THD-1-19-70-171-1

DO NOT CIRCULATE DEPARTMENTAL RESEARCH

REFERENCE CORY MI-1

Report Number : 171-1

EXTENSIONS OF THE ROADWAY DESIGN SYSTEM - BRIDGE DESIGN

TEXAS HIGHWAY

DEPARTMENT

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No.	2. Government Accession No.	3. Recipient's Catalog N	ła.	
4. Title and Subtitle EXTENSIONS OF THE ROADWA	Y DESIGN SYSTEM -BRIDGE DESIGN	5. Report Date <u>May 1973</u> 6. Performing Organizati	on Code	
 7. Author(s) Larry G. Walker and Fred C. Herber, Jr. 9. Performing Organization Name and Address Texas Highway Department 11th and Brazos Austin, Texas 78701 			8. Performing Organization Report No. THD-1-19-70-171-1	
		10. Work Unit No. 11. Contract or Grant No. 1-19-70-171 13. Type of Report and Period Covered		
				12. Sponsaring Agency Name and Address Texas Highway Department 11th and Brazos
Austin, Texas 78701		14. Sponsoring Agency C	Code	
	esign System (RDS) has beer	extended so that	it can	
The existing Roadway D handle a majority of p by adding a series of and instructions are g design problems, one f	esign System (RDS) has beer ossible bridge configuratic special bridge commands. E iven for data input. Two c or a simple span and one fo and associated output.	ns. This was acco ach command is exp omprehensive examp	mplished lained le bridge	
The existing Roadway D handle a majority of p by adding a series of and instructions are g design problems, one f	ossible bridge configuratic special bridge commands. E iven for data input. Two c or a simple span and one fo	ns. This was acco ach command is exp omprehensive examp	mplished lained le bridge	
The existing Roadway D handle a majority of p by adding a series of and instructions are g design problems, one f	ossible bridge configuratic special bridge commands. E iven for data input. Two c or a simple span and one fo	ns. This was acco ach command is exp omprehensive examp	mplished lained le bridge	
The existing Roadway D handle a majority of p by adding a series of and instructions are g design problems, one f	ossible bridge configuratic special bridge commands. E iven for data input. Two c or a simple span and one fo	ns. This was acco ach command is exp omprehensive examp	mplished lained le bridge	
The existing Roadway D handle a majority of p by adding a series of and instructions are g design problems, one f	ossible bridge configuratic special bridge commands. E iven for data input. Two c or a simple span and one fo	ns. This was acco ach command is exp omprehensive examp	mplished lained le bridge	
The existing Roadway D handle a majority of p by adding a series of and instructions are g design problems, one f	ossible bridge configuratic special bridge commands. E iven for data input. Two c or a simple span and one fo and associated output.	ns. This was acco ach command is exp comprehensive examp or a continuous spa	mplished lained le bridge	
The existing Roadway D handle a majority of p by adding a series of and instructions are g design problems, one f provided showing input	ossible bridge configuration special bridge commands. E iven for data input. Two co or a simple span and one for and associated output.	ns. This was acco ach command is exp comprehensive examp or a continuous spa	mplished lained le bridge	
handle a majority of p by adding a series of and instructions are g design problems, one f provided showing input	ossible bridge configuration special bridge commands. E iven for data input. Two co or a simple span and one for and associated output.	ns. This was acco ach command is exp comprehensive examp or a continuous spa	mplished lained le bridge	

Form DOT F 1700.7 (8-69)

175

(3)

EXTENSIONS OF THE TIES ROADWAY DESIGN SYSTEM - BRIDGE DESIGN

(TA

G

by

Larry G. Walker and Fred C. Herber, Jr.

Research Report 171-1 Extension of the TIES Road Design System

Research Study 1-19-70-171

Conducted by Division of Automation Texas Highway Department In cooperation with the U.S. Department of Transportation Federal Highway Administration The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Federal Highway Administration.

6)

ې

э

C,

¢

0

ø

SUMMARY

The objective of this study was to extend the existing Roadway Design System (RDS) to accommodate a comprehensive general bridge geometry process that would handle the majority of possible bridge configurations. A secondary objective was to demonstrate how the computed geometric aspects of the structure could be linked to structural design and other design processes. These objectives were carried out by adding a special set of bridge commands to the existing command structure. These special commands allow the designer to:

1. Define the plan view elements of structures.

3

- 2. Compute the dimensional aspects of the bridge frame.
- 3. Store the dimensional aspects for further processing.
- 4. Plot the plan view of the structure along with any other features available through RDS plot capabilities.

5. Design simple prestressed concrete beams.

6. Do a preliminary design on continuous beams or slabs.

- 7. Compute the vertical and horizontal blocking data for continuous beams.
- 8. Compute vertical clearance between structures and lower roadways.

9. Plot surface contours on roadways to aid in design of ramp mergers.

An explanation is given for each command along with instructions for data input. This is followed by two comprehensive example bridge design problems, one for a simple span and one for a continuous span. Each problem contains (1) a description of the problem and a sketch of it, (2) input data with comments, and (3) selected output with explanatory notes.

IMPLEMENTATION

The overall objective of this study was directed toward implementing a comprehensive general geometry process which would handle the majority of possible bridge configurations. This has been carried out by writing a set of special bridge commands for use with the existing Roadway Design System (RDS). These commands are presently available to use in a design environment.

Table of Contents

(3)

ø

0

t)

Ι.	Introduction	
	Referenced RDS Data	
II.	Data Entry	
III.	Commands	
	NAME6SLAB9Transverse Line Commands10	
	BENT	
	Reference Line	
	TSLB	
	BRNG	
	Longitudinal Line Commands	
	PSLB	
	BEAM	
	BGRP	
	FOPT	
	CONT	
IV.	Example Problems	
Аррег	ndix (Continuous Beam Analysis Program - B-30)	

EXTENSIONS OF THE ROADWAY DESIGN SYSTEM-

BRIDGE DESIGN

I. Introduction

The Roadway Design System (RDS) includes extensive capabilities for compiling and storing the three-dimensional aspects of highway roadways. It employs a command structured input for computing, storing and retrieving geometry related to the roadway. These commands employ a set of system utility routines to accomplish their computations. This report describes extensions to the Roadway Design System in the form of new commands which define and compute the properties of bridge frames and pass these on to other commands which accomplish the design of specific structural elements and compute relational aspects of bridge roadways.

These extensions to the Roadway Design System were developed under Texas Highway Department Research Project No. 171. The objective of this phase was to take advantage of all of the capabilities of RDS in the development of a comprehensive general bridge geometry process that will handle the majority of possible bridge configurations. A secondary objective was to demonstrate how the computed geometric aspects of the structure could be linked to structural design and other design processes.

This report provides instructions on use of the special set of bridge commands. Portions of RDS must be used in connection with these commands and all of the capabilities of RDS may be used in any program execution. The RDS commands are particularly helpful to the bridge designer for geometric layout of bridge structures. For these reasons it is necessary that the reader be familiar with the use of RDS as described in FHWA Report Number 72D-104R-2, Roadway Design System, Volume 2, User Manual.

The special set of bridge commands allows the designer to:

1. Define the plan view elements of structures.

2. Compute the dimensional aspects of the bridge frame.

3. Store the dimensional aspects for further processing.

 Plot the plan view of the structure along with any other features available through RDS plot capabilities.

5. Design simple prestressed concrete beams.

6. Do a preliminary design on continuous beams or slabs.

7. Compute the vertical and horizontal blocking data for continuous beams.

8. Compute vertical clearance between structures and lower roadways.

9. Plot surface contours on roadways to aid in design of ramp mergers.

Referenced RDS Data

The bridge commands reference roadway surface definitions that must be stored through the RDS design data input facilities. Some commands optionally refer to point and curve data previously computed and/or stored by RDS. Familiarity with the RDS input and computations is assumed in the following discussions. Any of the roadways A through F and H through Z may be referenced by bridge commands as well as all available points and curves. Roadway surfaces and points or curves may have been stored in a previous RDS run.

How the Bridge Commands Are Used

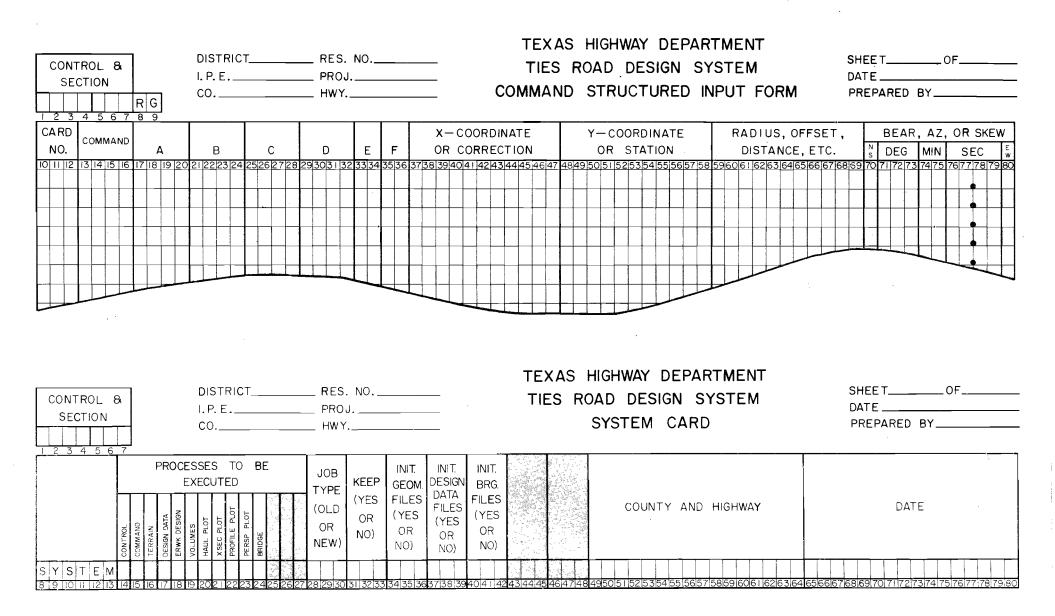
Before giving instructions on how to input each command, here is a typical sequence of how the RDS capabilities and commands might be executed to accomplish a bridge design:

- 1. Store all pertinent roadways that are to be referenced.
- 2. Make any RDS general geometry computations that will be required. It is good practice to do this before beginning use of the bridge commands; however, it is not necessary since RDS commands can be mixed with the bridge commands.

- Give the structure a name and establish a file for storing its data (up to 17 separate structures may be stored on an RDS file).
- 4. Define all bent lines on the structure.
- Define transverse lines such as splices, diaframs, bearing conditions and other transverse lines.
- 6. Define longitudinal lines such as beam lines, slab edges, etc.
- 7. For each structural unit, i.e. simple span or continuous unit
 - a. Define beams by parallel groups, simple span option groups or individual beams.
 - Request frame layout computations.

- c. Request plot of frame layout (optional). Additional general plotting may also be requested.
- d. Request horizontal or vertical blocking for continuous units (optional).
- e. Request vertical clearance computations (optional).

This sequence is not rigid since the commands are independent of one another. It is only necessary that all of the data required by a command be previously established. The plotting of roadway surface contours was not mentioned in the above sequence since it is normally used prior to the sequence in the establishment of roadway surface definitions.


The input forms used with the bridge commands are discussed in the next section. This is followed by explanations of each command and instructions for inputting the commands. The last section contains sample input and output for a comprehensive example bridge design problem. Explanatory notes appear on both the input and output for this problem.

II. Data Entry

The bridge commands are entered on the RDS Command Structured Input form (Form 1323) shown on the next page. The user should be thoroughly familiar with Chapter V, Command Structured Input, of the Roadway Design System User Manual referenced in the Introduction. Data entry for control and section and card number for this form is given on pages 5-1 and 5-3 of the RDS Manual.

A System Card (Form 1322 Revised 10/72), shown on the next page, must always precede any data entered into RDS. This system card is similar to the Road Design System Card which is discussed in Chapter III, System Card, of the previously referenced RDS User Manual. The differences for this revised card are as follows:

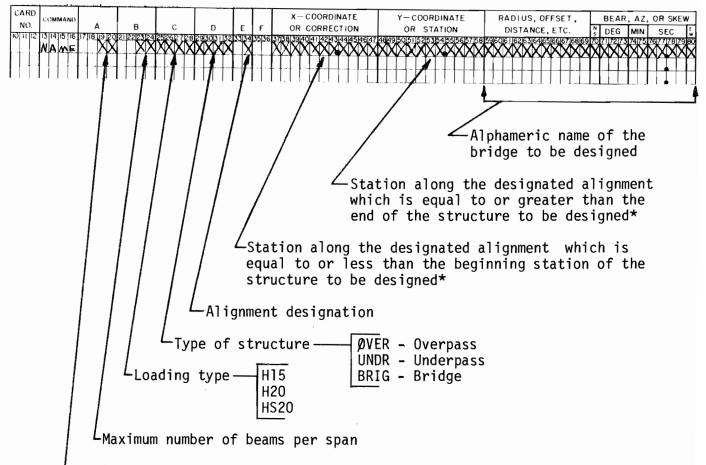
- Card column 24 entitled "BRIDGE" must have an X in it if the bridge design features are to be used.
- 2. Card columns 40 through 42 entitled "Init.Brg.Files(Yes or No)" indicate whether or not the user wishes to initialize the bridge files. This is normally done only on the first run. The user must enter YES or NO.

Ø

•

Figure 1. Command Structured Input Form and System Card Form

ų

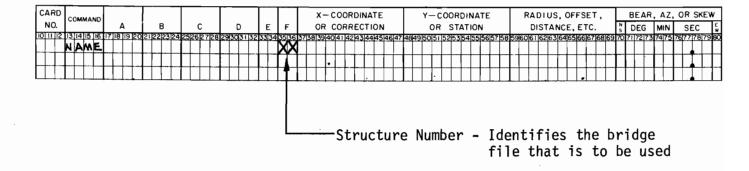

III. Commands

The following pages give the available bridge commands, their names, explanations and instructions for completing the form.

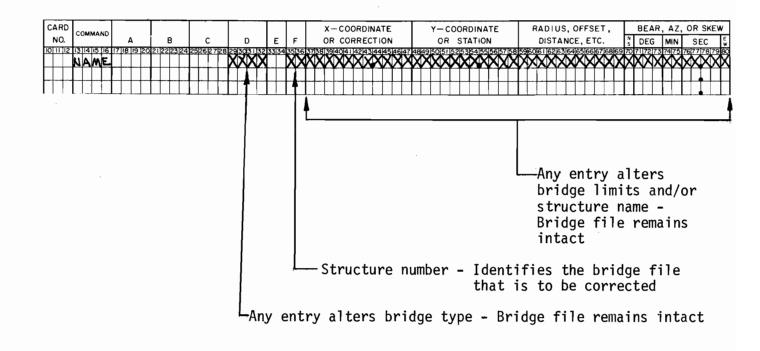
NAME

A NAME command must precede all bridge commands that pertain to a specific bridge. As used here, a specific bridge refers to any set of simple span or continuous units the designer desires to identify on a given roadway. Any other such set of units should be given a different name. The NAME command is used to establish, to identify or to correct bridge files that are needed for the bridge frame geometry processes to follow. There are three input formats available to the user, each performing its respective function. The function and input description of these three formats are as follows:

<u>To establish a bridge file</u>. This form of the NAME command provides the information which determines the size of the bridge file, defines the bridge type and the name of the structure to be used in printed and graphic output and identifies the structure to be designed with respect to horizontal and vertical alignments.

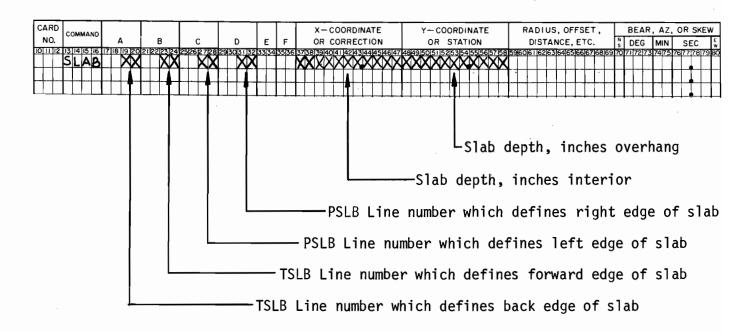


-Number of bents for this particular structure


*It is generally better to extend station limits about 100 feet beyond either end of the structure.

The initial use of the NAME command as illustrated above assigns a file number or "Structure Number" for the bridge. This number will be printed immediately following the listing of the NAME command input and the number must be used on subsequent data submissions for the structure.

<u>To identify a bridge file</u>. Once a bridge file has been created, subsequent data submissions will require data already defined and stored on the project file. This form of the NAME command provides the designer an easy method of making the bridge file available to the bridge system.

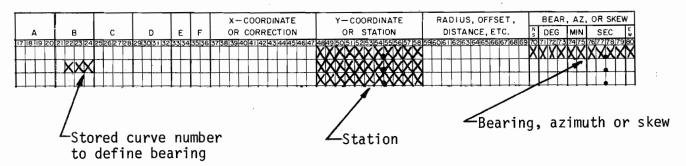


<u>To correct a bridge file NAME command</u>. This form of the NAME command allows the bridge designer to correct inputs made on previous NAME commands.

The SLAB command is used to define and enter into temporary storage the boundaries of bridge slabs and their interior and overhang depths. The boundaries are expressed in terms of previously defined TSLB (transverse to slab) Lines and PSLB (parallel to slab) Lines. Commands for defining these lines will be discussed later. The temporary nature of this storage offers flexibility, but at the same time requires particular attention to achieve the desired result. Before the first SLAB command of a run, all values are initialized at zero. After the first run, it is necessary only to enter the values that change. The other values will remain in effect. If it is desired to reset the values to zero in any of the data fields, a zero must be entered in that field. Data entry is as follows:

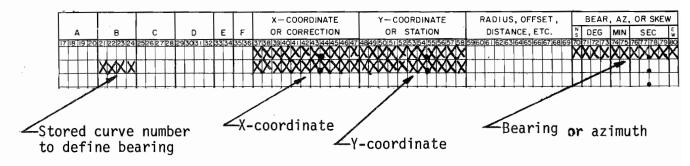
9

If both slab depths are zero the system will refer to the slab design parameter table. (See GDES Command.) If the overhang depth is zero and the interior slab depth is non-zero, the overhang will be assumed to be the same depth as the interior depth.


SLAB

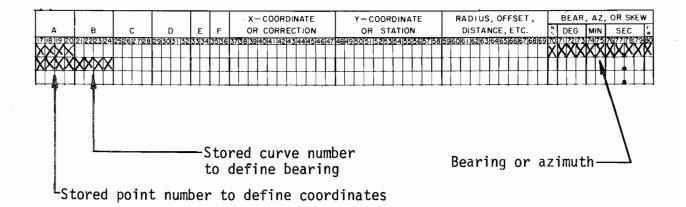
TRANSVERSE LINE COMMANDS (BENT, DIAF, SPLC, and TSLB)

One group of special bridge commands provides the bridge designer with the ability to define lines that run transverse to the bridge alignment. These lines are used to define bents, diaframs; splice lines and a miscellaneous type of transverse slab line which may be used at the bridge designer's discretion.

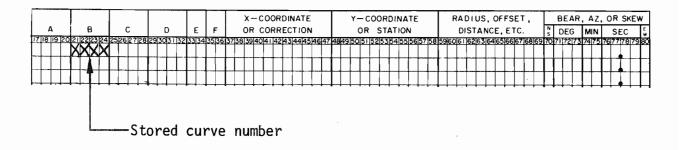

Each of these commands defines a straight line for storage along with other parameters unique to the command. The definition of a straight line requires the X-Y coordinates of a point on the line and its directional bearing. This may be accomplished in one of eight ways which are illustrated below. The lines defined may also be stored as general geometry curves by entering the desired geometry curve numbers in column C. This is optional. Line definition methods are the same for the BENT, DIAF, SPLC and TSLB commands, and a discussion of each of these commands will follow the line definition methods. In the line definition methods shown below, each input line illustrates one of the eight methods for defining lines.

Define a transverse line by giving the station number through which the line passes and one of the elements shown to define the bearing.

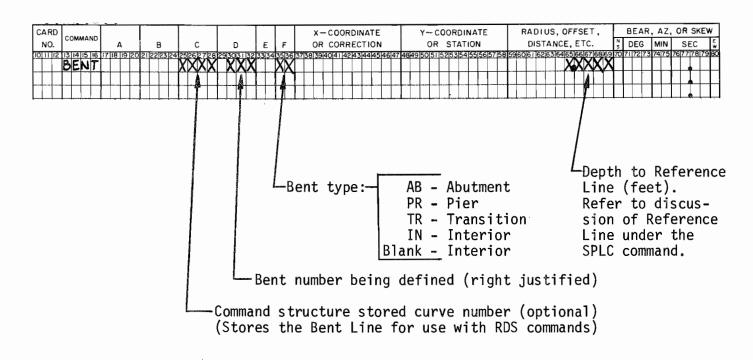
(Entering only the station defines perpendicular or radial lines.)


Define a line by giving X-Y coordinates and bearing or curve number.

^{*}Notation used for diaphragm

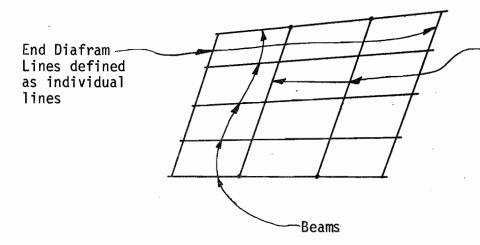

Define a line by giving a stored point to establish coordinates and bearing or

curve number.

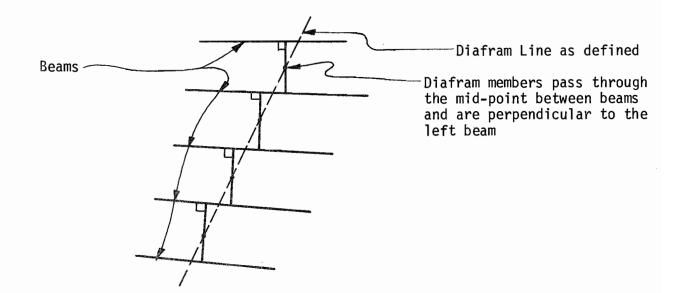

Define a line by giving a stored curve number which coincides with the desired

line.

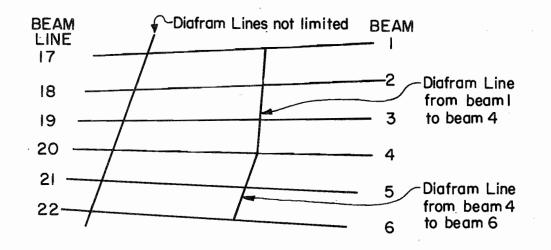
The BENT command is used to define straight lines which represent the centerline of bents or other supporting members for structures. These bent lines may be for either simple or continuous units. The BENT command accomplishes the storage of Bent Lines. Designating a line as a Bent Line tells the system how it is to be treated in connection with intersections, framing layouts and other computations.


Bent Lines should be numbered consecutively from beginning to end of the structure beginning with one. The BRNG command establishes the locations of bearing seats and beam ends relative to the Bent Line.

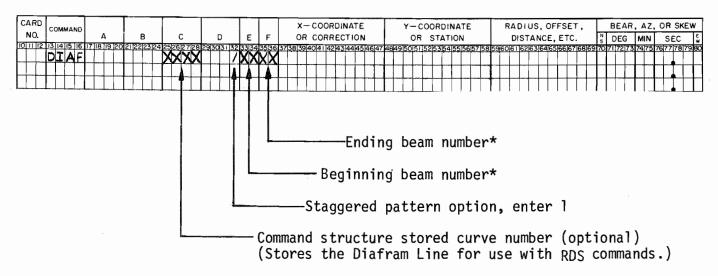
<u>NOTE</u>: In addition to the data shown enter sufficient data to define the desired line by one of the eight methods described under Transverse Line commands.


BENT

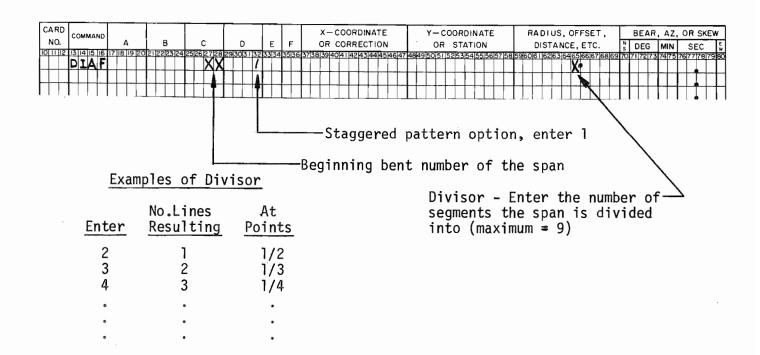
The DIAF command is used to define transverse lines which indicate the location of diafram members between beams. Diafram locations may be specified by defining a straight line by one of the transverse line methods, or an automatic option may be exercised to specify location of Diafram Lines at the mid-point, quarter points, third points, etc., of the simple or continuous span. A typical application of both approaches is shown here.


-Interior Diafram Lines automatically defined at 1/3 points of span. Lines extend between the 1/3 points of each outside beam (measured from centerline of bearing to centerline of bearing

Diafram members may be located along the lines defined by either method or they may be specified to be located in a staggered pattern as illustrated here.

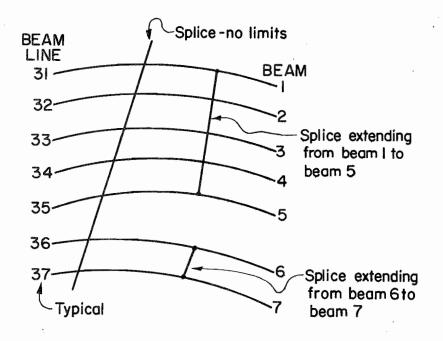

DIAF

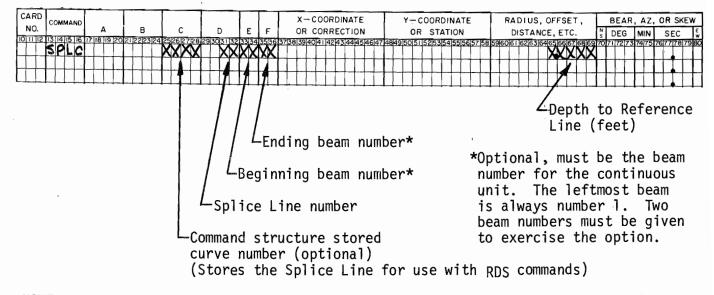
The designer may specify limits for diaframs which are defined as single lines by giving the beam numbers between which the Diafram Line applies. This feature is optional. If no beam numbers are given the diafram will be assumed to apply to all beams. When specifying the limits of Diafram Lines, the actual beam numbers for the applicable unit must be used, not Beam Line numbers. Regardless of Beam Line numbers which apply to a unit, the system treats the leftmost beam as number one; therefore, the third beam from the left would be number three. The option to limit the extent of Diafram Lines is illustrated here.


Diafram Lines are not assigned numbers; they are applied automatically to the appropriate units.

Defining individual straight diafram lines.

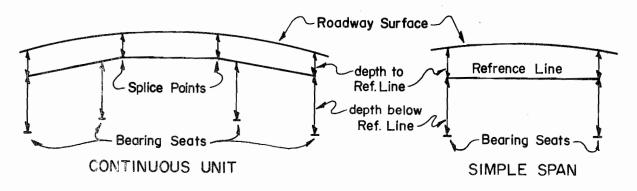
- *Optional, must be the beam number for the applicable unit. The leftmost beam is always number 1. Two beams must be given to exercise the option.
- NOTE: In addition to data shown, enter sufficient data to define the desired line by one of the eight methods described under Transverse Line commands.


Defining diaframs automatically at midpoint, 1/3 points, etc.

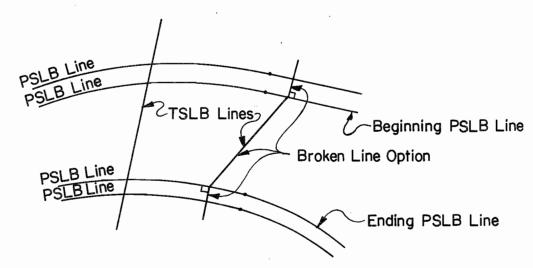

The SPLC command is used to define straight lines which indicate the location of beam splices in continuous units. These lines are not applicable to simple span units. Their intersection with Beam Lines determines the location of splice points.

The designer may specify the limits of the Splice Line by giving the beam numbers between which the Splice Line applies. This feature is optional. If no beam numbers are given, the Splice Line will be assumed to intersect all beams.

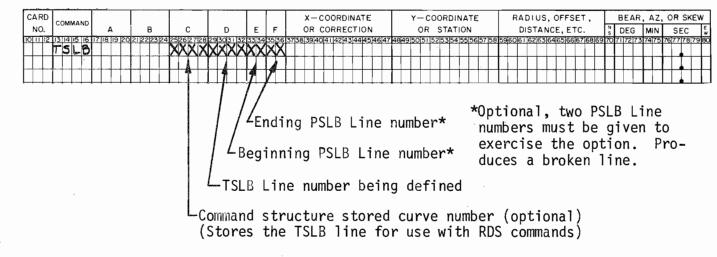
When specifying the limits of Splice Lines, the actual beam numbers for the continuous unit must be used, not <u>Beam Line numbers</u>. Regardless of Beam Line numbers which apply to a unit, the system treats the leftmost beam as beam number one; therefore, the third beam from the left would be beam number three. The option to limit the extent of splice lines is illustrated here.



Splice Lines should be numbered consecutively from beginning to end of the structure, beginning with one.

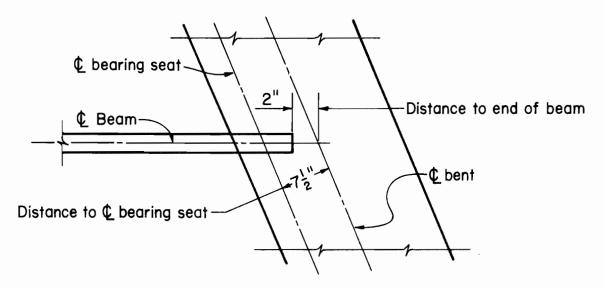


NOTE: In addition to the data shown, enter sufficient data to define the desired line by one of the eight methods described under Transverse Line commands.

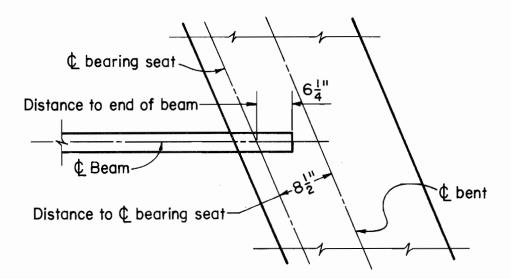

<u>Reference Line</u>. The Reference Line is a line through space which lies in a vertical plane through successive end bents and splice points. Its vertical position at these points is established by giving depths from the surface to the Reference Line at these points as illustrated here.

The primary purpose of the Reference Line is to give the designer facility for placement of the beam with reference to the roadway surface. It also serves to establish bearing seat elevations. The Reference Line is the designer's choice and is controlled by the dimensions shown above. For example, he might choose to have the Reference Line represent top of rolled section or top of web for plate girders. There will be cases where the designer does not know the proper dimensions. In this case he should set all dimensions at zero (or leave blank) and make proper corrections when depths are known. The TSLB command is used to define a miscellaneous type of transverse line which is used primarily to locate the ends of slabs for either continuous units or simple span units. Because of the general nature of this type of line, it may also be used for other purposes, such as the plotting of slab construction joints on structures. TSLB Lines may be defined either as a single straight line, or a broken straight line which extends between two specified PSLB Lines (the PSLB command is discussed later) and then extends perpendicularly or radially from the intersected PSLB Line, as illustrated here.

TSLB Lines should be numbered consecutively from beginning to end of the structure beginning with one.

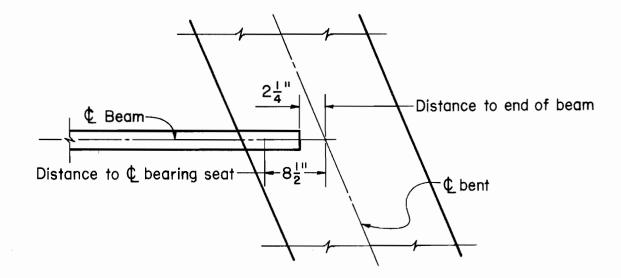


NOTE: In addition to data shown, enter sufficient data to define the desired line by one of the eight methods described under Transverse Line commands.

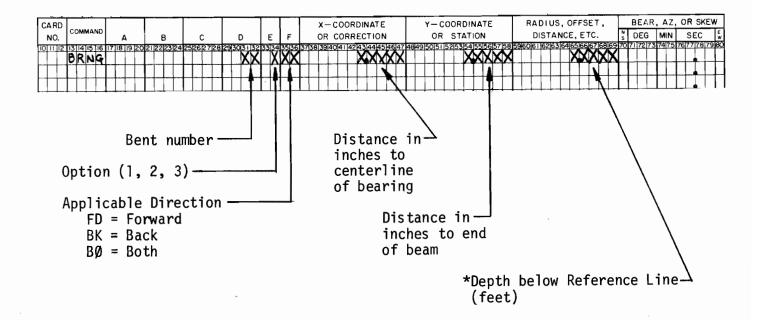

TSLB

The BRNG command is used to locate the centerline of bearing seats on bents. Three options are available by which the centerline of bearing seat may be defined. These options are given below.

<u>Option 1</u>. The distances defining the location of the centerline of beam bearing seats are specified perpendicular to their respective bents. In this case lines are generated parallel to the centerline of bents and intersected with the individual beams to determine the location of the beam bearings. Beam ends are located a fixed distance from the bent as measured along the beam line.

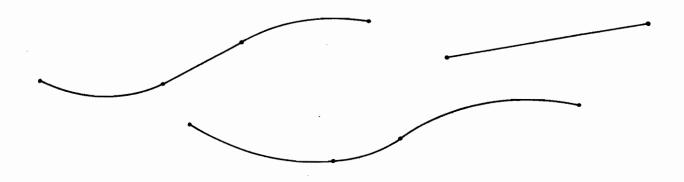


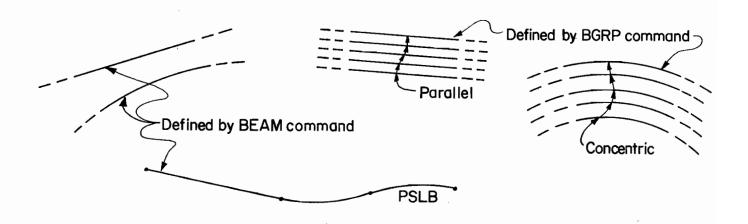
<u>Option 2</u>. The distances defining the location of the beam bearing seats are measured perpendicular to the centerline of the bents as indicated in Option 1. The distances to the ends of the beams are measured from the centerline of the bearing seats along the centerline of the beam lines.



BRNG

<u>Option 3</u>. The distances defining the location of the centerline of beam bearing seats and beam ends are specified along the Beam Line and measured from the intersection point of the centerline of bent and centerline of the Beam Line.

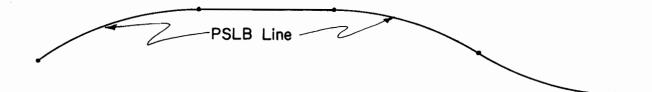

A BRNG command may be used to indicate beam bearing and end conditions on both sides of a bent if the data applies in both directions; otherwise, two BRNG commands must be entered for an interior bent.


*Refer to the discussion of Reference Line under the SPLC command. This depth may not be known. If this field is left blank, the bearing seat elevation will be equal to the elevation of the Reference Line (which may be the surface elevation).

LONGITUDINAL LINE COMMANDS (PSLB, BEAM and BGRP)

Three commands (PSLB, BEAM and BGRP) are used to define lines that run in the longitudinal direction of the structure. The PSLB command defines a general case line which may be made up of one or more straight line and/or circular elements. PSLB Lines are limited in extent and are intended to be continuous like highway alignments. Examples of PSLB Lines are shown here.

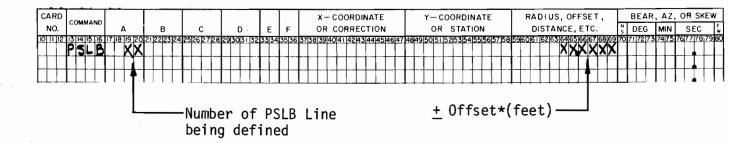
The BEAM command is used to define individual Beam Lines which may be straight lines or circles. The BEAM command may also refer to a PSLB Line for defining a Beam Line. The BGRP command provides a special case application of the BEAM command. It describes a group of parallel straight lines or concentric circles as Beam Lines. When applicable, the BGRP command will save effort on the part of the designer. Examples of Beam Lines are shown here.

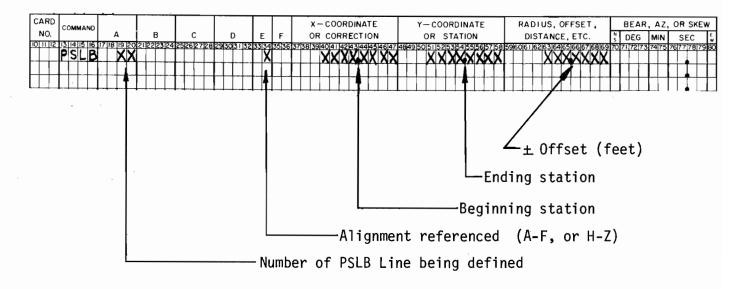


It is important to note the distinction between the longitudinal line types described above. PSLB Lines are general purpose lines which may be used for slab edges, parapet wall lines, slab break boundaries and any other applicable purpose. They do not serve as Beam Lines unless they are so designated by the BEAM command.

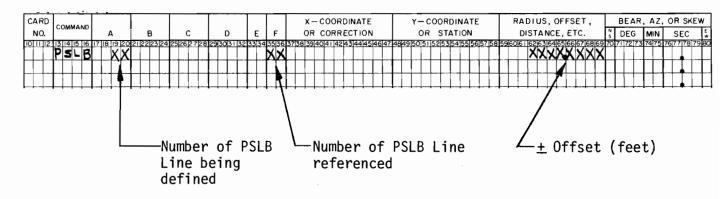
Beam Lines on the other hand serve strictly in the location of the actual beams in the structure. When a Beam Line is circular or is defined as a previously stored non-straight PSLB Line, the actual beam member may not coincide with the Beam Line as illustrated here and discussed further in connection with the FOPT command.

Beam Line Actual beam is located on chord

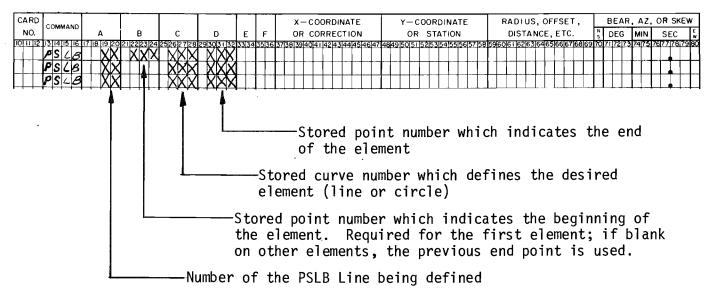

The PSLB command is used to define longitudinal lines which are pseudo alignments that may consist of one or more straight line and/or circle elements. They are limited in extent since their end points must be defined. These lines have a variety of applications.


PSLB Lines may be defined by giving their offset from another PSLB Line or from any stored alignment. In this case the direction of the PSLB Line will be the same as the direction of the PSLB Line or Alignment that it is referenced from. PSLB Lines may also be defined by referring to curves which have been previously stored by regular RDS commands. The extent of the curves is indicated by giving their end points which have been previously defined by RDS commands. The order of curve entry determines the direction of the PSLB Line in this case.

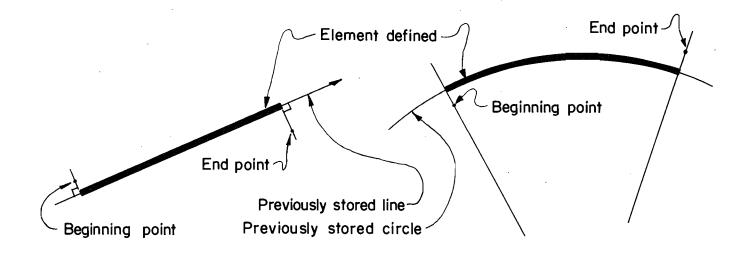
PSLB Lines defined by any of the possible methods are given a number for future reference and the designer should be aware of the direction of the alignment. Input for the various possible methods is given below.


<u>PSLB parallel to the centerline of the bridge</u>. The centerline of the bridge between the station limits specified on the NAME command for the structure is stored for several purposes. A PSLB Line can be specified by assigning a number and giving an offset. In this case the PSLB Line will be parallel to the structure centerline between the limits indicated and have the same direction.

<u>PSLB parallel to another Alignment</u>. A PSLB Line may be defined at an offset from an Alignment which is not the centerline of the structure by giving the selected roadway and indicating station limits on that Alignment for the extent of the desired PSLB Line.



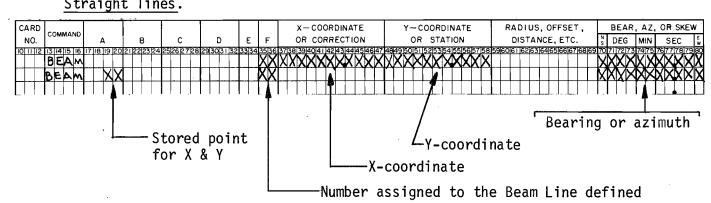
<u>PSLB parallel to another PSLB</u>. In this case the PSLB Line will be defined parallel to the indicated PSLB Line at the given offset. The standard convention for offsets applies in the direction of the original PSLB Line.



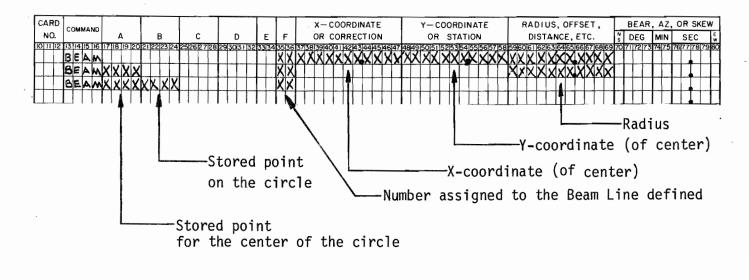
*An offset is considered negative when it is to the left of the station line when viewed in the direction of increasing stations.

<u>PSLB defined by previously stored curves and points</u>. In this case one PSLB command must be entered for each element of the PSLB Line. Entry should be made in the order which indicates the direction of the PSLB Line.

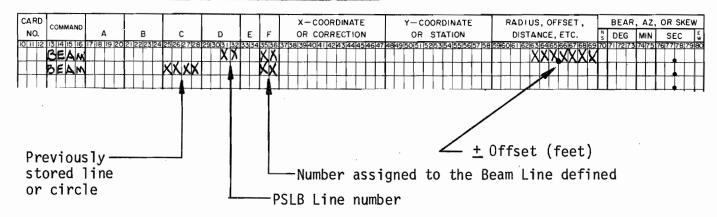
The beginning and end points of lines or circles should normally lie on the line or circle. These points will be used to determine limits of the element and will be treated as shown here when they do not fall on the line or circle.


The BEAM command is used to define Beam Lines, Beam Lines are used in various ways to locate actual beams in the structure as discussed in connection with the FOPT command. Beam Lines may be:

A Beam Line may also be defined as a string of straight lines and circles at an offset from a previously defined PSLB Line.


Each beam defined must be given a number between 1 and 99. If all of the Beam Lines for a unit are to be defined, they must be numbered consecutively from left to right. It is the responsibility of the user to be sure beams are properly numbered. Entering data for a Beam Line number that has been previously entered will eliminate the first entry. The automatic options for locating interior beams (FOPT command) do not affect these numbers.

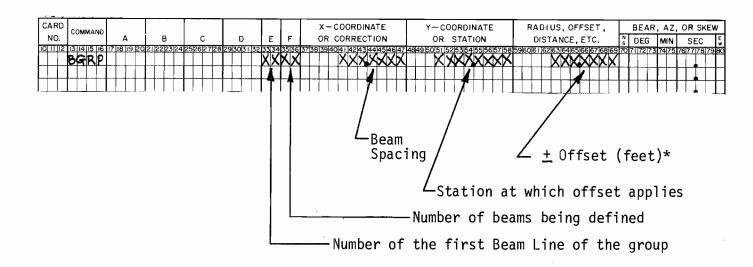
Beam Lines may be defined by one of the seven methods illustrated below. Each input line illustrates one method.



Straight lines.

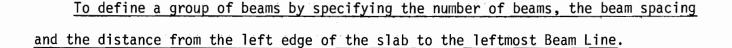
Circles.

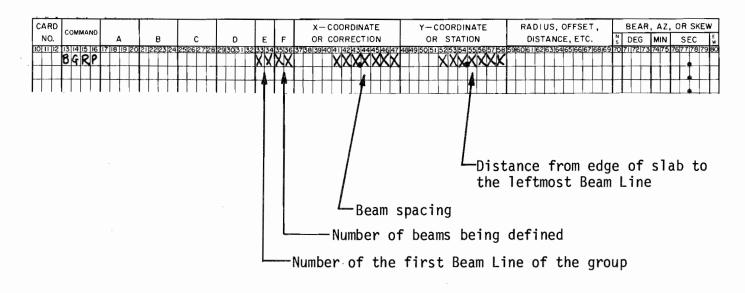
Previously defined curves or PSLB Lines.

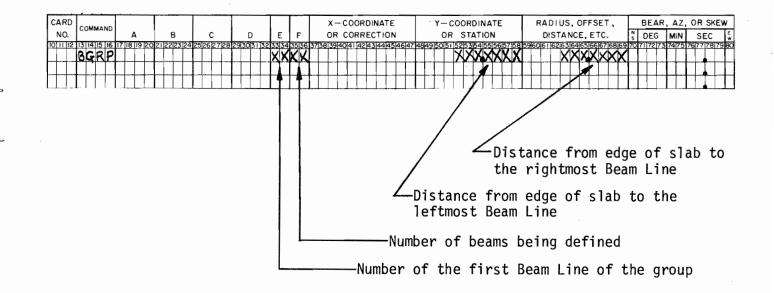


The BGRP command is used to define groups of parallel straight line or concentric circle Beam Lines. This command is for the convenience of the designer and applies primarily for non-complex structures where Beam Lines are either parallel to the centerline at a given station or referenced to slab edge (or edges). In the latter case the slab edge should be all on a straight line or all on a circle; and, when both slab edges are referenced, they should be parallel. Slab edges must have been defined by using the SLAB command prior to entry of the BGRP command.

This command has the same effect as defining individual Beam Lines with the BEAM command; therefore, it is necessary that the number of the first Beam Line being defined be entered as well as the number of Beam Lines being defined. Care should be exercised to assure that Beam Lines thus defined are not unintentionally redefined by other BGRP or BEAM commands.


The three methods for defining beam groups are given below.

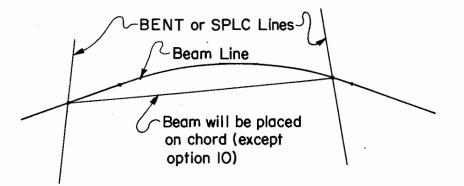

<u>To define a group of beams by specifying the number of beams, the beam spacing,</u> and the station and offset distance to the leftmost beam line.


*If the offset is zero, a zero must be entered in the offset field.

BGRP

To define a group of beams by specifying the number of beams, the distance from the left edge of slab to the leftmost Beam Line and the distance from the right edge of slab to the rightmost Beam Line.

The FOPT command is used to request computation of bridge frame layout dimensions. In addition to producing several reports which present dimensional aspects of the bridge frame, it will cause the plan view of the frame layout to be plotted. The designer may select one of ten options for controlling the layout of beams. Seven of these options are for simple span units and three are for continuous units. In each option the designer specifies the beginning and ending bents for the unit and selects output options. In addition he gives information for controlling the geometry of the beams by one of four approaches. The discussion of input is grouped by these approaches which are as follows:


- Give maximum and minimum overhang dimensions which establish the outside beams. Interior beams are automatically located according to the option selected.
- 2. Define all Beam Lines.
- Define outside Beam Lines. Interior beams are automatically located according to the option selected.
- Define outside Beam Lines and give maximum and minimum beam spacing. Interior beams are automatically located according to the option selected.

The FOPT process computes the intersections and all significant plan view frame dimensions taking into consideration specified bearing conditions. For this reason it is necessary for all of the pertinent transverse lines to be established prior to executing the FOPT commands.

Each FOPT command may apply to one or more consecutive simple spans (if option and data does not change) or to all of the spans of a continuous unit. It is advisable to define all the transverse and longitudinal elements that will be required for the entire structure and to enter FOPT commands for each unit from beginning to end.

FOPT

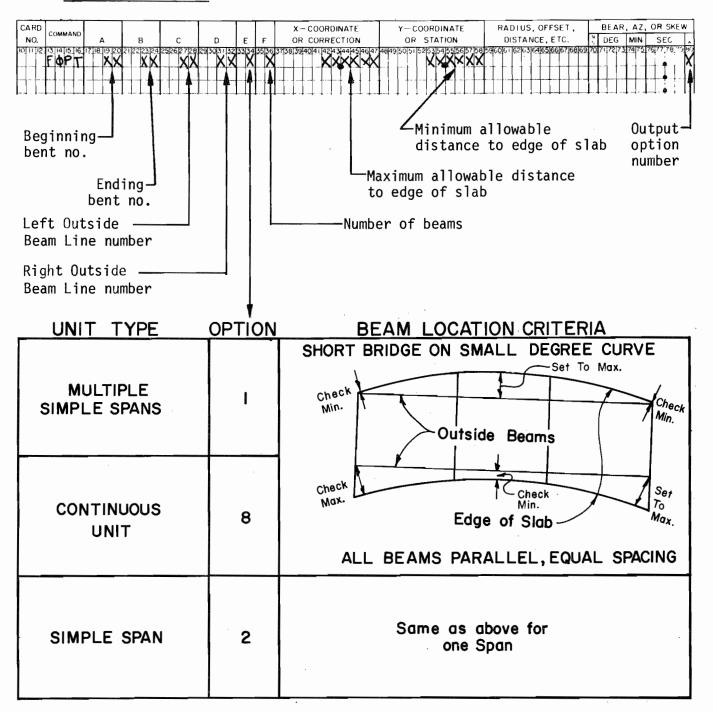
It is important to remember that Beam Lines may consist of a straight line, a circle or a string of straight lines and/or circles defined by PSLB commands. If the Beam Line is a straight line, the beam will naturally coincide with the Beam Line. In the case of non-straight lines, the intersection of the Beam Lines with a bent or Splice Line determines points between which a straight beam will be located as illustrated below. (In Option 10 the beam coincides with the Beam Line in every case.)

<u>An output option number must be selected for entry in the last column of each</u> <u>FOPT command</u>. The selections are as follows:

Zero or blank - Omit beam coordinate report

- Full output

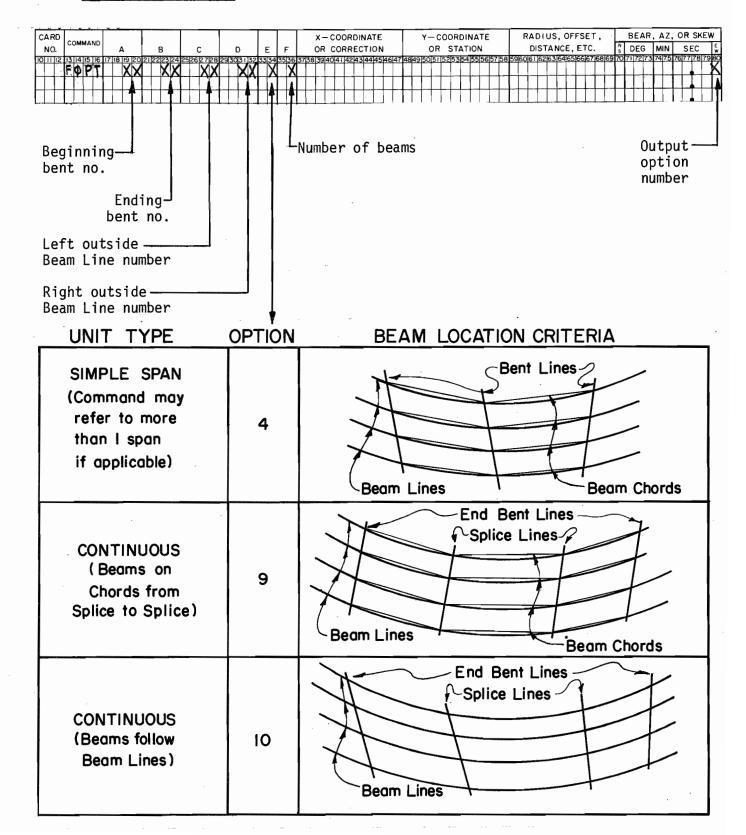
1

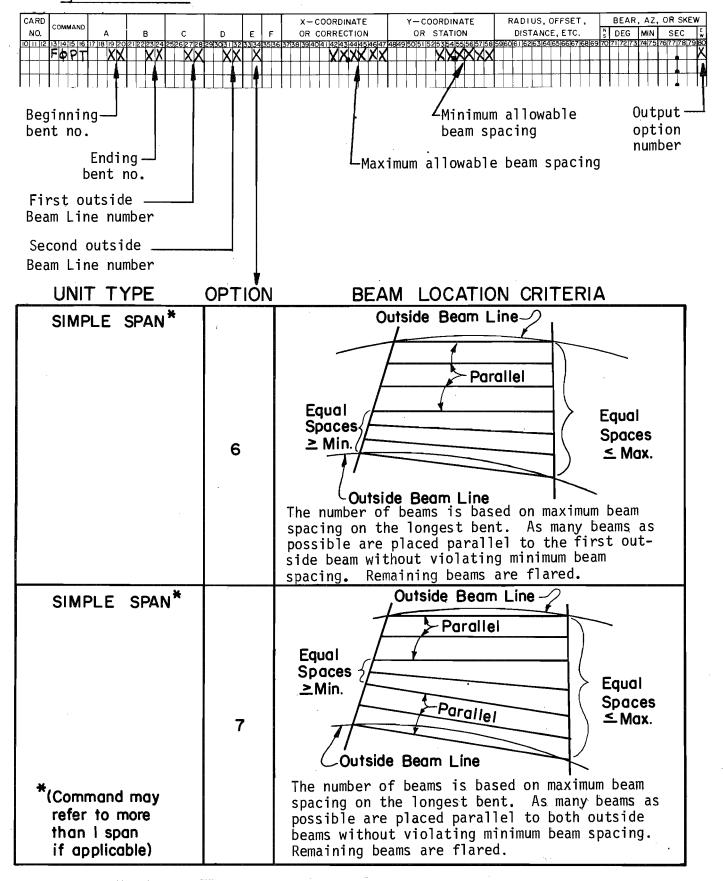

2

3

Omit plot of frame

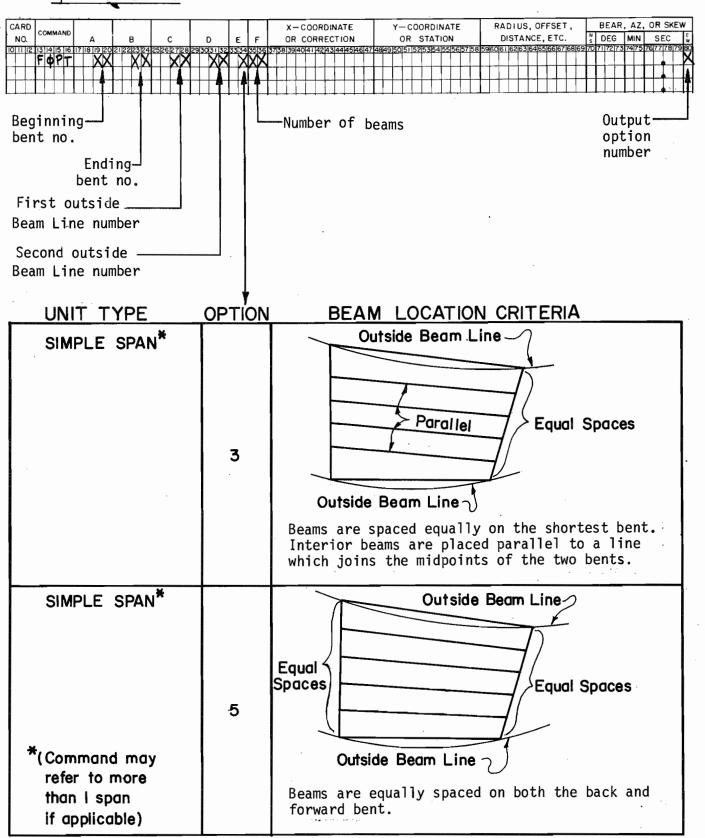
- Omit beam coordinate report and plot of frame


Options where overhang defines outside beams, and interior beams are automatically located in accordance with option criteria. In these options the system attempts to place the outside Beam Lines between the two specified bents in such a manner that maximum and minimum distances from the edge of the slab are not violated. Slab edges must have been previously defined by the SLAB command. Outside Beam Line numbers may be any previously defined Beam Lines. Both outside and interior beams will be renumbered beginning with one for storage purposes. Beam Line numbers for interior beams need not be reserved. Outside beam numbers are used only for cases where no solution is possible and the system defaults to Option 3.


Options 1, 8 and 2.

Options where all Beam Lines are defined. All Beam Lines for the structure must be previously defined by one of the available methods and must be numbered consecutively from the left outside Beam to the right outside Beam. The beam placement is dependent on the intersection of the Beam Lines with bent or splice intersections in accordance with the options shown below.

Options 4, 9 and 10.



Options where outside beams are defined and interior beams are automatically located based on maximum and minimum spacing in accordance with option criteria. Outside beam numbers may be any previously defined Beam Lines. Both outside and interior beams will be renumbered beginning with one for storage purposes. Beam Line numbers for interior beams need not be reserved.

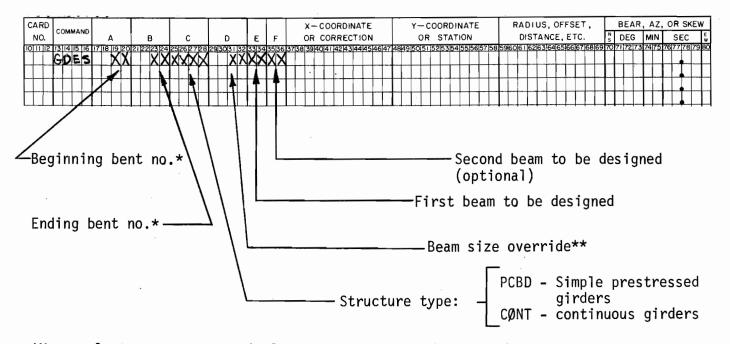
Options 6 and 7.

Options where outside beams are defined and interior beams are automatically located in accordance with option criteria. Outside Beam Line numbers may be any previously defined Beam Lines. Both outside and interior beams will be numbered beginning with one for storage purposes. Beam Line numbers for interior beams need not be reserved.

Options 3 and 5.

The GDES command is used to transfer control to one of two programs for design of girders. In either case the bridge frame dimensions computed by the FOPT command will be used in the design of girder members of either simple or continuous units. A GDES command may specify the design of one or two beams of a unit and more than one GDES command may apply to the same unit.

The first design program is the Texas Highway Department Prestressed Concrete Girder Design Program. This program is a true design program which will take the computed span length and spacing and perform complete simple prestressed girder designs. The design will be for one of the standard Texas Highway Department shapes and will be based on the following criteria for slabs and beams.

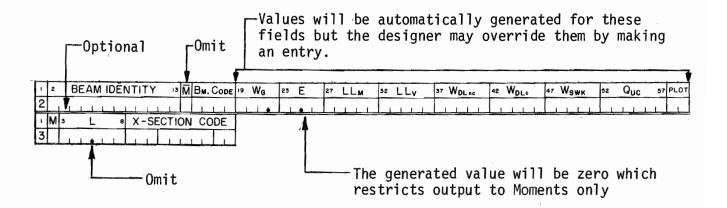

		S	LAB TAB	LE				BEA	AM TABLE	
Slab Thickness		lear. anges HS20		r.Flg.	to Face Center H15	of Rail of Span HS20	Beam	Depth	Bear. Pad Thick.	Basic Span Limit
6 3/4 7 7 1/4 7 1/2 7 3/4 8 8 1/4	6.51 7.15 7.95 8.78	4.72 5.26 5.94 6.63 7.35 8.07 9.00	1.92 2.00 2.17 2.33 2.50 2.67 2.92	1.67 1.75 1.83 1.92 2.00 2.17 2.33	2.33 2.50 2.67 2.83 3.08 3.33 3.58	2.00 2.08 2.25 2.42 2.58 2.75 3.00	A B C 54 5M* IV 72	28" 34" 40" 54" 54" 54" 72"	3/4" 3/4" 1" 1 1/2" 1 3/4" 1 3/4" 1 3/4"	45' 60' 80' 100' - 125' 135'

The second design program provides for preliminary designs of continuous girders using the Continuous Beam Analysis (B-30) Program developed by the Georgia Highway Department and modified by the Texas Highway Department. The preliminary design procedure makes use of computed frame dimensions and will pre-establish some loading conditions and design criteria. The designer can override any of these criteria as will be discussed later. Since the design will be based on computed dimensions that are not available to the designer, he may express all span length ranges in terms of fractions of the span length in question. He may use any of the available *This beam will not be selected by the program but may be used by the designer to obtain a prestressed beam design.

GDES

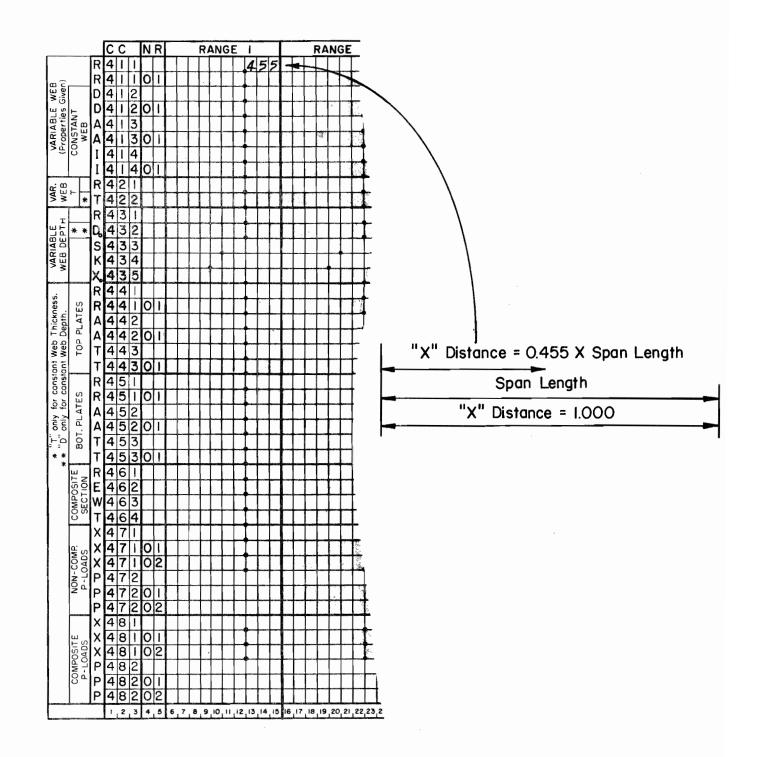
capabilities of the program in determining the girder configuration. These capabilities include rolled sections with or without plates, variable sections, plate girders, composite sections with or without plates, and variable section concrete girders and slabs. This provides the designer considerable flexibility but he will probably limit trial designs to less complex configurations. In the use of this program, the designer must provide supplementary data following the GDES command.

Input for the GDES command is shown below.


*May apply to one or more simple spans or one continuous unit.

**If the prestressed beam design program is used and the designer wishes to override the beam size selected by the program, any beam size from the BEAM TABLE on the preceding page may be entered here.

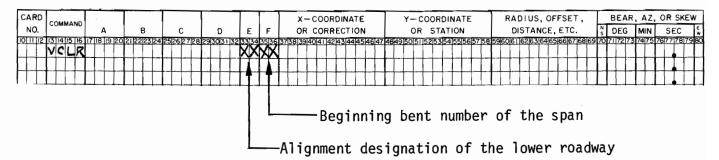
NOTE: If it is desired to design more than two beams for a set of simple spans or a continuous unit, this may be accomplished by entering additional GDES commands.


Additional data must follow a GDES command when it is for a continuous unit. The additional data for continuous units is essentially the same as the input for the Continuous Beam Analysis Program when used in a stand-alone mode. Familiarity with the use of this program is assumed and only the exceptions to the standard input will be discussed here. *

Card 1 is not essential and will be ignored if it is present. One Card 2 is required for each girder to be designed and a Card 3 is required for each span of the girder. Exceptions to completion of these cards are illustrated here.

NOTE: On Card 2 BM CODE must be entered, and on Card 3 M and X-SECTION CODE must be entered.

*A brief summary of the input to this program is shown in Appendix A.



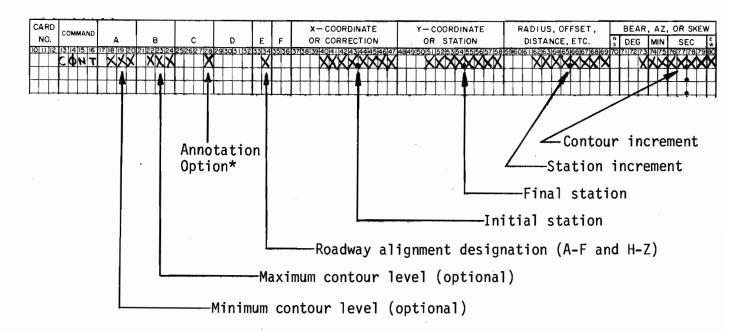
The remainder of the valid card types for a span may be used as the designer chooses with one general exception: the fraction of span length should be entered in <u>every case</u> where the standard entry would be in terms of "X" distance. This type of entry is illustrated here. In this scheme 1.000 would be entered for the total span length. (This scheme applies to card types 411, 421, 431, 435, 441, 451, 461, 471 and 481.)

The supplementary input for continuous units varies for specific cases, but a precise number of cards in proper order is required for each span for each condition. (If two girders are to be designed, two complete sets of data must be entered.) Another GDES command or any other command may follow this data.

The GDES command will produce a report showing the slab dimensions and other criteria used in the design. In addition the standard output of the specified design program will result.

The VCLR command is used to request vertical clearances between structures and lower roadways. The span for which clearance is to be computed must be given by entering the beginning bent of the span and indicating the roadway in question as shown here.

Vertical clearance to the lower roadway surface will be computed along Beam Lines. In the case of prestressed beams the clearance will be based on the straight line along the bottom of the beam. For continuous structures the clearance will be computed on the basis of distance from the Reference Line to the floor surface. (Reference Line is described under the SPLC command.) In either case the designer can modify the clearance as is necessary to take into account deflections or depths of the beam below the Reference Line.


VCLR

The CONT command produces contour plots of roadway surfaces for specified limits of roadways. It can be used by the bridge designer to determine roadway surface modifications needed in the area of ramp mergers by superimposing two sets of roadway surface contours on the same plot. It can also be used to examine drainage on bridge surfaces and for numerous other bridge design and roadway design applications.

Contours will be drawn at designated elevations; even-foot contour lines will be plotted with a symbol to identify them. Elevation values will appear at various places on the plot. The initial station of a contour plot will be drawn on the plot in an appropriate place. Symbols will be plotted to identify the ridge points. The area contoured will be all of the area defined by the templates in the region between the INITIAL STATION and the FINAL STATION.

The previously defined alignment is given in column E. The region to be contoured is specified by giving the INITIAL STATION and the FINAL STATION in columns X and Y. A STATION INCREMENT is given in the RADIUS, OFFSET, DISTANCE, ETC. column to specify the interval at which elevations are to be calculated for the contour interpolations. Since the contours are plotted as straight lines between interpolated points, the accuracy of the contour is dependent on the interval at which elevations are calculated. Therefore, large values of STATION INCREMENT should not be used except in regions where the contour lines are essentially straight lines. This value should not be too small either because this would increase the number of calculations that must be made and hence increase execution time. A value of 10.0 (feet) is generally satisfactory, although smaller values may be needed in extremely warped regions. The CONTOUR INCREMENT value given in the BEARING column specifies the vertical interval at which contours are to be plotted. Normal values might be 0.1, 0.2, 1.0 (foot), etc. The user may specify the MAXIMUM CONTOUR LEVEL and/or the MINIMUM CONTOUR LEVEL in columns A and B if it is desired to omit contours above or below certain elevations. This is an optional feature; if no values are specified, the entire region will be contoured. The values entered in these columns must be integers (even feet).

An AXIS command must be given <u>before</u> any CONT commands are given. The contour plot will be drawn on the coordinate system and plotting field defined by the last AXIS command that precedes the CONT instruction. Plotting by other plot commands or by other CONT commands may be superimposed on the same plot.

*Options:

Omit all annotations except station elevation summaries.
 Omit all annotations except beginning station.
 Leave blank for standard annotation.

IV. Example Problems

Example problems 1 and 2 are for two ramps of a multi-level interchange which is shown on page 47. These structures were selected to illustrate a number of the possible options. The problems include command geometry computations to establish certain points and lines on the structures and computations of frame layout geometry, girder design, and vertical clearance. It should be noted that the horizontal alignments, vertical alignments and template data for these problems had been stored on tape on a previous run and only the input necessary for the above computations is included.

The first problem has two ramps (designated roadways H & I) merging together to form a flared, curved structure as shown on page 48. Five spans are included in this structure with a maximum of eight beams. Since all of the transverse lines needed for framing the structure can be established by stationing along roadway H, the designer has chosen to locate these items first. The geometry for the left and right slab lines is established next. For illustrative purposes a number of framing options have been used so that additional PSLB lines have been established parallel to the two slab lines. These PSLB lines are then designated as beam lines for the options requiring all beam lines to be previously defined. Each span has been framed using a different framing option. After the entire structure has been framed, the rightmost two beams of each span have been designed using the prestressed concrete beam design program. Complete input for problem 1 is shown on pages 50 to 54.

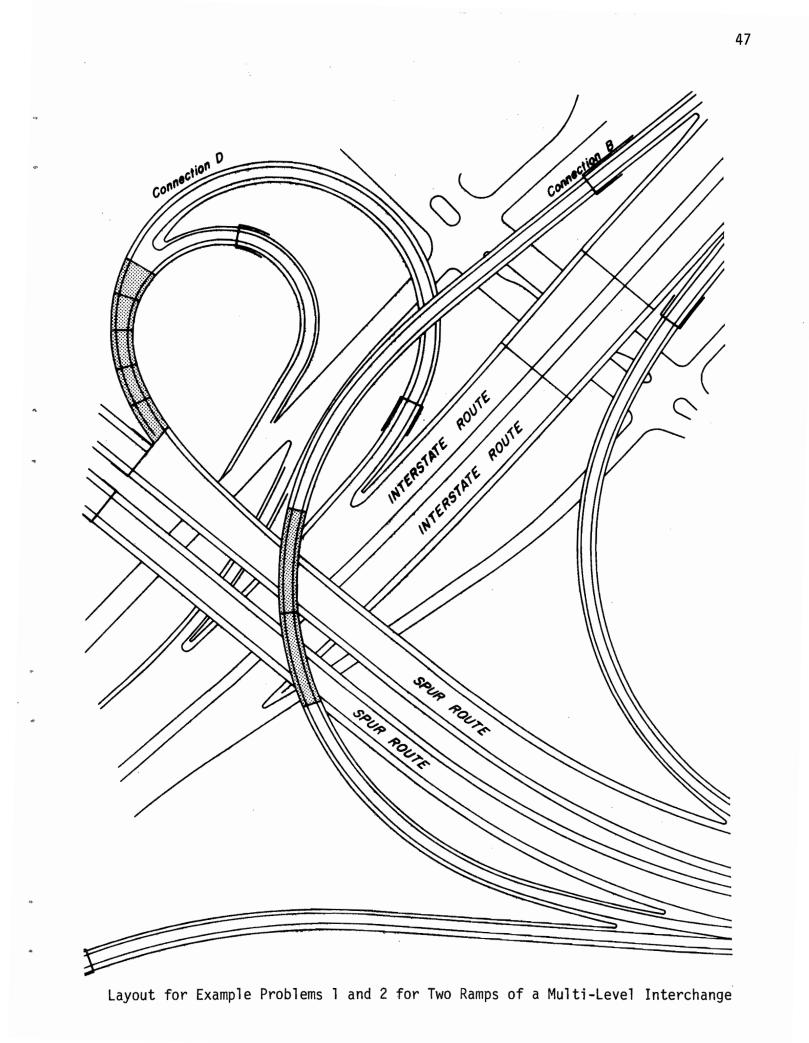
The second problem is a two-span continuous structure. The transverse lines needed to frame the structure have again been located first as shown on page 49. Both slab lines and all beam lines are parallel to roadway J, so that the beam group command has been used to establish the beam lines. The vertical clearance between span 2 and roadway K is determined by means of the VCLR command and an

analysis of the preliminary design of girder number 4 is made using the Continuous Beam Analysis Program. Computer input for problem 2 is shown on pages 55 to 59.

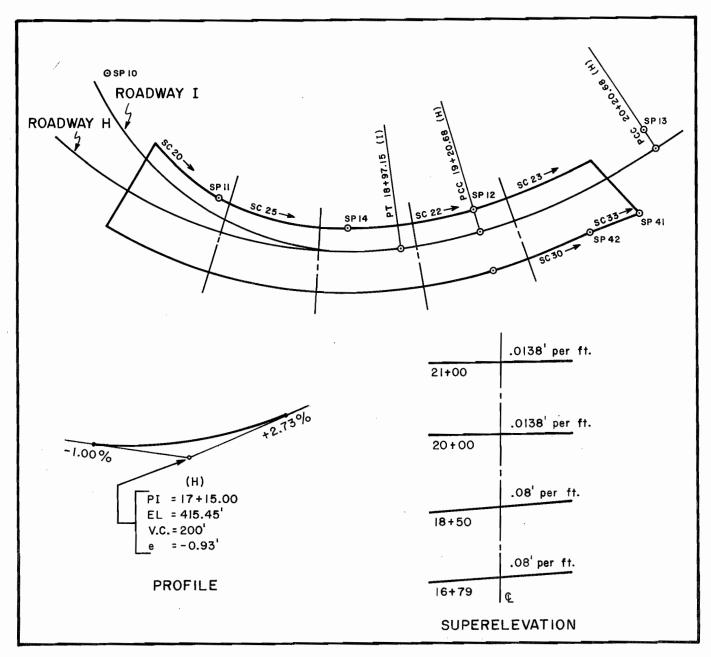
The Bridge Geometry List output is shown on pages 60 to 65 for problem 1 and pages 66 to 69 for problem 2. This output closely follows the output of the RDS General Geometry List.

The Bent Report is similar for all options. For simple span options the number of beams may differ for the back and forward conditions, and the angle of the beam with the bent may differ for a given beam line. For continuous span options the number of beams is assumed to be the same for the back and forward conditions of a given bent in the area of continuity. The Bent Report contains the beam spacing along the centerline of the bent, the angles of the beams with the bent, and distances to facilitate the location of the center of bearing for each beam. The report also contains the directional bearing of the bent and the distance between the station line and beam number 1 as measured along the centerline of the bent. A sample Bent Report for a simple span option is shown on page 70; and for a continuous span option, on page 71.

For simple span options the Framing Report is by span with all beams of a given span in the same report. A sample of the Beam Report for simple spans is shown on page 72. A sample of the optional report giving the coordinates and elevations of the beam-bent intersections is shown on page 73.


For the continuous options, options 8-10, the Framing Report is given by beam line. All distances along a given beam line are printed in order beginning at the low station end. A sample Framing Report for a continuous option is shown on page 74. An optional report giving coordinates and elevations is shown on page 75.

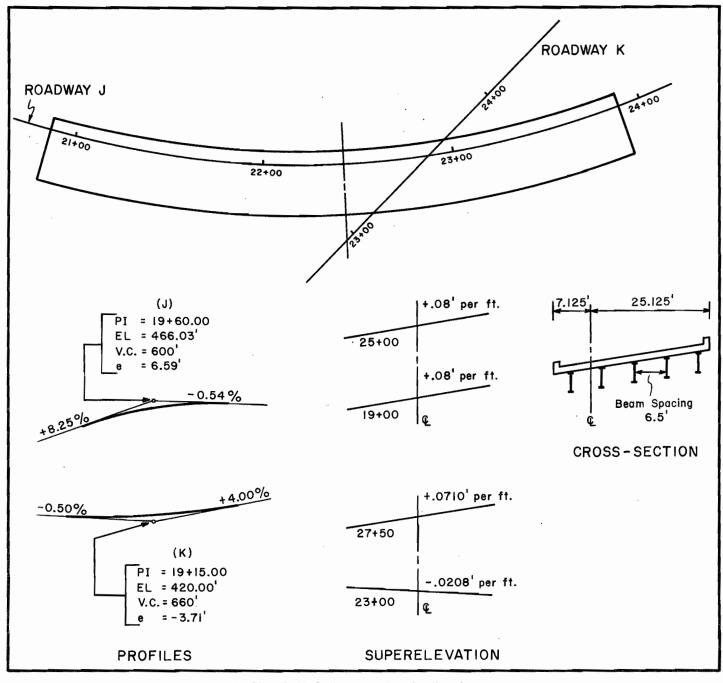
A Bearing Seat Elevation Report is given at the conclusion of the framing process. A sample of this report is given on pages 76 and 77 for problems 1 and 2 respectively. Computed output from the framing option has been used as input to the Prestressed Concrete Girder Design program and the Continuous Beam Analysis program for problems 1 and 2, respectively. For the latter case, only moments have been computed because no Modulus of Elasticity was entered on card 2 of the supplemental input. Sample results are shown on page 78 for the prestressed girder program and pages 79 and 80 for the continuous beam analysis program.


To determine the vertical clearance between span 2 of roadway J and roadway K, each beam has been divided into ten parts. The vertical clearance between the previously established reference line of each beam and the roadway below has been computed at each of these points along the beam. It is up to the designer to determine the actual vertical clearance based on his knowledge of the geometrical configuration of the beam below the reference line. Sample output from the VCLR command is shown on page 81.

Bridge plots can be combined with any command structured plots or alignment plots as required by the designer. Only a new AXIS card needs to be input to begin a new plot page. For purposes of these example problems the slab and frame have been superimposed. While these framing plans were done on separate pages, the designer could have put them on the same page by using only one AXIS card. Sample plots of the bridges framed in problems 1 and 2 are shown on pages 82 and 83 respectively. A sample of a contour plot for problem 2 is shown on page 84.

For illustrative purposes, both bridges in the example problems have been framed in a single run. However, if the user chooses, he may design portions of the bridge on separate runs and store the results on tape. An engineering review can then be made before the final design.

EXAMPLE PROBLEM NUMBER ONE


DIAPHRAGM AND BENT INFORMATION

Bent 6 is defined with a right forward skew of $16^{\circ}37'36.00"$ at station 19+91.65. All other bents are radial to roadway H at the following stations:

17+31.00 17+83.00 18+35.00 18+87.00 19+39.00

A staggered diaphragm option has been used at station 17+57.00 in span 1; a radial diaphragm line is used at station 18+09.00 in span 2; and spans 3-5 have diaphragms at the mid-point of each span.

EXAMPLE PROBLEM NUMBER TWO

DIAPHRAGM AND BENT INFORMATION

All bent, diaphragm, and splice lines are radial to roadway J and cross the station line at the following stations:

Bents: 20+86.00, 22+41.04, 23+87.00

Diaphragms:	20+98.50	21+53.50	22+08.50	22+61.75	23+18.00
1 5	21+09.50	21+64.50	22+19.50	22+73.00	23+29.25
	21+20.50	21+75.50	22+30.50	22+84.25	23+40.50
	21+31.50	21+86.50	22+41.04	22+95.50	23+51.75
	21+42.50	21+97.50	22+50.50	23+06.75	23+63.00
					23+74.25

Splices: 21+88.00, 22+92.00

F

· 4

.

r

•

Ł

ŝ

50

٤

\$

COLLOLARG CO	CONTROL & SECTION				STR P.E.											-					TIE	S	R(DA	D	DE	SI	GΝ	S`	YS'	ΤE	М					SH DA	EET	۲ <u> </u>	2 1A	Y	0F_	1	<u>0</u> _^	, 9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IOLOIA	RG		со)					HV	۷Y					-			С	ON	IM/	١N	D	ST	RU	ICI	ruf	REC) II	NP	UT	F	ÖF	M			PR	EPA	RE	DB	Y_	F	<u>H</u>	_	
NO. A B C D E F OR CORRECTION OR STATION DISTANCE, ETC. S DEG MIN SCC S IL NHAME G B KS Z.OØNE E H 1600.0 CANAGA HABSAGE THE BESCH IZZZEGEORFORSON DICTURINGTON TOTURINGTON TOTURINGTION TOTURINGTION TOTURINGTIC TOTURINGTION TOTURINGTON TOTURINGTON		89					,		Γ			-	1	Τ		x-	- C (OOR	DIN	IAT	-	Т		Y	- CO	OR	DIN	ΑΤΕ		Т									BE	٩R,	AZ	, 01	RSI	κĒŴ	N
22CMNT LØCATE THE TRANSVERSE SLAR LTNES. 3TSLB I 3TSLB I 4TSLB 2 5TSLB 3 6TSLB 4 10857.0 6TSLB 4 1939.0 9TSLE 31 9CMNT LØCATE THE BENTS. 1939.0 8 9TSLE 31 9CMNT LØCATE THE BENTS. 108ENT 1 118ES 0.875 118ENT 1 138ENT 31 6 TR 1939.0 0.815 138ENT 31 1939.0 0.815 1939.0 0.815 188ENT 1939.0 198ENT 1939.0 198ENT 1939.0 170MNT EFERENCE UINGS FØR EACH BEAM ENDS, AND 170MNT	NO.												F			OR	СС	DRR	EC	тю	N			0	R	STA		N		ŀ]	DIST	TAN	NCE,	, ET	с.		N S	DE	G	MIN	5	SEC		EW
222MMT 1002ATE THE TRANSVERSE SLAB LTNES. 3TSLB 1 4TSLB 1 4TSLB 2 4TSLB 3 1025.0 1025.0 4TSLB 3 1025.0 1025.0 4TSLB 3 1025.0 1025.0 4 1087.0 9TSLB 5 10857.0 8 11857.0 9.875 11857.0 9.875 11857.0 9.875 11857.0 9.875 11857.0 9.875 11857.0 9.875 11857.0 9.875 11857.0 9.875 11857.0 9.875 11857.0 9.875 11857.0 9.815 11857.0 9.815 11857.0 9.815 1		17 18			223	24 2	526 I C	2728	329	303	132	333	435	363	57 <u>38</u>	3394	404	142	43	444	546	474	849	50	51 52	253	545	556	57 58	359	606	51 62	263	6465	566	67 68	369	707	172	737	475	767	778	79	80
3 T S L B 1			2	18. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19			9		שי	A C	; L	r Sala	1		16								41	0			20			F	~ ;	4 10 A	5	47							K	Ar	1	1000	1
4 TS L8 2 1783.0 5 TS L8 3 1887.0 6 TS L8 4 1887.0 9 TS L8 5 1939.0 9 TS L8 31 1939.0 9 TS L8 31 1939.0 9 TS L8 31 1939.0 9 CMAT 10057.0 1939.0 100507.0 1939.0 1939.0 9 CMAT 10057.5 1939.0 100507.5 1939.0 10.875 100507 1 1051.0 100507 2 1781.0 100507 3 1857.0 100507 4 1857.0 100507 4 1857.0 100507 4 1857.0 100507 4 1857.0 100507 4 1857.0 100507 4 1857.0 100507 4 1857.0 100507 4 1857.0 100507 4 1857.0 100507 4 1857.0 100507 4 1857.0 <td></td> <td></td> <td></td> <td></td> <td>5 . to</td> <td></td> <td></td> <td></td> <td>\mathbf{H}</td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td>-9</td> <td>C</td> <td></td> <td></td> <td></td> <td>1 0</td> <td></td> <td></td> <td>1 16</td> <td>R</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>></td> <td><u> </u></td> <td>A E</td> <td></td> <td>F 1</td> <td>N</td> <td>63</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td>0.39</td> <td></td>					5 . to				\mathbf{H}		,				-9	C				1 0			1 16	R						>	<u> </u>	A E		F 1	N	63	-						•	0.39	
STSLB 3 1035.0 6TSLB 4 1287.0 9TSLB 5 1939.0 GTSLE 31 1991.65 R 163736.7 9CMBT 1066.4TE 1991.65 R 163736.7 9CMBT 1085.0 1991.65 R 163736.7 9CMBT 1085.0 1991.65 R 163736.7 1085.0 1939.0 1937.0 16375.7 1185.0 0.875.7 1 128807 2 1783.0 0.875.7 1385.07 4 1857.0 0.875.7 1385.07 4 1857.0 0.875.7 1485817 31 6 1857.0 0.875.7 1585817 31 6 7 1857.0 0.875.7 1585817 31 6 7 1857.0 0.875.7 1585817 31 6 7 1939.0 0.875.7 1585817 31 6 7 1939.0 0.875.7 1600407 1200.0 1200.0 1200.0 10.857.5 1200.0 1200	ATCIA										7											S1451 (*			13	7														-					諁
6 TS LB 4 1887.0 9 TSLB 5 1939.0 8 TSLE 31 1991.45 9 CMAT L¢CATE THE BENTS. 108ENT 1 AB 118ENT 1 AB 128ENT 2 138ENT 2 138ENT 3 138ENT 3 138ENT 3 138ENT 3 138ENT 4 138ENT 3 138ENT 4 138ENT 4 138ENT 4 138ENT 4 138ENT 5 148ENT 5 158ENT 4 160MAT 6 160MAT 1939.0 160MAT 1939.0 170MAT REFERENCE UTNES FØR EACH BENT. 1880A6 12800.5 1980A6 12800.5 1980A6 12800.5 1980A6 2800.5 1980A6 2800.5 1980A6 2800.5 1980A6 2800.5	ETCI A				885			60.23		95.5 03	0.138515136									网络熊						1 0					<u></u>				3 (ME)	010							-		
1 1											2																								100								1		
BTSLE 31 6 1991.65 R 163736.7 9CMNT LøcATE THE BENTS. 1731.0 0.875 1 18ENT 2 1783.0 0.875 1 18ENT 2 1783.0 0.875 1 18ENT 2 1783.0 0.875 1 18ENT 3 1855.0 0.875 1 18ENT 4 1885.0 0.815 1 18ENT 4 1885.0 0.815 1 18ENT 4 1887.0 0.815 1 18ENT 4 1887.0 0.815 1 18ENT 4 1887.0 0.815 1 18ENT 31 6 TR 0.875 1 19BENG 12FD 23.5 5.5 2.8958 1 19BENG 12FD 23.5 5.5 2.8958 1 19BENG 12FD 23.5 5.5 2.8958 1 28BENG 2286 23.5 5.5 2.8958 1 28BENG		2963 (S) (s)					Clean	1091 (S.1			7	1888 (A-		298	1000	8286	200		122291	1991,086	5.534			1	2 2	9			0.465	5.053					3228									1000	100
9 CMNT				2.8				21			5								89	838						h		e										R	1	1	2 1	21	1		
102ENT 1 AB 1731.0 0.875 112ENT 2 1731.0 0.875 12ENT 2 1783.0 0.875 12EENT 3 1835.0 0.875 13E5UT 4 1887.0 0.875 13E5UT 4 1887.0 0.875 13E5UT 4 1887.0 0.875 14EENT 5 1939.0 0.875 15EENT 31 6 TR 16CMNT 1929.0 0.875 16CMNT 1939.0 0.815 17CMNT EFERENCE UINGSE PAR EACH BENDS, AND 17CMNT REFERENCE UINGS FAR EACH BENDS, AND 18BRNG 12FD 23.5 5.5 12BRNG 12FD 23.5 5.5 12BRNG 32Ed 23.5 5.5 12BRNG 4 286 23.5 12BRNG 4 286 23.5 12BRNG 4 286 23.5 12BRNG 4 286 23.5 23BRNG 4 <td></td> <td></td> <td></td> <td></td> <td></td> <td>1992</td> <td></td> <td></td> <td>553</td> <td></td> <td></td> <td></td> <td>2043</td> <td>7,29,83</td> <td></td> <td></td> <td><u>(198</u>)</td> <td>TE</td> <td>1996</td> <td>τ (</td> <td>15</td> <td></td> <td>2 5</td> <td></td> <td>TC</td> <td></td> <td>2 (2-49) 2</td> <td></td> <td></td> <td>0.</td> <td></td> <td></td> <td></td> <td>100000</td> <td>49.8</td>						1992			553				2043	7,29,83			<u>(198</u>)	TE	1996	τ (15		2 5		TC												2 (2-49) 2			0.				100000	49.8
1 / BENT 2 1 / B3.0 0.875 1 2 BENT 3 1 B 55.0 0.815 1 3 B 5 WT 4 1 B 85.0 0.815 1 3 B 5 WT 4 1 B 87.0 0.815 1 4 RENT 5 1 9 39.0 0.875 1 5 B E A T 31 6 TR 0.875 1 6 C MUT UQCATE THE BEARING SEATS. BEAM ENDS. AND 1 1 7 C M NT REFERENCE UINGS FØR EACH BENT. 1 1 8 B R NG 1 2 FD 23.5 5.5 2.8958 1 9 B R NG 2 2 B Ø 23.5 5.5 2.8958 2 8 Ø 23.5 5.5 2.8958 1 2 8 Ø 28 K 2.55 5.5 2.8958 1 </td <td></td> <td>1</td> <td></td> <td>6</td> <td></td> <td>ŢΨ</td> <td>Γľ</td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td>0</td> <td>a</td> <td>2</td> <td>e</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Î</td> <td>10019</td> <td>Sile of</td>											1		6		ŢΨ	Γľ											,				0	a	2	e									Î	10019	Sile of
1 2 8 E W T 3 1 8 35.0 0.815 1 3 8 5 W T 4 1 8 85.0 0.815 1 3 8 5 W T 4 1 8 87.0 0.875 1 4 8 E W T 5 1 9 3 9.0 0.875 1 5 8 E A T 31 6 TR 0.875 1 6 C M W T 1 9 3 9.0 0.875 1 6 C M W T 1 9 0 0.875 1 9 3 9.0 1 7 C M N T 1 9 0 0.875 1 8 5 0.0 1 8 8 2 N G 1 2 FD 2 3.5 1 8 8 2 N G 1 2 FD 2 3.5 1 9 8 2 N G 2 8 0 2 3.5 5 5 5 1 9 8 2 N G 2 8 0 2 3.5 1 9 8 2 N G 3 2 8 0 2 3.5 1 9 8 2 N G 3 2 8 0 2 3.5 1 9 8 2 N G 3 2 8 0 2 3.5 2 8 0 2 3 .5 5 5 2 .8958 2 1 8 2 N G 4 2 8 6 2 3 .5 2 3 8 2 N G 5 5 5 2 .8958 2 3 8 2 N G 6 2 8 K 23 .5 2 3 8 2 N G 6 2 8 K 23 .5 2 4 0 N T 1 0 0 1 7 5 7 .0 2 4 0 N T 1 0 0 1 7 5 7 .0 2 4 0 N T 1 0 0 1 7 5 7 .0 2 4 0 N T			<u>1963 South</u>	2017 P.85	2550	3683 (314	ni Keski	322255 (1,445		96-33 EU	2						<u> 288-198</u>	201 201 2		10.07/2003			80 20 10						0.00 8:00						10105	1912,8995	20142020		10000	25432 8		10000000		226500	1000
13850T 4 1887.0 0.875 14850T 5 1939.0 0.875 1585AT 31 6 TR 0.875 16CMNT 16CATE THE 86A RIUG SEATS. 86AM ENDS. 16CMNT 126CATE THE 86A RIUG SEATS. 86AM ENDS. 17CMNT REFERENCE UINGS 748ENT. 1 1888A6 128023.5 5.5 2.8958 1988A6 228023.5 5.5 2.8958 2088A6 228023.5 5.5 2.8958 2188A6 5288 5.5 2.8958 2388A6 628K 23.5 5.5 2.8958 2388A6 628K 23.5 5.5 2.8958 2388A6 628K 23.5 5.5 2.8958 24CMNT 10601.00 1757.00 15943.6318	1 2 BEAT																		1					1	2 2																		ſ		
14 BENT 5 1939.0 0.875 15 BENT 31 6 TR 0.875 16 CMNT 0.678 0.875		06.407648	<u> 2.202</u> 0	1-140 E33		Sector Sec.		<u>a 1414 CO16</u>		201532		2005			999 9999	n sene a s	2002.00		1000	Logra Ces		6712468 A12							Lifer Stric						858.37;75874		201000	HOLD OF	<u>1856</u> 278139	10040752	<u>, (1998)</u>	- aduration	1		1
1 SBEAT 31 6 TR C. 825 1 6CMNT LøCATE THE BEARSUG SEATS, BEAM ENDS, AND. 17CMNT REFERENCE LINGS FØR EACH BENT. 18BRNG 1 2 FD 23.5 19BRNG 2 2BØ 23.5 20BRNG 3 2BØ 23.5 21BRNG 4 286 23.5 23BRNG 5 5 5 23BRNG 5 5 5 23BRNG 6 28K 23.5 24CMNT 10 000,0	1 4 BENT					M.C.		濾湖											188			54			33	9	1	5			0	8	3	s									i		
16CMNT LØCATE THE BEARING BEAR ENDS, AND. 17CMNT REFERENCE UINGS FØR EACH BENT.	ISBEAT	69-63-634 (5 <u>6</u>	(a. <u>1.</u> 918		3	1		18 7 3.3.4		200.0		09995.4090	₹	₽	20204.33		2003	0000 64850		ELINE NO.		CHANGE ST	XC STAR	1007103					-						2010/00/	1	1.50 9403.011	2.1970 23	<u></u>	17511AL	<u> 100 000000</u>	04550 50T			
17CMNT REFERENCE UINGS FØR EACH BENT. 188RNG 12FD 23.5 5.5 2.8958 198RNG 228Ø 23.5 5.5 2.8958 208RNG 328Ø 23.5 5.5 2.8958 218RNG 428Ø 23.5 5.5 2.8958 238RNG 428Ø 23.5 5.5 2.8958 238RNG 428Ø 23.5 5.5 2.8958 238RNG 528Ø 23.5 5.5 2.8958 238RNG 428Ø 23.5 5.5 2.8958 238RNG 628K 23.5 5.5 2.8958 238RNG 628K 23.5 5.5 2.8958 24CMNT 40CATE THE DIAPHRAGNS 1257.0 24CMNT 12603.0 12603.0	16CMNT							1		3.4			963					r s		TI	E		BE	A	2 7	N	6	S	c a						14	F		DI	s –		AAS	6	t		
1982.46 2280 23.5 5.5 2.8958 2082.46 3280 23.5 5.5 2.8958 2182.46 4286 23.5 5.5 2.8958 2282.46 5286 23.5 5.5 2.8958 2382.46 5286 5.5 5.5 2.8958 2382.46 6285 5.5 5.5 2.8958 2401.47 4286 5.5 5.5 5.5 2.8958 2382.46 6285 5.5 5.5 5.5 2.8958 2401.47 4286 5.5 5.5 5.5 2.8958 2401.47 4285 5.5 5.5 5.5 2.8958 2401.47 4286 5.5 5.5 5.5 2.8958 2401.47 4285 4285 5.5 5.5 5.5 5.5 2501.47 1257.0 1257.0 1257.0 12607.0 12607.0 12607.0		30° 896 4.3									<u>20</u> 1.00	<u></u>		1	RE	F	E	2 6.	N			ĽΤ	- 1	F	S	F	10 8		FA	C	4	78	E	N T		27-003-08-0 8- 04-08-			7						Ī
1982.46 2280 23.5 5.5 2.8958 2082.46 3280 23.5 5.5 2.8958 2182.46 4286 23.5 5.5 2.8958 2282.46 5286 23.5 5.5 2.8958 2382.46 5286 5.5 5.5 2.8958 2382.46 6285 5.5 5.5 2.8958 240.475 145 1757.0 15.5 1757.0 260.745 1 1757.0 1805.0 1805.0	1 BBRNG										1		F				21	3	5						5.	5					2	. 9	9	50	2								Ī		No.
20BR.NG 3280 23.5 5.5 2.8958 21BR.NG 4280 23.5 5.5 2.8958 22BR.NG 5280 23.5 5.5 2.8958 23BR.NG 5280 55 5.5 2.8958 23BR.NG 628K 23.5 5.5 2.8958 23BR.NG 628K 23.5 5.5 2.8958 23BR.NG 628K 23.5 5.5 2.8958 24CMNT 40CATE THE DIAPHRAGMS 25DIAF 1 1757.0 N 5943 26NTAF 1 1800.0 N 5943	19BRAG	240400 <u>86.21</u> 22	9 AND <u>6449</u>	EDEwe Prine					nr (1993-4		z				0.2000	Ī	23	٤.	5	Carlo and Circle					5.	5	•			Π	S	. 8	9	58								Π			Γ
2 BR NG 4 286 23.5 5.5 2.8958 2 BR NG 5 286 23.5 5.5 2.8958 2 BR NG 6 28K 23.5 5.5 2.8958 2 ACMNT 40CATE THE DIAPHRAGNS 2 SDIAF 1 1757.0 N<5943									a la		10.00	ż	2 8	6			2	3,	5						5.	5					2	. 8	9	SF	3										
23BRNG 24CMNT 25DIAF 26NTAF	21 BRNG							Concession and				2	28	6		Π	2	3.	5						5.	5				Γ	2	. 8	9	58	2			Π							Γ
23BRNG 24CMNT 25DIAF 26NTAF											5		2 B	5			23	5.	5				<u>्रि</u> २		5.	5					2	. 8	9	58	5										
24CMNT U@CATE THE DIAPHRAGNS. 25DIAF N 5943 (31)E 26DIAF 1800.0 27DIAF 2.0 28DIAF 2.0 29DIAF 5 30EICT 2.0	23BRNG											i	2 B	K			2	3.	5						5.	5				Π	2	. 8	9	58	3			Π							
25DIAF N 5943 431E	24CMNT												T		L d						16		DI	A	PH	R	AG	N	S																
26NTAR 1800.0 W 4643 6318	2 SDI AF		0.60 mm P								1					TT																						N	5	9	43	. [63	.1	E
270 [AF 280 AF 290 [AF 30E]CT	26 DTAF	영물성		R.						188 C														1	80	9	. 0	2										N							
28DIAF 29DIAF 30EJCT	27DLAF	100-00 000-000	-			T		g Ae	5																						2	. 0													
29DIAF 30EJCT	28DTAF																														2	. 0	>												
3 PEJCT	29DIAF				11		Π																								2	. C	2												and the second se
	30EJCT	And and and																																94			Tea.								

\$ \$ \$

Ŕ

CONTROL & SECTION	I.	P.E		RES. N PROJ HWY						С		TEX TIE	S	RO	٩D	DI	ESI	GN	S`	YST	EN	1	RM			DA	ATE.	M	AY	0 7F	2,1	10	
CARD COMMAND	89					_		X-(000	RDI	NATI	E	Т	Y	C	OOR	DIN	ATE		1	RA	010	s. c	FFS	BET		Т	BE4	AR,	AZ,	OR	SKEW	٦.
NO.	А	в	С	D	E	F		OR	COR	REC	TIO	N			OR						DI	STA	NCE	Ε, Ε	тс.		N S	DEG	3 N	MIN	SE	EC	E W
10 11 12 13 14 15 16 3 1 C M N T	17 18 19 20 21	22 23 24 2	5262728	293031323	334	3536	37 <u>38</u> ES	3940	0414	42 43	444	5464		495		5253	545	556	57 58 R Y	3596	061	626	364	65 66	676	58 <u>69</u>	70	7172	737	4757	677	78 79 HB	30
32CMNT							LE				21	r 			CA P II	= Q -			R4 8.	1		e i		ע		P				15		H B	alian and a start and a start a
3 3 PONT	10			<u>199 233 Millio Stoff S</u>	T	100000				6 80					0		0				- 7		2	<u></u>		<u>1988 (8.92</u>		20092803	<u>6750</u> 98				4
3 APENT	11				Í									79			2				-7												
35CURV					T	10_10 CQ110	61 <u>1. (</u> 0794)	201 H (22 8 296)						20				Raff Co. No. 1			-7				10 (3416-25)	MERICAN		<u>Interna</u>	DEVER DEE	22 470100 20			
36CMRV	20				M								1	84	51					-1	0	. 1	2	5			Ħ						
37KURV	23				H							T	1	92	21	•				-	10	-			Π		Π						1,
3 8 PONT	12				H								1	92	-0	. 6	8			-	10	. 1	2	5									EXAMPLE
39 PON T					H								2	02	.0	•					0	. 1	2	5		1]\[\frac{1}{2}
40PONT	14				H								1	85	:0	:0	B			-	0		Z	5									
4 ICURV		21								-				- N (2 - 47		271 (41			CARC MART	117	20	•	01 40000	ada on				C. (2) 742/004					PROBLEM
9 2 CURV	14	24	Star 1							400										1 7	20	•											Ē
4 3ISCT	15	24	15 25		H					2	115			- 		1 200	1.7 m 4	and the second	MARINE T	1	. 15252	1975-0 194	VISIO	thin Cott	ane de	-C.22.3		200 500	C7638 8-7	-	manan	1.	E S
44CURV		11				지역	**** **		Zed.												68		11										
45PSLB		10	20			-	2			-21/25	224	1.45	53.53	17.9 N	101		1.340	1	Altail	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.35278	BRC AN	14 Carl (1000 0000	80966		1 12/2/2		-1919 et al	2010-00-00		C/62 8355	1000 ·
+6PSLB			25	14	<u> </u>		17		13	48. 19					11	12			17. III.				1		 		4			14			
47PSLB		1.124	22	12	1.1	- <u>.</u>		9 °		-	-24	++			┤┤	12		3		1227		1000		9/0 6/0		ans and		164 683	<u>e</u> ra es	and the second sec		1995 - 2850	
48PSLB			68													- 19 Mar - 1	c.f	4, 5, 7		19.						33							Page
49CMNT	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		1.				ESRI	TA	B	<u>L]</u>	S F De		7 #	P	6	EQ	M	T	RY) E	εĽ	E	D	וד	D	P	EF				HE	ge
SICURV	30				11		K 1	G H		5	De	B		97		.4.2		3 6.	AB		22	한철백		<u>-</u>		<u>57628</u>	ŦŦ	10.22	24.85	2007 C 88			
52 PONT	40	1200000	1		n				1.5					99		•		53	<u> </u>				6	2 19 3		1		14.2	light 1		214		of
SBTRVS	40	31	41				13 ^m _ 1	1.184.5	1AS	14.3				0 0		<u>, 3</u>		Mar. F	i te QA		25			<u>a</u>		100	11		26		<u>22 5.48</u>	an a	4
SACHEV	41	32										1									29		2	2	14-			19 19 19	99 C		341		
SSISCT	30	32	19 19 1 V	42		1.43							<u> </u>			<u>. 19</u> 2 -		1.1	3.6.7%		<u></u>						1701210		(<u>1997</u>			<u> (305-, 7</u>	1.000
SCBRDS	42	41	33	and the second s						-					::	1		· /4. · ·				Service 44				4	11					0.1	
57PSLB	42				H		16	Se					1	92	0	. 6	8	-			22	. 1	2	5			\square						
SBPSLD	2		30	42		X		14.3			CT C	1.						ŀ	-						\uparrow		11						in .
59PSLB	2		30	42				\square					T																				52
										·	- 1						. 1						-				\prod	1		-			0.00
10111 12 13 14 15 16	17 18 19 20 21	22 23 24 2	5262728	29 30 31 32 3	3334	3536	3738	3940	041	42 43	444	5464	748	49 5	051	52 53	545	556	57 58	3 59 6	50 61	62 6	364	65 66	6676	68 69	970	71 72	73 74	4 75	76 77	78 79	30)

\$ ¥

.

a

٩

9 B

ę

ł

¢

CONTROL & SECTION	l.	ISTRICT_ P. E 0		PRO	J					col	TI	XAS ES AND	RO	AD	DE	SIG	N	SY	STI	ЕМ		RM			DA.	TE_	<u>M</u>	AY BY.	2	1 2, 1 14	0 97	3
L 2 3 4 5 6 7 8 CARD NO.		в	C	D	E	F		(T	Y	- CC						AD				ET,			BEA	R, A		R SI	_	E
10 11 12 13 14 15 16 17			-			г 35 36	37 38 3	<u>19 40 2</u>	1424			47 48	495					7 58			263	646	566	67/68	369	s 707	DEG 1 72 7	3 74 7				* 30
GOKMNT							De	FSI	JE	١	PS	47 48 L B	1	L	[N	54 55 ES	-	T H	Aτ		IN	LL		BE			SEI		TØ			
GICMNT							86	FAI	BLI	S	#	BE	A	4	LI	NE	s.								المالية الم المراجعة الم المراجعة الم							
GZPSLB	4					-														3.	6	Z	5									
63PSLB						2	The All Street Addie of												- 2	1	. 8	86										
64PSLB	6					2													-1	5.	1	45	5									19.50
65PSLB	2	9 10 10 10 10 10 10 10 10 10 10 10 10 10				2														8.	4	04										
GGPSLB	8					2														1.		63										
67CMNT							DE	511	N	T	8	I P	51	- 8		15	NE	S	4			8	٦	Ø	B	ε	BI					
GBCMNT							LI	JES	>	1	-	5								-12 1-10 - 046 &				AB 244 1 11							10 AT 6 10	
69BEAM					4	1																							33			1000
TOBEAM					5	2										1. 4	MIAN NY E	C. S. C. M. M. M.			222 2000	STATE OF		Where we		Ĺ	WIT FUELOW	Part of word of	- And The I			
71BEAM					6	3																										
7 ZBEAM					2	4											0.0007-01.70															
73BEAM					8	5																		E.		<u>i a</u> l			nghi	<u>In</u>		
74CMNT							ES				H	AN		A	XI	s '	C		RD 20		70	S	SE	T				1 R	P	LA	17	•
1SAXIS	50	29					21				14 S.	1	01	8	00				20					HT)			90					8
76CMNT							DEI			T	HE			AB		ND			55	6 4	\$	TH	E	F	R	AP	16	F	6 R			L'N
77CM NT							SP		1	N	SI	NG		\$ P	2 ۲	ØA		2 2			9				i ni							3
785LAB	1	2	1		2		1	• 5																		Ц				•		78.4
195007	1	2	1		5 1		1	10						3.							-100	Š.	253					<u> 1</u>				(%) (例)
BOCHNT							DE		_		HE					NP			I 2	61	٤	TI	AE	F	- 8-	A 14	1E	F	\$ E			_
BICHNT							SP		2	N	51	NG		28	T I	4 N	619		AN)				in per-		100			11				\$1. 2
825LAB	2	3	1		256			.5										\square		1. 10 10	J	- D7		-	2 5 3	246.08	20	(1.4) A				
BJFOPT	2	3	. 1		5 6		2	. 0						• .	0		. 3					5.1							No.		1	
84CMNT							DE	F I		٢	HE	5	2	AB	A	ND	1	E	SI	61	3	TI	46	F	R	AL	٩E	F (ØR			7 32
BSCMNT							SP 1	AN	3	U	SI	NG		ØP-	TI	ØN	2	5.			-		10,4474						2			
BGSLAB	3	4	ł		2 5 5		1	.5		_							1 1										1.1.2.2.1					
BSCMNT BGSLAD B7FOPT	3	4	1		5 5														3. 1	12.5								34	41		11	
													1													\square	\square					
10 11 12 13 14 15 16 17								39404									12	1 100			-			676		707					8.79 8	

ş

p

a

4

8

ŝ

ŝ

ø

CON			8]					RIC																					-								ГM ст				,	· ·	· .	SH	EE	г	5		_OF		1.00		
	СТІ	ION		R (G 9																				С													ST PU			R	M			DA'	TE.	M	A	17	27	19	97	3	
NO.	cc	DMM	AND		A			в			Ċ	;			D		E		F		C	DR	СС	RR	EC.	ΑΤ ΓΙΟ	N				OF	२ :	STA		ΟN	Ξ			DI	ST	ANC	CE,	FSE	с.		N S	DE	G	MIN	Ť	SEC	C	E	
8 8	6	M	NT		8 19	20	212	222	3 24	125	26	272	28 2	2930	31	32	333	343	536	37 D	38 E	39 4 F	04 T N	1 42 E	43	444 T I	546 } E	47	48 S	495 L	05 N	1 52 >	53 A	545 N	555e	557 D	58 5 E	596(S 1)61 61	62 (N	53 6 1	465 H	66 6 E	57 68 F	369 R	70	71 72 NE	273	74 7: F (5 76 P R	777	787	980	Ō
890						4			5	-			1			2				5	P 2	A A	5	4		US	S I	a J	5	6	5 9	1	3	øı	5												1							10.000
91	F	4	PT			4			5				t			5		-	1																																			
			N T					and the second se Second second s												DS	E	F :	ב א' 1) E 5		T U 9	15	N	5			7	A	NT DI	> J	D	E	<u>s I</u>	G	<u>N</u>	٦	14	B	F	2		Me		F¢	BR				
94	S	L	AB PT			5			6				۱			Z			11.0	Contraction of the	2		5	70.000			210	S. HOFE				CHE LIVE TO THE	200.004	107124010	1116 24402	- MAGE	10110900 01																	
96	E	1	LT			0									1.000	5		S	7. 4. 7.	1000													1000																		A		-	5 . Diss
			n T Es			1			2	P	C	B	D					2	8	D	5	<u>s</u> :	TE	N		Tł	16		R	S		1	3	Ø	T		2	6	1	R	De	.2	3	I	N		AL	L	6	P	A	NT S	S	COLUMN THE REAL PROPERTY AND
99	6	D	ES			2			3	ρ	C	8	D						t																																			A CONTRACTOR OF A
00	8	D	6		28	3			6	9 •	C	ß	D						5																	Sa					紧紧													1405 MC
			72 72 7			1053														10.073						(6) (6) (6) (6) (6) (7)										7 A.F.						6 T.C.B	aron o Séden											152.00
nuge i sye Teprijez ,		. C. 1.	- Albert	÷.		- 2 3 48 * 2 3 64	Prairie.		2.000		in the second						· · · · · · · · · · · · · · · · · · ·													<u>49</u> 0							2000 2000																	80.02.02
26		2 <u>-</u>																																																				COMPACTION OF
2,3			22		seta de la la della della								100						16					-33																														SECURICIES
				Ø.	33		909 1909 1909			(15) (15)		C.			.98	anyan Maria					1993 1993		24	143	109-88 (1-1)						0																							17555
			1053			1.00										253742 254735		•					And Str								200	2010/02	5-93														100		(7-) ()	- shi				1000
· · · ·		25 A			gan diga		and a																Self La									2074) 2000																					22	ficture of the second
												545 57											and the	120	120														No.															戦闘にと
																				1934) 193	2-541 6-544				5 - C - C - C - C - C - C - C - C - C -		92		n Karal References	19	1. S.		1000 C									95			1. a. i.									Contraction of the
		1.4			1			2 5 1 P	1			130		× 50	1472 1472			100		12	X					36				4. J	-								4 4 4 8 1 1 1 1				1. - Cr.3. 28200						192			- and the second	and a second	5 Sal
11 12	13	14	15 16	171	8 19	20	21 2	222	3 24	125	26	27 2	282	29 30	31	32	333	343	536	37	38	394	04	142	43	444	546	547	48	49 5	05	1 52	53	545	5556	5 57	58	59 60	061	62	636	465	666	57 68	369	70	71 72	2 73	74 7	5 76	5777	78 7	98	0

Form 1323

ø

ú

10			RG]	I.	. P.	FRIC					. PF	ROJ.								(00	T	IES	5 F	ROA	١D	D	IY I ESI TU	GN	S	YS	ΤE	М	ÓR	M		I	DAT	Έ	MRED	A					3
CARD NO	сом	MAND		A		в			 C			D		ε		F		0	RC	OF		сті	ON						DIN					DIST	AN	CE,	ET	т, С.		N	BEAF DEG	М	IN	SE	EC	Ē	
10 11 12	13 14 N A	15 16 M F	17 18	19 2	2021	222	23 24	125 H	262	728	29	303 V F	51 32 F R	33	343 .T	536	37	383	940	41	424	344	454	16 47	484	950	515	525	3545 O	556	575	8 59	606	162	636	465	666	768	69 7 1	07	1727	374	757	677	7879	<u>980</u>	
2	CM	NT						T			ľ						1	AC	- A	7		7	14 5						E	c	-	2 v		1 N	EL.		19	o n 5 e		7							
3	TS	LB						П	er en			<u>653900</u> mit	1	Π		2000 (2000			6 5 R 1			Rest of C		1000					0		5.00 L					an che			•							П	
4	Ts	LB											5									T			1 1	23	8	1.	0			T								T						T	
		TM								177 04.00							L	\$ 6	A .	T	E	T	H		BE	E N	T	8.															Τ			Π	
		N T		11									1			86									11	20	B	6.	0				0.														-
		NT			20 800	1. Sec.				2448 Pro 34	1069.		2			1000		290.7	8	1.200		1.92453	1946	140.021		52	4	۱ .	04		80.7988	100	0.	.8	95	58	1.0.03	28			15 M. J. M. 15	32.00			1000000000		XA
		NT								73	Ê.		3			1			경구원		11년 1	926					8.				18 C		0.	8							64				•		EXAMPLE
		NT			5-1 60E	4512	in an			200	and a	192	3092		120			ØC				T	HC	=	B	EA	R		16	S	EA	ſΓ	S.		B	A	M	E	NC	2	12	A	N		2015-05-0		
10	RO	NG				£7.8					16	3.9				R R		2"			EN		8	2.00	-20		3		01	0	6/	NC	H	B	EA	JT		9. o.e.	23			31	6-10				PRO
12	no	NG	836			E.K	200					- 44	2			FD 30		6 7, 7								20		0						۲. L	53	55	• 95% 69	1. S.M	52.9 Z						接續		PROBLEM
13	BR	NG		14013	National.		240		5.91	<u>S</u> S	1.0	2.5 1	3			BK		2 7		0	2002 5.0	d OFSE		1995.4		20		<u>A</u>			145		A		49				1888 W			1987 - 91 1987 - 91	<u>.</u>	690			
14	CM	NT								12	2	1									6	7	#		SF		F	C 6	c		E.							104		19		3.9					2
15	SP	LG		\mathbf{H}				New Confe	000.0			8 a. /2	1		_ AU8 - 3.	199 of								10023		21	85	3.	0		1999 CCE	0000.0	0.	8	9 5	58	SKALL CV	ar runas	107719-023	1245 42460	MERCENTS.	<u>100 (6674)</u>	<u></u>				
16	SP	LC			-						-		S													22	9		0				0.	8	96	8			-26	<u>کې</u>						13	
		NT															L	00	A	T	5	٣	141	6	D	r a	PI	48	A 6	à M	5.	Ι		Τ						T		П	T		and the owned		
18	DI	AF										2012 11 - 20						1. A.				100				20	91	8.	5										Aller Aller Manager								Page
19		1					-																			21	04	Э.	5																		ge
20		1			19-70															Ŀ					1	21	2	0.	5										<u>S</u>			10 - 20					
21				\square						-			3.	\prod	_			\perp				1000		_		21	3	1.	5	190 VI-11			0.000	-	5.0-Feb (C.	1	anne S	AT 1. 188					\square				0f
22	22	1					de la								4			38								21	4	2,	5									36		<u>í</u>							თ
23	942 C 24	-14 V.		a yina	24-18		. ANA		10. C	engeniça			1000	19503	1.77	10 C.S		20175	1.1	2 28	ar je se s		2016 - e-	4.8 Mili	1		5	3 ;	5	(15 D240)	1048 BA		1.183 SU		ANSIN CA	NI WKS		0.653		230 07	(32- RL	10. 11	· .0		1.200	0.538	
24				121-6	la Meise	and a			de en	100		100			5			20					19. A	1 3			6			23		1						589			12	15		Carlor Carlor			
25			276	1943	300	a. 9 9		3.2	1. 1. j	12		- 19 - 2		1	1		3.1	- 22 V-0		<u>5</u> .3			17 T.	1.00	1. J. J.	15	2	5.	5			80 A.3				N CR		GAG - TT		+	1 2	و دو دومد				10	
26	14.2				and an	1. A.	3853		ES4						10 1648 - 1	190 (19) 190 (19)		34	3 (2-1) 1	AL N	Ì	9-3 3	they all	>>2		6 1. 2 1	0	197 / 1 7	3 (*	in the second		1		54,53				백신문		+	1.8		-	1.1	-		
24	29 3		1.1			1. Y.	4	1.1		1			S.	9 (J. 19) - 74		5	Rom	19 N 19 N	1					4	12.	<u>د ۱</u>	7	1.	5 5 5			n Su					~ .						. 1	-		-677	
24	and i al	1		1 1	1999 - 10 1997 - 10	++	2.2		3	+			1		연관한	F.F.		1	2-17	Dezeni Dezeni	120		문제	200		27		6 . 6	e	3920			+		125		1	1		1.00				4.4			55
27 28 29 30 1011 12	DT	A 2		· · · · · · · · · · · · · · · · · · ·				1	1.1			1			and the second s						7 14	195	F	1		2 2	3	, ' ,	5	1.		1.		A				1.		- 45	1				H.	5	Ŭ.
101112	13 14	15 16	17 18	19 2	021	222	3 24	125	262	7 28	29	30 3	31 32	33	343	536	37	383	940	41	4243	344	45 4	16 47	484	9 50	515	52 5	3 54 5	5 56	575	8 59	606	1 62	636	465	666	768	697	707	1727	3 74	757	677	78 7	9 80	1

ø

8

ø

0

ļ

CONTROL 8 SECTION	i.	P.E	「	PI	ROJ						C		TIE	S	RO	٩D	D	ESI	GN	PAR Si D II	rst	ΈN	1	RN	A		D	ATE		AY	(((OF_	1 C 19))75
12345678	G			//												1.00.0																		
CARD COMMAND			•				_		- C													RA						N		and the second se	AZ,			W
NO.	A	B 22 23 24	C 25/26/27/28	D			F 5 36 3	0 37 38 3	R C					17 48	49 5		52 53	ATIC)N 5 56	57 58	596		5 I A 62 6	3 NC	E, E	6167	686	s 970	DE	G 2173	MIN 74175	S 76 77	EC	w 980
31DIAF															22	24	1.	0	4									T	Π		7475			Π
32 1											34				2:	25	0.	5								121								
33															2	26	1 .	7	5															
34		ŕ.,								1. Sec.							3,																	
35																		2	5															
36																	5.														1.2			
37															23	50	6.	1!	5															
38															23	<u>5 1</u>	8.	0	13					28	L				2.3. 1. Martin			•		
39															23	32	9.	2	5															
40									1.1								0.	5		t of the second					4	10,002		3						
4															2:	35	1.	7:	5												·	-		
42															23	56	3	٥																
43DIAF															23	37	4.	2	5							_								
4 ACMNT										NE		19	SI	6	9			ie :		PA	R 1	N 1.	1			50					ØA	Dw	LA Y	1
45CMNT								AT	ø	F S	E	75		ØF	•	-7	. 1	2	5	AN					2	5	FI	EE	T,					
46PSLB	1										1.								10			- 1		5 1	5			3.34		12.		() - ® ×		
47PSLB	8																-				2	25		12	5									
4BCMNT								TH	1.9	B	A	MS		AR	E	9	AR	A		51		10		TH	10	R	Ø	AD	WA	14	A	T	A	
49CMNT								UNI	F	\$	M	5	PI	AC	11	IG	đ	5 F	6	. 5		FE	E	۲.										
SOBGRP						1	5	6	. 5			<u> </u>		4	20	8	6	0				- 4		0		Ner.					ri + i i i i i Katalonda	》》》。 谢福定		
SICMNT								EST	r A	BL	- 2	SH		AN	1	A	XI	S'		CA			TS	2	5	1 T		AF	F	ø	R	PL	1	
52 AXIS	50	29						21	13	04				Ĩ	01	68	00		S.		20	2.				812			9					E
53CMNT								DEI	= 1	NE		TH	E	S	1	B		NN	D	DE	S1	C 6	N	T	H	2	F	RA	MF		Fø	R		
54CMNT						ľ		SP	AN	3	1	È		3	u	SI	NG		# P	TI	61	N -	1	0.		1.		200	10 m	14.3		- 3		- AL
555LAB	1	2	1		2			8	. 0																									
56FOPT	1	3			51	٥	5												-				2									+		
57CMNT								ES	TA	BI	- I	SH		AN		A	X	CS.	•	C A	21		A	ND		6 0	N	T 💋	MR	4	TH	6		
SBCMNT								5 1	AB										987 3 1 1 1															
5 BC MNT 59 AXIS	50	29						51	12	00	2.		ŀ		6	6 8	00) 。			20	3						N	6) 0				
GOSLAB	1	2			31 32 33								1							1	3-4			1		g.,		1						79 83

\$

9

CONTROL B DISTRICT SECTION I. P. E. CO. 1 2 3 4 5 6 7 8 9 CARD COMMAND													_ F	RC	JJ.										(0	٦	TIE	ES			A	D	D	E	SIC	GΝ		SY	′S ⁻	ΛE TE UT	Μ		RN	Λ			S D F	SHE DAT PRE	ET E_ PA	MRE	9 10	Y BY_	_0	F	10 7. H	1	9				
	Т							Τ		в		Τ		с)		[_															Ì						ATE	Ξ				D								_			_	_		R SK	_	٧
11 12	2 13	14	15	16	17		9 2	02			3 24	125		-	28	29			32	33	34	F 35	36	37	38]:	39 4 39 4			24	211 3 44	45	46	47	48	49	0 505	515	5 2 5	1A 35	TIO 45	5156	57	58	59	1 60 6	DIS	1 A 2 63	NC 3 64	E, 65	E 66	C. 67	68	<u>69</u> 7	N S 707	DE(172	G 273	MIN 74 7	V 257	S 76 77	EC 778	79	w 80
61		9	N	T		Q	292		3	82.3				- 23		14	de la	ž., 41	4459.3		J	e sécte	1	2	0	3(12.5			1255	2	31	3 [2	•					1420		0													C)。	778		
63	2 C	M	A	4		<u>9</u>										525C				64	9838 			5	e o		6 F		1		E			H D	B						6	A.	1		61		: A		A	N	6	6.		51	T	W						
64	HV	C	L	R						STATES OF											K		2											N								ſ															and the second					
65	<u>]</u> C	M	N	7		1000					0.54 596.45		au 1/2 20			ŀ						19.20-0		D			56	5 A)	6	I	R	D	¥.	R		N	Ø.		4										64GIDH							Passader		ite pa cando		1000	
6	6	Ð		5							3	C	Ģ	N	T				414) 1997		4																																									
		P - M 5 - M	1.21	5.4	SI		1		85.		国 紀	10.1		13.7	1	1	173		新期		2.10	Kas	-35	<u>ر</u> ه			Gð									K.			18 A				1248	234	491 S.	1086			1 1 1	1		20-035	Web		14. 19.	1	1.94			and and a		
			993	194		<u>ac R</u>				<u>38.</u>		9 <u>08</u>		ję., '		<u> </u>	<u>[]</u>		30	R.			3-604 - 90,1	et el 1	24				+	- 191 					<u>976 (</u>		潮影		i de					89	<u>. 280</u>			, 1 Gerse 81 Juli-14	5.3	7.79) 7.793	<u>70</u>	2480	<u>7. 1</u> 0	28 BJ	<u>n Se</u>	Sant S	H	13			n de la constante	80 260
1			3	12.5			- 198															15.85 15.85	3																									10				2	100					1	100	•		
	-									Ī								3.04					10.0112	200 A		Abo				64 <u></u>	Berny.		<u>8.8.1</u> /8		5.885 <u>8</u>		2.071		<u>4</u> 21.12	201 UN							- In the				-	01		-985 5. 7	100 130				and the			
di da la la n f						a."																								245 1345																	da a														(. 5) n. z	ì.
+	+-	-				_		_	-	-			11.1	8 'au	1 7	<u> </u> ,						: 20	3.03		20			77	783	10.24		100	3.4					23.23		1.8		120		51	.70	- 12	301	- way			SLE IN T	-	_	+	-	1.1.18	\vdash	_	-			
-	+	+		\square	<u> </u>		+				54		10 20	<u>}</u>		+	-		10		-		200	94" 22#		2					6.8			S.	24			84 C.				1.4	24	.3	·	22					»: 3.		4		9 		ŀ.	+	-			
	÷.	1		\square							1.		a		12	5	-3	1.1.2.1. 2.1.2.1 2.1.2.2				: 4						-	1				1			-	, il i		34				-2%	"2" "			ŀ	1 :				-	+				-	+	+-	•		Н
						1	1	35.	ľ				<u></u>						. 34		1	1	-18	1	T	1	+		-	7.				<u>, </u>			•4.9		208.48						~								1	\uparrow	\uparrow		\uparrow					Π
-							1.0	15 S.S.	100			481 45		10.0			10 AL				11.1				2		19 N	1.00.0	M 200		1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		Sec. and														A. 1 H.			a.								-			
		-				+		_						1	1.3	38%	1.273		100	7-68	3 54		3		1		.5417	- 1.	+	-		- 10				-	- 22			- 				,-	\downarrow	-	-	-			_			_	-	$\left \right $	\vdash	_	_	•		
+	+	+	-	ų.	:	_	<u>.</u> .	1	~	4	Ê	1	130	- 	1.			19 178						дÂ.		21-	4.		n C	×			23	2.1			£3 -		:C	16				, ,					-		-	-	+	+	-	Ľ	┝┼╴	-	-	•		
	1	-			-					-				1	19		12	5.45		100		15				3.5			-	134	R	1	2.59	2.5		1	<u> </u>			4	32	1		1	1	•	10	£		5	-	1	1		+	$\left \right $		1	-			
	f	-			•	-	Ť		+	+				4			3.22	033			1224	100	<u>C.3</u>			10	<u>, uib</u> 1	joog h	313	<u>2004.</u>	1.12.5		0.10	2.9.3	Se z		<u>~_</u> *.		<u></u>								1			Ŷ			1	╋	+		\vdash		-			
	4						53															13 j.	Ç.															J.			20 A.			y i		1		1					ŀ									
		1			2.45		13		-		100		·	× 5. ×	1.1.6	Ger .	32	20	10.5		9			-			100								_	-			, 17	13 ~	_	1	2.1			-	+-							ļ			\square		_			
									20		20	<u>_</u> }^.	بية يوجيع 1984 -	de.						28) 2.4		<u>_</u> 91	9. 8 9. 8		274 j.	~ 74() -340		4.4 	1	4.1	R.		20		-		1					1				· .			-	ŀ	_ !			-	+-	\vdash	\vdash	_	-	•	Ц	
	-	+				: -						1	-	s	1.4			2	102	5	1.17			-				· .	-		-		•	\vdash		-				+		2	\mathbb{H}	$\left \right $	-		+	+	-	\vdash					+	+	\vdash	1	+	•	$\left \right $	_
-								1.	<u>, ,</u>		1	1		-		1	-			#1×	-	-		-		-		-		-				H			-			-				-					-	1					-		\square	17 A.A., 18-4				-
11 12	1									-		T		ŀ			·	-			.1	• :		-	•		1	1		1	1	· ·									1					1	+		T				T		T			T		T		

14

Q

R

Form 1255 Rev. 7-68 File 19.129C

á

	С		RO	L N NO													Т	E									Y BEA								JT	•		M. Cł	ADE HEC ROB	E B KEC	Y D B`)	F 1	3	+	((SHE (Date Date E T_	<u>ک</u> اک	/2	:2, 11	/3)	
	-	Ρ	- LO		5	Ĵ		Ρ) - L		DS			SE		ON	E	1	вот	r. Pl	_ AT	ES			тс	OP	Thic Dept PLA	TÉS	5		WE	BD	BLE EPT	Н	w *	_		(C	Pro ON: W	Der STA EB	NT	WE Give	en)								B 30	EX/
1 2 3 4 5 6	482	4820	482	4810	481	481	47	4720	47	4710	4 1	471	404		7 1	2 - 0 0 - U	4 6 1 0	4530	453	4520	452	4510	451	4430	443	4400	442	4410	441	435	43	43	4	43	42	42	4	4 4	4	4 3	4	4	4	4			- M a		2 BEAM		PROB.NO. 6	
51,21,11,01,6,8,7															10						35		8				25		60									5859.4		281		50			RANGE I		X - SECTION	-	IDENTITY 13 M			2
14,15,16,17,18,19,2																			5						S															52					RANG		CODE		BM. CODE 19 WG			rage 4 or
20 21 22 23 24 25 2																			225		54		10		225	<u>ا ا</u>	54		0																NGE 2			<u>e e i e</u>	23 F			υ
26,27		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							-									3. J.															-												RA				L M	- 🛛		

a.

58

ญ

Form 1255 Rev. 7-68 File 19.129C

ä

a second of the second second

	С	ON.				1										-	(0	NT	-IV	IUC	DU	S	B	ΞA	DE M	AI					N	Γ								s	D D HEE	ate. ate. T_	,5 10	/ 2 _ of.	: <i>7)</i> 10	<u>7</u> .3	
	F	P	-L(S			F		OAC	DS			OM	TIC	ĴŅ	(BC	DT. I	PLA	TES	5	Τ	тс	P P	LAT	ES		W	/EB		этн *		VAR WEE T	<u>'</u> -	(C		STAI EB	ies NT	Give	n)]							B 30	Ŀ
1,2,3 4,5 0	482	4820	482	481	4810	481	472	4720	472	4710	(47101	4711	404	400	102	400-	2 Z Z Z Z	2 2 C 4	452	4 5 - 0	451	4430	443	4420	442	844101	441	435	434	6433	432	43-		4 4 4 0 1	4 - 4	41301	4 3		4 2	2411011	4 1	CC NR		- M 3 L	2 .	- 2 BEAM	PROB. NO. 6	
5, 2, 8, 9, 10, 11, 12, 13																			59				22		54										62585		28		50			RANGE		X - SECTION	-	IDENTITY 13	-	M 2
14 15 16 17 18 19							· · · · · ·														00		5			2	10										11215	L				I RA		DN CODE		M BM. CODE 19 WG	-	Page 5 OT 5
20 21 22 23 24 25															375		<21		52						20										2							RANGE 2			* *	/g 23 E 27	- - -	
26 27																													and the second													RA				7 LLM 3	-	59

ŷ

CO	EXAS HI Innecti Introl	ON D	RAM	ΡΑ			TIES	ROADWAY DESI	11 *** BRIDGE GEDMETRICS *** May 27, 1973 HIGHWAY - EXAMPLE PROBLEMS								
							BRI	IDGE GEOMETRY	LIST								
CD COMM NO	AND A	В	C	ם	£			Y-COORDINATE OR STATION							STOR	Æ	
1 NAM	E	6	в нѕ20	OVER	н	0	1600.0000	2100-0000	CONNECTION D	RAMP	A				STR	1	
***	*LOCAT	ETHE	TRANS	VER SE	SLA	вL	INES.										
3 TSL	. B	0	0 0	1	0	0		1731.0000 106690.6279		0.0		0 0 66 13		4			
4 TSL	. B	0	00	2	0	0		1783.0000 106645.8186		0-0	s	0 0 53 13		4			
5 TSL	. 8	0	o 0	3	0	0		1835.0000 106608.0435		0.0	s	0 0 40 13		ri -			
6 TSL	. B	0	0 0	4	0	0		1887.0000 106579.2387		0.0	s	0 0 27 13		d			
7 T SL	. B	0	00	5	0	0		1939.0000 106560.6280		0.0	s	0 0 15 52		ł			
8 TSL	. 8	0	0 31	6	0	0		1991.6500 106550.0003				16 37 9 10			sc	31	
***	*LOCAT	E THE	BENTS	•													
10 BEN	IT	0	0 0	1		AB		1731.0000 106690.6279			s	0 0 66 13		đ			
11 BEN	т	0	0 0	2			0.0 211049.5680	1783.0000 106645.8186	0.8750 1783.0000		s	0 0 53 13		ri i			
12 BEN	T	0	0 0	3				1835.0000 106608.0435			s	0 0 40 13		d .			
13 BEN	T	0	0 0	4				1887.0000 106579.2387			s	0 0 27 13		ni			

#

1

\$

.

2

TYPICAL BRIDGE COMMAND OUTPUT FOR PROBLEM 1

ŀ

A

60

ъ

\$

TEXAS HIGHWAY DEPARTMENT Connection D Ramp A Control 101 Section 01								12 T I E S ROADWAY DESIGN SUBSYSTEM *** BRIDGE GEOMETRICS *** MAY 27, 1973 COUNTY & HIGHWAY - EXAMPLE PROBLEMS									
								BRI	DGE GEOMETRY	LIST							
CD (No	COMMAND	A	₿	С	a	E				RADIUS, OFFSET DISTANCE, ET C.	EL EV .			-	SKEW		STORE
14	BENT	0	0	0	5			0.0 211176.7590	1939.0000 106560.6280	0.8750 1939.0000	0.0	s	-		0.0 5.09	W	
15	BENT	0	31	0	6		TR	0.0 211228.2768	0.0 106550.0003	0.8750 1991.6500	0.0	s			0.0 57.31	E	
	****LOC/	ATE T	HE BE	ARING	SEA	T S I	8E	AM ENDS, AND									
	****REF	ERENC	ELIN	ES FOI	REA	сн	BEN	Τ.									
18	BRNG	0	0	0	1	2	FD	23.5000	5.5000	2.8958			0	0	0.0		
19	8 RN G	0	0	0	2	2	80	23.5000	5.5000	2.8958			0	0	0.0		
20	BRNG	0	0	0	3	2	80	23.5000	5.5000	2.8958			0	0	0.0		
21	BRNG	0	0	0	4	2	BO	23.5000	5-5000	2.8958			0	0	0.0		
22	8 RN G	0	0	0	5	2	80	23.5000	5.5000	2.8958			0	0	0.0		
23	BRNG	о	0	0	6	2	BK	23.5000	5.5000	2.8958			0	0	0.0		
	****LOC/	ATE T	HE DI	APHRA	GMS.												
25	DIAF	0	0	0	ı	0	0	0.0 211035.2138	1757.0000 106667.4804	0.0 1757.0000	0.0	N N			6.31 6.31		
26	DIAF	0	0	0	0	0	0	0.0 211066.2822	1809-0000 106625-9211	0-0 1809.0000	0.0	N N			6.31 6.31		
27	DIAF	0	0	3	0	0	0	0.0	0.0	2.0000			0	0	0.0		
28	DIAF	0	0	4	O	0	0	0.0	0.0	2.0000			0	0	0.0		
29	DIAF	0	0	5	0	0	0	0.0	0.0	2.0000			0	0	0.0		

8

-D

ş

е

TYPICAL BRIDGE COMMAND OUTPUT FOR PROBLEM 1

á

ь

	TEYAS	нтсы	WAY DE	DADT					WAY DESIGN S	UBSYSTEM **	* GEONET	* 2.119	**			12
			OMETRY					I I L S RUAL	JAAT DESIGN S	00313128 ++	+ GEORET	KIC3 +		Y 27,	1973	
	CONTRO)L 1	01 SEC	TION	01						TY & HIG	HWAY -	ЕX	AMPLE	PROBLE	MS
								GENERAL	GEOMETRY LI	st						
CD NO	COMMAND	A	в	С	D	E				RADIUS, OFFSET Distance, etc.		BEAR D	, AZ M	, SKEW S	ST	DRE
	*** * ES]	TABL I	SH ТНЕ	GEO	METRY	NE	EDE	D TO DEFINE 1	гне							
	****LEI	FT ED	GE DF	THE	SLAB.											
3	3 PONT	10	0	0	. 0	I	0	0.0	1700-0000	-7.1250		0	0	0.0		
-	5 . 6.11		·	•	·	•	•	+	106747.4333		0.0	Ō	Ō	0.0	SP	10
3	4 PONT	11	0	0	0	I	0	0-0	1793.8300	-7.1250		0	0	0.0		
								211058.6366	106659.8949	0.0	0.0	0	0	0.0	SP	11
3	5 CURV	20	0	0	0	I	0	0.0	1700.0000	-7.1250		0	0	0.0		
								211189.8780	106716.3658	142.8750	0.0	0	0	0.0	SC	20
3	6 CURV	22	0	0	0	н	0	0.0	1851.0000	-10.1250		0	0	0.0		
								211233-1289	106783.0422	219.0581	0.0	0	0	0.0	SC	22
3	7 CURV	23	0	0	0	н	0	0.0	1921-0000	-10.1250		0	0	0.0		
								211274_6715	106905-0808	347.9736	0.0	0	0	0.0	SC	23
3	8 PON T	12	0	0	0	н	0	0-0	1920-6800	-10.1250		0	0	0.0		
								211162.5358	106575.6704	0.0	0.0	0	0	0.0	SP	12
3	9 PONT	13	0	0	0	н	0	0_ 0	2020.0000	-10-1250		0	0	0.0		
								211257.0175	106557.5553	0.0	0.0	0	0	0.0	SP	13
4	D PONT	14	ο	0	0	н	0	0.0	1850-0800	-10.1250		0	0			
								211102-9834	106606-8361	0.0	0.0	0	0	0.0	SP	14
4	1 CURV	11	21	0	0		0	0-0	0.0	120.0000		0	0	0.0		
-								211058.6366	106659-8949	120.0000	0.0	0	0	0.0	SC	21
4	2 CURV	14	24	0	0		0	0.0	0-0	120.0000		0	0	0.0		
								211102.9834	106606.8361	120.0000	0.0	0	0	0.0	SC	24

۹ G

D

8

TYPICAL BRIDGE COMMAND OUTPUT FOR PROBLEM 1

Ъ

á

62

3

¢

	TEXAS	нтен		ΟΛΡΤ					WAY DESTON SI	UBSYSTEM ***			**			13
	GENERA							IL J KOAL	MAT DESIGN S		GEORET	103 4			1973	
	CONTRO	L 1	01 SEC	TION	01						ry & Higi	HWAY -	ΕX	ANPLE	PROBLE	MS
								GENERAL	GEOMETRY LI	ST						
CD	COMM AND	Α	в	С	D	E	F	X-COORDINATE	Y-COORDINATE	RADIUS, OFFSET	ELEV.	BEAR	, AZ	, SKEW	ST	ORE
NO							0	R CORRECTION	OR STATION	DISTANCE, ET C.		D	м	S		
43	ISCT	21	24	15	0	н	0	0.0	0.0	0.0		0	0	0.0		
							-		106707.0582		0.0			0.0	SP	15
								210992.6402	106559.6728		0.0	0	0	0.0	NS	0
									1835.1880	-129.7413	417.85				SP	15
44	CURV	15	11	25	٥		0	0-0	0.0	0.0		0	0	0.0		
	-							211168.9798	106707.0582	120.0000	0.0	0	0	0.0	SC	25
45	PSLB	1	10	20	11		0	0.0	0.0	0-0		0	0	0.0		
46	PSLB	1	0	25	14		0	0.0	0.0	0.0		0	0	0.0		
47	PSL B	1	0	22	12		0	0.0	0.0	0.0		0	0	0.0		
48	PSLB	1	0	23	13		0	0.0	0.0	0.0		0	0	0 •0		
	****EST	ABLI	SH T HE	GEO	METRY	NE	EDE	D TO DEFINE T	HE							
	****RIG	нт е	DGE OF	THE	SLAB	•										
51	CURV	30	0	0	0	н	. 0	0.0	1971.0000	22.1250		0	0	0.0		
			_		-		_	211274.6715	106905.0808	380-2236	0.0	0	0	0.0	SC	30
52	PONT	40	0	0	0	н	0	0.0	1991.6500	0.0		Ō	0	0.0		
					-				106550.0003	0.0	0.0	0	0	0.0	SP	40
53	TRVS	40	31	41	0		0	0.0	0.0	25.9980		0	0	0.0		
								211232-4256	106524.3355	0.0	0.0	0	0	0.0	SP	41
54	CURV	41	32	0	٥		0		0.0	29.0300		0	0	0.0		
								211232.4256	106524.3355	29.0300	0.0	0	0	0.0	SC	32
55	ISCT	30	32	0	42		0	0.0	0.0	0.0		0	0	0.0		
									106525.0873		0.0	0	0	0.0	NS	0
								211204.2760	106531.4306	0.0	0.0	0	0	0-0	SP	42

ρ £

£

ø

TYPICAL BRIDGE COMMAND OUTPUT FOR PROBLEM 1

4

A

TEXAS HIGHWAY DEPARTMENT General geometry process Control 101 Section 01							T I E S ROADWAY DESIGN SUBSYSTEM *** GEOMETRICS *** ΜΑΥ 27 COUNTY & H1GHWAY + EXAMPL													
								GENERAL	GEOMETRY LIS	ST .										
CD (No	COMMAND	A	В	С	D	E				RADIUS, OFFSET D1STANCE, ETC.	ELEV.			AZ M	SKEW		STO	RE		
56	BRDS	42	41	33	0		0	0.0 211204-2760	0.0 106531.4306	0.0 29.0300	0.0	s	-	-	0.0 11.67	E	sc	33		
57	PSLB	2	0	0	0	н	0	1650.0000	1920.6800	22.1250			0	0	0.0					
58	PSLB	2	0	30	42		0	0.0	0.0	0.0			0	0	0.0					
59	PSLB	2	0	33	41		0	0.0	0.0	0.0			0	0	0.0					
	****DEF1	NE P	SLB'	LINES	тн	AT	WILL	BE USED TO												
	**** EST A	BL I SH	BEAM	LINE	s.															
62	PSLB	4	0	0	0		1	0.0	0.0	3.6250			0	0	0.0					
63	PSLB	5	0	0	0		2	0.0	0.0	-21.8860			0	0	0.0					
64	P SL B	6	0	0	0		2	0.0	0.0	-15.1450			0	0	0.0					
65	PSL B	7	0	0	0		2	0.0	0.0	-8.4040			0	0	0.0					
66	P SL B	8	0	0	0		2	0.0	0.0	-1.6630			0	0	0.0					
	****DES1	GNATE	'PSL	8' LI	NE S	4	- 8	TO BE BEAM												
	****LINE	S 1 -	5.																	
69	BEAM	0	0	0	4	0	1	0.0	0.0	0.0			0	0	0.0					
70	BEAM	0	0	0	5	0	2	0.0	0.0	0.0			0	0	0.0					
71	BEAM	٥	0	0	6	0	3	0.0	0.0	0.0			0	0	0.0					
72	BEAM	0	0	0	7	0	4	0.0	0.0	0.0			0	0	0.0					
73	BEAM	0	0	0	8	0	5	0.0	0.0	0.0			0	0	0.0					

E

B,

ij

a

TYPICAL BRIDGE COMMAND OUTPUT FOR PROBLEM 1

15 _EMS
STORE

4

\$ ¢

78 SLAB 1 2 1 2 0 7.5000 0.0

5

9

TYPICAL BRIDGE COMMAND OUTPUT FOR PROBLEM 1

ទ

	TEXAS CONNEC CONTRO	TION	8					TIES	ROADWAY DESI	GN SUBSYSTEM C					DGE GEDM May 27 - Exampl	, 1973	3
								8R.	DGE GEOMETRY	LIST							
CD NO	COMM AND	A	В	С	D	E				RADIUS, OFFSET DISTANCE, ETC.				-	Z,SKEW S	STO	DRE
1	NAME	3	5	Н\$20	OVER	J	0	2000-0000	2500.0000	CONNECTION B						STR	2
	****L0C	ATE 1	ГНЕ	TR AN S	ER SE	SL/	AB L	I NE S.									
3	T SL B	0	0	0	1	0	0	0.0 211485.2734	2086.0000 106607.3710		0.0	s	-	-	0.0 10.02 W		
4	T SL B	0	0	0	2	٥	0	0-0 211 7 27-8463	2387-0000 106437-6703		0.0	s	-	-	0.0 58.02 W		
	****LOC	ATE	ГНЕ	BENTS													
6	BENT	0	0	0	1			0.0 211485-2734	2086.0000 106607.3710		0.0	s	0 53	-	0.0 10.02 W		
7	B EN T	0	0	0	2			0.0 211596.8077	2241.0400 106500.6609		0.0	s	-	-	0.0 52.74 W		
8	BENT	0	0	0	3			0-0 211727-8463	2387.0000 106437.6703		0.0	S	-	-	0.0 58.02 W		
	****LOC	ATE 1	THE I	BEARIN	IG SEA	AT S	8E	AM ENDS. AND									
	****REF	EREN	CE L	INES F	OR EA	АСН	BEN	τ.									
11	BRNG	0	0	0	1	ı	FD	27-0000	20.0000	4.5330			0	0	0.0		
12	BRNG	0	0	0	2	ı	80	0-0	0.0	4.6450			0	0	0.0		
13	BRNG	0	0	0	3	1	BK	27-0000	20.0000	4-4910			0	0	0.0		
	****LOC/	ATE 1	гне з	SPLICE	S.												
15	SPLC	0	0	0	1	0	0	0•0 211554•8140	2188.0000 106533.0164		0.0	S	0 40	0 47	0.0 46.02 W		

ß

6

6

g

TYPICAL BRIDGE COMMAND OUTPUT FOR PROBLEM 2

Ą

9

3

CONNE	5 HIGH ECTION ROL 1	в					TIES	ROADWAY DESI	GN SUBSYSTEM					DGE GEDMET May 27, Example	1973
							BRI	DGE GEOMETRY	LIST						
C.D. COMMANE No) A	8	C	D	Ε.				RADIUS, OFFSE DISTANCE, ETC			BEAR, D		₽SKEW S	STORE
16 SPLC	٥	0	0	2	0	0		2292.0000 106474.1428	0.8958 2292.0000		s	-	-	0.0 58.02 W	
****L(CATE	THE D	IAPHR	AGMS.											
18 DIAF	0	0	0	0	0	0		2098.5000 106597.4828		0.0	s	-		0.0 10.02 W	
19 DIAF	0	0	0	0	0	0	0•0 211499•8605	2109.5000 106588.9494	• • •	0.0	s	-	-	0.0 58.02 W	
20 DIAF	0	0	0	0	0	0	0.0 211506-9961	2120.5000 106580.5781		0.0	s	-		0.0 46.02 W	
21 DIAF	0	0	0	0	0	0	0.0 211514.3226	2131.5000 106572.3734		0.0	s			0.0 34.02 W	
22 DIAF	о	0	0	0	0	0	0.0 211521.8362	2142.5000 106564.3397		0.0	s	•	-	0.0 22.02 W	
23 C1AF	0	0	0	0	0	0	0.0 211529.5329	2153.5000 106556.4812		0.0	s	-	-	0.0 10.02 W	
24 DIAF	0	0	0	0	0	0	0.0 211537-4085	2164.5000 106548.8021		0.0	s	-	-	0.0 58.02 W	
25 DIAF	0	0	0	0	0	0	0.0 211545.4590	2175.5000 106541.3064		0.0	s	+	-	0.0 46.02 W	
26 DIAF	0	0	0	0	0	0	0.0 211553.6800	2186.5000 106533.9982		0.0	s	-	-	0.0 34.02 W	
27 DIAF	0	0	0	0	0	0		2197.5000 106526.8813		0.0	s			0.0 22.02 W	
28 DIAF	0	0	0	0	0	0	0.0 211570 .6 160	2208.5000 106519.9595		0.0	s	-		0.0 10.02 W	

\$. \$

â

TYPICAL BRIDGE COMMAND OUTPUT FOR PROBLEM 2

ż

9

67

. 2

TIES	ROADWAY	DESIGN	SUBSYSTEM		***	BRID	GE G	EONET	RICS	61 ***
									1973	
				COUNTY &	HIGH	NAY -	EXA	MPLE	PROBL	EMS

8

¢

TEXAS HIGHWAY DEPARTMENT Connection B Control 101 Section 01

4

g

BRIDGE GEOMETRY LIST

ş

e.

C D No	COMM AND	A	в	C	D	ε				RADIUS, OFFS ET DISTANCE, ETC.	EL EV.				, SKEW S		STORE
29	DIAF	0	0	0	0	0	0	0•0 211579•3221	2219.5000 106513.2365	0.0 2219.5000	0.0	s			0.0 58.02	ы	
3(DIAF	0	0	0	0	0	0	0.0 211588.1807	2230.5000 106506.7158	0.0 2230.5000	0.0	s			0.0 46.02	W	
3	L DIAF	0	0	0	0	0	0	0.0 211596.8077	2241.0400 106500.6609	0.0 2241.0400	0.0	s	-	-	0.0 52.74	W	
37	2 DIAF	0	0	0	0	0	0	0.0 211604.6628	2250.5000 106495.3897	0.0 2250.5000	0.0	s			0.0 46.02	w	
3	B DIAF	0	0	0	0	0	0	0.0 211614-1379	2261.7500 106489.3251	0.0 2261.7500	0.0	s			0.0 46.02	W	
34	DIAF	0	0	0	0	0	0	0.0 211623.7533	2273.0000 106483.4855	0.0 2273.0000	0.0	s	-	-	0.0 46.02	W	
39	5 DIAF	0	0	0	0	0	0	0-0 211633.5036	2284.2500 106477.8741	0+0 2284+2500	0.0	s	-	-	0•0 46•02	W	
30	5 CIAF	0	0	0	0	0	0	0.0 211643.3834	2295.5000 106472.4939	0.0 2295.5000	0.0	s			0.0 46.02	W	
3	7 DIAF	0	0	0	0	0	0	0.0 211653.3872	2306.7500 106467.3480	0.0 2306.7500	0.0	s	-	-	0.0 46.02	w	
31	B DIAF	0	0	0	0	0	0	0.0 211663.5095	2318-0000 106462-4392	0+0 2318+3000	0.0	s	-	-	0.0 46.02	W .	
39	DIAF	0	0	0	0	0	0		2329.2500 106457.7702		0.0	s	-	-	0.0 46.02	W	
4(DIAF	0	0	0	0	0			2340-5000 106453-3437		0.0	s	-	-	0.0 46.02	W	

TYPICAL BRIDGE COMMAND OUTPUT FOR PROBLEM 2

89

i

	TEXAS Connec Contro	TION	в		t/			TIES	ROADWAY DESI						MAY	27,	62 TRICS *** 1973 PROBLEMS	
								BR	IDGE GEOMETRY	LIST								
CD (NO	COMMAND	A	B	С	a	E			Y-COORDINATE OR STATION				BEAF D	•	Z,SKEW S		STORE	
41	DIAF	0	0	0	0	0	0	0•0 211694•5305	2351.7500 106449.1620		0.0	s	0 21		0.0 46.02	н		
42	DIAF	0	0	0	0	0	0	0•0 211705•0698	2363.0000 106445.2276		0-0	s	-	-	0.0 46.02	W		
43	DIAF	0	0	0	0	0	0	0-0 211715-6989	2374.2500 106441.5426		0-0	s	-	-	0.0 46.02	W		
	****DEF	INE '	PSLB.	LINE	S PA	RAL	LEL	TO THE ROAD	AAY									
	**** AT	OFFSE	TS OF	-7.1	25 A	ND	25.	125 FEET.										
46	PSL B	1	0	0	0		0	0.0	0.0	-7-1250			0	0	0.0			
47	PSLB	2	0	0	0		0	0.0	0.0	25.1250			0	0	0.0			
	**** THE	BEAM	S ARE	PARA	LLEL	TO	тн	E ROADWAY AT	A									
	****UN1	FORM	SPACI	NG OF	6.5	FE	ET.											
50	BGRP	0	0	0	0	1	5	6.5000	2086.0000	-4-0000			0	0	0.0			
	**** EST	ABLIS	H AN	'AXI S	• CA	RD	TO	SET UP FOR PL	LOT.									
52	AXIS	50	29	0	0		0	211200.0000	106800.0000	20.0000		N	90	0	0.0	ε		
	**** DEF	INE T	HE SL	AB AN	D DE	SIG	N TI	HE FRAME FOR										
	**** SP A	NS 1	٤ 2 U	SING	OPTI	ON	10.											

ų

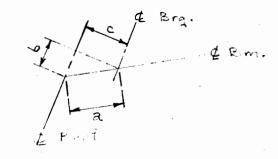
55 SLAB 1 2 1 2 0 8.0000 0.0

TYPICAL BRIDGE COMMAND OUTPUT FOR PROBLEM 2

23 *** BRIDGE GEDMETRICS *** May 27, 1973 County & Highway - Example Problems

T I E S ROADWAY DESIGN SUBSYSTEM

TEXAS HIGHWAY DEPARTMENT CONNECTION D -- RAMP A CONTROL 101 SECTION 01


BENT REPORT

/

BENT NO. 2 (S 53 13 10.23 W)

DISTANCE BETWEEN STATION LINE AND BEAM 1, 10.7387

		BEAM SPAC. (C.L. BENT)	BEAM ANGLE D M S	DISTANCE Along beam	FROM C.L. BENT ALONG C.L. BT	TO C.L. BEARING PERP. TO C.L. BT
SPAN 1	BEAM 1	0.0000	69 27 6.53	2.0914	0.7341	1.9583
	BEAM 2	6.5504	69 27 6.53	2.0914	0.7341	1.9583
	BEAM 3	3.6926	72 25 26.51	2.0542	0.6203	1.9583
	BEAM 4	3.6926	75 19 32.32	2.0244	0.5128	1.9583
	BEA4 5	3.6926	78 8 41.43	2.0010	0.4111	1.9583
	BEAM 6	3.6926	80 52 19.41	1.9834	0-3147	1.9583
	BEAM 7	3.6926	83 30 0.00	1.9710	0.2231	1.9583
	BEAM 8	6.1873	83 30 0.00	1.9710	0.2231	1.9583
	TOTAL	31.2007				
SPAN 2	BEAM 1	0.0000	88 45 0.29	1.9588	0.0427	1.9583
51 AN 2	BEAM 2	6.2401	88 45 0.29	1.9588	0.0427	1.9583
	BEAM 3	6.2401	88 45 0.29	1.9588	0.0427	1.9583
	BEAM 4	6.2401	86 55 33.76	1.9612	0.1052	1.9583
	BEAM 5	6.2401	85 10 35.35	1.9653	0.1653	1.9583
	BEAM 6	6.2401	83 30 0.01	1.9710	0.2231	1.9583
	TOTAL	31.2007		La Ca	4	Č.

TYPICAL BENT REPORT FOR PROBLEM 1 (SIMPLE SPAN UNIT)

73 T I E S ROADWAY DESIGN SUBSYSTEM *** BRIDGE GEOMETRICS *** MAY 27, 1973 COUNTY & HIGHWAY - EXAMPLE PROBLEMS 8

. 4

4

TEXAS HIGHWAY DEPARTMENT CONNECTION B CONTROL 101 SECTION 01

à

Ł

BENT REPORT

8

È.

BENT ND. 1 (S 53 2 10.02 W)

CISTANCE BETWEEN STATION LINE AND BEAM 1 4.0000

		BEAM SPAC.	BEA	MA	NGLE	DISTANCE	FROM C.L. BENT	TO C.L. BEARING
		(C.L. BENT)	D	M	S	ALONG BEAM	ALONG C.L. BT	PERP. TO C.L. BT
SPAN 1	BEAM 1	0.0000	90	0	0.00	2.2500	0.0000	2.2500
	BEAM 2	6-5000	90	0	0.00	2.2500	0.0000	2.2500
	BEAM 3	6-5000	90	0	0.00	2.2500	0.0000	2.2500
	BEAM 4	6.5000	90	0	0.00	2.2500	0.0000	2.2500
	BEAM 5	6.5000	90	0	0.00	2.2500	0.0000	2.2500
	TOTAL	26.0000						

BENT NO. 2 (S 34 25 52.74 H)

DISTANCE BETWEEN STATION LINE AND BEAM 1 4.0000

		BEAM SPAC.			NGLE			TO C.L. BEARING
		(C.L. BENT)	D	M	S	ALONG BEAM	ALONG C.L. BT	PERP. TO C.L. BT
SPAN 2	BEAM 1	0.0000	90	0	0.00	0.0	0.0	0.0
	BEAM 2	6.5000	90	0	0.00	0.0	0.0	0-0
	BEAM 3	6.5000	90	0	0.00	0.0	0.0	0.0
	BEAM 4	6.5000	90	0	0.00	0.0	0.0	0.0
	BEAM 5	6.5000	90	0	0.00	0.0	0.0	0.0
	TOTAL	26.0000						

TIES ROA	ADWAY DESIGN SUBSYSTEM	24 *** BRIDGE GEDMETRICS ***
		MAY 27, 1973 County & Highway - Example problems

ø

ź,

TEXAS HIGHWAY DEPARTMENT CONNECTION D -- RAMP A CONTROL 101 SECTION 01

Ł

à

4

2

COORDINATES AT CENTERLINE OF BENTS AND BEARINGS, SPAN 2

		COORDINATI X	ES, BENT 2 Y	SURFACE	COORDINAT X	ES, BENT 3 Y	SURFACE ELEVATION
BEAM 1	(BENT)	211058.1690	106652.2484	416.5420	211089.0907	106612.7138	418.2361
	(BRG.)	211059.3758	106650.7055	416.5835	211087.8584	106614.2893	418.1492
BEAM 2	(BENT)	211053.1711	106648.5122	417.0413	211084.9761	106607.8481	418 .7458
	(BRG.)	211054.3779	106646.9692	417.0818	211083.7438	106609.4237	418.6606
8EAM 3	(BENT)	211048.1731	106644.7759	417.5405	211080.8615	106602.9825	419.2556
	(BRG.)	211049.3799	106643.2330	417.5798	211079.6292	106604.5580	419.1716
BEAM 4	(BENT)	211043.1752	106641.0396	418.0398	211077.8838	106599 . 4614	419.6245
	(BRG.)	211044.4320	106639.5341	418.0728	211076.6098	106600.9876	419.5466
BEAM 5	(BENT)	211038.1773	106637.3033	418.5388	211074.9062	106595.9403	419.9934
	(BRG.)	211039.4822	106635.8337	418.5662	211073.5926	106597.4197	419.9216
BEAM 6	(BENT)	211033.1793	106633.5670	419.0381	211071.9286	106592-4192	420.3623
	(BRG.)	211034.5306	106632.1321	419.0596	211070.5774	106593-8541	420.2959

OPTIONAL TYPICAL COORDINATE REPORT FOR PROBLEM 1 (SIMPLE SPAN UNIT)

25 *** BRIDGE GEDMETRICS *** May 27, 1973 County & Highway - Example problems

TEXAS HIGHWAY DEPARTMENT CONNECTION D -- RAMP A CONTROL 101 SECTION 01

8

BEAM REPORT, SPAN 2

T I E S ROADWAY DESIGN SUBSYSTEM

z

	HORIZONTA C-C BENT	L DISTANCE C-C BRG.	TRUE DISTANCE BOT. BM. FLG.	BEAM SLOPE	BEAM BEARING
BEAM 1	50.1910	46.2320	47.1757	0.03387	S 38 1 49.49 E
BEAM 2	51.6248	47.6658	48-6090	0.03312	S 38 1 49.49 E
BEAM 3	53.0586	49.0995	50.0424	0.03242	S 38 1 49.49 E
BEAM 4	54.1612	50.2120	51.1506	0.02935	S 39 51 16.02 E
BEAM 5	55.3165	51.3728	52.3076	0.02638	S 41 36 14.42 E
BEAM 6	56.5213	52.5792	53.5107	0.02351	S 43 16 49.77 E

DIAPHRAGM LOCATIONS, C.L. BENT TO C.L. BENT

		DISTA	NCE TO	DISTA	NCE TO	DISTA	NCE TO	DISTA	NCE TO	DISTA	NCE TO
		DIAPH. BEAM END		DIAPH.	BEAM END	DI APH.	BEAM END	DIAPH.	BEAM END	DIAPH.	BEAM END
8 E AM	1	24.8326	24.8326	25.3584	50.1910						
BEAM	2	25.5421	25.5421	26.0827	51.6248						
BEAM	3	26,2516	26.2516	26.8070	53.0586						
BEAM	4	26.8960	26.8960	27.2652	54.1612						
BEAM	5	27.5663	27.5663	27.7502	55.3165						
BEAM	6	28.2610	28.2610	28.2603	56.5213						

TYPICAL BEAM REPORT FOR PROBLEM 1 (SIMPLE SPAN UNIT)

69TEXAS HIGHWAY DEPARTMENTT I E S ROADWAY DESIGN SUBSYSTEM*** BRIDGE GEOMETRICS ***CONNECTION BMAY 27, 1973CONTROL 101 SECTION 01COUNTY & HIGHWAY - EXAMPLE PROBLEMS

á

4

COORDINATES AND ELEVATIONS AT CENTERLINE OF BENTS AND BEARINGS, BEAM 4

	COORDI	NATES	SURFACE	DEPTH TO	DEP. BELOW	REFERENCE
LOCATION	x	Y	ELEVATION	REF. LINE	REF. LINE	ELEVATION
CL. BENT 1	211472.8887	106598.0506	464.3728	0.8958	0.0	463.4768
BEARING	211474.2457	106596.2559	464.4163	0.9121	4.5330	458.9709
SPLICE 1	211544.6867	106521.2823	465.6599	0.8958	0.0	464.7639
CL. BENT 2	211588.0437	106487.8764	465.7268	0.8958	4.6450	460.1858
SPLICE 2	211632.9439	106460.4974	465.4785	0.8958	0.0	464.5825
BEARING	211721-1850	106423.5005	464.9778	0.8962	4.4910	459.5903
CL. BENT 3	211723.3362	106422.8409	464.9658	0.8958	0.0	464.0698

OPTIONAL TYPICAL COORDINATE REPORT FOR PROBLEM 2 (CONTINUOUS UNIT)

70 *** BRIDGE GEOMETRICS *** May 27, 1973

COUNTY & HIGHWAY - EXAMPLE PROBLEMS

2

TEXAS HIGHWAY DEPARTMENT CONNECTION B CONTROL 101 SECTION 01

а.

Ę.

FRAMING REPORT, BEAM 4

8

Ð

	HORIZONTAL	DISTANCE	TRUE	VERTICAL	•
LOCATION	PREV. LOC.	SPLICE	DISTANCE	ORDINATE	SLOPE
END OF BM.	0.0000	0.0000	0.0000	0.0	0.0122
BEAR ING	0.5833	0.5833	0.5834	0.0071	0.0121
SPLICE	103.0612	103.6446	103-0689	1.2668	0.0122
CL. BENT	54.7618	54.7618	54.7619	1.3337	0.0012
SPL ICE	52.6143	107.3762	52.6149	1.0854	-0.0047
BEAR ING	95.8340	95.8340	95.8353	0.5845	-0.0052
END OF BM.	0.5833	96.4173	0.5834	0.5813	-0.0052

T I E S ROADWAY DESIGN SUBSYSTEM

DIAPHRAGM LOCATIONS, BEAM 4

DISTA	NCE TO	DISTA	NCE TO						
DIAPH.	SPLICE	DIAPH.	SPLICE	DIAPH.	SPLICE	DIAPH-	SPLICE	DIAPH.	SPLICE
9.5725	9.5725	11.3571	20.9296	11.3571	32.2866	11.3571	43.6437	11.3571	55.0008
11.3571	66.3579	11.3571	77.7150	11.3571	89.0721	11.3571	100-4292	11.3571	8.1417
11.3571	19.4988	11.3571	30.8559	11.3571	42.2130	10.8822	53.0952	9.7671	62.8623
11.6152	74.4775	11.6152	86.0927	11.6152	97.7079	11+6152	1.9470	11.6152	13.5622
	25.1774	11.6152	36.7926	11.6152	48.4078	11.6152	60.0230	11.6152	71.6382
11.6152	83.2534								

TEXAS HIGHWAY D Connection D Control 101 Se	RAMP A	т	IES ROAD	WAY DESIGN			MAY	58 DMETRICS *** 27, 1973 PLE PROBLEMS
			BEARING	SEAT ELEVAT	IONS			
BENT 1 (FWD)	BEAM 1 410.9924	8EAM 2 411.4871	BEAM 3 411.9727	BEAM 4 412.4592	BEAM 5 412.9458	BEAM 6 413.4329	BEAM 7 413.9197	BEAM 8 414.4141
BENT 2 (BK) (FWD)	BEAM 1 412.6697 412.8125	BEAM 2 413.1948 413.3108	BEAM 3 413.5002 413.8088	BEAM 4 413.8049 414.3018			BEAM 7 414.7158	BEAM 8 415-2119
BENT 3 (BK) (FWD)	BEAM 1 414.3782 414.5015	8EAM 2 414.8896 415.0325	BEAM 3 415.4006 415.5625	BEAM 4 415.7756 416.0928	BEAM 5 416.1506 416.6233	BEAM 6 416.5249		
BENT 4 (BK) (FWD)	BEAM 1 415.8862 416.0083	BEAM 2 416.3230 416.4297	BEAM 3 416.7590 416.8516	BEAM 4 417.1946 417.2742	BEAM 5 417.6301 417.6968			
BENT 5 (8K) (FWD)	BEAM 1 417.4614 417.5837	BEAM 2 417.7429 417.8528	BEAM 3 418.0244 418.1204	BEAM 4 418.3049 418.3887	BEAM 5 418.5857 418.6577			
BENT 6 (BK)	BEAM 1 418.9902	BEAM 2 419.2063	BEAM 3 419.3821	BEAM 4 419.5435	BEAM 5 419.7100			

в 8

Å

8

ŝ (

76

ą

		11
TEXAS HIGHWAY DEPARTMENT	T I E S ROADWAY DESIGN SUBSYSTEM	*** BRIDGE GEOMETRICS ***
CONNECTION B		MAY 27, 1973
CONTROL 101 SECTION 01	COUNTY	& HIGHWAY - EXAMPLE PROBLEMS

8

Q

BEARING SEAT ELEVATIONS

BENT	1 (FWD)	BEAM 1 457.4121	BEAM 2 457.9319	BEAM 3 458.4514	BEAM 4 458.9709	BEAM 5 459.4907
BENT	2	BEAM 1 458.6257	BEAM 2 459.1460	BEAM 3 459.6658	BEAM 4 460.1858	BEAM 5 460.7058
BENT	3 (BK)	BEAM 1 458.03CB	BEAM 2 458.5508	BEAM 3 459.0703	BEAM 4 459.5903	BEAM 5 460.1101

5 . A

2

8

BEARING SEAT ELEVATION REPORT FOR PROBLEM 2 (CONTINUOUS UNIT) .

TEXAS HIGHWAY D Connection D Control 101 Se		T I E S ROADWAY DESIG		43 ** BRIDGE GEOMETRICS *** MAY 27, 1973 GHWAY - EXAMPLE PROBLEMS	
		SPAN 1 BEAM	7		
*** INPUT DATA *	**				
BEAM TYPE	= 8	UNIT WT. BEAM CONC.	= 150. PCF	L.L. DIST. FACTOR	= 0.50
SPAN LENGTH	= 51.18 FT	UNIT WT. SLAB CONC.	= 150. PCF	COMP.SLAB WIDTH	= 66.33 IN
BEAM SPACING	= 5.53 FT	28-DAY ST. (SLAB CONC.	= 3600. PSI	UNIF. D.L. ON COMP. SE	
SLAB THICKNESS	= 7.50 1N	E(BM.CONC.)	= 5.00E(06)PSI	BEAM INERTIA	= 43177. IN
STRAND SIZE	= 1/2 IN	E(SLB.CONC.)	= 5.00.E(06)PSI	BEAN AREA	= 360.31 IN2
STRAND ULT. STR.	= 270K	E(PSTR.) STL.)	= 28.00 E(06)PSI	BEAN DEPTH	= 34.00 IN
NO.OF WEB STRNS.	= 2	AASHO L.L.	= HS 20	BEAM YB	= 14.93 IN
GRID SIZE	= 2. IN	RAILROAD L.L.	= E-0.	BEAN YT	= 19.07 IN

8

Q.

ş

Û

*** BEAM DESIGN ***

e a

TYPE OF BEAM	= B		D.L. DEFLECT	ION AT	MID-SPAN =	0.031 FT	(SLAB)	0.003 FT (DI	IAF)
NO. OF STRANDS	= 12.		D.L. DEFLECT	ION AT	1/4 PT. =	0.022 FT	(SLAB)	0.002 FT (D)	IAF)
SIZE OF STRANDS	= 1/2								
TYPE OF STRANDS	= 270K		ULTIMATE MON	IENT REQU	UIRED = 148	39. FT-KIPS	5		
ECCENTRICITY AT C.L.	= 12.26	IN	ULTINATE MON	IENT PRO	VIDED = 151	L3. FT-KIPS	UNDER REI	INF. RECT. SEC	ст.
ECCENTRICITY AT END	= 8.93	1 N							
NO. OF DEPRESSED STRANDS	= 4		STIRRUP SPAC	. (MIDD	LE 1/2 SPAN	1) = NO.3	(GR. 60) A	[12.0 IN	
DEPRESS TOP 2 STRANDS TO	POSITION A	-14	STIRRUP SPAC	. (EXT.	1/4 SPAN)	= \0. 3	(GR. 60) A	r 12.0 IN	
CONCRETE RELEASE STRENGTH	= 4000.	PSI							
CONCRETE 28-DAY STRENGTH	= 5000.	PSI	TOP FIBER DE	SIGN ST	RESS (C.L.)	= 1796	S. PSI		
			BOTTOM FIBER	DESIGN	STRESS (C.	$L_{-}) = 2165$	5. P\$I		

MAXIMUM CAMBER = 1.05 IN PRESTRESS LOSS = 14.21PERCENT

L.L. STRESS IN TOP FIBER OF SLAB AT MIDSPAN = 429. PSI

*** STRAND PATTERN *** (C.L. OF BEAM) ROW 1 HAS 8. STRANDS ROW 2 HAS 4. STRANDS

TYPICAL OUTPUT FROM PRESTRESSED BEAM DESIGN PROGRAM

BEAM PROPERTIES, SPAN 1/10 POINTS (BEAM ONLY)

SP	DW	I	YT	ST	YB	SB
11	50.00	44923.8	29.26	1535.5	23.74	1892.1
12	50.00	44923.8	29.26	1535.5	23.74	1892.1
13	50.00	44923.8	29.26	1535.5	23.74	1892.1
14	50.00	44923.8	29.26	1535.5	23.74	1892.1
15	50.00	44923.8	29.26	1535.5	23.74	1892-1
16	50.00	44923.8	29.26	1535.5	23.74	1892.1
17	50.00	44923.8	29.26	1535.5	23.74	1892.1
18	50.00	44923.8	29.26	1535.5	23.74	1892.1
19	50.00	79616.6	27.25	2921.7	27.25	2921.7
20	50.00	79616.6	27.25	2921.7	27.25	2921.7
21	50.00	79616.6	27.25	2921.7	27.25	2921.7
22	50.00	35052.0	27.79	1261.5	24.46	1432.8
23	50.00	35052.0	27.79	1261.5	24.46	1432.8
24	50.00	35052.0	27.79	1261.5	24.46	1432.8
25	50.00	35052.0	27.79	1261.5	24.46	1432.8
26	50.00	35052.0	27.79	1261.5	24-46	1432.8
27	50.00	35052.0	27.79	1261.5	24.46	1432-8
28	50.00	35052.0	27.79	1261.5	24.46	1432.8
29	50.00	35052.0	27.79	1261.5	24.46	1432.8
30	50.00	35052.0	27.79	1261.5	24.46	1432.8
					SPAN	PROPERTIES

ø

DR KRM KR CRM CR KLM CL CLM DL ĸL S 0.527562 0.0 0.0 0.0 0.011198 0.0 0.0 0.0 0.0 0.0 l 0.0 0.0 0.0 0.0 0.0 0.010028 0.0 0.0 0.472438 0.0 2

TYPICAL BEAM PROPERTIES REPORT, CONTINUOUS BEAM ANALYSIS PROGRAM

CONTINUOUS BEAM ANALYSIS OUTPUT DATA PROBLEM O

1

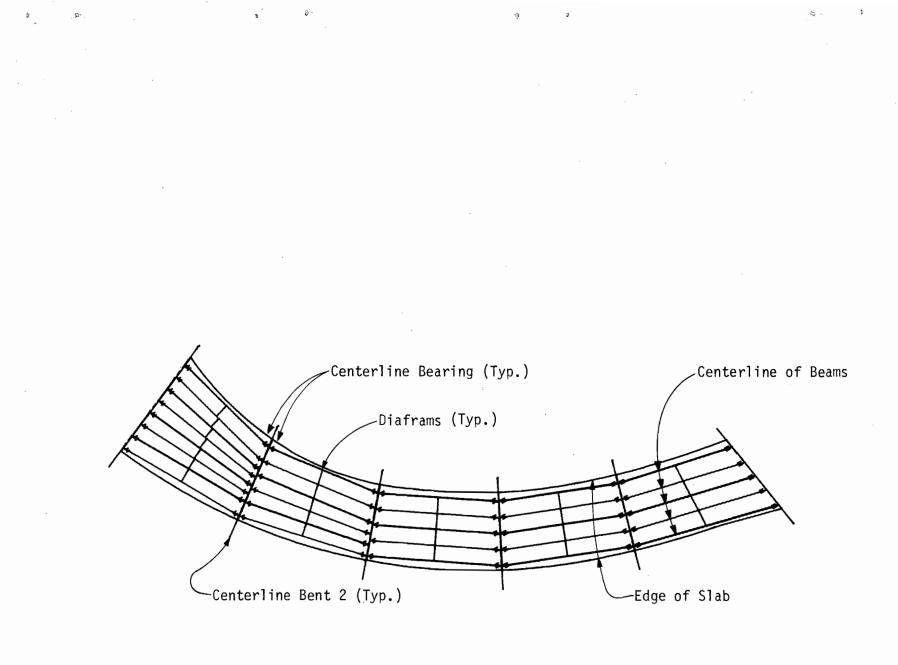
ø

MOMENTS(K-FT.) AND STRESSES(PSI), SPAN 1/10 POINTS.

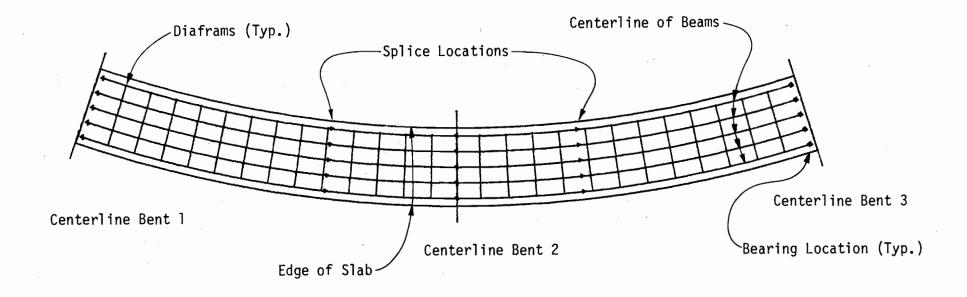
0

5

0

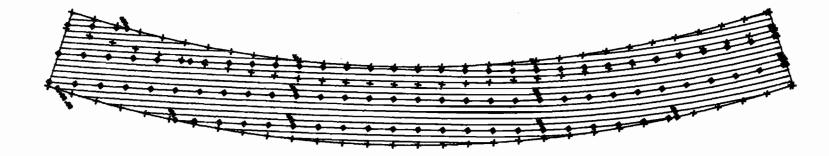

	DEAD	LOAD	MOMENTS	*		LIVE LOAD	MOMENTS	S	*	DL + LL	MTS• *	+ MT.	STRESS *	- MT.	STRESS *	R FA	CTOR
SP	G	Ρ	ы	TOT.DL	S₩•+	SH	LL+I +	£L+I	-	MAX.+	MAX	TS	B S	TS	BS	TS ·	85
11	2 40	0	501	741	0	0	630 T	-103	L	1 37 1	637	10715	- 8695	4983	-4044	0.465	0.465
12	406	0	840	1246	0	0	1064 T	-207	ι	2309	1038	18048	-14646	8117	-6587	0-450	0-450
13	497	0	1016	1514	0	0	1317 T	-310	L	2830	1203	22117	-17949	9402	-7630	0.425	0.425
14	514	0	1031	1545	0	0	1424 L	-414	Ł	2968	1131	23200	-18827	8838	-7173	0.381	0.381
15	455	0	884	1340	0	0	1394 L	-517	ι	2733	822	21360	-17334	6426	-5215	0.301	0-301
16	322	0	576	898	0	0	1225 T	-621	L	2123	276	16592	-13465	2164	-1756	0.130	0.130
17	114	0	105	219	0	0	963 T	-724	L	1182	-504	9239	-7498	-3946	3202	-0.427	-0.427
18	-168	0	- 528	-696	0	0	626 T	-844	L	-69	-1539	- 540	439	-12033	9765	0.045	0.045
19	-541	0	-1322	-1863	0	0	245 M	-1276	ι	-1617	-3139	-6644	6644	-12894	12894	0.515	0.515
20	-1029	0	-2279	-3307	0	0	0 ι	-2013	ι	-3307	-5320	-13583	13583	-21850	21850	0.622	0-622
21	-622	0	-1406	-2028	0	0	200 M	-1319	L	-1828	-3347	-7508	7508	-13748	13748	0.546	0-546
22	-318	0	-677	-995	0	0	502 T	-852	L	-492	-1846	-4681	4121	-17562	15462	0.267	0.267
23	- 86	0	-91	-177	0	0	810 T	-685	L	632	-861	6020	- 5300	-8197	7216	-0-734	-0.734
24	91	0	352	442	0	0	1063 T	-587	L	1505	-144	14320	-12608	-1373	1209	-0.096	-0.096
25	213	0	651	864	0	0	1224 T	-489	L	2087	374	19859	-17485	3565	-3139	0.180	0.180
26	280	0	807	1087	0	0	1275 T	-391	L	2362	696	22471	-19783	6621	-5829	0.295	0-295
27	292	0	820	1113	0	0	1201 T	-293	£	2313	819	22003	-19372	7792	-6860	0.354	0.354
28	250	Ō	690	940	0	0	980 T	-196	L	1919	744	18259	-16075	7078	-6232	0.388	0.388
29	152	0	417	569	0	0	586 T	-98	L	1154	471	10984	-9671	4481	-3945	0.408	0.408

TEXAS HIGHWAY DEPARTME Connection B Control 101 Section O		WAY DESIGN SUBSYSTEM Col	4 *** BRIDGE GEOMETRICS *** MAY 27, 1973 NTY & HIGHWAY - EXAMPLE PROBLEMS
VERTICAL CLEARANCE BET	EEN SPAN 2 OF ROADWAY J	WITH ROADWAY K	
0.0 L 0.10	L 0.20 L C.30 L C.40 L	0.50 L 0.60 L 0.70 L	0.80 L 0.90 L 1.00 L
BEAM 1 26.69 26.	23 25.75 25.33 24.88	24.36 23.80 23.19	22.53 21.83 21.10
BEAM 2 27.38 26.	1 26.48 26.06 25.59	25.07 24.50 23.87	23.19 22.48 21.76
BEAM 3 28.07 27.	59 27.22 26.80 26.32	25.79 25.20 24.5	23.86 23.15 22.42
BEAM 4 28.76 28.	35 27.98 27.55 27.06	26.51 25.91 25.25	24.54 23.82 23.09
BEAM 5 29.45 29.	12 28.74 28.30 27.80	27.24 26.62 25.94	25.22 24.49 23.75


a

ь

-93



FRAMING PLOT FOR PROBLEM NUMBER ONE (SIMPLE SPAN STRUCTURES)

FRAMING PLOT FOR PROBLEM NUMBER TWO (CONTINUOUS SPAN STRUCTURE)

Ĵ.

3

ţ

CONTOUR PLOT FOR PROBLEM NUMBER 2

APPENDIX

CONTINUOUS BEAM ANALYSIS PROGRAM

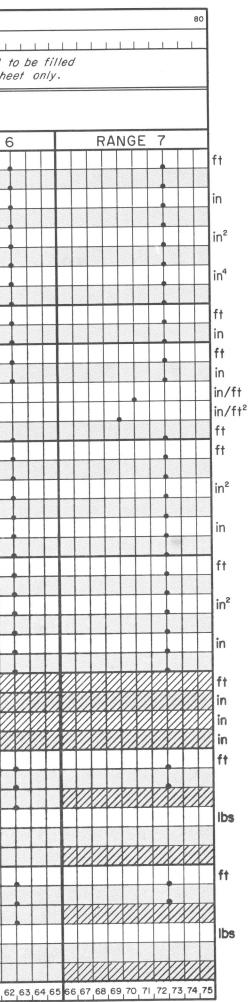
B-30

Program Description

The Continuous Beam Analysis Program currently being used by the Texas Highway Department is a modified version of the 1967 program developed by the Georgia Highway Department. This program will analyze continuous girders with from two to six spans. The minimum span length permitted is 15 feet. The program will analyze dead loads, AASHO lane and truck loads (with impact factors), interstate highway military loads, sidewalk loads, and composite and non-composite concentrated loads in a single computer run.

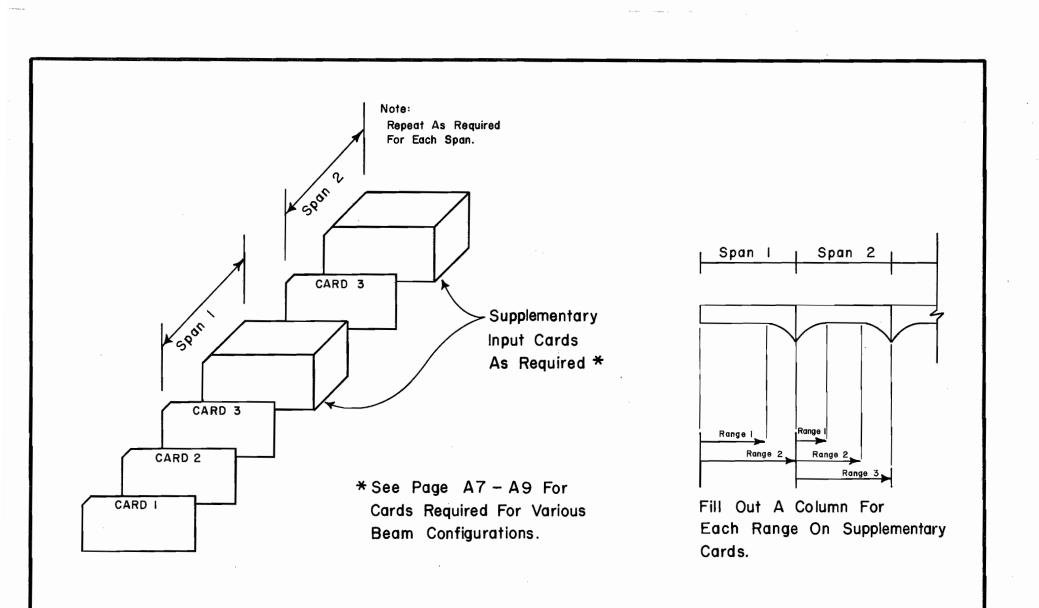
The original data input form has been modified and the ability to plot bending stresses for steel beams and moments for concrete beams has been added. A plot of total beam deflections will also be obtained when the plot option is exercised. Other modifications include computation of maximum negative live load reaction, computation of the range of shear values at tenth points of each span, computation of section properties and stress values if top and bottom plates are cut at tenth points on either side of the designated cut off point, and conversion of deflection values from inches to feet.

The output includes distribution factors, carryover factors, etc. for each span as well as moments, shears, deflections, and reactions for each form of dead and live load input. For steel beams the stresses, stress ratios, and shear connector spacings at tenth points of each span are also given.


Input

A copy of the input form is shown on the next page. A separate input form must be used for each span of the continuous unit. Only one card type 1 and one card type 2 are permitted for each problem. A card type 3 and all other required card types to complete the data must be furnished for each span. Where more than one card of a given type is permitted in a span, the total number of ranges of

Α1


	B 30	1 PROB. NO. 6 1 1 2 BEAM IDE	ЕNTITY 13 <u>М</u> Вм.	Code 19 W	G 23	E	27	M	32 L		37 V			ARI W _D	1 1	47 W		52	1 L 2 Q	UC	57 PL	.от	Card in or	s / 7 f
Dateof		2 1 M 3 L 3 1 4 4 4	8 X-SECTION CC		<u>•</u>	•					SP	AN	D	AT	A	/			1					
SHEE T		CC NR	RANGE I	RA	NGE	2		RA	NGE	3			RA	NGE	4			R	ANG	E 5	, 	+	F	RA
S		4 1 1												_	_			++						\square
	F F	41101								-											·	-		H
	WEB Given)	4 1 2 1																++						
BY		41201				•				-								++						
NO.	F EB	4 1 3				+++				+ +							\vdash							
CHECKED PROB. NO	VARIABLE (Properties CONSTANT WEB	41301																++						
CH PR	> E O]					+ + +										+								\square
		41401			┝─┼─┼─	+++		+ + -																\vdash
	WEB WEB	421			+++	┥┼┼				++							╂╌┼╴							
-		422			┝─┼─┼					++														Г
	VARIABLE WEB DEPTH	432			+++	+ + +				-+-+														
N N		6433																						
- >-	ARIA	(434																						
Ρ	> >	435																						
		441				1																		
M ANALYSIS	0	844101				III													_					1
\triangleleft	Thicknes Depth. PLATES	442																					\square	
ШI	De PL	44201														++-	╉┼┼	_						+
	Web Web	443														+ +	++	+	-+				++	+
	ant	44301			+++	┿┼┼		++-									╉┼							╀
NUOUS BE	constant Web C	4 5 1 4 5 1 0 4 5 2 1			+++			++							┼┿	+	╂┼						++	+
ΞZ	for g for g	845101		▋┼┼┼┿	┝╋╋	+++		+ +-								╋	╂┼							\uparrow
CONTINUOUS	"T" only for co "D" only for co BOT. PLATES	452			┢┼┼┾	+++	++	++							┼┿		╉┼						++-	+
IO	"T" only "D" only BOT. PL /	45201			+++	┿┼┼		++-																T
	* *	45201 453 45301		╏┼┼┼	+++			++									$\uparrow \uparrow$							T
-	*	45501											\square	\square	T		T						XX	R
	SIT	462															Π						XX	X
	COMPOSITE	4 6 1 4 6 2 4 6 3 7 4 6 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 7 1 4 7 1 4 7 1 4 7 1																					XX	X
	. SE CO	Г464														\downarrow								4
		(471														++						\square	++	+
	e s	< 4 7 1 0 1 < 4 7 1 0 2														++	╂∔				┢┥┼╸	┝╌┠╴	++	+
ц Ц Ц	NON - COMP. P - LOADS	< 4 7 1 0 2						++						\downarrow	++	1	╉┽			┞╌┡╴	┝	┝╌┠╴	╀╋	+
SEC_	Z	472											++		++	+ +	++			┢╌┟╴	++	++	++	+
		472 47201 47202						++-					++-	┼╌┼╴	┢╍╋	++-	+			┢╌╋╼	┼╌┼╌	┼╊	++	+
		47202							+						++	++	+				╋╋			+
		X 4 8 1	┼┼┼┼┾┿┼┼		+++		++			-			+				+					+		+
NO.	DS	× 4 8 1 0 1 × 4 8 1 0 2								•					++									+
	POS	40102	+++++++++++++++++++++++++++++++++++++++		+++								+											T
CONTROL HIGHWAY I	COMPOSITE P-LOADS	4 8 1 0 1 4 8 1 0 2 4 8 2 0 4 8 2 0 4 8 2 0 4 8 2 0 4 8 2 0 4 8 2 0 4 8 2 0			+++																			
COL		48201 48202																						
		1,2,34,56,7	7 8 9 10 11 12 13 14 1	5 16 17 18 19	9 20 21	22,23,24	25 26 2	7 28 2	30.31	.32.33	,34.35	36,37	38,39	9,40,4	1,42,4	3,44,4	5 46	47,48	49.50	,51,5	2 53 54	1,55 5	6,57,5	8,5

19.129C Form 1255 Rev. 7-68

values used (NR) must be entered on the first card of the type. The maximum number of entries permitted for each card type is indicated by the number of blank ranges provided on the form.

A brief description of the card types required for each beam configuration and the input variables required on each card type are contained on the following pages. For negative values, a minus sign (-) should be entered in front of the first significant digit. Blanks may be used in lieu of zeros.

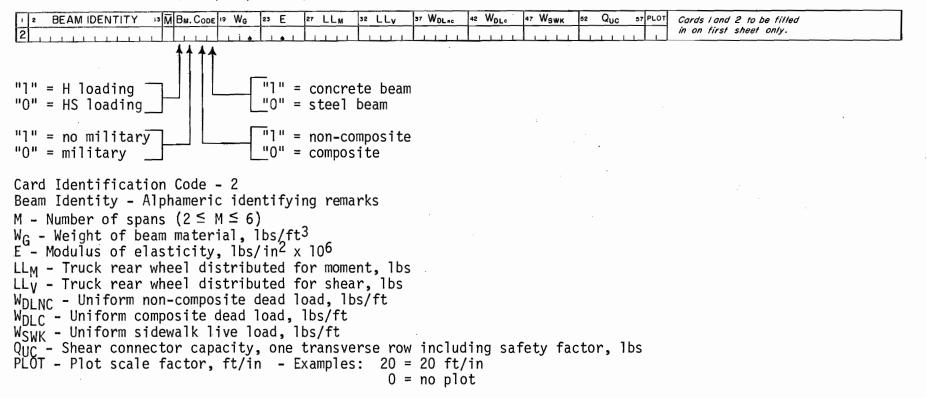
¢

\$

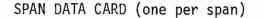
, **o.** 0

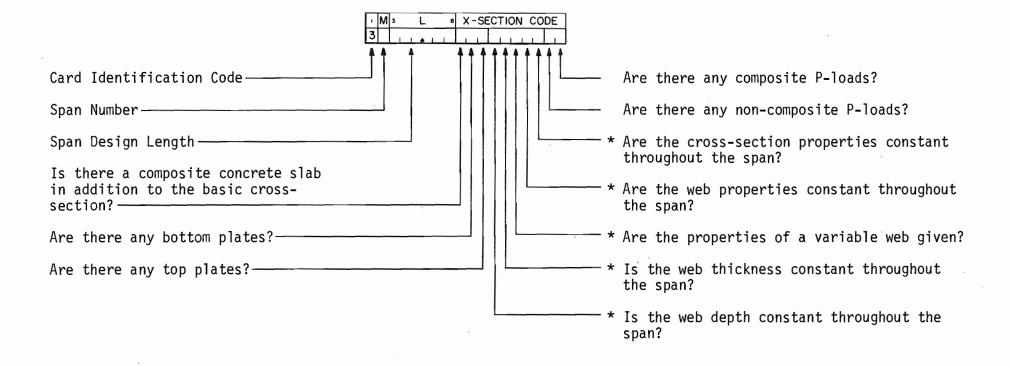
Ģ

3


DATA DECK CONFIGURATION

IDENTIFICATION CARD (One per problem)


PROB.	NO. 6	REMARKS	80


Card Identification Code - 1 Prob.No. - Alphameric problem number Remarks - Alphameric remarks

BEAM CONSTANTS CARD (One per problem)

ß

*In any one span not more than one of the entries may be yes.

Answers to the X-SECTION CODE: Yes = 1 No = 0 or blank

A6

Supplementary Input Cards

The beam cross-section determines the X-SECTION CODE which in turn indicates which supplemental card types are required and which are optional. Changes of cross-section should be avoided at exact 1/40th points of the span. A group of supplemental cards must follow the SPAN DATA card for each span of the continuous unit. Permissible beam cross-section configurations with corresponding X-SECTION CODES and supplemental card types are as follows:

<u>constants</u> cectrony	Properties Given*	X-SECTION CO
Required Card Code	s Load Card Input Data	
412 413 414	D = Depth of beam, inches A = Area of beam, in.2 I = Moment of inertia of beam,	in. ⁴
Constant Web, Prop	erties Given**	X-SECTION C
Required Card Code	s Load Card Input Data	10,0,0,1
412 413 414	D = Depth of web, inches A = Area of web, in.2 I = Moment of inertia of web,	in. ⁴
Variable Web, Prop	erties Given**	X-SECTION C
Required Card Code	s Load Card Input Data	1010 0 0 1 0 0
411	R = Range of web properties, i distance from end of span point where values of prop change, ft	to
412	D = Depth of web, inches	
413 414	A = Area of web, in.2 I = Moment of inertia of web,	in 4

*In addition Card Codes 471 & 472 may be entered. **In addition Card Codes 441-443, 451-453, 461-464, 471, 472, 481 & 482 may be entered.

Α7

Required Card Codes	Load Card Input Data	550100
		_
422	T = Thickness of web, in. (only one	range require
431	R = Range of web depth variation, ft	an inchas
432 433***	D_o = Depth of web at origin of equation $S = Slope$ of tangent of equation at C	on, inches
434***	K = Parabolic constant of equation of eq	f variable we
454	depth, in/ft ²	
435	X_0 = Distance from end of span to original	ain of equati
	for variable web depth.	5
Constant Web Depth**		X-SECTION C
		36101000
Required Card Codes	Load Card Input Data	
421	R = Range of web thickness, ft	
422	T = Thickness of web, inches	
432	D _o = Depth of web, inches	
Variable Web Depth and T	hickness**	X-SECTION C
Required Card Codes	Load Card Input Data	1 <u>9101010101010101</u>
421	R = Range of web thickness, ft	
422	T = Thickness of web, inches	
431	R = Range of web depth variation, ft	
432 433***	D_0 = Depth of web at origin of equation	on, inches
434***	S [°] = Slope of tangent of equation at K = Parabolic constant, in/ft ²	origin, in/it
435	X_0 = Distance to origin, ft	
Ton Distor	0	
Top Plates		X-SECTION
Required Card Codes	Load Card Input Data	
441	R = Range of top plate, feet	
442	A = Area of top plate, in. ²	
443	T = Thickness of top plate, inches.	
Bottom Plates		X-SECTION C
Required Card Codes	Load Card Input Data	6118686
451	R = Range of bottom plate, feet	
452	A = Area of bottom plate, in. 2	
453	T = Thickness of bottom plate, inche	S

С

3

Q

0

3

Q

***S(433) & K(434) are negative when they tend to decrease the depth.

L

Composite Section	X-SECTION CODE
Required Card Codes	Load Card Input Data
461 462 463 464	R = Range of composite section, feet E = Distance from top of web to bottom of slab, inches W = Width of composite slab, inches T = Thickness of composite slab, inches
Non-Composite P-loads*	X-SECTION CODE
Required Card Codes	Load Card Input Data
471 472	X = Distance from left end of span to P-load, feet P = Magnitude of P-load, pounds
<u>Composite P-loads</u> *	X-SECTION CODE
Required Card Codes	Load Card Input Data
481 482	X = Distance from left end of span to P-load, feet P = Magnitude of P-load, pounds

*Only one P-load may be entered within any 1/20th segment of the span.

3

4

•

3

a