVE MINUTE PEAKS INBOUND OUTBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 16 50
16 50
7 40
7
20
16 50
16 50 | 470
435
460
385
470
435 | 435
470
335
440
435
470 | 905
795
825
905 | 51.93
48.07
57.86
46.67
51.93
48.07 | .80
.74
.78
.65
.80 | .81
.75
.79
.66
.81 | .40
.37
.39
.33
.40 | 9.15
8.47
8.96
7.50
9.15
8.47 | 9.89
9.16
9.68
8.11
9.89
9.16 | 5.08
4.70
4.97
4.16
5.08
4.70 | 5.06
4.68
4.95
4.14
5.06
4.68 | | TEN MINUTE PEAKS INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 15
16 50
7 15
7 15
16 45
16 50 | 895
865
895
740
855
865 | 740
835
740
895
855
835 | 1700
1635
1635
1710 | 54.74
50.88
54.74
45.26
50.00
50.88 | 1.52
1.47
1.52
1.26
1.45 | 1.54
1.49
1.54
1.27
1.47 | .77
.74
.77
.63
.73 | 17.43
16.85
17.43
14.41
16.65
16.85 | 18.84
18.21
18.84
15.58
18.00
18.21 | 9.67
9.34
9.67
7.99
9.23
9.34 | 9.63
9.31
9.63
7.97
9.20
9.31 | | ONE HOUR PEAKS INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 0
16 10
7 0
6 55
16 30
16 10 | 5135
4750
5135
4150
4540
4750 | 4125
4540
4125
5125
4660
4540 | 9290
9260
9275
9200 | 55.45
51.13
55.45
44.74
49.35
51.13 | 8.73
8.07
8.73
7.05
7.72
8.07 | 8.84
8.18
8.84
7.15
7.82
8.18 | 4.39
4.06
4.39
3.55
3.88
4.06 | 100.00
92.50
100.00
80.82
88.41
92.50 | 108.11
100.00
108.11
87.37
95.58
100.00 | 55.45
51.30
55.45
44.82
49.03
51.30 | 55.27
51.13
55.27
44.67
48.87
51.13 | | TWO HOUR PEAKS INBOUND OUTBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 6 45
16 5
6 45
6 35
15 55
16 5 | 9750
8935
9750
7780
8590
8935 | 7685
8490
7685
9690
8855
8490 | 17425
17435
17470
17445 | 55.92
51.28
55.92
44.53
49.24
51.28 | 15.19
16.57
13.22
14.60 | 16.79
15.38
16.79
13.40
14.79
15.38 | 8.34
7.64
8.34
6.65
7.35
7.64 | 189.87
174.00
189.87
151.51
167.28
174.00 | 188.11
205.26
163.79
180.84 | 105.29
96.49
105.29
84.02
92.76
96.49 | 104.95
96.18
104.95
83.75
92.47
96.18 | | TOTAL DAILY VOLUMES INBOUND OUTBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 12 0 0 | 58840
58080
24185
22725
34655
35355 | 58080
58840
22725
24185
35355
34655 | 116920
116920
46910
46910
70010
70010 | | 38.62
58.90 | 101.31
100.00
41.64
39.13
59.67
60.87 | 50.33
49.67
20.69
19.44
29.64
30.24 | | 478.42
729.58 | 627.21
261.18
245.41
374.24 | 633.37
625.19
260.33
244.62
373.04
380.57 | STATION 93 IN DALLAS ON CENTRAL EXPRESSWAY NORTH OF ROSS AVENUE SIX LANES | | | | DATA | | | | DAILY | | ноиг | RLY | VOLUME/ | VOLUME/ | |--|---|--|--|----------------------------------|--|--|---|--|--|--|--------------------------------------|--| | | TIME
(1) | VOLUME
(2) | OPPOS.
VOLUME.
(3) | TOTAL
VOLUME
(4) | SPLIT | VOLUME/
TOTAL
IN VOL
(6) | VOLUME/
TOTAL
OUT VOL
(7) | VOLUME/
TOTAL
VOLUME
(8) | | VOLUME/
PEAK HR
OUT
(10) | | DURING | | FIVE MINUTE PEAKS | | | | | | | | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 30
17 10
7 30
7 10
16 20
17 10 | 405
385
405
300
300
385 | 250
240
250
330
280
240 | | 61.83
61.60
61.83
47.62
51.72
61.60 | 1.05
1.00
1.05
.78
.78 | 1.01
.96
1.01
.75
.75 | .52
.49
.52
.38
.38 | 9.69
9.21
9.69
7.18
7.18
9.21 | 9.30
8.84
9.30
6.89
6.89 | 5.48
5.77
4.27 | 5.63
5.35
5.63
4.17
4.17
5.35 | | TEN MINUTE PEAKS | | | | | | | | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 25
17 5
7 25
7 5
16 20
17 5 | 795
760
795
560
570
760 | 500
480
500
630
580
480 | 1240
1295
1190
1150 | 61.39
61.29
61.39
47.06
49.57
61.29 | 2.06
1.97
2.06
1.45
1.48
1.97 | 1.99
1.90
1.99
1.40
1.43 | 1.01
.97
1.01
.71
.73 | 19.02
18.18
19.02
13.40
13.64
18.18 | 18.25
17.45
18.25
12.86
13.09
17.45 | 10.83
11.32
7.98
8.12 | 11.05
10.56
11.05
7.78
7.92 | | ONE HOUR PEAKS | | | | | | | | | | | · | | | INBOUND OUTBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 0
16 35
7 0
6 40
16 15
16 35 | 4180
4355
4180
2935
3045
4355 | 2840
2840
2840
3540
4090
2840 | 7195
7020
6475
7135 | 59.54
60.53
59.54
45.33
42.68
60.53 | 10.84
11.29
10.84
7.61
7.90
11.29 | 10.47
10.91
10.47
7.35
7.63
10.91 | 5.33
5.55
5.33
3.74
3.88
5.55 | 100.00
104.19
100.00
70.22
72.85
104.19 | 95.98
100.00
95.98
67.39
69.92
100.00 | 59.54
41.81 | 58.10
60.53
58.10
40.79
42.32
60.53 | | TWO HOUR PEAKS | | | | | | | | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 0
16 10
7 0
6 35
16 0
16 10 | 7190
7805
7190
5270
5590
7805 | 4990
5480
4990
6615
7775
5480 | 13285
12180
11885
13365 | 59.03
58.75
59.03
44.34
41.83
58.75 | 18.64
20.24
18.64
13.67
14.50
20.24 | 18.01
19.55
18.01
13.20
14.00
19.55 | 9.16
9.94
9.16
6.71
7.12
9.94 | 172.01
186.72
172.01
126.08
133.73
186.72 | 165.10
179.22
165.10
121.01
128.36
179.22 | 111.18
102.42
75.07
79.63 | 99.93
108.48
99.93
73.25
77.69
108.48 | | TOTAL DAILY VOLUMES | | | | | | | | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 0 0
0 0
0 0
0 0
12 0
12 0 | 38565
39925
17405
14395
21160
25530 | 39925
38565
14395
17405
25530
21160 | 78490
31800
31800
46690 | | 100.00
103.53
45.13
37.33
54.87
66.20 | 96.59
100.00
43.59
36.06
53.00
63.94 | 49.13
50.87
22.17
18.34
26.96
32.53 | 922.61
955.14
416.39
344.38
506.22
610.77 | 885.53
916.76
399.66
330.54
485.88
586.22 | 568.73
247.93
205.06
301.42 | 536.00
554.90
241.90
200.07
294.09
354.83 | STATION 94 IN SAN ANTONIO ON IH 10 NORTH OF COLORADO STREET FOUR LANES | | _ | | DATA | | | | DAILY | , | ноия | RLY | VOLUME/ | VOLUME/ | |--|---|---|---|----------------------------------|--|--|--|--|--|--|--|--| | | TIME
(1) | VOLUME
(2) | OPPOS.
VOLUME
(3) | TOTAL
VOLUME
(4) | SPLIT | VOLUME/
TOTAL
IN VOL
(6) | VOLUME/
TOTAL
OUT VOL
(7) | TOTAL | VOLUME/
PEAK HR
IN
(9) | | TOT VOL
DURING
PEAK HR
IN
(11) | DURING | | FIVE MINUTE PEAKS | | | | | | | | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 50
17 15
7 50
7 15
16 45
17 15 | 360
360
360
175
215
360 | 155
195
155
310
300
195 | 555
515
- 485
515 | 69.90
64.86
69.90
36.08
41.75
64.86 | 1.13
1.13
1.13
.55
.67
1.13 | 1.19
1.19
1.19
.58
.71
1.19 | •58
•58
•58
•28
•35 | 9.02
9.02
9.02
4.39
5.39
9.02 | 9.80
9.80
9.80
4.76
5.85
9.80 | 6.21
6.21
3.02
3.71 | 6.42
6.42
6.42
3.12
3.83
6.42 | | TEN MINUTE PEAKS | | | | | | | | - | ٠. | | | · | | INBOUND OUTBOUND INBOUND A.M. GUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 50
17 15
7 50
7 10
16 45
17 15 | 710
675
710
350
415
675 | 285
370
285
625
580
370 | 1045
995
975
995 | 71.36
64.59
71.36
35.90
41.71
64.59 | 2.22
2.11
2.22
1.10
1.30
2.11 | 2.34
2.22
2.34
1.15
1.37
2.22 | 1.14
1.08
1.14
.56
.67
1.08 | 17.79
16.92
17.79
8.77
10.40
16.92 | 19.32
18.37
19.32
9.52
11.29
18.37 | 11.65
12.25
6.04
7.16 | 12.66
12.03
12.66
6.24
7.40
12.03 | | ONE HOUR PEAKS | | | | , | | | | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 10
16 55
7 10
7 5
16 30
16 55 | 3990
3675
3990
1825
2160
3675 | 1805
1935
1805
3990
3595
1935 |
5610
5795
5815
5755 | 68.85
65.51
68.85
31.38
37.53
65.51 | 12.49
11.50
12.49
5.71
6.76
11.50 | 13.15
12.11
13.15
6.02
7.12
12.11 | 6.41
5.90
6.41
2.93
3.47
5.90 | 100.00
92.11
100.00
45.74
54.14
92.11 | 108.57
100.00
108.57
49.66
58.78
100.00 | 63.42
68.85 | 71.12
65.51
71.12
32.53
38.50
65.51 | | TWO HOUR PEAKS | | | | | | | | | | - | | | | INBOUND OUTBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 6 45
16 15
6 45
6 40
16 10
16 15 | 7105
6780
7105
3220
3875
6780 | 3205
3830
3205
7095
6755
3830 | 10610
10310
10315
10630 | 68.91
63.90
68.91
31.22
36.45
63.90 | 22.24
21.22
22.24
10.08
12.13
21.22 | 23.42
22.35
23.42
10.61
12.77
22.35 | 11.41
10.88
11.41
5.17
6.22
10.88 | 178.07
169.92
178.07
80.70
97.12
169.92 | 193.33
184.49
193.33
87.62
105.44
184.49 | 117.00 | 126.65
120.86
126.65
57.40
69.07
120.86 | | TOTAL DAILY VOLUMES | | | | | | | | | | | | | | INBOUND OUTBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 0 0
0 0
0 0
0 0
12 0
12 0 | 31950
30340
14975
9190
16975
21150 | 30340
31950
9190
14975
21150
16975 | 62290
24165
24165
38125 | 51.29
48.71
61.97
38.03
44.52
55.48 | 94.96
46.87 | 105.31
106.00
49.36
30.29
55.95
69.71 | 51.29
48.71
24.04
14.75
27.25
33.95 | 800.75
760.40
375.31
230.33
425.44
530.08 | 869.39
825.58
407.48
250.07
461.90
575.51 | 523.55
258.41
158.58 | 569.52
540.82
266.93
163.81
302.58
377.01 | STATION 99 IN HOUSTON ON GULF FREEWAY AT WOODRIDGE STREET OVERPASS SIX LANES | | | | DATA | | | | DAILY | | нои | RLY | VOLUME/
TOT VOL | VOLUME/ | |---|---|--|--|--|--|--|--|--|--|--|--|--| | Manuelle : . | TIME
(1) | VOLUME
(2) | OPPOS.
VOLUME
(3) | TOTAL
VOLUME
(4) | SPLIT | VOLUME/
TOTAL
IN VOL
(6) | VOLUME/
TOTAL
OUT VOL
(7) | TOTAL | VOLUME/
PEAK HR
IN
(9) | VOLUME/
PEAK HR
OUT
(10) | DURING
PEAK HR
IN
(11) | DURING | | FIVE MINUTE PEAKS | | | gi - i | 7.55 | 4 14
1 0 | | 9 84 9
2 1 | | | | The state of s | es P % S | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 6 50
16 45
6 50
7 15
16 40
16 45 | 495
430
495
305
355
430 | 260
345
260
410
405
345 | 755
775
755
715
760
775 | 65.56
55.48
65.56
42.66
46.71
55.48 | •97
•84
•97
•60
•70
•84 | 1.00
.87
1.00
.62
.72
.87 | .49
.43
.49
.30
.35 | 9.71
8.43
9.71
5.98
6.96
8.43 | 10.40
9.03
10.40
6.41
7.46
9.03 | 5.89
5.11
5.89
3.63
4.22
5.11 | 5.70
4.95
5.70
3.51
4.09
4,95 | | TEN MINUTE PEAKS | | | | | 144 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 6 50
16 45
6 50
7 10
16 40
16 45 | 975
855
975
605
700
855 | 545
690
545
830
835
690 | 1520
1545
1520
1435
1535
1545 | 64.14
55.34
64.14
42.16
45.60
55.34 | 1.37 | 1.97
1.73
1.97
1.22
1.41 | .97
.85
.97
.60
.70 | 19.12
16.76
19.12
11.86
13.73
16.76 | 20.48
17.96
20.48
12.71
14.71
17.96 | 11.59
7.19 | 11.23
9.85
11.23
6.97
8.06
9.85 | | ONE HOUR PEAKS | | | | | , | | | | 111111111 | | | | | INBOUND OUTBOUND A.M. INBOUND A.M. UUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 6 35
16 25
6 35
6 40
16 5
16 25 | 5100
4760
5100
3385
4005
4760 | 3310
3920
3310
5005
4340
3920 | 8410
8680
8410
8390
8345
8680 | 60.64
54.84
60.64
40.35
47.99
54.84 | 9.34
10.01
6.64 | 10.29
9.61
10.29
6.83
8.08
9.61 | 5.07
4.74
5.07
3.37
3.98
4.74 | 100.00
93.33
100.00
66.37
78.53
93.33 | 100.00
107.14
71.11
84.14 | 60.64
56.60
60.64
40.25
47.62
56.60 | 58.76
54.84
58.76
39.00
46.14
54.84 | | TWO HOUR PEAKS | | | | | | | | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 6 25
16 10
6 25
6 25
15 40
16 10 | 9205
8670
9205
6120
7535
8670 | 6120
7285
6120
9205
8380
7285 | 15325
15955
15325
15325
15915
15955 | 60.07
54.34
60.07
39.93
47.35
54.34 | 17.01
18.06
12.01
14.78 | 18.58
17.50
18.58
12.35
15.21
17.50 | 9.16
8.63
9.16
6.09
7.50
8.63 | 180.49
170.00
180.49
120.00
147.75
170.00 | 182.14
193.38
128.57
158.30 | 103.09
109.45
72.77
89.60 | 106.05
99.88
106.05
70.51
86.81
99.88 | | TOTAL DAILY VOLUMES | | | | | | | | , | | | | - | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 0 0
0 0
0 0
0 0
12 0
12 0 | 50965
49550
21915
18210
29050
31340 | 49550
50965
18210
21915
31340
29050 | 100515
40125
40125
60390 | 49.30 | 57.00 | 102.86
100.00
44.23
36.75
58.63
63.25 | 50.70
49.30
21.80
18.12
28.90
31.18 | | | 589.18
260.58
216.53
345.42 | 587.15
570.85
252.48
209.79
334.68
361.06 | STATION 105 IN AUSTIN ON IH 35 EXPRESSWAY NORTH OF MANOR ROAD FOUR LANES | | | | DATA | | | | DAILY | | HOUR | LY | VOLUME/ | VOLUME/ | |--|---|--|--|--|--|-----------------------------------|---|--|--|--|--|--| | | TIME
(1) | VOLUME
(2) | OPPOS.
VOLUME
(3) | TOTAL
VOLUME
(4) | SPL [T | VOLUME/
TOTAL
IN VOL
(6) | VGLUME/
TOTAL
OUT VOL:
(7) | | VOLUME/
PEAK HR
IN
(9) | VOLUME/
PEAK HR
OUT
(10) | DURING | DURING | | FIVE MINUTE PEAKS | | | | | | | | | | | | | | INBOUND OUTBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 45
17 15
7 45
7 40
17 10
17 15 | 300
295
300
155
200
295 | 130
180
130
290
270
180 | 445 | 69.77
62.11
69.77
34.83
42.55
62.11 | . 67 | 1.26
1.24
1.26
.65
.84
1.24 | .64
.63
.64
.33
.43 | 11.07
10.89
11.07
5.72
7.38
10.89 | 10.49
10.31
10.49
5.42
6.99
10.31 | 7.34
7.22
7.34
3.79
4.90
7.22 | 6.51
6.41
6.51
3.37
4.34
6.41 | | TEN MINUTE PEAKS | | | | | | | | | | | | | | INBOUND OUTBOUND INBOUND
A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 40
17 10
7 40
7 35
17 10
17 10 | 590
565
590
300
380
565 | 285
380
285
550
565
380 | 945
875 | 67.43
59.79
67.43
35.29
40.21
59.79 | 2.45
2.56
1.30
1.65 | 2.48
2.37
2.48
1.26
1.60
2.37 | 1.26
1.21
1.26
.64
.81
1.21 | 21.77
20.85
21.77
11.07
14.02
20.85 | 20.63
19.76
20.63
10.49
13.29
19.76 | 14.44
13.83
14.44
7.34
9.30
13.83 | 12.81
12.27
12.81
6.51
8.25
12.27 | | ONE HOUR PEAKS | | | | | | | | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 15
16 35
7 15
7 5
16 20
16 35 | 2710
2860
2710
1400
1770
2860 | 1375
1745
1375
2705
2680
1745 | 4085
4605
4085
4105
4450
4605 | 66.34
62.11
66.34
34.10
39.78
62.11 | 12.42
11.77
6.08
7.69 | 11.39
12.02
11.39
5.88
7.44
12.02 | 5.79
6.11
5.79
2.99
3.78
6.11 | 100.00
105.54
100.00
51.66
65.31
105.54 | 94.76
100.00
94.76
48.95
61.89
100.00 | 66.34
70.01
66.34
34.27
43.33
70.01 | 58.85
62.11
58.85
30.40
38.44
62.11 | | TWO HOUR PEAKS | | | | | | | | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 6 40
16 15
6 40
9 55
16 15
16 15 | 4350
4770
4350
2515
3205
4770 | 2400
3205
2400
2230
4770
3205 | 6750
7975
6750
4745
7975
7975 | 64.44
59.81
64.44
53.00
40.19
59.81 | 20.72
18.89
10.92
13.92 | 18.28
20.04
18.28
10.57
13.47
20.04 | 9.29
10.19
9.29
5.37
6.84
10.19 | 160.52
176.01
160.52
92.80
118.27
176.01 | 152.10
166.78
152.10
87.94
112.06
166.78 | 106.49
116.77
106.49
61.57
78.46
116.77 | 94.46
103.58
94.46
54.61
69.60
103.58 | | TOTAL DAILY VOLUMES | | | | | | | | | | | | | | INBOUND OUTBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 0 0
0 0
0 0
0 0
12 0
12 0 | 23025
23800
9520
7550
13505
16250 | 23800
23025
7550
9520
16250
13505 | 17070
29755 | 50.83
55.77
44.23 | 32.79
58.65 | 96.74
100.00
40.00
31.72
56.74
68.28 | 49.17
50.83
20.33
16.12
28.84
34.70 | 849.63
878.23
351.29
278.60
498.34
599.63 | 805.07
832.17
332.87
263.99
472.20
568.18 | 563.65
582.62
233.05
184.82
330.60
397.80 | 500.00
516.83
206.73
163.95
293.27
352.88 | TRAFFIC VOLUME ANALYSIS STATION 106 IN SAN ANTONIO ON US 81 EXPRESSWAY SOUTH OF ALAMO STREET FOUR LANES | 313. | | | DATA | | | | DAILY | | I нои | THE CONTRACTOR SPECIAL | VOLUME/ | VOLUME/ | |--|---|--|--|--|--|--|---|--|--|--|--|--| | | TIME
(1) | VOLUME
(2) | OPPOS.
VOLUME | TOTAL
VOLUME
(4) | SPLIT | VOLUME/
TOTAL
IN VOL
(6) | | TOTAL | VOLUME/
PEAK HR
IN
(9) | VOLUME/ | TOT VOL
DURING | TOT VOL
DURING | | FIVE MINUTE PEAKS | | | | | | | · | | | | 1 1 10 10 10 10 | | | INBOUND OUTBOUND A.M. GUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 35
17 10
7 35
7 15
17 5
17 10 | 310
275
310
220
235
275 | 170
215
170
290
255
215 | 480
490
480
510
490 | 64.58
56.12
64.58
43.14
47.96
56.12 | 1.14
1.01
1.14
.81
.87 | 1.11
.98
1.11
.78
.84 | .56
.50
.56
.40
.43 | 9.72
8.62
9.72
6.90
7.37
8.62 | 10.56
9.37
10.56
7.50
8.01
9.37 | 5.82
5.16
5.82
4.13
4.41
5.16 | 5.79
5.14
5.79
4.11
4.39
5.14 | | TEN MINUTE PEAKS | | | | - | | | | | | | • | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 35
17 10
7 35
7 10
17 0
17 10 | 605
540
605
390
460
540 | 345
400
345
540
500
400 | 950
940
950
930
960
940 | 63.68
57.45
63.68
41.94
47.92
57.45 | 2.23
1.99
2.23
1.44
1.70 | 2.16
1.93
2.16
1.39
1.64
1.93 | 1.10
.98
1.10
.71
.83 | 18.97
16.93
18.97
12.23
14.42
16.93 | 20.61
18.40
20.61
13.29
15.67
18.40 | 11.36
10.14
11.36
7.32
8.64
10.14 | 11.31
10.09
11.31
7.29
8.60
10.09 | | ONE HOUR PEAKS | | | | | | | | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 6 55
16 35
6 55
6 45
16 30
16 35 | 3190
2935
3190
2185
2450
2935 | 2135
2415
2135
3125
2925
2415 | 5325
5350
5325
5310
5375
5350 | 59.91
54.86
59.91
41.15
45.58
54.86 | 11.76
10.82
11.76
8.05
9.03
10.82 | 11.38
10.47
11.38
7.79
8.74
10.47 | 5.78
5.32
5.78
3.96
4.44
5.32 | 100.00
92.01
100.00
68.50
76.80
92.01 | 108.69
100.00
108.69
74.45
83.48
100.00 | 59.91
55.12
59.91
41.03
46.01
55.12 | 59.63
54.86
59.63
40.84
45.79
54.86 | | TWO HOUR PEAKS | | | | - | | | | | | | | | | INBOUND CUTBOUND A.M. INBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 6 25
16 5
6 25
6 25
15 35
16 5 | 5450
5175
5450
3810
4375
5175 | 3810
4335
3810
5450
4895
4335 | 9260
9510
9260
9260
9270
9510 | 58.86
54.42
58.86
41.14
47.20
54.42 | 19.07
20.08
14.04
16.12 | 19.44
18.46
19.44
13.59
15.61
18.46 | 9.88
9.38
9.88
6.91
7.93
9.38 | 170.85
162.23
170.85
119.44
137.15
162.23 | 185.69
176.32
185.69
129.81
149.06
176.32 | 97.18
102.35
71.55 | 101.87
96.73
101.87
71.21
81.78
96.73 | | TOTAL DAILY VOLUMES | | * | | | | | | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 0 0
0 0
0 0
0 0
12 0
12 0 | 27135
28035
11765
10260
15370
17775 | 28035
27135
10260
11765
17775
15370 | 55170
55170
22025
22025
33145
33145 | | 37.81
56.64 | 96.79
100.00
41.97
36.60
54.82
63.40 | 49.18
50.82
21.32
18.60
27.86
32.22 | 850.63
878.84
368.81
321.63
481.82
557.21 | 924.53
955.20
400.85
349.57
523.68
605.62 | 526.48
220.94
192.68
288.64 | 507.20
524.02
219.91
191.78
287.29
332.24 | TRAFFIC VOLUME ANALYSIS STATION 108 IN SAN ANTONIO ON US 81 EXPRESSWAY WEST OF NORTH ST MARYS FOUR LANES | Sign on programme Sign | | | DATA | | | | DAILY | | HOU | RLY . | VOLUME/ | | |--|--|--|--|--|--|--|--|--|--|--|-----------------------------------|--| | na volkov | TIME
(1) | VOLUME | OPPOS.
VOLUME
(3) | TOTAL
VOLUME
(4) | SPLIT | VOLUME/
TOTAL
IN VOL
(6) | VOLUME/
TOTAL
OUT VOL
(7) | VOLUME/
TOTAL
VOLUME
(8) | | | DURING
PEAK HR
: IN
(11) | DURING | | FIVE MINUTE PEAKS | | | | | | | 408 | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 16 10
7 20
7 40
7 20
16 10
17 5 | 240
200
215
200
240
195 | 155
175
170
175
155
185 | | 60.76
53.33
55.84
53.33
60.76
51.32 | 1.02
.85
.91
.85
1.02 | 1.13
.94
1.01
.94
1.13 | • 54
• 45
• 45
• 54
• 44 | 10.26
8.55
9.19
8.55
10.26
8.33 | 11.57
9.64
10.36
9.64
11.57
9.40 | 4.81
5.17
4.81
5.77 | 5.59
4.66
5.01
4.66
5.59
4.55 | | TEN MINUTE PEAKS | V | | | | | | | | | | | | | INBOUND OUTBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 16 5
7 20
7 40
7 20
16 5
17 5 | 470
395
425
395
470
380 | 290
375
335
375
290
405 | | 61.84
51.30
55.92
51.30
61.84
48.41 | 1.99
1.68
1.80
1.68
1.99 | 2.21
1.86
2.00
1.86
2.21
1.79 | 1.05
.88
.95
.88
1.05 | 20.09
16.88
18.16
16.88
20.09
16.24 | 22.65
19.04
20.48
19.04
22.65
18.31 | 9.50
10.22 | 10.96
9.21
9.91
9.21
10.96
8.86 | | ONE HOUR PEAKS | | | | | | | 1 | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 16 5
16 35
7 5
6 55
16 5
16 35 | 2340
2075
2190
2075
2340
2075 | 1820
2215
1985
2130
1820
2215 | 4160
4290
4175
4205
4160
4290 | 56.25
48.37
52.46
49.35
56.25
48.37 | 9.93
8.80
9.29
8.80
9.93
8.80 |
11.02
9.77
10.31
9.77
11.02
9.77 | 5.22
4.63
4.89
4.63
5.22
4.63 | 100.00
88.68
93.59
88.68
100.00
88.68 | 112.77
100.00
105.54
100.00
112.77
100.00 | 52.64 | 54.55
48.37
51.05
48.37
54.55
48.37 | | TWO HOUR PEAKS | | | | | | | | | | | - | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. GUTBOUND P.M. | 15 40
16 5
6 40
6 25
15 40
16 5 | 4230
3590
3900
3555
4230
3590 | 3520
4150
3440
3790
3520
4150 | 7750
7740
7340
7345
7750
7740 | 54.58
46.38
53.13
48.40
54.58
46.38 | 15.23
16.55
15.08
17.95 | 19.92
16.91
18.37
16.74
19.92
16.91 | 9.44
8.01
8.70
7.93
9.44
8.01 | 180.77
153.42
166.67
151.92
180.77
153.42 | 203.86
173.01
187.95
171.33
203.86
173.01 | 86.30
93.75
85.46 | 98.60
83.68
90.91
82.87
98.60
83.68 | | TOTAL DAILY VOLUMES | | | | | | | | | | | | | | INBOUND OUTBOUND INBOUND A.M. CUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 0 0
0 0
0 0
0 0
12 0
12 0 | 23570
21235
9375
8620
14195
12615 | 21235
23570
8620
9375
12615
14195 | | 52.61
47.39
52.10
47.90
52.95
47.05 | 39.78
36.57
60.22 | 111.00
100.00
44.15
40.59
66.85
59.41 | 52.61
47.39
20.92
19.24
31.68
28.16 | | 1135.90
1023.37
451.81
415.42
684.10
607.95 | 510.46
225.36
207.21 | 549.42
494.99
218.53
200.93
330.89
294.06 | TRAFFIC VOLUME ANALYSIS STATION 109 IN FORT WORTH ON US 81 FREEWAY SOUTH OF BROADWAY STREET SIX LANES | 3141 | 101 107 | 110 7 510 7 | TURTH UN C | | | | | - | | | | | |--|---|--|--|--|--|--|---|--|--|--|--|--| | | 1. 1. | laga se se | DATA | | | | DAILY | | HOUR | LY | VOLUME/ | VOLUME/
TOT VOL | | | TIME
(1) | VOLUME
(2) | OPPOS.
VOLUME
(3) | TOTAL
Volume
(4) | SPLIT | VOLUME/
TOTAL
IN VOL
(6) | VOLUME/
TOTAL
OUT VOL
(7) | TOTAL | VOLUME/
PEAK HR
IN
(9) | VOLUME/
PEAK HR
OUT
(10) | DURING | DUR I NG | | FIVE MINUTE PEAKS | | A L | | | | | | | | | | | | INBOUND OUTBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 50
17 10
7 50
7 45
16 45
17 10 | 370
365
370
230
250
365 | 190
235
190
345
310
235 | 560
600
560
575
560
600 | 66.07
60.83
66.07
40.00
44.64
60.83 | 1.17
1.16
1.17
.73
.79
1.16 | 1.17
1.15
1.17
.73
.79
1.15 | .59
.58
.59
.36
.40 | 10.76
10.61
10.76
6.69
7.27
10.61 | 10.51
10.37
10.51
6.53
7.10
10.37 | 6.46
6.37
6.46
4.01
4.36
6.37 | 6.21
6.12
6.21
3.86
4.19
6.12 | | TEN MINUTE PEAKS | 100 m | | | | ٠. | | | | - | | - | | | INBOUND OUTBOUND A.M. INBOUND A.M. INBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 45
17 5
7 45
7 40
16 40
17 5 | 715
715
715
460
485
715 | 420
455
420
690
595
455 | 1135
1170
1135
1150
1080
1170 | 63.00
61.11
63.00
40.00
44.91
61.11 | 2.27
2.27
2.27
1.46
1.54
2.27 | 2.26
2.26
2.26
1.45
1.53
2.26 | 1.13
1.13
1.13
.73
.77
1.13 | 20.78
20.78
20.78
13.37
14.10
20.78 | 20.31
20.31
20.31
13.07
13.78
20.31 | 12.48
12.48
12.48
8.03
8.46
12.48 | 12.00
12.00
12.00
7.72
8.14
12.00 | | ONE HOUR PEAKS | - | | | | | | | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 10
16 40
7 10
7 15
16 30
16 40 | 3440
3520
3440
2295
2460
3520 | 2290
2440
2290
3395
3515
2440 | 5730
5960
5730
5690
5975
5960 | 60.03
59.06
60.03
40.33
41.17
59.06 | 11.16
10.91
7.28
7.80 | 10.87
11.12
10.87
7.25
7.77
11.12 | 5.44
5.57
5.44
3.63
3.89
5.57 | 100.00
102.33
100.00
66.72
71.51
102.33 | 97.73
100.00
97.73
65.20
69.89
100.00 | 60.03
61.43
60.03
40.05
42.93
61.43 | 57.72
59.06
57.72
38.51
41.28
59.06 | | TWO HOUR PEAKS | | | | | | | | | | | | | | INBOUND OUTBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 6 35
16 5
6 35
7 10
15 45
16 5 | 5730
5995
5730
3980
4575
5995 | 3915
4510
3915
5495
5960
4510 | 10505
9645
9475
10535 | 59.41
57.07
59.41
42.01
43.43
57.07 | 19.01
18.17
12.62
14.51 | 18.10
18.94
18.10
12.57
14.45
18.94 | 9.07
9.49
9.07
6.30
7.24
9.49 | 166.57
174.27
166.57
115.70
132.99
174.27 | 162.78
170.31
162.78
113.07
129.97
170.31 | 104.62
100.00
69.46
79.84 | 96.14
100.59
96.14
66.78
76.76
100.59 | | TOTAL DAILY VOLUMES | | | | | | | | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 0 0
0 0
0 0
0 0
12 0
12 0 | 31530
31655
13625
11490
17905
20165 | 31655
31530
11490
13625
20165
17905 | 63185
25115
25115
38070 | 50.10 | 56.79 | 99.61
100.00
43.04
36.30
56.56
63.70 | 49.90
50.10
21.56
18.18
28.34
31.91 | 916.57
920.20
396.08
334.01
520.49
586.19 | 895.74
899.29
387.07
326.42
508.66
572.87 | 552.44
237.78
200.52
312.48 | 529.03
531.12
228.61
192.79
300.42
338.34 | TRAFFIC VOLUME ANALYSIS STATION 115 IN BEAUMONT ON 1H 10 BETWEEN 7TH AND 8TH STREETS FOUR LANES | | | | DATA | | | | DAILY | | HOUF | RLY | VOLUME/ | VOLUME/ | |--|---|---|---|----------------------------------|--|-----------------------------------|--|--|--|---|--------------------------------------|--| | | TIME (1) | VOLUME
(2) | OPPOS.
VOLUME
(3) | TOTAL
VOLUME
(4) | SPL1T
(5) | VOLUME/
TOTAL
IN VOL
(6) | VOLUME/
TOTAL
OUT VOL
(7) | TOTAL | VOLUME/
PEAK HR
IN
(9) | | DURING | DURING | | FIVE MINUTE PEAKS | | | | | | | | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 50
17 10
7 50
7 50
16 5
17 10 | 150
185
150
105
135
185 | 105
95
105
150
125
95 | 280
255
255
260 | 58.82
66.07
58.82
41.18
51.92
66.07 | 1.10
.89
.62
.80 | •92
1•14
•92
•65
•83
1•14 | .45
.56
.45
.32
.41 | 10.34
12.76
10.34
7.24
9.31
12.76 | 9.20
11.35
9.20
6.44
8.28
11.35 | 7.64
6.20 | 5.26
6.49
5.26
3.68
4.74
6.49 | | TEN MINUTE PEAKS | | | | | | | | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 45
17 10
7 45
7 50
16 5
17 10 | 295
350
295
205
255
350 | 195
200
195
270
250
200 | 550
490
475
505 | 60.20
63.64
60.20
43.16
50.50
63.64 | 2.08
1.75
1.22
1.52 | 1.81
2.15
1.81
1.26
1.57
2.15 | .89
1.06
.89
.62
.77
1.06 | 20.34
24.14
20.34
14.14
17.59
24.14 | 18.10
-21.47
18.10
12.58
15.64
21.47 | 14.46 | 10.35
12.28
10.35
7.19
8.95 | | ONE HOUR PEAKS | | | | | | | | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 15
16 20
7 15
7 10
16 0
16 20 | 1450
1630
1450
985
1285
1630 | 970
1220
970
1445
1445 | 2850
2420
2430
2730 | 59.92
57.19
59.92
40.53
47.07
57.19 | 9.69
8.62
5.85
7.64 | 8.92
10.03
8.92
6.06
7.91
10.03 | 4.38
4.93
4.38
2.98
3.88
4.93 | 100.00
112.41
100.00
67.93
88.62
112.41 | 88.96
100.00
88.96
60.43
78.83
100.00 | 67.36
59.92
40.70
53.10 | 50.88
57.19
50.88
34.56
45.09
57.19 | | TWO HOUR PEAKS | | | | | | | , | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 6 45
15 50
6 45
9 55
15 35
15 50 | 2580
2940
2580
1855
2390
2940 | 1775
2345
1775
1940
2920
2345 | 5285
4355
3795
5310 | 55.63
59.24
48.88
45.01 | 15.33
11.02 | 15.87
18.09
15.87
11.41
14.70
18.09 | 7.80
8.89
7.80
5.61
7.22
8.89 | 177.93
202.76
177.93
127.93
164.83
202.76 | 158.28
180.37
158.28
113.80
146.63
180.37 | 121.49
106.61
76.65
98.76 | 90.53
103.16
90.53
65.09
83.86
103.16 | | TOTAL DAILY VOLUM | S | | | | | ٠ | | | | | | | | INBOUND OUTBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 0 0
0 0
0 0
0 0
12 0
12 0 |
16830
16255
7050
6005
9780
10250 | 16255
16830
6005
7050
10250
9780 | 33085
13055
13055
20030 | 49.13 | 41.89
35.68
58.11 | 103.54
100.00
43.37
36.94
60.17
63.06 | 50.87
49.13
21.31
18.15
29.56
30.98 | 1160.69
1121.03
486.21
414.14
674.48
706.90 | 1032.52
997.24
432.52
368.40
600.00
628.83 | 671.69
291.32
248.14
404.13 | 590.53
570.35
247.37
210.70
343.16
359.65 | TRAFFIC VOLUME ANALYSIS STATION 124 IN HOUSTON ON EAST TEX FREEWAY SOUTH OF BUFFALO BAYOU SIX LANES | | | 1.5 | DATA | | | | DAILY | | HOU | LY | VOLUME/ | VOLUME/ | |--|---|---|---|--|--|--|---|--|--|--|--------------------------------------|--| | | TIME
(1) | VOLUME
(2) | OPPOS.
VOLUME
(3) | TOTAL
VOLUME
(4) | SPLIT
(5) | VOLUME/
TOTAL
IN VOL
(6) | VOLUME/
TOTAL
OUT VOL
(7) | TOTAL | VDLUME/
PEAK HR
IN
(9) | VOLUME/
PEAK HR
OUT
(10) | DURING | DURING | | FIVE MINUTE PEAKS INBOUND OUTBOUND INBOUND A.M. | 7 40
17 20
7 40 | 235
255
235 | 125
85
125 | 360
340
360 | 65.28
75.00
65.28 | 1.13
1.23
1.13 | 1.03
1.12
1.03 | •54
•59
•54 | 9.33
10.12
9.33 | 9.29 | 6.98
7.58
6.98 | 6.02
6.53
6.02 | | OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 40
17 40
17 20 | 125
125
255 | 235
200
85 | 360
325
340 | 34.72
38.46
75.00 | .60
.60
1.23 | .55
.55
1.12 | •29
•29
•59 | 4.96
4.96
10.12 | 4.55 | 3.71 | 3.20
3.20
6.53 | | TEN MINUTE PEAKS INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 15
17 15
7 15
7 40
14 15
17 15 | 465
500
465
225
225
500 | 180
175
180
425
210
175 | 645
675
645
650
435
675 | 72.09
74.07
72.09
34.62
51.72
74.07 | 2.24
2.41
2.24
1.09
1.09
2.41 | 2.04
2.20
2.04
.99
.99
2.20 | 1.07
1.15
1.07
.52
.52
1.15 | 18.45
19.84
18.45
8.93
8.93
19.84 | 16.94
18.21
16.94
8.20
8.20
18.21 | 14.86
13.82
6.69 | 11.91
12.80
11.91
5.76
5.76
12.80 | | ONE HOUR PEAKS INBOUND OUTBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 6 25
16 35
6 25
7 30
16 15
16 35 | 2520
2745
2520
1175
1190
2745 | 845
1160
845
1995
2490
1160 | 3365
3905
3365
3170
3680
3905 | 74.89
70.29
74.89
37.07
32.34
70.29 | 13.25
12.17
5.67
5.74 | 11.07
12.06
11.07
5.16
5.23
12.06 | 5.80
6.31
5.80
2.70
2.74
6.31 | 100.00
108.93
100.00
46.63
47.22
108.93 | 91.80
100.00
91.80
42.81
43.35
100.00 | 81.58
74.89
34.92
35.36 | 64.53
70.29
64.53
30.09
30.47
70.29 | | TWO HOUR PEAKS INBOUND OUTBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 6 5
16 10
6 5
7 15
15 50
16 10 | 4785
4855
4785
2225
2345
4855 | 1820
2260
1820
3595
4790
2260 | 6605
7115
6605
5820
7135
7115 | 72.45
68.24
72.45
38.23
32.87
68.24 | 23.44
23.10
10.74
11.32 | 21.02
21.33
21.02
9.78
10.30
21.33 | 11.01
11.17
11.01
5.12
5.39
11.17 | 189.88
192.66
189.88
88.29
93.06 | 174.32
176.87
174.32
81.06
85.43
176.87 | 144.28
142.20
66.12
69.69 | 122.54
124.33
122.54
56.98
60.05
124.33 | | TOTAL DAILY VOLUMES INBOUND OUTBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 0 0
0 0
0 0
0 0
12 0
12 0 | 20715
22760
10710
7175
10005
15585 | 22760
20715
7175
10710
15585
10005 | 43475
43475
17885
17885
25590
25590 | 52.35 | 48.30 | 91.01
100.00
47.06
31.52
43.96
68.48 | 47.65
52.35
24.63
16.50
23.01
35.85 | 822.02
903.17
425.00
284.72
397.02
618.45 | 829.14 | 676.37
318.28
213.22
297.33 | 274.26
183.74 | STATION 126 IN DALLAS ON STEMMONS FREEWAY NORTH OF WYCLIFF TEN LANES | The state of s | <u> </u> | <u> </u> | DATA | | | | DAILY | | HOUF | RLY | VOLUME/ | VOLUME/ | |--|---|--|--|--|--|---|--|--|--|--|--|--| | | TIME
(1) | VOLUME | OPPOS.
VOLUME
(3) | TOTAL
VOLUME
(4) | SPL1T
(5) | VOLUME/
TOTAL
IN VOL | VOLUME/
TOTAL
OUT VOL
(7) | VOLUME/
TOTAL
VOLUME
(8) | VOLUME/ | VOLUME/ | TOT VOL
DURING
PEAK HR
IN
(11) | DURING | | FIVE MINUTE PEAKS | | | | | | | | | | , , | | | | INBOUND OUTBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 35
17 10
7 35
7 40
16 35
17 10 | 430
430
430
370
400
430 | 330
330
330
395
335
330 | 760
760
760
765
735
760 | 56.58
56.58
56.58
48.37
54.42
56.58 | 1.02
1.02
1.02
.88
.95
1.02 | 1.04
1.04
1.04
.90
.97 | .52
.52
.52
.44
.48 | 9.18
9.18
9.18
7.90
8.54
9.18 | 9.37
9.37
9.37
8.06
8.71
9.37 | 5.22
5.22
5.22
4.49
4.86
5.22 | 5.30
5.30
5.30
4.56
4.93
5.30 | | TEN MINUTE PEAKS | | | | | | | 1 | | | | | | | INBOUND OUTBOUND A.M. CUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 30
17 5
7 30
7 40
16 35
17 5 | 850
820
850
715
760
820 | 645
700
645
785
690
700 | 1495
1520
1495
1500
1450
1520 | 56.86
53.95
56.86
47.67
52.41
53.95 | 2.01
1.94
2.01
1.69
1.80 | 2.07
1.99
2.07
1.74
1.85 | 1.02
.98
1.02
.86
.91 | 18.14
17.50
18.14
15.26
16.22
17.50 | 18.52
17.86
18.52
15.58
16.56 | 9.96 | 10.47
10.10
10.47
8.81
9.37
10.10 | | ONE HOUR PEAKS | | | | | | | | | | | | | | INBOUND OUTBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 15
16 45
7 15
7 5
16 25
16 45 | 4685
4590
4685
3650
3770
4590 | 3550
3525
3550
4625
4435
3525 | 8235
8115
8235
8275
8205
8115 | 56.89
56.56
56.89
44.11
45.95
56.56 | 10.87 | 11.38
11.15
11.38
8.87
9.16
11.15 | 5.62
5.62
4.38
4.52
5.50 | 100.00
97.97
100.00
77.91
80.47
97.97 | 102.07
100.00
102.07
79.52
82.14
100.00 | 55.74 | 57.73
56.56
57.73
44.98
46.46
56.56 | | TWO HOUR PEAKS | | | | | | | | : | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 6 55
16 10
6 55
6 25
15 40
16 10 | 8105
8115
8105
6600
6790
8115 | 6155
6610
6155
7560
7835
6610 |
14260
14725
14260
14160
14625
14725 | 56.84
55.11
56.84
46.61
46.43
55.11 | 19.19
19.22
19.19
15.63
16.08
19.22 | 19.69
19.72
19.69
16.04
16.50
19.72 | 9.72
9.73
9.72
7.92
8.14
9.73 | 173.00
173.21
173.00
140.88
144.93
173.21 | 176.58
176.80
176.58
143.79
147.93
176.80 | 98.54
98.42 | 99.88
100.00
99.88
81.33
83.67 | | TOTAL DAILY VOLUMES | ** | | | | | | | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 0 0
0 0
0 0
0 0
12 0
12 0 | 42230
41155
18855
16325
23375
24830 | 41155
42230
16325
18855
24830
23375 | 83385
83385
35180
35180
48205
48205 | 50.64
49.36
53.60
46.40
48.49
51.51 | 100.00
97.45
44.65
38.66
55.35
58.80 | 102.61
100.00
45.81
39.67
56.80
60.33 | 50.64
49.36
22.61
19.58
28.03
29.78 | 901.39
878.44
402.45
348.45
498.93
529.99 | 920.04
896.62
410.78
355.66
509.26
540.96 | 499.76
228.96
198.24
283.85 | 520.39
507.15
232.35
201.17
288.05
305.98 | TRAFFIC VOLUME ANALYSIS STATION 130 IN FORT WORTH ON EAST WEST FREEWAY MONTGOMERY ST OVERPASS FOUR LANES | | | | DATA | | | - | DAILY | | нои | RLY | VOLUME/ | VOLUME/ | |--|---|--|--|--|--|--|---|--|--|--|--------------------------------------|--| | | TIME
(1) | VOLUME
(2) | OPPOS.
VOLUME
(3) | TOTAL
VOLUME
(4) | SPLIT
(5) | VOLUME/
TOTAL
IN VOL
(6) | VOLUME/
TOTAL
OUT VOL
(7) | TOTAL | VOLUME/
PEAK HR
IN
(9) | VOLUME/
PEAK HR
OUT
(10) | DURING | DURING | | FIVE MINUTE PEAKS | | | | | | | | | | | | | | INBOUND OUTBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 45
17 10
7 45
7 25
16 45
17 10 | 340
290
340
200
260
290 | 165
220
165
235
215
220 | 505
435 | 67.33
56.86
67.33
45.98
54.74
56.86 | 1.26
1.08
1.26
.74
.96
1.08 | 1.24
1.06
1.24
.73
.95
1.06 | .63
.53
.63
.37
.48 | 11.99
10.23
11.99
7.05
9.17
10.23 | 10.05
11.79
6.93 | 6.11 | 6.45
5.50
6.45
3.80
4.93
5.50 | | TEN MINUTE PEAKS | | | | | | | | : | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 40
17 5
7 40
7 25
16 5
17 5 | 645
555
645
390
510
555 | 300
445
300
470
300
445 | 945
860 | 68.25
55.50
68.25
45.35
62.96
55.50 | 2.39
2.06
2.39
1.45
1.89
2.06 | 2.35
2.02
2.35
1.42
1.86
2.02 | 1.19
1.02
1.19
.72
.94
1.02 | 22.75
19.58
22.75
13.76
17.99
19.58 | 22.36
19.24
22.36
13.52
17.68
19.24 | 11.70
13.59
8.22
10.75 | 12.24
10.53
12.24
7.40
9.68
10.53 | | ONE HOUR PEAKS | | | | | | - | | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 15
16 40
7 15
7 5
16 0
16 40 | 2835
2885
2835
1965
2645
2885 | 1910
2385
1910
2795
2235
2385 | 5270 | 59.75
54.74
59.75
41.28
54.20
54.74 | 10.52
10.70
10.52
7.29
9.81
10.70 | 10.34
10.52
10.34
7.17
9.65
10.52 | 5.21
5.31
5.21
3.61
4.86
5.31 | 100.00
101.76
100.00
69.31
93.30
101.76 | 100.00
98.27
68.11 | 60.80
59.75
41.41
55.74 | 53.80
54.74
53.80
37.29
50.19
54.74 | | TWO HOUR PEAKS | | | | | | | | | | | | | | INBOUND CUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. CUTBOUND P.M. | 15 35
16 15
7 0
6 30
15 35
16 15 | 4715
4945
4625
3435
4715
4945 | 4685
4175
3415
4425
4685
4175 | 9400
9120
8040
7860
9400
9120 | 50.16
54.22
57.52
43.70
50.16
54.22 | 17.49
18.35
17.16
12.74
17.49
18.35 | 17.20
18.03
16.87
12.53
17.20
18.03 | 8.67
9.09
8.51
6.32
8.67
9.09 | 166.31
174.43
163.14
121.16
166.31
174.43 | 171.40
160.31
119.06
163.43 | 104.21
97.47
72.39
99.37 | 89.47
93.83
87.76
65.18
89.47
93.83 | | TOTAL DAILY VOLUMES | | | | | | | | | | | | | | INBOUND CUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 0 0
0 0
0 0
0 0
12 0
12 0 | 26955
27420
11145
10085
15810
17335 | 27420
26955
10085
11145
17335
15810 | 54375
54375
21230
21230
33145
33145 | | 37.41
58.65 | 98.30
100.00
40.65
36.78
57.66
63.22 | 49.57
50.43
20.50
18.55
29.08
31.88 | 950.79
967.20
393.12
355.73
557.67
611.46 | | 577.87
234.88
212.54
333.19 | 511.48
520.30
211.48
191.37
300.00
328.94 | STATION 139 IN HOUSTON ON SOUTHWEST FREEWAY WEST OF GRAUSTARK STREET TEN LANES | | | DATA | | | | DAILY | | | HOURLY | | VOLUME/ | VOLUMEN | |--|---|--|--|--|--|-----------------------------------|--|--|--|--|--------------------------------------|--| | | TIME
(1) | VOLUME | OPPOS.
VOLUME
(3) | TOTAL
VOLUME
(4) | SPLIT | VOLUME/
TOTAL
IN VOL
(6) | VOLUME/
TOTAL
OUT VOL
(7) | VOLUME/
TOTAL
VOLUME
(8) | | VOLUME/
PEAK HR
OUT
(10) | DURING | DURING | | FIVE MINUTE PEAKS | | | | | | | | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 25
18 0
7 25
7 45
16 35
18 0 | 570
505
570
305
405
505 | 220
160
220
490
370
160 | | 72.15
75.94
72.15
38.36
52.26
75.94 | 1.18
1.34
.72
.95 | 1.34
1.19
1.34
.72
.95
1.19 | .67
.59
.67
.36
.48 | 9.60
8.51
9.60
5.14
6.82
8.51 | 11.29
10.00
11.29
6.04
8.02 | 5.70
6.43
3.44
4.57 | 7.52
6.66
7.52
4.02
5.34
6.66 | | TEN MINUTE PEAKS | | , | | | | | | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 25
17 55
7 25
7 40
16 35
17 55 | 1095
985
1095
575
780
985 | 440
375
440
1000
760
375 | | 71.34
72.43
71.34
36.51
50.65
72.43 | 2.31
2.57
1.35 | 2.58
2.32
2.58
1.36
1.84
2.32 | 1.29
1.16
1.29
.68
.92
1.16 | 18.45
16.60
18.45
9.69
13.14
16.60 | 21.68
19.50
21.68
11.39
15.45
19.50 | 8.80 | 14.45
12.99
14.45
7.59
10.29
12.99 | | ONE HOUR PEAKS | | | | | | | | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 15
17 20
7 15
7 10
16 15
17 20 | 59 3 5
5050
5935
29 7 5
3580
5050 | 2925
2530
2925
5915
4595
2530 | 8860
7580
8860
8890
8175
7580 | 66.99
66.62
66.99
33.46
43.79
66.62 | 13.93
6.98
8.40 | 13.99
11.91
13.99
7.01
8.44
11.91 | 6.98
5.94
6.98
3.50
4.21
5.94 | 100.00
85.09
100.00
50.13
60.32
85.09 | 117.52
100.00
117.52
58.91
70.89
100.00 | 57.00 | 78.30
66.62
78.30
39.25
47.23
66.62 | | TWO HOUR PEAKS | | | | | | | | | | | | | | INBOUND OUTBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 6 55
16 20
6 55
6 35
15 55
16 20 | 10430
9625
10430
5495
6300
9625 | 5255
6070
5255
10125
8635
6070 | 15685
15695
15685
15620
14935
15695 | 66.50
61.33
66.50
35.18
42.18
61.33 | 22.58
24.47
12.89
14.78 | 24.59
22.70
24.59
12.96
14.85
22.70 | 12.27
11.32
12.27
6.46
7.41
11.32 | 175.74
162.17
175.74
92.59
106.15
162.17 | 206.53
190.59
206.53
108.81
124.75
190.59 | 108.63
117.72
62.02
71.11 | 137.60
126.98
137.60
72.49
83.11
126.98 | | TOTAL DAILY VOLUMES | | | | . " | | | | | | | | | | INBOUND OUTBOUND A.M. OUTBOUND A.M. INBOUND P.M. CUTBOUND P.M. | 0 0
0 0
0 0
0 0
12 0
12 0 | 42620
42410
20825
14305
21795
28105 | 42410
42620
14305
20825
28105
21795 | 85030
85030
35130
35130
49900
49900 | 49.88 | 48.86
33.56
51.14 | 100.50
100.00
49.10
33.73
51.39
66.27 | 50.12
49.88
24.49
16.82
25.63
33.05 | 718.11
714.57
350.88
241.03
367.23
473.55 | 843.96
839.80
412.38
283.27
431.58
556.53 | 478.67
235.05
161.46
245.99 | 562.27
559.50
274.74
188.72
287.53
370.78 | STATION 141 IN HOUSTON ON IH 10 EAST OF SILBER ROAD EIGHT LANES | | TIME
(1) | DATA | | | | DAILY | | | HOURLY | | VOLUME/
TOT
VOL | | |--|---|---|---|--|--|-----------------------------------|---|--|--|--|--|--| | | | VOLUME
(2) | OPPOS.
VOLUME
(3) | TOTAL
VOLUME
(4) | SPLIT
(5) | VOLUME/
TOTAL
IN VOL
(6) | VOLUME/
TOTAL
OUT VOL
(7) | TOTAL | | VOLUME/
PEAK HR
OUT
(10) | DURING | DURING | | FIVE MINUTE PEAKS | | | | | | | | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 30
17 35
7 30
6 50
16 45
17 35 | 350
350
350
120
135
350 | 105
90
105
160
210
90 | 455
440
455
280
345
440 | 76.92
79.55
76.92
42.86
39.13
79.55 | 1.62
1.62
.56 | 1.51
1.51
1.51
.52
.58
1.51 | .78
.78
.78
.27
.30 | 9.70
9.70
9.70
3.32
3.74
9.70 | 10.16
10.16
10.16
3.48
3.92
10.16 | 7.27
7.27 | 7.38
7.38
7.38
2.53
2.85
7.38 | | TEN MINUTE PEAKS | | | | | | | | | | | | ; | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 25
17 30
7 25
6 45
16 40
17 30 | 700
660
700
240
270
660 | 205
180
205
315
420
180 | 905
840
905
555
690
840 | 77.35
78.57
77.35
43.24
39.13
78.57 | 1.11
1.25 | 3.02
2.85
3.02
1.04
1.16
2.85 | 1.56
1.47
1.56
.54
.60 | 19.39
18.28
19.39
6.65
7.48
18.28 | 20.32
19.16
20.32
6.97
7.84
19.16 | 14.54
13.71
14.54
4.98
5.61
13.71 | 14.77
13.92
14.77
5.06
5.70
13.92 | | ONE HOUR PEAKS | · | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | INBOUND CUTBOUND INBOUND A.M. CUTBOUND A.M. 1NBOUND P.M. OUTBOUND P.M. | 7 5
16 50
7 5
6 40
16 35
16 50 | 3610
3445
3610
1235
1390
3445 | 1205
1295
1205
3090
3140
1295 | 4815
4740
4815
4325
4530
4740 | 74.97
72.68
74.97
28.55
30.68
72.68 | 15.96 | 15.57
14.86
15.57
5.33
6.00
14.86 | 8.06
7.69
8.06
2.76
3.10
7.69 | 100.00
95.43
100.00
34.21
38.50
95.43 | 104.79
100.00
104.79
35.85
40.35 | 74.97
71.55
74.97
25.65
28.87
71.55 | 76.16
72.68
76.16
26.05
29.32
72.68 | | TWO HOUR PEAKS | | | | | | | | | | | | | | INBOUND OUTBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 6 45
16 30
6 45
6 35
15 50
16 30 | 5875
5735
5875
2385
2635
5735 | 2360
2515
2360
5865
5225
2515 | 8235
8250
8235
8250
7860
8250 | 71.34
69.52
71.34
28.91
33.52
69.52 | 26.56
27.21
11.05 | 25.35
24.74
25.35
10.29
11.37
24.74 | 13.12
12.81
13.12
5.33
5.89
12.81 | 162.74
158.86
162.74
66.07
72.99
158.86 | 170.54
166.47
170.54
69.23
76.49
166.47 | 119.11 | 123.95
120.99
123.95
50.32
55.59
120.99 | | TOTAL DAILY VOLUMES | | | | | | A | | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 0 0
0 0
0 0
0 0
12 0
12 0 | 21590
23180
11065
7165
10525
16015 | 23180
21590
7165
11065
16015
10525 | 44770
44770
18230
18230
26540
26540 | 51.78 | | 93.14
100.00
47.74
30.91
45.41
69.09 | 48.22
51.78
24.72
16.00
23.51
35.77 | 598.06
642.11
306.51
198.48
291.55
443.63 | 626.71
672.86
321.19
207.98
305.52
464.88 | 481.41
229.80
148.81
218.59 | 455.49
489.03
233.44
151.16
222.05
337.87 | STATION 142 IN HOUSTON ON IH 45 NORTH OF LINK ROAD EIGHT LANES | | | DATA | | | The second second | DAILY | | | | HOURLY | | VOLUME/
TOT VOL | |--|--|---|---|--|--|--|--|--|--|--|--------------------------------------|--| | | TIME
(1) | VOLUME
(2) | OPPOS.
VOLUME
(3) | TOTAL
VOLUME
(4) | SPLIT
(5) | VOLUME/
TOTAL
IN VOL
(6) | VOLUME/
TOTAL
OUT VOL
(7) | VOLUME/
TOTAL
VOLUME
(8) | | VOLUME/
PEAK HR
OUT
(10) | DUR I NG | DURING | | FIVE MINUTE PEAKS | | | | | | | | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 20
17 10
7 20
10 35
16 40
17 10 | 630
590
630
155
215
590 | 120
150
120
135
480
150 | 750
740
750
290
695
740 | 84.00
79.73
84.00
53.45
30.94
79.73 | 1.60
1.50
1.60
.39
.55 | 1.72
1.61
1.72
.42
.59 | .83
.78
.83
.20
.28 | 9.67
9.06
9.67
2.38
3.30
9.06 | 10.22
9.57
10.22
2.51
3.49
9.57 | 7.46
7.96
1.96 | 7.72
7.23
7.72
1.90
2.63
7.23 | | TEN MINUTE PEAKS | | | | | | | | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 7 15
17 10
7 15
10 30
16 35
17 10 | 1250
1130
1250
280
410
1130 | 235
270
235
295
905
270 | 1485
1400
1485
575
1315
1400 | 84.18
80.71
84.18
48.70
31.18
80.71 | 3.18
2.87
3.18
.71
1.04
2.87 | 3.42
3.09
3.42
.77
1.12
3.09 | 1.65
1.49
1.65
.37
.54 | 19.19
17.34
19.19
4.30
6.29
17.34 | 20.28
18.33
20.28
4.54
6.65
18.33 | 14.29
15.80
3.54
5.18 | 15.31
13.84
15.31
3.43
5.02
13.84 | | ONE HOUR PEAKS | | | | | | | | | | | | | | INBOUND OUTBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 6 50
16 35
6 50
10 35
15 50
16 35 | 6515
6165
6515
1550
2155
6165 | 1395
2000
1395
1675
3850
2000 | 7910
8165
7910
3225
6005
8165 | 82.36
75.51
82.36
48.06
35.89
75.51 | 16.56
15.68
16.56
3.94
5.48
15.68 | 17.82
16.86
17.82
4.24
5.90
16.86 | 8.59
8.12
8.59
2.04
2.84
8.12 | 100.00
94.63
100.00
23.79
33.08
94.63 | 105.68
100.00
105.68
25.14
34.96
100.00 | 77.94
82.36 | 79.79
75.51
79.79
18.98
26.39
75.51 | | TWO HOUR PEAKS | | | | | | | | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 6 20
16 5
6 20
9 55
14 55
16 5 | 10990
9955
10990
3050
4100
9955 | 2600
4000
2600
3365
6620
4000 | 13590
13955
13590
6415
10720
13955 | 80.87
71.34
80.87
47.54
38.25
71.34 | 25.31
27.94
7.75
10.42 | 30.06
27.23
30.06
8.34
11.22
27.23 | 14.48
13.12
14.48
4.02
5.40
13.12 | 168.69
152.80
168.69
46.82
62.93
152.80 | 178.26
161.48
178.26
49.47
66.50
161.48 | 125.85
138.94
38.56 | 134.60
121.92
134.60
37.35
50.21
121.92 | | TOTAL DAILY VOLUMES | | | | | | | | | | | | | | INBOUND OUTBOUND INBOUND A.M. OUTBOUND A.M. INBOUND P.M. OUTBOUND P.M. | 0 0
0 0
0 0
0 0
12 0
12 0 | 39330
36555
21095
9860
18235
26695 | 36555
39330
9860
21095
26695
18235 | 75885
75885
30955
30955
44930
44930 | 51.83
48.17
68.15
31.85
40.59
59.41 | 53.64
25.07 | 107.59
100.00
57.71
26.97
49.88
73.03 | 51.83
48.17
27.80
12.99
24.03
35.18 | 603.68
561.09
323.79
151.34
279.89
409.75 | 637.96
592.94
342.17
159.94
295.78
433.01 | 462.14
266.69
124.65
230.53 | 481.69
447.70
258.36
120.76
223.33
326.94 |