

		CENTER FOR TRANSPORTATION RESEARCH LIBRARY
		TLE PAGE
1. Report No.	2. Government Accession No.	L008049
FHWA/TX-82/30+191-1F		
4. Title and Subtitle ATMOSPHERIC PARTICULATE AN	ALVSTS AND	5. Report Date June, 1982
IMPACT OF HIGHWAY RUNOFF O		6. Performing Organization Code
7. Author's) Roderick D. Moe, Jerry A.	Bullin &	8. Performing Organization Report No.
Melville J. Lougheed, Jr.	Buttin a	191–1F
9. Performing Organization Name and Add	ress ,	10. Work Unit No.
State Dept. of Highways &	Public transportation	
D-8, 11th Street & Brazos Austin, Texas 78701	Ave.	11. Contract or Grant No. 1-8-78-191
haseing reads 70701		13. Type of Repart and Period Cavered
12. Sponsoring Agency Name and Address		
Texas State Dept. of Highw	ays & Public Transportatio	n Final Report
Transportation Planning Di		14. Sponsoring Agency Code
P.O. Box 5051, Austin, Tex	as 78763	
15. Supplementary Notes		
This study was conducted i Federal Highway Administra	n cooperation with the U.S.	. Dept. of Transportation,
-		
16. Abstract		
		y, air quality, traffic, and interstate highway in Dallas,
		flow, rainfall, and pollutants
	automatically during rains	
	and subjected to X-ray fl	
	substantially and appeared	
		general pattern of variation to establish a relationship
	and wind direction. Prec	
	th a rapid buildup in part	
shower activity.		
37	18. Distribution	Statement
17. Key Words Water Quality, Air Quality	, Highway Runoff, No restr	
		e to the public through the
Rainfall, Pollutant Load	National	Technical Information Service,
	Springfi	eld, Virginia, 22161
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages 22. Price
Unclassified	Unclassified	49
	Uncrassified	
Form DOT F 1700.7 (8-69)		

FORWARD

This report presents an investigation of rainfall-runoff from an elevated highway bridge structure including quantitative measurements of washed off pollutants and particulate air quality samples. The report will be of interest to researchers involved in evaluation of highway contributions to non-point sources of water pollution and resuspension of roadway dust.

Research in Water Quality Changes due to Highway Operations is included in the Federally Coordinated program of Highway Research and Development as Task 3 of Project 3E, "Reduction of Environmental Hazards to Water Resources Due to the Highway System." Dr. Byron N. Lord is the Project and Task Manager.

The data used in this study were collected in 1978 and 1979 by the Texas State Department of Highways and Public Transportation in cooperation with other concerned agencies. The collection program was specifically designed to measure the amounts of various water pollutants washed off a highway during natural rainfall events and their influence on particulate air quality.

> Charles F. Scheffey Director, Office of Research Federal Highway Administration

METRIC CONVERSION FACTORS

m ² square frein 0.05 square metters m ² square meters m ² squar	85
APPENDIX Main (p) my Normalize APPENDIX Image: minimum second secon	d Sym
Image:	
Image: Information in the second s	
In Inclusion Continueters Continueters </td <td></td>	
In Inches 2.5 Centimeters Cm Inches 3.3 Inches 3.3 Inches It tend 30 Centimeters Cm Inches 3.3 Inches In and 30 Centimeters Cm Inches 3.4 Inches In AREA Inches Cm Inches Cn Inches Cn Inches Cn In AREA Inches Cn Inches Cn Inches Inches Cn Inches <	
m mchos 12.5 centimaters cm maters m maters m maters m m maters m <td></td>	
t test 30 centimeters cm 4 <td></td>	
vid yadis 0.9 meters m min miles 1.5 kultometers km appresize AREA in ² square inches 6.5 square centimities m ² square inches 6.5 square centimities m ² vid square inches 6.5 square centimities m ² vid square inches 6.5 square centimities m ² vid square inches 0.2 square inches 0.15 square inches vid square inches 0.5 square inches 0.15 square inches vid square inches 0.5 square inches 0.15 square inches vid square inches 0.5 square inches 0.15 square inches vid square inches 0.5 square inches 0.15 square inches min ² square inches 0.3 square inches 0.3 square inches min ² square inches 0.4 kulograms 19 11 square inches 0.3 millitiers mill millitiers 0.35 square inches square inches 0.4 millitiers millitiers	
miles 1.6 kuloreters km i i AREA in ² square inches 6.5 square centimeters 0.16 square in ² square feet 0.09 square meters 0.16 square in ² square feet 0.09 square meters 0.16 square in ² square miss 2.6 square kilometers hn ² square kilometers 0.4 square mi ² square miss 2.6 square kilometers hn ² square m square kilometers 0.4 square mi ² square miss 2.8 square kilometers hn ² square m m m m m square kilometers 0.4 square square m hcises 0.035 square square square m m militility square	
AREA AREA 11 ² square inches 6.5 square motions 0.7 square continuence 0.16 square 11 ² square inches 6.5 square motions 0.25 square motions 0.16 square 11 ² square state 0.25 square motions 0.25 square 1.2 square 11 ² square state 0.4 square state 0.4 square 1.2 square 11 ² square state 0.4 square 1.2 square 11 ² square state 0.4 square 1.2 square 11 ² square 1.4 square 1.1 square 1.2 square 11 ² square 1.4 square 1.4 square 1.1	
AREA	
in 2 square factions in 6.5 square centimeters m² cm² square cantimeters 0.16 equare square factors 0.4 square factors 0.4<	
Info square inches 5.5 square centimetries cm² cm² square maters 1.2 square vd² square fest 0.69 square maters m² square square <t< td=""><td>e inches</td></t<>	e inches
Info square feet 0.09 square maters m² yd² square miles 2.6 square kilometers 0.4 MASS (weight) or ounces 28 yd² grams 0.4 b b MASS (weight) or ounces 28 ydare ydare yd² grams 0.035 ounces 28 ydare ydare ydare ydare <	
vd square yads 0.8 square notes n ^m square notes 2.6 square notes n ^m acres 0.4 hectares n ^m MASS (weight) n n or n n MASS (weight) n n or n n MASS (weight) n n or n n or n n mile n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n	a miles
mi ⁴ square miles 2.6 square kilometers ha acres 0.4 hectares ha <u>MASS (weight)</u> or <u>MASS (weight)</u> or <u>MASS (weight)</u> or <u>MASS (weight)</u> <u>MASS (weight)</u> <u>Disp tablepons</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u>	
Acres 0.4 heckares he MASS (weight) MASS (weight) Out Ounces 28 grams 9 short tons 0.45 kilograms 22 oth pounds 0.45 kilograms 22.2 oth pounds 0.45 kilograms 22.2 oth volumes 1 volume oth mill volume oth	
MASS (weight) MASS (weight) 00 00nces 28 grams 9 grams 0.035 ounces 100 0.045 0.45 kilograms 2.2 pounds 100 0.9 tonnes 1 tonnes 1.1 100 1.1 short tonp 0.9 tonnes 1 100 VOLUME VOLUME VOLUME 100 tablespoons 5 milhilters mil millilters 0.03 Huid 100 tablespoons 15 milhilters mil millilters 0.03 Huid 100 tablespoons 15 milhilters mil millilters 0.03 Huid 1100 tablespoons 15 milhilters mil millilters 1.06 quarts 1100 tablespoons 0.24 taters 1.06 quarts 0.26 galtars 111 tablespoons 3.8 taters 1 millilters 1.3 cubic meters 3.5 cubic 101 galtars 0.95 taters 1 millilters 1.3 cubic 111 taters 1.06 quarts 3.6	
WASS (Weight) Image: Second	
oz ounces 28 grams 9 grams 0.035 ounces 1 b pounds 0.45 kilopzans 29 grams 2.2 pounds 2	
Outces 2 er grams 9 bb pounds 0.45 kiloprams 2.2 pounds short ons 0.9 tonnes 1 it iters 0.03 it titers 2.1 it iters 2.2 it iters 2.1 it iters 2.2 it iters 1.3 it iters 1.3 it iters 1.3 it iters 1.3 it iters i	
bb pounds 0.45 kilopians 29	S
shor tong 0.9 tonnes 1 (2000 b) tsp teaspoons 5 milliniters mil milliniters 0.03 fluid o Tbsp tablespoons 15 milliniters mil milliniters 0.03 fluid o to fluid ounces 30 milliniters mil milliniters 1 to cops 0.24 liters 1 pt pints 0.47 titers 1 ters 1.3 cubic meters 3.5 cubic gal gallons 3.8 liters 1 tra cubic feet 0.03 cubic meters m ³ to 1 temperature add 32) temperature add 32) temperature 1 temperature 32/	10/15
VOLUME VOLUME tsp teaspoons 5 milhilters mil milhilters 0.03 fluid on tsp teaspoons 15 milhilters mil milhilters 2.1 puts fluid ounces 30 milhilters mil milhilters 1 fitters 1.06 quarts pt pints 0.47 fitters 1 fitters 0.26 gallon gal galtons 3.8 fitters 1 millisters 1.3 cubic yd3 cubic feet 0.03 cubic meters millisters 1 fitters 1.3 cubic yd3 cubic feet 0.03 cubic meters millisters 1 millisters 1.3 cubic yd3 cubic feet 0.03 cubic meters millisters 1 1 millisters 1 1 millisters 1.3 cubic yd3 cubic yards 0.76 cubic meters millisters 1 1 memperature aid 32) temperature	
VOLUME Top tesponts 5 milliliters mil milliliters 0.03 fluid of the second	
tsp teaspoons 5 milliliters mil milliliters 0.03 fluid o Tbsp tablespoons 15 milliliters mil milliliters 2.1 pints floz fluid ounces 30 milliliters mil milliters 2.1 pints cups 0.24 liters i liters 0.26 galton pt pints 0.47 liters 1 milliters 0.26 galton gallons 3.8 liters 1 milliters 1 milliters 3.5 cubic rd ³ cubic meters 3.5 cubic gall galtons 3.8 liters 1 milliters milliters milliters 1.3 cubic rd ³ cubic meters 1.3 cubic meters 1.3 cubic ft Fahrenheit 5.9 (after Celsius °c milliters m ³ so milliters add 32) temperature 32.5 vertices 1.5 subtracting temperature 3.5 sectors 1.5 subtracting temperature 3.5 sectors 1.5 se	
isp teaspons 5 millities 1.06 quarts 1.06 quarts 0.26 galton galton s 0.24 liters 1.06 quarts 0.26 galton galtons 3.8 liters 1.06 quarts 1.3 cubic meters 3.5 cubic quarts 0.95 liters 1.06 quarts 1.06 quarts 1.06 quarts 1.06 quarts 1.06 quarts 1.06 quarts 0.26 galton galton s 3.8 liters 1.00 millities millities millities millities 1.06 quarts 1.06 quarts 0.26 galton filters 1.00 millities	ounces f
Top Tablespoons TS minimiters minimiters floz fluid ounces 30 minimiters minimiters minimiters cops 0.24 liters 1 liters 0.26 galton pi pints 0.47 liters 1 liters 35 cubic quarts 0.95 liters 1 liters 1.3 cubic meters 35 gal galtons 3.8 liters 1 liters 1.3 cubic tr3 cubic feet 0.03 cubic meters m3 cubic meters 1.3 cubic yd3 cubic yards 0.76 cubic meters m3 m3 cubic safet 1.4 liters r Fahrenheit 5/9 (after Celsius °C °C Celsius 9/5 (then r Fahrenheit 5/9 (after Celsius °C °C °C S2 98.6	P
nt oz trud ownces 30 minimies	1 [°] 4
cops 0.44 Inters 1 pit pints 0.47 Inters 1 ut quarts 0.95 Inters 1 gal galtons 3.8 Inters 1 tr3 cubic feet 0.03 cubic meters 1.3 cubic yards 0.76 cubic meters m3 cubic meters f Fahrenheit 5/9 (after Celsius °C f Fahrenheit 5/9 (after Celsius °C 32) 32 98.6	is 9 feet t
pt pints 0.37 inters 1.3 cubic meters 1.	feet
quarts 0.03 inters 1 gal galtons 3.8 liters 1 til cubic feet 0.03 cubic meters m³ vd³ cubic yards 0.76 cubic meters m³ o TEMPERATURE (exact) °C Colsius 9/5 (then Fahrenheit 5/9 (after Celsius °C 32) °F 32 98.6	yards Y
r Fahrenheit 5/9 (after Celsius °C	
r Fahrenheit 5/9 (after Celsius °C - Colsius 9/5 (then Fahrent temperature subtracting temperature	
r Fahrenheit 5/9 (after Celsius °C Celsius 9/5 (then Fahrent temperature subtracting temperature	
r Fahrenheit 5/9 (after Celsius 9/5 (then Fahrenheit r Fahrenheit 5/9 (after Celsius °C Celsius 9/5 (then Fahrenheit temperature subtracting temperature add 32) temperature 32) °C °C °C Celsius 9/5 (then Fahrenheit	
r Fahrenheit 5/9 (after Celsius °C temperature add 32) tem temperature subtracting temperature 32)	
F Fahrenheit 5/9 (after Celsius °C M temperature subtracting temperature 32)	perature
temperature subtracting temperature	and the second
32) °F 32 98.6	•F
	212
-40 0 40 60 120 160	
	001 00

ACKNOWLEDGEMENTS

Acknowledgement is given to several agency's representatives, as well as individual experts who provided assistance and guidance during this study.

Mr. E. E. Gann and Mr. R. M. Slade, Jr. of the U.S. Geological Survey provided considerable guidance in water sampling methods and interpretation of flow meter data. The U.S.G.S. supplied a 4'(1.2192m) x 4'(1.2192m) steel building, a Thompson Recording Flow Meter, a U-shaped weir and, an event marker solenoid.

District 18 of the State Department of Highways and Public Transportation installed the traffic loops and assisted in administration, equipment procurement, facilities, and storage. Mr. Charles Little gave us work and storage space in his laboratory. Mr. Milton Watkins arranged for cleaning the storm sewer system and Mr. Billy Lay and his maintenance crew helped us immensely on a number of occasions on short notice.

Mr. Jack Lougheed collected samples, checked equipment, and kept things running throughout the project. His dedication in his spare time was exceptional.

Mr. Robert Stuard, Mr. Roger Wayson, Mr. Joe Wise, and Mr. Joe Mlsna of the Highway Design Division in Austin assisted with equipment installation and maintenance of equipment.

Dr. Troy King of the Trinity River Authority analyzed the water samples.

Dr. Byron Lord of the Federal Highway Administration supplied encouragement, advice, equipment, personnel, and technical knowhow.

Dr. Mahendra Gupta, Dr. Nick Kobrigger, and Mr. Dave Gruber of Envirex, Milwaukee, Wisconsin, who helped install a flume and flow meter and provided much needed technical advice.

The Texas Air Control Board performed X-ray fluorescent and gravimetric analysis of particulate samples without charge. Personnel involved were: Dr. Jimmy S. Payne, Ms. Rose Irizarry, Mr. Jesse Guerra, Ms. Hazel Vallarino, and Mr. Scott Mgebroff. Mr. Stuard Dattner assisted with statistical analysis of particulate data for minimum levels of detection.

Mary DeLeon of the Highway Design Division typed the manuscript.

TABLE OF CONTENTS

FOREWARDii
METRIC CONVERSION FACTORSiii
ACKNOWLEDGEMENTSiv
TABLE OF CONTENTSv
LIST OF FIGUREvi
LIST OF TABLESvii
INTRODUCTION1
CONCLUSIONS2
RECOMMENDATIONS FOR FURTHER RESEARCH2
IMPLEMENTATION OF RESEARCH
EXPERIMENT DESIGN
PROCEDURES
DESCRIPTION OF RESEARCH SITE7
ANALYSIS OF RESULTS
WATER QUALITY15
INHALABLE PARTICULATE17
REFERENCES
APPENDIX

LIST OF FIGURES

Figure No.	Description	Page
1	IH 45 Storm Sewer System	8
2	Surface Total Solids Level Dallas-IH 45 at Forest Ave	16
3	Gravimetric Time Series	25
4	Total XRF Time Series	
5	Lead 3 Time Series	27
6	Bromine Time Series	
7	Calcium Time Series	29
8	Potassium Time Series	
9	Sulfur Time Series	
10	Zinc Time Series	
11	Iron Time Series	

LIST OF TABLES

TABLE NO.	DESCRIPTION PAGE
1	Water Pollutant Concentration Summary10
2	Precipitation Summary12
3	Composite Concentrations and Loadings13
4	Runoff and Rainfall14
5	Water Quality Model15
6	Gravimetric Summary18
7	X-ray Fluorescence Summary20
8	Percentage of Particulate21
9	Element Ratios22
10	Flow Rates for Sharp Crested Weir
11	Water Pollutant Concentration
12	Water Pollutant Concentration
13	Particulate X-ray Fluorescent and42 Gravimetric Analysis

INTRODUCTION

Non-point sources such as highways are often blamed for water pollution. Comparisons are often made with solids from sewage treatment plants, surely a more biologically active waste product. Concern over non-point sources has increased as point sources are gradually brought under control.

The Federal Highway Administration is involved in a four phase program to identify and quantify the effects of this runoff from highway sources and develop measures to mitigate these effects. They published six volumes to define phase 1 for the identification and quantification of the constituents of highway runoff [1]. The other three objectives now being studied are to:

- 1. identify the sources of these pollutants and migration paths from the highway to the receiving water.
- 2. analyze the effects of these pollutants in receiving waters.
- 3. develop the necessary abatement/treatment methodology for objectionable constituents.

As a supplement to the original FHWA study, a study was begun at IH 45 and Forest Avenue in Dallas, Texas in 1977. A report covering that study was given limited distribution to researchers in the fall of 1978 [2]. This study is a continuation of the 1977 study for two more years.

A major objective of this second study is to further refine the results of the first study and evaluate a water quality model developed by Envirex, the water quality contractor for FHWA.

Concern has also been expressed about the influence of particulate from roadways on human health in our major urban areas. It is believed by some that resuspended dust from roadways is preventing many cities from achieving National Ambient Air Quality Standards for total suspended particulate. One factor that may influence particulate levels along roadways is precipitation. This study attempted to determine the relationship between particulate and precipitation and other meteorological factors along roadways. The number of dry days may be as important to air pollution as it is to water pollution.

-1-

Conclusions:

Any study of particulate along a roadway should include a recording rain gauge with a record at least two weeks prior to and during measurement of particulate. Rainfall amount and intensity should be recorded because of its significant influence on washoff of pollutants from the roadway and resuspension of particulate. Experiments meant to validate source strength and dispersion of particulate should incorporate water quality measurements. Where models are not being validated and the results are less critical, the accumulation rate can be modeled using predictive procedures such as the one developed by FHWA [1]. This procedure appears to be applicable to Texas sites, at least for relatively impermeable sites uninfluenced by surrounding vegetation.

Another critical factor for environmental studies of this kind is maintenance activity along the roadway. A complete record of all construction and maintenance activities along roadways should be kept for all water pollution or airborne particulate studies since activities such as street sweeping or sand blasting can have a profound effect on concentrations over the short term.

In the absence of successive large storm events, pollutants tend to accumulate on the roadway. Light to moderate rains of low intensity or short, intense rains do not clean the roadway completely and airborne particulate increases at a relatively constant rate for pollutants such as lead, bromine, and calcium. The number of dry days since successive large storm events can have a profound effect on airborne particulate levels as well as water pollutant concentrations. A previous study [2] at this same site showed many water pollutants increase linearly with the number of dry days. The same trend is apparent for airborne particulate, subject to other fluctuations due to precipitation and other meteorological effects.

Wind effects near an elevated section with vertical walls are difficult to evaluate. Climatological weather data from a nearby airports are a poor sustitute for on site continuous monitoring. Vertical walls force channelization of the wind along the walls and make it difficult to evaluate the influence of wind speed or direction on particulate loading. A site best suited for water quality monitoring is not necessarily well suited to air monitoring of particulate. In any event the particulate concentration along one side of the elevated section is no more than 2.3 times the other side regardless of wind direction, variability, or particle size.

The overall average concentration of inhalable particulate is 6.75 x $10^{-4} \text{ ug/m}^{3}/\text{day/vehicle}$ which is equivalent to 1.09 x $10^{-3} \text{ ug/m}^{3}/\text{day/vehicle}$ of total suspended particulate. The average lead concentration was 2.49 x $10^{-5} \text{ ug/m}^{3}/\text{day/vehicle}$, 63% of which is in the fine fraction.

Recommendations for Further Research

The FHWA Predictive Procedures for water quality should be further refined and tested since pollutants deposited on and along the roadway have a perfound effect on both air and water quality. Combined air and water quality studies should be accomplished at suitable sites in all four seasons with careful attention to recording precipitation and wind on site. Particulate should be sampled daily for inhalable portions including weekends. Technical personnel should be located nearby so they are able to react quickly during storm events. Any maintenance or construction activity nearby should be recorded. If a proposed site is heavily sanded during the winter season, the roadway should be swept at the end of the winter season. If sand is washed into the storm sewer system, some way must be found to remove the material from the storm sewer. Reliable equipment should be purchased and operational checks of that equipment made frequently. Records should be safeguarded at all times consistent with their use and copies transferred to a safe place as they accumulate. Remote supervision is usually unsatisfactory. Frequent visits to the site by supervisory personnel are a must. All chart records and printers should be checked and marked daily.

Implementation of Research

The FHWA predictive procedure is suitable for making estimates of water pollutant concentrations in Texas. Where a roadway construction site is environmentally sensitive or highly controversial, the use of the FHWA predictive procedure along with detailed climatological rainfall records of amount, intensity, and duration should give a reasonably accurate assessment of the impact of the roadway on runoff and receiving waters.

Roadway particulate requires a great deal more careful study before it can be modeled with reasonable precision. Some interesting attributes of roadway inhalable particulate have been determined in this study, but require further testing. The percentages of different pollutants in inhalable particulate should be realistic for the date when samples were taken. Some reduction in lead and bromine should be anticipated in later years as fewer lead additives are added to automotive fuel and the number of cars that can utilize leaded fuels decrease.

This study says nothing about the fate of pollutants washed off the roadway. This is being covered in ongoing FHWA research.

EXPERIMENT DESIGN

The site chosen for this experiment was an elevated bridge structure in South Dallas on Interstate Highway 45 at Forest Avenue. A section of the bridge was chosen whose drainage passed through a single manhole without any apparent contamination from other sources. All of the water on the bridge passed through curb inlets to an enclosed storm sewer system. The area drained was 2.26 acres (.9146 Ha) or 0.0053 square miles. Rainwater drainage from the bridge was collected by 21 inch (53.34 cm) and 15 inch (38.1 cm) storm sewers meeting at right angles at a 36 inch (91.44 cm) manhole (Manhole "J.2") with a 21 inch (53.34 cm) exit sewer. The ushaped, sharp crested weir was bolted and cemented to the manhole end of the exit sewer pipe (See Appendix B) by personnel of the Fort Worth Subdistrict of the U.S. Geological Survey under the supervision of Mr. Eugene Gann.

In January 1979 the weir was replaced with a Palmer-Bowlus flume constructed within the exit sewer of Manhole J.2.

A standard 4' $(1.2192 \text{ m}) \times 4'$ (1.2192 m) U.S.G.S. steel building was installed over the manhole to provide instrument security and protection of the instruments from the elements. The building was funished with 110VAC power for trickle type chargers for 12V marine batteries which powered the automatic water samplers.

Two ISCO automatic water samplers were installed inside the building. One of these was set to sample once a minute within one minute after a sampler actuation signal was received, while the other sampled once every 10 minutes. These periods were chosen to permit a representative sample to be taken for both long and short storms. Each sampler collected 28 consecutive samples and then shut down automatically.

An A-35 Leupold-Stevens mechanical recorder provided by U.S.G.S. was also installed inside the steel building. It was used to record flow in terms of head above the weir height. Tables used to convert head to discharge rate can be found in Table 10.

Two stilling wells of 4" (10.16 cm) PVC pipe were securely fastened alongside the manhole ladder. One of these was used for a float which actuated the pen of the recorder tracing the head on a chart driven by a mechanical clock. The float was carefully counterweighted to give the required sensitivity and keep tension on the line attached to the float. A gauge was supplied for setting the recording pen at the correct chart level.

The other stilling well was used to actuate a sump pump switch which supplied a ground to the pump motor thereby energizing the samplers. The sampler actuation also amplified the logic signal to energize an event marker relay which caused a pen to mark the A-35 recorder chart whenever the pumps started to draw a sample. Guidance from the ISCO factory was received on the design of electronic circuits to initiate the sampler and activate the event marker.

In January 1979 the flow meter system and triggering mechanism for the ISCO

-4-

samplers were replaced with a bubble flowmeter, printer, and recorder. Dustfall buckets were replaced with U.C. Davis stacked filter units for the particulate sampling and in June 1979 a weather tower was added for local wind measurement. A recording rain gauge was used for precipitation measurement. Traffic counters recorded traffic volume data for each lane.

PROCEDURES

Equipment checks were made three times weekly on Monday, Wednesday, and Friday, by a person residing near the site and working approximately onehalf time while going to school or working at another full time job. This system has proven the most satisfactory way of manning the site. It allows quick reaction to storm events at minimum cost. The need for frequent checks of the equipment cannot be overemphasized. The marking of charts and synchronizing them with the correct time is of utmost importance. A log book at the site also proved invaluable in documenting progress of the research and difficulties which might influence interpretation of the data.

Samples were composited in the District 18 Laboratory of the State Department of Highways and Public Tranportation 10 miles (16 km) east of the site. Flow rates were calculated using tables prepared by the U.S. Geological Service (Table 10) and the amount of sample selected from each bottle depended on the flow rate calculated at the time the sample was acquired.

After the composite samples were prepared and labeled, the samples and forms requesting appropriate tests were delivered to the Trinity River Authority Lab about 30 miles (48 km) distant. Samples which could not be prepared or delivered immediately were refrigerated.

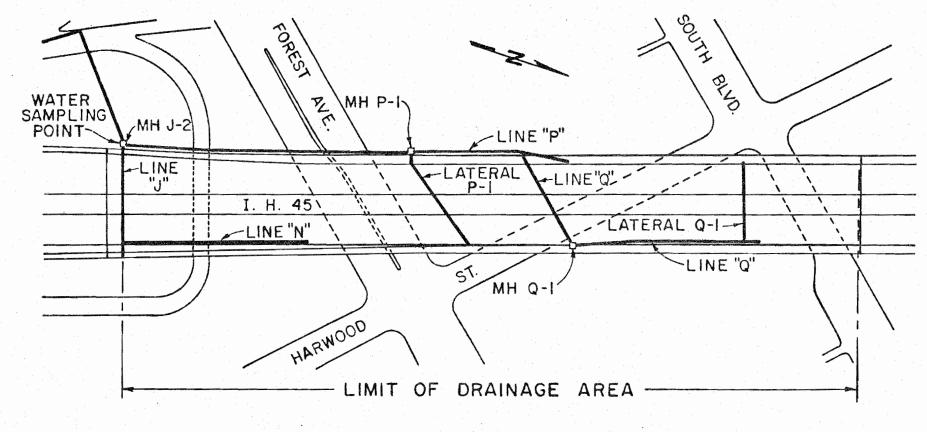
Careful coordination with the supporting laboratory is needed to ensure the appropriate tests are made in a timely manner and the sample bottles marked in a mutually agreed fashion. A laboratory should be chosen reasonably close to the monitoring site to cut down on holding time which is critical for some parameters.

The use of a checklist is advisable as a reminder to personnel unfamiliar with procedures. A copy of the checklist should be filed at the site with the log book which serves as a complete chronicle of research happenings.

A Belfort 7-day Automatic Recording Rain Gauge, using a 24-hour gear to furnish an expanded scale for greater accuracy, was mounted on the bridge structure outside the guard rail near the drainage area. The rain gauge measures the time of onset of rainfall, total amount of rainfall, and its duration. From this information, rainfall rate can also be calculated.

Six Streeter-Amet traffic counters programmed for 15 minute counts were connected to separate traffic loops to record traffic for each lane. Capacitors wired in parallel across the loops vary in size from one counter to another. This eliminated "crosstalk" by shifting the resonant frequency of the tank circuit. Traffic counters were used to normalize the data for variations in traffic flow.

The Stephens A-35 flow meter records gauge heights in feet which are converted to flow rate in cu. ft./sec. (2.8316 liters/sec.). The flow rate established is used to prepare composite samples and calculate mean discharge in gallons or inches of depth.


Description of Research Site:

IH-45 is a major urban Freeway between Houston and Dallas. There is an interchange with IH-30 and the Central Expressway (US 75) in Dallas one mile (1.609 km) north of the site. The traffic lanes are bounded by curbing 6" (15.24 cm) high and a 4' (1.22 m) median barrier. There are three traffic lanes in each direction and an exit ramp southbound. The Trinity River lies one mile (1.609 km) south of the site. The surface drainage area is 2.26 acres (.9146 Ha) or 0.00353 square mile (.009146 Sq km). It consists of an elevated bridge structure with six IH-45 traffic lanes 20 feet (6.096 m) above Forest Avenue and South Boulevard in South Dallas, Texas.

All drainage from the bridge is collected by line N, P, Q, and J at manhole J-2 (See Figure 1). The manhole is the sampling location. Line J is a 15 inch (38.1 cm) storm sewer with a slope of 0.66% which meets Line P, a 21 inch (53.34 cm) storm sewer with a slope of 0.69%, at right angles at Manhole J-2. Line J leaving Manhole J-2 is a 21 inch (53.34 cm) pipe with a slope of 0.89%.

The bridge structures were constructed between 1973 and February 1976. Data were collected between May and September 1977 for the first study. It had been in service about one year at the time these first data were collected. Since, in the first year of a new pavement's life, the wear rate of the pavement is relatively high, the solids data from this site may be biased on the high side when compared with highways which have older pavement surfaces. Data for this study were collected between September 1977 and September 1979. Pavement wear should be a lesser problem for this follow on study.

-7-

-8-

Figure I IH-45 STORM SEWER SYSTEM

Water Quality

Table 11 and Table 12 in the Appendix list storm events 1-19 with water pollutant concentrations for the tests and substances monitored for water quality. Table 11 gives the water pollution results for the first year of the study and Table 12 and the next two years. In most cases samples were taken at both one minute and ten minute intervals simultaneously. At the bottom of each table are statistical summaries for both sample intervals with minimum and maximum values, arithmetic mean (\overline{X}) and standard deviation (σ) . The value for iron in storm 13 is probably spurious and in error. All other values seem reasonable.

In Table 1 a comparison is made between average values for the first year of the study (1-12) and the second two years (13-19). In this summary the high iron value in SE 13 was not included. Suspended solids (SS), Total Dissolved Solids (TDS), and Total Solids are appreciably greater in SE 13-18 than SE 1-12. In fact the first values were 48-67% of the later ones. Iron and sulphates were also lower in the first study. Otherwise the concentrations appear to be very similar for both studies

-9-

Pollutant or Test		SE 1-12	SE 13-18	SE 1-18
Fe	(ug/1)	2578	4002	2878
РЪ	(ug/1)	727	876	828
Zn	(ug/1)	335	495	393
Cd	(ug/1)	15.5	18.8	17.3
SS	(mg/1)	143	214	168
TVS	(mg/1)	63.5	52	62
TDS	(mg/1)	196	407	271
TS	(mg/1)	402	677	499
COD	(mg/1)	245	200	227
TOC	(mg/1)	50.5	47.9	49.5
Kjeldahl Nitrogen	(mg/1)	4.0	3.6	3.8
Nitrate Nitrogen	(mg/1)	0.71	0.82	0.78
BR	(ug/1)	· · · · · · · · · · · · · · · · · · ·	· · · ·	· · · · · -
so ₄	(ug/1)	19.3	79.9	43.5
C1	(ug/1)	-		-
Organic HG	(ug/1)			· · · ·
Inorganic HG	(ug/1)	-	ан аранан ар Аранан аранан аранан Аранан аранан	-
Ni	(ug/1)		424	424
pH		7.12	7.7	7.35

TABLE 1WATER POLLUTANT CONCENTRATION SUMMARY(One Minute Sample Interval)

In Table 2 a precipitation summary has been prepared from rain gauge records. Dry days are the number of days since an appreciable amount of rain has fallen. There is only one large event in SE 13-19, SE 13 which occurred at 3/24/78. A large event is described as over one inch of rainfall at a rate of 0.5 inch per hour. This definition is used in the FHWA publications [1]. The events at the bottom of this table are used to analyze particulate data.

In Table 3 composite concentrations of total solids are converted to pollutant loadings in pounds, pounds per inch and pounds per inch per hour. The methodology is extracted from the FHWA reports [1]. Runoff duration is calculated from rainfall duration and runoff from measured flow.

FD = 1.12 RD + 0.69 where: FD = flow duration RD = rainfall duration

The equation was derived from a regression analysis by FHWA [1].

Concentration in mg/1 of total solids is converted to pounds from:

 $C(mg/1) \ge 6.37 \ge 10^{-5} \ge V$ (ft³) = Total pounds of runoff where: C is concentration and V is volume of runoff.

		PRECIPITATION S	UMMARY		
Storm Event	Date	R (in) Rainfall	RD (hr) Rainfall Duration	RI Rainfall Intensity (in/hr)	Dry Days
13	3/24/78	1.09	2.25	0.48	17
14	7/27/78	0.10	0.167	0.60	50
15	8/29/78	0.05	0.416	0.12	33
16	3/18/79	2.10	8.0	0.263	
17	4/17/79	0.92	10.0	0.082	11
18	5/21/79	0.42	8.0	0.053	9
19	5/22/79	0.30	0.333	0.90	1
	4/3/78	0.30	0.67	0.448	10
	4/10/78	0.72	5.25	0.137	7
	5/1/78	0.30	0.67	0.448	21
	5/2/78	0.80	2.25	0.356	1
	5/11/78	0.45	1.0	0.45	9
	5/21/78	1.60	6.0	0.267	10
	5/22/78	1.00	3.5	0.286	1
	5/24/78	0.70	1.5	0.467	2

TABLE 2

l in = 2.54 cm l in/hr = 2.54 cm/hr

		RUN	OFF	R	AINFALL	-		2 - 1 - 1 - 1 2	·	SUSPE	NDED SOI	LIDS
Storm Event	Date		ume Du (in) ₂	iration (hr)	Amount (in) ₂	Rate (in/hr)3	TQ (hr)	QI (in/hr)3 (C mg/1)	(1bs) ₄ (1	bs/in)5	(lbs in/hr)6
13	3/24/78	8674	1.05 (1)	2.25	1.09	0.48 (2)	3.21	0.32 (2)	228 (1)	126 (1)	120 (1)	250 (1)
19	5/22/79	2398	0.29 (2)	0.33	0.30	0.91	1.06	3.66 (1)	919 (2)	27 (2)	93 (2)	102 (2)
2 in = 3 in/hr 4 1bs =	= 28.316 1. 2.54 cm c = 2.54 cm/h = 453.6 g.			ar - Hanna - Ang - Hanna - Hanna - Hanna - Hanna - Hanna								

TABLE 3 COMPOSITE CONCENTRATIONS AND LOADINGS

5 lbs/in = 178.6 g/cm

 $6 \, 1bs/in/hr = 178.6 \, g/cm/hr$

The pounds of suspended solid discharged are much less for SE 19 than SE 13 (126 versus 27), but the pounds of discharge per inch of runoff are almost the same (120 versus 93). This is due to a higher runoff rate (QI) for the second storm. This shows the shock loading of small intense storm events. Each of the important attributes are ranked by a number in parentheses.

In Table 4 runoff-rainfall ratios (Q/R) are calculated and several of the factors ranked in parentheses for all storm events for which flows were measured. The storm at 7/27/78 with a low Q/R of 0.48 was an exceptionally short storm with little rainfall. The largest runoff occurred with the heaviest rain and a fairly high average rainfall intensity (RI), namely SE 13.

-13-

			· · · · · ·)FF (Q)				1	
SE	Date	R (in)		RD (hr)	RI (in/hr)2	Q (ft	³) ₃	$\binom{R}{(ft^3)_3}$	Q/R
		· · · ·							
13	3/24/78	1.09	(1)	2.25	0.48 (3) 8674	(1)	8942	0.97
	4/3/78	0.30	(4)	0.67	0.45 (4) 1970	(6)	2461	0.80
	4/10/78	0.72	(3)	5.25	0.14 (6) 3900	(3)	5906	0.66
	5/1/78	0.30	(4)	0.67	0.45 (4) 2158	(5)	2461	0.88
	5/2/78	0.80	(2)	2.25	0.36 (5) 4006	(2)	6563	0.61
	7/27/78	0.20	(5)	0.167	1.20 (1) 792	(8)	1641	0.48
	8/29/78	0.20	(5)	0.416	0.48 (3) 1456	(7)	1641	0.89
19	5/22/79	0.30	(4)	0.33	0.91 (2) 2398	(4)	2461	0.97

1 in = 2.54 cm 2 in/hr - 2.54 cm/hr 3 ft³ - 28.316 1.

-14-

In Table 5 pollutants accumulated (P) discharged (P_d), and remaining after discharge (P_o) are calculated using inches of runoff (Q), rainfall (R), rainfall duration (RD), and flow duration (FD), to calculate runoff rate (R) and P,P_o, and P_d. The methodology used is the same as developed in the FHWA reports [1]. In making these estimates it is assumed that there was a 20 day accumulation prior to a large storm 17 days prior to a 3/24/78. The predictive procedure developed by FHWA appears to work well although we have no measured pollutant concentration at the end of the period to serve as a check. Later in this report the relationship of pollutants remaining on the roadway to the particulate measured in the air will be discussed. The graph in Figure 2 is a plot of P, P_d, and P_o. Note that three consecutive rains at the end of the period virtually clean the highway. (Rainfall amounts are indicated at dashed arrows pointing down)

TABLE 5

					WATE	R QUALI	TY MODEL	<u>.</u>				
Date 1978	Q (in)	DD (Days)		р (1b) ₂		FD (hr)(i		-K _{2r}	e ^{-K} 2r	1-e ^{-K} 2r (1	^P d 1bs) ₂ (1	P _o lbs) ₂
					,	· · ·	·····					
3/24	1.06	5 20	1.09	360	2.00	2.93	0.36	-1.8	0.1653	0.8347	300	195
4/3	0.27	7 10	0.30	157	1.00	1.81	0.149	-0.745	0.4747	0.5253	82.4	74.6
4/10	0.68	3 7	0.72	142.8	7.5	9.09	0.075	-0.375	0.6873	0.3127	44.7	9 8.1
5/1	0.27	7 21	0.30	293	0.67	1.44	0.188	-0.94	0.3906	0.6094	178.6	114.5
5/2	0.76	5 1	0.80	124.2	3.167	4.24	0.180	-0 .9	0.4066	0.5934	73.7	50.2
5/11	0.42	2 9	0.45	137.9	1.167	2.0	0.21	-1.05	0.3499	0.6501	80.7	57.2
5/21	1.53	3 10	1.60	154.6	6.0	7.41	0.206	-1.03	0.3570	0.6430	99.4	55.2
5/22	0.95	5 1	1.0	64.8	7.0	8.53	0.111	-0.555	0.5741	0.4259	27.6	37.2
5/24	0.66	5 2	0.7	56.7	1.5	2.37	0.278	-1.39	0.2491	0.7509	42.6	14.1

1 in = 2.54 cm

2 1b - 453.6 g

3 in/hr = 2.54 cm/hr

-15-

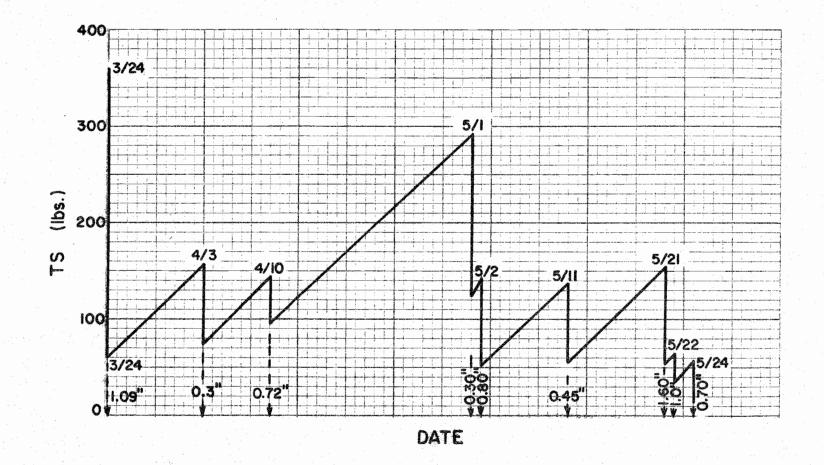


Figure 2. SURFACE TOTAL SOLIDS LEVEL, DALLAS-IH 45 AT FOREST AVE.

-16-

Inhalable Particulate

In the analysis of the coarse and fine particulate filters, many of the filters were loaded below minimum detectable limits. The minimum detectable mean of random error was used to screen out results deemed below significant levels as described by Dattner [3]. In this method the student's "t" distribution at the 0.001 probability level is used to establish the confidence interval of the random error. All elemental weights below this confidence level are not shown and negative values are shown as zero in Table 13 in the appendix. The complete data set can be made available to those who desire it.

There was a great deal of variation in the particulate results from one monitoring period to the next and a great deal of consistency between samples taken on the same day. Three samplers were installed with a coarse and fine filter for each. One sampler was mounted near the west wall about 10 feet (3 m) above the roadway and the other two were mounted fifty feet (15 m) away from the 20 foot (6 m) vertical wall on different sides of the elevated section. Sampler 1 was the westernmost one, two was 10 feet (3 m) over the west shoulder of the roadway, and three was 50 feet (15 m) east of the roadway. Samples were taken every 1-4 days. Flow rates were checked at the beginning and end of each sample. Samplers used were U.C. Davis stacked filter units designed by Dr. Tom Cahill of the University of California at Davis and they were equipped with Nuclepore filters.

Gravimetric and X-ray fluorescence techniques were used to analyze the filters by the Texas Air Control Board at no charge to a sister state agency. Table 13 in the appendix describes the basic data and indicates the normalization process. Seven elements were found at detectable levels.

The gravimetric analysis is summarized in Table 6. Arithmetic means have been calculated for each type of filter for each sampler, for both filters on each sampler, for all of the coarse or fine filters separately, and for all filters. Standard deviations have been calculated for all samples, coarse and fine filters each day, and all samples each day.

A few days show strikingly high values: 3/28, 4/17 and 4/24. On 4/24 the coarse values are very high (51.1 ug/m³) and the fine values are not (5.2 ug/m³). For the other two days with exceptionally high values, both the coarse and fine are high. Street sweeping was reported along this section of highway on 3/28.

TABLE 6 GRAVIMETRIC SUMMARY

Date	Day	No.	x _c	$\overline{\mathtt{X}}_{\mathtt{f}}$	x	\overline{x}_1	\overline{x}_2	\overline{x}_3	X _{lc}	x _{1f}	x _{2c}	X _{2f}	x _{3c}	x _{3f}	σ_{c}	σ_{f}	σ
3/24	F	1	7.4	8.1	7.6		3.1	9.9		- -	3.1	-	11.6	8.1	6.04	_	4.2
3/25	SA	2	1.1	1.9	1.5	1.1	1.2	1.8	1.1	-		1.2	1.0	2.6	0.07	1.00	0.7
3/27	M	1	0.6	2.7	1.9	1.8	2.4	1.0	1.0	2.6	0.1	4.6	-	1.0	0.64	2.00	1.7
3/28	Т	1	55.2	31.5	43.4	48.1	40.1	41.2	62.4	33.8	48.0	33.7	55.2	27.1	7.20		14.0
3/29	W	1	34.8	22.3	28.6	31.6	27.4	43.5	35.0	28.2	35.9	18.8	33.6	19.8	1.16	5.16	7.6
3/30	TH	4	14.2	6.9	11.3	8.4	10.6	18.4	11.5	5.3	12.7	8.5	18.4	-	3.69	2.26	5.6
4/3	M	1	16.8	18.9	17.9	20.8	11.1	21.8	16.8	24.7	14.1	8.0	19.5	24.0	2.70	9.45	6.3
4/4	т	2	13.8	10.0	11.9	12.6	10.9	12.2	13.8	11.4	12.6	9.2	15.0	9.3	1.20	1.24	2.3
/6	TH	1	23.0	24.8	23.9	25.8	19.7	26.3	22.5	29.0	21.0	18.3	25.4	27.1	2.24	5.71	4.(
/7	F	4	2.1	2.8	2.4	2.2	2.9	2.3	1.5	2.8	2.7	3.1	2.1	2.4	0.60	0.34	0.
/11	Т	2	10.5	5.4	8.0	8.1	5.0	10.8	10.9	5.3	4.8	5.2	15.7	5.8	5.46	0.32	4.4
/13	TH	4	2.5	1.3	2.2	2.7	2.4	1.9	2.7	-	2.4	-	2.4	1.3	0.17		0.
/17	M	1	58.2	34.7	46.5	45.0	27.9	66.6	57.4	32.5	30.4	25.3	86.8	46.4	28.2	10.73	23.
/18	т	1	20.9	6.3	13.6	12.0	6.7	22.1	16.4	7.6	7.6	5.8	38.7	5.4	16.03	1.17	12.
/19	W	1	14.6	14.5	14.5	15.0	11.2	17.5	13.4	16.5	10.6	11.7	19.8	15.2	4.72	2.48	3.
/20	TH	3	6.4	3.3	4.9	5.4	3.2	6.1	8.7	2.1	3.2	3.1	7.3	4.8	2.86	1.37	2.
/23	SU	1	15.5	12.9	14.2	12.5	-	15.9	13.6	11.4	·	, . 	17.3	14.4	2.62	2.12	2.
/24	M	1	51.1	5.2	32.7	25.5	34.9	43.0	46.9	4.1	63.4	6.3	43.0		10.83	1.56	26.
/2	т	1	7.8	10.9	9.7	7.7	14.3	9.4	6.7	8.6		14.3	8.9	9.9	1.56	2.99	2.
/3	W	1	4.5	9.3	6.9	7.5	3.0	10.4.	5.4	9.6	1.5	4.4	6.7	14.0	2.71	4.81	4.
/4	TH	1	7.7	9.7	8.3	-	7.4	10.2	_	-	5.1	9.7	10.2	-	3.61		2.
/5	F	3	2.4	1.8	2.1	2.6	2.2	1.5	2.5	2.6	1.9	2.5	2.7	0.2	0.42	1.36	0.
/8	Μ	2	19.2	9. 0	14.1	14.4	13.2	14.8	21.3	7.4	17.1	9.2	19.2	10.3	2.10	1.46	5.
/10	W	1	9.7	10.2	10.0	10.0	5.2	14.8	9.0	11.0	5.6	4.7	14.6	14.9	4.54	5.15	4.
/11	TH	1	11.3	9.7	10.5	10.0	10.8	10.9	10.1	9.9	10.9	10.6	13.0	8.7	1.50	0.96	1.
12	F	3	2.7	1.2	1.8	1.4	0.8	3.0	-	1.4	0.8	0.8	4.5	1.5	2.62	0.38	1.
22	М	1	13.4	12.6	13.0	6.2	23.4	9.6	0.9	11.4	33.1	13.6	6.3	12.8	17.24	1.11	10.
23	Т	1	7.9	13.0	10.5	11.1	8.4	12.0	7.7	14.5	6.2	10.6	9.9	14.0	1.86	2.12	3.
/24	W	2	4.7	6.2	5.5	5.8	4.5	6.2	5.0	6.5	3.7	5.2	5.4	7.0	0.88	0.93	1.
26	F	3	3.1	4.2	3.7	3.8	3.0	4.3	2.9	4.6	2.1	3.9	4.4	4.1	1.17	0.36	0.
	METIC				10.0	10.0	10.0	1.5		11 7	10 /		17.0	11 (an an gu an		
EAN			14.8	10.4	12.8	12.8	10.9	15.6	15.1	11.7	13.4	9.3	17.9	11.6			
TANDA	ARD FION		15.6	8.5	11.6	12.3	10.5	15.2	16.7	9.8	15.9	7.6	18.6	10.4			

-18-

The X-Ray fluorescence analysis has been summarized in Table 7 for each filter and for each element. Arithmetic means of all filters for each element and for each type of filter have been calculated with their standard deviations. The ratio of bromine to lead is 0.3144 for coarse and 0.3178 for fine. The ratio of fine to coarse lead is 0.5855 and fine to coarse bromine is 0.5792. This indicates that bromine and lead samples are closely related and probably come from only one source, motor vehicles. It also indicates the aerosol is fresh since bromine deteriorates rapidly with time, especially in summer as shown by Cahill [4]. The bromine-lead ratio is typical of a fresh aerosol. Although there are lead smelters and battery recovery plants in Dallas, as reported by Crosby [5], none of them appear to be a significant source at this location.

Table 8 presents the percentage of each element for each filter location and for coarse versus fine and coarse divided by fine. Most of the iron and calcium is in the coarse fraction and most of the sulfur is fine. Variability from sample to sample is relatively low.

The element ratios of each XRF element with respect to lead and calcium are shown in Table 9 for each filter and for all coarse or all fine filters with standard deviations for coarse and fine filters. The bromine-lead ratio shows a low variability for both coarse and fine filters and essentially the same mean value for both coarse and fine. This is further verification of the close relationship of bromine and lead and the freshness of the bromine aerosol sampled along the roadway. This portion of the aerosol evidently came from this roadway or some neighboring roadway and was either straight from automobile exhaust or resuspended from a recent deposition on the roadway. It is highly unlikely that lead and bromine came from some other point source. TABLE 7 X-RAY FLUORESCENCE - SUMMARY

	\overline{x}_{1c}	\overline{x}_{lf}	\overline{x}_{2c}	\overline{x}_{2f}	x _{3c}	$\overline{\mathtt{X}}_{\mathtt{3f}}$	\overline{x}_{c}	\overline{x}_{f}	cov _c	cov_{f}
Ca	X 2.2882 2.7736	0.3008 0.2751	1.9027 2.5998	0.2642 0.2027	2.4735 2.6737	0.4100 0.5328	2.2215 0.2912	0.3659 0.1457	0.1310	0.3982
К	X 0.1493 0.2319	0.0889 0.1073	0.2241 0.4189	0.0782 0.0759	0.3028 0.3225	0.1201 0.1391	0.2254 0.0768	0.0957 0.0218	0.3407	0.2278
S	X 0.7520 1.5260	1.8157 1.1777	0.6967 1.4348	1.5786 0.8913	0.6688 1.2092	2.0768 1.1339	0.7058 0.0423	1.8237 0.2492	0.0599	0.1366
Zn	X 0.0150 0.0263	0.0090 0.0083	0.0316 0.0805	0.0087 0.0070	0.0168 0.0220	0.0118 0.0128	0.0211 0.0091	0.0098 0.0017	0.4313	0.1734
Fe	X 0.3084 0.4047	0.0858 0.0929	0.2787 0.4232	0.0933 0.1257	0 .39 56 0.4760	0.1060 0.1560	0.3276 0.0608	0.0950 0.0102	0.1856	0.1074
РЪ	X 0.3748 0.6563	0.5672 0.4272	0.3163 0.5082	0.5512 0.3682	0.3384 0.4057	0.6403 0.4384	0.3432 0.0295	0.5862 0.0475	0.0860	0.0810
Br	X 0.1138 0.2380	0.1652 0.1857	0.0957 0.1891	0.1801 0.1707	0.1142 0.1393	0.2137 0.1821	0.1079 0.0106	0.1863 0.0248	0.0 982	0.1331
Tot (ug	al 3.9865	3.0326	3.5458	2.7543	4.3101	3.5787	3.9525	3.3083		
	pler Total	7.0191	6.3	001	7.	8897	7.2	608		

 $COV = Coefficient of Variation \frac{\sigma}{\overline{X}}$

-20-

t 1C	1F	2C	2F	3C	3F	С	F	C/F				
57.4	9.9	53.7	9.6	57.4	11.5	56.2	11.1	5.1				
3.7	2.9	6.3	2.8	7.0	3.4	5.7	2.9	2.0				
18.9	59.9	19.6	57.3	15.5	58.0	17.9	55.1	0.3				
0.4	0.3	0.9	0.3	0.4	0.3	0.5	0.3	1.7				
7.7	2.8	7.9	3.4	9.2	3.0	8.3	2.9	2.9				
9.4	18.7	8.9	20.0	7.9	17.9	8.7	17.7	0.5				
2.9	5.4	2.7	6.5	2.6	6.0	2.7	5.6	0.5				
	57.4 3.7 18.9 0.4 7.7 9.4	57.49.93.72.918.959.90.40.37.72.89.418.7	57.4 9.9 53.7 3.7 2.9 6.3 18.9 59.9 19.6 0.4 0.3 0.9 7.7 2.8 7.9 9.4 18.7 8.9	57.4 9.9 53.7 9.6 3.7 2.9 6.3 2.8 18.9 59.9 19.6 57.3 0.4 0.3 0.9 0.3 7.7 2.8 7.9 3.4 9.4 18.7 8.9 20.0	57.4 9.9 53.7 9.6 57.4 3.7 2.9 6.3 2.8 7.0 18.9 59.9 19.6 57.3 15.5 0.4 0.3 0.9 0.3 0.4 7.7 2.8 7.9 3.4 9.2 9.4 18.7 8.9 20.0 7.9	57.49.953.79.657.411.53.72.96.32.87.03.418.959.919.657.315.558.00.40.30.90.30.40.37.72.87.93.49.23.09.418.78.920.07.917.9	57.4 9.9 53.7 9.6 57.4 11.5 56.2 3.7 2.9 6.3 2.8 7.0 3.4 5.7 18.9 59.9 19.6 57.3 15.5 58.0 17.9 0.4 0.3 0.9 0.3 0.4 0.3 0.5 7.7 2.8 7.9 3.4 9.2 3.0 8.3 9.4 18.7 8.9 20.0 7.9 17.9 8.7	57.4 9.9 53.7 9.6 57.4 11.5 56.2 11.1 3.7 2.9 6.3 2.8 7.0 3.4 5.7 2.9 18.9 59.9 19.6 57.3 15.5 58.0 17.9 55.1 0.4 0.3 0.9 0.3 0.4 0.3 0.5 0.3 7.7 2.8 7.9 3.4 9.2 3.0 8.3 2.9 9.4 18.7 8.9 20.0 7.9 17.9 8.7 17.7				

TABLE 8 PERCENTAGE OF PARTICULATE

Ratio Ratio Ratio Ratio Ratio Ratio Br/Pb 0.304 0.291 0.303 0.327 0.337 0.334 0.314 0.318 0.019 0.0 Fe/Pb 0.819 0.150 0.888 0.170 1.165 0.168 0.954 0.164 0.183 0.0 Zn/Pb 0.043 0.016 0.101 0.015 0.051 0.017 0.057 0.017 0.031 0.0 S/Pb 2.011 3.203 2.202 2.865 1.962 3.240 2.057 3.113 0.126 0.2 K/Pb 0.394 0.155 0.708 0.140 0.886 0.190 0.655 0.164 0.249 0.1 Ca/Pb 6.106 0.529 6.034 0.480 7.266 0.642 6.460 0.627 0.691 0.0 K/Ca 0.064 0.293 0.117 0.292 0.122 0.296 0.101 0.261 0.032 0.0 S/Ca 0.329 6.051 0.365 5.969 0.270 5.043					E	LEMENT RA	TIOS				
Fe/Pb 0.819 0.150 0.888 0.170 1.165 0.168 0.954 0.164 0.183 0.0 Zn/Pb 0.043 0.016 0.101 0.015 0.051 0.017 0.057 0.017 0.031 0.0 S/Pb 2.011 3.203 2.202 2.865 1.962 3.240 2.057 3.113 0.126 0.2 K/Pb 0.394 0.155 0.708 0.140 0.886 0.190 0.655 0.164 0.249 0.1 Ca/Pb 6.106 0.529 6.034 0.480 7.266 0.642 6.460 0.627 0.691 0.0 K/Ca 0.064 0.293 0.117 0.292 0.122 0.296 0.101 0.261 0.032 0.0 S/Ca 0.329 6.051 0.365 5.969 0.270 5.043 0.319 4.964 0.048 0.5 Zn/Ca 0.007 0.030 0.017 0.031 0.007 0.026 0.009 0.027 0.006 0.0 Fe/Ca 0.164		1C	lF	2C	2F	3C	3F	С	F	۰	$\sigma_{\rm F}$
Zn/Pb 0.043 0.016 0.101 0.015 0.051 0.017 0.057 0.017 0.031 0.0 S/Pb 2.011 3.203 2.202 2.865 1.962 3.240 2.057 3.113 0.126 0.2 K/Pb 0.394 0.155 0.708 0.140 0.886 0.190 0.655 0.164 0.249 0.1 Ca/Pb 6.106 0.529 6.034 0.480 7.266 0.642 6.460 0.627 0.691 0.0 K/Ca 0.064 0.293 0.117 0.292 0.122 0.296 0.101 0.261 0.032 0.0 S/Ca 0.329 6.051 0.365 5.969 0.270 5.043 0.319 4.964 0.048 0.5 Zn/Ca 0.007 0.030 0.017 0.031 0.007 0.026 0.009 0.027 0.006 0.0 Fe/Ca 0.134 0.283 0.147 0.354 0.160 0.261 0.148 0.261 0.013 0.0 Pb/Ca 0.164	Br/Pb	0.304	0.291	0.303	0.327	0.337	0.334	0.314	0.318	0.019	0.023
S/Pb 2.011 3.203 2.202 2.865 1.962 3.240 2.057 3.113 0.126 0.2 K/Pb 0.394 0.155 0.708 0.140 0.886 0.190 0.655 0.164 0.249 0.1 Ca/Pb 6.106 0.529 6.034 0.480 7.266 0.642 6.460 0.627 0.691 0.0 K/Ca 0.064 0.293 0.117 0.292 0.122 0.296 0.101 0.261 0.032 0.0 S/Ca 0.329 6.051 0.365 5.969 0.270 5.043 0.319 4.964 0.048 0.52 Zn/Ca 0.007 0.030 0.017 0.031 0.007 0.026 0.009 0.027 0.006 0.0 Fe/Ca 0.134 0.283 0.147 0.354 0.160 0.261 0.148 0.261 0.013 0.0 Pb/Ca 0.164 1.889 0.166 2.083 0.138 1.557 0.155 1.595 0.016 0.2	Fe/Pb	0.819	0.150	0.888	0.170	1.165	0.168	0.954	0.164	0.183	0.011
K/Pb0.3940.1550.7080.1400.8860.1900.6550.1640.2490.1Ca/Pb6.1060.5296.0340.4807.2660.6426.4600.6270.6910.0K/Ca0.0640.2930.1170.2920.1220.2960.1010.2610.0320.0S/Ca0.3296.0510.3655.9690.2705.0430.3194.9640.0480.55Zn/Ca0.0070.0300.0170.0310.0070.0260.0090.0270.0060.0Fe/Ca0.1340.2830.1470.3540.1600.2610.1480.2610.0130.0Pb/Ca0.1641.8890.1662.0830.1381.5570.1551.5950.0160.2	Zn/Pb	0.043	0.016	0.101	0.015	0.051	0.017	0.057	0.017	0.031	0.001
Ca/Pb 6.106 0.529 6.034 0.480 7.266 0.642 6.460 0.627 0.691 0.067 K/Ca 0.064 0.293 0.117 0.292 0.122 0.296 0.101 0.261 0.032 0.0 S/Ca 0.329 6.051 0.365 5.969 0.270 5.043 0.319 4.964 0.048 0.5 Zn/Ca 0.007 0.030 0.017 0.031 0.007 0.026 0.009 0.027 0.006 0.0 Fe/Ca 0.134 0.283 0.147 0.354 0.160 0.261 0.148 0.261 0.013 0.0 Pb/Ca 0.164 1.889 0.166 2.083 0.138 1.557 0.155 1.595 0.016 0.2	S/Pb	2.011	3.203	2.202	2.865	1.962	3.240	2.057	3.113	0.126	0.207
K/Ca 0.064 0.293 0.117 0.292 0.122 0.296 0.101 0.261 0.032 0.032 S/Ca 0.329 6.051 0.365 5.969 0.270 5.043 0.319 4.964 0.048 0.55 Zn/Ca 0.007 0.030 0.017 0.031 0.007 0.026 0.009 0.027 0.006 0.007 Fe/Ca 0.134 0.283 0.147 0.354 0.160 0.261 0.148 0.261 0.013 0.007 Pb/Ca 0.164 1.889 0.166 2.083 0.138 1.557 0.155 1.595 0.016 0.24	К/РЪ	0.394	0.155	0.708	0.140	0.886	0.190	0.655	0.164	0.249	0.177
S/Ca 0.329 6.051 0.365 5.969 0.270 5.043 0.319 4.964 0.048 0.55 Zn/Ca 0.007 0.030 0.017 0.031 0.007 0.026 0.009 0.027 0.006 0.007 Fe/Ca 0.134 0.283 0.147 0.354 0.160 0.261 0.148 0.261 0.013 0.007 Pb/Ca 0.164 1.889 0.166 2.083 0.138 1.557 0.155 1.595 0.016 0.24	Ca/Pb	6.106	0.529	6.034	0.480	7.266	0.642	6.460	0.627	0.691	0.083
Zn/Ca 0.007 0.030 0.017 0.031 0.007 0.026 0.009 0.027 0.006 0.07 Fe/Ca 0.134 0.283 0.147 0.354 0.160 0.261 0.148 0.261 0.013 0.07 Pb/Ca 0.164 1.889 0.166 2.083 0.138 1.557 0.155 1.595 0.016 0.24	K/Ca	0.064	0.293	0.117	0.292	0.122	0.296	0.101	0.261	0.032	0.002
Fe/Ca 0.134 0.283 0.147 0.354 0.160 0.261 0.148 0.261 0.013 0.0 Pb/Ca 0.164 1.889 0.166 2.083 0.138 1.557 0.155 1.595 0.016 0.261	S/Ca	0.329	6.051	0.365	5.969	0.270	5.043	0.319	4.964	0.048	0.560
Pb/Ca 0.164 1.889 0.166 2.083 0.138 1.557 0.155 1.595 0.016 0.2	Zn/Ca	0.007	0.030	0.017	0.031	0.007	0.026	0.009	0.027	0.006	0.003
	Fe/Ca	0.134	0.283	0.147	0.354	0.160	0.261	0.148	0.261	0.013	0.049
Br/Ca 0.051 0.545 0.050 0.677 0.045 0.522 0.048 0.505 0.003 0.0	РЪ/Са	0.164	1.889	0.166	2.083	0.138	1.557	0.155	1.595	0.016	0.266
	Br/Ca	0.051	0.545	0.050	0.677	0.045	0.522	0.048	0.505	0.003	0.084

TABLE 9 ELEMENT RATIOS

An analysis of wind direction and its relationship to particulate loading was performed for coarse and fine filters from four component directions and calm winds. A comparison was made of lead three (Pb₃) and lead one (Pb₁) and the mean gravimetric X₃ and X₁ expressed as a simple ratio. The object was to determine whether or not wind direction had a significant effect on particulate concentration for an elevated expressway (IH 45). Winds were obtained from climatological data at the Dallas-Fort Worth Regional Airport some 20 miles (32.2 km) from the monitoring site. These winds may not be representative of the winds at IH 45 and Forest Avenue in South Dallas. N = number of samples and C and F are coarse and fine ratios.

		W			Е	.		S	· · · · · · · · · · · · · · · · · · ·		N	<u> </u>	-	Calm	
	N	С	F	N	С	F	N	С	F	N	C	F	N	C	F
Pb3 Pb1	9	2.21	1.50	4	1.01	2.24	13	1.59	1.23	1	0.33	1.12	1	1.21	0.05
$\frac{X_3}{X_1}$	5	1.37	1.02	4	1.28	1.27	12	1.24	0.93	1	0.84	2.29	1	1.08	0.08

In the one calm case the fine particulate was very low in concentration. This may be due to its acting like a gas and rising vertically from the roadway in the heat from automotive exhaust. Bullin has reported this phenomena in another study [6]. An east wind for lead shows a high ratio for fine and a west wind shows a high ratio for coarse.

The high ratio for a west wind and coarse particulate may be due to the backwash of pollutants on the east side of the highway and entrainment of pollutants from State Highway 75 about one block away. The high concentration of fines with an east wind cannot easily be explained nor the high concentration of fines for a north wind.

The elevated highway section has vertical walls which tend to channelize all winds along the roadway. In addition, seldom do winds blow from one side of a highway to another continuously. Horizontal wind data generally show considerable variability in wind direction, the variability a function of the stability of the air mass.

It is difficult to evaluate the effect of wind direction on particulate concentration when evaluating an elevated section with vertical walls. On the other hand, it is difficult to evaluate water pollutants without using an elevated section.

A time series graph of particulate concentration has been plotted for gravimetric results, total XRF, and each XRF element in Figures 3-11. The particulate amounts in ug/m^3 are an average of all six filters for each day with the exception of lead which is a plot of coarse and fine values for location 3 only. The gravimetric results in Figure 3 show several sharp peaks at 3/28, 4/6, 4/17, and 4/24. These peaks do not appear to be influenced by rainfall amounts (dashed lines with arrows pointing down). We do know that on 3/28 street sweeping was underway along this section of roadway. We can only speculate on the reason for the other peaks, but it seems likely that some sort of construction or maintenance activity caused these sharp increases in particulate concentrations since they decrease as quickly as they rise. The fine over coarse ratio at 4/24 is 0.09 from Table 13 which is much lower than the average value of 0.68. The large increase of these data appears to be wholly in the coarse fraction.

It is interesting to note that each time a significant storm event takes place the particulate concentration decreases appreciably. The only really large storm event occurred on 3/24. All other storm events were moderate and many of short duration. The rainfall of 0.72" on 3/24 had the lowest intensity (RI) of any storm in this period as shown in Table 2. It should have been much less efficient in removing pollutants from the roadway than some of the more intense events. Two or three events in quick succession appear remarkably efficient in lowering particulate concentrations, for example, at 5/2-5/3 and 5/21-5/24.

The parallelism of "total XRF" in Figure 4 with gravimetric analysis in Figure 3 is striking, especially the peaks at 3/28 and 4/24 and the general pattern of most of the remainder of the data. Significant differences are no peak for total XRF for 4/6 and a much lesser peak at 4/17.

The lead at location 3 (Pb3) in Figure 5 shows a sharp peak at 3/28 and an increasing trend upward in the overall pattern through 4/24. Although not shown there was a trace of rain reported on 4/17 with thundershowers in the The close relationship of lead concentrations to rainfall is pararea. ticularly clear. In additon, if a line is drawn through peaks at 4/3, 4/11an imaginary peak at 4/17, a slope of 0.063 ug/m³/day is apparent in a period of relatively light or less intense precipitation. This is believed to be the increase in lead concentration for increasing deposition of pollutants on the roadway. If a line is drawn through the troughs at 4/17, 4/13, and 4/20 a similar, but somewhat shallower slope is achieved. The variability within this envelope is believed to be due to meterological influences, stability, synoptic weather conditions, and light precipitation. This increase may vary with season, but is probably linear with traffic volume. For a traffic volume of 37,300 vehicles per day, the normalized value of increase of lead is $1.69 \times 10^{-6} \text{ ug/m}^3/\text{day/vehicle}$. Although the data base is small, there appears to be a close relationship between the buildup of pollutants on the roadway and lead levels measured in the ambient air alongside an elevated roadway. The rate established here requires further verification.

If we look at bromine in Figure 6, the peaks at 3/28 and 4/24 are evident and a line drawn through 4/18, 4/11, and an imaginary peak at 4/4 gives a slope of $0.0052 \text{ ug/m}^3/\text{day}$, One would expect less increase in bromine than lead because bromine is more reactive and decreases in roadway dust with time. Note that the general pattern of bromine tracks that of lead very closely and the trend approximately parallels that of lead.

Calcium in Figure 7 has large peaks at 3/28 and 4/24 and the trend from 4/4 to 4/17 is identical with that of lead, $0.063 \text{ ug/m}^3/\text{day}$. The general pat-

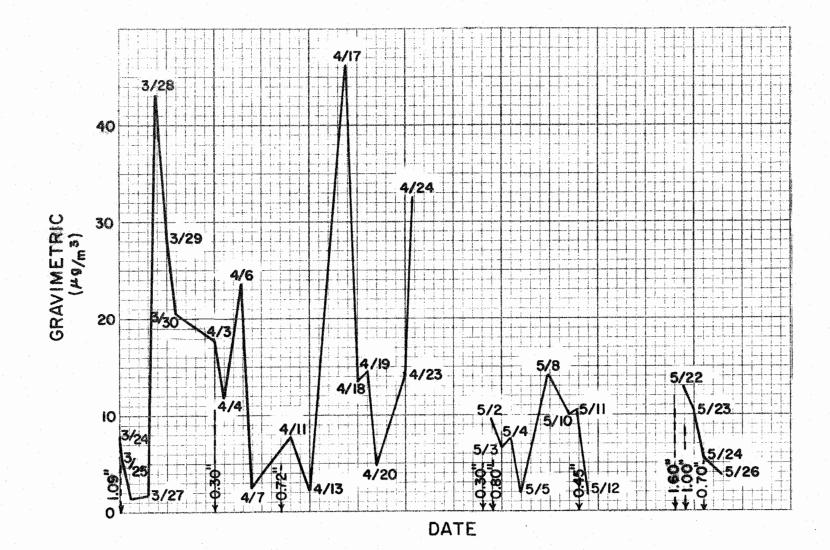


Figure 3. GRAVIMETRIC TIME SERIES

-25-

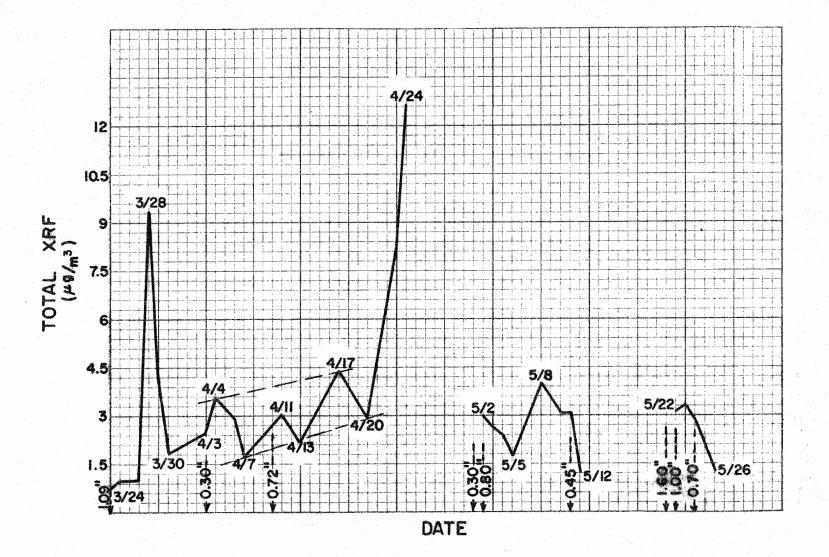
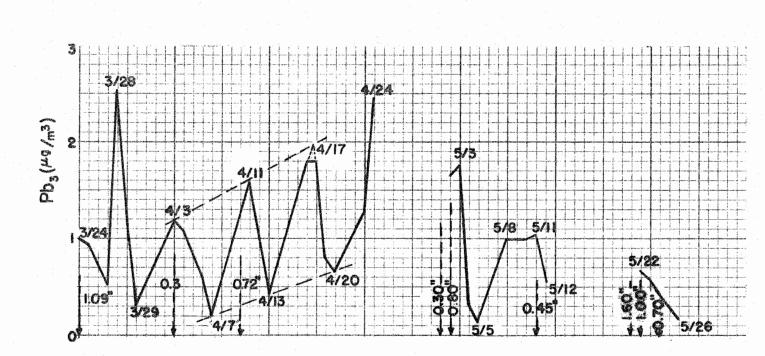
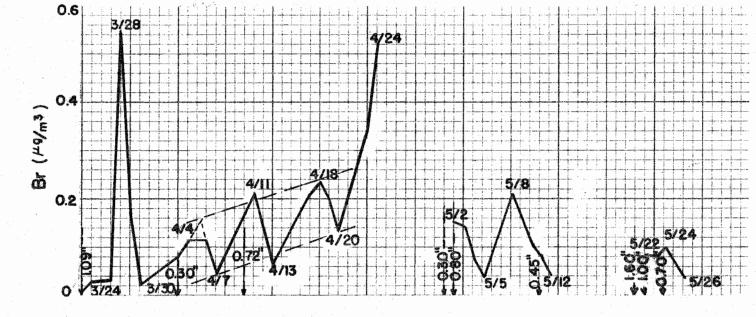
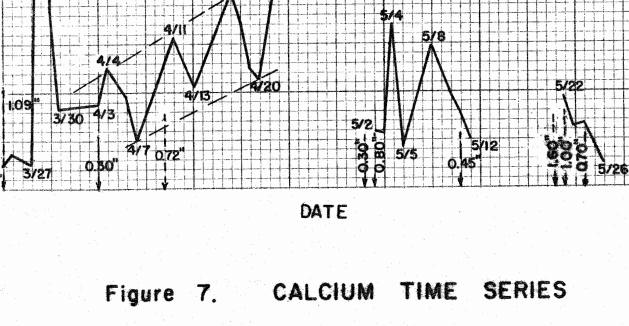



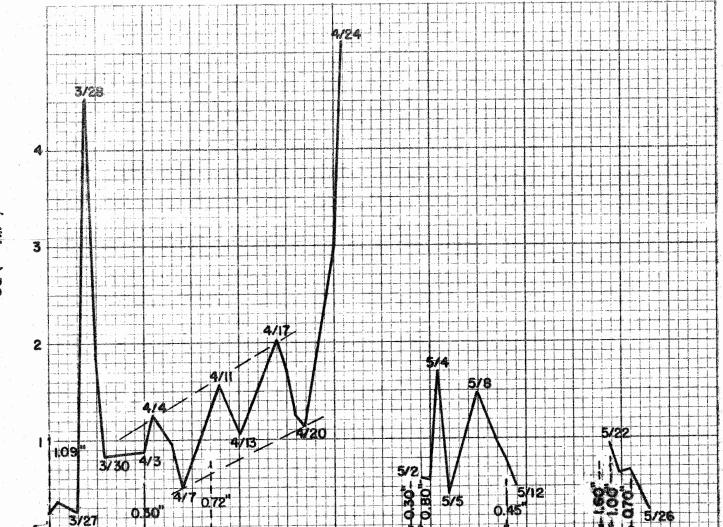
Figure 4. TOTAL XRF TIME SERIES


-26-

DATE

Figure 5. LEAD 3 TIME SERIES


-27-



-28-

DATE

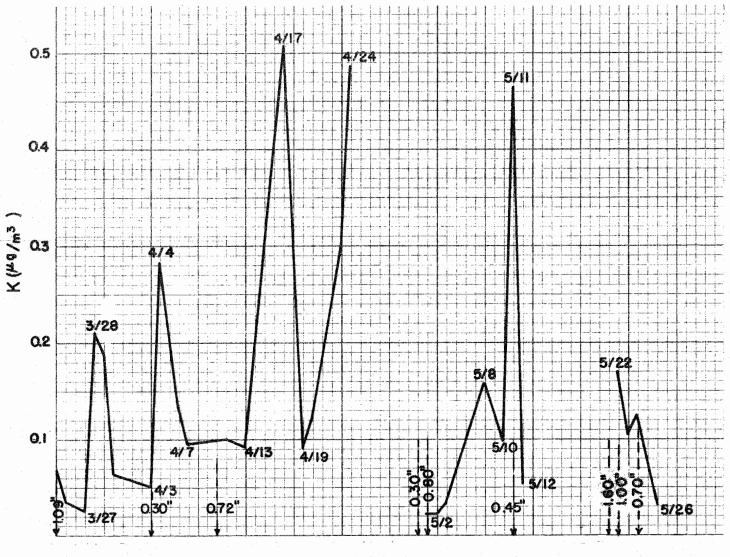
Figure 6. BROMINE TIME SERIES

Ca (#9/m3)

-29-

tern is very similar to lead and bromine.

Potassium in figure 8 has large peaks at 3/28, 4/4, 4/17, 4/24, and 5/11. Although this element is very close to the limit of detectability, it decreases sharply at most rainfall events and the general pattern tracks the other elements and the gravimetric analysis. Potassium should be closely related to Calcium in the pavement surface.

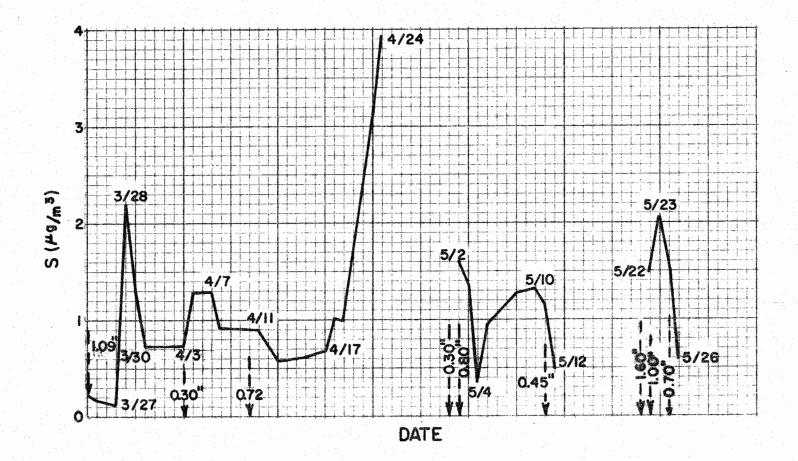

Sulfur is mostly fine with a coarse over fine ratio of 0.3 in Table 8, the lowest of the seven elements measured with XRF. Like bromine it is reactive and may appear as SO_2 , H_2SO_3 , H_2SO_4 , and other sulfates such as $(NH_3)_2SO_4$. Some of it occurs as a result of the chemical industry and invisible power plant plumes. In Dallas the main influence other than the catalytic converters of automobiles will probably be power plants. Sulfur represents 18% of the coarse and 55% of the fine particulate in these samples. The trace in Figure 9 shows peaks at 3/28, 4/6, and 4/24 and a similar pattern to the other elements except that the increasing trend between 4/3 and 4/17 is not clear in these data. Wet deposition is evidently fairly effective when storm events are large or after successive moderate rainfalls.

Zinc in Figure 10 is closer to the level of detectability than any other element displayed with most of the data below 0.02 ug/m^3 . The most outstanding peak occurs at 4/24 as is true of many of the other elements. There is no increasing trend between 4/3 and 4/17. Zinc occurs in galvanized parts of automobiles and in oil and grease additives. It is very closely related to lead in water pollutants washed off the highway as shown in this and the previous study.

Bullin [7] has reported higher levels of iron in Dallas than San Antonio because of earth crustal components. Most of the iron here is probably from the underside of vehicles, although some may have been tracked onto the roadway. Iron shows major peaks at 3/28, 4/17, and 4/24 in Figure 11. Trend information may be supported between 4/3 and 4/17, but the pattern is not as clear as lead, bromine, and calcium. This may be because some of the iron is earth crustal in nature and not strictly a function of traffic. Other than the height of the peaks at 4/11 and 4/17, the overall pattern tracks that of lead very closely.

If we draw a line between 4/4 and 4/17 for total XRF, a slope of 0.065 $ug/m^3/day$ is measured and parallels a line drawn through the troughs at 4/7, 4/13, and 4/20. This is almost identical to the slopes determined for lead and calcium.

A close relationship has been demonstrated between gravimetric analysis and seven elements determined by X-ray fluorescence techniques with significant amounts of precipitation. In relatively dry periods a gradual increase in air pollution has been demonstrated with time for some elements and for the sume of those elements found at significant levels by XRF.



Se Se e

DATE

POTASSIUM TIME SERIES Figure 8.

-31-

Figure 9. SULFUR TIME SERIES

-32-

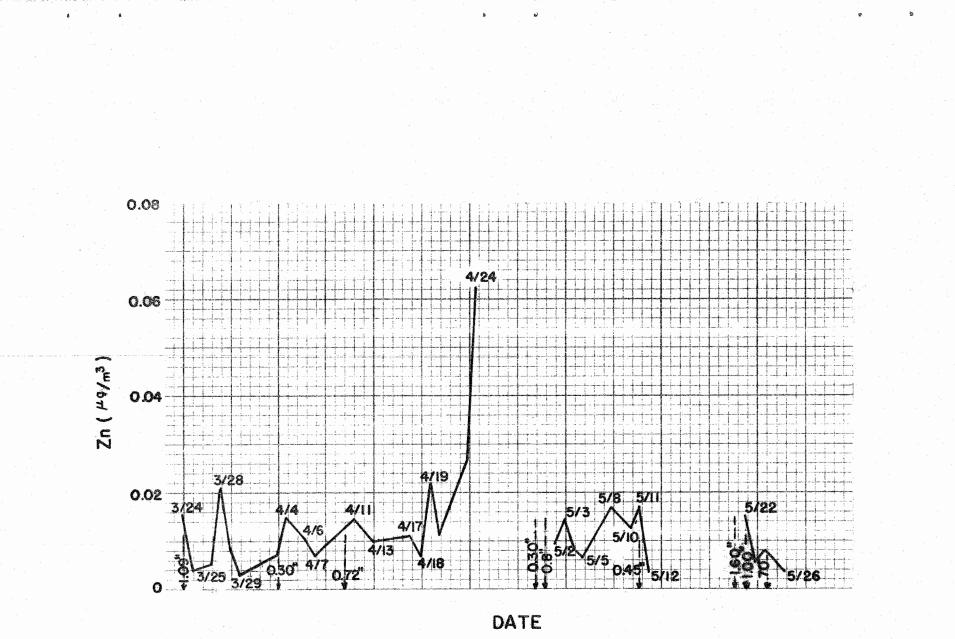


Figure 10. ZINC TIME SERIES

-33-3-

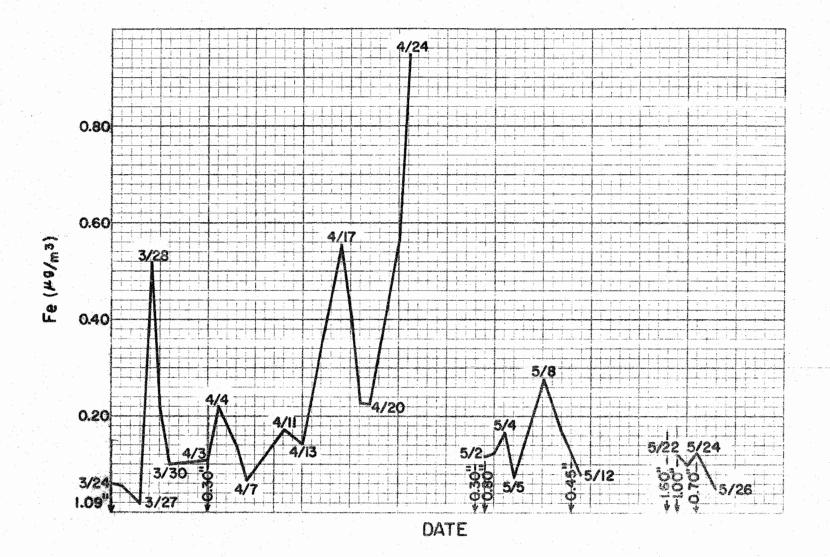


Figure II. IRON TIME SERIES

-34-

REFERENCES

- FHWA/RD-81/042-047, "CONSITUENTS OF HIGHWAY RUNOFF", 6 Volumes, by Kobrigger, N.P., Meinholz, T.L., Gupta, M.K., and Agnew, R.W., Feb. 1981.
- FHWA/RD-78/197, "CHARACTERISTICS OF HIGHWAY RUNOFF IN TEXAS", by Moe, R.D., Bullin, J.A., and Polasek, J.C., Sept. 1978.
- 3. Dattner, S.L., "IMPROVING MINIMUM DETECTION LIMITS BY USE OF THE MINIMUM DETECTABLE MEAN", Texas Air Control Board, 1981.
- 4. Cahill, T.A., Personal Communication, 1976.
- 5. Crosby, E.C., and Argento, V.K., "ENVIRONMENTAL CONCENTRATION OF LEAD IN THE AREA OF SECONDARY LEAD SMELTERS AND A BATTERY MANUFACTURING PLANT IN DALLAS, TEXAS", A presentation at the 75th annual meeting of the Air Pollution Control Association, New Orleans, Louisiana, June 20-25, 1982.
- Green, N.J., Bullin, J.A., and Polasek, J.C., "DISPERSION OF CARBON MONOXIDE FROM ROADWAYS AT LOW WIND SPEEDS", <u>APCA Journal</u>, 29:10, Oct. 79
- 7. Bullin, J.A. and Moe, R.D., "MEASUREMENT AND ANALYSIS OF AEROSOLS ALONG TEXAS ROADWAYS", Environmental Science and Technology, 16:4, April 82.

Gage Heig		.01	.02	.03	•04	.05	.06	.07	.08	.09
	. Cfs	Cfs	Cfs	Cfs	Cfs	Cfs	Cfs	Cfs	Cfs	Cfs
							per second			
• 1										
.2	0	.02	.03	.04	.06	.08	.09	.10	.12	.14
• 3	.15	.17	.20	.22	.24	.26	.29	.31	.33	.36
• 4	.38	•41	.45	.48	.52	•55	.58	.62	.65	.69
• 5	.72	.76	.80	.83	.87	.91	.95	.99	1.0	1.1
.6	1.1	1.2	1.2	1.2	1.3	1.4	1.4	1.4	1.5	1.6
.7	1.6	1.6	1.7	1.8	1.8	1.8	1.9	2.0	2.0	2.0
.8	2.1	2.2	2.2	2.2	2.3	2.4	2.4	2.4	2.5	2.6
.9	2.6	2.6	2.7	2.8	2.8	2.8	2.9	3.0	3.0	3.0
1.0	3.1	3.2	3.2	3.3	3.3	3.4	3.5	3.5	3.6	3.6
•1	3.7	3.8	3.8	3.9	3.9	4.0	4.1	4.1	4.2	4.2
.2	4.3	4.4	4.4	4.5	4.5	4.6	4.7	4.7	4.8	4.8
.3	4.9	5.0	5.0	5.1	5.1	5.2	5.3	5.3	5.4	5.4
• 4	5.5	5.6	5.6	5.6	5.7	5.8	5.8	5.8	5.9	6.0
• 5		6.0	6.1	6.1	6.2	6.2	6.2	6.3	6.3	6.4
.6	6.4	6.4	6.5	6.5	6.6	6.6	6.6	6.7	6.7	6.8
.7	6.8	6.8	6.9	6.9	7.0	7.0	7.0	7.1	7.1	7.2
.8	7.2	7.2	7.3	7.3	7.3	7.4	7.4	7.4	7.4	7.5
.9	7.5	7.5	7.6	7.6	7.6	7.6	7.7	7.7	7.7	7.8
2.0	7.8	7.8	7.9	7.9	7.9	8.0	8.0	8.0	8.0	8.1
	8.1	8.1	8.2	8.2	8.2	8.2	8.3	8.3	8.3	8.4
	8.4	8.4	8.5	8.5	8.5	8.6	8.6	8.6	8.6	8.7
	8.7	8.7	8.8	8.8	8.8	8.8	8.9	8.9	8.9	9.0
	9.0	9.0	9.1	9.1	9.1	9.2	9.2	9.2	9.2	9.3
	9.3	9.3	9.4	9.4	9.4	9.5	9.5	9.5	9.5	9.6
	9.6	9.6	9.7	9.7	9.7	9.8	9.8	9.8	9.8	9.9
	9.9	9.9	10.0	10.0	10.0	10.1	10.1	10.1	10.1	10.2
	10.2	10.2	10.2	10.3	10.3	10.3	10.3	10.3	10.4	10.4
	10.4	10.4	10.4	10.5	10.5	10.5	10.5	10.5	10.6	10.6
				10.5	2005		10.5			10.0

TABLE 10 FLOW RATE FOR SHARP CRESTED WEIR

Remarks: Based on sharp crested weir flow conditions below 1.4 ft., orifice flow above 1.8 ft., and smooth transition between 1.4 and 1.8 ft.

-37-

APPENDIX <u>TABLE 11</u> WATER POLLUTANT CONCENTRATION SUMMARY (1977)

Resul Stori				Sample								
Event		Time		nterval	Fe	Pb	Zn		SS			$\frac{TS}{m(r/1)}$
					(ug/1)((ug/1)	(ug/1)	(ug/l)(m	lg/1)	(mg/1)(u	ig/1/(ш8/т)
1	5/21/77	5:00	PM	:01	925	556	245		101	53	43	197
				:10	562	335	155	-	51	21	42	114
2	6/1/77	2:30	PM	:01	920	731	456		180	88	177	445
				:10	506	427	395		64	42	191	297
3	6/13/77	6:00	PM	:01	_	-	_	-	1 9 0	52	187	429
				:10		. –	_	-	20	12	168.7	200.7
4	6/15/77	11:20	PM	:01	2400	404	193		56	28	217	301
				:10	1 39 0	308	129		32.	29	197	238.2
5	6/23/77	8:00	AM	:01	3440	1198	455	-	26	16	217	259
6	7/9/77	10:15	PM	:01	5 9 00	1574	752	12.1	533	280.1	714	1527.1
7	7/21/77	3:35	PM	:01	5740	1149	483	8.0	230	52	72	354
8	7/27/77	7:00	AM	:01	1870	320	140	3.0	50	18	50	118
9	7/27/77	9:25	PM	:01	9 80	20 9	78	4.0	39	13	27	79
10	8/14/77	7:00	PM	-	-	-	_	-	-	-	-	-
11	8/18/77	5:15	AM	:01	2200	722	311	28.0	104	58	184	346
				:10	1860	438	207	300	76	30	230	336
12	8/28/77	5:00	PM	:01	1400	410	240	38.0	62	40	263	365
MINI	MUM				9 20	209	78			13	27	79
MAX	MUM				59 00	1574	752	38.0	533	280.1	714	1527.
:01 ARI	THMETIC ME	ZAN			2578	727	335	15.5	143		196	402
STAN	NDARD DEVI	LATION			1882	445	202	14.3	146	75.2	191	392
MIN	IMUM				506	335	155		20	9	42	114
MAX	IMUM				1860	438	395		76	42	230	336
	ITHMETIC N NDARD DEVI				1080 659	377 65	222 120		48 22		166	237 6 86.

Storm Event	Sample Interval	COD (mg/1)	TOC (mg/1)	Kjeldahl Nitrogen (mg/l)	Nitrate Nitrogen (mg/1)	Bromine (mg/l)	Sulphate (mg/l)	рН
1	:01	118	26.1	2.08	0.84	0.0	10.4	7.33
	:10	102	25.5		0.42	0.0	15.1	6.9
2	:01	437	127.7	2.12	2.03	0.1	43.8	6.9
	:10	446	127.1	3.87	0.67	0.1	60.1	7.6
3	:01	194	55.2	4.86	0.86			7.1
	:10	107	30.9	5.14	0.86	0.001	13.8	
4	:01	211					5.9	
	:10	151				en e	28.8	
5	:01	314	46.5	2.27	0.10		21.6	
6	:01	740					91.2	
7	:01	323	61.7	3.8	0.17	0.001	33.1	7.0
8	:01	73	20.3	1.4	0.59	0.001	4.90	7.2
9	:01	32.4	5.8	10.0	0.46	0.005	3.60	7.3
10							1	
11	:01	286	55.7	5.6	1.16	0.02	24.9	7.1
	:10	248	58.0	5 .9	1.53	0.02	30.1	6.9
12	:01	220	55.8	3.7	0.152	0.02	25.4	7.0
MINIMUN		73 740	5.8 127.7	1.4 10.0	0.10 2.03	0.0 0.02	3.60 91.2	6.9 7.33
	ETIC MEAN RD DEV.	268 196	50.5 34.8	3.98 2.66	0.71 0.62	-	26.5 26.3	7.12 0.15
MINIMUN MAXIMUN :10		102 437	25.5 127.1	3.87 5.90	0.42 1.53		13.8 60.1	6.9 7.6
ARITHM	ETIC MEAN RD DEV.	211 144	60.4 46.7	4.97 1.03	0.87 0.48		29.6 18.7	7.1 0.40

TABLE 11WATER POLLUTANT CONCENTRATION SUMMARY (1977)

	WATER	POLLUTAN	T CONCE	NTRATION	SUMMAR	Y (19/8-	-19/9)		
Storm S Event Date In	ample terval	Fe (ug/1)	Pb (ug/1)	Zn (ug/1)(u	Cd 1g/1)	TSS (mg/1)(n	TVS ng/l)	TDS (mg/1)	TS (mg/l)
13 3/24/78	:01	997 00	1340	1220	10	228	37	654	919
14 7/27/78	:01	13700	2250	1000	10	446	87	264	797
15 8/29/78	:01	530	780	40	6	200	65	298	563
16 3/18/78	:01	1200	700	300	50	185	52	488	725
	:10	1000	700	400	10	150	31	236	417
17 4/17/79	:01	300	140	100	20	50	27	596	673
	:10	460	110	100	10	73	31	340	444
18 5/21/79	:01	219 0	217	230	11	98	39	48	185
an an Artan Ann an Antara an Anna Ann an Anna	:10	4700	45	310	16	178	62	143	383
19 5/22/79	:10	3450	336	190	9	81	25	86	192
								· ·	
MINIMUM MAXIMUM :01		300 99700	140 2250	40 1220	6 50	50 446	27 87	48 654	185 919
ARITHMETIC MEA STANDARD DEVIA		19603 39569	876 789	495 500	18.8 16	8 214 137	52 21	407 229	677 187
MINIMUM MAXIMUM :10		460 4700	45 700	100 400	9 16	73 178	25 62	86 340	192 444
ARITHMETIC MEA STANDARD DEVIA		2403 2461	298 296	250 132	11 3	169 115	37 17	201 111	310 140

TABLE 12WATER POLLUTANT CONCENTRATION SUMMARY (1978-1979)

Storm Event	Date	Sample Interval	COD		KJELDAHL NITROGEN	NITRATE NITROGEN	Br	so ₄	PH	CL	ORG. HG	INORG. HG	Ni
			(mg/1)	(mg/1)	(mg/1)	(mg/1)	(mg/	1)(mg/1)		(ug/1)	(ug/	1)(ug/1)) (ug/]
13	3/24/78	:01	108	3.4	0.65	0.12	· - ·	4.4	7.1	-	_	5.1	30
14	7/27/78	:01	180.5	46.3	4.4	2.965	-	40.2	8.1	-	 	<u> </u>	2450
15	8/29/78	:01	250	61.9	3.7	- -	_ 1	41.5	7.9	-	-	-	30
16	3/18/79	:01	323	89.3	4.45	0.3	-	96.8	7.5		· ,	0.6	
		:10	108	39.9	0.12	1.45		28.8	7.6	_		0.6	-
17	4/17/79	:01	163	30.9	2.85	0.45	, 	124	7.8	-	- 1	5.0	8.0
		:10	153	39.4	0.8	0.21	-	59.4	7.3	-	-		50
18	5/21/79	:01	147	21.4	8.77	0.06	-	28.5	7.6	-	0.30	0.01	24
		:10	176	56.6	5.93	0.29		172.3	7.5	-	0.20	0.01	37
19	5/22/79	:10	22.5	20.8	4.69	0.03		31.4	7.8		0.43	0.01	34
MINIMUM MAXIMUM		Na sha na saka na saka	22.5 323	3.4 89.3	0.65 8.77	_ 2.965	- -	4.4 96.8	7.1 8.1	-	_ 0.30	- 0.6	2450
	ETIC MEAN RD DEVIATIO	N	195 78	42 31	4.1 2.7	0.6	-	56 45	7.7 0.4	-	-	- -	424 993
MINIMUM MAXIMUM :10			22.5 176	20.8 56.6	0.12 5.93	0.03 1.45	-	28.8 172.3	7.3 7.8		0.43	0.6	- 50
ARITHME	TIC MEAN RD DEVIATIO	ON	115 68	39 15	2.9 2.9	0.5 0.6	-	73 68	7.6 0.2	-		-	30 21

TABLE 12 (Continued) WATER POLLUTANT CONCENTRATION SUMMARY (1978-1979)

TABLE 13PARTICULATE X-RAY FLUORESCENTAND GRAVIMETRIC ANALYSIS

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		No.														Flow F Rate			/m -			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					Date 78	Start Time	Ca	K	S	Zn	Fe	РЪ	Br	(ug)((min)(l/min)	(m ³)(1	1g/m ³)(ug/m ³ /day)	X	σ	F/C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		M																		·		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					5/22	1724									1474	12.5	18.4					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																	· ~ -					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-			1711									14/6	12.5	18.5					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															1/71	10 5	10 /					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																				12 0	10.0	0.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		525	r	3			0.6053	0.1/24	2./315	0.0231	0.0436	0.5313	0.1210	235				12.8	12.5	13.0	10.9	0.95
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		T																				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					5/23	1802									1415	12.5	17.7					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1750									1413	12.5	17.7					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42	560	F	2			0.1508								1/00							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ĩ					1807														10 (2 /	1 ((
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		559	F	3			0.2537	0.1846	4.2374		0.06/1	0.4638	0.1243	241				13.8	14.0	10.0	3.4	1.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		W					· .			-												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					5/24	1738									2917	12.5	36.5					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						1725											36.5				*	
$574 \ F \ 3$ 0.1371 0.1263 2.4778 0.0031 0.0585 0.3539 0.0916 249 7.0 3.5 3.1 1.1 0.1101 F $376 \ C \ 1 \ 5/26$ 0.3998 0.0686 0.1023 0.0004 0.0506 0.0550 0.0120 161 4374 12.5 54.7 2.9 1.0 $519 \ F \ 1$ 0.0542 0.0076 1.0218 0.0035 0.0174 0.2534 0.0630 253 4.6 1.5 $377 \ C \ 2$ 0.4158 0.0143 0.1558 $ 0.0737$ 0.0520 0.0260 116 4366 12.5 54.6 2.1 0.7 $492 \ F \ 2$ 0.0340 0.0327 0.8703 0.0037 0.0094 0.2477 0.0571 213 3.9 1.3 $371 \ C \ 3$ 0.5814 0.0381 0.2140 0.0069 0.0958 0.0249 239 4385 12.5 54.8 4.4 1.4				2													ar 0					
F 376 C 1 5/26 0.3998 0.0686 0.1023 0.0004 0.0506 0.0550 0.0120 161 4374 12.5 54.7 2.9 1.0 519 F 1 0.0542 0.0076 1.0218 0.0035 0.0174 0.2534 0.0630 253 4.6 1.5 377 C 2 0.4158 0.0143 0.1558 - 0.0737 0.0520 0.0260 116 4366 12.5 54.6 2.1 0.7 492 F 2 0.0340 0.0327 0.8703 0.0037 0.0094 0.2477 0.0571 213 3.9 1.3 371 C 3 0.5814 0.0381 0.2140 0.0069 0.0958 0.0249 239 4385 12.5 54.8 4.4 1.4						1/52								195	2907	12.3	35.8			3 1	1 1	0.07
376 C 1 5/26 0.3998 0.0686 0.1023 0.0004 0.0506 0.0550 0.0120 161 4374 12.5 54.7 2.9 1.0 519 F 1 0.0542 0.0076 1.0218 0.0035 0.0174 0.2534 0.0630 253 377 C 2 0.4158 0.0143 0.1558 - 0.0340 0.0327 0.8703 0.0037 0.0094 0.2477 0.0571 213 371 C 3 0.5814 0.0381 0.2140 0.0069 0.0958 0.0382 0.0249 239 4385 12.5 54.8 4.4 1.4		574	F.	3			0.13/1	0.1263	2.4//8	0.0031	0.0585	0.3539	0.0916	249				. /.0	3.5	2.1	1.1	0.97
519 F 1 0.0542 0.0076 1.0218 0.0035 0.0174 0.2534 0.0630 253 4.6 1.5 377 C 2 0.4158 0.0143 0.1558 - 0.0737 0.0520 0.0260 116 4366 12.5 54.6 2.1 0.7 492 F 2 0.0340 0.0327 0.8703 0.0037 0.0094 0.2477 0.0571 213 3.9 1.3 371 C 3 0.5814 0.0381 0.2140 0.0069 0.0958 0.0249 239 4385 12.5 54.8 4.4 1.4		F								· · · · · · · · ·									· · ·			
377 C 2 0.4158 0.0143 0.1558 - 0.0737 0.0520 0.0260 116 4366 12.5 54.6 2.1 0.7 492 F 2 0.0340 0.0327 0.8703 0.0037 0.0094 0.2477 0.0571 213 3.9 1.3 371 C 3 0.5814 0.0381 0.2140 0.0069 0.0958 0.0382 0.0249 239 4385 12.5 54.8 4.4 1.4		376	С	1	5/26		0.3998	0.0686	0.1023	0.0004	0.0506	0.0550	0.0120	161	4374	12.5	54.7	2.9	1.0			
492 F 2 0.0340 0.0327 0.8703 0.0037 0.0094 0.2477 0.0571 213 3.9 1.3 371 C 3 0.5814 0.0381 0.2140 0.0069 0.0958 0.0382 0.0249 239 4385 12.5 54.8 4.4 1.4							0.0542			0.0035												
371 C 3 0.5814 0.0381 0.2140 0.0069 0.0958 0.0382 0.0249 239 4385 12.5 54.8 4.4 1.4							0.4158								4366	12.5	54.6				•	
489 F 3 0.0407 0.0195 1.1526 0.0032 0.0286 0.1272 0.0221 226 4.1 1.3 2.9 4.0 1																	54.8					
		48 9	F	3			0.0407	0.0195	1.1526	0.0032	0.0286	0.1272	0.0221	226				4.1	1.3	2.9	4.0	1.33

									CULATE X			<u> </u>								
									and and a state of the same st	Contd.)										
	No.		•						, ,			Wt	.Time	Flow Rate	Flow	Conc	Conc /Day			
				Start Time	Ca	К	S	Zn	Fe	РЪ	Br	(ug))(min)((Xm ³)	(ug/m ³))(ug/m ³ /day)	X	σ	F/C
	M		9 2 10- AND																, ,	
	502			1932	2.7100	0.1873	1.0613	0.0216	0.4168	0.7422	0.3033		2808	11.8	33.1	21.3				
	570				0.1450	0.0168	2.1311	0.0107	0.0379	0.4507	0.1153					7.4				
	513			1910	2.5303	0.1799	0.6900	0.0249	0.3638	0.4304	0.1637		2811	12.5	35.1	1 17.1	8.8			
	518 591			1942	0.1931 2.9384	-	1.3231 0.6166	0.0164	0.3638	0.8097	0.3923		2006	10.0	2/ 1	9.2	4.7			
	494			1942	2.9384 0.3261	0.2300	1.6700	0.0104	0.0637	0.6834	0.0997		2806	12.3	34.3	5 19.2	9.9 5.3	7.2	3.0	0.47
				· .																
	W	c 1	E (10	1000	1 / 700	0 1150	0 5022	0.0000	0.050/	0 150(0.0511	151	1205	10 5	17 /		0 0			
	593 571			1822	1.4722 0.3400	0.1150 0.0729	0.5022 2.1996	0.0200	0.2504	0.1596 0.4264	0.0511 0.1114		1385	12.5	1/.	8.7	9. 0			
	584			1804	1.1475	0.0729	0.2905	0.0228	0.1695	0.1499	0.0382		1387	12 5	17 3	3 5.4				
۲	491			1004	0.2277	0.0695	1.8779	0.0076	0.0841	0.5862	0.1317		1307	12.5	1/•.		4.7		1	
	588			1830		0.0972	0.5929	0.0192	0.3245	0.1668	0.0815		1382	12.3	17.0) 14.0				
	567				0.4343		2.5193	0.0033		0.8229	0.2024							10.0	4.4	1.05
	TH							n an an an an a tha an										<u>. </u>		· .
	343	C 1	5/11	1729	1.3215	0.0946	0.4172	0.0106	0.1689	0.0416	0.0398	183	1446	12.5	18.1	10.1	10 1			
	566			1727	0.2716	0.2005	1.4657	0.0212	0.0552	0.4286	0.0575		1440	12.5	10.1		9.9			
	344			1823	1.6317	1.9964	1.4554	0.0320	0.1984	0.3139	0.0361		1504	12.3	18.5	5 11.4				
	565				0.2215	0.1996	1.3739	0.0128	0.0482	0.3726	0.0882					11.1				
	587	С З		1833	1.1367	0.1552	0.4397	0.0204	0.1697	0.1998	0.0767	241	1459	12.5	18.2	2 13.2	13.0			
	564	F 3			0.2447	0.1519	2.0190	0.0044	0.0750	0.8381	0.2177	160				8.8	8.7	10.5	1.4	0.86
	F					<u> </u>										-				
	589	C 1	5/12	1737	0.5158	0.0199	0.1139	0.0002	0.0805	0.0402	0.0136	-	4304	12.5	53.8	3 –				
	479	F 1			0.1981	0.0373	0.7712	0.0024	0.0394	0.2023	0.0460	228				4.2	1.4			
	598			1825	0.3812	0.0331	0.1749	0.0003	0.0609	0.0813	0.0340	151	4243	12.5	53.0	2.5	0.8			
	480				0.0531	0.0227	0.4112	0.0010	0.0116	0.1023	0.0384					2.4	0.8			
	597			1753	1,7187	0.1777	0.7048	0.0138	0.3136	0.2697	0.0858		4299	12.5	53.7	/ 13.3	4.5			

4.5 1.5 1.8 1.5 0.38

0.0538 0.0456 0.6977 0.0045 0.0135 0.2687 0.0504 240

TABLE 13

-43-

481 F 3

										CULATE X D GRAVIM			<u>2</u>								
	No.			Date 78	Start Time	Ca	K	S	Zn	Fe	РЪ	Br			Flow F Rate (1/min)			Conc /Day)(ug/m ³ /day)	x	σ	F/C
	T 516 434 504 438 503 487	F C F C	1 2 2 3	5/2	1856 1813 1859	0.9442 0.2146 0.7544 0.1757 1.3229 0.1407	- - 0.0150 0.0296	0.1716 2.6126 0.2330 2.3291 0.4695 3.9109	0.0091 0.0124 0.0101 0.0004 0.0046 0.0205	0.1542 0.0765 0.1235 0.0962 0.1651 0.0699	0.1916 0.4161 0.1072 0.4959 0.3498 1.2893	0.0421 0.1454 0.0313 0.0989 0.1149 0.4814	145 - 262 154	1417 1455 1440	12.0 12.5 12.0	17.0 18.2 17.3	8.5 14.4 8.9	6.7 8.6 - 14.3 8.9 9.9	9.7	2.8	1.19
-44-	W 592 527 508 490 601 528	F C F C	1 2 2 3	5/3	1857 1831 1901	1.0635 0.0934 0.3915 0.2234 1.5553 0.1770	0.0067	0.2539 2.1308 0.1970 1.6242 0.5854 3.2465	0.0221 0.0104 0.0204 0.0036	0.1007 0.3287 0.0350 0.0360 0.2077 0.0386	0.0913 0.3287 0.0504 0.2855 0.3951 1.3414	0.0623 0.0808 0.0153 0.0636 0.1269 0.5119	24 69 107	1348 1339 1353	12.5 12.5 12.5	16.9 16.7 16.9	9.0 1.4 4.1	5.4 9.6 1.5 4.4 6.7 14.0	6.9	4.4	0.68
	TH 586 600 599	С	2	5/4	1722 1653 1736	1.9429 1.0761 2.0715	0.0328	0.3756 0.4277 0.2570	0.0079 0.0095 0.0153	0.1834 0.1026 0.2135	0.2105 0.1680 0.1632	0.0741 0.1053 0.0433		1535 1548 1525	12.3 12.0 12.0	18.9 18.6 18.3	5.5 11.0	5.1 10.2	7.7	3.6	1 .9 0
	F 510 569 509 572 499 521	F C F C	1 2 2 3	5/5	1854 1848 1903	0.7649 0.1155 0.6505 0.0653 0.7689 0.0596	0.0321 0.0727 0.0468 0.0916 0.0686 0.0741	0.2697 1.6733 0.2276 1.4418 0.3438 1.6467	0.0070 0.0049 0.0109 0.0057 0.0033	0.1129 0.0295 0.1057 0.0227 0.1291 0.0206	0.0947 0.3742 0.0872 0.2841 0.1144 0.0169	0.0312 0.0776 0.0277 0.0518 0.0434 0.0072	342 232 302 328	4356 4338 4357	9.8 9.3 9.3	42.7 40.3 40.5	7.5 8.0 5.8 7.5 8.1 0.5	2.5 2.6 1.9 2.5 2.7 0.2	1.9	1.1	0.75

			•						CULATE X	BLE 13 -RAY FLU ETRIC AN		<u>r</u>							
	No.									Contd.)				Flow Rate			/Dav		a a <i>b</i>
				Start Time	Ca	K	S	Zn	Fe	РЪ	Br	(ug)((min)	(1/min))(m ³)((ug/m ³)(ug/m ³ /day)	S X	σ F/C
	W 511 C	: 1	4/19	1843	2.5168	0.0656	0.4273	0.0078	0.4041	0.2405	0.0690	221	1377	12.5	17.2	2 12.8	13.4		
	412 F				0.4282	0.1116	1.6587	0.0324	0.1254	1.0156	0.4336						16.5		
	515 C			1824		0.0642	0.2038		0.1709	0.1869	0.0328		1382	12.6	17.4	10.2			
	413 F				0.3951		1.8153	0.0330	0.1309	0.8567	0.3958						11.7		
	512 C			1850		0.1045	0.3309	0.0046	0.3673	0.1558	0.0398		1374	12.5	17.2	2 18.9			
	414 F	3			0.5335	0.1172	1.7627	0.0278	0.1473	0.6423	0.2259	249				14.5	15.2	14.5	3.4 0.99
	TH 445 C	1	4/20	1741	2.9284	0.2535	1.1166	0 0102	0 4740	0 55/2	0 2170	1000	1.266	0 5	<u>/1</u>	- 06 E	0 7		yn efnedd anwyn Clyne afr Allen y Brand ar yn ywr yn
	445 C 428 F		4/20	1/41	0.1006	0.2333	0.6486	0.0192	0.4740 0.0477	0.5543 0.4159	0.2179 0.1893		4300	9.5	41.5	5 26.5 6.4			
	467 C			1730		0.0991	0.4305	0.0092	0.2123	0.1713	0.0591		4356	11.0	47.9				
	429 F			1750	0.1670	0.0617	1.5521	0.0154	0.0610	0.5454	0.1485		4550	11.0					
1	441 C	3		1746	2.1368	0.2362	0.4603	0.0134	0.4587	0.1854	0.0657		4369	9.5	41.5	5 22.1			
45-	416 F	3			0.1844	0.0865	1.7876	0.0025	0.0592	0.4661	0.1305						4.8	4.9	2.6 0.52
	SU				ngentanin in denterforder	-			San								<u> </u>		a na an an tha tha tha tha an tha
	453 C		4/23	1829		0.1651	0.2645		0.3197		0.0899		1476	12.5	18.5	5 13.9	13.6		
	421 F				0.2029	0.0156	3.1260	0.0010	0.0980	1.1193	0.2896		· · - ·				11.4		
	448 C			1810	13.6459	1.2994	8.0306	0.1169	2.3266	2.7684	1.0502		1474	11.8	17.4	. –	- 1		
	435 F 457 C			1026	0.4680 2.6231	0.0829 0.1775	3.4750	0.0079	0.1535	1.3719	0.3201		1/70	10.0	10 1				
	437 C			1030	0.2580	0.0469	0.5233 3.3582	0.0153 0.0110	0.3642 0.1184	0.1935 1.0688	0.0923 0.2114		14/3	12.3	18.1	17.7		1/ 0	2 / 0 92
	411 1	5			0.2300	0.0409	2.0102	0.0110	0.1104	1.0000	0.2114	200				14./	14.4	14.2	2.4 0.83
	TH		,	and a second		Carl and and a state of the sta					بھ ور جان جان ہوا								
	495 F	2	5/4	1653								193	1548	12.0	18.6	5 10.4	9.7		
	M	•		105/	10 0705	1 1005	0.0055	0.1447	0.1/7/	0. 5416	1 0000								
	451 C		4/24	1854	12.9705	1.1237	8.2855	0.1441		3.5618	1.2820		1432	9.5	41.2	46.6			
	486 F 500 C			1820	0.3720 2.7299	0.0209 0.1486	1.7727 0.4510	0.0301 0.0135	0.1653 0.4626	0 .9309 0.2450	0.3896		1/20	0 5	61 0	4.1			
	431 F			1020	0.2664	0.1486	2.5387	0.0133	0.4626	1.1915	0.1234		1470	9.5	41.3	64.7			
	497 C			1855	13.7979	1.3884	6.7990	0.0123	2.4335	2.0184	0.6257		1456	9.5	41 2	2 43.5	6.3 43 0		
	410 F			1000	0.7148	0.1346	3.9042	0.0503		1.4466	0.3862		1400	2.5	41.2		40°C	32.8	26.3 0.09
		Ĵ		1.1		0.1040	5. 7072			10.000	0.0002							J2 . U	20.5 0.03

3

٩

ųb

فويه

۵

لحور

									CULATE X D GRAVIM	BLE 13 -RAY FLU ETRIC AN Contd.)		<u>r</u>								
	No.		Date 78	Start Time	Ca	K	S	Zn	Fe	РЪ	Br		Time (min)(Rate			Conc /Day)(ug/m /day	3 x)	σ	F/C
	T 465 C 422 F 446 C 418 F 456 C 419 F	F 1 C 2 F 2 C 3	4/4	1101 1044 1108	2.4514 0.3673 3.5573 0.2869 2.6570 0.4312	0.2000 0.4111 0.2683 0.2756 0.2375 0.3098	0.6823 3.5373 0.8698 2.2930 0.6777 3.2282	0.0183 0.0130 0.0108 0.0038 0.0265 0.0187	0.3424 0.0749 0.3998 0.0743 0.3161 0.1191	0.1058 0.5781 0.1960 0.5035 0.2216 0.8708	0.0381 0.1163 0.0766 0.1545 0.0818 0.2375	529 615 449 700	1756	11.8 12.5 11.8	40.0	18.5	11.4 12.6 9.2 15.0	11.9	2.4	0.72
-46-	TH 462 C 420 F 464 C 469 F 459 C 470 F	7 1 2 2 7 2 2 3	4/6	1627 1559 1639	1.8637 0.2641 1.7142 0.2449 1.3868 0.1497	0.0612 0.1225 0.1227 0.1539 0.0249 0.3331	0.6018 2.6910 0.2660 1.7220 0.4913 2.0703	0.0192 0.0016 	0.2559 0.0507 0.2932 0.0070 0.2140 0.0265	0.0842 0.5192 0.1285 0.4534 0.1027 0.4983	0.0426 0.1528 0.1001 0.1718 0.0794 0.1592	280 204 178 242	1053 1065 1047	12.5 12.4 12.5		21.2 15.5 13.5 18.5	29.0 21.0 18.3	23.9	4.0	1.08
	F 447 C 471 F 458 C 472 F 444 C 473 F	7 1 2 2 7 2 2 3	4/7	1006 0954 1101	0.5255 0.2085 1.2891 0.1558 0.6212 0.0764	0.0394 0.1383 0.0864 0.1346 0.0325 0.1552	0.2287 1.2897 0.4655 1.9065 0.2367 1.3717	0.0018 0.0065 0.0086 0.0185 0.0086 0.0016	0.0655 0.0417 0.1429 0.0606 0.1008 0.0288	0.0623 0.2506 0.1165 0.3322 0.0418 0.1405	0.0259 0.0868 0.0441 0.0928 0.0128 0.0484	524 516 588 392	5379 5395 5372	9.5 9.5 9.5	51.3	5.5 10.3 10.1 11.5 7.7 9.0	2.8 2.7 3.1 2.1	2.1	1.0	1.33
	T 468 C 474 F 461 C 475 F 440 C 408 F	1 2 2 2 3	4/11		2.7802 0.1932 1.1289 0.1851 4.8169 0.2190	0.1465 0.0262 0.0273 0.2432 0.0620	0.7196 1.5711 0.5205 1.3755 0.0285 1.1524	0.0340 0.0104 0.0053 0.0061 0.0285 0.0038	0.3227 0.0518 0.0148 0.0591 0.5636 0.0465	0.4595 0.6921 0.2415 0.6918 0.7445 0.8455	0.1296 0.2416 0.0474 0.2389 0.2842 0.3242	323 287 311 956	2659 2645 2663	12.4 12.4 12.4	32.8		5.3 4.8 5.2 15.7	8.0	4.4	0.51

.

8

							the second se	CULATE X D GRAVIM	ETRIC AN		<u>r</u>								
17								(0	lontd.)			m <i>t</i>		. 1	0				
No.											WC.		Flow F Rate	low	Conc.	/Day			
		Date 78	Start Time	Ca	К	S	Zn	Fe	Pb	Br	(ug)	(min)(l/min)	(m ³)(ug/m ³)(ug/m ³ /day)	x	σ	F/C
TH	 1	/ /12	1000	0.0005	0 1/7/	0 7070	0 0170	0.0705	0.01/0	0.00(0	100	0 7505							and an excitation of the file
450 476		4/13	1220	2.2085	0.1474 0.0166	0.7279 0.5079	0.0172	0.2795 0.0300	0.2442 0.2296	0.0968 0.0677	103	8 7595	9.5	/2.2	14.4	2.7			
470			1200	2.1039	0.0166	0.3079	0.0086	0.2433	0.2296	0.0859		7600	9.5	70 0	12.7	2.4			
477			1200	0.0217	-	0.1217	0.00140	0.0075	0.0859	0.0227	920	/000	9.5	12.02	- 12/	Z•4 —			
466			1231	1.8024	0.1340	0.3457	0.0111	0.2724	0.1290	0.0435	906	7591	9.5	72.1	12.6	2.4			
478				0.1429	0.0245	1.0690	0.0071	0.0451	0.2846	0.0699						1.3	2.2	0.6	0.54
M									_										
505		4/17	1855	2.5758	0.5449	0.3955		0.6000	0.1849	0.0463		938	12.5	11.3	37.4				
426			10//	1.0957	0.3627	1.1066	0.0060	0.4120	0.5596	0.2334		041				32.5			
501			1844		0.4543	0.1784	0.0096	0.4091	0.0926	0.0469		961	12.4	11.9	20.3				
427 514			1903	0.8739 3.2547	0.2080	0.6927 0.6676	0.0046	0.3902 1.0040	0.3338 0.5480	0.1262		0/1	10 /	11 7		25.3			
424			1905	2.8678	0.6902	1.7418	0.0233	0.8257	1.2437	0.6307		941	12.4	11./			6.5	23.0	0.60
T									1. 18. 1991 - Barrison and community		an a								
498		4/18	1841	1.9295	0.3558	0.6002	0.0017	0.4240	0.2724	0.0948		19 04	12.4	23.6	21.7				
417				0.7088	0.0730	0.6683	-	0.1616	0.6844	0.2618						7.6			
506			1830	2.0556	0.4779	0.4094	0.0053	0.4984	0.1492	0.0501		1903	12.4	23.6	10.1				
433			19/0	0.5493	0.0632	0.7535	0.0026	0.1104	0.4665	0.2263		1007	10 (<u> </u>		5.8			
507 40 9			1040	4.6552 0.5563	0.8182 0.0849	1.2090 0.8563	0.0197 0.0053	1.1200 0.1301	0.9620 0.8391	0.4322 0.3522		1907	12.4		51.2 7.1		3.6	12.9	0.30
F	 	· · · · · · · · · · · ·							· · · · ·										
349		3/24	1125	-	-	0.6643	0.0001	· -	0.1020	0,0076	-	1733	12.5	21.7	-	-			
316			1100	0.1189	0.0102	0.0767	0.0076	0.0197	0.0036		-					-			
334			1106	0.1596	· - · ·	-	·	0.0238		-	88	1729	13.8	23.9	3.7	3.1			
386 332			1145	0.0313 0.1006	-	0.1926 0.0895	-	_ 0.0076	-	_ 0.0125	299	1723	12.5	21 5	13.9	-			
306			1143	0.7105	0.1291	-	0.0413	0.1847	0.3926	-	209	1723	12.5	21.5		8.1	7.6	4.3	0.70

3

۲

ŵ.

~ ,

6

œ.

-47-

TABLE 13	
PARTICULATE X-RAY FLUORESCENT	
AND GRAVIMETRIC ANALYSIS	
(Contd.)	

N	0.													Flow Rate			Dav			
			Date 78	Start Time	Са	K	S	Zn	Fe	РЪ	Br	(ug)	(min)	(1/min))(m ³)((ug/m ³))(ug/m3 /day)	X	σ	F/C
S		~ 1	2/25	1605	0.07//	0 0070		0 00 2 2	0.05/0	0 4 (5 0	0.0250	4.1	2015	(F	10 0		1 1			
	70 (3/25	1625	0.2744 0.0474	0.0072	0.2010	0.0022	0.0548	0.4652 0.3584	0.0358	41	2915	0.5	18.9	2.2	1.1			
	99 1 58 (0.2010	0.0028	0.0090	0.5015	0.0322		2830	6 5	18.4	. –				
				1506	0.5706	0.0716						· _	2650	0.5	10,4		1 2	1 2	0 1	
. 30	0 9 E	. Z			0.4364	0.0289	0.3075		0.0887	0.5351	0.0669	43				2.3	1.2	1.2	0.1	
M				· · · · ·								- In carrierations			· · · · · · · · · · · · · · · · · · ·	**-	alifer dan menangkan kelalangkan			
	42 (3/27	1552		0.0084	0.0379	0.0073	0.0689	0.5216		14	1285	12.4	15.9	0.9	1.0			
	36 E				0.2313	0.0298		0.0068	0.0028	0.4946	0.0319	36				2.3	2.6			
	60 C				0.3912	-		0.0037	, 	0.6189	0.0546	1	1318	12.4	16.3	0.1	0.1			
	37 F	2			0.1666 0.1849	0.0443	0.2276	0.0085	0.00 9 4	0.4874	-	69					4.6			
	57 (1604	0 . 184 9		. - .	-	0.0019	0.4117			1301	12.5	16.3	} '				
4 (00 F	3			0.1309	0.0314	0.0666	0.0020	0.0150	0.5449	0.0266	14				0.9	1.0	1.9	1.8	6.8
T							alastalis													
35	56 C	2 1	3/28	160 9	9.6288	0.4217	1.6888	0.0248	0.9449	0.9553	0.3088	824	1267	11.8	15.0	54.9	62.4			
	15 F				1.1026	0.0846	4.0035	0.0079	0.2019	2.2903	0.9444					29.7				
	25 C			1554	7.7180	0.3139	1.6071	0.0398	0.7788	0.9760	0.3065		1269	12.4	15.7					
	20 F				0.7252	0.0555	2.0178	0.0159	0.1779	1.6415	0.7581					26.2				
	B1 C			1631	7.0852	0.2884	1.0572	0.0285	0.8875	0.9197			1254	12.3	15.4					
	96 F				0.8695	0.1041	2.7820	0.0064	0.1181	1.6121	0.6582	364						43.4	14.0	0.57
W					·	Thank in the second														
	+2 C	1	3/29	1319	4.5989	0.1874	1.0653	0.0020	0.5268	0.6360	0.1092	535	1219	11.8	18.1	29.6	35.0			
31	17 F	1			0.7033	-	1.8679		0.0961	0.9548	0.3307	432				23.9	28.2			
34	1 C	2		1306	0.7981	0.3844	0.5730	-	0.1406	0.0293	0.0394		1218	12.5	19.2					
	4 F				0.4804		1.8718	0.0005	0.0511	0.8140	0.2622					15.9				
	50 C	3		1325	0.4804 3.9034	0.1457	0.6237	0.0165	0.4043	0.3783	0.0533		1221	12.3	18,9					
	97 F				0.5788	0.0364	1.8811	0.0258	0.0959	0.8025	0.2347							28.6	7.6	0.64

								(0	ontd.)										
No.			Start Time	Ca	K	S	Zn	Fe	Pb	Br		.Time (min)(Flow Rate (1/min)			Conc /Day)(ug/m /day	3 x)	σ	F/C
TH				an a				101-101-10-10-10-10-10-10-10-10-10-10-10		1) - 17 - 17 - 17 - 17 - 17 - 17 - 17 -				<u>.</u>					
336	C 1	3/30	1457	0.8433	0.0737	0.1415	0.0015	0.1176	0.0387	0.0055	875	1219	12.5	90.0	9.7	11.5			
398	F 1			0.1557	0.0208	0.9392	<u> </u>	0.0243	0.0730	0.0173	401				4.5	5.3			
38 0	C 2		1442	1.8528	0.1055	0.3395	0.0036	0.1754	0.0504	0.0145	9 0 9	1218	11.8	85.2	10.7	12.7			
430	F 2			0.2089	0.0347	0.3190	0.0031	0.0310	0.1503	0.0366	610					8.5			
354	С З		1511	1.6406	0.1359	0.2543	0.0059	0.2216	0.0966	0.0172	1334	1221	11.8	85.2					
423	F 3			0.2163	0.0236	1.4397	0.0028	0.0305	0.2190	0.0517	-		1		-	_	20.7	11.0	0.57
M				0-118-08-019-08-0-0-00-00-0					a management of the second										
463	C 1	4/3	1518	1.1714		0.5589		0.1414	0.3050	0.0320	202	1177	12.5	14.7	13.7	16.8			
415	F 1			0.3790	0.1474	3.4279	0.0098	0.0482	0.7779	0.0655	297				20.2				
455	C 2		1503	1.3329	0.0727	0.2899	0.0012	0.1851	0.3758	0.0407	169	1177	12.5	14.7	11.5	14.1			
425	F 2			0.2736	0.0171	2.4247	0.0058	0.0605	0.6925	0.1027	243				16.5	8.0			
452	C 3		1535	1.7423	0.0082	0.4799		0.1535	0.3286	0.0498		1165	12.4	14.4	15.8				
432	F 3			0.3656	0.0139	3.3661	0.0189	0.0788	0.8478	0.2055	280					24.0	17.9	6.3	1.13

TABLE 13 PARTICULATE X-RAY FLUORESCENT AND GRAVIMETRIC ANALYSIS (Contd.)

Overall 0.68