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Appendix A

A Summary of an Investigation of the
Delamination of Thin-Bonded Concrete
Overlays

Introduction

An investigation of the delamination of thin-bonded concrete overlays was conducted on 6
overpasses on IH-10 in El Paso, Texas. These 200-ft overpasses consist of 3 spans of Precast
Concrete Box Beams with a wood float finish. The 30 inch diameter columns rest on 36-in.
diameter drilled shafts. The overpasses were constructed in two phases with the thin-bonded
overlays (average 3 1/2 inch depth) being poured in the summer of ’87 (phase I; outside lanes)
and in the spring of '88 (phase II; inside lanes).

The placement, consolidation and curing methods were the same for all areas and phases. The
7-sack, Type II cement concrete mix was placed directly from the chutes of the ready mix trucks
used for concrete mixing and delivery. Hand-held vibrators, in conjunction with an Allen
Razorback vibratory air screed, were used for consolidation. The overlays were cured with wet
burlap for 24 hours followed by 7 days of water cure (wet mat). Phase I overlay pours were
placed during a construction sequence when that portion of the structure was not subjected to
the direct vibrations caused by IH-10 traffic (new structure not connected to old structure).
However, Phase II overlay pours were placed after traffic had been diverted to the newly
completed section (Phase I) and were consequently, subjected to the vibrations from IH-10 traffic
during the placement, consolidation and curing of the concrete.
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Eight months after the thin-bonded concrete overlays had been placed they began to show signs
of distress. All interior bent line transverse joints were severely cracked and loss of material
was not uncommon. Alligator cracks also appeared throughout the overlays with no specific
pattern from one overpass to the next. Some overpasses exhibited much more distress than
others.

Investigation

In January 1989, soundings of the overpasses were conducted to determine the extent of the
delamination.  Standard size hammers were used to sound the decks and the areas of
delamination were recorded on Deck Layout Plan Sheets. Some areas were difficult to
distinguish between delamination or merely the reverberations of the prestressed box beams
hollow voids. Core samples of the overlays were then obtained to try to confirm the results of
the soundings. A total of 110 cores were obtained and analyzed visually for delamination.
Several possibilities for the overlay failure were investigated including mix design variations.
The air-content, fly-ash content and even the cement sources were reviewed. The weather
conditions at the time of placement for each overlay pour were also checked. However, any
changes in these conditions could not be correlated to the overlay failure areas. The construction
method was also reviewed and found to be in complete accordance with the specifications of the
item.

Since this type of thin-bonded concrete overlay had been used on other projects in El Paso, a
comparison of this project, with its unique construction phasing requiring overlays to be placed
adjacent to active IH-10 traffic and its accompanying vibrations, was made against two other
overlay projects, Darbyshire Overpass and Raynolds Street Overpass. During the construction
of these structures, however, no through traffic was permitted and consequently experienced no
vibrations. The cores obtained from both the Darbyshire and Raynolds Street projects exhibited
tight bonding at the interface and the decks were virtually crack free.

In April 1989, the overpasses were resounded to determine the progression of the delamination.
The delaminated areas and severe cracks were plotted on the Deck Layout Plan Sheets for
permanent reference and for comparison to the original sounding. Some overpasses were found
to have more delaminated areas than 3 months earlier. Others remained virtually the same
except for new or more severe cracking.

It was then clear that the delaminated concrete overlay would have to be removed and replaced
or some how sealed against moisture to prevent further damage from occurring. After
determining that an epoxy coating to seal the overlay was prohibitive because of cost and the
inability to thoroughly clean all cracks, a method for removing and replacing the existing
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lines for additional strength at the maximum moment location.

The Type III concrete was placed on the west half of the test section (dry surface; 1/2 grout -
1/2 without grout) followed by the placement of the Pyrament concrete (SSD surface; no grout).
Both concretes were consolidated by the use of immersion vibrators (spud type) and a vibrating
screed. The finishing and texturing was in accordance with the contract specification (Item 439).
The entire test area was cured with a clear membrane curing compound. All IH-10 traffic was
routed to the frontage road during and for 12 hours after the pour. Several different types of
tests were performed on the test section specimens at specified time intervals for 24 hours. Core
samples were drilled for the direct tension bond test. The Center for Transportation Research -
UT Austin performed the tests. Results in tensile, shear, compression, and flexure tests lead
to the decision of the material to be used and the construction methods to be followed in the
repair of the delaminated thin-bonded concrete overlay.

Experimental Test Section Results

A 12 hour result was selected for comparison in the tensile, shear, compressive, and flexural
tests because of field conditions. During the repair of the concrete overlay, IH-10 traffic was
routed onto the frontage roads during and for 12 hours after the completion of the concrete
placement as in the case of the test section. The "pull-out" tests (tension) performed in the test
section indicate that the Type III concrete mix without bonding grout attained a higher psi value.
However, this value of 119 psi was not much greater than the Type III with grout. The
Pyrament results on a saturated surface dry condition was quite low, 80 psi. This was the
reason the Pyrament representative requested an additional test section be prepared with a dry
surface, with and without bonding grout, and additional tests be performed. The results on a
dry surface were much better than on the SSD section but still with no significant advantage over
either of the Type III results.

Pyrament concrete obtained an average flexural strength of only 53 psi greater than the Type II1
at 12 hours. In compression, however, the Type III cylinders surpassed the Pyrament specimens
by 680 psi. A comparison between Type III and Pyrament could not be made in the direct shear
test because a test for Pyrament was not obtained. The difference between Type III with grout
and without grout was insignificant, only 16 psi.

A direct shear test was also performed on 12 original concrete overlay core specimens and
signified and important correlation. The average of the outside lane (construction Phase I)
exceeds the average of the inside lane (construction Phase II) by 301 psi, indicating a difference
in the bond strength at the interface of the overlay and box beam. Phase I overlays were placed
during a construction sequence when that portion of the structure (new) was completely separate
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from the old overpass and therefore, not subjected to the vibrations caused by IH-10 traffic.
Construction Phase II overlays were placed after traffic had been diverted to the newly
completed section and were consequently, subjected to the direct vibration of [H-10 traffic on
the adjacent lanes during placement, consolidation and curing. Although the core specimen areas
were poured at different times (approx. 8 months apart), after more than one year, the difference
in strength cannot be attributed to the age of the concrete. The difference in direct shear test
results substantiates the delamination detected by the bridge soundings. These soundings found
considerably more delamination on the inside than on the outside lanes.

In 12 hours, the Type III direct shear results average 520 psi. This value is approximately 78 %
of the 669 psi obtained in direct shear on the original overlay cores (outside lanes; Phase I).
These two values were compared because both concrete overlays were placed under similar
conditions, i.e. no direct vibrations caused by adjacent travel lane

traffic.

Concrete Overlay Repair Procedure

Upon review of the test section results, field conditions, construction procedures and numerous
other factors, it was determined that the Type III Cement/Concrete would be used in the repair
of the delaminated concrete overlay areas. Only those areas where delamination was detected
during the second sounding, either for the first time or as confirmation of the first test, was
repaired. The second sounding was believed to be more accurate because the "sounders"” had
gained experience from the initial tests. Approximately 31% of the original total overlay was
replaced (about 2900 S.Y.).

The delaminated overlay areas were saw-cut and removed by jackhammers. This method proved
to be much faster and more economical than using a roto-mill machine. The edges of the
removed areas were also a good indication if all the delaminated overlay had been removed.
A good, tight bond between the overlay and the box beam was quit evident. A void or a loose
bond indicated delamination in which case the limits of removal were extended until all
delaminated overlay was removed. The box beam surface was then roughened with a scabbler
or at times with a bushing hammer in small areas. Sand patch tests were randomly taken to
ensure the desired texture was obtained (0.05 in. minimum).

The interior bent line transverse joints were reinforced with #4 epoxy coated rebar with alternate
rebars allowed to protrude into the longitudinal repair areas for additional tie. A bond breaker
consisting of mastic plus two layers of 15-1b. felt, graphite, and grease was placed at the joint
in order to prevent any cracking in the shear key caused by beam deflections from reflecting into
the overlay. The surface was sandblasted by a compressed, filtered, air blast. The filter was
used, unlike in the original overlay placement, to prevent any oil contaminants from being
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applied to the surface - acting as a bond breaker. A dry surface with no bonding grout was
required based on the test section results.

An eight sack concrete mix design with Type III cement was used. In addition to the results of
the test section, Type III cement is a common, well-known and readily available material.
Concrete with Type III cement and a good slump is workable and not easily affected by local
weather conditions and it does not require special mixing instructions or expertise. Test section
results showed Pyrament to be comparable to the Type III mix in strengths. However, Pyrament
was not selected primarily because its test results did not justify the extra cost (twice that of
Type III or about $155.00/C.Y.). Results of 2 to 3 times the Type III design were initially
established as an acceptance criteria. The preparation (batching) of the Pyrament concrete is a
slow process which requires a Pyrament representative to obtain a proper, workable mix because
of its special procedure for mixing and adding water. The daily occurrence of low humidity and
high temperatures in the El Paso area hinders the workability of Pyrament. Construction
workers are expected to work at a fast pace with little room for error because of Pyrament’s 90
minute set time. On pours which might continue for several hours, it is unreasonable to expect
such a working pace to be maintained. The placement, consolidation, finishing, tinning and
curing sequence appeared so critical that even a minor equipment breakdown would result in the
loss of the pour. Overall, Pyrament was much too sensitive in its preparation and placement
requirements for this application.

The placement of the concrete overlay was accomplished during the weekend when IH-10 traffic
was routed to the frontage road. The interstate remained closed to traffic for such time that a
minimum of 12 hours was allowed for bonding after the last concrete placed had taken initial
set. As stated previously, 78% of the bonding strength (direct shear) was achieved in 12 hours
when no direct vibrations occurred. The compressive, flexural and tensile strengths obtained
in 12 hours were also considered acceptable (sufficient for good bonding to occur).

The consolidation, finishing, texturing and curing were similar to the original concrete overlay
placement. Wet burlap was placed on the overlay as soon as no damage to the overlay would
occur. Soon after, mats were placed on top of the burlap and a wet mat cure was maintained
for 5 days instead of the original 7 day cure because of the high early strength (Type III) cement
used. Also, the linseed oil originally placed after the wet mat cure was omitted in the repair
work. Experience has shown that it is impossible to maintain the linseed oil surface treatment
due to high traffic volumes. Because of the required construction phasing, numerous
longitudinal joints were created. It was decided that a Two-Course Hot Asphalt-Rubber Seal
Coat would be applied to the entire concrete overlay acting as a moisture barrier. The seal coat
was believed to be imperative for the life expectancy of the overlay.






Summary

The total cost of the replacement of the delaminated concrete overlay was approximately
$434,000 or $150/S.Y.. This cost included the removal, replacement, materials, traffic control,
etc. Also an additional 71 days (3 1/2 months) was granted to the contractor. The repair work
was completed on September 3, 1989 and with an Average Daily Traffic (ADT) of 133,000
vehicles, the system has been working well.

A roughened, dry surface without bonding grout, an 8 sack Type III mix design, and the
elimination of traffic vibrations combined to create an ideal situation for a strong bond to
develop at the interface between the overlay and the box beam. A strong bond prevents future
delamination from developing and gives a thin-bonded concrete overlay a satisfactory life
expectancy. ‘
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Bridge Vibration Field Measurements
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Figure B.29 Displacement Spectra of Short Span of Hawkins Bridge at 17:30 P.M.
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Figure B.39 Displacement Spectra of Long Span of Hawkins Bridge at 11:36 A.M.
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Figure B.41 Displacement Spectra of Long Span of Hawkins Bridge at 12:07 P.M.
' Top : Peak-Hold Average
Bottom : Arithmetic Average

Figure B.42 Displacement Spectra of Long Span of Hawkins Bridge at 12:25 P.M.
’ Top : Peak-Hold Average
Bottom : Arithmetic Average
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Figure B.43 Displacement Spectra of Long Span of Hawkins Bridge at 12:43 P.M,

Top : Peak-Hold Average
Bottom : Arithmetic Average
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Figure B.44 Displacement Spectra of Lon
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Figure B.45 Displacement Spectra of Long Span of Hawkins Bridge at 13:17 P.M.

Top : Peak-Hold Average
- Bottom : Arithmetic Average
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Figure B.46 Displacement Spectra of Long Span of Hawkins Bridge at 13:27 P.M.
Top : Peak-Hold Average
Bottom : Arithmetic Average
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Figure B.47 Displacement Spectra of Long Span of Hawkins Bridge at 13:45 P.M.
Top : Peak-Hold Average
Bottom : Arithmetic Average

Figure B.48 Displacement Spectra of Long Span of Hawkins Bridge at 14:00 P.M.
Top : Peak-Hold Average
Bottom : Arithmetic Average
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Figure B.49 Displacement Spectra of Long Span of Hawkins Bridge at 14:14 P.M.
’ Top : Peak-Hold Average
Bottom : Arithmetic Average
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Figure B.50 Displacement Spectra of Long Span of Hawkins Bridge at 14:38 P.M.
Top : Peak-Hold Average
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Figure B.53 Displacement Spectra of Long Span of Hawkins Bridge at 15:30 P.M.
Top : Peak-Hold Average
Bottom : Arithmetic Average
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Figure B.54 Displacement Spectra of Long Span of Hawkins Bridge at 15:48 P.M.
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Figure B.55 Displacement Spectra of Long Span of Hawkins Bridge at 16:06 P.M.
Top : Peak-Hold Average
Bottom : Arithmetic Average

Figure B.56 Displacement Spectra of Long Span of Hawkins Bridge at 17:00 P.M.
Top : Peak-Hold Average
Bottom : Arithmetic Average
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Figure C.3 Moving Plate of Guillotine Direct Shear Test Apparatus
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Figure D.1 Perspective View of Beam Platform
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Figure E.1 Comparison of Average Shear Strengths for a 2-in.

Overlay After 0 Hrs. of Pre-Vibration Cure (Smooth
Interface) Under Vertical Vibration Mode

Figure E.2 Comparison of Average Shear Strengths for a 2-in.
Overlay After 0 Hrs. of Pre-Vibration Cure (Rough
Interface) Under Vertical Vibration Mode
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Figure E.5 Comparison of Average Shear Strengths for a 2-in.
Overlay After 12 Hrs. of Pre-Vibration Cure (Smooth
Interface) Under Vertical Vibration Mode
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Figure E.6 Comparison of Average Shear Strengths for a 2-in.
Overlay After 12 Hrs. of Pre-Vibration Cure (Rough
Interface) Under Vertical Vibration Mode
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Figure E.7 Comparison of Average Shear Strengths for a 4-in.
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Interface) Under Vertical Vibration Mode
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Figure E.8 Comparison of Average Shear Strengths for a 4-in.
Overlay After 0 Hrs. of Pre-Vibration Cure (Rough
Interface) Under Vertical Vibration Mode




66

AVG. SHEAR STRENGTH, PSI

P W\ X
DRY WET
SURFACE CONDITION

Vertical Vibration Level

NONE il LOW & HIGH

Figure E.9 Comparison of Average Shear Strengths for a 4-in.
Overlay After 4 Hrs. of Pre-Vibration Cure (Smooth
Interface) Under Vertical Vibration Mode
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Figure E.10 Comparison of Average Shear Strengths for a 4-in.
Overlay After 4 Hrs. of Pre-Vibration Cure (Rough
Interface) Under Vertical Vibration Mode
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Figure E.11 Comparison of Average Shear Strengths for a 4-in.
Overlay After 12 Hrs. of Pre-Vibration Cure (Smooth
Interface) Under Vertical Vibration Mode
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Figure E.12 Comparison of Average Shear Strengths for a 4-in.
Overlay After 12 Hrs. of Pre-Vibration Cure (Rough
Interface) Under Vertical Vibration Mode
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Figure E.15 Comparison of Average Shear Strengths for a 6-in.
Overlay Afler 4 Hrs. of Pre-Vibration Cure (Smooth
Interface) Under Vertical Vibration Mode
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Figure E.16 Comparison of Average Shear Strengths for a 6-in.
Overlay After 4 Hrs. of Pre-Vibration Cure (Rough
Interface) Under Vertical Vibration Mode
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Figure E.17 Comparison of Average Shear Strengths for a 6-in.
Overlay After 12 Hrs. of Pre-Vibration Cure (Smooth
Interface) Under Vertical Vibration Mode
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Figure E.18 Comparison of Average Shear Strengths for a 6-in.
Overlay After 12 Hrs. of Pre-Vibration Cure (Rough
Interface) Under Vertical Vibration Mode
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Figure E.19 Comparison of Average Shear Strengths for a 2-in.
Overlay (Smooth-Dry Interface) Under Vertical Vibration
Mode
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Figure E.21 Comparison of Average Shear Strengths for a 2-in.
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Figure E.22 Comparison of Average Shear Strengths for a 2-in.
Overlay (Rough-Wet Interface) Under Vertical Vibration
Mode
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Figure E.23 Comparison of Average Shear Strengths for a 4-in.

Overlay (Smooth-Dry Interface) Under Vertical Vibration
Mode
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Figure E.24 Comparison of Average Shear Strengths for a 4-in.
Overlay (Smooth-Wet Interface) Under Vertical Vibration
Mode
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Figure E.25 Comparison of Average Shear Strengths for a 4-in.
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Mode
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Figure E.26 Comparison of Average Shear Strengths for a 4-in.
Overlay (Rough-Wet Interface) Under Vertical Vibration
Mode
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Figure E.27 Comparison of Average Shear Strengths for a 6-in.
Overlay (Smooth-Dry Interface) Under Vertical Vibration
Mode
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Figure E.28 Comparison of Average Shear Strengths for a 6-in.

Overlay (Smooth-Wet Interface) Under Vertical Vibration
Mode



[ i

B 8
o N
ISd ‘HLONTULS YVAHS ‘DAY

(/i i

2
N
ISd ‘HLONTYLS YVAHS "DAY

69

PRE-VIBRATION CURE HOURS

PRE-VIRATION CURE HOURS

Vertical Vibration Level

NONE [l LOW 8 HIGH

DN

Vertical Vibration Level

NONE [l LOW [ HIGH

NN

Figure E.30 Comparison of Average Shear Strengths for a 6-in.
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Figure E.31 Comparison of Average Shear Strengths Afier 0 Hrs. of
Pre-Vibration Cure (Smooth-Dry Interface) Under
Vertical Vibration Mode
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Figure E.32 Comparison of Average Shear Strengths After 0 Hrs. of

Pre-Vibration Cure (Smooth-Wet Interface) Under
Vertical Vibration Mode
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Figure E.33 Comparison of Average Shear Strengths After 0 Hrs. of
Pre-Vibration Cure (Rough-Dry Interface) Under
Vertical Vibration Mode
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Figure E.34 Comparison of Average Shear Strengths After 0 Hrs. of

Pre-Vibration Cure (Rough-Wet Interface) Under
Vertical Vibration Mode
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Figure E.35 Comparison of Average Shear Strengths After 4 Hrs. of
Pre-Vibration Cure (Smooth-Dry Interface) Under
Vertical Vibration Mode
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Figure E.36 Comparison of Average Shear-Strengths After 4 Hrs. of
Pre-Vibration Cure (Smooth-Wet Interface) Under
Vertical Vibration Mode



€L

AVG. SHEAR STRENGTH, PSI

300-1

250+

2004

150

OVERLAY THICKNESS, IN.
Vertical Vibration Level

| NONE i LOW BB

Figure E.37 Comparison of Average Shéar Strengths After 4 Hrs. of
Pre-Vibration Cure (Rough-Dry Interface) Under
Vertical Vibration Mode
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Figure E.38 Comparison of Average Shear Strengths Afier 4 Hrs. of
Pre-Vibration Cure (Rough-Wet Interface) Under
Vertical Vibration Mode
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Figure E.39 Comparison of Average Shear Strengths After 12 Hrs. of
Pre-Vibration Cure (Smooth-Dry Interface) Under
Vertical Vibration Mode
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Figure E.40 Comparison of Average Shear Strengths After 12 Hrs. of
Pre-Vibration Cure (Smooth-Wet Interface) Under
Vertical Vibration Mode
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Figure E.41 Comparison of Average Shear Strengths After 12 Hrs. of
Pre-Vibration Cure (Rough-Dry Interface) Under
Vertical Vibration Mode
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Figure E.42 Comparison of Average Shear Strengths After 12 Hrs. of

Pre-Vibration Cure (Rough-Wet Interface) Under
Vertical Vibration Mode
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Figure E.43 Comparison of Average Shear Strengths for a 2-in.
Overlay After 0 Hrs. of Pre-Vibration Cure (Smooth
Interface) Under Horizontal Vibration Mode
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Figure E.44 Comparison of Average Shear Strengths for a 2-in.

Overlay Afier O Hrs. of Pre-Vibration Cure (Rough
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Figure E.45 Comparison of Average Shear Strengths for a 2-in.
Overlay After 4 Hrs. of Pre-Vibration Cure (Smooth
Interface) Under Horizontal Vibration Mode
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Figure E.46 Comparison of Average Shear Strengths for a 2-in.
Overlay After 4 Hrs. of Pre-Vibration Cure (Rough
Interface) Under Horizontal Vibration Mode
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Figure E.47 Comparison of Average Shear Strengths for a 2-in.

Overlay After 12 Hrs. of Pre-Vibration Cure (Smooth
Interface) Under Horizontal Vibration Mode

Figure E.48 Comparison of Average Shear Strengths for a 2-in.
Overlay After 12 Hrs. of Pre-Vibration Cure (Rough
Interface) Under Horizontal Vibration Mode
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Figure E.49 Comparison of Average Shear Strengths for a 4-in.
Overlay After 0 Hrs. of Pre-Vibration Cure (Smooth
Interface) Under Horizontal Vibration Mode
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Figure E.50 Comparison of Average Shear Strengths for a 4-in.
Overlay After 0 Hrs. of Pre-Vibration Cure (Rough
Interface) Under Horizontal Vibration Mode
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Figure E.51 Comparison of Average Shear Strengths for a 4-in.
Overlay After 4 Hrs. of Pre-Vibration Cure (Smooth
Interface) Under Horizontal Vibration Mode
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Figure E.52 Comparison of Average Shear Strengths for a 4-in.
Overlay After 4 Hrs. of Pre-Vibration Cure (Rough
Interface) Under Horizontal Vibration Mode
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Figure E.53 Comparison of Average Shear Strengths for a 4-in.

Overlay After 12 Hrs. of Pre-Vibration Cure (Smooth
Interface) Under Horizontal Vibration Mode

Figure E.54 Comparison of Average Shear Strengths for a 4-in.
Overlay After 12 Hrs. of Pre-Vibration Cure (Rough
Interface) Under Horizontal Vibration Mode
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Figure E.55 Comparison of Average Shear Strengths for a 2-in.
Overlay (Smooth-Dry Interface) Under Horizontal
Vibration Mode
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Figure E.56 Comparison of Average Shear Strengths for a 2-in.
Overlay (Smooth-Wet Interface) Under Horizontal
Vibration Mode
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Figure E.57 Comparison of Average Shear Strengths for a 2-in.

Overlay (Rough-Dry Interface) Under Horizontal
Vibration Mode
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Figure E.58 Comparison of Average Shear Strengths for a 2-in.
Overlay (Rough-Wet Interface) Under Horizontal
Vibration Mode
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Figure E.59 Comparison of Average Shear Strengths for a 4-in.

Overlay (Smooth-Dry Interface) Under Horizontal
Vibration Mode
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Figure E.60 Comparison of Average Shear Strengths for a 4-in.
Overlay (Smooth-Wet Interface) Under Horizontal
Vibration Mode
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Figure E.61 Comparison of Average Shear Strengths for a 4-in.

Overlay (Rough-Dry Interface) Under Horizontal
Vibration Mode

AVG. SHEAR STRENGTH, PSI

350
300
250
200
150
100
50
0

0 4 12

PER-VIBRATION CURE HOURS

Horizontal Vibration Leyel
X NONE i} Low

Figure E.62 Comparison of Average Shear Strengths for a 4-in.
Overlay (Rough-Wet Interface) Under Horizontal
Vibration Mode
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Figure E.63 Comparison of Average Shear -Strengths After 0 Hrs. of
Pre-Vibration Cure (Smooth-Dry Interface) Under

Horizontal Vibration Mode
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Figure E.64 Comparison of Average Shear Strengths After 0 Hrs. of
Pre-Vibration Cure (Smooth-Wet Interface) Under
Horizontal Vibration Mode
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Figure E.65 Comparison of Average Shear Strengths After 0 Hrs. of
Pre-Vibration Cure (Rough-Dry Interface) Under
Horizontal Vibration Mode
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Figure E.66 Comparison of Average Shear Strengths After O Hrs. of
Pre-Vibration Cure (Rough-Wet Interface) Under
Horizontal Vibration Mode
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Figure E.67 Comparison of Average Shear Strengths Afier 4 Hrs. of
Pre-Vibration Cure (Smooth-Dry Interface) Under
Horizontal Vibration Mode
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Figure E.68 Comparison of Average Shear Strengths After 4 Hrs. of
Pre-Vibration Cure (Smooth-Wet Interface) Under
Horizontal Vibration Mode
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Figure E.69 Comparison of Average Shear Strengths After 4 Hrs. of
Pre-Vibration Cure (Rough-Dry Interface) Under
Horizontal Vibration Mode

Figure E.70 Comparison of Average Shear Strengths After 4 Hrs. of
Pre-Vibration Cure (Rough-Wet Interface) Under
Horizontal Vibration Mode
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Figure E.71 Comparison of Average Shear Strengths After 12 Hrs. of

Pre-Vibration Cure (Smooth-Dry Interface) Under
Horizontal Vibration Mode

AVG. SHEAR STRENGTH, PSI

300
250
200
150
100

50

Figure E.72 Comparison of Average Shear Strengths After 12 Hrs. of

2 4
OVERLAY THICKNESS, IN.
Horizontal Vibration Level

| RN NONE il LOW [XX] HIGH

Pre-Vibration Cure (Smooth-Wet Interface) Under
Horizontal Vibration Mode




T6

AVG. SHEAR STRENGTH, PSI

g

250171

g

150 -

g

w
<

<

2 4
OVERLAY THICKNESS, IN.
Horizontal Vibration Level

NONE ] LOW [XX4 HIGH

Figure E.73 Comparison of Average Shear Strengths After 12 Hrs. of
Pre-Vibration Cure (Rough-Dry Interface) Under
Horizontal Vibration Mode
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Figure E.74 Comparison of Average Shedr Strengths After 12 Hrs. of

Pre-Vibration Cure (Rough-Wet Interface) Under
Horizontal Vibration Mode
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Figure E.75 Comparison of Average Shear_Strengths for a 2-in,
Overlay afier 0 Hrs. of Pre-Vibration Cure (Smooth-Dry
Interface) Under Vertical and Horizontal Vibration Modes
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Figure E.76 Comparison of Average Shear Strengths for a 2-in.
Overlay after 0 Hrs. of Pre-Vibration Cure (Smooth-Wet
Interface) Under Vertical and Horizontal Vibration Modes
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Figure E.77 Comparison of Average Shear Strengths for a 2-in.
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Figure E.78 Comparison of Average Shear Strengths for a 2-in.

Overlay after 0 Hrs. of Pre-Vibration Cure (Rough-Wet
Interface) Under Vertical and Horizontal Vibration Modes
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Figure E.79 Comparison of Average Shear Strengths for a 2-in. Figure E.80 Comparison of Average Shear Strengths for a 2-in.
Overlay after 4 Hrs. of Pre-Vibration Cure (Smooth-Dry Overlay after 4 Hrs. of Pre-Vibration Cure (Smooth-Wet
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E.83 Comparison of Average Shear Strengths for a 2-in.
Overlay after 12 Hrs. of Pre-Vibration Cure (Smooth-Dry
Interface) Under Vertical and Horizontal Vibration Modes
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Figure E.84 Comparison of Average Shear Strengths for a 2-in.
Overlay after 12 Hrs. of Pre-Vibration Cure (Smooth-Wet
Interface) Under Vertical and Horizontal Vibration Modes
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Figure E.85 Comparison of Average Shear Strengths for a 2-in.
Overlay after 12 Hrs. of Pre-Vibration Cure (Rough-Dry
Interface) Under Vertical and Horizontal Vibration Modes
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Figure E.86 Comparison of Average Shear Strengths for a 2-in.
Overlay after 12 Hrs. of Pre-Vibration Cure (Rough-Wet
Interface) Under Vertical and Horizontal Vibration Modes
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Figure E.87 Comparison of Average Shear Strengths for a 4-in.
Overlay after 0 Hrs. of Pre-Vibration Cure (Smooth-Dry
Interface) Under Vertical and Horizontal Vibration Modes
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Figure E.89 Comparison of Average Shear_Strengths for a 4-in.
Overlay after 0 Hrs, of Pre-Vibration Cure (Rough-Dry
Interface) Under Vertical and Horizontal Vibration Modes
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Figure E.30 Comparison of Average Shear Strengths for a 4-in.

Overlay after O Hrs. of Pre-Vibration Cure (Rough-Wet
Interface) Under Vertical and Horizonta! Vibration Modes
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Figure E91 Comparison of Average Shear Strengths for a 4-in.
Overlay after 4 Hrs. of Pre-Vibration Cure (Smooth-Dry
Interface) Under Vertical and Horizontal Vibration Modes

AVG. SHEAR STRENGTH, PSI
o
e

VERTICAL HORIZONTAL
V!BRATION MODE
Vibration Level

‘ Bl LOW [ HIGH

Figure E.92 Comparison of Average Shear Strengths for a 4-in.
Overlay after 4 Hrs. of Pre-Vibration Cure (Smooth-Wet
Interface) Under Vertical and Horizontal Vibration Modes
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Figure E.93 Comparison of Average Shear Strengths for a 4-in.
Overlay after 4 Hrs. of Pre-Vibration Cure (Rough-Dry
Interface) Under Vertical and Horizontal Vibration Modes
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Figure E.95 Comparison of Average Shear Strengths for a 4-in.
Overlay after 12 Hrs. of Pre-Vibration Cure (Smooth-Dry
Interface) Under Vertical and Horizontal Vibration Modes
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Figure E.96 Comparison of Average Sheax."Slmnths for a 4-mn.

Overlay after 12 Hrs. of Pre-Vibration Cure (Smooth-Wet
Interface) Under Vertical and Horizontal Vibration Modes



£0T

AVG. SHEAR STRENGTH, PSI

XX XX T 1 X XX K
VERTICAL HORIZONTAL
VIBRATION MODE

Vibration Level

[- LOW (X HIGH

Figure E.97 Comparison of Average Shear Strengths for a 4-in.
Overlay after 12 Hrs. of Pre-Vibration Cure (Rough-Dry
Interface) Under Vertical and Horizontal Vibration Modes
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Figure E.98 Comparison of Average Shear Strengths for a 4-in.

Overlay after 12 Hrs. of Pre-Vibration Cure (Rough-Wet
Interface) Under Vertical and Horizontal Vibration Modes
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