METHOD OF CONVERTING HEAVY MOTOR VEHICLE LOADS INTO EQUIVALENT DESIGN LOADS ON THE BASIS OF MAXIMUM BENDING MOMENTS by #### Henson K. Stephenson Research Engineer and Kriss Cloninger, Jr. Assistant Research Engineer #### BULLETIN NO. 127 — OCTOBER 1952 A Publication Resulting From The Cooperative Investigation of Bridge Types by the Bureau of Public Roads and the Texas Engineering Experiment Station THE TEXAS A & M COLLEGE SYSTEM GIBB GILCHRIST, Chancellor #### TEXAS ENGINEERING EXPERIMENT STATION H. W. Barlow, Director Arthur W. Melloh, Vice-Director Louis J. Horn, Supervisor of Publications College Station, Texas #### ACKNOWLEDGMENT The authors wish to express their appreciation to H. S. Fairbank, Deputy Commissioner, Bureau of Public Roads, Washington, D. C., for the encouragement and cooperation they have received throughout the course of the research which has made possible this bulletin. They also wish to express their thanks to C. F. Rogers, Raymond Archibald, E. L. Erickson, and Neil Van Eenam, all of the Bureau of Public Roads, for helpful advice and criticism in the preparation and final review of the manuscript. Due recognition and appreciation is extended to the 47 state highway departments for their efficient cooperation in the loadometer survey of 1942 which provided the basic information for much of the discussion and the observed and calculated frequency distributions of highway loads given in Parts IV and V of this bulletin. This study was conducted by staff members of the Texas Engineering Experiment Station of the Texas Agricultural and Mechanical College System. The authors are indebted to James W. Williams, Mrs. Bettye D. Regester, Mrs. Jane D. Meliff, Mrs. Inell S. Stephens, Mrs. Marguerite J. Jones, Mrs. Mozelle W. Todd, Mrs. Barbara K. Durham, and Mrs. Laura N. Holt for various assistance. Finally the authors wish to acknowledge the fine work of the late Fred B. Walker, who was a staff member of the Texas Engineering Experiment Station and prepared and checked the drawings. #### FOREWORD The cost of bridges and other highway structures is not only a function of the sizes and weights of the heavier motor vehicle loads to which they are subjected but also the frequencies with which the various intensities of these loads are applied. More accurate knowledge concerning the stress producing effects of the various heavy vehicle types and loadings, and their expected frequencies, should contribute toward a reduction in the cost of these structures through the establishment of minimum design standards which are consistent with practical needs. Certain of the complexities involved in these problems have been removed. Trucks and bridges can be brought to a common denominator. The method presented for accomplishing this and all pertinent data along with a discussion on estimating the occurrence of various weight concentrations in traffic appear in this publication. It is hoped that the technical and nontechnical publics whose problems touch on these fields shall avail themselves of it. ### **CONTENTS** #### Part I ## DEVELOPMENT AND USE OF EQUIVALENT LOADS FOR MEASURING HEAVY MOTOR VEHICLE OPERATION | | | Page | |-----|--|------| | 1. | Permissible Vehicle Weights on Roadways and Bridges | | | 2. | Axle Load and Gross Load Trends | 15 | | 3. | Influence of Heavy Motor Vehicle Operation on Highway and Bridge Provision | 21 | | 4. | Equivalent Loads Provide the Means for Rating Heavy Motor
Vehicle Types and Loadings | 26 | | | Part II | | | | METHOD FOR RATING HEAVY VEHICLE LOADS
IN TERMS OF EQUIVALENT LOADS | | | 5. | Basis for Converting Heavy Vehicle Loads into Equivalent Loads | 27 | | 6. | Identification Index of Heavy Vehicle Types and Loadings
(Table Nos. 6.1-6.14) | 36 | | 7. | Controlling Conditions for Maximum Moments on Simple Span Bridges (Table Nos. 7.1-7.14) | 51 | | 8. | Summary of Maximum Moments Produced by Vehicles of Unit Weight on Simple Span Bridges (Table Nos. 8.1-8.14) | 128 | | 9. | Maximum Moments and Equivalent H Truck Loadings for
Vehicles of Unit Weight on Simple Span Bridges
(Chart Nos. 9.1-9.14) | 156 | | 10. | Equivalent H Truck Loadings for Vehicles of Unit Weight on Simple Span Bridges (Table Nos. 10.1-10.14) | | | 11. | Gross Load Required for Various Truck Types and Loadings to Produce Same Moment as Standard H Truck of Unit Weight on Simple Span Bridges (Table Nos. 11.1-11.14) | 301 | | 12. | Equivalent Concentrated Loads Required to Produce Same
Moment as Heavy Vehicle Types of Unit Weight on Simple Span
Bridges (Table Nos. 12.1-12.14) | 328 | | 13. | Conversion Coefficients for Equivalent Loadings on Simple
Spans of Various Lengths (Table No. 13.1, Chart No. 13.1) | 356 | | | Note: Equivalent H Truck Loadings, Equivalent H-S Truck Loadings, and Equivalent Concentrated Loads may be converted from any one of these into either of the others by using proper conversion coefficient. | | | | Part III | | | | METHOD FOR CALCULATING RELATIVE FREQUENCIES OF
FREQUENCY DISTRIBUTION OF VARIOUS INTENSITIES
OF EQUIVALENT VEHICLE LOADINGS | 1 | | 14. | Calculated Frequencies of Equivalent Vehicle Loadings Based on the Poisson Frequency Distribution Formula (Table No. 14.1) | 359 | ### CONTENTS (Continued) | | Part IV | Page | |-------------|--|----------| | 0 | BSERVED AND CALCULATED FREQUENCIES OF EQUIVAL: H TRUCK LOADINGS ON SIMPLE SPAN BRIDGES FOR THE HEAVY VEHICLES REPORTED BY THE SPECIAL LOADOMETER SURVEY OF 1942 | ENT
E | | 1 5. | Frequency Analysis of Equivalent H Truck Loadings | 385 | | 16. | Observed and Calculated Frequencies of Equivalent H Truck
Loadings on Simple Span Bridges Based on Gross Vehicle Weights
(Table Nos. 16.1-16.12) | 390 | | 17. | Maximum, Average, and Minimum Equivalent H Truck
Loadings on Simple Span Bridges Based on Gross Vehicle
Weights (Table Nos. 17.1-17.13) | 410 | | 18. | Histograms Showing Frequency Distributions of Equivalent
H Truck Loadings on Simple Span Bridges Based on Gross
Vehicle Weights (Chart Nos. 18.1-18.12) | 425 | | 19. | Observed and Calculated Frequencies of Equivalent H Truck
Loadings on Simple Span Bridges Based on Vehicles Weighing
One Kip Each (Table Nos. 19.1-19.11) | 438 | | 20. | Maximum, Average, and Minimum Equivalent H Truck Loadings
on Simple Span Bridges Based on Vehicles Weighing One Kip
Each (Chart Nos. 20.1-20.11) | 453 | | 21. | Histogram Showing Frequency Distributions of Equivalent
H Truck Loadings on Simple Span Bridges Based on Vehicles
Weighing One Kip Each (Chart Nos. 21.1-21.11) | 465 | | | Part V | | | 0 | BSERVED AND CALCULATED FREQUENCIES OF EQUIVALI
CONCENTRATED LOADS ON SIMPLE SPAN BRIDGES FOR
THE HEAVY VEHICLES REPORTED BY THE SPECIAL
LOADOMETER SURVEY OF 1942 | ENT | | 22. | Frequency Analysis of Equivalent Concentrated Loads | 477 | | 23. | Observed and Calculated Frequencies of Equivalent Concentrated
Loads on Simple Span Bridges Based on Gross Vehicle Weights
(Table Nos. 23.1-23.12) | 478 | | 24. | Maximum, Average, Minimum Equivalent Concentrated Loads on
Simple Span Bridges Based on Gross Vehicle Weights
(Chart Nos. 24.1-24.13) | | | 25. | Histograms Showing Frequency Distributions of Equivalent
Concentrated Loads on Simple Span Bridges Based on Gross | 511 | | 26. | Observed and Calculated Frequencies of Equivalent Concentrated Loads on Simple Span Bridges Based on Vehicles Weighing One Kip Each (Table Nos. 26.1-26.11) | 524 | | 27. | Maximum, Average, Minimum Equivalent Concentrated Loads on Simple Span Bridges Based on Vehicles Weighing One Kip Each (Chart Nos. 27.1-27.11) | | | 28. | Histograms Showing Frequency Distributions of Equivalent
Concentrated Loads on Simple Span Bridges Based on Vehicles
Weighing One Kip Each (Chart Nos. 28.1-28.11) | | | | Part VI | | | | Conclusions | 565 | | | | | ### TABLES AND ILLUSTRATIONS | Fig. | Table | Page | |------|---|--| | 1.1 | | Fatigue of Concrete in Flexure 5 | | | 1.1 | Permissible Loads As Recommended By
AASHO Policy Adopted April 1, 1946 10 | | 1.2 | | Type 3 Truck—Number 18 11 | | 1.3 | | Axle Group Loads on Bridge of H Loading Design13 | | | 1.2 | Vehicle Weights on Bridges of H Loading Design14 | | | 2.1 | Motor Vehicle Registrations in United States16 | | 2.1 | | Average Weight of Loaded and of Empty Trucks and Truck Combinations in the Summers of 1942-49 and in a Corresponding Period of a Prewar Year | | 2.2 | | Number of Heavy Gross Weights per 1,000 Trucks and Truck Combinations in the Summers of 1942-49 and a Prewar Year 18 | | 2.3 | | Number of Heavy Axle Loads per 1,000 Trucks and Truck Combinations in the Summers of 1942-49 and a Prewar Year 19 | | 2.4 | | Cumulative Percent of Heavy Vehicle Axle
Loads Having Gross Weights per Axle
Equal To or Greater Than Stated Values | | | 3.1 | Colorado State Highway Department Tabulation Showing Comparative Rates of Progressive Cracking in Concrete Paving Slabs | | 6.1 | | Identification of Freight Vehicle Types | | |
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11 | Index Tables for Heavy Motor Vehicles Weighing One Kip Each. Type 2 Truck 38 Type 3 Truck 39 Type 2-S1 Truck 40 Type 2-S2 Truck 41 Type 3-S1 Truck 42 Type 3-S2 Truck 43 Type 3-S3 Truck 44 Type 3-S3 Truck 44 Type 2-2 Truck 45 Type 2-3 Truck 46 Type 3-2 Truck 47 | | | 6.12
6.13
6.14 | Index Tables for Heavy Motor Vehicles Weighing One Kip Each. Type 3-3 Truck | | | 7.1 7.2 7.3 7.4 7.5 | Controlling Conditions and Maximum Moments Produced by Heavy Motor Vehicles Weighing One Kip Each on Simple Spans of Various Lengths. Type 2 Truck. 52 Type 3 Truck. 55 Type 2-S1 Truck. 58 Type 2-S2 Truck. 65 Type 2-S3 Truck. 71 | | Fig. | Table | | , | Page | |---|----------------|---|--|---------------------------------| | | 7.6 | Type 3-S1 | Truck | 76 | | | 7.7 | Type 3-S2 | Truck | 81 | | | 7.8 | Type 3-S3 | Truck | | | | $7.9 \\ 7.10$ | Type 2-2
Type 2-3 | Truck | 94 | | | 7.10 | Type 3-2
Type 3-2 | Truck
Truck | 107 | | | 7.12 | Type 3-3 | Truck | | | | 7.13 | Type 2-S1-2 | Truck | | | | 7.14 | | Truck | 123 | | | 8.1
8.2 | in Simple Span
Vehicles Weighin
Type 2
Type 3 | ximum Moments Produced Bridges by Heavy Motor ng One Kip Each. Truck | 130 | | | 8.3
8.4 | $\begin{array}{c} \text{Type } 2\text{-S1} \\ \text{Type } 2\text{-S2} \end{array}$ | Truck
Truck | | | | 8.5 | Type 2-52
Type 2-S3 | Truck | | | | 8.6 | Type 3-S1 | Truck | | | | 8.7 | Type 3-S2 | Truck | 139 | | | 8.8 | Type 3-S3 | Truck | | | | 8.9 | Type 2-2 | Truck | | | | 8.10
8.11 | Type 2-3
Type 3-2 | Truck | | | | 8.12 | Type 3-2
Type 3-3 | Truck | | | | 8.13 | Type 2-S1-2 | Truck | | | | 8.14 | Type 3-S2-3 | | | | 9.1
9.2
9.3a-9.3I
9.4a-9.4i
9.5a-9.5i
9.6a-9.6i
9.7a-9.7i | | Bending Moment
Vehicle Weight
Type 2
Type 3
Type 2-S1
Type 2-S2
Type 2-S3
Type 3-S1
Type 3-S2 | s Produced by a Gross of One Kip on Simple Spans Truck Truck Truck Truck Truck Truck Truck Truck Truck | 158
159
160
172
181 | | | | Equivalent H Tr | ruck Loadings Based on
ts Produced by a Gross | | | | | | of One Kip on Simple Spans. | | | 9.8a-9.8i
9.9a-9.9l | | Type 3-S3
Type 2-2 | Truck | | | 9.10a-9.10l | | Type 2-2
Type 2-3 | Truck | | | 9.11a-9.11l | | Type 3-2 | Truck | | | 9.12a-9.12I | | Type $3-3$ | Truck | 253 | | 9.13a-9.13c | | Type 2-S1-2 | | | | 9.14a-9.14f | | in Simple Spans
Vehicles Weighin | nivalent H Truck Loadings Produced by Heavy Motor ng One Kip Each. | | | | 10.1 | Type 2 | Truck | | | | $10.2 \\ 10.3$ | Type 3
Type 2-S1 | Truck
Truck | | | | 10.3 | Type 2-81
Type 2-82 | Truck | | | | 10.5 | Type 2-S3 | Truck | | | | 10.6 | Type 3-S1 | Truck | 283 | | | 10.7 | Type 3-S2 | Truck | | | | 10.8 | Type 3-S3 | Truck | | | | 10.9 | Type 2-2 | Truck | 289 | | Fig. | ${f Table}$ | | Page | |------|---|---|---| | | 10.10 | Type 2-3 Truck | 292 | | | 10.11 | Type 3-2 Truck | 294 | | | 10.12 | Type 3-3 Truck | 296 | | | 10.13 | Type 2-S1-2 Truck | 298 | | | 10.14 | Type 3-S2-3 Truck | 300 | | | 11.1 | Summary of Gross Loads Required for
Heavy Motor Vehicles in Simple Spans to
Produce as Much Moment as a Standard
H Truck Weighing One Kip. Type 2 Truck | 302 | | | 11.2 | Type 3 Truck | 303 | | | 11.3 | Type 2-S1 Truck | | | | $11.4 \\ 11.5$ | Type 2-S2 Truck
Type 2-S3 Truck | | | | $11.6 \\ 11.6$ | | | | | 11.7 | Type 3-S1 | 910 | | | 11.8 | Type 3-S2 Truck | 216
114 | | | 11.9 | Type 2-2 Truck | | | | 11.3
11.10 | Type 2-3 Truck | 910 | | | 11.10 | Type 3-2 Truck | 991 | | | $11.11 \\ 11.12$ | Type 3-3 Truck | | | | 11.12 | Type 2-S1-2 Truck | | | | 11.13 | Type 3-S2-3 Truck | | | | 12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12
12.13
12.14 | Summary of Equivalent Concentrated Loads Required to Produce the Same Moment in Simple Spans as Heavy Motor Vehicles Weighing One Kip Each. Type 2 Truck. Type 3 Truck. Type 2-S1 Truck. Type 2-S2 Truck. Type 2-S3 Truck. Type 3-S1 Truck. Type 3-S1 Truck. Type 3-S1 Truck. Type 3-S1 Truck. Type 3-S2 Truck. Type 3-S2 Truck. Type 3-S3 Truck. Type 2-2 Truck. Type 2-3 Truck. Type 3-3 Truck. Type 3-2 Truck. Type 3-3 | 330
331
333
335
337
339
341
343
348
350
352 | | | 10.1 | Loadings on Simple Spans of
Various Lengths | 356 | | 13.1 | | Conversion Coefficients for Equivalent
Loadings on Simple Spans of
Various Lengths | 357 | | | 14.1 | Number of Points That Result for
Each of the 36 Ways in Which a
Pair of Dice Can Fall | 364 | | | 14.2 | Number of Ways and the Mathematical
Probability for Obtaining Any Possible
Sum on a Single Throw of a Pair of Dice | | | | 14.3 | Comparison of Binomial and Poisson Distribution for Different Values of m and Constant Values of $K=mp$ | 374 | | Fig. | Table | | Page | |---|--------------------------------|---|--| | 15.1 | | Normal Frequency Distribution | 387 | | | 14.4 | Individual and Cumulative Terms of the Poisson Distribution Formula | 380 | | | 15.1 | Calculations of Three Item Moving
Averages For Observed Frequencies of
Equivalent H Truck Loadings Based on
Moments Produced by the 381 Type 3
Trucks Reported by the 1942
Loadometer Survey | 389 | | | 16.1a-16.1b | Observed and Calculated Frequencies of Equivalent H Truck Loadings Based on Moments Produced by Heavy Motor Vehicles Reported in the 1942 Loadometer Survey. Type 2 Truck | | | | 16.2a-16.2b | Type 3 Truck | | | | 16.3a-16.3b | Type 2-S1 Truck | | | | 16.4a-16.4b
16.5a-16.5b | Type 2-S2 | | | | 16.6a-16.6b | Type 3-S1 Truck | | | | 16.7a-16.7b | Type 3-S3 Truck | | | | 16.8a-16.8b | Type 2-2 Truck | | | | 16.9a-16.9b | Type 2-3 Truck | | | | 16.10a-16.10b
16.11a-16.11b | Type 3-2 | | | | 16.12a-16.12b | All Type Trucks | | | 17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9
17.10
17.11
17.12 | | Equivalent H Truck Loadings for Heavy Motor Vehicles on Simple Spans of Various Lengths. Type 2 Truck. Type 3 Truck. Type 2-S1 Truck. Type 2-S2 Truck. Type 3-S1 Truck. Type 3-S2 Truck. Type 3-S2 Truck. Type 3-S2 Truck. Type 3-S3 Truck. Type 2-2 Truck. Type 2-3 Truck. Type 2-3 Truck. Type 3-2 Truck. Type 3-3 Truck. Type 3-3 Truck. S3 Truck. Type 3-3 Truck. Type 3-3 Truck. Type 3-3 Truck. Type 3-3 Truck. S3 Truck-Tractor Semitrailer-Trailer Combinations. All Type Trucks | 413
414
415
416
417
418
419
420
421
422 | | 18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9 | | A Comparison of Observed with Theoretical Frequencies of Equivalent H Truck Loadings for Heavy Motor Vehicles on Simple Spans of Various Lengths. Type 2 Truck. Type 3 Truck. Type 2-S1 Truck. Type 2-S2 Truck. Type 3-S1 Truck. Type 3-S1 Truck. Type 3-S2 Truck. Type 3-S2 Truck. Type 3-S2 Truck. Type 3-S3 Truck. Type 3-S3 Truck. Type 2-2 Truck. Type 2-3 Truck. | 427
428
439
430
431
432
433 | | Fig. | Table | | | Page | |----------------|----------------------------|---|--|-------| | 18.10 | | Type 3-2 | Truck | | | 18.11
18.12 | | Type 3-3
All Type | Truck
Trucks | | | 10.12 | | Observed and Ca
Equivalent H To
Moments Produc
Vehicles Weighi | alculated Frequencies of
ruck Loadings Based on
ced by Heavy Motor
ng One Kip Each. | | | | 19.1a-19.1b | Type 2 | Truck | | | | 19.2a-19.2b | Type 3 | Truck | | | | 19.3a-19.3b
19.4a-19.4b | Type 2-S1
Type 2-S2 | Truck
Truck | | | | 19.5a-19.5b | Type 3-S1 | Truck | | | | 19.6a-19.6b | Type 3-S1 | Truck | | | | 19.7a-19.7b | Type 3-S3 | Truck | | | | 19.8a-19.8b | Tvpe 2-2 | Truck | | | | 19.9a-19.9b | Type 2-3 | Truck | | | | 19.10a-19.10b | Type $3-2$ | Truck | | | | 19.11a-19.11b | Type $3-3$ | Truck | 451 | | 20.1 | | H Truck Loadin
Various Lengths | ributions of Equivalent
gs on Simple Spans of
s for Heavy Motor
ng One Kip Each.
Truck | 454 | | 20.2 | | Type 3 | Truck | | | 20.3 | | Type 2-S1 | Truck | | | 20.4 | | Type 2-S2 | Truck | | | 20.5 | | Type 3-S1 | Truck | | | 20.6 | | Type 3-S2 | Truck |
| | 20.7 | | Type 3-S3 | Truck | 460 | | $20.8 \\ 20.9$ | | Type 2-2
Type 2-3 | Truck
Truck | | | 20.10 | | Type 3-2 | Truck | | | 20.11 | | Type 3-3 | Truck | | | | | Theoretical Fred
H Truck Loading
Vehicles Weighi
Simple Spans of | of Observed with
quencies of Equivalent
gs for Heavy Motor
ng One Kip Each on
T Various Lengths. | | | 21.1 | | Type 2 | Truck | | | $21.2 \\ 21.3$ | | Type 3
Type 2-S1 | Truck
Truck | | | 21.4 | | Type 2-S1
Type 2-S2 | Truck | | | 21.5 | | Type 3-S1 | Truck | | | 21.6 | | Type 3-S2 | Truck | | | 21.7 | | Type 3-S3 | Truck | 472 | | 21.8 | | Type 2-2 | Truck | | | 21.9 | | Type 2-3 | Truck | | | 21.10 | | Type 3-2 | Truck | | | 21. 11 | 23.1a-23.1b
23.2a-23.2b | Equivalent Conc
Produce the San | Truck | 478 | | | 40,4a-40,40 | Type o | 11 U(N | 4 i ð | | Fig. | Table | , , | Page | |---------------------|----------------------------|--|------| | | 23.3a-23.3b | Observed and Calculated Frequencies of Equivalent Concentrated Loads Required to Produce the Same Moment in Simple Spans as That Produced by the Heavy Motor Vehicles Reported in the 1942 Loadometer Survey. Type 2-S1 Truck | 481 | | | 23.4a-23.4b
23.5a-23.5b | Type 2-S2 Truck
Type 3-S1 Truck | 482 | | | 23.6a-23.6b | Type 3-S2 Truck | | | | 23.7a-23.7b
23.8a-23.8b | Type 3-S3 Truck | | | | 23.9a-23.9b | Type 2-2 Truck
Type 2-3 Truck | | | | 23.10a-23.10b | Type 3-2 Truck | | | | 23.11a-23.11b | Type 3-3 Truck | 493 | | | 23.12a-23.12b | All Type Trucks | 495 | | | | Maximum, Minimum and Average
Equivalent Concentrated Loads for Heavy
Motor Vehicles on Simple Spans of
Various Lengths. | | | 24.1 | | Type 2 Truck | | | $24.2 \\ 24.3$ | | Type 3 Truck
Type 2-S1 Truck | | | $24.3 \\ 24.4$ | | Type 2-S1 Truck | | | $\frac{24.5}{24.5}$ | | Type 3-S1 Truck | | | 24.6 | | Type 3-S2 Truck | | | 24.7 | | Type 3-S3 Truck | | | 24.8 | | Type 2-2 Truck | | | 24.9 | | Type 2-3 Truck | | | $24.10 \\ 24.11$ | | Type 3-2 Truck
Type 3-3 Truck | 507 | | 24.11 | | 83 Truck-Tractor | 900 | | 24.12 | | Semitrailer-Trailer Combinations | 509 | | 24.13 | | All Type Trucks | | | | | A Comparison of Observed with
Theoretical Frequencies of Equivalent
Concentrated Loads for Heavy Motor
Vehicles on Simple Spans of
Various Lengths. | | | $25.1 \\ 25.2$ | | Type 2 Truck | | | $\frac{25.2}{25.3}$ | | Type 3 Truck | | | 25.4 | | Type 2-S2 Truck | | | 25.5 | | Type 3-S1 Truck | | | 25.6 | | Type 3-S2 Truck | | | 25.7 | | Type 3-S3 Truck | | | $25.8 \\ 25.9$ | | Type 2-2 Truck | | | 25.9 25.10 | | Type 2-3 Truck
Type 3-2 Truck | | | 25.10 25.11 | | Type 3-3 Truck | 522 | | 25.12 | | All Type Trucks | 523 | | | 26.1a-26.1b
26.2a-26.2b | Observed and Calculated Frequencies of Equivalent Concentrated Loads Required to Produce the Same Moment in Simple Spans as That Produced by the Heavy Motor Vchicles Weighing One Kip Each. Type 2 Truck. Type 3 Truck. | | | | | | | | Fig. | Table | | , | Page | |----------------|----------------------------|------------------------|---|------| | | 26.3a-26.3b
26.4a-26.4b | Type 2-S1
Type 2-S2 | TruckTruck | | | | 26.5a-26.5b | Type 3-S1 | Truck | | | | 26.6a-26.6b | Type 3-S2 | Truck | | | | 26.7a - 26.7b | Type 3-S3 | Truck | 533 | | | 26.8a-26.8b | Type 2-2 | Truck | | | | 26.9a-26.9b | Type 2-3 | Truck | | | | 26.10a-26.10b | Type 3-2 | Truck | | | | 26.11a-26.11b | Type 3-3 | Truck | 538 | | | | | ibution of Equivalent
ads on Simple Spans of | | | | | | for Heavy Motor | | | | | Vehicles Weighi | ng One Kip Each. | | | 27.1 | | Type 2 | Truck | 541 | | 27.2 | | Type 3 | Truck | | | 27.3 | | Type 2-S1 | Truck | 543 | | 27.4 | | Type $2\text{-S}2$ | Truck | | | 27.5 | | Type 3-S1 | Truck | | | 27.6 | | Type 3-S2 | Truck | | | $27.7 \\ 27.8$ | | Type 3-S3 | Truck | | | 27.8
27.9 | | Type 2-2
Type 2-3 | Truck
Truck | | | 27.10 | | Type 2-3
Type 3-2 | Truck | | | 27.11 | | Type 3-3 | Truck | | | | | A Comparison o | f Observed with
quencies of Equivalent | | | | | | ads for Heavy Motor | | | | | | ng One Kip Each on | | | | | Simple Spans of | Various Lengths. | | | 28.1 | | ${ m Type}^-2$ | Truck | | | 28.2 | | Type 3 | Truck | | | 28.3 | | Type 2-S1 | Truck | | | $28.4 \\ 28.5$ | | Type 2-S2 | TruckTruck | | | 28.6 | | Type 3-S1
Type 3-S2 | Truck | | | 28.7 | | Type 3-S2
Type 3-S3 | Truck | | | 28.8 | | Type $2-2$ | Truck | | | 28.9 | | Type $2-3$ | Truck | 561 | | 28.10 | | Type 3-2 | Truck | | | 28.11 | | Type 3-3 | Truck | 563 | #### SUMMARY The rating of heavy motor vehicle types and loadings—such as those reported by a local, state, or national loadometer survey—in terms of equivalent H truck loadings, equivalent H design loadings, equivalent concentrated loads or any other convenient standardized loads can be accomplished by evaluating some stress producing effect on a bridge type and then finding the gross weight required on a standard vehicle to produce the same effect. Tables and charts are provided for rating most any type of heavy vehicle—irrespective of its wheel base length, number and spacing of axles, or distribution of load among the axles—ordinarily encountered in highway traffic, in terms of standardized equivalent loads. It was observed that the Poisson distribution yields mathematical answers which are sufficiently accurate in many practical situations for estimating the frequencies of various intensities of highway loads or loading equivalencies, and for evaluating their stress producing effects on simple span bridges and other highway structures. #### INTRODUCTION This bulletin has been prepared for the convenience of those who are concerned with one or more problems associated with the sizes, weights, and frequencies of heavy motor vehicles commonly used for heavy trucking operations in present-day highway traffic. It was prepared in response to the long-standing and increasing needs of engineers and others for factual information, principles, and methods that might be used as an approach to the analysis and solution of certain of these problems. In recognition of these needs, and as a partial contribution toward their fulfillment, it presents the results obtained from a rather extensive investigation of highway loads and their stress producing effects (based on maximum bending moment) on simple span bridges of various lengths, and undertakes to show how this information may be used for analyzing and solving several types of these problems. And, by way of showing how this approach is related to certain other elements which must be taken into account in the study of heavy motor vehicle problems and their influence on highway and bridge provision requirements, it also presents a brief discussion of some of the more important considerations involved in the establishment of minimum standards for the design, construction, or rating of highways and bridges for given traffic conditions. The results of these studies not only provide the means for solving several interesting problems pertaining to the stress producing characteristics of the more common heavy vehicle types and loadings and for measuring their effects in terms of equivalent loads, but they also include a wide variety of basic data that should prove to be of value in the study of similar or related problems that are not considered in this report. The problems selected here for special consideration will be discussed later in more detail. It requires but little reflection to appreciate the fact that the problems associated with the sizes, weights, and frequencies of heavy motor vehicles ordinarily encountered in highway traffic are both numerous and varied. Their influence not only extends into practically every phase of highway design, construction, maintenance, and administration, but also into the fields of highway economics and motor transport, and even into the design and manufacture of heavy motor vehicles and other transportation equipment. The scope of this bulletin, however, is limited to a comparatively small segment of these problems; namely, those whose solutions are related in one way or another to the stress producing characteristics of highway loads or their effects on the load carrying capacity of simple span bridges of various lengths. The main objectives of this work are: - 1. To furnish, arrange, and catalogue the factual information and other background material required for quickly and accurately determining the stress producing characteristics of the more common heavy vehicle types and loadings on simple span bridges of various lengths. - 2. To outline and discuss the method proposed for converting a given heavy vehicle loading into an equivalent load whose stress producing effects on various span lengths are the same as those for the given vehicle loading. For this purpose, heavy vehicle loads may be converted into equivalent H truck loadings, equivalent H-S truck loadings, equivalent concentrated loads, or equivalent loads based on any other standardized design vehicle or arbitrary loading that might prove to be desirable as a basis of measure or comparison. - 3. To illustrate how the use of equivalent loads provide a simple yet rational means for analyzing the relative frequencies, or frequency distribution, of various intensities of heavy vehicle loads for given traffic conditions. - 4. To show how the frequency distributions of various intensities of equivalent loads obtained from the heavy vehicle data reported by a local, state, or national loadometer survey provide a quantitative measure of the level or levels of heavy motor vehicle operation at those stations or on those routes covered by such surveys. - 5. To introduce and
explain the use of some of the more elementary statistical methods which have been found appropriate for determining the frequencies of various intensities of equivalent vehicle loadings for given traffic conditions. - 6. To point out and discuss certain potential uses for the above mentioned data that are not specifically covered by the foregoing objectives. The substance of these objectives may be summarized rather briefly by saying that the over-all objective of this bulletin is to develop a mathematical procedure, based on accepted engineering principles, for the rating of the more common heavy vehicle types and loadings in terms of standardized equivalent loads; and to show how the frequency distributions of various intensities of these equivalent loads provide a simple precise and yet rational means for measuring the level or levels of heavy motor vehicle operation corresponding to various traffic conditions. Since the principal function of this bulletin is to serve as a reference, handbook, or catalogue of highway loads, and their stress (moment) producing effects on simple spans, and for the rating of heavy vehicle types and loadings in terms of equivalent loads, more than half the volume is devoted to the presentation of tables and charts for these purposes. The major portion of the remaining half consists of tables and charts pertaining to the analysis of heavy motor vehicle operation in 1942. The frequency distributions of equivalent H truck loadings and equivalent concentrated loads shown in these studies were based on the sizes and weights of the heavy vehicles reported by the special loadometer survey of 1942. For these reasons, the text material has been purposely held to a minimum, most of which is in explanatory articles of Part I and Part III. For convenience, the presentation and discussion of this material has been divided into six parts. Part I deals with the development and use of equivalent loads as a means for measuring heavy motor vehicle operation. Part II presents the reference tables and charts for the identification and rating of heavy vehicle types and loadings in terms of equivalent loads, and for determining the maximum moment produced by such vehicles on simple span bridges of various lengths. Part III undertakes to show how the Poisson distribution formula correlates with the measurement of the frequency distribution of various intensities of equivalent heavy motor vehicle loads on various spans and how the results of such studies provide a quantitative measure of heavy motor vehicle operation. Part IV presents a study of the observed frequency distributions of equivalent H truck loadings, as obtained from the heavy vehicle data reported by the 1942 loadometer survey, and compares the results with the calculated frequencies based on the Poisson frequency distribution formula as discussed in Part III. In a similar manner, Part V presents a study of the observed and calculated frequency distributions of equivalent concentrated loads based on the same heavy vehicle data as that used to obtain the frequency distributions given in Part IV. In fact, the only difference between Parts IV and V is that the observed and calculated frequency distributions given in Part IV. The bulletin then closes with the brief summary and conclusions given in Part IV. The #### Part I # DEVELOPMENT AND USE OF EQUIVALENT LOADS FOR MEASURING HEAVY MOTOR VEHICLE OPERATION #### 1. PERMISSIBLE VEHICLE WEIGHTS ON ROADWAYS AND BRIDGES #### 1.1 General The over-all objective of this bulletin, as was discussed in some detail in the introduction, is to develop a rapid yet simple and accurate mathematical procedure for the rating of heavy motor vehicle types and loadings, such as those reported by a loadometer survey, in terms of equivalent H truck loadings or any other convenient standardized equivalent loads; and to show how the frequency distributions of these equivalent loads provide a rational means for measuring the level or levels of heavy motor vehic'e operation corresponding to given traffic conditions. In order to accomplish these ends, it is first necessary to find a satisfactory method of converting a given heavy vehicle loading into an equivalent design load. This may be accomplished by evaluating some stress producing effect, such as maximum moment or shear, caused by the given vehicle on, say, a 40-foot simple span bridge and then finding the gross weight required on, say, a standard H truck to produce the same effect. For example, if the given vehicle caused a maximum moment on this 40-foot span of 259.5 kipfeet (see AASHO moment table) it would produce the same maximum bending stress as an H 15 truck. On this basis, therefore, the given vehicle would be rated as an equivalent H 15 truck loading on a 40-foot simple span bridge. In a similar manner, the given vehicle could be rated in terms of an equivalent H-S truck loading, equivalent concentrated load, or any other standardized equivalent load as may be desired. Moreover, since the maximum moment produced by any given standardized vehicle or loading on a given span bears a constant relationship to the maximum moment produced by any other standardized loading on the same span, any given vehicle that has been converted into either an equivalent H truck loading, an equivalent H-S truck loading, or an equivalent concentrated load, on a given span, can easily be rated in terms of either of the other two equivalent loadings simply by using the conversion coefficients as explained in Article 13. Owing to the fact that it is the bending stresses that ordinarily determine the load carrying capacity of simple span bridges, the maximum moments produced by heavy vehicle types and loadings on simple spans of various lengths are used in this bulletin as a basis for the determination of equivalent loads. The tables and charts given in Part II provide the means for quickly determining the maximum moment produced by heavy vehicle types and loadings on various spans and also for converting them into equivalent loads. The use of this material will be more fully explained in Article 5. Another important use of equivalent loads is that of determining permissible vehicle weights on bridges of various lengths and design designations. If the H loading equivalent of a given vehicle on a 40-foot span were known, for example, it would then be a simple matter to decide whether or not it should be permitted to pass over, say, an H 15 bridge of that length. The over-all problem of determining permissible vehicle weights on roadways and bridges, however, is not a simple one. And though no attempt will be made here to cover all the elements involved, it is believed that a brief review of some of the more important considerations which must be taken into account in the study of these problems will contribute toward a better appreciation of their importance. Such a review is given in the remaining sections of this article. #### 1.2 The Need For Better Understanding of Heavy Motor Vehicle Problems The maximum size and weights of heavy motor vehicles that should be permitted to operate over the Nation's highways and bridges are subjects that have been of major importance for many years to highway officials, legislative bodies, commercial truckers, and the manufacturers of heavy motor vehicles and other transportation equipment. An almost inconceivable amount of very careful and painstaking study and experimental work has been done on these subjects, particularly during the past thirty or forty years. The importance of these subjects has been increasing year by year along with and at a pace which approximately parallels the rapid increases in commercial trucking operations that have taken place since the end of the first World War. Many able investigators have made valuable contributions to our present store of information on these subjects, but much more research and study will be required to find the ultimate answers to many of the problems pertaining to the sizes and weights of heavy motor vehicles and their effects on the construction and maintenance costs for safe and adequate highway facilities. For the benefit of those who are not altogether familiar with these problems or the developments leading up to present-day regulation of motor vehicle sizes and weights, it should be explained that many elements of these problems are of a highly controversial nature. And owing to the fact that certain of these matters are of a controversial nature, it should be further explained that the reason for discussing them here is to contribute, if possible, toward a better understanding of some of the issues involved rather than to arrive at any specific recommendations concerning the economic justification of any particular level of permissible axle loads and gross loads that should obtain for given traffic conditions. The reasons for controversy, however, are not difficult to find since they arise mainly from the different points of view and conflicting interests of (1) those whose business would benefit from either heavier permissible axle loads or gross vehicle weights or both and (2) those (mainly highway officials and legislative bodies) who are charged with the duty and responsibility of providing protection for existing as well as new highway facilities in such ways as to insure their maximum economic life. In the planning of new facilities, for example, highway officials must not only decide on the maximum permissible axle loads and gross loads to be accommodated, but they must also estimate or otherwise determine the expected frequencies of various intensities of these loads before the actual design of such facilities can even be started. After these matters have been settled and a new facility has been built, it is then the duty of some appropriate regulatory body to see to it that loads in excess of those for which the facility was designed are not permitted. From a practical
point of view, even the layman will agree that thicker pavements and stronger bridges are required to support or sustain heavier loads, and, as a consequence, that highway and bridge provision will cost more to accommodate the heavier loads than would otherwise be required for light loads. In general, what he fails to understand is that the cost of highway and bridge provision is not only a function of permissible axle loads and gross loads, but is also a function of the anticipated frequencies of various intensities of these loads. If the truth of these facts, which are accepted as commonplace by highway and bridge engineers, could be explained to the layman in such a way as to leave no doubt of their validity in his mind, one of the major sources of misunderstanding and controversy concerning the necessity of imposing maximum limitations on axle loads and gross loads would automatically be eliminated. ¹H. S. Fairbank, "Sizes and Weights of Motor Vehicles Require Economic Study." CIVIL ENGINEERING, June, 1949, pp. 40-43. #### 1.3. Effects of Heavy Axle Loads on Roadway Surfaces and Foundations Insofar as the design of roadway surfaces and foundations are concerned, the deteriorating effects of repeated excessive axle loads can be explained rather easily by briefly describing the procedure recommended by competent highway authorities for evaluating the effects of repeated applications of various intensities of these loads. Concrete, for example, like other structural materials, is affected more by repeated critical stresses than by a single stress of the same magnitude. This effect, for want of a better name has been called "fatigue." Figure 1.1 shows the fatigue behavior of concrete subjected to repeated bending stresses such as those which occur in pavements during #### FATIGUE OF CONCRETE IN FLEXURE RELATION BETWEEN ULTIMATE FLEXURAL STRENGTH OF CONCRETE AND NUMBER OF STRESS REPETITIONS TO INDUCE FATIGUE FAILURE NUMBER OF LOAD REPETITIONS TO INDUCE FAILURE - THOUSANDS Figure 1.1 the passage of a heavy axle load. This curve is in agreement with Illinois Highway Department studies, which are the most extensive studies available on the fatigue behavior of full-sized concrete specimens under repetitions of flexural stress, and it is also in agreement with current pavement design practice. This curve shows the relationship between ultimate strength and the number of stress repetitions required to induce failure in a concrete pavement. Perhaps the best way to explain the meaning of this curve (Figure 1.1) would be to avoid the complications involved in an actual design by applying it to an overly simplified illustration. The vertical scale shows the value of flexural stress measured in terms of percent of ultimate flexural strength of concrete and the horizontal scale shows the number of stress repetitions to The ultimate flexural strength of concrete ordinarily used induce failure. for pavements is somewhere in the neighborhood of 700 psi. So if 700 psi concrete were used, then 700 psi would represent 100 percent of its ultimate flexural strength. In connection with this fatigue strength curve (Figure 1.1) it will be noted that a concrete pavement can withstand an indefinitely large number of stress repetitions provided the stress does not exceed about 50 percent of its ultimate strength. In the case of 700 psi concrete, this means that it would not fail from repeated load applications so long as the stress resulting from such loads does not exceed 350 psi, which would be the design stress on about 50 percent of its ultimate strength. On the other hand, if the repeated load were increased to such an extent that each application would result in a stress equal to 60 percent of the ultimate strength, or 420 psi, a fatigue failure would be expected to occur after about 22,000 repetitions of this load. Now if this repeated load were increased still further so that each application produced a stress equal to 75 percent of the ultimate strength or $700 \times .75 \stackrel{.}{=} 525$ psi, it would require only about 2,000 repetitions to cause a fatigue failure. If this illustration were expressed in terms of a 700 psi concrete pavement that had been designed for an indefinitely large number of applications of 18,000-pound axle loads based on a design stress equal to 50 percent of the concrete's ultimate strength or 350 psi, then it would not fail as a result of fatigue, irrespective of how many applications of load were applied to it provided they did not exceed the 18,000-pound axle load for which it was designed. Another way of describing this pavement would be to say that its strength was such that a single application of a certain excessive axle load would produce a stress equal to 100 percent of its ultimate strength, or 700 psi; and if such a load were actually applied to this pavement it would be expected to fail the first time. The significant thing to note in connection with this pavement design, though, is that even comparatively small increases in axle loads in excess of the 18,000 pounds for which it was designed would rather quickly induce fatigue failure. With respect to fatigue action, therefore, it can be stated more specifically that, as the applied load on a pavement increases from the design load to a load which is of sufficient magnitude to cause failure in a single application, the resulting stresses increase. Then, for each stress increase that is above or beyond the design stress provided, there is an accompanying decrease in the number of load applications which will induce fatigue failure. Although it would be out of place here to undertake a detailed discussion of pavement design, the relationship between repeated loads and fatigue action, as indicated in Figure 1.1, can be illustrated by analogy rather simply. For example, suppose that a plain concrete member, such as a simply supported rectangular beam, is made of such size that a single 18,000-pound concentrated load applied at its mid-span will produce a maximum flexural stress equal to 50 percent of its ultimate strength. If it is now assumed for the purpose of this example that the curve in Figure 1.1 represents the relationship between repeated loads and fatigue action for isolated beams of this kind, then if a number of them were tested in the laboratory it would be found that they could withstand an indefinitely large number of repetitions of the 18,000- pound load without causing a fatigue failure. On the other hand, if the applied load were increased to a point where it produced a maximum flexural stress equal to 60 percent of the concrete's ultimate strength, it will be seen that about 22,000 repetitions of this load would be expected to induce a fatigue failure. Similarly, if the applied load were increased to a point where it would produce a maximum flexural stress equal to 75 percent of the concrete's ultimate strength, only about 2,000 repetitions would be required to cause a fatigue failure. The above examples—even though they are overly simplified—will not only serve to illustrate the most up-to-date thought on pavement design practice but also to demonstrate the serious damage to roadway foundations and pavements that can result from axle loads which are but a few percent in excess of those used for their design. In order to avoid complicating the discussion of these examples, nothing was said about "pumping" and its deteriorating effects on concrete pavements and their supporting foundations or subgrades. Pumping is defined as the ejection of water and subgrade soil through joints, cracks and along the edges of pavements caused by downward slab movement actuated by the passage of heavy axle loads over the pavement after the accumulation of free water on or in the subgrade. No attempt will be made here to go into the details of pumping action and how it contributes to the structural failure of concrete pavements and subgrades. For the present purpose of this discussion it is only necessary to point out that pumping failures do not occur on roads where there are no heavy axle loads. This was one of the conclusions reported by the Highway Research Board which was arrived at after about six years of research studies by a committee of outstanding engineers under the chairmanship of Harold Allen, Principal Materials Engineer, Public Roads Administration. On this point, the committee's report says: "The data collected show conclusively that the repeated passage of heavy axle loads is the primary activating element in pumping at joints and cracks in concrete pavements." Specific cases pertaining to the effects of heavy axle loads on pumping could be cited at almost any length but the following quotation from this committee's report will suffice since it is typical: "The general effect of traffic on pumping has been demonstrated in a number of ways. On many of the four-lane highways surveyed practically all of the pumping was found in the outside lanes which are used by the slower, heavily loaded trucks, whereas little if any pumping was found in the inner lanes used by the faster and lighter traffic. This effect is further evidenced by instances where heavy traffic on one lane of a two-lane highway has produced pumping, while the lighter traffic on the other lane has produced none. An outstanding example of this was found on US 81 near Salina, Kansas. On this road and the northbound traffic was composed of loaded tank trucks from a refinery area and the southbound lane carried the returning empty trucks. Practically all of the pumping was found on the northbound lane where an average daily commercial axle count was 349 axles under 10,000 lb. and 275 axles over 10,000 lb., of which 155 were over 14,000 lb. and 10 were over 18,000 lb. Almost no pumping was found on the southbound lane where the average daily commercial axle count was 506 axles under 10,000 lb. and only 38 axles over 10,000 lb. of which but 17 were over 14,000 lb.
and 3 were over 18,000 lb." Other authoritative evidence running into hundreds of pages could be given concerning the design, construction, and maintenance of roadway surfaces and foundations, but the preceding discussion should be sufficient to demonstrate conclusively that both the minimum standards for highway pro- ², ³Final Report of Committee on Maintenance of Concrete Pavements as Related to the Pumping Action of Slabs, Highway Research Board, Vol. 28, heavy axle loads are the primary activating element in pumping at joint and cracks in concrete pavements, pp. 281-310. vision and the useful life of a given facility are not only a function of permissible axle loads but are also a function of the anticipated frequencies of various intensities of these loads. #### 1.4 Permissible Vehicle Weights on Simple Span Bridges The vehicles that are of particular interest in connection with these studies are the various types of heavy-axle trucks and other vehicle combinations whose axle-loads, axle-group loads, or gross weights are considered sufficiently heavy to influence the design of bridges and other highway structures. Heavy vehicles are defined as those with one or more axles weighing 18,000 pounds or more; or, based on gross weight, all single-unit trucks weighing 26,000 pounds or more, and all other combinations weighing 34,000 pounds or more. These were the gross weights used in the 1942 loadometer survey as the dividing line between light-freight vehicles and heavy-freight vehicles by the Planning Survey Divisions of the several State Highway Departments and the Bureau of Public Roads. After many years of study, the American Association of State Highway Officials formulated a "Policy Concerning Maximum Dimensions, Weights and Speeds of Motor Vehicles to Be Operated Over the Highways of the United States" which was adopted April 1, 1946. The standards recommended by this policy are as follows: #### (1) WIDTH No vehicle, unladen or with load, shall have a total outside width in excess of 96 inches. (Note: It is recognized that certain conditions inherent in the design of vehicles suggest the desirability of 102 inches as a standard of maximum width. The existence of numerous bridges and a large mileage of highways too narrow for the safe accommodation of vehicles of such width precludes the present adoption of the higher standard of width. The State Highway Departments and Public Roads Administration are urged to give consideration to the desirability of eventual provision for the accommodation of vehicles 102 inches in width in planning the reconstruction of Federal-aid and State highways.) #### (2) HEIGHT No vehicle, unladen or with load, shall exceed a height of 12 feet, 6 inches. #### (3) LENGTH - (a) No single truck, unladen or with load, shall have an over-all length, inclusive of front and rear bumpers, in excess of 35 feet. - (b) No single bus, unladen or with load, shall have an over-all length, inclusive of front and rear bumpers, in excess of 40 feet, provided that a bus in excess of 35 feet in over-all length shall not have less than 3 axles. - (c) No combination of truck-tractor and semi-trailer, unladen or with load, shall have an over-all length, inclusive of front and rear bumpers, in excess of 50 feet. - (d) No other combination of vehicles shall consist of more than two units, and no such combination of vehicles, unladen or with load, shall have an over-all length, inclusive of front and rear bumpers, in excess of 60 feet. #### (4) SPEED (a) Minimum speed. No motor vehicle shall be unnecessarily driven at such slow speed as to impede or block the normal and reasonable movement of traffic. Exception to this requirement shall be recognized when reduced speed is necessary for safe operation or when a vehicle or combination of vehicles is necessarily or in compliance with law or police direction proceeding at reduced speed. - (b) Maximum speed. No truck shall be operated at a speed greater than 45 miles per hour. Passenger vehicles may be operated at such speeds as shall be consistent at all times with safety and the proper use of the roads. - (c) Vehicles equipped with solid rubber or cushion tires shall be operated at a speed not in excess of 10 miles per hour. #### (5) PERMISSIBLE LOADS (a) No axle shall carry a load in excess of 18,000 pounds. (Note: An axle load shall be defined as the total load transmitted to the road by all wheels whose centers may be included between two parallel traverse vertical planes 40 inches apart, extending across the full width of the vehicle.) - (b) No group of axles shall carry a load in pounds in excess of the value given in the following table corresponding to the distance in feet between the extreme axles of the group, measured longitudinally to the nearest foot. The loads shown in Table 1.1 are based on the equation $W=1025\ (L+24)-3L^2$. - (c) The maximum axle and axle-group loads recommended in paragraphs (a) and (b) above are subject to reasonable reduction in the discretion of the appropriate highway authorities during periods when road subgrades have been weakened by water saturation or other cause. - (d) The operation of vehicles or combinations of vehicles having dimensions or weights in excess of the maximum limits herein recommended shall be permitted only if authorized by special certificate issued by an appropriate State authority. The extent to which the above axle load limitations are recognized officially is indicated by the fact that in 1949 the axle load limit of 18,000 pounds was fixed by law in 34 states. In the remaining states and the District of Columbia the legal axle load limit varied from 19,000 to 22,400 pounds. According to Section 5(b) of the present AASHO policy, which includes the permissible axle-group loads shown in Table 1.1, it will be seen that the maximum permissible load on any individual axle is recommended not to exceed 18,000 pounds and on tandem or dual axles about 4 feet apart the permissible gross load is limited to 32,000 pounds. These loads were established because it is generally agreed that roadway foundations and pavements can be protected against undue overstress, fatigue failure, or other premature injury simply by limiting the load that may be carried on a single axle or on tandem axles which are about 4 feet apart. For roadway foundations and pavements, therefore, the problem of permissible loads is mainly concerned with the load carried by single and by tandem axles, irrespective of the total gross load carried by the entire vehicle. The problem of determining permissible vehicle weights for bridges, however, is not as simple as it is for roadway foundations and pavements. This is because the critical stresses produced in bridges by heavy vehicle loads are influenced by a number of other factors beside the permissible loads that may be carried by single and tandem axles. These variables not only include the number and spacing of axles and the distribution of gross vehicle weight among the several axles and groups of axles, but they also include the span length of the bridge. And since the critical stresses in bridges are influenced by so large a number of variables, it will be readily seen that the problem of determining permissible axle-group loads and gross vehicle weights, that will | I EKMISSIBLI | L LUADS AS K | ECOMMENDED | DI AASBU FU | LICI ADOLLED | ATRIE 1, 1540 | |--|---|---|---|--|---| | Distance L in
feet between the
extremes of any
group of axles | Maximum load W
in pounds carried
on any group of
axles | Distance L in feet between the extremes of any group of axles | Maximum load W
in pounds carried
on any group of
axles | Distance L in
feet between the
extremes of any
group of axles | Maximum load W
in pounds carried
on any group of
axles | | 4 | 32,000 | 22 | 45.700 | 40 | 60,800 | | 5 | 32,000 | 23 | 46,590 | 41 | 61,580 | | 6 | 32,000 | 24 | 47.470 | 42 | 62,360 | | 4
5
6
7
8
9 | 32,000 | 25 | 48,350 | 43 | 63,130 | | 8 | 32,610 | 26 | 49,220 | 44 | 63,890 | | 9 | 33,580 | 27 | 50,090 | 45 | 64,650 | | 10 | 34,550 | 28 | 50,950 | 46 | 65,400 | | 11 | 35,510 | 29 | 51,800 | 47 | 66,150 | | 12 | 36,470 | 30 | 52,650 | 48 | 66,890 | | 13 | 37,420 | 31 | 53.490 | 49 | 67,620 | | 14 | 38,360 | 32 | 54.330 | 50 | 68,350 | | 15 | 39,300 | 33 | 55,160 | 51 | 69,070 | | 16 | 40,230 | 34 | 55,980 | 52 | 69,790 | | 17 | 41,160 | 35 | 56,800 | 53 | 70,500 | | 18
19 | 42,080 | 36 | 57,610 | 54 | 71,200 | | 19 | 42,990 | 37 | 58,420 | 55 | 71,900 | | 20 | 43,900 | 38 | 59,220 | 56 | 72,590 | | 21 | 44,800 | 39 | 60,010 | 57 | 73,280 | Table 1.1 PERMISSIBLE LOADS AS RECOMMENDED BY AASHO POLICY ADOPTED APRIL 1, 1946 not produce stresses in excess of those permitted by design specifications, resolves itself into one that is anything but simple. After long and careful consideration of all the factors entering into this problem, the permissible axle-group loads, as given by Table 1.1 in accordance with the recommendations of present AASHO policy, were established at such a level that they will not only result in maximum stresses which will not exceed those presently specified for use in the design of new bridges but, at the same time, will not endanger the safety of existing bridges or produce excessive overstresses that would result in premature injury or unduly shorten their economic life as a result of fatigue. And though this table of permissible axle-group loads and gross vehicle weights provides a practical guide for heavy motor vehicle operation, it
gives no clue as to the actual stresses produced by any particular vehicle type or loading on a bridge of given length. The method developed herein for converting heavy vehicle loads into equivalent loads, however, not only provides a rational procedure for rating a given heavy vehicle in terms of its stress producing effects on a simple span bridge of any particular length, but it also furnishes the means for determining permissible vehicle weights on bridges of various lengths and design designations. The essential features of the method can be outlined and explained rather briefly by discussing them in connection with the equivalent load rating of a particular vehicle, and its stress producing effects on a particular bridge of given length and design designation. Suppose, for example, that a Type 3 truck, having a gross vehicle weight of 42.0 kips and whose axle loads and spacings are as shown in Figure 1.2, is under consideration. And for this truck, suppose it is desired to know the H-equivalency rating of this vehicle and also whether or not it should be permitted to pass over a particular two-lane simple span bridge, 60 feet in length, that had been designed for an H 15 loading in accordance with the 1949 AASHO Standard Specifications. In order to rate this truck in terms of an equivalent H truck loading it is only necessary to find the weight of a standard H truck that will produce TYPE 3 TRUCK NUMBER 18 NOTE: SEE INDEX TABLE 6.2 MAXIMUM MOMENTS PRODUCED BY THIS TRUCK ARE GIVEN IN TABLE 7.2 AND 8.2 Figure 1.2 the same maximum moment on a 60-foot span as the given vehicle. By making the detailed calculations or by consulting Table 7.2, it will be found that the given vehicle will produce a moment of 525.8 kip-feet on a 60-foot span. And since it would require an H-truck weighing 38.6 kips or 19.3 tons to produce the same moment on this span, the given vehicle would be rated as an equivalent H 38.6 (kip) truck loading or an equivalent H 19.3 (ton) truck loading on a 60-foot span. By referring to the AASHO policy permissible axle-group loads given by Table 1.1, it will be found that the truck shown in Figure 1.2 does not exceed the axle-group loads indicated and, therefore, would be permitted to pass over the 60-foot bridge of H 15 loading design. This, in spite of the fact that the given vehicle has an equivalent rating of 19.8/15.0 = 1.32 times or 32 percent more than that of an H 15 truck, immediately raises the question: How does one arrive at the conclusion that it would be permissible for an equivalent H 19.8 truck to pass over a 60-foot bridge of H 15 loading design? This seemingly contradictory situation may be explained by saying that all bridges, designed in accordance with AASHO specifications, are constructed in such a way as to include a certain stipulated reserve load carrying capacity as a safety precaution against unintentional or illegal overloads and also to provide for legal but infrequent heavy loads such as those indicated by the permissible axle-group loads in Table 1.1. Perhaps it would contribute to a better understanding of overloads and their effects on bridges if it were explained that an increase of, say, 40 percent in the live load and impact moments on a given bridge does not result in so large an increase in the total moment. This is because the dead load moment, which in most cases is a considerable part of the total moment, for a given span always remains the same and, therefore, a given percent increase in only the live load and impact moments would not result in so great a percent increase in the total moment. And though this line of reasoning provides a qualitative answer to the question, it is not sufficiently specific for one to arrive at a rational conclusion concerning the actual amount of overstress that may be involved in any particular situation. In other words, though the qualitative answer is satisfactory so far as it goes, it gives no information as to the degree in which the reserve load carrying capacity of a given bridge is called upon to function during the passage of any particular heavy vehicle load. Once the H-equivalency of a given vehicle on a particular span has been determined, however, its numerical rating will provide a satisfactory answer for most practical cases but, even so, it is still not sufficiently specific to indicate the probable magnitude of overstress involved in any particular situation. Owing to the fact that the dead load of a bridge varies with both the span and the type of construction, it is not possible to relate the H-equivalency of a given vehicle with a specific amount of overstress that would be exact for all types of construction. However, if the amount of overstress for a given span and H-equivalency is determined on the basis of the lightest possible type of construction, the answer would be exact in the sense that it would represent the maximum possible magnitude of overstress since it would not be exceeded in another heavier type bridge of the same span. For example, suppose it is desired to know the amount of overstress produced by the Type 3 truck, shown in Figure 1.2, on the above described 60-foot bridge of H 15 loading design. If it is now assumed that this bridge is of a light construction type, consisting of a concrete deck supported by simple span steel stringers, the dead load moment would account for about 50 percent of the total design moment. For a 60-foot span, the AASHO moment table shows that the H 15 lane loading would control and produce a maximum live load moment of 418.5 kip-feet per lane, to which a 27 percent allowance must be added for impact. The total moment for which this bridge must be designed, therefore, would be as follows: #### H 15 loading design moments in kip-feet for 60-foot span | Live load moment | $\mathbf{M}_{\scriptscriptstyle \mathrm{LL}}$ | == | 418.5 | | |--------------------------------------|---|----|--------|--| | Impact moment = $.27 \times 418.5 =$ | $\mathbf{M}_{\scriptscriptstyle \mathrm{I}}$ | = | 113.0 | | | Dead load moment $= 418.5 + 113.0 =$ | $\mathbf{M}_{\scriptscriptstyle \mathrm{DL}}$ | = | 531.5 | | | Total design moment | M _{Tot} . | == | 1063.5 | | This design moment may now be compared with the total moment produced by the 21 ton Type 3 truck shown in Figure 1.2 which is as follows: | Live load moment | $M_{\scriptscriptstyle m LL}~=~525.8$ | |--------------------------------------|--| | Impact moment $= .27 \times 525.8 =$ | $M_{\rm I} = 142.0$ | | Dead load moment = $418.5 + 113.0 =$ | $\mathbf{M}_{ ext{DL}} = 531.5$ | | Total moment | $M_{\text{Tot.}} = 1199.3$ | The given vehicle, together with the allowance shown for impact, therefore, produces bending stresses which are 1199.3/1063.5 = 1.13 times or 13 percent in excess of the basic design stresses. On this basis, it could be concluded that the given vehicle would not cause an overstress in excess of 13 percent on any 60-foot simple span bridge that was designed in accordance with the 1949 AASHO specifications. Even though it is not within the province of this report to recommend any particuler percent of overstress that should not be exceeded, it would be safe to say that a 13 percent overstress caused by an infrequent heavy vehicle load would not be considered as an undue encroachment on the reserve load carrying capacity of a bridge whose reserve capacity compared favorably with that required by present-day design specifications. One of the more important points brought out by this example, however, is that even though the given vehicle has an H-equivalency of 32 percent in excess of an H 15 truck, it would cause no more than a 13 percent overstress on a 60-foot bridge of H 15 loading design. This will, in some measure, explain the reason why the present AASHO policy has established the level of permissible axle-group loads in Table 1.1 at a point where the maximum live load and impact moments resulting from them will not be more than about 43 percent in excess of those caused by an H 15 design loading. In other words, the permissible axle-group loads in Table 1.1 establish the maximum level of heavy motor vehicle operation at a point where the maximum live load and impact moments produced by them on any span will AXLE - GROUP - LOADS ON BRIDGES OF H LOADING DESIGN GRAPH SHOWS MAXIMUM PERMISSIBLE WEIGHTS ON ANY GROUP OF AXLES WHICH, FOR ANY NORMAL DISTRIBUTION OF LOAD, WILL NOT PRODUCE MORE MOMENT ON ANY SPAN THAN THE H LOADING INDICATED Figure 1.3 not exceed those required for an H 21.5 loading design. A comparison of the permissible axle-group loads in Table 1.1 with other H loading designations is shown graphically by the dashed line in Figure 1.3. The proper interpretation of this figure, however, requires a little explanation. #### Explanation of Figure 1.3 and Table 1.2 In connection with this investigation of heavy vehicle loads, it was found, for any normal distribution of gross load among the several axles of a group, that the maximum permissible weight on any group of axles, such that it would not produce more moment on any span than a standard H design loading of given designation, could be estimated rather accurately by use of the following equation; $$W = [\sqrt{C + La/4} + \sqrt{La/4}]^2$$ 1.1 in which W = Maximum weight in kips on any group of axles such that it will not produce more live load moment on any span than a standard H design loading corresponding with the lane loading constants, C and a, in Equation 1.1. L = Distance in feet between the extremes of any group of axles. C = Concentrated load in kips corresponding to H lane loading designation under consideration. = Uniform load in kips per foot corresponding to H lane loading designation under consideration. If pounds instead of kips are used for the constants C and a, in Note: Equation 1.1, the weight, W, will also be in pounds. Table 1.2
VEHICLE WEIGHTS ON BRIDGES OF H LOADING DESIGN | Ayle Group—Loads—Kins | |-----------------------| | Dist. Retween
Extremes of | Critical | Designed Standard H. Loading | | | | | | |---------------------------------|----------------|------------------------------|-------|-------|--------|--------|--------| | Any Group
of Axles L
Feet | Span S
Feet | 10 | 15 | 20 | 30 | 40 | 50 | | 4 | 12.80 | 13.10 | 19.65 | 26.20 | 39.30 | 52.40 | 65.5 | | 6 | 16 33 | 14.23 | 21.35 | 28.46 | 42.69 | 56.92 | 71.1 | | 8 | 19.53 | 15.25 | 22.88 | 30.50 | 45.75 | 61.00 | 76.2 | | 10 | 22.50 | 16.20 | 24.30 | 32.40 | 48.60 | 64.80 | 81.0 | | 12 | 25.33 | 17.11 | 25.67 | 34.22 | 51.33 | 68.44 | 85.5 | | 14 | 28.05 | 17.98 | 26.97 | 35.96 | 53.94 | 71.92 | 89.96 | | 16 | 30.68 | 18.82 | 28.23 | 37.64 | 56.46 | 75.28 | 94.10 | | 18 | 33.24 | 19.64 | 29.46 | 39.28 | 58.92 | 78.56 | 98.20 | | 20 | 35.74 | 20.44 | 30.66 | 40.88 | 61.32 | 81.76 | 102.20 | | 22 | 88.21 | 21.23 | 31.85 | 42.46 | 63.69 | 84.92 | 106.1 | | 24 | 40.62 | 22.00 | 33,00 | 44.00 | 66.00 | 88.00 | 110.0 | | 26 | 43.00 | 22.76 | 34.14 | 45.52 | 68.28 | 91.04 | 113.8 | | 28 | 45.37 | 23.52 | 35.28 | 47.04 | 70.56 | 94.08 | 117.6 | | 30 | 47.69 | 24.26 | 36.39 | 48.52 | 72.78 | 97.04 | 121.30 | | 32 | 50.00 | 25.00 | 37.50 | 50.00 | 75.00 | 100.00 | 125.0 | | 34 | 52,30 | 25.74 | 38.61 | 51.48 | 77.22 | 102.96 | 128.7 | | 36 | 54.56 | 26.46 | 39.69 | 52.92 | 79.38 | 105.84 | 132.3 | | 38 | 56.82 | 27.18 | 40.77 | 54.36 | 81.54 | 108.72 | 135.9 | | 40 | 59.06 | 27.90 | 41.85 | 55.80 | 83.70 | 111.60 | 139.50 | | 42 | 61.28 | 28.61 | 42.92 | 57.22 | 85.83 | 114.44 | 143.03 | | 44 | 63.50 | 29.32 | 43.98 | 58.64 | 87.96 | 117.28 | 146.60 | | 46 | 65.69 | 30.02 | 45.03 | 60.04 | 90.06 | 120.08 | 150.10 | | 48 | 67.90 | 30.73 | 46.10 | 61.46 | 92.19 | 122.92 | 153.6 | | 50 | 70.06 | 31.42 | 47.13 | 61.84 | 94.26 | 125.68 | 157.10 | | 52 | 72.03 | 31.93 | 47.90 | 63.86 | 95.72 | 127.72 | 159.6 | | 54 | 74.41 | 32.81 | 49 22 | 65.62 | 98.43 | 131.24 | 164.0 | | 56 | 76 58 | 33.51 | 50.27 | 67.02 | 100.53 | 134.04 | 167.5 | | 58 | 78.73 | 34.20 | 51.30 | 68.40 | 102,60 | 136.80 | 171.00 | | 60 | 80.87 | 34.88 | 52.32 | 69.76 | 104.64 | 139.52 | 174.40 | Note: For any normal distribution of load among the individual axles, this table shows the maximum gross weights which may be carried on any group of axles such that they will not produce more moment on any span than the design standard H loading indicated. The critical span S, in this table, is the span on which the moment produced by the axle-group load indicated becomes more nearly equal to that produced by the corresponding H loading. On all other spans, less or greater than S, the moment produced by the axle-group load indicated is always less than that produced by the corresponding H loading. ⁴Henson K. Stephenson, "Determination of Permissible Vehicle Weights on Bridges of H Loading Design," AASHO Proceedings, Washington, D.C., 1949, pp. 144-185. AASHO Proceedings, Washington, D.C., 1949, pp. 144-185. Equation 1.1, therefore, is the general expression used for determining the solid line axle-group load curves shown in Figure 1.3. In fact, Equation 1.1 was first used to determine the axle-group loads for each of the H loading designations shown in Table 1.2 and then plotted in Figure 1.3. In Figure 1.3, it will be noted that the permissible axle-group-loads recommended by the AASHO policy (dashed line), throughout the entire range of wheel base lengths, are about 1.43 times or about 43 percent more than those indicated for the H 15 loading. In other words, the present AASHO policy permits axle-group loads and gross vehicle weights which will not produce live load and impact moments on any span in excess of those that would result from an H 21.5 design loading. In the second column of Table 1.2, it will be noted that the critical span, S in feet, is given for all loads, irrespective of magnitude, that may be carried on a given length of wheel base. This critical span S is the span on which the maximum live load moment produced by the axle-group load indicated becomes more nearly equal to that caused by the corresponding H design loading and, on all other spans, less or greater than S, the moment produced by the axle-group load indicated will always be less than that caused by the H design loading of corresponding designations. Perhaps the most interesting thing to note in this connection is that the length of the critical span is not influenced by the magnitude of load but only by the wheel base length of the axle-group on which the load is carried. From a practical standpoint this means that if a given heavy vehicle were being investigated to determine its most serious stress (moment) producing effects on bridges of various lengths and H loading design, only those critical spans corresponding to the wheel base lengths of its various axle-groups need be considered. On all other spans, less or greater than the critical span for each axle-group load, the reserve load carrying capacity would be greater than that for the length corresponding to the critical span. #### 1.5 Closure The preceding discussion of permissible vehicle weights on roadways and bridges, though it is in no sense complete, will serve in a general way to indicate the nature of several of the more important problems associated with the sizes, weights, and frequencies of heavy vehicle types and loadings, and how they are related to highway and bridge provision. It will also serve to outline the method suggested here for the rating of heavy vehicles in terms of equivalent loads as an approach to the problem of correlating heavy motor vehicle operation with highway and bridge provision. The development and use of the tables and charts given herein for converting heavy vehicles into equivalent loads will be discussed in more detail in Article 5. #### 2. AXLE LOAD AND GROSS LOAD TRENDS From a very small beginning in about 1900 the use of motor vehicles has increased almost continously ever since. Motor vehicle registrations were but 78,800 in 1905, passed 10 million in 1921, crossed the 20 million mark in 1926, exceeded 30 million in 1939, and numbered more than 40 million in 1949. Although no figures are available as yet for this year, the number of registrations will probably pass the 50 million mark in 1951. A breakdown of these registrations from 1920 through 1949 into passenger cars, buses, and trucks is shown in Table 2.1. Since it is the growth in use of motor freight vehicles that is of particular interest in connection with these studies, the important thing to note in Table 2.1 is the relative increase in the number of truck registrations as compared with total registrations. In column 5 of this table it will be seen that trucks accounted for 12.0 percent of all registrations in 1920 and increased ${\footnotesize \mbox{Table 2.1}}$ MOTOR VEHICLE REGISTRATIONS IN UNITED STATES (Excluding publicly owned vehicles) | Total | Trucks | | Euses | Passenger | Year | |------------|------------|---------------|---------|------------|------| | | % of total | Number | | Cars | 100. | | 9,239,161 | 12.0 | 1,107,639 | (1) | 8,131,522 | 1920 | | 19,940,724 | 12.5 | 2,483,215 | 17,808 | 17,439,701 | 1925 | | 26,531,999 | 13.3 | 3,518,747 | 40,507 | 22,972,745 | 1930 | | 26,229,743 | 14.0 | 3,675,865 | 58.994 | 22,494,884 | 1935 | | 32,035.424 | 14.3 | 4.590.386 | 72.641 | 27,372,397 | 1940 | | 30.638,429 | 15.8 | 4.834.742 | 112,253 | 25,691,434 | 1945 | | 33,945,817 | 16.9 | 5,725,692 | 119,937 | 28,100,188 | 1946 | | 37,360,463 | 17.4 | 6.512.628 | 128,983 | 30.718.852 | 1947 | | 40,622,264 | 17.8 | 7,227,380 | 133,430 | 33,261,454 | 1948 | | 44,670,588 | 18.0 | $8.099,914^2$ | 137,000 | 36,433,674 | 1949 | Source: Bureau of Public Roads MV-1 tables. steadily year by year through 1949 when trucks accounted for 18.0 percent of all motor vehicle registrations. These percentage increases, however, do not tell the full story. It would be more significant, perhaps, to point out that the 8,099,914 trucks registered in 1949 represent a 740 percent increase over the 1,107,639 registered in 1920, whereas the 36,433,674 passenger car registrations in 1949 represent but a 448 percent increase over the 8,131,522 registered in 1920. Referring again to Table 2.1, it not only shows that the total number of trucks continues to increase but the ratio of trucks among total registrations also continues to increase. However, it is not so much the increasing numbers of trucks as it is the continued increases in their sizes, gross loads, and axle loads that accounts for the growing concern in the subject of permissible vehicle weights and how they are related to highway and bridge provision. These comparisons will not only serve to establish the present trend in the use of motor freight vehicles but also to emphasize the need for more and better information for dealing with the problems associated with their sizes, weights, and frequencies. There was some concern during the early twenties over the damage being done to the highways by what was then considered to be heavily loaded trucks.⁵ Relatively few of the gross vehicle loads or axle loads recorded in truckweighing operations conducted during this period, however, would be considered serious in accordance with present standards. Most of these loads were carried on solid tires which were more damaging than the pneumatic tire of today, and also legislation had not yet been enacted which would permit wide use of vehicle combinations with multiple axles. The advent of the pneumatic tire, the enactment of favorable legislation, and the design and construction of thicker pavements virtually eliminated this earlier concern and by 1931 there were rarely any loads carried on the highways heavy enough to over tax their structural capacity. State-wide highway planning surveys were started in 1935 and during the period 1936-37
nearly all of the States conducted truck-weighing operations giving for the first time comprehensive data from which an accurate analysis could be made of the frequency of occurrence of heavy gross loads and axle loads operating on our highways. During the years 1938-41 only fragmentary data were collected concerning truck weights and axle loads, but with the beginning of World War II the ⁽¹⁾ Registration of buses not recorded separately. ²F'ercentage based on an estimated 137,000 buses among the 8,236,914 buses and trucks reported. ⁵J. T. Lynch and T. B. Dimmick, "Axle Loads and Gross Load Trends," PUBLIC ROADS, Vol. 25, No. 12, February, 1950. #### AVERAGE WEIGHTS OF LOADED AND OF EMPTY TRUCKS AND COMBINATIONS IN THE SUMMERS OF 1942-49 AND TRUCK A CORRESPONDING PERIOD OF A PREWAR YEAR increased loadings on trucks began to cause again collected on a nation-wide scale in 1942 since that time. Figure 2.1some concern and so data were and have been collected annually The trends⁶ indicated by the analysis of this data are shown graphically in Figures 2.1, 2.2, and 2.3 which were taken from Public Roads for December 1950. Figure 2.1 gives the average weight for loaded and empty trucks and truck combinations for a prewar year, generally 1936 or 1937, and for the years 1942 through 1949 inclusive. It can be seen that the single unit trucks gradually increased in weight from the prewar period until about 1945 and then leveled off or declined slightly during the following years so that the over-all increase in average weight for the years reported amounted to only about 12 percent. On the other hand the average weight of the truck NUMBER OF HEAVY GROSS WEIGHTS PER 1,000 TRUCKS AND TRUCK COMBINATIONS (EMPTIES INCLUDED) IN THE SUMMERS OF 1942-49 AND A PREWAR YEAR ⁶T. B. Dimmick, "Traffic Trends on Rural Roads in 1949," PUBLIC ROADS, Vol. 26, No. 5, December, 1950. NUMBER OF HEAVY AXLE LOADS PER 1,000 TRUCKS AND TRUCK COMBINATIONS (EMPTIES INCLUDED) IN THE SUMMERS OF 1942-49 AND A PREWAR YEAR combinations, both loaded and empty, has consistently increased from the 1936-37 period through 1949 for an increase of almost 50 percent. The increase for single unit trucks and truck combinations for the same period was approximately 57 percent, a higher percentage than for either type separately because of the larger proportion of truck combination in the latter years. Figure 2.2 shows for the United States as a whole the number of gross weights of 30,000 pounds or more, 40,000 pounds or more and 50,000 pounds or more per 1,000 vehicles from the prewar years (generally 1936 or 1937) through 1949. The trend of frequency of these loads continues to climb upward although there was some decrease in the frequency of the 50,000 pound loads or more in 1949 as compared with 1948. For the period of this study it can be seen from Figure 2.2 that there was a 12 percent increase in the gross loads of 50,000 pounds or more, a 7 percent increase in the gross loads of 40,000 pounds or more, and a $3\ 1/2$ percent increase in the gross loads of 30,000 pounds or more. Along with the tremendous increase in the number of heavy trucks and the frequency of gross loads of 30,000 pounds or more, there has been a similar rise in the frequency of heavy axle loads. This can be seen from figure 2.3 which shows the number of axle loads of 18,000 pounds or more, 20,000 pounds or more and 22,000 pounds or more per 1,000 vehicles for a prewar year and for the years 1942 to 1949 inclusive. And it can be seen that the frequency for each of the three groups of axle load increased steadily through 1948 and then declined slightly in 1949. The axle loads of 18,000 to 20,000 pounds showed significant increases in frequency of occurrence, but the greatest increase in frequency was for axle loads of 22,000 pounds or more. These axle loads (22,000 pounds or more) increased in frequency from 2 per 1,000 vehicles in the prewar period to 17 per 1,000 vehicles in 1949 for an increase of 750 percent. A study of heavy axle load frequencies by regions indicates that the most favorable situation exists in the Western regions while the worst conditions, at the present time, exist in the New England and Middle Atlantic regions. Legislation in the Western regions permits the advantageous distribution of loads on vehicle combinations of five or more axles whereas in the Eastern parts of the United States legislation is such as not to be conducive to the use of more than three or four axles. This is illustrated in Figure 2.4^8 which gives the cumulative frequency of axle loads whose gross weights were equal to or greater than stated values based on the loadmeter surveys of 1942. For example, it can be seen from Figure 2.4 that over 32 percent of the heavy vehicle axles in the East weighed 18,000 pounds or more as compared with about 7 percent in the West. Similarly it shows that about 13 percent of the heavy vehicle axles in the East weighed 21,200 pounds or more as compared with only about 1 percent in the West. For the United States as a whole it will be seen that about 20 percent of the heavy vehicle axles weighed 18,000 pounds or more and that 5 percent of the heavy vehicle axles weighed 21,200 pounds or more. The analysis of later surveys substantiates the findings given in Figure 2.4. Concern over the tremendous increases in the frequencies of the various intensities of these heavier axle loads stems from the fact that all but an insignificant part of our present highway system was not designed to accomodate either the magnitude or the frequencies of these loads, as shown in Figure 2.3, which have characterized heavy motor vehicle operation in the United States since about the beginning of the second World War. It would seem, therefore, that the only way in which our present highway facilities can be adequately protected is to regulate the maximum axle load and gross loads which will be permitted to operate and, at the same time, provide for some effective means of enforcement. Legislation which would permit lengths to be such as to encourage wider use of vehicle combinations with multiple axles would undoubtedly do much to alleviate the present condition. Legislation which would encourage the use of vehicle combinations with multiple axles would not only tend to reduce the weights carried on individual axles out. ⁷, ⁵Henson K. Stephenson and A. A. Jakkula, "Highway Loads and Their Effects on Highway Structures Based on Traffic Data of 1942," Texas Engineering Experiment Station Bulletin No. 116, 1950. ⁹J. T. Lynch and T. B. Dimmick, "Axle Loads and Gross Load Trends," PUBLIC ROADS, Vol. 25, No. 12, February, 1950. ¹⁰Henson K. Stephenson and A. A. Jakkula, "Highway Loads and Their Effects on Highway Structures Based on Traffic Data of 1942," Texas Engineering Experiment Station Bulletin No. 116, Part III, 1950, pp. 113-127. at the same time, it would permit the realization of reasonable increases in pay load that would not be detrimental to either our present roadways or bridges. #### 3. INFLUENCE OF HEAVY MOTOR VEHICLE OPERATION ON HIGH-WAY AND BRIDGE PROVISION Earlier in this report, it was pointed out that many elements of the problems associated with the sizes, weights, and frequencies of heavy motor vehicles, and their respective effects on the costs of building and maintaining highways and bridges, are of a highly controversial nature. It was also point- ed out that since certain of these matters are of a controversial nature, the reason for discussing them here is to contribute, if possible, toward a better understanding of some of the issues involved rather than that of arriving at any specific recommendations concerning the economic justification of any particular level of permissible axle loads and gross loads that should obtain for given facilities or traffic conditions. Practically everyone, including the advocates of larger and heavier vehicles, will agree that more substantial subgrades, thicker pavements, and stronger bridges are required to support the heavier loads than would be required to accommodate the lighter loads. But there is still another element which must be taken into account in the design of highways and bridges that is not so well-known or understood. This element for want of a better name has been called "fatigue." This term is used to describe the ability of a structural material to withstand repeated applications of various intensities of load. The curve shown in Figure 1.1, for example, shows the number of repetitions of a given stress required to produce a fatigue failure in a concrete pavement. And though the number of stress repetitions required to produce a fatigue failure would not necessarily be the same as shown in Figure 1.1, the fatigue curves for other structural materials are quite similar. The curve in Figure 1.1, for example, shows that a concrete pavement can withstand an indefinitely large number of stress repetitions provided the stress does not exceed about 50 percent of its ultimate flexural strength. It also shows that but a comparatively small number of stress repetitions in excess of this amount is required to produce a fatigue failure. More specifically, it will be seen from this curve that if the repeated stress were increased only to, say, 60 percent of the concrete's ultimate flexural strength, it would be expected to fail in fatigue after about 22,000 applications of the load producing this stress. Other examples could be cited, of course, but they would only differ in detail. The main point to be brought out here is that the design of highway facilities—whether they be subgrades, pavements, bridges, or other structures—is not only a function of the maximum axle loads and gross loads to be accommodated but is also a function of the expected frequencies of various intensities of these loads. Therefore, if the truth of these facts, which are well-known to highway and bridge engineers, could be effectively explained
to the layman, it is believed that one of the principal sources of misunderstanding would be measurably lessened or perhaps eliminated entirely. This assignment, however, will not be so simple as it might appear at first glance. To the trucking operator, for example, who is accustomed to hauling excessive loads, the idea of fatigue failure might seem farfetched indeed. This would not be an unnatural reaction because he has actually seen many heavy loads pass over both pavements and bridges without their producing any visible signs of distress or failure. However, if some way could be devised that would clearly explain to him the truth of fatigue failure and certain other deteriorating effects of excessive overloads, he would at least be in a better position to understand that certain limitations on maximum axle loads and gross loads are necessary in the public interest to insure the maximum economic life of the Nation's highway facilities. The relationship between excessive loads and fatigue failure is one of the more important elements involved in the over-all problem of permissible vehicle sizes and weights, but there are others that are quite as important for which a better understanding is also urgently needed. The deteriorating effects of pumping, for example, is another of these elements that should be more clearly explained. An authoritative report¹¹ on this subject was briefly discussed in Article 1.3. The effects of vehicle sizes on geometric design and highway capacity are also among these elements but their influence on the ¹¹Final Report of Committee on Maintenance of Concrete Pavements as Related to the Pumping Action of Slabs, Highway Research Board, Vol. 28, heavy axle loads are the primary activating element in pumping at joint and cracks in concrete pavements, pp. 281-310. cost of highway and bridge provision is somewhat more involved and therefore more difficult to determine than those previously mentioned. Although the above discussion is in no sense complete it is believed to be sufficient to indicate some of the major sources of controversy and misunderstanding pertaining to the determination of, and the necessity for, the regulation or limitation of maximum permissible vehicle sizes and weights. In the final analysis, however, the solution of these problems will depend in large measure on evaluating the effects of heavy motor vehicle operation on the costs of highway and bridge provision, and apportioning those costs in an equitable manner among the various classes of highway users. A vast amount of work has already been done and is still being done along these lines both in the fields of engineering research and highway economics, but much more will be required to find equitable answers that will be acceptable to everyone concerned. Some indication as to the nature of these problems and the effects of heavy motor vehicle operation on the cost of highway and bridge provision may be had from a report recently submitted to the United States Senate. This report includes the results of two different studies made by the Colorado and New Jersey State Highway Departments respectively which clearly reflects the road damage resulting in these States from heavy truck operation. The results of the studies made by the Colorado Highway Department were as follows: #### "ROAD DAMAGE BY TRUCKS IN COLORADO Mr. A. V. Williamson, District Engineer, Public Roads Administration, New Customs House, Denver, Colo. Dear Sir: The following information in connection with damage to highways by heavy loads is transmitted for your information. At the outbreak of World War II the legal load limits on Colorado highways were 18,000 pounds on a single axle, 24,000 pounds on a two-axle vehicle, 34,000 pounds on a three-axle vehicle, and $W=700\ (L+40)$ on a combination of vehicle and trailer with a gross load of 63,000 pounds. On September 18, 1943, the Governor of Colorado on account of war necessities by proclamation granted permission for the issuance of certificates of operation for vehicles to carry extra legal weights on Colorado highways. By January 20, 1944, 493 such certificates had been issued. These certificates included some for axle loads up to 23,655 pounds and some for gross loads up to 84,000 pounds. Early in 1944 maintenance superintendents started to complain that these heavy loads were severely damaging the road surfaces, and as the months passed by their complaints grew louder. In the late fall of 1944 the task of determining exactly what damage was being done by these overloads was assigned to the maintenance division. After considerable study it was decided that the concrete pavements presented definite means of determining whether or not damage was actually being caused. It was further determined that definite data could be secured by making parallel crack surveys on pairs of concrete sections comparable as ¹²Thomas H. MacDonald, "A Factual Discussion of Metortruck Operations," Dept. of Commerce, Bureau of Public Roads, Superintendent of Documents, U. S. Govt. Printing Office, Washington, D. C. ¹⁵Thomas H. MacDenald, "A Factual Discussion of Mctortruck Operations," Dept of Commerce, Bureau of Public Roads, Superintendent of Documents, U. S. Govt. Printing Office, Washington, D. C., Appendix II, pp. 76-79. regards bases, design, age, strengths of pavement concrete, and other pertinent characteristics. Of each pair, one was to have few or no permitted overloads in regular operation. The other was to have as many regular overloads in operation as possible. It could reasonably be assumed that each would develop about the same percentage of cracks from common causes, and it could also reasonably be assumed that those sections bearing the overloaded vehicle would develop a larger percentage of cracks than the one that had no overloads. After considerable detailed investigation four such pairs of comparable sections were decided upon, the crack surveys were made and the results of those surveys shown in the accompanying tabulation speak for themselves and confirm the prognosis. A big percentage of the surveyed slabs carrying overloads was on State Highway 2 between Sterling and Julesburg. On this section for the years 1941, 1942, and 1943 the average cost of surface maintenance was \$29.36 per mile per year. On the same road the average cost of surface maintenance for 1944, 1945, and 1946 was \$59.59 per mile per year. A notable example of damage from heavy loads to bituminous surfaces was on State Highway 13 from Craig, north, to the Wyoming State line. A 1 1/2" x 20' bituminous surface was placed on this road in 1938 and gave generally good service until 1945. In 1945 major developments started in the Rangely oil field, and a big percentage of the oil well drilling equipment was transported from Wyoming to Rangely. This movement continued throughout the winter of 1945-46, and by the spring of 1946 this road was in a deplorable condition. The base had failed over all the road, which had not been previously stabilized, and the bituminious surface was in exceedingly bad condition. The road was in such condition that during the summer of 1946 it was necessary to stabilize the base and relay the surface. The new surface being a 2" mat 22' wide. The following costs indicate clearly the damage this road suffered: #### Maintenance costs for 38 miles | 1945 | Normal routine main | tenance\$ | 8,381.37 | |------|---------------------|---------------|------------| | 1945 | Special maintenance | (betterments) | 6,888.99 | | | Total | | 15,270.36 | | 1946 | Normal maintenance | | 6,261.17 | | 1946 | Special maintenance | (betterments) | 193,059.77 | | | Total | | 199.320.94 | Trusting this information may have some value, I am, Very truly yours, James D. Bell, Assistant State Highway Engineer. D. N. Stewart, Maintenance Engineer." Various agencies of other states have made studies similar to that of the Colorado Highway Department which differ somewhat in the details of their findings; however, these studies do agree that heavy vehicles may be held responsible for a large percentage of the total costs of building and main- Table 3.1 COLORADO STATE HIGHWAY DEPARTMENT—TABULATION SHOWING COMPARATIVE RATES OF PROGRESSIVE CRACKING IN CONCRETE PAVING SLABS. EACH PAIR CONSISTS OF PROJECTS OF COMPARABLE CHARACTERISTICS, ONE OF WHICH CARRIES MANY OVERLOADS DAILY. THE OTHER CARRYING ONE OR LESS | MANY OVERLOADS DAIL | I, TH | E OTHE | R CARI | CYING | ONE OR | LESS | | | | | |--|--------------|-------------------|--|--|---|---|---|--|---|-----------------| | Project and location | I | Trucks and Busses | 1944 daily extra legal
loads allowed by permits | Number of days between
original and first check
survey | Percentage of slabs
showing new or extended
cracks between original
and first cheek survey | Rate of increase each 10 days in number of slabs showing new or extended cracks developing becrease original and first check survey | Number of days between
first and second check
surveys | Percentage of
slabs
showing new or extended
cracks between first and
second check surveys | Rate of increase each 10 days in number of slabs showing new or extended cracks developing between first and second these surveys | Number of slabs | | Pair No. 1: | | | | | Percent | Percent | | Percent | Percent | | | FAP 287-A-3 on State Highway 2 between Wiggins and Fort Morgan. Slabs 18 feet wide, 60 feet long, with deformed metal center joints dowelled. Built in 1928. FAP 251-C on State Highway 7 east of Boulder, Slabs are 18 by 60 feet with weakened plane center joint, no steel. Built in 1928. | 998
1 505 | 47
645 | 45
1 | 84
95 | 79
7.5 | 9.4 | 33
23 | 53.77
5.1 | 16.3 2.2 | 305
412 | | Pair No. 2:
FAP 286-E between Eaton and Ault on State Highway 2. Slabs 18
by 60 feet with center joint, without steel. Built in 1931 | | 428 | 37 | 70 | 28.8 | 4.1 | 48 | 34.6 | 7.2 | 360 | | SP 766-1931 on State Highway 14 east of Fort Collins. Same section and age as above | 560 | 190 | 0 | 85 | 1.43 | .168 | 45 | .95 | .21 | 210 | | Pair No. 3;
FAP 122-R-3 on State Highway 2 between Ovid and Julesburg.
Same section as above except that slabs are 20 feet wide. Built
in 1933 | 535 | 165 | 42 | 50 | 30.7 | 6.1 | 44 | 34.9 | 7.9 | 321 | | FAP 79-BR on State Highway 4 between Colorado Springs and
Peterson Field, Same section as above. Built in 1933 | 2 340 | 960 | 1 | 49 | 0 | 0 | 59 | 3.03 | .513 | 165 | | Pair No. 4: | ,0.0 | 000 | • | | • | v | ••• | 0.00 | .019 | 100 | | FAP 175-AR-6 on State Highway 2 between Crook and Red Lion,
20 feet wide, expansion joints 90 feet apart, dummy joints 30
feet apart making slabs 30 feet long with center joint. All joints
dowelled. Built in 1937. | 380 | 120 | 42 | 90 | 18.8 | 2.1 | 42 | 19.8 | 4.7 | 1,349 | | Weld County 3 percent project built on 11th Ave. in Greeley in 1935. Same section as next above with a little less steel. This is a busy city street | | *50 | 0 | 58 | 0 | 0 | 63 | 4.7 | .73 | 87 | *Busses only. NOTES.—No. 1. All slabs are 6 1/2 inches thick at center, 9 inches thick at edges. No. 2. All surveys were made between Dec. 1, 1944, and July 1, 1945. No. 3. All cracks found on original survey were recorded on same sketches. Tabulation was calculated from these sketches. Figures unchecked and subject to revision. taining highway facilities. It is beyond the scope of this bulletin, however, to undertake to pass judgment on these findings. They are submitted here merely to indicate the studied conclusions that have been arrived at as a result of authoritative investigations into the effects of heavy motor vehicle operation on the cost of highway and bridge provision. ## 4. EQUIVALENT LOADS PROVIDE THE MEANS FOR RATING HEAVY MOTOR VEHICLE TYPES AND LOADINGS Since about the beginning of the second World War, both the numbers and weights of heavy axle loads and gross loads have increased at such a rapid rate (see Figures 2.1, 2.2, 2.3), it has become more and more urgent that suitable procedures and techniques be devised for dealing with certain of the problems, associated with the operation of heavy motor vehicles and their effects on the design, construction, maintenance, and economic life of our present and future highway facilities. In recognition of these needs and as a partial contribution toward their fulfillment, it was pointed out in Article 1.1 that the over-all objective of this bulletin is to develop a simple yet accurate mathematical procedure for the rating of the stress producing effects of heavy vehicle types and loadings in terms of some convenient but standardized equivalent loads, and to show how the frequency distributions of these equivalent loads provide a rational means for measuring the level or levels of heavy motor vehicle operation corresponding to given traffic conditions such as those reported by a local, state, or national loadometer survey. It was also pointed out that in order to accomplish these ends, it is first necessary to find a satisfactory way for converting a given heavy vehicle loading into an equivalent load, and that this could be done by evaluating some stress producing effect—such as maximum moment, shear, or floor beam reaction—caused by the given vehicle on a simple span bridge of definite length and then finding the gross weight required on, say, a standard H truck to produce the same effect. For example, if a given vehicle caused a maximum moment of say 445.6 kip-feet (see AASHO moment table) on a 50-foot span it would be the same as that produced by an H 20 truck. And on this basis, the given vehicle would be rated as an equivalent H20 truck loading on a 50-foot span. The given vehicle could quite as easily be rated similarly in terms of an equivalent H-S truck loading, equivalent concentrated load, or any other standardized equivalent load that might prove advantageous as a basis of comparison for the particular purpose under consideration. The simplest procedure, however, would be to first convert the given vehicle into an equivalent H truck loading for the span under consideration, and then rate it in terms of either of the other standardized equivalent loadings by use of the conversion coefficients given and explained in Article 13. Perhaps it should be mentioned again also that another of the more important uses of equivalent loads is that of determining maximum permissible vehicle weights on bridges of various lengths and design designation. For example, it would be but a simple matter to determine whether or not a given vehicle should be permitted to pass over an H15 bridge of given length if the H loading equivalent of the given vehicle were known. The method described in Article 1.1 for converting heavy vehicle types and loadings into equivalent loads, or for determining permissible vehicle weights, is the principal subject for this bulletin and is presented here for the first time. It gives answers which are mathematically correct for the 10,424 cases covered by the tables and charts presented in Part II, and answers which compare favorably with slide-rule accuracy for those cases where values are obtained by interpolation. The basis upon which the method is developed together with the tables and charts that have been prepared to facilitate its use are discussed in some detail and more fully explained in the articles of Part II which follow immediately. ## Part II # METHOD FOR RATING HEAVY VEHICLE LOADS IN TERMS OF EQUIVALENT LOADS # 5. BASIS FOR CONVERTING HEAVY VEHICLE LOADS INTO EQUIVALENT LOADS #### 5.1 General As pointed out in the preceding articles, it is generally agreed that road-way subgrades and pavements can be protected against undue overstress, pumping, fatigue failure, or other premature injury simply by limiting the load that may be carried on a single axle, or on tandem axles which are less than about 4 feet apart. For roadway subgrades and pavements, then, the problem of permissible loads is fairly simple since it is mainly concerned with the loads carried by single axles and by tandem axles of about 4 feet spacing, irrespective of the total gross load of the vehicle. On the other hand though, the problem of determining permissible loads for bridges is somewhat more involved. This is due to the fact that the critical stresses produced in bridges by heavy vehicle loads are influenced by no less than six variables, whereas the stresses in subgrades and pavements are influenced mainly by the intensity of single or tandem axle loads. The six variables which must be taken into account in the calculation of critical stresses for simple span bridges are as follows: - 1. Span length of bridge - 2. Gross weight of vehicle - 3. Wheel base length of vehicle - 4. Number of axles - 5. Spacing of axles - 6. Distribution of gross weight among the axles. If all of these variables are taken into account by use of conventional methods, the only way in which the stress producing characteristics or effects of various heavy vehicle types and loadings on a given bridge can be determined accurately is by making a complete analysis of the stresses, for that particular bridge, produced by each individual vehicle under consideration. And though such an analysis for any particular vehicle or loading on a given span is not difficult, it is, to say the least, tedious and time consuming. The unfortunate thing about such analyses, however, is that the results obtained from them cannot be translated readily into general conclusions which can be used for determining the stress producing characteristics of, or the permissible vehicle weights for, other vehicle types and loading or for spans of different length. What is needed, therefore, is a simplified method for evaluating the stress producing effects of heavy vehicle types and loadings, or their permissible weights, by which usable answers of any desired accuracy might be obtained without having to resort to the tedious and time consuming procedures required by the presently available conventional methods. As a result of the investigations that have been carried out as a part of the research work on this project, a method has been developed for solving certain of these problems by which usable answers may be obtained without making any calculations at all in many cases, and but a few simple calculations in others, depending on the particular problem under consideration and the degree of accuracy desired. ## 5.2 Basis For Method of Converting Heavy Motor Vehicle Loads Into Equivalent Design Loads This method is based on the fact that it is the bending stresses which ordinarily determine the load carrying capacity of simple span bridges. Therefore, any convenient procedure that may be used for finding the maximum bending moment produced by a particular heavy vehicle or loading on a given span, provides a simple yet effective means for measuring the stress producing effects of this particular vehicle or loading on the given span. Thus,
after the bending moment produced by a particular vehicle on a given span has been determined, this moment can then be compared with that produced by one of the AASHO standard design trucks, or that produced by a single concentrated load, thereby converting the given vehicle into an equivalent H truck loading, equivalent H-S truck loading, or an equivalent concentrated load as may be desired. The method provides answers which are exact for the 1300 odd trucks and combinations upon which the tables and charts in the present bulletin are based; and very closely approximate answers for any other vehicle for which values are obtained by interpolation. These tables and charts deal with the stress producing effects caused by 14 of the more common heavy vehicle types ordinarily encountered in present day highway traffic (see Figure 6.1) on simple span bridges up to 100 feet in length. These include the 2- and 3-axle single unit trucks; 6 types of truck-tractor semitrailer combinations with from 3 to 6 axles each; 4 types of truck-trailer combinations with from 4 to 6 axles each; and 2 types of truck-tractor semitrailer trailer combinations with 5 and 8 axles, respectively. All of these heavy vehicles, with the exception of the 8-axle truck-tractor semitrailer trailer combination, were reported in the 1942 loadometer survey. The 8-axle combination was included for two reasons. First, it represents a realistic possibility, that is, it is quite probable that a vehicle of this type may be employed at present or in future trucking operation; and second, the stress producing characteristics of all other combinations having 5 to 8 axles, which may be encountered and which were omitted from this discussion due to their relatively infrequent occurrence, may be closely approximated by interpolation between the 5 and 8 axle combinations included in this analysis. Owing to the fact that the six variables previously listed, which must be taken into account in the calculation of critical stresses for simple span bridges, may have an infinite number of values and may be combined with each other in an infinite number of ways, it is obvious that the maximum moment produced by any particular vehicle on a given span would represent but one of an infinite number of possible values. For this reason, it would not be practical to undertake to determine the maximum moments that would result from all possible combinations of these variables. These difficulties may be overcome, however, by grouping certain of the variables in such a way as to cover all of the practical cases likely to be encountered and then separate these groups into cells that are close enough together to give accurate results, either directly or by interpolation, and yet far enough apart to keep the total number of cells as small as possible consistent with the degree of accuracy desired. ¹⁴Henson K. Stephenson and A. A. Jakkula, "Highway Loads and Their Effects on Highway Structures Based on Traffic Data of 1942," Texas Engineering Experiment Station Bulletin No. 116, January, 1950. In accordance with this procedure, the 14 heavy vehicle types mentioned above, and shown in Figure 6.1, were selected for special study. A breakdown of each vehicle type was then made by varying wheel base length, spacing of axles, and the axle load ratios—that is, the ratios or percentages of gross vehicle weight carried by the several axles—in such a way as to cover all types and variations of practical trucks and combinations encountered in ordinary highway traffic. It will be noticed that, with the exception of the 2- and 3-axle trucks, the number of axle load ratios has been limited to three, irrespective of the number of axles included in the vehicles under consideration. This was done since, in the preliminary examination of a large number of each of the heavy vehicle types, it was established that the use of more than three axle load ratios did not significantly change the resulting maximum moments. The reason for this obtains from the fact that, as the number of axles increases and the ratio of gross load on each axle decreases, the maximum moment produced by such a vehicle on a given span approaches, as a limit, the maximum moment produced by a load of equal weight on the same span which is uniformly distributed over a length equal to the wheel base length of the given vehicle. 15 Also, any increase in the number of axle load ratios over the three used would have increased the number of cells to a point where there would have been a prohibitive number of calculations as well as a set of tables and charts that would prove to be too voluminous for practical use. Gross vehicle weight is then eliminated as a variable by the use of these axle load ratios or percentages of the gross vehicle weight carried on the several axles, in lieu of the use of actual weight, thus permitting the use of unit weights or vehicles weighing one kip each. This simplification is possible since the maximum moment produced by a particular vehicle on a given span is directly proportional to its gross weight, therefore, moments produced by a particular vehicle on a given span may be obtained merely by multiplying the moment in kip-feet for a vehicle of unit weight by the gross weight of the same vehicle in kips. The breakdown for the Type 2 truck (2-axle single-unit truck), for example, is covered by the 36 variations of wheel base length and loading distribution shown in Index Table 6.1. This table shows 6 different lengths of wheel base, varying in 2-foot increments from 10 to 20 feet, and for each wheel base there are 6 different percentage distributions of gross weight between the two axles, making a total of 36 variations or cells. Thus, if the wheel-base length and the percentages of gross weight on each axle were known for any practical 2-axle truck, it could be classified by fitting it into one of the 36 cells or by interpolation between the two cells nearest to it. To use a simple illustration, suppose it was desired to classify a Type 2 truck reported by a loadometer survey as follows: wheel-base length of 18 feet; gross vehicle weight of 24,000 pounds with 7,200 and 16,800 pounds on front and rear axles, respectively. Since this truck carries 30 percent or .30 of the gross load on the front axle and 70 percent or .70 on the rear, it would be classified by Table 6.1 as a Type 2 truck, Number 28, hereafter designated as a 2-28. To further illustrate, suppose it is desired to classify a Type 2 truck reported by a loadometer survey having a wheel base length of 17 feet and a gross vehicle weight of 24,000 pounds, with 6,480 and 17,520 pounds on the front and rear axles, respectively. In this case the truck carries 27 percent or .27 of the gross load on the front axles and 73 percent or .73 on the rear axle. Referring again to Table 6.1 it is found that the .25 - .75 loading distribution to the front and rear axles respectively, more nearly approximates the given vehicle than any other, so that for a 17-foot wheel base the given truck would be classified as a 2-23 or a 2-29. The final choice would be a 2-23. This results from the fact that the shorter wheel base will give a somewhat greater moment than the given truck and would be on the side of ¹⁶Henson K. Stephenson, "Determination of Permissible Vehicle Weights on Bridges of H Loading Design," AASHO Proceedings, Washington 4, D. C., 1949, pp. 144-185. safety, whereas a 2-29 with a longer wheel base would give a somewhat lesser moment than the given truck. A breakdown similar to this was made for each of the 14 heavy vehicle types as shown in the identification index Tables 6.1-6.14. The breakdown for the Type 3 truck, given in Table 6.2, has 42 cells; the Type 2-S1 truck has 126 cells, and so on, and all 14 vehicle types account for a total of 1303 cells from which to choose when undertaking to identify and classify any particular vehicle of known wheel-base length, number and spacing of axles and loading distribution. Span lengths of 10, 20, 30, 40, 50, 60, 80, and 100 feet were then decided upon and the maximum moment produced by each of the 1303 vehicles on each length of span was calculated. Thus, the general problem of determining the maximum moments produced by heavy vehicle types and loadings on simple span bridges is reduced by this procedure to consideration of 10,424 cells for each of which the maximum moments have been calculated. These 10,424 moments are included in Tables 7.1-7.14. In addition to giving the maximum moment for each of the 10,424 cases, these tables also give the axle group which produces the moment, the axle number under which the maximum moment occurs, and the distance this critical axle is placed to the right or left of the mid-span for obtaining the maximum moment. Tables 7.1-7.14—one for each of the 14 vehicle types considered—provide the fundamental information for determining the stress producing effects of heavy vehicle types and loadings on spans of various lengths, which in turn provides the means of rating them in terms of equivalent H truck loadings, equivalent H-S truck loadings, or equivalent concentrated loads, as may be desired. These tables, as well as the other tables and charts included in Parts II, III, IV, and V, and how they are used, will be more fully explained in the remaining sections of this article. For the time being, however, the above discussion is believed to be sufficient to outline the procedure employed herein for measuring the stress producing effects of heavy vehicles and converting them into equivalent loadings. The ratings of heavy vehicle types and loadings in terms of equivalent H or H-S truck loadings, or equivalent concentrated loads not only provide a simple yet accurate means for determining permissible vehicle weights for bridges of various lengths and design designations but they also provide a convenient and rapid means for analyzing the frequency distributions of various
intensities of heavy vehicle loading equivalents on bridges of different lengths. Such frequency distributions as these, which have been determined from the heavy vehicle data reported by a loadometer survey, furnish a quantitative measure for evaluating the level or levels of heavy motor vehicle operation associated with various traffic conditions. In turn, these distributions may be interpreted as an index to highway transport for correlating the various levels of heavy motor vehicle operation with minimum standards for highway and bridge provision. The results of such an analysis are given and discussed in Parts IV and V which include the observed and calculated frequencies of equivalent thruck loadings, and also the observed and calculated frequencies of equivalent concentrated loads, based on the heavy vehicle data reported by the special loadometer survey of 1942. ## 5.3 Description of Tables And Charts For Converting Heavy Vehicles Into Equivalent Loads The tables and charts in Part II are concerned with the maximum moments, equivalent H truck loadings, equivalent H-S truck loadings, equivalent concentrated loads, and permissible vehicle weights associated with 14 of the more common heavy vehicle types, ordinarily encountered in present-day highway traffic, on simple span brides up to 100 feet in length. A drawing of each of these 14 vehicle types is shown in Figure 6.1 and a break-down of each | Vehicle
Type | No. of
Cells | Table
Number | Vehicle
Type | No. of
Cells | Table
Number | |-----------------|-----------------|-----------------|-----------------|-----------------|-----------------| | 2 | 36 | 6.1 | 3-S3 | 105 | 6.8 | | 3 | 42 | 6.2 | 2-2 | 144 | 6.9 | | 2-S1 | 126 | 6.3 | 2-3 | 90 | 6.10 | | 2-S2 | 108 | 6.4 | 3-2 | 90 | 6.11 | | 2-S3 | 90 | 6.5 | 3-3 | 99 | 6.12 | | 3-S1 | 90 | 6.6 | 2-S1-2 | 96 | 6.13 | | 3-S2 | 112 | 6.7 | 3-S2-3 | 84 | 6.14 | type into cells or variants is given by the identification index Tables 6.1-6.14, as follows: Total Number of Cells = 1303 It will be noted that each of the 1303 trucks listed in these tables is of unit weight and may be thought of as weighing one kip (1000 pounds) each. In fact, all of the tables and charts in Part II are based on vehicles of unit weight or vehicles weighing one kip each. This elimination of gross vehicle weight as a variable is made possible by the fact that the maximum moment produced by a given vehicle on a simple span bridge is directly proportional to its gross weight. In other words, once the maximum moment caused by a particular vehicle of unit weight on a given span is known, the actual moment produced by it on that span is obtained simply by multiplying the unit weight moment by the gross weight of the vehicle under consideration. After a given vehicle has been classified as to vehicle type and truck number in Tables 6.1-6.14, its stress producing characteristics and effects may then be determined from one or more of the remaining tables of Part II. Before undertaking to discuss the use of these tables and charts, however, a list of their titles is included here for convenient reference and also because they are somewhat self explanatory. They are as follows: Tables 7.1 - 7.14; Controlling Conditions for Maximum Moments on Simple Span Bridges Tables 8.1 - 8.14; Summary of Maximum Moments Produced by Vehicles of Unit Weight on Simple Span Bridges Figures 9.1 - 9.14; Maximum Moments and Equivalent H Truck Loadings for Vehicles of Unit Weight on Simple Span Bridges Tables 10.1 - 10.14; Equivalent H Truck Loadings for Vehicles of Unit Weight on Simple Span Bridges Tables 11.1 - 11.14; Gross Load Required for Various Truck Types and Loadings to Produce Same Moment As Standard H Truck of Unit Weight on Simple Span Bridges Tables 12.1 - 12.14; Equivalent Concentrated Loads Required to Produce Same Moment as Heavy Vehicle Types of Unit Weight on Simple Span Bridges Table 13.1 and Figure 13.1; Conversion Coefficients for Equivalent Loadings on Simple Spans of Various Lengths Equivalent H truck loadings, equivalent H-S truck loadings, and equivalent concentrated loads may be converted from any one of these to either of the other by using the proper conversion coefficient as given by Table 13.1 or Figure 13.1. ### 5.4 Use of Tables and Charts For Converting Heavy Vehicles Into Equivalent Loads Perhaps the simplest way to explain the use of the tables and charts described above would be to investigate several typical situations that could easily arise in connection with some particular heavy vehicle loading. Suppose, for example, that the vehicle in question is a 3-axle truck-tractor semitrailer combination (Type 2-S1 truck) having a gross weight of 45,000 pounds with 9,000 pounds on the front axle and 18,000 pounds on each of the other two, and with axle spacing front to rear of 8 feet and 16 feet, respectively, making an over-all wheel-base length of 24 feet. The first step toward answering questions concerning this vehicle would be to identify it in accordance with the index Tables 6.1-6.14. Thus in Table 6.3, a Type 2-S1 truck having the same axle spacings as this vehicle, with 20 percent of its gross weight on the front axle and 40 percent on each of the other two will be found among the 126 variations for this vehicle type. In the fourth column from the left it will be seen that Truck Nos. 8 through 14 are for a vehicle with a 24-foot wheel base and axle spacings front to rear of 8 feet and 16 feet, respectively. In the next three columns to the right (columns 5, 6, and 7) it will be seen that Truck No. 13 is the one that fits the vehicle described above with 20 percent of the gross load on the front axle and 40 percent on each of the other two. So this vehicle would be classified as a Type 2-S1 truck—No. 13. In Table 6.3 it will be noted that there are a total of 126 variations of wheelbase lengths, axle spacings, and distributions of load among the axles which are arranged in such a way as to approximate almost any practical Type 2-S1 truck that might be encountered in highway traffic. Now, suppose it is desired to know the maximum moment produced by this Type 2-S1-13 (Type 2-S1 truck—No. 13) on several different span lengths; say on 30-, 50-, and 80-foot simple span bridges. This information will be found for Type 2-S1-13 in Table 7.3. For the 30-foot span it shows that a truck like this one will produce a maximum bending moment of 3.734 kip-feet for each thousand pounds of gross vehicle weight. It also shows that this maximum moment would occur when axles 1 and 2 are on the span and when axle 2 is placed 1.333 feet to the right of the mid-span. For the 50- and 80foot spans, similarly, it will be seen that the maximum moment occurs under axle 2 in each case when all three axles are on the span and axle 2 is placed 2.400 feet to the left of the mid-span; the maximum moments being 8.615 kip-feet and 16.072 kip-feet, respectively. In most cases, however, it is only the maximum moment caused by a vehicle on a given span that would be of interest. For this reason, as well as that of making the study of this information more convenient, the maximum moments for all the vehicle types and loadings shown in Tables 7.1-7.14 are summarized in Tables 8.1-8.14, respectively. For example, the maximum moments for the Type 2-S1-13, as given in Table 7.3, are summarized in Table 8.3. It might be added that Tables 7.1-7.14 and Tables 8.1-8.14 are sufficiently extensive to cover practically any vehicle type, number of axles, wheel-base length, and loading distribution among the axles ordinarily encountered in present-day highway traffic. From these tables the maximum moment caused by any of these vehicles on spans up to 100 feet in length may be rapidly and accurately determined. In many cases, it is only desired to know the maximum moment caused by a particular heavy vehicle on a given span. In other cases, however, just knowing the maximum moment caused by a vehicle on a given span would not be too informative. But if this maximum moment were measured in terms of the load required on a standard H truck to produce the same moment on the same span it could be readily interpreted in terms of an equivalent H truck loading, which would be very informative. This operation of converting a given truck into equivalent H truck loading is accomplished simply by dividing the maximum moment produced by the given truck on a given span by the maximum moment produced by the standard H truck on the same span. For example suppose it is desired to know the equivalent H truck loading on the 100-foot span for a Type 2-S1 truck weighing 30,000 pounds with 6,000 pounds on the front axle and 12,000 pounds on each of the other two, and an axle spacing front to rear of 8 feet and 12 feet resulting in an over-all wheel base of 20 feet. Without any other information it would be necessary to calculate the maximum moment produced by the given vehicle on the 100-foot span, which in this case is found to be 654.78 foot-kips, and the moment produced by the standard H truck weighing 30 kips on the 100-foot span is found to be 708.60 foot-kips. The equivalent H truck loading for the given truck when determined as outlined above would be EHTL = $654.78 \div 708.60 = .924$, which means that the standard H truck would only have to be loaded with $.924 \times 30$ kips = 27.72 kips to produce as much moment as the given truck. In other words, the given truck would be rated as an H13.86 truck with respect to its stress producing characteristics based on moment. A summary of the equivalent H truck loadings for all the heavy vehicle types, loadings, and span lengths are given in Tables 10.1-10.14 and a brief explanation of their use follows immediately. As an example in the use of Tables 10.1-10.14, suppose it is desired to know the equivalent load rating for a gross vehicle weight of 45,000 pounds on the Type 2-S1-13 (Type 2-S1 truck—No. 13) on the 30-, 50-, and
80-foot spans. The equivalent H truck loadings for this vehicle based on a gross load of one kip are to be found in Table 10.3 and for the spans in question they are as follows: Equivalent H Truck Loadings in Kips for a Type 2-S1 Truck—No. 13 Weighing 45,000 Pounds | Gross Vehicle | Span Leng | th Feet | | |---------------|-----------|---------|------| | Weight-Kips | 3(| 50 | 80 | | 1.60 | .606 | .773 | .863 | | 45.00 | 27.2 | 34.8 | 38.8 | This means that the Type 2-S1-13 weighing one kip would produce as much moment on a 30-foot span as a standard H truck weighing 0.606 times as much as the given vehicle, or 606 pounds. In other words it would produce 60.6 percent as much moment as a standard H truck of the same weight. Or, better perhaps, it would produce the same moment on a 30-foot span as a standard H truck weighing 60.6 percent as much. The given Type 2-S1-13, therefore, would produce as much moment on a 30-foot span as a standard H truck weighing 45,000 x 0.606 = 27.2 kips = 13.6 tons; and, for this span it would be rated as an equivalent H13.6 truck loading. On the 50- and 80-foot spans, similarly, it would be rated as an equivalent H17.4 truck loading and an equivalent H19.4 truck loading, respectively. Similar information, concerning maximum moments and the rating of heavy vehicle types and loadings in terms of equivalent H truck loadings on spans up to 100 feet in length, may be obtained graphically from Figures 9.1-9.14. No further discussion of these charts are believed to be necessary here, however, since they are explained in some detail in the text of Article 9. In addition to the rating of heavy vehicle types and loadings on various spans in terms of equivalent H truck loadings, as was done in the preceding examples, there is another type of typical problem that often arises in connection with the load carrying capacity of certain bridges of given length and design designation. This is the problem of determining the maximum gross weight that should be permitted on any particular vehicle such that it might safely pass over a simple span bridge of given length and design rating. There are a number of variations to this problem of permissible vehicle weight, of course, but a few illustrative examples is all that is believed to be necessary to show how the tables may be used. ### Example 5.1. Use of Tables 7.1-7.14 for Rating Heavy Vehicles Given: A simple span bridge 50 feet long has a load carrying capacity such that it should not be subjected to a greater moment than that caused by an H20 truck. Suppose it is desired to know the maximum gross load that may be carried over this bridge by a Type 3-S2 truck with axle spacing, front to rear, of 12 feet, 4 feet, 12 feet, and 4 feet, respectively, making an overall wheel-base length of 32 feet, if it is assumed that the gross weight is so distributed that each of the 5 axles will be equally loaded. By consulting the identification index Table 6.7, it will be seen that this vehicle would be classified as a Type 3-S2-48 (Type 3-S2 truck—No. 48). The problem here is to find the gross weight that might be carried by this vehicle such that it would not produce more moment on a 50-foot span than an H20 truck. By consulting an AASHO moment table it will be found that an H20 truck causes a moment of 445.6 kip-feet on a 50-foot span. And in Table 7.7 it will be found that one kip on the above Type 3-S2-48 moving from right to left produces a moment of 7.713 kip-feet on this span when all 5 axles are on the span and axle No. 3 is placed .800 feet to the left of the mid-span This shows that a gross weight of 445.6/7.713 = 57.6 kips on this vehicle, or 11.52 kips per axle, produce the same moment as an H20 truck. The gross vehicle weight thus indicated is more than would ordinarily be permitted by the AASHO policy (see Table 1.1) but this policy is designed to protect many of the older bridges that are not capable of safely supporting a vehicle load such as this one. However, insofar as this particular bridge is concerned, the permissible gross weight for the Type 3-S2-48 under consideration would be 57.6 kips. And thus loaded, this vehicle would be rated as an equivalent H20 truck loading. ### Example 5.2 Use of Tables 8.1-8.14 for Rating Heavy Vehicles Given: A simple span bridge 50 feet long, the same as for Example 5.1, has a load carrying capacity such that it should not be subjected to a greater moment than that caused by an H20 truck. Suppose it is desired to know the maximum gross load that may be carried over this bridge by the Type 3-S2-48, described in Example 5.1, such that it would be rated as an equivalent H20 truck loading. In Table 8.7 it will be seen that a one kip load on a Type 3-S2-48 will produce a moment of 7.713 foot-kips on a 50-foot span and the AASHO moment tables show that an H20 truck will produce a moment of 445.6 kip-feet on the same span. Therefore, a gross weight of 445.6/7.713 = 57.6 kips on this vehicle would cause it to be rated as an equivalent H20 truck loading. ### Example 5.3 Use of Tables 10.1-10.14 for Rating Heavy Vehicles Suppose it is desired to know the gross load for a Type 3-S2-48 (Type 3-S2 truck—No. 48) as described in Example 5.1, that would cause it to be rated as an equivalent H20 truck loading on a 50-foot span. Tables 10.1-10.14 show the equivalent H truck loadings which result from various heavy vehicle types and loadings of unit weight on spans up to 100 feet in length. In Table 10.7 it will be found that a gross vehicle weight of one kip for Type 3-S2-48 on a 50-foot span produces the same moment as 0.692 kips on a standard H truck. Therefore, a gross load of 40.0/.692 = 57.6 kips on this vehicle will produce the same moment as an H20 truck, and for this load the above Type 3-S2-48 would be rated as an equivalent H20 truck loading on a 50-foot span. ### Example 5.4 Use of Tables 11.1-11.14 for Rating Heavy Vehicles Suppose it is desired to know the gross load for a Type 3-S2-48 (Type 3-S2 truck—No. 48) as described in Example 5.1, that would result in its being rated as an equivalent H20 truck loading on a 50-foot span. Tables 11.1-11.14 show the gross loads required for various heavy vehicle types and loadings to produce the same moment on simple spans as a standard H truck weighing one kip. And in Table 11.7 it will be found that a gross vehicle weight of 1.445 kips for the Type 3-S2-48 on a 50-foot span produces the same moment as 1.000 kip on an H truck. Therefore, a gross load of $40 \times 1.445 = 57.6$ kips on this vehicle will produce the same moment as an H20 truck, and for this load the above Type 3-S2-48 would be rated as an equivalent H20 truck loading on a 50-foot span. ### Use of Equivalent Concentrated Loads In the preceding discussion it was shown how the tables presented herein may be used for converting heavy vehicle types and loadings into equivalent H truck loading on simple span bridges up to 100 feet in length. The dis- cussion thus far has been confined to equivalent H truck loadings because it is but a simple matter to convert a given heavy vehicle into an equivalent H-S truck loading once its H truck loading equivalent has been determined for any particular span. The coefficients for converting one type of equivalent load into another on various spans are given in Table 13.1 and Figure 13.1, and their use will be taken up immediately after the present discussion of equivalent concentrated loads. Although the use of either the H or the H-S truck loading equivalents will provide a convenient means for measuring the stress producing effects of heavy vehicle types and loadings on simple spans of various lengths, there are certain advantages associated with the use of equivalent concentrated loads that might also be worthy of consideration when selecting an appropriate basis for comparison. The maximum moment produced by a single concentrated load on a simple span, for example, can be expressed by a very simple equation; namely, $\underline{\mathbf{M}} = \mathrm{PS}/4 \qquad 5.1$ in which M = maximum moment in kip-feet P = concentrated load in kips S = span length in feet In this equation, it will be noted for any given load, P, the maximum moment, M, is a continuous function which varies directly with the span length, S. On the other hand, the maximum moments produced by the H and H-S trucks on simple spans are neither continuous functions nor do the moments vary directly with the span. This is owing to the fact that the wheel-base length, spacing of axles, and the distribution of load among the axles must all be taken into account when arriving at an expression for maximum moment for either of the design trucks. For these reasons, equivalent concentrated loads not only provide an absolute basis for comparing the stress producing characteristics of one vehicle with those of another on the same span, but they also permit direct comparisons of these effects from one span to another that would not be so simple if the effects were measured in terms of the H or H-S truck or other arbitrary loading. The use of the H or H-S truck as a basis for comparison, though, would not only have the advantage of being familiar to everyone but also of coinciding with presently used design loadings and bridge ratings. However, if these design loadings should be changed in the future—and it is possible that they will—their present advantages would not be so great. On the other hand, comparisons based on the use of equivalent concentrated loads would not be affected by one or more future changes in either the loads or procedures used for design. It is possible of course to rate bridges—irrespective of their design designations—as well as heavy vehicles in terms of any standardized loading that might be selected for the purpose. As to whether one loading or another should be used as a basis for comparison in any particular case, however, is a matter that can only be determined after all the
advantages and disadvantages associated with each of them, respectively, have been very carefully considered. At this stage, it is perhaps too early to say whether one or the other of the above mentioned loadings would ultimately prove to be the more satisfactory. For sake of uniformity, though, if it should develop that but one loading be selected as a standard for comparisons, it would seem from this discussion that the use of equivalent concentrated loads might well be included among those chosen for further investigation. For those who would like to investigate the relative merits of using one or another of these loadings, the frequency distributions of equivalent loadings given in Parts IV and V, which were obtained from the loadometer survey data of 1942, should prove to be of special interest. The frequency distributions given in Part IV are based on equivalent H truck loadings and those in Part V are based on equivalent concentrated loads. The information required for measuring the stress producing effects of heavy vehicle types and loadings on simple spans in terms of equivalent concentrated loads is given by Tables 12.1-12.14. The use of these tables will be explained by applying them to a simple illustrative example. ## Example 5.5 Use of Tables 12.1-12.14 for Rating Heavy Vehicles in Terms of Equivalent Concentrated Loads For the Type 3-S2-48 (Type 3-S2 truck—No. 48) having a gross weight of 57.6 kips described in Example 5.1, suppose it is desired to know the equivalent concentrated load that would produce the same maximum moment as this vehicle on a 50-foot span. In Table 12.7 it will be found that a Type 3-S2-48 weighing 1.00 kip will produce the same maximum moment on a 50-foot span as a single concentrated load of 0.617 kips. Therefore, a single concentrated load of 57.6 x .617 = 35.5 kips would produce the same moment as the given vehicle and, on this basis, it would be rated as an equivalent 35.5 kip concentrated load on a 50-foot span. Incidentally, it was shown in Example 5.1 that this vehicle would produce the same moment on a 50-foot span as an H20 truck. In other words, the given vehicle weighing 57.6 kips would produce the same maximum moment on a 50-foot span as 40.0 kips on a standard H truck or a single concentrated load of 35.5 kips. ## 6. IDENTIFICATION INDEX OF HEAVY VEHICLE TYPES AND LOADINGS The tables and charts given in Articles 6-13 (Part II) are concerned with the maximum moments, equivalent H truck loadings, equivalent H-S truck loadings, and equivalent concentrated loads associated with the numerous possible variations in wheel-base lengths, numbers and spacings of axles, and the distribution of gross vehicle weight among the axles, for 14 of the more commonly used heavy vehicle types, ordinarily encountered in present-day highway traffic, on simple span bridges up to 100 feet in length. Each of these 14 vehicle types, together with the standardized notation used for their identification, is shown in Figure 6.1. The numerals used in this notation, which is shown opposite and to the left of each diagram, indicate the number of axles in each of the one or more units within a given vehicle assembly. When a semitrailer is included within a vehicle, it is identified by the letter S, followed by the numeral which indicates its number of axles. The Type 2 truck and the Type 3 truck, for example, are single-unit trucks with 2 and 3 axles each, respectively. Double-unit vehicles may be one of the truck-tractor semitrailer combinations or one of the truck-trailer combinations; the three-unit vehicles may be one of the truck-tractor semitrailer trailer combinations. The Type 3-S2 truck, for example, consists of a 3-axle truck-tractor with a 2-axle semitrailer; and the Type 3-S2-3 truck is made up of a 3-axle truck-tractor with a 2-axle semitrailer followed by a 3-axle trailer. A breakdown of each of these 14 vehicle types into cells or variants is given by Tables 6.1-6.14, as follows: | Table
Number | Vehicle
Types | No. of
Cells | Table
Number | Vehicle
Typ∈s | No. of
Cells | |-----------------|------------------|-----------------|-----------------|------------------|-----------------| | 6.1 | 2 | 36 | 6.8 | 3-S3 | 105 | | 6.2 | 3 | 42 | 6.9 | 2-2 | 144 | | 6.3 | 2-S1 | 126 | 6.10 | 2-3 | 90 | | 6.4 | 2-S2 | 108 | 6.11 | 3-2 | 90 | | 6,5 | 2-S3 | 90 | 6.12 | 3-3 | 90 | | 6.6 | 3-S1 | 90 | 6.13 | 2-S1-2 | 96 | | 6.7 | 3-S2 | 112 | 6.14 | 3-S2-3 | 84 | Total Number of Cells = 1303 ## IDENTIFICATION OF FREIGHT VEHICLE TYPES | TYPE | TYPICAL VEHICLE | TYPE | TYPICAL VEHICLE | |------|----------------------|---------------|----------------------------| | 2 | A B WHEEL BASE | 3 -\$3 | A B C D E F WHEEL BASE | | 3 | A B C | 2-2 | A B C D WHEEL BASE | | 2-51 | A B C | 2-3 | A B C D E WHEEL BASE | | 2-52 | A B C D WHEEL BASE | 3-2 | A B C D E WHEEL BASE | | 2-53 | A B C D E WHEEL BASE | 3-3 | A B C D E F WHEEL BASE | | 3-SI | A B C D WHEEL BASE | 2-51-2 | A B C D E WHEEL BASE | | 3-S2 | A B C D E WHEEL BASE | 3-S2-3 | A B C D E F G H WHEEL BASE | Figure 6.1 A detailed description used is given in Articl identification tables and how they Truck numbers 1 to 36 represent 36 combinations of various wheel base lengths and axle loadings. | Truck
Number | Wheel
Base | Load
on A
Ki | xles | Truck
Number | Wheel
Base | on A | ding
Axles
ips | |-----------------|---------------|--------------------|------------|-----------------|---------------|------|----------------------| | ΕZ | B≹ | a ₁ | a 2 | FZ | ≱mi | a 1 | a2 | | 1 | 10 | .45 | .55 | 19 | 16 | .45 | .55 | | 2 | 10 | .40 | .60 | 20 | 16 | .40 | .60 | | 3 | 10 | .35 | .65 | 21 | 16 | .35 | .65 | | 4 | 10 | .30 | .70 | 22 | 16 | .30 | .70 | | ŏ | 10 | .25 | .75 | 23 | 16 | .25 | .75 | | 6 | 10 | .20 | .80 | 24 | 16 | .20 | .80 | | 7 | 12 | .45 | .55 | 25 | 18 | .45 | .55 | | 8 | 12 | .40 | .60 | 26 | 18 | .40 | .60 | | 9 | 12 | .35 | .65 | 27 | 18 | .35 | .65 | | 10 | 12 | .30 | .70 | 28 | 18 | .30 | .70 | | 11 | 12 | .25 | .75 | 29 | 18 | .25 | .75 | | 12 | 12 | .20 | .80 | 30 | 18 | .20 | .80 | | 13 | 14 | .45 | .55 | 31 | 20 | .45 | .55 | | 14 | 14 | .40 | .60 | 32 | 20 | .40 | .60 | | 15 | 14 | .35 | .65 | 33 | 20 | .35 | .65 | | 16 | 14 | .30 | .70 | 34 | 20 | .30 | .70 | | 17 | 14 | .25 | .75 | 35 | 20 | .25 | .75 | | 18 | 14 | .20 | .80 | 36 | 20 | .20 | .80 | Table 6.2 INDEX TO THE TYPE 3 TRUCKS WEIGHING ONE KIP EACH Truck numbers 1 to 42 represent 42 combinations of various wheel base lengths, axle spacings, and axle loadings. | | | | | TYPE | 3 TRUCK | | | | | |-----------------|-----|----------------------|------|-----------------------|---------|---------------------|------|----------------|----------------------| | Truck
Number | and | Base
Axle
cing | on a | iding
Axles
ips | Truck | Wh.
and
Space | Axle | on | ding
Axles
ips | | ΕZ | X | L | aı | 82 | ĔŹ | X | L | a ₁ | a 2 | | 1 | 10 | 14 | .40 | .60 | 22 | 16 | 20 | .40 | .60 | | 2 | 10 | 14 | .35 | .65 | 23 | 16 | 20 | .35 | .65 | | 3 | 10 | 14 | .30 | .70 | 24 | 16 | 20 | .30 | .70 | | 4 | 10 | 14 | .25 | .75 | 25 | 16 | 20 | .25 | .75 | | 5 | 10 | 14 | .20 | .80 | 26 | 16 | 20 | .20 | .80 | | 6 | 10 | 14 | .15 | .85 | 27 | 16 | 20 | .15 | .85 | | 7 | 10 | 14 | .10 | .90 | 28 | 16 | 20 | .10 | .90 | | 8 | 12 | 16 | .40 | .60 | 29 | 18 | 22 | .40 | .60 | | 9 | 12 | 16 | .35 | .65 | 30 | 18 | 22 | .35 | .65 | | 10 | 12 | 16 | .30 | .70 | 31 | 18 | 22 | .30 | .70 | | 11 | 12 | 16 | .25 | .75 | 32 | 18 | 22 | .25 | .75 | | 12 | 12 | 16 | .20 | .80 | 33 | 18 | 22 | .20 | .80 | | 13 | 12 | 16 | .15 | .85 | 34 | 18 | 22 | .15 | .85 | | 14 | 12 | 16 | .10 | .90 | 35 | 18 | 22 | .10 | .90 | | 15 | 14 | 18 | .40 | .60 | 36 | 20 | 24 | .40 | .60 | | 16 | 14 | 18 | .35 | .65 | 37 | 20 | 24 | .35 | .65 | | 17 | 14 | 18 | .30 | .70 | 38 | 20 | 24 | .30 | .70 | | 18 | 14 | 18 | .25 | .75 | 39 | 20 | 24 | .25 | .75 | | 19 | 14 | 18 | .20 | .80 | 40 | 20 | 24 | .20 | .80 | | 20 | 14 | 18 | .15 | .85 | 41 | 20 | 24 | .15 | .85 | | 21 | 14 | 18 | .10 | .90 | 42 | 20 | 24 | .10 | .90 | Table 6.3 INDEX TO THE TYPE 2-S1 TRUCKS WEIGHING ONE KIP EACH Truck numbers 1 to 126 represent 126 combinations of various wheel base lengths, axle spacings, and axle loadings. | Truck
Number | Wheel Base Load O
and Axle Axles
Spacing Ft. Kips | | | | | | Truck
Number | | eel E | | | oad O | n | Truck
Number | | eel E | | L | oad (| | |-----------------|---|----------|----------|----------------|----------------|------------|-----------------|----------|----------|----------|-----|----------------|------------|-----------------|----------|----------|-----------------|----------------|------------|------------| | uc. | Spa | acing | Ft. | | Kips | | uc
m | | cing | | | Kips | | uc] | | cing | | | Kips | | | ĔŹ | X | X' | L | a ₁ | \mathbf{a}_2 | a 3 | Ėž | X | X' | L | aı | \mathbf{a}_2 | a 3 | Ėź | X | X' | L | a ₁ | a 2 | a 3 | | 1 | 8 | 12 | 20 | .10 | .30 | .60 | 43 | 12 | 12 | 24 | .10 | .30 | .60 | 85 | 16 | 8 | 24 | .10 | .30 | .60 | | 2 | 8 | 12 | 20 | .10 | .40 | .50 | 44 | 12 | 12 | 24 | .10 | .40 | .50 | 86 | 16 | 8 | 24 | .10 | .40 | .50 | | 3 | 8 | 12 | 20 | .10 | .45 | .45 | 45 | 12 | 12 | 24 | .10 | .45 | .45 | 87 | 16 | 8 | 24 | .10 | .45 | .45 | | 4 | -8 | 12 | 20 | .10 | .50 | .40 | 46 | 12 | 12 | 24 | .10 | .50 | .40 | 88 | 16 | 8 | 24 | .10 | .50 | .40 | | 5 | 8 | 12 | 20 | .20 | .30 | .50 | 47 | 12 | 12 | 24 | .20 | .30 | .50 | 89 | 16 | 8 | 24 | .20 | .30 | .50 | | 6 | 8 | 12 | 20 | .20 | .40 | .40 | 48 | 12 | 12 | 24 | .20 | .40 | .40 | 90 | 16 | 8 | 24 | .20 | .40 | .40 | | 7 | 8 | 12 | 20 | .20 | .50 | .30 | 49 | 12 | 12 | 24 | .20 | .50 | .30 | 91 | 16 | 8 | 24 | .20 | .50 | .30 | | 8 | 8 | 16 | 24 | .10 | .30 | .60 | 50 | 12 | 16 | 28 | .10 | .30 | .60 | 9. | 16 | 12 | 28 | .10 | .30 |
.60 | | 9 | 8 | 16 | 24 | .10 | .40 | .50 | 5 1 | 12 | 16 | 28 | .10 | .40 | .50 | 9; | 16 | 12 | 28 | .10 | .40 | .50 | | 10 | 8 | 16 | 24 | .10 | .45 | .45 | 52 | 12 | 16 | 28 | .10 | .45 | .45 | 94 | 16 | 12 | 28 | .10 | .45 | .45 | | 11 | 8 | 16 | 24 | .10 | .50 | .40 | 53 | 12 | 16 | 28 | .10 | .50 | .40 | 95 | 16 | 12 | 28 | .10 | .50 | .40 | | 12 | 8 | 16 | 24 | .20 | .30 | .50 | 54 | 12 | 16 | 28 | .20 | .30 | .50 | 96 | 16 | 12 | 28 | .20 | .30 | .50 | | 13 | 8 | 16 | 24 | .20 | .40 | .40 | 55 | 12 | 16 | 28 | .20 | .40 | .40 | 97 | 16 | 12 | 28 | .20 | .40 | .40 | | 14 | 8 | 16 | 24 | .20 | .50 | .30 | 56 | 12 | 16 | 28 | .20 | .50 | .30 | 98 | 16 | 12 | 28 | .20 | .50 | .30 | | 15 | 8 | 20 | 28 | .10 | .30 | .60 | 57 | 12 | 20 | 32 | .10 | .30 | .60 | 99 | 16 | 16 | 32 | .10 | .30 | .60 | | 16 | 8 | 20 | 28 | .10 | .40 | .50 | 58 | 12 | 20 | 32 | .10 | .40 | .50 | 100 | 16 | 16 | 32 | .10 | .40 | .50 | | 17 | 8 | 20 | 28 | .10 | .45 | .45 | 59 | 12 | 20 | 32 | .10 | .45 | .45 | 101 | 16 | 16 | 32 | .10 | .45 | .45 | | 18 | 8 | 20 | 28 | .10 | .50 | .40 | 60 | 12 | 20 | 32 | .10 | .50 | .40 | 102 | 16 | 16 | 32 | .10 | .50 | .40 | | 19 | 8 | 20
20 | 28
28 | .20 | .30 | .50 | 61 | 12 | 20 | 32 | .20 | .30 | .50 | 103 | 16
16 | 16 | $\frac{32}{32}$ | .20 | .30
.40 | .50
.40 | | $\frac{20}{21}$ | 8
8 | 20 | 28 | .20
.20 | .40 | .40 | 62 | 12 | 20
20 | 32
32 | .20 | .40 | .40 | 104
105 | 16 | 16
16 | 32 | .20 | .50 | .30 | | 22 | 8 | 24 | 32 | | .50
.30 | .30 | 63 | 12
12 | 24 | 36 | | .50
.30 | .30 | 106 | 16 | 20 | 36 | .10 | .30 | .60 | | 23 | 8 | 24 | 32 | .10 | .40 | .60
.50 | 64
65 | 12 | 24 | 36 | .10 | .40 | .60
.50 | 106 | 16 | 20 | 36 | .10 | .40 | .50 | | 24 | - 8 | 24 | 32 | .10 | .45 | .45 | 66 | 12 | 24 | 36 | .10 | .45 | .45 | 108 | 16 | 20 | 36 | .10 | .45 | .45 | | 25 | 8 | 24 | 32 | .10 | .50 | .40 | 67 | 12 | 24 | 36 | .10 | .50 | .40 | 109 | 16 | 20 | 36 | .10 | .50 | .40 | | 26 | 8 | 24 | 32 | .20 | .30 | .50 | 68 | 12 | 24 | 36 | .20 | .30 | .50 | 110 | 16 | 20 | 36 | .20 | .30 | .50 | | 27 | 8 | 24 | 32 | .20 | .40 | .40 | 69 | 12 | 24 | 36 | .20 | .40 | .40 | 111 | 16 | 20 | 36 | .20 | .40 | .40 | | 28 | 8 | 24 | 32 | .20 | .50 | .30 | 70 | 12 | 24 | 36 | .20 | .50 | .30 | 112 | 16 | 20 | 36 | .20 | .50 | .30 | | 29 | 8 | 28 | 36 | .10 | .30 | .60 | 71 | 12 | 28 | 40 | .10 | .30 | .60 | 113 | 16 | 24 | 40 | .10 | .30 | .60 | | 30 | 8 | 28 | 36 | .10 | .40 | .50 | 72 | 12 | 28 | 40 | .10 | .40 | .50 | 114 | 16 | 24 | 40 | .10 | .40 | .50 | | 31 | 8 | 28 | 36 | .10 | .45 | .45 | 73 | 12 | 28 | 40 | .10 | .45 | .45 | 115 | 16 | 24 | 40 | .10 | .45 | .45 | | 32 | 8 | 28 | 36 | .10 | .50 | .40 | 74 | 12 | 28 | 40 | .10 | .50 | .40 | 116 | 16 | 24 | 40 | .10 | .50 | .40 | | 33 | 8 | 28 | 36 | .20 | .30 | .50 | 75 | 12 | 28 | 40 | .20 | .30 | .50 | 117 | 16 | 24 | 40 | .20 | .30 | .50 | | 34 | 8 | 28 | 36 | .20 | .40 | .40 | 76 | 12 | 28 | 40 | .20 | .40 | .40 | 118 | 16 | 24 | 40 | .20 | .40 | .40 | | 35 | 8 | 28 | 36 | .20 | .50 | .30 | 77 | 12 | 28 | 40 | .20 | .50 | .30 | 119 | 16 | 24 | 40 | .20 | .50 | .30 | | 36 | 12 | 8 | 20 | .10 | .30 | .60 | 78 | 12 | 32 | 44 | .10 | .30 | .60 | 120 | 16 | 28 | 44 | .10 | .30 | .60 | | 37 | 12 | 8 | 20 | .10 | .40 | .50 | 79 | 12 | 32 | 44 | .10 | .40 | .50 | 121 | 16 | 28 | 44 | .10 | .40 | .50 | | 38 | 12 | 8 | 20 | .10 | .45 | .45 | 80 | 12 | 32 | 44 | .10 | .45 | .45 | 122 | 16 | 28 | 44 | .10 | .45 | .45 | | 39 | 12 | 8 | 20 | .10 | .50 | .40 | 81 | 12 | 32 | 44 | .10 | .50 | .40 | 123 | 16 | 28 | 44 | .10 | .50 | .40 | | 40 | 12 | 8 | 20 | .20 | .30 | .50 | 82 | 12 | 32 | 44 | .20 | .30 | .50 | 124 | 16 | 28 | 44 | .20 | .30 | .50 | | 41 | 12 | 8 | 20 | .20 | .40 | .40 | 83 | 12 | 32 | 44 | .20 | .40 | .40 | 125 | 16 | 28 | 44 | .20 | .40 | .40 | | 42 | 12 | 8 | 20 | .20 | .50 | .30 | 84 | 12 | 32 | 44 | .20 | .50 | .30 | 126 | 16 | 28 | 44 | .20 | .50 | .30 | | 42 | 12 | 0 | 20 | .20 | .00 | .50 | 54 | 14 | 94 | 44 | .20 | .50 | .00 | 120 | 10 | 40 | 44 | .20 | .50 | | Table 6.4 INDEX TO THE TYPE 2-S2 TRUCKS WEIGHING ONE KIP EACH Truck numbers 1 to 108 represent 108 combinations of various wheel base lengths, axle spacings, and axle loadings. | Truck
Number | | eel B | | L | oad C | | er | Whe | | | | ad O | | e. | | el B | | | oad C | | |-----------------|---|----------|-----------------|------------|----------------|------------|-----------------|----------|--------------|----------|------------|---------------|------------|----------------|----------|--------------|----------|-----|-----------------------|------------| | mb | | d Ax | | | Axles
Kips | | n kg | Spa | d Ax
cing | | | Axles
Kips | , | ruek
umber | | d Ax
cing | | | Axle:
Kips | š | | TruN | X | X' | L | a 1 | a ₂ | a 3 | Truck
Number | X | X' | L | aı | a2 | a 3 | Truck
Numbe | X | X' | L | a 1 | a ₂ | a 3 | | 1 | 8 | 8 | 20 | .10 | .30 | .60 | 37 | 12 | 8 | 24 | .10 | .30 | .60 | 73 | 16 | 8 | 28 | .10 | .30 | .60 | | 2 | 8 | 8 | 20 | .10 | .40 | .50 | 38 | 12 | 8 | 24 | .10 | .40 | .50 | 74 | 16 | 8 | 28 | .10 | .40 | .50 | | 3 | 8 | 8 | 20 | .10 | .50 | .40 | 39 | 12 | 8 | 24 | .10 | .50 | .40 | 75 | 16 | 8 | 28 | .10 | .50 | .40 | | 5 | 8 | 8 | 20 | .20 | .40 | .40 | 41 | 12 | 8 | 24 | .20 | .30 | .50 | 76 | 16 | 8 | 28 | .20 | .30 | .50 | | 4 | 8 | 8 | 20 | .20 | .30 | .50 | 40 | 12 | 8 | 24 | .20 | .40 | .40 | 77 | 16 | 8 | 28 | .20 | .40 | .40 | | 6 | 8 | 8 | 20 | .20 | .50 | .30 | 42 | 12 | 8 | 24 | .20 | .50 | .30 | 78 | 16 | 8 | 28 | .20 | .50 | .30 | | 7 | 8 | 12 | 24 | .10 | .30 | .60 | 43 | 12 | 12 | 28 | .10 | .30 | .60 | 79 | 16 | 12 | 32 | .10 | .30 | .60 | | 8 | 8 | 12 | 24 | .10 | .40 | .50 | 44 | 12 | 12 | 28 | .10 | .40 | .50 | 80 | 16 | 12 | 32 | .10 | .40 | .50 | | 9 | 8 | 12 | 24 | .10 | .50 | .40 | 45 | 12 | 12 | 28 | .10 | .50 | .40 | 81 | 16 | 12 | 32 | .10 | .50 | .40 | | 10 | 8 | 12 | 24 | .20 | .30 | .50 | 46 | 12 | 12 | 28 | .20 | 30 | .50 | 82 | 16 | 12 | 32 | .20 | .30 | .50 | | 11 | 8 | 12 | 24 | .20 | .40 | .40 | 47 | 12 | 12 | 28 | .20 | .40 | .40 | 83 | 16 | 12 | 32 | .20 | .40 | .40 | | 12 | 8 | 12 | 24 | .20 | .50 | .30 | 48 | 12 | 12 | 28 | .20 | .50 | .30 | 84 | 16 | 12 | 32 | .20 | .50 | .30 | | 13 | 8 | 16 | 28 | .10 | .30 | .60 | 49 | 12 | 16 | 32 | .10 | .30 | .60 | 85 | 16 | 16 | 36 | .10 | .30 | .60 | | 14 | 8 | 16 | 28 | .10 | -40 | .50 | 50 | 12 | 16 | 32 | .10 | .40 | .50 | 86 | 16 | 16 | 36 | .10 | .40 | .50 | | 15 | 8 | 16 | 28 | .10 | .50 | .40 | 51 | 12 | 16 | 32 | .10 | .50 | .40 | 87 | 16 | 16 | 36 | .10 | .50 | .40 | | 16 | 8 | 16 | 28 | .20 | .30 | .50 | 52 | 12 | 16 | 32 | .20 | .30 | .50 | 88 | 16 | 16 | 36 | .20 | .30 | .50 | | 17 | 8 | 16 | 28 | .20 | .40 | .40 | 53 | 12 | 16 | 32 | .20 | .40 | .40 | 89 | 16 | 16 | 36 | .20 | .40 | .40 | | 18 | 8 | 16 | 28 | .20 | .50 | .30 | 54 | 12 | 16 | 32 | .20 | .50 | .30 | 90 | 16 | 16 | 36 | .20 | .50 | .30 | | 19 | 8 | 20 | 32 | .10 | .30 | .60 | 55 | 12 | 20 | 36 | .10 | .30 | .60 | 91 | 16 | 20 | 40 | .10 | .30 | .60 | | 20 | 8 | 20 | 32 | .10 | .40 | .50 | 56 | 12 | 20 | 36 | .10 | .40 | .50 | 92 | 16 | 20 | 40 | .10 | .40 | .50 | | 21 | 8 | 20 | 32 | .10 | .50 | .40 | 57 | 12 | 20 | 36 | .10 | .50 | .40 | 93 | 16 | 20 | 40 | .10 | .50 | .40 | | 22 | 8 | 20 | 32 | .20 | .30 | .50 | 58 | 12 | 20 | 36 | .20 | .30 | .50 | 94 | 16 | 20 | 40 | .20 | .30 | .50 | | 23
24 | 8 | 20
20 | $\frac{32}{32}$ | .20 | .40
.50 | .40 | 59
60 | 12
12 | 20
20 | 36
36 | .20
.20 | .40
.50 | .40 | 95
96 | 16
16 | 20
20 | 40
40 | .20 | .40 | .40 | | 25 | 8 | 24 | 32
36 | .10 | .30 | .60 | 61 | 12 | 24 | 40 | .10 | .30 | .60 | 96 | 16 | 24 | 44 | .10 | .50
.30 | .60 | | 26 | 8 | 24 | 36 | .10 | .40 | .50 | 62 | 12 | 24 | 40 | .10 | .40 | .50 | 98 | 16 | 24 | 44 | .10 | .40 | .50 | | 27 | 8 | 24 | 36 | .10 | .50 | .40 | 63 | 12 | 24 | 40 | .10 | .50 | .40 | 99 | 16 | 24 | 44 | .10 | .50 | .40 | | 28 | 8 | 24 | 36 | .20 | .30 | .50 | 64 | 12 | 24 | 40 | .20 | .30 | .50 | 100 | 16 | 24 | 44 | .20 | .30 | .50 | | 29 | 8 | 24 | 36 | .20 | .40 | .40 | 65 | 12 | 24 | 40 | .20 | .40 | .40 | 101 | 16 | 24 | 44 | .20 | .40 | .40 | | 30 | 8 | 24 | 36 | .20 | .50 | .30 | 66 | 12 | 24 | 40 | .20 | .50 | .30 | 102 | 16 | 24 | 44 | .20 | .50 | .30 | | 31 | 8 | 28 | 40 | .10 | .30 | .60 | 67 | 12 | 28 | 44 | .10 | .30 | .60 | 103 | 16 | 28 | 48 | .10 | .30 | .60 | | 32 | 8 | 28 | 40 | .10 | .40 | .50 | 68 | 12 | 28 | 44 | .10 | .40 | .50 | 104 | 16 | 28 | 48 | .10 | .40 | .50 | | 33 | 8 | 28 | 40 | .10 | .50 | .40 | 69 | 12 | 28 | 44 | .10 | .50 | .40 | 105 | 16 | 28 | 48 | .10 | .50 | .40 | | 34 | 8 | 28 | 40 | .20 | .30 | .50 | 70 | 12 | 28 | 44 | .20 | .30 | .50 | 106 | 16 | 28 | 48 | .20 | .30 | .50 | | 35 | 8 | 28 | 40 | .20 | .40 | .40 | 71 | 12 | 28 | 44 | .20 | .40 | .49 | 107 | 16 | 28 | 48 | .20 | .40 | .40 | | 36 | 8 | 28 | 40 | .20 | .50 | .30 | 72 | 12 | 28 | 44 | .20 | .50 | .30 | 108 | 16 | 28 | 48 | .20 | .50 | .30 | Truck numbers 1 to 90 represent 90 combinations of various wheel base lengths, axle spacings, and axle loadings. | Truck
Number | Wheel Base and Axle Spacing Ft. Load On Axle Kips Load On Axles Kips | | | | Truck
Number | Space | l Ax | le
Ft. | | ad O
Axles
Kips | | Truck
Number | Spa | d Ax
cing | le
Ft. | | oad O
Axles
Kips | | | | |-----------------
---|----|----|-----|-----------------|-------|------|-----------|----|-----------------------|-----|-----------------|------|--------------|-----------|----|------------------------|----------------|----------------|------------| | | | | | | | a:; | | X | Χ' | L | a: | as | as | | X | X' | L | a ₁ | a ₂ | a 3 | | 1 | 8 | 8 | 24 | .10 | .225 | .675 | 31 | 12 | 8 | 28 | .10 | .225 | | 61 | 16 | 3 | 32 | .10 | .225 | .675 | | 2 | 8 | 8 | 24 | .10 | .30 | .60 | 32 | 12 | 8 | 28 | .10 | .30 | .60 | 62 | 16 | 8 | 32 | .10 | .30 | .60 | | 3 | 8 | 8 | 24 | .10 | .40 | .50 | 33 | 12 | 8 | 23 | .10 | .40 | .50 | 63 | 16 | 8 | 32 | .10 | .40 | .50 | | 4 | 8 | 8 | 24 | .20 | .20 | .60 | 34 | 12 | 8 | 28 | .20 | .20 | .60 | 64 | 16 | 8 | 32 | .20 | .20 | .60 | | 5 | 8 | 8 | 24 | .20 | .30 | .50 | 35 | 12 | 8 | 28 | .20 | .30 | .50 | 65 | 16 | 8 | 32 | .20 | .30 | .50 | | 6 | 8 | 8 | 24 | .20 | .40 | .40 | 36 | 12 | 8 | 28 | .20 | .40 | .40 | 66 | 16 | 8 | 32 | .20 | .40 | .40 | | 7 | 8 | 12 | 28 | .10 | .225 | .675 | 37 | 12 | 12 | 32 | .10 | .225 | | 67 | 16 | 12 | 36 | .10 | .225 | .675 | | 8 | 8 | 12 | 28 | .10 | .30 | .60 | 38 | 12 | 12 | 32 | .10 | .30 | .60 | 68 | 16 | 12 | 36 | .10 | .30 | .60 | | 9 | 8 | 12 | 28 | .10 | .40 | .50 | 39 | 12 | 12 | 32 | .10 | .40 | .50 | 69 | 16 | 12 | 36 | .10 | .40 | .50 | | 10 | 8 | 12 | 28 | .20 | .20 | .60 | 40 | 12 | 12 | 32 | .20 | .20 | .60 | 70 | 16 | 12 | 36 | .20 | .20 | .60 | | 11 | 8 | 12 | 28 | .20 | .30 | .50 | 41 | 12 | 12 | 32 | .20 | .30 | .50 | 71 | 16 | 12 | 36 | .20 | .30 | .50 | | 12 | 8 | 12 | 28 | .20 | .40 | .40 | 42 | 12 | 12 | 32 | .20 | .40 | .40 | 72 | 16 | 12 | 36 | .20 | .40 | .40 | | 13 | 8 | 16 | 32 | .10 | .225 | .675 | 43 | 12 | 16 | 36 | .10 | .225 | .675 | 73 | 16 | 16 | 40 | .10 | .225 | .675 | | 14 | 8 | 16 | 32 | .10 | .30 | .60 | 44 | 12 | 16 | 36 | .10 | .30 | .60 | 74 | 16 | 16 | 40 | .10 | .30 | .60 | | 15 | 8 | 16 | 32 | .10 | .40 | .50 | 45 | 12 | 16 | 36 | .10 | .40 | .50 | 75 | 16 | 16 | 40 | .10 | .40 | .50 | | 16 | 8 | 16 | 32 | .20 | .20 | .60 | 46 | 12 | 16 | 36 | .20 | .20 | .60 | 76 | 16 | 16 | 40 | .20 | .20 | .60 | | 17 | 8 | 16 | 32 | .20 | .30 | .50 | 47 | 12 | 16 | 36 | .20 | .30 | .50 | 77 | 16 | 16 | 40 | .20 | .30 | .50 | | 18 | 8 | 16 | 32 | .20 | .40 | .40 | 48 | 12 | 16 | 36 | .20 | .40 | .40 | 78 | 16 | 16 | 40 | .20 | .40 | .40 | | 19 | 8 | 20 | 36 | .10 | .225 | .675 | 49 | 12 | 20 | 40 | .10 | .225 | | 79 | 16 | 20 | 44 | .10 | .225 | .675 | | 20 | 8 | 20 | 36 | .10 | .30 | .60 | 50 | 12 | 20 | 40 | .10 | .30 | .60 | 80 . | 16 | 20 | 44 | .10 | .30 | .60 | | 21 | 8 | 20 | 36 | .10 | .40 | .50 | 51 | 12 | 20 | 40 | .10 | .40 | .50 | 81 | 16 | 20 | 44 | .10 | .40 | .50 | | 22 | 8 | 20 | 36 | .20 | .20 | .60 | 52 | 12 | 20 | 40 | .20 | .20 | .60 | 82 | 16 | 20 | 44 | .20 | .20 | .60 | | 23 | 8 | 20 | 36 | .20 | .30 | .50 | 53 | 12 | 20 | 40 | .20 | .30 | .50 | 83 | 16 | 20 | 44 | .20 | .30 | .50 | | 24 | 8 | 20 | 36 | .20 | .40 | .40 | 54 | 12 | 20 | 40 | .20 | .40 | .40 | 84 | 16 | 20 | 44 | .20 | .40 | .40 | | 25 | 8 | 24 | 40 | .10 | .225 | .675 | | 12 | 24 | 44 | .10 | .225 | | 85 | 16 | 24 | 48 | .10 | .225 | .675 | | 26 | 8 | 24 | 40 | .10 | .30 | .60 | 56 | 12 | 24 | 44 | .10 | .30 | .60 | 86 | 16 | 24 | 48 | .10 | .30 | .60 | | 27 | 8 | 24 | 40 | .10 | .40 | .50 | 57 | 12 | 24 | 44 | .10 | .40 | .50 | 87 | 16 | 24 | 48 | .10 | .40 | .50 | | 28 | 8 | 24 | 40 | .20 | .20 | .60 | 58 | 12 | 24 | 44 | .20 | .20 | .60 | 88 | 16 | 24 | 48 | .20 | .20 | .60 | | 29 | 8 | 24 | 40 | .20 | .30 | .50 | 59 | 12 | 24 | 44 | .20 | .30 | .50 | 89 | 16 | 24 | 43 | .20 | .30 | .50 | | 30 | 8 | 24 | 40 | .20 | .40 | .40 | 60 | 12 | 24 | 44 | .20 | .40 | .40 | 90 | 16 | 24 | 48 | .20 | .40 | .40 | # Table 6.6 INDEX TO THE TYPE 3-S1 TRUCKS WEIGHING ONE KIP EACH Truck numbers 1 to 90 represent 90 combinations of various wheel base lengths, axle spacings, and axle loadings. | Truck
Number | | | | oad C
Axles
Kips
a ₂ | | Truck
Number | an | el B
d Ax
cing | le | | oad O
Axles
Kips | n | Truck
Number | an | el B
d Ar
cing | cle | | oad C
Axles
Kips | | | |-----------------|---|---------|----|--|------|-----------------|----|----------------------|----|----|------------------------|------|-----------------|----|----------------------|------------|----|------------------------|-------------|------| | 1 | 8 | 12 | 24 | .10 | .40 | .50 | 31 | 12 | 12 | 28 | .10 | .40 | .50 | 61 | 16 | 12 | 32 | .10 | .40 | .50 | | 2 | 8 | 12 | 24 | .10 | .50 | .40 | 32 | 12 | 12 | 28 | .10 | .50 | .40 | 62 | 16 | 12 | 32 | .10 | .50 | .40 | | 3 | 8 | 12 | 24 | .10 | .60 | .30 | 33 | 12 | 12 | 28 | .10 | .60 | .30 | 63 | 16 | 12 | 32 | .10 | .60 | .30 | | 4 | 8 | 12 | 24 | .20 | .40 | .40 | 34 | 12 | 12 | 28 | .20 | .40 | .40 | 64 | 16 | 12 | 32 | .20 | .40 | .40 | | 5 | 8 | 12 | 24 | .20 | .50 | .30 | 35 | 12 | 12 | 28 | .20 | .50 | .30 | 65 | 16 | 12 | 32 | .20 | .50 | .30 | | 6 | 8 | 12 | 24 | .20 | .534 | .266 | 36 | 12 | 12 | 28 | .20 | .534 | .266 | 66 | 16 | 12 | 32 | .20 | .534 | .266 | | 7 | 8 | 16 | 28 | .10 | .40 | .50 | 37 | 12 | 16 | 32 | .10 | .40 | .50 | 67 | 16 | 16 | 36 | .10 | .40 | .50 | | 8 | 8 | 16 | 28 | .10 | .50 | .40 | 38 | 12 | 16 | 32 | .10 | .50 | .40 | 68 | 16 | 16 | 36 | .10 | .50 | .40 | | 9 | 8 | 16 | 28 | .10 | .60 | .30 | 39 | 12 | 16 | 32 | .10 | .60 | .30 | 69 | 16 | 16 | 36 | .10 | .60 | .30 | | 10 | 8 | 16 | 28 | .20 | .40 | .40 | 40 | 12 | 16 | 32 | .20 | .40 | .40 | 70 | 16 | 16 | 36 | .20 | .40 | .40 | | 11 | 8 | 16 | 28 | .20 | .50 | .30 | 41 | 12 | 16 | 32 | .20 | .50 | .30 | 71 | 16 | 16 | 36 | .20 | .50 | .30 | | 12 | 8 | 16 | 28 | .20 | .534 | .266 | 42 | 12 | 16 | 32 | .20 | .534 | .266 | 72 | 16 | 16 | 36 | .20 | .534 | .266 | | 13 | 8 | 20 | 32 | .10 | .40 | .50 | 43 | 12 | 20 | 36 | .10 | .40 | .50 | 73 | 16 | 20 | 40 | .10 | .40 | .50 | | 14 | 8 | 20 | 32 | .10 | .50 | .40 | 44 | 12 | 20 | 36 | .10 | .50 | .40 | 74 | 16 | 20 | 40 | .10 | .50 | .40 | | 15 | 8 | 20 | 32 | .10 | .60 | .30 | 45 | 12 | 20 | 36 | .10 | .60 | .30 | 75 | 16 | 20 | 40 | .10 | .60 | .30 | | 16 | 8 | 20 | 32 | .20 | .40 | .40 | 46 | 12 | 20 | 36 | .20 | .40 | .40 | 76 | 16 | 20 | 40 | .20 | .40 | .40 | | 17 | 8 | 20 | 32 | .20 | .50 | .30 | 47 | 12 | 20 | 36 | .20 | .50 | .30 | 77 | 16 | 20 | 40 | .20 | .50 | .30 | | 18 | 8 | 20 | 32 | .20 | .534 | .266 | 48 | 12 | 20 | 36 | .20 | .534 | .266 | 78 | 16 | 20 | 40 | .20 | .534 | .266 | | 19 | 8 | 24 | 36 | .10 | .40 | .50 | 49 | 12 | 24 | 40 | .10 | .40 | .50 | 79 | 16 | 24 | 44 | .10 | .40 | .50 | | 20 | 8 | 24 | 36 | .10 | .50 | .40 | 50 | 12 | 24 | 40 | .10 | .50 | .40 | 80 | 16 | 24 | 44 | .10 | .50 | .40 | | 21 | 8 | 24 | 36 | .10 | .60 | .30 | 51 | 12 | 24 | 40 | .10 | .60 | .30 | 81 | 16 | 24 | 44 | .10 | .60 | .30 | | 22 | 8 | 24 | 36 | .20 | .40 | .40 | 52 | 12 | 24 | 40 | .20 | .40 | .40 | 82 | 16 | 24 | 44 | .20 | .40 | .40 | | 23 | 8 | 24 | 36 | .20 | .50 | .30 | 53 | 12 | 24 | 40 | .20 | .50 | .30 | 83 | 16 | 24 | 44 | .20 | .50 | .30 | | 24 | 8 | 24 | 36 | .20 | .534 | .266 | 54 | 12 | 24 | 40 | .20 | .534 | .266 | 84 | 16 | 24 | 44 | .20 | .534 | .266 | | 25 | 8 | 28 | 40 | .10 | .40 | .50 | 55 | 12 | 28 | 44 | .10 | .40 | .50 | 85 | 16 | 2 8 | 48 | .10 | .40 | .50 | | 26 | 8 | 28 | 40 | .10 | .50 | .40 | 56 | 12 | 28 | 44 | .10 | .50 | .40 | 86 | 16 | 28 | 48 | .10 | .50 | .40 | | 27 | 8 | 28 | 40 | .10 | .60 | .30 | 57 | 12 | 28 | 44 | .10 | .60 | .30 | 87 | 16 | 28 | 48 | .10 | .60 | .30 | | 28 | 8 | 28 | 40 | .20 | .40 | .40 | 58 | 12 | 28 | 44 | .20 | .40 | .40 | 88 | 16 | 2 8 | 48 | .20 | .40 | .40 | | 29 | 8 | 28 | 40 | .20 | .50 | .30 | 59 | 12 | 28 | 44 | .20 | .50 | .30 | 89 | 16 | 28 | 48 | .20 | .50 | .30 | | 30 | 8 | 28 | 40 | .20 | .534 | .266 | 60 | 12 | 28 | 44 | .20 | .534 | .266 | 90 | 16 | 28 | 48 | .20 | .534 | .266 | Table 6.7 Truck
numbers 1 to 112 represent 112 combinations of various wheel base lengths, axle spacings, and axle loadings. INDEX TO THE TYPE 3-S2 TRUCKS WEIGHING ONE KIP EACH | Truck
Number | Spa | d A: | xle | L | oad C
Axle
Kips | s | Truck
Number | Spa | d Ax | :le | | ad O
Axles
Kips | | Truck
Number | an
Spa | | cle | L | oad (
Axle
Kips | s | |-----------------|----------|----------|----------|-----|-----------------------|----------------|-----------------|----------|-----------------|----------|-----|-----------------------|----------------|-------------------|-----------|----------|----------|----------------|-----------------------|------------| | ΕZ | X | X' | L | aı | \mathbf{a}_2 | \mathbf{a}_3 | ΞŻ | X | X' | L | aı | \mathbf{a}_2 | \mathbf{a}_3 | ΕŽ | X | Χ' | L | a ₁ | a ₂ | a 3 | | 1 | 8 | 12 | 28 | .10 | .30 | .60 | 43 | 12 | 12 | 32 | .10 | .30 | .60 | 85 | 16 | 16 | 40 | .10 | .30 | .60 | | 2 | 8 | 12 | 28 | .10 | .40 | .50 | 44 | 12 | 12 | 32 | .10 | .40 | .50 | 86 | 16 | 16 | 40 | .10 | .40 | .50 | | 3 | 8 | 12 | 28 | .10 | .45 | .45 | 45 | 12 | 12 | 32 | .10 | .45 | .45 | 87 | 16 | 16 | 40 | .10 | .45 | .45 | | 4 | 8 | 12 | 28 | .10 | .50 | .40 | 46 | 12 | 12 | 32 | .10 | .50 | .40 | 88 | 16 | 16 | 40 | .10 | .50 | .40 | | 5 | 8 | 12 | 28 | .20 | .30 | .50 | 47 | 12 | 12 | 32 | .20 | .30 | ,50 | 89 | 16 | 16 | 40 | .20 | .30 | .50 | | 6
7 | 8 | 12
12 | 28
28 | .20 | .40
.50 | .40 | 48
49 | 12
12 | 12
12 | 32
32 | .20 | .40
.50 | .40 | 90
91 | 16
16 | 16
16 | 40
40 | .20 | .40
.50 | .40
.30 | | 8 | 8 | 16 | 32 | .10 | .30 | .60 | 49
50 | 12 | 16 | 32
36 | .10 | .30 | .60 | 92 | 16 | 20 | 44 | .10 | .30 | .60 | | 9 | 8 | 16 | 32 | .10 | .40 | .50 | 51 | 12 | 16 | 36 | .10 | .40 | .50 | 93 | 16 | 20 | 44 | .10 | .40 | .50 | | 10 | 8 | 16 | 32 | .10 | .45 | ,45 | 52 | 12 | 16 | 36 | .10 | .45 | .45 | 94 | 16 | 20 | 44 | .10 | .45 | .45 | | 11 | 8 | 16 | 32 | .10 | .50 | .40 | 53 | 12 | 16 | 36 | .10 | .50 | .40 | 95 | 16 | 20 | 44 | .10 | .50 | .40 | | 12 | 8 | 16 | 32 | .20 | .30 | .50 | 54 | 12 | 16 | 36 | .20 | .30 | .50 | 96 | 16 | 20 | 44 | ,20 | .30 | .50 | | 13 | 8 | 16 | 32 | .20 | .40 | .40 | 55 | 12 | 16 | 36 | .20 | .40 | .40 | 97 | 16 | 20 | 44 | .20 | .40 | .40 | | 14 | 8 | 16 | 32 | .20 | .50 | .30 | 56 | 12 | 16 | 36 | .20 | .50 | .30 | 98 | 16 | 20 | 44 | .20 | .50 | .30 | | 15 | 8 | 20 | 36 | .10 | .30 | .60 | 57 | 12 | 20 | 40 | .10 | .30 | .60 | 99 | 16 | 24 | 48 | .10 | .30 | .60 | | 16 | 8 | 20 | 36 | .10 | .40 | .50 | 58 | 12 | 20 | 40 | .10 | .40 | .50 | 100 | 16 | 24 | 48 | .10 | .40 | .50 | | 17 | 8 | 20 | 36 | .10 | .45 | .45 | 59 | 12 | 20 | 40 | .10 | .45 | .45 | 101 | 16 | 24 | 48 | .10 | .45 | .45 | | 18 | 8 | 20 | 36 | .10 | .50 | .40 | 60 | 12 | 20 | 40 | .10 | .50 | .40 | 102 | 16 | 24 | 48 | .10 | .50 | .40 | | 19 | 8 | 20 | 36 | .20 | .30 | .50 | 61 | 12 | 20 | 40 | .20 | .39 | .50 | 103 | 16 | 24 | 48 | .20 | .30 | .50 | | 20 | 8 | 20 | 36 | .20 | .40 | .40 | 62 | 12 | 20 | 40 | .20 | .40 | .40 | 104 | 16 | 24 | 48 | .20 | .40 | .40 | | 21 | 8 | 20 | 36 | .20 | .50 | .30 | 63 | 12 | 20 | 40 | .20 | .50 | .80 | 105 | 16 | 24 | 48 | .20 | .50 | .30 | | 22
23 | 8 | 24
24 | 40
40 | .10 | .30 $.40$ | .60
.50 | 64
65 | 12
12 | $\frac{24}{24}$ | 44
44 | .10 | .30 | .60 | 106 | 16
16 | 28
28 | 52
52 | .10 | .30 | .60
.50 | | 24 | 8 | 24 | 40 | .10 | .45 | .45 | 66 | 12 | 24 | 44 | .10 | .40
.45 | .50 $.45$ | $\frac{107}{108}$ | 16 | 28 | 52
52 | .10 | .45 | .45 | | 25 | 8 | 24 | 40 | .10 | .50 | .40 | 67 | 12 | 24 | 44 | .10 | .50 | .40 | 109 | 16 | 28 | 52 | .10 | .50 | .40 | | 26 | 8 | 24 | 40 | .20 | .30 | .50 | 68 | 12 | 24 | 44 | .20 | .30 | .50 | 110 | 16 | 28 | 52 | .20 | .30 | .50 | | 27 | 8 | 24 | 40 | .20 | .40 | .40 | 69 | 12 | 24 | 44 | .20 | .40 | .40 | 111 | 16 | 28 | 52 | .20 | .40 | .40 | | 28 | 8 | 24 | 40 | .20 | .50 | .30 | 70 | 12 | 24 | 44 | .20 | .50 | .30 | 112 | 16 | 28 | 52 | .20 | .50 | .30 | | 29 | 8 | 28 | 44 | .10 | .30 | .60 | 71 | 12 | 28 | 48 | .10 | .30 | .60 | | | | | | | | | 30 | 8 | 28 | 44 | .10 | .40 | .50 | 72 | 12 | 28 | 48 | .10 | .40 | .50 | | | | | | | | | 31 | 8 | 28 | 44 | .10 | .45 | .45 | 73 | 12 | 28 | 48 | .10 | .45 | .45 | | | | | | | | | 32 | 8 | 28 | 44 | .10 | .50 | .40 | 74 | 12 | 28 | 48 | .10 | .50 | .40 | | | | | | | | | 33 | 8 | 28 | 44 | .20 | .30 | .50 | 75 | 12 | 28 | 48 | .20 | .30 | .50 | | | | | | | | | 34 | 8 | 28 | 44 | .20 | .40 | .40 | 76 | 12 | 28 | 48 | .20 | .40 | .40 | | | | | | | | | 35 | 8 | 28 | 44 | .20 | .50 | .30 | 77 | 12 | 28 | 48 | .20 | .50 | .30 | | | | | | | | | 36 | 12 | 8 | 28 | .10 | .30 | .60 | 78 | 16 | 12 | 36 | .10 | .30 | .60 | | | | | | | | | 37 | 12 | 8 | 28 | .10 | .40 | .50 | 79 | 16 | 12 | 36 | .10 | .40 | .50 | | | | | | | | | 38 | 12 | 8 | 28 | .10 | .45 | .45 | 80 | 16 | 12 | 36 | .10 | .45 | .45 | | | | | | | | | 39 | 12 | 8 | 28 | .10 | .50 | .40 | 81 | 16 | 12 | 36 | .10 | .50 | .40 | | | | | | | | | 40 | 12 | 8 | 28 | .20 | .30 | .50 | 82 | 16 | 12 | 36 | .20 | .30 | .50 | | | | | | | | | 41
42 | 12
12 | 8 | 28
28 | .20 | .40
.50 | .40 | 83
84 | 16
16 | 12
12 | 36
36 | .20 | .40 | .40
.30 | | | | | | | | | | | 3 | 48 | .20 | .50 | .50 | - 54 | 10 | 14 | 90 | .40 | .50 | .50 | | | | | | | | Table 6.8 ## INDEX TO THE TYPE 3-S3 TRUCKS WEIGHING ONE KIP EACH Truck numbers I to 105 represent 105 combinations of various wheel base lengths, axle spacings, and axle loadings. | Truck
Number | an | eel I | хle | L | oad (
Axle | s | Truck
Number | an | el B | :le |] . | ad O
Axles | | Truck
Number | an | eel B | tle | L | oad (
Axle | s | |-----------------|------------|------------|----------|----------------|------------------------|------------|-----------------|----------|------------|----------|-----|------------------------|------------|-----------------|----------|------------|-----------------|----------------|---------------|------------| | je in | Spa
X | cing
X' | Ft. | a ₁ | Kips
a ₂ | a 3 | L'ruy
Yun | Spa
X | eing
X' | Ft. | a; | Kips
a ₂ | a 3 | ru's
and | Spa
X | cing
X' | Ft. | a ₁ | Kips
a2 | | | 1 | 8 | | 32 | | | | | | | 36 | | .30 | | | | | | | | .60 | | 2 | 8 | 12
12 | 32 | .10 | .30
.36 | .60
.54 | 36
37 | 12
12 | 12
12 | 36 | .10 | .36 | .60
.54 | $\frac{71}{72}$ | 16
16 | 12
12 | 40
40 | .10 | .30 | .54 | | 3 | 8 | 12 | 32 | .10 | .40 | .50 | 38 | 12 | 12 | 36 | .10 | .40 | .50 | 73 | 16 | 12 | 40 | .10 | .40 | .50 | | 4 | 8 | 12 | 32 | .10 | .50 | .40 | 39 | 12 | 12 | 36 | .10 | .50 | .40 | 74 | 16 | 12 | 40 | .10 | .50 | .40 | | 5 | 8 | 12 | 32 | .20 | .30 | .50 | 40 | 12 | 12 | 36 | .20 | .30 | .50 | 75 | 16 | 12 | 40 | .20 | .30 | .50 | | 6 | 8 | 12 | 32 | .20 | .40 | .40 | 41 | 12 | 12 | 36 | .20 | .40 | .40 | 76 | 16 | 12 | 40 | .20 | .40 | .40 | | 7 | 8 | 12 | 32 | .20 | .50 | .30 | 42 | 12 | 12 | 36 | .20 | .50 | .30 | 77 | 16 | 12 | 40 | .20 | .50 | .30 | | 8 | 8 | 16 | 36 | .10 | .30 | .60 | 43 | 12 | 16 | 40 | .10 | .30 | .60 | 78 | 16 | 16 | 44 | .10 | .30 | .60 | | 9 | 8 | 16 | 36 | .10 | .36 | .54 | 44 | 12 | 16 | 40 | .10 | .36 | .54 | 79 | 16 | 16 | 44 | .10 | .36 | .54 | | 10 | 8 | 16 | 36 | .10 | .40 | .50 | 45 | 12 | 16 | 40 | .10 | .40 | .50 | 80 | 16 | 16 | 44 | .10 | .40 | .50 | | 11 | 8 | 16 | 36 | .10 | .50 | .40 | 46 | 12 | 16 | 40 | .10 | .50 | .40 | 81 | 16 | 16 | 44 | .10 | .50 | .40 | | 12 | 8 | 16 | 36 | .20 | .30 | .50 | 47 | 12 | 16 | 40 | .20 | .30 | .50 | 82 | 16 | 16 | 44 | .20 | .30 | .50 | | 13 | 8 | 16 | 36 | .20 | .40 | .40 | 48 | 12 | 16 | 40 | .20 | .40 | .40 | 83 | 16 | 16 | 44 | .20 | .40 | .40 | | 14 | 8 | 16 | 36 | .20 | .50 | .30 | 49 | 12 | 16 | 40 | .20 | .50 | .30 | 84 | 16 | 16 | 44 | .20 | .50 | .30 | | 15 | 8 | 20 | 40 | .10 | .30 | .60 | 50 | 12 | 20 | 44 | .10 | .30 | .60 | 85 | 16 | 20 | 48 | .10 | .30 | .60 | | 16 | 8 | 20 | 40 | .10 | .36 | .54 | 51 | 12 | 20 | 44 | .10 | .36 | .54 | 86 | 16 | 20 | 48 | .10 | .36 | .54 | | 17 | 8 | 20 | 40 | .10 | .40 | .50 | 52 | 12 | 20 | 44 | .10 | .40 | .50 | 87 | 16 | 20 | 48 | .10 | .40 | .50 | | 18 | 8 | 20 | 40 | .10 | .50 | .40 | 53 | 12 | 20 | 44 | .10 | .50 | .40 | 88 | 16 | 20 | 48 | .10 | .50 | .40 | | 19 | 8 | 20 | 40 | .20 | .30 | .50 | 54 | 12 | 20 | 44 | .20 | .30 | .50 | 89 | 16 | 20 | 4 8 | .20 | .30 | .50 | | 20 | 8 | 20 | 40 | .20 | .40 | .40 | 55 | 12 | 20 | 44 | .20 | .40 | .40 | 90 | 16 | 20 | 48 | .20 | .40 | .40 | | 21 | 8 | 20 | 40 | .20 | .50 | .30 | 56 | 12 | 20 | 44 | .20 | .50 | .30 | 91 | 16 | 20 | 48 | .20 | .50 | .30 | | 22 | 8 | 24 | 44 | .10 | .30 | .60 | 57 | 12 | 24 | 48 | .10 | .30 | .60 | 92 | 16 | 24 | 52 | .10 | .30 | .60 | | 23 | 8 | 24
24 | 44 | .10 | .36 | .54 | 58 | 12 | 24 | 48 | .10 | .36 | .54 | 93 | 16 | 24 | 52 | .10 | .36 | .54 | | 24
25 | 8 | 24 | 44
44 | .10 | .40
.50 | .50 | 59 | 12
12 | 24
24 | 48
48 | .10 | .40 | .50 | 94 | 16 | 24
24 | $\frac{52}{52}$ | .10 | .40 | .50 | | 26
26 | - 8
- 8 | 24 | 44 | .20 | .30 | .40
.50 | 60
61 | 12 | 24 | 48 | .20 | .30 | .50 | 95
96 | 16
16 | 24 | 52
52 | .20 | .30 | .40
.50 | | 27 | 8 | 24 | 44 | .20 | .40 | .40 | 62 | 12 | 24 | 48 | .20 | .40 | .40 | 97 | 16 | 24 | 52 | .20 | .40 | .40 | | 28 | 8 | 24 | 44 | .20 | .50 | .30 | 63 | 12 | 24 | 48 | .20 | .50 | .30 | 98 | 16 | 24 | 52 | .20 | .50 | .30 | | 29 | 8 | 28 | 48 | .10 | .30 | .60 | 64 | 12 | 28 | 52 | .10 | .30 | .60 | 99 | 16 | 28 | 56 | .10 | .30 | .60 | | 30 | 8 | 28 | 48 | .10 | .36 | .54 | 65 | 12 | 28 | 52 | .10 | .36 | .54 | 100 | 16 | 28 | 56 | .10 | .36 | .54 | | 31 | 8 | 28 | 48 | .10 | .40 | .50 | 66 | 12 | 28 | 52 | .10 | .40 | .50 | 101 | 16 | 28 | 56 | .10 | .40 | .50 | | 32 | 8 | 28 | 48 | .10 | .50 | .40 | 67 | 12 | 28 | 52 | .10 | .50 | .40 | 102 | 16 | 28 | 56 | .10 | .50 | .40 | | 33 | 8 | 28 |
48 | .20 | .30 | .50 | 68 | 12 | 28 | 52 | .20 | .30 | .50 | 103 | 16 | 28 | 56 | .20 | .30 | .50 | | 34 | 8 | 28 | 48 | .20 | .40 | .40 | 69 | 12 | 28 | 52 | .20 | .40 | .40 | 104 | 16 | 28 | 56 | .20 | .40 | .40 | | 35 | 8 | 28 | 48 | .20 | .50 | .30 | 70 | 12 | 28 | 52 | .20 | .50 | .30 | 105 | 16 | 28 | 56 | .20 | .50 | .30 | Table 6.9 ### INDEX TO THE TYPE 2-2 TRUCKS WEIGHING ONE KIP EACH Truck numbers 1 to 144 represent 144 combinations of various wheel base lengths, axle spacings, and axle loadings. | Truck
Number | W | hcel
and | Axle | 2 | | ad (
Axle | s | uck | | hee
ind | | | | oad (
Axle | | ruck | | hee
and | | | L | cad (
Axle | | |-----------------|----------|-----------------|------------|-----------------|----------------|----------------|--------------|-----------|-----------------|-----------------|----------|----------|------------|----------------|------------|-------------------|-----------------|-----------------|-----------------|----------|------------|----------------|--------------| | 200 | S | acii | ng F | `t | | Kips | | Truck | | pacii | ng F | | | Kips | \$ | . 25 | S | paci | | τ | | Kip: | 3 | | ΞZ | X | Χ' | С | L | \mathbf{a}_1 | \mathbf{a}_2 | a :; | Ez' | X | X | С | L | ai | \mathbf{a}_2 | a: | ΞZ | X | \mathbf{X}' | C | L | aı | \mathbf{a}_2 | a 3 | | 1 | 12 | В | 8 | 28 | .10 | .20 | .70 | 49 | 16 | 8 | 8 | 32 | .10 | .20 | .70 | 97 | 20 | 8 | 3 | 36 | .10 | .20 | .70 | | 2 | 12 | 8 | - 8 | 28 | .10 | .30 | .60 | 50 | 16 | 8 | 8 | 32 | .10 | .30 | .60 | 98 | 20 | - 3 | 8 | 36 | .10 | .30 | .60 | | 3 | 12 | 8 | 8 | 28 | .10 | .40 | .50 | 51 | 16 | 8 | - 8 | 32 | .10 | .40 | .50 | 99 | 20 | - 8 | 8 | 36 | .10 | .40 | .50 | | 4 | 12 | 8 | 8 | 28 | .20 | .20 | .60 | 52 | 16 | 8 | 3 | 32 | .20 | .20 | .60 | 100 | 20 | 8 | 8 | 36 | .20 | .20 | .60 | | 5 | 12 | - 8 | - 8 | 28 | .20 | .30 | .50 | 53 | 16 | - 8 | 8 | 32 | .20 | .30 | .50 | 101 | 20 | - 8 | 3 | 36 | .20 | .30 | .50 | | 6 | 12 | 8 | 8 | 28 | .20 | .40 | .40 | 54 | 16 | 8 | 3 | 32 | .20 | .40 | .40 | 102 | 20 | 엉 | 3 | 36 | .20 | .40 | .40 | | 7 | 12 | 12 | 8 | 32 | .10 | .20 | .70 | 55 | 16 | 12 | 3 | 36 | .10 | .20 | .70 | 103 | 20 | 12 | - 8 | 40 | .10 | .20 | .70 | | 8 | 12 | 12 | - 8 | 32 | .10 | .30 | .60 | 56 | 16 | 12 | ક્ | 36 | .10 | .30 | .60 | 104 | 20 | 12 | - 8 | 40 | .10 | .30 | .60 | | 9 | 12 | 12 | - 8 | 32 | .10 | .40 | .50 | 57 | 16 | 12 | 3 | 36 | .10 | .40 | .50 | 105 | 20 | 12 | - 8 | 40 | .10 | .40 | .50 | | 1·)
11 | 12
12 | $\frac{12}{12}$ | - 8
- 8 | $\frac{32}{32}$ | .20 | .20
.30 | .60 | 58
59 | $\frac{16}{16}$ | 12
12 | 3 | 36 | .20 | .20 | .60 | 106 | 20 | $\frac{12}{12}$ | - 8 | 40 | .20 | .20 | .60 | | 12 | 12 | 12 | - 8 | 32 | .20
.20 | .40 | .50 | 60 | 16 | 12 | 3 | 36
36 | .20 | .30 | .50
.40 | $\frac{107}{108}$ | $\frac{20}{20}$ | 12 | - 8
- 8 | 40 | .20 | .30
.40 | $.50 \\ .40$ | | 13 | 12 | 16 | - 8 | 36 | .10 | .20 | .70 | 61 | 16 | 16 | - 8 | 40 | .10 | .20 | .70 | 109 | 20 | 16 | - 3 | 44 | .10 | .20 | .70 | | 14 | 12 | 16 | 8 | 36 | .10 | .30 | .60 | 62 | 16 | 16 | 3 | 40 | .10 | .30 | .60 | 110 | 20 | 16 | 3 | 44 | .10 | .30 | .60 | | 15 | 12 | 16 | 8 | 36 | .10 | .40 | .50 | 63 | 16 | 16 | 3 | 40 | .10 | .40 | .50 | 111 | 20 | 16 | 8 | 44 | .10 | .40 | .50 | | 16 | 12 | 16 | 8 | 36 | .20 | .20 | .60 | 64 | 16 | 16 | ಕ | 40 | .20 | .20 | .60 | 112 | 20 | 16 | -8 | 44 | .20 | .20 | .60 | | 17 | 12 | 16 | 8 | 36 | .20 | .30 | .50 | 65 | 16 | 16 | 8 | 40 | .20 | .30 | .50 | 113 | 20 | 16 | -8 | 44 | .20 | .30 | .50 | | 18 | 12 | 16 | 8 | 36 | .20 | .40 | .40 | 66 | 16 | 16 | 3 | 40 | .20 | .40 | .40 | 114 | 20 | 16 | 8 | 44 | .20 | .40 | .40 | | 19 | 12 | 20 | - 8 | 40 | .10 | .20 | .70 | 67 | 16 | 20 | 8 | 44 | .10 | .20 | .70 | 115 | 20 | 20 | - 8 | 48 | .10 | .20 | .70 | | 20 | 12 | 20 | 8 | 40 | .10 | .30 | .60 | 68 | 16 | 20 | - 8 | 44 | .10 | .30 | .60 | 116 | 20 | 20 | - 8 | 48 | .10 | .30 | .60 | | 21
22 | 12
12 | 20
20 | 8 | 40 | .10 | .40 | .50
.60 | 69
70 | 16
16 | $\frac{20}{20}$ | 8 | 44
44 | .10 | .40 | .50 | $\frac{117}{118}$ | $\frac{20}{20}$ | $\frac{20}{20}$ | 8 | 48
48 | .10 | $.40 \\ .20$ | .50 $.60$ | | 23 | 12 | 20 | - 8 | 40 | .20 | .30 | .50 | 71 | 16 | 20 | 8 | 44 | .20 | .30 | .50 | 119 | 20 | 20 | - 3 | 48 | .20 | .30 | .50 | | 24 | 12 | 20 | 8 | 40 | .20 | .40 | .40 | 72 | 16 | 20 | 8 | 44 | .20 | .40 | .40 | 120 | 20 | 20 | 8 | 48 | .20 | .40 | .40 | | 25 | 12 | 8 | 12 | 32 | .10 | .20 | .70 | 73 | 16 | -8 | 12 | 36 | .10 | .20 | .70 | 121 | 20 | -8 | 12 | 40 | .10 | .20 | .79 | | 26 | 12 | 8 | 12 | 32 | .10 | .30 | .60 | 74 | 16 | 8 | 12 | 36 | .10 | .30 | .60 | 122 | 20 | 8 | 12 | 40 | .10 | .30 | .60 | | 27 | 12 | - 8 | 12 | 32 | .10 | .40 | .50 | 75 | 16 | - 8 | 12 | 36 | .10 | .40 | 50 | 123 | 20 | 8 | 12 | 40 | .10 | .40 | .50 | | 28 | 12 | - 8 | 12 | 32 | .20 | .20 | .60 | 76 | 16 | - 8 | 12 | 36 | .20 | .20 | .60 | 124 | 20 | 8 | 12 | 40 | .20 | .20 | .60 | | 29 | 12 | - 8 | 12 | 32 | .20 | .30 | .50 | 77 | 16 | 8 | 12 | 36 | .20 | .30 | .50 | 125 | 20 | - 8 | 12 | 40 | .20 | .30 | .50 | | $\frac{30}{31}$ | 12
12 | $\frac{8}{12}$ | 12
12 | 32
36 | .20 | .40 | $.40 \\ .70$ | 78
79 | 16
16 | $\frac{8}{12}$ | 12
12 | 36
40 | .20 | .40
.20 | .40 | $\frac{126}{127}$ | $\frac{20}{20}$ | 8
12 | 12
12 | 40 | .20 | .40 | .40
.70 | | 32 | 12 | 12 | 12 | 36 | .10 | .30 | .60 | 80 | 16 | 12 | 12 | 40 | .10 | .30 | .60 | 128 | 20 | 12 | 12 | 44 | .10 | .30 | .60 | | 33 | 12 | 12 | 12 | 36 | .10 | .40 | .50 | 81 | 16 | 12 | 12 | 40 | .10 | .40 | .50 | 129 | 20 | 12 | 12 | 44 | .10 | .40 | .50 | | 34 | 12 | 12 | 12 | 36 | .20 | .20 | .60 | 82 | 16 | 12 | 12 | 40 | .20 | .20 | .60 | 130 | 20 | 12 | $\overline{12}$ | 44 | .20 | .20 | .60 | | 35 | 12 | 12 | 12 | 36 | .20 | .30 | .50 | 83 | 16 | 12 | 12 | 40 | .20 | .30 | .50 | 131 | 20 | 12 | 12 | 44 | .20 | .30 | .50 | | 36 | 12 | 12 | 12 | 36 | .20 | .40 | .40 | 84 | 16 | 12 | 12 | 40 | .20 | .40 | .40 | 132 | 20 | 12 | 12 | 44 | .20 | .40 | .40 | | 37 | 12 | 16 | 12 | 40 | .10 | .20 | .70 | 85 | 16 | 16 | 12 | 44 | .10 | .20 | .70 | 133 | 20 | 16 | 12 | 48 | .10 | ,20 | .70 | | 38 | 12 | 16 | 12 | 40 | .10 | .30 | .60 | 86 | 16 | 16 | 12 | 4.4 | .10 | .30 | .60 | 134 | 20 | 16 | 12 | 48 | .10 | .30 | .60 | | 39 | 12
12 | 16 | 12 | 40 | .10 | .40 | .50 | 87 | 16 | 16 | 12 | 44 | .10 | .40 | .50 | 135 | 20 | 16 | 12 | 48 | .10 | .40 | .50 | | 40
41 | 12 | 16
16 | 12
12 | 40 | .20
.20 | .20 | .60
.50 | 88
89 | 16
16 | 16
16 | 12
12 | 44 | .20
.20 | .20 | .60
.50 | $\frac{136}{137}$ | $\frac{20}{20}$ | $\frac{16}{16}$ | 12
12 | 48
48 | .20
.20 | .20
.30 | .60
.50 | | 42 | 12 | 16 | 12 | 40 | .20 | .40 | .40 | 90 | 16 | 16 | 12 | 44 | .20 | .40 | .40 | 138 | 20 | 16 | 12 | 48 | .20 | .40 | .40 | | 43 | 12 | 20 | 12 | 44 | .10 | .20 | .70 | 91 | 16 | 20 | 12 | 48 | .10 | .20 | .70 | 139 | 20 | 20 | 12 | 52 | .10 | .29 | .70 | | 44 | 12 | 20 | 12 | 44 | .10 | .30 | .60 | 92 | 16 | 20 | 12 | 48 | .10 | .30 | .60 | 140 | 20 | 20 | 12 | 52 | .10 | .30 | .60 | | 45 | 12 | 20 | 12 | 44 | .10 | .40 | .50 | 93 | 16 | 20 | 12 | 48 | .10 | .40 | .50 | 141 | 20 | 20 | 12 | 52 | .10 | .40 | .50 | | 46 | 12 | 20 | 12 | 44 | .20 | .20 | .60 | 94 | 16 | 20 | 12 | 48 | .20 | .20 | .60 | 142 | 20 | 20 | 12 | 52 | .20 | .20 | .60 | | 47 | 12 | 20 | 12 | 44 | .20 | .30 | .50 | 95 | 16 | 20 | 12 | 48 | .20 | .30 | .50 | 143 | 20 | 20 | 12 | 52 | .20 | .30 | .50 | | 48 | 12 | 20 | 12 | 44 | .20 | .40 | .40 | 96 | 16 | 20 | 12 | 48 | .20 | .40 | .40 | 144 | 20 | 20 | 12 | 52 | .20 | .40 | .40 | Table 6.10 ### INDEX TO THE TYPE 2-3 TRUCKS WEIGHING ONE KIP EACH Truck numbers 1 to 90 represent 90 combinations of various wheel base lengths, axle spacings, and axle leadings. | Truck
Number | Sr
X | heel
and a
acir | Axle | , | , | ad C
Axles
Kips | S | Truck
Number | 8 | ind. | Bas
Axle
ng F | , | J | ad C
Axles
Kips
a ₂ | ; | Truck
Number | a | heel
ind z
acir | Axl∈ | | | oad (
Axle
Kips | s | |-----------------|----------|-----------------------|----------|----------|-----|-----------------------|-----|-----------------|----------|------------|---------------------|----|-----|---|-----|-----------------|----|-----------------------|----------|----------|-----|-----------------------|------------| | 1 | 12 | 8 | 8 | 32 | .10 | .20 | .70 | 31 | 16 | 8 | -8 | 36 | .10 | .20 | .70 | 61 | 20 | 8 | 8 | 40 | .10 | .20 | .70 | | 2 | 12 | 8 | 8 | 32 | .10 | .30 | .60 | 32 | 16 | 8 | 8 | 36 | .10 | .30 | .60 | 62 | 20 | 8 | 8 | 40 | .10 | .30 | .60 | | 3 | 12 | 8 | 8 | 32 | .10 | .40 | .50 | 33 | 16 | 8 | 8 | 36 | .10 | .40 | .50 | 63 | 20 | 8 | 8 | 40 | .10 | .40 | ,50 | | 4 | 12 | 8 | 8 | 32 | .20 | .20 | .60 | 34 | 16 | 8 | 8 | 36 | .20 | .20 | .60 | 64 | 20 | 8 | 8 | 40 | .20 | .20 | .60 | | 5 | 12 | 8 | 8 | 32 | .20 | .30 | .50 | 35 | 16 | 8 | 8 | 36 | .20 | .30 | .50 | 65 | 20 | 8 | 8 | 40 | .20 | .30 | .50 | | 6 | 12 | 12 | 8 | 36 | .10 | .20 | .70 | 36 | 16 | 12 | 8 | 40 | .10 | .20 | .70 | 66 | 20 | 12 | 8 | 44 | .10 | .20 | .70 | | 7 | 12 | 12 | 8 | 36 | .10 | .30 | .60 | 37 | 16 | 12 | 8 | 40 | .10 | .30 | .60 | 67 | 20 | 12 | 8 | 44 | .10 | .30 | .60 | | 8 | 12 | 12 | 8 | 36 | .10 | .40 | .50 | 38 | 16 | 12 | 8 | 40 | .10 | .40 | .50 | 68 | 20 | 12 | 8 | 44 | .10 | .40 | .50 | | 9 | 12 | 12 | 8 | 36 | .20 | .20 | .60 | 39 | 16 | 12 | 8 | 40 | .20 | .20 | .60 | 69 | 20 | 12 | 8 | 44 | .20 | .20 | .60 | | 10 | 12 | 12 | 8 | 36 | .20 | .30 | .50 | 40 | 16 | 12 | 8 | 40 | .20 | .30 | .50 | 70 | 20 | 12 | 8 | 44 | .20 | .30 | .50 | | 11 | 12 | 16 | 8 | 40 | .10 | .20 | .70 | 41 | 16 | 16 | 8 | 44 | .10 | .20 | .70 | 71 | 20 | 16 | 8 | 48 | .10 | .20 | .70 | | 12 | 12 | 16 | 8 |
40 | .10 | .30 | .60 | 42 | 16 | 16 | 8 | 44 | .10 | .30 | .60 | 72 | 20 | 16 | 8 | 48 | .10 | .30 | .60 | | 13 | 12 | 16 | - 8 | 40 | .10 | .40 | .50 | 43 | 16 | 16 | 8 | 44 | .10 | .40 | .50 | 73 | 20 | 16 | 8 | 48 | .10 | .40 | .50 | | 14 | 12 | 16 | 8 | 40 | .20 | .20 | .60 | 44 | 16 | 16 | 8 | 44 | .20 | .20 | .60 | 74 | 20 | 16 | 8 | 48 | .20 | .20 | .60 | | 15 | 12 | 16 | 8 | 40 | .20 | .30 | .50 | 45 | 16 | 16 | 8 | 44 | .20 | .30 | .50 | 75 | 20 | 16 | 8 | 48 | .20 | .30 | .50 | | 16 | 12 | 8 | 12 | 36 | .10 | .20 | .70 | 46 | 16 | 8 | 12
12 | 40 | .10 | .20 | .70 | 76
57 | 20 | 8 | 12 | 44 | .10 | .20 | .70 | | 17
18 | 12
12 | 8
8 | 12
12 | 36
36 | .10 | .30 | .60 | 47 | 16
16 | 8 | 12 | 40 | .10 | .30 | .60 | 77
78 | 20 | 8
8 | 12
12 | 44
44 | .10 | .30 | .60
.50 | | 19 | 12 | 8 | 12 | 36 | .20 | .20 | .60 | 48
49 | 16 | - 8
- 8 | 12 | 40 | .20 | .20 | .60 | 79 | 20 | 8 | 12 | 44 | .20 | .20 | .60 | | 20 | 12 | 8 | 12 | 36 | .20 | .30 | .50 | 50 | 16 | 8 | 12 | 40 | .20 | .30 | .50 | 80 | 20 | 8 | 12 | 44 | .20 | .30 | .50 | | 21 | 12 | 12 | 12 | 40 | .10 | .20 | .70 | 51 | 16 | 12 | 12 | 44 | .10 | .20 | .70 | 81 | 20 | 12 | 12 | 48 | .10 | .20 | .70 | | 22 | 12 | 12 | 12 | 40 | .10 | .30 | .60 | 52 | 16 | 12 | 12 | 44 | .10 | .30 | .60 | 82 | 20 | 12 | 12 | 48 | .10 | .30 | .60 | | 23 | 12 | 12 | 12 | 40 | .10 | .40 | .50 | 53 | 16 | 12 | 12 | 44 | .10 | .40 | .50 | 83 | 20 | 12 | 12 | 48 | .10 | .40 | .50 | | 24 | 12 | 12 | 12 | 40 | .20 | .20 | .60 | 54 | 16 | 12 | 12 | 44 | .20 | .20 | .60 | 84 | 20 | 12 | 12 | 48 | .20 | .20 | .60 | | 25 | 12 | 12 | 12 | 40 | .20 | .30 | .50 | 55 | 16 | 12 | 12 | 44 | .20 | .30 | .50 | 85 | 20 | 12 | 12 | 48 | .20 | .30 | .50 | | 26 | 12 | 16 | 12 | 44 | .10 | .20 | .70 | 56 | 16 | 16 | 12 | 48 | .10 | .20 | .70 | 86 | 20 | 16 | 12 | 52 | .10 | .20 | .70 | | 27 | 12 | 16 | 12 | 44 | .10 | .30 | .60 | 57 | 16 | 16 | 12 | 48 | .10 | .30 | .60 | 87 | 20 | 16 | 12 | 52 | .10 | .30 | .60 | | 28 | 12 | 16 | 12 | 44 | .10 | .40 | .50 | 58 | 16 | 16 | 12 | 48 | .10 | .40 | .50 | 88 | 20 | 16 | 12 | 52 | .10 | .40 | .50 | | 29 | 12 | 16 | 12 | 44 | .20 | .20 | .60 | 59 | 16 | 16 | 12 | 48 | .20 | .20 | .60 | 89 | 20 | 16 | 12 | 52 | .20 | .20 | .60 | | 30 | 12 | 16 | 12 | 44 | .20 | .30 | .50 | 60 | 16 | 16 | 12 | 48 | .20 | .30 | .50 | 90 | 20 | 16 | 12 | 52 | .20 | .30 | .50 | Table 6.11 ## INDEX TO THE TYPE 3-2 TRUCKS WEIGHING ONE KIP EACH Truck numbers 1 to 90 represent 90 combinations of various wheel base lengths, axle spacings, and axle loadings. | Truck
Number | a | hee
and
aci | Axle | و | 1 | ad C
Axles
Kips | 3 | Truck
Number | ä | ind . | Bas
Axle
ng F | . | ž | ad O
Axles
Kips | | Truck
Number | ε | heel
ind /
acir | 4 x le | | | oad C
Axle
Kips | s | |-----------------|----------|-------------------|------|----|-----|-----------------------|----------------|-----------------|----------|----------|---------------------|----|----------------|-----------------------|----------------|-----------------|----------|-----------------------|---------|----------|-----|-----------------------|------------| | ÉŽ | X | X' | С | L | a 1 | ae | \mathbf{a}_3 | μź | X | X' | С | L | \mathbf{a}_1 | \mathbf{a}_2 | \mathbf{a}_3 | Εź | X | X' | С | L | aı | a2 | a 3 | | 1 | 12 | 12 | 8 | 36 | .10 | .40 | .50 | 31 | 16 | 12 | 8 | 40 | .10 | .40 | .50 | 61 | 20 | 12 | 8 | 44 | .10 | .40 | .50 | | 2 | 12 | 12 | 8 | 36 | .10 | .50 | .40 | 32 | 16 | 12 | 8 | 40 | .10 | .50 | .40 | 62 | 20 | 12 | 8 | 44 | .10 | .50 | .40 | | 3 | 12 | 12 | 8 | 36 | .10 | .60 | .30 | 33 | 16 | 12 | 8 | 40 | .10 | .60 | .30 | 63 | 20 | 12 | 8 | 44 | .10 | .60 | .30 | | 4 | 12 | 12 | 8 | 36 | .20 | .40 | .40 | 34 | 16 | 12 | 8 | 40 | .20 | .40 | .40 | 64 | 20 | 12 | 8 | 44 | .20 | .40 | .40 | | 5 | 12 | 12 | 8 | 36 | .20 | .50 | .30 | 35 | 16 | 12 | 8 | 40 | .20 | .50 | .30 | 65 | 20 | 12 | 8 | 44 | .20 | .50 | .30 | | 6 | 12 | 16 | 8 | 40 | .10 | .40 | .50 | 36 | 16 | 16 | 8 | 44 | .10 | .40 | .50 | 66 | 20 | 16 | 8 | 48 | .10 | .40 | .50 | | 7 | 12 | 16 | 8 | 40 | .10 | .50 | .40 | 37 | 16 | 16 | 8 | 44 | .10 | .50 | .40 | 67 | 20 | 16 | 8 | 48 | .10 | .50 | .40 | | 8 | 12 | 16 | 8 | 40 | .10 | .60 | .30 | 38 | 16 | 16 | 8 | 44 | .10 | .60 | .30 | 68 | 20 | 16 | 8 | 48 | .10 | .60 | .30 | | 9 | 12 | 16 | 8 | 40 | .20 | .40 | .40 | 39 | 16 | 16 | 8 | 44 | .20 | .40 | .40 | 69 | 20 | 16 | 8 | 48 | .20 | .40 | .40 | | 10 | 12 | 16 | 8 | 40 | .20 | .50 | .30 | 40 | 16 | 16 | 8 | 44 | .20 | .50 | .30 | 70 | 20 | 16 | 8 | 48 | .20 | .50 | .30 | | 11 | 12 | 20 | 8 | 44 | .10 | .40 | .50 | 41 | 16 | 20 | 8 | 48 | .10 | .40 | .50 | 71 | 20 | 20 | 8 | 52 | .10 | .40 | .50 | | 12 | 12 | 20 | 8 | 44 | .10 | .50 | .40 | 42 | 16 | 20 | 8 | 48 | .10 | .50 | .40 | 72 | 20 | 20 | 8 | 52 | .10 | .50 | .40 | | 13 | 12 | 20 | 8 | 44 | .10 | .60 | .30 | 43 | 16 | 20 | 8 | 48 | .10 | .60 | .30 | 73 | 20 | 20 | 8 | 52 | .10 | .60 | .30 | | 14 | 12
12 | 20
20 | 8 | 44 | .20 | .40 | .40 | 44 | 16
16 | 20
20 | 8 | 48 | .20 | .40 | .40 | 74 | 20
20 | 20
20 | 8 | 52
52 | .20 | .40 | .40 | | 15
16 | 12 | 12 | 12 | 44 | .10 | .50
.40 | .50 | 45
46 | 16 | 12 | 12 | 48 | .10 | .40 | .50 | 75
76 | 20 | 12 | 8
12 | 48 | .10 | .50 | .30
.50 | | 17 | 12 | 12 | 12 | 40 | .10 | .50 | .40 | 47 | 16 | 12 | 12 | 44 | .10 | .50 | .40 | 77 | 20 | 12 | 12 | 48 | .10 | .50 | .40 | | 18 | 12 | 12 | 12 | 40 | .10 | .60 | .30 | 48 | 16 | 12 | 12 | 44 | .10 | .60 | .30 | 78 | 20 | 12 | 12 | 48 | .10 | .60 | .30 | | 19 | 12 | 12 | 12 | 40 | .20 | .40 | .40 | 49 | 16 | 12 | 12 | 44 | .20 | .40 | ,40 | 79 | 20 | 12 | 12 | 48 | .20 | .40 | .40 | | 20 | 12 | 12 | 12 | 40 | .20 | .50 | .30 | 50 | 16 | . 12 | 12 | 44 | .20 | .50 | .30 | 80 | 20 | 12 | 12 | 48 | .20 | ,50 | .30 | | 21 | 12 | 16 | 12 | 44 | .10 | .40 | .50 | 51 | 16 | 16 | 12 | 48 | .10 | .40 | .50 | 81 | 20 | 16 | 12 | 52 | .10 | .40 | .50 | | 22 | 12 | 16 | 12 | 44 | .10 | .50 | .40 | 52 | 16 | 16 | 12 | 48 | .10 | .50 | .40 | 82 | 20 | 16 | 12 | 52 | .10 | .50 | .49 | | 23 | 12 | 16 | 12 | 44 | .10 | .60 | .30 | 53 | 16 | 16 | 12 | 48 | .10 | .60 | .30 | 83 | 29 | 16 | 12 | 52 | .10 | .60 | .30 | | 24 | 12 | 16 | 12 | 44 | .20 | .40 | .40 | 54 | 16 | 16 | 12 | 48 | .20 | .40 | .40 | 84 | 20 | 16 | 12 | 52 | .20 | .40 | .40 | | 25 | 12 | 16 | 12 | 44 | .20 | .50 | .30 | 55 | 16 | 16 | 12 | 48 | .20 | .50 | .30 | 85 | 20 | 16 | 12 | 52 | .20 | .50 | .30 | | 26 | 12 | 20 | 12 | 48 | .10 | .40 | .50 | 56 | 16 | 20 | 12 | 52 | .10 | .40 | .50 | 86 | 20 | 20 | 12 | 56 | .10 | .40 | .50 | | 27 | 12 | 20 | 12 | 48 | .10 | .50 | .40 | 57 | 16 | 20 | 12 | 52 | .10 | .50 | .40 | 87 | 20 | 20 | 12 | 56 | .10 | .50 | 40 | | 28 | 12 | 20 | 12 | 48 | .10 | .60 | .30 | 58 | 16 | 20 | 12 | 52 | .10 | .60 | .30 | 88 | 20 | 20 | 12 | 56 | .10 | .60 | .30 | | 29 | 12 | 20 | 12 | 48 | .20 | .40 | .40 | 59 | 16 | 20 | 12 | 52 | .20 | .40 | .40 | 89 | 20 | 20 | 12 | 56 | .20 | .40 | .40 | | 30 | 12 | 20 | 12 | 48 | .20 | .50 | .30 | 60 | 16 | 20 | 12 | 52 | .20 | .50 | .30 | 90 | 20 | 20 | 12 | 56 | .20 | .50 | .30 | Table 6.12 ## INDEX TO THE TYPE 3-3 TRUCKS WEIGHING ONE KIP EACH Truck numbers 1 to 90 represent 90 combinations of various wheel base lengths, axle spacings, and axle loadings. | Truck
Number | 1 | and | l Ba
Axl | 9 | | ead (| s | ruck
umber | | and | l Ba | ē | | Gad (| S | Truck | 1 | hee
and | Axl | e | L | oad
Axle | 28 | |-----------------|-----------------|-----|-------------|----|----------------|------------------------|----------------|---------------|----------------|-----|-----------|----|----------------|------------------------|-----|-------|---------------|------------|-----------|----|----------------|-----------------------|----------------| | La N | $\frac{s_1}{X}$ | X | ng F
C | L. | a ₁ | Kips
a ₂ | a ₃ | T L | $\frac{SI}{X}$ | X | ng F
C | L. | a ₁ | Kips
a ₂ | as | La S | $\frac{S}{X}$ | paci
X' | ng F
C | L. | a ₁ | Kip
a ₂ | a ₃ | | 1 | 12 | 8 | 12 | 40 | _10 | .30 | .60 | 31 | 16 | 8 | 12 | 44 | .10 | .30 | .60 | 61 | 20 | 8 | 12 | 48 | .10 | .30 | .60 | | 2 | 12 | 8 | 12 | 40 | .10 | .40 | .50 | 32 | 16 | 8 | 12 | 44 | .10 | .40 | .50 | 62 | 20 | 8 | 12 | 48 | .10 | .40 | .50 | | 3 | 12 | 8 | 12 | 40 | .10 | .50 | .40 | 33 | 16 | 8 | 12 | 44 | .10 | .50 | .40 | 63 | 20 | 8 | 12 | 48 | .10 | .50 | .40 | | 4 | 12 | 8 | 12 | 40 | .20 | .30 | .50 | 34 | 16 | 8 | 12 | 44 | .20 | .30 | .50 | 64 | 20 | 8 | 12 | 48 | .20 | .30 | .50 | | 5 | 12 | 8 | 12 | 40 | .20 | .40 | .40 | 35 | 16 | 8 | 12 | 44 | .20 | .40 | .40 | 65 | 20 | 8 | 12 | 48 | .20 | .40 | .40 | | 6 | 12 | 12 | 12 | 44 | .10 | .30 | .60 | 36 | 16 | 12 | 12 | 48 | .10 | .30 | .60 | 66 | 20 | 12 | 12 | 52 | .10 | .30 | .60 | | 7 | 12 | 12 | 12 | 44 | .10 | .40 | .50 | 37 | 16 | 12 | 12 | 48 | .10 | .40 | .50 | 67 | 20 | 12 | 12 | 52 | .10 | .40 | .50 | | 8 | 12 | 12 | 12 | 44 | .10 | .50 | .40 | 38 | 16 | 12 | 12 | 48 | .10 | .50 | .40 | 68 | 20 | 12 | 12 | 52 | .10 | .50 | .40 | | 9 | 12 | 12 | 12 | 44 | .20 | .30 | .50 | 39 | 16 | 12 | 12 | 48 | .20 | .30 | .50 | 69 | 20 | 12 | 12 | 52 | .20 | .30 | .50 | | 10 | 12 | 12 | 12 | 44 | .20 | .40 | .40 | 40 | 16 | 12 | 12 | 48 | .20 | .40 | .40 | 70 | 20 | 12 | 12 | 52 | .20 | .40 | .40 | | 11 | 12 | 16 | 12 | 48 | .10 | .30 | .60 | 41 | 16 | 16 | 12 | 52 | .10 | .30 | .60 | 71 | 20 | 16 | 12 | 56 | .10 | .30 | .60 | | 12 | 12 | 16 | 12 | 48 | .10 | .40 | .50 | 42 | 16 | 16 | 12 | 52 | .10 | .40 | .50 | 72 | 20 | 16 | 12 | 56 | .10 | .40 | .50 | | 13 | 12 | 16 | 12 | 48 | .10 | .50 | .40 | 43 | 16 | 16 | 12 | 52 | .10 | .50 | .40 | 73 | 20 | 16 | 12 | 56 | .10 | .50 | .40 | | 14 | 12 | 16 | 12 | 48 | .20 | .30 | .50 | 44 | 16 | 16 | 12 | 52 | .20 | .30 | .50 | 74 | 20 | 16 | 12 | 56 | .20 | .30 | .50 | | 15 | 12 | 16 | 12 | 48 | .20 | .40 | .40 | 45 | 16 | 16 | 12 | 52 | .20 | .40 | .40 |
75 | 20 | 16 | 12 | 56 | .20 | .40 | .40 | | 16 | 12 | 8 | 16 | 44 | .10 | .30 | .60 | 46 | 16 | 8 | 16 | 48 | .10 | .30 | .60 | 76 | 20 | 8 | 16 | 52 | .10 | .30 | .60 | | 17 | 12 | 8 | 16 | 44 | .10 | .40 | .50 | 47 | 16 | 8 | 16 | 48 | .10 | .40 | .50 | 77 | 20 | 8 | 16 | 52 | .10 | .40 | .50 | | 18 | 12 | 8 | 16 | 44 | .10 | .50 | .40 | 48 | 16 | 8 | 16 | 48 | .10 | .50 | .40 | 78 | 20 | 8 | 16 | 52 | .10 | .50 | .40 | | 19 | 12 | 8 | 16 | 44 | .20 | .30 | .50 | 49 | 16 | 8 | 16 | 48 | .20 | .30 | .50 | 79 | 20 | 8 | 16 | 52 | .20 | .30 | .50 | | 20 | 12 | 8 | 16 | 44 | .20 | .40 | .40 | 50 | 16 | 8 | 16 | 48 | .20 | .40 | .40 | 80 | 20 | 8 | 16 | 52 | .20 | .40 | .40 | | 21 | 12 | 12 | 16 | 48 | .10 | .30 | .60 | 51 | 16 | 12 | 16 | 52 | .10 | .30 | .60 | 81 | 20 | 12 | 16 | 56 | .10 | .30 | .60 | | 22 | 12 | 12 | 16 | 48 | .10 | .40 | .50 | 52 | 16 | 12 | 16 | 52 | .10 | .40 | .50 | 82 | 20 | 12 | 16 | 56 | .10 | .40 | .50 | | 23 | 12 | 12 | 16 | 48 | .10 | .50 | .40 | 53 | 16 | 12 | 16 | 52 | .10 | .50 | .40 | 83 | 20 | 12 | 16 | 56 | .10 | .50 | .40 | | 24 | 12 | 12 | 16 | 48 | .20 | .30 | .50 | 54 | 16 | 12 | 16 | 52 | .20 | .30 | .50 | 84 | 20 | 12 | 16 | 56 | .20 | .30 | .50 | | 25 | 12 | 12 | 16 | 48 | .20 | .40 | .40 | 55 | 16 | 12 | 16 | 52 | .20 | .40 | .40 | 85 | 20 | 12 | 16 | 56 | .20 | .40 | .40 | | 26 | 12 | 16 | 16 | 52 | .10 | .30 | .60 | 56 | 16 | 16 | 16 | 56 | .10 | .30 | .60 | 86 | 20 | 16 | 16 | 60 | .10 | .30 | .60 | | 27 | 12 | 16 | 16 | 52 | .10 | .40 | .50 | 57 | 16 | 16 | 16 | 56 | .10 | .40 | .50 | 87 | 20 | 16 | 16 | 60 | .10 | .40 | .50 | | 28 | 12 | 16 | 16 | 52 | .10 | .50 | .40 | 58 | 16 | 16 | 16 | 56 | .10 | .50 | .40 | 88 | 20 | 16 | 16 | 60 | .10 | .50 | .40 | | 29 | 12 | 16 | 16 | 52 | .20 | .30 | .50 | 59 | 16 | 16 | 16 | 56 | .20 | .30 | .50 | 89 | 20 | 16 | 16 | 60 | .20 | .30 | .50 | | 30 | 12 | 16 | 16 | 52 | .20 | .40 | .40 | 60 | 16 | 16 | 16 | 56 | .20 | .40 | .40 | 90 | 20 | 16 | 16 | 60 | .20 | .40 | .40 | Table 6.13 ### INDEX TO THE TYPE 2-S1-2 TRUCKS WEIGHING ONE KIP EACH Truck numbers 1 to 96 represent 96 combinations of various wheel base lengths, axle spacings, and axle loadings. | Truck
Number | 2 | heel
and
pacin | Axle
jg F | | | ad C
Axle
Kips | s | Truck
Number | а | ınd . | Bas
Axle
ng F | | 1 | ad C
Axles
Kips | 3 | Truck
Number | 2 | heel
and
acir | Axle | 9 | | oad (
Axle
Kips | s | |-----------------|------------|----------------------|--------------|----------|----------------|----------------------|------------|-----------------|----------|----------|---------------------|----------|-----|-----------------------|------------|-----------------|----------|---------------------|------------|----------|----------------|-----------------------|------------| | EZ | X | X | C | L | a ₁ | a 2 | a 3 | ĘΖ | X | X' | С | L | a 1 | 82 | a 3 | Ęz | X | X' | C | L | a ₁ | a 2 | a 3 | | 1 | 8 | 10 | 8 | 36 | .10 | .20 | .70 | 33 | 12 | 10 | 8 | 40 | .10 | .20 | .70 | 65 | 16 | 16 | 8 | 56 | .10 | .20 | .70 | | 2 | 8 | 10 | 8 | 36 | .10 | .30 | .60 | 34 | 12 | 10 | 8 | 40 | .10 | .30 | .60 | 66 | 16 | 16 | 8 | 56 | .10 | .30 | .60 | | 3 | 8 | 10 | 8 | 36 | .20 | .20 | .60 | 35 | 12 | 10 | 8 | 40 | .20 | .20 | .60 | 67 | 16 | 16 | 8 | 56 | .20 | .20 | .60 | | 4 | 8 | 10 | 8 | 36 | .20 | .30 | .50 | 36 | 12 | 10 | 8 | 40 | .20 | .20 | .50 | 68 | 16 | 16 | 8 | 56 | .20 | .30 | .50 | | 5 | 8 | 12 | 8 | 40 | .10 | .20 | .70 | 37 | 12 | 12 | 8 | 44 | .10 | .20 | .70 | 69 | 16 | 18 | 8 | 60 | .10 | .20 | .70 | | 6 | 8 | 12 | 8 | 40 | .10 | .30 | .60 | 38 | 12 | 12 | 8 | 44 | .10 | .30 | .60 | 70 | 16 | 18 | 8 | 60 | .10 | .30 | .60 | | 7 | 8 | 12 | 8 | 40 | .20 | .20 | .60 | 39 | 12 | 12 | 8 | 44 | .20 | .20 | .60 | 71 | 16 | 18 | 8 | 60 | .20 | .20 | .60 | | 8 | 8 | 12 | 8 | 40 | .20 | .30 | .50 | 40 | 12 | 12 | 8 | 4.4 | .20 | .30 | .50 | 72 | 16 | 18 | 8 | 60 | .20 | .30 | .50 | | 9 | 8 | 14 | 8 | 44 | .10 | .20 | .70 | 41 | 12 | 14 | 8 | 48 | .10 | .20 | .70 | 73 | 16 | 20 | 8 | 64 | .10 | .20 | .70 | | 10 | 8 | 14 | 8 | 44 | .10 | .30 | .60 | 42 | 12 | 14 | 8 | 48 | .10 | .30 | .60 | 74 | 16 | 20 | 8 | 64 | .10 | .30 | .60 | | 11 | 8 | 14 | 8 | 44 | .20 | .20 | .60 | 43 | 12 | 14 | 8 | 48 | .20 | .20 | .60 | 75 | 16 | 20 | 8 | 64 | .20 | .20 | .60 | | 12 | 8 | 14 | 8 | 44 | .20 | .30 | .50 | 44 | 12 | 14 | 8 | 48 | .20 | .30 | .50 | 76 | 16 | 20 | 8 | 64 | .20 | .30 | .50 | | 13 | 8 | 16 | - 8 | 48 | .10 | .20 | .70 | 45 | 12 | 16 | 8 | 52 | .10 | .20 | .70 | 77 | 16 | 22 | 8 | 68 | .10 | .20 | .70 | | 14 | - 8 | 16 | 8 | 48 | .10 | .30 | .60 | 46 | 12 | 16 | 8 | 52 | .10 | .30 | .60 | 78 | 16 | 22 | 8 | 68 | .10 | .30 | .60 | | 15 | 8 | 16 | 8 | 48 | .20 | .20 | .60 | 47 | 12 | 16 | 8 | 52 | .20 | .20 | .60 | 79 | 16 | 22 | 8 | 68 | .20 | .20 | .60 | | 16 | - 8 | 16 | 8 | 48 | .20 | .30 | .50 | 48 | 12 | 16 | 8 | 52 | .20 | .30 | .50 | 80 | 16 | 22 | 8 | 68
72 | .20 | .30 | .50
.70 | | 17 | 8 | 18 | 8 | 52 | .10 | .20 | .70 | 49 | 12 | 18 | 8 | 56 | .10 | .20 | .70
.60 | 81
82 | 16
16 | 24
24 | - 8
- 8 | 72 | .10 | .30 | .60 | | 18
19 | - 8
- 8 | 18
18 | 8
8 | 52
52 | .10 | .30 | .60 | 50
51 | 12
12 | 18
18 | 8 | 56
56 | .10 | .30 | .60 | 83 | 16 | 24 | 8 | 72 | .20 | .20 | .60 | | 20 | 8 | 18 | 8 | 52 | .20 | .30 | .50 | 52 | 12 | 18 | 8 | 56 | .20 | .30 | .50 | 84 | 16 | 24 | 8 | 72 | .20 | .30 | .50 | | 21 | 8 | 20 | - 8 | 56 | .10 | .20 | .70 | 53 | 12 | 20 | 8 | 60 | .10 | .20 | .70 | 85 | 16 | 26 | 8 | 76 | .10 | .20 | .70 | | 22 | 8 | 20 | 8 | 56 | .10 | .30 | .60 | 54 | 12 | 20 | 8 | 60 | .10 | .30 | .60 | 86 | 16 | 26 | 8 | 76 | .10 | .30 | .60 | | 23 | 8 | 20 | 8 | 56 | .20 | .20 | .60 | 55 | 12 | 20 | 8 | 60 | .20 | .20 | .60 | 87 | 16 | 26 | 8 | 76 | .20 | .20 | .60 | | 24 | 8 | 20 | 8 | 56 | .20 | .30 | .50 | 56 | 12 | 20 | 8 | 60 | .20 | .30 | .50 | 88 | 16 | 26 | 8 | 76 | .20 | .30 | .50 | | 25 | 8 | 22 | 8 | 60 | .10 | .20 | .70 | 57 | 12 | 22 | 8 | 64 | .10 | .20 | .70 | 89 | 16 | 28 | 8 | 80 | .10 | .20 | .70 | | 26 | 8 | 22 | 8 | 60 | .10 | .30 | .60 | 58 | 12 | 22 | 8 | 64 | .10 | .30 | .60 | 90 | 16 | 28 | 8 | 80 | .10 | .30 | .60 | | 27 | 8 | 22 | 8 | 60 | .20 | .20 | .60 | 59 | 12 | 22 | 8 | 64 | .20 | .20 | .60 | 91 | 16 | 28 | 8 | 80 | .20 | .20 | .60 | | 28 | 8 | 22 | 8 | 60 | .20 | .30 | .50 | 60 | 12 | 22 | 8 | 64 | .20 | .30 | .50 | 92 | 16 | 28 | 8 | 80 | .20 | .30 | .50 | | 29 | 8 | 24 | 8 | 64 | .10 | .20 | .70 | 61 | 12 | 24 | 8 | 68 | .10 | .20 | .70 | 93 | 16 | 30 | 8 | 84 | .10 | .20 | .70 | | 30 | 8 | 24 | 8 | 64 | .10 | .30 | .50 | 62 | 12 | 24 | 8 | 68 | .10 | .30 | .50 | 94 | 16 | 30 | 8 | 84 | .10 | .30 | .50 | | 31 | 8 | 24 | 8 | 64 | .20 | .20 | .60 | 63 | 12 | 24 | 8 | 68 | .20 | .20 | .60 | 95 | 16 | 30 | 8 | 84 | .20 | .20 | .60 | | 32 | 8 | 24 | 8 | 64 | .20 | .30 | .50 | 64 | 12 | 24 | 8 | 68 | .20 | .30 | .50 | 96 | 16 | 30 | 8 | 84 | .20 | .30 | .50 | Table 6.14 ## INDEX TO THE TYPE 3-S2-3 TRUCKS WEIGHING ONE KIP EACH Truck numbers 1 to 84 represent 84 combinations of various wheel base lengths, axle spacings, and axle loadings. | Truck
Number | a | heel
and
pacin | Axle | e | | oad (
Axle
Kips | On
S
S | Truck
Number | 2 | heeland .
pacin | Axle | • | | oad (
Axles
Kips | On
S | Truck
Number | W
Si | heel
and a
acir | Axl∈ | 3 | | oad (
Axle
Kip: | ±S | |-----------------|---|----------------------|------|----|-----|-----------------------|--------------|-----------------|----|--------------------|------|----|-----|------------------------|---------|-----------------|---------|-----------------------|------|----|-----|-----------------------|-----| | 1 | 8 | 8 | 8 | 44 | .05 | .20 | .75 | 29 | 12 | 8 | 8 | 48 | .05 | .20 | .75 | 57 | 16 | 12 | 8 | 60 | .05 | .20 | .75 | | 2 | 8 | 8 | 8 | 44 | .05 | .30 | .65 | 30 | 12 | 8 | 8 | 48 | .05 | .30 | .65 | 58 | 16 | 12 | 8 | 60 | .05 | .30 | .65 | | 3 | 8 | 8 | 8 | 44 | .10 | .20 | .70 | 31 | 12 | 8 | 8 | 48 | .10 | .20 | .70 | 59 | 16 | 12 | 8 | 60 | .10 | .20 | .70 | | 4 | 8 | 8 | 8 | 44 | .10 | .30 | .60 | 32 | 12 | 8 | 8 | 48 | .10 | .30 | .60 | 60 | 16 | 12 | 8 | 60 | .10 | .30 | .60 | | 5 | 8 | 10 | 8 | 48 | .05 | .20 | .75 | 33 | 12 | 10 | 8 | 52 | .05 | .20 | .75 | 61 | 16 | 14 | 8 | 64 | .05 | .20 | .75 | | 6 | 8 | 10 | 8 | 48 | .05 | .30 | .65 | 34 | 12 | 10 | 8 | 52 | .05 | .30 | .65 | 62 | 16 | 14 | 8 | 64 | .05 | .30 | .65 | | 7 | 8 | 10 | 8 | 48 | .10 | .20 | .70 | 35 | 12 | 10 | 8 | 52 | .10 | .20 | .70 | 63 | 16 | 14 | 8 | 64 | .10 | .20 | .70 | | 8 | 8 | 10 | 8 | 48 | .10 | .30 | .60 | 36 | 12 | 10 | 8 | 52 | .10 | .30 | .60 | 64 | 16 | 14 | 8 | 64 | .10 | .30 | .60 | | 9 | 8 | 12 | 8 | 52 | .05 | .20 | .75 | 37 | 12 | 12 | 8 | 56 | .05 | .20 | .75 | 65 | 16 | 16 | 8 | 68 | .05 | .20 | .75 | | 10 | 8 | 12 | 8 | 52 | .05 | .30 | .65 | 38 | 12 | 12 | 8 | 56 | .05 | .30 | .65 | 66 | 16 | 16 | 8 | 68 | .05 | .30 | .65 | | 11 | 8 | 12 | 8 | 52 | .10 | .20 | .70 | 39 | 12 | 12 | 8 | 56 | .10 | .20 | .70 | 67 | 16 | 16 | 8 | 68 | .10 | .20 | .70 | | 12 | 8 | 12 | 8 | 52 | .10 | .30 | .60 | 40 | 12 | 12 | 8 | 56 | .10 | .30 | .60 | 68 | 16 | 16 | 8 | 68 | .10 | .30 | .60 | | 13 | 8 | 14 | 8 | 56 | .05 | .20 | .75 | 41 | 12 | 14 | 8 | 60 | .05 | .20 | .75 | 69 | 16 | 18 | 8 | 72 | .05 | .20 | .75 | | 14 | 8 | 14 | 8 | 56 | .05 | .30 | .65 | 42 | 12 | 14 | 8 | 60 | .05 | .30 | .65 | 70 | 16 | 18 | 8 | 72 | .05 | .30 | .65 | | 15 | 8 | 14 | 8 | 56 | .10 | .20 | .70 | 43 | 12 | 14 | 8 | 60 | .10 | .20 | .70 | 71 | 16 | 18 | 8 | 72 | .10 | .20 | .70 | | 16 | 8 | 14 | 8 | 56 | .10 | .30 | .60 | 44 | 12 | 14 | 8 | 60 | .10 | .30 | .60 | 72 | 16 | 18 | 8 | 72 | .10 | .30 | .60 | | 17 | 8 | 16 | 8 | 60 | .05 | .20 | .75 | 45 | 12 | 16 | 8 | 64 | .05 | .20 | .75 | 73 | 16 | 20 | 8 | 76 | .05 | .20 | .75 | | 18 | 8 | 16 | 8 | 60 | .05 | .30
| .65 | 46 | 12 | 16 | 8 | 64 | .05 | .30 | .65 | 74 | 16 | 20 | 8 | 76 | .05 | .30 | .65 | | 19 | 8 | 16 | 8 | 60 | .10 | .20 | .70 | 47 | 12 | 16 | 8 | 64 | .10 | .20 | .70 | 75 | 16 | 20 | 8 | 76 | .10 | .20 | .70 | | 20 | 8 | 16 | 8 | 60 | .10 | .30 | .60 | 48 | 12 | 16 | 8 | 64 | .10 | .30 | .60 | 76 | 16 | 20 | 8 | 76 | .10 | .30 | .60 | | 21 | 8 | 18 | 8 | 64 | .05 | .20 | .75 | 49 | 12 | 18 | 8 | 68 | .05 | .20 | .75 | 77 | 16 | 22 | 8 | 80 | .05 | .20 | .75 | | 22 | 8 | 18 | 8 | 64 | .05 | .30 | .65 | 50 | 12 | 18 | 8 | 68 | .05 | .30 | .65 | 78 | 16 | 22 | 8 | 80 | .05 | .30 | .65 | | 23 | 8 | 18 | 8 | 64 | .10 | .20 | .70 | 51 | 12 | 18 | 8 | 68 | .10 | .20 | .70 | 79 | 16 | 22 | 8 | 80 | .10 | .20 | .70 | | 24 | 8 | 18 | 8 | 64 | .10 | .30 | .60 | 52 | 12 | 18 | 8 | 68 | .10 | .30 | .60 | 80 | 16 | 22 | 8 | 80 | .10 | .30 | .60 | | 25 | 8 | 20 | 8 | 68 | .05 | .20 | .75 | 53 | 12 | 20 | 8 | 72 | .05 | .20 | .75 | 81 | 16 | 24 | 8 | 84 | .05 | .20 | .75 | | 26 | 8 | 20 | 8 | 68 | .05 | .30 | .65 | 54 | 12 | 20 | 8 | 72 | .05 | .30 | .65 | 82 | 16 | 24 | 8 | 84 | .05 | .30 | .65 | | 27 | 8 | 20 | 8 | 68 | .10 | .20 | .70 | 55 | 12 | 20 | 8 | 72 | .10 | .20 | .70 | 83 | 16 | 24 | 8 | 84 | .10 | .20 | .70 | | 28 | 8 | 20 | 8 | 68 | .10 | .30 | .60 | 56 | 12 | 20 | 8 | 72 | .10 | .30 | .60 | 84 | 16 | 24 | 8 | 84 | .10 | .30 | 60 | ## 7. CONTROLLING CONDITIONS FOR MAXIMUM MOMENTS ON SIMPLE SPAN BRIDGES Tables 7.1-7.14 give the maximum moments produced by the 1303 variations of the 14 heavy vehicle types shown in the identification index Tables 6.1-6.14 on simple spans of 10, 20, 30, 40, 50, 60, 80, and 100 feet in length. The maximum moments produced by each of the 1303 heavy vehicle types and loadings on 8 different span lengths makes a total of 10,424 maximum moments recorded in the 14 Tables 7.1-7.14. The table number corresponding to each of the 14 heavy vehicle types is as follows: | Table
No. | Vehicle
Type | Table
No. | Vehicle
Type | |--------------|-----------------|--------------|-----------------| | 7.1 | 2 | 7.8 | 3-S3 | | 7.2 | 3 | 7.9 | 2-2 | | 7.3 | 2-S1 | 7.10 | 2-3 | | 7.4 | 2-S2 | 7.11 | 3-2 | | 7.5 | 2-S3 | 7.12 | 3-3 | | 7.6 | 3-S1 | 7.13 | 2-S1-2 | | 7.7 | 3-S2 | 7.14 | 3-S2-3 | In addition to giving the maximum moment for each of the 10,424 cases of vehicle type, loading, and span length, these tables also indicate in each case: (1) the axle group which produces the maximum moment; (2) the axle number under which the maximum moment occurs; and (3) the distance this critical axle is placed to the right or left of the mid-span to coincide with the position for maximum moment. A detailed description of these tables and how they are used is given in Article 5. ${\bf Table~7.1}$ CONTROLLING CONDITIONS AND MAXIMUM MOMENTS IN SIMPLE SPANS ## CONTROLLING CONDITIONS AND MAXIMUM MOMENTS IN SIMPLE SPANS PRODUCED BY THE TYPE 2 TRUCKS WEIGHING ONE KIP EACH Thirty-six variations in the Type 2 truck are given in this Table. Each truck number, from 1 to 36, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. | Tru | ck No |). | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |-----------|-------|--------------|-------------------|-------------------|-----------------|---|-------------------|---------------------------|-------------------|-------------------|-------------|-----------------| | Wh. | Base | L | 10 | 10 | 10 | 10 | 10 | 19 | 12 | 12 | 12 | 12 | | | d On | aı | .45 | .40 | .35 | .30 | .25 | .26 | .45 | .40 | .35 | .30 | | Axl | es | a 2 | 55 | .60 | .65 | .70 | .75 | .80 | .55 | .60 | .65 | .70_ | | | | G | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | 10 | N | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | 1 | | B
M | $0 \\ 1.375$ | $\frac{0}{1.500}$ | $0 \\ 1.625$ | $\begin{array}{c} 0 \\ 1.750 \end{array}$ | $\frac{0}{1.875}$ | $\frac{0}{2.000}$ | $\frac{0}{1.375}$ | $\frac{0}{1.500}$ | 0
1,625 | 0
1.750 | | - | | | | | | | | | | | | | | , | 20 | G
N | $_{2}^{1-2}$ | 1-2
2 | $\frac{1-2}{2}$ | $\frac{1-2}{2}$ | $\frac{1-2}{2}$ | $\frac{1-2}{2}$ | 2
2 | 2
2 | 2
2 | 2 2 | | 1 | 20 | В | 2.250R | 2.000R | 1.750R | 1.500R | 1.250R | 1.000R | 0 | 0 | 6 | 0 | | - | | M | 3.003 | 3.200 | 3.403 | 3.613 | 3.828 | 4,050 | 2,750 | 3.000 | 8.250 | 3.500 | | - | | G | 1.2 | 1-2 | 1-2 | 1-2 | 1-2 | $-\frac{1}{1}\frac{3}{2}$ | 1-2 | 1 - 2 | 1-2 | 1-2 | | | 30 | N | 2 | 2 | 2 | 2 | 2 | 9 | 2 | 2 | 2 | 2 | | | 50 | B | 2.250R | 2.000R | 1.750R | 1.500R | 1.250R | 1.000R | 2.700R | 2.400R | 2.100R | 1.800R | | 1 | | M | 5.419 | 5.633 | 5.852 | 6.075 | 6.302 | 6,533 | 5.043 | 5.292 | 5.547 | 5.808 | | į- | - | G | 1 2 | 1-2 | 12 | 1-2 | 1-2 | 1-2 | 1-2 | 1-2 | 1-2 | 1 -2 | | ابد | 40 | N | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | ee | | В | $2.250\mathbf{R}$ | 2.000R | 1.750R | 1.500R | 1.250R | 1.000R | 2.700R | 2.400R | 2.100R | 1.800R | | F- | | M | 7.877 | 8.100 | 8.327 | 8.556 | 8.789 | 9.025 | 7.482 | 7.744 | 8.010 | 8.281 | | Span-Feet | | \mathbf{G} | 1-2 | 1 -2 | 1-2 | 1 -2 | $1\cdot 2$ | 1 -2 | 1-2 | 1-2 | 1 -2 | 1-2 | | Sp. | 50 | N | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | В | 2.250R | 2.000R | 1.750R | 1.500R | 1.250R | 1.000R | 2.700R | 2.400R | 2.100R | 1.800R | | - 1- | | M | 10.350 | 10.580 | 10.810 | 11.050 | 11.280 | $\frac{11.520}{}$ | 9.946 | 10.220 | 10.490 | 10.760 | | | CO | G
N | $^{1-2}_{2}$ | $\frac{1}{2}$ | 1-2
2 | $\frac{1-2}{2}$ | 12
2 | 1-2
2 | 1-2 | 1 -2
2 | 1-2 | 1-2 | | - 1 | 60 | B | 2.250R | 2.000R | 1.750R | 1.500R | 1.250R | 1.000R | $^{2}_{2.700R}$ | 2.400R | 2
2,100R | $^{2}_{1.800R}$ | | - | | M | 12.830 | 13.070 | 13.300 | 13.540 | 13.780 | 14.020 | 12.420 | 12.700 K | 12.970 | 13.250 | | - | | G | 1-2 | 1-2 | 1-2 | 1-2 | 12 | 1-2 | 1-2 | 1-2 | 1-2 | 1-2 | | | 80 | N | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | 00 | B | 2.250R | 2.000R | 1.750R | 1.500R | 1.250R | 1.000R | 2.700R | 2.400R | 2.100R | 1.800R | | - 1 | | M | 17.810 | 18.050 | 18.290 | 18.530 | 18.770 | 19.010 | 17.390 | 17.670 | 17.960 | 18.240 | | - | | G | 1-2 | 1 2 | ${1-2}$ | 1-2 | 1-2 | 1-2 | 1-2 | 1-2 | 1-2 | 1-2 | | - 1 | 100 | Ñ | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | - | | В | 2.250R | 2.000R | 1.750R | 1.500R | 1.250R | 1.000R | 2.700R | 2.400R | 2.100R | 1.800R | | | | M | 22.800 | 23.040 | 23.280 | 23,520 | 23.770 | 24.010 | 22.370 | 22.660 | 22.940 | 23.230 | | | | | | | | | | | | | | | All dimensions are in feet and moments are in kip-feet. a1 and a2-Represent the ratio of gross vehicle weight on axles. G-Axle group causing maximum moment, thus, 1-2 means axles 1 and 2. N-Number of critical axle under which maximum moment occurs. B-Distance to right or left of mid-span to point of maximum moment. M-Maximum moment. | _ | uck N | | Continue
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |------------|---------------|--------------------------------------|---|---|---|---|---|---|---|---|--|--| | | h. Bas | | 12 | 12 | 14 | 14 | 14 | 14 | 14 | 14 | 16 | 16 | | | ad On
les | \mathbf{a}_1 \mathbf{a}_2 | .25 $.75$ | .20
.80 | .45
.55 | .40
.60 | .35
.65 | .30 $.70$ | $.25 \\ .75$ | .20
.80 | .45
.55 | .40
.60 | | | 10 | G
N
B | 2
2
0 | | | - <u>M</u>
- G | $\frac{1.875}{2}$ | $\frac{2.000}{2}$ | $\frac{1.375}{2}$ | 1.500 | 1.625 | $\frac{1.750}{2}$ | 1.875 | $\frac{2.000}{2}$ | 1.375 | 1.50 | | | 20 | N
B | $\frac{2}{0}$ | $\frac{2}{0}$ | $\frac{2}{0}$ | $\frac{2}{0}$ 3.000 | 2
0 | $\frac{2}{0}$ | $\frac{2}{0}$ | $\frac{2}{0}$ | $\begin{array}{c} 2 \\ 0 \\ 2.750 \end{array}$ | 2
0
3.00 | | | | - M
G | $\frac{3.750}{1-2}$ | 1-2 | $\frac{2.750}{1-2}$ | 1-2 | 3.250 | 3.500 | $\frac{3.750}{1-2}$ | 4.000
1-2 | 1-2 | 1- | | | 30 | N
B
M | $^2_{1.500 m R}_{6.075}$ | $^2_{1.200\mathrm{R}}_{6.348}$ | 2
3.150R
4.681 | 2
2.800R
4.961 | 2
2.450R
5.250 | 2
2.100R
5.547 | 2
1.750R
5.852 | $\begin{array}{c} 2 \\ 1.400 \mathrm{R} \\ 6.165 \end{array}$ | 2
3.600R
4.332 | 3.200
4.64 | | | 40 | G
N | 1-2
2 | 1-2
2 | 1-2
2 | 1–2
2 | 1-2 | 1-2 | 1-2 | 1-2 | 1-2
2 | 1- | | opan-r eet | 40 | B
M | 1.500R
8.556 | 1,200R
8.836 | 3.150R
7.098 | 2.800R
7.396 | 2.450R
7.700 | 2.100R
8.010 | 1.750R
8.327 | 1.400R
8.649 | 3.600R
6.724 | 3.200
7.0 | | Spar | 50 | G
N | $\frac{1-2}{2}$ | $\frac{1-2}{2}$ | $^{1-2}_{2}$ | $^{1-2}_2$ | 1-2
2 | $\overset{1-2}{2}$ | $^{1-2}_{2}$ | $^{1-2}_{2}$ | $^{1-2}_2$ | 1-
2 | | | | B
M | 1.500R
11.050 | 1.200R
11.330 | 3.150R
9.548 | 2.800R
9.857 | 2.450R
10.170 | 2.100R
10.490 | 1.750R
10.810 | 1.400R
11.140 | 3.600R
9.159 | 3.200
9.50 | | | 60 | G
N | $\frac{1-2}{2}$ | 1-2
2 | 1-2 | 1-2 | | 1-2 | 1-2 | 1-2 | 1-2 | 1- | | | | B
M | 1.500R
13.540 | 1,200R
13.820 | 3.150R
12.020 | 2.800R
12.330 | 2.450R
12.650 | 2.100R
12.970 | 1.750R
13.300 | 1.400R
13.630 | $\begin{array}{c} 2 \\ 3.600 \mathrm{R} \\ 11.620 \end{array}$ | 3.200
11.97 | | | 80 | G
N |
$\frac{1-2}{2}$ | 1-2
2 | 1-2
2 | $^{1-2}_2$ | 1-2
2 | 1-2
2 | $\frac{1-2}{2}$ | 1-2
2 | 1-2
2 | 1- | | | | B
M | 1.500R
18.530 | 1.200R 18.820 | 3.150R
16.970 | 2.800R
17.300 | 2.450R
17.630 | 2.100R
17.960 | 1.750R
18,290 | 1.400R
18.620 | 3.600R 16.560 | 3.200
16.93 | | | 100 | G
N | 1-2
2 | 1-2
2 | $\frac{1-2}{2}$ | 1-2 | 1-2 | 1-2 | 1-2
2 | 1-2
2 | 1-2 | 1 | | | 100 | B | 1.500R
23.520 | 1.200R
23.810 | 3.150R
21.950 | 2.800R
22.280 | 2.450R
22.610 | 2.100R
22.940 | 1.750R
23.280 | 1.400R
23.620 | 3.600R
21.530 | 3.200
21.90 | | Γr | uck N | o. | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | | _ | h. Bas | | 16 | 16 | 16 | 16 | 18 | 18 | 18 | 18 | 18 | 18 | | | ad On
:les | \mathbf{a}_1 \mathbf{a}_2 | .35
.65 | .30
.70 | .25
.75 | .20
.80 | .45
.55 | .40
.60 | .35
.65 | .30
.70 | .25
.75 | .20
.80 | | | 10 | G
N
B | 2
2
0 2 2 0 | | | | M
G | 1.625 | $\frac{1.750}{2}$ | 1.875 | $\frac{2.000}{2}$ | 1.375 | 1.500 | 1.625 | 1.750 | 1.875 | 2.0 | | | 20 | N
B | 2
0 | 2
0 | $\frac{2}{0}$ | $\frac{2}{0}$ | $\frac{2}{0}$ | 2 | $\frac{2}{0}$ | $\frac{2}{0}$ | 2
0 | 0 | | | | M.
G | $\frac{3.250}{1-2}$ | $\frac{3.500}{1-2}$ | 3.750
1-2 | 4.000 | 2.750 | $-\frac{3.000}{2}$ | 3.250 | 3.500 | 3.750
2 | 4.0 | | | 30 | N
B | $^{2}_{2.800 m R}$ | $\frac{2}{2.400}$ R | $^2_{2.000 m R}$ | $\frac{2}{0}$ | 2
9 | 2
0 | $\frac{2}{0}$ | $\frac{2}{0}$ | $\frac{2}{0}$ | 2 | | | | M
G | 4.961
1-2 | 5.292
1-2 | $\frac{5.633}{1-2}$ | $\frac{6.000}{1-2}$ | 4.125
1-2 | $\frac{4.500}{1-2}$ | 4.875
1-2 | $\frac{5.250}{1-2}$ | 5.625
1-2 | 6.00 | | | 40 | N | 2.800R | 2
2,400R | 2
2.000R | 1.600R | 2
4.050R | $^2_{3.600 m R}$ | $^2_{3.150\mathrm{R}}$ | $^{2}_{2.700\mathrm{R}}$ | $^{2}_{2.250\mathrm{R}}$ | 1.800
8.23 | | reet | 40 | В | | | | | 6 960 | 6791 | 7 008 | | | | | an-reet | | G | 7.396
1–2 | $\frac{7.744}{1-2}$ | 8.100
1-2 | 8.464
1–2 | 6.360
1-2 | $\frac{6.724}{1-2}$ | $\frac{7.098}{1-2}$ | $\frac{-7.482}{1-2}$ | $\frac{7.877}{1-2}$ | 1- | | Span-r eet | 50 | M | 7.396 | 7.744 | 8.100 | 8.464 | | | | | | | | Span-reeu | 50 | G
N
B
M | 7.396
1-2
2
2.800R
9.857
1-2 | 7.744
1-2
2
2.400R
10.220
1-2 | 8.100
1-2
2
2.000R
10.580
1-2 | 8.464
1-2
2
1.600R
10.950
1-2 | 1-2
2
4.050R
8.778
1-2 | 1-2
2
3.600R
9.159
1-2 | 1-2
2
3.150R
9.548
1-2 | 1-2
2
2.700R
9.946
1-2 | 1-2
2
2.250R
10.350
1-2 | 1-
2
1.800
10.79 | | Span-reeu | | G
N
B | 7.396
1-2
2
2.800R
9.857 | 7.744
1-2
2
2.400R
10.220 | 8.100
1-2
2
2.000R
10.580 | 8.464
1-2
2
1.600R
10.950 | 1-2
2
4.050 R
8.778 | 1-2
2
3.600R
9.159 | 1-2
2
3.150R
9.548 | 1-2
2
2.700R
9.946 | 1-2
2
2.250R
10.350 | 1-
2
1.800
10.79
1-
2
1.800 | | Span-r eet | 5 0 | G
N
B
M
G
N
B
M | 7.396
1-2
2.800R
9.857
1-2
2.800R
12.330
1-2 | 7.744
1-2
2
2.400R
10.220
1-2
2
2.400R
12.700
1-2 | 8.100
1-2
2.000R
10.580
1-2
2.000R
13.070
1-2 | 8.464
1-2
2
1.600R
10.950
1-2
2
1.600R
13.440
1-2 | 1-2
2
4.050R
8.778
1-2
2
4.050R
11.220
1-2 | 1-2
2
3.600R
9.159
1-2
2
3.600R
11.620 | 1-2
2
3.150R
9.548
1-2
2
3.150R
12.020
1-2 | 1-2
2
2.700R
9.946
1-2
2
2.700R
12.420
1-2 | 1-2
2
2.250R
10.350
1-2
2
2.250R
12.830
1-2 | 1-
2
1.800
10.70
1-
2
1.800
13.2 | | Span-reeu | 50 | G
N
B
M
G
N
B
M | 7.396
1-2
2.800R
9.857
1-2
2.800R
12.330
1-2
2.800R
17.300 | 7.744
1-2
2.400R
10.220
1-2
2.400R
12.700
1-2
2
2.400R
17.670 | 8.100
1-2
2
2.000R
10.580
1-2
2
2.000R
13.070 | 8.464
1-2
2
1.600R
10.950
1-2
2
1.600R
13.440
1-2
2
1.600R
18.430 | 1-2
2
4.050R
8.778
1-2
2
4.050R
11.220 | 1-2
2
3.600R
9.159
1-2
2
3.600R
11.620 | 1-2
2
3.150R
9.548
1-2
2
3.150R
12.020 | 1-2
2
2.700R
9.946
1-2
2
2.700R
12.420 | 1-2
2
2.250R
10.350
1-2
2
2.250R
12.830
1-2
2
2.250R
17.810 | 1-
2
1.800
10.7
1-
2
1.800
13.2 | | Span-reet | 5 0 | G
N
B
M
G
N
B
M | 7.396
1-2
2
2.800R
9.857
1-2
2.800R
12.330
1-2
2.800R | 7.744
1-2
2
2.400R
10.220
1-2
2.400R
12.700
1-2
2
2.400R | 8.100
1-2
2
2.000R
10.580
1-2
2
2.000R
13.070
1-2
2
2.000R | 8.464
1-2
2
1.600R
10.950
1-2
2
1.600R
13.440
1-2
2
1.600R | 1-2
2
4.050R
8.778
1-2
2
4.050R
11.220
1-2
2
4.050R | 1-2
2
3.600R
9.159
1-2
2
3.600R
11.620
1-2
2
3.600R | 1-2
2
3.150R
9.548
1-2
2
3.150R
12.020
1-2
2
3.150R | 1-2
2
2.700R
9.946
1-2
2
2.700R
12.420
1-2
2
2.700R | 1-2
2
2.250R
10.350
1-2
2
2.250R
12.830
1-2
2
2.250R | 1-2
1.806
10.7
1-2
1.806
13.2
1-2
1.806 | | Truc | ck No |). | 31 | 32 | 33 | 34 | 35 | 36 | |-----------|-------|----------------|--------------|-------------------|-----------------|--------------------|-----------------|-------------| | Wh. | Base | L | 20 | 20 | 20 | 20 | 20 | 20 | | Loa | d On | aı | .45 | -40 | .35 | .30 | .25 | .20 | | Axle | 28 | \mathbf{a}_2 | .55 | .60 | .65 | .70 | .75 | .80 | | | | G | 2 | | 2 | 2 | 2 | 2 | | | 10 | N | 2 | 2 | 2 | 2 | 2 | 2 | | | | В | 0 | 0 | 0 | 0 | 0 | 0 | | _ | | M | 1.375 | 1.500 | 1.625 | 1.750 | 1.875 | 2.000 | | | | G | 2 | 2 | 2 | 2 | 2 | 2 | | | 20 | N | 2 | 2 | 2 | 2 | 2 | 2 | | | | В | 0 | 0 | 0 | 0 | 0 | 0 | | - | | M | 2.750 | 3.000 | 3.250 | 3.500 | 3.750 | 4.000 | | | | G | 2 | 2 | 2 | 2 | 2 | 2 | | | 30 | N | 2 | 2 | 2 | 2 | 2 | 2 | | | | B
M | $0 \\ 4.125$ | $\frac{0}{4.500}$ | 0
4.875 | $\frac{0}{5.250}$ | $_{5.625}^{0}$ | 0 | | - 1- | | | | | | | | 6.000 | | | | G | 1-2 | 1-2 | 1-2 | 1-2 | 1-2 | 1-2 | | 4 | 40 | N
B | 2
4.500R | 2
4.000R | 2
3.500R | $\frac{2}{3.000R}$ | $^{2}_{2.500R}$ | 2
2.000R | | Span-Feet | | M | 6.00K | 6.400 K | 5.500R
6.806 | 7.225 | 7,656 | 8.100 | | 글 [- | | | | | | | | | | 8 | 50 | G
N | $^{1-2}_{2}$ | $^{1-2}_2$ | 1-2
2 | $\frac{1-2}{2}$ | $\frac{1-2}{2}$ | 1-2 | | ∞ | 90 | В | 4.500R | 4.000R | 3.500R | 3.000R | 2.500R | 2.000R | | | | M | 8.405 | 8.820 | 9.245 | 9.680 | 10.130 | 10.580 | | | | G | 1-2 | 1-2 | 1-2 | 1-2 | 1 2 | 1-2 | | - 1 | 60 | Ň | 2 | 2 | 2 | 2 | 2 | 2 | | | 00 | В | 4.500R | 4.000R | 3.500R | 3.000R | 2.500R | 2.000R | | | | M | 10.840 | 11,270 | 11.700 | 12.150 | 12.600 | 13.070 | | - | | G | 1-2 | 1-2 | 1-2 | 1-2 | 1.2 | 1-2 | | - | 80 | Ñ | 2 | 2 | 2 | 2 | 2 | 2 | | İ | | В | 4.500R | 4.000R | 3.500R | 3.000R | 2.500R | 2.000R | | - 1 | | M | 15.750 | 16.200 | 16.650 | 17.110 | 17.580 | 18.050 | | 1 | | | | 4.0 | 1 0 | 1-2 | 1-2 | 1-2 | | - | | G | 1-2 | 1-2 | 1-2 | | | | | - | 100 | N | 2 | 2 | 2 | 2 | 2 | 2 | | - | 100 | | | | | | | | Table 7.2 ## CONTROLLING CONDITIONS AND MAXIMUM MOMENTS IN SIMPLE SPANS PRODUCED BY THE TYPE 3 TRUCKS WEIGHING ONE KIP EACH Forty-two variations in the Type 3 truck are given in this Table. Each truck number, from 1 to 42, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. | m | 1 37 | | | | | | | | | | - | | |-----------|--------------|----------------|------------------|-------------|------------------|------------------|-------------------|--------|-------------------|--------|------------------|-------------------| | | uck No | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | | h. Base | · L | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 16 | 16 | 16 | | Az
Sp | lle
acing | x | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 12 | 12 | 12 | | Lo | ad On | a ₁ | .40 | .35 | .30 | .25 | .20 | .15 | .10 | .40 | .35 | .30 | | Ax | les | \mathbf{a}_2 | .60 | .65 | .70 | .75 | .80 | .85 | .90 | .60 | .65 | .70 | | | 1 | G | 1 | 2-3 | 2-3 | 2-3 | 2-3 | 2–3 | 2-3 | 1 | 2-3 | 2-3 | | | 10 | N | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 1 | 3 | 3 | | | | В | 0 | 1.000R | 1.000R | 1.000R | $1.600\mathbf{R}$ | 1.000R | 1.000R | 0 | 1.000R | $1.000\mathbf{R}$ | | | | M | 1.000 | 1.040 | 1.120 | 1.200 | 1.280 | 1.360 | 1.440 | 1.000 | 1.040 | 1.120 | | | | G | 1-3 | 1-3 | 2-3 | 2-3 | 2-3 | 2-3 | 2-3 | 2-3 | 2-3 | 2-3 | | | 20 | N | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | | \mathbf{B} | 1.400R | 1.100R | 1.000R | 1.000R | 1.000R | 1.000R | $1.000\mathbf{R}$ | 1.000R | 1.000R | $1.000\mathbf{R}$ | | | | M | 2.498 | 2.661 | 2.835 | 3.038 | 3.240 | 3.443 | 3.645 | 2.430 | 2.633 | 2.835 | | | | G | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | | | 30 | N | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | В | 1.400R | 1.100R | $.800\mathbf{R}$ | .500R | .200R | .100L | .400L | .800R | 1.450R | 1.190R | | | | M | 4.965 | 5.140 | 5.321 | 5.508 | 5.701 | 5.900 | 6.105 | 4.608 | 4.820 | 5.040 | | | | G | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | | تب | 40 | N | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | ee | | В | 1.400R | 1.100R | .800R | $.500\mathbf{R}$ | $.200\mathbf{R}$ | .100L | .400L | .800R | 1.450R | 1.100R | | 4 | | M | 7.449 | 7.630 | 7.816 | 8.006 | 8.201 | 8.400 | 8.604 | 7.081 | 7.303 | 7.530 | | Span-Feet | | G | 1-3 | 1-3 | 1-3 | 1-3 | 13 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | | Sp | 50 | N | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | •• | | В |
1.400R | 1.100R | .800R | .500R | .200R | .100L | .400L | .800R | 1.450R | 1.100R | | | | M | 9.939 | 10.120 | 10.310 | 10.510 | 10.700 | 10.900 | 11.100 | 9.565 | 9.792 | 10.020 | | | | G | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 13 | 1-3 | 1-3 | 1-3 | 1-3 | | | 60 | N | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | B
M | 1.400R | 1.100R | .800R | .500R | .200R | .100L | .400L | .800R | 1.450R | 1.100R | | | | | 12.430 | 12.620 | 12.810 | 13.000 | 13.200 | 13.400 | 13.600 | 12.050 | 12.290 | 12.520 | | | | \mathbf{G} | 1 3 | 1-3 | 1-3 | 13 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | | | 80 | N | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | B
M | 1.400R
17.430 | 1.100R | .800R | .500R | .200R | .100L | .400L | .800R | 1.450R | 1.100R | | | | | | 17.620 | 17.810 | 18.000 | 18.200 | 18.400 | 18.600 | 17.040 | 17.280 | 17.520 | | | 100 | G | 1-3 | 13 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1–3 | 1-3 | 1-3 | | | 100 | N
B | $^2_{1.400 m R}$ | 2
1.100R | $^{2}_{.800R}$ | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | M | 1.400R
22.420 | 22.610 | .800R
22.810 | .500R | .200R
23.200 | .100L | .400L | .800R | 1.450R
22.270 | 1.100R | | | | 74.T | 22.420 | 24.010 | 44.610 | 23.000 | 20.200 | 23.400 | 23,600 | 22.030 | 22.270 | 22.510 | All dimensions are in feet and moments are in kip-feet. a₁ and a₂—Represent the ratio of gross vehicle weight on axles. G-Axle group causing maximum moment, thus, 1-3 means axles 1, 2, and 3. N-Number of critical axle under which maximum moment occurs. B-Distance to right or left of mid-span to point of maximum moment. M-Maximum mcment. | TA | BI. | E | 7.2 - 6 | Contin | ued) | |----|-----|---|---------|--------|------| | | | | | | | | TA | BLE | 7.2 | Continue | d) | | | | | | | | | |---|---|--|--|--|--|--|---|--|--
--|--|--| | _ | uck No | | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | | ı. Base | L | 16 | 16 | 16 | 16 | 18 | 18 | 18 | 18 | 18 | 18 | | Ax | le
acing | X | 12 | 12 | 12 | 12 | 14 | 14 | 14 | 14 | 14 | 14 | | | ad On | a ₁ | .25 | .20 | .15 | 10 | .40 | .35 | .30 | .25 | .20 | .15 | | Ax | | a 2 | .75 | .80 | .85 | -90 | .60 | .65 | .70 | .75 | .80 | .85 | | | 10 | G | 23 | 2-3 | 2-3 | 2 3 | 1 | 2 3 | 2-3 | 2-3 | 2-3 | 2-3 | | | 10 | N
B | 1.000R | $^3_{1.000 m R}$ | 3
1.000R | $^{3}_{1.000R}$ | 0 | 1.000R | $^3_{1.000 m R}$ | $^{3}_{1.000R}$ | 1.000R | $1.000\mathbf{R}$ | | | | M | 1.200 | 1.280 | 1.360 | 1.440 | 1.000 | 1.040 | 1.120 | 1.200 | 1.280 | 1.360 | | | | G | 2-3 | 2-3 | 2–3 | 2-3 | 2-3 | 2-3 | 2-3 | 2-3 | 2 -3 | 2-3 | | ĺ | 20 | N
B | 1.000R | 3 $1.000R$ | $1.000\mathbf{R}$ | 3
1.000R | 3
1.000R | $^{3}_{1.000R}$ | 3
1.000R | $^{3}_{1.000\mathrm{R}}$ | $^{3}_{1.000 m R}$ | $\frac{3}{1.000}$ R | | | | M | 3.038 | 3.240 | 3.443 | 3.645 | 2.430 | 2.633 | 2.835 | 3.038 | 3.240 | 3.443 | | | | G | 1-3 | 1-3 | 1–3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | | | 30 | N
B | $^2_{.750 m R}$ | 2 .400R | .050R | .300L | $^2_{2.200 m R}$ | $^2_{1.800\mathrm{R}}$ | $^{2}_{1.400R}$ | $\frac{2}{1.000\mathrm{R}}$ | $^2_{.690R}$ | $^{2}_{.200R}$ | | | | M | 5.269 | 5.505 | 5.750 | 6.003 | 4.261 | 4.508 | 4.765 | 5.033 | 5.312 | 5.601 | | | | G | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 13 | 1-3 | 13 | 1-3 | 1-3 | | et. | 40 | N
B | $^2_{.750\mathrm{R}}$ | $^2_{.400 m R}$ | .050R | 2
.300 L | 2.200R | $^2_{1.800 m R}$ | $^2_{1.400\mathrm{R}}$ | $^{2}_{1.000R}$ | $^2_{.600\mathrm{R}}$ | $^2_{.200 m R}$ | | Ę. | | M | 7.764 | 8.004 | 8.250 | 8.502 | 6.721 | 6.981 | 7.249 | 7.525 | 7.809 | 8.101 | | Span-Feet | | G | 1-3 | 1-3 | 1-3 | 13 | 1-3 | 1-3 | 1 -3 | 1-3 | 1-3 | 1-3 | | တ္ထ | 50 | N
B | $^2_{.750 m R}$ | $^2_{.400 m R}$ | $^2_{.050\mathrm{R}}$ | $^2_{.300 m L}$ | 2.200R | 1,800R | 2
1.400R | $\frac{2}{1.000R}$ | .600R | $^{2}_{.200\mathrm{R}}$ | | | | M | 10.260 | 10,500 | 10.750 | 11.000 |
9.197 | 9.465 | 9.739 | 10.020 | 10.310 | 10.600 | | i | | G | 1 -3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1.3 | 1-3 | 1-3 | 1-3 | | | 60 | N
B | 2 .750 ${f R}$ | $^2_{.400R}$ | .050R | $^{2}_{.300 \rm L}$ | $^2_{2,200\mathrm{R}}$ | 2
1,800R | $^{2}_{1.400 m R}$ | $\frac{2}{1.000R}$ | $^2_{.600\mathrm{R}}$ | .200R | | 1 | | M | 12.760 | 13.000 | 13.250 | 13.500 | 11.680 | 11.950 | 12.230 | 12.520 | 12.810 | 13.100 | | | | G | 1-3 | 1-3 | 1-3 | 1-3 | 13 | 1-3 | 1-3 | 1-3 | 13 | 1-3 | | | 80 | N
B | $^2_{.750 m R}$ | $^2_{.400 m R}$ | $^2_{.050\mathrm{R}}$ | $^{2}_{.300L}$ | $2.200\mathbf{R}$ | $^2_{1.800 m R}$ | 2
1.400R | $\frac{2}{1.000 \mathrm{R}}$ | $^2_{.600 m R}$ | .200 R | | | | M | 17.760 | 18.000 | 18.250 | 18.500 | 16.660 | 16.940 | 17.230 | 17.510 | 17.810 | 18.100 | | | | G | 1 -3 | 1-3 | 1-3 | 1-3 | 13 | 1 -3 | 1-3 | 1-3 | 1-3 | 1-3 | | | 100 | N
B | $^{2}_{.750R}$ | $^2_{.400\mathrm{R}}$ | .050R | .300L | $\begin{array}{c} 2 \\ 2.200 \mathrm{R} \end{array}$ | $^2_{1.800\mathrm{R}}$ | $\frac{2}{1.400R}$ | 2
1.000R | $\frac{2}{.600R}$ | $^{2}_{.200R}$ | | | | M | 22.760 | 23.000 | 23.250 | 23.500 | 21.650 | 21.930 | 22.220 | 22.510 | 22.800 | 23.100 | | | | | | | | | | | | | | | | Tr | uck N | 0 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | | | uck No | | 21
18 | 22 | 23
20 | 24 20 | 25
20 | 26
20 | 27 | 28
20 | 29 | 30 | | $\frac{\overline{\mathbf{W}}}{\mathbf{A}\mathbf{x}}$ | n. Base
le | e L | 18 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 22 | 22 | | Wi
Ax
Sp | n. Base
le
acing | e L
X | 18 | 20
16 | 20
16 | 20
16 | 20
16 | 20
16 | 20
16 | 20 | 22
18 | 22
18 | | Wi
Ax
Sp
Lo | n. Base
le
acing
ad On | e L
X
aı | 18
14
.10 | 20
16
.40 | 20
16
.35 | 20
16
.30 | 20
16
.25 | 20
16
.20 | 20
16
.15 | 20
16
.10 | 18
.40 | 18
-35 | | Wi
Ax
Sp | n. Base
le
acing
ad On | e L X a ₁ a ₂ | 18 | 20
16 | 20
16 | 20
16 | 20
16 | 20
16 | 20
16 | 20 | 22
18 | 22
18 | | Wi
Ax
Sp
Lo | n. Base
le
acing
ad On | X a ₁ a ₂ G N | 18
14
.10
.90
2-3
3 | 16
.40
.60 | 20
16
.35
.65
2-3
3 | 20
16
.30
.70
2-3
3 | 20
16
.25
.75
2 3
3 | 20
16
.20
.80
2-3
3 | 20
16
.15
.85
2-3
3 | 20
16
.10
.90
2-3
3 | 18
.40
.60
1 | 22
18
.35
.65
2-3
3 | | Wi
Ax
Sp
Lo | le
acing
ad On
les | X a1 a2 G N B | 18
14
.10
.90
2-3
3
1.000R | 16
.40
.60
1
1 | 20
16
.35
.65
23
3
1.000R | 20
16
.30
.70
2-3
3
1.000R | 20
16
.25
.75
2 3
3
1.000R | 20
16
.20
.80
2-3
3
1.000R | 20
16
.15
.85
2-3
3
1.000R | 20
16
.10
.90
2-3
3
1.000R | 18
.40
.60
1
1 | 22
18
.35
.65
2-3
1.000R | | Wi
Ax
Sp
Lo | le
acing
ad On
les | X A1 A2 G N B M | 18
14
.10
.90
2-3
3 | 16
.40
.60 | 20
16
.35
.65
2-3
3 | 20
16
.30
.70
2-3
3 | 20
16
.25
.75
2 3
3 | 20
16
.20
.80
2-3
3 | 20
16
.15
.85
2-3
3 | 20
16
.10
.90
2-3
3 | 18
.40
.60
1 | 22
18
.35
.65
2-3
3 | | Wi
Ax
Sp
Lo | le
acing
ad On
les | X A1 A2 G N B M G N | 18
14
.10
.90
2-3
3
1.000R
1.440
2-3
3 | 20
16
.40
.60
1
0
1.000
2-3
3 | 20
16
.35
.65
23
3
1.000R
1.040
23
3 | 20
16
.30
.70
2-3
3
1.000R
1.120
2-3
3 | 20
16
.25
.75
2 3
3
1.000R
1.200
2-3
3 | 20
16
.20
.80
2-3
3
1.000R
1.280
2-3
3 | 20
16
.15
.85
2-3
3
1.000R
1.360
2-3
3 | 20
16
.10
.90
2-3
3
1.000R
1.440
2-3
3 | 18
.40
.60
1
1
0
1.000
2-3
3 | 22
18
.35
.65
2-3
3
1.000R
1.040
2-3
3 | | Wi
Ax
Sp
Lo | n. Base
le
acing
ad On
les | a ₁ a ₂ G N B M G N B | 18
14
.10
.90
2-3
3
1.000R
1.440
2-3
3
1.000R | 16
.40
.60
1
1
0
1.000
2-3
3
1.000R | 20
16
.35
.65
23
3
1.000R
1.040
2.3
3
1.000R | 16
.30
.70
2-3
3
1.000R
1.120
2-3
3
1.000R | 20
16
.25
.75
2 3
3
1.000R
1.200
2-3
3
1.000R | 20
16
.20
.80
2-3
3
1.000R
1.280
2-3
3
1.000R | 20
16
.15
.85
2-3
3
1.000R
1.360
2-3
3
1.000R | 20
16
.10
.90
2-3
3
1.000R
1.440
2-3
3
1.000R | 18
.40
.60
1
1
0
1.000
2-3
3
1.000R | 18
.35
.65
2-3
3
1.000R
1.040
2-3
3
1.000R | | Wi
Ax
Sp
Lo | n. Base
le
acing
ad On
les | G N B M G N B M | 18
14
.10
.90
2-3
3
1.000R
1.440
2-3
3
1.000R
3.645 | 20
16
.40
.60
1
1
0
1.000
2-3
3
1.000R
2.430 | 20
16
.35
.65
23
3
1.000R
1.040
2.3
3
1.000R
2.633 | 20
16
.30
.70
2-3
3
1.000R
1.120
2-3
3
1.000R
2.835 | 20
16
.25
.75
2 3
3
1.000R
1.200
2-3
3
1.000R
3.038 | 20
16
.20
.80
2-3
3
1.000R
1.280
2-3
3
1.000R
3.240 | 20
16
.15
.85
2-3
3
1.000R
1.360
2-3
3
1.000R
3.3443 | 20
16
.10
.90
2-3
3
1.000R
1.440
2-3
3
1.000R
3.645 | 18
.40
.60
1
1
0
1.000
23
1.000R
2.430 | 18
.35
.65
2-3
3
1.000R
1.040
2-3
3
1.000R
2.633 | | Wi
Ax
Sp
Lo | n. Base
le
acing
ad On
les | an an G N B M G N B M G N | 18
14
.10
.90
2-3
3
1.000R
1.440
2-3
3
1.000R
3.645
1-3
2 | 20
16
.40
.60
1
1
0
1.000
2-3
3
1.000 R
2.430
1-3
2 | 20
16
.35
.65
2-3
3
1.000R
1.040
2-3
3
1.000R
2.633
2-3
3 | 20
16
.30
.70
2-3
3
1.000R
1.120
2-3
3
1.000R
2.835
2-3
3 | 20
16
.25
.75
2 3
1.000 R
1.200
2-3
3
1.000 R
3.038
2-3
3 | 20
16
.20
.80
2-3
3
1.000 R
1.280
2-3
3
1.000 R
2-3
3
2-3
3 | 20
16
.15
.85
2-3
3
1.900 R
1.360
2-3
3
1.900 R
3.443
2-3
3 | 20
16
.10
.90
2-3
3
1.000 R
1.440
2-3
3
1.000 R
3.645 | 22
18
.40
.60
1
1
0
1.000
23
3
1.000R
2.430
23
3 | 18
.35
.65
2-3
1.090R
1.040
2-3
3
1.000R
2.633
2-3
3 | | $\frac{\mathbf{W}}{\mathbf{A}\mathbf{x}}$ $\frac{\mathbf{S}\mathbf{p}}{\mathbf{L}\mathbf{o}}$ | n. Base
le
acing
ad On
les
10 | an a | 18 14 .10 .90 2-3 3 1.000R 1.440 2-3 3 1.000R 3.645 1-3 2 .200L | 16
.40
.60
1
1
0
1.000
2-3
3
1.000R
2.430
1-3
2
2.600R | 16
.35
.65
2-3
3
1.000R
1.040
2-3
3
1.000R
2.633
2-3
3 | 16
.30
.70
2-3
3
1.000R
1.120
2-3
3
1.000R
2.835
2-3
3 | 20 16 .25 .75 .23 3 1.000R 1.200 2-3 3 1.000R 3.038 2-3 3 1.000R | 16
.20
.80
2-3
3
1.000R
1.280
2-3
3
1.000R
3.240
2-3
3
1.000R | 16
.15
.85
2-3
3
1.000R
1.360
2-3
3
1.000R
3.443
2-3
3
1.000R | 20
16
.10
.90
2.3
3
1.000R
1.440
2.3
3
1.000R
3.645
2.3
3
1.000R | 18
.40
.60
1
1
0
1.000
2.3
3
1.000R
2.430
2.3
3
1.000R | 22
18
.35
.65
2-3
3
1.000R
1.040
2-3
3
1.000R
2.633
2-3
3
1.000R | | Wi
Ax
Sp
Lo | n. Base
le
acing
ad On
les
10 | a1 a2 G N B M G N B M G N B M G N B M | 18 14 .10 .90 2-3 3 1.000R 1.440 2-3 3 1.0045 1-3 2 200L 5.901 | 20 16 .40 .60 1 1 0 1.000 2-3 3.000R 2.430 1-3 2.600R 3.925 | 20 16 .35 .65 2.3 3 1.000R 1.040 2-3 3.000R 2.633 2-3 1.000R 4.246 | 20 16 .30 .70 2-3 3 1.000R 1.120 2-3 3.000R 2.835 2-3 1.000R 4.573 | 20 16 .25 .75 2 3 3 1.000R 1.200 2-3 3.038 2-3 1.000R 4.900 | 20
16
.20
.80
2-3
3
1.000R
1.280
2-3
3
1.000R
3.240
2-3
1.000R
5.226 | 20
16
.15
.85
2-3
3
1.900R
1.360
2-3
3
1.000R
3.443
2-3
3
1.000R
5.553 | 20
16
.10
.90
2-3
3
1.000R
1.440
2-3
3
1.000R
3.645
2 3
3
1.000R
5.880 | 22
18
40
.60
1
1
0
1.000
2.3
3
1.000R
2.430
2.3
1.000R
3.920 | 22
18
.35
.65
2-3
3
1.090R
1.040
2-3
3
1.000R
2.633
2-3
3
1.000R
4.246 | | WI
Axx
Sp
Lo
Ax | n. Base
le
acing
ad On
les
10 | aı aı G
N
B
M
G
N
B
M
G
N
B
M | 18 14 .10 .90 2-3 3 1.000R 1.440 2-3 3 1.000R 1.440 5.901 1-3 2 2.00L 5.901 1-3 2 | 20 16 .40 .60 1 1 0 1.000 2-3 3 1.000 R 2.430 1-3 2 2.600 R 3.925 1-3 2 | 20 16 .35 .65 2.3 3.000R 1.040 2-3 3.1.000R 2.633 2-3 3.1.000R 4.246 1-3 2 | 20 16 .30 .70 2-3 31.000R 1.120 2-3 31.000R 2.835 2-3 31.000R 4.573 1-3 2 | 20 16 .25 .75 .75 .23 .000R 1.200 2-3 1.000R 3.038 2-3 1.000R 4.900 1-3 2 | 20
16
.20
.80
2-3
3
1.000R
1.280
2-3
3
1.000R
3.240
2-3
3
1.000R
5.226
1-3
2 | 20
16
.15
.85
2-3
3
1.000R
1.360
2-3
3
1.000R
3.443
2-3
3
1.000R
5.553
1-3
2 | 20
16
.10
.90
2 - 3
1.000R
1.440
2-3
3
1.000R
3.645
2 3
1.000R
5.880
1 - 3
2 |
22
18
.40
.60
.60
1
1
0
1.000
2-3
3
1.000R
2.430
2-3
3
1.000R
3.920
1-3
2 | 22
18
.35
.65
2-3
1.000R
1.040
2.3
1.000R
2.633
2-3
3
1.000R
4.246
1-3
2 | | WI
Axx
Sp
Lo
Ax | a. Base
le acing
ad On
les
10
20 | E L X A1 A2 G N B M G N B M G N B M G N B M G N B B M B B B M B B B B B B | 18 14 .10 .90 2-3 3 1.000R 1.440 2-3 3.1.000R 3.645 1-3 2 2.001L 5.901 1-3 2 2.200L | 20 16 .40 .60 1 1 0 1.000 2-3 3 1.000R 2.430 1-3 2 2.600R 3.925 1-3 2.600R | 20 16 .35 .65 2-3 3 1.000R 1.040 2-3 1.000R 2.633 3 1.000R 4.246 1-3 2.150R | 20 16 .30 .70 2-3 3 1.000R 1.120 2-3 1.0000R 2.835 2-3 3 1.000R 4.573 1-3 2 1.700R | 20 16 .25 .75 .75 .3 .1.000R 1.200 2-3 1.000R 3.038 2-3 3 1.000R 4.900 1-3 2 1.250R | 20
16
.20
.80
2-3
3
1.000R
1.280
2-3
3
1.000R
3.240
2-3
3
1.000R
5.226
1-3
2.800R | 20
16
.15
.85
2-3
3
1.000R
1.380
2-3
1.000R
3.443
2-3
3
1.000R
5.553
1-3
2
.350 | 20
16
.10
.90
2-3
3
1.000R
1.440
2-3
1.000R
3.645
2 3
3
1.000R
3.645
2 3
3
1.000R
2.100
2.100
2.100
2.100
2.100
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.0000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0 | 22
18
.40
.60
1
1
0
1.000
2.3
3
1.000R
2.430
3
1.000R
3.920
1.3
2.3
3.000R | 22
18
.35
.65
2-3
3
1.090R
1.040
2.3
1.000R
2.633
2-3
3
1.000R
2.633
2-3
3
2-3
3
2.000
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500 | | WI
Axx
Sp
Lo
Ax | a. Base
le acing
ad On
les
10
20 | E L X a1 a2 G N B M G N B M G N B M B M B M M M M M M M M M M M M M M M M M M M M | 18 14 .10 .90 2-3 3 1.000R 1.440 2-3 3 1.000R 3.645 1-3 2 2.200L 5.901 8.401 | 20 16 .40 .60 1 1 1 0 1.000 2-3 3 1.000R 2.430 1-3 2 2.600R 3.925 1-3 2.600R 6.369 | 20 16 .35 .65 2.3 3 1.000R 1.040 2.3 1.000R 2.633 2.3 1.000R 4.246 1-3 2 2.150R 6.666 | 20 16 .30 .70 2-3 3 1.000R 1.120 2-3 1.000R 2.835 2-3 3 1.000R 4.573 1-3 2 1.700R | 20 16 .25 .75 .75 2 3 1.000R 1.200 2-3 1.000R 3.038 2-3 3 1.000R 4.900 1-3 2 1.250R 7.289 | 20
16
.20
.80
2-3
3
1.000R
1.280
2-3
3
1.000R
3.240
2-3
3
1.000R
3.240
2-3
3
1.000R
7.280
2-3
3
1.000R
7.280
2-3
3
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7.000R
7 | 20
16
.15
.85
2-3
3
1.000R
1.360
2-3
1.000R
3.43
2-3
3
1.000R
5.558
1-3
2
350R
7.953 |
20
16
.19
.90
2-3
3
1.000R
1.440
2-3
1.000R
3.645
2-3
1.000R
3.645
2-3
1.000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R
3.1000R | 22
18
.40
.60
1
1
1
0
1.000
2.3
1.000R
2.430
2.3
3
1.000R
2.430
1.03
2.3
3
1.000
2.3
3
1.000
2.3
3
1.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.0000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.0000
2.000
2.000
2.000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2. | 22
18
.35
.65
2-3
3
1.000R
1.040
2-3
3
1.000R
2.633
2-3
3
1.000R
2.633
2-3
2-3
2-3
2-3
2-3
2-3
2-3
2 | | WI
Axx
Sp
Lo
Ax | a. Base
le acing
ad On
les
10
20 | a L X a 1 a 2 G N B M G N B M G N B M G N B M G N B M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M M G N M B M M M M M M M M M M M M M M M M M | 18 14 .10 .90 2-3 3 1.000R 1.440 2-3 3.1.000R 3.645 1-3 2.200L 5.901 1-3 2.200L 8.401 1-3 2 2.200L 8.401 | 20 16 .40 .60 1 1 0 1.000 2-3 3 1.0000R 2.430 1-3 2 2.600R 3.925 1-3 2 2.600R 6.369 1-3 2 | 20 16 .35 .65 .65 2.3 3 1.000R 1.040 2.3 1.000R 2.633 2.633 3 4.246 1.3 2 2.150R 6.666 1.3 2 | 20 16 .30 .70 2-3 3 1.000R 1.120 2-3 1.0009R 2.835 2-3 3 1.000R 4.573 1-3 2 1.700R 6.972 1-3 2 | 20 16 .25 .75 .75 .3 1.000R 1.200 2-3 1.000R 3.038 2-3 3 1.000R 4.900 1-3 2 1.250R 7.289 1-3 2 | 20 16 .20 .80 2-3 3 1.000R 1.280 2-3 3.000R 3.240 2-3 3.000R 5.226 1-3 2.800R 7.616 1-3 2 | 20 16 .15 .85 .85 2-3 3 1.000R 1.380 2-3 3.000R 3.443 3 1.000R 5.553 1-3 2 .350R 7.953 1-3 2 | 20 16 .10 .90 2-3 3 1.000R 1.440 2-3 3.0408 3.645 2-3 3.000R 5.880 1-3 2 .100L 8.300 1-3 2 | 22
18
.40
.60
1
1
0
1.000
2.3
3
1.000R
2.430
3.920
1.3
2.3
3.920
1.3
2.3
3.920
1.3
2.3
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3. | 22
18
.35
.65
2-3
3
1.000R
1.040
2.3
1.000R
2.633
2-3
3
1.000R
2.633
2-3
3
2.000R
4.246
1.3
2
2.500R
6.356 | | $\frac{\mathbf{W}}{\mathbf{A}\mathbf{x}}$ $\frac{\mathbf{S}\mathbf{p}}{\mathbf{L}\mathbf{o}}$ | n. Base
le acing
ad On
les
10
20
30 | E L X A1 A2 G N B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M B B | 18 14 .10 .90 2-3 3 1.000R 1.440 2-3 3.1.000R 3.645 1-3 2 2.200L 5.901 1-3 2 2.00L 8.401 1-3 2 2.00L | 20 16 .40 .60 1 1 1 0 1.000 2-3 3 1.000R 2.430 1-3 2 2.600R 6.369 1-3 2 2.600R | 20 16 .35 .65 2.3 3 1.000R 1.040 2.3 1.000R 2.633 2.3 1.000R 4.246 1-3 2 2.150R 6.666 1-3 2 2.150R | 20 16 .30 .70 2-3 3 1.000R 1.120 2-3
3.1.000R 2.835 2-3 3.1.000R 4.573 1.700R 6.972 1-3 2.1.700R | 20 16 .25 .75 .75 .23 1.000R 1.200 2-3 1.000R 3.038 2-3 1.000R 1.250R 7.289 1-3 2 1.250R | 20 16 .20 .80 2-3 3 1.000R 1.280 2-3 1.000R 3.240 2-3 1.000R 3.240 2-8 1.000R 1.000R 3.240 2-8 2.800R | 20 16 .15 .85 2-3 3 1.000R 1.360 2-3 3.1.000R 3.443 2-3 3.1.000R 3.45 2-3 3.50R 7.953 1-3 2 3.50R | 20 16 .19 .90 2-3 3 1.000R 1.440 2-3 3 1.000R 3.645 2 3 3 1.000R 5.880 1-3 2 1.001 1-3 2 1.001 1-3 2 1.001 | 22
18
.40
.60
1
1
1
0
1.000
2.3
3
1.000R
2.430
2.3
3
1.000R
2.430
2.3
3
3
1.000
2.3
3
1.000
2.3
3
1.000
2.3
3
1.000
2.00
2.00
3
3
1.000
2.00
3
3
1.000
2.00
3
3
1.000
2.00
3
3
1.000
2.00
3
3
3
1.000
3
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.0000
1.000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.000 | 22
18
.35
.65
2-3
3
1.000R
1.040
2-3
1.000R
2.633
2-3
3
1.000R
4.246
1-3
2
2.500R
6.356
1-3
2.500R | | WI
Axx
Sp
Lo
Ax | n. Base
le acing
ad On
les
10
20
30 | E L X A1 A2 G N B M G N B M G N B M G N B M G N B M M G N B M M G N B M M M M M M M M M M M M M M M M M M | 18 14 .10 .90 2-3 3 1.000R 1.440 2-3 3 1.000R 1.440 1-3 2-000L 5.901 1-3 2 2.000L 8.401 1-3 2 2.001 1-3 2 2.001 1-3 2 2.001 1-3 2 2.001 1-3 2 2.001 1-3 2 2.001 1-3 2 2.001 1-3 2 2.001 1-3 2 2.001 1-3 2 2.001 1-3 2 2.001 1-3 2 2.001 1-3 2 2.001 1-3 2 2.001 1-3 2 2.001 1-3 2 2.001 1-3 2 | 20 16 .40 .60 1 1 1 0 1.000 2-3 3 1.000R 2.430 1-3 2.600R 6.369 1-3 2 2.600R 6.369 1-3 2 2.600R 8.835 | 20 16 .35 .65 2.3 1.000R 1.040 2-3 3 1.000R 2.633 2-3 1.000R 4.246 1-3 2.150R 6.666 1-3 2 2.150R 9.142 | 20 16 .30 .70 2-3 3 1.000R 1.120 2-3 3 1.000R 2.835 2-3 3 1.000R 4.573 1-3 2 1.700R 6.972 1-3 2 1.700R 9.458 | 20 16 .25 .75 .75 .3 1.000R 1.200 2-3 3.000R 3.038 2-3 1.000R 4.900 1-3 2 1.250R 7.289 1-3 2 1.250R 7.289 | 20
16
.20
.80
2-3
3
1.000 R
1.280
2-3
3
1.000 R
3.240
2-3
3
1.000 R
5.226
1-3
2
.800 R
7.616
1-3
2
.800 R | 20
16
.15
.85
2-3
3
1.000R
1.360
2-3
3
1.000R
5.553
1-3
2
.350R
7.953
1-3
2
.350R
10.450 | 20 16 .10 .90 2-3 3 1.090R 1.440 2-3 3 1.090R 3.645 2 3 3 1.090R 5.880 1-3 2 1.00L 8.300 1-3 2 1.00L 8.300 1-3 2 1.00L | 22
18
.40
.60
1
1
0
1.000
2-3
3
1.000R
2.430
2-3
3
1.000R
3.920
1-3
2.300R
6.025
1-3
2.3000R
6.025 | 22
18
.35
.65
2-3
3
1.000R
1.040
2-3
3
1.000R
2-633
2-3
3
1.000R
4.246
1-3
2
2.500R
6.356
1-3
2
2.500R
8.825 | | WI
Axx
Sp
Lo
Ax | n. Base
le acing
ad On
les
10
20
30 | E L X A1 A2 G N B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M B B | 18 14 .10 .90 2-3 3 1.000R 1.440 2-3 3.1.000R 3.645 1-3 2 2.200L 5.901 1-3 2 2.00L 8.401 1-3 2 2.00L | 20 16 .40 .60 1 1 1 0 1.000 2-3 3 1.000R 2.430 1-3 2 2.600R 6.369 1-3 2 2.600R | 20 16 .35 .65 2.3 3 1.000R 1.040 2.3 1.000R 2.633 2.3 1.000R 4.246 1-3 2 2.150R 6.666 1-3 2 2.150R | 20 16 .30 .70 2-3 3 1.000R 1.120 2-3 3.1.000R 2.835 2-3 3.1.000R 4.573 1.700R 6.972 1-3 2.1.700R | 20 16 .25 .75 .75 .23 1.000R 1.200 2-3 1.000R 3.038 2-3 1.000R 1.250R 7.289 1-3 2 1.250R | 20 16 .20 .80 2-3 3 1.000R 1.280 2-3 1.000R 3.240 2-3 1.000R 3.240 2-8 1.000R 1.000R 3.240 2-8 2.800R | 20 16 .15 .85 2-3 3 1.000R 1.360 2-3 3.1.000R 3.443 2-3 3.1.000R 3.45 2-3 3.50R 7.953 1-3 2 3.50R | 20 16 .19 .90 2-3 3 1.000R 1.440 2-3 3 1.000R 3.645 2 3 3 1.000R 5.880 1-3 2 1.001 1-3 2 1.001 1-3 2 1.001 | 22
18
.40
.60
1
1
1
0
1.000
2.3
3
1.000R
2.430
2.3
3
1.000R
2.430
2.3
3
3
1.000
2.3
3
1.000
2.3
3
1.000
2.3
3
1.000
2.00
2.00
3
3
1.000
2.00
3
3
1.000
2.00
3
3
1.000
2.00
3
3
1.000
2.00
3
3
3
1.000
3
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.0000
1.000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.000 | 22
18
.35
.65
2-3
3
1.000R
1.040
2-3
1.000R
2.633
2-3
3
1.000R
4.246
1-3
2
2.500R
6.356
1-3
2.500R | | WI
Axx
Sp
Lo
Ax | n. Bassannannannannannannannannannannannanna | E L X A1 A2 G N B M B M G N B M B M G N B M B B | 18 14 .10 .90 2-3 3 1.000R 1.440 2-3 3 1.000R 1.440 1-3 2-00L 5.901 1-3 2 200L 8.401 1-3 2 200L 1.0900 1-3
2 200L | 20 16 .40 .60 1 1 1 0 1.000 2-3 3 1.0008 2.430 1-3 2.600R 6.369 1-3 2.600R 8.833 1-3 2 2.600R 2.600R | 20 16 .35 .65 2.3 3 1.000R 1.040 2-3 3 1.000R 2.633 2-3 3 1.000R 4.246 1-3 2 2.150R 6.666 1-3 9.142 2.2.150R | 20 16 .30 .70 2-3 3 1.000R 1.120 2-3 3 1.000R 2.885 2-3 3 1.000R 4.573 1-3 2 1.700R 6.972 1-3 2 1.700R 9.458 1-3 2 1.700R | 20 16 .25 .75 .75 .8 .000R 1.200 2-3 .8 .000R 3.038 2-3 .000R 4.900 1-3 2.1.250R 7.289 1-3 2 1.250R 1-3 2 1.250R | 20 16 .20 .80 2-3 3 1.000R 1.283 3 1.000R 2-3 3 1.000R 5.226 1-3 2 .800R 7.616 1-3 2 .800R 10.110 1-3 2 .800R | 20 16 .15 .85 2-3 3 1.000R 1.360 2-3 3 1.000R 5.553 1-3 2 3.50R 7.953 1-3 2 1.00450 1-3 2 3.50R | 20 16 .10 .90 2-3 3 1.090R 1.440 2-3 3 1.090R 3.645 2 3 3 1.090R 5.880 1-3 2 1.090L 8.300 1-3 2 1.090L 1-3 2 1.090L 1-3 2 1.090L | 22 18 .40 .60 .60 .1 .00 .1000 .2-3 .3 .000R .2.430 .2-3 .3.000R .920 .1-3 .2 .3.000R .6.025 .1-3 .2 .3.000R .8.480 .1-3 .2 .3.000R | 22 18 .35 .65 2-3 3 1.000R 1.0400 2-3 3 1.000R 2.633 2-3 3 1.000R 4.246 1-3 2 2.500R 6.356 1-3 2 2.500R 8.825 1-3 2 2.500R | | WI
Axx
Sp
Lo
Ax | n. Bassannannannannannannannannannannannanna | E L X A 1 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 | 18 14 .10 .90 2-3 3 1.000R 1.440 2-3 3.000R 1.440 1-3 2.200L 5.901 1-3 2 2.200L 1.0900 1-3 2 2.200L 1.0900 1-3 2 2.200L 1.0900 1-3 2 2.200L 1.3400 | 20 16 .40 .60 1 1 0 1.000 2-3 3 1.0008 2.480 1-3 2.600R 3.925 1-3 2 2.600R 8.835 1-3 2 2.600R 8.835 1-3 2 2.600R | 20 16 .35 .65 .65 2.3 3 1.000R 1.040 2-3 3 1.0008 2.633 2-3 3.000R 4.246 1-3 2 2.150R 9.142 1-3 2 2.150R 9.142 1-3 2 2.150R 9.142 | 20 16 .30 .70 .70 2-3 3 1.000R 1.120 2-3 3 1.000R 2.885 2-3 3 1.000R 4.573 1-3 2 1.700R 6.972 1-3 2 1.700R 9.458 1-3 2 1.700R 11.950 | 20 16 .25 .75 .75 .3 1.000R 1.200 2-3 3 1.000R 3.038 2-3 3 1.000R 4.900 1-3 2 1.250R 7.289 1-3 2 1.250R 9.781 1-3 2 1.250R 1.250R 1.250R | 20 16 .20 .80 2-3 3 1.000R 1.280 2-3 3 1.000R 3.240 2-3 3.000R 5.226 1-3 2 .800R 7.616 1-3 2 .800R 10.110 1-3 2 .800R 12.610 | 20 16 .15 .85 .85 2-3 3 1.000R 1.360 2-3 3.4043 2-3 3.000R 5.553 1-3 2 .350R 7.953 1-3 2 .350R 10.450 1-3 2 .350R 10.450 1-3 2 350R 10.450 1-3 2 350R 12.950 | 20 16 .10 .90 2-3 3 1.000R 1.440 2-3 3 1.000R 5.880 1-3 2 .100L 8.300 1-3 2 1.0080 1-3 2 1.080 1-3 2 1.080 1.33 2 1.080 1.33 2 1.080 1.33 2 1.080 1.33 2 1.080 1.33 2 1.080 1.33 2 1.080 1.33 2 1.080 1.33 2 1.080 1.33 2 1.080 1.33 2 1.080 1.33 | 22 18 .40 .60 1 1 1 0 1.000 2-3 3 1.000R 2.43 3.920 1-3 2 3.000R 6.025 1-3 2 3.000R 8.480 1-3 2 2 3.000R 10.950 | 22
18
.35
.65
2-3
3
1.000R
1.040
2-3
3
1.000R
2.633
2-3
3
1.000R
4.246
1-3
2
2.590R
6.356
1-3
2
2.500R
8.825
1-3
2
2.500R
8.825
1-3
2
2.500R | | WI
Axx
Sp
Lo
Ax | n. Bassannannannannannannannannannannannanna | E L X A1 A2 G N B M B M G N B M B M G N B M B B | 18 14 .10 .90 2-3 3 1.000R 1.440 2-3 3 1.000R 1.440 1-3 2-00L 5.901 1-3 2 200L 8.401 1-3 2 200L 1.0900 1-3 2 200L | 20 16 .40 .60 1 1 1 1 0 1.000 2-3 3 1.0008 2.430 1-3 2.600R 6.369 1-3 2 2.600R 8.835 1-3 2 2.600R 11.310 1-3 2 | 20 16 .35 .65 2.3 3 1.000R 1.040 2-3 3 1.000R 2.633 2-3 3 1.000R 4.246 1-3 2 2.150R 6.666 1-3 9.142 2.2.150R | 20 16 .30 .70 2-3 3 1.000R 1.120 2-3 3 1.000R 2.885 2-3 3 1.000R 4.573 1-3 2 1.700R 6.972 1-3 2 1.700R 9.458 1-3 2 1.700R | 20 16 .25 .75 .75 .8 .000R 1.200 2-3 .8 .000R 3.038 2-3 .000R 4.900 1-3 2.1.250R 7.289 1-3 2 1.250R 1-3 2 1.250R | 20 16 .20 .80 2-3 3 1.000R 1.283 3 1.000R 2-3 3 1.000R 5.226 1-3 2 .800R 7.616 1-3 2 .800R 10.110 1-3 2 .800R | 20
16
.15
.85
2-3
3
1.000R
1.360R
2-3
3.448
2-3
3.000R
5.553
1-3
2
.350R
7.953
1-3
2
.350R
7.958
1-3
2
.350R
7.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1.958
1. | 20 16 .10 .90 2-3 3 1.090R 1.440 2-3 3 1.090R 3.645 2 3 3 1.090R 5.880 1-3 2 1.090L 8.300 1-3 2 1.090L 1-3 2 1.090L 1-3 2 1.090L | 22 18 .40 .60 .60 .1 .00 .1000 .2-3 .3 .000R .2.430 .2-3 .3.000R .0025 .1-3 .2 .3.000R .8.480 .1-3 .2 .3.000R | 22 18 .35 .65 2-3 3 1.000R 1.0400 2-3 3 1.000R 2.633 2-3 3 1.000R 4.246 1-3 2 2.500R 6.356 1-3 2 2.500R 8.825 1-3 2 2.500R | | WI
Axx
Sp
Lo
Ax | n. Bass
le acing ad On les 10 20 30 40 50 60 | E L X A1 A2 A2 A3 A3 A3 A3 A3 A4 | 18 14 .10 .90 2-3 3 1.000R 1.440 2-3 3.000R 3.645 1-3 2 2.000L 8.401 1-3 2 2.000L 10.900 1-3 2 2.001 10.900 1-3 2 2.001 10.900 1-3 2 2.001 13.400 1-3 2 2.000L 13.400 | 20 16 .40 .60 1 0 1.000 2-3 3 1.0008 2.430 1-3 2.600R 3.925 1-3 2.600R 8.8355 1-3 2.600R 8.8355 1-3 2.600R 8.1310 1-3 2.600R | 20 16 .35 .65 .65 2.3 3 1.000R 1.040 2.3 3 1.000R 2.633 2.633 2.3 1.000R 4.246 1.3 2 2.150R 9.142 1.3 2 2.150R 9.142 2.2.150R 11.630 1.3 2 2.150R 2.2 2.150R 2.2 2.150R 2.2 2.150R 2.2 2.150R 2.2 2.150R 2.2 2.150R | 20 16 .30 .70 2-3 3 1.000R 1.120 2-3 3 1.000R 2.835 2-3 3 1.000R 4.573 1-3 2 1.700R 6.972 1-3 2 1.700R 9.458 1-3 2 1.700R 9.11,950 1-3 2 1.700R | 20 16 .25 .75 .75 .3 .000R 1.200 2-3 .0008 3.038 2-3 .3 1.000R 7.289 1-3 2 1.250R 9.781 1-3 2 1.250R 1.32 1.250R 1.32 1.250R 1.32 1.250R | 20 16 20 .80 2-3 3 1.000R 1.280 2-3 3 1.000R 3.240 2-3 3 1.000R 5.226 1-3 2 .800R 7.616 1-3 2 .800R 10.110 1-3 2 .800R 12.610 1-3 2 .800R | 20 16 .15 .85 .85 2-3 3 1.000R 1.380 2-3 3 1.000R 5.553 1-3 2 .350R 7.953 1-3 2 .350R 10.450 1-3 2 .350R 12.950 1-3 2 .350R | 20 16 .10 .90 2-3 3 1.000R 1.440 2-3 3 1.000R 5.880 1-3 2 .100L 8.300 1-3 2 .100L 10.800 1-3 2 .100L 11.3300 1-3 2 .100L | 22 18 .40 .60 1 1 1 1 0 1.000 2.3 3 1.000R 2.430 3.920 1.3 2 3.000R 6.025 1.3 2 3.000R 8.480 1.3 2 3.000R 8.490 1.3 2 3.000R 8.490 1.3 2 3.000R | 22
18
.35
.65
2-3
3
1.000R
1.040
2
3
3
1.000R
2.633
2-3
3
1.000R
4.246
1-3
2
2.500R
8.825
1-3
2
2.500R
8.825
1-3
2
2.500R
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300
1.300 | | WI
Axx
Sp
Lo
Ax | n. Bass
le acing ad On les 10 20 30 40 50 60 | E L X A1 A2 G N B M | 18 14 .10 .90 2-3 3 1.000R 1.440 2-3 3.1000R 3.645 1-3 2 2.200L 8.401 1-3 2 2.200L 10.900 1-3 2 2.200L 13.400 1-3 2 2.200L 13.400 1-3 2 2.200L 13.400 | 20 16 .40 .60 1 1 1 0 1.0000 2-3 3 1.0000R 2.430 1-3 2 2.6000R 6.369 1-3 2 2.600R 8.835 1-3 2 2.600R 8.11.310 1-3 2 2.600R 11.310 1-3 2 2.600R | 20 16 .35 .65 2.3 3 1.000R 1.040 2.3 3 1.000R 2.633 3 2.93 4.246 1-3 2.150R 9.142 1-3 2.150R 11.630 1-3 2 2.150R 11.630 1-3 2 2.150R 11.630 1-3 2 2.150R 11.630 | 20 16 .30 .70 .70 2-3 3 1.000R 1.120 2-3 3.000R 2.835 2-3 3.000R 4.573 1-3 2.1.700R 9.458 1-3 2 1.700R 11.950 1-3 2 1.700R 11.950 1-3 2 1.700R | 20 16 .25 .75 2 3 1.000R 1.200 2-3 1.000R 3.038 2-3 1.000R 4.900 1-3 1.250R 7.289 1-3 1.250R 9.781 1-3 2 1.250R 1.258 1-3 2 1.250R 1.258 1-3 1.250R 1.258 1.250R | 20 16 .20 .80 2-3 3 1.000R 1.280 2-3 3.000R 3.240 2-3 3.000R 5.226 1-3 2.800R 7.616 1-3 2.800R 10.110 1-3 2.800R 11.610 | 20 16 .15 .85 2-3 3 1.000R 1.380 2-3 3.000R 3.443 3 1.000R 5.553 1-3 2 350R 10.450 1-3 2 .350R 12.950 1-3 2 350R 17.950 | 20 16 .19 .90 2-3 3 1.000R 1.440 2-3 3.000R 3.645 2-3 3.000R 5.880 1-3 2 1.00L 8.300 1-3 2 1.00L 10.800 1-3 2 1.00L 13.300 1-3 2 1.00L 13.300 1-3 2 1.00L 13.300 | 22 18 .40 .60 1 1 1 0 1.000 2.3 3 1.000R 2.430 3.920 1-3 2.3.000R 6.025 1-3 2.3.000R 8.480 1-3 2.3.000R 1-3.2 3.000R 1-3.2 3.000R 1-3.2 3.000R 1-3.2 3.000R | 22
18
.35
.65
2-3
3
1.090R
1.040
2.3
1.000R
2.633
2-3
3
1.000R
4.246
1-3
2.500R
8.825
1-3
2.500R
1.3
2.500R
1.3
2.500R
1.3
2.500R
1.3
2.500R
1.3
2.500R | | WI
Axx
Sp
Lo
Ax | 10 20 30 60 80 80 | E L X A1 A2 G G N B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M G G N B M G G N B M G G N B M G G N B M G G G N B M G G G N B M G G G G G G G G G G G G | 18 14 .10 .90 2-3 3 1.000R 1.440 2-3 3 1.000R 1.440 1-3 2-00L 5.901 1-3 2 200L 8.401 1-3 2 200L 13.400 1-3 2 200L 13.400 1-3 2 13.400 1-3 2 18.400 1-3 2 18.400 1-3 | 20 16 .40 .60 1 1 1 0 1.000 2-3 3 1.0008 2.430 1-3 2.600R 6.369 1-3 2.600R 8.833 1-3 2 2.600R 1.310 1-3 2 2.600R 1.310 1-3 2 1.000R 1.310 1-3 2 1.000R 1.310 1-3 2 1.000R 1.310 1-3 | 20 16 .35 .65 2.3 3 1.000R 1.040 2-3 3 1.000R 2.633 2-3 3 1.000R 4.246 1-3 2 2.150R 6.666 1-3 2 2.150R 11.630 1-3 2 2.150R 11.630 1-3 2 1.150R 11.630 1-3 | 20 16 .30 .70 2-3 3 1.000R 1.120 2-3 3 1.000R 2.835 2-3 3 1.000R 4.573 1-3 2.1700R 6.972 1-3 2 1.700R 1.950 1-3 2 1.700R 11.950 1-3 2 1.700R 11.950 1-3 2 1.700R 11.950 1-3 | 20 16 .25 .75 .75 .3 1.000R 1.200 3.038 2.3 1.000R 4.900 1-3 2.1.250R 7.289 1.3 2 1.250R | 20 16 .20 .80 2-3 3 1.000R 1.280 2-3 3 1.000R 5.226 1-3 2 .800R 7.616 1-3 2 .800R 12.610 1-3 2 .800R 17.610 1-3 | 20 16 .15 .85 2-3 3 1.000R 1.360R 2-3 3 1.000R 5.553 1-3 2.350R 7.953 1-3 2 350R 12.950 1-3 2 350R 17.950 | 20 16 .10 .90 2-3 3 1.090R 1.440 2-3 3 1.090R 5.880 1-3 2 .100L 8.300 1-3 2 .100L 13.300 1-3 2 .100L 18.300 1-3 2 .100L 18.300 1-3 2 .100L | 22 18 .40 .60 .60 .1 .00 .1000 .2-3 .3 .000R .920 .1-3 .3.00R .8.480 .1-3 .2 .3.000R .1-3 .2 .3.000R .1-3 .2 .3.000R .1-3 .5.910 .1-3 .1-3 .1-3 .1-3 .1-3 .1-3 .1-3 .1-3 | 22 18 .35 .65 2-3 3 1.000R 1.0400 2-3 3 1.000R 2-633 2-3 3 1.000R 4.246 1-3 2 2.500R 6.356 1-3 2 2.500R 1.300 1-3 2.500R 1.300 1-3 2.500R 1.300 1-3 | | WI
Axx
Sp
Lo
Ax | n. Bass
le acing ad On les 10 20 30 40 50 60 | E L X A1 A2 G N B M | 18 14 .10 .90 2-3 3 1.000R 1.440 2-3 3.1000R 3.645 1-3 2 2.200L 8.401 1-3 2 2.200L 10.900 1-3 2 2.200L 13.400 1-3 2 2.200L 13.400 1-3 2 2.200L 13.400 | 20 16 .40 .60 1 1 1 0 1.0000 2-3 3 1.0000R 2.430 1-3 2 2.6000R 6.369 1-3 2 2.600R 8.835 1-3 2 2.600R 8.11.310 1-3 2 2.600R 11.310 1-3 2 2.600R | 20 16 .35 .65 2.3 3 1.000R 1.040 2.3 1.000R 2.633 2.3 1.000R 2.633 2.150R 6.666 1.3 2 2.150R 9.142 1.3 2 2.150R 11.630 1.3 2 2.150R 11.630 1.63666 | 20 16 .30 .70 .70 2-3 3 1.000R 1.120 2-3 3.000R 2.835 2-3 3.000R 4.573 1-3 2.1.700R 9.458 1-3 2 1.700R 11.950 1-3 2 1.700R 11.950 1-3 2 1.700R | 20 16 .25 .75 2 3 1.000R 1.200 2-3 1.000R 3.038 2-3 1.000R 4.900 1-3 1.250R 7.289 1-3 1.250R 9.781 1-3 2 1.250R 1.258 1-3 2 1.250R 1.258 1-3 1.250R 1.258 1.250R | 20 16 .20 .80 2-3 3 1.000R 1.280 2-3 3.000R 3.240 2-3 3.000R 5.226 1-3 2.800R 7.616 1-3 2.800R 10.110 1-3 2.800R 11.610 | 20 16 .15 .85 2-3 3 1.000R 1.380 2-3 3.000R 3.443 3 1.000R 5.553 1-3 2 350R 10.450 1-3 2 .350R 12.950 1-3 2 350R 17.950 | 20 16 .19 .90 2-3 3 1.000R 1.440 2-3 3.000R 3.645 2-3 3.000R 5.880 1-3 2 1.00L 8.300 1-3 2 1.00L 10.800 1-3 2 1.00L 13.300 1-3 2 1.00L 13.300 1-3 2 1.00L 13.300 | 22 18 .40 .60 1 1 1 0 1.000 2.3 3 1.000R 2.430 3.920 1-3 2.3.000R 6.025 1-3 2.3.000R 8.480 1-3 2.3.000R 1-3.2 3.000R 1-3.2 3.000R 1-3.2 3.000R 1-3.2 3.000R | 22
18
.35
.65
2-3
3
1.090R
1.040
2.3
1.000R
2.633
2-3
3
1.000R
4.246
1-3
2.500R
8.825
1-3
2.500R
1.3
2.500R
1.3
2.500R
1.3
2.500R
1.3
2.500R
1.3
2.500R | | | ick No | | Continue
31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | |---|---------------|---------------------------------|------------------------------|------------------------|---------------------|-----------------------------|------------------------|---------------------|--------------------------|---------------------|------------------------|---------------------| | Wh | ı. Base | | 22 | 22 | 22 | 22 | 22 | 24 | 24 | 24 | 24 |
24 | | Ax | le
acing | x | 18 | 18 | 18 | 18 | 18 | 20 | 20 | 20 | 20 | 20 | | Los | ad On | a ₁ | .30 | .25 | .20 | .15 | .10 | .40 | .35 | .30 | .25 | .20 | | Ax | les | G
G | 2-3 | .75
2-3 | $\frac{.80}{2-3}$ | $\frac{.85}{2-3}$ | | .60 | .65
2-3 | $\frac{.70}{2-3}$ | $\frac{.75}{2-3}$ | .80
2-3 | | | 10 | N
B | 3
1.000R | 3
1.000R | 3
1.000R | 1.000R | 3
1.000R | 1 | 3
1.000R | 3
1.000R | 3
1,000R | 3
1.000R | | | | M | 1.120 | 1.200 | 1.280 | 1.360 | 1.440 | 1.000 | 1.040 | 1.120 | 1.200 | 1.280 | | | 20 | G
N | $^{2-3}_3$ | 2-3 | $\substack{2-3\\3}$ | $^{2-3}_3$ | $\substack{2-3\\3}$ | $^{2-3}_3$ | $^{2-3}_3$ | 2-3
3 | $_{3}^{2-3}$ | $^{2-3}_{3}$ | | | | B
M | 1.000R
2.835 | 1.000R
3.038 | 1.000R
3,240 | 1.000R
3.443 | 1.000R
3.645 | 1.000R
2.430 | 1.000R
2,633 | 1.000R
2.835 | 1.000R
3.038 | 1.000R
3.240 | | - - | | G | 2-3 | 2-3 | 2-3 | 2-3 | 2-3 | 2-3 | 2-3 | 2-3 | 2-3 | 2-3 | | | 30 | N
B | $^3_{1.000 m R}$ | $^3_{1.000 m R}$ | $^{3}_{1.000R}$ | $^{3}_{1.000R}$ | $^3_{1.000\mathrm{R}}$ | 1.000R | $^3_{1.000 m R}$ | $^{3}_{1.000R}$ | $1.000\mathbf{R}$ | 3
1.000R | | | | M | 4.573 | 4.900 | 5.226 | 5,553 | 5.880 | 3.920 | 4.246 | 4.573 | 4.900 | 5,226 | | 4 | 40 | G
N | $^{1-3}_2$ | 1-3
2 | $^{1-3}_{2}$ | $^{1-3}_{2}$ | $\substack{1-3\\2}$ | $^{1-3}_2$ | $^{1-3}_{2}$ | $^{1-3}_{2}$ | $\substack{1-3\\2}$ | $^{1-3}_{2}$ | | Span-Feet | | B
M | $2.000\mathbf{R} \\ 6.700$ | 1.500R 7.056 | 1.000R
7.425 | 500R
7.806 | $\substack{0\\8.200}$ | 3.400R
5.689 | 2.850R 6.053 | 2.300R 6.432 | $^{1.750 m R}_{6.827}$ | 1.200R
7.236 | | Jan- | | _G_ | 1-3 | 1–3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 13 | 1-3 | 1-3 | | N. | 50 | N
B | $^{2}_{2.000R}$ | $^2_{1.500 m R}$ | $^2_{1.000 m R}$ | $^2_{.500 m R}$ | $\frac{2}{0}$ | $^2_{3.400 m R}$ | $^{2}_{2.850\mathrm{R}}$ | $\frac{2}{2.300}$ R | $^2_{1.750 m R}$ | 2
1.200R | | 1 | | _M
G | 9.180 | $\frac{9.545}{1-3}$ | $\frac{9.920}{1-3}$ | $\frac{10.310}{1-3}$ | $\frac{10.700}{1-3}$ | 8,131
1–3 | $\frac{8.512}{1-3}$ | $\frac{8.906}{1-3}$ | $\frac{9.311}{1-3}$ | $\frac{9.729}{1-3}$ | | | 60 | N
B | 2
2.000R | 2
1.500R | 2
1.000R | .500R | 2 0 | 3.400R | 2 | 2
2.300R | 2
1.750R | 2 | | | | M | 11.670 | 12.040 | 12.420 | 12.800 | 13.200 | 10.590 | 2.850R
10.990 | 11.390 | 11.800 | 1.200R
12.220 | | | 80 | G
N | $^{1-3}_{2}$ | $^{1-3}_2$ | 1-3
2 | 1-3
2 | 1-3
2 | $^{1-3}_{\ 2}$ | 1-3
2 | 1-3
2 | 1-3
2 | 1-3
2 | | İ | | B
M | 2.000R
16.650 | 1.500R
17.030 | 1.000R
17.410 | .500R
17.800 | $ar{0}$ 18.200 | 3.400R
15.550 | 2.850R | 2.300R
16.370 | 1.750R | 1.200R
17.220 | | ŀ | | - <mark>m</mark> | 1-3 | 1-3 | 1-3 | 1 -3 | 1-3 | 1-3 | $\frac{15.950}{1-3}$ | 1-3 | 16.790
1-3 | 1-3 | | | 100 | N
B | $\frac{2}{2.000 \mathrm{R}}$ | $^2_{1.500\mathbf{R}}$ | $\frac{2}{1.000R}$ | $\frac{2}{.500 \mathrm{R}}$ | 2 | $\frac{2}{3.400}$ R | $^{2}_{2.850\mathrm{R}}$ | $\frac{2}{2.300}$ R | $^2_{1.750\mathrm{R}}$ | 2
1.200R | | | | M | 21.640 | 22.020 | 22.410 | 22.800 | 23,200 | 20.520 | 20.930 | 21.350 | 21.780 | 22.210 | | | uck N | | 41 | 42 | | | | | | | | | | $\frac{\mathbf{W}\mathbf{h}}{\mathbf{A}\mathbf{x}}$ | ı. Base
le | L | 24 | 24 | | | | | | | | | | Spa | acing | X | 20 | 20 | | | | | | | | | | la
Lx | ad On
les | \mathbf{a}_1 | .15
.85 | .10
.90 | | | | | | | | | | | 10 | G
N | 2-3 | 2-3 | | | | | | | | | | | 10 | В | 1.000R | 1.000R | | | | | | | | | | | - | M
G | $\frac{1.360}{2-3}$ | 1.440
2-3 | | | | | | | | | | | 20 | N
B | $1.000\mathbf{R}$ | 3 1.000R | | | | | | | | | | | | M | 3.443 | 3.645 | | | | | | | | | | | 30 | G
N | $^{2-3}_{3}$ | $\frac{2-3}{3}$ | | | | | | | | | | | | B
M | 1.000R
5.553 | 1.000R
5.880 | | | | | | | | | | | | G | 2-3 | 23 | | | | | | | | | | eet | 40 | N
B | $^3_{1.000 m R}$ | 1.000R | | | | | | | | | | pan-Feet | | M
G | $\frac{7.671}{1-3}$ | 8.123 | | | | | | | | | | Spa | 50 | N | 2 | 2 | | | | | | | | | | - | | B
M | .650R
10.160 | 100R 10.600 | | | | | | | | | | | 60 | G | 1~3 | 1-3 | | | | 111 | | | | | | | ซบ | N
B | .650R | .100R | | | | | | | | | | | | $\frac{\mathbf{M}}{\mathbf{G}}$ | 12.660 | $\frac{13.100}{1-3}$ | | | | | | | | | | | 80 | N | 2 | 2 | | | | | | | | | | | | B
M | .650R
17.660 | .100R
18.100 | | | | | | | | | | | 100 | G
N | 13 | 1-3
2 | | | | | | - | | | | | 100 | \mathbf{B} | .650R | .100R | | | | | | | | | | | | M | 22.650 | 23.100 | | | | | | | | | Table 7.3 ## CONTROLLING CONDITIONS AND MAXIMUM MOMENTS IN SIMPLE SPANS PRODUCED BY THE TYPE 2-S1 TRUCKS WEIGHING ONE KIP EACH One hundred twenty-six variations in the Type 2-S1 truck are given in this Table. Each truck number, from 1 to 126, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. | Tr | uck No | Э. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |-----------|---------|----------------|-----------------|-----------------|------------------------|-----------------|------------------------|-------------|-----------------|-----------------|--------------|--------------| | W | h. Base | e L | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 24 | 24 | 24 | | Ax | le | X | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | Sp | acing | \mathbf{X}' | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 16 | 16 | 16 | | Lo | ad | a ₁ | .10 | .10 | .10 | .10 | .20 | .20 | .20 | .10 | .10 | .10 | | On | | \mathbf{a}_2 | .20 | .40 | .45 | .50 | .30 | .40 | .50 | .30 | .40 | .45 | | Ax | les | аз | .60 | .50 | .45 | .40 | .50 | .40 | .30 | .60 | .50 | .45 | | | | G | 3 | 3 | 3 | 2 | 3 | 3 | 2 | 3 | 3 | 3 | | | 10 | N | 3 | 3 | 3 | 2 | 3 | 3 | 2 | 3 | 3 | 3 | | | | В | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | M | 1,500 | 1.250 | 1.125 | 1.250 | 1.250 | 1.000 | 1.250 | 1.500 | 1.250 | 1.125 | | | | G | 3 | 3 | 1-2 | 1-2 | 3 | 1-2 | 1-2 | 3 | 3 | 1-2 | | | 20 | N | 3 | 3 | 2 | 2 | 3 | 2 | 2 | 3 | 3 | 2 | | | | В | 0 | 0 | .725R | .667R | 0 | 1.335R | 1.145R | 0 | 0 | .730R | | | | M | 3.000 | 2.500 | 2.363 | 2.614 | 2.500 | 2.252 | 2.745 | 3.000 | 2.500 | 2.363 | | | ۱ | G | 2-3 | $^{2-3}$ | 1-3 | 1-3 | 2-3 | 1-3 | 1-3 | 2-3 | 2-3 | 1–3 | | | 30 | N | $^{3}_{2.000R}$ | $^{3}_{2.665R}$ | 2 | 2
2.000L | $^3_{2,250\mathrm{R}}$ | 2
1.600L | $^{2}_{1.000L}$ | $^{3}_{2.665R}$ | 3
3.555R | 2
3.200L | | | | B
M | 5.070 | 2.665
4.565 | $\frac{2.300L}{4.576}$ | 4.833 | 4.335 | 4.385 | 4.933 | 2.665
4.565 | 3.555 K | 3.841 | | | | | | | | | | | | | | | | | 40 | G
N | $_{3}^{1-3}$ | $^{1-3}_{3}$ | 13
2 | $\frac{1-3}{2}$ | $^{1-3}_{3}$ | 1 -3
2 | 13
2 | $^{2-3}_{3}$ | $_{3}^{2-3}$ | $^{1-3}_{2}$ | | et | 40 | В | 2.800R | 3,400R | 2.300L | 2.000L | 3.800R | 1.600L | 1.000L | 2.665R | 3.555R | 3.200L | | Span-Feet | | M | 7.396 | 6.889 | 7.032 | 7.300 | 6.561 | 6.864 | 7.425 | 6.762 | 6.085 | 6.256 | | Ė | | G | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | | ã | 50 | Ñ | 3 | ์ 3 | 2 | 2 | 3 | 2 | 2 | 3 | 3 | 2 | | 02 | | В | 2.800R | 3.400R | 2.300L | 2.000L | 3.800R | 1.600L | 1.000L | 3.600R | 4.400R | 3.200L | | | | M | 9.857 | 9.331 | 9.506 | 9.780 | 8.989 | 9.351 | 9,920 | 9.159 | 8.487 | 8.705 | | i | | G | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | | | 60 | N | 3 | 3 | 2 | 2 | 3 | 2 | 2 | 3 | 3 | 2 | | | ļ | В | 2.800R | 3.400R | 2.300L | 2.000 L | 3.800R | 1.600L | 1.000L | 3.600R | 4.400R | 3.200L | | | | M | 12.331 | 11.793 | 11.988 | 12.267 | 11.441 | 11.843 | 12.417 | 11.616 | 10.923 | 11.171 | | | | G | 1-3 | 1-3 | 13 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | | | 80 | N | 3 | 3 | 2 | 2 | 3 | 2 | 2 | 3 | 3 | 2 | | | ì | В | 2.800R | 3.400R | 2.300L | 2.000L | 3.800R | 1.600L | 1.000L | 3.600R | 4.400R | 3.200 L | | | l | M | 17.298 | 16.745 | 16.966 | 17.250 | 16.381 | 16.832 | 17.413 | 16.562 | 15.842 | 16.128 | | 1 | | G | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | | | 100 | N | 3 | 3 | 2 | 2 | 3 | 2 | 2 | 3 | 3 | 2 | | | | В | 2.800R | 3.400R | 2.300L | 2.000L | 3.800R | 1.600L | 1.000L | 3.600R | 4.400R | 3.200L | | | · | M | 22.278 | 21.716 | 21.953 | 22.240 | 21.344 | 21.826 | 22.410 | 21.530 | 20.794 | 21.102 | All dimensions are in feet and moments are in kip-feet. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. G-Axle group causing maximum moment, thus, 1-3 means axles 1, 2, and 3. N-Number of critical axle under which maximum moment occurs. B-Distance to right or left of mid-span to point of maximum moment. M-Maximum moment. | | | | | Continue | | | | | | | | | |
--|--------|----------------------------|---|---|---|---|--
--|--|--|---|--|---| | Akale | | | | | | | | | | | | | | | Spacing X | | | _ | | | | | | | | | | | | OR Nets a: 5.0 30 4.0 .50 .30 .40 .45 .40 .30 .40 Ales A A 4.0 .50 .40 .50 .50 .40 .30 .40 I G 2 3 3 2 3 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3
2 2 3 2 2 3 2 2 3 | Spa | acing | | 16 | 16 | 16 | 16 | 20 | 20 | 20 | 20 | 20 | 20 | | Axless | | | | | | | | | | | | | | | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | | | \mathbf{a}_3 | .40 | .50 | .40 | .30 | .60 | .50 | .45 | .50 | .50 | .40 | | B | | 10 | | | | | | | | | | | | | The color of | | | В | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | | | | | | | | | | | | | | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | | 20 | N | 2 | 3 | 2 | 2 | 3 | 3 | 2 | 2 | 3 | 2 | | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | | | | | | | | | | | | | | | R | | 20 | | | | | | | | | | | | | The color of | | 90 | В | 2.800 L | 3.000R | 1.333R | 1.145R | 0 | 0 | .730R | .667R | 0 | 1.335R | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | | | | | | | | | | | | | | | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | et | 40 | N | 2 | 3 | 2 | 2 | 3 | 3 | 2 | 2 | 3 | 2 | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | -Fe | | | | | | | | | | | | | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | an | | G | 1–3 | 1-3 | 1-3 | 1 -3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | S. | 50 | | | | | | | | | | | | | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | | | M | 9.057 | 8,161 | 8.615 | 9.351 | 8.487 | 7.683 | 7.936 | 8.359 | 7.373 | 7.905 | | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | | 60 | | | | | | | | | | | | | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | | | В | | | 2.400L | | 3.333R | 5.400R | | | 5.800R | | | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | l | | | | | | | | | | | | | | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | - 1 | 80 | | | | | | | | | | | | | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | | | | 16,498 | 15.488 | | | | | | 15.762 | | 15.328 | | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | | 100 | | | | | | | | | | | | | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | | 100 | В | 2.800L | 4.800R | 2.400L | 1.600 L | 3.333R | 5.400R | 4.100L | 3.600L | 5.800R | 3.200L | | Wh. Base L 28 32 32 32 32 32 32 32 | T | nals N | | | | | | | | | | | | | Axle | | | | | | | | | | | | | | | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | | | | | | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | 20 | 24 | 24 | 24 | | 24 | | | | | | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | On | | | 20 | 10 | 10 | .10 | 10 | 20 | 20 | .20 | 10 | .10 | | 10 | AX | | \mathbf{a}_2 | .50 | .30 | .40 | .45 | .50 | .30 | .40 | .50 | .30 | .40 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | a ₂
a ₃ | .50
.30 | .30
.60 | .40
.50 | .45
.45 | .50
.40 | .30
.50 | .40
.40 | .50
.30 | .30
.60 | .40
.50 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | les | a ₂
a ₃
G
N | .50
.30
2
2 | .30
.60 | .40
.50
3
3 | .45
.45
3
3 | .50
.40
2
2 | .30
.50
3
3 | .40
.40
3
3 | .50
.30
2
2 | .30
.60
3
3 | $ \begin{array}{r} .40 \\ .50 \\ 3 \\ 3 \end{array} $ | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | les | a ₂
a ₃
G
N
B | .50
.30
2
2
0 | .30
.60
3
3
0 | 3
3
0
1.250 | .45
.45
3
3
0
1.125 | .50
.40
2
2
0
1.256 | .30
.50
3
3
0
1.250 | 3
3
0
1.000 | .50
.30
2
2
2
0
1.250 | 3
3
3
0
1.500 | 3
3
0
1.250 | | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | | les
10 | a ₂
a ₃
G
N
B
M | .50
.30
2
2
0
1.250 | .30
.60
3
3
0
1.500 | 3
3
0
1.250 | .45
.45
3
0
1.125 | $ \begin{array}{r} .50 \\ .40 \\ \hline 2 \\ 2 \\ 0 \\ 1.256 \\ \hline 1 \cdot 2 \end{array} $ | 3
3
3
0
1.250 | 3
3
0
1.000 | .50
.30
2
2
0
1.250 | 3
3
3
0
1.500 | 3
3
0
1.250
3 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | les
10 | a ₂
a ₃
G
N
B
M
G
N
B | .50
.30
2
2
0
1.250
1-2
2
1.145R | .30
.60
3
3
0
1.500
3
3 | .40
.50
3
3
0
1.250
3
3 | .45
.45
.3
.3
.0
1.125
1-2
.730R | .50
.40
2
2
0
1.256
1-2
2
.667R | 30
.50
3
3
0
1.250
3
3
0 | .40
.40
3
3
0
1.000
1-2
2
1.335R | .50
.30
2
2
0
1.250
1-2
2
1.145R | 30
.60
3
3
0
1.500
3
3 | 3
3
0
1.250
3
0 | | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | | les
10 | a ₂
a ₃
G
N
B
M
G
N
B | .50
.30
2
2
0
1.250
1-2
2
1.145R
2.745 | 30
.60
3
3
0
1.500
3
0
3.000 | 3
3
0
1.250
3
3
0
2.500 | .45
.45
.3
.8
.0
1.125
1-2
.2
.730R
2.363 | .50
.40
2
2
0
1.256
1-2
2
.667R
2.614 | 30
.50
3
8
0
1.250
3
3
0
2.500 | $\begin{array}{c} .40\\ .40\\ \hline 3\\ 3\\ 0\\ 1.000\\ \hline 1-2\\ 2\\ 1.335\\ R\\ 2.252\\ \end{array}$ | .50
.30
2
2
0
1.250
1 -2
2
1.145R
2.745 | 30
.60
3
3
0
1.500
3
0
3.000 | 3
3
0
1.250
3
0
2.500 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 10
20 | a ₂ a ₃ G N B M G N B M G N | .50
.30
2
0
1.250
1-2
2
1.145 R
2.745
1-2 | 30
.60
3
3
0
1.500
3
0
3.000 | 3
3
0
1.250
3
0
2.500 | .45
.45
.3
0
1.125
1-2
2
.730R
2.363 | .50
.40
2
2
0
1.250
1 2
2
.667R
2.614
1-2 | 30
.50
3
0
1.250
3
3
0
2.500 | .40
.40
3
3
0
1.000
1-2
2
1.335R
2.252
1-2
2 | .50
.30
2
2
0
1.250
1 · 2
2
1.145R
2.745
1-2
2 | 30
.60
3
3
0
1.500
3
3
0
3.000 | 3
3
0
1.250
3
0
2.500
3
3 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 10
20 | a ₂ a ₃ G N B M G N B M G N B M | .50
.30
2
2
0
1.250
1-2
2
1.145 R
2.745
1-2
2
1.145 R | 30
.60
3
3
0
1.500
3
0
3.000 | .40
.50
3
3
0
1.250
3
3
0
2.500 | .45
.45
.3
.0
1.125
1-2
.730R
2.363
1.2
.2
.730R | .50
.40
2
2
0
1.256
1 2
2
.667R
2.614
1-2
2
.667R | 30
.50
3
0
1.250
3
0
2.500 | .40
.40
3
3
0
1.000
1-2
2
1.335R
2.252
1-2
2
1.335R | .50
.30
2
2
0
1.250
1 · 2
2
1.145R
2.745
1-2
2
1.145R
4.479 | .30
.60
3
3
0
1.500
3
3
0
3.000 | 3
3
0
1.250
3
3
0
2.500
3
3 | | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | | 10
20
30 | ar a | .50
.30
2
0
1.250
1-2
2
1.145R
2.745
1-2
2
1.145R
4.479 | 30
.60
3
3
0
1.500
3
0
3.000
3
0
4.500 | .40
.50
3
0
1.250
3
0
2.500
3
3
0
3.750 | .45
.45
.3
.0
1.125
1-2
.730R
2.363
1.2
2
.730R
3.733 | .50
.40
2
2
0
1.256
1 2
.667R
2.614
1-2
2
.667R
4.110 | 30
.50
3
0
1.250
3
3
0
2.500
3
3
0
3.750 | .40
.40
.3
3
0
1.000
1-2
2
1.335R
2.252
1-2
2
1.335R
3.734 | .50
.30
2
2
0
1.250
1 · 2
2
1.145R
2.745
1-2
2
1.145R
4.479 | 30
.60
3
3
0
1.500
3
3
0
3.000
3
4.500
3 | 3
3
0
1.250
3
0
2.500
3
3
0
2.500 | | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | eet | 10
20
30 | ar ar GNBMGNBMGNBMGNBMMGNBMMGNBMMGNBMMGNBMMGN | .50
.30
2
0
1.250
1-2
2
1.145R
2.745
1-2
2
1.145R
4.479
1-3 | 30
.60
3
3
0
1.500
3
0
3.000
3
0
4.500
3
3 | .40
.50
3
0
1.250
3
0
2.500
3
0
3.750 | .45
.45
.3
.0
1.125
2
.730 R
2.363
1-2
2
.730 R
3.733
1-2
2
.730 R
3.733 | .50
.40
2
2
0
1.256
1 2
2
.667R
2.614
1-2
2
.667R
4.110
1-2
2 | .30
.50
3
0
1.250
3
0
2.500
3
3
0
3.750 | .40
.40
.3
3
0
1.000
1-2
2
1.335R
2.252
1-2
2
1.335R
3.734
1-2
2
1.335R | .50
.30
2
2
0
1.250
1.250
1.45R
2.745
1-2
1.145R
4.479
1-2
2
1.145R | 30
.60
3
3
0
1.500
3
3
0
3.000
3
0
4.500
3 | .40
.50
3
0
1.250
3
3
0
2.500
3
3
0
3.750 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | n-Feet | 10
20
30 | ag
ag
G
N
B
M
G
N
B
M
G
N
B
M
G
N
B
M | .50
.30
2
2
0
1.250
1.42
2
2.745
1-2
2.745
1-2
2
1.145R
4.479
1-3
2.200L
6.321 | .30
.60
3
3
0
1.500
3
3
0
3.000
3
3
0
4.500
3
3
0
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | .40
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
3.750
3
0
3.750 | .45
.45
.3
.3
.0
1.125
1-2
2.730R
2.363
1-2
2.730R
3.733
1-2
2.730R
5.106 | .50
.40
2
2
0
1.256
1 2
2
.667R
2.614
1-2
2
.667R
4.110
1-2
2
.667R
5.608 |
.30
.50
.50
.3
.0
1.250
.3
.3
.0
2.500
.3
.750
.3
.0
3.750 | .40
.40
.3
.3
.0
.1.000
1-2
.2
1.335R
2.252
1-2
.1.335R
3.734
1-2
.1.335R
5.226 | .50
.30
2
2
0
1.250
1.25
2
1.145 R
2.745
1-2
2
1.145 R
4.479
1-2
2
1.145 R | 30
.60
3
3
0
1.500
3
3
0
3.000
3
3
0
4.500
3
0
6.000 | .40
.50
3
0
1.250
3
3
0
2.500
3
3
0
3
0
2.500
3
3
0
0
2.500
3
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | O. 1 | 10
20
30
40 | a2 a3 G N B M G N B B M G N B B M G N B M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N M B M M G N M B M M G N M B M M G N M B M M M M M M M M M M M M M M M M M | .50
.30
2
2
0
1.250
1-2
2.745
1-2
2.745
1-2
1.145R
4.479
1-3
2
2.200L
6.321
1-3
2 | 30
3
3
0
1.500
3
3
0
3.000
3
3
0
4.500
3
3
0
6.000
2-3
3 | .40
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
3.750
3
0
5.000 | .45
.45
.45
.3
.3
.0
.1.125
.730R
2.363
.730R
3.733
.730R
5.106 | .50
.40
2
2
0
1.256
1.2
2.667R
2.614
1-2
2.667R
4.110
1-2
2.667R
5.608 | .30
.50
3
0
1.250
3
3
0
2.500
3.750
3
0
5.000
2-3 | .40
.40
.3
.3
.0
1.000
1-2
2.335R
2.252
1-2
1.335R
3.734
1-2
2
1.335R
5.226 | .50
.30
2
2
0
1.250
1.250
1.45R
2.745
1-2
1.145R
4.479
1-2
1.145R
6.222
1-3
2 | 30
-60
3
3
0
1.500
3
0
3.000
3.000
4.500
3
0
6.000 | 3
3
0
1.250
3
3
0
2.500
3
3
0
2.500
3
3
0
2.500
3
3
0
2.500
3
3
3
0
2.500
3
3
0
2.500
3
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | O. 1 | 10
20
30
40 | a2 a3 G N B M G N B M G N B M G N B M G N B M G N B M B M G N B B M B M G N B B M B M B M G N B B M B M B M B M B M B M B M B M B M | .50
.30
2
2
0
1.250
1-2
1.145 R
2.745
1-2
1.145 R
4.479
1-3
2
2.200 L
6.321
1-3
2
2.200 L | 30
3 3 0
1.500 3 3 0
3.000 3 0
4.500 3 3 0
6.000 2-3 3 | .40
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
3.750
3
3
0
5.000 | .45
.45
.3
3
0
1.125
1-2
2.363
1-2
2.730R
3.733R
3.738
31-2
2.730R
5.106
1.3
2.5106 | .50
.40
2
2
2
0
1.256
1.256
2
2.667R
2.614
1-2
2.667R
4.110
1-2
2.667R
5.608 | .30
.50
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
5.000
2-3
3
4.500R | .40
.40
.40
.3
3
0
1.000
1-2
2.1.335R
2.252
1-2
2.1.335R
3.734
1-2
2
1.335R
3.734
1-2
2
2
1.335R
2.262
1-3252
2
1.335R
2.262
1-3252
2
1.335R
3.734
1-3252
2
1.335R
3.734
1-3252
2
2
2
1.335R
3.734
1-3252
2
2
2
1.335R
3.734
1-3252
2
2
2
2
1.335R
3.734
1-3252
2
2
2
2
2
3.734
1-3252
2
2
2
2
3.734
1-3252
2
2
2
3.734
1-3252
2
2
2
3.734
1-3252
2
2
3.735
1-3252
2
3.735
1-3252
2
3.735
1-3252
2
3.735
1-3252
2
3.735
1-3252
2
3.735
1-3252
2
3.735
1-3252
2
3.735
1-3252
2
3.735
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3252
1-3 | .50
.30
2
2
0
1.250
1 · 2
2.1.45 R
2.745
1-2
1.145 R
4.479
1-2
2
1.145 R
6.222
1-3
2
2.2
2.3
2.3
2.3
2.3
3.3
3.3
3.3
3.3 | 30
33
01
1.500
3
3
0
3.000
3.000
3
0
4.500
3
3
0
6.000
3 | .40
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
3.750
3
3
0
5.000 | | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | O. 1 | 10
20
30
40
50 | a2 a3 G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M M G N B M M M M M M M M M M M M M M M M M M | .50
.30
2
2
0
1.250
1.250
1.250
2.745
1.145R
4.479
1-3
2.200L
6.321
1-3
2.200L
8.797
1-3 | 30
.60
3
3
0
1.500
3
3
0
3.000
3
3
0
4.500
3
3
0
6.000
2-3
3
4.000
1.500 | .40
.50
3
3
0
1.250
3
3
0
2.500
3.750
3
3
0
5.000
2-3
3
5.335R
6.961
1 3 | .45
.45
.45
.3
.3
.0
.1.125
.730R
2.363
1-2
.730R
3.733
1-2
.2
.730R
5.106
1-3
.2
5.000L
7.200 | .50
.40
2
2
0
1.256
1.2
2.667R
2.614
1-2
2.667R
4.110
1-2
2.667R
5.668
1-3
2
4.400L
7.687 | .30
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
3.750
3
3
4.5000
2-3
3
4.5000
6.724
1-3 | .40
.40
.3
3
0
1.000
1-2
2
1.335R
2.252
1-2
2
1.335R
3.734
1-2
2
1.335R
5.226
1-3
2
4.000L
7.220 | .50
.30
2
2
0
1,250
1-2
1.145R
2,745
1-2
1.145R
4,479
1-2
1.145R
6,222
1-3
2.800L
8,257
1-3 | 30
-60
3
3
0
1.500
3
3
0
3.000
3.000
3
0
4.500
3
0
6.000
3
0
0
0
0
0
0
0
0
0
0
0
0
0 | 3
3
0
1.250
3
3
0
2.500
3
3
0
3.750
3
6.220R
6.349
1-3 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | O. 1 | 10
20
30
40
50 | ag ag ag G N B M M G N B M M M G N B M M G
N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M M G N B M M M M M M M M M M M M M M M M M M | .50
.30
2
2
0
1.250
1-2
1.145 R
2.745
1-2
1.145 R
4.479
1-3
2
2.200 L
8.797
1-3
2
2.200 L
8.797 | .30
.60
3
3
0
1.500
3
3
0
3.000
3
3
0
4.500
2-3
3
4.000R
7.938 | .40
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
5.000
2-3
3
5.335R
6.961
1 3 | .45
.45
.45
.3
0
1.125
1-2
2.730R
2.363
1-2
2.730R
3.733
1-2
2.730R
5.106
1-3
2.5.000L
7.200 | .50
.40
2
2
0
1.256
1.256
2
2
2.667R
2.614
1-2
2.667R
4.110
1-2
2.667R
5.608
1-3
2
4.400L
7.687 | .30
.50
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
5.000
2-3
3
4.500R
6.724
1-3
3 | .40
.40
.40
.3
3
0
1.000
1-2
2.1.335R
2.252
1-2
2.835R
3.734
1-2
2
1.335R
5.226
1-3
2
4.000L
7.220 | .50
.30
2
2
0
1.250
1.250
1.2
2
1.145R
2.745
1-2
1.145R
4.479
1-2
2
1.145R
6.222
1-3
2
2.800L
8.257 | 30
30
1.500
3
3
0
1.500
3
0
3.000
3
0
4.500
3
3
0
6.000
7.500
2-3
3 | .40
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
5.000
2-3
3
6.220R
6.349 | | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | O. 1 | 10
20
30
40
50 | a2 a3 GNBM GNBM GNBM GNBM GNBM BM GNBM BM M GNBM BM M GNBM BM B | .50
.30
2
2
0
1.250
1.250
1.250
2.745
1.145R
4.479
1-3
2.200L
6.321
1-3
2.200L
8.797
1-3
2.200L
1.350
2.200L | .30
.60
3
3
0
1.500
3
3
0
3.000
3
3
0
4.500
3
3
4.500
2-3
3
4.000
8
7.938
1-3
3
3
0.000
1.500 | .40
.50
3
3
0
1.250
3
3
0
2.500
3.750
3
3
0
5.000
2-3
3
5.335R
6.961
1 3
3
6.400R | .45
.45
.45
.3
.3
.0
.1.125
.730R
2.363
1-2
.2
.730R
3.733
1-2
.2
.730R
5.106
1.3
.2
5.000L
7.200
1-3
.2
5.000L
9.617 | .50
.40
2
2
0
1.256
1.2
2.667R
2.614
1-2
2.667R
4.110
1-2
2.667R
5.608
1-3
2
4.400L
7.687
1-3
2
4.400L | .30
.50
.50
.3
.3
.0
.1.250
.3
.3
.0
.2.500
.3
.750
.3
.3
.0
.5.000
.2-3
.3
.4.5000R
.6.724
.1-3
.6.800R
.8.971 | .40
.40
.3
3
0
1.000
1-2
2
1.335R
2.252
1-2
2
1.335R
5.252
1-2
2
1.335R
5.226
1-3
2
4.000L
7.220
1-3
2
4.000L
9.667 | .50
.30
2
2
0
1.250
1.250
1.22
2.1.145R
4.479
1-2
1.145R
6.222
1.3
2
2.800L
8.257
1-3
2.800L
8.257 | 30
-60
3
3
0
1.500
3
3
0
3.000
3
3
0
4.500
3
3
0
6.000
2-3
3
4.665R
9.628 | .40
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
3.750
3
3
6.220R
6.349
1-3
3
7.400R
8.513 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | O. 1 | 10 20 30 40 50 | a2 a3 GNB MGNB MGNB MGNB MGNB MGGNB | .50
.30
2
2
0
1.250
1-2
1.145 R
2.745
1-2
1.145 R
4.479
1-3
2
2.200 L
8.797
1-3
2
2.200 L
8.797
1-3
2
2.200 L
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.25 | .30
.60
3
3
0
1.500
3
3
0
3.000
3
3
0
4.500
2-3
3
4.000R
7.938
1-3
5.200R
10.251
1-3 | .40
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
5.000
2-3
3
0
5.000
2-3
3
6.4008
9.283
1-3 | .45
.45
.45
.3
3
0
1.125
1-2
.730R
2.363
1-2
2
.730R
5.106
1-3
2
5.000L
7.200
1-3
2
5.000L
7.200
1-3
2
5.000L
7.200 | .50
.40
2
2
0
1.256
1.256
1.256
2.667R
2.614
1-2
2.667R
4.110
1-2
2
4.400L
7.687
1-3
2
4.400L
1.0123
1-3
2
4.40123 | .30
.50
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
5.000
2-3
3
4.500R
6.724
1-3
6.800R
8.971
1-3 | .40
.40
.40
.3
3
3
0
1.000
1-2
2.1.335R
2.252
1-2
1.335R
5.226
1-3
2
4.000L
7.220
1-3
2
4.000L
9.664
9.664 | .50
.30
2
2
2
0
1.250
1 · 2
2
1.145 R
2.745
1-2
1.145 R
4.479
1-2
2
1.145 R
6.222
1-3
2
2.800 L
8.257
1-3
2
2.800 L
8.257 | 30
.600
3
3
0
1.500
3
0
3.000
3
0
4.500
3
3
0
6.000
3
4.665R
9.628
1-3 | .40
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
5.000
2-3
3
6.220R
6.349
1-3
7.400R
8.513 | | 100 N 2 3 3 2 2 3 2 2 3 3 2 2 3 3 3 3 2 2 2 3 3 2 2 3 | O. 1 | 10 20 30 40 50 | a2 a3 GNB M | .50
.30
2
2
0
1.250
1.250
1.250
2.745
1.2
2.1.45 R
2.745
1.3
2
2.200 L
6.321
1.3
2
2.200 L
8.797
1.3
2
2.200 L
8.797
1.3
2
2
2.200 L
8.797
1.3
2
2
2
2.200 L
8.797
1.3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | .30
.60
3
3
0
1.500
3
3
0
3.000
3
3
0
4.500
2-3
3
4.000R
7.938
1-3
3
5.200R | .40
.50
3
3
0
1.250
3
3
0
2.500
3
3.750
3
3
0
5.000
2-3
3
3
6.400R
9.283
1-3
3
6.400R |
.45
.45
.45
.3
3
0
1.125
1-2
2
.730R
2.363
1-2
2
.730R
5.106
1-3
2
5.000L
7.200
1-3
2
5.000L
7.3001
1-3
2
5.000L
7.3001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.0001
1-3
5.00001
1-3
5.000000000000000000000000000000000000 | .50
.40
2
2
0
1.256
1 2
2
.667R
2.614
1-2
2.667R
5.608
1-3
2
4.400L
7.687
1-3
2
4.400L
1-3
2
4.400L
1-3
2
4.400L | .30
.50
.50
3
3
0
1.250
3
3
0
2.500
3
3.750
3
3
0
5.000
2-3
4.500R
6.724
1-3
3
6.800R
8.971
1-3
6.800R | .40
.40
.40
.3
3
0
1.000
1-2
2
1.335R
2.252
1-2
2
1.335R
5.226
1-3
2
4.000L
7.220
1-3
2
4.000L
7.200
1-3
2 | .50
.30
2
2
2
0
1.250
1 · 2
2
1.145 R
2.745
1 · 2
2
1.145 R
6.222
1 · 3
2
2.800 L
8.257
1 · 3
2
2.800 L
1.0731
1 · 3
2
2.800 L
1.0731
1 · 3
2
2.800 L
1.0731
2 · 3
2 3
3 3 | 30
.60)
3
3
0
1.500
3
3
0
3.000
3
3
0
4.500
3
3
0
6.000
3
3
4.500
3
4.500
3
3
6.000
3
6.000
3
6.000
7.500
8
8
9
9
1.500
8
9
1.500
8
9
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1.500
8
1 | .40
.50
.50
.50
.50
.50
.50
.50
.50
.60
.50
.60
.60
.60
.60
.60
.60
.60
.60
.60
.6 | | | O. 1 | 10 20 30 40 50 | a2 a3 GNB MG MG GNB MG GNB MG | .50
.30
2
2
0
1.250
1-2
1.145 R
2.745
1-2
1.145 R
4.479
1-3
2
2.200 L
8.797
1-3
2
2.200 L
8.797
1-3
2
2.200 L
11.281
1-3
2
2.200 L
8.797
1-3
2
2.200 L
8.797
1-3
1-3
1-3
1-3
1-3
1-3
1-3
1-3
1-3
1-3 | .30
.60
3
3
0
1.500
3
3
0
3.000
3
3
0
4.500
2-3
3
4.000R
7.938
1-3
5.200R
10.251
1-3
3
5.200R
15.138 | .40
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
5.000
2-3
3
0
5.000
2-3
3
6.400R
9.283
3
1-3
6.400R
14.112 | .45
.45
.45
.3
3
0
1.125
1-2
2.730R
2.363
1-2
2.730R
5.106
1-3
2
5.000L
7.200
1-3
2
5.000L
9.617
1-3
2
5.000L
1-3
2 | .50
.40
2
2
0
1.256
1.256
2.2
2.667R
2.614
1-2
2.667R
5.608
1-3
2
4.400L
7.687
1-3
2
4.400L
10.123
1-3
2
4.400L
10.123 | .30
.50
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
5.000
2-3
3
4.500R
6.724
1-3
6.800R
8.901
1 1-3
3
6.800R |
.40
.40
.40
.3
3
0
1.000
1-2
1.335R
2.252
1-2
1.335R
5.226
1-3
2
4.000L
7.220
1-3
2
4.000L
9.667
1-3
2
4.000L
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.664
9.66 | .50
.30
2
2
0
1.250
1 · 2
2
1.145R
2.745
1-2
1.145R
4.479
1-2
2.145R
6.222
1-3
2
2.800L
8.257
1-3
2
2.800L
1-3
2
2.800L
1-3
2.800L
1-3
2.800L
1-3
2.800L
1-3
2.800L
1-3
2.800L
1-3
2.800L
1-3
2.800L
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.600
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000
1.6000 | 30 .60 3 3 3 0 1.500 3 3 3 0 0 4.500 3 3 3 0 0 7.500 2-3 3 4 .665R 9.628 1-3 3 6.000L 14.450 | .40
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
5.000
2-3
3
6.220R
6.349
1-3
7.400R
8.513
1-3
3
7.400R | | | O. 1 | 10 20 30 40 50 60 80 80 | a: a: GNBM GNBM GNBM GNBM GNBM GNBM GNBM GNBM | .50
.30
.30
.2
2
0
1.250
1.250
1.145 R
2.745
1-2
2
1.145 R
2.245
1-3
2
2.200 L
8.797
1-3
2
2.200 L
8.797
1-3
2
2.200 L
1.1281
1-3
2
2.200 L
1.1281
1-3
2
2.200 L
1.1281 | .30
.60
3
3
0
1.500
3
3
0
3.000
3
3
0
4.500
2-3
3
4.000
2-3
3
4.000
8.7938
1-3
3
5.200R
15.138 | .40
.50
.50
.50
.50
.50
.50
.50
.50
.50
.5 | .45
.45
.45
.3
3
0
1.125
1-2
2
.730R
2.363
1-2
2
.730R
5.106
1-3
2
5.000L
7.200
1-3
2
5.000L
7.3001
1-3
2
5.000L
1-3
2
5.000L
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
2
5.0001
1-3
1
5.0001
1-3
1
5.0001
1-3
1
5.0001
1-3
1
5.0001
1-3
1
5.0001
1-3
1
5.0001
1-3
1
5.0001
1-3
1
5.0001
1-3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | .50
.40
2
2
0
1.256
1 2
2
.667R
2.614
1-2
.667R
5.608
1-3
2
4.400L
7.687
1-3
2
4.400L
1-3
2
4.400L
15.042 | .30
.50
.50
.50
.50
.50
.50
.50
.50
.50
.5 |
.40
.40
.40
.3
3
0
1.000
1-2
2
1.335R
2.252
1-2
2
1.335R
5.226
1-3
2
4.000L
7.220
1-3
2
4.000L
7.200
1-3
2
4.000L
1-3
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
2
4.000L
1-3
2
4.000L
1-3
2
4.000L
1-3
2
4.000L
1-3
2
4.000L
1-3
2
2
4.000L
1-3
2
4.000L
1-3
2
4.000L
1-3
2
4.000L
1-3
2
4.000L
1-3
2
4.000C
1-3
1
4.000C
1-3
1
4.000C
1-3
1
4.000C
1-3
1
4.000C
1-3
1
4.000C
1
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4.000C
1
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4 | .50
.30
2
2
2
0
1.250
1 · 2
2
1.145 R
2.745
1 · 2
2
1.145 R
4.479
1 · 2
2
2.800 L
8.257
1 · 3
2
2.800 L
1.0,731
1 · 3
2
2.800 L
1.6,98
1 3
2
2
2.800 L
1.6,98
1 · 3
2
2
2.800 L
1.6,98
1 · 3
2
2
2.800 L
1.6,98
1 · 3
2
2
2.800 L
1.6,98
1 · 3
2
2
2.800 L
1.6,98
1 · 3
2
2
2
3
3
3
4
4
4
5
1 · 3
2
2
3
3
4
4
4
5
1 · 3
2
2
3
2
3
4
4
4
5
1 · 3
2
2
3
4
4
4
5
1 · 3
2
2
2
3
3
4
4
4
5
4
5
1 · 3
2
2
3
4
4
5
4
5
5
1 · 3
2
2
3
4
5
4
5
5
5
5
6
5
7
1 · 3
2
2
2
3
3
4
5
1 · 3
2
2
3
2
3
3
3
3
4
3
4
3
4
5
3
5
3
4
5
3
2
3
3
3
3
4
3
3
4
3
3
3
3
3
3
3
3
3
3 | 30
.60)
3
3
0
1.500
3
3
0
3.000
3
3
0
4.500
3
3
0
6.000
3
3
4.500
3
3
0
7.500
3
3
6.000
1
3
1
1
1
1
1
1
1
1
1
1
1
1
1 | .40
.50
.50
.50
.50
.50
.50
.50
.50
.50
.5 | 60 METHOD OF CONVERTING HEAVY MOTOR VEHICLE LOADS TABLE 7.3 (Continued) Truck No. 31 32 33 34 35 36 37 38 39 40 | Tr | ick No | ٠. | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | |----------------------------------|---|--|--|--|--|--
--|---|--|--|--|--| | - | . Base | | 36 | 36 | 36 | 36 | 36 | 20 | 20 | 20 | 20 | 20 | | Ax | | X. | 8 | 8 | 8 | 8 | - 8 | 12 | 12 | 12 | 12 | 12 | | - | icing | X' | 28 | 28 | 28 | | 28 | 8 | 8 | 8 | 8 | $\frac{8}{.20}$ | | Lo:
On | ad | \mathbf{a}_1 | .10
.45 | .10
.50 | .20
.30 | .20 $.46$ | .20
.50 | .10
.30 | .10
.40 | .10
.45 | .10
.50 | .30 | | Ax | les | a 3 | .45 | .40 | .50 | .40 | .30 | .60 | .50 | .45 | .40 | .50 | | | | G | 3 | 2 | 3 | 3 | 2 | 3 | 3 | 3 | 2 | 3 | | | 10 | N | 3 | 2 | 3 | 3 | 2 | 3 | 3 | 3 | 2 | 3 | | | | B
M | $0 \\ 1.125$ | $\frac{0}{1.250}$ | $0 \\ 1.250$ | $0 \\ 1.000$ | $0 \\ 1.250$ | $0 \\ 1.500$ | $\substack{0\\1.250}$ | $0 \\ 1.125$ | $^{0}_{1.250}$ | $0 \\ 1.250$ | | | | G | 12 | 1-2 | 3 | 1-2 | 1-2 | 2-3 | 2-3 | 2-3 | 2-3 | 2-3 | | | 20 | Ň | 2 | 2 | 3 | 2 | 2 | 3 | 3 | 3 | 2 | 3 | | | | В | $.730\mathbf{R} \ 2.363$ | .667R | 0 | 1.335R
2.252 | 1.145R | 1.335R | $1.780\mathbf{R} \\ 3.040$ | 2.000R | $1.780L \\ 3.040$ | 1.500R
2.890 | | | | <u>M</u> _ | 1-2 | $\frac{2.614}{1-2}$ | 2.500 | 1-2 | 2.745 | $\frac{3.379}{2-3}$ | 2-3 | $\frac{2.880}{1-3}$ | 1-3 | 2-3 | | | 30 | G
N | 2 | $\frac{1-2}{2}$ | 3 | 2 | 2 | 3 | 3 | 2 | 2 | 3 | | | | \mathbf{B} | $.730\mathbf{R}$ | .667R | 0 | 1.335R | 1.145R | 1.335R | $1.780\mathbf{R}$ | 1.200L | 1.000L | 1.500R | | | | M | 3.733 | 4.110 | 3.750 | 3.734 | 4.479 | 5.602 |
5.243 | 5.148 | 5.333 | 4.860 | | | 40 | G
N | 1-2
2 | $\frac{1-2}{2}$ | 3
3 | $_{2}^{1-2}$ | $^{1-2}_2$ | $^{1-3}_3$ | $^{1-3}_3$ | $^{1-3}_2$ | 1-3
2 | $^{1-3}_{3}$ | | et | 40 | В | .730R | $.6\overline{67}$ R | 0 | 1.335R | 1.145R | 2.200R | 2.600R | 1.200L | 1.000L | 3.200R | | ᄠ | | M | 5.106 | 5.608 | 5.000 | 5.226 | 6.222 | 7.921 | 7.569 | 7.636 | 7.825 | 7.056 | | Span-Feet | | G | 1-3 | 1-2 | 3 | 1-2 | 1-2 | 1-3 | 1-3 | 1-3 | 1-3 | 1–3 | | $^{\mathrm{g}}$ | 50 | N
B | 5.900L | $^2_{.665 m R}$ | 3
0 | 2 1.335R | $\frac{2}{1.145R}$ | $^3_{2.200\mathrm{R}}$ | 3
2.600R | $^{2}_{1.200L}$ | 2
1.000L | 3 3.200 R | | | | M | 6.496 | 7.106 | 6.250 | 6.721 | 7.967 | 10.397 | 10.035 | 10.129 | 10.320 | 9.505 | | | | G | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | | | 60 | N | 2 | 2 | 3 | 2 | 2 | 3 | 3 | 2 | 2 | 3 | | | | B
M | 5.900L 8.880 | 5.200L
9.451 | 7.800R
8.214 | 4.800L
8.984 | 3.400L
10.193 | 2.200R 12.881 | 2.600R
12.513 | 1.200L
12,624 | 1.000L
12.817 | 3.200R
11.971 | | | | G | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | | | 80 | Ň | 2 | 2 | 3 | 2 | 2 | 8 | 3 | 2 | 2 | 3 | | | | В | 5.900L
13.735 | 5.200L | 7.800R | 4.800L | 3.400L | 2.200R
17.861 | 2.600R | 1.200L | 1.000L | 3.200R | | | | <u>M</u>
G | 1-3 | 14.338 | 12.961 | 13.888 | 15.145
1-3 | 1-3 | 17.485 | 17.618 | 17.813
1–3 | $\frac{16.928}{1-3}$ | | | 100 | N | $\frac{1-3}{2}$ | 2 | 3 | 2 | 2 | 3 | 3 | 2 | $\frac{1-3}{2}$ | 3 | | | | В | 5.900L | 5.200L | 7.800R | 4.800L | 3.400L | 2.200R | 2.600R | 1.200L | 1.000L | 3.200R | | | <u> </u> | M | 18.648 | 19.270 | 17.808 | 18.830 | 20.116 | 22.848 | 22.468 | 22.614 | 22.810 | 21.902 | | | | | | | | | | | | | | | | | uck N | | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | | $\overline{\mathbf{w}}$ | n. Bas | e L | 20 | 20 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 28 | | W
Ax | h. Base
le | e L
X | 20
12 | 20
12 | 24
12 28
12 | | Wi
Ax
Sp | n. Base
le
acing | e L
X
X' | 20
12
8 | 20
12
8 | 24
12
12 28
12
16 | | Ax
Sp
Lo
On | n. Base
le
acing
ad | e L
X | 20
12
8
.20
.40 | 20
12
8
.20
.50 | 12
12
12
.10
.30 | 12
12
12
.10
.40 | 24
12
12
.10
.45 | 24
12 | 24
12 | 24
12 | 24
12
12
.20
.50 | 28
12 | | Ax
Sp
Lo
On | h. Base
le
acing
ad | e L
X
X'
a ₁
a ₂
a ₃ | 20
12
8
.20
.40
.40 | 20
12
8
.20
.50
.30 | 24
12
12
.10
.30
.60 | 24
12
12
.10
.40
.50 | 24
12
12
.10
.45
.45 | 24
12
12
.10
.50
.40 | 24
12
12
.20
.30
.50 | 24
12
12
12
.20
.40
.40 | 24
12
12
.20
.50
.30 | 28
12
16
.10
.30
.60 | | Ax
Sp
Lo
On | h. Basele
acing
ad
les | e L
X
X'
a ₁
a ₂
a ₃
G | 20
12
8
.20
.40
.40 | 20
12
8
.20
.50
.30 | 24
12
12
.10
.30
.60 | 24
12
12
.10
.40
.50 | 24
12
12
.10
.45
.45 | 24
12
12
.10
.50
.40 | 24
12
12
.20
.30
.50 | 24
12
12
.20
.40
.40 | 24
12
12
.20
.50
.30 | 28
12
16
.10
.30
.60 | | Ax
Sp
Lo
On | n. Base
le
acing
ad | e L
X
X'
a ₁
a ₂
a ₃ | 20
12
8
.20
.40
.40 | 20
12
8
.20
.50
.30 | 24
12
12
.10
.30
.60 | 24
12
12
.10
.40
.50 | 24
12
12
.10
.45
.45 | 24
12
12
.10
.50
.40 | 24
12
12
.20
.30
.50 | 24
12
12
.20
.40
.40
.3
3 | 24
12
12
.20
.50
.30 | 28
12
16
.10
.30
.60 | | Ax
Sp
Lo
On | h. Basele
acing
ad
les | E L X X X' a1 a2 a3 G N B M | 20
12
8
.20
.40
.40
.3
3
0
1.000 | 20
12
8
.20
.50
.30
2
2
0
1.250 | 24
12
12
.10
.30
.60
3
3
0
1.500 | 24
12
12
.10
.40
.50 | 24
12
12
.10
.45
.45 | 24
12
12
.10
.50
.40 | 24
12
12
.20
.30
.50 | 24
12
12
.20
.40
.40 | 24
12
12
.20
.50
.30 | 28
12
16
.10
.30
.60 | | Ax
Sp
Lo
On | h. Basele acing ad les | e L
X
X'
a1
a2
a3
G
N
B
M | 20
12
8
.20
.40
.40
.3
3
0
1.000 | 20
12
8
.20
.50
.30
2
2
0
1.250
2-3 | 24
12
12
.10
.30
.60
3
3
0
1.500 | 24
12
12
.10
.40
.50
3
0
1.250 | 24
12
12
.10
.45
.45
3
0
1.125 | 24
12
12
.10
.50
.40
2
2
0
1.250 | 24
12
12
.20
.30
.50
3
0
1.250 | 24
12
12
.20
.40
.40
.3
3
0
1.000 | 24
12
12
.20
.50
.30
2
2
0
1.250 | 28
12
16
.10
.30
.60
3
3
0
1.500 | | Ax
Sp
Lo
On | h. Basele
acing
ad
les | e L
X
X'
a1
a2
a3
G
N
B
M | 20
12
8
.20
.40
.40
.3
3
0
1.000
2-3
3 | 20
12
8
.20
.50
.30
2
2
0
1.250
2-3
2 | 24
12
12
.10
.30
.60
3
0
1.500 | 24
12
12
.10
.40
.50
3
0
1.250 | 24
12
12
.10
.45
.45
3
3
0
1.125 | 24
12
12
.10
.50
.40
2
2
0
1.250
2 | 24
12
12
.20
.30
.50
3
0
1.250 | 24
12
12
.20
.40
.40
.3
3
0
1.000 | 24
12
12
.20
.50
.30
2
2
0
1.250 | 28
12
16
.10
.30
.60
3
0
1.500
3
3 | | Ax
Sp
Lo
On | h. Basele acing ad les | e L
X
X'
a1
a2
a3
G
N
B
M | 20
12
8
.20
.40
.40
.3
3
0
1.000 | 20
12
8
.20
.50
.30
2
2
0
1.250
2-3 | 24
12
12
.10
.30
.60
3
3
0
1.500 | 24
12
12
.10
.40
.50
3
0
1.250 | 24
12
12
.10
.45
.45
3
0
1.125 | 24
12
12
.10
.50
.40
2
2
0
1.250 | 24
12
12
.20
.30
.50
3
0
1.250 | 24
12
12
.20
.40
.40
.3
3
0
1.000 | 24
12
12
.20
.50
.30
2
2
0
1.250 | 28
12
16
.10
.30
.60
3
3
0
1.500 | | Ax
Sp
Lo
On | h. Baselle acing ad les 10 | E L X X X A1 A2 A3 G N B M G N B M G O O O O O O O O O O O O O O O O O O | 20
12
8
.20
.40
.40
3
3
0
1.000
2-3
3
2.000R
2.560
1-3 | 20
12
8
.20
.50
.30
2
2
0
1.250
2-3
2
1.500L
2.890
1-3 | 24
12
12
.10
.30
.60
3
3
0
1.500
3
3
0
3.000 | 24
12
12
10
.40
.50
3
3
0
1.250
2.500
2–3 | 24
12
12
.10
.45
.45
.3
3
0
1.125
3
0
2.250 | 24
12
12
.10
.50
.40
2
2
0
1.250
2 | 24
12
12
.20
.30
.50
3
3
0
1.250 | 24
12
12
.20
.40
.40
.3
3
0
1.000 | 24
12
12
.20
.50
.30
2
2
0
1.250
2
2 | 28
12
16
.10
.30
.60
3
0
1.500
3
0 | | Ax
Sp
Lo
On | h. Basele acing ad les | E L X X X A1 A2 A3 G N B M G N B M G N B M | 20
12
8
20
.40
.40
.3
3
0
1.000
2-3
3
2.000R
2.560
1-3
2 | 20
12
8
.20
.50
.30
2
2
0
1.250
2-3
2
1.500L
2.890
1-3 | 24
12
12
10
.30
.60
3
3
0
1.500
3
3
0
2
3
0 | 24
12
12
10
.40
.50
3
3
0
1.250
2.500
2-3
3 | 24
12
12
.10
.45
.45
.45
.3
0
1.125
3
3
0
2.250 | 24
12
12
.10
.50
.40
2
2
0
1.250
2
2
0
2.500 | 24
12
12
20
.30
.50
3
3
0
1.250
3
3
0
2.500 | 24
12
12
.20
.40
3
3
0
1.000
3
3
0
2.000 | 24
12
12
.20
.50
.30
2
0
1.250
2
0
2.500
1-350
1-350 | 28
12
16
.10
.30
.60
3
0
1.500
3
3
0
0
2.30
0
2.30
0
3.30
0
3.30
0
3.30
0
3.30
0
3.30
0
3.30
0
3.30
0
3.30
0
3.30
0
3.30
0
3.30
0
3.30
0
3.30
0
3.30
0
3.30
0
3.30
0
3.30
0
3.30
0
3.30
0
3.30
0
3.30
0
3.30
0
3.30
0
0
0 | | Ax
Sp
Lo
On | h. Baselle acing ad les 10 | E L X X X' a1 a2 a3 G N B M G N B M G N B B M G N B B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M B M G N B M G N B M G N B M G N B M B M G N B M B M G N B M B M G N B M B M G N B M B M G N B M B M G N B M B M B M G N B M B M B M G N B M B M B M B M B M B M B M B M B M B | 20
12
8
.20
.40
.40
3
3
0
1.000
2-3
3
2.000R
2.560
1-3
2.400L | 20
12
8
.20
.50
.30
2
2
0
1.250
2-3
2
1.500L
2.890
1-3
2 | 24
12
12
.10
.30
.60
3
3
0
1.500
3
.000
2-3
3
2.000R | 24
12
12
.10
.40
.50
3
3
0
1.250
2.500
2-3
3
2.665R | 24
12
12
.10
.45
.45
3
3
0
1.125
3
0
2.250
1-3
2 | 24
12
12
.10
.50
.40
2
2
0
1.250
2
2
0
2.500
1-3
2
1.800L | 24
12
12
.30
.50
3
3
0
1.250
3
0
2.500
2-3
3
2.250R | 24
12
12
.20
.40
.40
3
3
0
1.000
3
3
0
2.000
1-3
2 |
24
12
12
20
.50
.30
2
2
0
1.250
2
2
0
2.500
1.250
2
.500
2.500
1.250
2
.500
2.500
2.500
1.250
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.5 | 28
12
16
.10
.30
.60
3
3
0
1.500
3
3
0
3.000
2-3
2.665R | | Ax
Sp
Lo
On | h. Baselle acing ad les 10 | A L L L L L L L L L L L L L L L L L L L | 20
12
8
.20
.40
.40
.3
3
0
1.000
2-3
3
2.000R
2.560
1-3
2.400L
4.705 | 20
12
8
.50
.50
.30
2
2
0
1.250
2-3
2
1.500L
2.890
1-3
0
5.100 | 24
12
12
.10
.30
.60
3
3
0
1.500
3
3
0
3.000
2-3
2.000R
5.070 | 24
12
12
.10
.40
.50
3
0
1.250
2.500
2-3
3
2.665R
4.565 | 24 12 12 10 .45 .45 .45 3 0 1.125 3 0 2.250 1-3 2 2.100L 4.347 | 24 12 12 10 .50 .40 2 0 1.250 2 2 0 1.250 1-3 2 1.800I 4.608 | 24
12
12
.20
.30
.50
3
0
1.250
3
0
2.500
2-3
3
2.250R
4.335 | 24
12
12
20
.40
.40
.3
3
0
1.000
3
3
0
2.000
1-3
2
1.2001L
3.948 | 24
12
12
20
.50
.30
2
2
0
1.250
2
2
0
2.500
1-3
2
6.600L
4.512 | 28
12
16
.10
.30
.60
3
0
1.500
3
0
3.000
2-3
3
2.665R
4.565 | | WY
Ax
Sp
Lo
On
Ax | h. Baselle acing ad les 10 | a1 a2 a3 G N B M B M G N B M B M B M B M B M B M B M B M B M B | 20
12
8
.20
.40
.40
.40
.3
3
0
0
1.000
2-3
3
2.000R
2.560
1-3
2.400L
4.705 | 20
12
8
.50
.50
.30
2
2
0
1.250
2-3
2
1.500L
2.890
1-3
2
0
5.100 | 24
12
12
10
30
60
3
3
0
1.500
3
3
0
3.000
2-3
2.000R
5.070 | 24
12
12
10
.40
.50
3
3
0
1.250
2.500
2-3
2.665R
4.565
2-3
3 | 24 12 12 12 .10 .45 .45 3 0 1.125 3 3 0 2.250 1-3 2 2.100L 4.347 1-3 2 | 24
12
12
12
.50
.40
2
2
0
1.250
2
2
0
2.500
1-3
2
1.800L
4.608 | 24
12
12
20
.30
.50
3
3
0
1.250
3
3
0
2.500
2-3
2.250R
4.335
2-3
3 | 24
12
12
20
.40
.40
.3
3
0
1.000
3
3
0
2.000
1-3
2
1.200L
3.948 | 24
12
12
20
.50
.30
2
2
0
1.250
2
2
0
2.500
1.250
2
2
0
2.500
1.250
1.250
2
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1. | 28 12 16 .10 .30 .60 3 3 0 1.500 3 3 0 2-3 3 2.665R 4.565 2-3 3 | | WY
Ax
Sp
Lo
On
Ax | h. Basele acing ad les 10 20 30 | E L X X A1 A2 A3 G N B M B M G N B M B M G N B M B M G N B M B M B M B M B M B M B M B M B M B | 20
12
8
.20
.40
.40
3
3
0
1.000
2-3
3
2.000R
2.560
1-3
2
.400L
4.705
1-3
2.400L | 20
12
8
.20
.50
.30
2
2
0
1.250
2-3
2
1.500L
2.890
1-3
2
0
5.100
1-3
2
0 | 24 12 12 10 30 60 3 3 0 1.500 2-3 3.000 2-3 3.000 2-3 3.000 2-3 3.000 2-3 3.000 2-3 3.000 2-3 3.000 | 24 12 12 10 .40 .50 3 0 1.250 2.500 2-3 3.665R 4.565 2-3 2.665R | 24 12 12 10 .45 .45 .45 3 0 1.125 3 0 2.250 1-3 2.100L 4.347 1-3 2 2.100L | 24 12 12 10 .50 .40 2 2 0 1.250 2 2 2 0 1.250 1-3 2 1.800L 4.608 1-3 2 1.800L | 24
12
12
.20
.30
.50
3
3
0
1.250
3
3
0
2.500
2-3
3
3
0
2.250R
4.335 | 24 12 12 20 .40 .40 .3 3 0 1.000 3 3 2 1.2001 1-3 2 1.2001 1-3 2 1.2001 | 24 112 12 20 .50 .30 2 2 0 1.250 2 2 0 2.500 1-3 2 .600L 4.512 1-3 2 .600L | 28 12 16 .10 .30 .60 3 3 0
1.500 3 3 2.665R 4.565 2-3 2.665R | | WY
Ax
Sp
Lo
On
Ax | h. Basele acing ad les 10 20 30 | e L X X X a1 a2 a3 G N B M G N B M G N B M G N B M G N B M G N B M M G N B M M G N B M M M M M M M M M M M M M M M M M M | 20
12
8
.20
.40
.40
3
3
0
1.000
2-3
3
2.000R
2.560
1-3
2
4.00L
4.705
1-3
2
4.00L
7.204 | 20
12
8
.20
.50
.30
2
2
0
1.250
2-3
2
1.500L
2.890
1-3
2
0
5.100 | 24 12 12 10 30 .60 3 3 0 1.500 3 2.000R 5.070 2-3 3 2.000R 7.290 | 24
12
12
10
.40
.50
3
3
0
1.250
2.500
2-3
3
2.665R
4.565
2-3
3
2.666R
6.762 | 24 12 10 .45 .45 .45 .3 3 0 1.125 3 2 2.250 1-3 2 2.100L 4.347 1-3 2 2.100L 6.810 | 24 12 12 12 10 .50 .40 2 2 2 0 1.250 2 2 1.800 1-3 2 1.800 1-3 2 1.800 1-3 7.061 | 24
12
12
20
.30
.50
.50
3
3
0
1.250
2.500
2-3
3
2.250R
4.335
2-3
3
2.250R
6.302 | 24 12 12 12 20 .40 .40 .3 3 0 1.000 3 3 2 1.2001 3.948 1-3 2 1.2001 6.436 | 24 12 12 12 20 .50 .50 .30 2 2 2 0 1.250 2 2 .6001 4.512 1-3 2 .600L 7.009 | 28
12
16
.10
.30
.60
3
3
0
1.500
3
.000
2-3
2.665R
4.565
2-3
3
2.665R
6.762 | | Ax
Sp
Lo
On | h. Basele acing ad les 10 20 30 | E L X X A1 A2 A3 G N B M B M G N B M B M G N B M B M G N B M B M B M B M B M B M B M B M B M B | 20
12
8
.20
.40
.40
3
3
0
1.000
2-3
3
2.000R
2.560
1-3
2
.400L
4.705
1-3
2.400L | 20
12
8
.20
.50
.30
2
2
0
1.250
2-3
2
1.500L
2.890
1-3
2
0
5.100
1-3
2
0 | 24 12 12 10 30 60 3 3 0 1.500 2-3 3.000 2-3 3.000 2-3 3.000 2-3 3.000 2-3 3.000 2-3 3.000 2-3 3.000 | 24 12 12 10 .40 .50 3 0 1.250 2.500 2-3 3.665R 4.565 2-3 2.665R | 24 12 12 10 .45 .45 .45 3 0 1.125 3 0 2.250 1-3 2.100L 4.347 1-3 2 2.100L | 24 12 12 10 .50 .40 2 0 1.250 2 2 0 2.500 1-3 2.1.800L 4.608 1-3 2.1.800L | 24
12
12
.20
.30
.50
3
3
0
1.250
3
3
0
2.500
2-3
3
3
0
2.250R
4.335 | 24
12
12
20
.40
.40
.3
3
0
1.000
1-3
2
1.200L
3.948
1-8
2
1.200L | 24 112 12 20 .50 .30 2 2 0 1.250 2 2 0 2.500 1-3 2 .600L 4.512 1-3 2 .600L | 28 12 16 .10 .30 .60 3 3 0 1.500 3 3 2.665R 4.565 2-3 2.665R | | WY
Ax
Sp
Lo
On
Ax | h. Basele acing ad les 10 20 30 40 | ELXXX' a1 a2 a3 GNBMGNBMGNBMMGNBBMMGNBBMMBMMBMMBMMBMMBBMMB | 20 12 8 .20 .40 .40 3 3 0 1.000 2-8 3 2.000R 2.560 1-3 2 4.001L 4.705 1-3 2 4.001L 7.204 1-3 2 4.001L 7.204 | 20
12
8
.20
.50
.30
2
2
0
1.250
2-3
2
1.500L
2.890
1-3
2
0
5.100
1-3
2
0
7.600 | 24 12 12 10 30 60 3 3 0 1.500 3 2.0000 2-3 3 2.0000 2-3 3 2.000R 7.290 1-3 3 3.000R | 24 12 12 12 10 .40 .50 3 3 0 1.250 2.500 2-3 3 2.6665R 4.565 2-3 3 2.665R 6.762 1-3 3 3.600R | 24 12 12 12 10 .45 .45 .45 .3 3 0 1.125 3 3 0 2.250 1-3 2 2.100L 4.347 1-3 2 2.100L 6.810 1-3 2 2.100L | 24 12 12 12 12 10 .50 .40 2 2 2 0 1.250 2 2 1.800L 4.608 1-3 2 1.800L 1-3 2 1.800L | 24
12
12
20
.30
.50
.50
0
1.250
3
3
0
2.500
2-3
2.250R
4.335
2-3
2.250R
6.302
1-3
3
4.200R | 24 12 12 12 20 .40 .40 .41 3 3 0 1.000 3 3 3 0 2.000 1-3 2 1.200L 3.948 1-8 2 1.200L 6.436 1-3 2 1.200L | 24 12 12 12 20 .50 .50 .30 2 2 0 1.250 2 2 0 2.500 1-3 2 .600L 7.009 1-3 2 .600L | 28
12
16
.10
.30
.60
3
3
0
1.500
3
3
0
3.000
2-3
3
2.665R
4.565
2-3
3.2.665R
6.762
1-3
3.800R | | WY
Ax
Sp
Lo
On
Ax | h. Basele acing ad les 10 20 30 40 | e L X X X Y a1 a2 a2 a3 G N B B M G N B B M G G N B B M G G N B B M G G N B B M M G G N B B M M G G N B B M M G G N B B M M G G N B B M M G G N B B M M G G N B B M M G G N B B M M M G G N B B M M M G G N B B M M M G G N B B M M M M G G N B B M M M M M M M M M M M M M M M M M | 20 12 8 .20 .40 .40 .40 3 3 0 1.000 2-3 3 2.000R 2.560 1-3 2 .400L 7.204 1-3 2 .400L 7.204 1-3 2 .400L 7.204 | 20 12 8 8 .20 .50 .30 2 0 1.250 2-3 2 1.500L 2.890 1-3 2 0 5.100 1-3 2 0 7.600 1-3 2 0 10.100 | 24 12 12 10 30 .60 3 3 0 1.500 3 3 0 3.000 2-3 3 2.000R 5.070 2-3 3 2.000R 7.290 1-3 3 3.000R 9.680 | 24
12
12
10
.40
.50
3
3
0
1.250
2.500
2-3
3
2.665R
4.565
2-3
3
2.665R
6.762
1-3
3
3.600R
9.159 | 24 12 12 12 10 .45 .45 .45 .3 0 1.125 3 0 2.250 1-3 2 2.100L 4.347 1-3 2 2.100L 6.810 1-3 2 2.100L 9.288 | 24 12 12 12 12 10 .50 .40 2 2 0 1.250 2 2 2 1.8001 4.608 1-3 2 1.8001 7.061 1-3 2 1.8001 9.565 | 24
12
12
20
.30
.50
.50
3
3
0
1.250
2.500
2-3
2.250R
4.335
2.250R
6.302
1-3
3
4.206R
8.653 | 24 12 12 20 .40 .40 .3 3 0 1.000 3 2 1.2001 3.948 1-8 2 1.2001 6.436 1-3 2 1.2001 8.929 | 24 112 12 12 12 12 12 12 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | 28
12
16
.10
.30
.60
3
3
0
1.500
3
3
0
3.000
2–3
2.665R
4.565
2.3
3.000
2.3
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.0000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.0 | | WY
Ax
Sp
Lo
On
Ax | n. Basselle acting ad less 10 20 30 40 | E L X X X A A A A A A A A A A A A A A A A |
20
12
8
.20
.40
.40
.3
3
0
1.000
2-3
3
2.000R
2.560
1-3
2
.400L
7.204
1-3
2
.400L
9.703
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93
1-93 | 20 12 8 .20 .50 .30 2 0 1.250 2-3 2.50 2.890 1-3 2 0 5.100 1-3 2 0 7.600 1-3 2 0 10.100 1-3 | 24 12 12 11 10 .30 .60 3 .50 0 1.500 3 .00 2-3 3 2.000R 5.070 2-3 3 2.000R 7.290 1-3 3 3.000R 9.680 | 24
12
12
1.10
.40
.50
3
3
0
1.250
2.500
2.500
2.500
2.665R
4.565
2-3
3
2.665R
6.762
1-3
3
3.600R
9.159 | 24 12 12 12 10 .45 .45 3 0 1.125 3 3 0 2.250 1-3 2 2.100L 4.347 1-3 2 2.100L 6.810 1-3 2 2.100L 9.288 1-3 | 24 12 12 12 10 .50 .40 2 2 0 1.250 2 2 2 0 2.500 1-3 2 1.800L 4.608 1-3 2 1.800L 7.061 1-3 2 1.800L 7.061 1-3 2 1.800L 1-3 2 1.800L 7.061 1-3 2 1.800L 7.061 | 24
12
12
20
.30
.50
3
3
0
1.250
3
3
0
2.500
2-3
3
2.250R
4.335
2.250R
6.302
1-3
4.200R
8.300
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.0000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.0000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.0000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.0000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.0000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.0000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0 | 24 12 12 20 .40 .40 .3 3 0 1.000 3 3 3 0 2.000 1-3 2 1.200L 3.948 1-3 2 1.200L 6.436 1-3 2 1.200L 8.929 1-3 | 24 12 12 12 20 .50 .30 2 2 0 1.250 2 2 2 0 2.500 1-3 2 .600L 4.512 1-3 2 .600L 7.009 1-3 2 .600L 9.507 | 28
12
16
.10
.30
.60
3
3
0
1.500
2-3
3
2.665R
4.565
2-3
3.800R
8.989
1-3 | | WY
Ax
Sp
Lo
On
Ax | h. Basele acing ad les 10 20 30 40 | e L X X X Y a1 a2 a2 a3 G N B B M G N B B M G G N B B M G G N B B M G G N B B M M G G N B B M M G G N B B M M G G N B B M M G G N B B M M G G N B B M M G G N B B M M G G N B B M M M G G N B B M M M G G N B B M M M G G N B B M M M M G G N B B M M M M M M M M M M M M M M M M M | 20 12 8 .20 .40 .40 .40 3 3 0 1.000 2-3 3 2.000R 2.560 1-3 2 .400L 7.204 1-3 2 .400L 7.204 1-3 2 .400L 7.204 | 20 12 8 8 .20 .50 .30 2 0 1.250 2-3 2 1.500L 2.890 1-3 2 0 5.100 1-3 2 0 7.600 1-3 2 0 10.100 | 24 12 12 10 30 .60 3 3 0 1.500 3 3 0 3.000 2-3 3 2.000R 5.070 2-3 3 2.000R 7.290 1-3 3 3.000R 9.680 | 24
12
12
10
.40
.50
3
3
0
1.250
2.500
2-3
3
2.665R
4.565
2-3
3
2.665R
6.762
1-3
3
3.600R
9.159 | 24 12 12 12 10 .45 .45 .45 .3 0 1.125 3 0 2.250 1-3 2 2.100L 4.347 1-3 2 2.100L 6.810 1-3 2 2.100L 9.288 | 24 12 12 12 12 10 .50 .40 2 2 0 1.250 2 2 2 1.8001 4.608 1-3 2 1.8001 7.061 1-3 2 1.8001 9.565 | 24
12
12
20
.30
.50
.50
3
3
0
1.250
2.500
2-3
2.250R
4.335
2.250R
6.302
1-3
3
4.206R
8.653 | 24 12 12 20 .40 .40 .3 3 0 1.000 3 2 1.2001 3.948 1-8 2 1.2001 6.436 1-3 2 1.2001 8.929 | 24 112 12 12 12 12 12 12 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18 |
28
12
16
.10
.30
.60
3
3
0
1.500
3
3
0
3.000
2–3
2.665R
4.565
2.3
3.000
2.3
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.0000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.0 | | WY
Ax
Sp
Lo
On
Ax | n. Basselle acting ad less 10 20 30 40 | E L X X X X X X X X X X X X X X X X X X | 20 12 8 .20 .40 .40 .40 .3 3 0 1.000 2-3 3 2.000R 2.560 1-3 2 4.00L 7.204 1-3 2 4.00L 9.703 1-3 2 4.400L | 20 12 8 .20 .50 .30 2 0 1.250 2-3 2.500 1.500L 2.890 1-3 2 0 5.100 1-3 2 0 10.100 1-3 2 0 10.100 1-3 2 0 10.100 1-3 2 0 10.100 | 24 12 12 12 10 30 .60 3 3 0 1.500 3 3 0 3.000 2-3 3 2.000R 7.290 1-3 3.000R 9.680 1-3 3 3.000R 12.150 | 24 12 12 12 10 .40 .50 3 3 0 1.250 2.500 2-3 3 2.665R 4.565 2-3 3.606R 6.762 1-3 3.600R 9.159 1-3 3 3.600R 11.616 | 24 12 12 12 10 .45 .45 3 0 1.125 3 3 0 2.250 1-3 2 2.100L 4.347 1-3 2 2.100L 9.288 1-3 2 2.100L 1-3 1-3 2 2.100L 1-3 1-3 2 2.100L 1-3 2 2.100L 1-3 1-3 2 2.100L 1-3 1-3 2 2.100L 1-3 1-3 2 2.100L 1-3 1-3 2 2.100L 1-3 1-3 2 2.100L 1-3 1-3 2 2.100L | 24 12 12 12 10 .50 .40 2 0 1.250 2 2 0 2.500 1-3 2 1.800L 7.061 1-3 2 1.800L 9.565 1-3 2 1.800L 1-3 2 1.800L 1-3 2 1.800L 1-3 2 1.800L 1-3 2 1.800L 1-3 2 1.800L | 24 12 12 12 20 .30 .50 3 3 0 1.250 3 3 0 2.500 2-3 3 2.250R 4.335 2.250R 6.302 1-3 3 4.200R 8.653 1-3 3 4.200R 11.094 | 24 12 12 20 .40 .40 .3 3 0 1.000 3 3 3 0 2.000 1-3 2 1.200L 3.948 1-3 2 1.200L 6.436 1-3 2 1.200L 8.929 1-3 2 1.200L 1.3201 1.424 | 24 112 12 120 .50 .50 .30 2 0 1.250 2 2 0 2.500 1-3 2 .600L 4.512 1-3 2 .600L 7.009 1-3 2 .600L | 28 12 16 .10 .30 .60 3 3 0 1.500 2-3 3 2.665R 4.565 2-3 3.800R 8.989 1-3 3.800R 1.3 3.800R 1.441 | | WY
Ax
Sp
Lo
On
Ax | h. Bass. le acing ad les 10 20 30 40 60 | ELXXX a1 a2 a3 GN BM | 20 12 8 .20 .40 .40 .3 3 0 1.000 2-3 3 2.000R 2.560 1-3 2 4.001 4.705 1-3 2 4.001 9.703 1-3 2 4.001 12.203 1-3 | 20 12 8 .20 .50 .30 2 2 0 1.250 2-3 2 1.500L 2.890 1-3 2 0 7.600 1-3 2 0 10.100 1-3 2 0 12.600 1-3 | 24 12 12 10 30 60 3 3 0 1.500 3 3 0 2.0000 2-3 3 2.0000 7.290 1-3 3.0000 1-3 3.0000 1-3 3.0000 1-3 1.500 | 24 12 12 12 12 10 .40 .50 3 3 0 1.250 2.500 2-3 3 2.665R 4.565 2-3 3.665R 9.159 1-3 3.600R 11.616 1-3 | 24 12 12 10 .45 .45 .45 .3 3 0 1.125 3 3 0 2.250 1-3 2 2.100L 4.347 1-3 2 2.100L 9.288 1-3 2 2.100L 1.714 1-3 | 24 12 12 12 12 12 16 .50 .40 .50 .40 2 2 2 0 1.250 2 2 1.800L 4.608 1-3 2 1.800L 9.565 1-3 2 1.800L 12.054 1-3 12.054 | 24 12 12 12 20 .30 .50 .50 3 3 0 1.250 2.500 2.500 2.500 2.3 3 2.250R 4.335 2.250R 6.302 1-3 3 4.200R 8.653 1-3 4.200R 11.094 | 24 12 12 12 20 .40 .40 .40 3 3 0 1.000 3 3 2 1.2001 3.948 1-8 2 1.2001 6.436 1-3 2 1.2001 8.929 1-3 2 1.2001 1.424 1-3 | 24 12 12 12 20 .50 .50 .30 2 2 0 1.250 2 2 0 2.500 1-3 2 .600L 7.009 1-3 2 .600L 9.507 1-3 2 .600L 1-3 2 .600L 9.507 | 28 12 16 .10 .30 .60 3 3 0 1.500 3 .000 2-3 3 2.665R 4.565 2-3 3 2.665R 6.762 1-3 3.800R 8.989 1-3 3.800R 11.441 1-3 | | WY
Ax
Sp
Lo
On
Ax | n. Basselle acting ad less 10 20 30 40 | ELXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | 20 12 8 .20 .40 .40 .40 .3 3 0 1.000 2-3 3 2.000R 2.560 1-3 2 4.00L 7.204 1-3 2 4.00L 9.703 1-3 2 4.400L | 20 12 8 .20 .50 .30 2 0 1.250 2-3 2.500 1.500L 2.890 1-3 2 0 5.100 1-3 2 0 10.100 1-3 2 0 10.100 1-3 2 0 10.100 1-3 2 0 10.100 | 24 12 12 13 30 .60 3 .60 3 .50 3 .00 3 .000 2-3 3 2.000R 5.070 2-3 3 2.000R 7.290 1-3 3 3.000R 9.680 1-3 3.000R 1-3 3.000R 1-3 3.000R 1-3 3.000R 1-3 3.000R | 24 12 12 12 10 .40 .50 3 0 1.250 2.500 2-3 2.665R 4.565 2-3 3.600R 9.159 1-3 3.600R 11.616 1-3 3 | 24 12 12 12 10 .45 .45 3 0 1.125 3 3 0 2.250 1-3 2 2.100L 4.347 1-3 2 2.100L 9.288 1-3 2 2.100L 1-3 1-3 2 2.100L 1-3 1-3 2 2.100L 1-3 2 2.100L 1-3 1-3 2 2.100L 1-3 1-3 2 2.100L 1-3 1-3 2 2.100L 1-3 1-3 2 2.100L 1-3 1-3 2 2.100L 1-3 1-3 2 2.100L | 24 12 12 12 12 10 .50 .40 2 2 0 1.250 2 2 2 2 2 1.800L 4.608 1-3 2 1.800L 7.061 1-3 2 1.800L | 24 12 12 12 12 20 .30 .50 3 3 0 1.250 3 2.500 2-3 3 2.250R 4.335 2-3 3 2.250R 6.302 1-3 3 4.200R 11.094 1-3 3 | 24 12 12 12 20 .40 .40 .3 3 0 1.000 3 3 0 2.000 1-3 2 1.200L 3.948 1-3 2 1.200L 6.436 1-3 2 1.200L 1.424 1-3 2 | 24 12 12 12 20 .50 .50 .30 2 2 0 1.250 2 2 2 0 2.500 1-3 2 .600L 4.512 1-3 2 .600L 7.009 1-3 2 .600L 12.006 1-3 2 | 28 12 16 10 .30 .60 3 3 0 1.500 3 3 0 3.000 2-3 3 2.665R 4.565 2-3 3 3.800R 8.989 1-3 3.800R 11.441 1-3 3 | | WY
Ax
Sp
Lo
On
Ax | h. Bass. le acing ad les 10 20 30 40 60 | ELXXX a1 a2 a3 GN BM | 20 12 8 .20 .40 .40 .3 3 0 1.000 2-3 3 2.000R 2.560 1-3 2 4.001 4.705 1-3 2 4.001 9.703 1-3 2 4.001 12.203 1-3 2 4.001 12.203 1-3 2 4.001 12.202 | 20 12 8 .20 .50 .30 2 2 0 1.250 2-3 2 1.500L 2.890 1-3 2 0 7.600 1-3 2 0 10.100 1-3 2 0 12.600 1-3 2 0 11.000 1-3 2 0 11.000 11.000 11.000 11.000 11.000 | 24 12 12 10 30 60 3 3 0 1.500 3 3 0 2.0000 2-3 3 2.0000 7.290 1-3 3.0000 1-3 3.0000 1-3 3.0000 1-3 1.500 | 24 12 12 12 12 10 .40 .50 3 3 0 1.250 2.500 2-3 3 2.665R 4.565 2-3 3.665R 9.159 1-3 3.600R 11.616 1-3 | 24 12 12 12 10 .45 .45 .45 .3 3 0 1.125 3 3 0 2.250 1-3 2 2.100L 6.810 1-3 2 2.100L 9.288 1-3 2 2.100L 1.774 1-3 2 | 24 12 12 12 12 12 16 .50 .40 .50 .40 2 2 2 0 1.250 2 2 1.800L 4.608 1-3 2 1.800L 9.565 1-3 2 1.800L 12.054 1-3 12.054 | 24
12
12
12
20
.30
.50
3
3
0
1.250
2.500
2.500
2.3
3
2.250R
4.335
2.250R
6.302
1-3
4.200R
8.653
1-3
4.200R
11.090R | 24 12 12 12 20 .40 .40 .40 3 3 0 1.000 3 3 2 1.2001 3.948 1-8 2 1.2001 6.436 1-3 2 1.2001 8.929 1-3 2 1.2001 1.424 1-3 | 24 12 12 12 20 .50 .50 .30 2 2 0 1.250 2 2 0 2.500 1-3 2 .600L 7.009 1-3 2 .600L 9.507 1-3 2 .600L 1-3 2 .600L 9.507 | 28 12 16 .10 .30 .60 3 3 0 1.500 3 .000 2-3 3 2.665R 4.565 2-3 3 2.665R 6.762 1-3 3.800R 8.989 1-3 3.800R 11.441 1-3 | | WY
Ax
Sp
Lo
On
Ax | 10 20 30 40 60 80 80 | e L XX X' a1 a2 a3 GN BM B | 20 12 8 .20 .40 .40 .40 .3 3 0 1.000 2-3 3 2.000R 2.560 1-3 2 .400L 4.705 1-3 2 .400L 7.204 1-3 2 .400L 12.203 1-3 2 .400L 12.203 1-3 2 .400L 17.202 17.202 | 20 12 8 .20 .50 .30 2 0 1.250 2-3 2 1.500L 2.890 1-3 2 0 5.100 1-3 2 0 10.100 1-8 2 0 12.600 1-3 2 0 17.600 1-3 | 24 12 12 13 30 .60 3 3 0 1.500 3 .000 2-3 3 2.000R 5.070 2-3 3 2.000R 7.290 1-3 3.000R 9.680 1-3 3.000R 12.150 1-3 3.000R 17.113 | 24 12 12 12 14 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | 24 12 12 12 13 10 .45 .45 .45 .3 0 1.125 .3 3 0 2.250 1-3 2 2.100L 4.347 1-3 2 2.100L 6.810 1-3 2 2.100L 11.774 1-3 2 2.100L 11.774 1-3 2 2.100L 16.755 1-3 | 24 12 12 12 12 12 12 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | 24 12 12 12 20 .30 .50 3 3 0 1.250 3 2.500 2-3 3 2.250R 4.335 2.3 3 2.250R 6.302 1-3 3 4.200R 11.094 1-3 3 4.200R 11.094 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 | 24 12 12 20 .40 .40 .40 3 3 0 1.000 3 3 0 2.000 1-3 2 1.200L 3.948 1-3 2 1.200L 8.929 1-3 2 1.200L 11.424 1-3 2 1.200L 11.424 1-3 1.200L 11.424 1-3 | 24 12 12 12 20 .50 .50 .30 2 2 0 1.250 2 2 2 2 0 2.500 1-3 2 .600L 4.512 1-3 2 .600L 7.009 1-3 2 .600L 12.006 1-3 2 .600L 12.006 1-3 12.006 1-3 12.006 1-3 12.006 1-3 12.006 1-3 12.006 1-3 12.006 1-3 12.006 1-3 12.006 1-3 12.006 1-3 12.006 1-3 12.006 1-3 12.006 1-3 12.006 1-3 12.006 1-3 12.006 1-3 12.006 | 28 12 16 .10 .30 .60 3 3 0 1.500 3 .000 2-3 2.665R 4.565 2-3 3.800R 8.989 1-3 3.800R 11.441 1-3 3.800R 11.441 1-3 | | WY
Ax
Sp
Lo
On
Ax | h. Bass. le acing ad les 10 20 30 40 60 | e L XX a1 a2 a3 GNB M G | 20 12 8 .20 .40 .40 .3 3 0 1.000 2-3 3 2.000R 2.560 1-3 2 .400L 7.204 1-3 2 .400L 12.203 1-3 2 .400L 17.202 1-3 2 .400L 17.202 | 20 12 8 .20 .50 .30 2 2 0 1.250 2-3 2 1.500L 2.890 1-3 2 0 7.600 1-3 2 0.100 1-3 2 0.12600 1-3 2 0.17.600 1-3 2
0.17.600 | 24 12 12 10 30 .60 3 3 0 1.500 3 0 3.000 2-3 3 2.000R 5.070 2-3 3 3.000R 7.290 1-3 3.000R | 24 12 12 12 10 .40 .50 3 3 0 1.250 2.500 2-3 3 2.665R 4.565 2-3 3.600R 9.159 1-3 3.600R 11.616 1-3 3.600R 11.616 1-3 3.600R 1.3 3.600R | 24 12 12 12 10 .45 .45 .45 .3 3 0 1.125 3 0 2.250 1-3 2 2.100L 6.810 1-3 2 2.100L 9.288 1-3 2 2.100L 11.774 1-3 2 2.100L 16.755 1-3 2 | 24 12 12 12 12 10 .50 .40 .50 .40 2 2 2 0 1.250 2 2 0 2.500 1-3 2 1.800L 9.565 1-3 2 1.800L 9.565 1-3 2 1.800L 17.041 1-3 2 2 1.800L 17.041 | 24 12 12 20 .30 .50 .50 3 3 0 1.250 2.500 2.500 2.500 2.500 2.3 3 2.250R 4.335 2.3 4.200R 8.653 1-3 3 4.200R 11.094 11.094 1-3 3 4.200R 16.021 1-3 3 | 24 12 12 12 20 .40 .40 .40 .3 3 0 1.000 3 3 0 2.000 1-3 2 1.200L 8.929 1-3 2 1.200L 8.929 1-3 2 1.200L 8.948 1-3 2 1.200L 16.418 1-3 2 1.200L 16.418 1-3 2 | 24 12 12 12 20 .50 .50 .30 2 2 2 0 1.250 2 2 0 2.500 1-3 2 .600L 9.507 1-3 2 .600L 9.507 1-3 2 .600L 17.005 1-3 2 .600L 17.005 | 28 12 16 .10 .30 .60 3 3 0 1.500 3 .000 2-3 3 2.665R 4.565 2-3 3.800R 8.989 1-3 3.800R 11.441 1-3 3.800R 16.381 | | WY
Ax
Sp
Lo
On
Ax | 10 20 30 40 60 80 80 | e L XX X' a1 a2 a3 GN BM B | 20 12 8 .20 .40 .40 .40 .3 3 0 1.000 2-3 3 2.000R 2.560 1-3 2 .400L 4.705 1-3 2 .400L 7.204 1-3 2 .400L 12.203 1-3 2 .400L 12.203 1-3 2 .400L 17.202 17.202 | 20 12 8 .20 .50 .30 2 0 1.250 2-3 2 1.500L 2.890 1-3 2 0 5.100 1-3 2 0 10.100 1-8 2 0 12.600 1-3 2 0 17.600 1-3 | 24 12 12 13 30 .60 3 3 0 1.500 3 .000 2-3 3 2.000R 5.070 2-3 3 2.000R 7.290 1-3 3.000R 9.680 1-3 3.000R 12.150 1-3 3.000R 17.113 | 24 12 12 12 14 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | 24 12 12 12 13 10 .45 .45 .45 .3 0 1.125 .3 3 0 2.250 1-3 2 2.100L 4.347 1-3 2 2.100L 6.810 1-3 2 2.100L 11.774 1-3 2 2.100L 11.774 1-3 2 2.100L 16.755 1-3 | 24 12 12 12 12 12 12 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | 24 12 12 12 20 .30 .50 3 3 0 1.250 3 2.500 2-3 3 2.250R 4.335 2.3 3 2.250R 6.302 1-3 3 4.200R 11.094 1-3 3 4.200R 11.094 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 | 24 12 12 20 .40 .40 .40 3 3 0 1.000 3 3 0 2.000 1-3 2 1.200L 3.948 1-3 2 1.200L 8.929 1-3 2 1.200L 11.424 1-3 2 1.200L 11.424 1-3 1.200L 11.424 1-3 | 24 12 12 12 20 .50 .50 .30 2 2 0 1.250 2 2 2 2 0 2.500 1-3 2 .600L 4.512 1-3 2 .600L 7.009 1-3 2 .600L 12.006 1-3 2 .600L 12.006 1-3 12.006 1-3 12.006 1-3 12.006 1-3 12.006 1-3 12.006 1-3 12.006 1-3 12.006 1-3 12.006 1-3 12.006 1-3 12.006 1-3 12.006 1-3 12.006 1-3 12.006 1-3 12.006 1-3 12.006 1-3 12.006 | 28 12 16 .10 .30 .60 3 3 0 1.500 3 .000 2-3 2.665R 4.565 2-3 3.800R 8.989 1-3 3.800R 11.441 1-3 3.800R 11.441 1-3 | | ΤA | BLE | 7.3 (| Continue | d) | | | | | | | | | |------------|-------------------|-------------------------------|--------------------------|----------------------------------|-------------------------|----------------------------------|------------------------------|------------------------------|-----------------------------|-----------------------|---------------------------|-----------------------------| | | ick No | | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | | M r
Ax | ı. Base | X X | 28
12 | $\frac{28}{12}$ | 28
12 | $\frac{28}{12}$ | 28
12 | 28
12 | 32 | 32 | 32 | 32
12 | | Spa | acing | X' | 16 | 16 | 16 | 16 | 16 | 16 | 20 | 20 | 20 | 20 | | Lo:
On | ad | \mathbf{a}_1 \mathbf{a}_2 | .10
.40 | .10 $.45$ | .10
.50 | .20 $.30$ | .20
.40 | .20
.50 | .10 $.30$ | .10
.40 | .10 | .10 $.50$ | | Ãx | les | \mathbf{a}_3 | .50 | .45 | .40 | .50 | .40 | .30 | .60 | .50 | .45 | .40 | | | 10 | G
N | 3 | 3
3 | 2
2 | 3 | 3
5 | 2 2 | 3 | 3 | 3 | $\frac{2}{2}$ | | | | В | 0 | U | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | $\frac{M}{G}$ | 1.250 | 1.125
3 | $\frac{1.250}{2}$ | 3 | 3 | 1.250 | 1.500
3 | 1.250
3 | 3 | $-\frac{1.250}{2}$ | | | 20 | N | 3 | 3 | 2 | . 3 | 3 | 2 | 3 | 3 | 3 | 2 | | | | B
M | $\frac{0}{2,500}$ | $\substack{0\\2.250}$ | $\frac{0}{2.590}$ | $\frac{0}{2.500}$ | $\frac{0}{2.000}$ | $\frac{0}{2.500}$ | $\frac{0}{3.000}$ | $\frac{0}{2.500}$ | $\frac{0}{2.250}$ | $\frac{0}{2.500}$ | | İ | 90 | G | 2 3 | 23 | 2 3 | 2-3 | 1 2 | 1-2 | 3 | 3 | 1-2 | 1-2 | | i | 30 | N
B | $^3_{3.555 m R}$ | $^{3}_{4.000 m R}$ | $^{2}_{3.555L}$ | $^3_{3.000 m R}$ | $\frac{2}{2.000 \mathrm{R}}$ | $\frac{2}{1.715 \mathrm{R}}$ | 3
0 | 3
0 | $\frac{2}{1.090R}$ | $\frac{2}{1.000\mathbf{R}}$ | | | | M | 3.929 | 3.630 | 3.929 | 3.840 | 3.380 | 4.118 | 4,500 | 3.750 | 3.548 | 3.920 | | إب | 40 | G
N | $\frac{2-3}{3}$ | 13
2 | 13
2 | 2 -3
3 | $\frac{1-3}{2}$ | $\frac{1}{2}$ | 2-3
3 | $\frac{2-3}{3}$ | 1 3
2 | $\frac{1-3}{2}$ | | Span-Feet | | B
M | 3.555R 6.085 | $\frac{3.000 \mathrm{L}}{6.025}$ | $\frac{2.600 L}{6.369}$ | 3.000R
5.780 | 2.000L
5,700 | 1.200L 6.436 | 3.335R
6.249 | 1.445R
5.444 | 3.900L
5.280 | 3.400L
5.689 | | g. | | G | 1 3 | 1-3 | 1-3 | 1 3 | 1 3 | 1-3 | 2-3 | 2-3 | 1-3 | 1-3 | | ^ | 50 | N
B | $^3_{4.600 m R}$ | $\frac{2}{3.000L}$ | 2
2.600L | $^{3}_{5.200 m R}$ | $\frac{2}{2.000}$ L | 2
1.200 L | 3 $3.335R$ | 3
4.445R | 2
3.900L | 2
3.400L | | | | M | 8.323 | 8.480 | 8.835 | 7.841 | 8.180 | ₹.929 | 8.448 | 7.605 | 7.704 | 8.131 | | | 60 | G
N | $ rac{1}{3}$ | $\frac{1-3}{2}$ | $\frac{1-3}{2}$ | 1-3
3 | 1-3
2 | $\frac{1-3}{2}$ | $_{3}^{1-3}$ | $\frac{1-3}{3}$ | $_{2}^{1-3}$ | $\frac{1-3}{2}$ | | | | В | $4.600\mathbf{R}$ | 3.000 L | 2.600 L | 5.200R 10.251 | 2.000I. | 1.200L | 4.600R | 5.600R | 3.900L | 3.400L | | | | M
G | 10,753
13 | 10.950
13 | 11.313 | 1-3 | $\frac{10.867}{1-3}$ | 11.424
1-3 | $\frac{10.753}{1-3}$ | 9.923 | $\frac{10.154}{1.3}$ | $\frac{10.593}{1-3}$ | | | 80 | N | $^3_{4.600 m R}$ | 2
3.000L | $^{2}_{2.600}$ L | $\frac{3}{5.200 \mathbf{R}}$ | 2 | 2
1.200L | 3 | 3 | 2 | 2 | | | | B
M | 15.665 | 15.913 | 16.285 | 15.138 | 2.000L 15.650 | 16.418 | $4.600 { m R} \\ 15.665$ | 5.600R 14.792 | 3.900L 15.090 | 3.400L
15.545 | | İ | 100 | G
N | 1–3
3 | 1-3
2 | 1-3 | 1-3
3 | 1–3
2 | 1–3
2 | 13
3 | 1-3 | 1-3
2 | 1-3
2 | | | 100 | В | 4.600R | 3.000 L | 2.600L | 5.200R | 2.000L | 1.200L | 4.600R | 5.600R | 3.900L | 3.400 L | | | | M | 20.612 | 20.890 | 21.267 | 20.070 | 20.640 | 21.414 | 20.612 | 19.714 | 20.052 | 20.516 | | | ick No
i. Base | | 61
32 | $\frac{-62}{32}$ | 63
32 | 36 | 65
36 | 66
 | $-\frac{67}{36}$ | 68
36 | $\frac{-69}{36}$ | $\frac{70}{36}$ | | Ax | le | X | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Spa
Loa | acing | X' | .20 | .20 | .20 | .10 | .10 | .10 | .10 | .20 | .20 | .20 | | On | | \mathbf{a}_2 | .30 | .40 | .50 | .30 | .40 | .45 | .50 | .30 | .40 | .50 | | Ax | les | a ₃ | .50 | .40 | 2 | 3 | $-\frac{.50}{3}$ | 3 | 2 | .50 | 3 | | | | 10 | N | 3 | 3 | 2 | 3 | 3 | 3 | $\frac{\tilde{2}}{0}$ | 3 | 3 | 2 | | | | B
M | 1.250 | 1.000 | 1.250 | 1.500 | 1.250 | 1.125 | 1.250 | 1.250 | 1.000 | 1.250 | | | 20 | G
N | 3
3 | 3 | 2 2 | 3 | 3 3 | 3 | $\frac{2}{2}$ | 3 | 3
3 | 2 2 | | | 40 | В | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | - <mark>M</mark> - | $\frac{2.500}{3}$ | $\frac{2.000}{1-2}$ | $\frac{2.500}{1-2}$ | $\frac{3.000}{3}$ | $\frac{2.500}{3}$ | $-\frac{2.250}{1-2}$ | $\frac{2.500}{1-2}$ | 3 | $\frac{2.000}{1 \cdot 2}$ | $\frac{2.500}{1-2}$ | | | 30 | N | 3 | 2 | 2 | 3 | 3 | 2 | 2 | 3 | 2 | 2 | | | | B
M | $\frac{0}{3.750}$ | $2.000R \\ 3.380$ | 1.715R
4.118 | $\substack{0\\4.500}$ | $\substack{0\\3.750}$ | 1.090R
3.548 | $1.000 \mathbf{R} \\ 3.920$ | $\substack{0\\3.750}$ | $2.000R \\ 3.380$ | 1.715R
4.118 | | ب | 40 | G | 23 | 1–3 | 1-3 | 3 | 3 | 1-2 | 1-2 | 3 | 1-2 | 1-2 | | pan-Feet | 40 | N
B | $3 \ 3.750 \mathbf{R}$ | $^{2}_{2,800L}$ | $^{2}_{1.800L}$ | $\frac{3}{0}$ | $\frac{3}{0}$ | $^{2}_{1.090R}$ | $^2_{1.000\mathrm{R}}$ | 3
0 | 2 2.000 R | 2
1.715 R | | สม | | _M | $\frac{5.282}{2.2}$ | 4.996 | $\frac{5.881}{1.00}$ | 6.000 | 5.000 | 4.917 | $\frac{5.415}{1-3}$ | $\frac{5.000}{2-3}$ | $-\frac{4.860}{1.8}$ | 5.851 | | š | 50 | G
N | 2-3
3 | $\frac{1-3}{2}$ | $^{1-3}_2$ | $\frac{2-3}{3}$ | $^{2-3}_{3}$ | $^{1-3}_2$ | 2 | 3 | $\overset{1-3}{2}$ | ${\overset{1-3}{2}}$ | | | | B
M | 3.750R
7.225 | 2.800L 7.457 | 1.800L
8,365 | $\frac{4.000 \mathrm{R}}{7.938}$ | 5.335R
6.961 | 4.800L 6.961 | 4.200L 7.453 | 4.500R
6.724 | 3.600L
6.759 | 2.400L
7.815 | | | | G | 1-3 | 1-3 | 1-3 | 23 | 1-3 | 1-3 | 1-3 | 2 -3 | 1-3 | 1-3 | | | 60 | N
B | $_{6.200\mathrm{R}}^{3}$ | $2 \\ 2.800 $ L | $^{2}_{1.800L}$ | $^{3}_{4.000R}$ | 3
6.600R | $^{2}_{4.800L}$ | $^2_{4.200L}$ | $^3_{4.500 m R}$ | 3.600L | 2
2.400L | | | | M | 9.441 | 9.931 | 10.854 | 10.140 | 9.126 | 9.384 | 9.894 | 8.670 | 9.216 | 10.296 | | | 80 | G
N | 13
3 | $\frac{1-3}{2}$ | $^{1-3}_{2}$ | 13
3 | $^{1-3}_{3}$ | $^{1-3}_2$ | $^{1-3}_2$ | 1-3
3 | $^{1-3}_2$ | $^{1-3}_{2}$ | | | | \mathbf{B} | 6.200R | 2.800L | 1.800L | 5.400R | 6.600R | 4.800L | 4.200L | 7.200R | 3.600L | 2.400L | | | | M | 14.281 | 14.898 | 15.841 | 14.965 | 13.945 | 14.288 | 14.821 | 13.448 | 14.162 | 15.272 | | | | G | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1 - 3 | 1-3 | | | 100 | G
N | 3 | 2 | 2 | 3 | 3 | 2 | 2 | 3 | 2 | 2 | | | 100 | | | | | | | | | | | | 62 METHOD OF CONVERTING HEAVY MOTOR VEHICLE LOADS TABLE 7.3 (Continued) | IA | BLE | 7.3 | Continue | | | | | | | | | | |--
--|--|---|--
--|---|--|--|--|---|---
--| | | ck No | | | 72 | 73
40 | 74
40 | 75
40 | 76
40 | 77
40 | 78
44 | 79
44 | 80 | | $\frac{\mathbf{W}\mathbf{r}}{\mathbf{A}\mathbf{x}}$ | ı. Base
le | X | $\frac{40}{12}$ | $\frac{40}{12}$ | 12 | 12 | 12 | 12 | 12 | ₁₂ | 12 | 12 | | Spa | cing | X' | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 32 | 32 | 32_ | | Lo:
On | ıd. | a ₁ | $.10 \\ .30$ | $.10 \\ .40$ | .10
.45 | $.10 \\ .50$ | $.20 \\ .30$ | .20
.40 | .20
.50 | .10
.30 | .10
.40 | $.10 \\ .45$ | | Αx | les | a 3 | .60 | .50 | .45 | .40 | .50 | 40 | .30 | .60 | .50 | 45 | | | 10 | G
N | 3
3 | 3
3 | 3
3 | 2 2 | 3 | 3
3 | $\frac{2}{2}$ | 3 | 3 | 3
3 | | | | B
M | $\frac{0}{1.500}$ | $\frac{0}{1.250}$ | $\begin{smallmatrix} 0\\1.125\end{smallmatrix}$ | $\frac{0}{1.250}$ | $^{0}_{1.250}$ | $\frac{0}{1.000}$ | $\frac{0}{1,250}$ | $\frac{0}{1.500}$ | $\frac{0}{1.250}$ | 0
1.125 | | | | G | 3 | 3 | 3 | $\frac{1.250}{2}$ | 3 | 3 | 2 | 3 | $-\frac{1.230}{3}$ | - 3 - 3 | | | 20 | $_{ m B}^{ m N}$ | 3
0 | 3
0 | 3 | $\frac{2}{0}$ | 3
0 | 3 | $\frac{2}{0}$ | 3
0 | 3
0 | $\frac{3}{0}$ | | | | M | 3.000 | 2.500 | 2.250 | 2.500 | 2.500 | 2.000 | 2.500 | 3.000 | 2.500 | 2.250 | | | 30 | G
N | 3
3 | 3
3 | $\begin{smallmatrix}1&2\\&2\end{smallmatrix}$ | $\begin{smallmatrix}1&2\\2\end{smallmatrix}$ | 3 | $_{2}^{1-2}$ | $_{2}^{1-2}$ | 3
3 | 3
3 | $\frac{1-2}{2}$ | | | | В | 0 | 0 | 1.090R
3.548 | 1.000R | 0 | 2.000R | 1.715R | 0
4,500 | 0 | 1.090R
3.548 | | | | - M | $\frac{4.500}{3}$ | 3.750 | 1-2 | $\frac{3.920}{1-2}$ | $\frac{3.750}{3}$ | 3.380 | $-\frac{4.118}{1-2}$ | 3 | $-\frac{3.750}{3}$ | 1 2 | | eet | 40 | N | 3 | 3 | 2 | 2
1.000R | 3 | 2 | 2 | 3 | 3 | 2
1.090R | | 편- | | B
M | $\substack{0\\6.000}$ | $\begin{smallmatrix} 0\\5.000\end{smallmatrix}$ | 1.090R 4.917 | 5.415 | 5.000 | $2.000R \\ 4.860$ | 1.715R
5.851 | 6.000 | 5.000 | 4.917 | | Span-Feet | 50 | G
N | 3
3 | 2 · 3 | 1-2 | 1 2 | 3 3 | 1-2 | 1 2 | 3
3 | 3 3 | $^{-1-2}_2$ | | 0,1 | 90 | В | 0 | 6.220R | 1.090R | 1.000R | 0 | 2.000R | 1.715R | 0 | 0 | 1.090R | | | | M
G | $\frac{7.500}{2-3}$ | 6.349 | $-\frac{6.289}{1-3}$ | 6.912 | $\frac{6.250}{2.3}$ | 6.348
1-3 | $\frac{7.591}{1-3}$ | $\frac{7.500}{2-3}$ | $\frac{6.250}{2-3}$ | 6.289 | | | 60 | N | 3 | 3 | 2 | 2 | 3 | 2 | 2 | 3 | 3 | 2 | | | | B
M | $ rac{4.665 ext{R}}{9.628}$ | 6.220R
8.483 | $5.700L \\ 8.642$ | $5.000 L \\ 9.217$ | $5.250 m R \ 8.167$ | 4.400L
8.523 | 3.000L 9.750 | 5.333R
9.129 | 7.110R
7.860 | $6.600 L \\ 7.926$ | | | | G | 1-3 | 13 | 1-3 | 1-3 | 1 3 | 1-3 | 13 | 1-3 | 1-3 | 13 | | | 80 | N
B | $^3_{6.200 m R}$ | $7.600 \mathrm{R}$ | $\frac{2}{5.700 L}$ | 5.000 L | $8.200\mathrm{R}$ | $\frac{2}{4.400L}$ | $^2_{3.000 \rm L}$ | $^3_{7.000 m R}$ | $8.600\mathbf{R}$ | $^{2}_{6.600L}$ | | | | _M | $\frac{14.281}{1-3}$ | 13.122 | $\frac{13.506}{1-3}$ | $\frac{14.113}{1-3}$ | 12.641 | 13.442
1-3 | $\frac{14.173}{1-3}$ | $-\frac{13.613}{1-3}$ | $\frac{12.325}{1-3}$ | $-\frac{12.745}{1-3}$ | | | 100 | G
N | 3 | 3 | 2 | 2 | 3 | 2 | 2 | 3 | 3 | 2 | | | | B
M | 6.200R
19.184 | 7.600R 17.978 | 5.700L 18.425 | 5.000L 19.050 | 8.200R
17.472 | 4.400L
18.394 | 3.000L 19.690 | 7.000R
18.491 | 8.600R
17.140 | 6.600L
17,636 | | | | | | | | | | | | | | | | Tr | uck N | 0. | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | | W | ı. Bas | e L | 44 | 44 | 44 | 44 | 24 | 24 | 24 | 24 | 24 | 24 | | WI
Ax | ı. Bas
le | e L
X | 44
12 | 44
12 | 44
12 | 44
12 | 24
16 | 24
16 | 24
16 | 24
16 | 24
16 | 24
16 | | $\frac{\overline{\mathbf{W}}}{\mathbf{A}}$ $\frac{\mathbf{S}\mathbf{p}}{\mathbf{L}\mathbf{o}}$ | n. Bas
le
acing
ad | e L
X
X'
a ₁ | 12
32
.10 | 12
32
.20 | 12
32
.20 | 12
32
.20 | 24
16
8
.10 | 24
16
8
.10 | 24
16
8
.10 | 24
16
8
.10 | 24
16
8
.20 | 24
16
8
.20 | | Will
Ax
Sp
Lo
On | n. Bas
le
acing
ad | e L
X
X' | 12
32 | 44
12
32 | 12
32 | 44
12
32 | 24
16
8 | 24
16
8 | 24
16
8 | 24
16
8 | 24
16
8 | 24
16
8 | | Will
Ax
Sp
Lo
On | n. Bas
le
acing
ad
les | e L
X
X'
a ₁
a ₂
a ₃
G | 12
32
.10
.50
.40 | .20
.30
.50 | .20
.40
.40
.3 | 44
12
32
.20
.50
.30 | 24
16
8
.10
.30
.60 | 24
16
8
.10
.40
.50 | 24
16
8
.10
.45
.45 | 24
16
8
.10
.50
.40 | 24
16
8
.20
.30
.50 | 24
16
8
.20
.40
.40 | | Will
Ax
Sp
Lo
On | n. Bas
le
acing
ad | e L
X
X'
a ₁
a ₂
a ₃
G
N
B | 12
32
.10
.50
.40
2
2 | .20
.30
.50 | 12
32
.20
.40
.40
3
3 | 12
32
.20
.50
.30
2
2 | 24
16
8
.10
.30
.60
3
3 | 24
16
8
.10
.40
.50
3
3 | 24
16
8
.10
.45
.45
.3
3 | 24
16
8
.10
.50
.40
2
2 | 24
16
8
.20
.30
.50 | 24
16
8
.20
.40
.40
.3
3 | | Will
Ax
Sp
Lo
On | n. Bas
le
acing
ad
les | e L X X' a ₁ a ₂ a ₃ G N B M | 44
12
32
.10
.50
.40
2
2
0
1.250 | 12
32
.20
.30
.50
3
0
1.250 | 12
32
.20
.40
.40
3
3
0
1.000 | 44
12
32
.20
.50
.30
2
2
0
1.250 | 24
16
8
.10
.30
.60
3
3
0
1.500 | 24
16
8
.10
.40
.50
3
3
0
1.250 | 24
16
8
.10
.45
.45
.3
3
0
1.125 | 24
16
8
.10
.50
.40
2
2
0
1.250 | 24
16
8
.20
.30
.50
3
0
1.250 | 24
16
8
.20
.40
.40
3
3
0
1.000 | | Will
Ax
Sp
Lo
On | n. Bas
le
acing
ad
les | e L
X
X'
a ₁
a ₂
a ₃
G
N
B
M | 44
12
32
.10
.50
.40
2
2
0
1.250 | 44
12
32
.20
.30
.50
3
0
1.250 | 44
12
32
.20
.40
.40
3
3
0
1.000 | 44
12
32
.20
.50
.30
2
2
0
1.250
2 | 24
16
8
.10
.30
.60
3
3
0
1.500
2-3
3 | 24
16
8
.10
.40
.50
3
3
0
1.250
2-3
3 | 24
16
8
.10
.45
.45
.45
3
0
1.125
2-3
3 | 24
16
8
.10
.50
.40
2
2
0
1.250
2-3
2 | 24
16
8
.20
.30
.50
3
0
1.250
2-3
3 | 24
16
8
.20
.40
.40
.3
3
0
1.000
2-3
3 | | Will
Ax
Sp
Lo
On | n. Bas le acing ad les | e L
X
X'
a ₁
a ₂
a ₃
G
N
B
M | 44
12
32
.10
.50
.40
2
2
0
1.250 | 44
12
32
.20
.30
.50
3
0
1.250 | 12
32
.20
.40
.40
3
3
0
1.000 | 44
12
32
.20
.50
.30
2
2
0
1.250
2 | 24
16
8
.10
.30
.60
3
3
0
1.500
2-3 | 24
16
8
.10
.40
.50
3
0
1.250
2-3 | 24
16
8
.10
.45
.45
.3
3
0
1.125
2-3 |
24
16
8
.10
.50
.40
2
2
0
1.250
2-3 | 24
16
8
.20
.30
.50
3
0
1.250
2-3 | 24
16
8
.20
.40
.40
3
3
0
1.000
2-3 | | Will
Ax
Sp
Lo
On | le acing ad les 10 20 | e L
X
X'
a ₁
a ₂
a ₃
G
N
B
M
G
N
B
M | 44
12
32
.10
.50
.40
2
2
0
1.250
2
2
0
2.500
1-2 | 44
12
32
.20
.30
.50
3
3
0
1.250
3
3
0
2.500 | 44
12
32
.20
.40
.40
3
3
0
1.000
3
3
0
1.000
1.2 | 44
12
32
.20
.50
.30
2
2
0
1.250
2
2
0
2.500
1-2 | 24
16
8
.10
.30
.60
3
3
0
1.500
2-3
3
1.335R
3.379
2-3 | 24 16 8 .10 .40 .50 3 0 1.250 2-3 3 1.778R 3.040 2-3 | 24 16 8 .10 .45 .45 3 0 1.125 2-3 3 2.000R 2.880 2.3 | 24 16 8 .10 .50 .40 2 2 0 1.250 2-3 2 1.778L 3.040 2-3 | 24
16
8
.20
.30
.50
3
3
0
1.250
2-3
3
1.500R
2.890
2-3 | 24
16
8
.20
.40
.40
3
3
0
1.000
2-3
3
2.000R
2.560
2-3 | | Will
Ax
Sp
Lo
On | n. Bas le acing ad les | e L | 44
12
32
.10
.50
.40
2
2
0
1.250
2
2
0
2.500
1-2
1.0000R | 44
12
32
.20
.30
.50
3
3
0
1.250
3
3
0
2.500 | 3 3 0 0 1.000 1 -2 2 2.000 R | 44
12
32
20
.50
.30
2
2
0
1.250
2
2
0
2.500
1.750 | 24
16
8
.10
.30
.60
3
3
0
1.500
2-3
3
1.335R
3.379
2-3
3
1.335R | 24
16
8
.10
.40
.50
3
3
0
1.250
2-3
3
1.778R
3.040
2 3
3
1.778R | 24
16
8
.10
.45
.45
.45
3
0
1.125
2-3
3
2.000R
2.880
2.3
3
2.000R | 24
16
8
.10
.50
.40
2
2
0
1.250
2-3
2
1.778L
3.040
2-3
2
1.778L | 24
16
8
.20
.30
.50
3
0
1.250
2–3
3
1.500R
2.890
2–3
3
1.500R | 24
16
8
.20
.40
.40
.40
3
3
0
1.000
2-3
3
2.000R
2.560
2-3
3
2.000R | | Will
Ax
Sp
Lo
On | le acing ad les 10 20 | e L X X' a1 a2 a3 G N B M G N B M G N B M H G N B M H B M H B M B M B M B M B M B M B M | 44
12
32
.10
.50
.40
2
2
0
1.250
2
2
0
2.500
1-2
2
1.000 R
3.920 | 44
12
32
.30
.50
3
0
1.250
3
3
0
2.500
3
3
0
2.500 | 44
12
32
.20
.40
.40
.3
3
0
1.000
3
3
0
2.000
12
2.000R
3.380 | 44
12
32
.50
.30
2
2
0
1.25e
2
2
0
2.500
1-2
2
1.715R
4.118 | 24
16
8
.10
.30
.60
3
3
0
1.500
2-3
3
1.335R
3.379
2 3
3
1.335R
5.602 | 24
16
8
.10
.40
.50
3
0
1.250
2-3
3
1.778R
3.040
2 3
3
1.778R | 24
16
8
.10
.45
.45
.3
0
1.125
2-3
3
2.000R
2.880
2.3
3
3
5.070 | 24
16
8
.10
.50
.40
2
2
0
1.250
2-3
2
1.778L
2.3
2
1.778L
5.243 | 24
16
8
.20
.30
.50
3
0
1.250
2-3
3
1.500R
2.890
2-3
3
1.500R
4.860 | 24
16
8
.20
.40
.40
3
3
0
1.000
2-3
3
2.000R
2.560
4.506 | | Ax | le acing ad les 10 20 | e L X X X' a1 a2 a3 G N B M G N B M G N B M G N B M G N B M G N B M O G M O G M | 44
12
32
10
.50
.40
2
2
0
1.250
2
2
0
2.500
1-2
1.000R
3.920
1-2
2 | 44
12
32
20
.30
.50
3
0
1.250
3
3
0
2.500
3
3
0
3
0
2.500
3
3
3
3
0
0
3
3
0
3
0
3
0
0
1.250
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 3 3 0 1.0000 1 - 2 2.000 R 3.380 1 - 2 2 | 44
12
32
.50
.50
.30
2
2
0
1.250
2
2
0
2.500
1.715R
4.118
1-2
2 | 24
16
8
.10
.30
.60
3
3
0
1.500
2-3
3
3.379
2 · 3
1.335R
5.602
2 · 3
3 | 24
16
8
.10
.40
.50
3
0
1.250
2-3
3
1.778R
3.040
2 3
3
1.778R
5.243
2 3
3 | 24
16
8
.10
.45
.45
.45
.3
.0
.1.125
2-3
.3
.0
2.880
2.880
2.3
2.000R
5.070
1-3
2 | 24
16
8
.10
.50
.40
2
2
0
1.250
2–3
2
1.778L
3.040
2 -3
2
1.778L
5.243
1–3
2 | 24
16
8
.20
.30
.50
3
0
1.250
2–3
3
1.500R
2.890
2-3
3
1.500R
4.860
2–3
3 | 24
16
8
.20
.40
.40
3
3
0
1.000
2-3
3
2.000R
2.560
2-3
3
2.000R
4.506 | | Ax | n. Bas le acing ad les 10 20 | e L X X X' a1 a2 a3 G N B M G N B M G N B M G O O O O O O O O O O O O O O O O O O | 44
12
32
.10
.50
.40
2
2
0
1.250
2
2
0
2.500
1-2
1.000R
3.920
1-2 | 44
12
32
.20
.30
.50
3
0
1.250
3
0
2.500
3
3
0
0
2.500
3
3
0
0
2.500
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 32
.20
.40
.40
.40
3
3
0
1.000
3
2.000
1-2
2
2.0000R
3.380
1-2 | 44
12
32
.50
.50
.30
2
2
0
1.250
2
2
0
2.50
1.250
2
4.118
4.118
1.2 | 24
16
8
.10
.30
.60
3
3
0
1.500
2-3
3
1.335R
3.35
1.335R
3.35
2.3
3
2.3
2.3
3
2.3
3
3
3
3
4
3
3
4
3
3
3
4
3
4
3
5
6
6
6
7
8
8
8
8
8
8
8
8
8
8
8
8
8 | 24
16
8
.10
.40
.50
3
0
1.250
2-3
3
1.778R
3.040
2 3
3
1.778R
5.243
2 3
2 3 | 24
16
8
.10
.45
.45
.45
3
0
1.125
2-3
3
2.000R
2.880
2.3
2.000R
5.070
1-3 | 24
16
8
.10
.50
.40
2
2
0
1.250
2-3
2
1.778L
3.040
2-3
2
1.778L
5.243 | 24
16
8
.20
.30
.50
3
3
0
1.250
2-3
3
1.500R
2.89
2-3
3
1.500R
2-3
2-3 | 24
16
8
.20
.40
.40
3
3
0
1.000
2-3
3
2.0000R
2.560
2-3
3
2.0000R | | Ax | acing ad les 10 20 30 40 | e L | 44
12
32
10
.50
.40
2
2
0
1.250
2
2
0
2.500
1–2
1.000R
3.920
1–2
1.000R
5.415
1–2 | 44
12
32
.20
.30
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
2.500
3
3
0
5
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0 |
44
12
32
.20
.40
.40
.3
3
0
1.000
3
3
0
2.000
1.2
2
2.0000
1.2
2
2.0000
1.2
4.0
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000 | 44
12
32
20
.50
.30
2
2
0
1.250
2
2
0
2.500
1-715R
4.118
1-2
1.715R
5.851
1-2 | 24
16
8
.10
.30
.60
3
3
0
1.500
2-3
3
3.335R
3.379
2 · 3
1.335R
5.602
2 · 3
3
1.535R
5.750
1.535R | 24
16
8
.10
.40
.50
3
3
0
1.250
2-3
3.040
2 3
1.778R
5.243
2 3
1.778R
7.469
1 3 | 24 16 8 .10 .45 .45 .3 3 0 1.125 2-3 3 2.000R 2.880 2.3 3 2.000R 5.070 1-3 1.000L 7.425 1.3 | 24 16 8 .10 .50 .40 2 2 0 1.250 2-3 2.1.778L 3.040 2-3 2 1.778L 5.243 1-3 2.800L 7.616 1 3 | 24
16
8
.20
.30
.50
3
3
0
1.250
2–3
3
1.500R
4.860
2–3
3
1.500R
4.860 | 24
16
8
.20
.40
.40
3
3
0
1.000
2-3
3
2.000R
4.506
1-3 | | Will
Ax
Sp
Lo
On | n. Bas le acing ad les 10 20 | e L X X X' a1 a2 a3 G N B M G N B M G N B M G N B M M G N B M M M M M M M M M M M M M M M M M M | 44 12 32 10 .50 .40 2 2 0 1.250 2 2 0 2.500 1-2 2 1.000R 3.920 1-2 2 1.000R 5.415 1-2 2 1.000R | 44
12
32
20
30
30
50
1.250
3
3
0
2.500
3
3
0
2.500
3
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0 | 44
12
32
.20
.40
.40
.3
3
0
1.000
3
3
0
2.000R
3.380
1-2
2.000R
3.880
1-2
2.000R | 44
12
32
20
.50
.30
2
2
0
1.250
2
2
0
2.500
1-2
1.715R
4.118
1-2
1.715R
5.851 | 24
16
8
.10
.30
.60
3
3
0
1.500
2-3
3
1.335R
3.379
2-3
3.350
2-3
3.350
2-3
3.350
2-3
3.350
3.379
2-3
3.350
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
2-3
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.379
3.799
3.799
3.799
3.799
3.799
3.799
3.799
3.799
3.799
3.799
3.799
3.799
3.799
3.799
3.799
3.799
3.799
3.799 | 24
16
8
.10
.40
.50
3
3
0
1.250
2-3
3
1.778R
3.040
2 3
1.778R
5.243
2 3
3
1.778R
7.469 | 24
16
8
.10
.45
.45
.45
.3
3
0
1.125
2-3
3
2.000R
2.880
2.3
3
2.000R
1-3
2.000R
7.47
1-3
1.000L
7.425 | 24
16
8
.10
.50
.40
2
2
0
1.250
2-3
2
1.778L
3.040
2-3
2
1.778L
5.243
1-3
2
8.00L
7.616 | 24
16
8
.20
.30
.50
3
3
0
1.250
2-3
3
1.500R
2.890
2-3
1.500R
4.860
2-3
1.500R
6.845 | 24
16
8
.20
.40
.40
.3
3
0
1.000
2-3
3
2.000R
2.560
2-3
3
2.000R
4.500
1-3
2
0
6.800 | | Ax | acing ad les 10 20 30 40 | e L XX X' a1 a2 a3 G N B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M G N B M M M G N B M M M G N B M M M G N B M M M G N B M M M G N B M M M G N B M M M G N B M M M G N B M M M G N B M M M G N B M M M G N B M M M G N B M M M G N B M M M G N B M M B M M G N B M M B M M G N B M M B M M G N B M M B M M G N B M M B M M G N B M M B M M G N B M M B M M G N B M M B M M G N B M M B M B M M B M B M M B B M B M B B M B M B B M B B M B B B B M B B B
B B B B B B B B B B B B B B B B B | 44
12
32
.10
.50
.40
2
2
0
1.250
2
2
0
2.500
1–2
1.000R
3.920
1–2
1.000R
5.415
1–2
1.000R
6.912 | 44
12
32
.20
.30
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
5
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0 | 44
12
32
.20
.40
.40
.3
3
0
1.000
3
3
0
2.000
12
2
2.000R
4.860
12
2.000R
6.348 | 44
12
32
20
.50
.30
2
2
0
1.250
2
2
0
2.500
1-2
2
1.715R
4.118
1-2
2
1.715F
5.851
1-2
2
1.715R
7.591 | 24
16
8
.10
.30
.60
3
3
0
1.500
2-3
3
3.335R
3.379
2-3
3
1.335R
5.602
2
3
1.335R
5.402
2
3
3
3
1.535R
5.602
3
3
3
3
3
3
3
3
3
3
3
3
3 | 24
16
8
.10
.40
.50
3
3
0
1.250
2-3
3.040
2 3
1.778R
5.243
2 3
1.778R
7.469
1 3
3
2.800R
9.857 | 24 16 8 .10 .45 .45 .3 3 0 1.125 2-3 3 2.000R 2.880 2.3 3 2.000R 5.070 1-3 2 1.000L 9.920 | 24 16 8 .10 .50 .40 2 2 0 1.250 2-3 2.1.778L 5.243 1-3 2 1.778L 5.243 1-3 2 8.800L 10.113 | 24
16
8
.20
.30
.50
3
3
0
1.250
2-3
3
1.500R
4.860
2-3
3
1.500R
4.860
1.500R
3
3
3
3
3
3
3
4.860
1.250
3
3
3
3
3
3
3
3
4.860
3
3
3
3
3
4.860
3
3
3
3
4.860
3
3
3
4.860
3
3
3
3
4.860
3
3
3
3
3
4.860
3
3
3
3
3
3
3
4.860
3
3
3
3
3
3
3
3
3
3
3
3
3 | 24
16
8
.20
.40
.40
3
3
0
1.000
2-3
3
2.000R
2.560
2-3
3
2.000R
4.506
1-3
2
0
6.800
1-3
2
0
9.800
1-3
2
0
9.800
1-3
1-3
1-3
1-3
1-3
1-3
1-3
1-3 | | Ax | acing ad les 10 20 30 40 | e L X X a1 a2 a3 G N B M B M M G N B M B M M G N B M B M M B M B M M B M B M B M B M B | 44 112 32 1.10 .50 .40 2 2 0 1.250 2 2 0 2.500 1-2 2 1.000R 3.920 1-2 2 1.000R 5.415 1-2 2 1.000R 6.912 1 3 2 | 44
12
32
20
30
30
50
1.250
3
3
0
2.500
3
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0 | 44 12 32 20 .40 .40 .3 3 0 1.000 3 3 0 2.000 1-2 2.000R 3.380 1-2 2 2.000R 4.860 1-2 2.000R 6.348 1-3 2 | 44
12
32
20
.50
.30
2
2
0
1.250
2
2
0
2.500
1-2
2
1.715R
4.118R
4.118R
1.2
2.1715R
7.591
1.2
2.1715R | 24
16
8
.10
.30
.60
3
3
0
1.500
2-3
3
1.335R
5.602
2 3
3
1.335R
7.839
1-3
2.400R
10.215
1-3
3 | 24
16
8
.10
.40
.50
3
3
0
1.250
2-3
3
1.778R
3.040
2 3
1.778R
5.243
2 3
1.778R
5.243
2 3
2 3
3 1.778R
5.243
3 2 800R
9.857
1-3
3 | 24
16
8
.10
.45
.45
.45
.3
3
0
1.125
2-3
3
2.000R
2.880
2 3
2.000R
1-3
2
1.000L
7.425
1 3
2.1000L
9.920
1-3
2 | 24 16 8 8 10 .50 .40 2 2 0 1.250 2.3 2.1.778L 3.040 2.3 2.1.778L 5.243 1.3 2 8.00L 7.616 1 3 2 8.00L | 24
16
8
.20
.30
.50
3
3
0
1.250
2-3
3
1.500R
2.890
2-3
3
1.500R
6.845
1-3
3.600R
9.159
1-3 | 24
16
8
.20
.40
.40
.3
3
0
1.000
2-3
3
2.000R
2.560
1-3
2
0
6.800
1-3
2
0 | | Ax | n. Bas le acing ad les 10 20 40 | e L XX X1 A1 A2 A3 GN BM BM GN BM BM GN BM | 44 12 32 10 .50 .40 2 2 0 1.250 2 2 0 2.500 1-2 2.0000R 3.920 1-2 1.0000R 5.415 1-2 2 1.000R 6.912 1 3 2 5,800L | 44
12
32
.20
.30
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
3.750
3
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0 | 44
12
32
.20
.40
.40
.3
3
0
1.000
3
3
0
2.000
1.2
2
2.000R
4.860
1-2
2.000R
6.348
1-3
2.5200L | 44 12 32 20 .50 .50 .30 2 2 0 1.250 2 2 2 1.715R 4.118 1-2 1.715R 7.591 1-2 1.715R | 24
16
8
.10
.30
.60
3
3
0
1.500
2-3
3
3.335R
3.379
2-3
3
1.335R
5.602
2
3
3
1.335R
5.602
1.500
1.500
2-3
3
3.305R
3.379
1.335R
3.00
1.335R
3.00
1.335R
3.00
1.335R
3.00
1.335R
3.00
1.335R
3.00
1.335R
3.00
1.335R
3.00
1.335R
3.00
1.335R
3.00
1.335R
3.00
1.335R
3.00
1.335R
3.00
1.335R
3.00
1.335R
3.00
1.335R
3.00
1.335R
3.00
1.335R
3.00
1.335R
3.00
1.335R
3.00
1.335R
3.00
1.335R
3.00
1.335R
3.00
1.335R
3.00
1.335R
3.00
1.335R
3.00
1.335R
3.00
1.335R
1.335R
1.335R
1.335R
1.335R
1.335R
1.335R
1.335R
1.335R
1.335R
1.335R
1.335R
1.335R
1.335R
1.335R
1.335R
1.335R
1.335R
1.335R
1.335R
1.335R
1.335R
1.340R
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.0 | 24
16
8
10
40
50
3
3
0
1.250
2-3
3.040
2 3
3.1.778R
5.243
2 3
1.778R
7.469
1 3
3
2.800R
2.800R | 24 16 8 .10 .45 .45 .3 3 0 1.125 2-3 3 2.000R 2.880 2.3 3 2.000R 5.070 1-3 2 1.000L 9.920 1-3 2 1.000L | 24 16 8 10 .50 .40 2 2 0 1.250 2-3 2.1.778L 3.040 2-3 2 1.778L 5.243 1-3 2 8.00L 7.616 1 3 2 8.00L 10.113 1 3 2 8.00L | 24 16 8 8 .20 .30 .50 3 0 1.250 2-3 3 1.500R 4.860 2-3 3.500R 6.845 1-3 3.600R 9.159 1-3 3.600R | 24 16 8 20 .40 .40 3 3 0 1.000 2-3 3 2.000R 2.560 1-3 2 0 9.300 1-3 2 0 | | Ax | 20 and 40 and 60 | e L XX X' a1 a2 a3 GN BM | 44 12 32 10 .50 .40 2 2 0 1.250 2 2 0 2.500 1-2 2 1.000R 3.920 1-2 2 1.000R 6.912 1 2 5.800L 8.561 1-3 | 44
12
32
20
30
30
3
3
0
1.250
3
3
0
2.500
3
3
0
3
0
3
0
3
0
2.500
3
3
0
0
2.500
3
3
0
0
2.500
3
3
0
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0 | 44 12 32 .20 .40 .40 .3 3 0 1.000 3 3 0 2.000 1-2 2 2.000R 3.380 1-2 2.000R 4.860 1-2 2.000R 6.348 1-3 5.200L 7.851 1 3 | 44 12 32 20 .50 .50 .30 2 2 0 1.250 2 2 0 2.500 1-2 2 1.715R 4.118 1-2 1.715R 7.591 1-2 1.715R 9.384 1-3 | 24 16 8 .10 .30 .60 .30 .60 3 3 0 1.500 2-3 3 1.335R 3.379 2-3 3.335R 7.839 1-3 2.400R 10.215 1-3 3.2400R 12.606 1-3 | 24
16
8
.10
.40
.50
3
3
0
1.250
2-3
3
1.778R
3.040
2 3
1.778R
5.243
3
1.778R
7.469
1 3
3
2.800R
9.857
1-3
2.800R
12.301
1.2500R | 24 16 16 10 45 45 45 45 3 3 0 1.125 2-3 3 2.000R 2.880 2.38 2.000R 7.425 1 3 2 1.000L 9.920 1-3 2 1.000L 12.417 1-3 | 24 16 8 8 10 .50 .40 2 2 0 1.250 2 3 1.778L 3.040 2 1.778L 5.243 1 3 2 1.77616 1 3 2 800L 10.113 1 3 2 8.00L 10.113 1 1 2 8.00L 10.113 1 1 3 2 8.00L 10.113 1 1 3 | 24
16
8
.20
.30
.50
3
3
0
1.250
2.890
2.890
2.890
2.890
2.890
3
1.500R
6.845
1.3
3.600R
9.159
1.3 |
24
16
8
.20
.40
.40
.3
3
0
1.000
2-3
3
2.000R
2.560
2-3
3
2.000R
4.500
1-3
2
0
9.300
1-3
2
0
1.300
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.0 | | Ax | n. Bas le acing ad les 10 20 40 | e L | 44 12 32 10 .50 .40 2 2 0 1.250 2 2 0 2.500 1-2 1.000R 3.920 1-2 1.000R 5.415 1-2 2 1.000R 6.912 1 3 2 5.800L 8.561 1-3 2 | 3 3 0 1.2500 3 3 0 0.2.5000 3 3 0 0.2.5000 3 3 0 0.2.5000 3 3 0 0.2.50000 0.2.5000 0.2.5000 0.2.5000 0.2.5000 0.2.5000 0.2.5000 0.2.5000000 0.2.5000 0.2.5000 0.2.5000 0.2.5000 0.2.5000 0.2.5000 0.2.500 | 44 12 32 .20 .40 .40 .3 3 0 1.000 3 3 0 2.000 1-2 2.000R 4.860 1-2 2.000R 4.860 1-2 2.000R 5.380 1-3 2 5.200L 7.851 1 3 2 | 44 12 32 20 .50 .50 .30 2 2 0 1.250 2 2 0 2.500 1-2 2 1.715R 4.118 1-2 2.1715R 7.591 1 2 2.1715R 9.334 1-3 2 | 24 16 8 .10 .30 .60 3 0 1.500 2-3 3 1.335R 3.379 2-3 1.335R 5.602 2 3 1.335R 7.839 1-3 3 2.400R 10.215 1-3 3 2.400R 12.696 | 24
16
8
.10
.40
.50
3
3
0
1.250
2-3
3.040
2 3
1.778R
5.243
2 3
1.778R
7.469
1 3
3
2.800R
9.857
1-3
3
1.331
1-3
3 | 24 16 16 10 45 10 45 3 3 0 1.125 2-3 3 2.000R 2.880 2.3 3 2.000R 5.070 1-3 2 1.000L 7.425 1.3 2 1.000L 12.417 1.3 2 | 24 16 8 10 .50 .40 2 2 0 1.250 2-3 2.1.778L 5.243 1-3 2 1.77616 1 3 2 800L 10.113 1 3 2 .500L 12.611 1-3 2 | 24 16 8 .20 .30 .50 3 0 1.250 2-3 3 1.500R 2.890 2-3 3 1.500R 4.860 2-3 3 3.600R 9.159 1-3 3.600R 11.616 1-3 3 | 24 16 8 20 .40 .40 3 3 0 1.000 2-3 3 2.000R 2.560 1-3 2 0 9.300 1-3 2 0 11.800 1-3 2 | | Ax | 20 and 40 and 60 | e L | 12
32
.10
.50
.40
.2
2
0
1.250
2.500
1-2
2.500
1-2
2.1.000R
5.415
1-2
2.1.000R
6.912
1 3
2.5,800L
8.561
1-3
2.5,801L
8.561
1-3
2.5,801L
8.561
1-3
2.5,801L
8.561
1-3
2.5,801L | 44 12 32 32 30 .50 3 3 0 1.250 3 3 0 2.500 3 3 0 5 0 3.750 3 3 0 5.000 2-3 3 6.0000R 7.6%0 1-3 9.200R 11.858 | 44 12 32 .20 .40 .40 .40 .3 3 0 1.000 1.000 1.2 2.000R 3.880 1-2 2.000R 4.860 1-2 2.000R 6.348 1-3 5.200L 7.851 1 3 5.200L 12.738 | 44 12 32 20 .50 .50 .30 2 2 0 1.250 2 2 0 2.500 1-2 2 1.715R 4.118 1 -2 1.715R 7.591 1 -2 1.715R 7.591 1 -2 1.715R 7.591 1 -2 1.715R 9.384 1-3 2 6.600L 14.162 | 24 16 8 .10 .30 .60 3 3 0 1.500 2-3 3 1.335R 3.379 2-3 1.335R 7.839 1-3 2.400R 10.215 1-3 2.400R 1-3 3 2.400R 17.672 | 24
16
8
.10
.40
.50
3
3
0
1.250
2-3
3
1.778R
3.040
2 3
1.778R
5.243
2 3
1.778R
7.469
1 3
3
2.800R
9.857
1-3
2.800R
12.33
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1 | 24 16 16 10 45 45 45 45 3 3 0 1.125 2-3 3 2.000R 2.880 2.38 2.000R 7.425 1 3 2 1.000L 9.920 1-3 2 1.000L 9.12417 1-3 2 1.000L 17.413 | 24 16 8 .10 .50 .40 2 2 0 1.250 2 3 2 1.778L 3.040 2 3.7616 1 3 2 800L 10.113 1 3 2 800L 10.113 1 3 2 800L 10.1611 1-3 2 800L 12.611 1-3 2 800L 17.608 | 24 16 8 .20 .30 .50 3 3 0 1.250 2-3 3 1.500R 2.890 2-3 3 1.500R 4.860 2-3 3 3.600R 9.159 1-3 3.600R 11.616 1 3 3 3.600R 16.562 |
24
16
8
.20
.40
.40
.3
3
0
1.000
2-3
3
2.000R
2.560
2-3
3
2.000R
4.500
1-3
2
0
6.800
1-3
2
0
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.0 | | Ax | 10 | e L | 12
32
10
50
40
2
2
0
1.250
2
2
0
2.500
1-2
1.000R
3.920
1-2
1.000R
5.415
1-2
2
1.000R
6.912
1 3
2
5.800L
8.561
1 1 3
2
5.800L
8.561
1 1 3
2
5.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800L
8.800D
8.800L
8.800L
8.800L
8.800L
8.800L
8.800D
8.800D
8.800D
8.800D
8.800D
8.800D
8.800D
8.800D
8.800D
8.800D
8.800D
8.800D
8.800D
8.800D
8.800D
8.800D
8.800D
8.800D
8.800D
8.800D
8.800D
8.800D
8.800D
8.800D
8.800D
8.800D
8.800D
8.800D
8.800D
8.800D
8.800D
8. | 3 3 0 0 2.500 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 44 12 32 20 .40 .40 .40 3 3 0 1.000 3 3 0 2.000 1-2 2.000R 4.860 1-2 2.000R 6.348 1-3 2 5.200L 7.851 1 3 2 5.200L 12.738 1 12.738 | 44 12 32 20 .50 .30 2 2 0 1.250 2 2 0 2.500 1-2 2 1.715R 4.118 1-2 2.1715R 7.591 1-2 2.1715R 9.384 1-3 2.600L 14.166 1-3 | 24 16 8 .10 .30 .60 3 3 0 1.500 2-3 3 1.335R 3.379 2-3 3 1.335R 5.602 2 3 3 2.400R 12.696 1-3 2.400R 17.672 1-3 | 24
16
8
.10
.40
.50
2-3
3
1.250
2-3
3
1.778R
3.040
2 3
3
1.778R
5.243
2 3
3
1.778R
5.243
2 3
2.800R
1.33
2.800R
12.331
1.33
2.800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800R
1.2800 | 24 16 16 10 45 10 45 3 3 0 1.125 2-3 3 2.000R 2.880 2.880 2.3 3 2.000R 5.070 1-3 2 1.000L 7.425 1 3 2 1.000L 12.417 1 3 2 1.000L 17.413 1-3 | 24 16 8 10 .50 .40 2 2 0 1.250 2-3 2.1.778L 5.243 1-3 2 1.778L 7.616 1 3 2 8.00L 10.113 1 3 2 8.00L 12.611 1-3 8.00L 17.606 1.7606 | 24 16 8 8 8 9 20 .30 .50 3 0 1.250 2-3 3 1.500R 2.890 2-3 3 1.500R 4.860 2-3 3 3.600R 1.3 3.600R 1.616 1.3 3.600R 1.616 1.3 3.600R 16.562 | 24 16 8 8 .20 .40 .40 3 3 0 1.000 2-3 3 2.000R 2.560 1-3 2 0 9.300 1-3 2 0 11.800 1-3 2 0 16.800 1-3 | | Ax | 20 and 40 and 60 | e L | 12
32
.10
.50
.40
.2
2
0
1.250
2.500
1-2
2.500
1-2
2.1.000R
5.415
1-2
2.1.000R
6.912
1 3
2.5,800L
8.561
1-3
2.5,801L
8.561
1-3
2.5,801L
8.561
1-3
2.5,801L
8.561
1-3
2.5,801L | 44 12 32 32 30 .50 3 3 0 1.250 3 3 0 2.500 3 3 0 5 0 3.750 3 3 0 5.000 2-3 3 6.0000R 7.6%0 1-3 9.200R 11.858 | 44 12 32 .20 .40 .40 .40 .3 3 0 1.000 1.000 1.2 2.000R 3.880 1-2 2.000R 4.860 1-2 2.000R 6.348 1-3 5.200L 7.851 1 3 5.200L 12.738 | 44 12 32 20 .50 .50 .30 2 2 0 1.250 2 2 0 2.500 1-2 2 1.715R 4.118 1 -2 1.715R 7.591 1 -2 1.715R 7.591 1 -2 1.715R 7.591 1 -2 1.715R 9.384 1-3 2 6.600L 14.162 | 24 16 8 .10 .30 .60 3 3 0 1.500 2-3 3 1.335R 3.379 2-3 1.335R 7.839 1-3 2.400R 10.215 1-3 2.400R 1-3 3 2.400R 17.672 |
24
16
8
.10
.40
.50
3
3
0
1.250
2-3
3
1.778R
3.040
2 3
1.778R
5.243
2 3
1.778R
7.469
1 3
3
2.800R
9.857
1-3
2.800R
12.33
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1.230
1 | 24 16 16 10 45 45 45 45 3 3 0 1.125 2-3 3 2.000R 2.880 2.38 2.000R 7.425 1 3 2 1.000L 9.920 1-3 2 1.000L 9.12417 1-3 2 1.000L 17.413 | 24 16 8 .10 .50 .40 2 2 0 1.250 2 3 2 1.778L 3.040 2 3.7616 1 3 2 800L 10.113 1 3 2 800L 10.113 1 3 2 800L 10.1611 1-3 2 800L 12.611 1-3 2 800L 17.608 | 24 16 8 .20 .30 .50 3 3 0 1.250 2-3 3 1.500R 2.890 2-3 3 1.500R 4.860 2-3 3 3.600R 9.159 1-3 3.600R 11.616 1 3 3 3.600R 16.562 | 24
16
8
.20
.40
.40
.3
3
0
1.000
2-3
3
2.000R
2.560
2-3
3
2.000R
4.500
1-3
2
0
6.800
1-3
2
0
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.0 | | TA | BLE | 7.3 (| Continue | d) | | | | | | | | | |--------------------------------------|---|--|--
--|--|--
--|--|---|---|--|--| | - | ick No | | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | | | ı. Base | | 24 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 32 | 32 | | Ax | le
acing | X
X' | 16
8 | $\frac{16}{12}$ | $\frac{16}{12}$ | $\frac{16}{12}$ | $\frac{16}{12}$ | $\begin{array}{c} 16 \\ 12 \end{array}$ | $^{16}_{12}$ | $\frac{16}{12}$ | $\frac{16}{16}$ | $\begin{array}{c} 16 \\ 16 \end{array}$ | | Los | | a 1 | .20 | .10 | .10 | .10 | .19 | .20 | .20 | .20 | .10 | .10 | | On | | \mathbf{a}_2 | .50 | .30 | .40 | .45 | .50 | .30 | .40 | .50 | .30 | .40 | | Ax | les | G G | .30 | .60 | .50
3 | 3 | 2 | .50 | 3 | .30 | 3 | 3 | | | 10 | N | $\frac{2}{2}$ | 3 | 3 | 3 | $\frac{2}{2}$ | 3 | 3 | 2 | 3 | 3
3 | | | | В | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | _M
G | $\frac{1,250}{2 \ 3}$ | 1.500
3 | $\frac{1.250}{3}$ | 1.125 | $\frac{1.250}{2}$ | $\frac{1.250}{3}$ | $-\frac{1.000}{3}$ | $\frac{1.250}{2}$ | $\frac{1.500}{3}$ | 1.250 | | | 20 | N | $\frac{2}{2}$ | 3 | 3 | 3 | $\frac{2}{2}$ | 3 | 3
3 | $\frac{2}{2}$ | 3 | $\frac{3}{3}$ | | | | В | 1.500L | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | M | 2.890 | 3.000 |
2.500 | $\frac{2.250}{2.3}$ | 2.500 | 2.500 | 2.000 | 2.500 | 3.000 | 2,500 | | | 30 | G
N | 2 ~3
2 | $^{2-3}_3$ | $^{2-3}_{3}$ | 2 · 3 | $\frac{2\cdot 3}{2}$ | $_{3}^{2-3}$ | $\frac{2-3}{3}$ | $\frac{2-3}{2}$ | $_{3}^{2-3}$ | $\frac{2-3}{3}$ | | | | В | 1.500L | 2.000R | $2.665\mathbf{R}$ | 3.000R | 2.665L | 2.250R | 3.000R | 2.250L | 2.665R | 3.555R | | | | M | 4.860 | 5.070 | 4.565 | 4.320 | 4.565 | 4.335 | 3.840 | 4.335 | 4.565 | 3.929 | | | 40 | G
N | $^{1-3}_2$ | $^{2-3}_{3}$ | $\frac{2}{3}$ | $^{1-3}_2$ | $^{1-3}_2$ | 2 -3
3 | 13
2 | $\frac{1-3}{2}$ | $^{2-3}_{3}$ | $\frac{2-3}{3}$ | | eet | | В | .400R | 2.000R | $2.665\mathbf{R}$ | 1.900L | 1.600L | 2.250R | .800L | .200L | 2.665R | $3.555\mathbf{R}$ | | Span-Feet | | M | 7.204 | 7.290 | 6.762 | 6.590 | 6.864 | 6.302 | 6.016 | 6.601 | 6.762 | 6.085 | | par | 50 | G
N | $^{1-3}_2$ | $^{2-3}_{3}$ | $^{1-3}_{3}$ | ${1\over 2}$ | $\frac{1-3}{2}$ | $^{1-3}_3$ | $^{1-3}_2$ | $^{1-3}_2$ | $^{2-3}_{3}$ | $^{2-3}_{3}$ | | Ś | | В | .400R | 2.000R | $3.800\mathbf{R}$ | 1.900L | 1.600L | 4.600R | .800 L | .200L | 2.665R | $3.555\mathbf{R}$ | | | | M _ | 9.703 | 9.522 | 8.989 | 9.072 | 9.351 | 8,323 | 8.513 | 9.101 | 8.979 | 8.278 | | | 60 | G
N | $^{1-3}_2$ | $egin{smallmatrix} 1 & 3 \\ 3 \end{smallmatrix}$ | $^{1-3}_{3}$ | $^{1-3}_{2}$ | $^{1-3}_2$ | $^{1-3}_3$ | ${1 \over 2}$ | $^{1-3}_2$ | 1-3
3 | $^{1-3}_{3}$ | | | | В | .400R | 3.200R | 3.800R | 1.900L | 1.600L | 4.600R | .800L | .200 L | 4.000R | 4.800R | | | | - <mark>M</mark> | $\frac{12.203}{1.3}$ | 11.971 | 11.441 | $\frac{11.560}{1-3}$ | 11.843 | 10.753 | $\frac{11.011}{1-3}$ | 11.601 | 11.267 | 10.584 | | | 80 | N | 2 | 1–3
3 | 1–3
3 | 2 | $\frac{1-3}{2}$ | $^{1-3}_{3}$ | 1-3
2 | 1-3
2 | $^{1-3}_{3}$ | $^{1-3}_3$ | | | | В | .400R | 3.200R | 3.800R | 1.900L | 1.600L | 4.600R | .800L | .200L | 4.000R | 4.800R | | | | M | 17.202 | 16.928 | 16.381 | 16.545 | 16.832 | 15.665 | 16.008 | 16.601 | 16.200 | 15.488 | | ! | 100 | G
N | 13
2 | $^{1-3}_3$ | 1–3
3 | $^{1-3}_{2}$ | $^{1-3}_2$ | $^{1-3}_{3}$ | $^{1-3}_2$ | $^{1-3}_2$ | $^{1-3}_3$ | $^{1-3}_{3}$ | | | | В | .400R | 3.200R | 3.800R | $1.900\mathrm{L}$ | 1.600L | $4.600\mathbf{R}$ | .800L | .200L | 4.000R | 4.800R | | | | M | 22.202 | 21.902 | 21.344 | 21.536 | 21.826 | 20.612 | 21.006 | 21.600 | 21.160 | 20.430 | | _ | | | | | | | | | | | | | | _ | ick No | | 101 | 102 | 103 | 104 | 105 | 106 | 197 | 108 | 109 | 110_ | | W | ı. Base | e L | 32 | 32 | 32 | 32 | 32 | 36 | 36 | 36 | 36 | 36 | | Wi
Ax | ı. Base | | | | | | | | | many or a comment | | | | Wi
Ax
Sp:
Lo. | n. Base
le
acing
ad | X
X'
a ₁ | 32
16
16
.10 | 32
16
16
.10 | 32
16
16
.20 | 32
16
16
.20 | 32
16
16
.20 | 36
16
20
.10 | 36
16
20
.10 | 36
16
20
.10 | 36
16
20
.10 | 36
16
20
.20 | | What Ax Spare Lo. On | i. Base
le
acing
ad | E L
X
X'
a ₁
a ₂ | 32
16
16
.10
.45 | 32
16
16
.10
.50 | 32
16
16
.20
.30 | 32
16
16
.20
.40 | 32
16
16
.20
50 | 36
16
20
.10
.30 | 36
16
20
.10
.40 | 36
16
20
.10
.45 | 36
16
20
.10
.50 | 36
16
20
.20
.30 | | Wi
Ax
Sp:
Lo. | i, Base
le
acing
ad
les | X
X'
a ₁ | 32
16
16
.10 | 32
16
16
.10
.50
.40 | 32
16
16
.20 | 32
16
16
.20
.40
.40 | 32
16
16
.20 | 36
16
20
.10 | 36
16
20
.10 | 36
16
20
.10 | 36
16
20
.10
.50
.40 | 36
16
20
.20 | | What Ax Spare Lo. On | i. Base
le
acing
ad | X
X'
a ₁
a ₂
a ₃
G | 32
16
16
.10
.45
.45 | 32
16
16
.10
.50
.40
2 | 32
16
16
.20
.30
.50 | 32
16
16
.20
.40
.40
.3
3 | 32
16
16
.20
50
.30
2
2 | 36
16
20
.10
.30
.60 | 36
16
20
.10
.40
.50 | 36
16
20
.10
.45
.45 | 36
16
20
.10
.50
.40 | 36
16
20
.20
.30
.50 | | What Ax Spare Lo. On | i, Base
le
acing
ad
les | E L
X
X'
a ₁
a ₂
a ₃
G | 32
16
16
.10
.45
.45 | 32
16
16
.10
.50
.40 | 32
16
16
.20
.30
.50 | 32
16
16
.20
.40
.40 | 32
16
16
.20
50
.30 | 36
16
20
.10
.30
.60 | 36
16
20
.10
.40
.50 | 36
16
20
.10
.45
.45 | 36
16
20
.10
.50
.40 | 36
16
20
.20
.30
.50 | | What Ax Spare Lo. On | n. Base
le
acing
ad
les | e L
X
X'
a ₁
a ₂
a ₃
G
N
B
M | 32
16
16
.10
.45
.45
.45
3
0
1.125 | 32
16
16
.10
.50
.40
2
2
0
1.250 | 32
16
16
.20
.30
.50
3
0
1.250 | 32
16
16
.20
.40
.40
3
3
0
1.000 | 32
16
16
.20
.50
.30
2
2
0
1.250 | 36
16
20
.10
.30
.60
3
3
0
1.500 | 36
16
20
.10
.40
.50
3
0
1.250 | 36
16
20
.10
.45
.45
3
0
1.125 | 36
16
20
.10
.50
.40
2
2
0
1.250 | 36
16
20
.20
.30
.50
3
0
1.250 | | What Ax Spare Lo. On | i, Base
le
acing
ad
les | E L X X X' a1 a2 a3 G N B M G N | 32
16
16
.10
.45
.45
3
3
0
1.125 | 32
16
16
.10
.50
.40
2
2
0
1.250 | 32
16
16
.20
.30
.50
3
0
1.250
3 | 32
16
16
.20
.40
.40
3
3
0
1.000 | 32
16
16
.20
50
.30
2
2
0
1.250 | 36
16
20
.10
.30
.60
3
3
0
1.500 | 36
16
20
.10
.40
.50
3
0
1.250 | 36
16
20
.10
.45
.45
3
0
1.125 | 36
16
20
.10
.50
.40
2
2
0
1.250 | 36
16
20
.20
.30
.50
3
0
1.250 | | What Ax Spare Lo. On | n. Base
le
acing
ad
les | E L X X X' A1 A2 A3 G N B M G | 32
16
16
.10
.45
.45
.45
3
0
1.125 | 32
16
16
.10
.50
.40
2
2
0
1.250 | 32
16
16
.20
.30
.50
3
0
1.250 | 32
16
16
.20
.40
.40
3
3
0
1.000 | 32
16
16
.20
.50
.30
2
2
0
1.250 | 36
16
20
.10
.30
.60
3
3
0
1.500 | 36
16
20
.10
.40
.50
3
0
1.250 | 36
16
20
.10
.45
.45
3
0
1.125 | 36
16
20
.10
.50
.40
2
2
0
1.250 | 36
16
20
.20
.30
.50
3
0
1.250 | | What Ax Spare Lo. On | le le acing ad les 10 20 | E L X X A1 A2 A3 G N B M G N B M | 32
16
16
.10
.45
.45
.45
3
3
0
1.125
3
3
0
2.250
2-3 | 32
16
16
.10
.50
.40
2
2
0
1.250
2
2
0
2.500
2-3 | 32
16
16
.20
.30
.50
3
3
0
1.250
3
3
0
2.500
2-3 | 32
16
16
.20
.40
.40
3
3
0
1.000
3
3
0
2.000
2-3 | 32
16
16
.20
50
.30
2
2
0
1.250
2
2
0
2.500
2-3 | 36
16
20
.10
.30
.60
3
3
0
1.500
3
3
0 | 36
16
20
.10
.40
.50
3
3
0
1.250
3
3
0
2.500 | 36
16
20
.10
.45
.45
3
3
0
1.125
3
2.250 | 36
16
20
.10
.50
.40
2
2
0
1.250
2
2
0
2.500
2 | 36
16
20
.20
.30
.50
3
0
1.250
3
0
2.500 | | What Ax Spare Lo. On | n. Base
le
acing
ad
les | X
X
X'
A1
A2
A3
G
N
B
M
G
N
B
M | 32
16
16
.10
.45
.45
.45
3
0
1.125
3
0
2.250
2-3
3 |
32
16
16
.10
.50
.40
2
2
0
1.250
2
2
0
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2. | 32
16
16
.20
.50
.50
3
3
0
1.250
3
3
0
2.500
2.500 | 32
16
16
.20
.40
.40
.40
3
3
0
1.000
3
3
0
2.000
2-3
3 | 32
16
16
.20
.30
2
2
0
1.250
2
2
0
2.500
2
2
2
2
2
2
2
2
3
2
3
3
3
3
3
3
3
3
3
3
3
3
3 | 36
16
20
.10
.30
.60
3
0
1.500
3
0
3.000 | 36
16
20
.10
.40
.50
3
3
0
1.250
3
3
0
2.500 | 36
16
20
.10
.45
.45
.3
3
0
1.125
3
3
0
2.250 | 36
16
20
.10
.50
.40
2
2
0
1.250
2
2
0
2.500 | 36
16
20
.20
.30
.50
3
3
0
1.250
3
0
2.500 | | What Ax Spare Lo. On | le le acing ad les 10 20 | E L X X A1 A2 A3 G N B M G N B M | 32
16
16
.10
.45
.45
.45
3
3
0
1.125
3
3
0
2.250
2-3 | 32
16
16
.10
.50
.40
2
2
0
1.250
2
2
0
2.500
2-3 | 32
16
16
.20
.30
.50
3
3
0
1.250
3
3
0
2.500
2-3 | 32
16
16
.20
.40
.40
3
3
0
1.000
3
3
0
2.000
2-3 | 32
16
16
.20
50
.30
2
2
0
1.250
2
2
0
2.500
2-3 | 36
16
20
.10
.30
.60
3
3
0
1.500
3
3
0 | 36
16
20
.10
.40
.50
3
3
0
1.250
3
3
0
2.500 | 36
16
20
.10
.45
.45
3
3
0
1.125
3
2.250 | 36
16
20
.10
.50
.40
2
2
0
1.250
2
2
0
2.500
2 | 36
16
20
.20
.30
.50
3
0
1.250
3
0
2.500 | | What Ax Spare Lo. On | a. Base
le acing
ad les
10 | E L X X X' a1 a2 a3 G N B M G N B M G N B M G O O O O O O O O O O O O O O O O O O | 32
16
16
10
.45
.45
.45
.3
3
0
1.125
3
3
0
2.250
2.3
3
4.000R
3.630
1-3 | 32
16
16
10
.50
.40
2
2
0
1.250
2
2
0
2.500
2.500
2.500
3.500
1.250
2
1.250
2
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1 | 32
16
16
.20
.30
.50
3
0
1.250
3
0
2.500
2.500
2.3
3
3.0000R
3.840
2.3 | 32
16
16
.20
.40
.40
.40
3
3
0
1.000
3
3
0
2.000
2-3
3
4.000R |
32
16
16
.20
.50
.30
2
2
0
1.250
2
2
0
2.50
2.50
2.50
3.80
2.50
3.80
2.50
3.80
2.50
3.80
2.50
3.80
3.80
2.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3. | 36
16
20
.10
.30
.60
3
3
0
1.500
3
3
0
3.000
3
0
4.500 | 36
16
20
.10
.40
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
2.500 | 36
16
20
.10
.45
.45
.45
3
3
0
1.125
3
3
0
2.250
3
3
3
0
3
0
2.250 | 36
16
20
.10
.50
.40
2
2
0
1.250
2
2
0
2.500
2.500
2
0
3.750
1-3 | 36
16
20
.20
.30
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
2.500
3
3
0
1.250
3
0
3
0
1.250
3
0
1.250
3
0
0
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.2 | | WI
Axx
Spp
Lo.
On
Axx | le le acing ad les 10 20 | E L X X X A1 A2 A3 G N B M B M G N B M B M G N B M B M G N B M B M B M B M B M B M B M B M B M B | 32
16
16
.10
.45
.45
.3
0
1.125
3
3
0
2.250
2-3
4.000R
3.630
1-3
2 | 32
16
16
.10
.50
.40
2
2
0
1.250
2
2
0
2.500
2-3
2
3.555L
3.929
1-3
2 | 32
16
16
.20
.30
.50
3
3
0
1.250
3
3
0
2.500
2-3
3.840
2-3
3 | 32
16
16
.20
.40
.40
.3
3
0
1.000
3
3
0
2.000
2-3
3.000
2-3
4.000R
3.226
1-3
2 | 32
16
16
20
50
30
2
2
0
1.250
2
2
0
2.500
2.30
2.30
3.30
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500 |
36
16
20
.10
.30
.60
3
3
0
1.500
3
3
0
3.000
3
3
0
3.000
3
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0 | 36
16
20
.10
.40
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
2.500 | 36
16
20
.10
.45
.45
.3
3
0
1.125
3
3
0
2.250
3
3
0
3.375
2-3 | 36
16
20
.10
.50
.40
2
2
0
1.250
2
2
0
2.500
2
2
0
2.500
2
1.250
2
1.250
2
1.250
2
1.250
2
1.250
1.250
2
2
2
0
1.250
2
1.250
2
1.250
2
2
2
0
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2 | 36
16
20
.30
.50
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
2.500
3 | | WI
Axx
Spp
Lo.
On
Axx | a. Base
le acing
ad les
10 | E L X X X' a1 a2 a3 G N B M G N B M G N B M G O O O O O O O O O O O O O O O O O O | 32
16
16
10
.45
.45
.45
.3
3
0
1.125
3
3
0
2.250
2.3
3
4.000R
3.630
1-3 | 32
16
16
10
.50
.40
2
2
0
1.250
2
2
0
2.500
2.500
2.500
3.500
1.250
2
1.250
2
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1 | 32
16
16
.20
.30
.50
3
0
1.250
3
0
2.500
2.500
2.3
3
3.0000R
3.840
2.3 | 32
16
16
.20
.40
.40
.40
3
3
0
1.000
3
3
0
2.000
2-3
3
4.000R | 32
16
16
.20
.50
.30
2
2
0
1.250
2
2
0
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500
2.500 | 36
16
20
.10
.30
.60
3
3
0
1.500
3
3
0
3.000
3
0
4.500 | 36
16
20
.10
.40
.50
3
3
0
1.250
3
0
2.500
3
3
0
2.500 | 36
16
20
.10
.45
.45
.45
3
3
0
1.125
3
3
0
2.250
3
3
3
0
3
0
2.250 | 36
16
20
.10
.50
.40
2
2
0
1.250
2
2
0
2.500
2
50
3.750 |
36
16
20
.20
.30
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
2.500
3
3
0
1.250
3
0
3
0
1.250
3
0
1.250
3
0
0
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.2 | | n-Feet | le le acing ad les 10 20 40 | e L | 32
16
16
10
.45
.45
.3
.0
.1.125
.3
.3
.0
.2.250
2.250
2.3
4.000R
3.630
1.3
2.250
2.250
1.3
2.250
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3 | 32
16
16
.10
.50
.40
2
2
0
1.250
2
2
0
2.500
2-3
2
3.555L
3.929
1 -3
2
2.404L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.144L
6.1 | 32
16
16
.20
.30
.50
3
3
0
1.250
2.500
2-3
3.000R
3.840
2-3
3.0008
5.780
2-3 | 32
16
16
.20
.40
.40
.3
3
0
2.000
2.000
2.3
3
4.000R
3.226
1-3
2
1.600
1.5264 | 32
16
16
20
50
30
2
2
2
0
1.250
2
2
3.3000L
3.840
1-3
2
8.6016
6.016 | 36
16
20
.30
.60
3
3
0
1.500
3
3
0
3.000
3
0
4.500
2-3
3
3.335 R
6.249
2-3 | 36
16
20
.10
.40
.50
3
3
0
1.250
3
3
0
2.500
3
3
4.445R
5.444
2-3 | 36
16
20
10
.45
.45
3
3
0
1.125
3
3
0
2.250
3
3
0
3.375
2-3
3
5.000R
5.063 | 36 16 20 10 .50 .40 2 2 0 1.250 2 2 0 2.500 2 3.750 1-3 2 3.200L 5.456 1-3 | 36
16
20
.30
.50
.50
3
0
1.250
3
0
2.500
3
3
0
3.750
2-3
3
3.750R
5.282
2-3 | | WI
Axx
Spp
Lo.
On
Axx | a. Base
le acing
ad les
10 | e L | 32
16
16
10
.45
.45
.45
.3
0
1.125
3
3
0
2.250
2-3
3
4.000R
3.630
1-3
2.800L
5.796
1-3
2 | 32
16
16
10
.50
.40
2
2
0
1.250
2
2
0
2.500
2-3
2
3.555
3.929
1-3
2.400L
6.144
1-3
2 | 32
16
16
.20
.30
.50
3
3
0
1.250
2.500
2-3
3.000R
3.840
2-3
3.000R
5.780
2-3
3.000R | 32
16
16
16
20
.40
.40
.3
3
0
1.000
2.000
2-3
3.226
1-3
2.000
5.264
1-3
2 | 32
16
16
16
50
30
2
2
2
0
2.500
2-3
2
3.000L
3.840
1-3
2
800L
6.016
1-3
2 | 36
16
20
.10
.30
.60
3
3
0
1.500
3
3
0
3
0
4.500
2–3
3
3
0
4.500
2–3
3
3
0
0
0
0
0
0
0
0
0
0
0
0
0 | 36
16
20
.10
.40
.50
3
3
0
1.250
3
3
0
2.500
3
3
4.445R
5.444
2-3
3 | 36
16
20
.10
.45
.45
.3
3
0
1.125
3
3
0
2.250
3
3
0
3.375
2-3
5.063
1.3
2 | 36 -16 -20 -10 -50 -40 -2 -2 -0 -1.250 -2 -0 -2.500 -2 -3 -3.750 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 | 36
16
20
.20
.30
.50
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
2.500
3
3
3
0
2.500
3
3
3
0
2.500
3
3
3
0
0
2.500
3
3
0
0
0
0
0
0
0
0
0
0
0
0
0 | | n-Feet | le le acing ad les 10 20 40 | e L | 32
16
16
10
.45
.45
.3
.3
.0
.1.125
.3
.3
.0
.2.250
.2.250
.3
.4.000R
.3.630
.3.630
.5.796
.5.796
.5.796
.5.796
.5.796 | 32
16
16
.10
.50
.40
2
2
0
1.250
2
2
0
2.500
2-3
3.555L
3.929
1 -3
2
2.404L
6.144L
6.144L |
32
16
16
.20
.30
.50
3
3
0
1.250
2.500
2-3
3.000R
3.840
2-3
3.0008
2-3
3.0008
2-3
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3.0008
3 | 32
16
16
.20
.40
.40
.3
3
0
2.000
2.000
2.3
3
4.000R
3.226
1-3
2
1.600
1.5264 | 32
16
16
20
50
30
2
2
2
2
2
2
3.8001
3.840
1-3
2
8.001L
8.513 | 36
16
20
.30
.60
3
3
0
1.500
3
3
0
3.000
3
0
4.500
2-3
3
3.335 R
6.249
2-3 | 36
16
20
.10
.40
.50
3
3
0
1.250
3
3
0
2.500
3
3
4.445R
5.444
2-3 | 36
16
20
10
.45
.45
3
3
0
1.125
3
3
0
2.250
3
3
0
3.375
2-3
3
5.000R
5.063 | 36 16 20 10 .50 .40 2 2 0 1.250 2 2 0 2.500 2 3.750 1-3 2 3.200L 5.456 1-3 | 36
16
20
.30
.50
.50
3
0
1.250
3
0
2.500
3
3
0
3.750
2-3
3
3.750R
5.282
2-3 | | n-Feet | a. Base le eacing and les 10 20 40 | e L | 32
16
16
10
.45
.45
.45
.3
0
0
1.125
.3
3
0
2.250
2-3
4.000R
3.630
1-3
2.800L
5.796
1-3
2.800L
8.257
1-3 | 32
16
16
.10
.50
.40
2
2
0
1.250
2
2
0
2.500
2-3
2
3.555
3.929
1-3
2
2.400L
8.6144
1-8
2.400L
8.615
1-8 | 32
16
16
.20
.30
.50
3
3
0
1.250
3
3
0
2.500
2-3
3.000R
3.840
2-3
3.000R
5.780
2-780
1.250 | 32
16
16
16
20
.40
.40
3
3
0
1.000
2.000
2-3
3.20
1-3
2.000
5.264
1-3
2.1.600L
5.264
1-3
2.1.7751
1-3 | 32
16
16
16
16
16
16
10
10
10
10
10
10
10
10
10
10 | 36
20
1.10
.30
.60
3
3
0
1.500
3
3
0
3.000
2-3
3
3.335R
6.249
2-3
3
3.335R | 36
16
20
.10
.40
.50
3
3
0
1.250
3
3
0
2.500
3
3
4.445R
5.444
2-3
3
4.445R
7.605
2-3 | 36
16
20
.10
.45
.45
.3
3
0
1.125
3
3
0
2.250
3
3
3
3
0
2.250
3
3
3
3
3
3
3
3
5
1.125
3
3
3
3
3
3
3
5
6
7
8
8
9
9
9
9
9
9
9
9
9
9
9
9
9 | 36 16 20 10 50 40 2 2 0 1.250 2 2 2 0 2.500 2 3.750 1-3 2 3.200L 7.905 1-3 | 36
16
20
.30
.50
.50
.3
3
0
1.250
3
3
0
2.500
3
3
0
2.500
3
3
3
0
2.500
3
3
3
0
2.500
3
3
3
0
2.500
3
3
3
0
2.500
3
3
3
0
3
0
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0 | | n-Feet | le le acing ad les 10 20 40 | e L
XXX'
a1
a2
a3
G
N
B
M
G
N
B
M
G
N
B
M
G
N
B
M
G
N
B
M
G
N
B
M
B
M
B
M
B
M
B
M
B
M
B
M
B
M
B
M
B | 32 16 16 16 17 10 18 18 18 18 18 18 18 18 18 18 18 18 18 | 32
16
16
16
.10
.50
.40
2
2
0
1.250
2
2
0
2.500
2-3
2
3.5551
3.929
1-3
2.400L
8.615
1-3
2 | 32
16
16
.20
.30
.50
3
3
0
1.250
2.500
2-3
3.000R
3.840
2-3
3.000R
7.744
1-3
3 | 32 16 16 16 .20 .40 .40 .40 3 3 0 1.000 3 4 0.000 2.000 2-3 3 4.000R 3.226 1-3 2 1.600L 5.264 1-3 2 1.600L 7.751 1-3 2 | 32
16
16
16
20
50
30
2
2
2
0
1.250
2
2
3.000L
3.840
1-3
2
8.00L
6.016
1-3
2
8.513
1-3
2 | 36
16
20
.10
.30
.60
3
3
0
1.500
3
3
0
3.000
2-3
3
3.335R
6.249
2-3
3.335R
8.448
2-3
3 | 36
16
20
.10
.40
.50
3
3
0
1.250
3
3
0
2.500
3
3
4.445R
7.605
2-3
3
4.445R | 36
16
20
.10
.45
.45
.3
3
0
1.125
3
3
0
2.250
3
3
0
3.375
2–3
5.063
1–3
2
3.700L
7.474
1–3
2 | 36 -16 -20 -10 -59 -40 -2 -2 -0 -1.250 -2 -2 -0 -2.500 -2 -3 -3.200L -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 | 36
16
20
.20
.30
.50
.50
0
1.250
3
3
0
2.500
3
3
3
0
2.500
2.500
3
3
3
7
7
8
7
8
9
9
9
9
9
9
9
9
9
9
9
9
9 | | n-Feet | a. Base le eacing and les 10 20 40 | e L | 32
16
16
10
.45
.45
.45
.3
.0
.1.125
.3
.0
2.250
2-3
4.000R
3.630
1-3
.2
2.800L
5.796
1-3
.2
2.800L
8.257
1-3
.2
2.800L
8.257
1-3
.2
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
2.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
.800L
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257
1-3
8.257 | 32 16 16 .10 .50 .40 2 2 0 1.250 2 2 0 2.500 2-3 2 3.5551 3.929 1-3 2 2.400L 8.615 1-3 2 2.400L | 32 16 16 16 20 30 .50 3 3 0 1.250 3 2.500 2.500 2-3 3.000R 5.780 2-3 3.000R 7.744 1-3 3 5.600R 9.923 |
32
16
16
16
20
.40
.40
.3
3
0
1.000
2.000
2-3
3.20
1-3
2.000
5.264
1-3
2.1.600L
7.751
1-3
2.1.600L | 32
16
16
16
16
16
16
10
10
10
10
10
10
10
10
10
10 | 36
20
1.10
.30
.60
3
3
0
1.500
3
3
0
3.000
2-3
3
3.335R
6.249
2-3
3
3.335R | 36
16
20
.10
.40
.50
3
3
0
1.250
3
3
0
2.500
3
3
4.445R
5.444
2-3
3
4.445R
7.605
2-3 | 36
16
20
.10
.45
.45
.3
3
0
1.125
3
3
0
2.250
3
3
3
3
0
2.250
3
3
3
3
3
3
3
3
5
1.125
3
3
3
3
3
3
3
5
6
7
8
8
9
9
9
9
9
9
9
9
9
9
9
9
9 | 36 16 20 10 50 40 2 2 0 1.250 2 2 2 0 2.500 2 3.750 1-3 2 3.200L 7.905 1-3 | 36
16
20
.30
.50
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
2.500
3
3
0
2.500
3
3
0
2.500
3
3
3
0
2.500
3
3
0
0
2.500
3
3
0
0
2.500
3
3
0
0
2.500
2.500
3
3
3
0
0
2.500
2.500
3
3
3
3
3
0
0
2.500
3
3
3
3
3
3
3
3
3
3
3
3
3 | | n-Feet | 11. Base le acing ad les 10 20 30 40 50 60 | E L X X' A1 A2 A3 G N B M G N B M G N B M G N B M G N B M G N B M G N B M G G N B M G G N B M G G N B M G G G G G G G G G G G G | 32 16 16 16 16 17 45 45 45 3 3 0 1.125 3 3 4.000R 3.630 1-3 2.800L 5.796 1-3 2.800L 8.257 1-3 2.800L 10.731 1-3 | 32 16 16 16 .10 .50 .40 2 2 0 1.250 2 2 0 2.500 2-3 2 3.555L 3.929 1-3 2 2.400L 8.615 1-3 2 2.400L 11.096 1-3 | 32
16
16
16
.20
.30
.50
3
3
0
1.250
2.500
2-3
3.000R
3.840
2-3
3.000R
7.744
1-3
5.600R
9.923
1-3 | 32 16 16 16 .20 .40 .40 .40 3 3 0 1.000 3 4 0.000 2.000 2-3 3 4.000R 3.226 1-3 2 1.600L 7.751 1-3 2 1.600L 1.000 1 | 32
16
16
16
20
50
30
2
2
2
0
1.250
2-3
2
3.000L
3.840
1-3
2
8.00L
8.513
1-3
2
8.00L
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01 | 36
16
20
.10
.30
.60
3
3
0
1.500
3
3
0
3.000
2-3
3
3.335R
6.249
2-3
3.335R
8.448
2-3
2.335R
10.666 | 36
16
20
.10
.40
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
2.500
2.4445R
7.605
2-3
4.445R
7.605
2-3
4.445R
9.7605
1.250 | 36
16
20
.10
.45
.45
.3
3
0
1.125
3
3
0
2.250
3
3
0
3.375
2–3
5.063
1–3
2
3.700L
7.474
1–3
2
3.700L
9.928
1–3 | 36 16 20 .10 .50 .40 2 2 2 0 1.250 2 2 0 2.500 2 3.200L 7.905 1-3 2 3.200L 10.371 1-3 1-3 | 36
16
20
.20
.30
.50
.50
.50
.50
.50
.50
.50
.5 | | n-Feet | a. Base le eacing and les 10 20 40 | e L XX X' a1 a2 a3 G N B M B M G N B M B M G N B M B M B M B M B M B M B M B M B M B | 32 16 16 10 .10 .45 .45 .3 3 0 1.125 3 3 4.000R 3.630 1-3 2 2.800L 5.796 1-3 2.800L 10.731 1-3 2 | 32 16 16 17 19 19 19 19 19 19 19 19 19 19 19 19 19 | 32 16 16 20 30 50 3 3 0 1.250 2.500 2-3 3.000R 3.400 2-3 3.000R 7.744 1-3 5.600R 9.923 1-3 3 | 32 16 16 16 20 40 40 3 3 0 1.000 3 3 4.000R 3.226 1-3 2 1.600L 7.751 1-3 2 1.600L 10.243 1-3 2 |
32
16
16
16
20
50
30
2
2
2
0
1.250
2.500
2-3
3.000L
3.840
1-3
2
8.00L
6.016
1-3
2
8.513
1-3
2
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1. | 36 16 20 .30 .60 .30 .60 3 3 0 1.500 3 3 0 4.500 2-3 3.335R 6.249 2-3 3.335R 8.448 2-3 3 2.335R 10.665 | 36 16 20 10 .40 .50 3 3 0 1.250 3 3 0 2.500 3 3 4.445R 7.605 2-3 3 4.445R 9.796 1-3 3 | 36 16 20 10 .45 .45 .45 .3 0 1.125 3 0 2.250 3 3 0 3.375 2 3 5.000R 5.063 1 -3 2 3.700L 9.928 1 -3 2 | 36 16 20 10 59 10 59 40 2 2 0 1.250 2 2 0 2.500 2 3.750 1-3 2 3.200L 7.905 1-3 2 3.200L 10.371 1-3 2 | 36
16
20
.30
.50
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
3.750
2-3
3
3.750R
7.225
2-3
3.750R
9.187
1-3
3 | | n-Feet | 11. Base le acing ad les 10 20 30 40 50 60 | E L X X' A1 A2 A3 G N B M G N B M G N B M G N B M G N B M G N B M G N B M G G N B M G G N B M G G N B M G G G G G G G G G G G G | 32 16 16 16 16 17 45 45 45 3 3 0 1.125 3 3 4.000R 3.630 1-3 2.800L 5.796 1-3 2.800L 8.257 1-3 2.800L 10.731 1-3 | 32
16
16
16
.10
.50
.40
2
2
0
1.250
2
2
0
2.500
2-3
2
3.555L
3.929
1 -3
2.400L
8.615
1 -3
2.400L
1.100
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0 | 32
16
16
16
.20
.30
.50
3
3
0
1.250
2.500
2-3
3.000R
3.840
2-3
3.000R
7.744
1-3
5.600R
9.923
1-3 | 32 16 16 16 .20 .40 .40 .40 3 3 0 1.000 3 4 0.000 2.000 2-3 3 4.000R 3.226 1-3 2 1.600L 7.751 1-3 2 1.600L 1.000 1 |
32
16
16
16
20
50
30
2
2
2
0
1.250
2-3
2
3.000L
3.840
1-3
2
8.00L
8.513
1-3
2
8.00L
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01
11.01 | 36
16
20
.10
.30
.60
3
3
0
1.500
3
3
0
3.000
2-3
3
3.335R
6.249
2-3
3.335R
8.448
2-3
2.335R
10.666 | 36
16
20
.10
.40
.50
3
3
0
1.250
3
3
0
2.500
3
3
0
2.500
2.4445R
7.605
2-3
4.445R
7.605
2-3
4.445R
9.7605
1.250 | 36
16
20
.10
.45
.45
.3
3
0
1.125
3
3
0
2.250
3
3
0
3.375
2–3
5.063
1–3
2
3.700L
7.474
1–3
2
3.700L
9.928
1–3 | 36 16 20 .10 .50 .40 2 2 2 0 1.250 2 2 0 2.500 2 3.200L 7.905 1-3 2 3.200L 10.371 1-3 1-3 | 36
16
20
.20
.30
.50
.50
.50
.50
.50
.50
.50
.5 | | n-Feet | 1. Base 1 le acing ad les 10 20 30 40 60 80 | E L X X X X X X X X X X X X X X X X X X | 32 16 16 10 .45 .45 .45 .3 3 0 1.125 .3 3 4.000R 3.630 1-3 2.800L 8.257 1-3 2.800L 10.731 1-3 2 2.800L 10.731 1-3 1 2.800L 15.698 1-3 | 32 16 16 17 19 19 19 19 19 19 19 19 19 19 19 19 19 | 32 16 16 20 30 30 50 3 3 0 1.250 3 3 0 2.500 2-3 3.000R 3.840 2-3 3.000R 7.744 1-3 3.600R 9.923 1-3 5.600R 9.923 1-3 5.600R 14.792 | 32 16 16 .20 .40 .40 .40 .3 3 0 1.000 3 3 4.0006 3.2 1.600L 1.3 2 1.600L 1.3 2 1.600L 1.5.232 1.600L 15.232 1.623 | 32
16
16
16
20
50
30
2
2
2
0
1.250
2.500
2.3.000L
3.840
1-3
2
8.00L
8.513
1-3
2
8.00L
1.31
1.32
2
8.00L
8.513
1.32
1.011
1.33
2
8.00L
8.513
1.34
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1 | 36 16 20 10 .30 .60 3 3 0 1.500 3 3 0 4.500 2 3 3 3.335R 6.249 2 -3 3.335R 8.448 2 -3 3 4.800R 15.488 1-3 | 36 16 20 10 .40 .50 3 3 0 1.250 3 3 0 2.500 3 3 4.445R 7.605 2-3 4.445R 9.796 1-3 5.800R 14.621 1-3 | 36 16 20 10 45 45 45 3 0 1.125 3 0 2.250 3 3 0 3.375 2-3 3 5.000R 7.474 1-3 2 3.700L 9.928 1-3 2 3.700L 9.928 1-4 14.871 1-3 | 36 16 20 10 59 10 59 40 1.250 2 2 0 1.250 2 2 0 3.750 1-3 2 3.200L 7.905 1-3 2 3.200L 10.371 1-3 2 3.200L 10.371 1-3 1.201L 15.328 1-3 | 36
16
20
.30
.50
.50
.50
.50
.50
.50
.50
.5 | | n-Feet | 11. Base le acing ad les 10 20 30 40 50 60 | E L XX X A A A A A A A A A A A A A A A A | 32 16 16 16 16 17 45 45 45 45 45 45 46 45 46 47 47 47 47 47 47 47 47 47 47 47 47 47 | 32 16 16 .10 .50 .40 2 2 0 1.250 2 2 0 2.500 2-3 3.552 1-3 2.400L 8.615 1-3 2.400L 8.615 1-3 2.400L 11.096 1-3 2 2.400L 1-3 2 2.400L 1-3 2 2.400L 1-3 2 2.400L | 32 16 16 16 20 30 .50 3 3 0 1.250 3 3 0 2.500 2-3 3.000R 5.780 2-3 3.000R 7.744 1-3 5.600R 9.923 1-3 5.600R 14.792 | 32 16 16 16 20 .40 .40 .40 3 3 0 1.000 2.000 2-3 3 4.000R 3.226 1-3 2 1.600L 7.751 1-3 2 1.600L | 32 16 16 16 20 50 30 2 2 0 1.250 2 2 0 2.500 2-3 3.000L 3.840 1-3 2 800L 8.513 1-3 2 .800L 1.011 1-3 2 .800L 1-3 2 .800L 1-3 2 .800L 1-3 2 .800L 1-3 2 .800L | 36 16 20 10 30 .60 3 3 3 0 1.500 3 3 0 4.500 2-3 3.335R 6.249 2-3 3.335R 8.448 2-3 3 4.800R 15.488 1-3 3 | 36 16 20 10 .40 .50 3 3 0 1.250 3 3 0 2.500 2.500 3 3.750 2-3 4.445R 7.605 2-3 4.445R 7.605 2-3 5.800R 14.621 1-3 3 | 36 16 20 10 .45 .45 .45 .3 3 0 1.125 3 3 0 2.250 3 3.375 2-3 3.700L 7.474 1-3 2 3.700L 9.928 1-3 2 3.700L 14.871 1-3 2 | 36 16 20 .10 .50 .40 2 2 2 0 1.250 2 2 0 2.500 2 2 3.750 1-3 2 3.200L 7.905 1-3 2 3.200L 7.905 1-3 2 3.200L 15.328 1-3 2 3.200L 15.328 | 36
16
20
.20
.30
.50
.50
.50
.50
.50
.50
.50
.5 | | n-Feet | 1. Base 1 le acing ad les 10 20 30 40 60 80 | E L X X X X X X X X X X X X X X X X X X | 32 16 16 10 .45 .45 .45 .3 3 0 1.125 .3 3 4.000R 3.630 1-3 2.800L 8.257 1-3 2.800L 10.731 1-3 2 2.800L 10.731 1-3 1 2.800L 15.698 1-3 | 32 16 16 17 19 19 19 19 19 19 19 19 19 19 19 19 19 | 32 16 16 20 30 30 50 3 3 0 1.250 3 3 0 2.500 2-3 3.000R 3.840 2-3 3.000R 7.744 1-3 3.600R 9.923 1-3 5.600R 9.923 1-3 5.600R 14.792 | 32 16 16 .20 .40 .40 .40 .3 3 0 1.000 3 3 4.0006 3.2 1.600L 1.3 2 1.600L 1.3 2 1.600L 1.5.232 1.600L 15.232 1.623 |
32
16
16
16
20
50
30
2
2
2
0
1.250
2.500
2.3.000L
3.840
1-3
2
8.00L
8.513
1-3
2
8.00L
1.31
1.32
2
8.00L
8.513
1.32
1.011
1.33
2
8.00L
8.513
1.34
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1 | 36 16 20 10 .30 .60 3 3 0 1.500 3 3 0 4.500 2 3 3 3.335R 6.249 2 -3 3.335R 8.448 2 -3 3 4.800R 15.488 1-3 | 36 16 20 10 .40 .50 3 3 0 1.250 3 3 0 2.500 3 3 4.445R 7.605 2-3 4.445R 9.796 1-3 5.800R 14.621 1-3 | 36 16 20 10 45 45 45 3 0 1.125 3 0 2.250 3 3 0 3.375 2-3 3 5.000R 7.474 1-3 2 3.700L 9.928 1-3 2 3.700L 9.928 1-4 14.871 1-3 | 36 16 20 10 59 10 59 40 1.250 2 2 0 1.250 2 2 0 3.750 1-3 2 3.200L 7.905 1-3 2 3.200L 10.371 1-3 2 3.200L 10.371 1-3 1.201L 15.328 1-3 | 36
16
20
.30
.50
.50
.50
.50
.50
.50
.50
.5 | 64 METHOD OF CONVERTING HEAVY MOTOR VEHICLE LOADS | G 3 2 3 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 | TA | BLE | 7.3 (| Continue | d) | | | | |
 | | | |--|---------------|-------|---------------------------------|--|--|---|---|---|---|---|--------|---| | Asle | | | | | | | _ | | | | | | | Spacing X 20 20 24 24 24 24 24 24 | | | | | | | | | |
 | | | | On | | | X
X' | | | | | | | | | | | Axles | | ıd | | | | | | | | | | | | Color | | es | | | | | | | | | | | | B | $\overline{}$ | | | | 2 | | | | 2 | | | 3 . | | M | | 10 | | | | | | | | | | | | Part | | | | | | | | | | | | 1.500 | | B | | | | | | | | | | | | | | M | | 20 | | | | | | | | | | | | Truck No. 12 12 12 12 13 1-3 | | | | | | | | | | | | 3.000 | | B | | | | | | | | | 2 | | | | | M | | 30 | | | | | | | | | | | | ## 40 N | | | | | | | | | | | | 4.500 | | B | | | | | | | | | | | | | | M | # | 40 | | | | | | | | | | | | M | Fe | | | | | | | | | | | 6.000 | | M | ng. | | | | | | | | | | | | | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | Spi | 50 | | | | | | 2
4 600 T. | | | | | | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | | | | | | | | | 7.220 | | | 7.500 | | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | | | | | | | | | | | | | | M 9,496 10,433 10,140 9,125 9,153 9,667 8,670 8,771 9,867 9,621 | | 60 | | | | | | | | 2
3 2001. | | | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | | | | | | | | | | | | 9.628 | | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | | | | | | | | | | | | | | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 1 | 80 | | | | 3
5 600R | | | | | | | | 100 N | | | | | | | | | | | | 14.112 | | B | ľ | | | | | | | | | | | | | M | - 1 | 100 | | | 2
1 400T. | | | | | | | | | Wh. Base L | | | | | | | | | | | | 19.010 | | Axle | Tru | ick N | D. | 121 | 122 | 123 | 124 | 125 | 126 | | | | | Spacing X' 28 28 28 28 28 28 28 2 | | | | | | | | | | | | | | Load | | | | | | | | | | | | | | On Axles a ₃ .50 .45 .50 .30 .40 .50 .30 .40 .50 .40 .30 .30 .30 .40 .50 .40 .30 .30 .30 .30 .30 .30 .30 .30 .30 .3 | | | | | | | | | |
 | | | | Color | On | | \mathbf{a}_2 | .40 | .45 | .50 | .30 | .40 | .50 | | | | | 10 | AX | ies | | | | | | | |
 | | | | M | Ì | 10 | N | 3 | | 2 | 3 | | | | | | | G 3 3 3 2 3 3 2 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 | | | | | | | | | | | | | | 20 | 1 | | | | | | | | |
 | •• | | | M | ŀ | 20 | N | 3 | 3 | 2 | 3 | 3 | 2 | | | | | G 3 3 3 2 3 1-2 1-2 3 1-2 3 40 N 3 3 2 2 3 2 2 3 2 2 3 3 2 2 3 3 3 3 3 | | | | | | | | | | | | | | Section Sect | | | | | | | | | |
 | | | | M | | 30 | N | 3 | 3 | 2 | 3 | 2 | 2 | | | | | G 3 1-2 1-2 3 1-2 1-2 3 1-2 1-2 3 1-2
1-2 3 1-2 1-2 3 1-2 1-2 3 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 | ł | | | | | | | | | | | | | ## 40 N | | | | | | | | | |
 | | | | The color of | د | 40 | N | 3 | 2 | 2 | 3 | 2 | 2 | | | | | The color of | 9 | | | | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | 1-2 | | | | |
 | ****** | | | M | pa | 50 | N | 3 | | 2 | | 2 | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 02 | | | | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | |
 | | • | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 60 | N | 3 | 2 | 2 | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | ļ | | В | | | | | | | | | | | 80 N 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 3 2 3 3 2 3 | | | 7/ | | | o.984 | 0.167 | | |
 | | | | B 7.800R 5.500L 4.800L 8.600R 4.000L 2.600L M 12.961 13.278 13.888 12.325 13.000 14.285 G 1-3 1-3 1-3 1-3 1-3 1-3 100 N 3 2 2 2 3 2 2 B 7.800R 5.500L 4.800L 8.600R 4.000L 2.600L | | | | | | 1. 2 | 1. 2 | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 80 | - G | 1-3 | 1-3 | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 80 | G
N
B | 1-3
3
7.800R | 1-3
2
5.500L | $^{2}_{4.800L}$ | $^{3}_{8.600\mathrm{R}}$ | $^{2}_{4.000L}$ | $^{2}_{2.600L}$ | | | | | B 7.800R 5.500L 4.800L 8.600R 4.000L 2.600L | | 80 | G
N
B
M | 1-3
3
7.800R
12.961 | 1-3
2
5,500L
13,278 | 2
4.800L
13.888 | 3
8.600R
12.325 | 2
4.000L
13.000 | 2
2.600L
14.285 |
···· | | | | M 17.808 18.205 18.830 17.140 17.960 19.268 | | | G
N
B
M | 1-3
3
7.800R
12.961 | 1-3
2
5.500L
13.278
1-3
2 | 2
4.800L
13.888
1-3
2 | 8.600R
12.325
1-3
3 | $\begin{array}{c} 2\\4.000L\\13.000\\-1-3\end{array}$ | 2
2.600L
14.285 |
 | | *************************************** | | | | | G
N
B
M
G
N
B | 1-3
3
7.800R
12.961
1-3
3
7.800R | 1-3
2
5.500L
13.278
1-3
2
5.500L | 2
4.800L
13.888
1-3
2
4.800L | 3
8.600R
12.325
1-3
3
8.600R | 2
4.000L
13.000
1-3
2
4.000L | 2
2.600L
14.285
1-3
2
2.600L |
· · · · · · · · · · · · · · · · · · · | | <u> </u> | Table 7.4 ### CONTROLLING CONDITIONS AND MAXIMUM MOMENTS IN SIMPLE SPANS PRODUCED BY THE TYPE 2-S2 TRUCKS WEIGHING ONE KIP EACH One hundred eight variations in the Type 2-S2 truck are given in this Table. Each truck number, from 1 to 108, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. | Tr | uck N | D. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |-----------------|-------------|--|------------------------------|---|---|-----------------------------------|--------------------------------|---|---------------------------------------|--|-------------------------------|--| | W | a. Base | e L | 20 | 20 | 20 | 20 | 20 | 20 | 24 | 24 | 24 | 24 | | Ax
Spa | le
acing | X
X' | 8 8 | 8
8 | 8 | 8 | 8
8 | 8 | 8
12 | 8
12 | 8
12 | 8
12 | | Lo:
On
Ax | | a ₁
a ₂
a ₃ | .10
.30
.60 | .10
.40
.50 | .10
.50
.40 | .20
.30
.50 | .20
.40
.40 | .20
.50
.30 | .10
.30
.60 | .10
.40
.50 | .10
.50
.40 | .20
.30
.50 | | | 10 | G
N
B
M | 3-4
4
1.000R
.960 | $\begin{array}{c} 2 \\ 2 \\ 0 \\ 1.000 \end{array}$ | $\begin{array}{c} 2 \\ 2 \\ 0 \\ 1.250 \end{array}$ | 3-4
4
1.000R
.800 | 2
2
0
1.000 | $\begin{array}{c} 2 \\ 2 \\ 0 \\ 1.250 \end{array}$ | 3-4
4
1.000R
9.60 | 2
2
0
1.000 | 2
2
0
1.250 | 3-4
4
1.000R
.800 | | | 20 | G
N
B
M | $^{2-4}_{3}$.667R 2.721 | 2-4
3
1.220R
2.469 | $^{1-3}_{2}$ $.500L$ 2.810 | 2-4
3
.875R
2.331 | 1-3 2 0 2.400 | $^{1-3}_{2}$ $.236R$ 2.853 | $^{3-4}_{4}$ $^{1.000R}_{2.430}$ | 1-2
2
.800R
2.116 | 1-2
2
.667R
2.614 | $^{3-4}_{4}_{1.000\mathrm{R}}_{2.025}$ | | | 30 | G
N
B
M | 1-4
3
1.400R
4.965 | 1-4
2
2.100L
4.747 | 1-4
2
1.600L
5.186 | $^{1-4}_{3}$ $^{2.300R}_{4.376}$ | 1-4
2
1.200L
4.748 | $^{1-4}_{2}$.700L 5.216 | 2-4
3
1.333R
4.402 | 2-4
3
2.111R
3.985 | $^{1-4}_{2}_{2.400L}_{4.492}$ | 2-4
3
1.625R
3.770 | | Feet | 40 | G
N
B
M | 1-4
3
1.400R
7.449 | 1-4
2
2.100L
7.210 | 1-4 2 $1.600L$ 7.664 | 1-4
3
2.300R
6.832 | $^{1-4}_{2}_{1.200L}_{7.236}$ | $^{1-4}_{2} \hfill .700 L \hfill 7.712$ | 1-4
3
2.200R
6.721 | 1-4
2
3.100L
6.340 | 1-4
2
2.400L
6.944 | 1-4
3
3.300R
5.972 | | Span-Feet | 50 | G
N
B
M | 1-4
3
1.400R
9.939 | 1-4
2
2.100L
9.688 | 1-4 2 1.600L 10.151 | 1-4
3
2.300R
9.306 | $1-4 \\ 2 \\ 1.200 L \\ 9.729$ | 1-4
2
.700L
10.210 | 1-4
3
2.200R
9.197 | $^{1-4}_{2} \ 3.100 \mathrm{L} \ 8.792$ | 1-4
2
2.400L
9.415 | 1-4
3
3.300R
8.418 | | | 60 | G
N
B
M | 1-4
3
1.400R
12.433 | 1-4
2
2.100L
12.174 | 1-4
2
1.600L
12.643 | 1-4
3
2.300R
11.788 | 1-4
2
1.200L
12.224 | 1-4
2
.700L
12,708 | 1-4
3
2.200R
11.681 | 1-4
2
3.100L
11.260 | 1-4
2
2.400L
11.896 | 14
3
3.300R
10.882 | | | 80 | G
N
B
M | 1–4
3
1.400R
17.425 | 1-4
2
2.100L
17.155 | 1-4
2
1.600L
17.632 | $^{1-4}_{3}$ $^{2.300R}_{16.766}$ | 1-4
2
1.200L
17.218 | 1–4
2
.700L
17,706 | $^{1-4}_{3}$ $^{2.200}$ R $^{16.661}$ | $^{1-4}_{2} \ _{3.100L} \ _{16,220}$ | 1-4
2
2.400L
16.872 | 1-4
3
3.300R
15.836 | | | 100 | G
N
B
M | 1-4
3
1.400R
22.420 | 1-4
2
2.100L
22.144 | 1-4
2
1.600L
22.626 | 1-4
3
2.300R
21.753 | 1-4
2
1.200L
22.214 | 1–4
2
.700L
22,705 | 1-4
3
2.200R
21.648 | 1-4
2
3.100L
21.196 | 1-4
2
2.400L
21.858 | 1-4
3
3.300R
20.809 | a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. G-Axle group causing maximum moment, thus, 1-3 means axles 1, 2, and 3. N-Number of critical axle under which maximum moment occurs. B-Distance to right or left of mid-span to point of maximum moment. M-Maximum moment. | 66 | METHOD | OF | CONVERTING | HEAVY | MOTOR | VEHICLE | LOADS | |----|-----------------|----|------------|-------|-------|---------|-------| | 30 | 141 - 1 1 1 0 0 | • | | | | | | | Γrι | ick N | 0. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |-----|------------------|-------------------------------|------------------------|-----------------------------|-----------------------------|--|-----------------------------|------------------------------|--|-------------------------------------|--------------------------|---------------------| | Νŀ | ı. Bas | e L | 24 | 24 | 28 | 28 | 28 | 28 | 28 | 28 | 32 | 32 | | × | | X, | . 8 | 8 | 8 | .8 | 8 | 8 | 8 | $\frac{8}{16}$ | $\frac{8}{20}$ | 20 | | op. | acing | X' | .20 | $-\frac{12}{.20}$ | .10 | .10 | .10 | | .20 | .20 | .10 | .10 | |)n | | a ₂ | .40 | .50 | .30 | .40 | .50 | .30 | .40 | .50 | .30 | .40 | | X | les | a ₃ | 40 | .30 | .60 | .50 | .40 | .50 | .40 | .30 | | .50 | | 1 | 10 | G
N | $\frac{2}{2}$ | 2
2 | 3 4
4 | 2
2 | $\frac{2}{2}$ | $_{4}^{3-4}$ | $\frac{2}{2}$ | $\frac{2}{2}$ | 34
4 | 2 | | | | В | 0 | 0 | 1.000R | 0 | 0 | 1.000R | 0 | 0 | 1.000R
.960 | 0 | | į | | _ <u>M</u> | $\frac{1.000}{1-2}$ | $\frac{1.250}{1-2}$ | | $\frac{1.000}{1-2}$ | 1.250
1-2 | .800
3-4 | $\frac{1.000}{1-2}$ | 1.250
1-2 | 3-4 | $\frac{1.0}{1-2}$ | | | 20 | N | 2 | 2 | 4 | 2 | 2 | 4 | 2 | 2 | 4 | 2 | | i | | B
M | $^{1.333 m R}_{2.252}$ | 1.143R
2.745 | $1.000 \mathbf{R} \\ 2.430$ | .800R
2.116 | $^{.667 m R}_{2.614}$ | $^{1.000 m R}_{2.025}$ | $1.333\mathbf{R} \ 2.252$ | 1.143R
2.745 | 1.000R
2.430 | $\frac{.80}{2.1}$ | | | | | 1-4 | 1-3 | 3-4 | 1-2 | 1-2 | 3-4 | 12 | 1-2 | 3-4 | 1-2 | | Ì | 30 | N | 2 | 2 | 4 | 2 | 2 | 4 | 2 | 2 | 4 | 2 | | į | | B
M | 2.000L
4.033 | 4.673 | 1.000R
3.920 | 3.361 | 667R 4.110 | 1.000R 3.267 | 1.333R
3.734 | 1.143R
4.480 | 1.000R
3.920 | $\frac{.80}{3.8}$ | | - | | G | 1-4 | 14 | 2-4 | 1-4 | 14 | 2-4 | 14 | 1-4 | 2-4 | 2- 4 | | : | 40 | N | 2 20001 | 2
1.300 L | $^{3}_{2.000 m R}$ | $^{2}_{4.100L}$ | $\frac{2}{3.200 L}$ | 3 | $^{2}_{2.800 L}$ | $^2_{1.900\mathrm{L}}$ | $^3_{2.667 m R}$ | 3 | | 1 | | B
M | 6.500L | 7.142 | 6.090 | 5.520 | 6.256 | 2.375R 5.212 | 5.796 | 6.590 | 5.561 | 3.88
4.8 | | | | G | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 1–4 | 1-4 | 1-4 | 14 | 1-4 | | | 50 | N
B | $^{2}_{2.000 m L}$ | $^{2}_{1.300 \rm L}$ | 3.000R | $^{2}_{4,100L}$ | $\frac{2}{3.200}\mathbf{L}$ | $^3_{4.300 m R}$ | $^{2}_{2.800 \rm L}$ | $^{2}_{1.900L}$ | $3.800 \mathrm{R}$ | $\frac{2}{5.10}$ | | ĺ | | M | 8.980 | 9.634 | 8.480 | 7.936 | 8.705 | 7.570 | 8.257 | 9.072 | 7.789 | 7.1 | | Ì | | G | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 14 | 1-4 | 1-4 | 1-4 | 1-4 | | | 60 | N
B | $\frac{2}{2.000}$ L | $^{2}_{1.300L}$ | 3.000R | $\frac{2}{4.100 L}$ | $^{2}_{3.200 \rm L}$ | $^{3}_{4.300 m R}$ | $^{2}_{2.800 \rm L}$ | $^{2}_{1.900L}$ | $3 \\ 3.800 m R$ | $\frac{2}{5.10}$ | | 1 | | M | 11.467 | 12.128 | 10.950 | 10.380 | 11,171 | 10.008 | 10.731 | 11.560 | 10.241 | 9. | | | 80 | G
N | $^{1-4}_2$ |
$^{1-4}_{2}$ | $^{1-4}_{3}$ | $^{1-4}_{2}$ | $\frac{1-4}{2}$ | 14
3 | $^{1-4}_2$ | $^{1-4}_2$ | $\frac{1-4}{3}$ | 1-4
2 | | | | В | 2.000 L | $1.300I_{-}$ | 3.000R | 4.100L | 3.200 L | 4.300R | 2.800L | 1.900L | $3.800\mathbf{R}$ | 5.10 | | | | M | 16.450 | 17.121 | 15.913 | 15.310 | 16.128 | $\frac{14.931}{4}$ | 15.698 | 16.545 | 15.181 | 14.4 | | | 100 | G
N | $^{1-4}_{2}$ | $^{1-4}_2$ | 14
3 | $\frac{1-4}{2}$ | $\frac{1-4}{2}$ | $^{1-4}_3$ | $\frac{1-4}{2}$ | 1-4
2 | $^{1-4}_3$ | $^{1-4}_{2}$ | | | | В | 2.000L | 1.300L | 3.000R | 4.100L | 3.200L | 4.300R | 2.800L | 1.900L | 3.800R | 5.10 | | | 1.37 | M | 21.440 | 22.117 | 20.890 | 20.268 | 21.102 | 19.885 | 20.678 | 21.536 | 20.144 | 19.5 | | | ick N
i. Base | | $\frac{21}{32}$ | $\frac{22}{32}$ | $\frac{23}{32}$ | $\frac{24}{32}$ | $\frac{25}{36}$ | 26
36 | $\frac{27}{36}$ | $\frac{28}{36}$ | 29
36 | $-\frac{3}{3}$ | | | le | X | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | | | acing | X′ | 20 | 20 | 20 | 20 | 24 | 24 | 24 | 24 | 24 | 2 | | n | ad | \mathbf{a}_1 \mathbf{a}_2 | .10
.50 | .20
.30 | .20 | .20 | .10
.30 | .10
.40 | .10
.50 | .20
.30 | .20
.40 | .2 | | | les | a 3 | .40 | .50 | .40 | .30 | .60 | .50 | .40 | .50 | .40 | .3 | | 1 | 10 | G
N | 2
2 | 3 -4
4 | 2 2 | 2 2 | $_{4}^{3-4}$ | 2 2 | 2
2 | 34
4 | 2
2 | $\frac{2}{2}$ | | | 10 | \mathbf{B} | 0 | 1.000R | 0 | 0 | 1.000R | 0 | 0 | 1.000R | 0 | 0 | | ĺ | | M | 1.250 | .800 | 1.000 | 1.250 | .960 | 1.000 | 1.250 | .800 | 1.000 | | | 1 | 20 | G
N | $\frac{1}{2}$ | 3-4
4 | $^{1-2}_{2}$ | $\frac{1-2}{2}$ | 3-4
4 | $\frac{1-2}{2}$ | $\frac{1-2}{2}$ | $\frac{3-4}{4}$ | $^{1-2}_2$ | 1-2
2 | | | | \mathbf{B} | .667R | 1.000R | 1.333R | 1.143R | 1.000R | .800R | .667R | 1.000R | 1.333R | 1.14 | | | | M
G | $\frac{2.614}{1-2}$ | $\frac{2.025}{3-4}$ | $\frac{2.252}{1-2}$ | $\frac{2.745}{1-2}$ | 2.430
3-4 | $\frac{2.116}{1-2}$ | $\frac{2.614}{1-2}$ | 3-4 | $\frac{2.252}{1-2}$ | $-\frac{2.7}{1-2}$ | | | 30 | N | 2 | 4 | 2 | 2 | 4 | 2 | 2 | 3-4
4 | 2 | 2 | | | | B
M | 0.667R
0.667R | $^{1.000 m R}_{3.267}$ | 1.333R 3.734 | 1.143R | 1.000R | .800R | .667R | 1.000R
3.267 | 1.333R | 1.14 | | | | G | 1-3 | 2-4 | 1-3 | $\frac{4.480}{1-2}$ | 3.920 | $\frac{3.361}{1-2}$ | $\frac{4.110}{1-2}$ | 3-4 | $\frac{3.734}{1-2}$ | 1-2 | | , | 40 | N | 2 | 3 | 2 | 2 | 4 | 2 | 2 | 4 | 2 | 2 | | | | B
M | $2.000L \\ 5.680$ | 3.125R
4.695 | 1.500L 5.245 | $^{1,143 m R}_{6.222}$ | 1.000R 5.415 | $0.800 \mathrm{R} \\ 4.608$ | $\begin{array}{c} .667\mathrm{R} \\ 5.608 \end{array}$ | 1.000R
4.513 | 1.333R
5.226 | 1.14
6.2 | | | | G | 1-4 | 14 | 1-4 | 1-4 | 2-4 | 2 4 | 1-4 | 2-4 | 1-4 | 1-8 | | | 50 | N | 2 | 3 | 2 | 2 | 3 | 3 | 2 | 3 | 2 | 2 | | - | | B
M | $4.000L \\ 8.020$ | $5.300 \mathbf{R} \\ 6.762$ | $\frac{3.600 L}{7.559}$ | $2.500L \\ 8.525$ | $^{3.333R}_{7.249}$ | $^{4.778 m R}_{6.359}$ | $4.800L \\ 7.361$ | $3.875\mathbf{R} \\ 6.140$ | 6.887 | 1.17
8.0 | | | | -G | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | | - | 60 | N
B | 2
4.000L | 3
5.300R | $\frac{2}{3.600}$ L | $^{2}_{2.500 m L}$ | $^{3}_{4,600R}$ | 2
6 1001 | $^{2}_{4.800L}$ | 8
6 300P | 2 | 2 | | | | M | 10.467 | 9.168 | 10.016 | $\frac{2.50015}{11.004}$ | 9.553 | $6.100 { m L} \\ 8.720$ | 9.784 | $\substack{6.300\mathrm{R}\\8.361}$ | 4.400L
9.323 | $\frac{3.10}{10.4}$ | | | | G | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | | | 80 | N
B | $^{2}_{4.000 m L}$ | $_{5.300\mathrm{R}}^{3}$ | $\frac{2}{3.600 L}$ | $\begin{array}{c} 2 \\ 2.500 \mathbf{L} \end{array}$ | $^3_{4.600 m R}$ | $\frac{2}{6.100L}$ | 2
4.800L | $_{6.300\mathrm{R}}^{3}$ | 2
4 400T | 2 10 | | | | M | 15.400 | 14,051 | 14.962 | 15.978 | 14.465 | 13,565 | 14.688 | 13.196 | $^{4.400}$ L $^{14.242}$ | $\frac{3.10}{15.4}$ | | : | | G | 1-4 | 1–4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | | Ì | | | 2 | 3 | 2 | 2 | 3 | 2 | 2 | 3 | 2 | 2 | | Ì | 100 | N
B | 4.000L | 5.300R | 3.600L | 2.5001 | 4.600R | 6.100L | 4.800L | 6.300R | 4.400L | 3.10 | METHOD FOR RATING HEAVY VEHICLE LOADS TABLE 7.4 (Continued) Truck No. Wh. Base L 8 .20 $\frac{8}{28}$ 28 8 Axle Spacing X X' 28 28 28 28 Load .10 .10 .10 .20 .20 .20 .10 .10 a₁ | Loa
On | | a ₁
a ₂ | .10
.30 | .10
.40
.50 | .10
.50
.40 | .20
.30 | .20
.40
.40 | .20
.50
.30 | .10
.30
.60 | .10
.40
.50 | .10
.50
.40 | .20
.30 | |-----------|-------------|----------------------------------|---|---|------------------------------|---|--|---|--|---|--------------------------------------|--------------------------------------| | Ax | es | G
G | 3-4 | 2 | 2 | 50
34 | 2 | 2 | 3-4 | 2 | 2 | 3-4 | | | 10 | N
B
M | 4
1,000R
.960 | $\frac{1}{0}$ | $\frac{1}{2}$ | 1.000R
.800 | $\frac{1}{0}$ | $\frac{1}{2}$ | 4
1.000R
.960 | $\begin{array}{c} -2\\0\\1.000\end{array}$ | $\frac{1}{2}$ 0 1.250 | 4
1.000R
.800 | | | 20 | G
N
B | 3-4
4
1.000R | 1-2
2
.800R | 1-2
2
.667R | 3-4
4
1.000R | 1-2
2
1.333R | 1–2
2
1.143R | 2–4
3
.667R | 2-4
3
1.222R | 2-3
2
1.143L | 2-4
3
.875R | | | 30 | G
N
B | 2.430
3-4
4
1.000R | 2.116
12
2
.800R | 2.614
1 2
2
.667R | 2.025
3-4
4
1.000R | 2.252
1 2
2
1.333R | 2.745
1-2
2
1.143R | 2.721
2 4
3
.667R | 2.469
2-4
3
1.222R | 2.745
1-4
2
1.400L | $\frac{2.331}{2-4}$ $\frac{3}{875R}$ | | | 40 | M
G
N | 3.920
3-4
4 | $\frac{3.361}{1-2}$ | $\frac{4.110}{1-2}$ | 3.267
3–4
4 | $\frac{3.734}{1-2}$ | 4.480
1-2
2 | 4.965
1-4
3 | 4.697
1-4
3 | 4.965
1-4
2 | 4.320
1-4
3 | | Span-Feet | | B
M
G | 1.000R
5.415
3-4 | .800R
4.608
1-2 | .667R
5.608
1-2 | 1.000R
4.513
3-4 | 1.333R
5.226
1–2 | 1.143R
6,222
1-2 | 1.600R
7.264
1-4 | 2.100R
7.010 | 1.400L
7.449
1-4 | 2.700R
6.482
1-4 | | Spa | 50 | N
B
M | $^{4}_{1.000\mathrm{R}}_{6.912}$ | 2
.800R
5.857 | 2
.667R
7.106 | $^{4}_{1.000R}_{5.760}$ | 2
1.333R
6.721 | $^2_{1.143R}_{7.967}$ | 3
1.600R
9.751 | 3
2.100R
9.488 | 2
1.400L
9.939 | 3
2.700L
8.946 | | | 60 | G
N
B
M | 2-4
3
4.000R
8.940 | 1-4
2
7.100L
7.940 | 1-4
2
5.600L
9.123 | 1-4
3
7.300R
7.588 | 1-4
2
5.200L
8.651 | 1-4
2
3.700L
9.928 | $^{1-4}_{3}$ $^{1.600}$ R $^{12.243}$ | 1–4
3
2.100R
11.974 | 1-4
2
1,400L
12,433 | $^{1-4}_{3}$ $^{2.700R}_{11.422}$ | | | | - 11 | 1-4 | 1-4 | 1-4 | 1-4 | 14 | 1-4 | 14 | 1-4 | 1-4 | 1-4 | | | 80 | N
B
M | 3
5.400R
13.765 | $\begin{array}{c} 2\\ 7.100L\\ 12.730 \end{array}$ | $^{2}_{5.600L}_{13.992}$ | $^3_{7.300 m R}_{12.366}$ | $\begin{array}{c} 2 \\ 5.200 \mathrm{L} \\ 13.538 \end{array}$ | $\begin{array}{c} 2 \\ 3.700 L \\ 14.871 \end{array}$ | $\begin{array}{c} 3 \\ 1.600 \mathrm{R} \\ 17.232 \end{array}$ | 3
2.100R
16.955 | 2
1.400L
17.425 | 3
2.700R
16.391 | | | 100 | G
N
B
M | $^{1-4}_{3}$ $^{5.400}$ R $^{18.692}$ | 1-4
2
7.100L
17.604 | 1-4
2
5.600L
18.914 | 1-4 3 $7.300R$ 17.233 | 1-4
2
5.200L
18.470 | 1-4
2
3.700L
19.837 | 14
3
1.600R
22.226 | 1-4
3
2.100R
21.944 | 14
2
1.400L
22.420 | 1-4
3
2.700R
21.373 | | Tr | uck N | | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | | 100 | h. Bas | | 24 | 24 | 28 | 28 | 28 | 28 | 28 | 28 | 32 | 32 | | | le
acing | X
X' | 12 | 12
8 | 12
12 | 12
12 | 12
12 | 12
12 | 12
12 | 12
12 | 12
16 | 12
16 | | Lo | ad | a ₁ | .20
.40 | .20
.50 | .10 | .10
.40 | .10
.50 | .20 | .20
.40 | .20
.50 | .10
.30 | .10
.40 | | | les | \mathbf{a}_{β} | .40 | .30 | .60 | .50 | .40 | .50 | .40 | .30 | .60 | .50 | | | 10 | G
N
B
M | $\begin{array}{c} 2 \\ 2 \\ 0 \\ 1.000 \end{array}$ | $\begin{array}{c} 2 \\ 2 \\ 0 \\ 1.250 \end{array}$ | 3-4
4
1.000R
.960 | $\begin{array}{c} 2 \\ 2 \\ 0 \\ 1.000 \end{array}$ | $\begin{array}{c} 2 \\ 2 \\ 0 \\ 1.250 \end{array}$ | 3–4
4
1.000R
.800 | $\begin{array}{c} 2 \\ 2 \\ 0 \\ 1.000 \end{array}$ | $\begin{array}{c} 2 \\ 2 \\ 0 \\ 1.250 \end{array}$ | 3-4
4
1.000R
.960 | 2
2
0
1.000 | | | 20 | G
N
B | 2-3
2
1.333L
2.252 | 2-3
2
.923L
2.677 | 3-4
4
1.000R
2.430 | 3-4
4
1.000R
2.025 | $\begin{array}{c} 2 \\ 2 \\ 0 \\ 2.500 \end{array}$ | 3-4
4
1.000R
2.025 | 2 2 | 2
2
0
2.500 | 3–4
4
1.000R
2.430 | 3-4
4
1.000R
2.025 | | | | G | 1-4 | 1-4 | 2-4 | 2-4 | 1-4 | 2-4 | 1-3 | 1-3 | 3-4 | 2-4 | | | 30 | N
B
M | .800L
4.321 | $^2_{.300L} \ _{4.803}$ | 3
1.333R
4.402 | $\begin{array}{c} 3 \\ 2.111R \\ 3.985 \end{array}$ | $^2_{2.200L}_{4.261}$ | $^{3}_{1.625\mathrm{R}}$ $^{3.770}$ | $\frac{2}{0}$ 3.600 | 2
.353 R
4.277 | $^{4}_{1.000R}$ $^{3.920}$ | 3
3.000R
3.320 | | Feet | 40 | G
N
B
M | 1-4
2
.800L
6.816 | 1-4
2
.300L
7.302 | 2–4
3
1.333R
6.639 | 2-4
3
2.111R
6.201 | $^{1-4}_{2}$ $^{2.200L}_{6.721}$ | 2–4
3
1,625R
5,753 | 1-4
2
1.600L
6.064 | 1-4
2
.900L
6.720 | $^{2-4}_{3}$ $^{2.000}$ R $^{6.090}$ | 2-4
3
3.000R
5.503 | | Span-Feet | 50 | G
N
B | 1 4
2
.800L
9.313 | 1-4
2
.300L
9,802 |
1-4
3
2.400R
9.015 | 1-4
3
3.100R
8.592 | 1-4
2
2.200L
9.197 | 1-4
3
3.700R
8.074 | | 1-4
2
.900L
9.216 | 2-4
3
2.000R
8.322 | 1-4
3
4.100R
7.736 | | | 60 | | 1-4
2
.800L
11.811 | 1-4
2
.300L
12,302 | 1-4
3
2.400R
11.496 | 1-4 | 1-4 | 1-4
3
3.700R
10.528 | 1-4
2
1.600L | 1-4
2
.900L
11.714 | 1-4
3
3.200R
10.771 | 1–4
3
4.100R | | | 80 | G | 1-4
2
.800L
16,808 | 1-4
2 | 1-4
3 | 1-4
3 | 1-4 | 1-4
3 | 1-4
2
1.600L | 1-4
2 | 14
3 | 1–4
3
4.100R | | | 100 | G | 1-4
2
.800L
21.806 | 1-4
2 | 1-4
3 | 1-4
3 | 1-4 | 14
3 | 1-4
2
1.600L | 1–4
2 | 1-4
3
3.200R
20.702 | 1–4
3
4.100R | ## 68 METHOD OF CONVERTING HEAVY MOTOR VEHICLE LOADS TABLE 7.4 (Continued) | | uck N | | (Continue
51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | |---|--------|--|---|------------------------------------|---|---|-------------------------------|---|---|----------------------------------|---|------------------------------| | | n. Bas | | 32 | 32 | 32 | 32 | 36 | 36 | 36 | 36 | 36 | 36 | | | acing | X
X' | 12
16 | 12
16 | 12
16 | 12
16 | 12
20 | 12
20_ | 12
20 | 12
20 | 12
20 | 12
20 | | Lo:
On
Ax | | a ₁
a ₂
a ₃ | .10
.50
.40 | .20
.30
.50 | .20
.40
.40 | .20
.50
.30 | .10
.30
.60 | .10
.40
.50 | .10 $.50$ $.40$ | .20
.30
.50 | .20
.40
.40 | .20
.50
.30 | | | 10 | G
N
B
M | $\begin{array}{c} 2 \\ 2 \\ 0 \\ 1.250 \end{array}$ | 3-4
4
1.000R
.800 | 2
2
0
1.000 | 2
2
0
1.250 | 3 4
4
1.000R
.960 | 2
2
0
1.000 | $\begin{array}{c} 2 \\ 2 \\ 0 \\ 1.250 \end{array}$ | 3-4
4
1.000R
.800 | 2
2
0
1.000 | 2
2
0
1.250 | | | 20 | G
N
B
M | $\begin{array}{c} 2 \\ 2 \\ 0 \\ 2.500 \end{array}$ | $^{3-4}_{4}$ $^{1.000}$ $^{2.025}$ | $\begin{array}{c} 2 \\ 2 \\ 0 \\ 2.000 \end{array}$ | $\begin{array}{c} 2 \\ 2 \\ 0 \\ 2,500 \end{array}$ | 3-4
4
1.000R
2.430 | $^{3-4}_{4}$ $^{1.000R}_{2.025}$ | $\begin{array}{c} 2 \\ 2 \\ 0 \\ 2.500 \end{array}$ | $^{3-4}_{4}$ $^{1.000R}_{2.025}$ | $\begin{array}{c} 2 \\ 2 \\ 0 \\ 2.000 \end{array}$ | 2
2
0
2.500 | | | 30 | G
N
B
M | 1-2
2
1.000R
3.920 | 3-4
4
1.000R
3.267 | $^{1-2}_{2}_{2.000R}_{3.380}$ | 1-2 2 $1.715R$ 4.118 | 3-4
4
1.000R
3.920 | 3-4
4
1.000R
3.267 | $1-2 \\ 2 \\ 1.000 R \\ 3.920$ | 3–4
4
1.000R
3.267 | 1-2
2
2.000R
3.380 | 1-2
2
1.715F
4.118 | | -Feet | 40 | G
N
B
M | 1-4
2
3.000L
6.025 | 2-4
3
2.375R
5.212 | 1-4
2
2.400L
5.344 | $^{1-4}_{2}_{1.500L}$ 6,156 | $^{2-4}_{3}_{2.667R}_{5.561}$ | 2–4
3
3.889R
4.839 | $^{1-3}_{2} \ _{1.750L} \ _{5.462}$ | 2-4
3
3.125R
4.695 | $^{1-2}_{2}_{2.000\mathrm{R}}_{4.860}$ | 1-2
2
1.715F
5.851 | | Span-Feet | 50 | G
N
B
M | 1-4
2
3.000L
8.480 | 1-4
3
4.700R
7.242 | 1-4
2
2.400L
7.815 | 1-4
2
1.500L
8.645 | 2–4
3
2.667R
7.779 | 2–4
3
3.889R
7.021 | $^{1-4}_{2}_{3.800L}_{7.789}$ | 2-4
3
3.125R
6.656 | 1-4
2
3.200L
7.105 | 1-4
2
2.100L
8.088 | | | 60 | G
N
B | 1-4
2
3.000L
10.950 | 1-4
3
4.700R
9.668 | 1-4
2
2.400L
10.296 | 1-4
2
1.500L
11.138 | 1-4
3
4.000R
10.067 | 1–4
3
5.100R
9.334 | 1-4
2
3.800L
10.241 | 1-4
3
5.700R
8.842 | 1-4
2
3.200L
9.571 | 1-4
2
2.100L
10.574 | | | 80 | G
N
B | 1-4
2
3.000L
15.913 | 1–4
3
4.700R
14.576 | 1–4
2
2,400L
15.272 | 1-4
2
1.500L
16,128 | 1–4
3
4.000R
15.000 | 1–4
3
5.100R
14.225 | 1-4
2
3.800L
15.181 | 1-4
3
5.700R
13.706 | 1-4
2
3.200L
14.528 | 1-4
2
2.100L
15.555 | | | 100 | G
N
B
M | 1-4
2
3.000L
20.890 | 1-4
3
4.700R
19.521 | 1-4
2
2.400L
20.258 | 1-4
2
1.500L
21.123 | 1-4
3
4.000R
19.960 | 1-4
3
5.100R
19.160 | 1-4
2
3.800L
20.144 | 1–4
3
5.700R
18.625 | 1-4
2
3.200L
19.502 | 1-4
2
2.100L
20.544 | | Tru | ick No | o. | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | | $\frac{\mathbf{W}\mathbf{h}}{\mathbf{A}\mathbf{x}}$ | . Base | | 40
12 | $\frac{40}{12}$ | $\frac{40}{12}$ | $\frac{40}{12}$ | $-\frac{40}{12}$ | 40
12 | 44 | <u>44</u>
12 | 44 | 44 | | | icing | X
X' | 24 | 24 | 24 | 24 | 24 | 24 | 12
28 | 28 | 12
28 | 12
28 | | Loa
On
Ax | | \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_3 | .10
.30
.60 | .10
.40
.50 | .10
.50
.40 | .20
.30
.50 | .20
.40
.40 | .20
.50
.30 | .10
.30
.60 | .10
.40
.50 | .10
.50
.40 | .20
.30
.50 | | | 10 | G
N
B
M | 3-4
4
1.000R
.960 | 2
2
0
1.000 | 2
2
0
1.250 | 3-4
4
1.000R
.800 | 2
2
0
1.000 | $\begin{array}{c} 2 \\ 2 \\ 0 \\ 1,250 \end{array}$ | 3-4
4
1.000R
.960 | 2
2
0
1.000 | 2
2
0
1.250 | 3-4
4
1.000R
.800 | | | 20 | G
N
B
M | 3-4
4
1.000R
2.430 | 3-4
4
1.000R
2.025 | 2
2
0
2.500 | 3-4
4
1.000R
2.025 | 2
2
0
2.000 | 2
2
0
2.500 | 3-4
4
1.000R
2.430 | 34
4
1.000R
2.025 | 2
2
0
2.500 | 3-4
4
1.000R
2.025 | | | 30 | G
N
B
M | 3-4
4
1.000R
3.920 | 3-4
4
1.000R
3.267 | 1.2
2
1.000R
3.920 | 3-4
4
1.000R
3.267 | 1-2
2
2.000R
3.380 | 1-2
2
1.715R
4.118 | 3-4
4
1.000R
3.920 | 3-4
4
1.000R
3.267 | 1-2
2
1.000R
3.920 | 3-4
4
1.000R
3.267 | | n-Feet | 40 | G
N
B
M | 3-4
4
1.000R
5.415 | 3-4
4
1.000R
4.513 | 1-2
2
1.000R
5.415 | 3-4
4
1.000R
4.513 | 1-2
2
2.000R
4.860 | 1-2
2
1.715R
5,851 | 3-4
4
1.000R
5.415 | 3-4
4
1.000R
4.513 | 1-2
2
1.000R
5.415 | 3-4
4
1.000R
4.513 | | Span | 50 | G
N
B | 2–4
3
3.333R
7.249 | 2-4
3
4.778R
6.359 | 13
2
2.250L
7.081 | 2–4
3
3.875R
6,140 | 1-3
2
1.500L
6.436 | 1-3
2
.706L
7.634 | 3–4
4
1.000R
6.912 | 3-4
4
1.000R
5.760 | 1-2
2
1.000R
6.912 | 3-4
4
1.000R
5.760 | | | 60 | G
N
B | 2-4
2
3.333R
9.465 | 2-4
3
4.778R
8.541 | 1-4
2
4.600L
9.553 | 2-4
3
3.875R
8.100 | 1-4
2
4.000L
8.867 | 1-4
2
2.700L
10.022 | 2-4
3
4.000R
8.940 | 2-4
3
5.667R
7.883 | 1-4
2
5.400L
8.886 | 2-4
3
4.625R
7.586 | | | 80 | G
N
B
M | 1-4
3
4.800R
14.288 | 1-4
3
6.100R
13.365 | 1-4
2
4.600L
14.465 | 1-4
3
6.700R
12.861 | 1-4
2
4.000L
13.800 | 1-4
2
2.700L
14.991 | 1-4
3
5.600R
13.592 | 1-4
3
7.100R
12.530 | 1-4
2
5.400L
13.765 | 1-4
3
7.700R
12.041 | | | 100 | G
N
B | 1-4
3
4.800R
19.230 | 1-4
3
6.100R
18.272 | 1-4
2
4.600L
19.412 | 1-4
3
6.700R
17.749 | 1-4
2
4.000L
18.760 | 1-4
2
2.700L
19.973 | 1-4
3
5.600R
18.514 | 1-4
3
7.100R
17.404 | 1-4
2
5.400L
18.692 | 1-4
3
7.700R
16.893 | | | | | Continue | d) | | | HEAVY | | | | 70 | • | |------------|-------------|----------------------------------|---|-------------------------------|--|---|--|---|---|-----------------------------|------------------------------|---------------------------| | | . Base | | 71 44 | $-\frac{72}{44}$ | $\frac{73}{28}$ | 74
28 | $\frac{75}{28}$ | $-\frac{76}{28}$ | $-\frac{77}{28}$ | $\frac{78}{28}$ | 79
32 | 80 | | Axl | le | X | 12 | 12 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | | Spa
Loa | icing
id | X' | | .20 | .10 | .10 | .10 | $-\frac{8}{.20}$ | .20 | .20 | .10 | .10 | | On
Axl | les | a ₂
a ₃ | .40
.40 | .50
.30 | .30 $.60$ | .40
.50 | .50
.40 | .30
.50 | .40
.40 | .50
.30 | .30 $.60$ | .40
.50 | | | 10 | G
N
B | 2
2
0 | 2
2
0 | 3-4
4
1.000R | 2
2
0 | 2 2 0 | 3-4
4
1.000R | 2
2
0 | 2
2
0 | 3-4
4
1.000R | 2
2
0 | | ŀ | 20 | G
N
B | 1.000
2
2
0 | $\frac{1.250}{2}$ | $\frac{960}{2-4}$ $\frac{3}{667R}$ | 1.000
2-4
3
1.222R | 1.250
2-3
2
1.143L | .800
2-4
3
.875R | 1.000
2-3
2
1.333L | 1.250
2-3
2
.923L | 3-4
4
1.000R | 1.0
3-4
4
1.000 | | - | | <u>M</u> | $-\frac{2.000}{1-2}$ | $\frac{2.500}{1-2}$ | $\frac{2.721}{2-4}$ | $\frac{2.469}{2-4}$ | $\frac{2.745}{2-4}$ | $\frac{2.331}{2-4}$ | $\frac{2.252}{2-4}$ | $\frac{2.677}{2-4}$ | 2.430 | 2.0 | | | 30 | N
B
M | 22.000R 3.380 | 2
1.715R
4.118 | $^{3}_{.667\mathrm{R}}$ $^{4.965}$ | 3
1.222R
4.697 | $^{2}_{\substack{2.222\mathrm{L}\\4.900}}$ | $^{3}_{.875\mathrm{R}}$ $^{4.320}$ | 2
2.500L
4.167 |
$^2_{1.875L}_{4.594}$ | 3
1.333R
4.402 | 3
2.111
3.9 | | Feet | 40 | G
N
B
M | 1-2
2
2.000R
4.860 | 1-2
2
1.715R
5.851 | $\begin{array}{c} 24 \\ 3 \\ .667 \mathrm{R} \\ 7.211 \end{array}$ | 2-4
3
1.222R
6.935 | 1-4
2
1.200L
7.236 | 2-4
3
.875R
6.315 | 1-4
2
.400L
6.404 | 1-4
2
.100R
6.700 | 2-4
3
1.333R
6.639 | 2-4
3
2.111
6.2 | | Span-Feet | 50 | G
N
B
M | 1-2
2
2.000R
6.348 | 1-2
2
1.715R
7.591 | 1-4
3
1.800R
9.565 | 1-4
3
2.300R
9.306 | 1-4
2
1.200L
9.729 | 1-4
3
3.100R
8.592 | 1-4
2
.400L
8.903 | 1-4
2
.100R
9.200 | 2-4
3
1.333R
8.881 | 2-4
3
2.111
8.4 | | | 60 | G
N
B | 1-4
2
4.800L
8.184 | 1-4
2
3.300L
9.482 | 1-4
3
1.800R
12.054 | 1-4
3
2.300R
11.788 | 1-4
2
1.200L
12.224 | 1-4
3
3.100R
11.060 | 1-4
2
.400L
11.403 | 1-4
2
.100R
11.700 | 1-4
3
2.600R
11.313 | 1-4
3
3.300
10.8 | | į | 80 | G
N
B | 1-4
2
4.800 L | 1-4
2
3.300L | 1-4
3
1.800R | 1-4
3
2.300R | 1-4
2
1.200L | 1–4
3
3.100R | 1-4
2
.400L | 1-4
2
.100R | 1-4
3
2.600R | 1-4 3 3.30 | | | 100 | G
N
B | 13.088
1-4
2
4.800L | 14.436
1-4
2
3.300L | 17.041
1-4
3
1.800R | 16.766
1-4
3
2.300R | 17.218
1-4
2
1.200L | 16.020
14
3
3.100R | 16.402
1-4
2
.400L | 16.700
1-4
2
.100R | 16.285
1-4
3
2.600R | 15.8
1-4
3
3.30 | | Tress | ick No | M | 18.030
81 | 19.409
82 | 83 | 21.753
84 | 22.214
85 | 20.996
86 | 21.402
87 | 21.700 | 21.268
89 | 20.8 | | | . Bas | | 32 | 32 | 32 | 32 | 36 | 36 | 36 | 36 | 36 | 36 | | Axl
Spa | le
acing | X
X' | 16
12 | 16
12 | 16
12 | 16
12 | 16
16 | 16
16 | 16
16 | 16
16 | 16
16 | 16 | | Los
On | | 81
82 | .10
.50 | .20
.30 | .20
.40 | .20 | .10 | .10 | .10 | .20
.30 | .20
.40 | .20 | | Axl | les | a ₃ | .40 | .50 | .40 | $\frac{.30}{2}$ | .60 | .50 | .40 | .50 | 2 | .30 | | | 10 | G
N
B
M | $\begin{array}{c} 2 \\ 2 \\ 0 \\ 1.250 \end{array}$ | 3-4
4
1.000R
.800 | 2
2
0
1.000 | $\begin{array}{c} 2 \\ 2 \\ 0 \\ 1.250 \end{array}$ | 3-4
4
1.000R
.960 | $\begin{array}{c} 2 \\ 2 \\ 0 \\ 1.000 \end{array}$ | $\begin{array}{c} 2 \\ 2 \\ 0 \\ 1.250 \end{array}$ | 3-4
4
1.000R
.800 | 2
0
1.000 | 2
2
0
1.2 | | 1 | 20 | G
N
B
M | 2
2
0
2,500 | 3-4
4
1.000R
2.025 | 2
2
0
2.000 | 2
2
0
2,500 | 3-4
4
1.000R
2.430 | 3-4
4
1.000R
2.025 | 2
2
0
2.500 | 3-4
4
1.000R
2.025 | 2
2
0
2.000 | 2
2
9
2.5 | | - | 30 | G
N
B | 2-4
2
3.111L
4.241 | 2 · 4
3
1.625R
3.770 | 2-4
2
3.500L
3.527 | 2-4
2
2.625L
4.084 | 3-4
4
1.000R
3.920 | 2 4
3
3.000R
3.320 | 2-3
2
2.286L
3.772 | 3-4
4
1.000R
3.267 | 2-3
2
2.667L
3.043 | 1-2
2
2.28
3.7 | | eet | 40 | G
N
B | 1-4
2
2.000L | 2-4
3
1.625R | 1-4
2
1.200L | 1-4
2
.500L | 2-4
3
2.000R | $\frac{2-4}{3}$ 3.000R | 1-4
2
2.800L | 2-4
3
2.375R | 1-4
2
2.000L | 1-4
2
1.10 | | Span-Feet | 50 | G
N
B | 6.500
1-4
2
2,000L | 5,753
2-4
3
1.625R | 5.636
1-4
2
1.200L | 6.306
1-4
2
.500L | 6.090
2-4
3
2.000R | 5.503
2-4
3
3.000R | 5.796
1-4
2
2.800L | 5.212
2-4
3
2.375R | 4.900
1-4
2
2.000L | 5.7
1-4
2
1.10 | | | 60 | G
N
B | 8.980
1-4
2
2.000L | 7.742
1-4
3
4.100R | 8.129
1-4
2
1.200L | 8.805
1-4
2
.500L | 8.322
1-4
3
3.400R | 7.712
1-4
3
4.300R | 8.257
1-4
2
2.800L | 7.190
1-4
3
5.100R | 7.380
1-4
2
2.000L | 8.2
1-4
2
1.10 | | | 80 | G
N
B | 11.467
1-4
2
2.000L | 10.180
1-4
3
4.100R | 10.624
1-4
2
1.200L | 11.304
1-4
2
.500L | 10,593
1-4
3
3,400R | 10.008
1-4
3
4.300R | 10.731
1-4
2
2.800L | 9.334
1-4
3
5.100R | 9.867
1-4
2
2.000L | 10.7
1-4
2
1.10 | | - 1 | | M
G | 16.450
1-4 | 15.110
1-4 | 15.618 | 16.303
1-4 | 15.545
1-4 | 14.931 | 15.698
1-4 | 14.225 | 14.850
1-4 | 15.7
1-4 | | ruck | k No | | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | |-------------|------|----------------|----------------------------------|----------------------|--------------------|-------------------|---------------------|---------------------|---|----------------------|---------------|-----------------| | Vh. J | Base | L | 40 | 40 | 40 | 40 | 40 | 40 | 44 | 44 | 44 | 44 | | xle | na | X
X' | $\frac{16}{20}$ | 16
20 | $\frac{16}{20}$ | $\frac{16}{20}$ | $\frac{16}{20}$ | $\frac{16}{20}$ | 16 | 16 | 16
24 | $\frac{16}{24}$ | | paci
oad | mg_ | a ₁ | .10 | | .10 | .20 | .20 | .20 | $-\frac{24}{.10}$ | .10 | .10 | .20 | |)n | | a ₂ | .30 | .40 | .50 | .30 | .40 | .50 | .30 | .40 | .50 | .30 | | xles | | a ₃ | .60 | .50 | .40 | .50 | .40 | .30 | .60 | .50 | .40 | .50 | | | 10 | G
N | $_{4}^{3-4}$ | 2
2 | 2
2 | 34
4 | 2
2 | 2 .
2 | $_{4}^{3-4}$ | 2
2 | $\frac{2}{2}$ | 3-4
4 | | 1 | •• | \mathbf{B} | 1.000R | 0 | 0 | 1.000R | 0 | õ | 1.000R | 0 | 0 | 1.000 | | | | M | .960 | 1.000 | 1.250 | .800 | 1.000 | 1.250 | 960 | 1.000 | 1.250 | .8 | | | 20 | G
N | 34
4 | 3-4
4 | $\frac{2}{2}$ | 34
4 | 2
2 | 2
2 | 3-4
4 | 34
4 | $\frac{2}{2}$ | 3-4
4 | | Ì | 20 | В | 1.000R | 1.000R | õ | 1.000R | 0 | 0 | 1.000R | 1.000R | 0 | 1.000 | | | | M | 2.430 | 2.025 | 2.500 | 2.025 | 2.000 | 2.500 | 2.430 | 2.025 | 2.500 | 2.0 | | | 30 | G
N | 3-4
4 | $^{3-4}_{4}$ | $\frac{2}{2}$ | 34
4 | 12
2 | $\frac{1-2}{2}$ | 3-4
4 | 3-4
4 | 2
2 | 3-4
4 | | 1 | 00 | В | 1.000R | 1.000R | ő | 1.000R | $2.6\overline{6}7R$ | 2.286R | 1.000R | 1.000R | 0 | 1.00 | | | | M | 3,920 | 3.267 | 3.750 | 3.267 | 3.043 | 3.772 | 3.920 | 3.267 | 3.750 | 3.2 | | İ | 40 | G
N | $^{2-4}_{3}$ | $\frac{2-4}{3}$ | $\overset{1-3}{2}$ | $^{2-4}_{3}$ | $\overset{1-2}{2}$ | $^{1-2}_2$ | $^{3-4}_4$ | $_{4}^{3-4}$ | $^{1-2}_{2}$ | 3-4
4 | | 3 | 10 | B | 2.667R | 3.889R | 1.500L | 3.125R | 2.667R | 2.286R | 1.000R | 1.000R | 1.333R | 1.000 | | - Landa | | M | 5,561 | 4.839 | 5.245 | 4.695 | 4.508 | 5,492 | 5.415 | 4,513 | 5,226 | 4.5 | | | 50 | G
N | $^{2-4}_{3}$ | 24
3 | 1- ·4
2 | $\frac{2-4}{3}$ | $^{1-4}_{2}$ | $\frac{1-4}{2}$ | $\frac{2-4}{3}$ | $\frac{2-4}{3}$ | $^{1-4}_{2}$ | 2-4
3 | | 1 | 90 | B | 2.667R | 3.889R | 3.600L | 3.125R | 2.800L | 1.700L | 3.333R | 4.778R | 4.400L | 3.87 | | | ~ | M | .779 | 7.021 | 7.559 | 6.656 | 6.657 | 7.658 | 7.249 | 6.359 | 6.887 | 6.1 | | 1 | 60 | G | 2-4
3 | 2-4 | 1–4
2 | 2–4 | 1-4
2 | 14
2 | 2–4
3 | 2-4
3 | 1-4
2 | 2-4
3 | | | 00 | N
B | 2.667R | 3.889R | 3.600L | 3.125R | 2.800L | 1.700L | 3.333R | 4.778R | 4.400L | 3.87 | | | | M. | 10.008 | 9.226 | 10.016 | 8.630 | 9.131 | 10.148 | 9.465 | 8.541 | 9.323 | 8.1 | | | 80 | G
N | 1-4
3 | $^{1-4}_{3}$ | $^{1-4}_{2}$ | $^{1-4}_{3}$ | $^{1-4}_{2}$ | $^{1-4}_2$ | 1-4
3 | 1-4
3 | $^{1-4}_{2}$ | 1-4
3 | | | 60 | B | 4.200R | 5.300R | 3.600L | 6.100R | 2.8001 | 1.700L | $5.000 \mathrm{R}$ | $6.300\mathbf{R}$ | 4.400L | 7.10 | | | | M | 14.821 | 14.051 | 14.962 | 13.365 | 14.098 | 15.136 | 14.113 | 13.196 | 14.242 | 12. | | ١, | 00 | G
N | 1-4
3 | 1–4
3 | 1-4
2 | 1-4
3 | 1-4
2 | 1-4
2 | $\frac{1-4}{3}$ | $^{1-4}_{3}$ | $^{1-4}_{2}$ | 1-4
3 | | 1 | .00 | В | 4.200R | 5.300R | 3.600L | 6.100R | 2.800L | 1.700L | 5.000R | 6.300R | 4.400L | 7.10 | | | | M | 19.776 | 18.981 | 19.930 | 18.272 | 19.078 | 20,129 | 19.050 | 18.097 | 19.194 | 17.4 | | rucl | | 1.60 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | | | | Vh. I | Base | | 44 | 44 | 48 | 48 | 48 | 48 | 48 | 48 | | | | xle
paci | inø | X
X' | $\frac{16}{24}$ | $\frac{16}{24}$ | $\frac{16}{28}$ | $\frac{16}{28}$ | $\frac{16}{28}$ | $\frac{16}{28}$ | $\frac{16}{28}$ | $\frac{16}{28}$ | | | | oad | | a ₁ | .20 | .20 | .10 | .10 | 10 | 20 | .20 | .20 | | | | n | | \mathbf{a}_2 | .40 | .50 | .30 | .40 | .50 | .30 | .40 | .50 | | | | xles | 3 | G. | | $\frac{.30}{2}$ | 3-4 | | $-\frac{.40}{2}$ | 3-4 | $\frac{.40}{2}$ | 30 | | | | | 10 | N | 2 | $\overset{\sim}{2}$ | 4 | $\frac{2}{2}$ | $\frac{2}{2}$ | 4 | $\frac{2}{2}$ | 2 | | | | 1 | | В | 0 | 0 | 1.000R | 0 | 0 | 1.000R | 0 | 0 | | | | | | M | 1.000 | $\frac{1.250}{2}$ | 3-4 | 1.000
3-4 | $\frac{1.250}{2}$ | <u></u> | 1.000 | $\frac{1.250}{2}$ | | | | - | 20 | G
N | 2 | 2 | 4 | 4 | 2 | 4 | 2 | 2 | | | | 1 | | В | 0 | 0 | 1.000R | 1,000R | 0 | 1.000R | 0 | 0 504 | | | | - | | M
G | 2.000 | $\frac{2.500}{1-2}$ | 2.430
3-4 | 2.025
3-4 | $\frac{2.500}{2}$ | $\frac{2.025}{3-4}$ | $\frac{2.000}{1-2}$ | $-\frac{2.500}{1-2}$ | | | | | 30 | N | 2 | 2 | 3-4
4 | 3-4
4 | 2 | 3-4
4 | 2 | $\frac{1-2}{2}$ | | | | 1 | | В | 2.667R | 2.286R | 1.000R | 1.000R | 0 | 1.000R | 2.667R | 2.286R | | | | | | M | 3.043 | 3.772 | 3.920 | 3.267 | 3.750 | 3.267 | $\frac{3.043}{1.9}$ | 3.772 | | | | . | 40 | G
N | 12
2 | $^{1-2}_2$ | 3-4
4 | 3-4
4 | $^{1-2}_{2}$ | 3-4
4 | $^{1-2}_2$ | $^{1-2}_2$ | | | | 3 | | В | 2.667R | 2.286R | 1.000R | $1.000\mathbf{R}$ | 1.333R | 1.000R | 2.667R | 2.286R | | | | | | M | 4.508 | 5.492 | $\frac{5.415}{1}$ | 4.513 | 5.226 | 4.513 | $-\frac{4.508}{1.0}$ | 5.492 | | | | | 50 | G
N | $\frac{1-3}{2}$ | $^{1-3}_{2}$ | $\frac{3-4}{4}$ | $_{4}^{3-4}$ | $\frac{1-2}{2}$ | 3-4
4 | $egin{smallmatrix}
1-2 \ 2 \end{smallmatrix}$ | 1-2
2 | | | | | - 1 | В | 1.000L | .236L | 1.000R | 1.000R | 1.333R | 1.000R | 2.667R | 2.286R | | | | | | M | 6,016 | 7.226 | 6.912 | 5.760 | 6.721 | 5.760 | 5.986 | 7.223 | | | | 1 | 60 | G
N | ${\overset{1-}{\overset{4}{2}}}$ | $\frac{1-4}{2}$ | $_{3}^{2-4}$ | $^{2-4}_{3}$ | $\frac{1-4}{2}$ | $^{2-4}_{3}$ | $\frac{1-4}{2}$ | $^{1-3}_{2}$ | | | | į | | В | 3.600L | 2.300 L | 4.000R | 5.667R | 5.200 L | 4.625R | 4.400L | .588L | | | | _ | | М | 8.416 | 9.588 | 8.940 | 7.883 | 8.651 | 7.586 | 7.723 | 9.045 | | | | İ | 80 | G
N | $\frac{1-4}{2}$ | 1-4
2 | 1-4
3 | $^{1-4}_{3}$ | $^{1-4}_{2}$ | $^{1-4}_{3}$ | $\frac{1-4}{2}$ | 1-4
2 | | | | | v | В | 3.600L | 2.300L | 5.800R | 7.300R | 5.200L | 8.100R | 4.400L | 2.900L | | | | | | M | 13,362 | 14.566 | 13.421 | 12.366 | 13.538 | 11.720 | 12.642 | 14.005 | | | | | | G | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 14 | 1-4 | 1-4 | | | | ١. | 00 | TAT . | n | n | - 0 | | | | | | | | | 1 | .00 | N
B | $\frac{2}{3.600 L}$ | $^{2}_{2.300 \rm L}$ | $_{5.800R}^{3}$ | 3
7.300R | 2
5.200L | $^3_{8,100 m R}$ | $^{2}_{4.400L}$ | $\frac{2}{2.900}$ L | | | Table 7.5 ### CONTROLLING CONDITIONS AND MAXIMUM MOMENTS IN SIMPLE SPANS PRODUCED BY THE TYPE 2-S3 TRUCKS WEIGHING ONE KIP EACH Ninety variations in the Type 2-S3 truck are given in this Table. Each truck number, from 1 to 90, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. | | uck N | - | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |------------|--------|----------------|-----------------|---|--------------------|----------------|-----------------|----------------|-------------------|-------------------------|----------------|-----------------| | W | h. Bas | e L | 24 | 24 | 24 | 24 | 24 | 24 | 28 | 28 | 28 | 28 | | Ax | le | X | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | Sp | acing | X' | 8 | 8 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | | Lo | ad | 81 | .100 | .10 | .10 | .20 | .20 | .20 | .100 | .10 | .10 | .20 | | On | | \mathbf{a}_2 | .225 | .30 | .40 | .20 | .30 | .40 | .225 | .30 | .40 | .20 | | Ax | cles | 8.3 | .675 | .60 | .50 | .60 | .50 | .40 | .675 | .60 | .50 | .60 | | | į. | G | 3-5 | 2 | 2 | 35 | 2 | 2 | 3-5 | 2 | 2 | 3-5 | | | 10 | N | 4 | 2 | 2 | 4 | 2 | 2 | 4 | 2 | 2 | 4 | | | ì | В | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | M | .788 | .750_ | 1.000 | .700 | .750 | 1.000 | .788 | .750 | 1.000 | .700 | | | ì | G | 35 | 3-5 | 1 3 | 3-5 | 1-3 | 1-3 | 3-5 | 3-5 | 1-2 | 3-5 | | | 20 | N | 4 | 4 | 2 | 4 | 2 | 2 | 4 | 4 | 2 | 4 | | | ì | B
M | $0 \\ 2.475$ | $\begin{array}{c} 0 \\ 2.200 \end{array}$ | 2.272 | $^{0}_{2,200}$ | .198R
1.868 | .366R
2.338 | $\frac{0}{2.475}$ | $^{0}_{2,200}$ | 0.800R 0.116 | $^{0}_{2,200}$ | | | i | | | | | | | | | | | | | | | G | $^{2-5}$ | 2-5 | $^{1-5}$ | 2-5 | 1-5 | 1-5 | 2-5 | $^{2-5}$ | 1-4 | $^{2-5}$ | | | 30 | N
B | $^{4}_{1.500R}$ | 3
0 | 2
2.604L | 4
1.500R | $^{2}_{2.204L}$ | 2
1.596L | 4
2.000R | $^{3}_{.667\mathrm{R}}$ | 2
2.324 L | $^{4}_{2.000R}$ | | | | M | 4.568 | 4.350 | 4.322 | 4.060 | 3.858 | 4.389 | 4.170 | 3,763 | 3,662 | 3.706 | | | | G | 1.55 | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | 2-5 | 1-5 | 1-5 | 1-5 | | | 40 | N | 3 | 1–5
3 | $\overset{1-5}{2}$ | 1–5
3 | 2 | 1-5
2 | 2-5
4 | 1–ə
3 | 2 | 1–5
3 | | et | 40 | B | .350R | .800R | 2.6041 | 1.200R | 2.204L | 1.596L | 2.000R | 1.600R | 3.605L | 2.000R | | E, | | M | 6.953 | 6.816 | 6.766 | 6.436 | 6,317 | 6,868 | 6.390 | 6.064 | 5.920 | 5.700 | | Span-Feet | | G | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | 1–5 | 1–5 | 1-5 | 1-5 | 1-5 | | Da : | 50 | Ñ | 3 | 3 | 2 | 3 | 2 | 2 | 3 | 3 | 2 | 3 | | 0 2 | | В | .350R | .800R | 2.604L | 1.200R | 2.204L | 1.596L | 1.000R | 1.600R | 3.605L | 2.000R | | | | M | 9.452 | 9.313 | 9.232 | 8.929 | 8.793 | 9.355 | 8.820 | 8.551 | 8.355 | 8.180 | | | | G | 1–5 | 1-5 | 1-5 | 1-5 | 1–5 | 1–5 | 1–5 | 1–5 | 15 | 1-5 | | i | 60 | N | 3 | 3 | 2 | 3 | 2 | 2 | 3 | 3 | 2 | 3 | | | | В | .350R | $.800\mathbf{R}$ | 2.604L | 1.200R | 2.204L | 1.596L | 1.000R | 1.600R | 3.605L | 2.000R | | | | M | 11.952 | 11.811 | 11.709 | 11.424 | 11.277 | 11.847 | 11.317 | 11.043 | 10.812 | 10.667 | | | | G | 15 | 1-5 | 1-5 | 1-5 | 1–5 | 1-5 | 1–5 | 1-5 | 1-5 | 1-5 | | | 80 | N | 3 | 3 | 2 | 3 | 2 | 2 | 3 | 3 | 2 | 3 | | | | В | .350R | .800R | 2.604L | 1.200R | 2.204L | 1.596L | 1.000R | 1.600R | 3.605L | 2.000R | | | | M | 16.952 | 16.808 | 16.681 | 16.418 | 16.257 | 16.836 | 16.313 | 16.032 | 15.758 | 15.650 | | | 4 | G | 1-5 | 1-5 | 15 | 1-5 | 15 | 1-5 | 1–5 | 1-5 | 1-5 | 1-5 | | İ | 100 | N | 3 | 3 | 2 | 3 | 2 | 2 | 3 | 3 | 2 | 3 | | | | В | .350R | .800R | 2.604L | 1.200R | 2.204L | 1.596L | 1.000R | 1.600R | 3.605L | 2.000R | | | | M | 21.951 | 21.806 | 21.664 | 21.414 | 21.245 | 21.830 | 21.310 | 21.026 | 20.725 | 20.640 | All dimensions are in feet and moments are in kip-feet. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. G-Axle group causing maximum moment, thus, 1-3 means axles 1, 2, and 3. N-Number of critical axle under which maximum moment occurs. B-Distance to right or left of mid-span to point of maximum moment. M-Maximum moment. 72 METHOD OF CONVERTING HEAVY MOTOR VEHICLE LOADS TABLE 7.5 (Continued) | | ick No |). | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |------------|----------------------------------|---|--
--|--|---|--
--|--|--|---|---| | | . Base | | 28 | 28 | 32 | 32 | 32 | 32 | 32 | 32 | 36 | 36 | | Axl
Spa | le
leing | \mathbf{X}' | 8
12 | $\frac{8}{12}$ | $\frac{8}{16}$ | 8
16 | 8
16 | $\frac{8}{16}$ | 8
16 | 8
16 | 8
20 | 8
20 | | Loa
On | ıd | a 1 | .20 | .20
.40 | .100
.225 | .10 | .10 | .20 | .20
.30 | .20 | .100
.225 | .10
.30 | | Axl | les | a:
a: | .50 | .40 | .675 | .60 | .50 | .60 | .50 | .40 | .675 | .60 | | | 10 | G
N | 2 2 | $\frac{2}{2}$ | $\frac{3-5}{4}$ | $\frac{2}{2}$ | $\frac{2}{2}$ | 3-5
4 | $\frac{2}{2}$ | $\frac{2}{2}$ | 3–5
4 | 2 2 | | 1 | 10 | В | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | - | | M
G | $\frac{.750}{3-5}$ | 1.000 | 3-5 | .750
3 -5 | $\frac{1.000}{1-2}$ | .700
3-5 | 3-5 | $\frac{1.000}{1-2}$ | .788
3–5 | .750
3-5 | | Ì | 20 | N
B | 4 | 2
1,333R | 4 | 4 | .800R | 4 | 4 | 2 1.333R | 4 | 4 | | | | M | 1.832 | 2,253 | 2,475 | 2.200 | 2.116 | 2.200 | 1.832 | 2.253 | 2.475 | 2.20 | | - | 30 | G
N | $\frac{2-5}{3}$ | $\frac{1-3}{2}$ | $_{4}^{3-5}$ | 3–5
4 | $^{1-2}_2$ | $_{4}^{3-5}$ | $^{3-5}_4$ | 1-2
2 | 3–5
4 | 3–5
4 | | | | B
M | 0.997R
0.226 | 0.003R 3.900 | 0 | 0 | $0.800 \mathrm{R} \\ 3.361$ | 0 | $\frac{0}{3.082}$ | 1.333R
3.736 | 0 | 0
3.70 | | 1 | | G | 1-5 | 1-5 | $\frac{4.163}{2-5}$ | $\frac{3.700}{2-5}$ | 1-4 | $-\frac{3.700}{2-5}$ | 1-4 | 1-4 | $\frac{4.163}{3-5}$ | 3-5 | | او | 40 | N
B | $\frac{2}{3.205}$ L | $^{2}_{2.395L}$ | $^4_{2.500 m R}$ | 3
1.333R | $\frac{2}{3.125}$ L | $^{4}_{2.500\mathrm{R}}$ | $^2_{2.645\mathrm{L}}$ | $^2_{1.841L}$ | 4 | 4
0 | | Span-Feet | |
M | 5.452 | 6.149 | 5.990 | 5.440 | 5.131 | 5.325 | 4.672 | 5.539 | 5.850 | 5.20 | | pan | 50 | G
N | $^{1-5}_2$ | $^{1-5}_2$ | $^{2-5}_{4}$ | $_{3}^{1-5}$ | $^{1-5}_2$ | $^{1-5}_3$ | $\frac{1-5}{2}$ | 1–5
2 | $^{2-5}_{4}$ | $^{2-5}_{3}$ | | n | | B
M | 3.205L
7.900 | $2.395 L \\ 8.620$ | 2.500R
8.213 | 2.400R
7.815 | 4.606L 7.519 | 2.800R
7.457 | 4,206L
7,048 | $3.193L \\ 7.911$ | $3.000R \\ 7.812$ | 2.000H
7.12 | | 1 | | G | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | | į | 60 | N
B | $\frac{2}{3.205 L}$ | $^{2}_{2.395 \rm L}$ | $^3_{1.650 m R}$ | $^3_{2.400 m R}$ | $^{2}_{4.606L}$ | $^{3}_{2.800\mathrm{R}}$ | $^{2}_{4.206L}$ | $^{2}_{3.193\mathrm{L}}$ | $^{3}_{2,300\mathrm{R}}$ | 3
3.200I | | | | M | 10.366 | 11.101 | 10.695 | 10.296 | 9.948 | 9.931 | 9.489 | 10.377 | 10.088 | 9.57 | | | 80 | G
N | $^{1-5}_2$ | $^{1-5}_2$ | $^{1-5}_{3}$ | 1–5
3 | $^{1-5}_2$ | 1–5
3 | $^{1-5}_2$ | $^{1-5}_{2}$ | $^{1-5}_3$ | $^{1-5}_3$ | | | | B
M | 3.205L 15.323 | 2.395L 16.077 | 1.650R
15.684 | $\frac{2.400 \mathrm{R}}{15.272}$ | $ rac{4.606 L}{14.860}$ | 2.800R
14.898 | $\frac{4.206L}{14.415}$ | 3.193L 15.334 | 2.300R 15.066 | 3.200I
14.52 | | | | G | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | 1–5 | 1-5 | 1-5 | 1-5 | 1-5 | | | 100 | N
B | $^2_{3.205 m L}$ | $\frac{2}{2.395 L}$ | $^3_{1.650 m R}$ | $^3_{2.400 m R}$ | $\frac{2}{4.606 { m L}}$ | $^3_{2.800 m R}$ | $^2_{4.206 \mathbf{L}}$ | $^2_{3.193\mathrm{L}}$ | $^3_{2.300 m R}$ | 3
3.200F | | _ | | M | 20.298 | 21.063 | 20.677 | 20.258 | 19.807 | 19.878 | 19.371 | 20.309 | 20.053 | 19.50 | | | ick No | | 21
36 | 36 | $\frac{23}{36}$ | $\frac{24}{36}$ | 25 | 26
40 | $\frac{27}{40}$ | <u>28</u>
40 | 29
40 | 30
40 | | Ax | | X | 8 | 8 | 8 | 8 | 40
8 | 8 | 8 | | 8 | 8 | | | acing | X'_ | 20 | 20 | 20 | 20 | 24 | 24 | 24 | 24 | 24 | 24 | | Loa
On | | a 1
a 2 | .10 | .20 | .20 | .20 | .100 | .10 | .10 | .20 | .20 | .20 | | Ax | | | .40 | .20 | .30 | .40 | .225 | .30 | .40 | .20 | .30 | .40 | | - 1 | ies | a ₃ | .50 | .60 | .50 | .40 | .675 | .60 | .50 | .60 | .50 | .40 | | | 10 | G
N | $\frac{.50}{2}$ | $\frac{.60}{3.5}$ | $\frac{.50}{2}$ | $\frac{.40}{2}$ | $\frac{.675}{3-5}$ + | $\frac{.60}{2}$ | .50
2
2 | 3-5
4 | .50
2
2 | .40
2
2 | | | - | G | $\frac{.50}{2}$ | <u>.60</u>
3-5 | 50
 | $-\frac{.40}{2}$ | | $-\frac{.60}{2}$ | .50 | .60
3-5 | .50 | .40
2
2
0 | | | 10 | G
N
B
M | .50
2
2
0
1.000
1-2 | $ \begin{array}{r} .60 \\ 3-5 \\ 4 \\ 0 \\ .700 \\ 3-5 \end{array} $ | .50
2
2
0
.750
3-5 | $ \begin{array}{r} $ | .675
3-5
4
0
.788
3-5 | $ \begin{array}{r} $ | $ \begin{array}{r} $ | .60
3-5
4
0
.700
3 5 | .50
2
2
0
.750
3–5 | .40
2
2
0
1.00
1-2 | | | - | G
N
B
M
G
N | .50
2
0
1.000
1-2
2
.800R | 3-5
4
0
.700
3-5
4
0 | .50
2
2
0
.750
3-5
4
0 | .40
2
2
0
1.000
1-2
2
1.333R | .675
3-5
4
0
.788
3-5
4
0 | $ \begin{array}{r} $ | .50
2
2
0
1.000
1-2
2
.800R | 3-5
4
0
.700
3 5
4
0 | .50
2
2
0
.750
3–5
4
0 | .40
2
2
0
1.00
1-2
2
1.3331 | | | 10 | G
N
B
M
G
N
B | .50
2
2
0
1.000
1-2
2
.800R
2.116 | 3-5
4
0
.700
3-5
4
0
2.200 | .50
2
2
0
.750
3-5
4
0
1.832 | .40
2
2
0
1.000
1-2
2
1.333R
2.253 | .675
4
0
.788
3-5
4
0
2.475 | .60
2
2
0
.750
3-5
4
0
2.200 | .50
2
2
0
1.000
1-2
2
.800R
2.116 | $ \begin{array}{r} .60 \\ 3-5 \\ 4 \\ 0 \\ .700 \\ 3 \\ 5 \\ 4 \\ 0 \\ 2.200 \end{array} $ | .50
2
2
0
.750
3-5
4
0
1.832 | .40
2
2
0
1.00
1-2
1.3331
2.25 | | | 10 | G
N
B
M
G
N
B
M | .50
2
2
0
1.000
1-2
2
.800R
2.116
1-2
2 | .60
3-5
4
0
.700
3-5
4
0
2,200
3-5
4 | .50
2
2
0
.750
3-5
4
0
1.832
3 5
4 | .40
2
2
0
1.000
1-2
2
1.333R
2.253
1 2 | .675
4
0
.788
3-5
4
0
2.475
3-5
4 | .60
2
2
0
.750
3-5
4
0
2.200 | .50
2
2
0
1.000
1-2
2
.800R
2.116
1-2
2 | $ \begin{array}{c} .60 \\ 3-5 \\ 4 \\ 0 \\ .700 \\ 3 \\ 5 \\ 4 \\ 0 \\ 2.200 \\ \hline 3 \\ 5 \\ 4 \end{array} $ | .50
2
2
0
.750
3-5
4
0
1.832
3-5
4 | $\begin{array}{c} .40 \\ 2 \\ 0 \\ 1.00 \\ 1-2 \\ 2 \\ 1.3831 \\ 2.25 \\ \hline 1-2 \\ 2 \end{array}$ | | | 10 | G
N
B
M
G
N
B
M | .50
2
2
0
1.000
1-2
2
.800R
2.116
1-2 | 3-5
4
0
.700
3-5
4
0
2.200 | .50
2
2
0
.750
3-5
4
0
1.832 | .40
2
2
0
1.000
1-2
2
1.333R
2.253
1 2 | .675
3-5
4
0
.788
3-5
4
0
2.475
3-5 | .60
2
2
0
.750
3-5
4
0
2.200 | .50
2
2
0
1.000
1-2
2
.800R
2.116
1-2
2
.800R
3.361 | $\begin{array}{c} .60 \\ 3-5 \\ 4 \\ 0 \\ .700 \\ 3 \\ 5 \\ 4 \\ 0 \\ 2.200 \\ \hline 3 \\ 5 \\ 4 \\ 0 \\ 3.700 \\ \end{array}$ | .50
2
0
.750
3-5
4
0
1.832 | .40
2
2
0
1.00
1-2
2
1.3831
2.25
1-2
2
1.3331 | | | 20 | G
N
B
M
G
N
B
M
G
N
B
M | .50
2
2
0
1.000
1-2
2
.800R
2.116
1-2
2
.800R
3.361
1-3 | .60
3-5
4
0
.700
3-5
4
0
2.200
3-5
4
0
3.700
3-5 | .50
2
2
0
.750
3-5
4
0
1.832
3-5
4
0
3.082
3-5 | .40
2
2
0
1.000
1-2
2
1.333R
2.253
1 2
1.333R
3.736
1-2 | .675
4
0
.788
3-5
4
0
2.475
3-5
4
0
4.163
3-5 | .60
2
2
0
.750
3-5
4
0
2.200
3-5
4
0
3.700
3-5 | .50
2
2
0
1.000
1-2
2
.800R
2.116
1-2
2
.800R
3.361
1-2 | $\begin{array}{c} .60 \\ 3-5 \\ 4 \\ 0 \\ .700 \\ 3 \\ 5 \\ 4 \\ 0 \\ 2.200 \\ \hline 3 \\ 5 \\ 4 \\ 0 \\ 3.700 \\ \hline 3 \\ -5 \end{array}$ | .50
2
2
0
.750
3–5
4
0
1.832
3–5
4
0
3.082 | .40
2
2
0
1.00
1-2
2
1.3331
2.25
1-2
2
1.3331
3.73 | | eet | 10 | G
B
M
G
N
B
M
G
N
B
M
G
N
B
M
B
M
B
M
B
M
B
M
B
M
B
M
B
B
M
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B | .50
2
2
0
1.000
1-2
2
.800R
2.116
1-2
.800R
3.361
1-3
1.904L | .60
3-5
4
0
.700
3-5
4
0
2.200
3-5
4
0
3.700
3-5
4
0
3.700 | .50
2
0
.750
3-5
4
0
1.832
3-5
4
0
3.082
3-5
4 | .40
2
2
0
1.000
1-2
2
1.333R
2.253
1 2
2
1.333R
3.736
1-2
1.333R | .675
3-5
4
0
.788
3-5
4
0
2.475
3-5
4
0
4.163
3-5
4 | .60
2
2
0
.750
3-5
4
0
2.200
3-5
4
0
3.700
3-5
4 | .50
2
2
0
1.000
1-2
2
.800R
2.116
1-2
2
.800R
3.361
1-2
2
.800R | .60
3-5
4
0
.700
3 5
4
0
2.200
3 5
4
0
3.700
3 -5
4
0 | .50
2
0
.750
3-5
4
0
1.832
3-5
4
0
3.082
3-5
4 | .40
2
0
1.00
1-2
2
1.3831
2.25
1-2
2
1.3333
1-2
2
1.3831 | | ın-Feet | 20 | G
B
M
G
N
B
M
G
N
B
M
G
N
B
M | .50
2
2
0
1.000
1-2
2
.800R
2.116
1-2
2
.800R
3.361
1-3
2
1.904L
4.661 | .60
3-5
4
0
.700
3-5
4
0
2.200
3-5
4
0
3.790
3-5
4
0
3.790
3-5 | .50
2
2
0
.750
3-5
4
0
1.832
3-5
4
0
3.082
3-5
4
0
3.082 | .40
2
2
0
1.000
1-2
2
1.3338 R
2.253
1 2
2
2
1.3338 R
3.736
1-2
2
1.3338 R
3.736
5.227 | $\begin{array}{c} .675 \\ \hline 3.5 \\ 4 \\ 0 \\ .788 \\ 3-5 \\ 4 \\ 0 \\ 2.475 \\ \hline 3-5 \\ 4 \\ 0 \\ 4.163 \\ \hline 3-5 \\ 4 \\ 0 \\ 5.850 \\ \end{array}$ | .60
2
2
0
.750
3-5
4
0
2.200
3-5
4
0
3.700
3.5
4
0
3.700 | .50
2
2
0
1.000
1-2
2
800R
2.116
1-2
2
800R
3.361
1-2
2
800R
4.608 | .60
3-5
4
0
.700
3 5
4
0
2.200
3 5
4
0
3.700
3 -5
4
0
3.700 | .50
2
2
0
.750
3–5
4
0
1.832
3–5
4
0
3.082
3–5
4
0
4.332 | .40
2
2
0
1.00
1-2
2
1.3331
2.25
1-2
2
1.3331
3.73
1-2
2
1.3331
5.22 | | 2 : | 20 | G N B M G N
B M G N B | .50
2
0
1.000
1-2
2
2.800R
2.116
1-2
2
800R
3.361
1-3
2
1.904L
4.661
1-5
2 | .60
3-5
4
0
.700
3-5
4
0
2.200
3-5
4
0
3.700
3-5
4
0
5.200
2-5
4 | .50
2
2
0
.750
3-5
4
0
1.882
3-5
4
0
3.082
3-5
4
0
3.082
3-5
4
0
3.082
3-5
4
0
3.082
3-5
4
0
3.082
3-5
4
0
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.082
3.0 | .40
2
2
0
1.000
1-2
2.333R
2.253
1 2
2.333R
1-2
2
1.333R
5.227
1-5
2 | $\begin{array}{c} .675 \\ 3 - 5 \\ 4 \\ 0 \\ .788 \\ 3 - 5 \\ 4 \\ 0 \\ 2.475 \\ 3 - 5 \\ 4 \\ 0 \\ 3.5 \\ 4 \\ 0 \\ 5.850 \\ 3 - 5 \\ 4 \end{array}$ | $\begin{array}{c} .60 \\ \hline 2 \\ 2 \\ 0 \\ .750 \\ \hline 3 .5 \\ 4 \\ 0 \\ 2.200 \\ \hline 3 .5 \\ 4 \\ 0 \\ 3.700 \\ \hline 3 .5 \\ 4 \\ 0 \\ 5.200 \\ \hline 3 -5 \\ 4 \\ \end{array}$ | .50
2
2
0
1.000
1-2
2
.800R
2.116
1-2
2
.800R
3.361
1-2
2
.800R
4.608
1-4 | .60
3-5
4
0
.700
3 5
4
0
2.200
3 5
4
0
3.700
3-5
4
0
5.200
3 5 | .50
2
2
0
.750
3–5
4
0
1.832
3–5
4
0
3.082
3–5
4
0
4.332
3–5
4 | .40
2
2
0
1.00
1-2
2
1.3331
2.25
1-2
2
1.3331
1-2
2
1.3331
5.22 | | 2 : | 10
20
30
40 | G
B
M
G
N
B
M
G
N
B
M
G
N
B
M | .50
2
2
2
0
1.000
1-2
2
.800R
2.116
1-2
.800R
3.361
1-3
2
1.904L
4.661 | .60
3-5
4
0
.700
3-5
4
0
2.200
3-5
4
0
3.700
3-5
4
0
3.700
3-5
4
0
3.5
4
0
0
3.5
4
0
0
0
0
0
0
0
0
0
0
0
0
0 | .50
2
2
0
.750
3-5
4
0
1.832
3 5
4
0
3.082
3.55
4
0
4.332
1-5 | .40
2
0
1.000
1-2
2
1.333R
2.253
1 2
2
1.3333R
3.736
1-2
2
1.3333R
5.227
1-5 | $\begin{array}{c} .675 \\ \hline 35 \\ 4 \\ 0 \\788 \\ \hline 35 \\ 4 \\ 0 \\ 2.475 \\ \hline 35 \\ 4 \\ 0 \\ 4.163 \\ \hline 35 \\ 4 \\ 0 \\ 5.850 \\ \hline 35 \\ \end{array}$ | .60
2
2
0
.750
3-5
4
0
2.200
3-5
4
0
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7 | .50
2
2
0
1.000
1-2
2
.800R
2.116
1-2
2
.800R
3.361
1-2
2
.800R | .60
3-5
4
0
.700
3 5
4
0
2.200
3 5
4
0
3.700
3 -5
4
0
3.700
3 -5
4
0
3.700
3 5
4
0
3.700
3 5
4
0
0
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.7000
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.70000
3.7000
3.70000
3.7000
3.7000
3.7000
3.7000
3.7000
3 | .50
2
2
0
.750
3–5
4
0
1.832
3–5
4
0
3.082
3–5
4
0
4.332 | .40
2
2
0
1.00
1-2
2
1.3831
2.25
1-2
2
1.3331
3.73
1-2
2
1.3931
5.22
1-3
2
1.086 | | 2 : | 10
20
30
40 | G N B M M G M M M M M M M M M M M M M M M M | .50
2
0
1.000
1-2
2
2.800R
2.116
1-2
2
800R
3.361
1-3
2
1.904L
4.661
1-5 | .60
3-5
4
0
.700
3-5
4
0
2.200
3-5
4
0
3.700
3-5
4
0
5.200
2-5
4
3.000
2-5
4
3.000
4
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
4.700
3.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.700
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7000
4.7 | .50
2
0
.750
3-5
4
0
1.882
3-5
4
0
3.082
3-5
4
0
3.082
1-5
2
5.207L
6.235
1-5
2
1-5
2
1-5
1-5
1-5
1-5
1-5
1-5
1-5
1-5 | .40
2
0
1.000
1-2
2
1.333R
2.253
1 2
2
2.333R
3.736
1-2
2
1.333R
5.227
1-5
2.9.922
1.5 | $\begin{array}{c} .675 \\ 3 - 5 \\ 4 \\ 0 \\ .788 \\ 3 - 5 \\ 4 \\ 0 \\ 2.475 \\ 3 - 5 \\ 4 \\ 0 \\ 4.163 \\ 3 - 5 \\ 4 \\ 0 \\ 5.850 \\ 3 - 5 \\ 4 \\ 0 \\ 0 \\ 7.538 \\ 2 \\ 5 \end{array}$ | .60
2
0
.750
3 .5
4
0
2.200
3-5
4
0
3.700
3 .5
4
0
5.200
3 .5
4
0
0
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750 | .50
2
0
1.000
1-2
2
.800R
3.361
1-2
2
.800R
4.608
1-4
2
4.7271.
6.047 | .60 3-5 4 0.700 3 5 4 0.2.200 3 5 4 0.3.700 3-5 4 0.5.200 3-5 4 0.6.700 2-5 | .50
2
2
0
.750
3–5
4
0
1.832
3–5
4
0
3.082
3–5
4
0
4.332
3–5
4
0
5.582 | .40
2
2
0
1.00
1-2
2
1.3331
2.25
1-2
2
1.3333
3.73
1-2
2
1.3351
5.22
1-3
2
1.086
6.78 | | 2 : | 10
20
30
40 | G N B M G N B M G N B B M G N B B M G N B B M G N B B M G N B B M G N B B M G N B B M G N B B M G N B B M G N B B M G N B B M B M G N B B M B M G N B B M B M G N B B M B M B M B M B M B M B M B M B M | .50 2 2 0 1.000 1-1-2 2 800R 2.116 1-2 2 800R 3.361 1-3 2 1.904L 4.661 1-5 2 5.607L 6.722 1-5 2 5.607L | .60
3-5
4
0
.700
3-5
4
0
2.200
3-5
4
0
3.700
3-5
4
0
5.200
2-5
4
3.000R
6.944
1-5
3.600R | .50 2 2 0 .750 3-5 4 0 1.832 3-5 4 0 3.082 3-5 4 0 4.332 1-5 2 5.207L 6.235 1-5 2 5.207L |
.40
2
0
1.000
1-2
2
1.333R
2.253
1 2
2
1.333R
3.736
1-2
2
1.333R
1-2
2
3.992L
7.227
1.5
2
3.992L
3.992L | .675
3-5
4
0
.788
3-5
4
0
2.475
3-5
4
0
4.163
3-5
4
0
5.850
3-5
4
0
7.538
2.5
4
0
3-5
4
0
3-5
4
0
3-5
4
0
3-5
4
0
3-5
4
0
3-5
4
0
3-5
4
0
3-5
4
0
3-5
4
0
3-5
4
0
1
1
1
1
1
1
1
1
1
1
1
1
1 | .60
2
0
.750
3.5
4
0
2.200
3-5
4
0
3.700
3.5
4
0
5.200
3-5
4
0
6.700
1-5
3.4
0
6.700
1-5
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
3.5
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.0000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.0 | .50
2
0
1.000
1-2
2
.800R
2.116
1-2
2
800R
4.608
4.608
1-4
2
4.7271L
6.047
1.5
2
6.608L | .60 3-5 4 0 .700 3 5 4 0 2.200 3 5 4 0 3.700 3-5 4 0 6.700 2-5 4 3.500R | .50
2
0
.750
3–5
4
0
1.832
3–5
4
0
3.082
3–5
4
0
4.332
3–5
4
0
5.582
1–5
2
6.208L | .40
2
2
0
1.00
1-2
2
1.3331
2.25
1-2
2
1.3331
5.22
1-3
2
1.086
6.78
1-5
4.7911 | | Q : | 10
20
30
40 | G N B M G N B M G N B B M G N B B M G N B B M G N B B M G N B M G N B M G N B M G N B M G N B M B M G N B M B M G N B M B M B M B M B M B M B M B M B M B | .50
2
0
1.000
1-2
2
2.800R
2.116
1-2
2
800R
3.361
1-3
2
1.904L
4.661
1-5
2
5.607L
6.722
15
2
9.117 | .60
3-5
4
0
.700
3-5
4
0
2.200
3-5
4
0
3.700
3-5
4
0
5.200
2-5
4
3.000R
6.944
1-5
3.600R
9.216 | .50
2
0
.750
3 -5
4
0
1.882
3 5
4
0
3.082
3 -5
4
0
4.332
1-5
2
5.207L
8.645 | .40
2
0
1.000
1-2
2.253
1 2
2.253
1 2
2.333R
3.736
1-2
2
1.383R
5.227
1-5
2
3.992L
9.674 | .675
3-5
4
0
.788
3-5
4
0
2.475
3-5
4
0
4.163
3-5
4
0
5.850
3-5
4
0
5.850
3-5
4
0
6.75
4
0
6.75
4
0
6.75
4
0
6.75
4
0
6.75
6.75
6.75
6.75
7.75
8.75
7.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8.75
8. | .60
2
0
.750
3 -5
4
0
2.200
3-5
4
0
3.700
3 -5
4
0
5.200
3-5
4
0
5.200
3-5
4
0
5.200
3-5
4
0
5.200
3-5
4
0
5.200
3-5
4
0
5.200
3-5
4
0
5.200
3-5
4
0
5.200
3-5
4
0
5.200
3-5
4
0
5.200
3-5
4
0
5.200
3-5
4
0
5.200
3-5
4
0
5.200
3-5
4
0
6.700
3-5
4
0
6.700
3-5
4
0
6.700
3-5
4
0
6.700
3-5
4
0
6.700
3-5
4
0
6.700
3-5
4
0
6.700
3-5
4
0
6.700
3-5
4
0
6.700
3-5
4
0
6.700
3-5
4
0
6.700
3-5
4
6.700
3-5
4
6.700
3-5
4
6.700
3-5
4
6.700
3-5
4
6.700
3-5
4
6.700
3-5
4
6.700
3-5
4
6.700
3-5
8
8
8
8
8
8
8
8
8
8
8
8
8 | .50
2
0
1.000
1-2
2
.800R
3.361
1-2
2
.800R
4.608
1-4
2
4.7271
6.047
1-5
2
6.608L
8.320 | .60 3-5 4 0 .700 3 5 4 0 2.200 3 5 4 0 3.700 3-5 4 0 5.200 3-5 4 0 6.700 2-5 4 3.500R 8.563 | .50
2
0
.750
3-5
4
0
1.832
3-5
4
0
3.082
3-5
4
0
4.332
3-5
4
0
5.582
1-5
2
6.208L
7.834 | .40
2
0
1.00
1-2
2
1.3831
2.25
1-2
2
1.3831
5.22
1.3831
5.22
1.3831
5.22
4.7911
8.99 | | Q : | 10
20
30
40 | G N B M G N B
M G N B | .50 2 2 0 1.000 1-2 2 800R 2.116 1-2 2 800R 3.361 1-3 2 1.904L 4.661 1-5 2 5.607L 6.722 1-5 2 5.607L 9.117 1-5 2 | .60
3-5
4
0
.700
3-5
4
0
2.200
3-5
4
0
3.700
3-5
4
0
5.200
2-5
4
3.000R
6.944
1 5
3.600R
9.216 | .50
2
0
.750
3.5
4
0
1.832
3.5
4
0
3.082
3.5
4
0
4.332
1.5
2
5.207L
8.645
1.5
2 | .40
2
0
1.000
1-2
2
1.333R
2.253
1 2
2
1.333R
3.736
1-2
2
1.333R
5.227
1-5
2
3.992L
7.227
1.5
2
3.992L
9.674
1-5
2 | .675
3-5
4
0
.788
3-5
4
0
2.475
3-5
4
0
4.163
3-5
4
0
5.850
3-5
4
0
7.538
2.5
4
0
7.538
2.5
4
0
7.5
4
0
7.5
4
0
7.5
4
0
7.5
4
0
7.5
4
0
7.5
4
0
7.5
4
0
7.5
4
0
7.5
4
0
7.5
4
0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | .60
2
2
0
.750
3-5
4
0
2.200
3-5
4
0
3.700
3-5
4
0
6.700
1-5
3
4.000R
8.867
1-5
3 | .50
2
0
1.000
1-2
2
.800R
2.116
1-2
2
800R
4.608
4.6047
1-5
2
6.608L
8.320
1-5
2 | .60 3-5 4 0 .700 3 5 4 0 2.200 3 5 4 0 3.700 3-5 4 0 5.200 3-5 4 0 6.700 2-5 4 3.563 1-5 3 | .50
2
0
.750
3–5
4
0
1.832
3–5
4
0
3.082
3–5
4
0
4.332
3–5
4
0
5.582
1–5
2
6.208L
7.834
1–5
2 | .40
2
0
1.00
1-2
2
1.3831
3.73
1-2
2
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
1.3831
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | | 2 : | 10
20
30
40
50 | G N B M M G N B M M M M M M M M M M M M M M M M M M | .50
2
0
1.000
1-2
2.800R
2.116
1-2
2.800R
3.361
1-3
2.1.904L
4.661
1-5
5.607L
6.722
1.507L
9.6117
1.672 | .60
3-5
4
0
.700
3 5
4
0
2.200
3 5
4
0
3.700
3-5
4
0
5.200
2-5
4
3.000R
6.944
1 5
3
3.600R
9.216
1 5 | .50
2
2
0
.750
3 .5
4
0
1.882
3 .5
4
0
3.082
3 .5
4
4.332
1-5
2
5.207L
6.235
1-5
2
5.207L
6.235
1-5
1-5
2
5.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6.207L
6 | .40
2
0
1.000
1-2
2
1.3333R
2.253
1 2
2
1.333R
3.736
1-2
2
1.333R
5.227
1-5
2
3.992L
7.227
1.5
2
3.992L
9.674
1-5 | .675
3-5
4
0
.788
3-5
4
0
2.475
3-5
4
0
5.850
3-5
4
0
7.538
2 .5
4
0
5.850
3-5
4
0
5.850
3-5
4
0
5.850
4
1
1
1
1
1
1
1
1
1
1
1
1
1 | .60
2
2
0
.750
3 .5
4
0
2.200
3-5
4
0
3.700
3.5
4
0
5.200
3-5
4
0
5.200
1-5
3
4
0
6.700
1-5
4
0
8.700
1-5
4
1-5
1-5
1-5
1-5
1-5
1-5
1-5
1-5 | .50
2
0
1.000
1-2
2
.800R
2.116
1-2
2
.800R
4.608
1-4
2
4.7271
6.047
1.5
2
6.608L
8.320
1-5 |
.60
3-5
4
0
.700
3 5
4
0
2.200
3 5
4
0
3.700
3-5
4
0
5.200
3-5
4
0
5.200
3-5
4
0
5.200
3-5
4
0
5.200
3-5
4
0
5.200
3-5
4
0
5.200
3-5
4
0
5.200
3-5
4
0
5.200
3-5
4
0
6.200
3-5
4
0
6.200
3-5
4
0
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200
6.200 | .50
2
0
.750
3–5
4
0
1.832
3–5
4
0
3.082
3–5
4
0
4.332
3–5
4
0
5.582
1–5
2
6.208L
7.834
1–5 | .40
2
0
1.00
1-2
2
1.3831
2.25
1-2
2
1.3831
5.22
1.3831
5.22
1.0868
6.78
1-5
2
4.7911 | | 2 : | 10
20
30
40
50
60 | G N B M G N B M G N B B M G N B B M G N B B M G N B B M G N B B M G N B B M G N B B M G N B B M G N B B M G N | .50 2 2 0 1.000 1-2 2 800R 2.116 1-2 2 800R 3.361 1-3 2 1.904L 4.661 1-5 2 5.607L 9.117 1-5 2 5.607L 1.3 986 | .60 3-5 4 0 .7000 3-5 4 0 2.200 3-5 4 0 3.700 3-5 4 0 5.200 2-5 4 3.000R 6.944 1-5 3 3.600R 9.216 1-5 3 3.600R 14.162 | .50 2 0 .750 3.5 4 0 1.832 3.5 4 0 3.082 3.5 4 0 4.332 1-5 2 5.207L 8.645 1-5 2 5.207L 8.645 1-5 2 5.207L 8.645 1-5 | .40
2
0
1.000
1-2
2
1.333R
2.253
1 2
2
1.333R
1-2
2
1.333R
1-5
2
3.992L
7.227
1.5
2
3.992L
9.674
1-5
2
3.992L
1.4607
1.4607
1.55 | .675
3-5
4
0
.788
3-5
4
0
2.475
3-5
4
0
4.163
3-5
4
0
5.850
3-5
4
0
7.538
2.5
4
0
2.475
4
0
1.63
3-5
4
0
1.63
3-5
4
0
1.63
3-5
4
0
1.63
3-5
4
0
1.63
3-5
4
0
1.63
3-5
4
0
1.63
3-5
4
0
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1. | .60
2
2
0
.750
3.5
4
0
2.200
3-5
4
0
3.700
3-5
4
0
6.700
1-5
3
4.000R
8.867
1-5
3.800
1-5 | .50
2
0
1.000
1-2
2
.800R
2.116
1-2
2
800R
3.361
1-2
2
800R
4.6047
1-5
2
6.608L
8.320
1-5
2.6608L
1.3138 | .60 3-5 4 0 .700 3 5 4 0 2.200 3 5 4 0 3.700 3-5 4 0 5.200 2-5 4 3.500R 8.563 1-5 3 4.400R 13.4442 1-5 | .50
2
0
.750
3–5
4
0
1.832
3–5
4
0
3.082
3–5
4
0
4.332
3–5
4
0
5.582
1–5
2
6.208L
7.834
1–5
2
6.208L
1.2674
1–5 |
.40
2
0
1.000
1-2
2
1.3831
3.73
1-2
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22
1.3831
5.22 | | Span-Feet | 10
20
30
40
50 | G N B B M G N B M G N | .50 2 2 0 1.000 1-2 2 800R 2.116 1-2 2 800R 3.361 1-3 2 1.904L 4.661 1-5 2 5.607L 6.722 1-5 2 5.607L 13.986 | .60
3-5
4
0
.700
3 5
4
0
2.200
3 5
4
0
3.700
3-5
4
0
5.200
2-5
4
3.000R
6.944
1 5
3
3.600R
9.216
1-5
3.600R
14.162 | .50 2 2 0 .750 3-5 4 0 1.8822 3 5 4 0 3.082 3 5 4 0 4.332 1-5 2 5.207L 6.235 1-5 2 5.207L 13.532 | .40
2
0
1.000
1-2
2
1.3333R
2.253
1 2
2
1.3333R
5.227
1-5
2
3.992L
7.227
1 5
2
3.992L
7.24
1-5
2
3.992L
1.5
2
1.5
2
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6 | .675
3-5
4
0
.788
3-5
4
0
2.475
3-5
4
0
5.850
3-5
4
0
7.538
2 5
4
0
7.538
2 5
4
0
1.63
3-5
4
0
1.63
3-5
4
0
1.63
3-5
4
0
1.63
3-5
4
0
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63
1.63 | .60
2
2
0
.750
3 .5
4
0
2.200
3-5
4
0
3.700
3.5
4
0
5.200
3-5
4
0
6.700
1-5
3
4.000R
8.867
1-5
3 | .50
2
2
0
1.000
1-2
2.800R
2.116
1-2
2.800R
4.608
1-4
2.4.7271
6.068L
8.320
1-5
2.608R
1.3138 | .60 3-5 4 0 .700 3 5 4 0 2.200 3 5 4 0 3.700 3-5 4 0 5.200 3-5 4 0 6.700 2-5 4 3.500R 8.563 1-5 3 4.400R | .50
2
0
.750
3–5
4
0
1.832
3–5
4
0
3.082
3–5
4
0
4.332
3–5
4
0
5.582
1–5
2
6.208L
1–5
2
6.208L
12.674 | $\begin{array}{c} .40 \\ 2 \\ 2 \\ 0 \\ 1.00 \\ 1-2 \\ 2 \\ 1.3831 \\ 2.25 \\ 1-2 \\ 2 \\ 1.3831 \\ 5.22 \\ 1.3831 \\ 5.22 \\ 1.3831 \\ 5.22 \\ 1.4381 \\ 1.5 \\ 2 \\ 4.7911 \\ 8.99 \\ 1.5 \\ 2 \\ 4.7911 \\ 13.89 \end{array}$ | | TA. | BLE | 7.5 (| Continue | d) | | | | · | | | | | |--------------------------------------
---|--|--|--
--|--|--|--|--|--
---|--| | | uck No | | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | | | ı. Bas | | 28 | 28 | 28 | 28 | 28 | 28 | 32 | 32 | 32 | 32 | | Ax | le
acing | X
X' | $^{12}_{8}$ | 12
8 | $^{12}_{8}$ | 12
8 | $\frac{12}{8}$ | $^{12}_{8}$ | $\frac{12}{12}$ | $\frac{12}{12}$ | $\frac{12}{12}$ | $\frac{12}{12}$ | | Lo | ad | a ₁ | .100 | .10 | .10 | .20 | .20 | .20 | .100 | .10 | .10 | .20 | | On
Ax | | \mathbf{a}_2 \mathbf{a}_3 | .225 $.675$ | .30
.60 | .40
.50 | .20
.60 | .30 $.50$ | .40 $.40$ | .225 $.675$ | .30
.60 | .40
.50 | .20
.60 | | | | G | 35 | 2 | 2 | 3-5 | 2 | 2 | 3–5 | 2 | 2 | 3-5 | | - | 10 | N | 4 | 2 | 2 | 4 | 2 | 2 | 4 | 2 | 2 | 4 | | | | B
M | 0
.788 | $\frac{0}{.750}$ | $\frac{0}{1.000}$ | $\frac{0}{.700}$ | 0
.750 | $0 \\ 1.000$ | $\frac{0}{.788}$ | $^{0}_{.750}$ | 0
1.000 | 0
.700 | | | | G | 3-5 | 3-5 | 2 3 | 3-5 | 3–5 | 2–3 | 35 | 3-5 | 2 | 3–5 | | | 20 | N
B | 4 | 4
0 | $^2_{1.178 m L}$ | 4
0 | 4
0 | $_{,998L}^{2}$ | 4
0 | 4
0 | 2
0 | 4
0 | | | | M | 2.475 | 2.200 | 2.206 | 2.200 | 1.832 | 2.160 | 2.475 | 2.200 | 2.000 | 2.200 | | | | G | 2-5 | 2- 5 | 2-5 | 2-5 | 2–5 | 1-4 | 2-5 | 2-5 | 1-4 | 2-5 | | | 30 | N
B | $^4_{1.500 m R}$ | . 0 | $^3_{.664 m R}$ | 4 $1.500R$ | 3 .247 ${f R}$ | $^2_{.150 m L}$ | $^{4}_{2.000 m R}$ | 3 .667 ${f R}$ | $^{2}_{2.084\mathrm{L}}$ | $^{4}_{2.000\mathrm{R}}$ | | | | M | 4.568 | 4.350 | 4.162 | 4.060 | 3.800 | 3.966 | 4.170 | 3.763 | 3.432 | 3.706 | | | 40 | G | 2-5 | 1-5 | $^{1-5}_{2}$ | 1-5 | 1.5 | 1-5
2 | 2-5 | 25 | 1-5 | 2-5 | | ķ | 40 | N
B | $^{4}_{1.500\mathrm{R}}$ | $^3_{1.000 m R}$ | 2.404L | $^3_{1.600 m R}$ | $^3_{2.196 m R}$ | 1.195L | $^{4}_{2.000R}$ | $^3_{.667 m R}$ | $^2_{3.405 m L}$ | $^{4}_{2.000\mathrm{R}}$ | | 4 | | M | 6.800 | 6.625 | 6.541 | 6.064 | 5.921 | 6.441 | 6.390 | 6.011 | 5.685 | 5.680 | | Span-Feet | 50 | G
N | 1-5
3 | $^{1\!-\!5}_3$ | $^{1-\tilde{5}}_{2}$ | $^{1-5}_3$ | 1–5
3 | $^{1\!-\!5}_2$ | $^{1-5}$ | $^{1-5}_{3}$ | 1–5
2 | 15
3 | | 20 | ,,, | В | $.550\mathbf{R}$ | 1.000R | 2.404L | 1.600R | 2.196R | 1.195L | 1.200R | 1.800R | 3.405L | 2.400R | | | | M | 9.256 | 9.120 | 9.012 | 8.551 | 8.396 | 8.934 | 8.629 | 8.365 | 8.127 | 7.815 | | | 60 | G
N | $^{1-5}$ | 1–5
3 | $^{1-5}_{2}$ | $^{1-5}$ | $^{1-5}_{3}$ | $^{1-5}_{2}$ | $^{1-5}_3$ | $^{1-5}_{3}$ | 1-5
2 | $^{1-5}_{3}$ | | | | В | .550R | 1.000R | 2.404L | 1.600R | 2.196R | 1.195L | 1.200R | 1.800R | 3.405L | 2.400R | | | | M
G | 11.755
1-5 | $\frac{11.617}{1-5}$ | 11.493
1-5 | 11.043 | 10.880
1-5 | 11.429 | 11.124
1-5 | 10.854
1-5 | 10.589
1-5 | 10.296
1-5 | | | 80 | N | 3 | 3 | 2 | 3 | 3 | 2 | 3 | 3 | 2 | 3 | | | | B
M | .550 m R 16.754 | 1.000R 16.613 | $\frac{2.404L}{16.469}$ | 1.600R
16.032 | 2.196R 15.860 | 1.195L 16.423 | 1.200R 16.118 | 1.800R 15.841 | 3.405L 15.540 | $2.400 \mathbf{R} \\ 15.272$ | | | | G | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | | | 100 | N | 3 | $^3_{1.000 m R}$ | 2 | 3 | 3 | 2 | 3 | 3 | 2 | 3 | | | | В
М | $.550 \mathbf{R} \ 21.753$ | 21.610 | 2.404L 21.454 | 1.600R 21.026 | 2.196R 20.848 | 1.195L 21.419 | 1.200R
21.114 | 1.800R 20.832 | 3.405L 20.511 | 2.400R 20.258 | | | | | | | | | | | | | | | | Tr | uck N | 0. | 41 | 42 | | 44 | | | | | | | | | uck No | | 41
32 | | 43
36 | | 45
36 | 46 | 47 | 48 | 49 | 50 | | WI | ı. Bası
le | e L
X | 32
12 | 42
32
12 | 43
36
12 | 44
36
12 | 45
36
12 | 46
36
12 | 47
36
12 | 48
36
12 | 49
40
12 | 50
40
12 | | Ax
Spa | ı. Bası
le
acing | e L
X
X' | 32
12
12 | 42
32
12
12 | 43
36
12
16 | 44
36
12
16 | 45
36
12
16 | 46
36
12
16 | 47
36
12
16 | 48
36
12
16 | 49
40
12
20 | 50
40
12
20 | | WI
Ax
Spa
Loa
On | n. Base
le
acing
ad | E L
X
X'
a ₁
a ₂ | 32
12
12
.20
.30 | 42
32
12
12
.20
.40 | 43
36
12
16
.100
.225 | 44
36
12
16
.10
.30 | 45
36
12
16
.10
.40 | 46
36
12
16
.20
.20 | 47
36
12
16
.20
.30 | 48
36
12
16
.20
.40 | 49
40
12
20
.100
.225 | 50
40
12
20
.10
.30 | | WI
Ax
Spa
Los | n. Base
le
acing
ad | e L
X
X'
a ₁
a ₂
a ₃ | 32
12
12
12
.20
.30
.50 | 42
32
12
12
.20
.40
.40 |
43
36
12
16
.100
.225
.675 | 44
36
12
16
.10
.30
.60 | 45
36
12
16
.10
.40
.50 | 46
36
12
16
.20
.20
.60 | 47
36
12
16
.20
.30
.50 | 48
36
12
16
.20
.40
.40 | 49
40
12
20
.100
.225
.675 | 50
40
12
20
-10
-30
-60 | | WI
Ax
Spa
Loa
On | n. Base
le
acing
ad | E L
X
X'
a ₁
a ₂
a ₃
G | 32
12
12
.20
.30
.50 | 42
32
12
12
.20
.40
.40 | 43
36
12
16
.100
.225
.675
3–5
4 | 44
36
12
16
.10
.30
.60
2 | 45
36
12
16
.10
.40
.50
2 | 46
36
12
16
.20
.20
.60
3–5
4 | 47
36
12
16
.20
.30
.50 | 48
36
12
16
.20
.40 | 49
40
12
20
.100
.225 | 50
40
12
20
.10
.30
.60 | | WI
Ax
Spa
Loa
On | le acing ad | e L
X
X'
a ₁
a ₂
a ₃
G
N
B | 32
12
12
.20
.30
.50
2
2 | 42
32
12
12
.20
.40
.40 | 43
36
12
16
.100
.225
.675
3-5
4
0 | 44
36
12
16
.10
.30
.60
2
2 | 45
36
12
16
.10
.40
.50 | 46
36
12
16
.20
.20
.60
3–5
4
0 | 47
36
12
16
.20
.30
.50 | 48
36
12
16
.20
.40
.40
2
2 | 49
40
12
20
.100
.225
.675
3-5
4
0 | 50
40
12
20
.10
.30
.60 | | WI
Ax
Spa
Loa
On | le acing ad | E L
X
X'
a ₁
a ₂
a ₃
G | 32
12
12
.20
.30
.50 | 42
32
12
12
.20
.40
.40 | 43
36
12
16
.100
.225
.675
3–5
4 | 44
36
12
16
.10
.30
.60 | 45
36
12
16
.10
.40
.50
2 | 46
36
12
16
.20
.20
.60
3–5
4 | 47
36
12
16
.20
.30
.50 | 48
36
12
16
.20
.40
.40
.20 | 49
40
12
20
.100
.225
.675
3-5
4 | 50
40
12
20
.10
.30
.60 | | WI
Ax
Spa
Loa
On | le acing ad | e L
X
X'
a1
a2
a3
G
N
B
M | 32
12
12
.20
.30
.50
2
2
0
.750
3–5
4 | 42
32
12
12
.20
.40
.40
2
2
0
1.000
2 | 43
36
12
16
.100
.225
.675
3–5
4
0
.788
3–5
4 | 44
36
12
16
.10
.30
.60
2
2
0
.750
3-5
4 | 45
36
12
16
.10
.40
.50
2
2
0
1.000 | 46
36
12
16
.20
.60
3–5
4
0
.700
3–5
4 | 47
36
12
16
.20
.30
.50
2
2
0
.750
3–5
4 | 48
36
12
16
.20
.40
.40
.2
2
0
1.000 | 49
40
12
20
.100
.225
.675
3-5
4
0
.788
3-5
4 | 50
40
12
20
.10
.30
.60
2
2
0
.750
3-5
4 | | WI
Ax
Spa
Loa
On | n. Base
le
acing
ad
les | e L
X
X'
a ₁
a ₂
a ₃
G
N
B
M | 32
12
12
.20
.30
.50
2
2
0
.750
3-5 | 42
32
12
12
.20
.40
.40
2
2
0
1.000 | 43
36
12
16
.100
.225
.675
3-5
4
0
.788
3-5 | 44
36
12
16
.10
.30
.60
2
2
0
.750 | 45
36
12
16
.10
.40
.50
2
2
0
1.000 | 46
36
12
16
.20
.20
.60
3-5
4
0
.700 | 47
36
12
16
.20
.30
.50
2
2
0
.750
3-5 | 48
36
12
16
.20
.40
.40
.20
.40
.40
.20
.40
.40
.20
.20
.20
.20
.20
.20
.20
.2 | 49
40
12
20
.100
.225
.675
3-5
4
0
.788
3-5 | 50
40
12
20
.10
.30
.60
2
2
0
.750 | | WI
Ax
Spa
Loa
On | le acing ad les 10 | e L
X
X'
a ₁
a ₂
a ₃
G
N
B
M
G
N
B | 32
12
12
20
.30
.50
2
2
0
.750
3-5
4
0
1.832
2-5 | 42
32
12
12
.20
.40
.40
2
2
0
1.000
2
2
0
2.000
1-3 | 43
36
12
16
.100
.225
.675
3-5
4
0
.788
3-5
4
0
2.475
3-5 | 44
36
12
16
.10
.30
.60
2
2
0
.750
3-5
4
0
2.200
3-5 | 45
36
12
16
.10
.50
2
2
0
1.000
2
2
0
2.000 | 46
36
12
16
20
.60
3–5
4
0
.700
3–5
4
0
0
3–5
4
0
3–5 | 47
36
12
16
.20
.50
2
2
0
.750
3–5
4
0
1.832
3–5 | 48
36
12
16
.20
.40
2
2
0
1.000
2
2
2
0
1.000
1-2 | 49
40
12
20
1.100
.225
.675
3-5
4
0
.788
3-5
4
0
2.475
3-5 | 50
40
12
20
.10
.80
.60
2
2
0
.750
3–5
4
0
2.200
3–5 | | WI
Ax
Spa
Loa
On | n. Base
le
acing
ad
les | e L X X X a ₁ a ₂ a ₃ G N B M G N B M G N B N B N | 32
12
12
.20
.30
.50
2
2
0
.750
3-5
4
0
1.832
2-5
3 | 42
32
12
12
.20
.40
.40
2
2
0
1.000
2
2
0
2.000 | 43
36
12
16
.100
.225
.675
3-5
4
0
7.88
3-5
4
0
2.475
3-5
4 | 44
36
12
16
.10
.30
.60
2
2
0
.750
3-5
4
0
2.200 | 45
36
12
16
.10
.40
.50
2
2
0
1.000
2
2
0
2.000 | 46
36
12
16
.20
.60
3-5
4
0
.700
3-5
4
0
2.200
.3-5
4
0
2.200
.3-5
4
0
3-5
4
0
2.200
.3-5
4
0
3-5
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 47
36
12
16
.20
.30
.50
2
2
0
.750
3–5
4
0
1.832
3–5
4 | 48
36
12
16
20
40
40
2
2
0
1.000
2
2
0
2.000
1-2
2 | 49
40
12
20
.100
.225
.675
3-5
4
0
.788
3-5
4
0
2.475
3-5
4 | 50
40
12
20
.30
.60
2
2
0
.750
3–5
4
0
2.200
3–5
4 | | WI
Ax
Spa
Loa
On | le acing ad les 10 | e L X X X' a1 a2 a3 G N B M G N B M G N B M M G N B M M G N B M M M G N B M M M M M M M M M M M M M M M M M M | 32
12
12
20
.30
.50
2
2
0
.750
3–5
4
0
1.832
2–5
3
.997R
3.226 | 42
32
12
12
.20
.40
.40
2
2
0
1.000
2
2
0
2.000
1-3
2.549R
3.507 | 43
36
12
16
.100
.225
.675
4
0
.788
3-5
4
0
2.475
3-5
4
0
4.163 | 44
36
12
16
.10
.30
.60
2
2
0
.750
3-5
4
0
2.200
3-5
4
0
3.700 | 45
36
12
16
.10
.40
.50
2
2
0
1.000
2
2
0
2.000
1-2
2
1.200R | 46
36
12
16
20
.20
.60
3-5
4
0
.700
3-5
4
0
3-5
4
0
3-5
4
0
3-5
4
0
3-5
4
0
3-5
4
0
3-5
4
0
3-5
4
0
3-5
4
0
0
3-5
4
0
0
0
0
0
0
0
0
0
0
0
0
0 | 47
36
12
16
.20
.30
.50
2
2
0
.750
3-5
4
0
1.832
3-5
4
0
3.082 | 48 36 12 16 20 40 40 40 2 2 0 1.000 2 2 2 2 0 0 2-2000 1-2 2 2-000 8 3.380 | 49
40
12
20
100
.225
.675
3-5
4
0
.788
3-5
4
0
2.475
3-5
4
0
4.163 | 50
40
12
20
.10
.30
.60
2
2
0
.750
3–5
4
0
2.200
3–5
4
0 | | WI
Ax
Spa
Loa
On | a. Bassale acing ad les 10 20 30 | e L X X X' a1 a2 a3 G N B M G N B M G N B M G G N B M G G N B M G G N B M G G N B M G G N B M G G N B M G G N B M G G N B M G G N B M G G N B M G G N B M G G N B M G G N B M G G N B M G G N B M G G R B M G G R B M G G R B M G G R B M G G R B M G G R B M G G R B M G G R B M G G R B M G G R B M G G R B M G G R B M G G R B M G G R B M G G R B M G G R B M G G R B M G G R B M R B M R B R B | 32
12
12
20
.30
.50
2
2
0
.750
3-5
4
0
1.832
2-5
3
.997R
3.226 |
42
32
12
12
20
.40
.40
.40
2
2
0
1.000
2
2
0
2.000
1—3
2
549R
3.507
1—5 | 43
36
12
16
.100
.225
.675
3-5
4
0
2.475
3-5
4
0
4.163
2-5 | 44
36
12
16
.10
.30
.60
2
2
0
.750
3–5
4
0
2.200
3-5
4
0
3.700
2–5 | 45
36
12
16
40
.50
1.000
2
2
0
1.000
2-2
0
2.000
1-2
2
1.200R
3.174
3.274 | 46
36
12
16
20
.20
.60
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.30
3-5
4
0
2.30
3-5
4
0
2.30
3-5
4
0
2.30
3-5
4
0
0
2.30
3-5
4
0
0
2.30
3-5
4
0
0
2.30
0
0
0
0
0
0
0
0
0
0
0
0
0 | 47
36
12
16
20
30
.50
2
2
0
.750
3–5
4
0
1.832
3–5
4
0
3.082
2–5 | 48 36 12 16 20 40 40 40 2 2 0 1.000 2 2 2 2 0 2.000 1-2 2 2.000R 3.380 | 49
40
12
20
.100
.225
.675
3-5
4
0
.788
3-5
4
0
2.475
3-5
4
0
4.163
3-5 | 50
40
12
20
.30
.60
.60
2
2
0
.750
3–5
4
0
2.200
3–5
4
0
3.700
3–5 | | WI
Axx
Spo
Loo
On
Axx | le acing ad les 10 | e L X X X' a1 a2 a3 G N B M G N B M G N B M M G N B M M G N B M M M G N B M M M M M M M M M M M M M M M M M M | 32
12
12
20
30
.50
2
2
0
.750
3-5
4
0
1.832
2-5
3
.997R
2-5
3
.997R | 42
32
12
12
.20
.40
.40
2
2
0
1.000
2
2
0
2.00
1-3
2.549R
3.507
1-5
2.1994L | 43
36
12
16
.100
.225
.675
4
0
.788
3-5
4
0
2.475
3-5
4
0
2.475
3-5
4
0
2.475
3-5
4
0
2.475 | 44
36
12
16
.10
.30
.60
2
2
0
.750
3-5
4
0
2.200
3-5
4
0
2.200
3-7
1.333R | 45
36
12
16
.40
.50
2
2
0
1.000
2
2
0
2.000
1-2
2
1.200R
3.174
2-5
3.2440R | 46
36
12
16
20
20
60
3-5
4
0
700
3-5
4
0
2.200
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
3-5
4
0
2.300
2.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3 | 47 36 12 16 20 .30 .50 2 2 0 .750 3-5 4 0 1.832 3-5 4 0 3.082 2-5 3 1.746R | 48 36 12 16 20 40 40 2 2 0 1.000 2 2 2 2 0 0 1-2 2.000 1-2 2.000 1-4 2 1.379L | 49
40
12
20
.100
.225
.675
3-5
4
0
2.475
3-5
4
0
4.163
3-5
4 | 50
40
12
20
.10
.30
.60
2
2
0
.750
3–5
4
0
2.200
3-5
4
0
3.700 | | WI
Axx
Spo
Loo
On
Axx | a. Bassale acing ad les 10 20 30 | e L | 32
12
12
20
.30
.50
2
2
0
.750
3-5
4
0
1.832
2-5
3
.997R
5.218 | 42
32
12
12
20
.40
.40
.2
2
0
1.000
2
2
0
2.000
1-3
2
.549R
3.507
1-5
2
1.994L
5.705 | 43
36
12
16
100
.225
.675
3-5
4
0
2.475
3-5
4
0
4.163
2-5
4
2.500R
5.990 | 44
36
12
16
.10
.30
.60
2
2
0
.750
3–5
4
0
2.200
3–5
4
0
2.750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–750
3–75 | 45
36
12
16
.40
.50
2
2
0
1.000
2
2
0
2.000
1-2
2
1.200R
3.174
2-5
3
2.440R
4.934 |
46
36
12
16
20
.20
.60
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.7000
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.7000
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.70000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3. | 47 36 12 16 20 .30 .50 2 2 0 .750 3-5 4 0 1.832 3-5 4 0 3.082 2-5 3 1.746R 4.661 | 48 36 12 16 .20 .40 .40 .2 2 0 1.000 2 2 2 2 0 2.000 1-2 2 2.000R 3.380 1-4 2 1.379L 5.107 | 49
40
12
20
.100
.225
.675
3-5
4
0
.788
3-5
4
0
2.475
3-5
4
0
4.163
3-5
4
0
5.675
4
0
5.675
4
0
5.675
4
0
5.675
4
0
5.675
4
0
5.675
4
0
5.675
4
0
5.675
4
0
5.675
4
0
5.675
4
0
5.675
4
0
5.675
4
0
5.675
4
0
5.675
4
0
5.675
4
0
5.675
4
0
5.675
4
0
5.675
4
0
5.675
5.675
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755
6.755 | 50
40
12
20
.30
.60
.750
3–5
4
0
2,200
3–5
4
0
3,700
3–5
4
0
5,200 | | n-Feet | a. Bassale acing ad les 10 20 30 | e L | 32
12
12
20
.30
.50
2
2
0
.750
3-5
4
0
1.832
2-5
3.997R
3.226
2-5
3.997R
5.218 | 42
32
12
12
20
.40
.40
.40
2
2
0
1.000
2
2
0
2.000
1-3
2
5.49R
3.507
1-5
1-5 | 43
36
12
16
100
.225
.675
4
0
.788
3-5
4
0
2.475
3-5
4
0
4.163
2-5
4
2.500
2.475
3-5
4
0
4.163
2-5
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00 |
44
36
12
16
.10
.30
.60
2
0
.750
3-5
4
0
2.200
3-5
4
0
3.750
2.200
3-5
4
0
3.750
2.200
3-5
4
0
3.750
3.750
4.750
3.750
4.750
3.750
4.750
4.750
3.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750
4.750 | 45
36
12
16
.40
.50
2
2
0
1.000
2
2
0
2.000
1-2
2
1.200R
3.174
2-5
3
2.440R
4.934
1-5 | 46
36
12
16
.20
.20
.60
3-5
4
0
.700
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.200
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000 | 47 36 12 16 .20 .30 .50 2 0 .750 3-5 4 0 1.832 3-5 4 0 3.082 2-5 3 1.746R 4.661 1-5 | 48 36 12 16 20 .40 .40 .2 2 0 1.000 2 2 2 0 2.000 1-2 2 2.000R 3.380 1-4 2 1.379L 5.107 1-5 | 49
40
12
20
100
.225
.675
4
0
.788
3–5
4
0
2.475
3–5
4
0
4.163
3–5
4
0
5.850
2–5 | 50
40
12
20
.10
.30
.60
2
2
0
.750
3-5
4
0
2.200
3-5
4
0
3.700
3-5
4
0
2.200
3-5 | | WI
Axx
Spo
Loo
On
Axx | n. Bassle le acing ad les 10 20 30 40 | e L X X X a1 a2 a3 G N B M G N B M G N B M G N B M G N B M G N B M B M G N B M B M B M G N B M B M B M B M B M B M B M B M B M B | 32
12
12
20
.30
.50
2
2
0
.750
3-5
4
0
1.832
2-5
3
.997R
3.226
2-5
3
.997R
3.226
1.5218 | 42
32
12
12
20
.40
.40
.40
2
2
0
1.000
2
2
0
2.000
1-3
2
5.49R
3.507
1-5
1.994L
5.705
1-5
1.994L | 43
36
12
16
100
.225
.675
3-5
4
0
2.475
3-5
4
0
2.475
3-5
4
0
2.475
3-5
4
0
2.475
3-5
4
0
2.475
3-5
4
0
2.475
3-5
4
0
2.475
4
0
2.475
4
0
2.475
4
0
2.475
4
0
2.475
4
0
2.475
4
0
2.475
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
4
2.500
4
4
4
4
4
4
4
4
4
4
4
4
4 |
44
36
12
16
.10
.30
.60
2
2
0
.750
3–5
4
0
2.200
3–5
4
0
2.200
3–5
4
0
3.700
2–5
3.33R
5.440
2–5
3.33R
3.35
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3 | 45
36
12
16
.40
.50
2
2
0
1.000
2
2
0
2.000
1-2
2
1.2007
3.174
2-5
3
2.440R
4.934
1-5
2
4.061 | 46 36 12 16 20 20 .60 3-5 4 0 2.200 3-5 4 0 2.200 3-5 4 0 2.500 3-5 4 0 2.500 3-5 4 0 3.700 2-5 4 2.500 8 | 47 36 12 16 20 30 .50 2 2 0 .750 3-5 4 0 1.832 3-5 4 0 3.082 2-5 3 1.746R 4.661 1-5 3 4.194R | 48 36 12 16 20 40 40 40 2 2 0 0 1.000 2 2 2 2.000 1-2 2.000 1-4 2 1.379L 5.107 1-5 2 2.793L | 49
40
12
20
.100
.225
.675
3-5
4
0
.788
3-5
4
0
2.475
3-5
4
0
4.163
3-5
4
0
5.850
2-5
.875
4
0
2.475
3-5
4
0
4
0
4
0
2.475
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0 | 50
40
12
20
.10
.30
.60
2
2
0
.750
3–5
4
0
2.200
3–5
4
0
5.200
2.200
3–5
2.200
3–5
4
0
2.200
3–5
4
0
2.200
3–6
4
0
2.200
3–6
4
0
3.700
3.700
4.700
4.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.70000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.70000
5.7000
5.7000
5.7000
5.7000
5.7000
5.70000
5.7000
5.7000 | | n-Feet | n. Bassle le acing ad les 10 20 30 40 | e L | 32
12
12
12
20
30
.50
2
2
0
.750
3–5
4
0
1.832
2–5
3
.997R
3.226
2–5
3
.997R
5.218
1–5
3
3.957R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R
5.97R | 42
32
12
12
20
.40
.40
.40
2
2
0
1.000
2
2
0
2.000
1-3
2
.549R
3.507
1-5
2
1.994L
8.186 | 43
36
12
16
100
.225
.675
3-5
4
0
2.475
3-5
4
0
4.163
2-5
4
2.500R
8.213 | 44
36
12
16
.30
.60
2
0
.750
3-5
4
0
2.200
3-5
4
0
3.700
2-5
3
1.333R
5.440
2-5
3
1.333R
7.682 | 45
36
12
16
.40
.50
2
2
0
1.000
2
2
0
2.000
1-2
2
1.200R
3.174
2-5
3
2.440R
4.934
1-5
2
4.06IJ
7.283 |
46
36
12
16
.20
.20
.60
3-5
4
0
2.200
3-5
4
0
2.200
3-5
4
0
2.200
2-5
4
2.500
2-5
4
2.500
2-7
4
0
3-7
4
0
3-7
4
0
3-7
4
0
3-7
4
0
3-7
4
0
3-7
4
0
3-7
4
0
3-7
4
0
3-7
4
0
3-7
4
0
3-7
4
0
3-7
4
0
3-7
4
0
3-7
4
0
3-7
4
0
3-7
4
0
3-7
4
0
3-7
4
0
3-7
4
0
3-7
4
0
3-7
4
0
3-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
4
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7 | 47 36 12 16 20 .30 .50 2 0 .750 3-5 4 0 1.832 3-5 4 0 3.082 2-5 3 1.746R 4.661 1-5 3 4.194R 6.654 | 48 36 12 16 20 .40 .40 .40 2 2 0 1.000 2 2 2 2 0 2.000 1-2 2 2.0000 1-4 2 1.379L 5.107 1-5 2 7.463 | 49
40
12
20
100
.225
.675
4
0
.788
3–5
4
0
2.475
3–5
4
0
4.163
8–5
4
0
4.163
8–5
4
0
4.163 | 50
40
12
20
.30
.60
2
2
0
.750
3–5
4
0
2.200
3–5
4
0
3.700
3–5
4
0
2.200
3–5
4
0
2.200
3–5
4
0
3.700
3–5
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
0
3–7
4
4
0
3–7
4
0
3–7
4
4
0
3–7
4
0
3–7
4
0
3–7
4
4
0
3–7
4
4
4
4
5
4
4
5
4
5
4
5
4
5
4
5
4
5
5
5
4
5
5
5
5
5
5
5
5
5
5
5
5
5 | | n-Feet | n. Bassle le acing ad les 10 20 30 40 | e L X X X a1 a2 a3 G N B M G N B M G N B M G N B M G N B M G N B M B M G N B M B M B M G N B M B M B M B M B M B M B M B M B M B | 32
12
12
20
.30
.50
2
2
0
.750
3-5
4
0
1.832
2-5
3
.997R
3.226
2-5
3
.997R
3.226
7.5218
1-5
3
3.195R
7.505 | 42
32
12
12
20
.40
.40
.40
.2
2
0
1.000
2
2
0
2.000
1-3
2
5.49R
3.507
1-5
2
1.994L
8.186
1-5
2 | 43
36
12
16
100
.225
.675
3-5
4
0
2.475
3-5
4
0
2.475
3-5
4
0
2.475
3-5
4
0
2.475
3-5
4
0
2.475
3-5
4
0
2.475
3-5
4
0
2.475
4
0
2.475
4
0
2.475
4
0
2.475
4
0
2.475
4
0
2.475
4
0
2.475
4
0
2.475
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
0
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
2.500
4
4
2.500
4
4
4
4
4
4
4
4
4
4
4
4
4 | 44
36
12
16
.10
.30
.60
2
2
0
.750
3–5
4
0
2.200
3–5
4
0
2.200
3–5
4
0
3.700
2–5
3.33R
5.440
2–5
3.33R
3.35
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3 | 45
36
12
16
.40
.50
2
2
0
1.000
2
2
0
2.000
1-2
2
1.2007
3.174
2-5
3
2.440R
4.934
1-5
2
4.966I | 46 36 12 16 20 20 .60 3-5 4 0 2.200 3-5 4 0 2.200 3-5 4 0 2.500 3-5 4 0 2.500 3-5 4 0 3.700 2-5 4 2.500 8 | 47 36 12 16 20 30 .50 2 2 0 .750 3-5 4 0 1.832 3-5 4 0 3.082 2-5 3 1.746R 4.661 1-5 3 4.194R | 48 36 12 16 20 40 40 40 2 2 0 1.000 2 2 2 2.0000 1-2 2.0000 3.380 1-4 2 1.379L 5.107 1-5 2 2.793L 7.463 1-5 2 |
49
40
12
20
.100
.225
.675
3-5
4
0
.788
3-5
4
0
2.475
3-5
4
0
4.163
3-5
4
0
5.850
2-5
.875
4
0
2.475
3-5
4
0
4
0
4
0
2.475
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0 | 50
40
12
20
.10
.30
.60
2
2
0
.750
3–5
4
0
2.200
3–5
4
0
5.200
2.200
3–5
2.200
3–5
4
0
2.200
3–5
4
0
2.200
3–6
4
0
2.200
3–6
4
0
3.700
3.700
4.700
4.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.700
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.70000
5.7000
5.7000
5.7000
5.7000
5.7000
5.7000
5.70000
5.7000
5.7000
5.7000
5.7000
5.7000
5.70000
5.7000
5.7000 | | n-Feet | 10 as solve and a | e L | 32
12
12
12
20
30
.50
2
2
0
.750
3–5
4
0
1.832
2–5
3
.997R
3.226
2–5
3
.997R
3.25
1–5
3.195R
7.505 | 42
32
12
12
20
.40
.40
.40
2
2
0
1.000
2
2
0
2.000
1-3
2
.549R
3.507
1-5
2
1.994L
8.186
1-5
2
1.994L | 43
36
12
16
100
.225
.675
3-5
4
0
2.475
3-5
4
0
4.163
2-5
4
2.500R
5.990
2-5
4
2.500R
8.213
1-5
3
1.850R | 44
36
12
16
.30
.60
2
0
.750
3-5
4
0
2.200
3-5
4
0
3.700
2-5
3
1.333R
5.440
2-5
3
1.333R
2-60
2-60
3-60
3-60
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750
3-750 | 45 36 12 16 .10 .40 .50 2 0 1.000 2 2 0 2.000 1-2 2 1.200R 3.174 2-5 3 2.44084 4.934 1-5 2 4.406I 7.283 | 46 36 12 16 20 .20 .60 3-5 4 0 .700 3-5 4 0 2.200 3-5 4 2.500R 5.325 2-5 4 2.500R 7.300 1-5 3.200R | 47 36 12 16 .20 .30 .50 2 0 .750 3-5 4 0 1.832 3-5 4 0 3.082 2-5 3 1.746R 4.661 1-5 3 4.194R 6.654 1-5 3 4.194R | 48 36 12 16 20 .40 .40 .40 2 2 0 1.000 2 2 2 0 2.000 1-2 2 2.000R 3.380 1-4 2 1.379L 5.107 1-5 2 2.793L 7.463 1-5 2 2.793L | 49
40
12
20
100
.225
.675
4
0
.788
3–5
4
0
2.475
3–5
4
0
4.163
3–5
4
0
4.163
3–5
4
0
4.163
3–5
4
0
4.163
3–5
4
0
4.163
3–6
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163
4.163 |
50
40
12
20
.10
.30
.60
2
2
0
.750
3–5
4
0
2.200
3–5
4
0
3.700
3-5
4
0
2.200
3-1
4
0
3.700
3-1
4
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.7000
3.700
3.7000 | | n-Feet | 10 as solve and a | e L XXX' a1 a2 a3 G N B M M G N B M M M G N B M M M G N B M M M G N B M M M B M M M G N B M M M M B M M M M B M M M M B M | 32
12
12
20
.30
.50
2
2
0
.750
3-5
4
0
1.832
2-5
3
.997R
3.226
2-5
3
.997R
3.226
7.5218
1-5
3
3.195R
7.505 | 42
32
12
12
12
20
40
40
2
2
0
1.000
2
2
0
2.000
1-3
2.549R
3.507
1-5
1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
1-5
2.1.994L
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186
8.186 | 43
36
12
16
100
.225
.675
3-5
4
0
2.475
3-5
4
0
2.475
3-5
4
0
4.163
2-5
4
2.500R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R
5.900R |
44
36
12
16
.10
.30
.60
2
0
.750
3-5
4
0
2.200
3-5
4
0
3.700
2-5
3.733R
5.440
2-5
3.700
2-5
3.333R
5.40
2.200
2.200
3.750
3.750
2.200
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750
3.750 | 45
36
12
16
.40
.50
2
0
1.000
2
2
0
2.000
1-2
2
1.200R
3.174
2-5
3
2.440R
4.934
1-5
2
4.406L
7.283
1-5
2,406L
9,718 | 46 36 12 16 20 20 60 3-5 4 0 700 3-5 4 0 2.200 3-5 4 2.500R 5.325 2-5 4 2.500R 7.300 1-5 3 3.200R 9.571 | 47 36 12 16 .20 .30 .50 2 0 .750 3-5 4 0 1.832 3-5 4 0 3.082 2-5 3 1.746R 4.661 1-5 3 4.194R 6.654 1-5 3 4.194R 9.095 | 48 36 12 16 .20 .40 .40 .2 2 0 1.000 2 2 2 0 2.000 1-2 2 2.000R 3.380 1-4 2 1.879L 5.107 1-5 2 2.798L 7.463 1-5 2 2.798L 9.937 | 49
40
12
20
1100
.225
.675
3-5
4
0
2.475
3-5
4
0
4.163
3-5
4
0
5.850
2-5
4
3.000R
7.812
2-5
4
3.000R
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000 | 50
40
12
20
.10
.30
.60
.60
2
2
0
.750
3–5
4
0
2.200
3–5
4
0
2.200
3–5
4
0
2.200
3–5
4
0
2.200
3–5
4
0
2.200
3–5
4
0
3.700
3–5
4
0
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.7000
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.70000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3. | | n-Feet | 10 as solve and a | e L XX Xi a1 a2 a3 G N B M G N
B M G N | 32
12
12
12
20
30
.50
2
2
0
.750
3–5
4
0
1.832
2–5
3
.997R
3.225
2–5
3
.997R
5.218
1–5
3
3.195R
9.971
1–5
3
3.195R
9.971
1–5
3 | 42
32
12
12
20
.40
.40
.40
2
2
0
1.000
2
2
0
2.000
1-3
2
.549R
3.507
1-5
2
1.994L
8.186
1-5
2
1.994L
10.672
1-5
2 | 43
36
12
10
100
.225
.675
4
0
.788
3-5
4
0
2.475
3-5
4
0
4.163
2-5
4
2.500R
5.990
2-5
4
2.500R
5.990
1-5
4
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R | 44 36 12 16 .30 .60 2 0 .750 3-5 4 0 2.200 3-5 4 0 3.700 2-5 3 1.333R 5.440 2-5 3 1.333R 7.682 1-5 3 2.600R 10.113 1-5 3 | 45 36 12 16 .10 .40 .50 2 0 1.000 2 2 0 2.000 1-2 2 1.200R 3.174 2-5 3 2.440R 4.934 1-5 2 4.406I 9.718 1-5 2 | 46 36 12 16 20 .20 .60 3-5 4 0 .700 3-5 4 0 2.200 3-5 4 2.500R 5.325 2-5 4 2.500R 7.300 1-5 3 3.200R 9.571 1-5 3 | 47 36 12 16 20 .30 .50 2 0 .750 3-5 4 0 1.832 3-5 4 0 3.082 2-5 3 4.194R 6.654 1-5 3 4.194R 9.095 1-5 3 | 48 36 12 16 20 .40 .40 .40 2 2 0 1.000 2 2 2 0 2.000 1-2 2 2.000R 3.380 1-4 2 1.379L 5.107 1-5 2 2.793L 9.937 1-5 2 | 49
40
12
20
100
.225
.675
4
0
.788
3–5
4
0
2.475
3–5
4
0
4.163
8–5
4
0
5.850
2–5
4
3.000R
7.812
2–5
4
3.000R
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.0 | 50
40
12
20
.30
.60
.60
2
2
0
.750
3–5
4
0
2.200
3–5
4
0
3.700
3–5
4
0
3.700
3–5
4
0
3.700
3–5
4
0
3.700
3–5
4
0
3.700
3–5
4
0
3.700
3–5
4
0
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.7000
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7000
3.7 | | n-Feet | n. Basile acing ad less 10 20 30 40 50 60 | e L XX XX A1 A2 A3 G N B M G N
B M G N | 32
12
12
12
20
.30
.50
2
2
0
.750
3–5
4
0
1.832
2–5
3
.997R
3.296
2–5
3.997R
3.295
1.532
1.532
3.997R
3.195R
7.505
1.53
3.195R
9.995R
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53
1.53 | 42
32
12
12
12
12
12
14
10
40
40
2
2
0
1.000
2
2
0
2.000
1-3
2
2.549R
3.507
1-5
2
1.994L
8.186
1-5
2
1.994L
8.196
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.954
1.95 | 43
36
12
16
100
.225
.675
3-5
4
0
2.475
3-5
4
0
2.475
3-5
4
0
2.475
3-5
4
0
2.475
3-5
4
0
2.475
3-5
4
0
2.475
3-5
4
0
1.675
3-5
4
0
2.475
3-5
4
0
1.675
4
0
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.675
1.67 | 44 36 12 16 .10 .30 .60 2 2 0 .750 3-5 4 0 2.200 3-5 4 0 2.25 3.700 2-5 3.333R 5.440 2-5 3 1.333R 7.682 1-5 3 2.600R | 45 36 12 16 .40 .50 2 2 0 1.000 2 2 0 2.000 1-2 2 1.200R 3.174 2-5 3 2.440R 4.934 1-5 2 4.406I 7.283 1-5 9.718 1-5 2 4.406L 9.718 | 46 36 12 16 .20 .20 .60 3-5 4 0 .700 3-5 4 0
2.200 3-5 4 2.500 3-7 3-7 1-5 3 3.200 8 | 47 36 12 16 20 30 .50 2 2 0 .750 3-5 4 0 1.832 3-5 4 0 3.082 2-5 3.1.746R 4.661 1-5 3 4.194R 9.095 1-5 3 4.194R | 48 36 12 16 .20 .40 .40 .2 2 2 0 1.000 2 2 2 0.000 1-2 2 2.000 1-4 2 2.793L 7.463 1-5 2 2.793L 9.937 1-5 2 2.793L | 49
40
12
20
100
225
.675
3-5
4
0
2.475
3-5
4
0
2.475
3-5
4
0
5.850
2-5
4
3.000R
7.812
2-5
4
3.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1 | 50 40 12 20 .10 .30 .60 2 2 0 .750 3-5 4 0 2.200 3-5 4 0 5.200 2-5 3 2.000R 7.122 1-5 3 3.400R 9.393 1-5 3 3.400R | | n-Feet | 1. Basic le acing ad les 10 20 30 40 50 60 80 | e L XX a1 a2 a3 G N B M G R B M G R B R B M G R B R B M G R B R B R B R B R B R B R B R B R B R | 32
12
12
12
20
30
.50
2
2
0
.750
3–5
4
0
1.832
2–5
3
.997R
3.295
2–5
3.997R
5.218
1–5
3.195R
7.505
1–5
3.195R
9.971
1–5
3.195R | 42
32
12
12
20
.40
.40
.40
.2
2
0
1.000
2
2
0
2.000
1-3
2
.549R
3.507
1-5
2
1.994L
1.994L
10.672
1.994L
10.672
1.994L
10.672
1.994L
10.672
1.994L
10.672
1.994L
10.672
1.994L
10.672
1.994L
10.672
1.994L
10.672
1.994L
10.672
1.994L
10.672
1.994L
10.672
1.994L
10.672
1.994L
10.672
1.994L
10.672
1.994L
10.672
1.994L | 43
36
12
10
100
.225
.675
3-5
4
0
2.475
3-5
4
0
4.163
2-5
4
2.500R
8.213
1-5
3.850R
10.507 | 44 36 12 16 .30 .60 2 2 0 .750 3-5 4 0 2.200 3-5 4 0 3.700 2-5 3 1.333R 5.440 2-5 3 1.333R 1.682 1-5 3 2.600R 10.113 | 45 36 12 16 .40 .50 2 0 1.000 2 2 0 2.000 1-2 2 1.200R 3.174 2-5 3 2.4440R 4.934 1-5 2 4.406I 9.718 1-5 2 4.406I 9.718 1-5 2 4.406I 1.46637 1-5 | 46 36 12 16 20 .20 .60 3-5 4 0 .700 3-5 4 0 2.200 3-5 4 0 2.200 3-5 4 0 2.200 3-5 4 0 3.700 1-5 3 3.200R 9.571 1-5 3 3.200R 14.528 | 47 36 12 16 20 .30 .50 2 0 .750 3-5 4 0 1.832 3-5 4 0 3.082 2-5 3 1.746R 4.661 1-5 3 4.194R 9.095 1-5 3 4.194R 14.022 1-5 | 48 36 12 16 20 .40 .40 .40 2 2 0 1.000 2 2 2 2 0 2.000 1-2 2 2.0000 1-4 2 1.379L 5.107 1-5 2 2.793L 7.463 1-5 2 2.793L 9.937 1-5 2 2.793L 14.905 1-5 | 49 40 12 20 100 .225 .675 3-5 4 0 .788 3-5 4 0 2.475 3-5 4 0 4.163 3-5 4 0 5.850 2-5 4 3.000R 7.812 2-5 4 3.000R 10.035 1-5 3 2.500R 14.878 | 50
40
12
20
.30
.60
.60
2
2
0
.750
3–5
4
0
2.200
3–5
4
0
3.700
3–5
4
0
2.200
3–5
4
0
3.700
3–5
3.700
2.100
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.7000
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.7000
3.700
3.700
3.700
3.700
3.700
3.700
3.7000
3.7000
3.7000 | | n-Feet | n. Basile acing ad less 10 20 30 40 50 60 | e L XX a1 a2 a3 GNBM GNBM GNBM GNBM GNBBM GNBBM GNBBM GNBBM GNBBM GNBBM GNBBM GNBBM |
32
12
12
12
12
12
20
30
.50
2
2
0
.750
3-5
4
0
1.832
2-5
3
.997R
5.218
1-5
3
3.195R
7.505
1-5
3
3.195R
7.997R
5.218
1-5
3
3.195R
7.997R
5.218
1-5
3
3.195R
7.997R
5.218
1-5
3
3.195R
7.997R
5.218
1-5
3
3.195R
7.997R
5.218
1-5
3
3.195R
7.997R
5.218
1-5
3
3.195R
7.997R
5.218
1-5
3
3.195R
7.997R
5.218
1-5
3
3.195R
7.997R
5.218
1-5
3
3.195R
7.997R
5.218
1-5
3
3.195R
7.997R
5.218
1-5
3
3.195R
7.997R
5.218
1-5
3
3.195R
7.997R
5.218
1-5
3
3.195R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R
7.997R | 42 32 12 12 12 12 20 .40 .40 .40 2 2 0 1.000 2 2 0 2.000 1-3 2 549R 3.507 1-5 2 1.994L 5.705 1-5 2 1.994L 15.656 1-5 2 1.994L 15.656 1-5 2 1.994L | 43
36
12
16
100
.225
.675
3-5
4
0
.788
3-5
4
0
2.475
3-5
4
0
4.163
2-5
4
2.500R
8.213
1-5
3
1.850R
1.850R
15.493
1-5
3
1.850R
15.493
1.850R
15.493 | 44
36
12
16
.10
.30
.60
2
2
0
.750
3-5
4
0
2.200
3-5
4
0
2.200
2-5
3.700
2-5
3.33R
5.440
2-5
3
1.333R
7.682
1-5
3
2.600R
10.113
1-5
3
2.600R
10.113
1-5
3
2.600R
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750
1.750 | 45 36 12 16 .40 .50 2 2 0 1.000 2 2 0 2.000 1-2 2 1.200R 3.174 2-5 3 2.440R 4.934 1-5 2 4.406L 7.283 1-5 2 4.406L 1-5 2 4.406L 1-5 2 4.406L 1-5 2 4.406L 1-5 2 4.406L | 46 36 12 16 .20 .20 .60 3-5 4 0 .700 3-5 4 0 2.200 3-5 4 2.500 3-7 3-7 1-5 3 3.200 1-5 3 3.200 1-5 3 3.200 1-5 3 3.200 1-5 3 3.200 1-5 3 | 47 36 12 16 20 30 50 2 2 0 750 3-5 4 0 1.832 3-5 4 0 3.082 2-5 3 4.194R 6.654 1-5 3 4.194R 9.095 1-5 3 4.194R 14.022 1-5 3 | 48 36 12 16 .20 .40 .40 .40 .2 2 0 1.000 2 2 2 0 2.000 1-2 2 2.000 1-4 2 2.793L 7.463 1-5 2 2.793L 9.937 1-5 2 2.793L 1.905 1-4 9.937 1-5 2 2.793L 1.905 | 49 40 12 20 .100 .225 .675 3-5 4 0 .788 3-5 4 0 2.475 3-5 4 0 4.163 3-5 4 0 5.850 2-5 4 3.000R 7.812 2-5 4 3.000R 7.812 3-5 4 3.000R 7.812 3-5 4 3.04 3.05 3-5 4 3.05 3-5 4 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 | 50 40 12 20 .10 .30 .60 2 2 0 .750 3-5 4 0 2.200 3-5 4 0 5.200 2-5 3 2.000R 7.122 1-5 3 3.400R 9.393 1-5 3 3.400R 14,345 1-5 3 | | n-Feet | 1. Basic le acing ad les 10 20 30 40 50 60 80 | e L XX a1 a2 a3 G N B M G R B M G R B R B M G R B R B M G R B R B R B R B R B R B R B R B R B R | 32
12
12
12
20
30
.50
2
2
0
.750
3–5
4
0
1.832
2–5
3
.997R
3.295
2–5
3.997R
5.218
1–5
3.195R
7.505
1–5
3.195R
9.971
1–5
3.195R | 42
32
12
12
20
.40
.40
.40
.2
2
0
1.000
2
2
0
2.000
1-3
2
.549R
3.507
1-5
2
1.994L
1.994L
10.672
1.994L
10.672
1.994L
10.672
1.994L
10.672
1.994L
10.672
1.994L
10.672
1.994L
10.672
1.994L
10.672
1.994L
10.672
1.994L
10.672
1.994L
10.672
1.994L
10.672
1.994L
10.672
1.994L
10.672
1.994L
10.672
1.994L
10.672
1.994L | 43
36
12
10
100
.225
.675
3-5
4
0
2.475
3-5
4
0
4.163
2-5
4
2.500R
8.213
1-5
3.850R
10.507 | 44 36 12 16 .30 .60 2 2 0 .750 3-5 4 0 2.200 3-5 4 0 3.700 2-5 3 1.333R 5.440 2-5 3 1.333R 1.682 1-5 3 2.600R 10.113 | 45 36 12 16 .40 .50 2 0 1.000 2 2 0 2.000 1-2 2 1.200R 3.174 2-5 3 2.4440R 4.934 1-5 2 4.406L 9.718 1-5 2 4.406L 14.6637 1-5 | 46 36 12 16 20 .20 .60 3-5 4 0 .700 3-5 4 0 2.200 3-5 4 0 2.200 3-5 4 0 2.200 3-5 4 0 3.700 1-5 3 3.200R 9.571 1-5 3 3.200R 14.528 | 47 36 12 16 20 .30 .50 2 0 .750 3-5 4 0 1.832 3-5 4 0 3.082 2-5 3 1.746R 4.661 1-5 3 4.194R 9.095 1-5 3 4.194R 14.022 1-5 | 48 36 12 16 20 .40 .40 .40 2 2 0 1.000 2 2 2 2 0 2.000 1-2 2 2.0000 1-4 2 1.379L 5.107 1-5 2 2.793L 7.463 1-5 2 2.793L 9.937 1-5 2 2.793L 14.905 1-5 | 49 40 12 20 100 .225 .675 3-5 4 0 .788 3-5 4 0 2.475 3-5 4 0 4.163 3-5 4 0 5.850 2-5 4 3.000R 7.812 2-5 4 3.000R 10.035 1-5 3 2.500R 14.878 |
50
40
12
20
.30
.60
.60
2
2
0
.750
3–5
4
0
2.200
3–5
4
0
3.700
3–5
4
0
2.200
3–5
4
0
3.700
3–5
3.700
2.100
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.7000
3.700
3.700
3.700
3.700
3.700
3.700
3.700
3.7000
3.700
3.700
3.700
3.700
3.700
3.700
3.7000
3.7000
3.7000 | 74 METHOD OF CONVERTING HEAVY MOTOR VEHICLE LOADS | 74
TA | BLE | 1.0 L | Continue | u, | | | | | | | | | |-------------------------|--|--|--
--|--|--
--|--|--|--
--|--| | Tru | ick No |) . | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | | | ı. Base | | 40 | 40 | 40 | 40 | 44 | 44 | 44 | 44 | 44 | 44 | | Ax | le
acing | X
X' | $\frac{12}{20}$ | $\begin{array}{c} 12 \\ 20 \end{array}$ | $\frac{12}{20}$ | $\frac{12}{20}$ | $\frac{12}{24}$ | $\frac{12}{24}$ | $\frac{12}{24}$ | $\frac{12}{24}$ | $\begin{array}{c} 12 \\ 24 \end{array}$ | $\begin{array}{c} 12 \\ 24 \end{array}$ | | Lo | ad | aı | .10 | .20 | .20 | .20 | .100 | .10 | .10 | .20 | .20 | .20 | | On
Ax | | \mathbf{a}_2 | .40
.50 | .20
.60 | .30
.50 | $.40 \\ .40$ | .225 $.675$ | .30 $.60$ | .40
.50 | .20
.60 | .30 $.50$ | $.40 \\ .40$ | | | | G | 2 | 35 | 2 | 2 | 3-5 | 2 | 2 | 3–5 | 2 | 2 | | 1 | 10 | N
B | 2
0 | 4
0 | $\frac{2}{0}$ | 2 | 4
0 | 2
0 | 2
0 | 4
0 | 2
0 | 2
0 | | | | M | 1.000 | .700 | .750 | 1.000 | .788 | .750 | 1.000 | .700 | .750 | 1.000 | | | 20 | G
N | $\frac{2}{2}$ | $^{3-5}_{4}$ | 3–5
4 | 2 2 | $^{3-5}$ | $^{3-5}$ | $\frac{2}{2}$ | $_4^{3-5}$ | 3–5
4 | 2 2 | | | 20 | В | 0 | 0 | 0 | 0 | 0 | ' 0 | 0 | 0 | 0 | 0 | | | | M
G | 2.000 | $\frac{2.200}{35}$ | $\frac{1.832}{3-5}$ | $\frac{2.000}{1-2}$ | $\frac{2.475}{3-5}$ | 2.200
3-5 | $\frac{2.000}{1-2}$ | $\frac{2.200}{3-5}$ | 3-5 | $\frac{2.000}{1-2}$ | | | 30 | N | 2 | 4 | 4 | 2 | 4 | 4 | 2 | 4 | 4 | 2 | | | | B
M | 1.200R
3.174 | $\begin{smallmatrix} 0\\3.700\end{smallmatrix}$ | $\frac{0}{3.082}$ | 2.000R
3.380 | $^{0}_{4.163}$ | $\begin{array}{c} 0 \\ 3.700 \end{array}$ | 1.200R
3.174 | $\frac{0}{3.700}$ | $\frac{0}{3.082}$ | 2.000R
3.380 | | | | G | 1-3 | 3-5 | 3-5 | 1-2 | 3–5 | 3-5 | 1-2 | 3-5 | 3–5 | 1–2 | | te
te | 40 | N
B | $^{2}_{1.604L}$ | 4
0 | 4
0 | $^2_{2.000 m R}$ | 4
0 | 4
0 | $^2_{1.200 m R}$ | 4
0 | 4
0 | 2
2.000R | | F | | M | 4.443 | 5.200 | 4.332 | 4.860 | 5.850 | 5.200 | 4.418 | 5.200 | 4.332 | 4.860 | | Span-Feet | 50 | G
N | $^{1-5}_2$ | $^{2-5}$ | $^{2-5}_{3}$ | $\frac{1-4}{2}$ | 3-5
4 | $_{4}^{3-5}$ | $^{1-4}_2$ | 3-5
4 | 3–5
4 | $_{2}^{1-3}$ | | Ω. | 00 | В | 5.407L | $3.000\mathbf{R}$ | 2.495R | 1.993L | 0 | 0 | 4.487L | 0 | 0 | .540L | | i | | M
G | 6.478
1-5 | $\frac{6.944}{2-5}$ | $\frac{6.100}{1-5}$ | $\frac{6.767}{1-5}$ | $\frac{7.538}{2-5}$ | 6.700
2-5 | 5.811
1–5 | $\frac{6.700}{2-5}$ | 5.582
2-5 | $\frac{6.371}{1-5}$ | | ļ | 60 | N | 2 | 4 | 3 | 2 | 4 | 3 | 2 | 4 | 3 | 2 | | | | 13
M | 5.407L 8.881 | 3.000R
8.920 | 5.193R
8.252 | $\begin{array}{c} 3.592 \mathrm{L} \\ 9.223 \end{array}$ | 3.500R
9.634 | $\frac{2.667 \mathrm{R}}{8.807}$ | $6.408 L \\ 8.077$ | $3.500\mathbf{R} \\ 8.563$ | 3.244R
7.542 | 4.391L
8.531 | | ļ | | G | 1-5 | 1–5 | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | | | 80 | N
B | $^{2}_{5.407 \rm L}$ | $^3_{4.000 m R}$ | $_{5.193R}^{3}$ | $\begin{array}{c} 2 \\ 3.592 \mathbf{L} \end{array}$ | $3 \\ 3.150 $ R | $\frac{3}{4.200\mathbf{R}}$ | 2
6.408L | $^3_{4.800 m R}$ | 3
6.192R | 2
4.391L | | | | M | 13,759 | 13.800 | 13.140 | 14.170 | 14.274 | 13.621 | 12.906 | 13.088 | 12.283 | 13.450 | | | 100 | G
N | $^{1-5}_2$ | $^{1-5}_3$ | $^{1-5}_3$ | $^{15}_2$ | $^{1-5}_{3}$ | $^{1-5}_3$ | $^{1-5}_2$ | 1-5
3 | $^{1-5}$ | $^{1-5}_2$ | | | 100 | В | 5.407L | 4.000R | $5.193\mathbf{R}$ | 3.592L | 3.150R | $4.200\mathbf{R}$ | 6.408L | 4.800R | 6.192R | 4.391L | | | | M | 18.686 | 18.760 | 18.073 | 19.137 | 19.249 | 18.576 | 17.803 | 18.030 | 17.187 | 18.402 | | 111 | and MI | | <i>e</i> 1 | 69 | 6.9 | 0.1 | C.E. | CC | 67 | co | co | 70 | | | uck No
1. Base | | 61
32 | 62
32 | 63
32 | 64
32 | 65
32 | 66
32 | 67
36 | 68
36 | 69
36 | 70
36 | | Wł | ı. Base
le | L
X | 32
16 | 32
16 | $\frac{32}{16}$ | 32
16 | 32
16 | 32
16 | 36
16 | 36
16 | 36_
16 | 36 | | Ax
Spa | n. Base
le
acing | X
X' | 32
16
8 | 32
16
8 | 32
16
8 | 32
16
8 | 32
16
8 | 32
16
8 | 36
16
12 | 36
16
12 | 36
16
12 | 36
16
12 | | What Ax Spa | n. Base
le
acing
ad | 2 L
X
X'
a ₁
a ₃ | 32
16
8
.100
.225 | 32
16
8
.10
.30 | 32
16
8
.10
.40 | 32
16
8
.20
.20 | 32
16
8
.20
.30 | 32
16
8
.20
.40 | 36
16
12
.100
.225 | 36
16
12
.10
.30 | 36
16
12
.10
.40 | 36
16
12
.20
.20 | | Wh
Ax
Spa
Loa | n. Base
le
acing
ad | X
X'
a ₁
a ₂
a ₃ | 32
16
8
.100
.225
.675 | 32
16
8
.10
.30
.60 | 32
16
8
.10
.40
.50 | 32
16
8
.20
.20
.60 | 32
16
8
.20
.30
.50 | 32
16
8
.20
.40
.40 | 36
16
12
.100
.225
.675 | 36
16
12
.10
.30
.60 | 36
16
12
.10
.40
.50 | 36
16
12
.20
.20
.60 | | Ax
Spa
Loa
On | n. Base
le
acing
ad | X
X'
A1
A3
A3
G
N | 32
16
8
.100
.225
.675
3-5
4 | 32
16
8
.10
.30
.60 | 32
16
8
.10
.40
.50 | 32
16
8
.20
.20
.60
3-5
4 | 32
16
8
.20
.30
.50 | 32
16
8
.20
.40
.40 | 36
16
12
.100
.225
.675
3-5
4 | 36
16
12
.10
.30
.60 | 36
16
12
.10
.40
.50 | 36
16
12
.20
.20
.60
3-5
4 | | Ax
Spa
Loa
On | n. Base
le
acing
ad
les | 2 L
X
X'
a ₁
a ₂
a ₃
G | 32
16
8
.100
.225
.675
3-5 | 32
16
8
.10
.30
.60 | 32
16
8
.10
.40
.50 | 32
16
8
.20
.20
.60
3-5 | 32
16
8
.20
.30
.50 | 32
16
8
.20
.40
.40 | 36
16
12
.100
.225
.675
3-5 | 36
16
12
.10
.30
.60 | 36
16
12
.10
.40
.50 | 36
16
12
.20
.20
.60
3-5 | | Ax
Spa
Loa
On | n. Base
le
acing
ad
les | 2 L
X
X'
a ₁
a ₂
a ₃
G
N
B
M | 32
16
8
.100
.225
.675
3-5
4
0
.788
3-5 | 32
16
8
.10
.30
.60
2
2
0
.750
3-5 | 32
16
8
.10
.40
.50
2
2
0
1.000 | 32
16
8
.20
.20
.60
3-5
4
0
.700
3-5 | 32
16
8
.20
.30
.50
2
2
0
.750
3-5 | 32
16
8
.20
.40
.40
2
2
0
1.000
2 3 | 36
16
12
.100
.225
.675
3-5
4
0
.788 | 36
16
12
.10
.30
.60
2
2
0
.750 | 36
16
12
.10
.40
.50
2
2
0
1.000 | 36
16
12
.20
.20
.60
3-5
4
0
.700 | | Ax
Spa
Loa
On | n. Base
le
acing
ad
les | X
X
X'
a ₁
a ₂
a ₃
G
N
B
M | 32
16
8
.100
.225
.675
3-5
4
0
.788 | 32
16
8
.10
.30
.60
2
2
0
.750 | 32
16
8
.10
.40
.50
2
2
0
1.000 | 32
16
8
.20
.20
.60
3-5
4
0
.700 | 32
16
8
.20
.30
.50
2
2
0
.750 | 32
16
8
.20
.40
.40
2
2
0
1.000 |
36
16
12
.100
.225
.675
3-5
4
0
.788 | 36
16
12
.10
.30
.60
2
2
0
.750 | 36
16
12
.10
.40
.50
2
2
0
1.000 | 36
16
12
.20
.20
.60
3-5
4
0 | | Ax
Spa
Loa
On | n. Base
le
acing
ad
les | XXX' a1 a2 a3 G N B M G N B M | 32
16
8
.100
.225
.675
3-5
4
0
.788
3-5
4
0
.2475 | 32
16
8
.10
.30
.60
2
2
0
.750
3–5
4
0
2.200 | 32
16
8
.10
.40
.50
2
2
0
1.000
2-3
2
1.178L
2.206 | 32
16
8
.20
.20
.60
3-5
4
0
.700
3-5
4
0
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.200
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000 | 32
16
8
.20
.30
.50
2
2
0
.750
3–5
4
0
1.832 | 32
16
8
.20
.40
.40
.2
2
0
1.000
2.3
2
.998L
2.160 | 36
16
12
.100
.225
.675
3-5
4
0
.788
3-5
4
0
2.475 | 36
16
12
.10
.30
.60
2
2
0
.750
3-5
4
0
2.200 | 36
16
12
.10
.40
.50
2
2
0
1.000
2
2
0
2.000 | 36
16
12
.20
.20
.60
3-5
4
0
.700
3-5
4
0
.200 | | Ax
Spa
Loa
On | n. Base
le
acing
ad
les | X X' a1 a2 a3 G N B M G N B | 32
16
8
.100
.225
.675
3-5
4
0
.788
3-5
4 | 32
16
8
.10
.30
.60
2
2
0
.750
3-5
4
0
2.200
2-5 | 32
16
8
.10
.40
.50
2
2
0
1.000
2-3
2
1.178L
2.206
2-5 | 32
16
8
.20
.20
.60
3-5
4
0
.700
3-5
4 | 32
16
8
.20
.30
.50
2
2
0
.750
3-5
4
0
1.832
2-5 | 32
16
8
.20
.40
.40
2
2
0
1.000
2.3
2
.998L
2.160
2-5 | 36
16
12
.100
.225
.675
3-5
4
0
.788
3-5
4
0
2.475
2-475 | 36
16
12
.10
.30
.60
2
2
0
.750
3-5
4
0
2.200
2-5 | 36
16
12
.10
.40
.50
2
2
0
1.000
2
2
0
2.000 | 36
16
12
.20
.60
.60
3-5
4
0
.700
3-5
4
0
2.200
2-5 | | Ax
Spa
Loa
On | n. Base
le
acing
ad
les
10 | X
X
X'
a1
a2
a3
G
N
B
M
G
N
B
M | 32
16
8
.100
.225
.675
3–5
4
0
.788
3–5
4
0
2.475
2–475
4
1.500R | 32
16
8
.10
.30
.60
2
2
0
.750
3-5
4
0
2.200
2-5
3 | 32
16
8
.10
.40
.50
2
2
0
1.000
2–3
2
1.178L
2.206
2–5
3.664R | 32
16
8
.20
.60
3-5
4
0
.700
3-5
4
0
2.200
2.200
2.5
4
0
1.5
4
0
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7 | 32
16
8
.20
.50
.50
2
2
0
.750
3-5
4
0
1.832
2-5
3
.247R | 32
16
8
20
.40
.40
.40
2
2
0
1.000
2 3
2
.998L
2.160
2-5
2
2.996L | 36
16
12
.100
.225
.675
3-5
4
0 .788
3-5
4
0 2.475
2-5
4
2.000R | 36
16
12
.10
.30
.60
2
2
0
.750
3–5
4
0
2.200
2–5
3
.667R | 36
16
12
.10
.40
.50
2
2
0
1.000
2
2
0
2.000
2-5
3 | 36
16
12
.20
.60
3-5
4
0
.700
3-5
4
0
2.200
2-5
4
2.000R | | What Ax Spa | n. Base
le
acing
ad
les
10 | X
X
X'
X'
A1
A2
A3
G
N
B
M
G
N
B
M | 32
16
109
.225
.675
4
0
.788
3 -5
4
0
2.475
2-5
4.500R | 32
16
8
.10
.30
.60
2
2
0
.750
3-5
4
0
2.200
2-5
3
0
4.350 | 32
16
8
.10
.40
.50
2
2
0
1.000
2–3
2
1.178L
2.206
2–5
3
.664R
4.162 | 32
16
8
.20
.20
.60
3-5
4
0
.700
3-5
4
0
2.200
2-5
4
1.500R | 32
16
8
.20
.30
.50
2
2
0
.750
3-5
4
0
1.832
2-5
3.247R
3.800 | 32
16
8
20
.40
.40
.40
2
2
0
1.000
2 3
2
.998L
2.160
2-5
2.996L
3.842 | 36
16
12
1100
.225
.675
3-5
4
0
.788
3-5
4
0
2.475
2-5
4
2.000R | 36
16
12
10
.30
.60
2
2
0
.750
3–5
4
0
2.200
2–5
3.667R
3.763 | 36
16
12
10
.40
.50
2
2
0
1.000
2
2
0
2.000
2–5
3
1.552R | 36
16
12
.20
.60
3-5
4
0
.700
3-5
4
0
2.200
2-5
4
2.000R
3.706 | | WITAXX Sport Loss On Ax | n. Base
le
acing
ad
les
10 | 2 L
X X X'
a1 a2 a3 G
N B M G
N B M G
G N B M G | 32
16
8
.100
.225
.675
3-5
4
0
.788
3-5
4
0
2.475
2-5
4
1.500R
4.568
2-5
4 | 32
16
8
.10
.30
.60
2
2
0
.750
3-5
4
0
2.200
2-5
3
0
4.350 | 32
16
8
.10
.40
.50
2
2
0
1.000
2-3
2.178L
2.206
2-5
3
.664R
4.162
2-5
3 |
32
16
8
.20
.20
.60
3-5
4
0
.700
3-5
4
0
2.200
2.200
2.50
4
0
2.10
4
0
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10 | 32
16
8
.20
.30
.50
2
2
0
.750
3–5
4
0
1.832
2–5
3.800
2–5
3.800 | 32
16
8
20
.40
.40
.40
.40
.2
2
0
1.000
2 3
2988L
2.160
2-5
2
2.996L
3.842
1-5
2 | 36
16
12
1100
.225
.675
3-5
4
0
.788
3-5
4
0
2.475
2-5
4
2.000R
4.170
2-5
4 | 36
16
12
10
30
.60
2
2
0
.750
3–5
4
0
2.200
2–5
3.763
2–5
3.763 | 36
16
12
10
.40
.50
2
2
0
1.000
2
2
0
2.000
2-5
3
1.552R
3.422
2-5
3 | 36
16
12
.20
.60
3-5
4
0
.700
3-5
4
0
2.200
2-5
4
2.000R
3.706 | | Ax
Spa
Loa
On | n. Base
le
acing
ad
les
10
20 | X X' a1 a2 a3 GNBM GNBM GNBM GNBM GNBM GNBM GNBM GNBM | 32
16
8
.100
.225
.675
3-5
4
0
.788
3-5
4
0
2.475
2-5
4
1.500R
4.568 | 32
16
8
.10
.30
.60
2
0
.750
3–5
4
0
2.200
2.200
2.200
2.300
4.350
2.300
4.350
2.300
3.300
4.300
3.300
3.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4.300
4. | 32
16
8
.10
.40
.50
2
0
1.000
2-3
2
1.178L
2.206
2-5
3
.664R
4.162
2-5 | 32
16
8
.20
.20
.60
3-5
4
0
.700
3-5
4
0
2.200
2-5
4
1.500R
4.060
2-5 | 32
16
8
.20
.30
.50
2
2
0
.750
3–5
4
0
1.832
2–5
3
.247R
3.800
2–5 | 32
16
8
20
.40
.40
.40
2
2
0
1.000
2 3
2
.998L
2.160
2-5
2
2.996L
3.842
15 | 36
16
12
100
.225
.675
4
0
.788
3-5
4
0
2.475
2-5
4
2.000R
4.170
2-5 | 36 16 12 .10 .30 .60 2 2 0 .750 3-5 4 0 2.200 2-5 3 .667R 3.763 2-5 | 36
16
12
.10
.40
.50
2
2
0
1.000
2
2
0
2.000
2-5
3
1.552R
3.422
2-5 | 36
16
12
.20
.60
3-5
4
0
.700
3-5
4
0
2.200
2-5
4
2.000R
3.706 | | Ax Spo Loo On Ax | a. Base
le acing
ad
les 10 20 30 | 2 L
X
X'
a1
a2
a3
G
N
B
M
G
N
B
M
G
N
B
M
G
N
B
M
G
N
B
M
G
N
B
M
G
G
G
G
G
G
G
G
G
G
G
G
G | 32
16
8
100
225
.675
3-5
4
0
788
3-5
4
0
2.475
2-5
4.568
2-5
4.500R
4.568
0
1.500R
6.800 | 32
16
8
.10
.30
.60
.2
2
0
.750
3–5
4
0
2.200
2-5
3
0
4.350
2-5
3
6.660
1-5 | 32
16
8
.10
.40
.50
2
2
0
1.000
2-3
2.178L
2.206
2-5
3.664R
4.162
2-5
3.664R
6.409
1-5 | 32
16
8
.20
.20
.60
3-5
4
0
.700
3-5
4
0
2.200
2-5
4
1.500R
4.060
2-5
4
1.500R
6.045
1-5 | 32
16
8
.20
.30
.50
.50
2
2
2
0
.750
3–5
4
0
1.832
2–5
3.247R
3.800
2–5
3.247R
5.800
1–5 | 32
16
8
20
.40
.40
.40
.40
.2
2
0
1.000
2 3
2988L
2.160
2-5
2
2.996L
3.842
1-5
2.795L
6.021
1-5 | 36
16
12
1100
.225
.675
3-5
4
0
.788
3-5
4
0
2.475
2-5
4
2.000R
4.170
2-5
4
2.000R
6.390
6.390
2-5 | 36
16
12
10
.30
.60
2
2
0
.750
3–5
4
0
2.200
2–5
3.667R
3.763
2–5
3.667R
6.011
2–5 | 36
16
12
10
.40
.50
2
2
0
1.000
2-5
3
1.552R
3.422
2-5
3
1.552R
5.654
5.654 | 36 16 12 .20 .60 3-5 4 0 .700 3-5 4 0 2.200 2-5 4 2.000R 3.706 2-5 4 2.000R 5.680 | | WITAXX Sport Loss On Ax | n. Base
le
acing
ad
les
10
20 | XXX' a1 a2 a3 G N B M G N B M G N B M G N B M G N B M G N B M M G N B M M G N B M M G N B M M M M M M M M M M M M M M M M M M | 32
16
8
100
.225
.675
4
0
.788
3 -5
4
0
2.475
2-5
4
1.500R
4.568
2-5
4
1.500R | 32
16
8
.10
.30
.60
2
2
0
.750
3-5
4
0
2.200
2-5
3
0
4.350
2-5
3
0
6.60 | 32
16
8
.10
.40
.50
2
2
0
1.000
2-3
2
1.178L
2.206
2-5
3.664R
4.162
2-5
3.664R
6.409 | 32
16
8
.20
.20
.60
3-5
4
0
.700
3-5
4
1.500R
4.060
2-5
4.060
2-5
4.060
6.045 | 32
16
8
.20
.30
.50
.2
2
2
0
.750
3-5
4
0
1.832
2-5
3.800
2-5
3.247R
5.800 |
32
16
8
.20
.40
.40
.40
.2
.2
.0
1.000
2.3
.2
.998L
2.160
2-5
.2
2.998L
3.842
1-5
.795L
6.021 | 36
16
12
100
225
.675
4
0
.788
3-5
4
0
2.475
2-5
4
2.000R
4.170
2-5
4
2.000R | 36 16 12 10 .30 .60 2 2 0 .750 3-5 4 0 2.200 2-5 3.763 2-5 3.667R 6.011 2-5 3 | 36
16
12
10
.40
.50
2
2
0
1.000
2
2
0
2.000
2–5
3
1.552R
3.422
2–5
3
1.552R
5.654 | 36
16
12
.20
.20
.60
.60
.700
3-5
4
0
2.200
2-5
4
2.000
2-5
4
2.000R
5.680 | | Ax Spo Loo On Ax | a. Base
le acing
ad
les 10 20 30 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | 32
16
8
100
225
.675
3-5
4
0
788
3-5
4
0
2.475
2-5
4
1.500R
4.668
2-5
4
1.500R
6.800
1-5
3
750R
9.061 | 32
16
8
.10
.30
.60
2
2
0
.750
3–5
4
0
2.200
2.200
2.5
3
0
4.350
2-5
3
0
6.600
1–5
3
1.200R
8.929 | 32
16
8
8
.10
.40
.50
2
2
0
1.000
2-3
2.178L
2.206
2-5
3.664R
4.162
2-5
3.664R
6.409
1-5
2.204L
8.793 | 32
16
8
.20
.20
.60
3-5
4
0
.700
3-5
4
0
2.200
2-5
4
1.500R
4.060
2-5
4
1.500R
6.045
1-5
3
8.180 | 32
16
8
.20
.30
.50
.50
2
2
0
.750
3–5
4
0
1.832
2–5
3.24TR
3.800
2–5
3.24TR
5.800
1–5
8.803
1–5
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.803
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.903
8.003
8.003
8.003
8.003
8.003
8.003
8.003
8.003 | 32
16
8
20
.40
.40
.40
.40
.2
2
0
1.000
2 3
2988L
2.160
2-5
2
2.996L
3.842
1-5
2
.795L
6.021
1-5
2
8.518 | 36
16
12
1100
.225
.675
3-5
4
0
.788
3-5
4
0
2.475
2-5
4
2.000R
4.170
2-5
4
2.000R
6.390
2-5
4
2.000R
8.6390
8.6390
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900
8.6900 | 36 16 12 10 .30 .60 2 2 0 .750 3-5 4 0 2.200 2-5 3 .667R 3.763 2-5 3 .667R 6.011 2-5 8 667R 8.258 | 36
16
12
10
40
.50
2
2
0
1.000
2-5
3
1.552R
3.422
2-5
3
1.552R
3.422
2-5
3
1.552R
3.422
2-7
3
3.422
2-7
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.422
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4222
3.4 | 36 16 12 .20 .60 3-5 4 0 .700 3-5 4 0 2.200 2-5 4 2.000R 3.706 2-5 4 2.000R 5.680 2-5 4 2.000R 7.664 | | Ax Spo Loo On Ax | a. Base
le acing
ad
les 10 20 30 | 2 L X X X X X X X X X X X X X X X X X X | 32
16
100
.225
.675
3-5
4
0
.788
3-5
4
0
2.475
2-5
4
1.500R
4.508
4.500
1-5
3.750R |
32
16
8
.10
.30
.60
2
2
0
.750
3–5
4
0
2.200
2.25
3
0
4.350
2-5
3
0
6.600
1–5
3
1.200
8.929
1.200
8.929
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.200
1.2 | 32
16
8
.10
.40
.50
2
2
0
1.000
2-3
2.206
2-5
3
.664R
4.162
2-5
3
.664R
6.409
1-5
2 | 32
16
8
.20
.20
.60
3-5
4
0
2.200
2-5
4
1.500R
4.060
2-5
4
1.500R
1.500R
2-5
4
2.200
2-5
3-5
4
3-5
4
3-5
4
3-5
4
0
2.200
3-5
4
0
2.200
2-5
4
1.500R
4.00
2-5
4
1.500R
4.00
2-5
4
1.500R
4.00
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2-5
4
1.500R
2 | 32
16
8
.20
.30
.50
2
2
0
.750
3–5
4
0
1.832
2–5
3.800
2–5
3.800
1.580
1.580
2.5966 | 32
16
8
.20
.40
.40
.40
.2
.2
.0
1.000
2.3
.2
.998L
2.160
2-5
.2
2.996L
3.842
1-5
.2
.795L
6.021
1-5
.2
.795L | 36
16
12
1100
225
.675
3-5
4
0
.788
3-5
4
0
2.475
2-5
4
2.000R
4.170
2-5
4
2.000R
4.390
2-5
4 | 36
16
12
.10
.30
.60
.750
3-5
4
0
2.200
2-5
3
.667R
3.763
3.667R
6.011
2-5
3.667R | 36
16
12
10
.40
.50
2
2
0
1.000
2-5
3
1.552R
3.422
2-5
3
1.552R
5.654
1-5
2
3.205L | 36 16 12 .20 .20 .60 3-5 4 0 .700 3-5 4 0 2.200 2-5 4 2.000R 3.706 2-5 4 2.000R 7.664 1-5 3 | | Ax Spo Loo On Ax | 10 Base Bas | XXX' a1 a2 a3 G N B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M B M G N B M B M G N B M B M G N B B M B M B M G N B B M B M B M B M B M B M B M B M B M | 32
16
8
100
225
.675
3-5
4
0
.788
3-5
4
0
2.475
2-5
4
1.500R
6.800
1-5
3
.750R
9.061
1-5
3
.750R | 32
16
8
.10
.30
.60
2
2
0
.750
3–5
4
0
2.200
2-5
3
0
4.350
2-5
3
0
6.600
1-5
3
1.200R
8.929
1-5
3
1.200R | 32
16
8
.10
.40
.50
2
2
0
1.000
2-3
2.178L
2.206
2-5
3.664R
4.162
2-5
3.664R
6.409
1-5
2.204L
8.793
1-5
2.204L
2.204L | 32
16
8
.20
.20
.60
3-5
4
0
.700
3-5
4
0
2.200
2-5
4
1.500R
4.060
2-5
4
1.500R
6.045
1-5
3
2.000R
8.180
1-5
3
2.000R
8.180
1-5
3
3.000R |
32
16
8
.20
.30
.50
2
2
0
.750
3-5
4
0
1.832
2-5
3
.247R
3.800
2-5
3
.247R
5.800
15
3
2.596R
8.035
1.5
3
2.596R
8.035
1.5
3
2.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
1.596R
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.035
8.03 | 32
16
8
20
.40
.40
.40
.40
.2
2
0
1.000
2 3
2988L
2.160
2-5
2
2.996L
3.842
1-5
2
795L
6.021
1-5
2
795L
8.518
1-5
2
795L
795L | 36
16
12
1100
.225
.675
3-5
4
0
.788
3-5
4
0
2.475
2-5
4
2.000R
4.170
2-5
4
2.000R
6.390
6.390
2-5
4
2.000R
8.622
1-5
3
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0 | 36 16 12 10 30 .60 2 2 0 .750 3-5 4 0 2.200 2-5 3.763 2-5 3.667R 3.763 2-5 3 .667R 8.258 1-5 3 2.000R | 36
16
12
10
.40
.50
2
2
0
1.000
2-5
3
1.552R
3.422
2-5
3
1.552R
5.654
1-5
2
3.205L
7.900
1-5
2
3.205L | 36 16 12 .20 .60 3-5 4 0 .700 3-5 4 0 2.200 2-5 4 2.000R 3.706 2-5 4 2.000R 5.680 7.664 1-5 3 2.800R | | Ax Spo Loo On Ax | 10 Base Bas | XXX' a1 a2 a3 G N B M B M G N B M B M G N B M B M G N B M B M G N B M B M B M B M B M B M B M B M B M B | 32
16
100
.225
.675
3-5
4
0
.788
3-5
4
0
2.475
2-5
4
1.500R
4.568
2-5
4
1.500R
9.661
1-5
3 | 32
16
8
.10
.30
.60
2
0
.750
3-5
4
0
2.200
2-5
3
0
4.350
2-5
3
0
6.600
1-5
3
1.2008
8.929
1-5
3
1.2008 | 32
16
8
.10
.40
.50
2
2
0
1.000
2-3
2.178L
2.206
2-5
3
.664R
6.409
1-5
2
2.204L
8.793
1-5
2
2.204L
11.277 | 32
16
8
.20
.20
.60
3-5
4
0
.700
3-5
4
0
2.200
2-5
4
1.500R
6.045
1-5
3
2.000R
1.15
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.50 | 32
16
8
.20
.30
.50
.750
3–5
4
0
1.832
2–5
3
.24TR
3.800
2–5
3
.24TR
3.800
1–5
8.035
1–5
1–5
1–5
1–5
1–5
1–5
1–5
1– | 32
16
8
20
.40
.40
.40
.40
2
2
0
1.000
2
3
2
.998L
2.160
2-5
2
2.996L
3.842
1-5
2
.795L
6.021
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
2
.795L
1-5
1-5
2
.795L
1-5
1-5
1-5
1-5
1-5
1-5
1-5
1-5 | 36
16
12
100
.225
.675
3-5
4
0
.788
3-5
4
0
2.475
2-5
4
2.000R
6.390
2-5
4
2.000R
8.622
1-5
3
1.400R
10.933 | 36 16 12 10 30 .60 2 2 0 .7560 3-5 4 0 2.200 2-5 3 .667R 3.763 2-5 3 .667R 8.258 1-5 3 2.000R | 36 16 12 10 .40 .50 2 0 1.000 2 2 0 2.000 2-5 3 1.552R 3.422 2-5 3.205L 7.900 1-5 2 3.205L 10.366 | 36 16 12 20 .60 3-5 4 0 .700 3-5 4 0 2.200 2-5 4 2.000R 3.706 2-5 4 2.000R 5.680 2-5 4 2.000R 7.664 1-5 3 2.800R 9.931 | | Ax Spo Loo On Ax | 10 Base Bas | XXX' a1 a2 a3 GN BM B | 32
16
8
100
225
.675
3-5
4
0
.788
3-5
4
0
2.475
2-5
4.568
2-5
4.500R
4.568
2-5
3.750R
9.061
1-5
3.750R
1.559
1-5
3.750R
1.559 | 32
16
8
.10
.30
.60
.2
2
0
.750
3–5
4
0
2.200
2-5
3
0
4.350
2-5
3
1.200R
8.929
1-5
3
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1.200R
1 | 32
16
8
8
.10
.40
.50
2
2
0
1.000
2-3
2.1178L
2.206
2-5
3.664R
4.162
2-5
3.664R
6.409
1-5
2.204L
8.793
1-5
2.204L
11.277
1-5
2.204L | 32
16
8
.20
.20
.60
3-5
4
0
.700
3-5
4
0
2.200
2-5
4
1.500R
4.060
2-5
4
1.500R
8.180
1-5
3
2.000R
8.180
1-5
3
2.000R
8.180
1-5
3
3.000R
8.180
1-5
3
3.000R
8.180
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760
1.760 |
32
16
8
8
.20
.30
.50
.50
.750
3-5
4
0
1.832
2-5
3.800
2-5
3.800
1.55
3.247R
3.800
1.55
3.247R
3.800
1.55
3.247R
3.800
1.55
3.247R
3.800
1.55
3.247R
3.800
1.55
3.247R
3.800
1.55
3.247R
3.800
1.55
3.247R
3.800
1.55
3.247R
3.800
1.55
3.247R
3.800
1.55
3.247R
3.800
1.55
3.247R
3.800
1.55
3.247R
3.800
1.55
3.247R
3.800
1.55
3.247R
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800
1.55
3.800 | 32
16
8
20
.40
.40
.40
.40
.2
2
0
1.000
2 3
2988L
2.160
2-5
2
2.996L
3.842
1-5
2
795L
6.021
1-5
2
795L
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
1-5
2
2
2
2
1-5
2
1-5
2
2
2
1-5
2
1
2
2
2
2
2
2
1
2
2
2
2
2
2
2
2
2
2
2
2
2 | 36
16
12
1100
.225
.675
3-5
4
0
.788
3-5
4
0
2.475
2-5
4
2.000R
4.170
2-5
4
2.000R
6.390
2-5
4
2.000R
8.622
1-5
3
1.400R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R | 36 16 12 10 .30 .60 2 2 0 .750 3-5 4 0 2.200 2-5 3.667R 3.763 2-5 3 .667R 6.011 2-5 3 667R 8.258 1-5 3 2.000R 10.667 1-5 3 | 36
16
12
10
.40
.50
2
2
0
1.000
2-5
3
1.552R
3.422
2-5
3.452R
5.654
1-5
2
3.205L
7.900
1-5
2
3.205L
10.366
1-5
2 | 36 16 12 .20 .60 3-5 4 0 .700 3-5 4 0 2.200 2-5 4 2.000R 3.706 2-5 4 2.000R 5.684 1-5 3 2.800R 9.931 1-5 3 | | Ax Spo Loo On Ax | 1. Base le acing ad les 10 20 30 40 60 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | 32
16
100
225
.675
3-5
4
0
.788
3-5
4
0
2.475
2-5
4
1.500R
4.568
2-5
4
1.500R
9.661
1-5
3
.750R
1.550R
1.550R
1.550R | 32
16
8
.10
.30
.60
2
2
0
.750
3–5
4
0
2.200
2.25
3
0
4.350
2-5
3
0
6.600
1-5
3
1.200R
8.929
1-5
3
1.200R
11.424
1-5 | 32
16
8
8
.10
.40
.50
2
2
0
1.000
2-3
2.206
2-5
3.664R
4.162
2-5
3.664R
2-5
3.73
2-204L
8.793
1-5
2.204L
1.277
1-5 | 32
16
8
.20
.20
.60
3-5
4
0
2.200
2-5
4
1.500R
4.060
2-5
4
1.500R
8.180
1-5
3
2.000R
1.060R
1.060R |
32
16
8
.20
.30
.50
2
2
0
.750
3–5
4
0
1.832
2–5
3
.247R
3.800
1–5
8.035
1–5
3
2.596R
8.035
1–5
3
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1.596R
1. | 32
16
8
.20
.40
.40
.40
.2
2
0
1.000
2.3
.298L
2.160
2-5
2.996L
3.842
1-5
2.795L
6.021
1-5
2.795L
8.518
1-5
2.795L
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1. | 36
16
12
100
225
.675
3-5
4
0
.788
3-5
4
0
2.475
2-5
4
2.000R
6.390
2-5
4
2.000R
8.622
1-5
3
1.400R
10.00R | 36 16 12 10 30 .60 .60 2 2 0 .750 3-5 4 0 2.200 2-5 3 .667R 3.763 3 .667R 6.011 2-5 3 2.000R 10.667 1-5 | 36 16 12 10 .40 .50 2 2 0 1.000 2 2 0 2.000 2-5 3 1.552R 5.654 1-5 2 3.205L 7.900 1-5 2 3.205L 10.366 1-5 | 36 16 12 20 .20 .20 .3-5 4 0 .700 3-5 4 0 2.200 2-5 4 2.000R 3.706 2-5 4 2.000R 7.664 1-5 3 2.800R 9.931 1-5 | | Ax Spo Loo On Ax | 10. Base le acing ad les 10 20 30 40 60 80 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | 32
16
8
100
225
.675
3–5
4
0
.788
3–5
4
0
2.475
2–5
4
1.500R
4.560R
4.6.800
1–5
3.750R
9.061
1–5
3.750R
1.559
1.559
1.559
1.557
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508
1.508 |
32
16
8
.10
.30
.60
.2
2
0
.750
3–5
4
0
2.200
2-5
3
0
4.350
2-5
3
0
6.600
1-5
3
1.200R
1.424
1-5
3
1.200R
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418 | 32
16
8
8
.10
.40
.50
2
2
0
1.000
2-3
2
1.178L
2.206
2-5
3
.664R
4.162
2-5
3
.664R
6.409
1-5
2
2.204L
11.277
1-5
2
2.204L
11.277
1-5
2
2.204L
11.277
1-5
2
2.206L
1.277
1.277
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577 | 32
16
8
.20
.20
.60
3-5
4
0
.700
3-5
4
0
2.200
2-5
4
1.500R
4.060
2-5
4
1.500R
8.180
1-5
3
2.000R
8.180
1-5
3
2.000R
1.567
1-5
3
2.000R
1.567
1-5
3
2.000R
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567
1.567 |
32
16
8
.20
.30
.50
.50
2
2
0
.750
3–5
4
0
1.832
2–5
3
.247R
3.800
2–5
3
.247R
5.800
1–5
8.035
1–5
3
2.596R
10–513
10–513
10–513
10–513
10–513
10–513
10–514
10–514
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515 | 32
16
8
20
.40
.40
.40
.40
.2
2
0
1.000
2 3
2988L
2.160
2-5
2
2.996L
3.842
1-5
2
795L
8.518
1-5
2
.795L
11.016
1 5
2
.795L
11.016
1 5
2
.795L
1.016
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1 | 36
16
12
1100
.225
.675
3-5
4
0
.788
3-5
4
0
2.475
2-5
4
2.000R
4.170
2-5
4
2.000R
6.390
2-5
4
2.000R
8.622
1-5
3
1.400R
10.933
1.400R
10.933
1.400R
15.925
1-5 | 36 16 12 10 .30 .60 2 2 0 .750 3-5 4 0 2.200 2-5 3.667R 3.763 2-5 3.667R 8.258 1-5 3 2.000R 10.667 1-5 3 2.000R 15.650R | 36
16
12
10
40
.50
2
2
0
1.000
2-5
3
1.552R
3.422
2-5
3
1.552R
3.422
2-5
3
2.552R
1.054
1-5
2
3.205L
10.366
1-5
2
3.205L
1.0366
1-5
2
3.205L
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328 | 36 16 12 .20 .60 .20 .50 .700 3-5 4 0 .700 2-5 4 2.000R 2-5 4 2.000R 5.680 2-5 4 2.000R 7.664 1-5 3 2.800R 9.931 1-5 3 2.800R 1.4898 1-5 | | WI Axx Sport Loss On Ax | 1. Base le acing ad les 10 20 30 40 60 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | 32
16
8
100
.225
.675
3-5
4
0
.788
3-5
4
0
2.475
2-5
4
1.500R
4.5680
1-5
3
.750R
1.557
1-5
3
.750R
1.550R
1.550R | 32 16 8 .10 .30 .60 2 2 0 .750 3-5 4 0 2.200 2-5 3 0 6.600 1-5 3 1.200R 8.929 1-5 3 1.200R 8.911 1.424 1-5 3 1.200R 1.455 | 32
16
8
.10
.40
.50
2
2
0
1.000
2-3
2
1.178L
2.206
2-5
364R
6.409
1-5
2.204L
8.793
1-5
2.204L
11.277
1-5
2.204L
16.257
1-5
2.204L
16.257 |
32
16
8
.20
.20
.60
3-5
4
0
2.200
2-5
4
1.500R
4.060
2-5
4
1.500R
3-5
4.060
2-5
4.060
1-5
3.000R
1-5
3.000R
1-5
3.000R
1-5
3.000R
1-5
3.000R
1-5
3.000R
1-5
3.000R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R | 32
16
8
.20
.30
.50
.750
3-5
4
0
1.832
2-5
3.840
2-5
3.247R
5.800
1-5
3.247R
5.906R
8.035
1-5
3
2.596R
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10.51
10 | 32
16
8
.20
.40
.40
.40
.40
.2
.2
.0
1.000
2.3
2
.998L
2.160
2-5
2
2.998L
3.842
1-5
2
.795L
8.518
1-5
2
.795L
8.518
1-5
2
.795L
8.11016
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106
1.0106 | 36
16
12
100
225
675
4
0
.788
3-5
4
0
2.475
2-5
4
2.000R
6.390
2-5
4
2.000R
8.622
1-5
3
1.400R
10.933
1.5
3
1.400R
15.925
1-5
3 | 36 16 12 10 30 .60 .60 2 2 0 .750 3-5 4 0 2.200 2-5 3.667R 8.763 2-5 3.667R 8.258 1-5 3.000R 10.650 | 36 16 12 10 .40 .50 2 2 0 1.000 2 2 0 2.000 2-5 3 1.552R 3.422 2-5 3.205L 7.900 1-5 2 3.205L 10.366 1-5 2 3.205L 15.323 1-5 2 3.205L 10.366 | 36 16 12 20 20 20 60 3-5 4 0 700 3-5 4 0 2.200 2-5 4 2.000R 2-5 4 2.000R 7.664 1-5 3 2.800R 9.931 1-5 3 2.800R 14.898 1-5 3 | | Ax Spo Loo On Ax | 10. Base le acing ad les 10 20 30 40 60 80 | XX' a1 a2 a3 GNBM GNBM GNBM GNBM GNBM GNBM GNBM GNBM | 32
16
8
100
.225
.675
4
0
.788
3 -5
4
0
2.475
2-5
4
1.500R
6.800
1-5
3
.750R
9.061
1-5
3
.750R
1.559
1-5
3
.750R
1.559
1-5
3
.750R |
32
16
8
.10
.30
.60
.2
2
0
.750
3–5
4
0
2.200
2-5
3
0
4.350
2-5
3
0
6.600
1-5
3
1.200R
1.424
1-5
3
1.200R
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418
16.418 | 32
16
8
8
.10
.40
.50
2
2
0
1.000
2-3
2
1.178L
2.206
2-5
3
.664R
4.162
2-5
3
.664R
6.409
1-5
2
2.204L
11.277
1-5
2
2.204L
11.277
1-5
2
2.204L
11.277
1-5
2
2.206L
1.277
1.277
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577
1.577 | 32
16
8
.20
.20
.60
.700
3-5
4
0
2.200
2-5
4
1.500R
6.045
1-5
3
2.000R
8.180
1-5
3
2.000R
1-5
3
2.000R
8.180
1-5
3
2.000R
8.180
1-5
3
3
3.000R
8.180
1-5
3
3.000R
8.180
1-5
3
3.000R
8.180
1-5
3
3.000R
8.180
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1.500R
1 |
32
16
8
.20
.30
.50
.50
2
2
0
.750
3–5
4
0
1.832
2–5
3
.247R
3.800
2–5
3
.247R
5.800
1–5
8.035
1–5
3
2.596R
10–513
10–513
10–513
10–513
10–513
10–513
10–514
10–514
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515
10–515 | 32
16
8
20
.40
.40
.40
.40
.2
2
0
1.000
2 3
2988L
2.160
2-5
2
2.996L
3.842
1-5
2
795L
8.518
1-5
2
.795L
11.016
1 5
2
.795L
11.016
1 5
2
.795L
1.016
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1.021
1 | 36
16
12
1100
.225
.675
3-5
4
0
.788
3-5
4
0
2.475
2-5
4
2.000R
4.170
2-5
4
2.000R
6.390
2-5
4
2.000R
8.622
1-5
3
1.400R
10.933
1.400R
10.933
1.400R
15.925
1-5 | 36 16 12 10 30 .60 .60 2 2 0 .750 3-5 4 0 2.200 2-5 3 .667R 6.011 2-5 3 .667R 8.258 1-5 3 2.000R 10.667 1-5 3 2.000R 15.650 | 36
16
12
10
40
.50
2
2
0
1.000
2-5
3
1.552R
3.422
2-5
3
1.552R
3.422
2-5
3
2.552R
1.054
1-5
2
3.205L
10.366
1-5
2
3.205L
1.0366
1-5
2
3.205L
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328
1.5328 | 36 16 12 .20 .60 .20 .50 .700 3-5 4 0 .700 2-5 4 2.000R 2-5 4 2.000R 5.680 2-5 4 2.000R 7.664 1-5 3 2.800R 9.931 1-5 3 2.800R 1.4898 1-5 | 1-5 2 3.990L $_2^{1-5}$ 3.990L 1-5 2 3.990L 17.969 13.009 8.075 5.986 5.582 2-5 3 3.244R 7.542 $^{1-5}_{3}$ 6.592R 11.948 1-5 3 6.592R 16.839 TABLE 7.5 (Continued) | Truck N | | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | |---------|----------------|-----|-----|------|-----|-----|-----|-----|-----|------|-----| | Wh. Bas | e L | 36 | 36 | 40 | 40 | 40 | 40 | 40 | 40 | 44 | 44 | | Axle | X | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | | Spacing | | 12 | 12 | 16 | 16 | 16 | 16 | 16 | 16 | 20 | 20 | | Load | a ₁ | .20 | .20 | .100 | .10 | .10 | .20 | .20 | .20 | .100 | .10 | | On | \mathbf{a}_2 | .30 | .40 | .225 | .30 | .40 | .20 | .30 | .40 | .225 | .30 | | Axles | \mathbf{a}_3 | .50 | .40 | .675 | .60 | .50 | .60 | .50 | .40 | .675 | .60 | | 1 | G | 2 | 2 | 3 5 | 2 | 2 | 3-5 | 2 | 2 | 3-5 | 2 | | 10 | 76.7 | a | e e | | | 0 | | o | 0 | 4 | 0 | | W | h. Base | 2 L | 36 | 36 | 40 | 40 | 40 | 40 | 40 | 40 | 44 | 44 | |-----------|-------------|--|------------------------------|---------------------------------------|---|--|---|---|---|---|---|------------------------------| | Ax | le
acing | X
X' | 16
12 | 16
12 | 16
16 | 16
16 | 16
16 | 16
16 | 16
16 |
16
16 | 16
20 | 16
20 | | On | ad
les | a ₁
a ₂
a ₃ | .20
.30
.50 | .20
.40
.40 | .100
.225
.675 | .10
.30
.60 | .10
.40
.50 | .20
.20
.60 | .20
.30
.50 | .20
.40
.40 | .100
.225
.675 | .10
.30
.60 | | | 10 | G
N
B
M | 2
2
0
.750 | 2
2
0
1.000 | 3 5
4
0
.788 | 2
2
0
.750 | 2
2
0
1.000 | 3-5
4
0
.700 | 2
2
0
.750 | 2
2
0
1.000 | 3-5
4
0
.788 | 2
2
0
.750 | | | 20 | G
N
B
M | 3-5
4
0
1.832 | 2
2
0
2.000 | $\begin{array}{c} 3-5 \\ 4 \\ 0 \\ 2.475 \end{array}$ | $\frac{3.5}{4}$
0
2.200 | $\begin{array}{c} 2 \\ 2 \\ 0 \\ 2.000 \end{array}$ | $\begin{array}{c} 3 - 5 \\ 4 \\ 0 \\ 2.200 \end{array}$ | $ \begin{array}{r} 3 \ 5 \\ 4 \\ 0 \\ 1.832 \end{array} $ | $\begin{array}{c} 2 \\ 2 \\ 0 \\ 2.000 \end{array}$ | 3-5
4
0
2.475 | 3-5
4
0
2.200 | | | 30 | G
N
B
M | 2-5
3
.997R
3.226 | 2-4
2
2.796 L
3.312 | 3-5
4
0
4.163 | 35
4
0
3.700 | 3-5
4
0
3.082 | 3-5
4
0
3.700 | $\begin{array}{c} 3-5 \\ 4 \\ 0 \\ 3.082 \end{array}$ | 1-2
2
2.667R
3.043 | 3-5
4
0
4.163 | 3-5
4
0
3.700 | | Fret | 40 | G
N
B
M | 2-5
3
.997R
5.218 | 1-5
2
1.594 I ,
5.270 | 2-5
4
2.500R
5.990 | 2-5
3
1.333R
5.440 | 2-5
3
2.440R
4.934 | 2-5
4
2.500R
5.325 | 2-5
3
1.746R
4.661 | 1-4
2
.917L
4.684 | 3-5
4
0
5.850 | 3-5
4
0
5.200 | | Span-Fret | 50 | G
N
B
M | 2-5
3
.997R
7.214 | 1-5
2
1.594L
7.757 | 2-5
4
2.500R
8.213 | $\begin{array}{c} 2-5 \\ 3 \\ 1.333 \mathrm{R} \\ 7.682 \end{array}$ | 2-5
3
2.440R
7.158 | 2-5
4
2.500R
7.300 | 2–5
3
1.746R
6.648 | $^{1-5}_{2}_{2.393L}_{7.022}$ | 2-5
4
3.000R
7.812 | 2-5
3
2.000R
7.122 | | | 60 | G
N
B
M | 15
3
3.595R
9.617 | 1-5
2
1.594L
10.249 | 2-5
4
2.500R
10.444 | 1-5
3
2.800R
9.931 | 1-5
2
4.206L
9,489 | 2-5
4
2.500R
9.283 | 1-5
3
4.595R
8.754 | 1-5
2
2.393L
9.503 | $\begin{array}{c} 2-5 \\ 4 \\ 3.000 \mathrm{R} \\ 10.035 \end{array}$ | 2-5
3
2.000R
9.360 | | | 80 | G
N
B | 1-5
3
3.595R
14.563 | 1–5
2
1.594L
15,238 | 1-5
3
2.050R
15.303 | 1-5
3
2.800R
14.898 | 1-5
2
4.206L
14.415 | 1-5
3
3.600R
14.162 | 1-5
3
4.595R
13.666 | 1-5
2
2.393L
14.479 | 1-5
3
2.700R
14.691 | 1-5
3
3.600R
14.162 | | | 100 | G
N
B
M | 1–5
3
3.595R
19.531 | 1-5
2
1.594L
20.232 | 1-5
3
2.050R
20.293 | 1-5
3
2.800R
19.878 | 1-5
2
4.206L
19.371 | 1-5
3
3.600R
19.130 | 1–5
3
4.595R
18.614 | $^{1-5}_{2}_{2.393L}_{19.465}$ | 1-5
3
2.700R
19.673 | 1-5
3
3.600R
19.130 | | | 1. 37 | | 0.1 | 00 | (10) | | 0.5 | | | | | | | 100 | G
N
B
M | 1–5
3
3.595R
19.531 | 1-5
2
1.594L
20.232 | 1-5
3
2.050R
20.293 | 1-5
3
2.800R
19.878 | 1-5
2
4.206L
19.371 | $^{1-5}$ 3 $^{3.600R}$ $^{19.130}$ | 1-5
3
4.595R
18.614 | 1-5
2
2.393L
19.465 | 1-5
3
2.700R
19.673 | 1-5
3
3.600R
19.130 | |---------------------|------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|---|------------------------------|------------------------------|------------------------------|------------------------------| | Truck N | ο, | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | | Wh. Bas | еL | 44 | 44 | 44 | 44 | 48 | 48 | 48 | 48 | 48 | 48 | | Axle
Spacing | X
X' | 16
20 | 16
20 | 16
20 | 16
20 | 16
24 | 16
24 | 16
24 | 16
24 | 16
24 | 16
24 | | Load
On
Axles | a1
a2
a3 | .10
.40
.50 | .20
.20
.60 | .20
.30
.50 | .20
.40
.40 | .100
.225
.675 | .10
.30
.60 | .10
.40
.50 | .20
.20
.60 | .20
.30
.50 | .20
.40
.40 | | 10 | G | 2 | 35 | 2 | 2 | 3 5 | 2 | 2 | 3 - 5 | 2 | 2 | | | G | 2 | 35 | 2 | 2 | 3 - 5 | 2 | 2 | 3 -5 | 2 | 2 | |----|--------------|--------|-------------------|--------|--------|-------|-------|--------|-------|-------|--------| | 10 | N | 2 | 4 | 2 | 2 | 4 | 2 | 2 | 4 | 2 | 2 | | | \mathbf{B} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | M | 1.000 | .700 | .750 | 1.000 | .788 | .750 | 1.000 | .700 | .750 | 1.000 | | | G | 2 | 35 | 3-5 | 2 | 3-5 | 3-5 | 2 | 35 | 3-5 | 2 | | 20 | N | 2 | 4 | 4 | 2 | 4 | 4 | 2 | 4 | 4 | 2 | | | В | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | M | 2.000 | 2.200 | 1.832 | 2.000 | 2.475 | 2.200 | 2.000 | 2.200 | 1.832 | 2.000 | | | G | 3-5 | 3 5 | 3-5 | 1-2 | 35 | 35 | 3-5 | 3-5 | 3-5 | 1-2 | | 30 | N | 4 | 4 | 4 | 2 | 4 | 4 | 4 | 4 | 4 | 2 | | | В | 0 | 0 | 0 | 2.667R | 0 | 0 | 0 | 0 | 0 | 2.667R | | | M | 3.082 | 3.700 | 3.082 | 3.043 | 4.163 | 3.700 | 3.082 | 3.700 | 3.082 | 3.043 | | | G | 3-5 | 35 | 3-5 | 1-2 | 3-5 | 3–5 | 3-5 | 3-5 | 3-5 | 1-2 | | 40 | N | 4 | 4 | 4 | 2 | 4 | 4 | 4 | 4 | 4 | 2 | | | В | 0 | 0 | 0 | 2.667R | 0 | 0 | 0 | 0 | 0 | 2.667R | | | M | 4.332 | 5.200 | 4.332 | 4.507 | 5.850 | 5.200 | 4.332 | 5.200 | 4.332 | 4.507 | | | G | 2-5 | 2-5 | 2-5 | 1-4 | 3-5 | 3-5 | 2–5 | 3-5 | 3-5 | 1-2 | | 50 | N | 3 | 4 | 3 | 2 | 4 | 4 | 3 | 4 | 4 | 2 | | | \mathbf{B} | 3.328R | $3.000\mathbf{R}$ | 2.495R | 1.531L | 0 | 0 | 4.216R | 0 | 0 | 2.667R | | | | | | | | | | | | | | 7.538 2-5 3.500R 9.634 1-5 3 3.350R 14.090 1--5 3.350R 19.062 4 6.700 2-5 3 2.667R 8.807 1-5 3 4.400R 13.442 1-5 3 4.400R 18.394 5.772 3 4.216R 7.969 1–5 2 6.208L 12.674 1-5 2 6.208L 17.577 2-5 6.700 2-5 4 3.500R 1-5 5.200R 12.738 1-5 3 5.200R 17.670 8.563 12.794 17.716 6.340 1-5 2 3.191L 8.779 $\frac{1-5}{2}$ 3.191L 13.736 1-5 2 3.191L 18.711 | unde | 50 | G
N
B
M | 2-5
3
3.328R
6.451 | 2-5
4
3.000R
6.944 | 2-5
3
2.495R
6.100 | |------|----|------------------|-----------------------------|-----------------------------|-----------------------------| | | 60 | G
N
B
M | 2-5
3
3.328R
8.667 | 2-5
4
3.000R
8.920 | 2-5
3
2.495R
8.083 | | | 80 | G
N
B | 1-5
2
5,207L | 1-5
3
4.400R | 1-5
3
5.593R | 13.532 1-5 2 5.207L 18.464 13.442 18.394 1-5 3 3 4.400R 5.593R M 100 N B Table 7.6 ### CONTROLLING CONDITIONS AND MAXIMUM MOMENTS IN SIMPLE SPANS PRODUCED BY THE TYPE 3-S1 TRUCKS WEIGHING ONE KIP EACH Ninety variations in the Type 3-S1 truck are given in this Table. Each truck number, from 1 to 90, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. | Tru | ick No | · · | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |-----------|--------|----------------|-------------------|--------------------|-----------------|-------------------|---------------------------|---------------------|-----------------------|------------------|------------------|-------------------| | Wh | . Base | e L | 24 | 24 | 24 | 24 | 24 | 24 | 28 | 28 | 28 | 28 | | Ax | | X | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | | cing | X' | 12 | 12 | 12 | 12 | 12 | 12 | 16 | 16 | 16 | 16 | | Loa | | \mathbf{a}_1 | .10 | .10 | .10 | .20 | .20 | .200 | .10 | .10 | .10 | .20 | | On
Ax | | a ₂ | .40
.50 | .50
.40 | .60
.30 | .40
.40 | .50
.30 | .534
.266 | .40
.50 | .50
.40 | .60
.30 | .40
.40 | | 44.0 | 10.5 | G | 4 | 4 | 2-3 | 4 | 2-3 | 2-3 | 4 | 4 | 2-3 | 4 | | ı | 10 | N | 4 | 4 | 3 | 4 | 3 | 3 | 4 | 4 | 3 | 4 | | 1 | 10 | B | Ô | õ | 1.000R | Õ | 1.000R | 1.000R | ō | Õ | 1.000R | ō | | | | M | 1.250 | 1.000 | .960 | 1.000 | .800 | .854 | 1.250 | 1.000 | .960 | 1.000 | | | | G | 4 | 13 | 1-3 | 4 | 1-3 | 1-3 | 4 | 1-3 | 1-3 | 4 | | - 1 | 20 | N | 4 | 2 | 2 | 4 | 2 | 2 | 4 | 2 | 2 | 4 | | - 1 | | B
M | $\frac{0}{2.500}$ | 0.167L 0.101 | 2.503 | $\frac{0}{2.000}$ | $.429\mathbf{R} \\ 2.207$ | 363R 2.341 | $\substack{0\\2,500}$ | .167L
2.101 | .286L
2.503 | $\frac{0}{2.000}$ | | | | | 2.300 | 1-4 | 1-4 | 2-4 | 1-4 | $\frac{2.541}{1-3}$ | 3-4 | 1-3 | 1-3 | 1-3 | | Ì | 30 | G
N | 2-4
4 | 3 | 3 | 2-4
4 | $\frac{1-4}{3}$ | $\frac{1-3}{2}$ | 3-4
4 | 2 | 2 | $\frac{1-3}{2}$ | | 1 | 30 | B | 3.111R | 1.300L | .600L | 3.500R | .100L | .363R | 2.286R | .167L | .286L | .667R | | 1 | | M | 4.241 | 4.056 | 4.512 | 3.526 | 4.000 | 4.174 | 3.772 | 3.600 | 4.252 | 3.309 | | | | G | 2-4 | 1 -4 | 1-4 | 1-4 | 1-4 | 1-4 | 2-4 | 1-4 | 1-4 | 1-4 | | - | 40 | N | 4 | 3 | 3 | 3 | 3 | 3 | 4 | 3 | 3 | 3 | | ee | | В | 3.111R | 1.300L | .600L | .800L | .100L | .132R | 4.000R | 2.100L | 1.200L | 1.600L | | Span-Feet | | M | 6.418 | 6.542 | 7.009 | 6.016 | 6.500 | 6.664 | 5.760 | 5.810 | 6.436 | 5.264 | | ar | 50 | G
N | $^{1-4}$ | 1-4
3 | $^{1-4}$ | $^{1-4}_{3}$ | $^{1-4}_{3}$ | 1-4 | 1–4
4 | 1-4
3 | 1–4
3 | 1-4 | | Š | 90 | В | 4.000R | 1.300L | $^3_{.600}$ L | .800L | .100L | $^3_{.132 m R}$ | 5.000R | 2.100L | 1.200L | 3
1.600L | | | | M | 8.820 | 9.034 | 9.507 | 8.513 | 9.000 | 9.164 | 8.000 | 8.288 | 8.929 | 7.751 | | | | G | 1-4 | 1-4 | 1-4 | 1–4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | | | 60 | N | 4 | 3 | 3 | 3 | 3 | 3 | 4 | 3 | 3 | 3 | | | | \mathbf{B} | 4.000R | $1.300 \mathbf{L}$ | .600L | .800L | .100L | .132R | 5.000R | 2.100L | 1.200L | 1.600L | | j | | M | 11.267 | 11.528 | 12.006 | 11.011 | 11.500 | 11.664 | 10.417 | 10.774 | 11.424 | 10.243 | | | | G | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | | | 80 | N
B | 4 | 3 | 3 | 3 | 3 | 3 | 4 | 3 | 3 | 3 | | | | M | 4.000R
16.200 | 1.300L 16.521 | .600L
17.005 | .800L
16.008 | .100L
16.500 | .132R 16.664 |
5.000R
15.313 | 2.100L
15.755 | 1.200L
16.418 | 1.600L
15.232 | | | | -G | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | | | 100 | N | 4 | 3 | 3 | 3 | 3 | 3 | 4 | 3 | 3 | 3 | | | | В | 4.000R | 1.300L | .600L | .8001 | .100L | .132R | 5.000R | 2.100L | 1.200L | 1.600L | | 47 10000 | | M | 21.160 | 21.517 | 22.004 | 21.006 | 21.500 | 21.664 | 20.250 | 20.744 | 21.414 | 20,226 | All dimensions are in feet and moments are in kip-feet. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. G-Axle group causing maximum moment, thus, 1-3 means axles 1, 2, and 3. N-Number of critical axle under which maximum moment occurs. B-Distance to right or left of mid-span to point of maximum moment. M-Maximum moment. | ruck | | | Continued
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |---------------|---------|----------------------------------|--|-------------------------|--------------------------|---|-----------------------|--------------------------|---|---------------------|----------------------------|---------------------| | Vh. B | | L | 28 | 28 | 32 | 32 | 32 | 32 | 32 | 32 | 36 | 36 | | xle
pacin | ıg | X
X' | 8
16 | 8
16 | $\frac{8}{20}$ | $\frac{8}{20}$ | $\frac{8}{20}$ | $\frac{8}{20}$ | $\frac{8}{20}$ | $\frac{8}{20}$ | $\frac{8}{24}$ | 8
24 | | oad | | a ₁ | .20 | .200 | .10 | .10 | .10 | .20 | .20
.50 | .200
.534 | .10 | .10 | | n
xles | | a ₂
a ₃ | .50
.30 | .534
.266 | .50 | .40 | .60
.30 | .40 | .30 | .266 | .40
.50 | .50
.40 | | 1 | 0 | G
N | $^{2 ext{}3}_3$ | $\frac{2-3}{3}$ | 4 | 4
4 | $^{2-3}_{3}$ | $\frac{4}{4}$ | $\frac{2-3}{3}$ | $^{2-3}_3$ | 4
4 | 4
4 | | | | B
M | 1.000R $.800$ | 1.000R
.854 | $\substack{0\\1.250}$ | $\begin{smallmatrix} 0\\1.000\end{smallmatrix}$ | 1.000R
.960 | $\frac{0}{1.000}$ | 1.000R
.800 | 1.000R
.854 | $0 \\ 1.250$ | 0
1.00 | | | | G | 1-3 | 1 -3 | 4 | 13 | 13 | 4 | 13 | 1-3 | 4 | 1-3 | | 2 | 80 | N
B | $^{2}_{.429 m R}$ | 2
.363R | $\frac{4}{0}$ | $^2_{.167}{ m L}$ | .286L | 4
0 | 2 .429 R | $^2_{.363 m R}$ | $\frac{4}{0}$ | $\frac{2}{.167}$ | | | | M
G | 13 | 2.341
1-3 | $\frac{2.500}{4}$ | 2.101
1-3 | 2.503
13 | 2.000 | $\frac{2.207}{1-3}$ | $\frac{2.341}{1-3}$ | 2.500 | 2.1
1-3 | | 3 | 30 | N
B | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | | | | M | .429 R
3.955 | .363R
4.174 | $\substack{0\\3.750}$ | .167L
3.600 | $\frac{.286L}{4.252}$ | 3.309 | .429R
3.955 | .363R
4.174 | $\substack{0\\3.750}$ | .167
3.6 | | 4 | 10 | G
N | $^{1-4}_3$ | $\frac{1-4}{3}$ | $_{4}^{3-4}$ | $^{1-4}_3$ | $_{2}^{1-3}$ | $\frac{1}{2}$ | $^{1-3}_2$ | $^{1-3}_{2}$ | 4 | 1-3
2 | | 5 | | B
M | .700L
5.912 | .402L
6.135 | 2.857R
5.143 | 2.900L
5.110 | 0.286L 0.002 | .667R
4.807 | 0.429R
0.5703 | .363R
6.008 | 0
5.000 | 0.167 0.167 | | | | G | 1-4 | 1-4 | 2-4 | 1-4 | 1 -4 | 1 4 | 1-4 | 1-4 | 2-4 | 1-4 | | . 5 | 50 | N
B | $^{3}_{.700L}$ | 3 $^{.402}$ L | $^{4}_{4.889\mathrm{R}}$ | $^3_{2.900 ext{L}}$ | $^{3}_{1.800 m L}$ | $^{3}_{2.400\mathrm{L}}$ | $^3_{1.300 m L}$ | 3
.935L | 4
5.778R | $\frac{3}{3.700}$ | | | | M | 8.410 | 8.634 | 7.280 | 7.568 | 8.365 | 7.015 | 7.834 | 8.115 | 6.651 | 6.8 | | e | 60 | G
N | 1-4
3 | 1-4
3 | 1-4
4 | 1-4
3 | 1-4
3 | 1-4
3 | 3 | 1-4
3 | 1–4
4 | 1-4
3 | | i | | B
M | .700L 10.908 | .402 L
11.133 | $_{9.600}^{6.000R}$ | 2.900L 10.040 | 1.800L 10.854 | $\frac{2.400 L}{9.496}$ | 1.300L 10.328 | .935L 10.612 | $7.000\mathbf{R} \\ 8.817$ | $\frac{3.706}{9.3}$ | | 5 | 30 | G
N | 1–4
3 | 1-4 | $^{1-4}_{4}$ | 1-4 | 1-4
3 | 1-4
3 | 1-4 | 1-4 | 1-4
4 | 1-4
3 | | | | B
M | .700L | .402L | 6.000R | 2.900L | 1.800L
15.841 | 2.400 L | 1.300L | .935L | 7.000R | 3.70 | | | | G | 15.906
1-4 | 16.133 | 14.450
1-4 | 15.005
1-4 | 1-4 | 14.472 | 15.321
1-4 | 15.608
1–4 | 13.613
1-4 | 14.2
1-4 | | 10 | 00 | N
B | $^{3}_{.700L}$ | $^{3}_{.402L}$ | $^{4}_{6.000\mathrm{R}}$ | $^{3}_{2.900 L}$ | $^{3}_{1.800 m L}$ | $\frac{3}{2.400 L}$ | 3 1.300 L | $^{3}_{.935L}$ | $^4_{7.000\mathrm{R}}$ | $\frac{3}{3.70}$ | | | | M | 20.905 | 21.132 | 19.360 | 19.984 | 20.832 | 19.458 | 20.317 | 20.606 | 18,490 | 19.2 | | ruck
Vh. E | 100 | | 21
36 | 22
36 | $\frac{23}{36}$ | 36 | 25
40 | $\frac{26}{40}$ | 27
40 | | 29
40 | 30 | | xle | | \mathbf{x}^{-} | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | | pacii
oad | ng | X' | .10 | .20 | .20 | .200 | .10 | .10 | .10 | .20 | .20 | .20 | | n
xles | | a ₂ | .60
.30 | .40
.40 | .50
.30 | .534
.266 | .40
.50 | .50
.40 | .60 | .40 | .50 | .53 | | T | • • • • | \mathbf{G}^{-} | 2-3 | 4 | 2-3 | 2–3 | 4 | 4 | 2-3 | 4 | 2-3 | 2-3 | | | 10 | N
B | 1.000R | 4
0 | 3
1.000R | 1.000R | 4
0 | 4
0 | 1.000R | 4
0 | 3 1.000R | 1.00 | | | | M
G | $\frac{.960}{1-3}$ | 1.000 | .800
1-3 | .854
1-3 | $\frac{1.250}{4}$ | 1.000
1-3 | $\frac{.960}{1-3}$ | 1.000 | .800
1-3 |
1–8 | | 1 : | 20 | Ñ
B | .286L | 4 | .429R | $^2_{363\mathrm{R}}$ | 4 | 2
.167L | .286L | 4 | 2
.429R | .36 | | İ | | M | 2.503 | 2.000 | 2.207 | 2.341 | 2.500 | 2.101 | 2.503 | 2.000 | 2.207 | 2.5 | | : | 30 | G
N | ${\overset{1-3}{2}}$ | $^{1-3}_2$ | $\frac{1-3}{2}$ | 1-3
2 | 4 | $\frac{1-3}{2}$ | $^{1-3}_2$ | 1-3
2 | $\frac{1-3}{2}$ | 1-3
2 | | | | B
M | $\begin{array}{c} .286 \mathrm{L} \\ 4.252 \end{array}$ | 3.309 | 3.958 | 363R
4.174 | $\frac{0}{3.750}$ | 3.600 | $\begin{array}{c} .286 \mathrm{L} \\ 4.252 \end{array}$ | 3.309 | 3.955 | .36
4.1 | | | 40 | G
N | 1–3
2 | 1-3
2 | 1-3
2 | 1-3
2 | 4 | 1-3
2 | 1-3 | 1–3 | 1-3 | 1-3 | | Span-rec | 40 | В | .286L | .667R | .429R | .363R | 4
0 | .167L | .286L | .667R | 2
.429R | .36 | | [| | <u>M</u> | 6.002 | $\frac{4.807}{1-4}$ | 5.703
1-3 | $\frac{6.008}{1-3}$ | 5.000
4 | 5.100
1-3 | 6.002
1-3 | 4.807
1-3 | 5.703
1–3 | 6.0 | | Ď, | 50 | N
B | 3
2.400L | 3
3.200L | 2
.429R | .363R | 4 | .167L | 2
.286L | 2
.667R | 2
.429R | .36 | | | | M | 7.815 | 6.305 | 7.453 | 7.843 | 6.250 | 6.600 | 7.751 | 6.305 | 7.453 | 7.8 | | | 60 | G
N | $egin{smallmatrix} 1-4 \ 3 \end{smallmatrix}$ | $\frac{1-4}{3}$ | $^{1-4}_{3}$ | 14
3 | $\frac{2-4}{4}$ | $^{1-4}_{3}$ | $\frac{1-4}{3}$ | $^{1-4}_{3}$ | $^{1-4}_{3}$ | 1-3
2 | | | | B
M | 2.400I.
10.296 | 3.200L
8.771 | 1.900L
9.760 | 1.469L
10.099 | 6.667R
8.167 | 4.500L
8.638 | 3.000L
9.750 | 4.000L
8.067 | 2.500L
9.204 | .36
9.6 | | | | $^{-}G^{}$ | 1–4 | 1–4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 1–4 | 1-4 | 1 | | | 80 | N
B | $^3_{2.400 m L}$ | | 3
1.900L | 3 1.469L | $^{4}_{8.000R}$ | $^{3}_{4.500\mathrm{L}}$ | 3.000L | | $^3_{2.500 extbf{L}}$ | $\frac{3}{2.00}$ | | | | M | 15.272 | 13.728 | 14.745 | 15.090 | 12.800 | 13.553 | 14.713
1-4 | 13.000
1-4 | 14.178 | 14.5 | | 1 | 00 | G
N
B | 14
3
2.400L | 1-4
3
3.200L | 1-4
3
1.900L | 1-4
3
1.469L | 1-4
4 | 1-4
3
4.500L | 3 | 3 | 1-4
3
2.500L | 1-4
3
2.00 | | 1 " | | | | | | | 8.000R | | | | | | 78 METHOD OF CONVERTING HEAVY MOTOR VEHICLE LOADS TABLE 7.6 (Continued) | TA | DLL | 1.0 (| Continue | u <i>)</i> | | | | | | | | | |-----------|--------------------------|---|---
--|--|--|--|---
---|--|--|--| | | uck N | | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | | - | n. Bas | | 28 | 28 | 28 | 28 | 28 | 28 | 32 | 32 | 32 | 32 | | Ax | le
acing | X
X' | $\frac{12}{12}$ | 12
12 | $\frac{12}{12}$ | $\frac{12}{12}$ | $\frac{12}{12}$ | $\frac{12}{12}$ | 12
16 | $\frac{12}{16}$ | $\frac{12}{16}$ | $^{12}_{16}$ | | Los | | a ₁ | .10 | .10 | .10 | .20 | .20 | .200 | .10 | .10 | .10 | .20 | | On | | \mathbf{a}_2 | .40 | .50 | .60 | .40
.40 | .50 | .534 $.266$ | $.40 \\ .50$ | .50 $.40$ | .60 | .40 | | Ax | ies | a ₃
G | ,50
4 | .40
4 | $\frac{.30}{2-3}$ | 4 | 2-3 | 2-3 | 4 | 4 | .30
2-3 | | | | 10 | N | 4 | 4 | 3 | 4 | 3 | 3 | 4 | 4 | 3 | 4 | | | | B
M | $\frac{0}{1.250}$ | $0 \\ 1.000$ | 1.000R
.960 | $\frac{0}{1,000}$ | 1.000R $.800$ | 1.000R $.854$ | $\frac{0}{1.250}$ | $\frac{0}{1,000}$ | 1.000R
.960 | $\frac{0}{1.000}$ | | | | G | 4 | 2-3 | 2-3 | 4 | 2-3 | 2-3 | 4 | 2-3 | 2-3 | 4 | | | 20 | N | 4 | 3 | 3 | 4 | 3 | 3 | 4 | 3 | 3: | 4 | | | | B
M | $\frac{0}{2.500}$ | $1.000 \mathbf{R} \\ 2.025$ | $1.000 \mathrm{R} \ 2.430$ | $\frac{0}{2,000}$ | 1.000R 2.025 | 1.000R 2.163 | $\frac{0}{2.500}$ | $1.900R \\ 2.025$ | 1.000R
2.430 | $\frac{0}{2.000}$ | | | | G | 2-4 | 2-4 | 2 4 | 2-4 | 2-4 | 24 | 3-4 | 13 | 1–3 | 3-4 | | | 30 | N
B | $^{4}_{3.111R}$ | $^{3}_{2.111L}$ | $^{3}_{1.333 m L}$ | $^4_{3.500 m R}$ | $^{3}_{1.625 m L}$ | 3 $^{1.333}$ L | $^{4}_{2.286 m R}$ | $^2_{.167 m R}$ | 2.
0 | 2.667R | | | | M | 4.241 | 3,984 | 4.403 | 3.526 | 3.770 | 3.913 | 3.772 | 3.400 | 4.050 | 3.043 | | i | | G | 2–4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 2-4 | 1-4 | 1-4 | 1-4 | | t e | 40 | $_{ m B}^{ m N}$ | $^4_{3.111R}$ | $^3_{1.100 \mathbf{L}}$ | $^3_{.400 \mathbf{L}}$ | $^3_{.400 \mathbf{L}}$ | $^3_{.300 m R}$ | $^{3}_{.532 m R}$ | $^4_{4.000 m R}$ | 3
1.900L | $^{3}_{1.000L}$ | 3
1.200L | | Fe | | M | 6.418 | 6.330 | 6.804 | 5.604 | 6.102 | 6.272 | 5.760 | 5,590 | 6.225 | 4.836 | | Span-Feet | | G | 1-4 | 1-4 | 14
3 | 1-4
3 | 1-4 | $^{1-4}_{3}$ | 2-4 | 1-4 | 1-4 | 1-4 | | S | 50 | N
B | $^4_{4.200 m R}$ | $^{3}_{1.100 m L}$ | .400L | .400 L | $^3_{.300\mathrm{R}}$ | $.532\mathrm{R}$ | $^4_{4.000 m R}$ | $^{3}_{1.900L}$ | $1.000 \mathbf{L}$ | $^3_{1.200 m L}$ | | | | M | 8.653 | 8.824 | 9.303 | 8,103 | 8.602 | 8.770 | 7.938 | 8.072 | 8.720 | 7.329 | | | 60 | G
N | 14
4 | $^{1-4}_{3}$ | $^{1-4}_{3}$ | $^{1-4}_{3}$ | $^{1-4}_{3}$ | $\frac{1-4}{3}$ | $^{\mathbf{1-4}}_{4}$ | $^{1-4}_3$ | $^{1-4}_{3}$ | $\frac{1-4}{3}$ | | | | В | 4.200R | 1.100L | .4001 | .400L | 300R | .532R | 5.200R | 1.900L | 1.000L | 1.200L | | - | | M | 11.094 | 11.320 | $\frac{11.803}{1}$ | 10.603 | 11.102 | 11.269 | 10.251 | 10.560 | 11.217 | 9.824 | | | 80 | G
N | $^{1-4}_{4}$ | $^{1-4}_3$ | $\frac{1-4}{3}$ | $^{1-4}_{3}$ | $^{1-4}_{3}$ | $^{1-4}_3$ | 1-4
4 | $\frac{1-4}{3}$ | 1-4
3 | $^{1-4}_3$ | | | | \mathbf{B} | 4.200R | 1.100L | .400 L | .400 L | .300R | .532R | 5.200R | 1.900L | 1.000L | 1.200L | | | |
 | 16.021
1–4 | 16.315 | $\frac{16.802}{1-4}$ | $\frac{15.602}{1-4}$ | 16.101 | $\frac{16.268}{1-4}$ | 15.138
1–4 | $-\frac{15.545}{1-4}$ | 16.213
1–4 | $\frac{14.818}{1-4}$ | | | 100 | N | 4 | 3 | 3 | 3 | 3 | 3 | 4 | 3 | 3 | 3 | | | | B
M | 4.200R 20.976 | 1.100L 21.312 | .400L 21.802 | 20.602 | $0.300 \mathrm{R}$
21.101 | 0.532R
21.267 | 5.200R
20.070 | 1.900L 20.536 | 1.000L 21.210 | 1.200L
19.814 | | | ick No | | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | | | ı. Base | | 32 | 32 | 36 | 36 | 36 | 36 | 36 | 36 | 40 | 40 | | Ax | | X | | | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | | ie | 25. | 12 | 12 | | | | | | | | | | - | acing | X' | 16 | 16 | 20 | 20 | 20 | 20 | 20 | 20 | 24 | 24 | | Los
On | acing
ad | X'
a ₁
a ₂ | | | | | | | | | | | | Los | acing
ad | X'
a ₁
a ₂
a ₃ | .20
.50
.30 | .200
.534
.266 | .10
.40
.50 | .10
.50
.40 | .10
.60
.30 | .20
.20
.40
.40 | .20
.50
.30 | .200
.534
.266 | .10
.40
.50 | .10
.50
.40 | | Los
On | acing
ad
les | X'
a ₁
a ₂
a ₃
G | .20
.50
.30
.2-3 | .200
.534
.266
2-3 | .10
.40
.50 | .10
.50
.40 | 20
.10
.60
.30
2 -3 | .20
.20
.40
.40 | 20
.20
.50
.30
2–3 | 20
.200
.534
.266
2-3 | .10
.40
.50 | .10
.50
.40 | | Los
On | acing
ad | X' a ₁ a ₂ a ₃ G N B | 16
.20
.50
.30
2-3
3
1.000R | 16
.200
.534
.266
2-3
3
1.000R | .10
.40
.50
4
4
0 | 20
.10
.50
.40
4
4
0 | 20
.10
.60
.30
2 -3
3
1.000R | .20
.20
.40
.40
.40 | 20
.20
.50
.30
2-3
3
1.000R | 20
.200
.534
.266
2-3
3
1.000R | .10
.40
.50
4
4 | .10
.50
.40
 | | Los
On | acing
ad
les | X' a ₁ a ₂ a ₃ G N B M | 16
.20
.50
.30
2-3
3
1.000R
.800 | 16
.200
.534
.266
2-3
3
1.000R
.854 | 20
.10
.40
.50
4
4
0
1.250 | 20
.10
.50
.40
4
4
0
1,000 | 20
.10
.60
.30
2 -3
3
1.000R
.960 | 20
.20
.40
.40
4
4
0
1.000 | 20
.20
.50
.30
2-3
3
1.000R
.800 | 20
.200
.534
.266
2-3
3
1.000R
.854 | 24
.10
.40
.50
4
4
0
1.250 | 24
.10
.50
.40
-4
4
0
1.000 | | Los
On | acing
ad
les | X' a ₁ a ₂ a ₃ G N B | 16
.20
.50
.30
2-3
3
1.000R | 16
.200
.534
.266
2-3
3
1.000R | .10
.40
.50
4
4
0 | 20
.10
.50
.40
4
4
0 | 20
.10
.60
.30
2 -3
3
1.000R | .20
.20
.40
.40
.40 | 20
.20
.50
.30
2-3
3
1.000R | 20
.200
.534
.266
2-3
3
1.000R | .10
.40
.50
4
4 | .10
.50
.40
 | | Los
On | acing ad les | X' a1 a2 a3 G N B M G N B N B | 16
.20
.50
.30
2-3
3
1.000R
.800
2-3
3
1.000R | 16
.200
.534
.266
2-3
3
1.000R
.854
2-3
3
1.000R | 20
.10
.40
.50
4
4
0
1.250
4
0 | 20
.10
.50
.40
4
4
0
1.000
2-3
3
1.000R | 20
.10
.60
.30
2 -3
3
1.000R
.960
2-3
3
1.000R | 20
.20
.40
.40
4
4
0
1.000
4
0 |
20
.20
.50
.30
2-3
3
1.000R
.800
2-3
3
1.000R | 20
.200
.534
.266
2-3
3
1.000R
.854
2-3
3
1.000R | 24
.10
.40
.50
4
4
0
1.250
4
4 | 24
.10
.50
.40
4
4
0
1.000
2–3
3
1.000R | | Los
On | acing ad les | X' a1 a2 a3 G N B M G N B M | 16
.20
.50
.30
2-3
3
1.000R
.800
2-3
3
1.000R
2.025 | 16
.200
.534
.266
2-3
3
1.000R
.854
2-3
3
1.000R
2.163 | 20
.10
.40
.50
4
4
0
1.250
4
0
2.500 | 20
.10
.50
.40
4
4
0
1.000
2-3
3
1.000R
2.025 | 20
.10
.60
.30
2 -3
3
1.000R
.960
2-3
3
1.000R
2.430 | 20
.20
.40
.40
4
4
0
1.000
4
4
0
2.000 | 20
.20
.50
.30
2-3
3
1.000R
.800
2-3
3
1.000R
2.025 | 20
.200
.534
.266
2-3
3
1.000R
.854
2-3
3
1.000R
2.163 | 24
.10
.40
.50
4
4
0
1.250
4
0
2.500 | 24
.10
.50
.40
4
4
0
1.000
2–3
3
1.000R
2.025 | | Los
On | acing ad les | X' a1 a2 a3 G N B M G N B M G N | 16
.20
.50
.30
2-3
3
1.000R
.800
2-3
3
1.000R
2.025 | 16
.200
.534
.266
2-3
3
1.000R
.854
2-3
3
1.000R
2.163
1-3
2 | 20
.10
.40
.50
4
4
0
1.250
4
4
0
2.500 | 20
.10
.50
.40
4
4
0
1.000
2-3
3
1.000R
2.025
1-3
2 | 20
.10
.60
.30
2-3
3
1.000R
.960
2-3
3
1.000R
2.430
1-3
2 | 20
.20
.40
.40
.40
.4
0
1.000
4
4
0
2.000
4 | 20
.20
.50
.30
2-3
3
1.000R
.800
2-3
3
1.000R
2.025
1-3 | 20
.200
.534
.266
2-3
3
1.000R
.854
2-3
3
1.000R
2.163 | 24
.10
.40
.50
4
4
0
1.250
4
0
2.500 | 24
.10
.50
.40
-4
4
0
1.000
2-3
3
1.0000R
2.025
1-3
2 | | Los
On | acing ad les 10 20 | X' a1 a2 a3 G N B M G N B M G N B M G N B M | 16
.20
.50
.30
2-3
3
1.000R
.800
2-3
3
1.000R
2.025
1-3
2 | 16
.200
.534
.266
2-3
3
1.000R
.854
2-3
3
1.000R
2.163
1-3
2 | 20
.10
.40
.50
4
4
0
1.250
4
0
2.500 | 20
.10
.50
.40
4
4
0
1.000
2-3
3
1.000R
2.025
1-3
2
.167R | 20
.10
.60
.30
2-3
3
1.000R
.960
2-3
3
1.000R
2.430
1-3
2 | 20
.20
.40
.40
4
0
1.000
4
0
2.000 | 20
.20
.50
.30
2-3
3
1.000R
.800
2-3
3
1.000R
2.025
1-3
2 | 20
.200
.534
.266
2-3
3
1.000R
.854
2-3
3
1.000R
2.163
1-3
2 | 24
.10
.40
.50
4
4
0
1.250
4
0
2.500 | 24
.10
.50
.40
4
0
1.000
2–3
3
1.000R
2.025
1–3
2
.167R | | Los
On | acing ad les 10 20 | A' a1 a2 a3 G N B M G N B M B M G N B M | 16
.20
.50
.30
2-3
3
1.000R
.800
2-3
3
1.000R
2.025 | 16
.200
.534
.266
2-3
3
1.000R
.854
2-3
3
1.000R
2.163
1-3
2 | 20
.10
.40
.50
4
4
0
1.250
4
4
0
2.500 | 20
.10
.50
.40
4
4
0
1.000
2-3
3
1.000R
2.025
1-3
2 | 20
.10
.60
.30
2-3
3
1.000R
.960
2-3
3
1.000R
2.430
1-3
2 | 20
.20
.40
.40
.40
.4
0
1.000
4
4
0
2.000
4 | 20
.20
.50
.30
2-3
3
1.000R
.800
2-3
3
1.000R
2.025
1-3 | 20
.200
.534
.266
2-3
3
1.000R
.854
2-3
3
1.000R
2.163 | 24
.10
.40
.50
4
4
0
1.250
4
0
2.500 | 24
.10
.50
.40
-4
4
0
1.000
2-3
3
1.0000R
2.025
1-3
2 | | Los On Ax | acing ad les 10 20 | A' a1 a2 a3 G N B M G N B M G N B M G N B N B N B N B N B N B N B N B N B N | 16
.20
.50
.30
.30
.30
.30
.3
1.000R
.800
.800
.800
.800
.800
.800
.800 | 16
.200
.534
.266
2-3
3
1.000R
2-8
3
1.000R
2.163
1-3
2
.908R
3.791
1-4 | 20
.10
.40
.50
4
4
0
1.250
4
0
2.500
4
4
0
3.750 | 20
.10
.50
.40
4
4
0
1.000
2-3
3
1.000R
2.025
1-3
2
1.67 R
3.400 | 20
10
.60
.30
2-3
3
1.000R
.960
2-8
3
1.000R
2.430
1-3
2
0
4.050
1-3
2 | 20
.20
.40
.40
.40
.4
.0
1.000
4
.0
2.000
4
.0
.0
3.000
1-3
2 | 20
20
20
50
30
2-3
1.000R
.800
2-3
3
1.000R
2.025
1-3
2
1.000R
3.573
1-3
2 | 20
.200
.584
.266
2-3
3
1.000R
.854
2-3
3
1.000R
2.163
1-3
2
.908R
3.791 | 24
10
.40
.50
4
4
0
1.250
4
4
0
2.500
4
4
0
3.750
4
4
4 | 24
.10
.50
.40
-4
4
0
1.000
2-3
3
1.000R
2.025
1-3
2
.167R
3.400 | | Los On Ax | acing ad les 10 20 30 | A' a1 a2 a3 G N B M G N B M G N B M G O O O O O O O O O O O O O O O O O O | 16
.20
.50
.30
.30
2-3
1.000R
.800
2-3
1.000R
2.025
1-3
2
1.000R
3.573
1-4 | 16
.200
.534
.266
2-3
3
1.000R
.854
2-3
3
1.000R
2.163
1-3
2
.908R
3.791 | 20
.10
.40
.50
4
4
0
1.250
4
4
0
2.500
4
4
0
3.750 | 20
.10
.50
.40
4
4
0
1,000
2-3
3
1.900R
2,025
1-3
2
1.67 R
3,400
1-3 | 20
.10
.60
.30
2-3
3
1.000R
.960
2-3
3
1.000R
2-4
2.480
1-3
2
0
4.050
1-3
2
0 | 20
.20
.40
.40
4
4
0
1.000
4
4
0
2.000
4
4
0
3.000 | 20
.20
.50
.30
2-3
3
1.000R
.800
2-3
3
1.000R
2.025
1-3
2
1.000R
3.573
1-3
2
1.000R | 20
.200
.534
.266
2-3
3
1.000R
.854
2-3
3
1.000R
2.163
2.908R
3.791
1-3
2.908R | 24
.10
.40
.50
4
4
0
1.250
4
4
0
2.500
4
4
0
3.750 | 24
.10
.50
.40
-4
4
0
1.000
2-3
3
1.0000R
2.025
1-3
2
1.67R
3.400 | | Los On Ax | acing ad les 10 20 30 | X' a1 a2 a3 G N B M G N B M G N B M G G N G G N G G N G G N G G N G G G G | 16 .20 .30 .50 .30 .30 .33 1.000R .800 2-8 3.000R .2.025 1-3 2.1.000R 3.573 1-4 3.300L 5.502 1-4 | 16
.200
.206
2-3
3
1.000R
.854
2-3
3
1.000R
.2.163
1-3
2.163
1-3
2.908R
3.791
1-4
3
.002L
5.730
1-4 | 20
.10
.40
.50
4
4
0
1.250
4
4
0
2.500
4
4
0
3.750
3.4
4
2.857R | 20
.10
.50
.40
4
4
0
0
1.000
2-3
3
3
2.025
1-3
2.167 R
3.400
1-3
2.167 R
4.900
1-4 | 20
.10
.60
.30
2 -3
3
1.000R
.960
2-3
3
1.000R
2.430
1-3
2
0
4.050
1-3
2
0
5.800
1-4 | 20
.20
.40
.40
.40
4
4
0
1.000
4
4
0
2.000
4
4
0
3.000
1-3
2
1.333R
4.427
1-4 | 20
20
20
30
31
1.000R
800
2-3
3
1.000R
2.025
1-3
2
1.000R
3.573
1-3
2
1.000R
3.573
1-3
1.000R | 20
.200
.534
.266
2-3
3
1.000R
.854
2-3
3
1.000R
2.163
1-3
2
.908R
3.791
1-3
2
.908R
5.621
1-4 | 24
110
.40
.50
4
4
0
1.250
4
4
0
2.500
4
1
0
3.750
4
4
0
3.750 | 24
.10
.50
.40
4
4
0
1.000
2-3
3
1.000R
2.025
1-3
2
1.67R
3.400
1-3
2
.167R
4.900 | | Los On Ax | acing ad les 10 20 30 | X' a1 a2 a3 G N B M B M G N B M G N B M B M G N B M B M G N B M B M G N B M B M G N B M B M B M G N B M B M B M G N B M B M B M B M B M B M B M B M B M B | 16
.20
.30
.30
2-3
3
1.000R
.800
2-8
3
1.000R
2.02S
1-3
2
1.000R
3.573
1-4
3.300L
5.502
1-4
3 | 16
.200
.206
2-3
3
1.000R
.854
2-3
3
1.000R
.2.163
1-3
2
.908R
3.791
1-4
3
.002L
5.730 | 20
.10
.40
.50
4
4
0
1.250
4
4
0
2.500
4
4
0
3.750
3.4
4
2.857R
5.143
2-4 | 20
.10
.50
.40
4
4
0
1.000
2-3
3
1.000R
2.025
1-3
2
167 R
4.900
1-4
3 | 20
.10
.60
.30
2-3
3
1.000R
.960
2-3
3
1.000R
2.430
1-3
2
0
4.050
1-3
2
0
5.800
1-4
3 | 20
.20
.40
.40
.40
.40
.40
.40
.40
.4 | 20
20
20
30
2-3
3
1.000R
.800
2-3
1.000R
2.025
1-3
2
1.000R
3.573
1-3
2
1.000R
3.573
1-3
2
1.000R | 20
.200
.534
.266
2-3
3
1.000R
2-3
3
1.000R
2.163
1-3
2
908R
3.791
1-3
2
1.000R
2.163
1.000R
2.163
1.000R
2.163
1.000R
2.164
1.000R
3.791
1.000R
3.791
1.000R | 24
.10
.40
.50
4
4
0
1.250
4
4
0
3.750
4
4
0
3.750
4
4
0
2.5000
2-4 | 24 .10 .50
.40 .4 .4 .0 .1.000 2-3 3 1.0000R 2.025 1-3 2.167R 3.400 1-3 2.167R 4.900 1-4 3 | | Los On Ax | acing ad les 10 20 30 40 | X' a1 a2 a3 G N B M G N B M G N B M G G N G G N G G N G G N G G N G G G G | 16 .20 .30 .50 .30 .30 .33 1.000R .800 2-8 3.000R .2.025 1-3 2.1.000R 3.573 1-4 3.300L 5.502 1-4 | 16
.200
.534
.266
2-3
3
1.000R
.854
2-3
3
1.000R
2.163
1-3
2.908R
3.791
1-4
3
.002L
5.730
1-4 | 20
.10
.40
.50
4
4
0
1.250
4
4
0
2.500
4
4
0
3.750
3-4
4
2.857R
5.143 | 20
.10
.50
.40
4
4
0
0
1.000
2-3
3
3
2.025
1-3
2.167 R
3.400
1-3
2.167 R
4.900
1-4 | 20
.10
.60
.30
2 -3
3
1.000R
.960
2-3
3
1.000R
2.430
1-3
2
0
4.050
1-3
2
0
5.800
1-4 | 20
.20
.40
.40
.40
4
4
0
1.000
4
4
0
2.000
4
4
0
3.000
1-3
2
1.333R
4.427
1-4 | 20
20
20
30
31
1.000R
800
2-3
3
1.000R
2.025
1-3
2
1.000R
3.573
1-3
2
1.000R
3.573
1-3
1.000R | 20
.200
.534
.266
2-3
3
1.000R
.854
2-3
3
1.000R
2.163
1-3
2
.908R
3.791
1-3
2
.908R
5.621
1-4 | 24
.10
.40
.50
4
4
0
1.250
4
4
0
2.500
4
4
0
3.750
4
4
0
0
2.5000 | 24
.10
.50
.40
4
4
0
1.000
2-3
3
1.000R
2.025
1-3
2
1.67R
3.400
1-3
2
.167R
4.900 | | Los On Ax | ad les 10 20 30 40 50 | X' a1 a2 a3 G N B M G N B M G N B M G N B M G G N B M G G N B M G G N B G N B G G N B G G N B G G G G G | 16 .20 .30 .30 .30 .30 .30 .30 .30 .30 .30 .3 | 16
.200
.206
2-3
3
1.000R
.854
2-3
3
1.000R
.2.163
1-3
2.908R
3.791
1-4
3
.002L
5.730
1-4
3
.002L
8.230 | 20
.10
.40
.50
4
4
0
1.250
4
4
0
2.500
4
4
0
3.750
3.4
4
2.857R
5.143
2-4
4.889R
7.280
2-4 | 20
.10
.50
.40
4
0
1.000
2-3
3
1.000R
2.025
1-3
2
.167R
4.900
1-4
3
2.704L
7.346
1-4 | 20
.10
.60
.30
2-3
3
1.000R
.960
2-3
3
1.000R
2.430
1-3
2
0
4.050
1-3
2
0
5.800
1-4
3
1.600L
8.151
1-4 | 20
.20
.40
.40
.40
.40
.40
.40
.40
.4 | 20
20
20
30
2-3
3
1.000R
.800
2-3
3
1.000R
2.025
1-3
2
1.000R
3.573
1-3
2
1.000R
3.573
1-3
2
1.000R
1.43
2.025
1.43
2.025
1.43
2.025
1.43
2.025
1.43
2.025
1.43
2.025
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000 | 20
.200
.534
.266
2-3
3
1.000R
.854
2-3
3
1.000R
2.163
1-3
2
908R
3.791
1-3
2
.908R
5.621
1-4
3
.536L
7.702 | 24
.10
.40
.50
4
4
0
1.250
4
4
0
3.750
4
4
0
5.000
2-4
4
5.778R
668T
668T
668T
2-4 | 24 .10 .50 .40 .4 .4 .0 .1.000 2-3 3 1.0000R 2.025 1-3 2 1.67R 3.400 1-3 2 .167R 4.900 1-4 3 3.500£ 1-4 | | Los On Ax | acing ad les 10 20 30 40 | X' a1 a2 a3 G N B M G N B M G N B M G N B M G N B M G N B M G N B M G N B N B M G N B N B N B M G N B N B M G N B N B N B M G N B N B M G N B N B M G N B N B M G N B N B M G N B N B M G R M B M G R M B M B M B M B M B M B M B M B M B M | 16 .20 .30 .30 .30 .33 1.000R .800 .31 .000R .800 .31 .000R .3.573 .300L .5.502 .300L .8.002 .300L .8.002 | 16
.200
.534
.266
2-3
3
1.000R
.854
2-3
1.000R
2.163
1-3
2
.908R
3.791
1-4
3
.002L
5.730
1-4
3 | 20
.10
.40
.50
4
4
0
1.250
4
4
0
2.500
4
4
0
3.750
3-4
4
2.857R
5.143
2-4
4
4.889R
7.280 | 20
.10
.50
.40
4
4
0
1.000
2-3
3
1.0000R
2.025
1-3
2
1.67 R
3.400
1-3
2
2.700L
7.346
1-4
3 | 20
.10
.60
.30
2-3
3
1.000R
.960
2-3
1.000R
2.430
1-3
2
0
5.800
1-4
3
1.600L
8.151
1-4
3 | 20
.20
.40
.40
.40
.4
.0
1.000
.4
.0
.2.000
.4
.0
.2.000
.4
.0
.3.000
.3.000
.3.33 R
.4.427
.1-4
.3
.2.000
.5.580
.5.580
.5.580
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.680
.5.6 |
20
20
20
30
2-3
3
1.000R
.800
2-3
1.000R
2.025
1-3
2
1.000R
2.025
1-3
2
1.000R
3.573
1-3
2
1.000R
1.000R
3.573
1-3
2
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R
1.000R | 20
.200
.534
.266
2-3
3
1.000R
.854
2-3
1.000R
2.163
1-3
2
.908R
3.791
1-3
2
.908R
5.621
1-4
3
.536L
7.702 | 24
.10
.40
.50
4
4
0
1.250
4
4
0
3.750
4
4
0
5.000
2-4
4
5.000
2-4
4
4
4
0
5.000
4
4
4
4
4
5
6
6
6
7
7
8
8
8
8
8
8
8
8
8
8
8
8
8 | 24 .10 .50 .40 4 4 0 1.000 2-3 3 1.0000R 2.025 1-3 2 .167R 3.400 1-3 2 167R 4.900 1-4 3 3.500L 6.645 1-4 3 | | Los On Ax | ad les 10 20 30 40 50 | X' a1 a2 a3 G N B M G N B M G N G N B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M M G N B M M G N B M M G N B M M G N B M M G M M M M M M M M M M M M M M M M | 16 20 30 30 2-3 3 1.000R 800 2-8 3 1.000R 2-8 3 1.000R 3.573 1-4 3 3.00L 5.502 1-4 3 3.00L 1.4 3 3.00L 1.4 3 3.00L 1.000R | 16
.200
.206
2-3
3
1.000R
.854
2-3
3
1.000R
.2.163
1-3
2.008R
3.791
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230 | 20
.10
.40
.50
4
4
0
1.250
4
4
0
2.500
4
4
0
3.750
3-4
4
2.857R
5.143
2-4
4.889R
7.280
2-4
4.889R
9.458 | 20
.10
.50
.40
4
4
0
1.000
2-3
3
1.000R
2.025
1-3
2
167R
4.900
1.43
2.700L
7.346
1-4
3
2.700L
9.822 | 20 10 10 10 10 10 10 10 10 10 10 10 10 10 | 20
.20
.40
.40
.40
.40
.40
.40
.40
.4 | 20
.20
.30
.50
.30
2-3
3
1.000R
.800
2-3
3
1.000R
2.025
1-3
2
1.000R
3.573
1-3
2
1.000R
3.573
1-3
2
1.04
3
.900L
5.318
1-4
3
.900L
9.40
1-4
3
.900L
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40 | 20
.200
.534
.266
2-3
3
1.000R
.854
2-3
3
1.000R
2.163
1-3
2.908R
3.791
1-3
2.908R
5.621
1-4
3
.536L
1-4
3
.536L
1-4
3
.536L
1-4
3 | 24
.10
.40
.50
4
4
0
1.250
4
4
0
3.750
4
4
0
5.778R
5.778R
8.800 | 24 .10 .50 .40 .4 .4 .0 .1.000 2-3 3 1.0000 2-3 2.167R 3.400 1-3 2.167R 4.900 1-4 3 3.500L 9.104 | | Los On Ax | ad les 10 20 30 40 60 60 | X' a1 a2 G N B M G N B M G N B M G N B M G N B B M G N B B M G N B B M G N B B M G N B B B G N B B B G N B B B G N B B B G N B B B G N B B B G N B B B G R G R B B B G R G R B B B G R G R | 16 .20 .30 .30 .30 .30 .30 .30 .30 .000R .800 .30 .000R .3000R .3.573 .000R .3.300L .5.502 .4 .3 .300L .8.002 .4 .3 .300L .5.502 .502 .502 .502 .502 .502 .502 .5 | 16
.200
.534
.266
2-3
3
1.000R
.854
2-3
3
1.000R
2.163
2
.908R
3.791
1-4
3
.002L
5.730
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4 | 20
.10
.40
.50
4
4
0
1.250
4
4
0
2.500
4
4
0
3.750
3-4
4
2.857R
5.143
2-4
4.889R
7.280
2-4
4.889R
9.458
1-4 | 20
.10
.50
.40
4
4
0
1.000
2-3
3
1.000R
2.025
1-3
2
.167R
4.900
1-4
3
2.700L
7.346
1-4
3
2.700L
9.822
1-4 | 20
.10
.60
.80
2-3
3
1.000R
.960
2-43
1.000R
2.430
1-3
2
0
4.050
1-3
2
0
5.800
1-4
3
1.600L
8.151
1-4
3
1.600L
8.151 | 20
.20
.40
.40
.40
.40
.40
.40
.40
.4 | 20
20
20
30
2-3
3
1.000R
.800
2-3
1.000R
2.025
1-3
2
1.000R
3.573
1-3
2
1.000R
5.318
1-4
3
.900L
7.416
1-4
3
.909L
1-4
3
.909L
1-4 | 20
.200
.534
.266
2-3
3
1.000R
.854
2-3
1.000R
2.163
1-3
2
.908R
3.791
1-3
2
.908R
5.621
1-4
3
.536L
7.702
1-4
3
.536L
10.201
1-4 | 24
.10
.40
.50
4
4
0
1.250
4
4
0
3.750
4
4
0
5.000
2-4
4
5.778R
6.651
2-4
5.778R
8.880
1-4 | 24 .10 .50 .40 4 4 0 1.000 2-3 3 1.000R 2.025 1-3 2 .167R 3.400 1-3 2 167R 4.900 1-4 3 3.500L 6.645 1-4 3 3.500L 9.104 1-4 | | Los On Ax | ad les 10 20 30 40 50 | X' a1 a2 a3 G N B M G N B M G N G N B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M M G N B M M G N B M M G N B M M G N B M M G M M M M M M M M M M M M M M M M | 16 20 30 30 2-3 3 1.000R 800 2-8 3 1.000R 2-8 3 1.000R 3.573 1-4 3 3.001L 5.502 1-4 3 3.001L 10.502 1-4 3 3.000L 10.502 | 16
.200
.206
2-3
3
1.000R
.854
2-3
3
1.000R
.2.163
1-3
2.008R
3.791
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230 | 20
.10
.40
.50
4
4
0
1.250
4
4
0
2.500
4
4
0
3.750
3-4
4
2.857R
5.143
2-4
4.889R
7.280
2-4
4.889R
9.458 |
20
.10
.50
.40
4
4
0
1.000
2-3
3
1.000R
2.025
1-3
2
167R
4.900
1.43
2.700L
7.346
1-4
3
2.700L
9.822 | 20 10 10 10 10 10 10 10 10 10 10 10 10 10 | 20
.20
.40
.40
.40
.40
.40
.40
.40
.4 | 20
.20
.30
.50
.30
2-3
3
1.000R
.800
2-3
3
1.000R
2.025
1-3
2
1.000R
3.573
1-3
2
1.000R
3.573
1-3
2
1.04
3
.900L
5.318
1-4
3
.900L
9.40
1-4
3
.900L
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40
9.40 | 20
.200
.534
.266
2-3
3
1.000R
.854
2-3
3
1.000R
2.163
1-3
2.908R
3.791
1-3
2.908R
5.621
1-4
3
.536L
1-4
3
.536L
1-4
3
.536L
1-4
3 | 24
.10
.40
.50
4
4
0
1.250
4
4
0
3.750
4
4
0
5.778R
5.778R
8.800 | 24 .10 .50 .40 .4 .4 .0 .1.000 2-3 3 1.0000 2-3 2.167R 3.400 1-3 2.167R 4.900 1-4 3 3.500L 9.104 | | Los On Ax | ad les 10 20 30 40 60 60 | X' a1 a2 a3 G N B M B M G N B M B M G N B M B M G N B M B M G N B M B M G N B M B M G N B M B M B M B M G N B M B M B M B M B M B M B M B M B M B | 16 .20 .30 .30 .30 .30 .30 .30 .30 .30 .30 .3 | 16
.200
.206
2-3
3
1.000R
.854
2-3
1.000R
2.163
2
.908R
3.791
1-4
3
.002L
5.730
1-4
3
.002L
1.730
1-4
3
.002L
1.730 | 20
.10
.40
.50
4
4
0
1.250
4
4
0
2.500
4
4
0
3.750
3-4
4
2.857R
5.143
2-4
4.889R
7.280
2-4
4.889R
7.280
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4
6.200R
1-4 | 20
.10
.50
.40
4
4
0
1.000
2-3
3
1.000R
2.025
1-3
2
.167R
4.900
1-4
3
2.700L
7.346
1-4
3
2.700L
9.822
1-4
3
2.700L
1.43
2.700L
1.43
2.700L
1.43
2.700L
1.43
2.700L
1.43
2.700L
1.43
2.700L
1.43
2.700L
1.43
2.700L
1.43
2.700L
1.43
2.700L
1.43
2.700L
1.43
2.700L
1.43
2.700L
1.43
2.700L
1.43
2.700L
1.43
2.700L
1.43
2.700L
1.43
2.700L
1.43
2.700L
1.43
2.700L
1.43
2.700L
1.43
2.700L
1.43
2.700L
1.43
2.700L
1.44
3.400
1.44
3.400
1.44
3.400
1.44
3.400
1.44
3.400
1.44
3.400
1.44
3.400
1.44
3.400
1.44
3.400
1.44
3.400
1.44
3.400
1.44
3.400
1.44
3.400
1.44
3.400
1.44
3.400
1.44
3.400
1.44
3.400
1.44
3.400
1.44
3.400
1.44
3.400
1.44
3.400
1.44
3.400
1.44
3.400
1.44
3.400
1.44
3.400
1.44
3.400
1.44
3.400
1.44
3.400
1.44
3.400
1.44
3.400
1.44
3.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.400
1.4 | 20 10 .60 .80 2-3 3 1.000R
.960 2-3 3 1.000R 2.430 1-3 2 0 4.050 1-3 2 0 5.800 1-4 3 1.600L 8.151 1-4 3 1.600L 10.643 1-4 3 1.600L 15.632 | 20
.20
.40
.40
.40
.40
.40
.40
.40
.4 | 20
20
20
30
2-3
3
1.000R
.800
2-3
1.000R
2.025
1-3
2
1.000R
3.573
1-3
2
1.000R
3.573
1-3
2
1.000R
3.573
1-3
2
1.000R
3.573
1-3
2
1.000R
3.573
1-3
2
1.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3 | 20 .200 .200 .534 .266 2-3 3 1.000R .854 2-3 3 1.000R 2.008 2.103 1-3 2.908R 3.791 1-3 2.908R 5.621 1-4 3.536L 1.7.702 1-4 3 .536L 10.201 1-4 3 .536L 15.200 | 24
.10
.40
.50
4
4
0
1.250
4
4
0
3.750
4
4
0
5.000
2-4
4
5.778R
6.651
2-4
4
5.778R
8.800
1-4
7.200R
13.448 | 24 .10 .50 .40 4 4 0 1.000 2-3 3 1.000R 2.025 1-3 2 .167R 3.400 1-3 2.167R 4.900 1-4 3 3.500L 6.645 1-4 3 3.500L | | Los On Ax | 20 20 40 60 80 | X' a1 a2 a3 G N B M G N B M G N B M G N B M G N B M G G R G G R G G R G R G G R G G R G | 16 .20 .30 .30 .30 .30 .33 1.000R .800 2-8 3 1.000R .2.025 1-3 2 1.000R 3.573 1-4 3 .300L 5.502 1-4 3 3.00L 10.502 1-4 3 3.00L 10.502 1-4 3 3.00L 10.502 1-4 3 10.502 1-4 3 10.502 1-4 3 10.502 1-4 3 10.502 1-4 3 10.502 1-4 3 3 300L 10.502 | 16
.200
.206
2-3
3
1.000R
.854
2-8
3
1.000R
.854
2-3
3
1.000R
3.791
1-4
3
.002L
5.730
1-4
3
.002L
10.730
1-4
3
.002L
10.730
1-4 | 20
.10
.40
.50
4
4
0
1.250
4
4
0
2.500
4
4
0
3.750
3-4
4
2.857R
5.143
2-4
4
4.889R
7.280
2.4
4
4.889R
9.458
1-4
6.200R
14.281
1-4
1.250 | 20 .10 .50 .40 4 4 0 1.000 2-3 3 1.000R 2.025 1-3 2 1.67R 3.400 1-3 2.167R 4.900 1-4 3 2.700L 9.822 1-4 3 2.700L 14.791 1-4 1-4 3 | 20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1. | 20
.20
.40
.40
.40
.40
.40
.40
.40
.4 | 20
.20
.30
.30
2-3
3
1.000R
.800
2-3
3
1.000R
2.025
1-3
2
1.000R
3.573
1-3
2
1.000R
5.318
1-4
3
.900L
9.914
1-4
3
.900L
1.4910
1.4910 | 20
.200
.534
.266
2-3
3
1.000R
.854
2-3
3
1.000R
2.163
1-3
.908R
3.791
1-4
3
.536L
7.702
1-4
3
.536L
10.201
1-4
3
.536L
10.201
1-4
3
.536L
10.201
1-4 | 24 .10 .40 .50 4 4 0 1.250 4 4 0 2.500 4 4 0 3.750 4 5.778R 6.651 2-4 4 5.778R 8.800 1-4 7.200R 1.44 1.44 1.48 | 24 .10 .50 .40 .4 .4 .0 .1.000 2-3 3 1.0000R 2.025 1-3 2.167R 3.400 1-3 2.167R 4.900 1-4 3 3.500L 9.104 1-4 3 3.500L 9.104 1-4 3 3.500L 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 | | Los On Ax | ad les 10 20 30 40 60 60 | X' a1 a2 a3 G N B M R M R M R M R M R | 16 .20 .30 .30 .30 .30 .30 .30 .30 .30 .30 .000R .800 .30 .000R .800 .30 .000R .300L .5.502 .300L .8.002 .300L .5.502 .300L .5.501 .300L .5.501 .300L .5.501 .300L .5.501 | 16
.200
.266
2-3
3
1.000R
.854
2-3
1.000R
2.163
2
.908R
2.163
3
.908L
5.730
1-4
3
.002L
8.230
1-4
3
.002L
15.730
1-4
3
.002L
15.730
1-4
3
.002L
15.730 | 20
.10
.40
.50
4
4
0
1.250
4
4
0
2.500
4
4
0
3.750
3-4
4
2.857R
5.143
2-4
4.889R
7.280
2-4
4.889R
9.458
1-4
6.200R
14.281
1-4
6.200R | 20 .10 .50 .40 4 4 0 1.000 2-3 3 3 8 2.025 1-3 2 .167R 3.400 1-4 3 2.700L 9.822 1-4 3 2.700L 1-4 3 2.700L 1-4 3 2.700L 1-4 3 2.700L 1-4 3 2.700L | 20 10 .60 .80 2-3 3 1.000R .960 2-3 3 1.000R 2.430 1-3 2 0 4.050 1-3 2 0 5.800 1-4 3 1.600L 8.151 1-4 3 1.600L 15.632 1-4 3 1.600L |
20
.20
.40
.40
.40
.40
.40
.40
.00
.1.000
.40
.40
.000
.40
.000
.1-3
.2.0001
.6.580
.1-4
.3
.2.0001
.1-4
.3
.2.0001
.1-4
.3
.2.0001
.1-4
.3
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.1-4
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000 | 20
20
20
30
31
1.000R
800
2-3
3
1.000R
2.025
1-3
2
1.000R
3.573
1-3
2
1.000R
3.573
1-4
3
900L
9.914
1-4
3
9.900L
14.910
1-4
3
9.900L
14.910 | 20 .200 .200 .206 2-3 3 1.000R .854 2-3 3 1.000R 2.163 1-3 2 .908R 3.791 1-4 3 .536L 10.201 1-4 3 .536L 10.201 1-4 3 .536L 15.200 1-4 3 .536L 15.200 1-4 3 .536L | 24 .10 .40 .50 4 4 0 1.250 4 4 0 2.500 4 4 0 3.750 4 4 0 5.000 2-4 4 5.778R 8.800 1-4 7.200R 13.448 1-4 4 7.200R | 24 .10 .50 .40 4 4 0 1.000 2-3 3 1.000R 2.025 1-3 2 .167R 3.400 1-3 2.167R 4.900 1-4 3 3.500L 6.645 1-4 3 3.500L 1-4 3 3.500L 1-4 3 3.500L 1-4 3 3.500L 1-4 3 3.500L 1-4 3 3.500L 3.500L 1-4 3 3.500L 3.500L 3.500L 3.500L 3.500L 3.500L | | Los On Ax | 20 20 40 60 80 | X' a1 a2 a3 GNBM GNBM GNBM GNBM GNBM GNBM GNBM GNBM | 16 .20 .30 .30 .33 1.000R .800 2-8 3 1.000R .800 2-8 3 1.000R 3.573 1-4 3 .300L 5.502 1-4 3 .300L 10.502 1-4 3 .300L 10.502 1-4 3 .300L 10.502 1-4 3 .300L 10.502 1-4 3 .300L 10.502 | 16
.200
.206
2-3
3
1.000R
.854
2-3
3
1.000R
.2.163
1-3
2.008R
3.791
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
3
.002L
8.230
1-4
8
.002L
8.230
1-4
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8 | 20
.10
.40
.50
4
4
0
1.250
4
4
0
2.500
4
4
0
3.750
3.4
4
4.889R
7.280
2-4
4.889R
7.280
1-4
4.89R
1-4
4.89R
1-4
4.281
1-4
4.281 | 20 .10 .50 .40 4 4 0 1.000 2-3 3 1.000R 2.025 1-3 2.167R 3.400 1-3 2.700L 7.346 1-4 3 2.700L 9.822 1-4 3 2.700L 14.791 1-4 3 | 20 10 10 10 10 10 10 10 10 10 10 10 10 10 | 20
.20
.40
.40
.40
.40
.40
.40
.40
.4 | 20
20
20
30
2-3
3
1.000R
.800
2-3
3
1.000R
2-025
1-3
2
1.000R
3.573
1-3
2
1.000R
5.318
1-4
3
.900L
7.416
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
3
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4
.900L
1-4 | 20 .200 .200 .534 .266 2-3 3 1.000R .854 2-3 3 1.000R 2.163 1-3 2.908R 3.791 1-3 2.908R 5.621 1-4 3 .536L 10.201 1-4 3 .536L 15.200 1-4 3 | 24 .10 .40 .50 4 4 0 1.250 4 4 4 0 2.500 4 4 0 3.750 4 4 0 5.778R 8.800 1-4 4 7.200R 13.448 1-4 4 | 24 .10 .50 .40 4 0 1.000 2-3 3 1.0000 2-3 2 1-3 2 167R 3.400 1-4 3 3.500L 1-4 3 3.500L 14.053 1-4 3 | | | | | | | FOR R | ATING | HEAVY | VEHICE | E LOAI | os | | 79 | |---|-------------|------------------|---|-------------------------|----------------------------------|--------------------------|--------------------------|------------------------|----------------------------|--|----------------------------|------------------------| | | BLE | | Continued
51 | 1)
52 | | 54 | 55 | 56 | 57 | 58 | 59 | 60 | | | . Base | | 40 | 40 | 53
40 | 40 | 44 | 44 | 44 | 44 | 44 | 44 | | $\frac{\mathbf{A}\mathbf{x}}{\mathbf{A}\mathbf{x}}$ | | X | 12 | $-\frac{10}{12}$ | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | | cing | X' | 24 | 24 | 24 | 24 | 28 | 28 | 28 | 28 | 28 | 28 | | Loa | ad | a_1 a_2 | .10
.60 | .20
.40 | .20
.50 | .200 $.534$ | .10
.40 | .10
.50 | .10
.60 | .20
.40 | .20
.50 | .200
.534 | | Ax | les | a 3 | .30 | .40 | .30 | .266 | .50 | .40 | .30 | .40 | .30 | .266 | | 1 | | G | 2-3 | 4 | 2-3 | 23 | 4 | 4 | 2-3 | 4 | 23 | 2-3 | | į | 10 | N
B | $^3_{1.000 m R}$ |
$\frac{4}{0}$ | $^3_{1.000\mathrm{R}}$ | $^3_{1.000 m R}$ | $\frac{4}{0}$ | 4
0 | $^3_{1.000\mathrm{R}}$ | $\frac{4}{0}$ | $^3_{1.000 m R}$ | $^3_{1.000 m R}$ | | | | M_ | 960 | 1.000 | .800 | .854 | 1.250 | 1.000 | .960 | 1.000 | .800 | .854 | | 1 | 20 | G
N | $\frac{2-3}{3}$ | 4
4 | $\frac{2-3}{3}$ | $\frac{2-3}{3}$ | 4
4 | $\frac{2-3}{3}$ | 23
3 | 4
4 | 2-3
3 | 23
3 | | | 20 | В | 1.000R | 0 | 1.000R | 1.000R | 0 | 1.000R | 1.000R | 0 | 1.000R | 1.000R | | | | M | 2.430 | 2.000 | 2.025 | 2.163 | 2.500 | 2.025 | 2.430 | 2.000 | $\frac{2.025}{1.0}$ | 2.163 | | | 30 | G
N | $ rac{1-3}{2}$ | 4 | $\frac{1}{2}$ | 13
2 | 4 | $^{1-3}_{2}$ | 1-3
2 | 4
4 | $^{1-3}_{2}$ | 13
2 | | | | В | 0 | 0 | 1.000R | $.908\mathbf{R}$ | 0 | .167R | 0 | 0 | $1.000\mathrm{R}$ | .908R | | | | M.
G | 4.050 | $\frac{3.000}{1-3}$ | 3.573
1–3 | $\frac{3.791}{1-3}$ | $\frac{3.750}{4}$ | 3,400 | 4.050 | $\frac{3.000}{1-3}$ | $-\frac{3.573}{1-3}$ | $\frac{3.791}{1-3}$ | | 4 | 40 | N | 2 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | | aa. | | B
M | $\begin{smallmatrix} 0\\5.800\end{smallmatrix}$ | $^{1.333 m R}_{4.427}$ | $1.000 \mathrm{R} \\ 5.318$ | 5.621 | $\frac{0}{5.000}$ | $^{.167}_{4.900}$ | $\frac{0}{5.800}$ | 1.333R 4.427 | 1.000R
5.318 | 5.621 | | 3 | | G | 1-4 | 1-3 | 1-3 | 1-3 | 4 | 1-3 | 13 | 1-3 | 1-3 | 1-3 | | Span-Feet | 50 | N | 3 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | | | | В
М | $\frac{2.200 \text{L}}{7.597}$ | 1.333R
5.921 | $\frac{1.000 \mathrm{R}}{7.064}$ | 0.908R 7.453 | $^{0}_{6,250}$ | 6.400 | $\frac{0}{7.550}$ | 1.333R
5.921 | 1.000R
7.064 | 0.908 m R | | | | G | 1-4 | 14 | 1-4 | 1-4 | 2-4 | 14 | 1-4 | 1-4 | 1–3 | 1-3 | | | 60 | N
B | $^{3}_{2.200 m L}$ | 3
2.800L | $^3_{1.500 m L}$ | $3 \\ 1.069 \mathbf{L}$ | $^4_{6.667 m R}$ | $^{3}_{4.300 L}$ | $^{3}_{2.800 { m L}}$ | $\begin{array}{c} 3\\3.600 \mathrm{L} \end{array}$ | $^2_{1.000\mathrm{R}}$ | $^{2}_{.908 m R}$ | | ĺ | | M | 10.081 | 8.331 | 9.338 | 9.682 | 8.167 | 8.408 | 9.531 | 7.616 | 8.812 | 9.286 | | | 60 | G | 1-4 | 1-4 | 1-4 | 14 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | | | 80 | N
B | $^{3}_{2.200L}$ | $^3_{2.800 \mathbf{L}}$ | 3 1.500 L | $1.069 \mathbf{L}$ | $^4_{8.200 m R}$ | $^{3}_{4.300L}$ | $^3_{2.800}$ L | $3 \\ 3.600 $ L | 3
2.100L | $^3_{1.603 m L}$ | | | | M | 15.061 | 13.298 | 14.328 | 14.677 | 12.641 | 13.331 | 14.498 | 12.562 | 13.755 | 14.162 | | ļ | 100 | G
N | 14
3 | $\frac{1-4}{3}$ | $\frac{1}{3}$ | 1–4
3 | $^{1-4}_{4}$ | $\frac{1-4}{3}$ | $^{1-4}_3$ | $\frac{1-4}{3}$ | $\frac{1-4}{3}$ | 1-4
3 | | | 200 | В | 2.200 L | 2.800L | 1.500 L | 1.069L | 8.200R | 4.300L | 2.800 L | $3.600 \mathbf{L}$ | 2.100L | 1.603L | | |
==1==== | M | 20.048 | 18.278 | 19.323 | 19.674 | 17.472 | 18.285 | 19.478 | 17.530 | 18.744 | 19.155 | | | uck No | | 61
32 | $-\frac{62}{32}$ | 63
32 | 64
32 | 65
32 | $\frac{-66}{32}$ | $\frac{67}{36}$ | $\frac{-68}{36}$ | 69
36 | $\frac{70}{36}$ | | Ax | | X | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | | Sp | acing | X' | 12 | 12 | 12 | 12 | 12 | 12 | 16 | 16 | 16 | 16 | | Lo | | \mathbf{a}_1 | .10
.40 | .10
.50 | .10
.60 | .20
.40 | .20 $.50$ | .200
.534 | .10
.40 | .10
.50 | .10
.60 | .20
.40 | | | les | as | .50 | .40 | .30 | .40 | .30 | .266 | .50 | .40 | .30 | .40 | | | 10 | G
N | 4 | 4 | 23 | 4 | 23 | 2–3 | 4 | 4 | 2-3 | 4 | | | 10 | В | 4 | 4
0 | $^3_{1.000 m R}$ | $\frac{4}{0}$ | $^{3}_{1.000\mathrm{R}}$ | $^3_{1.000\mathrm{R}}$ | $\frac{4}{0}$ | $\frac{4}{0}$ | $^3_{1.000 m R}$ | $\frac{4}{0}$ | | | | _M | 1.250 | 1.000 | .960 | 1.000 | .800 | .854 | 1.250 | 1.000 | .960 | 1.000 | | | 20 | G
N | 4
4 | $^{2-3}_{3}$ | $\frac{2-3}{3}$ | 4
4 | $\frac{2-3}{3}$ | $\frac{2}{3}$ | 4
4 | $_{3}^{2-3}$ | 2·-3
3 | 4
4 | | | | В | 0 | 1.000R | 1.000R | 0 | 1.000R | 1.000R | 0 | 1.000R | 1.000R | 0 | | | | M
G | $\frac{2.500}{2-4}$ | 2.025 | $\frac{2.430}{2-4}$ | 2.000 | $\frac{2.025}{2-4}$ | $\frac{2.163}{2-4}$ | 2.500
3-4 | $\frac{2.025}{2-4}$ | $\frac{2.430}{2-3}$ | $ rac{2.000}{3-4}$ | | | 30 | N | 4 | 3 | 3 | 4 | 3 | 3 | 4 | 3 | 3 | 4 | | | | B
M | 3.111R
4.241 | 2.111L
3.984 | 1.333L
4,403 | 3.500R
3.526 | $\frac{1.625 L}{3.770}$ | 1.333L 3.913 | 2.286R
3.772 | 3.000L
3.320 | $1.000\mathbf{R} \\ 3.920$ | 2.667R
3.043 | | | | G | 2-4 | 2-4 | 2-4 | 2-4 | 2-4 | 24 | 2-4 | 2-4 | 2-4 | 2-4 | | et | 40 | $_{ m B}^{ m N}$ | $^{4}_{3,111R}$ | 3 | $^{3}_{1.333L}$ | $^{4}_{3.500\mathrm{R}}$ | 3 | 3 | $^{4}_{4.000\mathrm{R}}$ | 3.000L | $^{3}_{2.000L}$ | $^{4}_{4.500 m R}$ | | Feet | İ | M | 6.418 | 2.111L
6.200 | 6.640 | 5.445 | 1.625L 5.753 | 1.3331.
5.901 | 5.760 | 5.503 | 6.090 | 4.805 | | Span- | | G | 2-4 | 1-4 | 14 | 1-4 | 1-4 | 1-4 | 2-4 | 1-4 | 1-4 | 1-4 | | $\dot{\mathbf{s}}$ | 50 | N
B | $\frac{4}{3.111R}$ | $^3_{.900\mathbf{L}}$ | $^{3}_{.200 L}$ | 3
0 | 3 .700R | 3 $.931$ R | $ rac{4}{4.000\mathbf{R}}$ | 3
1.700L | $^3_{.800 m L}$ | $^{3}_{.800 extbf{L}}$ | | | | M | 8.625 | 8.616 | 9.101 | 7.700 | 8.210 | 8,382 | 7.938 | 7.858 | 8.513 | 6.913 | | | 60 | G
N | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 24 | 1-4 | 1-4 | 14 | | | 60 | В | $^{4}_{4.400R}$ | $^3_{.900L}$ | $^{3}_{.200L}$ | 3
0 | 3 .700R | 3 .931R | $\frac{4}{4.000R}$ | 3
1.700L | .800L | 3
.800L | | | | M | 10.923 | 11.114 | 11.601 | 10.200 | 10.708 | 10.879 | 10.140 | 10.348 | 11.011 | 9.411 | | | 80 | G
N | $^{1-4}_{4}$ | 1–4
3 | $\frac{1-4}{3}$ | $^{1-4}_{3}$ | $^{1-4}$ | 14
3 | 1-4
4 | 14
3 | $^{1-4}_{3}$ | $^{1-4}_{3}$ | | | | В | 4.400R | .900L | .200L | 0 | .700R | .931R | 5.400R | 1.700L | .800L | .800L | | | | M | 15.842 | 16.110 | 16.601 | 15.200 | 15.706 | 15.876 | 14.965 | 15.336 | 16.008 | 14.408 | | | 100 | G
N | 14
4 | $^{1-4}_{3}$ | $\frac{1-4}{3}$ | $^{1-4}_3$ | $^{1-4}_{3}$ | $^{1-4}_{3}$ | 1–4
4 | 1–4
3 | $\frac{1-4}{3}$ | $\frac{1-4}{3}$ | | | 1 700 | | | | | | | | | | | | | | 100 | B | 4.400R
20.794 | .900L
21.108 | .200L
21.600 | 0
20.200 | .700R
20.705 | .931R
20.874 | 5.400R
19.892 | 1.700L
20.329 | .800L
21.006 | .800L
19.406 | 80 METHOD OF CONVERTING HEAVY MOTOR VEHICLE LOADS TABLE 7.6 (Continued) | | ick N | 0. | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | |--------------------------------------|--
--|---|---|---|---|--|--|--|---|--
--| | Wł | ı. Bas | | 36 | 36 | 40 | 40 | 40 | 40 | 40 | 40 | 44 | 44 | | Ax
Spa | le
acing | X
X' | 16
16 | 16
16 | 16
20 | 16
20 | 16
20 | 16
20 | 16
20 | 16
20 | 16
24 | 16
24 | | Lo | | a ₁ | .20 | .200 | .10 | .10 | .10 | .20 | .20 | .200 | .10 | .10 | | On
Av | les | \mathbf{a}_2 | .50 $.30$ | .534 $.266$ | .40
.50 | .50 $.40$ | .60
.30 | .40
.40 | .50
.30 | .534
.266 | .40
.50 | .50
.40 | | ~ | 105 | G | 2-3 | 2-3 | 4 | 4 | 2-3 | 4 | 2-3 | 2-3 | 4 | 4 | | ļ | 10 | N | 3 | 3 | 4 | 4 | 3 | 4 | 3 | 3 | 4 | 4 | | | | B
M | 1.000R | 1.000R $.854$ | $0 \\ 1,250$ | $\frac{0}{1.000}$ | 1.000R
.960 | $\frac{0}{1.000}$ | 1.000R
.800 | 1.000R
.854 | 0
1.250 | 0
1.00 | | - } | | G | 2-3 | 2-3 | 4 | 2-3 | 2-3 | 4 | 23 | 2-3 | 4 | 2-3 | | | 20 | N | 3 | 3 | 4 | 3 | 3 | 4 | 3 | 3 | 4 | 3 | | | | B
M | $1.000R \\ 2.025$ | $1.000R \\ 2.163$ | $\substack{0\\2.500}$ | 1.000R 2.025 | 1.000R 2.430 | $\frac{0}{2.000}$ | 1.000R 2.025 | 1.000R
2.163 | $\frac{0}{2.500}$ | 1.000
2.02 | | | | G | 2-3 | 2-3 | 4 | 23 | 2-3 | 4 | 2-3 | 2-3 | 4 | 2-3 | | İ | 30 | N | 3 | 3 | 4 | 3 | 3 | 4 | 3 | 3 | 4 | 3 | | | | B
M | 1.000R 3.267 | $1.000R \\ 3.489$ | $\substack{0\\3.750}$ | 1.000R
3.267 | $1.000 \mathrm{R} \\ 3.920$ | $\frac{0}{3.000}$ | 1.000R
3.267 | 1.000R
3.489 | $\substack{0\\3.750}$ | 1.000
3.2 | | Ì | | G | 2-4 | 2-4 | 3-4 | 2-4 | 1-3 | 2-4 | 1-3 | 1-3 | 4 | 1-3 | | اد | 40 | N | 3 | 3 | 4 | 3 | 2 | 4 | 2 | 2 | 4 | 2 | | 9 | | B
M | $2.375L \\ 5.213$ | 2.000L | 2.857R
5.143 | 3.889L
4.840 | 5.602 | 5.500R 4.205 | 1.572R
4.943 | 1.453R
5.244 | $\frac{0}{5.000}$ | .500 | | - | | G | 1-4 | 5.412
1-4 | $\frac{5.143}{2-4}$ | 1-4 | 1-4 | 1-4 | 1-4 | 1-4 | 2-4 | 1-4 | | Span-Feet | 50 | Ň | 3 | 3 | 4 | 3 | 3 | 3 | 3 | 3 | 4 | 3 | | 2 | | В | .100R
7.600 | .398R | 4.889R | 2.500L | 1.400L | 1.600L | 7.00L | .136L | 5.778R | 3.300 | |] | | M | 1-4 | 7.834
1-4 | $\frac{7.280}{2-4}$ | 7.125
1–4 | 7.939 | 6.151 | 1-4 | $\frac{7.297}{1-4}$ | 6.651
2-4 | 1-4 | | | 60 | G
N | 3 | 3 | 2-4
4 | 3 | 3 | 3 | 3 | 3 | 4 | 3 | | 1 | | В | .100R | .398R | 4.889R | 2.500L | 1.400L | 1.600L | .500 L | .136L | $5.778\mathbf{R}$ | 3.300 | | | | M | 10.100 | 10.333 | 9.458 | 9.604 | 10.433 | 8.643 | 9.504 | 9.796 | 8.800 | 8.88 | | | 80 | G
N | $^{1-4}_{3}$ | $\frac{1-4}{3}$ | 14
4 | 14
3 | $\frac{1-4}{3}$ | 14
3 | $^{1-4}_{3}$ | 14
3 | 14
4 | 1-4
3 | | | ., • | В | .100R | .398R | 6.400R | 2.500L | 1.400L | 1.600L | .500L | .136L | 7.400R | 3.300 | | - | | M | 15.100 | 15.332 | 14.112 | 14.578 | 15.425 | 13.632 | 14.503 | 14.796 | 13.285 | 13.88 | | ļ | 100 | G
N | $^{1-4}$ | 1–4
3 | 1-4
4 | 1-4
3 | 1–4
3 | 14
3 | 1–4
3 | 1–4
3 | 14
4 | 1-4
3 | | - 1 | 100 | | .100R | .398R | 6.400R | 2.500L | 1.400L | | | | 7.400R | 3.300 | | ı | | В | | | | | | 1.600L | .500L | .136L | | | | | | M | 20.100 | 20.332 | 19.010 | 19.563 | 20.420 | 18.626 | 19.503 | 19.796 | 18.148 | 18.80 | | | ick N | М
о. | 20.100
81 | 20.332
82 | 19.010
83 | 19.563
84 | 20.420
85 | 18.626
86 | 19.503 | 19.796
88 | 18.148
89 | 18.80 | | Wh | . Bas | M
o.
e L | 20.100
81
44 | 20.332
82
44 | 19.010
83
44 | 19.563
84
44 | 85
48 | 18.626
86
48 | 19.503
87
48 | 19.796
88
48 | 18.148
89
48 | 18.80
90
48 | | Wh | . Bas | M
o.
e L
X | 20.100
81 | 20.332
82 | 19.010
83 | 19.563
84 | 20.420
85 | 18.626
86 | 19.503
87
48
16 | 19.796
88
48
16 | 18.148
89
48
16 | 18.80
90
48
16 | | Wh
Ax
Spa | i. Base
le
icing | M
o.
e L | 81
44
16 | 82
44
16 | 19.010
83
44
16 | 19.563
84
44
16 | 85
48
16 | 18.626
86
48
16 | 19.503
87
48 | 19.796
88
48
16
28
.20 | 18.148
89
48 | 18.80
90
48
16
28 | | Wh
Ax
Spa
Loa
On | a. Base
le
acing
ad | M o. e L X X' a ₁ a ₂ | 81
44
16
24
.10
.60 | 82
44
16
24
.20
.40 | 19.010
83
44
16
24
.20
.50 | 19.563
84
44
16
24
.200
.534 | 85
48
16
28
.10
.40 | 18.626
86
48
16
28
.10
.50 | 19.503
87
48
16
28
.10
.60 | 19.796
88
48
16
28
.20
.40 | 18.148
89
48
16
28
.20
.50 | 18.80
90
48
16
28
.200
.534 | | Wh | a. Base
le
acing
ad | M o. e L X X' a1 a2 a3 | 81
44
16
24
.10
.60
.30 | 82
44
16
24
.20
.40
.40 | 19.010
83
44
16
24
.20
.50
.30 | 19.563 84 44 16 24 .200 .534 .266 | 85
48
16
28
.10
.40
.50 | 18.626
86
48
16
28
.10
.50
.40 | 19.503
87
48
16
28
.10
.60
.30 | 19.796
88
48
16
28
.20
.40
.40 | 18.148
89
48
16
28
.20
.50
.30 | 18.80
90
48
16
28
.200
.534
.266 | | Wh
Ax
Spa
Loa
On | a. Base
le
acing
ad | M D. e L X X' a1 a2 a3 G N | 20.100
81
44
16
24
.10
.60
.30
2-3
3 | 82
44
16
24
.20
.40
.40
4 | 19.010
83
44
16
24
.20
.50
.30
2-3
3 | 84
44
16
24
.200
.534
.266
2–3
3 | 85
48
16
28
.10
.40
.50 | 18.626
86
48
16
28
.10
.50
.40 | 19.503
87
48
16
28
.10
.60
.30
2-3
3 | 19.796 88 48 16 28 .20 .40 .40 4 | 18.148
89
48
16
28
.20
.50
.30
2-3
3 | 18.80
90
48
16
28
.200
.534
.266
2-3
3 | | Wh
Ax
Spa
Loa
On | a. Base
le
acing
ad
les | M D. e L X X' a1 a2 a3 G N B | 20.100
81
44
16
24
.10
.60
.30
2-3
3
1.000R | 82
44
16
24
.20
.40
.40
4
4 | 19.010
83
44
16
24
.20
.50
.30
2–3
3
1.000R | 19.563
84
44
16
24
.200
.534
.266
2–3
3
1.000R | 20.420
85
48
16
28
.10
.40
.50
4
4 | 18.626
86
48
16
28
.10
.50
.40
4
4 | 19.503
87
48
16
28
.10
.60
.30
2-3
3
1.000R | 19.796
88
48
16
28
.20
.40
.40
4
0 | 18.148
89
48
16
28
.20
.50
.30
2-3
3
1.000R | 18.80
90
48
16
28
.200
.534
.266
2-3
3 | | Wh
Ax
Spa
Loa
On | a. Base
le
acing
ad
les | M o. e L X X' a1 a2 a3 G N B M | 20.100
81
44
16
24
.10
.60
.30
2-3
3
1.000R
.960 | 82
44
16
24
.20
.40
.40
4
4
0
1.000 | 19.010
83
44
16
24
.20
.50
.30
2–3
3
1.000R
.800 | 19.563
84
44
16
24
.200
.534
.266
2-3
3
1.000R
.854 | 20.420
85
48
16
28
.10
.40
.50
4
0
1.250 | 18.626
86
48
16
28
.10
.50
.40
4
4
0
1.000 | 19.503
87
48
16
28
.10
.60
.30
2-3
3
1.000R
.960 | 19.796
88
48
16
28
.20
.40
.40
4
4
0
1.000 |
18.148
89
48
16
28
.20
.50
.30
2–3
3
1.000R
.800 | 18.80
90
48
16
28
.200
.534
.266
2-3
3
1.000
.85 | | Wh
Ax
Spa
Loa
On | a. Base
le
acing
ad
les | M D. e L X X' a1 a2 a3 G N B | 20.100
81
44
16
24
.10
.60
.30
2-3
3
1.000R
.960
2-3
3 | 82
44
16
24
.20
.40
.40
4
4 | 19.010
83
44
16
24
.20
.50
.30
2–3
3
1.000R | 19.563 84 44 16 24 .200 .534 .266 2-3 1.000R .854 2-3 3 | 20.420
85
48
16
28
.10
.40
.50
4
4 | 18.626
86
48
16
28
.10
.50
.40
4
4
0
1.000
2-3
3 | 19.503
87
48
16
28
.10
.60
.30
2-3
1.000R
.960
2-3
3 | 19.796
88
48
16
28
.20
.40
.40
4
0 | 18.148
89
48
16
28
.20
.50
.30
2-3
3
1.000R | 18.80
90
48
16
28
.200
.534
.266
2-3
3 | | Wh
Ax
Spa
Loa
On | a. Basele acing ad les | M D. e L X X' a1 a2 a3 G N B M G N B | 20.100
81
44
16
24
.10
.60
.30
2-3
1.000R
.960
2-3
1.000R | 82
44
16
24
.20
.40
.40
4
0
1.000 | 19.010
83
44
16
24
.20
.50
.30
2–3
1.000R
.800
2–3
1.000R | 19.563
84
44
16
24
.200
.534
.266
2-3
1.000R
.854
2-3
1.000R | 20.420
85
48
16
28
.10
.40
.50
4
0
1.250
4 | 18.626
86
48
16
28
.10
.50
.40
4
4
0
1.000
2.3
3 | 19.503
87
48
16
28
.10
.60
.30
2-3
3
1.000R
.960
2-3
3 | 19.796 88 48 16 28 20 40 40 1.000 4 0 | 18.148
89
48
16
28
.20
.50
.30
2-3
3
1.000R
.800
2-3
3
1.000R | 18.86
90
48
16
28
.200
.534
.266
2-3
3
1.000
.85 | | Wh
Ax
Spa
Loa
On | a. Basele acing ad les | M D. e L X X' a1 a2 a3 G N B M G N B M | 20.100
81
44
16
24
.10
.60
.30
2-3
3
1.000R
.960
2-3
3
1.000R | 82
44
16
24
.20
.40
.40
4
4
0
1.000
4
4
0
2.000 | 19.010 83 44 16 24 .20 .50 .30 2-3 1.000R 2.025 | 19.563 84 44 16 24 .200 .534 .266 2-3 1.000R .854 2-3 1.000R 2.163 | 20.420
85
48
16
28
.10
.40
.50
4
4
0
1.250
4
4
0
2.50 | 18.626 86 48 16 28 .10 .50 .40 4 4 0 1.000 2-3 1.000R 2.025 | 19.503
87
48
16
28
.10
.60
.30
2-3
3
1.000R
2-3
3
1.000R
2.430 | 19.796
88
48
16
28
.20
.40
.40
4
4
0
1.000
4
4
0
2.000 | 18.148
89
48
16
28
.20
.50
.30
2–3
1.000R
.800
2–3
1.000R
2.025 | 18.86
90
48
16
28
.200
.534
.266
2-3
3
1.000
2.16 | | Wh
Ax
Spa
Loa
On | a. Basele acing ad les | M O. e L X X' a1 a2 a3 G N B M G N B M G | 20.100
81
44
16
24
.10
.60
.30
2-3
1.000R
.960
2-3
1.000R | 82
44
16
24
.20
.40
.40
4
0
1.000 | 19.010
83
44
16
24
.20
.50
.30
2–3
1.000R
.800
2–3
1.000R | 19.563 84 44 16 24 .200 .534 .266 2-3 1.000R .854 2-3 1.000R | 20.420
85
48
16
28
.10
.40
.50
4
0
1.250
4 | 18.626
86
48
16
28
.10
.50
.40
4
4
0
1.000
2.3
3 | 19.503
87
48
16
28
.10
.60
.30
2-3
3
1.000R
.960
2-3
3
1.000R
2-430
2-3 | 19.796 88 48 16 28 .20 .40 .40 4 4 0 1.000 4 4 0 2.000 | 18.148
89
48
16
28
.20
.50
.30
2-3
3
1.000R
.800
.20
.800
.20
.20
.30
.30
.30
.30
.30
.30
.30
.3 | 18.86
90
48
166
28
.200
.534
.266
2-3
3
1.000
2.16
2-3 | | Wh
Ax
Spa
Loa
On | a. Base
le
le
le
les
les
10 | M D. E L X X X' A1 A2 A3 G N B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M | 20.100
81
44
16
24
110
.60
.30
2-3
3
1.000R
.960
2-3
3
1.000R
.2-3
3
1.000R
.30 | 20.332 82 44 16 24 .20 .40 .40 4 4 0 1.000 4 4 0 2.000 4 4 0 | 19.010 83 44 16 24 .20 .50 .30 2-3 1.000R 2.025 2-3 1.000R | 19.563 84 44 16 24 .200 .534 .266 2-3 3 1.000R 2.163 2-3 1.000R | 20.420
85
48
16
28
.10
.40
.50
4
4
0
0
2.500
4
4
0 | 18.626 86 48 16 28 .10 .50 .40 4 4 0 1.000 2-3 1.000R 2.025 2-3 1.000R | 19.503
87
48
16
28
.10
.60
.30
2-3
3
1.000R
2.430
2-3
3
1.000R | 19.796 88 48 16 28 .20 .40 .40 4 4 0 1.000 4 4 0 2.000 4 | 18.148
89
48
16
28
.20
.50
.30
.30
2-3
3
1.000R
2.025
2-3
3
1.000R | 18.86
90
48
16
28
.200
.534
.266
2-3
3
1.000
2.16
2-3
8
1.000
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.100
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2. | | Wh
Ax
Spa
Loa
On | a. Base
le
le
le
les
les
10 | M o. e L X X' a1 a2 a3 G N B M G N B M G N B M G N B M | 20.100 81 44 16 24 .10 .60 .30 2-3 1.000R .960 2-3 1.000R 2-3 1.000R 3 3 1.000R 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 20.332 82 44 16 24 .20 .40 .40 4 4 0 1.000 4 4 0 2.000 4 4 0 3.000 | 19.010 83 44 16 24 .20 .50 .30 2-3 1.000R 2.025 2-3 1.000R 2.025 3 1.000R 3.267 | 19.563 84 44 16 24 200 .534 .266 2-3 1.000R .854 2-3 1.000R 2.163 3 1.000R 3.489 | 20.420 85 48 16 28 .10 .40 .50 4 4 0 1.250 4 4 0 3.750 | 18.626 86 48 16 28 .10 .50 .40 4 4 0 1.000 2-3 3 1.000R 2.025 2-3 3 1.000R 3.267 | 19.503
87
48
16
28
.10
.60
.30
2-3
3
1.000R
.960
2-3
3
1.000R
2-3
3
1.000R
3.30
3
3
3
3
3
3
3
3
3
3
3
3
3 | 19.796 88 48 16 28 20 40 40 1.000 4 0 2.000 4 0 3.000 |
18.148
89
48
16
28
.20
.50
.30
2–3
3
1.000R
.800
2–3
3
1.000R
2.025
2–3
3
1.000R
2.025
30
1.000R
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3 | 18.86
90
48
16
28
.200
.534
.266
2-3
3
1.000
2.16
2-3
8
1.000
3.48 | | Wh
Ax
Spa
Loa
On
Ax | a. Basele acing ad les 10 20 | M | 20.100
81
44
16
24
.10
.60
.30
2-8
3
1.000R
2.430
2.3
1.000R
2.430
2.3
1.000R
2.430
2.3
1.000R | 20.332 82 44 16 24 .20 .40 4 4 0 1.000 4 4 0 3.000 1-3 | 19.010 83 44 16 24 .20 .50 .30 2-3 3 1.000R 2.025 2-3 3 1.000R 3.267 | 19.563 84 44 16 24 .200 .534 .266 2-3 3 1.000R 2.163 2-3 3 1.000R 3.104 2-3 1.000R | 20.420 85 48 16 28 .10 .40 .50 4 4 0 1.250 4 0 2.500 4 0 3.750 4 | 18.626 86 48 16 28 .10 .50 .40 4 4 0 1.000 2-3 3 1.000R 2.025 2-3 3 1.000R 1.000R | 19.503
87
48
16
28
.10
.60
.30
2-3
3
1.000R
2.430
2-3
3
1.000R
2.430
2-3
3
1.000R | 19.796 88 48 16 28 -20 .40 4 4 0 1.000 4 4 0 3.000 1-3 | 18.148
89
48
16
28
.20
.50
.30
2-3
1.000R
2.025
2-3
1.000R
2.025
1.000R
1.000R | 18.86 90 48 16 28 .2000 .534 .266 2-3 3 1.0000 2.16 2-3 8 1.0000 3.46 1-3 | | Wh
Ax:
Spa
Loa
On
Ax: | a. Base
le
le
le
les
les
10 | M o. e L X X' a1 a2 a3 G N B M G N B M G N B M G N B M | 20.100 81 44 16 24 .10 .60 .30 2-3 1.000R .960 2-3 1.000R 2.430 2-3 3.000R 3.920 1-3 2.286R | 20.332 82 44 16 24 .20 .40 4 4 0 1.000 4 4 0 3.000 1-3 2.000R | 19.010 83 44 16 24 .20 .50 .30 2-3 1.000R 2.025 2-3 1.000R 2.025 3 1.000R 3.267 | 19.563 84 44 16 24 200 .534 .266 2-3 1.000R .854 2-3 1.000R 2.163 3 1.000R 2.1433R | 20.420 85 48 16 28 .10 .40 .50 4 4 0 1.250 4 4 0 3.750 | 18.626 86 48 16 28 .10 .50 .40 4 4 0 1.000 2-3 3 1.000R 2.025 2-3 3 1.000R 3.267 1-3 2 5.00R | 19.503
87
48
16
28
.10
.60
.30
2-3
3
1.000R
.960
2-3
3
1.000R
2-3
3
1.000R
3.30
3
3
3
3
3
3
3
3
3
3
3
3
3 | 19.796 88 48 16 28 20 40 40 1.000 4 0 2.000 4 0 3.000 | 18.148
89
48
16
28
.20
.50
.30
2–3
3
1.000R
.800
2–3
3
1.000R
2.025
2–3
3
1.000R
2.025
30
1.000R
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3 | 18.86 90 48 16 28 .200 .534 .266 2-3 3 1.000 2.16 2-3 8 1.000 3.48 1-3 2 | | Wh
Ax:
Spa
Loa
On
Ax: | a. Basele acing ad les 10 20 | M D. | 20.100 81 44 16 24 .10 .60 .30 2-3 1.000R .960 2-3 1.000R 2.430 1.000R 2.430 1.000R 2.436 5.602 | 20.332 82 44 16 24 .20 .40 4 4 0 1.000 4 4 0 2.000 4 0 3.000 1-3 2 000R 4.060 | 19.010 83 44 16 24 .20 .50 .30 2-3 3 1.000R 8.00 2-3 3 1.000R 2.025 2-3 3 1.000R 1.000R 4.025 4.943 | 19.563 84 44 16 24 200 .534 .266 2-3 3 1.000R 2.163 2-3 3 1.000R 2.163 2-3 3 1.000R 2.163 | 20.420 85 48 16 28 .10 .40 .50 4 4 0 1.250 4 4 0 2.500 4 4 0 3.750 4 4 0 5.000 | 18.626 86 48 16 28 .10 .50 .40 4 4 0 1.000 2-3 3 1.000R 2.025 2-3 3 1.000R 3.267 1-3 2 5.00R 4.704 |
19.503
87
48
16
28
.10
.60
.30
2-3
3
1.000R
.960
2-3
3
1.000R
2.430
2-3
1.000R
2.430
2-3
5
1.000R
2.430
2.5
3
1.000R
2.5
3
1.000R
2.5
3
3
1.000R
2.5
3
3
1.000R
2.5
3
3
1.000R
2.5
3
3
1.000R
2.5
3
3
1.000R
2.5
3
3
1.000R
2.5
3
3
1.000R
2.5
3
3
1.000R
2.5
3
3
1.000R
2.5
3
3
1.000R
2.5
3
3
1.000R
2.5
3
3
1.000R
2.5
3
3
1.000R
2.5
3
3
1.000R
2.5
3
3
1.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3.000R
3. | 19.796 88 48 16 28 20 40 4 0 1.000 4 4 0 3.000 1-3 2 2.000R 4.060 | 18.148 89 48 16 28 .20 .50 .30 2-3 3 1.000R .800 2-3 1.000R 2.025 2-3 3 1.000R 2.025 2-3 1.05 1.05 4.943 | 18.86 90 48 166 1.60 1.60 1.60 1.60 1.60 1.60 1.60 | | Whax
Spector
Lose
On
Ax | le Bassle le l | M | 20.100
81
44
16
24
.10
.60
.30
2-3
3
1.000R
2.430
2-3
1.000R
2.430
2-3
2.480
2-3
1.000R | 20.332 82 44 16 24 .20 .40 4 4 0 1.000 4 4 0 3.000 1-3 2 2.000R 4,060 1-3 | 19.010 83 44 16 24 .20 .50 .30 2-3 1.000R 2.025 2-3 1.000R 3.267 1-3 2 1.572R 4.943 1-3 | 19.563 84 44 16 24 .200 .534 .266 2-3 3 1.000R 2.163 2-3 3 1.000R 3.489 1-3 2 1.453R 5.244 | 20.420 85 48 16 28 .10 .40 .50 4 4 0 2.500 4 4 0 3.750 4 4 0 5.000 4 | 18.626 86 48 16 28 .10 .50 .40 4 4 0 1.000 2-3 3 1.000R 2.025 2-3 3 1.000R 3.267 1-3 2 5.500R 4.704 1-3 | 19.503
87
48
16
28
.10
.60
.30
2-3
3
1.000R
2.430
2-3
3
1.000R
2.430
2-3
2
2.86R
5.602
1-3 | 19.796 88 48 16 28 -20 -40 4 4 0 1.000 4 4 0 3.000 1-3 2 2.000R 4.066 1-3 | 18.148 89 48 16 28 .20 .50 .30 2-3 3 1.000R .800 2-3 3 1.000R 2.025 2-3 1.000R 3.267 1-3 2 1.572R 4.943 1-3 | 18.80 900 488 166 288 .2000 .5344 .2666 2-3 3 1.00000 .818 2-3 3 1.0000 3.44 1-3 2 1.4535 5.2-5 1-3 | | Whax Sparent Loan Ax | a. Basele acing ad les 10 20 | M D. | 20.100 81 44 16 24 .10 .60 .30 2-3 1.000R .960 2-3 1.000R 2.430 1.000R 2.430 1.000R 2.436 5.602 | 20.332 82 44 16 24 .20 .40 4 4 0 1.000 4 4 0 2.000 4 0 3.000 1-3 2 000R 4.060 | 19.010 83 44 16 24 .20 .50 .30 2-3 3 1.000R 8.00 2-3 3 1.000R 2.025 2-3 3 1.000R 1.000R 4.025 4.943 | 19.563 84 44 16 24 200 .534 .266 2-3 3 1.000R 2.163 2-3 3 1.000R 2.163 2-3 3 1.000R 2.163 | 20.420 85 48 16 28 .10 .40 .50 4 4 0 1.250 4 4 0 2.500 4 4 0 3.750 4 4 0 5.000 | 18.626 86 48 16 28 .10 .50 .40 4 4 0 1.000 2-3 3 1.000R 2.025 2-3 3 1.000R 3.267 1-3 2 500R 4.704 1-3 2 | 19.503
87
48
16
28
.10
.60
.30
2-3
3
1.000R
.960
2-3
3
1.000R
2-3
3
1.000R
2-3
3
2-3
2-3
3
2-3
3
1.000R
2-3
3
1.000R
2-3
3
1.000R
2-3
3
2-3
3
1.000R
2-3
3
2-3
3
3
1.000R
2-3
3
3
1.000R
2-3
3
3
2-3
3
3
1.000R
2-3
3
3
2-3
3
3
3
3
3
3
3
3
3
3
3
3
3 | 19.796 88 48 16 28 20 40 40 4 4 0 1.000 4 4 0 2.000 4 4 0 2.000 1-3 2 2.000R 4.060 1-3 2 | 18.148 89 48 16 28 .20 .50 .30 2-3 3 1.000R .800 2-3 3 1.000R 2.025 2-3 3 1.000R 2.025 2-3 3 1.000R 3.267 1-3 2 1.572R 4.943 1-3 2 | 18.84 900 488 166 288 .2000 .5344 1.0000 3.44 1-3 2 1.455 5.2-2 1.3 2 | | Whax Sparent Loan Ax | le Bassle le l | M D. D. SERVICE STATE OF | 20.100 81 44 16 24 .10 .60 .30 2-3 1.000R .960 2-3 1.000R 2.430 1.000R 2-3 2.430 1.000R 2-3 3 1.000R 2-3 3 1.000R 2-3 3 1.000R 2-3 3 3 1.000R 3.920 1-3 2 2.86R 5.602 | 20.332 82 44 16 24 .20 .40 .40 4 4 0 1.000 4 4 0 3.000 1-3 2 2.000R 4.060 1-3 2 | 19.010 83 44 16 24 .20 .50 .30 2-3 1.000R .800 2-3 1.000R 2.025 2-3 3 .207 1-3 2 1.572R 4.943 1-3 2 | 19.563 84 44 16 24 200 .534 .266 2-3 1.000R .854 2-3 3 1.000R 2.163 2-3 3 1.000R 2.1453R 5.244 | 20.420 85 48 16 28 .10 .40 .50 4 4 0 1.250 4 4 0 3.750 4 4 0 5.000 4 4 4 | 18.626 86 48 16 28 .10 .50 .40 4 4 0 1.000 2-3 3 1.000R 2.025 2-3 3 1.000R 3.267 1-3 2 5.500R 4.704 1-3 | 19.503
87
48
16
28
.10
.60
.30
2-3
3
1.000R
2.430
2-3
3
1.000R
2.430
2-3
2
2.86R
5.602
1-3 | 19.796 88 48 16 28 -20 -40 4 4 0 1.000 4 4 0 3.000 1-3 2 2.000R 4.066 1-3 | 18.148 89 48 16 28 .20 .50 .30 2-3 3 1.000R .800 2-3 3 1.000R 2.025 2-3 1.000R 3.267 1-3 2 1.572R 4.943 1-3 | 18.80 90 48 166 28 .2000 .5344 .2666 2-3 3 1.0000 .81 2-3 3 1.0000 3.44 1-3 2.1453 2 1.453 | | Whax
Spector
Lose
On
Ax | a. Basicle leading add less 10 20 30 40 | M | 20.100 81 44 16 24 .10 .60 .30 2-3 1.000R .960 2-3 1.000R 2-3 1.000R 2-3 2.430 13 2 2.86R 5.602 1-4 3 2.000L 7.380 1.44 | 20.332 82 44 16 24 .20 .40 .40 4 4 0 1.000 4 4 0 3.000 1-3 2 2.000R 4.060 1-3 2 2.000R 5.54R | 19.010 83 44 16 24 .20 .50 .30 2-3 1.000R .800 2-3 1.000R 2.025 2-3 1.000R 3.267 1-3 2 1.572R 4.943 1-3 2 1.572R 6.685 | 19.563 84 44 16 24 200 .534 .266 2-3 1.000R .854 2-3 1.000R 2.163 2-3 1.000R 2.1453R 5.244 1-3 2 1.453R 7.072 | 20.420 85 48 16 28 .10 .40 .50 4 4 0 1.250 4 4 0 3.750 4 4 0 5.000 4 4 0 6.250 2-4 | 18.626 86 48 16 28 .10 .50 .40 4 4 0 1.000 2-3 3 1.000R 2.025 2-3 3 1.000R 4.704 1-3 2 5.00R 4.704 1-3 1.4 | 19.503 87 48 16 28 .10 .60 .30 2-3 3 1.000R .960 2-3 3 1.000R 2-430 2-3 3 1.000R 3.920 1-3 2 2.86R 5.602 1-3 2 2.86R 7.351 | 19.796 88 48 16 28 20 40 40 44 4 0 1.000 4 4 0 2.000 4 4 0 2.000 1-3 2 2.000R 4.060 1-3 2 2.000R 5.548 | 18.148 89 48 16 28 .20 .50 .30 2-3 3 1.000R .800 2-3 3 1.000R 2.025 2-3 3 1.000R 3.267 1-3 2 1.572R 4.943 1-3 2 1.572R 6.665 1-3 | 18.80 90 48 166 28 2000 .5344 .3 3 1.000 .81 2-3 3 1.000 2.11 2-3 3 1.000 3.44 1-3 5.22 1.453 5.22 1.453 7.07 | | Whax Sparent Loan Ax | le Bassle le l | M | 20.100 81 44 16 24 .10 .60 .30 2-3 1.000R .960 2-3 1.000R 2.430 1.000R 2.430 2.86R 5.602 1-4 3 2.000L 7.380 | 20.332 82 44 16 24 .20 .40 4 4 0 1.000 4 4 0 2.000 4 4 0 3.000 1-3 2 2.000R 4.060 1-3 2 2.000R 5.548 1-4 | 19.010 83 44 16 24 .20 .50 .30 2-3 1.000R 800 2-3 1.000R 2.025 2-3 3 1.000R 2.1572R 6.685 1.4 | 19.563 84 44 16 24 200 .534 .266 2-3 1.000R .854 2-3 3 1.000R 2.163 2-3 3 1.000R 2.163 2-3 3 1.000R 2.163 2-1 3 1.453R 7.072 1.453R 7.072 | 20.420 85 48 16 28 .10 .40 .50 4 4 0 1.250 4 4 0 3.750 4 4 0 5.000 4 4 0 6.250 2 4 4 0 6.250 | 18.626 86 48 16 28 .10 .50 .40 4 4 0 1.000 2-3 1.000R 2.025 2-3 3 1.000R 3.267 1-3 2 500R 4.704 1-3 2 500R 6.203 1-4 | 19.503 87 48 16 28 .10 .60 .30 2-3 3 1.000R .960 2-3 3 1.000R 2-43 3 1.000R 2-35 1.000R 2-31 3 1-3 2 286R 7.351 1-4 3 | 19.796 88 48 16 28 20 .40 4 4 0 1.000 4 4 0 2.000 4 0 3.000 1-3 2 2.000R 5.548 1-4 | 18.148 89 48 16 28 .20 .50 .30 2-3 3 1.000R 2.025 2-3 1.000R 3.067 1-3 2 1.572R 4.943 1-3 2 1.572R 6.685 1-3 2 | 18.80 90 48 166 28 200 5344 1.010 2.166 2-3 3 1.000 2.116 2-3 3 1.000 3.44 1-3 2 1.453 7.00 1-3 2 1.453 7.00 | | Whax Sparent Loan Ax | a. Basicle leading add less 10 20 30 40 | M | 20.100 81 44 16 24 .10 .60 .30 2-3 1.000R .960 2-3 1.000R 2-3 1.000R 2-3 2.430 13 2 2.86R 5.602 1-4 3 2.000L 7.380 1.44 | 20.332 82 44 16 24 .20 .40 .40 4 4 0 1.000 4 4 0 3.000 1-3 2 2.000R 4.060 1-3 2 2.000R 5.54R | 19.010 83 44 16 24 .20 .50 .30 2-3 1.000R .800 2-3 1.000R 2.025 2-3 1.000R 3.267 1-3 2 1.572R 4.943 1-3 2 1.572R 6.685 | 19.563 84 44 16 24 200 .534 .266 2-3 1.000R .854 2-3 1.000R 2.163 2-3 1.000R 2.1453R 5.244 1-3 2 1.453R 7.072 | 20.420 85 48 16 28 .10 .40 .50 4 4 0 1.250 4 4 0 3.750 4 4 0 5.000 4 4 0 6.250 2-4 | 18.626 86 48 16 28 .10 .50 .40 4 4 0 1.000 2-3 3 1.000R 2.025 2-3 3 1.000R 4.704 1-3 2 5.00R 4.704 1-3 1.4 | 19.503 87 48 16 28 .10 .60 .30 2-3 3 1.000R .960 2-3 3 1.000R 2-430 2-3 3 1.000R 3.920 1-3 2 2.86R 5.602 1-3 2 2.86R 7.351 | 19.796 88 48 16 28 20 40 40 44 4 0 1.000 4 4 0 2.000 4 4 0 2.000 1-3 2 2.000R 4.060 1-3 2 2.000R 5.548 | 18.148 89 48 16 28 .20 .50 .30 2-3 3 1.000R .800 2-3 3 1.000R 2.025 2-3 3 1.000R 3.267 1-3 2 1.572R 4.943 1-3 2 1.572R 6.665 1-3 | 18.84 90 488 160 288 2.2000 5.534 3 1.0000 888 1.0000 3.41 2-3 3 3 1.0000 3.44 1-3 2 1.453 5.22 1.453 7.07 | | Whax Sparent Loan Ax |
a. Bassale leacing ad less 10 20 30 40 50 | M O. e L X X ' a1 a2 a3 G N B M G R B M G R B R B M R B R B M R B R B R B R B R B | 20.100 81 44 16 24 .10 .60 .30 2-3 1.000R .960 2-3 1.000R 2.430 2-3 2.430 1-3 .286R 5.602 1-4 3 2.000L 7.380 1.43 3.000R 2.430 1.43 3.000R 1.44 3.000L 7.380 | 20.332 82 44 16 24 .20 .40 4 4 0 1.000 4 4 4 0 3.000 1-3 2 2.000R 4.060 1-3 2 2.000R 5.548 1-4 3 2.4096 1-4 | 19.010 83 44 16 24 .20 .50 .30 2-3 3 1.000R .800 2-3 3.000R 2.03 2-3 3 1.000R 2.025 2-3 3 1.000R 3.267 1-3 2 1.572R 4.943 1-3 2 1.572R 6.685 1-4 3 1.100L 1.920 1.4 | 19.563 84 44 16 24 200 .534 .266 2-3 1.000R .854 2-3 1.000R 2.163 3 1.000R 2.1453R 5.244 1-3 2 1.453R 7.072 1-4 3 .670I 9.270 1-4 | 20.420 85 48 16 28 .10 .40 .50 4 4 0 1.250 4 4 0 3.750 4 4 0 5.000 4 4 6.667R 8.167 2.4 | 18.626 86 48 16 28 .10 .50 .40 4 4 0 1.000 2-3 3 1.000R 2.025 2-3 3 2.000R 4.704 1-3 2 .500R 6.203 1-4 3 4.100L 8.180 1-4 | 19.503 87 48 16 28 .10 .60 .30 2-3 3 1.000R .960 2-3 3 1.000R 2-430 2-3 3 1.000R 2-3 3 1.000R 2-3 1.000R 2-3 3 2-3 2-3 3 2-3 2-3 3 2-3 2-3 3 2-3 2-3 3 2-3 2-3 3 2-3 2-3 3 2-3 2-3 3 2-3 2-3 3 1-3 2-3 2 | 19.796 88 48 16 28 20 40 4 4 0 1.000 4 4 0 2.0000 4 4 0 2.0000 4 4 0 2.0000 1-3 2 2.0000R 5.548 1-4 3 3.200L 7.171 1-4 | 18.148 89 48 16 28 .20 .50 .30 2-3 3 1.000R .800 2-3 1.000R 2.025 2-3 1.000R 3.267 1-3 2 1.572R 6.685 1-3 2 1.572R 6.685 1-3 2 1.572R 8.429 1.44 | 18.80 90 48 166 28 2.200 5.34 1.000 2.11 2-3 3 1.000 3.41 1-3 2 1.453 7.00 1-3 2 1.453 8.90 | | Whax Sparent Loan Ax | a. Basicle leading add less 10 20 30 40 | M D. e L X X X a1 a2 a3 B M G N B M B M G N B M B M B M B M B M B M B M B M B M B | 20.100 81 44 16 24 .10 .60 .30 2-3 3 1.000R .960 2-3 3 1.000R 3.920 1-3 2.86R 5.602 1-4 3 2.000L 9.867 | 20.332 82 44 16 24 20 .40 4 4 0 1.000 4 4 0 2.000 4 4 0 3.000 1-3 2 2.0000 4 4.060 1-3 2 2.000 1-3 2 2.000 1-3 2 2.000 1-3 2 1-4 3 | 19.010 83 44 16 24 .20 .50 .30 2-3 1.000R .800 2-3 3 1.000R 3.267 1-3 2 1.572R 4.943 1-3 2 1.572R 4.943 1-3 1.00L 8.920 1-4 3 | 19.563 84 44 16 24 200 534 2-66 2-3 3 1.000R .854 2-3 3 1.000R 2.163 2-3 3 1.000R 3.489 1-3 2 1.453R 5.244 1-3 2 1.453R 5.244 1-3 2 1.453R 5.244 1-3 2 1.453R 5.244 1-3 2 1.453R 5.244 1-3 2 1.453R 5.244 1-3 2 1.453R | 20.420 85 48 16 28 10 .40 .50 4 4 0 1.250 4 4 0 3.750 4 4 0 5.000 4 4 0 6.250 2 4 6.667 8.167 2 4 4 4 | 18.626 86 48 16 28 .10 .50 .40 4 4 0 1.000 2-3 3 1.000R 2.025 2-3 3 1.000R 3.267 1-3 2 5.000R 4.704 1-3 2 5.000R 4.704 1-3 4.100L 8.180 1-4 | 19.503 87 48 16 28 10 60 .30 2-3 3 1.000R .960 2-3 3 1.000R 2.430 2-3 3 1.000R 2.430 2-3 3 1.000R 3.920 1-3 2 2.86R 5.602 1-4 3 2.600L 9.313 1-4 3 | 19.796 88 48 16 28 .20 .40 4 4 0 1.000 4 4 0 3.000 1-3 2 2.000R 4.060 1-3 2 2.000R 1-3 2 1-4 3 3.200L 7.171 1-4 | 18.148 89 48 16 28 .20 .50 .50 .30 2-3 3 1.000R .800 2-3 3 1.000R 2.025 2-3 3 1.000R 3.267 1-3 2 1.572R 4.943 1-3 2 1.572R 6.685 1-3 1.572R 8.429 1-4 3 | 18.84 90 488 166 28 2000 .534 3 1.0000 .818 2-3 3 1.0000 3.44 1-3 2 1.453 5.22 1.453 7.07 1-3 2 1.453 8.99 | | Whax
Spector
Lose
On
Ax | a. Bassale leacing ad less 10 20 30 40 50 | M O. e L X X ' a1 a2 a3 G N B M G R B M G R B R B M R B R B M R B R B R B R B R B | 20.100 81 44 16 24 .10 .60 .30 2-3 1.000R .960 2-3 1.000R 2.430 2-3 2.430 1-3 .286R 5.602 1-4 3 2.000L 7.380 1.43 3.000R 2.430 1.43 3.000R 1.44 3.000L 7.380 | 20.332 82 44 16 24 .20 .40 4 4 0 1.000 4 4 4 0 3.000 1-3 2 2.000R 4.060 1-3 2 2.000R 5.548 1-4 3 2.4096 1-4 | 19.010 83 44 16 24 .20 .50 .30 2-3 3 1.000R .800 2-3 3.000R 2.03 2-3 3 1.000R 2.025 2-3 3 1.000R 3.267 1-3 2 1.572R 4.943 1-3 2 1.572R 6.685 1-4 3 1.100L 1.920 1.4 | 19.563 84 44 16 24 200 .534 .266 2-3 1.000R .854 2-3 1.000R 2.163 3 1.000R 2.1453R 5.244 1-3 2 1.453R 7.072 1-4 3 .670I 9.270 1-4 | 20.420 85 48 16 28 .10 .40 .50 4 4 0 1.250 4 4 0 3.750 4 4 0 5.000 4 4 6.667R 8.167 2.4 | 18.626 86 48 16 28 .10 .50 .40 4 4 0 1.000 2-3 3 1.000R 2.025 2-3 3 2.000R 4.704 1-3 2 .500R 6.203 1-4 3 4.100L 8.180 1-4 | 19.503 87 48 16 28 .10 .60 .30 2-3 3 1.000R .960 2-3 3 1.000R 2-430 2-3 3 1.000R 2-3 3 1.000R 2-3 1.000R 2-3 3 2-3 2-3 3 2-3 2-3 3 2-3 2-3 3 2-3 2-3 3 2-3 2-3 3 2-3 2-3 3 2-3 2-3 3 2-3 2-3 3 1-3 2-3 2 | 19.796 88 48 16 28 20 40 4 4 0 1.000 4 4 0 2.0000 4 4 0 2.0000 4 4 0 2.0000 1-3 2 2.0000R 5.548 1-4 3 3.200L 7.171 1-4 | 18.148 89 48 16 28 .20 .50 .30 2-3 3 1.000R .800 2-3 1.000R 2.025 2-3 3 1.000R 3.267 1-3 2 1.572R 4.943 1-3 2 1.572R 6.685 1-3 2 1.572R 8.429 1-4 8.429 1-4 3 1.700L | 18.86 90 488 16.28 2.200 5.344 2.266 2-3 3 1.000 2.16 2-3 3 1.000 2.1453 5.24 1-3 2 1.453 7.07 1-3 2 1.453 7.07 1-3 2 1.453 7.07 1-3 2 1.453 7.07 | | Whax
Spector
Lose
On
Ax | 1. Bassele acing a | M D. e L X X X a1 a2 a3 G N B M G
N B M G R B M G R B R B M G R B R B R B R B R B R B R B R B R B R | 20.100 81 44 16 24 .10 .60 .30 2-3 1.000R .960 2-3 1.000R 2-3 3.920 1-3 2 2.86R 5.602 1-4 3 2.000L 7.380 1.49 867 | 20.332 82 44 16 24 .20 .40 4 4 0 1.000 4 4 0 3.000 1-3 2 2.000R 4.060 1-3 2 2.000R 5.548 1-4 3 2.400L 7.896 1-4 3 2.400L | 19.010 83 44 16 24 .20 .50 .30 2-3 1.000R .800 2-3 1.000R 2.025 2-3 3 1.000R 3.267 1-3 2 1.572R 4.943 1-3 1.572R 4.943 1-4 3 1.100L 8.920 1-4 3 1.100L | 19.563 84 44 16 24 200 .534 .266 2-3 1.000R .854 2-3 1.000R 2.163 2-3 1.000R 2.163 2-3 1.000R 1.453R 7.072 | 20.420 85 48 16 28 .10 .40 .50 4 4 0 1.250 4 4 0 3.750 4 4 0 5.000 4 4 6.667R 8.167 2.4 6.667R | 18.626 86 48 16 28 .10 .50 .40 4 4 0 1.000 2-3 3 1.000R 2.025 2-3 3 2.000R 4.704 1-3 2.500R 4.704 1-3 4.100L 8.180 | 19.503 87 48 16 28 .10 .60 .30 2-3 3 1.000R .960 2-3 3 1.000R 2.430 2-3 3 1.000R 2.430 2-3 3 1.000R 3.920 1-3 2.86R 7.351 1-4 3 2.6000L 9.313 1-4 3 2.600L | 19.796 88 48 16 28 20 .40 4 4 0 1.000 4 4 0 2.000 4 4 0 2.000 1-3 2 2.000R 4.060 1-3 2 2.000R 5.548 1-4 3 3.200L | 18.148 89 48 16 28 .20 .50 .50 .30 2-3 3 1.000R .800 2-3 3 1.000R 2.025 2-3 3 1.000R 3.267 1-3 2 1.572R 4.943 1-3 2 1.572R 6.685 1-3 1.572R 8.429 1-4 3 | 18.86 90 488 16.28 2.200 5.344 2.266 2-3 3 1.000 2.16 2-3 3 1.000 2.1453 5.24 1-3 2 1.453 7.07 1-3 2 1.453 7.07 1-3 2 1.453 7.07 1-3 2 1.453 7.07 | | Wh
Ax
Spa
Loa
On | a. Bassale leacing ad less 10 20 30 40 50 | M O. e L X X ' a1 a2 a3 G N B M B M G N B M B M B M B M B M B M B M B M B M B | 20.100 81 44 16 24 .10 .60 .30 2-3 1.000R .960 2-3 1.000R 2.430 2-3 3 1.000R 2.430 2-3 2.886R 5.602 1-4 3 2.000L 7.380 1-4 3 2.000L 9.867 1-4 3 2.000L | 20.332 82 44 16 24 .20 .40 4 4 0 1.000 4 4 4 0 3.000 1-3 2 2.000R 4.060 1-3 2 2.000R 5.548 1-4 3 2.400L 1-8 3 3.400L 1-8 3.400L 1-8 3.400L | 19.010 83 44 16 24 .20 .50 .30 2-3 3 1.000R .800 2-3 1.000R 2-3 2 1.572R 4.943 1-3 2 1.572R 6.685 1-4 3 1.100L 3.915 | 19.563 84 44 16 24 200 .534 .266 2-3 1.000R .854 2-3 1.000R 2.1453R 5.244 1-3 2 1.453R 7.072 1-4 3 .670L 1.4268 | 20.420 85 48 16 28 .10 .40 .50 4 4 0 1.250 4 4 0 3.750 4 4 0 5.000 4 4 6.6667R 8.167 2.4 6.6667R 12.500 | 18.626 86 48 16 28 .10 .50 .40 4 4 0 1.000 2-3 3 1.000R 2.025 2-3 3 1.000R 4.704 1-3 2 .500R 6.203 1-4 3 4.100L 8.180 1-4 4 1.00L 13.110 | 19.503 87 48 16 28 .10 .60 .80 .2-3 1.000R .960 2-3 1.000R 2.430 2-3 3 1.000R 2.430 1-3 2.430 1-3 2.866R 7.351 1-4 3 2.6000L 9.313 1-4 3 2.6000L 1.4.285 | 19.796 88 48 16 28 20 .40 4 4 0 1.000 4 4 0 3.000 1-3 2 2.0000R 4.060 1-3 2 2.000R 5.548 1-4 3 3.200L 7.171 1-4 3 3.200L 12.128 | 18.148 89 48 16 28 20 .50 .30 2-3 3 1.000R .800 2-3 1.000R 2.025 2-3 3 1.000R 3.267 1-3 2 1.572R 4.943 1-3 2 1.572R 8.429 1.4 3 1.700L 13.336 | 18.86 90 488 16.28 2.200 5.534 2.266 2.3 3 1.000 2.116 2.3 8 1.000 2.1453 5.24 1.453 7.07 1.3 8 1.453 2 1.453 7.107 | Table 7.7 CONTROLLING CONDITIONS AND MAXIMUM MOMENTS IN SIMPLE SPANS PRODUCED BY THE TYPE 3-S2 TRUCKS WEIGHING ONE KIP EACH One hundred twelve variations in the Type 3-S2 truck are given in this Table. Each truck number, from 1 to 112, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. | Tri | ick N | ο. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |-----------|---------|----------------|------------------|-----------------|------------------|--------------|------------------|------------------|---------------|-------------------|--------------------------|-----------------| | Wł | ı. Base | e L | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 32 | 32 | 32 | | Ax | | X | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | | acing | X' | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 16 | 16 | 16 | | Loa | | $\mathbf{a_1}$ | .10 | .10 | .10 | .10 | .20 | .20 | .20 | .10 | .10 | .10 | | On
Ax | | \mathbf{a}_2 | .30
.60 | .40
.50 | .45
.45 | .50
.40 | .30
.50 | .40
.40 | .50
.30 | .30
.60 | .40
.50 | .45
.45 | | AX | 162 | a ₃ | 4-5 | 4-5 | 4-5 | 2-3 | 4-5 | 4-5 | 2-3 | 45 | 4-5 | 4-5 | | | 10 | G
N | 4ə
5 | 4-0
5 | 4-3
5 | ∠⊸ა
3 | 4-5
5 | 4.∹ə
5 | 3 | 4ə
5 | 4-5
5 | 4-5
5 | | ĺ | 10 | В | 1.000R | 1.000R | 1,000R | 1.000R | - 1 | | M | .960 | .800 | .720 | .800 | .800 | .640 | .800 | .960 | .800 | .720 | | | | G | 4-5 | 4 -5 | 1-3 | 1-3 | 4-5 | 1-3 | 1-3 | 4-5 | 4-5 | 1-3 | | | 20 | N | 5 | 5 | 2 | 2 | 5 | 2 | 2 | 5 | 5 | 2 | | i | | В | 1.000R | 1.000R | .091L | .167L | 1.000R | .667R | .429R | 1.000R | 1.000R | .091L | | | | M | 2.430 | 2.025 | 1.901 | 2.102 | 2.025 | 1.814 | 2.205 | 2.430 | 2.025 | 1.901 | | | 30 | G
N | 2-5
4 | 2-5
4 | 1-5
3 | $^{1-4}_{3}$ | 2-5
4 | 1-3
2 | $^{1-3}_{2}$ | 4-5
5 | 4–5
5 | $^{1-3}_{2}$ | | | 90 | В | 1.667R | 2.556R | 2.100L | .125L | 2.000R | .667R | .429R | 1.000R | 1.000R | .091L | | | | M | 4.134 | 3.647 | 3.447 | 3.701 | 3.506 | 3.310 | 3.953 | 3.920 | 3.267 | 3.276 | | | | G | 2-5 | 2-5 | 1-5 | 1-5 | 25 | 1 5 | 15 | 25 | 2-5 | 1-5 | | أبد | 40 | N | 4 | 4 | 3 | 3 | 4 | 3 | 3 | 4 | 4 | 3 | | ee | | В | 1.667R | 2.556R | 2.100L | 1.700L | 2.000R | 1.200L | .400L | 2.333R | 3.445R | 3.000L | | Span-Feet | | M | 6.364 | 5.847 | 5.910 | 6.172 | 5.480 | 5.636 | 6.204 | 5.821 | 5.167 | 5.125 | | an | 50 | G
N | 1-5
4 | $^{1-5}_{4}$ | 1–5
3 | 1-5
3 | 1-5
4 | $^{1-5}_{3}$ | 1-5
3 | 2-5
4 | 1-5 | 1-5 | | Sp | 50 | B | 2.700R | 3.500R | 2,100L | 1.700L | 4.000R | 1.200L | .400L | 2.333R | $^{4}_{4.500\mathrm{R}}$ | 3
3.000L | | 1 | | M | 8.746 | 8.245 | 8.388 | 8.658 | 7.820 | 8.129 | 8.703 | 8.047 | 7.405 | 7.580 | | | | G | 15 | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | | | 60 | N | 4 | 4 | 3 | 3 | 4 | 3 | 3 | 4 | 4 | 3 | | | | \mathbf{B} | 2.700R | 3.500R | 2.100L | 1.700L | 4.000R | 1.200L | .400L | $3.500\mathbf{R}$ | $4.500\mathbf{R}$ | 3.000L | | | | M | 11.222 | 10.704 | 10.874 | 11.148 | 10.267 | 10.624 | 11.203 | 10.504 | 9.838 | 10.050 | | | | G | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | 15 | | | 80 | N
B | $^{4}_{2.700R}$ | $^{4}_{3.500R}$ | $^{3}_{2.100L}$ | 3
1.700L | 4
4.000R | $^3_{1.200 m L}$ | $^3_{.400 L}$ | 4 | 4 | 3 | | 1 | | M | 2.700R
16.191 | 15.653 | 2.100L
15.855 | 16.136 | 4.000K
15.200 | 1.200L
15.618 | 16.202 | 3.500R 15.453 | 4.500R
14.753 | 3.000L 15.013 | | | | G | 1-5 | 1-5 | 1-5 | 1-5 | 1- 5 | 1-5 | 1-5 | 1-5 | 1-5 | 1-5 | | | 100 | N | 4 | 4 | 3 | 3 | 4 | 3 | 3 | 4 | 4 | 3 | | | | В | 2.700R | 3.500R | 2.100L | 1.700L | 4.000R | 1.200L | .400L | 3.500R | 4.500R | 3.000L | | | | M | 21.173 | 20.623 | 20.844 | 21.129 | 20.160 | 20.614 | 21.202 | 20.423 | 19.703 | 19.990 | a₁, a₂, and a₃-Represent the ratio of gross vehicle weight on axles. G-Axle group causing maximum moment, thus, 1-3 means axles 1, 2, and 3. N-Number of critical axle under which maximum moment occurs. B-Distance to right or left of mid-span to point of maximum moment. M-Maximum moment. 82 METHOD OF CONVERTING HEAVY MOTOR VEHICLE LOADS | TA | BLE | 7.7 (| Continue | i) | | | | | | | | | |---|--
--	--	--
---	--	---
--	--	
40 8 24 .20 .50 .30	8 28 .10 .30 .60	44 8 28 .10 .40 .50
40 8 24 .20 .30 .50 4–5 5 1.000R .800 4–5 5 1.000R 2.025 4–5 5 1.006R 2.025 4–5 4–5 4–5 4–5 4–5 4–5 4–5 4–	40 8 24 .20 .40 .40 4-5 5 1.000R .640 1-3 2 .667R 1.814 1-3 2 .667R 3.310 1-3	40 8 24 .20 .50 .30 2-3 3 1.000R .800 1-3 2 .429R 2.205 1-3 2 .429R 3.953 1-3
40 8 24 .10 .30 .60 4-5 5 1.000R 2.430 4-5 5 1.000R 2.430 4-5 5 1.000R 2.430 4-5 5 1.000R 2.430 5 5 1.000R 2.430 4-5 5 5 1.000R 2.430 4-5 5 5 1.000R 2.430 4-5 5 5 5 1.000R 2.430 4-5 5 5 1.000R 2.430 4-5 5 5 1.000R 2.430 4-5 5 5 1.000R 4-5 5 5 1.000R 4-5 5 5 1.000R 4-5 5 5 1.000R 4-5 5 1.000R 4-5 5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 4-5 1.000R 4-5 1	40 8 24 .10 .40 .50 4-5 1.000R .800 4-5 1.000R 2.025 4-5 1.000R 2.025 4-5 1.000R 3.267 4-5 1.000R	40 8 24 .10 .45 .45 .45 1.000R .720 1-3 2 .091L 1.901 1-3 2 .091L 3.276 1-3 2 .091L 4.651
40 8 24 .10 .30 .60 4-5 5 1.000R 2.430 4-5 5 1.000R 3.920 4-5 5 1.000R 3.920 4-5 5 1.000R 3.920 4-5 5 4-5 5 4-5 5 4-5 5 1.000R 3.960 4-5 5 5 1.000R 3.960 4-5 5 5 1.000R 3.960 4-5 5 5 1.000R 3.960 4-5 5 5 1.000R 3.960 4-5 5 5 1.000R 3.960 4-5 5 5 1.000R 3.960 4-5 5 5 1.000R 3.920 4-5 5 1.000R 3.920 4-5 5 1.000R 3.920 4-5 5 1.000R 3.920 4-5 5 1.000R 3.920 4-5 5 1.000R 3.920 4-5 5 1.000R 3.920 4-5 5 1.000R 3.920 4-5 5 1.000R 5.410 4-5 5 1.000R 5.410 4-5 5 1.000R 5.410 4-5 5 1.000R 5.415 1.000R 5.415 1.000R 5.415 1.000R 5.415 1.000R 5.415 1.000R 5.415 1.000R 5.415 1.000R 5.415 1.000R 5.415 1.000R 5.415 1.000R 5.415 1.000R 5.415 4.000R 5.415 1.000R 5.415 5.415 1.000R 5.415 1.000R 5.415 1.000R 5.415 1.000R 5.415 1.000R 5.415 1.000R 5.415 1.000R 5.415 1.000R 5.415 5.415 1.000R	40 8 24 .10 .40 .50 4-5 5 1.000R .800 4-5 5 1.000R 2.025 4-5 5 1.000R 3.267 4-5 5 1.000R 3.267 4-5 4-5 4-5 5 4-5 5 1.000R 3.267 4-5 4-5 4-5 4-5 5 4-5 5 4-5 5 4-5 5 1.000R 3.267 4-5 5 1.000R 3.267 4-5 5 4-5 4-5 5 4-5 5 4-5 5 1.000R 3.267 4-5 5 1.000R 3.267 4-5 5 1.000R 3.267 4-5 5 1.000R 3.267 4-5 5 1.000R 3.267 4-5 5 1.000R 3.267 4-5 5 1.000R 3.267 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 4-5 4-5 4-5 4-5 4-5 4-5 4-5	40 8 24 .10 .45 .45 .45 .5 1.000R .720 1-3 2 .091L 1.901 1-3 2 .091L 3.276 1-3 2 .091L 3.276 1-5 1-3 2 .091L 1-5 1-3 2 .091L 1-5 1-3 2 .091L 1-3 2 1-3 2 .091L 1-3 2 .091L 1-3 2 .091L 1-3 2 .091L 1-3 2 .091L 1-3 2 .091L 1-3 2 .091L 1-3 2 .091L 1-3 2 1-3 2 .091L 1-3 2 .091L 1-3 2 .091L 1-3 2 .091L 1-3 2 .091L 1-3 2 .091L 1-3 2 .091L 1-3 2 .091L 1-3 2 1-3 2 1-3 2 2 2 2 2 2 2 2 2 2 2 2 2
40 8 24 .20 .40 .40 .4-5 .5 1.000R .640 1-3 2 .667R 1.814 1-3 2 .667R 3.310 1-3 2 .667R 3.40 1-3 2 .667R 3.40 1-3 2 .667R 1.814 1.814	40 8 24 .20 .50 .30 2-3 3 1.000R .8000 1-3 2 .429R 2.205 1-3 2 .429R 3.953 1-3 2 .429R 5.703 1-3 2	44 8 28 .10 .30 .60 4-5 5 1.000R 2.430 4-5 5 1.000R 3.920 4-5 5 1.000R 3.920 4-5 5 1.000R 3.940 4-5 5 5 1.000R 3.940 4-5 5 5 1.000R 3.940 4-5 5 5 1.000R 3.940 4-5 5 5 1.000R 3.940 4-5 5 5 1.000R 3.940 4-5 5 5 1.000R 3.940 4-5 5 5 1.000R 3.940 4-5 5 5 1.000R 3.940 4-5 5 5 1.000R 3.940 4-5 5 1.000R 3.940 4-5 5 1.000R 3.940 4-5 5 1.000R 3.940 4-5 5 1.000R 3.940 4-5 5 1.000R 3.940 4-5 5 1.000R 3.940 4-5 5 1.000R
40 8 24 .10 .30 .60 4-5 5 1.000R 2.430 4-5 5 1.000R 3.920 4-5 5 1.000R 3.920 4-5 5 1.000R 3.920 4-5 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 1.000R 4-5 1.000R 4-5 1.000R 4-5 1.000R 4-5 1.000R 4-5 1.000R 4-5 1.000R 4-5 1.000R 4-5 1.000R 4-6 1.000R 4-7 4-7 1.000R 4-7 4-7 1.000R 4-7 1.000R 4-7 1.000R 4-7 1.000R 4-7 1.000R 4-7 1.000R 4-7 1.000R 4-7 1.000R 4-7 1.000R 4-7 1.000R 4-7 1.000R 4-7 1.000R 4-7 4-7 4-7 4-7 4-7 4-7 4-7 4	40 8 24 .10 .40 .50 4-5 5 1.000R 2.025 4-5 1.000R 3.267 4-5 1.000R 4.513 2-5 4.513	40 8 24 10 .45 .45 .45 1.0002 1-3 2.091L 1.901 1-3 2.091L 3.276 1-3 2.091L 3.276 1-3 2.091L 3.276 1-3 2.091L 3.276 1-3 2.091L 3.276 1-3 2.091L 3.276
40 8 24 .20 .50 .30 1.000R .800 1-3 .429R 2.205 1-3 .2 .429R 3.953 1-3 .2 .429R 3.953 1-3 .2 .429R 3.953 1-3 .429R 3.954 1-3 .429R 3.954 1-3 .429R 3.954 1-3 .429R 3.954 1-3 .429R 3.954 1-3 .429R 3.954 1-3 .429R 3.954 1-3 .429R 3.954 1-3 .429R 3.954 1-3 .429R 3.954 1-3 .429R 3.954	44 8 28 10 30 60 4-5 5 1.000R 2.430 4-5 5 1.000R 3.920 4-5 5 1.000R 4-5 5 1.000R 5	44 8 28 .10 .40 .50 .50 1.000R 2.025 4-5 1.000R 3.267 4-5 5 1.000R 4.513 4-5 5 1.000R
40 8 24 1.10 .50 .40 2-3 3 1.000R .800 1-3 2 1.67L 3.602 1-3 2 1.67L 5.102 1-3 2 1.67L 5.102 1-3 2 1.67L 5.00 1-3 2 1.67L 5.00 1.67	40 8 24 .20 .30 .50 4-5 5 1.000R .800 4-5 1.000R 2.025 4-5 1.000R 4-5 5 1.000R 2.025 4-5 5 1.000R 2.025 4-5 4-5 5 1.000R 2.025 4-5 4-5 4-5 5 1.000R 2.025 4-5 4-5 4-5 5 1.000R 2.025 4-5 4-5 5 1.000R 2.025 4-5 4-5 5 1.000R 2.025 4-5 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 4-5 1.000R 4-5 1.000R 4-5 1.000R 4-5 1.000R 4-5 1.000R	40 8 24 20 .40 .40 .640 1-3 2 .667R 1.814 1-3 2 .667R 3.310 1-3 2 .667R 3.310 1-3 2 .667R 4.808 1-3 2
40 8 24 .10 .30 .60 4-5 5 1.000R 2.430 4-5 5 1.000R 3.920 4-5 5 1.000R 3.920 4-5 4-5 1.000R 3.920 4-5 5 1.000R 2.430 4-5 5 1.000R 2.430 4-5 5 1.000R 3.960 4-5 5 1.000R 3.960 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 4-5 5 1.000R 3.920 4-5 5 1.000R 3.920 4-5 5 1.000R 3.920 4-5 1.000R 3.920 4-5 1.000R 3.920 4-5 1.000R 4-6 1.000R 4-7 4-7 1.000R 4-7 4-7 4-7 4-7 4-7 4-7 4-7 4-7	40 8 24 .10 .40 .50 4-5 5 1.000R 2.025 4-5 1.000R 3.267 4-5 1.000R 4.513 2-5 6.043 2-5 4	40 8 24 10 .45 .45 1.000R .720 1-3 2 .091L 1.901 1-3 2 .091L 3.276 1-3 2 .091L 3.276 1-3 2 .091L 3.276 1-3 2 .091L 3.276 1-3 2 .091L 3.276 1-3 2 .091L 3.276 1-3 2 .091L 3.276 1-3 2 .091L 3.276 1-3 2 .091L 3.276 1-3 2 .091L 3.276 1-3 2 .091L 3.276 1-3 2 .091L 4.651 1-5 3.276 1-5 3.276 1-5 3.276 1-5 3.276 1-5 3.276 4.651 4.651 4.6
40 8 24 .20 .30 .50 .50 1.000R .800 4-5 5 1.000R 2.025 4-5 5 1.000R 3.267 4-5 1.000R 4.513 2-5 4.55 1.000R 4.55 5 1.000R 2.025 4.55 5 1.000R 3.267 4.55 1.000R 4.55 4.55 1.000R 4.55	40 8 24 .20 .40 .40 .40 .40 .40 .640 1-3 .667R 1.814 1-3 .2 .667R 3.310 1-3 .2 .667R 4.808 1-3 .667R 4.808 1-3 .667R 1.806 1.806 1	40 8 24 .20 .50 .30 .800 1-3 .429R 2.205 1-3 .2 .429R 3.953 1-3 .2 .429R 3.953 1-3 .429R 5.703 1-3 .429R 7.459R
40 8 24 .10 .40 .50 4-5 5 1.000R 8.00 4-5 5 1.000R 3.267 4-5 5 1.000R 4.51 2.025 4-5 6.043 2-5 4.000R 4.5 5 1.000R 4.5 5 1.000R 3.267 4.5 5 1.000R 4.5 5 1.000R 3.267 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 3.267 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 4.5 5 4.5 6.043 2.025 4.5 8.26 6.043 8.26	40 8 24 1.10 .45 .45 .45 .5 1.000 R .720 1-3 2 .091 L 1.901 1-3 2 .091 L 3.276 1-3 2 .091 L 6.061 1-5 3 4.800 L 8.484	40 8 24 1.10 .50 .40 2-3 3 1.000R .800 1-3 2.1671L 3.602 1-3 2 .1671L 5.102 1-3 2 .1671L 6.602 1-5 3 4.100L 8.980
40 8 24 .10 .30 .60 4-5 5 1.000R 2.430 4-5 1.000R 3.920 4-5 5 1.000R 3.920 4-5 5 1.000R 3.920 4-5 5 4-5 5 1.000R 3.920 4-5 5 4-5 5 1.000R 3.920 4-5 5 4-5 5 1.000R 3.920 4-5 5 4-5 5 1.000R 3.920 4-5 5 4-5 5 4-5 5 4-5 5 4-5 5 1.000R 4-5 5 4-5 5 1.000R 4-5 5 4-5 1.000R 4-5 5 4-5 1.000R 4-5 5 4-5 1.000R 3.920 4-5 4-6 1.000R 3.920 4-7 4-7 4-7 4-7 4-7 4-7 4-7 4-7	40 8 24 .10 .40 .50 4-5 5.1.000R .800 4-5 1.000R 2.025 4-5 1.000R 3.267 4-5 1.000R 4.513 2-5 4.6043 2-5 4.6043 2-5 4.822R 8.8211 1-5 8.8211	40 8 24 .10 .45 .45 .45 .45 1.000R .720 1-3 2 .091L 1.901 1-3 2 .091L 3.276 1-3 2 .091L 3.276 1-3 2 .091L 3.276 1-5 3 4.800L 8.480L 8.480L 8.480L 8.481 8.491
44 8 28 28 10 .30 .60 .60 .960 4–5 5 1.000R 2.430 4–5 5 1.000R 3.920 4–5 5 1.000R 5.415 4–5 5 1.000R 4.45 5 1.000R 4.55 5 1.000R 4.55 5 1.000R 4.55 5 1.000R 4.55 5 1.000R 4.55 5 1.000R 4.55 5 1.000R 4.55 5 1.000R 4.55 5 1.000R 4.55 5 1.000R 4.55 5 1.000R 4.55 5 1.000R 4.55 5 1.000R 4.55 5 1.000R 4.55 5 1.000R 4.90	44 8 28 .10 .40 .50 .50 1.000R 2.025 4-5 1.000R 3.267 4-5 1.000R 3.267 4-5 1.000R 5.760 2-5 4.513 4-7 561 1.000R	
40 8 24 .20 .40 .40 .40 .40 .40 .40 .640 1-3 .667R 1.814 1-3 .667R 4.808 1-3 .2 .667R 4.808 1-3 .840 1-5 .840 .840 1-5 .840	40 8 24 20 .50 .30 .30 1.000R .800 1-3 2 .429R 2.205 1-3 2 .429R 5.703 1-3 2 429R 7.452 1-5 3 2.200L 9.481 1-5 3 2.200L	44 8 28 .10 .30 .60 4-5 5 1.000R 2.430 4-5 5 1.000R 3.920 4-5 5 1.000R 3.920 4-5 5 1.000R 4-5 5 1.000R 3.920 4-5 5 1.000R 4-5 1.000R 4-5 1.000R 4-5 1.000R 4-5 1.000R 6.915 4-4 4.03333 8.680 1-5 4.590R 4.5
40 8 24 .10 .45 .45 .45 .45 1.000R .720 1-3 2 .091L 3.276 1-3 2 .091L 3.276 1-3 2 .091L 3.276 1-3 4.800L 4.800L 3.800L 1.800C 1.800L 1.800L 1.800C 1.800C 1.800C 1.800C 1.800C 1.800	40 8 24 10 50 40 2-3 3 1.000R .800 1-3 2 .167L 2.102 1-3 2 .167L 5.102 1-3 2 .167L 6.602 1-3 3 4.100L 1.91 4.100L 1.91	40 8 24 .20 .30 .50 .50 .60 4-5 5 1.000R 2.025 4-5 1.000R 3.267 4-5 1.000R 3.267 4-5 1.000R 4.513 2-5 4 4.250R 5.889 2-5 4 4.250R 7.841 1.55 4 7.000R 7.841 1.55 4 7.000R 7.841 1.55 4 7.000R 1.55 4 7.000R 1.55 4 7.000R 1.55 4 7.000R 1.55 1
44 8 28 28 .10 .30 .60 .60 .90 4-5 5 1.000R 2.430 4-5 5 1.000R 3.920 4-5 5 1.000R 5.415 4-5 1.000R 6.912 2-5 4.3338R 8.680 1-5 4.5 5.900R 1.000R	44 8 28 .10 .40 .50 .50 1.000R 2.025 4-5 1.000R 3.267 4-5 1.000R 5.760 2-5 4.513 4-5 1.000R 7.561 1.000R 4.7561 1.000R 7.7561 1.000R	
40 8 24 .20 .30 .50 .50 .60 .800 4-5 5 1.000R 2.025 4-5 5 1.000R 4.513 2-5 4 4.250R 5.80 4.513 2-5 4 4.250R 7.841 1-5 4 7.000R 1.600R 1.	40 8 24 .20 .40 .40 .40 .40 .40 .40 .40 .4	40 8 24 20 .50 .30 .30 1.000R .800 1-3 2 .429R 2.205 1-3 2 .429R 5.703 1-3 2 .429R 7.452 1-5 3 2.200L 1.4.461 1-5 3
40 8 24 .10 .40 .50 4-5 5 1.000R 2.025 4-5 1.000R 3.267 4-5 1.000R 3.267 4-5 5 1.000R 3.225 4-5 5 1.000R 3.225 4-5 5 1.000R 4.5 5 1.000R 3.225 4-5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 2.22R 6.043 2.25 4 6.043 1.000R 8.211 8.211 8.21	40 8 24 10 .45 .45 .45 .45 .46 .720 1-3 .091L 1.901 1-3 2 .091L 3.276 1-3 2 .091L 3.6061 1-5 3 4.800L 8.484 1-5 3 4.800L 8.483 1-5 3 4.803L 8.483 1-5	40 8 24 10 .50 .40 .50 .40 2-3 3 1.000R .800 1-3 2 .167L 2.102 1-3 2 .167L 5.102 1-3 2 1-3 2 1-67L 6.602 1-5 3 4.100L 8.980 1-5 3 4.100L 1.91 1-5
--	--	--
---	---	--
--	--	--
$^{3}_{1.000L}$	$^3_{.700 m L}$	$^4_{1.250 m R}$
36 12 16 .10 .30 .60 4–5 5 1.000R .960 4–5 1.000R 2.430 4–5 5 1.000R		WI Ax Sport Los On Ax
28 12 8 20 40 40 4-5 5 1.00040 3-5 4 667R 1.814 2-5 2.000R 3.000R 1-5 3.000 1-5 3.00000 1-5 3.00000 1-5 3.00000 1-5 3.00000 1-5 3.00000 1-5 3.00000 1-5 3.00000 1-5 3.00000 1-5 3.	28 12 8 .20 .50 .30 2-3 3 1.000R .800 2 4 3.154L 2.150 2-5 3 1.250L 4.042 1-5 3 .600R 6.409 1-5 3 .600R	32 12 12 12 30 .60 4-5 5 1.000R 2.430 2-5 4 1.667R 4.134 2-5 4 6.364 2-5 4 1.667R
.600R 6.409 1-5 3 600R 8.907	32 12 12 10 30 .60 4-5 5 1.000R 2.430 2-5 4 1.667R 4.134 2-5 4 1.667R 6.864 2.5 4 1.667R	32 12 12 .10 .40 .50 4-5 5 1.000R .800 4-5 1.000R 2.025 2-5 4 2.556R 3.647 2-5 4 2.556R 3.647 1.05 4 2.556R 3.647 3.700R 8.074
36 12 16 .10 .30 .60 .4-5 5 1.000R 2.430 4-5 5 1.000R 3.920 2.5 4 2.333R 2.433R 2.433R 3.920 3.920 4.5 5 4.5 4.5 5 4.5 5 4.5 5 4.5 5 1.000R 3.920 2.430 4.5 5 4.5 4.5 5 4.5 5 4.5 5 4.5 5 4.5 5 4.5 5 4.5 5 4.5 5 4.5 5 4.5 5 4.5 5 4.5 5 4.5 5 4.5 5 4.5 4.		an-Feet
32 12 12 12 20 40 40 4-5 5 1.000R 1.620 2-5 4 3.000R 3.040 1-5 3 800L 7.713 1-5 3 800L 1.001	32 12 12 12 12 20 50 30 2-3 3 1.000R 2.025 1-3 2 1.000R 3.573 3 0 5.800 1-5 3 0 0 1.000R 3.573 3 0 0 1.000R 3.573 3 0 0 1.000R 3.573 3 0 0 1.000R 3.573 3 0 0 1.000R 3.000	36 12 16 .30 .40 .40 .960 4-5 5 1.000R 2.430 4-5 5 1.000R 2.430 4-5 5 1.000R 2.25 4 2.333R 8.047 1-5 4 3.700R 1.000R
28 12 8 20 40 40 44 5 1.000R .640 3-5 4 2.667R 1.814 2.5 4 2.000R 3.706 1-5 3 0 8.500 1-5 3 0 1.000 1.	28 12 8 .20 .50 .30 2-3 3 1.000R .800 2 4 3.154L 2.150 2-5 3 1.250L 4.042 1-5 3.600R 8.907 1-5 3.600R 8.907 1-5 3.600R 11.406	32 12 12 13 .30 .60 4-5 5 1.000R .960 4-5 1.000R 2.430 2-5 4 1.667R 4.134 2-5 4 1.667R 8.601 1-5 47 1.667R 8.601
32 12 12 12 20 .30 .50 .50 .50 .60 .800 4–5 1.000R 2.025 2–5 4 2.000R 3.506 2–5 4 4.400R 7.487 1–5 4 4.400R 9.923 1–5 4 4.400R 1–5 4 4.400R 1–5 4 4.400R 1–5 4 4.400R 1–5 4 4.400R 4.400R 4.400R 4.400R 4.400R 4.400R 4.400R 4.400R 4.400R 4.400R 4.400R 4.400R 4.400R 4.400R 4.400R 4.400R	32 12 12 12 20 40 40 4-5 5 1.000R 1.620 2-5 4 3.000R 3.040 1-5 3 800L 7.713 1-5 3 800L 10.211 1-5 3 800L 15.208	32 12 12 12 12 20 .50 .30 .30 .30 .800 2-3 3 1.000R 2.025 1-3 2 1.000R 3.573 0 5.800 1-5 3 0 8.300 1-5 3 0 1.000R
32 12 12 10 .40 .50 4-5 5 1.000R .800 4-5 1.000R 2.025 2-5 4 2.556R 5.847 1-5 4 3.700R 8.074 1-5 4 3.700R 8.074 4.5 1.000R	32 12 12 12 10 .45 .45 .45 .45 1.000R 1.823 2-5 1.000R 1.823 2-5 3.000R 1.5 3.420 1-5 3.420 1-5 3.000L 8.172 1-5 3.000L 8.172 1-5 3.000L 8.172 1-5 3.000L 8.172 1-5 3.000L 8.172 1.000L	32 12 12 12 10 .50 .40 2-3 3 1.000R 2.025 2-5 3 2.556L 5.956 1-5 3 1.500L 8.447 1-5 3 1.500L 8.403 8.403
28 12 8 20 .40 .40 .40 .40 .640 3-5 .640 3-5 .667R 1.814 2-5 .814 2.000R 3.706 1-5 .8500 1-5 .8500 1-5 .8500 1-5 .8000 1-5	28 12 8 .20 .50 .30 2-3 3 1.000R .800 2 4 3 1.54L 2.150 2-5 3 1.250L 4.042 1-5 3 6.00R 8.907 1-5 3 6.00R 11.406 1 5 3 6.00R 1.406 1 5 3 6.00R 1.4065 1-5 3 1.600R	32 12 12 13 .30 .60 4-5 5 1.000R 2.430 2-5 4 1.667R 4.134 2-5 4 4.667R 8.601 1-5 4 2.900R 1.040 1.55 1.000R 2.430 2.4
32 12 12 10 .45 .45 .45 .45 .5 1.000R 1.823 2-5 4 3.000R 3.420 1-5 3 1.900L 1.560	32 12 12 12 10 .50 .40 2-3 3 1.000R .800 2-3 3 2.025 2-5 3 1.500L 8.445 1-5 3 1.500L 10.938 1-509L 15.928 1-5928	32 12 12 20 .30 .50 4-5 5 1.000R 2.025 2-5 4 2.000R 3.506 2-5 4 2.000R 7.487 1-5 4 4.400R 9.923 1-5 4 4.400R 1-4
---	--	--
---	---	---
52 36	53 36	54 36
12 24 .20 .30 .50 4-5 5 1.000R .800 4-5 5 5 1.000R 2.025 4-5 5 1.000R 3.267	12 24 .20 .40 .40 4-5 5 1.000R 4-5 5 1.000R 1.620 1-3 2 2.934	12 24 .20 .50 .30 2-3 3 1.000R .800 2-3 3 1.000R 2.025 1-3 2 1.000R 3.573
12 24 .10 .45 .45 .45 .5 1.000R .720 2-3 3 1.000R 1.823 1-3 2 .273R 3.075 1-3 2 .213R 4.450 1-3 2 .213R 5.5 2.213R 5.5 1.023 2.213R 5.5 2.213R 5.5 2.213R 5.5 2.213R 5.5 5.5 5.5 6.000R 7.720 7.	12 24 .10 .50 .40 2.3 3 1.000R 2.025 1.000R 2.025 1-3 2.167R 3.402 1-3 2.167R 4.902 1-3 2.167R	12 24 .20 .30 .50 4-5 5 1.000R 2.025 4-5 5 1.000R 3.267 4-5 5 1.000R 4.513 2.025 4-5 4.513 2.025
12 24 .10 .45 .45 .45 .5 1.000R .720 2-3 3 1.000R 1.823 1-3 2 .273R 3.075 1-3 2 .273R 4.450 1-8 2 .273R 5.825 1-5 3 4.450 1-8 2 .273R 4.450 1-8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12 24 .10 .50 .40 2-3 3 1.000R 800 2-3 1.000R 2.025 1-3 2 .167R 4.902 1-3 2 .167R 4.902 1-3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	12 24 .20 .30 .50 4-5 5 1.000R 800 4-5 5 1.000R 3.267 4-5 5 1.000R 4.51 2.025 4-5 5 1.000R 4.55 4.250R 4.250R 4.250R
12 24 20 .30 .50 4-5 5 1.000R 2.025 4-5 5 1.000R 3.267 4-5 5 1.000R 3.267 4-5 5 1.000R 4.513 2-5 4.250R 5.889 2-5 4.250R 7.841 7.842 7.842 7.843	12 24 .20 .40 .40 .4-5 5 1.000R 1.620 1-3 2 1.333R 2.933R 4.426 1-3 2 1.333R 5.921 1-5 3 3.200L 7.971 1-5	12 24
12 24 .10 .40 .50 4-5 5 1.000R 2.025 4-5 1.000R 3.267 4-5 1.000R 3.267 4-5 5 1.000R 3.267 4-5 5 1.000R 3.262 4.5 1.000R 4.5 1.000R 3.263 4.5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 4.5 5 4.5 5 4.5 5 4.5 5 4.5 5 4.5 6.04 4.5 6.04 4.5 5 4.5 6.04 4.04 4.04 4.04 4.04 4.04 4.04 4.04	12 24 .10 .45 .45 .45 .5 1.000R .720 2-3 3 1.000R 1.823 1-3 2.273R 3.075 1-3 2.273R 4.450 1-3 2.273R 5.825 1-5 3 4.600L 8.253 1-5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	12 24 .10 .50 .40 .3 3 1.000R .800 2-3 3 1.000R 2.025 1-3 2 .167R 4.902 1-3 2 .167R 6.402 1-5 3 3.900L 8.754 1-5 3 3.900L 8.754 1.5 3 3.900L 1.3690
12 24 .10 .30 .60 4-5 5 1.000R 2.430 4-5 5 1.000R 3.920 4-5 5 1.000R 3.920 4-5 5 1.000R 3.920 4-5 5 1.000R 3.920 4-5 5 1.000R 3.920 4-5 5 1.000R 3.920 4-5 5 1.000R 3.920 4-5 5 1.000R 3.920 4-5 5 1.000R 4-5 5 1.000R 3.920 4-5 5 1.000R 3.920 4-5 5 1.000R 3.920 4-5 4-5 4-5 4-5 4-5 4-5 4-6 4-5 5 4-6 4-6 4-6 4-6 4-6 4-6 4-7 4-7 4-7 4-7 8-7 8-7 8-7 8-7 8-7 8-7 8-7 8-7 8-7 8	12 24 .10 .40 .50 4-5 5 1.000R 2.025 4-5 1.000R 3.267 4-5 1.000R 4.513 2-5 4 4.513 2-5 4 5.222R 8.211 1-5 6.700R 12.881 1-5 4.700R	12 24 .10 .45 .45 .45 .5 1.000R .720 2-3 3 .000R 1.823 1-3 2 .273R 3.075 1-3 2 .273R 3.075 1-3 2 .273R 3.075 1-3 2 .273R 3.075 1-3 2 .273R 4.450 1-3 2 .273R 5.825 1-5 3 4.600L 8.253 1-5 3 4.600L 8.155 3 4.600L
--	---	---
---	---	---
80 100 Fruck No Wh. Basis Anle Docad In 200 20 30 40 50	1	M
.800 2-3 3 1.000R 2.025 2-3 3 1.000R 3.267 2-5 3 3.445L 5.167 1-5 3	4-5 5 1.000R 2.025 4-5 1.000R 3.267 2-5 4 2.750R 4.951 2-5 4	.6 4-5 5 1.000 1.6 4-5 5 1.000 2.6 2-5 4 4.000 4.3 1-5 3
3 1.000R .800 2-3 3 1.000R 2.025 2-5 3 2.000L 5.480 1-5 3 .400R 7.993 1-5 3 4.400R 10.403	1.000R .960 4-5 5 1.000R 2.430 4-5 5 1.000R 3.920 2-5 4 2.3333R 5.821 2-5 4 2.333R 1.000R 1.0	.800 4-5 5 1.000R 2.025 4-5 5 1.000R 3.267 2-5 4 3.445R 7.363 2-5 4 3.445R 7.363 2-5 4 3.445R 7.363 1.000R
5 1.000R .640 4-5 5 1.000R 1.620 2-5 4 3.000R 3.040 2-5 4.980 1-5 3.400L 7.303 1-5 3.400L 9.803 1-5 3.400L 1.401L	3 1.000R .800 2-3 3 1.000R 2.025 2-5 3 2.000L 5.480 1-5 3 .400R 7.903 1-5 3 .400R 10.403 1-5 3 .400R 15.400R	1.000R .960 4-5 1.000R 2.430 4-5 5 1.000R 3.920 2-5 4 2.333R 5.821 2-5 4 2.333R 8.047 2-5 4 2.333R 10.280 1-5 4 2.333R
--	--	---
--	---	---
109 52 16 28 .10	110 52 16 28 .20	
104 48 16 24 .20 .40 .40 .40 .40 .640 .640 4-5 5 1.000R 1.620 4-5 5 1.000R 1.620	105 48 16 24 .20 .50 .30 2-3 3 1.000R .800 2-3 3 1.000R 2.025 2-3 3 1.000R 2.025 1.000R	106 52 16 28 .10 .30 .60 4-5 5 1.000R 2.430 4-5 5 1.000R 2.430 4-5 5 1.000R
106 52 16 28 .10 .30 .60 4-5 1.000R 2.430 4-5 5 1.000R 3.920 4-5 5 1.000R 3.920 4-5 5 4-5 5 4-5 5 4-5 5 4-5 5 4-5 5 1.000R 4-5 5 5 1.000R 4-5 5 4-5 4-5 4-6 4-7 4-7 4-7 4-7 4-7 4-7 4-7 4-7	107 52 16 28 .10 .40 .50 4-5 5.000R .800 4-5 5.1.000R 2.025 4-5 1.000R 3.267 4-5 5.1.000R	108 52 16 28 100 45 45 45 4-5 5 1.000R 1.823 4-5 5 1.000R 2.940 1-3 2 .637R 4.256 1-3
M G N B B M G N B M G N B	101 48 16 24 .10 .45 .45 .5 1.000R .720 4-5 5 1.000R 1.823 4-6 5 1.000R 2.940 1-3 2 637R 4.256 1-3 2 637R 5.630	102 48 16 24 .10 .50 .40 2-3 3 1.000R 2.025 2-3 1.000R 3.267 1-3 2 .500R 4.704 1-3 2 .500R 6.203
110 52 16 28 .20 .30 .50 4-5 5 1.000R 2.025 4-5 5 1.000R 3.267 5 1.000R 4.513 4-5 5 1.000R 5 1.000R 3.267 5 1.000R 4.5 5 1.000R 3.267 5 1.000R 4.5 5 1.000R 3.267 5 1.000R 4.5 5 1.000R 3.267 5 1.000R 4.5 5 1.000R 4.5 5 1.000R 3.267 5 1.000R 4.5 5 1.000R		Wr Ax Spa Loo On Ax
Wr Ax Spa Loo On Ax	a. Basele teing ad les 10 20 30 40 50	E L X X X X X X X X X X X X X X X X X X
о 0	5 0	5 0
1-6	1-6	1-6
$^3_{1.000\mathrm{R}}$	$\frac{5}{0}$	$^3_{1.000 m R}$
---	---	--
$^{3}_{1.778 \rm L}$	5 0	$^{3}_{2,195L}$
4-6 5 0 1.832 4-6 5 0 3.082 3-6 5 2.315R 4.418 2-6 4 2.136R 6.373	.640 2-3 3 1.000R 1.620 2-3 3 .000R 2.613 1-3 2 2.000R 4.060 1-6 3 1.592L 6.159	.800 2-3 1.000R 2.025 2-3 3 1.000R 3.267 1-3 2 1.572R 4.943 1-6 3.500L 7.005
4-6 5 0 1.832 4-6 5 0 3.082 3-6 5 2.315R 4.418 2-6 4 2.136R 6.373 2-6 4 2.136R 8.361 1-6 4 3.082 3.082 3.082 4.418 3.082 4.418 4	.640 2-3 3 1.000R 1.620 2-3 3 1.000R 2-3 2-3 1.000R 4.060 1-6 3 1.592L 6.159 1-6 3 1.592L 8.6611 1-6 3 1.592L 1.66	.800 2-3 3 1.000R 2.025 2-3 1.000R 3.207 1-3 2 1.572R 4.943 1-6 3 .500L 7.005 1-6 3 .500L 1-6 3 .500L 1-6 3 .500L 1-6 3 .500L 1-6 3 .500L
2-3 1.000R 2.025 2-3 3 1.000R 3.267 2-5 3 2.473L 4.914 1-6 3 2.493L 9.611 1-6 3 2.493L 9.111 1-6 3 2.493L 9.114,585	4-6 5 0 1.832 4-6 5 0 3.082 3-6 5 2.315R 4.418 2-6 4 2.136R 8.361 1-6 4 5.315R 1-6 4 5.315R	.640 2-3 3 1.000R 1.620 2-3 1.000R 2-3 1.000R 2.613 1-3 2.000R 4.060 1-6 3 1.592L 8.651 1-6 3 1.592L 8.651 1-6 3 1.592L 8.651 1-6 3 1.592L
---		Spacing X'
--	---	--
--	---	
3 .800 19.80 30 32 12 8		Truck N Wh. Bas Axle Spacing Hitch Load
2 2.0001L 20.640 28 32 12 8 12 .20 .20 .60 4 4 0 .750 3 · 4 2.000R 1.920 2 · 4	3 1,700L 19,729 29 32 12 8 12 .20 .30 .50 2 2 2 0 .750 8-4 4 2.000R 1,600	3 .800. 19.80 32 12 .20 .40 .40 .2 2 0 1.00 2 2 0 2.00 1.30 3.2 1.2 0 1.2 0 1.0 1.
8\\ 12\\ .70\\ .70\\ 4\\ 4\\ 0\\ .875\\ 3-4\\ 4\\ 2.000 R\\ 2.22 L\\ 4.152\\ 2-4\\ 3\\ .222 L\\ 4.152\\ 2-4\\ 3\\ \end{array}$	3 .400R 19.802 26 32 12 8 12 .10 .30 .60 4 4 2.000R 1.920 2-4 3.763 2-4 3.763	2 2.800L 19.878 27 32 12 8 12 .50 2 2 0 1.000 2 2 0 2.000 1-3 2 1.200L 3.561 1-4 2
3 2 1.818L 1.841 1-3 2.267R 3.427 1-3 2.267R 5.301 1-3 2.267R 5.301 1-3 2.267R 5.301 1-3 2.301 1-	3 .2001L 20.400 24 40 12 20 8 .20 .40 .2 2 1.000 2-3 2 1.334L 2.253 1-3 2.500R 4.006 1-3 2 5.500R 6.005 1-3 2 5.500R 8.004	2 3.400L 20.516 25 32 12 8 12 .10 .20 .70 4 4 0 .875 3-4 2.000R 2.24 3.222L 4.152 2-4 3.222L 6.401 1.4 3 1.000R 8.720
.50 .750 2 2 1.818L 1.841 1-3 2.667R 3.427 1-3 2.267R 5.801 1-3 2.267R 5.801 1-4 2.3800L 9.482	3 .2001L 20.400 24 40 12 20 8 .20 .40 .40 2 2 2 0 1.000 2-3 2 1.334L 2.253 1-3 2 5.00R 6.005 1-3 2 2.500R 6.005	2 3.400L 20.516 25 32 12 8 12 .10 .20 .70 4 4 4 2.0000R 2.24 3.222L 4.152 2-4 3.222L 6.401 1-4 3.000R 8.720 1.000R
2 2800L 19.878 27 32 12 8 12 .50 2 2 0 1.000 2 2 0 2.000 1-3 2 1.200L 3.561 1-4 2 3.400L 5.88 1-4 2 3.400L 5.10 1-4 2 3.400L 10.59 1	2 20000L 20.640 28 32 12 8 12 .20 .20 .60 4 4 0 .7550 3-4 4 2.00020 2-4 3 0 5.600 1-4 3 2.400R 7.815 1-4 3 2.400R 10.296	3 1.700L 19.729 29 32 12 8 12 2.20 .50 2 2 2 0 .750 2 2 2 2 0 .750 3–4 4 2.000R 1.600 2–4 3 1.000R 3.226 2–4 3 1.000R 5.220 1–4 3 3.200R 5.200
10.000\\ \\ 10.000\\$	1-4 2 1.600 L 21.026 22 40 12 20 8 8 .20 .60 4 4 0 7.750 2-3 3 1.600 R 2.93 1.600 R 2.90 4.600 1-4 3 2.00 L 6.701 1-4 3 2.200 L 3.200 L 4.300 L 3.200 L 4.300 L 3.200 L 4.300 L 3.200 L 4.300 L 3.200 L 3.200 L 4.300 L 3.200 L 4.300 L 3.200 L 4.300 L 3.200 L 4.200 L	3 1.000L 20.410 23 40 12 20 8 20 30 50 2 2 0 750 2 3 2 1.818L 1.841 1-3 2 267R 5.301 1-3 2 267R 7.176 1-4 2 3.300L 1.9.442 1-4 2 3.300L 14.436
3 1.700L 19.729 29 32 12 8 12 2.20 .50 2 2 2 0 .750 2 2 2 2 0 .750 3-4 4 2.000R 1.6000 3.226 2-4 3 1.000R 3.226 2-4 3 3.200R 7.505 1-4 3.200R 1-4 3.000R 1	3	
--	--	--
$^{3}_{1,200 m R}$	$\frac{2}{3.900L}$	$^{3}_{1.800 m R}$
48 44 12 20 12 .20 .40 .40 .40 2 2 0 1.000 2 2 0 2.00 1.000 2 2 0 2 0 2 0 1.0	49 32 16 8 8 .10 .20 .70 4 4 0 .875 2-4 3 .6671 2.320 2-4 3 .6671	50 32 16 8 8 .10 .30 .60 4 4 0 .750 2-4 3 0 2.100
2 1.2001 1-3 2 1.2001 5.427	46 44 12 20 12 .20 .20 .60 4 4 0 .750 4 0 1.500 2-3 3 2.400R 2.646 1-3 2 857L 4.013	47 44 12 20 12 20 30 50 2 2 0 .750 2 2 0 .750 2 2 400L 2.929 4.803
50 32 16 8 8 .10 .30 .60 4 4 4 0 .750 2-4 3 0 2.100 2-4 3 0 4.350 2-4 3 1.30 1		WI Axx Spp Hi ¹ Loo On Ax
C a1 a2 a3 a3 a A3 B M G N B B M M G N B B M G N B	41 40 12 16 12 .20 .30 .50 .50 .750 2 2 0 .750 2 2 9 1.500 1-8 2 400L 2.929 1-8 2 400L 6.677 1-4 2 3.800L 9.041 1-4 2	42 40 112 16 12 20 40 100 2 2 0 1.000 2 2 0 0.000 1-3 2 0 3.600 1-3 2 0 7.600 1-4 2 2.800L 9.931 1-4 2
B M G N B M G N B M	41 40 12 16 12 .20 .30 .50 .2 2 0 .750 2 2 9 1.500 1-3 2.4001 2.929 1-3 2.4001 4.803 1-3 2.4001 4.803 1-3 2.4001 1.500 1	42 40 12 16 12 .20 .40 .40 2 2 0 1.000 2 2 0 0.000 1-3 2 0 3.600 1-3 2 0 5.600 1-4 2 2.800L 1-4 2.800L 14.898 1-4 2
---	--	---
1.200L 5.636		M
M G M	16 8 .10 .20 .70 4 4 0 .875 2-3 3 1.455R 2.008 2-3 3 1.455R 2-3 3 1.455R	16 8 .10 .30 .60 4 4 0 .750 2-3 2.0001, 1.920 2-3 2.0001, 3.380 2-4
20 8 20 .60 4 4 0 .750 2-3 3 1.600R 2.993 2-4 3 2.750L 4.351 2-4 3 2.750L 6.321		80 N 3 3 2 3 2 3 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 3 2 3
20 8 20 .60 4 4 0 .750 2-3 3 1.600R 2.993 2-4 3 2.750L 4.351 2-4 3 2.750L 4.351 1.602 3 2.750L 4.351 2.451 3 2.750L 4.851 3 2.750L 4.851 3 3.800R 3.800R 3.800R 3.800R 3.800R 4.800R 4.800R 3.800R 4.8		B .800L 0 3.200L .800R 2.400L 1.600L 1.500L .600L 3.700L .2
20 8 .10 .40 .50 2 0 1.000 2–3 2 1.539L 2.327 2–3 2 2.539L 3.926 1–3 2 2.267L 7.576 1–4 2 3.700L 9.928 1-4 2 3.700L 14.871 1–4 2 3.700L 14.871 1–4 2 3.700L 1.4871 1–4 2 3.700L 1.4871 1–4 2 3.700L 1.4871 1–4 2 3.700L 1.4871	20 8 20 .20 .60 4 4 0 .750 2-3 3 1.600R 2.750L 4.351 2-4 3 2.750L 6.321 1-4 3 .200R 1.74 3 .200R	
---	---	--
12 .20 .30 .50 2 2 2 0 .750	12 .20 .40 .40 .2 2 0 1.000	
12 .20 .60 .60 4 4 0 .750 4 4 0 0 1.500 2-3 3 2.400R 2.646 2-4 3 1.500L 4.445 2-4	12 .20 .30 .50 .50 .750 2 2 0 .750 2-3 2 2.728L 2.761 1-3 2 1.34R 4.400	12 .20 .40 .40 .2 .2 .0 .1.000 .2 .2 .0 .2 .0 .2 .0 .2 .0 .3 .380 .380 .380 .380 .380 .380 .38
12 .20 .30 .50 2 2 0 .750 2 2 0 1.500 2–3 2 2.728L 2.761 1–3 2 134R 4.400 1–3 2 1.34R 6.275	12 .20 .40 .40 .2 .0 .1.000 .2 .0 .0 .2 .0 .0 .2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	
.3.380 .3.380	12 10 20 .70 4 4 0 .875 4 4 0 1.750 2-3 3 1.778L 5.071 2-4 3 1.778L 7.307 1-4 3 2.206L 9.601 1-4 3	12 .10 .30 .60 4 4 0 .750 4 4 0 1.500 2-3 2 3.000L 2.880 2-4 3 .667L 7.058 1-4 3 .800R 9.411 1-4 3
12 .20 .60 4 4 0 .750 4 4 0 1.500 2-3 3 1.500L 4.445 2-4 3 1.500L 4.445 2-4 3 1.500L 4.436 1-4 3 1.600R 8.643 8.643	12 .20 .30 .50 2 2 0 .750 2 2 0 1.500 2-3 2 .728L 2.761 1-3 2 .134R 4.400 1-3 2 .134R 6.275 1-4 2 3.400L 8.593 1-4 2 3.405L 13.545	12 20 .40 .40 2 2 0 1.000 2–3 2 .000 2–3 2 .5008 5.205 1–3 2 .500R 5.205 1–3 2 .500R 5.205 1–4 2 2.400L 9.496 1–4 2 1.4472
12 .20 .60 4 4 0 .750 4 4 0 1.500 2-3 3 1.500L 4.445 2-4 3 1.500L 4.445 2-4 3 1.500L 4.436 1-4 3 1.600R 8.643 8.643	12 .20 .30 .50 2 2 0 .750 2 2 0 1.500 2-3 2 .728L 2.761 1-3 2 .134R 4.400 1-3 2 .134R 6.275 1-4 2 3.400L 8.593 1-4 2 3.405L 13.545	12 .20 .40 .40 .2 2 0 1.000 2 2 0 2.0001 2.3 2 2.0001 1-3 2 .500R 5.200 1-3 2 2.4001 9.490 1-4 2 2.4001 14.473 1-4
---	--	--
--	--	
W Ax Sp Hi Lo On	h. Base le acing tch ad les	E L X X X' C a1 a2 a3 G N B
B M M G G S N B M M G G S N B M M G G S N B M M G G S N B M M G G S N B M M G G S N B M M M G G S N B M M M G G S N B M M M G G S N B M M M G G S N B M M M M M M M M M M M M M M M M M M	36 20 8 8 .20 .30 .50 2 2 0 .750 2–3 2 1.818L 1.841 2–4	36 20 8 8 .20 .40 .40 2 2 0 1.000 2-3 2 1.3331L 2.253 2-4 2 3.09040 2-4
36 20 8 8 8 .20 .30 .50 2 2 0 .750 2-3 1.818L 1.841 2-4 3.802 2-4 3.802 2-4 3.0250R 5.802 2-4 3.750R 7.802 1.8	36 20 8 8 .20 .40 2 2 0 1.000 2-3 2.1.333L 2.253 2-4 2.353 2-4 2.353 2-4 2.353 2-4 2.353 1.440 1.5780	40 20 12 8 .10 .20 .70 4 4 0 .875 2-3 1.455R 2.008 2-4 3 1.445L 3.913 2-4 3 1.445L 6.147 2-3 1.445L 8.387 1.455R
36 20 8 8 8 .20 .30 .50 2 2 0 .750 2-3 1.818L 1.841 2-4 3.802 2-4 3.50R 5.802 2-4 3.502 1.443 2.508 2.50	36 20 8 8 .20 .40 2 2 0 1.000 2-3 2 1.333L 2.253 3.000L 5.780 1-4 2 4.001L 8.103 1-4 2 4.00L 10.603	40 20 12 8 .10 .20 .70 4 4 0 .875 2-3 1.455R 2.008 2-4 3 1.445L 3.913 2-4 3 1.445L 8.1451 6.147 2-4 3 1.445L 8.387 1.455R
20 16 8 .10 .30 .60 .60 .750 2-3 2.0000L 1.920 2-3 2.0000L 3.380 2-4 3 1.334L 5.440 2-4 3 1.334L 7.682 1-4 3 2000R 10.001 1-4 3		Wind Axx Sp Hi Lo On Axx
--	--	---
--	--	---
2-3	2-3	2–3
N B M M G G N B M M G G N B M M G M M M M M M M M M M M M M M M M	40 20 8 12 .10 .20 .70 4 4 0 .875 3-4 2.000R 2.240 2-4 4.152 2-4	40 20 8 12 .10 .30 .60 4 4 0 .750 3-4 2.000R 1,920 2-4 3 .667R 3.763
N G G N G	40 20 8 12 .10 .20 .70 4 4 0 .875 3-4 4 2.000R 2.240 2-4 4.152 2-4 3 2.221L 6.401 2-4	40 20 8 12 .10 .30 .60 4 4 0 .750 3-4 2.000R 1.920 2-4 3 .667R 3.763 2-4 3 .607R
3.000L	40 20 8 12 .20 .20 .60 4 4 0 .750 3-4 2.000R 1.920 2-4 3 0 5.600 2-4 3 0 7.600 2-4 3 0 0 7.600	40 20 8 8 12 .20 .30 .50 2 2 0 .750 3-4 2.000R 1.600 2-4 3 1.000R 3.226 2-4 3 1.000R 7.216 1-4 3 4.000R
B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M G N B M B M G N B M B M B M B M B M B M B M B M B M B	40 20 8 12 .10 .20 .70 4 4 0 .875 3-4 2.000R 2.24 3 .222L 4.152 2-4 3 .222L 6.401 2-4 3 .222L 8.651 2-4 3 .222L 10.901 11.901 11.901 11.901 11.901	40 20 8 12 .10 .30 .60 4 4 0 .750 3-4 2.000R 1.920 2-4 3.667R 6.011 2-4 3.667R 8.258 2-4 3.667R 1.920
R M G R M	40 20 8 12 .10 .20 .70 4 4 0 .875 3-4 2.000R 2.240 2-4 3 2.22L 4.152 2-4 3 2.22L 8.651 2-4 3 .222L 10.901 1-4	40 20 8 12 .10 .30 .60 4 4 0 .750 3-4 2.000R 1.920 2-4 3 .667R 6.011 2-4 3 .667R 8.258 2-4 3 .667R 1.920 1.920 2.000R
44 20 12 20 20 20 60 4 4 0 750 4 4 0 1.500 2-4 3 750L 5.011 2-4 3 .750L 7.009 2-4 3 .750L 3.015 1.750L 3.015 1.750L 3.015 1.750L 3.015 1.750L 3.015 3.750L		Wh Ax Spa Hit Los On Ax
44 20 12 12 .10 .30 .60 4 4 0 .750 4 4 0 1.500 2-4 3 0 5.400 2-4 3 0 7.650 2-4 3 0 7.650 2-4 3 0 7.650 1.500 1	20 12 10 .50 .50 2 2 0 1.000 2 2 0 2.000 2-3 2 2.308L 3.491 2-4 3 1.000R 7.368 1-4 2 3.500L 9.704	44 20 12 .20 .60 .60 .750 4 4 0 .750 2-4 3 .750L 5.011 2-4 3 .750L 5.011 2-4 3 .750L 5.011 2-4 3 .750L 5.011 2-4 3 .750L 5.011 2-4 3 .750L 5.011 2-4 3 .750L 5.011 2-4 3 .750L 5.011 2-4 3 .750L 5.011 2-4 3 .750L 5.011 2-4 3 .750L 5.011 2-4 3 .750L 5.011 2-4 3 .750L 5.011 2-4 3 .750L 5.011 2-4 3 .750L 7.00L 7.
--	---	--
Sp: Ax Hit Lo:	n. Base acing le tch ad	e L X' X C a ₁
52 20 20 12 .20 .40 .40 .40 2 2 0 1.000 2 2 0 2.000 2-3 2 2.000L 3.380 2-3 2 2.000L 3.4860 1-3 1.000R 6.816		
52 20 20 12 .20 .20 .60 4 4 0 .750 4 4 0 1.500 2-3 3 2.400L 2.646 2-4 3 2.250L 3.902 2-4 3 2.250L 3.881 2-4 3 2.250L 3.881 2-4 3.881 2-4 3.881 2-4 3.881 2-4 3.881 2-4 3.881 2-4 3.881 2-4 3.881	52 20 20 12 .20 .30 .50 2 2 0 .750 2 2 2 0 1.500 2–3 2.728L 2.728L 4.102 1–3 2.667R 5.882 1–3 2.667R 7.756 1–4 2	52 20 20 20 12 .20 .40 .40 2 2 0 1.000 2 2 2 0 2.000 2-3 2.000L 4.860 1-3 2 1.000R 8.814 1-4 2
52 20 20 20 12 .20 .40 .40 2 2 0 1.000 2-3 2 2.000 2-3 2 2.000L 4.860 1-3 2 1.000R 6.816 1-3 2 1.000R 8.814 1-4 2.400L 13.672		
--	---	---
---	---	---
--	--	--
.20 .30 .50 2 2 0 .75)n
G N B M B M G N B M B M B M B M B M B M B M B M B M B	.10 .20 .70 4-5 4.998L .748 4-5 4.998L 1.892 3-5 4.332R 3-5 4.332R 5.167 2-5	.10 .30 .60 2 2 0 .750 4-5 5 1.000R 1.620 3-5 4 1.334R 2.936 2-5 3 1.111L 4.428
.20 .20 .20 .60 .60 .640 4-5 5 1.000R 1.620 3-5 4 1.333R 2.936 3-5 4 4.000R 6.256 6.256 1.5 3.800R	.20 .30 .50 .50 .50 .50 .50 .750 .2 .2 .0 .1.500 .1-3 .2 .2.97R .2.802 .1-3 .2 .297R 4.469 .1-5 .2 .4.321 .6.309 .1-5 .2 .4.1321 .8.753	.10 .20 .70 4-5 4.998L .748 4-998L 1.892 4-5 4.998L 3.052 3-5 4 1.997R 4.740 2-5 4.665R 6.512 2-5 4
.10 .20 .20 .4-5 .4 .998L .748 .4-5 .998L .1.892 .4-5 .4 .998L .3.052 .3-5 .4 .1.997R .4.740 .2-5 .4 .6.65R .6.65R .6.66R	.10 .30 .60 2 2 0 .750 4 1.000L 1.620 1-3 2 1.000L 4.215 2-5 3 2.000L 4.215 5.922 1.5 3.600L 8.406 1-5 3	.10 .40 .50 2 2 0 1.000 2 2 0 2.000 1-3 2.603L 3.409 1-3 2 .603L 5.074 1-5 2 .8888 1-5 2
.10 .40 .50 2 2 0 1.000 2 2 0 2.000 1-3 2.603L 5.074 1-5 2 4.732L 7.016 1-5 2 4.732L 1-5 2 4.732L 1-5 2 4.732L 2.7	.20 .20 .20 .60 4-5 5 1.000R 1.620 3-5 4 1.333R 2.936 3-5 4 4.000R 6.256 1.5 3.800R 8.611 1-5 3.800R	.20 .30 .50 2 2 0 .750 2 2 0 1.500 1-3 2 .297R 2.802 1-3 2 .297R 4.469 1-5 2 4.182L 8.753 1-5 2 4.182L 8.753
.20 .30 .50 2 2 0 .750 2 2 0 1.500 1-3 2 .297R 2.802 1-3 2 297R 4.469 1-5 2 4.132L 6.309 1-5 2 4.132L 8.753 1-5 2 4.132L 1.575 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	.10 .20 .20 .4-5 .4-998L .748 4-998L 1.892 4-5 4.998L 3.052 3-5 4.740 2-5 4.665R 6.512 2-5 4.665R 8.696 1-5 3.802L 13,439	.10 .30 .60 2 2 2 0 .750 4-5 4 1.000L 1.620 1-3 2 1.000L 2.720 1-3 2 1.000L 4.215 2-5 3 2.000L 5.922 1.5 8.406 1-5 3 .600L 13.405
.10 .30 .60 2 2 0 .750 4-5 5 1.000R 1.620 3-5 4 1.334R 2-936 2-5 3 1.111L 4.428 1-5 3 .200R 6.701 1-5 3 .200R 1.5000 1.500 1.500 1.500 1.500 1.5000 1.5000 1.500 1.5000 1.5000 1.500 1.500 1.500	.10 .40 .50 2 2 0 1.000 2 2 0 2.000 1-3 2.603L 5.074 1-5 2 4.732L 7.016 1-5 2 4.732L 1-5 2 4.732L 1-5 2	.20 .20 .20 .60 4-5 5 1.000R 1.620 3-5 4 1.333R 2.936 3-5 4 4.000R 6.256 1.5 3.800R 8.611 1-5 3.800R
.20 .30 .50 .50 .50 .2 2 0 .750 .2 2 0 1.500 .1-3 2.297R 2.802 .297R 4.469 .1-5 2 4.132L 6.309 .1-5 2 4.132L 8.753 .2 1.53 .2	.10 .20 .20 .4-5 .4 .998L .748 .4-5 .998L .1.892 .4-5 .4 .998L .3.052 .3-5 .4 .1.997R .4.740 .2-5 .4 .6.65R .6.65R .6.66R .8.696 .1-5 .3 .1.8439 .1-5 .1.8439 .1-5 .1.8439	.10 .30 .60 2 2 0 .750 4 1.000L 1.620 1-3 2 1.000L 4.215 2-5 3 2.000L 5.922 1.5 3.600L 8.406 1-5 3.600L 8.406 1-5
---	--	---
---	---	
2.73 19.1 50		Truck N Wh. Bas
3 1.200R 19.814 44 44 16 8 .20 .20 .60 4-5 4 1.000R .640 4-5 4.1000L 1.620 4-5 4.1000L	2 2.066L 19.777 45 44 16 8 .20 .30 .50 2 2 0 .750 2-3 2 1.431L 1.715 2-3 2 1.431L	1.268L 19.748 46 40 16 8 12 .10 .20 .70 4-5 4 .998L .748 3-5 4 .666R 2.118 3-5 4 .666R
3.532L 19.793 48 40 16 8 12 .10 .40 .50 2 2 0 1.000 2 2 2 2 1.767L 3.310 1-4 2 2.236L 4.972	.400R 19.002 49 40 16 8 12 .20 .20 .60 4-5 5 1.000R .640 3-5 4 .667R 1.814 3-5 4 .667R 3.309 2-5 4 3.000R 4.980	2.733 19.11 566 40 11: 12: 2.33 5.56 2.2 2.3 3.55 4.666 1.5.1 2.666 2.7.7 2.666 4.666 4.1.5 2.3 3.3 3.3 3.3 3.3 4.3 4.3 4.3 4.3 4.3 4
.400R 19.002 49 40 16 8 12 .20 .20 .60 4-5 5 1.000R .640 3-5 4 .667R 1.814 3-5 4 .667R 3.309 2-5 4 3.000R 4.980 2-5 4 3.000R 6.940 1	2.733 19.11 500 444 166 12 2.22 3.30 5.55 2.2 2 0 0 7.7 3.55 4.66 4.66 4.5.2 2.7 2.7 2.7 4.66 4.66 4.66 4.66 4.66 4.66 4.66 4.	
2 1.600L 1.764 2-993 1-3 2 0 4.400 2-5 3 2.667L 6.578 1-5	2.866L 20.616 43 44 16 16 8 .10 .40 .50 2 2 0 1.000 2-3 2 1.178L 2.206 2-3 2 1.178L 3.611 1-3 2 4.198R 5.203 1-5 2 4.198L 7.054 1-5	3 1.200R 19.814 44 44 16 16 8 .20 .60 4-5 4 1.000R .640 4-5 4 1.000L 1.620 4-5 4 1.000L 2.613 3-5 4 2.000R 4.060 2-5 4 4.060 2-5 4 1.000E
3 1.200R 19.814 44 44 16 16 16 8 .20 .60 4-5 4 1.000R 4-5 4 1.000L 2.613 3-5 4 4.000B 4.000C 2.000R 4.000C 2.000R 4.000C 3.000C 4.000C 3.000C 4.000C 3.000C 4.000C 3.000C 4.000C 3.000C 4.000C 3.000C 4.000C 3.000C 3.000C 4.000C 3.000C	2 2.066L 19.777 45 44 16 16 16 8 .20 .30 .50 .50 .50 .750 2 2 1.431L 1.715 2 -3 2 1.431L 2.866 1-3 2 1.273L 6.180 1-5 2 3.398R 4.434 1-4 2 1.273L 8.594 1-5	1.268L 19.748 46 40 16 8 12 .10 .20 .70 4-5 4 .998L .748 3-5 4.666R 2.118 3-5 4.666R 3.862 2-5 4 2.740R 7.987 2-5 4 2.740R 7.987 4 2.740R 10.215 1-5
2.733219.1 600 440 160 122 222 22 22 24 40.666.1.5.5 3.566 2.7.7 2.55 4.666.2.7.7 2.55 3.566 4.5666.2.7 3.566		Truck N. Bas Axle pacing Hitch oad On Axles 20 30 40 60
.400R 19.002 49 40 16 8 12 .20 .20 .60 .60 .60 .640 3-5 4 .667R 1.814 3-5 4 3.667R 3.309 2-5 4 3.000R 6.944 1-5 3 2.000R 9.067 1.5 3 2.000R 1.5 3 2.000R 1.5 3 2.000R 1.5 3 3.000R 1.5 4.5 4.5 5 4.5 5 4.5 6.67R 1.814 3.000R 1.814	2.733319.1 600 404 101 112 112 113 113 113 113 113 11	
2.866L 20.616 43 44 16 16 8 .10 .40 .50 2 2 0 1.000 2-3 2 1.178L 2.206 2-3 2 1.178L 2.203 1-5 2 4.198L 7.054 1-5 2 4.198L 7.954 1-5 2 4.198L 1-5 4.198L 1-5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 1.200R 19.814 44 44 16 16 16 8 .20 .20 .60 4-5 4 1.000R 1.000L 1.620 4-5 4 1.000L 2.613 3-5 4 4.000 2-5 4 4.500R 5.924 1-5 3 4.000L 8.203 1-5 3 4.001L 8.203	2 2.066L 19.777 45 44 16 16 16 8 .20 .30 .50 .50 .2 2 0 .750 2-3 2 1.431L 1.715 2-3 2 1.431L 2.866 1-3 2 1.398R 4.434 1-4 2 1.273L 6.180 1-5 2 3.398L 1.5546
---	---	---
$\frac{3.428}{3-5}$	$\frac{2.936}{2-5}$	$\frac{3.310}{1-3}$
17.402 69 44 20 12 8 .20 .60 4–5 5 1.000R .640 4–5 5 1.000R 1.620 3–5 4.000R 1.620 3–5 1.000R 2.0	17.595 70 44 20 12 8 .20 .30 .50 2 2 0 .750 2-3 2 1.431L 1.715 2-3 2 1.431L 2.866	
7.577 2-5 4	$\begin{array}{c} 18.202 \\ \hline 67 \\ 44 \\ 20 \\ 12 \\ 8 \\ .10 \\ .30 \\ .60 \\ 2 \\ 2 \\ 0 \\ .750 \\ 2-3 \\ 2 \\ 1.600L \\ 1.764 \\ 2-3 \\ 2 \\ 1.600L \\ 2.993 \\ 3 \\ 1.778L \\ 7.807 \\ 1-5 \\ 3 \\ \end{array}$	18.472 68 44 20 12 8 .10 .40 .50 2 0 1.000 2-3 2 1.178L 2.206 2-3 2.1.78L 3.611 2-4 2 3.176L 5.187 1-5 2 3.382L 7.390 1-5 2
3.332L 7.390 1-5 2 3.332L 9.853 1-5 2 3.332L 9.853	17.402 69 44 20 12 8 .20 .60 4-5 5 1.000R .640 4-5 5 1.000R 1.620 3-5 4 3.500R 4.645 2-5 4 3.500R 6.596 1-5 3 8.600R 8.611 1-5 3 8.600R	17.595 70 44 20 44 20 .30 .50 2 2 0 .750 2-3 2 1.431L 1.715 2-8 2 1.431L 2.866 2-5 3 1.415L 6.500 1-5 2 2.332L 8.759 1-5 2 2.332L
--	--	--
--	--	---
--	---	--
90 55 20 10 12 .20 .30 .50 2 2 0		Ax Spa Hit Loa On
90 55 21 12 .20 .33 .56 2 2 2 2 0 .77 2 2 2 2 2 2 2 2 2 2 2 2 2		Whax Spa Hit Loa Ax
89 52 20 16 12 .20 .20 .20 .4 1.000L .640 4-5 4 1.000L 1.620 4-5 4 1.000L 2.613 3-5 4 2.000R 4.000R 4.000R 4.000R 4.000R 4.000R 4.000R 4.000R 4.000R 4.000R 5.000R 5.000R 5.000R 5.000R 5.000R	99 55; 20 11: 22: 3.36; 55 0 .7. 7. 2 2 2 0 0 1.5; 2 2. 2 2. 2 2. 2 2. 2 2. 2 2. 2 2. 3.36; 5. 5. 5. 5. 5. 7. 7. 7. 7. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	
88 52 20 16 12 .10 .40 .50 2 2 0 1.000 2 2 2 0 2.000 2-3 2 1.767L 4.712 1-3 2.003L 1.767L 4.712 1.763L 1.763	89 52 20 16 12 20 20 20 60 4-5 4 1.000L 1.640 4-5 4 1.000L 2.613 3-5 4 2.000R 4.060 2-5 4 5.0060 2-5	99 552 22 114 2.5.5 56 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
M G G N B M G M G M G M G M G M G M G M G M G M	81 48 20 12 10 20 20 17 4-5 4 998L 1.892 3-5 4 1.332R 3.428 3-5 4 3.702R 7.233 2-5 4 3.702R 7.233 2-5 4 3.702R 7.02R	82 48 20 12 12 10 .30 .60 2 2 0 .750 4-5 1.000R 1.620 3-5 4 1.333R 2-5 3 1.111L 6.673 2-5 3 1.111L 6.673 1.111L 8.111 8.111L
82 48 20 12 12 10 .30 .60 2 2 0 .750 4-5 5 1.000R 1.620 3-5 4 1.333R 2-5 3 1.111L 6.673 1.675 1.675 1.675 1.675 1.675 1.675 1.675 1.77	83 48 20 12 10 .10 .40 .50 2 2 0 1.000 2 2 1.767L 3.310 2-3 2.1.767L 4.712 1-5 2 4.332L 6.543 1-5 2 4.332L 1.52 1.53 2 1.55 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	84 48 20 12 12 .20 .20 .60 4-5 5 1.000R 1.620 3-5 4 1.334R 2.936 3-5 4 4.000R 6.256 2-5 4 4.000R 8.214
--	--	--
--	--	---
00 150	00 017	10 400
30 48 12 20 .50 .50 .30 2-3 2 1.000L .800 2-3 2 1.000L 2.025 1-3 2 1.000R 3.57		WI Axx Sp Hi Lo On Ax
27 48 12 20 11 10 .50 .40 2-3 2 1.000L .800 2-3 2 1.000L 2.025 2-4 3 1.005L 3.55 3	28 48 12 20 12 .10 .60 .30 2-3 2 1.000L .960 2-3 2 1.000L 2.430 2 4 .4012 4.1129	29 48 12 20 .40 .40 2-3 2 1.000L 1.620 2-4 3 1.3331L 2.936 1-4
30 48 12 20 .50 .50 .30 2-3 2 1.000L .800 2-3 2 1.000L 2.025 1-3 2 1.000R 3.578 3.578 1-4 2 .5608 1-4 1-4 2 .5608 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4		WI Axx Sp Hi Lo On Ax
22 44 12 16 12 .10 .50 .40 2–3 2 1.000L 2.025 2-4 3 1.000L 3.573 1–4 3.573 1–4 3 .125 R 7.500 1–5 3 2.7000 1–5	23 44 12 16 12 .10 .60 .30 2-3 2 1.000L 2-3 2 1.000L 2.430 2-4 3 .400L 4.129 1-4 3 .588R 6.208 1-4 3 .588R 8.331 1-5 3 1.600L 10.643 1-5	24 44 12 16 12 .20 .40 .40 2-3 2 1.000L .640 2-3 2 1.000L 1.620 2-4 3 1.333L 2.936 1-4 2 1.000L 4.820 1-4 2 1.000L 6.816 1.5 3 2.000L 1-5
23 44 12 16 12 .10 .60 .30 2-3 2 1.000L .960 2-3 2 1.000L 2.430 2-4 3 .400L 4.129 1-4 3 .588R 6.208 1-5 3 1.600L 1.06043 1-5 1.600L 1.643 1.600L 1.600D 1.600D 1.600D 1.600D 1.600D	24 44 12 16 12 .20 .40 .40 2-3 1.0001 .640 2-3 1.0001 1.620 2-4 3 1.3331 2.936 1-4 2 1.0001 4.820 1-4 5.816 1-5 3 2.0001 9.067 1-5 3 2.00001 1.4050 1.53	25 44 12 16 12 .20 .50 .30 2-3 2 1.000L .800 2-3 2 1.000L 2.025 1-3 2 1.000R 3.573 1-4 2 .588L 5.608 1-4 2 .588L 7.731 1-5 3 .900L 9.914 1-5 3 .900L 14.910
R}$	3 2.600L	3 1.700 L
--	--	---
--		Ax
67 48 20 16 8 .10 .50 .40 2-3 2 1.000L .800 2-4	68 48 20 16 8 .10 .60 .30 2-3 2 1.000L .960	69 48 20 16 8 .20 .40 .40 2-3 1.000L .640 2-4
61 44 20 12 8 .10 .40 .50 2-3 2 .640 2-4 3 .923L .1.878 2-4 3 .923L .3493 .923L .3493 .923L .3493 .923L	62 44 20 12 8 .10 .50 .40 2–3 2.000L .800 2–4 3 .429L 2.207 2–4 3 .429L 3.955 2–5	63 44 20 12 8 .10 .60 .30 2-3 2 1.000L .960 2-4 3 0 2.550 2-4 3 0 4.425
64 44 20 12 8 .20 .40 2-3 2 1.000IL .640 2-4 3 .667L 1.814 2-4 3 .667S 3 .3309 2-5 3 3.000IL 4.980 2-5 3 3.000IL 4.980 3.000IL 4.980 3.000IL 3.	65 44 20 12 8 .20 .50 .30 2-3 2 1.000IL .800 2-4 3 .154L 2.151 2-4 3 .154L 3.776 2-5 3 2.000IL 5.480 1-5 3 8.800R	666 48 20 16 8 .10 .40 .50 2-3 2 1.0001L .640 2-4 3 .923L 1.878 2-4 3 .923L 3.493 2-4 3 .923L 5.114 2-5 4 0
48 20 16 8 .20 .50 .30 2-3 2 1.000L .800 2-4 3 .154L 2.151 2-4 3 .154L 2.706R 7.233 1-5 3 .500R 9.7004		Ax Spo Hit Loo On Ax
48 20 16 8 .20 .30 2-3 1.000L .800 2-4 3 .154L 2-14 3.776 2-4 3.154L 5.401 1-4 2.706R 7.233 1.55 1.		Ax Spo Hit Loo On Ax
--	--	--
--	---	--
--		Wł
56 20 20 12 .20 .50 .30 2-3 2 1.000L .800		Ax Sp Hi Lo
C M B M C	52 20 16 12 .10 .40 .50 2-3 2 1.0001L .640 2-3 2 1.0001L 1.620 2-4 3 3.037 2-4	52 20 16 12 .10 .50 .40 2-3 2 1.000L 2.025 2-4 3 1.000L 3.573 2-4
56 20 20 20 12 .10 .30 2-3 2 1.000L 2.960 2-3 2 1.000L 2.443 2-4 3 .400L 4.129 2-4 3 .400L 4.003 1.003 1.003 1.003 1.003 1.004 1.003	56 20 20 20 12 .20 .40 2-3 2 1.000L 1.6620 2-4 3 1.333L 2.936 2-4 3 2.000R 6.006 6.006 14	56 20 20 12 .20 .30 2-3 2 1.000L 2-3 2 1.000L 2-3 2-4 3.616L 3.483 2-4 3.616L 5.106 1-4 2.353 R 6.927
56 20 20 20 12 .10 .30 2-3 2 1.000L 2.960 2-3 2 1.000L 2.443 2-4 3 .400L 4.129 2-4 3 .400L 4.003 1.003	56 20 20 20 12 .20 .40 2-3 2 1.000L 1.6620 2-4 3 1.333L 2.936 2-4 3 2.000R 6.006 6.006 14	56 20 20 12 .20 .30 2-3 2 1.000L 2-3 2 1.000L 2-3 2-4 3.616L 3.483 2-4 3.616L 5.106 1-4 2.353 R 6.927
52 20 16 12 .20 .50 .30 2-3 2 1.000L .800 2-3 2 1.000L 3.483 2-4 3.616L 5.106 1-4 2 .353R 6.927 1-5 3 1.000L 9.31 1.000 1.000L 9.31 1.000	56 20 20 12 .10 .40 .50 2-3 2 1.000L .640 2-3 1.000L 1.620 2-4 3 1.693L 4.693L 4.698L 4.548 1.493L 4.693L 3.134R 6.275 2-5 4.3333R 8.201 1-5 3	56 20 20 20 12 .10 .50 .40 2-3 2 1.000L .800 2-3 2 1.000L 3.573 2-4 3 1.000L 5.318 1-4 3 .625R 7.106 1-4 3 625R 9.106 1-5 3
-4 3 2.000R 6.064 1-5 3 1.200L 8.224 1-5 3 1.200L 1.200L 1.200L 1.333L 1.3	52 20 16 12 .20 .50 .30 2-3 1.000L .800 2-3 1.000L 2.025 2-4 3.616L 5.106 1-4 2 .353R 6.927 1-5 3 .100L 9.100 1-5 3 1.000L 1.4100 1-5	56 20 20 12 .10 .40 .50 2-3 2 1.000L .640 2-4 3 1.693L 3.037 2-4 3 1.693L 4.646 1-4 3 .134R 6.275 2-5 4 8.201 1-5 3.393R 8.201 1-5 3.990 1-5
52 20 16 12 .10 .50 .40 2–3 1.000L 2.025 1.000L 2.025 2–4 3.573 2–4 3.573 1.000L 5.318 1–4 3.625R 7.106 1–5 3 2.300L 9.388 1–5 3 2.300L 1.4366 1–5 3	52 20 16 10 10 .60 .60 .30 2-3 2 1.000L .960 2-3 2 .000L 2.430 .400L 4.129 2-4 3 .400L 6.003 1-4 3 1.056R 7.944 1-5 3 1.200L 1.5218 1-5 3	52 20 16 12 .20 .40 .40 .40 2-3 2 1.000L 1.620 2-4 3 1.333L 2.936 2-4 3 2.936 2-4 3 3.333L 4.427 1 -4 3 2.000R 6.064 1-5 3 1.200L 1.5 3 1.200L 1.5 3 1.200L 1.5 3 1.333L
--	---	---
--		Ax
18.277 25 48 12 12 16 .20 .40 .40 2-3 1.000L .640	18.753 26 52 12 16 16 .10 .30 .60 5-6 6 1.000R .640	18.333 27 52 12 16 16 .10 .40 .50 2-3 2 1.000L .640
17.613 29 52 12 16 16 .20 .30 .50 5-6 6 .997R 1.350 1-3 2 1.800R 2.30 2.30 1.35 1.3	18,530 30 52 12 16 16 .40 .40 .40 2-3 2 1.000L 1.620 1-3 2 1.333R 2 1.333R 4.427	
18.530 30 52 12 16 .40 .40 .40 2-3 2 1.000L 1.620 1-3 2 1.333R 2.936 1-3 2 1.333R 2.936 1-3 2 1.333R 2.936 1-3 2 1.333R 2.936 1-3 2 1.938 1		Whax Spare Hit Lose On Ax
G O N B M B M G O N B M G O N B M G O N B M G O N B M G O N B M B M B M B M B M B M B M B M B M B	17,700 21 48 12 16 .10 .30 .60 5-6 6.1.000R .640 5-6 6.000R 1.620 4-6 5.1.333R 2.936 4-6 5.1.333R 4.427 4-6 5.1.333R 5.921 2-6 4 .1111.81000 1-6	18.032 22 48 12 16 .10 .40 .50 2-3 2.000L .640 2-3 2.000L .620 1-3 2.400R 2.753 1-4 3 2.04L 4.135 1-4 3 2.04L 5.802 1-6 3 5.132L 7.907 1-6
2.753 1-4 3.204L 4.135 1-4 3.204L 5.802 1-6 3 5.132L 12.797 1-6 3 5.132L 12.797	19.021 23 48 12 16 .10 .50 .40 2-3 2 1.0001 .800 2-3 2 .0001 .025 1-3 2 .167R 3.400 1-4 3 .322R 4.968 1-4 3 3.322R 6.800 1-6 3 3.768L 1.8.869	24 48 12 16 .20 .30 .50 5-6 6.997R .533 5-6 6.997R .1.350 4-6 5 1.336R 2.444 4-6 5 1.336R 1-4 2 1.155L 5.185 1-6 3 4.432L 7.095 1-6 3 4.432L 12.014
--	--	---
10</td><td>X X X' C a₁ a₂ a₃ G N B M G N B M G N B B M</td><td>16 16 12 .10 .30 .60 5-6 6 1.000R 5-6 6 1.000R 1.620 5-6 1.000R</td><td>16 16 12 .10 .40 .50 2 1.000L, .640 2-3 2 1.000L, 1.620 2-4 3</td><td>16 16 12 .10 .50 .40 2-3 2 1.000L 2.025 2-4 3 471L</td><td>16 16 12 .20 .30 .50 5-6 6 .997R .533 5-6 6 .997R 1.350 2-4 3</td><td>16 16 12 .20 .40 .40 .2-3 2 1.000L 1.620 2-4 3 747L</td><td>16 8 16 .10 .30 .60 5-6 6 1.000R .640 4-6 5 .667R 1.814 4-6 5</td><td>16 8 16 .10 .40 .50 2-3 2 1.000L 1.620 4-6 5</td><td>16 8 16 .10 .50 .40 2–3 2 1.000L .800 2–3 2 1.000L 2.025 2–3 2 1.000L</td><td>16 8 16 .20 .30 .50 5-6 6 .997R .533 4-6 5 .668R 1.509 4-6 5</td><td>16 8 16 .20 .40 .40 2-3 2 1.000L .640 2-3 2 1.000L 1.620 2-3</td></t<>	Spa Hit Loa On	le acing ach ad les 10
M G G N B G N B G N B G N B G N B M G G N B M G G N B M G G N B M G G N B M G G N B M G G N B M G G N B M M G G N B M M M G G N B M M G G N B M M G G N B M M G G N B M M G G N B M M G G M M M M M M M M M M M M M M M	16 16 12 .10 .30 .60 5-6 1.000R 1.620 5-6 6 1.000R 2.613 4-6 5 2.000R 4.060 2-6	16 16 12 .10 .40 .50 2-3 2 1.000L 1.620 2-4 3 1.062L 2.872 2-4 3 1.062L 4.284 4.284
16 8 16 .10 .40 .50 2-3 2 1.000L 1.620 4-6 5 .668R 2.756 4-6 5 .668R 4.004 2-6 4.004 2-6 4.004 4.006 4.00	16 8 16 .10 .50 .40 2-3 2 1.000L 2.025 2-3 2 1.000L 3.267 2-4 3 .891L 4.779 1-5 3 1.352L 6.697	16 8 16 .20 .30 .50 .5–6 .6 .997R .533 4–6 .5 .668R 1.509 4–6 .5 .668R 4.004 2–6 4 1.293R 5.661
16 8 16 .10 .50 .40 2-3 2 1.000L 2.025 2-3 2 1.000L 3.267 2-4 3 .891L 4.779 1-5 3 1.352L 6.697 1-6 3 3.034L	16 8 16 .20 .30 .50 .5-6 .697R .533 4-6 .568R 1.509 4-6 .5.668R 2.756 4-6 .5.668R 4.004 2-6 4 1.293R 5.661 2-6 4	16 8 16
G O N B M B M D D D D D D D D D D D D D D D D	16 16 12 10 .30 .60 5-6 6 1.000R 1.620 5-6 6 1.000R 2.613 4-6 5 2.000R 4.060 2-6 4.667L 7.842 1-6 4 1.00R 12.700 1-6	16 16 12 .10 .40 .50 .50 2-3 2 1.0001 .640 2-3 2 1.0001 1.620 2-4 3 1.0621 2.872 2-4 3 1.0621 4.284 1-4 3597R 5.941 1-6 3 4.5981 7.954 1-6 3 4.5981 1.2866
--	--	---
.10 .50	.20 .30	.20 .40
52 20 12 12 .20 .30 .50 5-6 6 .997R .533 5-6 6 .997R 1.350	52 20 12 12 20 40 .40 2-3 2 1.000L 2-3 2 1.000L 1.620 2-4	
52 20 12 20 30 50 5-6 6 .997R .533 5-6 6 .997R 1.350 4-6 5 1.336R 2.444 4-6 5 1.336R 3.687	52 20 12 .20 .40 2-3 2 1.000L 1.620 2-4 3 .747L 2.809 2-4 3 .747L 4.139	
48 20 8 12 .10 .30 .60 5-6 6 1.000R .640 4-6 .5 .667R 1.814 4-6 .5 .667R 3.309 3-6 5 .640 2-6 4-6 5 .640 4-6 .640 4-6 .640 4-9 .640 .6	48 20 8 12 .10 .40 .50 2-3 2 1.000L .640 2-3 2 1.000L 1.620 2-4 3 1.062L 2.872 2-6 4 1.260R 4.570 2-6 4 1.260R	48 20 8 12 .10 .50 .40 2-3 2 1.000L .800 2-3 2 1.000L 2.025 2-4 31 .471L 3.454 2-5 3 2.136L 5.120 2-6 3.594L
52 20 12 20 30 50 5-6 6 997R 1.350 4-6 5 1.336R 2.444 4-6 5 5 2.445 4-6 5 2.45 4-6 5 2.45 4-6 5 2.45 2.45 2.45 2.45 2.50 2.66 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25	52 20 12 20 40 40 2-3 2 1.000L 1.620 2-4 3.747L 2.809 2-4 3.747L 4.139 1-4 2.731R 5.707 1-6 3 1.468L 7.968	
52 20 12 20 30 50 5-6 6 997R .533 5-6 6 .997R 1.356 2.444 4-6 5 1.336R 2.444 4-6 5 5 2.456 4 2.957 2-757 2-7	52 20 12 20 40 40 2-3 2 1.000L 1.620 2-4 3 .747L 2.809 2-4 3 .747L 4.139 1-4 2 7.31R 5.707 1-6 3 1.468L 7.968 1-6	
52 20 12 20 30 50 5-6 6 997R 1.350 4-6 5 1.336R 2.444 4-6 5 1.336R 2.490L 5.570 2-6 4 2.90L 5.570 1-6 4 3.68R 1.7569 1-6 4 3.68R 1-7569 1-6 4 3.68R 1-7569 1-6 4 4.69 4.290L 5.570 1-6 5.570 1-6 5.570 1-7569 1-7	52 20 12 .20 .40 .40 2-3 2 1.000L 1.620 2-4 3 .747L 2.809 2-4 3 .747L 2.809 1-6 3 3.747L 2.809 1-6 3 1.468L 1-6 3 1.468L 1.2.959	
52 20 12 12 .10 .30 .60 5-6 6 1.000R 1.620 4-6 5 1.333R 2.936 4-6 5 1.333R 4.427 2-6 4 .778L 6.361 2-6 4 1.778L 6.360 1-6 1.000R 1.100R 1.333R 1.333R 1.427 1.333R	52 20 12 12 10 .40 .50 2-3 2 1.000L 1.620 2-4 3 1.062L 2.872 2-4 3 2.640 2-6 4.284 2-6 4.520R 6.123 2-6 4 5.20R 6.123 3.732L 1.3.242 1.3.242	52 20 12 12 .10 .50 .40 2–3 2 1.000L 2.025 2–4 3.471L 3.454 2–4 3.471L 5.036 2–6 3 4.1871L 6.798 1–6 3 2.568L 1–16 3 2.568L 14.114 1–6 3
---	--	---
--		wn. ba Axle
60 20 16 16 .20 .40 .40 2-3 2 1.000 .64 2-3 2		Wh. Ba Axle Spacing Hitch Load On Axles
20 12 16 .20 .40 .40 2-3 2 1.000L .640 2-3 2 1.000L 2-3 2 1.000L 3.887 1-4 2	60 20 16 .10 .30 .60 5–6 6 1.000R 1.640 5–6 6 1.000R 2.613 4–6 5–2 2.000R 4.060 4.060	60 20 16 16 .10 .40 .50 2-3 2 1.000L 1.620 2-3 2 1.000L 2-3 2 1.000L 2-3 2 1.000L 3 2 1.051L 3.972
60 20 16 .20 .30 .50 5-6 6 .997R .937R 1.350 5-6 6 .997R 2.176 4-6 5 2.004R 3.380 4-6 5 2.004R 4.630 4.630 6.64 6.997R 6.997	60 20 16 16 16 20 40 40 40 2-3 2 1.000 1.66 2-3 2 2 1.000 2-3 2 1.000 1.63 2 1.000 1.64 2-3 2 3 2 3 2 1.000 1.64 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.	
60 20 16 .10 .30 .60 5–6 6 1.000R 1.620 5–6 1.000R 2.613 4–6 5 2.000R 4.060 4–6 5.548 4.060 4.	60 20 16 16 16 .10 .40 .50 2-3 2 1.000L 1.620 2-3 2 1.000L 2-640 2-3 2 1.000L 2-613 2-4 3 1.651L 3.972 1-4 3 3.96R 5.403 1-4 3 3.96R 7.071 1-6 3 5.398L	60 20 16 16 .10 .50 .40 2-3 2 1.000L .800 2-3 2 1.000L 3.267 2-4 3.267 2-4 3.891L 4.779 1-4 3.868R 6.410 1-4 3.868R 8.240 1-6 3.902L
60 20 16 .20 .50 .50 5-6 6 .997R 1.350 5-6 6 .997R 2.176 4-6 5 2.004R 4.620 2-6 4.373L 4.6304 1-6 3.4298L 10.533	60 20 16 16 .20 .40 .40 .40 .40 .64 2-3 2 1.000 .62 2-3 2 .20 .64 3 1.24 2 .369 5.43 1-4 2 2 .369 7.22 1-6 8 8 8 1-6 8 8 8 8 8 8 8 8 8 8 8 8 8	
.200L	.200R	1.836L
--	--	--
---	--	
5.201L 18.470 22 56 8 20 8 .10 .30 .60	.932L 18,477 23 56 8 20 8 .20 .20 .60 5 5	.400R 18.202 24 56 8 20 8 .20 .30 .50
5.868L 17.876 26 60 8 22 8 8 .10 .30 .60 2 2 2 0 .750 1-2 2 1.000R 1.620 1-2 2 1.000R 2.2 1.000R	.865L 17.942 27 60 8 22 .20 .20 .60 5 5 0 .500 3-4 3 2.000L 1.280 3-4 3 2.000L 2.26 3-4 3	.600R 17.604 28 60 8 22 8 .20 .30 .50 2 2 0 .750 12 2 1.600R 1.764 12 2 1.600R 2.993
1,000R 17,210 29 64 8 24 8 1,10 2,20 70 4 4 0 0,585 3-4 4 1,996R 2,632 3-4 4 1,996R 2,632 3-4 4 2,632 3-5 4 4 2,632 3-4 4 4 2,996R 2,632 3-4 4 4 2,996R 2,632 3-4 4 4 4 2,996R 2,996R 2,632 3-4 4 4 4 2,996R	6.585L 17.292 30 64 8 24 8 .10 .30 .60 2 2 0 .750 1-2 2 1.000R 2.613 1-2 2 1.000R 2.613 1-2 2 3.3338L 4.833	
.800R 17.806 25 60 8 22 8 .10 .20 .70 4 4 0 .585 3-4 4 1.996R 2.632 3-4 4 1.996R 3.785 4 2.330L 5.331 3-5 4 2.330L	5.868L 17.876 26 60 8 22 8 1.10 .30 .60 2 2 0 .750 1-2 1.000R 2.613 1-2 2 1.000R 2.613 1-2 2 1.000R 3.60 1-3 2 2 2 1.000R 3.60 2 2 2 2 2 2 2 2 2 2 2 2 3.000L 5.008 1-4 2 6.000L	.865L 17.942 27 60 8 22 8 8 .20 .20 .60 5 5 0 .500 3-4 3 2.000L 1.280 3-4 3 2.000L 3.240 1-3 2 2.333L 4.565 1-4 2 5.500L
.800R 17.806 25 60 8 22 8 .10 .20 .70 4 4 0 .585 3-4 4 1.996R 2.632 3-4 4 1.996R 2.632 3-4 4 2.330L 5.331 3-5 4 2.330L 7.068 1-5 3	5.868L 17.876 26 60 8 22 8 1.10 .30 .60 2 2 0 .750 1-2 1.000R 1.620 1-2 2 1.000R 2.613 1-2 2 1.000R 3.610 1-3 2 3.000L 5.008 1-4 6.880 1-5 3	.865L 17.942 27 60 8 22 8 8 .20 .20 .60 5 5 0 .500 3-4 3 2.000L 1.280 3-4 3 2.000L 2.253 3-4 3 2.000L 2.253 1-3 2 2.333L 4.565 1-4 2 5.500L 6.403 1-5 3
.800R 17.806 25 60 8 22 8 .10 .20 .70 .70 4 4 0 .585 3-4 4 1.996R 1.496 2.632 3-4 4 2.936R 2.5330L 5.331 3-5 4 2.330L 7.068 1-5 3 3 1-5 4 1.996R 1.99	5.868L 17.876 26 60 8 22 8 8 .10 .30 .60 .750 1-2 2 1.000R 1.620 1-2 1.000R 2.610 1-3 2 3.000L 5.008 1-4 6.880 1-5 3 1.000R 1.1.413	.865L 17.942 27 60 8 22 8 8 .20 .20 .60 5 5 0 .500 3-4 3 2.000L 1.280 3-4 3 2.000L 2.261 3-4 3 2.000L 2.265 5 6.403 1-5 5 6.403 1-5 3 1.400R 11.025
---	--	---
--	---	--
--		$\frac{\mathbf{W}\mathbf{h}}{\mathbf{A}\mathbf{x}}$
48 12 14 8 .20 .20 .60 5 5 0 .500 3-4 3 2.000L	48 12 14 8 .20 .30 .50 2 2 0 .750	52 12 16 8 .10 .20 .70 4 4 0 .585 3-4 4 1.996R
52 12 16 8 .20 .30 .50 2 2 2 0 .750 2 2 2 2 2 0 1.500 1-2 2.400R 2.640R 2.640R	56 12 18 8 .10 .20 .70 .70 .4 4 0 .585 3–4 4 1.996R 1.496 3–4 1.996R 2.632 2.632	56 12 18 8 .10 .80 .60 2 2 0 .750 2 2 0 1.500 1-2 2.1.500 2.430 1-3 2.2.000L
56 12 18 8 .10 .20 .70 .70 .4 4 0 .585 3–4 4 1.996R 1.496 4 1.996R 2.632 3–5 4 4.065L 4.020 3.55	56 12 18 8 .10 .30 .60 2 2 2 0 .750 2 2 1.500R 2.430 1-3 2 2.000L 3.660 1-4	
52 12 16 8 .20 .20 .60 5 5 0 .500 3-4 3 2.000L 1.280 3-4 3 2.000L 1.285 4 1.333L 3.627 2-5 4 2.000R 5.264 1.353L 1.353L 1.353L	52 12 16 8 .20 .30 .50 2 2 0 .750 2 2 2 0 1.500 1-2 2.400R 2.646 1-3 2.204L 4.135 1-4 2.555L 5.993 1-4 2.555L 8.057	56 12 18 8 .10 .20 .70 4 4 0 .585 3-4 1.996R 1.496 2.632 3-5 4 1.665L 4.020 3.5 4 1.665L 5.760 2-5 4 1.595R 7.909
52 12 16 8 .20 .20 .60 5 5 0 .500 3-4 3 2.000L 1.280 3-4 3 2.000L 1.285 4 1.333L 3.627 2-5 4 2.000R 5.264 1.353L 1.353L 1.353L	52 12 16 8 .20 .30 .50 2 2 0 .750 2 2 2 0 1.500 1-2 2.400R 2.646 1-3 2 2.400R 2.504L 4.135 1-4 2.555L 5.993 1-4 2.555L 8.057	56 12 18 8 .10 .20 .70 4 4 0 .585 3-4 1.996R 1.496 2.632 3-5 4 1.665L 4.020 3.5 4 1.665L 5.760 2-5 4 1.595R 7.909
2 4.250L 5.689 1-5 3 .600R 8.006 1-5 3 6.00R 13.005	52 12 16 8 .20 .20 .60 5 5 0 .500 3-4 3 2.000L 1.280 3-4 3 2.000L 1.283 3-5 4 2.253 3-5 4 2.000R 5.2000R 5.2000R 5.2000R 5.2000R 5.2000R 5.2000R 5.2000R 5.2000R 7.424 1.253 3.2000R 5.2000R 5.2000R 5.2000R 5.2000R 7.424 1.253 3.2000R 7.424 1.253 3.2000R 7.424 1.253 3.2000R 7.424 1.253 3.2000R 7.424 1.253 3.2000R 7.424 1.253 3.2000R 7.424 1.2000R 7.424 1.2000R 7.424 1.2000R 7.424 1.2000R 7.424 1.2000R 7.424 1.2000R	52 12 16 8 .20 .30 .50 .50 2 2 0 .750 2 2 2 0 1.500 1-2 2 2.440R 2.646 1.3 2 2.5551L 5.993 1-4 2 2.5555L 5.993 1-5 2.555468L 1.5568R
3 2 2.204L 4.135 1-4 2 2.555L 8.057 1-5 2 5.468L 1.2506 1.506 1.506 1.507 2 2.506R	56 12 18 8 .10 .20 .70 .70 .4 4 0 .585 3-4 1.996R 1.496 3-4 1.99632 3-5 4 1.665L 5.760 2-5 4 1.595R 7.909 1-5 3 .665L 12.741 1-5 3 .665L	12 18 8 10 .30 .80 .80 .750 2 2 2 0 1.500 1-2 2 1 500R 2.430 1-3 2 2.000L 5.361 1-5 3 800R 7.411 1-5 3 800R 12.408 1-5 3 800R 12.408 1-5 3 800R
--	---	--
--	---	
68 12 24 8 .10 .30 .60 2 2 0 .750 2	68 12 24 8 .20 .20 .60 5 0 .500 3–4 3 2.000L	68 12 24 8 .20 .30 .50 2 2 0 .750
56 16 16 8 20 30 .50 2 2 0 .750 2 2 2 3 0 1.500 1-2 2 3.200R 2.300R 2.300R 2.300R 2.300R 2.300R 2.300R 2.300R 2.300R 2.300R 3.000R 3.000	60 16 18 8 .10 .20 .70 .4 4 0 .585 3–4 4 1.996R 1.496 3–4 4 1.996R 3–4 3–4 4 3–4 3–4 4 3–4 3–4 4 3–4 4 3–4 3–	2.77 2.17 2.17 2.10 2.10 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17
0 1.500 1-2 2 2.400R 3.872 1-3 2 1.206L 5.153 1-4	56 16 16 8 .10 .20 .70 4 4 0 .585 3-4 4 1.996R 1.496 3-4 4 1.996R 2.632 3-5 4 1.332L 4.235 2-5 4 6.102 2-5	56 16 16 8 .10 .30 .60 2 2 0 .750 2 2 2 3.200L 2.321 2.321 2.286R 3.892 2.5664 2.5664
56 16 16 16 16 18 2.20 .20 .500 5 5 0 .500 3–4 3 2.000L 1.285 2-4 3 3-4 3 2.000L 2.253 2-4 3 3.627 2-5 4 2.000R 5-5 4 2.000R 5-5 4 2.000R 5-7 1.333R 5.200 6.200	56 16 16 8 20 30 .50 2 2 0 .750 2 2 3.200R 2.321 1-3 2.396R 3.737 1-4 2.075L 7.627 1-5 2.5068L	60 16 18 8 .10 .20 .70 4 4 0 .585 3–4 4 1.996R 2.632 3–5 4 1.020 3–5 4 1.665L 5.760 2–5 4 1.595R 7.909 1.570 3–4 4.020 3–5 4.020 3–6 4.020 3–7 4.020 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.
60 16 18 8 .10 .20 .70 4 4 0 .585 3–4 4 1.996R 2.632 3–5 4 1.020 3–5 4 1.665L 5.760 2–5 4 1.595R 7.909 1.570 3–4 4.020 3–5 4.020 3–6 4.020 3–7 4.020 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	
--	--	---
3-4	3-4	$\frac{1.280}{3-4}$
80 16 28 8 .10 .60 2 2 0 .750 2 2 0 1.500 3-4 3 2.000L 2.253		WI Axx Spp Hi Lo On Ax
.20 .20 .5 5 5 0 .500 3-4 3 2.0001 1.280 3-4 3 2.0001 2.253 3-4 3 2.0001 3.240 3.240 3-4 3 2.0001 3.240	76 16 26 8 20 30 50 2 2 0 750 2 2 0 1.500 1-2 2 3.200R 3.528 1-2 2 3.200R	80 16 28 8 .10 .20 .70 4 4 0 .585 3–4 4 1.996R 2.632 3–4 4 1.996R 2.632 3–4 4 1.996R 2.632 3–4 4 1.996R 2.632 3–4 4 1.996R 2.632 3–4 4 1.996R 2.632 3–4 4 1.996R 2.632 3–4 4 1.996R 2.632 3–4 4 1.996R 2.632 3–4 4 1.996R 1.996R 2.632 3–4 4 1.996R 1.996R 2.632 3–4 4 1.996R 1.99
G R M G	72 16 24 8 .10 .20 .70 4 4 0 .585 3-4 1.996R 1.496 2.632 8-4 4.996R 3.785 3-5 4 2.663L 5.121 3-5 4 6.855	72 16 24 8 .10 .30 .60 2 2 0 .750 2 2 0 1.500 3-4 3 2.000L 2.253 3-4 3 2.000L 3.240 2-4 3 4.000R 4.574 2-4
80 16 28 8 .10 .20 .70 4 4 0 .585 3–4 1.996R 2.632 3–4 4 1.996R 3.785 3–4 4 1.996R 3.785 3–4 4 1.996R 3.785 3–4 4 1.996R 3.785 3–4 4 1.996R 3.785 3–4 4 1.996R 3.785 3–4 4 1.996R 3.785 3.785 3.785 3.785 3.785 3.785 3.785 4.785	80 16 28 8 .10 .30 .60 .2 2 0 .750 2 2 0 1.500 3-4 3 2.000L 2.253 3-4 3 2.000L 4.232 2-4 3 4.857R 5.775	
80 16 28 8 .10 .30 .60 2 2 0 .750 2 2 0 1.500 3-4 3 2.000L 3.24 3 2.000L 3.24 3 2.000L 3.24 3 2.000L 3.24 3 2.000L 3.24 3 2.000L 3.24 3 3.24 3.25 3.24 3.20 3.24 3.24 3.20 3.24 3.24 3.20 3.24 3.20 3.24 3.20 3.24 3.20 3.24 3.20 3.24 3.20 3.24 3.20 3.24 3.20 3.24 3.20 3.24 3.20 3.00 3.0		Ax Spp. Hir Lo On Ax
G	3-4	1-2
--	--	---
--	--	--
--	--	--
64 8 18 8 .05 .30 .65 2-3	64 8 18 8 .10 .20 .70	8 18 8 .10 .30 .60 2-3
.286L 1.252 4-6 5 .667L 2.151 4-6 5 .667L	68 8 20 8 .10 .20 .70 7-8 8 .000R .448 4-6 5 .667L 2.316 4-6 5 .667L 2.316	68 8 20 8 .10 .80 .60 2-3 3 1.000R .480 1-3 2 .250R 1.301 1-3 2 .250R 1.301 1-3 2 .250R 1.300 1-3 2 .250R 1.300 1.3
68 8 20 8 .10 .80 .60 2-3 3 1.000R .480 1-3 2 .250R 1.301 1-3 2 .250R 1.301 1-3 2 .250R 1.301 1-3 2 .250R 1.300 1-3 .250R 1.300 1-3 .250R 1.300 1-3 .250R 1.300	48 12 8 8 .05 .20 .75 7–8 8 1.000R .480 4–6 5 .667L 1.360 2–6 4.308L 2.677 2–8 1.684L 4.568 2–8 5	48 12 8 8 .05 .30 .65 2-3 3 1.000R .480 2-4 3 .512L 1.336 2-5 3 1.786L 2.660 2-7 4.382 2-8 5
68 8 20 8 .05 .20 .75 7–8 8 1.000R .480 4–6 .667L 1.360 4–6 .667L 3.605 3–6 5 1.637R 4.804 4.805 6.671L 6.771L 6.	68 8 20 8 .05 .65 .2-3 1.000 R .480 1-3 2 .286 L 1.252 4-6 5 .667 L 2.151 4-6 5 .637 L 3.125 2-6 4 3.275 R 4.434	68 8 20 8 .10 .20 7-8 8 1.000R .448 4-6 5 .667L 2.316 4-6 5 .667L 2.316 3.365 3-6 5 1.769R 4.493 4.493 4.493 4.493 4.493 4.493 4.493 4.493 4.493 4.493 4.493 4.493 4.494 4.493 4.493 4.493 4.494 4.493 4
C N B M C	64 8 18 8 .05 .20 .75 7–8 1.000R .480 4–6 5 .667L 2.482 4–6 5 .667L 2.482 4–1 2.482 4–2 4–3 4.2314 4.3444 2–8 5 5 5 5 5 5 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8	64 8 18 8 .05 .30 .65 2-3 3 1.000R .480 1-3 2 2.286L 1.252 4-6 5 .667L 2.151 4-6 5 .667L 2.125 2-6 4 4.696 1-6 4.696
68 8 20 8 .10 .60 .60 2-3 3 1.000R .480 1-3 2 .250R 1.301 1-3 2 .250R 2.301 1-3 2 .250R 1.301 1-3 2 .250R 1.301 1-3 2 .250R 1.301 1-3 2 .250R 1.301 1-3 2 .250R 1.301 1-3 2 .250R 1.301 1-3 2 .250R 1.301 1-3 2 .250R 1.301 1-3 2 .250R 1.301 1-3 2 .250R 1.301 1-3 2 .250R 1.301 1-3 2 .250R 1.301 1-3 2 .250R 1.301 1-3 2 .250R 1.301 1-3 2 .250R 1.301 1-3 2 .250R 1.301 1-3 2 .250R 1.301 1-5 3 2 .719L 4.555 1-6 3 4.816 4.855 1-6 3 4.816 4.855 1-6 3 4.855 1-6 3 4.855 1-6 3 4.855 1-6 3 4.855 1-6 3 4.855 1-6 3 4.855 1-6 3 4.855 1-6 3 4.855 1-6 3 4.855 1-6 3 4.855 1-6 3 4.855 1-6 3 4.855 1-6 6 8 4.855 1-6 6 8 4.855 1-6 6 8 4.855 1-6 8 4.855 1-6 8 4.855 1-6 8 4.855 1-6 8 4.855 1-6 8 4.855 1-6 8 4.855 1-6 8 4.855 1-6 8 4.855 1-6 8 4.855 1-6 8 4.855 1-6 8 4.855 1-6 8 4.855 1-6 8 4.855 1-6 8 4.855 1-6 8 8 8 8 8 8 8 8 8 8 8 8 8	48 12 8 8 8 .05 .20 .75 7–8 8 1.000R .480 4–6 .5 .6671L 1.360 2–6 4.308L 2.677 2–8 1.684L 4.568 2–8 1.684L 6.929 1–8 5.900L 9.314	48 12 8 8 .05 .30 .65 2-3 1.000R .480 2-4 3 .512L 1.336 2-5 3 1.786L 2.660 2-7 4 1.025L 4.382 2-8 5.527L 6.660 1-8 5.000R 9.081
68 8 20 8 10 .30 .60 2-3 3 1.000R .480 1-3 2 .250R 1.301 1-3 2 .250R 2.350R 1.301 1-5 3 2.719L 4.555 1-6 3 4.816 6.946 1.956 1.	48 12 8 8 .05 .20 .75 7–8 8 1.000R .480 4–6 .5 .667L 1.360 2–6 4 .308L 2.677 2–8 5 1.684L 6.929 1–8 .901L 9.314 1–8	48 12 8 8 .05 .30 .65 2-3 3 1.000R .480 2-4 3 .512L 1.336 2-5 3 1.786L 2.660 2-7 4 4.382 2-8 5.527L 6.660 1-8 5.00R 9.081 1-8 5
68 8 20 8 10 20 7-8 8 1.000R .448 4-6 5 .667L 2.316 4-6 5 .667L 2.316 3-6 5 1.769R 4.493 4-8 6.087 1-8 5 .0861 10.008 10.0	68 8 20 8 .10 .60 2-3 3 1.000R .480 1-3 2.250R 1.301 1-3 2.250R 2.301 1-3 2.250R 3.301 1-5 3 2.719L 4.816L 6.234 1.4816L 6.234 1.40L 10.060	48 12 8 8 8 .05 .75 7-8 8 1.000R .480 4-6 5 .667L 1.360 2-6 4 .308L 2.677 2-8 5 1.684L 4.568 2-8 5 1.684L 4.929 1-8 5 .900L 9.314 1-8 5 .900L 1.310 1.480
68 8 20 8 .05 .30 .65 2-3 1.000R .480 1-3 2 .286L 1.252 4-6 5 .667L 2.151 4-6 5 .667L 4.434 1.25 4.434 1.25 4.434 1.25	68 8 20 8 10 20 7-8 8 1.000R .448 4-6 5 .667L 1.270 4-6 5 .667L 2.316 4-6 5 .667L 2.316 4-6 5 .667L 1.270 4-6 5 .667L 1.270 1.200 1.	68 8 20 8 10 .30 .60 2-3 3 1.000R .480 1-3 2 .250R 1.301 1-3 2 .250R 2.301 1-3 2 .250R 2.301 1-6 3 3 2.719L 4.555 1-6 3 4.814 1-8 4.140L 1.0060
---	--	---
---	--	--
45 64 12 16 8 .05 .20	46 64 12 16 8 .05 .30	47 64 12 16 8 .10 .20
46 64 12 16 8 .05 .30 .65 2-3 3 1.000R 1.215 4-6 5.667L 2.151 2-6 4 2.406R	47 64 12 16 8 .10 .20 .70 7-8 1.000R .448 4-6 5.556L 1.2270 4-6 5.556L 2.316 3-6 5 1.385R	48 64 12 16 8 • .10 .60 2-3 1.000R .480 2-3 1.000R 1.215 1-3 2.750R 2.108 1.55
60 12 14 8 .10 .30 .60 2-3 3 .480 2-3 1.000R 1.215 1-3 2 .750R 2.108 1-5 3 1.282 3 1.282 1.384 1.3	45 64 12 16 8 .05 .20 .75 7–8 8 1.000R .480 4–6 5.667L 1.360 4–6 5.667L 2.482 3–6 51.273R 3.627L	46 64 12 16 8 .05 .30 .65 2-3 3 1.000R 480 2-3 3 1.000R 1.215 4-6 5 .667L 2.151 2-6 4 2.406R 3.260 2-6
42 60 12 14 8 .05 .30 .65 2-8 3 1.000R .480 2-3 1.000R .480 2-3 1.000R .481 2-6 5-667L 2.151 2-6 4 1.971R 3.527 2-7 2-8 1.971R 3.527 3-9 1.971R 3.527 3-9 1.971R 3.527 3-9 1.971R 3.527 3-9 4-9 1.971R 3.527 3-9 1.971R 3.527 3-9 1.971R 3.527 3-9 1.971R 3.527 3-9 1.971R 3.527 3-9 1.971R 3.527 3-9 1.971R 3.527 3-9 1.971R 3.527 3-9 1.971R 3.527 3-9 1.971R 3.527 3-9 1.971R 3.527 3-9 1.971R 3.527 3-9 1.971R	60 12 14 8 .10 .20 .70 7-8 8 1.000R .448 4-6 5.667L 1.270 4-6 5.667L 2.316 2-6 4 .744R 3.489 4-8 1.200L 5.130 2-8 5 1.822L	60 12 14 8 .10 .30 .60 2-3 1.000 R .480 2-3 1.000 R 1.215 1-3 2.750 R 2.108 1-5 3 1.282 L 3.406 1-6 3 3.132 L 5.069
42 60 12 14 8 .05 .30 .65 2-3 1.000R 1.215 4-6 5 .667L 2.151 2-6 4 1.971R 3.527 2-6 4 1.971R 5.239 2-8 5 .400 4.800 2-151 2-6 4 1.971R 5.239 2-8 5 .400 4.971R 5.239 2-8 5 .400 4.971R 5.239 2-8 5 .400 4.971R 5.239 2-8 5 .400 4.971R 5.239 2-8 5 .400 4.971R 5.239 2-8 5 .400 4.971R 5.239 2-8 5 .400 4.971R 5.239 2-8 5 .400 4.971R 5.239 2-8 5 .400 4.971R 5.239 2-8 5 .400 4 1.971R 5.239 2-8 5 .400 4 1.971R 5.239 2-8 5 .400 1.971R 5.239 2-8 .400 1.971R 5.239 2-8 .400 1.971R 5.239 2-8 .400 1.971R 5.239 2-8 .400 1.971R 5.239 2-8 .400 1.971R 5.239 2-8 .400 1.971R 5.239 2-8 .400 1.971R 5.249 1.971R 5.249 1.971R 5.249 1.971R 5.249 1.971R 5.249 1.971R 5.249 1.971R 5.249 1.971R 5.249 1.971R 5.240 1.	60 12 14 8 .10 .20 .70 7-8 8 1.000R .448 4-6 5 .667L 1.270 4-6 5 .667L 2.316 2-6 4 744R 3.489 4-8 6 1.200L 5.130 2-8 5 1.822L 7.350 1-8 5 060R 12.100	60 12 14 8 .10 .30 .60 .60 .2-3 3 1.000R .480 2-3 3 1.000R 1.215 1-3 2 7.750R 2.108 1-5 3 3.406 1-6 3 3.132L 5.069 1-6 3 3.132L 6.944 4.20L 11.782
68 12 18 8 .05 .30 .65 2-3 3 1.000R .480 2-3 3 3 1.000R 1.215 4-6 5 .667L 2.151 4-6 4 4.696 2-841R 6.403 1-8 5 .650R 11.035		WI Axx Spp Hii Loo On Ax
---	---	---
---	--	--
68 16 16 8 .10 .20 .70 7-8 8 1.000R	68 16 16 8 .10 .30 .60 2-3 3 1.000R .480	72 16 18 8 .05 .20 .75 7–8 8 1.000R
64 16 14 8 .10 .30 .60 2-3 3 1.000R .480 2-3 3 1.000R 1.215 2-4 3 1.286 2.30 .60 2-3 3 2.30 .480 2-3 3 2.30 .480 2-3 3 2.30 .480 2.30 .480 2.30 .480 .480 .290 .480 .480 .290	65 68 16 16 8 .05 .20 .75 7 8 8 1.000R .480 4-6 5 .667L 1.360 4-6 5 .667L 2.482	66 68 16 16 8 .05 .30 .65 2–3 3 1.000R 1.215 4–6 5 .667L 2.151 2–6
8 8 1.000R .480 4-6 5 .667L 1.360 4-6 5 1.273R 3.62 4.63 6.657L 2.482 4.607L 2.482 4.88	66 68 16 16 16 8 .05 .30 .65 2-3 1.000R .480 2-3 1.000R 1.215 4-6 5 .667L 2.151 2-6 4 2.306R 3.267 4.2151 2-6 4.2406R 4.965	68 16 16 18 8 .10 .20 .70 .7-8 8 1.000R .448 4-6 .5 .667L 1.270 4-6 .5 .667L 2.316 3-6 .5 .385R 6 6 .385R 6
66 68 16 8 .05 .30 .65 2-3 1.000R .480 2.3 1.000R 1.215 4-6 5 .667L 2.151 2-6 4 2.366R 3.266 4.2406R 4.965 2-8 5 5 5 5 5 5 6 5 6 5 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8	68 16 16 16 18 .10 .20 .70 7-8 8 1.000R .448 4-6 5 .667L 2.316 3-6 5 1.385R 3.385 4-8 6 1.600L 4.866 2-8 5 1.911L	68 16 16 8 .10 .30 .60 2-3 3 1.000R .480 2-3 3 1.000R 1.215 4-6 5 .667L 1.985 2-5 3 3.445L 2.637R 4.682 1-6 3 3.342L
4-6 4 2.841R 4.696 2-6 4 4.696 2-6 4 5.841R 6.403 2.8 5		Wilder Axx Sp Hir Lo On Ax
66 68 16 16 16 16 16 18 .05 .30 .65 2-3 1.000R .480 2-3 1.000R 1.215 4-6 5 .667L 2.151 2-6 4 2.306R 3.260 2-6 4.965 5 .358L 6.792 1-8 5 600R 1.545	68 16 16 18 8 .10 .20 7-8 8 1.000R .448 4-6 5 .667L 1.270 4-6 5 .667L 2.316 3-6 1.385R 3.385 4-8 6 1.600L 4.866 2-8 5 1.911L 6.875 2 8 5 1.911L 11.362 1-8 5	68 16 16 8 10 30 .30 .60 2-3 3 1.000R 1.215 4-6 5 .6667L 1.985 2-5 3.4445L 3.100 2-6 4 2.637R 4.662 1-6 3 3.3445L 1-6 4 1-8 4 060L 10.940 1-8 4
---	---	---
---	--------	--------
X X' C a ₁	16 24 8 .05	16 24 8 .05
16 24 8 .16 .30 .60 .60 2-3 3 1.000R 1.215 4-6 .667L 1.985 1-3 2 2.250R		
84 16 24 8 .10 .20 .70 7–8 1.000R .448 4–6 5 .667L 1.270 4–6 5 .667L 2.316 4–6 5 .667L 2.346 4–6 5 .667L 2.346 4–6 5 .667L 2.346 4–6 5 .667L 2.346 4–6 5 .667L 2.346 4–6 5 .667L 2.346 4–6 5 .667L 2.346 4–6 5 .667L 2.346 4–6 5 .667L 2.346 4–6 5 .667L 2.346 4–6 4–6 5 .667L 2.346 4–6 5 .667L 2.346 4–6 5 .667L 2.346 4–6 5 .667L 2.346 4–6 5 .667L 2.346 4–6 5 .667L 2.346 4–6 5 .667L 2.346 4–6 5 .667L 2.346 4–6 5 .667L 4–6 5 .667L 4–6 5 .667L 4–6 5 .667L 4–6 5 .667L 4–7 4–7 4–7 4–7 4–7 4–7 4–7 4–7	16 24 8 .16 .30 .60 2-3 3 1.000R 1.215 4-6 5 .667L 1.985 1-3 2 1.250R 2.2916 1-3 2 1.250R 2.316 1-3 2 2.316 1.250R 2.316 1.250R 2.316 2.316 2.316 3.31	
84 16 24 8 .10 .20 .70 7–8 8 1.000R .448 4–6 5 .667L 2.316 4–6 5 .667L 3.365 4–6 5 .667L 4.3865 4–6 5 .667L 3.365 4–6 5 .667L 3.365 4–6 5 .667L 3.365 4–6 5 .667L 3.365 4–6 5 .667L 3.365 4–6 5 .667L 3.365 4–6 5 .667L 3.365 4.67L 4.	16 24 8 1.16	
6.075	8,556	11.05
.50	.30	1.250
4.565 3.929 3.630 3.929 3.840 3.226 3.840	6.762 6.085 5.796 6.144 5.780 5.264 6.016	8.979 8.278 8.257 8.615 7.744 7.751 8.513
11.138$	15.728 15.110 15.913 14.576 15.272 16.128	$\begin{array}{c} 20.702 \\ 20.068 \\ 20.890 \\ 19.521 \\ 20.258 \\ 21.123 \end{array}$
4.163 3.700 3.361 3.700 3.082 3.736	5.850 5.200 4.608 5.200 4.332 5.227	7.538 6.700 6.047 6.700 5.582 6.784
2.500 2.101 2.503 2.000 2.207 2.341	3.750 3.600 4.252 3.309 3.955 4.174	5.000 5.100 6.002 4.807 5.703 6.008
2.430 2.025 1.901 2.102 2.025 1.814 2.205	3.920 3.267 3.276 3.602 3.267 3.310 3.953	5.821 5.167 5.125 5.456 4.951 4.900 5.744
18.603		
15.101 14.929 15.551	$\begin{array}{c} 20.081 \\ 19.903 \\ 20.542 \end{array}$	
L = 36 X = 12 X' = 16 C = 8	13 14 15 16 17 18	.10 .10 .10 .20 .20
11.411 11.233 11.067 10.296 10.150 10.603	16.408 16.225 16.050 15.272 15.113 15.602	21.406 21.220 21.040 20.258 20.090 20.602
7.577 7.307 7.618 6.596 6.717	9.795 9.803 10.076 9.003 9.192	14.752 14.802 15.024 14.002 14.161
5.847	8.234	10.728
.60
.50
.40
.50
.40 | .640
.640
.800
.533
.640 | 1.620
1.620
2.025
1.350
1.620 | 2.613
2.753
3.400
2.304
2.936 | 4.060
4.135
4.968
3.541
4.427 | 5.548
5.802
6.800
5.185
6.240 | 7.215
7.470
8.632
6.850
8.072 | 12.106
12.222
13.329
11.427
12.560 | 17.105
17.138
18.283
16.362
17.528 | | L = 44 $X = 16$ $X' = 8$ $C = 12$ | 31
32
33
34
35 | .10
.10
.10
.20
.20 | .30
.40
.50
.30
.40 | .60
.50
.40
.50 | .640
.640
.800
.533
.640 | 1.814
1.620
2.025
1.509
1.620 | 3.309
2.872
3.454
2.756
2.809 | 4.920
4.570
5.120
4.240
4.266 | 7.150
6.813
7.366
6.238
6.402 | 9.400
9.112
9.849
8.254
8.896 | 14.336
14.067
14.828
13.199
13.888 | 19.329
19.041
19.816
18.166
18.884 | | $L = 48 \ X = 16 \ X' = 12 \ C = 12$ | 36
37
38
39
40 | .10
.10
.10
.20
.20 | .30
.40
.50
.30
.40 | .60
.50
.40
.50 | .640
.640
.800
.533
.640 | 1.620
1.620
2.025
1.350
1.620 | 2.936
2.872
3.454
2.444
2.809 | 4.427
4.284
5.049
3.687
4.266 | 6.361
6.123
6.951
5.570
6.099 | 8.609
8.526
9.360
7.569
8.390 | 13.510
13.461
14.328
12.483
13.376 | 18.508
18.423
19.309
17.460
18.367 | | $L = 52 \\ X = 16 \\ X' = 16 \\ C = 12$ | 41
42
43
44
45 | .10
.10
.10
.20
.20 | .30
.40
.50
.30
.40 | .60
.50
.40
.50 | .640
.640
.800
.533
.640 | 1.620
1.620
2.025
1.350
1.620 | 2.613
2.872
3.454
2.236
2.809 | 4.060
4.284
5.049
3.434
4.266 | 5.600
5.941
6.878
5.101
6.099 | 7.842
7.954
8.880
6.930
7.933 | 12.700
12.866
13.834
11.873
12.870 | 17.700
17.813
18.807
16.839
17.856 | | TABLE | 8.12 | (Conti | inued) | | | | | | | | | | |---|-----------------|------------|------------|------------|--------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------|-------------------------|--------------------| | | 46 | .10 | .30 | .60 | .640 | 1.814 | 3.309 | 4.807 | 6.561 | 8.809 | 13.578 | 18.563 | | L = 48 | 47 | .10 | .40 | .50 | .640 | 1.620 | 2.756 | 4.004 | 6.067 | 8.303 | 13.161 | 18.116 | | X = 16 | 48 | .10 | .50 | .40 | .800 | 2.025 | 3.267 | 4.779 | 6.697 | 9.119 | 14.081 | 19.058 | | X' = 8 | 49 | .20 | .30 | .50 | .533 | 1.509 | 2.756 | 4.064 | 5.661 | 7.656 | 12.302 | 17.249 | | C = 16 | 50 | .20 | .40 | .40 | .640 | 1.620 | 2.613 | 4.060 | 5.833 | 8.142 | 13.123 | 18.112 | | | 51 | .10 | .30 | .60 | .640 | 1.620 | 2.936 | 4.427 | 5.921 | 8.000 | 12.736 | 17.729 | | L = 52 | 52 | .10 | .40 | .50 | .640 | 1.620 | 2.613 | 3.972 | 5.601 | 7.673 | 12.572 | 17.511 | | X = 16 $X' = 12$ | 53 | .10 | .50 | .40 | .800 | 2.025 | 3.267 | 4.779 | 6.603 | $8.644 \\ 6.971$ | $13.591 \\ 11.571$ | $18.559 \\ 16.531$ | | X' = 12 | 54 | .20 | .30 | .50 | .533 | 1.350 | 2.444 | 3.687 | $4.971 \\ 5.833$ | 7.670 | 12.621 | 17.603 | | C = 16 | 55 | .20 | .40 | .40 | .640 | 1.620 | 2.613 | 4.060 | | | | | | | 56 | .10 | .30 | .60 | .640 | 1.620 | 2.613 | 4.060 | 5.548 | 7.215 | 11.910 | 16.908 | | L = 56 | 57 | .10 | .40 | .50 | .640 | 1.620 | 2.613 | 3.972 | 5.601 | $7.269 \\ 8.435$ | $\frac{11.994}{13.108}$ | 16.915
18.066 | | X = 16 | 58 | .10 | .50 | .40 | .800 | $\frac{2.025}{1.350}$ | 3.267 | $\frac{4.779}{3.380}$ | $\frac{6.603}{4.772}$ | 6.439 | 13.108 10.978 | 15.923 | | $X' \equiv 16$ $C \equiv 16$ | 59
60 | .20
.20 | .30
.40 | .50
.40 | .533
.640 | 1.620 | $\frac{2.176}{2.613}$ | 4.060 | 5.833 | 7.665 | 12.126 | 17.101 | | C = 10 | | | | | | | | | | 9.400 | 14.145 | 19.136 | | T 40 | 61 | .10 | .30 | .60 | .640 | 1.814 | 3.309 | $\frac{4.920}{4.570}$ | $7.150 \\ 6.813$ | 9.400 9.057 | 14.145 13.852 | 18.828 | | L = 48 | $\frac{62}{63}$ | .10
.10 | .40
.50 | .50
.40 | .640 $.800$ | $\frac{1.620}{2.025}$ | $\frac{2.872}{3.454}$ | 5.120 | 7.249 | 9.635 | 14.618 | 19.607 | | X = 20
X' = 8 | 64 | .20 | .30 | .50 | .533 | 1.509 | 2.756 | 4.240 | 6.238 | 8.238 | 12.837 | 17.797 | | $\overset{\Lambda}{C} = \overset{\circ}{12}$ | 65 | .20 | .40 | .40 | .640 | 1.620 | 2.809 | 4.245 | 6.144 | 8.481 | 13.477 | 18.475 | | | 66 | .10 | .30 | .60 | .640 | 1.620 | 2.936 | 4.427 | 6.361 | 8.609 | 13.315 | 18.312 | | L = 52 | 67 | .10 | .40 | .50 | .640 | 1.620 | $\frac{2.936}{2.872}$ | 4.284 | 6.123 | 8.373 | 13.242 | 18,207 | | X - 20 | 68 | .10 | .50 | .40 | .800 | 2.025 | 3.454 | 5.036 | 6.798 | 9.142 | 14.114 | 19.098 | | X = 20 $X' = 12$ | 69 | .20 | .30 | .50 | .533 | 1.350 | 2.444 | 3.687 | 5.570 | 7.569 | 12.110 | 17.081 | | $\ddot{c} = 12$ | 70 | .20 | .40 | .40 | .640 | 1.620 | 2.809 | 4.139 | 5.707 | 7.968 | 12.959 | 17.954 | | | 71 | .10 | .30 | .60 | .640 | 1.620 | 2.613 | 4.060 | 5.600 | 7.842 | 12.501 | 17.501 | | L = 56 | 72 | .10 | .40 | .50 | .640 | 1.620 | 2.872 | 4.284 | 5.747 | 7.724 | 12.644 | 17.595 | | $\tilde{\mathbf{x}} = 20$ | 73 | .10 | .50 | .40 | .800 | 2.025 | 3.454 | 5.036 | 6.687 | 8.658 | 13.618 | 18.594 | | X' = 16 | 74 | .20 | .30 | .50 | .533 | 1.350 | 2.236 | 3.394 | 4.922 | 6.919 | 11.438 | 16.411 | | C = 12 | 75 | .20 | .40 | .40 | .640 | 1.620 | 2.809 | 4.139 | 5.707 | 7.538 | 12.448 | 17.438 | | | 76 | .10 | .30 | .60 | .640 | 1.814 | 3.309 | 4.807 | 6.561 | 8.809 | 13.391 | 18.373 | | L = 52 | 77 | .10 | .40 | .50 | .640 | 1.620 | 2.756 | 4.004 | 6.067 | 8.303 | 12.941 | 17.899 | | $ \begin{array}{l} X = 20 \\ X' = 8 \end{array} $ | 78 | .10 | .50 | .40 | .800 | 2.025 | 3.267 | 4.779 | 6.578 | 8.900 | 13.866 | 18.846 | | X′= 8 | 79 | .20 | .30 | .50 | .533 | 1.509 | 2.756 | 4.004 | 5.661 | 7.656 | 11.951 | 16.887 | | C = 16 | 80 | .20 | .40 | .40 | .640 | 1.620 | 2.613 | 3.887 | 5.494 | 7.716 | 12.704 | 17.696 | | | 81 | .10 | .30 | .60 | .640 | 1.620 | 2.936 | 4.427 | 5.921 | 8.000 | 12.545 | 17.536 | | L = 56 | 82 | .10 | .40 | .50 | .640 | 1.620 | 2.613 | 3.972 | 5.403 | 7.598 | 12.348 | 17.292 | | $\mathbf{X} = 20$ | 83 | .10 | .50 | .40 | .800 | 2.025 | 3.267 | 4.779 | 6.410 | 8.421 | 13.374 | 18.345 | | X' = 12 | 84 | .20 | .30 | .50 | .533 | 1.350 | 2.444 | 3.687 | 4.971 | 6.971 | 11.206 | 16.159 | | C = 16 | 85 | .20 | .40 | .40 | .640 | 1.620 | 2.613 | 3.887 | 5.434 | 7.267 | 12.196 | 17.183 | | • | 86 | .10 | .30 | .60 | .640 | 1.620 | 2.613 | 4.060 | 5.548 | 7.215 | 11.715 | 16.712 | | L = 60 | 87 | .10 | .40 | .50 | .640 | 1.620 | 2.613 | 3.972 | 5.403 | 7.071 | 11.766 | 16,693 | | X = 20 $X' = 16$ | 88
89 | .10 | .50 | .40 | .800
.533 | $\frac{2.025}{1.350}$ | 3.267 | 4.779 | $6.410 \\ 4.620$ | $8.240 \\ 6.304$ | 12.888 | 17.850 | | C = 16 | 90 | .20 | .30 | .50
.40 | .640 | 1.620 | $\frac{2.176}{2.613}$ | $\frac{3.380}{3.887}$ | $\frac{4.620}{5.434}$ | 7.267 | 10.533 | 15.487 | | · ···· 10 | 30 | .20 | .40 | .40 | .040 | 1.040 | 4.010 | 0.001 | 0.404 | 1.201 | 11.696 | 16.677 | Table 8.13 SUMMARY OF MAXIMUM MOMENTS IN SIMPLE SPANS PRODUCED BY TYPE 2-S1-2 TRUCKS WEIGHING ONE KIP EACH Ninety six variations in the Type 2-S1-2 truck are given in this Table. Each truck number, from 1 to 96, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet and moments are in kip-feet. a₁, a₂, and a₃—Represent the ratio of gross vehicle weight on axles. | Wheel
Base
and
Axle
Spacing | Ax Ki | | Load (
Axle
Kips | s | | | | Spa | n-Feet | | | | |---|-----------------|----------------|------------------------|------------|--------------|-----------------------|-----------------------|-----------------------|------------------|-----------------------|--------------------|--------------------| | Feet | Ĥ | a ₁ | \mathbf{a}_2 | as | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | L = 36 | 1 | .10 | .20 | .70 | .585 | 1.496 | 3.156 | 5.172 | 7.593 | 10.088 | 15.083 | 20.080 | | X = 8 | $\frac{2}{3}$ | .10 | .30 | .60 | .750 | 1.630 | 3.120 | 5.001 | 7.501 | 10.001 | 15.001 | 20.000 | | $\ddot{\mathbf{X}}' \equiv 10$ | | .20 | .20 | .60 | .500 | 1.280 | 2.702 | 4.601 | 7.101 | 9.601 | $14.601 \\ 14.720$ | $19.600 \\ 19.683$ | | C = 8 | 4 | .20 | .30 | .50 | .750 | 1.764 | 3.368 | 5.271 | 7.340 | 9.782 | | 19.545 | | L = 40 | 5
6 | .10
.10 | .20
.30 | .70
.60 | .585 $.750$ | 1.496
1.620 | $\frac{2.930}{2.936}$ | 4.735 4.645 | 7.057 6.900 | 9.553 9.400 | 14.548 14.400 | 19.545 | | $\begin{array}{c} X = 8 \\ X' = 12 \end{array}$ | 7 | .20 | .20 | .60 | .500 | 1.280 | 2.509 | 4.180 | 6.503 | 9.003 | 14.002 | 19.002 | | C = 8 | 8 | .20 | .30 | .50 | .750 | 1.764 | 3.202 | 4.972 | 7.033 | 9.209 | 14.123 | 19.072 | | $\overline{\mathrm{L}=44}$ | 9 | .10 | .20 | .70 | .585 | 1.496 | 2.711 | 4.454 | 6.537 | 9.018 | 14.013 | 19.011 | | X = 8 | 10 | .10 | .30 | .60 | .750 | 1.620 | 2.756 | 4.320 | 6.301 | 8.801 | 13.801 | 18.800 | | X' = 14 | 11 | .20 | .20 | .60 | .500 | 1.280 | 2.320 | 3.845 | 5.907 | 8.406 | 13.405 | 18.404 | | C = 8 | 12 | .20 | .30 | .50 | .750 | 1.764 | 3.040 | 4.706 | 6.733 | 8.797 | 13.537 | 18.470 | | L = 48 | $\frac{13}{14}$ | .10
.10 | .20
.30 | .70 | .585 $.750$ | $1.496 \\ 1.620$ | $2.632 \\ 2.613$ | $\frac{4.235}{4.060}$ | $6.102 \\ 5.924$ | $8.482 \\ 8.203$ | $13.479 \\ 13.202$ | $18.477 \\ 18.202$ | | X = 8 $X' = 16$ | 15 | .20 | .20 | .60
.60 | .500 | 1.280 | 2.253 | $\frac{4.060}{3.627}$ | 5.456 | 7.811 | 12.808 | 17.806 | | C = 8 | 16 | .20 | .30 | .50 | .750 | 1.764 | 2.993 | 4.545 | 6.438 | 8.495 | 12.962 | 17.876 | | L = 52 | 17 | .10 | .20 | .70 | .585 | 1.496 | 2.632 | 4.020 | 5.760 | 7.947 | 12.944 | 17.942 | | X = 8 | 18 | .10 | .30 | .60 | .750 | 1.620 | 2.613 |
3.882 | 5.600 | 7.606 | 12.605 | 17.604 | | X' = 18 | 19 | .20 | .20 | .60 | .500 | 1.280 | 2.253 | 3.442 | 5.124 | 7.217 | 12.213 | 17.210 | | C = 8 | 20 | .20 | 30 | .50 | .750 | 1.764 | 2.993 | 4.386 | 6.148 | 8.198 | 12.399 | 17.292 | | L = 56 | 21 | .10 | .20 | .70 | .585 | 1.496 | 2.632 | 3.808 | 5.544 | 7.474 | 12.410 | 17.408 | | X = 8 $X' = 20$ | $\frac{22}{23}$ | .10 | .30 | .60 | .750 | 1.620 | 2.613 | 3.707 | 5.284 4.800 | 7.203 | 12.008 | 17.006 | | C = 8 | 24 | .20
.20 | .20
.30 | .60
.50 | .500 $.750$ | $\frac{1.280}{1.764}$ | $\frac{2.253}{2.993}$ | $\frac{3.260}{4.232}$ | 5.890 | $\frac{6.734}{7.905}$ | $11.618 \\ 12.019$ | 16.614 16.717 | | $\frac{C = 60}{L = 60}$ | 25 | .10 | .20 | .70 | .585 | 1.496 | 2.632 | 3.785 | 5.331 | 7.068 | 11.876 | 16.874 | | $\ddot{\mathbf{x}} = \ddot{\mathbf{s}}$ | $\frac{26}{26}$ | .10 | .30 | .60 | .750 | 1.620 | 2.613 | 3.610 | 5.008 | 6.880 | 11.413 | 16.410 | | $\mathbf{\tilde{X}'} = 22$ | 27 | .20 | .20 | .60 | .500 | 1.280 | 2.253 | 3.240 | 4.565 | 6.403 | 11.025 | 16.020 | | C = 8 | 28 | .20 | .30 | .50 | .750 | 1.764 | 2.993 | 4.232 | 5.733 | 7.617 | 11.720 | 16.150 | | L = 64 | 29 | .10 | .20 | .70 | .585 | 1.496 | 2.632 | 3.785 | 5.121 | 6.855 | 11.342 | 16.340 | | X = 8 | 30 | .10 | .30 | .60 | .750 | 1.620 | 2.613 | 3.610 | 4.833 | 6.563 | 10.818 | 15.814 | | X'=24 | 31 | .20 | .20 | .60 | .500 | 1.280 | 2.253 | 3.240 | 4.386 | 6.080 | 10.432 | 15.426 | | C = 8 | 32 | .20 | .30 | .50 | .750 | 1.764 | 2.993 | 4.232 | 5.577 | 7.333 | 11.423 | 15.593 | | L = 40 $X = 12$ | $\frac{33}{34}$ | .10 | .20 | .70 | .585 | 1.496 | 3.156 | 5.172 | 7.408 | 9.882 | 14.878 | 19.876 | | X = 12
X' = 10 | 35 | .10
.20 | .30
.20 | .60
.60 | .750
.500 | $\frac{1.600}{1.280}$ | $\frac{2.973}{2.702}$ | 4.934
4.480 | $7.300 \\ 6.707$ | $9.800 \\ 9.206$ | $14.800 \\ 14.205$ | 19.800 19.204 | | $\hat{\mathbf{C}} = 8$ | 36 | .20 | .30 | .50 | .750 | 1.575 | $\frac{2.702}{2.974}$ | 4.839 | 6.914 | 9.333 | 14.283 | 19.253 | | L = 44 | 37 | .10 | .20 | .70 | .585 | 1.496 | 2.930 | 4.735 | 6.973 | 9.346 | 14.343 | 19.341 | | X = 12 | 38 | .10 | .30 | .60 | .750 | 1.500 | 2.720 | 4.436 | 6.701 | 9.201 | 14.201 | 19.200 | | X'=12 | 39 | .20 | .20 | .60 | .500 | 1.280 | 2.509 | 4.080 | 6.113 | 8.611 | 13.608 | 18.606 | | C = 8 | 40 | .20 | .30 | .50 | .750 | 1.500 | 2.802 | 4.532 | 6.602 | 8.751 | 13.680 | 18.637 | | L = 48 $X = 12$ | 41 | .10 | .20 | .70 | .585 | 1.496 | 2.711 | 4.454 | 6.537 | 8.778 | 12.841 | 17.833 | | X = 12 | 42 | .10 | .30 | .60 | .750 | 1.500 | 2.536 | 4.160 | 6.168 | 8.603 | 13.602 | 18.602 | | X' = 14 $C = 8$ | 43
44 | .20
.20 | .20
.30 | .60 | .500 | 1.280 | 2.320 | 3.815 | 5.664 | 8.017 | 13.013 | 18.010 | | <u> </u> | 44 | .40 | .50 | .50 | .750 | 1.500 | 2.646 | 4.301 | 6.295 | 8.364 | 13.087 | 18.029 | | TABLE | 8.13 | (Conti | nued) | | | | | | | | | | |--|-----------------|--------------|------------|--------------|--------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------|------------------------|--------------------| | L = 52 | 45 | .10 | .20 | .70 | .585 | 1.496 | 2.632 | 4.235 | 6.102 | 8.344 | 13.275 | 18.273 | | X = 12 | 46 | .10 | .30 | .60 | .750 | 1.500 | 2.430 | 3.892 | 5.689 | 8.006 | 13.005 | $18.004 \\ 17.414$ | | $ \begin{array}{c} \overline{X}' \equiv \overline{16} \\ \overline{C} \equiv 8 \end{array} $ | 47
48 | .20
.20 | .20
.30 | $.60 \\ .50$ | .500
,750 | $1.280 \\ 1.500$ | $\frac{2.253}{2.646}$ | $\frac{3.627}{4.135}$ | $5.264 \\ 5.993$ | $7.424 \\ 8.057$ | $12.418 \\ 12.506$ | 17.431 | | $\frac{C = 8}{L = 56}$ | | | .20 | | .585 | 1.496 | 2.632 | 4.020 | 5.760 | 7,909 | 12.741 | 17.739 | | L = 56
X = 12 | 49
50 | .10 $.10$ | .30 | .70
.60 | .750 | 1.500 | 2.430 | 3.660 | 5.361 | 7.411 | 12.408 | 17.406 | | X = 12 $X' = 18$ | 51 | .20 | .20 | .60 | .500 | 1.280 | 2.253 | 3.442 | 4.933 | 6.854 | 11.825 | 16.820 | | C = 8 | 52 | .20 | .30 | .50 | .750 | 1.500 | 2.646 | 3.971_{-} | 5.697 | 7.755 | 11.935 | 16.841 | | L = 60 | 53 | .10 | .20 | .70 | .585 | 1.496 | 2.632 | 3.808 | 5.544 | 7.474 | 12.206 | 17.206 | | X = 12 | 54 | .10 | .30 | .60 | .750 | 1.500 | 2.430 | 3.482 | 5.089 | 6.967 | 11.813 | 16.810 | | X' = 20 | 55 | .20 | .20 | .60 | .500 | 1.280 | 2.253 | 3.260 | $4.748 \\ 5.474$ | $6.454 \\ 7.457$ | $11.232 \\ 11.584$ | $16.226 \\ 16.261$ | | $\frac{C=8}{T}$ | 56 | .20 | .30 | .50 | .750 | 1.500 | 2.646 | 3.872 | 5.331 | 7.068 | 11.673 | 16.672 | | $\begin{array}{c} L=64 \\ X=12 \end{array}$ | 57
58 | .10 | .20
.30 | .70
.60 | .585
.750 | $\frac{1.496}{1.500}$ | $\frac{2.632}{2.430}$ | $\frac{3.785}{3.422}$ | 4.829 | 6.641 | 11.218 | 16.214 | | $\hat{\mathbf{X}}' = \hat{\mathbf{Z}}$ | 59 | .20 | .20 | .60 | .500 | 1.280 | 2.253 | 3.240 | 4.565 | 6.080 | 10.641 | 15.632 | | $\ddot{c} = \ddot{s}$ | 60 | .20 | .30 | .50 | .750 | 1.500 | 2.646 | 3.872 | 5.313 | 7.164 | 11.280 | 15.689 | | L = 68 | 61 | .10 | .20 | .70 | .585 | 1.496 | 2.632 | 3.785 | 5.121 | 6.855 | 11.139 | 16.138 | | X = 12 | 62 | .10 | .30 | .60 | .750 | 1.500 | 2.430 | 3.422 | 4.608 | 6.321 | 10.625 | 15.620 | | X' = 24 | 63 | .20 | .20 | .60 | .500 | 1.280 | 2.253 | 3.240 | 4.386 | 5.871 | 10.050 | 15.040 | | C = 8 | 64 | .20 | .30 | .50 | .750 | 1.500 | 2.646 | 3.872 | 5.153 | 6.875 | 10.980 | 15.126 | | L = 56 | 65 | .10 | .20 | .70 | .585 | 1.496 | 2.632 | 4.235 | 6.102 | $8.344 \\ 7.912$ | $13.072 \\ 12.808$ | $18.071 \\ 17.806$ | | $egin{array}{l} X=16 \ X'=16 \end{array}$ | 66
67 | $.10 \\ .20$ | .30
.20 | $.60 \\ .60$ | .750 $.500$ | $\frac{1.500}{1.280}$ | $\frac{2.321}{2.253}$ | $\frac{3.892}{3.627}$ | $5.664 \\ 5.264$ | 7.254 | 12.808 12.032 | 17.026 | | C = 8 | 68 | .20 | .30 | .50 | .750 | 1.500 | 2.321 | 3.737 | 5.556 | 7.627 | 12.053 | 16.989 | | L = 60 | 69 | .10 | .20 | .70 | .585 | 1.496 | 2.632 | 4.020 | 5.760 | 7.909 | 12.538 | 17.537 | | X = 16 | 70 | .10 | .30 | .60 | .750 | 1.500 | 2.253 | 3.629 | 5,353 | 7.409 | 12.213 | 17.210 | | X' = 18 | 71 | .20 | .20 | .60 | .500 | 1.280 | 2.253 | 3.442 | 4.933 | 6.854 | 11.441 | 16.432 | | C = 8 | 72 | .20 | .30 | .50 | <u>.</u> 750 | 1.500 | 2.321 | 3.567 | 5.253 | 7.319 | 11.476 | 16.394 | | L = 64 | 73 | .10 | .20 | .70 | .585 | 1.496 | 2.632 | 3.877 | 5.544 | 7.474 | 12.004 | 17.004 | | $\begin{array}{c} X = 16 \\ X' = 20 \end{array}$ | $\frac{74}{75}$ | .10 | .30
.20 | .60 | .750 $.500$ | $\frac{1.500}{1.280}$ | $2.253 \\ 2.253$ | $\frac{3.373}{3.260}$ | $\frac{5.089}{4.748}$ | $6.907 \\ 6.454$ | $11.618 \\ 10.850$ | $16.614 \\ 15.840$ | | $C = \frac{20}{8}$ | 76 | .20 | .30 | .50 | .759 | 1.500 | 2.321 | 3.528 | 5.067 | 7.016 | 11.152 | 15.808 | | L = 68 | 77 | ,10 | .20 | .70 | .585 | 1.496 | 2,632 | 3.785 | 5.331 | 7.068 | 11.531 | 16.470 | | X = 16 | 78 | .10 | .30 | .60 | .750 | 1.500 | 2.253 | 3.240 | 4.829 | 6.549 | 11.025 | 16.020 | | X'=22 | 79 | .20 | .20 | .60 | .500 | 1.280 | 2.253 | 3.240 | 4.565 | 6.054 | 10.261 | 15.248 | | C = 8 | 80 | .20 | .30 | .50_ | 750 | 1.500 | 2.321 | 3.528 | 4.902 | 6.717 | 10.844 | 15.231 | | L = 72 | 81 | .10 | .20 | .70 | .585 | 1.496 | 2.632 | 3.785 | 5.121 | 6.855 | 11.097 | 15.937 | | X = 16 $X' = 24$ | 82
83 | .10 | .30
.20 | .60
.60 | .750 $.500$ | $\frac{1.500}{1.280}$ | $\frac{2.253}{2.253}$ | $\frac{3.240}{3.240}$ | $\frac{4.574}{4.386}$ | $6.287 \\ 5.871$ | $\frac{10.432}{9.672}$ | $15.426 \\ 14.658$ | | $C = \frac{14}{8}$ | 84 | .20 | .30 | .50 | .750 | 1.500 | $\frac{2.233}{2.321}$ | 3.528 | 4.753 | 6.422 | 10.540 | 14.677 | | L = 76 | 85 | .10 | .20 | .70 | .585 | 1.496 | 2.632 | 3.785 | 4.943 | 6.644 | 10.662 | 15.403 | | | 86 | .10 | .30 | .60 | .750 | 1.500 | 2.253 | 3,240 | 4,325 | 6.029 | 9.901 | 14.832 | | X = 16 $X' = 26$ | 87 | .20 | .20 | .60 | .500 | 1.280 | 2.253 | 3.240 | 4.232 | 5.690 | 9.240 | 14.068 | | C = 8 | 88 | 20 | .30 | .50 | .750 | 1.500 | 2.321 | 3.528 | 4.753 | 6.242 | 10.240 | 14.370 | | L = 80 | 89 | .10 | .20 | .70 | .585 | 1.496 | 2.632 | 3.785 | 4.943 | 6.435 | 10.229 | 14.870 | | X = 16 $X' = 28$ | $\frac{90}{91}$ | .10
.20 | .30
.20 | .60 | .750 $.500$ | $\frac{1.500}{1.280}$ | $\frac{2.253}{2.253}$ | $\frac{3.240}{3.240}$ | $\frac{4.232}{4.232}$ | $5.775 \\ 5.511$ | $9.401 \\ 8.840$ | $14.240 \\ 13.478$ | | $C = \frac{28}{8}$ | 92 | .20 | .30 | .60 $.50$ | .750 | 1.280 1.500 | $\frac{2.255}{2.321}$ | $\frac{3.240}{3.528}$ | $\frac{4.232}{4.753}$ | 6.081 | 9.942 | 14.066 | | L = 84 | 93 | .10 | .20 | .70 | .585 | 1.496 | 2.632 | 3.785 | 4.943 | 6.229 | 9.794 | 14.337 | | X = 16 | 94 | .10 | .30 | .60 | .750 | 1.500 | 2.253 | 3.240 | 4.232 | 5.526 | 8.962 | 13.648 | | X' = 30 | 95 | .20 | .20 | .60 | .500 | 1.280 | 2.253 | 3.240 | 4.232 | 5.335 | 8.440 | 12.890 | | C = 8 | 96 | .20 | .30 | .50 | .750 | 1.500 | 2.321 | 3.528 | 4.753 | 5.986 | 9.648 | 13.764 | Table 8.14 #### SUMMARY OF MAXIMUM MOMENTS IN SIMPLE SPANS PRODUCED BY TYPE 3-S2-3 TRUCKS WEIGHING ONE KIP EACH Eighty four variations in the Type 3-S2-3 truck are given in this Table. Each truck number, from 1 to 84, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. | Wheel
Base
and
Axie
Spacing | Truck No. | Load On
Axles
Kips | | | Span-Feet | | | | | | | | |--|-----------------|--------------------------|----------------|----------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------|--------------------|--------------------| | Feet | 1 | aı | \mathbf{a}_2 | \mathbf{a}_3 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | L = 44 | 1 | .05 | .20 | .75 | .480 | 1.360 | 2.677 | 4.568 | 6.929
 9.417 | 14.413 | 19.410 | | X = 8 | 2 | .05 | .30 | .65 | .480 | 1.336 | 2.702 | 4.391 | 6.680 | 9.180 | 14.180 | 19.180 | | X' = 8 | 3 | .10 | .20 | .70 | .448 | 1.270 | 2.531 | 4.295 | 6.541 | 9.041 | 14.041 | 19.040 | | C = 8 | 4 | .10 | .30 | .60 | .480 | 1.324 | 2.704 | 4.374 | 6.424 | 8.920 | 13.915 | 18.912 | | L = 48 X = 8 X'= 10 | 5 | .05 | .20 | .75 | .480 | 1.360 | 2.535 | 4.203 | 6.436 | 8.868 | 13.864 | 18.861 | | X = 8 | 6
7 | $.05 \\ .10$ | .30 | .65 | .480 | $\frac{1.252}{1.270}$ | $2.465 \\ 2.371$ | $\frac{4.081}{3.923}$ | $6.100 \\ 6.059$ | $8.571 \\ 8.461$ | $13.570 \\ 13.460$ | $18.570 \\ 18.460$ | | C = 8 | 8 | .10 | $.20 \\ .30$ | .70
.60 | .448
.480 | 1.301 | $\frac{2.371}{2.475}$ | 4.071 | 5.931 | 8.275 | 13.271 | 18.269 | | $L \equiv 52$ | 9 | .05 | .20 | .75 | .480 | 1.360 | 2.482 | 3.912 | 5.943 | 8.320 | 13.315 | 18.312 | | $\ddot{\mathbf{x}} = \ddot{\mathbf{s}}$ | 10 | .05 | .30 | .65 | .480 | 1.252 | 2.236 | 3.801 | 5.585 | 7.961 | 12.961 | 17.961 | | X = 8 $X' = 12$ | 11 | .10 | .20 | .70 | .448 | 1.270 | 2.316 | 3.683 | 5.584 | 7.880 | 12.880 | 17.880 | | C = 8 | 12 | .10 | .30 | .60 | .480 | 1.301 | 2.301 | 3.844 | 5.610 | 7.630 | 12.628 | 17.626 | | L = 56 | 13 | .05 | .20 | .75 | .480 | 1.360 | 2.482 | 3.716 | 5.497 | 7.814 | 12.767 | 17.763 | | | 14 | .05 | .30 | .65 | .480 | 1.252 | 2.151 | 3.527 | 5.270 | 7.353 | 12.352 | 17.351 | | X'=14 | 15 | .10 | .20 | .70 | .448 | 1.270 | 2.316 | 3.489 | 5.130 | 7.350 | 12.300 | 17.300 | | C = 8 | 16 | .10 | .30 | .60 | .480 | 1.301 | 2.301 | 3.621 | 5.295 | 7.166 | 11.985 | 16.984 | | L = 60 | 17 | .05 | .20 | .75 | .480 | 1.360 | 2.482 | 3.622 | 5.213 | 7.320 | 12.218 | 17.214 | | X = 8 $X' = 16$ | 18 | .05 | .30 | .65 | .480 | $\frac{1.252}{1.270}$ | $2.151 \\ 2.316$ | $\frac{3.284}{3.385}$ | $\frac{4.965}{4.866}$ | 6.796 | $11.743 \\ 11.720$ | $16.742 \\ 16.720$ | | C = 8 | $\frac{19}{20}$ | .10
.10 | .20
.30 | .70
.60 | .448 $.480$ | 1.301 | $\frac{2.316}{2.301}$ | 3.402 | 4.866 4.990 | $6.875 \\ 6.850$ | 11.720 | 16.342 | | $\frac{C=64}{L=64}$ | 21 | .05 | .20 | .75 | .480 | 1.360 | 2.482 | 3.605 | 4.944 | 6.827 | 11.670 | 16.666 | | X = 84 | 22 | .05 | .30 | .65 | .480 | 1.350 1.252 | $\frac{2.482}{2.151}$ | 3.125 | 4.696 | 6.476 | 11.134 | 16.133 | | $\ddot{\mathbf{X}}' = 18$ | 23 | .10 | .20 | .70 | .448 | 1.270 | 2.316 | 3.365 | 4.655 | 6.400 | 11.140 | 16.140 | | $\hat{c} = \hat{s}$ | 24 | .10 | .30 | .60 | .480 | 1.301 | 2.301 | 3.301 | 4.770 | 6.539 | 10.701 | 15.701 | | L = 68 | 25 | .05 | .20 | .75 | .480 | 1.360 | 2.482 | 3.605 | 4.804 | 6.522 | 11.121 | 16.117 | | X 8 | 26 | .05 | .30 | .65 | .480 | 1.252 | 2.151 | 3.125 | 4.434 | 6.171 | 10.525 | 15.524 | | X' = 20
C = 8 | 27 | .10 | .20 | .70 | .448 | 1.270 | 2.316 | 3.365 | 4.493 | 6.087 | 10.560 | 15.560 | | | 28 | .10 | .30 | .60 | .480 | 1.301 | 2.301 | 3.301 | 4.555 | 6.234 | 10.060 | 15.060 | | L = 48 | 29 | .05 | .20 | .75 | .480 | 1.360 | 2.677 | 4.568 | 6.929 | 9.314 | 14.310 | 19.308 | | $\ddot{X} = 12$ | 30 | .05 | .30 | .65 | .480 | 1.336 | 2.660 | 4.382 | 6.660 | 9.081 | 14.081 | 19.080 | | X' = 8 | 31 | .10 | .20 | .70 | .448 | 1.270 | 2.531 | 4.295 | 6.534 | 8.840 | 13.840 | 18.840 | | C = 8 | 32 | .10 | .30 | .60 | .480 | 1.324 | 2.600 | 4.156 | 6.272 | 8.714 | 13.710 | 18.708 | | $egin{array}{c} L \equiv 52 \\ X \equiv 12 \end{array}$ | 33 | .05 | .20 | .75 | .480 | 1.360 | 2.535 | 4.203 | 6.436 | 8.801 | 13.761 | 18.759 | | $X \equiv 12$
$X' \equiv 10$ | $\frac{34}{35}$ | $.05 \\ .10$ | $.30 \\ .20$ | .65 $.70$ | $.480 \\ .448$ | $\frac{1.215}{1.270}$ | $2.435 \\ 2.371$ | $\frac{4.081}{3.923}$ | $6.100 \\ 6.059$ | $8.474 \\ 8.301$ | $13.471 \\ 13.260$ | $18.471 \\ 18.260$ | | $\hat{C} = \frac{10}{8}$ | 36 | .10 | .30 | .60 | .480 | 1.215 | 2.391 | 3.867 | 5.732 | 8.069 | 13.067 | 18.065 | | | 37 | .05 | .20 | .75 | .480 | 1.360 | 2.482 | 3.912 | 5.943 | 8.307 | 13.213 | 18.210 | | $egin{array}{l} \mathbf{L} \equiv 56 \\ \mathbf{X} \equiv 12 \\ \mathbf{X'} \equiv 12 \end{array}$ | 38 | .05 | .30 | .65 | .480 | 1.215 | 2.217 | 3.801 | 5.556 | 7.913 | 12.862 | 17.861 | | $\hat{\mathbf{X}}' = \hat{1}\hat{2}$ | 39 | .10 | .20 | .70 | .448 | 1.270 | 2.316 | 3.683 | 5.584 | 7.825 | 12.680 | 17.680 | | C = 8 | 40 | .10 | .30 | .60 | .480 | 1.215 | 2.187 | 3.633 | 5.387 | 7.441 | 12.424 | 17.423 | | | 41 | .05 | .20 | .75 | .480 | 1.360 | 2.482 | 3.716 | 5.497 | 7.814 | 12.664 | 17.661 | | $egin{array}{c} L=60 \ X=12 \end{array}$ | 42 | .05 | .30 | .65 | .480 | 1.215 | 2.151 | 3.527 | 5.239 | 7.353 | 12.253 | 17.252 | | X' = 14 | 43 | .10 | .20 | .70 | .448 | 1.270 | 2.316 | 3.489 | 5.130 | 7.350 | 12.100 | 17.100 | | C = 8 | 44 | .10 | .30 | .60 | .480 | 1.215 | 2.108 | 3.406 | 5.069 | 6.944 | 11.782 | 16.782 | | TABLE 8.14 (Continued) | | | | | | | | | | | | | |------------------------|----|-----|-----|-----|------|-------|-------|-------|-------|-------|--------|--------| | L = 64 | 45 | .05 | .20 | .75 | .480 | 1.360 | 2.482 | 3.622 | 5.213 | 7.320 | 12.115 | 17.112 | | X = 12 | 46 | .05 | .30 | .65 | .480 | 1.215 | 2.151 | 3.260 | 4.965 | 6.792 | 11.644 | 16.643 | | X'=16 | 47 | .10 | .20 | .70 | .448 | 1.270 | 2.316 | 3.385 | 4.866 | 6.875 | 11.520 | 16.520 | | C = 8 | 48 | .10 | .30 | .60 | .480 | 1.215 | 2.108 | 3.184 | 4.775 | 6.624 | 11.141 | 16.141 | | L = 68 | 49 | .05 | .20 | .75 | .480 | 1.360 | 2.482 | 3.605 | 4.944 | 6.827 | 11.567 | 16.563 | | X = 12 | 50 | .05 | .30 | .65 | .480 | 1.215 | 2.151 | 3.125 | 4.696 | 6.403 | 11.035 | 16.034 | | X' = 18 | 51 | .10 | .20 | .70 | .448 | 1.270 | 2.316 | 3.365 | 4.655 | 6.400 | 10.940 | 15.940 | | C = 8 | 52 | .10 | .30 | .60 | .480 | 1.215 | 2.108 | 3.106 | 4.553 | 6.310 | 10.500 | 15.500 | | L=72 | 53 | .05 | .20 | .75 | .480 | 1.360 | 2.482 | 3.605 | 4.804 | 6.522 | 11.063 | 16.014 | | X = 12 | 54 | .05 | .30 | .65 | .480 | 1.215 | 2.151 | 3.125 | 4.434 | 6.134 | 10.427 | 15.425 | | X' = 20 | 55 | .10 | .20 | .70 | .448 | 1.270 | 2.316 | 3.365 | 4.493 | 6.087 | 10.409 | 15.360 | | C = 8 | 56 | .10 | .30 | .60 | .430 | 1.215 | 2.108 | 3.106 | 4.334 | 6.003 | 9.860 | 14.860 | | L = 60 | 57 | .05 | .20 | .75 | .480 | 1.360 | 2.482 | 3.912 | 5.943 | 8.307 | 13.110 | 18.108 | | X = 16 | 58 | .05 | .30 | .65 | .480 | 1.215 | 2.217 | 3.801 | 5.556 | 7.913 | 12.763 | 17.762 | | X'=12 | 59 | .10 | .20 | .70 | .448 | 1.270 | 2.316 | 3.683 | 5.584 | 7.825 | 12.481 | 17.481 | | C = 8 | 60 | .10 | .30 | .60 | .480 | 1.215 | 2.187 | 3.589 | 5.252 | 7.441 | 12.222 | 17.221 | | L = 64 | 61 | .05 | .20 | .75 | .480 | 1.360 | 2.482 | 3.716 | 5.497 | 7.814 | 12.561 | 17.559 | | X = 16 | 62 | .05 | .30 | .65 | .480 | 1.215 | 2.151 | 3.527 | 5.239 | 7.353 | 12.154 | 17.153 | | X' = 14 | 63 | .10 | .20 | .70 | .448 | 1.270 | 2.316 | 3.489 | 5.130 | 7.350 | 11.901 | 16.901 | | C = 8 | 64 | .10 | .30 | .60 | .480 | 1.215 | 2.033 | 3.318 | 4.953 | 6.900 | 11.581 | 16.580 | | L = 68 | 65 | .05 | .20 | .75 | .480 | 1.360 | 2.482 | 3.622 | 5.213 | 7.320 | 12.053 | 17.010 | | X = 16 | 66 | .05 | .30 | .65 | .480 | 1,215 | 2.151 | 3.260 | 4.965 | 6.792 | 11.545 | 16.544 | | X' = 16 | 68 | .10 | .20 | .70 | .448 | 1.270 | 2.316 | 3.385 | 4.866 | 6.875 | 11.362 | 16.321 | | C = 8 | 68 | .10 | .30 | .60 | .480 | 1.215 | 1.985 | 3.100 | 4.682 | 6.401 | 10.940 | 15.940 | | $L \equiv 72$ | 69 | .05 | .20 | .75 | .480 | 1.360 | 2.482 | 3.605 | 4.944 | 6.827 | 11,558 | 16.461 | | X = 16 | 70 | .05 | .30 | .65 | .480 | 1.215 | 2.151 | 3.125 | 4.696 | 6.403 | 10.981 | 15.936 | | X'=18 | 71 | .10 | .20 | .70 | .448 | 1.270 | 2.316 | 3.365 | 4.658 | 6.400 | 10.885 | 15.741 | | C = 8 | 72 | .10 | .30 | .60 | .480 | 1.215 | 1.985 | 2.916 | 4.416 | 6.085 | 10.320 | 15.300 | | L = 76 | 73 | .05 | .20 | .75 | .480 | 1.360 | 2.482 | 3.605 | 4.804 | 6.522 | 11.063 | 15.912 | | X = 16 | 74 | .05 | .30 | .65 | .480 | 1.215 | 2.151 | 3.125 | 4.434 | 6.134 | 10.421 | 15.327 | | X' = 20 | 75 | .10 | .20 | .70 | .448 | 1.270 | 2.316 | 3.365 | 4.493 | 6.087 | 10.409 | 15.161 | | C = 8 | 76 | .10 | .30 | .60 | .480 | 1.215 | 1.985 | 2.916 | 4.156 | 5.842 | 9.781 | 14.661 | | L = 80 | 77 | .05 | .20 | .75 | .480 | 1.360 | 2.482 | 3.605 | 4.729 | 6.248 | 10.569 | 15.363 | | X = 16 | 78 | .05 | .30 | .65 | .480 | 1.215 | 2.151 | 3.125 | 4.175 | 5.868 | 9.861 | 14.719 | | X'=22 | 79 | .10 | .20 | .70 | .448 | 1.270 | 2.316 | 3.365 | 4.414 | 5.832 | 9.933 | 14.581 | | C = 8 | 80 | .10 | 30 | .60 | .480 | 1.215 | 1.985 | 2.916 | 3.912 | 5.516 | 9.240 | 14.022 | | L = 84 | 81 | .05 | .20 | .75 | .480 | 1.360 | 2.482 | 3.605 | 4.729 | 6.000 | 10.075 | 14.814 | | X = 16 | 82 | .05 | .30 | .65 | .480 | 1.215 | 2.151 | 3.125 | 4.098 | 5.607 | 9.300 | 14.110 | | X' = 24 | 83 | .10 | .20 | .70 | .448 | 1.270 | 2.316 | 3.365 | 4.414 | 5.639 | 9.458 | 14.001 | | C = 8 | 84 | .10 | .30 | .60 | .480 | 1.215 | 1.985 | 2.916 | 3.912 | 5.266 | 8.881 | 13.383 | #### 9. MAXIMUM MOMENTS AND EQUIVALENT H TRUCK LOADINGS FOR VEHICLES OF UNIT WEIGHT ON SIMPLE SPAN BRIDGES Figures 9.1-9.14 provide a graphical means for the determination of maximum moments and equivalent H truck loadings which result from a wide range of wheel-base lengths and loadings for each of the 14 heavy vehicle types, shown in Figure 6.1, on simple spans up to 100 feet in length. The moments given by these charts are those produced by vehicles weighing one kip each, or the moments produced per kip of gross vehicle weight. The equivalent H truck loading for a given vehicle may be determined by comparing the moment produced by it with the moment produced by an H truck of unit weight on the same span. The figure number corresponding to each of the 14 heavy vehicle types is as follows: | Figure
Numbers | Vehicle
Type | No. of
Charts | Figure
Numbers | Vehicle
Type | No. of
Charts | |-------------------|-----------------|------------------|-------------------|-----------------|------------------| | 9.1 | 2 | 1 | 9.8 (a)-9.8(i) | 3-S3 | 9 | | 9.2 | 3 | 1 | 9.9 (a)
- 9.9(1) | 2-2 | 12 | | 9.3(a)-9.3(1) | 2-S1 | 12 | 9.10(a)-9.10(l) | 2-3 | 12 | | 9.4(a)-9.4(i) | 2-S2 | 9 | 9.11(a)-9.11(l) | 3-2 | 12 | | 9.5(a)-9.5(i) | 2-S3 | 9 | 9.12(a)-9.12(l) | 3-3 | 12 | | 9.6(a)-9.6(i) | 3-S1 | 9 | 9.13(a)-9.13(c) | 2-S1-2 | 3 | | 9.7(a)-9.7(i) | 3-S2 | 9 | 9.14(a)-9.14(f) | 3-S2-3 | 6 | Total Number of Charts = 116 The use of these charts for determining maximum moments and equivalent H truck loadings will now be illustrated by two typical examples. #### Example 9.1. Use of Charts for Determining Maximum Moments Given: A Type 3-S2 truck has a gross weight of 60,000 pounds with axle spacings, front to rear, of 12 feet, 4 feet, 20 feet, and 4 feet, respectively making an over-all wheel base length of 40 feet, and is loaded in such a way that each axle carries 12,000 pounds. Suppose it is desired to know the maximum moments produced by this vehicle on span lengths of 20, 40, and 60 feet, respectively. In Figure 9.7(h) it will be found on the dashed line for L-40 that this vehicle causes maximum moments of: ``` 1.62 kip-feet on a 20-foot span 4.43 kip-feet on a 40-foot span 8.70 kip-feet on a 60-foot span ``` for each kip of gross load carried by the given vehicle. Therefore, the maximum moments produced on these spans by the given vehicle would be: ``` 1.62 \times 60 = 97.2 kip-feet on a 20-foot span 4.43 \times 60 = 265.8 kip-feet on a 40-foot span 8.70 \times 60 = 522.0 kip-feet on a 60-foot span ``` #### Example 9.2 Use of Charts for Determining Equivalent H Truck Loadings For the same vehicle described in Example 9.1, it is desired to know its equivalent H truck loadings on span lengths of 20, 40, and 60 feet, respectively. In Figure 9.7(h) it will be found that an H truck of unit weight causes maximum moments of: ``` 4.00 kip-feet on a 20-foot span 8.65 kip-feet on a 40-foot span 13.63 kip-feet on a 60-foot span ``` By comparing these moments with those produced by the given vehicle, it will be seen that the given vehicle per kip of gross weight causes: ``` 1.62/ 4.00=.405 or 40.5\% of an H1.0 truck moment on a 20-foot span 4.43/ 8.65=.512 or 51.2\% of an H1.0 truck moment on a 40-foot span 8.70/13.63=.638 or 63.8\% of an H1.0 truck moment on a 60-foot span ``` These values may also be obtained by interpolation between the percent of H truck moment lines shown in Figure 9.7(h) which, when applied to the given Type 3-S2 truck weighing 60.0 kips, converts it into an equivalent H truck loading of: ``` .405 \times 60.0 = 24.3 kips on a 20-foot span .512 \times 60.0 = 30.7 kips on a 40-foot span .638 \times 60.0 = 38.3 kips on a 60-foot span ``` The maximum moments and equivalent H truck loadings for other vehicle types and loadings may be determined from Figures 9.1-9.14 in a manner similar to that outlined in these two examples for the above described Type 3-S2 truck weighing 60.0 kips on spans of 20, 40, and 60 feet in length. In addition to furnishing the maximum moments and equivalent H truck loadings for a wide variety of heavy vehicle types and loadings on simple spans up to 100 feet in length, the graphical representation of these data as shown in Figures 9.1-9.14 provides a convenient means for demonstrating the effects of variations in wheel-base length, number and spacing of axles, and the distribution of load among the axles on the bending moments produced by a given vehicle type on a given span and also for comparing the variations in these moments from one span to another. These charts not only provide a convenient means for comparing the moments produced by one vehicle type and loading with those of another on the same span but also for visually comparing the effects of variations in span length on the moments produced in each case. #### EQUIVALENT H TRUCK LOADINGS FOR TYPE 2 TRUCKS Figure 9.1 #### EQUIVALENT H TRUCK LOADINGS FOR TYPE 3 TRUCKS Figure 9.2 # EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-SI TRUCKS WITH 8 TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.3a # EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-SI TRUCKS WITH 12 TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.3b EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-SI TRUCKS WITH 16' TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER BASED ON BENDING MOMENTS PRODUCED BY A GROSS VEHICLE WEIGHT Figure 9.3c ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-SI TRUCKS WITH 8'TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.3d ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-SI TRUCKS WITH 12' TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.3e # EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-SI TRUCKS WITH 16^{\prime} TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.3f # EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-SI TRUCKS WITH 8' TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.3g # EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-SI TRUCKS WITH 12 TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.3h EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-SI TRUCKS WITH $16^{'}$ TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.3i ### EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-SI TRUCKS WITH 8' TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.3j #### EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-SI TRUCKS WITH 12' TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.3k # EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-SI TRUCKS WITH 16 TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.31 ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-S2 TRUCKS WITH $8^{'}$ TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.4a ### EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-S2 TRUCKS WITH 12 TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.4b #### EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-S2 TRUCKS WITH 16 TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.4c ### EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-S2 TRUCKS WITH 8' TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.4d EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-S2 TRUCKS WITH 12 TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.4e ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-S2 TRUCKS WITH 16 TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.4f ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-S2 TRUCKS WITH 8' TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.4g ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-S2 TRUCKS WITH $12^{'}$ TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.4h # EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-S2 TRUCKS WITH $16^{'}$ TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.4i ### EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-S3 TRUCKS WITH 8' TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.5a ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-S3 TRUCKS WITH 12^{\prime} TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.5b ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-S3 TRUCKS WITH 16 TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.5c ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-S3 TRUCKS WITH 8 TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.5d ### EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-S3 TRUCKS WITH 12' TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.5e ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-S3 TRUCKS WITH 16' TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.5f # EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-S3 TRUCKS WITH 8' TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.5g #### EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-S3 TRUCKS WITH 12' TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.5h ### EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-S3 TRUCKS WITH 16 TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.5i ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-SI TRUCKS WITH 12 TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.6a # EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-SI TRUCKS WITH 16' TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.6b ### EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-SI TRUCKS WITH 20 TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.6c ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-SI TRUCKS WITH 12' TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.6d # EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-SI TRUCKS WITH $16^{'}$ TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.6e # EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-SI TRUCKS WITH 20 TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.6f # EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-SI TRUCKS WITH 12 TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.6g # EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-SI TRUCKS WITH, 16 TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.6h # EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-SI TRUCKS WITH 20 TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.6i ### EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-S2 TRUCKS WITH 12' TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.7a # EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-S2 TRUCKS WITH $16^{'}$ TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.7b EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-S2 TRUCKS WITH 20 TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.7c #### EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-S2 TRUCKS WITH 12' TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.7d # EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-S2 TRUCKS WITH $16^{'}$ TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.7e # EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-S2 TRUCKS WITH 20° TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.7f # EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-S2 TRUCKS WITH 12 $^{\prime}$ TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.7g EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-S2 TRUCKS WITH 16 TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.7h # EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-S2 TRUCKS WITH 20'TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.7i #### EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-S3 TRUCKS WITH 12' TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.8a EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-S3 TRUCKS WITH $16^{'}$ TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.8b EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-S3 TRUCKS WITH 20 TRUCK-TRACTOR AND VARIABLE LENGTH
SEMITRAILER Figure 9.8c ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-S3 TRUCKS WITH 12 TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.8d EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-S3 TRUCKS WITH 16' TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.8e EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-S3 TRUCKS WITH 20 TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.8f EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-S3 TRUCKS WITH 12' TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.8g #### EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-S3 TRUCKS WITH $16^{'}$ TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.8h EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-S3 TRUCKS WITH 20 TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER Figure 9.8i # EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-2 TRUCKS WITH 12' TRUCK AND VARIABLE LENGTH TRAILER Figure 9.9a ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-2 TRUCKS WITH 16' TRUCK AND VARIABLE LENGTH TRAILER Figure 9.9b ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-2 TRUCKS WITH 20'TRUCK AND VARIABLE LENGTH TRAILER Figure 9.9c # EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-2 TRUCKS WITH 12' TRUCK AND VARIABLE LENGTH TRAILER Figure 9.9d # EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-2 TRUCKS WITH 16' TRUCK AND VARIABLE LENGTH TRAILER Figure 9.9e ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-2 TRUCKS WITH 20'TRUCK AND VARIABLE LENGTH TRAILER Figure 9.9f ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-2 TRUCKS WITH 12 TRUCK AND VARIABLE LENGTH TRAILER Figure 9.9g ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-2 TRUCKS WITH 16' TRUCK AND VARIABLE LENGTH TRAILER Figure 9.9h #### EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-2 TRUCKS WITH 20 TRUCK AND VARIABLE LENGTH TRAILER Figure 9.9i # EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-2 TRUCKS WITH 12' TRUCK AND VARIABLE LENGTH TRAILER Figure 9.9j #### EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-2 TRUCKS WITH 16' TRUCK AND VARIABLE LENGTH TRAILER Figure 9.9k ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-2 TRUCKS WITH 20 TRUCK AND VARIABLE LENGTH TRAILER Figure 9.91 #### EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-3 TRUCKS WITH 12' TRUCK AND VARIABLE LENGTH TRAILER Figure 9.10a ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-3 TRUCKS WITH 12' TRUCK AND VARIABLE LENGTH TRAILER Figure 9.10b #### EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-3 TRUCKS WITH 16' TRUCK AND VARIABLE LENGTH TRAILER Figure 9.10c # EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-3 TRUCKS WITH 16 TRUCK AND VARIABLE LENGTH TRAILER Figure 9.10d ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-3 TRUCKS WITH 20'TRUCK AND VARIABLE LENGTH TRAILER Figure 9.10e # EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-3 TRUCKS WITH 20 TRUCK AND VARIABLE LENGTH TRAILER Figure 9.10f #### EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-3 TRUCKS WITH 12' TRUCK AND VARIABLE LENGTH TRAILER Figure 9.10g # EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-3 TRUCKS WITH 12' TRUCK AND VARIABLE LENGTH TRAILER Figure 9.10h ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-3 TRUCKS WITH 16' TRUCK AND VARIABLE LENGTH TRAILER Figure 9.10i ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-3 TRUCKS WITH 16' TRUCK AND VARIABLE LENGTH TRAILER Figure 9.10j #### EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-3 TRUCKS WITH 20'TRUCK AND VARIABLE LENGTH TRAILER Figure 9.10k ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-3 TRUCKS WITH 20 TRUCK AND VARIABLE LENGTH TRAILER Figure 9.101 ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-2 TRUCKS WITH 16' TRUCK AND VARIABLE LENGTH TRAILER Figure 9.11a ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-2 TRUCKS WITH 20'TRUCK AND VARIABLE LENGTH TRAILER Figure 9.11b #### EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-2 TRUCKS WITH 24 TRUCK AND VARIABLE LENGTH TRAILER Figure 9.11c #### EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-2 TRUCKS WITH 16' TRUCK AND VARIABLE LENGTH TRAILER Figure 9.11d #### EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-2 TRUCKS WITH 20 TRUCK AND VARIABLE LENGTH TRAILER Figure 9.11e ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-2 TRUCKS WITH 24 TRUCK AND VARIABLE LENGTH TRAILER Figure 9.11f ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-2 TRUCKS WITH 16' TRUCK AND VARIABLE LENGTH TRAILER Figure 9.11g ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-2 TRUCKS WITH 20'TRUCK AND VARIABLE LENGTH TRAILER Figure 9.11h #### EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-2 TRUCKS WITH 24 TRUCK AND VARIABLE LENGTH TRAILER Figure 9.11i ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-2 TRUCKS WITH 16' TRUCK AND VARIABLE LENGTH TRAILER Figure 9.11j #### EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-2 TRUCKS WITH 20 TRUCK AND VARIABLE LENGTH TRAILER Figure 9.11k ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-2 TRUCKS WITH 24'TRUCK AND VARIABLE LENGTH TRAILER Figure 9.111 ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-3 TRUCKS WITH 16' TRUCK AND VARIABLE LENGTH TRAILER Figure 9.12a ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-3 TRUCKS WITH 20' TRUCK AND VARIABLE LENGTH TRAILER Figure 9.12b ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-3 TRUCKS WITH 24 TRUCK AND VARIABLE LENGTH TRAILER Figure 9.12c #### EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-3 TRUCKS WITH 16' TRUCK AND VARIABLE LENGTH TRAILER Figure 9.12d ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-3 TRUCKS WITH 20'TRUCK AND VARIABLE LENGTH TRAILER Figure 9.12e ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-3 TRUCKS WITH 24 TRUCK AND VARIABLE LENGTH TRAILER Figure 9.12f ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-3 TRUCKS WITH 16' TRUCK AND VARIABLE LENGTH TRAILER Figure 9.12g #### EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-3 TRUCKS WITH 20 TRUCK AND VARIABLE LENGTH TRAILER Figure 9.12h ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-3 TRUCKS WITH 24 TRUCK AND VARIABLE LENGTH TRAILER Figure 9.12i ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-3 TRUCKS WITH 16' TRUCK AND VARIABLE LENGTH TRAILER Figure 9.12j #### EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-3 TRUCKS WITH 20 TRUCK AND VARIABLE LENGTH TRAILER Figure 9.12k ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-3 TRUCKS WITH 24 TRUCK AND VARIABLE LENGTH TRAILER Figure 9.121 ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-SI-2 TRUCKS WITH 8' TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER AND TRAILER Figure 9.13a ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-SI-2 TRUCKS WITH 12' TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER AND TRAILER Figure 9.13b 2090 H TRUCK MOMENT ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-SI-2 TRUCKS WITH 16' TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER AND TRAILER BASED ON BENDING MOMENTS PRODUCED BY A GROSS VEHICLE WEIGHT OF ONE KIP ON SIMPLE SPANS WHEEL BASE L=60 TO 84 Figure 9.13c 50 SPAN-FEET 25 MOMENT-KIP FEET # EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-S2-3 TRUCKS WITH 12' TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER AND TRAILER TYPE 3-S2-3 TRUCK Figure 9.14a ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-S2-3 TRUCKS WITH 16' TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER AND TRAILER TYPE 3-S2-3 TRUCK Figure 9.14b #### EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-52-3 TRUCKS WITH 20 TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER AND TRAILER TYPE 3-S2-3 TRUCK Figure 9.14c ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-S2-3 TRUCKS WITH 12' TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER AND TRAILER TYPE 3-S2-3 TRUCK Figure 9.14d ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-S2-3 TRUCKS WITH 16' TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER AND TRAILER TYPE 3-S2-3 TRUCK Figure 9.14e ## EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-S2-3 TRUCKS WITH 20' TRUCK-TRACTOR AND VARIABLE LENGTH SEMITRAILER AND TRAILER AND VARIABLE ELNOTT SEMATRALER AND TRACER TYPE 3-S2-3 TRUCK Figure 9.14f #### 10. EQUIVALENT H TRUCK LOADINGS FOR VEHICLES OF UNIT WEIGHT ON SIMPLE SPAN BRIDGES Tables 10.1-10.14 give the equivalent H truck loading corresponding to each of the 1303 variations of the 14 heavy vehicle types weighing 1.0 kip each, as shown in identification index Tables 6.1-6.14, on spans of 10, 20, 30, 40, 50, 60, 80, and 100 feet in length. The equivalent H truck loadings corresponding to each of the 1303 heavy vehicle types and loadings on each of the 8 different span lengths makes a total of 10,424 H truck loading equivalents recorded in Tables 10.1-10.14. The table number corresponding to each of the 14 heavy vehicle types is as follows: | Table
No. | Vehicle
Type | Table
No. | Vehicle
Type | |--------------|-----------------|--------------|-----------------| | 10.1 | 2 | 10.8 | 3-S3 | | 10.2 | 3 | 10.9 | 2-2 | | 10.3 | 2-S1 | 10.10 | 2-3 | | 10.4 | 2-S2 | 10.11 | 3-2 | | 10.5 | 2-S3 | 10.12 | 3-3 | | 10.6 | 3-S1 | 10.13 | 2-S1-2 | | 10.7 | 3-S2 | 10.14 | 3-S2-3 | An equivalent H truck loading is defined as the gross weight—either in pounds, kips, or tons—on a standard H truck required to produce the same maximum moment on a given span as that produced by the particular heavy vehicle under consideration on the same span. The equivalent H truck loadings given for various span lengths by Tables 10.1-10.14 are those that would result if the particular vehicle under consideration had a gross weight of one kip. Thus, the equivalent H truck loading for any particular vehicle type and loading on a given span may be obtained simply by multiplying the H truck loading equivalent indicated for a gross vehicle weight of one kip by the number of kips carried by the vehicle under consideration. The use of Tables 10.1-10.14 for converting any particular heavy vehicle type and loading into an equivalent H truck loading on a given span is given in Article 5. Table 10.1 #### SUMMARY OF EQUIVALENT H TRUCK LOADINGS IN SIMPLE SPANS PRODUCED BY TYPE 2 TRUCKS WEIGHING ONE KIP EACH Thirty six variations in the Type 2 truck are given in this Table. Each truck number, from 1 to 36, represents a different combination of wheel base length, and ratios of gross weight on each axle. All dimensions are in feet. Equivalent H truck loadings are in kips. a1 and a2-Represent the ratio of gross vehicle weight on axles. | Wheel
Base
Feet | Truck No. | Load On
Axles
Kips | | Span-Feet | | | | | | | | |-----------------------|-----------|--------------------------|----------------|-----------|-------|-------|-------|-------|-------|-------|-------| | | | a ¹ | \mathbf{a}^2 | 10 | 20 |
30 | 40 | 50 | 60 | 80 | 100 | | - | 1 | .45 | .55 | .688 | .751 | .879 | .911 | .929 | .941 | .956 | .965 | | | 2 | .40 | .60 | .750 | .800 | .914 | .937 | .950 | .959 | .969 | .975 | | L = 10 | 3 | .35 | .65 | .813 | .851 | .949 | .963 | .971 | .976 | .982 | .986 | | | 4 | .30 | .70 | .875 | .903 | .985 | .989 | .992 | .993 | .995 | .996 | | | 5 | .25 | .75 | .938 | .957 | 1.022 | 1.016 | 1.013 | 1.011 | 1.008 | 1.006 | | | 6 | .20 | .80 | 1.000 | 1.013 | 1.060 | 1.044 | 1.034 | 1.028 | 1.021 | 1.017 | | | 7 | .45 | .55 | .688 | .688 | .818 | .865 | .893 | .911 | .934 | .947 | | | 8 | .40 | .60 | .750 | .750 | .858 | .895 | .918 | .932 | .949 | .959 | | L = 12 | 9 | .35 | .65 | .813 | .813 | .900 | .926 | .942 | .951 | .964 | .971 | | | 10 | .30 | .70 | .875 | .875 | .942 | .958 | .966 | .972 | .979 | .984 | | | 11 | .25 | .75 | .938 | .938 | .985 | .989 | .992 | .993 | .995 | .996 | | | 12 | .20 | .80 | 1.000 | 1.000 | 1.030 | 1.022 | 1.017 | 1.014 | 1.011 | 1.008 | | | 13 | .45 | .55 | .688 | .688 | .759 | .821 | .857 | .882 | .911 | .929 | | | 14 | .40 | .60 | .750 | .750 | .805 | .855 | .885 | .904 | .929 | .943 | | L = 14 | 15 | .35 | .65 | .813 | .813 | .852 | .890 | .913 | .928 | .947 | .957 | | | 16 | .30 | .70 | .875 | .875 | .900 | .926 | .942 | .951 | .964 | .971 | | | 17 | .25 | .75 | .938 | .938 | .949 | .963 | .971 | .976 | .982 | .986 | | | 18 | .20 | .80 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | | 19 | .45 | .55 | .688 | .688 | .703 | .777 | .822 | .852 | .889 | .912 | | | 20 | .40 | .60 | .750 | .750 | .753 | .816 | .853 | .878 | .909 | .927 | | L = 16 | 21 | .35 | .65 | .813 | .813 | .805 | .855 | .885 | .904 | .929 | .943 | | | 22 | .30 | .70 | .875 | .875 | .858 | .895 | .918 | .932 | .949 | .959 | | | 23 | .25 | .75 | .938 | .938 | .914 | .937 | .950 | .959 | .969 | .975 | | | 24 | .20 | .80 | 1.000 | 1.000 | .973 | .979 | .983 | .986 | .990 | .992 | | | 25 | .45 | .55 | .688 | .688 | .669 | .735 | .788 | .823 | .868 | .894 | | | 26 | .40 | .60 | .750 | .750 | .730 | .777 | .822 | .852 | .889 | .912 | | L = 18 | 27 | .35 | .65 | .813 | .813 | .791 | .821 | .857 | .882 | .911 | .929 | | | 28 | .30 | .70 | .875 | .875 | .852 | .865 | .893 | .911 | .934 | 9.47 | | | 29 | .25 | .75 | .938 | .938 | .912 | .911 | .929 | .941 | .956 | .965 | | | 30 | .20 | .80 | 1.000 | 1.000 | .973 | .958 | .966 | .972 | .979 | .984 | | | 31 | .45 | .55 | .688 | .688 | .669 | .694 | .755 | .795 | .846 | .876 | | | 32 | .40 | .60 | .750 | .750 | .730 | .740 | .792 | .827 | .870 | .896 | | L=20 | 33 | .35 | .65 | .813 | .813 | .791 | .787 | .830 | .858 | .894 | .915 | | | 34 | .30 | .70 | .875 | .875 | .852 | .835 | .869 | .891 | .919 | .935 | | | 35 | .25 | .75 | .938 | .938 | .912 | .885 | .909 | .924 | .944 | .955 | | | 36 | .20 | .80 | 1.000 | 1.000 | .973 | .937 | .950 | .959 | .969 | .975 | Table 10.2 #### SUMMARY OF EQUIVALENT H TRUCK LOADINGS IN SIMPLE SPANS PRODUCED BY TYPE 3 TRUCKS WEIGHING ONE KIP EACH Forty two variations in the Type 3 truck are given in this Table. Each truck number, from 1 to 42, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. Equivalent H truck loadings are in kips. as and as-Represent the ratio of gross vehicle weight on axles. | Wheel
Base
and
Axle
Spacing | Truck No. | Load On
Axles
Kips | | | Span-Feet | | | | | | | | |--|--|--|--|--|--|--|--|--|--|--|--|--| | Feet | H | a¹ | \mathbf{a}^2 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | L = 14 $X = 10$ | 1
2
3
4
5
6
7 | .40
.35
.30
.25
.20
.15 | .60
.65
.70
.75
.80
.85 | .500
.521
.560
.600
.641
.680 | 0 .665
0 .709
0 .760
0 .810
0 .861 | .805
.834
.863
.893
.925
.957 | .861
.882
.904
.926
.948
.971 | .892
.909
.926
.944
.961
.979 | .912
.926
.940
.954
.968
.983 | .936
.946
.956
.966
.977
.988 | .949
.957
.966
.974
.982
.991 | | | L = 16
X = 12 | 8
9
10
11
12
13 | .40
.35
.30
.25
.20
.15 | .60
.65
.70
.75
.80
.85 | .500
.520
.560
.600
.641
.680 | .658
.709
.760
.810
.861
.911 | .747
.782
.818
.855
.893
.933 | .819
.844
.871
.898
.925
.954 | .859
.879
.900
.921
.943
.965 | .884
.901
.918
.936
.954
.972 | .915
.928
.941
.954
.966
.980 | .933
.943
.953
.964
.974
.984 | | | L = 18
X = 14 | 15
16
17
18
19
20
21 | .40
.35
.30
.25
.20
.15 | .60
.65
.70
.75
.80
.85 | .500
.520
.560
.600
.640
.680 | .658
.709
.760
.810
.861 | .691
.731
.773
.816
.862
.909
.957 | .777
.807
.838
.870
.903
.937
.971 | .826
.850
.874
.900
.926
.952 | .857
.877
.897
.918
.940
.961 | .895
.910
.925
.940
.956
.972 | .917
.929
.941
.953
.965
.978 | | | $egin{array}{l} L=20 \ X=16 \end{array}$ | 22
23
24
25
26
27
28 | .40
.35
.30
.25
.20
.15 | .60
.65
.70
.75
.80
.85 | .500
.520
.560
.600
.640
.680 | .658
.709
.760
.810 | .637
.689
.742
.795
.848
.901 | .736
.771
.806
.843
.881
.920 | .793
.821
.849
.878
.908
.938 | .830
.853
.877
.901
.925
.950 | .875
.892
.910
.927
.946
.964 | .901
.915
.929
.943
.957
.972 | | | L = 22 $X = 18$ | 29
30
31
32
33
34
35 | .40
.35
.30
.25
.20
.15 | .60
.65
.70
.75
.80
.85 | .500
.520
.560
.600
.640
.680 | .658
.709
.760
.810
.861 | .636
.689
.742
.795
.848
.901 | .697
.735
.775
.816
.859
.903 | .761
.792
.824
.857
.891
.926 | .803
.829
.856
.883
.911
.939 | .854
.874
.894
.914
.935
.956 | .884
.900
.916
.932
.949
.965 | | | L = 24 $X = 20$ | 36
37
38
39
40
41
42 | .40
.35
.30
.25
.20
.15 | .60
.65
.70
.75
.80
.85 | .500
.520
.560
.600
.640
.680 | .658
.709
.760
.810 | .636
.689
.742
.795
.848
.901 | .658
.700
.744
.789
.837
.887 | .730
.764
.800
.836
.873
.912
.952 | .777
.806
.835
.866
.896
.929 | .835
.856
.879
.902
.925
.948 | .869
.886
.904
.922
.940
.959 | | Table 10.3 # SUMMARY OF EQUIVALENT H TRUCK LOADINGS IN SIMPLE SPANS PRODUCED BY TYPE 2-S1 TRUCKS WEIGHING ONE KIP EACH One hundred twenty-six variations in the Type 2-S1 truck are given in this Table. Each truck number, from 1 to 126, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. Equivalent H truck loadings are in kips. | Wheel
Base | No. | | Load C |) n | 1 | | | | | | | | |--|-----------------|--------------|-------------------|----------------|----------------------|----------------|----------------|--------------|----------------|--------------|--------------|----------------------| | and
Axle
Spacing | Truck | | Axles
Kips | | Profit Laborator | | | Span- | -Feet | | | | | Feet | Ē | aı | a _? | \mathbf{a}_3 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 1 2 | .10
.10 | .30
.40 | .60
.50 | $.759 \\ .625$ | $.750 \\ .625$ | $.822 \\ .740$ | .855
.797 | .885
.838 | .904
.865 | .929
.899 | .943
.919 | | $\begin{array}{c} L=20 \\ Y=8 \end{array}$ | 3 | .10 | $\frac{.45}{.50}$ | .45 $.40$ | .563 $.625$ | .591
.654 | .742 $.784$ | .813
.844 | .853 | .879 $.900$ | .911 | .929 | | $egin{array}{c} X \equiv 8 \ X' \equiv 12 \end{array}$ | 5 | .20 | .30 | .50 | .625 | .625 | .703 | .759 | .878 $.807$ | .839 | .926 $.880$ | .942 $.904$ | | | 6 | .20 | .40 | .40 | .500 | .563 | .711 | .794 | .839 | .869 | .904 | .924 | | | 7 | .20 | .50 | .30 | .625 | .686 | .800 | .858 | .891 | .911 | .935 | .949 | | | 8
9 | .10 | .30
.40 | .60
.50 | $.750 \\ .625$ | .750 $.625$ | .740
.637 | .782
.704 | .822
.762 | .852
.801 | .889 | .912 | | L=24 | 10 | .10 | .45 | .45 | .563 | .591 | .623 | .723 | .781 | .819 | .851 $.866$ | .880
.893 | | X = 8 | 11 | .10 | .50 | .40 | .625 | .654 | .675 | .763 | .813 | .846 | .886 | .909 | | X'= 16 | 12 | .20 | .30 | .50 | .625 | .625 | .623 | .668 | .733 | .776 | .832 | .865 | | | 13
14 | .20
.20 | .40
.50 | $.40 \\ .30$ | .500 $.625$ | .563 $.686$ | .606 $.727$ | .710 $.794$ | .773 $.839$ | .814 $.869$ | .863 $.904$ | .892 | | | 15 | .10 | .30 | .60 | .750 | .750 | .730 | .723 | .762 | .801 | .851 | .880 | | | 16 | .10 | .40 | .50 | .625 | .625 | .608 | .629 | .690 | .740 | .803 | .842 | | $egin{array}{c} L=28 \ X=8 \end{array}$ | 17 | .10 | .45 | .45 | .563 | .591 | .606 | .638 | .712 | .761 | .822 | .858 | | X'=8
X'=20 | 18
19 | .10
.20 | .50
.30 | .40 | .625 $.625$ | .654 $.625$ | .667 $.608$ | .685
.611 | $.750 \\ .662$ | .793 $.716$ | .846
.785 | .878 $.827$ | | A = 20 | 20 | .20 | .40 | .40 | .500 | .563 | .606 | .631 | .710 | .761 | .823 |
.860 | | | _21 | .20 | .50 | .30 | .625 | .686 | .727 | .731 | .790 | .827 | .873 | .900 | | | 22 | .10 | .30 | .60 | .750 | .750 | .730 | .694 | .713 | .752 | .813 | .850 | | L = 32 | 23
24 | .10
.10 | .40
.45 | .50
.45 | .625 $.563$ | .625 $.591$ | .608
.606 | .578 $.590$ | .625 $.646$ | .681 $.705$ | .758 | .805 | | $ \begin{array}{c} $ | 25 | .10 | .50 | .40 | .625 | .654 | .667 | .648 | .690 | .742 | .779 $.808$ | .823 $.846$ | | X'=24 | 26 | .20 | .30 | .50 | .625 | .625 | .608 | .578 | .604 | .658 | .740 | .790 | | | $\frac{27}{28}$ | .20 $.20$ | .40
.50 | .40
.30 | .500
.625 | .563 $.686$ | .606 $.727$ | .604 $.719$ | .648 | .709 | .784 | .828 | | | 29 | .19 | 30 | .60 | .750 | .750 | .730 | .694 | .741 $.673$ | .787 | .843 | .875 | | | 30 | .10 | .40 | .50 | .625 | .625 | .608 | .578 | .570 | .624 | .776
.713 | .820 $.768$ | | L=36 | 31 | .10 | .45 | .45 | .563 | .591 | .606 | .590 | .583 | .651 | .737 | .790 | | $\begin{array}{c} X = 8 \\ X' = 28 \end{array}$ | 32 | .10 | .50 | .40 | .625 | .654 | .667 | .648 | .638 | .693 | .770 | .816 | | A = 20 | $\frac{33}{34}$ | .20 | .30
.40 | .50 $.40$ | .625 $.500$ | .625 $.563$ | .608
.606 | .578
.604 | .561 $.603$ | .602 $.659$ | .696 $.746$ | .75 4
.797 | | | 35 | .20 | .50 | .30 | .625 | .686 | .727 | .719 | .715 | .748 | .813 | .852 | | | 36 | .10 | .30 | .60 | .750 | .845 | .909 | .916 | .933 | .945 | .959 | .967 | | T 00 | 37 | .10 | .40 | .50 | .625 | .760 | .850 | .875 | .901 | .918 | .939 | .951 | | $ L = 20 \\ X = 12 $ | $\frac{38}{39}$ | $.10 \\ .10$ | $.45 \\ .50$ | $.45 \\ .40$ | $.563 \\ .625$ | .720 $.760$ | .835 $.865$ | .883 $.905$ | .909
.926 | .926
.940 | .946 | .957 | | $\ddot{\mathbf{x}} = \ddot{\mathbf{s}}$ | 40 | .20 | .30 | .50 | .625 | .723 | .788 | .816 | .853 | .878 | .956
.909 | .966 $.927$ | | | 41 | .20 | .40 | .40 | .500 | .649 | .763 | .833 | .871 | .895 | .924 | .940 | | | 42 | 20 | | . 30 | .625 | .723 | .827 | .879 | .907 | .924 | .945 | .957 | | | 43
44 | .10 | .30
.40 | .60
.50 | .750 $.625$ | $.750 \\ .625$ | .822
.740 | .843 $.782$ | .869 | .891 | .919 | .935 | | L=24 | 45 | .10 | .45 | .45 | .563 | .563 | .740 $.705$ | .782 | .822 $.834$ | .852 $.864$ | .889
.900 | .912 $.921$ | | X = 12 $X' = 12$ | 46 | .10 | .50 | .40 | .625 | .625 | .747 | .819 | .859 | .884 | .915 | .933 | | X'=12 | 47 | .20 | .30 | .50 | .625 | .625 | .703 | .729 | .777 | .814 | .860 | .888 | | | 48
49 | .20 | .40
.50 | $.40 \\ .30$ | .50 0
.625 | .500
.625 | $.640 \\ .732$ | .744
.810 | .802 $.853$ | .838
.881 | .882 $.913$ | .907 | | | | | | | | | 1.92 | | | | .913 | .932 | | Table 10 | .3 (Co | ntinu | ed) | | | | | | | | | | |--|---|--|--|--|--|--|--|--|--|--|--|--| | $L = 28 \ X = 12 \ X' = 16$ | 50
51
52
53
54
55
56 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | .750
.625
.563
.625
.625
.500 | .750
.625
.563
.625
.625
.500
.625 | .740
.637
.589
.637
.623
.648 | .782
.704
.697
.736
.668
.659 | .807
.747
.761
.793
.704
.734
.802 | .839
.789
.803
.830
.752
.782
.838 | .880
.841
.854
.874
.813
.840 | .904
.873
.884
.900
.850
.874 | | L = \$2 $X = 12$ $X' = 20$ | 57
58
59
60
61
62
63 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | .750
.625
.563
.625
.625
.500
.625 | .750
.625
.563
.625
.625
.500
.625 | .730
.608
.576
.636
.608
.548 | .723
.629
.610
.658
.611
.578 | .758
.683
.692
.730
.649
.669 | .789
.728
.745
.777
.692
.728 | .841
.794
.810
.835
.767
.800 | .873
.835
.849
.869
.812
.842
.882 | | $L = 36 \ X = 12 \ X' = 24$ | 64
65
66
67
68
69
70 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | .750
.625
.563
.625
.625
.500
.625 | .750
.625
.563
.625
.625
.500
.625 | .730
.608
.576
.636
.608
.548 | .694
.578
.569
.626
.578
.562
.676 | .713
.625
.625
.669
.604
.607 | .744
.669
.688
.726
.636
.676 | .803
.749
.767
.796
.722
.760
.820 | .842
.797
.814
.837
.776
.810 | | L = 40
X = 12
X' = 28 | 71
72
73
74
75
76
77 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | .750
.625
.563
.625
.625
.500
625 | .750
.625
.563
.625
.625
.500 | .730
.608
.576
.636
.608
.548 | .694
.578
.569
.626
.578
.562
.676 | .673
.570
.565
.621
.561
.570 | .706
.622
.634
.676
.599
.625 | .767
.705
.725
.758
.679
.722
.761 | .812
.761
.780
.807
.740
.779 | | $L = 44 \ X = 12 \ X' = 32$ | 78
79
80
81
82
83 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | .750
.625
.563
.625
.625
.500
.625 | .750
.625
.563
.625
.625
.500 | .730
.608
.576
.636
.608
.548 | .694
.578
.569
.626
.578
.562
.676 | .673
.561
.565
.621
.561
.570 | .670
.576
.581
.628
.563
.576 | .731
.662
.684
.721
.637
.684 | .783
.726
.747
.776
.705
.748
.810 | | $egin{array}{l} L = 24 \ X = 16 \ X' = 8 \ \end{array}$ | 85
86
87
88
89
90 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | .750
.625
.563
.625
.625
.500
.625 | .845
.760
.720
.760
.723
.640 | .909
.850
.822
.850
.788
.731 | .906
.864
.858
.881
.791
.786 | .917
.885
.891
.908
.822
.835
.871 | .931
.904
.911
.925
.852
.865 | .949
.929
.935
.945
.889
.902 | .959
.943
.949
.957
.912
.923 | | $L = 28 \ X = 16 \ X' = 12$ | 92
93
94
95
96
97
98 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | .750
.625
.563
.625
.625
.500
.625 | .750
.625
.563
.625
.625
.500 | .822
.740
.701
.740
.703
.623
.703 | .843
.782
.762
.794
.729
.696
.763 | .855
.807
.814
.839
.747
.764 | .878
.839
.848
.869
.789
.808 | .909
.880
.888
.904
.841
.859 | .927
.904
.912
.924
.873
.889 | | $egin{array}{c} L = 32 \ X = 16 \ X' = 16 \ \end{array}$ | 99
100
101
102
103
104
105 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | .750
.625
.563
.625
.625
.500
.625 | .750
.625
.563
.625
.625
.500
.625 | .740
.637
.589
.637
.623
.523 | .782
.704
.670
.710
.668
.609 | .806
.743
.741
.773
.695
.696
.764 | .826
.776
.787
.814
.728
.751 | .870
.832
.843
.863
.794
.818 | .896
.865
.875
.892
.835
.856 | | $egin{array}{l} L = 36 \ X = 16 \ X' = 20 \ \end{array}$ | 106
107
108
109
110
111
112 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | .750
.625
.563
.625
.625
.500
.625 | .750
.625
.563
.625
.625
.500
.625 | .730
.608
.547
.608
.608
.494 | .723
.629
.585
.631
.611
.525 | .758
.683
.671
.710
.649
.630 | .782
.718
.728
.761
.674
.696 | .832
.785
.798
.823
.749
.777 | .865
.827
.840
.860
.797
.824 | | L = 40
X = 16
X' = 24 | 113
114
115
116
117
118
119 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | .750
.625
.563
.625
.625
.500
.625 | .750
.625
.563
.625
.625
.500
.625 | .730
.608
.547
.608
.608
.494 | .694
.578
.547
.604
.578
.521
.635 | .713
.625
.604
.648
.604
.566 | .744
.669
.671
.709
.636
.643 | .794
.740
.755
.784
.705
.737 | .835
.790
.805
.828
.761
.792
.840 | | $L = 44 \ X = 16 \ X' = 28$ | 120
121
122
123
124
125
126 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | .750
.625
.563
.625
.625
.500
.625 | .750
.625
.563
.625
.625
.500
.625 | .730
.608
.547
.608
.608
.494 | .694
.578
.547
.604
.578
.521
.635 | .673
.570
.547
.603
.561
.537 | .706
.622
.616
.659
.599
.592
.683 |
.758
.696
.713
.746
.662
.698 | .805
.754
.771
.797
.726
.760 | Table 10.4 ### SUMMARY OF EQUIVALENT H TRUCK LOADINGS IN SIMPLE SPANS PRODUCED BY TYPE 2-S2 TRUCKS WEIGHING ONE KIP EACH One hundred eight variations in the Type 2-S2 truck are given in this Table. Each truck number, from 1 to 108, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. Equivalent H truck loadings are in kips. | Wheel
Base
and
Axle
Spacing | Truck No. | 1 | Load C
Axles
Kips | 3 | | | 5 | Span- | Feet | | | | |---|-----------------|----------------|-------------------------|-----------------------|----------------|-------------|-------------|-------------|-------------|--------------|--------------|--------------| | Feet | H | a ₁ | \mathbf{a}_2 | a ₃ | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 1 | .10 | .30 | .60 | .480 | .680 | .805 | .861 | .892 | .912 | .936 | .949 | | | 2 | .10 | .40 | .50 | .500 | .617 | .770 | .834 | .870 | .893 | .921 | .938 | | L = 20 | 3 | .10 | .50 | .40 | .625 | .703 | .841 | .886 | .911 | .927 | .947 | .958 | | X = 8 | 4 | .20 | .30 | .50 | .400 | .583 | .710 | .790 | .835 | .865 | .900 | .921 | | X'=8 | 5 | .20 | .40 | .40 | .500 | .600 | .770 | .837 | .873 | .897 | .924 | .940 | | | 6 | .20 | .50 | .30 | .625 | .713 | .846 | .892 | .917 | .932 | .951 | .961 | | | 7 | .10 | .30 | .60 | .480 | .608 | .714 | .777 | .826 | .857 | .895 | .917 | | | 8 | .10 | .40 | .50 | .500 | .529 | .646 | .733 | .789 | .826 | .871 | .897 | | L=24 | 9 | .10 | .50 | .40 | .625 | 654 | .729 | .803 | 845 | .873 | .906 | .925 | | $\mathbf{X} = \begin{array}{c} 8 \\ \mathbf{X'} = 12 \end{array}$ | 10 | .20 | .30 | .50 | .400 | .506 | .612 | .690 | .756 | .798 | .850 | .881 | | X'=12 | $\frac{11}{12}$ | .20 | .40 | .40 | .500 | .563 | .654 | .752 | .806 | .841
.890 | .883 | .908 $.936$ | | | | .20 | .50 | .30 | .625 | .686 | .758 | .826 | .865 | | .919 | | | | 13 | .10 | .30 | .60 | .480 | .608 | .636 | .704 | .761 | .803 | .854 | .884 | | T 00 | 14 | .10 | .40 | .50 | $.500 \\ .625$ | .529 $.654$ | .545 $.667$ | .638 $.723$ | .712 $.781$ | .761
.819 | .822
.866 | .858
.893 | | L=28 | 15
16 | .10 | .50 | .40
.50 | .400 | 506 | .530 | .603 | .680 | .734 | .802 | .842 | | $\begin{array}{c} X = 8 \\ X' = 16 \end{array}$ | 17 | .20 | .40 | .40 | .500 | .563 | .606 | .670 | .741 | .787 | .843 | .875 | | A = 10 | 18 | .20 | .50 | .30 | .625 | .686 | .727 | .762 | .814 | .848 | .888 | .912 | | | 19 | .10 | .30 | .60 | .480 | .608 | .636 | .643 | .699 | .751 | .815 | .853 | | | 20 | .10 | .40 | .50 | .500 | .529 | .545 | .559 | .639 | .699 | .774 | .820 | | L = 32 | 21 | .10 | .50 | .40 | .625 | .654 | .667 | .659 | .720 | .768 | .827 | .862 | | $\mathbf{x} = \frac{32}{8}$ | 22 | .20 | .30 | .50 | .400 | .506 | .530 | .543 | .607 | .672 | .754 | .804 | | $\mathbf{X} = \begin{array}{c} 8 \\ \mathbf{X'} = 20 \end{array}$ | 23 | .20 | .40 | .40 | .500 | .563 | .606 | .606 | .679 | .735 | .803 | .844 | | | 24 | .20 | .50 | .30 | .625 | .686 | .727 | .719 | .765 | .807 | .858 | .888 | | | 25 | .10 | .30 | .60 | .480 | .608 | .636 | .626 | .651 | .701 | .777 | .822 | | | 26 | .10 | .40 | .50 | .500 | .529 | .545 | .533 | .571 | .640 | .728 | .780 | | L = 36 | 27 | .10 | .50 | .40 | .625 | .654 | .667 | .648 | .661 | .718 | .789 | .831 | | X = 8 | 28 | .20 | .30 | .50 | .400 | .506 | .530 | .522 | .551 | .613 | .709 | .766 | | X = 8 $X' = 24$ | 29 | .20 | .40 | .40 | .500 | .563 | .606 | .604 | .618 | .684 | .765 | .813 | | | 30 | .20 | .50 | .30 | .625 | .686 | .727 | .719 | .723 | .767 | .828 | .864 | | | 31 | .10 | .30 | .60 | .480 | .608 | .636 | .626 | .621 | .656 | .739 | .791 | | | 32 | .10 | .40 | .50 | .500 | .529 | .545 | .533 | .526 | .582 | .683 | .745 | | L = 40 | 33 | .10 | .50 | .40 | .625 | .654 | .667 | .648 | .638 | .669 | .751 | .801 | | X = 8 | 34 | .20 | .30 | .50 | .400 | .506 | .530 | .522 | .517 | .557 | .664 | .730 | | X' = 28 | 35 | .20 | .40 | .40 | .500 | .563 | .606 | .604 | .603 | .635 | .727 | .782 | | | 36 | .20 | .50 | .30 | .625 | .686 | .727 | .719 | .715 | .728 | .798 | .840 | | | 37 | .10 | .30 | .60 | .480 | .680 | .805 | .840 | .875 | .898 | .925 | .941 | | | 38 | .10 | .40 | .50 | .500 | .617 | .762 | .810 | .852 | .878 | .910 | .929 | | $egin{array}{l} L=24 \ X=12 \end{array}$ | 39 | .10 | .50 | .40 | .625 | .686 | .805 | .861 | .892 | .912 | .936 | .949 | | X = 12 | 40 | .20 | .30 | .50 | .400 | .583 | .701 | .749 | .803 | .838 | .880 | .905 | | X' = 8 | 41 | .20 | .40 | .40 | .500 | .563 | .701 | .788 | .836 | .866 | .902 | .923 | | | 42 | .20 | .50 | .30 | .625 | .669 | .779 | .844 | .880 | .902 | .929 | .944 | | | _ | ntinu | | | | | | | | | | | |--|-----------------|--------------|--------------|------------|----------------|--------------|--------------|------------------------------|--------------|--------------|--------------|--------------| | | 43 | .10 | .30 | .60 | .480 | .608 | .714 | .768 | .809 | .843 | .884 | .908 | | T _ 00 | 44 | .10 | .40 | .50 | .500 | .506 | .646 | .717 | .771 | .811 | .860 | .889 | | L = 28
X = 12 | $\frac{45}{46}$ | .10
.20 | .50
.30 | .40
.50 | $.625 \\ .400$ | .625 $.506$ | .691 $.612$ | .777 $.665$ | .826 $.725$ | .857 $.772$ | .895 $.831$ | .865 | | $\hat{\mathbf{X}}' = \hat{12}$ | 47 | .20 | .40 | .40 | .500 | .500 | .584 | .701 | .768 | .810 | .861 | .890 | | A 12 | 48 | .20 | .50 | .30 | .625 | .625 | .694 | .777 | .827 | .859 | .897 | .919 | | | 49 | .10 | .30 | .60 | .480 | .608 | .636 | .704 | .747 | .790 | .844 | .876 | | | 50 | .10 | .40 | .50 | .500 | .506 | .539 | .636 | .694 | .747 | .811 | .850 | | L = 32 | 51 | .10 | .50 | .40 | .625 | .625 | .636 | .697 | .761 | .803 | .854 | .88 | | $L \equiv 32$ $X \equiv 12$ $X' \equiv 16$ | 52 | .20 | .30 | .50 | .400 | .506 | .530 | .603 | .650 | .709 | .783 | .820 | | X'= 16 | 53
54 | $.20 \\ .20$ | .40
.50 | .40
.30 | .500 $.625$ | .500
.625 | .548
.668 | .618 $.712$ | .702
.776 | .755
.817 | .820
.866 | .858
.894 | | | 55 | .10 | .30 | .60 | .480 | .608 | .636 | .643 | .698 | .738 | .805 | .84 | | | 56 | .10 | .40 | .50 | .500 | .506 | .530 | .559 | .630 | .685 | .764 | .81 | | L = 36 | 57 | .10 | .50 | .40 | .625 | .625 | .636 | .632 | .699 | .751 | .815 | .85 | | $\vec{\mathbf{x}} = \tilde{1}\tilde{2}$ | 58 | .20 | .30 | .50 | .400 | .506 | .530 | .543 | .598 | .649 | .736 | .789 | | X' = 20 | 59 | .20 | .40 | .40 | .500 | .500 | .548 | .562 | .638 | .702 | .780 | .82 | | | 60_ | .20 | .50 | .30 | .625 | .625 | .668 | .676 | .726 | .776 | .835 | .870 | | | 61 | .10 | .30 | .60 | .480 | .608 | .636 | .626 | .651 | .694 | .767 | .81 | | | 62 | .10 | .40 | .50 | .500 | .506 | .530 | .522 | .571 | .626 | .718 | .774 | | L = 40 | 63 | .10 | .50 | .40
.50 | .625 $.400$ | .625 $.506$ | .636 | .626 | .636 $.551$ | .701
.594 | .777 $.691$ | .82 | | X = 12 $X' = 24$ | 64
65 | .20
.20 | .30
.40 | .40 | .500 | .500 | .530 $.548$ | .52 2
.5 62 | .578 | .650 | .741 | .79 | | A = 24 | 66 | .20 | .50 | .30 | .625 | .625 | .668 | .676 | .685 | .735 | .805 | .84 | | | 67 | .10 | .30 | .60 | .480 | .608 | .636 | .626 | .621 | .656 | | .78 | | | 68 | .10 | .40 | .50 | .500 | .506 | .530 | .522 | .517 | .578 | .730
.673 | .737 | | L = 44 | 69 | .10 | .50 | .40 | .625 | .625 | .636 | .626 | .621 | .652 | .739 | .791 | | $\ddot{\mathbf{x}} = \dot{1}\dot{2}$ | 70 | .20 | .30 | .50 | .500 | .506 | .530 | .522 | .517 | .556 | .646 | .71 | | X = 12 $X' = 28$ | 71 | .20 | .40 | .40 | .500 | .500 | .548 | .562 | .570 | .600 | .703 | .76 | | | 72 | .20 | .50 | .30 | .625 | .625 | .668 | .676 | .681 | .695 | .775 | .822 | | | 73 | .10 | .30 | .60 | .480 | .680 | .805 | .834 | .859 | .884 | .915 | .933 | | | 74 | .10 | .40 | .50 | .500 | .617 | .762 | .802 | .835 | .865 | .900 | .921 | | L = 28 | 75 | .10 | .50 | .40 | .625 | .686 | .795 | .837 | .873 | .897 | .924 | .940 | | X = 16 | 76 | .20 | .30 | .50 | .400 | .583 | .701 | .730 | .771 | .811 | .860 | .889 | | X'= 8 | 77
78 | .20
.20 | .40
.50 | .40
.30 | $.500 \\ .625$ | .563 $.669$ | .676 $.745$ | .740
.775 | .799 $.826$ | .836
.858 | .881
.897 | .906
.919 | | | | | | | | | | | | | .874 | | | | 79
80 | .10
.10 | $.30 \\ .40$ | .60
.50 | .480 $.500$ | .608 | .714 $.646$ | .768 $.717$ | .797
.757 | .830
.798 | .850 | .900
.881 | | 1 32 | 81 | .10 | .50 | .40 | .625 | .625 | .688 | .752 | .806 | .841 | .883 | .908 | | L = 32 $X = 16$ $X' = 12$ | 82 | .20 | .30 | .50 | 400 | .506 | .612 | .665 | .695 | .747 | .811 | .85 | | X'= 12 | 83 | .20 | .40 | .40 | .509 | .500 | .572 | .652 | .730 | .779 | .839 | .873 | | | 84 | .20 | .50 | .30 | .625 | .625 | .662 | .729 | .790 | .829 | .875 | .902 | | | 85 | .10 | .30 | .60 | .480 | .608 | .636 | .704 | .747 | .777 | .835 | .869 | | T 00 | 86 | .10 | .40 | .50 | .500 | .506 | .539 | .636 | .692 | .734 | .802 | .842 | | L = 36 | 87
88 | .10
.20 | .50
.30 | .40
.50 | .625 $.400$ | .625
.506 | .612 $.530$ | .670
.603 | .741
.645 | .787
.685 | .843
.764 | .878
.81 | | X = 16 $X' = 16$ | 89 | .20 | .40 | .40 | .500 | .500 | .494 | .567 | .663 | .724 | .797 | .840 | | A _ 10 | 90 | .20 | .50 | .30 | .625 | .625 | .612 | .663 | .738 | .786 | .844 | .87 | | | 91 | .10 | .30 | .60 | .480 | .608 | .636 | .643 | .698 | .734 | .796 | .83 | | | 92 | .10 | .40 | .50 | .500 | .506 | .530 | .559 | .630 | .677 | .754 | .80 | | L = 40 | 93 | .10 | .50 | .40 | .625 | .625 | .608 | .606 | .679 | .735 | .803 | .84 | | L = 40 $X = 16$ | 94 | .20 | .30 | .50 | .400 | .506 | .530 | .543 | .598 | .633 | .718 | .77 | | X' = 20 | 95 | .20 | .40 | .40 | .500 | 500 | .494 | .521 | .598 | .670 | .757 | .80 | | | 96 | .20 | .50 | .30 | .625 | .625 |
.612 | .635 | .687 | .744 | .813 | .85 | | | 97 | .10 | .30
.40 | .60
.50 | .480
.500 | .608
.506 | .636
.530 | .626 | .651 | .694
.626 | .758 $.709$ | .80°
.760 | | T 44 | 98
99 | $.10 \\ .10$ | .50 | .au
.40 | .625 | .625 | .608 | .522 $.604$ | .571
.618 | .684 | .765 | .81 | | $\mathbf{x} - \frac{14}{16}$ | 100 | .20 | .30 | .50 | .400 | .506 | .530 | .522 | .551 | .594 | .673 | .73 | | L = 44 $X = 16$ $X' = 24$ | 101 | .20 | .40 | .40 | .500 | .500 | .494 | .521 | .540 | .617 | .717 | .77 | | | 102 | .20 | .50 | .30 | .625 | 625 | .612 | .635 | .649 | .703 | .782 | .82 | | | 103 | .10 | .30 | .60 | .480 | .608 | .636 | .626 | .621 | .656 | .721 | .77 | | | 104 | .10 | .40 | .50 | .500 | .506 | .530 | .522 | .517 | .578 | .664 | .73 | | L = 48 | 105 | .10 | .50 | .40 | .625 | 625 | .608 | .604 | .603 | .635 | .727 | .78 | | L = 48 $X = 16$ | 106 | .20 | .30 | .50 | .400 | .506 | .530 | .522 | .517 | .556 | .629 | .701 | | X'=28 | 107 | .20 | .40 | .40 | .500 | .500 | .494 | .521 | .537 | .566 | .679 | .748 | | | 108 | .20 | .50 | .30 | .625 | .625 | .612 | .635 | .648 | .663 | .752 | .80 | Table 10.5 ### SUMMARY OF EQUIVALENT H TRUCK LOADINGS IN SIMPLE SPANS PRODUCED BY TYPE 2-S3 TRUCKS WEIGHING ONE KIP EACH Ninety variations in the Type 2-S3 truck are given in this Table. Each truck number, from 1 to 90, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. Equivalent H truck loadings are in kips. | Wheel
Base
and
Axle
Spacing | Truck No. | 1 | Joad O
Axles
Kips | n | | | | Span- | Feet | | | | |--|----------------------------------|--|---|---|--|--|--|--|--|--|--|--| | Feet | Ē | aı | a 2 | a: | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | L = 24 | 1
2
3 | .10
.10
.10 | .225
.30
.40 | .675
.60
.50 | .394
.375
.500 | .619
.550
.568 | .741
.706
.701 | .804
.788
.782 | .849
.836
.829 | .877
.866
.859 | .910
.902
.896 | .929
.923
.917 | | $ \begin{array}{ccc} $ | 4
5
6 | .20
.20
.20 | .20
.30
.40 | .60
.50 | .350
.375
.500 | .550
.467
.585 | .659
.626
.712 | .744
.780
.794 | .802
.789
.840 | .838
.827
.869 | .882
.873
.904 | .907
.899
.924 | | | 7 8 | .10 | .225 | .675
.60 | .394
.375 | .619
.550 | .676
.610 | .739
.701 | .792
.768 | .830
.810 | .876
.861 | .902
.890 | | $\begin{array}{l}L=28\\X=8\\X'=12\end{array}$ | 9
10
11 | .10
.20
.20 | .40
.20
.30 | .50
.60
.50 | .500 $.350$ $.375$ | .529 $.550$ $.458$ | .594
.601
.523 | .684 $.659$ $.630$ | .750
.734
.709 | .793
.782
.760 | .846
.840
.823 | .877
.874
.859 | | | $\frac{12}{13}$ | .10
.10 | .40
.225 | .40
.675
.60 | .394
.375 | .563
.619
.550 | .633
.675
.600 | .711
.693
.629 | 774
737
.702 | .814
.784
.755 | .863
.842
.820 | .892
.875
.858 | | $egin{array}{l} L=32\ X=8\ X'=16 \end{array}$ | 15
16
17
18 | .10
.20
.20
.20 | .40
.20
.30 | .50
.60
.50 | .500
.350
.375
.500 | .529
.550
.458
.563 | .545
.600
.500 | .593
.616
.540
.640 | .675
.669
.633 | .730
.728
.696
.761 | .798
.800
.774
.823 | .839
.842
.820
.860 | | L = 36 | 19
20
21 | .10
.10 | .225
.30
.40 | .675
.60
.50 | .394
.375
.500 | .619
.550
.529 | .675
.600
.545 | .676
.601
.539 | .701
.639
.603 | .740
.702
.669 | .809
.780
.751 | .849
.826
.801 | | X = 8 $X' = 16$ | 22
23
24 | .20
.20
.20 | .20
.30
.40 | .60
.50
.40 | .350
.375
.500 | .550
.458
.563 | .600
.500
.606 | .601
.501
.604 | .623
.560
.649 | .676
.634
.710 | .760
.727
.784 | .810
.782
.828 | | $L = 40 \ X = 8 \ X' = 24$ | 25
26
27
28
29
30 | .10
.10
.10
.20
.20 | .225
.30
.40
.20
.30
.40 | .675
.60
.50
.60
.50 | .394
.375
.500
.350
.375
.500 | .619
.550
.529
.550
.458 | .675
.600
.545
.600
.500 | .676
.601
.533
.601
.501 | .677
.601
.543
.601
.501 | .707
.650
.610
.628
.575 | .776
.741
.705
.722
.680
.746 | .823
.794
.763
.779
.744
.798 | | L = 28
X = 12
X'= 8 | 31
32
33
34
35
36 | .10
.10
.10
.20
.20
.20 | .225
.30
.40
.20
.30
.40 | .675
.60
.50
.60
.50 | .394
.375
.500
.350
.375
.500 | .619
.550
.552
.550
.458 | .741
.706
.675
.659
.616
.643 | .786
.766
.756
.701
.685
.745 | .831
.819
.809
.768
.754 | .862
.852
.843
.810
.798
.838 | .900
.892
.884
.861
.852
.882 | .921
.915
.908
.890
.883 | | $L = 32 \ X = 12 \ X' = 12$ | 37
38
39
40
41
42 | .10
.10
.10
.20
.20 | .225
.30
.40
.20
.30
.40 | .675
.60
.50
.60
.60
.50 | .394
.375
.500
.350
.375
.509 | .619
.550
.500
.550
.458
.500 | .676
.610
.557
.601
.523
.569 | .739
.695
.657
.657
.603 | .775
.751
.730
.702
.674
.735 | .816
.796
.777
.755
.731
.783 | .865
.851
.834
.820
.802
.841 | .894
.882
.868
.858
.843
.874 | | L = 36
X = 12
X'= 16 | 43
44
45
46
47
48 | .10
.10
.10
.20
.20
.20 | .225
.30
.40
.20
.30
.40 | .675
.60
.50
.60
.50
.40 | .394
.375
.500
.350
.375
.500 | .619
.550
.560
.550
.458
.500 | .675
.600
.515
.600
.500
.548 | .693
.629
.570
.616
.539 | .737
.690
.654
.655
.597 | .771
.742
.713
.702
.667
.729 | .832
.810
.786
.780
.753
.800 | .867
.850
.829
.826
.803
.842 | | Table 10. | 5 (Co | ntinu | ed) | | | | | | | | | | |------------------|----------|------------|------------|------------|------|------|--------------|-------------|--------------|------|--------------|------| | | 49 | .10 | .225 | .675 | .394 | .619 | .675 | .676 | .701 | .736 | .799 | .841 | | | 56 | .10 | .30 | .60 | .375 | .550 | .600 | .601 | .639 | .689 | .770 | .818 | | L = 40 | 51 | .10 | .40 | .50 | .500 | .500 | .515 | .514 | .582 | .651 | .739 | .791 | | X = 12 | 52 | .20 | .20 | .60 | .350 | .550 | .600 | .601 | .623 | .654 | .741 | .794 | | X'=20 | 53 | .20 | .30 | .50 | .375 | .458 | .500 | .501 | .548 | .605 | .706 | .765 | | | 54 | .20 | .40 | .40 | .500 | .500 | .548 | .562 | .608 | .676 | .761 | .810 | | | 55 | .10 | .225 | .675 | .394 | .619 | .675 | .676 | .677 | .707 | .766 | .815 | | | 56 | .10 | .30 | .60 | .375 | .550 | .600 | .601 | .601 | .646 | .731 | .786 | | L = 44 | 57 | .10 | .40 | .50 | .500 | .500 | .515 | .511 | .522 | .592 | .693 | .754 | | X = 12 | 58 | .20 | .20 | .60 | .350 | .550 | .600 | .601 | .601 | .628 | .703 | .763 | | X'=24 | 59 | .20 | .30 | .50 | .375 | .458 | .50 0 | .501 | .501 | .553 | .659 | .728 | | | 60 | .20 | .40 | .40 | .500 | .500 | .548 | .562 | .572 | .626 | .722 | .779 | | | 61 | .10 | .225 | .675 | .394 | .619 | .741 | .786 | .813 | .848 | .889 | .913 | | | 62 | .10 | .30 | .60 | .375 | .550 | .706 | .763 | .802 | .838 | .882 | .907 | | L = 32 | 62 | .10 | .40 | .50 | .500 | .552 | .675 | .741 | .789 | .827 | .873 | .899 | | X = 16 | 64 | .20 | .20 | .60 | .350 | .550 | .659 | .699 | .734 | .782 | .840 | .874 | | X′≕ 8 | 65 | .20 | .30 | .50 | .375 | .458 | .616 | .671 | .721 | .771 | .831 | .867 | | | 66 | .20 | .40 | .40 | .500 | .540 | .623 | .696 | .765 | .808 | .860 | .890 | | | 67 | .10 | .225 | .675 | .394 | .619 | .676 | .739 | .774 | .802 | .855 | .886 | | | 68 | .10 | .30 | .60 | .375 | .550 | .610 | .695 | .741 | .782 | .840 | .874 | | L = 36 | 69 | .10 | .40 | .50 | .500 | .500 | .555 | .654 | .709 | .760 | .823 | .859 | | X = 16 $X' = 12$ | 70 | .20 | .20 | .60 | .350 | .550 | .601 | .657 | .688 | .728 | .80 0 | .842 | | X'=12 | 71 | .20 | .30 | .50 | .875 | .458 | .523 | .603 | .648 | .705 | .782 | .827 | | | 72 | .20 | 40 | .40 | .500 | .500 | .537 | .609 | .696 | .752 | .818 | .857 | | | 73 | .10 | .225 | .675 | .394 | .619 | .675 | .693 | .737 | .766 | .822 | .859 | | _ | 74 | .10 | .30 | .60 | .375 | .550 | .600 | .629 | .690 | .728 | .80 0 | .842 | | L = 40 | 75 | .10 | .40 | .50 | .500 | .500 | .500 | .570 | .643 | .696 | .774 | .820 | | X = 16 | 76 | .20 | .20 | .60 | .350 | .550 | .600 | .616 | .655 | .681 | .760 | .810 | | X'=16 | 77 | .20 | .30 | .50 | .375 | .458 | .500 | .539 | .597 | .642 | .734 | .788 | | | 78 | .20 | .40 | 40 | .500 | .500 | .494 | .542 | .630 | .697 | .777 | .824 | | | 79 | .10 | .225 | .675 | .394 | .619 | .675 | .676 | .701 | .736 | .789 | .833 | | _ | 80 | .10 | .30 | .60 | .375 | .550 | .600 | .601 | .639 | .687 | .760 | .810 | | L = 44 | 81 | .10 | .40 | .50 | .500 | .500 | .500 | .501 | .579 | .636 | .727 | .782 | | X = 16 | 82 | .20 | .20 | .60 | .350 | .550 | .600 | .601 | .623 | .654 | .722 | .779 | | X'=20 | 83 | .20 | .30 | .50 | .375 | .458 | .500 | .501 | .548 | .593 | .687 | .750 | | | 84 | .20 | .40 | .40 | .500 | .500 | .494 |
.521 | .569 | .644 | .738 | .792 | | | 85 | .10 | .225 | .675 | .394 | .619 | .675 | .676 | .677 | .707 | .757 | .807 | | · | 86 | .10 | .30 | .60 | .375 | .550 | .600 | .601 | .601 | .646 | .722 | .779 | | L = 48 | 87 | .10 | .40 | .50 | .500 | .500 | .500 | .501 | .518 | .584 | .680 | .744 | | X = 16 $X' = 24$ | 88 | .20
.20 | .20 | .60 | .350 | .550 | .600 | .601 | .601 | .628 | .684 | .748 | | $\Lambda = 24$ | 89
90 | | .30
.40 | .50
.40 | .375 | .458 | .500
.494 | .501 $.521$ | .501
.537 | .553 | .642 | .713 | | | 90 | _20 | .40 | .40 | .500 | .500 | .494 | 021 | .531 | .592 | .698 | .761 | ### Table 10.6 ## SUMMARY OF EQUIVALENT H TRUCK LOADINGS IN SIMPLE SPANS PRODUCED BY TYPE 3-S1 TRUCKS WEIGHING ONE KIP EACH Ninety variations in the Type 3-S1 truck are given in this Table. Each truck number, from 1 to 90, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. Equivalent H truck loadings are in kips. | Wheel
Base
and
Axle
Spacing | ruck No. | 1 | Load O
Axles
Kips | n | | | | Span- | | | | | |---|----------------------------------|--|---|---|--|---|--|--|--|--|--|--| | Feet | ⊢ | a, | a 2 | as | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | $L = 24 \ X = 8 \ X' = 12$ | 1
2
3
4
5
6 | .10
.10
.10
.20
.20
.20 | .40
.50
.60
.40
.50
.534 | .50
.40
.30
.40
.30
.266 | .625
.500
.480
.500
.400
.427 | .625
.525
.526
.500
.552
.585 | .688
.658
.732
.572
.649 | .742
.756
.810
.696
.752 | .792
.811
.853
.764
.808
.823 | .826
.846
.881
.808
.843 | .870
.887
.913
.859
.886
.895 | .896
.911
.932
.889
.910 | | L = 28 $X = 8$ $X' = 16$ | 7
8
9
10
11
12 | .10
.10
.10
.20
.20 | .40
.50
.60
.40
.50
.534 | .50
.40
.30
.40
.30
.266 | .625
.500
.480
.500
.400
.427 | .625
.52 \$
.626
.500
.552 | .612
.584
.690
.537
.642
.677 | .666
.672
.744
.609
.684 | .718
.744
.802
.696
.755 | .764
.790
.838
.751
.800 | .822
.846
.882
.818
.854
.866 | .857
.878
.907
.856
.885 | | L = 32 $X = 8$ $X' = 20$ | 13
14
15
16
17
18 | .10
.10
.10
.20
.20 | .40
.50
.60
.40
.50 | .50
.40
.30
.40
.30
.266 | .625
.500
.480
.500
.400 | .625
.525
.625
.500
.552 | .608
.584
.690
.537
.642
.677 | .595
.591
.694
.556
.659 | .654
.679
.751
.630
.703 | .704
.736
.796
.696
.758 | .776
.806
.851
.777
.823
.838 | .820
.846
.882
.824
.860
.872 | | $L = 36 \ X = 8 \ X' = 24$ | 19
20
21
22
23
24 | .10
.10
.10
.20
.20 | .40
.50
.60
.40
.50 | .50
.40
.30
.40
.30
.266 | .625
.500
.480
.500
.400
.427 | .625
.525
.626
.500
.552
.585 | .608
.584
.690
.537
.642
.677 | .578
.590
.694
.556
.659 | .597
.617
.702
.566
.669
.704 | .647
.684
.755
.643
.716
.741 | .731
.766
.820
.737
.792
.810 | .783
.814
.858
.792
.836
.850 | | L = 40 $X = 8$ $X' = 28$ | 25
26
27
28
29
30 | .10
.10
.10
.20
.20
.20 | .40
.50
.60
.40
.50 | .50
.40
.30
.40
.30
.266 | .625
.500
.480
.500
.400
.427 | .625
.525
.626
.500
.552 | .608
.584
.690
.537
.642
.677 | .578
.590
.694
.556
.659 | .561
.593
.696
.566
.669 | .599
.634
.715
.592
.675
.710 | .687
.728
.790
.698
.761 | .747
.783
.834
.760
.811
.829 | | L = 28 $X = 12$ $X' = 12$ | 31
32
33
34
35
36 | .10
.10
.10
.20
.20 | .40
.50
.60
.40
.50 | .50
.40
.30
.40
.30
.266 | .625
.500
.480
.500
.400
.427 | .625
.506
.608
.500
.506 | .688
.646
.714
.572
.612
.635 | .742
.732
.787
.648
.706
.725 | .777
.792
.835
.727
.772
.787 | .814
.830
.866
.778
.814
.827 | .860
.876
.902
.838
.864
.873 | .888
.902
.923
.872
.593
.900 | | L = 32 $X = 12$ $X' = 16$ | 37
38
39
40
41
42 | .10
.10
.10
.20
.20 | .40
.50
.60
.40
.50 | .50
.40
.30
.40
.30
.266 | .625
.509
.480
.500
.400
.427 | .625
.506
.608
.500
.506 | .612
.552
.657
.494
.580
.615 | .666
.646
.720
.559
.636 | .713
.725
.783
.658
.718
.739 | .752
.775
.823
.721
.770
.787 | .813
.835
.870
.796
.832
.845 | .850
.869
.898
.839
.868
.878 | | Table 10.0 | 6 (Co | ntinue | (b) | | | | | | | | | | |--|----------|------------|--------------|---------------|----------------|--------------|--------------|--------------|----------------|--------------|--------------|--------------| | | 43
44 | .10
.10 | .40
.50 | .50
.40 | .625
.500 | .625
.506 | .608
.552 | .595
.567 | .654
.659 | .694
.720 | .767
.794 | .812
.837 | | L = 36 | 45 | .10 | .60 | .30 | .480 | .608 | .657 | .671 | .732 | .781 | .839 | .873 | | X = 12 | 46 | .20 | .40 | .40 | .500 | .500 | .487 | .512 | .591 | .665 | .754 | .806 | | $\mathbf{X'} = 20$ | 47 | .20
.20 | .50 $.534$ | .30 | .400
.427 | .506 $.541$ | .580 $.615$ | .615 $.650$ | $.666 \\ .691$ | .727
.748 | .801 $.816$ | .843 $.855$ | | | 48 | | | .266_ | | | | | | | 7,140 | | | | 49 | .10 | .40 | .50 | .625 | .625 | .608 | .578 | .597 | .645 | .722 | .776 $.805$ | | T - 40 | 50
51 | .10 | .50
.60 | .40 $.30$ | .500 $.480$ | .506 $.608$ | .552 $.657$ | .567 $.671$ | .597 $.682$ | .668 $.739$ | .755 $.809$ | .849 | | $egin{array}{c} \mathrm{L} = 40 \ \mathrm{X} = 12 \end{array}$ | 52 | .20 | .40 | .40 | .500 | .500 | .487 | .512 | .532 | .611 | .714 | .774 | | $\ddot{\mathbf{X}}' = \ddot{2}$ | 53 | .20 | .50 | .30 | .400 | .506 | .580 | .615 | .634 | .685 | .769 | .818 | | | 54 | .20 | .534 | .266 | .427 | .541 | .615 | .650 | .669 | .710 | .788 | .833 | | | 55 | .10 | .40 | .50 | 625 | .625 | .608 | .578 | .561 | .599 | .679 | .740 | | | 56 | .10 | .50 | .40 | .500 | .506 | .552 | .567 | .575 | .617 | .716 | .774 | | L = 44 | 57 | .10 | .60 | .30 | .480 | .608 | .657 | .671 | .678 | .699 | .778 | .825 | | X = 12 | 58 | .20 | .40 | .40 | .500 | .500 | .487 | .512 | .532 | .559 | .674 | .742 | | X'=28 | 59 | .20 | .50 | .30 | .400 | .506 | .580 | .615 | .634 | .646 | .739 | .794 | | | 60 | .20 | .534 | .266 | .427 | .541 | .615 | .650 | 669 | 681 | .760 | .811 | | | 61 | .10 | .40 | .50 | .625 | .625 | .688 | .742 | .774 | .801 | .851 | .880 | | | 62 | .10 | .50 | .40 | .500 | .506 | .646 | .717 | .773 | .815 | .865 | .894 | | L = 32 | 63 | .10 | .60 | .30 | 480 | .608 | .714 | .768 | .817 | .851 | .891 | .914 | | X = 16 $X' = 12$ | 64
65 | .20
.20 | .40 $.50$ | .40 $.30$ | $.500 \\ .400$ | .500 $.506$ | .572 $.612$ | .630 $.665$ | .691 $.737$ | .748
.785 | .816 $.843$ | .855
.877 | | $\Lambda = 12$ | 66 | .20 | .534 | .266 | .427 | .541 | .635 | .682 | .752 | .798 | .852 | .884 | | | | | .40 | .50 | .625 | .625 | .612 | .666 | .713 | .744 | .803 | .842 | | | 67
68 | .10
.10 | .50 | .40 | .500 | .506 | .539 | .636 | .713 | .759 | .823 | .861 | | L = 36 | 69 | .10 | .60 | .30 | .480 | .608 | .636 | .704 | .764 | .808 | .859 | .889 | | X = 16 | 70 | ,20 | .40 | .40 | .500 | .500 | .494 | .556 | .621 | .690 | .774 | .822 | | $\hat{\mathbf{X}}' \equiv 16$ | 71 | .20 | .50 | .30 | .400 | .506 | .530 | .603 | .682 | .741 | .811 | .851 | | | 72 | .20 | .534 | .266 | .427 | .541 | .566 | .626 | .703 | .758 | .823 | .861 | | | 73 | .10 | .40 | .50 | .625 | .625 | .608 | .595 | .654 | .694 | .758 | .805 | | | 74 | .10 | .50 | .40 | .500 | .506 | .530 | .560 | .640 | .704 | .783 | .828 | | L = 40 | 75 | .10 | .60 | .30 | .480 | .608 | .636 | .648 | .713 | .765 | .828 | .865 | | X = 16 | 76 | .20 | .40 | .40 | .500 | .500 | .487 | .486 | .552 | .634 | .732 | .789 | | X'=20 | 77
78 | .20
.20 | .50
.534 | $.30 \\ .266$ | .400 $.427$ | .506 $.541$ | .530 $.566$ | .572 $.606$ | .629 $.655$ | .697 $.718$ | .779
.794 | .826 $.838$ | | | | | | | | | | | | | | .768 | | | 79
80 | .10
.10 | .40
.50 | .50 | .625 $.500$ | .625 $.506$ | .608 $.530$ | .578
.544 | .597
.576 | .645
.651 | .713 $.743$ | .796 | | L = 44 | 81 | .10 | .60 | .40
.30 | .480 | .608 | .636 | .648 | .663 | .724 | .797 | .840 | | X = 16 | 82 | .20 | .40 | .40 | .500 | .500 | .487 | .469 | .498 | .579 | .691 | .756 | | X'=24 | 83 | .20 | .50 | .30 | .400 | .506 | .530 | .572 | .600 | .654 | .747 | .801 | | | 84 | .20 | .534 | .266 | .427 | .541 | .566 | .606 | .635 | .680 | .766 | .816 | | | 85 | .10 | .40 | .50 | .625 | .625 | .608 | .578 | .561 | .599 | .671 | .733 | | | 86 | .10 | .50 | .40 | .500 | .506 | .530 | .544 | .557 | .600 | .704 | .765 | | L = 48 | 87 | .10 | .60 | .30 | .480 | .608 | .636 | .648 | .660 | .683 | .767 | .816 | | X = 16 | 88 | .20 | .40 | .40 | .500 | .500 | .487 | .469 | .498 |
.526 | .651 | .724 | | X'=28 | 89 | .20 | .50 | .30 | .400 | .506 | .530 | .572 | .600 | .618 | .716 | .776 | | | 90 | .20 | .534 | .266 | .427 | .541 | .566 | .606 | .635 | .653 | .738 | .794 | Table 10.7 ## SUMMARY OF EQUIVALENT H TRUCK LOADINGS IN SIMPLE SPANS PRODUCED BY TYPE 3-S2 TRUCKS WEIGHING ONE KIP EACH One hundred twelve variations in the Type 3-S2 truck are given in this Table. Each truck number, from 1 to 112, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. Equivalent H truck loadings are in kips. | Wheel
Base
and
Axle
Spacing | Truck No. | | Load C
Axles
Kips | 3 | | | | Span- | Feet | | | | |---|--|--|--|---|--|--|--|--|--|--|--|--| | Feet | H | a ₁ | \mathbf{a}_2 | \mathbf{a}_3 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | L = 28
X = 8
X'= 12 | 1
2
3
4
5
6
7 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | .480
.400
.360
.400
.400
.320
.400 | .608
506
.475
.526
.506
.454 | .671
.592
.559
.600
.569
.537 | .736
.676
.683
.714
.634
.652 | .785
.740
.753
.777
.702
.730
.781 | .823
.785
.798
.818
.753
.779 | .869
.840
.851
.866
.816
.839 | .896
.873
.882
.895
.854
.873 | | L = 32
X = 8
X'= 16 | 8
9
10
11
12
13
14 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40
.30 | .480
.500
.360
.400
.400
.320
.400 | .608
.506
.475
.526
.506
.454 | .636
.530
.531
.584
.530
.537
.641 | .673
.597
.593
.631
.572
.567 | .722
.665
.680
.711
.628
.663
.729 | .770
.722
.737
.763
.691
.724
.779 | .830
.792
.806
.826
.768
.797
.838 | .865
.834
.846
.862
.815
.840
.873 | | L = 36 X = 8 X' = 20 | 15
16
17
18
19
20
21 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | .480
.400
.360
.400
.400
.320
.400 | .608
.506
.475
.526
.506
.454 | .636
.530
.531
.584
.530
.537
.641 | .627
.529
.538
.590
.525
.556 | .674
.600
.611
.648
.574
.598 | .719
.660
.679
.710
.631
.670 | .791
.745
.762
.786
.722
.757 | .833
.796
.811
.830
.777
.808
.848 | | L = 40 $X = 8$ $X' = 24$ | 22
23
24
25
26
27
28 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | .480
.400
.360
.400
.400
.320
.400 | .608
.506
.475
.526
.506
.454 | .636
.530
.531
.584
.530
.537 | .626
.522
.538
.590
.522
.556
.659 | .630
.543
.544
.593
.529
.566 | .675
.602
.622
.659
.575
.617 | .753
.699
.719
.747
.677
.717 | .803
.759
.776
.799
.740
.776
.823 | | L = 44 $X = 8$ $X' = 28$ | 29
30
31
32
33
34
35 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | .480
.400
.360
.400
.400
.320
.400 | .608
.506
.475
.526
.506
.454 | .636
.530
.531
.584
.530
.537
.641 | .626
.522
.538
.590
.522
.556 | .621
.517
.541
.593
.517
.566
.669 | .637
.555
.568
.609
.538
.572 | .716
.655
.677
.709
.634
.679 | .773
.722
.742
.768
.704
.745
.799 | | L = 28
X = 12
X'= 3 | 36
37
38
39
40
41
42 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | .480
.400
.360
.400
.400
.320
.400 | .638
.551
.516
.551
.538
.454
.538 | .759
.703
.676
.703
.656
.601 | .860
.759
.754
.776
.697
.694 | .834
.803
.810
.827
.748
.763
.800 | .864
.839
.845
.859
.792
.807
.837 | .900
.880
.887
.897
.845
.859 | .921
.905
.911
.919
.877
.889 | | rabic 10. | 7 (Co | ntinue | d) | | | | | | | | | | |---|-----------------|--------------|--------------|-------------------|----------------|----------------|--------------|-----------------------|-----------------------|------------------------------|------------------------------|----------------------| | | 43 | .10 | .30 | .60 | .480 | .603 | .671 | .736 | .772 | .810 | .859 | .888 | | L = 32 | 44
45 | .10
.10 | $.40 \\ .45$ | $.50 \\ .45$ | .360 | .506 $.456$ | .592
.555 | .676
.658 | .725
.73 4 | .772
.782 | .831
.840 | .865
.874 | | X = 12
X' = 12 | 46 | .10 | .50 | .40 | .400 | .506 | .592 | .689 | .758 | .802 | .855 | .886 | | X'=:: 12 | 47 | .20 | .30 | .50 | .400 | .506 | .569 | .634 | .672 | .728 | .797 | .838 | | | $\frac{48}{49}$ | .20
.20 | $.40 \\ .50$ | .40
.30 | .320
.400 | .405 $.506$ | .493 $.580$ | .603 $.671$ | .692
.7 4 5 | .749 $.792$ | .817
.848 | .855
.881 | | | 50 | .10 | .30 | .60 | 480 | .608 | .636 | .673 | .722 | .758 | .820 | .857 | | F 0.0 | 51 | .10 | .40 | .50 | .106 | .506 | .530 | .597 | .661 | .709 | .783 | .826 | | $egin{array}{l} \mathbf{L} \equiv 36 \\ \mathbf{X} \equiv 12 \end{array}$ | $\frac{52}{53}$ | .10
.10 | $.45 \\ .50$ | $\frac{.45}{.40}$ | .360 $.400$ | .456 $.506$ | .499 $.552$ | .566 $.605$ | $.660 \\ .692$ | .721
.747 | .795
.814 | .837
.853 | | X'=16 | 54 | .20 | .30 | .50 | .400 | .506 | .532 | .572 | .621 | .666 | .750 | .800 | | | 55 | .20 | .40 | .40 | .320 | .405 | .476 | .516 | .624 | .693 | .775 | .822 | | | $\frac{56}{57}$ | .20 | .30 | 30
60 | .400
.480 | .506
.608 | .636 | .615
.627 | .692 | .749 | .816
.781 | .855 | | | 58 | .10 | .40 | .50 | .400 | .506 | .530 | .529 | .600 | .651 | .736 | .789 | | L = 40 | 59 | .10 | .45 | .45 | 360 | .456 | .499 | .515 | .590 | .662 | .750 | .802 | | $egin{array}{l} L \equiv 40 \ X \equiv 12 \ X' \equiv 20 \ \end{array}$ | $\frac{60}{61}$ | .10 | $.50 \\ .30$ | $.40 \\ .50$ | .400 $.400$ | .506 $.506$ | .552 $.530$ | .567 $.525$ | .628
.574 | .694
.613 | .774
.704 | .821
.762 | | -x — 20 | 62 | .20 | .40 | .40 | .320 | .405 | .476 | .512 | .558 | .638 | .734 | .790 | | | 63 | .20 | .50 | .30 | .400 | .506 | .580 | .615 | .642 | .706 | .785 | .830 | | | $\frac{64}{65}$ | $.10 \\ .10$ | $.30 \\ .40$ | $.60 \\ .50$ | $.480 \\ .400$ | .608 $.506$ | .636
.530 | .626 $.522$ | .630 $.543$ | .675 $.602$ | .7 44
.691 | .795
.751 | | L = 44 | 66 | .10 | .45 | .45 | .360 | .456 | .499 | .515 | .523 | .605 | .707 | .767 | | X = 12 $X' = 24$ | 67 | .10 | .50 | .40 | .400 | .506 | .552 | .567 | .575 | .642 | .735 | .790 | | X' = 24 | 68
69 | .20
.20 | $.30 \\ .40$ | $.50 \\ .40$ | .490 $.320$ | .506 | .530 | .522 $.512$ | .529
.532 | .575 | .660 | .726 | | | 70 | .20 | .50 | .30 | .400 | .405 $.506$ | .476 $.580$ | .615 | .634 | .585
.664 | .694
.754 | .758
.806 | | | 71 | .10 | .30 | .60 | .480 | .608 | .636 | .626 | .621 | .637 | .707 | .765 | | 1 40 | 72 | .10 | .40 | .50 | .400 | .506 | .530 | .522 | .517 | .555 | .646 | .715 | | $L = 48 \\ X = 12$ | $\frac{73}{74}$ | $.10 \\ .10$ | $.45 \\ .50$ | $.45 \\ .40$ | .360 $.400$ | .456 $.506$ | .499
.552 | .515
.567 | .523
.575 | .550
.592 | .665
.697 | .733
.758 | | X = 12 $X' = 28$ | 75 | .20 | .30 | .50 | .400 | .506 | .530 | .522 | .517 | .538 | .616 | .690 | | | $\frac{76}{77}$ | .20 | .40 | .40 | .320 | .405 | .476 | .512 | .532 | .544 | .655 | .727 | | | 71 | .10 | .50 | 30
60 | .400 | .608 | .580
.671 | .615
.736 | .634
.772 | .646 | .723 | .781
.880 | | | 79 | .10 | .40 | .50 | .400 | .506 | .592 | .676 | .724 | .759 | .821 | .857 | | $L \equiv 36$
$X \equiv 16$ | 80
81 | .10
.10 | .45 | .45 | .360 | .456 | .555 | .648 | .714 | .766 | .829 | .865 | | X = 16
X' = 12 | 82 | .20 | .50 $.30$ | .40
.50 | .400
.400 | .506
.506 | .592
.569 | .676 $.634$ | .739
.670 | .787
.703 | .844
.778 | .877
.82 3 | | | 83 | .20 | .40 | .40 | .320 | .405 | .493 | .576 | .656 | .719 | .795 | .838 | | | 84 | .20 | .50 | .30 | .400 | .506 | .569 | .634 | .709 | .763 | .827 | .864 | | | 85
86 | .10
.10 | .30 $.40$ | .60
.50 | .480 $.400$ | .608
.506 | .636
.530 | .673
.597 | .722 $.661$ | .754
.703 | .810
.773 | .849
.819 | | L = 40 | 87 | .10 | .45 | .45 | .360 | .456 | .477 | .562 | .641 | .705 | .783 | .828 | | X = 16 $X' = 16$ | 88
89 | $.10 \\ .20$ | .50 | .40 | .400 | .506 | .530 | .597 | .672 | .732 | .803 | .844 | | A 10 | 90 | .20 | .30
.40 | .50
.40 | .320 | .506 $.405$ | .530
.424 | .572
.499 | .621
.586 | .653 $.662$ | .731
.75 3 | .785
.805 | | | 91 | .20 | .50 | .30 | .400 | .506 | .530 | .572 | .65 5 | .719 | .795 | .838 | | | 92 | .10 | .30 | .60 |
.480 | .608 | .636 | .627 | .674 | .714 | .772 | .818 | | L = 44 | 93
94 | .10
.10 | .40
.45 | .50
.45 | $.400 \\ .360$ | .506
.456 | .530
.477 | .529
.492 | .600
.570 | .651
. 646 | .72 7
.738 | .781
.793 | | X = 16 $X' = 20$ | 95 | .10 | .50 | .40 | .400 | .506 | .530 | .544 | .608 | .678 | .763 | .812 | | X' = 20 | 96
97 | $.20 \\ .20$ | .30 $.40$ | .50
.40 | $.400 \\ .320$ | .506
.405 | .530 | .525 | .574 | .613 | .686 | .748 | | | 98 | .20 | .50 | .30 | .400 | .506 | .424
.530 | .469
.572 | .519
.605 | .60 6
.676 | .711
.763 | .772
.813 | | | 99 | .10 | .30 | .60 | .480 | .608 | .636 | .626 | .630 | .675 | .734 | .788 | | L = 48 | 100
101 | .10 | .40 | .50 | .400 | .506 | .530 | .522 | .543 | .602 | .682 | .744 | | X = 16 | 102 | .10
.10 | .45
.50 | .45
.40 | .360 $.400$ | .456
.506 | .477
.530 | .492
.544 | .505
.557 | .58 8
.62 5 | .695 $.723$ | .750
.781 | | X'=24 | 103 | .20 | .30 | .50 | .400 | .506 | .530 | .522 | .529 | .575 | .642 | .712 | | | 104
105 | .20
.20 | .40
.50 | .40
.30 | .320 | $.405 \\ .506$ | .424
.530 | .469 | .498 | .552 | .671 | .740 | | | 106 | .10 | .30 | .60 | .400 | .608 | .636 | .572
. 6 26 | .600 | .633 | .732 | .788
.758 | | | 107 | .10 | .40 | .50 | .400 | .506 | .530 | .522 | .517 | .555 | .640 | .708 | | $L_{r} = 52$ | 108
109 | .10 | .45 | .45 | .360 | .456 | .477 | .492 | .505 | .533 | .652 | .723 | | X = 16 | 110 | .10
.20 | .50
.30 | .40
.50 | .400
.400 | .506
.506 | .530
.530 | .544
.522 | .557
.517 | .575
.538 | .68 5
.60 4 | .7 49
.676 | | X'=28 | | | | | | | | | | | | | | X'= 28 | 111
112 | .20 | .40
.50 | .40
.30 | .320
.400 | .405
.506 | .424
.530 | .469
.572 | .498
.600 | .516
.618 | .632
.701 | .708
.764 | Table 10.8 ## SUMMARY OF EQUIVALENT H TRUCK LOADINGS IN SIMPLE SPANS PRODUCED BY TYPE 3-S3 TRUCKS WEIGHING ONE KIP EACH One hundred five variations in the Type 3-S3 truck are given in this Table. Each truck number, from 1 to 105, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. | and
Axle
Spacing | Truck No. | | Load C
Axles
Kips | 3 | | | | Span- | Feet | | | | |------------------------|-----------------|------------------|-------------------------|------------|-------------|--|--------------|--------------|--------------|--------------|----------------------|----------------------| | Feet | L | a ₁ | \mathbf{a}_2 | સ ર | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 1 | .10 | .30 | .60 | .350 | .550 | .600 | .662 | .726 | .776 | .835 | .870 | | | 2 | .10 | .36 | .54 | .315 | .495 | .541 | .631 | .704 | .757 | .821 | .858 | | L = 32 | 3 | .10 | .40 | .50 | .320 | .458 | .500 | .612 | .689 | .745 | .811 | .851 | | $\mathbf{X} = 8$ | 4 | .10 | .50 | .40 | .400 | .525 | .585 | .672 | .745 | .791 | .846 | .878 | | X'=12 | 5 | .20 | .30 | .50 | .291 | .458 | .500 | .571 | .651 | .712 | .787 | .831 | | | 6 | .20 | .40 | .40 | .320 | .454 | .537 | .609 | .696 | .752 | .818 | .857 | | | 7 | .20 | .50 | .30 | .400 | .552 | .642 | .689 | .755 | .800 | .854 | .885 | | | 8 | .10 | .30 | .60 | .350 | .550 | .600 | .610 | .664 | .722 | .795 | .838 | | | 9 | .10 | .36 | .54 | .315 | .495 | .540 | .556 | .631 | .696 | .775 | .822 | | L = 36 | 10 | .10 | .40 | .50 | .320 | .458 | .500 | .530 | .612 | .680 | .762 | .811 | | X = 8 $X' = 16$ | 11 | .10 | .50 | .40 | .400 | .525 | .584 | .603 | .680 | .737 | .806 | .846 | | X=16 | 12
13 | .20 | .30 | .50 | .291 $.320$ | .458
.454 | .500 | .511 | .575 | .648
.697 | .739 | .792
.82 4 | | | 14 | .20
.20 | .40
.50 | .40
.30 | .400 | .552 | .537 $.642$ | .558
.661 | .630
.703 | .758 | .777
.82 3 | .860 | | | | COMMUNICATION OF | | 41.4 April | | PROPERTY OF THE PARTY PA | ~~~~~~ | | | | | | | | 15 | .10 | .30 | .60 | .350 | .550 | .600 | .601 | .616 | .670 | .755 | .806 | | L = 40 | $\frac{16}{17}$ | .10
.10 | .36 $.40$ | .54
.50 | .315 $.320$ | .495 $.458$ | .540
.500 | .541
.501 | .574
.548 | .638 $.619$ | .731
.715 | .786 $.773$ | | Y 40 | 18 | .10 | .50 | .40 | .400 | .525 | .584 | .590 | .618 | .685 | .767 | .815 | | X = 8 $X' = 20$ | 19 | .20 | .30 | .50 | .291 | .458 | .500 | .501 | .524 | .587 | .692 | .754 | | 2L 20 | 20 | .20 | .40 | .40 | .320 | .454 | .537 | .556 | .575 | .644 | .738 | .792 | | | 21 | .20 | .50 | .30 | .400 | 552 | .642 | .659 | .768 | .716 | .792 | .836 | | | 22 | .10 | .30 | .60 | .350 | .550 | .600 | .601 | .601 | .626 | .717 | .775 | | | 23 | .10 | .36 | .54 | .315 | .495 | .540 | .541 | .541 | .585 | .688 | .751 | | L == 44 | 24 | .10 | .40 | .50 | .320 | .458 | .500 | .501 | .501 | .559 | .669 | .735 | | X = 8 | 25 | .10 | .50 | .40 | .400 | .525 | .584 | .590 | .593 | .634 | .728 | .784 | | X'=24 | 26 | .20 | .30 | .50 | .291 | .458 | .500 | .501 | .501 | .534 | .646 | .717 | | | 27 | .20 | .40 | .40 | .320 | .454 | .537 | .556 | .56 6 | .592 | .698 | .761 | | | 28 | .20 | .50 | .30 | .400 | . 552 | .642 | .659 | .669 | .764 | .761 | .811 | | | 29 | .10 | .30 | .60 | .350 | .550 | .600 | .601 | .601 | .601 | .679 | .744 | | | 30 | .10 | .36 | .54 | .315 | .495 | .540 | .541 | .541 | .542 | .645 | .716 | | L = 48 | 31 | .10 | .40 | .50 | .320 | .458 | .500 | .501 | .501 | .511 | .624 | .698 | | X = 8 $X' = 28$ | 32 | .10 | .50 | .40 | .400 | .525 | .584 | .590 | .593 | .594 | .690 | .753 | | X' = 28 | 33 | .20 | .30 | .50 | .291 | .458 | .500 | .501 | .501 | .501 | .602 | .680 | | | 34 | .20 | .40 | .40 | .320 | .454 | .537 | .556 | .566 | .572 | .660 | .730 | | | 35 | .20 | .50 | .30 | .400 | .552 | .642 | .775 | .669 | 675 | .731 | .787 | | | 36 | .10 | .30 | .60 | .350 | .550 | .600 | .662 | .715 | .762 | .825 | .862 | | | 37 | .10 | .36 | .54 | .315 | .495 | .541 | .631 | .691 | .743 | .811 | .850 | | L = 36 | 38 | .10 | .40 | .50 | .320 | .458 | .500 | .612 | .675 | .731 | .802 | .843 | | X = 12 | 39 | .10 | .50 | .40 | .400 | .506 | .652 | .647 | .725 | .775 | .835 | .870 | | X'=12 | 40 | .20 | .30 | .50 | .291 | .458 | .500 | .571 | .622 | .686 | .767 | .815 | | | 41 | .20 | .40 | .40 | .320 | .405 | .476 | .560 | .658 | .721 | .796 | .839 | | | 42 | .20 | .50 | .30 | .400 | .506 | .580 | .640 | .718 | .770 | .832 | .868 | | | 43 | ntinue | ,30 | .60 | .350 | .550 | .600 | .610 | .664 | .709 | .785 | .830 | |----------------------------|------------|------------|------------|------------|--------------|--------------|--------------|--------------|----------------------|----------------------|--------------|--------------| | | 44 | .10 | .36 | .54 | .315 | .330 | .540 | .556 | .631 | .683 | .765 | .814 | | L = 40 | 45 | .10 | .40 | .50 | .320 | .458 | .500 | .530 | .611 | .667 | .753 | .803 | | K = 12 | 46 | .10 | .50 | .40 | .400 | .506 | ,552 | .578 | .660 | .721 | .795 | .837 | | $\zeta = 12$ $\zeta' = 16$ | 47 | .20 | .30 | .50 | .291 | .458 | .500 | .511 | .572 | .624 | .720 | .77 | | | 48 | .20 | .40 | .40 | .320 | .405 | .476 | .512 | .591 | .666 | .755 | .806 | | | 49 | .20 | .50 | .30 | .400 | .506 | .580 | .615 | .682 | .727 | .801 | .843 | | | 50 | .10 | .30 | .60 | .350 | .550 | .600 | .601 | .616 | .666 | .746 | .798 | | | 51 | .10 | .36 | .54 | .315 | .495 | .540 | .541 | 574 | .632 | .698 | .759 | | L = 44 | 52 | .10 | .40 | .50 | .320 | .458 | .500 | .501 | .548 | .610 | .705 | .765 | | X = 12 $X' = 20$ | 53 | .10 | .50 | .40 | .400 | .506 | .552 | .567 | .598 | .668 | .755 | .806 | | $r = z_0$ | 54
55 | .20
.20 | .30
.40 | .50
.40 | .291 $.320$ | .458
.405 | .500
.476 | .501
.512 | .524
.537 | .573
.612 | .673
.714 | .738
.774 | | | 56 | .20 | .50 |
.30 | .400 | .506 | .580 | .615 | .638 | .685 | .769 | .818 | | | 57 | .10 | .30 | .60 | .350 | .550 | .600 | .601 | .601 | .626 | .707 | .767 | | | 58 | .10 | .36 | .54 | .315 | .495 | .540 | .541 | .541 | .584 | .678 | .743 | | L = 48 | 59 | .10 | .40 | .50 | .320 | .458 | .500 | .501 | .501 | .559 | .659 | .727 | | $\zeta = 12$ | 60 | .10 | .50 | .40 | .400 | .506 | .552 | .567 | .575 | .617 | .716 | .778 | | X = 12
X' = 24 | 61 | .20 | .30 | .50 | .291 | .458 | .500 | .501 | .501 | .534 | .628 | .701 | | | 62 | .20 | .40 | .40 | .320 | .405 | .476 | .512 | .532 | .559 | .675 | .743 | | | 63 | .20 | .50 | .30 | .400 | .506 | .580 | .615 | .634 | .654 | .739 | .794 | | | 64 | .10 | .30 | .60 | .350 | .550 | .600 | .601 | .601 | .601 | .670 | .737 | | | 65 | .10 | .36 | .54 | .315 | .495 | .540 | .541 | .541 | .542 | .636 | .709 | | L = 52 | 66 | .10 | .40 | .50 | .320 | .458 | .500 | .501 | .501 | .510 | .614 | .691 | | X = 12 $X' = 28$ | 67 | .10 | .50 | .40 | .400 | .506 | .552 | .567 | .575 | .579 | .678 | .744 | | X' = 28 | 68 | .20 | .30 | .50 | .291 | .458 | .500 | .501 | .501 | .501 | .584 | .666 | | | 69
70 | .20
.20 | .40
.50 | .40
.30 | .320
.400 | .405
.506 | .476
.580 | .512
.615 | .532
.634 | .5 44
.646 | .636
.708 | .711
.769 | | | 71 | .10 | ~.30 ~ | .60 | .350 | .550 | .600 | .662 | .715 | .749 | .815 | .854 | | | 72 | .10 | .36 | .54 | .315 | .495 | .541 | .631 | .691 | .730 | .801 | .842 | | = 40 | 73 | .10 | .40 | .50 | .320 | .458 | .500 | .612 | .675 | .718 | .792 | .835 | | X = 16
X' = 12 | 74 | .10 | .50 | .40 | .400 | .506 | .562 | .637 | .706 | .759 | .824 | .861 | | √ = 12 | 75 | .20 | .30 | .50 | .291 | .458 | .500 | .571 | .622 | .660 | .748 | .799 | | | 76 | .20 | .40 | .40 | .320 | .405 | .461 | .538 | .621 | .691 | .774 | .822 | | | 77 | .20 | .50 | .30 | .400 | .506 | .552 | .603 | .664 | .726 | 800 | .843 | | | 78 | .10 | .30 | .60 | .350 | .550 | .600 | .610 | .664 | .707 | .775 | .822 | | | 79 | .10 | .36 | .54 | .315 | .495 | .540 | .556 | .631 | .680 | .756 | .806 | | L = 44 | 80 | .10 | .40 | .50 | .320 | .458 | .500 | .530 | .610 | .662 | .743 | .796 | | X = 16 $X' = 16$ | 81
82 | .10
.20 | .50
.30 | .40
.50 | .400
.291 | .506
.458 | .530
.500 | .568
.511 | .640
.572 | .705
.613 | .783
.701 | .829 | | | 83 | .20 | .40 | .40 | .320 | .405 | .424 | .469 | .553 | .635 | .732 | .761
.789 | | | 84 | .20 | .50 | .30 | .400 | .506 | .530 | .572 | .629 | .697 | .779 | .826 | | | 85 | .10 | .30 | .60 | .350 | .550 | .600 | .601 | .616 | .666 | .736 | .790 | | | 86 | .10 | .36 | .54 | .315 | .495 | .540 | .541 | .574 | .632 | .712 | .770 | | L = 48 | 87 | .10 | .40 | .50 | .320 | .458 | .500 | .501 | .548 | .610 | .696 | .751 | | X = 16 $X' = 20$ | 88 | .10 | .50 | .40 | .400 | .506 | .530 | .544 | .579 | .642 | .743 | .797 | | C'=20 | 89 | .20 | .30 | .50 | .291 | .458 | .500 | .501 | .524 | .573 | .654 | .724 | | | 90 | .20 | .40 | .40 | .320 | .405 | .424 | .469 | .500 | .580 | .692 | .75 | | | 91 | .20 | .50 | .30 | .400 | .506 | .530 | .572 | .601 | .654 | .747 | .801 | | | 92 | .10 | .30 | .60 | .350 | .550 | .600 | .601 | .601 | .626 | .698 | .760 | | L = 52 | $93 \\ 94$ | .10 | .36 | .54 | .315 | .495 | .540 | .541 | .541 | .585 | .669 | .736 | | Z — 16 | 95 | .10 $.10$ | .40
.50 | .50
.40 | .320 $.400$ | .458
.506 | .500
.530 | .501
.544 | .501 | .559 | .650 | .720 | | X = 16 $X' = 24$ | 96 | .20 | .30 | .50 | .291 | .458 | .500 | .501 | .557
.50 1 | .601
.534 | .704 $.610$ | .765
.687 | | | 97 | .20 | .40 | .40 | .320 | .405 | .424 | .469 | .498 | .527 | .652 | .728 | | | 98 | .20 | .50 | .30 | .400 | .506 | .530 | .572 | .600 | .624 | .716 | .776 | | | 99 | .10 | .30 | .60 | .350 | .550 | .600 | .601 | .601 | .601 | .669 | .729 | | | 100 | .10 | .36 | .54 | .315 | .495 | .540 | .541 | .541 | .542 | .632 | .702 | | L = 56 | 101 | .10 | .40 | .50 | .320 | .458 | .500 | .501 | .501 | .510 | .609 | .688 | | X = 16 $X' = 28$ | 102 | .10 | .50 | .40 | .400 | .506 | .530 | .544 | .557 | .565 | .666 | .73 | | K'= 28 | 103 | .20 | .30 | .50 | .291 | .458 | .500 | .501 | .501 | .501 | .574 | .651 | | | 104 | .20 | .40 | .40 | .320 | .405 | .424 | .469 | .498 | .516 | .613 | .693 | | | 105 | .20 | .50 | .30 | .400 | .506 | .530 | .572 | .600 | .618 | .685 | .752 | ### Table 10.9 ## SUMMARY OF EQUIVALENT H TRUCK LOADINGS IN SIMPLE SPANS PRODUCED BY TYPE 2-2 TRUCKS WEIGHING ONE KIP EACH One hundred forty-four variations in the Type 2-2 truck are given in this Table. Each truck number, from 1 to 144, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. | Wheel Base and Axle Spacing Feet | Truck No. | | Load C
Axles
Kips | š | | | | Span- | | | | | |---|-----------------|------------|-------------------------|------------|----------------|--------------|--------------|--------------|--------------|----------------------|--------------|--------------| | Feet | F- | a 1 | a ₂ | a 3 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 1 | .10 | .20 | .70 | .438 | .580 | .740 | .787 | .835 | .866 | .902 | .923 | | L = 28 | 2 | .10 | .30 | .60 | .375 | .525 | .706 | .766 | .819 | .852 | .892 | .915 | | $\begin{array}{c} X = 12 \\ X' = 8 \end{array}$ | 3 | .10
.20 | .40
.20 | .50 | .500 $.375$ | .582 $.503$ | .675
.650 | .757
.701 | .809 $.768$ | .843 | .884
.861 | .908 | | C = 8 | 4
5 | .20 | .30 | .60
.50 | .375 | .460 | .617 | .685 | .754 | .810 $.798$ | .852 | .890
.883 | | C 0 | 6 | .20 | .40 | .40 | .500 | .563 | .650 | .744 | .802 | .838 | .882 | .907 | | | 7 | .10 | .20 | .70 | .438 | .502 | .635 | .711 | .772 | .814 | .864 | .893 | | L = 32 | 8 | .10 | .30 | .60 | .375 | .480 | .610 | ,695 | .763 | .807 | .859 | .889 | | $ \begin{array}{l} L = 32 \\ X = 12 \end{array} $ | 9 | .10 | .40 | .50 | .500 | .582 | .654 | .706 | .769 | .810 | .859 | .888 | | $ \begin{array}{c} \overline{X}' = 12 \\ \overline{C} = 8 \end{array} $ | 10 | .20 | .20 | .60 | .375 | .441 | .558 | .628 | .711 | .764 | .828 | 864 | | c = s | 11 | .20 | .30 | .50 | .375 | .460 | .556 | .628 | .710 | .762 | .825 | .862 | | | 12_ | 20_ | .40 | .40 | .500 | .563 | .650 | .701 | .768 | .810 | .861 | .890 | | | 13 | .10 | .20 | .70 | .438 | .502 | .546 | .637 | .711 | .764 | .828 | .864 | | L = 36 | 14
15 | .10 | .30
.40 | .60 | .375 $.500$ | .480
.582 | .562 $.654$ | .629 $.683$ | .709
.730 | .763
.777 | .827
.835 | .864
.869 | | X = 12
Y' 16 | 16 | .10
.20 | .20 | .50
.60 | .375 | .441 | .485 | .564 | .656 | .719 | .795 | .838 | | L = 36 $X = 12$ $X' = 16$ $C = 8$ | 17 | .20 | .30 | .50 | .375 | .460 | .556 | .613 | .669 | .728 | .800 | .842 | | 0 — 0 | 18 | .20 | .40 | .40 | .500 | .563 | .650 | .694 | .734 | .782 | .840 | .874 | | | 19 | .10 | .20 | .70 | .438 | .502 | .546 | .567 | .652 | .715 | .791 | .835 | | L = 40 | 20 | .10 | ,30 | .60 | .375 | .480 | .562 | .603 | .657 | .720 | .795 | .839 | | X = 12 | 21 | .10 | .40 | .50 | .500 | .582 | .654 | .683 | .698 | .745 | .810 | .849 | | X' = 20 $C = 8$ | 22 | .20 | .20 | .60 | .375 | .441 | .485 | .532 | .602 | .675 | .762 | .813 | | C == 8 | 23 | .20 | .30 | .50 | .375 | .460 | .556 | .613 | .644 | .695 | .775 | .822 | | | 24 | .20 | .40 | .40 | .500 | .563 | .650 | .694 | .719 | .755 | .820 | .858 | | T 00 | 25 | .10 | .20 | .70 | .438 | .560 | .673 | .740 | .783 | .82 3
.796 | .870 | .898
.882 | | $ \begin{array}{l} L = 32 \\ X = 12 \end{array} $ | $\frac{26}{27}$ | .10
.10 | .30
.40 | .60 | .375 $.500$ | .480 $.500$ | .610
.578 | .695 $.658$ | .751 $.730$ | .777 | .851 $.835$ | .869 | | $\hat{\mathbf{x}} = 12$ | 28 | .20 | .20 | .50
.60 | .375 | .480 | .584 | .647 | .702 | .755 | .820 | .858 | | $ \begin{array}{ccc} $ | 29 | .20 | .30 | .50 | .375 | .400 | .523 | .604 | .674 | .731 | .802 | .843 | | 0 — 12 | 30 | .20 | .40 | .40 | .500 | .500 | .584 | .659 | .734 | .782 | .840 | .874 | | | 31 | .10 | .20 | .70 | .438 | .438 | .564 | .662 | .718 | .770 | .832 | .868 | | L=36 | 32 | .10 | .30 | .60 | .375 | .375 | .511 | .624 | .694 | .750 | .817 | .856 | | X = 12 | 33 | .10 | .40 | .50 | .500 | .500 | .578 | .627 | .692 | .745 | .810 | .849 | | | 34 | .20 | .20 | .60 | .375 | .375 | .489 | .579 | .643 | .708 | .786 | .831 | | C = 12 | 35 | .20 | .30 | .50 | .375 | .375 | .475 | .555 | .630 | .695 | .775 | .822 $.858$ | | | 36 | .20 | .40 | .40 | .500 | .500 | .584 | .647 | .702 | .755 | .820 | | | | 37 | .10 | .20 | .70 | .438 | .438 | .489 | .586 | .656 | .719 | .795 | .838 | | L = 40 | 38 | .10 | .30 | .60 | .375 | .375 $.500$ | .473 $.578$ | .556 $.627$ | .638 $.655$ | .705 $.713$ | .784
.786 | .830 | | $ \begin{array}{l} X = 12 \\ X' = 16 \end{array} $ | 39
40 | .10
.20 | .40
.20 | .50
.60 | $.500 \\ .375$ | .375 | .429 | .514 | .586 | .662 | .753 | .805 | | C = 10 | 41 | .20 | .30 | .50 | .375 | .375 | ,475 | .555 | .599 | .663 | .751 | .802 | | 0 12 | 42 | .20 | .40 | .40 | .500 | .500 | .584 | .647 | .682 | .728 | .800 | .842 | | | | | | | | | | | | | ********** | | | Table 10 | .9 (Co | ntinu | ed) | | | | | | | | | | |---|---|------------------------|------------|--------------|----------------|-----------------------|----------------|------------------------------|--------------------|----------------|----------------|----------------| | L = 44 | 43
44 | .10
.10 | .20
.30 | .70
.60 | .438
.375 | .438
.375 | .489 | .514 | .599 | .669 | .758 | .809 | | X = 12 $X' = 20$ | 45 | .10 | .40 | .50 | .500 | .500 |
.473
.578 | $.538 \\ .627$ | .584 $.655$ | $.660 \\ .682$ | .752 $.762$ | .804
.810 | | $X' \equiv 20$
$C \equiv 12$ | 46
47 | .20
.20 | .20
.30 | .60
.50 | .375 $.375$ | .375
.375 | .429 $.475$ | .464 $.555$ | .530 $.599$ | .617 $.631$ | .720
.726 | .779
.783 | | /accesses, , reserves, , | 48 | .20 | .40 | 40 | .500 | .500 | .584 | .647 | .682 | .704 | .780 | .826 | | L = 32 | 49
50 | .10
.10 | .20
.30 | .70
.60 | .438
.375 | .580
.525 | .740
.706 | .787
.763 | .818 $.802$ | .851
.838 | .892 $.882$ | .915
.907 | | X = 16 | 51 | .10 | .40 | .50 | .500 | .582 | .675 | .741 | .790 | .827 | .873 | .900 | | X' = 8 $C = 8$ | 52
53 | .20
.20 | .20
.30 | $.60 \\ .50$ | $375 \\ 375$ | .503
. 46 0 | $.650 \\ .617$ | .694 $.671$ | .734 $.721$ | .782
.771 | .840 $.831$ | .874
.867 | | | 54 | .20 | | | .500 | .563 | .623 | .696 | .764 | .808 | .859 | .889 | | L = 36 | 55
56 | .1 0
.10 | .20
.30 | .70
.60 | $.438 \\ .375$ | .502
.480 | .635 $.610$ | .711 $.695$ | .754 $.746$ | .799 $.793$ | .854 $.849$ | .885
.881 | | $X = 16 \\ X' = 12$ | 57
58 | .19
.20 | .40
.20 | .50
.60 | .500 $.375$ | .582
.441 | .637 $.558$ | .682 $.628$ | .749
.677 | .794 $.736$ | $.848 \\ .807$ | .879 | | X' = 12 $C = 8$ | 59 | .20 | .30 | .50 | .375 | .460 | .536 | .613 | .672 | .732 | .803 | .844 | | | 60 | .20 | .20 | .40
.70 | .500 | .563 | .606 | .652 | .730
.695 | .779 | .839 | .873 | | L = 40 | 62 | .10 | .30 | .60 | .375 | .480 | .548 | .629 | .691 | .748 | .816 | .855 | | X = 16 $X' = 16$ | 63
64 | $.10 \\ .20$ | .40
.20 | .50
.60 | .500 $.375$ | .582
.441 | .637 $.485$ | .659 $.564$ | .710 $.621$ | .761 $.690$ | .823
.774 | $.860 \\ .822$ | | C = 8 | 65
66 | .20
.20 | .30
.40 | .50
.40 | .375 $.500$ | .460 $.563$ | .517
.606 | .568
.650 | $.630 \\ .696$ | .696
.751 | .777
.818 | .824
.856 | | | 67 | .10 | .20 | .70 | .438 | .502 | .546 | .567 | .638 | .700 | .780 | .827 | | L = 44
Y = 16 | 68
69 | .10
.10 | .30
.40 | .60
.50 | .375 $.500$ | .480 $.582$ | .548
.637 | .579 $.659$ | .639 $.680$ | .705 $.728$ | .784
.798 | .830
.840 | | X = 16 $X' = 20$ | 70 | .20 | .20 | .60 | .375 | .441 | .485 | .503 | .567 | .646 | .741 | .796 | | C = 8 | $\frac{71}{72}$ | .20
.20 | .30
.40 | .50
.40 | .375
.500 | .460 $.563$ | .517
.606 | .568 $.650$ | .609 $.684$ | .663 $.724$ | .752
.797 | .804
.840 | | | 73 | .10 | .20 | .70 | .438 | .560 | .673 | .740 | .777 | .809 | .860 | .890 | | L = 36
X = 16 | 74
75 | .10
.10 | .30
.40 | .60
.50 | .375 $.500$ | .480
.500 | .610
.566 | .69 5
.65 4 | .741
.710 | .782
.761 | $.840 \\ .823$ | .874
.860 | | $\begin{array}{c} X = 16 \\ X' = 8 \\ C = 12 \end{array}$ | 76
77 | .20 | .20 | .60 | .375 $.375$ | .480
.400 | .584
.523 | .647
.604 | .682
.648 | .728
.705 | .800
.782 | $.842 \\ .827$ | | C = 12 | 78 | .20
.20 | .40 | .50
.40 | .500 | .500 | .548 | .609 | .696 | .751 | .818 | .856 | | T - 40 | 79
80 | .10
.10 | .20 | .70 | .438
.375 | .438
.375 | .564
.511 | .662
.624 | .715
.687 | .756
.736 | .822
.807 | .860
.848 | | $egin{array}{c} L \equiv 40 \ X \equiv 16 \end{array}$ | 81 | .10 | .30
.40 | .60
.50 | .500 | .500 | .566 | .603 | .671 | .728 | .798 | .840 | | X = 16
X' = 12
C = 12 | 82
83 | .20
.20 | .20
.30 | .60
.50 | .375 $.375$ | .375 $.375$ | .489
.448 | .579
.544 | .629 $.602$ | .681
.665 | .766
.753 | .815
.804 | | | 84 | .20 | .40 | .40 | .500 | .500 | .548 | .602 | .663 | .724 | .797 | .840 | | L = 44 | 85
86 | .10
.10 | .20
.30 | .70
.60 | .438
.375 | .438
.375 | .489
.467 | .586
.556 | .656 $.634$ | .704
.690 | .784
.774 | .830
.822 | | X 16 | 87
88 | .10
.20 | .40
.20 | .50
.60 | .500
.875 | .500
.375 | .566
.429 | .603 $.514$ | $\frac{636}{.578}$ | .696
.634 | .774 $.732$ | .820
.789 | | X' = 16 $C = 12$ | 89 | .20 | .30 | .50 | .375 | .375 | .448 | .509 | .563 | .630 | .727 | .784 | | ~ | 90 | .10 | .20 | .40 | .500
.438 | .500
.438 | .489 | .602 | .647 | .696 | .777 | .824 | | L = 48 | 92 | .10 | .30 | .60 | .375 | .375 | .467 | .513 | .582 | .646 | .741
.750 | .796
.801 | | X = 16 $X' = 20$ | 93
94 | .10
.20 | .40
.20 | .50
.60 | $.500 \\ .375$ | $.500 \\ .375$ | .566 $.429$ | .603 $.451$ | $.636 \\ .528$ | .665
.588 | .699 | .762 | | C = 12 | 95
96 | .20
.20 | .30
.40 | .50
.40 | .375 $.500$ | .375
.500 | .448
.548 | .509
.602 | .563
.647 | .598
.675 | .703
.757 | .764
.808 | | | 97 | .10 | .20 | .70 | .438 | .560 | .740 | .787 | .813 | .837 | .881 | .906 | | L = 36 $X = 20$ | 98
99 | .10
.10 | .30
.40 | .60
.50 | .375
.500 | .525
.582 | .706
.675 | .763
.741 | .795
.777 | .824
.812 | $.871 \\ .862$ | .898
.891 | | X' = 8 | 100 | .20 | .20 | .60 | .375 | .503 | .650 | .694 | .719
.700 | .755
.744 | .820
.811 | .858
.851 | | C = 8 | 101
102 | .20
.20 | .30
.40 | .50
.40 | .375 $.500$ | .460
.563 | .617 $.623$ | .671
.668 | .727 | .778 | .838 | .872 | | T - 10 | 103 | .10 | .20 | .70 | .438 | .502 | .635 | .711 | .753 | .785
.778 | .843
.838 | .876
.872 | | L = 40
X = 20
X' = 12 | 104
105 | .10
.10 | .30
.40 | .60
.50 | .375 $.500$ | .480
.582 | .610 $.637$ | .695 $.682$ | .741
.732 | .778 | .836 | .871 | | X'=12 $C=8$ | $\begin{array}{c} 106 \\ 107 \end{array}$ | .20
.20 | .20
.30 | .60
.50 | .375
.375 | .441
.460 | .558
.536 | .628 $.613$ | .667
.656 | .708
.704 | .786
.783 | .831
.828 | | | 108 | 20_ | .40 | .40 | .500 | .563 | .606 | .630 | .692 | .749 | .817 | .855 | | T 44 | 109
110 | .10
.10 | .20
.30 | .70
.60 | $.438 \\ .375$ | .502 $.480$ | .546
.548 | .637
.629 | .695 $.690$ | .734
.734 | .806
.805 | .847
.847 | | $\tilde{\mathbf{x}} = 20$ | 111 | .10 | .40 | .50 | .500 | .582 | .548
.637 | .640 | .689 | .744 | .811 | .851 | | $ \begin{array}{l} L = 44 \\ X = 20 \\ X' = 16 \\ C = 8 \end{array} $ | $\frac{112}{113}$ | .20
.20 | .20
.30 | .60
.50 | .375 $.375$ | .441
.460 | .485 $.517$ | $.564 \\ .557$ | .616
.612 | .662
.665 | .753
.754 | .805
.806 | | | 114 | .20 | .40 | .40 | .500 | .563 | .606 | .606 | .658 | .721 | .796 | .839 | | L = 48 | $\frac{115}{116}$ | .10
.10 | .20
.30 | .70
.60 | .438 $.375$ | .502
.480 | .546
.548 | .567
.565 | .638
.639 | .685 $.690$ | .769
.773 | .818
.821 | | X = 20 $X' = 20$ | $\frac{117}{118}$ | .10
.20 | .40
.20 | .50
.60 | $.500 \\ .375$ | .582
.441 | .637 $.485$ | .640 $.503$ | $.662 \\ .567$ | .712
.617 | .787
.720 | .831 $.779$ | | $\mathbf{C} = 8$ | 119 | .20 | .30 | .50 | .375 | .460 | .517 | .506 | .575 | .631 | .729 | .786 | | | 120 | .20 | .40 | .40 | .500 | .563 | .606 | .606 | .650 | .693 | .775 | .822 | | Table 10.9 (Continued) 121 10 20 70 438 560 673 740 777 800 850 881 | | | | | | | | | | | | | | | |--|-----|-----|-----|-----|------|------|------|------|------|------|------|------|--|--| | | 121 | .10 | .20 | .70 | .438 | .560 | .673 | .740 | .777 | .800 | .850 | .881 | | | | L == 40 | 122 | ,10 | .30 | .60 | .375 | .480 | .610 | .695 | .741 | .771 | .830 | .866 | | | | X = 20 | 123 | .10 | .40 | .50 | .500 | .500 | .566 | .654 | .709 | .744 | .811 | .851 | | | | X'= 8 | 124 | .20 | .20 | .60 | .375 | .480 | .584 | .647 | .682 | .704 | .780 | .826 | | | | C = 12 | 125 | .20 | .30 | .50 | .375 | .400 | .523 | .604 | .648 | .680 | .762 | .811 | | | | | 126 | .20 | .40 | .40 | .500 | .500 | .548 | .592 | .658 | .721 | .796 | .839 | | | | | 127 | .10 | .20 | .70 | .438 | .438 | .564 | .662 | .715 | .749 | .811 | .851 | | | | L = 44 | 128 | .10 | .30 | .60 | .375 | .375 | .511 | .624 | .687 | .726 | .796 | .839 | | | | X = 20 | 129 | .10 | .40 | .50 | .500 | .500 | .566 | .592 | .661 | .712 | .787 | .831 | | | | X'=12 | 130 | .20 | .20 | .60 | .375 | .375 | .489 | .579 | .629 | .661 | .746 | .799 | | | | C = 12 | 131 | .20 | .30 | .50 | .375 | .375 | .448 | .544 | .602 | .638 | .733 | .788 | | | | | 132 | .20 | .40 | .40 | .500 | .500 | .548 | .562 | .624 | .693 | .775 | .822 | | | | | 133 | .10 | .20 | .70 | .438 | .438 | .489 | .586 | .656 | .700 | .773 | .821 | | | | L == 48 | 134 | .10 | .30 | .60 | .375 | .375 | .467 | .556 | .634 | .683 | .763 | .813 | | | | X = 20 | 135 | .10 | .40 | .50 | .500 | .500 | .566 | .588 | .618 | .680 | .762 | .811 | | | | X' = 16 | 136 | .20 | .20 | .60 | .375 | .375 | .429 | .514 | .578 | .618 | .711 | .772 | | | | C = 12 | 137 | .20 | .30 | .50 | .375 | .375 | .448 | .486 | .557 | .602 | .704 | .766 | | | | | 138 | .20 | .40 | .40 | .500 | .500 | .548 | .562 | .612 | .665 | .754 | .806 | | | | | 139 | .10 | .20 | .70 | .438 | .438 | .489 | .514 | .599 | .653 | .736 | .792 | | | | L = 52 | 140 | .10 | .30 | .60 | .375 | .375 | .467 | .501 | .582 | .640 | .730 | .788 | | | | $\mathbf{X} = 20$ | 141 | .10 | .40 | .50 | .500 | .500 | .566 | .588 | .618 | .648 | .738 | .792 | | | | X' = 20 | 142 | .20 | .20 | .60 | .375 | .375 | .429 | .451 | .528 | .577 | .678 | .746 | | | | C = 12 | 143 | .20 | .30 | .50 | .375 | .375 | .448 | .474 | .528 | .569 | .679 | .746 | | | | | 144 | .20 | .40 | .40 | .500 | .500 | .548 | .562 | .612 | .646 | .734 | .790 | | | Table 10.10 ### SUMMARY OF EQUIVALENT H TRUCK LOADINGS IN SIMPLE SPANS PRODUCED BY TYPE 2-3 TRUCKS WEIGHING ONE KIP EACH Ninety variations in the Type 2-3 truck are given in this Table. Each truck number, from 1 to 90, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. Equivalent H truck
loadings are in kips. | Wheel
Base
and
Axle
Spacing | Truck No. | | Load (
Axles
Kips | S | | | | Span- | Feet | | | | |--|-----------------|--------------|-------------------------|------------|----------------|----------------|--------------|--------------|----------------|---|--------------|--------------| | Feet | F | aı | 82 | аз | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | T 00 | 1 | .10 | .20 | .70 | .374
.375 | .530 $.454$ | .634
.580 | .708
.673 | .752
.745 | .797
.792 | .852 | .884 | | $egin{array}{c} L \equiv 32 \ X \equiv 12 \end{array}$ | 2
3 | .10 | .30
.40 | .60
.50 | .500 | .552 | .606 | .690 | .756 | .799 | .848
.851 | .881
.882 | | X'= 8 | 4 | .20 | .20 | .60 | .320 | .454 | .546 | .616 | .692 | .749 | .817 | .855 | | C = 8 | 5 | .20 | .30 | .50 | .375 | .429 | .511 | .611 | .696 | .751 | .817 | .855 | | | 6 | .10 | .20 | .70 | .374 | .473 | .556 | .621 | .680 | .731 | .803 | .845 | | $egin{array}{c} L=36 \ X=12 \end{array}$ | 7
8 | .10
.10 | .30
.40 | .60
.50 | .375 $.500$ | .441
.552 | .503
.606 | .586
.635 | .674 $.704$ | .734
.755 | .806 $.818$ | .847
.856 | | X' = 12 | 9 | .20 | .20 | .60 | .320 | .405 | .476 | .537 | .619 | .689 | .773 | .821 | | X' = 12 $C = 8$ | 10 | .20 | .30 | .50 | .375 | .429 | .511 | .560 | .643 | .706 | .783 | .828 | | | 11 | .10 | .20 | .70 | .374 | .473 | .495 | .548 | .614 | .667 | .755 | .807 | | $egin{array}{c} \mathbf{L} \equiv 40 \ \mathbf{X} \equiv 12 \end{array}$ | $\frac{12}{13}$ | .10
.10 | .30
.40 | .60
.50 | .375
.500 | .441 $.552$ | .503 $.606$ | .532 $.625$ | .605 $.654$ | .677
.713 | .764
.786 | .814
.830 | | $\hat{X}' = 16$ | 14 | .20 | .20 | .60 | .320 | .405 | .424 | .469 | .549 | .632 | .731 | .788 | | $ \begin{array}{c} $ | 15 | .20 | .30 | .50 | .375 | .429 | .511 | .556 | .593 | .663 | .751 | .802 | | | 16 | .10 | .20 | .70 | .374 | .530 | .626 | .667 | .717 | .753 | .820 | .858 | | L = 36 | 17
18 | .10 | .30 | .60 | .375 $.500$ | .454
.500 | .537
.553 | .601
.601 | .675
.679 | .735
.734 | .806 $.802$ | .847
.842 | | X = 12 $X' = 8$ | 19 | $.10 \\ .20$ | .40
.20 | .50
.60 | .320 | .454 | .537 | .576 | .624 | .693 | .775 | .822 | | $\overset{\sim}{\mathrm{C}} \equiv 1\overset{\circ}{2}$ | 20 | .20 | .30 | .50 | .375 | .377 | .455 | .524 | .617 | .685 | .767 | .815 | | | 21 | .10 | .20 | .70 | .374 | .473 | .556 | .597 | .649 | .692 | .770 | .819 | | L = 40 | 22 | .10 | .30 | .60 | .375 | .405 | .476 | .512 | .602 | .675 | .762 | .813 | | $egin{array}{l} X = 12 \\ X' = 12 \end{array}$ | $\frac{23}{24}$ | .10
.20 | .40
.20 | .50
.60 | $.500 \\ .320$ | $.500 \\ .405$ | .553
.476 | .587
.512 | $.630 \\ .562$ | .692 $.632$ | .770
.731 | .817
.788 | | C = 12 | 25 | .20 | .30 | .50 | .375 | .375 | .455 | .517 | .566 | .642 | .735 | .789 | | | 26 | .10 | .20 | .70 | .374 | .473 | .495 | .548 | .585 | .638 | .722 | .780 | | L = 44 | 27 | .10 | .30 | .60 | .375 | .405 | .441 | .487 | .532 | .617 | .720 | .779 | | X = 12 | 28
29 | .10
.20 | $.40 \\ .20$ | .50 | .500
.320 | .500 $.405$ | .553 $.424$ | .587
.469 | .517 $.503$ | .652
.572 | .739
.687 | .791
.754 | | $egin{array}{c} X' \equiv 16 \\ C \equiv 12 \end{array}$ | 30 | .20 | .30 | .60
.50 | .375 | .375 | .455 | .517 | .551 | .600 | .703 | .763 | | | 31 | .10 | .20 | .70 | .374 | .530 | .634 | .708 | .749 | .782 | .841 | .875 | | $L \equiv 36$ | 32 | .10 | .30 | .60 | .375 | .454 | .580 | .673 | .727 | .778 | .838 | .872 | | X = 16 | 33 | .10 | .40 | .50 | .500 | .552 | .597 | .664 | .736 | .783 | .840 | .873 | | X'= 8
C = 8 | 34
35 | .20
.20 | .20
.30 | .60
.50 | .320 $.375$ | .454 $.429$ | .546
.510 | .616 $.594$ | .658 $.657$ | $\begin{array}{c} .721 \\ .719 \end{array}$ | .796
.794 | .839 $.837$ | | | 36 | ${10}^{20}$ | .20 | .70 | .374 | .473 | .556 | .621 | .680 | .718 | .792 | .836 | | L = 40 | 37 | .10 | .30 | ,60 | .375 | .441 | .485 | .586 | .656 | .719 | .795 | .838 | | $egin{array}{l} \mathbf{X} = 16 \\ \mathbf{X'} = 12 \end{array}$ | 38 | .10 | .40 | .50 | .500 | .552 | .586 | .610 | .684 | .739 | .807 | .846 | | $ \begin{array}{c} X' = 12 \\ C = 8 \end{array} $ | $\frac{39}{40}$ | .20
.20 | .20 | .60 | .320 | .405 | .476 | .537 | .592 | .660 | .752 | .804 | | c = 8 | 41 | .10 | .30 | .50 | .375 | .429 | .465 | .521 | .603 | .674 | .760 | .810 | | L = 44 | 42 | .10 | .30 | .70 | .374 $.375$ | .413 | .495 | .548
.509 | .514 | .662 | .744 | .805 | | X = 16 | 43 | .10 | .40 | .50 | .500 | .552 | .586 | .602 | .633 | .696 | .774 | .820 | | X' = 16 | 44 | .20 | .20 | .60 | .320 | .405 | .424 | .469 | .532 | .602 | .709 | .771 | | C = 8 | 45 | .20 | .30 | .50 | .375 | .429 | .465 | .513 | .555 | .630 | .727 | .784 | | Table 10.10 (Co | ntinu | ed) | | | | | | | | | | |--|------------|------------|------------|----------------|--------------|--------------|--------------|-------------|----------------------|--------------|--------------| | 46 | .10 | .20 | .70 | .374 | .530 | .626 | .667 | .717 | .749 | .809 | .850 | | L = 40 - 47 | .10 | .30 | .60 | .375 | .454 | .537 | .601 | .669 | .721 | .796 | .839 | | X = 16 - 48 | .10 | .40 | .50 | .500 | .500 | .537 | .575 | .658 | .718 | .790 | .833 | | X' = 8 - 49 | .20 | .20 | .60 | .320 | .454 | .537 | .575 | .623 | .665 | .754 | .806 | | C = 12 - 50 | .20 | .30 | .50 | .375 | .377 | .447 | .524 | .587 | .652 | .744 | .797 | | 51 | .10 | .20 | .70 | .374 | .473 | .556 | .597 | .649 | .692 | .759 | .810 | | L = 44 - 52 | .10 | .30 | .60 | .375 | .405 | .476 | .512 | .599 | .660 | .752 | .804 | | X = 16 - 53 | .10 | .40 | .50 | .500 | .500 | .537 | .563 | .609 | .676 | .758 | .807 | | X' = 12 - 54 | .20 | .20 | .60 | .320 | .405 | .476 | .512 | .562 | .603 | .710 | .771 | | $C \equiv 12$ 55 | .20 | .30 | .50 | .375 | .375 | .417 | .472 | .527 | .609 | .711 | .771 | | 56 | .10 | .20 | .70 | .374 | .473 | .495 | .548 | .585 | .638 | .710 | .772 | | L == 48 57 | .10 | .30 | .60 | .375 | .405 | .429 | .469 | .532 | .602 | .709 | .771 | | X = 16 - 58 | .10 | .40 | .50 | .500 | .500 | .537 | .563 | .587 | .635 | .727 | .782 | | X' = 16 59 | .20 | .20 | .60 | .320 | .405 | .424 | .469 | 503 | .553 | .666 | .737 | | C = 12 - 60 | .20 | .30 | .50 | .375 | .375 | .417 | .472 | .516 | .567 | .679 | .745 | | 61 | .10 | .20 | .70 | .374 | .530 | .634 | .708 | .749 | .776 | .830 | .867 | | L = 40 62 | .10 | .30 | .60 | .375 | .454 | .580 | .673 | .724 | .763 | .827 | .864 | | X = 20 63 | .10 | .40 | .50 | .500 | .552 | .597 | .663 | .717 | .767 | .828 | .864 | | X' = 8 - 64 | .20 | .20 | .60 | .320 | .454 | .546 | .616 | .655 | .693 | .775 | .822 | | C = 8 65 | .20 | .30 | .50 | .375 | .429 | .510 | .594 | .641 | .691 | .773 | .821 | | 66 | .10 | .20 | .70 | .374 | .473 | .556 | .621 | .680 | .718 | .781 | .827 | | L == 44 67 | .10 | .30 | .60 | .375 | .441 | .485 | .586 | .656 | .704 | .784 | .830 | | X = 20 - 68 | .10 | .40 | .50 | .500 | .552 | .586 | .600 | .663 | .723 | .795 | .837 | | X' = 12 69
C = 8 70 | .20 | .20
.36 | .60
.50 | .320 | .405 | .476 | .537 | .592 | .632 | .731 | .788 | | | | | | .375 | .429 | .465 | .521 | .584 | .642 | .738 | .793 | | 71 | .10 | .20 | .70 | .374 | .473 | .495 | .548 | .614 | .663 | .733 | .789 | | $ \begin{array}{ccc} L = 48 & 72 \\ X = 20 & 73 \end{array} $ | .10 | .30 | .60 | .375 | .441 | .485 | .504 | .591 | .647 | .742 | .796 | | X = 20 73
X' = 16 74 | .10
.20 | .40 | .50
.60 | $.500 \\ .320$ | .552 $.405$ | .586 | .581 | .612 $.532$ | .680 | .763 | .811 | | $\hat{C} = \begin{array}{ccc} 10 & 74 \\ \hat{C} = 8 & 75 \end{array}$ | .20 | .20 $.30$ | .50 | .375 | .429 | .424 $.465$ | .469 $.470$ | .528 | .57 7
.598 | .687 $.704$ | .754
.766 | | A COMPANIES DE LA COMPANIE COM
 | .20 | | | | | | | | | | | $L = 44 \begin{array}{c} 76 \\ 77 \end{array}$ | .10 | | .70 | .374 | .530 | .626 | .667 | .717 | .749 | .798 | .841 | | L = 44 - 77
X = 20 - 78 | .10
.10 | .30
.40 | .60
.50 | .375 $.500$ | .454
.500 | .537
.537 | .601 $.572$ | .669 $.646$ | .712
.701 | .785
.779 | .831 | | $\ddot{X} = \frac{20}{8}$ | .20 | .20 | .60 | .320 | .454 | .537 | .576 | .623 | .654 | .734 | .824
.790 | | $\hat{C} = 12$ | .20 | .30 | .50 | .375 | .377 | .447 | .524 | .587 | .626 | .723 | .781 | | 81 | .10 | .20 | .70 | .374 | .473 | | .597 | .649 | | | | | $L \simeq 48 - 82$ | .10 | .30 | .60 | .375 | .405 | .556
.476 | .512 | .599 | $.692 \\ .654$ | .748 $.741$ | .802 | | $X = \frac{48}{20} + \frac{62}{88}$ | .10 | .40 | .50 | .500 | .500 | .537 | .545 | .587 | .659 | .746 | .796
.798 | | | .20 | .20 | .60 | .320 | .405 | .476 | .512 | .562 | .602 | .689 | .755 | | X' = 12 - 84
C = 12 - 85 | .20 | .30 | .50 | .375 | .375 | .417 | .448 | .527 | .578 | .688 | .753 | | 86 | .10 | .20 | .70 | .374 | .473 | .495 | .548 | .585 | .638 | .704 | .763 | | L = 52 - 87 | .10 | .30 | .60 | .375 | .405 | .429 | .469 | .532 | .599 | .698 | .762 | | X = 20 - 88 | | | | | | | | .00 | .000 | | | | | | | | | | | | .569 | 617 | .715 | | | X' = 16 89 | .10 | .40 | .50 | .500
.320 | .500
.405 | .537
.424 | .545
.469 | .569 $.503$ | .617
.553 | .715 $.645$ | .773
.720 | #### Table 10.11 ### SUMMARY OF EQUIVALENT H TRUCK LOADINGS IN SIMPLE SPANS ### PRODUCED BY TYPE 3-2 TRUCKS WEIGHING ONE KIP EACH Ninety variations in the Type 3-2 truck are given in this Table. Each truck number, from 1 to 90, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. | Wheel Base and Axle Spacing | Iruck No. | I | Load C
Axles
Kips | 3 | | | | Span- | Feet | | | | |--|-----------|------------|-------------------------|----------------|--------------|--------------|--------------|--------------------------|--------------|--------------|--------------|--------------| | Feet | H | aı | \mathbf{a}_2 | \mathbf{a}_3 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 1 | .10 | .40 | .50 | .320 | .470 | .567 | .637 | .710 | .762 | .825 | .862 | | L = 36 | $\bar{2}$ | .10 | .50 | .40 | .400 | .552 | .642 | .689 | .758 | .802 | .855 | .886 | | X = 12 | 3 | .10 | .60 | .30 | .480 | .638 | .718 | .754 | .809 | .844 | .886 | .910 | | X' = 12 | 4 | .20 | .40 | .40 | .320 | .454 | .537 | .606 | .692 | .749 | .817 | .855 | | C = 8 | 5 | .20 | .50 | .30_ | .400 | .538 | .612 | .682 | .745 | .792 | .848 | .881 | | | 6 | .10 | .40 | .50 | .320 | .470 | .567 | .613 | .669 | .728 | .800 | .842 | | L = 40 | 7 | .10 | .50 | .40 | .400 | .552 | .642 | .683 | .725 | .775 | .835 | .869 | | X = 12 $X' = 16$ | 8 | .10 | .60 | .30 | .480 | .638 | .718 | .754 | .783 | .823 | .870 | .898 | | C = 8 | 9 | .20
.20 | .40 | .40 | .320 $.400$ | .454
.538 | .537 | .606 $.682$ | .658 $.721$ | .721
.770 | .796
.832 | .839 | | <u> </u> | 10 | | .50 | 30 | | | .612 | | | | | .868 | | * | 11 | .10 | .40 | .50 | .320 | .470 | .567 | .613 | .644 | .695 | .775 | .822 | | $ L = 44 \\ X = 12 $ | 12
13 | .10 | .50
.60 | .40 | .400 $.480$ | .552
.638 | .642 $.718$ | .683 $.754$ | .710
.776 | .747 $.802$ | .814 | .853
.886 | | X = 12
X' = 20 | 14 | .10
.20 | .40 | .30
.40 | .320 | .454 | .718 | .606 | .650 | .693 | .855
.775 | ,822 | | $\hat{C} = 8$ | 15 | .20 | .50 | .30 | .400 | .538 | .612 | .682 | .721 | .749 | .816 | .855 | | | 16 | .10 | .40 | .50 | .320 | .405 | .493 | .555 | .630 | .695 | .775 | .822 | | T 40 | 17 | .10 | .50 | .40 | .400 | .506 | .580 | .636 | .692 | .747 | .814 | .853 | | $\begin{array}{c} L = 40 \\ X = 12 \end{array}$ | 18 | .10 | .60 | .30 | .480 | .608 | .670 | .718 | .757 | .802 | .855 | .886 | | $\ddot{X}' = \ddot{1}\ddot{2}$ | 19 | .20 | .40 | .40 | .320 | .405 | .476 | .557 | .624 | .693 | .775 | .822 | | C = 12 | 20 | .20 | .50 | .30 | .400 | .506 | .580 | .648 | .694 | .749 | .816 | .855 | | | 21 | .10 | .40 | .50 | .320 | .405 | .493 | .555 | .599 | .663 | .751 | .802 | | L = 44 | 22 | .10 | .50 | .40 | .400 | .506 | .580 | .636 | .673 | .720 | .794 | ,837 | | X 12 | 23 | .10 | .60 | .30 | .480 | .608 | .670 | .718 | .748 | .781 | .839 | .873 | | X' = 16
C = 12 | 24 | .20 | .40 | .40 | .320 | .405 | .476 | .557 | .612 | .665 | .754 | .806 | | C = 12 | 25 | .20 | .50 | .30 | .400 | .506 | .580 | .648 | .694 | .727 | .801 | .843 | | | 26 | .10 | .40 | .50 | .320 | .405 | .493 | .555 | .599 | .631 | .726 | .783 | | L = 48 | 27 | .10 | .50 | .40 | .400 | .506 | .580 | .636 | .673 | .697 | .774 | .821 | | X = 12 | 28 | .10 | .60 | .30 | .480 | .608 | .670 | .718 | .748 | .767 | .824 | .861 | | X' = 20 $C = 12$ | 29 | .20 | .40 | .40 | .320 | .405 | .476 | .557 | .612 | .646 | .734 | .790 | | C = 12 | 30_ | .20 | .50 | .30 | .400 | .506 | .580 | .648 | .694 | .723 | .785 | .830 | | | 31 | .10 | .40 | .50 | .320 | .470 | .567 | .637 | .696 | .746 | .814 | .853 | | L = 40 | 32 | .10 | .50 | .40 | .400 | .552 | .642 | .676 | .739 | .787 | .844 | .877 | | X = 16 | 33 | .10 | .60 | .30 | .480 | .638 | .718 | .736 | .790 | .829 | .875 | .902 | | X' = 12 | 34 | .20
.20 | .40 | .40 | .320 | .454 | .537 | .576 | .656 | .719 | .795 | .838 | | C = 8 | 35 | | .50 | .30 | .400 | .538 | .612 | .636 | .709 | .763 | .827 | .864 | | | 36 | .10 | .40 | .50 | .320 | .470 | .567 | .591 | .651 | .712 | .788 | .833 | | L = 44 | 37 | .10 | .50 | .40 | .400 | .552 | .642 | .661 | .705 | .759 | .823 | .861 | | X = 16 | 38 | .10 | .60 | .30 | .480 | .638 | .718 | .732 | .764 | .808 | .859 | .889 | | $ \begin{array}{c} \overline{X} = 16 \\ \overline{X}' = 16 \\ \overline{X} = 8 \end{array} $ | 39
40 | .20
.20 | .40
.50 | $.40 \\ .30$ | .320 $.400$ | .454
.538 | .537
.612 | .564
.636 | .621
.685 | .690 $.741$ | .774
.811 | .822
.851 | | $\mathbf{A} = 8$ | | | | | | | | The second second second | | | | | | T 45 | 41 | .10 | .40 | .50 | .320 | .470 | .567 | .591 | .627 | .679 | .763 | .813 | | L = 48 $X = 16$ | 42
43 | .10 | .50
.60 | .40 | .400
.480 | .552
.638 | .642 | .661 | .692 | .732 | .803 | .844 | | X = 16
X' = 20 | 44 | .10
.20 | .40 | .30
.40 | .480
.320 | .638
.454 | .718
.537 | .732
.564 | .758
.616 | .786
.662 | .844
.753 | .877
.805 | | C = 8 | 45 | .20 | .50 | .30 | .400 | .538 | .612 | .636 | .685 | .719 | .795 | .838 | | <u> </u> | - 30 | | .00 | | .400 | .000 | .014 | 000 | .000 | .110 | | .000 | | Table 10. | 11 (C | ontini | ıed) | | | | | | | | | | |---|----------|------------|------------|-----|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | | 46 | .10 | .40 | .50 | .320 | .405 | .493 | .549 | .627 | .679 | .763 | .813 | | L = 44 | 47 | .10 | .50 | .40 | .400 | .506 | .580 | .615 | .672 | .732 | .803 | .844 | | X = 16 | 48 | .10 | .60 | .30 | .480 | .608 | .670 | .695 | .738 | .786 | .844 | .877 | | X'=12 | 49 | .20 | .40 | .40 | .320 | .405 | .476 | .514 | .586 | .662 | .753 | .895 | | C = 12 | 50 | .20 | .50 | .30 | .400 | .506 | .565 | .590 | .655 | .719 | .795 | .838 | | | 51 | .10 | .40 | .50 | .320 | .405 | .493 | .537 | .581 | .647 | .739 | .793 | | L = 48 | 52 | .10 | .50 | .40 | .400 | .506 | .580 | .615 | .656 | .704 | .783 | .828 | | X = 16 | 53 | .10 | .60 | .30 | .480 | .608 | .670 | .695 | .730 | .765 | .828 | .865 | | X' = 16 | 54 | .20 | .40 | .40 | .320 | .405 | .476 | .514 | .578 | .634 | .732 | .789 | | C = 12 | 55 | .20 | .50 | .30 | .400 | .506 | .565 | .590 | .640 | .697 | .779 | .826 | | | 56 | .10 | .40 | .50 | .320 | .405 | .493 | .537 | .581 | .615 | .715 | .773 | | L = 52 | 57 | .10 | .50 | .40 | | .506 | | | .656 | | | .812 | | X = 16 | | | | | .400 | | .580 | .615 | | .682 | .763 | | | $\mathbf{X'} = \begin{array}{c} 16 \\ \mathbf{X'} = 20 \end{array}$ | 58 | .10 | .60 | .30 | .480 | .608 | .670 | .695 | .730 | .753 | .813 | .852 | | | 59 | .20 | .40 | .40 | .320 | .405 | .476 | .514 | .578 | .618 | .711 | .772 | | C = 12 | 60 | .20 | | .30 | .400 | .506 | .565 | .590 | .640 | .679 | .763 | .813 | | | 61 | .10 | .40 | .50 | .320 | .470 | .567 | .637 | .696 | .734 | .803 | .844 | | L = 44 | 62 | .10 | .50 | .40 | .400 | .552 | .642 | .676 | .724 | .772 | .833 | .868 | | X = 20 | 63 | .10 | .60 | .30 | .480 | .638 | .718 | .736 | .772 | .814 | .864 | .893 | | X'=12 | 64 | .20 | .40 | .40 | .320 | .454 | .537 | .576 | .623 | .689 | .773 | .821 | | C = 8 | 65 | .20 | .50 | .30 | .400 | .538 | .612 | .634 | .674 | .734 | .806 | .847 | | | 66 | .10 | .40 | .50 | .320 | .470 | .567 | .591 | .651 | .697 | .777 | .824 | | L = 48 | 67 | .10 | .50 | .40 | .400 | .552 | .642 | .659 | .692 | .744 | .812 | .852 | | X = 20 | 68 | .10 | .60 | .30 | .480 | .638 | .718 | .728 | .747 | .793 | .849 | .881 | | X' = 16 | 69 | .20 | .40 | .40 | .320 | .454 | .537 | .556 | .592 | .660 | .752 | .804 | | C ⇒ 8 | 70 | .20 | .50 | .30 | .400 | .538 | .612 | .624 | .649 | .712 | .789 | .834 | | | 71 | .10 | .40 | .50 | .320 | .470 | .567 | .591 | .609 | .663 | .752 | .804 | | L = 52 | 72 | .10 | .50 | .40 | .400 | .552 | .642 | .659 | .675 | .716 | .792 | .836 | | X = 20 | 73 | .10 | .60 | .30 | .480 | .638 | .718 | .728 | .741 | .771 | .833 | .868 | | X' = 20 | 74 | .20 | .40 | .40 | .320 | ,454 | ,537 | .556 | .584 | .632 | .731 | .788 | | C == 8 | 75 | .20 | .50 | .30 | .400 | .538 | .612 | .624 | .649 | .690 | .773 | .821 | | | 76 | .10 | .40 | .50 | .320 | .405 | .493 | .549 | .627 | .677 | .753 | .804 | | L = 48 | 77 | .10 | .50 | .40 | .400 | .506 | .580 | .615 | .661 |
.716 | .792 | .836 | | $\ddot{X} = 20$ | 78 | .10 | .60 | .30 | .480 | .608 | .670 | .694 | .723 | .771 | .833 | .868 | | X'=12 | 79 | .20 | .40 | .40 | .320 | .405 | .476 | .512 | .562 | .632 | .731 | .788 | | C = 12 | 80 | .20 | .50 | .30 | .400 | .506 | .565 | .590 | .622 | .690 | .773 | .821 | | | 81 | .10 | .40 | .50 | .320 | .405 | .493 | .537 | .580 | .639 | .727 | .784 | | L = 52 | 82 | .10 | .50 | .40 | .400 | .506 | .580 | .615 | .638 | .689 | .771 | .819 | | $\ddot{\mathbf{x}} = \ddot{\mathbf{z}}$ | 83 | .10 | .60 | .30 | .480 | .608 | .670 | .694 | .713 | .750 | .817 | .856 | | X' = 16 | 84 | .20 | .40 | .40 | .320 | .405 | .476 | .512 | .544 | .603 | .710 | .771 | | $\hat{C} = 12$ | 85 | .20 | .50 | .30 | .400 | .506 | .565 | .590 | .622 | .667 | .757 | .809 | | 0 - 12 | | | | | | | | | | | | | | L = 56 | 86
87 | .10
.10 | .40
.50 | .50 | .320
.400 | .405
.506 | .493
.580 | .537
.615 | .563
.638 | .602
.668 | .703
.751 | .764 | | X = 20 | 88 | .10 | .60 | .30 | .480 | .608 | .670 | .613 | .038 | .738 | .802 | .803
.843 | | X' = 20
X' = 20 | 89 | .10 | .40 | .40 | .320 | .405 | .476 | .512 | .544 | .738 | .689 | .755 | | C = 12 | 90 | .20 | .50 | .30 | .400 | .506 | .565 | .512 | .622 | .664 | .689 | .796 | | c = 12 | 90 | .20 | .00 | .30 | .400 | .000 | .000 | .590 | .024 | .004 | . : 41 | .790 | Table 10.12 # SUMMARY OF EQUIVALENT H TRUCK LOADINGS IN SIMPLE SPANS PRODUCED BY TYPE 3-3 TRUCKS WEIGHING ONE KIP EACH Ninety variations in the Type 3-3 truck are given in this Table. Each truck number, from 1 to 90, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. Equivalent H truck loadings are in kips. | Wheel Base and Axle Spacing | Truck No. | | Load (
Axle
Kips | S | | | | Span- | Feet | | | | |--|-----------|----------------|------------------------|------------|----------------|--------------|----------------|--------------|--------------|--------------|--------------|--------------| | Feet | Ē | a ₁ | \mathbf{a}_2 | 83 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 1 | .10 | .30 | .60 | .320 | .454 | .537 | .569 | .642 | .700 | .780 | .827 | | L = 40 | 2 | .10 | .40 | .50 | .320 | .405 | .466 | .528 | .617 | .685 | .767 | .815 | | X = 12 | 3 | .10 | .50 | .40 | .400 $.267$ | .506
.377 | $.560 \\ .447$ | .607
.490 | .681
.560 | .738 | .808 | .848 | | $X' = 8 \\ C = 12$ | 4
5 | .20 | .30
.40 | .50
.40 | .320 | .405 | .476 | .540 | .613 | .635 $.683$ | .732
.768 | .788
.817 | | 0 = 12 | - 6 | 10 | .30 | 60 | .320 | .405 | .476 | .512 | .571 | .639 | .736 | 792 | | L = 44 | 7 | .10 | .40 | .50 | .320 | .405 | .466 | .517 | .547 | .642 | .735 | .789 | | X = 12 | 8 | .10 | .50 | .40 | .400 | ,506 | .560 | .606 | .643 | .703 | .781 | .826 | | $\ddot{\mathbf{X}}' = \ddot{1}\ddot{2}$ | 9 | .20 | .30 | .50 | .267 | .338 | .396 | .444 | .500 | .584 | .693 | .757 | | C = 12 | 10 | .20 | .40 | .40 | .320 | .405 | .476 | .540 | .584 | .647 | .741 | .795 | | | 11 | .10 | .30 | .60 | .320 | .405 | .424 | .469 | .503 | .565 | .682 | .749 | | L = 48 | 12 | .10 | .40 | .50 | .320 | .405 | .466 | .517 | .551 | .600 | .703 | .763 | | X = 12 | 13 | .10 | .50 | .40 | .400 | .506 | .560 | .606 | .635 | .668 | .754 | .805 | | $X' \equiv 16$ $C \equiv 12$ | 14 | .20 | .30 | .50 | .267 | .338 | .374 | .444 | .494 | .541 | .661 | .731 | | C = 12 | 15 | .20 | .40 | .40 | .320 | .405 | .476 | .540 | .584 | .612 | .714 | .774 | | | 16 | .10 | .30 | .60 | .320 | .454 | .537 | .556 | .589 | .646 | .739 | .794 | | $ L = 44 \\ X = 12 $ | 17
18 | .10
.10 | .40
.50 | .50
.40 | $.320 \\ .400$ | .405
.506 | .447
.552 | .478
.574 | .545 $.620$ | .621
.685 | .719
.768 | .776
.816 | | X = 12
X' = 8 | 19 | .20 | ,30 | .50 | .267 | .377 | .552 | .463 | .508 | .567 | .680 | .746 | | $\overset{\mathbf{A}}{\mathbf{C}} = \overset{\circ}{16}$ | 20 | .20 | .40 | .40 | .320 | .405 | .476 | .512 | .560 | .629 | .727 | .785 | | | 21 | .10 | .30 | .60 | 320 | .405 | .476 | .512 | .532 | .587 | .694 | .759 | | L = 48 | 22 | .10 | .40 | .50 | .820 | .405 | .447 | .478 | .521 | .580 | .687 | .751 | | $\tilde{\mathbf{x}} = 12$ | 23 | .10 | .50 | .40 | .400 | .506 | .552 | .574 | .610 | .651 | .741 | .795 | | $ \begin{array}{l} X = 12 \\ X' = 12 \end{array} $ | 24 | .20 | .30 | .50 | .267 | .338 | .396 | .426 | .465 | .520 | .645 | .718 | | C = 16 | 25 | .20 | .40 | .40 | .230 | .405 | .476 | .512 | .560 | .593 | .701 | .763 | | | 26 | .10 | .30 | .60 | .320 | .405 | .424 | .469 | .498 | .529 | .650 | .724 | | L = 52 $ X = 12$ | 27 | .10 | .40 | .50 | .320 | .405 | .447 | .478 | .521 | .548 | .656 | .726 | | X = 12 | 28 | .10 | .50 | .40 | .400 | .506 | 552 | .574 | .610 | .633 | .716 | .774 | | X' = 16 | 29 | .20 | .30 | .50 | .267 | .338 | .374 | .409 | .465 | .502 | .614 | .693 | | C = 16 | 30 | .20 | .40 | .40 | .320 | .405 | .476 | .512 | .560 | .592 | .674 | 742 | | T 44 | 31 | .10 | .30 | .60 | .320 | .454 | .537 | .569 | .642 | .689 | .770 | .818 | | $egin{array}{c} L=44 \ X=16 \end{array}$ | 32
33 | .10 | .40
.50 | .50 | .320 $.400$ | .405 $.506$ | .466 | .528 | .612 | .668 | .755 | .806 | | $\hat{\mathbf{v}}' = \hat{\mathbf{v}}$ | 34 | .20 | .30 | .40
.50 | .267 | .377 | .560 $.447$ | .592 $.490$ | .661
.560 | .722 $.605$ | .796
.709 | .839 $.769$ | | X' = 8 $C = 12$ | 35 | .20 | .40 | .40 | .320 | .405 | .456 | .493 | .575 | .652 | .746 | .799 | | | 36 | .10 | .30 | .60 | .320 | .405 | .476 | .512 | .571 | .631 | .725 | 784 | | L = 48 | 37 | .10 | .40 | .50 | .320 | .405 | .466 | .495 | .550 | .625 | .723 | .780 | | $\bar{x} = 16$ | 38 | .10 | .50 | .40 | .400 | .506 | .560 | .584 | .624 | .687 | .769 | .817 | | X = 16 $X' = 12$ | 39 | .20 | .30 | .50 | .267 | .338 | .396 | .426 | .500 | .555 | .670 | .739 | | C = 12 | 40 | .20 | .40 | .40 | .320 | .405 | .456 | .493 | .548 | .615 | .718 | .778 | | | 41 | .10 | .30 | .60 | .320 | .405 | .424 | .469 | .503 | .575 | .682 | .749 | | L = 52 | 42 | .10 | .40 | .50 | .320 | .405 | .466 | .495 | .533 | .583 | .691 | .754 | | X = 16 | 43 | .10 | .50 | .40 | .400 | .506 | .560 | . 584 | .617 | .651 | .743 | .796 | | X' = 16 | 44 | .20 | .30 | .50 | .267 | .338 | .363 | .397 | .458 | .508 | .637 | .713 | | C = 12 | 45 | .20 | .40 | .40 | .320 | .405 | .456 | .493 | .548 | .582 | .691 | .756 | | Table 10. | 12 (C | ontini | aed) | | | | | | | | | | |--|----------|--------|------|------------|--------------|--------------|------|--------------|--------------|------|------|--------------| | $L \equiv 48$ | 46
47 | .10 | .30 | .60
.50 | .320
.320 | .454
.405 | .537 | .556
.463 | .589
.545 | .646 | .729 | .786
.767 | | V — 16 | 48 | .10 | .50 | .40 | .400 | .506 | .530 | .553 | .601 | .669 | .756 | .807 | | $\begin{array}{c} \mathbf{X} = 16 \\ \mathbf{X'} = 8 \end{array}$ | 49 | .20 | .30 | .50 | .267 | .377 | .447 | ,463 | .508 | .562 | .661 | .730 | | $\stackrel{\mathbf{a}}{\mathbf{c}} \equiv \stackrel{\mathbf{c}}{\mathbf{c}}$ | 50 | .20 | .40 | .40 | .320 | .405 | .424 | .469 | .524 | .597 | .705 | .767 | | 0 = 10 | 51 | .10 | .30 | .60 | .320 | .405 | .476 | .512 | .532 | .587 | .684 | .751 | | L = 52 | 52 | .10 | .40 | .50 | .320 | .405 | .424 | .459 | .503 | .563 | .675 | .741 | | X - 16 | 53 | .10 | .50 | .40 | .400 | .506 | .530 | .553 | .593 | .634 | .730 | .786 | | X = 16 $X' = 12$ | 54 | .20 | .30 | .50 | .267 | .338 | .396 | .426 | .446 | .511 | .621 | .700 | | C = 16 | 55 | .20 | .40 | .40 | .320 | .405 | .424 | .469 | .524 | .563 | .678 | .745 | | | 56 | .10 | .30 | .60 | ,320 | .405 | .424 | .469 | .498 | .529 | .639 | .716 | | L = 56 | 57 | .10 | .40 | .50 | .320 | .405 | .424 | .459 | .503 | .533 | .644 | .716 | | $egin{array}{c} X = 16 \ X' = 16 \end{array}$ | 58 | .10 | .50 | .40 | .400 | .506 | .530 | .553 | .593 | .619 | .704 | .765 | | | 59 | .20 | .30 | .50 | .267 | .338 | .353 | .391 | .428 | .472 | .589 | .674 | | C = 16 | 60 | .20 | .40 | .40 | .320 | .405 | .424 | .469 | .524 | .562 | .651 | .724 | | | 61 | .10 | .30 | .60 | .320 | .454 | .537 | .569 | .642 | .689 | .759 | .816 | | L = 48 | 62 | .10 | .40 | .50 | .320 | .405 | .466 | .528 | .612 | .664 | .744 | .797 | | X = 20 $X' = 8$ | 63 | .10 | .50 | .40 | .400 | .506 | .560 | .592 | .651 | .707 | .785 | .830 | | X' = 8 | 64 | .20 | .30 | .50 | .267 | .377 | .447 | .490 | .560 | .604 | .689 | .753 | | C = 12 | 65 | .20 | .40 | .40 | .320 | .405 | .456 | .491 | .552 | .622 | .724 | .782 | | | 66 | .10 | .30 | .60 | .320 | .495 | .476 | .512 | .571 | .631 | .715 | .775 | | L = 52 | 67 | .10 | .40 | .50 | .320 | .405 | .466 | .495 | .550 | .614 | .711 | .771 | | X = 20 | 68 | .10 | .50 | .40 | .400 | .506 | .560 | .582 | .610 | .671 | .758 | .809 | | X' = 12 | 69 | .20 | .30 | .50 | .267 | .338 | .396 | .426 | .500 | .555 | .650 | .723 | | C = 12 | 70 | .20 | .40 | .40 | .320 | .405 | .456 | .479 | .512 | .584 | .696 | .760 | | | 71 | .10 | .30 | .60 | .320 | .405 | .424 | .469 | .503 | .575 | .671 | .741 | | L = 56 | 72 | .10 | .40 | .50 | .320 | .405 | .466 | .495 | .516 | .567 | .679 | .745 | | $\begin{array}{c} X=20 \\ X'=16 \end{array}$ | 73 | .10 | .50 | .40 | .400 | .506 | .560 | .582 | .600 | .635 | .731 | .787 | | X' = 16 | 74 | .20 | .30 | .50 | .267 | .338 | .363 | .392 | .442 | .507 | .614 | .695 | | C = 12 | 75 | .20 | .40 | .40 | .320 | .405 | .456 | .479 | .512 | .553 | .668 | .738 | | | 76 | .10 | .30 | .60 | .320 | .454 | .537 | .556 | .589 | .646 | .719 | .778 | | L = 52 | 77 | .10 | .40 | .50 | .320 | .405 | .447 | .463 | .545 | .609 | .695 | .758 | | $\begin{array}{c} X = 20 \\ X' = 8 \end{array}$ | 78 | .10 | .50 | .40 | .400 | .506 | .530 | .553 | .591 | .653 | .744 | .798 | | X' = 8 | 79 | .20 | .30 | .50 | .267 | .377 | .447 |
.463 | .508 | .562 | .642 | .715 | | C = 16 | 80 | .20 | .40 | .40 | .320 | .405 | .424 | .449 | .493 | .566 | .682 | .749 | | | 81 | .10 | .30 | .60 | .320 | .405 | .476 | .512 | .532 | .587 | .674 | .742 | | L = 56 | 82 | .10 | .40 | .50 | .320 | .405 | .424 | .459 | .485 | .557 | .663 | .732 | | $egin{array}{c} X = 20 \ X' = 12 \end{array}$ | 83 | .10 | .50 | .40 | .400 | .506 | .530 | .553 | .575 | .618 | .718 | .777 | | | 84 | .20 | .30 | .50 | .267 | .338 | .396 | .426 | .446 | .511 | .602 | .684 | | C = 16 | 85 | .20 | .40 | .40 | .320 | .405 | .424 | .449 | .488 | .533 | .655 | .727 | | T 60 | 86 | .10 | .30 | .60 | .320 | .405 | .424 | .469 | .498 | .529 | .629 | .708 | | L = 60 | 87 | .10 | .40 | .50 | .320 | .405 | .424 | .459 | .485 | .519 | .632 | .707 | | X = 20 | 88 | .10 | .50 | .40 | .400 | .506 | .530 | .553 | .575 | .604 | .692 | .756 | | X'=16 | 89 | .20 | .30 | .50 | .267 | .338 | .353 | .391 | .415 | .462 | .566 | .656 | | C = 16 | 90 | .20 | .40 | .40 | .320 | .405 | .424 | .449 | .488 | .533 | .628 | .706 | SUMMARY OF EQUIVALENT H TRUCK LOADINGS IN SIMPLE SPANS PRODUCED BY TYPE 2-S1-2 TRUCKS WEIGHING ONE KIP EACH Ninety six variations in the Type 2-S1-2 truck are given in this Table. Each truck number, from 1 to 96, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. | Wheel
Base
and
Axle
Spacing | Truck No. | Load On
Axles
Kips | | | | | | Span- | Feet | | | | |--|-----------|--------------------------|----------------|----------------|------|------|------|-------|------|------|------|--------------| | Feet | H | a ₁ | \mathbf{a}_2 | \mathbf{a}_3 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 1 | .10 | .20 | .70 | .293 | .374 | .512 | .598 | .682 | .740 | .810 | .850 | | $\ddot{x} = \ddot{s}$ | 2 | .10 | .30 | .60 | .375 | .408 | .506 | .578 | .673 | .734 | .805 | .847 | | X' = 10 | 3 | .20 | .20 | .60 | .250 | .320 | .438 | .532 | .637 | .704 | .784 | .830 | | $ \begin{array}{c} L = 36 \\ X = 8 \\ X' = 10 \\ C = 8 \end{array} $ | 4 | .20 | .30 | .50 | .375 | .441 | .546 | .669 | .659 | .717 | .790 | .833 | | L = 40 | 5 | .10 | .20 | .70 | .293 | .374 | .475 | .547 | .634 | .701 | .781 | .827 | | $\bar{x} = 8$ | 6 | .10 | .30 | .60 | .375 | .405 | .476 | .537 | .619 | .689 | .773 | .821 | | X = 8 $X' = 12$ | 7 | .20 | .20 | .60 | .250 | .320 | .407 | .483 | .584 | .660 | .752 | .804 | | C = 8 | 8 | .20 | .30 | .50 | .375 | .441 | .519 | .575 | .631 | .675 | .758 | .807 | | L = 44 | 9 | .10 | .20 | .70 | .293 | .374 | .440 | .515 | .587 | .661 | .752 | .805 | | X = 8 | 10 | .10 | .30 | .60 | .375 | .405 | .447 | .499 | .566 | .646 | .741 | .796 | | X'=14 | 11 | .20 | .20 | .60 | .250 | .320 | .376 | .445 | .530 | .617 | .720 | .779 | | C = 8 | 12 | .20 | .30 | .50 | .375 | .441 | .493 | .544 | .604 | .645 | .727 | .782 | | L = 48 | 13 | .10 | .20 | .70 | .293 | .374 | .427 | .490 | .548 | .622 | .724 | .782 | | X = 8 | 14 | .10 | .30 | .60 | .375 | .405 | .424 | .469 | .532 | .602 | .709 | .771 | | X'=16 | 15 | .20 | .20 | .60 | .250 | .320 | .365 | .419 | .490 | .573 | .688 | .754 | | C = 8 | 16 | .20 | .30 | .50_ | .375 | .441 | .485 | .525 | .578 | .623 | .696 | .757 | | L = 52 | 17 | .10 | .20 | .70 | .293 | .374 | .427 | .465 | .517 | .583 | .695 | .760 | | X = 8 $X' = 18$ | 18 | .10 | .30 | .60 | .375 | .405 | .424 | .449 | .503 | .558 | .677 | .745 | | X' = 18 | 19 | .20 | .20 | .60 | .250 | .320 | .365 | .398 | .460 | .529 | .656 | .729 | | C = 8 | 20 | .20 | 30 | .50 | .375 | .441 | .485 | .507 | .552 | .601 | .666 | .732 | | L = 56 | 21 | .10 | .20 | .70 | .293 | .374 | .427 | .440 | .498 | .548 | .666 | .737 | | X = 8 | 22 | .10 | .30 | .60 | .375 | .405 | .424 | .429 | .474 | .528 | .645 | .720 | | X' = 20 | 23 | .20 | .20 | .60 | .250 | .320 | .365 | .377 | .431 | .494 | .624 | .703 | | C = 8 | 24 | .20 | .30 | .50 | .375 | .441 | .485 | .489 | .529 | .580 | .645 | .708 | | L = 60 | 25 | .10 | .20 | .70 | .293 | .374 | .427 | .438 | .479 | .518 | .638 | .714 | | X = 8 | 26 | .10 | .30 | .60 | .375 | .405 | .424 | .417 | .450 | .505 | .613 | .695 | | X'= 22 | 27 | .20 | .20 | .60 | .250 | .320 | .365 | .375 | .410 | .470 | .592 | .678 | | C = 8 | 28 | .20 | .30 | .50 | .375 | .441 | .485 | .489 | .515 | .559 | .629 | .684 | | L = 64 | 29 | .10 | .20 | .70 | .293 | .374 | .427 | .438 | .460 | .503 | .609 | .692 | | X = 8 | 30 | .10 | .30 | .60 | .375 | .405 | .424 | .417 | .434 | .481 | .581 | .670 | | X'=24 | 31 | .20 | .20 | .60 | .250 | .320 | .365 | .375 | .394 | .446 | .560 | .653 | | C = 8 | 32 | .20 | .30 | .50 | .375 | .441 | .485 | .489 | .501 | .538 | .613 | .660 | | L = 40 | 33 | .10 | .20 | .70 | .293 | .374 | .512 | .598 | .665 | .725 | .799 | .841 | | X = 12 | 34 | .10 | .30 | .60 | .375 | .400 | .482 | .570 | .655 | .719 | .795 | .838 | | X' = 10 | 35 | .20 | .20 | .60 | .250 | .320 | .438 | .518 | .602 | .675 | .763 | .813 | | C = 8 | 36 | .20 | .30 | .50 | .375 | .394 | .482 | .559 | .621 | .685 | .767 | .815 | | L = 44 | 37 | .10 | .20 | .70 | .293 | .374 | .475 | .547 | .626 | .685 | .770 | .819 | | X = 12 $X' = 12$ | 38 | .10 | .30 | .60 | .375 | .375 | .441 | .513 | .602 | .675 | .762 | .813 | | X'=12 | 39 | .20 | .20 | .60 | .250 | .320 | .407 | .472 | .549 | .632 | .731 | .788 | | C = 8 | 40 | .20 | .30 | .50 | .375 | .375 | .455 | .524 | .593 | .642 | .734 | .789 | | L = 48 | 41 | .10 | .20 | .70 | .293 | .374 | .440 | .515 | .587 | .644 | .689 | .755 | | X = 12 | 42 | .10 | .30 | .60 | .375 | .375 | .411 | .481 | .554 | .631 | .730 | .788 | | X'=14 $C=8$ | 43 | .20 | .20 | .60 | .250 | .320 | .376 | .441 | .508 | .588 | .699 | .762
.763 | | U = 8 | 44 | .20 | .30 | .50 | .375 | .375 | .429 | .497 | .565 | .613 | .703 | .103 | | Table 10.1 | 13 (C | ontint | ıed) | | | | | | | | | | |---|----------|------------|------------|------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------------|--------------| | L = 52 | 45 | .10 | .20 | .70 | .293 | .374 | .427 | .490 | .548 | .612 | .713 | .774 | | $\ddot{X} = 12$ | 46 | .10 | .30 | .60 | .375 | .375 | .394 | .450 | .511 | .587 | .698 | .762 | | X' = 16 | 47 | .20 | .20 | .60 | .250 | .320 | .365 | .419 | .473 | .545 | .667 | .737 | | C = 8 | 48 | .20 | .30 | .50 | .375 | .375 | .429 | .478 | .538 | .591 | .671 | .738 | | L = 56 $X = 12$ | 49 | .10 | .20 | .70 | .293 | .374 | .427 | .465 | .517 | .580 | .684 | .751 | | X = 12 | 50 | .10 | .30 | .60 | .375 | .375 | .394 | .423 | .481 | .544 | .666 | .737 | | X' = 18 | 51 | .20 | .20 | .60 | .250 | .320 | .365 | .398 | .443 | .503 | .635 | .712 | | C = 8 | 52 | .20 | 30 | .50_ | .375 | .375 | .429 | .459 | .511 | .569 | .641 | .713 | | L = 60 $X = 12$ | 53
54 | .10 | .20 | .70
.60 | .293
.375 | .374 $.375$ | .427 $.394$ | .440 $.403$ | .498
.457 | .548
.511 | .655 $.634$ | .728
.712 | | $\mathbf{X'} = \frac{12}{20}$ | 55 | .10
.20 | .20 | .60 | .250 | .320 | .365 | .377 | ,426 | .473 | .603 | .687 | | $\hat{c} = \frac{20}{8}$ | 56 | .20 | .30 | .50 | .375 | .375 | .429 | .448 | .491 | .547 | .622 | .688 | | L = 64 | 57 | .10 | .20 | .70 | .293 | .374 | .427 | .438 | .479 | .518 | .627 | .706 | | X = 12 | 58 | .10 | .30 | .60 | .375 | .375 | .394 | .396 | .434 | .487 | .602 | .686 | | $\ddot{\mathbf{X}}' = \ddot{2}\ddot{2}$ | 59 | .20 | .20 | .60 | .250 | .320 | .365 | .375 | .410 | .446 | .571 | .662 | | C = 8 | 60 | .20 | .30 | .50 | .375 | .375 | .429 | .448 | .477 | .525 | .606 | .664 | | L = 68 | 61 | .10 | .20 | .70 | .293 | .374 | .427 | .438 | .460 | ,503 | .598 | .683 | | X = 12 | 62 | .10 | .30 | .60 | .375 | .375 | .394 | .396 | .414 | .464 | .570 | .661 | | X'=24 | 63 | .20 | .20 | .60 | .250 | .320 | .365 | .375 | .394 | .431 | .540 | .637 | | C = 8 | 64 | .20 | .30 | .50 | .375 | .375 | .429 | .448 | .463 | .504 | .590 | .640 | | L = 56 | 65 | .10 | .20 | .70 | .293 | .374 | .427 | .490 | .548 | .612 | .702 | .765 | | X = 16 $X' = 16$ | 66 | .10 | .30 | .60 | .375 | .375 | .376 | .450 | .508 | .580 | .688 | .754 | | X' = 16
C = 8 | 67 | .20 | .20 | .60
.50 | .250 | .320 | .365 | .419 | .473 | .532 | .646 | .721 | | | 68 | .20_ | .30_ | | .375 | .375 | .376 | .432 | .499 | .559 | .647 | .719 | | L = 60 $X = 16$ | 69
70 | .10
.10 | .20 $.30$ | .70
.60 | 0.75 | .271 | .497 | .465 | .517 | .580 | .673 | .742
.729 | | X = 16
X' = 18 | 71 | .20 | .20 | .60 | .375 $.250$ | .375
.320 | .365 $.365$ | .420
.398 | .481
.443 | .543 $.503$ | .656
.614 | .696 | | $\hat{c} = 18$ | 72 | .20 | .30 | .50 | .375 | .375 | .376 | .412 | .472 | .537 | .616 | .694 | | L = 64 | 73 | .10 | .20 | .70 | .293 | .374 | .427 | .448 | .498 | .548 | .645 | .720 | | | 74 | .10 | .30 | .60 | .375 | .375 | .365 | .390 | .457 | .507 | .624 | .703 | | X = 16 $X' = 20$ | 75 | .20 | .20 | .60 | .250 | .320 | .365 | .377 | .426 | .473 | .583 | .671 | | C = 8 | 76 | .20 | .30 | .50 | .375 | .375 | .376 | .408 | .455 | .515 | .599 | .669 | | L = 68 | 77 | .10 | .20 | .70 | .293 | .374 | .427 | .438 | .479 | .518 | .619 | .697 | | X = 16 $X' = 22$ | 78 | .10 | .30 | .60 | .375 | .375 | .365 | .375 | .434 | .480 | .592 | .678 | | | 79 | .20 | .20 | .60 | .250 | .320 | .365 | .375 | .410 | .444 | .551 | .646 | | c = 8 | 80 | .20 | 30 | .50 | .375 | .375 | .376 | .408 | 440 | .493 | 582 | .645 | | L = 72 | 81 | .10 | .20 | .70 | .293 | .374 | .427 | .438 | .460 | .503 | .596 | .675 | | X = 16 $X' = 24$ | 82
83 | .10 | .30 | .60 | .375 | .375 | .365 | .375 | .411 | .461
.431 | .560 | .653 | | $\hat{\mathbf{C}} = 24$
$\hat{\mathbf{C}} = 8$ | 84 | .20
.20 | .20
.30 | .60
.50 | .250 $.375$ | .320
.375 | .365
.376 | .375
$.408$ | .394 $.427$ | .431 | .519
.5 66 | .621
.621 | | L = 76 | 85 | .10 | .20 | | .293 | .374 | .427 | .438 | .444 | .487 | .572 | .652 | | X = 76
X = 16 | 86
86 | .10 | .20 | .70
.60 | .293 | .374 | .365 | .438
.375 | .388 | .487 | .572 | .628 | | $\mathbf{X'} = 26$ | 87 | .20 | .20 | .60 | .250 | .320 | .365 | .375 | .380 | .417 | .496 | .596 | | C = 8 | 88 | .20 | .30 | .50 | .375 | .375 | .376 | .408 | .427 | .458 | .550 | .608 | | L = 80 | 89 | ,10 | .20 | .70 | .293 | .374 | .427 | .438 | .444 | .472 | .549 | .630 | | X = 16 | 90 | .10 | .30 | .60 | .375 | .375 | .365 | .375 | .380 | .424 | .505 | .603 | | X' = 28 | 91 | .20 | .20 | .60 | .250 | .320 | .365 | .375 | .380 | .404 | .475 | .571 | | C = 8 | 92 | .20 | .30 | .50 | .375 | .375 | .376 | .408 | .427 | .446 | .534 | .596 | | L = 84 | 93 | .10 | .20 | .70 | .293 | .374 | .427 | .438 | .444 | .457 | .526 | .607 | | X = 16 | 94 | .10 | .30 | .60 | .375 | .375 | .365 | .375 | .380 | .405 | .481 | .578 | | X' = 30
C = 8 | 95
96 | .20
.20 | .20
.30 | .60
.50 | .250
.375 | .320
.375 | .365
.376 | .375
.408 | .380
.427 | .391
.439 | .453
.518 | .546
.583 | | <u> </u> | 90 | .20 | .00 | .00 | .515 | .010 | .510 | .400 | ,421 | .409 | .010 | .000 | Table 10.14 ## SUMMARY OF EQUIVALENT H TRUCK LOADINGS IN SIMPLE SPANS PRODUCED BY TYPE 3-S2-3 TRUCKS WEIGHING ONE KIP EACH Eighty four variations in the Type 3-S2-3 truck are given in this Table. Each truck number, from 1 to 84, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. | Wheel
Base
and
Axle
Spacing | Truck No. |] | Load C
Axles
Kips | 5 | | | | Span- | Feet | | | | |--|-----------------|--------------|-------------------------|----------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | Feet | Ţ | aı | \mathbf{a}_2 | \mathbf{a}_3 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | L = 44 | 1 | .05 | .20 | .75 | .240 | .340 | .434 | .528 | .622 | .691 | .774 | .822 | | X = 8 | 2 | .05 | .30 | .65 | .240 | .334 | .438 | .508 | .600 | .673 | .761 | .812 | | X' = 8 | 3 | .10 | .20 | .70 | .224 | .318 | .411 | .497 | .587 | .663 | .754 | .806 | | C = 8 | 4 | .10 | .30 | .60 | .240 | .331 | .439 | .506 | .577 | .654 | .747 | .801 | | L = 48 | 5 | .05 | .20 | .75 | .240 | .340 | .411 | .486 | .578 | .650 | .744 | .799 | | X = 8 $X' = 10$ | 6
7 | $.05 \\ .10$ | .30
.20 | $.65 \\ .70$ | .240 $.224$ | .313
.318 | .400
.385 | .472
.454 | .548
.544 | .629 $.621$ | .729 $.723$ | .786 $.782$ | | C = 8 | 8 | .10 | .30 | .60 | .240 | .325 | .401 | .471 | .532 | .607 | .713 | .773 | | L = 52 | 9 | .05 | | .75 | .240 | .340 | .403 | .452 | .534 | .610 | .715 | .775 | | X = 82 | 10 | .05 | .30 | .65 | .240 | .313 | .363 | .439 | .501 | .584 | .696 | .760 | | X' = 12 | 11 | .10 | .20 | .70 | .224 | .318 | .376 | .426 | .501 | .578 | .692 | .757 | | $\ddot{c} = 18$ | 12 | .10 | .30 | .60 | .240 | .325 | .373 | .444 | .504 | .560 | .678 | .746 | | L = 56 | 13 | .05 | .20 | .75 | .240 | .340 | .403 | .430 | .493 | .573 | .685 | .752 | | X = 8 | 14 | .05 | .30 | .65 | .240 | .313 | .349 | .408 | .473 | .539 | .663 | .735 | | X' = 14 | 15 | .10 | .20 | .70 | .224 | .318 | .376 | .403 | .461 | .539 | .660 | .732 | | C = 8 | 16 | .10 | .30 | .60 | .240 | .325 | .373 | .419 | .475 | .526 | .643 | .719 | | L = 60 | 17 | .05 | .20 | .75 | .240 | .340 | .403 | .419 | .468 | .537 | .656 | .729 | | $\mathbf{x} = 8$ | 18 | .05 | .30 | .65 | .240 | .313 | .349 | .380 | .446 | .498 | .630 | .709 | | X' = 16 | 19 | .10 | .20 | .70 | .224 | .318 | .376 | .391 | .437 | .504 | .629 | .708 | | C = 8 | 20 | .10 | .30 | .60 | .240 | .325 | .373 | .393 | .448 | .502 | .609 | .692 | | L = 64 | 21 | .05 | .20 | .75 | .240 | .340 | .403 | .417 | .444 | .501 | .627 | .706 | | $\begin{array}{c} X = 8 \\ X' \equiv 18 \end{array}$ | 22 | .05 | .30 | .65 | .240 | .313 | .349 | .361 | .422 | .475 | .598 | .683 | | C = 8 | $\frac{23}{24}$ | $.10 \\ .10$ | .20
.30 | .70
.60 | .224 $.240$ | .318 $.325$ | .376 $.373$ | .389 $.382$ | .418
.428 | .469 $.480$ | .598
.575 | .683 $.665$ | | | | | | | | | | | | | | | | $ \begin{array}{c} L = 68 \\ X = 8 \end{array} $ | 25
26 | .05 | .20
.30 | .75 $.65$ | .240 $.240$ | .340 $.313$ | .403
.349 | .417
.361 | .431
.398 | .478
.453 | .597 | .682
.657 | | X = 8 $X' = 20$ | 27 | $.05 \\ .10$ | .20 | .70 | .224 | .318 | .349 | .389 | .403 | .446 | .565 $.567$ | .659 | | $C = \frac{20}{8}$ | 28 | .10 | .30 | .60 | .240 | .325 | .373 | .382 | .409 | .457 | .540 | .638 | | L = 48 | 29 | .05 | .20 | .75 | .240 | .340 | .434 | .528 | .622 | .683 | .768 | .817 | | X = 12 | 30 | .05 | .30 | .65 | .240 | .334 | .431 | .507 | .598 | .666 | .756 | .808 | | $\mathbf{X'} = 8$ | 31 | .10 | .20 | .70 | .224 | .318 | .411 | .497 | .587 | .648 | .743 | .798 | | $\ddot{c} = \ddot{s}$ | 32 | .10 | .30 | .60 | .240 | .331 | .422 | .481 | .563 | .639 | .736 | .792 | | L = 52 | 33 | .05 | .20 | .75 | .240 | .340 | .411 | .486 | .578 | .646 | .739 | .794 | | X = 12 | 34 | .05 | .30 | .65 | .240 | .304 | .395 | .472 | .548 | .622 | .723 | .782 | | $X' \equiv 10$ $C \equiv 8$ | 35 | .10 | .20 | .70 | .224 | .318 | .385 | .454 | .544 | .609 | .712 | .773 | | C = 8 | 36 | .10 | .30 | .60 | .240 | .304 | .388 | .447 | .515 | .592 | .702 | .765 | | L = 56 | 37 | .05 | .20 | .75 | .240 | .340 | .403 | .452 | .534 | .609 | .709 | .771 | | X = 12 | 38 | .05 | .30 | .65 | .240 | .304 | .360 | .439 | .499 | .580 | .691 | .756 | | X' = 12 | 39 | .10 | .20 | .70 | .224 | 318 | .376 | .426 | .501 | .574 | .681 | .749 | | C = 8 | 40 | .10 | .30 | .60 | .240 | .304 | .355 | .420 | .484 | .546 | .667 | .738 | | L = 60 | 41 | .05 | .20 | .75 | .240 | .340 | .403 | .430 | .493 | .573 | .680 | .748 | | X = 12 | 42 | .05 | .30 | .65 | .240 | .304 | .349 | .408 | .470 | .539 | .658 | .730 | | X' = 14 $C = 8$ | 43
44 | .10 | .20 | .70 | .224 | .318 | .376 | .403 | .461 | .539 | .650 | .724 | | C == 8 | 44 | .10 | .30 | .60 | .240 | .304 | .342 | .394 | .455 | .509 | .633 | .710 | | | | | | | | | | | | | | | | Table 19. | 14 (0 | ontini | ied) | | | | | | | | | | |--|----------------|--------------|-------------------|-------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------| | $egin{array}{l} L = 64 \ X \equiv 12 \ X' \equiv 16 \ \end{array}$ | 45
46
47 | .05
.05 | .20
.30
.20 | .75
.65
.70 | .240
.240
.224 | .340
.304
.318 | .403
.349
.376 | .419
.377
.391 | .468
.446
.437 | .537
.498
.504 | .650
.625
.619 | .724
.705
.699 | | C = 8 | 48 | .10 | .30 | .60 | .240 | .304 | .342 | .368 | .429 | .486 | .598 | .683 | | L = 68 | 49
50 | .05
.05 | .20
.30 | .75
.65 | .240
.240 | .340
.304 | .403
.349 | .417
.361 | .444
.422 | .501
.470 | .621
.592 | .701
.679 | | X = 12 $X' = 18$ | 51 | .10 | .20 | .70 | .224 | .318 | .376 | .389 | .418 | .469 | .587 | .675 | | C = 8 | 52 | .10 | .30 | ,60 | .240 | .304 | .342 | .359 | .409 | .463 | .564 | .656 | | $egin{array}{l} L \equiv 72 \ X \equiv 12 \end{array}$ | 53
54 | $.05 \\ .05$ | .20
.30 | .75
.65 | .240 $.240$ | .340 $.304$ | $.403 \\ .349$ | .417 $.361$ | .431 $.398$ | .478
.450 | .594 $.560$ | .678 $.653$ | | $X' = \frac{12}{20}$ | 55 | .10 | .20 | .70 | .224 | .318 | .376 | .389 | .403 | .446 | .559 | .650 | | $\ddot{c} = \ddot{s}$ | 56 | .10 | .30 | .60 | .240 | .304 | .342 | .359 | .389 | .440 | .529 | .629 | | L = 60 | 57 | .05 | .20 | .75 | .240 | .340 | .403 | .452 | .534 | .609 | .704 | .767 | | X = 16 | 58 | .05 | .30 | .65 | .240 | .304 | .360 | .439 | .499 | .580 | .685 | .752 | | X' = 12 | 59 | .10 | .20 | .70 | .224 | .318 | .376 | .426 | .501 | .574 | .670 | .740 | | C = 8 | 60 | .10 | .30 | .60 | .240 | .304 | .355 | .415 | .471 | .546 | .656 | .729 | | L = 64 | 61 | .05 | .20 | .75 | .240 | .340 | .403 | .430 | .493 | .573 | .674 | .743 | | X = 16 | 62 | .05 | .30 | .65 | .240 | .304 | .349 | .408 | .470 | .539 | .653 | .726 | | X' = 14 | 63 | .10 | .20 | .70 | .224 | .318 | .376 | .403 | .461 | .539 | .639 | .716 | | C = 8 | 64 | .10 | .30 | .60 | .240 | .304 | .330 | .384 | .445 | .506 | .622 | .702 | | L = 68 | 65 | .05 | .20 | .75 | .240 | .340 | .403 | .419 | .468 | .537 | .647 | .720 | | $\begin{array}{c} X = 16 \\ X' = 16 \end{array}$ | 66
67 | .05
.10 | .30 | .65 | .240 | .304 | .349 | .377 | .446 | .498 | .620
.610 | .700
.691 | | C = 8 | 68 | .10 | .20
.30 | .70
.60 | .224 $.240$ | .318 $.304$ | .376 $.322$ | .391 $.358$ | .437 $.420$ | .504 $.469$ | .587 | .675 | | | | | | | | | | | | | | | | L = 72 $X = 16$ | 69
70 | $.05 \\ .05$ | .20
.30 | .75 | .240 | .340 | .403 | .417 | .444 | .501 | .621
.590 | .697
.675 | | X' = 16
X' = 18 | 71 | .10 | .20 | .65
.70 | .240 $.224$ | .304
.318 | .349
.376 | .361 $.389$ | .422
.418 | .470
.469 | .584 | .666 | | $\hat{C} = \frac{18}{8}$ | 72 | .10 | .30 | .60 | .244 | .304 | .322 | .337 | .396 | .446 | .554 | .648 | | L = 76 | 73 | .05 | .20 | .75 | .240 | .340 | .403 | .417 | .431 | .478 | .594 | .674 | | $\ddot{X} = 16$ | 74 | .05 | .30 | .65 | .240 | .304 | .349 | .361 | .398 | .450 | .560 | .649 | | $\ddot{\mathbf{X}}' = \ddot{20}$ | 75 | .10 | .20 | .70 | .224 | .318 | .376 | .389 | .403 | .446 | .559 | .642 | | C = 8 | 76 | .10 | .30 | .60 | .240 | .304 | .322 | .337 | .373 | .428 | .525 | .621 | | L = 80 | 77 | .05 | .20 | .75 | .240 |
.340 | ,403 | .417 | .425 | .458 | .567 | .650 | | X = 16 | 78 | .05 | .30 | .65 | .240 | .304 | .349 | .361 | .375 | .430 | .529 | .623 | | X'=22 | 79 | .10 | .20 | .70 | .224 | .318 | .376 | .389 | .396 | .428 | .533 | .617 | | C = 8 | 80 | .10 | .30 | 60 | .240 | .304 | .322 | .337 | .351 | .405 | .496 | .594 | | L = 84 | 81 | .05 | .20 | .75 | .240 | .340 | .403 | .417 | .425 | .440 | .541 | .627 | | X = 16 | 82 | .05 | .30 | .65 | .240 | .304 | .349 | .361 | .368 | .411 | .499 | .597 | | X' = 24 | 83 | .10 | .20 | .70 | .224 | .318 | .376 | .389 | .396 | .414 | .508 | .593 | | C = 8 | 84 | .10 | .30 | .60 | .240 | .304 | .322 | .337 | .351 | .386 | .477 | .567 | ### 11. GROSS LOAD REQUIRED FOR VARIOUS TRUCK TYPES AND LOAD-INGS TO PRODUCE SAME MOMENT AS STANDARD H TRUCK OF UNIT WEIGHT ON SIMPLE SPAN BRIDGES Tables 11.1-11.14 give the gross load on each of the 1303 variants of the 14 heavy vehicle types shown in the identification index Tables 6.1-6.14 on simple spans of 10, 20, 30, 40, 50, 60, 80, and 100 feet in length that would be required to produce the same maximum moment as that produced on the span under consideration by a standard H truck weighing one kip. It will be noted that the values given by Tables 11.1-11.14 are the reciprocals of the corresponding values shown in Tables 10.1-10.14. The table number corresponding to each of the 14 heavy vehicle types shown in Figure 6.1 is as follows: | Table
No. | Vehicle
Type | Table
No. | Vehicle
Type | |--------------|-----------------|--------------|-----------------| | 11.1 | 2 | 11.8 | 3 S3 | | 11.2 | 3 | 11.9 | 2-2 | | 11.3 | 2-S1 | 11.10 | 2-3 | | 11.4 | 2-S2 | 11.11 | 3-2 | | 11.5 | 2-S3 | 11.12 | 3-3 | | 11.6 | 3-S1 | 11.13 | 2-S1-2 | | 11.7 | 3-S2 | 11.14 | 3-S2-3 | The use of Tables 11.1-11.14 for determining the gross load required on a particular vehicle such that it will produce the same moment on a given span as an H truck of given designation is given in Article 5. ### Table 11.1 SUMMARY OF GROSS LOADS REQUIRED FOR TYPE 2 TRUCKS TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS A STANDARD H TRUCK WEIGHING ONE KIP Thirty-six variations in the Type 2 truck are given in this Table. Each truck number, from 1 to 36, represents a different combination of wheel base length, and ratios of gross vehicle weight on each axle. All dimensions are in feet. Gross loads are in kips. | Wheel
Base | Truck No. | A | id On
cles
ips | | | | Span-F | eet | | | | |---------------|-----------|-----|----------------------|-------|-------|-------|--------|-------|-------|-------|-------| | Feet | 4 | aı | 82 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 1 | .45 | .55 | 1.453 | 1.332 | 1.138 | 1.098 | 1.076 | 1.063 | 1.046 | 1.036 | | | 2 | .40 | .60 | 1.333 | 1.250 | 1.094 | 1.067 | 1.053 | 1.043 | 1.032 | 1.026 | | L = 10 | 3 | .35 | .65 | 1.230 | 1.175 | 1.054 | 1.038 | 1.030 | 1.025 | 1.018 | 1.014 | | D 10 | 4 | .30 | .70 | 1.143 | 1.107 | 1.015 | 1.011 | 1.008 | 1.007 | 1.005 | 1.004 | | | 5 | .25 | .75 | 1.066 | 1.045 | .978 | .984 | .987 | .989 | .992 | .994 | | | 6 | .20 | .80 | 1.000 | .987 | .943 | .915 | .967 | .978 | .979 | .983 | | | 7 | .45 | .55 | 1.453 | 1.453 | 1.222 | 1.156 | 1.120 | 1.098 | 1.071 | 1.056 | | | 8 | .40 | .60 | 1.333 | 1.333 | 1.166 | 1.117 | 1.089 | 1.073 | 1.054 | 1.043 | | L = 12 | 9 | .35 | .65 | 1.230 | 1.230 | 1.111 | 1.080 | 1.062 | 1.052 | 1.037 | 1.030 | | | 10 | .30 | .70 | 1,143 | 1,143 | 1.062 | 1.044 | 1.035 | 1.029 | 1.021 | 1.016 | | | 11 | .25 | .75 | 1.066 | 1.066 | 1.015 | 1.011 | 1.008 | 1.007 | 1.005 | 1.004 | | | 12 | .20 | .80 | 1.000 | 1.000 | .971 | .978 | .983 | .986 | .989 | .992 | | | 13 | .45 | .55 | 1.453 | 1.453 | 1.318 | 1.218 | 1.167 | 1.134 | 1.098 | 1.076 | | | 14 | .40 | .60 | 1.333 | 1.333 | 1.242 | 1.170 | 1.130 | 1.106 | 1.076 | 1.060 | | L = 14 | 15 | .35 | .65 | 1.230 | 1.230 | 1.174 | 1.124 | 1.095 | 1.078 | 1.056 | 1.045 | | | 16 | .30 | .70 | 1.143 | 1.143 | 1.111 | 1.080 | 1.062 | 1.052 | 1.037 | 1.030 | | | 17 | .25 | .75 | 1.066 | 1.066 | 1.054 | 1.038 | 1.030 | 1.025 | 1.018 | 1.014 | | | 18 | .20 | .80 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | | 19 | .45 | .55 | 1.453 | 1.453 | 1.422 | 1.287 | 1.217 | 1.174 | 1.125 | 1.096 | | | 20 | .40 | .60 | 1.333 | 1.333 | 1.328 | 1.225 | 1.172 | 1.139 | 1.100 | 1.079 | | L = 16 | 21 | .35 | .65 | 1.230 | 1.230 | 1.242 | 1,170 | 1.130 | 1.106 | 1.076 | 1.060 | | | 22 | .30 | .70 | 1.143 | 1.143 | 1.166 | 1.117 | 1.089 | 1.073 | 1.054 | 1.043 | | | 23 | .25 | .75 | 1.066 | 1.066 | 1.094 | 1.067 | 1.053 | 1.043 | 1.032 | 1.026 | | | 24 | .20 | .80 | 1.000 | 1.000 | 1.028 | 1.021 | 1.017 | 1.014 | 1.010 | 1.008 | | | 25 | .45 | .55 | 1,453 | 1.453 | 1.495 | 1.361 | 1.269 | 1.215 | 1.152 | 1.119 | | | 26 | .40 | .60 | 1.333 | 1.333 | 1.370 | 1.287 | 1.217 | 1.174 | 1.125 | 1.096 | | L = 18 | 27 | .35 | .65 | 1.230 | 1.230 | 1.264 | 1.218 | 1.167 | 1.134 | 1.098 | 1.076 | | | 28 | .30 | .70 | 1.143 | 1.143 | 1.174 | 1.156 | 1.120 | 1.098 | 1.071 | 1.056 | | | 29 | .25 | .75 | 1.066 | 1.066 | 1.096 | 1.098 | 1.076 | 1.063 | 1.046 | 1.036 | | | 30 | .20 | .80 | 1.000 | 1.000 | 1.028 | 1.044 | 1.035 | 1.029 | 1.021 | 1.016 | | | 31 | .45 | .55 | 1.453 | 1.453 | 1.495 | 1.441 | 1.325 | 1.258 | 1.182 | 1.142 | | | 32 | .40 | .60 | 1.333 | 1.333 | 1.370 | 1.351 | 1.263 | 1.209 | 1.149 | 1.116 | | L = 20 | 33 | .35 | .65 | 1.230 | 1.230 | 1.264 | 1.271 | 1.205 | 1.166 | 1.119 | 1.093 | | | 34 | .30 | .70 | 1.143 | 1.143 | 1.174 | 1.198 | 1.151 | 1.122 | 1.088 | 1.070 | | | 35 | .25 | .75 | 1.066 | 1.066 | 1.096 | 1.130 | 1.100 | 1.082 | 1.059 | 1.047 | | | 36 | .20 | .80 | 1.000 | 1.000 | 1.028 | 1.067 | 1.053 | 1.043 | 1.032 | 1.026 | | | | | | 2,000 | | | | | ~.~.0 | | | Table 11.2 SUMMARY OF GROSS LOADS REQUIRED FOR TYPE 3 TRUCKS TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS A STANDARD H TRUCK WEIGHING ONE KIP Forty-two variations in the Type 3 truck are given in this Table. Each truck number, from 1 to 42, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. #### All dimensions are in feet. Gross loads are in kips. | Wheel
Base
and
Axle
Spacing | Truck No. | A: | id On
xles
lips | | | | Span-F | eet | | | | |---|-----------|------------|-----------------------|---------------|-----------------------|-----------------------|------------------|------------------|------------------|-----------------------|-----------------------| | Feet | Ë | 81 | 8.2 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 1 | .40 | .60 | 2.000 | 1.600 | 1.242 | 1.161 | 1.121 | 1.096 | 1.068 | 1.054 | | | 2 | .35 | .65 | 1.923 | 1.504 | 1.199 | 1.134 | 1.100 | 1.080 | 1.057 | 1.045 | | L = 14 $X = 10$ | 3 | .30 | .70 | 1.786 | 1.410 | 1.159 | 1.106 | 1.080 | 1.064 | 1.046 | 1.035 | | X = 10 | 4 | .25 | .75 | 1.667 | 1.316 | 1.120 | 1.080 | 1.059 | 1.048 | 1.035 | 1.027 | | | 5 | .20 | .80 | 1.563 | 1.235 | 1.081 | 1.055 | 1.041 | 1.033 | 1.024 | 1.018 | | | 6 | .15 | .85 | 1.471 | $\frac{1.161}{1.098}$ | 1.045 | 1.030 | 1.021 | 1.017 | 1.012 | 1.009 | | | 7 | .10 | .90 | 1.389 | | 1.010 | 1.005 | 1.003 | 1.002 | 1.001 | 1.001 | | | 8 | .40 | .60 | 2.000 | 1.645 | 1.339 | 1.221 | 1.164 | 1.131 | 1.093 | 1.072 | | | 9 | .35 | .65 | 1.923 | 1.520 | 1.279 | 1.185 | 1.138 | 1.110 | 1.078 | 1.060 | | L = 16 | 10 | .30 | .70 | 1.786 | 1.410
1.316 | 1.222 | 1.148 | 1.111 | 1.089 | 1.063 | 1.049 | | X = 12 | 11 | .25 | .75 | 1.667 | $\frac{1.316}{1.235}$ | $\frac{1.170}{1.120}$ | $1.114 \\ 1.081$ | 1.086 | 1.068 | 1.048 | 1.037 | | | 12
13 | .20
.15 | .80
.85 | 1.563 1.471 | 1.161 | 1.120 | 1.048 | $1.060 \\ 1.036$ | $1.048 \\ 1.029$ | $\frac{1.035}{1.020}$ | $\frac{1.027}{1.016}$ | | | 14 | .10 | .90 | 1.389 | 1.098 | 1.027 | 1.017 | 1.012 | 1.029 | 1.020 | 1.005 | | | 15 | | .60 | 2.000 | 1.645 | 1.447 | 1.287 | 1.211 | 1.167 | 1.117 | 1.003 | | | 16 | .40
.35 | .65 | 1.923 | 1.520 | 1.368 | 1.239 | 1.211 | 1.167 | 1.099 | 1.091 | | L = 18 | 17 | .30 | .70 | 1.786 | 1.410 | 1.294 | 1.193 | 1.144 | 1.115 | 1.081 | 1.063 | | X = 14 | 18 | .25 | .75 | 1.667 | 1.316 | 1.225 | 1.149 | 1.111 | 1.089 | 1.064 | 1.049 | | A — 14 | 19 | .20 | .80 | 1.563 | 1.235 | 1.160 | 1.107 | 1.080 | 1.064 | 1.046 | 1.036 | | | 20 | .15 | .85 | 1.471 | 1.161 | 1.100 | 1.067 | 1.050 | 1.041 | 1.029 | 1.022 | | | 21 | .10 | .90 | 1.389 | 1.098 | 1.045 | 1.030 | 1.021 | 1.017 | 1.012 | 1.009 | | | 22 | .40 | .60 | 2.000 | 1.645 | 1.570 | 1.359 | 1.261 | 1.205 | 1.143 | 1.110 | | | 23 | .35 | .65 | 1.923 | 1.520 | 1.451 | 1.297 | 1.218 | 1.172 | 1.121 | 1.093 | | L = 20 | 24 | .30 | .70 | 1.786 | 1.410 | 1.348 | 1,241 | 1.178 | 1.140 | 1.099 | 1.076 | | $\bar{x} = 16$ | 25 | .25 | .75 | 1.667 | 1.316 | 1,258 | 1.186 | 1.139 | 1.110 | 1,079 | 1.060 | | | 26 | .20 | .80 | 1.563 | 1.235 | 1.179 | 1.135 | 1.101 | 1.081 | 1.057 | 1.045 | | | 27 | .15 | .85 | 1.471 | 1.161 | 1.110 | 1.087 | 1.066 | 1.053 | 1.037 | 1.029 | | | 28 | .10 | .90 | 1.389 | 1.098 | 1.048 | 1.042 | 1.031 | 1.025 | 1.017 | 1.013 | | | 29 | .40 | .60 | 2.000 | 1.645 | 1.572 | 1.435 | 1.314 | 1.245 | 1.171 | 1.131 | | | 30 | .35 | .65 | 1.923 | 1.520 | 1.451 | 1.361 | 1.263 | 1.206 | 1.144 | 1.111 | | L = 22 | 31 | .30 | .70 | 1.786 | 1.410 | 1.348 | 1.290 | 1.214 | 1.168 | 1.119 | 1.092 | | X = 18 | 32 | .25 | .75 | 1.667 | 1.316 | 1.258 | 1.225 | 1.167 | 1.133 | 1.094 | 1.073 | | | 33 | .20 | .80 | 1.563 | 1.235 | 1.179 | 1.164 | 1.122 | 1.098 | 1.070 | 1.054 | | | 34 | .15 | .85 | 1.471 | 1.161 | 1.110 | 1.107 | 1.108 | 1.065 | 1.046 | 1.036 | | | 85 | .10 | .90 | 1.389 | 1.098 | 1.048 | 1.055 | 1.041 | 1.033 | 1.024 | 1.018 | | | 36 | .40 | .60 | 2.000 | 1.645 | 1.572 | 1.520 | 1.370 | 1.287 | 1.198 | 1.151 | | | 37 | .35 | .65 | 1.923 | 1.520 | 1.451 | 1.429 | 1.309 | 1.241 | 1.168 | 1.129 | | L = 24 | 38 | .30 | .70 | 1.786 | 1.410 | 1.348 | 1.344 | 1.250 |
1.198 | 1.138 | 1.106 | | X = 20 | 39 | .25 | .75 | 1.667 | 1.316 | 1.258 | 1.267 | 1.196 | 1.155 | 1.109 | 1.085 | | | 40 | .20 | .80 | 1.563 | 1.235 | 1.179 | 1,195 | 1.145 | 1.116 | 1.081 | 1.064 | | | 41 | .15 | .85 | 1.471 | 1.161 | 1.110 | 1.127 | 1.096 | 1.076 | 1.055 | 1.043 | | | 42 | .10 | .90 | 1.389 | 1.098 | 1.048 | 1.065 | 1.050 | 1.041 | 1.029 | 1.022 | Table 11.3 SUMMARY OF GROSS LOADS REQUIRED FOR TYPE 2-S1 TRUCKS TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS A STANDARD H TRUCK WEIGHING ONE KIP One hundred twenty-six variations in the Type 2-S1 truck are given in this Table. Each truck number, from 1 to 126, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. ### All dimensions are in feet. Gross loads are in kips. | Wheel | 1 ~ | 1 | | | | | | | | | | | |---|-----------------|-----------|-----------|------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------|-----------------------|------------------| | Base | No. | I | Load O | n | i i | | | Span-F | ont | | | | | and | | | Axles | | İ | | | Span-r | eet | | | | | Axle | 10 | | Kips | | | | | | | | | | | Spacing | Truck | | | | 10 | | | 4.0 | | 20 | | 100 | | Feet | 1 - | aı | 8.2 | a 3 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 1 | .10 | .30 | .60 | 1.333 | 1.333 | 1.217 | 1.170 | 1.130 | 1.106 | 1.076 | 1.060 | | | 2 | .10 | .40 | .50 | 1.600 | 1.600 | 1.351 | 1.255 | 1.193 | 1.156 | 1.112 | 1.088 | | L = 20 | 3 | .10 | .45 | .45 | 1.776 | 1.692 | 1.348 | 1.230 | 1.172 | 1.138 | 1.098 | 1.076 | | $\bar{x} = 8$ | 4 | .10 | .50 | .40 | 1,600 | 1.529 | 1.276 | 1.185 | 1.139 | 1.111 | 1.080 | 1.062 | | X' = 12 | 5 | .20 | .30 | .50 | 1.600 | 1.600 | 1.422 | 1.318 | 1.239 | 1.192 | 1.136 | 1.106 | | | 6 | .20 | .40 | .40 | 2.000 | 1.776 | 1.406 | 1.259 | 1.192 | 1.151 | 1.106 | 1.082 | | | 7 | .20 | .50 | .30 | 1.600 | 1.458 | 1.250 | 1.166 | 1.122 | 1.098 | 1.070 | 1.054 | | | 8 | .10 | .30 | .60 | 1.333 | 1.333 | 1.351 | 1.279 | 1.217 | 1.174 | 1.125 | 1.096 | | | 9 | .10 | .40 | .50 | 1.600 | 1.600 | 1.570 | 1.420 | 1.312 | 1.248 | 1.175 | 1.136 | | L=24 | 10 | .10 | .45 | .45 | 1.776 | 1.692 | 1.605 | 1.383 | 1.280 | 1.221 | 1.155 | 1.120 | | $ \begin{array}{l} L = 24 \\ X = 8 \\ X' = 16 \end{array} $ | 11 | .10 | .50 | .40 | 1.600 | 1.529 | 1.481 | 1.311 | 1.230 | 1.182 | 1.129 | 1.100 | | X' = 16 | 12 | .20 | .30 | .50 | 1.600 | 1.600 | 1.605 | 1.497 | 1.364 | 1.289 | 1.202 | 1.156 | | | 13 | .20 | .40 | .40 | 2.000 | 1.776 | 1.650 | $1.408 \\ 1.259$ | $\frac{1.294}{1.192}$ | $1.229 \\ 1.151$ | 1.159 1.106 | $1.121 \\ 1.082$ | | | 14 | .20 | .50 | .30 | 1.600 | 1.458 | 1.376 | | | | | | | | 15 | .10 | .30 | .60 | 1.333 | 1.333 | 1.370 | 1.383 | 1.312 | 1.248 | $1.175 \\ 1.245$ | 1.136
1.188 | | | 16 | .10 | .40 | .50 | $\frac{1.600}{1.776}$ | $\frac{1.600}{1.692}$ | $\frac{1.645}{1.650}$ | $\frac{1.590}{1.567}$ | $\frac{1.449}{1.404}$ | $1.351 \\ 1.314$ | $\frac{1.245}{1.217}$ | 1.166 | | $ \begin{array}{l} L = 28 \\ X = 8 \\ X' = 20 \end{array} $ | 17 | .10 | .45 | .45 | 1.600 | 1.529 | 1,499 | 1.460 | 1.333 | 1.261 | 1.182 | 1.139 | | $\mathbf{x} = \mathbf{s}$ | 18 | .10 | .50 | .40
.50 | 1.600 | 1.600 | 1.645 | 1.637 | 1.511 | 1.397 | 1.274 | 1.209 | | X' = 20 | 19 | .20 | .30 $.40$ | .40 | 2.000 | 1.776 | 1.650 | 1.585 | 1.408 | 1.314 | 1.215 | 1.163 | | | $\frac{20}{21}$ | .20 $.20$ | .50 | .30 | 1.600 | 1.458 | 1.376 | 1.368 | 1.266 | 1.209 | 1.145 | 1.111 | | | | .10 | .30 | .60 | 1,333 | 1,333 | 1.370 | 1.441 | 1.403 | 1.330 | 1.230 | 1.176 | | | $\frac{22}{23}$ | .10 | .40 | .50 | 1.600 | 1.600 | 1.645 | 1.730 | 1.600 | 1.468 | 1.319 | 1.242 | | r 00 | 24 | .10 | .45 | .45 | 1.776 | 1.692 | 1.650 | 1.695 | 1.548 | 1.418 | 1.284 | 1.215 | | $ \begin{array}{c} L = 32 \\ X = 8 \end{array} $ | 24
25 | .10 | .50 | .40 | 1.600 | 1.529 | 1,499 | 1.543 | 1.449 | 1.348 | 1.238 | 1.182 | | X = 3
X' = 24 | 26 | .20 | .30 | .50 | 1.600 | 1,600 | 1.645 | 1.730 | 1.656 | 1.520 | 1.351 | 1.266 | | A 24 | 27 | .20 | .40 | .40 | 2,000 | 1.776 | 1,650 | 1.656 | 1.543 | 1.410 | 1.276 | 1.208 | | | 28 | .20 | .50 | .30 | 1.600 | 1.458 | 1.376 | 1.391 | 1.350 | 1.271 | 1.186 | 1.143 | | | 29 | .10 | .30 | ,60 | 1.333 | 1.333 | 1.370 | 1.441 | 1.486 | 1.416 | 1.289 | 1.220 | | | 30 | .10 | .40 | .50 | 1.600 | 1.600 | 1.645 | 1.730 | 1.754 | 1.603 | 1.403 | 1.302 | | L = 36 | 31 | .10 | .45 | .45 | 1.776 | 1.692 | 1.650 | 1.695 | 1.715 | 1.536 | 1.357 | 1.266 | | $\mathbf{x} = \mathbf{s}$ | 32 | .10 | .50 | .40 | 1.600 | 1.529 | 1.499 | 1.543 | 1.567 | 1,443 | 1.299 | 1.225 | | $\mathbf{X}' = 28$ | 33 | .20 | .30 | .50 | 1.600 | 1.600 | 1.645 | 1.730 | 1.783 | 1.661 | 1.437 | 1.326 | | A 20 | 84 | .20 | .40 | .40 | 2.000 | 1.776 | 1.650 | 1.656 | 1.658 | 1.517 | 1,340 | 1.255 | | | 35 | .20 | .50 | .30 | 1.600 | 1.458 | 1.376 | 1.391 | 1.399 | 1.337 | 1.230 | 1.174 | | | 36 | .10 | .30 | .60 | 1.333 | 1.183 | 1.100 | 1.092 | 1.072 | 1.058 | 1.043 | 1.034 | | | 37 | .10 | .40 | .50 | 1.600 | 1.316 | 1.176 | 1.143 | 1.110 | 1.089 | 1.065 | 1.052 | | T. == 20 | 38 | .10 | .45 | .45 | 1.776 | 1.389 | 1.198 | 1.133 | 1,100 | 1.080 | 1.057 | 1.045 | | $\ddot{\mathbf{x}} = \ddot{1} \ddot{2}$ | 39 | .10 | .50 | .40 | 1.600 | 1.316 | 1.156 | 1.105 | 1.080 | 1.064 | 1.046 | 1.035 | | $ \begin{array}{l} L = 20 \\ X = 12 \\ X' = 8 \end{array} $ | 40 | .20 | .30 | .50 | 1,600 | 1.383 | 1.269 | 1.225 | 1.172 | 1.139 | 1.100 | 1.079 | | | 41 | .20 | .40 | .40 | 2,000 | 1.563 | 1.311 | 1.200 | 1.148 | 1.117 | 1.082 | 1.064 | | | 42 | .20 | .50 | .30 | 1.600 | 1.383 | 1.209 | 1.138 | 1.103 | 1.082 | 1.058 | 1.045 | | | 43 | .10 | ,30 | .60 | 1.333 | 1.333 | 1.217 | 1,186 | 1.151 | 1.122 | 1.088 | 1.070 | | | 44 | .10 | .40 | .50 | 1.600 | 1.600 | 1.351 | 1.279 | 1.217 | 1.174 | 1.125 | 1.096 | | L = 24 | 45 | .10 | .45 | .45 | 1.776 | 1.776 | 1.418 | 1.271 | 1.199 | 1.157 | 1.111 | 1.086 | | $\tilde{\mathbf{x}} = \tilde{1}$ | 46 | .10 | .50 | .40 | 1.600 | 1.600 | 1.339 | 1.221 | 1.164 | 1,131 | 1.093 | 1.072 | | X' = 12 | 47 | .20 | .30 | .50 | 1.600 | 1.600 | 1.422 | 1.372 | 1.287 | 1.229 | 1.163 | 1.126 | | | 48 | .20 | .40 | .40 | 2.000 | 2.000 | 1.563 | 1.344 | 1.247 | 1.193 | 1.134 | 1.103 | | | 49 | .20 | .50 | .30 | 1,600 | 1,600 | 1.366 | 1.235 | 1.172 | 1.135 | 1.095 | 1.073 | | | | | | | | | | | | | | | | Table 11. | 3 (Cor | tinue | d) | | | | | | | | | | |-----------------------------|---|---|--|--|---|---|---|---|---|---|---|---| | L = 28
X = 12
X' = 16 | 50
51
52
53
54
55 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | 1.333
1.600
1.776
1.600
1.600
2.000
1.600 | 1.333
1.600
1.776
1.600
1.600
2.000
1.600 | 1.351
1.570
1.698
1.570
1.605
1.543
1.497 | 1.279
1.420
1.435
1.359
1.497
1.517
1.344 | 1.239
1.339
1.314
1.261
1.420
1.362
1.247 | 1.192
1.267
1.245
1.205
1.330
1.279
1.193 | 1.136
1.189
1.171
1.144
1.230
1.190
1.134 | 1.106
1.145
1.131
1.111
1.176
1.144
1.103 | | L = 32
X = 12
X'= 20 | 57
58
59
60
61
62
63 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | 1.333
1.600
1.776
1.600
1.600
2.000
1.600 | 1.333
1.600
1.776
1.600
1.600
2.000
1.600 | 1.370
1.645
1.736
1.572
1.645
1.825
1.497 | 1.383
1.590
1.639
1.520
1.637
1.730
1.471 | 1.319
1.464
1.445
1.370
1.541
1.495
1.332 | 1.267
1.374
1.342
1.289
1.445
1.374
1.256 | 1.189
1.259
1.235
1.198
1.304
1.250
1.175 | 1.145
1.198
1.178
1.151
1.232
1.188
1.134 | | L = 36 $X = 12$ $X' = 24$ | 64
65
66
67
68
69
70 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.50 | 1.333
1.600
1.776
1.600
1.600
2.000
1.600 | 1,333
1,600
1,776
1,600
1,600
2,000
1,600 | 1.370
1.645
1.736
1.572
1.645
1.825
1.497 | 1.441
1.730
1.757
1.597
1.730
1.779
1.479 | 1.403
1.600
1.600
1.495
1.656
1.647
1.425 | 1.344
1.495
1.453
1.377
1.572
1.479
1.325 | 1.245
1.335
1.304
1.256
1.385
1.316
1.220 | 1.188
1.255
1.229
1.195
1.289
1.235
1.166 | | L = 40
X = 12
X' = 28 | 71
72
73
74
75
76
77 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | 1.333
1.600
1.776
1.600
1.600
2.000
1.600 | 1.333
1.600
1.776
1.600
1.600
2.000
1.600 | 1.370
1.645
1.736
1.572
1.645
1.825
1.497 | 1.441
1.730
1.757
1.597
1.730
1.779
1.479 | 1.486
1.754
1.770
1.610
1.783
1.754
1.468 | 1.416
1.608
1.577
1.479
1.669
1.600
1.399 |
1.304
1.418
1.379
1.319
1.473
1.385
1.314 | 1,232
1,314
1,282
1,239
1,351
1,284
1,199 | | L = 44
X = 12
X' = 32 | 78
79
80
81
82
83
84 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | 1.333
1.600
1.776
1.600
1.600
2.000
1.600 | 1.333
1.600
1.776
1.600
1.600
2.000
1.600 | 1.370
1.645
1.736
1.572
1.645
1.825
1.497 | 1.441
1.730
1.757
1.597
1.730
1.779
1.479 | 1.486
1.783
1.770
1.610
1.783
1.754
1.468 | 1.493
1.736
1.721
1.592
1.776
1.736
1.460 | 1.368
1.511
1.462
1.387
1.570
1.462
1.316 | 1.277
1.377
1.339
1.289
1.418
1.337
1.235 | | $L = 24 \ X = 16 \ X' = 8$ | 85
86
87
88
89
90 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | 1,333
1,600
1,776
1,600
1,600
2,000
1,600 | 1.183
1.316
1.389
1.316
1.383
1.563
1.383 | 1.100
1.176
1.217
1.176
1.269
1.368
1.269 | 1.104
1.157
1.156
1.135
1.264
1.272
1.200 | 1.091
1.130
1.122
1.101
1.217
1.198
1.148 | 1.074
1.106
1.098
1.081
1.174
1.156
1.117 | 1.054
1.076
1.070
1.058
1.125
1.109
1.082 | 1.043
1.060
1.054
1.045
1.096
1.083
1.064 | | $L = 28 \ X = 16 \ X' = 12$ | 92
93
94
95
96
97
98 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | 1,333
1,600
1,776
1,600
1,600
2,000
1,600 | 1.333
1.600
1.776
1.600
1.600
2.000
1.600 | 1.217
1.351
1.427
1.351
1.422
1.605
1.422 | 1.186
1.279
1.312
1.259
1.372
1.437
1.311 | 1.170
1.239
1.229
1.192
1.339
1.309
1.224 | 1.139
1.192
1.179
1.151
1.267
1.238
1.175 | 1.100
1.136
1.126
1.106
1.189
1.164
1.122 | 1.079
1.106
1.096
1.082
1.145
1.125
1.094 | | L = 32 $X = 16$ $X' = 16$ | 99
100
101
102
103
104
105 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | 1,333
1,600
1,776
1,600
1,600
2,000
1,600 | 1.333
1.600
1.776
1.600
1.600
2.000
1.600 | 1.351
1.570
1.698
1.570
1.605
1.912
1.605 | 1.279
1.420
1.493
1.408
1.497
1.642
1.437 | 1.241
1.346
1.350
1.294
1.439
1.437
1.309 | 1.211
1.289
1.271
1.229
1.374
1.332
1.238 | 1.149
1.202
1.186
1.159
1.259
1.222
1.164 | 1.116
1.156
1.143
1.121
1.198
1.168
1.125 | | L = 36
X = 16
X' = 20 | 106
107
108
109
110
111
112 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | 1.333
1.600
1.776
1.600
1.600
2.000
1.600 | 1.333
1.600
1.776
1.600
1.600
2.000
1.600 | 1.370
1.645
1.828
1.645
1.645
2.024
1.634 | 1.383
1.590
1.709
1.585
1.637
1.905
1.575 | 1.319
1.464
1.490
1.408
1.541
1.587
1.403 | 1.279
1.393
1.374
1.314
1.484
1.437
1.307 | 1.202
1.274
1.253
1.215
1.335
1.287
1.208 | 1.156
1.209
1.190
1.163
1.255
1.214
1.156 | | L = 40
X = 16
X' = 24 | 113
114
115
116
117
118
119 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | 1,333
1,600
1,776
1,600
1,600
2,000
1,600 | 1.333
1.600
1.776
1.600
1.600
2.000
1.600 | 1.370
1.645
1.828
1.645
1.645
2.024
1.634 | 1.441
1.730
1.828
1.656
1.730
1.919
1.575 | 1.403
1.600
1.656
1.543
1.656
1.767
1.508 | 1.344
1.495
1.490
1.410
1.572
1.555
1.381 | 1.259
1.351
1.325
1.276
1.418
1.357
1.255 | 1.198
1.266
1.242
1.208
1.314
1.263
1.190 | | L = 44
X = 16
X' = 28 | 120
121
122
123
124
125
126 | .10
.10
.10
.10
.20
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | 1.333
1.600
1.776
1.600
1.600
2.000
1.600 | 1.333
1.600
1.776
1.600
1.600
2.000
1.600 | 1.370
1.645
1.828
1.645
1.645
2.024
1.634 | 1.441
1.730
1.828
1.656
1.730
1.919
1.575 | 1.486
1.754
1.828
1.658
1.783
1.862
1.543 | 1.416
1.608
1.623
1.517
1.669
1.689
1.464 | 1.319
1.437
1.403
1.340
1.511
1.433
1.304 | 1.242
1.326
1.297
1.255
1.377
1.316
1.225 | Table 11.4 SUMMARY OF GROSS LOADS REQUIRED FOR TYPE 2-S2 TRUCKS TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS A STANDARD H TRUCK WEIGHING ONE KIP One hundred eight variations in the Type 2-S2 truck are given in this Table. Each truck number, from 1 to 108, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. | Wheel
Base
and
Axle
Spacing | Truck No. | 1 | oad C
Axles
Kips | | | | | Span-F | eet | | | | |---|----------------------------------|--|--|--|--|--|--|--|--|--|--|--| | Feet | (H | aı | A 2 | аз | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | L = 20 $X = 8$ $X' = 8$ | 1
2
3
4
5
6 | .10
.10
.10
.20
.20 | .30
.40
.50
.30
.40 | .60
.50
.40
.50
.40 | 2.083
2.000
1.600
2.500
2.000
1.600 | 1.471
1.621
1.422
1.715
1.667
1.403 | 1.242
1.299
1.189
1.408
1.299
1.182 | 1.161
1.199
1.129
1.266
1.195
1.121 | 1.121
1.149
1.098
1.198
1.145
1.091 | 1.096
1.120
1.079
1.156
1.115
1.073 | 1.068
1.086
1.056
1.111
1.082
1.052 | 1.054
1.066
1.044
1.086
1.064
1.041 | | L = 24
X = 8
X'= 12 | 7
8
9
10
11
12 | .10
.10
.10
.20
.20 | .30
.40
.50
.30
.40 | .60
.50
.40
.50
.40
.30 | 2.083
2.000
1.600
2.500
2.000
1.600 | 1.645
1.890
1.529
1.976
1.776
1.458 | 1.401
1.548
1.372
1.634
1.529
1.319 | 1.287
1.364
1.245
1.449
1.330
1.211 | 1.211
1.267
1.183
1.323
1.241
1.156 | 1.167
1.211
1.145
1.253
1.189
1.124 | 1.117
1.148
1.104
1.176
1.133
1.088 | 1.091
1.115
1.081
1.135
1.101
1.068 | | L = 28
X = 8
X'= 16 | 13
14
15
16
17
18 | .10
.10
.10
.20
.20
.20 | .30
.40
.50
.30
.40 | .60
.50
.40
.50
.40
.30 | 2.083
2.000
1.600
2.500
2.000
1.600 | 1.645
1.890
1.529
1.976
1.776
1.458 | 1.572
1.835
1.499
1.887
1.650
1.376 | 1.420
1.567
1.383
1.658
1.493
1.312 | 1.314
1.404
1.280
1.471
1.350
1.229 | 1.245
1.314
1.221
1.362
1.271
1.179 | 1.171
1.217
1.155
1.247
1.186
1.126 | 1.131
1.166
1.120
1.188
1.143
1.096 | | L = 32 $X = 8$ $X' = 20$ | 19
20
21
22
23
24 | .10
.10
.10
.20
.20
.20 | .30
.40
.50
.30
.40 | .60
.50
.40
.50
.40
.30 | 2.083
2.000
1.600
2.500
2.000
1.600 | 1.645
1.890
1.529
1.976
1.776
1.458 | 1.572
1.835
1.499
1.887
1.650
1.376 | 1.555
1.789
1.517
1.842
1.650
1.391 | 1.431
1.565
1.389
1.647
1.473
1.307 | 1.332
1.431
1.302
1.488
1.361
1.239 | 1.227
1.292
1.209
1.326
1.245
1.166 | 1.172
1.220
1.160
1.244
1.185
1.126 | | L = 36
X = 8
X' = 24 | 25
26
27
28
29
30 | .10
.10
.10
.20
.20 | .30
.40
.50
.30
.40 | .60
.50
.40
.50
.40
.30 | 2.083
2.000
1.600
2.500
2.000
1.600 | 1.645
1.890
1.529
1.976
1.776
1.458 | 1.572
1.835
1.499
1.887
1.650
1.376 | 1.597
1.876
1.543
1.916
1.656
1.391 | 1.536
1.751
1.513
1.815
1.618
1.383 | 1.427
1.563
1.393
1.631
1.462
1.304 | 1.287
1.374
1.267
1.410
1.307
1.208 | 1.217
1.279
1.203
1.305
1.230
1.157 | | L = 40
X = 8
X' = 28 | 31
32
33
34
35
36 | .10
.10
.10
.20
.20 | .30
.40
.50
.30
.40 | .60
.50
.40
.50
.40 | 2.083
2.000
1.600
2.500
2.000
1.600 | 1.645
1.890
1.529
1.976
1.776
1.458 | 1.572
1.835
1.499
1.887
1.650
1.376 | 1.597
1.876
1.543
1.916
1.656
1.391 | 1.610
1.901
1.567
1.934
1.658
1.399 | 1.524
1.718
1.495
1.795
1.575
1.374 | 1.353
1.464
1.332
1.506
1.376
1.253 | 1.264
1.342
1.248
1.370
1.279
1.190 | | L = 24
X = 12
X' = 8 | 37
38
39
40
41
42 | .10
.10
.10
.20
.20 | .30
.40
.50
.30
.40
.50 |
.60
.50
.40
.50
.40
.30 | 2.083
2.000
1.600
2.500
2.000
1.600 | 1.471
1.621
1.458
1.715
1.776
1.495 | 1,242
1,312
1,242
1,427
1,427
1,427 | 1.190
1.235
1.161
1.335
1.269
1.185 | 1.143
1.174
1.121
1.245
1.196
1.198 | 1.114
1.139
1.096
1.193
1.155
1.109 | 1,081
1,099
1,068
1,136
1,109
1,076 | 1.063
1.076
1.054
1.105
1.083
1.059 | | Table 11.4 | (Con | tinue | 1) | | | | | | | | | | |---|-------------------|--------------|--------------|--------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | 43 | .10 | .30 | .60 | 2.083 | 1.645 | 1.401 | 1.302 | 1.236 | 1.186 | 1.131 | 1,101 | | . | 44 | .10 | .40 | .50 | 2.000 | 1.976 | 1.548 | 1.395 | 1.297 | 1.233 | 1.163 | 1.125 | | $\begin{array}{c} L=28 \\ X=12 \end{array}$ | $\frac{45}{46}$ | .10
.20 | .50
.80 | $.40 \\ .50$ | $\frac{1.600}{2.500}$ | $\frac{1.600}{1.976}$ | $\frac{1.447}{1.634}$ | $\frac{1.287}{1.504}$ | $\frac{1.211}{1.379}$ | $\frac{1.167}{1.295}$ | $\frac{1.117}{1.203}$ | $\frac{1.091}{1.156}$ | | X = 12
X' = 12 | 47 | .20 | .40 | .40 | 2.000 | 2.000 | 1.712 | 1.427 | 1.302 | 1.235 | 1.161 | 1.124 | | | 48 | .20 | .50 | .30 | 1,600 | 1.600 | 1.441 | 1.287 | 1.209 | 1.164 | 1.115 | 1.088 | | | 49 | .10 | .30 | .60 | 2.083 | 1.645 | 1.572 | 1.420 | 1.339 | 1.266 | 1,185 | 1.142 | | | 50 | .10 | .40 | .50 | 2.000 | 1.976 | 1.855 | 1.572 | 1.441 | 1.339 | 1.233 | 1.176 | | L = 32 | 51 | .10 | .50 | .40 | 1.600 | 1.600 | 1.572 | 1.435 | 1.314 | 1.245 | 1.171 | 1.131 | | X = 12 $X' = 16$ | 52
53 | .20 $.20$ | .30
.40 | .50 $.40$ | $\frac{2.500}{2.000}$ | $\frac{1.976}{2.000}$ | $\frac{1.887}{1.825}$ | $\frac{1.658}{1.618}$ | $\frac{1.538}{1.425}$ | $\frac{1.410}{1.325}$ | $\frac{1.277}{1.220}$ | $\frac{1.211}{1.166}$ | | A 10 | 54 | .20 | .50 | .30 | 1.600 | 1.600 | 1.497 | 1.404 | 1.289 | 1.224 | 1.155 | 1.119 | | | 55 | .10 | .30 | .60 | 2.083 | 1.645 | 1.572 | 1.555 | 1.433 | 1.355 | 1.242 | 1.183 | | | 56 | .10 | .40 | .50 | 2.000 | 1.976 | 1.887 | 1.789 | 1.587 | 1.460 | 1.309 | 1.233 | | L = 36 | 57 | .10 | .50 | .40 | 1.600 | 1.600 | 1.572 | 1.582 | 1.431 | 1.332 | 1.227 | 1.172 | | $\begin{array}{c} X = 12 \\ X' = 20 \end{array}$ | 58 | .20 | .30 | .50 | 2.500 | 1.976 | 1.887 | 1.842 | 1.672 | 1.541 | 1.359 | 1.267 | | $\mathbf{X} = \mathbf{z}0$ | 59
60 | $.20 \\ .20$ | .40
.50 | .40
.30 | $\frac{2.000}{1.600}$ | $\frac{2.000}{1.600}$ | $\frac{1.825}{1.497}$ | $1.779 \\ 1.479$ | $\frac{1.567}{1.377}$ | $\frac{1.425}{1.289}$ | $\frac{1.282}{1.198}$ | $\frac{1.211}{1.149}$ | | | $-\frac{60}{61}$ | .10 | .30 | - 60 | 2.083 | 1.645 | 1.572 | 1.597 | 1.536 | 1.441 | 1.304 | 1.229 | | | 62 | .10 | .40 | .50 | 2.000 | 1.976 | 1.887 | 1.916 | 1.751 | 1.597 | 1.393 | 1.292 | | L = 40 | 63 | .10 | .50 | .40 | 1.600 | 1.600 | 1.572 | 1.597 | 1.572 | 1.427 | 1.287 | 1,217 | | X = 12 | 64 | .20 | .30 | .50 | 2.500 | 1.976 | 1.887 | $\frac{1.916}{1.779}$ | 1.815 | 1.684 | 1.447 | 1.332 | | X'=24 | 65 | .20 | .40 | .40 | 2.000 | 2.000 | 1.825 | 1.779 | 1.730 | 1.538 | 1.350 | 1.259 | | | 66 | .20 | .50_ | .30 | 1.600 | 1.600 | 1.497 | 1.479 | 1.460 | 1.361 | 1.242 | 1.182 | | | 67
68 | .10 | .30
.40 | .60
.50 | $\frac{2.083}{2.000}$ | $\frac{1.645}{1.976}$ | $\frac{1.572}{1.887}$ | $\frac{1.597}{1.916}$ | $\frac{1.610}{1.934}$ | $\frac{1.524}{1.730}$ | $1.370 \\ 1.486$ | $1.276 \\ 1.357$ | | L = 44 | 69 | .10 | .50 | .40 | 1.600 | 1.600 | 1.572 | 1.597 | 1.610 | 1.534 | 1.353 | 1.264 | | | 70 | .20 | .30 | .50 | 2.500 | 1.976 | 1.887 | 1.916 | 1.934 | 1.799 | 1.548 | 1.399 | | X' = 28 | 71 | .20 | .40 | .40 | 2.000 | 2.000 | 1.825 | 1.779 | 1.754 | 1.667 | 1.422 | 1.311 | | | 72 | .20 | 50 | .30 | 1.600 | 1.600 | 1.497 | 1.479 | 1.468 | 1.439 | 1.290 | 1.217 | | | 73 | .10 | .30 | .60 | 2.083 | 1.471 | 1.242 | 1.199 | 1.164 | 1.131 | 1.093 | 1.072 | | T 00 | 74
75 | .10
.10 | .40
.50 | .50
.40 | $\frac{2.000}{1.600}$ | $\frac{1.621}{1.458}$ | $\frac{1.312}{1.258}$ | $\frac{1.247}{1.195}$ | $\frac{1.198}{1.145}$ | $\frac{1.156}{1.115}$ | $\frac{1.111}{1.082}$ | $\frac{1.086}{1.064}$ | | L = 28
X = 16 | 76 | .20 | .30 | .50 | 2.500 | 1.715 | 1.427 | 1.370 | 1.297 | 1.233 | 1.163 | 1.125 | | $\ddot{\mathbf{x}}' = \ddot{8}$ | 77 | .20 | .40 | .40 | 2.000 | 1.776 | 1.479 | 1.351 | 1.252 | 1.196 | 1.135 | 1.104 | | | 78 | .20 | .50 | .30 | 1.600 | 1.495 | 1.342 | 1.290 | 1.211 | 1.166 | 1.115 | 1.088 | | - | 79 | .10 | .30 | .60 | 2.083 | 1.645 | 1.401 | 1.302 | 1.255 | 1.205 | 1.144 | 1.111 | | T 00 | 80
81 | .10
.10 | .40
.50 | .50
.40 | 2.000
1.600 | $1.976 \\ 1.600$ | $\frac{1.548}{1.453}$ | $\frac{1.395}{1.330}$ | $\frac{1.321}{1.241}$ | $\frac{1.253}{1.189}$ | $\frac{1.176}{1.133}$ | $\frac{1.135}{1.101}$ | | L = 32
X = 16 | 82 | .20 | .30 | .50 | 2,500 | 1.976 | 1.634 | 1.504 | 1.439 | 1.339 | 1.233 | 1.176 | | | 83 | .20 | .40 | .40 | 2,000 | 2.900 | 1.748 | 1.534 | 1.370 | 1.284 | 1.192 | 1.145 | | | 84 | .20 | .50 | .30 | 1.600 | 1.600 | 1.511 | 1.372 | 1.266 | 1.206 | 1.143 | 1.109 | | | 85 | .10 | .30 | .60 | 2.083 | 1.645 | 1.572 | 1.420 | 1.339 | 1.287 | 1.198 | 1.151 | | | 86 | .10 | .40 | .50 | 2.000 | 1.976 | 1.855 | 1.572 | 1.445 | 1.362 | 1.247 | 1.188 | | $egin{array}{c} \mathbf{L} = 36 \ \mathbf{X} = 16 \end{array}$ | 87
88 | $.10 \\ .20$ | .50
.30 | .40
.50 | $\frac{1.600}{2.500}$ | $\frac{1.600}{1.976}$ | $\frac{1.634}{1.887}$ | $\frac{1.493}{1.658}$ | $\frac{1.350}{1.550}$ | $\frac{1.271}{1.460}$ | $\frac{1.186}{1.309}$ | $\frac{1.143}{1.233}$ | | X' = 16 | 89 | .20 | .40 | .40 | 2.000 | 2.000 | 2.024 | 1.764 | 1.508 | 1.381 | 1.255 | 1.190 | | | 90 | .20 | .50 | .30 | 1.600 | 1.600 | 1.634 | 1.508 | 1.355 | 1.272 | 1.185 | 1.140 | | | 91 | .10 | .30 | .60 | 2.083 | 1.471 | 1.572 | 1.555 | 1.433 | 1.362 | 1.256 | 1.195 | | | 92 | .10 | .40 | .50 | 2.000 | 1.976 | 1.887 | 1.789 | 1.587 | 1.477 | 1.326 | 1.244 | | $ \begin{array}{l} L = 40 \\ X = 16 \end{array} $ | 93
94 | .10
.20 | .50
.30 | .40 $.50$ | $\frac{1.600}{2.500}$ | $\frac{1.600}{1.976}$ | $\frac{1.645}{1.887}$ | $\frac{1.650}{1.842}$ | $\frac{1.473}{1.672}$ | $\frac{1.361}{1.580}$ | $\frac{1.245}{1.393}$ | $\frac{1.185}{1.292}$ | | $\mathbf{X}' = 10$ | 95 | .20 | .40 | .40 | 2.000 | 2.000 | 2.024 | 1.919 | 1.672 | 1.493 | 1.321 | 1.238 | | 11 20 | 96 | .20 | .50 | .30 | 1.600 | 1.600 | 1.634 | 1.575 | 1.456 | 1.344 | 1.230 | 1.174 | | | 97 | .10 | .30 | .60 | 2.083 | 1.471 | 1,572 | 1.597 | 1.536 | 1.441 | 1.319 | 1.239 | | | 98 | .10 | .40 | .50 | 2.000 | 1.976 | 1.887 | 1.916 | 1.751 | 1.597 | 1.410 | 1.305 | | L = 44 | 99 | .10 | .50 | .40 | 1.600 | 1.600 | 1.645 | 1.656 | 1.618 | 1.462 | 1.307 | 1.230 | | $egin{array}{c} \mathbf{X} = 16 \ \mathbf{X'} = 24 \end{array}$ | 100
101 | $.20 \\ .20$ | $.30 \\ .40$ | $.50 \\ .40$ | $\frac{2.500}{2.000}$ | $\frac{1.976}{2.000}$ | $\frac{1.887}{2.024}$ | $\frac{1.916}{1.919}$ | $\frac{1.815}{1.852}$ | $\frac{1.684}{1.621}$ | $\frac{1.486}{1.395}$ | $\frac{1.357}{1.289}$ | | A 24 | 102 | .20 | .50 | .30 | 1,600 | 1.600 | 1.634 | 1.575 | 1.541 | 1.422 | 1.279 | 1.208 | | | 103 | .10 | .30 | .60 | 2.083 | 1,471 | 1,572 | 1.597 | 1.610 | 1,524 | 1.387 | 1.289 | | | 104 | .10 | .40 | .50 | 2.000 | 1.976 | 1.887 | 1.916 | 1.934 | 1.730 | 1.506 | 1.370 | | L = 48 | 105 | .10 | .50 | .40 | 1.600 | 1.600 | 1.645 | 1.656 | 1.658 | 1.575 | 1.376 | 1.279 | | X = 16
X' = 28 | $\frac{106}{107}$ | .20 | .30 | .50 | 2.500 | 1.976 | 1.887 | 1.916 | 1.934 | $\frac{1.799}{1.767}$ | $\frac{1.590}{1.473}$ | $\frac{1.427}{1.342}$ | | A - 28 | 107 | $.20 \\ .20$ | .40
.50 | $.40 \\ .30$ | $\frac{2.000}{1.600}$ | $\frac{2.000}{1.600}$ | $\frac{2.024}{1.634}$ | $\frac{1.919}{1.575}$ | $\frac{1.862}{1.543}$ | 1.767 | 1.330 | 1.342 | | | 100 | | | | 1.000 | 1.000 | 1.004 | | 1.0.10 | | | | ### Table 11.5 ## SUMMARY OF GROSS LOADS REQUIRED FOR TYPE 2-S3 TRUCKS TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS A STANDARD H TRUCK WEIGHING ONE KIP Ninety variations in the Type 2-S3 truck are given in this Table. Each truck number, from 1 to 90, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | |--|---------------| | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 80 100 | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1.099 1.076 | | X = 8 | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | X' = 8 5 .20 .30 .50 2.667 2.141 1.597 1.370 1.267 1.208 6 .20 .40 .40 2.000 1.709 1.404 1.259 1.190 1.151 | | | 6 .20 .40 .40 2.000 1.109 1.404 1.259 1.190 1.155 | | | 0.00 1.00 1.00 1.000 1.000 | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | L = 28 9 .10 .40 .50 2.000 1.890 1.684 1.462 1.333 1.261 | | | X = 8 10 .20 .20 .60 2.857 1.818 1.664 1.517 1.362 1.278 | | | X' = 12 11 .20 .30 .50 2.667 2.183 1.912 1.587 1.410 1.316 | | | 12 .20 .40 .40 2.000 1.776 1.580 1.406 1.292 1.229 | | | 13 .10 .225 .675 2.538 1.616 1.481 1.443 1.357 1.276 | 3 1.188 1.143 | | 14 .10 .30 .60 2.667 1.818 1.667 1.590 1.425 1,325 | | | L = 32 15 .10 .40 .50 2.000 1.890 1.835 1.686 1.481 1.370 | | | X = 8 16 .20 .20 .60 2.857 1.818 1.667 1.623 1.495 1.374
X' = 16 17 .20 .30 .50 2.667 2.183 2.000 1.852 1.580 1.437 | | | X' = 16 | | | | | | 19 .10 .225 .675 2.538 1.616 1.481 1.479
1.427 1.351 | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | X = 8 22 .20 .20 .60 2.857 1.818 1.667 1.664 1.605 1.478 | | | X 8 22 .20 .20 .60 2.857 1.818 1.667 1.664 1.605 1.476 X'= 16 23 .20 .30 .50 2.667 2.183 2.000 1.996 1.786 1.573 | | | 24 .20 .40 .40 2.000 1.776 1.650 1.656 1.541 1.408 | | | 25 .10 .225 .675 2.538 1.616 1.481 1.479 1.477 1.414 | 1.289 1.215 | | 26 .10 .30 .60 2.667 1.818 1.667 1.664 1.664 1.538 | | | L = 40 27 .10 .40 .50 2.000 1.890 1.835 1.876 1.842 1.639 | | | X = 8 28 .20 .20 .60 2.857 1.818 1.667 1.664 1.664 1.592 | | | X' = 24 29 .20 .30 .50 2.667 2.183 2.000 1.996 1.733 | | | 30 .20 .40 .40 2.000 1.776 1.650 1.656 1.642 1.518 | | | 31 .10 .225 .675 2.538 1.616 1.350 1.272 1.203 1.160 | | | L=28 33 .10 .30 .60 2.667 1.818 1.416 1.305 1.221 1.174 1.228 33 .10 .40 .50 2.000 1.812 1.481 1.323 1.236 1.186 | | | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | | | X' = 8 35 .20 .30 .50 2.667 2.183 1.623 1.460 1.326 1.253 | | | 36 .20 .40 .40 2.000 1.852 1.555 1.342 1.247 1.193 | | | 37 .10 .225 .675 2.538 1.616 1.479 1.353 1.290 1.225 | | | 38 .10 .30 .60 2.667 1.818 1.639 1.439 1.332 1.256 | | | L = 32 39 .10 .40 .50 2.000 2.000 1.795 1.522 1.370 1.287 | 1.199 1.152 | | X = 12 40 .20 .20 .60 2.857 1.818 1.664 1.522 1.425 1.325 | 1.220 1.166 | | X' = 12 41 .20 .30 .50 2.667 2.183 1.912 1.658 1.484 1.368 | | | 42 .20 .40 .40 2.000 2.000 1.757 1.515 1.361 1.277 | 1.189 1.144 | | , | Table 11.5 | (Cor | tinue | 1) | | | | | | | | | | |---|----------------------------------|------|-------|------|------|-------|-------|-----------------------|-----------------------|-----------------------|-------|-------|-------| | | | 43 | .10 | .225 | .675 | 2,538 | 1.616 | 1.481 | 1.443 | 1.357 | 1.297 | 1.202 | 1.153 | | | | 44 | .10 | .30 | .60 | 2.667 | 1.818 | 1.667 | 1.590 | 1,449 | 1.348 | 1.235 | 1.176 | | | L = 36 | 45 | .10 | .40 | .50 | 2.000 | 2,000 | 1.942 | 1.754 | 1.529 | 1.403 | 1.272 | 1.206 | | | X = 12 | 46 | .20 | .20 | .60 | 2.857 | 1.818 | 1.667 | 1.623 | 1.527 | 1.425 | 1.282 | 1.211 | | | X' = 16 | 47 | .20 | .30 | .50 | 2,667 | 2.183 | 2.000 | 1.855 | 1.675 | 1.499 | 1.328 | 1.245 | | | | 48 | .20 | .40 | .40 | 2.000 | 2.000 | 1.825 | 1.695 | 1.493 | 1.372 | 1.250 | 1.188 | | | | 49 | .10 | .225 | .675 | 2,538 | 1.616 | 1.481 | 1.479 | 1.427 | 1.359 | 1.252 | 1.189 | | | | 50 | .10 | .30 | .60 | 2.667 | 1.818 | 1.667 | 1.664 | 1.565 | 1.451 | 1.299 | 1.222 | | | L = 40 | 51 | .10 | .40 | .50 | 2.000 | 2.000 | 1.942 | 1.946 | 1.718 | 1.536 | 1.353 | 1.264 | | | $\ddot{X} = 12$ | 52 | .20 | .20 | .60 | 2.857 | 1.818 | 1.667 | 1.664 | 1.605 | 1.529 | 1.350 | 1.259 | | | $\ddot{\mathbf{X}}' = \ddot{20}$ | 53 | .20 | .30 | .50 | 2.667 | 2.183 | 2.000 | 1.996 | 1.825 | 1.653 | 1.416 | 1.307 | | | | 54 | .20 | .40 | .40 | 2.000 | 2.000 | 1.825 | 1.779 | 1.645 | 1.479 | 1.314 | 1.235 | | | | 55 | .10 | .225 | .675 | 2.538 | 1.616 | 1.481 | 1.479 | 1.477 | 1.414 | 1.305 | | | | | 56 | .10 | .30 | .60 | 2.667 | 1.818 | 1.667 | | 1.664 | | | 1.227 | | | L = 44 | 57 | .10 | .40 | .50 | 2.000 | 2.000 | 1.942 | $\frac{1.664}{1.957}$ | | 1.548 | 1.368 | 1.272 | | | X = 12 | 58 | .20 | .20 | .60 | 2.857 | 1.818 | 1.667 | 1.664 | 1.916 | 1.689 | 1.443 | 1.326 | | | X' = 14 | 59 | .20 | .30 | .50 | 2.667 | 2.183 | | | 1.664 | 1.592 | 1.422 | 1.311 | | | A 24 | 60 | .20 | .40 | .40 | 2.000 | 2.000 | $\frac{2.000}{1.825}$ | 1.996 | $\frac{1.996}{1.748}$ | 1.808 | 1.517 | 1.374 | | ^ | | | | | - | | | | 1.779 | THE STREET STREET | 1.597 | 1.385 | 1.284 | | | | 61 | .10 | .225 | .675 | 2.538 | 1.616 | 1.350 | 1.272 | 1.230 | 1.179 | 1.125 | 1.095 | | | | 62 | .10 | .30 | .60 | 2.667 | 1.818 | 1.416 | 1.311 | 1.247 | 1.193 | 1.134 | 1.103 | | | L = 32 | 63 | .10 | .40 | .50 | 2.000 | 1.812 | 1.481 | 1.350 | 1.267 | 1.209 | 1.145 | 1.112 | | | X = 16 | 64 | .20 | .20 | .60 | 2.857 | 1.818 | 1.517 | 1.431 | 1.362 | 1.279 | 1.190 | 1.144 | | | $\mathbf{X'} = 8$ | 65 | .20 | .30 | .50 | 2.667 | 2.183 | 1.623 | 1.490 | 1.387 | 1.297 | 1.203 | 1.153 | | | | 66 | .20 | 40 | .40 | 2,000 | 1.852 | 1.605 | 1.437 | 1.307 | 1.238 | 1.163 | 1.124 | | | | 67 | .10 | .225 | .675 | 2.538 | 1.616 | 1.479 | 1.353 | 1.292 | 1.247 | 1.170 | 1.129 | | | | 68 | .10 | .30 | .60 | 2.667 | 1.818 | 1.639 | 1.439 | 1.350 | 1.279 | 1.190 | 1.144 | | | L = 36 | 69 | .10 | .40 | .50 | 2.000 | 2.000 | 1,802 | 1.529 | 1.410 | 1.316 | 1.215 | 1.164 | | | X = 16 | 70 | .20 | .20 | .60 | 2.857 | 1.818 | 1.664 | 1.522 | 1.453 | 1.374 | 1.250 | 1.188 | | | X' = 12 | 71 | .20 | .30 | .50 | 2.667 | 2.183 | 1.912 | 1.658 | 1.543 | 1.418 | 1.279 | 1.209 | | _ | | 72 | .20 | .40 | .40 | 2.000 | 2.000 | 1.862 | 1.642 | 1.437 | 1.330 | 1,222 | 1.167 | | | | 73 | .10 | .225 | .675 | 2.538 | 1.616 | 1.481 | 1.443 | 1.357 | 1.305 | 1.217 | 1.164 | | | | 74 | .10 | .30 | .60 | 2.667 | 1.818 | 1.667 | 1.590 | 1.449 | 1.374 | 1.250 | 1.188 | | | L = 40 | 75 | .10 | .40 | .50 | 2.000 | 2.000 | 2.000 | 1.754 | 1.555 | 1.437 | 1.292 | 1.220 | | | X = 16 | 76 | .20 | .20 | .60 | 2.857 | 1.818 | 1.667 | 1.623 | 1.527 | 1,468 | 1.316 | 1.235 | | | X' = 16 | 77 | .20 | .30 | .50 | 2.667 | 2.183 | 2.000 | 1.855 | 1.675 | 1.558 | 1.362 | 1.269 | | | | 78 | .20 | .40_ | 40 _ | 2.000 | 2.000 | 2.024 | 1.845 | 1.587 | 1.435 | 1.287 | 1.214 | | | | 79 | .10 | .225 | .675 | 2.538 | 1.616 | 1.481 | 1.479 | 1.427 | 1.359 | 1.267 | 1.200 | | | | 80 | .10 | .30 | .60 | 2.667 | 1.818 | 1.667 | 1.664 | 1.565 | 1.456 | 1.316 | 1.235 | | | L = 44 | 81 | .10 | .40 | .50 | 2.000 | 2.000 | 2.000 | 1.996 | 1.727 | 1.572 | 1.376 | 1.279 | | | X = 16 | 82 | .20 | .20 | .60 | 2.857 | 1.818 | 1.667 | 1.664 | 1.605 | 1.529 | 1.385 | 1.284 | | | X' = 20 | 83 | .20 | .30 | .50 | 2.667 | 2.183 | 2.000 | 1.996 | 1.825 | 1.686 | 1.456 | 1.333 | | | | 84 | .20 | .40 | .40 | 2.000 | 2.000 | 2.024 | 1.919 | 1.757 | 1.553 | 1.355 | 1.263 | | | | 85 | .10 | .225 | .675 | 2.538 | 1.616 | 1.481 | 1.479 | 1.477 | 1.414 | 1.321 | 1.239 | | | | 86 | .10 | .30 | .60 | 2.667 | 1.818 | 1.667 | 1.664 | 1.664 | 1.548 | 1.385 | 1,284 | | | L = 48 | 87 | .10 | .40 | .50 | 2.000 | 2.000 | 2.000 | 1.996 | 1.931 | 1.712 | 1.471 | 1.344 | | | X = 16 | 88 | .20 | .20 | .60 | 2.857 | 1.818 | 1.667 | 1.664 | 1.664 | 1.592 | 1.462 | 1.337 | | | X' = 24 | 89 | .20 | .30 | .50 | 2.667 | 2.183 | 2.000 | 1.996 | 1.996 | 1.808 | 1.558 | 1.403 | | | | 90 | .20 | .40 | .40 | 2.000 | 2.000 | 2.024 | 1.919 | 1.862 | 1.689 | 1.433 | 1.314 | | | | | | | | | | | | | | | | Table 11.6 # SUMMARY OF GROSS LOADS REQUIRED FOR TYPE 3-S1 TRUCKS TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS A STANDARD H TRUCK WEIGHING ONE KIP Ninety variations in the Type 3-S1 truck are given in this Table. Each truck number, from 1 to 90, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. | Wheel
Base
and
Axle
Spacing | Truck No. | | Load C
Axles
Kips | | | | | Span-I | Feet | | | | |---|-----------------|------------|-------------------------|-------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------|----------------| | Feet | Ē | aı | ae | a3 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 1 | .10 | .40 | .50 | 1.600 | 1.600 | 1.453 | 1.348 | 1.263 | 1.211 | 1.149 | 1.116 | | | 2 | .10 | .50 | .40 | 2.000 | 1.905 | 1.520 | 1.323 | 1.233 | 1.182 | 1.127 | 1.098 | | L = 24 | 3 | .10 | .60 | .30 | 2.083 | 1.597 | 1.366 | 1.235 | 1.172 | 1.135 | 1.095 | 1.073 | | $\mathbf{x} = \mathbf{s}$ | 4 | .20 | .40 | .40 | 2.000 | 2.000 | 1.748 | 1.437 | 1.309 | 1.238 | 1.164 | 1.125 | | X' = 12 | 5
6 | .20
.20 | .50 $.534$ | .30
.266 | $\frac{2.500}{2.342}$ | $\frac{1.812}{1.709}$ | $\frac{1.541}{1.477}$ | $\frac{1.330}{1.299}$ | $\frac{1.238}{1.215}$ | $1.186 \\ 1.168$ | 1.129 1.117 | 1.099 1.091 | | | 7 | | .40 | .50 | 1.600 | 1.600 | 1,634 | 1.502 | 1.393 | 1.309 | 1.217 | 1.167 | | | 8 | .10
.10 | .50 | .40 | 2.000 | 1.905 | 1.712 | 1.488 | 1.344 | 1.266 | 1.182 | 1.139 | | L = 28 | 9 | .10 | .60 | .30 | 2.083 | 1.597 | 1.449 | 1.344 | 1.247 | 1.193 | 1.134 | 1.103 | | $\mathbf{x} = \mathbf{s}$ | 10 | .20 | .40 | .40 | 2.000 | 2.000 | 1.862 | 1.642 | 1.437 | 1.332 | 1.222 | 1.168 | | X' = 16 | 11 | .20 | .50 | .30 | 2.500 | 1.812 | 1.558 | 1.462 | 1.325 | 1.250 | 1.171 | 1.130 | | | 12 | .20 | .534 | .266 | 2.342 | 1,709 | 1.477 | 1.410 | 1.290 | 1.224 | 1.155 | 1.117 | | | 13 | .10 | .40 | .50 | 1.600 | 1.600 | 1.645 | 1.681 | 1.529 | 1.420 | 1.289 | 1.220 | | | 14 | .10 | .50 | .40 | 2.000 | 1.905 | 1.712 | 1.692 | 1.473 | 1.359 | 1.241 | 1.182 | | $\mathbf{L} = 32$ $\mathbf{X} = 8$ | 15 | .10
.20 | .60
.40 | .30 $.40$ | $\frac{2.083}{2.000}$ | $\frac{1.600}{2.000}$ | $\frac{1.449}{1.862}$ | $1.441 \\ 1.799$ | $\frac{1.332}{1.587}$ | $1.256 \\ 1.437$ | $1.175 \\ 1.287$ | 1.134 1.214 | | X = 8
X' = 20 | 16
17 | .20 | .50 | .30 | $\frac{2.000}{2.500}$ | 1.812 | 1.558 | 1.517 | 1.422 | 1.319 | 1.215 | 1.163 | | A 20 | 18 | .20 | .534 | .266 | 2.342 | 1.709 | 1.477 | 1.439 | 1.372 | 1.285 | 1.193 | 1.147 | | | 19 | .10 | .40 | .50 | 1.600 | 1.600 | 1.645 | 1.730 | 1.675 | 1.546 | 1.368 | 1.277 | | | 20 | .10 | .50 | .40 | 2.000 | 1.905 | 1,712 | 1.695 | 1.621 | 1.462 | 1.305 | 1.229 | | L = 36 | 21 | .10 | .60 | .30 | 2.083 | 1.597 | 1.449 | 1.441 | 1,425 | 1.325 | 1.220 | 1.166 | | $\mathbf{x} = \mathbf{s}$ | 22 | .20 | .40 | .40 | 2.000 | 2.000 | 1.862 | 1.799 | 1.767 | 1.555 | 1.357 | 1.263 | | X' = 24 | 23 | .20 | .50 | .30 | 2.500 | 1.812 | 1.558 | 1.517 | 1.495 | 1.397 | 1.263 | 1.196 | | | 24 | .20 | .534 | .266 | 2.342 | 1.709 | 1.477 | 1.439 | 1.420 | 1.350 | 1.235 | 1.176 | | | 25 | .10 | .40 | .50 | 1.600 | 1.600 | 1.645 | 1.730 | 1.783 | 1.669 | 1.456 | 1.339
 | L = 40 | $\frac{26}{27}$ | .10 | .50
.60 | .40
.30 | $\frac{2,000}{2,083}$ | $\frac{1.905}{1.597}$ | $1.712 \\ 1.449$ | $\frac{1.695}{1.441}$ | 1.686 | 1.577 | 1.374 | 1.277 1.199 | | X = 8 | 28 | .10
.20 | .40 | .40 | 2.000 | 2,000 | 1.862 | 1.799 | $\frac{1.437}{1.767}$ | $\frac{1.399}{1.689}$ | 1.266
1.433 | 1.316 | | $\mathbf{X}' = 28$ | 29 | .20 | .50 | .30 | 2.500 | 1.812 | 1.558 | 1.517 | 1,495 | 1.481 | 1.314 | 1.233 | | | 30 | .20 | .534 | .266 | 2.342 | 1.718 | 1.477 | 1.439 | 1.420 | 1.408 | 1.277 | 1.206 | | | 31 | .10 | .40 | .50 | 1.600 | 1.600 | 1.453 | 1.348 | 1.287 | 1.229 | 1.163 | 1.126 | | | 32 | .10 | .50 | .40 | 2.000 | 1.976 | 1.548 | 1.366 | 1.263 | 1.205 | 1.142 | 1.109 | | L = 28 | 33 | .10 | .60 | .30 | 2.083 | 1.645 | 1.401 | 1.271 | 1.198 | 1.155 | 1.109 | 1.083 | | $\mathbf{x} = 12$ | 34 | .20 | .40 | .40 | 2.000 | 2.000 | 1.748 | 1.543 | 1.376 | 1.285 | 1.193 | 1.147 | | X'=12 | 35 | .20 | .50 | .30 | 2.500 | 1.976 | 1.634 | 1.416 | 1.295 | 1.229 | 1.157 | 1.120 | | | 36 | .20 | .534 | .266 | 2.342 | 1.848 | 1.575 | 1.379 | 1.271 | 1.209 | 1.145 | 1.111 | | | 37 | .10 | .40 | .50 | 1.600 | 1.600 | 1.634 | 1.502 | 1.403 | 1.330 | 1.230 | 1.176 | | L = 32 | 38
39 | .10
.10 | .50
.60 | .40
.30 | $\frac{2.000}{2.083}$ | $\frac{1.976}{1.645}$ | $\frac{1.812}{1.522}$ | $\frac{1.548}{1.389}$ | $\frac{1.379}{1.277}$ | $\frac{1.290}{1.215}$ | 1.198
1.149 | 1.151 | | X = 12 | 40 | .20 | .40 | .40 | 2.000 | 2.000 | 2.024 | 1.389 1.789 | 1.520 | 1.387 | 1.149 | 1.114
1.192 | | X' = 16 | 41 | .20 | .50 | .30 | 2.500 | 1.976 | 1.724 | 1.572 | 1.323 | 1.299 | 1.202 | 1.152 | | | 42 | .20 | .534 | .266 | 2.342 | 1.848 | 1.626 | 1.508 | 1.353 | 1.271 | 1.183 | 1.139 | | | | | | | | 2407.21 | 2.020 | 1.000 | 2.000 | ***** | 1.100 | 1.100 | | | 43 | .10 | .40 | .50 | 1,600 | 1.600 | 1.645 | 1.681 | 1.529 | 1.441 | 1.304 | 1.232 | |---------------------|-----------------|------------|------------|-------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | 44 | .10 | .50 | .40 | 2.000 | 1.976 | 1.812 | 1.764 | 1.517 | 1.389 | 1.259 | 1.195 | | $_{1} = 36$ | 45 | .10 | .60 | .30 | 2.083 | 1.645 | 1.522 | 1.490 | 1.366 | 1.280 | 1.192 | 1.145 | | = 12 | 46 | .20 | .40 | .40 | 2.009 | 2.000 | 2.653 | 1.953 | 1.692 | 1.504 | 1.326 | 1.241 | | C' = 20 | 47 | .20 | .50 | .30 | 2.500 | 1.976 | 1.724 | 1.626 | 1.502 | 1.376 | 1.248 | 1.186 | | | 48 | .20 | .534 | .266 | 2.342 | 1.848 | 1.626 | 1.538 | 1.447 | 1.237 | 1.225 | 1.170 | | | 49 | .10 | .40 | .50 | 1.600 | 1.609 | 1.645 | 1.730 | 1.675 | 1.550 | 1.385 | 1.289 | | | 50 | .10 | .50 | .40 | 2.000 | 1.976 | 1.812 | 1.764 | 1.675 | 1.497 | 1.325 | 1.242 | | ≈ 40
••• | 51 | .10 | .60 | .30 | 2.083 | 1.645 | 1.522 | 1.490 | 1.466 | 1.353 | 1.236 | 1.178 | | == 12
'== 24 | 52
53 | .20 | .40 | .40 | 2.000 | 2.000 | 2.053 | 1.953 | 1.880 | 1.637 | 1.401 | 1.292 | | 24 | 54 | .20 | .534 | .30
.266 | $\frac{2.500}{2.342}$ | $\frac{1.976}{1.848}$ | $1.724 \\ 1.626$ | $\frac{1.626}{1.538}$ | $\frac{1.577}{1.495}$ | $\frac{1.460}{1.408}$ | $\frac{1.300}{1.269}$ | $\frac{1.222}{1.200}$ | | | 55 | .10 | | .50 | 1.600 | 1.600 | 1.645 | 1.730 | | mer and some | ere comme | | | | 56 | .10 | .40
.50 | .40 | $\frac{1.600}{2.000}$ | 1.976 | 1.812 | 1.764 | $\frac{1.783}{1.739}$ | 1.669 | $\frac{1.473}{1.397}$ | $\frac{1.351}{1.292}$ | | == 4-1 | 57 | .10 | .60 | .30 | 2.083 | 1.645 | 1.522 | 1.490 | 1.475 | $\frac{1.621}{1.431}$ | 1.285 | 1.292 | | = 12 | 58 | .20 | .40 | .40 | 2.000 | 2.600 | 2.053 | 1.953 | 1.880 | 1.789 | 1.484 | 1.348 | | $' = \frac{12}{28}$ | 59 | .20 | .50 | .30 | 2.500 | 1.976 | 1.724 | 1.626 | 1.577 | 1.548 | 1.353 | 1.259 | | | 60 | .20 | .534 | .266 | 2.342 | 1.848 | 1.626 | 1.538 | 1.495 | 1.468 | 1.316 | 1.233 | | | 61 | .10 | .40 | .50 | 1.600 | 1.600 | 1.453 | 1.348 | 1.292 | 1.248 | 1.175 | 1.136 | | | 62 | .10 | .50 | .40 | 2,000 | 1.976 | 1.548 | 1.395 | 1.294 | 1,227 | 1.156 | 1.119 | | = 82 | 63 | .10 | .60 | .30 | 2.083 | 1.645 | 1.401 | 1.302 | 1.224 | 1.175 | 1.122 | 1.094 | | = 16 | 64 | .20 | .40 | .40 | 2.000 | 2.000 | 1.748 | 1.587 | 1.447 | 1.337 | 1.225 | 1.170 | | ' = 12 | 65 | .20 | .50 | .30 | 2,500 | 1.976 | 1.634 | 1.504 | 1.357 | 1.274 | 1.186 | 1.140 | | | 66 | .20 | .534 | .266 | 2.342 | 1.848 | 1.575 | 1.466 | 1.330 | 1.253 | 1.174 | 1.131 | | | 67 | .10 | .40 | .50 | 1.600 | 1.600 | 1.634 | 1.502 | 1.403 | 1.344 | 1.245 | 1.188 | | | 68 | .10 | .50 | .40 | 2.000 | 1.976 | 1.855 | 1.572 | 1.418 | 1.318 | 1.215 | 1.161 | | = 36 | 69 | .10 | .60 | .30 | 2.083 | 1.645 | 1.572 | 1.420 | 1.309 | 1.238 | 1.164 | 1.125 | | = 16 | 70 | .20 | .40 | .40 | 2.000 | 2.000 | 2.024 | 1.799 | 1.610 | 1.449 | 1.292 | 1.217 | | ′= 16 | 71 | .20 | .50 | .30 | 2.500 | 1.976 | 1.887 | 1.658 | 1.466 | 1.350 | 1.233 | 1.175 | | | 72 | .20 | .534 | .266 | 2.342 | 1.848 | 1.767 | 1.597 | 1,422 | 1.319 | 1.215 | 1.161 | | | $\frac{73}{74}$ | .10
.10 | .40 | .50 | 1.600 | 1.600 | 1.645 | 1.681 | 1.529 | 1.441 | 1.319 | 1.242 | | = 40 | 75 | .10 | .50
.60 | .40
.30 | $\frac{2.000}{2.083}$ | $\frac{1.976}{1,645}$ | $\frac{1.887}{1.572}$ | $\frac{1.786}{1.543}$ | 1.563 | 1.420 | $\frac{1.277}{1.208}$ | $\frac{1.208}{1.156}$ | | = 16 | 76 | .20 | .40 | .40 | 2.000 | 2.000 | 2.053 | 2,058 | $\frac{1.403}{1.812}$ | $\frac{1.307}{1.577}$ | 1.366 | 1.156 | | '= 20 | 77 | .20 | .50 | .30 | 2.500 | 1.976 | 1.887 | 1.748 | 1.590 | 1.435 | 1.284 | 1.211 | | 20 | 78 | .20 | .534 | .266 | 2.342 | 1.848 | 1.767 | 1.650 | 1.527 | 1.393 | 1.259 | 1.193 | | | 79 | .10 | .40 | .50 | 1.600 | 1.600 | 1,645 | 1.730 | 1.675 | 1.550 | 1.403 | 1.302 | | | 80 | .10 | .50 | .40 | 2.000 | 1.976 | 1.887 | 1.838 | 1.736 | 1.536 | 1.346 | 1.256 | | = 44 | 81 | .10 | .60 | .30 | 2.083 | 1.645 | 1.572 | 1.543 | 1.508 | 1.381 | 1.255 | 1.190 | | = 16 | 82 | .20 | .40 | .40 | 2.000 | 2.000 | 2.053 | 2.132 | 2.008 | 1.727 | 1.447 | 1.323 | | ' = 24 | 83 | .20 | .50 | .30 | 2.500 | 1.976 | 1.887 | 1.748 | 1.667 | 1.529 | 1.339 | 1.248 | | | 84 | .20 | .534 | .266 | 2.342 | 1.848 | 1.767 | 1.650 | 1.575 | 1.471 | 1.305 | 1.225 | | | 85 | .10 | .40 | .50 | 1.600 | 1,600 | 1.645 | 1.730 | 1.783 | 1.669 | 1.490 | 1.364 | | | 86 | .10 | .50 | .40 | 2.000 | 1.976 | 1.887 | 1.838 | 1.795 | 1.667 | 1.420 | 1.307 | | = 48 | 87 | .10 | .60 | .30 | 2.083 | 1.645 | 1.572 | 1.543 | 1.515 | 1.464 | 1.304 | 1.225 | | = 16 | 88 | .20 | .40 | .40 | 2.000 | 2.000 | 2.053 | 2.132 | 2.008 | 1.901 | 1.536 | 1.381 | | C' = 28 | 89
90 | .20 | .50 | .30 | 2.500 | 1.976 | 1.887 | 1.748 | 1.667 | 1.618 | 1.397 | 1.289 | | | 90 | 20 | .534 | .266 | 2.342 | 1.848 | 1.767 | 1.650 | 1.575 | 1.531 | 1.355 | 1.259 | Table 11.7 SUMMARY OF GROSS LOADS REQUIRED FOR TYPE 3-S2 TRUCKS TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS A STANDARD H TRUCK WEIGHING ONE KIP One hundred twelve variations in the Type 3-S2 truck are given in this Table. Each truck number, from 1 to 112, represents a different combination of wheel base length, axle spacing, and ratios of gross vehicle weight on each axle. All dimensions are in feet. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. | Wheel Base and Axle Spacing | Truck No. | Load On
Axles
Kips | | | Span-Feet | | | | | | | | |-----------------------------|--|--|---|--|---|---|---|---|---|---|---|---| | Feet | E | a ₁ | \mathbf{a}_2 | a ₃ | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | L = 28
X = 8
X' = 12 | 1
2
3
4
5
6
7 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | 2.083
2.500
2.778
2.500
2.500
3.125
2.500 | 1.645
1.976
2.105
1.901
1.976
2.203
1.815 | 1.490
1.689
1.789
1.667
1.757
1.862
1.560 | 1.359
1.479
1.464
1.401
1.577
1.534
1.395 | 1.274
1.351
1.328
1.287
1.425
1.370
1.280 | 1.215
1.274
1.253
1.222
1.328
1.284
1.217 | 1.151
1.190
1.175
1.155
1.225
1.192
1.149 | 1.116
1.145
1.134
1.117
1.171
1.145
1.114 | | L = 32
X = 8
X'= 16 | 8
9
10
11
12
13
14 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40
.50 | .60
.50
.45
.40
.50
.40 | 2.083
2.500
2.778
2.500
2.500
3.125
2.500 | 1.645
1.976
2.105
1.901
1.976
2.203
1.815 | 1.572
1.887
1.883
1.712
1.887
1.862
1.560 | 1.486
1.675
1.686
1.585
1.748
1.764
1.506 | 1.385
1.504
1.471
1.406
1.592
1.508
1.372 | 1.299
1.385
1.357
1.311
1.447
1.381
1.284 | 1.205
1.263
1.241
1.211
1.302
1.255
1.193 | 1.156
1.199
1.182
1.160
1.227
1.190
1.145 | | L = 36 $X = 8$ $X' = 20$ | 15
16
17
18
19
20
21 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | 2.083
2.500
2.778
2.500
2.500
3.125
2.500 | 1.645
1.976
2.105
1.901
1.976
2.203
1.976 | 1.572
1.887
1.883
1.712
1.887
1.862
1.560 |
1.595
1.890
1.859
1.695
1.905
1.799
1.517 | 1.484
1.667
1.637
1.543
1.742
1.672
1.471 | 1.391
1.515
1.473
1.408
1.585
1.493
1.357 | 1.264
1.342
1.312
1.272
1.385
1.321
1.239 | 1,200
1,256
1,233
1,205
1,287
1,238
1,179 | | L = 40
X = 8
X' = 24 | 22
23
24
25
26
27
28 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | 2.083
2.500
2.778
2.500
2.500
3.125
2.500 | 1.645
1.976
2.105
1.901
1.976
2.203
1.815 | 1.572
1.887
1.883
1.712
1.887
1.862
1.560 | 1.597
1.916
1.859
1.695
1.916
1.799
1.517 | 1.587
1.842
1.838
1.686
1.890
1.767
1.495 | 1.481
1.661
1.608
1.517
1.739
1.621
1.439 | 1.328
1.431
1.391
1.339
1.477
1.395
1.289 | 1.245
1.318
1.289
1.252
1.351
1.289
1.215 | | L = 44
X = 8
X'= 28 | 29
30
31
32
33
34
35 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | 2.083
2.500
2.778
2.500
2.500
3.125
2.500 | 1.645
1.976
2.105
1.901
1.976
2.203
1.976 | 1.572
1.887
1.883
1.712
1.887
1.862
1.560 | 1.597
1.916
1.859
1.695
1.916
1.799
1.517 | 1.610
1.934
1.848
1.686
1.934
1.767
1.495 | 1.570
1.802
1.761
1.642
1.859
1.748
1.481 | 1.397
1.527
1.477
1.410
1.577
1.473
1.340 | 1.294
1.385
1.348
1.302
1.420
1.342
1.252 | | L = 28
X = 12
X' = 8 | 36
37
38
39
40
41
42 | .10
.10
.10
.10
.20
.20 | .30
.40
.45
.50
.30
.40 | .60
.50
.45
.40
.50
.40 | 2.083
2.500
2.778
2.500
2.500
3.125
2.500 | 1.567
1.815
1.938
1.815
1.859
2.203
1.859 | 1.318
1.422
1.479
1.422
1.524
1.664
1.524 | 1.250
1.318
1.326
1.289
1.435
1.441
1.350 | 1.199
1.245
1.235
1.209
1.337
1.311
1.250 | 1.157
1.192
1.183
1.164
1.263
1.239
1.195 | 1.111
1.136
1.127
1.115
1.183
1.164
1.135 | 1.086
1.105
1.098
1.088
1.140
1.125
1.104 | | Table 11. | 7 (Cor | tinue | d) | | | | | | | | | | |---------------------|-----------------|--------------|--------------|------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | 43 | .10 | .30 | .60 | 2.083 | 1.645 | 1.490 | 1.359 | 1.295 | 1.235 | 1.164 | 1.126 | | | 44 | .10 | .40 | .50 | 2.500 | 1.976 | 1.689 | 1.479 | 1.379 | 1.295 | 1.203 | 1.156 | | 1. = 32
X == 12 | 45 | .10 | .45 | .45 | 2.778 | 2.193 | 1.802 | 1.520 | 1.362 | 1.279 | 1.190 | 1.144 | | X' = 12 | 46
47 | $.10 \\ .20$ | .50 $.30$ | .40
.50 | $\frac{2.500}{2.500}$ | $\frac{1.976}{1.976}$ | $\frac{1.689}{1.757}$ | 1.451 | $\frac{1.319}{1.488}$ | $\frac{1.247}{1.374}$ | 1.170 | 1.129 | | A = 12 | 48 | .20 | .40 | .40 | 3.125 | 2,469 | 2.028 | $\frac{1.577}{1.658}$ | $\frac{1.488}{1.445}$ | 1.335 | $\frac{1.255}{1.224}$ | 1.193 | | | 49 | .20 | .50 | .30 | 2.500 | 1.976 | 1.724 | 1.490 | 1.342 | 1.263 | 1.179 | $\frac{1.170}{1.135}$ | | - | 50 | .10 | .30 | .60 | 2.083 | 1.645 | 1.572 | 1.486 | 1.385 | 1.319 | 1.220 | 1.167 | | | 51 | .10 | .40 | .50 | 2.500 | 1.976 | 1.887 | 1.675 | 1.513 | 1.410 | 1.277 | 1.211 | | L == 36 | 52 | .10 | .45 | .45 | 2.778 | 2.193 | 2.004 | 1.767 | 1.515 | 1.387 | 1.258 | 1.195 | | X == 12 | 53 | .10 | .50 | .40 | 2,500 | 1.976 | 1.812 | 1.653 | 1.445 | 1.339 | 1.229 | 1.172 | | X' = 16 | 54 | .20 | .30 | .50 | 2.500 | 1.976 | 1.887 | 1.748 | 1.610 | 1.502 | 1,333 | 1.250 | | | 55 | .20 | .40 | .40 | 3.125 | 2.469 | 2.101 | 1.938 | 1.603 | 1.443 | 1.290 | 1.217 | | | 56 | .20 | .50 | .30 | 2,500 | 1.976 | 1.724 | 1.626 | 1.445 | 1.335 | 1.225 | 1.170 | | | 57 | .10 | .30 | .60 | 2.083 | 1.645 | 1.572 | 1.595 | 1.484 | 1.401 | 1.280 | 1.211 | | T 10 | 58 | .10 | .40 | .50 | 2.500 | 1.976 | 1.887 | 1.890 | 1.667 | 1.536 | 1.359 | 1.267 | | L = 40
X = 12 | 59
60 | .10
.10 | .45
.50 | .45
.40 | $\frac{2.778}{2.500}$ | $\frac{2.193}{1.976}$ | 2.004 | 1.942 | 1.695 | 1.511 | 1.333 | 1.247 | | X' = 20 | 61 | .20 | .30 | .50 | 2.500 | 1.976 | $\frac{1.812}{1.887}$ | $1.764 \\ 1.905$ | $\frac{1.592}{1.742}$ | $1.441 \\ 1.631$ | $1.292 \\ 1.420$ | 1.218 | | | 62 | ,20 | .40 | .40 | 3.125 | 2.469 | 2.101 | 1.953 | 1.792 | 1.567 | 1.362 | $\frac{1.312}{1.266}$ | | | 63 | .20 | .50 | .30 | 2.500 | 1.976 | 1.724 | 1.626 | 1.558 | 1.416 | 1.274 | 1.205 | | | 64 | .10 | .30 | .60 | 2.083 | 1.645 | 1.572 | 1.597 | 1.587 | 1.481 | 1.344 | 1.258 | | | 65 | .10 | .40 | .50 | 2.500 | 1.976 | 1.887 | 1.916 | 1.842 | 1.661 | 1.447 | 1.332 | | L = 44 | 66 | .10 | .45 | .45 | 2.778 | 2.193 | 2.004 | 1.942 | 1.912 | 1.653 | 1.414 | 1.304 | | X = 12 | 67 | .10 | .50 | .40 | 2.500 | 1.976 | 1.812 | 1.764 | 1.739 | 1.558 | 1.361 | 1.266 | | X' = 24 | 68 | .20 | .30 | .50 | 2.500 | 1.976 | 1.887 | 1.916 | 1.890 | 1.739 | 1.515 | 1.377 | | | 69 | .20 | .40 | .40 | 3.125 | 2.469 | 2.101 | 1.953 | 1.880 | 1.709 | 1.441 | 1.319 | | | 70 | .20 | .50 | .30 | 2.500 | 1.976 | 1.724 | 1.626 | 1.577 | 1.506 | 1.326 | 1.241 | | | 71 | .10 | .30 | .60 | 2.683 | 1.645 | 1.572 | 1.597 | 1.610 | 1.570 | 1.414 | 1.307 | | 1 40 | 72 | .10 | .40 | .50 | 2.500 | 1.976 | 1.887 | 1.916 | 1.934 | 1.802 | 1.548 | 1.399 | | L = 48
X = 12 | $\frac{73}{74}$ | .10
.10 | .45 | .45 | 2.778 | 2.193 | 2.004 | 1.942 | 1.912 | 1.818 | 1.504 | 1.364 | | X' = 28 | 75 | .20 | .50
.30 | .40
.50 | $\frac{2.500}{2.500}$ | $1.976 \\ 1.976$ | $\frac{1.812}{1.887}$ | $1.764 \\ 1.916$ | 1.739 | 1.689 | 1.435 | 1.319 | | 200 | 76 | .20 | .40 | .40 | 3,125 | 2.469 | 2.101 | 1.916 1.953 | $1.934 \\ 1.880$ | $\frac{1.859}{1.838}$ | $\frac{1.623}{1.527}$ | 1.449 1.376 | | | 77 | .20 | .50 | .30 | 2.500 | 1,976 | 1.724 | 1.626 | 1.557 | 1.548 | 1.383 | 1.280 | | | 78 | .10 | .30 | .60 | 2.083 | 1.645 | 1.490 | 1.359 | 1.295 | 1.255 | 1.178 | 1.136 | | | 79 | .10 | .40 | .50 | 2.500 | 1.976 | 1.689 | 1.479 | 1.381 | 1.318 | 1.218 | 1.167 | | L = 36 | 80 | .10 | .45 | .45 | 2.778 | 2.193 | 1.802 | 1.543 | 1.401 | 1.305 | 1.206 | 1.156 | | X = 16 | 81 | .10 | .50 | .40 | 2.500 | 1.976 | 1.689 | 1.479 | 1.353 | 1.271 | 1.185 | 1.140 | | X'=12 | 82 | .20 | .30 | .50 | 2.500 | 1.976 | 1.757 | 1.577 | 1.493 | 1.422 | 1.285 | 1.215 | | | 83 | .20 | .40 | .40 | 3.125 | 2.469 | 2.028 | 1.736 | 1.524 | 1.391 | 1.258 | 1.193 | | | 84 | 20 | .50_ | .30 | 2.500 | 1.976 | 1.757 | 1.577 | 1.410 | 1.311 | 1.209 | 1.157 | | | 85 | .10 | .30 | .60 | 2.083 | 1.645 | 1.572 | 1.486 | 1.385 | 1.326 | 1.235 | 1.178 | | L = 40 | 86
87 | .10
.10 | .40 | .50 | 2.500 | 1.976 | 1.887 | 1.675 | 1.513 | 1.422 | 1.294 | $\frac{1.221}{1.208}$ | | X = 16 | 88 | .10 | $.45 \\ .50$ | .45
.40 | $\frac{2.778}{2.500}$ | $\frac{2.193}{1.976}$ | $\frac{2.096}{1.887}$ | $\frac{1.779}{1.675}$ | 1.560 | $\frac{1.418}{1.366}$ | $1.277 \\ 1.245$ | 1.208 | | $\mathbf{X'} = 16$ | 89 | .20 | .30 | .50 | 2.500 | 1.976 | 1.887 | 1.748 | $\frac{1.448}{1.610}$ | 1.531 | 1.368 | 1.185 1.274 | | | 90 | .20 | .40 | .40 | 3.125 | 2.469 | 2.358 | 2.004 | 1.706 | 1.511 | 1.328 | 1.242 | | | 91 | .20 | .50 | .30 | 2.500 | 1.976 | 1.887 | 1.748 | 1.527 | 1.391 | 1.258 | 1.193 | | | 92 | .10 | .30 | .60 | 2.083 | 1.645 | 1.572 | 1.595 | 1.484 | 1.401 | 1.295 | 1,222 | | | 93 | .10 | .40 | .50 | 2.500 | 1.976 | 1.887 | 1.890 | 1.667 | 1.536 | 1.376 | 1.280 | | L = 44 | 94 | .10 | .45 | .45 | 2.778 | 2.193 | 2.096 | 2.033 | 1.754 | 1.548 | 1.355 | 1.261 | | $X = 16 \\ X' = 20$ | 95 | .10 | .50 | .40 | 2.500 | 1.976 | 1.887 | 1.838 | 1.645 | 1.475 | 1.311 | 1.232 | | X 20 | 96
97 | .20
.20 | .30
.40 | .50
.40 | 2.500 | 1.976 | 1.887 | 1.905 | 1.742 | 1.631 | 1.458 | 1.337 | | | 98 | .20 | .50 | .30 | $\frac{3.125}{2.500}$ | $\frac{2.469}{1.976}$ | $\frac{2.358}{1.887}$ | $\frac{2.132}{1.748}$ | $\frac{1.927}{1.653}$ | $\frac{1.650}{1.479}$ | $1.406 \\ 1.311$ | 1.295 1.230 | | | 99 | .10 | 30 | .60 | 2.083 | 1.645 | 1.572 | 1.597 | | | | | | | 100 | .10 | .40 | .50 | 2.500 | 1.976 | 1.887 | 1.916 | 1.587 1.842 | $\frac{1.481}{1.661}$ | 1.362
1.466 | 1.269 1.344 | | L = 48 | 101 | .10 | .45 | .45 | 2.778 | 2.193 | 2.096 | 2.033 | 1.980 | 1.701 | 1.439 | 1.333 | | X == 16 | 102 | .10 | .50 | .40 | 2.500 | 1.976 | 1.887 | 1.838 | 1.795 | 1.600 | 1.383 | 1.280 | | X'= 24 | 103 | .20 | .30 | .50 | 2,500 | 1.976 | 1.887 | 1.916 | 1.890 | 1.739 | 1.558 | 1.404 | | | 104 | .20 | .40 | .40 | 3.125 | 2.469 | 2.358 | 2.132 | 2.008 | 1.812 | 1.490 | 1.351 | | | 105 | .20 | .50 | .30 | 2.500 | 1.976 | 1.887 | 1.748 | 1.667 | 1.580 | 1.366 | 1.269 | | | 106 | .10 | .30 | .60 | 2.083 | 1.645 | 1.572 | 1.597 | 1.610 | 1.570 | 1.420 | 1.319 | | | 107 | .10 | .40 | .50 | 2,500 | 1.976 | 1.887 | 1.916 | 1.934 | 1.802 | 1.563 | 1.412 | | L = 52 | 108 | .10 | .45 | .45 | 2.778 | 2.193 | 2.096 | 2.033 | 1.980 | 1.876 | 1.534 | 1.383 | | $X = 16 \\ X' = 28$ | 109 | .10 | .50 | .40 | 2.500 | 1.976 | 1.887 | 1.838 | 1.795 | 1.739 | 1.460 | 1.335 | | A - 48 | 110
111 | .20
.20 | .30
.40 | .50 $.40$ | $\frac{2.500}{3.125}$ | 1.976 | $\frac{1.887}{2.358}$ | 1.916 | 1.934 | 1.859 | 1.656 | 1.479 | | | 112 | .20 | .50 | .30 | $\frac{3.125}{2.500}$ | $\frac{2.469}{1.976}$ | 1.887 | $\frac{2.132}{1.748}$ | $\frac{2.008}{1.667}$ | $\frac{1.938}{1.618}$ | $1.582 \\ 1.427$ | 1.412
1.309 | | | - 1.5 | | | .00 | 2.000 | 1.040 | 3.0CT | 1,140 | 1.001 | 1.010 | 1.741 | 1.009 | Table 11.8 SUMMARY OF GROSS LOADS REQUIRED FOR TYPE 3-S3 TRUCKS TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS A STANDARD H TRUCK WEIGHING ONE
KIP One hundred five variations in the Type 3-S3 truck are given in this Table. Each truck number, from 1 to 105, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. | Wheel
Base
and
Axle
Spacing | Truck No. | | Load (
Axles
Kips | | | | | Span-F | reet | | | | |---|--|---|--|---|---|---|---|---|---|---|---|---| | Feet | H | aı | \mathbf{a}_2 | a3 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | L = 32
X = 8
X' = 12 | 1
2
3
4
5
6 | .10
.10
.10
.10
.20
.20 | .30
.36
.40
.50
.30
.40 | .60
.54
.50
.40
.50
.40 | 2.857
3.175
3.125
2.500
3.436
3.125
2.500 | 1.818
2.020
2.183
1.905
2.183
2.203
1.812 | 1.667
1.848
2.000
1.709
2.000
1.862
1.558 | 1.511
1.585
1.634
1.488
1.751
1.642
1.451 | 1.377
1.420
1.451
1.342
1.536
1.437
1.325 | 1.289
1.321
1.342
1.264
1.404
1.330
1.250 | 1.198
1.218
1.233
1.182
1.271
1.222
1.171 | 1.149
1.166
1.175
1.139
1.203
1.167
1.130 | | L = 36
X = 8
X'= 16 | 8
9
10
11
12
13
14 | .10
.10
.10
.10
.20
.20
.20 | .30
.36
.40
.50
.30
.40 | .60
.54
.50
.40
.50
.40
.30 | 2.857
3.175
3.125
2.500
3.436
3.125
2.500 | 1.818
2.020
2.183
1.905
2.183
2.203
1.812 | 1.667
1.852
2.000
1.712
2.000
1.862
1.558 | 1.639
1.799
1.887
1.658
1.957
1.792
1.513 | 1.506
1.585
1.634
1.471
1.739
1.587
1.422 | 1.385
1.437
1.471
1.357
1.543
1.435
1.319 | 1.258
1.290
1.812
1.241
1.353
1.287
1.215 | 1.193
1.217
1.233
1.182
1.263
1.214
1.163 | | L = 40
X = 8
X' = 20 | 15
16
17
18
19
20
21 | .10
.10
.10
.10
.20
.20 | .30
.36
.40
.50
.30
.40 | .60
.54
.50
.40
.50
.40 | 2.857
3.175
3.125
2.500
3.436
3.125
2.500 | 1.818
2.020
2.183
1.905
2.183
2.203
1.812 | 1,667
1,852
2,000
1,712
2,000
1,862
1,558 | 1.664
1.848
1.996
1.695
1.996
1.799
1.517 | 1.623
1.742
1.825
1.618
1.908
1.739
1.302 | 1.493
1.567
1.616
1.460
1.704
1.553
1.397 | 1.325
1.368
1.399
1.304
1.445
1.355
1.263 | 1.241
1.272
1.294
1.227
1.326
1.263
1.196 | | L = 44 X = 8 X' = 24 | 22
28
24
25
26
27
28 | .10
.10
.10
.10
.20
.20 | .30
.40
.50
.30
.40 | .60
.50
.50
.40
.50
.40 | 2.857
3.175
3.125
2.500
3.436
3.125
2.500 | 1.818
2.020
2.183
1.905
2.183
2.203
1.812 | 1.667
1.852
2.000
1.712
2.000
1.862
1.558 | 1.664
1.848
1.996
1.695
1.996
1.799
1.517 | 1.664
1.848
1.996
1.686
1.996
1.767
1.495 | 1.597
1.709
1.789
1.577
1.873
1.689
1.309 | 1.395
1.453
1.495
1.374
1.548
1.433
1.314 | 1.290
1.332
1.361
1.276
1.395
1.314
1.233 | | L = 48
X = 8
X' = 28 | 29
30
31
32
33
34
35 | .10
.10
.10
.10
.20
.20 | .30
.36
.40
.50
.30
.40 | .60
.54
.59
.40
.50
.40 | 2.857
3.175
3.125
2.500
3.436
3.125
2.500 | 1.818
2.020
2.183
1.905
2.183
2.203
1.812 | 1.667
1.852
2.000
1.712
2.000
1.862
1.558 | 1.664
1.848
1.996
1.695
1.996
1.799
1.290 | 1.664
1.848
1.996
1.686
1.996
1.767
1.495 | 1.664
1.845
1.957
1.684
1.996
1.748
1.481 | 1.473
1.550
1.603
1.449
1.661
1.515
1.368 | 1.344
1.397
1.433
1.328
1.471
1.370
1.271 | | L = 36
X = 12
X' = 12 | 36
37
38
39
40
41
42 | .10
.10
.10
.10
.20
.20 | .30
.36
.40
.50
.30
.40 | .60
.54
.50
.40
.50
.40 | 2.857
3.175
3.125
2.500
3.436
3.125
2.500 | 1.818
2.020
2.183
1.976
2.183
2.469
1.976 | 1.667
1.848
2.000
1.534
2.000
2.101
1.724 | 1.511
1.585
1.634
1.546
1.751
1.786
1.563 | 1.399
1.447
1.481
1.379
1.608
1.520
1.393 | 1.312
1.346
1.368
1.290
1.458
1.387
1.299 | 1.212
1.233
1.247
1.198
1.304
1.256
1.202 | 1.160
1.176
1.186
1.149
1.227
1.192
1.152 | | Table 11. | 8 (Cor | ıtinue | d) | | | | | | | | | | |-----------------------------|---|---|--|--|---|---|---|---|---|---|---|---| | L = 40
X = 12
X' = 16 | 48
44
45
46
47
48
49 | .10
.10
.10
.10
.20
.20
.20 | .30
.36
.40
.50
.30
.40 | .60
.54
.50
.40
.50
.40 | 2.857
3.175
3.125
2.500
3.436
3.125
2.500 | 1.818
2.020
2.183
1.976
2.183
2.469
1.976 | 1.667
1.852
2.000
1.812
2.000
2.101
1.724 | 1.639
1.799
1.887
1.730
1.957
1.953
1.626 | 1.506
1.585
1.637
1.515
1.748
1.692
1.466 | 1.410
1.464
1.499
1.387
1.603
1.502
1.376 | 1.274
1.307
1.328
1.258
1.389
1.325
1.248 | 1.205
1.229
1.245
1.195
1.287
1.241
1.186 | | $L = 44 \ X = 12 \ X' = 20$ | 50
51
52
53
54
55
56 | .10
.10
.10
.10
.20
.20
.20 | .30
.36
.40
.50
.30
.40 | .60
.54
.50
.40
.50
.40 | 2.857
3.175
3.125
2.500
3.436
3.125
2.500 | 1.818
2.020
2.183
1.976
2.183
2.469
1.976 | 1.667
1.852
2.000
1.812
2.000
2.101
1.724 | 1.664
1.848
1.996
1.764
1.996
1.953
1.626 | 1.623
1.742
1.825
1.672
1.908
1.862
1.567 | 1.502
1.582
1.639
1.497
1.745
1.684
1.460 | 1.340
1.433
1.418
1.325
1.486
1.401
1.300 | 1.253
1.318
1.307
1.241
1.355
1.292
1.222 | | L = 48
X = 12
X' = 24 | 57
58
59
60
61
62
63 | .10
.10
.10
.10
.20
.20 | .30
.36
.40
.50
.30
.40 | .60
.54
.50
.40
.50
.40 | 2.857
3.175
3.125
2.500
3.436
3.125
2.500 | 1.818
2.020
2.183
1.976
2.183
2.469
1.976 | 1.667
1.852
2.000
1.812
2.000
2.101
1.724 | 1.664
1.848
1.996
1.764
1.996
1.953
1.626 | 1.664
1.848
1.996
1.739
1.996
1.88 0
1.577 | 1.597
1.712
1.789
1.621
1.873
1.789
1.529 | 1.414
1.475
1.517
1.397
1.592
1.481
1.853 | 1.304
1.346
1.376
1.290
1.427
1.346
1.259 | | $L = 52 \ X = 12 \ X' = 28$ | 64
65
66
67
68
69
70 | .10
.10
.10
.10
.20
.20 | .30
.36
.40
.50
.30
.40 | .60
.54
.50
.40
.50
.40 | 2.857
3.175
3.125
2.500
3.436
3.125
2.500 | 1.818
2.020
2.183
1.976
2.183
2.469
1.976 | 1.667
1.852
2.000
1.812
2.000
2.101
1.724 | 1.664
1.848
1.996
1.764
1.996
1.953
1.626 | 1.664
1.848
1.996
1.739
1.996
1.880
1.577 | 1.664
1.845
1.961
1.727
1.996
1.838
1.548 | 1.493
1.572
1.629
1.475
1.712
1.572
1.412 | 1.357
1.410
1.447
1.344
1.504
1.406
1.300 | | L = 40
X = 16
X' = 12 | 71
72
78
74
75
76
77 | .10
.10
.10
.10
.20
.20 | .30
.36
.40
.50
.30
.40 | .60
.54
.50
.40
.50
.40 | 2.857
3.175
3.125
2.500
3.436
3.125
2.500 | 1.818
2.020
2.183
1.976
2.183
2.469
1.976 | 1.667
1.848
2.000
1.779
2.000
2.169
1.812 | 1.511
1.585
1.634
1.570
1.751
1.859
1.658 | 1.399
1.447
1.481
1.416
1.608
1.610
1.506 | 1.335
1.370
1.393
1.318
1.515
1.447
1.377 | 1.227
1.248
1.263
1.214
1.337
1.292
1.250 | 1.171
1.188
1.198
1.161
1.252
1.217
1.186 | | L = 44
X = 16
X' = 16 | 78
79
80
81
82
83
84 | .10
.10
.10
.10
.20
.20 | .30
.36
.40
.50
.30
.40 | .60
.54
.50
.40
.50
.40 | 2.857
3.175
3.125
2.500
3.436
3.125
2.500 | 1.818
2.020
2.183
1.976
2.183
2.469
1.976 |
1.667
1.852
2.000
1.887
2.000
2.358
1.887 | 1.639
1.799
1.887
1.761
1.957
2.132
1.748 | 1.506
1.585
1.639
1.563
1.748
1.808
1.590 | 1.414
1.471
1.511
1.418
1.631
1.575
1.435 | 1.290
1.323
1.346
1.277
1.427
1.366
1.284 | 1.217
1.241
1.256
1.206
1.314
1.267
1.211 | | L = 48
X = 16
X' = 20 | 85
86
87
88
89
90 | .10
.10
.10
.10
.20
.20 | .30
.36
.40
.50
.30
.40 | .60
.54
.50
.40
.50
.40 | 2.857
3.175
3.125
2.500
3.436
3.125
2.500 | 1.818
2.020
2.183
1.976
2.183
2.469
1.976 | 1.667
1.852
2.000
1.887
2.000
2.358
1.887 | 1.664
1.848
1.996
1.838
1.996
2.132
1.748 | 1.623
1.742
1.825
1.727
1.908
2.000
1.664 | 1.502
1.582
1.639
1.558
1.745
1.724
1.529 | 1.359
1.404
1.437
1.346
1.529
1.445
1.839 | 1.266
1.299
1.321
1.255
1.381
1.323
1.248 | | L = 52
X = 16
X'= 24 | 92
93
94
95
96
97
98 | .10
.10
.10
.10
.20
.20 | .30
.36
.40
.50
.30
.40 | .60
.54
.50
.40
.50
.40 | 2.857
3.175
3.125
2.500
3.436
3.125
2.500 | 1,818
2,020
2,183
1,976
2,183
2,469
1,976 | 1.667
1.852
2.000
1.887
2.000
2.358
1.887 | 1.664
1.848
1.996
1.838
1.996
2.132
1.748 | 1.664
1.848
1.996
1.795
1.996
2.008
1.667 | 1.597
1.709
1.789
1.664
1.873
1.898
1.603 | 1.433
1.495
1.538
1.420
1.639
1.534
1.397 | 1.316
1.359
1.389
1.307
1.456
1.379
1.289 | | L = 56
X = 16
X' = 28 | 99
100
101
102
103
104
105 | .10
.10
.10
.10
.20
.20 | .30
.36
.40
.50
.30
.40 | .60
.54
.50
.40
.50
.40 | 2.857
3.175
3.125
2.500
3.436
3.125
2.500 | 1.818
2.020
2.183
1.976
2.183
2.496
1.976 | 1.667
1.852
2.000
1.887
2.000
2.358
1.887 | 1.664
1.848
1.996
1.838
1.996
2.132
1.748 | 1.664
1.848
1.996
1.795
1.996
2.008
1.667 | 1.664
1.845
1.961
1.770
1.996
1.938
1.618 | 1.495
1.582
1.642
1.502
1.742
1.631
1.460 | 1.372
1.425
1.464
1.361
1.536
1.443
1.380 | Table 11.9 SUMMARY OF GROSS LOADS REQUIRED FOR TYPE 2-2 TRUCKS TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS A STANDARD H TRUCK WEIGHING ONE KIP One hundred forty-four variations in the Type 2-2 truck are given in this Table. Each truck number, from 1 to 144, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. | Wheel Base and Axles Span-Feet Axle Spacing Kips Feet 10 20 30 40 50 60 | | | |---|-----------------------|-----------------------| | | 80 | 100 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1.109
1.121 | 1.083 1.093 | | X = 12 3 .10 .40 .50 2.000 1.718 1.481 1.321 1.236 1.186 X' = 8 4 .20 .20 .60 2.667 1.988 1.538 1.427 1.302 1.235 | 1.131 1.161 | 1.101 1.124 | | C = 8 5 .20 .30 .50 2.667 2.174 1.621 1.460 1.326 1.258 | 1.174 | 1.124 | | 6 .20 .40 .40 2.000 1.776 1.538 1.344 1.247 1.193 | 1.134 | 1.103 | | 7 .10 .20 .70 2.283 1.992 1.575 1.406 1.295 1.229 | 1.157 | 1.120 | | L = 32 8 .10 .30 .60 2.667 2.083 1.639 1.439 1.311 1.239 | 1.164 | 1.125 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\frac{1.164}{1.208}$ | $1.126 \\ 1.157$ | | C = 8 11 .20 .30 .50 2.667 2.174 1.799 1.592 1.408 1.312 | 1.212 | 1.160 | | 12 .20 .40 .40 2.000 1.776 1.538 1.427 1.302 1.235 | 1.161 | 1.124 | | 13 .10 .20 .70 2.283 1.992 1.832 1.570 1.406 1.309 | 1.208 | 1.157 | | L = 36 14 .10 .30 .60 2.667 2.083 1.779 1.590 1.410 1.311 | 1.209 | 1.157 | | X = 12 15 .10 .40 .50 2.000 1.718 1.529 1.464 1.370 1.287
X'= 16 16 .20 .20 .60 2.667 2.268 2.062 1.773 1.524 1.391 | 1.198 1.258 | $1.151 \\ 1.193$ | | X'= 16 | 1.258 | 1.193 | | 18 .20 .40 .40 2.000 1.776 1.538 1.441 1.362 1.279 | 1.190 | 1.144 | | 19 .10 .20 .70 2.283 1.992 1.832 1.764 1.534 1.399 | 1.264 | 1.198 | | L = 40 20 .10 .30 .60 2.667 2.083 1.779 1.658 1.522 1.389 | 1.258 | 1.192 | | X = 12 21 .10 .40 .50 2.000 1.718 1.529 1.464 1.433 1.342 | 1.235 | 1.178 | | X'= 20 22 .20 .20 .60 2.667 2.268 2.062 1.880 1.661 1.481
C = 8 23 .20 .30 .50 2.667 2.174 1.799 1.631 1.553 1.439 | $\frac{1.312}{1.290}$ | $\frac{1.230}{1.217}$ | | C = 8 28 .20 .30 .50 2.001 2.114 1.733 1.031 1.333 1.435
24 .20 .40 .40 2.000 1.776 1.538 1.441 1.391 1.325 | 1.220 | 1.166 | | 25 ,10 ,20 ,70 2,283 1,786 1,486 1,351 1,277 1,215 | 1.149 | 1.114 | | L = 32 26 .10 .30 .60 2.667 2.083 1.639 1.439 1.332 1.256 | 1.175 | 1.134 | | X = 12 27 .10 .40 .50 2.000 2.000 1.730 1.520 1.370 1.287 | 1.198 | 1.151 | | X' = 8 28 .20 .20 .60 2.667 2.083 1.712 1.546 1.425 1.325 | 1.220 | 1.166 | | C = 12 29 .20 .30 .50 2.667 2.500 1.912 1.656 1.484 1.368 30 .20 .40 .40 2.000 2.000 1.712 1.517 1.362 1.279 | 1.247
1.190 | 1.186 | | 31 .10 .20 .70 2.283 2.283 1.773 1.511 1.393 1.299 | 1.202 | 1.144 | | L = 36 32 .10 .30 .60 2.667 2.667 1.957 1.603 1.441 1.333 | 1.224 | 1.168 | | X = 12 33 .10 .40 .50 2.000 2.000 1.730 1.595 1.445 1.342 | 1.235 | 1.178 | | X' = 12 34 .20 .20 .60 2.667 2.667 2.045 1.727 1.555 1.412 | 1.272 | 1.203 | | C = 12 35 .20 .30 .50 2.667 2.667 2.105 1.802 1.587 1.439 | 1.290 | 1.217 | | <u>36 .20 .40 .40 2.000 2.000 1.712 1.546 1.425 1.325</u> | 1.220 | 1.166 | | 37 .10 .20 .70 2.283 2.283 2.045 1.706 1.524 1.391 | 1.258 | 1.193 | | L = 40 38 .10 .30 .60 2.667 2.667 2.114 1.799 1.567 1.418
X = 12 39 .10 .40 .50 2.000 .2000 1.730 1.595 1.527 1.403 | $\frac{1.276}{1.272}$ | $\frac{1.205}{1.205}$ | | X' = 16 40 .20 .20 .60 2.667 2.667 2.331 1.946 1.706 1.511 | 1.328 | 1.242 | | C = 12 41 .20 .30 .50 2.667 2.667 2.105 1.802 1.669 1.508 | 1.332 | 1.247 | | 42 .20 .40 .40 2.000 2.000 1.712 1.546 1.466 1.374 | 1.250 | 1.188 | | Table 11.9 | (Cor | tinue | d) | | | | | | | | | | |---------------------------------------|--|--|--|---------------------------------|--|--|--|--|--|--|--|--| | L = 44
X = 12
X' = 20
C = 12 | 43
44
45
46
47
48 | .10
.10
.20
.20
.20 | .20
.30
.40
.20
.30
.40 | .70
.60
.50
.60
.50 | 2.283
2.667
2.000
2.667
2.667
2.000 | 2.283
2.667
2.000
2.667
2.667
2.000 | 2.045
2.114
1.730
2.331
2.105
1.712 | 1.946
1.859
1.595
2.155
1.802
1.546 | 1.669
1.712
1.527
1.887
1.669
1.466 | 1.495
1.515
1.466
1.621
1.585
1.420 | 1.319
1.330
1.312
1.389
1.377
1.282 | 1.236
1.244
1.235
1.284
1.277
1.211 | | L = 32 $X = 16$ $X' = 8$ $C = 8$ | 49
50
51
52
53
54 | .10
.10
.10
.20
.20
.20 | .20
.30
.40
.20
.30
.40 | .70
.60
.50
.60
.50 | 2.283
2.667
2.000
2.667
2.667
2.000 | 1.724
1.905
1.718
1.988
2.174
1.776 | 1.351
1.416
1.481
1.538
1.621
1.605 | 1.271
1.311
1.350
1.441
1.490
1.437 | 1.222
1.247
1.266
1.362
1.387
1.309 | 1.175
1.193
1.209
1.279
1.297
1.238 | 1.121
1.134
1.145
1.190
1.203
1.164 | 1.093
1.103
1.111
1.144
1.153
1.125 | | L = 36
X = 16
X' = 12
C = 8 | 55
56
57
58
59
60 | .10
.10
.10
.20
.20
.20 | .20
.30
.40
.20
.30 | .70
.60
.50
.60
.50 | 2.283
2.667
2.000
2.667
2.667
2.000 | 1.992
2.083
1.718
2.268
2.174
1.776 | 1.575
1.639
1.570
1.792
1.866
1.650 | 1.406
1,439
1.466
1.592
1.631
1.534 | 1.326
1.340
1.335
1.477
1.488
1.370 | 1.252
1.261
1.259
1.359
1.366
1.284 | 1.171
1.178
1.179
1.239
1.245
1.192 | 1.130
1.135
1.138
1.179
1.185
1.145 | | L = 40
X = 16
X' = 16
C = 8 | 61
62
63
64
65
66 | .10
.10
.10
.20
.20 | .20
.30
.40
.20
.30
.40 | .70
.60
.50
.60
.50 | 2.283
2.667
2.000
2.667
2.667
2.000 | 1.992
2.083
1.718
2.268
2.174
1.776 | 1.832
1.825
1.570
2.062
1.934
1.650 | 1.570
1.590
1.517
1.773
1.761
1.538 | 1.439
1.447
1.408
1.610
1.587
1.437 | 1.335
1.337
1.314
1.449
1.437
1.332 | 1.224
1.225
1.215
1.292
1.287
1.222 | 1.170
1.170
1.163
1.217
1.214
1.168 | | L = 44
X = 16
X' = 20
C = 8 | 67
68
69
70
71
72 | .10
.10
.10
.20
.20 | .20
.30
.40
.20
.30 | .70
.60
.50
.60
.50 | 2.283
2.667
2.000
2.667
2.667
2.000 | 1.992
2.083
1.718
2.268
2.174
1.776 | 1.832
1.825
1.570
2.062
1.934
1.650 | 1.764
1.727
1.517
1.988
1.761
1.538 | 1.567
1.565
1.471
1.764
1.642
1.462 | 1.429
1.418
1.374
1.548
1.508
1.381 |
1.282
1.276
1.253
1.350
1.330
1.255 | 1.209
1.205
1.190
1.256
1.244
1.190 | | L = 36
X = 16
X' = 8
C = 12 | 73
74
75
76
77
78 | .10
.10
.10
.20
.20 | .20
.30
.40
.20
.30
.40 | .70
.60
.50
.60
.50 | 2.283
2.667
2.000
2.667
2.667
2.000 | 1.786
2.083
2.000
2.083
2.500
2.000 | 1.486
1.639
1.767
1.712
1.912
1.825 | 1.351
1.439
1.529
1.546
1.656
1.642 | 1.287
1.350
1.408
1.466
1.543
1.437 | 1.236
1.279
1.314
1.374
1.418
1.332 | 1.163
1.190
1.215
1.250
1.279
1.222 | 1.124
1.144
1.163
1.188
1.209
1.168 | | L = 40
X = 16
X'= 12
C = 12 | 79
80
81
82
83
84 | .10
.10
.10
.20
.20 | .20
.30
.40
.20
.30
.40 | .70
.60
.50
.60
.50 | 2.283
2.667
2.000
2.667
2.667
2.000 | 2.283
2.667
2.000
2.667
2.667
2.000 | 1.773
1.957
1.767
2.045
2.232
1.825 | 1.511
1.603
1.658
1.727
1.838
1.661 | 1.399
1.456
1.490
1.590
1.661
1.508 | 1.323
1.359
1.374
1.468
1.504
1.381 | 1.217
1.239
1.253
1.305
1.328
1.255 | 1.163
1.179
1.190
1.227
1.244
1.190 | | L = 44
X = 16
X' = 16
C = 12 | 85
86
87
88
89
90 | .10
.10
.10
.20
.20 | .20
.30
.40
.20
.30
.40 | .70
.60
.50
.60
.50 | 2.283
2.667
2.000
2.667
2.667
2.000 | 2.283
2.667
2.000
2.667
2.667
2.000 | 2.045
2.141
1.767
2.331
2.232
1.825 | 1.706
1.799
1.658
1.946
1.965
1.661 | 1.524
1.577
1.572
1.730
1.776
1.546 | 1.420
1.449
1.437
1.577
1.587
1.437 | 1.276
1.292
1.292
1.366
1.376
1.287 | 1.205
1.217
1.220
1.267
1.276
1.214 | | L = 48
X = 16
X' = 20
C = 12 | 91
92
93
94
95
96 | .10
.10
.10
.20
.20 | .20
.30
.40
.20
.30
.40 | .70
.60
.50
.60
.50 | 2,283
2,667
2,000
2,667
2,667
2,000 | 2.283
2.667
2.000
2.667
2.667
2.000 | 2.045
2.141
1.767
2.331
2.232
1.825 | 1.946
1.949
1.658
2.217
1.965
1.661 | 1.669
1.718
1.572
1.894
1.776
1.546 | 1.529
1.548
1.504
1.701
1.672
1.481 | 1.339
1.350
1.333
1.431
1.422
1.321 | 1.248
1.256
1.248
1.312
1.309
1.238 | | L = 36 $X = 20$ $X' = 8$ $C = 8$ | 97
98
99
100
101
102 | .10
.10
.10
.20
.20 | .20
.30
.40
.20
.30
.40 | .70
.60
.50
.60
.50 | 2.283
2.667
2.000
2.667
2.667
2.000 | 1.786
1.905
1.718
1.988
2.174
1.776 | 1.351
1.416
1.481
1.538
1.621
1.605 | 1.271
1.311
1.350
1.441
1.490
1.497 | 1.230
1.258
1.287
1.391
1.429
1.376 | 1.195
1.214
1.232
1.325
1.344
1.285 | 1.135
1.148
1.160
1.220
1.233
1.193 | 1.104
1.114
1.122
1.166
1.175
1.147 | | L = 40
X = 20
X' = 12
C = 8 | 103
104
105
106
107
108 | .10
.10
.10
.20
.20 | .20
.30
.40
.20
.30
.40 | .70
.60
.50
.60
.50 | 2.283
2.667
2.000
2.667
2.667
2.000 | 1,992
2,083
1,718
2,268
2,174
1,776 | 1.575
1.639
1.570
1.792
1.866
1.650 | 1.406
1.439
1.466
1.592
1.631
1.587 | 1.328
1.350
1.366
1.499
1.524
1.445 | 1.274
1.285
1.285
1.412
1.420
1.335 | 1.186
1.193
1.196
1.272
1.277
1.224 | 1.142
1.147
1.148
1.203
1.208
1.170 | | L = 44
X = 20
X' = 16
C = 8 | 109
110
111
112
113
114 | .10
.10
.10
.20
.20 | .20
.30
.40
.20
.30 | .70
.60
.50
.60
.50 | 2.283
2.667
2.000
2.667
2.667
2.000 | 1.992
2.083
1.718
2.268
2.174
1.776 | 1.832
1.825
1.570
2.062
1.934
1.650 | 1.570
1.590
1.563
1.773
1.795
1.650 | 1,439
1,449
1,451
1,623
1,634
1,520 | 1.362
1.362
1.344
1.511
1.504
1.387 | 1.241
1.242
1.233
1.328
1.326
1.256 | 1.181
1.181
1.175
1.242
1.241
1.192 | | L = 48
X = 20
X' = 20
C = 8 | 115
116
117
118
119
120 | .10
.10
.10
.20
.20 | .20
.30
.40
.20
.30
.40 | .70
.60
.50
.60
.50 | 2.283
2.667
2.000
2.667
2.667
2.000 | 1.992
2.083
1.718
2.268
2.174
1.776 | 1,832
1.825
1.570
2.062
1.934
1.650 | 1.764
1.770
1.563
1.988
1.901
1.650 | 1.567
1.565
1.511
1.764
1.739
1.538 | 1.460
1.449
1.404
1.621
1.585
1.443 | 1.300
1.294
1.271
1.389
1.372
1.290 | 1.222
1.218
1.203
1.284
1.272
1.217 | | Table | 11.9 | (Continued) | |-------|------|-------------| | | | | | Tubic Tite | | | | | | | | | | | | | |------------|-----|-----|-----|-----|-------|-------|-------|-------|-------|-------|-------|-------| | | 121 | .10 | .20 | .70 | 2.283 | 1.786 | 1.486 | 1.351 | 1.287 | 1.250 | 1.176 | 1.135 | | L = 40 | 122 | .10 | .30 | .60 | 2.667 | 2.083 | 1.639 | 1.439 | 1.350 | 1.297 | 1.205 | 1.155 | | X = 20 | 123 | .10 | .40 | .50 | 2.000 | 2.000 | 1.767 | 1.529 | 1.410 | 1.344 | 1.233 | 1.175 | | X' = 8 | 124 | .20 | .20 | .60 | 2.667 | 2.083 | 1.712 | 1.546 | 1,466 | 1.420 | 1.282 | 1.211 | | C = 12 | 125 | .20 | .30 | .50 | 2.667 | 2.500 | 1.912 | 1.656 | 1.543 | 1.471 | 1.312 | 1.233 | | | 126 | .20 | .40 | .40 | 2.000 | 2.000 | 1.825 | 1.689 | 1.520 | 1.387 | 1.256 | 1.192 | | | 127 | .10 | .20 | .70 | 2.283 | 2.283 | 1.773 | 1.511 | 1,399 | 1.335 | 1.233 | 1.175 | | L = 44 | 128 | .10 | .30 | .60 | 2.667 | 2.667 | 1.957 | 1.603 | 1.456 | 1.377 | 1.256 | 1.192 | | X = 20 | 129 | .10 | .40 | .50 | 2.000 | 2.000 | 1.767 | 1.689 | 1.513 | 1.404 | 1.271 | 1.203 | | X' = 12 | 130 | .20 | .20 | .60 | 2.667 | 2.667 | 2.045 | 1.727 | 1.590 | 1.513 | 1.340 | 1.252 | | C = 12 | 131 | .20 | .30 | .50 | 2.667 | 2.667 | 2.232 | 1.838 | 1.661 | 1.567 | 1.364 | 1.269 | | | 132 | .20 | .40 | .40 | 2.000 | 2.000 | 1.825 | 1.779 | 1.603 | 1.443 | 1.290 | 1.217 | | V-114 | 133 | .10 | .20 | .70 | 2.283 | 2,283 | 2.045 | 1.706 | 1.524 | 1.429 | 1.294 | 1.218 | | L = 48 | 134 | .10 | .30 | .60 | 2.667 | 2.667 | 2.141 | 1.799 | 1.577 | 1.464 | 1.311 | 1.230 | | X = 20 | 135 | .10 | .40 | .50 | 2.000 | 2.000 | 1.767 | 1.701 | 1.618 | 1.471 | 1.312 | 1.233 | | X' = 16 | 136 | .20 | .20 | .60 | 2.667 | 2.667 | 2.331 | 1.946 | 1.730 | 1.618 | 1.406 | 1.295 | | C = 12 | 137 | .20 | .30 | .50 | 2.667 | 2.667 | 2.232 | 2.058 | 1.795 | 1.661 | 1.420 | 1.305 | | | 138 | .20 | .40 | .40 | 2.000 | 2.000 | 1.825 | 1.779 | 1.634 | 1.504 | 1.326 | 1.241 | | | 139 | .10 | .20 | .70 | 2.283 | 2.283 | 2.045 | 1.946 | 1.669 | 1.531 | 1.359 | 1.263 | | L = 52 | 140 | .10 | .30 | .60 | 2.667 | 2.667 | 2.141 | 1.996 | 1.718 | 1.563 | 1.370 | 1.269 | | X = 20 | 141 | .10 | .40 | .50 | 2.000 | 2.000 | 1.767 | 1.701 | 1.618 | 1.543 | 1.355 | 1.263 | | X' = 20 | 142 | .20 | .20 | .60 | 2.667 | 2.667 | 2.331 | 2.217 | 1.894 | 1.733 | 1.475 | 1.340 | | C = 12 | 143 | .20 | .30 | .50 | 2.667 | 2.667 | 2.232 | 2.110 | 1.894 | 1.757 | 1.473 | 1.340 | | | 144 | .20 | .40 | .40 | 2.000 | 2.000 | 1.825 | 1.779 | 1.634 | 1.548 | 1.362 | 1.266 | Table 11.10 SUMMARY OF GROSS LOADS REQUIRED FOR TYPE 2-3 TRUCKS TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS A STANDARD H TRUCK WEIGHING ONE KIP Ninety variations in the Type 2-3 truck are given in this Table. Each truck number, from 1 to 90, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. | Wheel
Base
and
Axle
Spacing | Truck No. | I | oad O
Axles
Kips | | St. Labeld Primer Personal VIII of the | | | Span-F | eet | | | | |---|---|--------------|------------------------|----------------|--|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------| | Feet | 1 5 | 81 | a 2 | \mathbf{a}_3 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 1 | .10 | .20 | .70 | 2.674 | 1.887 | 1.577 | 1.412 | 1,330 | 1.255 | 1.174 | 1.131 | | L = 32 | 2 | .10 | .30 | .60 | 2.667 | 2.203 | 1.724 | 1.486 | 1.342 | 1.263 | 1,179 | 1.135 | | X = 12 | 3 | .10 | .40 | .50 | 2.000 | 1.812 | 1.650 | 1.449 | 1.323 | 1.252 | 1.175 | 1.134 | | $\mathbf{x}' = 8$ | 4 | .20 | .20 | .60 | 3.125 | 2.203 | 1.832 | 1.623 | 1.445 | 1.335 | 1.224 | 1.170 | | C = 8 | 5 | .20 | .30 | .50 | 2,667 | 2.331 | 1.957 | 1.637 | 1.437 | 1.332 | 1.224 | 1.170 | | | 6 | .10 | .20 | .70 | 2.674 | 2.114 | 1.799 | 1.610 | 1.471 | 1.368 | 1.245 | 1.183 | | $\Gamma=36$ | 7 | .10 | .30 | .60 | 2.667 | 2.268 | 1.988 | 1.706 | 1.484 | 1.362 | 1.241 | 1.181 | | X = 12 | 8 | .10 | .40 | .50 | 2.000 | 1.812 | 1.650 | 1.575 | 1.420 | 1.325 | 1.222 | 1.168 | | X' = 12 | 9 | .20 | .20 | .60 | 3.125 | 2.469 | 2.101 | 1.862 | 1.616 | 1.451 | 1.294 | 1.218 | | C = 8 | 10 | .20 | .30 | .50 | 2.667 | 2.331 | 1.957 | 1.786 | 1.555 | 1.416 | 1.277 | 1.208 | | | 11 | .10 | .20 | .70 | 2.674 | 2.114 | 2.020 | 1.825 | 1.629 | 1.499 | 1.325 | 1.239 | | L = 40 | 12 | .10 | .30 | .60 | 2.667 | 2.268 | 1.988 | 1.880 | 1,653 | 1.477 | 1.309 | 1.229 | | $X = 12 \\ X' = 16$ | 13 | .10 | .40 | .50 | 2.000 | 1.812 | 1.650 | 1.600 | 1.529 | 1.403 | 1.272 | 1.205 | | | 14 | .20 | .20 | .60 | 3.125 | 2.469 | 2.358 | $\frac{2.132}{1.799}$ |
$\frac{1.821}{1.686}$ | $1.582 \\ 1.508$ | 1,368 | 1.269 1.247 | | C = 8 | 15 | .20 | .30 | .50 | 2.667 | 2.331 | 1.957 | | | | 1.332 | manager and the second | | T - 00 | 16 | .10 | .20 | .70 | 2.674 | 1.887 | 1.597 | 1.499 | 1.395 | 1.328 | 1.220 | 1.166 | | $ \begin{array}{l} L = 36 \\ X = 12 \end{array} $ | 17 | .10 | .30 | .60 | 2.667 | 2.203 | 1.862 | 1.664 | $\frac{1.481}{1.473}$ | $\frac{1.361}{1.362}$ | 1.241 | 1.181 | | X = 12
X' = 8 | 18 | .10 | .40
.20 | .50 | $\frac{2.000}{3.125}$ | $\frac{2.000}{2.203}$ | $\frac{1.808}{1.862}$ | $\frac{1.664}{1.736}$ | 1.603 | 1.443 | $\frac{1.247}{1.290}$ | $\frac{1.188}{1.217}$ | | $\overset{\mathbf{A}}{\mathbf{C}} = \overset{\mathbf{a}}{12}$ | $\frac{19}{20}$ | .20 | .30 | .60
.50 | $\frac{3.125}{2,667}$ | 2.653 | 2.198 | 1.908 | 1.621 | 1.446 | 1.304 | 1.227 | | U - 12 | | | | | | | | | | | 1.299 | | | T 40 | 21 | .10 | .20 | .70 | 2.674 | 2.114 | 1.799 | 1.675 | 1.541
1.661 | $1.445 \\ 1.481$ | $\frac{1.299}{1.312}$ | 1.221
1.230 | | L = 40
X = 12 | 22
23 | .10 | .30 | .60 | $\frac{2.667}{2.000}$ | $\frac{2.469}{2.000}$ | $\frac{2.101}{1.808}$ | $\frac{1.953}{1.704}$ | 1.587 | 1.481 1.445 | $\frac{1.312}{1.299}$ | 1.224 | | X' = 12 | 24 | .10 | .40
.20 | .50
.60 | 3.125 | 2.469 | 2.101 | 1.953 | 1.779 | 1.582 | 1.368 | 1.269 | | C = 12 | 25 | .20 | .30 | .50 | $\frac{3.125}{2.667}$ | 2.667 | $\frac{2.101}{2.198}$ | 1.934 | 1.767 | 1.558 | 1.361 | 1.267 | | 0 = 12 | | | | | 2.674 | | | | and the second second | | | 1.282 | | L = 44 | 26 | .10 | .20 | .70 | | $\frac{2.114}{2.469}$ | 2.020 | 1.825 | 1.709 1.880 | $1.567 \\ 1.621$ | 1.385
1.389 | 1.282 1.284 | | X = 12 | $\begin{array}{c} 27 \\ 28 \end{array}$ | .10
.10 | .30
.40 | .60 | $\frac{2.667}{2.000}$ | 2.469 | $\frac{2.268}{1.808}$ | $\frac{2.053}{1.704}$ | $\frac{1.880}{1.934}$ | 1.534 | 1.353 | 1.284 1.264 | | X' = 16 | 28
29 | .10 | .20 | .60 | 3.125 | 2.469 | 2.358 | $\frac{1.704}{2.132}$ | 1.988 | 1.748 | 1.456 | 1.326 | | $\mathbf{C} = 10$ | 30 | .20 | .30 | .50 | 2.667 | 2.667 | 2.198 | 1.934 | 1.815 | 1.667 | 1.422 | 1.311 | | 0 - 12 | | | | | 2.674 | | | | 1.335 | 1.279 | | 1.143 | | 1 9.0 | 31 | .10 | .20 | .70 | $\frac{2.674}{2.667}$ | 1.887 | 1.577 | 1.412 | | 1.279 | $\frac{1.189}{1.193}$ | 1.143 | | $ \begin{array}{l} L = 36 \\ X = 16 \end{array} $ | 32 | .10 | .30 | .60 | 2.000 | $\frac{2.203}{1.812}$ | 1.724 | 1.486 | $\frac{1.376}{1.359}$ | 1.285 | 1.193 | 1.147 | | $\mathbf{X}' = \begin{array}{c} \mathbf{X} & -16 \\ \mathbf{X}' = 8 \end{array}$ | $\frac{33}{34}$ | $.10 \\ .20$ | .40
.20 | .50
.60 | $\frac{2,000}{3,125}$ | $\frac{1.814}{2.203}$ | $\frac{1.675}{1.832}$ | $\frac{1.506}{1.623}$ | 1.520 | 1.387 | 1.190 1.256 | 1.145 | | $\hat{\mathbf{C}} = \hat{8}$ | 35 | .20 | .30 | .50 | 2.667 | $\frac{2.203}{2.331}$ | 1.961 | 1.684 | 1.522 | 1.391 | 1.256 1.259 | 1.195 | | <u> </u> | | | | | | | | | | | | | | T 40 | 36 | .10 | .20 | .70 | 2.674 | 2.114 | 1.799 | 1.610 | 1.471 | 1.393 | 1.263 | 1.196 | | L = 40
X = 16 | 37 | .10 | .30 | .60 | 2.667 | 2.268 | 2.062 | 1.706 | 1.524 | $\frac{1.391}{1.353}$ | 1.258 | $\frac{1.193}{1.182}$ | | X' = 16
X' = 12 | 38
39 | .10 | $.40 \\ .20$ | .50
.60 | $\frac{2.000}{3.125}$ | $\frac{1.812}{2.469}$ | 1.706 | $\frac{1.639}{1.862}$ | $\frac{1.462}{1.689}$ | $\frac{1.353}{1.515}$ | 1.239 1.330 | 1.182 | | C = 8 | 40 | .20
.20 | .30 | .50 | $\frac{3.125}{2.667}$ | $\frac{2.469}{2.331}$ | $2.101 \\ 2.151$ | 1.919 | 1.658 | 1.484 | 1.316 | 1.235 | | | | ,20 | ,50 | .00 | 2,001 | 4.551 | 2.101 | 1.010 | 1.000 | 1.404 | 1.010 | 1.200 | | Table 11.1 | 0 (Co | ntinu | ed) | | | | | | | | | | |---|----------------------------------|--|---------------------------------|---------------------------------|--|---|--|--|--|--|--|--| | L = 44
X = 16
X' = 16 | 41
42
43
44 | .10
.10
.10
.20 | .20
.30
.40
.20 | .70
.60
.50 | 2.674
2.667
2.000
3.125 | 2.114
2.268
1.812
2.469 | 2.020
2.062
1.706
2.358 | 1.825
1.965
1.661
2.132 | 1.629
1.692
1.580
1.880 | 1.508
1.511
1.437
1.661 | 1.344
1.328
1.292
1.410 | 1.253
1.242
1.220
1.297 | | C = 8 $L = 40$ $X = 16$ $X' = 8$ | 45
46
47
48
49 | .20
.10
.10
.10
.20 | .30
.30
.40
.20 | .50
.70
.60
.50 | 2.667
2.674
2.667
2.000
3.125 | 2,331
1,887
2,203
2,000
2,203 | 2.151
1.597
1.862
1.862
1.862 | 1.949
1.499
1.664
1.739
1.739 | 1.802
1.395
1.495
1.520
1.605 | 1.587
1.335
1.387
1.393
1.504 | 1.376
1.236
1.256
1.266
1.326 | 1.276
1.176
1.192
1.200
1.241 | | C = 12 $L = 44$ $X = 16$ $X' = 12$ $C = 12$ | 50
51
52
53
54
55 | .20
.10
.10
.10
.20
.20 | .30
.20
.30
.40
.20 | .50
.70
.60
.50
.60 | 2.667
2.674
2.667
2.600
3.125
2.667 | 2.653 2.114 2.469 2.000 2.469 2.667 | 2.237
1.799
2.101
1.862
2.101
2.398 | 1.908
1.675
1.953
1.776
1.953
2.119 | 1.704
1.541
1.669
1.642
1.779
1.898 | 1.534
1.445
1.515
1.479
1.658
1.642 | 1.344
1.318
1.330
1.319
1.408
1.406 | 1.255
1.235
1.244
1.239
1.297
1.297 | | C = 12 $L = 48$ $X = 16$ $X' = 16$ $C = 12$ | 56
57
58
59
60 | .10
.10
.10
.20
.20 | .20
.30
.40
.20 | .70
.60
.50
.60 | 2.674
2.667
2.000
3.125
2.667 | 2.114
2.469
2.000
2.469
2.667 | 2.020
2.331
1.862
2.358
2.398 | 1.825
2.132
1.776
2.132
2.119 | 1.709
1.880
1.704
1.988
1.938 | 1.567
1.661
1.575
1.808
1.764 | 1.408
1.410
1.376
1.502
1.473 | 1.295
1.297
1.279
1.357
1.342 | | L = 40
X = 20
X' = 8
C = 8 | 61
62
63
64
65 | .10
.10
.10
.20
.20 | .20
.30
.40
.20
.30 | .70
.60
.50
.60 | 2.674
2.667
2.000
3.125
2.667 | 1.887
2.203
1.812
2.203
2.331 | 1.577
1.724
1.675
1.832
1.961 | 1.412
1.486
1.508
1.623
1.684 | 1.335
1.381
1.395
1.527
1.560 | 1.289
1.311
1.304
1.443
1.447 | 1.205
1.209
1.208
1.290
1.294 | 1.153
1.157
1.157
1.217
1.217 | | L = 44 $X = 20$ $X' = 12$ $C = 8$ | 66
67
68
69
70 | .10
.10
.10
.20
.20 | .20
.30
.40
.20 | .70
.60
.50
.60 | 2.674
2.667
2.000
3.125
2.667 | 2.114
2.268
1.812
2.469
2.331 | 1.799
2.062
1.706
2.101
2.151 | 1.610
1.706
1.667
1.862
1.919 | 1.471
1.524
1.508
1.689
1.712 | 1.393
1.420
1.383
1.582
1.558 | 1.280
1.276
1.258
1.368
1.355 | 1.209
1.205
1.195
1.269
1.261 | | L = 48
X = 20
X'= 16
C = 8 | 71
72
73
74
75 | .10
.10
.10
.20
.20 | .20
.30
.40
.20 | .70
.60
.50
.60 | 2.674
2.667
2.000
3.125
2.667 | 2.114
2.268
1.812
2.469
2.331 | 2.020
2.062
1.706
2.358
2.151 | 1.825
1.984
1.721
2.132
2.128 | 1.629
1.692
1.634
1.880
1.894 | 1.508
1.546
1.471
1.733
1.672 | 1.364
1.348
1.311
1.456
1.420 | 1.267
1.256
1.233
1.326
1.305 | | L = 44
X = 20
X' = 8
C = 12 | 76
77
78
79
80 | .10
.10
.10
.20
.20 | .20
.30
.40
.20
.30 | .70
.60
.50
.60 | 2.674
2.667
2.000
3.125
2.667 | 1.887
2.203
2.000
2.203
2.653 | 1.597
1.862
1.862
1.862
2.237 | 1.499
1.664
1.748
1.736
1.908 | 1.395
1.495
1.548
1.605
1.704 | 1.335
1.404
1.427
1.529
1.597 | 1.253
1.274
1.284
1.362
1.383 | 1.189
1.203
1.214
1.266
1.280 | | L = 48
X = 20
X' = 12
C = 12 | 81
82
83
84
85 | .10
.10
.10
.20
.20 | .20
.30
.40
.20
.30 | .70
.60
.50
.60 | 2.674
2.667
2.000
3.125
2.667 | 2.114
2.469
2.000
2.469
2.667 | 1.799
2.101
1.862
2.101
2.398 | 1.675
1.953
1.835
1.953
2.232 | 1.541
1.669
1.704
1.779
1.898 | 1.445
1.529
1.517
1.661
1.730 | 1.337
1.350
1.340
1.451
1.453 | 1.247
1.256
1.253
1.325
1.328 | | L = 52
X = 20
X' = 16
C = 12 | 86
87
88
89
90 | .10
.10
.10
.20
.20 | .20
.30
.40
.20
.30 | .70
.60
.50
.60
.50 | 2,674
2,667
2,000
3,125
2,667 | 2.114
2.469
2.000
2.469
2.667 | 2.020
2.331
1.862
2.358
2.398 | 1.825
2.132
1.835
2.132
2.326 | 1.709
1.880
1.757
1.988
2.075 | 1.567
1.669
1.621
1.808
1.876 | 1.420
1.433
1.399
1.550
1.527 | 1.311
1.312
1.294
1.389
1.376 | #### Table 11.11 SUMMARY OF GROSS LOADS REQUIRED FOR TYPE 3-2 TRUCKS TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS A STANDARD H TRUCK WEIGHING ONE KIP Ninety variations in the Type 3-2 truck are given in this Table. Each truck number, from 1 to 90, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. | Wheel
Base
and
Axle
Spacing | Truck No. | 1 | Load O
Axles
Kips | | | | |
Span-F | eet | | | | |--|------------------|--------------|-------------------------|--------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | Feet | ΙĒ | aı | \mathbf{a}_2 | аз | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 1 | .10 | .40 | .50 | 3.125 | 2.128 | 1.764 | 1.570 | 1.408 | 1.312 | 1.212 | 1.160 | | $\Gamma = 36$ | 2 | .10 | .50 | .40 | 2.500 | 1.812 | 1.558 | 1.451 | 1.319 | 1.247 | 1.170 | 1.129 | | X = 12 | 3 | .10 | .60 | .30 | 2.083 | 1.567 | 1.393 | 1.326 | 1.236 | 1.185 | 1.129 | 1.099 | | X' = 12 | 4 | .20 | .40 | .40 | 3.125 | 2.203 | 1.862 | 1.650 | 1.445 | 1.335 | 1.224 | 1.170 | | C = 8 | 5 | .20 | .50_ | .30 | 2.500 | 1.859 | 1.634 | 1.466 | 1.342 | 1.263 | 1.179 | 1.135 | | T - 40 | 6 | .10 | .40
.50 | .50 | $\frac{3.125}{2.500}$ | $\frac{2.128}{1.812}$ | 1.764 | 1.631 | $\frac{1.495}{1,379}$ | $\frac{1.374}{1.290}$ | 1.250 | 1.188 1.151 | | $egin{array}{c} \mathbf{L} = 40 \ \mathbf{X} = 12 \end{array}$ | 7
8 | .10 | .60 | $.40 \\ .30$ | $\frac{2.500}{2.083}$ | 1.512 | $\frac{1.558}{1.393}$ | $\frac{1.464}{1.326}$ | 1.277 | 1.215 | $\frac{1.198}{1.149}$ | 1.114 | | X' = 16 | 9 | .20 | .40 | .40 | $\frac{2.033}{3.125}$ | 2.203 | 1.862 | 1.650 | 1.520 | 1.387 | 1.149 1.256 | 1.114 | | $\overset{\mathbf{C}}{\mathbf{C}} = \overset{10}{8}$ | 10 | .20 | .50 | .30 | 2.500 | 1.859 | 1.634 | 1.466 | 1.387 | 1.299 | 1.202 | 1.152 | | | 11 | .10 | .40 | .50 | 3.125 | 2.128 | 1.764 | 1.631 | 1.553 | 1,439 | 1.290 | 1.217 | | L = 44 | 12 | .10 | .50 | .40 | 2,500 | 1.812 | 1.558 | 1.464 | 1.408 | 1.339 | 1.229 | 1.172 | | X = 12 | 13 | .10 | .60 | .30 | 2.083 | 1.567 | 1.393 | 1.326 | 1.289 | 1.247 | 1.170 | 1.129 | | X' = 20 | 14 | .20 | .40 | .40 | 3.125 | 2.203 | 1.862 | 1.650 | 1.538 | 1.443 | 1.290 | 1.217 | | C = 8 | 15 | .20 | .50 | .30 | 2.500 | 1.859 | 1.634 | 1.466 | 1.387 | 1.335 | 1.225 | 1.170 | | | 16 | .10 | .40 | .50 | 3.125 | 2.469 | 2.028 | 1.802 | 1.587 | 1.439 | 1.290 | 1.217 | | $egin{array}{l} \mathbf{L} = 40 \ \mathbf{X} = 12 \end{array}$ | 17 | .10 | .50 | .40 | 2.500 | 1.976 | 1.724 | 1.572 | 1.445 | 1.339 | 1.229 | 1.172 | | $X = 12 \\ X' = 12$ | 18 | .10 | .60 | .30 | 2.083 | 1.645 | 1.493 | 1.393 | 1.321 | 1.247 | 1.170 | 1.129 | | C = 12 | $\frac{19}{20}$ | .20
.20 | $.40 \\ .50$ | .40 $.30$ | $\frac{3.125}{2.500}$ | $\frac{2.469}{1.976}$ | $\frac{2.101}{1.724}$ | $\frac{1.795}{1.543}$ | $\frac{1.603}{1.441}$ | $\frac{1.443}{1.335}$ | $\frac{1.290}{1.225}$ | $\frac{1.217}{1.170}$ | | 0 - 12 | $-\frac{20}{21}$ | .10 | .40 | .50 | 3.125 | 2.469 | 2,028 | 1.802 | 1.669 | 1.508 | 1.332 | 1.247 | | L = 44 | $\frac{21}{22}$ | .10 | .50 | .40 | $\frac{3.125}{2.500}$ | 1.976 | $\frac{2.028}{1.724}$ | $\frac{1.602}{1.572}$ | 1.486 | 1.389 | $\frac{1.332}{1.259}$ | 1.195 | | $\ddot{\mathbf{x}} = 12$ | 23 | .10 | .60 | .30 | 2.083 | 1.645 | 1.493 | 1.393 | 1.337 | 1.280 | 1.192 | 1.145 | | $\tilde{\mathbf{X}}' = \tilde{16}$ | 24 | .20 | .40 | .40 | 3.125 | 2.469 | 2.101 | 1.795 | 1.634 | 1.504 | 1.326 | 1.241 | | C = 12 | 25 | .20 | .50 | .30 | 2.500 | 1.976 | 1.724 | 1.543 | 1.441 | 1.376 | 1.248 | 1.186 | | | 26 | .10 | .40 | .50 | 3.125 | 2.469 | 2.028 | 1.802 | 1.669 | 1.585 | 1.377 | 1.277 | | L = 48 | 27 | .10 | .50 | .40 | 2.500 | 1.976 | 1.724 | 1.572 | 1.486 | 1.435 | 1.292 | 1.218 | | X = 12 | 28 | .10 | .60 | .30 | 2.083 | 1.645 | 1.493 | 1.393 | 1.337 | 1.304 | 1.214 | 1.161 | | X' = 20 | 29 | .20 | .40 | .40 | 3.125 | 2.469 | 2.101 | 1.795 | 1.634 | 1.548 | 1.362 | 1.266 | | C = 12 | 30 | .20_ | .50 | 30_ | 2.500 | 1.976 | 1.724 | 1.543 | 1.441 | 1.383 | 1.274 | 1.205 | | T 10 | 31 | .10 | .40 | .50 | 3.125 | 2.128 | 1.764 | 1.570 | 1.437 | 1.340 | 1.229 | 1.172 | | $ L = 40 \\ X = 16 $ | 32 | .10 | .50 | .40 | 2.500 | 1.812 | 1.558 | 1.479 | 1.353 | 1.271 | 1.185 | 1.140 | | $X = 16 \\ X' = 12$ | $\frac{33}{34}$ | $.10 \\ .20$ | $.60 \\ .40$ | .30 $.40$ | $\frac{2.083}{3.125}$ | $\frac{1.567}{2.203}$ | $\frac{1.393}{1.862}$ | $\frac{1.359}{1.736}$ | $\frac{1.266}{1.524}$ | $\frac{1.206}{1.391}$ | $\frac{1.143}{1.258}$ | 1.109 1.193 | | $C = \frac{12}{8}$ | 35 | .20 | .50 | .30 | $\frac{3.125}{2.500}$ | 1.859 | 1.634 | 1.572 | 1.410 | 1.311 | 1.209 | 1.157 | | | 36 | .10 | .40 | .50 | 3,125 | 2.128 | 1.764 | 1.692 | 1.536 | 1.404 | 1.269 | 1.200 | | L = 44 | 37 | .10 | .50 | .40 | $\frac{5.129}{2.500}$ | 1.812 | 1.764 | 1.513 | 1.418 | 1.318 | 1.209 1.215 | 1.161 | | $\ddot{x} = 16$ | 38 | .10 | .60 | .30 | 2.083 | 1.567 | 1.393 | 1.366 | 1.309 | 1.238 | 1.164 | 1.125 | | X' = 16 | 39 | .20 | .40 | .40 | 3.125 | 2.203 | 1.862 | 1.773 | 1,610 | 1.449 | 1.292 | 1.217 | | c = s | 40 | .20 | .50 | .30 | 2.500 | 1.859 | 1.634 | 1.572 | 1.460 | 1.350 | 1.233 | 1.175 | | | 41 | .10 | .40 | .50 | 3.125 | 2.128 | 1.764 | 1.692 | 1.595 | 1.473 | 1.311 | 1.230 | | L = 48 | 42 | .10 | .50 | .40 | 2.500 | 1.812 | 1.558 | 1.513 | 1.445 | 1.366 | 1.245 | 1.185 | | X = 16 | 43 | .10 | .60 | .30 | 2.083 | 1.567 | 1.393 | 1.366 | 1.319 | 1.272 | 1.185 | 1.140 | | X' = 20 $C = 8$ | 44 | .20 | .40 | .40 | 3.125 | 2.203 | 1.862 | 1.773 | 1.623 | 1.511 | 1.328 | 1.242 | | <u>C</u> == 8 | 45 | 20 | .50 | .30 | 2,500 | 1.859 | 1.634 | 1.572 | 1.460 | 1.391 | 1.258 | 1.193 | | $ \begin{array}{c} \mathbf{L} = 44 47 .10 .50 .40 2.500 1.976 1.724 1.626 1.488 1.366 1.245 \\ \mathbf{X} = 16 48 .10 .60 .30 2.083 1.645 1.493 1.439 1.355 1.272 1.185 \\ \mathbf{X}' = 12 49 .20 .40 .40 3.125 2.469 2.101 1.946 1.706 1.511 1.328 \\ \mathbf{C} = 12 50 .20 .50 .30 2.500 1.976 1.770 1.695 1.527 1.391 1.258 \\ \hline 51 .10 .40 .50 3.125 2.469 2.028 1.862 1.721 1.546 1.353 \\ \mathbf{L} = 48 52 .10 .50 .40 2.500 1.976 1.724 1.626 1.524 1.420 1.277 \\ \mathbf{X} = 16 53 .10 .60 .30 2.083 1.645 1.493 1.439 1.370 1.307 1.208 \\ \mathbf{X}' = 16 54 .20 .40 .40 3.125 2.469 2.101 1.946 1.730 1.577 1.366 \\ \mathbf{C} = 12 55 .20 .50 .30 2.500 1.976 1.770 1.695 1.563 1.435 1.284 \\ \hline \mathbf{L} = 52 57 .10 .40 .50 3.125 2.469 2.028 1.862 1.721 1.626 1.399 \\ \mathbf{L} = 52 57 .10 .50 .40 2.500 1.976 1.724 1.626 1.524 1.466 1.311 \\ \mathbf{X} = 16 58 .10 .60 .30 2.083 1.645 1.493 1.439 1.370 1.328 1.230 \\ \mathbf{X}' = 20 59 .20 .40 .40 3.125 2.469 2.028 1.862 1.721 1.626 1.399 \\ \mathbf{X}' = 16 58 .10 .60 .30 2.083 1.645 1.493 1.439 1.370 1.328 1.230 \\ \mathbf{X}' = 20 59 .20 .40 .40 3.125 2.469 2.101 1.946 1.730 1.618 1.406 \\ \mathbf{C} = 12 60 .20 .50 .30 2.500 1.976 1.770 1.695 1.563 1.473 1.311 1.66 \\ \mathbf{C} = 12 60 .20 .50 .30 2.500 1.976 1.770 1.695 1.563 1.473 1.311 1.66 \\ \mathbf{C} = 12 60 .20 .50 .30 2.500 1.976 1.770 1.695 1.563 1.473 1.311 1.66 \\ \mathbf{C} = 12 60 .20 .50 .30 2.500 1.976 1.770 1.695 1.563 1.473 1.311 1.66 \\ \mathbf{C} = 12 60 .20 .50 .30 2.500 1.976 1.770 1.695 1.563 1.473 1.311 1.66 \\ \mathbf{C} = 10 .40 .50 .30 2.500 1.976 1.770 1.695 1.563 1.473 1.311 1.66 \\ \mathbf{C} = 10 .40 .50 .30 2.500 1.976 1.770 1.695 1.563 1.473 1.311 1.6$ | 1.230
1.185
1.140
1.242
1.193
1.261
1.208
1.156
1.267
1.211
1.294
1.232
1,174 | |---|---| | $\begin{array}{c} \mathbf{X} = 16 \\ \mathbf{X}' = 12 \\ 49 \\ 20 \\ 40 \\ 40 \\ 30 \\ 20 \\ 40 \\ 40 \\ 30 \\ 20 \\ 30 \\ 1.776 \\ 1.724 \\ 1.626 \\ 1.524 \\ 1.524 \\ 1.420 \\ 1.277 \\ 1.208 \\ \mathbf{X}' = 16 \\ 54 \\ 20 \\ 40 \\ 40 \\ 30 \\ 2.083 \\ 1.645 \\ 1.493 \\ 1.439 \\ 1.439 \\ 1.370 \\ 1.307 \\ 1.307 \\
1.307 \\ 1.208 \\ \mathbf{X}' = 16 \\ 54 \\ 20 \\ 40 \\ 40 \\ 30 \\ 2.500 \\ 1.976 \\ 1.770 \\ 1.695 \\ 1.626 \\ 1.524 \\ 1.435 \\ 1.435 \\ 1.284 \\ 1.577 \\ 1.366 \\ 1.528 \\ 1.645 \\ 1.529 \\ 1.645 \\ 1.529 \\ 1.645 \\ 1.529 \\ 1.645 \\ 1.529 \\ 1.626 \\ 1.524 \\ 1.466 \\ 1.311 \\ 1.245 \\ 1.570 \\ 1.626 \\ 1.524 \\ 1.466 \\ 1.511 \\ 1.328 \\ 1.230 \\ 1.570 \\ 1.626 \\ 1.524 \\ 1.626 \\ 1.512 \\ \mathbf$ | 1.140
1.242
1.193
1.261
1.208
1.156
1.267
1.211
1.294
1.232
1.174 | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1.242
1.193
1.261
1.208
1.156
1.267
1.211
1.294
1.232
1.174 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1.193
1.261
1.208
1.156
1.267
1.211
1.294
1.232
1.174 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1.261
1.208
1.156
1.267
1.211
1.294
1.232
1.174 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1.208
1.156
1.267
1.211
1.294
1.232
1.174 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1.156
1.267
1.211
1.294
1.232
1.174 | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1.267
1.211
1.294
1.232
1.174 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1.211
1.294
1.232
1.174 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1.294
1.232
1,174 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1.232 1.174 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1,174 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1.295 | | | 1.230 | | | 1.185 | | | 1.152 | | | 1.120 | | | 1.218 | | | 1.181 | | | 1.214 | | | 1.174 | | | 1.135 | | | 1.244 | | | 1.199 | | | 1.244 | | | 1.196 | | | 1.152 | | | 1.269 | | | 1.218 | | | 1.244 | | | 1.196 | | | 1.152 | | | 1.269 | | | 1.218 | | | 1.276 | | | 1.221 | | | 1.168 | | | 1.297 | | | 1.236 | | | 1.309 | | | 1.245 | | | | | | 1.186 | | <u>C = 12 90 .20 .50 .30 2.500 1.976 1.770 1.695 1.608 1.506 1.350 </u> | 1.186 1.325 1.256 | Table 11.12 SUMMARY OF GROSS LOADS REQUIRED FOR TYPE 3-3 TRUCKS TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS A STANDARD H TRUCK WEIGHING ONE KIP Ninety variations in the Type 3-3 truck are given in this Table. Each truck number, from 1 to 90, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet, a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. | Wheel
Base
and
Axle
Spacing | Truck No. |] | Load C
Axles
Kips | 5 | | | | Span-I | Feet | | | | |--|-----------------|-------------------|-------------------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | Feet | ļ. | a ₁ | a 2 | \mathbf{a}_3 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 1 | .10 | .30 | .60 | 3.125 | 2.203 | 1.862 | 1.757 | 1.558 | 1.429 | 1.282 | 1.209 | | L = 40 | 2 | .10 | .40 | .50 | 3.125 | 2.469 | 2.146 | 1.894 | 1.621 | 1.460 | 1.304 | 1.227 | | X = 12 | 3 | .10 | .50 | .40 | 2.500 | 1.976 | 1.786 | 1.647 | 1.468 | 1.355 | 1.238 | 1.179 | | X' = 8 | 4 | .20 | .30 | .50 | $\frac{3.745}{3.125}$ | $\frac{2.653}{2.469}$ | $\frac{2.237}{2.101}$ | $\frac{2.041}{1.852}$ | $\frac{1.786}{1.631}$ | $1.575 \\ 1.464$ | $\frac{1.366}{1.302}$ | $1.269 \\ 1.224$ | | C = 12 | 5 | 20 | .40_ | 40 | | | | | | | | | | | 6 | .10 | .30 | .60 | 3,125 | 2.469 | 2.101 | 1.953 | 1.751 | 1.565 | 1.359 | 1.263 | | L = 44 | 7 | .10 | .40 | .50 | $\frac{3.125}{2.500}$ | $\frac{2.469}{1.976}$ | $\frac{2.146}{1.786}$ | $\frac{1.934}{1.650}$ | $\frac{1.828}{1.555}$ | $\frac{1.558}{1.422}$ | $1.361 \\ 1.280$ | $\frac{1.267}{1.211}$ | | $ \begin{array}{l} X = 12 \\ X' = 12 \end{array} $ | 8
9 | $\frac{.10}{.20}$ | .50
.30 | .40
.50 | $\frac{2.500}{3.745}$ | $\frac{1.576}{2.959}$ | $\frac{1.786}{2.525}$ | $\frac{1.050}{2.252}$ | $\frac{1.555}{2.000}$ | $\frac{1.422}{1.712}$ | 1.443 | 1.211 1.321 | | C = 12 | 10 | .20 | .40 | .40 | 3.125 | 2.469 | 2.101 | 1.852 | 1.712 | 1.546 | 1.350 | 1.258 | | | 11 | .10 | .30 | .60 | 3,125 | 2.469 | 2.358 | 2.132 | 1.988 | 1.770 | 1.466 | 1.335 | | L = 48 | 12 | .10 | .40 | .50 | 3.125 | 2.469 | 2.146 | 1.934 | 1.815 | 1.667 | 1.422 | 1.311 | | $\ddot{X} = 12$ | 13 | .10 | .50 | .40 | 2,500 | 1.976 | 1.786 | 1.650 | 1.575 | 1.497 | 1.326 | 1.242 | | $\tilde{\mathbf{x}}' = \tilde{16}$ | 14 | .20 | .30 | 50 | 3.745 | 2,959 | 2.674 | 2.252 | 2.024 | 1.848 | 1.513 | 1.368 | | C = 12 | 15 | .20 | .40 | .40 | 3.125 | 2.469 | 2.101 | 1.852 | 1.712 | 1.634 | 1.401 | 1.292 | | | 16 | .10 | .30 | .60 | 3.125 | 2.203 | 1.862 | 1.799 | 1.698 | 1.548 | 1.353 | 1.259 | | L = 44 | 17 | .10 | .40 | .50 | 3.125 | 2.469 | 2.237 | 2.092 | 1.835 | 1.610 | 1.391 | 1.289 | | X = 12 | 18 | .10 | .50 | .40 | 2.500 | 1.976 | 1.812 | 1.742 | 1.613 | 1.460 | 1.302 | 1.225 | | $\mathbf{x}' = 8$ | 19 | .20 | .30 | .50 | 3.745 | 2.653 | 2.237 | 2.160 | 1.969 | 1.764 | 1.471 | 1.340 | | C = 16 | 20 | .20 | .40 | .40 | 3.125 | 2.469 | 2.101 | 1.953 | 1.786 | 1.590 | 1.376 | 1.274 | | | 21 | .10 | .30 | .60 | 3.125 | 2.469 | 2.101 | 1.953 | 1.880 | 1.704 | 1.441 | 1.318 | | L = 48 | 22 | .10 | .40 | .50 | 3.125 | 2.469 | 2.237 | 2.092 | 1.919 | 1.724 | 1.456 | 1.332 | | $ \begin{array}{r} X = 12 \\ X' = 12 \end{array} $ | 23 | .10 | .50 | .40 | 2.500 | 1.976 | $\frac{1.812}{2.525}$ | $\frac{1.742}{2.347}$ | $\frac{1.639}{2.151}$ | $\frac{1.536}{1.923}$ | 1.350 | 1.258 | | C = 16 | $\frac{24}{25}$ | $.20 \\ .20$ | .30
.40 | .50
.40 | $\frac{3.745}{3.125}$ | $\frac{2.959}{2.469}$ | $\frac{2.525}{2.101}$ | $\frac{2.347}{1.953}$ | $\frac{2.151}{1.786}$ | 1.686 | $1.550 \\ 1.427$ | $\frac{1.393}{1.311}$ | | C - 16 | | | | | | | | | | | | | | L = 52 | 26 | .10 | .30 | .60 | $\frac{3.125}{3.125}$ | 2.469 | $\frac{2.358}{2.237}$ | $\frac{2.132}{2.092}$ | $\frac{2.008}{1.919}$ | $\frac{1.890}{1.825}$ | $1.538 \\ 1.524$ | 1.381 | | X = 12 | 27
28 | .10
.10 | .40
.50 | $.50 \\ .40$ | $\frac{3.125}{2.500}$ | $\frac{2.469}{1.976}$ | 1.812 | $\frac{2.092}{1.742}$ | 1.639 | 1.525 | $\frac{1.324}{1.397}$ | $1.377 \\ 1.292$ | | X = 12
X' = 16 | 28
29 | .20 | .30 | .50 | $\frac{2.500}{3.745}$ | $\frac{1.976}{2.959}$ | $\frac{1.514}{2.674}$ | 2.445 | $\frac{1.039}{2.151}$ | 1.992 | 1.629 | 1.443 | | C = 16 | 30 | .20 | .40 | .40 | 3.125 | 2.469 | 2.101 | 1.953 | 1.786 | 1.689 | 1.484 | 1.348 | | | 31 | .10 | .30 | .60 | 3,125 | 2.203 | 1.862 | 1.757 | 1.558 | 1.451 | 1.299 | 1.222 | | $I_{*} = 44$ | 32 | .10 | .40 | .50 | $\frac{3.125}{3.125}$ | 2.469 | $\frac{1.862}{2.146}$ | 1.894 | 1.634 | 1.497 | 1.325 | 1.241 | | X = 16 | 33 | .10 | .50 | .40 | 2.500 | 1.976 | 1.786 | 1.689 | 1.513 | 1.385 | 1.256 | 1.192 | | $\mathbf{X}' = 8$ | 34 | .20 | .30 | .50 | 3.745 | 2.653 | 2.237 | 2.041 | 1.786 | 1.653 | 1.410 | 1.300 | | C = 12 | 35 | .20 | .40 | .40 | 3.125 | 2.469 | 2.193 | 2.028 | 1.739 | 1.534 | 1.340 | 1.252 | | | 36 | .10 | .30 | .60 | 3,125 | 2.469 | 2,101 | 1.953 | 1.751 | 1,585 | 1.379 | 1.276 | | L = 48 | 37 | .10 | .40 | .50 | 3.125 | 2.469 | 2.146 | 2.020 | 1.818 | 1.600 | 1.383 | 1.282 | | X = 16 | 38 | .10 | .50 | .40 | 2,500 | 1.976 | 1.786 | 1.712 | 1.603 | 1.456 | 1.300 | 1.224 | | X' = 12 | 39 | .20 | .30 | .50 | 3.745 | 2.959 | 2.525 | 2.347 | 2.000 | 1.802 | 1.493 | 1.353 | | C = 12 | 40 | .20 | .40 | .40 | 3.125 | 2.469 | 2.193 | 2.028 | 1.825 | 1.626 | 1.393 | 1.285 | | | | | | | | | | | | | | | | Table 11.12 | (Continued) | |-------------|-------------| |-------------|-------------| | | | | / | | | | | | | | | | |--|-----|--------------|--------------|-----|-------|-----------------------|-----------------------|-----------------------|-----------------------|---------------|---------------|-----------------------| | | 41 | .10 | .30 | .60 | 3,125 | 2.469 | 2.358 | 2.132 | 1.988 | 1.739 | 1.466 | 1.335 | | L = 52 | 42 | .10 | .40 | .50 | 3.125 | 2.469 | 2.146 | 2.020 | 1.876 | 1.715 | 1.447 | 1.326 | | X = 16 | 43 | .10 | .50 | .40 | 2.500 | 1.976 | 1.786 | 1.712 | 1.621 | 1.536 | 1.346 | 1.256 | | X' = 16 | 44 | .20 | .30 | .50 | 3.745 | 2.959 | 2.755 | 2.519 | 2.183 | 1.969 | 1.570 | 1.403 | | $_{ m C}=12$ | 45 | .20 | .40 | .40 | 3.125 | 2.469 | 2.193 | 2.028 | 1.825 | 1.718 | 1.447 | 1.323 | | | 46 | .10 | .30 | .60 | 3.125 | 2.203 | 1.862 | 1.799 | 1.698 | 1.548 | 1.372 | 1.272 | | L = 48 | 47 | .10 | .40 | .50 | 3.125 | 2.469 | 2.237 | 2.160 | 1.835 | 1.642 | 1.414 | 1.304 | | X = 16 | 48 | .10 | .50 | .40 | 2.500 | 1.976 | 1.887 | 1.808 | 1.664 | 1.495 | 1.323 | 1.239 | | X' = 8 | 49 | .20 | .30 | .50 | 3.745 | 2.653 | 2.237 | 2.160 | 1.969 | 1.779 | 1.513 | 1.370 | | C = 16 | 50 | .20 | .40 | .40 | 3.125 | 2.469 | 2.358 | 2.132 | 1.908 | 1.675 | 1.418 | 1.304 | | | 51 | .10 | .30 | .60 | 3,125 | 2.469 | 2.101 | 1.953 | 1.880 | 1,704 | 1.462 | 1.332 | | L = 52 | 52 | .10 | .40 | .50 | 3.125 | 2.469 | 2.358 | 2.179 |
1.988 | 1.776 | 1.481 | 1.350 | | $\bar{x} = 16$ | 53 | .10 | .50 | .40 | 2.500 | 1.976 | 1.887 | 1.808 | 1.686 | 1.577 | 1.370 | 1.272 | | X' = 12 | 54 | .20 | .30 | .50 | 3.745 | 2.959 | 2.525 | 2.347 | 2.242 | 1.957 | 1.610 | 1.429 | | C = 16 | 55 | .20 | .40 | .40 | 3.125 | 2.469 | 2,358 | 2.132 | 1.908 | 1.776 | 1.475 | 1.342 | | | 56 | .10 | .30 | .60 | 3.125 | 2.469 | 2.358 | 2.132 | 2.008 | 1.890 | 1.565 | 1.397 | | L = 56 | 57 | .10 | .40 | .50 | 3.125 | 2.469 | 2.358 | 2.179 | 1.988 | 1.876 | 1.553 | 1.397 | | X = 16 | 58 | .10 | .50 | .40 | 2,500 | 1.976 | 1.887 | 1.808 | 1.686 | 1.616 | 1.420 | 1.307 | | $\widetilde{\mathbf{X}}' = \widetilde{16}$ | 59 | .20 | .30 | .50 | 3.745 | 2.959 | 2.833 | 2.558 | 2.336 | 2.119 | 1.698 | 1.484 | | C = 16 | 60 | .20 | .40 | .40 | 3.125 | 2.469 | 2.358 | 2.132 | 1.908 | 1.779 | 1.536 | 1.381 | | | 61 | .10 | .30 | .60 | 3,125 | 2,203 | 1.862 | 1.757 | 1.558 | 1.451 | 1.318 | 1.235 | | L = 48 | 62 | .10 | .40 | .50 | 3.125 | 2.203 2.469 | $\frac{1.862}{2.146}$ | 1.894 | 1.634 | 1.451 1.506 | 1.318 1.344 | 1.255 1.255 | | $\ddot{\mathbf{x}} = \ddot{\mathbf{z}}_0$ | 63 | .10 | .50 | .40 | 2.500 | 1.976 | 1.786 | 1.689 | 1.536 | 1.414 | 1.274 | 1.205 1.205 | | $\mathbf{x}' = \mathbf{x}'$ | 64 | .20 | .30 | .50 | 3.745 | 2.653 | $\frac{1.786}{2.237}$ | 2.041 | 1.786 | 1.656 | 1.451 | 1.328 | | $\ddot{c} = 12$ | 65 | .20 | .40 | .40 | 3,125 | 2.469 | 2.193 | 2.037 | 1.812 | 1.608 | 1.381 | $\frac{1.328}{1.279}$ | | | 66 | | | | | | | | | | | | | L = 52 | 67 | .10 | .30 | .60 | 3.125 | 2.469 | 2.101 | 1.953 | 1.751 | 1.585 | 1.399 | 1.290 | | X = 20 | 68 | $.10 \\ .10$ | .40 | .50 | 3.125 | 2.469 | 2.146 | 2.020 | 1.818 | 1.629 | 1.406 | 1.297 | | X = 20
X' = 12 | 69 | | .50 | .40 | 2.500 | 1.976 | 1.786 | 1.718 | 1.639 | 1.490 | 1.319 | 1.236 | | C = 12 | 70 | .20
.20 | $.30 \\ .40$ | .50 | 3.745 | $\frac{2.959}{2.469}$ | $2.525 \\ 2.193$ | $\frac{2.347}{2.088}$ | $\frac{2.000}{1.953}$ | 1.802 | 1.538 | 1.383 | | 0 - 12 | | | | .40 | 3.125 | | | | | 1.712 | 1.437 | 1.316 | | T _ F0 | 71 | .10 | .30 | .60 | 3.125 | 2.469 | 2.358 | 2.132 | 1.988 | 1.739 | 1.490 | 1.350 | | L = 56 | 72 | .10 | .40 | .50 | 3.125 | 2.469 | 2.146 | 2.020 | 1.938 | 1.764 | 1.473 | 1.342 | | X = 20 | 73 | .10 | .50 | .40 | 2.500 | 1.976 | 1.786 | 1.718 | 1.667 | 1.575 | 1.368 | 1.271 | | X' = 16
C = 12 | 74 | .20 | .30 | .50 | 3.845 | 2.959 | 2.755 | 2.551 | 2.262 | 1.972 | 1.629 | 1.439 | | C = 12 | 75_ | 20_ | .40 | .40 | 3.125 | -2.469 | 2.193 | 2.088 | 1.953 | 1.808 | 1.497 | 1.355 | | | 76 | .10 | .30 | .60 | 3.125 | 2.203 | 1.862 | 1.799 | 1.698 | 1.548 | 1.391 | 1.285 | | L = 52 | 77 | .10 | .40 | .50 | 3.125 | 2.469 | 2.237 | 2.160 | 1.835 | 1.642 | 1.439 | 1.319 | | X = 20 | 78 | .10 | .50 | .40 | 2.500 | 1.976 | 1.887 | 1.808 | 1.692 | 1.531 | 1.344 | 1.253 | | X' = 8 | 79 | .20 | .30 | .50 | 3.745 | 2.653 | 2.237 | 2.160 | 1.969 | 1.779 | 1.558 | 1.399 | | C = 16 | 80 | .20 | .40 | .40 | 3.125 | 2.469 | 2.358 | 2.227 | 2.028 | 1.767 | 1.466 | 1.355 | | | 81 | .10 | .30 | .60 | 3.125 | 2.469 | 2.101 | 1.953 | 1.880 | 1.704 | 1.484 | 1.348 | | L = 56 | 82 | .10 | .40 | .50 | 3.125 | 2.469 | 2.358 | 2.179 | 2,062 | 1.795 | 1.508 | 1.366 | | X = 20 | 83 | .10 | .50 | .40 | 2.500 | 1.976 | 1.887 | 1.808 | 1.739 | 1.618 | 1.393 | 1.287 | | X' = 12 | 84 | .20 | .30 | .50 | 3.745 | 2.959 | 2.525 | 2.347 | 2.242 | 1.957 | 1.661 | 1.462 | | C = 16 | 85 | .20 | .40 | .40 | 3.125 | 2,469 | 2.358 | 2.227 | 2.049 | 1.876 | 1.527 | 1.376 | | | 86 | .10 | .30 | .60 | 3.125 | 2.469 | 2.358 | 2.132 | 2.008 | 1.890 | 1.590 | 1.412 | | L = 60 | 87 | .10 | .40 | .50 | 3.125 | 2.469 | 2.358 | 2.179 | 2.062 | 1.927 | 1.582 | 1.414 | | X = 20 | 88 | .10 | .50 | .40 | 2.500 | 1.976 | 1.887 | 1.808 | 1.739 | 1.656 | 1.445 | 1.323 | | X' = 16 | 89 | .20 | .30 | .50 | 3.745 | 2.959 | 2.833 | 2.558 | 2.410 | 2.165 | 1.767 | 1.524 | | C = 16 | 90 | .20 | .40 | .40 | 3.125 | 2.469 | 2.358 | 2.227 | 2.049 | 1.876 | 1.592 | 1.416 | | | | | | | | | | | | | | | Table 11.13 SUMMARY OF GROSS LOADS REQUIRED FOR TYPE 2-S1-2 TRUCKS TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS A STANDARD H TRUCK WEIGHING ONE KIP Ninety-six variations in the Type 2-S1-2 truck are given in this Table. Each truck number, from 1 to 96, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. Gross loads are in kips. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. | Wheel
Base
and
Axle
Spacing | Truck No. | I | oad O
Axles
Kips | n | | | | Span-F | eet | | | | |---|-----------------|----------------|------------------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | Feet | ΙĔ | a ₁ | a 2 | \mathbf{a}_3 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | L = 36 | 1 | .10 | .20 | .70 | 3.413 | 2.674 | 1.953 | 1.672 | 1.466 | 1.351 | 1.235 | 1.176 | | $\mathbf{x} = 8$ | 2 | .10 | .30 | .60 | 2.667 | 2.451 | 1.976 | 1.730 | 1.486 | 1.362 | 1.242 | 1.181 | | X' = 10
C = 8 | 3 | .20 | .20 | .60 | $\frac{4.000}{2.667}$ | $\frac{3.125}{2.268}$ | $\frac{2.283}{1.832}$ | $\frac{1.880}{1.642}$ | $\frac{1.570}{1.517}$ | $\frac{1.420}{1.395}$ | $\frac{1.276}{1.266}$ | $\frac{1.205}{1.200}$ | | | 4 | .20 | .30 | .50 | | and the second second | | | | | | water a second | | L = 40
X = 8 | 5 | .10 | .20
.30 | .70
.60 | $\frac{3.413}{2.667}$ | $\frac{2.674}{2.469}$ | $\frac{2.105}{2.101}$ | $\frac{1.828}{1.862}$ | $\frac{1.577}{1.616}$ | $\frac{1.427}{1.451}$ | $1.280 \\ 1.294$ | $\frac{1.209}{1.218}$ | | X = 8
X' = 12 | $\frac{6}{7}$ | $.10 \\ .20$ | .20 | .60 | 4.000 | $\frac{2.405}{3.125}$ | $\frac{2.101}{2.457}$ | $\frac{1.002}{2.070}$ | 1.712 | 1.515 | 1.330 | 1.218 1.244 | | $\mathbf{c} = \mathbf{s}$ | 8 | .20 | .30 | .50 | 2.667 | 2.268 | 1.927 | 1.739 | 1.585 | 1.481 | 1.319 | 1.239 | | L = 44 | 9 | .10 | .20 | .70 | 3,413 | 2.674 | 2.273 | 1.942 | 1.704 | 1.513 | 1.330 | 1.242 | | $\ddot{x} = \ddot{s}$ | 10 | .10 | .30 | .60 | 2.667 | 2.469 | 2.237 | 2.004 | 1.767 | 1.548 | 1.350 | 1.256 | | X' = 14 | 11 | .20 | .20 | .60 | 4.000 | 3.125 | 2,660 | 2.247 | 1.887 | 1.621 | 1.389 | 1.284 | | c = s | 12 | .20 | .30 | .50 | 2.667 | 2.268 | 2.028 | 1.838 | 1.656 | 1.550 | 1.376 | 1.279 | | L = 48 | 13 | .10 | .20 | .70 | 3.413 | 2.674 | 2.342 | 2.041 | 1.825 | 1.608 | 1.381 | 1.279 | | X = 8 | 14 | .10 | .30 | .60 | 2.667 | 2.469 | 2.358 | 2.132 | 1.880 | 1.661 | 1.410 | 1.297 | | X' = 16 | 15 | .20 | .20 | .60 | 4.000 | 3.125 | 2.740 | 2,387 | 2.041 | 1.745 | 1.453 | 1.326 | | c = s | 16 | .20 | .30 | .50 | 2.667 | 2.268 | 2.062 | 1.905 | 1.730 | 1.605 | 1.437 | 1.321 | | L = 52 | 17 | .10 | .20 | .70 | 3.413 | 2.674 | 2.342 | 2.151 | 1.934 | 1.715 | 1.439 | 1.316 | | $ \begin{array}{r} \mathbf{x} = 8 \\ \mathbf{x}' = 18 \end{array} $ | 18 | .10 | .30 | .60 | 2.667 | 2.469 | 2.358 | 2.227 | 1.988 | 1.792 | 1.477 | 1.342 | | $C = \frac{8}{8}$ | $\frac{19}{20}$ | .20 | .20
.30 | .60
.50 | $\frac{4.000}{2.667}$ | $\frac{3.125}{2.268}$ | $\frac{2.740}{2.062}$ | $\frac{2.513}{1.972}$ | $\frac{2.174}{1.812}$ | $1.890 \\ 1.664$ | $\frac{1.524}{1.502}$ | $\frac{1.372}{1.366}$ | | L = 56 | 21 | .10 | .20 | .70 | 3.413 | 2.674 | 2.342 | $\frac{1.972}{2.273}$ | 2.008 | 1.825 | 1.502 | 1.357 | | X = 8 | 22 | .10 | .30 | .60 | $\frac{3.413}{2.667}$ | 2.469 | $\frac{2.342}{2.358}$ | 2.331 | $\frac{2.008}{2.110}$ | $\frac{1.825}{1.894}$ | 1.550 | 1.389 | | $\ddot{\mathbf{X}}' = 20$ | 23 | .20 | .20 | .60 | 4,000 | 3.125 | 2.740 | 2.653 | 2.320 | 2.024 | 1.603 | 1.422 | | $\hat{\mathbf{c}} = \hat{\mathbf{s}}$ | $\frac{23}{24}$ | .20 | .30 | .50 | 2.667 | 2.268 | 2.062 | 2.045 | 1.890 | 1.724 | 1.550 | 1.412 | | L = 60 | 25 | .10 | .20 | .70 | 3.413 | 2,674 | 2.342 | 2.283 | 2.088 | 1.931 | 1.567 | 1.401 | | $\mathbf{x} = 8$ | 26 | .10 | .30 | .60 | 2.667 | 2.469 | 2.358 | 2.398 | 2.222 | 1.980 | 1.631 | 1.439 | | X' = 22 | 27 | .20 | .20 | .60 | 4.000 | 3.125 | 2.740 | 2,667 | 2.439 | 2.128 | 1.689 | 1.475 | | C = 8 | 28 | .20 | .30 | .50 | 2.667 | 2.268 | 2.062 | 2.045 | 1.942 | 1.789 | 1.590 | 1.462 | | L = 64 | 29 | .10 | .20 | .70 | 3.413 | 2.674 | 2.342 | 2.283 | 2.174 | 1.989 | 1.642 | 1.445 | | $\mathbf{x} = 8$ | 30 | .10 | .30 | .60 | 2.667 | 2.469 | 2.358 | 2.398 | 2.304 | 2.079 | 1.721 | 1.493 | | X' = 24 | 31 | .20 | .20 | .60 | 4.000 | 3,125 | 2.740 | 2.667 | 2.538 | 2.242 | 1.786 | 1.531 | | C = 8 | 32_ | .20 | .30_ | 50_ | 2.667 | 2.268 | 2.062 | 2.045 | 1.996 | 1.859 | 1.631 | 1.515 | | L = 40 $X = 12$ | 33 | .10 | .20 | .70 | 3.413 | 2.674 | 1.953 | 1.672 | 1.504 | 1.379 | 1.252 | 1.189 | | $X = 12 \\ X' = 10$ | $\frac{34}{35}$ | $.10 \\ .20$ | .30 | .60 | 2.667 | 2.500 | $\frac{2.075}{2.283}$ | 1.754 | 1.527 | 1.391 | 1.258 | 1.193 | | $\overset{\lambda}{c} = \overset{10}{8}$ | 36 | .20 | $.20 \\ .30$ | .60
.50 | $\frac{4.000}{2.667}$ | $\frac{3.125}{2.538}$ | $\frac{2.283}{2.075}$ | $\frac{1.931}{1.789}$ | $\frac{1.661}{1.610}$ | $\frac{1.481}{1.460}$ | $\frac{1.311}{1.304}$ | $\frac{1.230}{1.227}$ | | L = 44 | | .10 | | 70^{-} | 3.413 | 2,674 | 2.105 | 1.828 | 1.597 | 1.460 | 1.299 | 1.221 | | $\ddot{X} = 12$ | 38 | .10 | .30 | .60 | $\frac{5.415}{2.667}$ | $\frac{2.674}{2.667}$ | $\frac{2.105}{2.268}$ | $\frac{1.028}{1.949}$ | 1.661 | 1.481 | 1.312 | 1.231 | | $\ddot{X}' = 12$ | 39 | .20 | .20 | .60 | 4.000 | 3.125 | 2.457 | 2.119 | 1.821 | 1.582 | 1.368 | 1.269 | | C = 8 | 40 | .20 | .30 | .50 | 2.667 | 2.667 | 2.198 | 1.908 | 1.686 | 1.558 | 1.362 | 1.267 | | L = 48 | 41 | .10 | .20 | .70 | 3,413 | 2.674 | 2.273 | 1.942 | 1.704 | 1.553 | 1.451 | 1.325 | | X = 12 | 42 | .10 | .30 | .60 | 2,667 | 2.667 | 2.433 | 2.079 |
1.805 | 1.585 | 1.370 | 1.269 | | X'=14 | 43 | .20 | .20 | .60 | 4.000 | 3.125 | 2.660 | 2.268 | 1.969 | 1.701 | 1.431 | 1.312 | | c = 8 | 44 | .20 | .30 | .50 | 2,667 | 2.667 | 2.331 | 2.012 | 1.770 | 1.631 | 1.422 | 1.311 | | | | | | | | | | | | | | | | Table 11.1 | 3 (Co | ntinue | ed) | | | | | | | | | | |---|-----------------|--------------|------------|--------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | L = 52 | 45 | .10 | .20 | .70 | 3.413 | 2.674 | 2.342 | 2.041 | 1.825 | 1.634 | 1.403 | 1.292 | | X = 12 $X' = 16$ | 46 | .10 | .30 | .60 | 2.667 | 2.667 | 2.538 | 2.222 | 1.957 | 1.704 | 1.433 | 1.312 | | X' = 16 | 47 | .20 | .20 | .60 | 4.000 | 3.125 | 2.740 | 2.387 | 2.114 | 1.835 | 1.499 | 1.357 | | C = 8 | 48 | .20 | .30 | .50 | 2.667 | 2.667 | 2.331 | 2,092 | 1.859 | 1.692 | 1.490 | 1.355 | | L = 56 | 49 | .10 | .20 | .70 | 3.413 | 2.674 | 2.342 | 2.151 | 1.934 | 1.724 | 1.462 | 1.332 | | X = 12 $X' = 18$ | $\frac{50}{51}$ | .10
.20 | .30
.20 | .60 | 2.667 | $\frac{2.667}{3.125}$ | $\frac{2.538}{2.740}$ | $\frac{2.364}{2.513}$ | $\frac{2.079}{2.257}$ | $\frac{1.838}{1.988}$ | $\frac{1.502}{1.575}$ | $\frac{1.357}{1.405}$ | | C = 8 | 52 | .20 | .30 | $.60 \\ .50$ | $\frac{4.000}{2.667}$ | $\frac{3.125}{2.667}$ | $\frac{2.740}{2.331}$ | $\frac{2.513}{2.179}$ | 1.957 | 1.757 | 1.560 | 1.403 | | L = 60 | 53 | | | .70 | 3.413 | 2.674 | 2.342 | 2.273 | 2.008 | 1.825 | $-^{1.535}_{1.527}$ | 1.374 | | X = 12 | 54 | .10 | .30 | .60 | 2.667 | 2,667 | 2.538 | 2.481 | 2.188 | 1.957 | 1.577 | 1.404 | | X' = 20 | 55 | .20 | .20 | .60 | 4.000 | 3.125 | 2,740 | 2.653 | 2.347 | 2.114 | 1.658 | 1.456 | | C = 8 | 56 | .20 | .30 | .50 | 2.667 | 2.667 | 2.331 | 2.232 | 2.037 | 1.828 | 1.608 | 1.453 | | L = 64 | 57 | .10 | .20 | .70 | 3.413 | 2.674 | 2.342 | 2.283 | 2.088 | 1.931 | 1.595 | 1.416 | | X = 12 | 58 | .10 | .30 | .60 | 2.667 | 2.667 | 2.538 | 2.525 | 2.304 | 2.053 | 1.661 | 1.458 | | X' = 22 | 59 | .20 | .20 | .60 | 4.000 | 3,125 | 2.740 | 2.667 | 2.439 | 2.242 | 1.751 | 1.511 | | $\mathbf{c} = \mathbf{s}$ | 60 | .20 | .30_ | 50 | 2.667 | 2.667 | 2.331 | 2.232 | 2.096 | 1.905 | 1.650 | 1.506 | | L = 68 | 61 | .10 | .20 | .70 | 3.413 | 2.674 | 2.342 | 2.283 | 2.174 | 1.988 | 1.672 | 1.464 | | X = 12 | 62 | .10 | .30 | .60 | 2.667 | 2.667 | 2.538 | 2.525 | 2,415 | 2.155 | 1.754 | 1.513 | | X' = 24 $C = 8$ | 63
64 | .20 $.20$ | .20
.30 | .60 | 4.000 | $\frac{3.125}{2.667}$ | $2.740 \\ 2.331$ | $\frac{2.667}{2.232}$ | $2.538 \\ 2.160$ | $\frac{2.320}{1.984}$ | $\frac{1.852}{1.695}$ | 1.570 | | L = 56 | 65 | | | 50 | 2.667 | 2.674 | | | | | | $\frac{1.563}{1.307}$ | | X = 16 | 66 | .10
.10 | .20 | .70
.60 | $\frac{3.413}{2.667}$ | 2.667 | $\frac{2.342}{2.660}$ | $\frac{2.041}{2.222}$ | $\frac{1.825}{1.969}$ | $\frac{1.634}{1.724}$ | $1.425 \\ 1.453$ | 1.326 | | X' = 16 | 67 | .20 | .20 | .60 | 4.000 | 3.125 | 2.740 | 2.387 | 2.114 | 1.880 | 1.548 | 1.323 | | $\dot{\mathbf{c}} = \frac{13}{8}$ | 68 | .20 | .30 | .50 | 2.667 | 2.667 | 2.660 | 2.315 | 2.004 | 1.789 | 1.546 | 1.391 | | L = 60 | 69 | .10 | .20 | .70 | 3.413 | 2.674 | 2.342 | 2.151 | 1.934 | 1.724 | 1.486 | 1.348 | | $\ddot{X} = 16$ | 70 | .10 | .30 | .60 | 2.667 | 2.667 | 2.740 | 2.381 | 2.079 | 1.842 | 1.524 | 1.372 | | X' = 18 | 71 | .20 | .20 | .60 | 4.000 | 3.125 | 2.740 | 2.513 | 2.257 | 1.988 | 1.629 | 1.437 | | $\mathbf{c} = 8$ | 72 | .20 | .30 | .50 | 2.667 | 2.667 | 2.660 | 2.427 | 2.119 | 1.862 | 1.623 | 1.441 | | L = 64 | 73 | .10 | .20 | .70 | 3.413 | 2.674 | 2.342 | 2.232 | 2.008 | 1.825 | 1.550 | 1.389 | | X = 16 | 74 | .10 | .30 | .60 | 2.667 | 2.667 | 2.740 | 2.564 | 2.188 | 1.972 | 1.603 | 1.422 | | X' = 20 | 75 | .20 | .20 | .60 | 4.000 | 3.125 | 2.740 | 2.653 | 2.347 | 2.114 | 1.715 | 1.490 | | c = 8 | 76 | .20 | 30 _ | .50 | 2.667 | 2.667 | 2.660 | 2.451 | 2.198 | 1.942 | 1.669 | 1,495 | | L = 68 | 7 7 | .10 | .20 | .70 | 3.413 | 2.674 | 2.342 | 2.283 | 2.088 | 1.931 | 1.616 | 1.435 | | X = 16
X' = 22 | 78 | .10 | .30 | .60 | 2.667 | 2.667 | 2.740 | 2.667 | 2.304 | 2.083 | 1.689 | 1.475 | | $\overset{\mathbf{A}}{\mathbf{C}} = \overset{22}{8}$ | 79
80 | $.20 \\ .20$ | .20
.30 | .60 $.50$ | $\frac{4.000}{2.667}$ | $\frac{3.125}{2.667}$ | $2.740 \\ 2.660$ | $2.667 \\ 2.451$ | $\frac{2.439}{2.273}$ | $\frac{2.252}{2.028}$ | $\frac{1.815}{1.718}$ | $1.548 \\ 1.550$ | | L = 72 | 81 | .10 | .20 | .70 | 3.413 | 2.674 | 2.342 | 2.283 | 2.174 | 1.988 | 1.678 | 1.481 | | $\mathbf{X} = 16$ | 82 | .10 | .30 | .60 | $\frac{3.413}{2.667}$ | $\frac{2.674}{2.667}$ | $\frac{2.342}{2.740}$ | 2.283 2.667 | $\frac{2.174}{2.433}$ | $\frac{1.988}{2.169}$ | 1.786 | $\frac{1.481}{1.531}$ | | $\ddot{\mathbf{X}}' = 24$ | 83 | .20 | .20 | .60 | 4,000 | 3.125 | 2.740 | 2.667 | 2.538 | 2.320 | 1.927 | 1.610 | | C = 8 | 84 | .20 | .30 | .50 | 2.667 | 2.667 | 2.660 | 2.451 | 2.342 | 2.123 | 1.767 | 1.610 | | L = 76 | 85 | .10 | .20 | .70 | 3.413 | 2,674 | 2.342 | 2.283 | 2.252 | 2.053 | 1.748 | 1.534 | | X = 16 | 86 | .10 | .30 | .60 | 2.667 | 2.667 | 2.740 | 2.667 | 2.577 | 2.262 | 1.880 | 1.592 | | X' = 26 | 87 | .20 | .20 | .60 | 4.000 | 3.125 | 2.740 | 2.667 | 2.632 | 2.398 | 2.016 | 1.678 | | C = 8 | 88 | .20 | 30 | .50_ | 2.667 | 2,667 | 2.660 | 2.451 | 2.342 | 2,183 | 1.818 | 1.645 | | L = 80 | 89 | .10 | .20 | .70 | 3.413 | 2.674 | 2.342 | 2.283 | 2.252 | 2.119 | 1.821 | 1.587 | | X = 16
X' = 28 | 90 | .10 | .30 | .60 | 2.667 | 2.667 | 2.740 | 2.667 | 2.632 | 2.358 | 1.980 | 1.658 | | C = 8 | $\frac{91}{92}$ | .20
.20 | .20
.30 | .60 | 4.000 | $\frac{3.125}{2.667}$ | 2.740 | 2.667 | 2.632 | 2.475 | 2.105 | 1.751 | | | | | | .50 | 2.667 | | 2.660 | 2.451 | 2.342 | 2.242 | 1.873 | 1.678 | | $ \begin{array}{l} \mathbf{L} = 84 \\ \mathbf{X} = 16 \end{array} $ | 93
94 | .10
.10 | .20 | .70
.60 | 3.413 | $\frac{2.674}{2.667}$ | $2.342 \\ 2.740$ | $\frac{2.283}{2.667}$ | 2.252 | $2.188 \\ 2.469$ | $\frac{1.901}{2.079}$ | $\frac{1.647}{1.730}$ | | X' = 30 | 95 | .20 | .20 | .60 | $\frac{2.667}{4.000}$ | 3.125 | 2.740 | 2.667 | $\frac{2.632}{2.632}$ | 2.469 | 2.208 | 1.750 1.832 | | $\ddot{\mathbf{c}} = \ddot{\mathbf{s}}$ | 96 | .20 | .30 | .50 | 2.667 | 2.667 | 2.660 | 2.451 | 2.342 | $\frac{2.338}{2.278}$ | 1.931 | 1.715 | | | | _:-::- | | | | | | | | | | | Table 11.14 #### SUMMARY OF GROSS LOADS REQUIRED FOR TYPE 3-S2-3 TRUCKS TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS A STANDARD H TRUCK WEIGHING ONE KIP Eighty-four variations in the Type 3-S2-3 truck are given in this Table. Each truck number, from 1 to 84, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. Gross loads are in kips. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. | Wheel
Base
and
Axle
Spacing | Truck No. | I | oad O
Axles
Kips | | | | | Span-F | 'eet | , | | | |---|-----------------|--------------|------------------------|-------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | Feet | T | aı | a 2 | a 3 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | L = 44 | 1 | .05 | .20 | .75 | 4.167 | 2.941 | 2.304 | 1.894 | 1.608 | 1.447 | 1.292 | 1.217 | | X = 8 | 2 | .05 | .30 | .65 | 4.167 | $\frac{2.994}{3.145}$ | $2.283 \\ 2.433$ | $\frac{1.969}{2.012}$ | $\frac{1.667}{1.704}$ | $1.484 \\ 1.508$ | $1.314 \\ 1.326$ | $\frac{1.232}{1.241}$ | | X' = 8
C = 8 | 3
4 | .10
.10 | $.20 \\ .30$ | .70 $.60$ | $\frac{4.464}{4.167}$ | 3.021 | $\frac{2.433}{2.278}$ | $\frac{2.012}{1.976}$ | 1.733 | 1.529 | 1.320 1.339 | 1.241 | | $\frac{C = 8}{L = 48}$ | 5 | 05 | 20 - | 75^{-} | 4.167 | 2,941 | 2.433 | 2.058 | 1.730 | 1.538 | 1.344 | 1.252 | | $\ddot{\mathbf{x}} = \ddot{8}$ | 6 | .05 | .30 | .65 | 4.167 | 3.195 | 2.500 | 2.119 | 1.825 | 1.590 | 1.372 | 1.272 | | X' = 10 | 7 | .10 | .20 | .70 | 4.464 | 3.145 | 2.597 | 2.203 | 1.838 | 1.610 | 1.383 | 1.279 | | $\mathbf{c} = 8$ | 8 | 10_ | .30 | 60_ | 4.167 | 3.077 | 2.494 | 2.123 | 1.880 | 1.647 | 1.403 | 1.294 | | L = 52 | 9 | .05 | .20 | .75 | 4.167 | 2.941 | 2.481 | 2.212 | 1.873 | 1.639 | 1.399 | 1.290 | | $X = \frac{32}{8}$ | 10 | .05 | .30 | .65 | 4.167 | 3.195 | 2.755 | 2.278 | 1.996 | 1.712 | 1.437 | 1.316 | | X' = 12 $C = 8$ | $\frac{11}{12}$ | .10 $.10$ | .20 | .70
.60 | $\frac{4.464}{4.167}$ | $\frac{3.145}{3.077}$ | $\frac{2.660}{2.681}$ | $\frac{2.347}{2.252}$ | $\frac{1.996}{1.984}$ | $1.730 \\ 1.786$ | $\frac{1.445}{1.475}$ | 1.321 1.340 | | C = 8
L = 56 | 13 | .05 | 20
 | .75 | 4.167 | 2.941 | 2.481 | 2.326 | 2.028 | 1.745 | 1.460 | 1.330 | | $\mathbf{x} = \frac{56}{8}$ | 14 | .05 | .30 | .65 | 4.167 | 3.195 | $\frac{2.481}{2.865}$ | 2.451 | 2.028 | 1.745 | 1.508 | 1.361 | | $ \begin{array}{c} \mathbf{X} = 8 \\ \mathbf{X}' = 14 \end{array} $ | 15 | .10 | .20 | .70 | 4.464 | 3.145 | 2.660 | 2.481 | 2.169 | 1.855 | 1.515 | 1.366 | | $\ddot{\mathbf{c}} = \hat{s}$ | 16 | .10 | .30 | .60 | 4.167 | 3.077 | 2.681 | 2.387 | 2.105 | 1.901 | 1.555 | 1.391 | | L = 60 | 17 | .05 | .20 | .75 | 4,167 | 2.941 | 2.481 | 2.387 | 2.137 | 1.862 | 1.524 | 1.372 | | $\mathbf{x} = s$ | 18 | .05 | .30 | .65 | 4.167 | 3.195 | 2.865 | 2.632 | 2.242 | 2.008 | 1.587 | 1.410 | | X' = 16 | 19 | .10 | .20 | .70 | 4.464 | 3.145 | 2.660 | 2.558 | 2.288 | 1.984 | 1.590 | 1.412 | | C = 8 | 20 | .10 | 30_ | .60 | 4.167 | 3.077 | 2.681 | 2.545 | 2.232 | 1.992 | 1.642 | 1.445 | | L = 64 | 21 | .05 | .20 | .75 | 4.167 | 2.941 | 2.481 | $\frac{2.398}{2.770}$ | $\frac{2,252}{2,370}$ |
1.996
2.105 | $\frac{1.595}{1.672}$ | $1.416 \\ 1.464$ | | $ \begin{array}{c} \mathbf{X} = 8 \\ \mathbf{X}' = 18 \end{array} $ | $\frac{22}{23}$ | $.05 \\ .10$ | .30
.20 | .65
.70 | $\frac{4.167}{4.464}$ | $\frac{3.195}{3.145}$ | $\frac{2.865}{2.660}$ | 2.770 2.571 | 2.392 | 2.132 | 1.672 | 1.464 | | $\mathbf{c} = 8$ | 24 | .10 | .30 | .60 | 4.167 | 3.077 | 2.681 | 2.618 | 2.336 | 2.083 | 1.739 | 1.504 | | L = 68 | 25 | .05 | .20 | .75 | 4.167 | 2.941 | 2.481 | 2.398 | 2.320 | 2.092 | 1.675 | 1.466 | | $\mathbf{x} = 8$ | 26 | .05 | .30 | .65 | 4.167 | 3.195 | 2.865 | 2.770 | 2.513 | 2.208 | 1.770 | 1.522 | | X' = 20 | 27 | .10 | .20 | .70 | 4.464 | 3.145 | 2.660 | 2.571 | 2.481 | 2.242 | 1.764 | 1.517 | | C = 8 | 28 | 10 | 30 | .60 | 4.167 | 3.077 | 2.681 | 2.618 | 2,445 | 2.188 | 1.852 | 1.567 | | L = 48 | 29 | .05 | .20 | .75 | 4.167 | 2.941 | 2.304 | 1.894 | 1.608 | 1.464 | 1.302 | 1.224 | | $\begin{array}{ccc} X = 12 \\ X' = 8 \end{array}$ | 30 | .05 | .30 | $.65 \\ .70$ | 4.167 | 2.994 | $\frac{2.320}{2.433}$ | $\frac{1.972}{2.012}$ | $\frac{1.672}{1.704}$ | $\frac{1.502}{1.543}$ | $\frac{1.323}{1.346}$ | $\frac{1.238}{1.253}$ | | X' = 8
C = 8 | $\frac{31}{32}$ | .10 | .20 | .60 | $\frac{4.464}{4.167}$ | $\frac{3.145}{3.021}$ | $\frac{2.455}{2.370}$ | $\frac{2.012}{2.079}$ | 1.704 1.776 | 1.545 1.565 | 1.346 1.359 | 1.263 | | L = 52 | 33 | .05 | 20 | 75^{-} | 4.167 | 2.941 | 2.433 | 2.058 | 1.730 | 1.548 | 1.353 | 1.259 | | X = 12 | 34 | .05 | .30 | .65 | 4.167 | 3.289 | $\frac{2.433}{2.532}$ | 2.119 | 1.825 | 1.608 | 1.383 | 1.279 | | X' = 10 | 35 | .10 | .20 | .70 | 4.464 | 3.145 | 2.597 | 2.203 | 1.838 | 1.642 | 1.404 | 1.294 | | c = 8 | 36 | .10 | .30 | .60 | 4.167 | 3.289 | 2.577 | 2.237 | 1.942 | 1.689 | 1.425 | 1.307 | | L = 56 | 37 | .05 | .20 | .75 | 4.167 | 2.941 | 2.481 | 2.212 | 1.873 | 1.642 | 1.410 | 1.297 | | X = 12 | 38 | .05 | .30 | .65 | 4.167 | 3.289 | 2.778 | 2.278 | 2.004 | 1.724 | 1.447 | 1.323 | | X'≈ 12 | 39 | .10 | .20 | .70 | 4.464 | 3.145 | 2.660 | 2.347 | 1.996 | 1.742 | 1.468 | 1.335 | | c = s | 40 | 10 | 30 | .60 | 4.167 | 3.239 | $-\frac{2.817}{}$ | 2.381 | 2.066 | 1.832 | 1.499 | 1.355 | | L = 60 | 41 | .05 | .20 | .75 | 4.167 | 2.941 | 2.481 | 2.326 | 2.028 | 1.745 | 1.471 | $\frac{1.337}{1.370}$ | | | $\frac{42}{43}$ | $.05 \\ .10$ | .30
.20 | $\frac{.65}{.70}$ | $\frac{4.167}{4.464}$ | $\frac{3.289}{3.145}$ | $\frac{2.865}{2.660}$ | $\frac{2.451}{2.481}$ | $\frac{2.128}{2.169}$ | $\frac{1.855}{1.855}$ | $\frac{1.520}{1.538}$ | 1.370 | | $C = \frac{14}{8}$ | 44 | .10 | .30 | .60 | $\frac{4.464}{4.167}$ | $\frac{3.145}{3.289}$ | $\frac{2.660}{2.924}$ | $\frac{2.481}{2.538}$ | 2.109 | 1.865 1.965 | 1.580 | 1.408 | | | | | ' | | | | | ********* | | | | | | Table 11.1 | 4 (Co | ntinu | ed) | | | | | | | | | | |-------------------------------|-------|-------|-----|-----|-------|-------|-------|-------|-------|-------|-------|-------------| | L = 64 | 45 | .05 | .20 | .75 | 4.167 | 2.941 | 2.481 | 2.387 | 2.137 | 1.862 | 1.538 | 1.381 | | X = 12 | 46 | .05 | .30 | .65 | 4.167 | 3.289 | 2.865 | 2.653 | 2.242 | 2.008 | 1.600 | 1.418 | | X' = 16 | 47 | .10 | .20 | .70 | 4.464 | 3.145 | 2.660 | 2.558 | 2.288 | 1.984 | 1.616 | 1.431 | | c = s | 48 | .10 | .30 | .60 | 4.167 | 3.289 | 2.924 | 2.717 | 2.331 | 2.058 | 1.672 | 1.464 | | L = 68 | 49 | .05 | .20 | .75 | 4.167 | 2.941 | 2.481 | 2.398 | 2.252 | 1.996 | 1.610 | 1.427 | | X = 12 | 50 | .05 | .30 | .65 | 4.167 | 3.289 | 2.865 | 2.770 | 2.370 | 2.128 | 1.689 | 1.473 | | X' = 18 | 51 | .10 | .20 | .70 | 4.464 | 3.145 | 2.660 | 2.571 | 2.392 | 2.132 | 1.704 | 1.481 | | C = 8 | 52 | .10 | .30 | .60 | 4.167 | 3.289 | 2.924 | 2.786 | 2.445 | 2.160 | 1.773 | 1.524 | | L = 72 | 53 | .05 | .20 | .75 | 4.167 | 2.941 | 2.481 | 2.398 | 2.320 | 2.092 | 1.684 | 1.475 | | X = 12 | 54 | .05 | .30 | .65 | 4.167 | 3.289 | 2.865 | 2.770 | 2.513 | 2.222 | 1.786 | 1.531 | | X' = 20 | 55 | .10 | .20 | .70 | 4.464 | 3.145 | 2.660 | 2.571 | 2.481 | 2.242 | 1.789 | 1.538 | | c = s | 56 | .10 | .30 | .60 | 4.167 | 3.289 | 2.924 | 2.786 | 2.571 | 2.273 | 1.890 | 1.590 | | L = 60 | 57 | .05 | .20 | .75 | 4.167 | 2.941 | 2.481 | 2.212 | 1.873 | 1.642 | 1.420 | 1.304 | | X = 16 | 58 | .05 | .30 | .65 | 4.167 | 3.289 | 2.778 | 2.278 | 2.004 | 1.724 | 1.460 | 1.330 | | X' = 12 | 59 | .10 | .20 | .70 | 4.464 | 3.145 | 2.660 | 2.347 | 1.996 | 1.742 | 1.493 | 1.351 | | C = 8 | 60 | .10 | .30 | .60 | 4.167 | 3.289 | 2.817 | 2.410 | 2.123 | 1.832 | 1.524 | 1.372 | | L = 64 | 61 | .05 | .20 | .75 | 4.167 | 2.941 | 2.481 | 2.326 | 2.028 | 1.745 | 1.484 | 1.346 | | X = 16 | 62 | .05 | .30 | .65 | 4.167 | 3.289 | 2.865 | 2.451 | 2.128 | 1.855 | 1.531 | 1.377 | | X'=14 | 63 | .10 | .20 | .70 | 4.464 | 3.145 | 2.660 | 2.481 | 2.169 | 1.855 | 1.565 | 1.397 | | C = 8 | 64 | 10 | .30 | .60 | 4.167 | 3.289 | 3.030 | 2.604 | 2.247 | 1.976 | 1.608 | 1.425 | | L = 68 | 65 | .05 | .20 | .75 | 4.167 | 2.941 | 2.481 | 2.387 | 2.137 | 1.862 | 1,546 | 1.389 | | X = 16 | 66 | .05 | .30 | .65 | 4.167 | 3.289 | 2.865 | 2.653 | 2.242 | 2.008 | 1.613 | 1.429 | | X' = 16 | 67 | .10 | .20 | .70 | 4.464 | 3.145 | 2.660 | 2.558 | 2.288 | 1.984 | 1.639 | 1.447 | | c = 8 | 68 | .10 | .30 | .60 | 4.167 | 3.289 | 3.106 | 2.793 | 2.381 | 2.132 | 1.704 | 1.481 | | L = 72 | 69 | .05 | .20 | .75 | 4.167 | 2.941 | 2.481 | 2.398 | 2,252 | 1.996 | 1.610 | 1.435 | | X = 16 | 70 | .05 | .30 | .65 | 4.167 | 3.289 | 2.865 | 2.770 | 2.370 | 2.128 | 1.695 | 1.481 | | X' = 18 | 71 | .10 | .20 | .70 | 4.464 | 3.145 | 2.660 | 2.571 | 2.392 | 2.132 | 1.712 | 1.502 | | C = 8 | 72 | .10 | .30 | .60 | 4.167 | 3.289 | 3.106 | 2.967 | 2.525 | 2.242 | 1.805 | 1.543 | | L = 76 | 73 | .05 | .20 | .75 | 4.167 | 2.941 | 2.481 | 2.398 | 2.320 | 2.092 | 1.684 | 1.484 | | X = 16 | 74 | .05 | .30 | .65 | 4.167 | 3.289 | 2.865 | 2.770 | 2.513 | 2.222 | 1.786 | 1.541 | | X' = 20 | 75 | .10 | .20 | .70 | 4.464 | 3.145 | 2.660 | 2.571 | 2,481 | 2,242 | 1.789 | 1.558 | | c = 8 | 76 | .10 | .30 | 60 | 4.167 | 3.289 | 3.106 | 2.967 | 2.681 | 2.336 | 1.905 | $_{-1.610}$ | | $\underline{\mathbf{L}} = 80$ | 77 | .05 | .20 | .75 | 4.167 | 2.941 | 2.481 | 2.398 | 2.353 | 2.183 | 1.764 | 1.538 | | X = 16 | 78 | .05 | .30 | .65 | 4.167 | 3.289 | 2.865 | 2.770 | 2.667 | 2.326 | 1.890 | 1.605 | | X' = 22 | 79 | .10 | .20 | .70 | 4.464 | 3.145 | 2.660 | 2.571 | 2.525 | 2.336 | 1.876 | 1.621 | | $\mathbf{c} = 8$ | 80 | .10 | .30 | .60 | 4.167 | 3.289 | 3.106 | 2.967 | 2.849 | 2.469 | 2.016 | 1.684 | | L = 84 | 81 | .05 | .20 | .75 | 4.167 | 2.941 | 2.481 | 2.398 | 2,353 | 2.273 | 1.848 | 1.595 | | X = 16 | 82 | .05 | .30 | .65 | 4.167 | 3.289 | 2.865 | 2.770 | 2.717 | 2.433 | 2.004 | 1.675 | | X' = 24 | 83 | .10 | .20 | .70 | 4.464 | 3.145 | 2.660 | 2.571 | 2.525 | 2.415 | 1.969 | 1.686 | | C = 8 | _ 84 | .10 | .30 | .60 | 4.167 | 3.289 | 3.106 | 2.967 | 2.849 | 2.591 | 2.096 | 1.764 | ### 12. EQUIVALENT CONCENTRATED LOAD REQUIRED TO PRODUCE SAME MOMENT AS HEAVY VEHICLE TYPES OF UNIT WEIGHT ON SIMPLE SPAN BRIDGES Tables 12.1-12.14 give the magnitude of a single concentrated load that will produce the same moment on a given span as that produced by each of the 1303 variants of the 14 heavy vehicle types of unit weight shown in identification index Tables 6.1-6.14. The table numbers corresponding to each of the 14 heavy vehicle types shown in Figure 6.1 are as follows: | Table | Vehicle | Table | Vehicle | |-------|----------|-------|-----------------| | No. | Type | No. | Туре | | 12.1 | 2 | 12.8 | 3-S3 | | 12.2 | 3 | 12.9 | 2-2 | | 12.3 | 2-S1 | 12.10 | 2-3 | | 12.4 | 2-S2 | 12.11 | 3-2 | | 12.5 | 2-S3 | 12.12 | 3-3 | | 12.6 | 3-S1 | 12.13 | 2-S1-2 | | 12.7 | 3-S2 | 12.14 | 3-S2 - 3 | The use of these tables for converting any particular heavy vehicle type and loading into an equivalent concentrated load on a given span is explained in Article 5. #### Table 12.1 ## SUMMARY OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY TYPE 2 TRUCKS WEIGHING ONE KIP EACH Thirty-six variations in the Type 2 truck are given in this Table. Each truck number, from 1 to 36, represents a different combination of wheel base length, and ratios of gross vehicle weight on each axle. All dimensions are in feet. Equivalent concentrated loads are in kips. a1 and a2-Represent the ratios of gross vehicle weight on axles. | Wheel
Base | Truck No. | A : | d On
xles
ips | | | | Span-Fe | et | | | | |---------------|-----------|----------------|-----------------------|------|------|------|---------|------|------|------|------| | Feet | Tr | a ₁ | a ₂ | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 1 | .45 | .55 | .550 | .601 | .722 | .788 | .828 | .856 | .891 | .912 | | | 2 | .40 | .60 | .600 | .640 | .751 | .810 | .846 | .872 | .903 | .922 | | | 3 | .35 | .65 | .650 | .681 | .780 | .833 | .865 | .887 | .915 | .931 | | L = 10 | 4 | .30 | .70 | .700 | .723 | .810 | .856 | .884 | .903 | .927 | .941 | | | 5 | .25 | .75 | .750 | .766 | .840 | .879 | .902 | .919 | .939 | .951 | | | 6 | .20 | .80 | .800 | .810 | .871 | .903 | .922 | .935 | .951 | .960 | | | 7 | .45 | .55 | .550 | .550 | .672 | .748 | .796 | .828 | .870 | .895 | | | 8 | .40 | .60 | .600 | .600 | .705 | .774 | .818 | .847 | .884 | .906 | | | 9 | .35 | .65 | .650 | .650 | .739 | .801 | .839 | .865 | .898 | .918 | | L = 12 | 10 | .30 | .70 | .700 | .700 | .774 | .828 | .861 | .884 | .912 | .929 | | | 11 | .25 | .75 | .750 | .750 | .810 | .856 | .884 | .903 | .927 | .941 | | | 12 | .20 | .80 | .800 | .800 | .846 | .884 | .906 | .922 | .941 | .952 | | | 13 | .45 | .55 | .550 | .550 | .624 | .710 | .764 | .802 | .849 | .878 | | | 14 | .40 | .60 | .600 | .600 | .661 | .740 | .789 | .822 | .865 | .891 | | | 15 | .35 | .65 | .650 | .650 | .700 | .770 | .814 | .844 | .882 | .904 | | L = 14 | 16 | .30 | .70 | .700 | .700 | .739 | .801 | .839 | .865 | .898 | .918 | | | 17 | .25 | .75 | .750 | .750 | .780 |
.833 | .865 | .887 | .915 | .931 | | | 18 | .20 | .80 | .800 | .800 | .822 | .865 | .891 | .909 | .931 | .945 | | | 19 | .45 | .55 | .550 | .550 | .577 | .672 | .733 | .775 | .828 | .861 | | | 20 | .40 | .60 | .600 | .600 | .619 | .706 | .760 | .798 | .847 | .876 | | | 21 | .35 | .65 | .650 | .650 | .661 | .740 | .789 | .822 | .865 | .891 | | L = 16 | 22 | .30 | .70 | .700 | .700 | .705 | .774 | .818 | .847 | .884 | .906 | | | 23 | .25 | .75 | .750 | .750 | .751 | .810 | .846 | .872 | .903 | .922 | | | 24 | .20 | .80 | .800 | .800 | .800 | .846 | .876 | .896 | .922 | .937 | | | 25 | .45 | .55 | .550 | .550 | .550 | .636 | .702 | .748 | .808 | .844 | | | 26 | .40 | .60 | .600 | .600 | .600 | .672 | .733 | .775 | .828 | .861 | | | 27 | .35 | .65 | .650 | .650 | .650 | .710 | .764 | .802 | .849 | .878 | | L = 18 | 28 | .30 | .70 | .700 | .700 | .700 | .748 | .796 | .828 | .870 | .895 | | | 29 | .25 | .75 | .750 | .750 | .750 | .788 | .828 | .856 | .891 | .912 | | | 30 | .20 | .80 | .800 | .800 | .800 | .828 | .861 | .884 | .912 | .929 | | | 31 | .45 | .55 | .550 | .550 | .550 | .601 | .672 | .723 | .788 | .828 | | | 32 | .40 | .60 | .600 | .600 | .600 | .640 | .706 | .752 | .810 | .846 | | | 33 | .35 | .65 | .650 | .650 | .650 | .681 | .740 | .780 | .833 | .865 | | L = 20 | 34 | .30 | .70 | .700 | .700 | .700 | .723 | .774 | .810 | .856 | .884 | | | 35 | .25 | .75 | .750 | .750 | .750 | .766 | .810 | .840 | .879 | .902 | | | 36 | .20 | .80 | .800 | .800 | .800 | .810 | .846 | .872 | .903 | .922 | #### **Table 12.2** ### SUMMARY OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY TYPE 3 TRUCKS WEIGHING ONE KIP EACH Forty-two variations in the Type 3 truck are given in this Table. Each truck number, from I to 42, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. #### All dimensions are in feet. Equivalent concentrated loads are in kips. a1 and a2-Represent the ratio of gross vehicle weight on axles. | Wheel Base and Axle Spacing | Truck No. | A | d On
xles
ips | | | | Span-Fe | et | | | | |---|-----------------|----------------|---------------------|--------------|----------------|----------------|----------------|-------------|-------------|-------------|--------------| | Feet | Ę | a ₁ | a 2 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 1 | .40 | .60 | .400 | .500 | .662 | .745 | .795 | .829 | .872 | .897 | | | 2 | .35 | .65 | .416 | .532 | .685 | .763 | .810 | .842 | .881 | .904 | | | 3 | .30 | .70 | .448 | .567 | .709 | .782 | .825 | .854 | .891 | .912 | | L = 14 | 4 | .25 | .75 | .480 | .608 | .734 | .801 | .841 | .867 | .900 | .920 | | X = 10 | 5 | .20 | .80 | .512 | .648 | .760 | .820 | .856 | .880 | .910 | .928 | | | 6 | .15 | .85 | .544 | .689 | .786 | .840 | .872 | .894 | .920 | .936 | | | 7 | .10 | .90 | .576 | 729 | .814 | .860 | 888 | 907 | .930_ | .944 | | | 8 | .40 | .60 | .400 | .486 | .614 | .708 | .765 | .804 | .852 | .881 | | | 9 | .35 | .65 | .416 | .533 | .643 | .730 | .783 | .820 | .864 | .891 | | Y 10 | 10 | .30 | .70 | .448 | .567 | .672 | .753 | .802 | .835 | .876 | .900 | | $ \begin{array}{l} L = 16 \\ X = 12 \end{array} $ | $\frac{11}{12}$ | .25 | .75 | .480 | .608 | .702 | .776 | .821 $.840$ | .851 $.867$ | .888 | .910 | | X = 12 | | .20 $.15$ | .80
.85 | .512 | .648 $.689$ | $.734 \\ .766$ | $.800 \\ .825$ | .840 $.860$ | .884 | .900 $.913$ | .930 | | | $\frac{13}{14}$ | .10 | .89 | .544 $.576$ | .729 | .800 | .850 | .880 | .804 | .915 | .940 | | | | .40 | .60 | | | .568 | .672 | -736 | 779 | | | | | $\frac{15}{16}$ | .35 | .65 | .400
.416 | $.486 \\ .527$ | .601 | .698 | .757 | .719 | .847 | .866
.877 | | | 17 | .30 | .70 | .448 | .567 | .635 | .725 | .779 | .816 | .862 | .889 | | L = 18 | 18 | .25 | .75 | .480 | .608 | .671 | .753 | .802 | .835 | .876 | .900 | | X = 14 | 19 | .20 | .80 | .512 | .648 | .708 | .781 | .825 | .854 | .891 | .912 | | A - 14 | 20 | .15 | .85 | .544 | .689 | .747 | .810 | .848 | .874 | .905 | .924 | | | 21 | .10 | .90 | .576 | .729 | .787 | .840 | .872 | .894 | .920 | .936 | | | | .40 | .60 | .400 | .486 | .523 | .637 | .707 | .754 | .815 | .851 | | | 23 | .35 | .65 | .416 | .527 | .566 | .667 | .731 | .776 | .831 | .864 | | | 24 | .30 | .70 | .448 | .567 | .610 | .697 | .757 | .797 | .847 | .877 | | L = 20 | 25 | .25 | .75 | .480 | .608 | .653 | .729 | .782 | .819 | .864 | .891 | | X = 16 | 26 | .20 | .80 | .512 | .648 | .697 | .762 | .809 | .841 | .881 | .904 | | | 27 | .15 | .85 | .544 | .689 | .740 | .795 | .836 | .864 | .898 | .918 | | | 28 | .10 | .90 | .576 | .729 | .784 | .830 | .864 | .887 | .915 | .932 | | | 29 | .40 | .60 | .400 | .486 | .523 | .603 | .678 | .730 | .796 | .836 | | | 30 | .35 | .65 | .416 | .527 | .566 | .636 | .706 | .754 | .814 | .850 | | | 31 | .30 | .70 | .448 | .567 | .610 | .670 | .734 | .778 | .833 | .866 | | L = 22 | 32 | .25 | .75 | .480 | .608 | .653 | .706 | .764 | .803 | 852 | .881 | | X = 18 | 33 | .20 | .80 | .512 | .648 | .697 | .743 | .794 | .828 | .871 | .896 | | | 34 | .15 | .85 | .544 | .689 | .740 | .781 | .825 | .854 | .890 | .912 | | | 35 | 10 | 90 | .576 | .729 | 784 | 820 | .856_ | 880 | 910_ | 928 | | | 36 | .40 | .60 | .400 | .486 | .523 | .569 | .650 | .706 | .778 | .821 | | | 37 | .35 | .65 | .416 | .527 | .566 | .605 | .681 | .733 | .798 | .837 | | T - C1 | 38 | .30 | .70 | .448 | .567 | .610 | .643 | .712 | .760 | .819 | .854 | | $L = 24 \\ X = 20$ | 39 | .25 | .75
.80 | .480
.512 | .608
.648 | .653 $.697$ | .683 $.724$ | .745 $.778$ | .787 $.815$ | .840 $.861$ | .871
.888 | | X = 20 | 40 | .20 | .80
.85 | | | .697 | | .813 | .815 | .883 | .906 | | | $\frac{41}{42}$ | .15
.10 | .85 | .544
.576 | .689 $.729$ | .740 | .767 $.812$ | .848 | .844 | .883 | .924 | | | 44 | .10 | | | .129 | | 014 | .040 | | .500 | .024 | Table 12.3 ## SUMMARY OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY TYPE 2-S1 TRUCKS WEIGHING ONE KIP EACH One hundred twenty-six variations in the Type 2-S1 truck are given in this Table. Each truck number, from 1 to 126, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet a1, a2, and a3-Represent the ratios of gross vehicle weight on axles. | Wheel
Base
and
Axle
Spacing | Truck No. | I | Load C
Axles
Kips | | | | | Span-F | eet | | | | |--|-----------------|----------------|-------------------------|----------------|--------------|----------------|----------------|--------------|----------------|-------------|----------------|--------------| | Feet | H | a ₁ | \mathbf{a}_2 | \mathbf{a}_3 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 1 | .10 | .30 | .60 | .600 | .600 | .676 | .740 | .789 | .822 | .865 | .891 | | | 2 | .10 | .40 | .50 | .500 | .500 | .609 | .689 | .746 | .787 | .837 | .869 | | L = 20 | 3 | .10 | .45 | .45 | .450 | .473 | .610 | .703 | .760 | .800 | .848 | .878 | | $\mathbf{x} = 8$ | 4 | .10 | .50 | .40 | .500 | .523 | .644 | .730 | .782 | .818 | .863 | .890 | | X' = 12 | 5 | .20 | .30 | .50 | .500 | .500 | .578 | .656 | .719 | .763 | .819 | .854 | | | 6 | .20 | .40 | .40 | .400 | .450 | .585 | .686 | .748 | .790 | .842 | .873 | | | 7 | .20 | .50 | .30 | .500 | .549 | .658 | .743 | .794 | .828 | .871 | .896 | | | 8 | .10 | .30 | .60 | .600 | .600 | .609 | .676 | .733 | .775 | .828 | .861 | | | 9 | .10 | .40 | .50 | .500 | .500 | .524 | .609 | .679 | .729 | .792 | .832 | | L = 24 | 10 | .10 | .45 | .45 | .450 | .473 | .512 | .626 | .696 | .745 | .806 | .844 | | $\mathbf{x} = 8$ | 11 | .10 | .50 | .40 | .500 | .523 | .555 | .660 | .725 | .769 | .825 | .859 | | X' = 16 | 12 | .20 | .30 | .50 | .500 | .500 | .512 | .578 | .653 | .706 | .774 | .817 | | | 13 | .20 | .40 | .40 | .400 | 450 | .498 | .614 | .689 | .740 | .804 | .842 | | | 14 | .20 | .50 | .30 | .500 | .549 | .597 | .686 | .748 | .790 | .842 | .873 | | | 15 | .10 | .30 | .60 | .600 | .600 | .600 | .625 | .679 | .729 | .792 | .832 | | | 16 | .10 | .40 | .50 | .500 | .500 | .500 | .544 | .615 | .673 | .748 | .796 | | L = 28 | 17 | .10 | .45 | .45 | .450 | .473 | .498 | .552 | .635 | .692 | .766 | .811 | | $\mathbf{x} = 8$ | 18 | .10 | .50 | .40 | .500 | .523 | .548 | .592 | .669 | .721 | .788 | .829 | | X'=20 | 19 | .20 | .30 | .50 | .500 | .500 | .500 | .528 | .590 | .651 | .731 | .781 | | | 20 | .20 | .40 | .40 | .400 | .450 | .498 | .546 | .632 | .692 | .766 | .812 | | | 21 | .20 | .50 | .30 | .500 | .549 | .597 | .632 | .704 | .752 | .813 | .850 | | | 22 | .10 | .30 | .60 | .600 | .600 | .600 | .600 | .635 | .684 | .757 | .803 | | | 23 | .10 | .40 | .50 | .500 | .500 | .500 | .500 | .557 | .619 | .706 | .760 | | L = 32 | 24 | .10 | .45 | .45 | .450 | .473 | .498 | .511 | .576 | .641 | .726 | .778 | | $\mathbf{X} = 8$ $\mathbf{X'} = 24$ | 25 | .10 | .50 | .40 | .500 | .523 | .548 | .561 | .615 | .675 | .752 | .800 | | $\Lambda - 24$ | 26
27 | .20 | .30 | .50 $.40$ | .500 | .500 | .500 | .500 | .538 | .598 | .689 | .746 | | | 28 | .20 | $.40 \\ .50$ | .30 | .400 | $.450 \\ .549$ | $.498 \\ .597$ | .523
.622 | .578 $.661$ | .645 $.716$ | $.730 \\ .785$ | .782
.827 | | | | | 177 17 | 200.0 | | | | | | | | | | | 29 | .10 | .30 | .60 | .600 | .600 | .600 | .600 | .600 | .642 | .723 | .774 | | T - 00 | 30 | .10 | .40 | .50 | .500 | .500 | .500 | .500 | .508 | .568 | .664 | .726 | | $\mathbf{L} = 36$
$\mathbf{X} = 8$ | 31 | .10 | .45 | .45 | .450 | .473 | .498 | .511 | .520 | .592 | .687 | .746 | | $\mathbf{X} = 8$ $\mathbf{X'} = 28$ | 32 | .10 | .50 | .40 | .500 | .523 | .548 | .561 | .568 | .630 | .717 | .771 | | $\Lambda - 28$ | 33
34 | .20
.20 | .30
.40 | $.50 \\ .40$ | .500
.400 | .500 $.450$ | .500 $.498$ | .500 | .500 | .548 $.599$ | $.648 \\ .694$ |
.712
.753 | | | 35 | .20 | .50 | .30 | .500 | .549 | .597 | .523
.622 | .538 | .680 | .757 | .805 | | | | | | | | | | | | | | | | | 36 | .10 | .30 | .60 | .600 | .676 | .747 | .792 | .832 | .859 | .893 | .914 | | r - 00 | 37 | .10 | .40 | .50 | .500 | .608 | .699 | .757 | .803 | .835 | .874 | .899 | | $egin{array}{l} L=20 \ X=12 \end{array}$ | 38
39 | .10 | .45 | $.45 \\ .40$ | .450 | .576 | .686 | .764 | .810 | .842 | .881 | .905 | | $X' = \frac{12}{8}$ | 40 | .10
.20 | .50 | .50 | .500 | .608 | .711 | .783 | .826 | .855 $.798$ | $.891 \\ .846$ | .912 $.876$ | | $\Lambda - \delta$ | | .20 | .30 | | .500
.400 | .578
.512 | .648 $.627$ | .706 $.720$ | $.760 \\ .776$ | .814 | .860 | .888 | | | $\frac{41}{42}$ | .20 | $.40 \\ .50$ | $.40 \\ .30$ | .500 | .578 | .680 | .760 | .808 | .840 | .880 | .904 | | | | | | | | | | | | | | | | | 43 | .10 | .30 | .60 | .600 | .600 | .676 | .729 | .774 | .810 | .856 | .884 | | T - 01 | 44 | .10 | .40 | .50 | .500 | .500 | .609 | .676 | .733 | .775 | .828 | .861 | | L = 24 | 45 | .10 | .45 | .45 | .450 | .450 | .579 | .681 | .743 | .785 | .838 | .870 | | X = 12 | 46 | .10 | .50 | .40 | .500 | .500 | .614 | .708 | .765 | .804 | .852 | .881 | | X' = 12 | 47 | .20 | .30 | .50 | .500 | .500 | .578 | .630 | .692 | .740 | .801 | .839 | | | 48
49 | .20 | .40 | .40 | .400 | .400 | .526 | .644 | .714 | .762 | .821 | .857 | | | 49 | .20 | .50 | .30 | .500 | .500 | .601 | .701 | .761 | .801 | .850 | .880 | | Table 12.5 | 3 (Co | ntinue | d) | | | | | | | | | | |--|-------------------|-------------------|--------------|--------------|----------------|----------------|---------------------------|----------------|----------------|---------------------------|---|---------------------| | | 50 | .10 | .30 | .60 | .600 | .600 | .609 | .676 | .719 | .763 | .819 | .854 | | | 51 | .10 | .40 | .50 | .500 | .500 | .524 | .609 | .666 | .717 | .783 | .824 | | L = 28 | 52 | .10 | .45 | .45 | .450 | .450 | .484 | .603 | .678 | .730 | .796 | .836 | | X = 12 $X' = 16$ | $\frac{53}{54}$ | $.10 \\ .20$ | $.50 \\ .30$ | .40
.50 | .500
.500 | .500 $.500$ | .524 $.512$ | .637 $.578$ | .707 $.627$ | $.755 \\ .684$ | .814 | .851 | | 11 — 10 | 55 | .20 | .40 | .40 | .400 | .400 | .451 | .570 | .654 | .711 | .757 $.783$ | .803 $.826$ | | | 56 | .20 | .50 | .30 | .500 | .500 | .549 | .644 | .714 | .762 | .821 | .857 | | | 57 | .10 | .30 | .60 | .600 | .600 | .600 | .625 | .676 | .717 | .783 | .824 | | L = 32 | 58
59 | $.10 \\ .10$ | $.40 \\ .45$ | $.50 \\ .45$ | .500 $.450$ | $.500 \\ .450$ | $.500 \\ .473$ | .544 $.528$ | .608 | .662 | .740 | .789 | | X = 12 | 60 | .10 | .50 | .40 | .500 | .500 | .523 | .569 | .616 $.650$ | .677 $.707$ | .755
.777 | $.802 \\ .821$ | | X' = 20 | 61 | .20 | .30 | .50 | .500 | .500 | .500 | .528 | .578 | .630 | .714 | .767 | | | $\frac{62}{63}$ | $.20 \\ .20$ | .40 | .40 | .400 | .400 | .451 | .500 | .597 | .662 | .745 | .795 | | | 64 | .10 | .30 | .60 | .600 | .600 | .600 | .588 | .635 | .724 | .792 | .833 | | | 65 | .10 | .40 | .50 | .500 | .500 | .500 | .500 | .557 | .676 $.609$ | .697 | .753 | | L = 36 | 66 | .10 | .45 | .45 | .450 | .450 | .473 | .492 | .557 | .626 | .714 | .769 | | $egin{array}{l} X = 12 \ X' = 24 \end{array}$ | $\frac{67}{68}$ | .10
.20 | $.50 \\ .30$ | .40 | .500 | .500 | .523 | .542 | .596 | .659 | .741 | .791 | | A - 24 | 69 | .20 | .40 | $.50 \\ .40$ | .500
.400 | .500 $.400$ | $.500 \\ .451$ | .500 $.486$ | .538 $.541$ | .578 $.615$ | .672 $.708$ | .733 $.765$ | | | 70 | .20 | .50 | .30 | .500 | .500 | .549 | .585 | .625 | .687 | .764 | .810 | | | 71 | .10 | .30 | .60 | .600 | .600 | .600 | .600 | .600 | .642 | .714 | .767 | | L = 40 | $\frac{72}{73}$ | $.10 \\ .10$ | $.40 \\ .45$ | $.50 \\ .45$ | .500
.450 | .500 $.450$ | $.500 \\ .473$ | $.500 \\ .492$ | .508 $.503$ | .566 | .656 | .719 | | X = 12 | 74 | .10 | .50 | .40 | .500 | .500 | .523 | .492 $.542$ | .553 | $\substack{.576 \\ .615}$ | .675 $.706$ | .737
.762 | | X' = 28 | 75 | .20 | .30 | .50 | .500 | .500 | .500 | .500 | .500 | .545 | .632 | .699 | | | $\frac{76}{77}$ | $\frac{.20}{.20}$ | .40 | .40 | .400 | .400 | .451 | .486 | .508 | .568 | .672 | .736 | | | 78 | .10 | .50 | .60 | .600 | .600 | .600 | .585 | .607 | .650 | .681 | $\frac{.788}{.740}$ | | | 79 | .10 | .40 | .50 | .500 | .500 | .500 | .500 | .500 | .524 | .616 | .686 | | $ \mathbf{L} = 44 \\ \mathbf{X} = 12 $ | 80 | .10 | .45 | .45 | .450 | .450 | .473 | .492 | .503 | .529 | .637 | .705 | | $X = 12 \\ X' = 32$ | 81
82 | $.10 \\ .20$ | .50 | .40 | .500 | .500 | .523 | .542 | .553 | .571 | .671 | .733 | | A - 02 | 83 | .20 | .30 $.40$ | $.50 \\ .40$ | .500
.400 | .500 $.400$ | $\substack{.500 \\ .451}$ | .500
.486 | $.500 \\ .508$ | .512 $.524$ | $.593 \\ .637$ | .666 | | | 84 | .20 | .50 | .30 | .500 | .500 | .549 | .585 | .607 | .623 | .708 | .765 | | | 85 | .10 | .30 | .60 | .600 | .676 | .747 | .784 | .817 | .847 | .884 | .906 | | T 0.4 | $\frac{86}{87}$ | $.10 \\ .10$ | .40 | .50 | .500 | .608 | .699 | .747 | .789 | .822 | .865 | .891 | | L = 24
X = 16 | 88 | .10 | $.45 \\ .50$ | $.45 \\ .40$ | .450 $.500$ | $.576 \\ .608$ | .676 $.699$ | .743 $.762$ | $.794 \\ .809$ | .828 $.841$ | .871 $.880$ | .896
.904 | | $\mathbf{x}' = 8$ | 89 | .20 | .30 | .50 | .500 | .578 | .648 | .685 | .733 | .775 | .828 | .861 | | | $\frac{90}{91}$ | .20
.20 | .40
.50 | $.40 \\ .30$ | .400
.500 | .512 $.578$ | $.601 \\ .648$ | $.680 \\ .720$ | .744 $.776$ | .787 $.814$ | .840 $.860$ | .872
.888 | | | 92 | .10 | .30 | 60 | .600 | .600 | .676 | .729 | .762 | $-\frac{.514}{.798}$ | .846 | .876 | | | 93 | .10 | .40 | .50 | .500 | .500 | .609 | .676 | .719 | .763 | .819 | .854 | | L = 28 | 94 | .10 | .45 | .45 | .450 | .450 | .576 | .659 | .726 | .771 | .827 | .861 | | $X = 16 \\ X' = 12$ | 95
96 | .10
.20 | $.50 \\ .30$ | .40
.50 | .500
.500 | .500
.500 | $.609 \\ .578$ | .686 $.630$ | .748 $.666$ | $.790 \\ .717$ | .842 $.783$ | .873 $.824$ | | 11 12 | 97 | .20 | .40 | .40 | .400 | .400 | .512 | .602 | .681 | .734 | .800 | .840 | | | 98 | .20 | .50 | 30 | .500 | .500 | .578 | .660 | .728 | .774 | .830 | .864 | | | $\frac{99}{100}$ | .10 | .30 | .60 | .600 | .600 | .609 | .676 | .718 | .752 | .810 | .846 | | L = 32 | 101 | .10
.10 | $.40 \\ .45$ | .50 $.45$ | .500
.450 | .500 $.450$ | .524 $.484$ | .609 $.580$ | $.662 \\ .661$ | .706 $.716$ | .774 $.785$ | .817 $.827$ | | X = 16 | 102 | .10 | .50 | .40 | .500 | .500 | .524 | .614 | .689 | .740 | .804 | .842 | | X' = 16 | 103 | $.20 \\ .20$ | .30 | .50 | .500 | .500 | .512 | .578 | .620 | .662 | .740 | .789 | | | $\frac{104}{105}$ | .20 | $.40 \\ .50$ | .40
.30 | .400
.500 | .400 $.500$ | $.430 \\ .512$ | .526 $.602$ | .620 $.681$ | .683 $.734$ | .762 $.800$ | .809
.840 | | | 106 | .10 | .30 | .60 | .600 | .600 | .600 | .625 | .676 | .711 | .774 | .817 | | | 107 | .10 | .40 | .50 | .500 | .500 | .500 | .544 | .608 | .653 | .731 | .781 | | $egin{array}{c} \mathbf{L} = 36 \ \mathbf{X} = 16 \end{array}$ | 108 | .10 | .45 | .45 | .450 | .450 | .450 | .506 | .598 | .662 | .744 | .793 | | $X = 16 \\ X' = 20$ | $\frac{109}{110}$ | .10
.20 | .50 $.30$ | $.40 \\ .50$ | .500
.500 | .500 $.500$ | .500 $.500$ | $.546 \\ .528$ | .632 $.578$ | .692 $.613$ | .766 $.697$ | .812 $.753$ | | 22 20 | 111 | .20 | .40 | .40 | .400 | .400 | .406 | .454 | .561 | .633 | .724 | .778 | | | 112 | .20 | .50 | .30 | .500_ | 500 | .503 | .549 | .635 | .696 | .771 | .817 | | | 113 | .10 | .30 | .60 | .600 | .600 | .600 | .600 | .635 | .676 | .740 | .789 | | L = 40 | $\frac{114}{115}$ | .10
.10 | $.40 \\ .45$ | $.50 \\ .45$ | $.500 \\ .450$ | $.500 \\ .450$ | $.500 \\ .450$ | $.500 \\ .473$ | .557 $.538$ | .609 $.611$ | $.689 \\ .703$ | .745 $.760$ | | X = 16
X' = 24 | 116 | .10 | .50 | .40 | .500 | .500 | .500 | .523 | .578 | .645 | .730 | .782 | | X' = 24 | 117 | .20 | .30 | .50 | .500 | .500 | .500 | .500 | .538 | .578 | .656 | .719 | | | $\frac{118}{119}$ | .20
.20 | .40
.50 | $.40 \\ .30$ | .400 $.500$ | $.400 \\ .500$ | .406 $.503$ | .451 | .504 | .585 | .686 | .748 | | | $\frac{115}{120}$ | .10 | .30 | .60 | .600 | .600 | .600 | .600 | .600 | .658_ | .743 | .794 | | | 121 | .10 | .40 | .50 | .500 | .500 | .500 | .500 | .508 | .566 | .648 | .712 | | L = 44 | 122 | .10 | .45 | .45 | .450 | .450 | .450 | .473 | .488 | .561 | .664 | .728 | | $X = 16 \\ X' = 28$ | $\frac{123}{124}$ | $.10 \\ .20$ | .50 $.30$ | $.40 \\ .50$ | .500
.500 | $.500 \\ .500$ | .500 | .523 | .538 | .599 | .694 | .753 | | 1 - 40 | 125 | .20 | .40 | .40 | .400 | .400 | $.500 \\ .406$ | $.500 \\ .451$ | $.500 \\ .479$ | .545 $.538$ | $\begin{array}{c} .616 \\ .650 \end{array}$ | .686
.718 | | | 126 | .20 | .50 | .30 | .500 | .500 | .503 | .549 | .578 | .621 | .714 | .771 | | | | | | | | | | | | | | | Table 12.4 # SUMMARY OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY TYPE 2-S2 TRUCKS WEIGHING ONE KIP EACH One hundred eight variations in the Type 2-S2 truck are given in this Table. Each truck number, from 1 to 108, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. | | | | | | - | | | | | | | | |--|-----------------|------------|-------------------------|--------------|--------------|----------------|----------------|-------------|----------------|-------------|--------------|--------------| | Wheel Base and Axle Spacing | Truck No. |] | Load C
Axles
Kips | | | | | Span-F | 'eet | | | | | Feet | T. | aı | \mathbf{a}_2 | a 3 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 1 | .10 | .30 | .60 | .384 | .544
 .662 | .745 | .795 | .829 | .871 | .897 | | | 2 | .10 | .40 | .50 | .400 | .494 | .633 | .721 | .775 | .812 | .858 | .886 | | L = 20 | 3 | .10 | .50 | .40 | .500 | .562 | .691 | .766 | .812 | .843 | .882 | .905 | | $ \begin{array}{l} L = 20 \\ X = 8 \\ X' = 8 \end{array} $ | 4 | .20 | .30 | .50 | .320 | .466 | .583 | .683 | .744 | .786 | .838 | .870 | | $\mathbf{X}' = 8$ | 5 | .20 | .40 | .40 | .400 | .480 | .633 | .724 | .778 | .815 | .861 | .889 | | | 6 | .20 | .50 | .30 | .500 | .571 | .695 | .771 | .817 | .848 | .885 | .908 | | | 7 | .10 | .30 | .60 | .384 | .486 | .587 | .672 | .736 | .779 | .833 | .866 | | | 8 | .10 | .40 | .50 | .400 | .423 | .531 | .634 | .703 | .751 | .811 | .848 | | L=24 | 9 | .10 | .50 | .40 | .500 | .523 | .599 | .694 | .753 | .793 | .844 | .874 | | $\mathbf{x} = 8$ | 10 | .20 | .30 | .50 | .320 | .405 | .503 | .597 | .673 | .726 | .792 | .832 | | X' = 12 | 11 | .20 | .40 | .40 | .400 | .450 | .538 | .650 | .718 | .765 | .823 | .858 | | | 12 | .20 | .50 | 30 | .500 | .549 | .623 | .714 | .771 | .809 | .856 | .885 | | | 13 | .10 | .30 | .60 | .384 | .486 | .523 | .609 | .678 | .730 | .796 | .836 | | t - 00 | 14 | .10 | .40 | .50 | .400 | .423 | .448 | .552 | .635 | .692 | .766 | .811 | | $ \begin{array}{l} \text{L} = 28 \\ \text{X} = 8 \end{array} $ | 15 | .10 | .50 | .40 | .500 | .523 | .548 | .626 | .696 | .745 | .806 | .844 | | $\mathbf{X}' = 16$ | 16 | .20 $.20$ | .30 | $.50 \\ .40$ | .320 | .405 | .435 | .521 | .606 | .668 | .747 | .795 | | A - 10 | $\frac{17}{18}$ | .20 | .40 | .30 | .400
.500 | $.450 \\ .549$ | .498 | .580 | .661 | .716 | .785 | .827 | | | | | .50 | | | | .597 | .659 | .726 | .771 | .827 | .861 | | | 19 | .10 | .30 | .60 | .384 | .486 | .523 | .556 | .623 | .683 | .759 | .806 | | T 99 | $\frac{20}{21}$ | .10
.10 | .40 | $.50 \\ .40$ | .400 $.500$ | .423 | .448 | .484 | .570 | .636 | .721 | .774 | | L = 32
X = 8 | $\frac{21}{22}$ | .20 | .50
.30 | .50 | .320 | .523 $.405$ | $.548 \\ .435$ | .568 $.470$ | $.642 \\ .541$ | .698 $.612$ | .770
.703 | .814 | | $\mathbf{X}' = 20$ | 23 | .20 | .40 | .40 | .400 | .405 | .435 | .525 | .605 | .668 | .748 | .759 $.797$ | | A - 20 | $\frac{23}{24}$ | .20 | .50 | .30 | .500 | .549 | .597 | .622 | .682 | .734 | .799 | .839 | | | 25 | .10 | $-\frac{.30}{.30}$ | .60 | .384 | .486 | .523 | .542 | .580 | .637 | .723 | | | | 26
26 | .10 | .40 | .50 | .384 | .486 $.423$ | .523 | .461 | .580 $.509$ | .582 | | .776 | | L = 36 | 27 | .10 | .50 | .40 | .500 | .523 | .548 | .461 | .589 | .653 | .678 $.734$ | .737
.785 | | $\ddot{\mathbf{x}} = \ddot{\mathbf{s}}$ | 28 | .20 | .30 | .50 | .320 | .405 | .435 | .451 | .491 | .558 | .660 | .724 | | $\ddot{\mathbf{X}}' = 24$ | 29 | .20 | .40 | .40 | .400 | .450 | .498 | .523 | .551 | .622 | .712 | .768 | | 25 - 24 | 30 | .20 | .50 | .30 | .500 | .549 | .597 | .622 | .644 | .698 | .771 | .816 | | | 31 | .10 | .30 | .60 | .384 | .486 | .523 | .542 | .553 | .596 | .688 | .748 | | | 32 | .10 | .40 | .50 | .400 | .423 | .448 | .461 | .353 | .530 | .637 | .704 | | L = 40 | 33 | .10 | .50 | .40 | .500 | .523 | .548 | .561 | .568 | .609 | .700 | .757 | | $\ddot{\mathbf{x}} = \ddot{\mathbf{s}}$ | 34 | .20 | .30 | .50 | .320 | .405 | .435 | .451 | .461 | .506 | .618 | .689 | | $\mathbf{X}' = 28$ | 35 | .20 | .40 | .40 | .400 | .450 | .498 | .523 | .538 | .577 | .677 | .739 | | 20 | 36 | .20 | .50 | .30 | .500 | .549 | .597 | .622 | .637 | .662 | .744 | .793 | | | 37 | .10 | | | | | | .726 | | | | .889 | | | 38 | | | .50 | .384 | .544 | .662 $.626$ | | .780 | .817 | .862 | .889 | | L = 24 | აგ
39 | .10 | .40 $.50$ | .40 | .400
.500 | $.494 \\ .549$ | .626 | .701 $.745$ | .759 $.795$ | .799 $.829$ | .848
.871 | .878 | | X = 12 | 40 | .20 | .30 | .50 | .320 | .466 | .662 $.576$ | .648 | .795 | .829 | .820 | .855 | | $\mathbf{X}' = \mathbf{X}'$ | 41 | .20 | .40 | .40 | .400 | .450 | .576 | .682 | .716 | .788 | .840 | .872 | | A - 0 | 42 | .20 | .50 | .30 | .500 | .535 | .640 | .682 $.730$ | .784 | .821 | .865 | .892 | | | 44 | .40 | .00 | .50 | .500 | .000 | .040 | . (50 | .104 | .041 | .000 | .094 | | Table 12. | .4 (Co | ntinue | d) | | | | | | | | | | |--|-------------------|--------------|--------------|--------------|--------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | | 43 | .10 | .30 | .60 | .384 | .486 | .587 | .664 | .721 | .767 | .824 | .858 | | | 44 | .10 | .40 | .50 | .400 | .405 | .531 | .620 | .687 | .738 | .801 | .840 | | $\mathbf{L} = 28$ | 45 | .10 | .50 | .40 | .500 | .500 | .568 | .672 | .736 | .779 | .833 | .866 | | $ \begin{array}{l} L = 28 \\ X = 12 \\ X' = 12 \end{array} $ | $\frac{46}{47}$ | .20
.20 | $.30 \\ .40$ | .50
.40 | .320 $.400$ | .405 $.400$ | .503 $.480$ | .575
.606 | .646 $.684$ | .702 $.737$ | .774 $.802$ | .817 $.841$ | | A - 12 | 48 | .20 | .50 | .30 | .500 | .500 | .570 | .672 | .084 | .781 | .836 | .868 | | | | | .30 | .60 | | .486 | .523 | | | | | | | | 49
50 | .10
.10 | .40 | .50 | .384
.400 | .486 | .523 | .609 $.550$ | .666 $.619$ | .718 $.679$ | .786 $.756$ | .828 $.803$ | | L = 32 | 51 | .10 | .50 | ,40 | .500 | .500 | .523 | .603 | .678 | .730 | .796 | .836 | | $\ddot{\mathbf{x}} = 12$ | 52 | .20 | .30 | .50 | ,320 | .405 | .435 | .521 | .579 | .645 | .729 | .781 | | $X' = \overline{16}$ | 53 | .20 | .40 | .40 | .400 | .400 | .451 | .534 | .625 | .687 | .764 | .810 | | | 54 | .20 | .50 | .30 | .500 | .500 | .549 | .616 | .692 | .743 | .806 | .845 | | | 55 | .10 | .30 | .60 | .384 | .486 | .523 | .556 | .622 | .671 | .750 | .798 | | | 56 | .10 | .40 | .50 | .400 | .405 | .435 | .484 | .562 | .623 | .711 | .766 | | 1' = 36 | 57 | .10 | .50 | .40 | .500 | .500 | .523 | .546 | .623 | .683 | .759 | .806 | | $\begin{array}{c} X = 12 \\ Y' = 20 \end{array}$ | 58 | $.20 \\ .20$ | .30 | .50 | .320 | .405 | .435 | .470 | .532 | .590 | .685 | .745 | | J. — 20 | 59
60 | .20 | .40 $.50$ | $.40 \\ .30$ | .400
.500 | $.400 \\ .500$ | .451 $.549$ | $.486 \\ .585$ | $.568 \\ .647$ | $.638 \\ .705$ | .726 $.778$ | $.780 \\ .822$ | | | 61 | .10 | .30 | .60 | .384 | .486 | .523 | .542 | .580 | .631 | .714 | .769 | | | 62 | .10 | .40 | .50 | .400 | .400 | .435 | .451 | .509 | .570 | .668 | .731 | | $I_{\cdot} = 40$ | 63 | .10 | .50 | .40 | .500 | .500 | .523 | .542 | .566 | .637 | .723 | .776 | | Y = 12 | 64 | .20 | .30 | .50 | .320 | .405 | .435 | .451 | .491 | .540 | .643 | .710 | | X' = 24 | 65 | .20 | .40 | .40 | .400 | .400 | .451 | .486 | .515 | .591 | .690 | .750 | | | 66 | .20 | .50 | .30 | .500 | .500 | .549 | .585 | .611 | .668 | .750 | .799 | | | 67 | .10 | .30 | .60 | .384 | .486 | .523 | .542 | .553 | .596 | .680 | 741 | | | 68 | .10 | .40 | .50 | .400 | .405 | .435 | .451 | .461 | .526 | .627 | .696 | | I = 44 | 69 | .10 | .50 | .40 | .500 | .500 | .523 | .542 | .553 | .593 | .688 | .748 | | X = 12
X = 28 | $\frac{70}{71}$ | .20 | $.30 \\ .40$ | .50
.40 | .320 | $.405 \\ .400$ | .435 | .451 | .461 | .506 | $.602 \\ .654$ | .676 | | .1 - 20 | $\frac{71}{72}$ | .20 | .50 | .30 | .400
.500 | .500 | $.451 \\ .549$ | .486 $.585$ | .508 $.607$ | $.546 \\ .632$ | .722 | .721 $.776$ | | | 73 | | | 60 | .384 | .544 | .662 | .721 | .765 | .804 | .852 | .881 | | | 74 | .10 | .40 | .50 | .400 | .494 | .626 | .694 | .744 | .786 | .838 | .870 | | X = 28 | 75 | .10 | .50 | .40 | .500 | .549 | .653 | .724 | .778 | .815 | .861 | .889 | | 3 = 16 | 76 | .20 | .30 | .50 | .320 | .466 | .576 | .632 | .687 | .738 | .801 | .840 | | x = 8 | 77 | .20 | .40 | .40 | .400 | .450 | .555 | .640 | .712 | .761 | .820 | .856 | | | 78 | .20 | .50 | .30 | .500 | .535 | .612 | .670 | .736 | .780 | .835 | .868 | | | 79 | .10 | .30 | .60 | .384 | .486 | .587 | .664 | .710 | .755 | .814 | .851 | | r - 00 | 80 | .10 | .40 | .50 | .400 | .405 | .531 | .620 | .674 | .726 | .792 | .832 | | $ \mathbf{L} = 32 \\ \mathbf{X} = 16 $ | $\frac{81}{82}$ | .10
.20 | .50 $.30$ | .40
.50 | .500 $.320$ | $.500 \\ .405$ | $.565 \\ .503$ | $.650 \\ .575$ | $.718 \\ .619$ | $.765 \\ .679$ | .823 $.756$ | .858 $.803$ | | X' = 10
X' = 12 | 83 | .20 | .40 | .40 | .400 | .400 | .470 | .564 | .650 | .709 | .781 | .825 | | | 84 | .20 | .50 | .30 | .500 | .500 | .544 | .631 | .704 | .754 | .815 | .852 | | | 85 | .10 | .30 | .60 | .384 | .486 | .523 | .609 | .666 | .707 | .777 | .821 | | | 86 | .10 | .40 | .50 | .400 | ,405 | .443 | .550 | .617 | .668 | .747 | .795 | | $\Gamma = 36$ | 87 | .10 | .50 | .40 | .500 | .500 | .503 | .580 | .661 | .716 | .785 | .827 | | X = 16 $X' = 16$ | 88 | .20 | .30 | .50 | .320 | .405 | .435 | .521 | .575 | .623 | .711 | .766 | | X' = 16 | 89 | .20 | .40 | .40 | .400 | .400 | .406 | .490 | .590 | .658 | .743 | .794 | | | 90 | .20 | .50 | .30 | 500 | .500 | .503 | .573 | .658 | .715 | 786 | .828 | | | 91 | .10 | .30 | .60 | .384 | .486 | .523 | .556 | .622 | .668 | .741 | .791 | | L = 40 | $\frac{92}{93}$ | .10
.10 | .40
.50 | .50
.40 | .400
.500 | $.405 \\ .500$ | $.435 \\ .500$ | .484 $.525$ | $.562 \\ .605$ | $.615 \\ .668$ | .703 $.748$ | .759 $.797$ | | X = 16 | 94 | .20 | .30 | .50 | .320 | .405 | .435 | .470 | .532 | .576 | .668 | .731 | | X'= 20 | 95 | .20 | .40 | .40 | .400 | .400 | .406 | .451 | .533 | .609 | .705 | .763 | | | 96 | .20 | .50 | .30 | .500 | .500 | .503 | .549 | .613 | .677 | .757 | .805 | | | 97 | .10 | .30 | .60 | .384 | .486 | .523 | .542 | .580 | .631 | .706 | .762 | | | 98 | .10 | .40 | .50 | .400 | .405 | .435 | .451 | .509 | .570 | .660 | .724 | | L = 44 | 99 | .10 | .50 | .40 | .500 | .500 | .500 | .523 | .551 | .622 | .712 | .768 | | X = 16 | 100 | .20 | .30 | .50 | .320 | .405 | .435 | .451 | .491 | .540 | .627 | .696 | | X' ≔ 24 | 101 | .20 | .40 | .40 | .400 | .400 | .406 | .451 | .481 | .561 | .688 | .733 | | | 102 | .20 | .50 | .30 | .500 | .500_ | 503 | 549 | .578 | .640 | .728 | .782
| | | 103 | .10 | .30 | .60 | .384 | .486 | .523 | .542 | .553 | .596 | .671 | .733 | | T - 40 | 104 | .10 | .40 | .50 | .400 | .405 | .435 | .451 | .461 | .526 | .618 | .689 | | $ \mathbf{L} = 48 \\ \mathbf{X} = 16 $ | $\frac{105}{106}$ | .10 $.20$ | $.50 \\ .30$ | .40
.50 | .500 $.320$ | .500 $.405$ | .500 $.435$ | .523 $.451$ | $.538 \\ .461$ | .577 $.506$ | .677 $.586$ | .739 $.662$ | | X = 16
X' = 28 | 107 | .20 | .40 | .40 | .400 | .400 | .406 | .451 | .479 | .515 | .632 | .662 | | | 108 | .20 | .50 | .30 | .500 | .500 | .503 | .549 | .578 | .603 | .700 | .759 | | - | | | | | | | | | | | | | Table 12.5 ## SUMMARY OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY TYPE 2-S3 TRUCKS WEIGHING ONE KIP EACH Ninety variations in the Type 2-S3 truck are given in this Table. Each truck number, from 1 to 90, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. | Wheel
Base
and
Axle
Spacing | Truck No. | I | oad Or
Axles
Kips | n | | | | Span-Fe | et | | | | |--|-----------------|------------|-------------------------|--------------------|--------------|-------------|----------------|-------------|----------------|----------------|-------------|--------------| | Feet | Ë | aı | \mathbf{a}_2 | a3 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 1 | .10 | .225 | .675 | .315 | .495 | .609 | .695 | .756 | .797 | .848 | .878 | | | 2 | .10 | .30 | .60 | .300 | .440 | .580 | .682 | .745 | .788 | .840 | .872 | | L = 24 | 3 | .10 | .40 | .50 | .400 | .454 | .576 | .677 | .739 | .781 | .834 | .867 | | $\mathbf{x} = 8$ | 4 | .20 | .20 | .60 | .280 | .440 | .541 | .644 | .714 | .762 | .821 | .857 | | $\mathbf{X'} = 8$ | 5 | .20 | .30 | .50 | .300 | .374 | .514 | .632 | .703 | .752 | .813 | .850 | | | 6 | .20 | .40 | .40 | .400 | .468 | .585 | .687 | .748 | .790 | .842 | .873 | | | 7 | .10 | .225 | .675 | .315 | .495 | .556 | .639 | .706 | .755 | .816 | .852 | | T 00 | 8 | .10 | .30 | .60 | .300 | .440 | .502 | .606 | .684 | .737 | .802 | .841 | | $ \begin{array}{l} L = 28 \\ X = 8 \end{array} $ | $\frac{9}{10}$ | .10 | $.40 \\ .20$ | .50 $.60$ | .400
.280 | .423 $.440$ | .488 $.494$ | .592 $.570$ | .668 $.654$ | .721 $.711$ | .788 $.783$ | .829 $.826$ | | X = 0 $X' = 12$ | 11 | .20 | .30 | .50 | .300 | .366 | .434 | .545 | .632 | .691 | .766 | .812 | | A - 12 | 12 | .20 | .40 | .40 | .400 | .451 | .520 | .615 | .690 | .740 | .804 | .843 | | | 13 | .10 | .225 | -675 | .315 | | .555 | .599 | | | .784 | .827 | | | 14 | .10 | .30 | .60 | .300 | .440 | .493 | .544 | .625 | .687 | .764 | .810 | | L = 32 | 15 | .10 | .40 | .50 | .400 | .423 | .448 | .513 | .602 | .664 | .743 | .792 | | $\mathbf{x} = 8$ | 16 | .20 | .20 | .60 | .280 | .440 | .493 | .533 | .597 | .662 | .745 | .795 | | X' = 16 | 17 | .20 | .30 | .50 | .300 | .366 | .411 | .467 | .564 | .633 | .721 | .775 | | | 18 | .20 | .40 | .40 | .400 | .451 | .498 | .554 | .633 | .692 | .767 | .812 | | | 19 | .10 | .225 | .675 | .315 | .495 | .555 | .585 | .625 | .673 | .753 | .802 | | | 20 | .10 | .30 | .60 | .300 | .440 | .493 | .520 | .570 | .638 | .726 | .780 | | L = 36 | 21 | .10 | .40 | .50 | .400 | .423 | .448 | .466 | .538 | .608 | .699 | .756 | | X = 8 $X' = 20$ | $\frac{22}{23}$ | .20
.20 | .20
.30 | .60
.50 | .280 | .440 $.366$ | .493 $.411$ | .520 $.433$ | .556 $.499$ | .615 $.577$ | .708 $.677$ | .765
.739 | | A - 20 | 24 | .20 | .40 | .40 | .400 | .451 | .411 | .523 | .578 | .645 | .730 | .783 | | | 25 | 10- | .225 | $\frac{-30}{.675}$ | .315 | .495 | .555 | .585 | .603 | .643 | .723 | .777 | | | 26 | .10 | .30 | .60 | .319 | .440 | .493 | .520 | .536 | .591 | .690 | .750 | | L = 40 | 27 | .10 | .40 | .50 | .400 | .423 | .448 | .461 | .484 | .555 | .657 | .721 | | $ \begin{array}{c} L = 40 \\ X = 8 \end{array} $ | 28 | .20 | .20 | .60 | .280 | .440 | .493 | .520 | .536 | .571 | .672 | .736 | | $\ddot{X}' = 24$ | 29 | .20 | .30 | .50 | .300 | .366 | .411 | .433 | .447 | .523 | .634 | .703 | | | 30 | .20 | .40 | .40 | .400 | .451 | .498 | .523 | .543 | .600 | .695 | .754 | | * | 31 | .10 | .225 | .675 | .315 | .495 | .609 | .680 | .740 | .784 | .838 | .870 | | | 32 | .10 | .30 | .60 | .300 | .440 | .580 | .663 | .730 | .775 | .831 | .864 | | L = 28 | 33 | .10 | .40 | .50 | .400 | .441 | .555 | .654 | .721 | .767 | .823 | .858 | | $\overline{\mathbf{x}} = 12$ | 34 | .20 | .20 | .60 | .280 | .440 | .541 | .606 | .684 | .737 | .802 | .841 | | $\mathbf{x}' = 8$ | 35 | .20 | .30 | .50 | .300 | .366 | .507 | .592 | .672 | .726 | .793 | .834 | | | 36 | .20 | .40 | .40 | .400 | .432 | 529 | .644 | .715 | .762 | .821 | .857 | | | 37 | .10 | .225 | .675 | .315 | .495 | .556 | .639 | .690 | .742 | .806 | .845 | | _ | 38 | .10 | .30 | .60 | .300 | .440 | .502 | .601 | .669 | .724 | .792 | .833 | | L = 32 | 39 | .10 | .40 | .50 | .400 | .400 | .457 | .569 | .650 | .706 | .777 | .820 | | $X = 12 \\ X' = 12$ | 40 | .20 | .20 | .60 | .280 | .440 | .494 | .568 | .625 | .687 | .764 $.746$ | .810
.796 | | A - 12 | $\frac{41}{42}$ | .20
.20 | $.30 \\ .40$ | .50
.40 | .300
.400 | .366 $.400$ | $.430 \\ .467$ | .522 $.571$ | $.600 \\ .655$ | $.665 \\ .712$ | .783 | .196 | | | 444 | .20 | .40 | .40 | .400 | .400 | .401 | .011 | .000 | .114 | .100 | .040 | | Table 12.5 | 5 (Cor | ntinue | d) | | | | | | | | | | |---------------------|----------|--------------|--------------|--------------|----------------|----------------|--------------|-------------|----------------|-------------|----------------|--------------| | | 43 | .10 | .225 | .675 | .315 | .495 | .555 | .599 | .657 | .701 | .775 | .819 | | | 44 | .10 | .30 | .60 | .300 | .440 | .493 | .544 | .615 | .675 | .754 | .803 | | L = 36 | 45 | .10 | .40 | .50 | .400 | .400 | .423 | .493 | .583 | .648 | .732 | .784 | | X = 12 | 46 | .20 | .20 | .60 | .280 | .440 | .493 | .533 | .584 | .638 | .726 | .780 | | X' = 16 | 47 | .20 | .30 | .50 | .300 | .366 | .411 | .466 | .532 | .607 | .701 | .759 | | | 48_ | .20 | .40 | .40 | .400 | .400 | .451 | .511 | .597 | 663 | .745 | 795 | | | 49 | .10 | .225 | .675 | .315 | .495 | .555 | .585 | .625 | .669 | .744 | .795 | | | 50 | .10 | .30 | .60 | .300 | .440 | .493 | .520 | .570 | .627 | .717 | .773 | | L = 40 | 51 | .10 | .40 | .50 | .400 | .400 | .423 | .444 | .518 | .592 | .688 | .747 | | $X = 12 \\ X' = 20$ | 52 | .20 | .20 | .60 | .280 | .440 | .493 | .520 | .556 | .595 | .690 | .750 | | X = 20 | 53 | .20 | .30 | .50 | .300 | .366 | .411 | .433 | .488 | .550 | .657 | .723 | | *** | 54 | .20 | .40 | .40 | .400 | .400 | .451 | .486 | .541 | .615 | .709 | .765 | | | 55 | .10 | .225 | .675 | .315 | .495 | .555 | .585 | .603 | .643 | .714 | .770 | | T - 11 | 56 | .10 | .30 | .60 | .300 | .440 | .493 | .520 | .536 | .587 | .681 | .743 | | L = 44
X = 12 | 57 | .10 | $.40 \\ .20$ | .50 | .400 | .400 | .423 | .442 | .465 | .539 | .645 | .712 | | X' = 24 | 58
59 | .20
.20 | .30 | $.60 \\ .50$ | $.280 \\ .300$ | $.440 \\ .366$ | .493 $.411$ | .520 $.433$ | $.536 \\ .447$ | .571 $.503$ | $.654 \\ .614$ | .721
.687 | | A - 44 | 60 | .20 | .40 | .40 | .400 | .400 | .451 | .486 | .510 | .569 | .673 | .736 | | | 61 | .10 | .225 | .675 | .315 | .495 | .609 | .680 | .725 | .771 | .828 | .862 | | | | | | | | | | .660 | | | .828 | | | L = 32 | 62
63 | .10
.10 | .30
.40 | .60 $.50$ | .300 $.400$ | .440
.441 | .580
.555 | .641 | .714 $.703$ | .762 $.752$ | .813 | .857 $.850$ | | X = 16 | 64 | .20 | .20 | .60 | .280 | .440 | .541 | .605 | .654 | .711 | .783 | .826 | | X' = 8 | 65 | .20 | .30 | .50 | .300 | .366 | .507 | .580 | .643 | .701 | .774 | .819 | | 11 | 66 | .20 | .40 | .40 | .400 | .432 | .512 | .602 | .681 | .735 | .801 | .840 | | | 67 | .10 | .225 | .675 | .315 | .495 | .556 | .639 | .690 | .729 | .796 | .837 | | | 68 | .10 | .30 | .60 | .300 | .440 | .502 | .601 | .661 | .711 | .783 | .826 | | L = 36 | 69 | .10 | .40 | .50 | .400 | .400 | .456 | .565 | .632 | .691 | .766 | .812 | | X = 16 | 70 | .20 | .20 | .60 | .280 | .440 | .494 | .568 | .613 | .662 | .745 | .795 | | X' = 12 | 71 | .20 | .30 | .50 | .300 | .366 | .430 | .522 | .577 | .641 | .728 | .781 | | | 72 | .20 | .40 | .40 | .400 | .400 | .441 | .527 | .621 | .684 | .762 | .809 | | | 73 | .10 | .225 | .675 | .315 | .495 | .555 | .599 | .657 | .697 | .765 | .812 | | | 74 | .10 | .30 | .60 | .300 | .440 | .493 | .544 | .615 | .662 | .745 | .795 | | L = 40 | 75 | .10 | .40 | .50 | .400 | .400 | .411 | .493 | .573 | .633 | .721 | .775 | | X = 16 | 76 | .20 | .20 | .60 | .280 | .440 | .493 | .533 | .584 | .619 | .708 | .765 | | X' = 16 | 77 | .20 | .30 $.40$ | $.50 \\ .40$ | .300 | .366 | .411 | .466 | .532 | .584 | .683 | .745 | | | 78 | .20 | | | .400 | .400 | .406 | 468 | .562 | .634 | .724 | 779 | | | 79 | .10 | .225 | .675 | .315 | .495 | .555 | .585 | .625 | .669 | .735 | .787 | | L = 44 | 80 | .10 | .30 | $.60 \\ .50$ | .300 | .440 $.400$ | .493 | .520 $.433$ | .570 | .624 $.578$ | $.708 \\ .677$ | .765 $.739$ | | X = 16 | 81
82 | $.10 \\ .20$ | $.40 \\ .20$ | .60 | $.400 \\ .280$ | .440 | .411 $.493$ | .520 | .516 $.556$ | .595 | .672 | .736 | | $\mathbf{X}' = 10$ | 83 | .20 | .30 | .50 | .300 | .366 | .411 | .433 | .488 | .539 | .640 | .709 | | A = 20 | 84 | .20 | .40 | .40 | .400 | .400 | .406 | .451 | .507 | .586 | .687 | .748 | | | 85 | .10 | .225 | .675 | .315 | .495 | .555 | .585 | .603 | .643 | .705 | .762 | | | 86 | .10 | .30 | .60 | .300 | .440 | .493 | .520 | .536 | .587 | .672 | .736 | | L = 48 | 87 | .10 | .40 | .50 | .400 | .400 | .411 | .433 | .462 | .532 | .634 | .703 | | X = 16 | 88 | .20 | .20 | .60 | .280 | .440 | .493 | .520 | .536 | .571 | .637 | .707 | | X' = 24 | 89 | .20 | .30 | .50 | .300 | .366 | .411 | .433 | .447 | .503 | .597 | .674 | | | 90 | .20
 .40 | .40 | .400 | .400 | .406 | .451 | .479 | .539 | .650 | .719 | | | | | | | | | | | | | | | #### Table 12.6 # SUMMARY OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY TYPE 3-S1 TRUCKS WEIGHING ONE KIP EACH Ninety variations in the Type 3-S1 truck are given in this Table. Each truck number, from 1 to 90, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. #### All dimensions are in feet. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. | Wheel
Base
and
Axle
Spacing | Truck No. | 1 | ⊿oad O
Axles
Kips | n | | | | Span-Fe | æŧ | | | | |--|-----------------|----------------|-------------------------|---------------|-------------|----------------|-------------|-------------|-------------|--------------|--|--------------| | Feet | Ē | a ₁ | \mathbf{a}_2 | as | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 1 | .10 | .40 | .50 | .500 | .500 | .565 | .642 | .706 | .752 | .810 | .846 | | | 2 | .10 | .50 | .40 | .400 | .420 | .541 | .654 | .723 | .769 | .826 | .861 | | L = 24 | 3 | .10 | .60 | .30 | .384 | .501 | .601 | .701 | .761 | .801 | .850 | .880 | | $\mathbf{X} = 8$ $\mathbf{X}' = 12$ | 4 | .20 | .40 | .40 | .400 | .400 | .470 | .602 | .681 | .734 | .800 | .840 | | X' = 12 | 5 | .20 | .50 | .30 | .320 | .441 | .533 | .650 | .720 | .767 | .825 | .860 | | | 6 | .20 | .534 | .266 | .342 | .468 | .556 | .666 | .733 | .778 | .833 | .867 | | | 7 | .10 | .40 | .50 | .500 | .500 | .503 | .576 | .640 | .695 | .766 | .810 | | | 8 | .10 | .50 | .40 | .400 | .420 | .480 | .581 | .663 | .719 | .788 | .830 | | L = 28 | 9 | .10 | .60 | .30 | .384 | .501 | .567 | .644 | .714 | .762 | .821 | .857 | | $ \begin{array}{c} $ | 10 | .20 | .40 | .40 | .400 | .400 | .441 | .526 | .620 | .683 | .762 | .809 | | X' = 16 | 11 | .20 | .50 | .30 | .320 | .441 | .527 | .591 | .673 | .727 | .795 | .836 | | | 12 | .20 | .534 | .266 | .342 | .468 | .556 | .614 | .691 | .743 | 807 | .845 | | | 13 | .10 | .40 | .50 | .500 | .500 | .500 | .514 | .582 | .640 | .723 | .774 | | | 14 | .10 | .50 | .40 | .400 | .420 | .480 | .511 | .605 | .670 | .750 | .799 | | L = 32 | 15 | .10 | .60 | .30 | .384 | .501 | .567 | .600 | .669 | .724 | .792 | .833 | | X = 8 $X' = 20$ | 16 | .20 | .40 | .40 | .400 | .400 | .441 | .481 | .561 | .633 | .724 | .778 | | X - 20 | 17
18 | .20 | .50 | $.30 \\ .266$ | .320 | .441 | .527 | .570 | .627 | .689 | .766 $.780$ | .813 | | | | .20 | .534 | | .342 | .468 | .556 | 601_{-} | .649 | .708 | and an | .824 | | | 19 | .10 | .40 | .50 | .500 | .500 | .500 | .500 | .532 | .588 | .681 | .740 | | L = 36 | 20 | .10 | .50 | .40 | .400 | .420 | .480 | .510 | .550 | .622 | .714 | .769 | | L - 36 | $\frac{21}{22}$ | $.10 \\ .20$ | $.60 \\ .40$ | .30
.40 | .384 $.400$ | $.501 \\ .400$ | .567 $.441$ | .600 $.481$ | .625 $.504$ | .687
.585 | $.764 \\ .686$ | .810
.748 | | | 23 | .20 | .50 | .30 | .320 | .441 | .527 | .570 | .596 | .651 | .737 | .789 | | A - 24 | 24 | .20 | .534 | ,266 | .342 | .468 | .556 | .601 | .627 | .674 | .755 | .803 | | - | 25 | .10 | .40 | .50 | .500 | .500 | .500 | .500 | .500 | .545 | .640 | .706 | | | 26 | .10 | .50 | .40 | ,400 | .420 | .480 | .510 | .528 | .546 | .678 | .740 | | L = 40 | $\frac{26}{27}$ | .10 | .60 | .30 | .384 | .501 | .567 | .600 | .620 | .650 | .736 | .788 | | $\mathbf{Y} = 8$ | 28 | .20 | .40 | .40 | .400 | .400 | .441 | .481 | .504 | .538 | .650 | .718 | | | 29 | .20 | .50 | .30 | .320 | .441 | .527 | .570 | .596 | .614 | .709 | .767 | | | 30 | .20 | .534 | .266 | .342 | .468 | .556 | .601 | .627 | .646 | .729 | .783 | | - | 31 | .10 | .40 | .50 | .500 | .500 | .565 | .642 | .692 | .740 | .801 | .839 | | | 32 | .10 | .50 | .40 | .400 | .405 | .531 | .633 | .706 | .755 | .816 | .852 | | T. == 28 | 33 | .10 | .60 | .30 | .384 | .486 | .587 | .680 | .744 | .787 | .840 | .872 | | $egin{array}{l} \mathbf{L} = 28 \ \mathbf{X} = 12 \end{array}$ | 34 | .20 | .40 | .40 | .400 | .400 | .470 | .560 | .648 | .707 | .780 | .824 | | $\ddot{X}' = 12$ | 35 | .20 | .50 | .30 | .320 | .405 | .503 | .610 | 688 | .741 | .805 | .844 | | | 36 | .20 | .534 | .266 | .342 | .433 | .522 | .627 | .702 | .752 | .813 | .851 | | | 37 | .10 | .40 | .50 | .500 | .500 | .503 | .576 | .635 | 684 | .757 | | | | 38 | .10 | .50 | .40 | .400 | .405 | .453 | .559 | .646 | .704 | .777 | .821 | | L = 32 | 39 | .10 | .60 | .30 | .384 | .486 | .540 | .623 | .698 | .748 | .811 | .848 | | $\ddot{\mathbf{X}} = 12$ | 40 | .20 | .40 | .40 | .400 | .400 | .406 | .484 | .586 | .655 | .741 | .793 | | X' = 16 | 41 | .20 | .50 | .30 | .320 | .405 | .476 | .550 | .640 | .700 | .775 | .820 | | | 42 | .20 | .534 | .266 | .342 | .433 | .505 | .573 | .658 | .716 | .787 | .829 | | | 42 | .20 | .534 | .266 | .342 | .433 | .505 | ,573 | .658 | .716 | .787 | 829 | | | 43 | 10 | .40 | .50 | .500 | .500 | .500 | .514 | .582 | .631 | .714 | .767 | |--|----------|------------|------------|---------------|--------------|----------------|----------------|----------------|-------------|--------------|--------------|--------------| | | 44 | .10 | .50 | .40 | .400 | .405 | .453 | .490 | .588 | .655 | .740 | .791 | | L = 36 | 45 | .10 | .60 | .30 | .384 | .486 | .540 | .580 | .652 | .710 | .782 | .825 | | X = 12 | 46 | .20 | .40 | .40 | .400 | .400 | .400 | .443 | .526 | .605 | .703 | .762 | | X'=20 | 47 | .20 | .50 | .30 | .320 | .405 | .476 | .532 | .593 | .661 | .746 | .796 | | | 48 | .20 | .534 | .266 | .342 | .433 | .505 | .562 | .616 | .680 | .760 | .808 | | | 49 | .10 | .40 | .50 | .500 | .500 | .500 | .500 | .532 | .587 | .672 | .733 | | | 50 | .10 | .50 | .40 | .400 | .405 | .453 | .490 | .532 | .607 | .703 | .761 | | L = 40 | 51 | .10 | .60 | .30 | .384 | -486 | .540 | .580 | .608 | .672 | .753 | .802 | | X = 12 | 52 | .20 | .40 | .40 | .400 | .400 | .400 | .443 | .474 | .556 | .665 | .731 | | X' = 24 | 53 | .20 | .50 | .30 | .320 | .405 | .476 | .532 | .565 | .623 | .716 | .778 | | | 54 | .20 | .534 | .266 | .342 | 433 | .505 | .562 | 596 | .646 | .734 | .787 | | | 55 | .10 | .40 | .50 | .500 | .500 | .500 | .500 | .500 | .545 | .632 | .699 | | , | 56 | .10 | .50 | .40 | .400 | .405 | .453 | .490 | .512 | .561 | .667 | .731 | | L = 44 | 57 | .10 | .60 | .30 | .384 | .486 | .540 | .580 | .604 | .636 | .725 | .779 | | $ \begin{array}{l} X = 12 \\ X' = 28 \end{array} $ | 58 | .20 | .40 | .40 | .400 | .400 | .400 | .443 | .474 | .508 | .628 | .701 | | X = 28 | 59
60 | .20 | .50 $.534$ | $.30 \\ .266$ | .320 $.342$ | $.405 \\ .433$ | .476 $.505$ | .532 $.562$ | .565 $.596$ | .588
.619 | .688 $.708$ | .750
.766 | | | | | | | | | | | | | | | | | 61 | .10 | .40 | .50 | .500 | .500 | .565 | .642 | .690 | .729 | .792 | .832 | | L = 32 | 62
63 | .10 | .50 $.60$ | .40 | .400 | $.405 \\ .486$ | .531 $.587$ | $.620 \\ .664$ | .689 $.728$ | .741
.774 | .806 $.830$ | .844 | | X = 16 | 64 | .20 | .40 | .30
.40 | .384
.400 | .400 | .470 | .545 | ,616 | .680 | .760 | .808 | | X = 10
X' = 12 | 65 | .20 | .50 | .30 | .320 | .405 | .503 | .575 | .657 | .714 | .785 | .828 | | A - 12 | 66 | .20 | .534 | .266 | .342 | .433 | .522 | .590 | .671 | .726 | .794 | .835 | | | 67 | .10 | .40 | .50 | .500 | .500 | .503 | .576 | .635 | .676 | .748 | .796 | | | 68 | .10 | .50 | .40 | .400 | .405 | .443 | .550 | .629 | .690 | .767 | .813 | | L = 36 | 69 | .10 | .60 | .30 | .384 | .486 | .523 | .609 | .681 | .734 | .800 | .840 | | X = 16 | 70 | .20 | .40 | .40 | .400 | .400 | .406 | .481 | .553 | .628 | .720 | .776 | | X' = 16 | 71 | .20 | .50 | .30 | .320 | .405 | .435 | .521 | .608 | .674 | .755 | .804 | | | 72 | .20 | .534 | .266 | .342 | .433 | .465 | .541 | .627 | .689 | .767 | .813 | | | 73 | .10 | .40 | .50 | .500 | .500 | .500 | .514 | .582 | .631 | .706 | .760 | | | 74 | .10 | .50 | .40 | .400 | .405 | .435 | .484 | .570 | .641 | .729 | .783 | | L = 40 | 75 | .10 | .60 | .30 | .384 | .486 | .523 | .560 | .635 | .696 | .771 | .817 | | X = 16 | 76 | .20 | .40 | .40 | .400 | .400 | .400 | .421 | .492 | .576 | .682 | .745 | | X' = 20 | 77 | .20 | .50 | .30 | .320 | .405 | .435 | .494 | .560 | .634 | .725 | .780 | | | 78 | .20 | .534 | .266 | .342 | .433 | .465 | .524 | .584 | .653 | .740 | .792 | | | 79 | .10 | .40 | .50 | .500 | .500 | .500 | .500 | .532 | .587 | .664 | .726 | | | 80 | .10 | .50 | .40 | .400 | .405 | .435 | .470 | .513 | .592 | .692 | .752 | | L = 44 $X = 16$ | 81 | .10 | .60 | .30 | .384 | .486 | .523 | .560 | .590 | .658 | .743 | .794 | | X' = 24 | 82
83 | .20 $.20$ | .40
.50 | .40 $.30$ | .400
.320 | .400 $.405$ | $.400 \\ .435$ | .406 $.494$ | .444 $.535$ | .527 $.595$ | .644
.696 | .714
.756 | | A - 24 | 84 | .20 | .534 | .266 | .342 | .433 | .465 | .524 | .566 | .618 | .713 | .771 | | | | | | 50 | | .500 | :465
.500 | | | | | .692 | | | 85
86 | .10
.10 | .40
.50 | .50 | .500
.400 | .500 $.405$ | .500 $.435$ | .500 $.470$ | .500 $.496$ | .545 $.546$ | .625
.656 | .692 | | L = 48 | 87 | .10 | .60 | .30 | .384 | .405 | .523 | .560 | .588 | .621 | .714 | .773 | | X = 16 | 88 | .20 | .40 | .40 | .400 | .400 | .400 | .406 | .444 | .478 | .606 | .684 | | X' = 28 | 89 | .20 | .50 | .30 | .320 | .405 | .435 | .494 | .535 | .562 | .667 | .733 | | | 90 | .20 | .534 | .266 | .342 | .433 | .465 | .524 | .566 | .594 | .687 | .750 | Table 12.7 # SUMMARY OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY TYPE 3-S2 TRUCKS WEIGHING ONE KIP EACH One hundred twelve variations in the Type 3-S2 truck are given in this Table. Each truck number, from 1 to 112, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. Equivalent concentrated
loads are in kips. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. | Wheel
Base
and
Axle
Spacing | Truck No. | I | oad O
Axles
Kips | n | | | | Span-F | eet | | | | |--|----------------------|--------------------------|------------------------|-------------------|------------------------------|----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------| | Feet | F | a ₁ | \mathbf{a}_2 | \mathbf{a}_3 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | L = 28 | 1
2
3 | .10
.10
.10 | .30
.40
.45 | .60
.50
.45 | .384
.320
.288 | .486
.405
.380 | .551
.486
.460 | .636
.585
.591 | .700
.660
.671 | .749
.714
.725 | .810
.783
.793 | .847
.825
.834 | | $ \begin{array}{c} 12 \\ 12 \\ 12 \end{array} $ | 4
5 | .10
.20 | $.50 \\ .30$ | .40 | .320
.320 | .420
.405 | $.493 \\ .467$ | .617 $.548$ | .693 $.626$ | .744 $.685$ | .807 $.760$ | .845 $.806$ | | | $-\frac{6}{7}$ | .20
.20
.10 | $\frac{.40}{.50}$ | .40
.30
.60 | .256
.320 | .363
.441
.486 | .441
.527 | .564
.620 | .650
.696 | .709
.747 | .781
.810
.773 | .825
.848 | | L = 32 | 9
10
11 | .10
.10
.10 | .40
.45
.50 | .50
.45
.40 | .320
.288
.320 | .405
.380
.420 | .435
.437
.480 | .517
.513
.546 | .592
.606
.634 | .656
.670
.694 | .738
.751
.769 | .788
.800
.815 | | $ \bar{\mathbf{X}} = 8 \\ \mathbf{X}' = 16 $ | 12
13
14 | .20
.20
.20 | .30
.40
.50 | .50
.40
.30 | .320
.320
.256
.320 | .405
.363
.441 | .435
.441
.527 | .495
.490
.574 | .560
.590
.650 | .628
.658
.708 | .716
.743
.781 | .770
.794
.824 | | | 15
16 | | .30
.30
.40 | .60 | .384
.320 | .486
.405 | .523
.435 | .543
.458 | .601
.535 | .654
.601 | .737
.694 | .787
.752 | | $ \begin{array}{l} L = 36 \\ X = 8 \\ X' = 20 \end{array} $ | 17
18
19 | .10
.10
.20 | .45
.50
.30 | .45
.40
.50 | .288
.320
.320 | .380
.420
.405 | .437 $.480$ $.435$ | .465 $.510$ $.454$ | .544
.577
.512 | .617
.646
.574 | .710
.732
.673 | .766
.784
.734 | | | $\frac{20}{21}$ | .20 | .40
50
30 | .40
.30 | .256
.320 | .363
.441 | .441
.527 | .481
.570 | .533
.606 | .609
.670 | .705
.752 | .763
.801
.758 | | L = 40
X = 8 | $\frac{23}{24}$ | $.10 \\ .10$ | $\frac{.40}{.45}$ | $.50 \\ .45$ | .320
.288 | $.405 \\ .380$ | $.435 \\ .437$ | $.451 \\ .465$ | $.483 \\ .485$ | .548 $.566$ | .651 $.669$ | .717
.733 | | $\mathbf{X} = 8 \\ \mathbf{X}' = 24$ | 25
26
27
28 | .10
.20
.20
.20 | .50
.30
.40 | .40
.50
.40 | .320
.320
.256
.320 | .420
.405
.363 | .480
.435
.441
.527 | .510
.451
.481
.570 | .528
.471
.504
.596 | .599
.523
.561
.632 | .696
.631
.668
.723 | .755
.700
.733
.778 | | | 29
30 | .10
.10 | .30
.40 | .60
.50 | .384
.320 | .441
.486
.405 | .523
.435 | .542
.451 | .553
.461 | .579
.504 | .667
.610 | .730
.683 | | $ \begin{array}{l} \mathbf{L} = 44 \\ \mathbf{X} = 8 \\ \mathbf{X'} = 28 \end{array} $ | 31
32
33 | .10
.10
.20 | .45
.50
.30 | .45 $.40$ $.50$ | .288
.320
.320 | .380
.420
.405 | .437
.480
.435 | .465 $.510$ $.451$ | .482
.528
.461 | .516
.554
.489 | .630
.660
.590 | .701
.726
.666 | | | 34
35
36 | $\frac{.20}{.20}$ | .40
.50
.30 | .40
.30 | .256
.320 | .363
.441
.510 | .441
.527 | .481
.570 | .504
.596 | .521
.614
.785 | .632
.695
.838 | .704
.755 | | L = 28 $X = 12$ | 37
38
39 | .10
.10 | .40
.45 | .50
.45
.40 | .320
.288
.320 | .441
.413
.441 | .578
.556
.578 | .656
.653
.671 | .716
.722
.737 | .763
.768
.781 | .820
.826
.835 | .855
.860
.868 | | $\mathbf{X} = 12$ $\mathbf{X}' = 8$ | 40
41
42 | .20
.20
.20 | .30
.40
.50 | .50
.40
.30 | .320
.320
.256
.320 | .430
.363
.430 | .539
.494
.539 | .603
.600 | .666
.680 | .720
.734
.761 | .787
.800
.820 | .829
.840 | .20 .20 .20 111 112 .40 .50 .40 | Table 12.7 | (Co | ntinue | ed) | | | | | | | | | | |---|-----------------|--------|-----|-----|------|------|------|------|------|------|------|------| | Table 12.1 | | | | | | 400 | | 000 | | =0.0 | | | | | 43 | .10 | .30 | .60 | .384 | .486 | .551 | .636 | .688 | .736 | .800 | .839 | | | 44 | .10 | .40 | .50 | .320 | .405 | .486 | .585 | .646 | .702 | .774 | .817 | | $\mathbf{L} = 32$ | 45 | .10 | .45 | .45 | .288 | .365 | 456 | .569 | .654 | .711 | .782 | .825 | | X = 12 | 46 | .10 | .50 | .40 | .320 | .405 | .486 | .596 | .676 | .730 | .796 | .837 | | X' = 12 | 47 | .20 | .30 | .50 | .320 | .405 | .467 | .548 | .599 | .662 | .742 | .792 | | | 48 | .20 | .40 | .40 | .256 | .324 | .405 | .522 | .617 | .681 | .760 | .808 | | | 49 | .20 | .50 | .30 | .320 | .405 | .476 | .580 | .664 | .720 | .790 | .832 | | | 50 | .10 | .30 | .60 | .384 | .486 | .523 | .582 | .644 | .689 | .764 | .809 | | | 51 | .10 | .40 | .50 | .320 | .405 | .435 | .517 | .589 | .645 | .729 | .781 | | $\Gamma = 36$ | 52 | .10 | .45 | .45 | .288 | .365 | .410 | .490 | .589 | .655 | .740 | .791 | | $ \widetilde{\mathbf{X}} = 12 \\ \widetilde{\mathbf{X}}' = 16 $ | 53 | .10 | .50 | .40 | .320 | .405 | .453 | .523 | .616 | .680 | .758 | .806 | | X' = 16 | 54 | .20 | .30 | .50 | .320 | .405 | .435 | .495 | .554 | .606 | .693 | .756 | | | 55 | .20 | .40 | .40 | .256 | .324 | .391 | .446 | .556 | .630 | .722 | .777 | | | 56 | .20 | .50 | .30 | .320 | .405 | .476 | .532 | .617 | .681 | .760 | .808 | | | 57 | .10 | .30 | .60 | .384 | .486 | .523 | .543 | .601 | .649 | .728 | .780 | | | 58 | .10 | .40 | .50 | .320 | .405 | .435 | .458 | .535 | .592 | .685 | .745 | | L = 40 | 59 | .10 | .45 | .45 | .288 | .365 | .410 | .445 | .526 | .602 | .699 | .758 | | $\bar{\mathbf{x}} = \tilde{1}$ | 60 | .10 | .50 | .40 | .320 | .405 | .453 | .490 | .559 | .631 | .721 | .776 | | $\mathbf{\tilde{X}}' = \mathbf{\tilde{20}}$ | 61 | .20 | .30 | .50 | ,320 | .405 | .435 | .454 | .512 | .558 | .656 | .720 | | | 62 | .20 | .40 | .40 | .256 | .324 | .391 | .443 | .497 | .580 | .684 | .746 | | | 63 | .20 | .50 | .30 | .320 | .405 | .476 | .532 | .572 | .642 | .731 | .785 | | | 64 | .10 | .30 | .60 | .384 | .486 | .523 | .542 | .561 | .614 | .693 | .751 | | | 65 | .10 | .40 | .50 | .320 | .405 | .435 | .451 | .483 | .548 | .643 | .710 | | L = 44 | 66 | .10 | .45 | .45 | .288 | .365 | .410 | .445 | .466 | .550 | .658 | .725 | | $\tilde{X} = 12$ | 67 | .10 | .50 | .40 | .320 | .405 | .453 | .490 | .512 | .584 | .685 | .746 | | $\hat{\mathbf{X}}' = \hat{2}\hat{4}$ | 68 | .20 | .30 | .50 | .320 | .405 | .435 | .451 | .471 | .523 | .614 | .686 | | | 69 | .20 | .40 | .40 | .256 | .324 | .391 | .443 | .474 | .532 | .646 | .716 | | | 70 | .20 | .50 | .30 | .320 | .405 | .476 | .532 | .565 | .604 | .702 | .761 | | | 71 | .10 | .30 | .60 | .384 | .486 | .523 | .542 | .553 | .579 | .658 | .723 | | | $7\overline{2}$ | .10 | .40 | .50 | .320 | .405 | .435 | .451 | .461 | .504 | .602 | .676 | | L = 48 | 73 | .10 | .45 | .45 | .288 | .365 | .410 | .445 | .466 | .500 | .619 | .692 | | X = 12 | 74 | .10 | .50 | .40 | .320 | .405 | .453 | .490 | .512 | .538 | .649 | .717 | | $\mathbf{X}' = \frac{12}{28}$ | 75^{-14} | .20 | .30 | .50 | .320 | .405 | .435 | .451 | .461 | .489 | .574 | .652 | | A - 20 | 76 | .20 | .40 | .40 | .256 | .324 | .391 | .443 | .474 | .495 | .610 | .686 | | | 77 | .20 | .50 | .30 | .320 | .405 | .476 | .532 | .565 | .588 | .674 | .738 | | | 78 | | | | | | | | | | | | | | | .10 | .30 | .60 | .384 | .486 | .551 | .636 | .688 | .724 | .791 | .832 | | | 79 | .10 | .40 | .50 | .320 | .405 | .486 | .585 | .645 | .691 | .765 | .810 | | L = 36
X = 16 | 80 | .10 | .45 | .45 | .288 | .365 | .456 | .560 | .637 | .697 | .772 | .817 | | X = 16 | 81 | .10 | .50 | .40 | .320 | .405 | .486 | .585 | .659 | .716 | .786 | .829 | | X'=12 | 82 | .20 | .30 | .50 | .320 | .405 | .467 | .548 | .597 | .639 | .724 | .777 | | | 83 | .20 | .40 | .40 | .256 | .324 | .405 | .498 | .584 | .654 | .740 | .792 | | | _84 | .20 | .50 | .30 | .320 | .405 | .467 | .548 | .632 | .694 | .770 | .816 | | | 85 | .10 | .30 | .60 | .384 | .486 | .523 | .582 | .644 | .686 | .755 | .802 | | | 86 | .10 | .40 | .50 | .320 | .405 | .435 | .517 | .589 | .639 | .720 | .774 | | | | • • • • | .00 | .00 | *00 x | •400 | .020 | .00 | .011 | .000 | . 100 | .002 | |--------------------|-----|---------|-----|-----|-------|------|------|------|------|------|-------|------| | | 86 | .10 | .40 | .50 | .320 | .405 | .435 | .517 | .589 | .639 | .720 | .774 | | L = 40 | 87 | .10 | .45 | .45 | .288 | .365 | .392 | .486 | .571 | .641 | .729 | .783 | | X = 16 | 88 | .10 | .50 | .40 | .320 | .405 | .435 | .517 | .599 | .665 | .748 | .798 | | X'=16 | 89 | .20 | .30 | .50 | .320 | 405 | .435 | .495 | .554 | .594 | .681 | .741 | | | 90 | .20 | .40 | .40 | .256 | .324 | .348 | .432 | .522 | .602 | .701 | .761 | | | 91 | .20 | .50 | .30 | .320 | .405 | .435 | .495 | .584 | .654 | .740 | .792 | | | 92 | .10 | .30 | .60 | .384 | .486 | .523 | .543 | .601 | .649 | .719 | .773 | | | 93 | .10 | .40 | .50 | .320 | .405 | .435 | .458 | .535 | .592 | .677 | .738 | | L = 44 | 94 | .10 | .45 | .45 | .288 | .365 | .392 | .426 | .508 | .587 | .688 | .749 | | X = 16 | 95 | .10 | .50 | .40 | .320 | .405 | .435 | .470 | .541 | .616 | .710 | .767 | | X'
= 20 | 96 | .20 | .30 | .50 | .320 | .405 | .435 | .454 | .512 | .558 | .639 | .706 | | | 97 | .20 | .40 | .40 | .256 | .324 | .348 | .406 | .462 | .551 | .663 | .730 | | | 98 | .20 | .50 | .30 | .320 | .405 | .435 | .494 | .539 | .614 | .710 | .768 | | | 99 | .10 | .30 | .60 | .384 | .486 | .523 | .542 | .561 | .614 | .684 | .744 | | | 100 | .10 | .40 | .50 | .320 | .405 | .435 | .451 | .483 | .548 | .635 | .703 | | L = 48 | 101 | .10 | .45 | .45 | .288 | .365 | .392 | .426 | .450 | .535 | .647 | .709 | | X = 16 | 102 | .10 | .50 | .40 | .320 | .405 | .435 | .470 | .496 | .569 | .674 | .737 | | X' = 24 | 103 | .20 | .30 | .50 | .320 | .405 | .435 | .451 | .471 | .523 | .598 | .672 | | | 104 | .20 | .40 | .40 | .256 | .324 | .348 | .406 | .444 | .502 | .625 | .699 | | | 105 | .20 | .50 | .30 | .320 | .405 | .435 | .494 | .535 | .576 | .681 | .745 | | | 106 | .10 | .30 | .60 | .384 | .486 | .523 | .542 | .553 | .579 | .656 | .716 | | | 107 | .10 | .40 | .50 | .320 | .405 | .435 | .451 | .461 | .504 | .596 | .669 | | L = 52 | 108 | .10 | .45 | .45 | .288 | .365 | .392 | .426 | .450 | .485 | .608 | .683 | | X = 16 | 109 | .10 | .50 | .40 | .320 | .405 | .435 | .470 | .496 | .523 | .638 | .708 | | $\mathbf{X'} = 28$ | 110 | .20 | .30 | .50 | .320 | .405 | .435 | .451 | .461 | .489 | .563 | .639 | | | 111 | .20 | .40 | .40 | .256 | .324 | 3.48 | 406 | 444 | 470 | 593 | 669 | .324 .405 .348 .405 .320 .256 .320 .406 .494 .444 .535 .470 .562 .563 .588 .653 .669 .722 Table 12.8 ### SUMMARY OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY TYPE 3-S3 TRUCKS WEIGHING ONE KIP EACH One hundred five variations in the Type 3-S3 truck are given in this Table. Each truck number, from 1 to 105, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. | Wheel
Base | No. | | oad O | _ | | | | | | | | | |-------------------------------------|-----------------|--------------|----------------|-----------------------|--------------|-------------|--------------|-------------|-------------|-------------|--------------|--------------| | and | Ä | 1 | oad O
Axles | 11 | | | | Span-Fe | et | | | | | Axle | l G | | Kips | | | | | | | | | | | Spacing
Feet | Truck | a1 | a ₂ | a ₃ | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 1 | .10 | .30 | .60 | .280 | .440 | .493 | .572 | .647 | .705 | .778 | .822 | | | 2 | .10 | .36 | .54 | .252 | .396 | .445 | .546 | .627 | .688 | .764 | .811 | | L = 32 | 3 | .10 | .40 | .50 | .256 | .366 | .411 | .529 | .614 | .677 | .756 | .804 | | $\mathbf{x} = 8$ | 4 | .10 | .50 | .40 | .320 | .420 | .480 | .582 | .664 | .719 | .788 | .830 | | X' = 12 | 5 | .20 | .30 | .50 | .233 | .366 | .411 | .494 | .580 | .647 | .733 | .785 | | | 6 | .20 | .40 | .40 | .256 | .363 | .441 | .527 | .621 | .684 | .762 | .809 | | | 7 | .20 | .50 | .30 | .320 | .441 | .527 | .596 | .673 | .728 | .795 | .836 | | | - 8 | .10 | .30 | .60 | .280 | .440 | .493 | .528 | .592 | .656 | .740 | .791 | | | 9 | .10 | .36 | .54 | .252 | .396 | .444 | .481 | .563 | .633 | .722 | .776 | | $\tilde{L} = 36$ | 10 | .10 | .40 | .50 | .256 | .366 | .411 | .459 | .546 | .618 | .710 | .766 | | $\mathbf{X} = 8$ $\mathbf{X}' = 16$ | 11 | .10 | .50 | .40 | .320 | .420 | .480 | .522 | .606 | .670 | .751 | .800 | | X = 16 | 12 | .20 | .30 | .50 | .233 | .366 | .411 | .442 | .512 | .590 | .688 | .748 | | | 13 | .20 | .40 | .40 | .256 | .363 | .441 | .483 | .562 | .634 | .724 | .779 | | | 14 | .20 | .50 | .30 | ,320 | .441 | .527 | .572 | .627 | .689 | .766 | .813 | | | 15 | .10 | .30 | .60 | .280 | .440 | .493 | .520 | .549 | .609 | .704 | .761 | | | 16 | .10 | .36 | .54 | .252 | .396 | .444 | .468 | .512 | .580 | .681 | .742 | | $\mathbf{L} = 40$ | 17 | .10 | .40 | .50 | .256 | .366 | .411 | .433 | .489 | .563 | .666 | .730 | | X = 8 | 18 | .10 | .50 | .40 | .320 | .420 | .480 | .510 | .550 | .623 | .714 | .770 | | X'=20 | 19 | .20 | .30 | .50 | .233 | .366 | .411 | .433 | .467 | .534 | .644 | .712 | | | 20 | .20 | .40 | .40 | .256 | .363 | .441 | .481 | .512 | .586 | .687 | .748 | | | 21 | .20 | .50 | .30 | .320 | .441 | .527 | 570 | .684 | .651 | 737 | .789 | | | 22 | .10 | .30 | .60 | .280 | .440 | .493 | .520 | .536 | .569 | .668 | .732 | | T - 11 | $\frac{23}{24}$ | .10 | .36 | .54 | .252 | .396 | .444 | .468 | .482 | .532 | .640 | .709 | | $\mathbf{L} = 44$ | 24
25 | .10 | .40 | .50
.40 | .256 | .366 | .411 | .433 | .447 | .509 $.577$ | .623 | .695 | | X = 8 $X' = 24$ | 26 | .10
.20 | .50
.30 | .50 | .320
.233 | .420 $.366$ | .480
.411 | .510 $.433$ | .528 $.447$ | .485 | .678
.602 | .740
.677 | | A - 24 | 26 | .20 | .40 | .40 | .256 | .363 | .411 | .481 | .504 | .539 | .650 | .719 | | | 28 | .20 | .50 | .30 | .320 | .303 | .527 | .570 | .596 | .694 | .709 | .767 | | | | | | | | | | | | | | | | | 29 | .10 | .30 | .60 | .280 | .440 | .493 | .520 | .536 | .547 | .633 | .703 | | T - 40 | 30 | .10 | .36 | .54 | .252 | .396 | .444 | .468 | .482 | .493 | .601 | .677 | | L = 48
X = 8 | $\frac{31}{32}$ | .10 | .40 | .50
.40 | .256 $.320$ | .366 $.420$ | .411
.480 | .433 | .447 $.528$ | .465 $.540$ | .581 $.643$ | .660 $.712$ | | $\mathbf{X}' = 28$ | 33 | $.10 \\ .20$ | .50 | .50 | .233 | | | .510 $.433$ | .447 | .456 | | | | A - 20 | 34 | .20 | .30
.40 | .40 | .256 | .366 $.363$ | .411
.441 | .481 | .504 | .521 | .560 $.615$ | .643 $.690$ | | | 35 | .20 | .50 | .30 | .320 | .441 | .527 | .670 | .596 | .614 | .681 | .744 | | | | | | | | | | | | | | | | | 36 | .10 | .30 | .60 | .280 | .440 | .493 | .572 | .637 | .693 | .768 | .814 | | T 90 | 37 | .10 | .36 | .54 | .252 | .396 | .445 | .546 | .616 | .676 | .755 | .803 | | L = 36 $ X = 12$ | $\frac{38}{39}$ | .10 | .40 | .50 | .256 $.320$ | .366 | .411 | .529 | .602 | .665 $.705$ | .746
.778 | .796 $.822$ | | X = 12
X' = 12 | | .10 | .50 | .40
.50 | | .405 | .462 | .560 | .646 | .624 | .778 | .822 | | A - 12 | 40 | $.20 \\ .20$ | .30 | | .233
.256 | .366 | .411 | .494 $.484$ | .554 $.587$ | .656 | .715 | .793 | | | 41
42 | .20 | .40
.50 | .40
.30 | .320 | -324 | .391 | .484 | .640 | .700 | .775 | .820 | | | 44 | .20 | .00 | .30 | .520 | .405 | .476 | .555 | ,040 | .100 | .110 | .040 | | Table 12. | 8 (Coi | ntinue | d) | | | | | | | | | | |---|-----------------|--------------|--------------|------------|--------------|----------------|----------------|----------------|----------------|----------------|----------------|-------------------| | | 43 | .10 | .30 | .60 | .280 | .440 | .493 | .528 | .592 | .644 | .731 | .784 | | | 44 | .10 | .36 | .65 | .252 | .396 | .444 | .481 | .563 | .621 | .713 | .769 | | L = 40 | 45 | .10 | .40 | .50 | .256 | .366 | .411 | .459 | .544 | .607 | .701 | .759 | | $ \widetilde{\mathbf{X}} = 12 \\ \widetilde{\mathbf{X}}' = 16 $ | 46 | .10 | .50 | .40 | .320 | .405 | .453 | .500 | .588 | .656 | .740 | .791 | | X'=16 | 47 | .20 | .30 | .50 | .233 | .366 | .411 | .442 | .510 | .567 | .670 | $.73\overline{4}$ | | | 48
49 | .20 | .40 | .40 | .256 | .324 | .391 | .443 | .527 | .605 | .703 | .762 | | | | .20 | .50_ | 30_ | .320 | .405 | .476 | .532 | .608 | .661 | .746 | .796 | | | 50 | .10 | .30 | .60 | .280 | .440 | .493 | .520 | .549 | .606 | .695 | .754 | | T 44 | 51 | .10 | .36 | .54 | .252 | .396 | .444 | .468 | .512 | .575 | .650 | .718 | | L = 44 $X = 12$ | 52
53 | $.10 \\ .10$ | $.40 \\ .50$ | .50 | .256 | .366 | .411 | .433 | .488 | .554 | .657 | .723 | | $\mathbf{X}' = 12$ | 54 | .20 | .30 | .40
.50 | .329
.233 | $.405 \\ .366$ | .453 $.411$ | .490 | .533 | .608 | .703 | .761 | | 21 - 20 | 55 | .20 | .40 | .40 | .256 | .324 | .391 | .433 $.443$ | $.467 \\ .479$ | .521 | .627 | .698 | | | 56 | .20 | .50 | .30 | .320 | .405 | .476 | .532 | .568 | .556 $.623$ | $.665 \\ .716$ | .731 $.773$ | | | 57 | .10 | .30 | .60 | .280 | .440 | .493 | .520 | | | | | | | 58 | .10 | .36 | .54 | .252 | .396 | .444 | .468 | $.536 \\ .482$ | .569 $.532$ | .659 $.632$ | .725 | | L = 48 | 59 | .10 | .40 | .50 | .256 | .366 | .411 | .433 | .447 | .509 | .614 | $.702 \\ .687$ | | L = 48
X = 12
X' = 24 | 60 | .10 | .50 | .40 | ,320 | .405 | .453 | .490 | .512 | .561 | .667 | .732 | | X'=24 | 61 | .20 | .30 | .50 | .233 | .366 | .411 | .433 | .447 | .485 | .584 | .663 | | | 62 | .20 | .40 | .40 | .256 | .324 | .391 | .443 | .474 | .509 | .629 | .702 | | | 63 | .20 | .50 | .30 | .320 | .405 | .476 | .532 | .565 | .594 | .688 | .750 | | | 64 | .10 | .30 | .60 | .280 | .440 | .493 | .520 | .536 | .547 | .624 | .696 | | | 65 | .10 | .36 | .54 | .252 | .396 | .444 | .468 | .482 | .493 | .593 | .670 | | L = 52 | 66 | .10 | .40 | .50 | .256 | .366 | .411 | .433 | .447 | .464 | .572 | .652 | | X = 12 | 67 | .10 | .50 | .40 | .320 | .405 | .453 | .490 | .512 | .527 | .632 | .703 | | X' = 28 | 68 | .20 | .30 | .50 | .233 | .366 | .411 | .433 | .447 | .456 | .544 | .629 | | | 69 | .20 | .40 | .40 | .256 | .324 | .391 | .443 | .474 | .495 | .593 | .672 | | | 70 | .20 | .50 | .30 | .320 | .405 | .476 | .532 | .565 | .588 | .660 | .727 | | | 71 | .10 | .30 | .60 | .280 | .440 | .493 | .572 | .637 | .681 | .759 | .807 | | * - 40 | 72 | .10 | .36 | .54 | .252 | .396 | .445 | .546 | .616 | .664 | .746 | .796 | | L = 40 | $\frac{73}{74}$ | .10 | .40 | .50 | .256 | .366 | .411 | .529 | .602 | .653 | .737 | .789 | | | 75 | .10
.20 | .50
.30 | .40
.50 | .320 | .405 | .462 | .551 | .629 | .691 | .767 | .813 | | A - 12 | 76 | .20 | .40 | .40 | .233
.256 | .366 $.324$ | $.411 \\ .379$ | $.494 \\ .465$ | .555 $.554$ | .601 $.628$ | .696 | .755 | | | 77 | .20 | .50 | .30 | .320 | .405 | .453 | .521 | .592 | .660 | .721 $.745$ | .777
.796 | | | 78 | .10 | .30 | .60 | .280 | .440 | | .528 | | | | | | | 79 | .10 | .36 | .54 | .252 | .396 | .493 $.444$ |
.481 | .592 $.563$ | $.643 \\ .618$ | .722
.704 | .776
.761 | | $T_4 = 44$ | 80 | .10 | .40 | .50 | .256 | .366 | .411 | .459 | .544 | .602 | .692 | .752 | | $L = 44 \\ X = 16 \\ X' = 16$ | 81 | .10 | .50 | .40 | .320 | .405 | .435 | .491 | .571 | .641 | .729 | .783 | | X' = 16 | 82 | .20 | .30 | .50 | .233 | .366 | .411 | .442 | .510 | .558 | .652 | .719 | | | 83 | .20 | .40 | .40 | .256 | .324 | .348 | .406 | .493 | .577 | .682 | .745 | | | 84 | .20 | .50 | .30 | .320 | .405 | .435 | .494 | .560 | -634 | .725 | .780 | | | 85 | .10 | .30 | .60 | .280 | .440 | .493 | .520 | .549 | .606 | .686 | .747 | | | 86 | .10 | .36 | .54 | .252 | .396 | .444 | .468 | .512 | .574 | .663 | .728 | | $\mathbf{L} = 48$ | 87 | .10 | .40 | .50 | .256 | .366 | .411 | .433 | .488 | .554 | .648 | .715 | | $\mathbf{X} = 16$ $\mathbf{X}' = 20$ | 88 | .10 | .50 | .40 | .320 | .405 | .435 | .470 | .516 | .593 | .692 | .753 | | $\lambda = 20$ | 89
90 | $.20 \\ .20$ | .30 | .50
.40 | .233 | .366 | .411 | .433 | .467 | .521 | .610 | .684 | | | 91 | .20 | $.40 \\ .50$ | .30 | .256
,320 | $.324 \\ .405$ | .348 $.435$ | .496 $.494$ | $.446 \\ .536$ | .527 | .644 | .715 | | | 92 | | | | | | | | | .595 | .696 | .756 | | | 92
93 | .10
.10 | .30
.36 | .60
.54 | .280
.252 | .440 $.396$ | $.493 \\ .444$ | .520 | .536 | .569 | .650 | .718 | | L = 52 | 94 | .10 | .40 | .50 | .256 | .366 | .411 | .468 $.433$ | .482 $.447$ | .532 $.509$ | .623 | .695 | | $\ddot{\mathbf{x}} = 16$ | 95 | .10 | .50 | -40 | .320 | .405 | .435 | .470 | .496 | .546 | $.605 \\ .656$ | $.680 \\ .723$ | | $\mathbf{X'} = 24$ | 96 | .20 | .30 | .50 | .233 | .366 | .411 | .433 | .447 | .485 | .568 | .649 | | | 97 | .20 | .40 | .40 | .256 | .324 | .348 | .406 | .444 | .479 | .607 | .685 | | | 98 | .20 | .50 | 30 | .320 | .405 | .435 | .494 | .535 | .567 | .667 | .733 | | | 99 | .10 | .30 | .60 | .280 | .440 | .493 | ,520 | .536 | .547 | .623 | .689 | | | 100 | .10 | .36 | .54 | .252 | .396 | .444 | .468 | .482 | .493 | .589 | .663 | | L = 56 | 101 | .10 | .40 | .50 | .256 | .366 | .411 | .433 | .447 | .464 | .567 | .646 | | X = 16 | 102 | .10 | .50 | .40 | .320 | .405 | .435 | .470 | .496 | .514 | .621 | .694 | | X' = 28 | 103 | .20 | .30 | .50 | .233 | .366 | .411 | .433 | .447 | .456 | .534 | .615 | | | 104 | .20 | .40 | .40 | .256 | .324 | .348 | .406 | .444 | .470 | .571 | .655 | | | 105 | .20 | .50 | .30 | .320 | .405 | .435 | .494 | .535 | .562 | .638 | .710 | | | | | | | | | | | | | | | Table 12.9 ## SUMMARY OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY TYPE 2-2 TRUCKS WEIGHING ONE KIP EACH One hundred forty-four variations in the Type 2-2 truck are given in this Table. Each truck number, from 1 to 144, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. | Wheel
Base
and
Axle | Truck No. | I | oad O
Axles
Kips | | | | | Span-Fe | eet | | | | |------------------------------|-----------|-----|------------------------|------------|------|------|------|---------|------|------|------|------| | Spacing
Feet | Ë | aı | \mathbf{a}_2 | a 3 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 1 | .10 | .20 | .70 | .350 | .464 | .608 | .681 | .744 | .787 | .840 | .872 | | X = 28 | 2 | .10 | .30 | .60 | .300 | .420 | .580 | .663 | .730 | .775 | .831 | .864 | | X = 12 | 3 | .10 | .40 | .50 | .400 | .465 | .555 | .654 | .721 | .767 | .824 | .858 | | X' = 8 | 4 | .20 | .20 | .60 | .300 | .402 | .534 | .606 | .684 | .737 | .802 | .841 | | $\mathbf{c} = 8$ | 5 | .20 | .30 | .50 | .300 | .368 | .507 | .592 | .672 | .726 | .793 | .834 | | | 6 | .20 | .40 | .40 | .400 | .451 | .534 | .644 | .714 | .762 | .821 | .857 | | | 7 | .10 | .20 | .70 | .350 | .402 | ,522 | .615 | .688 | .741 | .805 | .844 | | L = 32 | 8 | .10 | .30 | .60 | .300 | .384 | .502 | .601 | .680 | .734 | .800 | .840 | | X = 12 | 9 | .10 | .40 | .50 | .400 | .465 | .537 | .611 | .685 | .736 | .800 | .839 | | X' = 12 | 10 | .20 | .20 | .60 | .300 | .353 | .459 | .543 | .634 | .695 | .771 | .816 | | $\mathbf{c} = \mathbf{s}$ | 11 | .20 | .30 | .50 | .300 | .368 | .457 | .543 | .632 | .693 | .768 | .814 | | | 12 | .20 | .40 | .40 | .400 | .451 | .534 | .606 | .684 | .737 | .802 | .841 | | | 13 | .10 | .20 | .70 | .350 | .402 | .448 | .551 | .634 | .695 | .771 | .816 | | $\Gamma = 36$ | 14 | .10 | .30 | .60 | .300 | .384 | .462 | .544 | .632 | .694 | .770 | .816 | | X = 12 | 15 | .10 | .40 | .50 | .400 | .465 | .537 | .591 | .650 | .707 | .777 | .821 | | X' = 16 | 16 | .20 | .20 | .60 | .309 | .353 | .399 | .488 | .584 | .654 | .740 | .792 | | $\mathbf{c} = 8$ | 17 | .20 | .30 | .50 | .300 | .363 | .457 | .530 | .597 | .662 | .745 | .795 | | | 18 | .20 | .40 | .40 | .400 | .451 | .534 | .601 | .654 | .711 | .783 | .826 | | | 19 | .10 | .20 | .70 | .350 | .402 | .448 | .490 | .581 | .650 | .737 | .789 | | L = 40 | 20 | .10 | .30 | .60 | .300 | .384 | .462 | .521 | .585 | .654 | .740 | .792 | | X = 12 | 21 | .10 | .40 | .50 | .400 | .465 | .537 | .591 | .622 | .677 | .755 | .802 | | X' = 20 | 22 | .20 | .20 | .60 | .300 | .353 | .399 | .460 | .536 | .614 | .710 | .768 | | C = 8 | 23 | .20 | .30 | .50 | .300 | .368 | .457 | .530 | .574 | .632 | .722 | .776 | | | 24 | .20 | .40 | .40 | .400 | .451 | .534 | .601 | .640 | .687 | .764 | .810 | | | 25 | .10 | .20 | .70 | .350 | .448 | .553 | .640 | .698 | .748 | .811 | .848 | | L = 32 | 26 | .10 | .30 | .60 | .300 | .384 | .502 | .601 | .669 | .724 | .792 | .833 | | X = 12 | 27 | .10 | .40 | .50 | .400 | .400 | .475 | .569 | .650 | .706 | .777 | .821 | | $\mathbf{X'} = 8$ | 28 | .20 | .20 | .60 | .300 | .384 | .480 | .560 | .625 | .687 | .764 | .810 | | C = 12 | 29 | .20 | .30 | .50 | .300 | .320 | .430 | .522 | .600 | .665 | .746 | .79€ | | | 30 | .20 | .40 | .40 | ,400 | .400 | .480 | .570 | .654 | .711 | .783 | .826 | | | 31 | .10 | .20 | .70 | .350 | .350 | .464 | .572 | .640 | .700 | .775 | .820 | | L = 36 | 32 | .10 | .30 | .60 | .300 | .300 | .420 | .540 | .618 | .682 | .761 | .809 | | X = 12 | 33 | .10 | .40 | .50 | .400 | .400 | .475 | .543 | .616 | .677 | .755 | .802 | | X' = 12 | 34 | .20 | .20 | .60 | .300 | .300 | .402 | .501 | .573 | .644 | .732 | .785 | | C = 12 | 35 | .20 | .30 | .50 | .300 | .300 | .390 | .480 | .561 | .632 | .722 | .776 | | | 36 | .20 | .40 | .40 | .400 | .400 | .480 | .560 | .625 | .687 | .764 | .810 | | | 37 | .10 | .20 | .70 | .350 | .350 | .401 | .507 | .584 | .654 | .740 | .792 | | L = 40 | 38 | .10 | .30 | .60 | .300 | .300 | .389 | .481 | .569 | .641 | .730 | .784 | | X = 12 | 39 | .10 | .40 | .50 | .400 | .400 | .475 | .543 | .584 | .649 | .732 | .784 | | X' = 16 | 40 | .20 | .20 | .60 | .300 | .300 | 353 | .445 | .522 | .602 | .701 | .761 | | C = 12 | 41 | .20 | .30 | .50 | .300 | .300 | .390 | .480 | .534 | .603 | .699 | .758 | | | 42 | .20 | .40 | .40 | .400 | .400 | .480 | .560 | .608 | .662 | .745 | .795 | | Table 12. |) (Cor | ntinue | d) | | | | | | | | | | |--|---|--------------|--------------|--------------|----------------|----------------|----------------|----------------|----------------|---------------------|----------------|----------------| | | 43 | .10 | .20 | .70 | .350 | .350 | .401 | .445 | .533 | .608 | .706 | .764 | | $egin{array}{c} \mathbf{L} = 44 \ \mathbf{X} = 12 \end{array}$ | 44 | .10 | .30 | .60 | .300 | .300
.400 | .389 $.475$ | $.465 \\ .543$ | $.520 \\ .584$ | .600
.620 | $.700 \\ .710$ | $.760 \\ .766$ | | X' = 12 | $\frac{45}{46}$ | $.10 \\ .20$ | .40
.20 | .50
.60 | $.400 \\ .300$ | .300 | .353 | .401 | .473 | .561 | .670 | .736 | | C = 12 | 47 | .20 | .30 | .50 | .300 | .300 | .390 | .480 | .534 | .574 | .677 | .739 | | | 48 | .20 | .40 | .40 | .400_ | .400 | .480 | .560 | .608 | .640 | .726 | .780 | | | 49 | .10 | .20 | .70 | .350 | .464 | .608 | .681 | .729 | .774 | .830 | .864 | | L = 32 | 50 | .10 | .30 | .60 | .300 | .420 | .580 | .660 | .714 | $.762 \\ .752$ | .821 $.813$ | .858 $.850$ | | X = 16
X' = 8 | $\frac{51}{52}$ | $.10 \\ .20$ | .40
.20 | .50
.60 | .400
.300 | $.465 \\ .402$ | .555 $.534$ | .641 $.601$ | .704 $.654$ | .711 | .783 | .826 | | $\hat{\mathbf{c}} = 8$ | 53 | .20 | .30 | .50 | .300 | .368 | .507 | .580 | .643 | .701 | .774 | .819 | | | 54 | .20 | .40 | .40 | .400 | .451 | .512 | .602 | .681 | .734 | .800 | .840 | | | 55 | .10 | .20 | .70 | .350 | .402 | .522 | .615 | .672 | .727 | .795 | .836 | | L = 36 | 56 | .10 | .30 | .60 | .300 | .384 | .502 | .601 | .665 | .721 | .790 | .832 | | $\mathbf{X} = 16$ $\mathbf{X'} = 12$ | 57 | $.10 \\ .20$ | $.40 \\ .20$ | .50
.60 | .400
.300 | $.465 \\ .353$ | .523 $.459$ | .590 $.543$ | $.668 \\ .603$ | .722 $.669$ | .790
.751 | .831 $.801$ | | $C = \frac{12}{8}$ | 58
59 | .20 | .30 | .50 | .300 | .368 | .440 | .530 | .599 | .665 | .748 | .798 | | 0 - 0 | 60 | .20 | .40 | .40 | .400 | .451 | .498 | .564 | .650 | .709 | .781 | .825 | | | 61 | .10 | .20 | .70 | .350 | .402 | .448 | .551 | .619 | .681 | .760 | .808 | | L = 40 | 62 | .10 | .30 | .60 | .300 | .384 | .451 | .544 | .616 | .680 | .760 | .808 | | X = 16
X' = 16 | 63 | .10 | .40 | .50 | .400 | .465 | .523 | .570 | .632 | .692 | .766 | .812 $.776$ | | $\mathbf{X'} = 16$ $\mathbf{C} = 8$ | $\frac{64}{65}$ | .20
.20 | .20
.30 | .60
.50 | .300
.300 | .353 $.368$ | $.399 \\ .425$ | .488
.491 | .553
.561 | .628 $.633$ | .720 $.724$ | .778 | | U 0 | 66 | .20 | .40 | .40 | .400 | .451 | .498 | .562 | .620 | .683 | .762 | .809 | | | 67 | .10 | .20 | 70 | .350 | .402 | .448 | .490 | .569 | .636 | .726 | .781 | | L = 44 | 68 | .10 | .30 | .60 | .300 | .384 | .451 | .501 | .570 | .641 | .730 | .784 | | $\bar{x} = 16$ | 69 | .10 | .40 | .50 | .400 | .465 | .523 | .570 | .606
| .662 | .744 | .793 | | | 70 | .20 | .20 | .60 | .300 | .353 | .399 | .435 | .506 | .587 | .690 | .752 | | $\mathbf{c} = 8$ | $\begin{array}{c} 71 \\ 72 \end{array}$ | .20 | $.30 \\ .40$ | .50 | $.300 \\ .400$ | .368 $.451$ | .425 $.498$ | $.491 \\ .562$ | .543
.609 | $\frac{.603}{.658}$ | .700 $.743$ | .759 $.794$ | | | | .20 | | .40 | | .448 | .553 | .640 | .692 | .735 | .801 | .841 | | L = 36 | $\frac{73}{74}$ | $.10 \\ .10$ | $.20 \\ .30$ | .70
.60 | .350
.300 | .384 | .502 | .601 | .661 | .711 | .783 | .826 | | $\ddot{\mathbf{x}} = 16$ | 75 | .10 | .40 | .50 | .400 | .400 | .465 | .566 | .632 | .692 | .766 | .812 | | $\mathbf{X'} = 8$ | 76 | .20 | .20 | .60 | .300 | .384 | .480 | .560 | .608 | .662 | .745 | .795 | | C = 12 | 77 | .20 | .30 | .50 | .300 | .320 | .430 | .522 | .577 | .641 | .728 | .781 | | | 78 | .20 | .40 | 40 | .400 | .400 | .451 | .526 | .620 | .683 | .762 | .809 | | T - 10 | 79 | .10 | .20 | .70 | .350 | .350 $.300$ | .464 $.420$ | .572 $.540$ | .637
.612 | .687 $.669$ | .765 $.751$ | .812 $.801$ | | $\mathbf{L} = 40$ $\mathbf{X} = 16$ | $\frac{80}{81}$ | $.10 \\ .10$ | .30
.40 | .60
.50 | .300
.400 | .400 | .465 | .522 | .598 | .662 | .744 | .793 | | | 82 | .20 | .20 | .60 | .300 | .300 | .402 | .501 | .561 | .619 | .713 | .770 | | C = 12 | 83 | .20 | .30 | .50 | .300 | .300 | .368 | .470 | .536 | .604 | .701 | .760 | | | 84 | .20 | .40 | .40 | .400_ | .400 | .451 | .521 | .590 | .658 | .743 | .794 | | T - 11 | 85 | .10 | .20 | .70 | .350 | .350 | .401 | .507 | .585 | .640 | .730 $.720$ | .784
.776 | | L = 44
Y = 16 | 86
87 | .10
.10 | $.30 \\ .40$ | .60
.50 | .300
.400 | .300 $.400$ | .384 $.465$ | .481 $.522$ | $.565 \\ .567$ | $.628 \\ .633$ | .721 | .775 | | $egin{array}{l} \mathbf{X} = 16 \\ \mathbf{X'} = 16 \end{array}$ | 88 | .20 | .20 | .60 | .300 | .300 | .353 | .445 | .515 | .576 | .682 | .745 | | C = 12 | 89 | .20 | .30 | .50 | .300 | .300 | .368 | .440 | .502 | .573 | .677 | .741 | | | 90 | .20 | .40 | .40 | .400 | .400 | .451 | .521 | .576 | .633 | .724 | .778 | | Y 10 | 91 | .10 | .20 | .70 | .350 | .350 | .401 | .445 | .533 | .595 | .696 $.690$ | .756 $.752$ | | $\mathbf{L} = 48$ $\mathbf{X} = 16$ | $\frac{92}{93}$ | .10
.10 | $.30 \\ .40$ | $.60 \\ .50$ | .300
.400 | .300 $.400$ | $.384 \\ .465$ | $.444 \\ .522$ | .519 $.567$ | .587 $.605$ | .699 | .757 | | $\mathbf{x}' = \mathbf{z}_0$ | 94 | .20 | .20 | .60 | .300 | .300 | .353 | .390 | .470 | .535 | .651 | .720 | | C = 12 | 95 | .20 | .30 | .50 | .300 | .300 | .368 | .440 | .502 | .544 | .655 | .722 | | | 96 | .20 | .40 | .40 | .400 | .400 | .451 | .521 | .576 | .614 | .705 | .763 | | | 97 | .10 | .20 | .70 | .350 | -448 | .608 | .681 | .725 | .761 | .820 | .856 | | $\mathbf{L} = 36$ $\mathbf{v} = 20$ | 98
99 | .10 | .30 | .60
.50 | .300 | $.420 \\ .465$ | .580 $.555$ | $.660 \\ .641$ | .708 $.693$ | .749 $.738$ | $.811 \\ .803$ | .849 $.842$ | | $\mathbf{x} = 20 \\ \mathbf{x'} = 8$ | 100 | $.10 \\ .20$ | $.40 \\ .20$ | .60 | .400 $.300$ | .402 | .534 | .601 | .640 | .687 | .764 | .810 | | $\ddot{\mathbf{c}} = \ddot{\mathbf{s}}$ | 101 | .20 | .30 | .50 | .300 | .368 | .507 | .580 | .624 | .677 | .756 | .804 | | | 102 | .20 | .40 | .40 | .400 | .451 | .512 | .578 | .648 | .707 | .780 | .824 | | | 103 | .10 | .20 | .70 | .350 | .402 | .522 | .615 | .671 | .714 | .785 | .828 | | $\mathbf{L} = 40$ | 104 | .10 | .30 | .60 | .300 | .384 | .502 | .601 | .661 | .708 | .780 | .824 $.823$ | | $\mathbf{X} = 20$ $\mathbf{X'} = 12$ | $\frac{105}{106}$ | .10
.20 | $.40 \\ .20$ | .50
.60 | .400
.300 | .465 $.353$ | .523 $.459$ | .590 $.543$ | .652 $.594$ | .707 $.644$ | .779 $.732$ | .785 | | $\hat{\mathbf{C}} = \frac{12}{8}$ | 107 | .20 | .30 | .50 | .300 | .368 | .440 | .530 | .584 | .641 | .729 | .783 | | • | 108 | .20 | .40 | .40 | .400 | .451 | .498 | .545 | .617 | .681 | .760 | .808 | | | 109 | .10 | .20 | .70 | .350 | .402 | .448 | .551 | .619 | .667 | .750 | .800 | | $egin{array}{c} \mathbf{L} = 44 \ \mathbf{X} = 20 \end{array}$ | 110 | .10 | .30 | .60 | .300 | .384 | .451 | .544 | .615 | .667 | .750 | .800 | | $\mathbf{X} = 20$ | 111 | .10 | .40 | .50 | .400 | .465 | .523 | .554 | .614 | .677 | .756 | .804 | | $\mathbf{X'} = 16$ $\mathbf{C} = 8$ | $\frac{112}{113}$ | .20
.20 | .20
.30 | $.60 \\ .50$ | .300
.300 | .353 $.368$ | .399 $.425$ | .488 $.482$ | .549 $.545$ | .602 $.605$ | .701 $.703$ | $.761 \\ .762$ | | 0 – 0 | 114 | .20 | .40 | .40 | .400 | .451 | .423 | .525 | .586 | .655 | .741 | .793 | | | 115 | .10 | .20 | .70 | .350 | .402 | .448 | .490 | .569 | .623 | .716 | .773 | | L = 48 | 116 | .10 | .30 | .60 | .300 | .384 | .451 | .489 | .570 | .627 | .720 | .776 | | $\mathbf{\ddot{X}} = 20$ $\mathbf{X'} = 20$ | 117 | .10 | .40 | .50 | .400 | .465 | .523 | .554 | .590 | .647 | .733 | .785 | | X' = 20 | 118 | .20 | .20 | .60 | .300 | .353 | .399 | .435 | .506 | .561 | .670 | .736 | | $\mathbf{c} = 8$ | $\begin{array}{c} 119 \\ 120 \end{array}$ | $.20 \\ .20$ | $.30 \\ .40$ | $.50 \\ .40$ | .300
.400 | $.368 \\ .451$ | .425 $.498$ | .455 $.525$ | .512 $.579$ | .574 $.630$ | $.679 \\ .722$ | .743
.777 | | | 140 | .40 | .40 | .40 | .400 | .401 | .450 | .040 | .010 | .000 | | | | Table 12. | 9 (Co | ntinue | d) | | | | | | | | | | |-------------------|-------|--------|-----|-----|------|------|------|------|------|------|------|------| | | 121 | .10 | .20 | .70 | .350 | .448 | .553 | .640 | .692 | .727 | .791 | .833 | | L = 40 | 122 | .10 | .30 | .60 | .300 | .384 | .502 | .601 | .661 | .701 | .773 | .818 | | X = 20 | 123 | .10 | .40 | .50 | .400 | .400 | .465 | .566 | .632 | .677 | .756 | .804 | | $\mathbf{x'} = 8$ | 124 | .20 | .20 | .60 | .300 | .384 | .480 | .560 | .603 | .640 | .726 | .780 | | C = 12 | 125 | .20 | .30 | .50 | .300 | .320 | .430 | .522 | .577 | .618 | .710 | .766 | | | 126 | .20 | .40 | .40 | .400 | .400 | .451 | .512 | .586 | .655 | .741 | .793 | | | 127 | .10 | .20 | .70 | .350 | .350 | .464 | .572 | .637 | .681 | .755 | .804 | | L = 44 | 128 | .10 | .30 | .60 | .300 | .300 | .420 | .540 | .612 | .660 | .742 | .793 | | X = 20 | 129 | .10 | .40 | .50 | .400 | .400 | .465 | .512 | .589 | .647 | .733 | .785 | | X' = 12 | 130 | .20 | .20 | .60 | .300 | .300 | .402 | .501 | .561 | .601 | .694 | .755 | | C = 12 | 131 | .20 | .30 | .50 | .300 | .300 | .368 | .470 | .536 | .581 | .683 | .745 | | | 132 | .20 | .40 | .40 | .400 | .400 | .451 | .486 | .556 | .630 | .722 | .777 | | | 133 | .10 | .20 | .70 | .350 | .350 | .401 | .507 | .585 | .637 | .720 | .776 | | L = 48 | 134 | .10 | .30 | .60 | .300 | .300 | .384 | .481 | .565 | .621 | .711 | .768 | | X = 20 | 135 | .10 | .40 | .50 | .400 | .400 | .465 | .509 | .551 | .618 | .710 | .766 | | X' = 16 | 136 | .20 | .20 | .60 | .300 | .800 | .353 | .445 | .515 | .562 | .663 | .730 | | C = 12 | 137 | .20 | .30 | .50 | .300 | .300 | .368 | .420 | .496 | .547 | .656 | .724 | | | 138 | .20 | .40 | .40 | .400 | .400 | .451 | .486 | .545 | .605 | .703 | .762 | | | 139 | .10 | .20 | .70 | .350 | .350 | .401 | .445 | .533 | .593 | .685 | .748 | | L = 52 | 140 | .10 | .30 | .60 | .300 | .300 | .384 | .434 | .519 | .582 | .680 | .744 | | X = 20 | 141 | .10 | .40 | .50 | .400 | .400 | .465 | .509 | .551 | .589 | .688 | .748 | | X' = 20 | 142 | .20 | .20 | .60 | .300 | .300 | .353 | .390 | .470 | .525 | .631 | .705 | | C = 12 | 143 | .20 | .30 | .50 | .300 | .300 | .368 | .410 | .471 | .517 | .633 | .705 | | | 144 | .20 | .40 | .40 | .400 | .400 | .451 | .486 | .545 | .588 | .684 | .746 | Table 12.10 ## SUMMARY OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY TYPE 2-3 TRUCKS WEIGHING ONE KIP EACH Ninety variations in the Type 2-3 truck are given in this Table. Each truck number, from 1 to 90, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. | Wheel
Base
and
Axle
Spacing | Truck No. | Load On
Axles
Kips | | | Span-Feet | | | | | | | | | | |--|-----------|--------------------------|----------------|----------------|--------------|--------------|----------------|----------------|-------------|----------------|----------------|--------------|--|--| | Feet | Ę | aı | \mathbf{a}_2 | \mathbf{a}_3 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | | | 1 | .10 | .20 | .70 | .299 | .424 | .521 | .612 | .670 | .725 | .794 | .835 | | | | L = 32 | 2 | .10 | .30 | .60 | .300 | .363 | .476 | .582 | .664 | .720 | .790 | .832 | | | | X = 12 | 3 | .10 | .40 | .50 | .400 | .441 | .498 | .597 | .674 | .726 | .793 | .833 | | | | $\mathbf{X}' = 8$ | 4 | .20 | .20 | .60 | .256 | .363 | .449 | .533 | .617 | .681 | .760 | .808 | | | | C = 8 | 5 | .20 | .30 | .50_ | .300 | .343 | .420 | .529 | .620 | .683 | .761 | .808 | | | | | 6 | .10 | .20 | .70 | .299 | .378 | .457 | .537 | .606 | .665 | .748 | .798 | | | | L = 36 | 7 | .10 | .30 | .60 | .300 | .353 | .413 | .507 | .601 | .667 | .750 | .800 | | | | X = 12
X' = 12 | 8
9 | .10 | .40 | .50 | .400 | .441 | .498 | .549 | .628 | .687 | .762 | .808 | | | | C = 8 | 10 | .20
.20 | .20
.30 | .60
.50 | .256 $.300$ | .324 $.343$ | $.391 \\ .420$ | .465 $.484$ | .552 $.573$ | .627 $.642$ | .720 $.730$ | .776 $.783$ | | | | <u> </u> | | | | | | | | | | | | | | | | L = 40 | 11
12 | .10
.10 | .20
.30 | .70
.60 | .299
.300 | .378
.353 | .407 $.413$ | .474 $.460$ | .547 $.539$ | .607
.616 | .704 $.711$ | .762
.769 | | | | X = 12 | 13 | .10 | .40 | .50 | .400 | .441 | .413 | .540 | .583 | .649 | $.711 \\ .732$ | .784 | | | | X' = 16 | 14 | .20 | .20 | .60 | .256 | .324 | .348 | .406 | .489 | .574 | .680 | .744 | | | | $\hat{c} = \hat{s}$ | 15 | .20 | .39 | .50 | .300 | .343 | .420 | .481 | .528 | .603 | .699 | .758 | | | | | 16 | .10 | .20 |
.70 | .299 | .424 | .515 | .577 | .639 | .685 | .763 | .811 | | | | L = 36 | 17 | .10 | .30 | .60 | .300 | .363 | .441 | .520 | .602 | .668 | .751 | .800 | | | | $\tilde{\mathbf{x}} = 12$ | 18 | .10 | .40 | .50 | ,400 | .400 | .454 | .520 | .605 | .668 | .747 | .796 | | | | X' = 8 | 19 | .20 | .20 | .60 | .256 | .363 | .441 | .498 | .556 | .630 | .722 | .777 | | | | C = 12 | 20 | .20 | .30 | .50 | .300 | .302 | .374 | .453 | .550 | .623 | .714 | .770 | | | | | 21 | .10 | .20 | .70 | .299 | .378 | .457 | .517 | .579 | .630 | .717 | .774 | | | | L = 40 | 22 | .10 | .30 | .60 | .300 | .324 | .391 | .443 | .536 | .614 | .710 | .768 | | | | X = 12 | 23 | .10 | .40 | .50 | .400 | .400 | .454 | .507 | .561 | .630 | .717 | .772 | | | | X = 12 | 24 | .20 | .20 | .60 | .256 | .324 | .391 | .443 | .500 | .574 | .680 | .744 | | | | C = 12 | 25 | .20 | .30 | .50 | .300 | .300 | .374 | .447 | .505 | .584 | .684 | .746 | | | | | 26 | .10 | .20 | .70 | .299 | .378 | .407 | .474 | .521 | .580 | .672 | .737 | | | | L = 44 | 27 | .10 | .30 | .60 | .300 | .324 | .363 | .422 | .474 | .561 | .670 | .736 | | | | X = 12 | 28 | .10 | .40 | .50 | .400 | .400 | .454 | .507 | .539 | .593 | .688 | .748 | | | | X' = 16 | 29 | .20 | .20 | .60 | .256 | .324 | .348 | .406 | .448 | .520 | .640 | .712 | | | | C = 12 | 30 | .20 | .30 | .50 | .300 | .300 | .374 | .447 | .491 | 546_ | .655 | .721 | | | | | 31 | .10 | .20 | .70 | .299 | .424 | .521 | .612 | .668 | .712 | .783 | .827 | | | | L = 36 | 32 | .10 | .30 | .60 | .300 | .363 | .476 | .582 | .648 | .707 | .780 | .824 | | | | X = 16 | 33 | .10 | .40 | .50 | .400 | .441 | .491 | .574 | .656 | .712 | .782 | .825 | | | | X' = 8 $C = 8$ | 34 | .20 | .20 | .60 | .256 | .363 | .449 | .533 | .586 | .655 | .741 | .793 | | | | $\mathbf{c} = 8$ | 35 | .20 | .30 | .50 | .300 | .343 | .419 | .514 | .586 | .654 | .739 | .791 | | | | | 36 | .10 | .20 | .70 | .299 | .378 | 457 | .537 | .606 | .653 | .738 | .790 | | | | L = 40 | 37 | .10 | .30 | .60 | .300 | .353 | .391 | .507 | .585 | .654 | .740 | .792 | | | | $ \begin{array}{l} X = 16 \\ X' = 12 \end{array} $ | 38 | .10 | .40 | .50 | .400 | .441 | .481 | .527 | .609 | .672 | .751 | .800 | | | | $\mathbf{C} = 12$ | 39
40 | .20
.20 | .20
.30 | .60
.50 | .256 $.300$ | .324 $.343$ | $.391 \\ .382$ | $.465 \\ .451$ | .528 $.537$ | $.601 \\ .613$ | .700 $.708$ | .760 $.766$ | | | | <u> </u> | 40 | .20 | .30 | .ev | .800 | .045 | .3čZ | .401 | .557 | .619 | .108 | .706 | | | | Table 12. | 10 (C | ontinu | ed) | | | | | | | | | | |--|-----------------|------------|------------|--------------------|----------------|--------------|-------------|-------------|-------------|----------------|----------------|--------------| | | 41 | .10 | .20 | .70 | .299 | .378 | .407 | ,474 | .547 | .603 | .693 | .754 | | L = 44 | 42 | .10 | .30 | .60 | .360 | .353 | .391 | .440 | .526 | .602 | .701 | .761 | | X = 16 | 43 | .10 | .40 | .50 | .400 | .441 | .481 | .520 | .564 | .633 | .721 | .775 | | X' = 16 | 44 | .20 | .20 | .60 | .256 | .324 | .348 | .406 | .474 | .547 | .660 | .728 | | C = 8 | 45 | .20 | .30 | .50 | .300 | .343 | .382 | .443 | .494 | .573 | .677 | .741 | | | 46 | .10 | .20 | .70 | .299 | .424 | .515 | .577 | .639 | .681 | .753 | .803 | | L = 40 | 47 | .10 | .30 | .60 | .300 | .363 | .441 | .520 | .596 | .655 | .741 | .793 | | X = 16 | 48 | .10 | .40 | .50 | .400 | .400 | .441 | .497 | .587 | .653 | .736 | .787 | | X' = 8 | 49 | .20 | .20 | .60 | .256 | .363 | .441 | .498 | .556 | .605 | .703 | .762 | | C = 12 | 50 | .20 | .30 | .50 | .300 | .302 | .367 | .453 | .523 | .593 | .693 | .753 | | | 51 | .10 | .20 | .70 | .299 | .378 | .457 | .517 | .579 | .630 | .707 | .765 | | L = 44 | 52 | .10 | .30 | .60 | .300 | .324 | .391 | .443 | .534 | .601 | .700 | .760 | | X = 16 | 53 | .10 | .40 | .50 | .400 | .400 | .441 | .487 | .542 | .614 | .706 | .763 | | X' = 12 | 54 | .20 | .20 | .60 | .256 | .324 | .391 | .443 | .500 | 549 | .661 | .729 | | C = 12 | 55 | .20 | .30 | .50 | .300 | .300 | .343 | .408 | .470 | .554 | .662 | .728 | | T - 10 | 56 | .10 | .20 | .70 | .299 | .378 | .407 | .474 | .521 | .580 | .662 | .729 | | L = 48 | 57 | .10 | .30 | .60 | .300 | .324 | .353 | .406 | .474 | .547 | .660 | .728 | | X = 16 | 58 | .10 | .40 | .50 | .400 | .400 | .441 | .487 | .523 | .577 | .677 | .739 | | X' = 16 $C = 12$ | 59 | .20 | .20 | .60 | .256 | .324 | .348 | .406 | .448 | .503 | .620 | .696 | | C 12 | 60 | .20 | 30 | 50 | .300 | .300 | .343 | 408 | .460 | .515 | .632 | .704 | | * 40 | 61 | .10 | .20 | .70 | .299 | .424 | .521 | .612 | .668 | .706 | .773 | .819 | | L = 40 | 62 | .10 | .30 | .60 | .300 | .363 | .476 | .582 | .645 | .694 | .770 | .816 | | X = 20 | 63 | .10 | .40 | .50 | .400 | .441 | .491 | .573 | .639 | .697 | .771 | .816 | | X' = 8 $C = 8$ | 64 | .20 | .20 | .60 | .256 | .363 | .449 | .533 | .584 | .630 | .722 | .777 | | C = 8 | 65 | .20 | .30 | 50 | .300 | .343 | .419 | .514 | 571 | .629 | .720 | .776 | | T - 44 | 66 | .10 | .20 | .70 | .299 | .378 | .457 | .537 | .606 | .653 | .727 | .782 | | L = 44
X = 20 | 67 | .10 | .30 | .60 | .300 | .353 | .391 | .507 | .585 | .640 | .730 | .784 | | X = 20
X' = 12 | 68
69 | .10
.20 | .40
.20 | .50 | $.400 \\ .256$ | .441 | .481 | .519 | .591 | .657 | .740 | .791 | | $C = \frac{12}{8}$ | 70 | .20 | .30 | .60
.50 | .236 | .324 $.343$ | .391 $.382$ | .465 $.451$ | .528 $.520$ | $.641 \\ .584$ | $.680 \\ .687$ | .744
.749 | | <u> </u> | ${71}^{.0}$ $-$ | | .20 | $-\frac{.50}{.70}$ | .299 | | | | .547 | .603 | | .746 | | L = 48 | $\frac{71}{72}$ | .10 | .30 | .60 | .299 | .378 | .407 | .474 $.436$ | .547 | .588 | .682 $.691$ | .746 | | $X = \frac{10}{20}$ | 73 | .10 | .40 | .50 | .400 | .353
.441 | .391 $.481$ | .502 | .546 | .618 | .710 | .766 | | X' = 20
X' = 16 | 74 | .20 | .20 | .60 | .256 | .324 | .348 | .406 | .474 | .525 | .640 | .712 | | c = 8 | 75 | .20 | .30 | .50 | .300 | .343 | .382 | .407 | .471 | .544 | .656 | .724 | | 0 0 | 76 | .10 | .20 | .70 | .299 | .424 | .515 | .577 | .639 | .681 | .743 | .795 | | L = 44 | 77 | .10 | .30 | .60 | .300 | .363 | .441 | .520 | .596 | .647 | .731 | .785 | | $\ddot{X} = 20$ | 78 | .10 | .40 | .50 | .400 | .400 | .441 | .495 | .576 | .638 | .725 | .779 | | $\mathbf{x}' = \mathbf{z}'$ | 79 | .20 | .20 | .60 | .256 | .363 | .441 | .498 | .556 | .595 | .684 | .746 | | $\overset{\mathbf{C}}{\mathbf{C}} = 1\overset{\circ}{2}$ | 80 | .20 | .30 | .50 | .300 | .302 | .367 | .453 | .523 | ,569 | .674 | .738 | | | 81 | .10 | .20 | .70 | .299 | .378 | .457 | .517 | .579 | .630 | .697 | .757 | | L = 48 | 82 | .10 | .30 | .60 | .300 | .324 | .391 | .443 | .534 | .595 | .690 | .752 | | $\tilde{X} = 20$ | 83 | .10 | .40 | .50 | .400 | ,400 | .441 | .471 | .523 | .599 | .695 | .745 | | X' = 12 | 84 | .20 | ,20 | .60 | .256 | .324 | .391 | .443 | .500 | .548 | .642 | .713 | | C = 12 | 85 | .20 | .30 | .50 | .300 | .300 | .343 | .388 | .470 | .525 | .640 | .711 | | | 86 | .10 | .20 | .70 | .299 | .378 | .407 | .474 | .521 | .580 | .656 | .721 | | L = 52 | 87 | .10 | .30 | .60 | .300 | .324 | .353 | .406 | .474 | .544 | .650 | .720 | | X = 20 | 88 | .10 | .40 | .50 | .400 | .400 | .441 | .471 | .507 | .561 | .666 | .730 | | X' = 16 | 89 | .20 | .20 | .60 | .256 | .324 | .348 | .406 | .448 | .503 | .600 | .680 | | C = 12 | 90 | .20 | .30 | .50 | .300 | .300 | .343 | .372 | .429 | .485 | .610 | .686 | | | | | | | | | | | | | | | Table 12.11 # SUMMARY OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY TYPE 3-2 TRUCKS WEIGHING ONE KIP EACH Ninety variations in the Type 3-2 truck are given in this Table. Each truck number, from 1 to 90, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. | | | | | | <u> </u> | | | | | | | | | | |--|-----------------|--------------------------|----------------|----------------|-------------|----------------|----------------|-------------|----------------|----------------|--------------|----------------|--|--| | Wheel Base and Axle Spacing | Truck No. | Load On
Axles
Kips | | | Span-Feet | | | | | | | | | | | Feet | Ē | aı | \mathbf{a}_2 | \mathbf{a}_3 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | | | 1 | .10 | .40 | .50 | .256 | .376 | .466 | .551 | .632 | .693 | .768 | .814 | | | | $\Gamma = 36$ | 2 | .10 | .50 | .40 | .320 | .441 | .527 | .596 | .676 | .730 | .796 | .837 | | | | X = 12
X' = 12 | $\frac{3}{4}$ | .10
.20 | .60
.40 | .80 | .384 | .510 | .590 | .652 | .721 | .768 | .825 | .860
.808 | | | | C = 8 | 5 | .20 | .50 | $.40 \\ .30$ | .256 $.320$ | .363 $.430$ | .441 $.503$ | .525 $.590$ | .617 $.664$ | .681 $.720$ | .760 $.790$ | .832 | | | | | 6 | .10 | .40 | .50 | .256 | .376 | .466 | .530 | .597 | .662 | .745 | .795 | | | | L = 40 | 7 | .10 | .50 | .40 | .320 | .441 | .527 | .591 | .646 | .704 | .777 | .821 | | | | X = 12 | 8 | .10 | .60 | .30 | .384 | .510 | .590 | .652 | .698 | .748 | .811 | .848 | | | | X' = 16 | 9 | .20 | .40 | .40 | .256 | .363 | .441 | .525 | .586 | .655 | .741 | .793 | | | | C = 8 | 10 | .20 | .50 | .30 | .320 | .430 | .503 | .590 | .642 | .700 | .775 | .820 | | | | | 11 | .10 | .40 | .50 | .256 | .376 | .466 | .530 | .574 | .632 | .722 | .776 | | | | $ \mathbf{L} = 44 \\ \mathbf{X} = 12 $ | 12 | .10 | .50 | .40 | .320 | .441 | .527 | .591 | .632 | .680 | .758 | .806 | | | | $X = 12 \\ X' = 16$ | $\frac{13}{14}$ | $.10 \\ .20$ | .60
.40 | .30 | .384 $.256$ | .510 $.363$ | $.590 \\ .441$ | .652 $.525$ | $.691 \\ .579$ | .729 $.630$ | .796 $.722$ | .837 $.777$ | | | | $\mathbf{C} = \frac{10}{8}$ | 15 | .20 | .50 | .30 | .320 | .430 | .503 | .590 | .642 | .681 | .760 | .808 | | | | | 16 | .10 | .40 | .50 | .256 | .324 | .405 | .480 | .561 | .632 |
.722 | .776 | | | | L = 40 | 17 | .10 | .50 | .40 | .320 | .405 | .476 | .550 | .616 | .680 | .758 | .806 | | | | $\mathbf{X} = 12$ $\mathbf{X'} = 12$ | 18 | .10 | .60 | .30 | .384 | .486 | .550 | .621 | .675 | .729 | .796 | .837 | | | | X' = 12 | 19 | .20 | .40 | .40 | .256 | -324 | .391 | .482 | .556 | .630 | .722 | .777 | | | | C = 12 | 20 | .20 | .50 | .30 | .320 | .405 | .476 | .561 | .618 | .681 | .760 | .808 | | | | | 21 | .10 | .40 | .50 | .256 | .324 | .405 | .480 | .534 | .603 | .699 | .758 | | | | L = 44 | 22 | .10 | .50 | .40 | .320 | .405 | .476 | .550 | .600 | .655 | .740 | .791 | | | | $X = 12 \\ X' = 16$ | $\frac{23}{24}$ | .10 | .60 | .30 | .384 | .486 | .550 | .621 | .666 | .710 | .782 | .825 | | | | C = 12 | 24
25 | .20
.20 | .40
.50 | .40 | .256 $.320$ | .324 $.405$ | $.391 \\ .476$ | .482 $.561$ | .545 $.618$ | $.605 \\ .661$ | .703 $.746$ | $.762 \\ .796$ | | | | 0 - 12 | 26 | .10 | .40 | .50 | .256 | ,324 | .405 | .480 | .534 | .574 | | | | | | L = 48 | 27 | .10 | .50 | .40 | .320 | .324 $.405$ | .476 | .550 | .600 | .634 | .677
.721 | .739 $.776$ | | | | X = 12 | 28 | .10 | .60 | .30 | .384 | .386 | .550 | .621 | .666 | .697 | .767 | .813 | | | | | 29 | .20 | .40 | .40 | .256 | .324 | .391 | .482 | .545 | .588 | .684 | .746 | | | | C = 12 | 30 | .20 | .50 | .30 | .320 | .405 | .476 | .561 | .618 | .657 | .731 | .785 | | | | | 31 | .10 | .40 | .50 | .256 | .376 | .466 | .551 | .620 | .679 | .758 | .806 | | | | L = 40 | 32 | .10 | .50 | .40 | .320 | 441 | .527 | .585 | .659 | .716 | 786 | .829 | | | | X = 16 | 33 | .10 | .60 | .30 | .384 | .510 | .590 | .636 | .704 | .754 | .815 | .852 | | | | X' = 12 | 34 | .20 | .40 | .40 | .256 | .363 | .441 | .498 | .584 | .654 | .740 | .792 | | | | c = s | 35 | .20 | .50 | .30 | .320 | .430 | .503 | .550 | .632 | .694 | .770 | .816 | | | | | 36 | .10 | .40 | .50 | .256 | .376 | .466 | .511 | .580 | .648 | .734 | .787 | | | | $\mathbf{L} = 44$ | 37 | .10 | .50 | .40 | .320 | .441 | .527 | .572 | .629 | .690 | .767 | .813 | | | | X = 16 | 38 | .10 | .60 | .30 | .384 | .510 | .590 | .633 | .681 | .734 | .800 | .840 | | | | X' = 16
C = 8 | $\frac{39}{40}$ | .20 $.20$ | .40
.50 | .40
.30 | .256 $.320$ | $.363 \\ .430$ | .441 $.503$ | .488 $.550$ | .553 $.610$ | .628 $.674$ | .720
.755 | .776 $.804$ | | | | 0 = 0 | 41 | .10 | .40 | .50 | .256 | .376 | .466 | .511 | .558 | .618 | .711 | .768 | | | | L = 48 | 42 | .10 | .50 | .40 | .320 | .441 | .527 | .572 | .617 | .665 | .711 $.748$ | .768 | | | | X = 16 | 43 | .10 | .60 | .30 | .384 | .510 | .590 | .633 | .676 | .715 | .786 | .828 | | | | X' = 20 | 44 | .20 | .40 | .40 | .256 | .363 | .441 | .488 | .549 | .602 | .701 | .761 | | | | C = 8 | 45 | .20 | .50 | .30 | .320 | .430 | .503 | .550 | .610 | .654 | .740 | .792 | Table 12. | 11 (C | ontinu | (ed | | | | | | | | | | |--------------------|-------|------------|-----|-----|--------------|------|------|------|------|------|------|------| | | 46 | .10 | .40 | .50 | .256 | .324 | .405 | .475 | .559 | .618 | .711 | .768 | | L = 44 | 47 | .10 | .50 | .40 | .320 | .405 | .476 | .532 | .599 | .665 | .748 | .798 | | X = 16 | 48 | ,10 | .60 | .30 | .384 | .486 | .550 | .601 | .658 | .715 | .786 | .828 | | X' = 12 | 49 | .20 | .40 | .40 | .256 | .324 | .391 | .445 | .522 | .602 | .701 | .761 | | $\mathbf{c} = 12$ | 50 | .20 | .50 | .30 | .320 | .405 | .464 | .511 | .584 | .654 | .740 | .792 | | | 51 | .10 | .40 | .50 | ,256 | .324 | .405 | .465 | .518 | .588 | .688 | .749 | | L = 48 | 52 | .10 | .50 | .40 | .320 | .405 | .476 | .532 | .584 | .641 | .729 | .783 | | X = 16 | 53 | .10 | .60 | .30 | .384 | .486 | .550 | .601 | .651 | .696 | .771 | .817 | | X' = 16 | 54 | .20 | .40 | .40 | .256 | .324 | .391 | .445 | .515 | .576 | .682 | .745 | | C = 12 | 55 | .20 | .50 | .30 | .320 | .405 | .464 | .511 | .570 | .634 | .725 | .780 | | | 56 | .10 | .40 | .50 | .256 | .324 | .405 | .465 | .518 | .559 | .666 | .731 | | L = 52 | 57 | .10 | .50 | .40 | .320 | .405 | .476 | .532 | .584 | .620 | .710 | .767 | | X = 16 | 58 | .10 | .60 | .30 | .384 | .486 | .550 | .601 | .651 | .684 | .757 | .805 | | X' = 20 | 59 | .20 | .40 | .40 | .256 | .324 | .391 | .445 | .515 | .562 | .663 | .730 | | C = 12 | 60 | .20 | .50 | .30 | .320 | .405 | .464 | .511 | .570 | .617 | .710 | .768 | | | 61 | .10 | .40 | .50 | .256 | .376 | .466 | .551 | .620 | .667 | .748 | .798 | | L = 44 | 62 | .10 | .50 | .40 | .320 | .441 | .527 | .585 | .645 | .702 | .776 | .820 | | X = 20 | 63 | .10 | .60 | .30 | .384 | .510 | .590 | .636 | .688 | .741 | .805 | .844 | | X' = 12 | 64 | .20 | .40 | .40 | .256 | .363 | .441 | .498 | .556 | .627 | .720 | .776 | | c = 8 | 65 | .20 | .50 | .30 | .320 | .430 | .503 | .548 | .601 | .668 | .750 | .800 | | | 66 | .10 | .40 | .50 | .256 | .376 | .466 | .511 | .580 | .634 | .724 | .778 | | L = 48 | 67 | .10 | .50 | .40 | .320 | .441 | .527 | .570 | .617 | .676 | .756 | .805 | | X = 20 | 68 | .10 | .60 | .30 | .384 | .510 | .590 | .630 | .666 | .721 | .790 | .832 | | X' = 16 | 69 | .20 | .40 | .40 | .256 | ,363 | .441 | .481 | .528 | .601 | .700 | .760 | | c = 8 | 70 | .20 | .50 | .30 | .320 | .430 | .503 | .540 | .579 | .647 | .735 | .788 | | | 71 | .10 | .40 | .50 | .256 | .376 | .466 | .511 | .543 | .603 | .700 | .759 | | L = 52 | 72 | .10 | .50 | .40 | .320 | .441 | .527 | .570 | .602 | .651 | .737 | .789 | | X = 20 | 73 | .10 | .60 | .30 | .384 | .510 | .590 | .630 | .661 | .701 | .776 | .820 | | $\mathbf{x}' = 20$ | 74 | .20 | .40 | .40 | .256 | .363 | .441 | .481 | .520 | .574 | .680 | .744 | | $\mathbf{c} = 8$ | 75 | .20 | .50 | .30 | .320 | .430 | .503 | .541 | .579 | .627 | .720 | .776 | | | 76 | .10 | .40 | .50 | .256 | .324 | .405 | .475 | .559 | .616 | .701 | .760 | | L = 48 | 77 | .10 | .50 | .40 | .320 | .405 | .476 | .532 | .589 | .651 | .737 | .789 | | X = 20 | 78 | .10 | .60 | .30 | .384 | .486 | .550 | .600 | .644 | .701 | .776 | .820 | | X' = 12 | 79 | .20 | .40 | .40 | .256 | .324 | .391 | .443 | .500 | .574 | .680 | .744 | | C = 12 | 80 | .20 | .50 | .30 | .320 | .405 | .464 | .511 | .554 | .627 | .720 | .776 | | _ | 81 | .10 | .40 | .50 | .256 | .324 | .405 | .465 | .517 | .581 | .677 | .741 | | L = 52 | 82 | .10 | .50 | .40 | .320 | .405 | .476 | .532 | .568 | .626 | .718 | .774 | | X = 20 | 83 | .10 | .60 | .30 | .384 | .486 | .550 | .600 | .636 | .682 | .761 | .809 | | X' = 16 | 84 | .20 | .40 | .40 | .256 | .324 | .391 | .443 | .485 | .549 | .661 | .729 | | C = 12 | 85 | .20 | .50 | .30 | .320 | .405 | .464 | .511 | .554 | .607 | .705 | .764 | | T | 86 | .10 | .40 | .50 | .256 | .324 | .405 | .465 | .502 | .547 | .655 | .722 | | L = 56 | 87 | .10 | .50 | .40 | .320 | .405 | .476 | .532 | .568 | .607 | .700 | .759 | | X = 20 | 88 | .10 | .60 | .30 | .384 | .486 | .550 | .600 | .636 | .671 | .746 | .797 | | X'=20 $C=12$ | 89 | .20
.20 | .40 | .40 | .256
.320 | .324 | .391 | .443 | .485 | .537 | .642 | .713 | | U 12 | 90 | .20 | .50 | .30 | .320 | .405 | .464 | .511 | .554 | 604 | .690 | .752 | Table 12.12 # SUMMARY OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY TYPE 3-3 TRUCKS WEIGHING ONE KIP EACH Ninety variations in the Type 3-3 truck are given in this Table. Each truck number, from 1 to 90, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. Equivalent concentrated loads are in kips. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. | | | | | | - 0- | | | | | | | | |---|-----------|----------------|----------------|------------|------|------|------|---------|------|------|-------|------| | Wheel | 6 | Ι. | 1.0 | | | | | | | | | | | Base | No. | ļ 1 | oad O | n | | | | Span-Fe | e t | | | | | and | | | Axles | | | | | opan-r | | | | | | Axle | ä | | Kips | | | | | | | | | | | Spacing
Feet | Truck | a ₁ | a ₂ | a 3 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | 1 000 | 1 | .10 | .30 | .60 | .256 | .363 | .441 | .492 | .572 | .636 | .726 | .781 | | L = 40 | $\hat{2}$ | .10 | .40 | .50 | .256 | .324 | .383 | .457 | .550 | .623 | .714 | .770 | | | 3 | .10 | .50 | .40 | ,320 | .405 | .460 | .525 | .607 | .671 | .752 | .801 | | X' = 8 | 4 | .20 | .30 | .50 | .213 | .302 | .367 | .424 | .499 | .577 | .681 | .744 | | C = 12 | 5 | .20 | .40 | .40 | .256 | .324 | .391 | .467 | .546 | .621 | .715 | .772 | | | 6 | .10 | .30 | .60 | .256 | .324 | .391 | .443 | .509 | .581 | .685 | .748 | | L = 44 | 7 | .10 | .40 | .50 | .256 | .324 | .383 | .447 | .568 | .584 | .684 | .746 | | X = 12 | 8 | .10 | .50 | .40 | .320 | .405 | .460 | .524 | .573 | .639 | .727 | .781 | | X' = 12 | 9 | .20 | .30 | .50 | .213 | .270 | .326 | .384 | .446 | .531 | .646 | .715 | | C = 12 | 10 | .20 | .40 | .40 | .256 | .324 | .391 | .467 | .520 | .588 | .690 | .751 | | | 11 | .10 | .30 | .60 | .256 | .324 | .348 | .406 | .448 | .514 | .635 | .708 | | L = 48 | 12 | .10 | .40 | .50 | .256 | .324 | .383 | .447 | .491 | .546 | .655 | .721 | | | 13 | .10 | .50 | .40 | .320 | .405 | .460 | .524 | .566 | .607 | .703 | .761 | | X' = 16 | 14 | .20 | .30 | 50 | .213 | .270 | .307 | .384 | .441 | .492 | .616 | .691 | | C = 12 | 15 | .20 | .40 | .40 | .256 | .324 | .391 | .467 | .520 | .556 | .665 | .731 | | | 16 | .10 | .30 | .60 | .256 | .363 | .441 | .481 | .525 | .588 | .688 | .750 | | L = 44 | 17 | .10 | .40 | .50 | .256 | .324 | .367 | .414 | .485 | ,565 | .669 | .733 | | $\bar{\mathbf{x}} = 12$ | 18 | .10 | .50 | .40 | .320 | .405 | .453 | .497 | .553 | .623 | .715 | .771 | | X' = 8 $C = 16$ | 19 | .20 | .30 | .50 | .213 | .302 | .367 | .400 | .453 | .516 | .633 | .705 | | C = 16 | 20 | .20 | 40 | .40 | .256 | .324 | .391 | .443 | .499 | .572 | .677 | .741 | | | 21 | .10 | .30 | .60 | .256 | .324 | .391 | .443 | .474 | .534 | .646 | .717 | | $\mathbf{L} = 48$ | 22 |
.10 | .40 | .50 | .256 | .324 | .367 | .414 | .464 | .527 | .640 | .709 | | X = 12 | 23 | .10 | .50 | .40 | .320 | .405 | .453 | .497 | .544 | .592 | .690 | .751 | | X' = 12 | 24 | .20 | .30 | .50 | .213 | .270 | .326 | .369 | .415 | .473 | .601 | .679 | | C = 16 | 25 | .20 | .40 | .40 | .256 | .324 | .391 | .443 | .499 | .539 | .653 | .721 | | | 26 | .10 | .30 | .60 | .256 | .324 | ,348 | .406 | .444 | .481 | .605 | .684 | | $ \begin{array}{l} \text{L} = 52 \\ \text{X} = 12 \end{array} $ | 27 | .10 | .40 | .50 | .256 | .324 | .367 | .414 | .464 | .498 | .611 | .686 | | X = 12 | 28 | .10 | .50 | .40 | .320 | .405 | .453 | .497 | .544 | .576 | .666 | .731 | | X' = 16 | 29 | .20 | .30 | .50 | .213 | .270 | .307 | .354 | .415 | .457 | .571 | .654 | | C = 16 | 30 | .20 | .40 | .40 | .256 | .324 | .391 | .443 | .499 | .538 | .628_ | .701 | | | 31 | .10 | .30 | .60 | .256 | .363 | .441 | .492 | .572 | .627 | .717 | .773 | | L = 44 | 32 | .10 | .40 | .50 | .256 | .324 | .383 | .457 | .545 | ,608 | .703 | .762 | | X = 16 | 33 | .10 | .50 | .40 | .320 | .405 | .460 | .512 | .589 | .657 | .741 | .793 | | X' = 8 | 34 | .20 | .30 | .50 | .213 | .302 | .367 | .424 | .499 | .551 | .660 | .727 | | C = 12 | 35 | .20 | .40 | .40 | .256 | .324 | .374 | .427 | .512 | .593 | .694 | .755 | | | 36 | .10 | .30 | .60 | .256 | .324 | .391 | .443 | .509 | .574 | .676 | .740 | | L = 48 | 37 | .10 | .40 | .50 | .256 | .324 | .383 | .428 | .490 | .569 | .673 | .737 | | X = 16 | 38 | .10 | .50 | .40 | .320 | .405 | .460 | .505 | .556 | .624 | .716 | .772 | | X' = 12 | 39 | .20 | .30 | .50 | .213 | .270 | .326 | .369 | .446 | .505 | .624 | .698 | | C = 12 | 40 | .20 | .40 | .40 | .256 | .324 | .374 | .427 | .488 | .560 | .669 | .735 | | | 41 | .10 | .30 | .60 | .256 | .324 | .348 | .406 | .448 | .523 | .635 | .708 | | L = 52 | 42 | .10 | .40 | .50 | .256 | .324 | .383 | .428 | .475 | .531 | .643 | .713 | | X = 16 | 43 | .10 | .50 | .40 | .320 | .405 | .460 | .505 | .550 | .592 | .692 | .752 | | X' = 16 | 44 | .20 | .30 | .50 | .213 | .270 | .298 | .343 | .408 | .462 | .594 | .674 | | C = 12 | 45 | .20 | .40 | .40 | .256 | .324 | .374 | .427 | .488 | .529 | .644 | .714 | | | | | | | | | | | | | | | | Table 12. | 12 (C | ontinu | ed) | | | | | | | | | | |-------------------|-------|--------|-----|-----|------|------|------|------|------|-------|------|------| | | 46 | .10 | .30 | .60 | .256 | .363 | .441 | .481 | .525 | .588 | .679 | .743 | | L = 48 | 47 | .10 | .40 | .50 | .256 | .324 | .367 | .400 | .485 | .554 | .658 | .725 | | X = 16 | 48 | .10 | .50 | .40 | .320 | .405 | .435 | .478 | .536 | .608 | .704 | .762 | | $\mathbf{x'} = 8$ | 49 | .20 | .30 | .50 | .213 | .302 | .367 | .400 | .453 | .511 | .615 | .690 | | C = 16 | 50 | .20 | .40 | .40 | .256 | .324 | .348 | .406 | .467 | .543 | .656 | .724 | | | 51 | .10 | .30 | .60 | .256 | .324 | .391 | .443 | .474 | .534 | .637 | .709 | | L=52 | 52 | .10 | .40 | .50 | .256 | .324 | .348 | .397 | .448 | .512 | .629 | .700 | | X = 16 | 53 | .10 | .50 | .40 | .320 | .405 | .435 | .478 | .528 | .577 | .680 | .742 | | X'=12 | 54 | .20 | .30 | .50 | .213 | .270 | .326 | .369 | .398 | .465 | .579 | .661 | | C = 16 | 55 | .20 | .40 | .40 | .256 | .324 | .348 | .406 | .467 | .512 | .631 | .704 | | - | 56 | .10 | .30 | .60 | .256 | .324 | .348 | .406 | .444 | .481 | .596 | .676 | | L = 56 | 57 | .10 | .40 | .50 | .256 | .324 | .348 | .397 | .448 | .485 | .600 | .677 | | X = 16 | 58 | .10 | .50 | .40 | .320 | .405 | .435 | .478 | .528 | .563 | .655 | .723 | | X' = 16 | 59 | .20 | .30 | .50 | .213 | .270 | .290 | .338 | .382 | .429 | .549 | .637 | | C = 16 | 60 | .20 | .40 | .40 | .256 | .324 | .348 | .406 | .467 | .511 | .606 | .684 | | | 61 | .10 | .30 | .60 | ,256 | .363 | .441 | .492 | .572 | .627 | .707 | .765 | | L = 48 | 62 | .10 | .40 | .50 | .256 | .324 | .383 | .457 | .545 | .604 | .693 | .753 | | X = 20 | 63 | .10 | .50 | .40 | .320 | .405 | .460 | .512 | .580 | .643 | .731 | .784 | | $\mathbf{x}' = 8$ | 64 | .20 | .30 | .50 | .213 | .302 | .367 | .424 | .499 | .549 | .642 | .712 | | C = 12 | 65 | .20 | .40 | .40 | .256 | .324 | .374 | .425 | .492 | .566 | .674 | .739 | | | 66 | .10 | .30 | .60 | .256 | .324 | .391 | .443 | .509 | .574 | .666 | .732 | | L = 52 | 67 | .10 | .40 | .50 | .256 | .324 | .383 | .428 | .490 | .558 | .662 | .728 | | $\mathbf{X} = 20$ | 68 | .10 | .50 | .40 | .320 | .405 | .460 | .504 | .544 | .610 | .706 | .764 | | X' = 12 | 69 | .20 | .30 | .50 | .213 | .270 | ,326 | .369 | .446 | .505 | .606 | .683 | | C = 12 | 70 | .20 | .40 | .40 | .256 | .324 | .374 | .414 | .457 | .531 | .648 | .718 | | | 71 | .10 | .30 | .60 | .256 | .324 | .348 | .406 | .448 | .523 | .625 | .700 | | L = 56 | 72 | .10 | .40 | .50 | .256 | .324 | .383 | .428 | .460 | .515 | .632 | .704 | | X = 20 | 73 | .10 | .50 | .40 | .320 | .405 | .460 | .504 | .535 | .577 | .681 | .744 | | X' = 16 | 74 | .20 | .30 | .50 | .213 | .270 | .298 | .339 | .394 | .461 | .572 | .656 | | C = 12 | 75 | .20 | .40 | .40 | .256 | .324 | .374 | .414 | .457 | .503_ | .622 | .698 | | | 76 | .10 | .30 | .60 | .256 | .363 | .441 | .481 | .525 | .588 | .670 | .735 | | L = 52 | 77 | .10 | .40 | .50 | .256 | .324 | .367 | .400 | .485 | .554 | .647 | .716 | | X = 20 | 78 | .10 | .50 | .40 | .320 | .405 | .435 | .478 | .526 | .594 | .693 | .754 | | $\mathbf{x}' = 8$ | 79 | .20 | .30 | .50 | .213 | .302 | .367 | .400 | .453 | .511 | .598 | .675 | | C = 16 | 80 | .20 | .40 | .40 | .256 | .324 | .348 | .389 | .440 | .515 | .635 | .708 | | | 81 | .10 | .30 | .60 | .256 | .324 | .391 | .443 | .474 | .534 | .627 | .701 | | L = 56 | 82 | .10 | .40 | .50 | .256 | .324 | .348 | .397 | .432 | .507 | .617 | .692 | | X = 20 | 83 | .10 | .50 | .40 | .320 | .405 | .435 | .478 | .513 | .562 | .669 | .734 | | X' = 12 | 84 | .20 | .30 | .50 | .213 | .270 | .326 | .369 | .398 | .465 | .560 | .646 | | C = 16 | 85 | .20 | .40 | .40 | .256 | .324 | .348 | .389 | .435 | .485 | .610 | .687 | | | 86 | .10 | .30 | .60 | .256 | .324 | .348 | .406 | .444 | .481 | .586 | .668 | | $\mathbf{L} = 60$ | 87 | .10 | .40 | .50 | .256 | .324 | .348 | .397 | .432 | .472 | .588 | .668 | | X = 20 | 88 | .10 | .50 | .40 | .320 | .405 | .435 | .478 | .513 | .550 | .644 | .714 | | X' = 16 | 89 | .20 | .30 | .50 | .213 | .270 | .290 | .338 | .370 | .420 | .527 | .619 | | C = 16 | 90 | .20 | .40 | .40 | .256 | ,324 | .348 | .389 | .435 | .485 | .585 | .667 | Table 12.13 # SUMMARY OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY TYPE 2-S1-2 TRUCKS WEIGHING ONE KIP EACH Ninety-six variations in the Type 2-S1-2 truck are given in this Table. Each truck number, from 1 to 96, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. Equivalent concentrated loads are in kips. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. | Wheel
Base
and
Axle | Truck No. | I | oad O
Axles
Kips | | | | | Span-Fe | eet | | | | |-------------------------------------|-----------------|----------------|------------------------|-----------------------|--------------|-------------|----------------|----------------|-------------|----------------|--------------|--------------| | Spacing
Feet | Ę | a ₁ | \mathbf{a}_2 | a ₃ | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | L = 36 | 1 | .10 | .20 | .70 | .234 | .299 | .421 | .517 | .607 | .673 | .754 | .803 | | X = 8 $X' = 10$ | 2 | .10 | .30 | .60 | .300 | .326 | .416 | .500 | .600 | .667 | .750 | .800 | | C = 8 | 3
4 | .20 $.20$ | .20
.30 | $.60 \\ .50$ | .200
.300 | .256 $.353$ | $.360 \\ .449$ | $.460 \\ .527$ | .568 $.587$ | $.640 \\ .652$ | .730 $.736$ | .784
.787 | | $\frac{C=3}{L=40}$ | - 5 | 10 | .20 | .70 | .234 | .299 | .391 | .474 | .565 | .637 | .727 | 782 | | $\mathbf{x} = \frac{10}{8}$ | 6 | .10 | .30 | .60 | .300 | .324 | .391 | .465 | .552 | .627 | .720 | .776 | | X' = 12 | 7 | .20 | .20 | .60 | .200 | .256 | .334 | .418 | .520 | .601 | .700 | .760 | | c = 8 | 8 | .20 | .30 | .50 | .300 | .353 | .427 | .497 | .563 | .614 | .706 | .763 | | L = 44 | 9 | .10 | .20 | .70 | .234 | .299 | .361 | .445 | .523 | .602 | .701 | .760 | | $\mathbf{x} = 8$ | 10 | .10 | .30 | .60 | .300 | .324 | .367 | .432 | .504 | .587 | .690 | .752 | | $X' = 14 \\ C = 8$ | $\frac{11}{12}$ | $.20 \\ .20$ | .20 | .60 | .200 | .256 $.253$ | .309 | .385 | .473 | .561 | .670 | .736 | | | | | .30 | .50 | .300_ | | .405 | .471 | .539 | .587 | .677 | .739 | | L = 48
X = 8 | 13
14 | $.10 \\ .10$ | .20 | .70 | .234
.300 | .299 $.324$ | .351 $.348$ | .424
.406 | .488 $.474$ | .566 $.547$ | .674 $.660$ | .739 $.728$ | | $\mathbf{X}' = 16$ | 15 | .20 | .20 | .60 | .200 | .256 | .300 | .363 | .436 | .521 | .640 | .712 | | $\ddot{c} = \frac{18}{8}$ | 16 | .20 | .30 | .50 | .300 | .253 | .399 | .455 | .515 | .567 | .648 | .715 | | L = 52 | 17 | .10 | .20 | .70 | .234 | .299 | .351 | .402 | .461 | .530 | .647 | .718 | | $\bar{\mathbf{x}} = 8$ | 18 | .10 | .30 | .60 | .300 | .324 | .348 | .388 | .448 | .507 | .630 | .704 | | X' = 18 | 19 | .20 | .20 | .60 | .200 | .256 | .300 | .344 | .410 | .481 | .611 | .688 | | $\overline{c} = 8$ | 20 | .20 | .30 | .50 | .300 | .253 | .399 | .439 | .492 | .547 | .620 | .692 | | L = 56 | 21 | .10 | .20 | .70 | .234 | .299 | .351 | .381 | .444 | .499 | .621 | .696 | | $\mathbf{x} = 8$ | 22 | .10 | .30 | .60 | .300 | .324 | .348 | .371 | .423 | .480 | .600 | .680 | | $X' = 20 \\ C = 8$ | $\frac{23}{24}$ | .20
.20 | .20
.30 | .60
.50 | .200
.300 | .256 $.253$ | $.300 \\ .399$ | .326 $.423$ | .384 $.471$ | .449 $.527$ | .581 $.601$ | .665
.669 | | L = 60 | 25 | .10 | .20 | .70 | | .299 | .351 | .379 | .426 | .471 | .594 | .675 | | $\mathbf{x} = 8$ | 26
26 | .10 | .30 | .60 | .234
.300 | .324 | .348 | .361 | .426 | .471 | .571 | .656 | | $\mathbf{X}' = 22$ | 27 | .20 | .20 | .60 | .200 | .256 | .300 | .324 | .365 | .427 |
.551 | .641 | | $\tilde{c} = 8$ | 28 | .20 | .30 | .50 | .300 | .253 | .399 | .423 | .459 | .508 | .586 | .646 | | $I_{*} = 64$ | 29 | .10 | .20 | .70 | ,234 | .299 | .351 | .379 | .410 | .457 | .567 | .654 | | $\mathbf{X} = 8$ $\mathbf{X}' = 24$ | 30 | .10 | .30 | .60 | .300 | .324 | .348 | .361 | .387 | .438 | .541 | .633 | | | 31 | .20 | .20 | .60 | .200 | .256 | .300 | .324 | .351 | .406 | .522 | .617 | | c = 8 | 32 | 20 | .30 | .50 | .300 | .253 | .399 | .423 | .446 | .489 | .571 | .624 | | L = 40 | 33 | .10 | .20 | .70 | .234 | .299 | .421 | .517 | .593 | .659 | .744 | .795 | | X = 12 | 34 | .10 | .30 | .60 | .300 | .320 | .396 | .493 | .584 | .654 | .740 | .792 | | X' = 10
C = 8 | 35
36 | $.20 \\ .20$ | .20
.30 | .60
.50 | .200
.300 | .256 $.315$ | $.360 \\ .396$ | .448
.484 | .537 $.553$ | .614 $.623$ | .710
.714 | .768
.770 | | $\frac{C-s}{L=44}$ | | | | | | | | | | | | | | L = 44
X = 12 | 37
38 | .10
.10 | .20
.30 | .70
.60 | .234
.300 | .299 | .391 $.363$ | .474 $.444$ | .558 $.536$ | .623 $.614$ | .717 $.710$ | .774
.768 | | X' = 12 | 39 | .20 | .20 | .60 | .200 | .256 | .334 | .444 | .489 | .574 | .680 | .744 | | C = 8 | 40 | .20 | .30 | .50 | .300 | .300 | .374 | .453 | .528 | .584 | .684 | .745 | | | | | | | | | | | | | | | | Table 12.1 | 13 (C | ontinu | ed) | | | | | | | | | | |--|-----------------|------------|--------------|------------|--------------|----------------|----------------|----------------|----------------|--------------|----------------|--------------| | L = 48 | 41 | .10 | .20 | .70 | .234 | .299 | .361 | .445 | .523 | .585 | .642 | .713 | | X = 12 | 42 | .10 | .30 | .60 | .300 | .300 | .338 | .416 | 493 | .574 | .680 | .744 | | X' = 14 | 43 | .20 | .20 | .60 | .200 | .256 | .309 | .382 | .453 | .535 | .651 | .720 | | c = 8 | 44 | .20 | .30 | .50 | .300 | .300 | .353 | .430 | .504 | 558 | .654 | .721 | | L = 52 | 45 | .10 | .20 | .70 | .234 | .299 | .351 | .424 | .488 | .557 | .664 | .731 | | X = 12
X' = 16 | 46 | .10 | $.20 \\ .20$ | .60 | .300 $.200$ | .300 | .324 | .389 | .455 | .534 $.495$ | .650 | .720 $.697$ | | C = 8 | 47
48 | .20 $.20$ | .30 | .60
.50 | .300 | $.256 \\ .300$ | $.300 \\ .353$ | .363 $.414$ | .421 $.479$ | .495 | $.621 \\ .625$ | .697 | | | | ~~ | | | | | | | | | | | | $egin{array}{l} L = 56 \ X = 12 \end{array}$ | 49
50 | .10
.10 | .20
.30 | .70
.60 | .234 $.300$ | .299
.300 | $.351 \\ .324$ | $.402 \\ .366$ | $.461 \\ .429$ | .528 $.494$ | .637 $.620$ | .710
.696 | | X' = 18 | 51 | .20 | .20 | .60 | .200 | .256 | .300 | .344 | .395 | .457 | .591 | .673 | | c = 8 | 52 | .20 | .30 | .50 | .300 | .300 | .353 | .397 | .456 | .517 | .597 | .674 | | L = 60 | 53 | .10 | .20 | .70 | .234 | .299 | .351 | .381 | .444 | .499 | .610 | .688 | | X = 12 | 54 | .10 | .30 | .60 | .300 | .300 | .324 | .348 | .407 | .465 | .591 | .672 | | $\tilde{\mathbf{x}}' = \tilde{20}$ | 55 | .20 | .26 | .60 | .200 | .256 | .300 | .326 | .380 | .430 | .562 | .649 | | C = 8 | 56 | .20 | .30 | .50 | .300 | .300 | .353 | .387 | .438 | .497 | .579 | .650 | | L = 64 | 57 | .10 | .20 | .70 | .234 | .299 | .351 | .379 | .426 | .471 | .584 | .667 | | X = 12 | 58 | .10 | .30 | .60 | .300 | .300 | .324 | .342 | .386 | .443 | .561 | .649 | | X' = 22 | 59 | .20 | .20 | .60 | .200 | .256 | .300 | .324 | .365 | .406 | .532 | .625 | | c = s | 60 | .20 | .30 | .50 | .300 | .300 | .353 | .387 | .425 | .478 | .564 | .628 | | L = 68 | 61 | .10 | .20 | .70 | .234 | .299 | .351 | .379 | .410 | .457 | .557 | .646 | | X = 12 | 62 | .10 | .30 | .60 | .300 | .300 | .324 | .342 | .369 | .422 | .531 | .625 | | X'=24 | 63 | .20 | .20 | .60 | .200 | .256 | .300 | .324 | .351 | .392 | .503 | .602 | | c = 8 | 64 | .20 | .30 | .50 | .300 | .300 | .353 | .387 | .412 | .459 | .549 | .605 | | L = 56 | 65 | .10 | .20 | .70 | .234 | .299 | .351 | .424 | .488 | .557 | .654 | .723 | | $\mathbf{X} = 16$ $\mathbf{X}' = 16$ | 66 | .10 | .30 | .60 | .300 | .300 | .309 | .389 | .453 | .528 | .640 | .712 | | $\mathbf{c} = \frac{8}{16}$ | $^{67}_{68}$ | .20
.20 | .20
.30 | .60 | .200
.300 | .256 $.300$ | 008.309 | $.363 \\ .374$ | .421
.444 | .484
.509 | $.602 \\ .603$ | .681 $.680$ | | $\Gamma = 60$ | 69 | .10 | .20 | | .234 | | | | .461 | .528 | .627 | .701 | | $\mathbf{X} = 16$ | 70 | .10 | .30 | .70
.60 | .300 | .299 $.300$ | .351 $.300$ | $.402 \\ .363$ | .428 | .494 | .611 | .688 | | X' = 18 | 71 | .20 | .20 | .60 | .200 | .256 | .300 | .344 | .395 | .457 | .572 | .657 | | c = 8 | $7\overline{2}$ | .20 | .30 | .50 | .300 | .300 | .309 | .357 | .420 | .488 | .574 | .656 | | L = 64 | 73 | .10 | .20 | .70 | .234 | .299 | .351 | .388 | .444 | .499 | .600 | .680 | | X = 16 | 74 | .10 | .30 | .60 | .300 | .300 | .300 | .337 | .407 | .461 | .581 | .665 | | X' = 20 | 75 | .20 | .20 | .60 | .200 | .256 | .300 | .326 | .380 | .430 | .543 | .634 | | C = 8 | 76 | .20 | .30 | .50 | .300 | .300 | .309 | .353 | .405 | .468 | .558 | .632 | | L = 68 | 77 | .10 | .20 | .70 | .234 | .299 | .351 | .379 | .426 | .471 | .577 | .659 | | X = 16 | 78 | .10 | .30 | .60 | .300 | .300 | .300 | .324 | .386 | .437 | .551 | .641 | | X' = 22 | 79 | .20 | .20 | .60 | .200 | .256 | .300 | .324 | .365 | .404 | .513 | .610 | | C = 8 | 80 | .20 | .30_ | .50 | .300 | .300 | .309 | .353 | .392 | .448 | .542 | .609 | | L = 72 | 81 | .10 | .20 | .70 | .234 | .299 | .351 | .379 | .410 | .457 | .555 | .637 | | X = 16
X' = 24 | 82 | .10
.20 | .30
.20 | .60 | .300 | .300 | .300 | .324 | .366 | .419 | .522 | .617 | | $\mathbf{c} = \mathbf{c} = \mathbf{s}$ | 83
84 | .20 | .30 | .60
.50 | .200
.300 | .256 $.300$ | $.300 \\ .309$ | .324 $.353$ | .351 $.380$ | .392 $.428$ | .484 $.527$ | .586 $.587$ | | $\frac{c}{L = 76}$ | 85 | .10 | .20 | 70^{-} | .234 | .299 | | .379 | .395 | .443 | .533 | .616 | | X = 16 | 86 | .10 | .30 | .60 | .300 | .300 | .351 $.300$ | .324 | .346 | .402 | .555 | .593 | | $\mathbf{X}' = 26$ | 87 | .20 | .20 | .60 | .200 | .256 | .300 | .324 | .339 | .380 | .462 | .563 | | $\vec{c} = \vec{s}$ | 88 | .20 | .30 | .50 | .300 | .300 | .309 | .353 | .380 | .416 | .512 | .575 | | L = 80 | 89 | .10 | .20 | .70 | .234 | .299 | .351 | .379 | .395 | .429 | .511 | .595 | | X = 16 | 90 | .10 | .30 | .60 | .300 | .300 | .300 | .324 | .339 | .385 | .470 | .570 | | X'=28 | 91 | .20 | .20 | .60 | .200 | .256 | .300 | .324 | .339 | .368 | .442 | .539 | | C = 8 | 92 | .20 | .30 | .50 | .300 | .300 | .309 | 353 | .380 | .406 | .497 | .563 | | L = 84 | 93 | .10 | .20 | .70 | .234 | .299 | .351 | .379 | .395 | .415 | .490 | .573 | | X = 16 | 94 | .10 | .30 | .60 | .300 | .300 | .300 | .324 | .339 | .369 | .448 | .546 | | X' = 30 $C = 8$ | 95
96 | .20
.20 | .20
.30 | .60
.50 | .200
.300 | .256 $.300$ | $.300 \\ .309$ | .324 | .339
.380 | .356 $.399$ | $.422 \\ .482$ | .516 | | <u> </u> | - 50 | .40 | .00 | .50 | .000 | .000 | .000 | .353 | .000 | .000 | .404 | .551 | Table 12.14 # SUMMARY OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY TYPE 3-S2-3 TRUCKS WEIGHING ONE KIP EACH Eighty-four variations in the Type 3-S2-3 truck are given in this Table. Each truck number, from 1 to 84, represents a different combination of wheel base length, axle spacings, and ratios of gross vehicle weight on each axle. All dimensions are in feet. Equivalent concentrated loads are in kips. a1, a2, and a3-Represent the ratio of gross vehicle weight on axles. | Wheel Base and Axle Spacing | Truck No. | I | oad O
Axles
Kips | n | | | | Span-F | cet | | | | |---|-----------------|--------------|------------------------|----------------|--------------|-------------|----------------|----------------|-------------|----------------|----------------|----------------| | Feet | ΙĒ | aı | \mathbf{a}_2 | \mathbf{a}_3 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | L = 44 | 1 | .05 | .20 | .75 | .192 | .272 | .357 | .457 | .554 | .628 | .721 | .776 | | $\mathbf{x} = 8$ | 2 | .05 | .30 | .65 | .192 | .267 | .360 | .439 | .534 | .612 | .709 | .767 | | $\mathbf{X'} = 8$ | 3 | .10 | .20 | .70 | .179 | .254 | .337 | .430 | .523 | .603 | .702 | .762 | | $\mathbf{c} = 8$ | 4 | .10 | .30 | ,60 | .192 | 265 | .360 | .437 | .514 | .595 | .696 | .756 | | $\mathbf{L} = 48$ | 5 | .05 | .20 | .75 | .192 | .272 | .338 | .420 | .515 | .591 | .693 | .754 | | $\mathbf{X} = 8$ $\mathbf{X}' = 10$ | 6 | .05 | .30 | .65 | .192 | .250 | .329 | .408 | .488 | .572 | .679 | .743 | | C = 8 | 7
8 | .10
.10 | .20
.30 | .70
.60 | .179 $.192$ | .254 $.260$ | $.316 \\ .330$ | .392 $.407$ | .485 $.474$ | .564 $.552$ | .673 $.664$ | .738 $.731$ | | $\frac{C = 3}{L = 52}$ | 9 | .05 | .30 | .75 | .192 | .272 | .331 | | .475 | .555 | | .732 | | X = 8 | 10 | .05 | .30 | .75 | .192 | .250 | .298 | $.391 \\ .380$ | .415 | .531 | $.666 \\ .648$ | .718 | | $\mathbf{x}' = 12$ | 11 | .10 | .20 | .70 | .179 | .254 | .309 | .368 | .447 | .526 | ,644 | .715 | | $\overline{\mathbf{c}} = 8$ | 12 | .10 | .30 | .60 | .192 | .260 | .307 | .384 | .449 | .509 | .631 | .705 | | L = 56 | 13 | .05 | .20 | .75 | .192 | .272 | .331 | .372 | .440 | .521 | .639 | .711 | | $\overline{\mathbf{x}} = 8$ | 14 | .05 | .30 | .65 | .192 | .250 | .287 | .353 | .422 | .490 | .618 | .694 | | X' = 14 | 15 | .10 | .20 | .70 | .179 | .254 | .309 | .349 | .410 | .490 | .615 | .692 | | C = 8 | 16 | .10 | .30 | .60 | .192 | .260 | .307 | .362 | .424 | .478 | .599 | .679 | | $ \begin{array}{r} L = 60 \\ X = 8 \\ X' = 16 \end{array} $ | 17 | .05 | .20 | .75 | .192 | .272 | .331 | .362 | .417 | .488 | .611 | .689 | | $\mathbf{x} = 8$ | 18 | .05 | .30 | .65 | .192 | .250 | .287 | .328 | .397 | .453 | .587 | .670 | | $\mathbf{C} = \begin{array}{c} \mathbf{X'} = 16 \\ \mathbf{C} = 8 \end{array}$ | 19 | .10 | .20 | .70 | .179 | .254 | .309 | .339 | .389 | .459 |
.586 | .669 | | | 20 | .10 | .30 | .60 | .192 | .260 | .307 | .340 | .399 | .457 | .567 | .654 | | L = 64 | 21 | .05 | .20 | .75 | .192 | .272 | .331 | .361 | .396 | .455 | .584 | .667 | | $\mathbf{X} = 8$ $\mathbf{X}' = 18$ | $\frac{22}{23}$ | .05 | .30 | .65 | .192 | .250 | .287 $.309$ | .313 | .376 | .432 $.427$ | .557 | .645 | | C = 8 | $\frac{23}{24}$ | $.10 \\ .10$ | .20
.30 | .70
.60 | .179 $.192$ | .254 $.260$ | .307 | .337 $.330$ | .372 $.382$ | .436 | .557 $.535$ | $.646 \\ .628$ | | $\frac{C - 6}{L = 68}$ | 25 | .05 | .20 | .75 | | .272 | | | | | | | | $\mathbf{x} = 8$ | 26
26 | .05 | .30 | .75 | .192
.192 | .272 | .331 $.287$ | $.361 \\ .313$ | .384 $.355$ | $.435 \\ .412$ | .556 $.526$ | $.645 \\ .621$ | | $\mathbf{X} = 0$ $\mathbf{X}' = 20$ | 27 | .10 | .20 | .70 | .179 | .254 | .309 | .337 | .359 | .406 | .528 | .622 | | C = 8 | 28 | .10 | .30 | .60 | .192 | .260 | .307 | .330 | .364 | .416 | .503 | .602 | | L = 48 | 29 | .05 | .20 | .75 | .192 | .272 | .357 | .457 | .554 | .621 | .716 | .772 | | $\ddot{\mathbf{X}} = 12$ | 30 | .05 | .30 | ,65 | .192 | .267 | .355 | .438 | .533 | .606 | .704 | .763 | | $\ddot{\mathbf{x}}' = \ddot{8}$ | 31 | .10 | .20 | .70 | .179 | .254 | .337 | .430 | .523 | .590 | .692 | .754 | | C = 8 | 32 | .10 | .30 | .60 | .192 | .265 | .347 | .416 | .502 | .581 | .686 | .748 | | L = 52 | 33 | .05 | .20 | .75 | .192 | .272 | .338 | .420 | .515 | .587 | .688 | .750 | | | 34 | .05 | .30 | .65 | .192 | .243 | .325 | .408 | .488 | .565 | .674 | .739 | | | 35 | .10 | .20 | .70 | .179 | .254 | .316 | .392 | .485 | .554 | .663 | .730 | | c = s | 36 | .10 | .30 | .60 | .192 | .243 | .319 | .387 | .459 | .538 | .653 | .723 | | L = 56 | 37 | .05 | .20 | .75 | .192 | .272 | .331 | .391 | .475 | .554 | .661 | .728 | | X = 12 | 38 | .05 | .30 | .65 | .192 | .243 | .296 | .380 | .444 | .528 | .643 | .714 | | X' = 12 | 39 | .10 | .20 | .70 | .179 | .254 | .309 | .368 | .447 | .522 | .634 | .707 | | C = 8 | 40 | .10 | .30 | .60 | .192 | .243 | .292 | .363 | .431 | .496 | .621 | .697 | | L = 60 | 41 | .05 | .20 | .75 | .192 | .272 | .331 | .372 | .440 | .521 | .633 | .706 | | X = 12 | 42 | .05 | .30 | .65 | .192 | .243 | .287 | .353 | .419 | .490 | .613 | .690 | | X' = 14
C = 8 | 43 | .10 | .20 | .70 | .179 | .254 | .309 | .349 | .410 | .490 | .605 $.589$ | .684 $.671$ | | C = 8 | 44 | .10 | .30 | .60 | .192 | .243 | .281 | .341 | .406 | .463 | .569 | .011 | | Table 12.1 | 14 (Ce | ontinu | ed) | | | | | | | | | | |---------------------------|--------|--------|-----|-----|------|------|------|------|------|------|------|------| | L = 64 | 45 | .05 | .20 | .75 | .192 | .272 | .331 | .362 | .417 | .488 | .606 | .684 | | X = 12 | 46 | .05 | .30 | .65 | .192 | .243 | .287 | .326 | .397 | .453 | .582 | .666 | | X' = 16 | 47 | .10 | .20 | .70 | .179 | .254 | .309 | .339 | .389 | .459 | .576 | .661 | | c = s | 48 | .10 | .30 | .60 | .192 | .243 | .281 | .318 | .382 | .442 | .557 | .646 | | L = 68 | 49 | .05 | .20 | .75 | .192 | .272 | .331 | .361 | .396 | .455 | .578 | .663 | | X = 12 | 50 | .05 | .30 | .65 | .192 | .243 | .287 | .313 | .376 | .427 | .552 | .641 | | X' = 18 | 51 | .10 | .20 | .70 | .179 | .254 | .309 | .337 | .372 | .427 | .547 | .638 | | c = s | 52 | .10 | .30 | .60 | .192 | .243 | 281 | .311 | .364 | .427 | .525 | .620 | | L = 72 | 53 | .05 | .20 | .75 | .192 | .272 | .331 | .361 | .384 | .421 | .553 | .641 | | X = 12 | 54 | .05 | .30 | .65 | .192 | .243 | .287 | .313 | .355 | .409 | .521 | .617 | | X' = 20 | 55 | .10 | .20 | .70 | .179 | .254 | .309 | .337 | .359 | .406 | .520 | .614 | | $\mathbf{c} = 8$ | 56 | .10 | .30 | .60 | .192 | .243 | .281 | .311 | .347 | .400 | .493 | .594 | | L = 60 | 57 | .05 | .20 | .75 | .192 | .272 | .331 | .391 | .475 | .554 | .656 | .724 | | X = 16 | 58 | .05 | .30 | .65 | .192 | .243 | .296 | .380 | .444 | .528 | .638 | .710 | | X' = 12 | 59 | .10 | .20 | .70 | .179 | .254 | .309 | .368 | .447 | .522 | .624 | .699 | | c = s | 60 | .10 | .30 | .60 | .192 | .243 | .292 | .359 | .420 | .496 | .611 | .689 | | L = 64 | 61 | .05 | .20 | .75 | .192 | .272 | .331 | .372 | .440 | .521 | .628 | .702 | | X = 16 | 62 | .05 | .30 | .65 | .192 | .243 | .287 | .353 | .419 | .490 | .608 | .686 | | X' = 14 | 63 | .10 | .20 | .70 | .179 | .254 | .309 | .349 | .410 | .490 | .595 | .676 | | $\mathbf{c} = 8$ | 64 | .10 | .30 | .60 | .192 | .243 | .271 | .332 | .396 | .460 | .579 | .663 | | L = 68 | 65 | .05 | .20 | .75 | .192 | .272 | .331 | .362 | .417 | .488 | .603 | .680 | | X = 16 | 66 | .05 | .30 | .65 | .192 | .243 | .287 | .326 | .397 | .453 | .577 | .662 | | X' = 16 | 67 | .10 | .20 | .70 | .179 | .254 | .309 | .339 | .389 | .459 | .568 | .653 | | C = 8 | 68 | .10 | .30 | .60 | .192 | .243 | .265 | .310 | .375 | .427 | .547 | .638 | | L = 72 | 69 | .05 | .20 | .75 | .192 | .272 | .331 | .361 | .396 | .455 | .578 | .658 | | X = 16 | 70 | .05 | .30 | .65 | .192 | .243 | .287 | .313 | .376 | .427 | .549 | .637 | | X' = 18 | 71 | .10 | .20 | .70 | .179 | .254 | .309 | .337 | .373 | .427 | .544 | .630 | | c = 8 | 72 | .10 | .30 | .60 | .192 | .243 | .264 | .292 | .353 | .406 | .516 | .612 | | L = 76 | 73 | .05 | .20 | .75 | .192 | .272 | .331 | .361 | .384 | .435 | .553 | .636 | | X = 16 | 74 | .05 | .30 | .65 | .192 | .243 | .287 | .313 | .355 | .409 | .521 | .613 | | X' = 20 | 75 | .10 | .20 | .70 | .179 | .254 | .309 | .337 | .359 | .406 | .520 | .606 | | c = 8 | 76 | .10 | .30 | .60 | .192 | .243 | .264 | .292 | .332 | .390 | .489 | .586 | | L = 80 | 77 | .05 | .20 | .75 | .192 | .272 | .331 | .361 | .378 | .417 | .528 | .615 | | X = 16 | 78 | .05 | .30 | .65 | .192 | .243 | .287 | .313 | .334 | .391 | .493 | .589 | | X' = 22 | 79 | .10 | .20 | .70 | .179 | .254 | .309 | .337 | .353 | .389 | .497 | .583 | | $\mathbf{c} = \mathbf{s}$ | 80 | .10 | .30 | .60 | .192 | .243 | .264 | .292 | .313 | .368 | .462 | .561 | | L = 84 | 81 | .05 | .20 | .75 | .192 | .272 | .331 | .361 | .378 | .400 | .504 | .593 | | X = 16 | 82 | .05 | .30 | .65 | .192 | .243 | .287 | .313 | .328 | .374 | .465 | .564 | | X'=24 | 83 | .10 | .20 | .70 | .179 | .254 | .309 | .337 | .353 | .376 | .473 | .560 | | $\mathbf{c} = 8$ | 84 | .10 | .30 | .60 | .192 | .243 | .264 | .292 | .313 | .351 | .444 | .535 | # 13. CONVERSION COEFFICIENTS FOR EQUIVALENT LOADINGS ON SIMPLE SPANS OF VARIOUS LENGTHS Owing to the fact that an H truck, an H-S truck, and a single concentrated load weighing one kip each produce maximum moments, respectively, on a given span which are definite values, their relative magnitudes may be fully described by the ratios that each one bears to the other two. Thus, if these ratios are known for a given span, they may be thought of as coefficients which may be used for converting any one of the above loadings into equivalent loadings measured in terms of either or both of the other two. These ratios or coefficients for certain selected spans up to 100 feet in length are given in Table 13.1 and shown graphically for all intermediate spans in Figure 13.1. In the second column of Table 13.1, for example, it will be seen that the coefficient for converting an equivalent H truck loading into an equivalent H-S truck loading on a 50-foot span is given as 1.28. This means that an H truck of given weight will produce 1.28 times as much moment as an H-S truck of equal weight on a 50-foot span. It also means that an H truck of given weight will produce as much moment as an H-S truck weighing 1.28 times as much on a 50-foot span. More specifically, suppose a given heavy vehicle has been found to produce the same moment of a 50-foot span as an H20 truck and rated accordingly as an equivalent H20 truck loading. Now suppose it is desired to convert the given heavy vehicle into an equivalent H-S truck loading. This may be done by noting that $1.28 \times 20 = 25.6$ tons would be required on an H-S truck to produce the same moment as the given vehicle on a 50-foot span. The given vehicle, therefore, would be rated as an equivalent 25.6 (ton) H-S truck loading or an equivalent 51.2 (kip) H-S truck loading. Table 13.1 CONVERSION COEFFICIENTS FOR EQUIVALENT LOADINGS ON SIMPLE SPANS OF VARIOUS LENGTHS | For | | | | | SP | AN | | | | | |--------------------------|--------------------|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------------|-------------| | Converting | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | | EHT to EHST | 1.80 | 1.80 | 1.57 | 1.38 | 1.28 | 1.22 | 1.18 | 1.15 | 1.13 | 1.12 | | EHST to EHT | .56 | .56 | .64 | .72 | .78 | .82 | .85 | .87 | .88 | | | EHT to ECL | $\frac{.80}{1.25}$ | .80 | .82 | .86 | .89 | .91 | .92 | .93 | .94 | .94 | | ECL to EHT | | 1.25 | 1.22 | 1.16 | 1.12 | 1.10 | 1.09 | 1.07 | 1.07 | 1.06 | | EHT to EHD | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | .98 | .91 | .85 | .80 | .76 | | EHD to EHT | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.02 | 1.10 | 1.17 | 1.25 | 1.32 | | EHT to EHSD | 1.80 | 1.80 | 1.57 | 1.38 | 1.28 | 1.22 | 1.18 | 1.15 | 1.13 | 1.12 | | EHSD to EHT | .56 | .56 | .64 | .72 | .78 | .82 | .85 | .87 | .88 | .90 | | EHST to ECL | .44 | .44 | .52 | .62 | .70 | .75 | .78 | .81 | $\frac{.83}{1.21}$ | .85 | | ECL to EHST | 2.25 | 2.25 | 1.91 | 1.60 | 1.43 | 1.34 | 1.28 | 1.24 | | 1.18 | | EHST to EHD | $\frac{.56}{1.80}$ | .56 | .64 | .72 | .78 | .80 | .77 | .74 | .71 | .68 | | EHD to EHST | | 1.80 | 1.57 | 1.38 | 1.28 | 1.25 | 1.29 | 1.35 | 1.41 | 1.48 | | EHST to EHSD | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | EHSD to EHST | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | ECL to EHD
EHD to ECL | 1.25
.80 | $\frac{1.25}{.80}$ | 1.22
.82 | 1.16
.86 | 1.12
.89 | 1.08
.93 | .99
1.01 | .92
1,09 | .85 1.17 | .80
1.25 | | ECL to EHSD | 2.25 | 2.25 | 1.91 | 1.60 | 1.43 | 1.34 | 1.28 | 1.24 | 1.21 | 1.18 | | EHSD to ECL | .44 | .44 | .52 | .62 | .70 | .75 | .78 | .81 | .83 | .85 | | EHD to EHSD
 1.80 | 1.80 | 1.57 | 1.38 | 1.28 | 1.25 | 1.29 | 1.35 | 1.41 | 1.48 | | EHSD to EHD | .56 | .56 | .64 | .72 | .78 | .80 | | .74 | .71 | .67 | EHT—Equivalent H Truck Loading EHD—Equivalent H Design Loading EHST—Equivalent H-S Truck Loading EHSD—Equivalent H-S Design Loading ECL—Equivalent Concentrated Load #### CONVERSION COEFFICIENTS FOR EQUIVALENT LOADINGS #### ON SIMPLE SPANS OF VARIOUS LENGTHS. Figure 13-1 In a similar manner, if it were desired to convert an equivalent 51.2 (kip) H-S truck loading into an equivalent H truck loading on a 50-foot span, it would be done by multiplying the H-S truck rating by the coefficient 0.78 as shown in the third column of Table 13.1, or $51.2 \times .78 = 40.0$ kips. This means that the given vehicle could be rated as either an equivalent 51.2 (kip) H-S truck loading, or an equivalent 40.0 (kip) H truck loading on a 50-foot span. Similarly, an equivalent 40.0 (kip) H truck loading may be converted into an equivalent concentrated load on a 50-foot span by multiplying the H truck rating by the coefficient 0.89 as shown in the fourth column of Table 13.1, or $40.0 \times .89 = 35.6$ kips. This means that the given vehicle would be rated as an equivalent 35.6 (kip) concentrated load on a 50-foot span. From these illustrative examples, it will be seen that any given equivalent loading may be converted into any other loading equivalency simply by multiplying the rating of the given equivalent loading by the appropriate coefficient indicated for the span under consideration by either Table 13.1 or Figure 13.1. #### Part III ### METHOD FOR CALCULATING RELATIVE FREQUENCIES OR FREQUENCY DISTRIBUTION OF VARIOUS INTENSITIES OF EQUIVALENT VEHICLE LOADINGS 14. CALCULATED FREQUENCIES OF EQUIVALENT VEHICLE LOAD-INGS BASED ON THE POISSON FREQUENCY DISTRIBUTION FOR-MULA #### 14.1 General Although it was pointed out in Article 1.1, it might be well to reiterate here that the over-all objective of this bulletin is to develop a simple and accurate mathematical procedure for the rating of heavy motor vehicle types and loadings—such as those reported by a loadometer survey—in terms of equivalent H truck loadings, equivalent concentrated loads, or some other conveniently standardized loading equivalents; and to show how the frequency distributions of these equivalent loads provide a rational means for measuring the levels or level of heavy motor vehicle operation corresponding to given traffic conditions. It was also pointed out that, in order to accomplish these ends, it is first necessary to find a satisfactory way for converting a given heavy vehicle loading into an equivalent load. It was then shown that the maximum moment produced by a given vehicle on a given span provided a convenient means for converting it into any type of equivalent loading as might be desired simply by finding the magnitude of the equivalent load that would be required to produce the same maximum moment on the given span as that caused by the vehicle under consideration. For example, if a given heavy vehicle produced a maximum moment of 259.5 kip-feet on a 40-foot span, it would be found by consulting an AASHO moment table to be the same as that caused by an H15 truck and, therefore, the given vehicle would be rated as an equivalent H15 truck loading on a 40-foot span. Similarly, if it were desired to convert the given vehicle into an equivalent concentrated load it would be found that a single concentrated load of 25.95 kips would be required to produce the same moment on that span and, therefore, the given vehicle would be rated as an equivalent 25.95 (kip) concentrated load on a 40-foot span. The ratings of heavy vehicle types and loadings in terms of equivalent H truck loadings, equivalent H-S truck loadings, or equivalent concentrated loads—by the procedure outlined in the preceding articles of this bulletin—not only provide the means for determining permissable vehicle weights for bridges of given lengths and design designations, but they also provide a convenient means for analyzing the frequency distributions of various intensities of heavy vehicle loading equivalents on bridges of different lengths. Once all of the heavy vehicles reported by a loadometer survey have been converted into equivalent loads for a given span, the relative frequencies of various intensities of these loading equivalents for the given span may then be obtained rather simply by arranging them into groups or cells of increasing magnitudes and computing the percentage of vehicles thus found in each cell respectively. Frequency distributions such as these, which have been determined from the heavy vehicle data reported by a given loadometer survey, not only furnish a quantitative measure for evaluating the level or levels of heavy motor vehicle operation corresponding to the traffic conditions at those stations or on those routes covered by the given survey, but they also furnish certain statistical measures or indices which should prove to be of value for correlating the various levels of heavy motor vehicle operation with minimum standards for highway and bridge provision. By way of specific illustration, the frequency distributions and other results obtained from analyses of the heavy vehicle data reported by the special loadometer survey of 1942 are given and discussed in Parts IV and V. For ready comparison, the observed and calculated frequency studies given in Part IV are based on equivalent H truck loadings and those given in Part V are based on equivalent concentrated loads. Among the more interesting and, potentially, perhaps the most useful of the results obtained from these studies is that the frequency distributions of gross vehicle weights and equivalent loads were found to arrange themselves into statistical patterns which can be mathematically defined with sufficient accuracy to provide satisfactory answers to many of the practical problems associated with heavy vehicle loads and their effects on highway structures. In fact, the observed frequencies of equivalent loads obtained from the heavy vehicle data reported by the 1942 loadometer survey bear such a strong resemblance to the theoretical frequency curves commonly employed for statistical studies in biology, economics, and other branches of science, that one would suspect that the frequencies of various intensities of these loads actually occur in accordance with some mathematical law which is closely approximated by one or another of these theoretical frequency distribution curves. From a practical standpoint, therefore, the fact that the frequencies of heavy vehicle loading equivalents can be estimated rather accurately on a mathematical basis should prove to be a most powerful tool for the practicing engineer who is concerned with either the actual or relative frequencies of heavy vehicle loads and their effects on highway structures. This means, for example, that with a sufficient backlog of observed heavy vehicle frequency data in a given geographical area, the engineer is provided with a rational procedure for estimating the level of heavy vehicle operation that would likely obtain at a new location or on a new route for which no observed loadometer data were available. Several of the more commonly used statistical methods for defining theoretical frequencies were investigated in an effort to determine the one best suited to the needs of the practicing engineer for dealing with problems relating to the frequencies of heavy vehicle loads. Although it was found that comparable results might be obtained from any one of the several methods, it was decided that the Poisson frequency distribution formula would provide the most satisfactory procedure for solving these problems, mainly because it would likely prove to be the simplest to apply by those who have had but little or no training in the use of standard statistical methods. Another comparatively simple method that might be used, however, consists merely of plotting the cumulative frequencies of equivalent loadings on probability paper. For the benefit of those who would like to investigate the use of this method further, a complete explanation of its development and use may be obtained from most any standard text on elementary statistical methods. Owing to the fact that the Poisson distribution is based on discrete variables, some objection might be raised on purely technical grounds concerning its application to a continuous variable such as equivalent vehicle loads. It is believed, however, that this objection may be overcome for practical purposes by grouping the loads having approximately the same magnitudes into cells to which discrete values are assigned. For example, if the gross weights of a given vehicle were found to be within one-half ton, plus or minus, of say 15 tons, it could be defined for practical purposes as a 15-ton load. As to whether this is justifiable or not is a matter on which some mathematicians are not in full agreement. Be this as it may, the above definition provides the means for solving practical problems which are of interest to the practicing engineer. The rather close agreement between the observed and calculated frequencies given in Parts IV and V is not altogether surprising, however, owing to the fact that both the Binomial and the Poisson distributions have been used successfully as a mathematical means for analyzing and solving a wide range and variety of frequency distribution problems encountered in the several fields of science, industry, statistics, and engineering. The Binomial distribution, for example, has been used successfully for many years in the fields of biology and genetics, and is certainly among the most powerful of the mathematical tools employed in those branches of science. And at the present time, both the Binomial and Poisson distribution furnish a considerable portion of the mathematical background material used in that comparatively recently
developed branch of industrial management commonly known as "quality control." At any rate, however, the agreement between the observed and calculated frequencies obtained from the 1942 loadometer data is close enough to justify the conclusion that the Poisson distribution yields mathematical answers which are sufficiently accurate for estimating the frequencies of various intensities of highway loads and evaluating their stress producing effects on simple span bridges and other highway structures. Fortunately, though, it is not necessary for one to understand the mathematical developments upon which these distributions are based in order to use them for analyzing and solving many of the practical frequency problems to which they may be appropriately applied. Tables are available which greatly simplify the work involved in applying either the Binomial¹⁶ or the Poisson¹⁷ distributions to the solution of practical frequency problems such as those associated with heavy motor vehicle operation as discussed herein. Once the routine procedure has been acquired, these tables may be used in the same way as other mathematical tables. In the case of trigonometric tables, for example, it is not necessary for one to know or understand the mathematical procedures involved in deriving these functions in order to become proficient in their use. And though a detailed knowledge of the derivations of the Binomial and Poisson distributions is not essential to their use as a mathematical tool for analyzing certain problems, a brief discussion of some of the more elementary considerations involved in their development should contribute toward a better understanding of how they may be applied to the study of heavy motor vehicle frequency problems. Such a discussion is undertaken in the following article. However, it should be explained that the discussion of these distributions is in no sense intended to be complete; nor is it intended to be in the precise language of the mathematician. These reservations are made because only the fundamental concepts of probability theory are considered; and these, in turn, are applied to but a few simple situations which are discussed in everyday language and in such a way as to appeal to the common sense or intuitive judgement of the layman or engineer who is mainly concerned with the solution of practical problems rather than a rigorous mathematical proof of the theorems on which those solutions are based. # 14.2 Fundamental Concepts Associated With the Laws of Chance or Probability Meaning and Measure of Probability—If an urn contains 3 white balls and 5 black balls which are identical except for their color and one ball is drawn out at random, what is the probability that this ball is white? The event in question is said to happen if a white ball is drawn, and to fail if a black ball is drawn. Since there are 8 balls in the urn and the drawing of any one is just as likely as that of another, the total number of possible ways in which the event in question may happen and fail is 8. Of T. C. Fry, "Probability and Its Engineering Uses," D. Van Nostrand Co., New York, 1928. E. C. Molina, "Poisson's Exponential Binomial Limit," D. Van Nostrand Co., New York, 1943. these 8 ways, 3 are favorable to the drawing of a white ball; or the number of ways in which the event may happen is 3. For this reason, 3/8 is said to be the probability of drawing a white ball. This illustrates the following definition of mathematical probability. Definition of Mathematical Probability—There are a number of different ways in which mathematical probability has been defined, but in each case the fundamental notions are substantially the same. The following three alternate definitions are typical and, after reading all three, the reader may take his choice or perhaps compose another one that incorporates the same basic ideas which will be more to his liking. Definition 1(a) Mathematical Probability—If all the happenings and failings of an event can be analyzed into r+s possible ways each of which is equally likely; and if in r of these ways the event will happen, and in s of them fail, the probability that the event will happen is r/(r+s) and the probability that it will fail is s/(r+s). Definition 1(b) Mathematical Probability—If an experiment can produce n different results all of which are equally likely and if r of these results are defined as favorable, the probability of a favorable result is r/n. **Definition 1(c) Mathematical Probability**—If, consistent with a given set of conditions, there are n exhaustive, mutually exclusive, and equally likely cases, and r of them are favorable to an event A, then the mathematical probability of A is defined as the ratio r/n. From these it will be seen that, in general, the mathematical probability of an event is defined to be the fraction obtained by dividing the number of cases favorable to the event by the total number of equally likely cases. The probability of an impossible event is obviously 0, since there would be no favorable cases; and the probability of an event that is certain to happen is 1, since all the cases would be favorable. In each of these definitions, it will be noted that the expression "equally likely" cases or events has been used. But what does one mean by equally likely or equally probable events? This is a troublesome question because when one deals with purely mathematical probability, the expression "equally likely cases" is, admittedly, an undefined concept owing to the fact that it is intuitive. It cannot be defined, just as other intuitive concepts such as the theoretical "points" and "lines" of geometry, or time, cannot be defined. From this discussion, it will be seen that only through experience and judgement can one decide whether or not the occurrence of actual events conform to the theory. In dealing with mathematical probability, therefore, the first step is to answer the question: When may two contingent events be considered equally probable or equally likely? But since the term "equally likely" is not and cannot be defined on a rigorous mathematical basis, the final answer to this question must be decided on the basis of good common sense, intuition, and judgement. In making a decision of this kind in any actual situation, though, it might be helpful to remember that equally likely results have the same expected frequencies and that this notion is consistent with the idea that probability is proportional to expected frequency. In a more formal statement, one may infer the following criterion. "Two contingent events are considered as equally probable if, after taking into consideration all relevant evidence, one of them cannot be expected in preference to the other." This criterion for equally probable or equally likely events may be illustrated by applying it to certain practical situations such as those described by the following examples. ¹⁸ J. V. Uspensky, "Introduction to Mathematical Probability," McGraw-Hill Book Co., New York, 1937, p. 5. #### Example 14.1 Suppose that it is desired to know the probability of throwing a 4 when when a single die is cast. If the die is a true cube and made of a homogeneous material, and there are no other reasons for believing that any one of the 6 numbers would appear more often than another, one would say that there would be a total of 6 equally likely cases. And of these 6 equally likely cases, only 1 of them would be favorable to throwing a 4; therefore, the ratio 1/6 would be defined as the mathematical probability of the event in question—or, simply, the probability of throwing a 4 when a single die is cast. #### Comment This is a simple case, of course, but it illustrates the point that, in order to determine the mathematical probability of a given event, one must not only be able to arrive at the total number of equally likely cases but also the number of these cases that are favorable to the event under consideration. Once this has been done, the mathematical probability of the event under consideration may be determined by evaluating the ratio of the number of favorable cases to the total number of equally likely cases. When two dice are cast at the same time, however, the determination of the probabilities of the various events becomes a little more involved. Yet, by following the simple rules discussed above, the mathematical probabilities of the various events which may occur when two dice are thrown can be found quite easily as will be seen in the following example. #### Example 14.2 Suppose it is desired to know the probability of throwing a 4 if two perfectly true dice are cast at the same time. In solving this problem, it will be helpful if one die is assumed to be red and the other green. Now, the red die, when considered by itself, can fall in 6 different ways and, by hypothesis, each of these ways is considered equally probable or equally likely since any one way is as likely to happen as any other. Similarly, the green die can fall in 6 different ways and again, by hypothesis, each of these ways is also considered equally likely. Therefore, for each of the 6 ways in which the red die can fall, it may be accompanied by any one of the 6 ways in which the green die can fall when both dice are cast at the same time. This means that the two dice, when cast at the same time, can fall in 6×6 or 36 different ways and again by hypothesis each of these ways is considered equally likely. Therefore, the probability that they will fall in any particular one of these ways when cast simultaneously—for example, the appearance of 3 on the red die and 6 on the green die—would be 1/36 since there would be but 1 of the 36 cases favorable to the occurrence of the specified event. The next step in the solution of this problem is to determine the number of ways favorable to throwing a 4 when both dice are cast at the same time. This may be done by enumerating all possible combinations of
the numbers on each die whose sum is 4, as follows: | Red die | Green die | Total | |---------|-----------|-------| | 1 | 3 | 4 | | 2 | 2 | 4 | | 3 | 1 | 4 | Since 3 of the 36 ways are favorable to the event in question, 3/36 would be defined as the mathematical probability of throwing a 4 when 2 dice are cast simultaneously. By the same process of reasoning, the probability of throwing any one of the 11 numbers, from 2 to 12, with a pair of dice may be determined as shown in the following example. #### Example 14.3 Suppose it is desired to know the probability of throwing each of the 11 numbers, from 2 to 12, with a pair of dice. Perhaps the simplest way for solving this problem is to enumerate each of the 36 ways in which a pair of dice—one red and one green—can fall and from this enumeration determine the number of ways favorable to the throwing of each of the 11 numbers, from 2 to 12, that can result. The sum that results from each of the 36 ways in which a pair of dice can fall, may be enumerated as shown in the following table: Table 14.1 Number of Points That Result for Each of the 36 Ways In Which a Pair of Dice Can Fall | No. | | | Numb | er on G | reen D | ie | |------------|---|---|------|---------|--------|----------------| | Red
Die | 1 | 2 | 3 | 4 | 5 | 6 | | 1 | 2 | 3 | 4 | 5 | 6 | $\overline{7}$ | | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | 6 | 7 | 8 | 9 | 10 | 11 | 12 | From this table, it will be seen that the number of ways in which the various sums, from 2 to 12, may be obtained and the mathematical probability for obtaining each of the 11 sums is as follows: Table 14.2 Number of Ways and the Mathematical Probability for Obtaining Any Possible Sum on a Single Throw of a Pair of Dice | Sum | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | No. of | 1 | 2 | 3 | 4 | 5 | 6 | 5 | 4 | 3 | 2 | 1 | | Ways
Math.
Prob. | $\frac{1}{36}$ | $\frac{2}{36}$ | $\frac{3}{36}$ | $\frac{4}{36}$ | $\frac{5}{36}$ | $\frac{6}{36}$ | $\frac{5}{36}$ | $\frac{4}{36}$ | $\frac{3}{36}$ | $\frac{2}{36}$ | $\frac{1}{36}$ | #### Comment From this table, it will be seen that a 7 would be expected to appear more often than any of the other numbers, from 2 to 12, when a pair of dice are cast at the same time. This is owing to the fact that 6 of the 36 ways in which a pair of dice can fall are favorable to the throwing of a 7; whereas, the number of ways favorable to any one of the other numbers is less than 6. And since the probability of throwing a 7—which is 6/36—is greater than that for any other number, it would be expected to appear more frequently than any other number. For this reason, 7 is said to be the "most probable" number to appear when 2 dice are cast simultaneously. Similarly, the 2 and 12 would be said to be the least probable numbers since the probability of either would be less than any of the other numbers. The above table, therefore, shows the relative frequencies or frequency distribution of the various numbers that would be expected to appear if a pair of dice were cast a large number of times. And if these frequencies were represented in the form of a bar chart or histogram—similar to those shown in Parts IV and V—it would be seen that the distribution would be symmetrical about the 7. The frequency distribution of the numbers expected from the throwing of a pair of dice illustrates an important point which no doubt should be emphasized. It was shown, for example, that the probability of throwing a 4 is 3/36 because 3 of the 36 ways a pair of dice can fall are favorable to that event. Similarly, the probability of throwing a 7 is 6/36 because 6 of the 36 ways are favorable to that event. Now the important point to note here is that even though there are 36 equally likely ways in which a pair of dice can fall, the numbers that result are not all equally likely. #### Statistical Probability In each of the preceding examples, the mathematical probability for the occurrence of a particular event under consideration was determined by enumerating all of the equally likely cases and then evaluating the ratio of the number of favorable cases to the total number of cases. There are many practical situations encountered in the several fields of science, industry, statistics, and engineering, however, for which mathematical probabilities cannot be determined in accordance with the definition and procedure used in the preceding problems owing to the fact that these situations are of such nature that it would be impossible either to enumerate all of the equally likely cases or to find the exact number of cases favorable to the event under consideration. In situations of this kind, therefore, resort is made to what is known as "statistical probability," which is based on the fundamental concept that equally likely results have the same expected frequencies and that this notion is consistent with the idea that probability is proportional to expected frequencies. On this basis, therefore, it is possible to estimate the probability for the occurrence of a given event from a sufficiently large number of independent trials or observations by the procedure outlined in the following definition. Definition of Statistical Probability—If it be observed that an event E has happened n times in m independent observations, trials, or cases (provided m is a large number); then, in the absence of further knowledge, it is assumed that the best estimate of the probability that the event E will happen on a given occasion in question is the ratio n/m, and that confidence in this estimate increases as m increases. Estimates of probability obtained from observed data in accordance with this definition are of immense practical value in many types of statistical and engineering problems. For example, suppose that a particular loadometer station on a given highway had been operated in such a way as to reflect average traffic conditions at that location; and that of the 634 heavy vehicles weighed, during the previous year, 76 of them were found to have a gross vehicle weight of 50,000 pounds or more. Now, on the basis of this information, suppose it is desired to know the probability that the next heavy vehicle to be weighed would have a gross weight of 50,000 pounds or more. Since 76 of the 634 heavy vehicles weighed during the previous year had a gross weight of 50,000 pounds or more, the best estimate available of the probability that the next heavy vehicle weighed would exceed 50,000 pounds would be the ratio 76/634. This means that approximately 12 percent of the heavy vehicle reported weighed 50,000 pounds or more. Therefore, on the basis of this information, the best estimate of the probability that the next heavy vehicle weighed would equal or exceed 50,000 pounds would be approximately .12, or about 12 chances out of 100. Another illustration of statistical probability could be selected in connection with life insurance which might be of interest. For example, according to the American Experience Mortality Table, of 78,106 men living at the age of 40, the number living 10 years later is 69,804. Therefore, the probability that a man of age 40 will live the next 10 years is taken to be 69,804/ 78,106 or about .894, which means that on the average in approximately 894 cases in 1,000, a man at the age of 40 would be expected to live during the next ten years. In other words, the probability that he will live during the next 10 years would be taken as .894. #### Comment The fundamental concepts associated with the laws of chance or probability discussed in the preceding paragraphs provide the basis for certain definitions and rules which may be used in the solution of practical problems. Some of the more elementary of these definitions and theorems, and how they are associated with the Binomial and Poisson distributions are given and briefly discussed in the following article. Basic Theorems for Calculating Simple and Compound Probabilities The fundamental theorems for calculating simple and compound probabilities are fully explained and illustrated in most any book on college algebra. 19-20 For this reason, it will only be necessary here to state these theorems and illustrate how they may be applied to a few simple situations in order to show how they lead more or less automatically to the Binomial and Poisson frequency distributions. Special emphasis is placed on the Poisson distribution because it is the simpler of the two to use in dealing with the frequency distribution of equivalent vehicle loadings, and is the one upon which the frequency distributions of the loading equivalents given in Parts IV and V are based. #### Definitions and Theorems Events of a set are usually classified as being independent, dependent, or mutually exclusive. The definitions and theorems corresponding to these classifications may be stated as follows: (a) Independent Events—Events of a set are said to be independent if the happening of any one of the events does not affect the happening of the others. Theorem 1—The probability that all of a set of independent events will happen on a given occasion when each of them is possible is the product of their separate probabilities of occurrence. (b) Dependent Events—Events of a set are said to be dependent if the occurrence of a first event affects the probability of a second event happening, in which case the second event is said to be dependent on the first event. Theorem 2—If the probability of a first event is P₁ and if, after this has happened, the probability of a second event is P_2 ; then the probability that William L. Hart, "Brief College Algebra," D. C. Heath and Co., New York, 1932. C. I. Palmer
and W. L. Miser, "College Algebra," McGraw-Hill Book Co., New York, 1937. both events will happen in the order specified is $P_1 \times P_2$ or simply P_1P_2 (the obvious extension of this theorem to m events would result to probability of $P_1P_2 \dots P_m$). (c) Mutually Exclusive Events—Events of a set are said to be mutually exclusive if the happening of any one excludes the happening of any other. Theorem 3—The probability that one or the other of a set of mutually exclusive events will occur is the sum of the probabilities of occurrence for the separate events. #### 14.4 The Binomial Distribution The Binomial distribution is given by the successive terms of the expansion of the Binomial: $$(q+p)^m = C_m^m q^m p^o + C_m^{m^{-1}} q^{m^{-1}} p^1 + C_m^{m^{-2}} q^{m^{-2}} p^2 + ... + C_m^o q^o p^m14.1$$ in which p = probability of success on any one trial q = probability of failure on any one trial and m = number of trials (sample size or lot size) also $$p < 1$$, and $q = 1 - p$ In this Binomial expansion, the symbol C_m^n means the number of combinations of m things taken n at a time. This may be expressed algebraically as follows: $$C_{m}^{n} = \frac{m!}{n!(m-n)!}$$ 14.2 This may be illustrated by inquiring the number of 3 letter combinations that can be obtained from the 4 letters; a, b, c, and d. This may be done in the following 4 ways: abe, abd, acd, and bed and by the above algebraic expression, this would be determined as follows: $$C_{m}^{n} = C_{4}^{3} = \frac{4.3 \cdot 2.1}{3.2.1(1)} = 4.$$ 14.2a With this in mind, it may now be explained that each term in the above Binomial expansion (Equation 14.1) gives the probability of exactly n successes in a set of m trials and each term may be written thus: in which the symbol $P_{m}(n)$ means the probability of n successes in a given sample of m trials where n=0,1,2,3,...,m. In other words, the first term gives the probability of no successes in m trials; the second term, the probability of 1 success in m trials; and so on to the last term which gives the probability of m successes in m trials. In this connection, it should be noted that any given sequence or set of m trials each may be thought of as a sample of size m or a lot of size m. Perhaps the simplest way to explain the development and meaning of the Binomial distribution is to apply it to the tossing of one or more coins. On a single toss of a coin it can fall in 2 ways, either a head or a tail, each of which is equally likely. Now if 2 coins are tossed at the same time (or one coin tossed twice in succession), they may fall in any one of the following 4 equally likely ways: Here, it will be noted that 1 of the 4 ways is favorable to 2 tails (no heads); 2 of the 4 ways are favorable to 1 head and 1 tail (one head); and 1 of the 4 ways is favorable to 2 heads. Now if the tossing of a head is considered a success and a tail considered a failure, then according to the above nomenclature $$p = .5$$ and $q = .5$ and according to Theorem 2, the probability of throwing 2 tails (2 failures) in 2 successive tosses of a single coin (or when 2 coins are tossed at the same time) would be $$P(TT) = q \cdot q = .5 \times .5 = .25$$ and similarly $$\begin{array}{c} P(TH) = q \cdot p = .5 \times .5 = .25 \\ P(HT) = p \cdot q = .5 \times .5 = .25 \\ P(HH) = p \cdot p = .5 \times .5 = .25 \end{array}$$ and In this case the 2 successive tosses of a single coin constitute 2 successive trials or the number of trials per sample m=2 (it would amount to the same thing if 2 coins were tossed simultaneously; in either case the sample size or lot size would be m=2). From this it will be seen that the Binomial expansion $$(q + p)^2 = q^2 + 2qp + p^2$$ gives the same results as were obtained by enumerating all the different combinations that could be obtained from the tossing of a single coin twice in succession (or the tossing of 2 coins simultaneously). The first term of this expansion means that the probability of no successes (2 tails) is q^2 ; the probability of 1 success (1 head and 1 tail) is 2pq; and the probability of 2 successes (no tails) is p^2 . In symbols this would be expressed for m=2 as follows: By the same process of reasoning, the probabilities of obtaining no heads, 1 head, 2 heads, and 3 heads in any 3 tosses of a single coin (or a single toss of 3 coins) would be given by the 4 respective terms of the Binomial expansion for 3 trials per sample or sample size of m = 3, thus: $$(q + p)^3 = q^3 + 3q^2p + 3qp^2 + p^3$$ = .125 + .375 + .375 + .125 This means that the probability of getting no heads (3 tails) in any 3 successive tosses of a single coin is .125 or once in 8 sequences of 3 trials each; the probability of getting 1 head is .375; the probability of 2 heads is .375; and the probability of getting 3 heads is .125. From this discussion, it will be readily seen that there is an indefinitely large number of specific Binomial distributions, differing according to the values of p and m in the Binomial. It will also be seen that the use of the Binomial distribution requires calculations which are easily made if the sample size or lot size, m, is small. However, the calculation of values for the successive terms in the expansion of a Binomial becomes quite a laborious process when m is large. This is owing to the fact that the number of terms in a Binomial expansion is always equal to m + 1, or one more than the number of trials per sample. Perhaps a better appreciation of the time involved in making such calculations might be obtained by examining the binomial expansions for several of the smaller values of m, as follows: - (1) $(q + p)^1 = q + p$ (2) $(q + p)^2 = q^2 + 2qp + p^2$ - (3) $(q + p)^3 = q^3 + 3q^2p + 3qp^2 + p^3$ (4) $(q + p)^4 = q^4 + 4q^3p + 6q^2p^2 + 4qp^3 + p^4$ (5) $(q + p)^5 = q^5 + 5q^4p + 10q^3p^2 + 10q^2p^3 + 5qp^4 + p^5$ Now if the number of trials or sample size, m, were increased, to say 100, it will be readily seen that the time required to evaluate the 101 terms of such a Binomial distribution would be considerable to say the least. It is for this reason that resort is made to approximations of the Binomial distribution in many practical problems where the number of trails per sample or sample size is large. The Poisson distribution, for example, is used in many practical situations to approximate the values of a specific Binomial distribution, particularly in cases where the sample size is large. The agreement between the Binomial and the Poisson distributions, however, increases as the sample size increases. In fact, the Binomial distribution tends to approach the Poisson distribution as a limit as the number of trials or sample size becomes very This relationship between the Binomial and Poisson distributions will be discussed in more detail in the following article which is devoted to the development and use of the Poisson distribution. Before going into the development of the Poisson distribution, however, a few simple illustrations involving the use of Binomial distributions should pave the way toward a better understanding of how some of the fundamental concepts of probability may be applied to the frequency distributions of heavy vehicle loadings and loading equivalents such as those that would result from the analysis of data reported by a loadometer survey. The first illustration in the following is a simple sampling problem which may seem somewhat artificial at first. On further consideration, though, it will be found that the idealized conditions upon which it is based will be very closely approximated in many types of practical sampling situations. Certain of these practical situations will be discussed later. #### Example 14.4 Use of Binomial Distribution For Sampling In order to simulate a continuous process, suppose that a large bin is continuously being supplied or filled as needed with balls which are identical in every respect except that 80 percent of them are white and 20 percent of them are black. Now, if these balls are withdrawn at random from the bin and put into boxes containing 5 balls each, what proportion of the boxes would be expected to contain n black balls, where n = 0.1, 2, 3, 4, and 5 respectively? If the balls in this bin were well mixed and a single ball is withdrawn, the probability of its being black by hypothesis would be p=.2, and similarly by hypothesis the probability of its being white would be q=.8. Under these conditions, the expected frequency of appearance of 0,1,2,3,4, and 5 black balls among the boxes of 5 balls each (sample size m=5) can be calculated by evaluating the successive terms of the expansion of the Binomial. $$(q + p)^m = (.8 + .2)^5 = .8^5 + 5x.8^4x.2 + \frac{5.4}{1.2}x .8^3x.2^2 + ... + 5x.8x.2^4 + .2^5$$ If the 6 terms of this distribution are evaluated to 4 decimal places, the results would be as follows: $$(.8 + .2)^5 = .3277 + .4096 + .2048 + .0512 + .0064 + .0003$$ This means that 32.77 percent of the boxes would be expected to contain no black balls; 40.96 percent would be expected to contain 1 black ball; 20.48 percent, 2 black balls; 5.12 percent, 3 black balls; 0.64 percent, 4 black balls; and only about 3 boxes of each 10,000 boxes would be expected to contain 5 black balls. #### Comment In connection with this problem, if the drawing of a black ball is considered a success, and the letter K is used to indicate the number of successes per sample or box of 5 balls each, then which means that the average number of successes (black balls) per sample would be 1. In general, this means that the average number of successes, K, expected per sample is equal to the probability of success on a single trial, p, times the number of trials per sample or sample size m. Perhaps the most important thing to note in Example 14.4 is that the frequency distribution is very highly skewed to the right. That is: the distribution is not symmetrical but is very short (one cell) to the left of the average,
K=1, and extends a long way (4 cells) to the right of the average. And owing to the fact that this distribution is so highly skewed, it might be worthy of note also that even though the average number of black balls is K=1 per sample, nearly 1/3 of all samples (32.77 percent) would contain no black balls at all. In dealing with the Binomial distribution, it is important to have an appreciation for the type and extent of the changes that would be expected in a given distribution as a result of certain variations in the probability of success, p, on a single trial; the size of sample, m; and the average number of successes, K, per sample. The following example will show, to some extent, the effect of sample size on a frequency distribution. #### Example 14.5 Use of Binomial Distribution For Sampling In order to simulate a continuous process—which is the same as for Example 14.4 except for sample size—suppose that a large bin is being continuously supplied or filled as needed with balls which are identical except that 80 percent of them are white and 20 percent of them are black. Now, if these balls are withdrawn at random from the bin and put into boxes containing 10 balls each, what proportion of the boxes would be expected to contain n black balls, where n=0,1,2,3,4,5,6,7,8,9, and 10, respectively? By the same process of reasoning discussed in Example 14.4, the expected frequency of appearance of 0,1,2,3,...,10 black balls among the boxes of 10 balls each (sample size m=10) would be given by the successive terms of the expansion of the Binomial $$(q+p)^m = (.8+.2)^{10} = .8^{10} + 10x.8^0x.2 + \frac{10.9}{1.2}x.8^8x.2^2 + ... + 10x.8x.2^0 + .2^{10}$$ If the 11 terms of this distribution are evaluated to 4 decimal places, the result would be as follows: $$(.8 + .2)^{10} = .1074 + .2684 + .3020 + .2013 + .0881 + .0264 + .0055 + .0008 + .0001 + .0000 + .0000$$ for n = 0 1 2 3 4 5 6 7 8 9 10 This means that about 10.74 percent of the boxes would be expected to contain no black balls; 26.84 percent would be expected to contain 1 black ball, and so on. But it will be noted that the probability of getting a box with either 9 or 10 black balls is so small that it does not show up in the 4 decimal places. Actually, though, a box containing 9 black balls would be expected to occur about 4 times for each 1,000,000 boxes, and a box containing 10 black balls would be expected to occur but 1 time for each 10,000,000 boxes. #### Comment In this example, it will be noted that the average number of black balls per box (or per sample of 10 balls each) is equal to $$K = mp = 10 \times .2 = 2$$ It will be noted also that even though the most probable number of black balls (the term of the Binomial expansion having the greatest probability value) in a given box is 2, as would be expected, only about 30 percent of the boxes would actually be expected to contain exactly 2 black balls. Much more could be said, of course, concerning the development and uses of the Binomial distributions in connection with practical sampling problems. However, it is believed that the preceding discussion and examples will suffice to indicate the theoretical background and justification for applying such distributions to many types of practical situations where systematic sampling procedures are required. In the preceding problems, for exampling procedure, it would back balls were used to illustrate a sampling procedure, it would require but little revision in the description of the physical situation for the method outlined to stimulate a continuous manufacturing process. The principal difficulty involved in the use of the Binomial distribution, however, is owing to the fact that the time and labor required for evaluating the successive terms of a specific Binomial expansion become almost prohibitive when the number of trials or sample size m is large. In most practical sampling problems, though, this difficulty may be overcome by use of the Poisson distribution since tables21,22 are available which cover most of the values ordinarily required for practical work, particularly where the sample size is relatively large, as is generally the case when dealing with heavy vehicle loads reported by a loadometer survey. The development and use of the Poisson distribution for analyzing the frequencies of heavy vehicle loadings and loading equivalents will now be discussed in more detail in the following article. #### 14.5 Development of the Poisson Distribution In the preceding article, it was shown that the Binomial distribution is given by successive terms of the expansion of the Binomial: $$(q+p)^m = C_m^m q^m p^o + C_m^{m^{-1}} q^{m^{-1}} p^{\scriptscriptstyle 1} + C_m^{m^{-2}} q^{m^{-2}} p^{\scriptscriptstyle 2} + ... + C_m^o q^o p^m14.1$$ in which p = probability of success on any one trial q = probability of failure on any one trial m = number of trials (sample size or lot size) and also $$p < 1$$, and $q = 1 - p$ It was also explained that each term in this Binomial expansion (Equation 14.1) gives the probability of exactly n successes in a set of m trials and may be written thus: ²¹E. C. Molina, "Poisson's Exponential Binomial Limit," D. Van Nostrand Co., New York, 1943. 22T. C. Fry, "Probability and Its Engineering Uses," D. Van Nostrand Co., New York, 1928. $$P_{m}(n) = C_{m}^{n} q^{m-n} p^{n}$$ 14.3 in which the symbol $P_m(n)$ means the probability of n successes in a given sample of m trials where n = 0.1.2, ..., m. In the case of the Binomial Law, it has already been shown that the average number of successes, K, expected per sample (expectation of n) is equal to $$K = mp$$14.4 With this information it can now be shown that the Binomial distribution approaches the Poisson distribution as a limit as the number of trials m become very large. This development is accomplished by first noting that the probability p may be determined from Equation 14.4, thus: $$p = \frac{K}{m}$$ 14.5 and if this value of p is now substituted in Equation 14.3, remembering that q = (1-p), it becomes: $$P_{m}(n) = C_{m}^{n} \left(\frac{K}{m}\right)^{n} \left(1 - \frac{K}{m}\right)^{m-n}.....14.6$$ Now if the operations indicated by the first 2 factors on the right of Equation 14.6 are carried out, they would become: $$C_{m}^{n}(\frac{K}{m})^{n} = \frac{m!}{n!(m-n)!} \cdot \frac{K^{n}}{m^{n}} = \frac{m!}{(m-n)! m^{n}} \cdot \frac{K^{n}}{n!}$$ $$= \frac{m(m-1)(m-2) \cdot \cdot \cdot \cdot [m-(n-1)]}{m^{n}} \cdot \frac{K^{n}}{n!}$$ $$=\frac{m}{m} \cdot \frac{m-1}{m} \cdot \frac{m-2}{m} \cdot \cdots \cdot \frac{m-(n-1)}{m} \cdot \frac{K^n}{n!}$$ $$=(1-\frac{1}{m})(1-\frac{2}{m})\cdot \cdot \cdot (1-\frac{n-1}{m})\cdot \frac{K^{n}}{n!}$$ If the third factor on the right of Equation 14.6 is now separated into its 2 parts, they would be written as follows: $$\left\lceil \left(1 - \frac{K}{M}\right)^{m} \right\rceil \left\lceil \left(1 - \frac{K}{M}\right)^{-n} \right\rceil$$ Now if all of these right hand factors are collected and rearranged, Equation 14.6 would be written as follows: $$P_{m}(n) = \left[\left(1 - \frac{1}{m} \right) \left(1 - \frac{2}{m} \right) \cdot \cdot \cdot \cdot \left(1 - \frac{n-1}{m} \right) \right] x \left[\left(1 - \frac{K}{m} \right)^{-n} \right] \left[\left(1 - \frac{K}{m} \right)^{m} \right] \frac{K^{n}}{n!}$$ 14.6 σ By remembering that p is supposed to be rather small, it is obvious that only those values of n are of consequence which are very small as compared to m which is very large. On this basis, therefore, each of the factors enclosed within the first set of brackets become approximately equal to unity, as m becomes larger and larger compared with n. The same is true of the quantity 1-K/m which occurs in the second and third brackets, because K/m, or p, is very small. Therefore, since there are comparatively few of these factors in the first 2 sets of brackets, it follows that their product is also not greatly different from unity and actually approaches unity as m becomes very large compared with n. The same line of reasoning cannot be applied to the factor within the third bracket, however, owing to the fact that the quantity 1 - K/m is raised to a very large power. By consulting most any test on algebra or calculus, it will be found that the expression in the third bracket is equal to e^{-K} , or $$(1-\frac{K}{m})^m = e^{-K}$$ in which e = 2.71828 (Base of Napierian or natural logarithms). On the basis of this line of reasoning, therefore, one would be justified in concluding that Equation 14.6 is equivalent to $$P_{m}(n) = \frac{K^{n}e^{-K}}{n!}$$ which is known as the Poisson distribution, and in the limit as m becomes very large it actually becomes The important thing to note here is that if p is small enough and m is large enough, the Binomial Law reduces approximately to the form given by Equation 14.7, which is exactly the Poisson Law. It should be emphasized also that the Binomial Law approaches the Poisson Law as a limit as m becomes very large. In other words, the Poisson distribution for any given value of K=mp is the limiting form of the Binomial distribution as m increases while mp remains constant. The successive terms of the Binomial expansion are given by Equation 14.1 as follows: $$(q+p)^m = C_m^m q^m p^o + C_m^{m-1} q^{m^{-1}} p^1 + C_m^{m^{-2}} q^{m^{-2}} p^2 + ... + C_m^o q^o p^m = 1......14.1$$ and have as their limits the corresponding terms in the Poisson distribution, as follows: $$P(n) = e^{-K} + Ke^{-K} + \frac{K^2}{2!} \cdot e^{-K} + \frac{K^3}{3!} \cdot e^{-K} + \dots = 1......14.7a$$ for $n = 0$ 1 2 3 ... The successive terms in this series, which are interpreted as the probabilities that 0,1,2,3,... occurrences should appear, give the Poisson distribution. They may be interpreted also as the proportion of samples in which 0,1,2,3,... of some specified event would be expected to occur when the average number of occurrences per sample, as given by Equation 14.4, is K = mp. ####
Comment One of the principal advantages of using the Poisson distribution as an approximation to a specific Binomial distribution—particularly when p is small and m is large—is the comparative ease with which the successive terms of the Poisson series, as given in Equation 14.7a, may be evaluated. Actually, though, there is rarely ever any occasion for making such calculations since tables $^{23-24}$ are available that cover a wide range of values for K=mp (average number of occurrences per sample) which are sufficiently close to any particular value of K to result in a distribution which is sufficiently close to the desired distribution to satisfy the requirements for accuracy in most practical situations. On the other hand, it would not be at all practical to undertake to develop a satisfactory set of tables that might be used for the Binomial distribution. This is due to the fact that a separate distribution would be required for each pair of the values m and p, as will be seen in Equation 14.1. In other words a satisfactory table for the Binomial distribution would have to include a large number of values for m and p which are covered by a single value of K in the Poisson distribution tables. For example, the distribution given by the Poisson tables for, say K=4, covers all possible values of m and p whose product mp = 4, such as: | m | \mathbf{x} | р | = | K | m | \mathbf{x} | р | == | \mathbf{K} | m | x | р | === | K | |----|--------------|------|-----|---|-----|--------------|------|----|--------------|-----|--------------|------|-----|---| | 10 | \mathbf{x} | .400 | | 4 | 60 | \mathbf{x} | .667 | = | 4 | 200 | \mathbf{x} | .020 | = | 4 | | 20 | \mathbf{x} | .200 | | 4 | 70 | \mathbf{x} | .572 | = | 4 | 300 | \mathbf{x} | .013 | == | 4 | | 30 | \mathbf{x} | .133 | = | 4 | 80 | \mathbf{x} | .500 | = | 4 | 400 | \mathbf{x} | .010 | = | 4 | | 40 | \mathbf{x} | .100 | | 4 | 90 | \mathbf{x} | .444 | | 4 | 500 | х | .008 | _ | 4 | | 50 | x | .080 | === | 4 | 100 | x | .040 | = | 4 | 800 | x | 005 | | 4 | which represent but a few of the possible values for m and p whose product mp = 4. The same thing would be true for any and every other value of K. #### 14.6 Comparison of The Binomial and Poisson Distributions As previously pointed out, the Binomial Law approaches the Poisson Law as a limit as the sample size m becomes larger and larger while the value of K=mp remains constant. From a practical standpoint, however, it would be quite informative to know just how rapidly the Binomial distributions approach this limit and how they are affected by the values of m and p. A reasonable satisfactory answer to this would be to the effect that Binomial distribution approach the Poisson form so rapidly as m is increased that the approximations indicated by the Poisson series may be considered very good for practical purposes when p=.1, and excellent when p=.01 or less. The validity of this statement is illustrated by the distributions shown in the following table. Table~14.3 COMPARISONS OF BINOMIAL AND POISSON DISTRIBUTIONS FOR DIFFERENT VALUES~OF~m~AND~CONSTANT~VALUES~OF~K~=~mp | Number of | | Poisson
with K = 1 | | | | |-----------|----------------|-----------------------|-------------------|--------------------|-----------------| | Term | m = 5 $p = .2$ | $m = 10 \\ p = .1$ | m = 25
p = .04 | m = 100
p = .01 | Limit as
m→∝ | | 0 | .3277 | .3487 | .3604 | .3660 | .3679 | | 1 | .4096 | .3874 | .3754 | .3697 | .3679 | | 2 | .2048 | .1937 | .1877 | .1849 | .1839 | | 3 | .0512 | .0574 | .0600 | .0610 | .0613 | | 4 | .0064 | .0112 | .0137 | .0149 | .0153 | | 5 | .0003 | .0015 | .0024 | .0029 | .0031 | | 6 | | .0001 | .0003 | .0005 | .0005 | ^{2&}lt;sup>3</sup>T. C. Fry, "Probobility and Its Engineering Uses," D. Van Nostrand Co., New York, 1928. 2⁴E. C. Molina, "Poisson's Exponential Binomial Limit," D. Van Nostrand Co., New York, 1948. | Number of | | Poisson
with K = 2 | | | | |-----------|-----------------|---|---------------------|----------------------|-----------------| | Term | m = 10 $p = .2$ | $ \begin{array}{r} m = 20 \\ p = .1 \end{array} $ | $m = 50 \\ p = .04$ | $m = 200 \\ p = .01$ | Limit as
m→∝ | | 0 | .1074 | .1216 | .1299 | .1340 | .1353 | | 1 | .2684 | .2702 | .2706 | .2707 | .2707 | | 2 | .3020 | .2852 | .2762 | .2720 | .2707 | | 3 | .2013 | .1901 | .1842 | .1814 | .1804 | | 4 | .0881 | .0898 | .0902 | .0902 | .0902 | | 5 | .0264 | .0319 | .0346 | .0357 | .0361 | | 6 | .0055 | .0089 | .0108 | .0117 | .0120 | | 7 | .0008 | .0020 | .0028 | .0033 | .0034 | | 8 | .0001 | .0004 | .0006 | .0008 | .0009 | | 9 | .0000 | .0001 | .0001 | .0002 | .0002 | ## 14.7 Use of Poisson Distributions For Analyzing Frequencies of Heavy Vehicle Loadings In order to illustrate a typical type of physical situation to which the Binomial Law might be applied for determining the relative frequencies with which certain specified events would be expected to occur, it was assumed in Examples 14.4 and 14.5 that a large bin was continuously being supplied or filled as needed with balls which were identical in every respect except that 80 percent of them were white and 20 percent of them were black. In Example 14.4, it was then shown that, if these balls were withdrawn at random from the bin and put into boxes containing 5 balls each (sample size, m=5), the relative frequencies with which 0,1,2,3,4, and 5 black balls would be expected among these boxes would be given by the successive terms of the expansion of the Binomial for $$q = (q + p)^m = (.8 + .2)^5 = .3277 + .4096 + .2048 + .0512 + .0064 + .0003 = 0 1 2 3 4 5$$ Then, by way of illustrating the effect of sample size on the frequencies with which the various numbers of black balls would be expected to occur among different size samples withdrawn from the same bin—or parent population of 80 percent white and 20 percent black balls—it was shown in Example 14.5 that if the sample size were 10 instead of 5, the relative frequency with which n=0,1,2,3,...,9, and 10 black balls respectively, would be expected among these samples would be given by the successive terms of the expansion of the Binomial Both of the preceding Binomial distributions are given in Column 2 of Table 14.3 where the probability of success (in this case, the drawing of a black ball) on a single trial, p = .2, is held constant. The upper part of Column 2 gives the distribution expected for samples of size m = 5, and the lower part gives the distribution expected for samples of size m = 10. Columns 3, 4, and 5 of Table 14.3 will also give some idea of the distributions which result from similar variations in sample size for 3 additional values of probability, namely, p = .1, .04, and .01 respectively. In the upper part of Table 14.3, it will also be noted that the combinations of sample size, m, and probability, p, are such that the average number of specified events per sample mp=1, and in the lower part, the combinations of m and p are such that the average number of specified events per sample mp=2. And perhaps the most important thing to note in connection with these distributions is that after the sample size exceeds about 25, for a constant value K=mp, the expected frequencies given by the successive terms of the Binomial expansion are rather closely approximated by the corresponding terms of the Poisson series as shown in the right hand column of Table 14.3. In order to illustrate how the Binomial Law might be used for analyzing or predicting the results that would be expected from a continuous sampling procedure in Examples 14.4 and 14.5, it was assumed that the composition of the parent population was known in advance. More specifically, it was assumed that the parent population was known to consist of 80 percent white and 20 percent black balls. In most practical situations, however, the composition of the parent population is not known in advance. This is not a serious handicap though because the value of p may be estimated within rather narrow limits, simply by taking a large number of samples of size m and determining the average number of successes, $K = \mathrm{mp}$, per sample. When determined in this manner, the estimated value of the probability of success on a single trial, $p = \mathrm{K/m}$, is known as "statistical probability." For example, suppose that the output of an automatic machine consists of small metal rivets which are put into boxes of 100 rivets each. Now suppose that after 150 of these boxes had been inspected for defectives, it was found that they contained a total of 150 defective rivets or an average of 1 defective rivet per box. On this basis the best estimate of the probability that any rivet selected at random would be a defective would be the statistical probability p = K/m = 1/100 = .01. If the output of this machine were now analyzed by means of the Binomial and Poisson distributions, the situation would be as given in the following example. #### Example 14.6 Binomial and Poisson Distributions For K = mp = 1 If the output of an automatic machine consists of small metal rivets which are put into boxes of 100 rivets each, and it has been determined from previous sampling that 1 percent of this machine's production was defective, what proportion of the boxes would be expected to contain 0,1,2,3,4,... defective rivets respectively, according to both the Binomial and Poisson distributions? According to the Binomial Law, the expected frequency of occurrence of 0,1,2,3,... defectives among the boxes (for m=100 and p=.01) would be given by the successive terms (to 4 decimal places) of the expansion of the Binomial (see upper part of Column 5 of Table 14.3) for $$\begin{array}{c} (.99+.01)^{100} = .3660+.3697+.1849+.0610+.0149+.0029+.0005\\ n = 0 & 1 & 2 & 3 & 4 & 5 \end{array}$$ and according to the Poisson Law (for K=mp=1) the corresponding distribution
would be given by the successive terms of the Poisson series (see upper right hand column of Table 14.3). By comparing these two distributions, it will be seen that the values indicated by the Poisson series are sufficiently close to those given by the Binomial expansion to provide a satisfactory basis for a practical procedure for sampling the product of the machine under consideration or analyzing the quality level of its performance. #### Comment The Poisson distribution as shown above is also given for K=1 in Table 14.4 which is a reference table that covers all practical values of K from 0.1 to 15.0. For each of these values of K, Table 14.4 gives both the individual and cumulative terms indicated by the Poisson Law. The individual terms shown in Table 14.4 give the proportion of samples that would be expected to contain 0,1,2,3,... specified events when the average number per sample was K=mp. The cumulative terms may be explained rather simply by referring to the distribution for K=1 in Table 14.4; the top right hand figure means that 100 percent of the samples contain none or more specified events; the second figure means that 63.21 percent of the samples would be expected to contain 1 or more events; the third figure means that 26.42 percent of the samples would be expected to contain 2 or more events, and so on. Table 14.4, therefore, will provide a convenient reference for analyzing future problems. #### Application of Poisson Law To Loadometer Survey Data of 1942 In each of the preceding examples only a discrete number of events could occur in a particular sample. In the case of the automatic machine whose output consisted of small metal rivets, the number of defectives in a given box of 100 rivets would of necessity have to be either 0,1,2,3,... because one could not say that a given box contained, say, 2½ defectives. There are other types of problems though where the variable under consideration is continuous, as would be the case if one were considering the variations in weight of heavy motor vehicles. This difficulty may be overcome, however, by dividing the weight scale up into cells of convenient range. In dealing with heavy vehicle weights and heavy vehicle loading equivalents, for example, it has been found convenient for each cell to cover a range of 1 ton or 2,000 pounds. On this basis, a heavy vehicle with a gross weight between 19.50 and 20.49 tons would be put into the 20 ton cell, and one with a gross weight between 20.50 and 21.49 tons would be put into the 21 ton cell, and so on. Perhaps the simplest way to illustrate how the Poisson Law may be used for analyzing the frequencies of various intensities of heavy vehicle loading equivalents would be to discuss the frequency distribution of equivalent H truck loadings for some particular vehicle type on a given span which has already been determined from the heavy vehicle data reported by the 1942 loadometer survey. For example, Table 16.1a shows that the observed frequencies of equivalent H truck loadings on a 60-foot span for the 171 Type 2 trucks reported were found to be as follows: | Equivalent
H Truck
Loading
Tons | | Observed
Relative
Frequency
Per cent | |--|---|--| | 11
12
13
14
15
16
17
18 | | 7.0
14.6
24.2
23.0
17.0
8.2
3.9
2.1 | | Total | = | 100.0 | | Maximum equiv. H truck loading | = | 18.0 | |------------------------------------|---|------| | Average equiv. H truck loading | = | 13.8 | | Minimum equiv. H truck loading | = | 11.0 | | Range from maximum to minimum | = | 7.0 | | Poisson coefficient K | = | 2.8 | | Standard deviation ²⁵ D | = | 1.67 | From these results it will be seen that the variation in H truck loading equivalents is from 11.0 tons to 18.0 tons rather than starting with 0,1,2,3,... and so on as was the case in the preceding examples. This simply means ²⁵For explanation of Standard Deviation see Article 15.2. that the variation in H loading equivalents starts with the 11.0 ton cell and covers a total range of 8 cells between the 11.0 and 18.0 ton cells, inclusive. It will be noted also that the average equivalent H truck loading of 13.8 tons is 2.8 tons or 2.8 cells greater than the 11.0 ton minimum cell. Insofar as applying the Poisson Law to the analysis of these observed frequencies, this means that the 11 ton cell would be considered the zero term; the 12 ton cell would be considered the first term; the 13 ton cell would be considered the second term and so on. In other words, the number of tons that would correspond to the successive terms of the Poisson series would be 11.0 + n where n = 0,1,2,3,... and so on. And since the average gross weight per vehicle is 13.8 tons, or 2.8 tons greater than the 11.0 ton minimum, the Poisson distribution would correspond to that found in Table 14.4 for K = 2.8. This Poisson distribution, K = 2.8, is the one whose average is 2.8 cells greater than the zero cell and is, therefore, the one which would correspond to the given situation. On this basis, a comparison of the observed frequencies, of equivalent H truck loadings for the Type 2 trucks on a 60-foot span, with those given by the Poisson distribution would be as follows: | Equivalent
H Truck
Loading
Tons | Observe
Relativ
Frequen
Percen | e Relative
cy Frequency | Cumulative | |--|---|----------------------------|--| | $\begin{array}{c} 11 \\ 12 \end{array}$ | $7.0 \\ 14.6$ | $\substack{6.1\\17.0}$ | $100.0 \\ 93.9$ | | 13 | 24.2 | 23.8 | 76.9 | | $\begin{array}{c} 14 \\ 15 \end{array}$ | $\frac{23.0}{17.0}$ | $22.2 \\ 15.6$ | $53.1 \\ 30.9$ | | $\begin{array}{c} 16 \\ 17 \end{array}$ | $8.2 \\ 3.9$ | $8.7 \\ 4.1$ | $\begin{array}{c} 15.3 \\ 6.6 \end{array}$ | | 18 | 2.1 | 1.6 | 2.5 | | $\begin{array}{c} 19 \\ 20 \end{array}$ | .0 | $\overset{.6}{.2}$ | .9
.3 | | 21 | .0 | .1 | .1 | | Total | = 100.0 | 100.0 | | A comparison of these distributions will show that the Poisson Law provides a convenient mathematical tool for analyzing the relative frequencies of various intensities of heavy vehicle loads and loading equivalencies that would be expected to obtain for given traffic conditions such as those indicated by the heavy vehicle data²⁶ reported by the special loadometer survey of 1942 from which this illustration was taken. The above frequencies of equivalent H truck loadings for the Type 2 trucks on a 60-foot span were selected for this illustration because of the very excellent agreement between the observed and calculated distributions. And though the agreement between some of the other observed and calculated frequencies given in Parts IV and V is not so close as those shown above, a brief review of these data will show that the Poisson Law provides a simple yet reasonably accurate mathematical procedure for analyzing and estimating the relative frequencies of various intensities of heavy vehicle loads or loading equivalencies that would be expected to obtain for any given or anticipated traffic conditions. ## 14.8 Use of Poisson Law For Converting Frequency Distribution of One Type of Loading Into That of Another In the preceding article, the observed and calculated frequencies of equivalent H truck loadings for a 60-foot span are shown for the 171 Type 2 ²⁰Henson K. Stephenson and A. A. Jakkula, "Highway Loads and Their Effects on Highway Structures Based on Traffic Data of 1942," Texas Engineering Experiment Station Bulletin No. 116, 1950. trucks reported by the special loadometer survey of 1942. These observed and calculated frequency distributions were taken from Tables 16.1a and 16.1b, respectively. Once such a frequency distribution has been determined—say on the basis of equivalent H truck loadings—it would not be necessary to go through all the detailed work of rating the vehicles again in order to arrive at a different type of frequency distribution based on another type of loading. If the original distribution was based, say, on equivalent H truck loadings, it could very easily be converted into a distribution based on equivalent H-S truck loadings, equivalent concentrated loads, equivalent H design loadings, or any other loading equivalencies as may be desired. The coefficients for converting any one of these equivalent loadings into any one of the others on various span lengths are given in Table 13.1 and the use of them is explained in Article 13. The procedure for converting a given frequency distribution based on one type of loading equivalency into its corresponding distribution based on a different type of equivalent loads will be illustrated in the following example. ## Example 14.6 Conversion of Equivalent H Truck Loading Distribution Into Equivalent Concentrated Loading Distribution The observed and calculated frequencies of equivalent H truck loadings on a 60-foot span for the 171 Type 2 trucks reported by the 1942 loadometer survey are given in the preceding article (Article 14.7) and are identical with the distributions shown for this case in Tables 16.1a and 16.1b, respectively. Suppose now that this distribution of equivalent H truck loadings had been determined and it was then desired to have a frequency distribution for these same vehicles and span based on equivalent concentrated loadings. In Table 13.1, it will be seen that a conversion coefficient of .91 will convert a given equivalent H truck loading into its equivalent concentrated loading on a 60-foot span. What this conversion coefficient actually means is that a single concentrated load having a weight equal to 91 percent of the weight of a given H truck will produce the same maximum moment on a 60-foot span as the given H truck. On this basis, the average and minimum equivalent concentrated loads for this distribution
would be 91 percent, respectively, of those for the equivalent H truck loadings as follows: Average equivalent concentrated load = $13.8 \times .91 = 12.6$ Minimum equivalent concentrated load = $11.0 \times .91 = 10.0$ Poisson coefficient for ECL distribution, K = 2.6 The Poisson distribution for K=2.6 will be found in Table 14.4 which results in the following frequency distribution of equivalent concentrated loads for the above mentioned 171 Type 2 trucks on a 60-foot span. | Equivalent | | Observed | Calculated | Calculated | |-----------------------|---|-----------|--------------------------|------------| | Concentrated | i | Relative | Relative | Cumulative | | \mathbf{Load} | | Frequency | Frequency | Frequency | | Tons | | Percent | $\operatorname{Percent}$ | Percent | | 10 | | 7.0 | 7.4 | 100.0 | | 11 | | 17.9 | 19.3 | 92.6 | | 12 | | 26.3 | 25.1 | 73.3 | | 13 | | 24.2 | 21.8 | 48.2 | | 14 | | 14.4 | 14.1 | 26.4 | | 15 | | 6.4 | 7.4 | 12.3 | | 16 | | 2.7 | 3.2 | 4.9 | | 17 | | 1.1 | 1.2 | 1.7 | | 18 | | 0.0 | .4 | .5 | | 19 | | 0.0 | .1 | .1 | | Total | | 100.0 | 100.0 | | The observed frequencies of equivalent concentrated loads for these 171 Type 2 trucks on a 60-foot span are also shown as they appear in Table 23.1a in order to provide a direct comparison with the above theoretical frequencies which were arrived at by applying the conversion coefficient of .91—as given by Table 13.1 for this situation—to the distribution of equivalent H truck loadings. Incidentally, the observed frequencies shown in Table 23.1a were obtained by converting each of the 171 Type 2 trucks into equivalent concentrated loads for each of the 8 span lengths considered. #### Comment This example will serve to show how simple it is to use the Poisson Law for converting relative frequencies based on one type of equivalent loadings into those of another. Although the conversion illustrated in this example is but one of several that might be desired, it is typical and the same procedure would apply for any of the conversions indicated by Table 13.1 or Figure 13.1 and discussed in Article 13. Table 14.4 INDIVIDUAL AND CUMULATIVE TERMS OF THE POISSON DISTRIBUTION FORMULA n -K | | n –K
K e | | | | | | | | | | |---------------------------------|---|--|---|--|---|--|---|---|---|---| | | P(n) = | | | | | | | | | | | | | | | | | n! | | | | | | | Ind.
Terms | Cum.
Terms | Ind.
Terms | Cum.
Terms | Ind.
Terms | Cum.
Terms | Ind.
Terms | | Ind.
Terms | Cum.
Terms | | n | K = | : 0.1 | K = | - 0.2 | K = | = 0.3 | K = | = 0.4 | K = 0.5 | | | 0
1
2
3
4 | .9048
.0905
.0045
.0002 | 1.0000
.0952
.0047
.0002 | .8187
.1638
.0164
.0010
.0001 | 1.0000
.1813
.0175
.0011
.0001 | .7408
.2223
.0333
.0033
.0003 | 1.0000
.2592
.0369
.0036
.0003 | .6703
.2681
.0537
.0071
.0007 | 1.0000
.3297
.0616
.0079
.0008 | .6065
.3033
.0758
.0126
.0016 | 1.0000
.3935
.0902
.0144
.0018 | | ъ | | | | | | | .0001 | .0001 | .0002 | .0002 | | n
0
1
2
3
4
5 | K = .5488 .3293 .0988 .0197 .0030 .0004 | = 0.6
1.0000
.4512
.1219
.0231
.0034
.0004 | K = .4966 .3476 .1217 .0283 .0050 .0007 .0001 | = 0.7
1.0000
.5034
.1558
.0341
.0058
.0008 | K = .4493 .3595 .1438 .0383 .0077 .0012 .0002 | = 0.8
1.0000
.5507
.1912
.0474
.0091
.0014 | K = .4066 .3659 .1646 .0494 .0112 .0020 .0003 | = 0.9
1.0000
.5934
.2275
.0629
.0135
.0023
.0003 | .3679
.3679
.1839
.0613
.0153 | = 1.0
1.0000
.6321
.2642
.0803
.0190
.0037
.0006 | | 7 | | | | | | | | | .0001 | .0001 | | n | K = | | K = | | K = | | | = 1.4 | | == 1.5 | | 0
1
2
3
4 | .3329
.3661
.2014
.0739
.0203 | 1.0000
.6671
.3010
.0996
.0257 | .3012
.3614
.2169
.0867
.0261 | 1.0000
.6988
.3374
.1205
.0338 | .2725
.3543
.2303
.0998
.0324 | 1.0000
.7275
.3732
.1429
.0431 | .2466
.3452
.2417
.1128
.0394 | 1.0000
.7534
.4082
.1665
.0537 | .2231
.3347
.2510
.1256
.0470 | 1.0000
.7769
.4422
.1912
.0656 | | 5
6
7
8 | .0044
.0009
.0001 | .0054
.0010
.0001 | .0062
.0012
.0003 | .0077
.0015
.0003 | .0085
.0018
.0003 | .0107
.0022
.0004
.0001 | .0111
.0026
.0005
.0001 | .0143
.0032
.0006
.0001 | .0141
.0036
.0007
.0002 | .0186
.0045
.0009
.0002 | | n | K = | = 1.6 | К = | = 1.7 | К : | = 1.8 | К : | = 1.9 | К: | = 2.0 | | 0
1
2
3
4 | .2019
.3230
.2585
.1378
.0551 | 1.0000
.7981
.4751
.2166
.0788 | .1827
.3105
.2640
.1496
.0636 | 1.0000
.8173
.5068
.2428
.0932 | .1653
.2975
.2678
.1607
.0723 | 1.0000
.8347
.5372
.2694
.1087 | .1496
.2841
.2700
.1710
.0812 | 1.0000
.8504
.5663
.2963
.1253 | .1353
.2707
.2707
.1804
.0902 | 1.0000
.8647
.5940
.3233
.1429 | | 5
6
7
8
9 | .0177
.0047
.0010
.0003 | .0237
.0060
.0013
.0003 | .0216
.0061
.0015
.0003 | .0296
.0080
.0019
.0004
.0001 | .0260
.0078
.0020
.0005
.0001 | .0364
.0104
.0026
.0006
.0001 | .0309
.0098
.0026
.0006
.0002 | .0441
.0132
.0034
.0008 | .0361
.0121
.0034
.0009
.0002 | .0527
.0166
.0045
.0011
.0002 | Table 14.4 (Continued) | | Ind.
Terms | Cum.
Terms | Ind.
Terms | Cum.
Terms | Ind.
Terms | Cum.
Terms | Ind.
Terms | Cum.
Terms | Ind.
Terms | Cum.
Terms | |-----------------|----------------|----------------|------------------|------------------|---------------|----------------|----------------|---------------|----------------|---------------| | n | w - | = 2.1 | w - | = 2.2 | v - | = 2.3 | 1 27 — | = 2.4 | T7 | = 2.5 | | 0 | .1225 | 1.0000 | .1108 | 1.0000 | .1003 | 1.0000 | .0907 | 1.0000 | .0821 | 1.0000 | | 1 | .2571 | .8775 | .2438 | .8892 | .2306 | .8997 | .2177 | .9093 | .2052 | .9179 | | 2 | .2700 | .6204 | .2681 | .6454 | .2651 | .6691 | .2613 | .6916 | .2565 | .7127 | | 3 | .1890 | .3504 | .1967 | .3773 | .2033 | .4040 | .2090 | .4303 | .2138 | .4562 | | 4 | .0993 | .1614 | .1081 | .1806 | .1169 | .2007 | .1254 | .2213 | .1336 | .2424 | | 5 | .0417 | .0621 | .0476 | .0725 | .0538 | .0838 | .0602 | .0959 | .0668 | .1088 | | 6 | .0145 | .0204 | .0174 | .0249 | .0206 | .0300 | .0241 | .0357 | .0278 | .0420 | | 7
8 | .0044 $.0012$ | .0059
.0015 | .0055 $.0015$ | .0075 $.0020$ | .0068 | .0094 | .0083 | .0116 | .0100 | .0142 | | 9 | .0012 | .0013 | .0013 | .0020 | .0020 | .0026
.0006 | .0024 $.0007$ | 0033 | .0031 $.0008$ | 0042 | | | | | | | | | | | | | | $\frac{10}{11}$ | .0001 | .0001 | .0001 | .0001 | .0001 | .0001 | .0002 | .0002 | .0002 | .0003 | | 11 | | | | | | | | | .0001 | .0001 | | n | K = | = 2.6 | K = | = 2.7 | K = | 2.8 | K = | = 2.9 | K = | = 3.0 | | 0 | .0743 | 1.0000 | .0672 | 1.0000 | .0608 | 1.0000 | .0550 | 1.0000 | .0493 | 1.0000 | | 1 | .1931 | .9257 | .1815 | .9328 | .1703 | .9392 | .1596 | .9450 | .1493 | .9502 | | 2 | .2510 | .7326 | .2449 | .7513 | .2384 | .7689 | .2314 | .7854 | .2241 | .8009 | | $\frac{3}{4}$ | .2176 $.1414$ | .4816 $.2640$ | .2205 $.1488$ | $.5064 \\ .2859$ | .2224 | .5305 | .2236 | .5540 | .2240 | .5768 | | | | | | | .1558 | .3081 | .1622 | .3304 | .1681 | .3528 | | 5 | .0736 | .1226 | .0804 | .1371 | .0872 | .1523 | .0940 | .1682 | .1008 | .1847 | | 6
7 | .0318 $.0119$ | .0490 $.0172$ | $.0361 \\ .0140$ | .0567 $.0206$ | .0407 $.0163$ | .0651 $.0244$ | .0455
.0188 | 0742 0287 | .0504 $.0216$ | .0839 $.0335$ | | 8 | .0038 | .0053 | .0047 | .0206 | .0057 | .0244 | .0188 | .0099 | .0216 | .0333 | | 9 | .0011 | .0015 | .0014 | .0019 | .0017 | .0024 | .0022 | .0033 | .0027 | .0038 | | 10 | .0003 | .0004 | .0004 | -6005 | .0005 | .0007 | .0007 | .0009 | .0008 | .0011 | | 11 | .0003 | .0004 | .0004 | .0003 | .0003 | .0007 | .0001 | .0009 | .0008 | .0003 | | 12 | .0001 | .0001 | .0001 | .0001 | .0002 | .0002 | .0001 | .0001 | .0001 | .0001 | | | | | | | | | | | | | | n | | = 3.1 | | = 3.2 | | = 3.3 | | = 3.4 | | = 3.5 | | 0 | .0450 | 1.0000 | .0408 | 1.0000 | .0369 | 1.0000 | .0334 | 1.0000 | .0302 | 1.0000 | | $\frac{1}{2}$ | .1397 $.2165$ | .9550 $.8153$ | .1304 $.2087$ | .9592 $.8288$ | .1217 $.2008$ | .9631 $.8414$ | .1134 $.1929$ | .9666 $.8532$ | .1057 | .9698 $.8641$ | | 3 | .2236 | .5988 | .2226 | .6201 | .2209 | .6406 | .2187 | .6603 | .1849
.2158 | .6792 | | 4 | .1734 | .3752 | .1781 | .3975 | .1823 | .4197 | .1858 | .4416 | .1888 | .4634 | | 5 | .1075 | .2018 | .1140 | .2194 | .1203 | .2374 | .1263 | .2558 | ,1322 | .2746 | | 6 | .0555 | .0943 | .0608 | .1054 | .0661 | .1171 | .0716 | .1295 | .0771 | .1424 | | 7 | .0246 | .0388 | .0278 | .0446 | .0312 | .0510 | .0348 | .0579 | .0386 | .0653 | | 8 | .0095 | .0142 | .0111 | .0168 | .0129 | .0198 | .0148 | .0231 | .0168 | .0267 | | 9 | .0033 | .0047 | .0039 | .0057 | .0047 | .0069 | .0055 | .0083 | .0066 | .0099 | | n | к = | = 3.1 | К = | = 3.2 | к = | = 3.3 | К = | = 3.4 | K = | = 3.5 | | 10 | .0010 | .0014 | .0013 | .0018 | .0016 | .0022 | .0019 | .0027 | .0023 | .0033 | | 11 | .0003 | .0004 | .0004 | .0005 | .0004 | .0006 | .0006 | .0008 | .0007 |
.0010 | | 12 | .0001 | .0001 | .0001 | .0001 | .0002 | .0002 | .0001 | .0002 | .0002 | .0003 | | 13 | | | | | | | .0001 | .0001 | .0001 | .0001 | | n | к = | = 3.6 | К = | = 3.7 | к – | = 3.8 | к - | = 3.9 | к – | = 4.0 | | 0 | .0273 | 1.0000 | .0247 | 1.0000 | .0224 | 1.0000 | .0202 | 1.0000 | .0183 | 1.0000 | | í | .0213 | .9727 | .0915 | .9753 | .0850 | .9776 | .0790 | .9798 | .0733 | .9817 | | 2 | .1770 | .8743 | .1692 | .8838 | .1615 | .8926 | .1539 | .9008 | .1465 | .9084 | | 3 | .2125 | .6973 | .2088 | .7146 | .2046 | .7311 | .2001 | .7469 | .1954 | .7619 | | 4 | .1912 | .4848 | .1930 | .5058 | .1943 | .5265 | .1952 | .5468 | .1953 | .5665 | | 5 | .1377 | .2936 | .1429 | .3128 | .1478 | .3322 | .1522 | .3516 | .1563 | .3712 | | 6 | .0826 | .1559 | .0881 | .1699 | .0935 | .1844 | .0989 | .1994 | .1042 | .2149 | | 7 | .0425 | .0733 | .0466 | .0818 | .0508 | .0909 | .0551 | .1005 | .0596 | .1107 | | 8 | .0191 | .0308 | .0215 | .0352 | .0241 | .0401 | .0269 | .0454 | .0297 | .0511 | | 9 | .0077 | .0117 | .0089 | .0137 | .0102 | .0160 | .0116 | .0185 | .0133 | .0214 | | 10 | .0027 | .0040 | .0032 | .0048 | .0039 | .0058 | .0046 | .0069 | .0053 | .0081 | | 11 | .0009 | .0013 | .0011 | .0016 | .0013 | .0019 | .0016 | .0023 | .0019 | .0028 | | 12 | .0003 | .0004 | .0004 | .0005 | .0004 | .0006 | .0005 | .0007 | .0006 | 0009 | | $\frac{13}{14}$ | .0001 | .0001 | .0001 | .0001 | .0002 | .0002 | .0001 $.0001$ | 0002 | .0002 $.0001$ | .0003 | | | | | | | | | | | | | | n | | 4.1 | | = 4.2 | | 4.3 | | = 4.4 | | 4.5 | | 0 | .0166 | 1.0000 | .0150 | 1.0000 | .0136 | 1.0000 | .0123 | 1.0000 | .0111 | 1.0000 | | 1 | .0679 | .9834 | .0630 | .9850 | .0583 | .9864 | .0540 | .9877 | .0500 | .9889 | | 2 | .1393 | .9155 | .1322 | .9220 | .1255 | .9281 | .1188 | .9337 | .1125 | .9389 | | 3
4 | .1904
.1951 | .7762 $.5858$ | .1852 $.1944$ | .7898
.6046 | .1798 $.1932$ | .8026 $.6228$ | .1743 $.1918$ | .8149 $.6406$ | .1687 $.1898$ | .8264 $.6577$ | | 4 | 1661 | .0000 | .1344 | .0040 | .1302 | ,0240 | .1010 | .0400 | .1020 | .0011 | | | | | | | | | | | | | Table 14.4 (Continued) | | Ind.
Terms | Cum.
Terms | Ind.
Terms | Cum.
Terms | Ind.
Terms | Cum.
Terms | Ind.
Terms | Cum.
Terms | Ind.
Terms | Cum.
Terms | |-----------------|----------------|-----------------|----------------|-------------------|----------------|----------------|-----------------|----------------|----------------|----------------| | n | | = 4.1 | К = | = 4.2 | K : | = 4.3 | K : | = 4.4 | K = | = 4.5 | | 5 | .1600 | .3907 | .1633 | .4102 | .1663 | .4296 | .1687 | .4488 | .1708 | .4679 | | 6
7 | .1093 | .2307 $.1214$ | .1144 $.0686$ | .2469 $.1325$ | .1191 $.0732$ | .2633 $.1442$ | .1237 $.0778$ | .2801 $.1564$ | .1282 $.0823$ | .2971 $.1689$ | | 8 | .0328 | .0573 | .0360 | -0639 | .0393 | .0710 | .0428 | .0786 | .0463 | .0866 | | 9 | .0150 | .0245 | .0168 | .0279 | .0188 | .0317 | .0209 | .0358 | .0232 | .0403 | | 10 | .0061 | .0095 | .0070 | .0111 | .0081 | .0129 | .0092 | .0149 | .0104 | .9171 | | 11 | .0023 | .0034 | .0027 | .0041 | .0031 | .0048 | .0037 | .0057 | .0043 | .0067 | | 12 | .0008 | .0011 | .0010 | .0014 | .0012 | .0017 | .0013 | .0020 | .0016 | .0024 | | $\frac{13}{14}$ | 0002 | .0003 $.0001$ | 0003 | .0004 $.0001$ | 0003 0002 | .0005 $.0002$ | 0005 0002 | .0007 $.0002$ | 0005 0002 | .0008
8000. | | | .0001 | .0001 | .0001 | .0001 | .0002 | .0002 | .0002 | .0002 | | | | 15 | | | | | | | | | .0001 | .0001 | | n | K = | = 4.6 | K = | = 4.7 | K = | = 4.8 | K = | = 4.9 | K = | = 5.0 | | 0 | .0101 | 1.0000 | .0091 | 1.0000 | .0082 | 1.0000 | .0074 | 1.0000 | .0067 | 1.0000 | | 1 | .0462 | .9899 | .0427 | .9909 | .0395 | .9918 | .0365 | .9926 | .0337 | .9933 | | $\frac{2}{3}$ | .1063
.1631 | .9437 $.8374$ | .1005 $.1574$ | .9482 $.8477$ | .0948
.1517 | .9523 $.8575$ | .0894 $.1460$ | .9561 $.8667$ | .0843 $.1403$ | .9596 $.8753$ | | 4 | .1875 | .6743 | .1849 | .6903 | .1821 | .7058 | .1789 | .7207 | .1755 | .7350 | | 5 | .1726 | .4868 | .1738 | .5054 | .1747 | .5237 | .1753 | .5418 | .1755 | .5595 | | 6 | .1322 | .3142 | .1362 | .3316 | .1398 | .3490 | .1432 | .3665 | .1462 | .3840 | | 7 | .0869 | .1820 | .0914 | .1954 | .0959 | .2092 | .1002 | .2233 | .1044 | .2378 | | 8 | .0500 | .0951 | .0537 | .1040 | .0575 | .1133 | .0613 | .1231 | .0653 | .1334 | | 9 | .0256 | .0451 | .0281 | .0503 | .0307 | .0558 | .0335 | .0618 | .0363 | .0681 | | $\frac{10}{11}$ | .0117 $.0049$ | 0.0195 0.0078 | 0.0132 0.056 | .0222 $.0090$ | .0147 $.0064$ | .0251 $.0104$ | 0.0163 0.0073 | .0283 $.0120$ | .0181 $.0082$ | .0318 $.0137$ | | 12 | .0049 | .0029 | .0022 | .0034 | .0026 | .0104 | .0030 | .0120 | .0035 | .0157 | | 13 | .0007 | .0010 | .0008 | .0012 | .0009 | .0014 | .0011 | .0017 | .0013 | .0020 | | 14 | .0002 | .0003 | .0003 | .0004 | .0004 | .0005 | .0004 | .0006 | .0005 | .0007 | | 15 | .0001 | .0001 | .0001 | .0001 | .0001 | .0001 | .0001 | .0002 | .0001 | .0002 | | 16 | | | | | | | .0001 | .0001 | .0001 | .0001 | | n | K = | = 5.2 | K = | = 5.4 | K = | = 5.6 | К = | = 5.8 | K = | = 6.0 | | 0 | .0055 | 1.0000 | .0045 | 1.0000 | .0037 | 1.0000 | .0030 | 1.0000 | .0025 | 1.0000 | | 1 | .0287 | .9945 | .0244 | .9955 | .0207 | .9963 | .0176 | .9970 | .0149 | .9975 | | $\frac{2}{3}$ | .0746 $.1293$ | .9658 $.8912$ | .0659 $.1185$ | .9711 $.9052$ | .0580 $.1082$ | .9756 $.9176$ | .0509
.0985 | .9794 $.9285$ | .0446 $.0892$ | .9826 $.9380$ | | 4 | .1680 | .7619 | .1600 | .7867 | .1515 | .8094 | .1427 | .8300 | .1339 | .8488 | | 5 | .1748 | .5939 | .1728 | .6267 | .1698 | .6579 | .1656 | .6873 | .1606 | .7149 | | 6 | .1515 | .4191 | .1556 | .4539 | .1584 | .4881 | .1601 | .5217 | .1606 | .5543 | | 7 | .1125 | .2676 | .1200 | .2983 | .1267 | .3297 | .1326 | .3616 | .1377 | .3937 | | 8
9 | 0732 0422 | .1551 $.0819$ | .0809 $.0486$ | .1783 | .0887 | .2030 | .0962 | .2290 | .1032 | .2560 | | - | | | | .0974 | .0552 | .1143 | .0620 | .1328 | .0689 | .1528 | | $\frac{10}{11}$ | .0220 $.0104$ | 0397 0177 | .0263 $.0129$ | .0488 $.0225$ | 0309 | .0591 $.0282$ | .0359 $.0189$ | .0708 $.0349$ | .0413 $.0225$ | .0839 $.0426$ | | 12 | .0045 | .0073 | .0058 | .0096 | .0074 | .0125 | .0092 | .0160 | .0113 | .0201 | | 13 | .0018 | .0028 | .0024 | .0038 | .0031 | .0051 | .0041 | .0068 | .0052 | .0088 | | 14 | .0007 | .0010 | .0009 | .0014 | .0013 | .0020 | .0017 | .0027 | .0022 | .0036 | | 15 | .0002 | .0003 | .0003 | .0005 | .0005 | .0007 | .0006 | .0010 | .0009 | .0014 | | $\frac{16}{17}$ | .0001 | .0001 | .0001 | .0002 | .0001 | .0002 | .0003 | .0004 | .0003 | .0005 | | 18 | | | .0001 | .0001 | .0001 | .0001 | .0001 | .0001 | .0001 $.0001$ | .0002 $.0001$ | | | | | | | | | | | | | | n | | ≃ 6.2 | | = 6.4 | | = 6.6 | | = 6.8 | | = 7.0 | | $0 \\ 1$ | .0020 $.0126$ | 1.0000 $.9980$ | .0017 $.0106$ | $1.0000 \\ .9983$ | .0014 $.0089$ | 1.0000 $.9986$ | 0.0011 0.0076 | 1.0000 $.9989$ | .0009 $.0064$ | 1.0000 $.9991$ | | 2 | .0390 | .9854 | .0340 | .9877 | .0297 | .9897 | .0257 | .9913 | .0223 | .9927 | | 3 | .0806 | .9464 | .0726 | .9537 | .0652 | .9600 | .0584 | .9656 | .0522 | .9704 | | 4 | .1250 | .8658 | .1162 | .8811 | .1075 | .8948 | .0992 | .9072 | .0912 | .9182 | | 5 | .1549 | .7408 | .1486 | .7649 | .1420 | .7873 | .1350 | .8080 | .1277 | .8270 | | $\frac{6}{7}$ | .1601 | .5859 | .1586 | .6163 | .1561 | .6453 | .1529 | .6730 | .1490 | .6993 | | 8 | .1418
.1099 | .4258 $.2840$ | .1450
.1160 | .4577 $.3127$ | .1473
.1215 | .4892 $.3419$ | .1486
.1263 | .5201 $.3715$ | .1490
.1304 | .5503 $.4013$ | | 9 | .0757 | .1741 | .0825 | .1967 | .0890 | .2204 | .0954 | .2452 | .1014 | .2709 | | 10 | .0470 | .0984 | .0528 | .1142 | .0588 | .1314 | .0649 | .1498 | .0710 | .1695 | | 11 | .0264 | .0514 | .0307 | .0614 | .0353 | .0726 | .0401 | .0849 | .0451 | .0985 | | 12 | .0137 | .0250 | .0164 | .0307 | .0194 | .0373 | .0227 | .0448 | .0264 | .0534 | | $\frac{13}{14}$ | 0065 | .0113 $.0048$ | .0080 $.0037$ | .0143 $.0063$ | .0099 $.0046$ | .0179 $.0080$ | .0119 $.0058$ | .0221 $.0102$ | .0142 $.0071$ | .0270 $.0128$ | | 7.4 | .0020 | .0040 | .0001 | .0000 | .0040 | .0000 | .0008 | .0102 | .0011 | .0140 | Table 14.4 (Continued) | | $_{\rm Terms}^{\rm Ind.}$ | Cum.
Terms | Ind.
Terms | Cum.
Terms | Ind.
Terms | Cum.
Terms | Ind.
Terms | Cum.
Terms | Ind.
Terms | Cum.
Terms | |-----------------|---------------------------|----------------|----------------|------------------|-----------------------------|-------------------|-----------------|----------------|-----------------|----------------| | n | K = | = 6.2 | K = | = 6.4 | К : | = 6.6 | K = | = 6.8 | K : | = 7.0 | | 15 | .0012 | .0019 | .0016 | .0026 | .0020 | .0034 | .0026 | .0044 | .0033 | .0057 | | $\frac{16}{17}$ | .0004 $.0002$ | .0007 $.0003$ | .0006 | .0010 $.0004$ | 0009 | .0014 $.0005$ | .0011
.0004 | .0018 $.0007$ | .0014 $.0006$ | .0024 $.0010$ | | 18 | .0002 | .0003 | .0003 | .0001 | .0003 | .0005 | .0004 | .0003 | .0008 | .0010 | | 19 | | | | | .0001 | .0001 | .0001 | .0001 | .0001 | .0001 | | n | | 7.2 | | 7.4 | | = 7.6 | | = 7.8 | | = 8.0 | | 0
1 | 0007 0054 | 1.0000 $.9993$ | 0006 0045 | 1.0000 $.9994$ | .0005 $.0038$ | $1.0000 \\ .9995$ | 0.0004 0.0032 | 1.0000 $.9996$ | .0003 $.0027$ | 1.0000 | | 2 | .0194 | .9939 | .0168 | .9949 | .0145 | .9957 | .0125 | .9964 | .0108 | .9970 | | 3 | .0464 | .9745 | .0413 | .9781 | .0366 | .9812 | .0324 | .9839 | .0286 | .9862 | | 4 | .0836 | .9281 | .0763 | .9368 | .0695 | .9446 | .0632 | .9515 | .0572 | .9576 | | 5
6 | .1204 $.1445$ | .8445
.7241 | .1131 $.1394$ | .8605 $.7474$ | .1058 $.1339$ | .8751 $.7693$ | 0986 1281 | .8883 $.7897$ | .0916 $.1222$ | .9004 $.8088$ | | 7 | .1485 | .5796 | .1473 | .6080 | .1454 | .6354 | .1428 | .6616 | .0396 | .6866 | | 8 | .1338 | .4311 | .1364 | .4607 | .1382 | .4900 | .1392 | .5188 | .1395 | .5470 | | 9 | .1069 | .2973 | .1120 | .3243 | .1167 | .3518 | .1207 | .3796 | .1241 | .4075 | | $\frac{10}{11}$ | .0771
$.0504$ | .1904 $.1133$ | .0830 $.0558$ | .2123 $.1293$ | $\substack{.0886 \\ .0613}$ | .2351 $.1465$ | .0941 $.0668$ | .2589 $.1648$ | 0993 0722 | .2834
.1841 | | 12 | .0304 | .0629 | .0344 | .0735 | .0388 | .0852 | .0434 | .0980 | .0481 | .1119 | | 13 | .0168 | .0327 | .0196 | .0391 | .0226 | .0464 | .0260 | .0546 | .0296 | .0638 | | 14 | .0086 | .0159 | .0103 | .0195 | .0124 | .0238 | .0145 | .0286 | .0169 | .0342 | | 15 | .0042 | .0073 | .0051 | .0092 | .0062 | .0114 | .0075 | .0141 | .0091 | .0173 | | $\frac{16}{17}$ | .0018 | .0031 | .0024 | .0041 | .0030 $.0013$ | $0052 \\ 0022$ | 0.0037 0.0017 | .0066 | .0045 $.0021$ | .0082 | | 18 | .0003 | .0005 | .0004 | .0007 | .0005 | .0009 | .0007 | .0012 | .0009 | .0016 | | 19 | .0001 | .0002 | .0002 | .0003 | .0003 | .0004 | .0003 | .0005 | .0004 | .0007 | | 20 | .0001 | .0001 | .0001 | .0001 | .0001 | .0001 | .0001 | 0002 | .0002 | .0003 | | 21 | | | | | | | .0001 | 10001 | .0001 | .0001 | | n | K = | = 8.2 | K = | : 8.4 | K = | = 8.6 | К = | = 8.8 | К = | = 9.0 | | 0 | .0003 | 1.0000 | .0002 | 1.0000 | .0002 | 1.0000 | .0002 | 1.0000 | .0001 | 1.0000 | | $\frac{1}{2}$ | 0022 | .9997 $.9975$ | .0019 | .9998
.9979 | .0016 $.0068$ | .9998 $.9982$ | .0013 $.0058$ | .9998 $.9985$ | .0011 $.0050$ | .9999 | | 3 | .0252 | .9882 | .0223 | .9900 | .0068 | .9982 $.9914$ | .0058 | .9927 | .0150 | .9938 | | 4 | .0517 | .9630 | .0466 | .9677 | .0420 | .9719 | .0377 | .9756 | .0338 | .9788 | | 5 | .0849 | .9113 | .0784 | .9211 | .0721 | .9299 | .0663 | .9379 | .0607 | .9450 | | 6
7 | $.1160 \\ .1358$ | .8264 $.7104$ | .1097 $.1317$ | .8427 $.7330$ | .1035 $.1271$ | .8578 $.7543$ | .0972 $.1222$ | .8716 $.7744$ | .0910 $.1172$ | .8843
.7933 | | 8 | .1393 | .5746 | .1382 | .6013 | .1366 | .6272 | .1345 | .6522 | .1318 | .6761 | | 9 | .1268 | .4353 | .1290 | .4631 | .1306 | .4906 | .1314 | .5177 | .1317 | .5443 | | $\frac{10}{11}$ | .1040 $.0776$ | .3085 $.2045$ | .1084
.0828 | .3341 $.2257$ | .1122 | .3600 | .1157 | .3863 $.2706$ | .1186 | .4126 | | $\frac{11}{12}$ | .0530 | .2045 $.1269$ | .0828 $.0579$ | .1429 | .0878 $.0629$ | .2478 $.1600$ | .0926 $.0678$ | .1780 | $0970 \\ .0728$ | .2940 $.1970$ | | 13 | .0334 | .0739 | .0374 | .0850 | .0416 | .0971 | .0460 | .1102 | .0503 | .1242 | | 14 | .0196 | .0405 | .0225 | .0476 | .0256 | .0555 | .0289 | .0642 | .0324 | .0739 | | $\frac{15}{16}$ | 0.0107 0.0055 | .0209 $.0102$ | .0126 $.0066$ | $.0251 \\ .0125$ | .0147 $.0078$ | .0299 | .0169 $.0093$ | 0353 0184 | .0195 $.0109$ | .0415 | | 17 | .0026 | .0047 | .0032 | .0059 | .0040 | .0152 $.0074$ | .0093 | .0091 | .0058 | .0220 | | 18 | .0012 | .0021 | .0016 | .0027 | .0019 | .0034 | .0024 | .0043 | .0029 | .0053 | | 19 | .0006 | .0009 | .0006 | .0011 | .0009 | .0015 | .0011 | .0019 | .0013 | .0024 | | $\frac{20}{21}$ | .0002 | .0003 | 0003 0001 | 0005 | .0004 | .0006 | 0005 | 0008 | 0007 | .0011 $.0004$ | | 22 | .0001 | .0001 | .0001 | .0002 | .0001 | .0002 $.0001$ | .0002 | .0003 | .0002 | .0004 | | $\frac{1}{23}$ | | | .0001 | 10001 | .0001 | .0001 | .0001 | .0001 | .0001 | .0001 | | n | к = | = 9.2 | К = | = 9.4 | K = | = 9.6 | ΚΞ | = 9. 8 | к: | = 10.0 | | 0 | .0001 | 1.0000 | .0001 | 1.0000 | .0001 | 1.0000 | .0001 | 1.0000 | | | | 1 | .0009 | .9999 | .0008 | .9999 | .0006 | .9999 | .0005 | .9999 | .0005 | 1.0000 | | $\frac{2}{3}$ | .0043 | .9990
.9947 | .0036 | .9991 | .0031 | .9993 | .0027 $.0087$ | .9994 $.9967$ | 0023 0075 | .9995
.9972 | | 3
4 | .0131 $.0302$ | .9947 $.9816$ | .0115 $.0269$ | .9955 $.9840$ | .0100
.0240 | .9962 $.9862$ | .0087 | .9880 | .0190 | .98972 | | 5 | .0555 | .9514 | .0506 | .9571 | .0460 | .9622 | .0417 | .9667 | .0378 | .9707 | | 6 | .0851 | .8959 | .0792 | .9065 | .0736 | .9162 | .0683 | .9250 | .0630 | .9329 | | 7
8 | .1118
.1286 | .8108
.6990 | .1065 $.1250$ | .8273 $.7208$ | .1010 $.1212$ | .8426 $.7416$ | .0955 $.1170$ | .8567 $.7612$ | .0901 $.1126$ | .8699
.7798 | | 9 | .1315 | .5704 | .1307 | .5958 | .1293 | .6204 | .1274 | .6442 | .1251 | .6672 | Table 14.4 (Continued) | Tabi | . 11.1 | (Continued) | , | | | | | | | | |----------------------------|----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|---|---|---|---|---|---| | | Ind. | Cum. | Ind. | Cum. | Ind. | Cum. | Ind. | Cum. | Ind. | Cum. | | | Terms | n | K | = 9.2 | K = 9.4 | | K = 9.6 | | K = 9.8 | | K = 10.0 | | | 10 | .1209 | .4389 | .1227 | .4651 | .1240 | .4911 | .1248 | .5168 | .1251 | .5421 | | 11 | .1012 | .3180 | .1050 | .3424 | .1083 | .3671 | .1113 | .3920 | .1138 | .4170 | | 12 | .0775 | .2168 | .0822 | .2374 | .0867 | .2588 | .0908 | .2807 | .0948 | .3032 | | 13 | .0549 | .1393 | .0594 | .1552 | .0640 | .1721 | .0685 | .1899 | .0729 | .2084 | | 14 | .0361 | .0844 | .0399 | .0958 | .0438 | .1081 | .0479 | .1214 | .0520 | .1355 | | 15 | .0221 | .0483 | .0250 | .0559 | .0281 | .0643 | .0313 | .0735 | .0348 | .0835 | | 16 | .0127 | .0262 | .0147 | .0309 | .0168 | .0362 | .0192 | .0422 | .0217 | .0487 | | 17 | .0069 | .0135 | .0081 | .0162 | .0096 | .0194 | .0111 | .0230 | .0127 | .0270 | | 18 | .0035 | .0066 | .0043 | .0081 | .0050 | .0098 | .0060 | .0119 | .0071 | .0143 | | 19 | .0017 | .0031 | .0021 | .0038 | .0026 | .0048 | .0031 | .0059 | .0037 | .0072 | | 20
21
22
23
24 | .0008
.0004
.0001
.0001 | .0014
.0006
.0002
.0001 | .0009
.0005
.0002
.0001 | .0017
.0008
.0003
.0001 | .0012
.0006
.0002
.0001
.0001 | .0022
.0010
.0004
.0002
.0001 | .0015
.0008
.0003
.0001
.0001 | .0028
.0013
.0005
.0002
.0001 | .0019
.0009
.0004
.0002
.0001 | .0035
.0016
.0007
.0003
.0001 | | n | K : | = 11.0 | K = | 12.0 | K = | : 13.0 | K = | : 14.0 | K = | 15.0 | | 1
2
3
4 | .0002
.0010
.0037
.0102 | 1.0000
.9998
.9988
.9951 | .0001
.0004
.0018
.0053 | 1.0000
.9999
.9995
.9977 | .0002
.0008
.0027 | 1.0000
.9998
.9990 | .0001
.0004
.0013 | 1.0000
.9999
.9995 | .0002
.0007 | 1.0000
.9998 | | 5 | .0224 | .9849 | .0127 | .9924 | .0070 | .9963 | .0037 | .9982 | .0019 | .9991 | | 6 | .0411 | .9625 | .0255 | .9797 | .0152 | .9893 | .0087 | .9945 | .0048 | .9972 | | 7 | .0646 | .9214 | .0437 | .9542 | .0281 | .9741 | .0174 | .9858 | .0104 | .9924 | | 8 | .0888 | .8568 | .0655 | .9105 | .0458 | .9460 | .0305 | .9684 | .0194 | .9820 | | 9 | .1085 | .7680 | .0874 | .8450 | .0660 | .9002 | .0473 | .9379 | .0325 | .9626 | | 10 | .1194 | .6595 | .1048 | .7576 | .0859 | .8342 | .0663 | .8906 | .0486 | .9301 | | 11 | .1194 | .5401 | .1144 | .6528 | .1015 | .7483 | .0843 | .8243 | .0663 | .8815 | | 12 | .1094 | .4207 | .1144 | .5384 | .1099 | .6468 | .0985 | .7400 | .0828 | .8152 | | 13 | .0926 | .3113 | .1055 | .4240 | .1099 | .5369 | .1059 | .6415 | .0956 | .7324 | | 14 | .0727 | .2187 | .0905 | .3185 | .1021 | .4270 | .1060 | .5356 | .1025 | .6368 | | 15 | .0534 | .1460 | .0724 | .2280 | .0885 | .3249 | .0990 | .4296 | .1024 | .5343 | | 16 | .0367 | .0926 | .0543 | .1556 | .0719 | .2364 | .0865 | .3306 | .0960 | .4319 | | 17 | .0237 | .0559 | .0383 | .1013 | .0550 | .1645 | .0713 | .2441 | .0848 | .3359 | | 18 | .0145 | .0322 | .0256 | .0630 | .0397 | .1095 | .0554 | .1728 | .0706 | .2511 | | 19 | .0084 | .0177 | .0161 | .0374 | .0271 | .0698 | .0409 | .1174 | .0557 | .1805 | | 20 | .0046 | .0093 | .0097 | .0213 | .0177 | .0427 | .0286 | .0765 | .0418 | .1248 | | 21 | .0024 | .0047 | .0055 | .0116 | .0109 | .0250 | .0191 | .0479 | .0299 | .0830 | | 22 | .0013 | .0023 | .0031 | .0061 | .0065 | .0141 | .0121 | .0288 | .0204 | .0531 | | 23 | .0005 | .0010 | .0016 | .0031 | .0036 | .0076 | .0074 | .0167 | .0132 | .0327 | | 24 | .0003 | .0005 | .0008 | .0015 | .0020 | .0040 | .0043 | .0093 | .0083 | .0195 | | 25
26
27
28
29 | .0001
.0001 | .0002
.0001 | .0004
.0002
.0001 | .0007
.0003
.0001 | .0010
.0005
.0003
.0001
.0001 | .0020
.0010
.0005
.0002
.0001 | .0024
.0013
.0007
.0003
.0002 | .0050
.0026
.0013
.0006
.0003 | .0050
.0029
.0016
.0008
.0005 | .0112
.0062
.0033
.0017
.0009 | | 30
31
32 | | | | | | | .0001 | .0001
.0001 | .0002
.0001
.0001 | .0004
.0002
.0001 | ### Part IV ### OBSERVED AND CALCULATED FREQUENCIES OF EQUIVA-LENT H TRUCK LOADINGS ON SIMPLE SPAN BRIDGES FOR THE HEAVY VEHICLES REPORTED BY THE SPECIAL LOADOMETER SURVEY OF 1942 ### 15. FREQUENCY ANALYSIS OF EQUIVALENT H TRUCK LOADINGS #### 15.1 General Owing to the fact that the procedures for arriving at the observed and calculated frequencies or frequency distributions of equivalent H truck loadings given by the tables and figures in the following articles of Part IV (Articles 16 through 21) have already been explained in some detail in Part III, only a brief discussion of them will be needed here to facilitate their interpretation. Before proceeding with the discussion of the tables and figures in these articles, however, a list of their titles will not only serve for convenient reference, but, since they are somewhat self explanatory, they will also serve to indicate the nature of the material presented in each. They are as follows: Article 16 Observed and Calculated Frequencies of Equivalent (Tables 16.1—16.12) H Truck Loadings on Simple Span Bridges Based on Gross Vehicle Weights Article 17 (Figures 17.1—17.13) Maximum, Minimum, and Average Equivalent H Truck Loadings on Simple Span Bridges Based on Gross Vehicle Weights Article 18 (Figures 18.1—18.12) Histograms Showing Frequency Distributions of Equivalent H Truck Loadings on Simple Span
Bridges Based on Gross Vehicle Weights Article 19 Observed and Calculated Frequencies of Equivalent (Tables 19.1—19.11) Truck Loadings on Simple Span Bridges Based on Vehicles Weighing One Kip Each Article 20 Frequency Distributions of Equivalent H Truck (Figures 20.1—20.11) Endings on Simple Span Bridges Based on Vehicles Weighing One Kip Each Article 21 Histograms Showing Frequency Distribution of (Figures 21.1—21.11) Equivalent H Truck Loadings on Simple Span Bridges Based on Vehicles Weighing One Kip Each From these titles, it will be noted that the tables and figures given in Articles 16, 17, and 18 are concerned with the frequency analysis of equivalent H truck loadings based on gross vehicle weights and those in Articles 19, 20, and 21 are concerned with a similar frequency analysis of equivalent H truck loadings based on vehicles of unit weight or vehicles weighing one kip each. The observed and calculated frequencies of equivalent H truck loadings based on gross vehicle weights, as given by the tables and figures in Articles 16, 17, and 18, provide a convenient means for analyzing the range and frequencies of the actual live load bending moments that would result on various span lengths from the heavy vehicle loadings reported by the 1942 loadometer survey. Incidentally, if a similar frequency analysis of the heavy vehicle data reported by the loadometer surveys for each succeeding year since 1942 were presently available, it would provide the basic information needed for evaluating the long time trend in heavy motor vehicle operation, measured in terms of its stress producing effects, and how this trend in operation may be related to the minimum standards which presently obtain for highway and bridge provision throughout the several geographical regions of the Nation. Such a study is now in progress as a continuation of the present investigation, and it is hoped that the results will be ready for publication in the not too distant future. Owing to the fact, however, that the actual bending moments indicated by the above mentioned equivalent H truck loadings include the effect of gross vehicle weights, they do not reflect the stress producing characteristics of the vehicles themselves. In order to investigate or analyze the stress producing characteristics of the heavy vehicle types and loadings actually found on the highways, therefore, it is necessary to eliminate gross vehicle weight as a variable by holding it constant. This may be accomplished by considering each heavy vehicle investigated to have a gross weight of one kip as was done in the case of the 1303 variations of wheel base, number and spacing of axles, and percentage distribution of load among the axles for the 14 heavy vehicle types given by the identification index Tables 6.1—6.14. The moments produced by these vehicles of unit weight on spans of various length (see Tables 6.1—6.14 and 7.1—7.14, and Figures 9.1—9.14) not only provide a simple means for comparing the stress producing characteristics of one vehicle with those of another but also for comparing or measuring the stress producing effects of any given vehicle type and loading, on a given span, in terms of a standard H truck loading, H design loading, single concentrated load, or any other type of loading as may be desired for use as a basis of comparison. In the case of measuring the stress producing effects of a given vehicle on a given span, in terms of the standard H truck or a single concentrated load, however, it is simpler to obtain this information directly from Tables 10.1—10.14 and Tables 12.1—12.14, respectively, than by comparing the moments given by Figures 9.1—9.14. For example, if it were desired to rate the stress producing characteristics of a Type 2-S1 truck—with axle spacings of 12 and 24 feet, making an over all wheel-base length of 36 feet, and a percentage distribution of load from front to rear of 10, 45, and 45 percent, respectively—in terms of an equivalent H truck loading on a 60-foot span, it will be found in Table 10.3 that this vehicle (2-S1-66) of unit weight will produce but 68.8 percent as much moment as an H truck of unit weight on this 60-foot span. Therefore, the stress producing effects of this 2-S1-66 truck would be rated at .688 of a standard H truck of equal weight. An analysis of the stress producing characteristics of the 11 more numerous heavy vehicle types, reported by the 1942 loadometer survey, is given by Tables 19.1a—19.11a and Tables 19.1b—19.11b which present the observed and calculated frequencies of equivalent H truck loadings for these vehicles on a unit weight basis on spans up to 100 feet in length. In Table 19.1a, for example, it will be seen that, of the 171 Type 2 trucks reported, 25.5 percent of them produced as much moment as an H truck of equal weight on a 50-foot span. In the same column for the 50-foot span, it will also be seen that 28.6 percent of them produced 95 percent as much moment as an H truck of equal weight, and so on. At the bottom of this table, however, it will be seen that the average Type 2 truck reported produced 93 percent as much moment as an H truck of equal weight on a 50-foot span. This is but another way of saying that the Type 2 truck is definitely not adapted to the transport of heavy loads because, by comparing its stress producing characteristics with the other vehicle types given by the tables and figures in Articles 19, 20, and 21, it will be found that the Type 2 truck, for a given gross vehicle weight, is the most severe stress producer of all the vehicle types employed for heavy motor vehicles operation in present day highway traffic. It would appear, therefore, that the maximum use to which this information pertaining to the stress producing characteristics of vehicle types could be put, would be to establish ranges of gross vehicle weight which would be appropriate for any one vehicle type operating under any given level of bridge capacity and, with respect to other heavy vehicle types, where any one of these might be operated with greater propriety in some other range of gross vehicle weight. And though the actual establishment of such ranges and the verification of their correlation with varying levels of bridge capacity is beyond the scope of the present bulletin, it is believed that this method for analyzing the stress producing characteristics of heavy vehicle types and loading distributions provides a rational approach to the accomplishment of those objectives. In each of the tables in Articles 16 and 19, and the figures in Articles 17 and 20, the maximum, average, and minimum equivalent H truck loadings for each span are given and also the range; the range being the maximum spread of these loadings or the difference between the maximum and minimum. The Poisson coefficient K for each frequency distribution and the standard deviation D for each calculated frequency distribution are also given. The Poisson coefficient K, as explained in Article 14, is equal to the difference ### NORMAL FREQUENCY DISTRIBUTION AREA UNDER FREQUENCY CURVE EQUALS 100% OF ITEMS DISTRIBUTED STANDARD DEVIATIONS FROM X AVERAGE Figure 15.1 in the number of cells between the average and minimum loading equivalents. The standard deviation, D \sqrt{K} , is a statistical index associated with a given distribution which provides a measure for determining just how usual or unusual a given loading equivalent might be considered. Its meaning and use are briefly discussed in the following article. ### 15.2 Interpretation of Standard Deviation For A Poisson Distribution The reason for introducing the idea of standard distribution here is to point out how this statistical device or measure may be used to advantage in connection with many types of frequency studies similar to the frequency distributions of equivalent H truck loadings given in the remaining sections of Part IV and those based on equivalent concentrated loads given in Part V. In Figure 18.6 (also see Table 16.6b), for example, it will be noted that the dashed curve, showing the calculated frequency distribution of the Type 3-S2 trucks on an 80-foot span, bears a strong resemblance to the familiar symmetrical bell-shaped curve known as the "Normal Frequency Distribution" as shown in Figure 15.1. Consequently, the variations from the average for a symmetrical "Normal Frequency Distribution" will provide a reasonably accurate estimate for interpreting the meaning of 1 or more standard deviations when used in connection with a Poisson distribution, which is but slightly skewed (unsymmetrical) for the larger values of the coefficient K; say, those equal to about 5 or more. If the area under the normal curve is equal to unity or 100 percent of the distribution, and it is divided according to standard deviations on either side of the average or mean value, the area under the curve would be divided as follows: from + 1D to - 1D accounts for 68.27 percent of all items distributed from + 2D to - 2D accounts for 95.45 percent of all items distributed from + 3D to - 3D accounts for 99.75 percent of all items distributed Therefore, if the normal distribution is used as a guide for interpreting the frequency distributions of gross vehicle weights or heavy vehicle loading equivalents on a given span, it would mean that about 70 percent of all the gross weights or loading equivalents would be expected to be within the plus and minus 1D range (tons or kips) of the average. Similarly, about 95 percent would be expected to be within the plus and minus 2D range, and practically all within the plus and minus 3D range. Although these divisions may not be exact in a mathematical sense for any particular Poisson distribution, they do provide a rather simple and reasonably accurate statistical measure for determining just how far any particular gross vehicle weight or loading equivalent deviates from the average. In other words, the number of deviations that a particular
vehicle varies from the average is a measure of just how usual or unusual that vehicle would be considered or how often it would be expected to occur in relation to all the vehicles under consideration. From Figure 15.1, it will be seen that a vast majority (about 95 percent) of all the gross vehicle weights or loading equivalents in a given frequency distribution would be expected to fall within 2 deviations of the average, and practically all of them (about 99.73 percent) within 3 deviations of the average. On this basis, therefore, any gross vehicle weight or equivalent loading that might fall outside of the 3 deviation range would be considered most unusual. ### 15.3 Observed Frequencies of Equivalent H Truck Loadings Based on Three Item Moving Averages The observed frequencies of equivalent H truck loadings given in Tables 16.1a—16.12a and shown graphically in the histograms of Figures 18.1—18.12 are based on three item moving averages. The use of moving averages is a common statistical device for smoothing out the local irregularities or unavoidable local fluctuations in observed data. Moving averages are more commonly used in statistical studies of time series which are of a seasonal or cyclical nature wherein the number of items used for determining the moving averages usually corresponds with the number of cells or items included in the length of the time cycle. Moving averages, however, are quite often used in the statistical analysis of other types of observed data than those of a seasonal or cyclical nature. In the present case, the three item moving average was used in order to smooth out the local irregularities from one cell to the next because few, if any, of the equivalent H truck loading designations fell at the mid-point of a given cell. This tendency toward unbalance within a given cell resulted mainly from the fact that most of the sample sizes were small, and therefore only a few vehicles would fall in each individual cell. For this reason, it was felt that the average of each three adjacent cells represented a better estimate of the value of the center cell than that indicated by the raw data. The practical effect of smoothing the raw data in this way is to establish a frequency value for each cell which would be more nearly representative of the parent truck population, and more closely approximate the value that would result from a much larger sample. Insofar as the present studies are concerned, it should be explained that the use of these three item moving averages in no way changes the statistical characteristics of the resulting frequency distributions. Each of the distributions shown have the same center of gravity, and Poisson coefficient K, as those of the raw observed data. The following example will serve to illustrate the points brought out in the above discussion concerning the use of three item moving averages for smoothing the observed data. The information shown in Table 15.1 was taken directly from the original calculations for the observed frequencies shown in Table 16.2a for the Type 3 truck on a 40-foot span. Table 15.1 CALCULATIONS OF THREE ITEM MOVING AVERAGES # OBSERVED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS BASED ON MOMENTS PRODUCED BY THE 381 TYPE 3 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY | Equiv. H | Number | Percent | 3-Item | |----------|----------------|---------|------------------------| | Truck | of | of | Moving | | Loading | Vehicles | Total | Average | | | | | J | | 8 | 0 | .00 | .17 = $.69$ in cell H9 | | 9 | 2
4 | .52 | .52 | | 10 | 4 | 1.05 | 1.40 | | 11 | 10 | 2.63 | 5.78 | | 12 | 52 | 13.65 | 11.38 | | 13 | 68 | 17.85 | 15.57 | | 14 | 58 | 15.22 | 14.96 | | 15 | 45 | 11.81 | 12.25 | | 16 | 37 | 9.71 | 10.41 | | 17 | 37 | 9.71 | 9.01 | | 18 | 29 | 7.61 | 7.44 | | 19 | 19 | 4.99 | 5.08 | | 20 | 10 | 2.63 | 2.80 | | 21 | 4 | 1.05 | 1.40 | | 22 | 2 | .52 | .87 | | 23 | 4 | 1.05 | .52) | | 24 | 0 | .00 | .35 = .87 in cell H23 | | | | | | | | 381 | 100.00 | 100,00 | | Мах. Н Т | | 23.00 | 23.00 | | Avg. H T | | 14.93 | 14.93 | | Min. H T | | 9.0 | 9.0 | | Range | | 14.0 | 14.0 | | | Coefficient, K | 5.93 | 5.93 | # 16. OBSERVED AND CALCULATED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS ON SIMPLE SPAN BRIDGES BASED ON GROSS VEHICLE WEIGHTS Since the procedures for arriving at the observed and calculated frequency distributions of equivalent H truck loadings given by the tables in this article are adequately explained elsewhere in the bulletin, only a brief discussion of them will be needed here to facilitate their interpretation. Tables 16.1a—16.11a and Tables 16.1b—16.11b, respectively, give the observed and calculated frequencies of equivalent H truck loadings, on simple spans up to 100 feet in length, for each of the 11 more numerous heavy vehicle types reported by the 1942 loadometer survey. Also Table 16.12a and Table 16.12b, respectively, give similar observed and calculated frequencies for all of the 4531 heavy vehicles reported, including the 11 heavy vehicle types whose individual frequencies are given in Tables 16.1a—16.11a and Tables 16.1b—16.11b. As explained in Article 15, the observed frequencies shown in these tables are based on 3-item moving averages which has the effect of smoothing the data from one cell to the next. The observed and calculated frequencies of Equivalent H Truck Loadings for each of the 11 more numerous heavy vehicle types reported, and also for all heavy vehicles reported are given in the following tables: | Heavy | Number | Table Number | | | | | | |---------------|-------------|--------------|-------------|--|--|--|--| | Vehicle | of Vehicles | Observed | Calculated | | | | | | Type | Reported | Frequencies | Frequencies | | | | | | $\frac{2}{3}$ | 171 | 16.1a | 16.1b | | | | | | 3 | 381 | 16.2a | 16.2b | | | | | | 2-S1 | 2855 | 16.3a | 16.3b | | | | | | 2-S2 | 508 | 16.4a | 16.4b | | | | | | 3-S1 | 9 | 16.5a | 16.5b | | | | | | 3-S2 | 142 | 16.6a | 16.6b | | | | | | 3-S3 | 14 | 16.7a | 16.7b | | | | | | 2-2 | 99 | 16.8a | 16.8b | | | | | | 2-3 | 24 | 16.9a | 16.9b | | | | | | 3-2 | 68 | 16.10a | 16.10b | | | | | | 3-3 | 176 | 16.11a | 16.11b | | | | | | All | 4531 | 16.12a | 16.12b | | | | | Each of these tables gives either the observed or calculated frequencies of equivalent H truck loadings on span lengths of 10, 20, 30, 40, 50, 60, 80, and 100 feet, respectively. In addition to these distributions, it will be noted that the frequencies shown in the right hand column are for an infinite span, which is just another way of saying that they represent the frequency distribution of gross vehicle weights. This may be more readily explained perhaps if the discussion were confined to some particular vehicle having a gross weight of, say, 20 tons. A Type 2-S1 truck weighing 20 tons, for example, irrespective of its wheel-base length or distribution of load among its axles, would produce the same maximum moment on an infinite span as a standard H20 truck. Therefore, the equivalent H truck loading for this vehicle would be the same as its gross vehicle weight, or simply an equivalent H20 truck loading. #### Table 16.1a ### OBSERVED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS BASED ON MOMENTS PRODUCED BY THE 171 TYPE 2 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY | Equivalent | | | | | Span-F | 'eet | | | | |---------------------|-------|-------|--------|-------|--------|-------|-------|-------|--------------------| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite
G.V.W. | | 9 | 1.4 | 1.4 | 2.0 | | | | | | | | 10 | 6.4 | 6.4 | 4.5 | 4.3 | | | | | | | 11 | 13.8 | 13.8 | 10.3 | 8.4 | 7.4 | 7.0 | | | | | 12 | 21.2 | 20.8 | 19.3 | 19.3 | 16.4 | 14.6 | 14.0 | 12.7 | | | 13 | 22.0 | 22.0 | 23.1 | 24.1 | 24.9 | 24.2 | 22.8 | 21.6 | 22.8 | | 14 | 17.4 | 17.4 | 20,1 | 21.6 | 23.2 | 23.0 | 26.3 | 26.4 | 26.4 | | 15 | 9.7 | 10.1 | 11.3 | 12.1 | 15.6 | 17.0 | 20.3 | 20.5 | 25.1 | | 16 | 4.7 | 4.7 | 5.1 | 5.7 | 7.2 | 8.2 | 9.9 | 11.0 | 15.0 | | 17 | 2.0 | 2.0 | 2.7 | 3.3 | 3.7 | 3.9 | 4.3 | 4.7 | 6.6 | | 18 | 1.4 | 1.4 | 1.6 | 1.2 | 1.6 | 2.1 | 2.4 | 3.1 | 2.7 | | 19 | | | | | | | | | 1.4 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max H Truck | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 19 | | Avg H Truck | 12.9 | 12.9 | 13.2 | 13.3 | 13.7 | 13.8 | 14.1 | 14.2 | 14.6 | | Min H Truck | 9 | 9 | 9 | 10 | 11 | 11 | 12 | 12 | 13 | | Range | 9 | 9 | 9
9 | 8 | 7 | 7 | 6 | 6 | 6 | | Poisson's | | | | | | | | | | | Coef. K | 3.9 | 3.9 | 4.2 | 3.3 | 2.7 | 2.8 | 2.1 | 2,2 | 1.6 | #### Table 16.1b ## CALCULATED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS OF THE 171 TYPE 2 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY, BASED ON POISSON'S DISTRIBUTION LAW Equivalent H truck loadings which occur less than 1% in 1000, or account for less than 0.1% of total heavy truck traffic, are not shown in this table. | Equivalent | Span-Feet | | | | | | | | | | |---------------------|-----------|-------|-------|-------|-------|-------|-------|-------|----------|--| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite | | | 9 | 2.0 | 2.0 | 1.6 | | | | | | | | | 10 | 7.9 | 7.9 | 6.3 | 3.7 | | | | | | | | 11 | 15.4 | 15,4 | 13.2 | 12.2 | 6.7 | 6.1 | | | | | | 12 | 19.9 | 19.9 | 18.5 | 20.1 | 18.1 | 17.0 | 12.2 | 11.1 | | | | 13 | 19.5 | 19.5 | 19.4 | 22.0 | 24.5 | 23.8 | 25.7 | 24.4 | 20.2 | | | 14 | 15.2 | 15.2 | 16.3 | 18.2 | 22.0 | 22.2 | 27.0 | 26.8 | 32.3 | | | 15 | 9.9 | 9.9 | 11.4 | 12.0 | 14.9 | 15.6 | 18.9 | 19.7 | 25.8 | | | 16 | 5.5 | 5.5 | 6.9 | 6.6 | 8.0 | 8.7 | 9.9 | 10.8 | 13.8 | | | 17 | 2.7 | 2.7 | 3.6 | 3.1 | 3.6 | 4.1 | 4.2 | 4.8 | 5.5 | | | 18 | 1.2 | 1.2 | 1.7 | 1.3 | 1.4 | 1.6 | 1.5 | 1.7 | 1.8 | | | 19 | .5 | .5 | .7 | .5 | .5 | .6 | .4 | .5 | .5 | | | 20 | .2 | .2 | .3 | .2 | .2 | .2 | .1 | .2 | .1 | | | 21 | .ī | .1 | .1 | .1 | .1 | .1 | .1 | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | Max H
Truck | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 20 | 20 | | | Avg H Truck | 12.9 | 12.9 | 13.2 | 13.3 | 13.7 | 13.8 | 14.1 | 14.2 | 14.6 | | | Min H Truck | 9 | 9 | 9 | 10 | 11 | 11 | 12 | 12 | 13 | | | Range | 12 | 12 | 12 | 11 | 10 | 10 | 9 | 8 | 7 | | | Poisson's | _ | | _ | _ | - | • | | _ | | | | Coef. K | 3.9 | 3.9 | 4.2 | 3.3 | 2.7 | 2.8 | 2.1 | 2,2 | 1.6 | | | Std. Dev. D | 1.97 | 1.97 | 2.05 | 1.82 | 1.64 | 1.67 | 1.45 | 1.48 | 1.26 | | Equivalent H truck loadings based on moments produced by gross vehicle weights. Table 16.2a ## OBSERVED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS BASED ON MOMENTS PRODUCED BY THE 381 TYPE 3 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY | Equivalent | Span-Feet | | | | | | | | | | |---------------------|-----------|-------|-------|-------|-------|-------|-------|-------|-------------------|--| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite
G.V.W | | | 7 | 4.0 | | | | | | | | | | | 8 | 8.4 | .8 | .4 | | | | | | | | | 9 | 17.0 | 1.5 | .9 | .7 | .3 | | | | | | | 10 | 19.3 | 8.0 | 2.3 | 1.4 | .7 | .4 | | | | | | 11 | 19.3 | 13.1 | 7.4 | 5.8 | 4.6 | 4.6 | 2.0 | 1.1 | | | | 12 | 13.6 | 16.3 | 13.0 | 11.4 | 10.2 | 9.9 | 7.8 | 6.2 | | | | 13 | 9.6 | 14.5 | 16.5 | 15.5 | 14.8 | 14.8 | 13.7 | 13.0 | 15.3 | | | 14 | 5.1 | 13.9 | 15.9 | 14.9 | 15.2 | 14.4 | 15.7 | 16.0 | 15.1 | | | 15 | 1.9 | 12.3 | 12.8 | 12.3 | 13.2 | 12.2 | 13.7 | 14.2 | 14.5 | | | 16 | 1.1 | 8.8 | 10.7 | 10.4 | 10.2 | 10.1 | 11.0 | 10.9 | 10.8 | | | 17 | .7 | 4.6 | 7.0 | 9.0 | 9.3 | 9.5 | 10.0 | 9.7 | 9.9 | | | 18 | | 2.7 | 5.3 | 7.4 | 7.0 | 8.1 | 8.2 | 8.8 | 8.8 | | | 19 | | 1.6 | 3.0 | 5.1 | 6.3 | 6.4 | 6.5 | 7.0 | 7.4 | | | 20 | | 1.1 | 2.3 | 2.9 | 3.3 | 3.8 | 4.4 | 5.4 | 6.1 | | | 21 | | .8 | 1.4 | 1.4 | 2.2 | 2.4 | 3.0 | 3.3 | 4.6 | | | 22 | | | 1.1 | .9 | 1.0 | 1.3 | 1.8 | 1.8 | 3.3 | | | 23 | | | | .9 | .8 | 1.0 | 1.1 | 1.1 | 1.6 | | | 24 | | | | | .9 | 1.1 | 1.1 | .8 | 1.1 | | | 25 | | | | | •- | | | .7 | 8 | | | 26 | | | | | | | | | .8
.7 | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | Max H Truck | 17 | 21 | 22 | 23 | 24 | 24 | 24 | 25 | 26 | | | Avg H Truck | 10.7 | 13.4 | 14.4 | 14.9 | 15.3 | 15.4 | 15.8 | 16.0 | 16.5 | | | Min H Truck | 7 | 8 | 8 | 9 | 9 | 10 | 11 | 11 | 13 | | | Range | 10 | 13 | 14 | 14 | 15 | 14 | 13 | 14 | 13 | | | Poisson's | | | | | | | | | | | | Coef. K | 3.7 | 5.4 | 6.4 | 5.9 | 6.3 | 5.4 | 4.8 | 5.0 | 3.5 | | ### Table 16.2b ## CALCULATED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS OF THE 381 TYPE 3 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY, BASED ON POISSON'S DISTRIBUTION LAW Equivalent H truck loadings which occur less than 1 in 1000, or account for less than 0.1% of total heavy truck traffic, are not shown in this table. | Equivalent | Span-Feet | | | | | | | | | | |---------------------|-----------|------|------|------|------|------|------|------|----------|--| | Ĥ Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite | | | 7 | 2.5 | | | | | | | | | | | 8 | 9.1 | .5 | .2 | | | | | | | | | 9 | 16.9 | 2.4 | 1.1 | .3 | .2 | | | | | | | 10 | 20.9 | 6.6 | 3.4 | 1.6 | 1.2 | .5 | | | | | | 11 | 19.3 | 11.9 | 7.3 | 4.8 | 3.6 | 2.4 | .8 | .7 | | | | 12 | 14.3 | 15.9 | 11.6 | 9.4 | 7.7 | 6.6 | 4.0 | 3.4 | | | | 13 | 8.8 | 17.2 | 14.8 | 13.8 | 12.1 | 11.9 | 9.5 | 8.4 | 3.0 | | | 14 | 4.7 | 15.6 | 15.8 | 16.3 | 15.2 | 16.0 | 15.1 | 14.0 | 10.6 | | | 15 | 2.2 | 12.0 | 14.5 | 16.0 | 15.8 | 17.2 | 18.2 | 17.6 | 18.5 | | Table 16.2b (Continued) | Equivalent | | | | | Span-Fe | et | | | | |---------------------|-------|-------|-------|-------|---------|-------|-------|-------|----------------| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinit | | 16 | .9 | 8.1 | 11.6 | 13.5 | 14.4 | 15.5 | 17.4 | 17.6 | 21.5 | | 17 | .3 | 4.9 | 8.2 | 10.0 | 11.3 | 12.0 | 14.0 | 14.6 | 18.9 | | 18 | .1 | 2.6 | 5.3 | 6.5 | 7.9 | 8.1 | 9.6 | 10.4 | 13.2 | | 19 | | 1.3 | 3.1 | 3.9 | 5.0 | 4.9 | 5.8 | 6.5 | 7.7 | | 20 | | .6 | 1.6 | 2.1 | 2.9 | 2.6 | 3.1 | 3.6 | 3.9 | | 21 | | .2 | .8 | 1.0 | 1.5 | 1.3 | 1.5 | 1.8 | 1.7 | | 22 | | .1 | .4 | .5 | .7 | .6 | .6 | .9 | .7 | | $2\overline{3}$ | | .1 | .2 | .2 | .3 | .2 | .3 | .3 | .2 | | 24 | | | .1 | .1 | .1 | .1 | .1 | .1 | $^{.2}_{.1}$ | | 25 | | | | | .1 | .1 | | .1 | - - | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max H Truck | 18 | 23 | 24 | 24 | 25 | 25 | 24 | 25 | 24 | | Avg H Truck | 10.7 | 13.4 | 14.4 | 14.9 | 15.3 | 15.4 | 15.8 | 16.0 | 16.5 | | Min H Truck | 7 | 8 | 8 | 9 | 9 | 10 | 11 | 11 | 13 | | Range | 11 | 15 | 16 | 15 | 16 | 15 | 13 | 14 | 11 | | Poisson's | | | | | | | | | | | Coef. K | 3.7 | 5.4 | 6.4 | 5.9 | 6.3 | 5.4 | 4.8 | 5.0 | 3.5 | | Std. Dev. D | 1.92 | 2.32 | 2.53 | 2.43 | 2.51 | 2.32 | 2.19 | 2.24 | 1.87 | Equivalent H truck loadings based on moments produced by gross vehicle weights. ### Table 16.3a ## OBSERVED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS BASED ON MOMENTS PRODUCED BY THE 2855 TYPE 2-S1 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY | Equivalent | Span-Feet | | | | | | | | | | |---------------------|-----------|-------|-------|----------------|-------|----------|-------|-------|----------------------------------|--| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite
G.V.W. | | | 9 | 11.4 | 10.0 | 5.4 | | | | | | | | | 10 | 20.5 | 19.9 | 13.9 | 5.7 | .6 | | | | | | | 11 | 23.7 | 24.0 | 21.6 | 10.7 | 4.0 | .9 | | | | | | 12 | 19.9 | 20.6 | 22.8 | 20.1 | 10.8 | 4.4 | .5 | | | | | 13 | 10.9 | 11.5 | 16.0 | 21.2 | 18.8 | 13.2 | 3.4 | 1.1 | | | | 14 | 6.6 | 6.8 | 9.7 | 18.8 | 21.0 | 19.1 | 13.1 | 6.4 | | | | 15 | 3.5 | 3.6 | 4.5 | 10.2 | 17.9 | 20.9 | 19.4 | 14.6 | | | | 16 | 1.7 | 1.7 | 3.0 | 6.2 | 11.2 | 15.6 | 21.4 | 20.8 | | | | 17 | 1.0 | 1.1 | 1.4 | 3.1 | 6.9 | 10.9 | 15.3 | 19.6 | 16.7 | | | 18 | .4 | .4 | .8 | 1.6 | 3.7 | 6.3 | 10.4 | 14.4 | 18.9 | | | 19 | .2 | .2 | .4 | 1.0 | 2.1 | 3.4 | 6.6 | 8.8 | 19.3 | | | 20 | .1 | .1 | .2 | .6 | 1.1 | 1.9 | 3.7 | 5.4 | 14.5 | | | 21 | 0 | 0 | .1 | .4 | .7 | 1.2 | 2.1 | 2.9 | 10.0 | | | 22 | 0 | 0 | .1 | .2 | .6 | .8 | 1.3 | 1.9 | 6.8 | | | 23 | 0 | 0 | .1 | .4
.2
.1 | .3 | .6 | 1.0 | 1.4 | 4.2 | | | 24 | .1 | .1 | | .1 | .1 | .4 | .7 | 1.0 | 2.8 | | | 25 | | | | | .1 | .2
.1 | .5 | .7 | 2.0 | | | 26 | | | | | .0 | .1 | .3 | .4 | 1.4 | | | 27 | | | | | .1 | 0 | .1 | .3 | 1.1 | | | 28 | | | | | | .1 | .1 | .1 | .7 | | | 29 | | | | | | | 0 | .1 | .5 | | | 30 | | | | | | | .1 | 0 | .3 | | | 31 | | | | | | | | .1 | .3 | | | 32 | | | | | | | | | .7
.5
.3
.3
.2
.1 | | | 33 | | | | | | | | | .1 | | | 34 | | | | | | | | | .1 | | | 35 | | | | | | | | | .ī | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | Max H Truck | 24 | 24 | 23 | 24 | 27 | 28 | 30 | 31 | 35 | | | Avg H Truck | 11.5 | 11.6 | 12.1 | 13.3 | 14.5 | 15.4 | 16.5 | 17.3 | 19.8 | | | Min H Truck | 9 | 9 | 9 | 14 | 10 | 11 | 12 | 13 | 17 | | | Range | 15 | 15 | 14 | 10 | 17 | 17 | 18 | 18 | 18 | | | Poisson's | | | | | | | | | | | | Coef. K | $^{2.5}$ | 2.6 | 3.1 | 3.3 | 4.5 | 4.4 | 4.5 | 4.3 | 2.8 | | #### Table 16.3b ### CALCULATED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS OF THE 2855 TYPE 2-S1 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY, BASED ON POISSON'S DISTRIBUTION LAW Equivalent H truck loadings which occur less than 1 \sin 1000, or account for less than 0.1% of total heavy truck traffic, are not shown in this table. | Equivalent | Span-Feet | | | | | | | | | | |---------------------|-----------|-------|-------|----------------|----------|-------|----------|-------|----------------|--| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite | | | 9 | 8.2 | 7.4 | 4.5 | | | | | •••• | | | | 10 | 20.5 | 19.3 | 14.0 | 3.7 | 1.1 | | | | | | | 11 | 25.6 | 25.1 | 21.6 | 12.2 | 5.0 | 1.2 | | | | | | 12 | 21.4 | 21.8 | 22.4 | 20.1 | 11.2 | 5.4 | 1.1 | | | | | 13 | 13.4 | 14.1 | 17.3 | 22.0 | 16.9 | 11.9 | 5.0 | 1.4 | | | | 14 | 6.7 | 7.4 | 10.7 | 18.2 | 19.1 | 17.4 | 11.2 | 5.8 | | | | 15 | 2.8 | 3.2 | 5.6 | 12.0 | 17.1 | 19.1 | 16.9 | 12.5 | | | | 16 | 1.0 | 1.2 | 2.5 | 6.6 | 12.8 | 16.9 | 19.1 | 18.0 | | | | 17 | .3 | .4 | 1.0 | 3.1 | 8.2 | 12.4 | 17.1 | 19.3 | 6.1 | | | 18 | .1 | .1 | .3 | 1.3 | 4.6 | 7.8 | 12.8 | 16.6 | 17.0 | | | 19 | | | .1 | .5
.2
.1 | 2.3 | 4.3 | 8.2 | 11.9 | 23.8 | | | 20 | | | | .2 | 1.0 | 2.1 | 4.6 | 7.3 | 22.2 | | | 21 | | | | .1 | .4 | .9 | 2.3 | 3.9 | 15.6 | | | 22 | | | | | .2 | .4 | 1.0 | 1.9 | 8.7 | | | 23 | | | | | .2
.1 | .1 | .4 | .9 | 4.1 | | | 24 | | | | | | .1 | .2 | .3 | 1.6 | | | 25 | | | | | | | .2
.1 | .1 | .6
.2
.1 | | | 26 | | | | | | | | .1 | .2 | | | 27 | | | | | | | | | .1 | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | Max H Truck | 18 | 18 | 19 | 21 | 23 | 24 | 25 | 26 | 27 | | | Avg H Truck | 11.5 | 11.6 | 12.1 | 13.3 | 14.5 | 15.4 | 16.5 | 17.3 | 19.8 | | | Min H Truck | 9 | 9 | 9 | 14 | 10 | 11 | 12 | 13 | 17 | | | Range | 9 | 9 | 10 | 11 | 13 | 13 | 13 | 13 | 10 | | | Poisson's | | | | | | | | | | | | Coef. K | 2.5 | 2.6 | 3.1 | 3.3 | 4.5 | 4.4 | 4.5 | 4.3 | 2.8 | | | Std. Dev. D | 1.58 | 1.61 | 1.76 | 1.82 | 2.12 | 2.10 | 2.12 | 2.07 | 1.67 | | Equivalent H truck loadings based on moments produced by gross vehicle weights. #### Table 16.4a ## OBSERVED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS BASED ON MOMENTS PRODUCED BY THE 508 TYPE 2-S2 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY | Span-Feet | | | | | | | | | | |-----------|---------------------------|-----------------------------------|---|--|---|---|---
---|--| | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite
G.V.W. | | | 1.3 | | | | | | | | | | | 3.6 | | | | | | | | | | | 8.0 | 4.4 | 1.7 | .5 | .2 | | | | | | | 13.8 | 6.5 | 3.2 | 1.7 | .3 | .2 | | | | | | 20.5 | 10.5 | 6.1 | 2.8 | 1.1 | .3 | | | | | | | 1.3
3.6
8.0
13.8 | 1.3
3.6
8.0 4.4
13.8 6.5 | 1.3
3.6
8.0 4.4 1.7
13.8 6.5 3.2 | 1.3
3.6
8.0 4.4 1.7 .5
13.8 6.5 3.2 1.7 | 1.3
3.6
8.0
4.4
1.7
1.5
2
13.8
6.5
3.2
1.7
3 | 1.3
3.6
8.0
4.4
1.7
1.5
1.2
13.8
6.5
3.2
1.7
3.2 | 1.3
3.6
8.0
1.8
6.5
3.2
1.7
3.6
2.2
3.2
3.2 | 1.3
3.6
8.0
1.3
3.6
8.0
4.4
1.7
.5
.2
13.8
6.5
3.2
1.7
.3
.2 | | Table 16.4a (Continued) | Equivalent | Span-Feet | | | | | | | | | | |---------------------|-----------|-------|-------|----------|-------|-------|-------|----------|-------------------|--| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite
G.V.W | | | 12 | 20.8 | 14.3 | 10.1 | 5.6 | 2.4 | 1.3 | .3 | | | | | 13 | 17.5 | 14.1 | 12.8 | 8.6 | 5.2 | 3.0 | .7 | .3 | | | | 14 | 8.7 | 13.1 | 14.1 | 12.9 | 8.6 | 5.6 | 2.3 | 1.4 | | | | 15 | 3.8 | 11.8 | 12.0 | 15.0 | 12.2 | 8.3 | 4.5 | 2.8 | | | | 16 | .9 | 10.0 | 12.2 | 14.3 | 15.3 | 11.2 | 7.1 | 5.1 | | | | 17 | .4 | 8.1 | 10.5 | 13.3 | 14.6 | 14.3 | 8.9 | 7.0 | 2.1 | | | 18 | .3 | 4.0 | 8,9 | 10.6 | 13.8 | 15.3 | 13.1 | 9.8 | 3.7 | | | 19 | .4 | 2.7 | 4.8 | 7.8 | 10.6 | 13.8 | 14.1 | 12.7 | 5.4 | | | 20 | | .5 | 2.6 | 3.7 | 7.9 | 10.9 | 14.7 | 13.4 | 6.5 | | | 21 | | | 1.0 | 1.6 | 4.1 | 7.2 | 11.4 | 12.9 | 7.9 | | | 22 | | | | | 1.8 | 4.7 | 9.5 | 11.0 | 9.6 | | | 23 | | | | .9
.7 | 1.1 | 2.1 | 6.4 | 9.5 | 9.6 | | | 24 | | | | • • | .6 | 1.0 | 3.9 | 6.8 | 10.7 | | | 25 | | | | | .2 | .5 | 1.8 | 4.2 | 10.8 | | | 26 | | | | | | .3 | .3 | 1.8 | 10.0 | | | 27 | | | | | | | .2 | .7 | 7.7 | | | 28 | | | | | | | | .3 | 4.9 | | | 29 | | | | | | | | .3
.3 | 4.9 | | | 30 | | | | | | | | | 3.1 | | | 31 | | | | | | | | | 2.2 | | | 32 | | | | | | | | | .5 | | | 33 | | | | | | | | | .4 | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | Max H Truck | 19 | 20 | 21 | 23 | 25 | 26 | 28 | 29 | 33 | | | Avg H Truck | 11.6 | 13.7 | 14.8 | 15.7 | 16.9 | 17.9 | 19.4 | 20.3 | 24.0 | | | Min H Truck | 7 | 9 | 9 | 9 | 9 | 10 | 12 | 13 | 17 | | | Range | 12 | 11 | 12 | 14 | 16 | 16 | 16 | 16 | 16 | | | Peisson's | | | | | | | | | | | | Coef. K | 4.6 | 4.7 | 5.8 | 6.7 | 7.9 | 7.9 | 7.4 | 7.3 | 7.0 | | Table 16.4b # CALCULATED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS OF THE 508 TYPE 2-S2 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY, BASED ON POISSON'S DISTRIBUTION LAW Equivalent H truck loadings which occur less than 1 in 1000, or account for less than 0.1% of total heavy truck traffic, are not shown in this table. | Equivalent | | | | | Span-F | eet | | | | |---------------------|------|------|------|------|--------|------|------|------|----------| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite | | 7 | 1.0 | | | | | | | | | | 8 | 4.6 | | | | | | | | | | 9 | 10.6 | .9 | .3 | .1 | .1 | | | | | | 10 | 16.3 | 4.3 | 1.8 | .8 | ,3 | .1 | | | | | 11 | 18.7 | 10.0 | 5.1 | 2.8 | 1.2 | .3 | | | | | 12 | 17.3 | 15.7 | 9.8 | 6.2 | 3.0 | 1.2 | .1 | | | | 13 | 13.2 | 18.5 | 14.3 | 10.3 | 6.0 | 3.0 | .5 | .1 | | | 14 | 8.7 | 17.4 | 16.5 | 13.8 | 9.5 | 6.0 | 1.7 | .5 | | | 15 | 5.0 | 13.6 | 16.0 | 15.5 | 12.5 | 9.5 | 4.1 | 1.8 | | | 16 | 2.6 | 9.1 | 13.3 | 14.8 | 14.1 | 12.5 | 7.6 | 4.4 | | | 17 | 1.2 | 5.4 | 9.6 | 12.4 | 13.9 | 14.1 | 11.3 | 8.0 | .1 | | 18 | .5 | 2.8 | 6.2 | 9.2 | 12.2 | 13.9 | 13.9 | 11.7 | .6 | | 19 | .2 | 1.3 | 3.6 | 6.2 | 9.7 | 12.2 | 14.8 | 14.2 | 2.3 | | 20 | .1 | .6 | 1.9 | 3.8 | 6.9 | 9.7 | 13.6 | 14,7 | 5.2 | | 21 | | .3 | .9 | 2.1 | 4.6 | 6.9 | 11.2 | 13.5 | 9.1 | | 22 | | .1 | .4 | 1.1 | 2.8 | 4.6 | 8.3 | 11.0 | 12.8 | Table 16.4b (Continued) | Equivalent | | | | | Span-F | eet | | | | |---------------------|-------|-------|-------|-------|--------|-------|-------|-------|----------| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite | | 23 | | | .2 | .5 | 1.6 | 2.8 | 5.6 | 8.0 | 15.0 | | 24 | | | .1 | .2 | .8 | 1.6 | 3.4 | 5.3 | 14.9 | | 25 | | | | .1 | .4 | .8 | 2.0 | 3.2 | 13.0 | | $\overline{2}6$ | | | | .1 | .2 | .4 | 1.0 | 1.8 | 10.1 | | 27 | | | | | .1 | .2 | .5 | .9 | 7.1 | | 28 | | | | | ,1 | .1 | .2 | .5 | 4.5 | | 29 | | | | | | .1 | .1 | .2 | 2.6 | | 30 | | | | | | | .1 | .1 | 1.4 | | 31 | | | | | | | | .1 | .7 | | 32 | | | | | | | | | .4 | | 33 | | | | | | | | | .4
.1 | | 34 | | | | | | | | | .1 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max H Truck | 20 | 22 | 24 | 26 | 28 | 29 | 30 | 31 | 34 | | Avg H Truck | 11.6 | 13.7 | 14.8 | 15.7 | 16.9 | 17.9 | 19.4 | 20.3 | 24.0 | | Min H Truck | 7 | 9 | 9 | 9 | 9 | 10 | 12 | 13 | 17 | | Range | 13 | 13 | 15 | 17 | 19 | 19 | 18 | 18 | 17 | | Poisson's | | | | | | | | | | | Coef. K | 4.6 | 4.7 | 5.8 | 6.7 | 7.9 | 7.9 | 7.4 | 7.3 | 7.0 | | Std. Dev. D | 2.14 | 2.17 | 2,41 | 2.59 | 2.81 | 2.81 | 2.72 | 2.70 | 2.65 | Equivalent H truck loadings based on moments produced by gross vehicle weights. Table 16.5a OBSERVED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS BASED ON MOMENTS PRODUCED BY THE 9 TYPE 3-S1 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY | Equivalent | | | | | Span-F | eet | | | | |---------------------|-------|-------|-------|-------|--------|-------|-------|-------|--------------------| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite
G.V.W. | | 10 | 22.2 | 7.4 | | | | | | | | | 11 | 26.0 | 3.7 | 7.4 | 7.4 | | | | | | | 12 | 18.5 | 7.4 | 3.7 | 3.7 | 7.4 | | | | | | 13 | 22.2 | 11.1 | 0 | 0 | 3.7 | 7.4 | | | | | 14 | 11.1 | 22.3 | 7.4 | 0 | 0 | 3.7 | | | | | 15 | | 18.5 | 18.6 | 7.4 | 0 | 0 | 7.4 | | | | 16 | | 18.5 | 18.5 | 11.1 | 0 | 0 | 3.7 | 7.4 | | | 17 | | 11.1 | 18.5 | 18.6 | 7.4 | 0 | 0 | 3.7 | | | 18 | | | 11.1 | 11.1 | 18.6 | 7.4 | 0 | 0 | | | 19 | | | 14.8 | 18.5 | 18.5 | 18.6 | 7.4 | 0 | | | 20 | | | | 22.2 | 14.8 | 18.5 | 14.8 | 7.4 | 7.4 | | 21 | | | | | 11.1 | 11.1 | 18.5 | 18.5 | 3.7 | | 22 | | | | | 18.5 | 11.1 | 14.8 | 18.5 | 0 | | 23 | | | | | | 22.2 | 14.8 | 14.8 | 11.1 | | 24 | | | | | | | 18.6 | 11.1 | 18.5 | | 25 | | | | | | | | 18.6 | 22.3 | | 26 | | | | | | | | | 14.8 | | 27 | | | | | | | | | 11.1 | | 28 | | | | | | | | | 11.1 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max H Truck | 14 | 17 | 19 | 20 | 22 | 23 | 24 | 25 | 28 | | Avg H Truck | 11.7 | 14.2 | 16.0 | 17.3 | 18.9 | 20.0 | 21.1 | 22.0 | 24.8 | | Min H Truck | 10 | 10 | 11 | 11 | 12 | 13 | 15 | 16 | 20 | | Range | 4 | 7 | 8 | 9 | 10 | 10 | 9 | 9 | 8 | | Poisson's | | | | | | | | | | | Coef. K | 1.7 | 4.2 | 5.0 | 6.3 | 6.9 | 7.0 | 6.1 | 6.0 | 4.8 | #### Table 16.5b ## CALCULATED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS OF THE 9 TYPE 3-S1 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY, BASED ON POISSON'S DISTRIBUTION LAW Equivalent H truck loadings which occur less than 1 in 1000, or account for less than 0.1% of total heavy truck traffic, are not shown in this table. | Equivalent | | | | | Span-F | eet | | | | |---------------------|-------|-------|-------|-------|--------|----------|-------|-------|----------| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite | | 10 | 18.3 | 1.5 | | | | | | | | | 11 | 31.0 | 6.3 | .7 | .2 | | | | | | | 12 | 26.3 | 13.2 | 3.4 | 1.2 | .1 | | | | | | 13 | 15.0 | 18.5 | 8.5 | 3.6 | .7 | .1 | | | | | 14 | 6.4 | 19.4 | 14.0 | 7.7 | 2.4 | .1
.6 | | | | | 15 | 2.2 | 16.3 | 17.5 | 12.1 | 5.5 | 2.3 | .2 | | | | 16 | .6 | 11.4 | 17.5 | 15.2 | 9.5 | 5.2 | 1.4 | .2 | | | 17 | .1 | 6.9 | 14.7 | 15.8 | 13.1 | 9.1 | 4.2 | 1.5 | | | 18 | .1 | 3.6 | 10.4 | 14.4 | 15.1 | 12.8 | 8.5 | 4.5 | | | 19 | | 1.7 | 6.5 | 11.3 | 14.9 | 15.0 | 12.9 | 8.9 | | | 20 | | .7 | 3.6 | 7.9 | 12.8 | 14.9 | 15.8 | 13.4 | .8 | | 21 | | .3 | 1.8 | 5.0 | 9.8 | 13.0 | 16.0 | 16.1 | 4.0 | | 22 | | .1 | .8 | 2.9 | 6.8 | 10.1 | 14.0 | 16.1 | 9.5 | | 23 | | .1 | .4 | 1.5 | 4.3 | 7.1 | 10.7 | 13.8 | 15.1 | | 24 | | | .1 | .7 | 2.5 | 4.5 | 7.2 | 10.3 | 18.2 | | 25 | | | ,1 | .3 | 1.3 | 2.6 | 4.4 | 6.9 | 17.4 | | 26 | | | | .1 | .6 | 1.4 | 2.4 | 4.1 | 14.0 | | 27 | | | | .1 | .3 | .7 | 1.2 | 2.2 | 9.6 | | 28 | | | | | .2 | .4 | .6 | 1.1 | 5.8 | | 29 | | | | | .1 | .1 | .3 | .5 | 3.1 | | 30 | | | | | | .1 | .1 | .2 | 1.5 | | 31 | | | | | | | .1 | .1 | .6 | | 32 | | | | | | | | .1 | .3 | | 33 | | | | | | | | | .1 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max H Truck | 18 | 23 | 25 | 27 | 29 | 30 | 31 | 32 | 33 | | Avg H Truck | 11.7 | 14.2 | 16.0 | 17.3 | 18,9 | 20.0 | 21.1 | 22.0 | 24.8 | | Min H Truck | 10 | 10 | 11 | 11 | 12 | 13 | 15 | 16 | 20 | | Range | -8 | 13 | 14 | 16 | 17 | 17 | 16 | 16 | 13 | | Poisson's | | | | | | | | | | | Coef. K | 1.7 | 4.2 | 5.0 | 6.3 | 6.9 | 7.0 | 6.1 | 6.0 | 4.8 | | Std. Dev. D | 1.3 | 2.05 | 2,24 | 2.51 | 2.63 | 2.65 | 2.47 | 2.45 | 2.19 | Equivalent H truck loadings based on moments produced by gross vehicle weights. #### Table 16.6a ## OBSERVED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS BASED ON MOMENTS PRODUCED BY THE 142 TYPE 3-S2 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY | Equivalent | Span-Feet | | | | | | | | | | | |---------------------|-----------|-----|-----|-----|----|----|----|-----|--------------------|--|--| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite
G.V.W. | | | | 6 | 3.5 | | | | | | | | | | | | 7 | 5.2 | 1.2 | | | | | | | | | | | 8 | 8.7 | 2.6 | 1.4 | | | | | | | | | | 9 | 9.6 | 3.5 | 2.6 | 1.2 | | | | | | | | Table 16.6a (Continued) | Equivalent | | | | | Span-F | | | | | |---------------------
-------|-------|-------|-------|--------|-------|----------|-------------------|-------------------------| | H Truck
Loadings | 10 | 20 | 30 | 10 | 50 | 60 | 80 | 100 | Infinite
G.V.W. | | 10 | 11.7 | 5.9 | 3.1 | 2.6 | .9 | | | | | | 11 | 14.3 | 7.7 | 6.8 | 3.8 | 1.6 | .9 | | | | | 12 | 17.8 | 8.7 | 7.0 | 5.9 | 2.6 | 1.6 | | | | | 13 | 14.6 | 10.1 | 8.9 | 6.8 | 4.0 | 1.9 | 1.4 | | | | 14 | 8.5 | 11.2 | 9.2 | 9.4 | 6.8 | . 3.3 | 1.6 | 1.4 | | | 15 | 2.8 | 14.9 | 11.5 | 9.6 | 8.9 | 4.9 | 1.9 | 1.4 | | | 16 | 1.9 | 13.9 | 13.5 | 10.6 | 10.3 | 7.3 | 3.3 | 1.9 | | | 17 | 1.4 | 9.9 | 12.2 | 10.7 | 8.2 | 9.2 | 4.2 | 3.1 | 1.2 | | 18 | | 4.9 | 9.2 | 10.3 | 9.2 | 9.6 | 5.6 | 3.5 | 1.2 | | 19 | | 1.9 | 5.6 | 8.9 | 10.8 | 9.2 | 6.1 | 4.9 | 1.4 | | 20 | | 1.9 | 3.1 | 6.3 | 10.6 | 9.9 | 9.6 | 5.2 | 1.7 | | 21 | | 1.7 | 2.8 | 5.4 | 9.4 | 11.0 | 8.9 | 7.3 | 2.6 | | 22 | | | 1.7 | 3.8 | 5.2 | 9.6 | 10.4 | 8.9 | 2.8 | | 23 | | | 1.4 | 2.6 | 5.2 | 7.3 | 8.9 | 9.8 | 2.6 | | 24 | | | | 1.2 | 2.6 | 4.9 | 10.9 | 10.0 | 2.1 | | 25 | | | | .9 | 2.1 | 4.5 | 9.2 | 9.4 | 4.5 | | 26 | | | | | .9 | 2.8 | 7.0 | 9.6 | 5.6 | | 27 | | | | | .7 | 1.2 | 4.7 | 8.5 | 6.3 | | 28
29 | | | | | | .9 | 3.1 | 6.1 | 6.1 | | 30 | | | | | | | 1.6 | $\frac{4.0}{2.1}$ | 6.8 | | 30
31 | | | | | | | .9
.7 | 1.4 | 8.7
8.8 | | 32 | | | | | | | -1 | | | | 33 | | | | | | | | .5
.5 | $\frac{10.0}{8.0}$ | | 34 | | | | | | | | .5 | 6.8 | | 35 | | | | | | | | .5 | 4.2 | | 36 | | | | | | | | | 3.8 | | 37 | | | | | | | | | 2.4 | | 38 | | | | | | | | | 1.9 | | 39 | | | | | | | | | $\frac{1.2}{.5}$ | | 40 | | | | | | | | | .0 | | 41 | | | | | | | | | ŏ | | 42 | | | | | | | | | ñ | | 43 | | | | | | | | | ŏ | | 44 | | | | | | | | | ŏ | | 45 | | | | | | | | | .2 | | 46 | | | | | | | | | 0
0
0
.2
.5 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max H Truck | 17 | 21 | 23 | 25 | 27 | 28 | 31 | 34 | 46 | | Avg H Truck | 11.1 | 14.1 | 15.3 | 16.5 | 18.1 | 19.6 | 22.0 | 23.5 | 29.4 | | Min H Truck | 6 | 7 | 8 | 9 | 10 | 11 | 13 | 14 | 17 | | Range | 11. | 14 | 15 | 16 | 17 | 17 | 18 | 20 | 29 | | Poisson's | 5.1 | 7.1 | 7.3 | 7.5 | 8.1 | 8,6 | 9.0 | 9.5 | 12.4 | | Coef. K | | | | | | | | | | ### Table 16.6b ### CALCULATED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS OF THE 142 TYPE 3-S2 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY, BASED ON POISSON'S DISTRIBUTION LAW Equivalent H truck loadings which occur less than 1 in 1000, or account for less than 0.1% of total heavy truck traffic, are not shown in this table. | Equivalent | Span-Feet | | | | | | | | | | | |---------------------|-----------|------|------|-----|-----|----|----|-----|----------|--|--| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite | | | | 6 | .6 | | | | | | | | | | | | 7 | 3.1 | .1 | | | | | | | | | | | 8 | 7.9 | .6 | .1 | | | | | | | | | | 9 | 13.5 | 2.1 | .5 | .1 | | | | | | | | | 10 | 17.2 | 4.9 | 1.8 | .4 | .1 | | | | | | | | 11 | 17.5 | 8.7 | 4.4 | 1.6 | .2 | .1 | | | | | | | 12 | 14.9 | 12.4 | 8.0 | 3.9 | 1.0 | .1 | | | | | | | 13 | 10.9 | 14.7 | 11.7 | 7.3 | 2.7 | .7 | | | | | | Table 16.6b (Continued) | Equivalent | | | | | Span-F | eet | | | | |---------------------|---------|-----------|------------|-------|--------|----------|-------|----------|-----------------------------| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite | | 14 | 6.9 | 14.9 | 14.2 | 10.9 | 5.4 | 2.0 | .1 | | | | 15 | 3.9 | 13.2 | 14.7 | 13.7 | 8.8 | 4.2 | .5 | .1 | | | 16 | 2.0 | 10.4 | 13.5 | 14.6 | 11.9 | 7.2 | 1.5 | .3 | | | 17 | .9 | 7.4 | 11.0 | 13.7 | 13.8 | 10.3 | 3.4 | 1.1 | | | 18 | .4 | 4.8 | 8.0 | 11.4 | 13.9 | 12.7 | 6.1 | 2.5 | | | 19 | .2 | 2.8 | 5.3 | 8.6 | 12.6 | 13.6 | 9.1 | 4.8 | .1 | | 20 | .1 | 1.5 | 3.2 | 5.9 | 10.2 | 13.0 | 11.7 | 7.6 | .1 | | 21 | | .8 | 1.8 | 3.7 | 7.5 | 11.2 | 13.2 | 10.4 | .4 | | 22 | | .4 | .9 | 2.1 | 5.1 | 8.8 | 13.2 | 12.3 | 1.0 | | 23 | | .2 | .5 | 1.1 | 3.1 | 6.3 | 11.9 | 13.0 | 2.1 | | 24 | | .1 | .2 | .5 | 1.8 | 4.1 | 9.7 | 12.3 | 3.7 | | 25 | | | .1 | .3 | 1.0 | 2.6 | 7.3 | 10.7 | 5.7 | | 26 | | | .1 | .1 | .5 | 1.5 | 5.0 | 8.4 | 7.9 | | 27 | | | | .1 | .2 | .8 | 3.2 | 6.2 | 9.8 | | 28 | | | | | .1 | .4 | 1.9 | 4.2 | 11.0 | | 29 | | | | | .1 | .2
.1 | 1.1 | 2.7 | 11.3 | | 30 | | | | | | .1 | .6 | 1.6 | 10.8 | | 31 | | | | | | .1 | .3 | .9 | 9.6 | | 32 | | | | | | | .1 | .5 | 7.9 | | 33 | | | | | | | .1 | .2 | 6.2 | | 34 | | | | | | | | .1
.1 | 4.5 | | 35 | | | | | | | | .1 | 3.1 | | 36 | | | | | | | | | 2.0 | | 37 | | | ıck loadin | | | | | | 1.3 | | 38 | | | ts produce | ed | | | | | .7 | | 39 | by gros | s vehicle | weights. | | | | | | .4 | | 40 | | | | | | | | | .2 | | 41 | | | | | | | | | 1.3
.7
.4
.2
.1 | | 42 | | | | | | | | | .1 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max H Truck | 20 | 24 | 26 | 27 | 29 | 31 | 33 | 35 | 42 | | Avg H Truck | 11.1 | 14.1 | 15.3 | 16.5 | 18.1 | 19.6 | 22.0 | 23.5 | 29.4 | | Min H Truck | 6 | 7 | 8 | 9 | 10 | 11 | 14 | 15 | 19 | | Range | 14 | 17 | 18 | 18 | 19 | 20 | 19 | 20 | 23 | | Poisson's | | | | | | | | | | | Coef. K | 5.1 | 7.1 | 7.3 | 7.5 | 8.1 | 8.6 | 9.0 | 9.5 | 12.4 | | Std. Dev. D | 2.26 | 2.66 | 2.70 | 2.74 | 2.85 | 2.93 | 3.00 | 3.08 | 3.52 | ### Table 16.7a ## OBSERVED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS BASED ON MOMENTS PRODUCED BY THE 14 TYPE 3-S3 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY | Equivalent | | Span-Feet | | | | | | | | | | | | |---------------------|------|-----------|------|------|-----|-----|-----|-----|--------------------|--|--|--|--| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite
G.V.W. | | | | | | 5 | 4.8 | | | | | | | | | | | | | | 6 | 4.8 | | | | | | | | | | | | | | 7 | 4.8 | | | | | | | | | | | | | | 8 | 4.8 | 4.8 | | | | | | | | | | | | | 9 | 11.9 | 4.8 | 4.8 | | | | | | | | | | | | 10 | 16.6 | 4.8 | 2.4 | 4.8 | | | | | | | | | | | 11 | 23.7 | 4.8 | 2.4 | 4.8 | 4.8 | | | | | | | | | | 12 | 14.3 | 4.8 | 7.1 | 2.4 | 2.4 | 4.8 | | | | | | | | | 13 | 9.5 | 7.1 | 7.1 | 7.2 | - 0 | 2.4 | | | | | | | | | 14 | 4.8 | 11.9 | 7.1 | 4.8 | ŏ | | 4.8 | | | | | | | | 15 | *** | 14.2 | 7.1 | 7.2 | 7.1 | ŏ | 2.4 | 4.8 | | | | | | | 16 | | 14.3 | 11.9 | 4.8 | 7.1 | 4.8 | - 0 | 2.4 | | | | | | | 17 | | 9.5 | 14.3 | 7.1 | 7.1 | 7.1 | ő | 0 | | | | | | | 18 | | 7.1 | 11.9 | 4.8 | 2.4 | 7.1 | 4.8 | ŏ | 4.8 | | | | | | 19 | | 4.8 | 9.5 | 4.8 | 7.1 | 2.4 | 7.1 | 2.4 | 2.4 | | | | | | 20 | | 7.1 | 4.8 | 11.8 | 7.1 | 2.4 | 7.1 | 7.1 | 0 | | | | | | 21 | | 1.1 | 4.8 | 14.2 | 9.5 | 9.5 | 2.4 | 7.1 | ŏ | | | | | Table 16.7a (Continued) | Equivalent | | | | | Span-F | 'eet | | - | | |---------------------|-------|-------|-------|-------|--------|-------|-------|-------|--------------------| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite
G.V.W. | | 22 | | | 4.8 | 14.2 | 12.0 | 11.9 | 2.4 | 4.8 | | | 23 | | | | 7.1 | 14.4 | 14.3 | 7.1 | 0 | 0 | | 24 | | | | | 11.9 | 11.9 | 7.1 | 7.1 | 7.2 | | 25 | | | | | 7.1 | 9.5 | 9.5 | 7.1 | 7.2 | | 26 | | | | | | 7.1 | 11.9 | 9.5 | 7.2 | | 27 | | | | | | 4.8 | 14.4 | 7.1 | 0 | | 28 | | | | | | | 11.9 | 12.0 | 0 | | 29 | | | | | | | 7.1 | 12.0 | 4.8 | | 30 | | | | | | | | 9.5 | 7.2 | | 31 | | | | | | | | 7.1 | 9.4 | | 32 | | | | | | | | | 4.8 | | 33 | | | | | | | | | 9.4 | | 34 | | | | | | | | | 9.4 | | 35 | | | | | | | | | 9.4 | | 36 | | | | | | | | | 4.8 | | 37 | | | | | | | | | 2.4 | | 38 | | | | | | | | | 2.4 | | 39 | | | | | | | | | 0 | | 40 | | | | | | | | | ō | | 41 | | | | | | | | | Õ | | 42 | | | | | | | | | ō | | 43 | | | | | | | | | 2.4 | | 44 | | | | | | | | | 4.8 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max H Truck | 14 | 20 | 22 | 23 | 25 | 27 | 29 | 31 | 44 | | Avg H Truck | 10.2 | 14.6 | 16.1 | 17.9 | 20.0 | 21.4 | 23.8 | 25.3 | 31.0 | | Min H Truck | 5 | 8 | 9 | 10 | 11 | 12 | 14 | 15 | 18 | | Range | 9 | 12 | 13 | 13 | 14 | 15 | 15 | 16 | 26 | | Poisson's | | | | | | | | | | | Coef. K | 5.2 | 6.6 | 7.1 | 7.9 | 9.0 | 9.4 | 9.8 | 10.3 | 13.0 | #### Table 16.7b ## CALCULATED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS OF THE 14 TYPE 3-S3 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY, BASED ON POISSON'S DISTRIBUTION LAW Equivalent H truck loadings which occur less than 1 in 1000, or account for less than 0.1% of total heavy truck traffic, are not shown in this table. | Equivalent | | | | | Span-F | eet | | | | |---------------------|----------|------|----------|----------|--------|------|------|------|----------------| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite | | 5 | .6 | | | | | | | | | | 6 | 2.7 | | | | | | | | | | 7 | 7.5 | | | | | | | | | | 8 | 12.9 | .1 | | | | | | | | | 9 | 16.8 | .9 | .1 | | | | | | | | 10 | 17.5 | 3.0 | .6 | | | | | | | | 11 | 15.2 | 6.5 | 2.1 | .3 | | | | | | | 12 | 11.3 | 10.8 | 4.9 | 1.2 | .1 | | | | | | 13 | 7.3 | 14.2 | 8.7 | 3.0 | .5 | .1 | | | | | 14 | 4.2 | 15.6 | 12.4 | 6.1 | 1.5 | .4 | | | | | 15 | 2.2 | 14.7 | 14.7 | 9.5 | 3.4 | 1.1 | .1 | | | | 16 | 1.0 | 12.1 | 14.9 | 12.5 | 6.1 | 2.7 | .3 | | | | 17 | .5 | 8.9 | 13.2 | 14.1 | 9.1 | 5.1 | .9 | .2 | | | 18 | .2 | 5.9 | 10.4 | 13.9 | 11.7 | 7.9 | 2.1 | .6 | | | 19 | .2
.1 | 3,5 | 7.4 | 12.2 | 13.2 | 10.6 | 4.2 | 1.6 | | | 20 | *- | 1.9 | 4.8 | 9.7 | 13.2 | 12.5 | 6.8 | 3.2 | | | $\overline{2}1$ | | 1.0 | 2.8 | 6.9 | 11.9 | 13.1 | 9.6 | 5.6 | .1 | | 22 | | .5 | 1.5 | 4.6 | 9.7 | 12.3 | 11,7 | 8.2 | .3 | | 23 | | ,2 | .8 | 2.8 | 7.3 | 10.5 | 12.7 | 10.6 | .1
.3
.7 | | 24 | | .1 | .4 | 1.6 | 5.0 | 8.2 | 12.5 | 12.1 | 1.5 | | 25 | | .î | | .8 | 3.2 | 5.9 | 11.1 | 12.5 | 2.8 | | 26 | | •- | .2
.1 | | 1.9 | 4.0 | 9.1 | 11.7 | 4.6 | | $\overline{27}$ | | | •• | .4
.2 | 1.1 | 2.5 | 6.8 | 10.0 | 6.6 | Table 16.7b (Continued) | Equivalent | | | | | Span-F | eet | | | | |---------------------|---------|-------------------|------------|-------|--------|-------
-------|-------|----------| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite | | 28 | | | | .1 | .6 | 1.5 | 4.8 | 7.9 | 8.6 | | 29 | | | | .1 | .3 | .8 | 3.1 | 5.8 | 10.1 | | 30 | | | | | .1 | .4 | 1.9 | 4.0 | 11.0 | | 31 | | | | | .1 | .2 | 1.1 | 2.6 | 11.0 | | 32 | | | | | | .1 | .6 | 1.6 | 10.2 | | 33 | | | | | | .1 | .3 | .9 | 8.8 | | 34 | | | | | | | .2 | .5 | 7.2 | | 35 | Equival | lent H tru | ıck loadin | gs | | | .1 | .2 | 5.5 | | 36 | based o | n momen | ts produce | ed | | | | .1 | 4.0 | | 37 | by gros | s vehicle ' | weights. | | | | | .1 | 2.7 | | 38 | | | | | | | | | 1.8 | | 39 | | | | | | | | | 1.1 | | 40 or greater | | | | | | | | | 1.4 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max H Truck | 19 | 25 | 26 | 29 | 31 | 33 | 35 | 37 | 44 | | Avg H Truck | 10.2 | 14.6 | 16.1 | 17.9 | 20.0 | 21.4 | 23.8 | 25.3 | 31.0 | | Min H Truck | 5 | 8 | 9 | 11 | 12 | 13 | 15 | 17 | 21 | | Range | 14 | 17 | 17 | 18 | 19 | 20 | 20 | 20 | 23 | | Poisson's | | | | | | | | | | | Coef. K | 5.2 | 6.6 | 7.1 | 7.9 | 9.0 | 9.4 | 9.8 | 10.3 | 13.0 | | Std. Dev. D | 2.28 | 2.57 | 2.66 | 2.81 | 3.00 | 3.07 | 3.13 | 3.21 | 3.61 | Equivalent H truck loadings based on moments produced by gross vehicle weights. ### Table 16.8a ## OBSERVED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS BASED ON MOMENTS PRODUCED BY THE 99 TYPE 2-2 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY | Equivalent | | | | | Span-F | 'eet | | | | |---------------------|-------|-------|-------|-------|--------|-------|-------|---|--------------------| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite
G.V.W. | | 6 | 2.0 | 1.4 | | | | | | | | | 7 | 5.7 | 4.4 | | | | | | | | | 8 | 12.8 | 9.1 | 3.4 | | | | | | | | 9 | 19.2 | 14.8 | 6.4 | 3.0 | | | | | | | 10 | 24.7 | 19.8 | 8.4 | 5.4 | 2.4 | | | | | | 11 | 19.5 | 18.9 | 11.1 | 6.7 | 4.7 | 1.7 | | | | | 12 | 12.1 | 16.8 | 15.2 | 9.1 | 7.8 | 4.4 | .7 | | | | 13 | 3.0 | 8,4 | 18.8 | 12.5 | 7.4 | 7.7 | 3.0 | 1.7 | | | 14 | 1.0 | 4.7 | 17.7 | 13.5 | 10.4 | 7.7 | 5.7 | 3.7 | | | 15 | | .7 | 10.8 | 15.4 | 10.4 | 7.7 | 7.7 | 6.4 | | | 16 | | 1.0 | 5.1 | 12.8 | 13.8 | 9.1 | 7.1 | 6.7 | | | 17 | | | 1.4 | 10.8 | 11.8 | 10.4 | 8.1 | 7.1 | 5.4 | | 18 | | | 1.0 | 6.1 | 12.5 | 12.9 | 8.8 | 7.4 | 4.7 | | 19 | | | .7 | 2.4 | 9.1 | 12.1 | 11.1 | 9.8 | 6.1 | | 20 | | | | 1.7 | 5.7 | 12.8 | 10.8 | 10.1 | 5.1 | | 21 | | | | .3 | 2.0 | 7.7 | 13.1 | 9.4 | 7.7 | | 22 | | | | .3 | 1.0 | 3.4 | 11.1 | 11.7 | 8.8 | | 23 | | | | | 1.0 | 1.0 | 7.8 | 10.8 | 9.1 | | 24 | | | | | | 1.4 | 0 | 9.4 | 7.4 | | 25 | | | | | | | 1.0 | 3.4 | 4.7 | | 26 | | | | | | | 1.0 | 1.7 | 8.1 | | 27 | | | | | | | | .7 | 10.0 | | 28 | | | | | | | | • | 11.4 | | 29 | | | | | | | | | 6.7 | | 30 | | | | | | | | | 3.4 | | 31 | | | | | | | | | 1.4 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max H Truck | 14 | 16 | 19 | 22 | 23 | 24 | 26 | 27 | 31 | | Avg H Truck | 9.9 | 10.5 | 12.6 | 14.4 | 15.9 | 17.3 | 19.0 | 20.0 | 23.9 | | Min H Truck | 6 | 6 | 8 | 9 | 10 | 11 | 12 | 13 | 17 | | Range | 8 | 10 | 11 | 13 | 13 | 13 | 14 | 14 | 14 | | Poisson's | | | | | | | | | | | Coef. K | 3.9 | 4.5 | 4.6 | 5.4 | 5.9 | 6.3 | 7.0 | 7.0 | 6.9 | #### Table 16.8b # CALCULATED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS OF THE 99 TYPE 2-2 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY, BASED ON POISSON'S DISTRIBUTION LAW ### L = WHEEL BASE Q₁ Q₂ V₂Q₃ V₂Q₃, V₂Q₃, (4) Equivalent H truck loadings which occur less than 1 in 1000, or account for less than 0.1% of total heavy truck traffic, are not shown in this table. | H Truck Loadings 6 | Equivalent | | | | | Span-F | eet | | | | |---|-------------|-------|-------|-------|-------|--------|-------|-------|-------|-------------------| | 7 | Ĥ Truck | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite | | 8 | | | | | - | | | | | | | 9 | 7 | | | | | | | | | | | 10 | | | | | | | | | | | | 11 15.2 17.1 16.3 6.6 1.6 .2 12 9.9 12.8 18.7 11.9 4.8 1.2 .1 13 5.5 8.2 17.3 16.0 9.4 3.6 .6 .1 14 2.7 4.7 13.2 17.2 13.8 7.7 2.3 .6 15 1.2 2.3 8.7 15.5 16.3 12.1 5.2 2.3 16 .5 1.0 5.0 12.0 16.0 15.2 9.1 5.2 17 .2 .4 2.6 8.1 13.5 15.8 12.8 9.1 18 .1 .2 1.2 4.9 10.0 14.4 14.9 12.8 19 .1 .5 2.6 6.5 11.3 14.9 14.9 20 .2 1.3 3.9 7.9 13.0 14.9 21 .1 .6 2.1 5.0 10.1 13.0 22 .2 1.3 3.9 7.9 13.0 14.9 23 .1 .5 1.5 1.5 1.5 4.6 7.1 1 24 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<> | | | | | | | | | | | | 12 | | | | | | | | | | | | 13 | | | | | | | | | | | | 14 2.7 4.7 13.2 17.2 13.8 7.7 2.3 6 15 1.2 2.3 8.7 15.5 16.3 12.1 5.2 2.3 16 .5 1.0 5.0 12.0 16.0 15.2 9.1 5.2 17 .2 .4 2.6 8.1 13.5 15.8 12.8 9.1 18 .1 .2 1.2 4.9 10.0 14.4 14.9 12.8 19 .1 .5 2.6 6.5 11.3 14.9 14.9 20 .2 1.3 3.9 7.9 13.0 14.9 21 .1 .6 2.1 5.0 10.1 13.0 22 .1 .6 2.1 5.0 10.1 13.0 22 .1 .5 1.5 1.5 4.6 7.1 10.1 13.0 22 .1 .5 1.5 1.5 4.6 7.1 10.1 1 23 .1 .2 .7 2.6 4.6 1 25 .1 .1 .3 1.4 2.6 1 28 .2 .3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<> | | | | | | | | | | | | 15 | | | | | | | | | | | | 16 .5 1.0 5.0 12.0 16.0 15.2 9.1 5.2 17 .2 .4 2.6 8.1 13.5 15.8 12.8 9.1 18 .1 .2 1.2 4.9 10.0 14.4 14.9 12.8 19 .1 .5 2.6 6.5 11.3 14.9 14.9 20 .2 1.3 3.9 7.9 13.0 14.9 21 .1 .6 2.1 5.0 10.1 13.0 22 .2 1.0 2.9 7.1 10.1 13.0 23 .1 .5 1.5 1.5 4.6 7.1 1 24 .1 .5 1.5 1.5 4.6 7.1 1 25 .1 .3 1.4 2.6 1 26 .1 .7 1.4 2.7 2.6 4.6 1 27 .2 .3 .7 2.8 .2 .3 30 .1 .2 .3 .7 28 .2 .3 .1 .2 .3 30 .1 .2 .3 .1 .2 | | | | | | | | | | | | 19 | | 1.2 | | | | | | | | | | 19 | | .5 | | | | | | | | | | 19 | | .2 | .4 | | | | | | | .1 | | 20 | | .1 | .2 | | | | | | | .7 | | 22 | | | .1 | .5 | | | | | | 2.4 | | 22 | | | | .2 | | | | | | 5.5 | | 23 | | | | .1 | .6 | | | | | 9.5 | | 24 | | | | | .2 | | | | | 13.1 | | 25 | | | | | .1 | .5 | | | | 15.1 | | 26 27 28 29 30 31 31 32 33 34 Total 100.0
100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 | | | | | .1 | .2 | .7 | | | 14.9 | | 27 28 29 30 31 31 32 33 34 Total 100.0 10 | | | | | | .1 | .3 | | | 12.8 | | 30 31 31 32 33 34 Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Max H Truck 18 19 21 24 25 27 29 30 3 Avg H Truck 9.9 10.5 12.6 14.4 15.9 17.3 19.0 20.0 2 Min H Truck 6 6 8 9 10 11 12 13 11 Range 12 13 13 15 15 16 17 17 17 | | | | | | | .1 | -1 | | 9.9 | | 30 31 31 32 33 34 Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Max H Truck 18 19 21 24 25 27 29 30 3 Avg H Truck 9.9 10.5 12.6 14.4 15.9 17.3 19.0 20.0 2 Min H Truck 6 6 8 9 10 11 12 13 11 Range 12 13 13 15 15 16 17 17 17 | | | | | | | -1 | .8 | | 6.8 | | 30 31 31 32 33 34 Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Max H Truck 18 19 21 24 25 27 29 30 3 Avg H Truck 9.9 10.5 12.6 14.4 15.9 17.3 19.0 20.0 2 Min H Truck 6 6 8 9 10 11 12 13 11 Range 12 13 13 15 15 16 17 17 17 | | | | | | | | .2 | .3 | 4.3 | | 31 32 33 34 Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 10 Max H Truck 18 19 21 24 25 27 29 30 3 Avg H Truck 9.9 10.5 12.6 14.4 15.9 17.3 19.0 20.0 2 Min H Truck 6 6 8 9 10 11 12 13 1 Range 12 13 13 15 15 16 17 17 1 | | | | | | | | •1 | .4 | $\frac{2.5}{1.3}$ | | 32
33
34 Total 100.0 | | | | | | | | | • • • | 1.3 | | 33 34 Total 100.0 | | | | | | | | | | .6
.3 | | 34 Total 100.0 20.0 2 20.0 | | | | | | | | | | .1 | | Max H Truck 18 19 21 24 25 27 29 30 3 Avg H Truck 9.9 10.5 12.6 14.4 15.9 17.3 19.0 20.0 2 Min H Truck 6 6 8 9 10 11 12 13 1 Range 12 13 13 15 15 16 17 17 1 | | | | | | | | | | :i | | Avg H Truck 9.9 10.5 12.6 14.4 15.9 17.3 19.0 20.0 2 Min H Truck 6 6 8 9 10 11 12 13 13 Range 12 13 13 15 15 16 17 17 1 | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Avg H Truck 9.9 10.5 12.6 14.4 15.9 17.3 19.0 20.0 2 Min H Truck 6 6 8 9 10 11 12 13 13 Range 12 13 13 15 15 16 17 17 1 | | 18 | 19 | | 24 | 25 | 27 | 29 | 30 | 34 | | Min H Truck 6 6 8 9 10 11 12 13 1
Range 12 13 13 15 15 16 17 17 1 | | 9.9 | 10.5 | 12.6 | 14.4 | 15.9 | | | | 23.9 | | Range 12 13 13 15 15 16 17 17 1 | | | | | | | | | | 17 | | | | | | | | | | 17 | | 17 | | I DISSUII S | Poisson's | | | | | | - | • | | | | Coef. K 3.9 4.5 4.6 5.4 5.9 6.3 7.0 7.0 | Coef. K | 3.9 | 4.5 | 4.6 | 5.4 | 5.9 | 6.3 | 7.0 | 7.0 | 6.9 | | Std. Dev. D 1.97 2.12 2.14 2.32 2.42 2.51 2.65 2.65 | Std. Dev. D | 1.97 | 2.12 | 2.14 | 2.32 | 2.42 | 2.51 | 2.65 | 2.65 | 2.63 | Equivalent H truck loadings based on moments produced by gross vehicle weights. Table 16.9a # OBSERVED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS BASED ON MOMENTS PRODUCED BY THE 24 TYPE 2-3 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY | Equivalent | | | | | Span-F | 'eet | | | | |--|---|---|--|--|--|--
---|--|---| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite
G.V.W | | 6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 | 4.2
5.6
9.7
13.9
19.3
16.7
15.3
8.3
7.0 | 4.2
4.2
7.0
11.1
13.8
16.6
12.5
5.6
1.4
2.8
2.8 | 5.6
4.2
6.9
13.9
18.0
12.5
4.2
2.8
4.2 | 5.6
5.6
9.7
15.2
18.0
13.8
2.8
4.2
4.2 | 5.6
4.2
5.6
5.6
8.3
13.8
15.2
13.8
4.2
2.8
2.8
2.8
2.8 | 4.2
4.2
4.2
4.2
5.6
8.3
13.8
12.8
2.8
2.8
2.8
2.8 | 2.8
4.2
2.8
5.6
4.2
9.7
12.4
12.5
9.7
8.3
6.9
2.8
2.8
2.8
2.8 | 2.8
4.2
2.8
5.6
5.6
11.1
12.4
12.4
12.4
11.4
8.3
9.7
8.3
5.6
2.8
1.4
1.4
1.4
2.8 | 2.8
2.8
2.8
2.8
5.6
9.7
11.1
11.0
6.9
5.3
9.7
6.9
1.4
1.4
1.4
1.4
2.8 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max H Truck
Avg H Truck
Min H Truck
Range
Poisson's | 14
10.3
6
8 | 18
11.1
6
12 | 18
12.1
7
11 | 20
13.5
8
12 | 23
15.1
9
14 | 25
17.0
10
15 | 28
19.4
12
16 | 30
20.9
13
17 | 37
26.5
17
20 | | Coef. K | 4.3 | 5.1 | 5.1 | 5.5 | 6.1 | 7.0 | 7.4 | 7.9 | 9.5 | ### Table 16.9b ## CALCULATED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS OF THE 24 TYPE 2-3 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY, ### BASED ON POISSON'S DISTRIBUTION LAW Equivalent H truck loadings which occur less than 1 in 1000, or account for less than 0.1% of total heavy truck traffic, are not shown in this table. | H Truck Loadings 6 | uivalent | • | | | * | Span-F | eet | | | | |---|----------|---------|-----------|----------|-------|--------|-------|-------|-------|----------| | 7 | Truck | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite | | 8 | | 1.4 | .6 | | | | | | | | | 8 | 7 | 5.8 | 3.1 | .6 | | | | | | | | 9 | 8 | 12.5 | 7.9 | 3.1 | .4 | | | | | | | 10 | | 18.0 | 13.5 | | 2.2 | .2 | | | | | | 11 | 10 | 19.3 | 17.2 | | 6.2 | 1.4 | .1 | | | | | 11.9 | | | 17.5 | | | | | | | | | 18 | | | | | | | | 7 | | | | 14 | | | | | | | | | | | | 15 | | | | | | | | | .3 | | | 16 .8 2.0 3.9 8.5 14.0 14.9 7.7 17 .3 .9 2.0 5.2 10.7 14.9 11.3 18 .1 .4 .9 2.9 7.2 13.0 13.9 19 .1 .2 .4 1.4 4.4 10.2 14.7 20 .1 .2 .7 2.4 7.1 13.6 21 .1 .3 1.2 4.5 11.2 22 .1 .6 2.6 8.3 23 .1 .3 1.5 5.6 24 .1 .7 3.4 25 .1 .7 3.4 25 .1 .1 .7 3.4 25 .1 .1 .7 3.4 26 .1 .1 .5 .1 .1 .1 28 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 | | | | | | | | | 1.2 | | | 17 | | | | | | | | | | | | 18 | | .8 | | | | | | | 3.0 | | | 19 | | .3 | | | | | | | 6.1 | _ | | 21 | | .1 | .4 | | | | | | 9.5 | .1 | | 21 | | .1 | .2 | | | | | | 12.5 | .3 | | 22 | | | .1 | .2 | | | | | 14.1 | 1.1 | | 23 | | | | .1 | | 1.2 | | | 13.9 | 2.5 | | 23 | 22 | | | | .1 | .6 | 2.6 | 8.3 | 12.2 | 4.8 | | 24 | | | | | .1 | | | | 9.7 | 7.6 | | 25 | | | | | | | | | 6.9 | 10.4 | | 26 27 28 29 30 31 31 32 33 3 | | | | | | | | | 4.6 | 12.2 | | 27 28 28 29 30 31 31 31 32 33 Equivalent H truck loadings 34 based on moments produced 35 by gross vehicle weights. 36 37 38 Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Max H Truck 19 20 21 23 25 27 30 Avg H Truck 10.3 11.1 12.1 13.5 15.1 17.0 19.4 Min H Truck 6 6 6 7 8 9 10 12 Range 13 14 14 15 16 17 18 | | | | | | •• | | | 2.8 | 13.0 | | 30 31 32 33 | | | | | | | -; | 1.0 | 1.6 | 12.4 | | 30 31 32 33 | | | | | | | •• | .0 | .8 | 10.7 | | 30 31 32 33 | | | | | | | | .4 | .4 | 8.4 | | 31 32 33 | | | | | | | | •1 | .4 | | | 32 33 | | | | | | | | .1 | .2 | 6.2 | | 33 Equivalent H truck loadings 34 based on moments produced 35 by gross vehicle weights. 36 37 38 Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Max H Truck 19 20 21 23 25 27 30 Avg H Truck 10.3 11.1 12.1 13.5 15.1 17.0 19.4 Min H Truck 6 6 7 8 9 10 12 Range 13 14 14 15 16 17 18 | | | | | | | | | .1 | 4.2 | | 34 based on moments produced by gross vehicle weights. 36 37 38 Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Max H Truck 19 20 21 23 25 27 30 Avg H Truck 10.3 11.1 12.1 13.5 15.1 17.0 19.4 Min H Truck 6 6 6 7 8 9 10 12 Range 13 14 14 15 16 17 18 | | | | | | | | | .1 | 2.7 | | 35 by gross vehicle weights. 36 37 38 Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Max H Truck 19 20 21 23 25 27 30 Avg H Truck 10.3 11.1 12.1 13.5 15.1 17.0 19.4 Min H Truck 6 6 6 7 8 9 10 12 Range 13 14 14 15 16 17 18 | | | | | | | | | | 1.6 | | 36 37 38 Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Max H Truck 19 20 21 23 25 27 30 Avg H Truck 10.3 11.1 12.1 13.5 15.1 17.0 19.4 Min H Truck 6 6 7 8 9 10 12 Range 13 14 14 15 16 17 18 | | | | | ed | | | | | .9 | | 37 38 Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Max H Truck 19 20 21 23 25 27 30 Avg H Truck 10.3 11.1 12.1 13.5 15.1 17.0 19.4 Min H Truck 6 6 7 8 9 10 12 Range 13 14 14 15 16 17 18 | | by gros | s vehicle | weights. | | | | | | .5 | | 38 Total 100.0 | | | | | | | | | | .2 | | Total 100.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>.1</td></th<> | | | | | | | | | | .1 | | Max H Truck 19 20 21 23 25 27 30 Avg H Truck 10.3 11.1 12.1 13.5 15.1 17.0 19.4 Min H Truck 6 6 7 8 9 10 12 Range 13 14 14 15 16 17 18 | 38 | | | | | | | | | .1 | | Avg H Truck 10.3 11.1 12.1 13.5 15.1 17.0 19.4 Min H Truck 6 6 7 8 9 10 12 Range 13 14 14 15 16 17 18 | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Min H Truck 6 6 7 8 9 10 12
Range 13 14 14 15 16 17 18 | | | | | | | | | 32 | 38 | | Range 13 14 14 15 16 17 18 | | | | | | | | | 20.9 | 26.5 | | | | | | 7 | 8 | | | | 14 | 18 | | | | 13 | 14 | 14 | 15 | 16 | 17 | 18 | 18 | 20 | | Poisson's | oisson's | | | | | | | | | | | Coef. K 4.3 5.1 5.1 5.5 6.1 7.0 7.4 | | 4.3 | 5.1 | 5.1 | 5.5 | 6.1 | 7.0 | 7.4 | 7.9 | 9.5 | | Std. Dev. D 2.07 2.26 2.26 2.35 2.47 2.65 2.72 | | | | | | | | | 2.81 | 3.08 | Table 16.10a # OBSERVED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS BASED ON MOMENTS PRODUCED BY THE 68 TYPE 3-2 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY | Equivalent | | | | | Span-F | eet | | | | |---|---|--|--|--|--|---|--|---
---| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite
G.V.W. | | 5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 | 4.4
7.4
14.2
14.7
16.2
15.7
14.2
9.3
2.9
1.0 | 6.4
7.4
10.3
12.7
11.8
10.8
13.6
13.2
8.8
2.5
1.0
1.5 | 3.9
6.4
7.8
11.3
10.8
11.3
9.3
12.2
8.3
2.9
1.0
.5
1.0 | 5.4
6.4
5.9
8.3
9.8
11.7
10.3
11.3
8.9
2.0
.5
.5
1.0 | 5.9
6.4
4.9
7.4
7.8
9.8
11.2
10.3
7.9
3.4
1.0
.5
1.0 | 4.9
5.4
4.9
8.3
7.4
10.8
8.8
10.7
8.8
10.8
5.4
2.0
1.0
1.0 | 2.9 4.4 4.9 6.4 7.4 9.3 10.2 7.8 8.8 7.4 2.0 1.0 5.5 1.0 | 2.5
4.4
4.4
4.9
7.4
9.7
8.7
8.7
8.7
8.9
3.0
1.5
1.0 | 3.9
4.9
5.4
4.4.9
5.4
5.4
5.3
8.3
7.8
8.3
6.4
2.9
2.0
1.5
2.9
2.5
1.0 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max H Truck Avg H Truck Min H Truck Range Poisson's | 14
9.1
5
9 | 18
11.6
7
11 | 22
13.4
8
14 | 24
14.7
9
15 | 26
16.1
10
16 | 28
17.4
11
17 | 31
19.4
12
19 | 32
20.8
13
19 | 38
25.5
17
21 | | Coef. K | 4.1 | 4.6 | 5.4 | 5.7 | 6.1 | 6.4 | 7.4 | 7.8 | 8.5 | #### Table 16.10b ### CALCULATED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS OF THE 68 TYPE 3-2 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY, ### BASED ON POISSON'S DISTRIBUTION LAW Equivalent H truck loadings which occur less than 1 in 1000, or account for less than 0.1% of total heavy truck traffic, are not shown in this table. | Equivalent | | | | | Span-Fe | eet | | | | |---------------------|----------|-------------------|------------|-------|---------|-------|-------|----------|----------------------| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite | | 5 | 1.7 | | | | | | | | | | 6 | 6.8 | | | | | | | | | | 7 | 13.9 | 1.0 | | | | | | | | | 8 | 19.1 | 4.6 | .5 | | | | | | | | 9 | 19.5 | 10.6 | 2.4 | .3 | | | | | | | 10 | 16.0 | 16.3 | 6.6 | 1.9 | .2 | | | | | | 11 | 10.9 | 18.7 | 11.9 | 5.4 | 1.4 | .2 | | | | | 12 | 6.4 | 17.3 | 16.0 | 10.3 | 4.2 | 1.1 | .1 | | | | 13 | 3.3 | 13.2 | 17.2 | 14.7 | 8.5 | 3.4 | .5 | .1 | | | 14 | 1.5 | 8.7 | 15.6 | 16.9 | 12.9 | 7.3 | 1.7 | .3 | | | 15 | .6 | 5.0 | 12.0 | 16.0 | 15.8 | 11.6 | 4.1 | 1.2 | | | 16 | .2 | 2.6 | 8.1 | 13.0 | 16.0 | 14.8 | 7.6 | 3.2 | | | 17 | .2
.1 | 1.2 | 4,9 | 9.2 | 14.0 | 15.8 | 11.3 | 6.3 | | | 18 | • | .5 | 2.6 | 5.9 | 10.7 | 14.5 | 13.9 | 9.9 | . 2 | | 19 | | .2 | 1.3 | 3.3 | 7.2 | 11.6 | 14.8 | 12.8 | .2
.7 | | 20 | | .ī | .6 | 1.7 | 4.4 | 8.2 | 13.6 | 14.2 | 2.1 | | 21 | | •• | .2 | .8 | 2.4 | 5.3 | 11.2 | 13.9 | 4.4 | | 22 | | | .1 | .4 | 1.2 | 3.1 | 8.3 | 12.1 | 7.5 | | 23 | | | •• | .ī | .6 | 1.6 | 5.6 | 9.4 | 10.7 | | 24 | | | | .î | .3 | .8 | 3.4 | 6.7 | 12.9 | | 25 | | | | •• | .1 | .4 | 2.0 | 4.3 | 13.7 | | 26 | | | | | .1 | .2 | 1.0 | 2.6 | 13.0 | | 27 | | | | | •• | .1 | .5 | 1.5 | 11.0 | | 28 | | | | | | .1 | .2 | .8 | 8.5 | | 29 | | | | | | | .1 | .4 | 6.0 | | 30 | | | | | | | .1 | | 4.0 | | 31 | | | | | | | •1 | .2
.1 | 2.4 | | 32 | Fanina | lent H tru | ale loadin | ~~ | | | | •1 | 1.4 | | 33 | | n momen | | | | | | | .7 | | 34 | | | | ea | | | | | | | 35 | by gros | s vehicle | weights. | | | | | | .4
.2
.1
.1 | | | | | | | | | | | .2 | | 36 | | | | | | | | | •1 | | 37 | | | | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max H Truck | 17 | 20 | 22 | 24 | 26 | 27 | 30 | 31 | 37 | | Avg H Truck | 9.1 | 11.6 | 13.4 | 14.7 | 16.1 | 17.4 | 19.4 | 20.8 | 25.5 | | Min H Truck | 5 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 18 | | Range | 12 | 13 | 14 | 15 | 16 | 16 | 18 | 18 | 19 | | Poisson's | | - | | • | | | | | | | Coef. K | 4.1 | 4.6 | 5.4 | 5.7 | 6.1 | 6.4 | 7.4 | 7.8 | 8.5 | | Std. Dev. D | 2.02 | 2.14 | 2.32 | 2.39 | 2.47 | 2.53 | 2.72 | 2.79 | 2.92 | ### Table 16.11a # OBSERVED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS BASED ON MOMENTS PRODUCED BY THE 176 TYPE 3-3 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY | Equivalent | | | | | Span-F | eet | | | | |----------------------|---------------------|--------------------|------------|-------------------|-------------------|-------------------|---------------|-------------------|-------------------| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite
G.V.W | | 5 | 5.7 | | | | | | | | | | 6 | 5.3 | 4.2 | 1.3 | | | | | | | | 7 | 5.1 | 4.0 | 3.4 | 2.5 | | | | | | | 8 | 5.9 | 4.4 | 4.2 | 3.6 | 2.5 | | | | | | 9 | 10.2 | 3.2 | 4.0 | 3.8 | 3.4 | 2.7 | | | | | 10 | 19.1 | 4.0 | 3.0 | 3.4 | 3.8 | 3.2 | • • | | | | 11
12 | $\frac{21.8}{16.5}$ | $\frac{6.4}{12.3}$ | 2.8
4.9 | 3.0 | $\frac{3.2}{2.5}$ | 3.6 | 3.2
3.2 | 0.0 | | | 13 | 6.8 | 18.0 | 9.3 | $\frac{3.4}{5.5}$ | 2.3 | $\frac{2.5}{2.3}$ | 3.2
3.0 | $\frac{2.3}{3.2}$ | | | 14 | 1.9 | 19.2 | 15.2 | 8. 0 | 3.8 | 2.3 | 1.7 | 3.0 | | | 15 | 1.7 | 12.9 | 19.3 | 11.7 | 6.4 | 2.9 | 1.7 | 2.3 | | | 16 | 1.1 | 6.3 | 14.8 | 17.4 | 9.7 | 4.9 | 1.9 | 1.1 | | | 17 | | 2.1 | 9.5 | 15.9 | 13.4 | 7.8 | 2.3 | 1.5 | 3.6 | | 18 | | 1.5 | 3.2 | 11.9 | 14.9 | 10.6 | 2.8 | 1.7 | 3.4 | | 19 | | 1.5 | 2.3 | 4.0 | 13.7 | 11.6 | 4.2 | 2.7 | 2.3 | | 20 | | 1.0 | 1.5 | 2.3 | 9.5 | 12.8 | 5.7 | 2.8 | 1.3 | | 21 | | | 1.3 | 1.5 | 5.1 | 11.8 | 8.1 | 4.2 | .8 | | 22 | | | | 1.1 | 2.7 | 9.9 | 11.2 | 5.7 | .8 | | 23 | | | | 1.0 | 1.1 | 5.1 | 12.2 | 8.0 | 1.0 | | 24 | | | | | .8 | 2.7 | 13.0 | 8.5 | 1.1 | | 25 | | | | | .4 | .8 | 9.9 | 11.0 | 1.7 | | 26 | | | | | .4 | .6 | 7.2 | 12.6 | 2.5 | | 27 | | | | | .4 | .6 | 3.2 | 11.7 | 2.5 | | 28 | | | | | | .6 | 1.7 | 7.8 | 4.0 | | 29 | | | | | | .8 | 1.0 | 3.0 | 4.7 | | 30 | | | | | | | .6 | 1.9 | 5.5 | | 31 | | | | | | | .4 | 1.1 | 6.1 | | 32 | | | | | | | .8 | 1.0 | 7.5 | | 33
34 | | | | | | | 1.0 | 1.0 | 11.1 | | 35 | | | | | | | | .8
1.1 | 10.5
9.0 | | 36 | | | | | | | | 1.1 | 5.5 | | 37 | | | | | | | | | 4.4 | | 38 | | | | | | | | | 2.8 | | 39 | | | | | | | | | 1.9 | | 40 | | | | | 100 | | 10 mg - 10 mg | | 1.0 | | 41 | | | | | | | | | .6 | | 42 | | | | | | | | | .4 | | 43 | | | | | | | | | 1.1 | | 44 | | | | | | | | | 1.0 | | 45 | | | | | | | | | 1.1 | | 46 | | | | _ | | | | | .8 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max H Truck | 15 | 19 | 21 | 23 | 27 | 29 | 33 | 35 | 46 | | Avg H Truck | 10.0 | 12.6 | 14.0 | 15.1 | 16.8 | 18.5 | 21.7 | 23.7 | 31.3 | | Min H Truck | 5 | 6 | 6 | 7 | 8. | 9 | 11 | 12 | 17 | | Range | 10 | 13 | 15 | 16 | 19 | 20 | 22 | 23 | 29 | | Poisson's
Coef. K | 5.0 | e e | 8.0 | 8.1 | 2.0 | . 0.5 | 10.7 | 11.7 | 149 | | Coer. K | 0.0 | 6.6 | ი.0 | 8.1 | 8.8 | 9.5 | 10.7 | 11.7 | 14.3 | #### Table 16.11b ### CALCULATED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS OF THE 176 TYPE 3-3 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY, #### BASED ON POISSON'S DISTRIBUTION LAW Equivalent H truck loadings which occur less than 1 in 1000, or account for less than 0.1% of total heavy truck traffic, are not shown in this table. | Equivalent | | | | | Span-F | eet | **** | | | |------------------------|--------------------|-------------|-------------|--------------------|--------------------|--------------------|---------------------|-------------------|-------------------| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite | | 5 | .7 | | | | | | | | | | 6 | 3.4 | .1 | .1 | | | | | | | | 7 | 8.4 | .9 | .2 | .1 | | | | | | | 8 | 14.0 | 3.0 | 1.1 | .2 | .1 | | | | | | 9 | 17.6 | 6.5 | 2.9 | 1.0 | .1 | | | | | | 10 | 17.6 | 10.8 | 5.7 | 2.7 | .6 | .1 | | | | | 11 | 14.7 | 14.2 | 9.1 | 5.4 | 1.7 | .3 | | | | | 12 | 10.4 | 15.6 | 12.2 | 8.8 | 3.8 | 1.1 | .1 | | | | 13 | 6.5 | 14.7 | 13.9 | 11.9 | 6.6 | 2.5 | .1 | | | | 14 | .36 | 12.1 | 14.0 | 13. 8 | 9.7 | 4.8 | .5 | .1 | | | 15 | 1.8 | 8.9 | 12.4 | 13.9 | 12.2 | 7.6 | 1.2 | .2 | | | 16 | .8 | 5.9 | 9.9 | 12.6 | 13.4 | 10.4 | 2.6 | .6 | | | 17 | .3 | 3.5 | 7.2 | 10.2 | 13.1 | 12.3 | 4.7 | 1.5 | | | 18 | .1
.1 | 1.9 | 4.8 | 7.5 | 11.6 | 13.0 | 7.2 | 3.0 | | | 19 | .1 | 1.0 | 3.0 | 5.1 | 9.3 | 12.3 | 9.6 | 4.9 | | | 20 | | .5 | 1.7 | 3.1 | 6.8 | 10.7 | 11.4 | 7.2 | _ | | 21 | | .2 | .9 | 1.8 | 4.6 | 8.4 | 12.1 | 9.4 | .1 | | 22 | | .1 | .5 | 1.0 | 2.9 | 6.2 | 11.8 | 11.0 | .3 | | 23 | | .1 | .2 | .5 | 1.7 | 4.2 | 10.6 | 11.7 | .7 | | 24 | | | .1
.1 | .2 | .9 | 2.7 | 8.7 | 11.4 | 1.5 | | 25 | | | .1 | .1 | .5 | 1.6 | 6.7 | 10.3 | 2.7 | | 26
27 | | | | .1 | .2 | .9 | $\frac{4.8}{3.2}$ | $\frac{8.6}{6.7}$ | 4.2 | | 28 | | | | | .1 | .5
.2 | $\frac{3.2}{2.0}$ | 4.9 | $\frac{6.1}{7.9}$ | | 25
29 | | | | | .1 | .1 | $\frac{2.0}{1.2}$ | 3.4 | 9.4 | | 30 | | | | | | .1 | 1.2 | 2.2 | 10.3 | | 31 | | | | | | | .4 | 1.3 | 10.6 | | 32 | | | | | | | .2 | .8 | 10.1 | | 33 | | | | | | | .1 | .4 | 9.0 | | 34 | | | | | | | .1 | .2 | 7.6 | | 35 | | | | | | | .1 | .1 | 6.0 | | 36 | Equiva | lant H tr | ick loadin | ora . | | | | .1 | 4.5 | | 37 | | | ts produce | | | | | •• | 3.2 | | 38 | | s vehicle | | cu | | | | | 2.2 | | 39 | D) gros | a venicie | weignto. | | | | | | 1.5 | | 40 | | | | | | | | | .9 | | 41 or more | | | | | | | | | 1.2 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | | | | | | | | | | | Max H Truck | 19 | 23 | 25 | 26 | 28 | 30 | 34 | 36 | 45 | | Avg H Truck | 10.0 | 12.6 | 14.0 | 15.1 | 16.8 | 18.5 | 21.7 | 23.7 | $\frac{31.3}{21}$ | | Min H Truck | 5 | 6 | 6 | 7 | 8 | 10 | 12 | 14 | | | Range | 14 | 17 | 19 | 19 | 20 | 20 | 22 | 22 | 24 | | Poisson's | - 0 | | | 0.1
| | 0.5 | 10.7 | 11.7 | 14.3 | | Coef. K
Std. Dev. D | $\frac{5.0}{2.24}$ | 6.6
2.57 | 8.0
2.83 | $\frac{8.1}{2.85}$ | $\frac{8.8}{2.97}$ | $\frac{9.5}{3.08}$ | $\frac{10.7}{3.27}$ | 3.42 | 3.78 | | au. Dev. D | 2.24 | 2.57 | 2.53 | 2,85 | 2.97 | 3.08 | 3.41 | 0.42 | 0.18 | Table 16.12a OBSERVED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS BASED ON MOMENTS PRODUCED BY THE 4531 (ALL TYPES) TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY | Equivalent | Span-Feet | | | | | | | | | | | |---------------------|---------------------|----------|-------|-------|-------|----------------------|----------------|----------|--|--|--| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite
G.V.W | | | | 5 | .4 | | | | | | | | | | | | 6 | .6 | .3 | .1 | | | | | | | | | | 7 | 1.2 | .4 | .2 | .1 | | | | | | | | | 8 | 3.4 | 1.6 | .6 | .3 | .1 | | | | | | | | 9 | 10.1 | 6.8 | 4.0 | 1.1 | .3 | .1 | | | | | | | 10 | 18.6 | 15.2 | 10.1 | 3.7 | .8 | .3 | | | | | | | 11 | 21.8 | 19.2 | 16.1 | 8.4 | 3.7 | 1.4 | .4 | .2 | | | | | 12 | 18.8 | 18.3 | 18.4 | 15.8 | 9.0 | 4.7 | 1.6 | 1.0 | | | | | 13 | 11.6 | 12.7 | 15.2 | 17.5 | 15.2 | 11.2 | 4.5 | 2.8 | 2.2 | | | | 14 | 6.8 | 9.3 | 11.5 | 16.6 | 17.1 | 15.2 | 11.1 | 6.9 | 2.3 | | | | 15 | 3.4 | 6.4 | 7.6 | 11.1 | 15.4 | 16.3 | 15.1 | 11.9 | 2.2 | | | | 16 | 1.6 | 4.2 | 6.0 | 8.3 | 11.3 | 13.2 | 16.1 | 15.5 | 4.3 | | | | 17 | .9 | 2.7 | 4.0 | 6.0 | 8.3 | 10.6 | 12.2 | 14.6 | 9.4 | | | | 18 | | 1.4 | 2.7 | 4.2 | 6.1 | 7.9 | 9.6 | 11.5 | 13.5 | | | | 19 | .4 | 1.4 | 1.6 | 2.8 | 4.6 | 5.7 | 7.2 | 8.2 | 13.7 | | | | 20 | .4
.2
.1
0 | .8
.3 | .9 | 1.7 | | 4.3 | 5.5 | | | | | | 21 | .1 | .3 | .5 | | 3.1 | | 5.5
4.1 | 6.1 | 10.6 | | | | 22 | Ü | | 6. | 1.0 | 2.0 | 3.2 | | 4.5 | 7.9 | | | | | | .1 | .3 | .6 | 1.2 | 2.3 | 3.5 | 3.6 | 6.1 | | | | 23 | 0 | 0 | .1 | .4 | .8 | 1.4 | 2.8 | 3.2 | 4.3 | | | | 24 | .1 | .1 | .1 | .2 | .5 | .9
.5 | 2.2 | 2.7 | 3.6 | | | | 25 | | | | .1 | .3 | .5 | 1.5 | 2.1 | 3.2 | | | | 26 | | | | .1 | .1 | .3 | 1.0 | 1.6 | 2.8 | | | | 27 | | | | | .1 | .3
.2
.1
.1 | .6 | 1.3 | 2.3 | | | | 28 | | | | | | .1 | .4
.2
.1 | .9 | 1.9 | | | | 29 | | | | | | .1 | .2 | .5 | 1.7 | | | | 30 | | | | | | .1 | .1 | .3 | 1.4 | | | | 31 | | | | | | | .1 | .2 | 1.2 | | | | 32 | | | | | | | .1 | .1 | 1.0 | | | | 33 | | | | | | | .1 | .1
.1 | 1.1 | | | | 34 | | | | | | | | .1 | .9 | | | | 35 | | | | | | | | .1 | .7 | | | | 36 | | | | | | | | | .5 | | | | 37 | | | | | | | | | .4 | | | | 38 | | | | | | | | | .2 | | | | 39 | | | | | | | | | ĩ | | | | 40 | | | | | | | | | 'n | | | | 41 | | | | | | | | | ĵ. | | | | 42 | | | | | | | | | ň | | | | 43 | | | | | | | | | ĭ | | | | 44 | | | | | | | | | | | | | 45 | | | | | | | | | '1 | | | | 46 | | | | | | | | | 1.1
.9
.7
.5
.4
.2
.1
.1
.0
0 | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | | Max H Truck | 24 | 24 | 24 | 26 | 27 | 30 | 33 | 35 | 46 | | | | Avg H Truck | 11.4 | 12.2 | 13.0 | 14.1 | 15.2 | 16.1 | 17.4 | 18.2 | 21.1 | | | | Min H Truck | 5 | 6 | 6 | 7 | 8 | 9 | 11 | 11 | 13 | | | | Range | 5
19 | 18 | 18 | 19 | 19 | 21 | 22 | 24 | 33 . | | | | – . | | | | | | | | | | | | | Poisson's | | | | | | | | | | | | #### Table 16.12b ## CALCULATED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS OF THE 4531 (ALL TYPES) TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY, BASED ON POISSON'S DISTRIBUTION LAW Equivalent H truck loadings which occur less than 1 in 1000, or account for less than 0.1% of total heavy truck traffic, are not shown in this table. | Equivalent | | | | | Span-F | eet | | | | |---------------------|-------|----------|-------|----------------|--------|----------|-------|-------|-----------------------------| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | Infinite | | 5 | .2 | | | | | | | | | | 6 | 1.1 | .2 | .1 | | | | | | | | 7 | 3.4 | 1.3 | .7 | .1 | | | | | | | 8 | 7.3 | 3.9 | 2.2 | .6 | .1 | | | | | | 9 | 11.6 | 8.1 | 5.2 | 2.1 | .5 | .1 | | | | | 10 | 14.7 | 12.5 | 9.1 | 4.9 | 1.9 | .6 | | | | | 11 | 15.9 | 15.4 | 12.8 | 8.7 | 4.6 | 2.1 | .2 | .1 | | | 12 | 14.5 | 16.0 | 14.9 | 12.4 | 8.4 | 4.9 | 1.1 | .5 | | | 13 | 11.6 | 14.1 | 14.9 | 14.7 | 12.0 | 8.7 | 3.4 | 1.9 | .1 | | 14 | 8.2 | 11.0 | 13.0 | 14.9 | 14.4 | 12.4 | 7.3 | 4.6 | .2 | | 15 | 5.3 | 7.6 | 10.2 | 13.2 | 14.9 | 14.7 | 11.6 | 8.4 | 1.0 | | 16 | 3.1 | 4.7 | 7.1 | 10.4 | 13.4 | 14.9 | 14.7 | 12.0 | 2.7 | | 17 | 1.6 | 2.6 | 4.5 | 7.4 | 10.7 | 13.2 | 15.9 | 14.4 | 5.4 | | 18 | .8 | 1.4 | 2.6 | 4.8 | 7.7 | 10.4 | 14.5 | 14.9 | 8.8 | | 19 | .4 | .7 | 1.4 | 2.8 | 5.0 | 7.4 | 11.6 | 13.4 | 11.9 | | 20 | .2 | .3 | .7 | 1.5 | 3.0 | 4.8 | 8.2 | 10.7 | 13.8 | | 21 | .1 | .1
.1 | .4 | .8 | 1.7 | 2.8 | 5.3 | 7.7 | 13.9 | | 22 | | .1 | .1 | .4
.2
.1 | .9 | 1.5 | 3.1 | 5.0 | 12.6 | | 23 | | | .1 | .2 | .4 | .8 | 1.6 | 3.0 | 10.2 | | 24 | | | | .1 | .2 | .4 | .8 | 1.7 | 7.5 | | 25 | | | | | .1 | .2
.1 | .4 | .9 | 5.1 | | 26 | | | | | .1 | .1 | .2 | .4 | 3.1 | | 27 | | | | | | | .1 | .2 | 1.8 | | 28 | | | | | | | | .1 | 1.0 | | 29 | | | | | | | | .1 | .5 | | 30 | | | | | | | | | .2 | | 31 | | | | | | | | | 1.0
.5
.2
.1
.1 | | 32 | | | _ | | | | | | 1 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max H Truck | 21 | 22 | 23 | 24 | 26 | 26 | 27 | 29 | 32 | | Avg H Truck | 11.4 | 12.2 | 13.0 | 14.1 | 15.2 | 16.1 | 17.4 | 18.2 | 21.1 | | Min H Truck | 5 | 6 | 6 | 7 | 8 | 9 | 11 | 11 | 13 | | Range | 16 | 16 | 17 | 17 | 18 | 17 | 16 | 18 | 19 | | Poisson's | | | | | | | | | | | Coef K | 6.4 | 6.2 | 7.0 | 7.1 | 7.2 | 7.1 | 6.4 | 7.2 | 8.1 | | Std. Dev. D | 2.53 | 2.49 | 2.65 | 2.66 | 2.68 | 2.66 | 2.54 | 2.68 | 2.85 | Equivalent H truck loadings based on moments produced by gross vehicle weights. # 17. MAXIMUM, AVERAGE, AND MINIMUM EQUIVALENT H TRUCK LOADINGS ON SIMPLE SPAN BRIDGES BASED ON GROSS VEHICLE WEIGHT Figures 17.1—17.11 present a graphical representation of the maximum, average, and minimum equivalent H truck loadings on simple span bridges of various lengths for each of the 11 more numerous heavy vehicle types reported by the special loadometer survey of 1942. Figure 17.12 gives the same information for 83 truck-tractor semitrailer trailer combinations (6 different vehicle types) that did not occur in sufficient number to justify individual distributions; and Figure 17.13 gives the information for all heavy vehicles reported representing a combined total of 4531. The upper part of each of these figures give the maximum, average, and minimum equivalent H truck loadings for each span length and the lower part shows the range, the Poisson coefficient K and the standard deviation \boldsymbol{D} for each corresponding span length. The figures on which all of these data are given are as follows: | Heavy Vehicle
Type | Number of Vehicles
Reported | Figure
Number | |--------------------------|--------------------------------|------------------| | 2 | 171 | 17.1 | | 3 | 381 | 17.2 | | 2-S1 | 2855 | 17.3 | | 2-82 | 508 | 17.4 | | 3-S1 | 9 | 17.5 | | 3-S2 | 142 | 17.6 | | 3-S3 | 14 | 17.7 | | 2-2 | 99 | 17.8 | | 2-3 | 24 | 17.9 | | 3-2 | 68 | 17.10 | | 3-3 | 176 | 17.11 | | 6 types of tractor-truck | 22 | 4= 40 | | semitrailer trailer | 83 | 17.12 | | combinations
All | 4531 | 17.13 | MAXIMUM, MINIMUM, AND AVERAGE EQUIVALENT H TRUCK LOADINGS FOR TYPE 2 TRUCKS ON SIMPLE SPANS OF VARIOUS LENGTHS NOTE: -GROSS VEHICLE WEIGHT IN TONS AND EQUIVALENT H TRUCK LOADINGS IN TONS ARE IDENTICAL AT INFINITE SPAN RANGE, STANDARD DEVIATION, AND POISSON'S COEFFICIENT FOR FREQUENCY DISTRIBUTION OF EQUIVALENT H TRUCK LOADINGS ON SPANS OF VARIOUS LENGTHS Figure 17.1 MAXIMUM, MINIMUM, AND AVERAGE EQUIVALENT H TRUCK LOADINGS FOR TYPE 3 TRUCKS ON SIMPLE SPANS OF VARIOUS LENGTHS CURVES SHOWN FOR EQUIVALENT H TRUCK LOADINGS ARE BASED ON MAXIMUM BENDING MOMENTS PRODUCED BY THE 381 TYPE 3 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY NOTE:-GROSS VEHICLE WEIGHT IN TONS AND EQUIVALENT H TRUCK LOADINGS IN TONS ARE IDENTICAL AT INFINITE SPAN Figure 17.2 MAXIMUM, MINIMUM, AND AVERAGE EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-SI TRUCKS ON SIMPLE SPANS OF VARIOUS LENGTHS NOTE: - GROSS VEHICLE WEIGHT IN TONS AND EQUIVALENT H TRUCK LOADINGS IN TONS ARE IDENTICAL AT INFINITE SPAN ### RANGE, STANDARD DEVIATION, AND POISSON'S COEFFICIENT FOR FREQUENCY DISTRIBUTION OF EQUIVALENT H TRUCK LOADINGS Figure 17.3 MAXIMUM, MINIMUM, AND AVERAGE EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-S2 TRUCKS ON SIMPLE SPANS OF VARIOUS LENGTHS CURVES SHOWN FOR EQUIVALENT H TRUCK LOADINGS ARE BASED ON MAXIMUM BENDING MOMENTS PRODUCED BY THE 508 TYPE 2-S2 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY NOTE: - GROSS VEHICLE WEIGHT IN TONS AND EQUIVALENT H TRUCK LOADINGS IN TONS ARE IDENTICAL AT INFINITE SPAN Figure 17.4 MAXIMUM, MINIMUM, AND AVERAGE EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-SI TRUCKS ON SIMPLE SPANS OF VARIOUS LENGTHS CURVES SHOWN FOR EQUIVALENT H TRUCK LOADINGS ARE BASED ON MAXIMUM BENDING MOMENTS PRODUCED BY THE 9 TYPE 3-SI TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY NOTE: - GROSS VEHICLE WEIGHT IN TONS AND EQUIVALENT H TRUCK LOADINGS IN TONS ARE IDENTICAL AT INFINITE SPAN Figure 17.5 MAXIMUM, MINIMUM, AND AVERAGE EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-S2 TRUCKS ON SIMPLE SPANS OF VARIOUS LENGTHS CURVES SHOWN FOR EQUIVALENT H TRUCK LOADINGS ARE BASED ON MAXIMUM BENDING MOMENTS PRODUCED BY THE 142 TYPE 3-S2 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY RANGE, STANDARD DEVIATION, AND POISSON'S COEFFICIENT FOR FREQUENCY DISTRIBUTION OF EQUIVALENT H TRUCK LOADINGS Figure 17.6 MAXIMUM, MINIMUM, AND AVERAGE EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-S3 TRUCKS ON SIMPLE SPANS OF VARIOUS LENGTHS CURVES SHOWN FOR EQUIVALENT H TRUCK LOADINGS ARE BASED ON MAXIMUM BENDING MOMENTS PRODUCED BY THE 14 TYPE 3-S3 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY RANGE, STANDARD DEVIATION,
AND POISSON'S COEFFICIENT FOR FREQUENCY DISTRIBUTION OF EQUIVALENT H TRUCK LOADINGS Figure 17.7 MAXIMUM, MINIMUM, AND AVERAGE EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-2 TRUCKS ON SIMPLE SPANS OF VARIOUS LENGTHS CURVES SHOWN FOR EQUIVALENT H TRUCK LOADINGS ARE BASED ON MAXIMUM BENDING MOMENTS PRODUCED BY THE 99 TYPE 2-2 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY NOTE: - GROSS VEHICLE WEIGHT IN TONS AND EQUIVALENT H TRUCK LOADINGS IN TONS ARE IDENTICAL AT INFINITE SPAN RANGE, STANDARD DEVIATION, AND POISSON'S COEFFICIENT FOR FREQUENCY DISTRIBUTION OF EQUIVALENT H TRUCK LOADINGS ON SPANS OF VARIOUS LENGTHS 20 RANGE, D, AND K-TONS 15 10 POISSON'S COEFFICIENT, K 5 STANDARD DEVIATION, D 0 INFINITE 20 30 40 70 80 100 SPAN-FEET Figure 17.8 MAXIMUM, MINIMUM, AND AVERAGE EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-3 TRUCKS ON SIMPLE SPANS OF VARIOUS LENGTHS NOTE: -- GROSS VEHICLE WEIGHT IN TONS AND EQUIVALENT H TRUCK LOADINGS IN TONS ARE IDENTICAL AT INFINITE SPAN ### RANGE, STANDARD DEVIATION, AND POISSON'S COEFFICIENT FOR FREQUENCY DISTRIBUTION OF EQUIVALENT H TRUCK LOADINGS Figure 17.9 MAXIMUM, MINIMUM, AND AVERAGE EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-2 TRUCKS ON SIMPLE SPANS OF VARIOUS LENGTHS CURVES SHOWN FOR EQUIVALENT H TRUCK LOADINGS ARE BASED ON MAXIMUM BENDING MOMENTS PRODUCED BY THE 68 TYPE 3-2 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY NOTE: - GROSS VEHICLE WEIGHT IN TONS AND EQUIVALENT H TRUCK LOADINGS IN TONS ARE IDENTICAL AT INFINITE SPAN RANGE, STANDARD DEVIATION, AND POISSON'S COEFFICIENT FOR FREQUENCY DISTRIBUTION OF EQUIVALENT H TRUCK LOADINGS ON SPANS OF VARIOUS LENGTHS Figure 17.10 MAXIMUM, MINIMUM, AND AVERAGE EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-3 TRUCKS ON SIMPLE SPANS OF VARIOUS LENGTHS CURVES SHOWN FOR EQUIVALENT H TRUCK LOADINGS ARE BASED ON MAXIMUM BENDING MOMENTS PRODUCED BY THE 176 TYPE 3-3 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY NOTE: -- GROSS VEHICLE WEIGHT IN TONS AND EQUIVALENT H TRUCK LOADINGS IN TONS ARE IDENTICAL AT INFINITE SPAN **Figure 17.11** MAXIMUM, MINIMUM, AND AVERAGE EQUIVALENT H TRUCK LOADINGS FOR THE 83 TRUCK-TRACTOR SEMITRAILER-TRAILER COMBINATIONS ON SIMPLE SPANS OF VARIOUS LENGTHS NOTE: - GROSS VEHICLE WEIGHT IN TONS AND EQUIVALENT H TRUCK LOADINGS IN TONS ARE IDENTICAL AT INFINITE SPAN **Figure 17.12** #### MAXIMUM, MINIMUM, AND AVERAGE EQUIVALENT H TRUCK LOADINGS FOR THE 4531 (ALL TYPES) TRUCKS ON SIMPLE SPANS OF VARIOUS LENGTHS CURVES SHOWN FOR EQUIVALENT H TRUCK LOADINGS ARE BASED ON MAXIMUM BENDING MOMENTS PRODUCED BY THE 4531 (ALL TYPES) TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY 40 H TRUCK - TONS 32 32 32 EQUIVALENT 1 AVERAGE MINIMUM 10 NOT TO SCALE 20 30 40 50 60 90 70 80 100 INFINITE RANGE, STANDARD DEVIATION, AND POISSON'S COEFFICIENT FOR FREQUENCY DISTRIBUTION OF EQUIVALENT H TRUCK LOADINGS SPAN - FEET **Figure 17.13** # 18. HISTOGRAMS SHOWING FREQUENCY DISTRIBUTIONS OF EQUIVALENT H TRUCK LOADINGS ON SIMPLE SPAN BRIDGES BASED ON GROSS VEHICLE WEIGHTS Figures 18.1—18.11 present a graphical representation of the observed and calculated frequencies of equivalent H truck loadings on simple spans up to 100 feet in length for each of the 11 more numerous heavy vehicle types reported by the 1942 loadometer survey; and Figure 18.12 gives the same information for the heavy vehicles reported, representing a combined total of 4531. The histograms represent the observed data, based on 3-item moving averages, and the dashed lines represent the corresponding Poisson distributions. Both the observed and calculated frequencies of equivalent H truck loadings and gross vehicle weights shown in these figures were plotted directly from the corresponding data given by Tables 16.1a—16.12a and 16.1b—16.12b. These distributions are given in the following figures. | Heavy Vehicle | Number of Vehicles | Figure | |-----------------------------|---------------------|--------| | $ar{ extbf{T}}\mathbf{ype}$ | $\mathbf{Reported}$ | Number | | 2 | 171 | 18.1 | | 3 | 381 | 18.2 | | 2-S1 | 2855 | 18.3 | | 2-S2 | 508 | 18.4 | | 3-S1 | 9 | 18.5 | | 3-S2 | 142 | 18.6 | | 3-S3 | 14 | 18.7 | | 2-2 | 99 | 18.8 | | 2-3 | 24 | 18.9 | | 3-2 | 68 | 18.10 | | 3-3 | 176 | 18.11 | | All | 4531 | 18.12 | A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS FOR TYPE 2 HEAVY VEHICLES ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON MOMENTS PRODUCED BY THE 171 TYPE 2 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY THEORETICAL FREQUENCIES BASED ON POISSONS DISTRIBUTION LAW Figure 18.1 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS FOR TYPE 3 HEAVY VEHICLES ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON MOMENTS PRODUCED BY THE 381 TYPE 3 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY THEORETICAL FREQUENCIES BASED ON POISSONS DISTRIBUTION LAW Figure 18.2 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-SI HEAVY VEHICLES ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON MOMENTS PRODUCED BY THE 2855 TYPE 2-SI TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY THEORETICAL FREQUENCIES BASED ON POISSONS DISTRIBUTION LAW Figure 18.3 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-S2 HEAVY VEHICLES ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON MOMENTS PRODUCED BY THE 508 TYPE 2-S2 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY THEORETICAL FREQUENCIES BASED ON POISSONS DISTRIBUTION LAW Figure 18.4 FOR TYPE 3-SI HEAVY VEHICLES ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON MOMENTS PRODUCED BY THE 9 TYPE 3-SI TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY THEORETICAL FREQUENCIES BASED ON POISSONS DISTRIBUTION LAW Figure 18.5 FOR TYPE 3-S2 HEAVY VEHICLES ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON MOMENTS PRODUCED BY THE 142 TYPE 3-S2 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY THEORETICAL FREQUENCIES BASED ON POISSONS DISTRIBUTION LAW Figure 18.6 FOR TYPE 3-S3 HEAVY VEHICLES ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON MOMENTS PRODUCED BY THE 14 TYPE 3-S3 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY THEORETICAL FREQUENCIES BASED ON POISSONS DISTRIBUTION LAW Figure 18.7 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-2 HEAVY VEHICLES ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON MOMENTS PRODUCED BY THE 99 TYPE 2-2 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY THEORETICAL FREQUENCIES BASED ON POISSONS DISTRIBUTION LAW Figure 18.8 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-3 HEAVY VEHICLES ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON MOMENTS PRODUCED BY THE 24 TYPE 2-3 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY THEORETICAL FREQUENCIES BASED ON POISSONS DISTRIBUTION LAW Figure 18.9 FOR TYPE 3-2 HEAVY VEHICLES ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON MOMENTS PRODUCED BY THE 68 TYPE 3-2 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY THEORETICAL FREQUENCIES BASED ON POISSONS DISTRIBUTION LAW Figure 18.10 FOR TYPE 3-3 HEAVY VEHICLES ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON MOMENTS PRODUCED BY THE 176 TYPE 3-3 TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY THEORETICAL FREQUENCIES BASED ON POISSONS DISTRIBUTION LAW Figure 18.11 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS FOR ALL HEAVY TYPE VEHICLES ON SIMPLE SPANS OF VARIOUS LENGTH 3 OBSERVED FREQUENCIES BASED ON MOMENTS PRODUCED BY THE 4531 HEAVY VEHICLES REPORTED BY THE 1942 LOADOMETER SURVEY THEORETICAL FREQUENCIES BASED ON POISSONS DISTRIBUTION LAW **Figure 18.12** # 19. OBSERVED AND CALCULATED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS ON SIMPLE SPAN BRIDGES BASED ON VEHICLES WEIGHING ONE KIP EACH Tables 19.1a—19.11a and Tables 19.1b—19.11b, respectively, give the observed and calculated frequencies of equivalent H truck loadings based on vehicles of unit weight (or vehicles weighing one kip each) on simple spans up to 100 feet in length, for each of the 11 more numerous heavy vehicle types reported by the 1942 loadometer survey. The observed frequencies shown in these tables are based on 3-item moving averages which has the effect of smoothing the data from one cell to the next, as explained in Article 15. The implications and potential uses for this type of information are discussed at some length in Article 15. The observed and calculated frequencies of equivalent H truck loadings for each of the 11 heavy vehicle types weighing 1 kip each, on spans up to 100 feet in length are given in the following tables: | Heavy | Number of | Table N | umber | |--------------------|-----------|-------------|-------------| | Vehicle | Vehicles | Observed | Calculated | | $_{\mathrm{Type}}$ | Reported | Frequencies | Frequencies | | 2 | 171 | 19.1a | 19.1b | | 3 | 381 | 19.2a | 19.2b | | 2-S1 | 2855 | 19.3a | 19.3b | | 2-S2 | 508 | 19.4a | 19.4b | | 3-S1 | 9 | 19.5a | 19.5b | | 3-S2 | 142 | 19.6a | 19.6b | | 3-S3 | 14 | 19.7a | 19.7b | | 2-2 | 99 | 19.8a | 19.8b | | 2-3 | 24 | 19.9a | 19.9b | | 3-2 | 68 | 19.10a | 19.10b | | 3-3 | 176 | 19.11a | 19.11b | The maximum, average, and minimum equivalent H truck loadings, the range, Poisson coefficient, K, and standard deviation, D, shown at the bottom of each of these tables all have the same meaning as explained in Article 15 in connection with the discussion of frequency distributions based either on gross vehicle weights or vehicles weighing one kip each. Table 19.1a #### OBSERVED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS BASED ON MOMENTS PRODUCED BY THE 171 TYPE 2 TRUCKS WEIGHING ONE KIP EACH | Equivalent | Span-Feet | | | | | | | | | |---------------------|-----------|-------|-------|-------|-------|-------|-------|-------|--| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 1.00 | 18.3 | 18.3
| 14.5 | 23.8 | 25.5 | 32.2 | 38.6 | 45,4 | | | .95 | 25.5 | 25.5 | 19.7 | 24.2 | 28.6 | 31.8 | 32.7 | 33.3 | | | .90 | 20.7 | 20.9 | 23.6 | 23.6 | 26.3 | 24.9 | 23.4 | 19.7 | | | .85 | 17.4 | 17.6 | 21.8 | 14.8 | 13.3 | 9.2 | 4.7 | 1.6 | | | .80 | 6.6 | 6.6 | 13.0 | 8.8 | 4.7 | 1.6 | .6 | | | | .75 | 7.8 | 7.6 | 4.9 | 3.9 | 1.2 | .3 | | | | | .70 | 2.5 | 2.3 | 1.6 | .6 | .4 | | | | | | .65 | 1.2 | 1.2 | .6 | .3 | | | | | | | .60 | | | .3 | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | Max H Truck | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Avg H Truck | .90 | .90 | .89 | .91 | .93 | .95 | .96 | .97 | | | Min H Truck | .65 | .65 | .60 | .65 | .70 | .75 | .80 | .85 | | | Range | .35 | .35 | .40 | .35 | .30 | .25 | .20 | .15 | | | Poisson's | | | | | | | | | | | Coef. K | 2.0 | 2.0 | 2.2 | 1.7 | 1.4 | 1.1 | .9 | .6 | | The equivalent H truck loadings shown for the unit weight trucks of this table are proportional to the equivalent H truck loadings based on gross weights for corresponding vehicles among the 171 Type 2 trucks reported in the 1942 loadometer survey. Table 19.1b #### CALCULATED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS OF THE 171 TYPE 2 TRUCKS BASED ON POISSON'S DISTRIBUTION LAW Equivalent H .truck loadings based on moments produced by gross vehicle weights. Equivalent H truck loadings which appear less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent | Span-Feet | | | | | | | | | | |---------------------|-----------|-------|-------|-------|-------|-------|-------|-------|--|--| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | | 1.00 | 13.5 | 13.5 | 11.1 | 18.2 | 24.7 | 33.3 | 40.7 | 54.9 | | | | .95 | 27.1 | 27.1 | 24.4 | 31.1 | 34.5 | 36.6 | 36.6 | 32.9 | | | | .90 | 27.1 | 27.1 | 26.8 | 26.4 | 24.2 | 20.1 | 16.5 | 9.9 | | | | .85 | 18.0 | 18.0 | 19.7 | 15.0 | 11.3 | 7.4 | 4.9 | 2.0 | | | | .80 | 9.0 | 9.0 | 10.8 | 6.4 | 3.9 | 2.0 | 1.1 | .3 | | | | .75 | 3.6 | 3.6 | 4.8 | 2.2 | 1.1 | .4 | .2 | | | | | .70 | 1.2 | 1.2 | 1.7 | .6 | .3 | .1 | | | | | | .65 | .3 | .3 | .5 | .1 | | .1 | | | | | | .60 | .1 | .1 | .2 | | | | | | | | | .55 | .1 | .1 | | | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | | Max H Truck | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | | Avg H Truck | .90 | .90 | .89 | .91 | .93 | .95 | .96 | .97 | | | | Min H Truck | .55 | ,55 | .60 | .65 | .70 | .65 | .75 | .80 | | | | Range | .45 | .45 | .40 | .35 | .30 | .35 | .25 | .20 | | | | Poisson's | | | | | | | | | | | | Coef. K | 2.0 | 2.0 | 2.2 | 1.7 | 1.4 | 1.1 | .9 | .6 | | | | Std. Dev. D | 1.414 | 1.414 | 1.483 | 1.304 | 1.183 | 1.049 | .949 | .775 | | | The equivalent H truck loadings shown for the unit weight trucks of this table are proportional to the equivalent H truck loadings based on gross weights for corresponding vehicles among the 171 Type 2 trucks reported in the 1942 loadometer survey. # Table 19.2a OBSERVED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS BASED ON MOMENTS PRODUCED BY THE 381 TYPE 3 TRUCKS WEIGHING ONE KIP EACH | Equivalent | Span-Feet | | | | | | | | | |---------------------|-----------|-------|-------|-------|-------|-------|-------|-------|--| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 1.00 | | | 3.7 | 15.0 | 24.0 | 25.5 | 34.6 | 42.4 | | | .95 | | | 16.6 | 26.5 | 30.6 | 32.2 | 32.7 | 33.1 | | | .90 | | 14.2 | 27.6 | 30.5 | 30.2 | 30.6 | 29.5 | 23.2 | | | .85 | | 25.8 | 28.2 | 17.7 | 10.9 | 10.2 | 2.6 | 1.1 | | | .80 | | 29.0 | 16.0 | 6.4 | 2.7 | 1.1 | .6 | .2 | | | .75 | | 20.2 | 5.3 | 2.1 | 1.1 | .4 | | | | | .70 | 37.9 | 7.1 | 1.5 | 1.1 | .5 | | | | | | .65 | 31.2 | 2.2 | .7 | .4 | | | | | | | .60 | 20.2 | 1.1 | .4 | .3 | | | | | | | .55 | 7.5 | .4 | | | | | | | | | .50 | 2.2 | | | | | | | | | | .45 | 1.0 | | | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | Max H Truck | .70 | .90 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Avg H Truck | .65 | .80 | .87 | .91 | .93 | .94 | .95 | .96 | | | Min H Truck | .45 | .55 | .60 | .60 | .70 | .75 | .80 | .80 | | | Range | .25 | .35 | .40 | .40 | .30 | .25 | .20 | .20 | | | Poisson's | | | | | | | | | | | Coef. K | 1.0 | 1.9 | 2.6 | 1.9 | 1.4 | 1.3 | 1.0 | .7 | | The equivalent H truck loadings shown for the unit weight trucks of this table are proportional to the equivalent H truck loadings based on gross weights for corresponding vehicles among the 381 Type 3 trucks reported in the 1942 loadometer survey. # Table 19.2b CALCULATED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS OF THE 381 TYPE 3 TRUCKS BASED ON POISSON'S DISTRIBUTION LAW Equivalent H truck loadings based on moments produced by gross vehicle weights. Equivalent H truck loadings which appear less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent | Span-Feet | | | | | | | | | | |---------------------|-----------|-------|-------|-------|-------|-------|-------|-------|--|--| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | | 1.00 | | | 7.4 | 15.0 | 24.7 | 27.3 | 36.8 | 49.7 | | | | .95 | | | 19.3 | 28.3 | 34.5 | 35.4 | 36.8 | 34.8 | | | | .90 | | 15.0 | 25.1 | 27.0 | 24.2 | 23.0 | 18.4 | 12.2 | | | | .85 | | 28.4 | 21.8 | 17.1 | 11.3 | 10.0 | 6.1 | 2.8 | | | | .80 | | 27.0 | 14.1 | 8.1 | 3.9 | 3.2 | 1.5 | .5 | | | | .75 | | 17.1 | 7.4 | 3.1 | 1.1 | .8 | .3 | | | | | .70 | 36.8 | 8.1 | 3.2 | 1.0 | .3 | .2 | .1 | | | | | .65 | 36.8 | 3.1 | 1.2 | .3 | | .1 | | | | | | .60 | 18.4 | 1.0 | .4 | .1 | | | | | | | | .55 | 6.1 | .3 | ,1 | | | | | | | | | .50 | 1.5 | | | | | | | | | | | .45 | .3 | | | | | | | | | | | .40 | .1 | | | | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.9 | 100.0 | 100.0 | 100.0 | 100.0 | | | | Max H Truck | .70 | .90 | 1.00 | 1.00 | 1.00 | 1.00 | 1,00 | 1.00 | | | | Avg H Truck | .65 | .80 | .87 | .91 | .93 | .94 | .95 | .96 | | | | Min H Truck | .40 | .55 | .55 | .60 | .70 | .65 | .70 | .80 | | | | Range | .30 | .35 | .45 | .40 | .30 | .35 | .30 | .20 | | | | Poisson's | | | | | | | | | | | | Coef. K | 1.0 | 1.9 | 2.6 | 1.9 | 1.4 | 1.3 | 1.0 | .7 | | | | Std. Dev. D | 1.000 | 1.378 | 1.612 | 1.378 | 1.183 | 1,140 | 1.000 | .837 | | | The equivalent H truck loadings shown for the unit weight trucks of this table are proportional to the equivalent H truck loadings based on gross weights for corresponding vehicles among the 381 Type 3 trucks reported in the 1942 loadometer survey. Table 19.3a ### OBSERVED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS BASED ON MOMENTS PRODUCED BY THE 2855 TYPE 2-S1 TRUCKS WEIGHING ONE KIP EACH | Equivalent | Span-Feet | | | | | | | | | | |---------------------|-----------|-------|-----------|-------|-------|-------|-------|-------|--|--| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | | .95 | | | | | | .4 | 4.0 | 14.5 | | | | .90 | | | | .4 | 2.1 | 5.0 | 21.5 | 31,3 | | | | .85 | | | .3 | 2.7 | 5.3 | 21.4 | 31.2 | 32.8 | | | | .80 | | | 1.5 | 4.9 | 21.3 | 30.6 | 29.2 | 19.3 | | | | .75 | .3 | .7 | 3.0 | 17.8 | 27.5 | 27.7 | 11.8 | 2.0 | | | | .70 | 13.1 | 13.1 | 11.3 | 23.3 | 27.5 | 11.8 | 2.0 | .1 | | | | .65 | 12.9 | 13.6 | 27.4 | 27.0 | 11.7 | 2.3 | .1 | | | | | .60 | 26.6 | 28.0 | 30.1 | 15.3 | 3.8 | .7 | .1 | | | | | .55 | 20.3 | 20.2 | 21.8 | 7.3 | .6 | .1 | | | | | | .50 | 20.3 | 19.5 | 4.5 | 1.3 | .2 | | | | | | | .45 | 6.5 | 4.9 | .1 | | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | | Max H Truck | .75 | .75 | .85 | .90 | .90 | .95 | .95 | .95 | | | | Avg H Truck | .58 | .58 | .62 | .68 | .74 | .79 | .84 | .87 | | | | Min H Truck | .45 | .45 | $.45^{-}$ | .50 | .50 | .55 | .60 | .70 | | | | Range | .30 | .30 | .40 | .40 | .40 | .40 | .35 | .25 | | | | Poisson's | | • | | | | | | | | | | Coef. K | 3.4 | 3.3 | 4.7 | 4.5 | 3.3 | 3.3 | 2.3 | 1.6 | | | The equivalent H truck loadings shown for the unit weight trucks of this table are proportional to the equivalent H truck loadings based on gross weights for corresponding vehicles among the 2855 Type 2-S1 trucks reported in the 1942 loadometer survey. Table 19.3b ### CALCULATED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS OF THE 2855 TYPE 2-S1 TRUCKS BASED ON POISSON'S DISTRIBUTION LAW Equivalent H truck loadings based on moments produced by gross vehicle weights. Equivalent H truck loadings which appear less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent
H Truck | Span-Feet | | | | | | | | | |-----------------------|-----------|------|------|------|------|------|------|------|--| | Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | .95 | | | | | | 3.7 | 10.0 | 20.2 | | | .90 | | | | 1.1 | 3.7 | 12.2 | 23.1 | 32.3 | | | .85 | | | .9 | 5.0 | 12.2 | 20.1 | 26.5 | 25.8 | | | .80 | | | 4.3 | 11.2 | 20.1 | 22.1 | 20.3 | 13.8 | | | .75 | 3.3 | 3.7 | 10.0 | 16.9 | 22.1 | 18.2 | 11.7 | 5.5 | | | .70 | 11.3 | 12.2 | 15.7 | 19.0 | 18.2 | 12.0 | 5.4 | 1.8 | | Table 19.3b (Continued) | Equivalent | | | | Spar | n-Feet | | | | |---------------------|-------|-------|-------|-------|--------|-------|-------|-------| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .65 | 19.3 | 20.1 | 18.5 | 17.1 | 12.0 | 6.6 | 2.1 | ,5 | | .60 | 21.9 | 22.1 | 17.4 | 12.8 | 6.6 | 3.1 | .7 | .1 | | .55 | 18.6 | 18.2 | 13.6 | 8.2 | 3.1 | 1.3 | .2 | | | .50 | 12.6 | 12.0 | 9.1 | 4.6 | 1.3 | .5 | | | | .45 | 7.2 | 6.6 | 5.4 | 2.3 | .5 | .2 | | | | .40 | 3.5 | 3.1 | 2.8 | 1.0 | .2 | | | | | .35 | 1.5 | 1.3 | 1.3 | .4 | | | | | | .30 | .6 | .5 | .6 | .2 | | | | | | .25 | .2 | .2 | .2 | .1 | | | | | | .20 | | | .1 | .1 | | | | | | .15 | | | .1 | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max H Truck | .75 | .75 | .85 | .90 | .90 | .95 | .95 | .95 | | Avg H Truck | .58
| .58 | .62 | .68 | .74 | .79 | .84 | .87 | | Min H Truck | .25 | .25 | .15 | .20 | .40 | .45 | .55 | .60 | | Range | .50 | .50 | .70 | .70 | .50 | .50 | .40 | .35 | | Poisson's | | | | | | | | | | Coef. K | 3.4 | 3.3 | 4.7 | 4.5 | 3.3 | 3.3 | 2.3 | 1.6 | | Std. Dev. D | 1.844 | 1.817 | 2.168 | 2,121 | 1.817 | 1.817 | 1.517 | 1.265 | The equivalent H truck loadings shown for the unit weight trucks of this table are proportional to the equivalent H truck loadings based on gross weights for corresponding vehicles among the 2855 Type 2-S1 trucks reported in the 1942 loadometer survey. $Table\ 19.4a$ OBSERVED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS BASED ON MOMENTS PRODUCED BY THE 508 TYPE 2-S2 TRUCKS WEIGHING ONE KIP EACH | Equivalent | | | THE NAME OF THE OWNER, WHITE OF | Spa | n-Feet | ~~~ | | | |---------------------|-------|-------|---------------------------------|-------|---------|-------|-------|-------| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .95 | | | | | | | 4.3 | 11.6 | | .90 | | | | | .9 | 4.9 | 16.3 | 24.5 | | .85 | | | | 1.0 | 4.4 | 12.9 | 24.3 | 31.6 | | .80 | | | .9 | 4.4 | 12.9 | 22.3 | 28.0 | 22.3 | | .75 | | | 4.3 | 12.4 | 22.1 | 25.8 | 16.9 | 8.8 | | .70 | | 1.1 | 21.2 | 25.5 | 25.8 | 20.3 | 8.8 | 1.2 | | .65 | .7 | 19.2 | 22.1 | 24.4 | 18.9 | 10.5 | 1.3 | | | .60 | .4 | 19.3 | 28.8 | 19.3 | 10.4 | 3.2 | .1 | | | .55 | 30.3 | 32.6 | 11.8 | 7.2 | 3.2 | .1 | | | | .50 | 30.3 | 14.1 | 10.8 | 4.5 | 1.3 | | | | | .45 | 32.9 | 13.7 | .1 | 1.3 | .1 | | | | | .40 | 2.7 | | | | | | | | | .35 | 2.7 | | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max H Truck | .65 | .70 | .80 | .85 | .90 | .90 | .95 | .95 | | Avg H Truck | .49 | .56 | .62 | .66 | .71 | .76 | .82 | .85 | | Min H Truck | .35 | .45 | .45 | .45 | .45 | .55 | .60 | .70 | | Range | .30 | .25 | .35 | .40 | .45 | .35 | .35 | .25 | | Poisson's | | | | | • • • • | | | | | Coef. K | 3.1 | 2.8 | 3.5 | 3.8 | 3.9 | 2.9 | 2.7 | 2.0 | The equivalent H truck loadings shown for the unit weight trucks of this table are proportional to the equivalent H truck loadings based on gross weights for corresponding vehicles among the 508 Type 2-S2 trucks reported in the 1942 loadometer survey. Table 19.4b ### CALCULATED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS OF THE 508 TYPE 2-S2 TRUCKS BASED ON POISSON'S DISTRIBUTION LAW Equivalent H truck loadings based on moments produced by gross vehicle weights. Equivalent H truck loadings which appear less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent | Span-Feet | | | | | | | | | | |---------------------|-----------|-------|-------|-------|-------|-------|-------|-------|--|--| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | | .95 | | | | | | | 6.7 | 13.5 | | | | .90 | | | | | 2.0 | 5.5 | 18.1 | 27.1 | | | | .85 | | | | 2.2 | 7.9 | 16.0 | 24.5 | 27.1 | | | | .80 | | | 3.0 | 8.5 | 15.4 | 23.1 | 22.0 | 18.0 | | | | .75 | | | 10.6 | 16.2 | 20.0 | 22.4 | 14.9 | 9.0 | | | | .75
.70 | | 6.1 | 18.5 | 20.5 | 19.5 | 16.2 | 8.0 | 3.6 | | | | .65 | 4.5 | 17.0 | 21.6 | 19.4 | 15.2 | 9.4 | 3.6 | 1.2 | | | | .60 | 14.0 | 23.8 | 18.9 | 14.8 | 9.9 | 4.5 | 1.4 | .3 | | | | .55 | 21.6 | 22.2 | 13.2 | 9.4 | 5,5 | 1.9 | .5 | .1 | | | | .50 | 22.4 | 15.6 | 7.7 | 5.1 | 2.7 | .7 | .1 | .1 | | | | .45 | 17.3 | 8.7 | 3.9 | 2.4 | 1.2 | .2 | .1 | | | | | .40 | 10.7 | 4.1 | 1.7 | 1.0 | .5 | .1 | .1 | | | | | .35 | 5.6 | 1.6 | .7 | .4 | .2 | | | | | | | .30 | 2.5 | .6 | .2 | .1 | | | | | | | | .25 | 1.0 | .2 | | | | | | | | | | .20 | .3 | .1 | | | | | | | | | | .15 | .1 | | | | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | | Max H Truck | .65 | .70 | .80 | .85 | .90 | .90 | .95 | .95 | | | | Avg H Truck | .49 | .56 | .62 | .66 | .71 | .76 | .82 | .85 | | | | Min H Truck | .15 | .20 | .30 | .30 | .35 | .40 | .40 | .50 | | | | Range | .50 | .50 | .50 | .55 | .55 | .50 | .55 | .45 | | | | Poisson's | | | | | | | | | | | | Coef. K | 3.1 | 2.8 | 3.5 | 3.8 | 3.9 | 2.9 | 2.7 | 2.0 | | | | Std. Dev. D | 1.761 | 1.673 | 1.871 | 1.949 | 1.975 | 1.703 | 1.643 | 1.414 | | | The equivalent H truck loadings shown for the unit weight trucks of this table are proportional to the equivalent H truck loadings based on gross weights for corresponding vehicles among the 508 Type 2-S2 trucks reported in the 1942 loadometer survey. # Table 19.5a OBSERVED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS BASED ON MOMENTS PRODUCED BY THE 9 TYPE 3-S1 TRUCKS WEIGHING ONE KIP EACH | Equivalent | Span-Feet | | | | | | | | | | |---------------------|-----------|-------|-------|-------|-------|-------|-------|-------|--|--| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | | .90 | | | | | | | 37.0 | 55.6 | | | | .85 | | | | | 14.8 | 37.0 | 29.6 | 33.3 | | | | .80 | | | | 11.1 | 29.6 | 29.6 | 25.9 | 7.4 | | | | .75 | | | | 25.9 | 25.9 | 22.2 | 3.7 | 3.7 | | | | .70 | | | 29.6 | 25.9 | 18.5 | 3.7 | 3.8 | | | | | .65 | | | 29.6 | 22.2 | 3.7 | 3.7 | | | | | | .60 | | 44.5 | 29.6 | 7.4 | 3.7 | 3.8 | | | | | | .55 | | 33.3 | 7.4 | 3.7 | 3.8 | | | | | | | .50 | 55.6 | 14.8 | 3.8 | 3.8 | | | | | | | | .45 | 33.3 | 7.4 | ••• | ••• | | | | | | | | .40 | 7.4 | | | | | | | | | | | .35 | 3.7 | | | | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | | Max H Truck | .50 | .60 | .70 | .80 | .85 | .85 | .90 | .90 | | | | Avg H Truck | .48 | .57 | .64 | .69 | .76 | .79 | .85 | .88 | | | | Min H Truck | .35 | .45 | .50 | .50 | .55 | .60 | .70 | .75 | | | | Range | .15 | .15 | .20 | .30 | .30 | .25 | .20 | .15 | | | | Poisson's | | | | | | | | | | | | Coef. K | .3 | .7 | 1.2 | 2.1 | 1.9 | 1.1 | 1.0 | .3 | | | The equivalent H truck loadings shown for the unit weight trucks of this table are proportional to the equivalent H truck loadings based on gross weights for corresponding vehicles among the 9 Type 3-S1 trucks reported in the 1942 loadometer survey. # Table 19.5b CALCULATED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS OF THE 9 TYPE 3-S1 TRUCKS BASED ON POISSON'S DISTRIBUTION LAW Equivalent H truck loadings based on moments produced by gross vehicle weights. Equivalent H truck loadings which appear less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent
H Truck | | | | Spar | ı-Feet | | | | |-----------------------|-------|-------|-------|-------|--------|-------|-------|-------| | Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .90 | | | | | | | 36.2 | 74.1 | | .85 | | | | | 15.0 | 33.3 | 36.8 | 22.2 | | .80 | | | | 12.2 | 28.4 | 36.6 | 18.4 | 3.3 | | .75 | | | | 25.7 | 27.0 | 20.1 | 6.1 | .3 | | .70 | | | 30.1 | 27.0 | 17.1 | 7.4 | 1.5 | .1 | | .65 | | | 36.1 | 18.9 | 8.1 | 2.0 | .3 | | | .60 | | 49.7 | 21.7 | 9.9 | 3.1 | .4 | .1 | | | .55 | | 34.8 | 8.7 | 4.2 | 1.0 | .1 | | | | .50 | 74.1 | 12.2 | 2.6 | 1.5 | .3 | .1 | | | | .45 | 22.2 | 2.8 | .6 | .4 | | | | | | .40 | 3.3 | .5 | .1 | .1 | | | | | | .35 | .3 | | .1 | .1 | | | | | | .30 | .1 | | | - | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max H Truck | .50 | .60 | .70 | .80 | .85 | .85 | .90 | .90 | | Avg H Truck | .48 | .57 | .64 | .69 | .76 | .79 | .85 | .88 | | Min H Truck | .30 | .40 | .35 | .35 | .50 | .50 | .60 | .70 | | Range | .20 | .20 | .35 | .45 | .35 | .35 | .30 | .20 | | Poisson's | | | | | | | | | | Coef. K | .3 | .7 | 1.2 | 2.1 | 1.9 | 1.1 | 1.0 | .3 | | Std. Dev. D | .548 | .837 | 1.095 | 1.449 | 1.378 | 1.049 | 1.000 | .54 | The equivalent H truck loadings shown for the unit weight trucks of this table are proportional to the equivalent H truck loadings based on gross weights for corresponding vehicles among the 9 Type 3-51 trucks reported in the 1942 loadometer survey. #### Table 19.6a ### OBSERVED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS BASED ON MOMENTS PRODUCED BY THE 142 TYPE 3-S2 TRUCKS WEIGHING ONE KIP EACH | Equivalent | | | | Spa | n-Feet | | | | |---------------------|-------|-------|-------|-------|--------|-------|-------|-------| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .90 | | | | | | | | 9.9 | | .85 | | | | | | .8 | 11.5 | 23.9 | | .80 | | | | | 1.4 | 6.3 | 23.7 | 32.2 | | .75 | | | | 3.3 | 6.3 | 15.7 | 28.4 | 23.9 | | .70 | | | 1.4 | 5.9 | 14.1 | 23.9 | 23.0 | 9.4 | | .65 | | | 4.9 | 10.3 | 20.9 | 23.7 | 9.6 | .7 | | .60 | | 1.9 | 17.1 | 18.1 | 23.0 | 17.4 | 3.3 | | | .55 | | 15.5 | 30.3 | 26.8 | 19.0 | 8.9 | .5 | | | .50 | 1.9 | 27.0 | 28.4 | 22.5 | 11.3 | 3.3 | | | | .45 | 15.0 | 32.4 | 16.0 | 12.4 | 4.0 | | | | | .40 | 27.0 | 17.8 | 1.9 | .7 | | | | | | .35 | 32.4 | 5.4 | | | | | | | | .30 | 18.3 | | | | | | | | | .25 | 5.4 | | | | | | | _ | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max H Truck | .50 | .60 | .70 | .75 | .80 | .85 | .85 | .90 | | Avg H Truck | .37 | .47 | .53 | .56 | .61 | .67 | .75 | .80 | | Min H Truck | .25 | .35 | .40 | .40 | .45 | .50 | .55 | .65 | | Range | .25 | .25 | .30 | .35 | .35 | .35 | .30 | .25 | | Poisson's | | | ••• | ••• | | | | | | Coef. K | 2.7 | 2.6 | 3.3 | 3.8 | 3.8 | 3,7 | 2.1 | 2.0 | The equivalent H truck loadings shown for the unit weight trucks of this table are proportional to the equivalent H truck loadings based on gross weights for corresponding vehicles among the 142 Type 3-S2 trucks reported in the 1942 loadometer survey. Table 19.6b #### CALCULATED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS OF THE 142 TYPE 3-S2 TRUCKS BASED ON POISSON'S DISTRIBUTION LAW Equivalent H truck loadings based on moments produced by gross vehicle weights. Equivalent H truck loadings which appear less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent | Span-Feet | | | | | | | | | | |---------------------|-----------|----|-----|-----|------|------|------|------|--|--|
 H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | | .90 | | | | | | | | 13.5 | | | | .85 | | | | | | 2.5 | 12.2 | 27.1 | | | | .80 | | | | | 2.2 | 9.1 | 25.7 | 27.1 | | | | .75 | | | | 2.2 | 8.5 | 16.9 | 27.0 | 18.0 | | | | .70 | | | 3.7 | 8.5 | 16.2 | 20.9 | 18.9 | 9.0 | | | | Table | 19.6h | (Cointinued) | |-------|-------|--------------| | | | | | Equivalent | | | | Spar | ı-Feet | | | | |---------------------|-------|-------|-------|-------|--------|-------|-------|----------| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .65 | | | 12.2 | 16.2 | 20.5 | 19.3 | 9.9 | 3.6 | | .60 | | 7.4 | 20.1 | 20.5 | 19.4 | 14.3 | 4.2 | 1.2 | | .55 | | 19.3 | 22.1 | 19.4 | 14.8 | 8.8 | 1.5 | .3
.1 | | .50 | 6.7 | 25.1 | 18.2 | 14.8 | 9.4 | 4.7 | .4 | .1 | | .45 | 18.1 | 21.8 | 12.0 | 9.4 | 5.1 | 2.2 | .1 | .1 | | .40 | 24.5 | 14.1 | 6.6 | 5.1 | 2.4 | .9 | .1 | | | .35 | 22.0 | 7.4 | 3.1 | 2.4 | 1.0 | .3 | | | | .30 | 14.9 | 3.2 | 1.3 | 1.0 | .4 | .1 | | | | .25 | 3.0 | 1.2 | .5 | .4 | .1 | | | | | .20 | 3.6 | .4 | .2 | .1 | | | | | | .15 | 1.4 | .1 | | | | | | | | .10 | .5 | | | | | | | | | .05 | .3 | | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max H Truck | .50 | .60 | .70 | .75 | .80 | .85 | .85 | .90 | | Avg H Truck | .37 | .47 | .53 | .56 | .61 | .67 | .75 | .80 | | Min H Truck | .05 | .15 | .20 | .20 | .25 | .30 | .40 | .45 | | Range | .45 | .45 | .50 | .55 | .55 | .55 | .45 | .45 | | Poisson's | | | | | | | | | | Coef. K | 2.7 | 2.6 | 3.3 | 3.8 | 3.8 | 3.7 | 2.1 | 2.0 | | Std. Dev. D | 1.643 | 1.612 | 1.817 | 1.949 | 1.949 | 1.924 | 1.449 | 1.414 | The equivalent H truck loadings shown for the unit weight trucks of this table are proportional to the equivalent H truck loadings based on gross weights for corresponding vehicles among the 142 Type 3-S2 trucks reported in the 1942 loadometer survey. $Table\ 19.7a$ OBSERVED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS BASED ON MOMENTS PRODUCED BY THE 14 TYPE 3-S3 TRUCKS WEIGHING ONE KIP EACH | Equivalent
H Truck | | | | Spa | n-Feet | | | | |-----------------------|-------|-------|-------|-------|--------|-------|-------|-------| | Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .85 | | | | | | | | 47.6 | | .80 | | | | | | | 50.0 | 30.9 | | .75 | | | | | | 28.6 | 28.6 | 14.3 | | .70 | | | | | 35.7 | 28.6 | 9.5 | 4.8 | | .65 | | | | 21.4 | 31.0 | 23.8 | 4.8 | 2.4 | | .60 | | | 11.9 | 30.9 | 16.7 | 7.1 | 4.7 | | | ,55 | | 11.9 | 30.9 | 31.0 | 11.9 | 4.8 | 2.4 | | | .50 | | 30.9 | 31.0 | 14.3 | 2.4 | 4.7 | | | | .45 | | 31.0 | 23.8 | 2.4 | 2.3 | 2.4 | | | | .40 | 11.9 | 23.8 | 2.4 | | | | | | | .35 | 33.3 | 2.4 | | | | | | | | .30 | 28.6 | | | | | | | | | .25 | 26.2 | | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max H Truck | .40 | .55 | .60 | .65 | .70 | .75 | .80 | .85 | | Avg H Truck | .32 | .46 | .51 | .58 | .65 | .68 | .76 | .82 | | Min H Truck | .25 | .35 | .40 | .45 | .45 | .45 | .55 | .65 | | Range | .15 | .20 | .20 | .20 | .25 | .30 | .25 | .20 | | Poisson's | | | | | | | | | | Coef. K | 1.6 | 1.7 | 1.7 | 1.4 | 1.1 | 1.5 | .7 | .6 | The equivalent H truck loadings shown for the unit weight trucks of this table are proportional to the equivalent H truck loadings based on gross weights for corresponding vehicles among the 14 Type 3-S3 trucks reported in the 1942 loadometer survey. Table 19.7b ### CALCULATED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS OF THE 14 TYPE 3-S3 TRUCKS BASED ON POISSON'S DISTRIBUTION LAW Equivalent H truck loadings based on moments produced by gross vehicle weights. Equivalent H truck loadings which appear less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent | Span-Feet | | | | | | | | | | |---------------------|-----------|-------|-------|-------|-------|-------|-------|-------|--|--| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | | .85 | | | | | | | | 54.9 | | | | .80 | | | | | | | 49.6 | 32.9 | | | | .75 | | | | | | 22.3 | 34.8 | 9.9 | | | | .70 | | | | | 33.3 | 33.5 | 12.2 | 2.0 | | | | .65 | | | | 24.7 | 36.6 | 25.1 | 2.8 | .3 | | | | .60 | | | 18.3 | 34.5 | 20.1 | 12.6 | .5 | •0 | | | | .55 | | 18.3 | 31.1 | 24.2 | 7.4 | 4.7 | .1 | | | | | .50 | | 31.1 | 26.4 | 11.3 | 2.0 | 1.4 | •• | | | | | .45 | | 26.4 | 15.0 | 3.9 | .4 | .4 | | | | | | .40 | 20.2 | 15.0 | 6.4 | 1.1 | .1 | •• | | | | | | .35 | 32.3 | 6.4 | 2.2 | .3 | .î | | | | | | | .30 | 25.8 | 2.2 | .6 | | | | | | | | | .25 | 13.8 | .6 | •• | | | | | | | | | .20 | 5.5 | | | | | | | | | | | .15 | 1.8 | | | | | | | | | | | .10 | .5 | | | | | | | | | | | .05 | .1 | | | | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | | Max H Truck | .40 | .55 | .60 | .65 | .70 | .75 | .80 | .85 | | | | Avg H Truck | .32 | .46 | .51 | .58 | .65 | .67 | .78 | .82 | | | | Min H Truck | .05 | .25 | .30 | .35 | .35 | .45 | .55 | .65 | | | | Range | .35 | .30 | .30 | .30 | .35 | .30 | .25 | .20 | | | | Poisson's | | | .00 | .00 | .00 | | ,20 | | | | | Coef. K | 1.6 | 1.7 | 1.7 | 1.4 | 1.1 | 1.5 | .7 | .6 | | | | Std. Dev. D | 1,265 | 1.304 | 1.304 | 1.183 | 1.049 | 1.225 | .837 | .778 | | | The equivalent H truck loadings shown for the unit weight trucks of this table are proportional to the equivalent H truck loadings based on gross weights for corresponding vehicles among the 14 Type 3-S3 trucks reported in the 1942 loadometer survey. Table 19.8a ## OBSERVED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS BASED ON MOMENTS PRODUCED BY THE 99 TYPE 2-2 TRUCKS WEIGHING ONE KIP EACH | Equivalent
H Truck | Span-Feet | | | | | | | | | | |-----------------------|-----------|------|------|------|------|------|------|------|--|--| | Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | | .90 | | | | | | | 7.4 | 26.3 | | | | .85 | | | | | | 5.7 | 23.9 | 32.7 | | | | .80 | | | | | 7.1 | 17.9 | 31.7 | 30.0 | | | | .75 | | | | 6.7 | 15.2 | 25.3 | 26.9 | 10.4 | | | | .70 | | | 3.3 | 10.1 | 24.6 | 27.9 | 9.4 | .6 | | | | .65 | | | 7.1 | 20.2 | 23.6 | 15.2 | .7 | | | | | .60 | | 2.3 | 15.8 | 23.2 | 18.2 | 7.1 | • | | | | | .55 | | 16.5 | 21.2 | 22.9 | 7.0 | .7 | | | | | | Table 19.8a (Co | ontinuea) | | | | | | | | |---------------------|-----------|-------|-------|-------|--------|-------|-------|-------| | Equivalent | | | | Spa | n-Feet | | | | | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .50 | 19.6 | 16.5 | 26.3 | 11.5 | 4.3 | .2 | | | | .45 | 33.3 | 31.7 | 16.5 | 5.1 | | | | | | .40 | 23.9 | 16.8 | 9.8 | .3 | | | | | | .35 | 23.2 | 16.2 | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max H Truck | .50 | .60 | .70 | .75 | .80 | .85 | .90 | .90 | | Avg H Truck | .43 | .45 | .53 | .60 | .67 | .72 | .80 | .84 | | Min H Truck | .35 | .35 | .40 | .40 | .50 | .50 | .65 | .70 | | Range | .15 | .25 | .30 | .35 | .30 | .35 | .25 | .20 | | Poisson's | | | | | | | | | | Coef. K | 1.4 | 2.9 | 3.5 | 3.0 | 2.7 | 2.5 | 2.1 | 1.2 | Table 19.8a (Continued) The equivalent H truck loadings shown for the unit weight trucks of this table are proportional to the equivalent H truck loadings based on gross weights for corresponding vehicles among the 99 Type 2-2 trucks reported in the 1942 loadometer survey. Table 19.8b CALCULATED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS OF THE 99 TYPE 2-2 TRUCKS BASED ON POISSON'S DISTRIBUTION LAW Equivalent H truck loadings based on moments produced by gross vehicle weights. Equivalent H truck loadings which appear less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent | | | | Spar | n-Feet | | | | |---------------------|-------|-------|-------|-------|--------|-------|-------|-------| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .90 | | | , | | | | 12.2 | 30.1 | | .85 | | | | | | 8.2 | 25.7 | 36.1 | | .80 | | | | | 6.7 | 20.5 | 27.0 | 21.7 | | .75 | | | | 5.0 | 18.1 | 25.7 | 18.9 | 8.7 | | .70 | | | 3.0 | 14.9 | 24.5 | 21.4 | 9.9 | 2.6 | | .65 | | | 10.6 | 22.4 | 22.0 | 13.4 | 4.2 | .6 | | .60 | | 5.5 | 18.5 | 22.4 | 14.9 | 6.7 | 1.5 | .1 | | .55 | | 16.0 | 21.6 | 16.8 | 8.0 | 2.8 | .4 | .1 | | .50 | 24.7 | 23.1 | 18.9 | 10.1 | 3.6 | 1.0 | .1 | | | .45 | 34.5 | 22.4 | 13.2 | 5.0 | 1.4 | .3 | .1 | | | .40 | 24.2 | 16.2 | 7.7 | 2.2 | .5 | | | | | .35 | 11.3 | 9.4 | 3.9 | .8 | .1 | | | | | .30 | 3.9 | 4.5 | 1.7 | .3 | .1 | | | | | .25 | 1.1 | 1.9 | .7 | .1 | .1 | | | | | .20 | .3 | .7 | .2 | | | | | | | .15 | | .2 | | | | | | | | .10 | | .1 | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max H Truck | .50 | .60 | .70 | .75 | .80 | .85 | .90 | .90 | | Avg H Truck | .43 | .45 | .53 | .60 | .67 | .72 | .80 | .84 | | Min H Truck | .20 | .10 | .20 | .25 | .25 | .45 | .45 | .55 | | Range | .30 | .50 | .50 | .50 | .55 | .40 | .45 | .35 | | Poisson's | | | | | | | | | | Coef. K | 1.4 | 2.9 | 3.5 | 3.0 | 2.7 | 2.5 | 2.1 | 1.2 | | Std. Dev. D | 1.183 | 1.703 | 1.871 | 1.732 | 1.643 | 1.581 | 1.449 | 1.095 | The equivalent H truck loadings shown for the unit weight trucks of this table are proportional to the equivalent H truck loadings based on gross weights for corresponding vehicles among the 99 Type 2-2 trucks reported in the 1942 loadometer survey. Table 19.9a # OBSERVED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS BASED ON MOMENTS PRODUCED BY THE 24 TYPE 2-3 TRUCKS WEIGHING ONE KIP EACH | Equivalent | Span-Feet | | | | | | | | | | |---------------------|-----------|-------|-------|-------|-------|-------|-------|-------|--|--| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | | .85 | | | | | | | | 19.5 | | | | .80 | | | | | | | 19.5 | 33.3 | | | | .75 | | | | | | | 33.3 | 30.6 | | | | .70 | | | | | | 22.2 | 30.6 | 16.6 | | | | .65 | | | | | 19.5 | 29.2 | 16.6 | | | | | .60 | | | | 11.0 | 29.2 | 27.8 | | | | | | .55 | | | 18.1
| 18.1 | 30.6 | 16.7 | | | | | | .50 | 8.3 | 12.5 | 22.2 | 30.6 | 16.6 | 4.1 | | | | | | .45 | 29.2 | 33,3 | 29.2 | 25.0 | 4.1 | | | | | | | .40 | 27.8 | 29.2 | 19.4 | 15.3 | | | | | | | | .35 | 29.2 | 25.0 | 11.1 | | | | | | | | | .30 | 4.2 | | | | | | | | | | | .25 | 1.3 | | | | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | | Max H Truck | .50 | .50 | .55 | .60 | .65 | .70 | .80 | .85 | | | | Avg H Truck | .40 | .42 | .46 | .49 | .57 | .63 | .73 | .78 | | | | Min H Truck | .25 | .35 | .35 | .40 | .45 | .50 | .65 | .70 | | | | Range | .25 | .15 | .20 | .20 | .20 | .20 | .15 | .15 | | | | Poisson's | | | | | | | | | | | | Coef. K | 1,9 | 1.6 | 1.8 | 2.1 | 1.5 | 1.5 | 1.4 | 1.4 | | | The equivalent H truck loadings shown for the unit weight trucks of this table are proportional to the equivalent H truck loadings based on gross weights for corresponding vehicles among the 24 Type 2-3 trucks reported in the 1942 loadometer survey. Table 19.9b # CALCULATED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS OF THE 24 TYPE 2-3 TRUCKS BASED ON POISSON'S DISTRIBUTION LAW Equivalent H truck loadings based on moments produced by gross vehicle weights. Equivalent H truck loadings which appear less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent
H Truck
Loadings | Span-Feet | | | | | | | | | | |-----------------------------------|-----------|----|------|------|------|------|------|------|--|--| | | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | | .85 | | | | | | | | 24.7 | | | | .80 | | | | | | | 24.7 | 34.5 | | | | .75 | | | | | | | 34.5 | 24.2 | | | | .70 | | | | | | 22.3 | 24.2 | 11.3 | | | | .65 | | | | | 22.3 | 33.5 | 11.3 | 3.9 | | | | .60 | | | | 12.2 | 33.5 | 25.1 | 3.9 | 1.1 | | | | .55 | | | 16.5 | 25.7 | 25.1 | 12.6 | 1.1 | .3 | | | | Equivalent | | | | Spar | n-Feet | | | | |---------------------|-------|-------|-------|-------|--------|-------|-------|-------| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .50 | 15.0 | 20.2 | 29.8 | 27.0 | 12.6 | 4.7 | .3 | | | .45 | 28.4 | 32.3 | 26.8 | 18.9 | 4.7 | 1.4 | | | | .40 | 27.0 | 25.8 | 16.1 | 9.9 | 1.4 | .4 | | | | .35 | 17.1 | 13.8 | 7.2 | 4.2 | .4 | | | | | .30 | 8.1 | 5.5 | 2.6 | 1.5 | | | | | | .25 | 3.1 | 1.8 | .8 | .4 | | | | | | .20 | 1.0 | .5 | .2 | .1 | | | | | | .15 | .3 | .1 | | .1 | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max H Truck | .50 | .50 | .55 | .60 | .65 | .70 | .80 | .85 | | Avg H Truck | .40 | .42 | .46 | .49 | .57 | .63 | .73 | .78 | | Min H Truck | .15 | .15 | .20 | .15 | .35 | .40 | .50 | .55 | | Range | .35 | .35 | .35 | .45 | .30 | .30 | .30 | .30 | | Poisson's | | | | | | | | | | Coef. K | 1.9 | 1.6 | 1.8 | 2.1 | 1.5 | 1.5 | 1.4 | 1.4 | | Std. Dev. D | 1.378 | 1.265 | 1.342 | 1.449 | 1,225 | 1.225 | 1.183 | 1.183 | Table 19.9b (Continued) The equivalent H truck loadings shown for the unit weight trucks of this table are proportional to the equivalent H truck loadings based on gross weights for corresponding vehicles among the 24 Type 2-3 trucks reported in the 1942 loadometer survey. OBSERVED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS BASED ON MOMENTS PRODUCED BY THE 68 TYPE 3-2 TRUCKS WEIGHING ONE KIP EACH Table 19.10a | Equivalent
H Truck | | | | Spa | n-Feet | | | | |-----------------------|-------|-------|-------|-------|--------|-------|-------|-------| | Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .90 | | | | | | | - | 12.7 | | .85 | | | | | | | 17.7 | 27.0 | | .80 | | | | | | 7.4 | 27.0 | 32.4 | | .75 | | | | | 9.3 | 20.1 | 31.9 | 21.6 | | .70 | | | | 10.8 | 18.1 | 26.0 | 17.1 | 6.3 | | .65 | | | 9.8 | 15.7 | 27.9 | 27.0 | 6.3 | | | .60 | | 1.4 | 15.7 | 24.5 | 25.0 | 13.2 | | | | .55 | | 14.7 | 32.8 | 23.5 | 15.2 | 6.3 | | | | .50 | 1.0 | 15.2 | 24.0 | 17.7 | 4.5 | | | | | .45 | 14.7 | 32.4 | 17.7 | 7.8 | | | | | | .40 | 14.2 | 18.6 | | | | | | | | .35 | 32.8 | 17.7 | | | | | | | | .30 | 18.6 | | | | | | | | | .25 | 18.7 | | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max H Truck | .50 | .60 | .65 | .70 | .75 | .80 | .85 | .90 | | Avg H Truck | .35 | .45 | .54 | .58 | .63 | .68 | .77 | .81 | | Min H Truck | .25 | .35 | .45 | .45 | .50 | .55 | .65 | .70 | | Range | .25 | .25 | .20 | .25 | .25 | .25 | .20 | .20 | | Poisson's | • | • | | | | | | •• | | Coef. K | 3.1 | 3.0 | 2.2 | 2.4 | 2.3 | 2.4 | 1.7 | 1.8 | The equivalent H truck loadings shown for the unit weight trucks of this table are proportional to the equivalent H truck loadings based on gross weights for corresponding vehicles among the 68 Type 3-2 trucks reported in the 1942 loadometer survey. Table 19.10b ## CALCULATED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS OF THE 68 TYPE 3-2 TRUCKS BASED ON POISSON'S DISTRIBUTION LAW Equivalent H truck loadings based on moments produced by gross vehicle weights. Equivalent H truck loadings which appear less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent
H Truck | | | | Span- | Feet | | | | |-----------------------|-------|-------|-------|----------|-------|-------|-------|----------| | Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .90 | | | | | | | | 16.5 | | .85 | | | | | | | 18.3 | 29.8 | | .80 | | | | | | 9.1 | 31.1 | 26.8 | | .75 | | | | | 10.0 | 21.8 | 26.4 | 16.1 | | .70 | | | | 9.1 | 23.1 | 26.1 | 15.0 | 7.2 | | .65 | | | 11.1 | 21.8 | 26.5 | 20.9 | 6.4 | 2.6 | | .60 | | 5.0 | 24.4 | 26.1 | 20.3 | 12.5 | 2.2 | .8 | | .55 | | 14.9 | 26.8 | 20.9 | 11.7 | 6.0 | .6 | .8
.2 | | .50 | 4.5 | 22.4 | 19.7 | 12.5 | 5.4 | 2.4 | | | | .45 | 14.0 | 22.4 | 10.8 | 6.0 | 2.1 | .8 | | | | .40 | 21.6 | 16.8 | 4.8 | 2.4 | .7 | .2 | | | | .35 | 22.4 | 10.1 | 1.7 | .8 | .2 | .1 | | | | .30 | 17.3 | 5.0 | .5 | .2 | | .1 | | | | .25 | 10.7 | 2.2 | .2 | .2
.1 | | | | | | .20 | 5.6 | .8 | | .1 | | | | | | .15 | 2.5 | .3 | | | | | | | | .10 | 1.0 | .1 | | | | | | | | .05 | .4 | | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max H Truck | .50 | .60 | .65 | .70 | .75 | .80 | .85 | .90 | | Avg H Truck | .35 | .45 | .54 | .58 | .63 | .68 | .77 | .81 | | Min H Truck | .05 | .10 | .25 | .20 | .35 | .30 | .55 | .55 | | Range | .45 | .50 | .40 | .50 | .40 | .50 | .30 | .35 | | Poisson's | | | | | | | | | | Coef. K | 3.1 | 3.0 | 2.2 | 2.4 | 2.3 | 2.4 | 1.7 | 1.8 | | Std. Dev. D | 1.761 | 1.732 | 1.483 | 1.549 | 1.517 | 1.549 | 1.304 | 1.342 | The equivalent H truck loadings shown for the unit weight trucks of this table are proportional to the equivalent H truck loadings based on gross weights for corresponding vehicles among the 68 Type 3-2 trucks reported in the 1942 loadometer survey. Table 19.11a OBSERVED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS BASED ON MOMENTS PRODUCED BY THE 176 TYPE 3-3 TRUCKS WEIGHING ONE KIP EACH | Equivalent | | | | Span- | -Feet | | | | |---------------------|----|----|-----|-------|-------|------|------|------| | H Truck
Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .85 | | | | - | | | | 9.9 | | .80 | | | | | | | 5.3 | 27.7 | | .75 | | | | | | | 25.6 | 32.4 | | .70 | | | | | | 8.6 | 32.0 | 23.8 | | .65 | | | | | 5.0 | 21.6 | 28.4 | 5.7 | | .60 | | | | 4.7 | 18.6 | 31.7 | 7.8 | .5 | | .55 | | | 3.8 | 18.6 | 31.6 | 24.5 | .9 | | | Table 13.114 (C | ,ontinucu, | | | | | | | | |-----------------------|------------|-------|-------|-------|--------|-------|-------|-------| | Equivalent
H Truck | | | | Spa | n-Feet | | | | | Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .50 | | 2.1 | 20.1 | 31.6 | 28.8 | 11.8 | | | | .45 | | 30.5 | 30.5 | 29.2 | 14.8 | 1.3 | | | | .40 | 1.9 | 32.4 | 30.7 | 14.8 | 1.2 | .5 | | | | .35 | 29.7 | 32.2 | 13.3 | 1.1 | | | | | | .30 | 32.4 | 2.8 | 1.6 | | | | | | | .25 | 32.4 | | | | | | | | | .20 | 3.6 | | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max H Truck | .40 | .50 | .55 | .60 | .65 | .70 | .80 | .85 | | Avg H Truck | .30 | .40 | .43 | .48 | .53 | .59 | .69 | .76 | | Min H Truck | .20 | .30 | .30 | .35 | .40 | .40 | .55 | .60 | | Range | .20 | .20 | .25 | .25 | .25 | .30 | .25 | .25 | | Poisson's | | | | | | | | | | Coef. K | 2.1 | 2.0 | 2.3 | 2.3 | 2.3 | 2.2 | 2.1 | 1.9 | Table 19.11a (Continued) The equivalent H truck loadings shown for the unit weight trucks of this table are proportional to the equivalent H truck loadings based on gross weights for corresponding vehicles among the 176 Type 3-3 trucks reported in the 1942 loadometer survey. Table 19.11b CALCULATED FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS OF THE 176 TYPE 3-3 TRUCKS BASED ON POISSON'S DISTRIBUTION LAW Equivalent H truck loadings based on moments produced by gross vehicle weights. Equivalent H truck loadings which appear less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent
H Truck | | | | Span- | Feet | | | | |-----------------------|-------|-------|-------|-------|-------|-------|-------|-------| | Loadings | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .85 | | | | | | | | 15.0 | | .80 | | | | | | | 12.2 | 28.4 | | .75 | | | | | | | 25.7 | 27.0 | | .70 | | | | | | 11.1 | 27.0 | 17.1 | | .65 | | | | | 10.0 | 24.4 | 18.9 | 8.1 | | .60 | | | | 10.0 | 23.1 | 26.8 | 9.9 | 3.1 | | .55 | | | 10.0 | 23.1 | 26.5 | 19.7 | 4.2 | 1.0 | | .50 | | 13.5 | 23.1 | 26.5 | 20.3 | 10.8 | 1.5 | .3 | | .45 | | 27.1 | 26.5 | 20.3 | 11.7 | 4.8 | .4 | • | | .40 | 12.2 | 27.1 | 20.3 | 11.7 | 5.4 | 1.7 | .1 | | | .35 | 25.7 | 18.0 | 11.7 | 5.4 | 2.1 | .5 | .1 | | | .30 | 27.0 | 9.0 | 5.4 | 2.1 | .7 | .2 | | | | .25 | 18.9 | 3.6 | 2.1 | .7 | .2 | | | | | .20 | 9.9 | 1.2 | .7 | .2 | | | | | | .15 | 4.2 | .3 | .2 | | | | | | | .10 | 1.5 | .1 | | | | | | | | .05 | .6 | .1 | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
 Max H Truck | .40 | .50 | .55 | .60 | .65 | .70 | .80 | .85 | | Avg H Truck | .30 | .40 | .43 | .48 | .53 | .59 | .69 | .76 | | Min H Truck | .05 | .05 | .15 | .20 | .25 | .30 | .35 | .50 | | Range | .35 | .45 | .40 | .40 | .40 | .40 | .45 | .35 | | Poisson's | | | | | | | | | | Coef. K | 2.1 | 2.0 | 2.3 | 2.3 | 2.3 | 2.2 | 2.1 | 1.9 | | Std. Dev. D | 1.449 | 1.414 | 1.517 | 1.517 | 1.517 | 1.483 | 1.449 | 1.378 | The equivalent H truck loadings shown for the unit weight trucks of this table are proportional to the equivalent H truck loadings based on gross weights for corresponding vehicles among the 176 Type 3-3 trucks reported in the 1942 loadometer survey. # 20. MAXIMUM, AVERAGE, AND MINIMUM EQUIVALENT H TRUCK LOADINGS ON SIMPLE SPAN BRIDGES BASED ON VEHICLES WEIGHING ONE KIP EACH Figures 20.1—20.11 present a graphical representation of the maximum, average, and minimum equivalent H truck loadings on simple spans of various lengths, based on vehicles weighing one kip each, for each of the 11 more numerous heavy vehicle types reported by the 1942 loadometer survey. These figures were plotted from the data given in Tables 19.1a—19.11a. The upper part of each of these figures give the maximum, average, and minimum equivalent H truck loadings for each span length and the lower part shows the range, the Poisson coefficient, K, and the standard deviation, D, for each corresponding span length. The meaning of these terms is fully explained in Article 15. All of these data are given in the following figures. | Heavy Vehicle
Type | Number of Vehicles
Reported | Figure
Number | |-----------------------|--------------------------------|------------------| | 2 | 171 | 20.1 | | 3 | 381 | 20.2 | | 2-S1 | 2855 | 20.3 | | 2-S2 | 508 | 20.4 | | 3-S1 | 9 | 20.5 | | 3-S2 | 142 | 20.6 | | 3-S3 | 14 | 20.7 | | 2-2 | 99 | 20.8 | | 2-3 | 24 | 20.9 | | 3-2 | 68 | 20.10 | | 3-3 | 176 | 20.11 | | | | | FREQUENCY DISTRIBUTION OF EQUIVALENT H TRUCK LOADINGS ON SIMPLE SPANS OF VARIOUS LENGTHS FOR TYPE 2 TRUCKS WEIGHING ONE KIP EACH NOTE: - GROSS VEHICLE WEIGHT IN KIPS AND EQUIVALENT H TRUCK LOADINGS IN KIPS ARE IDENTICAL AT INFINITE SPAN Figure 20.1 FREQUENCY DISTRIBUTION OF EQUIVALENT H TRUCK LOADINGS ON SIMPLE SPANS OF VARIOUS LENGTHS FOR TYPE 3 TRUCKS WEIGHING ONE KIP EACH NOTE: -GROSS VEHICLE WEIGHT IN KIPS AND EQUIVALENT H TRUCK LOADINGS IN KIPS ARE IDENTICAL AT INFINITE SPAN Figure 20.2 FREQUENCY DISTRIBUTION OF EQUIVALENT H TRUCK LOADINGS ON SIMPLE SPANS OF VARIOUS LENGTHS FOR TYPE 2-SI TRUCKS WEIGHING ONE KIPEACH NOTE: - GROSS VEHICLE WEIGHT IN KIPS AND EQUIVALENT H TRUCK LOADINGS IN KIPS ARE IDENTICAL AT INFINITE SPAN Figure 20.3 FREQUENCY DISTRIBUTION OF EQUIVALENT H TRUCK LOADINGS ON SIMPLE SPANS OF VARIOUS LENGTHS FOR TYPE 2-S2 TRUCKS WEIGHING ONE KIP EACH NOTE: - GROSS VEHICLE WEIGHT IN KIPS AND EQUIVALENT H TRUCK LOADINGS IN KIPS ARE IDENTICAL AT INFINITE SPAN Figure 20.4 ## FREQUENCY DISTRIBUTION OF EQUIVALENT H TRUCK LOADINGS ON SIMPLE SPANS OF VARIOUS LENGTHS FOR TYPE 3-SI TRUCKS WEIGHING ONE KIP EACH NOTE: -- GROSS VEHICLE WEIGHT IN KIPS AND EQUIVALENT H TRUCK LOADINGS IN KIPS ARE IDENTICAL AT INFINITE SPAN Figure 20.5 FREQUENCY DISTRIBUTION OF EQUIVALENT H TRUCK LOADINGS ON SIMPLE SPANS OF VARIOUS LENGTHS FOR TYPE 3-S2 TRUCKS WEIGHING ONE KIP EACH NOTE: -GROSS VEHICLE WEIGHT IN KIPS AND EQUIVALENT H TRUCK LOADINGS IN KIPS ARE IDENTICAL AT INFINITE SPAN Figure 20.6 FREQUENCY DISTRIBUTION OF EQUIVALENT H TRUCK LOADINGS ON SIMPLE SPANS OF VARIOUS LENGTHS FOR TYPE 3-S3 TRUCKS WEIGHING ONE KIP EACH NOTE: - GROSS VEHICLE WEIGHT IN KIPS AND EQUIVALENT H TRUCK LOADINGS IN KIPS ARE IDENTICAL AT INFINITE SPAN Figure 20.7 FREQUENCY DISTRIBUTION OF EQUIVALENT H TRUCK LOADINGS ON SIMPLE SPANS OF VARIOUS LENGTHS FOR TYPE 2-2 TRUCKS WEIGHING ONE KIP EACH NOTE: - GROSS VEHICLE WEIGHT IN KIPS AND EQUIVALENT H TRUCK LOADINGS IN KIPS ARE IDENTICAL AT INFINITE SPAN Figure 20.8 FREQUENCY DISTRIBUTION OF EQUIVALENT H TRUCK LOADINGS ON SIMPLE SPANS OF VARIOUS LENGTHS FOR TYPE 2-3 TRUCKS WEIGHING ONE KIP EACH NOTE: - GROSS VEHICLE WEIGHT IN KIPS AND EQUIVALENT H TRUCK LOADINGS IN KIPS ARE IDENTICAL AT INFINITE SPAN Figure 20.9 ## FREQUENCY DISTRIBUTION OF EQUIVALENT H TRUCK LOADINGS ON SIMPLE SPANS OF VARIOUS LENGTHS FOR TYPE 3—2 TRUCKS WEIGHING ONE KIP EACH NOTE: GROSS VEHICLE WEIGHT IN KIPS AND EQUIVALENT H TRUCK LOADINGS IN KIPS ARE IDENTICAL AT INFINITE SPAN Figure 20.10 ## FREQUENCY DISTRIBUTION OF EQUIVALENT H TRUCK LOADINGS ON SIMPLE SPANS OF VARIOUS LENGTHS FOR TYPE 3-3 TRUCKS WEIGHING ONE KIP EACH NOTE: - GROSS VEHICLE WEIGHT IN KIPS AND EQUIVALENT H TRUCK LOADINGS IN KIPS ARE IDENTICAL AT INFINITE SPAN Figure 20.11 # 21. HISTOGRAMS SHOWING FREQUENCY DISTRIBUTIONS OF EQUIVALENT H TRUCK LOADINGS ON SIMPLE SPAN BRIDGES BASED ON VEHICLES WEIGHING ONE KIP EACH Figures 21.1—21.11 present a graphical representation of the observed and calculated frequencies of equivalent H truck loadings for vehicles weighing one kip each on simple spans up to 100 feet in length for each of the 11 more numerous heavy vehicle types reported by the 1942 loadometer survey. The histograms represent the observed data, based on 3-item moving averages as explained in Article 15, and the dashed lines represent the corresponding Poisson distributions. Both the observed and calculated frequencies shown in these figures were plotted from the corresponding data given in Tables 19.1a—19.11a and Tables 19.1b—19.11b, respectively. These distributions are given in the following figures. | Heavy Vehicle
Type | Number of Vehicles
Reported | Figure
Number | |-----------------------|--------------------------------|------------------| | 2 | 171 | 21.1 | | 3 | 381 | 21.2 | | 2-S1 | 2855 | 21.3 | | 2-S2 | 508 | 21.4 | | 3-S1 | 9 | 21.5 | | 3-S2 | 142 | 21.6 | | 3-S3 | 14 | 21.7 | | 2-2 | 99 | 21.8 | | 2-3 | $^{\prime}$ 24 | 21.9 | | 3-2 | 68 | 21.10 | | 3-3 | 176 | 21.11 | A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS FOR TYPE 2 TRUCKS WEIGHING ONE KIP EACH ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON MOMENTS PRODUCED BY 171 TYPE 2 TRUCKS WEIGHING ONE KIP EACH THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 21.1 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS FOR TYPE 3 TRUCKS WEIGHING ONE KIP EACH ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON MOMENTS PRODUCED BY 381 TYPE 3 TRUCKS WEIGHING ONE KIP EACH THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 21.2 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-SI TRUCKS WEIGHING ONE KIP EACH ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON MOMENTS PRODUCED BY 2855 TYPE 2-SI TRUCKS WEIGHING ONE KIP EACH THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 21.3 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-S2 TRUCKS WEIGHING ONE KIP EACH ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON MOMENTS PRODUCED BY 508 TYPE 2-S2 TRUCKS WEIGHING ONE KIP EACH THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 21.4 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS FOR TYPE 3—SI TRUCKS WEIGHING ONE KIP EACH ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON MOMENTS PRODUCED BY 9 TYPE 3-SI TRUCKS WEIGHING ONE KIP EACH THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 21.5 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-S2 TRUCKS WEIGHING ONE KIP EACH ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON MOMENTS PRODUCED BY 142 TYPE 3-S2 TRUCKS WEIGHING ONE KIP EACH THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 21.6 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-S3 TRUCKS WEIGHING ONE KIP EACH ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON MOMENTS PRODUCED BY 14 TYPE 3-S3 TRUCKS WEIGHING ONE KIP EACH THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 21.7 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS FOR TYPE 2-2 TRUCKS WEIGHING ONE KIP EACH ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON MOMENTS PRODUCED BY 99 TYPE 2-2 TRUCKS WEIGHING ONE KIP EACH THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 21.8 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS FOR TYPE 2—3 TRUCKS WEIGHING ONE KIP EACH ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON MOMENTS PRODUCED BY 24 TYPE 2-3 TRUCKS WEIGHING ONE KIP EACH THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 21.9 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS FOR TYPE 3-2 TRUCKS WEIGHING ONE KIP EACH ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON MOMENTS PRODUCED BY 68 TYPE 3-2 TRUCKS WEIGHING ONE KIP EACH THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 21.10 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT H TRUCK LOADINGS FOR TYPE 3—3 TRUCKS WEIGHING ONE KIP EACH ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON MOMENTS PRODUCED BY 176 TYPE 3-3 TRUCKS WEIGHING ONE KIP EACH THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW **Figure 21.11** #### PART V ### OBSERVED AND CALCULATED FREQUENCIES OF EQUIV-ALENT CONCENTRATED LOADS ON SIMPLE SPAN BRIDGES FOR THE HEAVY VEHICLES REPORTED BY THE SPECIAL LOADMETER SURVEY OF 1942 ### 22. FREQUENCY ANALYSIS OF EQUIVALENT CONCENTRATED LOADS Since the procedures for arriving at the observed and calculated frequencies of equivalent concentrated loads given by the tables and figures in the following articles of Part V (Articles 23 through 28) have already been explained
at some length in Articles 14 and 15, only a brief discussion of them here will be needed to facilitate their interpretation. Before proceeding with the discussion of the tables and figures in these articles, however, a list of their titles will not only serve as a convenient reference, but since they are somewhat self-explanatory, they will also serve to indicate the nature of the material presented in each. They are as follows: | Article 23
(Tables 23.1—23.12) | Observed and Calculated Frequencies of Equivalent
Concentrated Loads on Simple Span Bridges Based
on Gross Vehicle Weights | |------------------------------------|---| | Article 24
(Figures 24.1—24.13) | Maximum, Minimum, and Average Equivalent Concentrated Loads on Simple Span Bridges Based on Gross Vehicle Weights | | Article 25
(Figures 25.1—25.12) | Histograms Showing Frequency Distributions of
Equivalent Concentrated Loads on Simple Span
Bridges Based on Gross Vehicle Weights | | Article 26
(Tables 26.1—26.11) | Observed and Calculated Frequencies of Equivalent
Concentrated Loads on Simple Span Bridges Based
on Vehicles Weighing One Kip Each | | Article 27
(Figures 27.1—27.11) | Frequency Distributions of Equivalent Concentrated
Loads on Simple Span Bridges Based on Vehicles
Weighing One Kip Each | | Article 28
(Figures 28.1—28.11) | Histograms Showing Frequency Distribution of
Equivalent Concentrated Loads on Simple Span
Bridges Based on Vehicles Weighing One Kip Each | It will be seen from these titles that the tables and figures given in Articles 23, 24, and 25 are concerned with the frequency analysis of equivalent concentrated loads based on gross vehicle weights and those in Articles 26, 27, and 28 are concerned with a similar frequency analysis based on vehicles weighing one kip each or vehicles of unit weight. The interpretation of the information given by the frequency distributions of equivalent concentrated loads presented in these articles is substantially the same as for those based on equivalent H truck loadings given in Part IV. The reader, therefore, is referred to Article 15 for a discussion of this subject. He is also referred to Article 5.4 "Use of Tables and Charts For Converting Heavy Vehicles into Equivalent Loads" for a discussion of the present and future potential uses of equivalent concentrated loads. ## 23. OBSERVED AND CALCULATED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS ON SIMPLE SPAN BRIDGES BASED ON GROSS VEHICLE WEIGHTS Tables 23.1a—23.11a and Tables 23.1b—23.11b, respectively, give the observed and calculated frequencies of equivalent concentrated loads, on spans up to 100 feet in length, for each of the 11 more numerous heavy vehicle types reported by the 1942 loadometer survey. Also, Table 23.12a and Table 23.12b, respectively, give similar observed and calculated frequencies for all of the 4531 heavy vehicles reported, including those whose individual frequencies are given in Tables 23.1a—23.11a and Tables 23.1b—23.11b. The observed frequencies shown in these tables—as previously explained in Article 15—are based on 3-item moving averages which has the effect of smoothing the data from one cell to the next. The observed and calculated frequencies of equivalent concentrated loads for each of the 11 more numerous heavy vehicle types reported, and for all of the heavy vehicles reported are given in the following tables. | Heavy | Number of | Table N | Jumber | |----------|-----------|-------------|-------------| | Vehicle | Vehicles | Observed | Calculated | | Type | Reported | Frequencies | Frequencies | | 2^{-1} | 171 | 23.1a | 23.1b | | 3 | 381 | 23.2a | 23.2b | | 2-S1 | 2855 | 23.3a | 23.3b | | 2-S2 | 508 | 23.4a | 23.4b | | 3-S1 | 9 | 23.5a | 23.5b | | 3-S2 | 142 | 23.6a | 23.6b | | 3-S3 | 14 | 23.7a | 23.7b | | 2-2 | 99 | 23.8a | 23.8b | | 2-3 | 24 | 23.9a | 23.9b | | 3-2 | 68 | 23.10a | 23.10b | | 3-3 | 176 | 23.11a | 23.11b | | All | 4531 | 23.12a | 23.12b | ## Table 23.1a OBSERVED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 171 TYPE 2 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY | Equivalent | | | | Span | -Feet | | | | |-----------------------|-------|-------|-------|-------|-------|-------|-------|-------| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | 7 | 3.1 | 3.1 | | | | | | | | 8 | 6.4 | 6.4 | 5.7 | 1.4 | | | | | | 9 | 15.8 | 15.4 | 12.9 | 5.5 | 2.3 | | | | | 10 | 25.5 | 25.5 | 24.7 | 16.8 | 10.3 | 7.0 | | | | 11 | 24.9 | 24.9 | 25.1 | 26.2 | 22.0 | 17.9 | 13.7 | 8.0 | | 12 | 16.2 | 16.6 | 19.1 | 24.7 | 26.7 | 26.3 | 21.8 | 18.7 | | 13 | 4.9 | 4.9 | 7.2 | 15.4 | 21.3 | 24.2 | 27.0 | 27.7 | | 14 | 2.0 | 2.0 | 3.7 | 5.7 | 10.5 | 14.4 | 20.3 | 23.4 | | 15 | 1.2 | 1.2 | 1.4 | 3.1 | 4.7 | 6.4 | 10.9 | 13.8 | | 16 | | | .2 | 1.0 | 1.8 | 2.7 | 3.9 | 5.3 | | 17 | | | | .2 | .4 | 1.1 | 1.8 | 2.3 | | 18 | | | | | | | .6 | .8 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max. ECL | 15 | 15 | 16 | 17 | 17 | 17 | 18 | 18 | | Avg. ECL | 10.5 | 10.5 | 10.8 | 11.6 | 12.2 | 12.6 | 13.1 | 13.5 | | Min. ECL | 7 | 7 | 8 | 8 | 9 | 10 | 11 | 11 | | Range | 8 | 8 | 8 | 9 | 8 | 7 | 7 | 7 | | Poisson's | | | | | | | | | | Coef. K | 3.5 | 3.5 | 2.8 | 3.6 | 3.2 | 2.6 | 2.1 | 2.5 | The frequency distribution of equivalent concentrated loads on spans of infinite length are omitted from this table since it is the same as the frequency distribution of equivalent H truck loadings for the above truck shown in Table 16.1a. #### Table 23.1b #### CALCULATED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR THE 171 TYPE 2 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY BASED ON POISSON'S DISTRIBUTION LAW Equivalent concentrated loads which occur less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent | | | | Span- | Feet | | | | |-----------------------|-------|-------|-------|-------|-------|-------|-------|-------| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | 7 | 3.0 | 3.0 | | | | | | | | 8 | 10.6 | 10.6 | 6.1 | 2.7 | | | | | | 9 | 18.5 | 18.5 | 17.0 | 9.8 | 4.1 | | | | | 10 | 21.6 | 21.6 | 23.8 | 17.7 | 13.0 | 7.4 | | | | 11 | 18.9 | 18.9 | 22.2 | 21.2 | 20.9 | 19.3 | 12.2 | 8.2 | | 12 | 13.2 | 13.2 | 15.6 | 19.1 | 22.3 | 25.1 | 25.7 | 20.5 | | 13 | 7.7 | 7.7 | 8.7 | 13.8 | 17.8 | 21.8 | 27.0 | 25.7 | | 14 | 3.9 | 3.9 | 4.1 | 8.3 | 11.4 | 14.1 | 18.9 | 21.4 | | 15 | 1.7 | 1.7 | 1.6 | 4.2 | 6.1 | 7.4 | 9.9 | 13.4 | | 16 | .7 | .7 | .6 | 1.9 | 2.8 | 3.2 | 4.2 | 6.7 | | 17 | .2 | .2 | .2 | .× | 1.1 | 1.2 | 1.5 | 2.8 | | 18 | | | .1 | .3 | .4 | .4 | .4 | 1.0 | | 19 | | | | .1 | .1 | .1 | .1 | .3 | | 20 | | | | .1 | | | .1 | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max. ECL | 17 | 17 | 18 | 20 | 19 | 19 | 20 | 19 | | Avg. ECL | 10.5 | 10,5 | 10.8 | 11.6 | 12.2 | 12.6 | 13.1 | 13.5 | | Min. ECL | 7 | 7 | 8 | 8 | 9 | 10 | 11 | 11 | | Range | 10 | 10 | 10 | 12 | 10 | 9 | 9 | 8 | | Poisson's | | | | | | | | | | Coef. K | 3.5 | 3.5 | 2.8 | 3.6 | 3.2 | 2.6 | 2.1 | 2.5 | | Std. Dev. D | 1.871 | 1.871 | 1.673 | 1.897 | 1.789 | 1.612 | 1.449 | 1.581 | The frequency distribution of equivalent concentrated loads on spans of infinite length are omitted from this table since it is the same as the frequency distribution of equivalent H truck loadings for the above truck shown in 'Table 16.1b. #### Table 23.2a ## OBSERVED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 381 TYPE 3 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY | Equivalent | Span-Feet | | | | | | | | | | |-----------------------|-----------|------|------|------|------|------|------|------|--|--| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | | 5 | 1.8 | | | | | | | | | | | 6 | 8.1 | .8 | | | | | | | | | | 7 | 17.4 | 2.8 | 1.1 | .4 | | | | | | | | 8 | 23.0 | 8.2 | 3.0 | .8 | .3 | | | | | | | 9 | 22.0 | 17.0 | 8.8 | 3.2 | 1.1 | .4 | | | | | | 10 | 14.6 | 19.4 | 16.3 | 10.9 | 6.2 | 4.8 | 1.1 | | | | | 11 | 8.2 | 19.3 | 19.1 | 16.1 | 13.3 | 11.3 | 7.3 | 5.2 | | | | 12 | 3.3 | 12.9 | 17.0 | 17.7 | 16.9 | 15.7 | 13.1 | 11.3 | | | | 13 | 1.1 | 10.1 | 12.7 | 13.9 | 16.3 | 15.8 | 16.7 | 15.8 | | | | 14 | .5 | 4.9 | 9.4 | 12.0 | 12.0 | 12.8 | 14.7 | 15.3 | | | | 15 | | 2.5 | 6.4 | 9.5 | 11.2 | 10.9 | 11.9 | 12.5 | | | | 16 | | 1.1 | 3.0 | 7.2 | 8.1 | 9.0 | 10.2 | 11.6 | | | | Equivalent | | | | Span- | Feet | | | | |-----------------------|-------|-------|-------|-------|-------|-------|-------|-------| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | 17 | | .7 | 1.8 | 3.8 | 6.7 | 7.5 | 8.1 | 8.9 | | 18 | | .3 | .8 | 2.4 | 3.4 | 5.4 | 6.6 | 7.4 | | 19 | | | .6 | 1.1 | 2.3 | 3.0 | 4.5 | 4.6 | | 20 | | | | .6 | .9 | 1.3 | 2.5 | 3.3 | | 21 | | | | .4 | .7 | 1.0 | 1.3 | 1.8 | | 22 | | | | | .4 | .7 | .9 | 1.0 | | 23 | | | | | .2 | .4 | .7 | .7 | | 24 | | | | | | | .4 | .4 | | 25 | | | | | | | | .2 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max, ECL | 14 | 18 | 19 | 21 | 23 | 23 | 24 | 25 | | Avg. ECL | 8.6 | 10.8 | 11.8 | 12.9 | 13.6 | 14.1 | 14.8 | 15.1 | | Min. ECL | 5 | 6 | 7 | 7 | 8 | 9 | 10 | 11 | | Range | 9 | 12 | 12 | 14 | 15 | 14 | 14 | 14 | | Poisson's | | | | | | | | | | Coef. K | 3.6 | 4.8 | 4.8 | 5.9 | 5.6 | 5.1 | 4.8 | 4.1 | Table 23.2a (Continued) The frequency distribution of equivalent concentrated loads on spans of infinite length are omitted from this table since it is the same as the frequency distribution of equivalent H truck loadings for the above truck shown in Table 16.2a. #### Table 23.2b ## CALCULATED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR THE 381 TYPE 3 TRUCKS
REPORTED IN THE 1942 LOADOMETER SURVEY BASED ON POISSON'S DISTRIBUTION LAW Equivalent concentrated loads which occur less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent | | | | Span- | Feet | | | | |-----------------------|-------|-------|-------|-------|----------|----------|-------|----------------------| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | 5 | 2.7 | | | | | | | | | 6 | 9.8 | .8 | | | | | | | | 7 | 17.7 | 4.0 | .8 | .3 | | | | | | 8
9 | 21.2 | 9.5 | 4.0 | 1.6 | .4 | | | | | 9 | 19.1 | 15.2 | 9.5 | 4.8 | 2,1 | .6 | | | | 10 | 13.8 | 18.1 | 15.2 | 9.4 | 5.8 | 3.1 | .8 | | | 11 | 8.3 | 17.5 | 18.1 | 13.8 | 10.8 | 7.9 | 4.0 | 1.7 | | 12 | 4.2 | 14.0 | 17,5 | 16.3 | 15.2 | 13.5 | 9.5 | 6.8 | | 13 | 1.9 | 9.6 | 14.0 | 16.0 | 17.0 | 17.2 | 15.2 | 13.9 | | 14 | .8 | 5.8 | 9.6 | 13.5 | 15.8 | 17.5 | 18.1 | 19.0 | | 15 | .3 | 3.1 | 5.8 | 10.0 | 12.7 | 14.9 | 17.4 | 19.5 | | 16 | .1 | 1.5 | 3.1 | 6.5 | 8.9 | 10.9 | 14.0 | 16.0 | | 17 | .1 | .6 | 1.5 | 3.9 | 5.5 | 6.9 | 9.6 | 10.9 | | 18 | • | .3 | .6 | 2.1 | 3.1 | 3.9 | 5.8 | 6.4 | | 19 | | | .3 | 1.0 | 1.6 | 2.0 | 3.1 | 3.3 | | 20 | | | | .5 | .7 | .9 | 1.5 | 1.5 | | 21 | | | | .2 | .3 | .4 | .6 | | | 22 | | | | .2 | .1 | .2 | .3 | .2 | | $\frac{-23}{23}$ | | | | | | .2
.1 | .1 | .1 | | 24 | | | | | | | | .6
.2
.1
.1 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max. ECL | 17 | 18 | 19 | 22 | 22 | 23 | 23 | 24 | | Avg. ECL | 8.6 | 10.6 | 11.8 | 12.9 | 13.6 | 14.1 | 14.8 | 15.1 | | Min. ECL | 5 | 6 | 7 | 7 | 8 | 9 | 10 | 11 | | Range | 12 | 12 | 12 | 15 | 14 | 14 | 13 | 13 | | Poisson's | | | | | | | | | | Coef. K | 3.6 | 4.8 | 4.8 | 5.9 | 5.6 | 5.1 | 4.8 | 4.1 | | Std. Dev. D | 1.897 | 2.191 | 2.191 | 2.429 | 2.366 | 2.258 | 2.191 | 2.025 | The frequency distribution of equivalent concentrated loads on spans of infinite length are omitted from this table since it is the same as the frequency distribution of equivalent H truck loadings for the above truck shown in Table 16.2b. Table 23.3a ## OBSERVED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 2855 TYPE 2-S1 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY | Equivalent
Concentrated | | | | Span | -Feet | | | | |----------------------------|-------|----------|-------|----------|-------|-------|---|----------------------------| | Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | 7 | 12.2 | 10.7 | 3.7 | | | | | | | 8 | 22.3 | 21.9 | 15.2 | 1.9 | | | | | | 9 | 26.3 | 26.6 | 24.3 | 9.4 | .9 | | | | | 10 | 20.6 | 21.5 | 25.0 | 18.4 | 5.4 | .9 | | | | 11 | 9.9 | 10.3 | 16.3 | 23.6 | 15.2 | 6.3 | .2 | | | 12 | 4.8 | 4.9 | 8.1 | 20.5 | 22.2 | 14.8 | 3.3 | .4 | | 13 | 2.2 | 2.3 | 4.2 | 13.1 | 22.8 | 22.0 | 13.2 | 5.7 | | 14 | 1.0 | 1.1 | 1.7 | 6.9 | 15.2 | 21.2 | 20.0 | 14.6 | | 15 | .4 | .4 | .9 | 3.1 | 8.8 | 15.1 | 22.4 | 20.8 | | 16 | .1 | .2
.1 | .3 | 1.5 | 4.3 | 8.6 | 15.8 | 20.5 | | 17 | .1 | .1 | .2 | .9 | 2.4 | 4.9 | 10.6 | 14.9 | | 18 | .1 | | .1 | .4 | 1.2 | 2.6 | 5.8 | 9.5 | | 19 | | | | .2
.1 | .7 | 1.5 | 3.3 | 5.2 | | 20 | | | | .1 | .5 | .8 | 1.9 | 2.7 | | 21 | | | | | .3 | .6 | 1.4 | 2.0 | | 22 | | | | | .1 | .4 | .8 | 1.4 | | 23 | | | | | | .1 | .6 | .9 | | 24 | | | | | | .1 | .4 | .5 | | 25 | | | | | | .1 | $\begin{array}{c} .4 \\ .2 \\ .1 \end{array}$ | .4 | | 26 | | | | | | | .1 | .3 | | 27 | | | | | | | | .9
.5
.4
.3
.1 | | 28 | | | | | | | | .1 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max. ECL | 18 | 17 | 18 | 20 | 22 | 25 | 26 | 28 | | Avg. ECL | 9.2 | 9.3 | 9.9 | 11.6 | 13.0 | 14.1 | 15.4 | 16.3 | | Min, ECL | 7 | 7 | 7 | 8 | 9 | 10 | 11 | 12 | | Range | 11 | 10 | 11 | 12 | 13 | 15 | 15 | 16 | | Poisson's | | | | | | | | | | Coef. K | 2.2 | 2.3 | 2.9 | 3.6 | 4.0 | 4.1 | 4.4 | 4.3 | The frequency distribution of equivalent concentrated loads on spans of infinite length are omitted from this table since it is the same as the frequency distribution of equivalent H truck loadings for the above truck shown in Table 16.3a. # Table 23.3b CALCULATED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR THE 2855 TYPE 2-S1 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY BASED ON POISSON'S DISTRIBUTION LAW Equivalent concentrated loads which occur less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent
Concentrated | Span-Feet | | | | | | | | | | |----------------------------|-----------|------|------|------|------|------|------|------|--|--| | Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | | 7 | 11.1 | 10.0 | 5.5 | | | | | | | | | 8 | 24.4 | 23.1 | 16.0 | 2,7 | | | | | | | | 9 | 26.8 | 26.5 | 23.1 | 9.8 | 1.8 | | | | | | | 10 | 19.7 | 20.3 | 22.4 | 17.7 | 7.3 | 1.7 | | | | | | 11 | 10.8 | 11.7 | 16.2 | 21.2 | 14.7 | 6.8 | 1.2 | | | | | 12 | 4.8 | 5.4 | 9.4 | 19.1 | 19.5 | 13.9 | 5.4 | 1.4 | | | | 13 | 1.7 | 2.1 | 4.5 | 13.8 | 19.5 | 19.0 | 11.9 | 5.8 | | | | 14 | .5 | .7 | 1.9 | 8.3 | 15.6 | 19.5 | 17.4 | 12.5 | | | | Tabl | e 23 | 3h | (Con | tinued) | |------|------|----|------|---------| | | | | | | | Table 23.3b (0 | Continued) | | | | | | | | |----------------------------|------------|-------|-------|--------|-------|-------|-------|-------| | Equivalent
Concentrated | | | | Span-I | reet | | | | | Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | 15 | .2 | .2 | .7 | 4.2 | 10.4 | 16.0 | 19.2 | 18.0 | | 16 | | | .2 | 1.9 | 6.0 | 10.9 | 16.9 | 19.3 | | 17 | | | .1 | .8 | 3.0 | 6.4 | 12.4 | 16.6 | | 18 | | | | .3 | 1.3 | 3.3 | 7.8 | 11.9 | | 19 | | | | .1 | .5 | 1.5 | 4.3 | 7.3 | | 20 | | | | .1 | .2 | .6 | 2.1 | 3.9 | | 21 | | | | | .1 | .2 | .9 | 1.9 | | 22 | | | | | .1 | .1 | .4 | .8 | | 23 | | | | | | .1 | .1 | .3 | | 24 | | | | | | | | .1 | | 25 | | | | | | | | .1 | | 26 | | | | | | | | .1 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max. ECL | 15 | 15 | 17 | 20 | 22 | 23 | 23 | 26 | | Avg. ECL | 9.2 | 9.3 | 9.9 | 11.6 | 13.0 | 14.1 | 15.4 | 16.3 | | Min. ECL | 7 | 7 | 7 | 8 | 9 | 10 | 11 | 12 | | Range | 8 | 8 | 10 | 12 | 13 | 13 | 12 | 14 | | Poisson's | | | | | | | | | | Coef. K | 2.2 | 2.3 | 2.9 | 3.6 | 4.0 | 4.1 | 4.4 | 4.3 | | Std. Dev. D | 1.483 | 1.517 | 1.703 | 1.897 | 2.000 | 2.025 | 2.098 | 2.074 | The frequency distribution of equivalent concentrated loads on spans of infinite length are omitted from this table since it is the same as the frequency distribution of equivalent H truck loadings for the above truck shown in Table 16.3b. Table 23.4a ### OBSERVED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 508 TYPE 2-S2 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY | Equivalent | | | | Spar | ı-Feet | | | | |-----------------------|--------------|-------|-------|-------|--------|-------|---------------|-------------| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | 5 | .9 | | | | | | | | | 6 | 3.6 | | | | | | | | | 7 | 11.0 | 4.7 | | | | | | | | 8 | 16.7 | 9.1 | 4.7 | 1.1 | .2 | | | | | 9 | 24.0 | 13.8 | 7.2 | 2.5 | .5 | | | | | 10 | 21. 2 | 17.1 | 13.3 | 4.7 | 1.7 | .5 | | | | 11 | 15.4 | 15.9 | 16.2 | 9.7 | 4.1 | 1.5 | .3 | | | 12 | 5.3 | 14.1 | 16.0 | 13.3 | 8.0 | 3.3 | .5 | | | 13 | 1.0 | 10.8 | 13.6 | 16.6 | 11.8 | 7.1 | 2.4 | 1.2 | | 14 | .5 | 8.2 | 11.3 | 16.0 | 15.1 | 10.2 | 4.5 | 2.8 | | 15 | .3 | 4.1 | 9.5 | 15.1 | 15.7 | 14.4 | 8.1 | 5.1 | | 16 | .1 | 2.0 | 5.1 | 10.8 | 16.4 | 16.1 | 10.8 | 7.4 | | 17 | | .2 | 2.5 | 6.4 | 12.1 | 16.3 | 14.6 | 11.2 | | 18 | | | .6 | 2.3 | 8.3 | 13.3 | 14.5 | 12.8 | | 19 | | | | 1.1 | 3.0 | 8.7 | 14.7 | 13.5 | | 20 | | | | .3 | 1.9 | 4.8 | 11.9 | 13.1 | | 21 | | | | .1 | .8 | 2.1 | 8.8 | 11.9 | | 22 | | | | | .3 | 1.1 | 5.0 | 10.0 | | 23 | | | | | .1 | .5 | 2.0 | 5.6 | | 24 | | | | | | .1 | 1.3 | 3.3 | | 25 | | | | | | | .4 | 1.3 | | 26 | | | | | | | .1 | .6 | | 27 | | | | | | | .1 | .2 | | Total | 100,0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max. ECL | 16 | 17 | 18 | 20 | 22 | 24 | 27 | 26 | | Avg. ECL | 9.2 | 11.0 | 12.2 | 13.6 | 15.0 | 16.3 | 18.1 | 19.2 | | Min. ECL | 5 | 7 | 8 | 8 | 8 | 10 | 11 | 13 | | Range | 11 | 10 | 10 | 12 | 14 | 14 | 16 | 13 | | Poisson's | | | | | | | | | | Coef. K | 4.2 | 4.0 | 4.2 | 5.6 | 7.0 | 6.3 | 7.1 | 6.2 | | T11 - C | J:-4-:14: | - e i | .1 | 443 | 1 | | 1 - Ci - 14 - | langeth and | The frequency distribution of equivalent concentrated loads on spans of infinite length are omitted from this table since it is the same as the frequency distribution of equivalent H truck loadings for the above truck shown in Table 16.4a. Table 23.4b ### CALCULATED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR THE 508 TYPE 2-S2 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY BASED ON POISSON'S DISTRIBUTION LAW Equivalent concentrated loads which occur less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent | | | | Span- | Feet | | | | |-----------------------|-------|-------|-------|-------|-------------|-------|----------|-------| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | 5 | 1.5 | | | | | | | | | 6 | 6.3 | | | | | | | | | 7 | 13.2 | 1.8 | | | | | | | | 8 | 18.5 | 7.3 | 1.5 | .4 | .1 | | | | | 9 | 19.4 | 14.7 | 6.3 | 2.1 | .6 | | | | | 10 | 16.3 | 19.5 | 13.2 | 5.8 | 2.2 | .2 | | | | 11 | 11.4 | 19.5 | 18.5 | 10.8 | 5.2 | 1.2 | .1 | | | 12 | 6.9 | 15.6 | 19.4 | 15.2 | 9.1 | 3.6 | .6 | | | 13 | 3.6 | 10.4 | 16.3 | 17.0 | 12.8 | 7.7 | 2.1 | .2 | | 14 | 1.7 | 6.0 | 11.4 | 15.8 | 14.9 | 12.1 | 4.9 | 1.3 | | 15 | .7 | 3.0 | 6.9 | 12.7 | 14.9 | 15.2 | 8.7 | 3.9 | | 16 | .3 | 1.3 | 3.6 | 8.9 | 13.0 | 15.8 | 12.4 | 8.1 | | 17 | .i | .5 | 1.7 | 5.5 | 10.1 | 14.4 | 14.7 | 12.5 | | 18 | .1 | .2 | .7 |
3.1 | $7.\hat{1}$ | 11.3 | 14.9 | 15.5 | | 19 | | .1 | .3 | 1.6 | 4.5 | 7.9 | 13.2 | 15.9 | | 20 | | .1 | .1 | .7 | 2.6 | 5.0 | 10.4 | 14.2 | | 21 | | | .1 | .3 | 1.4 | 2.9 | 7.4 | 11.0 | | 22 | | | •- | .1 | .7 | 1.5 | 4.8 | 7.6 | | 23 | | | | | .3 | .7 | 2.8 | 4.7 | | 24 | | | | | .ĭ | .3 | 1.5 | 2.6 | | 25 | | | | | .1 | .1 | .8 | 1.4 | | 26 | | | | | .1 | .1 | .4. | .7 | | 27 | | | | | .1 | | .2 | .3 | | 28 | | | | | .ĩ | | .2
.1 | .1 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max. ECL | 18 | 20 | 21 | 22 | 28 | 26 | 28 | 28 | | Avg. ECL | 9.2 | 11.0 | 12.2 | 13.6 | 15.0 | 16.3 | 18.1 | 19.2 | | Min. ECL | 5 | 7 | 8 | 8 | 8 | 10 | 11 | 13 | | Range | 13 | 13 | 13 | 14 | 20 | 16 | 17 | 15 | | Poisson's | | | | | | | | | | Coef. K | 4.2 | 4.0 | 4.2 | 5.6 | 7.0 | 6.3 | 7.1 | 6.2 | | Std. Dev. D | 2.049 | 2.000 | 2.049 | 2.366 | 2.646 | 2.510 | 2.665 | 2.49 | The frequency distribution of equivalent concentrated loads on spans of infinite length are omitted from this table since it is the same as the frequency distribution of equivalent H truck loadings for the above truck shown in Table 16.4b. #### Table 23.5a ### OBSERVED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 9 TYPE 3-S1 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY | L | | L=WH | EEL BASE | | |----|---|-------------|------------------|----------------| | | × | 1 4' | , x, | | | a, | | 1/202 | 1/202 | a ₃ | | 0 | | ②(
TYPE: | 3)
3-SI TRUCK | 4 | | Equivalent
Concentrated | Span-Feet | | | | | | | | | | |----------------------------|-----------|------|------|------|-----|-----|-----|-----|--|--| | Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | | 8 | 29.6 | 7.4 | | | | | | | | | | 9 | 25.9 | 11.1 | 7.4 | 7.4 | | | | | | | | 10 | 22.2 | 11.1 | 3.7 | 3.7 | 7.4 | | | | | | | 11 | 14.8 | 22.2 | 3.7 | .0 | 3.7 | | | | | | | 12 | 7.4 | 18.5 | 18.5 | .0 | .0 | 7.4 | | | | | | 13 | .1 | 18.5 | 18.5 | 7.4 | .0 | 3.7 | | | | | | 14 | | 7.4 | 25.9 | 18.5 | .0 | .0 | 7.4 | | | | Table 23.5a (Continued) | Equivalent
Concentrated
Loads
15
16
17
18
19
20
21
22
23
24 | | | | Span- | Feet | | | | |---|--------|-------|-------|-------|-------|-------|-------|-------| | | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | 15 | | 3.7 | 11.1 | 18.5 | 7.4 | .0 | 3.7 | 7.4 | | 16 | | .1 | 11.1 | 14.8 | 18.5 | 3.7 | .0 | 3.7 | | 17 | | | .1 | 11.1 | 18.5 | 14.8 | .0 | .0 | | 18 | | | | 11.1 | 22.2 | 18.5 | 11.1 | .0 | | 19 | | | | 7.4 | 11.1 | 18.5 | 18.5 | 11.1 | | 20 | | | | .1 | 11.1 | 14.8 | 18.5 | 18.5 | | 21 | | | | | .1 | 11.1 | 18.5 | 18.5 | | 22 | | | | | | 7.4 | 11.1 | 14.8 | | 23 | | | | | | .1 | 11.1 | 11.1 | | | | | | | | | .1 | 11.1 | | 25 | | | | | | | | 3.7 | | 26 | | | | | | | | .1 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max, ECL | 13 | 16 | 17 | 20 | 21 | 23 | 24 | 26 | | Avg. ECL | 9.3 | 11.3 | 13.1 | 15.0 | 16.7 | 18.2 | 19.7 | 20.8 | | Min. ECL | | 8 | 9 | 9 | 10 | 12 | 14 | 15 | | Range | 8
5 | 8 | 8 | 11 | 11 | 11 | 10 | 11 | | Poisson's | | | | | | | | | | Coef. K | 1.3 | 3.3 | 4.1 | 6.0 | 6.7 | 6.2 | 5.7 | 5.8 | The frequency distribution of equivalent concentrated loads on spans of infinite length are omitted from this table since it is the same as the frequency distribution of equivalent H truck loadings for the above truck shown in Table 16.5a. Table 23.5b ## CALCULATED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR THE 9 TYPE 3-S1 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY BASED ON POISSON'S DISTRIBUTION LAW Equivalent concentrated loads which occur less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Loads | Equivalent | | | | Span- | Feet | | | | |--|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------| | 9 | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | 10 | 8 | 27.3 | 3.7 | | | | | | | | 10 | 9 | 35.4 | 12.2 | 1.7 | .2 | | | | | | 11 | 10 | 23.0 | 20.1 | 6.8 | 1.5 | .1 | | | | | 13 .8 12.0 19.5 13.4 6.2 1.3 1.3 14 2.2 6.6 16.0 16.1 10.3 3.9 .3 15 .1 3.1 10.9 16.1 13.8 8.1 1.9 .2 1.5 16.0 14.8 15.5 12.5 5.4 1.8 1.7 .2 1.8 1.2 1.5 6.9 12.4 16.0 14.7 9.8 19.2 14.2 16.0 14.7 9.8 19.2 14.2 16.0 14.7 9.8 19.2 14.2 16.0 14.7 9.8 19.2 14.2 16.0 14.7 9.8 19.9 19.0 10.2 2.2 2.3 6.2 11.0 15.9 16.6 14.2 10.2 14.2 16.0 14.7 9.8 19.6 14.2 16.0 14.7 9.8 14.2 16.0 14.7 9.8 14.2 16.0 14.7 9.8 14.2 16.0 14.2 16.0 14.7 9.8 14.2 12.2 13.2 13.2 13.2 13.2 13.2 1 | | 10.0 | 22.1 | 13.9 | | .8 | | | | | 13 .8 12.0 19.5 13.4 6.2 1.3 1.4 2.2 6.6 16.0 16.1 10.3 3.9 .3 15 .1 3.1 10.9 16.1 10.3 3.9 .3 1.9 .2 1.5 16.1 13.8 8.1 1.9 .2 1.6 11.8 11.9 .2 1.5 6.9 12.4 16.0 14.7 9.5 9.6 4.1 9.2 14.2 16.0 14.7 9.5 19.2 1.2 16.0 14.7 9.5 19.2 14.2 16.0 14.7 9.5 19.2 14.2 16.0 14.7 9.5 19.6 4.1 9.2 14.2 16.0 14.7 9.5 19.6 14.2 10.0 15.9 16.6 14.2 10.2 12.4 16.0 14.7 9.5 19.6 14.2 16.0 14.7 9.5 19.6 12.2 13.3 14.2 16.0 14.7 9.5 19.6 12.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13 | 12 | 3.2 | 18.2 | 19.0 | 8.9 | 2.8 | .2 | | | | 15 | | .8 | 12.0 | 19.5 | 13.4 | 6.2 | 1.3 | | | | 16 1.3 6.4 13.8 15.5 12.5 5.4 1.8 17 .5 3.3 10.3 14.8 15.5 10.3 5.5 18 .2 1.5 6.9 12.4 16.0 14.7 9.8 19 .6 4.1 9.2 14.2 16.8 14.8 20 .2 2.3 6.2 11.0 15.9 16.6 21 .1 1.1 3.8 7.6 13.0 16.6 22 .1 1.5 2.1 4.7 9.2 13.3 23 .1 .5 2.1 4.7 9.2 13.3 24 .1 .5 2.1 4.7 9.2 13.3 25 .2 1.1 .5 1.4 3.3 6.2 25 .2 .7 1.7 3.6 2.7 1.7 3.6 27 .2 .7 1.7 3.8 1.9 1.1 .4 .5 28 .2 .1 .3 .8 1.5 .1 .4 .5 30 .1 .3 .8 1.5 .1 .1 .1 .1 .1 .2 | 14 | | 6.6 | 16.0 | 16.1 | 10.3 | 3.9 | | | | 16 1.3 6.4 13.8 15.5 12.5 5.4 1.8 17 .5 3.3 10.3 14.8 15.5 10.3 5.1 18 .2 1.5 6.9 12.4 16.0 14.7 9.8 19 .6 4.1 9.2 14.2 16.8 14.8 20 .2 2.3 6.2 11.0 15.9 16.6 21 .1 1.1 3.8 7.6 13.0 16.6 22 .1 .5 2.1 4.7 9.2 13.2 23 .2 1.1 .5 2.1 4.7 9.2 13.3 24 .1 .5 2.1 4.7 9.2 13.3 25 .2 .1 .5 1.4 3.3 6.5 25 .2 .7 1.7 3.6 1.2 26 .1 .3 .8 1.5 28 .1 .4 .5 30 .1 .3 .8 1.5 31 .1 .4 .5 31 .1 .1 .2 29 .1 .1 .1 31 | 15 | .1 | 3.1 | 10.9 | 16.1 | 13.8 | 8.1 | 1.9 | .3 | | 17 | 16 | | | 6.4 | 13.8 | 15.5 | 12.5 | | 1.8 | | 19 | 17 | | .5 | 3.3 | 10.3 | 14.8 | 15.5 | 10.3 | 5.1 | | 19 | 18 | | .2 | 1.5 | 6.9 | 12.4 | 16.0 | 14.7 | 9.8 | | 21 | | | | .6 | 4.1 | 9.2 | 14.2 | 16.8 | 14.3 | | 1. | 20 | | | .2 | 2.3 | 6.2 | 11.0 | 15.9 | 16.6 | | 1. | 21 | | | .1 | 1.1 | 3.8 | 7.6 | 13.0 | 16.0 | | 23 24 24 28 26 27 30 30 31 Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Max. ECL 15 31 31 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Max. ECL 9.3 11.3 13.1 15.0 16.7 18.2 19.7 20.8 Min. ECL 8 8 8 9 9 10 12 14 15 Range 7 10 13 15 17 14 17 14 Poisson's Coef. K 1.3 3.3 4.1 6.0 6.7 6.2 5.7 5.8 | 22 | | | .1 | .5 | 2.1 | 4.7 | 9.2 | 13.3 | | 25 | | | | | .2 | | 2.6 | 5.9 | 9.6 | | 26 | 24 | | | | .1 | .5 | 1.4 | 3.3 | 6.2 | | 26 | 25 | | | | | .2 | .7 | 1.7 | 3.6 | | 27 28 29 30 31 Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Max. ECL 15 18 22 24 27 26 31 29 Avg. ECL 9.3 11.3 13.1 15.0 16.7 18.2 19.7 20.6 Min. ECL 8 8 8 9 9 10 12 14 15 Range 7 10 13 15 17 14 17 14 Poisson's Coef. K 1.3 3.3 4.1 6.0 6.7 6.2 5.7 5.8 | 26 | | | | | .1 | .3 | .8 | 1.9 | | 28 29 30 31 Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Max. ECL, 15 18 22 24 27 26 31 29 Avg. ECL 9.3 11.3 13.1 15.0 16.7 18.2 19.7 20.8 Min. ECL 8 8 8 9 9 10 12 14 15 Range 7 10 13 15 17 14 17 14 Poisson's Coef. K 1.3 3.3 4.1 6.0 6.7 6.2 5.7 5.8 | 27 | | | | | .1 | | .4 | .9 | | 30
31 .1
.1 Total 100.0 | 28 | | | | | | | .1 | .4 | | 30
31 .1
.1 Total 100.0
100.0 | 29 | | | | | | | .1 | .2 | | Total 100.0 <th< td=""><td>30</td><td></td><td></td><td></td><td></td><td></td><td></td><td>.1</td><td></td></th<> | 30 | | | | | | | .1 | | | Max. ECL 15 18 22 24 27 26 31 29 Avg. ECL 9.3 11.3 13.1 15.0 16.7 18.2 19.7 20.6 Min. ECL 8 8 9 9 10 12 14 15 Range 7 10 13 15 17 14 17 14 Poisson's Coef. K 1.3 3.3 4.1 6.0 6.7 6.2 5.7 5.8 | 31 | | | | | | | .1 | | | Avg. ECL 9.3 11.3 13.1 15.0 16.7 18.2 19.7 20.8 Min. ECL 8 8 9 9 10 12 14 15 Range 7 10 13 15 17 14 17 14 Poisson's
Coef. K 1.3 3.3 4.1 6.0 6.7 6.2 5.7 5.8 | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Avg. ECL 9.3 11.3 13.1 15.0 16.7 18.2 19.7 20.8 Min. ECL 8 8 9 9 10 12 14 15 Range 7 10 13 15 17 14 17 14 Poisson's
Coef. K 1.3 3.3 4.1 6.0 6.7 6.2 5.7 5.8 | Max, ECL | 15 | 18 | 22 | 24 | 27 | 26 | 31 | 29 | | Range 7 10 13 15 17 14 17 14
Poisson's
Coef. K 1.3 3.3 4.1 6.0 6.7 6.2 5.7 5.8 | | 9.3 | 11.3 | 13.1 | 15.0 | 16.7 | 18.2 | 19.7 | 20.8 | | Range 7 10 13 15 17 14 17 14
Poisson's
Coef. K 1.3 3.3 4.1 6.0 6.7 6.2 5.7 5.8 | Min. ECL | 8 | 8 | | | 10 | 12 | | | | Coef. K 1.3 3.3 4.1 6.0 6.7 6.2 5.7 5.8 | Range | 7 | 10 | 13 | 15 | 17 | | 17 | 14 | | | Poisson's | | | | | | | | | | Std Dev D 1140 1817 2025 2449 2588 2490 2387 24 | | | | | | | 6.2 | 5.7 | 5.8 | | DW. Dev. D 1.110 1.011 2.000 2.410 2.000 2.400 2.001 2.5 | Std. Dev. D | 1.140 | 1.817 | 2.025 | 2.449 | 2.588 | 2.490 | 2.387 | 2.408 | The frequency distribution of equivalent concentrated loads on spans of infinite length are omitted from this table since it is the same as the frequency distribution of equivalent H truck loadings for the above truck shown in Table 16.5b. Table 23.6a ## OBSERVED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 142 TYPE 3-S2 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY | Equivalent
Concentrated | | | | Span | -Feet | | | | |----------------------------|-------|-------|-------|-------|-------|----------|----------------------|--| | Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | 5 | 4.9 | | | | | | | | | 6 | 7.3 | 3.5 | | | | | | | | 7 | 10.8 | 4.7 | 2.6 | | | | | | | 8 | 16.2 | 7.0 | 3.5 | 1.9 | | | | | | 9 | 20.4 | 8.7 | 7.0 | 2.8 | 1.4 | | | | | 10 | 18.8 | 12.2 | 8.7 | 5.2 | 1.6 | .9 | | | | 11 | 12.7 | 13.6 | 11.7 | 7.5 | 3.3 | 1.6 | | | | 12 | 5.6 | 16.2 | 11.0 | 9.4 | 5.2 | 1.9 | 1.4 | | | 13 | 2.4 | 14.1 | 14.6 | 11.0 | 7.3 | 3.8 | 1.9 | 1.2 | | 14 | .9 | 10.3 | 14.1 | 12.0 | 9.6 | 5.2 | 1.9 | 1.4 | | 15 | | 5.2 | 12.7 | 13.4 | 10.1 | 7.0 | 3.3 | 1.9 | | 16 | | 2.4 | 7.0 | 11.7 | 11.6 | 9.6 | 3.8 | 3.1 | | 17 | | 1.4 | 3.8 | 9.4 | 11.9 | 10.3 | 5.9 | 3.5 | | 18 | | .7 | 1.9 | 6.6 | 11.3 | 11.5 | 6.3 | 3.8 | | 19 | | | 1.2 | 4.2 | 9.9 | 12.4 | 8.9 | 4.9 | | 20 | | | .2 | 2.8 | 7.0 | 10.6 | 9.9 | 6.3 | | 21 | | | | 1.2 | 5.2 | 9.9 | 10.8 | 8,2 | | 22 | | | | .7 | 2.4 | 5.6 | 11.7 | 10.6 | | 23 | | | | .2 | 1.2 | 4.7 | 9.6 | 11.3 | | 24 | | | | | .5 | 2.6 | 8.9 | 12.2 | | 25 | | | | | .5 | 1.2 | 5.9 | 9.4 | | 26 | | | | | •- | .9 | 5.2 | 8.5 | | 27 | | | | | | .9
.2 | 2.8 | 5.9 | | 28 | | | | | | .1 | .9 | 4.0 | | 29 | | | | | | | .9
.5
.2
.2 | | | 30 | | | | | | | .2 | .9 | | 31 | | | | | | | .2 | .2 | | 32 | | | | | | | | 0 | | 33 | | | | | | | | .2 | | 34 | | | | | | | | 2.1
.9
.2
0
.2
.2
.2 | | 35 | | | | | | | | .2 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max. ECL | 14 | 18 | 20 | 23 | 25 | 28 | 31 | 35 | | Avg. ECL | 8.9 | 11.3 | 12.7 | 14.5 | 16.4 | 18.2 | 20.9 | 22.6 | | Min. ECL | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 13 | | Range | 9 | 12 | 13 | 15 | 16 | 18 | 19 | 22 | | Poisson's | | | | | | | | | | Coef. K | 3.9 | 5.3 | 5.7 | 6.5 | 7.4 | 8.2 | 8.9 | 9.6 | The frequency distribution of equivalent concentrated loads on spans of infinite length are omitted from this table since it is the same as the frequency distribution of equivalent H truck loadings for the above truck shown in Table 16.6a. Table 23.6b #### CALCULATED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR THE 142 TYPE 3-S2 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY BASED ON POISSON'S DISTRIBUTION LAW Equivalent concentrated loads which occur less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent | | | | Span- | Feet | | | | |---|--|--|--|--|--|---|--|--| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | 5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 | 2.0
7.9
15.4
20.0
19.5
15.2
9.9
5.5
2.7
1.2
.5 | 2.6
7.0
12.4
16.4
17.4
11.6
7.7
4.5
2.4
1.2
.1 | .3
1.9
5.4
10.3
14.7
16.8
15.9
13.0
9.2
5.9
3.3
1.7
.8
.2
.1 | .2
1.0
3.2
6.9
11.2
14.5
15.7
14.6
11.9
8.6
3.3
1.8
.9 | .1
.5
1.7
4.1
7.6
11.3
13.9
14.7
13.6
11.2
8.3
5.6
3.4
2.0
1.0
.5
.2 | .2
.9
2.5
5.2
8.5
11.6
13.6
12.7
10.4
7.8
5.3
2.0
1.1
.5
.3 | .1
.5
1.6
3.6
6.3
9.4
12.0
13.3
13.2
11.7
9.5
7.0
4.8
3.1
1.8
1.0
5.3
3.1 | .1
.3
1.0
2.4
4.6
7.4
10.1
12.1
12.2
10.8
8.7
1.7
1.0
5.3
.3 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max. ECL
Avg. ECL
Min. ECL
Range
Poisson's
Coef. K
Std. Dev. D | 16
8.9
5
11
3.9
1.975 | 21
11.3
6
15
5.3
2.302 | 23
12.7
7
16
5.7
2.387 | 23
14.5
8
15
6.5
2.550 | 28
16.4
9
19
7.4
2.720 | 29
18.2
11
18
7.2
2.864 | 32
20.9
12
20
8.9
2,983 | 33
22.6
14
19
8.6
3.098 | The frequency distribution of equivalent concentrated loads on spans of infinite length are omitted from this table since it is the same as the frequency distribution of equivalent H truck loadings for the above truck shown in Table 16.6b. #### Table 23.7a ### OBSERVED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 14 TYPE 3-S3 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY Snan-Feet Faning lant | Concentrated | | | | span | -reet | | | | |----------------|-------|-------|-------|-------|-------|-------|-------|-------| | Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | 4
5 | 4.8 | | | | | | | | | 5 | 4.8 | | | | | | | | | 6 | 4.8 | | | | | | | | | 7 | 14.3 | 7.1 | 4.8 | | | | | | | 8 | 19.0 | 7.1 | 2.4 | | | | | | | 9 | 23.7 | 7.1 | 4.8 | 4.8 | | | | | | 10 | 16.7 | 9.5 | 7.1 | 2.5 | 4.8 | | | | | 11 | 9.5 | 11.9 | 9.5 | 7.1 | 2.4 | 4.8 | | | | 12 | 2.4 | 14.3 | 9.5 | 7.1 | 0.0 | 2.4 | | | | 13 | | 14.3 | 14.3 | 9.5 | 7.1 | .0 | 4.8 | | | 14 | | 11.9 | 16.6 | 4.8 | 7.1 | 2.4 | 2.5 | 4.8 | | 15 | | 9.5 | 11.9 | 7.1 | 7.1 | 7.1 | .0 | 2.4 | | 16 | | 4.8 | 7.1 | 7.1 | 2.4 | 7.1 | .0 | .0 | | 17 | | 2.5 | 4.8 | 9.5 | 7.1 | 4.8 | 7.1 | .0 | | 18 | | | 4.8 | 14.3 | 9.5 | 2.4 | 7.1 | 2.4 | | 19 | | | 2.4 | 14.3 | 14.3 | 9.5 | 7.1 | 7.1 | | 20 | | | | 9.5 | 14.3 | 11.9 | .0 | 7.1 | | 21 | | | | 2.4 | 14.3 | 16.6 | 7.1 | 4.8 | | 22 | | | | | 7.2 | 11.9 | 7.1 | .0 | | 23 | | | | | 2.4 | 11.9 | 11.9 | 7.1 | | 24 | | | | | | 4.8 | 9.5 | 7.1 | | 25 | | | | | | 2.4 | 14.3 | 9.5 | | 26 | | | | | | | 11.9 | 9.5 | | 27 | | | | | | | 7.2 | 11.9 | | $\frac{1}{28}$ | | | | | | | 2.4 | 14.3 | | 29 | | | | | | | | 7.2 | | 30 | | | | | | | | 4.8 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max. ECL | 12 | 17 | 19 | 21 | 23 | 25 | 28 | 30 | | Avg. ECL | 8.4 | 11.8 | 13.1 | 15.7 | 17.7 | 19.4 | 22.1 | 24.1 | | Min. ECL | 4 | 7 | 7 | 9 | 10 | 11 | 13 | 14 | | Range | 8 | 10 | 12 | 12 | 13 | 14 | 15 | 16 | | Poisson's | | | | | | | | | | Coef. K | 4.4 | 4.8 | 6.1 | 6.7 | 7.7 | 8.4 | 9.1 | 10.1 | The frequency distribution of equivalent concentrated loads on spans of infinite length are omitted from
this table since it is the same as the frequency distribution of equivalent H truck loadings for the above truck shown in Table 16.7a. #### Table 23.7b ### CALCULATED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR THE 14 TYPE 3-S3 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY BASED ON POISSON'S DISTRIBUTION LAW Equivalent concentrated loads which occur less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent | | | Span-Feet | | | | | | | |-----------------------|------|-----|-----------|----|----|----|----|-----|--| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 4 | 1.2 | | | | | | | | | | 5 | 5.4 | | | | | | | | | | 6 | 11.9 | | | | | | | | | | 7 | 17.4 | .8 | .2 | | | | | | | | 8 | 19.2 | 4.0 | 1.4 | | | | | | | | 9 | 16.9 | 9.5 | 4.2 | .1 | | | | | | Table 23.7b (Continued) | 14010 20.10 (| | | | | | | | | |-----------------------|-------|----------|-------|-------------|----------|-------|----------------------|-----------------------------| | Equivalent | | | | Span-F | 'eet | | | | | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | 10 | 12.4 | 15.2 | 8.5 | .8 | .1 | | | | | 11 | 7.8 | 18.2 | 12.9 | 2.8 | .3 | .1 | | | | 12 | 4.3 | 17.5 | 15.8 | 6.2 | 1.3 | .2 | | | | 13 | 2.1 | 14.0 | 16.0 | 10.3 | 3.4 | .8 | | | | 14 | .9 | 9.6 | 14.0 | 13.8 | 6.6 | 2.2 | .1 | | | 15 | .4 | 5.6 | 10.7 | 15.5 | 10.2 | 4.7 | .5 | .1 | | 16 | .1 | 3.1 | 7.2 | 14.8 | 13.1 | 7.8 | 1.4 | .2 | | 17 | | 1.5 | 4.4 | 12.4 | 14.4 | 11.0 | 3.2 | .1
.2
.7
1.8 | | 18 | | .6 | 2.4 | 9.2 | 13.9 | 13.2 | 5.8 | 1.8 | | 19 | | .3 | 1.2 | 6.2 | 13.9 | 13.7 | 8.8 | 1.8 | | 20 | | .3
.1 | .6 | 3.8 | 9.1 | 12.9 | 11.4 | 6.1 | | 21 | | | .3 | 2.1 | 6.4 | 10.8 | 13.0 | 8.7 | | $\frac{2}{2}$ | | | .1 | 1.1 | 4.1 | 8.3 | 13.2 | 11.0 | | 23 | | | .1 | .5 | 2.4 | 5.8 | 12.0 | 12.4 | | 24 | | | •• | .5
.2 | 1.3 | 3.7 | 9.9 | 12.4 | | $\frac{25}{25}$ | | | | .1 | .7 | 2.2 | 7.5 | 11.5 | | 26 | | | | .1 | 3 | 1.3 | 5.3 | 9.7 | | 27 | | | | •• | .3
.2 | .7 | 3.4 | 7.5 | | 28 | | | | | .1 | .3 | 2.1 | 5.4 | | 29 | | | | | .1 | .2 | 1.2 | 3.6 | | 30 | | | | | .1 | .1 | | 2.3 | | 31 | | | | | •• | •• | .6
.3
.2
.1 | | | 32 | | | | | | | .2 | .8 | | 33 | | | | | | | .1 | .4 | | 34 | | | | | | | •- | 2 | | 35 | | | | | | | | 1.4
.8
.4
.2
.1 | | 36 | | | | | | | | .1 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max. ECL | 16 | 20 | 23 | 26 | 30 | 30 | 33 | 36 | | Avg. ECL | 8.4 | 11.8 | 13.1 | 15.7 | 17.7 | 19.4 | 22.1 | 24.1 | | Min. ECL | 4 | 7 | 7 | 9 | 10 | 11 | 14 | 15 | | Range | 12 | 13 | 16 | 17 | 20 | 19 | 19 | 21 | | Poisson's | | | | | | | | | | Coef. K | 4.4 | 4.8 | 6.1 | 6.7 | 7.7 | 8.4 | 8.1 | 9.1 | | Std. Dev. D | 2.098 | 2.191 | 2.470 | 2.588 | 2.775 | 2.898 | 3.017 | 3.17 | | The frequency | | | | entrated lo | | | | | The frequency distribution of equivalent concentrated loads on spans of infinite length are omitted from this table since it is the same as the frequency distribution of equivalent H truck loadings for the above truck shown in Table 16.7b. #### Table 23.8a ## OBSERVED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 99 TYPE 2-2 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY | Equivalent | | | | Span- | Feet | | | | |-----------------------|------|------|------|-------|------|------|------|------| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | 5 | 5.4 | 4.4 | | | | | | | | 6 | 12.1 | 8.8 | 2.0 | | | | | | | 7 | 23.9 | 18.2 | 5.7 | 1.0 | | | | | | 8 | 27.9 | 23.8 | 8.8 | 4.0 | | | | | | 9 | 20.9 | 23.2 | 14.5 | 7.1 | 3.1 | | | | | 10 | 8.4 | 13.5 | 19.5 | 10.4 | 5.7 | 3.1 | | | | 11 | 1.0 | 5.7 | 21.2 | 13.1 | 7.4 | 5.7 | | | | 12 | .4 | 1.4 | 15.8 | 14.8 | 9.4 | 7.7 | 3.4 | | | 13 | | .7 | 7.7 | 16.2 | 11.1 | 7.7 | 6.7 | 4.0 | | 14 | | .3 | 2.4 | 13.8 | 14.1 | 10.4 | 7.7 | 6.1 | | 15 | | | 1.7 | 10.4 | 15.5 | 10.4 | 7.4 | 6.7 | | 16 | | | .4 | 5.7 | 14.1 | 14.1 | 8.1 | 7.7 | | 17 | | | .3 | 2.4 | 10.4 | 12.8 | 10.8 | 8.8 | | 18 | | | | .7 | 5.4 | 13.8 | 11.5 | 10.1 | | 19 | | | | .4 | 2.4 | 8.1 | 12.8 | 10.1 | | 20 | | | | | .7 | 4.0 | 12.8 | 10.1 | | Table | 22 82 | (Continued) | | |-------|-------|-------------|--| | | | | | | Equivalent | Span-Feet | | | | | | | | | |---|--------------------------|---------------------|-----------------------|-----------------------|-----------------------|------------------------|---------------------------------|-----------------------------------|--| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 21
22
23
24
25
26 | | | | | .7 | 1.0
.8
.4 | 10.4
5.4
1.7
1.0
.3 | 13.1
11.5
8.1
2.4
1.0 | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | Max. ECL
Avg. ECL
Min. ECL
Range | $^{12}_{7.8}$ $^{5}_{7}$ | 14
8.3
5
9 | 17
10.4
6
11 | 19
12.4
7
12 | 21
14.3
9
12 | 23
15.6
10
13 | 25
17.7
12
13 | 26
18.9
13
13 | | | Poisson's
Coef. K | 2.8 | 3.3 | 4.4 | 5.4 | 5.3 | 5.6 | 5.7 | 5.9 | | The frequency distribution of equivalent concentrated loads on spans of infinite length are omitted from this table since it is the same as the frequency distribution of equivalent H truck loadings for the above truck shown in Table 16.8a. Table 23.8b ## CALCULATED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR THE 99 TYPE 2-2 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY BASED ON POISSON'S DISTRIBUTION LAW ### Equivalent concentrated loads which occur less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent | | | | Span- | Feet | | | | |-----------------------|--------------|-----------|------------|------------|-------|-----------|----------------|----------------| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | 5 | 6.1 | 3.7 | | | | | • | | | 6 | 17.0 | 12.2 | 1.2 | | | | | | | 7 | 23.8 | 20.1 | 5.4 | .5 | | | | | | 8 | 22.2 | 22.1 | 11.9 | 2.4 | | | | | | 9 | 15.6 | 18.2 | 17.4 | 6.6 | .5 | | | | | 10 | 8.7 | 12.0 | 19.2 | 11.9 | 2.6 | .4 | | | | 11 | 4.1 | 6.6 | 16.9 | 16.0 | 7.0 | 2.1 | | | | 12 | 1.6 | 3.1 | 12.4 | 17.3 | 12.4 | 5.8 | .3 | | | 13 | .6 | 1.3 | 7.8 | 15.6 | 16.4 | 10.8 | 1.9 | .3 | | 14 | .2 | .5 | 4.3 | 12.0 | 17.4 | 15.2 | 5.4 | 1.6 | | 15 | .1 | .2 | 2.1 | 8.1 | 15.4 | 17.0 | 10.3 | 4.8 | | 16 | | | .9 | 4.9 | 11.6 | 15.8 | 14.7 | 9.4 | | 17 | | | .4 | 2.6 | 7.7 | 12.7 | 16.8 | 13.8 | | 18 | | | .1 | 1.2 | 4.5 | 8.9 | 15.9 | 16.3 | | 19 | | | | .6 | 2.4 | 5.5 | 13.0 | 16.0 | | 20 | | | | .2 | 1.2 | 3.1 | 9.2 | 13.5 | | 21 | | | | | .5 | 1.6 | 5.9 | 10.0 | | 22 | | | | | .2 | .7 | 3.3 | 6.5 | | 23 | | | | | .1 | .3 | 1.7 | 3.9 | | 24 | | | | | .1 | .1 | .8 | 2.1 | | 25 | | | | | | | .4 | 1.0 | | 26 | | | | | | | .4
.2
.1 | .5 | | 27 | | | | | | | .1 | .2 | | 28 | | | | | | | .1 | .5
.2
.1 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max. ECL | 15 | 15 | 18 | 20 | 24 | 24 | 28 | 28 | | Avg. ECL | 7.8 | 8.3 | 10.4 | 12.4 | 14.3 | 15.6 | 17.7 | 18.9 | | Min. ECL | 5 | 5 | 6 | 7 | 9 | 10 | 12 | 13 | | Range | 10 | 10 | 12 | 13 | 15 | 14 | 16 | 15 | | Poisson's | | | | | | | | | | Coef. K | 2.8 | 3.3 | 4.4 | 5.4 | 5.3 | 5.6 | 5.7 | 5.9 | | Std. Dev. D | 1.673 | 1.817 | 2.098 | 2.324 | 2.302 | 2.366 | 2.387 | 2.429 | | The frequency | distribution | of equive | lent conce | entrated L | | nanc of i | nfinite le | | The frequency distribution of equivalent concentrated loads on spans of infinite length are omitted from this table since it is the same as the frequency distribution of equivalent H truck loadings for the above truck shown in Table 16.8b. Table 23.9a #### OBSERVED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 24 TYPE 2-3 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY | Equivalent | Span-Feet | | | | | | | | | | |-----------------------|--------------|-----------|-----------|----------|----------|----------|----------|----------|--|--| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | | 5 | 5.6 | 5.6 | | | | | | | | | | 6 | 9.7 | 8.3 | 7.0 | | | | | | | | | 7 | 15.3 | 13.9 | 8.3 | 5.6 | | | | | | | | 8 | 23.5 | 18.1 | 8.3 | 5.6 | 5.6 | | | | | | | 9 | 22.2 | 20.7 | 13.9 | 6.9 | 4.2 | 5.6 | | | | | | 10 | 16.7 | 15.3 | 19.4 | 8.3 | 6.9 | 4.2 | | | | | | 11 | 5.6 | 8.3 | 19.4 | 18.0 | 5.6 | 5.6 | 2.8 | | | | | 12 | 1.4 | 2.8 | 12.5 | 19.3 | 9.7 | 4.2 | 4.2 | 2.8 | | | | 13 | | 2.8 | 4.2 | 16.7 | 15.2 | 6.9 | 2.8 | 4.2 | | | | 14 | | 2.8 | 2.8 | 7.0 | 16.6 | 12.5 | 5.6 | 2.8 | | | | 15 | | 1.4 | 2.8 | 4.2 | 15.2 | 13.8 | 4.2 | 4.2 | | | | 16 | | | 1.4 | 4.2 | 5.6 | 15.2 | 9.7 | 2.8 | | | | 17 | | | | 2.8 | 4.2 | 9.7 | 12.4 | 7.0 | | | | 18 | | | | 1.4 | 2.8 | 6.9 | 13.8 | 11.0 | | | | 19 | | | | | 4.2 | 4.2 | 12.5 | 12.4 | | | | 20 | | | | | 2.8 | 2.8 | 9.7 | 11.1 | | | | 21 | | | | | 1.4 | 2.8 | 8.3 | 8.3 | | | | 22 | | | | | | 2.8 | 4.2 | 9.7 | | | | 23 | | | | | | 1.4 | 2.8 | 8.3 | | | | $\overline{24}$ | | | | | | 1.4 | 1.4 | 5.6 | | | | 25 | | | | | | | 2.8 | 2.8 | | | | 26 | | | | | | | 1.4 | 1.4 | | | | 27 | | | | | | | 1.4 | 2.8 | | | | $\overline{28}$ | | | | | | | | 1.4 | | | | 29 | | | | | | | | 1.4 | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | | Max, ECL | 12 | 15 | 16 | 18 | 21 | 24 | 27 | 29 | | | | Avg. ECL | 8.3 | 8.8 | 10.0 | 11.8 | 13.6 | 15.3 | 18.1 | 19.8 | | | | Min, ECL | 5 | 5 | 6 | 7 | 8 | 9 | 11 | 12 | | | | Range | 7 | 10 | 10 | 11 | 13 | 15 | 16 | 17 | | | | Poisson's | | | - | | | | | | | | | Coef. K | 3.3 | 3.8 | 4.0 | 4.8 | 5.6 | 6.3 | 7.1 | 7.8 | | | | The frequency | distribution | of oquive | lont conc | ontroted
| landa on | anona of | infinita | length a | | | The frequency distribution of equivalent concentrated loads on spans of infinite length are omitted from this table since it is the same as the frequency distribution of equivalent H truck loadings for the above truck shown in Table 16.9a. #### Table 23.9b #### CALCULATED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR THE 24 TYPE 2-3 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY BASED ON POISSON'S DISTRIBUTION LAW Equivalent concentrated loads which occur less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent | Span-Fect | | | | | | | | | | |-----------------------|-----------|------|------|-----|-----|----|----|-----|--|--| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | | 5 | 3.7 | 2.2 | | | | | | | | | | 6 | 12.2 | 8.5 | 1.8 | | | | | | | | | 7 | 20.1 | 16.2 | 7.3 | .8 | | | | | | | | 8 | 22.1 | 20.5 | 14.7 | 4.0 | .4 | | | | | | | 9 | 18.2 | 19.4 | 19.5 | 9.5 | 2.1 | .2 | | | | | Table 23.9b (Continued) | Equivalent | Span-Feet | | | | | | | | | |-----------------------|-----------|-------|----------|-------|-------|-------|----------|-----------------|--| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 10 | 12.0 | 14.8 | 19.5 | 15.2 | 5.8 | 1.2 | | | | | 11 | 6.6 | 9.4 | 15.6 | 18.2 | 10.8 | 3.6 | .1 | | | | 12 | 3.1 | 5.1 | 10.4 | 17.5 | 15.2 | 7.7 | .6 | .1 | | | 13 | 1.3 | 2.4 | 6.0 | 14.0 | 17.0 | 12.1 | 2.1 | .3 | | | 14 | .5 | 1.0 | 3.0 | 10.0 | 15.8 | 15.2 | 4.9 | .1
.3
1.2 | | | 15 | .2 | .4 | 1.3 | 5.8 | 12.7 | 15.9 | 8.7 | 3.2 | | | 16 | | .1 | .5
.2 | 3.1 | 8.9 | 14.4 | 12.4 | 6.3 | | | 17 | | | .2 | 1.4 | 5.5 | 11.3 | 14.7 | 9.9 | | | 18 | | | .1 | .5 | 3.1 | 7.9 | 14.9 | 12.8 | | | 19 | | | .1 | | 1.6 | 5.0 | 13.2 | 14.2 | | | 20 | | | | | .7 | 2.9 | 10.4 | 13.9 | | | 21 | | | | | .3 | 1.5 | 7.4 | 12.1 | | | 22 | | | | | .1 | .7 | 4.8 | 9.4 | | | 23 | | | | | | .3 | 2.8 | 6.7 | | | 24 | | | | | | .1 | 1.5 | 4.3 | | | 25 | | | | | | | 8 ا | 2.6 | | | 26 | | | | | | | .4 | 1.5 | | | 27 | | | | | | | .2
.1 | .8
.4
.2 | | | 28 | | | | | | | .1 | .4 | | | 29 | | | | | | | | .2 | | | 30 | | | | | | | | .1 | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | Max. ECL | 15 | 16 | 19 | 18 | 22 | 24 | 28 | 30 | | | Avg. ECL | 8.3 | 8.8 | 10.0 | 11.8 | 13.6 | 15,3 | 18.1 | 19.8 | | | Min. ECL | 5 | 5 | 6 | 7 | 8 | 9 | 11 | 12 | | | Range | 10 | 11 | 13 | 11 | 14 | 15 | 17 | 18 | | | Poisson's | | | | | | | | | | | Coef. K | 3.3 | 3.8 | 4.0 | 4.8 | 5.6 | 6.3 | 7.1 | 7.8 | | | Std. Dev. | 1.817 | 1.949 | 2.000 | 2.191 | 2,366 | 2.510 | 2.665 | 2.793 | | The frequency distribution of equivalent concentrated loads on spans of infinite length are omitted from this table since it is the same as the frequency distribution of equivalent H truck loadings for the above truck shown in Table 16.9b. Table 23.10a OBSERVED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 68 TYPE 3-2 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY | Equivalent | Span-Feet | | | | | | | | | | |-----------------------|-----------|------|------|------|------|------|------|------|--|--| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | | 4 | 4.9 | | | | | | | | | | | 5 | 9.8 | 4.4 | | | | | | | | | | 6 | 17.2 | 7.4 | | | | | | | | | | 7 | 19.1 | 12.7 | 8.8 | | | | | | | | | 8 | 22.0 | 14.7 | 8.3 | 7.8 | | | | | | | | 9 | 15.2 | 14.7 | 11.3 | 6.9 | 7.4 | | | | | | | 10 | 9.8 | 17.1 | 12.7 | 7.8 | 6.9 | 6.9 | | | | | | 11 | 1.5 | 13.7 | 15.2 | 10.8 | 6.4 | 5.4 | | | | | | 12 | .5 | 10.3 | 14.2 | 13.2 | 8.3 | 5.9 | 6.4 | | | | | 13 | | 3.0 | 13.7 | 13.2 | 10.2 | 7.8 | 5.4 | 6.4 | | | | 14 | | 1.0 | 8.8 | 12.3 | 12.7 | 9.3 | 6.9 | 4.9 | | | | 15 | | 1.0 | 3.9 | 10.8 | 11.2 | 9.8 | 6.4 | 5.9 | | | | 16 | | | 1.0 | 8.8 | 12.7 | 10.3 | 8.3 | 5.4 | | | | 17 | | | 1.0 | 3.9 | 9.8 | 11.7 | 9.8 | 7.4 | | | | 18 | | | .5 | 2.0 | 7.9 | 12.2 | 10.7 | 7.8 | | | | 19 | | | .5 | .5 | 2.5 | 9.3 | 10.2 | 9.8 | | | | 20 | | | . 1 | 1.0 | 1.5 | 5.9 | 9.8 | 10.2 | | | | 21 | | | | .5 | .5 | 2.0 | 8.8 | 9.3 | | | | 22 | | | | .5 | .5 | 1.0 | 7.9 | 9.3 | | | | 23 | | | | | .5 | .5 | 3.9 | 7.8 | | | Table 23.10a (Continued) | Equivalent | Span-Feet | | | | | | | | | |-----------------------|-----------|-------|-------|-------|-------|-------|-------|----------------|--| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 24 | | | | | .5 | .5 | 2.0 | 6.4 | | | 25 | | | | | .5 | .5 | 1.0 | 3.4 | | | 26 | | | | | | .5 | .5 | 2.0 | | | 27 | | | | | | .5 | .5 | 1.5 | | | 28 | | | | | | | .5 | | | | 29 | | | | | | | .5 | .5
.5 | | | 30 | | | | | | | .5 | .5 | | | 31 | | | | | | | | .5 | | | 32 | | | | | | | | .5
.5
.5 | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | Max. ECL | 12 | 15 | 20 | 22 | 25 | 27 | 30 | 32 | | | Avg. ECL | 7.4 | 9.2 | 11.0 | 12.8 | 14.3 | 15.8 | 18.1 | 19.7 | | | Min. ECL | 4 | 5 | 7 | 8 | 9 | 10 | 12 | 13 | | | Range | 8 | 10 | 13 | 14 | 16 | 17 | 18 | 19 | | | Poisson's | | | | | | | | | | | Coef. K | 3.4 | 4.2 | 4.0 | 4.8 | 5.3 | 5.8 | 6.1 | 6.7 | | The frequency distribution of equivalent concentrated loads on spans of infinite length are omitted from this table since it is the same as the frequency distribution of equivalent H truck loadings for the above truck shown in Table 16.10a. Table 23.10b CALCULATED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR THE 68 TYPE 3-2 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY BASED ON POISSON'S DISTRIBUTION LAW Equivalent concentrated loads which occur less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent | | | | Span- | Feet | | | | |--|--|---|---|--|--|---|---|---| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | 4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | 3.3
11.3
19.3
21.9
18.6
12.6
7.2
3.5
1.5
.6 | 1.5
6.3
13.2
18.5
19.4
16.3
11.4
6.9
3.6
1.7
.7
.3
.1 | 1.8
7.3
14.7
19.5
19.5
15.6
10.4
6.0
3.0
1.3
.5
.2 | .8
4.0
9.5
15.2
18.2
17.5
14.0
9.6
5.8
3.1
1.5
.6 | .5
2.6
7.0
12.4
16.4
17.4
11.6
7.7
4.5
2.4
1.2
.5
.2 | .3
1.8
5.1
9.8
14.3
16.6
16.0
13.3
9.6
6.2
3.6
1.9
.9 | .2
1.4
4.2
8.5
12.9
15.8
16.0
14.0
10.7
7.2
4.4
2.4
1.2
.3
.1 | .1
.8
2.8
6.2
10.3
13.8
15.5
14.8
12.4
2.6
2.2
3.8
2.1
1.1
.5
.2
.1 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100,0 | 100.0 | 100.0 | | Max. ECL | 14 | 18 | 20 | 20 | 24 | 24 | 28 | 30 | | Avg. ECL | 7.4 | 9.2 | 11.0 | $\frac{20}{12.8}$ | 14.3 | 15.8 | 18.1 | 19.7 | | Min. ECL | 4 | 5 | 7 | 8 | 9 | 10 | 12 | 13.1 | | Range | 10 | 13 | 13 | 12 | 15 | 14 | 16 | 17 | | Poisson's | • • | 20 | | | | | 4.9 | | | Coef. K | 3.4 | 4.2 | 4.0 | 4.8 | 5.3 | 5.8 | 6.1 | 6.7 | | Std. Dev. D | 1.844 | 2.049 | 2.000 | 2.191 | 2.302 | 2.408 | 2.470 | 2.588 | | The farmers | 3:-1-21-4:00 | - C | 7777777 | | | | 6: | | The frequency distribution of equivalent concentrated loads on spans of infinite length are omitted from this table since it is the same as the frequency distribution of equivalent H truck loadings for the above truck shown in Table 16.10b. Table 23.11a OBSERVED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 176 TYPE 3-3 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY | Equivalent
Concentrated
Loads | Span-Feet | | | | | | | | | |-------------------------------------|-----------|-------|-------|-------|-------|-------|----------------|-----------------------------|--| | | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 4 | 6.1 | | | | | | | | | | 5 | 6.3 | 5.5 | 2.1 | | | | | | | | 6 | 6.1 | 5.1 | 4.2 | 2.5 | | | | | | | 7 | 11.6 | 5.1 | 4.9 | 3.8 | 2.1 | | | | | | 8 | 22.1 | 5.9 | 4.2 | 4.2 | 3.4 | 2.3 | | | | | 9 | 23.6 | 10.2 | 3.6 | 4.0 | 4.0 | 3.2 | | | | | 10 | 17.4 | 19.1 | 7.6 | 3.2 | 3.8 | 3.6 | 2.3 | | | | 11 | 4.9 | 21.2 | 12.3 | 5.3 | 3.0 | 3.0 | 3.2 | 2.1 | | | 12 | 1.5 | 16.7 | 21.5 | 8.0 | 2.8 | 2.5 | 3.2 | 3.0 | | | 13 | .4 | 7.0 | 18.3 | 13.4 | 6.3 | 2.5 | 2.5 | 3.2 | | | 14 | | 2.5 | 14.0 | 18.3 | 9.5 | 4.2 | 1.7 | $^{2.3}$ | | | 15 | | 1.3 | 3.4 | 17.0 | 14.9 | 6.1 | 1.9 | 1.3 | | | 16 | | .4 | 2.3 | 11.2 | 15.6 | 9.9 | $^{2.5}$ | 1.5 | | | 17 | | | 1.0 | 4.5 | 14.6 | 12.0 | 2.8 | 1.7 | | | 18 | | | .6 | 1.9 | 10.0 | 14.1 | 4.7 | $^{2.7}$ | | | 19 | | | | 1.7 | 5.1 | 13.4 | 8.5 | 3.0 | | | 20 | | | | .6 | 2.3 | 11.1 | 9.7 | 4.4 | | | 21 | | | | .4 | .6 | 6.4 | 12.7 | 7.2 | | | 22 | | | | | .8 | 2.7 | 12.3 | 8.9 | | | 23 | | | | | .6 | .6 | 12.8 | 11.7 | | | 24 | | | | | .4 | .6
| 8.3 | 11.8 | | | 25 | | | | | .2 | .6 | 4.5 | 12.4 | | | 26 | | | | | | .6 | 2.1 | 9.3 | | | 27 | | | | | | .4 | 1.1 | 5.5 | | | 28 | | | | | | .2 | .8 | 2.5 | | | 29 | | | | | | | .8 | 1.3 | | | 30 | | | | | | | .8 | 1.0 | | | 31 | | | | | | | .8
.6
.2 | 1.0
.8
.8
.8
.6 | | | 32 | | | | | | | .2 | -8 | | | 33 | | | | | | | | .8 | | | 34 | | | | | | | | .6 | | | 35 | | | | | | | | .2 | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | Max. ECL | 13 | 16 | 18 | 21 | 25 | 28 | 32 | 35 | | | Avg. ECL | 8.1 | 10.1 | 11.5 | 13.3 | 15.0 | 16.9 | 20.3 | 22.4 | | | Min. ECL | 4 | 5 | 5 | 6 | 7 | 8 | 10 | 11 | | | Range | 9 | 11 | 13 | 15 | 18 | 20 | 22 | 24 | | | Poisson's | | | | | | | | | | | Coef. K | 4.1 | 5.1 | 6.5 | 7.3 | 8.0 | 8.9 | 10.3 | 11.4 | | The frequency distribution of equivalent concentrated loads on spans of infinite length are omitted from this table since it is the same as the frequency distribution of equivalent H truck loadings for the above truck shown in Table 16.11a. #### Table 23.11b ## CALCULATED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR THE 176 TYPE 3-3 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY BASED ON POISSON'S DISTRIBUTION LAW Equivalent concentrated loads which occur less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent | | | | Span- | Feet | | | | |--|---|---|---|---|---|--|--|---| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | 4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
31
31
31
31
31
31
31
31
31 | 1.7
6.8
13.9
19.0
19.5
16.0
10.9
6.4
3.3
1.5
.6
.2
.1 | .6
3.1
7.9
13.5
17.2
17.5
14.9
10.9
6.9
3.9
2.0
.9
.4
.2 | .2
1.0
3.2
6.9
11.2
14.5
15.7
14.6
11.9
8.6
5.6
3.3
1.8
.9 | .1
.5
1.8
4.4
8.0
11.7
14.2
14.8
13.5
11.0
8.0
5.3
3.2
1.8
.9
.5
.2 | .3
1.1
2.9
5.7
9.2
12.2
14.0
14.0
12.4
9.9
7.2
4.8
3.0
1.7
.9 | .1
.5
1.6
3.6
6.3
9.4
12.0
13.3
11.7
9.5
7.0
4.8
3.1
1.8
1.0
.5 | .2
.6
1.6
3.2
5.6
8.2
10.6
12.5
11.7
10.0
7.9
5.8
4.0
2.6
1.6
1.6
.9
.5
.2 | .1
.1
.3
.8
1.8
3.4
5.6
7.9
10.0
11.4
11.9
11.3
9.9
6.1
4.4
2.9
1.8
1.1
6
.3
.2 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max. ECL
Avg. ECL
Min. ECL
Range
Poisson's
Coef. K
Std. Dev. D | 17
8.1
4
13
4.1
2.025 | 19
10.1
5
14
5.1
2.258 | 20
11.5
5
15
6.5
2.550 | 23
13.3
6
17
7.3
2.702 | 24
15.0
7
17
8.0
2.828 | 28
16.9
8
20
8.9
2.983 | 32
20.3
12
20
8.3
3.209 | 34
22.4
12
22
10.4
3,376 | The frequency distribution of equivalent concentrated loads on spans of infinite length are omitted from this table since it is the same as the frequency distribution of equivalent H truck loadings for the above truck shown in Table 16.11b. Table 23.12a OBSERVED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS BASED ON MOMENTS PRODUCED BY THE 4531 (ALL TYPES) TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY | Equivalent
Concentrated | Span-Feet | | | | | | | | | |----------------------------|-----------|-------|----------------|-----------|-------|-------|----------------|----------------------|--| | Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | 4 | .5 | | | | - | | | | | | 5 | .8 | .5 | .1 | | | | | | | | 5
6
7 | 2.5 | 1.7 | .4 | .1 | | | | | | | | 9.6 | 7.8 | 3.1 | .4 | .1 | | | | | | 8 | 19.5 | 17.3 | 11.1 | 1.9 | .3 | .1 | | | | | 9 | 24.5 | 22.3 | 18.4 | 7.3 | 1.2 | .3 | | | | | 10 | 20.5 | 20.2 | 21.1 | 14.5 | 5.1 | 1.6 | .3 | | | | 11 | 11.6 | 12.9 | 16.6 | 19.5 | 12.7 | 6.3 | 1.4 | .8 | | | 12 | 5.7 | 8.0 | 11.2 | 18.2 | 18.1 | 12.6 | 4.4 | 2.1 | | | 13 | 2.7 | 4.6 | 7.4 | 13.7 | 19.0 | 17.6 | 11.5 | 6.4 | | | 14 | 1.2 | 2.6 | 4.7 | 9.3 | 14.1 | 17.0 | 15.7 | 12.1 | | | 15 | .5 | 1.3 | 3.0 | 6.3 | 10.1 | 13.4 | 17.1 | 15.7 | | | 16 | .2
.1 | .5 | 1.5 | 4.1 | 7.0 | 9.6 | 12.8 | 15.4 | | | 17 | .1 | .2 | -8 | 2.3 | 5.0 | 7.1 | 10.0 | 12.1 | | | 18 | .1 | .1 | 3 | 1.2 | 3.2 | 5.2 | 6.9 | 8.8 | | | 19 | | | .8
.3
.2 | 1.2
.7 | 1.8 | 3.6 | 5.4 | 6.1 | | | 20 | | | 1 | .3 | 1.1 | 2.3 | 4.0 | 4.5 | | | 21 | | | •• | .2 | .6 | 1.5 | 3.4 | 3.9 | | | 22 | | | | | .3 | .8 | 2.4 | 3.3 | | | 23 | | | | | .1 | .5 | 1.8 | 2.6 | | | 24 | | | | | .î | .2 | 1.2 | 2.0 | | | 25 | | | | | .1 | .ī | .7 | 1.5 | | | 26 | | | | | •• | .1 | .4 | 1.1 | | | 27 | | | | | | .î | .4
.2
.1 | | | | $\overline{28}$ | | | | | | •• | .1 | 4 | | | 29 | | | | | | | .ĩ | .7
.4
.2
.1 | | | 30 | | | | | | | .î | 1 | | | 31 | | | | | | | .1 | .1 | | | 32 | | | | | | | ••• | .1 | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | Max. ECL | 18 | 18 | 20 | 21 | 25 | 27 | 31 | 32 | | | Avg. ECL | 9.3 | 9.7 | 10.6 | 12.2 | 13.5 | 14.6 | 16.2 | 17.1 | | | Min. ECL | 4 | 5 | 5 | 6 | 7 | 8 | 10 | 11 | | | Range | 14 | 13 | 15 | 15 | 18 | 19 | 21 | 21 | | | Poisson's | | | - | _ | | | · - | | | | Coef. K | 5.3 | 4.7 | 5.6 | 6.2 | 6.5 | 6.6 | 6.2 | 6.1 | | The frequency distribution of equivalent concentrated loads on spans of infinite length are omitted from this table since it is the same as the frequency distribution of equivalent H truck loadings for the above truck shown in Table 16.12a. Table 23.12b CALCULATED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS OF THE 4531 (ALL TYPES) TRUCKS REPORTED BY THE 1942 LOADOMETER SURVEY BASED ON POISSON'S DISTRIBUTION LAW | Equivalent
Concentrated | | | | Span- | Feet | | , | | |----------------------------|------|------|------|-------|------|------|------|------| | Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | 4 | .5 | | | | | | | | | 5 | 2.6 | .9 | .4 | | | | | | | 6 | 7.0 | 4.3 | 2.1 | .2 | | | | | | 7 | 12.4 | 10.0 | 5.8 | 1.3 | .2 | | | | | 8 | 16.4 | 15.7 | 10.8 | 3.9 | 1.0 | .1 | | | | 9 | 17.4 | 18.5 | 15.2 | 8.1 | 3.2 | .9 | | | | 10 | 15.4 | 17.4 | 17.0 | 12.5 | 6.9 | 3.0 | .2 | | | 11 | 11.6 | 13.6 | 15.8 | 15.5 | 11.2 | 6.5 | 1.3 | .2 | | 12 | 7.7 | 9.1 | 12.7 | 15.9 | 14.5 | 10.8 | 3.9 | 1.4 | | 13 | 4.5 | 5.4 | 8.9 | 14.2 | 15.6 | 14.2 | 8.1 | 4.2 | | 14 | 2.4 | 2.8 | 5.5 | 11.0 | 14.6 | 15.6 | 12.5 | 8.5 | | 15 | 1.2 | 1.3 | 3.1 | 7.6 | 11.9 | 14.7 | 15.5 | 12.9 | | 16 | .5 | .6 | 1.6 | 4.7 | 8.6 | 12.1 | 15.9 | 15.8 | | 17 | .2 | .2 | .7 | 2.6 | 5.6 | 8.9 | 14.2 | 16.0 | Table 23.12b (Continued) | Equivalent
Concentrated | Span-Feet | | | | | | | | |----------------------------|-----------|-------|-------|-------|-------|-------|-------|-------| | Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | 18 | .1 | .1 | .3 | 1.4 | 3.3 | 5.9 | 11.0 | 14.0 | | 19 | .1 | .1 | .1 | .7 | 1.8 | 3.5 | 7.6 | 10.7 | | 20 | | | | .3 | .9 | 1.9 | 4.7 | 7.2 | | 21 | | | | .1 | .4 | 1.0 | 2.6 | 4.4 | | 22 | | | | | .2 | .5 | 1.4 | 2.4 | | 23 | | | | | .1 | .2 | .7 | 1.2 | | 24 | | | | | | .1 | .3 | .6 | | 25 | | | | | | .1 | .1 | .3 | | 26 | | | | | | | | ,1 | | 27 | | | | | | | | .1 | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max. ECL | 19 | 19 | 19 | 21 | 23 | 25 | 25 | 27 | | Avg. ECL | 9.3 | 9.7 | 10.6 | 12.2 | 13.5 | 14.6 | 16.2 | 17.1 | | Min. ECL | 4 | 5 | 5 | 6 | 7 | 8 | 10 | 11 | | Range | 15 | 14 | 14 | 15 | 16 | 17 | 15 | 16 | | Poisson's | | | | - | - | | - | _ • | | Coef. K | 5.3 | 4.7 | 5.6 | 6.2 | 6.5 | 6.6 | 6.2 | 6.1 | | Std. Dev. D | 2.302 | 2.168 | 2.366 | 2,490 | 2.550 | 2.569 | 2.490 | 2.470 | The frequency distribution of equivalent concentrated loads on spans of infinite length are omitted from this table since it is the same as the frequency distribution of equivalent H truck loadings for the above truck shown in Table 16.12b. Each of these tables gives either the observed or calculated frequencies of equivalent concentrated loads on span lengths of 10, 20, 30, 40, 50, 60, 80, and 100 feet, respectively. The frequency distributions of these equivalent concentrated loads on an infinite span were omitted from these tables because they are the same as those given for each corresponding vehicle type and span in the right hand column of Tables 16.1—16.12. Reference to the frequencies of equivalent concentrated loads on an infinite span, however, is just another way of saying that they represent the frequency distribution of gross vehicle weights. This may be more readily explained perhaps if the discussion were confined to some particular vehicle having a gross
weight of, say, 20 tons. A Type 2-S1 truck weighing 20 tons, for example, irrespective of its wheel base length or distribution of load among its axles, would produce the same maximum moment on an infinite span as a single concentrated load of 20 tons. Therefore, the equivalent concentrated load corresponding to this vehicle on an infinite span would be the same as its gross vehicle weight, or simply an equivalent concentrated load of 20 tons. At the bottom of each of the Tables 23.1—23.12, the maximum, average, and minimum equivalent concentrated loads for each span are given and also the range which is the spread or difference between the maximum and minimum. The Poisson coefficient, K, as explained in Article 14, is equal to the difference between the average and minimum loading equivalents. The standard deviation, $D=\sqrt{K}$, is a statistical index associated with a given distribution which provides a measure for determining just how usual or unusual a given loading equivalent might be considered. A brief discussion concerning the meaning and use of the standard deviation, $D=\sqrt{K}$, will be found in Article 15.2. # 24. MAXIMUM, AVERAGE, AND MINIMUM EQUIVALENT CONCENTRATED LOADS ON SIMPLE SPAN BRIDGES BASED ON GROSS VEHICLE WEIGHTS Figures 24.1—24.11 present a graphical representation of the maximum, average, and minimum equivalent concentrated loads on simple span bridges of various lengths for each of the 11 more numerous heavy vehicle types reported by the special loadometer survey of 1942. Figure 24.12 gives the same information for 83 truck-tractor semitrailer trailer combinations (6 different vehicle types) that did not occur in sufficient numbers to justify individual distributions, and Figure 24.13 gives the same information for all heavy vehicles reported, representing a combined total of 4531. The upper part of each of these figures gives the maximum, average, and minimum equivalent concentrated loads for each span length and the lower part shows the range, the Poisson coefficient, K, and the standard deviation, D, for each corresponding span length. All of these data are given in the following figures: | Heavy Vehicle
Type | Number of Vehicles
Reported | Figure
Number | |--------------------------|--------------------------------|------------------| | 2 | 171 | 24.1 | | $\frac{2}{3}$ | 381 | 24.2 | | 2-S1 | 2855 | 24.3 | | 2-S2 | 508 | 24.4 | | 3-S1 | 9 | 24.5 | | 3-S2 | 142 | 24.6 | | 3-S3 | 14 | 24.7 | | 2-2 | 99 | 24.8 | | 2-3 | 24 | 24.9 | | 3-2 | 68 | 24.10 | | 3-3 | 176 | 24.11 | | 6 types of tractor-truck | | | | semitrailer trailer | 83 | 24.12 | | combinations | | | | All | 4531 | 24.13 | MAXIMUM, MINIMUM, AND AVERAGE EQUIVALENT CONCENTRATED LOADS FOR TYPE 2 TRUCKS ON SIMPLE SPANS OF VARIOUS LENGTHS CURVES SHOWN ARE FOR EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 171 TYPE 2 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY NOTE: -- GROSS VEHICLE WEIGHT IN TONS AND EQUIVALENT CONCENTRATED LOADS IN TONS ARE IDENTICAL AT INFINITE SPAN Figure 24.1 MAXIMUM, MINIMUM, AND AVERAGE EQUIVALENT CONCENTRATED LOADS FOR TYPE 3 TRUCKS ON SIMPLE SPANS OF VARIOUS LENGTHS NOTE: -- GROSS VEHICLE WEIGHT IN TONS AND EQUIVALENT CONCENTRATED LOADS IN TONS ARE IDENTICAL AT INFINITE SPAN Figure 24.2 MAXIMUM, MINIMUM, AND AVERAGE EQUIVALENT CONCENTRATED LOADS FOR TYPE 2-SI TRUCKS ON SIMPLE SPANS OF VARIOUS LENGTHS NOTE: -GROSS VEHICLE WEIGHT IN TONS AND EQUIVALENT CONCENTRATED LOADS IN TONS ARE IDENTICAL AT INFINITE SPAN Figure 24.3 MAXIMUM, MINIMUM, AND AVERAGE EQUIVALENT CONCENTRATED LOADS FOR TYPE 2-S2 TRUCKS ON SIMPLE SPANS OF VARIOUS LENGTHS NOTE: - GROSS VEHICLE WEIGHT IN TONS AND EQUIVALENT CONCENTRATED LOADS IN TONS ARE IDENTICAL AT INFINITE SPAN Figure 24.4 MAXIMUM, MINIMUM, AND AVERAGE EQUIVALENT CONCENTRATED LOADS FOR TYPE 3-SI TRUCKS ON SIMPLE SPANS OF VARIOUS LENGTHS NOTE: -- GROSS VEHICLE WEIGHT IN TONS AND EQUIVALENT CONCENTRATED LOADS IN TONS ARE IDENTICAL AT INFINITE SPAN Figure 24.5 MAXIMUM, MINIMUM, AND AVERAGE EQUIVALENT CONCENTRATED LOADS FOR TYPE 3-S2 TRUCKS ON SIMPLE SPANS OF VARIOUS LENGTHS CURVES SHOWN ARE FOR EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 142 TYPE 3-S2 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY RANGE, STANDARD DEVIATION, AND POISSON'S COEFFICIENT FOR FREQUENCY DISTRIBUTION OF EQUIVALENT CONCENTRATED Figure 24.6 MAXIMUM, MINIMUM, AND AVERAGE EQUIVALENT CONCENTRATED LOADS FOR TYPE 3-S3 TRUCKS ON SIMPLE SPANS OF VARIOUS LENGTHS CURVES SHOWN ARE FOR EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED THE 14 TYPE 3-S3 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVE RANGE, STANDARD DEVIATION, AND POISSON'S COEFFICIENT FOR FREQUENCY DISTRIBUTION OF EQUIVALENT CONCENTRATED LOADS ON SPANS OF VARIOUS LENGTHS Figure 24.7 MAXIMUM, MINIMUM, AND AVERAGE EQUIVALENT CONCENTRATED LOADS FOR TYPE 2-2 TRUCKS ON SIMPLE SPANS OF VARIOUS LENGTHS CURVES SHOWN ARE FOR EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 99 TYPE 2-2 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY NOTE: — GROSS VEHICLE WEIGHT IN TONS AND EQUIVALENT CONCENTRATED LOADS IN TONS ARE IDENTICAL AT INFINITE SPAN Figure 24.8 MAXIMUM, MINIMUM, AND AVERAGE EQUIVALENT CONCENTRATED LOADS FOR TYPE 2-3 TRUCKS ON SIMPLE SPANS OF VARIOUS LENGTHS CURVES SHOWN ARE FOR EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 24 TYPE 2-3 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY NOTE: — GROSS VEHICLE WEIGHT IN TONS AND EQUIVALENT CONCENTRATED LOADS IN TONS ARE IDENTICAL AT INFINITE SPAN Figure 24.9 MAXIMUM, MINIMUM, AND AVERAGE EQUIVALENT CONCENTRATED LOADS FOR TYPE 3-2 TRUCKS ON SIMPLE SPANS OF VARIOUS LENGTHS CURVES SHOWN ARE FOR EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 68 TYPE 3-2 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY NOTE: — GROSS VEHICLE WEIGHT IN TONS AND EQUIVALENT CONCENTRATED LOADS IN TONS ARE IDENTICAL AT INFINITE SPAN **Figure 24.10** MAXIMUM, MINIMUM, AND AVERAGE EQUIVALENT CONCENTRATED LOADS FOR TYPE 3-3 TRUCKS ON SIMPLE SPANS OF VARIOUS LENGTHS Figure 24.11 MAXIMUM, MINIMUM, AND AVERAGE EQUIVALENT CONCENTRATED LOADS FOR THE 83 TRUCK-TRACTOR SEMITRAILER-TRAILER COMBINATIONS ON SIMPLE SPANS OF VARIOUS LENGTHS CURVES SHOWN ARE FOR EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 83 TRUCK-TRACTOR SEMITRAILER-TRAILER COMBINATIONS REPORTED IN THE 1942 LOADOMETER SURVEY RANGE, STANDARD DEVIATION, AND POISSON'S COEFFICIENT FOR FREQUENCY DISTRIBUTION OF EQUIVALENT CONCENTRATED LOADS ON SPANS OF VARIOUS LENGTHS **Figure 24.12** MAXIMUM, MINIMUM, AND AVERAGE EQUIVALENT CONCENTRATED LOADS FOR THE 453I (ALL TYPES) TRUCKS ON SIMPLE SPANS OF VARIOUS LENGTHS CURVES SHOWN ARE FOR EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED THE 653 (ALL TYPES) TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY RANGE, STANDARD DEVIATION, AND POISSON'S COEFFICIENT FOR FREQUENCY DISTRIBUTION OF EQUIVALENT CONCENTRATED **Figure 24.13** # 25. HISTOGRAMS SHOWING FREQUENCY DISTRIBUTIONS OF EQUIVALENT CONCENTRATED LOADS ON SIMPLE SPAN BRIDGES BASED ON GROSS VEHICLE WEIGHTS Figures 25.1—25.11 present a graphical representation of the observed and calculated frequencies of equivalent concentrated loads on simple spans up to 100 feet in length for each of the 11 more numerous heavy vehicle types reported in the 1942 loadometer survey; Figure 24.12 gives the same information for all of the heavy vehicles reported, representing a combined total of 4531. The histograms represent the observed data, based on 3-item moving averages, and the dashed lines represent the corresponding Poisson distributions. Both the observed and calculated frequencies of equivalent concentrated loads were plotted from the corresponding data given by tables 23.1a—23.12a and 23.1b—23.12b. These distributions are given in the following figures: | Heavy Vehicle
Type | Number of Vehicles
Reported | Figure
Number | |-----------------------|--------------------------------|------------------| | 2 | 171 | 25.1 | | 3 | 381 | 25.2 | | 2-S1 | 2855 | 25.3 | | 2-S2 | 508 | 25.4 | | 3-S1 | 9 | 25.5 | | 3-S2 | 142 | 25.6 | | 3-S3 | 14 | 25.7 | | 2-2 | 99 | 25.8 | | 2-3 | 24 | 25.9 | | 3-2 | 68 | 25.10 | | 3-3 | 176 | 25.11 | | All | 4531 | 25.12 | | | | | A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR TYPE 2 HEAVY VEHICLES ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON EQUIVALENT CONCENTRATED LOADS WHICH PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 171 TYPE 2 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 25.1 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR TYPE 3 HEAVY VEHICLES ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON EQUIVALENT CONCENTRATED LOADS WHICH PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 3BI TYPE 3 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 25.2 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR TYPE 2-SI HEAVY VEHICLES ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON EQUIVALENT CONCENTRATED LOADS WHICH PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 2855 TYPE 2-SI TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 25.3 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR TYPE 2-S2 HEAVY VEHICLES ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES
BASED ON EQUIVALENT CONCENTRATED LOADS WHICH PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 508 TYPE 2-S2 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 25.4 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR TYPE 3-SI HEAVY VEHICLES ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON EQUIVALENT CONCENTRATED LOADS WHICH PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 9 TYPE 3-SI TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 25.5 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR TYPE 3-S2 HEAVY VEHICLES ON SIMPLE SPANS OF VARIOUS LENGTHS' OBSERVED FREQUENCIES BASED ON EQUIVALENT CONCENTRATED LOADS WHICH PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 142 TYPE 3-S2 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 25.6 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR TYPE 3-S3 HEAVY VEHICLES ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON EQUIVALENT CONCENTRATED LOADS WHICH PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 14 TYPE 3-S3 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 25.7 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR TYPE 2-2 HEAVY VEHICLES ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON EQUIVALENT CONCENTRATED LOADS WHICH PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 99 TYPE 2-2 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 25.8 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR TYPE 2-3 HEAVY VEHICLES ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON EQUIVALENT CONCENTRATED LOADS WHICH PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 24 TYPE 2-3 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 25.9 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR TYPE 3-2 HEAVY VEHICLES ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON EQUIVALENT CONCENTRATED LOADS WHICH PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 68 TYPE 3-2 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW **Figure 25.10** A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR TYPE 3-3 HEAVY VEHICLES ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON EQUIVALENT CONCENTRATED LOADS WHICH PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 176 TYPE 3-3 TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 25.11 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR ALL TYPE HEAVY VEHICLES ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON EQUIVALENT CONCENTRATED LOADS WHICH PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 4531 (ALL TYPES) TRUCKS REPORTED IN THE 1942 LOADOMETER SURVEY THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 25.12 ## 26. OBSERVED AND CALCULATED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS ON SIMPLE SPAN BRIDGES BASED ON VEHICLES WEIGHING ONE KIP EACH The observed and calculated frequencies of equivalent concentrated loads based on gross vehicle weights, as discussed in Articles 23, 24, and 25, provide a convenient means for analyzing the range and frequencies of the actual live load bending moments that would result on various span lengths from the heavy vehicle loadings reported by the 1942 loadometer survey. Owing to the fact, however, that these moments include the effect of gross vehicle weights, they do not reflect the stress producing characteristics of the vehicles themselves. In order to investigate or analyze the stress producing characteristics of the heavy vehicle types and loadings actually found on the highways, therefore, it is necessary to eliminate gross vehicle weight as a variable by holding it constant. This may be accomplished by considering each heavy vehicle investigated to have a gross vehicle weight of one kip as was done in the case of the 1303 variations of wheel base, number and spacing of axles, percentage and distribution of load among the axles for the 14 heavy vehicle types given by the identification index Tables 6.1—6.14. The moment produced by these vehicles of unit weight on spans of various lengths (see Tables 6.1—6.14, 7.1—7.14, and Figures 9.1—9.14) not only provide a simple means for comparing the stress producing characteristics of one vehicle with those of another, but also for comparing or measuring the stress producing effects of any given vehicle type and loading, on a given span, in terms of a standard H truck loading, H design loading, single concentrated load, or any other type of loading as may be desired for use as a basis of comparison. In the case of measuring the stress producing effects of a given vehicle on a given span, in terms of the standard H truck or a single concentrated load, however, it is simpler to obtain this information directly from Tables 10.1—10.14 and Tables 12.1—12.14, respectively, than by comparing the moments given by Tables 9.1—9.14. For example, if it were desired to rate the stress producing characteristics of a Type 2-S1 Truck—with axle spacings of 12 and 24 feet, making an over-all wheel-base length of 36 feet, and a percentage distribution of load from front to rear of 10, 45, and 45 percent, respectively—in terms of an equivalent concentrated load on a 60-foot span, it will be found in Table 12.3 that this vehicle (2-S1-66) of unit weight will produce but 62.6 percent as much moment as a concentrated load of unit weight on this 60-foot span. Therefore, the stress producing effects of this 2-S1-66 truck would be rated at .626 of a single concentrated load of equal weight. An analysis of the stress producing characteristics of the 11 more numerous heavy vehicle types, reported by the 1942 loadometer survey, is given by Tables 26.1a—26.11a and Tables 26.1b—26.11b which present the observed and calculated frequencies of equivalent concentrated loads for these vehicles on a unit weight basis on spans up to 100 feet in length. In Table 26.1a, it will be seen that of the 171 Type 2 trucks reported, 25.5 percent of them produced 90 percent as much moment as a single concentrated load of equal weight on a 50-foot span. In the same column it will be seen that 28.7 percent of them produced 85 percent as much moment as a single concentrated load of equal weight, and so on. The observed and calculated frequencies of equivalent concentrated loads for each of the 11 heavy vehicle types weighing one kip each on spans up to 100 feet in length are given in the following tables: | Heavy | Number of | Table of | Table of | |--------------|---------------------|-------------|-------------| | Vehicle | Vehicles | Observed | Calculated | | $_{ m Type}$ | $\mathbf{Reported}$ | Frequencies | Frequencies | | 2^{-} | $^{-}171$ | 26.1a | 26.1b | | 3 | 381 | 26.2a | 26.2b | | 2-S1 | 2855 | 26.3a | 26.3b | | 2-S2 | 508 | 26.4a | 26.4b | | 3-S1 | 9 | 26.5a | 26.5b | | 3-S2 | 142 | 26.6a | 26.6b | | 3-S3 | 14 | 26.7a | 26.7b | | 2-2 | 99 | 26.8a | 26.8b | | 2-3 | 24 | 26.9a | 26.9b | | 3-2 | 68 | 26.10a | 26.10b | | 3-3 | 176 | 26.11a | 26.11b | The maximum, average, and minimum equivalent concentrated loads, the range, Poisson coefficient, K, and standard deviation, D, all have the same meaning as explained in connection with the frequency distributions based on gross vehicle weights in Article 15. Table 26.1a # OBSERVED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 171 TYPE 2 TRUCKS WEIGHING ONE KIP EACH | Equivalent | Span-Feet | | | | | | | | | |-----------------------|-----------|-------|-------|-------|-------|-------|-------|-------|--| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | .95 | | | | | | | 28.7 | 41.7 | | | .90 | | | | 11.3 | 25.5 | 37.4 | 32.8 | 33.3 | | | .85 | | | 9.7 | 19.7 | 28.7 | 32.8 | 28.9 | 23.4 | | | .80 | 18.4 | 18.4 | 19.7 | 27.3 | 26.9 | 23.0 | 9.1 | 1.6 | | | .75 | 25,5 | 25.7 | 26.7 | 22.2 | 13.3 | 5.9 | .5 | | | | .70 | 25.9 | 26.1 | 23.4 | 13.3 | 4.7 | .6 | | | | | .65 | 18.7 | 18.7 | 13.3 | 4.7 | .6 | .3 | | | | | .60 | 7.8 | 7.6 | 5.3 | 1.2 | .3 | | | | | | .55 | 2.5 | 2.3 | 1.5 | .3 | | | | | | | .50 | 1.2 | 1.2 | .4 | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | Max. ECL | .80 | .80 | .85 | .90 | .90 | .90 | .95 | .95 | | | Avg. ECL | .71 | .71 | .73 | .79 | .83 | .85 | .89 | .91 | | | Min. ECL | .50 | .50 | .50 | .55 | .60 | .65 | .75 | .80 | | | Range | .30 | .30 | .35 | .35 | .30 | .25 | .20 | .15 | | | Poisson's | | | | | | | | | | | Coef. K | 1.8 | 1.8 | 2.3 | 2.3 | 1.4 | .9 | 1.2 | .7 | | The equivalent concentrated loadings shown for the unit weight trucks of this table are proportional to the equivalent concentrated loadings based on gross weights for corresponding vehicles among the 171 Type 2 trucks reported by the 1942 loadometer survey. #### Table 26.1b ### CALCULATED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 171 TYPE 2 TRUCKS WEIGHING ONE KIP EACH Calculated frequencies are based on Poisson's Distribution Law. Equivalent concentrated loads which occur less than 1 in 1000, or account for less than 0.1% of the heavy trucks of
this type are not shown in this table. | Equivalent | | | | Span- | Span-Feet | | | | | | | | |-----------------------|-------|-------|-------|-------|-----------|-------|-------|-------|--|--|--|--| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100_ | | | | | | .95 | | | | | | | 30.1 | 49.7 | | | | | | .90 | | | | 10.0 | 24.7 | 40.7 | 36.1 | 34.8 | | | | | | .85 | | | 10.0 | 23.1 | 34.5 | 36.6 | 21.7 | 12.2 | | | | | | .80 | 16.5 | 16.5 | 23.1 | 26.5 | 24.2 | 16.5 | 8.7 | 2.8 | | | | | | .75 | 29.8 | 29.8 | 26.5 | 20.3 | 11.3 | 4.9 | 2.6 | .5 | | | | | | .70 | 26.8 | 26.8 | 20.3 | 11.7 | 3.9 | 1.1 | .6 | | | | | | | .65 | 16.1 | 16.1 | 11.7 | 5.4 | 1.1 | .2 | .1 | | | | | | | .60 | 7.2 | 7.2 | 5.4 | 2.1 | .3 | | .1 | | | | | | | .55 | 2.6 | 2.6 | 2.1 | .7 | | | | | | | | | | .50 | .8 | .8 | .7 | .2 | | | | | | | | | | .45 | .2 | .2 | .2 | | | | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | | | | Max. ECL | .80 | .80 | .85 | .90 | .90 | .90 | .95 | .95 | | | | | | Avg. ECL | .71 | .71 | .73 | .79 | .83 | .85 | .89 | .91 | | | | | | Min. ECL | .45 | .45 | .45 | .50 | .60 | .65 | .60 | .75 | | | | | | Range | .35 | .35 | .40 | .40 | .30 | .25 | .35 | .20 | | | | | | Poisson's | | | | | | | | | | | | | | Coef. K | 1.8 | 1.8 | 2.3 | 2.3 | 1.4 | .9 | 1.2 | .7 | | | | | | Std. Dev. D | 1.342 | 1.342 | 1.517 | 1.517 | 1.183 | .949 | 1.095 | .837 | | | | | The equivalent concentrated loadings shown for the unit weight trucks of this table are proportional to the equivalent concentrated loadings based on gross weights for corresponding vehicles among the 171 Type 2 trucks reported by the 1942 loadometer survey. ### Table 26.2a ## OBSERVED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 381 TYPE 3 TRUCKS WEIGHING ONE KIP EACH | Equivalent | Span-Feet | | | | | | | | |-----------------------|-----------|------|------|------|------|------|------|------| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .95 | | | | | | | 29.0 | 36.1 | | .90 | | | | | 22.4 | 33.3 | 32.6 | 33.1 | | -85 | | | | 26,9 | 31.0 | 32.5 | 32.9 | 29.5 | | .80 | | | 18.9 | 30.7 | 32.1 | 29.2 | 4.8 | 1.1 | | .75 | | 14.2 | 27.6 | 28.5 | 11.1 | 3.9 | .7 | .2 | | .70 | | 25.8 | 29.7 | 9.7 | 2.4 | .8 | | | | .65 | 29.1 | 16.0 | 2.4 | 8 | 3 | | | | | Table | 26.2a | (Continued) | |-------|-------|-------------| | | | | | Equivalent
Concentrated | Span-Feet | | | | | | | | | |----------------------------|-----------|-------|-------|-------|-------|-------|-------|-------|--| | Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | .60 | 14.2 | 20.8 | 5.3 | 1.1 | .2 | | | | | | .55 | 31.2 | 7.5 | 1.4 | .4 | | | | | | | .50 | 30.2 | 2.2 | .7 | .3 | | | | | | | .45 | 21.3 | .4 | .4 | | | | | | | | .40 | 2.1 | | | | | | | | | | .35 | 1.0 | | | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | Max. ECL | .60 | .75 | .80 | .85 | .90 | .90 | .95 | .95 | | | Avg. ECL | .52 | .66 | .72 | .78 | .83 | .85 | .89 | .90 | | | Min. ECL | .35 | .45 | .45 | .50 | .60 | .65 | .75 | .75 | | | Range | .25 | .30 | .35 | .35 | .30 | ,25 | .20 | .20 | | | Poisson's | | | | | | | | | | | Coef. K | 1.7 | 1.9 | 1.7 | 1.3 | 1.4 | 1.0 | 1.2 | .9 | | The equivalent concentrated loadings shown for the unit weight trucks of this table are proportional to the equivalent concentrated loadings based on gross weights for corresponding vehicles among the $381~\mathrm{Type}$ 3 trucks reported by the $1942~\mathrm{loadometer}$ survey. Table 26.2b ### CALCULATED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 381 TYPE 3 TRUCKS WEIGHING ONE KIP EACH Calculated frequencies are based on Poisson's Distribution Law. Equivalent concentrated loads which occur less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent
Concentrated
Loads | Span-Feet | | | | | | | | | |-------------------------------------|-----------|-------|-------|-------|-------|-------|-------|-------|--| | | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | .95 | | | | | | | 30.1 | 40.7 | | | .90 | | | | | 24.7 | 36.8 | 36.1 | 36.6 | | | .85 | | | | 27.3 | 34.5 | 36.8 | 21.7 | 16.5 | | | .80 | | | 18.3 | 35.4 | 24.2 | 18.4 | 8.7 | 4.9 | | | .75 | | 15.0 | 31.1 | 23.0 | 11.3 | 6.1 | 2.6 | 1.1 | | | .70 | | 28.4 | 26.4 | 10.0 | 3.9 | 1.5 | .6 | .2 | | | .65 | | 27.0 | 15.0 | 3.2 | 1.1 | .3 | .1 | | | | .60 | 18.3 | 17.1 | 6.4 | .8 | .3 | .1 | .1 | | | | .55 | 31.1 | 8.1 | 2.2 | .2 | | | | | | | .50 | 26.4 | 3.1 | .6 | .1 | | | | | | | .45 | 15.0 | 1.0 | | | | | | | | | .40 | 6.4 | .3 | | | | | | | | | .35 | 2.2 | | | | | | | | | | .30 | .6 | | | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100,0 | | | Max. ECL | .60 | .75 | .80 | .85 | .90 | .90 | .95 | .95 | | | Avg. ECL | .52 | .66 | .72 | .78 | .83 | .85 | .89 | .90 | | | Min. ECL | .30 | .40 | .50 | .50 | .60 | .60 | .60 | .70 | | | Range | .30 | .35 | .30 | .35 | .30 | .30 | .35 | .25 | | | Poisson's | | | | | | | | | | | Coef. K | 1.7 | 1.9 | 1.7 | 1.3 | 1.4 | 1.0 | 1.2 | .9 | | | Std. Dev. D | 1.304 | 1.378 | 1.304 | 1.140 | 1.183 | 1.000 | 1.095 | .949 | | The equivalent concentrated loadings shown for the unit weight trucks of this table are proportional to the equivalent concentrated loadings based on gross weights for corresponding vehicles among the 381 Type 3 trucks reported by the 1942 loadometer survey. Table 26.3a ## OBSERVED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 2855 TYPE 2-S1 TRUCKS WEIGHING ONE KIP EACH | Equivalent
Concentrated
Loads | Span-Feet | | | | | | | | | |-------------------------------------|-----------|-------|-------|-------|-------|-------|-------|-------|--| | | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | .90 | | | | | | | 2.9 | 17.0 | | | .85 | | | | | | 2.8 | 21.3 | 31.4 | | | .80 | | | | | 2.9 | 13.0 | 31.2 | 32.8 | | | .75 | | | | 2.8 | 13.1 | 26.8 | 30.4 | 16.7 | | | .70 | | | .3 | 5.3 | 23.0 | 29.6 | 12.0 | 2.0 | | | .65 | | | 3.0 | 18.2 | 28.6 | 20.2 | 2.0 | .1 | | | .60 | .3 | .7 | 5.1 | 27.3 | 20.1 | 6.4 | .2 | | | | .55 | 13.1 | 13.1 | 24.1 | 27.9 | 10.2 | 1.1 | | | | | .50 | 26.6 | 28.2 | 30.2 | 15.0 | 1.9 | .1 | | | | | .45 | 33.1 | 32.9 | 28.1 | 3.4 | .2 | | | | | | .40 | 20.3 | 20.2 | 9.1 | .1 | | | | | | | .35 | 6.6 | 4.9 | .1 | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | Max. ECL | .60 | .60 | .70 | .75 | .80 | .85 | .90 | .90 | | | Avg. ECL | .46 | .46 | .50 | .58 | .66 | .71 | .78 | .82 | | | Min. ECL | .35 | .35 | .35 | .40 | .45 | .50 | .60 | ,65 | | | Range | .25 | .25 | .35 | .35 | .35 | .35 | .30 | .25 | | | Poisson's | | | | | | | | | | | Coef. K | 2.8 | 2.7 | 4.0 | 3.3 | 2.9 | 2.8 | 2.3 | 1.6 | | The equivalent concentrated loadings shown for the unit weight trucks of this table are proportional to the equivalent concentrated loadings based on gross weights for corresponding vehicles among the 2855 Type 2-S1 trucks reported by the 1942 loadometer survey. ### Table 26.3b ### CALCULATED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 2855 TYPE 2-S1 TRUCKS WEIGHING ONE KIP EACH Calculated frequencies are based on Poisson's Distribution Law. Equivalent concentrated loads which occur less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent
Concentrated
Loads | Span-Feet | | | | | | | | | |-------------------------------------|-----------|------|------|------|------|------|------|------|--| | | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | .90 | | | | | | | 10.2 | 20.2 | | | .85 | | | | | | 6.1 | 23.1 | 32.3 | | | .80 | | | | | 5.5 | 17.0 | 26.5 | 25.8 | | | .75 | | | | 3.7 | 16.0 | 23.8 | 20.3 | 13.8 | | | .70 | | | 1.8 | 12.2 | 23.1 | 22.2 | 11.7 | 5.5 | | | .65 | | | 7.3 | 20.1 | 22.4 | 15.6 | 5.4 | 1.8 | | | .60 | 6.1 | 6.7 | 14.7 | 22.1 | 16.2 | 8.7 | 2.1 | .5 | | | .55 | 17.0 | 18.1 | 19.5 | 18.2 | 9.4 | 4.1 | .7 | .1 | | | .50 | 23.8 | 24.5 | 19.5 | 12.0 | 4.5 | 1.6 | .2 | | | | .45 | 22.2 | 22.0 | 15.6 | 6.6 | 1.9 | .6 | | | | | .40 | 15.6 | 14.9 | 10.4 | 3,1 | .7 | .2 | | | | | Table | 26 3h | (Contin | hon | |-------|-------|---------|-----| | | | | | | Equivalent | Span-Feet | | | | | | | | | |-----------------------|-----------|-------|-------|-------|-------|-------|-------|-------|--| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | .35 | 8.7 | 8.0 | 6.0 | 1.3 | .2 | .1 | | | | | .30 | 4.1 | 3.6 | 3.0 | .5 | .1 | | | | | | .25 | 1.6 | 1.4 | 1.3 | .2 | | | | | | | .20 | .6 | .5 | .5 | | | | | | | | .15 | .2 | .1 | .2 | | | | | | | | .10 | .1 | .1 | .1 | | | | | | | | .05 | | .1 | .1 | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | Max. ECL | .60 | .60 | .70 | .75 | .80 | .85 | .90 | .90 | | | Avg. ECL | .46 | .46 | .50 | ,58 | .66 | .71 | .78 | .82 | | | Min. ECL | .10 | .05 | .05 | .25 | .30 | .35 | .50 | .55 | | | Range | .50 | .55 | .65 | .50 | .50 | .50 | .40 | .35 | | | Poisson's | | | | | | | | | | | Coef. K | 2.8 | 2.7 | 4.0 | 3.3 | 2.9 | 2.8 | 2.3 | 1.6 | | | Std. Dev. D | 1.673 | 1.643 | 2.000 | 1.817 | 1.703 | 1.673 | 1.517 | 1.265 | | The equivalent concentrated loadings shown for the unit weight trucks of this table are proportional to the equivalent concentrated loadings based on gross weights for corresponding vehicles among the 2855 Type 2-S1 trucks reported by the 1942 loadometer survey. Table 26.4a OBSERVED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 508 TYPE 2-S2 TRUCKS WEIGHING ONE KIP EACH | Equivalent
Concentrated | |
 | Span- | -Feet | | | | |----------------------------|-------|-------|-------|-------|-------|-------|-------|-------| | Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .90 | | | | | | | | 11.7 | | .85 | | | | | | | 13.7 | 24.5 | | .80 | | | | | .9 | 8.3 | 24.5 | 32.7 | | .75 | | | | .8 | 7.3 | 17.4 | 31.3 | 22.3 | | .70 | | | | 4.4 | 13.9 | 27.2 | 20.4 | 8.8 | | .65 | | | 4.8 | 12.9 | 27.0 | 24.5 | 8.8 | .1 | | .60 | | | 6.8 | 26.6 | 24.7 | 15.9 | 1.3 | | | .55 | | 19.5 | 22.0 | 27.1 | 19.2 | 5.5 | | | | .50 | .8 | 19.3 | 28.9 | 20.2 | 5.6 | 1.2 | | | | .45 | 30.6 | 33.0 | 26.5 | 6.2 | 1.3 | | | | | .40 | 30.3 | 14.2 | 10.8 | 1.8 | .1 | | | | | .35 | 32.9 | 14.0 | ,2 | | | | | | | .30 | 2.7 | | | | | | | | | .25 | 2.7 | | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max. ECL | .50 | .55 | .65 | .75 | .80 | .80 | .85 | .90 | | Avg. ECL | .39 | .46 | .50 | .57 | .62 | .68 | .76 | .80 | | Min. ECL | .25 | .35 | .35 | .40 | .40 | .50 | .60 | .65 | | Range | .25 | ,20 | .30 | .35 | .40 | .30 | .25 | .25 | | Poisson's | .=- | | •00 | .00 | .10 | .00 | .20 | .20 | | Coef. K | 2.1 | 1.8 | 3.0 | 3.7 | 3.5 | 2.4 | 1.9 | 1.9 | The equivalent concentrated loadings shown for the unit weight trucks of this table are proportional to the equivalent concentrated loadings based on gross weights for corresponding vehicles among the 508 Type 2-S2 trucks reported by the 1942 loadometer survey. Table 26.4b ## CALCULATED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 508 TYPE 2-S2 TRUCKS WEIGHING ONE KIP EACH Calculated frequencies are based on Poisson's Distribution Law. Equivalent concentrated loads which occur less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent | | | | Span- | Feet | | | | |-----------------------|-------|-------|-------|-------|-------|-------|-------|-------| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .90 | | | | | | | | 15.0 | | .85 | | | | | | | 15.0 | 28.4 | | .80 | | | | | 3.0 | 9.1 | 28.4 | 27.0 | | .75 | | | | 2.5 | 10.6 | 21.8 | 27.0 | 17.1 | | .70 | | | | 9.1 | 18.5 | 26.1 | 17.1 | 8.1 | | .65 | | | 5.0 | 16.9 | 21.6 | 20.9 | 8.1 | 3.1 | | .60 | | | 14.9 | 20.9 | 18.9 | 12.5 | 3.1 | 1.0 | | .55 | | 16.5 | 22.4 | 19.3 | 13.2 | 6.0 | 1.0 | .3 | | .50 | 12.2 | 29.8 | 22.4 | 14.3 | 7.7 | 2.4 | .3 | | | .45 | 25.7 | 26.8 | 16.8 | 8.8 | 3.9 | .8 | | | | .40 | 27.0 | 16.1 | 10.1 | 4.7 | 1.7 | .2 | | | | .35 | 18.9 | 7.2 | 5.0 | 2.2 | .7 | .1 | | | | .30 | 9.9 | 2.6 | 2.2 | .9 | .1 | .1 | | | | .25 | 4.2 | .8 | .8 | .3 | .1 | | | | | .20 | 1.5 | .2 | .3 | .1 | | | | | | .15 | .4 | | .1 | | | | | | | .10 | .1 | | | | | | | | | .05 | .1 | | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max. ECL | .50 | .55 | .65 | .75 | .80 | .80 | .85 | .90 | | Avg. ECL | .39 | .46 | .50 | .57 | .62 | .68 | .76 | .80 | | Min. ECL | .05 | .20 | .15 | .20 | .25 | .30 | .50 | .55 | | Range | .45 | .35 | .50 | .55 | .55 | .50 | .35 | .35 | | Poisson's | | | | | | | | | | Coef, K | 2.1 | 1.8 | 3.0 | 3.7 | 3.5 | 2.4 | 1.9 | 1.9 | | Std. Dev. D | 1.449 | 1.342 | 1.732 | 1.924 | 1.871 | 1.549 | 1.378 | 1.378 | The equivalent concentrated loadings shown for the unit weight trucks of this table are proportional to the equivalent concentrated loadings based on gross weights for corresponding vehicles among the 508 Type 2-S2 trucks reported by the 1942 loadometer survey. Table 26.5a ## OBSERVED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 9 TYPE 3-S1 TRUCKS WEIGHING ONE KIP EACH | Equivalent | Span-Feet | | | | | | | | | |-----------------------|-----------|----|------|------|------|------|------|------|--| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | .85 | | | | | | | 37.0 | 59.3 | | | .80 | | | | | | 29.6 | 29.6 | 33.3 | | | .75 | | | | | 25.9 | 29.6 | 25.9 | 3.7 | | | .70 | | | | 11.1 | 29.6 | 25.9 | 3.7 | 3.7 | | | .65 | | | | 29.6 | 25.9 | 7.4 | 3.8 | | | | .60 | | | 18.5 | 25.9 | 7.4 | 3.7 | | | | Table 26.5a (Continued) | Equivalent
Concentrated | Span-Feet . | | | | | | | | | |----------------------------|-------------|-------|-------|-------|-------|-------|-------|-------|--| | Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | .55 | | | 29.6 | 22.2 | 3.7 | 3.8 | | | | | .50 | | 40.8 | 29.6 | 3.7 | 3.7 | | | | | | .45 | | 33.3 | 18.5 | 3.7 | 3.8 | | | | | | .40 | 55.6 | 14.8 | 3.8 | 3.8 | | | | | | | .35 | 33,3 | 11.1 | | | | | | | | | .30 | 7.4 | | | | | | | | | | .25 | 3.7 | | | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | Max. ECL | .40 | .50 | .60 | .70 | .75 | .80 | .85 | .85 | | | Avg. ECL | .38 | .46 | .52 | .60 | .67 | .73 | .80 | .84 | | | Min. ECL | .25 | .35 | .40 | .40 | .45 | .55 | .65 | .70 | | | Range | .15 | .15 | .20 | .30 | .30 | .25 | .20 | .15 | | | Poisson's | | | | | | | | | | | Coef. K | .3 | .8 | 1.6 | 2.0 | 1.6 | 1.3 | 1.0 | .2 | | The equivalent concentrated loadings shown for the unit weight trucks of this table are proportional to the equivalent concentrated loadings based on gross weights for corresponding vehicles among the 9 Type 3-S1 trucks reported by the 1942 loadometer survey. Table 26.5b # CALCULATED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 9 TYPE 3-S1 TRUCKS WEIGHING ONE KIP EACH Calculated frequencies are based on Poisson's Distribution Law. Equivalent concentrated loads which occur less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent | | | | Span-l | Feet | | | | |-----------------------|-------|-------|-------|----------------|-------|-------|-------|-------| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .85 | | | | | | | 36.8 | 81.9 | | .80 | | | | | | 27.3 | 36.8 | 16.4 | | .75 | | | | | 20.2 | 35.4 | 18.4 | 1.6 | | .70 | | | | 13.5 | 32.3 | 23.0 | 6.1 | .1 | | .65 | | | | 27.1 | 25.8 | 10.0 | 1.5 | | | .60 | | | 20.2 | 27.1 | 13.8 | 3.2 | .3 | | | .55 | | | 32.3 | 18.0 | 5.5 | .8 | .1 | | | .50 | | 44.9 | 25.8 | 9.0 | 1.8 | .2 | | | | .45 | | 35.9 | 13.8 | 3.6 | .5 | .1 | | | | .40 | 74.1 | 14.4 | 5.5 | 1.2 | .1 | | | | | .35 | 22.2 | 3.8 | 1.8 | .3 | | | | | | .30 | 5.3 | .8 | .5 | .3
.1
.1 | | | | | | .25 | .3 | .1 | .1 | .1 | | | | | | .20 | .1 | .1 | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max. ECL | .40 | .50 | .60 | .70 | .75 | .80 | .85 | .85 | | Avg. ECL | .38 | .46 | .52 | .60 | .67 | .73 | .80 | .84 | | Min. ECL | .20 | .20 | .25 | .25 | .40 | .45 | .55 | .70 | | Range | .20 | .30 | .35 | .45 | .35 | .35 | .30 | .15 | | Poisson's | | | | | | | | | | Coef. K | .3 | .8 | 1.6 | 2.0 | 1.6 | 1.3 | 1.0 | .2 | | Std. Dev. D | .548 | .894 | 1.265 | 1.414 | 1.265 | 1.140 | 1.000 | .44 | The equivalent concentrated loadings shown for the unit weight trucks of this table are proportional to the equivalent concentrated loadings based on gross weights for corresponding vehicles among the 9 Type 3-S1 trucks reported by the 1942 loadometer survey. Table 26.6a ### OBSERVED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 142 TYPE 3-S2 TRUCKS WEIGHING ONE KIP EACH | Equivalent | Span-Feet | | | | | | | | | |-----------------------|-----------|-------|-------|-------|-------|-------|-------|-------|--| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | .85 | | | | | | | 1.4 | 14.3 | | | .80 | | | | | | | 12.4 | 31.9 | | | .75 | | | | | | 6.6 | 28.2 | 32.2 | | | .70 | | | | | 5.9 | 14.8 | 31.5 | 20.2 | | | .65 | | | | 3.5 | 10.8 | 28.6 | 20.9 | 1.4 | | | .60 | | | | 7.3 | 24.4 | 26.1 | 4.9 | | | | .55 | | | 5.4 | 15.0 | 23.9 | 18.5 | .7 | | | | .50 | | 1.9 | 17.4 | 29.6 | 22.5 | 4.5 | | | | | .45 | | 15.5 | 31.0 | 26.1 | 8.5 | .9 | | | | | .40 | 1.9 | 27.0 | 28.4 | 17.8 | 4.0 | | | | | | .35 | 27.9 | 32.4 | 16.0 | .7 | | | | | | | .30 | 32.4 | 17.8 | 1.8 | ••• | | | | | | | .25 | 32.4 | 5.4 | 2.0 | | | | | | | | .20 | 5.4 | 0 | | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | Max. ECL | .40 | .50 | .55 | .65 | .70 | .75 | .85 | .85 | | | Avg. ECL | .29 | .37 | .43 | .49 | .56 | .62 | .71 | .77 | | | Min. ECL | .20 | .25 | .30 | .35 | .40 | .45 | .55 | .65 | | | Range | .20 | .25 | .25 | .30 | .30 | .30 | .30 | .20 | | | Poisson's | .20 | .20 | .20 | .50 | .00 | .00 | .00 | .20 | | | Coef. K | 2.1 | 2.6 | 2.4 | 3.2 | 2.9 | 2.5 | 2.8 | 1.6 | | The equivalent concentrated loadings shown for the unit weight trucks of this table are proportional to the equivalent concentrated loadings based on gross weights for corresponding vehicles among the 142 Type 3-S2 trucks reported by the 1942 loadometer survey. Table 26.6b ### CALCULATED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 142 TYPE 3-S2 TRUCKS WEIGHING ONE KIP EACH Calculated frequencies are based on Poisson's Distribution Law. Equivalent concentrated loads which occur less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent | Span-Feet | | | | | | | | |-----------------------|-----------|-----|------|------|------|------|------|------| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .85 | | | | | | | 6.1 | 20.2 | | .80 | | | | | | | 17.0 | 32.3 | | .75 | | | | | | 8.2 | 23.8 | 25.8 | | .70 | | | | | 5.5 | 20.5 | 22.2 | 13.8 | | .65 | | | | 4.1 | 16.0 | 25.7 | 15.6 | 5.5 | | .60 | | | | 13.0 | 23.1 | 21.4 | 8.7 | 1.8 | | .55 | | | 9.1 | 20.9 | 22.4 | 13.4 | 4.1 | .5 | | .50 | | 7.4 | 21.8 | 22.3 | 16.2 | 6.7 | 1.6 | .1 |
| Table 26.6b (| Continued) | |---------------|------------| |---------------|------------| | Equivalent
Concentrated | Span-Feet | | | | | | | | | |----------------------------|-----------|-------|-------|-------|-------|-------|-------|-------|--| | Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | .45 | | 19.3 | 26.1 | 17.8 | 9.4 | 2.8 | .6 | | | | .40 | 12.2 | 25.1 | 20.9 | 11.4 | 4.5 | 1.0 | .2 | | | | .35 | 25.7 | 21.8 | 12.5 | 6.1 | 1.9 | .3 | .1 | | | | .30 | 27.0 | 14.1 | 6.0 | 2.8 | .7 | | | | | | .25 | 18.9 | 7.4 | 2.4 | 1.1 | .2 | | | | | | .20 | 9.9 | 3.2 | .8 | .4 | .1 | | | | | | .15 | 4.2 | 1.2 | .2 | .1 | | | | | | | .10 | 1.5 | .4 | .1 | | | | | | | | .05 | .6 | .1 | .1 | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | Max. ECL | .40 | .50 | .55 | .65 | .70 | .75 | .85 | .85 | | | Avg. ECL | .29 | .37 | .43 | .49 | .56 | .62 | .71 | .77 | | | Min. ECL | .05 | .05 | .05 | 15 | .20 | .35 | .35 | .50 | | | Range | .35 | .45 | .50 | .50 | .50 | .40 | .50 | .35 | | | Poisson's | | | | | | | | | | | Coef. K | 2.1 | 2.6 | 2.4 | 3.2 | 2.9 | 2.5 | 2.8 | 1.6 | | | Std. Dev. D | 1.449 | 1,612 | 1.549 | 1.789 | 1.703 | 1.581 | 1.673 | 1.265 | | The equivalent concentrated loadings shown for the unit weight trucks of this table are proportional to the equivalent concentrated loadings based on gross weights for corresponding vehicles among the 142 Type 3-S2 trucks reported by the 1942 loadometer survey. Table 26.7a ## OBSERVED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 14 TYPE 3-S3 TRUCKS WEIGHING ONE KIP EACH | Equivalent | Span-Feet | | | | | | | | | |-----------------------|-----------|-------|-------|-------|-------|-------|-------|-------|--| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | .80 | | - | | | | | | 54.8 | | | .75 | | | | | | | 50.0 | 31.0 | | | .70 | | | | | | | 31.0 | 9.5 | | | .65 | | | | | | 54.8 | 11.9 | 2.4 | | | .60 | | | | | 50.0 | 31.0 | 2.4 | 2.3 | | | .55 | | | | 42.9 | 31.0 | 7.2 | 2.4 | | | | .50 | | | 11.9 | 33.3 | 14.3 | 2.4 | 2.3 | | | | .45 | | 11.9 | 33.3 | 16.7 | 2.4 | 2.3 | | | | | .40 | | 31.0 | 31.0 | 7.1 | 2.3 | 2.3 | | | | | .35 | | 31.0 | 23.8 | | | | | | | | .30 | 40.5 | 23.8 | | | | | | | | | .25 | 33.3 | 2.3 | | | | | | | | | .20 | 26.2 | | | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | Max. ECL | .30 | .45 | .50 | .55 | .60 | .65 | .75 | .80 | | | Avg. ECL | .26 | .36 | .42 | .51 | .57 | .63 | .72 | .78 | | | Min. ECL | .20 | .25 | .35 | .40 | .40 | .40 | .50 | .60 | | | Range | .10 | .20 | .15 | .15 | .20 | .25 | .25 | .20 | | | Poisson's | • • • • | | | | | • | _ | | | | Coef. K | .8 | 1.7 | 1.6 | .7 | .6 | .5 | .6 | .4 | | The equivalent concentrated loadings shown for the unit weight trucks of this table are proportional to the equivalent concentrated loadings based on gross weights for corresponding vehicles among the 14 Type 3-S3 trucks reported by the 1942 loadometer survey. Table 26.7b ### CALCULATED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 14 TYPE 3-S3 TRUCKS WEIGHING ONE KIP EACH Calculated frequencies are based on Poisson's Distribution Law. Equivalent concentrated loads which occur less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent | | | | Span- | Feet | | | | |-----------------------|-------|-------|-------|-------|-------|-------|-------|-------| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .80 | | | | | | | | 67.0 | | .75 | | | | | | | 54.9 | 26.8 | | .70 | | | | | | | 32.9 | 5.4 | | .65 | | | | | | 60.7 | 9.9 | .7 | | .60 | | | | | 54.9 | 30.3 | 2.0 | .1 | | .55 | | | | 49.7 | 32.9 | 7.6 | .3 | | | .50 | | | 20.2 | 34.8 | 9.9 | 1.3 | | | | .45 | | 18.3 | 32.3 | 12.2 | 2.0 | .1 | | | | .40 | | 31.1 | 25.8 | 2.8 | .3 | | | | | .35 | | 26.4 | 13.8 | .5 | | | | | | .30 | 44.9 | 15.0 | 5.5 | | | | | | | .25 | 35.9 | 6.4 | 1.8 | | | | | | | .20 | 14.4 | 2.2 | .5 | | | | | | | .15 | 3.8 | .6 | .1 | | | | | | | .10 | .8 | | | | | | | | | .05 | .2 | | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max. ECL | .30 | .45 | .50 | .55 | .60 | .65 | .75 | .80 | | Avg. ECL | .26 | .36 | .42 | .51 | .57 | .63 | .72 | .78 | | Min. ECL | .05 | .15 | .15 | .35 | .40 | .45 | .55 | .60 | | Range | .25 | .30 | .35 | .20 | .20 | .20 | .20 | .20 | | Poisson's | | | | | | | | | | Coef. K | .8 | 1.7 | 1.6 | .7 | .6 | .5 | .6 | .4 | | Std. Dev. D | .894 | 1.304 | 1.265 | .837 | .775 | .707 | .775 | .633 | The equivalent concentrated loadings shown for the unit weight trucks of this table are proportional to the equivalent concentrated loadings based on gross weights for corresponding vehicles among the 14 Type 3-S3 trucks reported by the 1942 loadometer survey. Table 26.8a ### OBSERVED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 99 TYPE 2-2 TRUCKS WEIGHING ONE KIP EACH | Equivalent | Span-Feet | | | | | | | | |-----------------------|-----------|----|-----|------|------|------|------|------| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .85 | | | | | | | 5.4 | 30.3 | | .80 | | | | | | 4.0 | 22.9 | 32.7 | | .75 | | | | | 4.0 | 12.8 | 32.0 | 28.6 | | .70 | | | | | 7.4 | 24.9 | 28.6 | 7.8 | | .65 | | | | 5.4 | 20.9 | 25.3 | 10.4 | .6 | | .60 | | | 2.4 | 16.2 | 24.2 | 20.2 | .7 | | Table 26.8a (Continued) | Equivalent
Concentrated | Span-Feet | | | | | | | | | |----------------------------|-----------|-------|-------|-------|-------|-------|-------|-------|--| | Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | | .55 | | | 6.4 | 25.9 | 25.6 | 7.8 | | | | | .50 | | | 19.5 | 28.3 | 11.8 | 4.7 | | | | | .45 | | 17.5 | 25.9 | 17.2 | 5.7 | .3 | | | | | .40 | 19.5 | 17.2 | 26.9 | 6.4 | .4 | | | | | | .35 | 33.3 | 32.3 | 13.1 | .6 | | | | | | | .30 | 23.9 | 16.8 | 5.8 | | | | | | | | ,25 | 23,3 | 16.2 | | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | Max. ECL | .40 | .45 | .60 | .65 | .75 | .80 | .85 | .85 | | | Avg. ECL | .33 | .35 | .43 | .52 | .59 | .66 | .74 | .79 | | | Min. ECL | .25 | .25 | .30 | .35 | .40 | .45 | .60 | .65 | | | Range | .15 | .20 | .30 | .30 | .35 | .35 | .25 | .20 | | | Poisson's | | | | | | | | | | | Coef. K | 1.4 | 2.0 | 3.3 | 2.6 | 3.2 | 2.9 | 2.2 | 1.1 | | The equivalent concentrated loadings shown for the unit weight trucks of this table are proportional to the equivalent concentrated loadings based on gross weights for corresponding vehicles among the 99 Type 2-2 trucks reported by the 1942 loadometer survey. Table 26.8b ### CALCULATED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 99 TYPE 2-2 TRUCKS WEIGHING ONE KIP EACH Calculated frequencies are based on Poisson's Distribution Law. Equivalent concentrated loads which occur less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent
Concentrated | | | | Span- | Feet | | | | |----------------------------|-------|-------|-------|-------|-------|-------|-------|-------| | Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .85 | | | | | | | 11.1 | 33.3 | | .80 | | | | | | 5.5 | 24.4 | 36.6 | | .75 | | | | | 4.1 | 16.0 | 26.8 | 20.1 | | .70 | | | | | 13.0 | 23.1 | 19.7 | 7.4 | | .65 | | | | 7.4 | 20.9 | 22.4 | 10.8 | 2.0 | | .60 | | | 3.7 | 19.3 | 22.3 | 16.2 | 4.8 | .4 | | .55 | | | 12.2 | 25.1 | 17.8 | 9.4 | 1.7 | .1 | | .50 | | | 20.1 | 21.8 | 11.4 | 4.5 | .5 | .1 | | .45 | | 13.5 | 22.1 | 14.1 | 6.1 | 1.9 | .2 | | | .40 | 24.7 | 27.1 | 18.2 | 7.4 | 2.8 | .7 | | | | .35 | 34.5 | 27.1 | 12.0 | 3.2 | 1.1 | .2 | | | | .30 | 24.2 | 18.0 | 6.6 | 1.2 | .4 | .1 | | | | .25 | 11.3 | 9.0 | 3.1 | .4 | .1 | - | | | | .20 | 3.9 | 3.6 | 1.3 | .1 | | | | | | .15 | 1.1 | 1.2 | .5 | | | | | | | .10 | .3 | .3 | .1 | | | | | | | .05 | | .2 | .1 | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max. ECL | .40 | .45 | .60 | .65 | .75 | .80 | .85 | .85 | | Avg. ECL | .33 | .35 | .43 | .52 | .59 | .66 | .74 | .79 | | Min. ECL | .10 | .05 | .05 | .20 | .25 | .30 | .45 | .50 | | Range | .30 | .40 | .55 | .45 | .50 | .50 | .40 | .35 | | Poisson's | | ••• | •00 | . 10 | .00 | •00 | .10 | .00 | | Coef. K | 1.4 | 2.0 | 3.3 | 2.6 | 3.2 | 2.9 | 2.2 | 1.1 | | Std. Dev. D | 1.183 | 1.414 | 1.817 | 1.612 | 1.789 | 1.703 | 1.483 | 1.049 | The equivalent concentrated loadings shown for the unit weight trucks of this table are proportional to the equivalent concentrated loadings based on gross weights for corresponding vehicles among the 99 Type 2-2 trucks reported by the 1942 loadometer survey. Table 26.9a ## OBSERVED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 24 TYPE 2-3 TRUCKS WEIGHING ONE KIP EACH | Equivalent | | | | Span | -Feet | | | | |-----------------------|-------|-------|-------|-------|-------|-------|-------|-------| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .80 | | | | | | | | 29.2 | | .75 | | | | | | | 19.5 | 33.3 | | .70 | | | | | | | 33.3 | 30.6 | | .65 | | | | | | 19.4 | 30.6 | 6.9 | | .60 | | | | | 15.2 | 29.2 | 16.6 | | | .55 | | | | | 18.1 | 30.6 | | | | .50 | | | | 23.6 | 30.6 | 16.7 | | | | .45 | | | 18.1 | 33.3 | 20.8 | 4.1 | | | | .40 | 8.3 | 15.3 | 33.3 | 27.8 | 15.3 | | | | | .35 | 31.9 | 33.3 | 29.2 | 15.3 | | | | | | .30 | 29.2 | 26.4 | 19.4 | 2010 | | | | | | .25 | 29,2 | 25.0 | 2012 | | | | | | | .20 | 1.4 | | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max. ECL | .40 | .40 | .45 | .50 | .60 | .65 | .75 | .80 | | Avg. ECL | ,31 |
.32 | .38 | .44 | .50 | .57 | .68 | .74 | | Min. ECL | .20 | .25 | .30 | .35 | .40 | .45 | .60 | .65 | | Range | .20 | .15 | .15 | .15 | .20 | .20 | .15 | .15 | | Poisson's | | •== | •== | | •=• | | **** | | | Coef. K | 1.8 | 1.5 | 1.5 | 1.3 | 2.0 | 1.5 | 1.4 | 1.1 | The equivalent concentrated loadings shown for the unit weight trucks of this table are proportional to the equivalent concentrated loadings based on gross weights for corresponding vehicles among the 24 Type 2-3 trucks reported by the 1942 loadometer survey. #### Table 26.9b #### CALCULATED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 24 TYPE 2-3 TRUCKS WEIGHING ONE KIP EACH Calculated frequencies are based on Poisson's Distribution Law. Equivalent concentrated loads which occur less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent
Concentrated | Span-Feet | | | | | | | | |----------------------------|-----------|----|------|------|------|------|------|------| | Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .80 | | | | | | | | 33.3 | | .75 | | | | | | | 24.7 | 36.6 | | .70 | | | | | | | 34.5 | 20.1 | | .65 | | | | | | 22.3 | 24.2 | 7.4 | | .60 | | | | | 13.5 | 33.5 | 11.3 | 2.0 | | .55 | | | | | 27.1 | 25.1 | 3.9 | .4 | | .50 | | | | 27.3 | 27.1 | 12.6 | 1.1 | .1 | | .45 | | | 22.3 | 35.4 | 18.0 | 4.7 | .3 | .1 | | Table | 26 9b | (Conf | inued) | |-------|-------|-------|--------| | | | | | | Equivalent
Concentrated | | | | Span-F | `eet | | | | |----------------------------|-------|-------|-------|--------|-------|-------|-------|-------| | Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .40 | 16.5 | 22.3 | 33.5 | 23.0 | 9.0 | 1.4 | | | | .35 | 29.8 | 33.5 | 25.1 | 10.0 | 3.6 | .4 | | | | .30 | 26.8 | 25.1 | 12.6 | 3.2 | 1.2 | | | | | .25 | 16.1 | 12.6 | 4.7 | .8 | .3 | | | | | .20 | 7.2 | 4.7 | 1.4 | .2 | .1 | | | | | .15 | 2.6 | 1.4 | .4 | .1 | .1 | | | | | .10 | .8 | .4 | | | | | | | | .05 | .2 | | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max. ECL | .40 | .40 | .45 | .50 | .60 | .65 | .75 | .80 | | Avg. ECL | .31 | .32 | .38 | .44 | .50 | .57 | .68 | .74 | | Min. ECL | .05 | .10 | .15 | .15 | .15 | .35 | .45 | .45 | | Range | .35 | .30 | .30 | .35 | .45 | .30 | .30 | .35 | | Poisson's | | | | | | | | | | Coef. K | 1.8 | 1.5 | 1.5 | 1.3 | 2.0 | 1.5 | 1.4 | 1.1 | | Std. Dev. D | 1.342 | 1.225 | 1.225 | 1.140 | 1.414 | 1.225 | 1.183 | 1.049 | The equivalent concentrated loadings shown for the unit weight trucks of this table are proportional to the equivalent concentrated loadings based on gross weights for corresponding vehicles among the 24 Type 2-3 trucks reported by the 1942 loadometer survey. Table 26.10a ### OBSERVED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 68 TYPE 3-2 TRUCKS WEIGHING ONE KIP EACH | Equivalent | | | | Span- | Feet | | | | |-----------------------|-------|-------|-------|-------|-------|-------|-------|-------| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .85 | | | | | | | | 19.6 | | .80 | | | | | | | 12.7 | 32.4 | | .75 | | | | | | | 27.0 | 32.4 | | .70 | | | | | | 24.5 | 32.4 | 14.7 | | .65 | | | | | 12.3 | 25.0 | 21.6 | .9 | | .60 | | | | 11.3 | 23.0 | 27.5 | 6.3 | | | .55 | | | 9.8 | 23.0 | 31.9 | 14.7 | | | | .50 | | 1.5 | 15.7 | 32.4 | 22.6 | 8.3 | | | | .45 | | 15.7 | 32.8 | 23.0 | 10.2 | | | | | .40 | 1.1 | 15.2 | 24.0 | 10.3 | | | | | | .35 | 14.7 | 32.4 | 17.7 | | | | | | | .30 | 32.8 | 17.6 | | | | | | | | .25 | 32.8 | 17.6 | | | | | | | | .20 | 18.6 | 2,110 | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max. ECL | .40 | .50 | .55 | ,60 | .65 | .70 | .80 | .85 | | Avg. ECL | .27 | .35 | .44 | .50 | .55 | .62 | .71 | .78 | | Min. ECL | .20 | .25 | .35 | .40 | .45 | .50 | .60 | .65 | | Range | .20 | .25 | .20 | .20 | .20 | .20 | .20 | .20 | | Poisson's | .20 | , | 0 | .20 | .20 | .20 | .20 | | | Coef. K | 2.5 | 3.0 | 2.2 | 2.0 | 1.9 | 1.5 | 1.8 | 1.4 | The equivalent concentrated loadings shown for the unit weight trucks of this table are proportional to the equivalent concentrated loadings based on gross weights for corresponding vehicles among the 68 Type 3-2 trucks reported by the 1942 loadometer survey. Table 26,10b #### CALCULATED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 68 TYPE 3-2 TRUCKS WEIGHING ONE KIP EACH Calculated frequencies are based on Poisson's Distribution Law. Equivalent concentrated loads which occur less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent
Concentrated | | | | Span- | Feet | | | , | |----------------------------|-------|-------|-------|-------|-------|-------|-------|-------| | Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .85 | | | | | | | | 24.7 | | .80 | | | | | | | 16.5 | 34.5 | | .75 | | | | | | | 29.8 | 24.2 | | .70 | | | | | | 22.3 | 26.8 | 11.3 | | .65 | | | | | 15.0 | 33.5 | 16.1 | 3.9 | | .60 | | | | 13.5 | 28.4 | 25.1 | 7.2 | 1.1 | | .55 | | | 11.1 | 27.1 | 27.0 | 12.6 | 2.6 | .3 | | .50 | | 5.0 | 24.4 | 27.1 | 17.1 | 4.7 | .8 | • • | | .45 | | 14.9 | 26.8 | 18.0 | 8.1 | 1.4 | .2 | | | .40 | 8.2 | 22.4 | 19.7 | 9.0 | 3.1 | .4 | | | | .35 | 20.5 | 22.4 | 10.8 | 3.6 | 1.0 | | | | | .30 | 25.7 | 16.8 | 4.8 | 1.2 | .3 | | | | | .25 | 21.4 | 10.1 | 1.7 | .3 | | | | | | .20 | 13.4 | 5.0 | .5 | .1 | | | | | | .15 | 6.7 | 2.2 | .2 | .1 | | | | | | .10 | 2.8 | .8 | | | | | | | | .05 | 1.3 | .4 | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max. ECL | .40 | .50 | .55 | .60 | .65 | .70 | .80 | .85 | | Avg. ECL | .27 | .35 | .44 | .50 | .55 | .62 | .71 | .78 | | Min. ECL | .05 | .05 | .15 | .15 | .30 | .40 | .45 | .55 | | Range | .35 | .45 | .40 | .45 | .35 | .30 | .35 | .30 | | Poisson's | | | | | | | | | | Coef. K | 2.5 | 3.0 | 2.2 | 2.0 | 1.9 | 1.5 | 1.8 | 1.4 | | Std. Dev. D | 1.581 | 1.732 | 1.483 | 1.414 | 1.378 | 1.225 | 1.342 | 1.18 | The equivalent concentrated loadings shown for the unit weight trucks of this table are proportional to the equivalent concentrated loadings based on gross weights for corresponding vehicles among the 68 Type 3-2 trucks reported by the 1942 loadometer survey. **Table 26.11a** #### OBSERVED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 176 TYPE 3-3 TRUCKS WEIGHING ONE KIP EACH | Equivalent | | | | Span- | Feet | | | | |-----------------------|----|----|------|-------|------|------|------|------| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .80 | | | | | | | | 12.1 | | .75 | | | | | | | 5.3 | 32.0 | | .70 | | | | | | | 26.0 | 33.0 | | .65 | | | | | | 4.9 | 32.2 | 21.6 | | .60 | | | | | 4.4 | 19.5 | 28.4 | 1.3 | | .55 | | | | | 18.0 | 31.6 | 7.4 | | | .50 | | | | 18.8 | 31.8 | 28.8 | .7 | | | .45 | | | 16.3 | 31.1 | 29.2 | 13.8 | | | | Table | 26.11a | (Cor | tinu | ed) | |-------|--------|------|------|-----| | | | | | | | Table 26.11a | (Continued) | | | | | | | | |--|-----------------------------|------------------------------------|-----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------| | Equivalent
Concentrated | Span-Feet | | | | | | | | | Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .40
.35
.30
.25
.20 | 30.7
33.3
32.4
3.6 | 2.1
30.5
32.4
32.2
2.8 | 31.6
32.2
18.2
1.7 | 32.2
15.7
2.2 | 15.3
1.3 | 1.4 | | | | Total | 100.0 | 100.0 | 100.0 | 100,0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max. ECL
Avg. ECL
Min. ECL
Range
Poisson's | .30
.25
.15
.15 | .40
.30
.20
.20 | .45
.37
.25
.20 | .50
.42
.30
.20 | .60
.48
.35
.25 | .65
.53
.40
.25 | .75
.65
.50
.25 | .80
.72
.60
.20 | | Coef. K | 1.1 | 2.0 | 1.6 | 1.5 | 2.4 | 2.3 | 2.1 | 1.7 | The equivalent concentrated loadings shown for the unit weight trucks of this table are proportional to the equivalent concentrated loadings based on gross weights for corresponding vehicles among the 176 Type 3-3 trucks reported by the 1942 loadometer survey. Table 26.11b ## CALCULATED FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS REQUIRED TO PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY THE 176 TYPE 3-3 TRUCKS WEIGHING ONE KIP EACH Calculated frequencies are based on Poisson's Distribution Law. Equivalent concentrated loads which occur less than 1 in 1000, or account for less than 0.1% of the heavy trucks of this type are not shown in this table. | Equivalent | Span-Feet | | | | | | | | |-----------------------|-----------|-------|-------|-------|-------|-------|----------|-------| | Concentrated
Loads | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | | .80 | | | | | | | | 18.3 | | .75 | | | | | | | 12.2 | 31.1 | | .70 | | | | | | | 25.7 | 26.4 | | ,65 | | | | | | 10.0 | 27.0 | 15.0 | | .60 | | | | | 9.1 | 23.1 | 18.9 | 6.4 | | .55 | | | | | 21.8 | 26.5 | 9.9 | 2.2 | | .50 | | | | 22.3 | 26.1 | 20.3 | 4.2 | .6 | | .45 | | | 20.2 | 33.5 | 20.9 | 11.7 | 1.5 | | | .40 | | 13.5 | 32.3 | 25.1 | 12.5 | 5.4 | .4 | | | .35 | | 27.1 | 25.8 | 12.6 | 6.0 | 2.1 | .1
.1 | | | .30 | 33.3 | 27.1 | 13.8 | 4.7 | 2.4 | .7 | .1 | | | .25 | 36.6 | 18.0 | 5.5 | 1.4 | .8 | .2 | | | | .20 | 20.1 | 9.0 | 1.8 | .4 | .2 | | | | | .15 | 7.4 | 3.6 | .5 | | .1 | | | | | .10 | 2.0 | 1.2 | .1 | | .1 | | | | | .05 | .6 | .5 | | | | | | | | Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Max. ECL | .30 | .40 | .45 | .50 | .60 | .65 | .75 | .80 | | Avg. ECL | .25
 .30 | .37 | .42 | .48 | .53 | .65 | .72 | | Min. ECL | .05 | .05 | .10 | .20 | .10 | .25 | .30 | .50 | | Range | .25 | .35 | .35 | .30 | .50 | .40 | .45 | .30 | | Poisson's | • | | | | | | | | | Coef. K | 1.1 | 2.0 | 1.6 | 1.5 | 2.4 | 2.3 | 2.1 | 1.7 | | Std. Dev. D | 1.049 | 1,414 | 1.265 | 1.225 | 1.549 | 1.517 | 1.449 | 1.304 | The equivalent concentrated loadings shown for the unit weight trucks of this table are proportional to the equivalent concentrated loadings based on gross weights for corresponding vehicles among the 176 Type 3-3 trucks reported by the 1942 loadometer survey. # 27. MAXIMUM, AVERAGE, AND MINIMUM EQUIVALENT CONCENTRATED LOADS ON SIMPLE SPAN BRIDGES BASED ON VEHICLES WEIGHING ONE KIP EACH Figures 27.1—27.11 present a graphical representation of the maximum, average, and minimum equivalent concentrated loads on simple spans of various lengths, based on vehicles weighing one kip each, for each of the 11 more numerous heavy vehicle types reported by the 1942 loadometer survey. The upper part of each of these figures give the maximum, average, and minimum equivalent concentrated loads for each span length and the lower part shows the range, the Poisson coefficient, K, and the standard deviation, D, for each corresponding span length. All of these data are given in the following figures. | Heavy Vehicle
Type | Number of Vehicles
Reported | Figure
Number | |-----------------------|--------------------------------|------------------| | 2 | 171 | 27.1 | | 3 | 381 | 27.2 | | 2-S1 | 2855 | 27.3 | | 2-S2 | 508 | 27.4 | | 3-S1 | 9 | 27.5 | | 3-S2 | 142 | 27.6 | | 3-S3 | 14 | 27.7 | | 2-2 | 99 | 27.8 | | 2-3 | 24 | 27.9 | | 3-2 | 68 | 27.10 | | 3-3 | 176 | 27.11 | FREQUENCY DISTRIBUTION OF EQUIVALENT CONCENTRATED LOADS ON SIMPLE SPANS OF VARIOUS LENGTHS FOR TYPE 2 TRUCKS WEIGHING ONE KIP EACH Figure 27.1 FREQUENCY DISTRIBUTION OF EQUIVALENT CONCENTRATED LOADS ON SIMPLE SPANS OF VARIOUS LENGTHS FOR TYPE 3 TRUCKS WEIGHING ONE KIP EACH Figure 27.2 FREQUENCY DISTRIBUTION OF EQUIVALENT CONCENTRATED LOADS ON SIMPLE SPANS OF VARIOUS LENGTHS FOR TYPE 2-SI TRUCKS WEIGHING ONE KIP EACH Figure 27.3 FREQUENCY DISTRIBUTION OF EQUIVALENT CONCENTRATED LOADS ON SIMPLE SPANS OF VARIOUS LENGTHS FOR TYPE 2-S2 TRUCKS WEIGHING ONE KIP EACH Figure 27.4 FREQUENCY DISTRIBUTION OF EQUIVALENT CONCENTRATED LOADS ON SIMPLE SPANS OF VARIOUS LENGTHS FOR TYPE 3-SI TRUCKS WEIGHING ONE KIP FACH Figure 27.5 ## FREQUENCY DISTRIBUTION OF EQUIVALENT CONCENTRATED LOADS ON SIMPLE SPANS OF VARIOUS LENGTHS FOR TYPE 3-S2 TRUCKS WEIGHING ONE KIP EACH Figure 27.6 FREQUENCY DISTRIBUTION OF EQUIVALENT CONCENTRATED LOADS ON SIMPLE SPANS OF VARIOUS LENGTHS FOR TYPE 3-S3 TRUCKS WEIGHING ONE KIP FACH Figure 27.7 FREQUENCY DISTRIBUTION OF EQUIVALENT CONCENTRATED LOADS ON SIMPLE SPANS OF VARIOUS LENGTHS FOR TYPE 2-2 TRUCKS WEIGHING ONE KIP EACH Figure 27.8 FREQUENCY DISTRIBUTION OF EQUIVALENT CONCENTRATED LOADS ON SIMPLE SPANS OF VARIOUS LENGTHS FOR TYPE 2—3 TRUCKS WEIGHING ONE KIP EACH Figure 27.9 FREQUENCY DISTRIBUTION OF EQUIVALENT CONCENTRATED LOADS ON SIMPLE SPANS OF VARIOUS LENGTHS FOR TYPE 3-2 TRUCKS WEIGHING ONE KIP EACH **Figure 27.10** FREQUENCY DISTRIBUTION OF EQUIVALENT CONCENTRATED LOADS ON SIMPLE SPANS OF VARIOUS LENGTHS FOR TYPE 3-3 TRUCKS WEIGHING ONE KIP EACH Figure 27.11 # 28. HISTOGRAMS SHOWING FREQUENCY DISTRIBUTIONS OF EQUIVALENT CONCENTRATED LOADS ON SIMPLE SPAN BRIDGES BASED ON VEHICLES WEIGHING ONE KIP EACH Figures 28.1—28.11 present a graphical representation of the observed and calculated frequencies of equivalent concentrated loads for vehicles weighing one kip each on simple spans up to 100 feet in length for each of the 11 more numerous heavy vehicle types reported by the 1942 loadometer survey. The histograms represent the observed data, based on 3-item moving averages, and the dashed lines represent the corresponding Poisson distributions. Both the observed and calculated frequencies shown in these figures were plotted from the corresponding data given in Tables 26.1a—26.11a and Tables 26.1b—26.11b, respectively. These distributions are given in the following figures. | Heavy Vehicle | Number of Vehicles | Figure | |-----------------|--------------------|--------| | \mathbf{Type} | ${f Reported}$ | Number | | 2 | 171 | 28.1 | | 3 | 381 | 28.2 | | 2-S1 | 2855 | 28.3 | | 2-S2 | 508 | 28.4 | | 3-S1 | 9 | 28.5 | | 3-S2 | 142 | 28.6 | | 3-S3 | 14 | 28.7 | | 2-2 | 99 | 28.8 | | 2-3 | 24 | 28.9 | | 3-2 | 68 | 28.10 | | 3-3 | 176 | 28.11 | A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR TYPE 2 TRUCKS WEIGHING ONE KIP EACH ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON EQUIVALENT CONCENTRATED LOADS WHICH PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY 171 TYPE 2 TRUCKS WEIGHING ONE KIP EACH THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 28.1 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCES OF EQUIVALENT CONCENTRATED LOADS FOR TYPE 3 TRUCKS WEIGHING ONE KIP EACH ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON EQUIVALENT CONCENTRATED LOADS WHICH PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY 381 TYPE 3 TRUCKS WEIGHING ONE KIP EACH THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 28.2 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR TYPE 2-SI TRUCKS WEIGHING ONE KIP EACH ON SIMPLE SPANS OF VARIOUS LENGTH! OBSERVED FREQUENCIES BASED ON EQUIVALENT CONCENTRATED LOADS WHICH PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY 2855 TYPE 2-SI TRUCKS WEIGHING ONE KIP EACH THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 28.3 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR TYPE 2-S2 TRUCKS WEIGHING ONE KIP EACH ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON EQUIVALENT CONCENTRATED LOADS WHICH PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY 508 TYPE 2-S2 TRUCKS WEIGHING ONE KIP EACH THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 28.4 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR TYPE 3-SI TRUCKS WEIGHING ONE KIP EACH ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON EQUIVALENT CONCENTRATED LOADS WHICH PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY 9 TYPE 3-SI TRUCKS WEIGHING ONE KIP EACH THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 28.5 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR TYPE 3-S2 TRUCKS WEIGHING ONE KIP EACH ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON EQUIVALENT CONCENTRATED LOADS WHICH PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY 142 TYPE 3-S2 TRUCKS WEIGHING ONE KIP EACH THEORETICAL ERFOLIENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 28.6 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR TYPE 3-S3 TRUCKS WEIGHING ONE KIP EACH ON SIMPLE SPANS OF VARIOUS LENGT OBSERVED FREQUENCIES BASED ON EQUIVALENT CONCENTRATED LOADS WHICH PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY 14 TYPE 3-S3 TRUCKS WEIGHING ONE KIP EACH THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 28.7 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR TYPE 2-2 TRUCKS WEIGHING ONE KIP EACH ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON EQUIVALENT CONCENTRATED LOADS WHICH PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY 99 TYPE 2-2 TRUCKS WEIGHING ONE KIP EACH THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 28.8 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR TYPE 2-3 TRUCKS WEIGHING ONE KIP EACH ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON EQUIVALENT CONCENTRATED LOADS WHICH PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY 24 TYPE 2-3 TRUCKS WEIGHING ONE KIP EACH THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW 10' SPAN 50 SPAN PERCENT PERCENT 20 20 40 60 SPAN 20' SPAN PERCENT PERCENT 20 20 0 0 40 80' SPAN 30' SPAN PERCENT PERCENT 20 40' SPAN PERCENT 100' SPAN PERCENT 20 20 Figure 28.9 EQUIV. CONC. LOAD-KIPS EQUIV. CONC. LOAD - KIPS A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR TYPE 3-2 TRUCKS WEIGHING ONE KIP EACH ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON EQUIVALENT CONCENTRATED LOADS WHICH PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY 68 TYPE 3-2 TRUCKS WEIGHING ONE KIP EACH THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 28.10 A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF EQUIVALENT CONCENTRATED LOADS FOR TYPE 3-3 TRUCKS WEIGHING ONE KIP EACH ON SIMPLE SPANS OF VARIOUS LENGTHS OBSERVED FREQUENCIES BASED ON EQUIVALENT CONCENTRATED LOADS WHICH PRODUCE THE SAME MOMENT IN SIMPLE SPANS AS THAT PRODUCED BY 176 TYPE 3-3 TRUCKS WEIGHING ONE KIP EACH THEORETICAL FREQUENCIES BASED ON POISSON'S DISTRIBUTION LAW Figure 28.11 #### Part VI #### CONCLUSION It was pointed out in the introduction and also in Article 1.1, that the over-all objective of this bulletin is to develop a rapid yet simple and accurate mathematical procedure for the rating of heavy motor vehicle types and loadings—such as those reported by a local, state, or national loadometer survey—in terms of equivalent H truck loadings, equivalent H design loadings, equivalent concentrated loads or any other convenient standardized loads, and to show how the frequency distributions of these loads provide a rational means for measuring the level or levels of heavy motor vehicle operation corresponding to given traffic conditions. In order to accomplish these ends, however, it is first necessary to find a satisfactory method for converting a given heavy vehicle loading into,
say, an H or H-S truck loading equivalent, an equivalent concentrated load, or into an equivalent design load. In Article 1.1 it was also suggested, that this may be accomplished by evaluating some stress producing effect—such as the maximum moment or shear caused by a vehicle on, say, a 40-foot simple span bridge—and then finding the gross weight required on, say, a standard H truck to produce the same effect. For example, if a given vehicle caused a maximum moment on this 40-foot span of 259.5 kip-feet, it would produce the same maximum moment as an H15 truck. On this basis, therefore, the given vehicle would be rated as an equivalent H15 truck loading on a 40-foot span. In a similar manner, the given vehicle could be rated in terms of an equivalent H-S truck loading, an equivalent H or H-S design loading, equivalent concentrated load, or any other standardized equivalent load as may be desired. However, owing to the fact that moments caused by these various loadings on a given span bear constant relationships to each other, their loading equivalents may be converted from any one into any one or more of the others by means of the conversion coefficients discussed in Article 13 and given in Table 13.1 or Figure 13.1. The tables and figures in Part II provide the basic information for rating most any type of heavy vehicle—irrespective of its wheel base length, number and spacing of axles, or distribution of load among the axles—ordinarily encountered in highway traffic, in terms of any one or more of the above mentioned loading equivalents as may be required for the particular situation under consideration. And once all the heavy vehicles reported by a loadometer survey have been converted into loading equivalents on a given span, the frequency distribution of various intensities of these equivalent loads for the given span may then be obtained by arranging them into groups or cells of increasing magnitudes and calculating the percentage of vehicles thus found in each cell, respectively. Frequency distributions of this kind are given in Parts IV and V for each of the more commonly used heavy vehicle types reported by the 1942 special loadometer survey. The distributions given in Part IV are based on the conversion of each of the heavy vehicles reported into equivalent H truck loadings and those in Part V are based on equivalent concentrated loads. Among the more interesting—and perhaps the most useful—results obtained from these studies is that the frequency distributions of gross vehicle weights, and also the relative frequencies of various intensities of equivalent loads on spans of various lengths, arrange themselves into statistical patterns which bear a very strong resemblance to the theoretical frequencies given by the Poisson distribution formula. In fact, the agreement between the observed and calculated frequencies obtained from the 1942 loadometer data is close enough to justify the conclusion that the Poisson distribution yields mathematical answers which are sufficiently accurate in many practical situations for estimating the frequencies of various intensities of highway loads or loading equivalencies, and for evaluating their stress producing effects on simple span bridges and other highway structures. #### PREVIOUS BULLETINS OF THE TEXAS ENGINEERING EXPERIMENT STATION Numbers 1 to 57, published 1915 to 1941. List furnished on request. - No. 57. A History of Suspension Bridges in Bibliographical Form. A. A. Jakkula, 1941. - No. 58. Two-Span Continuous Beams with Dead Loads. A. A. Jakkula. - No. 59. Space for Teaching. An Approach to the Design of Elementary Schools for Texas. W. W. Caudill. 1941. - No. 60. Proceedings of the First and Second Annual Conferences of Municipal Engineers. 1941. - No. 61. Proceedings of the Conference on Highway Economics. 1941. - No. 62. Heat Requirements of Intermittently Heated Buildings. Elmer G. Smith. 1941. - No. 63. Solvent Extraction of Cottonseed Oil. W. D. Harris. 1941. - No. 64. Solution of Two-Span Continuous Beams Under Live Loads by Use of Nomographs. A. A. Jakkula. 1941. - No. 65. Water Treatment with Limestone. C. H. Connell, P. J. A. Zeller, and J. H. Sorrels. 1941. - †No. 66. Some Fundamentals of Timber Design. Howard J. Hansen. 1942. - No. 67-71A. ROADWAY AND RUNWAY SOIL MECHANICS DATA. Henry C. Porter. 1942. - No. 67. Part I—Permanency of Clay Soil Densification. - No. 68. Part II-Density and Total Moisture Content of Clay Soil. - No. 69. Part III—Density and Total Density Change of Clay Soils. Part IV—Density and Total Volumetric Change of Clay Soils. - No. 70. Part V—Density and Intermediate Moisture Contents of Consolidated Clay Soils. Part VI—Density and Intermediate Volumetric Changes of Consolidated Clay Soils. Part VII—Intermediate Moisture Contents and Volumetric - Changes of Consolidated Clay Soils. No. 71. Part VIII—Method of Proparing Clay Soil Specimens for Phy- - sical Tests. Part IX—Density and Strength of Clay Soils when Consolidated and Saturated. - No. 71A. Part X—Density, Moisture Content, and Strength of Consolidated Clay Soils. - Part XI—Moistures in Clay Soils Beneath Pavements. General Summary—Parts I Through XI. - No. 72. A Study of the Freight Rates Affecting Texas Agriculture. Tom D. Cherry, 1943. - No. 73. X-Ray Studies of Paving Asphalts. C. L. Williford. 1943. - No. 74. Design Loads for Wooden Roof Trusses. Howard J. Hansen. 1942. - No. 75. Rural Water Supply and Sewerage. Part III, The Specific Treatment of "Red Water" for the Removal of Iron and Carbon Dioxide. P. J. A. Zeller and J. H. Sorrels. 1942. - †No. 76. A Low Cost Home for Texas. C. J. Finney. 1943. - No. 77. Friction Heads of Water Flowing in Six-Inch Pipe and the Effects of Pipe Surface Roughness and Water Temperatures on Friction Heads. F. E. Giesecke and J. S. Hopper. 1943. - †No. 78. Reprint of Original Reports on the Failure of the Tacoma Narrows Bridge. Edited by A. A. Jakkula. 1944. - No. 79. A New Approach to Axonometric Projection and Its Application to Shop Drawings. J. G. McGuire. 1944. - No. 80. Proceedings of the Third Wartime Aviation Planning Conference, 1944. - No. 81. Proceedings of the First Annual Short Course and Conference—Airport Management and Planning. 1944. - †No. 82. The Effect of the Present Freight Rate Structure on Five Industries in Texas. Tom D. Cherry. 1944. - †No. 83. Bibliography on the Petroleum Industry. E. DeGolyer and Harold Vance. 1944. - No. 84. A Study of Rose Oil Production in Texas. J. H. Sorrels and J. C. Ratsek. 1944. - No. 85. The Texas School of the Air—Jobs Ahead in Engineering. Sponsored by the School of Engineering. 1944. - †No. 86. Postwar Planning Conference for Controlled Surveying and Mapping. 1945. - No. 87. Disinfection of Mattresses. E. H. Gibbons, W. D. Harris, and P. J. A. Zeller. 1945. - No. 88. Dimensioning and Shop Processes. J. G. McGuire. 1945. - No. 89. A Surface Water Treatment System for the Rural Home. Joe B. Winston. 1945. - †No. 90. Adobe as a Construction Material in Texas. Edwin Lincoln Harrington. 1945. - No. 91. Steel Columns. A Survey and Appraisal of Past Works. A. A. Jakkula and H. K. Stephenson. 1949. - No. 92. Analyses in High Frequency Fields. Fred W. Jensen and A. J. Parrack. 1945. - †No. 93. Well Logging Methods Conference. 1945. - No. 94. The Competitive Problems of Commodity Freight Rates. W. B. Langford. 1945. - No. 95. The Effective Use of Portable Fans. E. G. Smith. 1945. - †No. 96. Drilling Fluids Conference. 1945. - No. 97. Geographical Distribution of Some Basic Texas Industries. J. G. McGuire. 1945. - No. 98. Sewerage Service Charges. Samuel Robert Wright. 1945. - No. 99. The Willard Chevalier Lectures. Willard Chevalier. 1945. - No. 100. First Annual Short Course on Instrumentation for the Process Industries. 1946. (Not available for free distribution.) - No. 101. Development of a Cold Cathode Ion Source for a Mass Spectrometer Type Vacuum Leak Detector. Harold A. Thomas. 1947. - †No. 102. Preview of Engineering. J. G. McGuire. 1947. - No. 103. Second Annual Short Course on Instrumentation for the Process Industries. 1947. (Not available for free distribution.) - No. 104. Proceedings of the Second Short Course and Conference, Airport Management and Planning. 1947. - No. 105. Proceedings of the Twenty-Second Annual Short Course in Highway Engineering. 1948. - No. 106. Proceedings of the First Annual Management Engineering Conference. 1948. - No. 107. Essential Oil Production in Texas. II. Sweet Goldenrod. Bryant R. Holland, P. R. Johnson, and J. H. Sorrels. 1948. - No. 108. A Comparison of Freight Rates and Estimated Weights on Carrots, Carload. Jean D. Neal and W. B. Langford. 1948. - No. 109. Proceedings of the Third Short Course and Conference, Airport Management and Planning. 1948. - No. 110. Proceedings of the Fourth Annual Air Conditioning Conference. 1948. - No. 111. Third Annual Short Course on Instrumentation for the Process Industries. 1948. (Not available for free distribution.) - No. 112. Proceedings of the Twenty-Third Annual Short Course in Highway Engineering. 1949. - No. 113. Flow Characteristics of Gas Lift in Oil Production. S. F. Shaw. 1949. - No. 114. Phase Relationships in Oil and Gas Reservoirs. Donald M. Katz. 1949. - No. 115. Basic Models for Technical Drawing. J. G. McGuire, R. L. Barton, and P. M. Mason. 1949. - No. 116. Highway Loads and Their Effects on Highway Structures Based on Traffic Data of 1942. Henson K. Stephenson and A. A. Jakkula. 1950. - No. 117. Annotated Bibliography on Channelization and Related Problems of Highway Traffic Engineering. B. F. K. Mullins. 1950. - No. 118. Some Aspects of the Problem of Transporting Fresh Vegetables from Texas. W. B. Langford and Jean D. Neal. 1950. - No. 119. Significance of Tests for Asphaltic Materials. Marshall Brown and Fred J. Benson. 1959. - No. 120. Fourth Annual Short Course on Instrumentation for the Process Industries. 1949. (Not available for free distribution.) - No. 121. Solvent
Extraction of Cottonseed Oil With Isopropanol. W. D. Harris. 1950. - No. 122. Research Activities 1948-49 and 1949-50. Texas Engineering Experiment Station and School of Engineering, A. and M. College of Texas. 1950. - No. 123. Sewage Purification by Rock Filters. The Performance of Standard-Rate Trickling Filters. J. H. Sorrels and P. J. A. Zeller. 1951. - No. 124. Lime Stabilization of Clay Soil. Bob M. Gallaway and Spencer J. Buchanan. 1951. - No. 125. Solvent Extraction of Oil from Cottonseed Prior to the Removal of Linters and Treatment of the Residue to Effect Separation of Meal, Hulls, and Linters. S. P. Clark and A. Cecil Wamble. 1951. - No. 126. Appraisal of Several Methods of Testing Asphaltic Concrete. Fred J. Benson. 1952. - No. 127. Method of Converting Heavy Motor Vehicle Loads into Equivalent Design Loads on the Basis of Maximum Bending Moments. Henson K. Stephenson and Kriss Cloninger, Jr. 1952. The Texas Engineering Experiment Station was established in 1914 to aid the industrial development of Texas by investigating engineering and industrial problems, independently and in cooperation with others, and to disseminate information relating to such problems. Individuals and corporations who have problems in which the station might be of assistance are invited to communicate with the director. Address inquiries and requests for publications to the TEXAS ENGINEERING EXPERIMENT STATION The Texas A. and M. College System College Station, Texas [†] Supply Exhausted