

1. Report No. 2 FHWATX78180~1F	2. Government Acce		T. 3 LO0825	LE PAG
4. Title and Subtitle EVALUATION OF CERTAIN ELASTOM			5. Report Date July 1973 6. Performing Organizat	
7. Author's) Charles W. Chaffin and Charles H. Hugh	•)'Connor	8. Performing Organizati Research Repo	
 Performing Organization Name and Address State Department of Highways Materials and Tests Division Austin, Texas 78703 12. Sponsoring Agency Name and Address 		Fransportation	 Work Unit No. Contract or Grant No. Study No. 1-9 Type of Report and F 	9-74-180
U. S. Department of Transport Federal Highway Administratic Washington, D. C. 20590			Fina 8-73/8- 14. Sponsoring Agency C	-76
15. Supplementary Notes Study conducted in cooperation with the U. S. Department of Transportation, Federal Highway Administration. Study Title: Evaluation of the Use of Certain Elastomers in Asphalt 16. Abstract This report covers a laboratory evaluation of the properties of asphalts from eleven of the sources normally used in Texas and the effects of blending with three different elastomers on these properties. Butadiene- styrene and neoprene latexes and amorphous polypropylene were used in this study. The different asphalts had substantially different properties when blended with the elastomers and some asphalts demonstrated incompati- bility with the latexes. In general the laboratory data indicate increases in low temperature ductility, decreases in temperature susceptibility, improved impact resistance or less brittleness at low temperatures and less change in properties after exposure in the thin film oven test. Some problem with storage stability is reflected by these data with beneficial effects of the latexes tested was substantially less effective than the amorphous polypropylene or the other latex. Field test sections con- structed in the summer of 1976 in three different locations in Texas are still performing well and appear to be more effective in controlling reflective cracking than the control sections without latex. A tentative				alts iene- arties mpati- creases V, and Some icial ures. are
specification is presented. 17. Key Words		18. Distribution Statem		
Brittleness, amorphous polyp Butadiene-styrene latex, new latex, asphalt blending, low ture ductility, temperature bility	oprene w tempera-		s. This report ional Technica gfield, Virginia	l Information
19. Security Classif. (of this report) Unclassified	20. Security Class Unclass		21. No. of Pages 88	22. Price

EARCH LIBRARY

Form DOT F 1700.7 (8-69)

Mr. Fred W. Clark, Jr.

DEDICATION

This report is dedicated to Mr. Fred W. Clark, Jr., District Engineer, State Department of Highways and Public Transportation, Del Rio, Texas in recognition of his 40 years of outstanding service.

Fred W. Clark was born October 30, 1916, in Van Horn, Texas. He graduated from Texas A&M University in 1938 with a BS degree in electrical engineering. Mr. Clark began working for the Department in 1938 as a rodman in Uvalde. He transferred to Leakey as an Instrumentman in 1940. From 1941 until 1946 he served as a Major in the United States Air Force in the Canal Zone and South America.

He returned to Leakey in 1946, then moved to Rocksprings in 1946 serving as Resident Engineer, and to Carrizo Springs in 1949 where he became Supervising Resident Engineer. He became Assistant District Engineer in 1971 and was promoted to District Engineer October, 1972 in Del Rio, Texas, where he served until his death on January 16, 1979.

Mr. Clark was a member of the Texas Society of Professional Engineers and served in many capacities at the Methodist Church. He belonged to a Culberson County pioneer family, and was interested in historical survey work and museums.

Mr. Clark was very interested in research, new ideas and improvement of the Departmental operations. He had to his credit publications dealing with stabilizing salvage base materials and the use of salvage steel.

Mr. Clark's civic and professional efforts endeared him to all with whom he worked as he practiced the Professional Engineer's Creed which states in part:

"----To place service before profit, the honor and standing of the profession before personal advantage, and the public welfare above all other considerations." The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the views or policies of the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

There was no invention or discovery conceived or first actually reduced to practice in the course of or under this contract, including any art, method, process, machine, manufacture, design, or composition of matter, or any new and useful improvement thereof, or any variety of plant which is or may be patentable under the patent laws of the United States of America or any foreign country.

ACKNOWLEDGEMENTS

C. W. Chaffin, Materials and Tests Chemical Engineer, was principal project supervisor and was assisted by D. L. O'Connor, Supervising Chemical Engineer. C. H. Hughes, Materials and Tests Field Engineer, assisted in writing the report.

Acknowledgement is given to the technicians performing the tests, Charles Jennings, Scott Boyd, Howard Stark, and Gene Coward.

Acknowledgement is given to the Lufkin, Atlanta, and El Paso Districts for their assistance with field sections and to John Nixon and his associates in the Research Section of the Transportation Planning Division for their assistance in data accumulation and reporting of the field trials for this study.

۷

IMPLEMENTATION

The results of this study have been implemented in the Abilene District seal coat program for the summer of 1977. Other Districts use or have used latex emulsion blends or latex asphalt cement blends. Emulsified asphalt - latex blends are being used for crack pouring. This study indicates the need to evaluate each new proposed blend to obtain compatible blends with the most desirable characteristics. SUMMARY

This study utilizes asphalts from eleven sources to evaluate the effect of adding three different elastomers on the basic properties of the asphalt. A butadiene-styrene latex, neoprene latex and amorphous-polypropylene were blended in various amounts to different grades of asphalt. The effect of the thin film oven test was considered as well as storage stability at elevated temperatures. Field test sections continue to be evaluated to compare these blends with control sections and other types of rubberized materials.

INTRODUCTION

Background

The history of modifying asphalt with rubber dates back at least 50 years when only natural rubber was available. The Dutch used rubber modified asphalt in Java and Europe in the thirties and their appraisal of these surfaces after heavy war time traffic created renewed interest in its use in Europe. Competition from war time developed synthetic rubber encouraged the Natural Rubber Bureau to vigorously start promoting the use of natural rubber in asphalt in this country in the late forties. The Texas State Department of Highways and Public Transportation (DHT) first used rubber in asphalt surfacing in 1949.

Due to the vast prospective market available by the use of even two to three percent natural rubber in highway asphalt, some of the American natural rubber producing companies joined the Natural Rubber Bureau in the fifties in promoting such use. Later, these same companies began promoting synthetic rubber as a modifier and reclaimed rubber companies also began promoting their product. Most of the asphalt manufacturers including the Asphalt Institute showed little enthusiasm or even interest in the idea. However, there was enough interest on the part of the various states to result in over half of them placing from small to rather large trials of rubber asphalt surfacing. A few states have been specifying it for seal coats on a regular basis for several years.

- 1 -

Following the initial 1949 DHT experiment, other trial sections were placed using natural rubber and these have been followed the last several years with considerable quantities of synthetic rubber (butadiene-styrene) modified asphalt. The Natural Rubber Bureau, Synthetic Rubber Institute as well as individual synthetic rubber manufacturers have investigated various forms and types of rubber. As a result during the early stages of development, the rubber industry offered various forms and types. At this time, a special butadiene-styrene synthetic rubber latex is readily available from both Goodyear and Firestone and DuPont offers their neoprene latex. U.S. Rubber Reclaiming, Atlos Rubber, and Midwest Rubber have their reclaimed products available. There are other potential suppliers of both latex and reclaimed rubber.

One asphalt supplier, Husky of Cody, Wyoming, became interested in the idea and was convinced that it has sufficient merit to offer rubberized asphalt. Husky's positive attitude is probably responsible for rubber modified asphalt (both neoprene and butadiene-styrene) now being used regularly for several years by two or three states in their market area. In addition, Cosden located at Big Spring, Texas, has offered excellent cooperation in making rubberized asphalt available to DHT and has the required blending facilities and excellent facilities for storing tank car quantities of latex.

Since the first DHT trial in 1949, it is estimated that the Department has used approximately 3,000,000 gallons (and maybe more) of rubberized asphalt. Most of this has been rubberized asphalt cement from Cosden using Goodyear latex (butadiene-styrene) Pliopave L-170 for seal coats predominantly in the

- 2 -

Amarillo, Lubbock, Odessa and San Angelo Districts. The Amarillo District has also used some rubberized MC-5 and the Austin District has used EA-HVRS with this same latex for seal coats. The Ft. Worth District has placed hot mix using rubberized AC from both Cosden and Gulf States (Houston) for bridge deck overlays and one sizable highway overlay. Some latex has been added to emulsion by DHT Maintenance for crack pouring and some has been added to emulsion for tack coat.

C. W. Chaffin, Materials and Tests Chemical Engineer, has given this basic idea of improving asphalt by addition of rubber close attention continuously since 1949. This has involved studying the literature, personal discussion with others throughout the United States and other countries, attending special conferences on this specific subject, testing and control of the DHT rubberized asphalt and working with various Districts during application and evaluation of results. Abstracts furnished by Transportation Research Board's HRIS and Texas Transportation Institute of the literature on this subject have been recently reviewed and many of these articles are in the Materials and Tests Division files.

Based on this close study and the results thus far, it is concluded that of all research to date on asphalt as a surfacing material, the modification with available rubber has by far the best possibilities of producing immediate and significant practical benefits.

Prior research has developed and made available special latex for blending with asphalt as well as practical equipment for blending and handling rubberized materials. Some rather thorough evaluations have been made on the use of rubber,

- 3 -

but the bulk of it has not been used under close enough controlled and comparative conditions to fully justify its use over regular asphalt. By far the greatest shortcoming of research to date has been the failure to look at the possibility of developing a significantly different end product rather than just merely adding certain amounts of rubber to the grade and or type of asphalt that would have been used for the same work without rubber.

Specifically for seal coat purposes it is proposed to develop a rubberized material having improved temperature susceptibility characteristics, increased life, and other more desirable characteristics as compared to regular asphalt now used. Rubberizing asphalt makes possible the use of much softer asphalt than normally used for seal coats without danger of too low a film strength in hot weather. This means less brittleness in cold weather and increased longevity. The best amount and type of rubber needs to be determined for asphalt cements, cut-backs and emulsions as it is believed all have their particular place in surfacing.

Objectives of the Study

- Conduct a laboratory investigation to determine the optimum amount and type of rubber to add to various asphalts to give improved properties for surfacing use.
- 2. Determine the volume of asphalt, that is, the number of Texas sources which give the desired modified properties. Due to the wide differences in composition of the numerous Texas asphalts, it is already known that all will not respond alike to modification. It will be necessary to

- 4 -

know if satisfactory modification can be obtained with at least sufficient number and distribution of sources so as to make general use competitive, economical and practical.

- Develop adequate specifications, preferably on the finished product, so as to properly control the quality.
- 4. The overall objective of the study is to determine if modification of asphalt with rubber is justified mainly for use in asphalt surfacing but information gained will help evaluate it for other special uses such as tack coat and crack pouring.

LABORATORY INVESTIGATION

In order to provide as wide a base as possible for this study eleven of the asphalt sources commonly utilized in Texas were selected to evaluate the latex blends. The sources used were as follows.

American Petrofina of Texas

Cosden, Big Spring, Texas

American Petrofina, Mt. Pleasant, Texas

Gulf States Asphalt

Houston Plant

Corpus Christi Plant

Exxon, Baytown, Texas

Bell Oil and Gas, Ardmore, Oklahoma

Diamond Shamrock, Sheerin, Texas

APCO Oil Corp., Cyril, Oklahoma

Chevron, El Paso, Texas

Kerr-McGee, Wynnewood, Oklahoma

Texaco, Port Neches, Texas

Samples of AC-3 and AC-5 were taken from all of these plants in sufficient quantity to complete this study.

- 6 -

The two latex materials selected for blending were DuPont Neoprene Latex LD-260 and Goodyear Butadiene-Styrene Latex L-170 Pliopave. As the laboratory investigation progressed another polymer, which is a by-product of Eastman Chemical Products, Inc. polypropylene production, became available. It was amorphous polypropylene and preliminary tests and cost data showed that this material had promise as a satisfactory blending material. Specifications for these materials are given in the appendix.

Blending procedures in the laboratory were determined to be different for the three elastomers as follows:

Neoprene Procedure:

The asphalt (1000 grams) was heated to 360 F and the neoprene latex was added one drop at a time while agitating with an electric stirrer operated at 260 revolutions per minute. The temperature was maintained between 360 F and 400 F and stirring continued for 15 minutes after all latex was added. Total time from addition of first latex to completion of blending was 1-1/4 to 1-1/2 hours.

Goodyear Procedure:

The asphalt (1000 grams) was heated to 275 F and the butadiene-styrene latex added one drop at a time while agitating with an electric stirrer at 260 revolutions per minute. The temperature was maintained between 275 F and 300 F and stirring continued for 15 minutes after all latex was added. Total time from addition of first latex to completion of blending was 1-1/4 to 1-1/2 hours.

- 7 -

Amorphous-Polypropylene Procedure:

The asphalt (900 grams) and the polymer (100 grams) were both heated to 275 F and blended for 20 minutes with an electric stirrer at a speed of 250 revolutions per minute. Temperature of the blend was maintained between 275 F and 300 F during blending.

The resulting blends were subjected to the tests normally performed on an asphalt cement under our standard specifications. In addition, the ductility at 39.2 F, 5 cm per minute, and the low temperature brittleness were determined. The low temperature brittleness test procedure is described in the appendix but it consists of dropping a steel ball on an asphalt disk 3/8 inch thick and 2-1/2 inches in diameter to determine the height at which a single drop will cause the disk to break. Two ball weights (66.7 grams) or (130.5 grams) are used and the disk is normally chilled to 20 F or 50 F for testing depending on the low temperature characteristic of the material.

Results of these tests are presented in Table 1 of this report. It should be noted that tests on the amorphous polypropylene were made on only two of the sources selected for this study primarily due to the timing of availability of this material.

Because of concern with storage stability of these blends it was decided to arbitrarily age a number of the blends at 325 F for 72 hours. A comparison of the penetration, viscosity and ductility before and after aging is presented in Table 2 of this report.

- 8 -

Some effort at evaluation of latex and emulsion blends was made in this study. Unfortunately no successful methods were found to reduce the emulsion to a residual in the laboratory that would be comparable to residual asphalt in a seal or surface treatement application in the field.

Tests such as the "Toughness-Tenacity Test" and "Torsional Recovery Test" were attempted but eliminated because of equipment limitations in our laboratory.

Some testing with blends of asphalt and reclaimed rubber were made but were limited to the brittleness test primarily since the characteristics of this blend do not lend themselves to the standard asphalt cement tests utilized in the rest of this study. Reclaimed rubber data was deemed insufficient to include in this report.

DISCUSSION

The addition of rubber to asphalt has generally been reported to improve the following properties:

Temperature susceptibility Low temperature ductility Impact resistance at low temperatures Toughness Recovery (elasticity) Softening Point Cold flow Tack and adhesion

Bleeding resistance

It has also been reported that different types of synthetic rubbers behave quite differently in asphalt and produce blends with substantially different properties. The data in this study supports this statement. In addition this study established the wide variation in properties of a blend as the source of base asphalt in the blend is changed.

In general the data in this study demonstrates an improvement in the following listed properties for blends with most of the asphalts and one of the elastomers studied.

- 10 -

Temperature susceptibility Low temperature ductility Impact resistance at low temperatures Tack and adhesion Bleeding resistance

Field Trials

The last two properties have been evaluated by the several field test sections with latex blends (under another project but considered by this study) and in the 1977 seal program of one of our Districts which utilized the amorphous polypropylene. In the summer of 1976 the Department placed trial sections of seal coats using several different binders in three locations. These were on I-10 in far west Texas, SH-22 in north central Texas and SH-43 and US-80 in east Texas. These locations involve a variety of climatic and traffic conditions.

Although not to be compared directly to a typical chip seal, a reclaimed rubber asphalt seal called Overflex essentially as outlined in FHWA Implementation Package 73-1, Rubber-Asphalt Binder For Seal Coat Construction, was included. AC-3 blended with L-170 was used at only one location because a fire at Cosden Refinery prevented the blending of this material for the other locations. The chip seals except the Overflex were all placed with the same quantities, aggregates and construction practices as routine seals placed in those areas.

The various binders placed for evaluation are as follows:

1. AC-3, AC-5 and AC-10, no modification

2. AC-3 + 2% L-170

- 11 -

- 3. AC-3 + 10% Eastobond (amorphous polypropylene)
- 4. EA-HVRS
- 5. EA-HVRS + 2% L-170
- 6. Reclaimed Rubber Asphalt (Overflex)

There was essentially no difference in the initial results of all these binders as good aggregate retention was obtained on all sections. The increased tackiness of the modified binder over regular AC was readily apparent. It is planned to evaluate these sections for several years so as to get overall performance and durability.

Copies of the evaluation sheets for the field test sections are included in the Appendix. The indications at this time are that some improvement in the reduction of reflective cracking may be gained by the addition of rubber, however the test sections are only two years old and this preliminary judgement may not be valid.

Some of the blends in this study demonstrated incompatibility to a degree ranging from complete incompatibility through gel formation or livering to slightly grainy texture. Table 3 shows the notes made by the technician doing the blending. The neoprene latex demonstrated the greatest problem with compatibility in this study. The amorphous polypropylene blends smoothly without unusual effort since it can be treated and handled much the same as the asphalt.

Penetration And Viscosity Data

Blends of the two latexes usually produced properties of penetration and

- 12 -

viscosity in the same range as the next harder grade (viscosity grading) of asphalt to the blend asphalt. Ten percent amorphous polypropylene increases the viscosity two grades harder than the original.

Reference to the data for Cosden AC-3 with L-170 shows that it meets with the minimum viscosity at 140 F and penetration at 77 F requirements for AC-5. This means that it would have similar film strength on warm days to prevent tenderness of seal coat (chip seal) in the early stage. Yet this AC-3 with L-170 is less viscous and brittle at lower temperatures than an AC-5. The blend has a viscosity of 0.278×10^6 poises at 77 F compared to 0.518×10^6 for Cosden AC-5. Also, the blend will withstand 8.06 inch-pounds impact without cracking whereas Cosden AC-5 shatters at 1.76 inch-pounds.

This improvement in less brittleness and hardness at lower temperatures compared to consistency at 140 F is also shown by the 186 pen (77 F) for the AC-3 L-170 blend compared to only 139 for an AC-5.

In cases of seals placed during hot Texas weather and subjected to heavy traffic, it has been found necessary to use AC-10. In such cases an AC-5 with L-170 would have as high or higher viscosity at 140 F yet much higher pen and less brittleness at low temperatures. This change in temperature susceptibility is considered highly significant.

Less stiffness or brittleness at low road temperatures has been related to beneficial performance. The increased value must be weighed against the cost.

LOW TEMPERATURE DUCTILITY AND IMPACT BRITTLENESS

Most improvement in low temperature ductility was obtained with the butadiene

- 13 -

styrene L-170 with all blends achieving 141+ cm at 39.2 F. The neoprene latex LD-260 decreased the low temperature ductility in all but four blends and did not meet the 100 cm minimum specified by the Department for several years for rubberized asphalt. This specification used by the Department is given in the Appendix under Item 300. Amorphous polypropylene improved the low temperature ductility in two of the four blends tested but demonstrated poor results in this test on residue from the thin film oven test.

Impact resistance as reflected by the low temperature brittleness test was improved in eleven of the eighteen blends with L-170 and in eight of the eighteen blends with LD-260. None of the amorphous-polypropylene blends was tested at 20 F but did show good impact resistance at 50 F, 40 F and 30 F as shown in Table 1.

Storage Stability

Table 2 shows results after the storage stability test. In most samples the penetration was reduced about ten percent. The viscosity followed no pattern with about half of the samples increasing and about half decreasing in viscosity after storage. The most radical change was in the low temperature ductility. Except for one sample the ductility was substantially reduced.

Although asphalt-latex blends are more sensitive to loss of properties due to prolonged heating, it is considered practical to use the material. On prolonged storage it may be desirable to add a small additional amount of latex.

The thin film oven test shows that the heat and air exposed asphalt-latex blend is still superior in the desired properties to the regular asphalt.

- 14 -

The amorphous polypropylene results in improved impact resistance at low temperature, although the improvement is not as marked as that obtained with the L-170.

Thin Film Oven Test

There is less change after oven aging of a one-eighth inch thick film at 325 F for 5 hours of an asphalt L-170 blend than a comparable unblended asphalt. For example, the Cosden AC-3 + 2% L-170 blend with an initial viscosity at 140 F of 425 stokes and penetration at 77 F of 186 gave after aging a viscosity of 865 and pen of 114. This needs to be compared to the regular AC-5 (unblended) with an initial viscosity of 460 and pen of 139 which yielded after aging a viscosity of 1096 and pen of 75. Although there are no specific claims for correlation of this aging test with long range in-service durability, it is believed that there is reasonable evidence to expect better performance on this test to be reflected in service.

Cost Considerations

One of the major factors with improving asphalt by addition of other materials has been the relative low cost of asphalt as compared to the modifiers. For a number of years during the consideration of latex modifiers asphalt cost not much over one cent a pound. The latex price was 40 to 50 cents per pound (solids basis). This doubles the price of asphalt if you add 2 to 2 1/2 percent.

Asphalt has increased in price more than the additives the last three or four years but it is still only 3 1/2 to 4 cents per pound. Presently (1978) AC

- 15 -

asphalt is about 30 cents per gallon at the refinery and the furnished AC + L-170 blend costs about 55 cents.

At first amorphous polypropylene (Eastobond) was offered at about the same price as asphalt so the only added cost was any extra freight and a small amount of blending cost. However, it now sells for about 25 cents per pound. The minimum to be used is about 6% by weight so the cost increase is considerable. Asphalt performs sufficiently well that definite benefits are needed to justify any of these modifiers.

CONCLUSIONS

- Blending of asphalt with elastomers such as butadiene-styrene and neoprene latexes with as little as 2% (solids basis) of latex gives substantial improvements in temperature susceptibility, low temperature ductility, impact resistance and increased resistance to change by laboratory oven aging tests.
- 2. Each source of asphalt and elastomer must be evaluated for proper blending procedures and the amount needed to give desired properties.
- 3. There are adequate sources of supply in Texas of asphalt that may be blended satisfactorily to make general use competitive and practical.
- 4. Field use and trial sections of seal coats show improved tack and adhesion, better aggregate retention initially as well as less shelling during the first winter. Better documentation is anticipated through several controlled test sections placed in 1976.
- 5. A Tentative Specification has resulted based on this work and previous experience.

- 17 -

APPENDIX

Table l	Comparison of Properties of Asphalts and Asphalts	20
Table 2	Effect of Storage at 325 F for 72 Hours on Asphalts •••• Blended with 2% Butadiene-Styrene L-170	38
Table 3	Compatibility by Visual Evaluation •••••••••••••••	40
Figure 1	AC-3 Viscosity • • • • • • • • • • • • • • • • • • •	41
Figure 2	AC-5 Viscosity • • • • • • • • • • • • • • • • • • •	42
Figure 3	AC-3 Brittleness • • • • • • • • • • • • • • • • • •	43
Figure 4	AC-5 Brittleness ••••••••••••••••••	44
Figure 5	AC-3 Ductility ••••••••••••••••••••••••••••••••••••	45
Figure 6	AC-5 Ductility • • • • • • • • • • • • • • • • • • •	46
Laborato	ry Test Procedures Used ••••••••••••••••••••	47
DHT Item	300 - Asphalts, Oils and Emulsions	50
Typical	Refinery Production Batch	54
Data for	Latexes Used in Project ••••••••••••••••••••	55
Specific	ation for Amorphous Polypropylene	56
Tentativ	e Specification for Latex Modified Asphalt Cement •••••	57

APPENDIX (Continued)

	rage
Evaluation Report - El Paso District, IH-10 Eastbound Test Sections	59
Evaluation Report - El Paso District, IH-10 Westbound Test Sections	60
Summary of Test Results for Project 1-10-76-526	61

TABLE 1

PROPERTY		MATERIAL & SOURCE			
	AmPet AC-3	AmPet AC-3 + 2% LD 260	AmPet AC-3 + 2% L 170	AmPet AC-3 + 10% Amorphous Polypropylene	
Pen. 77 F 100g, 5 sec.	259	232	197	164	
Pen. 77 F 100g, 5 sec. *T.F.	147	156	153	78	
Viscosity, 77 F Poises X 10 ⁶	0.140	0.206	0.254		
Viscosity, 140 F Stokes	330	433	741	1386	
Viscosity, 140 F T.F. Stokes	642	841	950	2912	
Ductility, 39.2 F 5 cms per min, cms.	57	45	141+	129	
Ductility, 39.2 F T.F., 5 cms per min, cms.		23	141+	26	
Brittleness-Inch Pounds at Failure or Minimum 12-inch drop at 20 F** (See Appendix for test)	2.35	4.90	6.90	19.5+ at 40 F 8.9 at 30 F	

COMPARISON OF PROPERTIES OF ASPHALTS AND ASPHALTS BLENDED WITH ELASTOMERS USING ELEVEN ASPHALT SOURCES COMMONLY USED IN TEXAS

*T.F. - Tests on residues from thin film oven test. **At minimum 12" drop (c) denotes "cracked," (s) denotes "shattered"

- 20

t

.

COMPARISON OF PROPERTIES OF ASPHALTS AND ASPHALTS BLENDED WITH ELASTOMERS USING ELEVEN ASPHALT SOURCES COMMONLY USED IN TEXAS

PROPERTY		MATERIAL & SOURCE	
	Bell Oil & Gas AC-3	Bell Oil & Gas AC-3 + 2% LD 260	Bell 011 & Gas AC-3 + 2% L 170
Pen. 77 F 100g, 5 sec.	269	269	239
Pen. 77 F			
100g, 5 sec. *T.F.	171	171	184
Viscosity, 77 F Poises X 10 ⁶	.043	.144	. 455
Viscosity, 140 F Stokes	296	351	547
Viscosity, 140 F T.F. Stokes	557	543	722
Ductility, 39.2 F 5 cms per min, cms.	141+	78	141+
Ductility, 39.2 F T.F., 5 cms per min, cms.		34	141+
Brittleness-Inch Pounds at Failure or Minimum 12-inch drop at 20 F**			
(See Appendix for test)	1.76(s)	6.05	3.68

*T.F. - Tests on residues from thin film oven test. **At minimum 12" drop (c) denotes "cracked," (s) denotes "shattered"

- 21 -

MATERIAL & SOURCE PROPERTY Cosden AC-3 + 10%Cosden AC-3 Cosden AC-3 Amorphous Polypropylene Cosden AC-3 + 2% LD 260 + 2% L 170 Pen. 77 F 100g, 5 sec. 211 216 186 122 Pen. 77 F 100g, 5 sec. 74 *T.F. 106 114 Viscosity, 77 F Poises X 10⁶ 0.278 0.173 0.238 Viscosity, 140 F 254 324 425 1090 Stokes Viscosity, 140 F 639 740 865 2160 T.F. Stokes Ductility, 39.2 F 116 84 141 +141 +5 cms per min, cms. Ductility, 39.2 F 7 76 18 T.F., 5 cms per min, cms. Brittleness-Inch Pounds at Failure or Minimum 12-inch drop at 20 F** 1.76(s)1.76(s)9.52 15.2 at 50 F (See Appendix for test)

COMPARISON OF PROPERTIES OF ASPHALTS AND ASPHALTS BLENDED WITH ELASTOMERS USING ELEVEN ASPHALT SOURCES COMMONLY USED IN TEXAS

*T.F. - Tests on residues from thin film oven test. **At minimum 12" drop (c) denotes "cracked," (s) denotes "shattered"

Т

22

L.

_____÷

COMPARISON OF PROPERTIES OF ASPHALTS AND ASPHALTS BLENDED WITH ELASTOMERS USING ELEVEN ASPHALT SOURCES COMMONLY USED IN TEXAS

PROPERTY	· · · · · · · · · · · · · · · · · · ·	MATERIAL & SOURCE	· · · · · · · · · · · · · · · · · · ·
	Exxon AC-3	Exxon AC-3 + 2% LD 260	Exxon AC-3 + 2% L 170
Pen. 77 F 100g, 5 sec.	257	264	221
Pen. 77 F 100g, 5 sec. *T.F.	188	204	185
Viscosity, 77 F Poises X 10 ⁶	0.107	0.110	0.140
Viscosity, 140 F Stokes	302	315	503
Viscosity, 140 F T.F. Stokes	468	497	677
Ductility, 39.2 F 5 cms per min, cms.	141+	73	141+
Ductility, 39.2 F T.F., 5 cms per min, cms.		35	141+
Brittleness-Inch Pounds at Failure or Minimum 12-inch drop at 20 F** (See Appendix for test)	1.76(s)	1.76(s)	1.76(s)

*T.F. - Tests on residues from thin film oven test. **At minimum 12" drop (c) denotes "cracked," (s) denotes "shattered"

- 23 -

COMPARISON OF PROPERTIES OF ASPHALTS AND ASPHALTS BLENDED WITH ELASTOMERS USING ELEVEN ASPHALT SOURCES COMMONLY USED IN TEXAS

PROPERTY	·	MATERIAL & SOURCE	
	Gulf States (Houston) <u>AC-3</u>	Gulf States (Houston) AC-3 + 2% LD 260	Gulf States (Houston) AC-3 + 2% L 170
Pen. 77 F 100g, 5 sec.	221	220	187
Pen. 77 F 100g, 5 sec. *T.F.	111	145	119
Viscosity, 77 F Poises X 10 ⁶	0.212	0.234	0.319
Viscosity, 140 F Stokes	271	394	512
Viscosity, 140 F T.F. Stokes	563	545	764
Ductility, 39.2 F 5 cms per min, cms.	65	60	141+
Ductility, 39.2 F T.F., 5 cms per min, cms.		16	141+
Brittleness-Inch Pounds at Failure or Minimum 12-inch drop at 20 F** (See Appendix for test)			

*T.F. - Tests on residues from thin film oven test. **At minimum 12" drop (c) denotes "cracked," (s) denotes "shattered"

1 24

COMPARISON OF PROPERTIES OF ASPHALTS AND ASPHALTS BLENDED WITH ELASTOMERS USING ELEVEN ASPHALT SOURCES COMMONLY USED IN TEXAS

PROPERTY	· ·	MATERIAL & SOURCE			
	Shamrock AC-3	Shamrock AC-3 + 2% LD 260	Shamrock AC-3 + 2% L 170		
Pen. 77 F 100g, 5 sec.	270	248	235		
Pen. 77 F 100g, 5 sec. *T.F.	172	176	177		
Viscosity, 77 F Poises X 10 ⁶	0.045	0.381	0.328		
Viscosity, 140 F Stokes	331	400	541		
Viscosity, 140 F T.F. Stokes	568	652	739		
Ductility, 39.2 F 5 cms per min, cms.	17	45	141+		
Ductility, 39.2 F T.F., 5 cms per min, cms.		12	60		
Brittleness-Inch Pounds at Failure or Minimum 12-inch drop at 20 F** (See Appendix for test)	2.50	7.78	9.52		
(see appendix for real)	2.50	1.10	9.32		

*T.F. - Tests on residues from thin film oven test. **At minimum 12" drop (c) denotes "cracked," (s) denotes "shattered"

- 25 -

COMPARISON OF PROPERTIES OF ASPHALTS AND ASPHALTS BLENDED WITH ELASTOMERS USING ELEVEN ASPHALT SOURCES COMMONLY USED IN TEXAS

PROPERTY	Materia	al and Source	
	Texaco AC-3	Texaco AC-3 +2% LD 260	Texaco AC-3 +2% L 170
Pen. 77 F 100g, 5 sec.	279	260	269
Pen. 77 F 100g, 5 sec. *T.F.	219	224	204
Viscosity, 77 F Poises X 10 ⁶	.154	.099	0.158
Viscosity, 140 F Stokes	289	409	484
Viscosity, 140 F T.F. Stokes	428	586	557
Ductility, 39.2 F 5 cms per min, cms.	141+	103	141+
Ductility, 39.2 F T.F., 5 cms per min, cms.		60	141+
Brittleness-Inch Pounds at Failure or Minimum 12-inch drop at 20 F** (See Appendix for test)	1.76 (s)	4.90	5.18

*T.F. - Tests on residues from thin film oven test. **At minimum 12" drop (c) denotes "cracked," (s) denotes "shattered"

- 26

COMPARISON OF PROPERTIES OF ASPHALTS AND ASPHALTS BLENDED WITH ELASTOMERS USING ELEVEN ASPHALT SOURCES COMMONLY USED IN TEXAS

PROPERTY	MATERIAL & SOURCE			· · · · · · · · · · · · · · · · · · ·
	AmPet AC-5	AmPet AC-5 + 2% LD 260	AmPet AC-5 + 2% L 170	AmPet AC-5 + 10% Amorphous Polypropylene
Pen. 77 F 100g, 5 sec.	208	188	155	139
Pen. 77 F 100g, 5 sec. *T.F.	124	127	130	61
Viscosity, 77 F Poises X 10 ⁶	0.462	0.395	0.480	
Viscosity, 140 F Stokes	457	617	1092	1753
Viscosity, 140 F T.F. Stokes	991	1410	1368	4861
Ductility, 39.2 F 5 cms per min, cms.	104	40	141+	18
Ductility, 39.2 F T.F., 5 cms per min, cms.		18	141+	5
Brittleness-Inch Pounds at Failure or Minimum 12-inch drop at 20 F** (See Appendix for test)	1.76(c)	1.76(s)	1.76(s)	11.2 at 40 F

*T.F. - Tests on residues from thin film oven test. **At minimum 12" drop (c) denotes "cracked," (s) denotes "shattered"

27

COMPARISON OF PROPERTIES OF ASPHALTS AND ASPHALTS BLENDED WITH ELASTOMERS USING ELEVEN ASPHALT SOURCES COMMONLY USED IN TEXAS

PROPERTY	• •	MATERIAL & SOURCE	-1
	APCO AC-5	APCO AC-5 + 2% LD 260	APCO AC-5 + 2% L 170
Pen. 77 F 100g, 5 sec.	208	265	179
Pen. 77 F 100g, 5 sec. *T.F.	140	154	145
Viscosity, 77 F Poises X 10 ⁶	0.382	0.358	0.476
Viscosity, 140 F Stokes	498	551	808
Viscosity, 140 F T.F. Stokes	820	877	1052
Ductility, 39.2 F 5 cms per min, cms.	132	44	141+
Ductility, 39.2 F T.F., 5 cms per min, cms.		24	141+
Brittleness-Inch Pounds at Failure or Minimum 12-inch drop at 20 F** (See Appendix for test)			•

*T.F. - Tests on residues from thin film oven test. **At minimum 12" drop (c) denotes "cracked," (s) denotes "shattered"

28

COMPARISON OF PROPERTIES OF ASPHALTS AND ASPHALTS BLENDED WITH ELASTOMERS USING ELEVEN ASPHALT SOURCES COMMONLY USED IN TEXAS

PROPERTY		MATERIAL & SOURCE	
	Bell Oil & Gas AC-5	Bell Oil & Gas AC-5 + 2% LD 260	Bell Oil & Gas AC-5 + 2% L 170
Pen. 77 F 100g, 5 sec.	204	194	174
Pen. 77 F 100g, 5 sec. *T.F.	126	125	130
Viscosity, 77 F Poises X 10 ⁶	.238	.202	.640
Viscosity, 140 F Stokes	462	523	907
Viscosity, 140 F T.F. Stokes	1040	1142	1212
Ductility, 39.2 F 5 cms per min, cms.	45	17	141+
Ductility, 39.2 F T.F., 5 cms per min, cms.		22	99
Brittleness-Inch Pounds at Failure or Minimum 12-inch drop at 20 F**			
(See Appendix for test)	2.21	3.38	2.80

*T.F. - Tests on residues from thin film oven test. **At minimum 12" drop (c) denotes "cracked," (s) denotes "shattered"

- 29

COMPARISON OF PROPERTIES OF ASPHALTS AND ASPHALTS BLENDED WITH ELASTOMERS USING ELEVEN ASPHALT SOURCES COMMONLY USED IN TEXAS

PROPERTY		MATERIAL & SOURCE					
	Chevron AC-5	Chevron AC-5 + 2% LD 260	Chevron AC-5 + 2% L 170				
Pen. 77 F 100g, 5 sec.	152	155	132				
Pen. 77 F 100g, 5 sec. *T.F.	91	91	93				
Viscosity, 77 F Poises X 10 ⁶	0.240	0.287	0.402				
Viscosity, 140 F Stokes	433	382	627				
Viscosity, 140 F T.F. Stokes	973	1271	1146				
Ductility, 39.2 F 5 cms per min, cms.	23	9	141+				
Ductility, 39.2 F T.F., 5 cms per min, cms.	5	5	27				
Brittleness-Inch Pounds at Failure or Minimum 12-inch		•					
drop at 20 F** (See Appendix for test)	1.76(c)	1.76	2.50				

*T.F. - Tests on residues from thin film oven test. **At minimum 12" drop (c) denotes "cracked," (s) denotes "shattered"

- 30 -

COMPARISON OF PROPERTIES OF ASPHALTS AND ASPHALTS BLENDED WITH ELASTOMERS USING ELEVEN ASPHALT SOURCES COMMONLY USED IN TEXAS

PROPERTY	· · · · · · · · · · · · · · · · · · ·	MATERI	AL & SOURCE	·
	Cosden AC-5	Cosden AC-5 + 2% LD 260	Cosden AC-5 + 2% L 170	Cosden AC-5 + 10% Amorphous Polypropylene
Pen. 77 F 100g, 5 sec.	139	133	118	73
Pen. 77 F 100g, 5 sec. *T.F.	75	74	70	67
Viscosity, 77 F Poises X 10 ⁶	0.518	0.518	1.580	
Viscosity, 140 F Stokes	460	679	1356	2162
Viscosity, 140 F T.F. Stokes	1096	1471	2033	3668
Ductility, 39.2 F 5 cms per min, cms.	9	66	141+	7
Ductility, 39.2 F T.F., 5 cms per min, cms.		15	50	1.5
Brittleness-Inch Pounds at Failure or Minimum 12-inch drop at 20 F** (See Appendix for test)	1.76(s)	1.76(s)	8.06	5.7 at 50 F

*T.F. - Tests on residues from thin film oven test. **At minimum 12" drop (c) denotes "cracked," (s) denotes "shattered"

31 -

L

COMPARISON OF PROPERTIES OF ASPHALTS AND ASPHALTS BLENDED WITH ELASTOMERS USING ELEVEN ASPHALT SOURCES COMMONLY USED IN TEXAS

PROPERTY	MATERIAL & SOURCE					
	Exxon AC-5	Exxon AC-5 *** + 2% LD 260	Exxon AC-5 + 2% L 170			
Pen. 77 F 100g, 5 sec.	202	203	181			
Pen. 77 F 100g, 5 sec. *T.F.	135	148	137			
Viscosity, 77 F Poises X 10 ⁶	.187	. 282	2.03			
Viscosity, 140 F Stokes	414	413	645			
Viscosity, 140 F T.F. Stokes	719	1312	908			
Ductility, 39.2 F 5 cms per min, cms.	138	57	141+			
Ductility, 39.2 F T.F., 5 cms per min, cms.		17	141+			
Brittleness-Inch Pounds at Failure or Minimum 12-inch drop at 20 F**						
(See Appendix for test)	1.76(s)	1.76(s)	1.76(c)			

*T.F. - Tests on residues from thin film oven test. **At minimum 12" drop (c) denotes "cracked," (s) denotes "shattered" ***This material exhibited incompatibility.

- 32 -

v

.

COMPARISON OF PROPERTIES OF ASPHALTS AND ASPHALTS BLENDED WITH ELASTOMERS USING ELEVEN ASPHALT SOURCES COMMONLY USED IN TEXAS

PROPERTY		MATERIAL & SOURCE				
	Gulf States (Corpus)	Gulf States (Corpus) AC-5 + 2% LD 260	Gulf States (Corpus) AC-5 + 2% L 170			
Pen. 77 F 100g, 5 sec.	160	134	114			
Pen. 77 F 100g, 5 sec. *T.F.		98	86			
Viscosity, 77 F Poises X 10 ⁶	0.425	0.430	0.525			
Viscosity, 140 F Stokes	477	986	901			
Viscosity, 140 F T.F. Stokes	895	1298	1252			
Ductility, 39.2 F 5 cms per min, cms.	14	37	141+			
Ductility, 39.2 F T.F., 5 cms per min, cms.		14	141+			
Brittleness-Inch Pounds at Failure or Minimum 12-inch drop at 20 F** (See Appendix for test)	1.76(s)	1.76(s)	1.76(s)			

*T.F. - Tests on residues from thin film oven test. **At minimum 12" drop (c) denotes "cracked," (s) denotes "shattered"

и 33 и

COMPARISON OF PROPERTIES OF ASPHALTS AND ASPHALTS BLENDED WITH ELASTOMERS USING ELEVEN ASPHALT SOURCES COMMONLY USED IN TEXAS

PROPERTY		MATERIAL & SOURCE	
	Gulf States (Houston) AC-5	Gulf States (Houston) AC-5 + 2% LD 260	Gulf States (Houston) AC-5 + 2% L 170
Pen. 77 F 100g, 5 sec.	136	130	123
Pen. 77 F 100g, 5 sec. *T.F.	72	86	77
Viscosity, 77 F Poises X 10 ⁶	0.338	0.583	1.10
Viscosity, 140 F Stokes	507	612	857
Viscosity, 140 F T.F. Stokes	1044	1098	1457
Ductility, 39.2 F 5 cms per min, cms.	9	30	141+
Ductility, 39.2 F T.F., 5 cms per min, cms.		8	76
Brittleness-Inch Pounds at Failure or Minimum 12-inch drop at 20 F** (See Appendix for test)	1.76(s)	1.76(s)	1.76(s)

*T.F. - Tests on residues from thin film oven test.

**At minimum 12" drop (c) denotes "cracked," (s) denotes "shattered"

ω

4

-12

COMPARISON OF PROPERTIES OF ASPHALTS AND ASPHALTS BLENDED WITH ELASTOMERS USING ELEVEN ASPHALT SOURCES COMMONLY USED IN TEXAS

PROPERTY		Material and Source	
		indefinit and bource	
	Kerr McGee AC-5	Kerr McGee AC-5 + 2% LD 260	Kerr McGee AC-5 <u>+ 2% L 170</u>
Pen. 77 F 100g, 5 sec.	181	178	154
Pen. 77 F 100g, 5 sec. *T.F.	97	110	110
Viscosity, 77 F Poises X 10 ⁶	0.392	0.280	0.362
Viscosity, 140 F Stokes	477	465	681
Viscosity, 140 F T.F. Stokes	1101	1024	771
Ductility, 39.2 F 5 cms per min, cms.	42	19	141+
Ductility, 39.2 F T.F., 5 cms per min, cms.		7	113
Brittleness-Inch Pounds at Failure or Minimum 12-inch drop at 20 F**	174 ()		
(See Appendix for test)	1.76 (s)	2.80	2.80

*T.F. - Tests on residues from thin film oven test. **At minimum 12" drop (c) denotes "cracked," (s) denotes "shattered"

۱ ئ

COMPARISON OF PROPERTIES OF ASPHALTS AND ASPHALTS BLENDED WITH ELASTOMERS USING ELEVEN ASPHALT SOURCES COMMONLY USED IN TEXAS

PROPERTY		MATERIAL & SOURCE	·
	Shamrock AC-5	Shamrock AC-5 + 2% LD 260	Shamrock AC-5 + 2% L 170
Pen. 77 F 100g, 5 sec.	194	180	164
Pen. 77 F 100g, 5 sec. *T.F.	129	127	109
Viscosity, 77 F Poises X 10 ⁶	0.347	0.452	0.688
Viscosity, 140 F Stokes	512	596	718
Viscosity, 140 F T.F. Stokes	880	1033	1064
Ductility, 39.2 F 5 cms per min, cms.	12	19	141+
Ductility, 39.2 F T.F., 5 cms per min, cms.		10	80
Brittleness-Inch Pounds at Failure or Minimum 12-inch drop at 20 F** (See Appendix for test)	2.21	5.47	5.75

*T.F. - Tests on residues from thin film oven test. **At minimum 12" drop (c) denotes "cracked," (s) denotes "shattered"

36 -

4

COMPARISON OF PROPERTIES OF ASPHALTS AND ASPHALTS BLENDED WITH ELASTOMERS USING ELEVEN ASPHALT SOURCES COMMONLY USED IN TEXAS

PROPERTY		Material and Source	
	Texaco AC-5	Texaco AC-5 +2% LD 260	Texaco AC-5 +2% L 170
Pen. 77 F 100g, 5 sec.	160	174	147
Pen. 77 F 100g, 5 sec. *T.F.	101	104	105
Viscosity, 77 F Poises X 10 ⁶	0.343	0.330	0.440
Viscosity, 140 F Stokes	554	647	967
Viscosity, 140 F T.F. Stokes	1117	1309	1424
Ductility, 39.2 F 5 cms per min, cms.	74	64	141+
Ductility, 39.2 F T.F., 5 cms per min, cms.		14	141+
Brittleness-Inch Pounds at Failure or Minimum 12-inch drop at 20 F** (See Appendix for test)	1.76 (s)	3.23	3.82

*T.F. - Tests on residues from thin film oven test. **At minimum 12" drop (c) denotes "cracked," (s) denotes "shattered"

- 37 -

TABLE 2

EFFECT OF STORAGE AT 325 F FOR 72 HOURS ON ASPHALTS BLENDED WITH 2% BUTADIENE-STYRENE L-170

			ORIGINAL BLE	ND		AFTER STORAG	
PRODUCER	AC GRADE	77 F PEN	140 F VIS	39.2 F DUC	<u>77 F PEN</u>	140 F VIS	39.2 F DUC
Cosden	3	186	425	141+	165	770	135
Cosden	5	118	1356	141+	114	864	90
Am.Pet.	3	197	741	141+	167	800	60
Am.Pet.	5	155	1092	141+	141	928	70
Chevron	5	132	627	141+	127	788	38
Gulf States (Houston)	3	187	512	141+	187	654	102
Gulf States (Houston)	5	123	857	141+	109	1004	59
Shamrock	3	235	541	141+	197	555	40
Shamrock	5	164	718	141+	147	781	12
АРСО	5	179	808	141+	184	691	46
Gulf States (Corpus Christi)	5	114	901	141+	116	992	63
Bell Oil & Gas	3	239	547	141+	239	500	129
Bell Oil & Gas	5	174	907	141+	149	1048	58
Exxon	3	221	503	141+	237	491	141+
Exxon	5	181	645	141+	147	951	99

ı

TABLE 2 (continued)

٠

EFFECT OF STORAGE AT 325 F FOR 72 HOURS ON ASPHALTS BLENDED WITH 2% BUTADIENE-STYRENE L-170

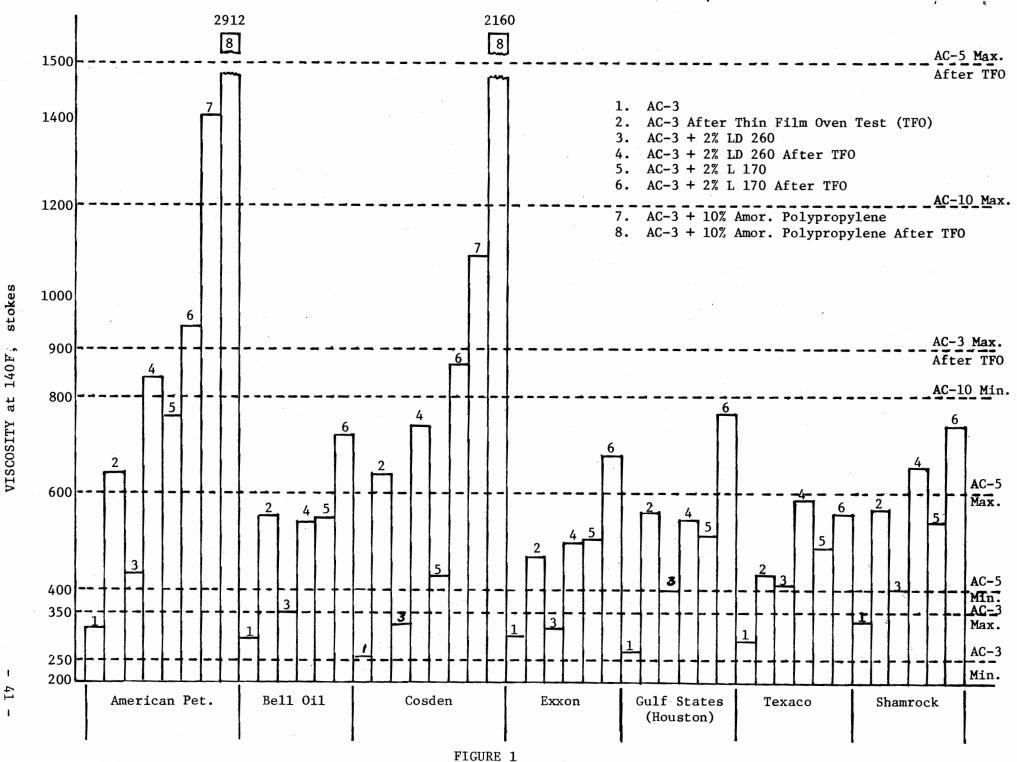
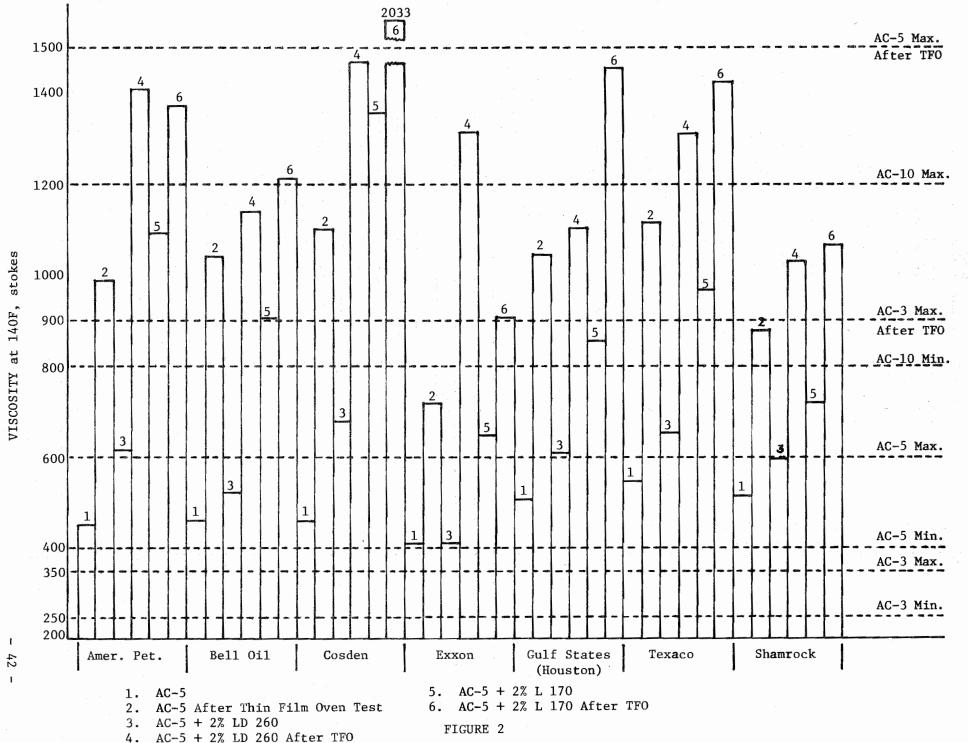
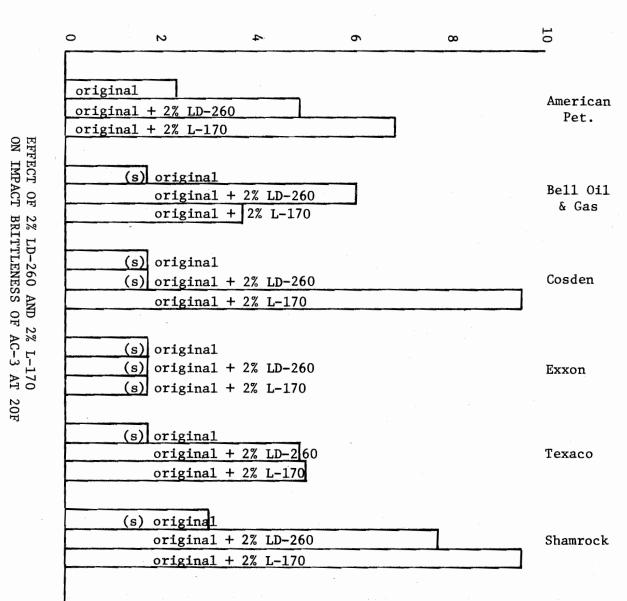

			ORIGINAL BLE	IND		AFTER STORAG	E
PRODUCER	AC GRADE	77 F PEN	140 F VIS	39.2 F DUC	77 F PEN	140 F VIS	39.2 DUC
Kerr-McGee	5	154	681	141+	137	893	45
Texaco	3	269	484	141+	245	553	141+
Texaco	5	147	967	141+	143	1089	141+
		BIENDED WITH	10% AMORPHOL	S POLYPROPYLENE	,		
Cosden	3	142	956	140	142	981	53

TABLE 3

COMPATIBILITY BY VISUAL EVALUATION


				<u> </u>	<u>ys @ 325</u>
PRODUCER	GRADE	NEOP	GOODYEAR	NEOP	GOODYEAR
Am.Pet.	3	was not smooth	was not smooth	-	was not smooth
Am.Pet.	5	was not smooth	was not smooth	-	was not smooth
APCO	5	was not smooth	was not smooth	-	was not smooth
Bell Oil & Gas	3	blend okay	blend okay	-	blend okay
Bell Oil & Gas	5	not compatible	blend okay	-	blend okay
Chevron	5	blend okay	blend okay	-	blend okay
Cosden	3	blend okay	blend okay	-	blend okay
Cosden	5	blend okay	blend okay	-	blend okay
Gulf States		-	-		-
(Corpus)	5	blend okay	blend okay	-	blend okay
Gulf States		-			
(Houston)	3	blend okay	blend okay	-	blend okay
Gulf States		-	-		-
(Houston)	5	blend okay	blend okay	-	blend okay
Exxon	3	not compatible	blend okay	-	blend okay
Exxon	5	not compatible	blend okay	-	blend okay
Shamrock	3	not compatible	was not smooth	-	was not smooth
Shamrock	5	not compatible	was not smooth	-	was not smooth

NOTE: "not compatible" may cover a range of appearance from complete separation of the blend, gel formation or "livering" to grainy texture.



VISCOSITY at 140F;

41

Impact, Inch-1bs.

Note: (s) indicates shattering--actual value is less than 1.76

- 43 -

FIGURE 3

Impact, Inch-1bs.

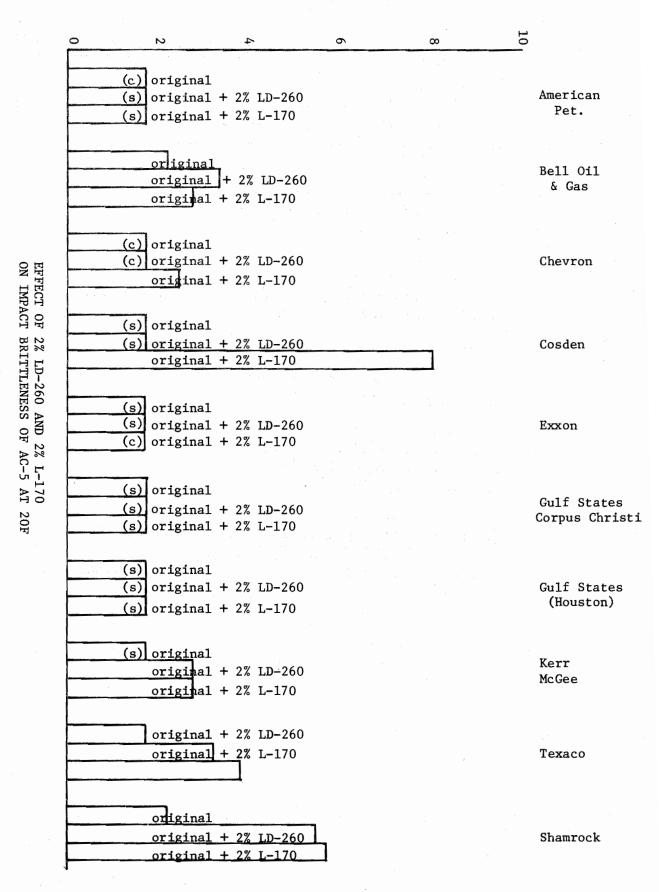


FIGURE 4

(c) denotes cracked and (s) shattering actual value is less than 1.76

Note:

	97 - 20	40	60	80	100	120	140
	0	0	0				
original							
original +	+ 2% L-	170					American
original +	F 2% L-	170 Afte	er TFO	1			Pet.
		<u> </u>				<u> </u>	
original			······································		· · · · · · · · · · · · · · · · · · ·		
original -	+ 2% L-	170					Bell Oil & Gas
original -	+ 2% L-	170 Aft	er TFO				u vas
original		170	· · · · · · · · · · · · · · · · · · ·				Cosden
original - original -					·····		Cosden
original -	<u>- 2% L-</u> .	170 AILO	er ifo	·			
original					· · · · · · · · · · · · · · · · · · ·		
original -	+ 2% L-	170					Exxon
original -			er TFO				
original					-		
original -	the second se						Gulf Stat
original -	+ 2% L-	170 Aft	er TFO	· · · · · · · · · · · · · · · · · · ·			(Houston
					· · · · · ·		
original							
original -			· · ·				Техасо
original -	+ 2% L-	170 Aft	er TFO	· · · · · · · · · · · · · · · · · · ·			
original							
original -			OF TEO			<u></u>	Shamrock
original -	<u>T 2/6 L</u> -	1/U AIT					
	Bei (TH	EFI 39.					
	Before (Thin]	FEC					
	e a						
	Before and After TFO (Thin Film Oven Test	EFFECT OF 2% L-170 ON 39.2F DUCTILITY FOR	FI				
		er IL]	FIGURE				
	After TFO Oven Test)	121					
		17(5				
] IFO ≥st						· · · ·
		N					

. Ц. р

		- 97 -		y at 39.2F, 5		Ľ	140
	20	40	60	80	100	120	40
						e.	
			original				American
			original +		····		Pet.
			original +	2% L-170 Aft	er TFO		AC-5
				·		· .	
			original				
		· · · · · · · · · · · · · · · · · · ·	original +	2% L-170			APCO AC-5
			original +	2% L-170 Aft	er TFO		
,	• 					•	
			original				Bell Oil
	· · · · · · · · · · · · · · · · · · ·		original +	2% L-170			& Gas
	· · · · · · · · · · · · · · · · · · ·		original +	<u>2% L-170 Aft</u>	er TFO		AC-5
	•					· · · · ·	
			original	, 			01
			original +				Chevron AC-5
			original +	2% L - 170 Aft	er TFO		
					•		
	· · ·		original				Cosden
			original +			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	SC-5
			original +	2% L-170 Aft	er TFO		
	FIGU						
	RE		original	-		· · · · ·	Exxon
	6		original +	2% L-170			AC-5
			original +	2% L-170 Aft	er TFO		
							
			original			· · ·	Gulf Stat
			<u>original +</u>	2% L-170			Corpus Chi AC-5
_			original +	2% L-170 Aft	er TFO		
			original		·		Gulf Stat
			original +	2% L-170			(Houston
			original +	2% L-170 Afte	er TFO		AC-5
						P.	
			original			·	Kerr McGe
			original +	2% L-170	-		AC-5
			original +	2% L-170 Aft	er TFO		
			original				m
			original +	2% L-170			Texaco AC-5
			original +	2% L-170 Aft	er TFO		
	_						
			original		· · ·		
			original +	2% L-170			Shamrock AC-5
			original +	2% L-170 Aft	er TFO		

٩

LABORATORY TEST PROCEDURES USED

PUBLISHED STANDARD PROCEDURES

- 1. Penetration at 77F ASTM D-5-73, Penetration of Bituminous Materials.
- 2. Viscosity at 77F ASTM D-3570-77, Viscosity of Materials With a Sliding Plate Microviscometer.
- 3. Viscosity at 140F ASTM D-2171-72, Absolute Viscosity of Asphalts.
- 4. Ductility at 39.2F ASTM D-113-77, Ductility of Bituminous Materials.

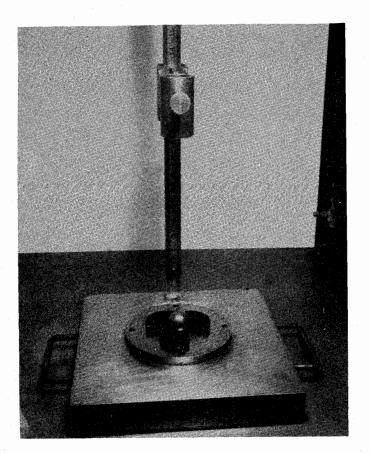
5. Thin Film Oven Test - ASTM D-1754-76, Effect of Heat and Air on Asphaltic Materials.

SPECIAL TESTS

- 1. Brittleness (Low Temperature Impact) of Asphalts. (in Appendix)
- 2. Storage Stability at High Temperature. (in Appendix)

TEST PROCEDURES FOR BRITTLENESS AND STORAGE STABILITY

Low Temperature Impact


The effect of elastomers on the low temperature impact strength or brittleness of asphalt was determined by dropping steel balls from various heights onto the center of a disk of asphalt 2.5 inches in diameter and 0.37 inch in thickness. A temperature of 20 F was used for all tests performed. Two balls were used for the test--a 3/4 inch diameter ball, weighing 0.147 pound, and a 1-1/4 inch diameter ball weighing 0.288 pound.

The minimum height of drop was 12 inches, which resulted in an impact load of 1.76 inch-pounds with the 3/4 inch diameter ball. The disks were chilled to 20 ± 1 F in a freezer. A disk was removed from the freezer, placed on a polished steel plate and the ball immediately dropped to its center. A single disk was used to determine the approximate failure range. If failure did not occur at 1.76 inch-pounds impact, the disk was rechilled and the impact load increased in increments until failure occurred. In obtaining the reported values, a set of six disks was used. Each disk was subjected to only one impact blow. Unless otherwise indicated, the values represent the maximum impact load the disks sustained without failure occurring. Increasing the height of drop one inch resulted in cracking or shattering of the asphalt.

- 48 -

Storage Stability Test

Change in properties of the various asphalts blended with the L-170 and amorphous polypropylene was determined by maintaining the asphalt at 325 ± 5 F in an insulated quart can for 72 hours. The can was completely filled with asphalt except that a small amount of space was allowed for expansion. A thermometer was mounted in a hole in the cap. This small opening also prevented pressure build-up during the hot storage period. At the end of the 72 hours, the sample was examined for any change such as coagulation, setting or lumping. If no significant change was noted, the sample was stirred and material poured up for testing.

Impact Brittleness Test

- 49 -

ITEM 300

ASPHALTS, OILS AND EMULSIONS

300.1. Description. This item establishes the requirements for oil asphalts, cut-back asphalts, road oils, emulsified asphalts, asphalt cement and other miscellaneous asphaltic materials and asbestos and latex additives.

300.2. Materials. When tested according to Texas Highway Department Test Methods, the various materials shall meet the applicable requirements of this specification.

(1) Oil Asphalt. The material shall be homogeneous, shall be free from water, shall not foam when heated to 347 F and shall meet the following requirements:

TYPE-GRADE	OA	-30	OA-1	75**	OA	400
I IFE-GRADE	Min.	Max.	Min.	Max.	Min.	Max.
Penetration at 32 F, 200g.,						
60 sec	15	·	_		_	
Penetration at 77 F, 100g.,			· .		1.1	
5 sec	25	35	150	200	-	_
enetration at 115 F, 50g.,			* .			
5 sec	<u></u>	65	·	_	_	_
Ductility at 77 F, 5 cm/min., cms:			÷ .		· , · .	
Original OA	. 2	-	70		<u> </u>	·
Flash Point C.O.C., F	450	<u> </u>	425	· _	425	_
Softening Point, R. & B., F	185	<u> </u>	95	130	-	
Thin Film Oven Test, 1/8 in. Film,			· ·			
50 g., 5 hrs., 325 F, % Loss by wt	-	0.4	· ·	1.4	-	2.0
Penetration of Residue, at 77 F,						
100g., 5 sec. % of Original Pen		-	40	_	-	-
Ductility of Residue at 77 F, 5			1.1			
cm/min., cms	л ^с а н, С		100		÷	
Solubility in Trichloroethylene, %	99.0) —	99.0) _	99.0) _ "
Spot Test on Original OA	Ne	eg.	Ne	eg.	Ne	eg.
Float Test at 122 F, sec	_	¹ — .	-	-	120	150
Tests on 85 to 115 Pen. Residue*						
Residue by Wt., %	—	-		-	7 5	_
Ductility, 77 F, 5 cm/min.:						
Original Res., cms	_	-		-	100	_
Subjected to Thin Film Test, cms	—		_	-	100	<u> </u>

*Determined by Vacuum Distillation (by evaporation if unable to reduce by vacuum).

**For use with Latex Additive only.

õ

203

(2) Asphalt Cement. The inaterial shall be homogeneous, shall be free from water, shall not foam when heated to 347 F and shall meet the following requirements:

				VIS	COSIT	TY GI	RADE			
Test	AC	C-3	AC	AC-5		AC-10		-20	AC	-40
	Min. Max.		Min. Max.		Min. Max.		Min. Maz		Min.	Max.
Viscosity, 140 F stokes	300	±50	500 <u>+</u>	100	1000	±200	2000	±400	4000	<u>+</u> 800
Viscosity, 275 F stokes Penetration, 77 F,	1.1		1.4	Ι	1.9	- -	2.5		3.5	1
100g, 5 sec Flash Point,	210	-	135	-	85	-	55	-	35	
C.O.C. F Solubility in trichloroethylene,	425		425	1.	450	_	450	-	450	-
percent	99.0	-	99.0		99.0	-	99.0		99.0	-
Tests on residues from thin film oven test: Viscosity,										
140 F stokes Ductility, 77 F 5	-	900		1500		3000	_	6000	_	12000
cms per min, cms.	100	- ⁻ .	100		70		50	-	30	-
Spot test	1.1.1.1			Nega	tive fo	or all g	grades			

(3) Latex Additive. A minimum of two percent, by weight, latex additive (solids basis) shall be added to the OA-175 Asphalt or to AC-5 Asphalt when specified on the plans or in other specifications in the contract. The latex additive shall be governed by the following specifications:

The latex is to be an anionic emulsion of butadiene-styrene lowtemperature copolymer in water, stabilized with fatty-acid soap so as to have good storage stability, and possessing the following properties:

Monomer ratio, B/S	70/30
Minimum solids content	67%
Solids content per gal. @67%	5.3 lbs.
Coagulum on 80-mesh screen	0.1% max.
Type Anti-oxidant	staining
Mooney Viscosity of Polymer (M/L 4	
@ 212 F)	100 min.
pH of Latex	9.4 - 10.5
Surface tension	$28-42 \text{ dynes/cm}^2$
Brookfield Viscosity of Latex	1200 ps max. @ 67% solids

204

The finished latex-asphalt blend shall meet the following requirements:

ŧ

י 51 י (4) Cut-back Asphalt. The material shall meet the requirements shown in the following table:

		_		_						_		
TYPE-GRADE	RC	•1. j	RC-:	2	RC	-250	R	C-3	R	2-4	R	C-5
	Min.	Max.	Min. 1	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Ma
Water, %		0.2	80	0.2	80	0.2	80	0.2	- 80	0.2	80	U.
Furol Viscosity, sec.: At 122 F	1 00	160	200	300	_	_	_	_	-	_	1 -	-
At 140 F	-	-	-	-	125	250	250	4 0 0 	125	_ 250	350	5
The Distillate, expressed as precent by volum	ne of to	otal di	stillate	to 68	0 F, 1	shall be	as fol	lows:				
Off at 437 F	55	80	50	75	35	-	50	70	35	60		
Off at 500 F	70 90	90	70 90	90 -	60 80	-	65 85	85	60 80	80 _	55 75	
Residue from 680 F Distillation, Volume, %	50	-	70	-	65	-	73	_	78	-	82	
Tests on Distillation Residue:												
Penetration at 77 F, 100G., 5 sec	70	100		150	80	120	110	150	110	150		
			100	-	100	_	100	_	100	-	100	
Ductility at 77 F, 5 cm/min., cms	100	-							00.0			~
	100 99.0 Ne	-	99.0 Neg	-	99.0) Neg.	99.0 N	-	99.0 N	-	99. N	0 e t .
Ductility at 77 F, 5 cm/min., cms Solubility in Trichloroethylene, %	99.0 Ner	-	99.0 Neg	-	99,(1	Neg.	99.0 N		N		N	در .
Ductility at 77 F, 5 cm/min., cms Solubility in Trichloroethylene, %	99.0 Ner	C-30	99.0 Neg		99.(1	Neg. MC-2	99.0 N		N		N	e t .
Ductility at 77 F, 5 cm/min., cms Solubility in Trichloroethylene, % Spot Test	99.0 Ner	C-30	99.0 Neg Neg	4C-7	99.(1	Neg.	99.0 No 250 Max.		-800 Max		N 4C-300 fin. N	eg.)0 (ax.
Ductility at 77 F, 5 cm/min., cms Solubility in Trichloroethylene, % Spot Test TYPE-GRADE	99.0 Ner		99.0 Neg Neg X. Min 2	1C-7	99.(1 0 <u>dax.</u> 0.2	MC-2 Min.	99.0 No 250 <u>Max.</u> 0.2	 B. 	N		N 4C-300 fin, N	eg
Ductility at 77 F, 5 cm/min., cms Solubility in Trichloroethylene, % Spot Test TYPE-GRADE ter, %	99.0 Ner Min 		99.0 Neg X. Min 2 100	4C-7(99.(1 0 <u>dax.</u> 0.2	MC-: Min. 150	99.0 No 250 <u>Max.</u> 0.2	- B. M(Min. 150			N 4C-300 fin, h 50	eg. 10 1ax. 0,2
Ductility at 77 F, 5 cm/min., cms Solubility in Trichloroethylene, % Spot Test TYPE-GRADE ter, % sh Point, T.O.C., F ematic Viscosity At 140 F, C St	99.0 Ner Min - 100 30	C-30 . Ma 0. 6	99.0 Neg X. Min 2 100 0 70	4C-70	99.(99.(1 0 1 1 1 40	MC-: Min. 150 250	99.0 No 250 Max. 0.2 - 500	 M(<u>Min,</u> 150 800	No -800 Max 0.2 - 160	· · · · · · · · · · · · · · · · · · ·	N 4C-300 fin, N - 0 50	eg. 10 1ax. 0,2
Ductility at 77 F, 5 cm/min., cms Solubility in Trichloroethylene, % Spot Test TYPE-GRADE ter, % sh Point, T.O.C., F ematic Viscosity At 140 F, C St e Distillate, expressed as percent by volu	99.0 Nep Min 100 30	C-30 . Ma 0. 6 tota	99.0 Neg x. Min 2 100 0 70 distill	4C-70	99.(1 0 dax. 0.2 - 140 0 68	MC-: Min. 150 250	99.0 No 250 Max. 0.2 500 tall be	 M(<u>Min,</u> 150 800	No -800 Max 0.2 - 160	· · · · · · · · · · · · · · · · · · ·	N 4C-300 fin, h 50	eg. 10 1ax.
Ductility at 77 F, 5 cm/min., cms Solubility in Trichloroethylene, % Spot Test TYPE-GRADE ter, % sh Point, T.O.C., F ematic Viscosity At 140 F, C St	99.0 Ner Min 100 30 ume of	C-30 . Ma 0. 6 1 total	99.0 Neg x. Min 2 100 0 70 distill 5	4C-70 n. N) 1 ate t	99.0 1 1 1 40 0.2 1 40 0 68/ 20	MC-2 Min. 150 250 0 F, st	99.0 No 250 Max. 0.2 500 tail be			28. . N 1 0 300	MC-300 fin, M - 0 50 600 6	eg. 10 1ax. 000
Ductility at 77 F, 5 cm/min., cms Solubility in Trichloroethylene, % Spot Test TYPE-GRADE ter, % sh Point, T.O.C., F ematic Viscosity At 140 F, C St e Distillate, expressed as percent by volu at 437 F	99.0 Ner Min 100 30 mme of 40	C-30 . Ma 0. 6 tota	99.0 Neg x. Min 2 100 0 70 distill 5 0 20	dC-7(n. h)] ate t	99.(1 0 dax. 0.2 - 140 0 68	MC-: Min. 150 250	99.0 No 250 Max. 0.2 500 tall be	 M(<u>Min,</u> 150 800	No -800 Max 0.2 - 160	a b c b c c c c c c c c	N 4C-300 fin, h 50	eg. 10 1ax. 0.2 0000 15
Ductility at 77 F, 5 cm/min., cms Solubility in Trichloroethylene, % Spot Test TYPE-GRADE ter, % sh Point, T.O.C., F matic Viscosity At 140 F, C St Distillate, expressed as percent by volu at 437 F at 500 F	99.0 Ner Ner Min 100 30 mme of 40 75	C-30 Ma 0. 6 6 1 total	99.0 Neg x. Min 2 100 0 70 distill 5 0 20 3 65	4C-7/ n. N) 1 ate t	99.(1 1 140 20 60	MC-: Min. 150 250 0 F, st	99.0 No No 250 Max. 500 all be 10 55	Min. 150 800 		1 0 30	4C-300 fin, h - 0 50 00 6	eg. 10 1ax. 0.2 15
Ductility at 77 F, 5 cm/min., cms Solubility in Trichloroethylene, % Spot Test TYPE-GRADE ter, % sh Point, T.O.C., F ematic Viscosity At 140 F, C St e Distillate, expressed as percent by volu at 437 F at 500 F	99.0 Nei Min - 100 30 mme of 40 75	C-30 . Ma 0. 6 î total 2 7 9	99.0 Neg x. Min 2 100 0 70 distill 5 0 20 3 65	4C-7/ n. N) 1 ate t	99.(0 1 0 4ax. 0.2 - 140 0 68 ⁶ 20 60 90	MC-: Min. 150 250 0 F, sh 15 60	99.0 No No 250 0.2 500 10 55 87	MC Min, 150 800 as fo 		1 0 30	4C-300 fin. h - 0 50 00 6	eg. 10 1ax. 0.2 0000 15 75
Ductility at 77 F, 5 cm/min., cms Solubility in Trichloroethylene, % Spot Test TYPE-GRADE ter, % sh Point, T.O.C., F ematic Viscosity At 140 F, C St e Distillate, expressed as percent by volu at 437 F at 500 F at 600 F sidue from 680 F Distillation, Volume, % sits on Distillation Residue: metration at 77 F, 100g, 5 sec	99.0 Ner Min 100 30 me of 50	C-30 Maa 0. 6 1 total 2 7 9 9 - 25	99.0 Neg Neg x. Min 2	dC-7/ n. N) 1 ate t	99.(1 1 0 6 6 90 - 250	MC-7 Min. 150 250 0 F, str 15 60 67 120	99.0 No No 250 Max. 500 all be 10 55 87 - 250		No.2 	a b c c c c c c c c	4C-300 fin, h - 0 50 00 6 - - - 15 80 - 20	eg. 00 1ax. 0.2 0000 15 75
Ductility at 77 F, 5 cm/min., cms Solubility in Trichloroethylene, % Spot Test TYPE-GRADE ter, % sh Point, T.O.C., F ematic Viscosity At 140 F, C St e Distillate, expressed as percent by volu at 437 F at 500 F sidue from 680 F Distillation, Volume, % didue from 680 F Distillation, Volume, % sts on Distillation Residue: retration at 77 F, 100g, 5 sec	99.0 Neg Neg Min 100 30 mme of 40 75 50	C-30 Maa 0. 6 1 total 22 7 9 9 	99.0 Neg Neg x. Min 2 - 100 0 70 distill 5 - 20 3 65 55 - 0 0 120 100 0 70 0 120 100	dC-7/ n. N) 1 ate t	99.(1 1 1 1 1 20 60 90 -	MC- Min. 150 250 0 F, sh - 15 60 67 - 120 100*	99.0 No No 250 Max. 500 all be 10 55 87 - 250	MCC Min, 	No.2 		ac-300 fin. h 50 00 6 - - - - 20 00+	eg. 00 1ax. 0.2 0000 15 75
Ductility at 77 F, 5 cm/min., cms Solubility in Trichloroethylene, % Spot Test TYPE-GRADE ter, % sh Point, T.O.C., F ematic Viscosity At 140 F, C St e Distillate, expressed as percent by volu at 437 F at 500 F at 600 F sidue from 680 F Distillation, Volume, % sits on Distillation Residue: metration at 77 F, 100g, 5 sec	99.0 Neg Neg Min 100 30 me of -40 75 50	C-30 Maa 0. 6 1 total 22 7 9 9 	99.0 Neg Neg X. Min 2 100 0 70 d distill 5 0 20 3 65 55 0 120 100 99	dC-7/ n. N) 1 ate t	99.(99.(1 1 1 1 1 1 1 1 1 1 1 1 1	MC-7 Min. 150 250 0 F, str 15 60 67 120	99.0 No No 250 0.2 500 aall be 10 55 87 		No.2 		4C-300 fin, h - 0 50 00 6 - - - 15 80 - 20	eg. 10 1 <u>ax.</u> 0.2 15 75

*1f penetration of residue is more than 200 and ductility at 77 F is less than 100 cm., the material will be acceptable if its ductility at 60 F is more than 100.

(5) Road Oils. The material shall meet the following requirements:

205

TYPE CDADE	R	0-3	R	0-4	RO	-95	RO-S	pecial
TYPE-GRADE	Min.	Max.	Min	Max.	Min.	Max.	Min.	Max.
Water, % Asphalt content of	-	0.2	-	0.2	-	0.2	-	_
85 to 115 penetration								
by vacuum distillation	60	_	55	—	80	_	55	-
Flash Point, C.O.C., F	225	 '	175	_	250	-	225	-
Furol Viscosity: At 122 F, sec	_	· _,	100	160	-	-	-	500
At 140 F, sec	200	320	—	-	—	_	-	-
Loss at 212 F, 20g., 5 hrs., % .	-	6.0	<u> </u>	6.0	- 1		-	6.0
Loss at 325 F, 50g., 7 hrs., % .	-		-	-	2.0	6.0	_	-
Water and Sediment, %	-	_	- 1	_	-		-	2.0
Penetration of residue after evaporation loss, 100 g.,								
5 sec	—	_	_	_	175	250	-	_
Ductility of residue at 77 F,								
5 cm/min., cms	100	-	100	-	_		_	_ '
Solubility in Trichloroethylene,								
%	99.	0 —	99.	0 —	99.0) _	- 1	
Float Test at 122 F, sec	· _	_	-	_	140	175	-	-
Spot Test Tests on 85 to 115 penetration		Neg.	נ	Neg.	N	eg.	-	
residue by vacuum distillation								
Residue by weight, %	_	_	и 		80	_	_	_
Ductility, 77 F, 5 cms/min.,								
Original Residue, cms	-	_	-	_	100	_	_ "	· · · _
Subjected to Thin Film Test,								
cms	-	—	-		100	-	-	-

(6) Cracked Fuel Oils and Crude Oils. These materials shall meet the following requirements:

		CKED L OIL	CRU	
	Min.	Max.	Min.	Max.
Asphalt Content of 100 Penetration at 77 F, %	65	80	_	
Asphalt Content of 260 Penetration at 77 F, %	-	-	65	80
Flash Point T.O.C., F		-	80	_
Flash Point C.O.C., F	250	-		_
Furol Viscosity at 77 F, Sec	_	_	-	500
Furol Viscosity at 122 F, Sec	-	500	_	
Loss at 212 F, 20g., 5 hrs., %	-	3.0	-	
Loss at 325 F, 50g., 7 hrs., %	-	_	~	3.0
Water and Sediment, %	-	2.0	-	2.0
Penetration of Residue after Evaporation Loss	-	-	-	300

(7) Emulsions. The material shall be homogeneous. It shall show no separation of asphalt after thorough mixing and shall meet the viscosity requirements at any time within 30 days after delivery.

ANIONIC EMULSIONS:

TYPE		Rapid Setting Medium Setting						ng		Slow	Setting	1
GRADE:		EA-HVRS		VRS-90	EA.F	IVMS	EA-H	MS-90	EA-	11M	EA-10S	
	Min	Max.	Min.	Max.	Min,	Max.	Min.	Max.	Min.	Max.	Min.	Max
Furol Viscosity at 77 F, sec.	-		-	-	-	-	-	_	30	100	30	100
Furol Viscosity at 122 F, sec.	100	300	100	300	100	300	100	300	- 1	-	-	-
Residue by Distillation, %	63	-	63	-	63	-	63	-	60		60	-
Oil Portion of Distillate, %	-	2.0	-	2.0	-	2.0	-	2.0		2.0		2.0
Sieve Test, %		0.1	-	0.1	-	0.1	-	0.1	-	0.1	-	0.1
Miscibility (Standard Test)			-	_	-	-	- 1	-	Pass	ing	Pas	sing
Costing	-	- 1	-	~	-	-	- 1	-	Pas	ing	_	-
Cement Mixing, %		-		-	- 1	-	- 1	-	-	_	-	2.0
Demulsibility 50 cc of N/10 CaCl2, %	-	-			-	-	~	-	-	70	-	-
Demulsibility 35 cc of N/50 CaCl2, %		-	60		- 1	30	- 1	30	- 1	-	-	-
Settlement, 5 days, %	- 1	5.0	_	50	-	5.0	- 1	5.0	- 1	5.0	-	5.0
Freezing Test 3 Cycles (*)		-	-	-	Pass	ing*	Pass	ing*	Pass	ing*	Pass	ing*
Tests on Residue:						-		•		• •		
Penetration at 77 F, 100g., 5 sec.	120	160	80	110	120	160	80	110	120	160	120	160
Solubility in Trichloroethylene, %		5 -	97.	5 -	97.	5 -	97.	5 -	97.	-	97.	5 -
Ductility at 77 F, 5 cm/min., cms		_	100		100	_	100	-	100	-	100	_

*Applies only when Engineer designates material for winter use.

CATIONIC FMUL SIONS.

TYPE	[Rapid	Settin	8		Mediu	n Setti	ng		Slow	Setting	
GRADE		CRS-2	EA-C	RS-2h	EA-C	MS-2	EA-CMS-2h		EA-CSS-1		EA-CSS-1	
	Min	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
Tests on Emulsions:	1						1					
Viscosity, Saybolt Furol at 77 F, sec.		-	_		-	_			20	100	20	100
Viscosity, Saybolt Furol at 122 F, sec		300	100	300	100	300	100	300	-	-	- 1	
Settlement, 2 5 days, %		5	-	5	-	5	-	5	-	5	-	5
Storage stability test, b 1 day, %		1	-	1	-	1	-	1	-	1	-	, 1
Demulsibility, ¢ 35 ml 0.8 percent sodium					l				1		1	
dioctyl sulfosuccinate, %	40	~	40			-	1 °	-	- 1	_	-	
Coating, ability and water resistance:	1										1	
Coating, dry aggregate	-	-	-		go	od	go	od	- 1	~-	-	_
Coating, after spraying	-	-	-	~ `	fa	air	f	ir	-	~	-	-
Coating, wet aggregate	-	_	-		fa	air	f	air	- 1		- 1	-
Coating, after spraying	-	-,	-	-	fa	air	f	air	-	~	-	-
Particle charge test	005	itive	DOS	itive	1005	itive	DOS	tive	pos	itive	pos	itive
Sieve Test, %			-	0.10	_		-	0.10	-	0.10		0.10
Cement mixing test, %		-	-	→		-	-	-	1 -	2.0	- 1	2.0
Distillation:											1	
Oil distillate, by volume of emulsion, %	- 1	3	-	3	-	12		12	-	_	-	_
Residue, percent	60		65	_	65		65	_	60	_	60	_
Tests on Residue from Distillation Test:					1 33		0.5				1	
Penetration, 77 F, 100g, 5 sec	120	160	80	110	120	160	80	110	120	160	80	110
Ductility, 77 F, 5 cm/min., cm			100		100	100	100		100		100	-
Solubility in trichloroethylene, %			98	_		5 _		5 -	97.			5 -
Ash, %			98	2	97.		· ···			2.0		2.0

^aThe test requirement for settlement may be waived when the emulsified asphalt is used in less than 5 days time; or the Engineer may require that the settlement test be run from the time the sample is received until it is used, if the elapsed time is less than 5 days.

bThe 24-h (1-day) storage stability test may be used instead of the 5-day settlement test.

CThe demulsibility test shall be made within 30 days from date of shipment.

(8) Flux Oil. Fluxing material shall be free from foreign matter and shall meet the following requirements:

	- Flux	c Oil
Type	Min.	Max.
Water, %	_	0.2
Furol Viscosity at 122 F, sec	50	100
Flash Point, C.O.C., F	250	_
Loss on Heating, 50g, 5 hrs. at 325 F, %	-	5
Asphalt Content of 85 to 115 Penetration by		
vacuum distillation, weight %	25	_

(9) Precoat Material. Precoat material may consist of any one of the various types of asphaltic materials listed in this specification, approved by the Engineer, including "Special Precoat Material".

		ecial Material
Type	Min.	Max.
Water, %		0.2
Flash, C.O.C., F	200	_
Furol Viscosity at 140 F, sec	. 150	250
Distillation to 680 F:		
Initial Boiling Point, F	. 500	
Residue by weight, %	. 70	
Penetration residue, 77 F, 100g., 5 sec		300

(10) Catalytically-Blown Asphalt Joint and Crack Sealer. Catalyticallyblown asphalt shall be uniformly blended with 10 percent diatomaceous earth filler which passes the No. 325 sieve. It shall form a suitable joint and crack sealer which may be melted to pouring consistency in the regular asphalt kettle at a temperature of approximately 450 to 475 F. The material shall meet the following requirements:

TYPE-GRADE		68-88 Pen.		38-45 Pen.	
		Max.	Min.	Max	
Penetration, 77 F, 100g., 5 sec	68	88	38	45	
Penetration, 32 F, 200g., 60 sec	38		—		
Penetration, 115 F, 50g., 5 sec	-	16 0	—	_	
Softening Point, R. & B., F	175	200	185	200	
Flash, C.O.C., F	500	_	500	-	
Ductility, 77 F, 5 cm/min., cms	5		3	_	
Flow, 140 F, cm	—	0.5	—	0.5	
Ash, Weight, %	8	-	8	_	
Settlement Ratio		1.02		1.02	
Brittleness Test, 32 F	No Ci	racking	No Ci	rackin	

(11) Asbestos Additive. Asbestos fiber shall be used only when specified on the plans or in other specifications in the contract. Asbestos fiber shall be Chrysettle Asbestos. Asbestos fiber shall be 7M grade by Quebec Standard Screen Test.

GUARANTEED MINIMUM TEST

ROTAP (3-minute procedure)	35% minimum retained on No. 20
	mesh sieve
WET WASH (QAMA Procedure)	20% minimum retained on No. 200
	mesh sieve
PENETRATION-EFFICIENCY	
TEST	70-105%

The manufacturer will furnish a notarized certification that the asbestos meets the above requirements.

Storing and Handling. While stored at the site of the batch plant, the asbestos shall be given suitable protection from moisture. Any asbestos which is wet or damp shall be rejected for use.

300.3. Storage, Heating And Application Temperatures. Asphaltic materials should be applied at the temperature which provides proper and uniform distribution and within practical limits avoiding higher temperatures than necessary. Satisfactory application usually should be obtained within the

recommended ranges shown below. No material shall be heated above the following maximum temperatures:

	Application a		
TYPE-GRADE	Recommended Range, F	Maximum Allowable, F	Heating and Storage Maximum, F
AC-3, 5, 10, 20, 40, OA-175	275-325	350	400
OA-30	400-500	500	500
OA-400	220-300	350	350
RC-1	100-150	175	175
RC-2	1 25-180	200	200
RC-250	150-200	210	210
RC-3	160-210	230	230
RC-4	180-240	270	270
RC-5		285	285
МС-30		175	175
МС-70	125-175	200	200
MC-250	125-210	240	240
МС-800	175-260	275	275
MC-3000		290	290
RO-3		250	250
RO-4		200	200
RO-95		325	325
RO-Special		260	260
Cracked Fuel Oil		260	260
Crude Oil		175	175
EA-10S, EA-11M, EA-CSS-1,			
EA-CSS-1h	50-130	140	140
EA-HVRS, EA-HVMS,			
EA-HVRS-90, EA-HVMS-90,			u
EA-CRS-2, EA-CRS-2h,			
EA-CMS-2, EA-CMS-2h	110-150	160	160
Cat. Blown Asph		500	500
Special Precoat Material		275	275

Note: Heating of asphaltic materials (except emulsions) constitutes a fire hazard to various degrees. Proper precautions should be used in all cases and especially with RC cut-backs.

Warning to Contractors: Attention is called to the fact that asphaltic materials are very flammable. The utmost care shall be taken to prevent open flames from coming in contact with the asphaltic material or the gases of same. The Contractor shall be responsible for any fires or accidents which may result from heating the asphaltic materials.

300.4. Measurement And Payment. All asphaltic materials included in this specification will be measured and paid for in accordance with the governing specifications for the items of construction in which these materials are used.

209

210

TYPICAL REFINERY PRODUCTION BATCH

COSDEN AC-5 + 2% L-170

Viscosity at 140F, stokes	1063
Penetration at 77F	121
Flash, F	600
Gravity at 77F	1.019
Ductility 39.2F, 5 cm/min., cm	141+
Brittleness 20F, inch-1bs.	5.8
Brittleness 30F, inch-1bs.	7.2

DATA FOR LATEXES USED IN PROJECT 1-9-74-180

GOODYEAR PLIOPAVE L-170 PRODUCED TO THE FOLLOWING SPECS:

68.5 min - 70.5 max Total Solids, % Brookfield Viscosity, cps 1000 min - 2000 max 0.10 max Residual Styrene, % Coagulum on 80 Mesh Screen, % 0.10 max 9.5-10.5 pH Mooney Viscosity, M/L-4' 100 min 31-34 Surface Tension, dynes/cm 23.5-26.5 Bound Styrene, %

DUPONT NEOPRENE LATEX ANALYZED AS FOLLOWS:

NEOPRENE LATEX

LD-260

Solids Content = 38.5%

pH = 12.15

Brookfield Viscosity

Spindle #1

@ 6 rpm = 10 cps
30 rpm = 5 cps
60 rpm = 6.5 cps

- 55 -

<u>Specification For Amorphous Polypropylene,</u> <u>Hot Liquid Bulk Form or Solid Block Form</u> (May 4, 1976)

This material is to be an amorphous polypropylene polymer which is a slightly tacky solid at ambient temperature and becomes gradually softer at elevated temperatures and will liquify to such extent that it can be readily pumped, transported and stored with equipment used for asphalt cements.

The polymer shall meet the following requirements when tested according to Standard Department Test Methods:

Viscosity at 375 F, cps	2000-5000
Sp. Gr. at 77 F	0.84-0.88
Ring & Ball Softening Point, F	203-239
Flash, C.O.C. F	400 Min.

Delivery may be specified in either of the two following forms:

1. Hot Liquid Bulk Form

To be delivered hot so it can be transported, pumped and mixed with normal paving grade asphalt cement with equipment regularly used for asphalt cements.

2. Solid Block Form

To be delivered in 50 1b blocks packaged in multi-walled paper bags adequately coated so as to be readily strippable. Blocks to be approximately $10 \times 10 \times 14$ inches and suitable for handling on pallets.

- 56 -

TENTATIVE SPECIFICATION FOR LATEX MODIFIED ASPHALT CEMENT

(Study No. 1-9-74-180)

Materials

a.

1. Asphalt Cement: The original asphalt cement used to blend with latex shall meet the requirements for that grade as follows:

Asphalt Cement. The material shall be homogeneous, shall be free from water, shall not foam when heated to 347 F and shall meet the following requirements:

	VISCOSITY GRADE									
TEST	AC-3	3.	AC-	5	AC-	10	AC-	20	AC-	-40
	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
Viscosity, 140 F stokes	300	±50	500±	100	1000	±200	2000	±400	4000	±800
Viscosity 275 F stokes	1.1	_	1.4	-	1.9		2.5	-	3.5	_
Penetration, 77 F 100g, 5 sec	210		135	- 	85	1. <u>-</u> 1	55	· _ ·	35	_
Flash Point, C.O.C.F	425	-	425	-	450	. - .	450	-	450	-
Solubility in trichloroethylene, percent	99.0	- -	99.0		99.0	. _	99.0	-	99.0	-
Test on residues from thin film oven test:										
Viscosity, 140 F stokes Ductility, 77 F 5	-	900	-	1500	-	3000	–	6000		12000
cms per min, cms	100	-	100		70	. –	50	-	30	· <u> </u>
Spot Test	Negative for all grades									

2. Latex Additive: The latex additive shall meet the following requirements:

The latex is to be an anionic emulsion of butadiene-styrene low-temperature copolymer in water, stabilized with fatt-acid soap so as to have good storage stability, and possessing the following properties:

Monomer ratio, B/S	70/30
Minimum solids content	67%
Solids content per gal. @ 67%	5.3 1bs.
Coagulum on 80-mesh screen	0.1% max.
Type Anti-oxidant	staining
Mooney Viscosity of Polymer (M/L 4	
@ 212F)	100 min.
pH of Latex	
Surface tension	28-42 dynes/cm ²
Brookfield Viscosity of Latex	1200 ps max. @ 67% solids

3. Asphalt Cement - Latex Modified:

a. Grade AC-3-LM

AC-3 asphalt shall be blended with a minimum of 2% by weight (solids basis) of latex. The finished blend shall meet the following specifications:

Viscosity @ 140F,	stokes	450 - 750
Ductility, 39.2F,	5 cm/min., cm	100 min.

Tests on Residue from thin film oven test:

Viscosity @ 140F,	stokes	1100 max.
Ductility, 39.2F,	5 cm/min., cm	50 min.

b. Grade AC-5-LM

AC-5 asphalt shall be blended with a minimum of 2% by weight (solids basis) of latex. The finished blend shall meet the following specifications:

Viscosity @ 140F,	stokes	800 - 1300
Ductility, 39.2F,	5 cm/min., cm	100 min.

Tests on Residue from thin film oven test:

Viscosity @ 140F,	stokes	2000 max.
Ductility, 39.2F,	5 cm/min. cm	50 min.

- 58 -

EVALUATION REPORT (FOURTEENTH MONTH) WESTBOUND TEST SECTIONS EL PASO DISTRICT (IH 10)

The four test sections of seal coat from Milepost 101 to 106, consisting of: AC-5 (MP 101 to 102), AC-3 + 10 percent polypropylene (MP 102 to 103), AC-3 + 2 percent latex (MP 103 to 104), and AC-10 (MP 104 to 106), average from 5 to 10 transverse cracks and 100 to 150 feet of longitudinal cracking per station. Fatigue carcking is evident in all four sections. Ninety-five percent of all cracks first reported have come through the seal coats and have been resealed with a rubber-asphalt sealer. Most of the cracks showed evidence of pumping before being resealed and all cracks are in the outside lane.

The first skid resistance report was made on August 24, 1976, and the second on August 16, 1977. A comparison table of the skid resistance for the four sections is shown below with the inside lane coded first.

	Aug. 76	Aug. 77
AC-10: MP 104 to 106 WB	56-45	53-42
AC-3+2% Latex; MP 103 to 104 WB	55-49	55-35
AC-3+10% Polypropylene; MP 102 to 103 WB	55-51	53-46
AC-5; MP 101 to 102	58-48	53-45

EVALUATION REPORT (FOURTEENTH MONTH) EASTBOUND TEST SECTIONS EL PASO DISTRICT (IH 10)

In the AC-10 seal, from Milepost 99 to 101 eastbound, 100 percent of the reflective cracking and approximately 82 percent of the longitudinal cracking has come through the seal coat. Most of the cracks have been resealed since the seal coat was placed. The skid resistance for the inside and outside lanes on August 24, 1976 was 56-49, respectively, compared to 54-50 on August 16, 1977.

The Rubberized Asphalt Seal, from Milepost 101 to 105, and the Rubberized Asphalt Seal using precoated aggregate, from Milepost 105 to 106, show very little cracking. From 3 to 5 percent of the reflective cracking and 5 to 7 percent of the longitudinal cracking has come through the seal. The pattern of fatigue cracking shows through the seal but only a few of the cracks are evident. The skid resistance of the inside and outside lanes for the regular and precoated aggregate on August 24, 1976 was 56-24, 50-24, respectively, compared to 55-24, 51-30 on August 16, 1977. The lapped joints are not as noticeable in the inside lane, as they are the outside lane. This condition has improved very little. Lapped joints should not be used in this type of construction.

The AC-10 seal, from Milepost 106-107, has virtually all the cracking coming through the seal. Some of the cracks had been pumping and all have been resealed. The skid resistance for the inside and outside lanes on August 24, 1976 was 56-44, respectively, compared to 54-46 on August 16, 1977.

All cracks from Milepost 99 to 107 are in the outside lane.

- 60 -

¥

3

Lucation SH-22 $D_{157.9}$ Test Section No. <u>403 \notin 404</u> Material <u>AC-5</u> Hice County

Þ

۲

	Date	Friction	Roughness SI 0-5		Deflection SCI Stiffness Coef. Subgrade Pavement			Visual	Crack Survey Average % Cracks Alligator Transverse Longitu Width(In.) Area Reflective Severity % Area Severity No./Sta. Severity								
	, call	0-100	0-5	SCI	Subarado	Pavoront	Team Rating	Rating	Average	# Cracks		Alligator		Transverse		Longitu	dinal
					Jubyi aue	ravenent	0-40	0-100	Width(In.)	Area	Reflective	Severity	% Area	Severity	No./Sta.	Severity	Ft./Sta.
1012	6/76	25	3.3	0.28	0.40	0.43		57	0.045			Mod.			5-9		10-99
ler	8/76 5/76	56	3.6				31.9										
:	-176	· · ·		-			·····	91			0	NONE		NONE		NONE	
											•			1			
- 61	2/17	53			, , ,, , , , , , , , , , , , , , , , ,		31.9	₹						<u> </u>			
ī	8/11 9/17	67						.90			****						
	-1-1			•	· · ·		<u>31.0</u>			1.4	2.9	· · · · · · · · · · · ·					
							-										
														5			
						-											·
						-						ļ		1			
									-								
	- -																
						•											

Location <u>SH-22</u> <u>DIST.9</u> Test Section No. <u>AOS & 406</u> Material <u>AC-3 WITH EASTOBOND</u> HILL COUNTY

Date		Friction SN	Koughness	SCI	Deflection I Stiffness Coef. Subgrade Pavement		Team	Visual		Crack Survey Cracks Alligator Transverse Longitudinal Area Reflective Severity % Area Severity No./Sta. Severity Ft./Sta									
		0-100	Roughness SI 0-5	201	Subgrade	SS LOET.	Rating	Visual Rating 0-100	g Average	~ ~	Cracks	Alligator		Transverse		Longitudinal			
					Jubylaue	ravement	0-40	0-100	Width(in.)	Area	Reflective	Severity	% Area	Severity	No./Sta.	Severity	Ft./Sta		
4	6/76	22	3.0	0.34	0.37	0.44		55	0.043	51.7		Mor.	6-25	MOD.	5-9	MOD.			
			· _									<u> </u>	023			1900.	10-5		
	3/76	56	3.4				32.2									·			
5	176							-		0	0								
													-						
							ł												
2	2/77	55	· · · ·					<u> </u>			······					<u></u>	1. 1. 1. 1. 1. 1. 1.		
		65					33.3												
	3/77	05			-			95					-						
5	3/17	·					32.5			0.3	0.6		-						
				•					•							·			
														l .		· ·			
											$1 \leq 1 \leq n \leq $			· ·					
	.					1.1							Ì						
	· ·									-	•								
							1 · · ·	· .					· ·		1		1		
			•												I .	•			
						1									(•	ł		
	ļ		1. S. S. S.					1. A. A.				}							
							•							1					
		•										1	1 - N			·			
	-			-										1.					
							1												
	1.0 M											[·			
		-						ł.,				i.	ł	1			i i		
L		1																	
Ĩ					-L	L		L						J		· · ·			

Location SH-22 Hill County Disr. 9 Test Section No. <u>407 § 408</u> Material <u>AC-3</u>

Date	Friction SN	Roughness SI 0-5	s <u>Deflection</u> Team Visual <u>Crack Surv</u> SCI <u>Stiffness Coef.</u> Rating Rating Average <u>% Cracks</u> <u>Alligator</u> Subgrade Pavement 0-40 0-100 Width(In.) Area Reflective Severity % Area Se															
	SN 0-100	SI 0_5	SCI	CI <u>Stiffness Coef</u> . Subgrade Pavement		Rating	Rating	ing Average	e de la companya de l	Cracks	Alliga	tor	Transv	erse	Longitudinal Severity ft./Sta.			
				Subgrade	Pavement	0-40	0-100	Width(In.)	Area	Reflective	Severity	% Area	Severity	No./Sta.	Severity	Ft./Sta.		
6/76	22	3.4	0.29	0.34	0.48		57	0.028	49:4		MOD.	6-25	MOD.	> 10	MOD.	10-99		
8/76 9/76	48	3.6				32.3	 	· - · · · · · · · · · · · · · · · · · ·	0	0	•	· · · · · · · · · · · · · · · · · · ·						
	-		· · · · ·															
2/77 8/77	50		·			34.8												
9/17						34.3	90		1.0	2,0								
	-		•		•		1 - 1											
		• •																
							-	•										
										• .		•						
			•											•				
	•.											· .						

- 63 -

:

.

۰.

Location <u>SH-22</u> DIST. 9 <u>HILL COUNT-</u> Test Section No. <u>409 \$ 410</u> Material <u>EA-HVRS</u>

Date	Friction SN	Roughness	SCI	Defle	ction ss Coef.	Теал	Visual					Crack Si	irvey			
	0-100	ŠI 0-5	301	Suborade	Pavement	n-40	Rating	Average Width(In.)	×	Cracks	Alliga	tor	Transv	erse	Longit	udinal
				1	, a remente	0.40	0-100	niu(ii(1))	Area	Reflective	Severity	% Area	Severity	No./Sta.	Severity	Ft./Sta.
6/76	23	3.2	0.38	0.35	0.44		57	0.035	68.9		MOD.	6-25	MOD.	>10	MOD.	10-99
8/76 9/16	46	3.6		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	30.8	· · · · ·		·		··········	······	· · · · · · · · · · · · · · · · · · ·			
	•						94	·	0	. 0	NONE	·	None	•	NONE	
				-											·	
2/17 8/77	_4851			-		32.1										
9/77				·		31.2	89	-	10.5	15.2	· ·		·			
	н. 					5774		·····	1.0,0	13.6						
÷ 1											•					
	•					а 1 страна 1 страна										
	ny															
													-			

۲

*

- 64 -

s 5

\$

ş

٠

¥

HILL COUNTY_ Location SH-22 DIST. 9 Test Section 110. 411 & 412 Material EA-HVRS WITH LATEX

9

Date	Friction SN 0-100	Roughness SI 0-5		Defle Stiffne Subgrade	ction	Team Rating	Visual					Crack S	ITVOV	2		
Date	0-100	0-5	SCI	Suborade	ss Coef.	Rating	Rating	Average		Cracks	Alliga	tor	Transv	erse	Longit	udinal
				Jubyraue	ravellent	0-40	0-100	Width(In.) Area	Cracks Reflective	Severity	% Area	Severity	No./Sta.	Severity	Ft./Sta.
6/76	23	3.2	0.38	0.35	0.44		55	0.039	45:2		Mob.	6-25	MOD	5-9	Mob.	10-99
8/76	57	3.8	· · · · · ·	·····		32.3	·									
9/76	<u>.</u>				· · · · · · · · · · · · · · · · · · ·		98		0	0	NONE		NONE	· · · ·	None	
							¢									
2/17 8/17	52 59				· · · · · · · · · · · · · · · · · · ·	34.0					<i></i>			· · ·		
9/17						33.0	92		1.6	3.5			•			
								· · · · · · · · · · · · · · · · · · ·								
			x													
						••										
·																
						L										

Location SH-43 DIST. 19	MARION CO. NORTHBOUND LANE
Test Section No. 1 CSN - 51770	1
Material EA-HURS + LATEX	AGG- SLAG
	LONE STAR

- 66 -

Date	Friction SN	Roughness SI 0-5	SCI	Defle Stiffne	ction	Теал	Visual					Crack S	irvev			
	SN 0-100		501	Subgrade	Pavement	Rating 0-40	0-100	Average Width(In.)	Area	Cracks Reflective	Alliga	tor	Transve	erse	Longitu	udinal
6/76		3.3	1.30	0.38		<u> </u>	28	0.044	87.0		SEV.	> 25	MOD.	1-4	Severity SEU.	10-99
10/76	58	3,2		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·								*
10110						35.7			0	0						
2/17						36.3	<u></u>			· · · · · · · · · · · · · · · · · · ·						
2/17 8/11 2/21	58					35.0		· · · · · · · ·	0	0				- · • •		
											•. •	-				
	-				-											
											- -					
						- - -		×.								

Location <u>SH-43</u> 19 MARCINA (D. SOUTHBOUND LANE - 517712 DIST. 19 CSN Test Section No.] AGG - SLAG LONE STAR Material EA-HURS + LATEX

Date	Friction	Roughness		Defle	ction	Team Rating	Visual					Crack S	Irvev			
Date	SN 0-100	ŠI 0-5	SCI	Defle Stiffne Subgrade	SS Coef.	Rating	Rating	Average	*	Cracks Reflective	Alliga	tor	Transv	erse	Longit	udinal
6/76	60	3,2	1.11		0,27		0-100	width(In.)	Area	Reflective	Severity	% Area	Severity	No./Sta.	Severity	Ft./Sta.
<u>-110</u>				0.39	0.01		28	0.029	85.2		SEV.	255	Mos.	1-4	SEU.	10-99
							·	·	· ·							
		·														
				· · · ·					· ·							·
10/76	.56	3.8				35.7			0	0		·		1		
				· · ·												
									1		ł	1				
					•		C .									
2/77						36.3				·						
2/ <u>77</u> 8/71 9/77	59					-								·		
9/77						35.0						: 				
						122.0										
		· ·									1 · ·	l				
						1		l								
							1				1				1	
				· ·			·		1				ľ			÷
		•												Į		
	-				1											
) .		•								1
		•			·						ł		1	· ·		
				1.1			}				1					1
					ł											
	•••					1.	Í				t -					
				1												
					ļ				l.							
							l			-						
				1												
	1	\$ · · ·	ł	1	1	1		1	1				1		1 .	

67

Location <u>SH-43</u> DIST. 19 MARIAN CO. NORTHEOUND LANE Test Section 110. 1 CSN - 517701 Material <u>EA-HURS + LATEX</u> <u>AGG- SCAG</u> AGG - SLAG LONE STAR

Date	Friction SN	Roughness SI	SCI	Deflec	tion	Team	Visual				(rack S	urvey			
				Subgrade	Pavement	0-40	0-100	Average Width(In.)	Area	Cracks Reflective	<u>Alliqa</u> Severity	tor T Area	Transv	erse	Longitu	udinal
6/76	51	<u>3.3</u>	1.30				28	0.044	87.0		SEV.	>25			SEJ.	10-99
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·												
10/76	58	3,2				35.7				0			· · · · · · · · · · · · · · · · · · ·			
2/27					1+	26 2			•						-	
8/11	58						·····			-			•		· .	10
		· · ·				35,0	• • • •	*******	0	•••••			· ·			
	- 7															
					-											
			-									1				
				· ·								-				
	•	an a														
			1.													
			-						-							
										-						
•	•				ŕ		÷									ŧ.,
	-	6/76 51 10/76 58 2/77	0-100 0-5 6/76 51 3.3 10/76 58 3.2	6/76 51 3.3 1.30	6/76 51 3.3 1.30 0.38	6/76 51 3.3 1.30 0.38 0.26	6/76 51 3.3 1.30 0.38 0.26	6/76 51 3.3 1.30 0.38 0.26 28 10/76 58 3.2 35.7 2/77 58 36.3	6/76 51 3.3 1.30 0.38 0.26 28 0.044 10/76 58 3.2 35.7 2/77 58 36.3	6/76 51 3.3 1.30 0.38 0.26 28 0.044 87.0 10/76 58 3.2 35.7 0 2/77 58 36.3	6/76 51 3.3 1.30 0.38 0.26 28 0.044 87.0 10/76 58 3.2 35.7 0 0 2/77 58 36.3	$\frac{6/76}{51} \frac{3.3}{3.3} \frac{1.30}{1.30} 0.38 0.26 \frac{28}{28} 0.044 \frac{87.0}{5.7} \frac{58}{5.7} \frac{58}{5.7} \frac{35.7}{5.7} 0 0 0 0 0 0 0 0 0 $	$\frac{6/76}{51} \frac{51}{3.3} \frac{3.3}{1.30} \frac{0.38}{0.38} \frac{0.26}{28} \frac{28}{0.044} \frac{0.044}{870} \frac{870}{58} \frac{58}{3.2} \frac{28}{3.2} \frac{0.044}{35.7} \frac{0}{0} \frac{0}{0} \frac{10}{36.3} \frac{10}{7} \frac{10}{58} \frac{10}{7} \frac{10}{58} \frac$	$\frac{6/76}{51} \frac{51}{3.3} \frac{3.3}{1.30} \frac{0.38}{0.38} \frac{0.76}{0.26} \frac{28}{28} \frac{0.044}{0.044} \frac{87.0}{87.0} \qquad \frac{525}{100} \frac{10}{100} \frac{10}{100} \frac{58}{100} \frac{35.7}{100} \frac{35.7}{100} \frac{35.7}{100} \frac{35.7}{100} \frac{36.3}{100} \frac{36.3}{100$	$\frac{6/76}{51} \frac{51}{3.3} \frac{3.3}{1.30} \frac{0.38}{0.38} \frac{0.76}{0.26} \frac{28}{28} \frac{0.044}{87.0} \frac{87.0}{52} \frac{525}{Mod} \frac{1.4}{1.4}$	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$

DIST. 19 MARINA CO. NORTHBOUND LANE CON-517702 Location <u>SH-43</u> Test Section 110. 2 CSN - 5 Material EA-HVRS CONTEAL Acc - SLAG LONE STAR

. 1

	Date	Friction SN 0-100	Roughness	SCI	Defle	ction	Team	Visual					Crack S	ITVEV			'1
			ŠI 0-5	501	Stiffne Subgrade	Pavement	0-40	0-100	Averaçe Width(In.)	- F Area	Cracks Reflective	Alliga	tor	Transve	erse	Longitu	dinal
	6/76	51	3.4	1.33	0.36	0.26		28	0.022	74.5		SEU.	>22	Mos.	1-4	Severity	•
						an a				· · ·		000.			1-4	- JEV.	10-99
										•							
		<u> </u>					-										
	10/76	.59	3.4				35.7			0	. 0			~~~~~	·	·	
															·	·	
1								$\langle \xi \rangle$									
69 -	2/77																
• •	8/11	56					37.0							•			
	9/17						5.)				A set defende al deservationes a		·				
							34.0			0	0						
											-						
													· ·				
																	-
						· ·	1.96							l			
														ŀ			
													[
1	1	1	1		Į.	1	ļ										

Location <u>SH-43</u> DIST. 19 MARINA CO. SOUTHEOUND LANE Test Section No. <u>2</u> <u>CSN - 517711</u> Material <u>EA-HVRS</u> <u>CONTERL</u> <u>ACC. SLAG</u> LONE STOR

Date	Friction	Roughness		Deflec	ction	Team	Visual					Crack S	irvev			
Uate	Friction SN 0-100	Roughness SI 0-5	SCI	Deflec Stiffnes Subgrade	ss Coef.	Rating	Visual Rating 0-100	Average	, ž	Cracks Reflective	Alliga	tor	Transv	erse	Longitu	udinal
6/76	57	2.7	0.96		0.30	0-40	28		Area	Reflective	Severity	% Area				
				0.35	0.50		60	850.0	72.5		SEV.	>25	MOD.	1-4	SEV.	10-9
					1			· ······			······································					
														•••		
0/76	57	3,1				35.7		· · · · · · · · · · · · · · · · · · ·						i	·	
						33.1		·	0	0			- <u></u> -	· ·		
						1										
0.1							$\mathcal{L}_{1} = \mathbb{C}$					· .				
2/77						37.0				·······	With a Malanay Roll				·	
8/17	60										· ••••••••••••••••••••••••••••••••••••		•	1. S. S. S.	· ·· ··	
9/11						39.0			0	0		·				
							1.11.1.1.2									
											1					
														1		
												ł				
				· · ·												
1											-				1.	
	- x															
									i			[
										-						
	-															
1																

Location US-80 DIST 19 HARRISON G. OUTSIDE CANE Test Section No. 3 CSN. 517616 Naterial AC-3 + EASTABOND AGG. SLAG ALC. SLAG LONE STAR.

Date Friction SN 0-100 6/76 44 10/76 4-9 2/77	ši 0-5 3.2 3.2	SCI 0.49	Stiffne Subgrade 0.31	Pavement	Rating 0-40	Rating 0-100 20	Average Width(In.) 0.028	Area	Cracks Reflective	Alliga Severity	tor % Area	Transve	erse	Longitu	dinal
10/16 4-9 2/17 8/17 51		0.49	0.31	0.39		20	0.025		Refrective	Sevenity	a Areal				
2/77 8/77_51	3.2							12/2/-1		5-1	225	551.	NO.7518.	Severity	Ft./Sta
2/77 8/77_51	3.2									<u>Jev.</u>	100	2611	210	Mod	10-90
2/77 8/77_51	3.2														
2/77 8/77_51	3.2				· · ·										
8/27 51					36.0			0	0						
8/27 51					1										
8/27 51												•			
					35.8	<u> </u>								· · ·	
9/77												. <u> </u>			
					36.0			0	0						
					201-	·		<u> </u>							
								-							
							• .								
1 1															
										-					
															1
												1			
											[
			1	1	1		1	1			1	1	1		

Location US-80 DIST. 19 HARRISON G. IN: IDE LANC Test Section 110. 3 CSN - 517607 Naterial AC-3 + EASTOBOND ACG - SCAS LONE STAR

	Date	Friction	Roughness		Deflec	ction	Team Rating	Visual		,			Crack Su	irvey			4
		SN 0-100	Roughness SI 0-5	SCI	Stiffne: Subgrade	<u>ss Coef.</u> Pavement	Rating	Rating	Average Width(In)	<u><u> </u></u>	Cracks Reflective	Alliga	tor	Transv	erse	Longitu Severity	ud inal
	6/76	47	3.0	0.55		0.38		20	0.0.12	18.5	Kerreccive	SEV.	> 25	Severity	No./Sta.	Severity	
			-						010.12	(0: <u>3</u>		520.	100	SE1.	> 10	Mos.	10-99
	10/76	54-	3,5								~		······				
- 72	8/11	_55				· · ·		e,		_0		**				·	
I	9/77	5. mm	e a franke general e se se							0	0	e			· · · · ·		···· ·· ·
-				•													
												• •					

Location 514-43 Location <u>SH-43</u> DIST. 19 MARCIEN CO. NOCTHBOUND LANE Test Section No. <u>4</u> CSN - 517704 Material <u>AC-3 + EASTOROND</u> <u>AGG - SCON</u> AGA - SCAS LONE STAR

	Date	Friction SN 0-100	Roughness SI	SCI	Deflec Stiffnes	tion	Team	Visual					Crack Su				
	6/76	0-100 60	51 0-5 4.0		Subgrade	Pavement	0-40	Visual Rating 0-100	Average Width(In.)	Area	Cracks Reflective	Allica Severity	tor	Transv Severity	erse	Longitu	dinal
	9/10	00	4.0	0.96	0.32	0.31		2.8	0.059	64.7		SEÙ.	>25	MOD.	1-4	Severity	Ft./Sta.
									·	·							10-39
ł	10/26	.57	3.5														
ľ			5.5				36.5			0	0				. <u></u>		
											r						
	2/17 8/17	56					37.7		-								
	3/17						36.d										** *** = =.
							2014	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				·· · ·				
	· .																
		. *			-												

	LANE
Test Section 110. 4 CSN - 5/7709	
Naterial AC-3 + EASTORAND AGG - SCAR	
LONE STAR	

- 74 -

Date	e	Friction SN	Roughness SI 0-5	SCI	Defle Stiffne	ction	Team	Visual	(100000		Caral		Crack S	iryey			
		SN 0-100			Subgrade	Pavement	Rating 0-40	Rating 0-100	width(In.)	Area	Cracks Reflective	Severity	Cor C Area	Transve	erse	Longitu	idinal
6/7	6	58	3.3	0.78	0.31			28	0.0.27	47.3		SEV.	>25	MOD.	1-4	SEV.	10-99
	-				·					· · ·							
			-														
10/7	26	57	3.8				36.5			0	0						
									· · · · · · · · · · · · · · · · · · ·		Ŭ			· · ·			
		1						:								,	
2/1	2						37.7		· <u>· · · · · · · · · · · · · · · · · · </u>								· ·
8/7	77	59									-				·~···		
9/-	27						36.4			0	0	•	·······				
																•	
								**									
								ŝ					-				
																ł	
											-						
										•							
	,				,	ł										1	1

Location 5H-43Test Section No. 5 Material $O_{VERFLEX}$ DIST. 19 MARION CO. NORTHDOWND LANE CSN - 517705 X AGG SLAG LONE STAR

	Date	Friction SN 0-100	Roughness SI 0-5	SCI	Deflec Stiffnes Subgrade	tion s Coef.	Team Rating	Visual Rating	A) erane		Capelie		Track S	rvey			
	_		0-5		Subgrade	Pavement	0-40	0-100	Width(In.)	Area	Cracks Reflective	Severity	10r 17 Area	Transve	erse	Longitu	idina]
	6/76	_55_	3.8	0.93		0.31		28	0.031	55.7		SEV.	>25	MOD.	1-4	Severity	10.99
		· · · · · · · · · · · · · · · · · · ·			~~~ <u>~</u>							**	*******				
	10/76	.57	3.8	· ·			33.0		·		. 0						
							22.0			0	. 0						
- 75								¢									
л Г	2/17						34.7								· · ·		
	8/17	60					1.1 - 1.1										
	9/17						34.0			0	0	·					
													ւտու դումել				
																1	
										·							

Location US-30 DIST. 19 Fransed Co. INSIDE CAME Test Section 110. 5 CON-517605 Material AC-3 + EASTOROND AGG. SLAG AGG - SLAG LONE STAR

76

	Date	Friction	Roughness SI 0-5	SCI	Deflec Stiffne Subgrade	tion	Team	Visual					Crack Si	irvey			
		SN 0-100		501	Subgrade	Pavement	Nating	Visual Rating 0-100	Average Width(In.)	Area	Cracks Reflective	<u>Alliga</u> Severity	tor 3 Area	Transve	erse No./Sta	Longitu	idinal Et /Sta
	676	_45	3.3	0.48	.0.31			20	0.044	32.0		SAL	>25	SEU.	>10	MOD.	10-99
					··							<u> </u>				1010 0.	10-55
			•	-												1	
	10/76	55	3.4						·	0	0						·
												······································					
	11							<							5		
	8/11 9/11	54						·	·								
	9/11								· · · · · · ·	0	0						
					•												
									4								
																	· · · ·
	`						۰.										-
															1		
											-						
		•			-								ł.		1.		
															[
															1		
														1			
,			•	,			L	I	·····		· · · · · · · · · · · · · · · · · · ·		I	1			
		• •					•	•			3	۲	6				ē .

6. .

Location <u>US-BO</u> DIST. 19 44e Test Section No. <u>5</u> <u>CSN-517614</u> Material <u>AC-3</u> + EASTEBOND HAPPISON CO. OUTSIDE LANE Acc - SLAG LONE STAR .

	Date	Friction SN	Roughness SI 0-5	SCI	Deflec Stiffnes	ction ss Coef.	Team Rating	Visual Rating	Averace	l e	Cracks	Allies	Crack Su	irvey		10	
	11	0-100			Subgrade	Pavement	0-40	Rating 0-100	Width(In.)	Area	Cracks Reflective	Severity	% Area	Severity	ho./Sta.	Severity	Ft./Sta.
	6/76	37	_3,1_	0.40	0.31	0.41		20		70.4		SEV.	725	Sev.	>10	Moz.	10-99
				· · · · · · · · · · · · · · · · · · ·	<u>.</u>	·	ATT 19	at a second	1								
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				·			·			· ·			·
		1															÷
	10/76	16	3.4				37.3						·		. <u>.</u>		-
							<u></u>			_0	0				<u>.</u>		
I.																	
77	2/77					-	37.0				1						· · · · · · · ·
1	8/17	48						·			·						
		-10	· · · · · · · · · · · · · · · · · · ·				<u> </u>				·						
	9/17						37.0			0.8	1.1		·				
															Į		
															· ·		
		-								ŀ							
									1								
										l .							1
																1	
	2				1							· ·					ļ
							1						l				
														1			
										ľ							
		ł						ļ									

. .

Location US-80 DIST. 19	HARRISON (S. OUTSIDE	LANE
Test Section IIo. <u>6</u> CSN	517613	
Material AC-10 CONTENS	Aac - Sinc	
	LONE STAR	

Date	Friction	Roughness	SCI	Deflec	ction ss Coef.	Team	Visual					Crack S	Irvey			
	Friction SN 0-100	ŠI 0-5	301	Subgrade	Pavement	Rating	Rating 0-100	Average Width(In.)	Area	Cracks Reflective	Allica	tor	Transv	erse	Longitu	Jdinal
6/76	39	3.2	0.46	0.28	0.42		20		81.0		SEV.	>25	SEI.	>10	Mob.	10-9
					الله د مو رده د		•	`.								
0/76	49	3.1				36.2			0	0						1
	-	2.1	- :													
2/77				· · · ·		37.3	· ·					•••••••				
3/17	49						· · · · · · · ·								 	· · · · · -
)/77						37.3			0	0						
														· the contract of the second o		
					<i></i>											
											· ·					
										a to a						
									н 	1				-		
					· · · · ·											
1																
										-						
1	ł	•		1	I., .								I			

Location <u>45-80</u> DIST. 19 HARPISON (O. INSIDE LANE Test Section No. <u>6</u> <u>CSN-517604</u> Material <u>AC-10</u> <u>Contreal</u> <u>AGG-SLAG</u> LONE STAR

	Date	Friction	Roughness		Deflec	tion	Team	Visual			1		Crack Su	INVAV			
L	Date	Friction SN 0-100	ŠI 0-5	SCI	Stiffnes	ss Coef. Pavement	Rating	Rating 0-100	Average Width(In	Area	<u>Cracks</u> Reflective	Alliga	tor	Transv	erse	Longitu	Idinal
	6/76	45	3.0	0.52	0.28	0.40		20	0.045	12 -	RETECTIVE	Severity	% Area	Severity	No./Sta.	Severity	Ft./Sta
	ал. 1			a antes					0.045	42.5		Sev.	/25	Sev.	210	MOD.	10-99
			•				- 44 -								-		
	0/76	.57	3.6														
										0	0	·					
	8/17	57			· · · · · · · · · · · · · · · · · · ·	La , ,		· -									
, -	9/11							-		0	0					-	
						* •• [*]											
	· •																
		-															
															- *s.		
ľ		- -															
		•															
										r							
														, i			

Location US-80 DIST. 19 HARRENSIN G. INSIDE LANE Test Section 110. 8 CSN - 517602 AGG - SLAG LONE STAR Material EA-HURS + LATEX

	Date	Friction	Roughness SI 0-5		Deflec Stiffnes Subgrade	tion	Team	Visual					Crack Su	ILLAN			
	Late	SN 0-100	51 0-5	SCI	Subgrade	Payorant	Rating	Rating	Average	er 7.	Cracks Reflective	Alliga	tor	Transv	erse	Longitu	dinal
	6/26	44	3,8	0.63	0 20	TO VENICIL	0-40	0-100	wicth(In.)	Area	Reflective	Severity	% Area	Severity	No./Sta.	Severity	Ft./Sta.
			210	0.03	0,30	0.36		20	0.051	50.B		SEV.	255	SEU.	>10	MOD.	10-99
										•							
											."						2 -
												* •			.		
	10/76	59	3.5							0	0						
										×	Y			[
· 1		·															
80								<u><</u>							· [
- 0								·····				101.00 million					
•	3/17	59				-											
	9/17											·					
						· · · · · · · · · · ·				0	0						
						-			. 1								
]												
i																	
											· '		-,				
												· · ·					
					· ·										- L.	1	
														}			· .
		-													1		
														[
														ļ			
								•									
			}														
				1.10						L'			l	.L	1	1	l
	•						*	a			` ie						淹

Ξ.

Location US-80 DIST. 19 HARRISON CO. OUTSIDE LANE Test Section No. B CSN-517611 Material EA-HURS + LATEX Acig - SLAG LONE STAR

	Date	Friction SN 0-100	Roughness SI 0-5	SCI	Defle Stiffne	ction ss Coef.	Team Rating	Visual Rating	Average	1 0	Cracks Reflective		Crack Si	irvey			·
	77.				Stiffne Subgrade	Pavement	0-40	0-100	width(In.)	Area	Refiective	Severity	tor % Area	<u>Transv</u>	erse	Longitu	udinal
	6/76	42	3.2	0.48	.0.30	0.39		20		72.0		Jev.	>25	SEV.	> 10	Man	10-99
					·			~~	· · · · · · · · · · · · · · · · ·		·						
-										·····						-	
	10/76	+8	3.5				37.2			0	0						
						,											
ו מ	2/17						37.3	ć			·•	·				·	
81 -	8/77	52	·			·											·
	9/17						37.3			0.5	0.7						
															· ·		
						-			1		-						
		-															

Location US-80 DISTRICT 19 HARREISON G	HALT -1	QUITALDE	LOSE
Test Section 110. 9 CSN · 517610		04/3/8	Chira ç
Material EA-HURS CONTROL AGG	Scag		
LONE	Som		

Date	Friction SN 0-100	Roughness SI 0-5	SCI	Deflec Stiffne Subgrade	ction ss Coef.	Team Rating	Visual Rating	Average Width(In.)	0	Cracks	Alliqa	Crack Si tor	rvey Transv	erse	Longiti	udinal
6/26		3,5	0.35	0.29	0.42	0-40	2.0	Width(In.)	Area 1	Reflective	Severity	% Area	Severity	No./Sta.	Severity	Ft./Sta.
					0.42	· •			2	·	SEU.	>25	Sev.	>10	MOD.	10-99
		·					·									
10/76	.51	3.4.	A	1	at-the Symposite Association (1994)											·
10/16						37.3			0	0						
			·	·												
2/77 8/77		· 				37.5	<									
9/27																
	-					37.3			0	0		- 				
										•						r.
				· .						2		- N				
															l	
								1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1								
· ·			-													
		ł														

- 82 -

8

Ť

(

. w

ť

Location US-80 DIST, 19 HARPISON CO. - INSIDE LANE Test Section No. 9 CSN - 517601 ALT. SLAT Material EA-HURS CONTROL

Date	Friction SN 0-100	Roughness SI 0-5	SCI	Deflec Stiffnes Subgrade	tion S Coaf	Team	Visual Dation	A		<u>Cracks</u> Reflective	-	Crack Si	irvey			
				Subgrade	Pavement	0-40	0-100	Average Width(In.)	Area	Cracks Reflective	<u>Alliga</u> Severity	tor	Transv	erse	Longit Severity	udinal
6/76	44	<u>3,5</u>	0.49	0.29			20	0.0.55	51.0		SEU.	225	SEV.	> 10	MOD	10 - 99
									· ·			- 00				10-59
10/76	. 57	3.6														
10110									0	0						
					******						·					
						<u>·</u>	<u> </u>								·	
8/00	59														l	
<u>8/11</u> 9/17																
			and the second						0	0						
														· .		
											:			i i		
		$\mathcal{L}_{\mathcal{A}} = \mathcal{A}_{\mathcal{A}}$														
												ŀ				
														1		
											÷					
]															

83

э