
EVALUATION OF SOLVENTS AND METHODS OF EXTRACTION

DHT-37

DEPARTMENTAL RESEARCH

TEXAS DEPARTMENT OF TRANSPORTATION

RESEARCH AND TECHNOLOGY TRANSFER OFFICE, P.O. BOX 5080 AUSTIN, TX 78763-5080, 512-465-7403, FAX 512-465-7486

EVALUATION OF SOLVENTS AND METHODS OF EXTRACTION

BY

CAROLINE HERRERA, P.E.

MATERIALS AND TESTS DIVISION

RESEARCH REPORT DHT-37

TEXAS DEPARTMENT OF TRANSPORTATION

JANUARY 1996

i

Technical Report Documentation Page

		and the second		
1. Report No. DHT-37	2. Government Accession N	No.	3. Recipient's Catalog No.	
4. Title and Subtitle			5. Report Date January 1996	
EVALUATION OF SOLVENTS	AND METHODS OF EXT	RACTION	6. Performing Organization Code	
7. Author(s)			8. Performing Organization	Report No.
Caroline Herrera, P.E.			Research Report D	
9. Performing Organization Name and Add	ress		10. Work Unit No. (TRAIS)	
Texas Department of Transp Materials and Tests Division 39th St. and Jackson, BLDG Austin, TX 78731			11. Contract or Grant No.	
			13. Type of Report and Perio	d Covered
12. Sponsoring Agency Name and Address Texas Department of Transp Research and Technology Tr	ortation ansfer Office		Final	
4203 Bull Creek Dr., BLDG 3 Austin, TX 78731	39		14. Sponsoring Agency Cod	e
(trichloroethylene, contra asphalt from bituminous terpene, caused material fi minus No. 200 material to comparable results.	mixtures; (2) whether t ner than the No. 200 sig c clump together; and (trichloroethylene perforr the BioAct and trichloreth	t, PurSolv, and BioTM he various solvents to eve to clump together 4) whether the centri ned with very similar a nylene, with the exception	Max) were effective i ested in No. 1, parti ; (3) whether filter a fuge and vacuum ex ccuracy. PurSolv 140 tion of the passing No	in recovering cularly citrus id caused the stractors give and BioTMax 5. 200 results.
The vacuum extractor the No. 10 sieve and on the accuracy results. The centr		acuum extractor with		
17. Key Words Asphalt extraction, bitumino water-soluble extraction solv terpene, BioAct, trichloroeth 140, BioTMax	ents, citrus	public through	This document is ava the Texas Depa esearch Library, P.O -5080.	artment of
19. Security Classif. (of this report) Unclassified	20. Security Classif. Unclassified	1 0 1	21. No. of Pages 20	22. Price

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

EVALUATION OF SOLVENTS AND METHODS OF EXTRACTION

INTRODUCTION

The objective of this study was to determine:

- 1. Whether several different solvents (trichloroethylene, contract citrus terpene, BioAct, PurSolv, and BioTMax) were effective in recovering asphalt from bituminous mixtures;
- 2. Whether the various solvents tested in No. 1, particularly citrus terpene, caused material finer than the No. 200 sieve to clump together;
- 3. Whether filter aid caused the minus No. 200 material to clump together; and
- 4. Whether the centrifuge and vacuum extractors give comparable results.

EXPERIMENT DESIGN AND METHODOLOGY

The experimental design can be found in Table 1. The first sample was a Type D plant mix using absorptive limestone aggregate from Colorado Materials, Hunter Pit, and AC-20. The second sample was mixed by the Materials and Tests Division and consisted of AC-20 and a siliceous aggregate using Colorado Material's Type D gradation but with a high minus #200 component. The third sample was a coarse matrix high binder (CMHB) design, prepared by the Materials and Tests Division, consisting of AC-20 and a hard limestone from Vulcan Materials, San Antonio, Texas. The fourth sample was a CMHB design mixed by the Waco District Laboratory and consisted of AC20 and a highly absorptive limestone from Texas Crushed Stone, Georgetown, Texas. The fifth sample was a CMHB plant mix using AC-10 with 3 % latex and a hard limestone from Vulcan Materials, Weatherford, Texas.

Two technicians performed all of the extractions and sieve analyses. Test Method Tex-200-F was used to perform sieve analysis. Tex-210-F was used to perform extractions when using trichloroethylene and the contract citrus terpene. As recommended by the manufacturers, a water-rinse procedure was incorporated into Tex-210-F for use with BioAct, PurSolv, and BioTMax. Samples were tested using the centrifuge extractor, the vacuum extractor with 100 grams of filter aid, and the vacuum extractor without filter aid.

The Chemical Section of the Materials and Tests Division performed a chemical analysis of each of the solvents, except for the trichloroethylene. The results are shown in Table 2.

Table 1: Experimental Design

Solvent and Method of Extraction	Limestone Type D Plant Mix	Siliceous Type D Lab Mix	Limestone CMHB L Lab Mix	Limestone CMHB W Lab Mix	Limestone CMHB Latex Plant Mix
Trichloroethylene Vacuum Extractor With Filter Aid			X		X
Trichloroethylene Vacuum Extractor No Filter Aid	x	X		X	
Trichloroethylene Centrifuge	X	Х		X	X
Citrus Terpene Vacuum Extractor With Filter Aid	x	X	X	X	X
Citrus Terpene Vacuum Extractor No Filter Aid	X	X		X	
Citrus Terpene Centrifuge	X	X		X	X
BioAct Vacuum Extractor With Filter Aid		X	X		x
BioAct Vacuum Extractor No Filter Aid	X	X		X	
BioAct Centrifuge	X	Х		X	x
PurSolv Vacuum Extractor With Filter Aid			X		X
PurSolv Vacuum Extractor No Filter Aid	X			X	
PurSolv Centrifuge	X			x	X
Bio T Max Vacuum Extractor With Filter Aid		X	x		x
Bio T Max Vacuum Extractor No Filter Aid	x	Х			
Bio T Max Centrifuge	x	X			x

DHT-37

ANALYSIS OF DATA

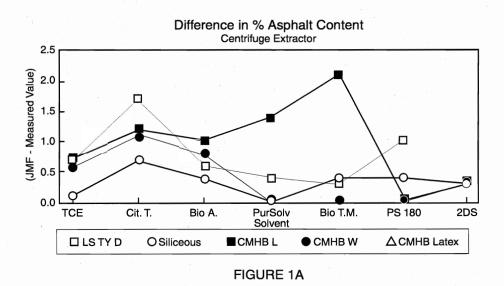
The individual data is presented in Appendix B. A summary of the differences between the job mix formulas (JMF) and the extraction results, grouped by type of extractor and solvent, is presented in Table 3. The differences between the JMF and extracted asphalt contents are plotted in Figures la through 1c. The data has been plotted separately for each method of extraction. Figures 2a through 2c show the differences between the IMF and the total amount of aggregate retained on the No. 10 sieve after extraction. Figures 3a through 3c show the differences between the JMF and the amount of material passing the No. 200 sieve after extraction.

A total of nineteen samples were tested using the centrifuge extractor. Sixteen samples were tested using the vacuum extractor with 100 grams of filter aid, and fourteen samples were tested using the vacuum extractor without filter aid. The differences between the job mix formulas and the extracted results were compared to the applicable AASHTO precision statement presented in Appendix A. The number of times the results fell within the acceptable range specified by AASHTO were then tallied and divided by the total number of samples run on that piece of equipment to determine the percent accuracy, regardless of solvent type, for each of the three methods of extraction. This data is presented in Table 4.

	Asshalt Contant	Total Retained on	Total Pass
Extraction Procedure	Asphalt Content (%)	Number 10 Sieve (%)	Number 200 (%)
Centrifuge	42	37	32
Vacuum With Filter Aid	44	75	38
Vacuum No Filter Aid	50	79	43
Trichloroethylene	44	67	56
Citrus Terpene	17	58	8
BioAct	70	60	50
PurSolv 140	50	83	33
PurSolv 180	50	0	50
Bio T Max	50	75	38

Table 4: Percentage of Acceptable Results

	PurSolv	BioAct	Bio T Max	Bio T 200A	Citrus Terpene	Current Spec
% Citrus Terpene	51.3%	91.1%	90.3%	92.4%	25.3%	25-35%
Flash Point (F)	105° F	120° F	125° F	126° F	116° F	100° F min
(Pensky Marten)						
Distillation Range						
Initial Boil Point	320° F		300° F	336° F	320° F	300° F min
End Point	352° F		360° F	356° F	362° F	375° F max
Nonvolatile Residue	3.13%	· · · · · ·	13.5%	0.41%	0.27%	0.10% max

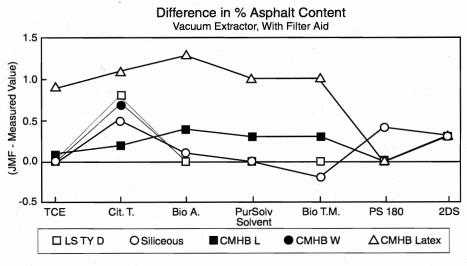
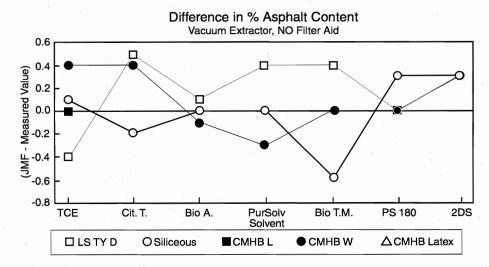
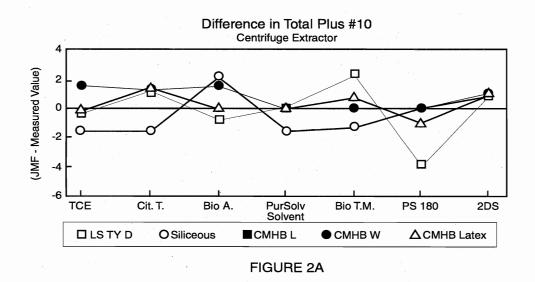
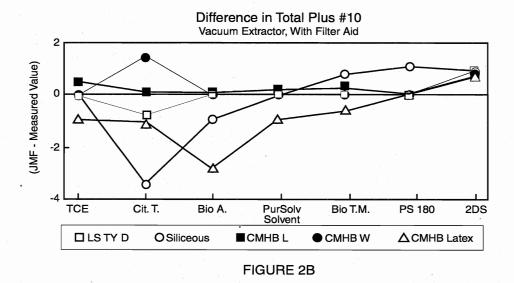
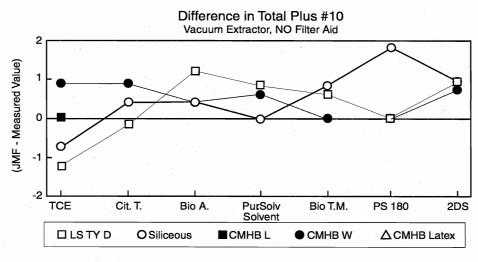

Table 2: Chemical Analysis

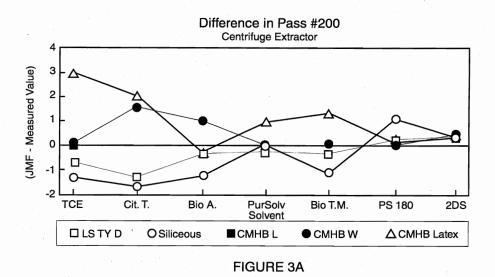
CONCLUSIONS

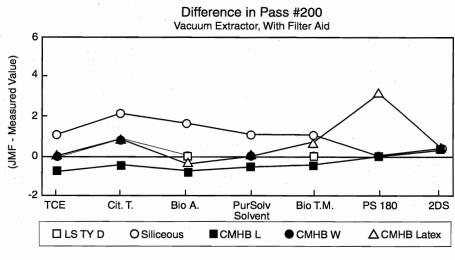
The water-soluble solvents met the AASHTO precision statement accuracy 50% to 75% of the time for extracted asphalt content and total amount retained on the No. 10 sieve. These same solvents met the AASHTO precision statement 33% to 50% of the time for the amount passing the No. 200 sieve. The current contract citrus terpene solvent met the AASHTO precision statements 17% of the time for extracted asphalt content, 58% of the time for total retained on the No. 10 sieve, and 8% of the time for the amount passing the No. 200 sieve. Trichloro-ethylene met the AASHTO precision statements for extracted asphalt content 44% of the time for total amount retained on the No. 10 sieve, and

			Solvent :			Solvent : trus Terp			Solvent BioAct			Solvent PurSol			Solvent Bio T Ma	ax		Solvent PS 180	
	Mix	JMF - AC	Measure +10	d Value -200	JMF - AC	Measure +10	d Value -200	JMF - AC	Measure +10	ed Value -200	JMF - AC	Measur +10	ed Value -200	JMF - AC	Measure +10	ed Value -200	JMF - AC	Measure +10	d Valu -200
Centrifuge	Type D	0.7	- 0.2	-0.7	1.7	1.1	-1.3	0.6	- 0.8	- 0.3	0.4	0.0	- 0.2	0.3	2.2	- 0.3	1.0	- 4.0	0.2
Jentinuge	Siliceous	0.1	- 0.5	-1.3	0.7	1.5	-1.7	0.4	0.0	- 1.2	_	· _ ·	_	0.4	0.6	- 1.1	0.4	- 1.0	1.1
	CMHB L	_ '	<u>, </u>		_	-	_	<u>-</u>		-	_	_	-	-	-	<u> </u>	· _,	_ '	_
	CMHB W	0.6	1.5	0.1	1.1	1.3	1.6	0.8	1.5	1.0	_		-	-	_	_	-	-	_
	CMHB Latex	0.7	1.5	2.9	1.2	-1.6	2.0	1.0	2.1	- 0.3	1.4	1.6	1.0	2.1	-1.4	1.3	-	. . .	-
Vacuum	Type D	<u> </u>	_	_	0.8	-0.8	0.9	· · · ,-	_	-		- 1		-	-	_	-	-	_
With	Siliceous	_	<u>_</u>	-	0.5	-3.4	0.9	0.1	- 0.9	- 0.4	-	-	-	- 0.2	0.8	0.7	0.4	1.1	3.2
Filter Aid	CMHB L	0.1	0.5	-0.7	0.2	0.1	- 0.4	0.4	0.1	- 0.7	0.3	0.2	- 0.5	0.3	0.3	- 0.4	-	· · -	-
	CMHB W	· _	_ '		0.7	1.5	4.3	-	-	-	-	-			-		-	-	-
	CMHB Latex	0.9	- 0.9	1.1	1.1	-1.0	2.2	1.3	-2.8	1.7	1.0	- 0.9	1.1	1.0	- 0.6	1.0	-	-	-
•																			
Vacuum	Type D	- 0.4	- 1.2	0.3	0.5	- 0.1	- 0.4	0.1	1.2	- 0.2	0.4	0.8	- 0.5	0.4	0.6	0.1	-	-	
No	Siliceous	0.1	- 0.7	- 0.6	-0.2	0.4	- 0.9	0.0	0.4	- 1.0	-	. –	-	- 0.6	0.8	- 0.9	0.3	1.8	-0.6
Filter Aid	CMHB L	-	_	-	- ,	-	_	-	-	- 1	-	· -		- 1		-	-	-	- "
	CMHB W	0.4	0.9	0.6	0.4	0.9	1.2	- 0.1	0.4	1.9	- 0.3	0.6	1.6	-	-	-	-	-	-
	CMHB Latex	-		-,	-		- 1	-		-	-	-	<u> </u>	-		-	-	-	-

Table 3: Difference Between Job Mix Formula and Extracted Results


FIGURE 1B



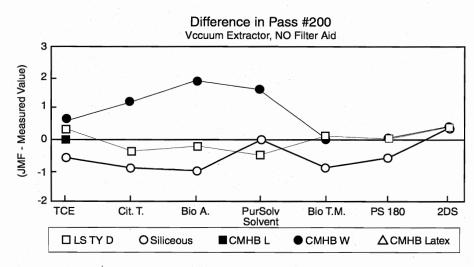


FIGURE 3B

56% of the time for the amount passing the No. 200 sieve.

In summary, BioAct and trichloroethylene performed with very similar accuracy. PurSolv 140 and BioTMax produced similar results to the BioAct and trichlorethylene, with the exception of the passing No. 200 results. The citrus terpene currently on contract produced the most inaccurate and the most unacceptable results.

The data in Table 3, Table 4, and Figures 1a through 1c indicate that the vacuum extractor without the use of filter aid clearly produced the best test results for asphalt content. The vacuum extractor with filter aid and the centrifuge produced approximately the same level of accuracy for asphalt content, and they were both inferior to the vacuum extractor without filter aid.

The vacuum extractor with and without filter aid produced the best accuracy for the total material retained on the No. 10 sieve. The centrifuge produced results which were much less accurate. Figures 2a through 2c and the data in Tables 3 and 4 contain the supporting data.

The vacuum extractor without filter aid again produced the best accuracy for determining the amount of material passing the No. 200 sieve. The vacuum extractor with filter aid produced the next most accurate results, and the centrifuge extractor produced the least amount of accuracy. Figures 3a through 3c and the data in Tables 3 and 4 contain the supporting data.

RECOMMENDATIONS

Based on the results of this study, the following recommendations are made:

- 1. Test Method Tex-210-F should be modified to allow the use of watersoluble extraction solvents.
- 2. The use of the current contract citrus terpene solvent should be discontinued as soon as a replacement solvent is available.
- 3. The current extraction solvent specification should be rewritten to allow the use of the water-soluble solvents, and a new contract should be obtained.
- 4. The vacuum extractor should be used to perform solvent extractions. The use of filter aid should be limited to small amounts (30 grams or less) and should only be used for those samples which absolutely need it.
- 5. TxDOT and contractor laboratories must use the same method of extraction and solvents to avoid conflicts caused by these variables.
- 6. A nonsolvent-based method of evaluating gradation should be pursued.

APPENDIX A

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

AASHTO PRECISION AND BIAS

SIEVE ANALYSIS, T30

Results of two properly conducted tests by the same operator on the same batch should not differ by more than the following:

- 1. For sieves with between 25% and 39.9% passing, the acceptable range of two results is $1.8\% \pm 0.9$.
- 2. For sieves with between 10% and 24.9% passing, the acceptable range of two results is $1.3\% \pm 0.7$.
- 3. For sieves with between 5 % and 9.9% passing, the acceptable range of two results is $0.8\% \pm 0.4$.
- 4. For sieves with between 2% and 4.9% passing, the acceptable range of two results is $0.6\% \pm 0.3$.

Results of two properly conducted tests from two different laboratories on samples from the same batch should not differ by more than the following:

- 1. Between 25% and 39.9% passing, $2.4\% \pm 1.2$.
- 2. Between 10% and 24.9% passing, 2.3% ± 1.15.
- 3. Between 5 % and 9.9% passing, $1.6\% \pm 0.8$.
- 4. Between 2 % and 4.9 % passing, $1.2\% \pm 0.6$.

PERCENT ASPHALT BY SOLVENT EXTRACTION, T164

Results of two properly conducted tests by the same operator on the same batch should not differ by more than $0.58\% \pm 0.3$.

Results of two properly conducted tests from two different laboratories on samples from the same batch should not differ by more than $0.83\% \pm 0.4$.

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team APPENDIX B

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

Sieve Size	JMF	Trich		BioAct		PurSol 140			Bio T Max	
Individual % Ret	Limestone Type D	Vac No FA	Trich Cent	Vac No FA	BioAct Cent	Vac No FA	PurSol 140 Cent	PS 180 Cent	Vac No FA	Bio T Max Cent
7/8 - 5/8	0	3.6	0.9	2.1	0.7	0.0	1.4	3.7	1.4	2.5
5/8 - 3/8	7.6	22.4	20.9	19.3	24.4	21.4	19.2	26.3	19.0	14.8
3/8 - 4	28.5	16.2	18.8	16.7	16.1	17.4	18.9	17.9	17.8	18.9
4 - 10	28.2	23.3	23.9	25.0	23.9	24.7	24.8	20.4	25.5	25.9
+10	64.3	65.5	64.5	63.1	65.1	63.5	64.3	68.3	63.7	62.1
10 - 40	18.9	17.3	17.8	19.1	17.6	18.5	18.4	15.7	18.6	19.5
40 - 80	8.9	8.3	8.4	8.5	8.5	8.4	8.1	7.7	8.5	9.2
80 - 200	3.4	4.7	4.1	4.6	4.0	4.6	4.5	4.0	4.8	4.4
-200	4.5	4.2	5.2	4.7	4.8	5.0	4.7	4.3	4.4	4.8
	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
% AC	4.9	5.3	4.2	4.8	4.3	4.5	4.5	3.9	4.5	4.6
Ash (g)			0.36		0.55		0.72	0.6		0.45
Extraction (minutes)	Time						· · · · · · · · · · · · · · · · · · ·			
Solvent (m	l)	2,100	2,450	2,400	2,550	2,550	2,600	2,500	2,350	2,300

Limestone Type D

				Replicate Citrus Terp			Nuc Citrus Terp Vac		Citrus Terp	
Individual % Ret	Vac No FA	Vac No FA	Vac No FA	Vac No FA	Vac 100g FA	Vac 57g FA	30g FA	Cent	Cent	Cent
7/8 - 5/8	2.3	0.0	0.0	0.0	1.4	1.0	0.0	3.1	0.0	0.0
5/8 - 3/8	19.4	5.6	8.8	9.0	22.9	20.5	8.0	19.1	5.6	8.4
3/8 - 4	18.4	29.0	32.8	27.5	17.2	20.5	26.5	17.4	29.0	29.7
4 - 10	24.3	30.4	26.2	29.3	23.6	23.2	28.9	23.6	30.6	28.4
+10	64.4	65.0	67.8	65.8	65.1	65.2	63.4	63.2	65.2	66.5
10 - 40	18.2	17.2	15.2	16.7	17.7	17.2	19.1	18.3	17.7	15.7
40 - 80	8.3	8.5	7.9	8.2	8.4	8.8	8.9	8.7	7.8	7.9
80 - 200	4.2	3.7	3.3	3.6	5.2	3.7	4.2	4.0	4.2	3.8
-200	4.9	5.6	5.8	5.7	3.6	5.1	4.4	5.8	5.1	6.1
	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
% AC	4.4	4.9	4.6	4.7	4.1	4.5	5.0	3.2	5.0	4.3
Ash (g)								17.9	16.7	24.3
% ASH								1.8	1.6	2.4
Solvent (ml) 2,360	2,770	3,150	3,300			2,550		3,100	3,350

Legend:

Trich = trichloroethylene Citrus Terp = contract citrus terpene

Vac = vacuum extractor Cent = centrifuge extractor

- FA = filter Aid
- PS 180 = PurSolv with 180° F flash point

AC = asphalt content

Nuc = asphalt content by nuclear gauge

Sieve Size Individual % Ret	JMF CMHB Lab Mix	Trich Vac 100g FA	Citrus Terp Vac 100g FA	BioAct Vac 100g FA	PurSolv Vac 100g FA	Bio T Max Vac 88g FA
5/8 - 3/8	20.6	17.1	16.5	15.9	15.9	16.9
3/8 - 4	43.4	45.6	46.0	47.1	46.3	46.2
4 - 10	17.0	17.8	18.4	17.9	18.6	17.6
+10	81.0	80.5	80.9	80.9	80.8	80.7
10 - 40	9.2	8.6	8.7	8.3	8.2	8.4
40 - 80	2.8	2.4	2.3	2.3	2.5	2.6
80 - 200	1.5	2.3	2.2	2.3	2.5	2.4
-200	5.5	6.2	5.9	6.2	6.0	5.9
	100.0	100.0	100.0	100.0	100.0	100.0
AC	4.8	4.7	4.6	4.4	4.5	4.5
Time (Hour	s) NA	2.5	7		6	
Solvent (ml	I) NA	2,500	3,500	4,500	4,000	5,500
Color of fines	White	White	Tan	White	White	White
Balling Up	None		None	None		

CMHB L

Trich = trichloroethylene

Legend:

Citrus Terp = contract citrus terpene Vac = vacuum extractor Cent = centrifuge extractor

FA = filter aidPS 180 = PurSolv with 180° F flash point AC = asphalt content

Nuc = asphalt content by nuclear gauge

							Si	liceous	3							
Sieve Size Individual % Ret	JMF Siliceous Lab Mix	Trich Vac No FA	Trich Cent	Citrus Terp Vac 100g FA	Citrus Terp Vac No FA	Citrus Terp Cent	BioAct Vac 100g FA	BioAct Vac No FA	BioAct Cent	PS 180 Vac No FA	PS 180 Cent	PS 180 Vac 100g FA	Bio T Max Vac No FA	Bio T Max Vac No FA	Bio T Max Vac 100g FA	Bio T Max Cent
1/2 - 3/8		7.5	8.2	9.1	9.1	5.8	8.4	7.2	8.5	6.4	7.8	6.9	7.9	6.2	8.0	7.0
3/8 - 4		27.1	25.5	31.1	23.2	25.7	26.6	25.0	24.9	24.0	26.9	25.1	25.1	25.3	24.0	24.7
4 - 10		29.5	30.2	26.6	30.7	30.5	29.3	30.8	30.0	31.2	29.7	30.3	30.0	30.8	30.6	31.1
+10	63.4	64.1	63.9	66.8	63.0	61.9	64.3	63.0	63.4	61.6	64.4	62.3	63.0	62.3	62.6	62.8
10 - 40		17.7	17.7	16.1	18.4	18.9	17.6	18.5	17.9	20.0	18.9	20.9	18.7	19.3	19.0	18.4
40 - 80		7.5	7.3	7.4	7.6	7.5	7.5	7.5	7.5	7.8	8.0	8.6	7.3	7.8	7.6	7.8
80 - 200		4.1	3.8	4.6	4.1	4.1	4.2	4.0	4.0	4.0	3.8	5.4	3.6	4.2	5.5	4.0
-200	6.0	6.6	7.3	5.1	6.9	7.7	6.4	7.0	7.2	6.6	4.9	2.8	7.4	6.4	5.3	7.1
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
AC	4.5	4.4	4.4	4.0	4.7	3.8	4.4	4.5	4.1	4.2	4.1	4.1	5.1	5.0	4.7	4.1
Ash (g)			0.4			1.2			0.9		0.7					1.35
Extraction T	Time				-									- · ·		
(minutes) Solvent (mi Color of fine Balling Up	,	1,650	1,800	2,500	1,950	60 1,950	2,200	2,120	2,250	2,450	2,140		2,050	1,700	2,200	1,950
Comments	2. Bio T	Max – V	acuum	extractor had		r. wing the wat second filter.										

Legend:

Trich = trichloroethylene Citrus Terp = contract citrus terpene Vac = Vacuum extractor Cent = centrifuge extractor FA = filter aid

PS 180 = PurSolv with 180° F flash point AC = asphalt content

CMHB V	Ν
--------	---

Sieve Size	JMF	Trich		Citrus Terp	Citrus Terp		BioAct	1	PurSolv 14		Bio T Max	
Individual % Ret	CMHB W Lab Mix	Vac No FA	Trich Cent	Vac 100g FA	Vac No FA	Citrus Terp Cent	Vac No FA	BioAct Cent	Vac No FA	PurSolv 14 Cent	Vac No FA	Bio T Max Cent
5/8 - 3/8	10.8	7.3	8.0	8.8	9.0	7.3	6.5	7.6	7.1		8.5	
3/8 - 4	35.0	35.2	34.0	33.7	33.8	34.2	37.6	35.1	35.0		39.1	
4 - 10	30.5	32.9	32.8	32.3	32.6	33.5	31.8	32.1	33.6	Ran	28.9	Ran
+10 (±0.7)	76.3	75.4	74.8	74.8	75.4	75.0	75.9	74.8	75.7	out	76.5	out
10 - 40	10.1	9.9	10.2	12.3	10.2	10.6	10.1	10.1	10.1	of	9.7	of
40 - 80	3.5	3.8	3.9	4.7	4.2	4.6	4.3	4.4	4.4	material	3.9	material
80 - 200	2.1	3.5	3.3	4.5	3.4	3.4	3.6	3.7	3.4		3.3	
-200 (±0.4)	8.0	7.4	7.9	3.7	6.8	6.4	6.1	7.0	6.4		6.6	
	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		100.0	
AC (±0.3)	5.8	5.4	5.2	5.1	5.4	4.7	5.9	5.0	6.1		6.1	
Ash (g)			0.27			0.84		0.65				
Ash (g)			0.27			0.84		0.65				
Extraction 7	ime				1						,	
(minutes)	· .	80	45		60	60						
Solvent (ml		2,400	2,560	3,200	3,400	3,040		2,700	3,200		3,100	· · ·
Balling Up Comments											Filter Tore	

Legend:

Trich = trichloroethylene

Citrus Terp = contract citrus terpene

Vac = vacuum extractor

Cent = centrifuge extractor FA = filter aid

JMF Sieve Size Limestone Trich Citrus Terp BioAct PurSolv 140 Bio T Max Bio T Max Individual CMHB Vac Trich Vac Citrus Terp Vac BioAct Vac PurSolv 140 Vac % Ret 3% Latex 100g FA Cent 5/8 - 3/8 37.8 36.8 37.7 36.4 35.8 41.0 32.9 38.7 41.2 43.4 42.0 3/8 - 4 20.6 22.4 23.6 23.9 25.3 21.8 22.2 22.4 21.4 17.0 20.7 4 - 10 19.3 19.4 17.9 18.4 18.2 17.7 20.6 17.5 16.7 17.9 16.3 +10 77.7 78.6 79.2 78.7 79.3 80.5 75.6 78.6 79.3 78.3 79.1 10 - 40 10.4 12.6 10.7 10.4 9.4 11.8 10.4 10.2 10.4 10.2 3.2 40 - 80 3.1 2.7 3.2 3.4 2.4 3.1 2.9 2.6 2.9 80 - 200 2.5 1.9 3.1 2.4 2.9 2.7 2.7 2.4 2.9 2.4 -200 6.5 5.4 3.6 4.3 4.5 4.8 6.8 5.4 5.5 5.5 5.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 AC 5.6 4.7 4.9 4.5 4.4 4.3 4.6 4.6 4.2 4.6 3.5 Ash (g) 0.02 0.2 1.25 0.45 0.9 **Extraction Time** (minutes) 35 40 60 105 175 160 65 75 1,900 3,700 Solvent (ml) 3,000 2,650 3,560 2,550 2,850 2,900 2,600 2,350

CMHB with Latex

Legend:

Trich = trichloroethylene Citrus Terp = contract citrus terpene

Vac = vacuum extractor

Cent = centrifuge extractor

FA = filter aid

PS 180 = PurSolv with 180° F flash point

AC = asphalt content