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EXECUTIVE SUMMARY 

Nondestructive testing (NDT) technology has made substantial progress in the last two decades. 
Currently, four NDT devices, the Falling Weight Deflectometer (FWD), the Ground Penetrating 
Radar (GPR) , the Seismic Pavement Analyzer (SPA), and the Portable Seismic Property 
Analyzer (PSPA), are available to TxDOT for collecting field data. Each of these technologies 
has strengths and weaknesses. However, when combined, they can provide a wealth of 
information not available when one method is used alone. 

The ultimate NDT tool for the evaluation of all pavement systems in Texas would be a device 
that integrates the capabilities of these NDT tools. The first step toward a fully integrated 
hardware is a robust integration software. The objective of this project is to harvest the strength 
of different NDT methods and combine them in a way as to improve the parameters used in 
pavement design and evaluation. This project will examine the strengths and weaknesses of each 
device to develop a work plan for integrating information collected from each device in a 
practical manner. 

Developing an algorithm for combining data from different NDT methods with the objective to 
assess the state of a pavement requires specialized technical capabilities beyond the requirements 
of conventional data analysis. It requires: (a) a good understanding of each of the NDT 
techniques being considered, (b) in-depth knowledge of probability and statistical techniques, 
cross-correlation techniques and techniques for normalizing and re-sampling; and (c) a good 
understanding of advanced analysis techniques such as artificial neural networks and expert 
systems. In that context, combining the data from different methods falls under the following 
two broad categories a) joint inversion, and b) data fusion. 

The joint inversion method was described in Research Report 0-4393-1. In this report the data 
fusion concept is described. Data fusion can be used to integrate the results from different 
devices in a synergistic way by utilizing the strengths of each method while minimizing the 
weaknesses. Data fusion allows for logical combining and filtering of information to obtain a 
composite value or a basis for decision. 
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IMPLEMENTATION STATEMENT 

The primary non destructive testing devices currently in use by TxDOT are the falling weight 
deflectometer, the seismic pavement analyzer, the portable seismic pavement analyzer, and 
ground penetrating radar, which provide thickness or modulus information. In many projects a 
number of these devices are used. Results do not always coincide and thus decisions on either to 
combine values or decide on one value need to be made. A user-friendly software package has 
been developed to implement the data fusion techniques for the devices named above. The 
software is ready for use on trial basis. 
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CHAPTER ONE 

INTRODUCTION 

PROBLEM STATEMENT 

The most crucial information for assessing the road structural quality is the moduli and thickness 
of the pavement layers. With several different testing devices available today, there is no 
shortage of information that can be gathered. However, each method has its own strengths and 
weaknesses. When the results from multiple testing devices are conflicting, the dilemma arises 
over which one to accept. Such decisions should be made rationally. The following two 
approaches can be followed to achieve this goal: 

(1) futegrating the input data from different devices into one reduction program. This 
process is called the Joint fuversion Method (JIM). 

(2) Rationally reconciling the results from different methods to arrive at consistent results. 
This process is called data fusion. 

The joint inversion method (JIM) is a backcalculation method that relies on the joint analysis of 
the raw data from the seismic-based and deflection-based methods. fu this type of 
backcalculation, the inherent strength of each method dominates the analysis, resulting in a more 
robust and stable algorithm. JIM is not further discussed here since it was thoroughly described 
in Abdallah et al. (2003) under Research Report 0-4393-1. 

The data fusion is a process by which one source of data can be logically selected over another, 
or by which data from several available sources can be combined or "fused." As each method 
for analyzing pavements has its own strengths and weaknesses, it is only reasonable to attempt to 
utilize all methods to develop a better overall characterization of a pavement. As the parameters 
being measured are not "exact", are subject to inherent errors, all information that has some 
merit should be considered to some extent. 



OBJECTIVE AND APPROACHES 

The major objective of this study is to investigate the possibility and feasibility of developing 
data fusion methods to combine test results from several different nondestructive (NDT) devices. 
The following three options are considered for data fusion: 

1. StatisticallProbabilistic Approaches. 
2. Fuzzy Logic Approaches. 
3. Hybrid Approaches. 

Two main algorithms have been developed for this purpose. In the first algorithm, statistical 
weighted average method is used. The second algorithm is based on fuzzy logic method. The 
hybrid approach is a combination of the first two methods. These methods are elaborated further 
in this report. 

ORGANIZATION 

The work presented within this report represents the first attempt to use data fusion techniques in 
the NDT of pavements. Chapter 2 gives an overview of a few of the primary nondestructive test 
methods that are currently in use, as well as a discussion on the strengths and weaknesses of 
those methods. The focus of Chapter 3 is on the background on data fusion methods that showed 
the most promise for this application. 

The next four chapters further develop some of the methods discussed in Chapter 2 into four 
feasible methods for fusing data. Chapter 4 describes a weighted average approach that uses the 
standard deviation values to develop weights. Chapter 5 presents an adaptation of fuzzy logic 
such that the statistics obtained from testing and input from experts can be considered. Chapter 6 
explains a hybrid method that applies both principles from Chapters 4 and 5 to form a method to 
combine data. Finally, Chapter 7 introduces an adapted Bayesian approach to make a decision or 
to fuse data. 

Chapter 8 shows applications of the methods to the data from the previous four chapters and to a 
second set of data. In Chapter 9, conclusions and recommendations for future work on this 
project is discussed. 
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CHAPTER TWO 

BACKGROUND 

INTRODUCTION 

In this chapter, nondestructive testing methods used in this study are discussed. The background 
information behind these methods is briefly described. 

NONDESTRUCTIVE TESTING METHODS 

Perhaps the biggest concern in testing pavements is to determine the modulus of each pavement 
layer. Another concern is to accurately measure the thickness of as many layers as possible 
without having to core the road. Several devices and methods exist for estimating both modulus 
and thickness. Table 2.1 shows some of the devices currently in use and whether they can be 
used to determine modulus, thickness, or both. In the remainder of this chapter, the methods 
shown in Table 2.1 will be discussed. 

a e . -T bl 21 C ommODlY se eVlces I U dNDTD • 

Device Modulus Thickness 

Seismic Pavement Analyzer Yes Yes 

Portable Seismic Pavement Analyzer Top Layer Top Layer 

Falling Weight Deflectometer Yes -

Ground Penetrating Radar - Yes 

The primary device for collecting structural stiffness data is the Falling Weight Deflectometer 
(FWD). The Seismic Pavement Analyzer (SPA), the Portable Seismic Pavement Analyzer 
(PSPA), and the Ground Penetrating Radar (GPR) are often used to complement data obtained 
by the FWD. The major strengths and weaknesses of these two primary methods are shown in 
Table 2.2. 

3 



T bl 22 M' S a e . - a.Jor h trengt san dW k ea nesses 0 fFWD d SPA (ft Abd]J h t I 2002) an a er a a e a. 

Method Strengths Weaknesses 

The state-of-stress within pavement 

FWD 
Imposes loads that approximate strongly depends on moduli of 

wheel loads different layers, and hence is 
unknown 

Measures a fundamentally-correct State-of-stress during seismic tests 
SPA parameter (i.e., linear elastic differs from the state-of-stress under 

modulus) actual loads 

Seismic Based Methods 

Seismic Pavement Analyzer: The basic principle behind the seismic pavement analyzer (SPA) is 
the generation and detection of stress waves in a layered medium (Nazarian et al., 1993). The 
SPA is composed of high and low frequency sources (one of each) and three geophones and five 
accelerometers to collect data. 

Figure 2.1 - Photograph of SPA 

The data collection process consists of the generation of surface waves from the two sources and 
measuring the motion of the surface with the sensors. The signals are analyzed using Fourier 
and spectral analysis methods. 

The advantages of the SPA include high accuracy in determining the condition of the pavement, 
that it is based on a sound theoretical background (Nazarian et al., 1993). Additionally, five test 
techniques are available. These five methods are shown in Table 2.3 along with their primary 
uses. 

4 



Table 2.3 - Methods Available When Using the Seismic Pavement Analyzer 
(after Nazarian et al., 1993) 

Method Primary Use 

Ultrasonic Body Wave Young's Modulus of top layer 

Ultrasonic Surface Wave Shear Modulus of top layer 

Impulse Response Modulus of subgrade reaction 

Impact Echo Thickness of top layer 

Spectral Analysis of Surface Waves 
Modulus and Thickness of each layer and 

variation of modulus in each layer 

The method that will be a major focus of this project is the spectral analysis of surface waves 
(SASW) method. 

The impulse-response (IR) method allows for the calculation of two parameters, the shear 
modulus of the subgrade and the damping ratio of the system. This test requires the use of a low
frequency source and geophone. This test basically measures the response of the entire system. 

The ultrasonic surface wave (USW) method is related to the SASW method, but only the top 
layer is analyzed. Only the high frequency source and the two accelerometers closest to the 
source are required. This method allows for the computation of the shear modulus of the top 
layer. If a Poisson' s ratio is assumed or known, an estimate of the Young's modulus can then be 
obtained. 

The ultrasonic body wave test is used to obtain the Young's modulus of the top layer. This test 
merely measures the velocity of the compression wave as it travels through the top layer. As the 
compression wave is the fastest moving wave, it is the first wave detected on the seismic records. 

The impact-echo (IE) method is used to estimate concrete defects. These defects may include 
voids, cracks, areas of deterioration and the thickness of the top .. The strengths and weaknesses 
of the first four methods are shown in Table 2.4. 

Since much of the focus of this project is on the SASW method, more elaboration will be done 
for this method. The SASW method does have some limitations and concerns as summarized in 
Table 2.5. It should be mentioned that the analysis of seismic data is carried out using a software 
package called Seismic Modulus Analysis and Reduction Tool (SMART) developed by Abdallah 
et al. (2002) for TxDOT. 

In terms of data reduction and analysis, the SASW method consists of two steps: a) the 
construction of a dispersion curve and b) inversion (backcalculation) of the dispersion curve to 
obtain a shear wave velocity profile or modulus profile. The two parameters will be used 
interchangeably since either one of them can be calculated from the other given the Poisson's 
ratio and density of the material. The dispersion curve is a function that relates frequency to 
phase velocity. The construction of a dispersion curve is from the phase information of cross 
power spectra and coherence functions obtained from time records collected from field testing. 

5 



T bI 24 Ad ta a e . . van 19es an dD· d lsa vantages 0 fF our SPAD ata R eduction Methods 

Method Advantages Disadvantages 

Ultrasonic • Rapid to perform 
• Results may be affected by 

Body Wave • Simple data reduction 
underlying layers 

• Sensitive to surface condition 
Ultrasonic • Sensitive to properties of top layer • For multi-course pavements, 

Surface • Rapid to perform determination of layer specific 
Wave • Layer specific results information is complex 

• Powerful tool for rapidly locating 
• For flexible pavements, the 

Impulse weak spots in pavement 
contribution of different layers are 

Response • May be used to estimate depth to 
unknown 

• Results are affected by depth to stiff layer (under development) 
rigid layer and water table 

• Substantial contrast between the 
modulus of two adjacent layers is 

• Can determine the thickness of the 
needed for sensitivity 

Impact Echo top layer • For multi-course pavements, at 
least one core is needed for 

• Sensitive to delaminated interfaces calibration 
• Applies only to pavements with a 

thicker top layer 

a e . . van 1ges an T bI 25 Ad ta 1S3 vantages 0 dD· d fSASWRed uctIon M hod et 

Advantages Disadvantages 

Provides the modulus profile in a Data reduction is time consuming and 
comprehensive manner complex 

More robust than deflection-based methods 
Automated analysis applicable only to 

simple structures 

Briefly, a set of phase velocities of surface waves with frequency are calculated, combined and 
smoothed from several test spacings, and smoothing function is then used to produce a single 
idealized or representative dispersion curve. Nazarian and Desai (1993) provide a detail account 
of this process. As an example, a representative dispersion curve obtained from signals received 
with different spacings is depicted in Figure 2.2. The raw dispersion curves plotted in the graph 
are a representation of the integrated pavement response under seismic impacts. The ideal 
dispersion curve is used directly in the inversion process to estimate pavement properties. 

The second part of the SASW method, the inversion process, is rather complex. In the inversion 
process the dispersion curve is assumed as the input data. The complexity in the process mainly 
depends on the amount of information that is being estimated. Theoretically, the information 
contained in the dispersion curve includes both thicknesses and shear wave velocities of the 
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pavement layers. However, the more unknown variables that are estimated, the more uncertainty 
exist in the analysis. 
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Figure 2.2 - Idealized Dispersion Curve 

As stated, inversion is an iterative process in which a theoretical dispersion curve is calculated 
for an assumed shear wave velocity profile. The theoretical and ideal dispersion curves are 
compared. Based on the errors between the two curves, the assumed profile is modified to 
improve the match. This process is continued until error or difference between the two curves is 
minimized. Yuan and Nazarian (1993) describe the automation process for all three steps. 
Figure 2.3 shows graphically how the inversion process is carried out. The first, third and 
seventh iterations are presented as an example of conversion by the algorithm. In this example 
the profile from the seventh iteration produces theoretical dispersion curve that provides a good 
fit to the experimental dispersion curve. The profile is then used as an estimation of the material 
properties. 

The overall SASW reduction algorithm is illustrated in Fig. 2.4. The first step shows the input 
required. The first input is the raw data. This information is contained in several files 
representing information from different sensor spacings. The other set of information is a priori 
information, the best guess about the properties of the system. The a priori information includes 
the number of layers, layer thickness, and the type and quality of different layers. Based on the 
type and quality, a set of modulus values (shear wave velocity values) are selected. These values 
can always be modified to suit the system being evaluated. In Step 2 the raw data is extracted for 
each sensor spacing and phase spectra are calculated and plotted. In Step 3, phase spectrum from 
each spacing is unfolded and used to develop a dispersion curve. The final part in Step 3 is a 
curve fitting algorithm that produces an ideal dispersion curve that represents the raw data. In 
Step 4, the inversion process, the idealized dispersion curve and a priori information are input 
and modified to match the idealized dispersion curve with the theoretical dispersion curve. The 
stiffness profile that produces the closest match between the theoretical and experimental 
dispersion curves is selected as the final output profile (Step 5). The latest versions and 
improvements of the algorithm including both the dispersion and inversion process are discussed 
next. 
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Figure 2.3 - Graphical Illustration of SASW Inversion Process 
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The final step in the process is to determine the design moduli. A schematic of the algorithm 
used by SMART to provide the design modulus for each layer is shown in Figure 2.5. After the 
SASW analysis is completed, the moduli are fit into appropriate material models to obtain 
moduli that would be experienced under wheel load (see Abdallah et aI., 2002 for details). 
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Figure 2.5 - Flowchart Illustrating Process in SMART for Determining Seismic Modulus 

Portable Seismic Pavement Analyzer: The portable seismic pavement analyzer (PSPA) can be 
thought of as a smaller version of the SPA that is used for testing the top pavement layer only. 
Unlike the SPA, the PSPA only uses a high-frequency source and two accelerometers that serve 
as the receivers. Figure 2.6 shows a photograph of the PSP A. 

The PSPA data is primarily reduced using the USW method or the lE method using 
SP AManager software. The USW method used in PSPA data reduction only considers that the 
waves are contained within the top layer. As such, the velocity measured is the velocity of the 
top layer only. The modulus of the layer can then be calculated from the velocity. If the layers 
are thick enough (as in most concrete or with thick asphalt) the thickness of the layer can be 
found using the lE method. 

Figure 2.6 - Photograph of PSPA 
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Falling Weight Deflectometer 

The falling weight deflectometer (FWD) is a deflection based device that operates on the 
principle of applying an impulse load to a pavement and then recording the surface deflections at 
predetermined intervals. The current setup uses seven geophones spaced at one foot intervals for 
a total span of six feet (the first geophone is positioned at the center of the load plate). 

Raw data from the FWD test consist of the applied load and resulting seven deflections. The 
sensors farther from the source will provide information about the deeper layers (subgrade) and 
the closer sensors provide information about the upper layers. Figure 2.7 shows a typical FWD. 

Figure 2.7 - Photograph of FWD 

Data from the FWD is primarily reduced by minimizing the errors between the measured 
deflections to those theoretically determined for an assumed pavement. Uzan et al. (1988) 
describe the principles behind the backcalculation procedure as used in the MODULUS program. 
MODULUS uses a linear-elastic algorithm to generate a database of deflection bowls for 
assumed profiles. The idea is to find a theoretical deflection bowl that matches that of the 
measured deflection bowl. A search procedure to find the closest fitting deflection bowl 
(minimum error) is used. The number of generated deflection bowls depends on the range of 
modulus values entered by the user. 

The error that is minimized is a function of the measured and estimated deflections and a weight 
factor for each deflection. A Hooke-Jeeves pattern recognition search algorithm is used, as it 
always converges although occasionally to a local minimum. The pavement profile that is 
selected is the profile with the smallest error. 

The MODULUS software is simple to use and requires little trammg. The strengths and 
weaknesses for this method are reiterated in Table 2.6. The pavement thicknesses must be 
known a priori. If the thickness of the top layer is less than three inches, the modulus should be 
assumed. 
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Ground Penetrating Radar 

The ground penetrating radar (GPR) is a fast and efficient way to estimate the thickness of 
pavement layers. The thickness of the top (usually asphalt concrete) layer is obtained, as well as 
the thickness of the lower layers. Ground penetrating radar can also be used to find the dielectric 
properties of the layers, a parameter that can give some indication of the moisture content of the 
layers. 

T bl 26 Ad a e . - vantages an dD· d Isa vantaf,l es 0 fMODULUSP 11 FWDD ta rogram or a 

Advantages Disadvantages 

Not sensitive to thin pavements 
Easy to use Increased error/variability caused by shallow 

bedrock 

No way to backcalculate thickness 

Increase in variability as the number of layers 

Fast reduction 
mode led increases 

Sub grade (bottom) layer moduli may not be as 
constant as backcalculated results would 

indicate 

Results and error can vary depending on the 
range of initial model 

Already widely used 
Impossible to competently reduce without 

reliable layer thickness information 

GPR operates on the principle of measuring reflected electromagnetic energy that bounces off 
the soil layer interfaces after being transmitted from an antenna in short pulses (Maser et al., 
1991). The differences in the layers are found by measuring the dielectric discontinuities that are 
encountered when the signal moves from one layer to another. The arrival time and amplitude of 
the reflected signals are important when using GPR for determining the dielectric values and the 
layer thicknesses. The thicknesses are calculated from the arrival times and amplitudes of the 
returning signals and the dielectric constant are dependent on the amplitudes of the bounced back 
signals (Maser et al., 1991). The accuracy of GPR in determining thicknesses has been up to ±5-
7.5% for asphalt and ±9-12% for base (Maser and Scullion, 1992). 

Figure 2.8 shows the GPR device. It is simply a van housing data acquisition hardware/software, 
with an antenna mounted on a boom off the front bumper. The antenna is suspended 
approximately 10 to 14 inches above the ground. The system can operate easily over open road. 
Scullion et al. (1994) describe the details of the system hardware and data reduction. 
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Figure 2.8 - Photograph of GPR 

Ground penetrating radar operates at highway speeds. This is a major benefit because it allows 
for a long stretch of roadway to be tested in a relatively short period of time. Additionally, GPR 
takes a reading at set intervals which allows for a near-continuous thickness profile of the 
pavement to be obtained. 

Since GPR depends highly on the dielectric properties of the pavement layers, it is sensitive to 
moisture. This has both an upside and a downside. The upside is that if a material has become 
inundated with water that will be evident when the GPR test is performed. However, if the 
dielectric properties of the base and underlying layer become too similar due to the presence of 
water, then the test may not be able to yield a distinction between those layers. 

The ground penetrating radar is a fast and easy way that can obtain a near-continuous profile for 
the thickness of pavement layers. Using GPR in concert with other methods can help to obtain 
better overall information about the site. 
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CHAPTER THREE 

DATA FUSION METHODS 

In any pavement evaluation process, accuracy and precision are important. When a parameter is 
measured, the resulting measurement contains error. The ideal situation would be the 
elimination or reduction of errors. However, that may prove impossible without extraordinary 
effort. Where multiple devices are used to measure the same parameter, the devices can either 
support or contradict each other. Data fusion is a general term used to describe the processes by 
which results from different devices are combined with the purpose of arriving at more reliable 
or accurate results than the individual devices would arrive on their own. These readings can be 
both reduced results and raw data, depending on the level data fusion that is being applied. The 
complexity of data fusion can range from a simple average to an artificial neural network (Gros, 
1997). Numerous data fusion methods are in use today and the number continues to increase as 
current methods change and new methods are introduced. 

CONCEPT OF DATA FUSION 

One of the main bases for data fusion is that any event has some degree of "truth" associated 
with it. This truth can be represented by a probability, by a weight, by a distribution, or by a 
plausibility interval. It is usually possible to obtain a weight from any of the methods just listed. 
Weights, in turn, can be used to combine readings from mUltiple devices. The fundamental 
challenge to any data fusion method is how to apply the method to obtain weights which can 
then be used to arrive at a composite value. Furthermore these weights should describe a 
particular event or should identify potential outliers so that they can be adjusted or eliminated. 
Some methods are more conducive to manipulating and modifying data, whereas others only 
lend themselves to identifying potentially troublesome data points. Once a systematic method 
for data manipulation and data filtering is defined, algorithms can then be developed to remove 
the burden of guess work for a person trying to make a decision. 

A conceptual example of data fusion is how to rate a restaurant. A person will take in 
information from all of his five senses, as shown in Figure 3.1. To rate the food, the person will 
smell and taste it. Additionally, pleasant or unpleasant ambient odors may impact his perception 
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of the restaurant. Also, the person will hear and see things that will help him determine the 
atmosphere of the restaurant. "How noisy is it?" or "Is the decor pleasant to look at?" will be 
factors that he notices that impact his impression of the restaurant. The fifth sense, touch, will 
give the patron an idea of how comfortable the restaurant is. For example it may be too warm or 
too cold, there may be an unpleasant draft, or the seating may be uncomfortable. In addition to 
the senses, other factors may impact the rating of the restaurant such as the quality of service or 
the reasonableness of the price of the food. So in addition to the five senses, there are two other 
factors that can also be considered in evaluating the restaurant. Exceptional food may outweigh 
high prices, while bad service may outweigh excellent food. The fusion that will take place in 
the restaurant patron's mind will take into consideration all of those factors to come to a final 
perception of the restaurant. 

Figure 3.1 - Concept of Data Fusion 

Data fusion of experimental data is very similar, there may be data from several sources, each 
with its own advantages and disadvantages, and a more complete view of the phenomenon or the 
parameter being measured can be obtained from the systematic synthesis of this data. 

DATA FUSION CATEGORIES 

Data fusion methods can be separated into different categories depending on the main 
characteristics of the method. Data fusion methods have been broken up into three categories. 
The first category is statistical and probabilistic approaches to data fusion. The methods 
contained within are a weighted average that relies on statistical information such as mean and 
standard deviation. The other method is the Bayesian inference method which requires the use 
of prior and posterior probabilities in determining the likelihood of an event (Gros, 1997). The 
next category of data fusion is evidential reasoning. The Dempster-Shafer evidential reasoning 
method allows for expert opinions from different sources to be combined based on where these 
different opinions intersect (Gros, 1997; DeCETI, 2000). The Dempster-Shafer method returns a 
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result of a confidence interval, or range of probabilities for which a given event can occur. The 
third category is fuzzy logic. The fuzzy logic method allows for the creation of rules that attempt 
to function in a manner that changes a subjective decision into a mathematical rule. These 
decisions, in turn, can be used to combine or filter data. 

StatisticallProbabilistic Approaches 

Statistical Weighted Average: Most measurements have a level of uncertainty associated with 
them. Thus any method that takes that into consideration would be desirable. One main 
limitation is the difficulty in calculating that uncertainty. The statistical weighted average uses 
simple statistical values to combine data. From most sets of numbers, a mean and standard 
deviation can be obtained. Additionally, a standard deviation can be assumed in cases where one 
cannot be calculated. This usually happens when the size of the sample is small. 

Taylor (1997) shows the development of a method based on the Gaussian distribution. Consider 
several Gaussian distributions that can be described by the following probability for a value X 
that maximizes the probability 

P () 1 -(x.-X)2/2u2 ~ • 1 2 
X Xi oc-e I I 10r1= , , .•• ,n 

at 
(3.1) 

For each i, the probability depends on the exponent term as the probabilities depend on X. The 
product of all of the probabilities can be represented as 

(3.2) 

where the variable t is given by 

(3.3) 

Since the probability will be greatest for each i where Xi - X is a minimum, the first derivative 
test can be applied to find the X for which the x: function will be minimal, hence 

I2 xi 
-2

X 
=0 

1=1 a l 

The solution to the previous equation is 

By extension, the individual weights can be defined as 

(3.4) 

(3.5) 
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W.= , 
1 

a i 

the combined value of x will be 

From the principle of error propagation the combined uncertainty will be 

1 

(3.6) 

(3.7) 

(3.8) 

To derive the composite uncertainty function (Equation 3.8) the use of the principle of error 
propagation is required. Two rules of error propagation must be applied, one that accounts for 
scalar multiplication and one that accounts for a summation of variables. The rules are as 
follows in respective order. 

!(X) = Kx => af(x) =1 K I a x 

and 

!(Xp X2,···,Xn) = Xl ± X2 ± ... ± Xn 

a f(x! ,X2""x,) = ~ (aXj )2 + (a x)2 + ... + (a x) 
2 

(3.9) 

(3.1Oa) 

(3.1Ob) 

Substituting Equation 3.7 into Equation 3.10 and applying the rule for constants from Equation 
3.9, the following equation is derived 

2 2 2 2 2 2 
a, Wl + a 2 W2 + ... + an Wn 

(Wl + W 2 + ... + W n )2 

Since wi = ~, the preceding equation simplifies to 
a i 

W1 +W2 +",+wn 

(wj + w2 + ... + W n )2 

1 

(3.11 ) 

(3.12) 

Let us consider an example with four values, each with their own mean and standard deviation. 
The values for the distributions are shown in Table 3.1 and the plot of the probability density 
function is shown in Figure 3.2. 

A key feature of this method is taking into consideration not only a given value, but its 
uncertainty as well. With the traditional method, which is just a regular mean and standard 
deviation, the prior knowledge of each values uncertainty is completely ignored. However, in 
the weighted method, those uncertainties are taken into consideration. Note how the uncertainty 
of the weighted result is lower than that of the traditional result. The whole reason behind using 
this weighted method is not only to weight more reliable measurements more heavily, but also to 
develop a composite uncertainty. 
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The strength of this method is that it can be applied to any number of data points with a simple 
calculation. Once a mean and standard deviation are known for each data point, the numbers can 
easily be combined. Ang and Tang (1975) proposed a similar process to combine data, but only 
for two variables. 

Bayesian Inference: The role that Bayesian inference plays in data fusion is eliminating data 
that may be unlikely and eliminate ambiguities and conflicting information (Gros, 1997). The 
result of using Bayesian inference would be the selection of one device data over another. 
However, this can be extended to use the resulting probabilities to create weights that could later 
be used to fuse results from multiple sensors. 

The Laboratory of Remote Sensing (DeCETI, 2000) described a method for applying Bayesian 
inference to a distributed variable. This method relies on a priori probabilities and conditional 
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density functions, that is P(Ei) and p(xIEi), respectively. The probability density function can be 
represented by any distribution. Normal distributions will be used to illustrate how to apply the 
Bayesian method to a continuous variable. The a priori probability will be converted to an a 
posteriori probability, P(Eilx). Once the a posteriori probabilities have been found, a decision on 
which input to select can be made. The posterior probabilities of the events are defined by taking 
the relative ratio of the weights for each input to the total input as given by the Equation 3.13. 
The denominator in the equation is a normalization factor so that the sum the probabilities of all 
of the events being compared is one. 

( I )
- p{xIEJ.P{Ej) 

P Ej x - p{x} (3.13) 

n 

p{x) = L p(x I Ej ). P(Ej) (3.14) 
j=l 

An example can be introduced at this point to illustrate how the Bayesian inference method can 
be used to decide among three options for the value of a given event. For argument's sake, let 
the phenomenon being reported be gas mileage for a car. Three different experiments were 
conducted, each with their own mean and standard deviation. Based on the given data, the gas 
mileage has to be determined. Assuming a Gaussian distribution for each experiment, the 
probability density functions and the probabilities of each even occurring can be found, and a 
decision can be made. The data for this example is shown in Table 3.2. 

a e " - IS rl U Ion a or T bl 3 2 D" t "b f D ta I) B I I) ayeSIan n erence E I xample 

Experiment Average (mpg) Standard Deviation (mpg) 

El 28 4.2 

E2 22 2.2 

E3 34 6.8 

Now let us assume that the measurements that were made to arrive at the distributions in Table 
3.1 are looked at individually. Furthermore, let us assume that the final reading from each set of 
experiments will be considered. There are two options for calculating the probability of a given 
value based on its distribution. One is the cumulative probability approach and the other is the 
double-tailed probability. Figure 3.3 shows the difference between the two options for finding 
the probability. The areas under the black curves are what are included in the probability 
calculation whereas the gray curves show the entire distributions. 

Table 3.3 shows the results of applying Equations 3.13 and 3.14 to the data shown in the second 
column of Table 3.2 using the distributions from Table 3.1. 

From Table 3.3, the result that would be selected based on the highest posterior probability 
would be El. Another option would be to use the posterior probabilities as weights for fusing the 
data. If a weighted average is taken using the posterior probabilities as weights, the fused result 
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is 27.6 mpg with a 2.5 mpg standard deviation. The uncertainty is derived in using the principles 
of error propagation that were described earlier. The equation used for the uncertainties is 

'I (WjO'j )2 

('I (wJY 
(3.15) 

where the weights are the posterior probabilities and the standard deviations are the standard 
deviations for each experiment. 

The Bayesian inference method that was proposed by the Laboratory for Remote Sensing relies 
on being able to establish the conditional density functions and the a priori probabilities 
(DeCETI, 2000). It shows how those two pieces of information can be arrived at fairly easily. 
The rest of the procedure simply relies on performing the necessary calculations using Equations 
3.13 and 3.14. 

Table 3.3 - Summary of Bayesian Prior and Posterior Probabilities 

Distribution Value 
Prior Probability Posterior Probability 

Cumulative Double-tailed Cumulative Double-tailed 

El 28 0.50 1.00 0.50 0.76 

E2 26 I 0.97 0.07 0.35 0.02 

E3 30 0.28 0.56 0.14 0.22 

a) Cumulative 

b) Double-Tailed 

~-----""'"'i------;-~-- 4 

Figure 3.3 - Options for Probability Calculation 
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The Bayesian method is an excellent way to compare data from several sources at once. In the 
case of this example, the prior probabilities were found using a normal distribution. However, if 
data is not available to find a prior probability and there are multiple options, the prior 
probability of each can be assumed to be equal, IIN, where N is the number of experiments. 
However, if all of the prior probabilities have a value of one the result will be the same because 
the probabilities are normalized as Equation 3.14 is a normalizing factor. If the conditional 
density functions are not known, conditional probability values can be substituted instead. 
Generally, those conditional probabilities are derived from empirical records, computer 
simulations such as artificial neural networks, or they can be assumed outright or with an 
assigned distribution. 

Bayesian inference allows for the comparison of many options with calculations that are not too 
difficult to perform. The only problem that arises is that the input for the equations can be 
difficult to develop. If an algorithm for developing the inputs is available, this method can be 
very powerfuL 

Evidential Reasoning Approaches 

Dempster-Shafer Method: The Dempster-Shafer method derives conclusions from combining 
evidence (Gros, 1997; DeCETI, 2000). This method relies on combining sets of data that either 
partially or fully support each other. An easy way to conceptualize this is to suppose there are 
three friends and one of them breaks a neighbor's window. One witness thinks it was person one 
or two, another thinks that it was person one or three. Intuitively, the inclination is to believe 
that person one is the culprit. This is the main premise behind the Dempster-Shafer method, only 
more sets with multiple subsets can be combined. The Dempster-Shafer method then takes these 
intersecting events and develops a belief interval that has an upper and lower probability of the 
event occurring. 

These upper and lower probabilities are referred to as belief and plausibility. There is a 
difference between belief and plausibility. Belief is the minimum probability of an event 
occurring and plausibility the maximum probability. This means that the plausibility of an event 
must always be equal to or greater than the belief. Figure 3.4 shows an example of a confidence 
interval 
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The Dempster-Shafer method is based on the theory of evidence (Gros, 1997) to assign a belief 
or probability to a given event. Belief functions are used to represent the degree of faith in a 
possible outcome. The belief function of the initial data is basically a probability assignment. 
This probability can be assigned to data by using a probability distribution, statistical 
information, or judgment. For now it will be assumed that all probabilities have been 
appropriately assigned. A belief function, Bel(x), where a proposition has multiple hypotheses 
can be denoted as 

Bel(X) = Lm(X) (3.16) 
Xir;;;X 

The X;' s refer to the hypotheses that are contained in proposition X. Each event Xi contained in X 
can be assigned its own probability. The probability of each hypothesis can be referred to as 
m(XiJ. The next part of the procedure calls for Dempster's rule of combination. This can be 
expressed mathematically as 

ml ffi m2 = m3 (Z) = K Lml (Xl )m2(X J (3.17) 
X1nX2=Z 

where K is a normalization factor that will be derived shortly. This rule uses the orthogonal sum 
of sets that are to be combined. This equation can be rewritten as 

Bel(Z)=K L~(X)m2(Xj) (3.18) 
i,j 

Xlr; X2=Z 

Equation 3.18 basically multiplies any two hypotheses (one from each set). The new set formed 
will be referred to by the name of what the two combined sets have in common. If two 
hypotheses do not support each other, i.e. have nothing in common, then a value, k, can be found 
which is used to calculate the normalization factor. 

k = L~(X)m2(X) 
i,j 

Xlr; X2=@ 

The normalization factor is simply 

1 
K=

l-k 

(3.19) 

(3.20) 

The final concept to be introduced is the plausibility of an event happening. Plausibility does not 
consider what two hypotheses have in common, but where they overlap. This can be expressed 
as 

Pls(Z) = 1-Bel(Z) (3.21) 

The plausibility is the difference between total belief and the belief that an event will definitely 
not occur. 

The application of these equations and their use in the Dempster-Shafer method can best be 
illustrated with an example. Suppose that one was trying to determine who did break the 
window, Larry, Moe, or Curly. There are three possibilities for who the culprit is, but from 
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gathered evidence there are several possibilities which can overlap, creating other members of 
the set besides the three simple cases. Some witnesses may only report seeing a man while 
another may say that the suspect had hair, thus creating a possibility of more than one suspect 
from one observation. Suppose that information is gathered from two investigators and is as 
shown in Table 3.4. The two investigators will be referred to as Investigator X and Investigator 
Y, or more simply as sets X and Y. Beliefs and plausibilities can be established for each 
parameter before the two sources are combined these values are also shown in Table 3.4. 

Table 3.4 • Initial Probabilities, Beliefs, and Plausibilities 

Combination P(X) Bel(X) Pls(X) P(Y) Bel(Y) Pls(Y) 

L* 0.3 0.3 0.9 0.4 0.4 1 

M* 0 0 0.7 0 0 0.5 

C* 0 0 0.5 0 0 0.6 

L,M 0.2 0.5 1 0 0.4 1 

L,C 0 0.3 1 0.1 0.5 1 

M,C 0.1 0.1 0.7 0 0 0.6 

L,M,C 0.4 1 1 0.5 1 1 

* L=Larry, M=Moe and C=Curly 

The belief for set X with Larry or Moe would be Bel(XL, M) = P(Xd + P(XM) + P(XL, M)' The 
plausibility for the same situation would be Pis (XL, M) = P(Xd + P(XM) + P(XL, M) + P(XL, c) + 
P(XM, c) + P(XL, M, c) or Pls(XL, M) = 1 - P(Xc). 

Now the two inputs must be combined by multiplying the two sets of masses together The 
outputs that each will support after multiplication will be what the two masses have in common. 
If they have nothing in common, then the result is part of the empty set. The two inputs X and Y 
will be broken into four and three masses, respectively. These will be denoted as Xi and Yj. Table 
3.5 below shows the masses. 

a e . . T hi 3S M asses or u Ipnca Ion f, M If r f 

Set X SetY 

xdL} = 0.3 ydL} = 0.4 

x2{L, M} = 0.2 Y2{L, C} = 0.1 

x3{M, C} = 0.1 Y3{L, M, C} = 0.5 

x4{L, M, C} = 0.4 

The product of multiplying sets X and Y will be Z and the masses for Z will be referred to as Zij, 

e.g. x3{M, C} x Y2{L, C} = Z32{C}. The result of multiplying the masses will be twelve new 
masses, which can then be combined using evidential reasoning. Table 3.6 shows the twelve 
new masses. 
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Table 3.6 - Composite Masses 

SetZ 

Zll {L} ::; (0.3)(0.4)::; 0.12 Z31 { "} ::; (0.1 )(0.4) ::; 0.04 

ZI2{L} ::; (0.3)(0.1)::; 0.03 Z32{C} ::; (0.1)(0.1)::; 0.01 

ZI3{L} ::; (0.3)(0.5)::; 0.15 Z33 {M, C} ::; (0.1 )(0.5) ::; 0.05 

Z21 {L} ::; (0.2)(0.4) ::; 0.08 Z41 {L} ::; (0.4)(0.4) ::; 0.16 

Z22{L} ::; (0.2)(0.1)::; 0.02 Z42{L, C} ::; (0.4)(0.1)::; 0.04 

Z23 {L, M} ::; (0.2)(0.5) ::; 0.10 Z43{L, M, C} ::; (0.4)(0.5)::; 0.20 

The next step will be to combine like masses and multiply by the K factor (1/(1 -k), k ::; z("). 
The multiplication by the K factor is to normalize the usable results to one so that the beliefs and 
plausibilities can be found. Table 3.7 shows the results of these procedures. The P(Z)/K column 
is the non-normalized result that omits the empty set data from Z31; the P(Z) is normalized and 
the probabilities add up to one. 

Table 3.7 - Results for Combined Evidence 

Combination P(Z)IK P(Z) Bel(Z) Pls(Z) 

L 0.56 0.58 0.58 0.94 

M 0 0.00 0.00 0.36 

C 0.01 0.01 0.01 0.31 

L,M 0.1 0.10 0.69 0.99 

L,C 0.04 0.04 0.64 1.00 

M,C 0.05 0.05 0.06 0.42 

L,M,C 0.2 0.21 1.00 1.00 

From the results, the most likely suspect for the window breaking can be determined based on 
the combined evidence. The evidence refutes that the guilty party is either Moe or Curly, [0, 
0.36] and [0.01,0.31], respectively ([Bel, PIs]). Both of the limits of the two belief intervals are 
below the one-half point, thus refuting a belief in Curly or Moe being responsible. The evidence 
does support Larry, Larry-Moe, and Larry-Curly, but knowing that the evidence against Moe and 
Curly is refragable places doubt on either Larry-Moe or Larry-Curly being a reasonable choice. 
By process of elimination, it can be said that the person most likely to have broken the window is 
Larry. 
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If there was a third investigator, say another set called W, then the data could have been 
combined in any order since the Dempster-Shafer method is both commutative and associative. 
(Gros, 1997). 

The Dempster-Shafer method is an effective way to combine sets that overlap each other in a 
way to determine the most likely outcome. When the Dempster-Shafer method is broken up into 
non-overlapping sets and applied to Gaussian distributions, the results are identical to the 
weighted average method once proper scaling factors are applied. However, it is much simpler 
to just apply the weighted average method than to use Dempster-Shafer to fuse Gaussian 
distributions. 

Fuzzy Logic 

Fuzzy logic was first proposed by Zadeh (1965). Fuzzy logic is an extension of conventional set 
theory, binary logic, and probability measure (Tanaka 1991). Fuzzy logic tries to handle 
vagueness or ambiguity that is the result of human thinking (Tanaka 1991). The idea behind 
fuzzy logic is a way to imitate the decision process that relies on making a subjective decision 
with a decision algorithm formed by defining rules that will interpret the inputs and make a 
decision based on those rules (Jantzen, 1997; Jantzen, 1998; Favata, 2001; Mathworks, 2003). 
Input for fuzzy logic is not necessarily, and usually not, discrete, (i.e. true or false, yes or no, on 
or off). Fuzzy logic allows for a gray area in between black and white. 

Fuzzy logic depends on the development of fuzzy sets. These fuzzy sets have no definite 
boundary. Events that occur within these sets often partially belong to two members of the set. 
The following example illustrates the concept of fuzzy sets. 

A baseball player is considered to be a power hitter if he has more than 35 home runs and an 
average hitter if he has 20 home runs. What about a player with 27 home runs? All that can be 
ascertained about the hitter is that he is an above average hitter with more than 20 home runs. 
The fact that more than 35 home runs would qualify him as a good hitter has no influence on our 
reasoning if we use Boolean logic. Fuzzy logic allows for these situations to be dealt with by 
representing a degree of membership in each of the categories. 

Now the concept of a membership function must be introduced. In Boolean logic, the value 27 
home runs would constitute the hitter as not a good hitter. However, intuition tells us that this 
hitter is still a decent player. Figure 3.5 shows that everyone below 35 is not to be taken as a 
good hitter. The membership function only has two options, 0 or 1. Clearly, the value does not 
fall into the average category either. 

Fuzzy logic will allow us to define membership functions that will let the hitter with 27 home 
runs be classified. For the sake of a future example, let us add one more hitter category, a hitter 
with less than 10 home runs will be considered a weak hitter. From the two previous definitions 
for good and average hitters and the new class of hitter, a fuzzy set membership function can be 
generated. 
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Figure 3.5 • Boolean Membership Function for Home Runs 

By using a fuzzy set membership function, the degree of membership to each class can easily be 
defined by the three curves shown in Figure 3.6. As for the hitter in question, he will belong 
53% to the average hitter class and 47% to the good hitter class. Observe how the 27 home runs 
are transferred to the y-axis to obtain the degree of membership where it intersects the 
membership functions for the average hitter and the good hitter. Obviously, he would not belong 
at all to the weak hitter class. 
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Figure 3.6 • Fuzzy Membership Function for Home Runs 

There are four general shapes that define membership functions, Z, S, A, and IT. These shapes 
can be smooth curves or straight lines. The Z shape plateaus at one on the left, then slopes down 
to zero between two values and then is zero to the right of the higher value. The S shape is the 
reflection of the Z shape. The A shape is a triangle and the IT is a trapezoid. Figure 3.7 shows 
these generalized shapes. Any functions that create similar shapes can be substituted to create 
the desired membership function. 

Additionally, these shapes can also be formed by sigmoid, Gaussian, and by double sigmoid 
curves. The shapes can also be asymmetric, that is having different ascending and descending 
slopes. The shape of the membership functions will be defined by "expert" input based on 
experience or empirical data. 

Now that the use of fuzzy sets and membership functions has been described, the question arises 
of what to do with the information from the membership functions. Recall the example of the 
baseball player. The degree of belonging in each set has been determined: poor (0%), average 
(53%), and good (47%). Where the input (27 home runs) intersects a curve for a membership 
function, that input triggers a rule. That rule, in turn, will trigger an output. Now outputs must 
be developed. To start off simple, a good hitter will be given a rating of 3, an average player a 
rating of 2, and a poor player a rating of 1. The output can be expressed in graphical form as 
show in Figure 3.8. 
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Figure 3.8 - Output for Baseball Example 

3 - Good 

Let us give each output possibility an equal weight of one. Now the degree of membership to 
each set can be applied to the output so the player can be rated by combining the outputs. 
Applying the 53% for the average rating and the 47% for the good rating, the output graph is 
transformed (Figure 3.9). 
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Figure 3.9 - Output Graph after Application of Inputs 

Now the two values can be combined by taking the centroid of the areas. The result of the 
centroid is 2.47. This value was obtained by using the degree of membership as a weight and the 
output values as the numbers to be combined. Mathematically, the calculation is as following: 

L WiXi = (0.53x2)+ (0.47 x 3) = 2.47 
L wi (0.53+0.47) 

(3.22) 

This tells us that the player is between average and good, but slightly closer to being regarded as 
an average hitter than a good hitter. This process of simplifying the output is called 
defuzzification. 

Realistically, the skill of a hitter will not be based on home runs alone. Now consider another 
input, batting average. Also, lets us add two more players such that the input matrix will look 
like Table 3.8. 

a e • -T bl 38 PI ayer IS ICS a rlx Sta1' l' Mt· 

Player Home Runs Average 

A 27 0.291 

B 35 0.241 

C 13 0.333 

Now a second input membership chart must be developed. The concept of fuzzy operators will 
also be introduced at this point. Since there are now two inputs, a decision must be made to take 
the higher or lower value for the membership function that comes from the result of each input. 
Each rule will have two inputs (Home Runs and Average). Before, each rule had only one input 
(Home Runs). The membership functions for Average are shown in Figure 3.10. 
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Figure 3.10 . Fuzzy Membership Function for Batting Average 

Since there are multiple inputs, a way of deciding which input to use and which rules should be 
triggered become an issue. This is where a fuzzy operator will be introduced. When a decision 
must be made between two degrees of membership, the operators primarily used are AND and 
OR, or, as would be thought of in probability, intersection and union. Another basic operator 
used is the NOT (complement) operator. Two more variations of AND and OR are the product 
and algebraic sum. The product simply multiplies the degrees of membership and is classified as 
an AND method. The algebraic sum is Pea) + P(b) - P(a)*P(b) and is an OR method. In 
applying these operators, the OR function is equivalent to taking the maximum and the AND 
function is equivalent to taking the minimum of the numbers being compared (Mathworks, 
2003). 

Now the example of the baseball players can be further examined to show the fuzzy operators in 
use. Consider that each of the statistics shown in Table 3.8 will have an associated degree of 
membership. Each of those degrees of membership will either be in one or two classes as 
defined. Each degree of membership will then trigger one output. The rules have the following 
criteria: 

1) If either Input 1 or Input 2, but not both, are equal to zero, the rule is triggered 
and only the non-zero input will be considered. The un-triggered input will 
have a null value and not be considered in any fuzzy operations. 

2) If both Input 1 and Input 2 are zero, then the rule is not triggered. 
3) If both Input 1 and Input 2 are non-zero then the rule is triggered and a 

decision is made which one to consider using a fuzzy operator. 

Rule criteria are set by the user. The criteria set here are only for this example and will differ 
from case to case. Figure 3.11 shows how the two inputs for player A will trigger one or more of 
the three rules. 

The first row corresponds, to rule one, the rule for a good hitter, rule two for average hitter and 
so forth. The first rule was only triggered by the 27 HR input. The second rule was triggered 
both by the 27 HR input and the 0.291 AVG. Rule three was never triggered. Graphs similar to 
those shown in Figure 3.11 can also be generated for players Band C. 
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Figure 3.11 - Inputs and Outputs for Player A 

Now a decision has to be made on which degree of membership value to use for the second 
output, the higher value or the lower value. This is where the fuzzy operators will be applied. 
For this example, the AND and OR operators will be used. If the AND operator is applied, the 
minimum value will be chosen, whereas using the OR operator, the maximum value will be 
selected. Table 3.9 shows the values for the triggered rules and the result of applying each 
operator for each of the three players. 

When a rule is not triggered, the output is technically zero, but will not be considered when the 
fuzzy operators are applied (this was one of the rule criteria). Only non-zero values will have the 
AND or OR operators applied to them. The numbers in italics are the only difference in the 
example once the operators are applied. Now consider which of the two situations would qualify 
the player A as a better hitter, the AND case or the OR case. In this situation, the AND case 
would, since the result of the outputs is a centroid and the increase in weight for the average case 
would result in the centroid shifting down from the higher value of good that is supported by the 
0.47 probability. Thus it may be more desirable to use the AND operator so that the player 
appears to be better. Conversely, the OR situation would imply that the player belongs more 
fully to the average category and in a sense would be a more fair estimate. For this example, 
both operators will be evaluated in the next step of combining the output. Additionally, the 
ratings for the hitters based solely on HR and A VG will be compared to the composite values. 

The composite values will again be calculated using a centroid approach. This time there are 
four cases to compare, HR, A VG, AND(HR, A VG), and OR(HR, A VG). It was previously 
defined that a good player has a rating of three, an average player a rating of two, and a poor 
player a rating of one. Table 3.10 summarizes the player ratings obtained from the combining of 
the information. It is clear how the players will be ranked when rated solely on HR or AVG. 
However, the rating and ranking when the two statistics are looked at together is not so intuitive. 
Additionally, the ratings for each player change when the fuzzy operators are applied from what 
they were when simply based on one statistic. This rating process could be extended to include 
more players and/or more statistics. 
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Player Good Average Poor 

i Input 1 (Home Runs) 
A 0.47 0.53 --

B 1.0 -- --
C -- 0.30 0.70 

Input 2 (Average) 
A -- 1.0 --
B -- 0.82 0.18 

C 1.0 -- --

AND (minimum) 
A 0.47 0.53 --
B 1.0 0.82 0.18 

C 1.0 0.30 0.70 

OR (maximum) 
A 0.47 1.00 --
B 1.0 0.82 0.18 

C 1.0 0.30 0.70 

" •• " denotes that the rule was not triggered 

a e . -T bI 310 C fPI omparlsono ayer Rf a mgs an dR k' an mgs 

Player Rating Ranking 

Input 1 (Home Runs) 
A 2.47 2 

B 3.00 1 

C 1.30 3 

Input 2 (Average) 
A 2.00 2 
B 1.82 3 

C 3.00 1 

AND (minimum) 
A 2.47 1 

B 2.41 2 

C 2.15 3 

OR (maximum) 
A 2.32 2 

B 2.41 1 
C 2.15 3 
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There are also other output curve options that are easy to use. Instead of having a concentrated 
mass for the outputs, the outputs could be represented by triangles, trapezoids, s- or z-curves, or 
by a function. In using such shapes and functions it would be necessary to develop appropriate 
widths for the output that would fairly weigh the results. One option is to have the same shape 
for each output, but with different centroids, and different heights where the heights are based on 
the inputs. In Figure 3.12 all triangles have the same base, but are truncated at different values. 
The bold black line contains the summed output areas. The final result will be the centroid of the 
area which is denoted by the dashed vertical line. 

If certain rules were triggered more than once by different inputs, some of the areas would 
overlap, e.g. output three (03) would have two trapezoids that fall under that triangle and thus 
more areas would be summed for that particular output. 
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Figure 3.12 . One Alternative Form for Output Graphs 

The rules used in the baseball example were quite simple in the sense that all three rules 
followed the same pattern. The three rules that were developed could have different conditions. 
For example if a player had more than 45 HR, qualifying him as a good hitter, only a severely 
low batting average would be applied to modifying his rating, say less than a 0.200 A VG. The 
charts shown in Figure 3.11 would change to accommodate this. Observe the change in the 
charts when this new criteria is applied to the previous data. An additional example would be to 
not penalize a hitter with an excellent average for not having as many home runs. Different 
membership functions could be used for input two based on the input for input one. There are 
any number of possibilities depending on what the user wants. Figure 3.13 shows the change 
that would occur to the previous rules once additional conditions are applied to the rules. 
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Figure 3.13 - Example of Conditional Rules 

Fuzzy logic is a method that allows not only for the programming of rules to direct a certain 
outcome, but also for partial beliefs of membership of a given parameter to a set or multiple sets. 
By determining the degree of belonging to a set, outputs can be developed and then combined to 
obtain a composite view. The outputs obtained can represent anything from a final output to a 
weight that will be used in a latter step of data integration. The use of fuzzy logic is to set up a 
system of rules that will replace some of the guess work that a human being would have to 
perform in making a decision. 

ADVANTAGES AND DISADVANTAGES OF METHODS 

Statistical Weighted Average: The weighted average method is a simple way to fuse data from 
two or more sources. A representation of the uncertainty of the results is possible. This is 
important since a fused value cannot be perfect and must have some sort of uncertainty 
associated with it. However, this can also be viewed as a double-edged sword. The uncertainty 
will drop continually when more and more results are combined. This can lead to the 
assumption that the uncertainty is very low which may be true numerically, but not intuitively. 
Additionally, the use of this method requires that the results are in the forms of Gaussian 
distributions where means and standard deviations can be obtained for all data. Since it is fairly 
easy to calculate or assign reasonable standard deviations and means for most data, this method 
easily lends itself to data fusion. A method of using a statistical weighted average to fused NDT 
data from pavements will be introduced in the next chapters. 

Bayesian Inference: The Bayesian inference method can be used to evaluate the most likely 
option from several choices. Additionally, it can easily be extended to generate weights that can 
then be used to fuse multiple options. The weakness of this method is that the generation of the 
conditional probabilities and prior probabilities can be tedious. The Bayesian method can also 
be used as a preprocessor to other methods of data fusion in which additional modification 
factors are developed that will aid in the weighting of data from multiple sources. A method of 
applying Bayesian inference to NDT pavement data will be presented in the next chapters. 
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Dempster-Shafer: The Dempster-Shafer method is an excellent way to combine data with 
overlapping sets. Dempster's rule for combining different data sets really adds to the 
attractiveness of this method. Ignorance in this method is represented by the confidence interval. 
The confidence interval gives a minimum and maximum probability of an event, referred to as 
belief and plausibility, respectively. If the discrete data sets are considered, combining the data 
becomes extremely easy. A degree of uncertainty can be obtained through fitting a distribution 
to the results via a numeric procedure or through the use of a distribution-fitting software. 
Although powerful, the Dempster-Shafer evidential reasoning method is excluded from use in 
the fusion of the NDT data. The input can be manipulated in such a way that another method can 
be used instead with easier computations to arrive at the exact same result. 

Fuzzy Logic: The fuzzy logic method is an excellent method for developing weights that can be 
used to combine data or for combining the data itself. Fuzzy logic can easily incorporate sets of 
rules and partial belief functions to facilitate the development of the composite view of the data. 
Fuzzy logic can also be used to modify data as a pre-processing method for other fusion 
methods. To represent uncertainty in fuzzy logic, a composite value for the uncertainty must be 
derived. The equation for the uncertainty is not definitely defined. That is, the composite 
uncertainty function depends on how the outputs from the fuzzy procedure are combined. The 
same principles of error propagation that were used to define the uncertainty in the weighted 
average method can be applied to any fuzzy procedure that involves uncertainty. As the example 
shown in this chapter did not deal with uncertainty (Le. home runs and batting average are know 
exactly), uncertainty cannot be defined. However, in the case of nondestructive test data for 
pavements, uncertainty plays an important role. The development of the uncertainty equations 
used for such data will be discussed in the chapter where fuzzy logic is applied to NDT 
pavement data. Perhaps the most important feature of the fuzzy logic is the way that it allows for 
the use of rules. These rules can easily be defined by the user and can be defined to consider any 
number of combinations of the input or inputs. The rules can be written to consider extreme or 
rare cases where special considerations must be taken. This allows the decision process to be 
standardized and not be subject to human interpretation which is likely to be inconsistent. The 
fuzzy logic method can also be applied in steps so that several levels of data combining can be 
performed. 

ADDITIONAL LITERATURE ON DATA FUSION METHODS AND APPLICATIONS 

In addition to the methods that were discussed in detail. Other data fusion methods exist that 
were not seen as applicable to this project. A brief description these methods will be included at 
this point. 

Luo and Kay (1989) presented a summary of many fusion methods currently used in integrating 
intelligent systems. They referred to the different levels of fusion, such as fusing redundant 
information at a lower level and fusing complementary information at a higher level. They 
suggested which general methods should be used for which kind of fusion. The methods they 
covered are a weighted average, Kalman filter, Bayesian estimation using consensus sensors, 
multi-Bayesian, statistical decision theory, evidential reasoning, fuzzy logic and production 
rules. 
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Thomopoulos (1989) discussed how to combine data in a coherent manner. He detailed the 
architecture of data fusion by discussing the different levels of data fusion. Signal level, 
evidential level, and dynamic level fusion are discussed, as well as centralized and decentralized 
fusion. Signal level fusion can incorporate heuristic rules, correlation, or trainable networks (e.g. 
artificial neural networks). Evidential level fusion uses statistical models to describe the 
phenomenon being evaluated. The models can either be traditional or fuzzy_ The outcome of 
this process is a local inference at the sensor level. Dynamic level fusion assumes that a 
mathematical model exists that describes the process for data collection from multiple sensors. 
Furthermore, it is also assumed that the data has a known transformation. A centralized 
approach would process the observations as a whole while a decentralized approach would 
process each sensor individually and then merge the processed data in the fusion center. 

Other applications of data fusion include Krzysztofowicz and Long (1990), who formulated a 
Bayesian detection model for a distributed system of sensors. Additionally, Park and Lee (1993) 
used a fuzzy rule-based method for diagnosing and correcting signal faults as well as a method to 
check for sensor failures. Starr et al. (2000) discuss data fusion architectures, the blending of 
quantitative and qualitative methods, and applying data fusion for condition based maintenance. 
Osegueda et al. (2000) used several data fusion techniques to assess the damage of aluminum 
beams through fusion of modal strain energy differences. Methods that were used include 
averaging, likelihood ratios, Bayes statistics, and evidential reasoning. 
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CHAPTER FOUR 

STATISTICAL WEIGHTED AVERAGE METHOD 

INTRODUCTION 

In Chapter 3 the concept and principles behind the weighted average method were presented. 
The implementation of the weighted average method in combining nondestructive pavement 
testing data will be presented in this chapter. 

To apply the weighted average method, a mean and a standard deviation or a mean and a 
coefficient of variation are needed (Taylor, 1997). To represent this uncertainty it is desirable to 
average all the data from a particular device and consider that as the distribution for that device. 
In this study, the main concern is the fusion of the results, not the fusion of the raw data. Thus, 
when the term "device" is used, it will primarily refer to the entire process for using that device, 
including the reduction method. For composite reduction methods such as the joint inversion 
method where SPA and FWD data are reduced together, device will refer to the joint inversion 
method, or more simply as JIM (Abdallah et al., 2003). 

ADAPT ATION OF NORMAL DISTRffiUTIONS FOR FUSION 

The distributions developed represent the entire site and not the individual points. An adaptation 
of each site distribution must be made so that it can be used with the individual points. Suppose 
an FWD result, with a coefficient of variation of 12%, has a normal distribution of ~198, 24) 
and is derived from a set of twenty numbers. The first number in that list is 163. To adapt this 
distribution, the coefficient of variation is held constant, not the standard deviation. So the new 
distribution for the first test point for that sensor would be ~163, 12%xI63) = ~163, 20). By 
using the coefficient of variation instead of the standard deviation, each individual value for a 
series of readings from a single device will have the same ratio between the inferred standard 
deviation for that point and the value for that particular test point. Figure 4.1 shows how the site 
data is transformed for one point. This same transformation can quickly and easily be done for 
any number of data points for a given site. 
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Figure 4.1- Transformation of Distribution for Statistical Weighted Average 

FUSION ARCHITECTURE 

The site statistics will now be used to develop separate distributions for each of the individual 
test points. This procedure is fairly straightforward, but somewhat tricky. This tricky part is 
how to apply this method to a collection of data from a site where multiple devices were used to 
test it. Entertain the thought that there are many possibilities on how data from a site can be 
viewed. There are three classes where the weighted average method (and other methods in 
general) can be applied: point fusion, device fusion, and site fusion. 

The concept of point fusion is quite simple, results from multiple devices must be aligned based 
on where they were tested; that is, the values that are to be fused must come from the different 
devices but from the same physical location. Figure 4.2 shows where point fusion would be 
possible for a set of data from a site tested with three devices. Keep in mind that in this 
discourse, device and method of reduction are often used synonymously. 

Point 1 2 3 4 5 6 7 8 9 10 

FWD e e e e e e e e e 
SPA 0 0 0 0 0 0 0 0 0 
JIM e e e e e e 

Figure 4.2 - Example of Available Data for Fusion 

From Figure 4.2, point fusion will not be possible at every point. In addition, at points where it 
is possible, they may not be possible to the same degree. At some points results are not available 
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because of, for example, a device malfunction, bad raw data that cannot be interpreted, or 
inconsistent or extremely outlying data. Since JIM data cannot exist without adequate FWD and 
SPA data, wherever one of those values is not available, the value from JIM is most likely 
unreliable. From Figure 4.2, all three devices can be fused at Points 1, 2, 5, 6, 7, and 8. Two 
devices can be fused at Points 9 and 10. Finally, at Points 3 and 4 no fusion is possible, as data 
was only available from one device. In that case, the value that will represent the properties at 
that point only comes from one device. Additionally, the points can be fused just using a simple 
average. This will provide some idea about how the data from the different devices can create a 
range of possibilities, but it will give a lesser weight to data that is more questionable (i.e., have a 
higher standard deviation) less. So each method of combining the data at a given point may have 
its advantages and disadvantages. 

Device fusion and site fusion are fairly similar as both will provide some representation for the 
entire site. Device fusion will represent the site based on one device, while site fusion will 
represent the site based on multiple devices. Device fusion will be described first since site 
fusion is more complicated and often depends on the results of point fusion or device fusion. 
Referring to Figure 4.2 again, if device fusion were applied to the available data, three values 
would be obtained. Each device would provide a single value for the site. The limitation of 
device fusion is that an adequate representation of the site variation cannot be carried out. The 
site variability may be reduced during the fusion process to the point where the inherent variation 
is eliminated. 

Site fusion can be performed in several ways. With the site fusion, the results of the other two 
forms of fusion have to be processed to obtain a final value for the site. One possibility is to fuse 
the data from point fused results. Other options are to fuse the device-fused data or fuse the 
simple device averages. Alternatively, all the points from all the sensors can be fused at once. 
Fusing point-fused results, fusing device-fused results, and fusing all will result in nearly exactly 
the same result. However, the method that makes the most sense is to take a simple average of 
the point fused data. This allows for more dependable readings at a given point to be weighted 
more while at the same time the variability within the site can be somewhat quantified. Figure 
4.3 shows several alternatives for fusing the data from a particular site. These alternatives are 
more thoroughly explained where site fusion is specifically covered for real data. 

DEVELOPMENT OF STATISTICAL WEIGHTED AVERAGE FUSION METHOD 

Since the different possibilities of applying the weighted average method have been defined, an 
illustration of an actual application of this method to real data is in order. The data used in this 
example is from the parking lot at the TxDOT district office in El Paso. Three methods of data 
reduction were used in this case. One was using FWD, another was using SASW, and the third 
was using JIM. The coefficient of variation and average will be determined base on each device. 
The first step was to determine these coefficients, particularly the coefficients of variation for 
each parameter for all devices. 
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Figure 4.3 - Options for Fusion of Data 

The second step is to find the weights by applying the coefficients of variation to transform the 
distribution for each point. The input data is included in Table 4.1. Equations 3.6 through 3.8 
will be applied to generate the composite results. 

Note that the standard deviation for the AC layer from Modulus is 0%. This is because the 
modulus values for the AC had to be fixed to properly reduce the data. This creates a false sense 
of uniformity of the modulus values for the site. In actuality the value that is fixed for the AC 
layer modulus is little more than a best guess by the user, and should not be weighted very 
highly. Fixing this modulus to another value would not have significantly affected the estimated 
moduli of the base and subgrade layers since the AC layer is thin. Therefore, in analyzing the 
data for this site an extremely high coefficient of variation (e.g. 1000000%) is considered for the 
AC layer. The value essentially makes the weight applied to this parameter so small that it will 
have virtually no impact when it is combined with the data from the other devices (methods). If 
for some reason the guess made by the user should be considered in the fusion of the data, an 
appropriate value can be assigned to the coefficient of variation to allow for the "guess" to have 
some influence on the fused result. 
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T bl 4 1 D la ~ W· ht d A F· a e . - a or elgl e verage USlon 

Test AC Modulus (ksi) Base Modulus (ksi) SG Modulus (ksi) 

Pt. 
Modulus* SMART JIM Modulus SMART JIM Modulus SMART JIM 

1 500 647 672 68 102 60 21 20 12 

2 500 632 636 43 62 68 22 20 12 

3 500 636 652 54 139 92 19 17 11 

4 500 556 501 55 45 73 17 21 10 

5 500 496 547 73 107 72 18 20 10 

6 SOO 659 605 119 182 105 19 21 10 

7 500 732 681 152 169 93 19 21 11 

8 500 508 549 156 242 91 19 15 11 

9 500 689 734 189 180 92 17 13 10 

10 500 590 619 89 132 80 16 17 9 

11 500 404 412 43 81 64 14 16 8 

12 500 621 584 78 146 99 16 21 9 

13 500 571 527 112 117 82 18 20 10 
14 SOO 455 490 77 167 92 17 14 10 

15 500 609 601 110 127 104 17 14 10 
16 500 521 486 62 126 92 17 21 9 

17 500 563 527 78 44 72 17 21 9 
18 500 552 526 59 57 69 17 17 9 
19 500 543 603 47 103 64 16 17 9 
20 500 668 655 108 113 102 18 14 10 

Avg 500 583 580 89 122 83 18 18 10 
StDev 0 82 80 41 51 IS 2 3 1 
CoY 106% 14% 14% 46% 42% 18% 10% 16% 11% 

* Modulus value fixed for data reduction 

For some of the base and subgrade measurements the values are conflicting, that is they are so 
far apart that the difference between the values is greater than either of the standard deviations 
for the values at that test point. Taylor (1997) mentions that this may be a problem with data and 
that the validity of the values must be double checked. Often times, for the conflicting points, 
one of the devices is already far from its own mean, hence, the value at that point for that 
particular device is already deviant from the mean for that device. Considering that the different 
methods take into account different inputs, some more tolerance can be allowed. But some 
values are quite discordant and therefore some additional reasoning must be used. For now, the 
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incongruence of the numbers will be overlooked. A solution to this problem will be presented in 
a later chapter in which a hybrid method refines that data such that this problem is greatly 
reduced or even eliminated. 

Next a table of weights can be generated that is a function of the coefficient of variation for the 
device and the modulus at a given point. Table 4.2 shows the weights for the site data was 
generated using Equation 3.6. 

a e • . elgl or USlon T hi 4 2 W' hts f, F . Pr ocess 

Test 
AC Weight (10-4) Base Weight (10.3) SG Weight (10°) 

Pt. 
Modulus * SMART JIM Modulus SMART JIM Modulus SMART JIM, 

1 0.00 1.21 1.17 1.02 0.55 9.04 0.20 0.10 0.62· 

2 0.00 1.27 1.30 2.58 1.50 7.04 0.19 0.10 0.62 

3 0.00 1.25 1.24 1.63 0.30 3.84 0.26 0.13 0.74 

4 0.00 1.64 2.10 1.55 2.84 6.11 0.30 0.09 0.90 

5 0.00 2.06 1.76 0.88 0.50 6.28 0.27 0.10 0.90 

6 0.00 1.17 1.44 0.33 0.17 2.95 0.26 0.09 0.90 

7 0.00 0.95 1.14 0.21 0.20 3.76 0.25 0.09 0.74 ! 

8 0.00 1.96 1.75 0.20 0.10 3.93 0.26 0.17 0.74 

9 0.00 1.07 0.98 0.13 0.18 3.84 0.30 0.23 0.90 

10 0.00 1.46 1.38 0.59 0.33 5.08 0.37 0.13 1.11 

11 0.00 3.11 3.10 2.54 0.88 7.94 0.44 0.15 1.40 

12 0.00 1.31 1.55 0.77 0.27 3.32 0.35 0.09 1.11 

13 0.00 1.55 1.90 0.38 0.42 4.84 0.28 0.10 0.90· 

=14 0.00 2.45 2.19 0.81 0.21 3.84 0.30 0.20 0.90 
15 0.00 1.37 1.46 0.39 0.36 3.01 0.32 0.20 0.90 
16 0.00 1.87 2.23 1.22 0.36 3.84 0.32 0.09 1.11 
17 0.00 1.60 1.90 0.79 2.97 6.28 0.33 0.09 1.11 
18 0.00 1.66 1.90 1.34 1.77 6.83 0.33 0.13 1.11 
19 0.00 1.72 1.45 2.10 0.54 7.94 0.37 0.13 1.11 

20 0.00 1.14 1.23 0.41 0.45 3.13 0.28 0.20 0.90 

* Co V of 1000000% assigned 

Now that the weights have been generated, the results can be fused. Table 4.3 shows the result 
of the point fusion. These results do not take into consideration the additional steps that can 
potentially be used to account for conflicting data. 
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Table 4.3 - Point Fusion Results 

Test Pt. FusedAC Fused Base FusedSG 
Avg CoV Avg CoV Avg CoV 

1 659 10% 63 15% 15 7% 

2 634 10% 61 15% 15 7% 

3 644 10% 84 16% l3 7% 

4 525 10% 63 16% 12 7% 

5 520 10% 74 15% l3 7% 

6 629 10% 110 15% 13 7% 

7 704 10% 100 16% 14 7% 

8 527 10% 97 16% l3 7% 

9 711 10% 99 16% 12 7% 

10 604 10% 84 15% 11 7% 

11 408 10% 61 15% 10 7% 

601 10% 98 15% 11 7% 

l3 547 10% 87 15% l3 7% 

14 472 10% 93 15% 12 7% 

15 605 10% 107 15% 12 7% 

16 502 10% 88 16% 11 7% 

17 543 10% 64 16% 11 7% 

18 538 10% 66 15% 11 7% 

19 570 10% 63 15% 11 7% 

20 661 10% 104 15% 12 7% 

The next type of fusion that can be performed on this data is device fusion. This will consist of 
fusing all the points for a particular parameter for a specific device only. Instead of averaging 
the results from one device for a particular parameter, the data will instead be combined using 
the weighted average fusion method. Since the weights were defined by the standard methods 
for calculating statistics, the same weights will be used as in the previous example where the 
point fusion was performed. This method will only yield nine results, one for each parameter for 
each device (three parameters and three devices). Table 4.4 shows the results for applying 
device fusion to the TxDOT parking lot data. 

If the results in Table 4.4 are compared to those reflected in the last three rows in Table 4.1, the 
variability in the results has been greatly decreased. The only parameter that does not appear to 
be improved is the AC modulus using the MODULUS. The resulting coefficient of variation is 
high, but still considerably lower that the assigned 1000000%. It would make better sense to 
completely ignore this result anyway, since the value was just guessed. 
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Table 4.4 • Device Fusion Results 

AC Modulus (ksi) Base Modulus (k8i) SG Modulus (k8i) 

Modulus * SMART JIM Modulus SMART JIM Modulus SMART JIM 

Avg 500 558 558 64 78 78 17 17 10 
StDev 1118034 18 17 7 8 3 0 1 0 
CoY 223607% 3% 3% 11% 11% 4% 2% 4% 2% 

* Modulus value fixed for data reduction and initial CoY set to 1000000% 

Several methods for site fusion will be presented. Any number of combinations of point and 
device data can be transformed into site results. Table 4.5 shows several ways that the site 
fusion is applied to the TxDOT data. 

Table 4.5 • Site Fusion Results 

Site Fusion Method AC BS SG 
Avg StDev Avg StDev Avg StDev 

Average of Point Averages 554 52 98 32 15 1 
Average of Device Averages 554 47 98 21 15 5 

Average of Point Fusion 580 79 83 17 12 1 
Average of Device Fusion 539 34 73 8 15 4 

Average of All Points 554 76 98 42 15 4 
Fusion of Point Averages 519 8 86 3 15 1 

Fusion of Device Averages 581 57 86 13 12 1 
Fusion of Point Fusion 558 12 76 3 12 0 

Fusion of Device Fusion 558 12 76 3 12 0 
Fusion of All Points 558 12 76 3 12 0 

The ten methods for site fusion that are shown demand some special attention. Note how all the 
methods that solely rely on fusion, fusion of point fusion, fusion of device fusion, and fusion of 
all points, have the exact same results. If data from certain devices are missing (refer to Figure 
4.2), these numbers will not be exactly the same, but fairly close. The fusion of fusions or fusion 
of all points greatly reduces the uncertainty, but in the process it eliminates the information that 
reveals the site variability. Other methods of site fusion are more practical for this purpose. 

One more method that is subject to some scrutiny is the fusion of averages method, especially 
the fusion of point averages. Again, as a reminder, site fusion will give one value for an entire 
site. This is important to keep in mind because the reduction of uncertainty may not be the most 
important concern. First consider the fusion of point averages, specifically the fused subgrade 
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average and coefficient of variation. It may initially appear that the near zero value for the 
standard deviation is indicating that the value is highly accurate and desirable. The reason for 
this value being so "accurate" must be examined to show a weakness for using a fusion of 
averages. 

The fusion of the device averages seems to be less of a problem, since, the uncertainty of the 
individual devices is used in obtaining the final result. This method would be used where no 
data for a site was aligned (refer to Figure 4.2), such that the only way to obtain a fused result 
would be from fusion of fusions or fusion of averages. However, the drawbacks of fusion of 
fusion methods have already been discussed, so it is more advisable to use fusion of device 
averages than fusion of device fusion. 

The methods that use averages of averages are not very desirable, because no consideration is 
placed on the variability that is inherent in the data and that some data may be more reliable than 
other data. There is no weighting of the data as all of the numbers put together using a regular 
average have an equal weight. Additionally, the averages come out the same (as in the fusion of 
fusions), but the standard deviations are different. 

The method of averaging fused data is the most appropriate. The average of fused points allows 
for a representation of the site variability while at the same time fusing the point data based on 
weights that will put more credence into more reliable values. The average of fused devices 
would be advisable when point fusion is not feasible due to data not being aligned. Instead of 
having a value from each device, overall site properties can be obtained. Naturally, if the values 
are very discordant, some examination of the input should be made to verify that no values that 
are overly incongruent are being combined. Discrepant results can be dealt with appropriately 
by using the hybrid method that will be discussed in Chapter 6 once the appropriate foundation 
has been laid. 

Other considerations are to use a device reliability value instead of site statistics, if the site 
statistics drops below a certain allowable minimum for repeatability. That is, say that a device is 
known to be 90% reliable and the site statistics have a coefficient of variation of 20%, thus the 
20% value will be acceptable to use. However, what if the site statistics result in a 3% 
coefficient of variation? This will mean that a confidence is placed on the results by the site 
statistics that is not supported by the device capabilities. In other words, the device is said to be 
more reliable than it actually is. At this juncture it would be advisable to use a coefficient of 
10% (100% - 90%) instead of 3% in fusing the data. 

THE WEIGHTED AVERAGE ALGORITHM 

The background and mathematics for the weighted average method have been presented in the 
previous section of this chapter. As this method is fairly straightforward, the only difficulty that 
may arise is which numeric value to use for the coefficient of variation to establish the weights. 
There are three basic options to establish the coefficient of variation. The first option is to use 
the site coefficient of variation for a particular sensor. The second is to use a user defined 
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coefficient of variation. This user defined coefficient of variation can be defined by a variety of 
factors such as device repeatability, prior information regarding the site data, or trust in the 
measurement due to operator skill or competency. The third option would be to omit the data for 
a given sensor. This could be done simply by the user defining a very high coefficient of 
variation. 

The procedure is very simple for using this algorithm. The only preprocessing of the data that is 
necessary is just to obtain the modulus values from their respective methods and then align the 
data so that only data from the same test point will be combined. After that, the desired options 
for the coefficient of variation must be briefly evaluated by the user to decide which method to 
use. For most purposes, it is acceptable and desirable to simply use the site coefficients of 
variation from each device. Figure 4.4 shows the procedure used for the weighted average 
method. The site fusion options that are shown on the flowchart are the same ones that were 
listed in Table 4.5. Furthermore, as was described earlier, the most desirable method to use is to 
fuse the point data and then to use averages for the sites from that point on. The output from 
using fusion for the points and an average for the site will be a list of values for the points and a 
mean and standard deviation for the site average. 

46 

MODULU 

SASW 

Joint Inversion 

Align Data 
Fuse! Average 
Data Based on 

PointIDevice!Site 

Fused Modulus 

Figure 4.4 - Statistical Weighted Average Algorithm 



The weighted average method is a simple straightforward method of fusing data from one or 
more sources. The over-reduction of uncertainty that arises when several values are combined 
may be a problem. As such, this method should be used in concert with a regular average such 
that a more realistic uncertainty of a given site can be found. Furthermore, if the numbers that· 
are being combined are contradictory or too distant, it is advisable to verify the validity of the 
data or to flag any values that are formed from discordant data such that they may be identified. 

This method can easily be incorporated into a hybrid method of data fusion. This is because the 
weighted average method is simple to apply once a representation of uncertainty is obtained in 
the form of a standard deviation (or coefficient of variation). Modifiers can easily be placed to 
reduce or increase this uncertainty based on a number of criteria, like deviation from the mean 
for example. A more detailed discussion on how this method can form a hybrid method with 
other methods, namely fuzzy logic, will be discussed in Chapter 6. 
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CHAPTER FIVE 

FUZZY LOGIC METHOD 

INTRODUCTION 

The fuzzy logic method can be applied to nondestructive testing data to both combine and filter 
data. Through the use of fuzzy rules, numerous checks on the input can be made. 

The examples presented in Chapter 3 used inputs (homeruns and batting average) to generate a 
rating for a baseball player. This was done by converting each input to an output that 
represented a weighting value that could be used to combine data from any of the rules that were 
triggered. A similar approach will be taken in applying this method to NDT data. 

DEVELOPMENT OF FUZZY LOGIC METHOD 

The most crucial problem experienced in the applying of fuzzy logic to NDT data for this project 
was defining the inputs. The problem came up on how to use, to obtain or to convert the moduli 
to weights that could then be used to combine data from two or more different devices. Another 
option would be to make discrete choices based on the moduli themselves or based on deviations 
from the mean of those values. In this case, no values are combined, but a choice is made 
between the given values. 

The procedure that will be covered is a method of obtaining weights from the moduli themselves, 
either directly or from some preprocessing of the data. An additional input can be generated from 
the reliability of the device or the variability in the data. This was handled by adding an option 
for an additional modification factor. 

This method directly uses the moduli and will incorporate a procedure similar to that of the 
baseball player examples. Appropriate criteria will be set to define very low, low, average, and 
high quality values for moduli and then weights can be determined from them. Very Low is 
defined as minus two standard deviations from the mean, low as minus one standard deviation, 
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average at zero, and high at plus one standard deviation. The corresponding output will again be 
weights as in the baseball example from Chapter 3; however, there are three parameters that must 
be analyzed separately (i.e. AC, base, and sub grade moduli). In illustrating this method the data 
from the TxDOT parking lot shown in Table 4.1 will be used. 

To apply this method, membership functions must be developed as the first step. The average 
value will be determined from an average of all points from all sensors for a given parameter. 
Similarly, the standard deviation of all the values for a particular parameter will be used. These 
parameters are calculated for asphalt concrete (AC), base, and subgrade moduli. Table 5.1 
shows the average and standard deviation for the site when all values are included. 

a e . - le T bl 51 S't A verages se 0 eveop em ers tp unctions U d t D I M b h' F 

Modulus (ksi) AC Base SG 

Average 554 98 15 
StDev 76 42 4 

CoV 14% 43% 28% 

To make the input more robust, each of the averages and standard deviations were rounded. The 
AC modulus was rounded to the nearest 25, the base to 10, and the subgrade to 5. These values 
were arbitrarily chosen for this example. Additionally, the boundaries for the membership 
functions were defined by standard deviations from the mean. The modified values are show in 
Table 5.2. 

a e . - oun e I e a an em ers Ip oun arles T bl 52 R d d S't D ta d M b h' Bd' 

Parameter Modulus (ksi) 

AC Base SG 

Average 550 100 15 
StDev 75 40 5 

Set Membership Boundaries (ksi) 

Very Low 400 20 5 
Low 475 60 10 

Average 550 100 15 
High 625 140 20 

The shapes of the functions can be described in terms of the general forms introduced in Chapter 
3. The "Very Low" set is Z-shape, the "High" set is S-shape, and the two middle sets, "Low" 
and "Average" are A-shapes (triangular). Figure 5.1 graphically shows these shapes for the three 
moduli. 
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Figure 5.1 - Membership Functions for TxDOT Data 

30 

Each of the diagrams in Figure 5.1 represents four rules that can be triggered depending on the 
inputs. Each series (very low, low, average, high) will represent an individual rule, and each 
graph in Figure 5.1 could further be decomposed into the four categories of material quality. 
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Next the outputs for each rule must be developed. To quantify the weight for each triggered rule, 
values will be assigned based on the importance of the rule triggered. With the baseball 
example, the better the statistic corresponded to a higher weight and this was directly used to rate 
the player. In this case, the output will be used to generate a weight for the values from each 
sensor by using the centroid approach. Once the weights have been generated, it is just a matter 
of taking a weighted average to fuse the results. 

The procedure for fusing the data has been described, but now the weights must be defined for 
each parameter. For layers that may be more crucial and a conservative estimate is more 
desirable, the weights for low and very low should be increased. Average values should have 
one of the highest weights, as they are in the expected range. The weight for high should be 
lower than the average as it is not really expected, but a determination of how high it should be 
relative to low and very low depends on how crucial the data from that layer is. Tables 5.3 
through 5.5 show the results of inputting the data from Case 1 from Table 4.1 into the fuzzy 
procedure. The four rules are described in the table asfn(x) and a matrix of values is produced. 
The preliminary weights are also shown for all three layers. Note how each layer may be very 
low quality in one area, average in another, and excellent in the third. 

Note how the weights for the poor quality of the base and subgrade are larger than the AC layer 
and the subgrade larger than the base. This was to allow for the fused base and especially 
subgrade modulus values to be much more conservative when there was input that supported a 
lower value. Since the AC values tend to be much closer, in general, among different methods, 
the skewing of the data toward the conservative side is not as necessary. The way the weights 
have been defined takes into consideration two items: 1) the deviation of individual point values 
from the site mean and 2) the greater caution placed on layers that depend on the degree of 
conservativeness that is desired. 

a e . - uzz T bl 53 ACF em ers Ip M b h' Val uesan d W . hts elgl 

Very Low Low Average High Sum 
Parameter 

fl(X) fz(x) f3(X) f4(x) 1: 

Modulus 500 ksi 0 0.67 0.33 0 1 
SMART - 647 ksi 0 0 0 1 1 

lIM- 672 ksi 0 0 0 1 1 

Wl 1 2 3 2.5 --

W2 1 2 3 2.5 --
W3 1 2 3 2.5 --

WI X fn(x) 0.0 1.3 1.0 0.0 2.3 

W2 X fn(x) 0.0 0.0 0.0 2.5 2.5 

W3 X fn(x) 0.0 0.0 0.0 2.5 2.5 
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Very Low Low 
Parameter 

Average High Sum 

f1(x) f2(X) f3(X) f4(X) l: 

Mod 5.1- 68 ksi 0 0.8 0.2 0 1 
SMART - 102 ksi 0 0 0.95 0.05 1 

JIM-60 ksi 0 1 0 0 1 

WI 1.5 2 3 2.5 --
W2 1.5 2 3 2.5 --
W3 1.5 2 3 2.5 --

WI X fn(x) 0.0 1.6 0.6 0.0 2.2 

W2 X fn(x) 0.0 0.0 2.9 0.1 3.0 

W3 X fn(x) 0.0 2.0 0.0 0.0 2.0 

a e . - u Igra e uzzy em ers IP a ues an elgl T bl 5 5 S b d F M b h· V I d W • hts 

Very Low Low Average Hi 
Parameter 

fl(X) f2(X) f,,{,..' l: 

Mod 5.1 - 21 ksi 0 0 0 1 1 
SMART - 20 ksi 0 0 0 1 1 

JIM 12 ksi 0 0.6 0.4 0 1 

WI 1.5 2 2.5 2.25 

W2 1.5 2 2.5 2.25 --
W3 1.5 2 2.5 2.25 --

WI X fn(x) 0.0 0.0 0.0 2.3 2.3 
W2 X fn(x) 0.0 0.0 0.0 2.3 2.3 
W3 X fn(x) 0.0 1.2 1.0 0.0 2.2 

If all values (from each method) at a particular point are well below (or above) the mean, the 
weight that each value will be assigned will be relatively close to one another. Thus, points 
where all data support low (or high) values will not be classified as an outlying point. This is 
because the data for that point supports the low or high modulus, although the overall data from 
the site may not. If there are conflicting results at a point, it may be advisable to verify or 
remove a potential outlier. If this is not possible, the user should decide which value is most 
likely to be the outlier. One suggestion is to view the site data in making this determination. 
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Once the weights have been defined, modification factors can be applied to the process that will 
take into account special circumstances. For example, while reducing data from MODULUS, 
sometimes it is necessary to fix the modulus for the AC layer. As with the weighted average 
method, this again will be just a guess value and little or no credence may be placed into it. Thus 
a modification factor can be applied to either eliminate or weigh those values less. Additionally, 
device repeat ability can be included as an additional modification factor, as can the program 
sensitivity. This will allow for a composite modification factor to be obtained by multiplying a 
series of corrective factors. These will modify the preliminary weights obtained from the 
triggering of the rules. Say that the modulus of the AC layer is 50% (0.50) credible by reason of 
construction data, past testing results, or other pertinent information. The weight would be 
reduced by multiplying the outputs of the fuzzy procedure by this number. Table 5.6 shows the 
modification factors for the TxDOT data. Only the AC modulus was affected by these factors. 
The base and subgrade weights were accepted with no additional modification. The reason that 
the AC modulus values required the modification factors, km, is because the AC modulus was 
fixed when the data was reduced using MODULUS. 

a e • - o I IcatlOn T bl 56 M d'fi F t f, F ac ors or L . uzzy O2iC 

Method 
Device Modification Factor 

AC Base Subgrade 

MODULUS 0 1 1 

SMART 1 1 1 

JIM 1 1 1 

The modification factors, k, must now be appropriately applied to the parameter or parameters 
that require attention. Table 5.7 shows the applied modification factors to Table 5.3. Note how 
the weight for the MODULUS was eliminated in this case. 
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Parameter Very Low Low Average High Sum I 
ft(x) f2(x) f3(x) f4(X) 1:: i 

MODULUS - 500 ksi 0 0.67 0.33 0 1 

SMART - 647 ksi 0 0 0 1 1 
JIM - 672 ksi 0 0 0 I 1 

Wl I 2 3 2.5 --
W2 1 2 3 2.5 --

W3 1 2 3 2.5 --
Wl X fn(x) x kl 0.0 0.0 0.0 0.0 0.0 
W2 X fn(x) x k2 0.0 0.0 0.0 2.5 2.5 
W3 X fn(x) x k3 0.0 0.0 0.0 2.5 2.5 

54 



The final composite weights and each parameter for each device are shown at the last three rows 
of the last columns of Tables 5.4, 5.5, and 5.7. Table 5.8 presents a summary of those values and 
of the input moduli that were used to obtain those weights. Additionally, the non-weighted 
averages are shown. 

a e . - use esu ts or T bl 5 8 F d R I f, C ase 1 U· F smg uzzy L . ogle 

AC Base Subgrade 
Method 

Modulus Weight Modulus Weight Modulus Weight 

MODULUS 500 0.0 68 2.2 21 2.3 

SMART 647 2.5 102 3.0 20 2.3 

JIM 672 2.5 60 2.0 12 2.2 

Fused 660 -- 80 -- 18 --

Average 606 -- 77 -- 18 --

This method was applied to each of the twenty test points from the TxDOT parking lot. A 
comparison between the simple average values and the fused values is in order. Another 
comparison will be between the initial (unfused) values and the fused results so that the most 
influential value can be observed. Figure 5.2 shows the variation of the input and the two 
outputs for the TxDOT data. All fused values lie between the minimum and maximum values at 
a particular point. It appears that the average is not that different from the fused values, with the 
exception of the AC modulus. This is due to the fact that the values were not very deviant from 
the mean for either the base or subgrade. However, for the AC modulus the results from 
MODULUS were weighted out. Any points with outliers far from the mean would be weighted 
considerably less, especially if more membership classes were used (e.g. very low, very good, 
excellent). This would result in more of the points on the fringes of the modulus range to be 
looked at with more scrutiny due to their deviation from the mean. The numeric values that are 
plotted in Figure 5.2 are shown in Table 5.9 in the plot. 

It was previously mentioned that the difference between the average and fused results was small. 
The ranges for the percent of the average differing from the fused value are shown in Table 5.10. 
The percent difference is higher for the AC modulus because the value from MODULUS was 
omitted from the calculation. The average was very close to the fused value in nearly all of the 
cases for the base and subgrade because the data was fairly consistent throughout the site and the 
deviation from the mean was similar enough that the weights that were outputted from the fuzzy 
process were about the same. 
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Figure 5.2 - Fusion Results for TxDOT Data Using Fuzzy Logic 
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Test M* S I .I I F* MS F Mls J F 

T bl 5 9 R I f P' F . U' F Lo • 

Pt. AC BASE SG 

1 500 647 672 660 68 102 60 80 21 12 18 

500 632 636 634 43 62 68 59 22 20 12 18 

3 500 636 hALl 54 1 98 19 17 11 16 

I 4 500 556 501 532 55 73 59 17 21 10 16 

500 496 547 525 73 107 72 86 18 20 10 16 

6 500 659 605 631 119 182 05 133 19 10 17 

7 500 732 681 707 152 169 93 136 19 21 11 17 

500 508 549 531 156 242 91 160 19 15 11 15 

500 689 734 712 189 180 92 151 17 13 10 14 

500 590 619 604 89 80 101 16 17 9 14 

11 500 404 412 408 43 65 14 8 13 

12 500 621 584 602 7g .,- 00 107 16 21 9 16 

13 500 571 527 550 112 117 82 104 18 20 10 16 

14 500 455 490 475 77 167 92 111 17 14 10 

500 609 605 110 127 104 113 17 14 10 14 

16 500 521 486 505 62 ~2 96 1 21 9 16 

17 500 563 527 546 78 44 72 66 1 21 9 16 

18 500 552 526 540 59 57 69 62 17 17 9 15 

19 500 543 603 572 47 103 64 76 16 17 9 14 

0 500 668 662 108 113 102 107 18 14 10 14 

Avg 500 583 580 582 89 122 83 99 18 18 10 15 

StDev 0 82 80 78 41 51 15 30 2 3 1 1 

CoY 106% 14'10 14'10 13% 46% 42% 18% 31% 10% 16% 11% 9% 

* M = MODULUS, S = SMART, J = JIM, F = Fused 
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Ix -x I Fused Average xl 000/0 Error Values 

xFused AC Base Sub grade 

Min 0.6% 0.1% 0.2% 
Max 9.9% 6.3% 3.5% 
Avg 5.1% 1.8% 1.7% 

StDev 2.9% 1.6% 0.9% 
CoY 56.0% 86.4% 49.9% 

REPRESENTATION OF UNCERTAINTY OF FUZZY LOGIC METHOD 

In representing uncertainty with the weighted average method, the principles of error 
propagation were applied (Taylor, 1997). The same principles can be used with fuzzy logic 
approach to derive an equation to represent errors. However, due to the complexity of the fuzzy 
logic process, some simplifications and assumptions must be made. Firstly, the equations used 
must be defined symbolically. The equation for the final fused value is simply a weighted 
average where the weights come from the fuzzy sets. The fused value, /IF, found using the fuzzy 
procedure can be defined symbolically by Equation 5.1 

(5.1) 

where the km/s refer to the modification values and the w/s and x/s are simply the weights from 
the fuzzy sets and the values that are to be combined, respectively. Technically, the weights are 
a function of the input values (the x/s). Since the number and shape of the membership 
functions that the weights are obtained from vary, the equations can rapidly become overly 
complex. The primary uncertain parameter is the modulus. Predicting the uncertainty for the 
fused numbers is even more complex as no definitive method to represent their uncertainty 
exists. Thus only the uncertainty in the values themselves will be considered and the 
uncertainties in the modification factors will not be considered. The same principles that were 
described in Chapter 3 for summations of variables are applied to Equation 5.1. The resulting 
uncertainty equation will be as follows 

(5.2) 

Table 5.11 shows the initial uncertainty obtained from the site statistics and the uncertainty of the 
fused values. The uncertainties are given in terms of standard deviation. All inputs do impact 
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the uncertainty. As such, the composite uncertainty is not necessarily lower than its component 
uncertainties. The modification values as well as the values of the weights impact the resulting 
uncertainty as represented in Equation 5.2. 

Test F* M F M 
Pt. BASE 

I 31 43 11 20 2.2 3.2 1.3 

2 20 26 12 11 2.3 3.2 1.3 
3 25 58 16 22 2.0 2.7 1.2 
4 25 19 13 11 1.8 3.4 1.1 

5 52 34 45 13 21 1.9 3.2 1.1 1.3 

6 62 55 76 18 30 2.0 3.4 1.1 1.4 
7 N/A 70 70 70 16 32 2.0 3.4 1.2 1.4 

8 N/A 72 101 16 40 2.0 2.4 1.2 1.2 

9 N/A 87 75 16 37 1.8 2.1 1.1 

10 N/A 83 85 59 41 55 14 24 1.6 2.7 0.9 
11 N/A 57 57 40 20 34 11 15 1.5 2.6 0.8 
12 N/A 87 80 59 36 61 17 23 1.7 3.4 

13 N/A 80 73 54 51 49 14 25 1.9 3.2 

14 N/A 64 68 47 35 70 16 26 1.8 2.3 
15 N/A 86 83 60 51 53 18 25 1.8 2.3 
16 N/A 73 67 50 29 53 16 21 1.8 3.4 
17 36 18 13 15 1.7 
18 27 24 12 12 1.7 
19 22 43 11 20 1.7 
20 49 47 18 23 1.9 

* M :;;; MODULUS, S :;;; SMART, J JIM,F Fused 

THE FUZZY LOGIC ALGORITHM 

The fuzzy logic algorithm is more complex than the weighted average algorithm, yet still simple 
enough to be used easily. The algorithm has two branches to allow for different levels of user 
involvement. The fuzzy set membership functions used in the algorithm can be defined in two 
ways: automatic and manual. In the automatic method, the membership functions are defined 
based on the number of sets, the mean, the standard deviation, and a constant that is multiplied 
by the standard deviation. The automatic method is divided into two categories, triangular and 
trapezoidal. With the manual method, the user can control all parameters by defining any 
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combination of shapes for the membership functions. In both methods, the weights for the 
membership functions and the modification factors are defined by the user. 

Automatic Method 

The automatic method depends on the generation of fuzzy sets for a given number of inputs. The 
automatic fuzzy sets are controlled by two statistical parameters, the mean and standard 
deviation of all the measurements for a particular parameter, and three user controlled inputs. 

The first and second user inputs are the number of sets and set shapes. These two inputs go 
hand-in-hand and will be discussed together. For data sets that only some distinction between 
the high and low values or average and deviant values is needed, a small number of sets is 
acceptable. For data sets that are more critical and that require more subdivisions, up to five sets 
can be selected. When one set is selected, the distribution is rectangular, that is all of the degrees 
of membership are uniform. This results in a normal average, but some data can still be omitted 
where the function equals zero. For two sets, a z-shape and an s-shape function are used, as they 
complement each other. For three to five sets, combinations of z-shapes and s-shapes are used 
with triangular or trapezoidal shapes. Table 5.12 shows the possibilities for the automatic option 
based on the number of sets. The basic premise behind generating these sets is that the average 
of the data is directly in the center of the graph and the limits to either side of the center 
determined as a multiple of the standard deviation. 

The third input is the spread in each set that is generated. These spreads are primarily influential 
when three or more sets are selected. The spread of the sets is controlled by multiplying a 
constant times the standard deviation. Figure 5.3 shows how changing the standard deviation 
multiplier changes the width of the graph. Only one example will be shown to explain how this 
multiplier works. Note how the center of the graph remains the same, but the sets are now wider. 
The general form for the limits of the sets is fl + f( n, shape JAD", where f( n, shape J is a function 
that depends on the number of sets and shape of the sets and A is the width parameter. Tables 
5.13 through 5.15 show the default limits for the automatic set generation. A is the multiplier for 
the width. The other constants were chosen in a manner to create symmetrical sets about the 
mean. The limits selected in Table 5.12 are defined by the equations shown in Tables 5.13 
through 5.15. The boundaries are designated by where there is a corner on a continuous line, that 
is, the point of a triangle, the corner of a trapezoid or rectangle, or the bend in a z-shape or s
shape. This also includes where the triangle, rectangle, or trapezoidal shapes go to zero. The 
last two limits in each column will overlap with the first two in the following column. This is to 
ensure that the sum of all overlapping membership functions adds up to one, as wherever 
membership functions overlap, their sum must be equal to one. The sets are set up so that the 
width of either one triangle or trapezoid is one standard deviation multiplied by the width factor, 
that is, width = AD". The z-shape or s-shape "ramps" on either side simply depend on the outer 
sets and the width is not applicable there. However in the case of two sets, where only z-shape 
and s-shape curves are used, the middle zone where the "X" is formed by the crossing graphs has 
a width of one standard deviation times the width factor. To interpret the numbers shown in 
Tables 5.13 through 5.15 match the number of sets and the set shape to the figures shown in 
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Table 5.12. For example for the 3-set triangle shape in Table 5.14, the middle three values 
describe where the triangle in Table 5.12 starts to increase, peaks, and then goes to zero, 
respectively. Figure 5.4 shows how this interpretation works. The other set shapes are defined 
in a similar manner, from left to right by set, and the from left to right for each bend or corner for 
that set shape. 
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Number of Sets Set Shapes 
Triangularffrapezoidal 

,; n 1 :: 
" 

o:l( 2 :: 
" 

':cr fIe 3 " " 
" 

" , 

:~ -[TIC 4 " 
" 

" ';1 

:~ ':ara= 5 " ". 

" ":1 

I: 
a) Low Multiplier fu 

J6.6 
'! fA 

0.1 

0 

0 zo 40 60 8& 100 120 140 160 18& 2110 

Modul ... (1,,01) 

b) High Multiplier .. 
1!U 
i 
" 0.6 
:I 
'! fA 

0.2 

20 40 60 8& 100 120 140 160 18& 200 

Modulus(li5l) 

Figure 5.3 - Effect of Standard Deviation Multiplier 
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Table 5.13 . Set Limits for One and Two Sets 

1 Set 

Rectangle 

J.l-AO' 
J.l+AO' 

2 Sets 

Z-shape S-shape 

J.l-AO' J.l AO' 

J.l+AO' J.l+AO' 

T bl 5 14 S t L· 'ts t Th t F' T' I S ts a e . . e Unt or ree 0 Ive nangu ar e 

3 Sets Triangular 

Z-shape Triangle S-shape 

J.l l/z A 0' J.l-1/zAO' J.l 
J.l J.l J.l + Itz A 0' 

J.l + l/z A 0' 

4 Sets Triangular 

Z-shape Triangle Triangle S-shape 

J.l- 3/4 A O' J.l- 3/4AO' J.l- 1/4AO' J.l+ 1/4AO' 
J.l- 1/4AO' J.l- 1/4 A O' J.l+ 1/4AO' J.l+ 3/4 A O' 

J.l+ 1/4AO' J.l+ 3/4 AO' 

5 Sets Triangular 

Z-shape Triangle Triangle Triangle S-shape 

Il- A O' 11 AO' J.l-1/zAO' 11 1l+
1
/z A O' 

1 11- /2 A 0' J.l-1/zAO' 11 11 + l/z A 0' Il+ A O' 

11 1l+I/zAO' Il+ A O' 
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Figure 5.4 . Interpretation of Set Limits 

The use of device modification factors will require a weighted mean and standard deviation to be 
calculated as discussed previously. The weighted standard deviation involved can be represented 
as 

(j' weighted = 
;=1 

n 
(5.3) 

(n' -l)I Wj 
i=1 , 

n 

where f,.lw is the weighted mean, x/s the individual values, w;'s are the individual weights, n the 
number of data points, and the n' the number of non-zero weights (NIST, 2001). The weight 
used in Equation 5.3 is the device modification value. The example previously shown that fused 
the TxDOT data using fuzzy logic did not include the weighted average or weighted standard 
deviation. The purpose of the example was not to incorporate those concepts at that time. 
However, the weighted mean and weighted standard deviation are included in the algorithm for 
the generation of the automatic sets. The discussion on how to select appropriate device 
modification values is included later in this chapter. 
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3 Sets Trapezoidal 

Z-shape Trapezoid S-shape 

Il 1/2 A a 1l- 1/2 Aa 1l+1/4Aa 

1l- 1/4Aa 
1 Il- 14 A a 1l+

1
hAa 

1l+ 1/4Aa 
1l+

1
hAa 

4 Sets Trapezoidal 

Z-shape Trapezoid Trapezoid S-shape 
7 Il- Is A a 1l- 7/sAa 1l- 1/sAa 1l+ 5/SAa 

Il- 5/s A a 5 Il- Is A a 1l+1/sAa Il + 7/S A a 

1l- 1/sAa 1l+ 5/s A a 
1l+1/sAa 1l+ 7/sAa 

5 Sets Trapezoidal 

Z-shape Trapezoid Trapezoid Trapezoid S-shape 

Il 5/4 A a 1l- 5/4Aa Il Ih Aa 1l+1/4Aa Il+Aa 

Il-Aa Il- Aa 1l-1/4Aa Il + 1/2 A a 1l+ 5/4Aa 
1l- 1hAa 1l+1/4Aa Il+Aa 

1 Il- 14Aa 1l+1hAa 1l+ 5/4Aa 

Manual Method 

In the manual set generation, any combination of the five shapes that the algorithm allows can be 
used. The user inputs the number of sets and the shape of each set. The user then defines the set 
boundaries. The width factor that was used with the automatic method is not used in the manual 
method. The sets on the left and right ends (the outer sets) are normally z-shaped and s-shaped, 
respectively. The outer sets can be any other shape, namely the triangular and trapezoidal 
shapes. 

Assigning Weights to the Fuzzy Sets 

Now that the differences between the two set generation methods have been discussed, some of 
the considerations that must be made when assigning weights to the fuzzy sets should be 
explained. 
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When a set of numbers (or moduli) exists for a given site, some idea of the expected site 
variability can ea'iily be determined. Additionally, the user may have some idea of which moduli 
are unacceptable or which ones demand more attention. Typically, the average values are 
considered as the norm and should be weighted more heavily. If a high-end estimate is needed, 
values above the average should be weighted more. On the contrary, if there is much concern 
about low moduli, the low-end values should be weighted heavier to obtain a more conservative 
estimate. The weights assigned in the fuzzy logic example earlier in this chapter are shown in 
Table 5.16. The weights for each layer are relative to each other. If the weights for the AC layer 
are based on a scale of zero to one hundred and the weights of the base layer on zero to twenty, 
only the relative differences (ratio-wise) will impact the weighting of the inputs. When 
assigning weights to sets, the following factors should be considered: the significance of extreme 
values, the natural spread in the data, and the number and size of the sets. More sets will allow 
for more refinement in the weights. Larger sets could be used where only extreme values need to 
be removed and where values in the average range can be considered equally. Precise data sets 
may not require many sets, whereas the opposite may be true for more spread out data. 

a e • - sSlgn elg or uzzy e T bl 5 16 A . ed W . hts ~ F S ts 

Fuzzy Set Weights 
Layer 

Far Below Average Below Average Average Above Average 

AC 1 2 3 2.5 

~ase 1.5 2 3 2.5 

bgrade 1.5 2 2.5 2.25 

From the weights assigned to each layer, it can quickly be observed which layers will be 
impacted the most by high, low, or average data (magnitude-wise). For the AC layer, the below 
average data is not weighted heavily, as the weight for that set is one-third that of the average set 
weight. However, for the base and subgrade layers, the below average data are weighted 
heavier. The ratios 1.5:3 and 1.5:2.5 each progressively weigh below average data more. In 
those cases, the fused results are more conservative. It would also be possible to have a set that 
precedes Set 1 as shown in Table 5.16 for which the weight can be very low, for example, 0. I. 
This would mean that the below average data will be considered, but extremely outlying small 
values will be omitted. 

Consider the following set of data: {20, 200, 240, 250, 150,260, 300}. The value of 150 could 
still be considered to be a viable possibility as it is still fairly close to the rest of the data. For a 
conservative estimate, the 150 may be weighted heavier. The value of 20 must be scrutinized, 
since it is so far from the mean and could be completely out of the range of a feasible value. 
Thus the 20 should be omitted or weighted very low. In this ca'ie, the value is probably an error 
and should manually be removed if the end set has a high enough weight that the value of 20 will 
significantly alter the fused value. Assume that the weights are defined by the following set: {O, 
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2.5, 1.75,2, 1.5}. This would provide a conservative estimate up to a point. Values beyond that 
point will be omitted (represented by the zero). 

The weight value is calculated as a weighted average based on the degree of membership (refer 
to Chapter 3) and the associated factor for each set. The assigned weights with the degrees of 
membership for each value are combined to obtain the weight to be used to fuse the data based 
on 

(5.4) 

The Dm's refer to the degrees of membership and the wm/s represent the assigned weight of the 
function (e.g. 1,2,3). 

Defining of Device Modification Factors 

In the event that expert opinion or additional information is available about the reliability of a 
device or a particular layer for a device, the additional modification factors can be added. These 
modification factors can be based on the overall reliability of a particular device, the reliability of 
the operator using the device, or the expert opinion of the user on the quality of the data or 
results. The input for this part of the procedure will be in the form of a decimal number between 
zero and one that represents the modification to be applied to the data. As long as the number is 
greater than zero, the values for that parameter will still be included when the average and 
standard deviation values are taken. Only when a set of values for a particular parameter for a 
device is completely omitted (i.e. the modification value is zero), will they not be included in the 
calculation of the mean and standard deviation. This was done because there are times where the 
modulus of a layer might be fixed and not backca1culated at all. This is where a modification 
value of zero may be used. However, if the fixed modulus value of the layer seems credible, 
then a number greater than zero might be used to describe the degree of belief. For example, if 
previous data exists that suggests an average value for a site and if the reliability is fifty percent, 
then the modification value for that list of numbers will be 0.5 and the numbers will be included 
in the calculation of the mean and standard deviation of the data. 

Once all inputs have been entered, the calculation is performed based on the mathematical 
procedure described at the beginning of this chapter. The flowchart in Figure 5.5 shows at which 
point in the reduction procedure each input is needed and where the automatic and manual 
methods converge. 

After the required inputs are entered, they can be adjusted based on any criteria that the user may 
want to include. For example, the user may want to see how the results change if data from a 
device is completely or partially not included in the fusing of the data. 
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Shape 
·Z-shope 
·S-shape 
'Trapezoidal 
'Triangular 
'Rectangular 

Evaluate Fuzzy Rules 
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CHAPTER SIX 

HYBRID METHOD 

INTRODUCTION 

The hybrid method combines aspects of the fuzzy logic method and the weighted average 
method. The basic premise of this method is to use the weighted average method equations to 
combine the data, but to modify the input using fuzzy logic. 

Recall that with the weighted average method, problems can arise where discrepant values exist. 
Additionally, lower values would always have a higher weight as a constant coefficient of 
variation was always used. Both of these two potential problems can be solved by modifying the 
input by means of a modification factor that is obtained from fuzzy logic. The input is modified 
by applying modification factors to the coefficients of variation before the fusion calculation 
using the weighted average method. These modification factors are based on the deviation of 
moduli from the mean and can also be based on whether the moduli are above or below the 
mean. The deviation of moduli from the mean can be used to eliminate outlying data. By 
modifying values above and below the mean slightly differently, two sets of numbers with 
similar coefficients of variation will not have higher values weighted less due to the magnitude 
of the modulus being greater. 

DEVELOPMENT OF HYBRID METHOD 

Consider a situation where there are two distributions defined as 9Ill00, 20) and 9Il120, 24). 
Both distributions have a coefficient of variation of 20%. Additionally, assume that the site 
mean and standard deviation are 110 and 28 (includes both sets of data as one). Now consider 
two values that are to be combined, one from each set with values of 110 and 105. The value of 
105 will have a higher weight as the weight is proportional to the inverse of the product of the 
value and the coefficient of variation. Although the value of 110 is at the site average and less 
deviant from its device's average than the 105 value, it will be weighted less because its absolute 
value is greater than the other value (105). This is where the fuzzy logic method can be 
employed to alter the weights such that the values that are deviant from the mean are considered 
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less. Additionally, a modification can also be made so that values of equal distance both above 
and below the mean will have more similar weights. The weights will be fairly close to begin 
with if the coefficients of variation are close. This difference in the weights is usually small 
enough to ignore if the two values are fairly close, that is 22-2 ~ 21-2 (weights are proportional to 
the inverse of the standard deviation squared). However, if one value is significantly lower than 
the other, but obviously out of the expected range, it will dominate the combining of the values, 
e.g. 10-2» 2r2. 

Defining Modification Values 

The modification values are found using a fuzzy logic procedure. In the fuzzy logic method, the 
results of taking the weighted average of the triggered membership functions were the weights 
used to take the weighted average of the moduli. For the hybrid method, the fuzzy logic 
procedure produces a weighted modification value based on fuzzy sets. The outputs of applying 
the fuzzy sets and membership functions along with the set weights will instead be a factor 
between zero and one for which a composite modification factor will be found using a weighted 
average. The hybrid modification factor, MH , is a function of the degree of membership, Dm, and 
the associated factor, Wj, for each fuzzy set, using. 

(6.1) 

Equation 6.1 is essentially the same as Equation 5.3; the only difference is the nomenclature. 

The wjs, or the value assigned as the output for when a fuzzy rule is triggered, must be defined 
so that the coefficients of variation used in the statistical weighted average part of the algorithm 
are modified properly. It is important to point out that the modification factors for the 
coefficients of variation are divided (not multiplied) for this algorithm. Hence, values lower than 
one will increase the coefficient of variation and a value of one will not change it. Values above 
one are not recommended as that would make the coefficient of variation smaller. It is assumed 
that the theoretical (or unmodified) coefficient of variation is the smallest value that should be 
used. The idea behind modifying the coefficients of variation is to penalize data that is deviant 
and leave data that is closer to the mean intact by not modifying it (or modifying it slightly). 
Therefore, in assigning the weights for the sets, a procedure similar to the fuzzy logic algorithm 
can be implemented. Figure 6.1 shows one option for assigning weights for a given set of data. 
This is the same data that was fused in Chapters 4 and 5. 

Assume that the center triangle is at the average and that values to the left represent numbers 
smaller than the average and values to the right are greater than the average. In Figure 6.1, the 
values smaller than the average require more modification, that is, the coefficient of variation 
will be divided by a smaller number resulting in a greater change. The altered coefficients of 
variation will always be greater than the original. This will represent greater uncertainty in 
values that are deviant from the mean. 
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Figure 6.1 - Example of Weights for Hybrid Algorithm 

To illustrate the application of this method, the data that was shown in Table 4.1 will once again 
be considered. The coefficients of variation are repeated in Table 6.1. The 1000000% 
coefficient of variation for the AC modulus of MODULUS procedure will still be used. Recall 
that this coefficient of variation was applied because the modulus of the AC layer was fixed, not 
calculated. 

T bl 61 CID' ts fV 'f fi H b 'd M thod a e . - oe IClen 0 arIa Ion or LYI rl e 

Layer Coefficient of Variation 

MODULUS SMART JIM 

AC 1000000% 14% 14% 

Base 46% 42% 18% 

Subgrade 10% 16% 11% 

The values from Table 4.1 will be used to obtain the values which will modify their coefficients 
of variation. The same fuzzy sets will be used that were used in the previous chapter, except that 
the weights of the fuzzy sets are different. Refer to Table 5.2 and Figure 5.1 for the set 
boundaries. There were four sets defined for each parameter. Each set must have an output 
associated with it. This output is the weight. More specifically, this weight is the modification 
factor for the coefficient of variation. Once the fuzzy procedure is performed for each input, a 
composite coefficient of variation modification factor can be obtained by taking a simple 
weighted average. For this example, the weights shown in Table 6.2 are assigned to each 
parameter. The sets are ordered from left to right as they were in Chapter 5. 

Each point has three moduli associated with it for each layer. As was done with the fuzzy logic 
procedure, the moduli were evaluated based on the fuzzy sets that were presented in Figure 5.1. 
The fuzzy membership values are obtained for each point and combined using Equation 6.1. The 
modification factors for the coefficients of variation are shown in Table 6.3 for each test point. 
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The numbers at the top of each column to the right of the row labeled "Co V" are the site 
coefficients of variation. They are the unmodified coefficients of variation. The numbers to the 
right of the numbered rows are the modification factors that will be applied to the coefficients of 
variation shown in the "CoV" row. Each modification factor is applied to the coefficient of 
variation that is in the same column. 

a e . - oe IClen 0 aria on 0 Ica Ion a ues per e T bl 6 2 C ffi' t f V . ti M difi r V 1St 

Layer Co V Modification Factor 
Far Below Average Below Average Average Above Average 

AC 0.3 0.5 1 0.7 
Base 0.5 1 .9 .6 

Subgrade 0.9 1 0.8 0.7 

Table 6.3 - Modification Values for Coefficients of Variation 

Modification Factor for Coefficient of Variation 
Test 

AC Base Subgrade Pt. 
MODULUS SMART JIM MODULUS SMART JIM MODULUS SMART JIM 

CoV 106% 14% 14% 46% 42% 18% 10% 16% 11% 

1 0.67 0.70 0.70 0.98 0.80 1.00 0.70 0.70 0.92 

2 0.67 0.70 0.70 0.79 1.00 0.98 0.70 0.70 0.92 

3 0.67 0.70 0.70 0.92 0.66 0.92 0.73 0.76 0.96 

4 0.67 0.98 0.67 0.94 0.81 0.97 0.75 0.70 1.00 

5 0.67 0.64 0.98 0.98 0.75 0.97 0.73 0.70 1.00 

6 0.67 0.70 0.78 0.75 0.60 0.75 0.72 0.70 1.00 

7 0.67 0.70 0.70 0.60 0.60 0.92 0.71 0.70 0.96 

8 0.67 0.72 0.99 0.60 0.60 0.92 0.72 0.80 0.96 

9 0.67 0.70 0.70 0.60 0.60 0.92 0.75 0.88 1.00 

10 0.67 0.84 0.72 0.93 0.75 0.95 0.79 0.76 0.98 

11 0.67 0.31 0.33 0.79 0.95 0.99 0.82 0.78 0.96 

12 0.67 0.72 0.86 0.95 0.60 0.90 0.78 0.70 0.98 

13 0.67 0.92 0.85 0.75 0.75 0.95 0.74 0.70 1.00 

14 0.67 0.45 0.60 0.96 0.60 0.92 0.75 0.84 1.00 

15 0.67 0.76 0.80 0.75 0.75 0.75 0.76 0.84 1.00 

16 0.67 0.81 0.57 0.99 0.75 0.92 0.76 0.70 0.98 

17 0.67 0.95 0.85 0.96 0.80 0.97 0.77 0.70 0.98 

18 0.67 0.99 0.84 0.99 0.96 0.98 0.77 0.76 0.98 

19 0.67 0.95 0.79 0.84 0.77 0.99 0.78 0.76 0.98 

20 0.67 0.70 0.70 0.75 0.75 0.80 0.74 0.84 1.00 
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Next, each coefficient of variation is divided by the corresponding modification factors. The 
result is increased coefficients of variation. Table 6.4 shows the results of this computation. 

Table 6.4 - Modified Coefficient of Variation Values 

Modified Coefficient of Variation 
Test i 

Pt. AC Base Subgrade 

MODULUS SMART JIM MODULUS SMART JIM MODULUS SMART JIM! 

CoY 106% 14% 14% 46% 42% 18% 10% 16% 11% 

1 15E5% 20% 20% 47% 52% 18% 15% 23% 11% 

2 15E5% 20% 20% 59% 42% 18% 15% 23% 11%! 
3 15E5% 20% 20% 50% 63% 19% 14% 21% l1%i 

4 15E5% 14% 20% 49% 51% 18% 14% 23% 11% 

5 15E5% 22% 14% 48% 56% 18% 14% 23% 11% 

[6 15E5% 20% 18% 61% 69% 23% 14% 23% 11% 
7 15E5% 20% 20% 77% 69% 19% 15% 23% 11% 

8 15E5% 20% 14% 77% 69% 19% 14% 20% 11% 
9 15E5% 20% 20% 77% 69% 19% 14% 18% 11% 
10 15E5% 17% 19% 50% 56% 18% 13% 21% 11% 
11 15E5% 45% 41% 58% 44% 18% 13% 21% 11% 
12 15E5% 20% 16% 48% 69% 19% 13% 23% 11% 
13 15E5% 15% 16% 61% 56% 19% 14% 23% 11% 
14 15E5% 31% 23% 48% 69% 19% 14% 19% 11% 
15 15E5% 18% 17% 61% 56% 23% 14% 19% 11% 
16 15E5% 17% 24% 46% 56% 19% 14% 23% 11% 
17 15E5% 15% 16% 48% 52% 18% 14% 23% 11% 
18 15E5% 14% 16% 46% 43% 18% 14% 21% 11% 
19 15E5% 15% 17% 55% 54% 18% 13% 21% 11% 
20 15E5% 20% 20% 61% 56% 22% 14% 19% 11% 

After the new coefficients of variation have been found, the remainder of the procedure is 
identical to the weighted average method. Equations 2.6 through 2.8 are used from this point on. 
The results of this procedure are shown in Table 6.5. If Table 6.5 is compared to Table 4.3, it is 
evident that while similar in result, the variation reported in Table 6.5 is higher. This was due to 
the modification of the coefficients of variation. 
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a e . . esu 0 Lyl n e 0 T bl 6 5 R Its f H b . d M th d 

Test AC Modulus (ksi) Base Modulus (ksi) Subgrade Modulus ( 

Pt. 
Avg StDev CoY Avg StDev CoY Avg StDev CoY 

1 659 93 14% 62 10 16% 14 1 9% 
2 634 89 14% 63 10 16% 14 1 9% 
3 644 90 14% 82 14 18% 13 1 8% 
4 535 63 12% 64 11 16% 12 1 8% 
5 530 63 12% 12 16% 12 1 8% 
6 626 83 13% 109 23 21% 12 1 8% 
7 704 99 14% 96 17 18% 13 1 9% 
8 534 60 11% 94 17 18% 13 1 8% 
9 711 100 14% 95 17 18% 11 1 8% 
10 602 76 13% 83 14 17% 11 1 8% 
11 408 125 31% 62 10 16% 10 1 8% 
12 598 74 12% 96 17 18% 11 1 8% 
13 549 61 11% 85 14 17% 12 1 8% 
14 47 88 19% 91 16 17% 12 1 8% 
15 76 13% 107 22 20% 12 1 8% 
16 508 72 14% 86 15 17% 11 1 8% 
17 545 60 11% 66 11 16% 11 1 8% 
18 540 58 11% 66 10 16% 11 1 8% 
19 565 64 11% 63 10 16% 11 1 8% 
0 661 93 14% 104 20 19% 12 1 

The hybrid method allows for moduli farther from the mean (or any selected datum) to be 
weighted less, or possibly more, depending on the weights that are assigned. To make an 
average more conservative the greater modification factors should be placed on the left side 
membership sets whereas for a higher-end estimate, the numbers to the right side membership 
sets should be higher. Again, this factor should be limited to no more than one, where one 
represents no change in the coefficient of modification. Furthermore, had the values been highly 
spread, meaning that there were some extremely high or extremely low outlying data points, by 
setting a lower value for the weights on either end, the modified coefficient of variation will be 
much greater and subsequently weighted much less. 
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CHAPTER SEVEN 

BA YESIAN INFERENCE METHOD 

INTRODUCTION 

In Chapter 3 the Bayesian inference method was introduced. In this chapter, that procedure will 
be applied to the NDT data from the TxDOT parking lot. The method is fairly straightforward. 
Defining the prior probabilities and conditional densities is the only complication. 

DEFINING OF CONDITIONAL DENSITIES AND POSTERIOR PROBABILITIES 

The conditional densities will be found by using a normal distribution for each method of data 
reduction. This distribution will be found by simply taking the average and standard deviation 
for each parameter for each method. Again that will be three methods, each providing values for 
three layers for a total of nine distributions. Naturally, only data from like layers will be 
combined. 

Equations 2.13 and 2.14 will be employed. Both of the options for calculating the prior 
probabilities, namely, the cumulative approach and the double-tailed approach will be used. The 
AC modulus from MODULUS will have a coefficient of variation of 50%, instead of 1000000%. 
Tables 7.1 and 7.2 show the results of applying the Bayesian method to the TxDOT data. 

INTERPRETATION OF POSTERIOR PROBABILITIES 

The outputs shown in Tables 7.1 and 7.2 can be interpreted in many ways. One is to make a hard 
decision based on the posterior probabilities and to select the modulus value that corresponds to 
the value with the highest posterior probability. For example, for Test Point 2 in Table 7.2 for 
the AC modulus, the SMART modulus will be selected as representative for that test point as its 
posterior probability is the highest of the three inputs at that point. For Test Point 5 the JIM 
result would be selected. The results for using this decision method for obtaining results using 
the Bayesian method are shown in Table 7.3. 
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Table 7.1- Posterior Probabilities for Cumulative Method 

Posterior Probability 

Test 
Pt. AC Base Subgrade 

Mt st i M S J M S J 

1 14% 48% 39% 47% 45% 8% 18% 49% 33% 

2 12% 44% 44% 20% 13% 67% 8% 55% 37% 

3 12% 45% 42% 6% 21% 73% 35% 13% 52% 

4 27% 57% 16% 22% 2% 76% 25% 19% 55% 

5 29% 15% 56% 31% 27% 42% 31% 20% 49% 

6 13% 41% 47% 33% 20% 48% 33% 17% 50% 

7 21% 24% 55% 12% 18% 70% 32% 18% 51% 

8 27% 20% 54% 12% 2% 85% 39% 4% 58% 

9 23% 55% 22% 2% 17% 80% 30% 0% 70% 

10 12% 40% 47% 24% 22% 54% 15% 43% 42% 

11 98% 1% 1% 24% 40% 36% 5% 88% 7% 

12 13% 47% 41% 18% 22% 61% 21% 47% 32% 

13 20% 54% 26% 27% 16% 57% 29% 21% 50% 

65% 7% 28% 15% 18% 68% 30% 2% 69% 

15 12% 44% 44% 31% 22% 48% 25% 2% 73% 

16 41% 43% 15% 9% 18% 73% 34% 40% 27% 

17 21% 52% 27% 45% 2% 53% 30% 42% 28% 

18 24% 47% 29% 37% 7% 56% 36% 32% 32% 

19 16% 27% 58% 20% 57% 23% 16% 42% 41% 

20 14% 41% 45% 30% 16% 54% 37% 1% I 62% 

t M=MODULUS, S = SMART, J = JIM 
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Table 7.2 - Posterior Probabilities for Double-Tailed Method 

Posterior Probability 

Test 
Pt. AC Base Subgrade 

Mt st Jt M S J M S J 

1 42% 41% 17% 47% 45% 8% 3% 92% 5% 

2 28% 39% 33% 20% 13% 67% 0% 9 5% 

3 33% 42% 25% 61% 40% 34% 26% 

4 27% 57% 16% 76% 32% 4% 64% 

5 29% 15% 56% 31% 27% 42% 27% 9% 64% 

6 25% 18% 57% 61% 17% 22% 19% 5% 76% 

7 75% 3% 22% 3% 14% 84% 38% 15% 46% 

8 27% 20% 54% 2% 0% 98% 49% 13% 38% 

9 78% 20% 2% 0% 8% 92% 32% 

o~ 10 18% 51% 31% 25% 17% 58% 15% 43% 

11 98% 1% 1% 24% 40% 36% 5% 88% 

12 17% 30% 52% 46% 27% 26% 35% 14% 52% 

13 20% I 54% 26% 13% 68% 32% 9% 59% 

14 65% 7% 28% 33% 58% 31% 2% 67% 

15 18% 39% 43% 37% 11% 27% 2% 71% 

16 41% 43% 15% 17% 0 52% 50% 10% 40% 

17 21% 52% 27% 45% 2% 53% 45% 11% 43% 

18 24% 47% 29% 37% 7% 56% 36% 32% 32% 

19 20% 34% 46% 20% 57% 23% 16% 42% 41% 

20 45% 24% 32% "lo. 16% 34% 2% 65% JU 

t M=MODULUS, S = SMART, J = JIM 
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a e . - o u us a ues rom T bl 7 3 M d I V I f aXlmum os erlOr M' Pt' B ayeslan M th d e 0 

Modulus (lai) 

Test AC Base Subgrade 

Pt. 
Double- Double- Double-

Cumulative Cumulative Cumulative 
tailed tailed tailed 

1 647 500 68 68 I 20 20 

2 636 632 68 68 20 20 

3 636 636 92 92 11 18.7 

4 556 I 556 73 73 10 10 

5 547 547 72 72 10 10 

6 605 605 105 119 10 10 

7 681 500 93 93 11 11 

8 549 549 91 91 11 18.9 

9 689 500 92 92 10 10 

10 619 590 80 80 17 17 

11 I 500 500 81 81 16 16 

12 621 584 99 78 21 9 

13 571 571 82 82 10 10 

14 500 500 92 92 10 10 

15 601 601 104 127 10 10 

= 16 521 521 92 92 21 16.8 

17 563 563 72 72 21 16.6 

I 18 552 552 69 69 16.7 16.7 

19 603 603 103 103 17 17 

20 655 500 102 113 10 20 

Another option for interpreting the results would be to use the posterior probabilities as weights 
and to simply take a weighted average. Hence, for Test Point 1 for the base layer in Table 7.1, 
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47% of the value from MODULUS, 45% from the SMART, and 8% from the JIM will be used. 
As the sum of the posterior probabilities is one, the numerator in the weighted average 
calculation essentially drops out of the calculation. The results from fusing the data using this 
weighted average approach with Bayesian-developed weights are shown in Table 7.4. 

a e . - o u us a ues rom T bl 7 4 M d I V I f W· h dA e12i te verage B ayeslan M hod et 

Modulus (ksi) 
Test AC Base Subgrade 
Pt. Double- Double- Double-

Cumulative 
tailed 

Cumulative 
tailed 

Cumulative 
tailed 

1 637 589 83 83 18 20 

2 618 597 62 62 17 20 

3 626 595 99 99 14 16 

4 532 532 68 68 14 13 

5 526 526 82 82 15 13 

6 614 588 125 126 15 12 
7 654 547 114 105 15 16 
8 528 528 103 92 14 15 
9 655 I 542 109 99 12 12 
10 593 583 94 91 13 13 
11 498 498 66 66 15 15 
12 591 581 106 102 16 13 
13 545 545 96 93 14 13 
14 494 494 103 I 94 12 12 
15 592 586 111 t=118 12 12 
16 507 H 95 97 16 14 
17 540 74 74 16 14 
18 532 532 65 65 14 14 
19 571 562 83 83 14 14 
20 639 589 105 109 13 13 

DEFINING UNCERTAINTY FOR BA YESIAN FUSION 

The uncertainty in the combined values can also be found by applying an equation similar to 
Equation 5.2. The only change is that there are no modification factors (km's), so Equation 5.2 
simplifies to 
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:L(Wi O'j)2 

(:L(WjW 
(7.1) 

This will represent the uncertainty in the results using the Bayesian process to fuse the moduli. 
Table 7.5 shows the uncertainties that will be obtained from using the cumulative and double
tailed approaches. If either of the Bayesian decision methods is used, the uncertainty is 
considered to be the same as the a priori uncertainty of the selected value and can be in the form 
of either standard deviation or coefficient of variation. 

T bl 75 U a e . - neer ta' t V I f mly a ues rom W' h dA elg! te verage B ayeslan M th d e 0 

Uncertainty as Standard Deviation (ksi) 
Test AC Base Subgrade ! 

Pt. 
Double- Double- Double-

Cumulative 
tailed 

Cumulative 
tailed 

Cumulative 
tailed 

1 66 113 24 24 2 3 

2 62 83 10 10 2 3 

3 64 93 17 18 1 1 

4 81 81 11 11 1 1 

5 85 85 17 17 1 1 

6 63 81 25 36 1 1 

7 78 189 19 17 1 1 

8 79 79 16 16 1 1 

9 82 196 18 16 1 1 

10 61 67 17 16 1 1 

11 245 245 15 15 2 2 : 

12 61 66 18 24 2 1 

13 69 69 18 15 1 1 

14 164 164 17 16 1 1 

15 60 66 21 33 1 1 

16 109 109 15 19 1 1 

17 70 70 17 17 2 1 

18 72 72 12 12 1 1 

19 65 68 25 25 1 1 

20 66 I 118 19 29 1 1 
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CHAPTER EIGHT 

PRESENTATION OF FUSED RESULTS 

INTRODUCTION 

Now that the fusion methods have been developed, a summary of fused data from two test sites 
will be given. The data from the TxDOT site that was used to explain the methods will again be 
fused. In addition, data from a second site, the Texas Transportation Institute (TTI) site will also 
be fused. Both sites had SPA and FWD available which would allow for SMART, MODULUS, 
and JIM analyses to be performed. In addition, the TTI site also had GPR and PSP A data 
available. The PSP A data for the top layer will be added to the fusion process. The GPR data is 
not being used since the other methods used a fixed thickness and did not backcalculate 
thickness and thus the fusion process would consider the GPR data as a reading and all other data 
as a best guess. The methods developed in the previous four chapters will be applied. It is 
essential to point out that the method that shows the most promise overall is the fuzzy logic 
method. It allows for the most flexibility and allows both for statistical and expert inputs in the 
fusion process. 

TXDOT PARKING LOT REVISITED 

Fuzzy Logic Fusion 

First the TxDOT data is revisited using the fuzzy logic method. The three moduli of the layers 
(AC, base, and subgrade) will be rounded to the nearest 25, 15, and 5, respectively. All data will 
be fully weighted, meaning the device modification factors will be one, except for the AC 
modulus from MODULUS which will receive a weight of zero. The set boundaries are as shown 
in Table 8.1. The values shown in Table 8.1 represent the center of the fuzzy sets. As the 
interior sets are all symmetric triangles, the centers of the set correspond to the peak of the 
triangle. The edge sets are z on the left (low) and s on the right (high). The weights for the fuzzy 
sets are as represented in Table 8.2, and were arbitrarily chosen. 
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a e , • ew e oun anes or x ar mg 0 a eVlsl e T bl 8 1 N S t Bd' fi T DOT P k' L t D ta R . 't d 

Parameter 
Modulus (ksi) 

AC Base SG 

Average 575 105 15 

StDev 75 45 5 

Set Membership Boundaries (ksi) 

Very Low 425 15 5 

Low 500 60 10 

Average 575 105 15 

High 650 150 20 

Very High 725 195 25 

Table 8,2 . Weights for Membership Functions Using 
D ta fi T DOT P k' L t a rom x ar mg 0 

Layer 
Fuzzy Set Weights 

Very Low Low Average High Very High 

AC 1 2 3 2.5 2 

Base 1.5 2 3 2.5 1.5 

Subgrade 1.5 2 2.5 2.25 2 

The fuzzy set shapes are shown in Figure 8.1. The values used to plot these fuzzy sets were 
given in Table 8.1. The weights from Table 8.2 are not shown on the graphs. Set 1 is the left 
most set and Set 5 is the right most set. The device modification factors are as shown in Table 
8.3. 

Using the input shown in Tables 8.1 through 8.3 and the data from Table 4.1, the results of the 
fuzzy logic method are shown in Table 8.4. The uncertainty values are included with the fused 
values. 
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Figure 8.1 - Fuzzy Sets for TxDOT Parking Lot Revisited 
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T bl 83 D 0 M dOfi a e . - eVlce o I lcation V I ~ D f a ues or ata rom T DOT P kO L t x ar 109 0 

Method 
Device Modification Factor 

AC Base Subgrade 

MODULUS 0 1 1 
SMART 1 1 1 

JIM 1 1 1 

Table 8.4 - Results for TxDOT Data from Fuzzy Logic (Revisited) 
U 0 D ta f TxDOT P k· L t SlOg a rom ar 109 0 

Modulus (ksi) 
Test 

AC Base Subgrade Pt. 
Avg StDev CoY Avg StDev CoY Avg StDev CoY 

1 657 66 10% 82 22 27% 16 1 7% 
2 634 62 10% 61 12 20% 17 1 7% 
3 644 63 10% 106 25 24% 15 1 7% 
4 534 54 10% 60 10 17% 15 1 8% 
5 527 53 10% 89 22 25% 15 1 7% 
6 629 62 10% 130 27 20% 15 1 7% 
7 681 94 14% 131 29 22% 16 1 7% 
8 532 53 10% 147 33 23% 14 1 7% 
9 689 97 14% 137 30 22% 13 1 7% 
10 604 59 10% 104 25 24% 13 1 7% 
11 408 40 10% 68 16 24% 12 1 8% 
12 602 59 10% 113 25 22% 14 1 8% 
13 551 55 10% 103 24 23% 15 1 7% 
14 475 47 10% 115 27 23% 13 1 7% 
15 605 60 10% 114 24 21% 13 1 7% 
16 506 51 10% 102 24 23% 14 1 8% 
17 547 54 10% 64 12 18% 14 1 8% 
18 540 54 10% 63 12 19% 13 1 7% 
19 573 56 10% 81 22 27% 13 1 7% 

I 20 661 65 10% 107 22 21% 13 1 7% 
Avg 554 -- -- 98 -- -- 15 -- --

StDev 52 -- -- 32 -- -- 1.5 -- --
CoY 9% -- -- 32% -- -- 10% -- --

84 



Hybrid Fusion 

The same fuzzy sets were used for the hybrid method that was used for the fuzzy logic method. 
In this case the outputs of the membership functions will be modification values for the 
coefficients of variation. The modification values are shown in Table 8.5. These values are 
represented by the weights of the fuzzy sets. 

Table 8.5 . TxDOT Modification Values for Coefficients of Variation 

Fuzzy Set Weights 
Layer 

Very Low Low Average High Very High 

AC 0.75 0.85 1 0.9 0.8 

Base 0.8 0.9 1 0.9 0.7 

Subgrade 0.85 0.95 1 0.8 0.7 

Using the inputs shown in Tables 8.1, 8.3 and 8.5 and the data from Table 4.1. the results form 
the hybrid method are shown in Table 8.6. 

Bayesian Fusion 

In revisiting the Bayesian method, the cumulative and double-tailed decision methods and the 
weighted average method were considered. The AC moduli from MODULUS are omitted. By 
applying the Bayesian methods to the data from Table 5.1, including the means and standard 
deviations, the results shown in Tables 8.7 through 8.9 are obtained. The decision method 
selects one modulus over another whereas the weighted average method uses the posterior 
probabilities as weights to obtain representative moduli. 

Statistical Weighted Average Fusion 

To be thorough, the statistical weighted average representative moduli for the TxDOT parking 
lot fusion are shown in Table 8.10. 
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Table 8.6 - Results for TxDOT Data from Hybrid Method Revisited 

Modulus (ksi) 

Test 
Pt. AC Base Subgrade 

Avg StDev CoY Avg StDev CoY Avg StDev CoY 

1 659 73 11% 63 11 17% 14 1 8% 

2 634 68 11% 62 11 17% 14 1 8% 

3 644 70 11% 85 14 16% 13 1 8% 

4 528 57 11% 64 11 17% 12 1 8% 

5 522 57 11% 75 12 16% 12 1 8% 

6 627 67 11% 109 17 16% 12 1 8% 

7 702 83 12% 98 16 17% 13 1 8% 

8 529 57 11% 95 16 17% 13 1 8% 

9 709 85 12% 97 16 17% 12 1 7% 

10 604 62 10% 84 14 16% 11 1 7% 

11 408 54 13% 61 10 17% 10 1 7% 

12 600 61 10% 98 16 16% 11 1 8% 

13 549 57 10% 87 14 16% 12 1 8% 

14 473 57 12% 92 15 16% 12 1 7% 

15 605 62 10% 107 17 16% 12 1 7% 

16 503 57 11% 88 14 16% 11 1 8% 

17 545 57 10% 65 11 17% 11 1 8% 

18 539 57 11% 66 11 17% 11 1 8% 

19 571 59 10% 63 11 17% 11 1 7% 

20 661 73 11% 104 17 16% 12 1 8% 

Avg 580 -- -- 99 -- -- 12 - --
StDev 73 -- -- 27 -- -- I -- --
CoY 13% -- -- 27% -- -- 8% -- --
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Table 8.7 - Modulus Values from Decision Bayesian Method 
smg x ar ng 0 esu U' T DOT P ki L t R Its 

Modulus (hi) 

Test AC Base Subgrade 
Pt. 

Cumulative 
Double-

Cumulative 
Double-

Cumulative 
Double-

tailed tailed tailed 

1 647 647 68 68 20 20 

2 636 632 68 68 20 20 

3 636 636 92 92 11 18.7 

4 556 556 73 73 10 10 

5 547 547 72 72 10 10 

6 605 605 105 118.9 10 10 

7 681 681 93 93 11 11 

8 549 549 91 91 11 18.9 

9 689 689 92 92 10 10 

110 619 590 80 80 17 17 

11 412 412 81 81 16 16 

12 621 584 99 78.3 21 9 

13 571 571 82 82 10 10 

14 490 490 92 92 10 10 

15 601 601 104 127 10 10 

16 521 521 92 92 21 16.8 

17 563 563 72 72 21 16.6 

18 552 552 69 69 16.7 16.7 

19 603 603 103 103 17 17 

20 655 655 102 113 10 10 
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Table 8.8 - Modulus Values from Weighted Bayesian Method 
SlOg X ar ng esu ts U· T DOT P Id Lot R I 

Modulus (ksi) 

Test 
AC Base Subgrade Pt. 

Cumulative 
Double-

Cumulative 
Double-

Cumulative Double-tailed tailed tailed 

1 658 654 83 83 18 20 

2 634 634 62 62 17 20 

3 644 642 99 99 14 16 

4 544 544 68 68 14 13 

5 536 536 82 82 15 13 

6 630 618 125 126 15 12 

7 697 687 114 105 15 16 

8 538 538 103 92 14 15 

9 702 693 109 99 12 12 

10 606 601 94 91 13 13 

11 409 409 66 66 15 15 

12 604 598 106 102 16 13 

13 557 557 96 93 14 13 

14 483 483 103 94 12 12 

15 605 605 111 118 12 12 

~ 512 512 95 97 16 14 

17 551 551 74 74 16 14 

18 542 542 65 65 14 14 

19 584 578 83 83 14 14 

20 661 661 105 109 13 13 
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Table 8.9 - Uncertainty Values from Weighted Bayesian Method 
smg x ar mg 0 esu U· T DOT P k· L t R Its 

Uncertainty as Standard Deviation (ksi) 

Test 
AC Base Subgrade 

Pt. 

Cumulative 
Double-

Cumulative 
Double-

Cumulative 
Double-

tailed tailed tailed 

1 65 70 24 24 2 3 

2 62 63 10 10 2 3 

3 63 65 17 18 1 1 

4 63 63 11 11 1 1 

5 61 61 17 17 1 1 

6 62 67 25 36 1 1 

7 72 84 19 17 1 1 

8 59 59 16 16 1 1 

9 75 88 18 16 1 1 

10 60 61 17 16 1 1 

11 41 41 15 15 2 2 

12 60 60 18 24 2 1 

13 59 59 18 15 1 1 

14 55 55 17 16 1 1 

15 60 59 21 33 1 1 

16 57 57 15 19 1 1 

17 58 58 17 17 2 1 

18 55 55 12 12 1 1 

19 62 58 25 25 1 1 

2U 65 65 24 29 1 1 
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a e . - X IS Ica elgl e T bl 8 10 T DOT Star r I W . ht d A verage R Its esu 

Modulus (ksi) 

Test Pt. AC Base SG 

Avg StDev Avg StDev Avg StDev 

1 659 66 63 9 15 1.1 

2 634 63 61 9 15 1.1 

3 644 64 84 13 13 0.9 

4 525 53 63 10 12 0.8 

5 520 52 74 11 13 0.9 

6 629 63 110 17 13 0.9 

7 704 70 100 16 14 1.0 

8 527 53 97 16 13 0.9 

9 711 71 99 16 12 0.8 

10 604 60 84 13 11 0.8 

11 408 41 61 9 10 0.7 

12 601 60 98 15 11 0.8 

13 547 55 87 13 13 0.9 

14 472 47 93 14 12 0.8 

15 605 61 107 16 12 0.8 

16 502 50 88 14 11 0.8 

17 543 54 64 10 11 0.8 

18 538 54 66 10 11 0.8 

19 570 57 63 9 11 0.8 

20 661 66 104 16 12 0.8 

DATA FUSION OF TTI RIDE RUT SITE 

The Ride Rut facility located at the Riverside Annex of Texas A&M University was another 
ideal site at this stage of the project. Figure 8.2 provides an idealized illustration of the 
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pavement cross-section. The site consisted of 2 in. of ACP over a granular base, over an 8-in.
thick lime treated subbase. The subgrade consisted of highly plastic clay. The test section was 
2000 ft long. The base thickness for the first and last 200 ft of the section was nominally 6 in. 
thick, and for the middle 1600 ft 14 in. thick. As reflected in Figure 8.2, twenty five points were 
tested at this site. The first five and the last four points were 50 ft apart to cover the 6-in.-thick 
base, and the middle sixteen points, which were located on the thicker base, were 100 ft apart. 

Sixteen points at 100ft spacing 
) 

~ Points aj 51in Spacing 4 Point~at 50ft S),acing 

14 in. Flexible Base 

8 in. Lime Stabilized 

Subgrade 

Figure 8.2 - Schematic of the test setup and test section at the Ride Rut facility 

The GPR, FWD, SPA and PSPA were used at this site. This site provided us with the 
opportunity to test the feasibility of using JIM, as well as to implement the data fusion process. 
Each point was tested with the GPR first. After the GPR data was collected, the FWD followed 
by the SPA and PSPA were used at the site. 

The procedure used to analyze the data can be summarized in following steps: 

Step 1: Determine the seismic modulus profile from SPA using SMART software. 
Step 2: Determine design modulus profile using the results of Step 1 in SMART 

software. 
Step 3: Determine modulus profile from FWD using MODULUS. 
Step 4: Determine the design modulus profile using the measured dispersion curves and 

the deflection basins using JIM. 
Step 5: Extract discrete thickness for each test location from GPR data using 

COLORMAP 
Step 6: Determine the modulus of ACP from PSPA data 

The raw data that were fused from the TTI site are shown in Table 8.11. More detail about the 
analysis can be found in Abdallah et al. (2003) in the first report of this project. 

91 



Table 8.11 - TTI Data for Fusion 

Modulus (ksi) 
Test Pt. AC Base Subgrade 

M*t st Jt pt M S J M S J 

1 500 642 821 471 147 44 31 14 12 9 
2 500 564 502 473 164 64 69 14 28 10 
3 500 521 659 480 320 58 48 16 22 11 

4 500 583 555 495 211 42 76 16 50 11 
5 500 604 519 518 125 47 72 17 44 12 
6 500 464 525 459 135 81 46 19 59 13 
7 500 452 575 521 132 38 52 20 43 14 
8 500 497 401 489 96 47 95 23 24 16 
9 500 593 371 528 170 46 50 22 24 15 
10 500 564 486 550 97 60 53 23 49 15 
11 500 501 577 481 116 67 56 21 48 14 
12 500 501 516 478 117 44 62 24 16 17 

13 500 515 460 444 98 49 67 23 35 16 
14 500 464 529 459 83 43 42 17 40 12 
15 500 503 487 535 136 42 56 20 39 14 
16 500 427 421 523 70 40 44 19 42 13 
17 500 456 449 503 80 24 35 23 21 16 
18 500 468 352 506 106 26 41 25 19 17 
19 500 740 434 542 61 46 21 16 4 13 
20 500 497 452 559 33 52 20 14 26 11 

Avg 500 528 505 501 125 48 52 19 32 13 
StDev 0 76 105 33 62 13 19 4 15 2 
CoY 0% 14% 21% 7% 49% 28% 36% 19% 46% 17% 

* Omitted from fusion t M=MODULUS, S = SMART, J = JIM, P = PSPA 

Fuzzy Logic Fusion 

Starting with the fuzzy logic method, the set boundaries must be defined. The same approach 
could almost be taken. The set boundaries shown in the lower half of Table 8.12 are centered 
about the rounded mean. Each set is one standard deviation wide and has the same shape pattern 
as was used for the TxDOT Parking Lot data, Z, A, A, A, S. In Table 8.12, the lower limit of the 
lowest set (for the base) is a negative number. Four options are available to deal with this 
potential problem. The first is to simply ignore this problem; since no data has a negative value, 
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the lower set will be essentially void. The second option is to narrow the spread in the sets, that 
is reduce the standard deviation by a factor. The third option is to horizontally shift all of the 
sets to the right such that the lower limit of the lowest set is a non-negative value (it could still be 
set to zero). Finally, the sets can be defined manually in any manner desired. Similarly, the 
lowest set for the subgrade layer has its lower limit at zero and can be dealt with in a similar 
fashion. 

Table 8.12 - Initial Set Boundaries for TTI Data 

Modulus (ksi) 
Parameter 

AC Base SG 

Average 500 75 20 

StDev 75 45 10 

Set Membership Boundaries (ksi) 

Very Low 350 -15 0 
Low 425 30 10 

Average 500 75 20 

High 575 120 30 
Very High 650 165 40 

To deal with the negative and zero values of the initial guess for the sets, the width of the base 
(i.e. the standard deviation) is changed to 35 ksi and for the sub grade ranges to 5 ksi. The revised 
set boundaries are shown in Table 8.13. 

Table 8.13 - Revised Set Boundaries for TTI Data 

Modulus (ksi) 
Parameter 

AC Base SG 

Average 500 75 20 
StDev 75 35 10 

Set Membership Boundaries (ksi) 

Very Low 350 5 10 
Low 425 40 15 

Average 500 75 20 
High 575 110 25 

Very High 650 145 30 
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The weights for each layer are defined in Table 8.14. For this case, below average AC moduli 
are weighted less than the above average moduli. Some very low moduli are estimated for the 
base and the subgrade layers. As these values appear to be outliers, the weight applied to the 
lowest sets for these layers are reduced so that the fused outcome is not unfairly biased toward 
these outliers. 

a e . - el2J or em ers Ip unc Ions T bl 814 W' hts f< M b h' F t' se or le U d f< TTI SOt 

Layer Very Low Low Average High Very High 

AC 1.S 2 3 2.S 2 
Base 0.5 2 3 2.S 1.S 

Subgrade 0.5 2 2.5 2.2S 2 

The fuzzy sets for the TTI site are shown in Figure 8.3. The sets are ordered from left to right. 
Additional device modification values are assigned to the PSPA as indicated in Table 8.1S. 
Since PSP A does not yield moduli for the base and sub grade layers, no modification values are 
assigned to them. 

Table 8,15 - Device Modification Values for TTI Site Data 

Device Modification Factor 
Method 

AC Base Sub grade 

MODULUS 0 1 1 

SMART 1 1 1 

JIM 1 1 1 

PSPA 1 -- --

The results of applying the fuzzy logic method are shown in Table 8.16 using the raw data from 
Table 8.11 and the additional input information from Tables 8.13 through 8.1S. 

Hybrid Fusion 

In the hybrid method, the same set boundaries defined for the TTI fuzzy logic were used as 
shown in Table 8.13. The modification values for the coefficients of variation will be defined as 
shown in Table 8.17. The set weights function as the modification factors for the coefficients of 
variation. The set weights were defined towards weighting the low data for the AC modulus 
fairly high and then reducing the weight of the low values for the base and sub grade layers. 
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Figure 8.3 - Fuzzy Sets for TTI Site 
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a e . - esu or a rom uzz~ O~IC T bl 8 16 R Its f, TTI D ta f F L' 

Modulus (ksi) 

Test 
Pt. AC Base Subgrade 

Avg StDev CoY Avg StDev CoY ~ StDev CoY 

1 633 61 10% 70 22 31% 12 2 19% 
2 513 46 9% 87 21 24% 20 6 32% 
3 546 49 9% 11 39 33% 18 5 26% 
4 543 48 9% 96 27 28% 29 9 32% 
5 545 48 9% 80 21 26% 26 8 29% 
6 484 45 9% 84 20 24% 31 9 30% 
7 517 46 9% 72 21 30% 

!t 
7 25% 

8 469 37 8% :rr:f 26% 4 19% 
9 512 39 8% 29% 4 20% 
10 533 +-*-t 8% 71 1~ 26% 7 25% 
11 519 9% 78 20 25% 28 7 26% 
12 499 45 9% 75 21 28% 19 3 16% 
13 475 42 9% 72 19 27% 24 5 22 
14 485 45 9% 59 18 30% 25 7 28 
15 508 43 9% 74 21 28% H 6 24 
16 463 35 8% 54 15 29% 7 27% 
17 471 38 8% m 36% 20 4 19% 
18 456 tl=J 7% 35% 20 4 17% 
19 567 8% 48 14 29% 13 2 

~ 20 504 8% 39 9 22% 19 6 
Avg 512 -- -- 73 -- -- 23 

StDev 42 -- -- 17 -- -- 5.0 -- :JI 
CoY 8% -- -- 24% -- 22% -- --

Table 817 - TTI Modification Values for Coefficients of Variation . 
Fuzzy Set Weights 

Layer 
Very Low Low Average High Very High 

AC 0.85 0.95 1 0.9 0.8 
Base 0.5 0.85 1 0.9 0.7 

Subgrade 0.5 0.85 1 0.8 0.7 
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The results from applying the hybrid method to the TTI data are shown in Table 8.18. The 
hybrid fused values were more conservative than the fuzzy logic fused values. 

a e . - esu or a rom T bl 8 18 R Its ~ TTI D ta f Lyl rl e 0 H b ·d M th d 

Modulus (ksi) 
Test 
Pt. AC Base Subgrade 

Avg StDev CoY Avg StDev CoY Avg StDev CoY 

1 490 30 6% 39 10 26% 11 2 20% 

2 485 29 6% 67 15 22% 12 2 20% 

3 491 29 6% 54 13 24% 14 2 17% 

4 507 30 6% 50 12 24% 14 2 17% 

5 526 32 6% 55 13 23% 15 2 16% 

6 464 27 6% 62 14 23% 16 2 15% 

7 510 30 6% 43 11 25% 17 2 14% 

8 482 28 6% 57 13 23% 18 3 14% 

9 515 32 6% 49 12 24% 17 2 14% 

10 545 34 6% 60 13 22% 17 3 15% 

11 488 29 6% 64 14 22% 17 2 15% 

12 484 28 6% 51 12 23% 19 3 14% 

13 454 27 6% 57 13 22% 18 3 14% 

14 464 27 6% 45 10 23% 15 2 16% 

15 525 31 6% 48 11 24% 17 2 14% 

16 493 29 6% 44 10 23% 16 2 15% 

17 490 28 6% 29 8 28% 18 3 14% 

18 483 28 6% 32 9 27% 19 3 14% 

19 541 34 6% 33 9 26% 11 2 17% 

20 534 33 6% 31 8 27% 13 2 19% 

Avg 498 -- -- 49 -- -- 16 -- --
StDev 26 -- -- 11 -- -- 2 -- --
CoY 5% -- -- 24% -- -- 16% -- --
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Bayesian Fusion 

The input for the Bayesian methods was simply the data shown in Table 8.11. The results of 
applying the Bayesian methods are shown in Tables 8.19 through 8.21. 

Table 8.19 - Modulus Values from Decision Bayesian Method 
smg I e esu U· TTI S·t R Its 

Modulus (ksi) 

Test AC Base Subgrade 
Pt. 

Cumulative 
Double-

Cumulative 
Double-

Cumulative 
Double-

tailed tailed tailed 

1 642 471 44 44 13.5 13.5 

2 564 502 64 69 28 28 

3 480 480 58 48 16.4 16.4 

4 495 495 42 42 16.2 16.2 

5 518 518 47 47 12 12 

6 525 525 46 46 13 13 

7 521 521 52 52 14 14 

8 489 489 47 47 16 16 

9 528 528 46 46 15 15 

10 550 486 60 53 15 15 

11 481 481 56 56 14 14 

12 478 478 62 44 17 23.6 

13 515 515 49 49 16 16 

14 529 529 43 43 12 12 

15 535 503 56 42 14 14 

16 523 523 40 40 13 13 

17 503 503 35 35 16 16 

18 506 506 41 41 17 17 

19 542 434 46 46 13 13 

20 559 497 52 52 11 11 
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Table 8.20 - Modulus Values from Weighted Bayesian Method 
SIng le esu U· TTI S·t R Its 

Modulus (ksi) 

Test AC Base Subgrade 
Pt. 

Cumulative 
Double-

Cumulative 
Double-

Cumulative 
Double-

tailed tailed tailed 

1 563 483 67 58 12 12 

2 ,"M 510 80 91 22 22 '-
3 530 2 55 52 15 15 

4 534 6 76 48 24 15 

5 537 65 62 20 16 

f.. 501 6 75 70 17 16 

7 530 I 522 63 61 19 17 

8 486 ~6 56 53 19 20 

9 544 535 65 54 18 18 

10 543 526 60 60 20 

11 518 501 67 70 19 

12 497 496 61 60 20 2 

13 494 494 59 57 20 

14 504 498 46 46 19 1 

15 521 505 63 61 19 18 

16 513 498 44 44 19 17 

17 493 492 48 48 19 19 

18 ,fV) 498 60 60 20 20 ~~~ 

19 532 481 46 46 13 13 

20 517 2 51 51 16 16 
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a e • - neer IDLy a ues rom elgl T bl 821 U ta· t V I ti W • hted B ayes18n M th d e 0 

Modulus (ksi) 

Test 
AC Base Subgrade Pt. 

Cumulative 
Double-

Cumulative 
Double-

Cumulative 
Double-

tailed tailed tailed 

1 50 29 19 14 2 2 

2 49 47 17 24 8 8 

3 41 39 12 12 2 2 

4 39 31 18 11 6 2 

5 34 40 14 14 4 2 

6 70 63 22 21 2 2 

7 37 34 16 15 3 2 

8 29 29 12 13 2 3 

9 35 33 15 11 2 2 

10 39 61 12 14 3 2 
i 

11 46 34 14 19 3 2 

12 43 41 13 13 3 3 

13 57 57 12 12 3 6 

14 71 62 9 9 4 2 

15 32 48 15 13 3 2 

16 32 31 9 9 3 2 

17 29 29 14 14 2 3 

18 30 30 19 19 2 4 

19 33 54 12 12 2 2 

~ 35 55 14 14 4 4 
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Statistical Weighted Average Fusion 

Finally, the statistical weighted average method was applied to the TTI data. The results of this 
fusion are shown in Table 8.22. 

a e • - tatIstIca ei2i t T hi 8 22 TT! S .. I W . h ed A vera2e R Its esu 

Modulus (ksi) 

Test Pt. AC Base SG 

Avg StDev Avg StDev Avg StDev 

1 498 29 38 8 10 1.3 

2 486 28 69 14 11 1.4 

3 494 28 55 12 13 1.7 

4 510 29 49 11 13 1.7 

5 529 30 55 12 14 1.8 

6 464 27 61 13 15 2.0 

7 510 29 43 9 16 2.1 

8 481 28 56 12 18 2.3 

9 513 30 49 10 17 2.2 

10 546 31 60 12 17 2.2 

11 489 28 65 13 16 2.1 

12 484 28 50 11 19 2.3 

13 454 26 56 11 18 2.3 

14 464 27 45 9 14 1.8 

15 525 30 47 10 16 2.1 

16 492 28 43 9 15 2.0 

17 490 28 28 6 18 2.3 

18 478 28 30 6 19 2.3 

19 546 32 29 6 9 1.3 

20 536 31 27 6 12 1.6 
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DISCUSSION OF RESULTS 

TxDOT Parking Lot Results 

The examination of the results as presented in this chapter is performed both in tabular and 
graphical form. Table 8.23 shows the representative averages and uncertainties in moduli for the 
TxDOT Parking Lot from each method. 

T hi 823 S a e • - ummaryo f TxDOT s·t Star r f le IS ICS rom F • M thods USlon e 

Modulus (ksi) 

Method AC Base SG 

Avg StDev Avg StDev Avg StDev 

Statistical 
580 79 83 17 12 1 

Weighted Average 

Fuzzy 580 73 99 27 14 1 

Hybrid 581 78 83 17 12 1 

Cumulative 
588 67 87 13 14 5 

Decision 

Double-tailed 
584 66 88 17 14 4 

Decision 

Cumulative Fusion 585 74 92 18 14 2 

Double-tailed 
582 71 90 18 14 2 Fusion 

Average 554 52 98 32 15 1 

MODULUS 500 0 89 41 18 2 

SMART 583 82 122 51 18 3 

JIM 580 80 83 15 lO 1 

Figures 8.4 through 8.6 show the variations of the moduli for each of the layers. In each figure, 
the top graph contains the point-by-point comparison of the moduli, the middle graph the point
by-point comparison of the uncertainty values, and the bottom graph the spread in the site 
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averages. For the site averages, no fusion method was used other than a regular average and 
standard deviation computation. The point-by-point values that are plotted are included in 
Appendix A. 
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From Figures 8A through 8.6, a comparison of the fusion methods can be made. Each layer will 
be discussed separately. From Figure 8Aa, the spatial variation in the AC modulus can be 
assessed. The moduli obtained by the non-decision methods (Bayesian decision) lie somewhere 
between the maximum and minimum moduli measured at each test point. Some smoothing of 
the moduli along the site is evident. The final output (fused value) based on any of the methods 
is obtained by combining data from more than one source, hence, a decision is not blindly taken 
based solely on the preference of a method or a simple average. One key observation is that 
moduli that are extreme (very high or very low) are closer to the average when combined with 
data from other sources. Any fused value will lie between the maximum and minimum of the 
values of the points used to generate the fused result. 

Figure 8Ab shows the uncertainty associated with each method at each point. The uncertainty 
for the moduli from MODULUS is numerically zero since it was fixed during the data reduction 
process. The fusion methods have the lowest uncertainty for about half the points tested. For the 
other points, it appears that the simple average method yields the lowest uncertainty, however, 
this may be because the simple average method included the fixed modulus "estimated" by 
MODULUS. The simple standard deviation used for the simple average method would not 
include any information about what the expected site error may be (via site statistics) as the 
fusion methods did. The uncertainty in that average method is based entirely on the difference of 
the three data points. Also, consider that taking a standard deviation of an average of only three 
data points is not the most reliable way to find the uncertainty for such a small set of numbers. 
Of the fusion methods, it appears that the fuzzy and statistical weighted average methods seem to 
have the lowest uncertainty in the majority of the twenty test points considered. 

Figure 8Ac provides information on the site statistics based on the different methods, including 
the raw (unfused) results. The standard deviations for each method for the site do not differ 
significantly ranging from only 9% to 14% (refer to Appendix A, Table A.1). Additionally, the 
final site results are all within the ballpark of one another, with the simple average being lower. 
Inspecting the three graphs as a whole, the overall site average may not significantly change. 
The uncertainty associated with individual moduli at points can be defined with more confidence 
after a numeric process is performed to obtain a more informed result from more than one 
source. 

In Figure 8.5, some conclusions about the base layer can now be made. From Figure 8.5a, the 
erratic behavior of the raw moduli is reduced considerably. Much of this was due to the 
influence of the JIM on the fusion process. The JIM results were less erratic as compared to 
either MODULUS or SMART results and as a whole, tended to be more conservative as 
expected. In this case, the representative moduli form the fuzzy method was influenced more by 
the higher values than the other methods, yet overall, the fuzzy results are at or near those of the 
other fusion methods. 

Figure 8.5b provides an assessment of the reliability of the fused and unfused data at each point. 
The fusion methods have a considerable advantage when the uncertainty in the result is looked 
at. The non-fused data points have uncertainties as much as five times higher than some of the 
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fused data points. The reliability of the JIM is highly influential on the composite uncertainties 
from the fusion methods. Even though the JIM uncertainty is lower than some of the fusion 
methods, namely the fuzzy method, the results of the fuzzy method include data from more than 
one source. Accepting the value with the lowest uncertainty may be an option, but making that 
decision may result in useful or good data being omitted or eliminated without just cause. 

The representative moduli from all fusion methods for the base layer are compared in Figure 
8.5c. With the exception of the joint inversion method, all of the fusion methods have a lower 
coefficient of variation than any of the raw data methods or the simple average. 

The moduli for the subgrade layer are shown in Figure 8.6. Figure 8.6a shows the spatial 
variation in the modulus profiles for the site. With few exceptions, the fusion methods mirror the 
JIM results, which in turn mirror the MODULUS. This is due to the nature of the JIM as 
described by Abdallah et al.(2003). The spread in the raw data is not too high in the raw data 
either, ranging from 10% to 16% (Table A.3). As indicated before, FWD provides information 
of the subgrade substantially deeper than the SMART method. 

The point-by-point uncertainty of different methods shown in Figure 8.6b can aid in the 
comparison of the methods. Overall, the uncertainty of the fusion methods is much lower than 
those of the unfused methods when observed point-by-point. The (Bayesian) decision methods 
tend to exhibit higher uncertainties, as they reflect the uncertainty of the raw data method 
decided on at that point. 

The site results reflected in Figure 8.6c show that the fused results have a lower uncertainty than 
the raw data with the highest uncertainty (SMART) even though the SMART data was included 
in the fused result. Based on the coefficient of variation, only the decision methods have values 
higher than 20%, with values up to 33% (Table A.3). The coefficients of variation for the other 
fusion methods are all less than the 16% of the SMART method, and in most cases are very near 
or even below the lowest uncertainties of the input data. 

TTI Site Results 

Table 8.24 shows the site statistics for the fusion of the TTI data. PSPA data is only possible for 
the AC layer and thus no values are shown for either of the base or sub grade layers. Figures 8.7 
through 8.9 show the raw and fused data from the TTI site. 

Figure 8.7a shows how the fusion methods can smooth the point by point results. At this site, 
even the decision methods smoothed out the modulus profiles. Values than seemed to be much 
higher or lower than the typical values for a device over the site were not selected with either of 
the decision methods. 
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a e • • ummaryo T hi 824 S de tatistics rom uSlon et fTTIS' S .. f F . M hods 

Modulus (ksi) 

Method AC Base SG 

Avg StDev Avg StDev Avg StDev 

Statistical 499 27 48 12 15 3 Weighted Average 

Fuzzy 512 42 73 17 23 5 

Hybrid 498 26 49 11 16 2 

Cumulative 524 38 49 8 15 4 
Decision 

Double-tailed 499 24 47 7 15 4 
Decision 

Cumulative Fusion 519 20 60 10 19 3 

Double-tailed I 

Fusion 
502 16 58 11 18 3 

Average 508 35 75 25 22 5 

MODULUS 500 0 125 62 19 4 

SMART 528 76 48 13 32 15 

JIM 505 105 52 19 13 2 

PSPA 501 33 -- -- -- --
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The uncertainty values in Figure 8.7b are the lowest for the fusion methods and closely shadow 
the uncertainty of the PSP A which had the lowest uncertainty of any of the methods. Some of 
the uncertainty values are quite high, particularly with the simple average method at Points 1 and 
19. The decision methods seem to have the next highest uncertainty, and the fusion methods all 
appear to be very close in uncertainty, with the occasional spike (Points 7 and 14). The spikes 
occurred where the Bayes cumulative fusion was employed; however, the uncertainties for that 
method at all other points are quite stable and comparable to the other fusion methods. 

Overall, the site results (site average of point fusion) are quite similar and all have relatively low 
site standard deviations with the exception of the decision methods, where the site uncertainties 
are about twice that of the fusion methods as is evident from Figure 8.7c. Still, the decision 
uncertainty is a median representation of the uncertainty if it is compared to the raw data. The 
values are not quite as high or low as the highest and lowest uncertainties of the raw data. 

The fusion of the base data that is plotted in Figure 8.8a shows that the data was greatly 
smoothed out by the fusion methods. On the other hand, it shows that one of the raw methods 
greatly controlling the fusion process. In this case, the SMART and JIM methods are very close 
and thus supported each other significantly. In that process, the fused results are closer to the 
midpoint between the two methods. With the exception of about four points (3, 4, 9, and 15), the 
trend of the MODULUS outputs is very similar to the trend of the SMART and JIM data, only 
shifted up from about 50 to 100 ksi. While the raw data agreed on the trend of the data in most 
cases, there was some conflict with the magnitude. In cases where a high-end estimate resulted 
while some of the data was considerably lower, some considerations can be made in the 
assigning of weights to low moduli as is allowed in the fuzzy and hybrid methods and to some 
extend in the statistical weighted average method. 

The uncertainty of the base layer, shown in Figure 8.8b, exhibits a trend similar to the moduli in 
Figure 8.8a. High uncertainties are evident in the simple average and MODULUS results at Test 
Points 3,4, 9, and 15. Taking a simple average equally weighs the moduli from each method, 
including the erratic data from MODULUS. The fusion methods proved to significantly reduce 
the uncertainty for the base layer. 

The plots in Figure 8.7c simply reiterate what has already been shown by Figures 8.8a and 8.8b. 
The fusion methods all yielded consistent results for the base modulus, which were furthermore 
close in value to each other. The site averages reflect that consistency (as per stability) and 
closeness (as per magnitude). 

The spatial variations in modulus of sub grade are shown in Figure 8.9a. The fused profile is 
fairly stable. As was evident with the base, the data was controlled by one or more of the input 
methods. The methods that controlled the sub grade were MODULUS and JIM. SMART 
method was more variable. It seems that the fuzzy method is quite affected by the SMART 
results. Changes to the device modification values and/or the membership functions of the fuzzy 
sets could have been used to obtain a more conservative estimate instead of weighting the moduli 
from SMART as much as they were weighted. Overall though, the fuzzy results are more stable 
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than the SMART values. The other fusion methods are grouped much closer to one another and 
to MODULUS and JIM methods, which were the controlling methods for all of the fusion 
methods. 

An examination of the uncertainties in Figure 8.9b supports some of the observations made about 
the SMART method and its impact on the fuzzy results. The uncertainty for the fuzzy method 
was much higher relative to the other fusion methods than observed in the overlaying layers and 
the results from the other site. As can be expected, the simple average method yielded high 
uncertainty as it mirrored the SMART results. The remainder of the fusion methods yielded 
uncertainties near the MODULUS and JIM uncertainties aside from a handful of points. 

In comparing the site averages and standard deviations using Figure 8.9c, the conclusions that 
were reached for the profile carry over to the trend of the averages. The average SMART 
modulus was high for a sub grade layer. The data cannot be disregarded completely since these 
results are more indicative of the semi-stabilized subgrade. The MODULUS and JIM results had 
fairly tight ranges, as did most of the fusion methods. The decision methods had a slightly 
higher spread than all of the non-decision methods except for the Fuzzy method. The site 
average for the Fuzzy method is still reasonable for a subgrade and the data included from the 
SMART component of that fusion may have validity, as the SMART process in a way was 
influenced by the properties of the semi-stabilized layer that was overlooked by the other 
methods. However, the other fusion methods were not affected so heavily by the SMART data. 
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CHAPTER NINE 

SUMMARY, CONCLUSIONS AND 
RECOMMENDATIONS 

This report attempted to show the feasibility of using data fusion techniques in the analysis of 
nondestructive test data for pavements. This feasibility not only includes the methods for the 
data fusion, but also the considerations that must be taken if data fusion is to be applied to NDT 
of pavements. 

An overview of data fusion methods are introduced in Chapter 3. Simple examples are used to 
present and illustrate fusion algorithms. In Chapters 4 through 7, the process of implementing 
each data fusion method for analyzing nondestructive pavement testing data is offered. Chapter 
4 presents an algorithm of applying data fusion to NDT results using statistical weighted average 
method. The adoption of statistical weighted average method to NDT data is the easiest to 
incorporate since only simple statistics are required to develop the algorithm. In Chapter 5, the 
fuzzy logic approach to fusing NDT data is developed. Fuzzy logic is perhaps the most complex 
fusion method. However, parameters regarding the inherent error in NDT analysis methods and 
uncertainty and variability associated in NDT data were incorporated in the algorithm. The 
algorithm was developed with two levels of user involvement: a) manual and automatic. The 
manual process allows users to interface with several aspects of setting up the fussy logic set and 
membership functions. For novice users, the automatic algorithms provides typical shapes and 
functions for users to select from and which aides in fusing NDT data with little knowledge in 
fuzzy logic. Chapter 6 provides detail of the development of the hybrid method and its 
applicability to fuse NDT data. The main approach used to developing the hybrid algorithm is 
by combining the fuzzy logic method with the weighted average method. The last of the data 
fusion methods that is explored is the Bayesian inference method presented in Chapter 7. This 
method requires prior probability and conditional densities. For this reason applying this method 
to fusing NDT data was not as uncomplicated as the other methods, and therefore was abandoned 
for this project. Chapter 8 provides a presentation of results of fusing the results of popular NDT 
analyses for two sites. The results using all the fusion algorithms presented in this report are 
presented. It is important to point out that the use of the fuzzy logic method is most appropriate 
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considering its flexibility of combining both statistical and expert inputs into the fusion process. 
This method also seems practical for applying to NDT data. 

The methods presented in this study show that there are many options for the potential fusion of 
data from multiple devices that are used to nondestructively test pavements. A protocol for 
verifying the results of the fusion processes would be required to see which method is the most 
appropriate. 
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APPENDIX A 

SUPPLEMENTAL TABLES FOR COMPARISON OF 
FUSION METHODS 

In Chapter 8 graphs were shown comparing the different fusion methods, however, a point by 
point tabular comparison was not included. The tables in this appendix include combined result 
information from the applied fusion methods. 
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a e • - x o u us T bl A 1 T DOT AC M die ompanson 

Test Stat. Wt. Fuzzy Hybrid Cum. D-T Cum. D-T Average MODULUS SMART JIM 
Pt. Avg. Decision Decision Fusion Fusion 

1 659 657 659 647 647 658 654 606 500 647 672 
2 634 634 634 636 632 634 634 589 500 632 636 
3 644 644 644 636 636 644 642 596 500 636 652 
4 525 534 528 556 556 544 544 519 500 556 501 
5 520 527 522 547 547 536 536 514 500 496 547 
6 629 629 627 605 605 630 618 588 500 659 605 
7 704 681 702 681 681 697 687 638 500 732 681 
8 527 532 529 549 549 538 538 519 500 508 549 
9 711 689 709 689 689 702 693 641 500 689 734 
10 604 604 604 619 590 606 601 570 500 590 619 
11 408 408 408 412 412 409 409 439 500 404 412 
12 601 602 600 621 584 604 598 568 500 621 584 
13 547 551 549 571 571 557 557 533 500 571 527 
14 472 475 473 490 490 483 483 482 500 455 490 
15 605 605 605 601 601 605 605 570 500 609 601 
16 502 506 503 521 521 512 512 502 500 521 486 
17 543 547 545 563 563 551 551 530 500 563 527 
18 538 540 539 552 552 542 542 526 500 552 526 
19 570 573 571 603 603 584 578 549 500 543 603 
20 661 661 661 655 655 661 661 608 500 668 655 

Avg 580 580 581 588 584 585 582 554 500 583 580 
StDev 79 73 78 67 66 74 71 52 0 82 80 
CoY 14% 13% 13% 11% 11% 13% 12% 9% 0% 14% 14% 
Min 408 408 408 412 412 409 409 439 500 404 412 
Max 711 689 709 689 689 702 693 641 500 732 734 
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-N 
~ 

Test 
Pt. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Avg 
StDev 
CoY 
Min 
Max 

Stat. Wt. 
Avg. 

63 
61 
84 
63 
74 
110 
100 
97 
99 
84 
61 
98 
87 
93 
107 
88 
64 
66 
63 
104 
83 
17 

21% 
61 
110 

Fuzzy Hybrid 

82 63 
61 62 
106 85 
60 64 
89 75 
130 109 
131 98 
147 95 
137 97 
104 84 
68 61 
113 98 
103 87 
115 92 
114 107 
102 88 
64 65 
63 66 
81 63 
107 104 
99 83 
27 17 

27% 20% 
60 61 
147 109 

T bl A 2 TxDOT B Mod I C a e . - ase u us om~arlson 

Cum. D-T Cum. D-T 
Average MODULUS SMART JIM Decision Decision Fusion Fusion 

68 68 83 83 77 68 102 60 
68 68 62 62 58 43 62 68 
92 92 99 99 95 54 139 92 
73 73 68 68 58 55 45 73 
72 72 82 82 84 73 107 72 
105 119 125 126 135 119 182 105 
93 93 114 105 138 152 169 93 
91 91 103 92 163 156 242 91 
92 92 109 99 154 189 180 92 
80 80 94 91 100 89 132 80 
81 81 66 66 63 43 81 64 
99 78 106 102 108 78 146 99 
82 82 96 93 104 112 117 82 
92 92 103 94 112 77 167 92 
104 127 111 118 114 110 127 104 
92 92 95 97 93 62 126 92 
72 72 74 74 65 78 44 72 
69 69 65 65 62 59 57 69 
103 103 83 83 71 47 103 64 
102 113 105 109 108 108 113 102 
87 88 92 90 98 89 122 83 
13 17 18 18 32 41 51 15 

15% 19% 20% 20% 33% 46% 42% 18% 
68 68 62 62 58 43 44 60 
105 127 125 126 163 189 242 105 



a e . - x u .~ ra e o u us T bl A 3 T DOT S b d M d I C omparIson 

Test Stat. Wt. Fuzzy Hybrid 
Cum. D-T Cum. D-T Average MODULUS SMART JIM Pt. Avg. Decision Decision Fusion Fusion 

1 15 16 14 20 20 18 20 18 21 20 12 
2 15 17 14 20 20 17 20 18 22 20 12 
3 13 15 13 11 19 14 16 16 19 17 11 
4 12 15 12 10 10 14 13 16 17 21 10 

5 13 15 12 10 10 15 13 16 18 20 10 

6 13 15 12 10 10 15 12 17 19 21 10 

7 14 16 13 11 11 15 16 17 19 21 11 

8 13 14 13 11 19 14 15 15 19 15 11 

9 12 13 12 10 10 12 12 13 17 13 10 

10 11 13 11 17 17 13 13 14 16 17 9 
11 10 12 10 16 16 15 15 13 14 16 8 
12 11 14 11 21 9 16 13 15 16 21 9 
13 13 15 12 10 10 14 13 16 18 20 10 

14 12 13 12 10 10 12 12 14 17 14 10 

15 12 13 12 10 10 12 12 14 17 14 10 

16 11 14 11 21 17 16 14 16 17 21 9 
17 11 14 11 21 17 16 14 16 17 21 9 
18 11 13 11 17 17 14 14 14 17 17 9 
19 11 13 11 17 17 14 14 14 16 17 9 

I 20 12 13 12 10 10 13 13 14 18 14 10 

Avg 12 14 12 14 14 14 14 15 18 18 10 
StDev 1 1 1 5 4 2 2 1 2 3 1 
CoY 11% 9% 9% 33% 30% 11% 16% 10% 10% 16% 11% 
Min 10 12 10 10 9 12 12 13 14 13 8 
Max 15 17 14 21 20 18 20 18 22 21 12 



-N 
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a e . . x ncer ID Ly omparIson T bl A 4 T DOT AC U ta' t C 

Test Stat. Wt. Fuzzy Hybrid 
Cum. D·T Cum. D·T Average MODULUS SMART JIM Pt. Avg. Decision Decision Fusion Fusion 

1 66 66 73 91 91 65 70 93 N/A 91 94 
2 63 62 68 89 88 62 63 77 N/A 88 89 
3 64 63 70 89 89 63 65 84 N/A 89 91 
4 53 54 57 78 78 63 63 32 N/A 78 70 
5 52 53 57 77 77 61 61 28 N/A 69 77 
6 63 62 67 85 85 62 67 81 N/A 92 85 
7 70 94 83 95 95 72 84 122 N/A 102 95 
8 53 53 57 77 77 59 59 26 N/A 71 77 
9 71 97 85 96 96 75 88 124 N/A 96 103 
10 60 59 62 87 83 60 61 62 N/A 83 87 
11 41 40 54 58 58 41 41 53 N/A 57 58 
12 60 59 61 87 82 60 60 62 N/A 87 82 
13 55 55 57 80 80 59 59 36 N/A 80 74 
14 47 47 57 69 69 55 55 24 N/A 64 69 
15 61 60 62 84 84 60 59 61 N/A 85 84 
16 50 51 57 73 73 57 57 18 N/A 73 68 
17 54 54 57 79 79 58 58 32 N/A 79 74 
18 54 54 57 77 77 55 55 26 N/A 77 74 
19 57 56 59 84 84 62 58 52 N/A 76 84 
20 66 65 73 92 92 65 65 93 N/A 94 92 

Avg 58 60 64 82 82 61 62 59 N/A 82 81 
StDev 8 14 9 9 9 7 10 33 N/A 11 11 
CoY 14% 23% 14% 11% 11% 11% 16% 55% N/A 14% 14% 
Min 41 40 54 58 58 41 41 18 N/A 57 58 
Max 71 97 85 96 96 75 88 124 N/A 102 103 



a e . - ase nee IDty om T bl AS TxDOTB U rta· t C parlson 

Test Stat. Wt. Fuzzy Hybrid Cum. D-T Cum. D-T 
Average MODULUS SMART JIM 

Pt. Avg. Decision Decision Fusion Fusion 

1 9 22 11 31 31 24 24 22 31 43 11 
2 9 12 11 12 12 10 10 13 20 26 12 
3 13 25 14 17 17 17 18 43 25 58 17 

4 10 10 11 13 13 11 11 14 25 19 13 

5 11 22 12 13 13 17 17 20 34 45 13 
6 17 27 17 19 55 25 36 41 55 76 19 
7 16 29 16 17 17 19 17 40 70 71 17 

8 16 33 16 16 16 16 16 76 72 102 16 
9 16 30 16 17 17 18 16 54 87 76 17 

10 13 25 14 14 14 17 16 28 41 55 14 
11 9 16 10 34 34 15 15 19 20 34 12 
12 15 25 16 18 36 18 24 35 36 61 18 
13 13 24 14 15 15 18 15 19 52 49 15 
14 14 27 15 17 17 17 16 48 35 70 17 
15 16 24 17 19 53 21 33 12 51 53 19 
16 14 24 14 17 17 15 19 32 29 53 17 

17 10 12 11 13 13 17 17 18 36 18 13 

18 10 12 11 12 12 12 12 6 27 24 12 
19 9 22 11 43 43 25 25 29 22 43 12 
20 16 22 17 18 47 24 29 6 50 47 18 

Avg 13 22 14 19 25 18 19 29 41 51 15 
StDev 3 6 2 8 15 4 7 18 19 21 3 
CoY 21% 29% 18% 43% 60% 24% 37% 62% 46% 42% 18% 
Min 9 10 10 12 12 10 10 6 20 18 11 

Max 17 33 17 43 55 25 36 76 87 102 19 

-N 
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N 
00 

Test 
Pt. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Avg 
StDev 
CoV 
Min 
Max 

Stat. Wt. Fuzzy 
Avg. 

1.1 1.0 
1.1 1.0 
0.9 1.0 
0.8 1.0 
0.9 1.0 
0.9 1.0 
1.0 1.0 
0.9 1.0 
0.8 1.0 
0.8 1.0 
0.7 1.0 
0.8 1.0 
0.9 1.0 
0.8 1.0 
0.8 1.0 
0.8 1.0 
0.8 1.0 
0.8 1.0 
0.8 1.0 
0.8 1.0 
0.9 1.0 
0.1 0.0 
11% 0% 
0.7 1.0 
1.1 1.0 

a e . - x u Igra e nee mry T bl A 6 T DOT S b d U rta' t C 

Hybrid Cum. D-T Cum. D-T 
Decision Decision Fusion Fusion 

1.1 3.2 3.2 2.0 3.0 
1.2 3.2 3.2 2.0 3.0 
1.0 1.2 1.9 1.0 1.0 
0.9 1.1 1.1 1.0 1.0 
1.0 1.1 1.1 1.0 1.0 
1.0 1.1 1.1 1.0 1.0 
1.1 1.2 1.2 1.0 1.0 
1.0 1.2 1.9 1.0 1.0 
0.9 1.1 1.1 1.0 1.0 
0.8 2.7 2.7 1.0 1.0 
0.8 2.6 2.6 2.0 2.0 
0.9 3.4 1.0 2.0 1.0 
1.0 1.1 1.1 1.0 1.0 
0.9 1.1 1.1 1.0 1.0 
0.9 1.1 1.1 1.0 1.0 
0.9 3.4 1.7 1.0 1.0 
0.9 3.4 1.7 2.0 1.0 
0.9 1.7 1.7 1.0 1.0 
0.8 2.7 2.7 1.0 1.0 
0.9 1.1 1.1 1.0 1.0 
0.9 1.9 1.7 1.3 1.3 
0.1 1.0 0.8 0.4 0.6 
11% 51% 44% 36% 51% 
0.8 1.1 1.0 1.0 1.0 
1.2 3.4 3.2 2.0 3.0 

omparlson 

Average MODULUS SMART JIM 

4.9 2.1 3.2 1.3 
5.3 2.2 3.2 1.3 
4.2 1.9 2.7 1.2 
5.6 1.7 3.4 1.1 
5.3 1.8 3.2 1.1 
5.9 1.9 3.4 1.1 
5.3 1.9 3.4 1.2 
4.0 1.9 2.4 1.2 
3.5 1.7 2.1 1.1 
4.4 1.6 2.7 1.0 
4.2 1.4 2.6 0.9 
6.0 1.6 3.4 1.0 
5.3 1.8 3.2 1.1 
3.5 1.7 2.2 1.1 
3.5 1.7 2.2 1.1 
6.1 1.7 3.4 1.0 
6.1 1.7 3.4 1.0 
4.6 1.7 2.7 1.0 
4.4 1.6 2.7 1.0 
4.0 1.8 2.2 1.1 
4.8 1.8 2.9 1.1 

0.9 0.2 0.5 0.1 
19% 10% 16% 11% 
3.5 1.4 2.1 0.9 
6.1 2.2 3.4 1.3 



a e . - u us T hi A 7 TTI AC Mod I C omparIson 

Test Stat. Wt. Fuzzy Hybrid Cum. D-T Cum. D-T Average MODULUS SMART JIM PSPA 
Pt. Avg. Decision Decision Fusion Fusion 

1 498 633 490 642 471 563 483 609 500 642 821 471 

2 486 513 485 564 502 524 510 510 500 564 502 473 

3 494 546 491 480 480 530 502 540 500 521 659 480 

4 510 543 507 495 495 534 516 533 500 583 555 495 

5 529 545 526 518 518 537 526 535 500 604 519 518 

6 464 484 464 525 525 501 496 487 500 464 525 459 

7 510 517 510 521 521 530 522 512 500 452 575 521 

8 481 469 482 489 489 486 486 472 500 497 401 489 

9 513 512 515 528 528 544 535 498 500 593 371 528 

10 546 533 545 550 486 543 526 525 500 564 486 550 

11 489 519 488 481 481 518 501 515 500 501 577 481 

12 484 499 484 478 478 497 496 499 500 501 516 478 

13 454 475 454 515 515 494 494 480 500 515 460 444 

14 464 485 464 529 529 504 498 488 500 464 529 459 

15 525 508 525 535 503 521 505 506 500 503 487 535 

16 492 463 493 523 523 513 498 468 500 427 421 523 

17 490 471 490 503 503 493 492 477 500 456 449 503 

18 478 456 483 506 506 500 498 457 500 468 352 506 

19 546 567 541 542 434 532 481 554 500 740 434 542 

20 536 504 534 559 497 517 482 502 500 497 452 559 

Avg 499 512 498 524 499 519 502 508 500 528 505 501 

StDev 27 42 26 38 24 20 16 35 0 76 105 33 

CoY 5% 8% 5% 7% 5% 4% 3% 7% 0% 14% 21% 7% 

MiD 454 456 454 478 434 486 481 457 500 427 352 444 

Max 546 633 545 642 529 563 535 609 500 740 821 559 



...... 
UJ 
o 

I 

Test 
Pt. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Avg 
StDev 
CoY 
Min 
Max 

Stat. Wt. 
Avg. 

38 
69 
55 
49 
55 
61 
43 
56 
49 
60 
65 
50 
56 
45 
47 
43 
28 
30 
29 
27 
48 
12 

26% 
27 
69 

Fuzzy Hybrid 

70 39 
87 67 
117 54 
96 50 
80 55 
84 62 
72 43 
81 57 
79 49 
71 60 
78 64 
75 51 
72 57 
59 45 
74 48 
54 44 
55 29 
65 32 
48 33 
39 31 
73 49 
17 11 

24% 24% 
39 29 
117 67 

T bl A 8 TTI B M d I C a e . - ase o u us ompanson 

Cum. D-T Cum. D-T Average MODULUS SMART JIM Decision Decision Fusion Fusion 

44 44 67 58 74 147 44 31 
64 69 80 91 99 164 64 69 
58 48 55 52 142 320 58 48 
42 42 76 48 110 211 42 76 
47 47 65 62 81 125 47 72 
46 46 75 70 87 135 81 46 
52 52 63 61 74 132 38 52 
47 47 56 53 79 96 47 95 
46 46 65 54 89 170 46 50 
60 53 60 60 70 97 60 53 
56 56 67 70 80 116 67 56 
62 44 61 60 74 117 44 62 
49 49 59 57 71 98 49 67 
43 43 46 46 56 83 43 42 
56 42 63 61 78 136 42 56 
40 40 44 44 51 70 40 44 
35 35 48 48 46 80 24 35 
41 41 60 60 58 106 26 41 
46 46 46 46 43 61 46 21 
52 52 51 51 35 33 52 20 
49 47 60 58 75 125 48 52 
8 7 10 11 25 62 13 19 

16% 15% 17% 19% 33% 49% 28% 36% 
35 35 44 44 35 33 24 20 
64 69 80 91 142 320 81 95 



a e . - u Igra e o u us T bI A 9 TTI S b d M d I C omparlson 

Test Stat. Wt. 
Fuzzy Hybrid Cum. D-T Cum. D-T 

Average MODULUS SMART JIM Pt. Avg. Decision Decision Fusion Fusion 

1 10 12 11 14 14 12 12 12 14 12 9 
2 11 20 12 28 28 22 22 17 14 28 10 
3 13 18 14 16 16 15 15 16 16 22 11 
4 13 29 14 16 16 24 15 26 16 50 11 
5 14 26 15 12 12 20 16 24 17 44 12 
6 15 31 16 13 13 17 16 30 19 59 13 
7 16 26 17 14 14 19 17 26 20 43 14 
8 18 21 18 16 16 19 20 21 23 24 16 
9 17 20 17 15 15 18 18 20 22 24 15 
10 17 28 17 15 15 20 18 29 23 49 15 
11 16 28 17 14 14 19 17 28 21 48 14 
12 19 19 19 17 24 20 20 19 24 16 17 
13 18 24 18 16 16 20 24 25 23 35 16 
14 14 25 15 12 12 19 17 23 17 40 12 
15 16 25 17 14 14 19 18 24 20 39 14 
16 15 26 16 13 13 19 17 25 19 42 13 
17 18 20 18 16 16 19 19 20 23 21 16 
18 19 20 19 17 17 20 20 20 25 19 17 
19 9 13 11 13 13 13 13 11 16 4 13 
20 12 19 13 11 11 16 16 17 14 26 11 

Avg 15 23 16 15 15 19 18 22 19 32 13 
StDev 3 5 2 4 4 3 3 5 4 15 2 
CoV 20% 23% 16% 23% 26% 15% 16% 24% 19% 46% 17% 
Min 9 12 11 11 11 12 12 11 14 4 9 
Max 19 31 19 28 28 24 24 30 25 59 17 



a e " 
. nee mty T hi A 10 TTI AC U rta" t C omparlSon 

Test S18t. Wt. 
Fuzzy Hybrid 

Cum. D·T Cum. D-T 
Average MODULUS SMART JIM PSPA 

Pt. Avg. Decision Decision Fusion Fusion 

1 29 61 30 93 31 50 29 160 N/A 90 172 31 

2 28 46 29 82 105 49 47 39 N/A 79 105 31 

3 28 49 29 32 32 41 39 81 N/A 73 138 32 

4 29 48 30 33 33 39 31 43 N/A 82 117 33 

5 30 48 32 34 34 34 40 47 N/A 85 109 34 

6 27 45 27 109 109 70 63 31 N/A 65 110 30 

7 29 46 30 34 34 37 34 51 N/A 63 121 34 

8 28 37 28 32 32 29 29 47 N/A 70 84 32 

9 30 39 32 35 35 35 33 93 N/A 83 78 35 

10 31 45 34 36 101 39 61 38 N/A 79 102 36 

11 28 47 29 32 32 46 34 43 N/A 70 121 32 

12 28 45 28 31 31 43 41 16 N/A 70 108 31 

13 26 42 27 74 74 57 57 33 N/A 72 97 29 

14 27 45 27 110 110 71 62 33 N/A 65 III 30 

15 30 43 31 35 73 32 48 20 N/A 70 102 35 

16 28 35 29 34 34 32 31 51 N/A 60 88 34 

17 28 38 28 33 33 29 29 28 N/A 64 94 33 

18 28 33 28 33 33 30 30 72 N/A 66 74 33 

19 32 45 34 36 91 33 54 132 N/A 104 91 36 

20 31 41 33 37 72 35 55 44 N/A 70 95 37 

Avg 29 44 30 49 56 41 42 55 N/A 74 106 33 

StDev 2 6 2 28 31 12 12 37 N/A 11 22 2 

CoY 5% 14% 7% 57% 56% 30% 29% 66% N/A 14% 21% 7% 

Min 26 33 27 31 31 29 29 16 N/A 60 74 29 

Max 32 61 34 110 110 71 63 160 N/A 104 172 37 



a e . - ase ncer ID ty omparlson T bl A 11 TTI B U ta· t C 

Test State Wt. Fuzzy Hybrid Cum. D-T Cum. D-T Average MODULUS SMART JIM 
Pt. Avg. Decision Decision Fusion Fusion 

1 8 22 10 12 12 19 14 64 72 12 11 

2 14 21 15 18 25 17 24 56 80 18 25 
3 12 39 13 16 17 12 12 154 157 16 17 
4 11 27 12 12 12 18 11 89 103 12 27 
5 12 21 13 13 13 14 14 40 61 13 26 
6 13 20 14 17 17 22 21 45 66 23 17 

7 9 21 11 19 19 16 15 51 65 11 19 
8 12 21 13 13 13 12 13 28 47 13 34 
9 10 23 12 13 13 15 11 70 83 13 18 
10 12 19 13 17 19 12 14 24 48 17 19 
11 13 20 14 20 20 14 19 32 57 19 20 
12 11 21 12 22 12 13 13 38 57 12 22 
13 11 19 13 14 14 12 12 25 48 14 24 
14 9 18 10 12 12 9 9 23 41 12 15 
15 10 21 11 20 12 15 13 51 67 12 20 
16 9 15 10 11 11 9 9 16 34 11 16 
17 6 20 8 13 13 14 14 30 39 7 13 

18 6 23 9 15 15 19 19 43 52 7 15 
19 6 14 9 13 13 12 12 20 30 13 8 
20 6 9 8 15 15 14 14 16 16 15 7 

Avg 10 21 12 15 15 14 14 46 61 13 19 
StDev 3 6 2 3 4 3 4 32 30 4 7 
CoY 25% 28% 18% 21% 24% 23% 27% 70% 49% 28% 36% 
Min 6 9 8 11 11 9 9 16 16 7 7 
Max 14 39 15 22 25 22 24 154 157 23 34 



a e . - u Igra e neer Imy T bl A 12 TTI S b d Uta· t C omlarlson 

Test Stat. Wt. Fuzzy Hybrid Cum. D-T Cum. D-T Average Mod 5.1 SMART nM Pt. Avg. Decision Decision Fusion Fusion 

1 1.3 2.0 2.0 2.7 2.7 2.0 2.0 2.5 2.7 5.5 1.5 
2 1.4 6.0 2.0 12.9 12.9 8.0 8.0 9.5 2.7 12.9 1.7 
3 1.7 5.0 2.0 3.0 3.0 2.0 2.0 5.5 3.0 10.1 1.9 
4 1.7 9.0 2.0 3.0 3.0 6.0 2.0 21.2 3.0 23.0 1.9 
5 1.8 8.0 2.0 2.0 2.0 4.0 2.0 17.2 3.2 20.2 2.0 
6 2.0 9.0 2.0 2.2 2.2 2.0 2.0 25.0 3.6 27.1 2.2 
7 2.1 7.0 2.0 2.4 2.4 3.0 2.0 15.3 3.8 19.8 2.4 
8 2.3 4.0 3.0 2.7 2.7 2.0 3.0 4.4 4.4 11.0 2.7 
9 2.2 4.0 2.0 2.6 2.6 2.0 2.0 4.7 4.2 11.0 2.6 
10 2.2 7.0 3.0 2.6 2.6 3.0 2.0 17.8 4.4 22.5 2.6 
11 2.1 7.0 2.0 2.4 2.4 3.0 2.0 18.0 4.0 22.1 2.4 
12 2.3 3.0 3.0 2.9 4.6 3.0 3.0 4.4 4.6 7.4 2.9 
13 2.3 5.0 3.0 2.7 2.7 3.0 6.0 9.6 4.4 16.1 2.7 
14 1.8 7.0 2.0 2.0 2.0 4.0 2.0 14.9 3.2 18.4 2.0 
15 2.1 6.0 2.0 2.4 2.4 3.0 2.0 13.1 3.8 17.9 2.4 
16 2.0 7.0 2.0 2.2 2.2 3.0 2.0 15.3 3.6 19.3 2.2 
17 2.3 4.0 3.0 2.7 2.7 2.0 3.0 3.6 4.4 9.7 2.7 
18 2.3 4.0 3.0 2.9 2.9 2.0 4.0 4.2 4.8 8.7 2.9 
19 1.3 2.0 2.0 2.2 2.2 2.0 2.0 6.2 3.0 1.8 2.2 
20 1.6 6.0 2.0 1.9 1.9 4.0 4.0 7.9 2.7 12.0 1.9 

Avg 1.9 5.6 2.3 3.0 3.1 3.2 2.9 11.0 3.7 14.8 2.3 
StDev 0.4 2.1 0.5 2.3 2.4 1.5 1.6 6.7 0.7 6.8 0.4 
CoY 18% 37% 20% 78% 76% 49% 56% 61% 19% 46% 17% 
Min 1.3 2.0 2.0 1.9 1.9 2.0 2.0 2.5 2.7 1.8 1.5 
Max 2.3 9.0 3.0 12.9 12.9 8.0 8.0 25.0 4.8 27.1 2.9 
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