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PREFACE 

This is the first and final published report on Research Project 

3-8-76-213, "Roughness at the Pavement-Bridge Interface." It includes sum-

maries of pertinent literature, methodologies for measurement and analyses of 

surface roughness, and recommendations for precluding and minimizing approach 

surface roughness. 

Two unpublished theses based on various phases of the study have been 

submitted to The University of Texas at Austin in partial fulfillment of the 

requirements for the ~Bster of Science degree in Civil Engineering. These 

are: 

"A Study of Roughness at the Pavement-Bridge Interface," June 1977, by 
Y. C. Hu, and 

"Roughness at the Bridge-Pavement Interface," August 1979, by T. S. Wu. 

Copies of these are available for interlibrary loan from The University 

of Texas at Austin, Austin, Texas 78712. 
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ABSTRACT 

Road surface roughness in the proximity of the pavement-bridge interface 

may lower riding quality and induce excessive dynamic wheel loads on highway 

structures. Twenty-one bridge sites in four Texas State Department of Hir,h

ways and Public Transportation Districts, Lubbock, Houston, Austin, and San 

Antonio, are selected for study. The Surface Dynamics Profilometer is uti

lized to measure roadway profiles. Dynamic vehicular tire forces induced by 

three types of vehicles at two specified speeds are estimated using a computer 

simulation model. Possible causes and typical patterns of surface irregular

ities are identified and classified and various treatment methods are exam

ined. A dynamic load index is developed to assess ride quality and predict 

subjective ratings. 
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SUMMARY 

An extensive study of surface roughness along and adjacent to bridge _. 

approaches is presented. A survey of literature indicates that various as

pects of the generalized problem have been investigated by a number of re

searchers. Most research efforts have recommended design and construction 

methodologies which have been incorporated into current practice. 

Field data collection efforts have consisted of gathering design, con

struction, and maintenance histories and surface profile descriptions for 

bridge approaches in four SDHPT Districts. Computer simulation of vehicular 

tire forces for measured approach profiles indicates that dynamic tire forces 

induced by typical approach roughness may reach as much as 4.5 times their 

static values. 

A large number of factors suspected of being related to approach rough

ness could not be identified as causative. These include traffic volume, 

bridge function, bridge type, bridge age or height of embankment fill. Rigid 

pavements could not be identified as being generally superior to flexible 

pavements; however. CRCP generally provided better performance than JRCP. 

Type of material utilized in approach embankments was found to be the factor 

best correlated with roughness problems. Timely performance of maintenance 

activities was, likewise, identified as having a strong relationship to the 

development and progression of approach problems. 
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IMPLEMENTATION STATEMENT 

A concise summary of courses and manifestations of pavement surface 

roughness on bridge approaches is provided. Information presented may be 

utilized as a guide to design, and construction techniques which may be 

utilized to help preclude approach roughness problems. Data regarding sur

face maintenance may, likewise, be utilized as a guide to practices which may 

help alleviate roughness problems. Simulation based prediction of dynamic 

vehicular tire forces induced by specific roughness types, can be used to pre

dict magnitudes and locations of dynamic loading on bridge approaches and 

bridge surfaces. 
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CHAPTER 1. INTRODUCTION 

Road surface irregularities adjacent to highway bridges have long plagued 

highway users and highway maintenance agencies.' These bumps, dips, and rolls 

not only create an unpleasant ride when a vehicle passes onto and off the 

bridge but also, in severe situations, may present a hazardous condition to 

fast moving traffic. The deterioration of both pavement and bridge structures 

is accelerated as a result of increased dynamic wheel loading caused by sur

face irregularities. Moreover, in order to correct these surface faults, 

costly repair work is often required. Under a heavy traffic flow situation, 

this maintenance operation may seriously disrupt the normal flow of traffic 

and thus significantly increase total user costs. 

There is no general agreement on the specific longitudinal boundaries 

of bridge approaches. Many parts of the roadway may contribute to poor rid

ing quality, such as the bridge deck and abutment, pavement structure, sub

grade, embankment, and foundation. Though the physical condition of the pave

ment-bridge interface often provides an indication of the problem, the source 

of the problem usually lies somewhere else. For instance, the local climate 

could be a contributing source. In fact, the problem is so complicated that 

almost all aspects of design, construction, and maintenance are involved. 

These factors will be examined more closely later. 

ROUGHNESS INDICATORS 

Pavement distress is an obvious concern of this study. It includes at 

least three modes: fracture, distortion, and disintegration. A summary of 
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distress manifestations, with possible distress mechanisms, is shown in 

Fig 1.1., 
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One prevalent indicator of an unsatisfactory bridge approach is displace

ment of the pavement. As depicted in Fig 1.2, this may be either settlement 

or uplift of the pavement at the abutment or at the pavement end of an ap

proach slab. Also shown in Fig 1.2, although not a frequent cause, is settle

ment or rotation of the abutment. 

OBJECTIVES 

This study is a continuing effort to examine roughness problems at pave

ment-bridge interfaces in the State of Texas. An number of representative 

cases in four districts, Austin, San Antonio, Lubbock, and Houston, are se

lected. The objectives are to locate and characterize the types of roughness, 

to identify their possible causes, and to suggest possible solutions or treat

ment techniques. 

SCOPE OF THE REPORT 

Chapter 2 includes a literature review in which causative factors and 

common treatments are classified and examined. Results of investigations at 

a number of selected field test sites are presented in Chapter 3. Data col

lected through questionnaires and on site studies form the basis of this anal

ysis. Typical roughness patterns are identified and schematically illustra

ted. 

Road surface profile measuring hardware and techniques are presented 

in the first section of Chapter 4. The second section describes a simulation 

model, which is used to predict dynamic vehicular tire forces which occur as 

the result of surface profile irregularities. The measured profiles are com

pared with rod-and-level elevations, and the applicability of profilometer 
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Distress 
Mode 

Fracture 

Distress 
Manifestation . 'Examples of DiStress Mechanism* 

Cracking _____ .. 

Spalling 

Permanent 
deformatio~n-----I 

Loading 
Fatigue 
Thermal changes 
Moisture changes 
Slippage (horizontal forces) 
Shrinkage 

changes 
Moisture changes 

Loading 
Time-dependent deformation 

(e.g., creep) 
Densification (i.e., compaction) 
Consolidation 
Swelling 

Distortion ---I 

Disinte
gration 

Faulting 

Stripping 

--0001 Raveling 

Loading (pumping) 
Densification (i.e., compaction, 

consolidation) 
Swelling 
Erosion 

TAdhesion 
----------I~emical reactivity 

Abrasion by traffic 
Degradation of aggregate 

----------~ Durability of binder 
Insufficient asphalt 

Scaling ~
emiCal reactivity 

__________ ~ Abrasion by traffic 
Freeze-thaw action 

* Not intended to be a complete listing of all possible distress 
mechanisms. 

Fig 1.1. Categories of pavement distress (from Ref 1). 
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Typical bridge approach problems (from Ref 2). 
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records to dynamic load prediction is analyzed. The vehicle simulation 

. analysis is presented in the subsequent section. Dynamic wheel load diagrams 

of simulation results are included in the appendix. A dynamic loading index 

is developed to permit quantitative expression of the potential for creation 

of dynamic vehicular loading by given surface profiles. 



CHAPTER 2. CAUSE EXAMINATION AND TREA'nIENT STUDY 

- A LITERATURE REVIEW 

In order to develop necessary understanding of previously completed 

study efforts, a review of available literature was made. Factors affecting 

the riding quality of bridge approaches were examined and treatment methods 

that have been used were studied. 

Factors which influence the performance of the pavement bridge inter

face are very complex and are interrelated with one another. There is no 

consensus about the causes and effective treatments of the problem. In this 

study, related factors are assembled into the following six groups: 

(1) traffic 

(2) climate and environment 

(3) materials 

(4) design 

(5) construction, and 

(6) maintenance. 

TRAFFIC 

Among the important factors to be evaluated for damages by traffic to 

highway pavements and bridge decks are the effects of vehicle characteristics, 

traffic volume, and speed of vehicle operation. 

Major vehicle characteristics include weight and weight distribution, 

number of axles, axle arrangement, tire spacings, tire pressures, and elas

tic suspension system. One means of expressing the effects of vehicle axle 

weight upon pavement life is through the AASHTO equivalency factors (Ref 3). 

--- ----- - - - .. --- -- -. ------- - -----" - -- -- - --- --~ 



These relationships can be utilized to numerically express the relative 

damage effects of any vehicle axle. The AASHTO equivalency factors indicate 

that the damage per pass by light passenger car axles is very small as com

pared with that by those of a heavy truck. 

7 

Most investigators agree that the magnitudes of dynamic loads increase 

with increasing speeds (Refs 4 and 5). Higher speeds increase the excitation 

of vehicle suspension systems when pavement roughness is present; however, the 

variation of dynamic wheel forces with speed depends heavily on the type of 

vehicle and the type of road roughess. 

CLIMATE AND ENVIRONMENT 

The most important factors under this category are temperature and mois

ture. Freezing temperatures in the presence of moisture directly induce 

frost action (Ref 6). In a broader sense, frost action means both frost 

heave and loss of subgrade support during frost-melt periods. This phenom

enon is one severe cause of pavement roughness. Sometimes, structural dam

age during the spring thaw is so great that heavy loads are prohibited 

(Ref 7). Economic loss to the public resulting from selective shutdown of 

roads under such conditions may be very high. 

For rigid pavements and bridge decks, temperature variations of the 

slab may affect the condition of the interface. With a rising temperature, 

the slab will expand and push against the abt:.tment, causing displacement of 

the abutment if there are no well-maintained expansion joints and a properly 

installed anchorage system (Ref 8). 

The effect of precipitation on pavement performance has not received 

the same attention as effect of frost action. However, since the load-bear

ing capacity of a pavement is determined considerably by the strength of the 
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subgrade, increases in water content due to rainfall or poor drainage 

conditions may lead to pavement breadup. Rainfall also provides part of the 

mechanism by which pumping of rigid pavements and shrinkage and swell of some 

subgrades may occur (Ref 9). 

The presence of a water source near bridge abutments affects the poten

tial for approach roughness. A study made in Kentucky (Ref 10) shows that a 

bridge over a river is more likely to have rough approaches than a bridge for 

a grade separation. Embankments near water sources have a tendency to absorb 

moisture, and the excess moisture often adversely affects material properties. 

In general, the extent of damage at a bridge approach due to climate var

iables depends on the type of pavement, the amount of traffic, and particular

ly the type of embankment and foundation materials. For those areas with 

swelling clay or frost-susceptible soil, frequent moisture changes and freeze

thaw cycles will create roughness. Elaborate preventive measures are often 

warranted for such cases. 

MATERIAL 

Materials considered here include (1) original foundation soil, (2) em

bankment fill, (3) abutment backfill, and (4) swelling clay. 

Foundation Material 

It is believed that the post-construction settlement of foundation mater

ial is a common cause of roughness at bridge approaches (Ref 2). Subsurface 

exploration at the abutment site is utilized to predict the total amount of 

consolidation that can be anticipated in the embankment foundation and the 

time required for it to take place under imposed loads. Highly compressible 

foundation material at the bridge approach can be treated using several com

mon methods as discussed below. 
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Removal by Excavation. This treatment can be adopted when soft material 

is reasonably shallow, required borrow is readily available, and embankment 

stability must be achieved in a relatively short period. Typical sections 

for various cases of excavation are shown in Fig 2.1. The cost of excavation 

is very high, and non-uniform post-construction settlement may occur if the 

undesirable material is not completely removed. 

Removal by Displacement. As an alternative to excavation, displacement 

of soft materials by deliberate overstressing with the weight of the embank

ment, perhaps combined with a temporary surcharge, is sometimes employed 

(Ref 12). It is essential for this operation to have sufficient weight to 

force out the underlying soil, and the mudwave created before the leading 

fill front should be excavated to a sufficient depth, so that the displace

ment direction can be controlled and pockets of displaced soil will not be 

entrapped within the embankment. The method may result in the intrusion of 

fill into the area outside the boundary of the roadway, requiring more fill 

and more surcharge, thus adding to the cost of the project. In some cases, 

removal of the subsoil may be excellent; however, pockets of soft soil some

times remain to produce differential settlements, which are intolerable for 

major highways. This method would therefore be more suited for secondary 

roads with low traffic volume. 

Surcharge. This may be the most commonly used methrod for accelerating 

the rate of settlement. The embankment fill is placed to a height above the 

required for final elevation so that more settlement will occur during a 

given time period (Ref 13). The thicker surcharge will induce more and 

faster consolidation, but this benefit is partially offset by the high cost 

of placing the fill and subsequently removing the unneeded portion by the 

need for berms if the heavier surcharge is used. 
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Vertical Sand Drains. Layers of soft soils 10 to 15 feet (3 to 4.5 m) 

thick can often be stabilized by consolidation under surcharge only. For 

thick deposits of soft materials, however, stabilization can be attained more 

economically through installation of vertical sand drains, combined with pre

load fills (see Fig 2.2). Sand drains are pervious sand columns and are usu

ally installed in a grid pattern. A blanket of pervious sand is placed on the 

tops of the drains to allow the water moving out of the drains to flow later

ally from under the embankment. Sand drains can reduce the length of the 

water drainage path and, thus, the required surcharge thickness, the surcharge 

time, and the size of the berms, if any. There are many successful field 

experiences with this design (Ref 14), but the closed-end displacement-type 

installation may induce too much soil disturbance and reduce soil stability. 

Hence, nondisplacement types of drains, for which the hollow shaft flight 

auger is used, are often preferred to displacement types (Ref 15). 

Embankment Material 

The volume change of a roadway embankment is generally assumed to be 

less serious than that occurring in foundation material. It should be noted, 

however, that this assumption is valid only when good materials and good con

struction procedures are used (Ref 16). Since vertical stress beneath the 

centerline of the embankment decreases slowly with the depth (see Fig 2.3), 

high pressure, especially that associated with large fills, may induce severe 

settlement in the foundation and the embankment itself. Special select mater

ials and increased density for the bridge approach embankment are specified by 

some agencies to ensure good performance (Ref 2). 

Several experiments using lightweight material, instead of common borrow, 

for the embankment have been reported to be successful (Refs 18-20). Light

weight fill will reduce the embankment weight and the foundation stress 
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Fig 2.2. Design information for sand drain installation (from Ref 12). 
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bridge pier and earth embankments. 
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considerably. As a result, the settlement is reduced and the berms are either 

reduced accordingly or eliminated completely. 

So-called lightweight material includes sawdust, sewage ash, and fuel 

ash. Although costs for such materials are low, their properties differ 

greatly, and care must be exercised when they are used in the field. In some 

cases, frost susceptibility and deterioration in air of such materials may 

cause trouble. Precautionary actions should be taken, such as lime or cement 

stabilization to reduce frost heave and asphalt sealing to minimize air de

terioration. 

Abutment Backfill Material 

Good condition of the abutment backfill is vital in bridge approach con

struction. Use of unsuitable backfill material, combined with poor compac

tion, has been a serious cause of roughness at bridge approaches. 

In many instances specially graded granular material, such as sandy 

gravel, is specified for abutment backfill. It is not practical, however, 

to specify use of such high-quality material in all locations. The Road Re

search Laboratory (RRL) in England has experimentally compared the performance 

of sandy gravel and other materials (Refs 21-25). In the RRL experiments, 

well-graded sandy gravel was used as the abutment backfill at one side of a 

bridge, and another material was used at the other side. This arrangement 

eliminated the complicated variations of environment and traffic, and hence 

the performances of these two materials could be easily compared. It was 

found that (1) lightweight pulverized fuel ash, (2) a medium clay, (3) a 

uniformly-graded fine to medium sand, and (4) a stony-clay fill were very 

good or quite satisfactory as a substitute for sandy gravel. On the other 

hand, a silty clay turned out to be unacceptable and therefore should be 

avoided as abutment backfill. 
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Swelling Clay 

Most highway agencies are concerned with settlement problems at bridge 

approaches, but those agencies located in areas of expansive clay are also 

concerned with swell. In these areas, special backfill is used on some occa

sions as a buffer to protect the bridge abutment and the approach slabs 

(Ref 2). Other treatments include removal of swelling clay, lime stabiliza

tion, and preswelling of the soil before construction through ponding. Plas

tic sheets and bituminous membranes have also been used to form moisture bar

riers above expansive clay (Ref 26). 

DESIGN 

Design factors discussed include (1) type of pavement, (2) type of 

abutment, (3) type of abutment support, (4) embankment slope stability, and 

(5) approach slabs. 

Type of Pavement 

Pavement is usually classified as either rigid or flexible. The major 

difference between them is the manner in which tire forces are distributed 

upon the subgrade. The load-carrying capacity of flexible pavements develops 

from the load distributing characteristics of the layered system. Such pave

ments consist ~f a series of layers, generally with an asphalt concrete sur

face at the top. The thickness design of the pavement is influenced appre

ciably by the behavior of the subgrade. Rigid pavements, including both 

JRCP and CRCP, because of their rigidity and high modulus of elasticity, 

tend to act as rigid plates; thus certain weak spots in the subgrade can be 

bridged over by the pavement. For this reason, a rigid pavement, at least 

for a short period of time, may allow better performance at bridge approaches 

(Ref 10). 



TYpe of Abutment 

A pointed out in Chapter 1, the condition of the bridge abutment is 

sometimes a factor in causing irregular approach surfaces. Such conditions 

include rotation of abutments on ~ile groups and settlement of abutments on 

spread footings. 

There are three general types of abutments which are frequently used. 

(a) Closed, or retaining wall, type abutments (Fig 2.4) usually con

sist of a central pier to support the bridge deck and two wing 
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walls to retain the backfill. This type of abutment is treated as 

a retaining wall in structural design. One objectionable feature 

is the inherent difficulty in placing and compacting material 

against the wall and betweeL wing walls. Vertical alignment of the 

abutment may be disturbed if heavy equipment is permitted to work 

near the wall. In addition, placement of the embankment after con

struction of the abutment may cause excessive foundation settlement. 

To overcome these problems, backfilling is not started until the 

first bridge span is in place and as much of the adjacent embankment 

as is practical is placed before abutment construction. 

(b) Stub, or shelf, type abutments (Fig 2.5) are constructed after the 

embankment has settled to ,the final elevation. It can be supported 

on spread footings, drilled shafts, or piles. Since the difficulty 

of compaction is eliminated, many engineers believe that this type 

of abutment provides the best bridge approach performance. 

(c) Spill-through, or open, type abutments (Fig 2.6) consist of two or 

more vertical columns extending from the natural ground to carry 

a beam that supports the bridge seat. Proper compaction of the fill 

around the columns and under the abutment cap is nearly impossible 
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Fig 2.4. Typical closed or retaining wall abutment (from Ref 2). 

Fig 2.5. Typical stub or shelf abutment (from Ref 2). 

/-~'" - . , 
. . 

, , 

Fig 2.6. Typical spill-through or open abutment (from Ref 2). 



to attain. It is believed, therefore, that this type of abutment 

may be highly susceptible to bridge approach problems. 

Type of Abutment Support 

18 

Regardless of the abutment type adopted, there are only two principal 

types of abutment support. These include spread footings (shallow foundation) 

and piles or drilled shafts (deep foundation). 

Abutments on spread footings may have less differential settlement be

tween abutment and approach slab than abutments on deep foundations (Ref 2). 

The total settlemtns of abutments on shallow foundations may, however, be 

intolerably large. Many agencies, therefore, strongly recommend use of deep 

foundations at all abutments in embankment fills (e.g., Ref 27). Moreover, 

drainage for abutments on shallow foundations can be very critical. Some 

special granular material has to be used to offset possible settlement or 

erosion (Ref 2). 

Embankment Slope Stability 

Approach embankment slope failure is a serious cause of surface roughness 

near the interface area. Several methods used to maintain slope stability 

are summarized here. 

Drainage System._ Along with paved surface drains, provision for the re

moval of subsurface water is an essential part of the abutment design. Infor

mation concerning area ground water conditions in association with abutment 

type and backfill materials is utilized to choose among the several alterna

tive drainage schemes shown in Fig 2.7 (Ref 2). 

Membrane. Various types of asphaltic membranes are often used to reduce 

changes in moisture content for sites with highly plastic or expansive soils. 

Three types commonly referred to as surface, buried, and envelope membranes 

are shown in Fig 2.8. Envelope type membranes used on the Gulf Freeway in 
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Fig 2.7. Typical methods used to provide abutment drainage (from Ref 2). 
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Fig 2.8. Functional types of membranes (from Ref 28) • 
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lig 2.9. Typical embankment sections with envelope-type 
membranes, Gulf Freeway (from Ref 28). 
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Houston (see Fie 2.9) provided excellent stabilization of the plastic abutment 

fills and the strength of the fill did not decrease significantly during a 

l4-year monitoring period. 

Stabilizing Berm. When the weight of the embankment causes shear stress

es greater than the shearing strength of the foundation soil, the underlying 

soil may be displaced laterally. The purpose of a berm placed against the 

outer embankment slope is to offer some counterweight to resist the overturn

ing moment on the failure arc (see Fig 2.10). It can also be used to correct 

failures which occur during or after construction. 

Benching. Because even small movements of the embankment may create 

problems at bridge approaches, benching of the natural ground is sometimes 

employed to provide a stable horizontal foundation with a larger contact 

plane. A typical section is depicted in Fig 2.11. 

Approach Slab 

Many agencies consider the use of reinforced portland cement concrete ap

proach slabs to be the most satisfactory means for controlling surface irreg

ularities at bridge approaches. However, in regions of serious swelling clay 

problems, approach slabs sometimes become so troublesome that they have to be 

removed. 

Approach slabs are designed in a wide range of shapes, lengths, widths, 

and depths. Some frequently used types are shown in Fig 2.12. 

In many cases, the use of approach slabs may shift the bump to the pave

ment end of the slab (see Fig 1.1). This shifting, in fact, does not solve 

the roughness problem. Therefore, special joints for use between roadway 

pavement and approach slabs have been developed to correct the condition. 

Figure 2.13 illustrates five examples. 
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Fig 2.10. Typical half-section of stabilizing berm (from Ref 12). 

. . 

Fig 2.11. Abutment end section with natural ground benched (from Ref 2). 
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CONSTRUCTION 

Two construction techniques which are sometimes helpful in precluding 

roughness are discussed here: (1) slow rate construction and (2) compaction. 

Slow Rate Construction 

This is probably the most economical construction technique because it 

involves no additional construction material. The only requirement is suf

ficient time. 

Slow rate construction is employed where the foundation soil would under

go shear failure if the embankment were constructed under normal procedures. 

However, due to its relatively rapid consolidation characteristics, such a 

soil might become strong enough during a controlled or partially delayed con

struction period to prevent such a possibility. 

In case of slow rate construction, an elapsed time of three to six months 

between embankment construction and paving operations is common. A ~aiting 

time so:·long that it extends into the next construction season is common for 

major structures (Ref 2). 

COmpaction 

Improper placement and compaction of material in approach embankments is 

one primary source of surface roughness. Therefore. stringent specifications 

and inspection of soil compaction are extremely important. Some state high

way agencies require the compactive density be as high as 102 percent of the 

maximum density specified in the ASSHTO T-99 test (Ref 27). On the whole. 

most agencies believe that their current specifications for embankment con

struction are satisfactory (Ref 17). However, as noted earlier. special 

difficulties may be associated with the abutment backfill. Thus. a special 

quality control program may be required for this critical area. 
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MAINTENANCE 

Timely and proper maintenance of bridge approaches can smooth the road-

way surface, decrease dynamic wheel loads, and reduce the deterioration rate. 

Depending on the problem and its cause, maintenance may be simple and inex-

pensive, such as slab jacking or heater planing, or it may entail complete 

rehabilitation through an overlay (Ref 1). Illustrated in Fig 2.14 are the 

routine bituminous leveling techniques. Settlement is corrected by adding 

additional asphalt to the approach pavement; however, when swelling has 

lifted the approach, additional asphalt is added to the first span of the 

bridge. 

Correction 

f ~ J ~ J 
Settlment 

Correetion 

f @j 1 f . 
.... 11~1II 

Fig 2.14. Use of bituminous leveling to correct 
settlement or swelling (From Ref 2). 

i 

• 
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SUMMARY 

The above review indicates that there are many causative factors which 

can create roughness in the p'roximity of the bridge-pavement interface. A 

study sponsored by the Ohio Department of Transp'ortation concluded that the 

correlation between bridge approach performance and design/construction param-

eters was very poor and that differential approach settlement had no general 

correlation with the embankment height (Ref 27). However, it seems appro-

priate to emphasize four major causes: 

(1) excessive settlement of the embankment and its foundation, 

(2) embankment slope failure over a soft foundation, 

(3) volume chan~e of the expansive chay due to moisture variations, 
and 

(4) horizontal movement of a concrete slab due to temperature or mois
ture variations in the slab. 

These four major factors, together with various treatment methods, are 

summarized in Table 2.1. Remedial treatments should be considered in design 

and appropriately implemented in construction processes. Heavy trucks may 

worsen the problem, while maintenance can help alleviate the problem. The 

environment may have either positive or negative effects on' the overall 

situation. 
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TABLE 2.l. SUMMARY OF BRIDGE APPROACH PROBLEMS AND TREATMENTS 

Excessive Slope Swelling Slab 
Treatments Settlement Failure Clay Movement 

Drainage X :x :x 

Membrane X X X 

Berm X 

Benching :x 

Approach slab X 

Anchorage system X 

Lightweight fill X X 

Lime stabilization X ·X X 

Good subbase X X 
material 

Granular fill X X X 

Removal of bad X X X 
foundation 
material 

Surcharge X X X 

Sand drain X X :x 

Compaction X X X 

Water ponding X 



CHAPTER 3. SITE INVESTIGATIONS 

In order to characterize surface roughness in the proximity of the 

pavement-bridge interface site, investigations were conducted in four SDHPT 

Districts. The conditions of District 14 (Austin), District 15 (San Antonio), 

District 5 (Lubbock), and District 12 (Houston) were sampled. Engineers in 

those areas were asked to select about a dozen representative bridge sites 

in their districts and provide general information by filling out specially 

developed questionnaires. Personal opinions and experiences with the pave

ment-bridge interface problems were exchanged through informal discussions 

between engineers and researchers. 

The overall riding quality of each site was evaluated subjectively by 

SDHPT engineers and was categorized into either "good" or "bad" subgroups. 

Based on such information, several locations of interest; i.e., those with 

either typical or special design features or those in quite good or quite 

bad condition, were chosen in each district for road surface profile meas

urements. Roughness p~tterns were identified for further analysis of their 

potential for inducing dynamic vehicular tire forces. 

QUESTIONNAIRE 

Based on the literature review of roughness problems at bridge approach

es, two questionnaires were designed to obtain data which might enable objec

tive analysis of approach problems. Questionnaire A (Fig 3.l), which was a 

form listing general information about site conditions and history of bridge 

and pavement performance, was developed and used in District 14. Initial 

27 
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BRIOOE "BUMP" CHECK LIST A 

Dist. No. __________ _ Highway ___________ _ 

Location _____________________________________________________ __ 

lnservice Date: ________________________________________________ ___ 

Traffic Description:: % Trucks _________________ _ 

No. of Bents ---------- Span Lengths __________ _ 

Type of Footing: ______________________ _ 

Bridge Deck Description: ______________________________________ _ 

App,roach Slab: ______________________________ _ 

Joint Connection Type: _________________________________________ ___ 

Fill: _____________________________ _ 

Height of Fill: ___________________________ _ 

Fill or Cut Soil, Description: ________________________________ _ 

Soil Borings Available __________________________ _ 

Roadway Pavement Type __ ..=J..:,:R=:CP::..J!'-=C::.R:.,:C;:..PL..:,!FP:....:..L!..=O..=t:.:,he::..::r==--____________ _ 

Maintenance Performed. 

Date ________________ _ Description _______________ _ 

Date ________________ _ Description __________________ _ 

Date ____________ _ Description __________ _ 

Resident Engr. During Construction ________________ _ 

Comments ___ --------________________________________ _ 

Ma1nt. Engr./Foreman _______________________ _ 

Comments ______________________________________________ __ 

Fig 3.1. Questionnaire A 



• 

29 

experience with this format indicated the need for more detailed information, 

and Questionnaire B (Fig 3.2) was thus developed for use in Districts 15, 

5, and 12. Information on representative bridge sites was hence collected so 

that both successful and unsuccessful practices ,could be evaluated. 

DISTRICT 14 (AUSTIN) SITES 

Table 3.1 summarizes basic information about selected bridges in Dis

trict 14. All the bridges have asphaltic concrete pavements on the adjacent 

roadways. Settlement in the fill material on the bridge approaches appeared 

to be the most prevalent cause of roughness problems. Drilled shafts were 

commonly adopted to support bridges; spread footings were used only with low 

fills (e.g., 5 feet). Approach slabs are seldom used in this area because 

of the difficulties in maintenance, especially where swelling clay is in

volved. Heavy and light traffic are observed in both subgroups. 

The following observations seem to indicate that many problems are re

lated to bridge age, depth of fill, and quality of backfill materials: 

(1) All the problem sites have been in service less than 10 years while 

all the sites in good condition have been in service for more than 

10 years. Two of the four sites in good condition have been under 

traffic for more than 20 years. 

(2) 

(3) 

Four out of five problem sites have fill heights of more than 15 

feet (4.5 m) while only one out of four in the good subgroup has a 

fill above that height. 

Clayey fill material was used for all the problem sites while three 

out of four sites in good condition were built on rock or certain 

other stable material. The only site with high PI fill in the good 

subgroup had very goo~ backfill material. The relatively low fill 
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I :. 

BRIroE "BUMP" CHECKLIST B 

Dist. No. __________ _ Highway __________ _ 

Location ------------------------------------
1 • Bridge Approach Condition: good bad - -
2. Roadway Pavement Type. _JRCP _CRCP _ACP _Other _____ _ 

J. Bridge: 

Function. _for grade separation _for crossing major river 

_other ________________________ _ 

Type of Footing: ____________________ _ 

Bridge Deck Description : ______________________ _ 

Joint Connection Type : ____________________________ _ 

4. Climatic Condition: ------------------------------------
s. Traffic Description. Artr 

% Truck 

Speed Limit ______________ _ 

6. Abutment Types retaining wall abutment (closed type) 

_stub or shelf type 

_open column or spill-through type 

_other ______________________________ _ 

7. Embankment Slope Stability Experience and Treatment 

Slide :---.Jes _no Description;....: _________________ _ 

Sufficient Drainage :-yes _no 

Asphaltic Membrane for Stabilization :-yes _no 

if yes. ~envelope type _buried type _surface type 

(Cont:inued~ 

Fig 3.2. Questionnaire B. 



Stabilization Berm: --yes _no 

Benching of Sloping Ground:--yes _no 

Other Treatment: ____________________________________________ __ 

8. Embankment Material: 

Fill or Cut Soil, Description: _______________________________ _ 

Soil Boring Available: ______________________________________ _ 

Height of Fill: _____________________ _ 

Swelling Clay: ---yes _no. treatment: ________________________ _ 

9. Backfill Material: 

Description: ________________________________________________ _ 

Lime or Cement Stabilization: _______________________________ _ 

Other Treatment: ___________________________________________ __ 

10. Foundation Material: 

Description: _______________________________________________ _ 

Boring Available: __________________________ _ 

Vertical Sand Drain: --yes _no 

if yes, spacing ________________ _ 

method of installation ____________________________ _ 

Removal of Bad Material:_none _dredging _displacement 

Other Treatment: ____________________________________________ _ 

11. Construction History: 

Date of Start of Emabnkment Constructlon: ____________ _ 

Date of End of Embankment Construction: -------------------------
Waiting Period: Inservice Date: -------------

(Continued) 

Fig 3.2. Continued 
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12. Compaction: 

Specification Used: __________________________________________ _ 

Moisture Content Controls ___________________________________ __ 

Lift Thickness Controls ___________________ _ 

Type of Equipment Used: ____________________ _ 

Dry Density Requirement: __________________________ ___ 

Comment: ----------------------------------
13. Special Design: 

Approach Slab ~es ___ no 

Other:~ _______________________________ ___ 

Comment: _______________________________________ ___ 

14. Maintenance Performed: 

Date 

Date 

Date 

Date 

Description ___________ _ 

Description _________ _ 

Description ___________ _ 

Description ________________ _ 

Difficulties Encountered: ________________________________ __ 

Comment: ________________________________________________ ___ 

Resident Engineer During Construction _________________ __ 

Comments _________________________________ _ 

Maintenance Englneer/Foreman ________________________ __ 

Comments ___ ----------------------------____________________ _ 

District Contact Man _________________________ _ 

Fig 3.2. Continued 



TABLE 3.1. BRIDGE INFORMATION, DISTRICT 14 

AUSTIN, TEXAS 

Condition 

Location 

Pavement Type 

Bridge Type 

Bridge Function 

Type of Support 

Joint Type 

ADT (1973) 

% Truck 

Height of Fill (ft.} 

F11l Matedal 

Backfill Material 

lad 

US 290 over 
!!KT RR 

AC1' 

PC 

Grade 
separation 

Drilled 
shafts 

11% 

8,33Q 

6.7 

20 

Yellow 
clay 

Years in Service (to 19J5} 8 

Maintenance Performed Patching and 
leveling 

Approach Slab Yes 

Bote Premix patch over 
approach. slabs 

lad 

Loop 427 over 
Mustang Creek 

AC1' 

Simple P..C 

River 
crossing 

Drilled 
shafts 

F1% 

10 

Righ PI 
yellolo1 clay 

Highly plastic 
material 

3 

Leveling up 

No 

Lime 6" 
sub grade 

\. 

Bad 

US 1835 over 
Loop 343 

ACP 

PC 

Grade 
separation 

Drilled 
shafts 

Open 

15,680 

17.5 

15 

Yellow 
clay 

9 

Leveling \Jp 
bridge ends 

No 

Settle1!lent 
observed 

33 
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TABLE 3.1. (Continued) 

Condition lad lad Bad 

tDcat1011 US 183S aver 11S 290 over IB 35 over 
lollY Creek. Loop 360S Chandler Creek 

Pa~t Type AtP ACP ACP 

.ridge Type PC PC Si1llPle RC 

addge Function liver Grade lUver 
croning .eparation crossing 

Type of Support Drilled Drilled Spread 
ahafts .hAfts footings 

Joint Type 71:z 71Jr. F1Jr. 

.AM (1913) 16,010 24,45<1 19.,350 

:: Truck 16.1 5.3 11.6. 

Hdght of Fill (ft.) 24 1.5 .5 

Fill Katerial tellow Clay Rock. 
clay 

Backfill Material Granular 
sate-rial 

tears in Service (to 19]51 9 6 40 

Kaintenance Pe-rformed Patching Bot m1Jr. 
flddse ends overlay 

Approach. Slab 110 .0 Mo 

Iote Settlement Settlement 
oll.ened ob.e~d 
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TABLE 3.1. (Continued) 

Condition Good Good Good 

Location S'B 29 over San US 290 over SH 71 over 
Cabrid liver MPRR Bie Creek.. 

:rave_nt Type ACP ACP ACP 

Bridge Type Continuous PC Simple RC 
I-bUlll 

Bridge 1!"UIlct:l.on f..1ver Grade liver 
crossing separation crossing 

Type of Support Drilled Drilled Drilled shafts 
shafts shafts & spread footing 

Joint Type Open Fix Fix 

AM' (1973) 1,390 35,600 2,690 

% Truck 9.0 3.4 6,8 

Height of Fill 10 20 8.:t 

Fill Material I1gh PI Stable lock 
... terial _terial 

Backfill Haterial Base 
.. terial 

Year. in Service {to 19]5} 16 14 28 

Maintenance Performed !fo patching in No patching 
la.t 3 years a1nce 1970 

AppToach Slab 110 110 110 

lote 



and light traffic of that section might also have helped decrease 

the potential for creating surface irregularities. 

DISTRICT 15 (SAN ANTONIO) SITES 
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Generally speaking, the sites in District 15 exhibit problems which are 

different from those in District 14. Since the soil containing montmorillo

nite and illite of high swelling potential is dominant in this district, the 

roughness problems generally result from large volume changes in the expan

sive soils, rather than settlements as encountered in District 14. 

From informal discussions with engineering personnel and from an on-site 

inspection of the sites in San Antonio, it was revealed that the joint be

tween adjacent rigid pavements and one bridge approach slab had opened as 

much as 4 inches (Fig 3.3). The gap enabled water on the pavement surface 

to penetrate into the fill material and increase the potential for swelling. 

At another site, pressure of the expansive soil had moved the abutment and 

caused the rocker supporting the bridge to tilt (Fig 3.4). The curb near this 

bridge end was also lifted about 3 inches (Fig 3.5). The vertical curvature 

in the pavement surface can be easily seen by referencing the lane markers 

and the curb to the guardrail shown in the background. 

Engineers in District 15 feel that approach slabs are necessary, but 

that special designs which keep moisture on the roadway surface from pene

trating into the fill material are needed. Finger joints with a lateral 

drain have been effective at several sites (Fig 3.6) and the expansion joint 

has been eliminated between the pavement and the approach slab with good re

sults at other locations (Fig 3.7). Granular backfill materials have been 

used for drainage at some sites. 



Fig 3.3. Gap between the approach slab and the pavement, 
IH 37 over Fair Ave., San Antonio. Texas. 
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Fig 3.4. Tilted rocker, Southcross St. over 
IH 37, San Antonio, Texas. 
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Fig 3.5. Lifted curb, Southcross St. over 
IH 37) San Antonio) Texas. 

Fig 3.6. Finger joint and drain, IH 10 over H. to1. lilhite 
Blvd., San Antonio, Texas. 
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Fig 3.7. Joint deletion between the pavement and the 
approach slab, IH 37 over Durango St., San 
Antonio, Texas. 
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Information about bridge sites in the rural areas of District 15 is 

summarized in Table 3.2. The sites are all on IH 10 east of San Antonio 

and have asphaltic concrete pavements on the approach roadways. 

The following observations are made based upon on-site visits and col

lected data (see Table 3.2): 
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(1) All sites are located within 30 miles of each other on the same 

highway. The concentration of the sampled sites makes the traffic 

volume, several design factors, and, sometimes, geological condi

tions considerably uniform. No bridges have been in service more 

than 10 years; most of them are only 4 years old. Little mainte

nance work has been applied up to this point. 

(2) Washed river gravel was used as the backfill at all locations. 

Though swelling clay is common, the riprapped embankment slopes 

generally exhibit good stability. At one site, the approach slabs 

were removed due to excessive heaving. 

(3) The use of stub-type abutments, deep foundations, approach slabs, 

and Hyster compactors are common practice in this district. All 

three sites in the bad subgroup incorporate lime stabilized fill 

to a depth of 6 inches. The original foundation materials in the 

bad subgroup are all clays while those in the good classification 

are sand or sandy clay. 

DISTRICT 5 (LUBBOCK) SITES 

Information about selected bridre sites in District 5 is summarized in 

Table 3.3 In this area, four sections were designated as having good ride 

quality and two as having bad. Some observations can be made as follows: 



TABLE 3.2. BRIDGE INFORMATION, DISTRICT 15 

SAN ANTONIO, TEXAS 

Condition lad lad 

Location 11£ 10E over IE 10E over 
1M 725 Gu.ada11.1pe River 

Milepost 604.4 605.1 

Pavement Type ACP ACP 

Iridge Type ItC 

Bridge Function Grade :aiver 
Separation CrOSSing 

Type of Support Drilled shafts Drilled s~afts 
with bells vith bells 

Joint 'type Open Open & Hn~e.r 

ADT (1974) 9.000 8.610 

% Truck 15 15 

Abutment Type Stub Stub 

Embankment Slope Good Good 
Stability Stability Stability 

. Height of Fill (ft.) 10 13-17 

Fill Material Clay cliche Black sandy 
11' ave 1 clay 

. Backfill Material Washed river W .. shed river 
Iravel lrave! 

Foundation ~Aterial Yellov & Itlue shaley 
lray clay clay 

Svelling Clay Yes 

Years 10 Service 9 9 
(to 1976) 

Compaction Equipment Ryster By.ter 

Malotenance Performed Hone lIone 

Approach Sla& Yea (VBL ret'lOVt!d) Yes 

1I0te time 6" .ubarade L1IIe 6" subgrade 
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lad 

III 10 over 
PlUIII Creek 

631.8 

ACP 

River 
Crossine 

Open 

6,770 

15 

Stub 

Good 
Stability 

22-28 

Gray sandy 
clay 

Washed river 
gravel 

Blue clay 

4 

Ilys"er 

1I0ne 

Yes 

Lime 6" sub grade 



TABLE 3.2. (Continued) 

Condition 

Location 

Milepost 

Pavement Type 

Bridge Type 

Bridge Function 

Type of Support 

Joint Type 

AD! (1974) 

ZTruck 

Abutment Type 

Embankment Slope 
Stability 

Beight of Fill (ft) 

Fill Material 

Backfill ~~teria1 

Foundation Material 

Swelling Clay 

Years in Service (to 1916} 

Compaction Equipment 

Maintenance Performed 

Approach Slab 

Bote 

Good 

IB. 10E over 
Allen Creek 

623.2 

ACP 

ac 

River crossing 

Drilled shafts 
with. bells 

Open 

7,750 

15 

Stub 

Good 
Stability 

10 

Cray landy 
clay 

Washed river 
gravel 

Bllle sandy 
clay 

110 

4 

IIyster 

ICone 

Y .. 

Good 

m 10E over 
lash Creek 

619 .• 2 

ACP 

ItC 

River crossing 

Cene:rete piles 

Open 

7,670 

15 

Stub 

Good 
Stability 

15-20 

Red undy 
clay " gravel 

lI'ashed river 
gravel 

Cray & brown 
sand 

10 

4 

Ilyater 

Bone 

Yas 

Good 

m lOll' Over 
San Marces 
River 

626.9 

ACP 

River crossing 

Steel B piles 

Open 

6,770 

15 

Stub 

Good 
Stability 

20 

Gray sandy 
clay 

lo.'ashed river 
gravel 

Brown " gray 
sandy clay 

4 

lyater 

Rone 

Yas 
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TABLE 3.3. BRIDGE INFORMATION, DISTRICT 5 

LUBBOCK, TEXAS 

Condition 

Pavement type 

Bridge type 

Bridge function 

Type of Support 

Bridge deck condition 

ADT (1977) 

% truck 

Speed limit (mph) 

Abutment type 

Embankment slope 
stability 

Beight of fill (ft) 

Swelling clay 

Backfill material 

Years in service 
(to 1978) 

Compaction 
Equipment 

Kaintenance performed 

Approach slab 

IIcte 

Spur 326 over 
AT & SF RR 

Good 

ACP 

Continuous steel 
I beam 

Grade separation 

Drilled shafts 

Linseed 011 
treatment 

8080 

10 

30 

Stub 

Good stability 

25 

No 

Sandy loam 

23 

Pneuma tic and 
sheepsfoot 

Bole patching 

tes 

Nev overlay on 
approacb slabs 

US 87 at 
98th St. 

Good 

Simple PC 
girder 

Grade separation 

Drilled shafts 

Linseed 011 
treatment 

9960 

10 

55 

Stub 

Riprap moved 

18 

Yes 

Sandy 10a.'11 

8 

Hyster and 
pueumatic 

Rone 

tes 

Approach slabs 
rnaoved 

US 84 at Brazos 
River (Southbound) 

Good 

Concrete box 
girder 

River crossing 

Drilled shafts 

Asphalt overlay 

1860 

13 

55 

Stub 

Good stability 

No 

Sandy loam 

so 

No special 
equipment 

Overlay 

tes 

Old bridge over 
Brazos 
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Condition 

Pavement type 

Bridge typ~ 

Bridge function 

Type of support 

Bridge deck condition 

AM' (1977) 

% truck 

Speed limit (mph) 

Abutment type 

Embankment slope 
stability 

Beight of fill (ft) 

Swelling clay 

Backfill material 

Years in service 
(to 1978) 

Compaction equipment 

Maintenance perfo~d 

Approach dab 

Ilote 

TABLE 3.3. (Continued) 

US B4 at Brazos 
River (northbound) 

Good 

ACP 

Concrete slab 
(pan form) 

River crossing 

Drilled shafts 

Asphalt overlay 

1860 

13 

55 

Stub 

Cood stabili ty 

No 

Sandy loam 

20 

Overlay 

Yes 

Rev bridge over 
Brazos 

FH 1065 at Los 
Linguish Creek 

Bad 

Tvo-course sur
face treatment 

Concrete slab 
(simple span) 

River crossing 

Concrete piles 

Rough 

150 

9.7 

55 

Stub 

Good stabi~ity 

9 

Yes 

Sandy gravel 

27 

Sheepsfoot and 
pneumatic 

Approach slabs 
removed 

Loop 289 at US 
87 South 

Bad 

ACP 

Concrete slab 
(arch shape) 

Grade separation 

Drilled 'shafts 

Epoxy overlay 

21020 

10.9 

55 

5.tub 

Good stability 

19 

No 

Sandy loam 

13 

Byster and 
pnewnatic 

Epoxy overlay 
and asphalt 
patching 

Yes 

Epoxy is _arin~ 
off 

45 
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(1) It is interesting to note that the bridge surface condition has a 

definite correlation with the subjective ride quality assessment. 

Pavement surface distress has been corrected to some exte~t through 

various types of surface treatment. The decks of good bridges were 

virtually all treated either by linseed oil or asphalt. One bad 

bridge had no surface treatment at all, while the other had one 

epoxy overlay, which was wearing rapidly. 

(2) Average daily traffic counts on the two bad sections were both the 

highest (21,020) and the lowest (150), indicating that traffic 

cannot be identified as a critical factor. A similar conclusion 

can be drawn for bridge function, bridge type, and bridge age. 

That is, the number of bridges examined in this analysis is too 

small to imply, for example, that approach sufrace conditions for 

bridges at grade separation are less troublesome than for those at 

river crossingB. 

(3) Use of the stub-type abutment, which is believed to be the least 

likely to cause roughness problems, is common practice in Lubbock. 

Sandy loam or sandy gravel, with no special stabilization, was gen

erally used as the backfill material for both good and bad sub

groups. 

(4) The predominant soil in this area is windblown cover sand. Swell

ing clay is encountered in some locations but has not been identi

fied as a predominant problem. Approach slabs are commonly used 

and serve well in general, although in some sections of swelling 

clay they have been removed because of excessive movement. 

(5) Deep foundations, either piles or drilled shafts, are utilized 

for all bridges considered. Embankment slopes, protected by 
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concrete riprap, are quite stable for most cases. Asphalt concrete 

pavement is used on all sampled roadways with the exception of one 

farm-to-market road which has a two-course surface treatment. 

(6) The approach performance has no general relationship with height 

of fill. A 25-foot high embankme,nt falls into the good subgroup, 

while a bad case has a fill of only 9 feet. 

(1) Lubbock is located in northwestern Texas and has an elevation of 

above 3000 feet. The average temperature during the winter months 

is about 40°F. Extended periods of subfreezing temperatures are 

rare over the whole State of Texas, and therefore, the problem 

of frost action is not critical. 

DISTRICT 12 (HOUSTON) SITES 

Basic information about the bridge sites in this district is tabulated 

in Table 3.4. Due to insufficiency of data, this table is not so detailed 

as Tables 3.2 and 3.3. Nevertheless, based on the summary table and on-site 

inspection, overall observations can be made as follows: 



TABLE 3.4. BRIDGE INFOPY~TION, DISTRICT 12 

HOUS TON, TEXAS 

Condition 

Pavement type 

Bridge type 

Bridge function 

Type of support 

AD! (1977) 

Abutment type 

Approach slab 

Condition 

Pavement type 

Bridge type 

Bridge function 

Type of support 

ADT (1977) 

Abutment type 

Approach slab 

Condition 

Pavement type 

Bridge type 

Bridge function 

Type of support 

ADT (1977) 

Abutment type 

Approach slab 

lH 610 (S. Loop) 
at Calais St. 

Good 

CRCP 

Continuous concrete 
slab 

Grade separation 

Drilled shafts 

129,180 

Stub 

Yes 

IH 45 at S. Belt 

Bad 

JPCP 

Simple PC 

Grade separation 

Piles 

81,390 

Stub 

Yes 

IH 10 at W. Belt 

Bad 

JRCP 

Simple PC 

Grade separation 

Piles 

132,210 

Stub 

Yes 

IH 610 (S. Loop) 
at SH 288 

Good 

eReP 

Continuous con
crete slab 

Grade separation 

Drilled shaf ts 

129,180 

Stub 

Yes 

sa 225 at 
Shell over;,ass 

Bad 

JRCP 

Simple PC 

Grade separation 

Piles 

35,810 

Stub 

Yes 

IH 610 (N. Loop) 
at HB & ! RR 

Bad 

JRCP 

Sblple PC 

Grade separation 

Drilled shafts 

73,550 

Stub 

Yes 

IH 610 (N. Loop) 
at McCarty Rd. 

Good 

JRCP 

Simple PC 

Grade separation 

Drilled shafts 

73,550 

Stub 

Yes 

SH 225 at Scar-
borough Lane 

Bad 

JRCP 

Simple PC 

Grade separation 

Piles 

74,790 

Stub 

Yes 

48 



49 

(1) Eight bridge sites were selected and five of those were categorized 

as bad. The pavement type is rigid on all sections (either CRCP or 

JRCP). Data suggest that CRCP provides better riding quality, 

because the two sections with CRCP ar~ in the "good" classification. 

(2) The use of approach slabs, stub-type abutments, and deep foundations 

(piles or drilled shafts) is common to all. All bridges under 

study wer~ constructed for grade separations. The common height of 

fill ranges from 15 to 20 feet. Traffic is heavy for both subgroups. 

Since Houston is a port, a higher percentage of trucks (17 percent) 

is present. The speed limit is 55 mph, and in some sites there is 

a posted minimum speed of 40 mph. 

(3) The predominant soil in this area is Beaumont clay. Hence found a-

tion and embankment materials are generally not good. High PI 

fills are sometimes used because only small quantities of sandy 

material are available and the quality is not remarkably better 

than the clay. 

(4) The normal annual rainfall here is about 46 inches. A large por-

tion of the rainfall occurs within short periods of time, providing 

an important source of moisture variations in subsoils. The rather 

frequent wetting-drying cycle, together with the Beaumont clay, 

easily induces soil volume changes. This is likely one critical 

reason why movement of the approach slab was observed in almost 

every case. Virtually all approach slabs, though designed in 

different ways, have translated up or down relative to the bridge 

abutments. Envelope-type asphaltic membranes used with success 
, 

for stabilization on the Gulf Freeway (Ref 28) were not applied 

to bridge sites under examination in this study. 
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(5) All the bridges were constructed during the 1960s. Modern compac

tion equipment, such as the sheepsfoot and pneumatic-tired rollers, 

were extensively employed during construction. Sandy material, 

stabilized by lime/cement, was used in abutment backfilling. 

Presumably such procedures would improve bridge approach perform-

ance. 

ROUGHNESS PATTERNS 

The road profile of each section in the four districts was measured 

using the Surface Dynamics Profilometer. Profile data thus obtained include 

the whole bridge and extend on both ends about 200 feet from the structure. 

After examining all the in-hand road profiles, some typical roughness 

patterns were identified and are schematically illustrated in Figs 3.8 through 

3.12. These patterns include the following components: 

(1) roughness on the bridge -

(a) camber or sag formed by bridge span (Fig 3.8), 

(b) opening at the bridge joints (Figs 3.9,3.12), and 

(c) discontinuity between the bridge and the pavement/ 

approach slab (Figs 3.8, 3.10, 3.11, 3.12); 

(2) roughness in the bridge approach area -

(a) long wave profile (Fig 3.8), 

(b) tilted or distorted approach slab (Figs 3.10, 

3.11, 3.12), 

(c) gap between the approach slab and the pavement 

(Figs 3.10, 3.11), 

(d) hump or sag near bridge end (FifS 3.8, 3.9), and 

(e) gap at pavement joint (Figs 3.10, 3.12). 
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The potential for those patterns to produce dynamic vehicular tire forces is 

assessed in later sections. 

• 
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CHAPTER 4. ANALYSIS OF DYNAMIC WHEEL LOADING 

As noted earlier, roughness in the vicinity of the pavement-bridge 

interface may lower the riding quality of the roadway and induce excessively 

large dynamic loads. In this study, the Surface Dynamics Profi1ometer was 

the fundamental tool used to measure and record longitudinal road profiles 

in each wheel path and thus provide the basic data for assessing riding 

quality. A computer simulation model called DYMOL was used to predict the 

magnitude of dynamic vehicular tire forces created by specific types of 

vehicles moving at specified velocities over the defined profile. Critical 

types of roughness encountered in Austin, Houston, San Antonio, and Lubbock 

were identified in each section and the interaction of vehicles with these 

roughness patterns was analysed. However, certain inherent characteristics 

of the profilometer may distort road profile measurements. Therefore the 

effect of this distortion was analyzed before using the profilometer measured 

profile records for DYMOL simulations. 

SURFACE DYNAMICS PROFILOMETER 

The profilometer (Fig 4.1) is a specially instrumented two-axle van-type 

vehicle which measures variations in the elevation of each wheel path along 

the roadway. The profile is detected by two small sensor (feeler) wheels 

at the center of the test vehicle. The relative vertical movement between 

the sensor wheel and the vehicle body is measured by a linear potentiometer. 

An accelerometer, mounted above each potentiometer, senses the vertical 

acceleration of the vehicle body at these locations. An analog computer in 

the vehicle immediately double integrates the acceleration to produce 

vertical displacements. These displacements, combined with the movement 



measured by the potentiometers, yield an estimation of the roadway profile 

in each whee1path. The results are written onto a 4-track analog tape, and 

a strip chart depicting the profile is produced. Interested readers are 

ANALOG 
COMPUTATION 

r-'---=---;::J.--ACCELEROMETER 

w 

Fig 4.1. Principle of the high speed Surface Dynamics 
Profi1ometer (from Ref 9). 

referred to the related reports for details and some inherent problems 

(Ref 29-3]). 

DYMOL 
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DYMOL is a FORTRAN program developed at the Center for Highway Research 

at The University of Texas at Austin (Ref 32). It simulates the behavior of 

vehicles interacting with a road profile in each wheel path and can be used 

to predict the magnitude, duration, and location of the induced dynamic wheel 

loads. 

The DYMOL program can be used to simulate five typical types of vehicles, 

as shown in Fig 4.2. Specific vehicle configurations, including weights and 

axle spacings, can be selected by the user. Each vehicle model consists of a 

series of masses, springs, and dashpots which are connected with one another • 
• 

In a statistically designed validation program, the simulation model predic-

ted maximum dynamic wheel forces within about + 10 percent of measured 

values (Ref 32). 



59 

Closs DesiO notion 

J 2-0 

II 2S-1 

III 3-A 

IV 2S-2 

V 3S-2 

Fig 4.2. Five representative types of vehicles (from Ref 32). 
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In this study, the vehicle was assumed to be initially at rest on a 

level surface with elevation equal to that of the start of the pavement 

section under analysis. Vehicles were "driven" at specified velocities over 

the section profile. Output included listings and plots of dynamic loads 

applied to the surface by the moving wheels of the modeled vehicle. 

Analyses of Profilometer Measurement Capability 

The Profilometer-measured road profile data are sometimes distorted 

due to slight phase shifting characteristics. In order to examine the 

effect of this distortion, rod-and-level measurements of the roadway surface 

profile at three bridge sites were made to compare with those measured by 

the profilometer. These sites were (1) Loop 427 over Mustang Creek, Taylor, 

(2) IH 10 over Plum Creek, San Antonio, and (3) Test Section No.8, Austin. 

Emphasis was placed on the bridge and areas where more intensive readings 

were made. 

The measurements were plotted to scale, and after examining the general 

trend of the whole section, the grade was corrected to a straight, sloping 

line. This slope was subtracted from the measured elevations and the 

results were compared with the profilometer-measured profiles. 

Observations and Explanations 

Though the rod-and-level measurements and the profilometer measured 

profile did not agree exactly, it was found that the high-frequency (short 

wavelength) bumps and dips were represented quite consistently in both 

profiles. The phenomenon can be explained by the following facts: 

(1) Vertical curves in an actual profile cannot be adequately 

approximated by a straight line. 
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(2) The dynamic response of the profilometer filtering cannot be 

corrected exactly by a simple slope adjustment technique. 

(3) Most importantly, distortion of the profilometer measurements is 

more apparent in long wavelength than in short wavelength rough-

ness, due to the inherent characteristics of the instrumentation. 

As a result, the profilometer can measure high frequency roughness on 

the roadway with acceptable accuracy and with great consistency. 

Vehicular Response to Long-Wave Profile Roughness 

It is understandable that a vehicle will respond differently to road 

profile waves of the same amplitude but of different wavelength. The 

dynamic loads produced by a wave 10 feet long and of I-inch amplitude will 

be much greater than those loads resulting from a lOO-foot wave of the same 

amplitude. Since the profilometer is able to record short wavelength rough-

ness fairly accurately but distorts the long waves, it is important to inves-

tigate the relative effects of different wavelengths on dynamic wheel loads 

which result from a wheel interacting with a rough road profile. If the 

effects of the profilometer distortion are not significant, the profilometer 

records can be used as input to DYMOL, and an adequate analysis of dynamic 

loading by traffic at the pavement-bridge interface can be made. 

Filtering and Phase-Shift Correction 

Several techniques for obtaining a corrected profile record that repre-

sents the actual roadway section have been used. None of these has yet been 

wholly successful. However a profile analysis program was utilized to correct 

the phase shift by moving long waves various distances computed on the basis 

of the frequency response curve of the profilometer. 
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Comparison of the Dynamic Loads 

The original profilometer profile of a test section and a phase-shift 

corrected profile are plotted in Fig 4.3. It can be observed that the short 

wavelength bumps and dips agree while the long waves disagree greatly. For 

predicting dynamic wheel loads, a simulated two-axle dump truck was "driven" 

at 55 mph on both the measured and the adjusted profile. In Fig 4.4, the 

light solid line represents the dynamic loads produced by the measured 

profile, and the dark dotted line, those produced by the adjusted profile. 

Most of the time, discrepancies between the predicted dynamic loads from the 

two profiles are less than 10 percent of the static weight. The maximum 

discrepancies do not exceed 15 percent of the static weight. Considering 

that the simulation model was found to predict dynamic wheel forces within 

about 10 percent in the validation experiments of the DYMOL program, errors 

of this range are quite acceptable. 

It is concluded, therefore, that the errors created by the distorted 

long waves are within a tolerable range. And the DYMOL program can be a 

satisfactory tool for predicting dynamic wheel loads that result from profiles 

containing long-wave roughness even though the profilometer distorts these 

waves somewhat. 

DATA ANALYSIS AND RESULT PRESENTATION 

In this study, three representative types of vehicles. a two-axle dump 

truck (2-D). a three-axle concrete mixer (3-A), and a five-axle tractor 

trailer (3S-2). were modeled at speeds of 40 and 55 mph. Two general types 

of dynamic loading oscillations were observed. These include high frequency 

oscillations. with frequencies from 8 to 12 Hz due to movements of the 

unsprung mass of the vehicle undercarriage, and low frequency oscillations, 
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with frequencies from about 1.5 to 3 Hz associated with movements of the 

sprung mass of the vehicle. Dynamic wheel loads exercised on the road 

surface are the combination of these two types of oscillations. 
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To examine the dynamic wheel loads which result from vehicles traversing 

the bridge-pavement interface areas, high and low frequency oscillations are 

treated separately. The amplitudes of the wheel force curves for both 

frequencies are measured and expressed as percentages of the static weight of 

the axle considered. A graphical presentation is designed to show the load 

variations by the thickness of a line. Class limits for categories of wheel 

force amplitude are set at 0-20, 20-40, 40-60, 60-80, and more than 80 

percent of the static weight. If amplitudes of wheel force curves vary less 

than 20 percent from the static weight, no line is plotted. A line of 

one-unit thickness is used for 20-40 percent, two-unit for 40-60 percent, 

three-unit for 60-80 percent, and four-unit for 80 percent or more. The 

profile of the roadway over which the vehicle travels is attached at the top 

of the graph. The seriousness of the dynamic loading over each section can 

be judged by the overall "blackness" of the graph. 

Graphical analysis of simulation results is presented in Figs A4.1 

through A4.35, in the appendix. Twenty-one bridge sites including three in 

Austin, four in San Antonio, six in Lubbock, and eight in Houston, are 

presented. The length of profile for each case is' approximately 300 feet. 

If the bridge is long enough, the start of the bridge and the end of the 

bridge are shown separately. Otherwise the entire bridge is presented in 

one figure. As mentioned earlier, the high and low frequency load variations 

of each section are shown in two graphs, noted as A and B. The types of 

vehicles are shown on the left. "V" is used to designate velocity in mph, 
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and "An indicates the axle number of the simulated vehicle. The location of 

the peak loading, as directly read from the DYMOL output, is identified with 

a small triangle, and its magnitude is recorded as a percentage of the 

static weight on the far right end. The shaded area on each graph represents 

the range appreciably affected by dynamic vehicular loading. Significance 

of the shaded area is discussed later. 

Table 4.1 provides an overview of roughness patterns and induced dynamic 

loads for the selected sites. High and low-frequency dynamic loads are again 

separated. An X indicates the load classification when the dynamic variations 

of the specified amplitude are induced anywhere in the section. The maximum 

peak load and the mean peak load for each site are also tabulated as a 

percentage of the static weight. The standard deviation is calculated by 

where 

N 
I: (X

i
-X)2 

C1" i-I ---------

X .. 
i 

X .. 

N .. 

N - 1 

the peak load induced by each axle 
in the section (%), 

the mean peak load of the sampled 
axles (%), and 

total number of axles, equal to 20 
in this study.· 

The next two rows give the values of ~-1C1 and ~-2C1. Assuming the peak loads 

induced by different axles are normally distributed, these two numbers are 

the approximate values that 84 percent and 98 percent of the induced peak 

loads will exceed. For instance, the mean peak load created by the roughness 

of the section of PM 1065 over Los Linguish Creek (Lubbock), start of bridge 

.(see Fig A4.l3), is 203 percent. The standard deviation is 35 percent. With 
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the assumption of a normal distribution, 84 percent of the induced peak loads 

will be higher than 168 percent of the static axle weight, and 98 percent of 

those loads will be higher than 133 percent of the static axle weight. 

The section of SH 225 over Scarborough Lane (Houston) is another example. 

The major roughness is due to a large opening at a pavement joint. The 

induced maximum dynamic peak load for one axle is almost 4.5 times its 

static weight. The mean peak load is 310 percent and the standard deviation 

is 55 percent. As a result, 84 percent of the dynamic loads are higher than 

2.55 times the static weight and about 98 percent of those loads are twice 

their static weights. 

At this point, it seems worthwhile to emphasize the significance of 

approach slabs. There are thirty-five sections, presented in Figs A4.l 

through A4.35 respectively, and twenty-eight sections have approach slabs. 

Among those twenty-eight about 80 percent (twenty-two sections) have primary 

roughness problems related to approach slabs, which are tilted or distorted 

or have a gap between the approach slab and the bridge/pavement. As noted 

already, the use of approach slabs is common in San Antonio, Lubbock, and 

Houston. Great care in choice of design and construction processes may 

improve performance in the vicinity of the bridge-pavement interface. 

DYNAMIC LOADING INDEX 

Though Table 4.1 provides useful information, it is not adequate for 

identifying the most critical types of roughness inducing dynamic loads. 

For example, the X shows the induced load class, but it does not show where 

and by how many axles the loads were created. Therefore, in order to better 

quantify the dynamic loading problem, a dynamic load index was developed. 

It is the sum of the products of the mean of each load classification and 
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the number of axles which induce the dynamic load in that classification. 

The index includes all dynamic loads within the influence range of the 

roughness under consideration. If, for a total of 20 axles, the roughness 

creates oscillations with amplitudes less than 20 percent of the static 

weight, this index is 10% X 20 = 2.0 (10 percent is the mean of that class

ification). On the other extreme, if all axles are excited and large loading 

oscillations with amplitudes greater than 80 percent are induced, the index 

will be 100% X 20 = 20.0, where 100 percent is the assumed mean value of 

that classification since the upper bound is not set. The index is bounded 

by these two limits. 

The proper choice of the length of influence range is vital for devel

opment of the index. The area of most severe roughness itself must be 

included. It was found, however, that the range must extend beyond the 

end of the most severe roughness a distance of at least one dynamic load 

cycle. The cycle length varies with vehicle speeds and loading frequencies. 

The lowest frequency in each load category was selected for use so that the 

longest cycle length could be included. When the speed is 40 mph, the 

rounded cycle length is 8 feet for high-frequency oscillations, and 40 feet 

for low-frequency oscillations. When the speed is 55 mph, the rounded cycle 

lengths are 10 and 50 feet for high and low-frequency oscillations respec

tively. The ranges thus developed are marked on the graphs (Figs A4.l 

through A4.35 with light shading. 

A combination of several types of roughness, not an isolated discontin

uity, normally creates maximum dynamic loading. The section of Scarborough 

Lane (Houston) exemplifies this statement. A detailed analysis of that 

site is shown in Fig 3.10. Besides the previously mentioned gap at the 

pavement joint, there are at least three other types of roughness present. 
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These include (1) a tilted or distorted approach slab, (2) a discontinuity 

between the approach slab and the bridge, and (3) a discontinuity between 

the approach slab and the pavement. The dynamic loads induced by one rough

ness pattern will often influence the loads by another. Therefore, dynamic 

wheel loads are, quite often, the composite result of several types of 

roughness. 

Numbers of axles in each load classification for major roughness 

patterns, with references to analysis figures, and derived dynamic load 

indices are summarized in Table 4.2. These indices are useful for identify

ing the potential for creating large magnitude dynamic loads. Small index 

values indicate little tendency to produce excessive dynamic tire forces. 

The smaller the indices, the smoother the roadway. It is interesting that 

these indices may be correlated with subjective ratings and can be therefore 

useful for indicating a measure of ride quality. For the cases examined in 

San Antonio, Lubbock, and Houston, an index value of 9.0 is an appropriate 

division between good and bad riding quality. If one of the indices for a 

site is greater than 9.0, the overall rating for that site is almost certainly 

bad. This is true for 16 out of 18 sites in those three districts, with 

only two exceptions. The site of Spur 326 over the AT & SF Railroad 

(Lubbock) has an index equal to 13.8 for high-frequency oscillations but is 

rated as good. Another exception is the site of South Loop (IH 610) over 

SH 288 (Houston) which is rated as good although the largest index value 

for that section is 9.5. However, in general, the index seems to be well 

correlated with subjective ride quality ratings for those three districts. 

In Austin only three sites (two bad and one good) are considered and all 

the index values are lower than 9;0. The Austin data is simply too limited 

in quantity to make significant statements about the correlation between 
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ride quality and loading index. 
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CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS 

In this study, roughness problems in the vicinity of the bridge-pavement 

interface are examined. Information on representative bridge sites in the 

Austin, San Antonio, Lubbock, and Houston districts of the State Department 

of Highways and Public Transportation was obtained through a special survey 

questionnaire. With the aid of on-site inspections, twenty-one locations 

were selected for road surface profile measurements. A vehicle computer 

simulation program was used to analyze the interaction of vehicles with 

roadway profiles. The following conclusions and recommendations are based 

upon study and analysis of these data. 

CONCLUSIONS 

(1) Based upon observations of this study, the magnitude of traffic 

volume cannot be identified as a causative factor of surface 

roughness at bridge approaches. Since the temperature in Texas 

is neither extremely cold nor extremely hot, frost action and 

slab movement due to temperature variations are not serious. No 

significant correlation was consistently found between the 

performance of bridge approaches with bridge function, bridge 

type, bridge age, or the height of embankment fill. 

(2) While flexible pavement is dominant in Austin, San Antonio, and 

Lubbock, rigid pavement is primarily used in the Houston area. 

No obvious superiority of one type over another was found. 

However, compared with JRCP, CRCP provides better performance. 
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(3) Stub-type abutments, generally recognized as most desirable, were 

utilized at all sites investigated. Deep foundations are used 

almost exclusively as supports for bridges and appear to be very 

effective in minimizing total settlement. No special treatments 

for slope stability have been applied; that is, membranes, berms, 

or benching has not been utilized. There are no special treatments 

for soft foundations. Though light-weight material offers promise 

for use in fills, no such material is used in these four districts. 

(4) The type of material utilized in the approach roadway structure is 

related to the pavement-bridge interface roughness problem. 

Highway compressible clayey material was used as embankment fill 

for all problem sites in District 14. Expansive soil appeared 

to be the major cause of roughness in District 15. Heavy rainfall 

in conjunction with expansive Beaumont clay induced severe surface 

irregularities in Houston. No similar cause can be identified 

for the Lubbock area. However, based on those sites studied, 

Lubbock seems to have a less serious situation than the others. 

(5) Penetration of water through pavement joints or cracks, especially 

when expansive soils are involved, may become a major creator of 

roughness. Elimination of expansion joints and use of finger 

joints with transverse drains has been effective measures for 

reduction of the water intrusion problem. 

(6) Timely maintenance and slow rate construction techniques certainly 

offer promise for reduction of surface irregularities. Modern 

compaction equipment, which has been extensively used since the 

1960s, also offers promise for problem minimization. Stringent 



specifications and inspections of soil compaction are essential 

to obtaining satisfactory bridge approaches. 

(7) Roughness at bridge approaches can occur either on the bridge or 
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on the roadway. A number of typical roughness patterns have been 

identified. Except in Austin, the use of approach slabs as the 

transition between the bridge and the pavement is a common practice. 

However, for those sections having approach slabs, about 80 percent 

of the identified roughness problems are related to the existence 

of approach slabs. In San Antonio and Lubbock, approach slabs have 

been removed in some locations, and the road profile has remained 

relatively smooth following this modification. 

(8) The Surface Dynamics Profi10meter provides a safe, convenient 

means of obtaining the road profile information that is needed for 

locating and identifying critical patterns of roughness at the 

pavement-bridge interface. Rod-and-1eve1 measurements at three 

sites in Texas have revealed that short wavelength roughness is 

represented adequately by the Surface Dynamics Profi10meter but 

that long waves in the profile are somewhat distorted. Dynamic 

wheel loads can, however, be predicted satisfactorily by simula

tion from the profi1ometer records since vehicular response to 

long-wave roughness is relatively insignificant. 

(9) The DYMOL vehicle simulation program is a power tool for pre

diction of the relative effect of roughness in creating dynamic 

wheel loads. The analysis process developed for DYMOL output 

seems to be acceptable. The derivation of a dynamic load index 

is useful for quantitative evaluation of roughness conditions. 

The index is also useful for prediction of riding quality. 



(10) The most serious case encountered in this study is SH 225 over 

Scarborough Lane (Houston). The primary roughness pattern, 

consisting of a wide gap at the pavement joint, induced peak 

dynamic axle loads of 4.5 times static weight. If a normal 

distribution is assumed for dynamic loading, about 98 percent of 

the dynamic axle loads will be twice their static weights. The 

importance of joint sealing or repair cannot be overlooked. 

RECOMMENDATIONS 

(1) To avoid or alleviate interface roughness problems, generally 

recognized good design and construction practices offer the most 

promise. Stub-type abutments, deep foundations for bridges, 

adequate investigations of the foundation site, appropriate 

specifications and inspections of soil compaction, and sometimes 

a slow-rate construction schedule should be considered. Benching 

the natural ground to support the approach embankment is also 

recommended. 
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(2) High-volume-change materials should be used with caution in embank

ment construction, and special attention should be given to the 

drainage system. On the one hand, the surface water should be 

prevented as much as possible from penetrating into the underlying 

layers. On the other hand, water having intruded into the soil 

should be removed quickly and completely. Select granular-type 

material, probably with additives for stabilization, is always 

desirable as the abutment backfill. 
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(3) Though in many cases bridge approach roughness is associated with 

approach slabs, the banning of approach slab use is not considered 

to be proper. The decision to use the specially designed reinforced 

approach slabs should be based on traffic volume, soil condition, 

construction cost, and an estimate of the possible problems if they 

are not used. It is impractical, however, to specify any particular 

design for approach slabs as being better than any other; local 

past experience will provide valuable guidance. 

(4) When undesirable surface roughness adjacent to the bridge-pavement 

interface does occur, maintenance should be performed immediately. 

Scheduled preventive maintenance may prove to be a more effective 

and economical solution. Points of major concern include pavement 

joints, bridge joints, and the joints between the approach slab 

and the bridge-pavement. 

(5) Even though the effect of a distorted profile from the Surface 

Dynamics Profilometer is not critical in the simulation analysis 

made by DYMOL, a good representation of the real profile is highly 

desirable. More study should be devoted to defining the capability 

of the Surface Dynamics Profilometer to measure long-wave roughness. 

(6) Extensive soil exploration, along with detailed and accurate 

information on the design, construction, and maintenance history 

of the bridge site, is essential for determining the extent and 

the specific causes of one particular interface roughness. Analyses 

of this depth are beyond the scope of this study. Further in-depth 

research efforts are surely warranted in the investigation of rough

ness problems in the proximity of the bridge-pavement interface. 
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APPENDIX 

Dynamic Wheel Load Diagrams 
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Fir A4.l9A. Dynamic wheel load diar:ram, hir-h frequency oscillr!tion, lTS 87 South over 
98th street (Lubbock). 
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Dynamic wheel lo~d diagram, hip,h frequency oscillation, US 84 over 
Brazos River (Luhbock), old structure, start of bridge. 
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Fir A4.2lA. Dynamic wheel load dia~ram, high frequency oscillation, l1S 134 over 
Brazos River (Lubbock), old structure, end of bridre . 

A 131 

137 

172 

160 

138 

171 

150 

153 

156 
160 -- ~ 

N 
V1 



· 0 IS 
~ S.OO~ 
I-

~ 4.00L~ 
w 3.00 
I 

~ 2.00t 
~ 1.00 

~ 0.00 
a. 

30 
I 

4S 60 
I I 

~ 
....... 

HORIZONTAL DISTANCE (FT.) 
75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300 

I I I~ I I I I I 

'" MAX. 
VEHICLE V A 

g. 40 I 
, 2 
i. 

I 
55 2 

BRIDGE~LAB _. 

- I _1~!~I]~~:I;111!!jl: " , I 
LOAD (0/0) 

i 
128 

127 

165 
157 -

I 

~ 40; 

lJ3 55 2 

3 

I 

2 

r1
40 

:' 
I 

U3 55 ~ 
4 

5 

A 
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Fi~ A4.23A. Dynamic wheel load diarram, hirh freqllency oscillation, US 84 over Brazos 
River (Lbbbock), new structure, end of bridge. 
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Dynamic wheel load diagram, 10H frequency oscillation. IH 45 over 
South Belt (Houston), end of brld~e. 
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Dynamic wheel load dia~ra~, low frequency oscillation, IH 10 over 
West Belt (Houston), end of bridge. 
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