EXPERIMENTAL HOT MIX PROJECT USING POLYMERIZED ASPHALT

DHT-6

DEPARTMENTAL RESEARCH

TEXAS DEPARTMENT OF TRANSPORTATION

RESEARCH SECTION, FILE D10-R, P.O. BOX 5051 AUSTIN, TX 78763-5051, 512-465-7403, TexAn 241-7403

Technical Report Documentation Page

1. Report No. DHT-6	2. Government Acce	ssion No. 3. F	Recipients Ca	atalog No.	
4. Title and Subtitle Experimental Hot Mix Project Us	ing Polymerized A			September 1987	
				rganization Code	
7. Author(s) Katherine Hargett, P. E.			I	OHT-6	
9. Performing Organization Name and Address Texas Department of Highways ar P. O. Box 15426			Work Unit N		
7901 North Interregional Highway Austin, Texas 78761-5426	y 			ort and Period Covered	
12. Sponsoring Agency Name and Address Texas Department of Highways an P. O. Box 15426	nd Public Transpo		· , , · · · · · · · · · · · · · · ·		
7901 North Interregional Highwa Austin, Texas 78761-5426	y	14.	Sponsoring	Agency Code	
15. Supplementary Notes					
16. Abstract					
This report compiles all the data Project CSR 114-7-51, on US 290 ized asphalt. This report merely of paring it to hot mix ACP with a ment regularly over the next ten	through the city focuments the ac normal AC-20 as	y of Giddings. The hot tivity and makes no ev	mix ACP aluation	was produced with of the product oth	h a polymer- er than com-
1					
17. Key Words		18. Distribution Statement			
Polymerized Asphalt, Modified A Mix ACP, Dist 14, Austin	sphalt, Hot	This document is av Texas Department of Texas 78763-5051.			
19. Security Classif. (of this report) None	20. Sec None	urity Classif. (of this page)		21. No. of Pages 46	22. Price

EXPERIMENTAL HOT MIX PROJECT USING POLYMERIZED ASPHALT

Research Report DHT-6

Katherine H. Hargett Lab Engineer

Texas Department of Transportation Austin District

September 1987

TABLE OF CONTENTS

Discla	aimer	v
Abstr	act	v
I.	Introduction	1
II.	Project Conditions	1
III.	Asphalt Properties	2
IV.	Hot Mix Design	3
V.	At The Plant	4
VI.	Construction	5
VII.	Summary of Test Results	5
VIII.	Test Strip	6
IX	Summary	7
Арре	ndices	
	Appendix A	9
	Appendix B	31
	Appendix C	35

ABSTRACT

This report compiles all the data involved in the production and construction of a hot mix overlay in Lee County, Project CSR 114-7-51, on US 290 through the city of Giddings. The hot mix ACP was produced with a polymerized asphalt. This report merely documents the activity and makes no evaluation of the product other than comparing it to hot mix ACP with a normal AC-20 asphalt. The district intends to report the evaluation of this pavement regularly over the next ten years.

DISCLAIMER

The contents of this report reflect the views of the author who is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of Federal Highway Administration or the Texas Department of Transportation. This report does not constitute a standard, specification, or regulation.

There was no invention or discovery conceived or first actually reduced to practice in the course of or under this contract, including any art, method, process, machine, manufacture, design or composition of matter, or any new and useful improvement thereof, or any variety of plant which is or may be patentable under the patent laws of the United States of America or any foreign country.

NOT FOR CONSTRUCTION, BIDDING OR PERMIT PURPOSES.

I. INTRODUCTION

In September 1987, Austin Paving Inc. produced and laid approximately 6,000 tons of SDHPT Type C, hot mix asphaltic concrete pavement (HMAC), with a minimum polish value requirement of 35, using a styrene-butadiene-styrene block copolymer additive in the asphalt cement. The project involved overlaying a five-lane (two lanes each direction with center turn lane) section through the city of Giddings, Texas.

Texas Emulsions furnished the polymerized asphalt to the contractor. In January 1988, they quoted the price of the product at about \$40.00 per ton more than their AC-20 cost. A 200-foot (approximately 45 tons) test strip of Type C HMAC (PV 35) using AC-20 was placed within the project limits for future comparison of pavement performance.

II. PROJECT CONDITIONS

The existing section through Giddings on US 290 had a minimal amount of spot flushing and rutting of up to 1/2 inch in the wheel paths throughout the length of the project. Severe rutting and shoving of the pavement had occurred at all intersections. The traffic count through Giddings has an annual average 24-hour traffic count of 16,900 (1986) with approximately 19 percent truck traffic.

The existing pavement was roto-milled to a depth of approximately 1-1/2 inches. The roto-milled surface has a significant amount of mostly transverse cracking up to 1/4 inch wide. The existing surface also was slightly flushed in the wheel paths. Traffic was allowed to run on the roto-milled surface from 4-8 days before being sealed and overlaid.

The grade 5 underseal consisted of a crushed limestone from Leander, Texas, placed at a rate of 1 cubic yard to 177 square yards and an HFRS-2 emulsion at a rate of 0.236 gallons per square yard.

III. ASPHALT PROPERTIES

The asphalt used in this mix met the requirements of Special Provision 300-044, "Asphalt Oil and Emulsion AC-30P." (See Appendix A for this special provision and the standard SDHPT requirements of AC-10 and AC-20.) This material is actually an AC-10 asphalt cement modified with 3 percent by weight addition of the polymer SBS (styrene-butadiene-styrene). The styrene-butadiene, in this case added and mixed at the refinery, should cause the following changes to a regular asphalt cement:

- 1. Decrease in penetration of 10-20 percent.
- 2. Increase in absolute and kinematic viscosity of 200-400 percent.
- 3. Increase in low temperature ductility of 300 percent.

Selected SDHPT test results of the Exxon oil used, sampled from Texas Emulsions refinery in Baytown, Texas, for the AC-30P, AC-10 and AC-20 are shown in Table 1. Full results are recorded in Appendix A. Comparing the properties of the AC-30P to the AC-10, there is an actual decrease in penetration (at 77 degrees Fahrenheit) of approximately 17 percent and an actual increase in viscosity (at 140 degrees Fahrenheit) of approximately 172 percent.

Asphalt Type	Penetration (77°F)	Viscosity (Stokes at 140°F)	Spec. Gravity (60°F)	Spec. Gravity (77°F)
AC-10	107	0968	1.022	1.016
AC-20	061	2022	1.030	1.024
AC-30P	089	2630	1.026	1.020

TABLE 1: Comparison of asphalts

IV. HOT MIX DESIGN

In Appendix B is a copy of the hot mix designs using the SDHPT C-14 method for the Type C, AC-30P mix and our standard Type C, AC-20 mix. The same aggregates and aggregate gradations were used for both mixes. We ran this project's mix at an asphalt content of 4.9 percent (low 4.8 percent to 5.2 percent high), and we ran 5.0 percent for our standard AC-20 mix. The density stability curves for the two designs are similar (Figs 1 and 2). At this range of asphalt content, our design shows that the AC-30P mix would produce a slightly less stable product than the AC-20 design.

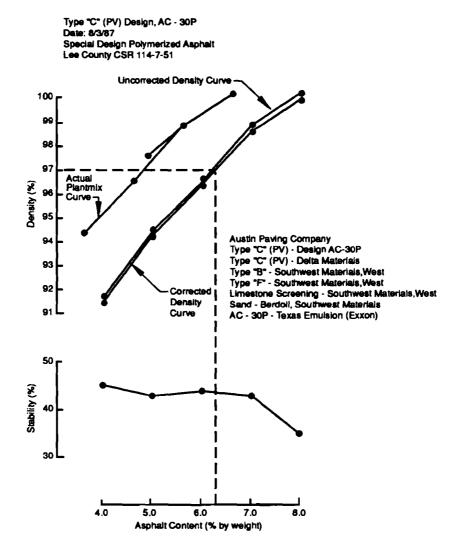


FIGURE 1: Density stability curves for C-14 method, Type C, AC-30P mix

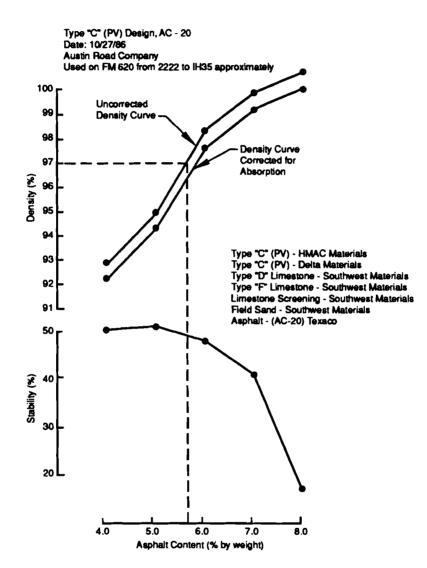


FIGURE 2: Density stability curves for C-14 method, Type C, AC-20 mix

V. AT THE PLANT

This mix was produced in the same manner as our Type C with the AC-20. Plant mix temperatures were normally around 300 degrees Fahrenheit, which is the same temperature at which the AC-20 mix was produced ized asphalt in an uninsulated tank. He thought the oil was heated to about 350 degrees Fahrenheit, but in reality it was at only 200 degrees Fahrenheit, due to heat loss. The first time he tried to pump the oil out, nothing happened. After he insulated his tank and the lines, the oil pumped as expected.

VI. CONSTRUCTION

The design for this section through Giddings called for 1-1/2 inch compacted mat thickness. The contractor used a Cedar Rapids laydown machine, a Galleon VOS-266A tandem steel vibratory roller weighing 8-10 tons, and a medium-weight pneumatic roller. Our rolling pattern consisted of 4 total passes (one pass is a movement in one direction) for each roller width of the mat. The lead roller was vibrating going into the laydown machine, and the static mode was used going away from the laydown machine. The frequency of vibration was 2200 vpm, and the amplitude used was 0.042 inches. The roller speed varied from 3 to 6 mph. The pneumatic roller typically made 4 passes, also. The mat temperature was typically 280 degrees Fahrenheit at the time of the first vibratory roller pass and was around 190 degrees Fahrenheit at the time of the last vibratory roller pass. This rolling pattern and these mat temperatures are the same as those we have been using on our standard AC-20 mix projects. The contractor did add a small box of laundry detergent to the water of the rollers to stop the wheels from picking up the fines from the mat.

VII. SUMMARY OF TEST RESULTS

Table 2 shows a summary of all the tests run on this project. Appendix C has copies of the "Daily Construction Reports." Our asphalt content varied from 4.9 percent to 5.2 percent. Our Hveem stabilities ranged from 47 to 57 with an average of 52. The Rice specific gravity was run only on the first three days of the project. Air voids averaged 7.1 percent.

Date	AC (%)	Lab Density (%)	Gt	Air Voids (%)	Gt (Rice)	Stability Hveem	Core Height (inches)
9/17	4.9	96.9	2.402	7.6	2.409	47	1-13/16
9/21	5.1	97.7	2.395	6.9	2.418	51	1-3/4
9/22	5.0	97.8	2.399	8.8	2.400	55	1-3/4
9/23	5.1	97.7	2.395	5.8	2.400	57	1-5/8
9/24	5.1	97.9	2.395	6.3	-	53	1-3/4
9/25	4.9	98.0	2.402	7.5		47	1-9/16

 TABLE 2: Summary of test results

For our standard AC-20, Type C mix produced at 5.0 percent asphalt, the stabilities range from 43 to 58 with an average of about 50. For this producer and contractor, we typically achieve the air void requirement on a 1-1/2 inch mat thickness about 75 percent of the time. Very rarely will we get an air void reading below 6.5 percent.

The surface of the mat tended to close up much better than our standard Type C mats have done. The surface of the new pavement is almost as smooth as what a Type D mat would produce.

VIII. TEST STRIP

The test strip, using our standard AC-20 mix design, was placed from station 610+00 to 612+00 in the eastbound outside lane. Air voids from that section averaged 7.2 percent based on a Rice specific gravity of 2.432. The results from the AC-30P mix laid that same day (9/23/87) gave air voids of 5.8 percent with a Rice specific gravity of 2.400.

The best evaluation of this product will come from monitoring this section during the life of the pavement. The section has been put on the Pavement Evaluation System which will track rideability (Slometer), structural strength (falling weight deflectometer), and skid resistance and will include a visual inspection counting the amount of cracking and the depth of rutting. These tests and inspections will be performed on both the test strip and main project. We will collect data in the fall of 1987, again in the spring of 1988 and thereafter on a yearly basis.

IX. SUMMARY

There is a great deal of laboratory data available showing that a hot mix polymerized asphaltic concrete pavement is a better performer than a nonmodified asphalt mix. Research has shown that polymerization will benefit our mixes in the following areas:

- Age hardening
- Elastic creep response under and after stress
- Elastic recovery from deformation
- Temperature susceptibility
- Stiffness moduli
- Rutting resistance
- Flexibility of pavement
- Fatigue life
- Stripping resistance

The area of concentration in evaluating this product will be on actual performance of the pavement using our SDHPT Standard Pavement Evaluation Monitoring System.

REFERENCES

- 1. G.N. King, H.W. Muncy, J.B. Prudhomme, "Polymer Modification: Binder's Effect on Mix Properties," presented to the 1986 Annual Meeting of the Association of Asphalt Paving Technologists.
- 2. J.W. Button, "Evaluation of Asphalt Additives, Part I," from the SDHPT Technical Quarterly, Volume 3, Issue I.
- 3. N. Turnham, "The Effect of a Polymer Additive in HMAC," from the SDHPT-sponsored Departmental Research Report, Number 629-2.

APPENDIX A

PROJECT CSR 114-7-51

SPECIAL PROVISION TO ITEM 300 ASPHALTS, OILS AND EMULSIONS

For this project, Item 300, "Asphalts, Oils and Emulsions," of the Standard Specifications is hereby amended with respect to the clauses cited below and no other clauses or requirements of this Item are waived or changed hereby.

Article 300.2. Materials is supplemented by the following:

(10) <u>SBS (Styrene-Butadiene-Styrene)</u> <u>Additive</u>. A minimum of three percent by weight of butadiene-styrene block copolymer shall be added to the asphalt-cement when specified on the plans or in other specifications in the contract.

The finished asphalt-rubber blend shall be homogeneous and comply with requirements for one of the following grades of material:

<u>Property</u>	<u>AC-20P</u>	<u>AC-30P</u>
Penetration at 77 F, 100 g, 5 sec, min.	80	60
Viscosity at 140 F, Stokes	1600 to 2400	2400 to 3600
Ductility at 39.2 F, 5 cm/min, cm, min.	40	25

ITEM 300 ASPHALTS, OILS AND EMULSIONS

300.1. Description. This Item establishes the requirements for oil asphalts, cutback asphalts, emulsified asphalts, asphalt cement, other miscellaneous asphaltic materials and latex additives.

300.2. Materials. When tested according to State Department of Highways and Public Transportation Test Methods, the various materials shall meet the applicable requirements of this specification.

(1) Asphalt Cement. The material shall be homogeneous, shall be free from water, shall not foam when heated to 347 F and shall meet the following requirements:

Properties	AC	-1.5		2-3		C-5		C-10		20		C-40
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Viscosity, 140 F stokes	150	± 50	300 :	E 100	500	± 100	1000	± 200	2000	± 400	4000	± 800
Viscosity, 275 F stokes	0.7	_	1.1	-	1.4	-	1.9	-	2.5	-	3.5	_
Penetration, 77 F, 100g, 5 sec	250		210	_	135	_	85	-	55	-	35	
Flash Point, C.O.C., F	425	_	425	-	425	_	450	-	450	-	450	_
Solubility in trichloroethylene, percent	99 .0	_	99.0	_	99 .0	-	99 .0	_	99 .0	_	99 .0	_
Tests on residues from thin film oven test:												
Viscosity, 140 F	-	450	_	900	_	1500	_	3000	_	600 0	· _	1 20 00
Ductility, 77 F. 5 cms per min, cms	100	-	100	_	100		70		50		30	
Spot test			Neg	ative fo	or all gr	ades						

VISCOSITY GRADE

Test Results Exxon AC-10

MCSI.INQ.IDI L=C87371053 MATERIAL CONTROL SYSTEM - IDENTIFICATION AND GENERAL TEST REPORT

 CONTRACT
 REQN NO UNASSIGN DOTS N CORR REPT
 202 MATL

 LPS.NO C87371053
 SHIPPING/INVOICE NO
 DATE TEST EX

 DATE RECVD 03/12/87
 DATE SAMPLED/CAST 03/10/87
 DATE TESTED 03/1

 RETEST DATE TEST EXP DATE TESTED 03/12/87 END/FOREMAN __ RES.ADDRESS INSP/SAMPLER JOHN HELTON MATL TYPE MATERIAL AC-10 ASPHALT MATERIAL CODE 000000110 BID ITEM DESC 2PODUCER EXXON CO BAYTOWN, TX PRODUCER CODE 99206 SAMPLED FROM BATCH 12 BATCH/SEAL NO QUANTITY UNITS _____ SPEC/SPECIAL ITEM 300 MATL USE TRUCK1 ID MARKS B/L 5937-180 CL ITRACTOR ____ DISTRICT 49 COUNTY CONTROL SECT JOB PROJECT UNASSIGNED SEGMENT 00 DETAIL 0000 FNT/B C TEST TYPE DC HWY _ TEST TYPE DC REF.LAB.NO NBR OVERRIDE MAINT.SEC/REC PASS/FAIL P TCC RATES TRAN CODE STAMP CODE 01 TCC TEST CLASS 001 301 000.00000 000 000 00000000 SPEC CHRG TCC 301 SPEC CHRG 000 000 000 000000000 REMARKS 000 EPO NO MCSI.INQ.LAI L=C87371053 LAB NO (287371053) MATERIAL CONTROL SYSTEM - LIQUID ASPHALT MATL CODE 0000000110 DATE TESTED 03/12/87 SP CRG AB NO (2873/103) FAIL CODE 0000000110 DATE TESTED 03,12,57 SF CAS /ISCOSITY, STOKES 140F (096B) 275F KINEMATIC VISCOSITY 140F,CST ?L OL. VISCOSITY, SECONDS AT 77F 122F 140F 1801 PENETRATION AT 77F 107 (SPECIFIC GRAVITY AT 60F 1.022 77F 1.016) 180F SIEVE TEST & _____ CEMENT MIXING & _____ SIEVE TEST & _____ CEMENT MIXING & _____ ASPH RESIDUE BY DISTILLATION FLASH PT F COC 600) TOC OF TULSIBILITY- 50CC N/10 CACL2 \$ 35CC N/50 CACL2 % % BY WEIGHT
% BY VOLUME 35ML 0.8% S.D.S. BY VOLUME OF TOTAL DISTILLATE AT -DISTILLATION- IBPF 320F _____ 347F _____ 374F 437F _____ 500F _____ 600F 600F OIL PORTION OF DISTILLATE & TEST ON RESIDUE FROM (T.F.O.T./DISTILLATION VISCOSITY IN STOKES, AT 140F DUCTILITY 77F CM _ PENETRATION 77F TEST CHG CODE 301 STAMP CODE 01 REMARKS

MCSI.INQ.IDI L=C87571052 MATERIAL CONTROL SYSTEM - IDENTIFICATION AND GENERAL TEST REPORT CONTRACT ____ REON NO UNASSIGN DOTS N CORR REPT 202 MATL RETEST _____ LAB.NO C87371052 SHIPPING/INVOICE NO _____ DATE TEST EXP _____ DAFE RECVD 03/09/87 DATE SAMPLED/CAST 03/06/87 DATE TESTED 03/09/87 _ RES. ADDRESS END/FOREMAN INSP/SAMPLER JOHN HELTON MATL TYPE MATERIAL CODE 000000120 MATERIAL AC-20 ASPHALT BID ITEM DESC PRODUCER EXXON CO BAYTOWN, TX PRODUCER CODE 99206 SAMPLED FROM TANK 1214 BATCH/SEAL NO 7657-8 QUANTITY 01041301.000 UNITS GAL SPEC/SPECIAL ITEM 300 ID MARKS MATL USE TANKS1 CONTRACTOR ____ DISTRICT 49 COUNTY ____ PROJECT_UNASSIGNED JOB ____ CONTROL SECT hwy _ SEGMENT 00 DETAIL 0000 FNT/B C TEST TYPE DC REF.LAB.NO NBR OVERRIDE MAINT.SEC/REC PRSS/FAIL P TCC TCC TRAN CODE STAMP CODE 01 TEST RATES CLASS SPEC CHRG TCC 301 001 301 000.00000 SPEC CHRG 000 000 000 000 000000000 000 EPO NO ____ REMARKS 000 000000000 MCSI.INO.LAI L=C87371052 MATERIAL CONTROL SYSTEM - LIQUID ASPHALT LAB NO C87371052 MATL CODE 0000000120 DATE TESTED 03/09/87 SP CRG VISCOSITY, STOKES 140F 2022 275F KINEMATIC VISCOSITY 140F, CST F OL. VISCOSITY, SECONDS AT 77F 122F 140F 180F PENETRATION AT 77F 061 SPECIFIC GRAVITY AT 60F 1.030 77F 1.024 180F PENETRATION AT //F USL CHEDITIC FLASH PT F COC 600 TOC SIEVE D MULSIBILITY- 50CC N/10 CACL2 % 35CC N/50 CACL2 % SIEVE TEST & CEMENT MIXING % ASPH RESIDUE BY DISTILLATION & BY WEIGHT & BY VOLUME 35ML 0.8% S.D.S. DISTILLATION- IBPF ______ % BY VOLUME OF TOTAL DISTILLATE AT -320F ______ 347F _____ 374F _____ 437F ______ 500F _____ 600F _____ 500F _____ OIL PORTION OF DISTILLATE & TEST ON RESIDUE FROM (T.F.O.T./DISTILLATION VISCOSITY IN STOKES, AT 140F ____ DUCTILITY 77F CM PENETRATION 77F TEST CHG CODE 301 STAMP CODE 01 REMARKS

Test Results AC-30P

	STATE	DEPARTME	NT OF	o, D, H, T Received	PAGE
	HIGHWAYS AND	PUBLIC T	RANSPORTATI	ONNECCIVES	
	DIVISION UP	NULCHINC	S AND TESTS <u>78703</u>	> OC1 5 & 1981	
				District 14 ABH9. TCHARGES	
S.TST.03	LIQUID ASP				
N RACT_NO.	REQ NO. UNASS	IGN	CONTROL		0000
IGINEER			PROJECT_		
DN ⁻ <u>RAC TOR</u> 00 0000000000000000000000000000000000			<u></u>	0	HWY
LABORATURY NO. C	87376488 DATE	RECD 08/	25/87	DATE REPTD 08/ DATE SAMPLED 08/	27/87
MATERIAL PAC-30				CODE 000	24/5/
PRODUCERTEXAS	EMULSIONS. INC B	ATTOWN. T	x	CODE 9925	3
IDENTIFICATION M	ARKS			SPEC. ITEM 300	
IDENTIFICATION M SAMPLED FROM TA	NK 622		QUANTITY	88000.000 U	NIT GAL
	+\$\$\$\$\$\$\$\$ \$\$ \$\$\$\$\$ 		***********		
			· · · · · · ·		
SLOSITY STOKES 1	40F_2630_275F	KINEM	ATIC_VISCOS	ITY_140F+CST	
ROL. VISCOSITY, SE	CONDS AT 77F	122F	140	IF 180F	
EN TRATION AT 77F O	189 SPECIFIC GRA	VITY AT 6	OF 1-0	26 77F 1.020	
A H PT E COC 600	<u>_TAC</u> _SIEVE_	TEST 1	CEMENT_	MIXING 3	
MULSIALLITY- SOCC	N/10_CACL2 1	AS	PH RESIDUE	BY DISTILLATION	
35C C 35ML	N/SU CALL2 %		S BY NEI		
STILLATION- IBPF			<u>5_01_</u> VUL	.UME	
320F	3476	374F			
437F	347F 500F	6005			
IL PORTION OF DISTI	LLATE 1				
TEST_ON	RESIDUE FROM (T	.F.D.T./D	ISTILLATION		
IS OSITY IN STOKES.					
EN TRATION 77F Est CHG Code 301					
EN RKS: DUCT a 39-2					
	···				
•			······		
		•••			
<u> </u>					
			··· · · - · - · · ·		
		•••			

DIVISION OF MATERI	ALS AND TESTS				
	~				
M_E_E_T_	<u>s</u>	•=			
	\$	· · · · · · · · · · · · · · · · · · ·			
SPECIFIC	¢ ATIONS ♀			•	
	¢ ATIONS ♀			· · ·	
SP.E.CIFIC	¢ ATIONS ♀			· · ·	

D-9 AC Stability Report

HIGHWAYS AND PUBLIC TRANSPORTATION D ION OF MATERIALS AND TEST AUSTIN, TEXAS 78703

.TST.	14	A S	PHALTIC CONCR	ETE STABILIT	Y REPORT	D-9 CHARG	ES 82.50
INEER	DANIE	L SMITH	Q ND.	PRO	JECT CS	R 286-3-11	1241
TRACT	OR GARE	Y CONSTRUC	TION COMPANY,	INC. DIS	T 14 CO	CALDWELL	HWY SH 80
	RATORY	ND. H87405	311 DATE H	ECD 07/31/87	******	DATE REPTD	08/03/87
						TE SAMPLED	07/30/87
	RIAL TY				_		0000000700
			CO., VOLENTE	RD., AUSTIN		CODE 9	
	LED FRO	ION MARKS		011	S ANT I TY	PEC. ITEM 3	140 UNIT
		•	***********				**********
MPLE	SPEC.		COHESIOMETER		SPEC.	SPEC.DENS.	HVEEM
IMBER	NO.	MARKS	VALUE (AVG.)				STABILITY
				WT.)	(IN.)	(AVG. %)	(%)(AVG.%)
5	1				1.99		43
,	2			4.00		91.00	44 45
	2 3				2.02		47
006	1				2.00		45
	2 3			5.00		93.90	41 43
	3				1.99		42
007	1				1.99		44
	2 3			6.00	2.01	96.00	44 44
	3				1.99		44
							/ F
008	1			7.00	2.07** 1.99	98.30	45 41 43
	2 3			7.00	2.00	70.00	42
	-						
9	1				1.99		37
	1 2 3			8.00	1.98	99.60	30 35
	3				1.99		37

DGES NOT MEET HEIGHT REQUIREMENTS OF TEST METHOD TEX. 206. F.

7*****************************	****
HVEEM STABILITY	
AND/OR COHESIOMETER	
VALUES	
MEET SPECIFICATION	
**********************	****

16

Aggregate Gradations

Specification Item: 340Project: CSR 286-03-011Type: CDate: 08/04/87

Individual Aggregate Gradations

	Type C (PV) Coarse Delta	Type D Coarse Weir Southwest Materials	Type F Intermediate Weir	Screenings Fine Weir
Size	(% by Wt)	(% by Wt)	(% by Wt)	(% by Wt)
Ret. 7/8 "	0.0	0.0	0.0	0.0
Ret. 5/8 "	4.0	0.0	0.0	0.0
5/8 " - 3/8 "	90.1	15.0	0.0	0.0
3/8" - No. 4	2.8	66.2	5.2	0.1
No. 4 - No. 10	0.8	15.8	79.8	19.8
No. 10 - No. 40	0.4	2.1	12.9	62.4
No. 40 - No. 80	0.2	0.1	0.4	11.5
No. 80 - No. 200	0.5	0.4	0.3	3.3
Passing No. 200	<u> 1.2</u>	<u> 0.4</u>	<u> 1.4 </u>	<u> 2.9</u>
Total	100.0	100.0	100.0	100.0

Individual Aggregate Gradations

	Sand Fine Southwest Materials Berdoll			
Size	(% by Wt)	(% by Wt)	(% by Wt)	(% by Wt)
Ret. 7/8 "	0.0			
Ret. 5/8 "	0.0			
5/8 " - 3/8 "	0.0			
3/8" - No. 4	0.2			
No. 4 - No. 10	1.0			
No. 10 - No. 40	31.1			
No. 40 - No. 80	54.9			
No. 80 - No. 200	11.8			
Passing No. 200	1.0			
Total	100.0			

Specification Item Type: C		roject: CS Pate: 08/0	SR 286-03-011 94/87				
	Comb	oined Ag	gregate Gradat	ions			
	Type C (PV)	Type D	Туре F	Screenings			
	Coarse Delta	Coarse Weir	Intermediate Weir	Fine Weir			•
Size	(22%)	(21%)	(21%)	(16%)	Comb. Grad.	SDHPT Specs.	٦
Ret. 7/8"	0.0	0.0	0.0	0.0		0	
Ret. 5/8"	0.9	0.0	0.0	0.0		0-5	
5/8" - 3/8"	19.8	3.2	0.0	0.0		16-42	
3/8" - No. 4	0.6	13.9	1.1	0.0		11-37	
No. 4 - No. 10	0.2	3.3	16.7	3.2		11-32	
Ret. No. 10	• •	• • •		10.0		54-74	
No. 10 - No. 40	0.1	0.4	2.7	10.0		6-32	
No. 40 - No. 80	0.0	0.0	0.1	1.8		4-27	
No. 80 - No. 200	0.1	0.1	0.1	0.5		3-27	
Passing No. 200	<u> </u>	<u> </u>	<u> 0,3</u>	0.5		<u> </u>	
Total	22.0	21.0	21.0	16.0			•
	Com	oined Ag	gregate Gradat	ions			1
	Sand Fine Berdoll						
Size	(20%)				Comb. Grad.	SDHPT Specs.	
Ret. 7/8 "	0.0				0.0	0	
Ret. 5/8 "	0.0				0.9	0-5	
5/8 " - 3/8 "	0.0				23.0	16-42	
3/8" - No. 4	0.0				15.6	11-37	
No. 4 - No. 10	0.0				23.6	11-32	
Ret. No. 10	0.2				63.1	54-74	
No. 10 - No. 40	6.2				19.4	6-32	
No. 40 - No. 80	11.0				12.9	4-27	
No. 80 - No. 200	2.4				3.2	3-27	
Passing No. 200	<u>0.2</u>				<u> </u>	<u> </u>	*
U							
Total	20.0				100.0		•

Specification Item: 340	Project: CSR 286-03-011
Type: C	Date: 08/04/87

Specific Gravities

Size	Type C (PV)	Type D	Type F	Screenings
	Coarse	Coarse	Intermediate	Fine
	Delta	Weir	Weir	Weir
7/8" - 5/8" 5/8 " - 3/8 " 3/8" - No. 4 No. 4 - No. 10 No. 10 - No. 80 Passing No. 80	2.520	2.587	2.565	2.587 2.721

.

Size	Sand Fine Berdoll
7/8" - 5/8" 5/8 " - 3/8" 3/8" - No. 4 No. 4 - No. 10 No. 10 - No. 80 Passing No. 80	2.611 2.663

Specific Gravity of Asphalt = 1.024 Combined Bulk Specific Gravity (GB) = 2.575

Specification Item: 340	Project: CSR 286-03-011
Type: C	Date: 08/04/87

Density/Stability

Asphalt Content (% by Wt.)	Actual Sp. Gr. of Specimens (G _a)	Theo. Sp. Gr. of Specimens (G _t)	Uncorrected Density (G _a /G _t) x 100%	Stability Value
4.0	2.226	2.428	91.7	0
5.0	2.262	2.394	94.5	0
6.0	2.280	2.360	96.6	0
7.0	2.303	2.328	98.9	0
8.0	2.301	2.297	100.2	0

Optimum Asphalt Content (at 97.0% Density) = 6.2% Stability at Optimum Asphalt Content = % Effective Specific Gravity (GE) = 2.581 Asphalt Absorption = 0.1%

Density/Stability (Corrected for Asphalt Absorption)

Asphalt Content (% by Wt.)	Actual Sp. Gr. of Specimens (G _a)	Theo. Sp. Gr. of Specimens (G _t)	Corrected Density (Ga/Gt) x 100%	Stability Value
4.0	2.226	2.433	91.5	0
5.0	2.262	2.399	94.3	0
6.0	2.280	2.365	96.4	0
7.0	2.303	2.333	98.7	0
8.0	2.301	2.301	100.0	0

Optimum Asphalt Content (at 97.0% Density) = 6.3% Stability at Optimum Asphalt Content = %

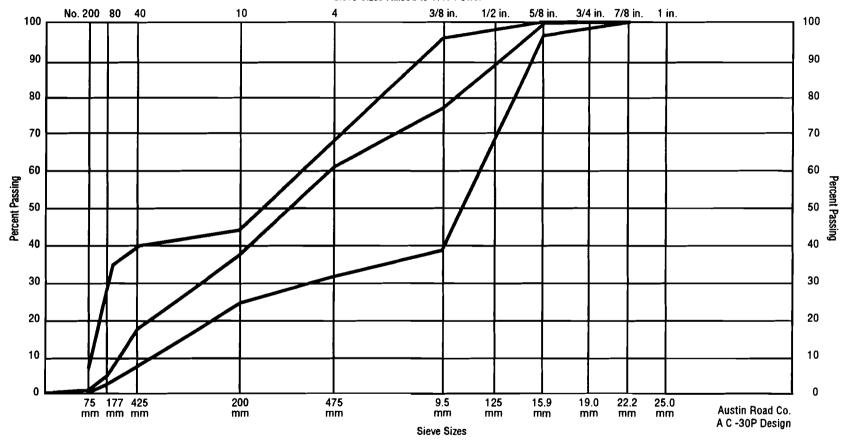
Molded Specimens and Road Samples

Construction Form No. 545 Rev.

TEXAS HIGHWAY DEPARTMENT ASPHALTIC CONCRETE DATA SHEET ON MOLDED SPECIMENS AND ROAD SAMPLES County (ALCWE// Project (SR 286 - 3 - 11) Control 0286 - 03 - 01. Dete 7/30/87 JHighway SH 80 Station Specification Item 340 With wew oil (PAK-30)					
WITH PARAFFINA = Weight of Specimen in AirB = Weight of Specimen + Peraffin in AirC = Weight of Specimen + Peraffin in WeterGp = Specific Gravity of ParaffinGt = Theoretical Specific Gravity of SpecimenD = Actual Volume of Specimen = B - C - $\left(\frac{B-A}{Gp}\right)$ Ge = Actual Specific Gravity of Specimen $-\frac{A}{D}$ Density of Specimen $\{V_e\} = \left(\frac{Ge}{Gt}\right) \times 100\%$	$\frac{\text{WITHOUT PARAFFIN}}{B} = \text{Weight of Specimen in Air}$ $C = \text{Weight of Specimen in Water}$ $Gt = \text{Theoretical Specific Gravity of Specimen}$ $D = \text{Actual Volume of Specimen} = B - C$ $Ge = \text{Actual Specific Gravity of Specimen} = \frac{B}{D}$ $Density of Specimen (\%) = \left(\frac{Ge}{Gt}\right) = 100\%$				

DATA AND CALCULATIONS

61_Z.4US 2.410 Gp. 5.0% Road Samples 4.0 Laboratory Specimens Specimen No. 2 2 Spec. Height (in.) Z 7 Ž A (gm.) <u>913.3</u> 509.4 915.6 8 (gm.) 908.8 910.3 908.4 916.0 502.0 C (gm.) 500.0 500.3 510.4 5 11c05. 8-C (gm.) 406.4 408,8 410.0 -04 2 4 4 B-A (gm.) (8-A)/Gp (cc.) 406.4 408.8 2,235 2.225 91.4 90.9 404.5 D (cc.) 0 403.9 405.2 410. 93.8 <u>z.z.00</u> 93.8 6. 74.0 ,<u>720</u> 90.8 <u>z.</u> Dansity (%)


Average Actual Specific Gravity

Laboratory Specimens 2.226 91.0

Road Samples 2.26Z 93.9

Average Density (%)

Impactor

· •

Federal Highway Administration 0.45 Power Gradation Chart Sieve Sizes Raised to 0.45 Power

Item 340, Type C, master grading chart (1986)

\$

•

24

.

		STATE DEPA S AND PUBL DN OF MATE AUSTIN; TE	IC TRA KIALS	NSPORTAT			PAGE
•TST•14	ASPHALTI	C CONCRETE	STABI	LITY REF	DRT D-9 C	HARGES	67.50
TRACT ND. 04 Ineer terky	860022 REW ND. JACKSUN			PRUJECT	0683-01-02 CSR 683-1	-20 ~…	• • • • • • • •
	IN ROAD COMPANY	*********			CO-WILLIAN		
	ND. H86408397				DATE RE Date Samp	PTD 10/2	2/86
	PE C						
PRODUCER A	USTIN ROADS VOLE	NTE				UE70006	
"SAMPLED FRO	ION MARKS			- QUANT-11	- SFEC	UN	11
**********	******	*****	*****	*******		******	******
MPLE SPEC.	IDENT. COHES	IOMETER	ASPHA	LT SPEC	. SPEC.DE	NS.	HVEEN
MBER NO.	MARKS VALUE	(AVG.)	-(% B	YHT	FIELD	<u> </u>	
							[AV0.2]
						49	
2	2C(PV)AC-2/		4.0				
3				2.01		53	
	• • • • • • • • • • • • • • • • • • •			2-00) - · · · - · · -		
···· ·· · · · · · · · · · · · · · · ·	••••••••••••••••••••••••••••••••••••••		5.0	0 2.02		48	51
				2-01		54	<u> </u>
12 1	99 			1.96 1.96		44 49 49	
				··1 99	·	50	
13 1	**			1.98			
2			7.0				41
1				1.99		45	
14	11			2.00			
2			8.0				176
3				2.01		16	
********	*******	****					
	S-DO-NOT-MEET-TH						
	ON REQUIREMENTS.						
		● .	•••				•
**********	********	****				<u></u>	
	****************** &`TERIALL'S_AND'_TES				• • • • • • • • • • • • • • • • • • • •		
1113100 UP 0	HICKINES AND IES	• • •					
		¢					
		·····					
IGINEER OF M	ATERIALS AND TES	12 🖕		••••••		•••••	

Effective Specific Gravity

 $\frac{100-8}{100} = \frac{92}{43.290-7.843} = \frac{92}{35.447} = 2.595$

Specific Gravities after Absorption 4.0% Asphalt

 $\frac{100}{\frac{96.0}{2.595} + \frac{4.0}{1.020}} = \frac{100}{36.994 + 3.922} = \frac{100}{40.916} = 2.444$

5.0% Asphalt

100		100	100	= 2.409
95.0	5.0	36.609 + 4.902	41.511	- 2.407
2.595	1.020			

6.0% Asphalt

10	0	100	100	= 2.375
94.0	6.0	36.224 + 5.882	42.106	- 2.373
2.595	1.020			

7.0% Asphalt

r.

 $\frac{100}{\frac{93.0}{2.595} + \frac{7.0}{1.020}} = \frac{100}{35.838 + 6.863} = \frac{100}{42.701} = 2.342$

8.0% Asphalt

100		100	$= \frac{100}{2.31}$	n
92.0	8.0	35.453 + 7.843	43.296	0
2.595	1.020			

Combined Specific Gravity Austin Road Co.

		100			100
22.0	21.0	21.0	16.0	20.0	$\overline{8.730 + 8.114 + 8.171 + 6.166 + 7.639}$
2.520	2.588	2.595	2.595	2.618	

$$\frac{100}{38.820} = 2.576$$

p.

Theoretical Specific Gravities 4.0% Asphalt

10	0	100	100	= 2.428
96.0	4.0	37.267 + 3.922	41.189	- 2.720
2.576	1.020			

5.0% Asphalt

 $\frac{100}{\frac{95.0}{2.576} + \frac{5.0}{1.020}} = \frac{100}{36.879 + 4.902} = \frac{100}{41.781} = 2.393$

6.0% Asphalt

10	0	100	100	= 2.360
94.0	6.0	36.490 + 5.882	42.372	- 2.300
2.576	1.020			

7.0% Asphalt

$$\frac{100}{\frac{93.0}{2.576} + \frac{7.0}{1.020}} = \frac{100}{36.102 + 6.863} = \frac{100}{42.965} = 2.327$$

8.0% Asphalt

10	0	100	100	= 2.296
92.0	8.0	35.714 + 7.843	43.557	- 2.270
2.576	1.020			

Sieve Analyses

Highway Department ucline Form No. 544 Rev. (2)

TEXAS HIGHWAY DEPARTMENT ASPHALTIC CONCRETE SIEVE ANALYSIS WORK SHEET

ravis 7/86 340

 Highway
 Control
 //3-/3-80

 Time
 Station
 Station

 Type
 C
 (PV)

 Design No.
 Design No.

		Bin No. I	· ·		Bin No. 2	(b)		Bin No. 3	j¢l (€)		Sin No. 4	(d)	Combinec Analysis
r	Weight (grams)	Totel % z	72 %	Weight (grems)	Totel % z	d) *	Weight (grams)	Totel % I	2/ %	Weight (grams)	Total % z	16 %	% (a+b+ c+d)
	Del	ta Typ	eČ	Limest	one Typ	e``D″	Linesta	ne Type	"F"	Limeste	ne 'Sci	een ^t	
	0			0			0			0			
3	96	4.0	0.9	0			0			0			
¥											· ·		
* "									[·	ļ		
¥."	2148	90.0	19.8	337	15.0	3.2	0			0			
•	·												
_	67	2.8	0.6	1489	66.2	13.9	103	5.2].1	1	0.1	0.0	
•													
0	19	0.8	0.2	350	15.8	3.3	1591	79.9	16.8	238	19.8	3.Z	
,	0	D.4	0.1	47	2.1	0.4	256	12.8	2.6	749	62.4	10.0	
-	5	0.2	0.0	2	0.1	0.0	8	0.4	0.1	138	11.5	1.8	
ø	!3	0.6	0.1	8	0.4	0.1	6	0.3	0.1	40	3.3	0.5	
,	28	1.2	0.3	9	0.4	0.1	28	1.4	0.3	35	2.9	0.5	

PER CENT MOISTURE IN AGGREGATES IN HOT BINS

	{e} Tare Wt. {gms.}	(b) Gross Wat Wt. {gms.]	(c) Gross Dry Wt. (gms.)	(d) Wt. Moist (gms.) b-c	(e) Dry Wt. Aggr. [gms.) c-e	% Moist. ₫ x100%
- 1	 	 		<u>.</u>		

Asphaltic Binder =___% Total = 100.0%

Inspector

Highway Department Joshan Farm No. 644 Rav. (2)

.

٩

TEXAS HIGHWAY DEPARTMENT ASPHALTIC CONCRETE SIEVE ANALYSIS WORK SHEET

			High Time	wey			. Project . Station				piod By		
•m			Туре.				, Design No.				hog 61		
		Bin No. I	(a)		Bin No. 2	(b)		Bin No. 3			Bia No. 4	(d)	Combine Anelysis
'	Weight {grems}	Totel % x	20	Weight (grams)	Total %		Weight (grams)	Total % =	%	Weight (grams)	Total % z .	<u> </u>	% (++++ +++
		ι. Ša											
			ļ	 						 			
	0	 		 									
2	0												0.9
2			[<u> </u>									,
ð	. <u></u>									 			-
% "	0			 									23.0
7													
•	ス	0.2	0.0										15.6
2		1											
0	9	1.0	0.2										23.7
													63.6
	288	31.1	6.a										19.3
	509	54.9	11.0										12.9
0	109	11.8	2.4										<u>3.2</u>
,	9	1.0	0.2										1.4
9	26	100.0%	20 %	, gr	100.0%	%		100.0%	%		m 100.0%	%	100
	ER CENT N (a) Tare Wt. {gms.}	AOISTURE (b) Gross Wat Wt. (gms.)	(c) Gross Dry Wt. (gms.)	GATES IN (d) Wt. Moist (gms.) b-c	HOT BINS {e} Dry Wt. Aggr. {gms.} c-a	% Moist. ₫ ≠100%				Asp	haltic Bindor =		
: 	,									insp	ector		
1	••••				· •								

29

APPENDIX B

.

.

à

.

.

.

STATE DEPARTMENT OF HIGHWAYS AND PUBLIC TRANSPORTATION

COMPUTER ASSISTED ASPHALTIC CONCRETE MIX DESIGN

DISTRICT: 14 COUNTY: LEE ENGINEER: DANNY SMITH

USING A.C.-10 WITH A POLYMER WHICH MAKES IT AN A.C.-30P FOR USE ON US 290 ONLY FOR A RESEARCH PROJECT

PROJECT: CSR 286-03-011 SPECIFICATION: 340 TYPE: CPV

DATE: 08/04/87

State Department of Highways and Public Transportation District Fourteen

Responsible Personnel

- Mr. Bobby Nauert District Construction Engineer
- Mr. Danny Smith Bastrop County Resident Engineer
- Mr. Terry Kessel Project Supervisor, Construction
- Ms. Katherine Hargett District Laboratory Engineer, Material Design
- Mr. Richard Wesson Hot Mix Plant Supervisor
- Mr. Melvin Stephens Pavement Evaluation Systems Regional Manager

APPENDIX C

.

4

<u>ر</u>

,

.

3

.

INTEROFFICE MEMORANDUM

OCTOBER 27, 1987

TO: Mr. Melvin Stephens

FROM: Ms. Katherine H. Hargett

SUBJECT: Pavement Evaluation of Experimental Project

In September of 1987 approximately 6,000 tons of SDHPT Item 340, Type C(PV) HMACP was placed using a polymerized additive to the asphalt (Item 300-44, AC-30P). This is to request that you evaluate the experimental pavement, hopefully on a yearly basis for at least five years. This Lee County Project CSB 114-4-47 was placed on all lanes on US 290 within the City limits of Giddings, Texas.

A test section using the Type C(PV) hot mix with our standard AC-20 asphalt was placed within the project limits from station 610+00 to station 612+00 in the eastbound outside lane. Please run all tests and inspections under the Performance Evaluation System on this section as well.

I will also be tracking the skid resistance data on both types of pavements on this project.

If I can provide further information or help please let me know.

Thank you.

(Original Signed)

Katherine #593

KHH:dlc cc: District Laboratory District Construction District Maintenance

CONSTRUCTION REPORTS

Construction Form No. 404 Rev. (2)

unty		int V	ALEN	7	RJ	·	voe of P	tant 4	DRA	5	DRum		Contra	tor A	1	1571	FA	UNG	Cc.		·
		- 17	-87	•		s	oecifica	tion It		40	тур	FY	Plant S	tarted	7,	00 A	м	Plant	Stopped	4	100 P
Locatio	n	1		lein L		_	_ 3	-		_	-308	_	5	_	-	tamp	_	7			
No.		2	_	r. Rd.			4			cel. L			6	_	_			= +			
_	8				_	_							<u> </u>		-					_	
	<u>vi</u>	art	126	1+ 5	-	pie	Com	bined	Bin A	uelys	is				-				Extrac	tions	
Sieve Size	No	esign	1			2	3	\$	4		5	1	6	7		8	ł	1	2		3
QU.	4	19	4.	2								L						4.9	5.0		
				_						_											
	4				<u> </u>						L	4_				↓	_				
<u> *%</u>		<u> </u>	ļŶ	_	_									<u> </u>	_	<u> </u>		0	0	_	
<u>%* %*</u>	_	2.9	24		┣_				╉───			+							0.4		
<u>%" - %"</u> /2" - %"		1.0	44	.0	╉──				┥───		┼───							30.1	23.5		
<u>72 · 71</u> % · 4	7	5.6	19.	9	+		+		┥			- <u> </u>		<u>↓</u> ·		+	_	17.7	17.6		
<u>/4 ~ 10</u>	+ª	~~	+		+				+		+	+		┝───		+		<u></u>		-	
4 • 10	Z	3.6	24.	0	1	_			1			+		t				19.0	21.4	7	
+ 10	_	3.7	69		[67.6		2	
10 - 40	_	9.4	20.	_	[_											13.1	163		
10 - 80	_	<u>- 9</u>	ļģ.	7	∔						╡───	↓						134	13.9		
80 - 200	+ •	2,2	10.	7	+				┨───			1_				+		3.9	4.4		
ess 200 Isphalt		r.c			+							+			-	╉───		1.8	2.5		
Total	100	<u> </u>	1:0		+				+		<u>├</u> ───				-			loc_	1001	<u>_</u>	
	-		_					_	<u>-</u>	_						<u> </u>	_				
Bin Ext		_	Loca- tion	Course	Courses				Mix		[- {						Mate	rials Used	4	
No. No.	D .	Time	No.	อิ	8	5	tation No.	Pla	lemp. Int F	∘r. ≹oad	Specime Nos.	9 71	Lab Dens.	% Stab.				1	Asphalt		Aggrega
40 1		1:58	AM	╉╼┥				32	20		1,2,5		76,9	47					(Tons)		(Tons)
11		r. 41		┼─┥				30					esc:el			Previou	is Rep	port			
2	TZ.	2:39	m	1				3/								This Re	port				
2		1:10	Pm					3	5							Total T	o Dat	e			·
	_						_									Percent	Com	olete Asr	haltic Co	acret	e Paver
	_			$ \downarrow \downarrow$				11	<u>9,71</u>	101	ds=7	. 6	·								
	-+			┥┥							l							plete-T		-	
	_		_				_	<u> </u>								Percen	Com	pleteA	a types	<u> </u>	
				_						Da	nys Run										
														R	et:	a of App	licatio	<u>n</u>			
LOC8-	2_	S.							Widt	h]_		inche Lbs/S	s Sq. Yd.				iches bs/Sc	I. Yd.			ches os/Sq. Yi
No.		2 2	Sta	tion	1	0	Station		(Feet	λĒ	Sq. Yds.		Tons	50	Y	ds.		ons	Sq. Yds.		Tons
	-+	<u> </u>								4									04.103.	-+	
	-+-									+		+—			_	——		+			
	1			_					<u> </u>			1	· · · ·		_						
												<u> </u>			_						
		1					-			_				-	_						
ather	Þ	Ķ.	<u>ch</u> y	<u>. </u>			Total 1	loday													
		7	<u>, </u>				Previo									[
n. Tem;				_		.•F.	Total'			Ļ				<u> </u>							
ix. Temp)	7.	<u>}</u>	2	52	. F.	Avg. R						Sq. Y				Lbs,	/Sg. Yd.			.bs/Sq.
marks		75		<u> </u>	1	Ļ.,		_	•40	2	Ruce	(cr	<u></u>	109	-			+	304		
Tel k	-	72	2-7	7			3 1	04	20	_		-	AVE	pr) +	1	hick	<u>nes.</u>	5/	IG (60	• <u>•</u> h+
							•											87_			

۲,

¢

,

3

Locatio			. 1 - 87	Lane	Specificati 3	ion iter	_Decel.		Plant S		Ramp.		Plant	Stopped	4:30 p
No.		2		. Lane	4		Accel.		6		Ramp_		8		
	6	PLANT	Belts	010	> Comb	ined Bi	n Analy	sis						Extractio	2/15
Sieve Size		Design	1	2	3		4	5	6	7	1	8	1	2	3
45Pi		4.9	4.9	4.9									5,1	5.0	
	╈			┽───	_+					┝──	+-				
. ♦ %		0	0	0	-		-						0	0	
<u>% · %</u> % · %		0.9	25,2	26				+			+-		24.7	21.4	
/2 · ¥														61.4	
<u>%" · 4</u>		5.6	12.7	15.	7					ļ]	16.7	17.9	<u> </u>
<u>/4" - 10</u> <u>4 - 10</u>		12,6	22.9	24.	3	+						r	21.6	22,6	
+ 10		63.1	6:2.1	65									630	61.4	E
0 - 40 10 - 80	╋	19.11 12.9	18.8	16									145	17.4	
30 - 200	5	3.2	41.2	3,	7								4.5	5.	
ns 200 sphait	_	1.4	3.2	1.0	_					┝		 {	2.2	2.6	·
Total	+	0.04	1.00.0	100				+	<u> </u>	┢			100-0	100.0	2
Bin c.			Loca-	8									Mate	rials Used	
	rtr. lo.	Time	Loca Loca Loca Loca Loca Loca Loca Loca	Courses	Station No.		np. *F.	Specime Nos.	n Lab Dens.	% Stab.				Asphalt	Aggregat
788	Γ	6:45				300		1,2,3	\$ 97.7	51	Prev	ious Rep	ort	(Tons)	(Tons)
	2	टा है। निम्				295	·/				<u> </u>	Report			+
ΖĽ		2:30				29			_	<u> </u>	Tota	I To Date			
							1				Perc	ent Com	piete Asp	haltic Con	rete Paveme
						Au	<u> 11</u>	Voids	<u>• 6.9</u>	10	Perc	ent Com	plete—Ti	his Typa	
							<u>+</u>				Perc	ent Com	plete—A	li Types	
_	_						٥	eys Run							
		1					-			R	te of A	pplicatio	n		
		- {					vidth 📙		nches bs/Sq. Yd.			Inches Lbs/Sq	Yd.		Lbs/Sq. Yd
oca- tion			Station	to	Station		- I-				V.4.	i Ta	ons	Sq. Yds.	Tons
oca- tion No.	Course	Courses	Station	to	Station	- (Feet)	Sq. Yds.	Tons	Sq.	105.				
oca- tion No.	Course	Courses	Station	to	Station	- (Feet)	Sq. Yds.	Tons	Sq.	105.				
Joce- tion No.	Course	Courses	Station	to	Station	- (Feet)	Sq. Yds.	Tons	Sq.	TOS.				
oca- tion No.	Course	Courses	Station	to	Station	- (Feet)	Sq. Yds.	Tons		TQS.				
oca- tion No.			Station		Station	- (Feet)	Sq. Yds.	Tons	Sq.					
tion No.					Station		Feet)	Sq. Yds.	Tons						
tion No.		Courses			Totai T Previor	(oday is Repo		Sq. Yds.	Tons						
tion No.					Total T Previor Total T	oday IS Repo	int	Sq. Yds.							Lbs/Sq. Y
ition No.					Total T Previor Total T Avg. Ra	oday Is Repo to Date	int Date		Lbs/Sq. Y	· · · · · · · · · · · · · · · · · · ·			Sq. Yd.		Lbs/Sq. Y
tion No.			1		Total T Previor Total T Avg. Ra	odey is Repo	int Date	Sq. Yds.	Lbs/Sq. Y	d. 4/18		Lbs/			Lbs/Sq. Y

DAILY CONSTRUCTION REPORT-ASPHALTIC CONCRETE PAVEMENT

Locatio		- <u>«</u> «	<u> </u>	21		s	pecificati 3	on It	em <u>24</u>	10	Турб	Projec	Started.	<u>س</u>	<u>, 00</u>	<u>с. М</u> .	Plant	Stopped_	4100 P
No.		2=		Aain L r. Rd.					Dece			<u> </u>			amp		= <u>/</u>		
_	æ	lant .		2)+ 276			Comb	Ined	Bin Anal	_				_		11		Extract	ions
Sieve Size	T,	Design 0.		774		2	3		4		5	6	7	,	8		1	2	3
SPH		4.9	4.	9						+							5.0		
		_	-	_	+-														
+%		0	0			_					_						0.4		
<u>%" - %'</u>			0,							_			_		_		<u>0.4</u> 167		
<mark>%"<u>·%</u>'</mark> ∕₂"·%'	_	.2,0	Z <u>=</u> ,	6									-				43,3		—i——
₩" -4		15,6	16	.6					-	_							16,8		
<u>14" - 10</u>	_		+==	_			_			-+-		<u> </u>							
$\frac{4 \cdot 10}{+ 10}$		<u>23,6</u> 03.1	25	_						+		I	-			— <u> </u>	21.4 63.9	+	
10 - 40	╈	19.4	78		+		-		-					_			15.3		
10 - 80		12.9						_						_			13.8		
BO · 200	_	<u>- ź.z</u>	2.		-						_						4.3		
ass 200 Asphait		0.00	0.		-					-+-					+		2.7	+	
Total	+	00.00	100	.0				_		-+-	_						100.0		—¦
Bin c.		•	Loca	2	8		_		Mix					1			Mate	rials Used	
vely. N No. N	rtr. Io.	Time	tion No.	Cont Cont Cont Cont Cont Cont Cont Cont	Courses	s	itation No.	Pla	emp. *F		Specime Nos.	n Lab Dens	% Stab.					Asphait	Aggregat
748		8;02						29			1,2,	3 97.8	55		Previo	us Rep	ort	(Tons)	(Tons)
		تتنظ	way -	╞─┥				<u>80</u>	<u>o</u>					-	This R				
				╀─┤					<u>. </u>	+				-	Total	To Date	,		
										1					Perce	nt Com	plete-Asp	haltic Cor	crete Pavem
				┝─┤						-							pleteT		
				+						-+-							plete—A		
				_						Dava	Run		-						
										Days				Rat	e of Ap	plicatio	n		
loca-	Course	, E	6 14			•-	Castien		Width			nches _bs/Sq. Yd				lnches Lbs/Sq	. ¥d.		inches Lbs/Sq. Ye
No.	8	้อื่		tion		to	Station		(Feet)	Sq	. Yds.	Tons	s	۶q. ۱	íds.	T	ons	Sq. Yds.	Tons
								_										_	
								-											
\rightarrow								-											
ether_	C		र			<u> </u>	Total T	oday											_
							Previo	ıs Re	port				_						
n. Tem	-	70				_•F.	Total T					1				<u> </u>			16-10-5
ux. Tem	ıp	8		2	2.	_*F.	Avg. Ri			à	Russ	Los/Sq.	۲d. ۱ ۳. 4	11		Lbs/	Sq. Yd.		Lbs/Sq. 1
marks_ TC/3	<	- 7	<u>.</u>	2	17	<u>ie</u>	42		- 77	7	11 16 8	69 -	e 1 7	~					
				<u></u>			76	-					Date						

DAILY CONSTRUCTION REPORT-ASPHALTIC CONCRETE PAVEMENT

4

.

Construction Form No. 404 Rev. (2)

J.

4

s

,

ta 2	Plant_k	0 <u>:EHTE</u> - 8	<u>KI.</u> T	/pe of Pla pecification	an item E "		Contra	ctor	01.00	7-51 cont 1 - 51 cont 1 - 51 cont 1 - 51 cont 2 - 51	IG <u> </u>	·
Location	_		Lane	3		. Lane	5	_	Ramp	7		
No.	2		Lane	-4		. Lane	6	_	Ramp	8		
	PIAN	Bett		Combi	ned Bin Anal	ysis					Extractio	ons
Sieve	Design	Beit San	2	3	4	5	6	7	8		2	3
Size ASPN,	<u>No. 7</u> 4.7	4.9	4.9					⊢		5.1	5.2	
		717	1.7									
	0										0	_
%" · %"	0.4	0.7	0.5							0.4		
%" · %"		24.6	24.1	1			+	\uparrow		24.3	23.8	_[
1/2" · %"												
<u>%* · 4</u>	15.4	17.9	18.4							14.2	N.0	-
<u>14" · 10</u> 4 - 10	23.1	207	23.4			-+		┼		22.	1 22.3	
+ 10		43.7	66.4	+			+	+			60.7	~
10.40	14.4	-1.0	19.5							18.1	20.1	
40 - 80	12.7	11.0	10.8							11.8		
80 - 200 1865 200	3,2	3.1	2.7 0.6				+			<u> </u>	4.0	-
Asphalt		100.0	100.0			_	+	+		1000		,- <u>.</u>
Total				1			1	1	1			-
Bin Ext	1	Loca-	8 .		Mix					Mate	erials Used	
No. No	Time			No.	Temp. *F. Plant Roi	d Nos.	Dens.				Asphatt (Tons)	Aggrega (Tons)
010 1	6:4				320	1,2,	3 97.7	57	Previo	us Report		1
512					340				This R	eport		
2	2:05	Pm			294				Total 1	lo Date		<u> </u>
									Percar	t Complete-As	phaltic Cond	rete Pavem
					┞					t Complete		
		r	┍━┿━━╸		┝╾╾╌┾━╌╸					t Complete-		
						Days Run						میں اور نے نہیں ہیں۔ میں اور
1					1			R	te of Ap	lication		
tion					Width		Inches Lbs/Sq. Yd.			nches Lbs/Sq. Yd.		Inches Lbs/Sq. Ye
No.	Courses	Station	to	Station	(Feet)	Sq. Yds.	Tons	Sq.	Yds.	Tons	Sq. Yds.	Tons
							+					
	+					· · · · · · · · · · · · · · · · · · ·	+	<u> </u>			<u>-</u>	
							1					
	┿┯						+					_ <u></u>
	LE							_				_
eather	<u>c.L</u>	<u>~~</u>		Total To			+			-	,	
in. Temp	- 4	7	•F.	Total To	s Report		+	-+		┝╼━━━━	<u>├</u>	+
ax. Temp.	8	2	•F.	Avg. Ra	te To Date		Lbs/Sq. 1			Lbs/Sq. Yd.		Lbs/Sq.
emarks	_		2.340		Gt - Z,		Rise U		.400			
Torte	- 10	<u>71, 12</u>		48	LAADS						<u> </u>	
~			•				A -		· - ·	3-87	Rep	

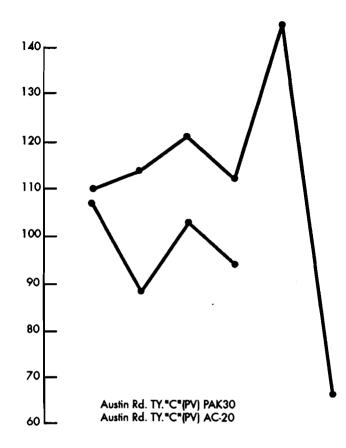
41

Construction Form No. 404 Rev. (2)

DAILY CONSTRUCTION REPORT-ASPHALTIC CONCRETE PAVEMENT

County LEE Highway 290 Project C3R 114-7-51 Control 0114-07-051 Location of Plant COLEMPE Rel. Type of Plant USYER DRUM Contractor ALGOSA' FORMING S.C. Data 9-24-8; Specification Item State Type IV Plant Started COSA M Director Specification Item______Type_/ Plant Started 6:00A.M. 7 M. Location 1 3 5 7 Main Lane _Decel. Lane_ Entr. Ramp. No. 4 8 2 Fr. Rd. Lane_ Accel. Lane_ 6 Exit Ramp. Belt **Combined Bin Analysis** Extractions PIGNT Sieve Size Design No.____ 1 2 3 4 5 6 7 8 1 2 3 4.7 4.9 4.9 5.1 4.8 ASPN. 14"."" 0 0 0 0 0 1. 1 0.9 0.6 0,3 0.4 0.5 <u>%*·** 23,0</u> <u>1/2*·**</u> 28,2 2.0.6 22.1 21.9 1.4 15.6 17.8 18.0 19.0 16.6 1/4" · 10 4.10 23 1. 23.5 Z1.9 22.6 Z4.Z 62.6 63.U + 10 1-5. 1 6.3.9 63.4 10-40 17.1 18.7 16.7 17.2 19.6 12.1 13.6 12.1 3.2 4,4 4.4 80 - 200 3.7 1.2 4.8 Pass 200 Asphalt 10:,0 100.0 100.0 100.0 1000 Total Bin Courses Mix Materials Used Loca Extr. Analy. tion Temp. *F. Time Specimen Nos. Station Lab No. % Stab. No. Plant | Roed Dens. Asphalt Aggregate (Tons) No. No. (Tons) 305 669 6;42 AM 1,2,3 97.9 53 Previous Report 1 110 AM 1123 2 2:04 PM 305 This Report 310 Total To Date 2:15 Pm 308 2 Percent Complete-Asphaltic Concrete Pavement Ang. H. r. Vond & T. ST Percent Complete—This Type % Percent Complete—All Types % Days Run Rate of Application Inches Lbs/Sq. Yd. Inches Lbs/Sq. Yd. Inches Lbs/Sq. Yd. Courses Courses Loce Width tion Station to Station Sq. Yds. Tons Sq. Yds. Tons No. (Feet) Sq. Yds. Tons Weather CLEAR **Total Today Previous Report** 43 Min. Temp. •F. **Total To Date** Avg. Rate To Date 8.5 Lbs/Sq. Yd. Lbs/Sq. Yd. Lbs/Sq. Yd. Max. Temp. •F. 2.344 Gt-2.395 Arcer 7 Remarks. Loos Auf man Hand I Ste Fries 233.47 プラッパニー 55 Type (Py) Date 9- 24-27 mimillen .5 Report No., Inspector 9.77.0

>


¥.

۳

•

Date	_	<u>- 2</u> -		ain L	_		pecificati	on item	Decel	_		5	-	terted	Ramp_	<u></u> M.	7		4'.00 P
No.		2			Lone,	_			Accel			= 6			temp		8		
	-	lant	1 BC				Comb	ined Bir	Anah	rsis						1		Extract	ons
Sieve		Design	1		1	2	3		4		5	6	,	7	8	3	1	2	3
Size Asp	-	4.7	4.	9						+	-			-			4.9	_	
	-																		
- <u>%</u> %		0	0													——	0,7		
		25.0	20.	_		_				+-							Z/.7		
1/2 . 4	-					_													
<u>₩"-4</u> ¼"-1		Els	17	:0			+										13.9	-	
4 - 10		23.6	21	. 1								-			-		25.6		
+ 10	-	65.1	50	.5				-				Ï	_				61.9	}	
10 - 40		14.4							_	_		+-					21.1		_
40 - 80	_	<u>, 2. 4</u> 5.2	<u>, </u>		<u> </u>												11.7		
Pass 20	_	1.4		4													7.3		_
Asphal	<u>i</u>	1000	1.00	0.0						\bot		ļ					long		_
Total	-					_		-							-			I	
	xtr.	Tima	Loca- tion	Course		6	tation		Mix 10. °F.					~			Mate	rials Used	
No.	NO.	-	No.	ပိ	Ŝ		No.	Plant	Ros		Specime Nos.		Lab Xens.	% Stab. 47				Asphalt (Tons)	Aggrega (Tons
	1		1.27		-+-			315			, 2,3	2	17,00	71	Previ	ous Rep	port		_
															-	Report			
										_		_			Total	To Date	e	_	
								16 1	7.7	-11	105	7.5	7		Perce	ent Com	piete-As	phaitic Con	crete Paver
						,		121	<u> </u>	┦	143	<u></u>			Perca	int Com	piete1	his Type	
-															Perce	nt Com	plete/	All Types	
	_									Days F	tun								
									-					Re	te of Ap	-	'n		
Loca- tion		Courses	Stat	ion	to		Station	•	/idth			nches .bs/Sq	ı. Yd.			Inches Lbs/So	1. Yd.		Lbs/Sq. 1
No.	Q	ទី							feet)	Sq.	Yds.	Te	ons	Sq.	Yds.	- T	ons	Sq. Yds.	Ton
				-				-+								-			
		┟──┤──			\rightarrow											+			_
					_														
Westher.	Ċ	LFAR	2				Total T	oday											
_			,			_	Previou	ıs Repo	rt										
Min. Ter		<u>ام)</u> انتخ	<u>~</u>		_	F.	Total T	o Data ite To D	ato -			 he /	'Sq. Y			 he	/Sq. Yd.		Lbs/Sq.
	ηŅ	Ga	-2	.35		F.	<u>- 198. ru</u> 3+-				Rice			2.40	Ъ				
Max. Ter Jemarks		-								-						4-0	- 1	¥16"	(ores
Max. Ter Iemarks	114	- 7	<u> </u>	, i le	2		_23	<u> </u>	ND	5		<u>_+</u> .	16_	mat	thi C	<u> </u>		<u>YIB</u>	

DAILY CONSTRUCTION REPORT-ASPHALTIC CONCRETE PAVEMENT

4

ž