
TXDOT / TTI HYDRAULICS AND EROSION CONTROL LABORATORY

Field Performance Testing of Selected Erosion Control Products Final Performance Analysis Through the 1996 Evaluation Cycle

Class 1 - "Slope Protection"
Class 2 - "Flexible Channel Liners"
"Hydraulic Mulches"

Prepared by:

Paul Northcutt
Texas Department of Transportation
Construction & Maintenance Division
(512)416-3091

Jett McFalls
Texas Transportation Institute
Environmental Management Program
(409)845-6158

Table of Contents

Introduction	
The Testing Facility	
Industry Advisory Council	
Advisory Fees and Installation Options	
Evaluation Waiting List	
Installation Procedures	
Evaluation Procedures	
Cellulose Fiber Mulches	
Class 1 "Slope Protection" Products	
Class 2 "Flexible Channel Liner" Products	
Approval by Extension	
Release of Performance Data	
Retest Procedures	
Class 1 "Slope Protection" and Cellulose Fiber Mulch Products	
Class 2 "Flexible Channel Liner" Products	
Revision of Minimum Performance Standards	
Contractor's Option	
Private Labeling	
Required Manufacturer's Literature	
Approved Product List	
Product Brand or Trade Name Revisions	
Summary	
Program Contact Personnel	13
Minimum Performance Standards	15
Record of Product Private Labels	2 1
Brand or Trade Name Revisions Made by Industry	23
Key to Abbreviations Used Within Statistical Reports	27
General Product Material Descriptions	,4
Class 1.6Class D. 44.44 a. 2. Final Desfaueron Det	
Class 1 "Slope Protection" Final Performance Data	ل ا
Dec. J. CD. J. 4E all ations	
Record of Product Evaluations	1
1:2 Clay	
Tabular Data	
Graph - Sediment Loss 4	
Graph - Vegetation Density	
1:2 Sand	
Tabular Data	
Graph - Sediment Loss 4	
Graph - Vegetation Density 4	
1:3 Clay 51 - 5	
Tabular Data 52 - 5	
Graph - Sediment Loss 5	
Graph - Vegetation Density 5	
1:3 Sand 57 - 6	
Tabular Data	
Graph - Sediment Loss 6	
Graph - Vegetation Density	, 1

Table of Contents

Class 1 "Slope Protection" Final Performance Data (continued)

Statistical Analysis	
	nsity
	70 - 70 - 7
	nsity
1.2 Clay Sadiment Laga	
	nsity
	80 - 8
1:3 Sand Vegetation Del	nsity 82 - 83
Class 2 "Flexible Channel Liner" Final Pe	rformance Data
Record of Product Evaluations ar	nd Level of Shear Stress Flows Performed
96 Pascal Flows Only	
	90
144 Pascal Flows Only	
Tabular Data	
Graph - Sediment Loss	94
192 Pascal Flows Only	
•	
	98
239 Pascal Flows Only	
	102
287 Pascal Flows Only	
•	
335 Pascal Flows Only	
•	
383 Pascal Flows Only	
•	
0 - 96 Pascal Flows (0 - 2 Lhs ner	• Square Foot)
•	
0 - 192 Pascal Flows (0 - 4 Lbs no	er Square Foot)
1	
Graph - Sediment Loss	

Table of Contents

Class 2 "Flexible Channel Liner" Final Performance Data (continued)

	0 - 287 Pascal Flows (0 - 6 Lbs per Square Foot)	
	Tabular Data 1	
	Graph - Sediment Loss	23
	0 - 383 Pascal Flows (0 - 8 Lbs per Square Foot)	29
	Tabular Data 1	28
	Graph - Sediment Loss	29
	Final Vegetation Density	3 1
	Statistical Analysis	4]
	0 -96 Pascal Flows Sediment Loss	33
	0 -192 Pascal Flows Sediment Loss	35
	0 - 287 Pascal Flows Sediment Loss	37
	0 - 383 Pascal Flows Sediment Loss	39
	Final Vegetation Density	41
Hydrauli	c Mulches (Cellulose Fiber Mulches) Final Performance Data	55
	Record of Product Evaluations	43
	1:3 Clay	48
	Tabular Data	
	Graph - Vegetation Density	47
	1:3 Sand	51
	Tabular Data	
	Graph - Vegetation Density	51
	Statistical Analysis	55
	1:3 Clay Vegetative Density	53
	1:3 Sand Vegetative Density	
APPENE	DIX A - Standard Specification Item 164 "Seeding for Erosion Control"	68
APPENE	DIX B - Standard Specification Item 169 "Soil Retention Blanket"	71
APPEND	DIX C - Proposed Approved Product List - Soil Retention Blanket	75
APPENE	DIX D - Proposed Approved Product List - Cellulose Fiber Mulches	77

TXDOT/TTI HYDRAULICS AND EROSION CONTROL LABORATORY

INTRODUCTION:

The Texas Department of Transportation (TxDOT) has shifted from a material-type specification for hydraulic mulches (termed "cellulose fiber mulches" within Standard Specification Item 164 Seeding For Erosion Control), and for roll-type erosion control mats (termed "soil retention blankets" within Standard Specification Item 169 Soil Retention Blanket,) into an "approved product" type specification. The Approved Product List (APL) is based upon the demonstrated field performance of products tested through TxDOT's formal evaluation program.

TxDOT's current specifications for cellulose fiber mulches (Appendix A), and for soil retention blankets (Appendix B), do not include any of the typical ASTM-type material requirements, such as weight, tensile strength, elongation, water-holding capacity, pH, etc.

TxDOT has defined critical performance measures and has established minimum performance standards for selected erosion control and revegetation products which are promoted by industry for use within TxDOT's construction and/or maintenance activities. In cooperation with the Texas Transportation Institute (TTI) Environmental Management Program, TxDOT has funded the construction and annual operation of an extensive, outdoor, field-testing facility designed to collect performance data which may be used by TxDOT to produce and maintain a defensible APL.

With respect to soil retention blankets, TxDOT felt that the critical performance factors included:

- how well the product protects the seedbed or the geometry of a channel from the loss of sediment during rainfall or flow events; and
- how well the product promotes the establishment of a warm-season, perennial vegetative cover within a single March December growing season.

Further, TxDOT recognized that soil retention blankets are utilized within two broad use classifications:

- ◆ products designed for normal overland flows associated with typical embankment protection (Class 1 Slope Protection Applications); and
- products designed for concentrated water flows associated with drainage channels (Class 2 Flexible Channel Liner Applications).

With respect to cellulose fiber mulches, TxDOT felt that sediment loss was not a critical performance factor, in that TxDOT recommends limiting the use of these products to slopes of 1:3 or flatter. The single performance factor adopted is the amount of warm-season, perennial vegetation produced within a single March - December growing season.

INTRODUCTION (continued):

By statistically analyzing the performance data produced through controlled, field performance tests performed at the TxDOT/TTI Hydraulics and Erosion Control Laboratory (HECL,) TxDOT maintains discrete minimum performance standards for each application. In order for a product to be placed upon TxDOT's APL, it must meet (or exceed) the currently adopted performance standards associated with that application.

In the case of soil retention blankets, products must meet the minimum performance standards for both of the adopted critical performance measures. Failure within either of the measures will automatically reject the product from being placed upon TxDOT's APL.

THE TESTING FACILITY

The HECL was constructed by TTI on the Texas A&M University Riverside Campus, 6.5 km (4 mi) west of Bryan, Texas. The testing facility encompasses 8.5 ha (21 acres) and includes an L-shaped embankment, a series of 10, at-grade channels, water reservoirs, pumping stations and various instrumentation.

The facility is located on what was once a military airport, and is bounded on the north, east and west sides by runways. Because the site is located on a ridge just above the Brazos River, it is exposed to harsh climatic conditions. Existing soils are generally low in organic content and the site is influenced by heat energy stored in, or reflected from the surrounding pavement. These unique physical conditions were deliberately selected by TTI to provide the most realistic conditions possible for conducting controlled experiments related to the roadside environment.

The L-shaped embankment is approximately 300 linear meters by 6.7 meters in vertical height (984 linear feet by 22 feet high). The embankment was constructed to strict TxDOT standards with respect to compaction in order to simulate a typical highway embankment as closely as possible. In order to test the significance of slope steepness, one side of the embankment was constructed to a 1:2 (2:1) slope, while the other side was constructed to a 1:3 (3:1) slope. To test the significance of soil texture, one-half of the embankment is plated with 98 cm (6 inches) of an erosive, sandy loam soil, while the remaining one-half of the embankment is plated with 98 cm (6 inches) of a tight, clay soil.

Individual embankment treatment plots are 6 meters (20 feet) across and either 15 meters (50 feet) or 21 meters (70 feet) in length depending upon the slope conditions. The embankment provides the capability of establishing a total of approximately seventy-six (76) individual evaluation plots.

THE TESTING FACILITY (Continued):

Sediment collection troughs are constructed at the base of each treatment plot. The troughs are of precast concrete and permit the collection of sediment from each plot as produced within simulated rainfall events.

The HECL contains two reservoirs to provide necessary water to provide rainfall simulations, channel flows, and supplemental water during drought periods. The upper reservoir surface area is 2.43 ha (6.5 acres) which is the primary water source for all experimental work.

A ten-horsepower centrifugal pump supplies the rainfall simulators stationed on the embankment. Each rainfall simulator consists of a series of tubular steel arms, piping and irrigation nozzles. The nozzles were selected so as to create a droplet size which is generally representative of natural rainfall.

The flexible channel liner testing facility consists of ten, at-grade channels (six with a 7% centerline grade, and four with a 3% centerline grade.) Each open channel has a trapezoidal cross section that includes a 0.30 meter (1 foot) bottom, 1:1 side slopes, and a typical 0.91 meter (3 feet) depth beginning 4.5 meters (15 feet) downstream of the channel release gate. The total length of each test channel is 26 meters (85 feet.) Water for channel flows is supplied by an industrial grade, high-volume, low-head, axial-flow pump which is capable of producing over 136,260 liters per minute (36,000 gallons per minute.)

INDUSTRY ADVISORY COUNCIL:

TxDOT and TTI have encouraged the formation of the Industry Advisory Council (IAC) to encourage dialogue and communication between industry, participants, associations and TxDOT/TTI staff. Each participant is automatically a member of the council. Members call meetings at their convenience to discuss matters appropriate to the evaluation facility. TxDOT/TTI personnel will be available to meet with IAC personnel to discuss and provide answers to any question or concern raised by the IAC.

Although TxDOT will remain sensitive to all matters voiced by the IAC, the final decision and authority regarding the conduct of the evaluation facility remains with TxDOT.

EVALUATION FEES AND INSTALLATION OPTIONS:

Neither TxDOT nor TTI charges an evaluation fee for work under this contract. Participants, however, must choose, from the following installation options:

- Option 1- Participant donates the product(s) for evaluation as well as all labor, equipment and incidentals necessary to install the product to TTI's satisfaction, and in strict accordance with the manufacturer's published literature. Installation is supervised by TTI; or
- Option 2 Participant donates the product(s) for evaluation and reimburses TTI for all costs associated with labor, equipment and incidentals necessary to install the material in strict accordance with the manufacturer's published literature; or
- ◆ TTI purchases the product(s) and is reimbursed by the participant for all costs associated with the purchase, labor, equipment and incidentals necessary to install the product in strict accordance with the manufacturer's published literature.

Each participant who elects to perform actual work at the facility must furnish TTI all necessary certificates of insurance andompleted release agreement forms.

EVALUATION WAITING LIST:

The final decision regarding confirming that a product will be tested at the HECL rests with the TTI facility manager. The TTI facility manager will maintain a waiting list of products desiring to be tested at the facility during the next available evaluation cycle. The waiting list shall be maintained based upon the postmarked date on an acceptable, completed "Request for Performance Evaluation" packet, as received within TTI. Personal memoranda, telephone calls, fax transmissions or letters to the TTI facility manager will not be utilized to determine a product's position on the waiting list.

Based upon space availability, TTI will offer an evaluation slot of the gradient and soil type requested by the participant for Class 1, and of the centerline gradient channel requested by the participant or available for Class 2, to new participants in the order of the postmarked date shown on the completed "Request for Performance Evaluation" packet. In the event that a participant fails to commit to testing by the deadline established by TTI, the next product on the waiting list will be offered the evaluation slot.

TxDOT reserves the right to restrict the number of products any single company, manufacturer or distributor may evaluate during any given evaluation cycle, and will treat requests for different gradients, soil types, and/or channel gradients as separate requests.

INSTALLATION PROCEDURES:

With respect to soil retention blankets tested for Class 1 "Slope Protection" applications, participants must select the steepness of slope on which their product is to be evaluated. Participants have the option of having their product evaluated on the 1:2 slopes only, 1:3 slopes only, or on both 1:2 and 1:3 slopes. (Except in the case of a product retest as discussed later,) TTI will install the product on both a clay and a sand plot regardless of the slope steepness selected by the participant.

With respect to soil retention blankets tested for Class 2 "Flexible Channel Liner" applications, industry has the option of specifying the shear-stress range most appropriate for their product.

Generally, the 3% centerline-gradient channels are utilized to evaluate products which are designed to withstand shear stresses of up to 192 Pascals (4 pounds per square foot), while the 7% centerline-gradient channels are utilized to test products designed for shear stresses up to 383 Pascals (8 pounds per square foot.)

All soil retention blankets, whether submitted for Class 1 or Class 2 applications, are installed in strict accordance with the manufacturer's published installation literature, as determined by TTI. Particular attention is paid to edge and junction overlaps, stapling patterns, check, transverse, top or slope or bottom of slope anchor slots, etc. Installation techniques, which in TTI's opinion, cannot be supported by the manufacturer's standard installation literature, is not permitted. The adopted installation techniques as taken from the manufacturer's published literature shall be utilized by TxDOT to produce standard installation detail sheets for the approved products as may be appropriate.

All cellulose fiber mulches are applied at the following rates:

- Sandy Soils 2.3 Mg/ha (2000 pounds/acre);
- Clay Soils 2.8 Mg/ha (2500 pounds/acre) for clay soils.

Installation of all products for a given evaluation cycle occurs on or about March 15 of each year. All performance evaluations take place between March 15 and December 31 of each year.

Each plot, regardless of product, slope or soil type, receives the identical mixture and rate of the standard rural-area, warm-season, permanent, perennial seed mix for TxDOT's Bryan District 17. (Table 2 of Appendix A.) Further, each plot receives the identical amounts of fertilizer during installation.

INSTALLATION PROCEDURES (continued):

Prior to product installation, the embankment is cleared of all vegetation, repaired with stockpiled or excavated soil, and brought to a uniform grade and condition. Each plot is treated as necessary to remove any existing vegetation.

All channel treatment plots are cleared of vegetation, repaired with stockpiled or excavated soil, brought to a uniform grade, and final-graded with a trapezoidal-shaped tool.

EVALUATION PROCEDURES:

Cellulose Fiber Mulch Products:

Currently, two separate methods of application are repeated for each product:

- ◆ A one-step application process where seed, fertilizer and mulch are applied to the plot in a single slurry; and
- ◆ A two-step application process where a seed-fertilizer slurry is applied to the plot, followed by a separate application of the mulch slurry.

TxDOT is testing the significance of vegetative density production between these two application techniques.

Cellulose fiber mulch products are not subjected to simulated rainfall events, as TxDOT feels they should not be used to protect a slope to the degree capable by a soil retention blanket.

Each treatment, however, is sprinkle irrigated to provide sufficient moisture for vegetative growth. For the first three months following installation, water is applied evenly to each plot to provide a minimum of 25.4 mm (1 inch) of water per month per plot. After the initial three month period, no supplemental water is provided except in the event of a drought in excess of 30 days.

Vegetation density data is recorded throughout the duration of the March - December growing season. The vegetation density achieved by the final measurement round is compared to the adopted minimum vegetation density standard to determine acceptance or rejection.

EVALUATION PROCEDURES (continued):

Class 1 "Slope Protection" Products:

Starting approximately two weeks after installation and continuing throughout the March - December evaluation cycle, each plot is subjected to a series of six (6) simulated rainfall events on increasing intensities. By the end of each evaluation cycle, each plot, including Control plots, has received two repetitions of each of the following 10-minute duration design storms:

- 1-Year = 30.2 mm/hr (1.19 in/hr);
- \bullet 2-Year = 145.5 mm/hr (5.73 in/hr); and
- \bullet 5-Year = 183.6 mm/hr (7.23 in/hr.)

Sediment, as produced within each of the six simulated individual rainfall events is collected, dried and weighed. The average sediment loss, expressed in kilograms per 10 square meters, as collected from the six individual rainfall events is compared to the adopted maximum sediment loss standard to determine acceptance or rejection with respect to sediment loss.

Using video and computer masking technology, each plot is also sampled four separate times during the March - December growing season to determine vegetation density production. The initial sample is normally taken on or about the fourth week following product installation. The final sample is normally taken during December. The vegetative density production which has been achieved by the final sampling round only is compared to the adopted minimum vegetative density standard to determine acceptance or rejection.

Class 2 "Flexible Channel Liner" Products:

Prior to actual installation within the outdoor channels, TTI determines Manning's n for all products through the use of an indoor flume facility located at the College of Ocean Engineering, Texas A&M University.

Following installation, the channels experience a 90-day resting period to promote the initial vegetative growth. After this resting period, a series of increasing shear-stress flows begin. Prior to each flow, channels are pre-wetted to moisten the channel surface. Based upon the determined Manning's n, and the known geometry of the channel, the depth of water is controlled to initiate a series of increasing flows, starting at 96 Pascal (2 lb/sq ft), and continuing on a 48 Pascal (1 lb/sq ft) increment. Each flow is repeated twice and continues for twenty (20) minutes after a stable flow has been achieved.

EVALUATION PROCEDURES (continued):

Class 2 "Flexible Channel Liner" Products:

During the test flows, measurements are taken approximately every two minutes to determine the amount of soil displaced by the flow. Further, data is collected regarding product movement (loss of intimate soil contact), depth of flow, and velocity of flow. The average soil displacement exhibited within the channel is compared to the adopted maximum soil displacement standard to determine acceptance or rejection.

All channels are also sampled to determine the growth of vegetation over a March through December growing season. Similar to the embankment, channels are initially sampled at the end of the 90-day resting period for vegetation production. The final density sample is normally taken during December. The vegetation density achieved within the channel by the final sampling only is compared to the adopted minimum vegetation density standard to determine acceptance or rejection.

APPROVAL BY EXTENSION:

For Class 1 "Slope Protection Products", if a participant elects to evaluate a product on the severe-slope conditions only (Types C and D), and the product successfully meets the current minimum performance standards established by TxDOT for the particular application, the product will also be included as an approved product (by extension) on the associated, less-severe conditions as well. For example, if a product is evaluated on both Types C and D slopes (Slopes Steeper than 1:3 - Clay and Sand soils, respectively), and successfully meets the performance standards for Type C (Slopes Steeper than 1:3 - Clay Soils), the product will be added by extension to the Approved Product List for Type A (Slopes 1:3 or Flatter - Clay Soils).

If a participant, however, elects to evaluate a product on the gentle slope conditions only (Types A and B), the product will not be added to the severe-slope conditions as an approved equal regardless of the performance of the material.

If a participant elects to test a product within each of the four available Class 1 applications, the product's performance, as documented within each individual application shall determine placement on the Approved Product List, and approval by extension shall not apply.

Approval by extension shall not apply to Class 2 "Flexible Channel Liner" applications, or for cellulose fiber mulch products.

RELEASE OF PERFORMANCE DATA:

With the exception of the final research reports as published by TTI, all performance data will be released by TxDOT only. Data will only be released at the end of a complete evaluation cycle. As the annual operation of the HECL is funded with state funds, all performance data will be released regardless of the performance of any individual product.

Performance data for all products evaluated to date are available to any interested party from TxDOT without charge. Final research reports, as published by TTI are available for a fee through the Texas Transportation Institute Information and Technology Exchange Center.

RETEST PROCEDURES:

Class 1 "Slope Protection" and Cellulose Fiber Mulch Products:

If, after the initial test at the HECL, a product fails to meet the established minimum performance standards, as established by TxDOT, TTI will reserve an evaluation slot of the same gradient and soil type within the next available evaluation cycle for that product. The participant must commit to retesting the identical product within the same gradient and soil type plot as originally evaluated by the deadline established by TTI. In the event the participant fails to confirm retesting, or elects not to retest the product by the deadline established by TTI, the evaluation slot will be offered to the next product on the waiting list.

In the event a product is retested at the HECL and again fails to meet the established minimum performance standards for any application as established by TxDOT, an evaluation plot will not be guaranteed the product during the next available evaluation cycle. The product representative must complete a new "Request for Performance Evaluation" packet and the product will be scheduled for retesting according to the postmark date on the completed "Request for Performance Evaluation" and the procedures established within the normal waiting list process.

RETEST PROCEDURES (continued):

Class 2 "Flexible Channel Liner" Products:

Due to the limited number of evaluation channels available at the HECL and the number of individual products currently requesting Class 2 applications evaluation, a product cannot be guaranteed an evaluation slot within the next available evaluation cycle in the event that product fails to meet any of the established minimum performance standards established by TxDOT.

The product representative must complete and forward to TTI, a new "Request for Performance Evaluation" packet if they desire to retest the identical product. The product will be scheduled for retesting according to the postmark date on the completed "Request for Performance Evaluation" packet, and the procedures established within the normal waiting list process.

REVISION OF MINIMUM PERFORMANCE STANDARDS:

Based upon statistical analysis of performance data as produced through the HECL, TxDOT reserves the right to revise the minimum performance standards for the Approved Product List (APL).

In the event that a product's performance no longer meets the revised minimum performance standards, the product will be notified in writing by TxDOT and provided the opportunity to retest the product within the next available evaluation cycle as determined by TTI.

The product will remain on the APL pending results of the next available evaluation cycle. In the event that the product fails to meet the revised standards at the end of the evaluation cycle retest, the product will be removed from the APL during the next scheduled revision of the APL. In the event that the product's performance meets the newly adopted minimum performance standards, the product will remain on the APL.

In the event that the participant fails to commit to retesting the product within the next available evaluation cycle by the deadline established by TTI, the product will be removed from the APL during the next scheduled revision.

CONTRACTOR'S OPTION:

The APL will be maintained by TxDOT according to the Class and Type as may be appropriate for any given product. It is the Contractor's option to use any of the products provided that the product is listed by brand name on the current APL for the Class and Type specified, and provided the Contractor installs the product in strict accordance with TxDOT specifications and the manufacturer's installation literature.

PRIVATE LABELING:

If the original manufacturer of a product tested and approved at the HECL will, to TxDOT's satisfaction, certify that the brand or trade name evaluated is also distributed under other trade names (private labels), TxDOT will include those private label names on the APL for the appropriate Class and Type. Addition and/or revision of the APL due to private labels will only be made by TxDOT during the normally scheduled revision of the APL.

REQUIRED MANUFACTURER'S LITERATURE:

A product will not be accepted for evaluation or placed on the waiting list for future evaluation at the HECL unless the participant furnishes evidence that the product is currently being marketed under a discrete brand or trade name, and unless the product has published product literature, including complete material specifications and installation guidelines.

"Request for Performance Analysis" packets received by TTI for products currently under development and evaluation by industry, which are not generally marketed, or which do not have complete published material specifications and installation literature, shall not be used by TTI to place the product on the waiting list for evaluation at the HECL.

APPROVED PRODUCT LIST:

Based upon the data collected through the HECL, TxDOT will establish and maintain a current Approved Product List in the form of a Special Provision to Standard Specification Item 169 "Soil Retention Blanket." Product brand or trade names which are placed on the Approved Product List will become eligible for use by Contractors after statewide distribution of the official Approved Product List, normally issued in the form of a special provision to Item 169 "Soil Retention Blanket". This event typically occurs during the May or June following the close of the previous March - December evaluation cycle.

Copies of the current Approved Product List for soil retention blankets, may be requested through the Director, Construction and Maintenance Division, Attn: Mr. Paul Northcutt, 125 East 11th Street, Austin, TX 78701-2483, telephone (512)416-3091.

PRODUCT BRAND OR TRADE NAME REVISIONS:

The manufacturer shall notify TxDOT should the manufacturer elect to make any revisions to the discrete brand or trade name of a product which has been evaluated through the HECL. The manufacturer must provide the revised brand or trade name for the product, and must certify that this action reflects a brand or trade name revision only, and that no material properties were revised. The manufacturer must also notify TxDOT if any brand or trade name revisions are made to any of the product's private labels, if they exist.

Any revisions to TxDOT's final performance reports or the Approved Product List necessitated by manufacturers revising brand or trade names of products evaluated through the HECL, will occur only during the next regularly scheduled release of either the final performance report or the Approved Product List as may be appropriate.

SUMMARY:

The TxDOT/TTI Hydraulics and Erosion Control Laboratory provides TxDOT the capability of using selected erosion control products which have demonstrated their capability of protecting the natural environment through controlled performance evaluations.

The program also provides industry with a uniform, fair and timely testing program for products they propose for use within TxDOT's construction and maintenance activities, and for new products as developed by industry. The program seeks to establish and maintain the greatest number of individual products on the APL as possible, provided those products have demonstrated their capability to meet the adopted minimum standards for the critical performance measures as established by TxDOT.

Final performance data as published by TxDOT for all of the products evaluated through the HECL are available to any interested party without charge. Final reports as published by TTI are available for a fee through the Information and Technology Exchange Center, Texas Transportation Institute. Specify Report Number 1914 when ordering.

PROGRAM CONTACT PERSONNEL:

To discuss TxDOT's overall evaluation program, request copies of available final performance reports, or secure the current Approved Product List, contact:

Mr. Paul Northcutt
Texas Department of Transportation
Construction & Maintenance Division
125 E. 11th Street
Austin, TX 78701-2483
Phone: (512)416-3091

Fax: (512)416-3044

To secure a "Request for Performance Evaluation" packet, to inquire about evaluation schedules, or arrange for a visit to the facility, contact:

Mr. Jett McFalls
Principal Researcher & HECL Facility Manager
Texas Transportation Institute
Environmental Management Program
707 Texas Avenue, Suite 100-E
College Station, TX 77843-3135

Phone: (409) 847-8709 Fax: (409) 862-1759

To order final research reports for Research Project 1914, for a fee, as published by Texas Transportation Institute, contact:

Texas Transportation Institute Information & Technology Exchange Cntr Texas A&M University System College Station, TX 77843-3135

Phone: (409)845-4853 Fax: (409)862-3703

Internet: dolores@ttiadmin.tamu.edu

MINIMUM PERFORMANCE STANDARDS

Texas Department of Transportation

Class 1 "Slope Protection Class 2 "Flexible Channel Liners" Cellulose Fiber Mulches

Texas Department of Transportation

Minimum Performance Standards

Item 169 "Soil Retention Blanket" Item 164 "Seeding For Erosion Control"

Effective Date: March 1, 1997

Specification Pay Item	Class	Туре	Site Conditions	Maximum Sediment Loss ¹	Minimum Vegetation Density ²
	1	A	Slopes 1:3 or Flatter - Clay Soils	0.34	80%
	Slope	В	Slopes 1:3 or Flatter - Sandy Soils	12.20	70%
	Protection	С	Slopes Steeper than 1:3 - Clay Soils	0.34	80%
		D	Slopes Steeper than 1:3 - Sandy Soils	26.84	70%
169 Soil	Class	Туре	Site Conditions	Maximum Sediment Loss ³	Minimum Vegetation Density
Retention Blanket		Е	Shear Stress Range 0 to 96 Pa (0 to 2 Lb/Ft²)	1.15	70%
	2 Flexible	F	Shear Stress Range 0 to 192 Pa (0 to 4 Lb/Ft²)	1.00	70%
	Channel Liners	G	Shear Stress Range 0 to 287 Pa (0 to 6 Lb/Ft²)	1.00	70%
		Н	Shear Stress Range 0 to 383 Pa (0 to 8 Lb/Ft²)	0.80	70%
164 Seeding for	Hydraulic Mulch	N/A	Clay or Tight Soils	N/A	70%
Erosion Control		N/A	Sandy or Loose Soils	N/A	60%

All performance standards must be achieved through formal testing conducted at the TxDOT/TTI Hydraulics and Erosion Control Laboratory.

- 1. Kilograms per 10 Square Meters
- 2. Average Percent of Vegetative Cover Achieved by the Final Measurement Round
- 3. Average Soil Deformation in Centimeters

RECORD OF PRODUCT PRIVATE LABELS

Name of Product Tested	Manufacturer / Distributor Contact	Tested As ¹	Private Label Name
Airtrol®	U.S. Gypsum Co., 700 North Highway 45, Libertyville, IL 60048-1296; (708)970-5138	Class 1	None
Airtrol® Plus	U.S. Gypsum Co., 700 North Highway 45, Libertyville, IL 60048-1296; (708)970-5138	Class 1	None
American Fiber Mulch	American Fiber Manufacturing, Inc., 1701 Bench Mark Drive, Austin, TX 78728; (512)251-3401	Mulch	None
American Fiber Mulch (with Hydro-Stik)	American Fiber Manufacturing, Inc., 1701 Bench Mark Drive, Austin, TX 78728; (512)251-3401	Mulch	None
American Fiber Mulch (with Fiber-Plus)	American Fiber Manufacturing, Inc., 1701 Bench Mark Drive, Austin, TX 78728; (512)251-3401	Mulch	None
Anti-Wash®/Geojute®	Belton Industries, 8613 Roswell Road, Atlanta, GA 30350; (800)225-4099	Class 1	Soil Saver
BonTerra® S2™	BonTerra America, 355 West Chestnut Street, Genesee, ID 83832; (208)285-0701		None
BonTerra® S1™	BonTerra America, Inc., 355 West Chestnut Street, Genesee, ID 83832; (800)882-9489	Class 1	None
BonTerra® SFB12™	BonTerra America, Inc., 355 West Chestnut Street, Genesee, ID 83832; (208)285-0701	Class 2	Tensar TB 1000
BonTerra® CS2™	BonTerra America, Inc., 355 West Chestnut Street, Genesee, ID 83832; (800)882-9489	Class 1	None
Conwed®Hydro Mulch®	Conwed Fibers, 1st Plaza, Suite 350, 1985 Tabe Boulevard, S.E., Hickory, NC 28601; (704)327-6670	Mulch	None
Curlex®I	American Excelsior Co., 900 Avenue H East, P.O. Box 5624, Arlington, TX 76011; (800)777-2691	Class 1	None

Name of Product Tested	Manufacturer / Distributor Contact	Tested As ¹	Private Label Name
Curlex® II (Double Sided)	American Excelsior Co., 900 Avenue H East, P.O. Box 5624, Arlington, TX 76011; (800)777-2691	Class 2	None
Curlex®-LT	American Excelsior Co., 900 Avenue H East, P.O. Box 5624, Arlington, TX 76011; (800)777-2691	Class 2	None
Earth-Lock	Erosion Control Systems, Inc., 1800 McFarland Blvd., Suite 180, Tuscaloosa, AL 35406; (800)942-1986	Class 2	None
ECS Straw Blanket Standard	Erosion Control Systems, Inc., 1800 McFarland Blvd., Suite 180, Tuscaloosa, AL 35406; (800)942-1986	Class 1	None
ECS Excelsior Blanket Standard	Erosion Control Systems, Inc., 1800 McFarland Blvd., Suite 180, Tuscaloosa, AL 35406; (800)942-1986	Class 1	None
Enkamat® 7020	AKZO/NOBEL, P.O. Box 7249, Asheville, NC 28802; (704)665-5050	Class 2	None
Enkamat® 7018	AKZO/NOBEL, P.O. Box 7249, Asheville, NC 28802; (704)665-5050	Class 2	None
Enviro-Gro	Southwest Environmental Services, Inc., P.O. Box 134, Tyler, TX 75710; (903)531-2312	Mulch	None
Excel® Fibermulch II with Exact-Tac TM	American Excelsior Co., 900 Avenue H East, P.O. Box 5624, Arlington, TX 76011; (800)777-2691	Mulch	None
GEOCOIR %DeKoWe ® 700	Belton Industries, Inc., 8613 Roswell Road, Atlanta, GA 30350; (800)225-4099	Class 1	None
Geogro	U.S. Gypsym Corporation, 700 North Highway 45, Libertyville, IL 60048-1296; (847)970-5138	Class 1	None
Geojute® Plus 1	Belton Industries, Inc., 8613 Roswell Road, Atlanta, GA 30350; (800)225-4099	Class 1	None
Geojute® Plus-Regular High Velocity	Belton Industries, Inc., 8613 Roswell Road, Atlanta, GA 30350; (800)225-4099	Class 1	None

Name of Product Tested	Manufacturer / Distributor Contact	Tested As ¹	Private Label Name
Geojute® Plus	Belton Industries, Inc., 8613 Roswell Road, Atlanta, GA 30350; (800)225-4099	Class 1	None
GREENSTREAK®PEC-MAT™	Greenstreak, Inc., 3400 Tree Court Ind. Blvd., St. Louis, MO 63122-6689; 800-325-9504	Class 1 Class 2	Webmat 280
KoirMat™ 740	Nedia Enterprises, 89- 66 217th Street, Jamaica, NY 11427; (718)740-5171	Class 2	None
KoirMat™ 400	Nedia Enterprises, 89- 66 217th Street, Jamaica, NY 11427; (718)740-5171	Class 1	None
Landlok® TRM 450	Synthetic Industries, Inc., 4019 Industry Drive, Chattanooga, TN 37416; (800)621-9444	Class 2	Contech TRM C-45
Landlok® 407GT	Synthetic Industries, Inc., 4019 Industry Drive, Chattanooga, TN 75230; 800-621-0444	Class 1	Contech C-Jute TerraJute
LANDLOK® FRS 3112	Synthetic Industries, Inc., 4019 Industry Drive, Chattanooga, TN 37416; (800)621-9444	Class 1	None
Miramat®TM8™	Nicolon Mirafi Group, 3500 Parkway Lane, Suite 500, Norcross, GA 30092; (404)447-6272	Class 2	None
Miramat® 1000	Nicolon Mirafi Group, 3500 Parkway Lane, Suite 500, Norcross, GA 30092; (404)447-6272	Class 1	None
North American Green C350™ Three Phase™	North American Green, Inc., 14649 Highway 41 North, Evansville, Indiana 47711; (800)772-2040	Class 2	None
North American Green S75	North American Green, Inc., 14649 Highway 41 North, Evansville, Indiana 47711; (800)772-2040	Class 1	None
North American Green SC150	North American Green, Inc., 14649 Highway 41 North, Evansville, Indiana 47711; (800)772-2040	Class 1	None

Name of Product Tested	Manufacturer / Distributor Contact	Tested As ¹	Private Label Name
North American Green S150	North American Green, Inc., 14649 Highway 41 North, Evansville, Indiana 47711; (800)772-2040		None
Permamat 200F	P.P.S. Packaging Company, P.O. Box 427, Fowler, CA 93625; (209)834-1641	Class 2	None
POZ-O-CAP®	Chemical Lime Company, P.O. Box 121874, Fort Worth, TX 76107; (800)365-6724	Class 1	None
Pro Mat®XL	Tascon, Inc., 7607 Fairview, Houston, Tx 77041; (713)937-0900	Mulch	None
Pro Mat® (with RMBplus)	Tascon, Inc., 7607 Fairview, Houston, Tx 77041; (713)937-0900	Mulch	None
Pro Mat®	Tascon, Inc., 7607 Fairview, Houston, Tx 77041; (713)937-0900	Mulch	None
Pyramat®	Synthetic Industries, Inc., 4019 Industry Drive, Chattanooga, TN 75230; 800-621-0444	Class 2	None
Second Nature® Regenerated Wood Fiber	Central Fiber Corporation, 4814 Fiber Lane, Wellsville, KS 66092; (800)654-6117	Mulch	None
Seed-Guard™	Belton Industrie, 8613 Roswell Road, Atlanta, GA 30350; (404)587-0257	Class 1	None
Silva-Fiber Plus®	Weyerhaeuser, P.O. Box 434, Montclair, New Jersey 07042; (201)744-2625	Mulch	None
Soil Guard™	Weyerhaeuser, P.O. Box 434, Montclair, New Jersey 07042; (201)744-2625	Class 1	None
SuperGro [™]	AMOCO Fabrics and Fibers, 260 The Bluffs, Austell, GA 30001; (770)944-4419	Class 1	None
Tensar® Erosion Mat TM3000	The Tensar Corporation, 1210 Citizens Parkway, Morrow, GA 30260; (404)250-1290	Class 2	None
Tensar® Erosion Blanket TB1000	The Tensar Corporation, 1210 Citizens Parkway, Morrow, GA 30260; (404)250-1290	Class 2	BonTerra SFB12 (orig manuf)

Name of Product Tested	Manufacturer / Distributor Contact	Tested As ¹	Private Label Name
Terra-Control®	Acumen International, P.O. Box 41303, Houston, TX 77241-1303; (713)896-0050	Class 1	None
verdyol® Excelsior Standard	Verdyol Alabama, Inc, P.O. Box 605, Pell City, AL 35125; (205)338-4411	Class 1	Winters Excelsior Inc "POPLAR EXCELSIOR BLANKET"
verdyol® Excelsior High-Velocity	Verdyol Alabama, Inc, P.O. Box 605, Pell City, AL 35125; (205)338-4411	Class 2	None
verdyol® ERO-MAT®	Verdyol Alabama, Inc, P.O. Box 605, Pell City, AL 35125; (205)338-4411	Class 1	None
Xcel Superior	P.P.S. Packaging Co., 204 N. Seventh Street, P.O. Box 56, Fowler, CA 93625; 209-834-2011	Class 1	Contech Standard Plus Green Triangle Superior
Xcel Regular	P.P.S. Packaging Co., 204 N. Seventh Street, P.O. Box 56, Fowler, CA 93625; 209-834-2011	Class 1	Contech Standard Green Triangle Regular

^{1.} Class 1 = "Slope Protection" Applications; Class 2 = "Flexible Channel Liner" Applications; Mulch = Cellulose Fiber Mulch applications.

BRAND OR TRADE NAME REVISIONS MADE BY INDUSTRY

INDUSTRY REVISIONS TO PRODUCT BRAND/TRADE NAMES

The following list documents the product brand or trade name revisions as made by the manufacturer, on products evaluated through the TxDOT/TTI Hydraulics and Erosion Control Laboratory:

Brand/Trade Name as Originally Evaluated	Manufactured By	New Brand/Trade Name	Announced In
Curlex®	American Excelsior Co	Curlex® I	Oct 1995
LANDLOK® ECRM 450	Synthetic Industries, Inc.	LANDLOK® TRM 450	1996
POLYJUTE® 407GT	Synthetic Industries, Inc.	LANDLOK® 407GT	1996
LANDSTRAND® Natural	Synthetic Industries, Inc.	LANDLOK® FRS 3112	1996

KEY TO ABBREVIATIONS USED WITHIN STATISTICAL REPORTS

Key to Abbreviations Used Within Statistical Reports

The abbreviations as used within the statistical reports, are intended to refer to the following product trade names as evaluated through the TxDOT/TTI Hydraulics and Erosion Control Laboratory. Numbers in parenthetis indicate the evaluation cycle year in which the product was evaluated.

Abbreviation	Actual Trade Name; Manufacturer/Distributor
AIRTROL PLUS(96)	Airtrol® Plus; U.S.Gypsum Company
AIRTROL(92)	Airtrol®; U.S. Gypsum Company
AIRTROL(94)	Airtrol®; U.S. Gypsum Company
AIRTROL(95)	Airtrol®; U.S. Gypsum Company
AMER FIBER(92)	American Fiber Mulch; American Fiber Manufacturing, Inc.
AMFIBTAK1(94)	American Fiber Mulch (with Hydro-Stik); American Fiber Manufacturing, Inc.
AMFIBTAK2(94)	American Fiber Mulch (with Fiber-Plus); American Fiber Manufacturing, Inc.
BONTERRA S2(96)	BonTerra S2; BonTerra America, Inc.
BONTERRA CS2(96)	Bonterra CS2; BonTerra America, Inc.
BONTERRA S2(95)	BonTerra S2; BonTerra America, Inc.
BONTERRA S1(95)	BonTerra S1; BonTerra America, Inc.
CONTROL	
CONWED(92)	Conwed® Hydro Mulch
CURLEX I (92)	Curlex® I; American Excelsior Co.
CURLEX II(95)	Curlex® II (Double Sided); American Excelsior Co.
CURLEX I(91)	Curlex® I; American Excelsior Co.
CURLEX 1(94)	Curlex® I; American Excelsior Co.
CURLEX-LT(96)	Curlex®-LT; American Excelsior Co.
DEKOWE 700(95)	GEOCOIR®/DeKoWe® 700; Belton Industries, Inc.
DEKOWE 700(94)	GEOCOIR®/DeKoWe® 700; Belton Industries, Inc.
DEKOWE 700(92)	GEOCOIR®/DeKoWe® 700; Belton Industries, Inc.
EARTHLOCK(96)	Earth-Lock; Erosion Control Systems, Inc.
ECS EXCEL STD(96)	ECS Excelsior Blanket Standard; Erosion Control Systems, Inc.

Key to Abbreviations Used Within Statistical Reports

Abbreviation	Actual Trade Name; Manufacturer/Distributor
ECS STRAW(95)	ECS Straw Blanket Standard; Erosion Control Systems, Inc.
ENKA7018(96)	Enkamat® 7018; AKZO/NOBEL
ENKAMAT 7020(95)	Enkamat® 7020; AKZO/NOBEL
ENKAMAT7018(96)	Enkamat® 7018; AKZO/NOBEL
ENVIRO GRO(96)	Enviro-Gro; Southwest Environment Services, Inc.
EROMAT(91)	verdyol®ERO-MAT™; Verdyol Alabama, Inc.
FIBERMULCH2(96)	Excel Fibermulch® II; American Excelsior Company
GEOGRO(96)	Geogro; U.S. Gypsum Company
GEOJUTE PLS1(95)	Geojute Plus 1; Belton Industries, Inc.
GEOJUTE PLUS(94)	Geojute Plus; Belton Industries, Inc.
GEOJUTE PLS1(96)	Geojute Plus 1; Belton Industries, Inc.
GEOJUTE(91)	Antiwash Geojute; Belton Industries, Inc.
GEOPLUS HI-V(95)	Geojute® Plus-Regular High Velocity; Belton Industries, Inc.
KOIRMAT 400(96)	KoirMat™ 400; Nedia Enterprises
KOIRMAT740(96)	KoirMat™ 740; Nedia Enterprises
LANDLOK 450(95)	LANDLOK® TRM 450; Synthetic Industries, Inc.
LANDLOKFRS(95)	Landlok® FRS 3112; Synthetic Industries, Inc.
LANDLOKFRS(96)	Landlok® FRS 3112; Synthetic Industries, Inc.
LANDLOK407GT(91)	Landlok® 407GT; Synthetic Industries, Inc.
MIRAMAT 1000(94)	Miramat 1000; Nicolon Mirafi Group
MIRAMAT TM8(95)	Miramat® TM8™; Nicolon Mirafi Group
N/A/G S75(91)	S75; North American Green, Inc.
N/A/G S75(96)	S75; North American Green, Inc.
N/A/G SC150(91)	SC150; North American Green, Inc.
N/A/G S150(96)	S150; North American Green, Inc.
N/A/G S150(91)	S150; North American Green, Inc.

Key to Abbreviations Used Within Statistical Reports

Abbreviation	Actual Trade Name: Manufacturer/Distributor			
NAG C350(95)	North American Green $C350^{\text{TM}}$ Three Phase $^{\text{TM}}$; North American Green, Inc.			
NAGS150(96)	S150; North American Green, Inc.			
PECMAT(91)	GREENSTREAK® PEC-MAT TM ; Greenstreak, Inc.			
PERMAMAT200F(95)	Permamat 200F; PPS Packaging Co.			
POZ-O-CAP(95)	POZ-O-CAP®; Chemical Lime Company			
PROMAT XL TAC(94)	Pro Mat® XL (with RMBplus tackifier); Tascon, Inc.			
PROMAT XL(94)	Pro Mat® XL; Tascon, Inc.			
PROMAT(94)	Pro Mat®; Tascon, Inc.			
PYRAMAT(96)	Pyramat®; Synthetic Industries, Inc.			
REGEN FIBER(95)	Second Nature® Regenerated Wood Fiber; Central Fiber Corporation			
REGEN FIBER(96)	Second Nature® Regenerated Wood Fiber; Central Fiber Corporation			
SEED GUARD(96)	Seed-Guard TM ; Belton Industries, Inc.			
SFB12(96)	BonTerra® SFB12 TM ; BonTerra, Inc.			
SILVAFIB PLUS(94)	Silva-Fiber Plus®; Weyerhaeuser			
SOIL GUARD(94)	Soil Guard; Weyerhaeuser			
SUPER GRO(94)	SuperGro™; AMOCO Fabrics and Fibers			
SUPER GRO(95)	SuperGro™; AMOCO Fabrics and Fibers			
TB 1000(96)	Tensar® Erosion Blanket TB 1000; The Tensar Corporation			
TERRA CNTL(96)	Terra-Control®; Acumen International			
TM3000(95)	Tensar® Erosion Mat TM 3000; The Tensar Corporation			
VERDYOL STD(95)	verdyol® EXCELSIOR Standard; Verdyol Alabama, Inc.			
VERDYOL HI-V(96)	verdyol® Excelsior High-Velocity; Verdyol Alabama, Inc.			
VERDYOL HI-V(95)	verdyol® Excelsior High-Velocity; Verdyol Alabama, Inc.			
XCEL REG(91)	Xcel Regular; PPS Packaging Co.			
XCEL SUP(91)	Xcel Superior; PPS Packaging Co.			

GENERAL PROI	DUCT MATERIAL DESCRIPTIONS
	Disclaimer:
The product descriptions shown within this purposes only, and are not to be used for spec	table are general in nature, intended for overall product com
	or complete product material specifications.
	or complete product material specifications.

Brand Name of Product	Tested As	Material Description
Airtrol®	Class 1	A cementious plaster binder produced from high-purity gypsum and applied in conjunction with an approved cellulose fiber mulch through a hydraulic (hydraulic seeding) process. The plaster is nontoxic, noncombustible, and harmless to fish, birds, plants and animals.
Airtrol® Plus	Class 1	A cementious plaster binder produced from high-purity gypsum and applied in conjunction with an approved cellulose fiber mulch through a hydraulic (hydraulic seeding) process. The plaster is nontoxic, noncombustible, and harmless to fish, birds, plants and animals. <i>Tackifibers</i> , as produced by Synthetic Industries, Inc., is added to the plaster binder.
American Fiber Mulch	Mulch	Produced from recycled paper. No published literature available on this product.
American Fiber Mulch (with Hydro-Stik)	Mulch	Mulch produced from recycled paper. No published literature available on the hydraulic mulch. <i>Hydro-Stik</i> is a special gum based tackifier, as available through the Finn Corporation.
American Fiber Mulch (with Fiber-Plus)	Mulch	Mulch produced from recycled paper. No published literature available on the hydraulic mulch. <i>Fiber-Plus</i> is a specially coated synthetic fiber tackifier with long fiber length, as available through the Finn Corporation.
ANTI-WASH®/GEOJUTE®	Class 1	Heavy jute mesh of undyed, unbleached jute yarn. Yarn count - warp - 78 per width min; weft - 42 per linear yard, min. Typical weight = 0.92 lbs / sq yd. Typical roll width = 48 inches.
BonTerra® S1	Class 1	Machine-produced mat of 100%, weed-free wheat straw by weight, covered on the top side with a lightweight, photodegradable polypropylene netting with approximate $\frac{1}{2}$ " x $\frac{1}{2}$ " openings, sewn together on two inch centers. Typical weight = 0.5 lbs / sq yd. Typical roll width = 7.5 feet. Typical roll length = 90 feet.
BonTerra® SFB12™	Class 2	100% synthetic fiber mat consisting of long-lasting, UV stabilized netting on the bottom, and heavy duty UV stabilized netting on the top, sewn on two inch centers. Typical roll weight = 57 lbs. Typical roll length = 90 feet. Typical roll width = 7.5 feet.
BonTerra® CS2 TM	Class 1	70% straw and 30% coconut fiber mat with a lightweight photodegradable netting on the bottom side, and a long-lasting UV stabilized netting on the top side, sewn on two inch centers. Typical roll weight = 40 lbs (0.5 lbs / sq yd); Typical roll length = 90 feet; Typical roll width = 7.5 feet.
BonTerra®S2	Class 1	Machine-produced mat of 100%, weed-free wheat straw by weight, covered on the top and bottom sides with a lightweight, photodegradable polypropylene netting with approximate $\frac{1}{2}$ " x $\frac{1}{2}$ " openings, sewn together on two inch centers. Typical weight = 0.5 lbs / sq yd. Typical roll width = 7.5 feet. Typical roll length = 90 feet.

Brand Name of Product	Tested As	Material Description
Conwed® Hydro Mulch®	Mulch	Wood fiber mulch consisting of virgin wood fibers manufactured expressly from whole wood chips and shall not be produced from recycled material such as sawdust, paper, cardboard, or residue from pulp and paper plants. Typical bag wight = 100 lbs. Typical moisture content $10\% \pm 3\%$. Typical ash content $0.8\% \pm 0.2\%$ O.D. basis.
Curlex® II(Double Sided)	Class 2	Wood-machined mat of curled wood excelsior of 80%, six-inch or longer fibers. Both the top and the bottom of the blanket is covered with a photodegradable, extruded plastic mesh. Typical weight = 1.0 lb / sq yd; Typical roll length = 112.5 feet or 180 feet; Typical roll width = 4 feet.
Curlex® I	Class 1 Class 2	Machined mat of curled wood excelsior of 80%, six-inch or longer fibers. The top of each blanket is covered with a photo-degradable, extruded plastic mesh. Typical weight = 0.975 lbs / sq yd. Typical roll width = 48 or 96 inches. Typical roll length = 180 feet.
Curlex®-LT	Class 1	Natural, excelsior blanket made of 100% virgin aspen excelsior, covered on the top and bottom sides with polypropylene netting with approximate 3/4" x 1-5/8" openings. Typical weight = 0.64 lbs / sq yd. Typical roll width = 8 feet. Typical roll length = 90 feet.
Earth-Lock	Class 2	Machine-produced mat of curled wood excelsior of 80%, 9 inches or longer fiber length with consistent thickness and the fiber evenly distributed over the entire area of the mat. The top side of the mat shall be covered with a high-tenacity polyester geogrid. The excelsior shall be stitched to the plastic mesh and geogrid on a minimum of three inch centers with synthetic yarn. Typical roll weight = 75 lbs \pm 10%; Typical roll length = 60 feet; Typical roll width = 6.5 feet.
ECS Excelsior Blanket Standard	Class 1	Extra long fibers of interlocking stitched wood excelsior mat. Typical weight per roll = $68 \text{ lbs} \pm 10\%$; Typical roll length = 96 feet ; Typical roll width = 7.5 feet .
ECS Straw Blanket Standard	Class 1	Organic blanket made from virgin wheat straw covered on the top side by netting. Typical roll weight = $50 \text{ lbs} \pm 10\%$. Typical roll width = 7.5 feet . Typical roll length = 120 feet .
Enkamat® 7020	Class 2	Mat consisting of heavy nylon monofilaments fused at their intersection. 97% of the geomatrix shall be open space available for soil and root interaction. Matting will have three-dimensional stability without laminated or stitched layers. Typical weight = 12 oz / sq yd; Typical roll length = 277 feet; Typical Roll width = 39 inches.
Enkamat® 7018	Class 2	Mat consisting of heavy nylon monofilaments fused at their intersection. 97% of the geomatrix shall be open space available for soil and root interaction. Matting will have three-dimensional stability without laminated or stitched layers. Typical weight = 8.6 oz / sq yd; Typical roll length = 277 feet; Typical Roll width = 39 inches.
Enviro-Gro	Mulch	No product literature available for this product.

Brand Name of Product	Tested As	Material Description
Excel® Fibermulch II with Exact-Tac TM	Mulch	Hydraulic mulch manufactured from 100% Aspenwood fibers and contains measured amounts of a green water-activated dye and Exact-Tac TM tackifier. Typical moisture content = $10\% \pm 3\%$. Typical ash content $0.7\% \pm 0.2\%$ (O.D. basis).
Geocoir®/DeKoWe® 700	Class 1	100% spun coir mat derived from the husk of coconuts. Typical weight = 20.6 oz / sq yd; Typical open area 50%; Typical roll length = 50 meters; Typical roll width = 1, 2, 3 or 4 meters.
Geogro	Class 1	No product literature available.
Geojute Plus	Class 1	Woven jute mat, undyed and unbleached. Yarn count 78 - width warp; 180 per linear yard weft. Typical roll weight = 2.82 lbs / linear yard; Typical roll length 100 feet. Typical roll width = 4 feet.
Geojute Plus 1	Class 1	No product literature available.
Geojute® Plus-Regular High Velocity	Class 2	No product literature available.
GREENSTREAK® PEC-MAT TM	Class 1 Class 2	Flexible mat of non-woven, randomly-oriented monofilaments, thermally welded together into a three-dimensional porous web. Typical weight = 28 oz / sq yd. Typical roll width = 6 feet.
KoirMat 400	Class 1	No product literature available.
KoirMat [™] 740	Class 2	No product literature available.
LANDLOK FRS 3112	Class 1	Fiber roving system consisting of continuous fibrillated, fine-denier, polypropylene yarn fibers, processed such that interlocking fibrils attach to slightly coarser stem fibrils, without UV stabilization, designed for application through air-gun process. Typical yarn is wound onto two cylindrical packages weighing 18-25 pounds.
LANDLOK® TRM 450	Class 2	Dense, three-dimensional web of polyolefin fibers positioned between two biaxially oriented nets and mechanically bound together by parallel stitching with polyolefin thread. Typical weight = 10.5 oz / square yard. Typical roll width = 6.5 feet. Typical roll length = 138.5 feet.
LANDLOK® 407GT	Class 1	Flexible, non-organic, open-weave geotextile consisting of perpendicular rows of multifilament and tape yarns woven together resulting in a dimensionally stable matrix. Typical weight = 2.25 oz / sq yd. Typical roll width = 12 ½ feet (4 ft width optional).
Miramat® 1000	Class 1	A flexible, three-dimensional web of bonded polypropylene monofilaments. Typical weight - 9.6 oz / sq yd. Typical roll width = 4.3 feet. Typical roll length = 210 feet.
Miramat® TM8 TM	Class 2	Flexible, three-dimensional synthetic mat. Typical weight = 12 oz / sq yd. Typical roll width = 12 feet. Typical rol l length = 100 feet.

Brand Name of Product	Tested As	Material Description
North American Green SC150	Class 1	Machine-produced mat consisting of 70% agricultural straw and 30% coconut fiber, covered on the top side by a polypropylene net having an approximate $5/8$ " x $5/8$ " mesh, and on the bottom side by a polypropylene net with an approximate $\frac{1}{2}$ " x $\frac{1}{2}$ " mesh, sewn together by cotton thread. Typical weight per roll = 30 lbs \pm 10% per roll. Typical roll length = 83.3 feet. Typical roll width = 6.5 feet.
North American Green S150	Class 1 Class 2	Machine-produced mat of 100% agricultural straw, covered on the top and bottom sides with a polypropylene net having an approximate opening size of $\frac{1}{2}$ " x $\frac{1}{2}$ ", and sewn together by cotton thread. Typical roll weight = 30 lbs \pm 10% per roll. Typical roll width = 6.5 feet. Typical roll length = 83.5 feet.
North American Green C350 TM Three Phase TM	Class 2	100% coconut fiber stitch bonded between a heavy duty UV stabilized bottom net and a heavy duty UV stabilized cuspated (crimped) middle netting overlaid with a heavy duty UV stabilized top net. The three nettings are stitched together on 1.5 inch centers with UV stabilized polyester thread. Typical weight = 0.92 lbs / sq yd;
North American Green S75	Class 1	Machine-produced mat of 100% agricultural straw, covered on the top side with a polypropylene net having an approximate $\frac{1}{2}$ " x $\frac{1}{2}$ " mesh, sewn together with cotton thread. Typical roll weight = 30 lbs \pm 10% per roll. Typical roll length = 83.5 feet.
Permamat 200F	Class 2	Machine-produced mat of evenly distributed Aspen wood excelsior fibers, 80% of which are six inches or longer. The mat is completely encased in a black extreuded plastic netting treated to retain intact both in direct sunlight and when burried. The netting mesh size is approx. 3/4" x 3/8". Plastic netting is securely attached to the excelsior. Typical weight = 2.34 lbs / sq yd; Typical roll length = 75 feet; Typical roll width = 4 feet.
POZ-O-CAP®	Class 1	Product consisting of dry powder mix of cemtious and hydrated lime with a dry, cellulose-derived fiber reinforcing additive, applied through standard hydraulic (hydraulic seeding) processes.
Pro Mat® XL	Mulch	Natural cellulose wood fiber hydro-mulch manufactured from 85% recycled newspaper. Ash content less than 1.6% (dust). Moisture content of not more than 15%.
Pro Mat® XL with Airtak	Mulch	
Pro Mat®	Mulch	Recycled cellulose fiber mulch manufactured from corrugated paper fibers. Typical bag width = 50 lbs. Typical moisture content = $12\% \pm 3\%$. Typical Ash content = 1.6% max.
Pyramat®	Class 2	Three-dimensional, lofty, woven polypropylene geotextile, composed of polypropylene monofilament yarns woven into a uniform configuration of resilient pyramid-like projectsions. Typical weight = 15 oz / sq yd; Typical roll length = 90 feet; Typical roll width = 6 feet.
Second Nature® Regenerated Wood Fiber	Mulch	Recycled, natural fiber mulch. Typical bag weight = 50 lbs. Typical moisture content = $12\% \pm 3\%$.

General Product Material Descriptions

Brand Name of Product	Tested As	Material Description
Seed-Guard TM	Class 1	Natural green mat woven from photo-degradable polypropylene yarns. No additional material specifications available at printing.
Silva-Fiber Plus®	Mulch	100% virgin wood fiber with 3% tackifier. Typical bag weight = 50 lbs. Typical moisture content = $12\% \pm 3\%$. Typical ash content 1.0%.
Soil Guard TM	Class 1	A bonded fiber matrix material produced from 100% wood fiber with natural binders. The product is designed to disperse rapidly in water, remain in uniform suspension under agitation, and be applied through standard hydraulic (hydraulic seeding) processes.
SuperGro TM	Class 1	Flexible, light-weight geocomposite consisting of nonwoven, isotactic, polypropylene staple, uniform fiber blanket, reinforced with polypropylene netting, earthtone in color. Typical weight = 1.0 oz per sq yd; Typical roll length = 250 linear yards; Typical roll width = 4 feet.
Tensar TB 1000	Class 1 Class 2	Lofty web of polyolefin fibers between two high strength, biaxially oriented nets and bound securely together by parallel stitching with polyolefin thread. Stabilized against ultraviolet degradation and inert to chemicals normally encountered in a natural soil environment. Typical weight = 10 ounces per yd (ASTM D-3776); Typical roll length = 120 feet; Typical roll width = 7.5 feet.
Tensar® Erosion Mat TM3000	Class 2	Consists of polymer nettings, fused at the intersections of the fibers and formed into a strong and dimensionally stable mat. Material is UV stabilized with a minimum of 2.0% carbon black. Typical weight =- 12 oz / sq yd (min); Typical roll length = 100 feet; Typical roll width = 5 feet.
Terra Control	Class 1	Polyvinylacetat dispersion containing easily biodegradable plasticizer, formulated as a milky-white, bio-degradable synthetic resin dispersion in water, designed for hydraulic applications.
verdyol® EXCELSIOR High Velocity	Class 1 Class 2	Machine-produced mat of 100% clean wood excelsior fibers processed from hardwood. The top and bottom sides of the blanket is covered with an extruded, degradable polypropylene netting of 3/4" x 3/4" openings. Typical weight = 1.1 lbs / sq yd. Typical roll width = 7.5 feet. Typical roll length = 96 feet.
verdyol® EXCELSIOR Standard	Class 1	Machine-produced mat of 100% clean, wood excelsior fibers processed from hardwood. The top side of the blanket is covered with an extruded, degradable polypropylene netting with 3/4" x 3/4" openings. Typical weight = 0.85 lbs / sq yd. Typical roll width = 7.5 feet. Typical roll length = 96 feet.
verdyol® ERO-MAT [™]	Class 1	Machine-produced mat consisting of agricultural straw, covered on one side of the blanket with a photodegradable, synthetic mesh adhered to the straw by a knitting process using degradable thread. Typical roll weight = $50 \text{ lbs} \pm 1 \text{ lb}$ per roll. Typical roll width = 7.5 feet . Typical roll length = 120 feet .

General Product Material Descriptions

Brand Name of Product	Tested As	Material Description
Xcel Regular®	Class1	Machine-produced mat of curled wood excelsior of 80% six-inch or longer fiber length, covered on the top side by a photo-degradable, extruded plastic net. Typical weight = 0.98 lbs / sq yd \pm 0.10 lbs / sq yd. Typical roll width = 48 inches \pm 1 inch. Typical roll length = 180 feet (min).
Xcel Superior®	Class 1	Machine-produced mat of curled wood excelsior of 80%, six-inch or longer fiber length, covered on the top and bottom sides by a photo-degradable, extruded plastic net. Typical weight = $1.0 \text{ lbs / sq yd} \pm 0.10 \text{ lbs / sq yd}$. Typical roll width = $48 \text{ inches} \pm 1 \text{ inch}$. Typical roll length = 180 feet (min) .

Disclaimer:

The product descriptions shown within this table are general in nature, intended for overall product comparison purposes only, and are not to be used for specification purposes. Refer to individual manufacturer's literature for the specific brand for complete product material specifications.

CLASS 1 "SLOPE PROTECTION" Final Performance Analysis

(Analysis by Steepness of Slope and Type of Soil)

ANALYSIS LEVEL USED BY TXDOT TO DETERMINE APPROVED PRODUCT LIST

This analysis level seeks to determine what the sediment-loss and vegetation-density performance of each product was based upon both the steepness of slope and type of soil.

Sediment-loss figures shown represent the average sediment loss from the six, simulated rainfall events given each plot, and are expressed in terms of <u>Kilograms of Sediment Loss per 10 Square Meters</u>.

Vegetation-density figures shown represent the <u>average percent of vegetative cover</u> achieved within the plot by the final measurement cycle only.

Class 1 "Slope Protection" Applications Record of Product Evaluations

Cycle	No	Product Evaluated	1:2 Clay	1:2 Sand	1:3 Clay	1:3 Sand
	1	Anti-Wash®/Geojute®				
	2	Curlex® I				
	3	Greenstreak® Pec-Mat™				
	4	Landlok® 407GT				
	5	North American Green S75	************			
1991	6	North American Green S150				
	7	North American Green SC150				
·	8	verdyol® ERO-MAT®				
	9	Xcel Regular				
	10	Xcel Superior				
	1	Airtrol®				
1992	· 2	Curlex® I				
	3	Geocoir®/DeKoWe® 700				
1993		Cycle Cancelled Due to Weather Damage				
	1	Airtrol®				
	2	Curlex® I				
	3	Geocoir®/DeKoWe® 700				
1994	4	Geojute® Plus				
	5	Miramat® 1000				
	6	Soil Guard TM				
	7	SuperGro TM				

Class 1 "Slope Protection" Applications Record of Product Evaluations

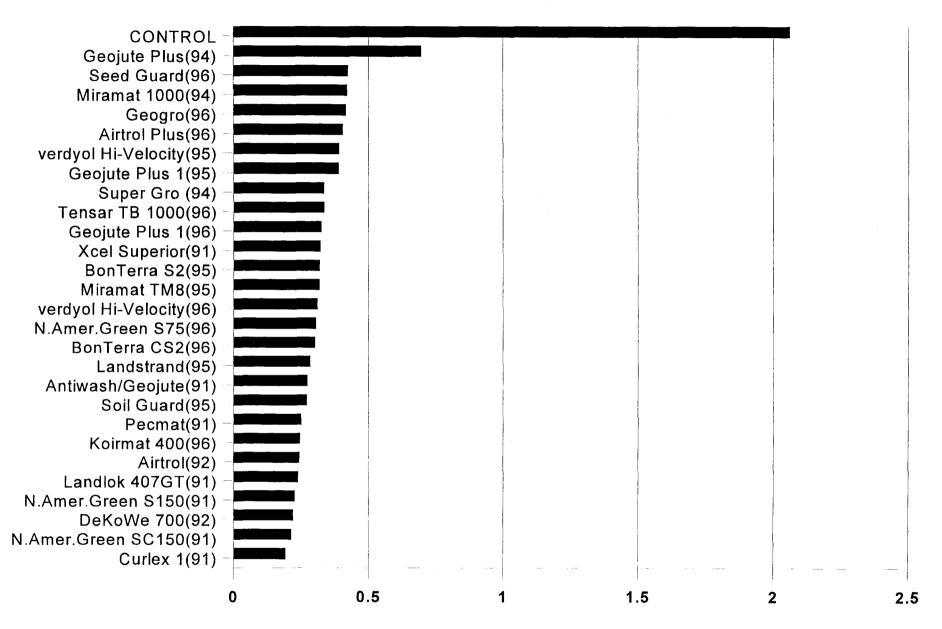
Cycle	No	Product Evaluated	1:2 Clay	1:2 Sand	1:3 Clay	1:3 Sand
	1	Airtrol®				
	2	BonTerra® S1™				
	3	BonTerra® S2™				
	4	Curlex® I				
	5	ECS Straw Blanket Standard				
į	6	Geocoir®/DeKoWe® 700				
1995	7	Geojute® Plus 1				
	8	Landlok® FRS 3112				
	9	Miramat® TM8™				
:	10	POZ-O-CAP®				
	11	SuperGro™				
	12	verdyol® Excelsior Standard				
	13	verdyol® Excelsior High-Velocity				
	1	Airtrol® Plus			-	
	2	BonTerra® S2™				
	3	BonTerra® CS2™				
	4	Curlex®-LT				
	5	ECS Excelsior Blanket Standard				
	6	Geogro				
	7	Geojute® Plus I				
1996	8	KoirMat™ 400				
	9	Landlok® FRS 3112				
	10	North American Green S75				
	11	POZ-O-CAP®				
	12	Seed-Guard™				
	13	Tensar® Erosion Blanket TB1000				
	14	Terra-Control®				
	15	verdyol® Excelsior High-Velocity				

Shaded cells represent evaluation conditions as requested by the participant.

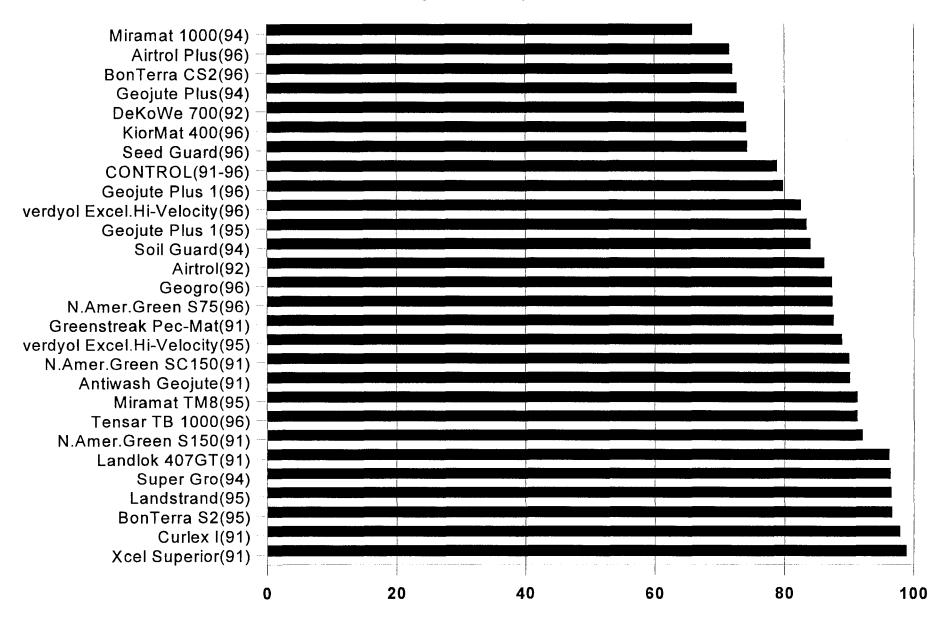
TABULAR DATA
Class 1 "Slope Protection"

1:2 Clay

Analysis by Steepness of Slope and Type of Soil


	Product Performance - 1996 Evaluation Cycle									
No	Product Name	Year	Slope	Soil	Sediment Loss (0.34 kg/10 m ²)	Vegetation Density (80%)				
1	KoirMat TM 400	1996	1:2	Clay	0.2450	74.071				
2	BonTerra® CS2™	1996	1:2	Clay	0.3011	71.978				
3	North American Green S75	1996	1:2	Clay	0.3047	87.390				
4	verdyol® Excelsior High-Velocity	1996	1:2	Clay	0.3096	82.477				
5	Geojute® Plus 1	1996	1:2	Clay	0.3243	79.748				
6	Tensar® Erosion Blanket TB1000	1996	1:2	Clay	0.3335	91.244				
7	Airtrol® Plus	1996	1:2	Clay	0,4037	71.508				
8	Geogro	1996	1:2	Clay	0.4152	87.304				
9	Seed-Guard™	1996	1:2	Clay	0.4234	74.210				
	Product Perform	ance : 199	1 - 1996 I	evaluation	Cycles					
No	Product Name	Year	Slope	Soil	Sediment Loss (0.34 kg/10 m²)	Vegetation Density (80%)				
1	Curlex® I	1991	1:2	Clay	0.1917	97.834				
2	North American Green SC150	1991	1:2	Clay	0.2130	89.979				
3	Geocoir®/DeKoWe® 700	1992	1:2	Clay	0.2201	73.717				
4	North American Green S150	1991	1:2	Clay	0.2258	92.014				
5	LANDLOK® 407GT	1991	1:2	Clay	0.2380	96.151				
6	Airtrol®	1992	1:2	Clay	0.2432	86.094				
7	KoirMat TM 400	1996	1:2	Clay	0.2450	74.071				
8	Greenstreak® Pec-Mat TM	1991	1:2	Clay	0.2499	87.580				
9	Soil Guard™	1994	1:2	Clay	0.2712	83.987				
10	Anti-Wash®/Geojute®	1991	1:2	Clay	0.2727	90.058				
11	Landlok® FRS 3112	1995	1:2	Clay	0.2835	96.513				
12	BonTerra® CS2™	1996	1:2	Clay	0.3011	71.978				
13	North American Green S75	1996	1:2	Clay	0.3047	87.390				
14	verdyol® Excelsior High-Velocity	1996	1:2	Clay	0.3096	82.477				

Analysis by Steepness of Slope and Type of Soil


	Product Perf	ormance -	- 1996 Eva	luation C	vole	
No	Product Name	Year	Slope	Soil	Sediment Loss (0.34 kg/10 m²)	Vegetation Density (80%)
15	Miramat® TM8™	1995	1:2	Clay	0.3175	91.236
16	BonTerra® S2™	1995	1:2	Clay	0.3177	96.584
17	Xcel Superior	1991	1:2	Clay	0.3212	98.814
18	Geojute® Plus 1	1996	1:2	Clay	0.3243	79.748
19	Tensar® Erosion Blanket TB1000	1996	1:2	Clay	0.3335	91.244
20	SuperGro™	1994	1:2	Clay	0.3342	96.353
21	Geojute® Plus 1	1995	1:2	Clay	0.3885	83.351
22	verdyol® Excelsior High-Velocity	1995	1:2	Clay	0.3892	88.837
23	Airtrol® Plus	1996	1:2	Clay	0.4037	71.508
24	Geogro	1996	1:2	Clay	0.4152	87.304
25	Miramat® 1000	1994	1:2	Clay	0.4199	65.814
26	Seed-Guard™	1996	1:2	Clay	0.4234	74.210
27	Geojute® Plus	1994	1:2	Clay	0.6942	72.647
28	CONTROL	91-94	1:2	Clay	2.0598	78.843

NOTE: Shaded cells (if any) indicate performance which failed to meet currently established minimum performance standards.

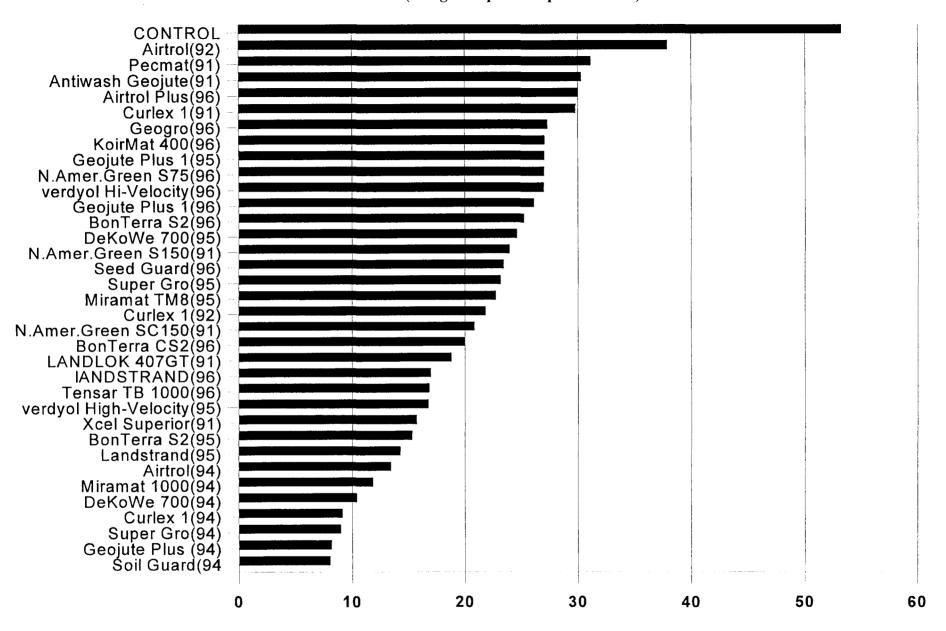
1:2 Clay Soils Sediment Loss (Kilograms per 10 Square Meters)

2:1 Clay Soils
Final Vegetative Density (Percent)

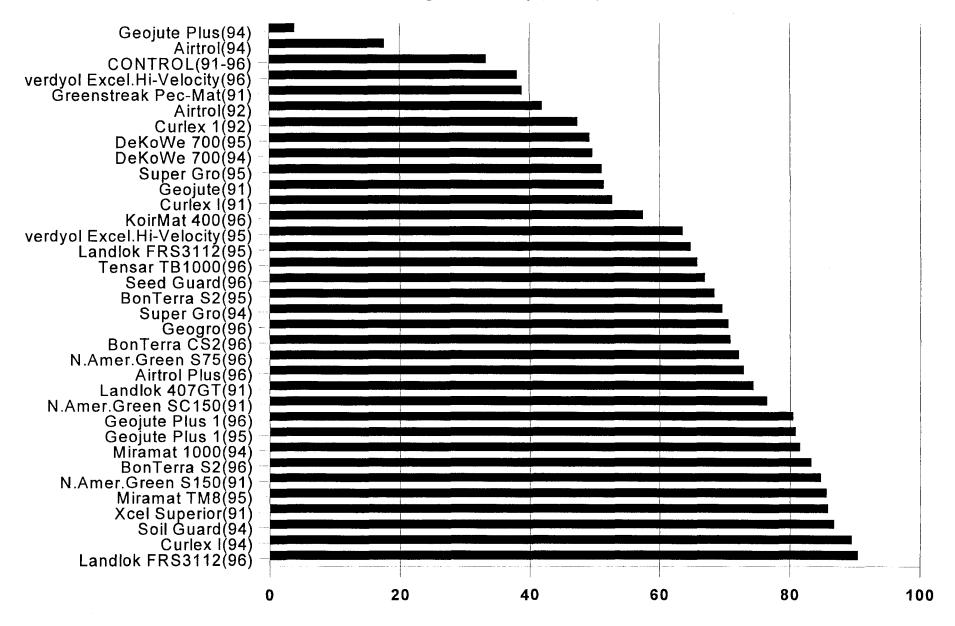
TABULAR DATA
Class 1 "Slope Protection"

1:2 Sand

Analysis by Steepness of Slope and Type of Soil


	Product Performance - 1996 Evaluation Cycle										
No	Product Name	Year	Slope	Soil	Sediment Loss (26.84 kg/10 m²)	Vegetation Density (70%)					
1	Tensar® Erosion Blanket TB1000	1996	1:2	Sand	16.821	65.708					
2	Landlok® FRS 3112	1996	1:2	Sand	16.938	90.418					
3	BonTerra® CS2™	1996	1:2	Sand	19.984	70.761					
4	Seed-Guard™	1996	1:2	Sand	23.398	66.882					
5	BonTerra® S2™	1996	1:2	Sand	25.230	83.239					
6	Geojute® Plus 1	1996	1:2	Sand	26.107	80.444					
7	verdyol® Excelsior High-Velocity	1996	1:2	Sand	26.976	38.088					
8	North American Green S75	1996	1:2	Sand	27.010	72.063					
9	KoirMat™ 400	1996	1:2	Sand	27.054	57.435					
10	Geogro	1996	1:2	Sand	27.328	70.473					
11	Airtrol® Plus	1996	1:2	Sand	29.998	72.793					
	Product Perform	ance : 199	1 - 19 96 I	Evaluation	Cycles						
No	Product Name	Year	Slope	Soil	Sediment Loss (26.84 kg/10 m²)	Vegetation Density (70%)					
1	Soil Guard TM	1994	1:2	Sand	8.042	86.735					
2	Geojute® Plus 1	1994	1:2	Sand	8.157	3.883					
3	SuperGro™	1994	1:2	Sand	8.967	69.570					
4	Curlex® I	1994	1:2	Sand	9.124	89.461					
5	Geocoir®/DeKoWe® 700	1994	1:2	Sand	10.389	49.623					
6	Miramat® 1000	1994	1:2	Sand	11.824	81.466					
7	Airtrol®	1994	1:2	Sand	13.417	17.614					
8	Landlok® FRS 3112	1995	1:2	Sand	14.253	64.758					
9	BonTerra® S2™	1995	1:2	Sand	15.299	68.348					
10	Xcel Superior	1991	1:2	Sand	15.676	85.805					
11	verdyol® Excelsior High-Velocity	1995	1:2	Sand	16.728	63.538					
12	Tensar® Erosion Blanket TB1000	1996	1:2	Sand	16.821	65.708					

Analysis by Steepness of Slope and Type of Soil


	Product Perfe	ormance -	1996 Eva	luation Cy	rele	
No	Product Name	Year	Slope	Soil	Sediment Loss (26.84 kg/10 m²)	Vegetation Density (70%)
13	Landlok® FRS 3112	1996	1:2	Sand	16.938	90.418
14	Landlok® 407GT	1991	1:2	Sand	18.769	74.302
15	BonTerra® CS2™	1996	1:2	Sand	19.984	70.761
16	North American Green SC150	1991	1:2	Sand	20.819	76.409
17	Curlex® I	1992	1:2	Sand	21.806	47.335
18	Miramat® TM8 TM	1995	1:2	Sand	22.731	85.597
19	SuperGro™	1995	1:2	Sand	23.170	51.092
20	Seed-Guard™	1996	1:2	Sand	23.398	66.882
21	North American Green S150	1991	1:2	Sand	23.916	84.746
22	Geocoir®/DeKoWe® 700	1995	1:2	Sand	24.587	49.192
23	BonTerra® S2™	1996	1:2	Sand	25.230	83.239
24	Geojute® Plus 1	1996	1:2	Sand	26.107	80.444
25	verdyol® Excelsior High-Velocity	1996	1:2	Sand	29.976	38,088
26	North American Green S75	1996	1:2	Sand	27 010	72.063
27	Geojute® Plus 1	1995	1:2	Sand	27.032	80.797
28	KoirMat™ 400	1996	1:2	Sand	27.054	57.435
29	Geogro	1996	1:2	Sand	27.328	70.473
30	Curlex® I	1991	1:2	Sand	29.795	52.674
31	Airtrol® Plus	1996	1:2	Sand	29.998	72.793
32	Anti-Wash®/Geojute®	1991	1:2	Sand	30.295	51.372
33	Airtrol®	1992	1:2	Sand	37.888	41.882
34	CONTROL	91-96	1:2	Sand	53 210	33.361

NOTE: Shaded cells (if any) indicate performance which failed to meet currently established minimum performance standards.

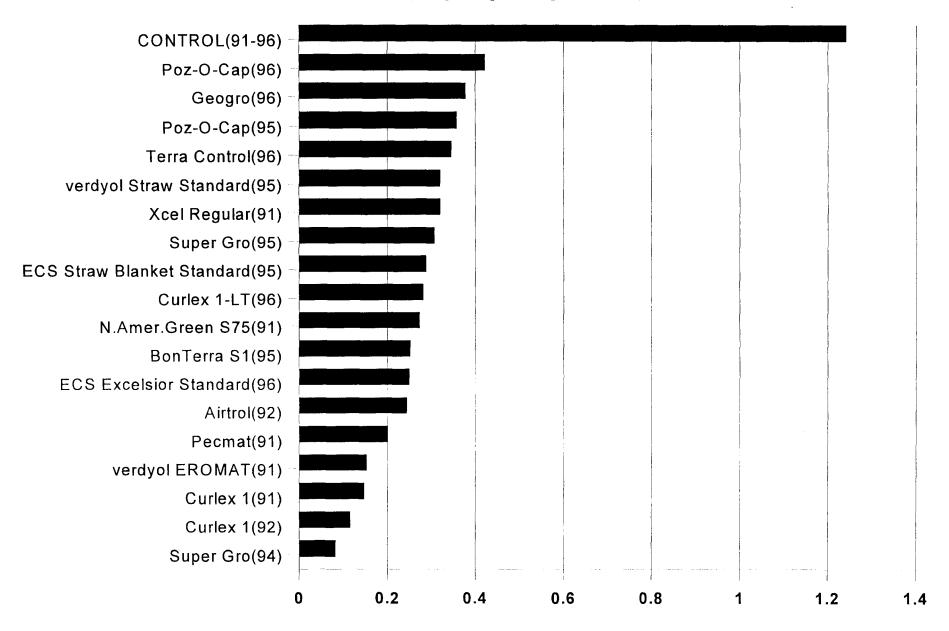
1:2 Sand Soils Sediment Loss (Kilograms per 10 Square Meters)

2:1 Sand Soils
Final Vegetative Density (Percent)

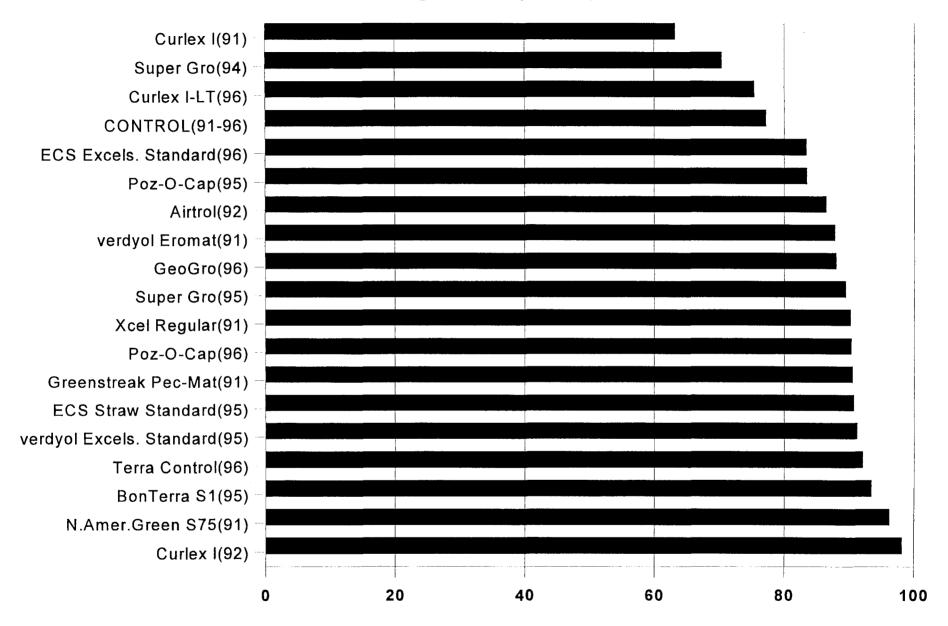
TABULAR DATA
Class 1 "Slope Protection"

1:3 Clay

Analysis by Steepness of Slope and Type of Soil


500000000000000000000000000000000000000			***************			
	Product Perfe	rmance -	1996 Eva	duation Cy	rcle	
No	Product Name	Year	Slope	Soil	Sediment Loss (0.34 kg/10 m²)	Vegetation Density (80%)
1	ECS Excelsior Blanket Standard	1996	1:3	Clay	0.2494	83.363
2	Curlex®-LT	1996	1:3	Clay	0.2808	75,390
3	Terra-Control®	1996	1:3	Clay	0.3449	92.087
4	Geogro	1996	1:3	Clay	0.3778	87.947
5	POZ-O-CAP®	1996	1:3	Clay	0.4217	90.312
	Product Perform	ance : 199	1 - 1996 1	Evaluation	Cycles	
No	Product Name	Year	Slope	Soll	Sediment Loss (0.34kg/10 m²)	Vegetation Density (80%)
1	SuperGro™	1994	1:3	Clay	0.0819	70.378
2	Curlex® I	1992	1:3	Clay	0.1153	98.125
3	Curlex® I	1991	1:3	Clay	0.1470	63.230
4	verdyol® ERO-MAT®	1991	1:3	Clay	0.1525	87.809
5	Greenstreak® Pec-Mat TM	1991	1:3	Clay	0.2001	90.525
6	Airtrol®	1992	1:3	Clay	0.2441	86.444
7	ECS Excelsior Blanket Standard	1996	1:3	Clay	0.2494	83.363
8	BonTerra® S1™	1995	1:3	Clay	0.2516	93.424
9	North American Green S75	1991	1:3	Clay	0.2727	96.187
10	Curlex®-LT	1996	1:3	Clay	0.2808	75.390
11	ECS Straw Blanket Standard	1995	1:3	Clay	0.2879	90.708
12	SuperGro™	1995	1:3	Clay	0.3062	89.418
13	Xcel Regular	1991	1:3	Clay	0.3196	90.166
14	verdyol® Excelsior Standard	1995	1:3	Clay	0.3197	91.212
15	Terra-Control®	1996	1:3	Clay	0.3449	92.087
16	POZ-O-CAP®	1995	1:3	Clay	0.357 6	83.479
17	Geogro	1996	1:3	Clay	0.3778	87.947
18	POZ-O-CAP®	1996	1:3	Clay	0.4217	90.312

Analysis by Steepness of Slope and Type of Soil


	Product Perfe	ormance -	1996 Eva	luation Cy	vele
No	Product Name	Year	Slope	Soil	Sediment Loss Vegetation Density (0.34 kg/10 m²) (80%)
19	CONTROL	91-96	1:3	Clay	1.2414 77.167

NOTE: Shaded cells (if any) indicate performance which failed to meet currently established minimum performance standards.

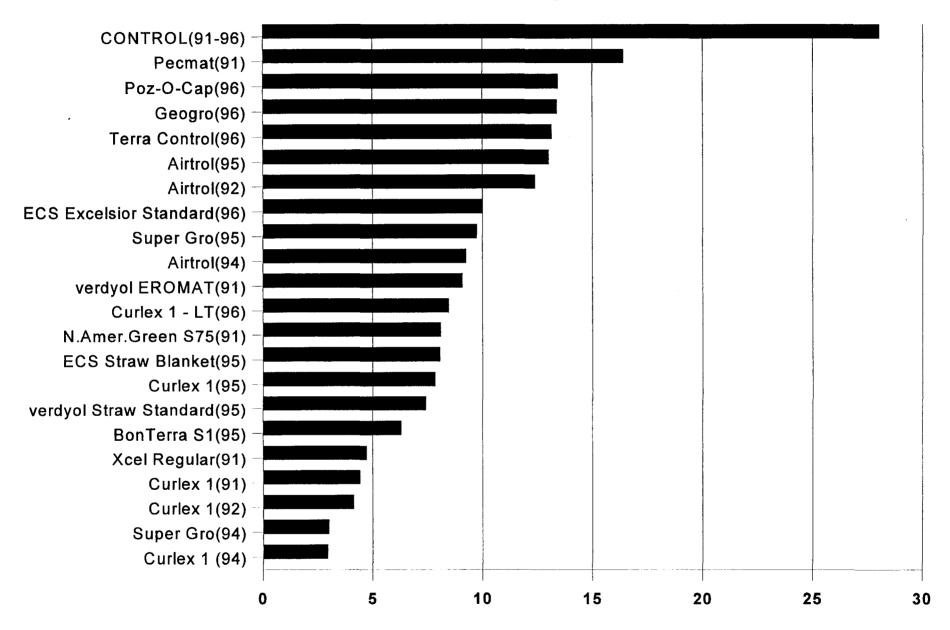
1:3 Clay Soils Sediment Loss (Kilograms per 10 Square Meters)

3:1 Clay Soils Final Vegetative Density (Percent)

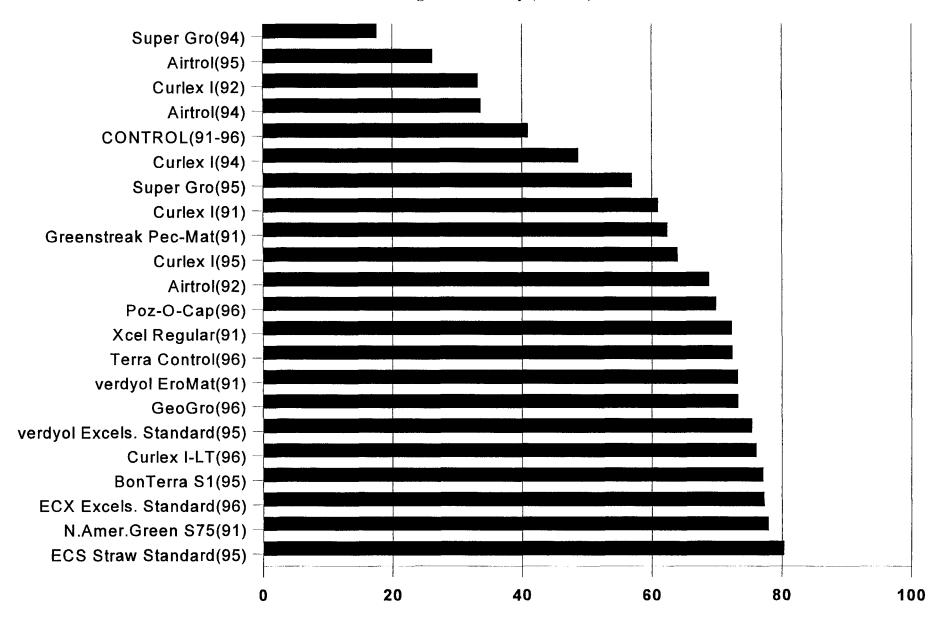
TABULAR DATA
Class 1 "Slope Protection

1:3 Sand

Analysis by Steepness of Slope and Type of Soil


	Product Perfo	ormance -	1996 Eva	iluation Cy	cie	
No	Product Name	Year	Slope	Soil	Sediment Loss (12.20 kg/10 m²)	Vegetation Density (70%)
1	Curlex®-LT	1996	1:3	Sand	8.465	76.032
2	ECS Excelsior Blanket Standard	1996	1:3	Sand	10.007	77.252
3	Terra-Control®	1996	1:3	Sand	13.149	72.321
4	Geogro	1996	1:3	Sand	1 3.3 9 1	73.245
5	POZ-O-CAP®	1996	1:3	Sand	13.443	69.810
	Product Perform	ance : 199	11 - 1996 I	Evaluation	Cycles	
No	Product Name	Year	Slope	Soil	Sediment Loss (12.20 kg/10 m²)	Vegetation Density (70%)
1	Curlex® I	1994	1:3	Sand	2.936	48 632
2	SuperGro TM	1994	1:3	Sand	3.002	17.585
3	Curlex® I	1992	1:3	Sand	4.119	33.232
4	Curlex® I	1991	1:3	Sand	4.406	60.937
5	Xcel Regular	1991	1:3	Sand	4.712	72.263
6	BonTerra® S1™	1995	1:3	Sand	6.289	77.089
7	verdyol® Excelsior Standard	1995	1:3	Sand	7.411	75.330
8	Curlex® I	1995	1:3	Sand	7.835	63.962
9	ECS Straw Blanket Standard	1995	1:3	Sand	8.063	80.276
10	North American Green S75	1991	1:3	Sand	8.099	77.904
11	Curlex®-LT	1996	1:3	Sand	8.465	76.032
12	verdyol® ERO-MAT®	1991	1:3	Sand	9.078	73.202
13	Airtrol®	1994	1:3	Sand	9.261	33.638
14	SuperGro TM	1995	1:3	Sand	9.742	56,888
15	ECS Excelsior Blanket Standard	1996	1:3	Sand	10.007	77.252
16	Airtrol®	1992	1:3	Sand	12.389	68.749
17	Airtrol®	1995	1:3	Sand	13.018	26.180
18	Terra-Control®	1996	1:3	`Sand	13.149	72.321

Analysis by Steepness of Slope and Type of Soil


	Product Performance - 1996 Evaluation Cycle									
No	Product Name	Year	Slope	Soil	Sediment Loss (12.20 kg/10 m²)	Vegetation Density (70%)				
19	Geogro	1996	1:3	Sand	13.391	73.245				
20	POZ-O-CAP®	1996	1:3	Sand	13,443	69.810				
21	Greenstreak® Pec-Mat™	1991	1:3	Sand	16.402	62,385				
22	CONTROL	91-96	1:3	Sand	28.013	40.895				

NOTE: Shaded cells (if any) indicate performance which failed to meet currently established minimum performance standards.

1:3 Sand Soils Sediment Loss (Kilograms per 10 Square Meters)

1:3 Sand Soils
Final Vegetative Density (Percent)

STATISTICAL ANALYSIS Class 1 "Slope Protection" Applications

1:2 Clay

Analysis of Variance Duncan's Multiple Range Test Confidence Level = 95%

CLASS 1 - SEDIMENT LOSS PERFORMANCE TXDOT/TTI HYDRAULICS AND EROSION CONTROL LABORATORY FINAL PERFORMANCE ANALYSIS - THROUGH THE 1996 EVALUATION CYCLE

SLOPE=2:1 SOIL=CLAY ------

ANALYSIS OF VARIANCE PROCEDURE

DUNCAN'S MULTIPLE RANGE TEST FOR VARIABLE: SDMT

NOTE: THIS TEST CONTROLS THE TYPE I COMPARISONWISE ERROR RATE, NOT THE EXPERIMENTWISE ERROR RATE

ALPHA= 0.05 DF= 878 MSE= 0.41126 WARNING: CELL SIZES ARE NOT EQUAL. HARMONIC MEAN OF CELL SIZES= 21.73585

NUMBER OF MEANS 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CRITICAL RANGE .3818 .4020 .4155 .4255 .4333 .4397 .4450 .4450 .4456 .4535 .4570 .4601 .4629 .4654 .4677

NUMBER OF MEANS 16 17 18 19 20 21 22 23 24 25 26 27 28 CRITICAL RANGE .4698 .4717 .4735 .4752 .4767 .4782 .4795 .4808 .4820 .4831 .4842 .4852 .4862

MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.

DUNCAN GROU	PING	MEAN	N	PLOT
	A A	-0.1917	10	CURLEX I(91)
В	A	-0.2130	10	N/A/G SC150(91)
B B	A A	-0.2201	30	DEKOWE 700 (92)
B B	A A	-0.2258	10	N/A/G S150(91)
B B	A A	-0.2380	10	LANDLOK407GT(91)
В В	A A	-0.2432	32	AIRTROL(92)
B B	A A	-0.2450	36	KOIRMAT 400(96)
B B	A A	-0.2499	10	PECMAT(91)
B B	A A	-0.2712	30	SOIL GUARD (94)
В	A			
B B	A A	-0.2727	10	GEOJUTE (91)
B B	A A	-0.2835	36	LANDLOKFRS (95)
B B	A A	-0.3011	36	BONTERRA CS2 (96)
B B	A A	-0.3047	36	N/A/G S75(96)
ВВ	A A	-0.3096	36	VERDYOL HI-V(96)
В	Α	-0.3175	36	MIRAMAT TM8 (95)
В	A A	-0.3177	36	BONTERRA S2 (95)
B B	A A	-0.3212	10	XCEL SUP(91)

TXDOT/TTI HYDRAULICS AND EROSION CONTROL LABORATORY FINAL PERFORMANCE ANALYSIS - THROUGH THE 1996 EVALUATION CYCLE

ANALYSIS OF VARIANCE PROCEDURE

DUNCAN GROUP	PING	MEAN	N	PLOT
В	A			
В	A	-0.3243	36	GEOJUTE PLS1 (96)
В	Α			
В	Α	-0.3335	36	TB 1000(96)
В	A			
В	A	-0.3342	30	SUPER GRO(94)
В	A			
В	A	-0.3885	36	GEOJUTE PLS1 (95)
В	A			
В	A	-0.3892	36	VERDYOL HI-V(95)
В	A			
В	Α	-0.4037	36	AIRTROL PLUS (96)
В	A			
В	Α	-0.4152	36	GEOGRO (96)
В	A			
В	Α	-0.4199	30	MIRAMAT 1000(94)
В	Α	•		
В	Α	-0.4234	36	SEED GUARD (96)
В				
В		-0.6942	36	GEOJUTE PLUS (94)
	C	-2.0598	144	CONTROL

SLOPE=2:1 SOIL=CLAY

ANALYSIS OF VARIANCE PROCEDURE

DUNCAN'S MULTIPLE RANGE TEST FOR VARIABLE: COVER

NOTE: THIS TEST CONTROLS THE TYPE I COMPARISONWISE ERROR RATE, NOT THE EXPERIMENTWISE ERROR RATE

ALPHA= 0.05 DF= 566 MSE= 455.0039 WARNING: CELL SIZES ARE NOT EQUAL. HARMONIC MEAN OF CELL SIZES= 19.00094

NUMBER OF MEANS 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CRITICAL RANGE 13.59 14.31 14.79 15.15 15.42 15.65 15.84 16.00 16.14 16.26 16.37 16.47 16.56 16.64

NUMBER OF MEANS 16 17 18 19 20 21 22 23 24 25 26 27 28 CRITICAL RANGE 16.72 16.78 16.85 16.91 16.96 17.01 17.06 17.10 17.14 17.18 17.22 17.26 17.29

DINGNA GROUDING

MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.

DUNCA	AN GF	ROUP	ING		MEAN	N	PLOT
			A A		98.814	16	XCEL SUP(91)
			A A		97.834	16	CURLEX I(91)
	B B		A A	-	96.584	20	BONTERRA S2 (95)
	B B		A A		96.513	20	LANDLOKFRS (95)
	B B		A A		96.353	20	SUPER GRO(94)
	B B		y V		96.151	16	LANDLOK407GT(91)
	B B		A A	C C	92.014	16	N/A/G S150(91)
	B B		A A	C	91.244	20	TB 1000(96)
	B B		A A	C C	91.236	20	MIRAMAT TM8 (95)
	B B	D D	A A	C C	90.058	16	GEOJUTE (91)
	B B	D D	A A	c c	89.979	16	N/A/G SC150(91)
E E	B B	D D	A A	C C	88.837	20	VERDYOL HI-V(95)
E E	B B	D D	A A	C F C F	87.580	16	PECMAT(91)
E E	B B	D D	A A	C F C F	87.390	20	N/A/G S75(96)
E E	B B	D D	A A	C F	87.304	20	GEOGRO (96)
E E	B B	D D	A A A	C F C F	86.094	16	AIRTROL(92)
E	В	D	A	CF	83.987	20	SOIL GUARD (94)

SLOPE=2:1 SOIL=CLAY -----

ANALYSIS OF VARIANCE PROCEDURE

DUNCAN GROUPING			MEAN	N	PLOT		
Е	В	D	Α	СF			
E	В	D	Α	C F	83.351	20	GEOJUTE PLS1 (95)
E	В	D	A	CF			
Е	В	D	Α	CF	82.477	20	VERDYOL HI-V(96)
E	В	D		C F			
Е	В	D	G	C F	79.748	20	GEOJUTE PLS1 (96)
E		D	G	C F			
E		D	G	C F	78.843	90	CONTROL
E		D	G	F			
E		D	G	F	74.210	20	SEED GUARD (96)
Е		D	G	F			
E		D	G	F	74.071	20	KOIRMAT 400(96)
Е		D	G	F			
Е		D	G	F	73.717	16	DEKOWE 700(92)
Е			G	F			•
E			G	F	72.647	20	GEOJUTE PLUS (94)
			G	F			
			G	F	71.978	20	BONTERRA CS2 (96)
			G	F			
			G	F	71.508	20	AIRTROL PLUS (96)
			G				
			G		65.814	20	MIRAMAT 1000(94)

STATISTICAL ANALYSIS Class 1 "Slope Protection" Applications

1:2 Sand

Analysis of Variance Duncan's Multiple Range Test Confidence Level = 95%

CLASS 1 - SEDIMENT LOSS PERFORMANCE TXDOT/TTI HYDRAULICS AND EROSION CONTROL LABORATORY FINAL PERFORMANCE ANALYSIS - THROUGH THE 1996 EVALUATION CYCLE

SLOPE=2:1 SOIL=SAND ------

ANALYSIS OF VARIANCE PROCEDURE

DUNCAN'S MULTIPLE RANGE TEST FOR VARIABLE: SDMT

NOTE: THIS TEST CONTROLS THE TYPE I COMPARISONWISE ERROR RATE, NOT THE EXPERIMENTWISE ERROR RATE

ALPHA= 0.05 DF= 1227 MSE= 555.9562 WARNING: CELL SIZES ARE NOT EQUAL. HARMONIC MEAN OF CELL SIZES= 31.98486

NUMBER OF MEANS 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 CRITICAL RANGE 11.57 12.18 12.59 12.89 13.13 13.32 13.48 13.62 13.74 13.85 13.94 14.03 14.10 14.17 14.24 14.30 14.35

NUMBER OF MEANS 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 CRITICAL RANGE 14.40 14.45 14.49 14.53 14.57 14.61 14.64 14.68 14.71 14.74 14.77 14.79 14.82 14.84 14.87 14.89 14.91

MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.

DUNCA	M GR	OUPING	MEAN	N	PLOT
		A A	-8.042	30	SOIL GUARD (94)
		A	-8.157	30	GEOJUTE PLUS (94)
		A	-0.157	30	GEOCOTE TEOS(34)
	В	A	-8.967	30	SUPER GRO(94)
	В	A			. ,
	В	A C	-9.124	30	CURLEX I (94)
	В	A C			
	В	D A C	-10.389	30	DEKOWE 700 (94)
	В	D A C			
E	В	D A C	-11.824	30	MIRAMAT 1000(94)
E	В	D A C			
Е	В	D A CF	-13.417	30	AIRTROL(94)
E	В	D A CF			
Е	В	D A CF	-14.253	36	LANDLOKFRS (95)
Е	В	D A CF	15 200	36	BONTERRA S2 (95)
E E	B B	D AGCF D AGCF	-15.299	30	BUNIERRA 32 (93)
E	В	DHAGCF	-15.676	18	XCEL SUP(91)
E	В	DHAGCF	15.070	10	Rebb bor (51)
E	ві		-16.728	36	VERDYOL HI-V(95)
E		DHAGCF			
E		DHAGCF	-16.821	36	TB 1000(96)
E	вІ	DHAGCF			
E	вІ	DHAGCF	-16.938	36	LANDLOKFRS (96)
E	вІ	DHAGCF			
E	ві	DHAGCF	-18.769	24	LANDLOK407GT(91)
E	ВІ	DHAGCF			
E		DHAGCF	-19.984	36	BONTERRA CS2 (96)
E	ВІ				
Е	ВІ		-20.819	21	N/A/G SC150(91)
Е	ВІ		21 226	2.	CIRCLES T (00)
Е	B I	DHAGCF	-21.806	34	CURLEX I(92)

TXDOT/TTI HYDRAULICS AND EROSION CONTROL LABORATORY FINAL PERFORMANCE ANALYSIS - THROUGH THE 1996 EVALUATION CYCLE

ANALYSIS OF VARIANCE PROCEDURE

DUNCAN	GRO	OUE	119	IG				MEAN	N	PLOT
E	вІ	D	Н		G	С	F			
E	ві	D	Н			C		-22.731	36	MIRAMAT TM8 (95)
		D				C				
		D				C		-23.170	36	SUPER GRO (95)
E E		D D				C		-23.398	36	SEED GUARD (96)
E		D			G		F	23.370	30	DDDD GOIND(50)
E		D		J			F	-23.916	24	N/A/G S150(91)
E	I	D	Н	J	G		F			
E		D					F	-24.587	36	DEKOWE 700(95)
E	I			J			F			
E E	I			J J			F F	-25.230	36	BONTERRA S2 (96)
E	I			J			F	-26.107	36	GEOJUTE PLS1(96)
	Ī			J			F	20.107	30	GEOCOTE TEST(50)
	I		Н	J	G		F	-26.976	36	VERDYOL HI-V(96)
	1		Н	J	G		F			
	1			J			F	-27.010	36	N/A/G S75(96)
	I			J			F	27 220	2.6	000 TIMB DI (1 (05)
	I			J J			F F	-27.032	36	GEOJUTE PLS1 (95)
	I			J			F	-27.054	36	KOIRMAT 400(96)
	ī			J			F	27.001		10214111 100 (30)
	I			J			F	-27.328	36	GEOGRO (96)
	I				G					
	I				G			-29.795	26	CURLEX I(91)
	I		Н					00.000	2.5	ATDEROT DIVIDIO
	I		H	J				-29.998	36	AIRTROL PLUS (96)
	I			J				-30.295	27	GEOJUTE (91)
	I			J						
	I			J				-31.143	28	PECMAT (91)
				J						
				J				-37.888	36	AIRTROL(92)
				ĸ				-53.210	166	CONTROL

CLASS 1 - VEGETATION DENSITY PERFORMANCE TXDOT/TTI HYDRAULICS AND EROSION CONTROL LABORATORY

FINAL PERFORMANCE ANALYSIS - THROUGH THE 1996 EVALUATION CYCLE

ANALYSIS OF VARIANCE PROCEDURE

DUNCAN'S MULTIPLE RANGE TEST FOR VARIABLE: COVER

NOTE: THIS TEST CONTROLS THE TYPE I COMPARISONWISE ERROR RATE, NOT THE EXPERIMENTWISE ERROR RATE

ALPHA= 0.05 DF= 677 MSE= 731.5119 WARNING: CELL SIZES ARE NOT EQUAL. HARMONIC MEAN OF CELL SIZES= 19.01275

NUMBER OF MEANS 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 CRITICAL RANGE 17.22 18.13 18.74 19.19 19.55 19.83 20.07 20.28 20.46 20.61 20.75 20.88 20.99 21.09 21.19 21.27 21.35

NUMBER OF MEANS 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 CRITICAL RANGE 21.43 21.50 21.56 21.62 21.68 21.73 21.78 21.83 21.88 21.92 21.96 22.00 22.04 22.07 22.11 22.14 22.17

MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.

DUNC	AN (3R(UC	1IS	1G				MEAN	N	PLOT
					A A				90.418	20	LANDLOKFRS (96)
	ВВ				A				89.461	20	CURLEX I(94)
	В				A		C		86.735	20	SOIL GUARD (94)
	B B B		D D		A A A		C		85.805	16	XCEL SUP(91)
	B B		D D		A A		C		85.597	20	MIRAMAT TM8(95)
E	B		D D		A		C		84.746	16	N/A/G S150(91)
E E	B B		D D		A		C		83.239	20	BONTERRA S2 (96)
E	B B		D		A		C		81.466	20	MIRAMAT 1000(94)
E E	B B		D D		A		C		80. 7 97	20	GEOJUTE PLS1 (95)
E	B B		D D		A		C		80.444	20	GEOJUTE PLS1 (96)
E E	B B		D D		A		C		76.409	15	N/A/G SC150(91)
E E	B B		D D		A		C	F F	74.302	16	LANDLOK407GT (91)
E	В		D D		A			F	72.793	20	AIRTROL PLUS (96)
E E	B		D D		A	G G	C		72,063	20	N/A/G S75(96)
E E	B B	I I	D	Н	Α	G G	С	F	70.761	20	BONTERRA CS2 (96)
E E	B B	I	D D	H	Α	G	С	F	70.473	20	GEOGRO (96)
	JВ					G			69.570	20	SUPER GRO(94)

ANALYSIS OF VARIANCE PROCEDURE

DUNCAN GROUPING	MEAN	N	PLOT
EJBIDH GCF			
EJBIDH GCF	68.348	20	BONTERRA S2 (95)
EJ IDH GCF			
EJ IDHKGCF	66.882	20	SEED GUARD (96)
EJ IDHKGCF			
EJ IDHKGCF	65.708	20	TB 1000(96)
EJ IDHKG F			
EJ IDHKG F	64.758	20	LANDLOKFRS (95)
EJ I HKG F			
EJ I HKG F	63.538	20	VERDYOL HI-V(95)
J I HKG F			
JLI HKG F	57.435	20	KOIRMAT 400(96)
ј рі нкс	50 554		OTTO T TO 4 1 0 4 1
JLI HKGM	52.674	16	CURLEX I (91)
JLI HK M	E1 272	1.5	OHO TIMP (O1)
JLI HK M JLI K M	51.372	15	GEOJUTE (91)
JLI K M JLI K M	51.092	21	SUPER GRO(95)
JL K M	51.092	21	SUPER GRU(95)
JL K M	49.623	20	DEKOWE 700 (94)
JL K M	47.043	20	DERONE 700 (54)
JL K M	49.192	20	DEKOWE 700 (95)
L K M	15.150	20	DERICHE 700 (55)
L K M	47.335	15	CURLEX I (92)
L M			
L M	41.882	16	AIRTROL(92)
L M			
L M	38.863	15	PECMAT (91)
L M			
L M	38.088	20	VERDYOL HI-V(96)
М			
N M	33.361	71	CONTROL
N			
ОИ	17.614	20	AIRTROL(94)
O			
0	3.883	20	GEOJUTE PLUS (94)

This Page Left Blank

STATISTICAL ANALYSIS Class 1 "Slope Protection" Applications

1:3 Clay

Analysis of Variance Duncan's Multiple Range Test Confidence Level = 95%

CLASS 1 - SEDIMENT LOSS PERFORMANCE TXDOT/TTI HYDRAULICS AND EROSION CONTROL LABORATORY

FINAL PERFORMANCE ANALYSIS - THROUGH THE 1996 EVALUATION CYCLE

ANALYSIS OF VARIANCE PROCEDURE

DUNCAN'S MULTIPLE RANGE TEST FOR VARIABLE: SDMT

NOTE: THIS TEST CONTROLS THE TYPE I COMPARISONWISE ERROR RATE, NOT THE EXPERIMENTWISE ERROR RATE

ALPHA= 0.05 DF= 634 MSE= 0.236176 WARNING: CELL SIZES ARE NOT EQUAL. HARMONIC MEAN OF CELL SIZES= 21.50726

NUMBER OF MEANS 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 CRITICAL RANGE .2910 .3064 .3167 .3243 .3302 .3351 .3391 .3426 .3456 .3482 .3506 .3527 .3546 .3563 .3579 .3594 .3608 .3620

MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.

DUNCAN GROUPING	MEAN	N	PLOT
A A	-0.0819	30	SUPER GRO (94)
A A	-0.1153	29	CURLEX I(92)
A A	-0.1470	10	CURLEX I(91)
A A	-0.1525	10	EROMAT (91)
A A	-0.2001	10	PECMAT (91)
A A	-0.2441	32	AIRTROL(92)
A A	-0.2494	36	ECS EXCL STD(96)
A A	-0.2516	36	BONTERRA S1 (95)
A A	-0.2727	10	N/A/G S75(91)
A A	-0.2808	36	CURLEX-LT(96)
A A	-0.2879	36	ECS STRAW (95)
A A	-0.3062	36	SUPER GRO(95)
A A	-0.3196	10	XCEL REG(91)
A A	-0.3197	36	VERDYOL STD(95)
A A	-0.3449	36	TERRA CNTL(96)
A A	-0.3576	36	POZ-O-CAP (95)
A A	-0.3778	36	GEOGRO (96)
Α	-0.4217	36	POZ ·O-CAP(96)
В	-1.2414	152	CONTROL

CLASS 1 - VEGETATION DENSITY PERFORMANCE TXDOT/TTI HYDRAULICS AND EROSION CONTROL LABORATORY

FINAL PERFORMANCE ANALYSIS - THROUGH THE 1996 EVALUATION CYCLE

SLOPE=3:1 SOIL=CLAY -----

ANALYSIS OF VARIANCE PROCEDURE

DUNCAN'S MULTIPLE RANGE TEST FOR VARIABLE: COVER

NOTE: THIS TEST CONTROLS THE TYPE I COMPARISONWISE ERROR RATE, NOT THE EXPERIMENTWISE ERROR RATE

ALPHA= 0.05 DF= 524 MSE= 329.7119 WARNING: CELL SIZES ARE NOT EQUAL. HARMONIC MEAN OF CELL SIZES= 24.30837

NUMBER OF MEANS 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 CRITICAL RANGE 10.23 10.77 11.13 11.40 11.61 11.78 11.92 12.04 12.15 12.24 12.32 12.40 12.46 12.53 12.58 12.63 12.68 12.72

MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.

DUNCAN GR	OUPI	NG		MEAN	N	PLOT
		A A		98.125	20	CURLEX I(92)
		A A		96.187	20	N/A/G S75(91)
B B		A A		93.424	26	BONTERRA S1 (95)
B B		A A		92.087	26	TERRA CNTL(96)
B B		A A		91.212	26	VERDYOL STD(95)
B B		A A		90.708	26	ECS STRAW (95)
B B		A A		90.525	20	PECMAT(91)
B B		A A		90.312	26	POZ-O-CAP(96)
B B		A A		90.166	. 20	XCEL REG(91)
B B		A A		89.418	26	SUPER GRO(95)
B B		A A	C C	87.947	26	GEOGRO (96)
B B		A A	C C	87.809	20	EROMAT(91)
B B	.D D	A	C C	86.444	20	AIRTROL(92)
B B	D D		C C	83.479	26	POZ-O-CAP (95)
В	D D		C C	83.363	26	ECS EXCL STD(96)
	D D	E E	С	77.167	117	CONTROL
	D	E E		75.390	26	CURLEX-LT (96)
F F		Е		70.378	26	SUPER GRO(94)
F				63.230	20	CURLEX I(91)

This Page Left Blank

STATISTICAL ANALYSIS Class 1 "Slope Protection" Applications

1:3 Sand

Analysis of Variance Duncan's Multiple Range Test Confidence Level = 95%

CLASS 1 - SEDIMENT LOSS PERFORMANCE TXDOT/TTI HYDRAULICS AND EROSION CONTROL LABORATORY

FINAL PERFORMANCE ANALYSIS - THROUGH THE 1996 EVALUATION CYCLE

SLOPE=3:1 SOIL=SAND -----

ANALYSIS OF VARIANCE PROCEDURE

DUNCAN'S MULTIPLE RANGE TEST FOR VARIABLE: SDMT

NOTE: THIS TEST CONTROLS THE TYPE I COMPARISONWISE ERROR RATE, NOT THE EXPERIMENTWISE ERROR RATE

ALPHA= 0.05 DF= 819 MSE= 104.6156 WARNING: CELL SIZES ARE NOT EQUAL. HARMONIC MEAN OF CELL SIZES= 31.3783

NUMBER OF MEANS 2 3 4 5 6 7 8 9 10 11 12 CRITICAL RANGE 5.069 5.337 5.516 5.648 5.752 5.837 5.907 5.968 6.020 6.067 6.108

NUMBER OF MEANS 13 14 15 16 17 18 19 20 21 22 CRITICAL RANGE 6.145 6.178 6.208 6.236 6.262 6.286 6.308 6.328 6.347 6.365

MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.

DUNCAN GROUP	ING		MEAN	N	PLOT
	A A		-2.936	30	CURLEX I(94)
	A A		-3.002	36	SUPER GRO(94)
В	A A		-4.119	34	CURLEX I(92)
B B	A		-4.406	18	CURLEX I(91)
В	V V		-4.712	19	XCEL REG(91)
B B	A		-6.289	37	BONTERRA S1 (95)
B	y V	C	7.411	3.6	VERDYOL STD(95)
В	y V	C	-7.835	36	CURLEX I(95)
В В	A A	C	-8.063	36	ECS STRAW (95)
B B	A A	C	-8.099	25	N/A/G S75(91)
B B	A A	C	-8.465	36	CURLEX-LT(96)
B B		C	~9.078	22	EROMAT(91)
B B		C C	-9.261	24	AIRTROL(94)
B B		C C	-9.742	36	SUPER GRO(95)
B B		C C	-10.007	36	ECS EXCL STD(96)
	D	C C	-12.389	42	AIRTROL(92)
	D D	C		36	
	12		10.010	30	111111111111111111111111111111111111111

TXDOT/TTI HYDRAULICS AND EROSION CONTROL LABORATORY FINAL PERFORMANCE ANALYSIS - THROUGH THE 1996 EVALUATION CYCLE

ANALYSIS OF VARIANCE PROCEDURE

DUNCAN GROUPING		MEAN	N	PLOT
D	С			
D	C	-13.149	36	TERRA CNTL(96)
D	C			
D	С	-13.391	36	GEOGRO (96)
D	C			
D	C	-13.443	36	POZ-O-CAP(96)
D				
D		-16.402	25	PECMAT (91)
E		-28.013	170	CONTROL

CLASS 1 - VEGETATION DENSITY PERFORMANCE 1 TXDOT/TTI HYDRAULICS AND EROSION CONTROL LABORATORY FINAL PERFORMANCE ANALYSIS - THROUGH THE 1996 EVALUATION CYCLE

ANALYSIS OF VARIANCE PROCEDURE

DUNCAN'S MULTIPLE RANGE TEST FOR VARIABLE: COVER

NOTE: THIS TEST CONTROLS THE TYPE I COMPARISONWISE ERROR RATE, NOT THE EXPERIMENTWISE ERROR RATE

ALPHA= 0.05 DF= 572 MSE= 528.6488 WARNING: CELL SIZES ARE NOT EQUAL. HARMONIC MEAN OF CELL SIZES= 24.3203

NUMBER OF MEANS 2 3 4 5 6 7 8 9 10 11 12 CRITICAL RANGE 12.95 13.63 14.09 14.43 14.69 14.91 15.09 15.24 15.38 15.50 15.60

NUMBER OF MEANS 13 14 15 16 17 18 19 20 21 22 CRITICAL RANGE 15.69 15.78 15.86 15.93 15.99 16.05 16.11 16.16 16.21 16.25

MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.

UNCAN	GROUPI	NG		MEAN	N	PLOT
		A		80.276	26	ECS STRAW (95)
		Α				
H		A		77.904	20	N/A/G S75(91)
F		A			0.0	DGG DVGL GDD (0.5)
I		A		77.252	26	ECS EXCL STD(96)
H H		A A		77.089	26	BONTERRA S1 (95)
F		A		77.089	26	BUNIERRA SI(95)
I		A	C	76.032	26	CURLEX-LT(96)
F		A	C	70.032	20	CONDEN-111 (50)
	3	A	C	75.330	26	VERDYOL STD(95)
	3	Λ	C			, DIE 102 015 (75)
	3	Α	C	73.245	26	GEOGRO (96)
I	3	Α	С			
Ŧ	3	Α	С	73.202	20	EROMAT(91)
F	3	Α	С			
E	3	Α	С	72.321	26	TERRA CNTL(96)
F	3	Α	C			
F		Α	С	72.263	20	XCEL REG(91)
F		Α	С			
	3 D	A	C	69.810	26	POZ-O-CAP(96)
I		Α	C			
H		Α	C	68.749	19	AIRTROL(92)
I		,	C			
ŀ			C	63.962	26	CURLEX I(95)
F			C	60 205	2.0	DECMA(B/O1)
F	B D	E E	C	62.385	20	PECMAT(91)
	D	E	C	60.937	2.0	CURLEX I(91)
	D	E	C	60.937	2.0	CORDEN 1(91)
	D	E		56.888	26	SUPER GRO(95)
	17	E		50.000	2,0	COLDIC GRO(75)
3	,	Е		48.632	2.6	CURLEX I(94)
		.,		10.031	,,,	20.122.1

FINAL PERFORMANCE ANALYSIS - THROUGH THE 1996 EVALUATION CYCLE

ANALYSIS OF VARIANCE PROCEDURE

DUNCAN GROUPING	MEAN	N	PLOT
F			
F G	40.895	92	CONTROL
G	22 630	0.0	ATDEDOL (O4)
H G H G	33.638	26	AIRTROL (94)
H G	33.232	19	CURLEX I(92)
H			
H I	26.180	26	AIRTROL(95)
I	17.585	26	SUPER GRO(94)
1	17.505	20	DOLLIK GRO (34)

CLASS 2 "FLEXIBLE CHANNEL LINER" APPLICATIONS Final Performance Analysis

This analysis level seeks to determine how well each product: (a) resisted the erosive forces of concentrated water flows by protecting the geometry of a channel; and (b) established warm-season, perennial vegetation within a single March through December growing season.

Sediment-loss figures shown represent the average amount of soil displaced within either the particular shear-stress event shown within those tables marked "For Information Only", or within the shear-stress range of flows shown which is the analysis level used by TxDOT to produce the approved product list. Sediment loss is expressed in terms of Centimeters of Soil Displacement.

Vegetation-density figures shown represent the <u>average percent of vegetative cover</u> <u>achieved within the channel by the final measurement cycle only.</u>

Class 2 "Flexible Channel Liner" Applications Record of Product Evaluations & Level of Shear Stress Flows Performed

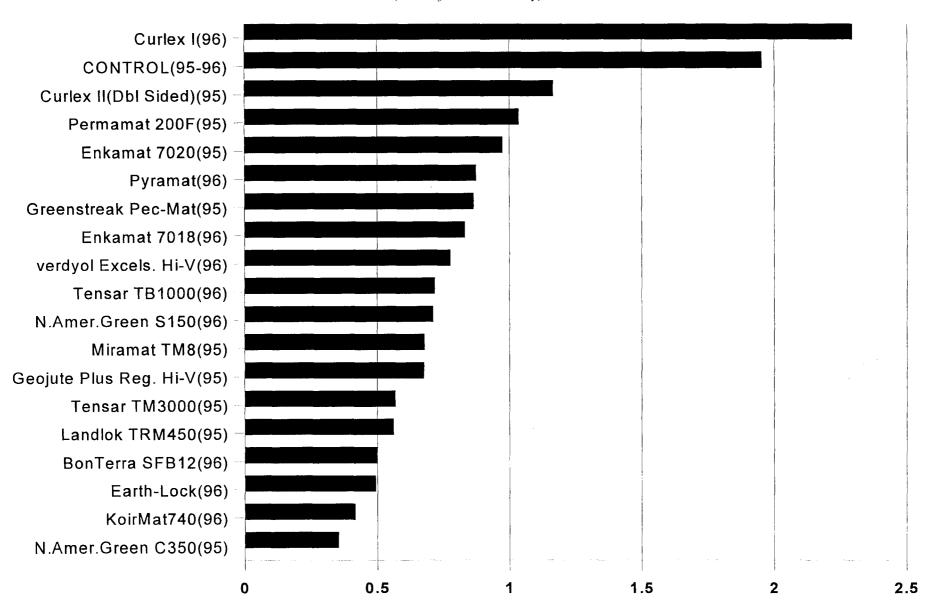
			Shear	Stress L	evel Flov	vs Perfori	ned (Pas	cals / Lb	Sq Ft)			
Year	Channel ¹	Product Evaluated	96/2	144/3	192/4	239/5	287/6	335/7	383/8			
91		Channel Construct	ion Not C	ompleted	i							
92		Channel Construct	tion Not C	ompleted	d	-						
93		Evaluation Cycle Cancelle	ed Due to	Weather	Damage							
94	exhibited s	Began shear stress flows immediately after installation. No channel was able to produce vegetation and all channels exhibited significant and unacceptable sediment loss. Evaluation protocol was revised to provide 90-day resting period between installation and initial shear stress flow. New evaluation protocol scheduled to begin in 1995.										
	1	Miramat® TM8 [™]										
	2	North American Green C350 TM Three Phase TM										
	3	Landlok® TRM 450										
	4	Enkamat® 7020										
95	5	Greenstreak® Pec-Mat™										
	6	Tensar® Erosion Mat TM3000										
	7	Geojute® Plus-Regular High Velocity										
	8	CONTROL										
	9	Permamat 200F										
	10	Curlex® II(Double Sided)					90-day resting per					
	1	verdyol® Excelsior High-Velocity										
	2	Enkamat® 7018										
	3	Earth-Lock										
	4	BonTerra® SFB12™										
96	5	Tensar® Erosion Blanket TB1000										
	6	Pyramat®										
	7	Curlex® I										
	8	CONTROL										
	9	North American Green S150										
	10	KoirMat™ 740										

¹ Channels 1 through 6 have 7% centerline gradient; channels 7 through 10 have 3% centerline gradient.

This Page Left Blank

TABULAR DATA Class 2 "Flexible Channel Liner" Applications

96 Pascal (2 Lb/Sq Ft) Shear Stress Flows Only


Shear Stress = 96 Pascal (2 Lb/Sq Ft)

	Product Perform	ance - 199	6 Evaluatio	u Cycle		
No	Product Name	Year	Chnl Grade (%)	Flow Velocity (mps)	Depth of Flow (cm)	Sediment Loss (cm)
1	KoirMat™ 740		3	4.00	32.61	0.4166
2	Earth-Lock		7	2.75	15.24	0.4932
3	BonTerra® SFB12™		7	2.95	15.24	0.4987
4	North American Green S150		3	2.50	32.61	0.7111
5	Tensar® Erosion Blanket TB1000	96	7	2.30	15.24	0.7170
6	verdyol® Excelsior High-Velocity		7	2.80	15.24	0.7766
7	Enkamat® 7018]	7	3.10	15.24	0.8312
8	Pyramat®		7	3.10	15.24	0.8745
9	Curlex® I		3	1.70	32.61	2.2950
	Product Performance	e: 19 9 1 - 1	996 Evalua	tion Cycles		
No	Product Name	Year	C/L Grade (%)	Flow Velocity (mps)	Depth of Flow (cm)	Sediment Loss (cm)
1	North American Green C350 TM Three Phase TM	95	7	5.43	15.24	0.3541
2	KoirMat™ 740	96	3	4.00	32.61	0.4166
3	Earth-Lock	96	7	2.75	15.24	0.4932
4	BonTerra® SFB12™	96	7	2.95	15.24	0.4987
5	Landlok® TRM 450	95	7	5.17	15.24	0.5611
6	Tensar® Erosion Mat TM3000	95	7	3.89	15.24	0.5666
7	Geojute® Plus-Regular High Velocity	95	3	4.95	32.61	0.6762
8	Miramat® TM8™	95	7	6.39	15.24	0.6784
9	North American Green S150	96	3	2.50	32.61	0.7111
10	Tensar® Erosion Blanket TB1000	96	7	2.30	15.24	0.7170
Γ'		06	7	2.80	15.24	0.7766
11	verdyol® Excelsior High-Velocity	96		2.80	13.24	0.7700

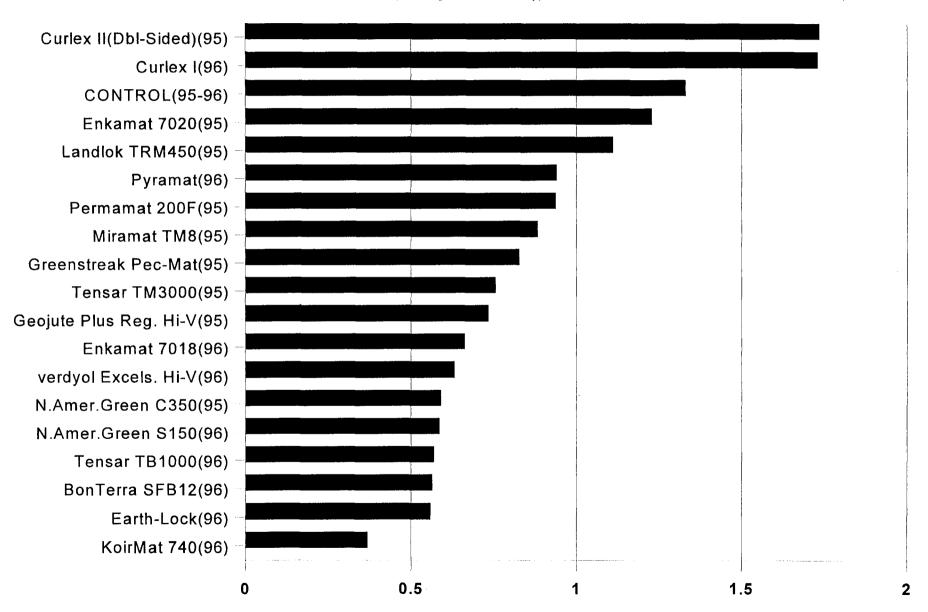
Shear Stress = 96 Pascal (2 Lb/Sq Ft)

	Product Performance - 1996 Evaluation Cycle									
No	Product Name	Year	Chni Grade (%)	Flow Velocity (mps)	Depth of Flow (cm)	Sediment Loss (cm)				
13	Greenstreak® Pec-Mat™	95	7	4.54	15.24	0.8648				
14	Pyramat®	96	7	3.10	15.24	0.8745				
15	Enkamat® 7020	95	7	4.72	15.24	0.9736				
16	Permamat 200F	95	3	4.55	32.61	1.0346				
17	Curlex® II(Double Sided)	95	3	4.25	32.61	1.1646				
18	CONTROL	95-96	3	4.00	32.61	1.9525				
19	Curlex® I	96	3	1.70	32.61	2.2950				

Class 2 - Flexible Channel Liners Average Channel Deformation (Centimeters) 96 Pascal Flows (2 Lbs/Sq Ft)

TABULAR DATA Class 2 "Flexible Channel Liner" Applications

144 Pascal Shear Stress Flows Only (3 Lb/Sq Ft)


Shear Stress = 144 Pascal (3 Lb/Sq Ft)

	Product Performa	nce - 1996	Evaluation	Cycle		
No	Product Name	Year	Chul Grade (%)	Flow Velocity (mps)	Depth of Flow (cm)	Sediment Loss (cm)
1	KoirMat™ 740		3	5.00	48.77	0.3680
2	Earth-Lock		7	4.15	21.34	0.5587
3	BonTerra® SFB12™		7	4.15	21.34	0.5645
4	Tensar® Erosion Blanket TB1000		7	3.80	21.34	0.5691
5	North American Green S150	96	3	5.05	48.77	0.5862
6	verdyol® Excelsior High-Velocity		7	3.75	21.34	0.6316
7	Enkamat® 7018		. 7	3.40	21.34	0.6620
8	Pyramat®		7	4.35	21.34	0.9398
9	Curlex® I		3	2.95	48.77	1.7296
	Product Performance:	1991 - 19	96 Evaluati	on Cycles		
No	Product Name	Year	C/L Grade (%)	Flow Velocity (mps)	Depth of Flow (cm)	Sediment Loss (cm)
1	KoirMat TM 740	96	3	5.00	48.77	0.3680
2	Earth-Lock	96	7	4.15	21.34	0.5587
3	BonTerra® SFB12™	96	7	4.15	21.34	0.5645
4	Tensar® Erosion Blanket TB1000	96	7	3.80	21.34	0.5691
5	North American Green S150	96	3	5.05	48.77	0.5862
6	North American Green C350 TM Three Phase TM	95	7	7.54	21.34	0.5904
7	verdyol® Excelsior High-Velocity	96	7	3.75	21.34	0.6316
8	Enkamat® 7018	96	7	3.40	21.34	0.6620
9	Geojute® Plus-Regular High Velocity	95	3	5.44 "	48.77	0.7345
10	Tensar® Erosion Mat TM3000	95	7	4.89	21.34	0.7555
11	Greenstreak® Pec-Mat™	95	7	7.47	21.34	0.8275
12	Miramat® TM8™	95	7	5.97	21.34	0.8823

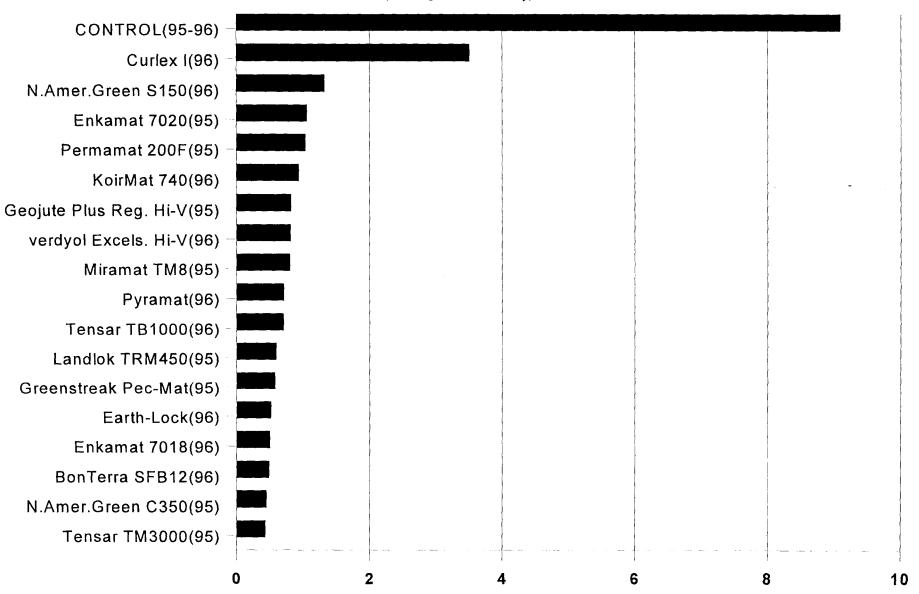
Shear Stress = 144 Pascal (3 Lb/Sq Ft)

	Product Performance - 1996 Evaluation Cycle									
No	Product Name	Year	Chnl Grade (%)	Flow Velocity (mps)	Depth of Flow (cm)	Sediment Loss (cm)				
13	Permamat 200F	95	3	4.94	48.77	0.9371				
14	Pyramat®	96	7	4.35	21.34	0.9398				
15	Landlok® TRM 450	95	7	4.15	21.34	1.1111				
16	Enkamat® 7020	95	7	4.41	21.34	1.2287				
17	Curlex® I	96	3	2.95	48.77	1.7296				
18	Curlex® II(Double Sided)	95	3	4.98	48.77	1.7354				

Class 2 - Flexible Channel Liners Average Channel Deformation (Centimeters) 144 Pascal Flows (3 Lbs/Sq Ft)

TABULAR DATA Class 2 "Flexible Channel Liner" Applications

192 Pascal Shear Stress Flows Only (4 Lb/Sq Ft)


Shear Stress = 192 Pascal (4 Lb/Sq Ft)

	Product Performance - 1996 Evaluation Cycle									
No	Product Name	Year	Chni Grade (%)	Flow Velocity (mps)	Depth of Flow (cm)	Sediment Loss (cm)				
1	BonTerra® SFB12™		7	5.05	27.43	0.4882				
2	Enkamat® 7018	7	7	4.00	27.43	0.4995				
3	Earth-Lock	1	7	4.55	27.43	0.5152				
4	Tensar® Erosion Blanket TB1000		7	4.60	27.43	0.7052				
5	Pyramat®		7	4.65	27.43	0.7109				
6	verdyol® Excelsior High-Velocity	96	7	4.80	27.43	0.8112				
7	KoirMat™ 740		3	5.90	64.01	0.9350				
8	North American Green S150	1	3	5.85	64.01	1.3207				
9	Curlex® I		3	4.70	64.01	3.5043				
	Product Performance:	1991 - 1990	5 Evaluation	r Cycles						
No	Product Name	Year	C/L Grade (%)	Flow Velocity (mps)	Depth of Flow (cm)	Sediment Loss (cm)				
1	Tensar® Erosion Mat TM3000	95	7	5.22	27.43	0.4307				
2	North American Green C350 TM Three Phase TM	95	7	4.54	27.43	0.4493				
3	BonTerra® SFB12™	96	7	5.05	27.43	0.4882				
4	Enkamat® 7018	96	7	4.00	27.43	0.4995				
5	Earth-Lock	96	7	4. 55	27.43	0.5152				
6	Greenstreak® Pec-Mat™	95	7	4.74	27.43	0.5773				
7	Landlok® TRM 450	95	7	6.61	27.43	0.5939				
		1	7	4.60	27.42	0.7052				
8	Tensar® Erosion Blanket TB1000	96	/	4.00	27.43	0.7032				
8	Tensar® Erosion Blanket TB1000 Pyramat®	96	7	4.65	27.43	0.7109				
		 								
9	Pyramat®	96	7	4.65	27.43	0.7109				

Shear Stress = 192 Pascal (4 Lb/Sq Ft)

	Product Performance - 1996 Evaluation Cycle									
No	Product Name	Year	Chni Grade (%)	Flow Velocity (mps)	Depth of Flow (cm)	Sediment Loss (cm)				
13	KoirMat™ 740	96	3	5.90	64.01	0.9350				
14	Permamat 200F	95	3	6.30	64.01	1.0339				
15	Enkamat® 7020	95	7	5.22	27.43	1.0559				
16	North American Green S150	96	3	5.85	64.01	1.3207				
17	Curlex® I	96	3	4.70	64.01	3.5043				
18	CONTROL	95-96	3	5.6	64.01	9.0837				

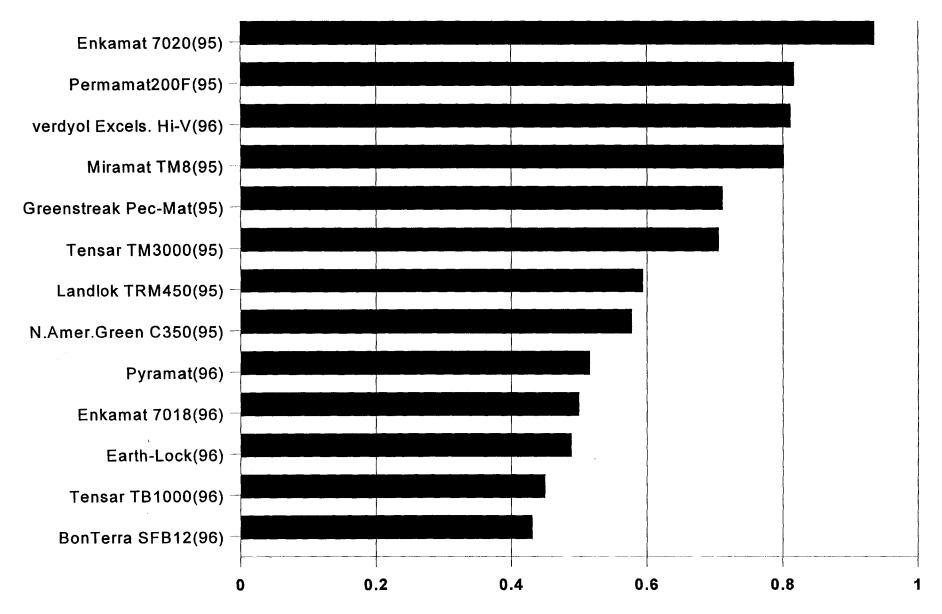
Class 2 - Flexible Channel Liners Average Channel Deformation (Centimeters) 192 Pascal Flows (4 Lbs/Sq Ft)

TABULAR DATA Class 2 "Flexible Channel Liner" Applications

239 Pascal Shear Stress Flows Only (5 Lb/Sq Ft)

Shear Stress = 239 Pascal (5 Lb/Sq Ft)

	Product Perfo	rmance - 1	996 Evaluatio	n Cycle				
No	Product Name	Year	Chnl Grade (%)	Flow Velocity (mps)	Depth of Flow (cm)	Sediment Loss (cm)		
1	BonTerra® SFB12™		7	6.65	33.53	0.4166		
2	Tensar® Erosion Blanket TB1000		7	5.65	33.53	0.4986		
3	Earth-Lock		7	5.95	33.53	0.5636		
4	Enkamat® 7018		7	4.90	33.53	0.5966		
5	Pyramat®	96	7	5.85	33.53	0.6298		
6	verdyol® Excelsior High-Velocity		7	4.95	33.53	1.3157		
	KoirMat™ 740			No	Tested			
	North American Green S150		Not Tested					
	Curlex® I			Not Tested				
	CONTROL			No	t Tested			
	Product Performa	ace: 1991	- 1996 Evalua	tion Cycles				
No	Product Name	Year	Chnl Grade (%)	Flow Velocity (mps)	Depth of Flow (cm)	Sediment Loss (cm)		
1	BonTerra® SFB12™	96	7	6.65	33.53	0.4166		
2	Tensar® Erosion Blanket TB1000	96	7	5.65	33.53	0.4986		
3	Earth-Lock	96	7	5.95	33.53	0.5636		
4	Enkamat® 7018	96	7	4.90	33.53	0.5966		
5	Pyramat®	96	7	5.85	33.53	0.6298		
5	Pyramat® North American Green C350 TM Three Phase TM	96 95	7	5.85 5.81	33.53 33,53	0.6298 0.6337		
		 						
6	North American Green C350 TM Three Phase TM	95	7	5.81	33,53	0.6337		
6 7	North American Green C350 TM Three Phase TM Landlok® TRM 450	95 95	7	5.81	33,53 33.53	0.6337		
6 7 8	North American Green C350 TM Three Phase TM Landlok® TRM 450 Tensar® Erosion Mat TM3000	95 95 95	7 7 7	5.81 5.49 5.57	33,53 33.53 33.53	0.6337 0.6811 0.7107		


Shear Stress = 239 Pascal (5 Lb/Sq Ft)

(For Information Only)

	Product Performance - 1996 Evaluation Cycle									
No	Product Name	Year	Chul Grade (%)	Flow Velocity (mps)	Depth of Flow (cm)	Sediment Loss (cm)				
12	Permamat 200F	95	3	3.70	82.30	1.3175				
13	Enkamat® 7020	95	7	5.51	33.53	1.5620				
	Geojute® Plus-Regular High Velocity	95	3	Not Tested						
	KoirMat™ 740	96	3	Not Tested						
	North American Green S150	96	3							
	Curlex® I	96	3		Not Tested					

NOTE: "Not Tested" indicates that the product did not receive flow events at this shear stress level.

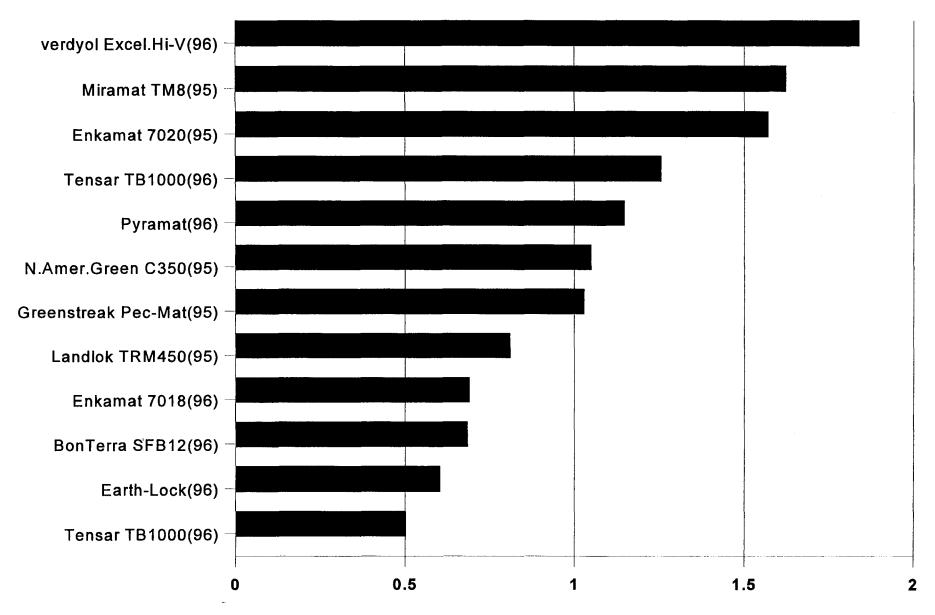
Class 2 - Flexible Channel Liners Average Channel Deformation (Centimeters) 239 Pascal Flows (5 Lbs/Sq Ft)

TABULAR DATA Class 2 "Flexible Channel Liner" Applications

287 Pascal Shear Stress Flows Only (6 Lb/Sq Ft)

Shear Stress = 287 Pascal (6 Lb/Sq Ft)

	Product Perfor	mance - 1	996 Evaluatio	n Cycle				
No	Product Name	Year	Chni Grade (%)	Flow Velocity (mps)	Depth of Flow (cm)	Sediment Loss (cm)		
1	Earth-Lock		7	6.30	42.67	0.6023		
2	BonTerra® SFB12™		7	7.25	42.67	0.6843		
3	Enkamat® 7018		7	6.05	42.67	0.6893		
4	Pyramat®	96	7	7.15	42.67	1.1470		
5	Tensar® Erosion Blanket TB1000		7	6.25	42.67	1.2548		
6	verdyol® Excelsior High-Velocity		7	5.50	42.68	1.8382		
	KoirMat™ 740		Not Tested					
	North American Green S150		Not Tested					
	Curlex® I		Not Tested					
	CONTROL		Not Tested					
	Product Performan	ice: 1991	- 1996 Evalua	tion Cycles				
No	Product Name	Year	Chnl Grade (%)	Flow Velocity (mps)	Depth of Flow (cm)	Sediment Loss (cm)		
1	Tensar® Erosion Blanket TB1000	96	7	6.25	42.67	0.5012		
2	Earth-Lock	96	7	6.30	42.67	0.6023		
3	BonTerra® SFB12™	96	7	7.25	42.67	0.6843		
4	Enkamat® 7018	96	7	6.05	42.67	0.6893		
5	Landlok® TRM 450	95	7	8.46	42.67	0.8107		
6	Greenstreak® Pec-Mat™	95	7	8.71	42.67	1.0291		
7	North American Green C350™ Three Phase™	95	7	8.21	42.67	1.0496		
8	Pyramat®	96	7	7.15 ⁻	42.67	1.1470		
9	Tensar® Erosion Blanket TB1000	96	7	6.25	42.67	1.2548		
10	Enkamat® 7020	95	7	7.75	42.67	1.5698		
		I	7					


Shear Stress = 287 Pascal (6 Lb/Sq Ft)

(For Information Only)

	Product Performance - 1996 Evaluation Cycle									
No	Product Name	Year	Chul Grade (%)	Flow Velocity (mps)	Depth of Flow (cm)	Sediment Loss (cm)				
12	verdyol® Excelsior High-Velocity	96	7	5.50	42.67	1.8382				
	Permamat 200F	95	3		Not Tested					
	Geojute® Plus-Regular High Velocity	95	3		Not Tested					
	KoirMat TM 740	96	3	Not Tested Not Tested						
	North American Green S150	96	3							
	Curlex® I	96	3		Not Tested					

NOTE: "Not Tested" indicates that the product did not receive flow events at this shear stress level.

Class 2 - Flexible Channel Liners Average Channel Deformation (Centimeters) 287 Pascal Flows (6 Lbs/Sq Ft)

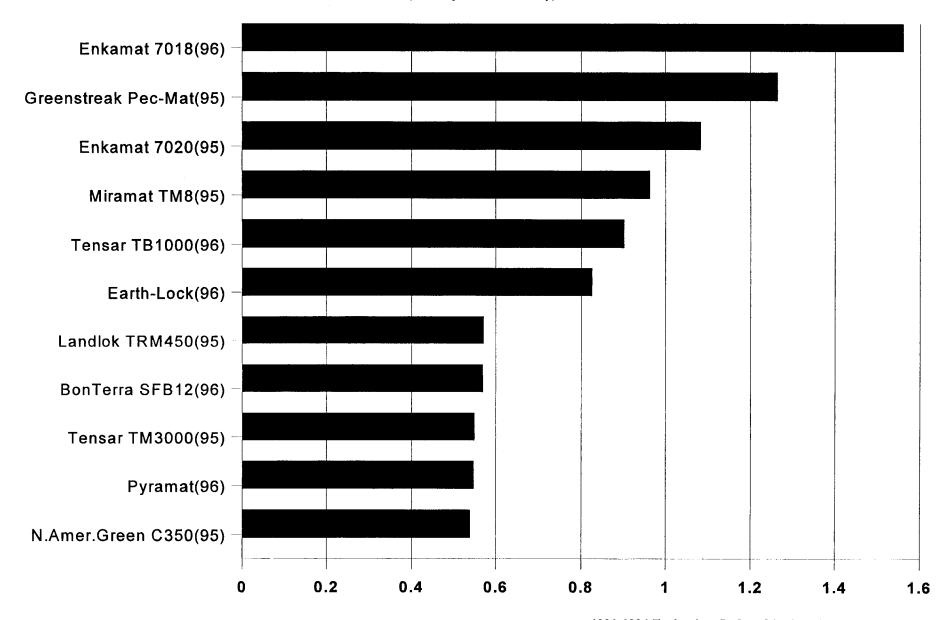
TABULAR DATA Class 2 "Flexible Channel Liner" Applications

335 Pascal Shear Stress Flows Only (7 Lb/Sq Ft)

Shear Stress = 335 Pascal (7 Lb/Sq Ft)

	Product P	erformance - 19	96 Evaluatio	n Cycle			
No	Product Name	Year	Chnl Grade (%)	Flow Velocity (mps)	Depth of Flow (cm)	Sediment Loss (cm)	
1	Pyramat®		7	7.90	49.68	0.5471	
2	BonTerra® SFB12™		7	8.00	49.68	0.5693	
3	Earth-Lock		7	7.65	49.68	0.8254	
4	Tensar® Erosion Blanket TB1000		7	7.85	49.68	0.9016	
5	Enkamat® 7018		7	7.85	49.68	1.5605	
	verdyol® Excelsior High-Velocity	96		Not Tested			
	KoirMat™ 740		Not Tested				
	North American Green S150		Not Tested				
	Curlex® I			Not	Tested		
	CONTROL			Not	t Tested		
	Product Perfe	огтансе: 1991 -	1996 Evalua	tion Cycles			
			Chnl	Flow	Depth of	Sediment	

	Product Performance: 1991 - 1996 Evaluation Cycles									
No	Product Name	Year	Chnl Grade (%)	Flow Velocity (mps)	Depth of Flow (cm)	Sediment Loss (cm)				
1	North American Green $C350^{\mathrm{TM}}$ Three Phase $^{\mathrm{TM}}$	95	7	9.57	49.68	0.5386				
2	Pyramat®	96	7	7.90	49.68	0.5471				
3	Tensar® Erosion Mat TM3000	95	7	7.19	49.68	0.5491				
4	BonTerra® SFB12™	96	7	8.00	49.68	0.5693				
5	Landlok® TRM 450	95	7	9.29	49.68	0.5711				
6	Earth-Lock	96	.7	7.65	49.68	0.8254				
7	Tensar® Erosion Blanket TB1000	96	7	7.85	49.68	0.9016				
8	Miramat® TM8 TM	95	7	7.60	49.68	0.9625				
9	Enkamat® 7020	95	7	8.15	49.68	1.0825				
10	Greenstreak® Pec-Mat™	95	7	9.24	49.68	1.2629				
11	Enkamat® 7018	96	7	7.85	49.68	1.5605				


Shear Stress = 335 Pascal (7 Lb/Sq Ft)

(For Information Only)

	Product Performance - 1996 Evaluation Cycle									
No	Product Name	Year	Chul Grade (%)	Flow Velocity (mps)	Depth of Flow (cm)	Sediment Loss (cm)				
	verdyol® Excelsior High-Velocity	96	Not Tested							
	Permamat 200F	95	Not Tested							
	Geojute® Plus-Regular High Velocity	95		Not	Tested					
	KoirMat™ 740	96		Not	Tested					
	North American Green S150	96	Not Tested							
	Curlex® I	96	96 Not Tested							

NOTE: "Not Tested" indicates that the product did not receive flow events at this shear stress level.

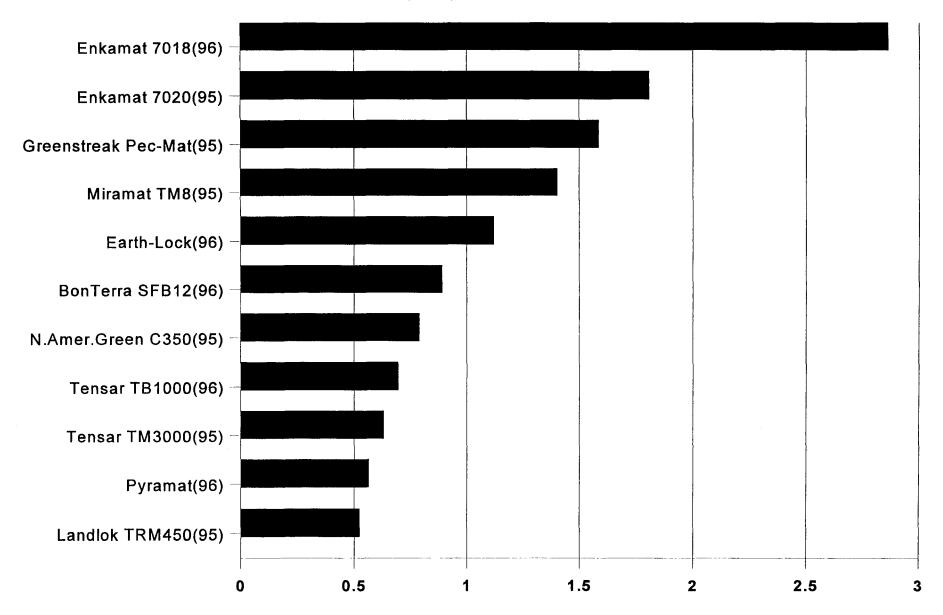
Class 2 - Flexible Channel Liners Average Channel Deformation (Centimeters) 335 Pascal Flows (7 Lbs/Sq Ft)

TABULAR DATA Class 2 "Flexible Channel Liner" Applications

383 Pascal Shear Stress Flows Only (7 Lb/Sq Ft)

Shear Stress = 383 Pascal (8 Lb/Sq Ft)

	Product Perfor	mance - 1	996 Evaluatio	n Cycle			
No	Product Name	Year	Chnl Grade (%)	Flow Velocity (mps)	Depth of Flow (cm)	Sediment Loss (cm)	
1	Pyramat®		7	8.5	57.00	0.5639	
2	Tensar® Erosion Blanket TB1000		7	7.85	57.00	0.6954	
3	BonTerra® SFB12™		7	8.4	57.00	0.8905	
4	Earth-Lock		7	8.4	57.00	1.1195	
5	Enkamat® 7018		7	8.5	57.00	2.8614	
	verdyol® Excelsior High-Velocity	96		Not	Tested		
	KoirMat TM 740			Not	Tested		
	North American Green S150			Not	Tested		
	Curlex® I		Not Tested				
	CONTROL		Not Tested				
	Product Performa	nce: 1991	- 1996 Evalua	tion Cycles			
				000000000000000000000000000000000000000	ารักโดยสายเลือดเลือดเลือดเลือดเลือดเลยเลือดเลยเลือดเลยเลือดเลยเลือดเลี้ยวเลยเลือดเลี้ยว		
No	Product Name	Year	Chni Grade (%)	Flow Velocity (mps)	Depth of Flow (cm)	Sediment Loss (cm)	
No 1	Product Name Landlok® TRM 450	Year 95	Grade	Velocity	Flow	Loss	
		1	Grade (%)	Velocity (mps)	Flow (cm)	Loss (cm)	
1	Landlok® TRM 450	95	Grade (%)	Velocity (mps) 9.70	Flow (cm) 54.86	Loss (cm) 0.5227	
1 2	Landlok® TRM 450 Pyramat®	95 96	7 7	Velocity (mps) 9.70 8.5	Flow (cm) 54.86 57.00	Loss (cm) 0.5227 0.5639	
1 2 3	Landlok® TRM 450 Pyramat® Tensar® Erosion Mat TM3000	95 96 95	7 7 7	9.70 8.5 9.14	Flow (cm) 54.86 57.00 54.86	Loss (cm) 0.5227 0.5639 0.6311	
1 2 3 4	Landlok® TRM 450 Pyramat® Tensar® Erosion Mat TM3000 Tensar® Erosion Blanket TB1000	95 96 95 96	7 7 7 7	9.70 8.5 9.14 7.85	54.86 57.00 54.86 57.00	Loss (cm) 0.5227 0.5639 0.6311 0.6954	
1 2 3 4 5	Landlok® TRM 450 Pyramat® Tensar® Erosion Mat TM3000 Tensar® Erosion Blanket TB1000 North American Green C350™ Three Phase™	95 96 95 96 95	7 7 7 7 7 7	Velocity (mps) 9.70 8.5 9.14 7.85	54.86 57.00 54.86 57.00 54.86	Loss (cm) 0.5227 0.5639 0.6311 0.6954 0.7893	
1 2 3 4 5 6	Landlok® TRM 450 Pyramat® Tensar® Erosion Mat TM3000 Tensar® Erosion Blanket TB1000 North American Green C350™ Three Phase™ BonTerra® SFB12™	95 96 95 96 95 96	7 7 7 7 7 7 7 7	Velocity (mps) 9.70 8.5 9.14 7.85 10.00 8.4	54.86 57.00 54.86 57.00 54.86 57.00	Loss (cm) 0.5227 0.5639 0.6311 0.6954 0.7893 0.8905	
1 2 3 4 5 6 7	Landlok® TRM 450 Pyramat® Tensar® Erosion Mat TM3000 Tensar® Erosion Blanket TB1000 North American Green C350™ Three Phase™ BonTerra® SFB12™ Earth-Lock	95 96 95 96 95 96 96	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Velocity (mps) 9.70 8.5 9.14 7.85 10.00 8.4 8.4	54.86 57.00 54.86 57.00 54.86 57.00 54.86 57.00	Loss (cm) 0.5227 0.5639 0.6311 0.6954 0.7893 0.8905 1.1195	
1 2 3 4 5 6 7 8	Landlok® TRM 450 Pyramat® Tensar® Erosion Mat TM3000 Tensar® Erosion Blanket TB1000 North American Green C350™ Three Phase™ BonTerra® SFB12™ Earth-Lock Miramat® TM8™	95 96 95 96 95 96 96 95	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Velocity (mps) 9.70 8.5 9.14 7.85 10.00 8.4 8.4 7.21	54.86 57.00 54.86 57.00 54.86 57.00 54.86 57.00 54.86	Loss (cm) 0.5227 0.5639 0.6311 0.6954 0.7893 0.8905 1.1195 1.4021	


Shear Stress = 383 Pascal (8 Lb/Sq Ft)

(For Information Only)

	Product Performance - 1996 Evaluation Cycle									
No	Product Name	Year	Chul Grade (%)	Flow Velocity (mps)	Depth of Flow (cm)	Sediment Loss (cm)				
	verdyol® Excelsior High-Velocity	96	Not Tested							
	Permamat 200F	95	Not Tested							
	Geojute® Plus-Regular High Velocity	95		Not	Tested					
	KoirMat™ 740	96	Not Tested Not Tested							
	North American Green S150	96								
	Curlex® I	96	-	Not	Tested					

NOTE: "Not Tested" indicates that the product did not receive flow events at this shear stress level.

Class 2 - Flexible Channel Liners Average Channel Deformation (Centimeters) 383 Pascal Flows (8 Lbs/Sq Ft)

TABULAR DATA Class 2 "Flexible Channel Liner" applications 0 - 96 Pascal Shear Stress Flows ANALYSIS LEVEL USED BY TXDOT TO DETERMINE APPROVED PRODUCT LIST

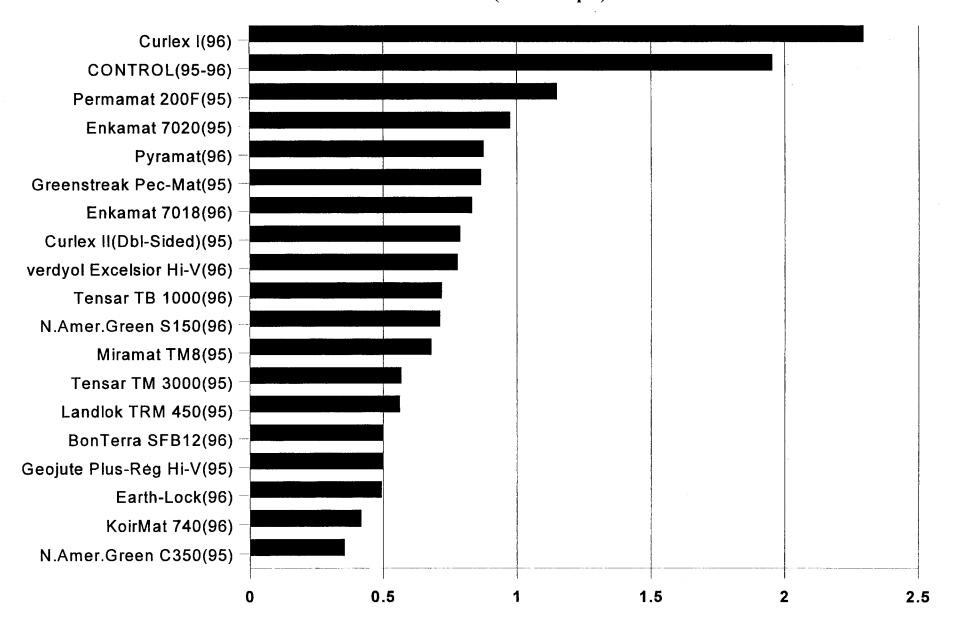
Shear Stress Range = 0 - 96 Pascal

(0 - 2 Lb/Sq Ft)

	Product Performance - 1996 Evaluation Cycle									
No	Product Name	Year	Sediment Loss (cm)	Current Standard (cm)	Vegetation Density (%)	Current Standard (%)				
1	KoirMat TM 740		0.4166		65.643					
2	Earth-Lock		0.4932		69.880					
3	BonTerra® SFB12™		0.4987		72.632					
4	North American Green S150		0.7111		82.834					
5	Tensar® Erosion Blanket TB1000	96	0.7170	1.15	73.100	70				
6	verdyol® Excelsior High-Velocity		0.7766		68.844					
7	Enkamat® 7018		0.8312		79.835					
8	Pyramat®		0.8745		67.161					
9	CONTROL		1.9525		47.660					
10	Curlex® I		2.2950		69.982					

	Product I	erforman	ice : 1991 - 199	6 Evaluation Cycl	es	
No	Product Name	Year	Sediment Loss (cm)	Current Standard (cm)	Vegetation Density (%)	Current Standard (%)
1	North American Green C350 TM Three Phase TM	95	0.3541		79.982	
2	KoirMat™ 740	96	0.4166		65.643	
3	Earth-Lock	96	0.4932		69.880	
4	Geojute® Plus-Regular High Velocity	95	0.4974		59,490	
5	BonTerra® SFB12TM	96	0.4987		72.632	
6	Landlok® TRM 450	95	0.5611	1.15	78.116	70
7	Tensar® Erosion Mat TM3000	95	0.5666		92.853	
8	Miramat® TM8 TM	95	0.6784		86.574	
9	North American Green S150	96	0.7111		82.834	
10	Tensar® Erosion Blanket TB1000	96	0.7170		73.100	
11	verdyol® Excelsior High-Velocity	96	0.7766		68.844	
12	Curlex® II(Double Sided)	95	0.7866		54.664	

Shear Stress Range = 0 - 96 Pascal


(0 - 2 Lb/Sq Ft)

	Product Performance - 1996 Evaluation Cycle										
No	Product Name	Year	Sediment Loss (cm)	Current Standard (cm)	Vegetation Density (%)	Current Standard (%)					
13	Enkamat® 7018	96	0.8312		79.835						
14	Greenstreak® Pec-Mat TM	95	0.8648		71.830						
15	Pyramat®	96	0.8745		67.161						
16	Enkamat® 7020	95	0.9736	1.15	82.394	70					
17	Permamat 200F	95	1.1487		56,954						
18	CONTROL	95-96	1.9525		47.660						
19	Curlex® I	96	2.2950		69,982						

NOTES:

Shaded cells (if any) indicate performance which failed to meet currently established minimum performance standards.

Class 2 - Flexible Channel Liners Average Channel Deformation (Centimeters) 0 - 96 Pascal Flows (0 - 2 Lbs/Sq Ft)

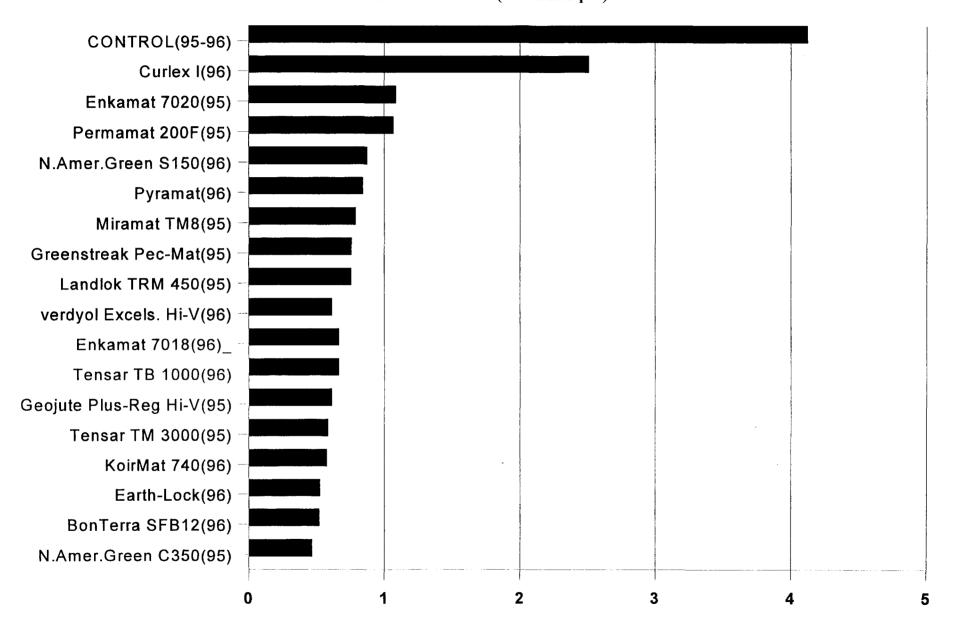
TABULAR DATA Class 2 "Flexible Channel Liner" Applications 0 - 192 Pascal Shear Stress Flows ANALYSIS LEVEL USED BY TXDOT TO DETERMINE APPROVED PRODUCT LIST

Shear Stress Range = 0 - 192 Pascal

(0 - 4 Lb/Sq Ft)

	Product Performance - 1996 Evaluation Cycle									
No	Product Name	Year	Sediment Loss (em)	Current Standard (cm)	Vegetation Density (%)	Current Standard (%)				
1	BonTerra® SFB12™		0.5171		72.632					
2	Earth-Lock		0.5224		69.880					
3	KoirMat™ 740		0.5732		65.643					
4	Tensar® Erosion Blanket TB1000		0.6637		73.100					
5	Enkamat® 7018	96	0.6642	1.00	79.835	70				
6	verdyol® Excelsior High-Velocity		0.7398		68.844					
7	Pyramat®		0.8417		67.161					
8	North American Green S150		0.8727		82.834					
9	Curlex® I		2.5096		69.9 8 2					
	Product Pe	rformance	: 1991 - 1996 Ev	aluation Cycles						
	Product Name		_	_						
No	Fromuci name	Year	Sediment Loss (em)	Current Standard (cm)	Vegetation Density (%)	Current Standard (%)				
1	North American Green C350 TM Three Phase TM	Year 95		Standard	Density	Standard				
	North American Green C350™ Three	<u> </u>	Lass (em)	Standard	Density (%)	Standard				
1	North American Green C350™ Three Phase™	95	Loss (cm) 0.4646	Standard	Density (%) 79.982	Standard				
1 2	North American Green C350™ Three Phase™ BonTerra® SFB12™	95	0.4646 0.5171	Standard	79.982 72.632	Standard				
1 2 3	North American Green C350™ Three Phase™ BonTerra® SFB12™ Earth-Lock	95 96 96	0.4646 0.5171 0.5224	Standard	79.982 72.632 69.880	Standard				
1 2 3 4	North American Green C350™ Three Phase™ BonTerra® SFB12™ Earth-Lock KoirMat™ 740	95 96 96 96	0.4646 0.5171 0.5224 0.5732	Standard (cm)	79.982 72.632 69.880 65.643	Standard (%)				
1 2 3 4 5	North American Green C350™ Three Phase™ BonTerra® SFB12™ Earth-Lock KoirMat™ 740 Tensar® Erosion Mat TM3000	95 96 96 96 95	0.4646 0.5171 0.5224 0.5732 0.5843	Standard (cm)	79.982 72.632 69.880 65.643 92.853	Standard (%)				
1 2 3 4 5 6	North American Green C350™ Three Phase™ BonTerra® SFB12™ Earth-Lock KoirMat™ 740 Tensar® Erosion Mat TM3000 Geojute® Plus-Regular High Velocity	95 96 96 96 95 95	0.4646 0.5171 0.5224 0.5732 0.5843 0.6113	Standard (cm)	79.982 72.632 69.880 65.643 92.853 59.490	Standard (%)				
1 2 3 4 5 6 7	North American Green C350™ Three Phase™ BonTerra® SFB12™ Earth-Lock KoirMat™ 740 Tensar® Erosion Mat TM3000 Geojute® Plus-Regular High Velocity Tensar® Erosion Blanket TB1000	95 96 96 96 95 95 96	0.4646 0.5171 0.5224 0.5732 0.5843 0.6113 0.6637	Standard (cm)	Pensity (%) 79.982 72.632 69.880 65.643 92.853 59.490 73.100	Standard (%)				
1 2 3 4 5 6 7 8	North American Green C350™ Three Phase™ BonTerra® SFB12™ Earth-Lock KoirMat™ 740 Tensar® Erosion Mat TM3000 Geojute® Plus-Regular High Velocity Tensar® Erosion Blanket TB1000 Enkamat® 7018	95 96 96 96 95 95 96 96	0.4646 0.5171 0.5224 0.5732 0.5843 0.6113 0.6637 0.6642	Standard (cm)	Pensity (%) 79.982 72.632 69.880 65.643 92.853 59.490 73.100 79.835	Standard (%)				

Shear Stress Range = 0 - 192 Pascal


(0 - 4 Lb/Sq Ft)

	Product Performance - 1996 Evaluation Cycle									
No	Product Name	Year	Sediment Loss (cm)	Current Standard (cm)	Vegetation Density (%)	Current Standard (%)				
12	Miramat® TM8™	95	0.7871		86.574					
13	Pyramat®	96	0.8417		67.161					
14	North American Green S150	96	0.8727		82.834					
15	Permamat 200F	95	1.0671	1.00	56.954	70				
16	Enkamat® 7020	95	1.0861		82.394					
17	Curlex® I	96	2.50 96		69.982					
18	CONTROL	95-96	4.1225		47.660					

NOTES:

Shaded cells (if any) indicate performance which failed to meet currently established minimum performance standards.

Class 2 - Flexible Channel Liners Average Channel Deformation (Centimeters) 0 - 192 Pascal Flows (0 - 4 Lbs/Sq Ft)

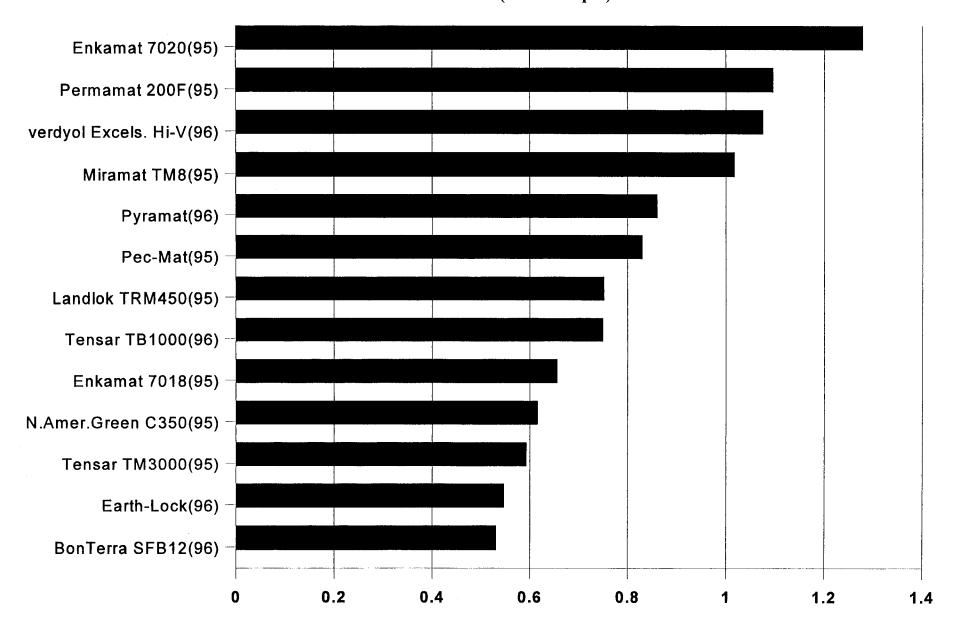
1991-1996 Evaluation Cycles - Final Performance Analysis TxDOT/TTI Hydraulics & Erosion Control Laboratory

TABULAR DATA Class 2 "Flexible Channel Liner" Applications

0 - 287 Pascal Shear Stress Flows

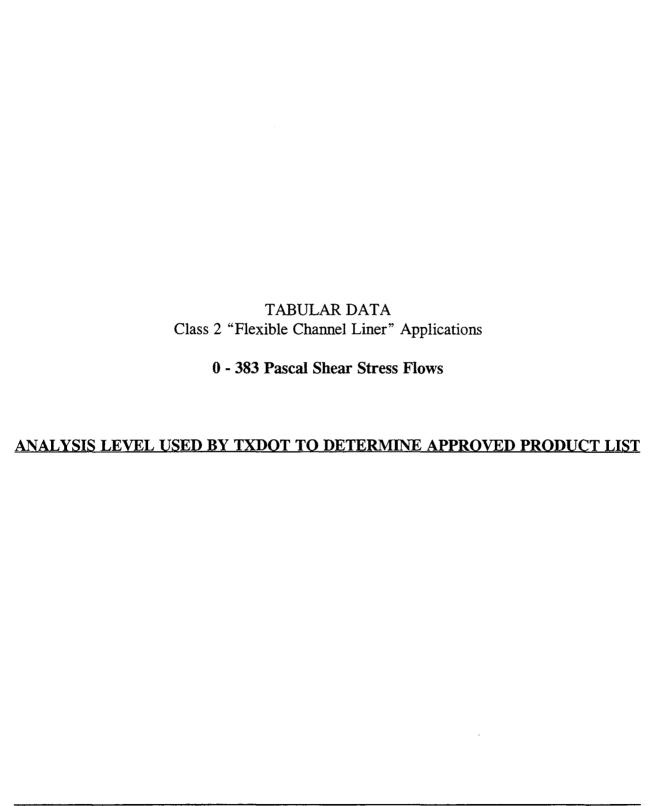
ANALYSIS LEVEL USED BY TXDOT TO DETERMINE APPROVED PRODUCT LIST

Shear Stress Range = 0 - 287 Pascal


(0 - 6 Lb/Sq Ft)

	Product Perfo	rmance -	- 1996 Evaluati	on Cycle		
No	Product Name	Year	Sediment Loss (cm)	Curreut Standard(cm)	Vegetation Density(%)	Current Standard(%)
1	BonTerra® SFB12™		0.53046		72.632	
2	Earth-Lock		0.54661		69.880	
3	Enkamat® 7018	96	0.65571	1.00	79.835	70
4	Tensar® Erosion Blanket TB1000		0.74893	,	73.100	
5	Pyramat®		0.86039		67.1 61	
6	verdyol® Excelsior High-Velocity		1.07468		68,844	
	Product Performa	nce : 199	91 - 1996 Evalu	ation Cycles		
No	Product Name	Year	Sediment Loss (cm)	Current Standard (cm)	Vegetation Density (%)	Current Standard (%)
1	BonTerra® SFB12™	96	0.53046		72.632	
2	Earth-Lock	96	0.54661		69,880	
3	Tensar® Erosion Mat TM3000	95	0.59296		92.853	
4	North American Green C350™ Three Phase™	95	0.61543		82.834	
5	Enkamat® 7018	96	0.65571		79.835	
6	Tensar® Erosion Blanket TB1000	96	0.74893		73.100	
7	Landlok® TRM 450	95	0.75157	1.00	78.116	70
8	Greenstreak® Pec-Mat™	95	0.82961		71.830	
9	Pyramat®	96	0.86039		67.161	
10	Miramat® TM8™	95	1.01689		86.574	
11	verdyol® Excelsior High-Velocity	96	1.07468		68.844	
12	Permamat 200F	95	1.09496		56.954	
13	Enkamat® 7020	95	1.27800	-	82.394	
	CONTROL	95-96	Not Tested		47.660	

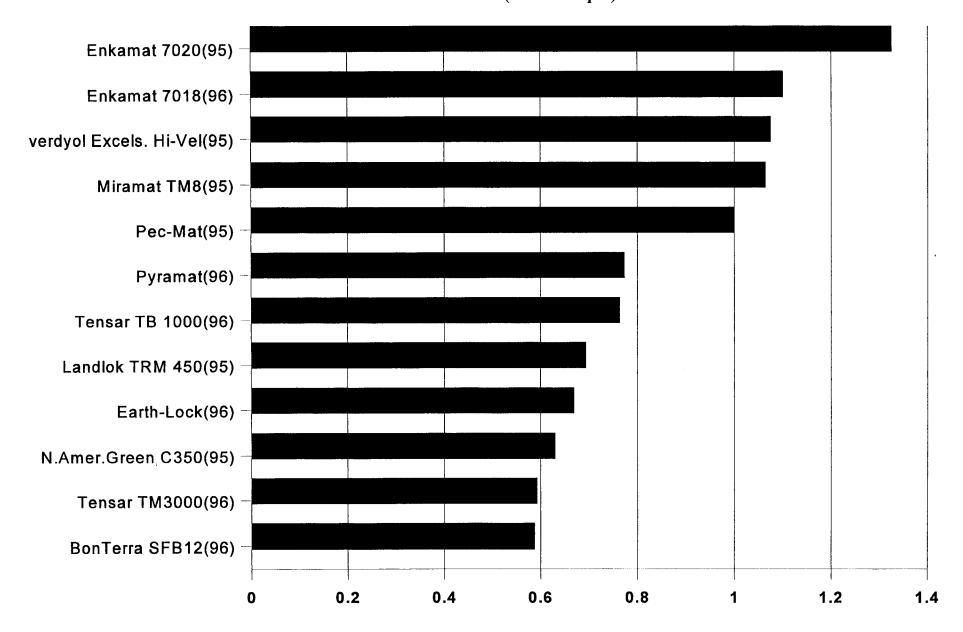
NOTES:


Shaded cells (if any) indicate performance which failed to meet currently established minimum performance standards. "Not Tested" indicates that the product did not receive flow events through this shear stress level.

Class 2 - Flexible Channel Liners Average Channel Deformation (Centimeters) 0 - 287 Pascal Flows (0 - 6 Lbs/Sq Ft)

1991-1996 Evaluation Cycles - Final Performance Analysis TxDOT/TTI Hydraulics & Erosion Control Laboratory

This Page Left Blank

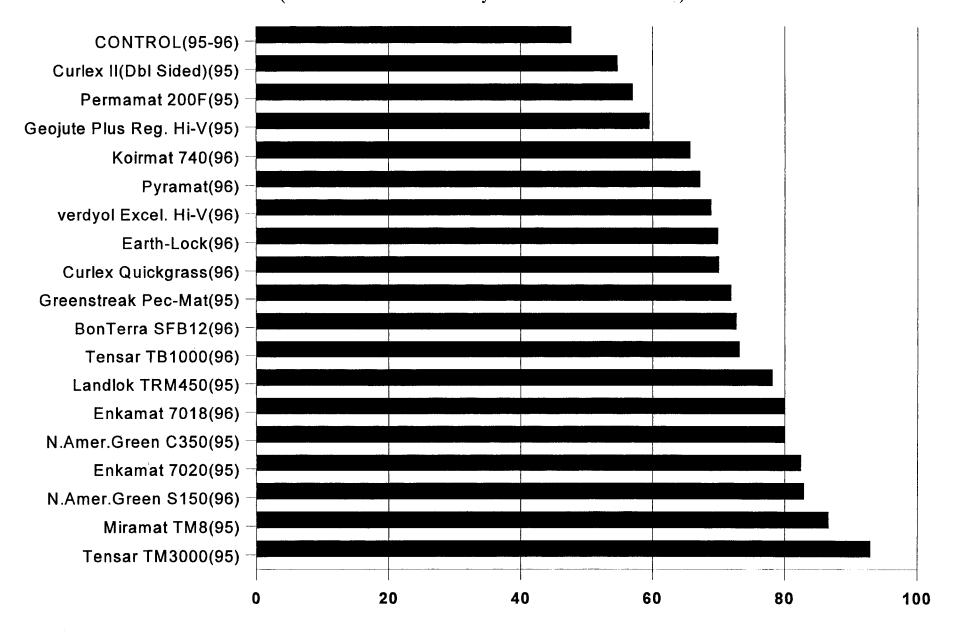

Shear Stress Range = 0 - 383 Pascal (0 - 8 Lb/Sq Ft)

Product Performance - 1996 Evaluation Cycle								
No	Product Name	Year	Sediment Loss (cm)	Current Standard (cm)	Vegetation Density (%)	Current Standard (%)		
1	BonTerra® SFB12™		0.58745		72.632			
2	Earth-Lock		0.66827		69.880			
3	Tensar® Erosion Blanket TB1000	96	0.76309	0.80	73.100	70		
4	Pyramat®		0.77329		67.161	, -		
5	Enkamat® 7018		1.10008		79.835			
Product Performance : 1991 - 1996 Evaluation Cycles								
No	Product Name	Year	Sediment Loss (cm)	Current Standard (cm)	Vegetation Density (%)	Current Standard (%)		
1	BonTerra® SFB12™	96	0.58745		72.632			
2	Tensar® Erosion Mat TM3000	96	0.59214		92.853			
3	North American Green C350™ Three Phase™	95	0.62929		79.982			
4	Earth-Lock	96	0.66827		69.880			
5	Landlok® TRM 450	95	0.69309		78.116			
6	Tensar® Erosion Blanket TB1000	96	0.76309		73.100			
7	Pyramat®	96	0.77329	0.80	67.161	70		
8	Greenstreak® Pec-Mat™	95	0.99944		71.83			
9	Miramat® TM8™	95	1,06416		86.574			
10	Enkamat® 7018	96	1.10008		79.835			
11	Enkamat® 7020	95	1.32551		82.394			
	CONTROL	95-96	Not Tested		47.660			

NOTES:

Shaded cells (if any) indicate performance which failed to meet currently established minimum performance standards. "Not Tested" indicates that the product did not receive flow events through this shear stress level.

Class 2 - Flexible Channel Liners Average Channel Deformation (Centimeters) 0 - 383 Pascal Flows (0 - 8 Lbs/Sq Ft)



1991-1996 Evaluation Cycles - Final Performance Analysis TxDOT/TTI Hydraulics & Erosion Control Laboratory

Class 2 "Flexible Channel Liner" Applications

Final Vegetative Density

Class 2 - Flexible Channel Liners
Vegetation Density
(Percent of Cover Achieved by Final Measurement Round)

1995-1996 Evaluation Cycles - Final Performance Analysis TxDOT/TTI Hydraulics & Erosion Control Laboratory

STATISTICAL ANALYSIS Class 2 "Flexible Channel Liner" Applications

Soil Displacement 0 - 96 Pascal Shear Stress Flows

Analysis of Variance Duncan's Multiple Range Test Confidence Level = 95%

CLASS 2 - SOIL DISPLACEMENT ANALYSIS FINAL PERFORMANCE ANALYSIS - THROUGH THE 1996 CYCLE SHEAR STRESS RANGE 0 - 96 PASCAL (0 - 2 LB/SO/FT)

ANALYSIS OF VARIANCE PROCEDURE

DUNCAN'S MULTIPLE RANGE TEST FOR VARIABLE: DEF

NOTE: THIS TEST CONTROLS THE TYPE I COMPARISONWISE ERROR RATE, NOT THE EXPERIMENTWISE ERROR RATE

ALPHA= 0.05 DF= 1212 MSE= 1.090476 WARNING: CELL SIZES ARE NOT EQUAL. HARMONIC MEAN OF CELL SIZES= 60.78435

NUMBER OF MEANS 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 CRITICAL RANGE .3717 .3913 .4044 .4142 .4218 .4280 .4332 .4376 .4415 .4449 .4479 .4507 .4531 .4553 .4574 .4593 .4610 .4627

MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.

DUNCAN GROUPING			ING		MEAN	N	CHANNEL
			A A		-0.3541	56	NAG C350(95)
	B B		A A		-0.4166	56	KOIRMAT 740(96)
	B B		A A	C C	-0.4932	56	EARTHLOCK (96)
	B B		A A	C C	-0.4974	111	GEOPLUS HI-V(95)
	B B		A A	C C	-0.4987	56	SFB12 (96)
	B B	D D	A A	c c	-0.5611	56	LANDLOK 450 (95)
	B B	D D	A A	C C	-0.5666	56	TM3000(95)
	B B	D D	A A	C	-0.6784	56	MIRAMAT TM8(95)
	B B	D D	A A	C	-0.7111	56	N/A/G S150(96)
E E	B B	D D	A A	C C	-0.7170	56	TB 1000(96)
E E	B B	D D	A A	C C	-0.7766	56	VERDYOL HI-V(96)
E E	B B	D D	A	C	-0.7866	112	CURLEX II(95)
E E	B B	D D		C C	-0.8312	56	ENKAMAT7018 (96)
E E	В	D D		C C	-0.8648	56	PECMAT (95)
E		D D		C	-0.8745	56	PYRAMAT (96)
E E		D			-0.9736	56	ENKAMAT 7020(95)
E					-1.1487	112	PERMAMAT200F(95)
			F F		-1.9525	56	CONTROL
			F		-2.2950	56	CURLEX 1(96)

STATISTICAL ANALYSIS Class 2 "Flexible Channel Liner" Applications

Soil Displacement 0 - 192 Pascal Shear Stress Flows

Analysis of Variance Duncan's Multiple Range Test Confidence Level = 95%

CLASS 2 - SOIL DISPLACEMENT ANALYSIS FINAL PERFORMANCE ANALYSIS - THROUGH THE 1996 CYCLE SHEAR STRESS RANGE 0 - 192 PASCAL (0-4 LB/SQ/FT)

ANALYSIS OF VARIANCE PROCEDURE

DUNCAN'S MULTIPLE RANGE TEST FOR VARIABLE: DEF

NOTE: THIS TEST CONTROLS THE TYPE I COMPARISONWISE ERROR RATE, NOT THE EXPERIMENTWISE ERROR RATE

ALPHA= 0.05 DF= 3089 MSE= 3.682547 WARNING: CELL SIZES ARE NOT EQUAL. HARMONIC MEAN OF CELL SIZES= 171.7056

NUMBER OF MEANS 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 CRITICAL RANGE .4061 .4276 .4420 .4526 .4609 .4678 .4735 .4783 .4826 .4863 .4866 .4866 .4926 .4953 .4978 .5000 .5021 .5041

MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.

DUNCAN GROUPING	}	MEAN	N	CHANNEL
A A		-0.4646	168	NAG C350(95)
A A A		-0.5171	168	SFB12(96)
A		-0.5224	168	EARTHLOCK (96)
A A		-0.5732	168	KOIRMAT 740(96)
B A B A		-0.5843	168	TM3000(95)
B A B A	C	-0.6113	195	GEOPLUS HI-V(95)
B A	C	-0.6637	168	TB 1000(96)
B A	C	-0.6642	168	ENKAMAT7018 (96)
B A	C	-0.7398	168	VERDYOL HI-V(96)
B A	, C	-0.7554	168	LANDLOK 450 (95)
B A B A	C C	-0.7565	168	PECMAT (95)
B A B A	C	-0.7871	168	MIRAMAT TM8 (95)
B A	C	-0.8417	168	PYRAMAT(96)
B A B A B		-0.8727	168	N/A/G S150(96)
В	ç c	-1.0671	224	PERMAMAT200F(95)
	C	-1.0861	168	ENKAMAT 7020(95)
D)	-2.5096	168	CURLEX 1(96)
E	;	-4.1225	168	CONTROL

STATISTICAL ANALYSIS Class 2 "Flexible Channel Liner" Applications

Soil Displacement 0 - 287 Pascal Shear Stress Flows

Analysis of Variance Duncan's Multiple Range Test Confidence Level = 95%

FINAL PERFORMANCE ANALYSIS - THROUGH THE 1996 CYCLE SHEAR STRESS RANGE 0 - 287 PASCAL (0-6 LB/SQ/FT)

ANALYSIS OF VARIANCE PROCEDURE

DUNCAN'S MULTIPLE RANGE TEST FOR VARIABLE: DEF

NOTE: THIS TEST CONTROLS THE TYPE I COMPARISONWISE ERROR RATE, NOT THE EXPERIMENTWISE ERROR RATE

ALPHA= 0.05 DF= 3348 MSE= 1.064538

NUMBER OF MEANS 2 3 4 5 6 7 8 9 10 11 12 CRITICAL RANGE .1710 .1800 .1861 .1906 .1941 .1969 .1993 .2014 .2032 .2047 .2061

MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.

DUNCAN GROUPIN	1G		MEAN	N	CHANNEL
	A A		-0.53046	280	SFB12(96)
	A A		-0.54661	280	EARTHLOCK (96)
B B	A A		-0.59296	280	TM3000(95)
B B	A A		-0.61543	280	NAG C350(95)
B B	A	C C	-0.65571	280	ENKAMAT7018 (96)
В	D	С	-0.74893	280	TB 1000(96)
B B	D D	C	-0.75157	280	LANDLOK 450 (95)
	D D D	C	~0.82961	280	PECMAT(95)
E E	D		-0.86039	280	PYRAMAT (96)
E	F F		-1.01689	280	MIRAMAT TM8 (95)
	F		-1.07468	280	VERDYOL HI-V(96)
	G		-1.27800	280	ENKAMAT 7020(95)

STATISTICAL ANALYSIS Class 2 "Flexible Channel Liner" Applications

Soil Displacement 0 - 383 Pascal Shear Stress Flows

Analysis of Variance Duncan's Multiple Range Test Confidence Level = 95%

ANALYSIS OF VARIANCE PROCEDURE

DUNCAN'S MULTIPLE RANGE TEST FOR VARIABLE: DEF

NOTE: THIS TEST CONTROLS THE TYPE I COMPARISONWISE ERROR RATE, NOT THE EXPERIMENTWISE ERROR RATE

ALPHA= 0.05 DF= 4301 MSE= 1.407155

NUMBER OF MEANS 2 3 4 5 6 7 8 9 10 11 CRITICAL RANGE .1661 .1749 .1808 .1851 .1886 .1913 .1937 .1957 .1974 .1989

MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.

DUNCAN GROUPING	MEAN	N	CHANNEL
A A	-0.58745	392	SFB12(96)
A A	-0.59214	392	TM3000(95)
A	-0.62929	392	NAG C350(95)
A A	-0.66827	392	EARTHLOCK (96)
A A	-0,69309	392	LANDLOK 450 (95)
A A	-0.76309	392	TB 1000(96)
Λ A	-0.77329	392	PYRAMAT(96)
В	-0.99944	392	PECMAT (95)
В В	-1.06416	392	MIRAMAT TM8(95)
В В	-1.10008	392	ENKAMAT7018 (96)
C	-1.32551	392	ENKAMAT 7020(95)

STATISTICAL ANALYSIS Class 2 "Flexible Channel Liner" Applications

Final Vegetative Density

Analysis of Variance Duncan's Multiple Range Test Confidence Level = 95% ANALYSIS OF VARIANCE PROCEDURE

DUNCAN'S MULTIPLE RANGE TEST FOR VARIABLE: COVER

NOTE: THIS TEST CONTROLS THE TYPE I COMPARISONWISE ERROR RATE, NOT THE EXPERIMENTWISE ERROR RATE

ALPHA= 0.05 DF= 665 MSE= 540.1087

NUMBER OF MEANS 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 CRITICAL RANGE 10.76 11.32 11.70 11.99 12.21 12.38 12.53 12.66 12.77 12.87 12.96 13.04 13.11 13.17 13.23 13.28 13.33 13.38

MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.

DUNCA	AN GI	ROUP.	ENG		MEAN	N	CHANNEL
			A A		92.853	36	TM3000(95)
	B B		A A		86.574	36	MIRAMAT TM8 (95)
	B B		A A	C C	82.834	36	N/A/G S150(96)
	B B	D D	A	C	82.394	36	ENKAMAT 7020(95)
	B B	D D	E E	C	79.982	36	NAG C350(95)
	B B	D D	E E	c c	79.835	36	ENKAMAT7018 (96)
F F	В	D D	E E	C	78.116	36	LANDLOK 450(95)
F F		D D	E E	C C	73.100	36	TB 1000(96)
F F		D D	E E	C	72.632	36	SFB12(96)
P	G	D	E	C	71.830	36	PECMAT (95)
F F	G G	D D	E E		69.982	36	CURLEX 1(96)
F F	G G	D D	E E		69.880	36	EARTHLOCK (96)
F F	G G		E E	Н	68.844	36	VERDYOL HI-V(96)
F F	G G G			H	67.161	36	PYRAMAT (96)
F F	G G		I I	H H	65.643	36	KOIRMAT 740(96)
	G		I	H H	59.490	36	GEOPLUS HI-V(95)
	J		I	H H	. 56.954	36	PERMAMAT200F(95)
	J J		I		54.664	36	CURLEX II(95)
	J J				47.660	36	CONTROL

HYDRAULIC MULCHES ITEM 164 "SEEDING FOR EROSION CONTROL"

This analysis level seeks to determine the final vegetation density which was achieved during the single March through December growing season by each of the separate hydraulic mulches.

Vegetative Density figures shown represent the <u>average percent of vegetative cover</u> <u>achieved within the plot by the final measurement round only</u>.

Cellulose Fiber Mulch Applications Record of Product Evaluations 1:3 Slopes Only

Year	No	Product Evaluated	Clay	Sand					
1991		No Cellulose Fiber Mulch Evaluations Performed							
1992	1	American Fiber Mulch							
	2	Conwed® Hydro Mulch®							
	3	Second Nature® Regenerated Wood Fiber							
1993		Evaluation Cycle Cancelled Due to Weath	Evaluation Cycle Cancelled Due to Weather Damage						
1994	1	American Fiber Mulch (with Hydro-Stik)							
	2	American Fiber Mulch (with Fiber Plus)	***************************************						
	3	Pro Mat®							
	3	Pro Mat® XL							
	4	Pro Mat® (with RMBplus)							
	5	Silva-Fiber Plus®							
1995	1	Second Nature® Regenerated Wood Fiber		[1]					
	2	Excel Fibermulch® II		[1]					
1996	1	Enviro-Gro							
	2	Excel Fibermulch® II	**********						
	3	Second Nature® Regenerated Wood Fiber							

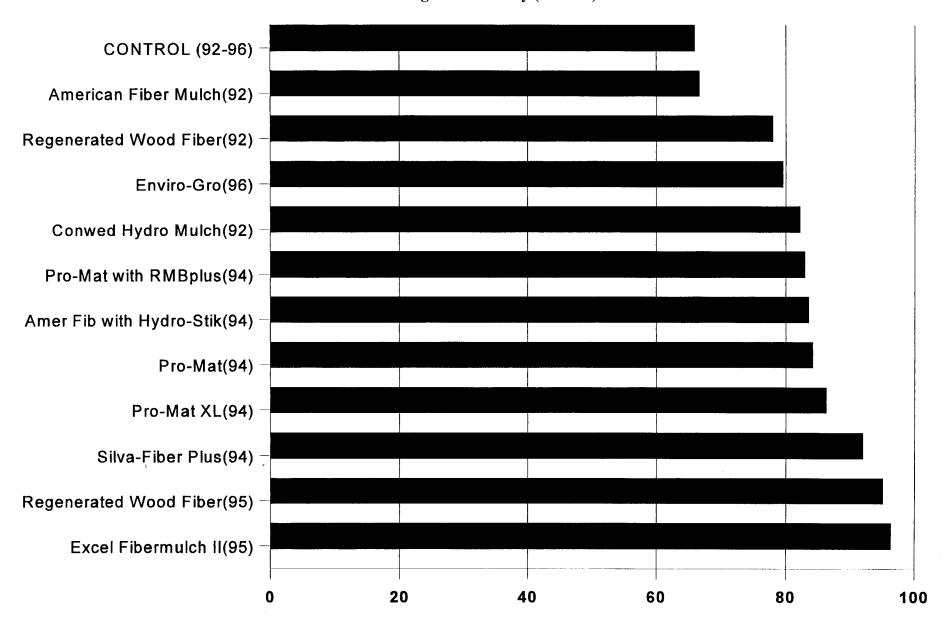
NOTES:

[1] Products were destroyed by natural rainfall event soon after installation. Product was reinstalled by TTI, but was subsequently destroyed by another rainfall event. TxDOT instructed TTI to cease performance evaluations.

This Page Left Blank

TABULAR DATA
Cellulose Fiber Mulch Applications

1:3 Clay


Texas Department of Transporation Final Performance Analysis - Through the 1996 Evaluation Cycle Cellulose Fiber Mulch

1:3 Clay Slopes Only

	Product Performance - 1996 Ev	Product Performance : 1991 - 1996 Evaluation Cycles Product Name Year Final Vegetation Density Standard (70%) rmulch® II 1995 96.328 ature® Regenerated Wood Fiber 1995 95.079 r Plus® 1994 91.983 XL 1994 86.245 Fiber Mulch (with Hydro-Stik) 1994 83.568 with RMBplus) 1994 82.960 Hydro Mulch® 1992 82.169 D 1996 79.534 ture® Regenerated Wood Fiber 1992 77.968		
No	Product Name	Year	Density Standard	
1	Enviro-Gro	1996	79.534	
	Product Performance : 1991 - 1996	Evaluation Cycles		
No	Product Name	Year	Density Standard	
1	Excel Fibermulch® II	1995	96.328	
2	Second Nature® Regenerated Wood Fiber	1995	95.079	
3	Silva-Fiber Plus®	1994	91.983	
4	Pro Mat® XL	1994	86.245	
5	Pro Mat®	1994	84.154	
6	American Fiber Mulch (with Hydro-Stik)	1994	83.568	
7	Promat® (with RMBplus)	1994	82.960	
8	Conwed® Hydro Mulch®	1992	82.169	
9	Enviro-Gro	1996	79.534	
10	Second Nature® Regenerated Wood Fiber	1992	77.968	
11	American Fiber Mulch	1992	66.611	
12	CONTROL	92-96	65.905	

NOTE: Shaded cells (if any) indicate performance which failed to meet currently established minimum performance standards.

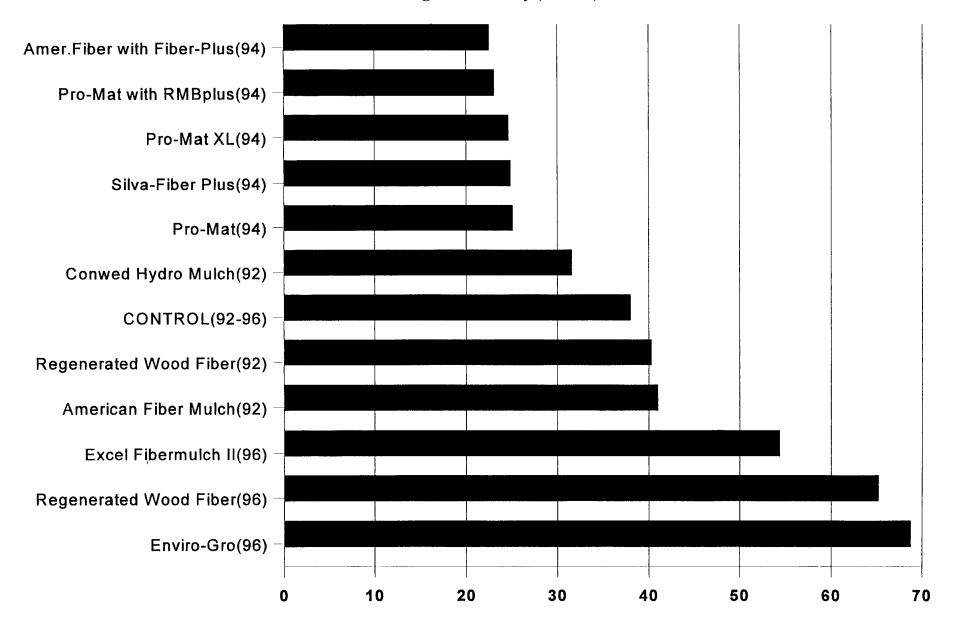
3:1 Clay Soils
Cellulose Fiber Mulches
Final Vegetative Density (Percent)

1991-1996 Evaluation Cycles - Final Performance Analysis TxDOT/TTI Hydraulics & Erosion Control Laboratory

This Page Left Blank

TABULAR DATA Cellulose Fiber Mulch Applications

1:3 Sand


Texas Department of Transporation Final Performance Analysis - Through the 1996 Evaluation Cycle Cellulose Fiber Mulch

1:3 Sand Slopes Only

	Product Performance - 1996 Ev	valuation Cycle	
No	Product Name	Year	Final Vegetation Density Standard (70%)
1	Enviro-Gro	1996	68.721
2	Second Nature® Regenerated Wood Fiber	1996	65.189
3	Excel Fibermulch® II	1996	54.372
	Product Performance: 1991 - 1996	Evaluation Cycles	
No	Product Name	Year	Final Vegetation Density Standard (70%)
1	Enviro-Gro	1996	68.721
2	Second Nature® Regenerated Wood Fiber	1996	65.189
3	Excel Fibermulch® II	1996	54.372
4	American Fiber Mulch	1992	40.987
5	Second Nature® Regenerated Wood Fiber	1992	40.272
6	CONTROL	92-96	37.987
7	Conwed® Hydro Mulch®	1992	31.551
8	Pro Mat®	1994	25.070
9	Silva-Fiber Plus®	1994	24.833
10	Pro Mat® XL	1994	24.615
11	Pro Mat® (with RMBplus)	1994	23.045
12	American Fiber Mulch (with Fiber Plus)	1994	22.518

NOTE: Shaded cells (if any) indicate performance which failed to meet currently established minimum performance standards.

3:1 Sand Soils
Cellulose Fiber Mulches
Final Vegetative Density (Percent)

1991-1996 Evaluation Cycles - Final Performance Analysis TxDOT/TTI Hydraulics & Erosion Control Laboratory

STATISTICAL ANALYSIS Cellulose Fiber Mulch Applications

Final Vegetative Density 1:3 Clay Soils

Analysis of Variance Duncan's Multiple Range Test Confidence Level = 95%

SOIL=CLAY

ANALYSIS OF VARIANCE PROCEDURE

DUNCAN'S MULTIPLE RANGE TEST FOR VARIABLE: COVER

NOTE: THIS TEST CONTROLS THE TYPE I COMPARISONWISE ERROR RATE, NOT THE EXPERIMENTWISE ERROR RATE

ALPHA= 0.05 DF= 327 MSE= 303.3726 WARNING: CELL SIZES ARE NOT EQUAL. HARMONIC MEAN OF CELL SIZES= 25.3051

NUMBER OF MEANS 2 3 4 5 6 7 8 9 10 11 12 CRITICAL RANGE 9.63 10.14 10.48 10.73 10.93 11.09 11.22 11.33 11.43 11.52 11.59

MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.

DUNCAN GR	OUPING		MEAN	N	PLOT
	A A		96.328	26	FIBERMULCH2 (95)
	A A		95.079	26	REGEN FIBER (95)
ВВ	A A		91.983	26	SILVAFIB PLUS (94
B B	A	C C	86.245	26	PROMAT XL(94)
B B		C C	84.154	26	PROMAT(94)
Б В		c c	83.568	26	AMFIBTAK1 (94)
B B		C	82.960	26	PROMAT TAC(94)
В		C	82.169	20	CONWED (92)
		C C	79.534	26	ENVIRO GRO(96)
		С	77.968	20	REGEN FIBER (92)
	D D		66.611	19	AMER FIBER (92)
	D		65.905	72	CONTROL

STATISTICAL ANALYSIS Cellulose Fiber Mulch Applications

Final Vegetative Density
1:3 Sand Soils

Analysis of Variance Duncan's Multiple Range Test Confidence Level = 95%

TXDOT/TTI HYDRAULICS AND EROSION CONTROL LABORATORY FINAL PERFORMANCE ANALYSIS THROUGH THE 1996 EVALUATION CYCLE

ANALYSIS OF VARIANCE PROCEDURE

DUNCAN'S MULTIPLE RANGE TEST FOR VARIABLE: COVER

NOTE: THIS TEST CONTROLS THE TYPE I COMPARISONWISE ERROR RATE, NOT THE EXPERIMENTWISE ERROR RATE

ALPHA= 0.05 DF= 327 MSE= 311.953 WARNING: CELL SIZES ARE NOT EQUAL. HARMONIC MEAN OF CELL SIZES= 25.43576

NUMBER OF MEANS 2 3 4 5 6 7 8 9 10 11 12 CRITICAL RANGE 9.74 10.26 10.60 10.85 11.05 11.21 11.35 11.46 11.56 11.65 11.73

MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.

DUNCAN GROUPING	MEAN	N	PLOT
A A	68.721	26	ENVIRO GRO(96)
A	65.189	26	REGEN FIBER (96)
В	54.372	26	FIBERMULCH2 (96)
C C	40.987	20	AMER FIBER (92)
c	40.272	20	REGEN FIBER (92)
c	37.987	71	CONTROL
D C	31.551	20	CONWED (92)
D D	25.070	26	PROMAT(94)
D	24.833	26	SILVAFIB PLUS (94
D D	24.615	26	PROMAT XL(94)
D D	23.045	26	PROMAT TAC(94)
D D	22.518	26	AMFIBTAK2 (94)

APPENDIX A

Standard Specification Item 164 "Seeding for Erosion Control"

Texas Department of Transportation 1995 Standard Specifications for Construction and Maintenance of Highways, Streets and Bridges Water used for preparing the sod for digging and keeping the sod moist from the source until it is planted shall be considered subsidiary to the various pay items involved.

"Fertilizer" will not be paid for directly, but will be considered subsidiary to this Item unless otherwise shown on the plans.

ITEM 164

SEEDING FOR EROSION CONTROL

164.1. Description. This Item shall govern for preparing ground, providing for sowing of seeds, mulching with straw, hay, or cellulose fiber and other management practices on areas shown on the plans and in accordance with this Item.

It includes seeding for permanent erosion control and seeding for temporary erosion control during the initial winter season.

164.2. Materials.

(1) Seed. All seed must meet the requirements of the Texas Seed Law including the labeling requirements for showing pure live seed (PLS = purity x germination), name and type of seed. Seed furnished shall be of the previous season's crop and the date of analysis shown on each bag shall be within nine months of the time of use on the project. Each variety of seed shall be furnished and delivered in separate bags or containers. A sample of each variety of seed shall be furnished for analysis and testing when directed by the Engineer. Buffalograss shall be treated with a dormancy method approved by the Engineer. The species and varieties of seed shall be from among the types specified in Tables 1A and 1B.

Table 1A. List of Selected Grass Species with Their Scientific and Common Names

Scientific Name	Common Name (Acceptable Varieties)	Season Warm/Cool	Native/ Introduced
Agropyron smithii	Western Wheatgrass	С	И
Andropogon hallii	Sand Bluestem	W	N
Avena sativa	Oats	С	1
Bothriochloa ischaemum	K-R Bluestem	W	I
Bouteloua	Sideoats Grama (see seed mix table for	W	И
curtipendula Bouteloua eriopod	appropriate varieties)	W	N
Bouteloua gracilis		W	N
Buchloe dactyloic		W	N
Cenchrus ciliaris		W	I
Chloris guyana	Rhodesgrass	W	I
Cynodon dactyle	on Bermudagrass	W	I
Eragrostis tricho	odes Sand Lovegrass (see seed mix table for appropriate varieties)	W	N
Festuca arundir	naceae Tall Fescue	С	И
Hordeum vulga		С	I

Scientific Name	Common Name (Acceptable Varieties)	Season Warm/Cool	Native/ Introduced
Leptochloa dubia	Green Sprangletop	W	N
Panicum virgatum	Switchgrass (see seed mix table for appropriate varieties)	W	N
Paspalum notatum	Bahiagrass (Pensacola variety)	W	I
<u>Schizachyrium</u> <u>scoparium</u>	Little Bluestem (Texas origin only)	W	N
Setaria italica	Foxtail Millet	W	I
Setaria macrostachy	a Plains Bristlegrass	w	N
Sorghastrum avenaceum	Indiangrass (see seed mix table for appropriate varieties)	W	N
Sporobolus cryptandrus	Sand Dropseed	W	N
Triticum aestivum	Wheat (Red, Winter)	C	I

Table 1B. List of Selected Legumes Species with Their Scientific and Common Names

Scientific Name	Common Name	Season Warm/Cool	Native/ Introduced
Trifolium incarnatum	Crimson Clover	С	I
Melilotus officinalis	Yellow Sweetclover	r C	I
Vicia villosa	Hairy Vetch	С	I

(2) Fertilizer. Fertilizer shall conform to the requirements of Item 166, "Fertilizer". The fertilizer used shall have the analysis as shown on the plans.

(3) Water. Water shall conform to the requirements of Item 168, "Vegetative Watering".

(4) Mulch.

- (a) Straw Mulch or Hay Mulch. Straw mulch shall be oat, wheat or rice straw. Hay mulch shall be prairie grass, bermudagrass or other hay as approved by the Engineer. The straw mulch or hay mulch shall be free of Johnson grass or other noxious weeds and foreign materials. It shall be kept in a dry condition and shall not be molded or rotted.
- (b) Cellulose Fiber Mulch. It shall meet the requirements of and be approved by the Director of Construction and Maintenance. A list of pretested and approved materials will be maintained and can be obtained by writing the Director of Construction and Maintenance, 125 East 11th Street, Austin, Texas 78701-2483.

The mulch shall be designed for use in conventional mechanical planting, hydraulic planting of seed or hydraulic mulching of grass seed, either alone or with fertilizers and other additives. The mulch shall be such that, when applied, the material shall form a strong, moisture-retaining mat without the need of an asphalt binder. It shall be kept in a dry condition until applied and shall not be molded or rotted.

- (5) Soil Retention Blanket. Soil retention blanket shall meet the requirements of Item 169, "Soil Retention Blanket".
- (6) Tacking Agents. Tacking agents for straw or hay mulch shall be SS-1, unless otherwise shown on the plans. A biodegradable tacking agent may be used in lieu of the SS-1 tacking agent when approved by the Engineer. Asphaltic material shall conform to the requirements of Item 300, "Asphalt, Oils and Emulsions".
- 164.3. Construction Methods. After designated areas have been completed to the lines, grades and cross sections shown on the plans and as provided for in other items of this contract, seeding shall be performed in accordance with the requirements hereinafter described. Unless otherwise approved by the Engineer, all areas to be seeded shall be cultivated to a depth of at least 100 millimeters, except where seeding is to be done using a seed drill suitable for seeding into untilled soil. The seedbeds shall be cultivated sufficiently to reduce the soil to a state of good tilth when the soil particles on the surface are small enough and lie closely enough together to prevent the seed from being covered too deeply for optimum germination.

Mixture for Use in

Cultivation of the seedbed will not be required in loose sand where depth of sand is 100 millimeters or more.

The cross section previously established shall be maintained throughout the process of cultivation. Any necessary reshaping shall be done prior to any planting of seed.

(1) Planting Season and Seed Mixes. All planting shall be done between the dates specified for each highway district except as specifically authorized in writing by the Engineer.

The pure live seed planted per hectare shall be of the type specified in Table 2 for rural areas (warm season), Table 3 for urban areas (warm season), Tables 4A and 4B for temporary erosion control (cool season) and Table 5 for temporary erosion control (warm season), with the mixture, rates and planting dates except as shown on the plans.

Table 2.

Rural Area Species-Specific Warm-Season
Seeding Mixtures in Kilograms of Pure
Live Seed Per Hectare, by District.

District and Planting Dates *			Mixture for Use in Clay or Tight Soils		Mixture for Use in Sand or Sandy Soils	
(Paris)						
Feb 1 -	Green Sprangletop	1.0	Green Sprangletop	8.0	Green Sprangletop	1.2
May 15	Bermudagrass	1.3	Bermudagrass	1.0	Bermudagrass	1.7
	Little Bluestem	1.9	Little Bluestem	1.6	Bahiagrass	7.5
	Indiangrass	2.6	Indiangrass	2.0	(Pensacola)	
	(Lometa)		(Lometa)			
			Switchgrass	1.6		
			(Alamo or Blackwell	l)		

Planting	Dates *		Clay or Tight Soils		Sand or Sandy Soils	
2	(Eastern Sections)		(Western Sections)		(All Sections)	
(Ft. Wo	rth)					
Feb 1 -	Green Sprangletop	0.7	Green Sprangletop	0.7	Green Sprangletop	0.8
May 1	Sideoats Grama	2.0	Sideoats Grama	2.0	Sideoats Grama	2.5
	(El Reno)		(Haskell or El Reno))	(Haskell)	
	Bermudagrass	0.9	Little Bluestem	1.2	Bermudagrass	1.0
	Little Bluestem	1.2	Indiangrass	1.7	Little Bluestem	1.6
	K-R Bluestem	0.8	(Lometa or Cheyenn	e)	Sand Dropseed	0.2
	Switchgrass	1.3	K-R Bluestem	0.8		
	(Alamo or Blackwel	1)	Switchgrass	1.3		
			(Alamo or Blackwel	1)		
3	(Eastern Sections)		(Western Sections,		(All Sections)	
(Wichite	Falls)		i.e., Clay Co. West)			
Feb 1 -	Green Sprangletop	8.0	Green Sprangletop	8.0	Green Sprangletop	0.7
May 1	Sideoats Grama	2.5	Sideoats Grama	2.5	Sideoats Grama	2.0
++	(El Reno)		(El Reno)		(El Reno)	
***	Bermudagrass	1.0	Blue Grama	0.7	Bermudagrass	0.9
	Buffalograss	7.2	(Lovington)		Little Bluestem	1.2
	Western Wheatgr.	3.1	Buffalograss	7.2	Sand Dropseed	0.2
			Western Wheatgr.	3.1	Sand Bluestem	0.2
4 (Amaril	(All Sections)				(All Sections)	
	- Green Sprangletop	1.0	*		Green Sprangletop	0.8
	Sideoats Grama	3.1			Sideoats Grama	2.5
+++	(El Reno)	_			(El Reno)	
	Blue Grama	0.9			Blue Grama	0.7
	(Lovington)				(Lovington)	
	Buffalograss	9.0			Sand Dropseed	0.2
	•				Sand Bluestem	0.2

Mixture for Use in

District and

District and		Mixture for Use in		Mixture for Use in		
Planting	Dates *		Clay or Tight Soils		Sand or Sandy Soils	
_	(D. C.111.07)		au 633.05		(11 6)	
5	(E. of IH 27)		(W. of IH 27)		(All Sections)	
(Lubbock		1.0	Carra Sanaslatas	1.0	Caran Spannalaton	0.8
	Green Sprangletop	1.0 3.1	Green Sprangletop Sideoats Grama	1.0 3.1	Green Sprangletop Sideoats Grama	2.5
May 13	Sideoats Grama	3.1		3.1		2.3
***	(El Reno)	0.9	(Coronado) Blue Grama	0.9	(Coronado) Blue Grama	0.7
	Blue Grama	0.9		0.9		0.7
	(Lovington)	0.0	(Lovington)	0.0	(Lovington)	0.3
	Buffalograss	9.0	Buffalograss	9.0	Sand Dropseed	0.2
					Sand Bluestem	0.2
6	(N. of Pecos River)		(S. of Pecos River)		(All Sections)	
(Odessa)	,		(,		,	
Feb 1 -	Green Sprangletop	0.8	Green Sprangletop	1.0	Green Sprangletop	0.7
	Sideoats Grama	2.5	Sideoats Grama	3.1	Black Grama	0.3
,	(Premier or Uvalde)	(Premier or Tucson)		Blue Grama	0.6
	Black Grama	0.5	Black Grama	0.6	(Hachita)	
	Blue Grama	0.7	Blue Grama	0.9	Little Bluestem	1.2
	(Hachita)				Sand Dropseed	0.2
	Little Bluestem	1.6			Sand Bluestern	0.2
7	(All Sections)				(All Sections)	
(San An	igelo)					
Feb 1 -	Green Sprangletop	0.8			Green Sprangletop	0.8
May 1	Sideoats Grama	2.5			Sideoats Grama	2.5
	(Haskell)		-		(Haskell)	
	Buffalograss	7.2			Little Bluestem	1.6
	Little Bluestem	1.6			K-R Bluestem	0.9
	K-R Bluestem	0.9			Sand Dropseed	0.2
8	(N., W., E. of and		(S. of Fisher Co.)		(All Sections)	
(Abilen	e) including Fisher C					
Feb 1 -						
May 15	Green Sprangletop	1.0	Green Sprangletop	1.0	Green Sprangletop	0.8
***	Sideoats Grama	3.1	Sideoats Grama	3.1	Sideoats Grama	2.5
	(Haskell)		(Haskell)		(Haskell)	
E.>	Buffalograss	9.0	Buffalograss	9.0	K-R Bluestem	0.9
£ .	Blue Grama	0.9	Little Bluestem	1.9	Sand Dropseed	0.2
, J	(Hachita)				Sand Bluestem	0.2

District and		Mixture for Use in		Mixture for Use in		
Planting	Dates *		Clay or Tight Soils		Sand or Sandy Soils	
9	(E. of IH 35)		(W. of IH 35)		(All Sections)	
(Waco)					·	
Feb 1 -	Green Sprangletop	0.7	Green Sprangletop	0.7	Green Sprangletop	1.0
May 15	Bermudagrass	0.9	Sideoats Grama	2.0	Bermudagrass	1.3
	Little Bluestem	1.2	(Haskell or Premier)		K-R Bluestem	1.1
	Indiangrass	1.7	Buffalograss	5.9	Sand Dropseed	0.3
	(Lometa)		Little Bluestem	1.2		
	K-R Bluestem	0.8	K-R Bluestem	0.8		
	Switchgrass	1.3	Switchgrass	1.3		
	(Alamo)		(Alamo)			
-						
10	(All Sections)				(All Sections)	
(Tyler)						
Feb 1 -	Green Sprangletop	0.8			Green Sprangletop	1.9
May 13	Bermudagrass	1.0			Bermudagrass	2.6
	Little Bluestem	1.6				
	Indiangrass	2.0				
	(Lometa)					
	Switchgrass	1.6				
	(Alamo)					
11	(All Sections)				(All Sections)	
(Lufkin)					,	
Feb 15 -	Green Sprangletop	0.7			Green Sprangletop	1.9
May 15	Bermudagrass	1.0			Bermudagrass	2.6
	Little Bluestem	1.6			Ü	-
	Indiangrass	2.0				
	(Lometa)					
	Switchgrass	1.6				
	(Alamo)					

District and Planting Dates *		Mixture for Use in Clay or Tight Soils	Mixture for Use in Clay or Tight Soils			
12	(All Sections)				(All Sections)	
(Houston	•					
	Green Sprangletop	0.7			Green Sprangletop	1.0
May 15	Bermudagrass	0.9			Bermudagrass	1.3
	Little Bluestem	1.2			Bahiagrass	5.6
	Indiangrass	1.7			(Pensacola)	
	(Lometa)				K-R Bluestern	1.1
	K-R Bluestem	0.8				
	Switchgrass	1.3				
	(Alamo)					
13	(Wharton and		(All Other Sections)		(All Sections)	
(Yoakun	n) Matagorda Cos.)					
Jan 15 -						
May 15	Green Sprangletop	1.0	Green Sprangletop	0.7	Green Sprangletop	0.8
	Bermudagrass	1.3	Bermudagrass	0.9	Bermudagrass	1.0
	Little Bluestem	1.9	Little Bluestern	1.2	Bahiagrass	4.5
	K-R Bluestem	1.1	Indiangrass	1.7	(Pensacola)	•
			(Lometa)		Little Bluestem	1.6
			K-R Bluestem	0.8	K-R Bluestern	0.9
			Switchgrass	1.3	TO DIGGS CHI	0.9
			(Alamo)	•5		
14 (Austin)	(E. of IH 35)		(W. of IH 35)		(All Sections)	
Feb 1 -	Green Sprangletop	0.7	Green Sprangletop	0.7	Green Sprangletop	1.0
May 15	Bermudagrass	0.9	Little Bluestern	1.2	Bermudagrass	1.3
	Little Bluestem	1.2	Indiangrass	1.7	Sand Lovegrass	0.9
	Indiangrass	1.7	(Lometa)		K-R Bluestem	1.1
	(Lometa)		Buffalograss	5.9		
	Buffalograss	5.9	Sideoats Grama	2.0		
	Sideoats Grama	2.0	(Haskell or Uvalde)			
	(Haskell or Uvalde)		Switchgrass	1.3		
			(Alamo)			

		Mixture for Use in Clay or Tight Soils		Mixture for Use in Sand or Sandy Soils		
	(Uvalde, Frio, and Atascosa Cos., N.E.)	(Zavala, LaSalle, and McMullen Cos., S.V		(All Sections)	
Feb 1 -						
May 1	Green Sprangletop	0.7	Green Sprangletop	0.7	Green Sprangletop	1.0
	Sideoats Grama (Haskell or Uvalde)	2.0	Sideoats Grama (Haskell or Uvalde)	2.0	Bermudagrass Buffelgrass	1.3 2.2
	Little Bluestem	1.2	Buffalograss	5.9	K-R Bluestem	1.1
	Bermudagrass	0.9	Plains Bristlegr.	1.1		
	Buffalograss	5.9	K-R Bluestem	0.8		
	K-R Bluestem	0.8	Bermudagrass	0.9		
16	(E. of U.S. 77)		(W. of U.S. 77)		(All Sections)	
(Corpus	Christi)					
	Green Sprangletop	8.0	Green Sprangletop	0.8	Green Sprangletop	1.0
Jan 15 -	Bermudagrass	1.0	Rhodesgrass	0.5	Bermudagrass	1.3
May 1	Sideoats Grama	2.5	Plains Bristlegr.	1.3	Buffelgrass	2.2
	(Haskell or Uvalde)		Buffalograss	7.2	K-R Bluestem	1.1
	Little Bluestem	1.6	K-R Bluestem	0.9		
	K-R Bluestem	0.9				
17 (Bryan)	(All Sections)				(All Sections)	
Feb 1 -	Green Sprangletop	0.7			Green Sprangletop	1.2
May 15	Bermudagrass	0.9			Bermudagrass	1.7
	Little Bluestem	1.2			Bahiagrass	7.5
	Indiangrass (Lometa)	1.7			(Pensacola)	
	K-R Bluestem	0.8				
	Switchgrass	1.3				
	Switchgrass	1.3				

	District and Planting Dates *		Mixture for Use in Clay or Tight Soils			
18 (Dallas)	(E. of U.S. 75)		(W. of U.S. 75)		(All Sections)	
Feb 1 -	Green Sprangletop	0.7	Green Sprangletop	0.8	Green Sprangletop	1.2
May I	Bermudagrass	0.9	Bermudagrass	1.0	Bermudagrass	1.7
	Little Bluestem	1.2	Sideoats Grama	2.5	Sand Dropseed	0.5
	Indiangrass	1.7	(El Reno)			
	(Lometa or Cheyeni	ne)	Little Bluestem	1.6		
	Buffalograss	5.9	Indiangrass	2.0		
	Switchgrass	1.3	(Lometa or Cheyenn	e)		
	(Alamo or Blackwel	1)				
19	(All Sections)				(All Sections)	
(Atlanta)						
Feb 1 -	Green Sprangletop	0.7			Green Sprangletop	1.2
May 15	Bermudagrass	0.9			Bermudagrass	1.7
	Little Bluestem	1.2			Bahiagrass	7.5
	Indiangrass	1.7			(Pensacola)	
	(Lometa or Cheyen	ne)				
	Switchgrass (Alamo)	1.3				
	Bahiagrass (Pensacola)	3.7				
20	(All Sections)				(All Sections)	
(Beaumo	nt)					
Jan 15 -	Green Sprangletop	8.0			Green Sprangletop	1.2
May 15	Bermudagrass	0.1			Bermudagrass	1.7
	Little Bluestem	1.6			Bahiagrass	7.5
	Indiangrass	2.0			(Pensacola)	
$\overline{}$	(Lometa)					
5,	Switchgrass	1.6				
12	(Alamo)					
21 (Pharr)	(All Sections)				(All Sections)	
Jan 15 -	Green Sprangletop	0.8			Green Sprangletop	0.8
May 1	Rhodesgrass	0.5			Bermudagrass	1.0
	Plains Bristlegr.	1.3			Rhodesgrass	0.5
	Buffalograss	7.2			Buffelgrass	1.3
	K-R Bluestem	0.9			Sand Dropseed	0.2

District and Planting Dates *		Mixture for Use in Clay or Tight Soils		Mixture for Use in Sand or Sandy Soils		
22 (Laredo)			(Val Verde Co.)		(All Sections)	
,	Green Sprangletop	0.8	Green Sprangletop	1.4	Green Sprangletop	0.8
May 1	Rhodesgrass	0.5	Sideoats Grama	2.7		1.0
,	Plains Bristlegr.	1.3	K-R Bluestem	1.1	· ·	0.5
	Buffalograss	7.2	Buffalograss	9.0	Buffelgrass	1.3
	K-R Bluestem	0.9	· ·		Sand Dropseed	0.2
23	(All Sections)				(All Sections)	
(Brownw	vood)					
Feb 1 -	Green Sprangletop	0.8			Green Sprangletop	0.7
May 15	Little Bluestem	1.6			Little Bluestem	1.2
	Sideoats Grama (Haskell)	2.5			Sideoats Grama (Haskell)	2.0
	Buffalograss	7.2			Bermudagrass	0.9
	K-R Bluestem	0.9			Sand Lovegrass	0.6
					Sand Dropseed	0.2
24	(All Sections)				(All Sections)	
(El Paso	o)					
Feb 1 -		8.0			Green Sprangletop	1.0
May I	Black Grama	0.5			Black Grama	0.6
++++	Blue Grama	0.7			Blue Grama	0.9
	(Hachita)				(Hachita)	
	Sideoats Grama	2.5			Sand Dropseed	0.3
	(Tucson)					
	Sand Dropseed	0.2				
25	(All Sections)				(All Sections)	
(Childre	<i>'</i>	0.0				0.0
	Green Sprangletop				Green Sprangletop	0.8
•	Sideoats Grama	2.5			Sideoats Grama	2.5
**	(El Reno)		,		(El Reno)	0.7
	Blue Grama	0.7			Blue Grama	0.7
	(Lovington)				(Lovington)	
	Buffalograss	7.2			Little Bluestem	1.6
	Western Wheatgr.	3.1			Sand Dropseed	0.2

- * Planting dates are optima.
- •• In the seed mix. Western Wheatgrass must be sown between September 1 and February 28.
- *** In the seed mix, use Woodward variety of Sand Bluestem in the Rolling Plains (including the Canadian River Valley), and Elida variety of Sand Bluestem in the High Plains.
- **** In the seed mix, substitute Premier variety of Sideoats Grama in E. Brewster Co.

Table 3. Urban Area Species-Specific Warm-Season Seeding Mixtures in Kilograms of Pure Live Seed Per Hectare, by District.

District and			Mixture for Use in		Mixture for Use in	
Planting	Dates *		Clay or Tight Soils	i	Sand or Sandy Soils	
l (Paris)	(All Sections)				(All Sections)	
,	Green Sprangletop	1.9			Green Sprangletop	1.9
	Bermudagrass	2.6			Bermudagrass	2.6
2 (Ft. Wo	(Eastern Sections)		(Western Sections)		(All Sections)	
	Green Sprangletop	1.0	Green Sprangletop	1.2	Green Sprangletop	1.2
May 1	K-R Bluestem	1.1	K-R Bluestem	1.5	K-R Bluestem	1.5
	Bermudagrass	1.3	Buffalograss	12.0	Bermudagrass	1.7
	Buffalograss	9.0			20000	•
3 (Wichite	(Eastern Sections)		(Western Sections)	•	(All Sections)	
	Green Sprangletop	1.2	Green Sprangletop	1.0	Green Sprangletop	1.2
Feb 1 -	Bermudagrass	1.7	Sideoats Grama	3.1	Bermudagrass	1.7
May 1	Buffalograss	12.0	(El Reno)		Sand Dropseed	0.5
++			Western Wheatgr.	3.9		
			Buffalograss	9.0		

	District and Planting Dates *		Mixture for Use in Clay or Tight Soils	Mixture for Use in Sand or Sandy Soils		
4	(All Sections)			(All Sections)		
(Amaril						
	- Green Sprangletop	1.0		Green Sprangletop	1.0	
May 15	Sideoats Grama	3.1		Sideoats Grama	3.1	
	(El Reno)			(El Reno)		
	Blue Grama	0.9		Blue Grama	0.9	
	(Lovington)			(Lovington)		
	Buffalograss	9.0		Sand Dropseed	0.4	
5	(All Sections)			(All Sections)		
(Lubboc	k)					
Feb 15	- Green Sprangletop	1.0		Green Sprangletop	1.0	
May 15	Sideoats Grama	3.1		Sideoats Grama	3.1	
	(El Reno)			(Coronado)		
	Blue Grama	0.9		Blue Grama	0.9	
	(Lovington)			(Lovington)		
	Buffalograss	9.0		Sand Dropseed	0.4	
6	(All Sections)			(All Sections)		
(Odessa))			,		
Feb 1 -	Green Sprangletop	1.0		Green Sprangletop	1.0	
May 15	Black Grama	0.6		Black Grama	0.6	
+++	Blue Grama	0.9		Blue Grama	0.9	
	(Hachita)			(Hachita)	•.,	
	Sideoats Grama	3.1		Sand Dropseed	0.3	
7	(All Sections)			(All Sections)		
(San An	gelo)			(Journally)		
Feb 1 -	Green Sprangletop	1.0		Green Sprangletop	1.0	
May 1	Buffalograss	9.0		K-R Bluestem	1.1	
	K-R Bluestem	1.1		Sand Dropseed	0.3	
	Sideoats Grama	3.1		Sideoats Grama	3.1	
	(Haskell)			(Haskell)	٦.1	
				(**************************************		

			Mixture for Use in Clay or Tight Soils		Mixture for Use in Sand or Sandy Soils	
8	(All Sections)				(All Sections)	
(Abilene)						
	Green Sprangletop	0.8			Green Sprangletop	1.0
May 15	Buffalograss	7.2			Sand Dropseed	0.3
	Sideoats Grama (Haskell)	2.5			Sideoats Grama (Haskell)	3.1
	K-R Bluestem	0.9			K-R Bluestem	1.1
	Blue Grama	0.7				
	(Hachita)					
9 (Waco)	(E. of IH 35)		(W. of IH 35)		(All Sections)	
, ,	Green Sprangletop	1.0	Green Sprangletop	1.0	Green Sprangletop	0.8
	Bermudagrass	1.3	Sideoats Grama	3.1	Bermudagrass	1.0
,	K-R Bluestem	1.1	(Premier or Haskell)		Sideoats Grama	2.5
	Buffalograss	9.0	K-R Bluestem	1.1	(Premier or Haskell)	
			Buffalograss	9.0	K-R Bluestem	0.9
			C		Sand Dropseed	0.2
10	(All Sections)				(All Sections)	
(Tyler)						
Feb 1 -	Green Sprangletop	1.9			Green Sprangletop	1.9
May 15	Bermudagrass	2.6			Bermudagrass	2.6
II (Lufkin)	(All Sections)		-		(All Sections)	
Feb 1 -	Green Sprangletop	1.9			Green Sprangletop	1.9
May 15	Bermudagrass	2.6			Bermudagrass	2.6
12 (Houstor	(All Sections)				(All Sections)	
Jan 15 -	Green Sprangletop	1.2			Green Sprangletop	1.2
May 15	Bermudagrass	1.7			Bermudagrass	1.7
	K-R Bluestem	1.5			K-R Bluestem	1.5
] 13	(All Sections)				(All Sections)	
(Yoakun	n)					
Jan 15 -	Green Sprangletop	1.2			Green Sprangletop	1.2
May 15	Bermudagrass	1.7			Bermudagrass	1.7
	K-R Bluestem	1.5			K-R Bluestem	1.5

District Planting			Mixture for Use in Clay or Tight Soils		Mixture for Use in Sand or Sandy Soils	
14 (Austin)	(E. of IH 35)		(W. of IH 35)		(All Sections)	
Feb 1 -	Green Sprangletop	1.0	Green Sprangletop	1.0	Green Sprangletop	1.0
May 15	Bermudagrass	1.3	Buffalograss	9.0	K-R Bluestem	1.1
	Buffalograss	9.0	K-R Bluestem	1.1	Bermudagrass	1.3
	Sideoats Grama	3.1	Sideoats Grama	3.1	Sand Lovegrass	0.9
	(Haskell)		(Haskell or Uvalde)			
15 (San Ant	(E. of U.S. 281) conio)		(W. of U.S. 281)		(All Sections)	
Feb 1 -	Green Sprangletop	1.2	Green Sprangletop	1.0	Green Sprangletop	1.2
May 1	Buffalograss	12.0	Sideoats Grama	3.1	Bermudagrass	1.7
	Bermudagrass	1.7	(Haskell or Uvalde)		Sideoats Grama	4.1
			Buffalograss	9.0	(Haskell or Uvalde)	
			Bermudagrass	1.3		
16 (Corpus	(E. of U.S. 77) Christi)		(W. of U.S. 77)		(All Sections)	
Jan 15 -	Green Sprangletop	1.2	Green Sprangletop	1.0	Green Sprangletop	1.0
May 1	Bermudagrass	1.7	K-R Bluestem	1.1	Bermudagrass	1.3
	K-R Bluestem	1.5	Buffalograss	9.0	K-R Bluestem	1.1
			Bermudagrass	1.3	Sand Dropseed	0.3
17 (Bryan)	(All Sections)				(All Sections)	
Feb 1 -	Green Sprangletop	1.2			Green Sprangletop	1.2
May 15	Bermudagrass	1.7			Bermudagrass	1.7
	K-R Bluestem	1.5			K-R Bluestem	1.5
18 (Dallas)	(All Sections)				(All Sections)	
Feb 1 -	Green Sprangletop	1.2			Green Sprangletop	1.2
May I	Bermudagrass	1.7			Bermudagrass	1.7
	Buffalograss	12.0			Sand Dropseed	0.5
19 (Atlanta)	(All Sections)				(All Sections)	
Feb 1 -	Green Sprangletop	1.9			Green Sprangletop	1.9
May 15	Bermudagrass	2.6			Bermudagrass	2.6

District and Planting Dates *			Mixture for Use in Clay or Tight Soils		Mixture for Use in Sand or Sandy Soils	
20 (Beaumor	(All Sections)				(All Sections)	
Jan 15 -	Green Sprangletop Bermudagrass	1.7 1.3			Green Sprangletop Bermudagrass ,	1.7 1.3
21 (Pharr)	(E. of U.S. 281)		(W. of U.S. 281)		(All Sections)	
Jan 15 - May 1	Green Sprangletop Bermudagrass K-R Bluestem Buffalograss	1.0 1.3 1.1 9.0	Green Sprangletop Sideoats Grama (Premier or Uvalde) K-R Bluestem Buffalograss	1.0 3.1 1.1 9.0	Green Sprangletop Bermudagrass K-R Bluestem Sand Dropseed	1.0 1.3 1.1 0.3
22 (Laredo)			(Val Verde Co.)		(All Sections)	
,	Green Sprangletop Sideoats Grama (Premier or Uvalde) K-R Bluestem Buffalograss	1.0 3.1 1.1 9.0	Green Sprangletop Sideoats Grama (Haskell or Uvalde) Buffalograss Bermudagrass	1.0 3.1 9.0 1.3	Green Sprangletop Bermudagrass K-R Bluestem Sand Dropseed	1.0 1.3 1.1 0.3
23	(All Sections)				(All Sections)	
(Brown	•	0.0			Green Sprangletop	0.8
	Green Sprangletop	0.8 7.2			K-R Bluestem	0.9
May 13	Buffalograss K-R Bluestem	0.9			Bermudagrass	1.0
7	Sideoats Grama (Haskell)	2.5			Sideoats Grama (Haskell)	2.5
2	Bermudagrass	1.0			Sand Dropseed	0.2
24 (El Pas	(All Sections)				(All Sections)	
Feb 1	- Green Sprangletop	0.8			Green Sprangletop	1.0
May 1	Black Grama	0.5			Black Grama	0.6
++++	Blue Grama	0.7			Blue Grama	0.9
	Sideoats Grama (Tucson)	2.5			Sand Dropseed	0.3
	Sand Dropseed	0.2	2			

District and Planting Dates *			Mixture for Use in	Mixture for Use in Sand or Sandy Soils	
			Clay or Tight Soils		
25 (A	All Sections)			(All Sections)	
	reen Sprangletop	0.8		Green Sprangletop	0.8
May 15 Si	ideoats Grama	2.5		Sideoats Grama	2.5
** (F	El Reno)			(El Reno)	
В	lue Grama	0.7		Blue Grama	0.7
(I	Lovington)			(Lovington)	
W	Vestern Wheatgr.	3.1		Western Wheatgr.	3.1
В	uffalograss	7.2		Sand Dropseed	0.2

- * Planting dates are optima.
- ** In the seed mix, Western Wheatgrass must be sown between September 1 and February 28.
- *** North of Pecos River use either Premier or Uvalde varieties of Sideoats Grama in the seed mix. South of the Pecos River use either Premier or Tucson varieties in the seed mix.
- **** In the seed mix, substitute Premier variety of Sideoats Grama in E. Brewster County.
- (2) Broadcast Seeding. The seed or seed mixture, in the quantity specified, shall be uniformly distributed over the areas shown on the plans or where directed by the Engineer. If the sowing of seed is by hand, rather than by mechanical methods, the seed shall be sown in two directions at right angles to each other. If mechanical equipment is used, all varieties of seed as well as fertilizer, may be distributed simultaneously provided that each component is uniformly applied at the specified rate. When seed and fertilizer are to be distributed as a water slurry, the mixture shall be applied to the area to be seeded within 30 minutes after components are placed in the equipment. After planting, the planted area shall be rolled with a light corrugated drum roller or another type of roller approved by the Engineer. All rolling of the sloped areas shall be along the contour of the slopes.
- (3) Straw or Hay Mulch Seeding. The seed or seed mixture, in the quantity specified, shall be uniformly distributed over the areas shown on the plans or where directed by the Engineer. If the sowing of seed is by hand, rather than by mechanical methods, the seed shall be sown in two directions at right angles to each other. If mechanical equipment is used, all varieties of seed, as well as fertilizer, may be distributed simultaneously

provided that each component is uniformly applied at the specified rate. When seed and fertilizer are to be distributed as a water slurry, the mixture shall be applied to the area to be seeded within 30 minutes after all components are placed in the equipment.

Immediately upon completion of planting of the seed, straw or hay mulch shall be spread uniformly over the seeded area at the rate of approximately 3.4 to 4.5 megagrams of hay mulch or 4.5 to 5.6 megagrams of straw mulch per hectare. When a mulching machine is used it must be approved by the Engineer and may be equipped to inject a tacking agent into the straw or hay mulch uniformly as it leaves the equipment at a rate of 0.25 to 0.5 liter of tacking agent per square meter of mulched area. When the tacking agent is placed by hand, then the rate of application for the tacking agent shall be approximately 0.7 liter per square meter.

(4) Cellulose Fiber Mulch Seeding. The seed or seed mixture, in the quantity specified, shall be uniformly distributed over the areas shown on the plans or where directed by the Engineer. If the sowing of seed is by hand, rather than by mechanical methods, the seed shall be sown in two directions at right angles to each other. If mechanical equipment is used all varieties of seed, as well as fertilizer, may be distributed simultaneously, provided that each component is uniformly applied at the specified rate. When seed and fertilizer are to be distributed as a water slurry, the mixture shall be applied to that area to be seeded within 30 minutes after all components are placed in the equipment.

Immediately upon completion of planting of the seed, cellulose fiber mulch shall be spread uniformly over the seeded area at the following rates:

Sandy soils with 1:3 slope or less - min. 2.3 Mg/ha Sandy soils with greater than 1:3 slope - min. 2.6 Mg/ha Clay soils with 1:3 slope or less - min. 2.8 Mg/ha Clay soils with greater than 1:3 slope - min. 3.4 Mg/ha

Cellulose fiber mulch rates are based on dry mass of mulch per hectare. When used, a mulching machine, approved by the Engineer, shall be equipped to eject the thoroughly wet mulch material at a uniform rate to provide the mulch coverage specified.

(5) Drill Seeding. The seed or seed mixture, in the quantity specified, shall be uniformly distributed over the areas shown on the plans or where directed by the Engineer. All varieties of seed, as well as fertilizer, may be distributed simultaneously provided that each component

is uniformly applied at the specified rate. Seed shall be drilled at a depth of from five (5) to ten (10) millimeters utilizing a pasture or rangeland type drill. All drilling shall be along the contour of the slope. After planting, the area shall be rolled with a roller integral to the seed drill, or a light corrugated drum roller or with another type of roller approved by the Engineer. All rolling of sloped areas shall be on the contour of the slopes.

- (6) Straw or Hay Mulching. Mulch shall be spread uniformly over the area indicated on plans or as designated by the Engineer at the rate of approximately 3.4 to 4.5 megagrams of hay mulch or 4.5 to 5.6 megagrams of straw mulch per hectare. When used, a mulching machine approved by the Engineer shall be equipped to inject a tacking agent into the straw or hay mulch uniformly as it leaves the equipment at a rate of 0.25 to 0.5 liter of tacking agent per square meter of mulched area. If the straw or hay mulch and tacking agent are placed by hand, then the rate of application for the tacking agent shall be approximately 0.7 liter per square meter.
- (7) Soil Retention Blanket. If specified on the plans, a soil retention blanket shall be applied in accordance with Item 169, "Soil Retention Blanket".
- (8) Watering. Watering of the seeded area shall be conducted when, in the judgement of the Engineer, sufficient seedling survival is threatened by insufficient natural precipitation and shall be in accordance with Item 168, "Vegetative Watering".
- (9) Fertilizer. Fertilizer, when required, shall be applied in accordance with Item 166, "Fertilizer".

164.4. Seeding for Cool Season Temporary Erosion Control.

(1) Standard Seeding. When specified on the plans or directed by the Engineer, temporary erosion control measures shall be performed. These measures shall consist of the sowing of seed mixtures appropriate for the season and the work and materials as required in Article 164.3. These measures shall be performed over the areas shown on the plans or where directed by the Engineer. Temporary erosion control measures shall be performed in addition to other "Seeding for Erosion Control" as herein specified. The pure live seed, of the cool season plants, planted per hectare shall be of the type specified, with the mixture, rate and planting dates as follows in Tables 4A and 4B, except as shown on the plans.

Table 4A.

Cool Season Grass Seeding Mixtures for Temporary Erosion Control, in Kilograms of Pure Live Seed per Hectare, by District.

Districts & Optimum Planting Dates	Common Name	Rate
Paris (1), Fort Worth (2), Wichita Falls (3), Amarillo (4),	Tall Fescue	4.5
Lubbook (5), Abilene (8), Dallas (18), Brownwood (23),	Western Wheatgrass	5.6
Childress (25)	Wheat (Red, Winter)	33.6
August 15 - November 30		
Odessa (6), San Angelo (7), El Paso (24)	Western Wheatgrass	8.4
August 15 - November 30	Wheat (Red, Winter)	50.4
Waco (9), Tyler (10), Lufkin (11), Austin (14),	Tall Fescue	4.5
San Antonio (15), Bryan (17), Atlanta (19)	Oats	23.5*
September 1 - November 30	Wheat (Red, Winter)	33.6
Houston (12), Yoakum (13), Corpus Christi (16),	Oats	71.7*
Beaumont (20), Pharr (21), Laredo (22)		
September 1 - November 30		

^{*} May substitute Barley at 80.6 kg/ha divided by the number of species in the mix.

(2) Legume Seeding. When specified on the plans or directed by the Engineer, the following regionally adapted legumes shall be planted.

Table 4B.

Cool Season Legume Seeding for Temporary Erosion
Control, in Kilograms of Pure Live Seed per Hectare, by District.

Districts & Optimum Planting Dates	Common Name	Rate
Paris (1), Fort Worth (2), Wichita Falls (3), Waco (9), Tyler (10), Lufkin (11), Houston (12), Bryan (17), Dallas (18), Atlanta (19), Beaumont (20) August 15 - November 30	Crimson Clover	7.8
Yoakum (13), Austin (14), San Antonio (15), Corpus Christi (16), Pharr (21), Laredo (22) September 1 - November 30	Hairy Vetch	9.0
Amarillo (4), Lubbock (5), Odessa (6), San Angelo (7), Abilene (8), Brownwood (23), El Paso (24). Childress (25) August 15 - November 30	Yellow Sweetclover	4.5

164.5. Seeding for Warm Season Temporary Erosion Control.

(1) Standard Seeding. When specified on the plans or directed by the Engineer, temporary erosion control measures shall be performed. This measure shall consist of the sowing of seed appropriate for the season and the work and materials as required in Article 164.3. These measures shall be performed over the areas shown on the plans or where directed by the Engineer. Temporary erosion control measures shall be performed in addition to other "Seeding for Erosion Control" as herein specified. The pure live seed planted per hectare shall be of the type specified, rate and seed planting date as follows in Table 5 except as shown on the plans.

Table 5. Warm Season Seeding for Temporary Erosion Control, in Kilograms of Pure Live Seed per Hectare, by District.

Districts & Optimum Planting Dates	Common Name	Rate
Fort Worth (2), Wichita Falls (3), San Angelo (7),	Foxtail Millet	33.6
San Antonio (15), Corpus Christi (16), Dallas (18), Pharr (21),		
Laredo (22), El Paso (24)		
May 1 - August 31		
· ·		
Paris (1), Amarillo (4), Lubbock (5), Odessa (6), Abilene (8),	Foxtail Millet	33.6
Waco (9). Tyler (10), Lufkin (11), Houston (12). Yoakum (13),		
Austin (14), Bryan (17), Atlanta (19), Beaumont (20),		

164.6. Measurement. "Straw or Hay Mulch" will be measured by the square meter or by the hectare, complete and in place.

Brownwood (23), Childress (25)

May 15 - August 31

All "Seeding", of the type specified, will be measured by the square meter or by the hectare, complete and in place.

164.7. Payment. The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Broadcast Seeding", "Straw or Hay Mulch Seeding", "Cellulose Fiber Mulch Seeding", "Drill Seeding", "Straw or Hay Mulching", "Standard Seeding for Cool Season Temporary Erosion Control", "Legume Seeding for Temporary Erosion Control" or "Standard Seeding for Warm Season Temporary Erosion Control", of the common names specified. This price will be full compensation for furnishing all materials, including water for seed-fertilizer slurry and

hydraulic mulching, tacking agents if required, and for performing all operations necessary to complete the work.

Unless otherwise shown on the plans, fertilizer will not be paid for directly, but will be considered subsidiary work pertaining to this Item.

"Soil Retention Blanket" will be paid for under Item 169, "Soil Retention Blanket".

Water for irrigating the cultivated area or seedbed, when required, will be paid for under Item 168, "Vegetative Watering".

ITEM 166

FERTILIZER

- 166.1. Description. This Item shall govern for providing and distributing fertilizer over such areas as designated on the plans and in accordance with these specifications.
- 166.2. Materials. All fertilizer shall be delivered in bags or containers clearly labeled showing the analysis. The figures in the analysis represent the percent of nitrogen, phosphoric acid, and potash nutrients, respectively, as determined by the methods of the Association of Official Analytical Chemists. The fertilizer is subject to testing by the Texas A&M Feed and Fertilizer Control Service in accordance with the Texas Fertilizer Law.

The fertilizer shall have the analysis shown on the plans. The Contractor shall have the option of providing a fertilizer of a different analysis, if approved by the Engineer. However, the amount of each nutrient specified shall not be less than that shown on the plans.

- 166.3. Construction Methods. Fertilizer shall be in an acceptable condition for distribution and shall be applied uniformly over the specified area and at the rate shown on the plans. Distribution of fertilizer for the particular item of work shall be approved by the Engineer.
 - to be a pay item, work and acceptable material for "Fertilizer" will be measured by the megagram as determined by approved scales or guaranteed mass of bags or containers as shown by the manufacturer.

166.5. Payment. Unless otherwise specified on the plans, the work performed and materials furnished in accordance with this Item will not be pard for directly but will be considered subsidiary to the various bid items of the contract.

When fertilizer is specified on the plans to be a pay item, the work performed and materials furnished and measured as provided under "Measurement" will be paid for at the unit price bid for "Fertilizer", of the analysis specified. This price shall be full compensation for furnishing all materials and performing all operations necessary to complete the work.

ITEM 168

XEGETATIVE WATERING

- 168.1. Description. This Item shall govern for the authorized application of water through an aboveground system to promote and sustain growth of grasses and other plants on those portions of the right of way as shown on the plans or as directed by the Engineer, and in accordance with this Item.
- 168.2. Materials. Water shall be furnished by the Contractor and shall be clean and free of industrial wastes and other substances harmful to the growth of vegetation.
- 168.3. Construction Methods. This work shall be done only at such time as directed by the Engineer. The Contractor shall furnish and operate watering equipment approved by the Engineer which will insure the distribution of water in a uniform and controllable rate of application. The Contractor shall apply the water in the required quantity where shown on the plans or as directed by the Engineer.
- 168.4. Measurement. This Item will be measured by the kiloliter as delivered on the designated areas.
- 168.5. Payment. The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Vegetative Watering". This price shall be full compensation for furnishing and operating approved watering equipment and measuring devices and for furnishing and applying the water as directed including hauling, equipment, labor and incidentals necessary to complete the work.

APPENDIX B

Standard Specification Item 169 "Soil Retention Blanket"

Texas Department of Transportation 1995 Standard Specification for Construction and Maintenance of Highways, Streets and Bridges

ITEM 169

SOIL RETENTION BLANKET

169.1. Description. This Item shall govern for providing and placing wood, straw or coconut fiber mat, synthetic mat, paper mat, jute mesh or other material as a soil retention blanket for erosion control on slopes or ditches or for short-term or long-term protection of seeded or sodded areas as shown on the plans or as specified by the Engineer.

169.2. Materials.

(1) Soil Retention Blankets. All soil retention blankets must be prequalified by the Director of Construction and Maintenance prior to use.

Prequalification procedures and a current list of prequalified materials may be obtained by writing to the Director of Construction and Maintenance, 125 East 11th Street, Austin, Texas 78701-2483. A 300 millimeters x 300 millimeters sample of the material may be required by the Engineer in order to verify prequalification. Samples taken, accompanied by the manufacturer's literature, will be sent, properly wrapped and identified, to the Construction and Maintenance Division for verification.

The soil retention blanket shall be one (1) of the following classes and types as shown on plans:

- (a) Class 1. "Slope Protection"
 - (i) Type A. Slopes 1:3 or flatter Clay soils
 - (ii) Type B. Slopes 1:3 or flatter Sandy soils
 - (iii) Type C. Slopes steeper than 1:3 Clay soils
 - (iv) Type D. Slopes steeper than 1:3 Sandy soils
- (b) Class 2. "Flexible Channel Liner"
 - (i) Type E. Short-term duration (Up to 2 years) Shear Stress (t_d) < 48 Pa
 - (ii) Type F. Short-term duration (Up to 2 years) Shear Stress (t_d) 48 to 96 Pa

- (iii) Type G. Long-term duration (Longer than 2 years) Shear Stress (t_d) > 96 to < 239 Pa
- (iv) Type H. Long-term duration (Longer than 2 years) Shear Stress $(t_d) \ge 239$ Pa
- (2) Fasteners. Fasteners shall conform to the requirements shown on Standard Detail Sheet "Soil Retention Blanket (SRB)".

169.3. Construction Methods.

- (1) General. The soil retention blanket shall conform to the class and type shown on the plans. The Contractor has the option of selecting an approved soil retention blanket conforming to the class and type shown on the plans and according to the current approved material list.
- (2) Installation. The soil retention blanket, whether installed as slope protection or as flexible channel liner in accordance with the approved materials list, shall be placed within 24 hours after seeding or sodding operations have been completed, or as approved by the Engineer. Prior to placing the blanket, the area to be covered shall be relatively free of all rocks or clods over 40 millimeters in maximum dimension and all sticks or other foreign material which will prevent the close contact of the blanket with the soil. The area shall be smooth and free of ruts and other depressions. If as a result of rain, the prepared bed becomes crusted or eroded or if any eroded places, ruts or depressions exist for any reason, the Contractor shall be required to rework the soil until it is smooth and to reseed or resod the area at the Contractor's expense.

Installation and anchorage of the soil retention blanket shall be in accordance with the Manufacturer's recommendations and the Standard Detail Sheet "Soil Retention Blanket (SRB)".

- (3) Literature. The Contractor shall submit one (1) full set of manufacturer's literature and manufacturer's installation recommendations for the soil retention blanket selected in accordance with the approved material list.
- 169.4. Measurement. This Item will be measured by the square meter of surface area covered.
- 169.5. Payment. The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement"

will be paid for at the unit price bid for "Soil Retention Blanket" of the class and type shown on the plans. This price shall be full compensation for furnishing all materials, labor, tools, equipment and incidentals necessary to complete the work. Anchors, checks, terminals or junction slots, and wire staples or wood stakes will not be paid for directly but will be considered subsidiary to this Item.

ITEM 170

IRRIGATION SYSTEM

170.1. Description. This Item shall govern for constructing an irrigation system as shown on the plans and as approved by the Engineer.

170.%. General.

License Requirements. The Contractor shall be required to possess an irrigator's license issued by the Texas Board of Irrigators or employ such a licensed irrigator to construct the irrigation system. The Engineer may require documentation of such license for his records. The irrigation system shall be installed and maintained under the supervision of the licensed irrigator who must be on the site at all times during this work or at such times as required by the Engineer.

- 170.3. Materials. Materials shall conform to the requirements shown on the plans and to the following requirements.
- (1) Irrigation Pipe. Irrigation pipe shall be polyvinyl chloride (PVC) conforming to ASTM D 1785, Schedule 10 or ASTM D 2241, SDR 13.5 or SDR 17 or SDR 21, as shown on the plans.
- (2) Fittings. Dittings, not including valves or sprinkler heads, shall conform to ASTM 2 2466.
- (3) Encasement Pipe. Unless otherwise shown on the plans and specifications, encasement pipe shall be PVC conforming to ASTM D 1785, Schedule 40.
- (4) Bentonite Slurry. The slurry shall be a viscous mixture of a commercial bentonite and fresh water. The slurry shall contain two (2) to eight (8) percent of the bentonite additive by mass.

APPENDIX C

Proposed Approved Product List (Through the 1996 Evaluation Cycle) Soil Retention Blankets

Class 1 "Slope Protection" Class 2 "Flexible Channel Liner"

PROPOSED APPROVED PRODUCT LIST Specification Item 169 - Soil Retention Blanket

Through the 1996 Evaluation Cycle

CLASS 1 - SLOPE PROTECTION APPLICATIONS:

TYPE A - Slopes 1:3 or Flatter - Clay Soils

Airtrol®

Anti-Wash®/Geojute®

BonTerra® S2TM

BonTerra® S1TM

C-Jute

Contech Standard

Contech Standard Plus

Curlex® I

ECS Straw Blanket Standard

ECS Excelsior Blanket Standard

Green Triangle Superior

Green Triangle Regular

Greenstreak® Pec-MatTM

Landlok® FRS 3112

Landlok® 407GT

Miramat® TM8TM

North American Green S75

North American Green S150

North American Green SC150

Poplar Erosion Blanket

Soil Saver

Soil GuardTM

SuperGroTM

Tensar® Erosion Blanket TB1000

TerraJute

verdyol® ERO-MAT®

verdyol® Excelsior Standard

verdyol® Excelsior High-Velocity

Webmat 280

Xcel Superior

Xcel Regular

Type B - Slopes 1:3 or Flatter - Sandy Soils

BonTerra® S1TM

BonTerra® CS2TM

BonTerra® S2TM

C-Jute

Contech Standard

Contech Standard Plus

Curlex®-LT

ECS Straw Blanket Standard

ECS Excelsior Blanket Standard

Geojute® Plus 1

Green Triangle Regular

Green Triangle Superior

Landlok® FRS 3112

Landlok® 407GT

Miramat® 1000

Miramat® TM8TM

North American Green S150

North American Green SC150

North American Green S75

Poplar Erosion Blanket

Soil GuardTM

TerraJute

verdyol® ERO-MAT®

verdyol® Excelsior Standard

Xcel Regular

Xcel Superior

PROPOSED APPROVED PRODUCT LIST Specification Item 169 - Soil Retention Blanket

Through the 1996 Evaluation Cycle

<u>CLASS 1 - SLOPE PROTECTION APPLICATIONS</u> (continued):

Type C - Slopes Steeper than 1:3 - Clay Soils

Airtrol®

Anti-Wash®/Geojute® BonTerra® S2™

BonTerra® SI™

C-Jute

Contech Standard Plus

Curlex® I

Green Triangle Superior Greenstreak® Pec-MatTM

Landlok® 407GT

Landlok® FRS 3112

Miramat® TM8TM

North American Green S75 North American Green S150

North American Green SC150

Soil Saver

Soil Guard™

 $SuperGro^{TM}$

Tensar® Erosion Blanket TB1000

TerraJute

verdyol® Excelsior High-Velocity

Webmat 280

Xcel Superior

Type D - Slopes Steeper than 1:3 - Sandy Soils

BonTerra® CS2™

BonTerra® S2TM

C-Jute

Contech Standard Plus

Curlex® I

Geojute® Plus 1

Green Triangle Superior

Landlok® 407GT

Landlok® FRS 3112

Miramat® 1000

Miramat® TM8TM

North American Green SC150

North American Green S150

Soil GuardTM

TerraJute

Xcel Superior

PROPOSED APPROVED PRODUCT LIST Specification Item 169 - Soil Retention Blanket

Through the 1996 Evaluation Cycle

CLASS 2 - FLEXIBLE CHANNEL LINER APPLICATIONS

Type E - Shear Stress Range 0 - 96 Pascal (0 - 2 Lbs / Sq Ft):

BonTerra® SFB12TM
Contech TRM C-45
Enkamat® 7020
Enkamat® 7018
Greenstreak® Pec-MatTM
Landlok® TRM 450

Miramat® TM8TM
North American Green C350TM Three PhaseTM
North American Green S150
Tensar® Erosion Mat TM3000
Tensar® Erosion Blanket TB1000
Webmat 280

Type F - Shear Stress Range 0 - 192 Pascal (0 - 4 Lbs / Sq Ft)

BonTerra® SFB12TM
Contech TRM C-45
Enkamat® 7018
Greenstreak® Pec-MatTM
Landlok® TRM 450
Miramat® TM8TM

North American Green C350TM Three PhaseTM
North American Green S150
Tensar® Erosion Blanket TB1000
Tensar® Erosion Mat TM3000
Webmat 280

Type G - Shear Stress Range 0 - 287 Pascal (0 - 6 Lbs / Sq Ft)

BonTerra® SFB12TM
Contech TRM C-45
Enkamat® 7018
Greenstreak® Pec-MatTM
Landlok® TRM 450

North American Green C350[™] Three Phase[™] Tensar® Erosion Mat TM3000 Tensar® Erosion Blanket TB1000 Webmat 280

Type H - Shear Stress Range 0 - 383 Pascal (0 - 8 Lbs / Sq Ft)

BonTerra® SFB12TM Contech TRM C-45 Landlok® TRM 450 North American Green $C350^{\mathrm{TM}}$ Three Phase $^{\mathrm{TM}}$ Tensar® Erosion Mat TM3000 Tensar® Erosion Blanket TB1000

APPENDIX D

Proposed Approved Product List (Through the 1996 Evaluation Cycle) **Cellulose Fiber Mulches**

Proposed Approved Product List Cellulose Fiber Mulches

Through the 1996 Evaluation Cycle

Slopes 1:3 or Flatter - Clay Soils

American Fiber Mulch (with Hydro-Stik)
Conwed® Hydro Mulch®
Enviro-Gro
Excel® Fibermulch II with Exact-Tac™
Pro Mat®
Pro Mat® with RMBplus
Pro Mat® XL
Second Nature® Regenerated Wood Fiber
Silva-Fiber Plus®

Slopes 1:3 or Flatter - Sandy Soils

Enviro-Gro Second Nature® Regenerated Wood Fiber

Note: TxDOT does not recommend the use of cellular fiber mulches as the primary revegetation technique for final revegetation efforts on slopes steeper than 1:3.