EXPERIMENTAL PROJECTS PRECOATED LIGHTWEIGHT AGGREGATE Report Number 605-2 For Loan Only: **CTR** Library DEPARTMENTAL INFORMATION EXCHANGE

STATE DEPARTMENT OF HIGHWAYS AND PUBLIC TRANSPORTATION

· •

1. Report No. 2. Go FHWA/TX-82/12+605-2 4. Title and Subtitle	overnment Accession	n No.	3. Recipient's Cate	alog No.			
4. Title and Subtitle							
			5. Report Date	1002			
Precoated L	ightweight	Aggregate	January, 6. Performing Orga				
			o. Ferforming Urga	nization Code			
7. Author(s)	· ·	· · · · · · · · · · · · · · · · · · ·	8. Performing Organization Report No.				
Charles H. Reasonover			605-2				
9. Performing Organization Name and Address	æ		10. Work Unit No.				
Texas State Dept. of Highways P. O. Box 5051	11. Contract or Gra	int No.					
Austin, Texas 78763			13. Type of Report	and Pariod Covered			
2. Sponsoring Agency Nome and Address		· · · · · · · · · · · · · · · · · · ·	June, 198				
Texas State Dept. of Highways	& Public Tr	ansportation					
P. O. Box 5051							
Austin, Texas 78763		· · ·	14. Sponsoring Age	ncy Lode			
5. Supplementary Notes		· · · · · · · · · · · · · · · · · · ·					
Work performed in cooperation	with the FHN	WA.	•				
•							
•							
6. Abstract A synthetic lightweight aggree precoated is normally used to Lightweight aggregates tradit relatively low crushing streng or aggregate loss is probable	reduce wind ionally are gth and beco when rain o	shield damag subject to m me dusty or ccurs soon a	ge in seal coa noisture absor dirty easily. after placemen	t operations. btion, have Raveling t. Therefore,			
6. Abstract A synthetic lightweight aggree precoated is normally used to Lightweight aggregates tradit relatively low crushing streng	reduce wind ionally are gth and beco when rain o ghtweight ag is report is	shield damag subject to m me dusty or ccurs soon a gregate to concerned w	ge in seal coa noisture absor dirty easily. after placemen improve constr with the first	t operations. btion, have Raveling t. Therefore, uction experimental			
6. Abstract A synthetic lightweight aggreg precoated is normally used to Lightweight aggregates tradit relatively low crushing streng or aggregate loss is probable the idea of precoating the lig operations appears valid. Th	reduce wind ionally are gth and beco when rain o ghtweight ag is report is	shield damag subject to m me dusty or ccurs soon a gregate to concerned w	ge in seal coa noisture absor dirty easily. after placemen improve constr with the first	t operations. btion, have Raveling t. Therefore, uction experimental			
6. Abstract A synthetic lightweight aggreg precoated is normally used to Lightweight aggregates tradit relatively low crushing streng or aggregate loss is probable the idea of precoating the lig operations appears valid. Th	reduce wind ionally are gth and beco when rain o ghtweight ag is report is	shield damag subject to m me dusty or ccurs soon a gregate to concerned w	ge in seal coa noisture absor dirty easily. after placemen improve constr with the first	t operations. btion, have Raveling t. Therefore, uction experimental			
6. Abstract A synthetic lightweight aggreg precoated is normally used to Lightweight aggregates tradit relatively low crushing streng or aggregate loss is probable the idea of precoating the lig operations appears valid. Th	reduce wind ionally are gth and beco when rain o ghtweight ag is report is	shield damag subject to m me dusty or ccurs soon a gregate to concerned w	ge in seal coa noisture absor dirty easily. after placemen improve constr with the first	t operations. btion, have Raveling t. Therefore, uction experimental			
6. Abstract A synthetic lightweight aggreg precoated is normally used to Lightweight aggregates tradit relatively low crushing streng or aggregate loss is probable the idea of precoating the lig operations appears valid. Th	reduce wind ionally are gth and beco when rain o ghtweight ag is report is	shield damag subject to m me dusty or ccurs soon a gregate to concerned w	ge in seal coa noisture absor dirty easily. after placemen improve constr with the first	t operations. btion, have Raveling t. Therefore, uction experimental			
6. Abstract A synthetic lightweight aggreg precoated is normally used to Lightweight aggregates tradit relatively low crushing streng or aggregate loss is probable the idea of precoating the lig operations appears valid. Th	reduce wind ionally are gth and beco when rain o ghtweight ag is report is	shield damag subject to m me dusty or ccurs soon a gregate to concerned w	ge in seal coa noisture absor dirty easily. after placemen improve constr with the first	t operations. btion, have Raveling t. Therefore, uction experimental			
6. Abstract A synthetic lightweight aggreg precoated is normally used to Lightweight aggregates tradit relatively low crushing streng or aggregate loss is probable the idea of precoating the lig operations appears valid. Th	reduce wind ionally are gth and beco when rain o ghtweight ag is report is	shield damag subject to m me dusty or ccurs soon a gregate to concerned w	ge in seal coa noisture absor dirty easily. after placemen improve constr with the first	t operations. btion, have Raveling t. Therefore, uction experimental			
6. Abstract A synthetic lightweight aggreg precoated is normally used to Lightweight aggregates tradit relatively low crushing streng or aggregate loss is probable the idea of precoating the lig operations appears valid. Th	reduce wind ionally are gth and beco when rain o ghtweight ag is report is	shield damag subject to m me dusty or ccurs soon a gregate to concerned w	ge in seal coa noisture absor dirty easily. after placemen improve constr with the first	t operations. btion, have Raveling t. Therefore, uction experimental			
6. Abstract A synthetic lightweight aggreg precoated is normally used to Lightweight aggregates tradit relatively low crushing streng or aggregate loss is probable the idea of precoating the lig operations appears valid. Th	reduce wind ionally are gth and beco when rain o ghtweight ag is report is	shield damag subject to m me dusty or ccurs soon a gregate to concerned w	ge in seal coa noisture absor dirty easily. after placemen improve constr with the first	t operations. btion, have Raveling t. Therefore, uction experimental			
6. Abstract A synthetic lightweight aggreg precoated is normally used to Lightweight aggregates tradit relatively low crushing streng or aggregate loss is probable the idea of precoating the lig operations appears valid. Th	reduce wind ionally are gth and beco when rain o ghtweight ag is report is	shield damag subject to m me dusty or ccurs soon a gregate to concerned w	ge in seal coa noisture absor dirty easily. after placemen improve constr with the first	t operations. btion, have Raveling t. Therefore, uction experimental			
6. Abstract A synthetic lightweight aggreg precoated is normally used to Lightweight aggregates tradit relatively low crushing streng or aggregate loss is probable the idea of precoating the lig operations appears valid. Th	reduce wind ionally are gth and beco when rain o ghtweight ag is report is	shield damag subject to m me dusty or ccurs soon a gregate to concerned w	ge in seal coa noisture absor dirty easily. after placemen improve constr with the first	t operations. btion, have Raveling t. Therefore, uction experimental			
6. Abstract A synthetic lightweight aggreg precoated is normally used to Lightweight aggregates tradit relatively low crushing streng or aggregate loss is probable the idea of precoating the lig operations appears valid. Th construction project using pro	reduce wind ionally are gth and beco when rain o ghtweight ag is report is ecoated synt	shield damag subject to m me dusty or ccurs soon a gregate to concerned w hetic aggreg	ge in seal coa noisture absor dirty easily. after placemen improve constr with the first gate in Distri	t operations. btion, have Raveling t. Therefore, uction experimental			
6. Abstract A synthetic lightweight aggreg precoated is normally used to Lightweight aggregates tradit relatively low crushing streng or aggregate loss is probable the idea of precoating the lig operations appears valid. Th construction project using pre 7. Key Words	reduce wind ionally are gth and beco when rain o ghtweight ag is report is ecoated synt	shield damag subject to m me dusty or ccurs soon a gregate to concerned w hetic aggreg	ge in seal coa noisture absor dirty easily. after placemen improve constr with the first gate in Distri	t operations. btion, have Raveling t. Therefore, uction experimental			
 A synthetic lightweight aggreg precoated is normally used to Lightweight aggregates traditinelatively low crushing streng or aggregate loss is probable the idea of precoating the lightweight appears valid. The construction project using preconstruction project using preconstruction project using preconstruction project aggregate Precoated aggregate 	reduce wind ionally are gth and beco when rain o ghtweight ag is report is ecoated synt	shield damag subject to m me dusty or ccurs soon a gregate to concerned w hetic aggreg	ge in seal coa noisture absor dirty easily. after placemen improve constr with the first gate in Distri	t operations. btion, have Raveling t. Therefore, uction experimental			
 6. Abstract A synthetic lightweight aggreg precoated is normally used to Lightweight aggregates traditively low crushing streng or aggregate loss is probable the idea of precoating the lig operations appears valid. The construction project using preconstruction project using precoated synthetic aggregate Precoated aggregate Seal coat 	reduce wind ionally are gth and beco when rain o ghtweight ag is report is ecoated synt	shield damag subject to m me dusty or ccurs soon a gregate to concerned w hetic aggreg	ge in seal coa noisture absor dirty easily. after placemen improve constr with the first gate in Distri	t operations. btion, have Raveling t. Therefore, uction experimental			
 6. Abstract A synthetic lightweight aggreg precoated is normally used to Lightweight aggregates traditinelatively low crushing streng or aggregate loss is probable the idea of precoating the lightweight appears valid. The construction project using preconstruction project using preconstruction project using preconstruction project aggregate Precoated synthetic aggregate 	reduce wind ionally are gth and beco when rain o ghtweight ag is report is ecoated synt	shield damag subject to m me dusty or ccurs soon a gregate to concerned w hetic aggreg	ge in seal coa noisture absor dirty easily. after placemen improve constr with the first gate in Distri	t operations. btion, have Raveling t. Therefore, uction experimental			
 A synthetic lightweight aggreg precoated is normally used to Lightweight aggregates traditively low crushing streng or aggregate loss is probable the idea of precoating the lig operations appears valid. The construction project using processors are seen as a synthetic aggregate precoated aggregate Seal coat Synthetic aggregate 	reduce wind ionally are gth and beco when rain o ghtweight ag is report is ecoated synt	shield damag subject to m me dusty or ccurs soon a gregate to concerned w hetic aggreg	ge in seal coa noisture absor dirty easily. after placemen improve constr with the first gate in Distri	t operations. btion, have Raveling t. Therefore, uction experimental ct 10 - Tyler.			

.

9

¢

9

4

ð

DISCLAIMER STATEMENT

The material in this report is experimental in nature, and is published for informational purposes only. Any discrepancies with official views or policies of the DHT should be discussed with the appropriate Austin Division prior to the implementation of the procedures or results.

The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the views or policies of the Federal Highway Administration. This report does not constitute a standard, specification or regulation.

PRECOATED LIGHTWEIGHT AGGREGATE

Experimental Project Report Number 605-2

Texas State Department of Highways and Public Transportation

Report Prepared by

Charles H. Reasonover District Construction Engineer District 10 Tyler, Texas

January, 1982

Table of Contents

Disclaimer Statement	i
List of Figures	v
List of Tables	i '
Background	1
Precoating Operations	1
Laboratory Tests	1
Construction Operations	2
Performance Testing	3
Conclusions and Implementation	3
Figures	5-11
Appendix A - Laboratory Test Documentation	2
Appendix B - Construction and Material Documentation	9
Appendix C - Example of Team Rating Data	2

List of Figures

Figure 1 - Stockpiled Aggregate	5
Figure 2 - Schematic of Experimental Sections	6
Figure 3 - Distributor Used	7
Figure 4 - Aggregate Spreader Used	7
Figure 5 - Pneumatic Roller Used	7
Figure 6 - General View of Sections 1 and 2	8
Figure 7 - General View of Sections 3 and 4	8
Figure 8 - General View of Sections 5 and 6	8
Figure 9 - Close View of Section 1 in First Winter 7 Months	9
Figure 10 - Close View of Section 2 in First Winter 7 Months	9
Figure 11 - View of Sections 1 and 2 in First Winter 7 Months	9
Figure 12 - Close View of Section 3 in First Winter 7 Months	10
Figure 13 - Close View of Section 4 in First Winter 7 Months	10
Figure 14 - View of Sections 3 and 4 in First Winter 7 Months	10
Figure 15 - Close View of Section 5 in First Winter 7 Months	11
Figure 16 - Close View of Section 6 in First Winter 7 Months	11
Figure 17 - View of Sections 5 and 6 in First Winter 7 Months	11

V ·

Table I - Rating Panel Summary

Background

In 1978 an effort was made in District 10 to improve seal coat projects by requiring the use of precoated aggregates. The precoated aggregates were specified on the plans to be used on projects having high traffic counts and on projects in cities and towns where there were large numbers of turning movements. These situations also created a need for high polish value aggregates.

High polish value aggregates for District 10 are primarily produced at three sources. They are: East Texas Stone at Blue Mountain; Gifford-Hill at Allamore (Rhyolite); and TXI at Streetman (lightweight). Our present specifications requiring precoated aggregate eliminated one of these sources, TXI lightweight.

TXI became interested in precoating lightweight aggregate after we began specifying it, and in November 1979 they arranged with Moore Asphalt Co. in Tyler to precoat some of their material from Streetman on an experimental basis. Three 35 CY loads were delivered to the plant, one of which would remain uncoated and serve as a base, and the other two would be coated with No. 12 precoat oil at rates of 1.6% and 1.8% by weight.

Precoating Operations

When precoating began, our District Laboratory selected 1.8% by weight as a starting point since this rate is approximately the amount of precoating oil that would be used in conventional precoat. Upon observing the precoated material, it was determined that this rate was too high and the rate was reduced to 1.6% for the second load.

After precoating, the material was immediately hauled to the South Tyler maintenance yard and stockpiled in three separate piles. Upon observing the material after stockpiling, it was evident that the lightweight aggregate had absorbed a portion of the precoat oil and it was noted that the 1.6% rate, which appeared to be right at the time of precoating, appeared too dry in the stockpile. Likewise, the 1.8% rate, which appeared too high at the time of precoating, appeared to be right in the stockpile. This observation may be noted in the photograph in Figure 1.

Laboratory Tests

Following are the results of tests performed on the material:

<u>Unit Weight</u>	<u>%Pr</u>	<u>ecoat #12</u>	<u>% Absorption</u>
47.8 PCF		0.0 1.6	12.4 10.9
		1.8	5.8
		Gradation	
<u>Sieve Size</u> 3/4	<u>% Retained</u> 0	<u>Sieve Siz</u> 3/8	<u>e % Retained</u> 33.8
5/8	0	#4	99
1/2	1.5	#10	99

We believe the reduction in absorption by precoating the aggregate is most significant. Documentation of the laboratory tests may be found in Appendix A.

Construction Operations

On June 18, 1980, a section on FM 2493 south of Loop 323 in Tyler was selected for placing test sections for the precoated lightweight. FM 2493 is a 24' wide two-lane road with a traffic volume of 3440 vpd.

Six sections, each 12' wide and 900' long, were selected as follows (see Figure 2):

On Sections #1 and #2, 1.8% precoated lightweight aggregate was applied at a rate of 1 CY to 120 SY. The asphalt rate was .33 gal/SY on Section #1 and .25 gal/SY on Section #2.

On Sections #3 and #4, 1.6% precoated lightweight aggregate was applied at a rate of 1 CY to 120 SY. The asphalt rate was .33 gal/SY on Section #3 and .25 gal/SY on Section #4.

On Sections #5 and #6, uncoated lightweight aggregate was applied at a rate of 1 CY to 120 SY. The asphalt rate was .32 gal/SY on Section #5 and .28 gal/SY on Section #6.

The asphalt was an AC-10 from Dorchester Company, Mt. Pleasant, Texas. The daily road report and material documentation may be found in Appendix B.

Weather conditions for the placement of test sections was very good. The day was clear. The wind was calm. The air temperature was in the low 90's.

The construction work was done by State Maintenance forces. The AC-10 was applied with a Rosco Distributor. The aggregate was placed with a self-propelled spreader and rolling followed immediately utilizing a SB-3000 pneumatic roller. Figures 3 to 5 show views of the construction equipment and operations. Generally the construction operations progressed very well and a good seal coat was obtained.

The following morning the sections were broomed to remove any excess aggregate. It was noted that there was no loose aggregate except a minor amount along the extreme outside edge of the pavement. Figures 6 through 8 show photographs of the completed sections and the brooming operations.

A rain fell on June 21, 1980, some 3 days after placement. Following the rain, an inspection was made and no adverse effects were noted.

Performance Testing

Performance testing consisted of obtaining skid resistance tests and performing a periodic rating using a panel composed of District 10 personnel and personnel from the Maintenance and Safety, Construction Operations and Transportation Planning divisions.

Skid tests were made on August 13, 1980 and the following information was obtained:

Section	<u>Skid No</u> .	Section	<u>Skid No.</u>
1	42, 37, 46	4	44, 44
2	47, 48	5	5 9, 55
3	48, 44	6	54, 59

The skid tests show relatively high values and a slight increase in values was expected with increased time as the asphalt covering abrades and more aggregate would become exposed to the test tire.

The team rating was performed at approximate six month intervals and a summary of the data collected may be found in Table I. An example of the data collected has been included in Appendix C. Figures 9 through 17 show photographs of the sections taken at rating time during the first winter. Note little raveling, flushing or aggregate degradation have been found to date and the overall appearance and performance has been very good.

Conclusions and Implementation

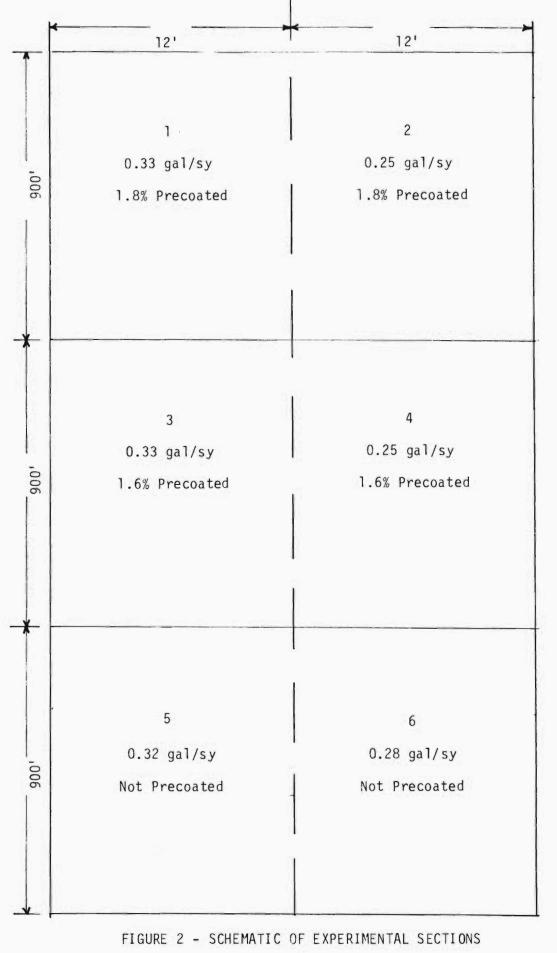

All experimental sections are performing well and it was concluded that precoating synthetic lightweight aggregate was successful and beneficial. Based on the results of this information, some 51 lane miles of highways in District 10 were sealed with a precoated lightweight aggregate during the 1981 asphalt season. At the present time, this construction is performing very well. Flushing, as would be expected, may be found in areas where previous patching occurred, but little flushing, aggregate loss or aggregate degradation developed or is evident.

TABLE 1 RATING PANEL SUMMARY

DATE			VISUAL	AGGREGATE	AGGRE GATE	FLUSHING	RATING	AGGRE GATE	EMBEDMENT
			INSPECTION (10-High)	DEGRADATION (10-High)	RETENTION (10-High)	(10-High)	SCORE (40-Highest)	OUT W.P.	Betw. W.P.
					Sectio	n l			
	Summer	1980	9.5	9.75	9.75	9.38		50%	44%
	Winter		9.8	9.7	9.9	9.8		50	53
	Winter	81-82	9	10	10	10		50	45
					Section	n 2			
	Summer	1980	9.5	9.63	9.75	9.5		49%	43%
	Winter		9.8	10	10	9.9		45	43
	Winter		9	10	10	9.5		50	45
					Sectio	n 3			
	Summer	1980	9.5	9.75	9.75	9.38		50%	44%
4	Winter		9.8	10	10	10		43	43
	Winter		9	9.5	10	9.5		50	45
					Section	n 4			
	Summer	1980	9.5	9.63	9.75	9.5		4 9%	43%
	Winter		9.4	9.8	10	10		43	43
	Winter		9	10	10	9.5		45	40
					Sectio	n 5			
	Summer	1980	9.5	9.5	9.5	9.38		49%	43%
	Winter		9.4	9.8	10	9.6		45	43
	Winter		9	10	10	9.5		50	40
					Section	n 6			
	Summer	1980	9.5	9.63	9.5	9.25		53%	47%
	Winter		9.6	9.6	9.9	10		40	40
	Winter		9	10	10	9.5		45	40

FIGURE 3 DISTRIBUTOR USED

FIGURE 5 PNEUMATIC ROLLER USED

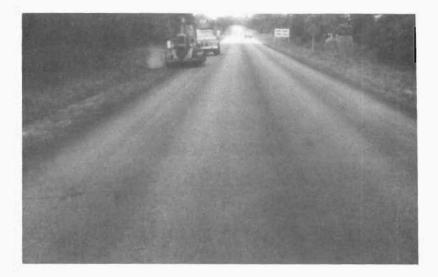


FIGURE 6 - GENERAL VIEW OF SECTIONS 1 AND 2

FIGURE 7 - GENERAL VIEW OF SECTIONS 3 AND 4

FIGURE 8 - GENERAL VIEW OF SECTIONS 5 AND 6

FIGURE 9 - CLOSE VIEW OF SECTION 1 IN FIRST WINTER - 7 MONTHS

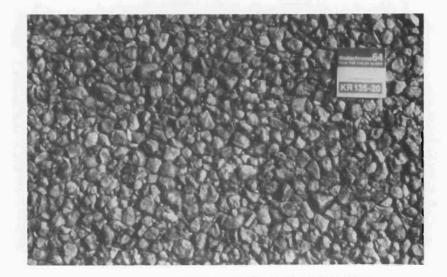


FIGURE 10 - CLOSE VIEW OF SECTION 2 IN FIRST WINTER - 7 MONTHS

FIGURE 11 - VIEW OF SECTIONS 1 AND 2 IN FIRST WINTER - 7 MONTHS

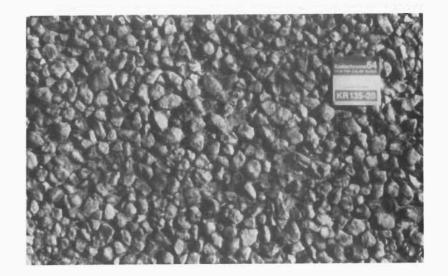


FIGURE 12 - CLOSE VIEW OF SECTION 3 IN FIRST WINTER - 7 MONTHS

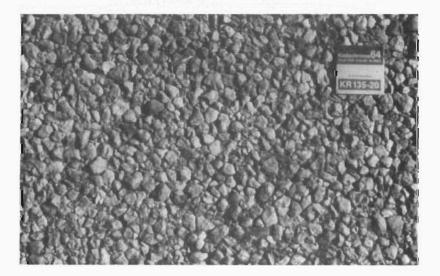


FIGURE 13 - CLOSE VIEW OF SECTION 4 IN FIRST WINTER - 7 MONTHS

FIGURE 14 - VIEW OF SECTIONS 3 AND 4 IN FIRST WINTER - 7 MONTHS 10

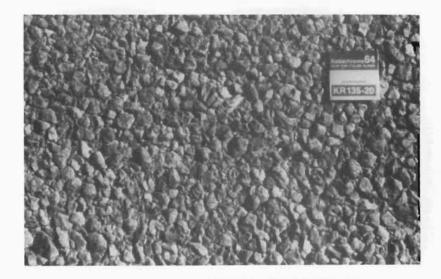


FIGURE 15 - CLOSE VIEW OF SECTION 5 IN FIRST WINTER - 7 MONTHS

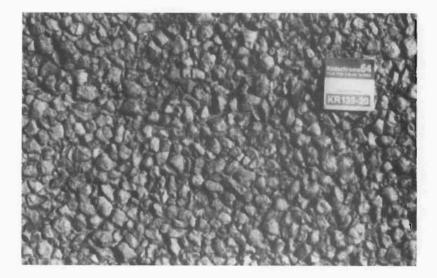


FIGURE 16 - CLOSE VIEW OF SECTION 6 IN FIRST WINTER - 7 MONTHS

FIGURE 17 - VIEW OF SECTIONS 5 AND 6 IN FIRST WINTER - 7 MONTHS

APPENDIX A

1.0

LABORATORY TEST DOCUMENTATION

APPENDIX A - SUMMARY OF LABORATORY TESTS

Item 304

AGGREGATE FOR SURFACE TREATMENTS

(Precoated)

(Class B)

TXI Lightweight - Grade 4

(Unit Wt. $47.8 # / ft^3$)

	%Precoat #12	Precoat/ Batch	Batch- Wt.	Absorption	+5/8	+1/2	+3/8	+4	+10	Moist.	Vol.	
Raw Material	0	0	0	12.4	0	1.5	33.8	98.9	99.8	1.13		· · ·
Precoated	1.6	35#	2200	10.9	0	1.0	33.8	95.8	96.9	.06	10	
Precoated	1.8	40#	2200	5.8	0	1.2	18.4	90.9	97.1	.04	.05	

* Spec. = 0.5 - 1.5% by weight

.

us Highway Department orm 346A Revised

5.2

÷.

A. and

1. 12 and 13 and 14

PLANT INSPECTION REPORT

ASPHALTIC CONCRETE

Laboratory No. 10-331-79						· ·
Date Inspected 11-21-79				Control No.	Sect. No.	Job No.
Date Reported 11-26-79				Smith		Research
	les H.	Reasonove	er	County	Federal Project No.	Hwy. No.
Address Tyler, TX				10		
Res. Engr. or Maint. Fore.				District No.	Req. No.	B.O.C. No.
Address				304		PB Gr 5
Contractor Research				Spec. Item No.	Stencil No.	Type
Producer Moore Asphalt Co.				Tyler - Plant	S.Mtce.	– Whse.
				Point of Origin	Destination	

Car Initial	1 · · · ·						PE	RCENT	BY WEIGI	НТ				
and Number	Wt. Tons	Asph. %	Pass.	Равв.	1%"%"	78 "38" *_ * 38 "	s _⊎ "-No. 4	¹ 4 "-No. 4 4 "-No. 19	No. 4-10	Ret. No. 10	10-40	40-80	80-200	Pass. 200
						• •			1			· · · · · · · · · · · · · · · · · · ·		.
% Absorption	on Sto	ockpile	Mater	ial			(10-	318-79	9) =	12.4				e, i
	on mat	erial	with 1	.6% Pr	ecoat	· .	(10-	315-79	9) =	10.9				
: 	on mat	erial	with 1	.8% Pr	ecoat		(10-	316-79	9) =	5.8				
											·			
					:									
				-										-
									•	;	1			•
										and a second sec				
			-	-			•							
						2					· · ·	:		
EXTRACTION RE		1										·		
Total Loss Mois % %		Res. Bit	-			1			3		1 1 1			
			- 											
Type Asph.	Lab	Number	- · ·	Design	No.	Batch	Wt.	Prir	ner %	w	ater Add.	%	Report 1	No.
		r t					l							
										<u> </u> .	and the second s			

.

14

Inspector

PLANT INSPECTION REPORT

ASPHALTIC CONCRETE

10-316-79 Laboratory No. 11-13-79			
Date Inspected	Control No.	Sect. No.	Job No.
Date Reported ************************************	County	Federal Project No.	Hwy. No.
Address Tyler, TX	10		
Res. Engr. or Maint. Fore.	District No.	Req. No.	B.O.C. No.
Address	304	PB,	Gr. 4
Contractor Research	Spec. Item No.	Stencil No.	Type
Producer Moore Asphalt Co.	T y ler - Plant	S.Mtce	Whse.
	Point of Origin	Destination	

	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~								Р	ERCENT	BY WEIGH	T				
	Car Initia and Number		Wt. Tons	Asph. %	Pass.	Pass.	1 % " % "	<u>, x x x x</u> x x x x x x		<u>¥X¥XXX</u> XXXXXX	<u>¥X8X¥¥</u> X	Ret. No. 10	10-40	40-80	80-200	Pass. 200
-					-	-		+5/8	+1/2	+3/8	+4	-				
*															-	
																ļ
۲																
								6								
· •										,						
B																
•																
E	XTRACTIO	ON RESU	LTS		L		I	1								· · · ·
Tota	1 Loss %	Moist. %	Vol. %	Res. Bit. %												
1.	63	.04	.05	1.54				0	1.2	18.4	90.9	97.1				
Т	ype Asph.		Lab. 1	Number		Design 1	1 To.	Batch	Wt.	Prin	ner %	Wa	iter Add. 9	6	Report	No.
Prečo	at #12	2	39115	5				2200		1.8	3		0			

Sampled by:

Inspector

PLANT INSPECTION REPORT ASPHALTIC CONCRETE

Laboratory No. 10-315-79			
Laboratory No. <u>10-315-79</u> Date Inspected 11-13-79	Control No.	Sect. No.	Job No.
Date Reported 11-15-79	-Smith County	· · · · · · · · · · · · · · · · · · ·	Research
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	County	Federal Project No.	Hwy. No.
AddressTyler, TX			
Res. Engr. or Maint. Fore.	District No.	Req. No.	B.O.C. No.
Address	- 304 Spec. Item No.	PR C	54
Contractor Research	Spec. Item No.	Stencil No. 9	• Type
Producer Moore Asphalt Co.	-Tyler - Plant	S. Matnt.	
	Point of Origin	Destination	

Car Initial Wt Asph				PERCENT BY WEIGHT											
and Number		Wt. Tons	Asph. %	Pass.	Pass.	1 % " % "	XXXXX XXXXX	[*] ‴XXXX ⁴	****** ******	XXXXX	Ret. No. 10	10-40	40-80	80-200	Pass. 200
							+5/8	+1/2	+3/8	+4		-			•
Stockp	ile						0	1.5	33.8	98.9	99.8				*
							2								
Hot Bi	n Ana	lysis													
Bi	n #1						0	0	1.3	19.6	96.4				
Bi	n #2						0	0	15.5	98.2	98.9		1 1		
Bi	n #3						0	2.6	75.2	99.4	99.6				
									,					-	· •
•															
a												L			
EXTRACTIO	N RESU	LTS	1		1	·	<u> </u>		<u> </u>	<u> </u>					
Total Loss %	Moist. %	Vol. %	Res. Bit. %	1											
1.62	.06	.10	1.46				0	1.0	33.8	95.0	96.9				
Type Asph.		Lab.	Number		Design N	lo.	Batch	Wt.	Prin	ner %	Wa	ter Add. 9	6	Report 1	No.
Precoat #1	2	3911	5				2200	0	1.	6 35±	water cold % unk	feed.	l at		<i>v</i>

-Sampled by:

Inspector

8

5

SOILS AND BASE MATERIALS TEST REPORT

Laboratory No. 10-9-80							
Date Rec'd Reported Reported	Control Number	Section Number	Job Numb				
Engineer Charles H. Reasonover	Smith		Research				
AddressTyler, TX	County	Federal Project No.	Highway N				
Contractor	10		11-13-79				
Sampler Lawrence W. Leake	District No.	I.P.E. No. Req. No.	Date Sample				
Sampler's Title <u>Geol. </u>	Specification Iten	n No. <u>304 - PB Gr. 1</u>	<u>+</u>				
Sampled From <u>Stockpile</u>	Material from Property of Moore Asphalt Plant						
Producer <u>TXI</u>	·						
Quantity Represented by Sample							
Has been Used on	Proposed for Use	a_{s} Precoated Aggrega	ate				

, PI	SL	LS	SR	Class	Soil Binder	WBM % Loss	% Moist.	Unit
								47.8

PERCENT RETAINED ON

						5	Square	Mesl	n Siev	e						Grain Diam.		am.		1
Lab No.	Opening in Inches						Sieve Numbers						in Millimeters			Specific				
	3	2 1/2	2	134	14	36	5%8	3/8	4	10	20	40	60	100	200	.05	.005	.001	Gravity	

SAMPLE IDENTIFICATION

Lab. No.	Identification Marks	Location-Properties-Station Numbers	Type of Materials			
10-9-80		Stockpile @ Moore Asphalt Plant	Lightweight Aggregate			

FORM FOR COMPUTING AVERAGE PARTICLE SIZE AND ASPHALT RATES

Precoated Lightweight (Gr 4), F.M. 2493, Smith County, by SDHPT Maintenance Forces

ł

Screen Size	Accumulative S.A.	Retained		Average Particle Size	2	
1 - 7/8		and a state of the second second second	x	0.938	32	
7/8 - 3/4	աններությունը ու ներ է ու որությունը է ու ներ ու ներ է ներ է ու որությունը է ու որությունը է ու որությունը է ո է	Caralle and an a faile and the second se	x	0.813	12	
3/4 - 5/8	0		x	0.688	-	0.000
5/8 - 1/2	1.5	1.5	x	0.563	4	0.008
5/8 - 3/8	Balant Talland () and a stability of second and the second stability of a second stability	august antifasticianas ateriotekanas er en aug	x	0.500	Ħ	
1/2 - 3/8	33.8	32.3	x	0.438	8 7	0.141
1/2 - #4	₩16 21-11219-1121-121-121-121-121-121 1-121-121		x	0.343	Ħ	
3/8 - 1/4	under als despetation des espectations and a factor of the same party of the same party of the same	angeneterinden var Hörperspeciela der allem unt	ж	0.313	1	
3/8 - #4	98.9	65.1	x	0.281	7 2	0.183
3/8 - #10	August and any second state of the second stat	alimitera alianya andare takat kata alian an	x	0.227		
1/4 - #10	at a subject of a function of the state of the	alana ana ang kang kang kang kang kang kan	ж	0.164	=	
#4 - #10	99.8	0.9	x	0.133	83	0.001
- #10	مىچىنىچە «مىلەر - بىلە ⁻ مەرك ^ى مەرك ^ى مەرك ^ى مەرك ^ى مەرك ^ى مەرك ^ى مەرك _ى بىلەر بىلەر مەركى مەرك	0.2	x	0.063	2 2	0.000
		100.0		Avg. Size	-	0.333

Asph. Rate = 0.8977 x 0.333 = 0.299 $\begin{array}{r} + & --- & \% \text{ for traffic} \\ + & --- & \% \text{ surface demand} \\ - & 0.027 & \text{gal. S.Y. for precoat} \\ \\ \text{Use} \longrightarrow 0.272 & \text{gal/S.Y.} \end{array}$

Aggr. Rate (90% Coverage) = $\frac{36}{.90}$ X .333 = 120

Use: 1 CY per 120 SY

d.

APPENDIX B

)

CONSTRUCTION AND MATERIAL DOCUMENTATION

Form 187

				mith		Cou	•	State Control	No	Sec		Job .		F. A. F	P. No	
Гуре	E	M_24	<u>93 - Seal (</u>	oat Rese	arch	Conti	actor	State	Maintenand	e Fo	rces_		Da	te 6-	18-80	
• ;	· .					MA'	TERIA	LS-RE	CEIVED							
R. 1	R. CAR	NO.	MATERIAL	NET WT.	LAB	REP.	AMOUNT	-	R. CAR NO.	MATE	ERIAL	NET	rwr.	LAB. RE	P. A	WOUNT
ruc	k #	993	AC-10		C803	372505	5999	Gal.								1.
				· · ·	· .					ļ						
								· .		ļ						
										1					· .	
										<u> </u>						
									CARLONI	<u> </u>			1			
				-		ASI	HALT	APPLI	CATION		····					
				FENERAL									HALT			
EF. 10.	CRSE. NO.	DIST.	LE Sta.	NGTH to 1	ЯΤА.	LENGTH FT.	WIDTH FT.	AREA S. Y.	X194, X194, X0 19(9).	X MR	GA STA	LS.	GALS. END	GALS.	TEMP. °F.	GALS. S. Y.
1	1		32+00	41+00		900	12	1200	West Side		15	20	1120	400	375	.3
2	1		41+00	32+00		900	12	1200	East Side		11		820	300	375	.2
8	1		41+00	50+00	.,	900	12	1200	West Side		15	20	1120	400	375	.3
4	1		50+00	41+00		900	12	1200	East Side	e	11	20	820	300		.2
5	1		50+00	59+00		900	12	1200	West Side			40	1160	380		.3
8	1		<u> 59+00 </u>	50+00		900	12	1200	East Side	e	11	60	820	340	375	.2
7	ļ					· · · · · ·		<u> </u>	_							
8							-							<u> </u>		
9 LO		\vdash												· ·	+	
11									-					<u> </u>		+
12												-		+		
18																+
.4					_											
15																
16									· · · · · · · · · · · · · · · · · · ·							
17																
18	-															1
:		AGO	REGATE	Ref. No					SUMMARY	OFI	DAYS W	ORK				
Sour	to ec	Aggre	gate XXXXXXXX	x 1&2 -	Prec	oated	Light	weight	1.8%	_		ASP	HALT		BLADING	ROLLI
	_		sate XR& XXXX	x 3&4 -	Prec	oated	Light	weight		RSE	GALL	ONS	sq.	YDS.	HOURS	HOUR
	_		gate trax course			<u>ated l</u>		<u>eight</u>	PREV. REP	ORT						
			Applied 1st Con		<u>1 CY</u>	/120 \$	SY		THIS REPO	ORT -						
			Applied 2nd Co						TO DATE				<u> </u>	0 Y		
late	Agg	egate	Applied \$rd Con	1186					AV. RATE			ga	uls. per.	S. Y.		
		Aanho	ASPHALT	- AC-10	De	orchest	or		2ND COURS							
			lt 1st Application			n cires i			THIS REPO							
			lt 8rd Application			-			TO DATE			.				1
		k Beg				-			AV. RATE			ga	als. per.	S. Y.		-
			pplication:						3RD COURS	3E	-					
		k Fini							PREV. REF	PORT					-	1
Reas	ons f	or Tin	le Loss:						THIS REPO	ORT		·				1
									TO DATE							
									AV. RATE			ga	als. per.	S. Y.		
									TOT.	ATC						

INSTRUCTIONS: MAKE TWO COPIES, ONE FOR DISTRICT OFFICE AND ONE FOR RESIDENT ENGINEER. TO BE PREPARED DAILY AND SUBMITTED AT LEAST ONCE EACH WEEK.

Inspector

/

2 UNG COMPANY , and the second SPHALT No. 48740 MANIFEST R 005 MT PLEASANT, TEXAS 5 1/4 Courtain 6-18-30 (1 . month 1 8345 - 208 Scoult for Doubit. Ty Havy Depit TRUCK MAK 3324 6500 INVOLUCITY. 5565 But Whanker, d. HINSHES 10-0-870 B/C 25045 #2 AC-10 340 5499 120 7 9 140 JUN 18 AM 5- 03 NET TARE GROSS þ. 7740 2 BULLIN IR M 3: 3h 51380 5= 4004112 5 4 0 p + 12 s att y , a "ENTER AN "S" IF SPECIAL HANDLING ENTER A "PT P PARIAL LOST

APPENDIX C

ű

đ

EXAMPLE OF TEAM RATING DATA

Precoated L. W.	Experimental	Sections
-----------------	--------------	----------

Date Evaluated July 21, 1980

A.	JOB IDENTIFICATION					
	District No. 10 HI	ghway No. <u>FM</u>	2493	_ County.	Smith	
	Control No. 191 Sec	ction No.	3	_ Job No.	Mainten	ance
	miles NSEW of	[yler		(neor	est town)	
	Mile Post to Mile Post	l	9 Elimeter			
	Trial Field Section No	en e	latoria accuración ignago non consecto de	Dote	Sealed Ju	une 18, 1980
8.	MATERIALS AND DESIGN Aggregate Source Streetman Lig	ghtweight	Aggregate	Quantity .	1 CY:120	54
	Asphalt Source Dorchester (AC-1	(g)	al./sq. yd.)			
	Length of Section Evaluated	900	an ny goga sanàng ganàng katalan ngagita		mthes fe	eet
С		rcent Precoa	t on Aggre	egate <u>1</u> .	8%	
	I. VISUAL INSPECTION		3. AGGE	REGATE RE	TENTION	
	0 2 4 6 8	0			<u>6</u> 8	
	Very Poor Fair Good Ver Poor Goo	· .	Entire Aggregate Loss	Aggregate Loss in Wheel Path		Aggregate Loss
	2 AGGREGATE DEGRADATION		4. BLE	EDING		
	0 2 4 6 8	N/	0 2	4	6 8	10
	Excessive Moderate No Heavy Slight	ha	Excessive	in		Slight Discolor-
	5. AGGREGATE EMBEDMENT	•	Extensive Bleeding	Wheel Poth	in Wheel Poth	ation . in Wheel Path
	Outer Wheel Path 50 Between Wheel Path 40					
	TOTAL SCORE 39			•		
as ki	COMMENTS: Section 1 is compared to section is it aggregate, No Flus	s slightly, 2, Very n hing.	darker i uce sea	in appeal	Close,	tightly-