

TECHNICAL REPORT STANDARD TITLE PAGE

Performing Organization Name and Address S. Report No. 7. Authorid: S. Report Date 7. Authorid: Cotobers, 1977 7. Authorid: Cotobers, 1977 7. Authorid: Cotobers, 1977 7. Authorid: Cotobers, 1977 7. Performing Organization Name and Address TITI-1-10-74-22-2F 7. Performing Organization Name and Address 10. Work Unit No. Texas State Dept. of Hwys & Public Transportation TIT. Contract or Grant No. Transportation Planning Division 11. Contract or Grant No. P. 0. Box 5051 Authorid: Austin, Texas 78763 13. Type of Report and Period Covered 13. Supplementary News TREASE 7863 13. Organization Planning Division Final P. 0. Box 5051 Title "Equipment for the Measurement of Pavement Performance Austin, Texas 78763 Takas" 13. Supplementary News Research done in cooperation with DDT, FHWA 14. Spensoring Agency Kade This is the final report for this project. The report briefly describes the purchase and installation of a modification to the Dynaflect designed to improve its speed of data collection; (2) explains the establishment of a claimatological da file and (3) describes the development of a vertical Photologger to assist in the collection of pavement Distress	1. Report No.	2. Government Accession No.	3. Recipient's Catalog N	
4. Title and Sublifie S. Report Date Cubber, 1977 October, 1977 Performing Organisation Code Cubber, 1977 Performing Organisation Name and Address TT1-1-0-74-2-2F Performing Organisation Name and Address 10. Work Unit Ne. Texas State Dept. of Hwys & Public Transportation 11. Contract or Grant Ne. Transportation Planning Division 11. Contract or Grant Ne. Pass State Dept. of Hwys. & Public Transportation 11. Contract or Grant Ne. Transportation Planning Division 11. Contract or Grant Ne. Pass State Dept. of Hwys. & Public Transportation 11. Surget Report and Period Covered Transportation Planning Division 11. Second Report and Period Covered Pass State Dept. of Hwys. & Public Transportation 11. Second Report and Period Covered Transportation Planning Division 11. Second Report and Period Covered Pass State Dept. of Hwys. & Public Transportation 11. Second Report and Period Covered Texas State Dept. of Hwys. & Public Transportation 11. Second Report and Period Covered Texas State Dept. of Hwys. & Public Transportation 11. Second Report and Period Covered Its sesearch done in cooperation with DOT, FHWA 14. Specoring Approx Covered This is the final report for this pr		2. Obvernment Accession No.	5. Recipient's cululog R	
Equipment and Methods for Collecting Pavement Performance Information October, 1977 Performance Information Performing Organization Cde 2. Auhorish Kenneth D. Hankins B. Performing Organization Resert No. TTI-1-10-74-2-2F 2. Performing Organization Name and Address Texas State Dept. of Hwys & Public Transportation Pronsportation Planning Division P. O. Box 5051 10. Work Unit No. Transportation Planning Division Pronsportation Planning Division Planning Division Planning Division Planning Division Planning Division Planning Divi	FHWATX-77-2-2F			
Equipment and Methods for Collecting Pavement Performance Information October, 1977 Author(s) Kenneth D. Hankins 9. Performing Organization Report No. TTI-1-10-74-2-2F 9. Performing Organization Name and Address Texas State Dept. of Hwys & Public Transportation Pransportation Planning Division P. O. Box 5051 10. Wook Unit No. 12. Separating Agency News and Address Texas State Dept. of Hwys. & Public Transportation Transportation Planning Division P. O. Box 5051 10. Wook Unit No. 13. Supplementery Nets Research Study Title "Equipment for the Measurement of Pavement Performance in Texas" 13. Type of Report and Period Covered 14. Assured 14. Spanatoring Agency News and Address in Texas" 14. Spanatoring Agency News and Address in Texas" 15. Supplementery Nets Research done in cooperation with DOT, FHWA 14. Spanatoring Agency News and Address Informatic and explains the equipment and data processing techniques available for pavement performance evaluation. Specifically, the report (1) describes the interim report entitled "Equipment of a vertical photologger to assist in the collection of pavement distress data on high-volume highways. 17. Key Words 18. Distribution Statement No Restrictions. Tays Research Experiment Deflection Climatic Data Mays Road Meter Pavement Deflection Climatic Data Mays Road Meter 10. Security Cleast (of this page) 21. No. of Pays 19. Course (of this report) 20. Security Cleast (of this page) 21. No. of Pays 22. Price	4. Title and Subtitle		5. Report Date	
12. Authorfs) 6. Performing Organization Code 7. Authorfs) 8. Performing Organization Name and Address Texas State Dept. of Hwys & Public Transportation 10. Work Unit Ne. Transportation Planning Division 11. Contract or Grant Ne. P. 0. Box 5051 21. Sponsoring Agency News and Address Texas State Dept. of Hwys & Public Transportation 11. Contract or Grant Ne. Transportation Planning Division 12. Sponsoring Agency News and Address Texas State Dept. of Hwys & Public Transportation Final Transportation Planning Division 14. Sponsoring Agency Code 13. Supplementary Nots Research done in cooperation with DOT. FHWA 14. Sponsoring Agency Code 14. Sponsoring Agency Code 15. Supplementary Nots 14. Sponsoring Agency Code 16. Abstract 17. Contract or Grant Ne. 17. Key Words 20. performance evaluation or a modification to the Dynaflect designed to improve its speed of data collection; (2) explains the establishment of a climatological dat file and (3) describes the development of a vertical photologies to assist in the collection of pavement distress data on high-volume highways. 17. Key Words No Restrictions. 18. Words Vertical Photo- 19. Words Vertical Photo- 19. Words		· Callesting Devenuet		
7. Author(s) 8. Performing Organization Report No. 7. Author(s) 8. Performing Organization Report No. 8. Performing Organization Name and Address 10. Work Unit No. Texas State Dept. of Hwys & Public Transportation Transportation Planning Division P. 0. Box 5051 10. Work Unit No. 12. Sepansing Agency Nue and Address 11. Contract or Grant No. Study No. 1-10-74-2 12. Sepansing Agency Nue and Address 13. Type of Report and Pariod Covered 13. Supplementary Notes Final 14. Sponsoring Agency Nue and Address 13. Type of Report and Pariod Covered 15. Supplementary Notes Final 15. Supplementary Notes Final 16. Abstract This is the final report for this project. The report briefly describes the interim report entitled "Equipment for Collecting Pavement Roughness Informatic and explains the equipment and data processing techniques available for pavemer performance evaluation. Specifically, the report (1) describes the purchase and installation of a modification to the Dynaflect designed to improve its speed of data collection; (2) explains the establishment of a climatological data on high-volume highways. 17. Key Words Its. Distribution Statement 18. Kid Resistance Vertical Photo- Pavement Deflection Climatic Data Mays Road Meter No Restrictions. This document is available to the public through the National Technical Information Service, Springfield, VA 2		r collecting Pavement		
Kenneth D. Hankins TTI-1-10-74-2-2F ? Performing Organization Name and Address Texas State Dept. of Hwys & Public Transportation Transportation Planning Division 10. Work Unit No. P. 0. Box 5051 11. Contract or Grant No. 2. Spensering Agency Name and Address 11. Contract or Grant No. Texas State Dept. of Hwys. & Public Transportation Transportation Planning Division 11. Contract or Grant No. P. 0. Box 5051 12. Spensering Agency Name and Address Research Study Title "Equipment for the Measurement of Pavement Performance in Texas" 14. Spensering Agency Code 15. Supplementary Netes 13. Supplementary Netes Research done in cooperation with DOT, FHWA 14. Spensering Agency Code 16. Abstreef This is the final report for this project. The report briefly describes the interim report entitled "Equipment for Collecting Pavement Roughness Informatic and explains the equipment and data processing techniques available for pavement performance evaluation. Specifically, the report (1) describes the purchase and installation of a modification to the Dynallect designed to improve its speed of data collection; (2) explains the establishment of a climatological da file and (3) describes the development of a vertical Photologger Pavement Deflection Climatic Data Mays Road Meter Pavement Distress 18. Distribution Stotement 17. Key Words Swid Resistance Pavement Distress 18. Distribution Stotement <td< td=""><td>Performance information</td><td></td><td></td></td<>	Performance information			
Kenneth D. Hankins TTI-1-10-74-2-2F ? Performing Organization Name and Address TEXAS State Dept. of Hwys & Public Transportation Transportation Planning Division 10. Work Unit No. P. O. Box 5051 11. Contract or Grant No. 2. Spensering Agercy Name and Address 11. Contract or Grant No. 12. Spensering Agercy Name and Address 11. Contract or Grant No. 13. Supplementary Agercy Name and Address 11. Contract or Grant No. 15. Supplementary Netsa Research Study Title "Equipment for the Measurement of Pavement Performance in Texas" 15. Supplementary Netsa Research done in cooperation with DOT, FHWA 16. Abstract This is the final report for this project. The report for pavement Roughness Informatic and explains the equipment and data processing techniques available for pavement performance evaluation. Specifically, the report (1) describes the purchase and installation of a modification to the Dynaflect designed to improve its speed of data collection; (2) explains the establishment of a climatological date file and (3) describes the development of a vertical Photologger to assist in the collection Climatic Data Mays Road Meter Pavement Deflectin Climatic Data Mays Road Meter Pavement Distress 19. Sourci Classi. (climbs: repert) 20. Security Clessit. (climbs: repert) 20. Security Clessit. (climbs: repert) 20. Security Clessit. (climbs: repert)	7 Author(s)		R Perfermine Oreanianti	
9. Performing Organization Name and Address 10. Work Unit No. Texas State Dept. of Hwys & Public Transportation P. 0. Box 5051 11. Contract or Grant No. 12. Separating Agency Name and Address 13. Type of Report and Paried Covered Texas State Dept. of Hwys. & Public Transportation Transportation Planning Division P. 0. Box 5051 13. Type of Report and Paried Covered 13. Supplementary Nets Research State Dept. of Hwys. & Public Transportation Transportation Planning Division P. 0. Box 5051 14. Spensoring Agency Code 14. Spensoring Agency Code in Texas" 14. Spensoring Agency Code 15. Supplementary Nets Research done in cooperation with DOT, FHWA 16. Abstreet This is the final report for this project. The report briefly describes the interim report entitled "Equipment for Collecting Pavement Roughness Informatic and explains the equipment and data processing techniques available for pavement performance evaluation. Specifically, the report (1) describes the purchase and installation of a modification to the Dynaflect designed to improve its speed of data collection; (2) explains the establishment of a climatological de file and (3) describes the development of a vertical photologger to assist in the collection of pavement distress data on high-volume highways. 17. Key Words Skid Resistance Pavement Deflectin Climatic Data Mays Road Meter Pavement				
Texas State Dept. of Hwys & Public Transportation Transportation Planning Division 11. Contract or Grant No. Study No. 1-10-74-2 Austin, Texas 78763 12. Spensoring Agency Name and Address 13. Type of Report and Pariod Covered Texas State Dept. of Hwys. & Public Transportation Transportation Planning Division P. O. Box 5051 13. Type of Report and Pariod Covered Austin, Texas 78763 13. Supplementary Noise Research Study Title "Equipment for the Measurement of Pavement Performance in Texas" Research done in cooperation with DOT, FHWA 14. Astronet 15. Supplementary Noise Research done in cooperation with DOT, FHWA 16. Astronet 17. Key Words Skid Resistance Vertical Photo- Pavement Deflection Climatic Data 17. Key Words 18. Distribution Statement 19. Security Clessif. (afthis reper) 10. Key Words 11. Key Words 12. Key Words 13. Supplement Deflection Climatic Data 14. Spensoring Agency Vertical Photo- Pavement Deflection Climatic Data 15. Supplement Deflection Climatic Data 16. Distribution Statement 17. Key Words 18. Distribution Statement Skid Resi	Kenneth D. Hankins		1-1-10-/4-2	-21
Texas State Dept. of Hwys & Public Transportation Transportation Planning Division 11. Contract or Grant No. Study No. 1-10-74-2 Austin, Texas 78763 12. Spensoring Agency Name and Address 13. Type of Report and Pariod Covered Texas State Dept. of Hwys. & Public Transportation Transportation Planning Division P. O. Box 5051 13. Type of Report and Pariod Covered Austin, Texas 78763 13. Supplementary Noise Research Study Title "Equipment for the Measurement of Pavement Performance in Texas" Research done in cooperation with DOT, FHWA 14. Astronet 15. Supplementary Noise Research done in cooperation with DOT, FHWA 16. Astronet 17. Key Words Skid Resistance Vertical Photo- Pavement Deflection Climatic Data 17. Key Words 18. Distribution Statement 19. Security Clessif. (afthis reper) 10. Key Words 11. Key Words 12. Key Words 13. Supplement Deflection Climatic Data 14. Spensoring Agency Vertical Photo- Pavement Deflection Climatic Data 15. Supplement Deflection Climatic Data 16. Distribution Statement 17. Key Words 18. Distribution Statement Skid Resi	9 Performing Organization Name and Addres		10 Work Unit No	
Transportation Planning Division 11. Contract of Grant No. P. 0. Box 5051 Austin, Texas 78763 12. Spensoring Agency Name and Address Texas State Dept. of Hwys. & Public Transportation Transportation Planning Division P. 0. Box 5051 Austin, Texas 78763 13. Supplementary Nemes 78763 14. Spensoring Agency Code 14. Spensoring Agency Code Austin, Texas 78763 15. Supplementary Nemes 78763 16. Abstret Research done in cooperation with DOT, FHWA 16. Abstret This is the final report for this project. The report briefly describes the interim report entitled "Equipment for Collecting Pavement Roughness Informatia and explains the equipment and data processing techniques available for pavemer performance evaluation. Specifically, the report (1) describes the purchase and installation of a modification to the Dynaflect designed to improve its speed of data collection; (2) explains the establishment of a climatological da file and (3) describes the development of a vertical photologger to assist in the collection of pavement distress data on high-volume highways. 17. Key Words 18. Distribution Statement 18. Resistance Vertical Photo- Pavement Deflection Climatic Data Mays Road Meter No Restrictions. This document is available to the public through the National Technica 19. Security Classit (def this repert) 20. Security Classit (of this pre				
P. O. Box 5051 Study No. 1-10-74-2 Austin, Texas 78763 12. Separating Agency Neem and Address Final Texas State Dept. of Hwys. & Public Transportation Transportation Planning Division Final P. O. Box 5051 It. Spenstring Agency Neem and Address Austin, Texas 78763 13. Supplementary Nets Research done in cooperation with DOT, FHWA 14. Abstract This is the final report for this project. The report briefly describes the interim report entitled "Equipment for Collecting Pavement Roughness Informatic and explains the equipment and data processing techniques available for pavement performance evaluation. Specifically, the report 1) describes the purchase and installation of a modification to the Dynaflect designed to improve its speed of data collection; (2) explains the establishment of a climatological de file and (3) describes the development of a vertical photologger to assist in the collection of pavement distress data on high-volume highways. 17. Key Words It. Distribution Statement 18. Distribution Statement No Restrictions. This document is available to the public through the National Technical Information Service, Springfield, VA.2 19. Security Classif. (of this report) 20. Security Classif. (of this page) 19. Next Yords 21. No. of Pages 19. Activities for the report) 21. No. of Pages 22. Price	Texas State Dept. of Hwys	s & Public Transportation	11 Contract or Grant No	
Austin, Texas 78763 12. Spensoring Agency Name and Address Texas State Dept. of Hwys. & Public Transportation Transportation Planning Division P. 0. Box 5051 Austin, Texas Austin, Texas Research Study Title "Equipment for the Measurement of Pavement Performance in Texas" Research done in cooperation with DOT, FHWA 16. Abstret This is the final report for this project. The report briefly describes the interim report entitled "Equipment for Collecting Pavement Roughness Informatia and explains the equipment and data processing techniques available for pavemer performance evaluation. Specifically, the report (1) describes the purchase and installation of a modification to the Dynaftect designed to improve its speed of data collection; (2) explains the establishment of a climatological da file and (3) describes the development of a vertical photologger to assist in the collection of pavement distress data on high-volume highways. 17. Key Words 18. Distribution Statement No Restrictions. This document is available to the pavement Deflection Climatic Data Mays Road Meter Pavement Deflection Climatic Data Mays Road Meter 18. Distribution Statement No Restrictions. This document is available to the public through the National Technical Information Service, Springfield, VA.2 19. Security Clessif. (of this report) 20. Security Clessif. (of this pregel 21. No. of Pages 22. Price		JIVISION		
12. Spensoring Agency Nome and Address Texas State Dept. of Hwys. & Public Transportation Transportation Planning Division P. 0. Box 5051 Austin, Texas Research Study Title "Equipment for the Measurement of Pavement Performance in Texas" Research done in cooperation with DOT, FHWA 16. Abarreet This is the final report for this project. The report briefly describes the interim report entitled "Equipment for Collecting Pavement Roughness Information and explains the equipment and data processing techniques available for pavemer performance evaluation. Specifically, the report (1) describes the purchase and installation of a modification to the Dynaflect designed to improve its speed of data collection; (2) explains the establisment of a climatological da file and (3) describes the development of a vertical photologger to assist in the collection of pavement distress data on high-volume highways. 17. Key Words 18. Distribution Statement Skid Resistance Pavement Roughness Augenest Roughness Pavement Deflection Pavement Roughness Pavement Deflection Mays Road Meter Pavement Distress 18. Distribution Statement No Restrictions. This document is available to the public through the National Technical Information Service, Springfield,VA 2 19. Security Cleastif. (of this report) 20. Security Cleastif. (of this page) 21. No. of Pages 22. Price				
Texas State Dept. of Hwys. & Public Transportation Transportation Planning Division P. 0. Box 5051 Austin, Texas 78763 Final 14. Spensoring Agency Code 14. Spensoring Agency Code 15. Supplementary Notes In Texas" Research done in cooperation with DOT, FHWA 14. Spensoring Agency Code 16. Abstract This is the final report for this project. The report briefly describes the interim report entitled "Equipment for Collecting Pavement Roughness Informatic and explains the equipment and data processing techniques available for pavemer performance evaluation. Specifically, the report (1) describes the purchase and installation of a modification to the Dynaflect designed to improve its speed of data collection; (2) explains the establishment of a climatological da file and (3) describes the development of a vertical photologyer to assist in the collection of pavement distress data on high-volume highways. 17. Key Words 18. Distribution Statement Mays Road Meter Pavement Deflection Climatic Data Mays Road Meter Vertical Photo- Pavement Distress 19. Security Cleasif. (of this report) 20. Security Cleasif. (of this page) 21. No. of Pages 22. Price	Austin, lexas /8/63		13. Type of Report and P	eriod Covered
17. Key Words 14. Spensoring Agency Code 17. Key Words 14. Spensoring Agency Code 18. Distribution Statement 14. Spensoring Agency Code 19. Septementary Notes 14. Spensoring Agency Code 19. Supplementary Notes 14. Spensoring Agency Code 19. Supplementary Notes 16. Abstroct 10. Abstroct 17. Key Words 11. Key Words 18. Distribution Statement 12. Key Words 18. Distribution Statement 13. Supplement Roughness 19. Distribution Statement 14. Spensoring Agency Code 14. Spensoring Agency Code 15. Supplementary Notes 16. Abstroct 16. Abstroct 17. Key Words 17. Key Words Skid Resistance 17. Key Words (2) explains the establishment of a climatological date file and (3) describes the development of a vertical photologger to assist in the collection of pavement distress data on high-volume highways. 17. Key Words 18. Distribution Statement 18. Resistance Vertical Photo- Pavement Roughness logger Pavement Roughness logger Pavement Deflection Climatic Data Mays Road Meter Pavement Distress <				
P. 0. Box 5051 14. Spensoring Agency Code Austin, Texas 78763 15. Supplementary Notes Research Study Title "Equipment for the Measurement of Pavement Performance in Texas" Research done in cooperation with DOT, FHWA 16. Abstreet This is the final report for this project. The report briefly describes the interim report entitled "Equipment for Collecting Pavement Roughness Informatic and explains the equipment and data processing techniques available for pavement performance evaluation. Specifically, the report (1) describes the purchase and installation of a modification to the Dynaflect designed to improve its speed of data collection; (2) explains the establishment of a climatological de file and (3) describes the development of a vertical photologger to assist in the collection of pavement distress data on high-volume highways. 17. Key Words 18. Distribution Statement 17. Key Words 18. Distribution Statement 18. describes the development of a vertical photo-pavement Roughness logger 19. Distribution Statement 19. Key Words 10. Distribution Statement 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Payes 22. Price			Final	
Austin, Texas 78763 15. Supplementary Notes Research Study Title "Equipment for the Measurement of Pavement Performance in Texas" Research done in cooperation with DOT, FHWA 16. Abstract This is the final report for this project. The report briefly describes the interim report entitled "Equipment for Collecting Pavement Roughness Informatio and explains the equipment and data processing techniques available for pavement performance evaluation. Specifically, the report (1) describes the purchase and installation of a modification to the Dynaflect designed to improve its speed of data collection; (2) explains the establishment of a climatological da file and (3) describes the development of a vertical photologger to assist in the collection of pavement distress data on high-volume highways. 17. Key Words 18. Distribution Statement Skid Resistance 18. Distribution Statement Mays Road Meter Pavement Deflection Dynaflect Vertical Photo- logger Pavement Deflection Climatic Data Mays Road Meter Pavement Deflection Dynaflect 18. Distribution Statement No Restrictions. This document is available to the public through the National Technical Information Service, Springfield,VA. 19. Security Classif. (of this peger) 20. Security Classif. (of this pegel 21. No. of Pagest 22. Price		Division	14 5 1 4 6	
15. Supplementary Notes Research Study Title "Equipment for the Measurement of Pavement Performance in Texas" Research done in cooperation with DOT, FHWA 16. Abstract This is the final report for this project. The report briefly describes the interim report entitled "Equipment for Collecting Pavement Roughness Informatio and explains the equipment and data processing techniques available for pavement performance evaluation. Specifically, the report (1) describes the purchase and installation of a modification to the Dynaflect designed to improve its speed of data collection; (2) explains the establishment of a climatological da file and (3) describes the development of a vertical photologger to assist in the collection of pavement distress data on high-volume highways. 17. Key Words 18. Distribution Statement No Restrictions. This document is available to the public through the National Technical Information Service, Springfield,VA.(2) 20. Security Classif. (of this report)			1 Sponsoring Agency C	oue
Research Study Title "Equipment for the Measurement of Pavement Performance in Texas" Research done in cooperation with DDT, FHWA 16. Abstract This is the final report for this project. The report briefly describes the interim report entitled "Equipment for Collecting Pavement Roughness Informatic and explains the equipment and data processing techniques available for pavemer performance evaluation. Specifically, the report (1) describes the purchase and installation of a modification to the Dynaflect designed to improve its speed of data collection; (2) explains the establishment of a climatological da file and (3) describes the development of a vertical photologger to assist in the collection of pavement distress data on high-volume highways. 17. Key Words 18. Distribution Statement Skid Resistance 18. Abstract No Restrictions. This document is available to the public through the National Technical Information Service, Springfield,VA. 2 Dynaflect 19. Security Classif. (of this report) 20. Security Classif. (of this report)			1	
10. Texas" 14. Abstract 15. Abstract 16. Abstract 17. Key Words 17. Key Words 18. Distribution Statement 19. Key Words 10. Key Words 10. Key Words 10. Key Words 10. Key Words 11. Key Words 12. Key Words 13. Security Classif. (of this report) 14. Key Words 15. Security Classif. (of this report) 16. Distribution Statement 17. Key Words 18. Distribution Statement 19. Security Classif. (of this report) 10. Security Classif. (of this report)				
Research done in cooperation with DOT, FHWA 16. Abstract This is the final report for this project. The report briefly describes the interim report entitled "Equipment for Collecting Pavement Roughness Informatic and explains the equipment and data processing techniques available for pavemer performance evaluation. Specifically, the report (1) describes the purchase and installation of a modification to the Dynaflect designed to improve its speed of data collection; (2) explains the establishment of a climatological dation of pavement distress data on high-volume highways. 17. Key Words 18. Distribution Statement 18. Distribution Statement Statement 19. Security Cleasif. (of this report) 18. Distribution Statement 19. Security Cleasif. (of this report) 20. Security Cleasif. (of this pege)	Research Study Title "Equ	ipment for the Measurement	of Pavement Perf	ormance
16. Abstract This is the final report for this project. The report briefly describes the interim report entitled "Equipment for Collecting Pavement Roughness Informatic and explains the equipment and data processing techniques available for pavement performance evaluation. Specifically, the report (1) describes the purchase and installation of a modification to the Dynaflect designed to improve its speed of data collection; (2) explains the establishment of a climatological defile and (3) describes the development of a vertical photologger to assist in the collection of pavement distress data on high-volume highways. 17. Key Words 18. Distribution Statement Skid Resistance Vertical Photo- Pavement Roughness Pavement Deflection No Restrictions. This document is available to the public through the National Technical Information Service, Springfield,VA. (2) 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price		· -······		
This is the final report for this project. The report briefly describes the interim report entitled "Equipment for Collecting Pavement Roughness Informatic and explains the equipment and data processing techniques available for pavement end data processing techniques available for pavement and explains the explains the report (1) describes the purchase and installation of a modification to the Dynaflect designed to improve its speed of data collection; (2) explains the establishment of a climatological data file and (3) describes the development of a vertical photologger to assist in the collection of pavement distress data on high-volume highways. 17. Key Words 18. Distribution Statement 17. Key Words No Restrictions. 18. Distribution Statement No Restrictions. 19. Security Classif. (of this report) 20. Security Classif. (of this pege) 21. No. of Pages 22. Price	Research done in cooperat	tion with DOT, FHWA		
17. Key Words 18. Distribution Statement 18. Distribution Statement 19. Distribution Statement 19. Security Classif. (of this report) 20. Security Classif. (of this report) 20. Security Classif. (of this report) 20. Security Classif. (of this report)	16. Abstract			
Skid Resistance Pavement RoughnessVertical Photo- loggerNo Restrictions. This document is available to the public through the National Technical Information Service, Springfield,VA (2000)Mays Road Meter DynaflectPavement DistressInformation Service, Springfield,VA (2000)19. Security Classif. (of this report)20. Security Classif. (of this page)21. No. of Pages22. Price	and explains the equipmen performance evaluation. and installation of a mod speed of data collection file and (3) describes th	nt and data processing tech Specifically, the report (dification to the Dynaflect (2) explains the establis ne development of a vertical	niques available) describes the designed to impr shment of a climat photologger to a	for pavement purchase ove its cological data
Skid Resistance Pavement RoughnessVertical Photo- loggerNo Restrictions. This document is available to the public through the National Technical Information Service, Springfield,VA (2000)Mays Road Meter DynaflectPavement DistressInformation Service, Springfield,VA (2000)19. Security Classif. (of this report)20. Security Classif. (of this page)21. No. of Pages22. Price				
Pavement RoughnessloggerThis document is available to the public through the National Technical Information Service, Springfield,VA (2000)Pavement DeflectionClimatic Data Pavement DistressThis document is available to the public through the National Technical Information Service, Springfield,VA (2000)19. Security Classif. (of this report)20. Security Classif. (of this page)21. No. of Pages22. Price	17. Key Words	18. Distribution Stat	ement	
Pavement RoughnessloggerThis document is available to the public through the National Technical Information Service, Springfield,VA (20)Pavement DeflectionClimatic Data Pavement DistressThis document is available to the public through the National Technical Information Service, Springfield,VA (20)19. Security Classif. (of this report)20. Security Classif. (of this page)21. No. of Pages22. Price	Skid Resistance Veri	tical Photo- No Restric	tions.	
Pavement DeflectionClimatic Datapublic through the National TechnicalMays Road MeterPavement DistressInformation Service, Springfield,VADynaflect20. Security Classif. (of this page)21. No. of Pages19. Security Classif. (of this report)20. Security Classif. (of this page)21. No. of Pages				to the
Mays Road MeterPavement DistressInformation Service, Springfield, VADynaflect20. Security Classif. (of this page)21. No. of Pages22. Price				-
Dynaflect 20. Security Classif. (of this page) 21. No. of Pages 22. Price				
			in service, sprin	yrieiu, VA_2210
	19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages	22. Price
Unclassified 38			20	
	UNCTASSIFICA	UNCIASSITIED	38	

Form DOT F 1700.7 (8-69)

-

.

2

.

.

.

.

Equipment and Methods For Collecting Pavement Performance Information

Ъy

Kenneth D. Hankins

Research Report 2-2F

Research Study 1-10-74-2 Equipment for the Measurement of Pavement Performance in Texas

Conducted by

Transportation Planning Division Research Section State Department of Highways and Public Transportation

In Cooperation With the

U.S. Department of Transportation Federal Highway Administration

October, 1977

The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the views or policies of the Federal Highway Administration. This report does not constitute a standard, specification or regulation.

There was no invention or discovery concieved or first actually reduced to practice in the course of or under this contract, including any art, method, process, machine, manufacture, design or composition of matter, or any new and useful improvement thereof, or any variety of plant which is or may be patentable under the patent laws of the United States of America or any foriegn country.

The United States Government and the State Department of Highways and Public Transportation do not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of this report.

Acknowledgements

The research reported herein was conducted under the supervision of Mr. John F. Nixon, Engineer of Research, and the general supervision of Mr. Phillip L. Wilson, State Planning Engineer.

Acknowledgement is given to:

Mr. Brad Hubbard, Mr. C. L. Goss, Mr. B. D. Cannaday, Mr. D. L. Edwards, Mr. George Reid, Mr. Joe Smith, Mr. Henry Spillar and Mr. James Wyatt for the technical support received during this study.

Dr. Bob Lytton, Mr. Joe Mahoney with Texas Transportation Institute, Dr. Frank McCullough with the Center for Highway Research, Mr. James L. Brown, Mr. Bob M. Gallaway with Texas Transportation Institute, and Mr. Sam Fox with the Department for aid in developing the Climatological Data File.

The Texas Water Development Board particularly Mrs. Becky Ball and Mr. John Wilson and The National Weather Service for the data and the programming preparations made to the climatological data used in the Climatological Data File.

The Division of Automation, particularly Mr. Joel Young, for aid and programming conceived in the preparation and updating the Climatological Data File.

	Approximate Cor	versions to Metri	C Measures		²³		Approximate Conve	rsions from Me	tric Measures	
Symbol	When You Knew	Multiply by	To Find	Symbol		Symbol	When You Knew	Multiply by	Te find	Symbol
					30 E F F F F F F F F F F F F F F F F F F			LENGTH		
		LENGTH			* *					
		CENGIN	,			mm	millimeters	0.04	inches	in
					<u> </u>	cm	centimeters	0.4	inches	in
in	inches	*2.5	Contimeters	CIT:		、 "	meters	3.3	feet	ft
ħ	feet	30	centimeters	cm		m	meters	1.1	yards	γdi mi
yđ	yards	0.9	meters	m		km	kilometers	0.6	miles	1611
mi	miles	1.6	kilometers	km						
		AREA						AREA		
						cm ²	square centimeters	0.16	square inches	in ²
in ² ft ² yd ² mi ²	square inches	6.5	square centimeters	cm ²	° <u> </u>	m ²	square centimeters	0.16 1.2	square inches square yards	
4. ²	square feet	0.09	square meters	m ²		km ²	square kilometers	0.4	square miles	yd² mi²
vd ²	square yards	0.8	square meters			kan ka	hectares (10,000 m ²)		aquare miles acres	HII
mi ²	square miles	2.6	square kilometers	km ²	*	ne	110CLANE2 (10,000 11.)	2.0	acies	
	acres	0.4	hectares	ha						•
								ASS (weight)		
		RASS (weight)								
	ounces	28	0			9	grams	0.036	ounces	OZ
oz Ib	pounds	0.45	grams kilograms	g kg		kg	kilograms	2.2	pounds	ib
10	short tons	0.9	tonnes	Ky t		1	tonnes (1000 kg)	1.1	short tone	
	(2000 lb)	0,0	(Uniters	•	· · · · · · · · · · · · · · · · · · ·			,		
		VOLUME						VOLUME		
tsp	teaspoons	5	milliliters	ml		mi	milliliters	0.03	fluid ounces	fi oz
Tosp	tablespoons	15	milliliters	mi		1	liters	2.1	pints	pt
floz	fluid ounces	30	milluliters	mt	· - =	1	litera	1.06	quarts	qt
c	cups	0.24	liters	1		1	liters	0.26	gallons	gal ft ³
pi	pints	0.47	liters	ł		m ³	cubic meters	35	cubic feet	ft"3
qt	quarts	0.95	liters	ł		m ³	cubic meters	1.3	cubic yards	۷d ³
gal	galions	3.8	liters	1 j						
gal ft ³ yd ³	cubic feet	0.03	cubic meters	m ³			TEM	PERATURE (exa		
γd	cubic yards	0.76	cubic meters	m ³			1	LAATONE (CA		
	TEMP	ERATURE (exact)				°c	Celsius	9/5 (then	Fahrenheit	۴
				_			temperature	add 32)	Lemperature	
°f	Fahrenheit	5/9 (after	Celsius	°c	· · · · · · · · · · · · · · · · · · ·	~~~~~				
	temperature	subtracting	temperature		=				• F 212	
		32)			~ = = ~		•F 32	98.6 80 j 120		
			······			-	-40 0 40			
							-40 -20 0	20 40	60 80 101 *C	5
						-	-40 -20 0	37	•c	
					 					

METRIC CONVERSION FACTORS

e e e e e e e e e e e e e e

Table of Contents

.

+

	Disclaimer
	Acknowledgements
	Metric Conversion Chart
	List of Figures
	List of Tables
	Implementation Statement
	Summary
Chapter I	Introduction
Chapter II	Interim Reports
-	Research Report 2-1 "Equipment for Collecting
	Pavement Roughness Information
	SKIDR Manual
Chapter III	Deflection
Chapter IV	Climatic Data,
Chapter V	Cross Section and Materials Data
Chapter VI	Visual Rating
Chapter VII	Vertical Photologger
•	References
	Appendix A - Current List of Climatological
	Stations

List of Figures

Figu	res	Page
1.	Flexible Pavement Deflection Report	5-6
2.	Rigid Pavement Deflection Report	7
3.	Deflection Code Sheet	8
	Deflection Code Sheet	
5.	Climatological Data Yearly Report	13
6.	Maintenance Rating Form For Flexible Pavements	17
7.	Maintenance Rating Form For Rigid Pavement	18
8.	Example of a Visual Rating Report	19
9.	Maintenance Rating Plot	20
10.	Vertical Photologger	22
11.	Camera System	22

List of Tables

I.	Comparison of	Photographic and Roadway Analyses	26
II.	Deduct Values	for Flexible Pavement	
III.	Deduct Values	for Rigid Pavement	
IV.	Deduct Values	for Photo and Roadway	
v.	Comparison of	Data Collection Methods and Observers	

Implementation

This project was concieved to develop the equipment and standard methods of data collection, data storage and data retrieval to conduct a pavement evaluation inventory. Implementation has progressed to the extent that:

- Modifications have been made to the deflection measuring equipment so that data can be collected with greater speed. Two units are available for this inventory. Data processing methods have been used for approximately two years and are being used effectively at this date.
- 2. The MRM units have been modified to collect data more accurately and rapidly. Six additional trailer units were fabricated. Seven trailer units and four automobile units are available for inventory. Data processing methods have been used approximately two years and are being used effectively at this date.
- 3. The skid resistance equipment and data processing methods were previously established with four units available for inventory.
- 4. A Vertical Photologger was fabricated to aid in the data collection and processing of pavement distress data on high volume highways. The data collection and processing methods were established previously. Consideration should be given to data storage and retrieval methods for the pavement condition data. The storage and retrieval methods will probably be developed or suggested by management consultants engaged by the department.
- 5. A Climatological Data File was established and has received updates on two consecutive years. The file has various uses but implementation should consist of reporting the past 20-year weather history with each report of other pavement evaluation data.

Consideration should be given to consolidating an automated file containing materials and cross-section information. This information will be necessary for a more complete pavement evaluation. This file will probably be developed or suggested by management consultants engaged by the department.

Consideration should be given to revising the deflection and roughness measuring equipment so that data may be collected and processed in an automated manner. The skid resistance equipment presently contains this feature. The present manufacturers of the Dynaflect offer an automated model. The MRM counter equipment developed in this project was fabricated with an "add-on" feature which will permit easy automation when additional or sufficient funds are available. If automated equipment becomes available, additional computer software programs will be needed to process, store and retrieve the data. The extent and cost of the program to process the data will be small since the Division of Automation presently maintains this processing capability. However, the cost of developing data storage and retrieval programs will be large and will depend on the report format desired. The data storage could be accomplished using magnetic tape rather than direct access disc but it will be necessary to at least temporarily hold various types of data so that all the data types can be reported for a given roadway section at a given time.

х

Summary

This report contains an explanation of equipment and data collection, storage and retrieval methods available for pavement performance evaluation. The data items available are skid resistance, roughness, deflection, pavement distress and weather. The data items of material and cross-section were not completed becauce of conflict with departmental programs established after the project was initiated. ASTM E 274 type skid test units are available for skid resistance tests. Modified Mays Road Meters are available for roughness measurements. Dynaflect equipment is available for deflection tests. A visual rating is used to obtain pavement distress.

I. INTRODUCTION

For many years the department has been involved in developing a system for monitoring the performance of the pavement structure. In order to monitor pavement performance it is necessary to recoginze the various distress modes, develop equipment to measure the extent of pavement distress, and obtain periodic measurements of the pavement condition. If the pavement condition is monitored until unsatisfactory conditions are found, the rate of failure or service life offers a measure of pavement performance.

Work in determining distress modes and developing equipment to determine the state of distress is not complete, but performance data is badly needed. Thus, an effort is underway to collect performance data using the present state of knowledge. Therefore, the object of this project was to develop or standardize equipment and procedures to obtain and explain pavement performance information.

There are several data items along with methods or equipment which offer a measure of pavement performance that are being considered by the department. These are:

- 1. Pavement Deflection
- 2. Skid Resistance
- 3. Pavement Roughness
- 4. Distress Index

In addition to the above items, data is needed on cross-section, materials used in construction, and the climatic conditions that have occurred in order to more fully understand the pavement performance.

II. INTERIM REPORTS

Research Report 2-1: "Equipment for Collecting Pavement Roughness Information"

This interim report was concerned with the equipment for obtaining, storing and retrieving pavement roughness information. (1) The report also explained a method of calibrating roughness equipment and of periodically checking to determine if the equipment needed recalibration.

Prior to this study and after several years of research, two types of roughness measuring equipment were selected for use. One type was the Surface Dynamics Profilometer (SDP). The SDP was fabricated by and purchased from the K. J. Law Company. The second type of roughness measuring equipment was the Mays Ride Meter (MRM) available from the Rainhart Company.

The SDP was selected as the standard for roughness evaluation equipment in the State and correlated to the results of several road rating teams. The Serviceability Indes (SI) value was selected as the basis of reporting roughness numbers. The SI concept consists of a number varying from 0 to 5 with 0 being very rough and 5 very smooth. In earlier research the SDP was tested on several sections which were also analyzed by the rating teams and a correlation was established as previously mentioned.

At present several MRM units are used to collect inventory information. Each MRM unit is correlated with the SDP. Therefore each roughness measuring unit is based on values produced by a rating panel with the SDP used as a standard and the MRM units as the inventory equipment.

The major portion of the report is concerned with the development of an electronic counter system used in conjunction with the MRM and a trailer to house the MRM transducer. The counter system provides a roughness count and was developed to improve the speed of data collection. The trailer was developed to reduce the number and extent to which variables such as vehicle weight, tire type, and non-standard suspensions affect MRM values.

An inventory scheme was developed for data collection in which data is recorded (and an SI reported) every 0.2 mile. The data is recorded on code sheets when collected, and is keypunched and processed by a computer program in which data may be input and results obtained via a computer terminal in the user District. Average values along with location data are also stored on a file managed by a central office Division.

As a result of this study, six additional MRM trailer units and counter systems were fabricated. At present there are seven trailer units and five automobile units. A unit is available to each District.

SKID-R Manual

Most of the skid resistance data collection methods and equipment were developed using state funding and were available before the subject project was concieved. No additional work was accomplished in this area on this study. However, in an effort to report the full complement of equipment and information available for pavement evaluation, the SKID-R manual should be consulted for skid resistance information and background.⁽²⁾ This manual explains the equipment, data collection, data storage and data retrieval available for skid resistance. The equipment consists of four skid test units conforming to ASTM-E27A. Presently, the data is collected on ASR 33 Teletype-punched paper tape and is processed by a computer program. The program accesses stored information related to location, traffic, surface material and prior skid history. The program then combines the accessed information with the skid resistance information on the punched tape and produces a report via computer terminal in the user District. Average skid resistance values are stored in the permanent SKID-R file as skid history. The SKID-R file is available for District access by terminal and a series of six administrative reports are available on call.

III. DEFLECTION

Deflection information is obtained using Dynaflects obtained from Lane Wells, presently an SIE Corporation. There are two Dynaflects in use by the department. The Dynaflect is basically a two-wheeled trailer which houses equipment containing two eccentric cams. In operation, two load wheels are rolled to the pavement surface, the trailer is raised, and the trailer weight is transferred from the "road wheels" to the "load wheels". Simultaneously two eccentric cams being rotated cause a pulsating or cycle load of 8 cycles per second to be produced at the load wheel and pavement surface contact area. The cyclic load is +500 pounds. The trailer weight produces a load of 1000 pounds on the load wheels when in a static condi-The cyclic load then varies from 500 to 1500 pounds. The deflection tion. transducers are geophones which are fabricated to measure the amplitude of pavement deflection at the 8 cycle per second frequency. Five geophones are spaced along the trailer tongue at one-foot intervals. The first geophone is located at a position midway between the load wheels when measured transversely to the trailer towing direction. The other four geophones are at one-foot intervals longitudinal to the trailer towing direction. In these locations, the deflection is measured between the load wheels and the remaining four geophones produce deflection information, at intervals away from the load wheels, which is used to indicate the deflection basin.

In order to increase the speed of data collection, the original geophone lift assemblies of the Dynaflects were modified. This modification permits the geophones to be lifted to a safe position when the trailer is lowered from the load wheels to the road wheels for traveling between locations. Before the modification, it was necessary to remove the geophones before traveling. Failure to remove the geophones results in the phones being dragged over the surface which damages their fragile internal components.

Prior to this study, Research Study 1-8-69-123 "A System Analysis of Pavement Design and Research Implementation" developed a computer program which produced a deflection report. When used on a flexible pavement. the information from the geophones was used to calculate a "Stiffness Coefficient of the Subgrade" and a "Stiffness Coefficient of the Pavement". A "SCI" or Surface Curvature Index was also calculated. When the Dynaflect was used on rigid pavement, the information from the five geophones was used to calculate an "Elastic Modulus of the Subgrade" and an "Elastic Modulus of the Pavement" along with the SCI. An example of both the flexible and rigid pavement reports are shown in Figures 1A, 1B and 2. This study selected the task of developing a standard code sheet, adapting the computer program for use on the departmental computer system, and developing a method of storing and retrieving the data. The standard code sheets are shown in Figures 3 and 4. Attempts were made to adapt the location information to the methods used in the collection of skid resistance and roughness data.

With the exception of the location and materials information, which should be completed as much as possible prior to data collection, the code sheet is completed in the field during data collection. The code sheets should be keypunched at the District office. Deflection information ob-

4

TEXAS HIGHWAY DEPARTMENT

DISTRICT 03 -DESIGN SECTION

DYNAFLECT DEFLECTIONS AND CALCULATED STIFFNESS COEFFICIENTS

THIS PROGRAM WAS RUN - 04-01-76

PROJECT IDENTIFICATION

DIST.	COUNTY	CONT.	SECT.	PP SN	HIGHWAY	DATE	DYNAFLECT
-03	C OOK E	0044	08		U.S. 82	03-17-76	29

REASONS FOR MEASUREMENTS AND COMMENTS TOTAL PAV DEPTH DS - WEST BOUND LANE 8FT LT 13.50 INCHES

EXISTING PAVEMENT

MATERIAL TYPE LAYER THICK.(IN)

ASPH	ALTIC (CONCRETE	1.50
LIME	TR CR	LIMESTONE	12.00
LIME	STAB.	SUBGRADE	6.00

GENERAL LOCATION INFORMATION

DIRECTION OF TRAVEL IS WEST MILEPOINTS MEASUREMENTS ARE 8 FEET FROM THE RIGHT SIDE OF LANE B

-	DESCRIPTION OF LOCATION	STATION READING	MILEPOINT
	FROM-1 MILE E. OF DRY ELM CR BRIDGE	683+00	13.22
	INSCT FM 2739	567+08	9.23
	TO-4000 FT E. OF FM 373 AT MUENSTER	472+00	7.46

FIGURE 1A: FLEXIBLE PAVEMENT DEFLECTION REPORT

	COUNT OKE	Y	CONT。 0044	SECT. 08	PPSN	HIGHW U。S。		DATE 03-17-76				
	DYNAFLECT DATA											
ODOMETER	W 1	₩2	W3	W4	W5	SC I	AS2	AP 2	REMARKS			
0.010 0.200	0.630 0.780	0°470 0°430	0.350 0.270	0.250 0.132	0.156 0.090	0.160 0.350	0.27 0.32		OV ERLAY ED			
0.400	0.900	0.520	0.320	0.186	0.123	0.380	0.30		FILL			
0.600	0.930	0.560	0.370	0.240	0.162	0.370	0.29		FILL			
0.800	0.840	0.480	0.310	0.192	0.159	0.360	0.30		FILL			
1,060	0.430	0.380	0.310	0.240	0.189	0.050	0.25		FILL-NEAR END	6.R.		
1.200	1.230	0.870	0.580	0.400	0.280	0.360	0.25					
1.400	0.750	0.500	0.340	0.201	0.135	0.250	0.29		CUT			
1.600	1.200	0.720	0.350	0.159	0.093	0.480	0.28			596		
1.800	1.020	0.780	0.540	0.380	0。280	0.240	0.24			585		
2.000	0-400	0.350	0.290	0.216	0.180	0.050	0.25	0.92				
2.200	0.930	0.640	0。450	0.300	0.189	0.290	0.27	′ 0 _≈ 52		565		
2.400	0.500	0.410	0.330	0.250	0.165	0.090	0.26		CUT			
2.450	0.530	0.380	0。270	0.189	0.126	0.150	0.29		FILL			
2.600	0.340	0.310	0。260	0.183	0.135	0.030	0.25					
2.810	0.260	0.230	0.183	0.141	0.123	0.030	0.27		CUT			
3.000	0.650	0.510	0。380	0.270	0.189	0.140	0°26		CUT			
3.220	0.630	0.460	0.360	0.270	0.201	0.130	0.28		MILEPOST 10.0	509		
3.410	0.580	0.490	0.410	0.340	0°2.90	0.090	0.25		CUT-DRIVE			
3.600	0.840	0.630	0.460	0.340	0.270	0.210	0.26			488		
3.800	0.750	0.570	0.450	0.360	0.280	0.180	0.26			477		
4.060	1.530	0。930	0.570	0.380	0.270	0.600	0.26		W. OF F.M. INT	563		
4c200	0.930	0.720	0.500	0.360	0.280	0.210	0.25			555		
4.410	0°530	0.390	0.310	0.240	0.162	0.140	0.29		FILL	545		
4.600	0.450	0.410	0.350	0.280	0.240	0.040	0.23					
4.800	0.530	0.350	0.204	0.117	0°087	0.180	0.31		CUT	523		
5.010	0.590	0.440	0.310	0.198	0.135	0.150	0.28					
5.200	0.600	0.450	0 .300	0.168	0.120	0.150	0.28					
5.400	0.370	0.280	0.198	0.153	0.123	0.090	0.30		FILL	491		
5.600	0.204	0.177	0.144	0.120	0.108	0.027	0.29		FILL	480		
5.753	0°480	0.270	0.156	0.084	0-072	0.210	0.34	0.48	CUT	472		
AVERAGES	0.688	0.487	0.343	0.237	0.175	0.201	0.27	0.65				
STANDARD						0.141	0.03					
NUMBER OF			ERAGE =	31								

W1-5	DEFLECTIONS AT GEOPHONES 1,2,3,4,65	
SCI	SURFACE CURVATURE INDEX (WI MINUS W2))
AS2	STIFFNESS COEFFICIENT OF THE SUBGRADE	
AP2	STIFFNESS COEFFICIENT OF THE PAVEMENT	

8

FIGURE 1B: FLEXIBLE PAVEMENT DEFLECTION REPORT

į.

6

TEXAS HIGHWAY DEPARTMENT

DISTRICT 13 - DESIGN SECTION

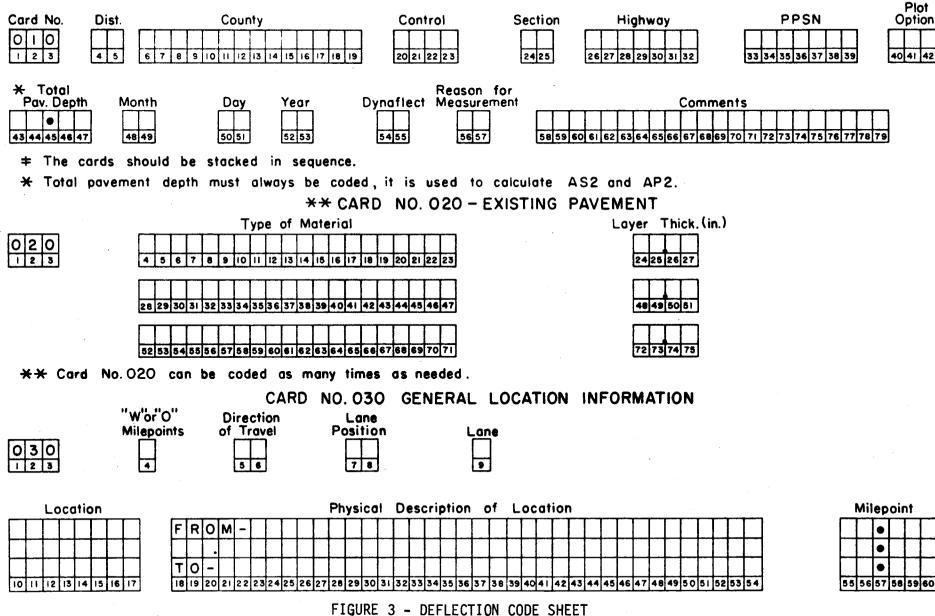
TWO LAYER ELASTIC MODULI FOR FIVE DEFLECTIONS

THIS PROGRAM WAS RUN - 03-28-78

				DIST. 13		COUNTY			r · · r			
	CONT 271		ECT. 01				DATE 8-08-75		YNAFLE 29	CT		
SS					PAV.	гніск.	= 14.00		ICHES			
	CRCP			8.	. 00	CEM	STAB BAS	SE		6.00	0	
	SELECT	MATL		9.	. 00							
LOCATION	W 1	W2	W3	W4	W5	SC I	** ES	**	** EP	**	*	RMSE *
427+53 428+56 428+76 431+61 434+07 AV ER AGES STD DEV PO IN TS AV ER AGES STD DEV PO IN TS NO SOF T	0.810 0.430 0.600 0.400 0.572 0.165 5 STIFF	0.720 0.390 0.570 0.360 0.516 0.146 5 0.146	0.550 0.320 0.510 0.280 0.414 0.117 5 DP SOLU	0.450 0.290 0.460 0.250 0.358 0.094 5	0.340 0.250 0.370 0.200 0.290 0.068 5	0.090 0.040 0.030 0.040 0.056 0.027 5	23.5E 14.3E 29.5E 21.12E	03 03 03 03	2.98E 1.20E 1.11E 8.90E	05 06 05		0.0731
W1-5 SCI ES	DEFLEC SURFAC ELASTI	CTION A	AT GEOR	INDEX THE S	(W1 /	MINUS		•W3	,W4,& W!	5		

EP ELASTIC MODULUS OF THE PAVEMENT FROM W1, W2, W3, W4, & W5

.


FIGURE 2: RIGID PAVEMENT DEFLECTION REPORT

TEXAS

.

STATE DEPARTMENT OF HIGHWAYS AND PUBLIC TRANSPORTATION *# DYNAFLECT DEFLECTION DATA*

CARD NO. 010 - PROJECT IDENTIFICATION

Form 1112-1 Rev. 5/75

œ

TEXAS ' '

STATE DEPARTMENT OF HIGHWAYS AND PUBLIC TRANSPORTATION DYNAFLECT DEFLECTION DATA

CARD NO. 040 - DATA CARDS

Card No.	Cont.	Sect.	Month	Day	Year	PPSN
040	4 5 6 7	8 9	10 11	1213	14 15	16 17 18 19 20 21 22

•

٠

Location	DYNAFLECT READING												Time Remarks																							
	Sc				2	Sc	-+	3	Sc	+	4	Sc		5	_			T - T					-		- T						T		<u> </u>			
	313	2 33 34 35	36	37 38	39 40	41 42	2 43 4	445	46 41	7 48	49 50	515			55	56 57	7 58	59	60	61 e	2 63	3 64	65	66	67 6	58 (59 7	0 7	1 72	2 73	74	75	767	7 7	8 79	91
							10.24					14			- K.M -		1_			_		+-			4	_	4	4	_	\bot	1				+	\downarrow
														1.1	See Star							_			_	_				ــــ	<u> </u>		-+		_	4
		1								2.68 	18. 19. 1		-				-				_					_	_	\perp	1				$ \bot$			_
												4													_	_	-	_		<u> </u>			_	_	_	_
							12						9		4					_						_										
				(ac)						N.	5.			Î ≈4	¥.																					
		ં ્રાજ્																												\bot						
															ann. Anns	ŀ																				
								3							÷																					
		ાજ્યુ			194		34	8		100			1.4																	T						
NB SHE	Π	13.3			FF				I	2							Τ					1-			Τ			Τ		Τ	Γ		T	Τ	Τ	
	Π	3					R	10	Π		$\mathcal{B}_{\mathcal{F}}$		1		-							T			Τ			Τ	Τ	Τ	Τ		T		Τ	
		3							Π	1	2						1					T	1		T		T	T		T	T			T		
00002063				(es		11		1	T	1		II					1	\uparrow				1	1			╈	1	+	1-	+	1				\uparrow	7
					Ī	T			T				10	10.2	<u>.</u>		\uparrow					+-			1		1	1			1				1	
				÷.						12			1	100	*	-+	1					1			1	1	+	1	1	+			+	+	+	~
							A							4			+			-†	+	+			\uparrow	+	+	╈	+	+	1-			+	\uparrow	~
								Ŧ		ų.		1 î				-	1			-+	+	+			+	+	+	+	+	+	1			-	╈	
								A			3		1		5					-	\top				1		1	╈	1	\uparrow					+	1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					E.		F					11								-	1				1	1	╈	╈	1	+	1		+	+-	\dagger	-
				3					T		4	I			~3		1			-	1	+-				T	1			T			-+	\uparrow	\uparrow	
				and Africa Africa Africa									E.		5	+	1			-+	1	+-				+	╈		\top	\top	1-		-	1	+-	-
	I														3	-+-	1	[-]	+	-†-	+	1-			+	+	+	1	1-	\uparrow	f.		-+	1	╈	
	╞─┦							÷.							10.0	-+-	1	†-†		+		+-			+	+	+	+	+	+	1		-	+	+	-
5 24 25 26 27 28 29 30											8-C-2 80-4		L. A.N	100							-						\pm			<u>+</u>	t		-	-		

Form 1112-2 Rev. 5/75

9

Sheet ____ of ____

.

tained on flexible pavement may be processed through the computer terminal in the District with the report also returned to the terminal. Deflection information collected on rigid pavement must be keypunched at the District and the information forwarded card by card over the terminal to the central computer. When the information is received at the central computer, the data will be manually processed using a source program deck and the report returned via the District computer terminal.

IV. CLIMATIC DATA

It is postulated that the climate affects pavement performance significantly, yet there is little known about these effects. Presently, some knowledge is being gained about climate and pavement performance through the study of soil suction, thermal cracking and shrinkage cracking occurring in the pavement structure. There is also some knowledge available from the study of vehicluar accidents related to skidding in inclement weather. Based on this information a Climatological Data File (CDF) was developed.

A large portion of the CDF was developed from Carpenter, et.al. in Research Report 18-1 and from McCullough in Research Report 123-14.^(3, 4) However, input concerning the file was also obtained from several Divisions. A search indicated that several state agencies in Texas have need of climatic data. As a result the Texas Water Development Board maintains several types of climatic data files which are available for all state agencies. Contact was made with the Texas Water Development Board (TWDB) and this agency graciously assisted the project by forwarding the initial data, indicating that yearly data would be available upon request. Much of the TWDB data was originally obtained from the National Weather Service and several data items are available. Three data items were selected for the CDF. These items are maximum temperature (AT), minimum temperature (IT) and precipitation (P). Daily records were selected and the latest 20 years of data were obtained for the file. The amount of data in the file will be constant. Only 20 years will be maintained with the current data added each year and the oldest (the 21-year-old data) removed from the file. The data will consist of daily records of maximum temperature, minimum temperature and precipitation.

There are many weather reporting stations in Texas. Generally, there is at least one station in each county. However, there are some counties without a station and many stations maintain only a minimum number of data items. For example, most stations measure P but not all measure AT and IT. Also the amount of data collected at a station varies (probably because the station keeper is away from the station). Also some stations close during the year and new stations are opened. Therefore, it was decided to maintain a file of the data from one station in each county as the primary county station with one additional station in the county as a secondary station where at least two stations were available in the county. There are 254 counties in Texas and the original CDF was established with approximately 254 primary stations and 182 secondary stations for a total of 436 stations. Where a station was not available in a county, a station in a nearby county was selected to represent that county. In other words, departmental personnel can request CDF data for any county and receive the best information available. A current list of stations are shown in Appendix A.

11

The file format was as follows:

a.	District	2	Columns
ь.	County	3	Columns
с.	Reporting Station Number	4	Columns
d.	Year of Data	2	Columns
e.	Month of Data	2	Columns
f.	Day of Data	2	Columns
g.	Calculated Default (Concerned	1	Column
	with data reporting variation)		
h.	Maximum Temperature	3	Columns
1.	Calculated Default	1	Column
j.	Minimum Temperature	3	Columns
k.	Precipitation	4	Columns
	•		

The file resides on magnetic tape. The approximate size of the file is:

436 Stations 29 Daily file format 365 Days 20 Years 92,301,200 Bytes

In addition to the establishment of the CDF, a computer program was developed to produce a yearly climatic report for each county. An example of the yearly report for one county is shown in Figure 5. Initially a report was prepared for each county and for each of the 20 years involved (1955 to 1974). The program was established to not only process and file the new data incoming from TWDB each year but to produce the report for each county at that time. The basic format of the report was obtained from Research Report 18-1 by Carpenter, et.al.. The upper table was used by Carpenter to show the manual calculations involved in producing a yearly Thornthwaite Moisture Index which is explained in Carpenter's report. Since these calculations show monthly precipitation, evapotranspiration, estimated water deficits in the soil, estimated storage, and estimated water surpluses, it was decided to also indicate these values in the report. The Thornthwaite Moisture Index is believed to be an indicator of shrinkage cracking occurring in subgrade and base and may be used in the future to improve pavement performance by applying the Index to the various soils and roadway conditions found in a given region. The number of freeze-thaw cycles combined with the precipitation and temperature information was believed to be related to pavement surface and base distress. The precipitation, number of days with precipitation, and number of days with continuous precipitation were believed to be of interest to highway safety engineers in the study and prevention of accidents.

It should be stated that the calculations of the Thornthwaite Moisture Index use only the minimum amount of climatic data available from the CDF and therefore should be considered as estimated values. A better explanation may be found in Research Report 18-1. As stated previously, the data from TWDB contained gaps or missing information on some days. On occasion, daily information would be missing for a month

	STATE DEPARTMENT OF HIGHWA PROGRAM P260697C (TWDBRPR 1976 CLIMATOLOGICAL DATA F SUMMARY FOR DISTRICT 06, C	T) FROM STA	TION 5890		08/17/77	P	AGE 67						
t. E		JA N	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	DC T	NOV	DEC
	POTENTIAL EVAPOTRANS	C.44	1.62	1.75	2.97	3.71	5.91	5.27	6.12	4.36	1.96	0.68	0.47
	PRECIPITATION	0.03	0.18	0.30	2.02	1.08	2.14	3.56	0.84	1.25	1.84	0.26	0.08
	MDISTURE CHANGE	- 0. 41	-0.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	C. OC	0.00	0.00
:	WATER STORAGE	0.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	ACTUAL EVAPOTRANS	C• 44	0.35	0.30	2.02	1.08	2.14	3.56	0.84	1.25	1.84	0.26	0.08
	WATER DEFICIT	0.00	1.27	1.45	0.95	2.63	3.77	1.71	5.28	3.11	0.12	0.42	0.39
	WATER SURPLUS	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	THORNTHWAITE MOISTURE INDE	X = ((1	OC * ACCUM.	SURPLU	S) - (60 -	* ACCUM.	DEFICIT}	/ ACCUM.	PDTENTIAL	E VAPOTRA	ANS = -35	5.90	
	FREEZE-THAW CYCLES	15	4	2	0	0	0	0	0	0	0	6	20
	WET FREEZE-THAW CYCLES .	2	0	0	0	0	0	0	0	0	٥	1	0
	DAYS WITH PRECIPITATION.	2	1	3	6	6	6	11	3	8	, 7	2	1
13	MAX. DAYS CONT. PRECIP	1	1	2	1	1	4	5	2	4	3	2	1
	MEAN MAX. TEMPERATURE	59	73	72	79	82	91	86	93	83	72	59	60
	AVERAGE TEMPERATURE	44	56	57	65	68	78	76	79	72	58	47	44
	NOT E1 - SUMMARY FOR A MONT A. 4 OR MORE PREC B. 11 OR MORE COM NDT E2 - STORAGE (FOR CARRY A. AN EXPANSION C B. IF FEWER THAN NOT E3 - THORN THWA ITE NOT C NOT E4 - CL IMATOLOGICAL SUM NOT E5 - FREEZE-THAW CYCLE NOT E6 - TEMPERATURE FIGURE NOT E7 - FROM MOE & GRIFFIT NOT E8 - STATION 5890 USED	IPITATIO IBINED MA FORWARD FPRECIS 7 READIS ALCULATO IMARY NO COUNTED SREPOR INS" 'A	DN READING S A XIMUM AND TO MONTH 4 DITATION BA NGS, A DIRE ED IF 'NC F T PRINTED I IN MONTH E TED IN DEGF SIMPLE EVA	S FOR TH MINIMUM - 1) FOR SED UPD ECT FORW. REPORT F 'NO R SEGUN. REES FAH NPCRATIO	AT MONTH TEMPERATO A 'NO RE N ATLEAST ARD SHIFT MONTHS GR EPORT' MO PRECIPITA RENHEIT. N FORMULA	ARE NOT A JRE READI PCRT' MON 7 READIN CF STORA EATER THA NTHS GREA TION CUT PRECIPIT FCR TEXA	VAILABLE C NGS FOR TH TH IS GS MINUS M GE FROM MC N 2. TER THAN I AT END OF ATION FIGU	HAT MONTH IDISTURE I INTH - 1. LO. MONTH. IRES REPO	CHANGE OR Rted in in	ICHE S.			

٠

.

.

- 🔿

.

÷

.

.

.

.

٠

٠

.

.

FIGURE 5: CLIMATOLOGICAL DATA YEARLY REPORT

,

or more. TWDB furnished information as to the continuity of the data for the stations available in Texas. Before the stations were selected, this data was studied and the stations with the longest and most productive history of data collection recieved priority consideration. However, it became necessary to establish a technique of data processing for the stations selected. This technique was as follows (with respect to data gaps):

- 1. Information for a given month was not shown on the Climatological Summary report if
 - a. Greater than 10 days of information was missing for the AT or IT. The information was not considered if one or both of the temperatures were missing on a given day.
 - b. Greater than 3 days of P information was missing.
- 2. The Thornthwaite Index was not calculated for a given year if data was missing for more than two months.
- 3. In years where at least 2 months of data was available, the data was given in the Climatological Summary report. If there were less than 2 months of data available, the report was not developed for that year.

Based upon the information above, a value of 29°F rather than 32°F was selected as the point of determining freeze-thaw data. This value stems from the fact that at a given depth pavements do not freeze at an ambient air temperature of 32°F but at a lower temperature which is basically dependent on the depth in the pavement structure at which it is desired to determine the freezing point. Basically, Texas is not subjected to long periods where the temperature is below freezing and ice lenses form. Rather, most of the pavement structural damage results from the freeze-thaw cycles of which there may be several. Therefore, a depth of one inch was selected as the depth for calculations. In other words, the ambient air temperature was determined when the pavement was freezing at a one inch depth. The method of obtaining this temperature value was selected from Research Report 123-14 by McCullough.

The CDF has been updated on two occasions, with 1975 and 1976 data, since initiation. The file is available for District use and for state research agencies. At present the Center for Highway Research and Texas Transportation Institute have requested and recieved copies of the file. Detailed information of the program and file is available in the Texas Weather Data Collection and Retrieval System Manual published by the Division of Automation (D-19).⁽⁵⁾

V. CROSS SECTION AND MATERIALS DATA

As originally conceived, this project would study the available sources for cross-section and materials data and develop methods for collecting the data where needed. An automated method of data collection, storage and retrieval was needed. Cross-section data would include both horizontal and vertical locations of each of the pavement structural layers. In this manner, thickness and depths of the structural layers would be available to personnel studying pavement performance. The location or deletion of various layers after reconstruction or rehabilitation was needed. Materials information would include such items as:

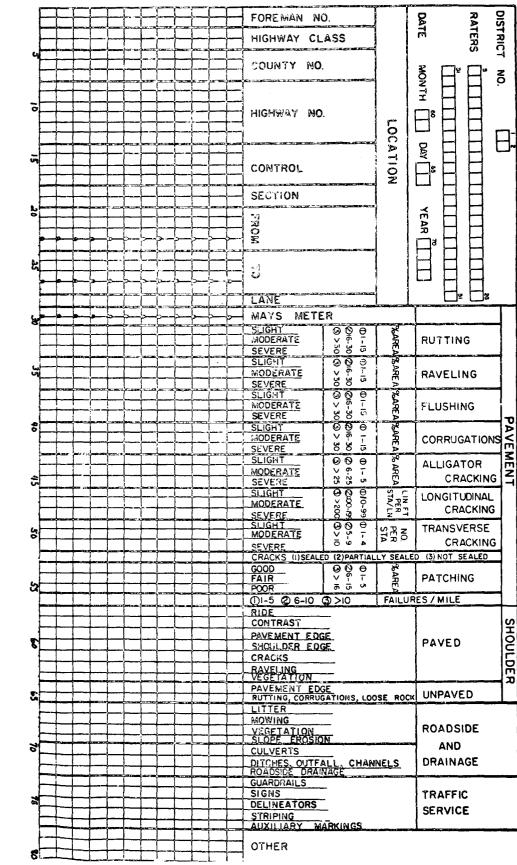
- 1. Pavement type (for example, continuously reinforced concrete paving, dense graded asphaltic concrete, etc.)
- 2. Material type of the various structural layers (Example crushed limestone base)
- Binder type and content of the various structural layers. (Example - 4 percent cement stabilized)
- 4. Material type and features of the subgrade (for example, clay, triaxial class 5.2)

The materials information should be correlated with the cross section information.

The researchers were aware of an existing study which had developed a method whereby the materials and cross-section information could be stored and retrieved in an automated manner. This was study 2-8-75-207 entitled "Flexible Pavement Evaluation and Rehabilitation." The subject study visualized implementation of the method developed by study number 2-8-75-207. Implementation would have included some revisions to the method; establishment of a file; suggestion and promotion of revised code sheets and procedures for obtaining information from the final construction plans (and manual files); and would have begun the task of obtaining, coding and storing information of existing roadways. Problems with implementation arose from the fact that several items of the materials and cross section data are available in existing Road Inventory and Road Life files and duplication of data would exist.

During the course of the study, the Department secured the services of a group of consulting engineers to develop a plan entitled "Management Information System". This plan included a subprogram in which pavement evaluation was included. A major thrust of the "Management Information System" was toward combining several files and eliminating duplicate data. It was believed this portion of the project should not be continued because of the conflict with the "Management Information System" study,

VI. VISUAL RATING


During the course of Research Project 2-18-71-151 "Maintenance Quality, Methods and Rating" a procedure for collecting visual rating information was developed.⁽⁷⁾ The procedure was adapted from the "Washington State" procedure and included several modifications. Code sheets for data collection are shown in Figures 6 & 7. The procedure was quickly adopted and several districts began inventory work on a regular basis. A series of reports were prepared by the project staff and an example is found in Figure 8. With these reports and the urging of study personnel and personnel from the Maintenance Operations Division, the Districts began using the information in various ways.

One use was in developing budget information concerned with maintenance improvements of "worse condition" roadways. The extent and amount of damaged roadway suggested the type and quantity of maintenance needed. Materials, manpower and equipment could be estimated along with associated costs. Maintenance engineers and foremen would receive aid because "worst condition" sections could be treated with a limited budget. However, two problems exist and both are related to future needs.

First if long range budgets are needed it will be necessary to determine the deterioration of roadway performance. How long can a pavement with various degrees of minor damage last before major maintenance is needed? Second, what life can be expected of various maintenance techniques? To answer these questions it will be necessary to maintain a history of periodic pavement distress measurements. Therefore, it was the intent of this study to develop a method of automated storage and retrieval of the pavement distress data.

One report developed by the Project 2-18-71-151 staff consisted of a straight line map of the present pavement evaluation data which was produced by the computer. (See example Figure 9) The report included skid resistance, roughness and deflection data. The subject project obtained the program from the Project 2-18-71-151 staff of Texas Transportation Institute and assisted in preparing the program and code sheets for use in the departmental computer system. Assistance was also offered to Districts in explaining the data input and in obtaining data. During the course of the study, a group of consulting engineers were engaged by the Department to develop the mentioned earlier plan entitled "Management Information System". A portion of this program was directed toward a "Roadway Maintenance System". The "Roadway Maintenance System" subprogram included pavement evaluation and the reports necessary for maintenance management. The development of further reports and information related to distress was found to be in conflict with this part of the subject study. At the request of the administration, further efforts to develop pavement distress reports were stopped.

(AFTER EPPS ET AL, RESEARCH REPORT 151-2)

MAINTENANCE RATING FORM FOR FLEXIBLE PAVEMENTS

FIGURE

ნ:

AFTER EPPS ET AL RESEARCH REPORT 151-2

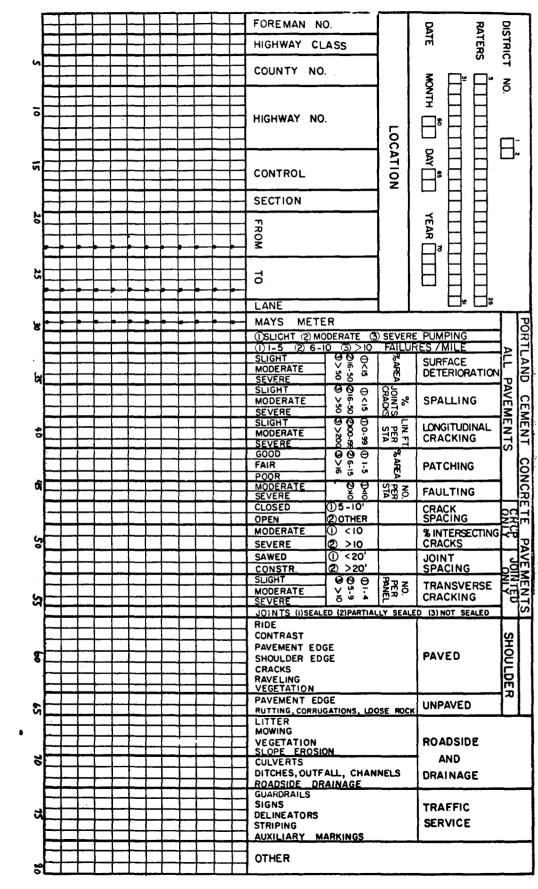


FIGURE 7: MAINTENANCE RATING FORM FOR RIGID PAVEMENTS

DISTRICT NO. 3 -- SORT BY COUNTY

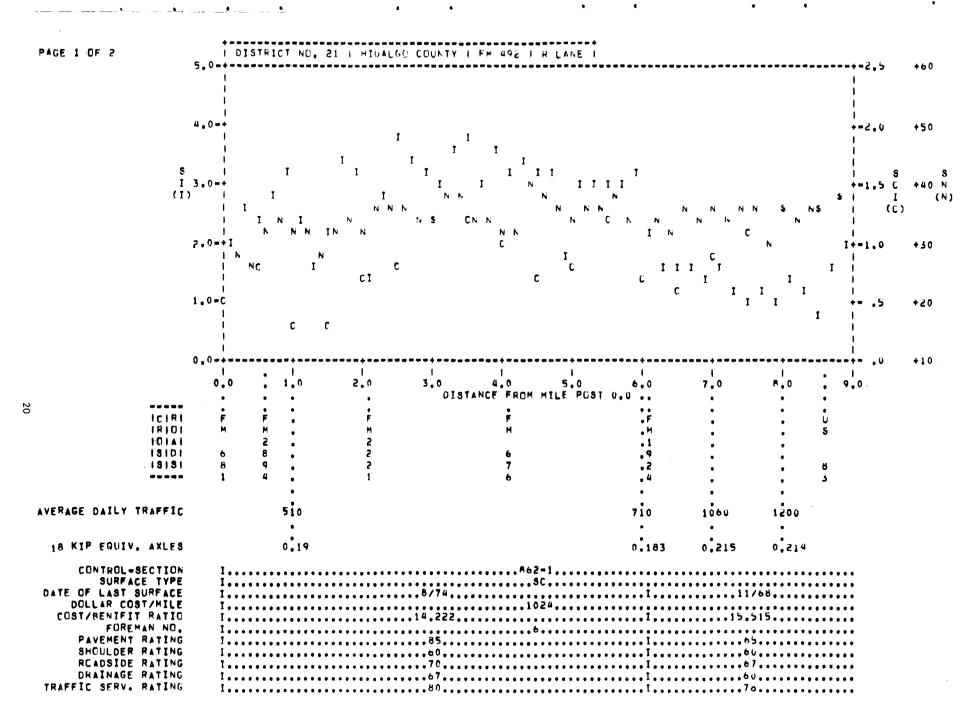
.

.

.

.

.


	*ROADSIDE****	***
	≠≠≠≈≠≠≠≠ ≠≠≠≈±≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠	FC*
	PAVEMENT * SHOULDER *DRAINAGE*SERV	√ S. *
	*******	******
	* * * C * * L * * * * * PAVED *UP* * *	* *
· · · · ·	* * * 0 * * 0 * * * * * * * * * * * *	* *
	* * * R * * N * T * * * * * R* * *	* *
	* * * R * A * G * R * * * * * U* * *	A* *
	* R * F * U * LC* IC* AC* * *F* * T* * DR*	U* *
	R * A * L * G * LR* TR* NR* * *A* * T* * ID*	X* *
	U * Y * U * A * IA* UA* SA* * *I* * I* * TA*	I* *
******	T * E * S * T * GC* DC* VC* * *L* * N* * .D*	L* *
* * +* * * * * * * * * * * * * * * * *	T * L * H * I * AK* IK* EK* P *C*U* PS *PG* S* S*	1* *
* * I* * * * * * * * * * *************	I * I * I * O * TI* NI* RI* A *R*R* AH *A * L* OI*	Δ* *
* * 3* * * * * * * * * * * * * * * *		
* F* -++ * + * * * * * * * * * * * * * *		••
	* * * * * * * * H *K* * ML E*MR* EE* A *U L	-
# R# 4# U # G # # # # # # # # # # # # # # # #	M * M * M * M * M * M * I * *P* CED RG*ER* G *CLD*A IS	
	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * N *S*E* DNE AE*NU* EE*U.R*R N	
	SDS+SDS+SDS+SDS+SDS+SDS+ G +E+R+ NTRCVT+TG+LMTR+L A+D ER	
* A* G* T * A * N * C* O * T * **N** E * U * D * I *	LEENLEE*LEE*LEE*LEE* *A* * T REA* A*IDAD*VCI*RSAI	
	IRV#IRV#IRV#IRV#IRV#IRV#GFP#L#N#RREEALT#ET#TWTS#EHN#AITF	
	GAE+GAE+GAE+GAE+GAE+GAE+GAE+OAO+I+I+IADDCII+DI+TIII+RAA+IGOI	
	HT R*HT R*HT R*HT R*HT R*HT R*HT R *OI O*N*L*OS GG KND*GD*E NOO*T NG*L NRM	· · ·
	TEE#TEE#TEE#TEE#TEE#TEE#DRR+G#E#ETEESGN#EN#RGNN#S.E#SSS	GS* R *
***************************************	********************	******
* 5* 3*252*1H 35* 22* 1* 5.2* 9.8* S*3.9* 86* 84* 87* 98*10		* 8*
+ 5+ 3+252+IH 35+ 22+ 1+ 5.2+ 9.0+R+3.9+ 89+ 86+ 77+ 87+ 8		
* 5+ 3+252+1H 35* 22+ 1* 5.2* 9.0*M*4.0* 89* 83* 87* 90*10	1 *1 * * * * *1 * *2* *211313'* *2111*111*	* 8*
* 5* 3*252*1H 35* 22* 1* 5.2* 9.0*L*4.0* 89* 84* 82* 87* 8	3 * * * * * *1 * *2* *3111131* *2113*121*2112	2 * 8*
* 5+ 3+252+1H 35+ 22+ 1+ 5.2+ 9.0+X+3.8+ 86+ 79+ 85+ 90+ 8	*3 * * * * * * * * * * * * * * * * * *	12* B*
* 5* 3*252*IH 35* 22* 1* 5.2* 9.0*A*3.7* 86* 74* 80* 90* 8	*3 * * * * * *1 * * *1343223* *2222*111* 22	12* B*
* 5+12+252+US 283* 89* 1* 0.0* 5.2*S*4.6* 88+160+160+100+100+10	* *1 * * *1 *2 * *3* * * * * *	* A*
# 5#12#252#US 283# 89# 1# 0.0# 5.2#R#3.9# 65# 71# 75# 89# 6		46* A*
* 5+12+252+US 283* 89* 1* 0.8* 5.2*N*3.8* 79*100*100*100*10		* A*
+ 5+12+252+US 283+ 89+ 1+ 0.8+ 5.2+L+3.5+ 71+ 80+ 75+ 88+ 6		46* A*
* 5* 1+252+FN 578+1031* 7* 0.0* 4.6+R+3.2* 55* 70* 85* 83* 8	*2 * * *1 *2 * 1*1 *2* * *33*2211*212* 23	
* 5* 1+252 *FH 578+1031* 6* 4.6* 8.2*R*3.0* 42* 70* 87* 87* 8		-
· · · · · · · · · · · · · · · · · · ·	*********	******

4

.

•

19

.

FIGURE 9: MAINTENANCE RATING PLOT

VII. VERTICAL PHOTOLOGGER

Part of the pavement distress information explained previously will be collected on high volume facilities. To collect the data it is necessary to walk on the travel lanes, closely observing the pavement surface. This can be dangerous for both the visual rating team and traffic operating on the highway. Therefore, it was desired to develop equipment which could obtain pavement distress information without the necessity of a collection crew walking on the pavement surface. The result was a Vertical Photologger.

The word "vertical" was used in the nomenclature to distinguish the equipment from photologgers which obtain photos through the windshield of a moving vehicle in a near-horizontal manner. It was desired to obtain photographs from a moving vehicle at a speed close to that of the surrounding traffic using relatively simple, low-cost data collection and processing equipment. Considerable aid was received from Center for Highway Research Personnel who had obtained vertical photographs from a moving vehicle while involved in research project 3-8-75-177 "Development and Implementation of Design, Construction and Rehabilitation of Rigid Pavements."

The equipment developed consisted of a boom mounted on the rear of an MRM trailer (See Figure 10). A 35 mm camera was mounted at the top of the boom at a height of eight feet. The camera was controlled from the towing vehicle.

In studies conducted before the purchase and fabrication of the equipment, a continuous strip camera, a movie camera and a television system were considered and discarded. The continuous strip camera proved too costly for the project budget. The movie camera and televison camera were not available with sufficient shutter speeds to prevent "speed blurr" when installed in a rapidly moving vehicle. When the camera is mounted vertically at a relatively low height, the film should be exposed a very short period of time. Long periods of film exposure allow the pavement surface to move relative to the camera resulting in a blurred photograph. Experiments with a leased camera indicated that the shutter speed should be some what less than 1/1000 second at 40 mph with an eight foot height and with the desired "F stops".

Therefore a 35 mm camera with the following features was called for:

- 1. To have a variety of shutter speeds but with one speed being less than 1/1000-second.
- 2. To be equipped with a large film magazine.
- 3. To have a motorized film advance.
- 4. To have the capability of obtaining exposures rapidly, possibly on a timed interval.

The low bidder made available a Nikon F25 system with a frame back equipped with a 250 frame magazine. The camera with accessories is shown in Figure 11. The camera has a motorized film advance and shutter speeds of

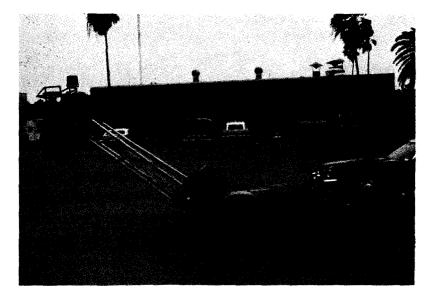


Figure 10 Vertical Photologger

Figure 11 Camera System

one second to 1/2000-second. The motorized film advance allows exposures at a rate up to 5 frames per second along with manual activation of a single frame if desired.

A 24 mm, F2.8 wide angle lense was selected to obtain a 35 mm slide covering an approximate 8 X 12 - foot surface area from the eight foot height. A small amount of distortion may be noted at the edges of the slide, but this distortion was not believed to be important because of the type and accuracy of the data needed from the photograph.

The film advance was modified so that the film was advanced on the basis of a length pulse rather than a timed advance. This modification uses a Distance Measuring Instrument system obtained from Numetrics, Inc. The modification allows shutter activation and film advance of various towing vehicle speeds even during acceleration. There is a maximum speed at which the vehicle can be driven since the camera has a maximum speed at which the film will advance and the shutter will activate. When the camera is mounted with a 12 foot transverse width and a 8-foot longitudianl length, consecutive, end-to-end photographs may be obtained at 20 mph. The photographs will have a 6-inch overlap on each end. When the camera is mounted with an 8-foot transverse and a 12-foot longitudinal coverage area, a speed of 30 mph can be used, producing photographs with the characteristics of those mentioned above.

The processed film is returned in roll form which contains up to 250 frames. This film could be cut and mounted to form 250 slides. However, it was more convenient to maintain, analyze and store the film in roll form. The projector purchased handles the film in roll form however, the only projectors available were those which projected only one-half of the frame or slide and it was necessary to advance the film in the projector to view the remaining half. The projector was therefore modified so that full frames could be viewed.

For analysis, the film was projected on a standard screen, the pavement surface studied visually and the pavement distress information coded directly on a data form as previously shown in Figures 6 and 7. Not all of this visual rating information can be obtained from the film produced by the Vertical Photologger. In the flexible pavement data sheets it may be noted that shoulder, roadside, drainage and traffic service information are also obtained. It is difficult to obtain rutting and corrugation information from the film. Therefore, a second pass of the vehicle or a trip by the rating team will be necessary to obtain shoulder, roadside, drainage, traffic service, rutting and corrugation information. This information can be obtained while in a vehicle parked or traveling slowly along the shoulder. Flushing, raveling, alligator cracking, longitudinal cracking, transverse cracking, patching, sealing and failure information may be collected from the film.

For rigid pavements, pumping, failures, surface deterioration, spalling, longitudinal cracking, patching, crack spacing, crack intersection, joint spacing, transverse cracking and crack sealing information can be obtained from the film. Shoulder, roadside, drainage and traffic service information should be obtained from the vehicle parked or traveling slowly along the shoulder.

The photographic method of collecting pavement rating information was checked for accuracy by analyzing both the photographs and the usual roadway methods. The Vertical Photologger was used to obtain information over a preselected section of pavement and the same section was analyzed by visual observation while walking along the pavement surface. The processed film was than analyzed. Ten sections of pavement with varying surface distress were selected for study. Five men were used in analyzing the photographic material and three men collected information from the roadway. Each analysis was performed independently with no consultation between men until after the work was completed. Two of the men analyzed both the roadways and the photographic material. Only the cracking information was tested. The results are shown in Table I. The values recorded in Table A are based on information developed for Research Report 151-2 and shown in Figures 6 and 7. The information shown in these figures shows a code number to be used for extent of damage. This number is to be shown in a certain column which indicates the severity of damage when considering the major heading "pavement". The code numbers are:

1. Used for the smaller % areas, lineal feet, or number

2. Used for medium extent of damage

3. Used for the larger extents of damage

The severities are:

Slight Moderate Severe

Therefore refering to Table I, a "1 sli" under Alligator would be a pavement which has alligator cracking over 1 to 5 percent of the surface area. The cracks are slight with very small widths and no spalling or pumping around the crack. As a future example, if Table I contained a 3 Sev under "Long" the pavement would have greater than 200 lineal feet of longitudinal cracking per station per lane. The cracking would be relatively wide with spalling or pumping possibly associated with the cracking. A 2M under "Trans" would indicate 5 to 9 transverse cracks per station with a moderate crack width and a small amount of spalling or pumping at the crack.

Note that the data on Sections 3, 4 and 6 shown in the Table A indicate minor cracking. These sections were selected because of the minor cracking and also because the cracks had very small widths. In fact, in the visual observations on the roadway it was necessary for the eye to be close to the surface before the cracks could be detected. There was concern that the film might not show the cracks with the lens and camera height which was used whereas the cracks could be found in usual observations of the roadway. This concern proved to be partially well founded TABLE I COMPARISON OF PHOTOGRAPHIC AND ROADWAY ANALYSES

	Photo Determination				Roadway Determination			
Sect.	Indiv.	Alligator		Trans.	Alligator	Long.	Trans.	
1	a.	1 Sli	2 M	1 Sli				
	Ъ					1 M	1 M	
	c.		1 M	2 M	1 Sli	1 M		
	d.		2 M	2 M		2 M	2 Sev	
	e.		2 M	2 M				
	f.		3 M	3 M				
2	a.		1 M	3 M				
	Ъ.					1 M	2 M	
	C.		2 M	2 M		1 M	2 M	
	d.		1 M	2 M				
	e.		1 M	3 M	••••••••••••••••••••••••••••••••••••••			
	f.		1 M	2 M				
3	a.		1 M					
	Ъ.					0		
	с.		1 S		1 S1i			
	d.	2 Sli			1 S11			
	е.		0					
	f.		0					
4	a.	1 S11		1 Sli				
	b.				1 M			
	с.			1 Sli	1 S1i			
	d.	2 Sli					1 Sli	
	e.		0					
	f.		0					
5	a.	1 S1i	1 Sev					
	b.				2 M	2 Ser		
	c.		2 M		2 M	2 M		
	d.	2 S1i	2 Sev					
	e.		2 M					
	f.		3 Sev					
6	a.		0					
	b.			1 01 1		1 M		
	c.			1 Sli		1 M		
	d.		0			1 S li	1 S1i	
	е.		0					
	f.		0					

TABLE I CONTINUED

	Photo Determination				Roadway Determination			
Sect.	Indiv.	Alligator			Alligator			
7	a.	2 M						
•	b.				2 M	1 S1i		
	с.	2 M			2 M			
	d.	3 M			2 S1i	1 Sli		
	e.	1 M			2 011			
	f.	2 M						
8	a.	2 M						
	Ъ .				2 M			
	с.	2 M			2 M			
	d.	3 M			2 Sli			
	e.	2 Sev						
	f.	3 M						
9	a.	3 M						
2	b.	0			2 M			
	с.	3 Sev			3 M			
	d.	3 Sev			3 S11			
	е.	3 Sev			JUIL			
	f.	3 Sev						
10	a.	1 Sli						
	Ъ.				2 S11			
	с.	1 Sev			2 M			
	d.	2 S			2 S1i	1 Sli		
	e.	1 M						
	f.	2 Sev						

since the observers labeled "e and f" could not find cracking on these sections from the film. However, the observer labeled "b" did not find cracking in the film but did note cracking on the roadway. Therefore the determination of very small cracks from film could be a problem. However, this problem might be reduced since the roadway to be measured carries heavy traffic volumes and surface distress would be very evident. Also, it would be difficult to perform minor maintenance because of the traffic, therefore, only major maintenance or rehabilitation would probably be involved.

Table I shows considerable variation between observers. Some of this variation probably stems from the difficulty of rating between crack types. For example there were differences of opinion as to whether a pavement has alligator cracked or has a series of closely spaced transverse and longitudinal cracks. In almost every section there was also a difference of opinion between observers concerning the extent and the severity of distress. However, there were also differences of opinion when comparing photographic determinations with roadway determinations.

Epps et al, in Research Report 151-2, also offered a method of arriving at a numerical value representing the pavement condition which was called the "Pavement Rating Score". This method proposed a value of 100 to represent an excellent pavement condition and used certain values to deduct from this value for the various extents and severities of the distress. The deduct values which were proposed in Research Report 151-2 are found in Table II and III. These values were used in conjunction with Table I to form the information shown in Table IV. It may be noted that the deduct values are shown as having been calculated from the rating of each observer. Again Table IV indicates some variation between observers and between data collection methods. It would appear the overall differences between observers and collection methods are similar.

It was postulated that the best method of determining if the equipment produced acceptable results was to compare the variation or differences in deduct values between the data collection methods (photo verses roadway) with the variation in deduct values found between observers. If the variation between data collection methods was greater than the variation between observers, some doubt would exist as to whether the equipment was adequate. However, if the variation between observers proved greater than the variation between collection methods the equipment could be used since more error could be found due to individual opinion.

In order to obtain a more error-free analysis of the equipment, the data from observer "c" and "d" was used since they analyzed both the photographic material and the roadway. Table V shows the data and results of this analysis. The data was obtained directly from Table IV. Table V indicates the differences in deduct values found between the photo determinations and roadway determinations for each observer. The table also indicates the differences in deducted values found between individuals for both photo and roadway determinations. The differences appear to:

1. Be random from section to section.

Type of Distres	S	Degro	es of Dis	tress		ent or 1)	Amount (2)	of Di	stress (3)
Rutting			Slight Moderate Severe	2		0 5	2 7 12		5 10 15
Raveling			Slight Moderate Severe	2]		8 12 18		10 15 20
Flushing			Slight Moderate Severe	2]		8 12 18		10 15 20
Corrugations			Slight Moderate Severe	2]		8 12 18		10 15 20
Alligator Crack	ing		Slight Moderate Severe	2]]		10 15 20		15 20 25
Patching			Good Fair Poor			0 5 7	2 7 15		5 10 20
<u>Deduct Points f</u>	or Cra	<u>cking</u>							
Longitudinal Cr	acking								
	(1)	Sealec (2)	1 (3)	Part (1)	tially Se (2)	aled (3)	Nc (1)	ot Sea (2)	led (3)
Slight Moderate Severe	2 5 8	5 8 10	8 10 15	3 7 12	7 12 15	12 15 20	5 10 15	10 15 20	15 20 25
Transverse_Crac	king								
Slight Moderate Severe	2 5 8	5 8 10	8 10 15	3 7 10	7 10 15	10 15 20	3 7 12	7 12 15	12 15 20
Failures					20	<u> </u>	30		40
Mays Meter	Dedu SI	ct Poi	ints $\frac{50}{2.4}$	40 1 2.7	$ \begin{array}{c} 30 & 20 \\ 1 & 1 \\ 2.9 & 3.1 \end{array} $	10 <u>1.</u> 3.3	5 0 1.1 3.5 4.	7	

TABLE II: DEDUCT VALUES FOR FLEXIBLE PAVEMENT

Type of Distress	Degrees of Distress	Extent or (1)	Amount o	f Distres (3)
Pumping		20	40	60
Failures/Mile		20	30	40
Surface Deterioration	Slight	5	10	20
	Moderate	10	20	30
	Severe	20	40	60
Spalling	Slight	5	10	15
	Moderate	10	15	20
	Severe	20	40	60
Longitudinal Cracking	Slight	5	10	15
	Moderate	10	15	20
• •	Severe	15	20	25
Patching	Good	0	2	5
	Fair	5	7	10
	Poor	7	15	20
Faulting	Moderate	5	15	
	Severe	15	40	
Crack Spacing	Closed	0	10	
	Open	15	40	
% Intersecting Cracks	Moderate	5	15	
	Severe	15	40	
Joint Spacing	Information Only			
Transverse Cracking				
If Joint Spacing is le		F	10	20
	Slight Moderate	5	10	20 30
	Noderate Severe	10 15	20 30	30 40
The Indiana Cara I and				
If Joint Spacing is gr	ceater than 20 feet. Slight	0	5	10
	Moderate	5	10	20
	Severe	10	15	30
Joints		0	10	20
Failures		20	30	40
Mays Meter Deduc	t Points, 50 40 30	20 10	5 0	
SI	2.4 2.7 2.			7
TABLE III:	DEDUCT VALVES FOR RI	GID PAVEMEN	Г	

TABLE IV								
DEDUCT	VALUES	FOR	рното	AND	ROADWAY			

Sect.	Indiv.	Photo Determin.	Roadway Determin.	Sect.	Indiv.	Photo Determin.	Roadway Determin.
1	a. b. c. d.	20 17	17 15 27	6	a. b. c.	0 8 0	13 13 8
	а. е. f.	27 22 30	21		d. e. f.	0 0 0	o
2	a. b. c. d. e. f.	15 16 13 15 17	13 13	7	a. b. c. d. e. f.	15 20 10 15	20 15 15
3	a. b. c. d. e. f.	5 2. 10 0 0	0 5 5	8	a. b. c. d. e. f.	15 20 20 20	15 15 10
4	a. b. c. d. e. f.	8 5 10 0 0	10 5 3	9	a. b. c. d. e. f.	20 25 25 25 25 25	15 20 15
5	a. b. c. d. e. f.	20 15 25 15 25	35 27	10	a. a. c. d. e. f.	5 15 10 10 20	10 15 15

Sect.	Observer	Photo Determin.	Roadway Determin.	Diff. Photo: Road For C	Diff. Photo: Road For D	Diff. Between Observers Photo	Diff. Between Observers Road
1	с	17	15				
	d	27	27	+2	0	-10	-12
2	c d	16 13	13	+2		+ 3	
3	c d	2 10	5 5	-3	+5	- 8	0
	u	10	J	j		- 0	U
4	c d	5 10	5 3	0	+7	- 5	+ 2
5	c d	15 25	27	-12		-10	
6	c d	8 0	13 8	5	-8	+ 8	+ 5
7	c d	15 20	15 15	0	+5	- 5	0
8	c đ	15 20	15 10	0	+10	- 5	+ 5
9	c d	25 25	20 15	+5	+10	0	+ 5
10	c d	15 10	15 15	+5	0	+ 5	0
		Average		3.5	4.5	5.9	3.6

TABLE V COMPARISON OF DATA COLLECTION METHODS AND OBSERVERS

ŧ

٠

r

.

.

,

Note the "---" indicates the section had been sealed before "d" could observe the section. A "-" indicates the roadway or observer "d" had a greater value.

31

.

.

.

2. Show little overall variation between observers and collection methods. The average difference between observers (discounting sign) was found to be 3.5 for observer "d". The average difference between the collection methods was found to be 5.9 for the "Photo" and 3.6 for the "Roadway".

Therefore, it is recommended that the Vertical Photologger be used to obtain pavement distress information on high speed, high volume facilities to reduce danger to rating crews and traffic. The cost of the equipment is estimated to be \$10.35 per mile. Approximately 50 to 75 miles may be inventoried per day. The estimate is based on sampling the pavement every mile similar to that suggested in the roadway rating. The sample would be continuous, end-to-end frames for a 200-foot distance every mile, with photos also obtained in areas noted from the moving vehicle as being heavily distressed. Twenty-five frames would be obtained every mile. Using a 250-frame magazine, approximately 7 miles could be inventoried before a magazine change. About 15 minutes are needed for a magazine change and about 45 minutes are needed per mile including the magazine change, down time, etc. The cost is approximately \$0.05 per frame for the film and approximately \$0.05 per frame for processing. Therefore, the cost was estimated as follows:

Film - \$0.10/Frame @ 35 Frames	= 3.50
Personnel - 2 Men @ \$100/Day @ 60 miles/Day	= 3.35
Equipment - Vertical Photologger @ \$0.30/Mi	= .30
Traffic Control Personnel - 2 Men @ \$90/Day @ 60 miles/I	Day = 3.00
Traffic Control Equipment - @ \$0.20/Mi Total	= <u>.20</u> \$ 10.35

The analysis of photographic material indicates one person can analyze ten 200-foot sections in about two hours. Each of the ten sections was on a separate roll of film and the time included inserting and removing the film. With this experience as information, one person could analyze the equipment of 40 miles of roadway per day.

REFERENCES

- Curtis L. Goss, Kenneth D. Hankins, Allan B. Hubbard; "Equipment for Collecting Pavement Roughness Information"; State Department of Highways and Public Transportation; Research Report 2-1; December 1976.
- 2. "System SKIDR: Manual for the Automated Skid Resistance Survey"; Texas State Department of Highways and Public Transportation; Transportation Planning Division.
- 3. Samuel H. Carpenter, Robert L. Lytton, Jon A. Epps; "Environmental Factors Relevant to Pavement Cracking in West Texas"; Texas Transportation Institute; Research Report No. 18-1; January 1974.
- 4. Momahed Y. Shahin, B. Frank McCullough; "Prediction of Low Temperature and Thermal-Fatigue Cracking in Flexible Pavements"; Center for Highway Research, Research Report 123-14; August 1972.
- 5. Texas Weather Data Collection and Retrieval System Manual; Division of Automation, Texas Department of Highways and Public Transportation; September 1976.
- 6. Robert L. Lytton, Personal Correspondence, November 8, 1976.
- Jon A. Epps et al, "Roadway Maintenance Evaluation User's Manual"; Texas Transportation Institute, Research Report 151-2; September 1974.

APPENDIX A

CURRENT LIST OF CLIMATOLOGICAL STATIONS

Co. No.	County Nam e	Dist. No.	Primary Location	Locati Number		Location Number
10.	<u>Ittaite</u>		Trimary bocation	Rember	Decondary	Mamber
1	Anderson	10	Palestine	6757		
2	Andrews	6	Andrews	0248		
3	Angelina	11	Lufkin FAA-AP	5424		
4	Aransas	16	Rockport	7704	Aransas Wildlife Refuge	0305
5	Archer	3	Archer City	0313	Dundee 6NNW	2633
6	Armstrong	4	Claude	1778	Wayside	9527
7	Atascosa	15	Charlotte 5NNW	1663	Jourdanton	4647
8	Austin	12	Columbus in Co. No. 45	1911		
9	Bailey	5	Muleshoe 1	6135	Muleshoe 2 (3NW)	6136
10	Bandera	15	Tarpley	8845	Medina	5742
11	Bastrop	14	Red Rock	7497 8221	Elgin Red Seminer 2 ESE	2828
12 13	Baylor Bee	3 16	Seymour Recurille 5 NF	0639	Red Springs 2 ESE	7499
13	Bell	9	Beeville 5 NE Killeen	4791	Stillhouse Hollow Dm.	
14	Bexar	15	San Antonio WB AP	7945	Randolph Field	7422
16	Blanco	14	Johnson City	4605	Blanco	0832
17	Borden	8	Gail	3411	Knapp 6 SW(Co.No. 208)	4841
18	Bosque	9	Whitney Dam	9715	Iredell	4476
19	Bowie	19	Texarkana	8942	DeKalb	2352
20	Brazoria	12	Angleton 2 W	0257	Freeport 2 NW	3340
21	Brazos	17	College Sta. FAA-AP	1889	-	
22	Brewster	24	Panther Junction	6792	Chisos Basin	1715
23	Briscoe	25	Silverton	8323	Quitague	7361
24	Brooks	21	Falfurrias	3063		
25	Brown	23	Brownwood	1138		
26	Burleson	17	Sommerville Dam	8446	Caldwell	1314
27	Burnet	14	Burnet	1250	Bertram 3 ENE	0738
28	Caldwell	14	Luling	5429	Lockhart	5284
29	Calhoun	13	Port Lavaca 2	7182	Port O'Conner	7186
30	Callahan	8	Putnam	7327	Cross Plains	2128
31	Cameron	21	Harlingen	3943	Brownsville WSO-AP	1136
32	Camp	19	Pittsburg 5 S	7066		
33 34	Carson Cass	4 19	Panhandle Linden	6785 5229	Atlanta	0408
34 35	Cass Castro	19 5	Dimmitt 2 N	2464	Dimmitt 6 E	2463
36	Chambers	20	Anahuac TBCD	0235	Dimite 0 E	2405
37	Cherokee	10	Rusk	7841	Jacksonville	4525
38	Childress	25	Childress FAA-AP	1698	Childress 13 NW	1697
39	Clay	3	Henrietta	4093	New Port	6331
40	Cochran	5	Morton 1 WNW	6074		
41	Coke	7	Robert Lee	7669	Water Valley IONNE	9501
42	Coleman	23	Hords Creek Dam	4278	Coleman	1875
43	Collin	18	Lavon Dam	5094	McKinney 3 S	5766
44	Collingsworth		Wellington 2	9570		
45	Colorado	13	Columbus	1911	Eagle Lake	2675
46	Coma1	15	New Braunfels	6276	Canyon Dam	1429
47	Comanche	23	Proctor Res.	7300	Comanche	1914
48	Concho	7	Eden 1	2741	Eden 2 Muserster	2744
49 50	Cooke	3 9	Gainesville	3415 3485	Muenster Corvell City	6130 2024
50 51	Coryell Cottle	25	Gatesville Paducah	5485 6740	Coryell City	2024
52	Crane	6	Crane	2082		
53	Crockett	7	Ozona	2082 6734	Ozona 8 WSW	6736
54	Crosby	5	Crosbyton	2121	Lorenzo	5363
55	Culberson	24	Van Horn	9295	Salt Flat IOENE	7921
56	Dallam	4	Dalhart FAA-AP	2240	Conlen	1946
57	Dallas	18	Dallas FAA-AP	2244	Dal-Ft.W Reg WSMO AP	2242
58	Dawson	5	Lamesa 1 SSE	5013	Ackerly	0034
59	Deaf Smith	4	Hereford	4098		
60	Delta	1	Cooper	1970		

Co.	County	Dist.		Locati	on	Location
No.	Name	No.	Primary Location	Number	Secondary Location	Number
61	Denton	18	Denton 2 SE	2404	Justin	4679
62	DeWitt	13	Cuero	2173	Yorktown	9953
63	Dickens	25	Dickens	2448		
64	Dimmit	22	Catarina	1528	Carizzo Springs	1486
65	Donley	25	Clarendon	1761		
67	Duval	21	Benavides 2	0690	Freer	3341
68	Eastland	23	Eastland	2715	Gorman	3646
69	Ector	6	Penwell	6932	Odessa	6502
70	Edwards	22	Rocksprings	7706	Carta Valley	1492
71	Ellis	18	Waxahachie	9522	Bardwell Dam	0518
72	El Paso	24	Fabens	3033	Ysleta	9966
73	Erath	2	Stephenville WSMO	8623	Dublin	2598
74	Falls	9	Marlin 3 NE	5611		
75	Fannin	1	Bonham	0923	Honey Grove	4257
76	Fayette	13	LaGrange	4903	Flatonia 2W	3183
77	Fisher	8	Rotan	7782		
78	Floyd	5	Floydada	3214	Floydada 9 SE	3215
79	Foard	25	Crowell	2142		
80	Fort Bend	12	Thompson 3 WSW	8996	Richmond	7594
81	Franklin	1	Mount Vernon	6119	Hagansport	3846
82	Freestone	17	Fairfield	3047	Longlake 5 SW	5327
83	Frio	15	Pearsall	6879	Dilley	2458
84	Gaines	5	Seminole	8201	Loop	5351
85	Galveston	12	Galveston WSOCI	3430		
86	Garza	5	Post	7206		
87	Gillespie	14	Fredericksburg	3329	Gold	3605
88	Glasscock	7	Garden City 1 E	3445		
89	Goliad	16	Goliad	3618	Goliad 1 SE	3620
90	Gonzales	13	Gonzales	3622	Nixon	6368
91	Gray	4	Pampa No. 2	6776	McLean 3 E	5770
92	Grayson	1	Denison Dam	2394	Sherman Pump Sta.	8274
93	Gregg	10	Longview	5341	Gladewater 3 WSW	3565
94	Grimes	17	Bedias	0635	Richards	7586
95	Guadalupe	15	New Braunfels	6276	Canyon Dam	1429
96	Hale	5	Plainview	7079	Abernathy	0012
97	Hall	25	Memphis Namilta 2 60D	5821	Turkey 2 WSW	9191
98	Hamilton	9	Hamilton 2 SSE	3884	Indian Gap	4440
99	Hansford	4	Gruver	3787 7336	Spearman	8523
100	Hardeman	25 20	Quanah 5 SE	4878		
101 102	Hardin	12	Kountze 3 SE	4300	Heneter RAA AD	4307
	Harris	12	Houston WSMO AP Marshall	5618	Houston FAA AP	
103 104	Harrison Hartley	4	Channing	1646	Karnack Hartley	4693 3981
104	~	8	Haskell	3992	Harcley	3901
105		14	San Marcos	7983		
107	Hemphill	4	Canadian 1 ENE	1412	Gageby	3410
108		10	Athens 3 SSE	0404	Trinidad Powr. Plt.	9137
109		21	McAllen FAA-AP	5702	McAllen	5701
110		9	Hillsboro	4182	Kopper1 5 NNE	4866
111		5	Levelland	5183	Pep	6935
112		2	Lipan	5243	Cresson	2096
113	Hopkins	1	Sulphur Springs	8743		
114	•	11	Lovelady	5398	Crockett	2114
115		8	Big Spring	0786	Big Spring Field Sta.	0784
116	Hudspeth	24	Sierra Blanca	8305	Cornudas Service Sta.	2012
117	Hunt	1	Greenville 7 NW	3734	Commerce	1921
118	Hutchinson	4	Borger 3 W	0958	Stinnett	8647
119	Irion	7	Mertzon	5859	Funk Ranch	3401
120	Jack	2	Jacksboro	4517	Antelope	0271

Co. No.	County Name	Dist. No.	Primary Location	Locati Number		Location Number
121	Jackson	13	Edna	2768		
122	Jasper	20	Jasper	4563	Horger	4280
123	Jeff Davis	24	Mt. Locke	6104	Valentine	9270
124	Jefferson	20	Port Arthur WSO AP	7174	Port Arthur City	7172
125	Jim Hogg	21	Hebbronville	4058		
126	Jim Wells	16	Alice	0144		
127	Johnson	2	Cleburne	1800	Burleson 2 SSW	1245
128	Jones	8	Anson	0268	Stamford 2	8584
129	Karnes	16	Kenedy 1E	4752	Runge	7836
130	Kaufman	18	Kaufman 3SE	4,05	Terrell	8929
131	Kendall	15	Boerne	0902	Bankersmith	0509
66	Kenedy	21	Armstrong	0342	Sarita 7E	8081
132	Kent	8	Jayton	4570	Sarrea / E	0001
133	Kerr	15	Kerrville	4780	Kerrville 3 NNE	4782
135	Kimble	7	Junction	4670	London	5312
134	King	25	Guthrie	3828	London	5512
136	0	22	Brackettville	1007		
	Kinney	16				
137	Kleberg		Kingsville	4810	Marca Lana	(1)(
138	Knox	25	Truscott	9163	Munday	6146
139	Lamar	1	Paris	6794	Deport	2415
140	Lamb	5	Littlefield #2	5265	Olton	6644
141	Lampasas	23	Adamsville	0050	Moline	5996
142	LaSalle	15	Cotulla FAA AP	2050	Cotulla	2048
143	Lavaca	13	Hallettsville	3873	Yoakum	9952
144	Lee	14	Lexington	5193	Fedor	3112
145	Leon	17	Centerville	1596	Jewett	4591
146	Liberty	20	Liberty	5196	Cleveland	1810
147	Limestone	9	Mexia	5869	Thornton	9004
148	Lipscomb	4	Lipscomb	5247	Follett	3225
149	Live Oak	16	George West	3508	Three Rivers	9009
150	Llano	14	Llano	5272	Castell	1521
151	Loving	6	Red Bluff Dam	7481		
152	Lubbock	5	Lubbock WSFO AP	5411	Lubbock 9N	
153	Lynn	5	Tahoka	8818	Slaton 5 SE	8373
154	Madison	17	Madisonville	5477		
155	Marion	19	Jefferson	4577		
156	Martin	6	Lenorah	5158		
157	Mason	14	Mason 4 W	5650	James Riv. Reh.	4538
158	Matagorda	12	Matagorda 2	5659	Bay City Waterwks	0569
159	Maverick	22	Eagle Pass	2679	buy only materials	0207
160	McCulloch	23	Brady	1017	Doole 6 NNE	2527
161	McLennan	9	Waco WSO AP	9419	Waco Dam	9417
162	McMullen	15	Tilden	9031	Waco Dam	J417
163		15	Hondo WSMO AP	4256	Natalia	6205
164		7	Menard	5822	Natalla	0205
165	Midland	6	Midland/Odessa WSO AP	5890	Midland 4 ENE	5891
		17				
·166 167		23	Cameron	1348 3614	Rockdale Center City	7685 1580
			Goldwaite 1 WSW		-	
$168 \\ 169$	Mitchell Montague	8 3	Lake Colorado City	4974 0984	Colorado City Bonita	1903 0926
	0		Bowie			
170	Montgomery	12	Conroe	1956	New Caney 4 NW	6280
171	Moore	4	Sunray 4 SW	8761	Dumas	2617
172		19	Daingerfield 9 S	2225	Naples 1 SW	6190
173	2	25	Matador	5658	Matador #2	5656
174	Nacogdoches	11	Nacogdoches 2 ENE	6177		(010
175	Navarro	18	Corsicana	2019	Navarro-Mills Dam	6210
176		20	Kirbyville 5 ESE	4819	Bon Wier	0917
177	Nolan	8	Roscoe	7743		
178		16	Corpus Christi WSO AP	2015	Robstown	7677
179		4	Notla 3 SE	6477	Buler 4 NNW	1203
180	Oldham	4	Vega	9330	Tascosa	8852
181	Orange	20	Orange 4 NW	6664		
182	Palo Pinto	2	Mineral Wells FAA	5958	Mineral Wells 1 SSW	5957
183	Panola	19	Carthage	1500		
184	Parker	2	Weatherford	9532	Reno	7556
		5	Friona	3368		
186		6	Ft. Stockton KFST Radio	3280	Bakersfield	0482
187	Polk	11	Livingston 2 NNE	5271	24802 02 2024	
188	Potter	4	Amarillo WSO AP	0211		
100	* VELEI	4	IMALILLO WOU AL	0211		

Co. No.	County Name	Dist. No.	Primary Location	Location Number	Secondary Location	Location Number
189	Presidio	24	Marfa #2	5596	Presidio	7262
190	Rains	1	Emory	2902		
191	Randall	4	Canyon	1430	Umbarger	9224
192	Reagan	7	Big Lake 2	0779	Big Lake - LCRA 140	0776
	Real	22	Prade Ranch	7232	Leakey	5113
	Red River	1	Clarksville 2 NE	1773	Clarksville 1W	1773
195	Reeves	6	Pecos	6892	Pecos 12 SSW	6893
196	Refugio	16	Refugio	7529		
	Roberts	4	Miami	5875		
198	Robertson	17	Franklin	00 21	Bremond	1045
199	Rockwall	18	Dallas FAA AP	2244	Dal-Ft.W. Reg. WSMO AP	2242
	Runnels	7	Ballinger 1 SW	0493	Winters 1 NNE	9847
201	Rusk	10	Henderson	4081	Overton	6722
202	Sabine	11	Hemphill	4076	Bronson	1094
203	San Augustine	11	Jackson Hill GS	4523	San Augustine	7951
204	San Jacinto	11	Cold Spring 5 SSW	1870		
205	San Patricio	16	Sinton	8354	Mathis	5661
206	San Saba	23	San Saba	7992	Richland Spr.	7593
207	Schleicher	7	Eldorado 11 NW	2812	Eldorado l N	2811
208	Scurry	8	Snyder	8433	Knapp 6 SW	4841
209		8	Albany	0120		
210	She1by	11	Center	1578		
211	Sherman	4	Stratford	8692		
212	Smith	10	Tyler 5 NE	9214	Swan 4 NW	8778
213	Somervel1	2	Glen Rose 2W	3591		
214	Starr	21	Falcon Dam	3060	Rio Grande City 3 W	7622
215	Stephens	23	Brackenridge	1042	-	
216	Sterling	7	Sterling City	8630	Sterling City 8 NE	8631
217	Stonewall	8	Aspermont 2 SSW	0394		
218	Sutton	7	Sonora	8449	Humble Pump Sta. 5 WNW	4363
219	Swisher	5	Tulia	9175	Kress	4880
220	Tarrant	2	Ft. Worth WSO AP	3284	Ft. Worth Federal Bldg	3285
221	Taylor	8	Abilene WSO AP	0016	Lake Abilene	4960
222	Terrell	6	Sanderson	8022	Dryden	2590
223	Terry	5	Brownfield #2	1128		
224	Throckmorton	3	Throckmorton 2 W	9014	Woodson 5 NNE	9893
225	Titus	19	Mt. Pleasant	6108		
226	Tom Green	7	San Angelo Dam	7940	San Angelo WSO AP	7943
227	Travis	14	Austin WSO AP	0428		
228	Trinity	11	Groveton	3778		
229	Tyler	20	Warren	9480		
230	Upshur	19	Gilmer 2W	3546		
231	Upton	6	Rankin	7431	McCamey	5707
232	Uvalde	22	Uvalde	9265	Sabinal 1 WSW	7873
	Val Verde	22	Langtry	5048	Del Rio WSO AP	2360
	Van Zandt	10	Wills Point	9800	Canton	1425
	Victoria	13	Victoria WSO AP	9364		
	Walker	17	Huntsville	4382		
	Waller	12	Hempstead	4080	Waller 3 SSW	9448
238	Ward	6	Monahans	5999	Grandfalls 3 SSE	3680
	Washington	17	Brenham	1048	Washington St. Park	9491
	Webb	21	Laredo #2	5060	Encinal 3 NW	2906
	Wharton	13	Pierce 1E	7020	New Gulf Shamrock	6286
	Wheeler	25	Shamrock Radio KBYP	8236	Dildial O CR	8235
	Wichita	3	Wichita Falls WSO AP	9729 0246	Electra	2818
	Wilbarger	3	Vernon	9346	Dout Nor-fi-11	710/
	Willacy	21	Raymondville	7458	Port Mansfield	7184
	Williamson	14	Georgetown	3506	Taylor	8861
247	Wilson	15	Floresville	3201	174-1-	0920
	Winkler	6	Wink FAA AP	9830	Wink Lake Bridseport Der	9829
	Wise	2	Bridgeport	1063	Lake Bridgeport Dam	4972 7363
	Wood	10	Mineola 8 ENE	5956	Quitman 2S	7363
	Yoakum	5	Plains	7074	01 201	6636
	Young	3	Graham	3668	01ney	0000
253	Zapata	21	Zapata Cruatal City	9976 2160	Batesville	0560
254	Zavala	22	Crystal City	2160	Datesville	0000