TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No.	2. Government Acces	sion No. 3. I	Recipient's Catalog N	0.						
FHWA/TX-85/49+358-1										
4. Title and Subtitle	5. 6	Report Date								
THE EFFECT OF MIXING TEMPER	Au	August 1984								
STOCKPILE MOISTURE ON ASPHA	6. 1	o. renorming Urgenization Lode								
7. Author(s)	8. F	8. Performing Organization Report No.								
Thomas W. Kennedy and Geral	d A. Huber	Re	Research Report 358-1							
9. Performing Organization Name and Addres	5	10.	10. Work Unit No.							
Center for Transportation R	11.	11. Contract or Grent No.								
The University of Texas at	Austin	Rea	Research Study 3-9-83-358							
Austin, lexas 78712-1075		13.	13. Type of Report and Period Covered							
12. Sponsoring Agency Name and Address			h a má m							
Texas State Department of H	ighways and Pu	blic	cerim							
P O Box 5051	ortation Plann	ing Division	Sanana Anna C							
Austin, Texas 78763			sponsoring Agency C							
15. Supplementary Notes										
Study conducted in cooperat	ion with the U	. S. Department of	f Transportat	ion, Federal						
Highway Administration	. Research St	udy Title: "The I	Effect of Mix	Temperature						
on Asphalt Mixtures as	Related to Dr	um Mixers"								
16. Abstract										
This report summarizes	the effects o	f various mixing t	temperatures	and						
stockpile moisture contents	on asphalt mi	xtures produced by	y conventiona	l and drum						
mix plants.	maducad and m	load on the read	with water o	ontonto						
ranging from zero to satura	red and at tem	neratures ranging	from 175°F t	o 325°F at						
three different sites with	lifferent abso	rptive aggregates	Laboratory	specimens						
as well as field specimens	vere made in o	rder to evaluate	various engin	eering						
properties.			_	-						
While some variation i	n <mark>tensile str</mark> e	ngth, tensile stro	ength ratio,	and boiling						
test results was observed,	no significant	difference was id	lentified bet	ween mix-						
tures produced in the batch	plant and the	drum plant for a	ll conditions	of stock-						
Both types of asphalt	aperature.	le to remove most	or all of th	a moistura						
from the stockpile aggregat	e though they	were penalized wit	th higher fue	1 costs and						
lower production.										
Several uncontrolled v	ariables encou	ntered during the	experiments	(moisture						
content of asphalt mixture,	voids in the	mineral aggregate	, air voids,	asphalt						
content and asphalt penetra	tion) caused s	ome variability in	h the results	; however,						
they did not mask the effec	is of the cont	rolled variables of	completely.							
37 Key Weeds		18 Distribution Statement								
nen half minteres indirest	romat la	No rostrictions	This docum	ont is						
asphalt mixtures, indirect	ensilient	available to the	, into abcum	ugh the						
modulus, tensile strength	.collene 1997egate	National Technical Information Service.								
moisture, drum mix plant	00100400	Springfield, Virginia 22161.								
10 Security Classif (of this report)	20. Security Class	if. (of this page)	21. No. of Pages	22. Price						
Unclassified	Unclassifie	d	140							
0110 1000 11100	0.00.000.000	-	1							

THE EFFECT OF MIXING TEMPERATURE AND STOCKPILE MOISTURE ON ASPHALT MIXTURES

by

Thomas W. Kennedy Gerald A. Huber

Research Report Number 358-1

The Effect of Mix Temperature on Asphalt Mixtures as Related to Drum Mixers

Research Project 3-9-83-358

conducted for

Texas State Department of Highways and Public Transportation

> in cooperation with the U. S. Department of Transportation Federal Highway Administration

> > by the

CENTER FOR TRANSPORTATION RESEARCH BUREAU OF ENGINEERING RESEARCH THE UNIVERSITY OF TEXAS AT AUSTIN

August 1984

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

PREFACE

This is the first report in a series of reports for Project 3-9-83-358, "The Effect of Mixing Temperature and Stockpile Moisture on Asphalt Mixtures." This report summarizes the findings at the three test site locations.

Special appreciation is due to the assistance of the Texas State Department of Highways and Public Transportation, especially personnel from Districts 14 and 16 where the tests were conducted.

Appreciation is also due to the contractors involved in this work, Heldenfeld Brothers of Corpus Christi, Texas, and Capital Aggregates of Austin, Texas. Without their cooperation and enthusiasm it would have been impossible to complete the various tasks.

Thanks are expressed to members of the Center for Transportation Research staff. In particular, the guidance and aid of Mr. James N. Anagnos is especially appreciated. Special thanks are directed to Mr. Pat Hardeman and Mr. Eugene Betts for the volumes of test data which were done as part of this project.

The support of the Federal Highway Administration, Department of Transportation, is gratefully acknowledged.

Thomas W. Kennedy Gerald A. Huber

iii

LIST OF REPORTS

Report No. 358-1, "The Effect of Mixing Temperature and Stockpile Moisture on Asphalt Mixtures," by Thomas W. Kennedy and Gerald A. Huber summarizes the results of a study concerned with various mixing temperatures and aggregate moisture contents for asphalt mixtures at three test sites.

.

ABSTRACT

This report summarizes the effects of various mixing temperatures and stockpile moisture contents on asphalt mixtures produced by conventional and drum mix plants.

Asphalt mixtures were produced and placed on the road with water contents ranging from zero to saturated and at temperatures ranging from 175°F to 325°F at three different sites with different absorptive aggregates. Laboratory specimens as well as field specimens were made in order to evaluate various engineering properties.

While some variation in tensile strength, tensile strength ratio, and boiling test results was observed, no significant difference was identified between mixtures produced in the batch plant and the drum plant for all conditions of stockpile moisture and mixing temperature.

Both types of asphalt plants were able to remove most or all of the moisture from the stockpile aggregate though they were penalized with higher fuel costs and lower production.

Several uncontrolled variables encountered during the experiments (moisture content of asphalt mixture, voids in the mineral aggregate, air voids, asphalt content and asphalt penetration) caused some variability in the results; however, they did not mask the effects of the controlled variables completely.

KEY WORDS: asphalt mixtures, indirect tensile test, elastic properties, resilient modulus, tensile strength, aggregate moisture, stockpile moisture, mix temperature, drum mix plant, conventional plant

SUMMARY

Studies have indicated that mixtures produced in drum plants have workability and short-term performances equal to mixtures produced in conventional plants and that long-term performance will be equivalent. This work, however, has led to questions related to the effect of lower mixing temperatures and higher aggregate moisture contents. In addition, there is a need for information related to effects of stockpile and asphalt-mixture moisture contents for conventional and drum plants in order to develop cost-effective specifications.

To determine these effects, the Center for Transportation Research at The University of Texas at Austin and the Texas State Department of Highways and Public Transportation initiated a series of field experiments involving an evaluation of the engineering properties of asphalt mixtures produced with a range of stockpile moisture contents, a range of mixing temperatures, and both drum and conventional batch plants.

This paper covers the first phase of the study and involved a variety of aggregate types and different plants in Texas. Mixing temperatures ranged from 175°F to 325°F and stockpile moisture contents varied from dry to saturated. The engineering properties evaluated were Hveem stability, tensile strength, resilient modulus of elasticity, and moisture damage susceptibility for batch and drum mix plants. If the specifications could be changed without detrimental effects to the mixture properties, significant savings could be realized.

To determine these effects the Center for Transportation Research (CTR) and the Texas State Department of Highways and Public Transportation (Texas SDHPT) through their cooperative research program initiated a series of experiments which were performed on asphalt plants under regular field conditions. These experiments were conducted on both drum mix plants and conventional batch plants with a variety of aggregate types.

This paper covers the first phase of the study. It discusses the experimental work performed, problems encountered, results obtained, and conclusions reached.

ix

IMPLEMENTATION STATEMENT

Several studies have indicated that the mixture produced in drum mix plants has workability and short-term performance qualities equal to those of a mixture produced in conventional plants. There is also an indication that long-term performance of both will be equivalent. However, these studies evaluated material produced only under existing specifications and an effort has not been made to establish the performance qualities of mixtures produced outside of existing specifications.

The work done to assess and compare the properties of drum mixed to conventionally mixed asphalt mixtures led to the question as to whether the drum mix plant could produce acceptable mixtures at lower temperatures and higher moisture contents than existing specifications allow. In addition, there is a need for information related to the effects of stockpile or mixture moisture contents for both conventional plants and drum plants. If the specifications could be changed without detrimental effects to the mixture properties, significant savings could be realized.

TABLE OF CONTENTS

CHAPTER 1	INTRODUCTION
CHAPTER 2	• EXPERIMENTAL PROGRAM • • • • • • • • • • • • • • • • • • •
Stud	y Design
	Contents
	Asphalt Plants Used for Experimentation
	Materials
	Sampling Program
	Specimen Preparation and Conditioning
	Testing Program
Test	Methods
1000	Hypern Stability Test
	Static Indirect Tensile Test
	Repeated-Load Indirect Tensile Test
	Texas Boiling Test
	Other Tests
Fngi	nooring Properties Analyzed
Eligi	$\begin{array}{c} \text{Hereing floperties analyzed} \\ \text{Hereing floperties analyzed} \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 1$
	Tongilo Strongth
	Tensile Strength Patio
	Positiont Modulus of Flacticity
	Resilient Modulus of Elasticity
CHAPTER 3	. PRESENTATION OF EXPERIMENTAL RESULTS
Unco	ntrolled Variables
	Stockpile Moisture Content
	Moisture in the Asphalt Mixture
	Specimen Density
	Voids in the Mineral Aggregate
	Air Voids
	Asphalt Content
	Extracted Asphalt Penetration
Summ	arv of Test Results
Effe	ct of Mixing Temperature
	Hveem Stability
	Tensile Strength
	Resilient Modulus of Elasticity
	Moisture-Damage Resistance
	Tensile Strength Ratio
	Boiling Test
Effo	ct of Stockpile Moisture
2110	Hyper Stability 50
	Tensile Strength 50
	Tenerte ettenden

	Resilie	ent Modulus	of E	lasti	icit	Y	•	•	•	•	•		•	•	•	•	•	•		•	50
	Moistur	e-Damage Re	esista	ance		•				•	•			•	•	•	•	•		•	50
	Te	ensile Strer	ngth I	Ratio	ς.	•	•	•	•	•	•			•	•	•	•	•	•		50
	Bo	iling Test	· ·			•		•	•	•			•	•	•	•			•	•	56
	Experiment H	Repeatabilit	v.																		56
	Asphalt Plar	t Fuel Cons	umpt	ion						-			-	-	-		-	-			58
						•	•	•	•	•	•		•	•	•	•	•	•	•	•	
CHAPT	ER 4. CONCI	USIONS AND	RECON	MMENI	DATI	ON	s	•	•	•	•	•••	•	٠	•	•	•	•	•	•	63
	General Cond	clusions				•			•							•			•		63
	Effects of M	lixing Tempe	eratu	re .		•	•	•	•	•	•		•	•		•	•		•	•	63
	Effects of S	Stockpile Mo	oistu	re Co	onte	ent											•				64
	Recommendati	.ons																			64
APPEN	DICES																				
	APPENDIX A.	AGGREGATE	А, НД	ARD I	LIME	ST	ONE	E A	AGG	GRE	'GA'	ΓE	•	•	•	•	•	•	•	•	69
	APPENDIX B.	AGGREGATE	B, S2	ANDSI	FONE	A C	GGF	REC	PA	Έ	US:	ING	; A	BZ	ATC	СН					~-
		ASPHALT PI	JANT	•••	• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	87
	APPENDIX C.	AGGREGATE	C, SZ	ANDST	FONE	A S	GGF	REC	GAJ	E	US	INC	; A	DI	RUN	4 1	4I X	K			107
		ASPHALT PI	TWIN.T.	• •	• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	107
REFER	ENCES					•	•	•	•	•	•		•	•		•		•		•	125

CHAPTER 1. INTRODUCTION

In the past decade the use of drum mix asphalt plants has increased significantly and the trend is expected to continue since new plant sales are predominantly of this type. The simplicity, lower initial cost, and lower operating cost of the drum mix plant are the reasons for the sales dominance. A conventional plant heats the aggregate in a rotating drum drier, separates the particles by sieve size into hot storage bins, weighs out appropriate quantities of each, and mixes the aggregate with asphalt in a pugmill. By contrast a drum mix plant heats the aggregate in a drum and mixes it by injecting the asphalt in the lower third of the drum length. As a result the aggregate drier, hot aggregate bins, weighing scales, and pugmill of a conventional asphalt plant are replaced by a drum mixer which is approximately the same size as the aggregate drier alone. In addition, the drum mix plant relies on a foaming action, produced when the hot asphalt and moist aggregate are mixed, to coat the particles and in turn allows lower operating temperatures. These simplifications account for the advantages of the drum mix asphalt plant.

Several studies have indicated that the mixture produced in drum mix plants has workability and short-term performance qualities equal to those of a mixture produced in conventional plants. There is also an indication that long-term performance of both will be equivalent (Ref 1). However, these studies evaluated material produced only under existing specifications and an effort has not been made to establish the performance qualities of mixtures produced outside of existing specifications.

The work done to assess and compare the properties of drum mixed to conventionally mixed asphalt mixtures led to the question as to whether the drum mix plant could produce acceptable mixtures at lower temperatures and higher moisture contents than existing specifications allow. In addition, there is a need for information related to the effects of stockpile or mixture moisture contents for both conventional plants and drum plants. If the specifications could be changed without detrimental effects to the mixture properties, significant savings could be realized. Unfortunately,

1

research on the combined effects of mixing temperature and moisture content of asphalt mixtures was not available for either conventional asphalt plants or drum mix plants. To determine these effects the Center for Transportation Research (CTR) and the Texas Department of Highways and Public Transportation (DHT) through their cooperative research program initiated a series of experiments which were performed on asphalt plants under regular field conditions. These experiments were conducted on both drum mix plants and conventional batch plants with a variety of aggregate types.

Details of the experimental program and analysis of the results are contained in this report. Chapter 2 contains a description of the experimental program and the locations of the asphalt plants involved. The test results are presented in Chapter 3 and the conclusions are summarized in Chapter 4. Appendices A, B and C discuss the experiments done on Aggregates A, B and C, respectively.

CHAPTER 2. EXPERIMENTAL PROGRAM

The primary objective of this study was to determine the effects of mixing temperature and moisture content on the properties of asphalt mixtures. The properties evaluated included the indirect tensile strength, the resilient modulus of elasticity, the Hveem stability, and moisture damage susceptibility. To achieve this objective, an experiment was designed and performed on several asphalt mixing plants in the state of Texas. This chapter describes the asphalt plants, the aggregates, the sampling program, the testing program, and the test methods employed in the study.

STUDY DESIGN

The study involved an experiment in which combinations of various mixing temperatures and stockpile moisture contents were used to produce asphalt mixtures with different aggregates (Table 1). This basic experiment was repeated at several different asphalt plants in the state.

Experiment Mixing Temperatures and Stockpile Moisture Contents

The mixing temperature was varied from normal operating temperature $(325^{\circ}F)$ to temperatures well below present normal operations $(175^{\circ}F)$ and the stockpile moisture contents were varied from virtually dry to nearly saturated. The three levels of moisture content used were referred to as dry, wet, and saturated. Dry stockpiles were obtained by predrying the aggregate before mixing. Wet stockpiles were defined as the natural stockpile moisture and saturated aggregates were obtained by applying water to small stockpiles of individual aggregates. Mixing temperature measured at the discharge of the mixture was varied by changing the burner flame control. The temperature of the asphalt cement prior to mixing was held constant throughout the experiments at an estimated 275°F to 300°F.

Asphalt Plants Used for Experimentation

Selection of asphalt mixture plants and construction projects was coordinated with the Texas Department of Highways and Public Transportation,

3

Mixture Mixing	Cold Feed Aggregate Moisture Content							
Temp.* °F	Dry	Wet	Saturated					
175	x	x	x					
225	x	x	x					
250	x	x	x					
275	×	x	x					
325	x	x	x					

TABLE 1. MOISTURE-TEMPERATURE EXPERIMENT DESIGN

÷.

* The mixing temperatures in one of the experiments were changed to 200, 250 and 325°F.

the Texas Hot Mix Pavement Association, and individual hot mix contractors. The Texas Hot Mix Pavement Association provided a list of contractors who were interested in the objectives of this study and were willing to participate. After identifying suitable highway projects the proposed experimentation was discussed with the Highway Department district staff and the contractor. On State Highway projects the Highway Department and the Federal Highway Administration permitted the experimentation to be done as part of the contract.

The plant locations used for experimentation are shown in Figure 1. At Alice and Mathis the asphalt plants were producing asphalt concrete for specific contracts on two sections of Interstate Highway 37. The third plant site at Austin produced material for a variety of miscellaneous Highway Department projects and a City of Austin project.

Materials

Three asphalt mix designs were used. The major component for the two designs from the Corpus Christi Highway District (Alice and Mathis) was sandstone, and for the third, from Austin, was hard limestone. The individual aggregates in each of the mix designs and the gradations of the mixtures are shown in Table 2 and Figure 2, respectively. The asphalt cement used for all projects was an AC-10. Both of the Corpus Christi mixtures were susceptible to moisture damage and as part of the contract work a 1 percent hydrated lime slurry was sprayed on the coldfeed belt.

Sampling Program

Samples of both asphalt mixture and uncoated aggregate were gathered during each experimental run. The asphalt mixture was shovelled from a truck after the material had been mixed at the desired temperature. Approximately 200 pounds was gathered and carried to the field laboratory for specimen preparation.

Uncoated aggregate samples were gathered to determine aggregate moisture contents at key points in the plant processing (Fig 3). Samples of individual aggregates were taken from the feedbelts on the coldfeed bins and a sample of the combined mixture was taken from the coldfeed conveyor belt.

6.

Aggregate		Asphalt P	lant		Aggregate					
(District*)	Owner	Location	Туре	Design	Туре	Producer	Source			
Aggregate A	Capital	Austin	Drum/	Type D**	Crushed sandstone	Delta Rock	Marble Falls			
(14, Austin)	Aggregates		Batch		Crushed limestone	Zachary Aggregates	Georgetown			
					Limestone screenings	Zachary Aggregates	Georgetown			
					Field sand	Capital Aggregates	Austin			
Aggregate B	South	Mathis	Batch	Type D**	Crushed sandstone	South Texas Const.	Tuleta			
(16, Corpus	Texas				Limestone screenings	McDonough Brothers	New Braunfels			
Christi)	Construction				Field sand	South Texas Const.	Mathis			
Aggregate C	Heldenfel	Alice	Drum	Type D**	Crushed sandstone	Heldenfel Brothers	Whitley Property			
(16, Corpus	Brothers				Sandstone screenings	Heldenfel Brothers	Whitley Property			
Christi)					Field sand	Heldenfel Brothers	Freeborn Property			

TABLE 2. LOCATION AND DESCRIPTION OF AGGREGATE MIXTURES

* Texas State Department of Highways and Transportation (SDHPT) Districts

** Designation of Texas SDHPT, 1/2" maximum size aggregate

Fig 3. Locations of moisture content sampling.

Specimen Preparation and Conditioning

Specimens, 2-inch high by 4-inch diameter briquets, were molded using a Texas Gyratory Shear compactor. Three compaction procedures were used and are referred to as standard, modified-standard, and modified. The standard compaction specimens were prepared using the standard procedures of the Texas Department of Highways and Public Transportation in which the mixture was compacted at 250°F (Ref 2). The modified-standard compaction specimens were prepared using the same method with the exception of the compaction temperature which was not changed from the plant mixing temperature. The modified compaction specimens were prepared at the plant mixing temperature to a target density of 7 percent air voids.

Two conditioning methods were applied to each of the specimens. Dryconditioned specimens were stored at room temperature for several days and wet-conditioned specimens were vacuum saturated under 26-inch mercury vacuum, placed through a freeze-thaw cycle, then tested at room temperature.

Testing Program

The testing program used for each of the experiments is shown in Table 3.

TEST METHODS

The three basic test methods used were the Hveem stability test, the static and repeated-load indirect tensile tests, and the Texas Boiling Test.

Hveem Stability Test

Hveem stabilities were determined using the Hveem stabilometer (Fig 4) as described in Tex-208-F (Ref 2). Compacted asphalt mixture specimens 2 inches high by 4 inches diameter are loaded at 140°F at a constant strain rate of 0.05 inches per minute to a maximum vertical load of 5,000 pounds. The horizontal force is measured as a pressure on the stabilometer wall and is used to calculate the Hveem stability.

TABLE 3. TESTING PROGRAM FOR MOISTURE-TEMPERATURE EXPERIMENTS

Standard Compaction Specimens*

Dry Conditioned Indirect Tensile Test Hveem Stability Freeze-Thaw Conditioned Indirect Tensile Test

Freeze-Thaw Conditioned

Indirect Tensile Test

Modified-Standard Compaction Specimens**

Dry Conditioned Indirect Tensile Test Hveem Stability

Modified Compaction Specimens***

Dry Conditioned Indirect Tensile Test Hveem Stability

Freeze-Thaw Conditioned Indirect Tensile Test

Bulk Specimens (including asphalt mixture and aggregates)

Moisture content determination Texas Boiling Test Asphalt Extraction Aggregate Gradation Penetration of extracted asphalt Viscosity of extracted asphalt Theoretical specific gravity of mixture

*	Standard		Standard DH	' test	method	at	250°F	
**	Modified-Standard	-	Standard DH	test	method	at	plant	temperature
* * *	Modified (7% air)		Modified DH	test	method	at	plant	temperature

Fig 4. Exploded view of Hveem stabilometer.

Static Indirect Tensile Test

The indirect tensile test, which estimates the tensile strength of the asphalt mixtures, used the following equipment and procedures.

A cylindrical specimen was loaded with a compressive load acting parallel to and along the vertical diametrical plane (Fig 5a). The load, which was distributed through 0.5-inch wide steel loading strips curved to fit the specimen, produced a fairly uniform tensile stress perpendicular to the plane of the applied load. The specimen ultimately failed by splitting along the vertical diameter (Fig 5b). An estimate of the tensile strength was calculated from the applied load at failure and the specimen dimensions.

The test equipment included a loading frame, loading head, and an MTS closed-loop electrohydraulic system to apply load and control the deformation rate. The loading head was a modified commercially available die set with the lower platen fixed and the upper platen constrained so that both platens remained parallel. The curved stainless steel loading strips were attached to both the upper and lower platens (Ref 3).

Repeated-Load Indirect Tensile Test

To determine the resilient modulus of elasticity, the repeated-load indirect tensile test was used in which approximately 20 percent of the static failure load was applied repeatedly to the specimen using the static indirect tensile test equipment (Ref 4). A small preload was applied to the specimens to prevent impact loading and to minimize the effect of seating the loading strip; then the repeated load was added.

The load-vertical deformation and load-horizontal deformation relationships were recorded by a pair of X-Y plotters while the load was applied at a frequency of one cycle per second (1 Hz) with a 0.2-second load duration and a 0.8-second rest period. A typical load pulse and the resulting deformation relationships are shown in Figures 6 and 7. All tests were conducted at 75°F.

(a) Compressive load being applied.

(b) Specimen failing in tension.

Fig 5. Indirect tensile test loading and failure.

Fig 6. Typical load pulse and deformation-time relationships for the repeated-load indirect tensile test.

Fig 7. Typical permanent deformation curve for repeated-load indirect tensile test.

Texas Boiling Test

The Texas Boiling Test* is a rapid method to evaluate the moisture susceptibility or stripping potential of aggregate-asphalt mixtures (Ref 5). In this test a visual observation was made of the extent of stripping of the asphalt from aggregate surfaces after the mixture has been subjected to the action of boiling water for a specified time.

A 1,000 ml beaker was half filled with distilled water, was heated to boiling, and an approximate 200-gram sample of the aggregate-asphalt mixture was added to the boiling water, then boiled for 10 minutes. The mixture was allowed to cool to room temperature while still in the beaker. After cooling, the water was drained from the beaker and the wet mixture was emptied onto a paper towel and allowed to dry. The amount of stripping was determined by a visual rating, expressed in terms of the percent of asphalt retained (scale 0 to 100 percent retained).

Other Tests

Other tests used on asphalt mixtures which were conducted according to standard methods of the Texas State Department of Highways and Public Transportation (Ref 2) and ASTM (Ref 6) included:

- Asphalt extraction, Tex-210-F, to determine percent asphalt binder.
- Asphalt recovery by the Abscon process, Tex-211-F, to recover extracted asphalt.
- Asphalt penetration and viscosity, Tex-502-C and Tex-528-C, of the extracted asphalt.
- Sieve analysis, Tex-200-F, of the aggregate recovered from the asphalt extraction.
- Theoretical maximum specific gravity, ASTM 2041, the specific gravity of the asphalt-coated aggregate.
- Bulk specific gravity of compacted specimens, Tex-207-F.

- Compacting test specimens of asphaltic mixtures, Tex-206-F. Moisture content determinations of the coated and uncoated aggregate were performed by drying to constant weight at 250°F.

^{*}Procedure differed from the procedure currently specified by SDHPT.

ENGINEERING PROPERTIES ANALYZED

The testing program was designed to achieve two objectives: measure the controlled variables and outputs of the experiment and monitor other variables which could not be controlled. The properties analyzed were Hveem stability, tensile strength, resilient modulus of elasticity, tensile strength ratio, and Boiling test values.

Hveem Stability

The equation for calculating the Hveem stability was

$$S = \frac{22.2}{\frac{P_{h}D_{2}}{\frac{P_{v}-P_{h}}{v} + 0.222}}$$

where

S = Hveem stability, %,
P_v = vertical pressure, psi,
P_h = horizontal pressure, psi, and
D₂ = displacement of specimen, tenths of an inch.

Tensile Strength

Tensile strength is the maximum tensile stress which the specimen can withstand. Using the load-deformation information obtained from the static indirect tensile test, the following relationship can be used to calculate tensile strength for 4-inch diameter specimens:

$$S_{T} = \frac{0.156P}{t}$$

where

S_T = tensile strength, psi, P = the maximum load carried by the specimen, lb, and t = thickness or height of the specimen, in.

Tensile Strength Ratio

To evaluate the moisture susceptibility of the experimental mixtures an additional parameter, the tensile strength ratio, was used. The tensile strength ratio, TSR, is defined as follows:

$$TSR = \frac{S_{T_{wet}}}{S_{T_{dry}}}$$

where

ST = tensile strength of the wet-conditioned specimen, psi,
 wet

and

$${}^{S}T_{dry}$$
 = tensile strength of the dry-conditioned specimen, psi.

Resilient Modulus of Elasticity

The resilient modulus of elasticity was calculated using the resilient, or instantaneously recoverable, horizontal and vertical deformations after 300 applied load cycles. The equation used to calculate the resilient modulus was

$$E_{R} = \frac{P_{R}}{t H_{R}} (0.27 + v_{R})$$

where

 $E_R =$ resilient modulus of elasticity, psi, $P_R =$ the applied repeated load, lb (Fig 6), t = specimen thickness, $H_R =$ horizontal resilient deformation, and $v_R =$ resilient Poisson's ratio.

The value of $\nu_{_{\mathbf{R}}}$ was calculated using the following equation:

$$v_{\rm R} = 3.59 \frac{{\rm H}_{\rm R}}{{\rm v}_{\rm R}} - 0.27$$

where

CHAPTER 3. PRESENTATION OF EXPERIMENTAL RESULTS

The primary objective of this study was to determine the effects of mixing temperature and stockpile moisture content on various engineering properties of asphalt mixtures including Hveem stability, tensile strength, resilient modulus of elasticity, tensile strength ratio, and asphalt retained after the Texas boiling test. In the experiment design only mixing temperature and stockpile moisture content were to be varied; however, other mixture parameters were found to change during field production of the experimental mixtures and analysis of the results was complex. An initial attempt was made to analyze the data using various statistical methods. These methods, however, did not yield useful results and a decision was made to abandon the use of regression and analysis of variance with consideration of covariates as analytical tools. Instead, the uncontrolled variables were examined individually to determine if each was likely to cause a significant effect on the experiment results.

UNCONTROLLED VARIABLES

The uncontrolled variables which varied during the experiment were moisture in the asphalt mixture, voids in the mineral aggregate, air voids, asphalt content, and asphalt penetration.

Stockpile Moisture Content

Although the stockpile moisture contents were controlled qualitatively as dry, wet, and saturated, the actual moisture contents were dependent on the type of aggregate, the atmospheric conditions, the length of time the experiment was conducted, and the technique used to introduce moisture.

The stockpile moisture content for each experimental run (Fig 8) is the moisture content of the combined aggregates entering the drier or the drum mixer. The values for Aggregate C include a lime slurry sprayed on the cold-feed belt. Aggregate B also was treated with a lime slurry; however, since field measurement was not possible, the moisture added by the slurry was estimated and included in the results.

21

Fig 8. Relationship between mixing temperatures and asphalt mixture moisture contents.

Within each aggregate type the moisture contents for the three stockpile moisture conditions were relatively uniform except for Aggregate A. This aggregate was used at the stockpile moisture content and the variation of these contents is attributable to the long (9 month) interval during which the runs were done.

Aggregates B and C are sandstone mixtures from the same geologic source. Within each aggregate mixture the moisture contents are relatively uniform for each stockpile moisture condition; however, Aggregate C tends to have somewhat higher contents. This difference is attributed to the method of wetting the aggregates. Aggregate B was saturated by spraying with water delivered from the spray bar of a water truck while Aggregate C was wetted by soaking with a garden hose for approximately eight hours.

The saturated moisture contents, determined by soaking a nominal 1000gram sample under water for 24 hours and allowing it to drain for 30 minutes, of each stockpiled component and of the total mixture are shown in Table 4. The relative saturation or the moisture content expressed as a percentage of the saturated moisture contents is shown in Figure 9. The higher moisture content of Aggregate C plus its lower saturated moisture content combine to produce the higher levels of relative saturation than for Aggregate B.

Moisture in the Asphalt Mixture

Generally the moisture content of the asphalt mixtures was less than about 0.5 percent, especially for the nonporous Aggregate A. Nevertheless, the moisture content of the asphalt mixture was influenced by the stockpile moisture content, the mixing temperature, and the aggregate porosity (Fig 8).

As expected, the moisture content increased with increased stockpile moisture, decreased as mixing temperature increased, and was higher for Aggregates B and C which were more porous than Aggregate A. During the experimental runs the stockpile moisture content and the mixing temperature were controlled and no attempt was made to produce a given asphalt mixture moisture. Thus, all tests were conducted on prepared specimens in which the moisture content had achieved equilibrium. The amount of moisture which escaped from the specimens was not known; however, some moisture was believed to have remained trapped in the specimen at the time of testing.

Aggregate	Saturated Moisture Content* %
Aggregate A	
Sandstone	5.4
Limestone	6.8
Limestone screenings	20.0
Field sand	25.5
Aggregate mixture	11.8
Aggregate B Sandstone Limestone	12.5 16.1
Sandstone screenings	26.5
Aggregate mixture	16.7
Aggregate C	
Sandstone	4.7
Sandstone screenings	19.1
Field sand	19.6
Aggregate mixture	10.0**

TABLE 4. SATURATED AGGREGATE MOISTURE CONTENTS

* Moisture content after soaking for 24 hours and draining 30 minutes.

** Estimated from saturated moisture contents of individual aggregates.

Fig 9. Relative saturation of the aggregate mixture for experimental runs.

25

Specimen Density

<u>Voids in the Mineral Aggregate (VMA)</u>. Density was evaluated in terms of voids in the mineral aggregate since the specific gravities of the various aggregates differed and the asphalt contents for the mixtures also differed. The average VMA's of the specimens for each experimental condition are shown in Figures 10, 11, and 12 for standard, modified-standard, and modified compacted specimens, respectively. The variation in VMA was relatively small for a given compaction procedure and thus it is felt that density probably did not have a significant effect on the test results. Differences did occur, however, for the various compaction procedures.

<u>Air Voids</u>. The air voids in each of the molded specimens were affected by the combination of VMA and asphalt content in the compacted mixture. If the asphalt content among separate specimens is the same, the air voids will vary only with the VMA and as such will be a measure of density.

The air voids for individual compacted samples were calculated using the bulk specific gravity of the specimen and the theoretical specific gravity of the aggregate asphalt combination as determined by the Rice method (ASTM 2041). The average for each of the compaction types is presented in Figures 13, 14, and 15 for standard, modified-standard, and modified compaction specimens, respectively. The variation in air void content observed for the various experimental runs is representative of the variation in density. Within each group of compacted specimens this change did not have a significant effect on the test results.

Asphalt Content

An attempt was made to maintain the asphalt content at the design percentage for each experimental run. Aggregate moisture contents were measured and adjustments were made to the amount of asphalt added to compensate for the amount of water in the coldfeed aggregate; however, the extracted asphalt contents were found to vary considerably (Fig 16). The asphalt contents for Aggregate C were generally much higher than for Aggregates A and B. Later work indicated that the samples which were being used for extraction contained some moisture, producing erroneously high asphalt contents. Corrections to the testing procedure were made for the

Fig 10. Standard compaction specimens, voids in the mineral aggregate.

-

b. Corpus Christi - Aggregate B

Fig 11. Modified-standard compaction specimens, voids in the mineral aggregate.

Fig 12. Modified compaction specimens, voids in the mineral aggregate.

29

Fig 13. Standard compaction specimens, air voids.

Fig 14. Modified-standard compaction specimens, air voids.

Fig 15. Modified compaction specimens, air voids.

Fig 16. Asphalt content variations in experimental runs.

experimental runs in Aggregate B, the last experiment done, hence the error is not present. Also, the asphalt contents for Aggregate A are believed to be accurate despite the testing procedure because of the relative imperviousness of the aggregate. Therefore Aggregate C appears to be the only experiment affected by the non-dry samples.

The daily plant testing done by Texas SDHPT on non-experimental mixtures indicated that the asphalt contents varied ± 0.1 percent from the design. Thus, there is no evidence to indicate that the plant calibration was not accurately supplying the proper asphalt volume. If the actual experimental asphalt contents were varying as indicated then the most probable occurrence would have been non-uniformity of moisture contents in the stockpiles, yet the results determined for the wet stockpile conditions varied even though the stockpiles had not changed. Unfortunately, state personnel did not test any of the experimental mixtures and a direct comparison of extraction results cannot be made.

Thus, a correction was made for moisture in the extraction sample which was assumed to be equal to 75 percent of the asphalt mixture moisture content. The resulting corrected asphalt contents for Aggregate C are at least closer to the actual values (Fig 16).

Based on the consideration given to asphalt contents as discussed above, it is felt that an experimental error of undeterminable origin has entered the indicated asphalt contents of the experimental mixtures and that the actual contents were approximately equal to the design value. Therefore, asphalt content will be treated as a constant throughout the analysis of experiment results which will follow.

Extracted Asphalt Penetration

The penetration of the extracted asphalt was measured to determine the amount of hardening which had occurred under the experimental conditions. Results indicate that the amount of asphalt hardening was not significantly affected within the range of mixing temperatures studied (Fig 17). However, the higher mixing temperatures did cause somewhat more hardening. This trend, evident in the Aggregate A batch plant mixtures, is suggested for the Aggregate B mixtures. The high penetration of the asphalt extracted from the two low mixing temperatures of Aggregate A are not caused by the mixing

34

Fig 17. Effect of mixing temperature on asphalt hardening.

temperature but are believed to be the result of an incorrect asphalt grade being used.

Hardening of the asphalt was found to be affected by the stockpile moisture content (Fig 18). The high stockpile moisture contents decreased the amount of hardening which the asphalt experienced during mixing and thus retained a higher penetration. Both Aggregate A and Aggregate C demonstrated this behavior, which is likely caused by the presence of increased humidity in the pugmill or the drum mixer with increasing stockpile moisture. The presence of this humidity is thought to retard the evaporation of the lighter fractions of the asphalt.

SUMMARY OF TEST RESULTS

Tests were conducted on each of the experimental mixtures to determine the Hveem stability, tensile strength, resilient modulus of elasticity, tensile strength ratio, and asphalt retained after the boiling test. The results, tabulated in Tables 5, 6, 7, 8, and 9, respectively, are the average result of duplicate or triplicate specimens for each experiment condition. Results of the individual specimens are tabulated in Appendices A, B, and C for Aggregates A, B, and C, respectively.

EFFECT OF MIXING TEMPERATURE

The effect of mixing temperature on each of the measured engineering properties is shown in Figures 19 through 23 and is discussed for each of the engineering properties.

Hveem Stability

As shown in Figure 19, mixing temperature produced a slight increase in Hveem stability for the standard and modified-standard specimens; however, the increase was of no practical significance and the effects were inconsistent. The modified compaction specimens did not exhibit any significant change in stability with different mixing temperatures.

Compaction procedure was observed to produce a major effect on Hveem stability. As shown in Figure 19, the modified compaction specimens which had significantly lower densities and higher air voids, had significantly lower stabilities.

Fig 18. Effect of stockpile moisture on asphalt hardening.

					Hveem	Stabili	ty, %				
	Nominal	Compaction, Standard			Compaction, Modified-Standard			Compaction, Modified			
	Mix Temp				Stock	pile Con	dition				
	°F	Dry	Wet	Sat.	Dry	Wet	Sat.	Dry	Wet	Sat.	
Austin - Distr	ict 14										
Batch Plant	(Aggregate A)										
	175	-	(31)	-	-	-	-	-	(30)	-	
		-	40	-	-	-	-	-	31	-	
	225	-	(36)	-	-	-	-	-	(33)	-	
			(24)			_			(24)		
	250	-	(34)	-	-	-	-	-	(34)	-	
		-	(38)	-	-	-	_	_	(34)	_	
	275	_	42	-	-	-	-	-	33	-	
		-	(40)	-	-	-	-	-	(32)	-	
	325	-	47	-	-	-	-	-	34	-	
Drum Plant (Aggregate A)	_	_	_	_	_	_	_	_		
	175	-	45	-	-	-	-	-	36	-	
		-	_	-	-	-	-	-	_	-	
	225	-	49	-	-	-	-	-	39	-	
	250	-	(35)	-	-	-	-	-	(35)	-	
	250	-	40	-	-	-	-	-	38	-	
	275	-	(36)	-	-	-	-	-	(33)	-	
	275	-	42	-	-	-	-	-	36	-	
	325	-	(42)	-	-	-	-	-	(39)	-	
		-	40	-	-	-	-	-	36	-	
Cornus Christi	- District 1	6									
Batch Plant	(Aggregate B)	<u> </u>									
	200	34	34	27	33	30	19	27	32	29	
	250	33	35	29	33	38	29	30	30	30	
	325	36	39	38	37	39	40	27	28	30	
Drum Plant (Aggregate C)										
	175	39	36	42	-	-	-	28	30	28	
	225	39	40	12	-	-	-	33	34	25	
	250	40	42	37		-	-	35	35	33	
	275	42	44	16	-	-	-	34	35	29	
	213	74 40	43	10	-		_	27	24	<i>4)</i>	
	325	42	43	-	-	-	-	21	34	-	

TABLE 5. SUMMARY OF HVEEM STABILITIES

All values are averages of duplicate specimens

Numbers in parentheses are for specimens subjected to freeze-thaw

Aggregate A - 30% coarse sandstone, 52% intermediate limestone, 18% field sand Aggregate B - 50% coarse sandstone, 20% intermediate limestone, 10% intermediate sandstone, 20% field sand

Aggregate C - 64% coarse sandstone, 16% intermediate sandstone, 20% field sand.

		Indirect Tensile Strength, psi									
		C	ompaction Standard	,	Co Modif	mpactio	n, ndard	Compaction, Modified			
	Mix Temp				Stockpile Condition						
	°F	Dry	Wet	Sat.	Dry	Wet	Sat.	Dry	Wet	Sat.	
Austin - Dist	rict 14										
Batch Plant	(Aggregate A)	(= <)						(10)		
	175	-	(56) 89	-	-	-	-	-	(13) 43	-	
	225	-	(58) 82	-	-	-	-	-	(20) 49	-	
	250	-	(44)	-	-	-	-	-	(17)	-	
	275	-	(55)	-	-	-	-	-	(26) 56	-	
	325	-	(66) 118	-	-	-	-	-	(40) 70	-	
	/		110						/0		
Drum Plant	(Aggregate A) 175	-	(4 0) 71	-	-	-	-	-	(16) 41	-	
	225	-	(56) 92	-	-	-	-	-	(26) 52	-	
	250	-	(9 4) 109	-	-	-	-	-	(37) 84	-	
	275	-	(87)	-	-	-	-	-	(33)	-	
	325	-	(86)	-	-	-	-	-	(44) 53	-	
Corrous Christi	- District	16	115						55		
Batch Plant	(Aggregate B	<u>10</u>									
	200	(91) 100	(131) 132	(120) 116	(54) 77	(89) 92	(86) 80	(27) 43	(49) 66	(58) 67	
	250	(111) 158	(109) 116	(131) 158	(95) 100	(80) 97	(84) 95	(40) 55	(31) 58	(48) 56	
	325	(76) 100	(111) 1 4 6	(114) 123	(74) 92	(85) 99	(102) 113	(34) 46	(42) 58	(44) 57	
Drum Plant	(Aggregate C)										
	175	(92) 109	(103) 105	(122) 120	-	-	-	(24) 51	(17) 60	(33) 65	
	225	(95) 105	(97) 85	(107) 102	-	-	-	(28) 60	(23) 62	(59) 67	
	250	(110) 122	(102) 106	(95) 109	-	-	-	(23) 63	(24) 65	(33) 69	
	275	(102) 108	(110) 115	(101) 9 4	-	-	-	(31) 56	(22) 55	(65) 63	
	325	(83) 106	(114) 124	-	-	-	-	(31) 58	(30) 70	-	

TABLE 6. SUMMARY OF TENSILE STRENGTHS

All values are averages of duplicate specimens

Numbers in parentheses are for specimens subjected to freeze-thaw

Aggregate A - 30% coarse sandstone, 52% intermediate limestone, 18% field sand Aggregate B - 50% coarse sandstone, 20% intermediate limestone, 10% intermediate sandstone,

20% field sand

Aggregate C - 64% coarse sandstone, 16% intermediate sandstone, 20% field sand.

		Resilient Modulus of Elasticity, ksi									
	Nominal	С	Compaction, Standard			ompaction fied-Stan	ndard	Compaction, Modified			
	Mix Temp				Stock	pile Con	lition**				
	°F	Dry	Wet	Sat.	Dry	Wet	Sat.	Dry	Wet	Sat.	
<u>Austin - Distr</u>	<u>ict 14</u> (Aggregate A	0									
	175	-	(889) 1134	-	-	-	-	-	(581) 799	-	
	225	-	(679) 804	-	-	-	-	-	(529) 608	-	
	250	-	(795) 1079	-	-	-	-	-	(600) 803	-	
	275	-	(701) 1091	-	-	-	-	-	(703) 760	-	
	325	-	(778) 754	-	-	-	-	-	(661) 770	-	
Drum Plant (A	Aggregate A)										
	175	-	(511) 637	-	-	-	-	-	-	-	
	225	-	(712) 715	-	-	-	-	-	-	-	
	250	-	(923) 1003	-	-	-	-	-	(923) 715	-	
	275	-	(889) 1492	-	-	-	-	-	(1031) 863	-	
	325	-	(908) 920	-	-	-	-	-	(819) 768	-	
Corpus Christi	- District	16									
Batch Plant	220	(532) 575	(887) 805	(826) 681	-	-	- -	-	-	-	
	250	(820) 1163	(483) 467	(957) 1320	-	-	-	-	-	-	
	325	(359) 517	(612) 628	(575) 569	-	-	-	-	-	-	
Drum Plant (Aggregate C)	***									
	175	(7 4 3) 671	(893) 874	(806) 876	-	-	-	-	-	-	
	225	(778) 791	(858) 825	(827) 753	-	-	-	-	-	-	
	250	(701) 857	(854) 833	(776) 925	-	-	-	-	-	-	
	275	(729) 792	(784) 705	(779) 699	-	-	-	-	-	-	
	325	(697) 788	(705) 853	-	-	-	-	-	-	-	

TABLE 7. SUMMARY OF RESILIENT MODULUS OF ELASTICITY

All values are averages of duplicate specimens

Numbers in parentheses are for specimens subjected to freeze-thaw

Aggregate A - 30% coarse sandstone, 52% intermediate limestone, 18% field sand Aggregate B - 50% coarse sandstone, 20% intermediate limestone, 10% intermediate sandstone, 20% field sand Aggregate C - 64% coarse sandstone, 16% intermediate sandstone, 20% field sand.

Nominal Mix TempCompaction, StandardCompaction, Modified-StandardCompaction, MCo	Wet 0.30 0.41 0.34 0.46 0.57	<u>Sat.</u> - - -
Nominal Standard Modified-Standard M Mix Temp °F Dry Wet Sat. Dry Wet Sat. Dry Met Sat. Dry Sat. Dry <	Wet 0.30 0.41 0.34 0.46 0.57	
$\frac{\text{Austin} - \text{District 14}}{\text{Batch Plant (Aggregate A)}}$ $175 - 0.63$	Wet 0.30 0.41 0.34 0.46 0.57	_Sat. - - -
Austin - District 14 Batch Plant (Aggregate A) 175 - 0.63 - - - - 225 - 0.71 - - - - - 250 - 0.47 - - - - -	0.30 0.41 0.34 0.46 0.57	- - -
Batch Plant (Aggregate A) 175 - 0.63 - <	0.30 0.41 0.34 0.46 0.57	- - -
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.30 0.41 0.34 0.46 0.57	
225 - 0.71 - - - - - 250 - 0.47 - - - - - 250 - 0.47 - - - - - -	0.41 0.34 0.46 0.57	- - -
250 - 0.47	0.34 0.46 0.57	-
	0.46 0.57	-
275 - 0.58	0.57	-
325 - 0.50		
Drum Plant (Aggregate A)		
175 - 0.56	0.39	-
225 - 0.61	0.50	-
250 - 0.86	0.44	-
275 - 0.78	0.40	-
325 - 0.75	0.83	-
Corpus Christi - District 16		
Batch Plant (Aggregate B)		
200 0.90 1.00 1.03 0.70 0.97 1.07 0.63	0.75	0.87
250 0.70 0.93 0.83 0.95 0.82 0.89 0.74	0.54	0.87
325 0.76 0.76 0.92 0.80 0.86 0.90 0.74	0.73	0.77
Drum Plant (Aggregate C)		
175 0.84 0.96 1.02 0.47	0.28	0.51
225 0.90 1.14 1.05 0.47	0.37	0.88
250 0.92 0.90 0.87 0.37	0.37	0.49
275 0.94 0.96 1.07 0.55	0.40	1.03
325 0.78 0.91 0.53	0.43	-

TABLE 8. SUMMARY OF TENSILE STRENGTH RATIOS

All values are individual ratios of the average wet and average dry tensile strengths (Table 6).

	Nominal	Retained Asphalt, %					
	Mix Temp	Stoc}	ition				
	<u> </u>	Dry	Wet	<u>Sat.</u>			
Austin - District 14							
Batch Plant (Aggregate A)							
	175	-	25	-			
	225	-	60	-			
	250	-	60	-			
	275	-	75	-			
	325	-	85	-			
Drum Plant (Aggregate A)							
	175	-	60	-			
	225	-	-	-			
	250	-	-	-			
	275	-	-	-			
	325	-	95	-			
Corpus Christi - District 16							
Batch Plant (Aggregate B)							
	200	50	60	75			
	250	40	40	65			
	325	85	70	85			
Drum Plant (Aggregate C)							
	175	15	-	45			
	225	25	50	70			
	250	40	-	45			
	275	70	-	75			
	325	85	-	-			

TABLE 9. SUMMARY OF BOILING TEST RESULTS

All values are individual results

Fig 19. Relationship between mixing temperature and Hveem stability.

Fig 20. Relationship between mixing temperature and tensile strength.

Fig 22. Relationship between mixing temperature and tensile strength ratio.

Tensile Strength

The tensile strengths of the standard specimens show a trend to increase with increased mixing temperature but the degree and consistency of this trend is variable (Fig 20).

For Aggregate A, the standard compaction specimens and to some degree the modified compaction specimens exhibited an increase in tensile strength with increasing mixing temperatures. This trend is also apparent for the modified-standard compaction specimens of Aggregate B. No relationship with mixing temperature existed for the other mixture conditions.

The compaction procedure used to prepare the specimens had the greatest effect on the tensile strength values. The modified, modified-standard, and standard specimens have tensile strengths which lie within distinct separate bands.

Resilient Modulus of Elasticity

A discernible relationship between mixing temperature and resilient modulus of elasticity does not appear to exist in the observed experimental results (Fig 21). The measured values for Aggregate C suggest that the resilient modulus of elasticity is fairly uniform regardless of mixing temperature; however, Aggregates A and B do not exhibit the same uniformity. For Aggregates A and B the observed values vary over a wide range and the variation does not appear to be related to the mixing temperature.

Moisture-Damage Resistance

Two evaluation techniques utilized to determine the moisture-damage resistance of the experimental mixtures were the indirect tensile strength ratio and the Texas Boiling Test. The Texas Freeze-Thaw Pedestal Test, which also measures moisture-damage resistance, could not be conducted because it requires uniform sized material.

Tensile Strength Ratio. To determine the tensile strength ratio a paired grouping of specimens was formed. One group was subjected to a moisture saturation, freeze-thaw conditioning and the other was not. The tensile strength ratio was expressed as the ratio of the average freeze-thaw conditioned tensile strength to the dry conditioned tensile strength. The proposed acceptance level of the tensile strength ratio, 0.70, which is used to identify a non-moisture susceptible aggregate mixture does not appear to be an appropriate threshold value for all compaction methods. The measured tensile strength ratio was found to be significantly affected by the applied compaction effort (Fig 22). The modified compaction specimens had a lower density and were more susceptible to water entry during vacuum saturation. As a result they lost a larger proportion of the dry tensile strength than did the standard specimens which were more resistant to water entry. Therefore the modified compaction specimens are considered to be better indicators of moisture damage susceptibility than the denser standard and modified standard ones. Further discussion considers only the modified compaction specimens.

The effect of mixing temperature on the measured tensile strength ratios of the modified compaction specimens was not consistent for all the aggregates tested. Aggregate A results suggest that increased mixing temperature caused an increase in the tensile strength ratio; however, for the other aggregates, with the exception of the wet stockpile moisture specimens of Aggregate C, no consistent effect was observed.

<u>Boiling Test</u>. The resistance to moisture damage as measured by the percent retained asphalt after the boiling test increased with increased mixing temperature (Fig 23). This trend is relatively consistent throughout the three aggregates and shows substantial changes in retained asphalt across the range of temperatures tested.

Aggregates B and C were known to be moisture susceptible aggregates, and as part of the non-experimental work both were treated with a hydrated lime slurry before mixing to improve their resistance to moisture damage. Aggregate A, a non-moisture-susceptible aggregate, was not treated. The relationship between mixing temperature and retained asphalt is similar for all three aggregates. Both treated and non-treated aggregates show substantial losses in retained asphalt at lower mixing temperatures. At higher mixing temperatures the effect of the lime slurry treatment is evidenced by the acceptable level of percent retained asphalt.

The percentage of asphalt retained after the boiling test is known to increase for asphalts which have lower penetrations. The penetration of the extracted asphalt which was discussed earlier (Figs 15 and 16) does decrease somewhat with increasing mixing temperature; however, the percent retained asphalt is not sufficiently sensitive to account for the significant changes which were observed.

EFFECT OF STOCKPILE MOISTURE

The effect of stockpile moisture on each of the engineering properties is shown in Figures 24 through 28. In the discussion which follows, Aggregate A is not considered since only one stockpile moisture condition was studied.

Hveem Stability

The experiment results do not indicate that stockpile moisture had a major effect on Hveem stability (Fig 24). The results indicate that the saturated stockpile conditions caused a decrease but the change is neither consistent nor large. The major influence on the Hveem stability results is density. The values for each of the compaction methods generally lie in distinct groups.

Tensile Strength

The measured values of tensile strength are relatively uniform and generally do not vary with stockpile moisture condition (Fig 25). The most significant variable which does affect the tensile strength is compaction type (density), as shown by the separate groups in which the results fall.

Resilient Modulus of Elasticity

The results indicate that the resilient modulus of elasticity is not affected by the stockpile moisture condition (Fig 26). The values for Aggregate C do not show any change for varying stockpile moisture contents and the results measured for Aggregate B, though varied, do not show a trend.

Moisture-Damage Resistance

The two measures of moisture-damage resistance, the tensile strength ratio and the Texas Boiling Test, are discussed separately.

Tensile Strength Ratio. A discernible trend is exhibited between the stockpile moisture condition and the measured tensile strength ratio

Fig 24. Relationship between stockpile moisture condition and Hveem stability.

Fig 25. Relationship between stockpile moisture condition and tensile strength.

Fig 26. Relationship between stockpile moisture condition and resilient modulus of elasticity.

Fig 27. The relationship between stockpile moisture condition and tensile strength ratio.

Fig 28. The relationship between stockpile moisture condition and asphalt retained after the boiling test.

(Fig 27). The ratio and hence the resistance to moisture damage tends to increase with increasing stockpile moisture contents although the amount of the increase is generally not large.

<u>Texas Boiling Test</u>. A clear trend is indicated between the asphalt retained after the Texas Boiling Test and the stockpile moisture content (Fig 28). The retained asphalt showed significant increases as the stockpile moisture content increased, indicating a higher resistance to moisture damage. The increase measured over the range of stockpile moistures used shows the greatest increase in resistance occurs at the lower mixing temperatures. Generally the increase of retained asphalt becomes less as the mixing temperature increases.

The penetration of the extracted asphalt which is known to affect the results of the boiling test did vary among experimental runs (Fig 17). Typically, as the asphalt penetration decreases the retained asphalt will increase. In the experimental results for one mixing temperature, the penetration of the extracted asphalt increased with increasing stockpile moisture yet despite the tendency of this effect to reduce the retained asphalt, the results show that it increased. Therefore any effects caused by the penetration are greatly outweighed by the increase in moisture-damage resistance for mixtures which had high stockpile moisture contents.

EXPERIMENT REPEATABILITY

Duplicate runs of the same experimental conditions were done to determine if the uncontrolled variations inherent in the field study caused large variations in the experiment results. A detailed study of the repeatability of the experiment was not done as part of the project; however, a repeat of one set of experimental conditions was expected to indicate the size of random variations in the measured results.

During the Aggregate B experiment the run with saturated stockpile moisture and low mixing temperature was repeated and the resulting measured properties were compared (Table 10). As shown, the experimental conditions and most of the measured properties indicate similar results in both cases. Exceptions are the resilient modulus of elasticity and the Hveem stability.

The variation of the resilient modulus of elasticity for the two runs agrees with resilient modulus data for the Aggregate B experiment which shows

Experime Condit:	ental ions		ering Proper	Other Measured Properties							
Stockpile Moisture %	Mixing Temp. °F	Hveem Stability %	Tensile Strength psi	Resilient Modulus ksi	Tensile Strength <u>Rat</u> io	Boiling Test <u>*</u>	Asphalt Mixture Moisture %	Asphalt Content %	Extracted Asphalt Penetration 0.1 mm	Air Voids <u>%</u>	Voids in Mineral Aggregate %
Uncompacted	d Asphalt	Mixture									
8.0	200	-	-	-	-	75	1.7	6.3	69	-	-
9.6	210	-	-	-	-	80	1.7	6.3	72	-	-
Standard Co	ompaction										
8.0	200	20	118	787	1.02	-	-	-	-	2.4	16.2
9.6	210	33	116	575	1.04	-	-	-	-	1.8	15.5
Modified S	tandard C	ompaction									
8.0	200	11	77	-	1.07	-	-	-	-	1.5	15.3
9.6	210	28	84	-	1.06	-	-	-	-	1.5	15.3
Modified Co	ompaction										
8.0	200	28	69	-	0.77	-	-	-	-	4.4	18.0
9.6	210	30	64	-	0.96	-	-	-	-	5.1	18.4

TABLE 10. COMPARISON OF REPEAT EXPERIMENTAL RUNS*

* Respective date of experimental runs: 7:00 am September 29, 1983 11:30 am October 3, 1983
considerable variation (Fig 26). An apparent reason for the variation is not evident. The Hveem stability measured in the comparison runs show some variation for the standard compaction specimens. The variation is not explained by the asphalt contents which are equal or the gradation (Table B9, Appendix B).

The results of the duplicate experimental runs suggest that despite some variation of measured results the repeatability is acceptable for runs performed within a relatively short time span. Therefore the resulting measurements between different runs indicate an actual change in the material properties.

ASPHALT PLANT FUEL CONSUMPTION

The fuel consumption of the asphalt plant is directly related to both mixing temperature and stockpile moisture content. During the Aggregate C experiment an attempt was made to determine the fuel consumption of the drummixer for each of the temperature-moisture combinations. The intent was to determine the amount of fuel per ton consumed by the burner. Although direct measurement of the fuel was not possible, two methods were used to provide estimates.

The first method used the position of the fuel control valve to estimate fuel consumption during the experimental runs (Table 11). The control located on the operating console was marked from 0 to 100 percent in increments of 10 percent. A plot of the individual settings (Fig 29) with the corresponding stockpile moisture contents and mixing temperatures allows contours of equal burner control settings to be drawn. Unfortunately the fuel flow for each of the control settings is not known; hence Figure 29 is applicable only to the asphalt plant used in the experiment.

The second method to determine the fuel consumption for Aggregate C used average energy values required to remove moisture and raise the temperature of the aggregate-asphalt mixture. The values were 28,000 Btu/ton for 1 percent moisture removed and 620 Btu/ton for each °F the mixture temperature was raised (Ref 7). The moisture losses, temperature gains, and energy requirements are listed in Table 11. The resulting values were plotted (Fig 30) and contours were drawn.

					Energy R	equired (1000)'s)***
Stockpile	Mixing	Burner	Moisture	Temp	Moisture	Temp	Total
Moisture	\mathtt{Temp}	Control	Loss*	Gain**	Loss	Gain	
<u> </u>	<u>°F</u>	<u> </u>	<u> </u>	<u>°F</u>	BTU/ton	BTU/ton	BTU/ton
3.5	190	0	3.2	130	89.6	80.6	170
3.5	215	5	3.2	155	89.6	96.1	186
3.5	240	15	3.2	180	89.6	111.6	201
3.2	285	20	2.9	225	81.2	139.5	221
3.2	320	30	3.0	260	84.0	161.2	245
8.3	175	25	7.1	115	198.8	71.3	270
9.1	230	40	8.7	170	243.6	105.4	349
7.7	260	45	7.6	200	212.8	124.0	337
8.9	270	50	8.9	210	249.2	130.2	379
7.5	335	65	7.5	275	210.0	170.5	381
13.6	185	50	11.7	125	327.6	77.5	405
13.6	215	60	12.5	155	350.0	96.1	446
12.7	245	90	11.5	185	322.0	114.7	437
13.8	270	110	13.5	210	378.0	130.2	508

TABLE 11.	AGGREGATE	С	FUEL	CONSUMPTION	DATA

* Difference between stockpile moisture content and moisture content of asphalt mixture.

** Stockpile temperature estimated to be 60°F.

Fig 29. Experiment fuel consumption, Aggregate C.

Fig 30. Heating energy requirements for Aggregate C.

CHAPTER 4. CONCLUSIONS AND RECOMMENDATIONS

The primary objective of this study was to determine the effects of mixing temperature and stockpile moisture on selected engineering properties of asphalt mixtures produced in conventional batch asphalt plants and drum mix plants. Based on the findings of this study several conclusions were reached and some proposed recommendations can be made.

General Conclusions

- Several uncontrolled variables encountered during the experiments (moisture content of asphalt mixture, voids in the mineral aggregate, air voids, asphalt content and asphalt penetration) caused some variability in the results; however, they did not mask the effects of the controlled variables completely.
- 2. While some variation in tensile strength, tensile strength ratio, and boiling test results was observed, no significant difference was identified between mixtures produced in the batch plant and the drum plant for all conditions of stockpile moisture and mixing temperature.
- 3. Both types of asphalt plants were able to remove most or all of the moisture from the stockpile aggregate though they were penalized with higher fuel costs and lower production. The higher fuel costs were measured and documented for a drum mix plant and the effect is believed to be similar for a batch plant.
- 4. Density was the major factor which affected the properties of the experimental mixtures.
- 5. Asphalt mixtures with moisture contents above 1.5% were difficult to produce and then only at very low mixing temperatures.

Effects of Mixing Temperature

 Mixing temperature was observed to have a slight effect on Hveem stability; however, the effects were small and inconsistent.

63

- 2. The effect of mixing temperature on tensile strength was found to be dependent on aggregate type. Tensile strength increased with increasing mixing temperature for the hard limestone aggregate (Aggregate A) in both the drum and batch plant. The sandstone aggregates (Aggregates B and C) did not show a similar effect.
- Resilient modulus of elasticity did not appear related to mixing temperature. Significant variations were measured for different experimental conditions; however, these changes were quite random.
- 4. There was a good indication that moisture damage susceptibility as measured by the boiling test improved with increasing mixing temperature. A slight indication of improved tensile strength ratios with increased mixing temperature was also observed.
- 5. Increased mixing temperature did not significantly increase the amount of asphalt hardening which occurred during mixing for the temperature range of the experiment.
- Asphalt mixtures with mixing temperatures below 200°F could not be produced with a uniform coating of asphalt.

Effects of Stockpile Moisture Content

- Changes in stockpile moisture content did not affect measured Hveem stabilities.
- Tensile strength measurements were uniform for the range of moisture contents measured.
- Stockpile moisture content did not affect the resilient modulus of elasticity.
- 4. A slight indication of increased moisture damage resistance as measured by the tensile strength ratio was observed.
- 5. An indication of reduced asphalt hardening during mixing was observed for increased stockpile moisture contents.

Recommendations

 The experimental study did not identify any clear relationships among mixing temperature, stockpile moisture content, and the properties of asphalt mixtures produced in either batch or drum mix plants for the aggregates studied. Therefore, further testing of other aggregates should be done to determine if the observations of this study are generally valid or if the results are dependent on aggregate type. As a minimum, one or two aggregates should be studied in the next construction season.

2. The results of the experimental study indicate that the measured engineering properties are predominantly affected by the compaction density of the mixture. If mixing temperature and stockpile moisture are believed to have a negligent effect on the engineering properties the critical step in determining the properties of the mixture may be the density which can be obtained on the road. The location of the experimental mixtures for Aggregate B and Aggregate C is known and a coring program should be taken to determine the in-place densities. Although the compaction process used on the road was not well documented, the results of the cores will demonstrate the densities and engineering properties which were achieved without alteration of the regular compaction procedures.

On future experiments involving mixing temperature and stockpile moisture, the study should include a documentation of compaction procedures and variations in compactive effort to determine at what temperature adequate density can be achieved.

APPENDIX A

AGGREGATE A

HARD LIMESTONE AGGREGATE

APPENDIX A. HARD LIMESTONE AGGREGATE

Aggregate Characteristics and Asphalt Plant Details

The hard limestone aggregate used in this experiment was processed by Capitol Aggregates at a plant site in Austin (Fig Al). The site, located on the banks of the Colorado River, consists of a permanently installed batch plant and drum plant, stockpiles of aggregate, and other related equipment.

The aggregates used in the asphalt mixture were produced in the Austin area (Fig A2, Table A1). With the exception of the sandstone, all other aggregates at the plant site were formed into stockpiles which butted directly one against the other. The material was trucked to the site and stockpiled using a crawler tractor. Two sets of aggregate feeders were located under the stockpiles in a service tunnel, one for the batch plant, the other for the drum mixer. The sandstone aggregate was handled separately using two coldfeed bins.

No modifications were required on the asphalt plants to perform the experiment. Mixing temperature of the asphalt mixture was controlled exclusively by altering the burner fuel control. The angle of the drier on the batch plant and the drum on the drum plant was not altered.

Material	Material Source					
Sandstone	Delta Materials, Marble Falls, Texas					
Limestone	Zachary Materials, Georgetown, Texas					
Limestone Screenings	Zachary Materials, Georgetown, Texas					
Field Sand	Colorado River, Austin, Texas					
AC 10 Asphalt Cement	Texas Fuel and Asphalt, Austin, Texas					

TABLE A1. AGGREGATE A MATERIAL SOURCES

69

•

.

Fig Al. Location of hard limestone experiment.

Fig A2. Vicinity of hard limestone experiment.

Asphalt Mix Design

The asphalt mix design was done by the Texas State Department of Highways and Public Transportation using the Hveem method of design and was not altered for this experiment. The design includes the gradations of both the individual and the combined aggregates (Table A2), the theoretical specific gravities of the individual aggregates, the combined aggregates and the aggregate-asphalt combinations (Table A3), and the results of the density and stability tests for the various asphalt contents (Table A4). These results, which are plotted in Figure A3, determine the design asphalt content.

Compaction Effort Study

Before the experiment was started, a laboratory study was done at each experiment temperature to determine the compactive effort required to produce molded specimens with 7% air voids. These procedures were then used in the field to compact modified compaction specimens.

The study was done as follows. Oven-dried samples of the individual aggregates were sieved, then recombined to form the gradations shown in Table A2. Asphalt was added to produce the design mix and the material was compacted at 175°F, 225°F, 250°F, 275°F, and 325°F. By trial and error, the compactive effort which would leave the desired 7% air voids in the specimen was determined. The results are shown in Table A5.

Sample Preparation and Testing

On the batch plant the following method was used to obtain samples:

- (1) The hot aggregate bins were emptied.
- (2) The aggregate drier was restarted and adjusted to desired temperature.
- (3) A batch of asphalt concrete was mixed and dumped directly into a truck. The temperature was measured and corrections were made until the desired mixing temperature was obtained.
- (4) A sample of approximately 200 pounds was shovelled into a large covered metal container and transported to the University of Texas asphalt laboratory. Travel time to the University was approximately 20 minutes.
- (5) Moisture determination samples were taken from the hot aggregate bins and the asphalt mix. Initial weighings were done in the field laboratory after which samples were transported to The University of Texas.

Sieve SizeSandstoneLimestoneLimestoneField ScreeningsAggre Sand $1/2" - 3/8"$ 5.60.00.00.01. $3/8" - #4$ 80.940.91.20.036. $#4 - #10$ 7.558.138.40.728. $+#10$ 94.099.040.60.766. $#10 - #40$ 2.20.743.516.413. $#40 - #80$ 0.30.29.763.013. $#80 - #200$ 0.70.04.018.54. $-#200$ 2.80.13.21.41.		Aggregate Type, %										
1/2" - 3/8"5.60.00.00.01. $3/8" - #4$ 80.9 40.9 1.2 0.0 $36.$ $#4 - #10$ 7.5 58.1 38.4 0.7 $28.$ $+#10$ 94.0 99.0 40.6 0.7 $66.$ $#10 - #40$ 2.2 0.7 43.5 16.4 $13.$ $#40 - #80$ 0.3 0.2 9.7 63.0 $13.$ $#80 - #200$ 0.7 0.0 4.0 18.5 $4.$ $-#200$ 2.8 0.1 3.2 1.4 $1.$	Sieve Size	Sandstone	Limestone	Limestone Screenings	Field Sand	Aggregate Mixture*						
3/8" - #4 80.9 40.9 1.2 0.0 $36.$ $#4 - #10$ 7.5 58.1 38.4 0.7 $28.$ $+#10$ 94.0 99.0 40.6 0.7 $66.$ $#10 - #40$ 2.2 0.7 43.5 16.4 $13.$ $#40 - #80$ 0.3 0.2 9.7 63.0 $13.$ $#80 - #200$ 0.7 0.0 4.0 18.5 $4.$ $-#200$ 2.8 0.1 3.2 1.4 $1.$	1/2" - 3/8"	5.6	0.0	0.0	0.0	1.7						
#4 - #107.558.138.40.728. $+#10$ 94.099.040.60.766. $#10 - #40$ 2.20.743.516.413. $#40 - #80$ 0.30.29.763.013. $#80 - #200$ 0.70.04.018.54. $-#200$ 2.80.13.21.41.	3/8" - #4	80.9	40.9	1.2	0.0	36.9						
+#1094.099.040.60.766. $#10 - #40$ 2.20.743.516.413. $#40 - #80$ 0.30.29.763.013. $#80 - #200$ 0.70.04.018.54. $-#200$ 2.80.13.21.41.	#4 - #10	7.5	58.1	38.4	0.7	28.1						
#10 - #402.20.743.516.413. $#40 - #80$ 0.30.29.763.013. $#80 - #200$ 0.70.04.018.54. $-#200$ 2.80.13.21.41.	+#10	94.0	99.0	40.6	0.7	66.7						
#40 - #80 0.3 0.2 9.7 63.0 13. #80 - #200 0.7 0.0 4.0 18.5 4. -#200 2.8 0.1 3.2 1.4 1.	#10 - #40	2.2	0.7	43.5	16.4	13.5						
#80 - #200 0.7 0.0 4.0 18.5 4. -#200 2.8 0.1 3.2 1.4 1.	#40 - #80	0.3	0.2	9.7	63.0	13.6						
-#200 2.8 0.1 3.2 1.4 1.	#80 - #200	0.7	0.0	4.0	18.5	4.4						
	-#200	2.8	0.1	3.2	1.4	1.8						

TABLE A2. AGGREGATE A DESIGN GRADATION

* Combined aggregates composed of 30% sandstone, 30% limestone, 22% limestone screenings, and 18% field sand.

Material	Specific Gravity*
Sandstone	2.474
Limestone	2.564
Limestone screenings	2.602
Field sand	2.626
Aggregate mixture	2.555
Aggregate mixture with 4.0% asphalt	2.410
Aggregate mixture with 5.0% asphalt	2.376
Aggregate mixture with 6.0% asphalt	2.343
Aggregate mixture with 7.0% asphalt	2.311
Aggregate mixture with 8.0% asphalt	2.280

TABLE A3. AGGREGATE A DESIGN THEORETICAL SPECIFIC GRAVITIES

* The specific gravities of the aggregates are measured bulk specific gravities and the specific gravities of the mixtures are calculated.

Asphalt Content,	Relative Density,*	Hveem Stability, %
4.0	92.9	55
5.0	95.6	51
6.0	98.4	53
7.0	100.0	48
8.0	100.8	32

TABLE A4. AGGREGATE A DESIGN SPECIMEN RELATIVE DENSITIES AND HVEEM STABILITIES

* Percent theoretical specific gravity of the asphalt mixture.

TABLE A5. COMPACTIVE EFFORT FOR AGGREGATE A, MODIFIED SPECIMENS

Number of Cycles*	Level-Up Load, lb**
6	500
5	1000
5	1000
4	800
4	1000
	Number of Cycles* 6 5 5 4 4 4

* One cycle is three revolutions on the Texas Gyratory Shear Compactor

** Final static load in pounds applied to the 4-inchdiameter specimen

Fig A3. Aggregate A density-stability design curve.

(6) Moisture determination samples for the aggregates were gathered. Individual aggregates were sampled from the feeders and the combined aggregates were sampled by cross-sectioning the coldfeed belt.

For experimentation on the drum mixer the samples were gathered as

follows:

- (1) One of the mixture storage silos was emptied while the other was in use.
- (2) The temperature control for the drum mixer was set at the desired temperature and the production was switched to the empty silo.
- (3) The material was dumped into a truck, its temperature was measured, and the drum temperature was adjusted until the desired mixing temperature was obtained.
- (4) A sample of approximately 200 pounds was shovelled into a covered metal container.
- (5) A moisture determination sample for the asphalt mix was taken and transported with the large bulk sample to The University of Texas laboratory.
- (6) Moisture determination samples for the aggregates were taken. Individual aggregates were sampled at the feeders and the combined aggregate was sampled by cross-sectioning the coldfeed belt.

For both batch and drum plant mixtures the large bulk sample was used to prepare specimens to be tested later. Modified compaction specimens were made with material taken directly from the bulk sample. The temperature loss of this material during transport was 5 to 10°F. Standard compaction specimens were compacted using material which had been tempered to 250°F in an oven. In addition to the compacted specimens, a 30-lb bulk sample was retained for an asphalt extraction, theoretical specific gravity, and other miscellaneous tests.

Test Results

The results of all tests performed during this experiment are tabulated in Tables A6 to A10. The results are listed for each of the individual duplicate or triplicate test specimens. Tensile strength, resilient modulus of elasticity, and Hveem stability are listed in Table A6 for the standard compaction specimens and in Table A7 for the modified compaction specimens. Table A8 lists the moisture damage susceptibility parameters and Table A9 contains gradation and extracted asphalt data. The gradations are shown in Figure A4. Moisture contents of the asphalt mixture and the coldfeed aggregates are listed in Table A10 and shown in Figure A5.

		D	ry Condition	ing	Freez	Freeze-Thaw Conditioning			
Stockpile Moisture %	Mixing Temp., <u>°F</u>	Tensile Strength, psi	Resilient Modulus, ksi	Hveem Stability, %	Tensile Strength, psi	Resilient Modulus, ksi	Hveem Stability, %		
Batch Plant									
Wet	180	85	1000	40	51	1067	32		
		88	1086	40	57	856	27		
		93	1315	41	60	875	34		
	230	75	857	46	59	1154	35		
		82	778	44	60	748	35		
		87	776	46	56	1054	38		
	250	96	1084	45	50	1192	30		
		92	1051	44	42	898	34		
		90	1103	44	40	876	37		
	275	95	1172	41	53	911	37		
		98	1203	41	56	904	39		
		92	898	44	57	1142	37		
	325	119	758	48	68	1185	41		
		111	700	47	66	1188	40		
		122	803	45	63	1658	39		
Drum Plant									
Wet	175	74	678	44	40	511			
		68	595	46	40	511			
	230	92	641	49	53	709			
		92	790	48	59	714			
	250	110	915	38	100	811	35		
		104	798	40	94	944	31		
		114	1297	43	87	996	38		
	275	109	1695	44	86	867	37		
		111	1185	41	80	845	34		
		115	1597	42	96	955	38		
	330	117	1092	10	98	930	40		
		125	839	40	82	898	41		
		103	831	40	79	895	44		

TABLE A6. AGGREGATE A RESULTS OF INDIVIDUAL STANDARD COMPACTION SPECIMEN TESTS

Stockpile Mixing Temp, * Tensile Strength, psi Resilient Kei Hveen Stability, * Tensile psi Resilient Kei Hveen Strength, Kei Tensile Psi Resilient Kei Hveen Strength, Kei Tensile Psi Resilient Kei Hveen Strength, Kei Strength, Kei Hveen Strength, Kei Strength, Kei Hveen Strength, Kei Hveen Strength, Kei Strength, Kei Hveen Strength, Kei Strength, Strength, Kei Hveen Strength, Kei Hveen Strength, Kei Strength, Strength, Kei Hveen Strength, Kei Strength, Strength, Kei Nodulus, Strength, Kei Strength, Strength, Kei Nodulus, Strength, Kei Strength, Strength, Kei Nodulus, Strength, Kei Strength, Strength, Kei Nodulus, Strength, Kei Strength, Kei Nodulus, Strength, Kei Strength, Kei Nodulus, Strength, Kei Strength, Kei Nodulus, Strength, Kei Strength, Strength, Kei Nodulus, Strength, Kei Strength, Kei Nodulus, Strength, Kei Strength, Kei Nodulus, Strength, Kei Strength, Kei Nodulus,			D	ry Condition	ing	Freez	Freeze-Thaw Conditioning			
Moisure Temp., Strength, Modulus, Stability, Strength, Modulus, Stability, Strength, Modulus, Stability, Kai Stability, Kai Modulus, Kai Stability, Kai <	Stockpile	Mixing	Tensile	Resilient	Hveem	Tensile	Resilient	Hveem		
\mathfrak{k} \mathfrak{p} $\mathfrak{ps1}$ $\mathfrak{ks1}$ \mathfrak{k} $\mathfrak{ps1}$ $\mathfrak{ks1}$ \mathfrak{k} Batch PlantWet180447433312194830438083113131430438083113786292304855736205973150578402066633496913619397332505376237174933451801371781935275547233326814335971535241125345477232268113532568703393710523671786324110332971847324394931Drum PlantWet17542361623051392625081755373310053482681393939867358970737398953527580836353410133463325563747866338255637	Moisture	Temp.,	Strength,	Modulus,	Stability,	Strength,	Modulus,	Stability,		
Batch Plant 180 44 743 33 12 1948 30 41 847 30 13 1314 30 43 808 31 13 1314 30 43 808 31 13 1314 30 43 808 31 13 1344 30 43 808 31 13 1344 30 49 691 36 20 666 33 250 53 762 37 17 493 34 51 801 37 17 819 35 275 54 723 33 26 814 33 52 71 758 32 41 1033 29 325 68 703 39 37 1052 36 71 758 32 41 1033 29 31 71 847	<u> </u>	• <u>F</u>	psi	<u>ksi</u>	<u> </u>	psi	<u>ksi</u>			
Net 180 44 743 33 12 1948 30 41 847 30 13 1314 30 43 808 31 13 1314 30 43 808 31 13 1314 30 43 808 31 13 134 30 43 601 31 13 1786 29 49 691 36 19 397 33 250 53 762 37 17 493 34 51 801 37 17 819 35 275 54 723 33 26 814 33 52 68 703 39 37 1052 36 325 68 703 39 37 1052 36 71 758 32 41 1033 29 71 847 39	Batch Plant									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Wet	180	44	743	33	12	1948	30		
43 608 31 13 786 29 230 48 557 36 20 597 31 50 578 40 20 666 33 250 53 762 37 17 493 34 51 801 37 17 493 34 52 849 36 17 614 33 250 53 762 33 26 814 33 251 801 37 17 819 35 275 54 723 33 26 814 33 325 68 703 39 37 1052 36 325 68 703 39 37 1052 36 71 758 32 41 1033 29 71 758 32 41 1033 36 260 51 <			41	847	30	13	1314	30		
230 48 557 36 20 597 31 50 578 40 20 666 33 49 691 36 19 397 33 250 53 762 37 17 493 34 52 849 36 17 614 34 51 801 37 17 819 35 275 54 723 33 26 814 33 54 772 32 26 811 35 325 68 703 39 37 1052 36 71 758 32 41 1033 29 71 847 32 43 949 31 Met 175 42 36 16 230 51 39 26 <t< td=""><td></td><td></td><td>43</td><td>808</td><td>31</td><td>13</td><td>786</td><td>29</td></t<>			43	808	31	13	786	29		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		230	48	557	36	20	597	31		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			50	578	40	20	666	33		
250 53 762 37 17 493 34 52 849 36 17 614 34 51 801 37 17 819 35 275 54 723 33 26 814 33 59 715 35 24 1125 34 54 772 32 26 811 35 325 68 703 39 37 1052 36 71 758 32 41 1033 29 71 758 32 41 1033 29 71 847 32 43 949 31 Drum Plant 175 42 36 16 230 51 39 26 250 81 755 37 33 1005 34 89 <			49	691	36	19	397	33		
52 849 36 17 614 34 51 801 37 17 819 35 275 54 723 33 26 814 33 59 715 35 24 1125 34 54 772 32 26 811 35 325 68 703 39 37 1052 36 71 758 32 41 1033 29 71 758 32 43 949 31 Drum Plant 36 16 230 51 39 26 230 51 39 26 250 81 755 37 33 1005 34 82 681 39 39 867 35 89 707 37 39		250	53	762	37	17	493	34		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			52	849	36	17	614	34		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			51	801	37	17	819	35		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		275	54	723	33	26	814	33		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			59	715	35	24	1125	34		
325 68 703 39 37 1052 36 71 758 32 41 1033 29 71 847 32 43 949 31 Drun Plant			54	772	32	26	811	35		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		325	68	703	39	37	1052	36		
71 847 32 43 949 31 Drun Plant			71	758	32	41	1033	29		
Drum Plant 175 42 36 16 40 36 16 230 51 39 26 230 51 39 26 250 81 755 37 33 1005 34 82 681 39 39 867 35 89 707 37 39 895 35 275 80 836 35 34 1013 34 73 815 35 33 1223 32 94 938 37 33 856 33 325 56 $$ 37 47 858 39 53 769 36 42 880 42 52 766			71	847	32	43	949	31		
Net 175 42 $$ 36 16 $$ $$ 40 $$ 36 16 $$ $$ 230 51 $$ 39 26 $$ $$ 53 $$ 39 26 $$ $$ 250 81 755 37 33 1005 34 82 681 39 39 867 35 89 707 37 39 895 35 275 80 836 35 34 1013 34 73 815 35 33 1223 32 94 938 37 33 856 33 325 56 $$ 37 47 858 39 53 769 36 42 880 42 52 766 36 44 718 35	Drum Plant									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Wet	175	42		36	16				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			40		36	16				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		230	51		39	26				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			53		39	26				
82 681 39 39 867 35 89 707 37 39 895 35 275 80 836 35 34 1013 34 73 815 35 33 1223 32 94 938 37 33 856 33 325 56 37 47 858 39 53 769 36 42 880 42 52 766 36 44 718 35		250	81	755	37	33	1005	34		
89 707 37 39 895 35 275 80 836 35 34 1013 34 73 815 35 33 1223 32 94 938 37 33 856 33 325 56 37 47 858 39 53 769 36 42 880 42 52 766 36 44 718 35			82	681	39	39	867	35		
275 80 836 35 34 1013 34 73 815 35 33 1223 32 94 938 37 33 856 33 325 56 37 47 858 39 53 769 36 42 880 42 52 766 36 44 718 35			89	707	37	39	895	35		
73 815 35 33 1223 32 94 938 37 33 856 33 325 56 37 47 858 39 53 769 36 42 880 42 52 766 36 44 718 35		275	80	836	35	34	1013	34		
94 938 37 33 856 33 325 56 37 47 858 39 53 769 36 42 880 42 52 766 36 44 718 35			73	815	35	33	1223	32		
325 56 37 47 858 39 53 769 36 42 880 42 52 766 36 44 718 35			94	938	37	33	856	33		
5376936428804252766364471835		325	56		37	47	858	39		
52 766 36 44 718 35			53	769	36	42	880	42		
			52	766	36	44	718	35		

TABLE A7. AGGREGATE A RESULTS OF INDIVIDUAL MODIFIED COMPACTION SPECIMEN TESTS

Stockpile Moisture %	Mixing Temp., 	Standard Compaction Tensile Strength Ratio*	Modified Compaction Tensile Strength Ratio*	Boiling Test Retained Asphalt, &
Batch Plant				
Wet	180	0.63	0.30	25
	230	0.71	0.41	60
	250	0.47	0.34	60
	275	0.58	0.46	75
	325	0.56	0.57	85
Drum Plant				
Wet	175	0.56	0.39	60
	230	0.61	0.50	
	250	0.86	0.44	
	275	0.78	0.40	
	330	0.75	0.83	95

TABLE A8. AGGREGATE A MOISTURE DAMAGE SUSCEPTIBILITY PARAMETERS

* Tensile strength ratio computed from the average tensile strength of the freeze-thaw conditioned specimens divided by the average tensile strength of the dry conditioned specimens.

	Gradation, % Passing								Extracted Asphalt			
Stockpile Moisture	Temp., °F	<u>1/2"</u>	<u>3/8"</u>	<u>#4</u>	<u>#10</u>	<u>#40</u>	<u>#80</u>	#200	Content,	Penetration, mm	Viscosity,	Specific Gravity*
Batch Plant												
Wet	180	100	97	69	38	22	10	4	4.9	88	1879	2.385
	230	100	99	71	41	24	12	5	4.7	87	1447	2.397
	250	100	97	68	37	22	10	4	4.6	88	1589	2.406
	275	100	97	68	38	23	11	5	4.5	81	2154	2.419
	325	100	97	66	38	23	11	5	4.5	72	2194	2.418
Drum Plant												
Wet	175	100	91	55	33	22	8	4	5.1	122	1134	2.409
	230	100	92	62	36	21	9	5	4.6	118	1112	2.407
	250	100	98	63	41	25	10	5	5.3	62	3137	2.378
	275	100	98	61	40	25	10	5	5.1	64	2873	2.394
	325	100	98	66	42	25	7	4	5.1	64	2969	2.406

TABLE A9. AGGREGATE A EXPERIMENTAL RUN GRADATION AND ASPHALT DATA

* Rice theoretical specific gravity of asphalt aggregate combination.

Stockpile	Mixing		ent, %	, %			
Moisture	Temp., °F	Sandstone	Limestone	Limestone Screenings	Field Sand	Aggregate Mixture	Asphalt Mixture
Batch Plant							
Wet	180	1.2	4.2	5.3	5.0	3.5	0.4
	230	2.4	5.2	6.1	4.8	4.0	0.1
	250	1.4	4.4	5.5	4.4	3.7	0.1
	275	2.2	5.7	6.3	5.3	5.1	0.0
	325	3.0	6.7	6.8	5.0	5.3	0.0
Drum Plant							
Wet	175	2.5	4.3	9.1	5.6	5.0	0.6
	230	2.7	4.1	7.2	6.2	4.8	
	250	2.9	8.0	7.8	5.0	5.7	0.0
	275	4.3	5.3	7.9	7.9	5.8	0.0
	325	2.7	3.2	4.2	3.8	3.0	0.0

TABLE A10. AGGREGATE A EXPERIMENTAL RUN MOISTURE CONTENTS

83

Fig A5. Aggregate A moisture contents of experimental runs.

APPENDIX B

AGGREGATE B SANDSTONE AGGREGATE USING A BATCH PLANT

APPENDIX B. SANDSTONE AGGREGATE USING A BATCH ASPHALT PLANT

Aggregate Characteristics and Asphalt Plant Details

The sandstone aggregate used to produce the asphalt mixtures in this experiment was mixed by South Texas Construction Company. The plant, located 5 miles north of Mathis, Texas (Fig B1), consists of a mobile batch asphalt plant, stockpiles of aggregate, asphalt and lime storage tanks, and other related equipment. Cold feed bins were used to feed the aggregates, which were trucked on site and pushed up into stockpiles with a crawler tractor, then loaded into the coldfeed bins with a rubber-tired loader. The source of the aggregates is shown in Figure B2 and listed in Table B1.

Material	Material Source	
Sandstone (coarse)	Raybe Property, Tuleta, Texas	
Sandstone (fine)	Ehler Property	
Limestone Screenings	McDonough Brothers, New Braunfels, Texas	
Field Sand	Timmon Property, Mathis, Texas	
AC 10 Asphalt Cement	Texas Fuel and Asphalt, Corpus Christi, Texas	

TABLE B1. AGGREGATE B MATERIAL SOURCES

No modifications were required on the batch plant to perform the experiment. The mixing temperature of the asphalt mixture was controlled by altering fuel flow to the burner of the aggregate drier. The angle of the drier was not changed so the retention time remained constant.

Asphalt Mix Design

The mix design for the sandstone aggregate was done using the Hveem method of asphalt mix design by the Texas State Department of Highways and Public Transportation (SDHPT). A summary of the design includes the gradations of the individual and the combined aggregates (Table B2), the

Fig Bl. Location of sandstone experiment, batch plant.

	Aggregate Type, %					
Sieve Size	Coarse Sandstone	Fine Sandstone	Limestone Screenings	Field Sand	Aggregate <u>Mixture</u> *	
1/2" - 3/8"	17.8	0.0	0.0	0.0	8.9	
3/8" - #4	56.1	16.9	0.0	0.0	29.8	
#4 - #10	22.3	70.9	11.2	0.0	20.4	
+#10	96.2	87.8	11.2	0.0	59.1	
#10 - #40	1.9	5.4	46.6	6.0	11.9	
#40 - #80	0.4	3.2	13.8	63.0	15.9	
#80 ~ #200	0.6	2.7	14.2	28.5	9.2	
-#200	0.9	0.9	14.2	2.5	3.9	

TABLE B2. AGGREGATE B DESIGN GRADATION

* Combined aggregates composed of 50% coarse sandstone, 10% fine sandstone, 20% limestone screenings, and 20% field sand.

theoretical specific gravities of the individual aggregates, the combined aggregates, and the asphalt aggregate combinations (Table B3), and the results of the density and stability tests for the various asphalt contents (Table B4). These results, which are plotted in Figure B3, determine the design asphalt content.

Compaction Effort Study

Before the experiment was started a laboratory study was done to determine the compactive effort required to produce specimens with 7% air voids at each of the experiment temperatures. These procedures were then used in the field to produce modified compaction specimens.

The study was done as follows. Oven-dried samples of the individual aggregates were sieved to individual sizes, then recombined to form the gradation in Table B2. Asphalt was added to produce the design mix of 6.6% and the material was compacted at temperatures of 200°F, 250°F, and 325°F. By trial and error, the compactive effort which would leave 7% air voids in the specimen was determined. The results are listed in Table B5.

Sample Preparation and Testing

The following procedure was used to obtain samples for each of the experimental runs.

- (1) Moisture determination samples for the aggregates were gathered. Individual aggregates were sampled from the feeders on the coldfeed bins and the combined aggregates were sampled by cross-sectioning the coldfeed belt.
- (2) The hot aggregate bins were emptied.
- (3) The aggregate drier was restarted and adjusted to the desired temperature.
- (4) Moisture determination samples for the heated aggregate were gathered from the hot aggregate bins.
- (5) A batch of asphalt concrete was mixed and dumped directly into a truck. The temperature was measured and corrections were made until the desired mixing temperature was obtained.
- (6) An approximate 200-pound sample was shovelled into a large covered metal container and taken to the field laboratory on site.
- (7) A moisture determination sample for the asphalt mixture was taken and dried in the field lab.
- (8) Modified compaction specimens, then modified-standard compaction specimens, were prepared using material taken directly from the

Material	Specific Gravity*
Coarse sandstone	2.351
Fine sandstone	2.161
Limestone screenings	2.721
Field sand	2.635
Aggregate Mixture	2.449
Aggregate Mixture with 5.5% asphalt	2.271
Aggregate Mixture with 6.0% asphalt	2.256
Aggregate Mixture with 6.5% asphalt	2.241

TABLE B3. AGGREGATE B DESIGN THEORETICAL SPECIFIC GRAVITIES

* Aggregate specific gravities are measured bulk specific gravities. Specific gravities of mixtures are calculated.

2.213

Aggregate Mixture with 7.0% asphalt 2.227

Aggregate Mixture with 7.5% asphalt

Asphalt	Relative	Hveem
Content	Density*	Stability
	<u> </u>	%
5.5	96.6	45
6.5	97.6	41
7.5	99.1	30

TABLE B4. AGGREGATE B DESIGN SPECIMEN RELATIVE DENSITIES AND HVEEM STABILITIES

* Percent theoretical specific gravity of the asphalt mixture

TABLE B5. COMPACTIVE EFFORT FOR AGGREGATE B MODIFIED SPECIMENS

Compaction Temperature, °F	Number of Cycles*	Level-Up Load, lb**
200	4	1000
250	3	1000
325	2	1000

* One cycle is three revolutions on the Texas Gyratory Shear Compactor

** Final static load applied to the 4-inch-diameter specimen

Fig B3. Aggregate B density-stability design curve.

metal container. The temperature drop of the mixture in the container during this time ranged from 10°F to 30°F.

- (9) The material for standard compaction specimens was weighed into pans and its temperature was tempered to 250°F, ±10°F, in an electric oven.
- (10) A small bulk sample, approximately 30 pounds, was retained for an asphalt extraction, a theoretical specific gravity test, and other miscellaneous tests.

Test Results

The results of all tests performed during this experiment are tabulated in Tables B6 through B10. The values listed are for the individual test specimens. Tensile strength, resilient modulus of elasticity, and Hveem stability are listed in Table B6 for the standard compaction specimens and in Table B7 for the modified compaction specimens. Table B8 lists the moisture damage susceptibility parameters and Table B9 contains aggregate gradation and extracted asphalt data. The gradations are plotted in Figure B4. Moisture contents of the asphalt mixture and coldfeed aggregates are listed in Table B10 and shown in Figure B5.

The experimental mixtures were placed and compacted as part of the highway contract using routine constructure procedures. The location of the experimental mixtures and the inplace compacted densities as measured by the Texas SDHPT are shown in Table B11.

		Γ)rv Conditioni	ng	Freeze Condit	-Thaw ioning
Stockpile Moisture	Mixing Temp., °F	Tensile Strength, psi	Resilient Modulus, ksi	Hveem Stability,	Tensile Strength, psi	Resilient Modulus, ksi
Dry	210	100	531	33	75	441
		101	618	35	94	624
		-	-	-	104	-
	255	145	874	33	114	849
		166	1452	32	108	792
		163	-	-	-	-
	340	97	533	36	77	397
		104	501	35	75	321
		-	-	36	-	-
Wet	220	122	895	34	132	926
		143	716	35	131	868
		-	-	-	132	-
	275	120	493	34	109	582
		117	442	37	108	384
		111	-	-	-	-
	325	128	679	39	118	650
		165	577	41	103	586
		-	-	37	-	-
Saturated	200	115	948	20	123	1117
		120	627	16	117	1068
		-	-	24	-	-
	210	101	559	35	121	463
		131	591	33	121	666
		-	-	32	-	-
	245	169	1392	28	118	818
		147	1249	30	138	1097
		-	-	-	137	-
	325	129	671	37	116	497
		117	467	37	112	654
		-	-	40	-	-

TABLE B6. AGGREGATE B RESULTS OF INDIVIDUAL STANDARD SPECIMEN TESTS

		Modifie	d Standard Sp	ecimens*	Modified Specimens**			
		Dry Con	ditioning	F/T Cond.	Dry Con	ditioning	F/T Cond.	
	Mixing	Tensile	Hveen	Tensile	Tensile	Hveem	Tensile	
Stockpile	Temp.,	Strength,	Stability,	Strength,	Strength,	Stability,	Strength,	
Moisture	°F	psi	₹	psi	psi	<u> </u>	psi	
Dry	210	76	35	51	49	28	28	
		79	31	57	37	26	26	
	255	100	31	96	52	31	38	
		-	35	95	57	30	43	
	340	90	34	79	44	26	32	
		95	40	69	48	28	36	
Wet	220	91	30	91	67	32	51	
		93	30	87	65	32	48	
	275	97	39	83	58	30	34	
		98	37	77	59	31	29	
	325	112	39	82	55	27	43	
		91	39	88	61	28	43	
		95	37	-	57	30	42	
Saturated	200	7 7	10	83	68	29	48	
		77	11	81	70	26	59	
	210	85	29	93	63	30	54	
		84	28	85	66	31	70	
	245	95	28	87	61	30	51	
		95	29	82	50	30	46	
	325	126	40	103	52	31	45	
		101	39	102	62	30	43	

TABLE B7. AGGREGATE B RESULTS OF INDIVIDUAL MODIFIED COMPACTION SPECIMENS

* Compacted to standard compaction procedure endpoint at mixing temperature

** Compacted to 7% air voids at mixing temperature

Stockpile Moisture	Mixing Temp., F	Standard Comp. Tensile Strength Ratio*	Modified-Std. Compaction Tensile Strength Ratio*	Modified Comp. Tensile Strength Ratio*	Boiling Test Retained Asphalt
Dry	210	0.90	0.70	0.63	50
	255	0.70	0,95	0.74	40
	340	0.76	0.80	0.74	85
Wet	220	1.00	0.97	0.75	60
	275	0.93	0.82	0.54	40
	325	0.76	0.86	0.73	70
Saturated	200	1.02	1.07	0.77	75
	210	1.04	1.06	0.96	80
	245	0.83	0.89	0.87	65
	325	0.92	0.90	0.77	85

TABLE B8. AGGREGATE B MOISTURE DAMAGE SUSCEPTIBILITY PARAMETERS

* Tensile strength ratio computed from the average tensile strength of the freeze-thaw conditioned specimens divided by the average tensile strength of the dry conditioned specimens.

		Gradation, % Passing						Extracted Asphalt		Theoretical	
Stockpile Moisture	Temp., °F	<u>1/2"</u>	3/8"	#4	#10	#40	<u>#80</u>	#200	Content,	Penetration, mm	Specific Gravity*
Dry	210	100	95	67	44	36	16	4	6.1	49	2.221
	255	100	96	70	46	41	17	1	5.7	62	2.239
	340	100	95	67	44	37	16	1	5.3	52	2.222
Wet	220	100	95	68	44	36	17	4	5.7	64	2.258
	275	100	95	70	44	37	17	3	5.3	65	2.243
	325	100	95	68	44	36	17	4	5.9	63	2.273
Saturated	200	100	97	69	45	35	18	6	6.3	69	2.270
	210	100	97	73	45	37	19	5	6.3	72	2.246
	245	100	95	67	43	36	17	4	6.0	71	2.245
	325	100	94	62	39	31	15	4	5.9	59	2.239

TABLE B9. AGGREGATE B EXPERIMENTAL RUN GRADATION AND ASPHALT DATA

* Rice theoretical specific gravity of asphalt-aggregate combination

		Moisture Content, %								
Stockpile Moisture	Mixing Temp., °F	Coarse Sandstone	Fine Sandstone	Limestone Screenings	Field Sand	Cold Feed Aggregate <u>Mixture*</u>	Coarse <u>Hot Bin</u>	Inter- mediate <u>Hot Bin</u>	Fine <u>Hot B</u> in	Asphaltic <u>Mixtu</u> re
Dry	210	0.9	1.1	0.2	0.2		0.4	0.9	0.2	0.6
	255	1.1	3.1	0.3	0.0		0.4	0.5	0.0	0.3
	340	2.2	5.1	0.2	0.0		0.3	0.5	0.0	0.3
Wet	220	5.8	11.0	2.9	5.4	5.5	2.2	1.2	0.2	1.1
	275			~-		5.1	1.5	0.9	0.3	0.6
	325	7.7	11.8	3.6	4.9	4.5	0.8	0.3	0.1	0.1
Saturated	200	7.1	13.0	7.7	16.4	8.0	1.6	0.1	0.0	1.7
	210	10.2	14.9	5.3	7.3	9.6	3.2	2.4	0.2	1.7
	245	10.2	14.9	5.3	7.3	9.5	1.5	0.6	0.0	1.0
	325	10.2	14.9	5.3	7.3	9.7	0.8	1.9	0.0	0.3

TABLE B10. AGGREGATE B EXPERIMENTAL RUN MOISTURE CONTENTS

* Measured without addition of lime slurry

.

Fig B5. Aggregate B moisture contents of experimental runs.

Stockpile	Mixing Temp.,			Field
Moisture	<u> </u>	Location*	Station	Density**
Dry	210	Left main lane	1191+00 to 1191+90	92.5
	255	Right shoulder	1055+70 to 1058+00	94.9
	340	Left main lane	1128+70 to 1130+40	92.0
Wet	220	Right main lane	966+50 to 969+00	92.5
	275	Right shoulder	1053+50 to 1055+40	98.8
	325	Left main lane	989+10 to 991+10	98.0
Saturated	200	Right shoulder	944+20 to 950+25	99.6
	210	Left main lane	1145+10 to 1147+20	96.1
	245	Right main lane	1074+50 to 1076+90	96.1
	325	Right main lane	1122+40 to 1124+50	95.0

TABLE B11. AGGREGATE B FIELD LOCATION OF EXPERIMENTAL MIXTURES

* All experimental asphalt mixture placed on northbound lanes of Interstate Highway 37.

** Density expressed as percent theoretical specific gravity, as measured by Texas SDHPT.

APPENDIX C

AGGREGATE C SANDSTONE AGGREGATE USING A DRUM MIX ASPHALT PLANT

APPENDIX C. SANDSTONE AGGREGATE USING A DRUM MIX ASPHALT PLANT

Aggregate Characteristics and Asphalt Plant Details

The sandstone aggregate used to produce asphalt mix in this experiment was mixed by the Heldenfel Brothers of Corpus Christi at a plant site 20 miles north of Alice, Texas (Fig C1). It consists of a mobile drum mix asphalt plant in a semi-permanent installation, stockpiles of aggregate, asphalt and lime storage tanks, and other related equipment. Coldfeed bins were used to feed the aggregates which were trucked on site, pushed into stockpiles with a crawler tractor, and loaded into the coldfeed bins with a rubber tired loader. The source of the aggregates is shown in Figure C2 and listed in Table C1.

TABLE	C1.	AGGREGATE	С	MATERIAL	SOURCES	

Material	Material Source		
Sandstone	Whitley Property		
Sandstone Screenings	Whitley Property		
Field Sand	Freeborn Property (Plant Site)		
AC 10 Asphalt Cement	Gulf Oil, Corpus Christi, Texas		

No modification was required on the asphalt plant to perform the experiment. The mixing temperature of the asphalt mixture was controlled exclusively by altering the burner fuel control. The angle of the drum was not changed throughout the experiment hence retention time in the drum and also mixing time remained constant.

Asphalt Mix Design

The mix design for the sandstone aggregate was done using the Hveem method of asphalt mix design by the Texas State Department of Highways and

107

Fig Cl. Location of sandstone drum plant experiment.

.

Fig C2. Vicinity of sandstone drum plant experiment.

Public Transportation. Prior to the start of the experiment, a field change increased the design asphalt content from 6.1% to 6.7%.

Each of the aggregate gradations and the combined mix gradation are shown in Table C2. Table C3 contains theoretical specific gravities for each aggregate and the theoretical specific gravity of the mixture when combined with various percentages of asphalt. Listed in Table C4 are the relative densities and Hveem stabilities determined in the design and the same information, from which the design asphalt content was determined, is plotted in Figure C3.

Compaction Effort Study

Before the experiment was started a laboratory study was done to determine the compactive effort required to produce specimens with 7% air voids at each of the experiment temperatures. These procedures were later used in the field to produce modified compaction specimens.

The study was done as follows. Oven-dried samples of the individual aggregates were sieved to individual sizes, then recombined to form the gradation in Table C2. Asphalt was added to produce the design mix and the material was compacted at temperatures of 175°F, 225°F, 250°F, 275°F, and 325°F. By trial and error, the compactive effort which would leave 7% air voids in the specimen was determined. The results are shown in Table C5.

Field Sample Preparation and Testing

The experimental runs were usually done in the mid-morning after the first group of trucks had departed. The following method was used.

- (1) The asphalt mixture storage silo was emptied.
- (2) The asphalt plant was restarted and the burner control set for the desired temperature. The production rate of the plant was not altered except for two of the experimental runs in which the high stockpile moisture content required a slowing of the production rate to achieve the desired temperature.
- (3) The material was dumped into a truck and the temperature was measured. Corrections were made until the desired temperature was obtained.
- (4) A sample of approximately 200 pounds was shovelled into a covered metal container and taken to a field laboratory on site.
- (5) A moisture determination sample for the asphalt mix was taken by one of the field staff. Meanwhile the other member gathered moisture determination samples for the aggregates.

110

		Aggregate Type, %							
Sieve Size	Sandstone	Sandstone Screenings	Field Sand	Aggregate Mixture*					
1/2" - 3/8"	11.8	0.0	0.0	7.5					
3/8" - #4	58.3	0.0	0.0	37.3					
#4 - #10	22.7	6.6	0.0	15.5					
+ #10	92.8	6.6	0.0	60.3					
#10 - #4 0	4.6	43.6	5.4	11.1					
#40 - # 80	1.6	38.4	69.6	20.8					
#80 - #200	0.7	11.3	22.4	6.7					
- #200	0.3	2.7	2.6	1.1					

TABLE C2. AGGREGATE C DESIGN GRADATION

* Combined aggregates composed of 64% sandstone, 16% sandstone screenings and 20% field sand

 Material	Specific Gravity*
Sandstone	2.364
Sandstone screenings	2.405
Field sand	2,622
Aggregate mixture	2.418
Aggregate mixture with 5.5% asphalt	2.246
Aggregate mixture with 6.0% asphalt	2,231
Aggregate mixture with 6.5% asphalt	2.217
Aggregate mixture with 7.0% asphalt	2.203
Aggregate mixture with 7.5% asphalt	2.189

TABLE C3. AGGREGATE C DESIGN THEORETICAL SPECIFIC GRAVITIES

* Aggregate specific gravities are measured bulk specific gravities. Specific gravity of asphalt mixtures is calculated.

Asphalt Content, %	Relative Density,*	Hveem Stability, %
5.5	95.3	48
6.0	96.8	47
6.5	98.0	43
7.0	98.3	42
7.5	98.6	36

TABLE C4. AGGREGATE C DESIGN SPECIMEN RELATIVE DENSITIES AND HVEEM STABILITIES

* Percent theoretical specific gravity of the asphalt mixture.

Compaction Temperature, °F	Number of Cycles*	Level-Up Load, lb**
175	5	400
225	4	800
250	4	1000
275	3	800
325	2	1000

TABLE C5. COMPACTIVE EFFORT FOR AGGREGATE C MODIFIED SPECIMENS

* One cycle is three revolutions on the Texas Gyratory Shear Compactor at 50 pounds pressure

** Final static load applied to the 4-inch-diameter specimen

Fig C3. Aggregate C density-stability design curve.

- (6) The individual aggregates were sampled from the belt feeders on the bottom of the coldfeed bins. Combined aggregates were sampled before and after the lime slurry spray bar by stopping the feed conveyor belt and removing a cross-section of material. All the aggregate moisture samples gathered were sealed in polyethylene bags and returned to The University of Texas for testing.
- (7) In the field laboratory modified compaction specimens were made with material taken directly from the bulk sample. The temperature change of the material in the container during this time was about 10°F.
- (8) The material used to make standard compacted specimens was weighed into pans and placed in a small electric oven to change the temperature to 250°F. Control on this oven was ±10°F.
- (9) After all compacted specimens were completed, a small bulk sample, approximately 30 pounds, was kept for an asphalt extraction, theoretical specific gravity determination, and other miscellaneous tests.
- (10) The small bulk sample, the compacted specimens, and the aggregate moisture content samples were transported to The University of Texas asphalt laboratories for testing.

Test Results

The results of all tests performed during this experiment are tabulated in Tables C6 to C10. The values listed are for the individual test specimens. Tensile strength, resilient modulus of elasticity, and Hveem stability are listed in Table C6 for the standard compaction specimens and in Table C7 for the modified compaction specimens. Table C8 lists the moisture damage susceptibility parameters and Table C9 contains aggregate gradation and extracted asphalt data. These gradations are plotted in Figure C4. Moisture contents of the asphalt mixtures and coldfeed aggregates are listed in Table C10 and shown in Figure C5.

The burner control setting for each of the experimental runs was plotted using the mixing temperature and stockpile moisture content for each experimental run. These points and suggested lines of equal burner control settings are shown in Figure C6.

The experimental mixtures were placed and compacted as part of the highway contract using routine construction procedures. The location of the experimental mixtures and the inplace compacted densities as measured by the Texas SDHPT are shown in Table Cll.

		-			Freeze	-Thaw
		<u></u>	bry Conditioni	ng	Condit	ioning
Stockpile	Mixing	Tensile	Resilient	Hveem	Tensile	Resilient
Moisture,	Temp.,	Strength,	Modulus,	Stability,	Strength,	Modulus,
<u> </u>	<u>°F</u>	psi	ksi	<u> </u>	psi	<u>ksi</u>
Dry	190	98	688	37	93	826
-		119	654	41	91	660
	215	112	754	40	90	782
		97	828	38	99	774
	240	122	838	40	106	718
		166*	876	40	114	684
	285	111	794	42	105	814
		105	792	41	99	745
	320	108	752	41	79	681
		103	823	42	87	714
Wet	175	103	990	34	103	857
		108	863	35	9 5	934
		105	768	38	112	888
	230	84	882	43	104	1046
		86	794	41	95	847
		106*	795	36	91	869
	260	108	742	42	101	790
		109	914	44	105	860
		100	044	40	100	914
	270	119	671	46	79	675
		116	660	42	109	868
		111	/04	40	112	000
	335	123	909	44	110	775
		123	/64	43	118	684
		125	607	41		004
Saturated	185	122	875	40	118	681
bacaracco		118	878	44	127	931
	215	107	724	15	111	827
		97	781	8	103	940
	245	111	1039	38	107	894
		109	934	40	95	742
		105	801	34	85	692
	270	92	685	17	99	681
		95	713	15	103	800

TABLE C6. AGGREGATE C RESULTS OF INDIVIDUAL STANDARD COMPACTION SPECIMEN TESTS

* Data point not used for average.

		Dry Cor	Freeze-Thaw Conditioning		
Stockpile	Mixing	Tensile	Hveem	Tensile	
Moisture*,	Temp.,	Strength,	Stability,	Strength,	
8	°F	psi	<u> </u>	psi	
Dry	190	51 -	28 28	23 24	
	215	59 61	33 33	29 27	
	240	59 67	35 36	23 22	
	285	54 58	33 35	32 31	
	320	59 58	31 31	33 30	
Wet	175	65	31	18	
		59 61	30 30	17 16	
	230	60 61 64	35 33 35	20 23 26	
	260	67 63 66	36 37 33	25 24 24	
	270	57 56 51	37 34 33	22 22 22	
	335	65 71 73	37 32 34	33 29 29	
Saturated	185	63 67	27 28	34 33	
	215	66 68	25 25	59 -	
	245	71 73 63	33 33 34	30 34 35	
	270	62 6 4	29 28	66 65	

TABLE C7. AGGREGATE C RESULTS OF INDIVIDUAL MODIFIED COMPACTION SPECIMEN TESTS

Stockpile Moisture,	Mixing Temp., °F	Standard Compaction Tensile Strength Ratio*	Modified Compaction Tensile Strength Ratio*	Boiling Test Retained Asphalt,
Dry	190	0.84	0.47	15
	215	0.90	0.47	25
	240	0.92	0.37	40
	285	0.94	0.55	70
	320	0.78	0.53	85
Wet	175	0.96	0.28	-
	230	1.14	0.37	50
	260	0.96	0.37	-
	270	0.96	0.40	-
	335	0.91	0.43	-
Saturated	185	1.02	0.51	45
	215	1.05	0.88	70
	245	0.87	0.49	45
	270	1.07	1.03	75

TABLE C8. AGGREGATE C MOISTURE DAMAGE SUSCEPTIBILITY PARAMETERS

* Tensile strength ratio computed from the average tensile strength of the freeze-thaw conditioned specimens divided by the average tensile strength of the dry conditioned specimens.

Stockpile	Mixing	Gradation, % Passing						Extracted Asphalt			Theoretical	
Moisture	Temp., °F	1/2"	<u>3/8"</u>	#4	<u>#10</u>	<u>#40</u>	<u>#80</u>	#200	Content, %	Penetration, mm	Viscosity,	Specific Gravity*
Dry	190	100	96	64	45	35	15	3	7.1	94	1422	2.240
	215	100	95	64	46	35	16	4	7.6	63	2155	2.249
	240	100	95	65	46	34	16	4	6.6	83	1259	2.240
	285	100	93	54	39	31	14	3	6.0	84	1588	2.239
	320	100	96	66	50	39	17	3	6.1	79	1578	2.228
Wet	175	100	94	55	39	31	14	4	7.1	72	1484	2.256
	230	100	93	59	42	34	15	5	6.9	78	1464	2.218
	260	100	93	61	45	36	19	5	6.2	85	1660	2.231
	270	100	91	55	40	22	16	5	6.1	68	1635	2.223
	335	100	93	58	42	34	16	4	5.8	82	1664	2.219
Saturated	185	100	95	61	46	36	16	5	7.1	78	1272	2.242
	215	100	93	57	39	31	14	5	7.8	78	1514	2.216
	245	100	94	60	43	35	15	5	6.7	93	1486	2.248
	270	100	95	62	45	35	17	5	7.1	33	1559	2.242

TABLE C9. AGGREGATE C EXPERIMENTAL RUN GRADATION AND ASPHALT DATA

* Rice theoretical specific gravity of asphalt-aggregate combination.

Stockpile	Mixing						
Moisture	Temp., °F	Sandstone	Sandstone Screenings	Field Sand	Aggregate Mixture	Mixture with Lime	Asphaltic <u>Mixture</u>
Dry	190	_*	-	-	1.5	3.5	-
	215	-	-	-	1.5	3.5	-
	240	-	-	-	1.5	3.5	-
	285	-	-	-	0.9	3.2	0.3
	320	-	-	-	0.9	3.2	0.2
Wet	175	5.1	5.7	6.6	6.0	8.3	1.2
	230	6.7	6.6	7.4	6.9	9.1	0.4
	260	4.9	6.0	6.5	4.9	7.7	0.1
	270	6.6	6.6	6.9	6.7	8.9	0.0
	335	4.9	5.9	7.1	5.7	7.5	0.0
Saturated	185	9.7	21.8	5.9	11.9	13.6	1.9
	215	9.7	21.8	5.9	11.9	13.6	1.1
	245	8.6	22.5	6.2	11.2	12.7	1.2
	270	8.8	22.2	5.9	12.0	13.8	0.3

TABLE C10. AGGREGATE C EXPERIMENTAL RUN MOISTURE CONTENTS

* Individual aggregate moisture contents not used. For dry stockpile condition aggregates were combined then predried.

Fig C4. Aggregate C gradation limits of experimental runs.

121

Fig C5. Aggregate C moisture contents of experimental runs.

Figure C6. Experiment fuel consumption, Aggregate C.

123

Stockpile Moisture	Temp., °F	Location*	Station	Field Density,**
Dry	190	_	-	-
	215	-	-	-
	240	-	-	-
	285	W.B. Lt main lane	247+50 to 249+10	98.9
	320	W.B. Lt main lane	246+00 to 247+50	98.2
Wet	175	E.B. Rt shoulder	87+00 to 90+00	98.8
	230	E.B. Lt main lane	4 +25 to 6+75	92.2
	260	E.B. Rt shoulder	65+15 to 66+80	97.1
	270	E.B. center lane	26+00 to 28+50	95.2
	335	E.B. Gore and exit	110+00	92.2
Saturated	185	W.B. Lt main lane	26+00 to 28+70	96.2
	215	E.B. Rt main lane	8+70 to 11+20	96.6
	245	E.B. Rt main lane	39+00 to 41+00	95.1
	270	W.B. Lt main lane	28+70 to 30+50	97.8

TABLE C11. AGGREGATE C FIELD LOCATION OF EXPERIMENTAL MIXTURES

* All locations on Interstate Highway 37 near Corpus Christi.

** Densities expressed as percent theoretical specific gravity as measured by Texas SDHPT.

REFERENCES

- Von Quintus, H. L., T. W. Kennedy, and J. Epps, "Operational and Performance Characteristics of Drum Mixer Plants," Report FHWA-RD-82, Brent Rauhut Engineering, August 1982.
- 2. Texas State Department of Highways and Public Transportation, "Manual of Testing Procedures," Bituminous Section, 200-F Series, 1978.
- Anagnos, J. N., and T. W. Kennedy, "Practical Method of Conducting the Indirect Tensile Test," Research Report 98-10, Center for Transportation Research, The University of Texas at Austin, August 1972.
- Kennedy, T. W., and J. N. Anagnos, "Procedures for the Static and Repeated-Load Indirect Tensile Tests," Research Report 183-14, Center for Transportation Research, The University of Texas at Austin, August 1983.
- Kennedy, T. W., F. L. Roberts, and J. N. Anagnos, "Texas Boiling Test for Evaluating Moisture Susceptibility of Asphalt Mixtures," Research Report 253-5, Center for Transportation Research, The University of Texas at Austin, May 1983.
- Standard Test Method for "Theoretical Maximum Specific Gravity of Bituminous Paving Mixtures," ASTM Designation: D 2041-78, Annual Book of ASTM Standards, Part 15, May 1982.
- Asphalt Institute, "Energy Requirements for Roadway Pavements," IS-173, November 1979.