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PREFACE

This is the final report on Project 3-5-80-300, "Fatigue of
Prestressed Concrete Girders,”™ sponsored by the State Department of
Highways and Public Transportation of the State of Texas, and the
Federal Highway Administration. It was administered by the Center for
Transportation Research. The research was conducted at the Phil M.
Ferguson Structural Engineering Laboratory, Balcones Research Center,
The University of Texas at Austin, Austin, Texas. Close liaison with
the Texas State Department of Highways and Public¢ Transportation was
maintained through their contact representative, Mr. A. B. Matejowsky.
Mr. D. E. Harley and Mr. R, Stanford aided as contact representatives
for the Federal Highway Administration. Mr. Louls Garrido of the
Louisiana Highway Department and Professor Robert Bruce of Tulane
University provided valuable assistance in arranging for gonstruction of
the Louisiana AASHTO Type girders. Mr, Kent Preston, representing
Florida Wire and Cable, was of great assistance in securing the
pretensioning strand used in the Texas girders. The assistance of all
of these gentlemen in obtaining test specimens and in providing valuable
suggestions throughout the testing is greatly appreciated.

The authors are particularly indebted to the technical staff
who worked on this project -at the Ferguson Laboratory and particularly
to Research Engineers Conrad Paulson, Gregg Reese, Patrick Bachman, and
Nobuyuki Matsumoto, who provided careful documentation of all tests in
this series and who each contributed significantly to the development of
the data bank and the analysis of specimens.

This report contains both a summary of the main fatigue testing
program of full scale pretensioned girders and the design
recommendations which can be drawn from those tests. An earlier report
in this program summarized the fatigue tests of pretensioning strand in
air and suggested a fatigue design model based on an extensive data
bank. That model is further developed herein into a general design
philosophy for flexural fatigue of pretensioned concrete girders.
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SUMMARY

This report summarizes the fatigue testing of full scale
precast pretensioned girders with unshored cast-in-place slabs. It
includes an extensive literature review of prestressed concrete fatigue
and of development of design specifications relating to fatigue of
prestressed concrete. Detailed summaries are given of the fatigue and
ultimate behavior of a series of full scale test specimens including
static and dynamic loads, deflections, stresses, and crack measurements,
The main variables included maximum nominal concrete tensile stress
level; girder stand stress rangesj cross sections (both Texas Type C and
AASHTO Type II girders); strand patterns (both straight and draped);
passive reinforcement; degree of precracking; presence of occasional
overloading; and prestressing losses. A nonlinear program was used in
the analysis of experimental results to determine the effective
prestressing extent of prestress losses, and the ‘effective strand stress
ranges. Comparisons were made to other reported test results and to
recommended and existing fatigue design procedures.. The report
synthesizes this information and presents design recommendations
suitable for inclusion within the general AASHTO fatigue design

framework.
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IMPLEMENTATION

The results of this study indicate that present AASHTO indirect
design criteria for flexural fatigue strength of pretensioned concrete
girders through limitation of the nominal tensile stress in the
precompressed tensile zone will not ensure adequate fatigue life,
Pretensioned concrete bridge girders without well-distributed, confined
passive reinforcement which are actually subjected to loads producing
nominal tensile stresses of 6 4@3 can fall as a result of fatigue of
prestressing strands at less than 3 million cycles. Based on an
extensive comparison of experimental results and computer studies, it
appears adequate to relate the design of such girders to stress ranges
similar to AASHTO structural steel Category B values for redundant load
path structures, '

The test results indicate the extremely detrimental effects of
occasional modest overload cycles and the marked influence of strand
stress ranges due to excessive prestress losses.

The report presents a general fatigue design methodology for
pretensioned concrete girders which should result in substantially
improved design of such girders. This can lead to development of the
full design life and ensure satisfactory performance of this widely used
bridge type over full design life. 1In addition, it will provide
important information for the evaluation of occasional overloads and
assist in the rating of bridges for both normal and permit loads.
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CHAPTER 1
INTRODUCTION

1.1 General

The utilization of new materials or new applications of
existing materials is a slow and usually conservative process. Building
codes and design specifications do not address these new applications
immediately., Only after widespread acceptance, which often means
extensive testing, will a consensus specification writing organization
provide gulidelines. As engineers and the public galin confidence in the
new development, codes and design specifications are relaxed to allow
more efficlent use of materials. However, both design and construction
engineers' responsibilities increase as the factors of safety are
decreased. They must understand how materials behave under various
loading conditions and ensure that strict quality standards are
observed. In some cases, more unconservative limits are required for a
given application as a result of new findings. This is understandable
because bridge and building standards are framed in a general way so
that they can be used for many different structural applications.
Prestressed concrete has followed this evolutionary path in the United
States over the past three decades.

This chapter is divided into four main sections. The first
section provides historical information on the beginnings of linear
prestressing in the United States., The AASHTO Specifications for
prestressed concrete and fatigue design recommendations are briefly
reviewed in the second section. Previous tests by Rabbat et al. [76]
are briefly discussed along with the purpose of this test program and
the test varliables in the following section. The last section provides
an outline of the overall report which is based on the thesis of the
senior author [95].

1.2 The Beginnings of Linear Prestressing
in the United States

Professor Gustave Magnel of Belgium brought linear prestressing
(as contrasted to circular prestressing used in tanks) to the United
States in the 1940's [93,94]. He visited this country in 1946 as a
"Belgium-American Educational Foundation Scientist™ and lectured on
structural engineering, reinforced concrete, and prestressed concrete,
In 1948, Magnel was commissioned to design a prestressed concrete
alternative to a variable depth box girder bridge for the Walnut Lane
crossing in Philadelphia. Magnel's design involved prestressed concrete
I-sections. The Walnut Lane Bridge was the first prestressed concrete
bridge and the first application of linear prestressing in the United
States.



The early days of prestressed concrete were characterized by a
great deal of full-scale testing and the invention of new devices. g
full-scale test to destruction of a typical girder was required by local
authorities before construction began on the Walnut Lane Bridge,
Additional extensive testing was carried out at Lehigh University in the
early 1950's by Ekberg and Eney [34,51] to verify the feasibility of
prestressed concrete and develop design criteria suited for U.S.
applications. Stress-relieved wire, stressing beds, efficient chucks,
and bundled wire (strand) were all developed in the 1950's as a result
of the widespread interest in prestressed concrete. Most applications
in the United States favored pretensioned concrete while European
englineers generally worked with post-tensioned concrete,

1.3 Specifications and Recommendations for
Prestressed Concrete Design

1.3.1 AASHTO Specifications

Specification writers must consider many factors, a large
portion of which can vary greatly, before an acceptable specification is
published. The applicability of the AASHTQ Specification [7,8] maximum
allowable nominal concrete tensile stress of 6-/?2 typifies the
evolution of a design specification. Actual loads, including impact and
the probability of overloads, had to be considered. Lateral and
longitudinal (if applicable) distribution of loads is a factor. Once
the effective section and loads are determined, the state of stress of
the cross section is calculated. The calculation would include the
initial prestress force and concrete properties (which vary depending on
quality control at a given prestress plant) as well as prestress losses.
Losses are a function of curing and storage conditions, material
properties, atmospheric conditions, and loading history. The
interdependence of losses add to their variability and uncertainty.
After the state of stress is estimated given uncertain maximum loads, a
designer compares the actual stresses with the allowable values assuming
linear elastic behavior (no cracking). The allowable nominal concrete
tensile stress limit is not valid if the concrete tensile cracking
stress, which is also variable, is exceeded. Recognizing in some way
these variable factors, the AASHO Specifications [3] firat addressed
prestressed concrete design in 1961.

The initial AASHO Specifications [3] (1961) pertaining to
prestressed concrete design restricted the tensile stress to zero in the
extreme fibers of the precompressed tension zone. In 1965 [U4] the
maximum allpwable tensile stress was increased to 3~f?g. The present
value of 6+/f} was first allowed in the 1971 Interim Specifications [(1l.
As the maximum allowable tensile stress increases, variability in loads,
losses and material properties become more of a factor, and the
designer's responsibilities increase. If cracking occurs as a result of
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an adverse change in one or more of the variables, fatigue as well as
corrosion become potential problems. Figure 1.1 shows the drastic
increase in local strand stress that accompanies the opening of flexural
cracks (which can result in fatigue problems). The AASHTO
Specifications [8] do not specifically address fatigue of prestressed
concrete, but several ACI committee reports [19,24,44] do.

1.3.2 ACI Recommendations for Fatigue Design

The ACI Committee 215 and Committee H4U3 reports provide
guidelines for fatigue design. Committee 215, Fatigue of Concrete, [U4lU]
suggests maximum strand stress ranges of 0.10 f,, for uncracked sections
and 0.04 fp for cracked sections for fatigue design. Committee U443,
Concrete Brzdge Design [24], suggests maximum nominal concrete tensile
stresses of SJWg for members with bonded auxiliary reinforcement, 3/72
for members with bonded auxiliary reinforcement in corrosive
environments, and zero tension for members without bonded auxiliary
reinforcement. The Committee 443 recommendations appear to be based on
both corrosion and fatigue considerations.

1.4 Purpose of Test Program

As a result of potentially unfavorable results found in
previous pretensioned girder tests by Rabbat et al., [76], this test
program was initiated to determine the fatigue strength of full scale
pretensioned concrete bridge girders.

1.4.1 Previous Tests by Rabbat et al.

Rabbat et al, [76] tested six full-scale AASHTO-PCI Type II
girders with composite decks., The main purpose of the experimental
program was "to determine the effect of repetitive loading on the
behavior and strength of girders with draped and blanketed strands®
[76]. Three specimens were cycled at a maximum load that produced zero
tension in the extreme fibers of the precompressed tension zone. These
girders withstood 5.0 million fatigue cycles with no indication of
fatigue distress. The subsequent ultimate tests to failure (at loads
slightly above the calculated ultimate capacities) confirmed that
fatigue testing did not reduce the girders' strength. Three other
girders were cycled in a cracked state at loads that produced a maximum,
nominal, uncracked tensile stress of 6 ¢E§ These three girders
experienced fatigue distress between 3.2 and 3.8 million cycles.
Subsequent ultimate tests on two of the specimens and post mortem
investigations on all three specimens revealed extensive wire fatigue
failures.



Fig. 1.1 Strand stress increase at flexural cracks




The application of the results of the teasts by Rabbat et al.
were questioned by the prestressed concrete industry as a result of
fabrication and material unknowns and experimental techniques. The
strand fatigue properties and initial conditions {(rusted or unrusted
surfaces) were questioned. In the study, prestress losses were assumed
at 20 percent based on an initial prestress of 70 percent fpu‘ The
initial prestress, losses, and effective prestress values were
questioned., The use of crack formers (which eliminated random cracking)
was questioned, Some critiecs suggested possible dynamic amplification
due to the loading rate of 265 cycles per minute, and they subsequently
cast doubt on the results., This project was initiated to clarify some
of these effects and to further explore variables affecting the fatigue
strength of pretensioned girders.

1.4.2 Description of Test Program

The current test program was divided into three phases. The
initial portion of the test program was reported on by Paulson et al.
[73] and involved the development of a strand in air fatigue model based
on both previously reported tests and new data (including tests on the
strand used in the present study's Texas Type C and AASHTO-PCI Type II
specimens), Eleven full-scale pretensioned girder specimens were tested
in the current flexural fatigue portion of the research project,
Several of these girder tests were previously reported by Reese [77].
The last portion of the study involves shear fatigue tests of full-scale
girders and will be reported by Bachman [26].

1.4.,2.1 Failure Modes of Prestressed Concrete Beams

T.Y. Lin [53] observed that "the fatigue strength of
prestressed concrete can be studied from three approcaches: that of
concrete itself, that of high strength steel, and that of the
combination.® While some mention will be made of both concrete and
steel fatigue, the third case, fatigue of prestressed members will be
the major focus of this report, Emphasis will be given to predicting
glrder fatigue life from strand fatigue data.

The pcssible modes of fatigue failure of prestressed concrete
beams are:

1. Cyclic compression failure of the concrete,
2. Tension failure of concrete due to overloads or repetitive
loads followed by brittle fracture of steel at cracks due to

high steel stress ranges.

3. Progressive bond failure between concrete and pretensioned
steel originating at cracks due to high hbond stresses. This



results in excessive slip of the prestressing steel which
essentially causes a loss of effective prestress and may result
in brittle fracture of steel at cracks due to high steel stress
ranges,

4, Cyclic diagonal tension or shear failure resulting in stirrup
fatigue fractures,

By far the most prevalent mode of failure encountered in girder fatigue
tests is due to fatigue fractures of the prestressing strand at crack
locations [41,47,62,64,65,76,77,91]. Shear fatigue failures have not
been widely investigated although such failures have occurred and are
being studied in a parallel test series [26]. This report will focus on
the failure modes which involve brittle fracture of flexural steel, both
prestressing and passive reinforcement,

1.4.2.,2 Flexural Fatigue Tests

The flexural fatigue girder phase was designed solely as a
fatigue test of full-scale pretensioned concrete girders. The strand
fatigue properties for both the Texas Type C and AASHTO-PCI Type II
specimens were known. The strand used in the Texas Type C specimens was
considered to have average fatigue characteristics when compared to test
data on all strand., The spool from which all strand for the Texas Type
C girders was taken was stored inside the laboratory to prevent rusting.
Initial prestress levels were known accurately as a result of ranm
pressure, strand-elongation, and strand strain gage and strand load cell
instrumentation, Losses were calculated using PBEAM [85], a time-
dependent computer program. Actual losses and the effective prestress
level were determined from cracked section behavior with the aid of
deflection and strain measurements. A1l but one specimen were
precracked to determine the effective prestress level, but no crack
formers were used. The cyclic loading rate was between 2.5 and 3.0
cycles per second, somewhat above the actual field loading rate which
might approximate 1.7 cycles per second based on truck passages.
However, the rate was below the ACI Committee 215 [19] suggested loading
rate of 3.3 to 10 cycles per second for prestressing strand. All but
one girder specimen was taken to fatigue failure to determine the
fatigue life of various strand stress ranges.

1.4.2.3 Flexural Fatigue Test Variables

The main experimental variables included:; maximum load level as
indicated by the nominal concrete tensile stresses based on uncracked
transformed section calculationsj girder strand stress ranges; cross
sections (which included AASHTO-PCI Type II girders and Texas Type C
girders); strand pattern including both draped and straight strands;
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provision of passive reinforcing steel in the precompressed tension
zone; distribution and confinement of passive reinforcement; degree of
precracking of sections; and the presence or absence of occasional
modest overloads during static tests, : '

1.5 Description of the Following Chapters

This report summarizes the flexural fatigue tests of eleven
full scale precast pretensioned concrete girders with unshored cast-in-
place slabs [95]. The following chapter (second of six) includes an
extensive literature review of fatigue of the constituent materials
(concrete, reinforcing steel, and prestressing steel), of fatigue of
prestressed members, of the evolution of prestressed concrete in the
AASHTO Specifications, and of the development of specifications and code
provisions relating to fatigue of prestressed concrete. The third
chapter includes a detailed description of the fabrication procedure,
material properties, initial static loading procedure, the technique
used to determine the actual prestress force, and the fatigue and
ultimate testing procedures, Chapter 4 provides detailed summaries of
the static, fatigue and ultimate behavior of the eleven specimens
including: static and dynamic loads, deflections, stresses and crack
measurements. It reports results of a post mortem investigation which
was performed on all specimens to determine the locations and types of
wire and reinforcing steel fractures., Chapter 5 describes the nonlinear
program used in the analysis of experimental results to determine
prestress losses and strand stress ranges. It presents comparisons:
among the eleven specimens, to other reported test results, and to
various fatigue design procedures. The recommended design procedure
developed in this study is outlined in detail in Chapter 5. The last
chapter (Summary, Conclusions and Recommendations) synthesizes the
reported information and presents design recommendations suitable for
inclusion within the general AASHTO fatigue design framework.

The results of this limited number of tests must be put into
perspective, The appliéd loads (static and dynamic), prestress losses,
and material properties were known accurately for all specimens, unlike
the situation with in-service girders. 1In actual service applications,
these conditions could be better or worse. -With single girder
specimens, there 1s no possibility of lateral distribution of loads to
adjacent girders. Lateral distribution occurs in actual bridges.
Empirical procedures are used in design to estimate such distribution
effects. These effects could reduce the possibility of fatigue if
conservative distributions are assumed. Conversely, actual loads could
be higher than design loads and material variations and construction
variabllity could reduce girder strength and resistance to cracking.
This could have a very damaging effect on the fatigue strength of actual
applications. Finally, all girders tested in this program experienced a
relatively large number of full live load cycles prior to failure., A
highway girder would probably have to be in service a substantial number



of years before it accumulates cycles of this magnitude, Present
favorable experience with pretensioned girders may not be a predictor of
future experiences when longer lives result in substantial numbera of

load applications.



CHAPTER 2

BACKGROUND

2.1 Introduction

In order to understand the behavior of prestressed concrete
members subjected to fatigue loading, one must be aware of the
limitations of the component materials, the interactions between the
materials, and the behavior of the member as a whole, The firsat part of
this chapter reviews previous studies regarding the fatigue of concrete
and the fatigue of prestressing and reinforcing steel as well as their
interaction. The next section reviews the available information on
fatigue of prestressed concrete beams, The fatigue program with
prestressed concrete bridges at the AASHO road test 1s reviewed in the
third section. The application of partial prestressing with auxiliary
nonprestressed mild reinforcement and its impact on fatigue 1is reviewed
in the next section. Finally, the development of prestressed concrete
fatigue related provisions in American regulatory standards is
summarized,

2.2 Fatigue of Component Materials

2.2.1 Concrete

The mechanism of fatigue failure of concrete includes internal
microcracking between the paste and the aggregate and within the paste
itself. This network of cracks which develops under repeated loading is
more extensive than that in specimens subjected to only static loading
[79]. The ultimate result of this cracking is rupture of the concrete.

2.2.1.1 Concrete in Compression

The compression strain of concrete subjected to repetitive
loading has two maln components. A Rilem Report [79] states that one of
these components is a function of the elastic strain and the endurance
of the specimen, ¢,. The other component is a time~dependent function
similar to creep, . Figure 2.1 shows the two components of cyclical
compression strain. In this example the high initial strain corresponds
to a level of upper stress equlvalent to 0.75 f!,

Nordby [61], reporting on work by Mehmel and Probst, calls the
two components of cyclical compression straln "elastic® and “remainingn.
The remalning part is the strain remaining after the load i3 removed. A
portion of this is recoverable., Nordby states:

9
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It was found that elastic strains and remaining strains increase
with the number of repetitions as long as a certain critical stress
(endurance 1imit) is not exceeded and that the ratio (remaining
strain/elastic strain) grows larger with the number of cycles.
This critical stress was between 47 and 60 percent f!,

Figure 2.2 shows Mehmel's and Probst's results from which the
conclusions are drawn. The tests were performed on compression
cylinders., '

Both studies indicate permanent strains result from compressive
fatigue loading. The studies confirm Nordby's critical stress theory.
For the high initial strains in the Rilem Report, in which the initial
stress was 0.75 f!, the elastic portion dominates. The time component
changed little after 20 percent of the life was reached. The Mehmel and
Probst study, performed at stresses below the critical value, indicates
a proportionally larger increase in time effects than the elastic
effects. ’

ACI Committee 215 [19], reporting on work by Raju, states:

Similar to the behavior of concrete under sustained loads, the
strain of concrete during repeated loading increases substantially
beyond the value observed after the first load application., The
strain at fatigue failure is likely to be higher if the maximum
stress is lower.

This would indicate larger strains develop in low stress, high cycle
tests than develop in high stress, low cycle tests., For flexural
members, this time or cyclical load effect would cause permanent
deformations. Deflections should increase as cycling continues. 1In
addition, with prestressed members the effective prestress force should
decrease,

2.2.1.2 Concrete in Tension

Recent tests by Saito and Imai [81] indicate:

... that the S-N curve of concrete subjected to repeated tensile
loads exhibits no fatigue limit less than 2 million cycles, The
relationship between stress level S [percentage of ultimate stress]
and average fatigue life N for P = 0.5 [50 percent probability] is

S = -4,12 log N + 98.73

A plot of this curve is shown in Fig. 2.3. The Saito test specimen is
shown in Fig. 2.4, The minimum stress level for all tests was 8.0
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percent of the static tensile strength (f ), which was approximately 480
psi. The compression strength was approximately 5600 psi. All
compressive strength and tension test specimens were tested between
eight and nine weeks after casting. A residual strain equal to the
elastic strain was reported for a stress of‘ 0.75 ft'

ACI Committee 215 [19] reports that the fatigue strength of
concrete for a 1life of 10 million cycles is roughly 55 percent of the
static strength. The probability of failure is 5 percent. The ratio
Spin (minimum stress)/Sp.x (maximum stress) was 0.15 for the test. For
a probability of failure of 50 percent, the strength is approximately 60
percent of the static strength. If the Saito data can be extrapolated
to N = 10 million cycles, the maximum stress would be 70 percent fy.
With a minimum stress of 8 percent f mi /Smax = 0.11. The
probability of failure is 50 percent. The differences are probably due
to the extrapolation of data, loading rate, and the difference in
specimen geometry. The ACI Committee 215 1imit of 55 percent is also
applicable to concrete in compression or flexure, . Both sources indicate
that there is no fatigue limit for concrete in tension. However, the 10
million cycle limit should be a reasonable bound for almost all' bridge
applications.

Murdock and Kesler [58], reporting on their research as well as
research by Clemmer, Hatt, and Creps, use the modified Goodman diagram
shown in Fig. 2.5. For a flexural specimen tested with a minimum stress
of zero, it would be expected to last 10 million cycles at a tensile
stress of approximately 60 percent of the modulus of rupture. For a
flexural specimen tested with complete stress reversals (the applied
loads produce alternate tension and compression stresses that are
equal), it can be expected to have a fatigue strength of 56 percent of
the statie flexural strength at 10 million cycles. This is the limit
used in the ACI Committee 215 [19] report for tension, compression, and
flexural specimens. As the minimum tensile stress increases above zero,
the fatigue strength at 10 million cycles increases, but the stress
range decreases due to the difference in slopes of the two lines.

2.2.1.3 Concrete in Flexure

The fatigue strength of concrete specimens with a strain
gradient has -been stated to be either slightly better or approximately
the same as pure tension or compression fatigue specimens, depending on
the type of loading. Ople and Hulsbos [63] reported an increase in
fatigue 1ife for column specimens tested with a strain gradient over
pure compression specimens. The fatigue strength of specimens with a
1lin. load eccentricity (the maximum extreme fiber stress was from 0.85
fi to 0.95 f‘é' the minimum extreme fiber stress when the specimen was
loaded was 0.0 f!; the unloaded extreme fiber stresses were 0.1 fa and
0.0 f') was 15 to 18 percent above the fatigue strength of axially
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Use of the Modified Goodman Diagram

Determine the minimum stress and locate this value on the
horizontal axis. Example: A minimum stress of 40 percent of the
static ultimate flexural strength.

To find the maximum allowable tensile stress for a fatigue life of
10 million cycles, proceed vertically to the dashed line; read
horizontally from this point to the vertical axis. Example: A
maximum stress of 75 percent of the static ultimate flexural
strength.

To find the corresponding concrete stress range move diagonally
from the maximum stress point to the stress range axis. Example:
A concrete stress range of 35 percent of the static ultimate
flexural strength.

Fig. 2.5 Flexural fatigue strength at 10 million cycles
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1oaded (no stress gradient) specimens for a range of fatigue life of
40,000 to 1,000,000 cycles.

2,2.1.4 Bond Between Concrete and Steel

The bond characteristics of seven-wire strand and reinforcing
bar greatly influence the fatigue life of prestressed and reinforced
members., Abeles [15] states:

It may be expected that with excellent bond the conditions in
prestressed concrete beams are better than with the steel tested in
the air, whereas with very bad bond the conditions are considerably
worse because of mechanical influences, including friction between
concrete and steel which occur in wide cracks when in addition to
direct tension, additional stresses occur due to the steel
curvature, i.e., bending occurs as [a] consequence of the great
deformation in the beams in the state of high loading.

o The early occurrence of the bond break may reduce the fatigue -
life of a prestressed concrete beam to only 40% of that which it
would have if bond break did not occur.

Bond deterioration occurs where steel strain exceeds concrete
strain. This difference in strain exists at the ends of a member and at
cracks, High steel strains at cracks destroy bond between concrete and
ateel at locations adjacent to these cracks. This distance of debonding
is called the debond length. If the debond length at the ends of a
member, due to shear or flexural cracks, overlap the transfer region,
gross slippage will occur., At isolated cracks the slippage is less
drastic. Lin [53] states that at flexural cracks, "the bond stress in
the vicinity of the crack rises, and slip occurs over a small portion of
the strand adjacent to the crack", Under fatigue loads which are at a
level which produce significant tensile stresses in the concrete,
flexural cracks are opened repeatedly. This causes a gradual increase
in debond length and slip. Rabbat et al. {76] reported that twice the
bond development length was required to prevent bond failure when
cycling into the tensile range. Abeles [15] reported that varying
ranges of loads intensify bond deterioration.

Debonding is characterized by forked cracks [15,24,47]. Figure
2.6 shows several typical forked flexural cracks. Extensive cracking
occurs in specimens with unbonded tendons because there is no force
normal to cracks to control crack propagation. With bonded
construction, the reinforcing or prestressing steel arrests cracks; as
debonding occurs, cracks fork similar to unbonded specimens.

Debonding can increase steel strains at a crack to values
greater than those predicted by a cracked section analysis. Frantz and
3reen [38], in a study to determine the effects of reinforcing
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Fig. 2.6 Forking of flexural cracks due to debonding
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distribution on cracking, reported local measured stresses at cracks 39
to 54 percent higher than those predicted by a cracked section analysis.
Frantz points out that this is probably a low estimate of actual
stresses since "... none of the gages 1lie directly across a crack, The
stresses in the bars at a crack are probably higher....", Transfer of
strain energy at a crack from concrete to steel could be the cause of
this increase in steel stress., The degree of increase in stress is a
function of the degree of debonding. The shorter the debond length, the
higher the steel stress.

Debonding reportedly increases auxiliary passive reinforcement
stresses for partially prestressed members. Gerwick and Venuti [39]
report:

When concrete is cracked and then cycled repeatedly intoc the
"crack-reopening” tensile range, the steel 1s subjected to
significantly increased stress ranges, Bond progressively is lost
along the steel, particularly along smooth bars, strand, and
wire..., Due to slippage of the prestressing steel, the
conventional unstressed steel usually is subjected to a slightly
higher stress range. As stiffness decreases and creep increases,
the steel is subjected to ever greater stress ranges. These
increase significantly after cracking and as failure approaches.

Bond characteristics appear random within a single specimen. A
difference in bond at a flexural crack can cause one strand or
reinforcing bar to be stressed more than an adjacent one., The element
with the shortest bond length would have the highest stress. The
varylng load ranges, which {ncrease steel stress as the specimen
deteriorates due to different unbonded length, complicate the analysis.

2.2.2 Steel

The mechanism of fatigue failure of steels includes
microcracks, or existing flaws, that propagate. There 1s generally
little plastic deformation on the macroscopic scale before brittle
failure. High strength steels, such as prestressing strand, have a low
erack resistance {fracture tcughness) compared to normal strength steels
[30]. Higher strength materials permit the use of smaller sections and
allow higher stresses, A small flaw in high strength materials, that
produces large stress increases, due to stress concentrations at the
crack tip and a slight decrease in sectlion, can result in brittle
fracture,

2.2.2.1 Prestressing Strand

Paulson [73] reported on over 700 prestressing wire and strand
fatigue specimens in his literature review. In addition, he generated
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over 60 new data points in the first phase of this project. His
multivariate regression analysis for all valid data points produced the
following equation:

Log N = 11.0 - 3.5 Log S, (A-1L)
where; N is the fatigue 1life in number of cycles

S, is the stress range; maximum stress-minimu