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IMPLEMENTATION STATEMENT

As the need for more cost-effective pavement designs increases and as the
need to monitor the performance of pavements increases, the degree of accuracy in
estimating and measuring the properties of the pavement materials increases. In-situ
seismic testing has the potential to improve our knowledge of the stiffnesses of the
surface, base and subgrade layers used in designing and monitoring pavement
systems. Spectral-Analysis-of-Surface-Wave (SASW) testing has been shown to be
well suited for the seismic testing of flexible pavements. Piezoelectric sources can be
used to implement this testing technique. A frequency adjustment curve is presented
which can be used to relate SASW- and (Falling Weight Deflectometer) FWD-
determined moduli of asphalt concrete (AC) surface layers. A strain adjustment
factor is also presented which can be used to relate subgrade moduli determined by
SASW and FWD testing of flexible pavements. Finally, simplified procedures for
finding the depth to bedrock and the subgrade moduli from SASW testing of flexible
pavements are proposed for implementation.

Prepared in cooperation with the Texas Department of Transportation and
the U.S. Department of Transportation, Federal Highway Administration

DISCLAIMERS

The contents of this report reflect the views of the authors, who are
responsible for the facts and the accuracy of the data presented herein. The contents
do not necessarily reflect the official views or policies of the Federal Highway
Administration or the Texas Department of Transportation. This report does not
constitute a standard, specification, or regulation.

There was no invention or discovery conceived or first actually reduced to
practice in the course of or under this contract, including any art, method, process,
machine, manufacture, design or composition of matter, or any new useful
improvement thereof, or any variety of plant, which is or may be patentable under the
patent laws of the United States of America or any foreign country.

NOT INTENDED FOR CONSTRUCTION,
BIDDING, OR PERMIT PURPOSES

Kenneth H. Stokoe, IT (Texas No. 49905)
Research Supervisor

il



PREFACE

Project 1175 is a joint project between the Center for Transportation Research
at The University of Texas at Austin and the Texas Transportation Institute of Texas
A&M University. The project is concerned with the investigation of the application
of the Falling Weight Deflectometer (FWD) to various types of roads in order: 1) to
determine the elastic moduli of the pavement, base and subgrade; 2) to determine
optimum ways to use the equipment and interpret the experimental data; and 3) to
explore other techniques which could complement the Falling Weight Deflectometer
and enhance the reliability of the results. This work builds on Project 1123, where the
effect of the finite width of the pavement and the position of the equipment with
respect to the edge was investigated and the results obtained with the Falling Weight
Deflectometer were compared to those which can be obtained using the Spectral-
Analysis-of-Surface-Waves (SASW) method. This report is the fifth of five reports
from the Center for Transportation Research. In this report, an experimental
investigation of parameters affecting SASW testing of asphalt concrete pavements is
presented, along with correlations between SASW and FWD results from 24 flexible
pavement sites around the state of Texas. Mr. Bob Briggs was the supervisor of the
effort at the Texas State Department of Highways and Public Transportation (now the
Texas Department of Transportation).

LIST OF REPORTS

(Note: Report Nos. 1175-1 and 1175-2 have been submitted through the Texas
Transportation Institute of Texas A&M University on their part of the joint Project
1175. The reports listed below are the reports submitted through the Center for
Transportation Research at The University of Texas at Austin.)

Report No. 1175-3, "Nonlinear Effects on Dynamic Response of Pavements Using
Non Destructive Testing Techniques,” by Der-Wen Chang, Jose M. Roesset, and
Kenneth H. Stokoe, II, presents the results of analytical studies to assess the
occurrence and potential importance of nonlinear material behavior in a pavement
system under the impact resulting from application of the Falling Weight
Deflectometer.

Report No. 1175-4, "Analytical Study and Inversion for the Spectral Analysis of
Surface Waves Method," by Rafael Foinquinos Mera, Jose M. Roesset, and Kenneth
H. Stokoe, 11, presents the results of analytical studies comparing two different

v



procedures to determine the dynamic displacements caused by an impact load acting
on the surface of a pavement and proposes a semi-automated inversion procedure to
backfigure the elastic moduli of the pavement, base and subgrade from the dispersion
curves.

Report No. 1175-5, "Effect of Depth to Bedrock on the Accuracy of Backcalculated -
Moduli Obtained with Dynaflect and FWD Tests," by Chia-Ray Seng, Kenneth H.
Stokoe, II, and Jose M. Roesset, presents the results of analytical studies in which the
importance of depth to bedrock on the backcalculated moduli from Dynaflect and
Falling Weight Deflectometer (FWD) tests was evaluated using four typical in-service
Texas highway pavement profiles.

Report No. 1175-6, "Development of An In-Situ Method for Continuous Evaluation
of the Resilient Modulus of Pavement Subgrade,” by Michael P. Rits, Kenneth H.
Stokoe, II, and Jose M. Roesset, presents the results of a field experiment in which
geophones embedded in the subgrade of an in-service pavement are used to evaluate
the resilient modulus of the subgrade at various times during the life of the pavement.

Report No. 1175-7F, "Evaluation of Flexible Pavements and Subgrades Using the
Spectral-Analysis-of-Surface-Wave (SASW) Method," by Marwan Aouad, Kenneth
H. Stokoe, II, and Jose M. Roesset, presents the results of field experiments to
evaluate the applicability of the SASW method to testing flexible pavements and to
compare the method with other in-situ techniques, in particular the FWD method,
where different frequencies are involved in the measurements.



ABSTRACT

An experimental investigation was undertaken to determine the material
properties of asphalt concrete (AC) pavement systems, including the AC surface
layer, base and subgrade. The Spectral-Analysis-of-Surface-Waves (SASW) method
was the primary field method used in testing. This method is a seismic method which
is based on the measurement of surface waves, which can be generated and sensed
with instrumentation placed solely on the pavement surface. The objectives of this
study included the investigation of the following aspects in relation to the SASW
method. First, a variety of surface sources and receivers was studied in the field. The
performance of each component was evaluated under various climatic and pavement
conditions. The importance of the sources and receivers in SASW testing is that they
should be carefully selected according to their frequency range to adequately
characterize the material properties of the system.

Second, an experimental program at the test facility of the Texas
Transportation Institute (TTI) in Bryan, Texas, was employed to study the effect of
some parameters on SASW measurements. Parameters such as the temperature and
thickness of the surface layer and the frequency content of the surface wave were
studied. At high temperatures (temperatures above 140° F), results showed that
energy could not be generated at high frequencies (frequencies above 15 kHz) due to
the viscous nature of the AC surface layer. As a result, only thick surface layers
(thickness, H = 5 in. (12.7 cm)) can be measured directly with the SASW method at
temperatures as high as 140° F. However, at temperatures lower than about 100° F,
AC pavement layers with thicknesses greater than 3 in. (7.6 cm) can easily be
evaluated with the SASW method.

Finally, a series of tests was conducted at a newly constructed site in Austin,
Texas, and at 24 pavement sites around the state of Texas to understand the effect of
the above parameters on the SASW measurements and to correlate moduli determined
by the SASW tests with moduli determined with Falling Weight Deflectometer

(FWD) tests.

Key words: field testing, seismic measurements, asphalt concrete pavements, SASW
testing, FWD testing, subgrades, backcalculated moduli
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METRIC (SI*) CONVERSION FACTORS

APPROXIMATE CONVERSIONS TO SI UNITS

Symbol

in

yd
mi

oz
Ib

floz
gal
ft3
yd®

When You Know Multiply by To Find
LENGTH

inches 2.54 centimeters
feet 0.3048 meters

yards 0.914 meters

miles 1.61 kilometers

AREA
square inches 645.2 millimeters squared
square feet 0.0929 meters squared
square yards 0.836 meters squared
square miles 2.59 kilometers squared
acres 0.395 hectares
MASS (weight)
ounces 28.35 grams
pounds 0.454 kilograms
short tons (2,000 ib) 0.907 megagrams
VOLUME

fluid ounces 2957 milliliters
gafions 3.785 liters
cubic feet 0.0328 meters cubed
cubic yards 0.0765 meters cubed

NOTE: Volumes greater than 1,000 L shall be shown in m3,

oF

TEMPERATURE (exact)
Fahrenheit 5/9 (after Celsius
temperature subtracting 32) temperature

Symbol

333§

mm 2
m2

km?
ha

Mg

mL

m?

°c

]

[Lt./.l.lﬂ

seyom

Shb bbb bbb bbb bbbl

L

APPROXIMATE CONVERSIONS FROM SI UNITS

Symbol  When You Know Multiply by To Find Symboi
LENGTH
mm millimeters 0.039 inches in
m meters 3.28 feet ft
m meters 1.09 yards yd
km kilometers 0.621 miles mi
AREA
mm2 millimeters squared 0.0016 square inches in?
m2 meters squared 10.764 square feet ft2
m2 meters squared 1.20 square yards yd?
km? kilometers squared 0.39 square miles mi2
ha hectares (10,000 m?2) 253 acres ac
MASS (weight)
g grams 0.0353 ounces oz
kg kilograms 2.205 pounds Ib
Mg megagrams (1,000 kg)  1.103 short tons T
VOLUME
mL milliliters 0.034 fluid ounces floz
L liters 0.264 gallons gal
m3 meters cubed 35.315 cubic feet "33
m3 meters cubed 1.308 cubic yards yd
TEMPERATURE (exact)
°C Colslus 9/5 (then Fahrenheit oF
temperature add 32) temperature
oF o
32 98.6 212

-40 0 |40 80 l 120 160 200|

.40 -20 0 20 370 60 80 100

°C °Cc

These factors conform to the requirement of FHWA Order 5190.1A.

* Slis the symbol for the International System of Measurements
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SUMMARY

An experimental study dealing with nondestructive testing of flexible
pavements was conducted. The test methods of concern were the Spectral-Analysis-
of-Surface-Waves (SASW) method, a seismic wave propagation method, and the
Falling Weight Deflectometer (FWD) method, a deflection basin method. The thrust
of this work revolved around use of these methods as reliable tools to evaluate the
stiffnesses of the surface, base, and subgrade layers.

SASW, FWD and compression wave (P-wave) tests were employed at the
following flexible pavement sites: 1) the Texas Transportation Institute test facility in
Bryan, Texas, 2) a newly constructed site on Loop 1 in Austin, Texas, and 3) 24
pavement sites in Districts 1, 8§, 11 and 21 in Texas. The elements which were
primarily investigated were: 1) the selection and performance of high-frequency
sources and receivers for SASW testing of asphalt concrete (AC) pavements, 2) the
effect of temperature and frequency on the SASW and FWD measurements of AC
pavements, and 3) the effect of shallow depth to bedrock on the backcalculated
moduli of the subgrade layer from each type of test method.

The SASW was found to be sensitive to the variation in stiffness of the AC
surface layer. The method can be applied to evaluate the in-place stiffness of the AC
layer at selected times during differing climatic conditions. High-frequency sources
are required to perform measurements, and piezoelectric sources (V-meter and WR
Model F-7 shaker) were found to perform well, especially at elevated pavement
temperatures (T > 80° F). The one limitation is that the SASW method can not be
used to evaluate the stiffness of thin (thickness < 2 in. (5.1 cm)) AC surface layers. In
those cases, it is recommended that compression wave tests be performed to evaluate
the stiffnesses of the AC surface layer.

Comparison of Young's moduli (E) of the AC material from SASW and FWD
tests in the field and from resonance tests on cylindrical specimens in the laboratory
showed that the stiffness of the AC material is frequency (f) dependent. A log(E)-
log(f) plot showed a nearly linear relationship between the stiffness of the AC
material and the measurement frequency, with the stiffness becoming more frequency
dependent at higher temperatures. A potential frequency adjustment curve is
proposed. Corrected values of moduli from the SASW tests compare closely to
normalized moduli suggested by the AASHTO guide (1986) at temperatures less than
100° F. However, at temperatures above 100° F, the AASHTO guide underestimates
the in-place moduli evaluated by the SASW test (correction for frequency). The
difference is thought to result from a strain effect which is inherent in the tests used to
develop the AASHTO guide.
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The subgrade moduli determined from SASW tests are usually higher than
those which have been determined from FWD tests. The subgrade moduli from the
two techniques compare reasonably well if the moduli are adjusted for the effect of
strain (nonlinear effect). The suggested adjustment factor for SASW moduli is equal
to 0.75, to represent moduli at a strain of about 0.007% associated with FWD tests, as
proposed by Miner (1991).

The depth to bedrock can be predicted from SASW measurements as was the
case for measurements on Loop 1 in Austin. The depths to bedrock determined from
SASW tests compare reasonably well with the depths determined from the FWD tests
using the procedure suggested by Chang (1992) and Seng (1992). However, the
depth to bedrock can be determined from the FWD time histories provided the shear
wave velocity of the subgrade is known and the FWD time history is recorded for
about 200 ms; both of these are not usually the case. As a result, SASW tests can be
employed as an independent measurement for predicting the depth to bedrock which
is sometimes required in the analysis of FWD data.

Experience gained with SASW testing in this study show that the fundamental
mode of vibration is often not the one measured in testing pavements. As a result, it
is recommended that a three-dimensional (3-D) model developed by Chang, 1991,
and Foinquinos, 1991, be used in the forward modeling of the field measurements to
obtain the stiffness profile. The 3-D model takes into account all waves generated
during SASW testing, and more realistically models the field setup.

Finally, based on the authors' experience in SASW testing of flexible
pavements, a simplified procedure is suggested to obtain the average subgrade
stiffness without performing the forward modeling process. In the simplified
procedure, the measured wave velocities of the subgrade from receiver spacings of
10, 20 and 30 ft (3, 6.1 and 9.1 m) are averaged and reasonably represent the shear
wave velocity of the subgrade layer.
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CHAPTER ONE
INTRODUCTION

1.1 General Background

Various types of in-situ tests are used in engineering practice to determine
shear modulus profiles of soil sites and Young's modulus profiles of pavement
systems. The shear modulus is an important parameter in evaluating the response
of foundations under dynamic loadings, in predicting the response of sites under
earthquake loadings and in predicting the deformations of many soil and soil-
structure systems under working static and cyclic loads. On the other hand,
Young's modulus plays an important role in predicting and evaluating the
performance of pavement systems under static and repetitive traffic loads.

In-situ methods used to evaluate the shear moduli of geotechnical material
are typically based on wave propagation theory. These me<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>