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16. Abstract

One of the measures being tried in Texas to stabilize the development of rough-
ness of pavements on expansive soils is the installation of vertical moisture
| barriers. The purpose of the barrier is to prevent subsurface water from accessing
into the crack fabric within the subgrade soils. Several sites throughout Texas have
' been already monitored and some conflicting results have been observed. 1In some
i cases, the moisture barrier seems to reduce considerably the rate at which roughness
| develops but, in other cases, the barrier has somewhat increased the rate of rough-

iness development.
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The moisture barrier can prevent the horizontal flow of rain water from the side |

j

. to the soils underneath the pavement. The pavement surface is normally considered an .
iimpermeable surface; however, there is evidence that cracks in the pavement result
in large flows of the rain water through the pavement surface especially during low-
jlntensity long duration rainfall events. This vertical flow of rain water can ex-
plain some of the conflicting field behaviors observed.

The main purpose of this study was to assemble a computer program that would pre-
dict the behavior of different barrier alternatives. These predictions could then !
allow a reduction in the number of trial sections to be monitored. Furthermore, it ﬁ
would help explain observed field behavior and to identify controlling parameters,
Expansive soils have extremely low pemeabilities, and thus the absorption of water :
! by soil clods is a very slow process. By way of contrast, water flow within the crack
| fabric is a much faster process, by several order of magnitude. The main feature of
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this program is to consider the subsurface soil divided into parallelepipeds of dif-
ferent sizes. The water is considered to move through the cracks under positive
pressures and from there is absorbed by the soil blocks. A master curve is developed
for each block size to estimate the volume of water absorbed by the block for every
day that the block is submerged under water.

The program performs a water balance for the unpaved soils on the side of the
pavement and a second water balance for the soils underneath the pavement. The
transfer of moisture between the two soil regions is through the cracks underneath
the barrier. The period of each water balance ranges from a maximum of one day to
a minimum of one minute. The length of the period is selected based on the head
difference between the water in the crack fabric of the subbase soils.

At every time step, the volume of water absorbed by the blocks is used to recon-
sider the block and crack fabric geometry. From this point of view, three different
regions are included. The first region corresponds to the soil on the side of the
pavement, the second region includes the soil underneath the barrier and the edge of
the pavement, and the third region are the subbase soils beyond the edge of the pave-
ment. '

The evapotranspiration removes soil water from the cracks within the soil on the
side of the pavement. The actual evapotranspiration is estimated with a published
simplified method developed for the climatic conditions of Texas.

The computer model predicts a steady closing of the crack fabric under the pave-
ment structure. The rate of this phenomena is dependent of the water availability.
The cracks under the edge of the pavement or those within the soil on the side of the
pavement, close during wet periods and reopen under persistent dry conditions.
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ABSTRACT

One of the measures being tried in Texas to étabilize the
development of roughness of pavements on expansive soils 1is the
installation of vertical moisture barriers. The purpose of the barrier
is to prevent rain water from accessing into the crack fabric within
the subgrade soils. Several sites throughout Texas have already been
monitored and some conflicting results have been observed. 1In some
cases, the moisture barrier seems to reduce considerably the rate at
which roughness develops but, in other cases, the barrier has somewhat
increased the rate of roughness development.

The moisture barrier can prevent the horizontal flow of rain water
from the side to the soils underneath the pavement. The pavement
surface is normally considered an impermeable surface; however, there
is evidence that cracks in the pavement result in large flows of rain
water through the pavement surface especially during low-intensity,
long-duration rainfall events. This vertical flow of rain water can
explain some of the conflicting field behavior observed.

The main purpose of this study was to assemble a computer program
that would predict the behavior of different barrier alternatives.
These predictions could then allow a reduction in the number of trial
sections to be monitored. Furthermore, it would help explain observed

field behavior and in identifying controlling parameters.
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Expansive soils have extremely low permeabilitieé, and thus the
absorption of water by soil clods is a very slow process. By way of
contrast, water flow within the crack fabric is a ﬁuch faster process,
by several orders of magnitude. The main feature of this program is to
consider the subsurface soil divided into parallelepipeds of different
sizes. The water 1is considered to move through the cracks under
positive pressures and from there is absorbed . by the soil blocks. A -
master curve is developed for each block size to estimate the volume of
water absorbed by the block for every day that the block is submerged
under water.

The program performs a water balance for the unpaved soils on the
side of the pavement and a second water balance for the soils
underneath the pavement. The transfer of moisture between the two soil
regions is through the cracks underneath the barrier. The period of
each water balance ranges from a maximum of one day to a minimum of one
minute. The length of the period is selected based on the head
difference between the water in the crack fabric within the soils on
the side of the pavement and the water in the crack fabric of the
subbase soils.

At every time step, the volume of water absorbed by the blocks is
used to reconsider the block and crack fabric geometry. From this
point of view, three different regions are included. The first region
corresponds to the soil on the side of the pavement, the second region
includes the soil underneath the barrier and the edge of the pavement,
and the third region are the subbase soils beyond the edge of the

pavement.
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The evapotranspiration removes soil water from the cracks within
the soil on the side of the pavement and £from the soil blocks in
thisregion and those under the edge of the pavement. The actual
evapotranspiration is estimated with a published simplified method
developed for the climatic conditions of Texas.

The computer model predicts a steady closing of the crack fabric
under the pavement structure. The rate of this phenomena is dependeﬁt
on the water availability. The cracks under the edge of the pavement,
or those within the soil on the side of the pavement, close during wet

periods and reopen under persistent dry conditions.



IMPLEMENTATION STATEMENT

This computer program can be used to predict the rate of moisture
uptake by an expansive soil subbase based on the climatic conditions of
the regional area and some characteristics and properties of the soil
deposit. Nevertheless, some of the information required is not common
knowledge for the expansive soils of Texas. Most specifically this
includes the geometric definition of crack fabric in the expansive soil
deposits of Texas. Specific information reqarding this aspect for the
Texas conditions would greatly enhance the usefulness of this computer
program. The State Department of Highways and Public Transportation
should consider acquiring this type of information for each climatic

region and major expansive soil deposit.

DISCLAIMER

The contents of this report reflect only the views of the authors
who are responsible for the facts and the accuracy of the material
presented in this report. The contents do no necessarily reflect the
official views or policies of the Federal Highway Administration. This

report does not constitute a standard, a specification, or regulation.
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INTRODUCTION

Pavements built on expansive soils are known to deveiop roughness
not associated with traffic. This type of pavement roughness has been
attributed [1] to the presence of shrinkage cracks in the subbase
soils. Rainfall can penetrate very fast through the crack fabric. The
water moves impelled by gravity and under positive pressures and goes
where the crack directs it. The water in the cracks has very little
exposure to the atmosphere and, thus, ponds in the cracks allowing time
for the water to be absorbed into the crack walls. This absorption
causes surface heaving along the trace of the crack that is responsible
for the development of roughness.

The pavement roughness reduces significantly the serviceability
index and thus, requires periodic maintenance, such as releveling and
overlays, to restore the riding quality. The Texas State Department of
Highways and Public Transportation has been trying for some time to
reduce the expenses associated with this periodic maintenance by the
installation of vertical moisture barriers. Field test sections have,
been implemented in San Antonio, Texas, on IH-37 [2], and along IH-30
in Greenville, Texas [3].

The purpose of the moisture barrier is to isolate the subbase soil
from seasonal climatic changes. In the first trials [2], the moisture
barrier was placed to a depth of 8 ft, because field monitoring data of
soil moisture variations in the area indicated that the shallower 8 ft
of soil had experienced some moisture changes. Later on, it was
recognized [4] that one of the main functions to be performed by o
vertical moisture barrier was to prevent rainwater from accessing the
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crack fabric within the subbase soils. This consideration suggested
that the depth of a moisture barrier should be chosen based on the
expected maximum depth of shrinkage cracks possible'at the site.

The results of field monitoring several test sections appear to
indicate that the role of the vertical moisture barrier is quite
different at different sites. In the test sections of IH-37 in San
Antonio, Texas, suction measurements on both sides of the barrier
indicated [5] that the soils enclosed by the barrier remained at a
nearly constant suction during more than two years. Meanwhile, the
soils on the side of the pavement were experiencing significant suction
changes. In this case, the moisture barrier had protected the soils
under the pavement of the moisture changes observed in the soils on the
side of the pavement.

By way of contrast, the results of monitoring the performance of
several trial barriers on IH-30 has shown [3] that the sections with
the barrier experienced a higher rate of roughness development than
adjacent control sections. At this site, it looked like that barrier
would actually retain moisture inside rather than keep it outside. The
performance of a moisture barrier is influenced by a number of
parameters. In the most influential category are the climatic
conditions of the site and perhaps the initial state of the subbase
soils, and the depth and characteristics of the moisture barrier. The
location of the site such as on a hill, on a slope, in a low area, or
in a cut will also affect the performance of a barrier.

This incomplete list of parameters illustrates the large matrix of
field trial tests that would be needed to observe all possible cases of
moisture barrier performance. This monitoring program would imply

large installation and monitoring costs. Additionally, these results

2



would only be known after a number of year have elapsed.

Considerable savings in funding and time could be realized if a
computer model could appropriately simu1a£e the moisture transfer
through the pavement surface and around an impermeable moisture
barrier. This computer program would allow a reduction in the number
of field trials necessary to verify the simulation capabilities of the
computer program. Then the computer program would be used to simulate
the barrier performance for the array of most influential parameters.
These considerations lead to project 1165. This report is concerned
with the basis on which the computer program simulates the moisture
movement under the pavement. It also includes a description of the
capabilities of the program, a user’s guide, and preliminary results of
the simulations performed for several regional climatic conditions

within the state of Texas.
REVIEW OF EXISTING LITERATURE

The flow of water into expansive soils has long been considered to
be a non-Darcy flow. There is ample evidence [6, & 7] in the
literature that rainfall percolates through cracks into the soil and
then is slowly absorbed by the soil peds. As the soil absorbs water,
it swells and progressively closes cracks.

The presence of shrinkage cracks 1in expansive soil deposits is
very apparent. In very dry soils, profuse surface cracks form on the
ground surface. Cracks with openings on the ground surface up to about
one inch and several feet deep [8] have been reported. Furthermore,
the crack patterns and frequency were observed [8] to depend on the
vegetative cover. The crack opening progressively decreases from a
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maximum on the soil surface to zero at the crack tip. The variation of
the crack opening with depth has been described with linear shrinkage
curves with depth [9]. Morphological studies ha&e revealed [10] the
presence of approximately squared blocks of soil formed by aggregation
of soil peds.

The infiltration of rain water into the crack fabric has been
observed to be determined by the soil surface micro-relief [10]. Water
is directed towards the cracks through surface depressions. Then the
water runs down the crack faces, wetting only a small fraction of the
exposed crack surface. This effect causes [10] the bulk of rain water
penetration into cracks to move directly to the tip of cracks rather
than being absorbed on the crack walls.

The presence of cracks in aquifer bearing formations results in
two distinctive flows taking place one through the cracks and the other
through the porous medium between cracks. The water within the cracks
is mobile and the water within the porous medium is stagnant.
Traditionally, the modelling of this flow has been approached with
Barenblatt’s [11] double porosity concept. However, the usefulness of
this concept is quite limited in the present application wunder
unsaturated conditions. An additional complication is the fact that
the cracks in the expansive soil deposit close as the water is absorbed
into the crack walls; thus, the porosities do not remain constant
through the process.

The first attempt, known to the authors, to include the effect of
shrinkage cracks on the infiltration is due to Richards [12]. 1In this
attempt the subsoil was considered divided into blocks and two
different permeability coefficients were considered along the cracks
and through the blocks. This model did not account for changes caused
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by the swelling/shrinking of the soil. In actuality, when the soil
blocks absorb water the mobile water mass is reduced by the same amount
that the stagnant water is increased. |

The water accumulated inside the crack fabric and the water
trapped inside the soil blocks can be depleted as a result of
evaporation at the soil surface and plant transpiration. Soil
evaporation has been proved to be a very ineffective mechanism of
moisture removal from the soil by a number of investigators
[13,14,&15]. The consensus is that even small amounts of soil
evaporation forms a dry soil crust at the soil surface that prevents
any further evaporation from taking place. Existing field monitoring
data [15) suggest that soil evaporation might affect only the soil
within the upper foot of the soil deposit.

Plant transpiration, by way of contrast, is a much more effective
mechanism. The native vegetation, such as roadside grasses, removes
water from the soil through the root system. Nevertheless, when the
soil suction reaches the wilting point of the vegetation all
transpiration ceases. Due to the extremely small permeabilities of
expansive soils, the removal of water by the root systems is confined
to the rooting depth of the vegetation [16]. A consequence of this
fact is that by preventing the root system of the vegetation from
reaching the soils under the pavement, any possibility of moisture
losses from these soils is eliminated. Thus a possible role for a
moisture barrier would be to act as a root barrier.

The climatic conditions at a site determine the Potential
Evapotranspiration. This parameter has been traditionally estimated
based on average monthly temperatures according to Thornthwaite [17].

However, this approach neglects the influence of the relative humidity



in the environment. This parameter is known to affect, noticeably, the
potential evapotranspiration and more recent approaches have been
proposed to [18] to include its effect. Due to the'large variations of
the climate in the state of Texas, the second approach can yield more
reliable estimates.

The actual evapotranspiration is only a fraction of the potential.
The size of the fraction depends on water availability. The actual
evapotranspiration ranges from a maximum equal to the potential under
very wet conditions to nearly zero at the wilting point of the
vegetation. The estimation of actual evapotranspiration for the
typical Central Texas conditions can be accomplished with well
established procedures tested for this area [19].

These considerations suggest that a model that could approximate

the field behavior would have to consider the following:

1) The infiltration of rainfall into an expansive soil
deposit takes place primarily through the crack fabric

2} The shrinkage cracks have divided the soil mass in
approximately squared blocks

3) The transfer of water from the cracks to the soil
blocks takes place by absorption

4) The absorption of water causes swelling of the soil
blocks and thus modifies the crack fabric

5) The remcval of water from the soil mass is primarily
determined by the transpiration of the native
vegetative cover. Thus soil water is only removed from
the soil mass inside the rooting depth of the

vegetation.



PURPOSE AND SCOPE OF THE STUDY

The overall goal of this study was to assemble a computer program
to simulate the infiltration of rainfall, the 1losses due to
evapotranspiration and the movement of moisture under a pavement
resting on an expansive soil subbase. Specifically, it was desired
that the program could account for the water flowing under the pavement
from the sides and the percolation through cracks and fissures on the
pavement surface.

One advantage desired to be gained with this program is the
possibility of simulating the behavior through a large number of years.
This need imposed the necessity of having to simulate stochastically
the regional climatic conditions for the site in question.

Thus the computer program would have to handle the stochastic
simulation of the climatic conditions in one part and in the second
part would proceed to the simulation of moisture movement. The first
part of the program would offer the possibility to start from raw
meteorological data and form the distributions of rainfall depth and of
potential evapotranspiration. These frequency distributions would be
selected to simulate the variation of the relevant parameters with
seasonal changes.

The second part of the program would handle the actual moisture
movement under the pavement for any desired number of years. This
required that the program keeps track of the following parameters:

1) Vvolume of water stored in the crack fabric underneath the

pavement and outside the pavement,

2) Size and moisture conditions of the soil blocks, and



3) Size and shape of shrinkage crack fabric
The remaining sections of this report describe the basis on which
the program has been assembled, and the results of several simulations

implemented for regional areas of Texas.
REGIONAL CLIMATIC CONDITIONS

General

The climatic conditions are reduced to two daily parameters:
rainfall depth and Potential Evapotranspiration. On rainy days, a
third parameter is needed: the rainfall duration. The computer
program accepts raw meteorological data and reduces it to rainfall
depth and potential evapotranspiration for every day of the historical
record., At the same time that the program reduces the data, it forms a
histogram of the relative frequency for different magnitudes of events
for each of the two daily variables.

After the program has scanned through the record of historical
data, a theoretical distribution is fitted to each histogram. These
theoretical distributions are then used in the stochastic simulation of
the climatic conditions for the site. The remaining sections of this

chapter discuss these steps in more detail.

Daily Rainfall

When the program scans through the historical data, it divides the
days into dry days (without rainfall) and wet days (with rainfall).
The program keeps track of the total number of days recorded and the
total number of dry days preceded by a wet day and the total number of

dry days preceded by a dry day. At the end, the program calculates the



transition probabilities.

The program divides the wet days into two groups: days with trace
of rainfall (rainfall depth smaller than 0.005 in) and days with more
than trace of rainfall. At the end of scanning through the historical
data, the program calculates the probability of having traces of
rainfall in wet days.

The rainfall depths registered during wet days with more than
trace of rainfall are used to form a histogram with the relative
frequence of occurrence. A gamma distribution with an exponent smaller
than one (a distribution asymptotic to both axes in the first quadrant)
is fitted to the formed histogram. The parameters of the distribution
are calculated from the mean and standard deviation of the histogram

using the maximum likelihood estimators of Greenwood et al. [20].

Rainfall Intensity/Duration

The rainfall depth versus duration for rainstorms is known to
depend on the return period and geographical location. The rainfall

intensity is commonly approximated by the following relationships:

a
i= —— for t < 120 minutes
t+b
Where: t is the rainstorm duration,

i is the rainfall intensity, and

a & b are constants that depend on the return period and

geographical location.

Values for the parameters a & b have been published [21] for some

regions of the United States. To extend the values of the parameters a



& b to the State of Texas, published maps [gg] of rainfall intensities
have been used; specifically the one hour and two hours rainfall depths
for each return period were used to solve for a and b. The resulting
contour maps of these parameters throughout the State of Texas are
shown in Figures 1 through 10. These figures include contour lines
through the State of Texas for return periods of 1,2,5,10 and 25 years.

The rainfall intensity for rainstorms longer than 120 minutes has

been represented [21] by the following relationship:

KT
i= for t > 120 minutes
n
t
Where: t is the rainstorm duration,

i is the rainfall intensity,
T is the return period, and

K, x & n are constants depending of geographical location

Values of the parameters K, x, and n have been published [21] for the
Eastern half, of the State of Texas. The extension of these contour
lines to the western half of the State of Texas has been accomplished
based on published maps [22] of rainfall frequency and following a
procedure that could reproduce the published contours in reference
[21].

The complete set of all contour lines for the State of Texas is
presented in Figure 11 for parameter K, in Figqure 12 for parameter n,
and in Fiqure 13 for parameter x. The published contour lines are
shown as dotted lines and the extension to the western half of the

State of Texas developed in this study are shown as solid lines.
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FIGURE 2
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PARAMETER "b" IN THE INTENSITY - DEPTH - DURATION
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The computer program selects the retufn period by choosing a
random number. For the short duration rainstorms (t<120 min), this
random number is between 0.0 and 0.04. For the 1long durations
rainstorm the random number is between 0 and 1. From the depth of
rainfall and the return period selected, the program determines whether
a short duration rainfall is possible; if not, the intensity is
selected with the relationship for durations longer than 120 minutes.

After the duration of the storm has been found, the program
selects the time of the day when the storm starts. This is selected
based on another random number with the constraint that the rainstorm

has to occur within the 24 hours of the day in question.

Potential Evapotranspiration

The program offers the user the possibility of estimating the
Potential Evapotranspiration from two sets of data:

1) From Pan Evaporation Measurements. The wuser can specify a
constant factor to transform the Pan evaporation data to
potential evapotranspiration or can use a default factor
(0.8) included in the program.

2) From Raw Meteorological Data. The meteorological data needed
includes the following mean daily parameters: wind velocity,

relative humidity, air temperature and net radiant energy.

The first step is to calculate the potential evapotranspiration
"PET". Then the program forms two histograms with the relative
frequency of occurrence; one histogram with the "PET" on dry days and

the second histogram with the "PET" on for wet days.
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As for the rainfall depth, the program fits a theoretical
distribution to each histogram. Since the potential evapotranspiration
is limited by the amount of enerqgy available at the surface, and this
energy is limited by the net incoming radiation, the theoretical
distribution has to have a finite range of possible values. This
consideration lead to choose a beta distribution. This distribution
was fitted to the histogram using the mean, standard deviation, and the
upper bound of potential evapotranspiration. The upper bound was
obtained by trial and error as the value that minimized the test

statistic that was assumed to follow a chi-square distribution.

Seasonal Variability

To account for the effect of the seasons on the rainfall depth and
potential evapotranspiration, the program forms independent histograms
for each month of the vyear. Thus the program forms thirty six
histograms: twelve of rainfall depth on wet days with more than trace
of rain, twelve of potential evapotranspiration on dry days, and twelve
of potential evapotranspiration on wet days.

The histograms obtained with the program and the fitted
distributions for rainfall depth and PET for a record of fourteen years
of El Paso weather are presented in Appendix I. A summary of the
theoretical distributions of PET for dry days are presented in Figures
14 and 15, and for PET on wet days in Figures 16 and 17. These
distributions show the large effect that the month of the year has on

PET and thus highlights the need to consider monthly distributions.
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Stochastic Simulation

The stochastic simulation consists of a first order Markov chain
to simulate the occurrence of rainfall following the recommendations of
Larsen et al [23]. The first step consists of determining the state of
the day:wet or dry. The program achieves this goal by selecting a
random number between 0 and 1 and then comparing this number with the
corresponding transition probability for the month in question. If the
random number exceeds the transition probability the state of the
following day changes relative to the preceding day.

If the following day is a dry day, the program selects another
random number between 0 and 1 that is considered to be the probability
of occurrence of an event smaller or equal to the selected event. This
probability is used in conjunction with the distribution of PET on dry
days to select the PET for the following day.

When the following day is a wet day, the program first determines
whether will be trace or more than trace of rainfall. For this
purpose, the program selects another random number that is compared
with the probability of trace of rain on wet days for the month in
question. If the day is to have more than trace of rain another random
number is selected to choose the rainfall depth from the corresponding
monthly distribution of rainfall depth. To select the rainstorm
duration, another random number is chosen to be uéed as the probability
of occurrence together with the frequency/intensity relations described
earlier.

The PET on wet days (whether trace or more than trace rainfall) is
selected based on another random number and the corresponding monthly

distributions of PET on wet days.
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The stochastic simulation part of the program was tried by
generating a 100-year sequence of daily events. This sequence was then
used as input to the program. The program reformed 36 histograms and
new distributions were fitted to the new histograms. A sample of the
comparison of these results and the original distributions are
presented in Figures 18 through 23. These results illustrate that with
the stochastic simulation over a period of many years it is possible to
recover the original distributions. Fiqures 18,20 and 22 are examples
of the best agreement observed between the original and simulated
distributions for rainfall depth, and PET on dry and wet days. Figures
19, 21, and 23 are examples of the largest difference observed between

the original and the simulated distributions.

SITE CONDITIONS

General

The computer program allows the user to choose the length of the
section of highway, measured along the longitudinal axis, that is
considered in the simulation. The crack fabric characteristics such as
crack volume available for storage are those corresponding to the
selected length of the highway section. Similarly, all the water
balances formed also correspond to this same length of highway section.

Some of the soil mass characteristics required by the computer
program, such as the crack fabric or linear shrinkage profile, are not
readily available. The computer program allows the user to select
several default characteristics described in the technical literature.
These alternatives should only be used if evidence exists that would

indicate that they are reasonable assumptions. Furthermore, some of
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these characteristics are interrelated and their selection should be

based on a consistent soil model.

Cross Section Definition

The first part of the simulation consists of developing a model
for the cross section of the highway. This includes the
characteristics of the pavement itself, of the moisture barrier, and
the crack fabric within the subbase soils. The cross section model
only contemplates one half of the pavement surface split alongside the
centerline of the highway. A typical cross section is shown in Figure
24.

The surface of the subbase 1is considered to be horizontal. The
program starts by fitting the series of soil blocks specified by the
user from the subgrade surface down to the depth of the cracks in the
soil region underneath the pavement. This is the region labelled
"pPavement" and "Edge" in Figqure 24. 1In ghe region labelled "Uncovered"
in Figure 24, the program places the blocks starting at the same
elevation. 1In this soil region and above the subgrade elevation, the
program considers the soil divided in equal blocks identical in size
and properties to those of the first block below the surface of the

subgrade.

The program allows the user to define the width of the pavement
surface, the distance from the edge of the pavement to the drainage
ditch, and the distance from the ditch to the boundary of the region
considered by the analysis. The user can also specify: the slope of the
pavement surface and the three slopes indicated in Figure 24 on the

"Uncovered" ground surface adjacent to the pavement.
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The user can specify the thickness of the base and the depth and
width of the vertical moisture barrier. The user can also specify the
rooting depth of the roadside vegetation. Thi; depth will be in
general equal or larger than the initial depth of the shrinkage cracks.
Based on the relative depth of the barrier and the roadside vegetation,
the program divides the cross section into three zones; "Pavement",
"Edge", and "Uncovered" soil as indicated in Figure 24. The width of
the "Edge" zone is selected to be equal to the distance from the tip of
the barrier to the bottom of the root zone of the roadside vegetation.
The program considers that the roadside vegetation can develop roots
within this zone and thus evapotranspiration can remove soil water from

the cracks and the soil blocks within this region.

Shrinkage Crack Fabric

The program defines the crack fabric at the beginning of the
simulation based on a list of block sizes input by the user.
Morphological observations [10] in dry clayey soils indicates that the
soil mass is divided into parallelepipeds of increasing sizes with
depth. Fiqure 25 shows some of the block sizes identified for several
soil conditions. To the authors knowledge, this type of information is
not available for typical Texas soils. Hence this four block size sets
have been included in the program as default values.

From the block size list, the program starts to fit blocks in the
subgrade soils, under the barrier, if .applicable, and within the soil
mass in the reqgion "Uncovered". The next step is to shrink the soil
blocks according to the initial conditions (i.e. initial suction). An
example of a cross section fitted with a sequence of blocks is

presented in Figure 26. The computer program, during the simulation
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keeps track of the position of the center of each block, and the sizes
of the block. Based on the relative positions of all blocks and their
sizes the program calculates the volume of cracks available for storage

of rainfall.

Initial Subsurface Conditions

The program allows the user to define the soil properties making
up each block. Thus, it is possible to define as many soil layers as
block sizes are included in the set of soil blocks. Then, several
alternatives are available to input the required soil properties. The
program does not check for consistency of the input properties;
therefore, the user needs to make sure that all soil properties are
consistent.

In outline, it is necessary to describe the initial state of the
subsurface soils and the flow properties of each soil bleck. The
initial state of the subgrade can be described by a shrinkage profile
with depth. Typical shrinkage profiles in swelling soils of the Sudan
[9] have been included as default values in the computer program.
Another alternative offered to the wuser is to calculate the linear
shrinkage profile from the initial suction profile. 1In this last case,
it is necessary to provide the swelling (Yh) and compressibility (Yc)
coefficients of the soil for each block. Then the linear shrinkage for
each block is taken to be one third of the volumetric strain calculated

from the following relationship [27]:

av

s logyo (he/hy) = v+ logyq (og/0)

43



where: hf is the initial soil suction, |

h_ is the wettest field condition possible normally taken to
be 1000 cm of water, |

N is the swelling coefficient,

y_is the compressibility coefficient,

os is the applied octahedral normal stress, and

o, is a threshold octahedral normal stress below which the

stress does not restrict volume changes.

The two coefficients Yh and Yy have to be selected in agreement with
the specific moisture capacity discussed later.

This is necessary because two alternative methods of calculating
volume changes are used. It has been shown [25] that clayey soils
remained essentially saturated to very high suctions, such as 100 bar.
In this study, the range of suctions of interest expands from field
capacity to the wilting point of the vegetation around 15 bar. Thus,
it is reasonable to assume that the volume changes that would take
place in the soil are identical to the volume of water gained/lost from
the soil. This volume of water is controlled by the specific moisture
capacity; that is, the slope of the moisture characteristic curve of
the soil.

The flow properties of the soil are specified independently for
each block. Again two alternatives are offered to the user. The first
one is to specify in table form the moisture capacity and permeability
for a range of suctions from =zero to above 15 bars. The second
alternative is to use proposed analytical relationships [26] between

the two properties and the soil suctions, such as:
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K = + C and
14B-h

dh

——=D+E-h

de

where: K is the permeability coefficient,
h is the suction (in cm of water),
0 is the volumetric moisture content, and
A,B,C,D & E are constants characteristic of the soil.
Other properties required for each block are the unit weight and

the initial suction at the beginning of the simulation.

Pavement Surface Conditions

The program estimates the fraction of rainfall depth infiltrating
through the pavement with the same procedure outlined in reference
[27]. This procedure allows two alternative ways to estimate the
infiltration rate through the pavement surface depending on the
information available. When there is no information about the type of
pavement or the length of cracks and jpints on the pavement surface,
the infiltration is estimated based on the worst possible case of
several published cases [28]. If the pavement surface conditions are
known, then the infiltration through the pavement surface is determined
based on the pavement type and the 1length of cracks and joints as

proposed in reference [29].

Roadside Vegetation

The native vegetation growing along the roadside provides the most

effective mechanism to remove soil-water from the soil mass within the
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rooting depth of the vegetation. The amount of water removed by the
plants is determined by the stress imposed on the plénts by the
environmental conditions and to some degree it depends on the exposure
of the plants to the environment. This exposure is measured [19] by
the leaf area index "LAI". This index measures the leaf surface area
exposed per unit of ground surface area.

The taller the vegetation, the larger is the leaf area index. The
mowing of roadside grasses is a common practice. The results of mowing
is a large decrease of the "LAI", which implies a a reduced exposure of
the vegetation to the environment and, thus, reduces the water removal
from the soil mass. The computer program allows the user to specify a
sequence of Leaf Area Indeces throughout the year and also includes a
default sequence with "LAI" ranging from 1.0 to 2.5. The LAI’'s are
assumed to increase linearly between consecutive mowings. This
sequence includes three general mowings on days 150, 260, and 330. The
computer program uses this sequence to estimate the actual
evapotranspiration from the potential evapotranspiration as discussed

later in this report.

SIMULATION SEQUENCE

General

The main tasks and decisions performed by the computer program are
summarized in Figure 27. The first task performed is reading the
pavement and subsurface site conditions. The second task is to read or
develop the distribution of rainfall depth and potential
evapotranspiration. The last step before the simulation starts is the

development of master block curves for each soil block relating the
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volume of water absorbed per day that the block is submerged under
water.

The simulation itself is performed one year at a time. The first
step is to generate stochastically a 365 days sequence of daily
rainfall and daily potential evapotranspiration. At this point, the
program initiates the simulation itself. A summary of the main tasks
and decisions performed by the computer program during the simulation
are presented as a flowchart in Figure 28. The rest of this section

describes in more detail how the computer implements these tasks.

Development of Block Curves

One of the main assumptions behind this study is that rain water
is quite mobile within the crack fabric; but when the water is absorbed
by the soil blocks, the water is effectively immobilized in the blocks,
unless it can be removed by the roots of the roadside vegetation. The
program attempts to approximate the rate of absorption of water by the
soil blocks with a master curve developed for each block size and soil
type.

The master curve for each block is derived by modeling a one-
dimensional unsaturated water flow within the soil block. Thevsoil
within a block is assumed to be at a constant suction initially. The
water flow is assumed to take place along the shortest length of the
soil block. The full master curve is developed in two steps: a
wetting and a drying phase.

In the wetting phase the soil block is subjected to a zero suction
at the two exposed faces. For every time step, the volume of water
flowing into the block is calculated for both exposed faces. The

volume of water absorbed by the block is assumed to be equal to the
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volume heaved by the block; thus allowing to calculate the variation of
the block’s volume with time.

In the drying phase, the block at the same initial suction is
exposed to a soil suction of 15 bars and the program calculates the
volume of water extracted from the block at each time step. Again, the
volume change of the block is assumed to be equal to the volume of
water lost through both exposed faces. ‘The simulation proceeds until
the flow rate (intake on release) at the two exposed surfaces is
smaller than 0.01 cm3/day.

The results of the two phases are incorporated into a single
master curve for each block. Examples of master curves for several
block sizes are shown in Figure 29, These curves are used during the
simulation to determine the rate of transfer of water from the crack
fabric into the blocks and/or the change in sizes of the soil blocks

upon absorbing or releasing soil water.

Rainfall Depth Assignment

The rainfall depth on the pavement surface of the highway section
is split into two fractions. The first fraction corresponds to the
infiltration through cracks and fissures of the pavement. The
remaining rainfall is assigned to run off to the side drainage ditch.

The infiltration through the pavement is added to the water stored
in crack fabric beneath the pavement. If the crack fabric within the
subsoil and the base material fills with water, the remaining rainfall
is assigned to run off to the side drainage ditch.

The infiltration into the soil adjacent to the pavement is the
result of direct rainfall in the area plus the run off coming from the

pavement surface. The run off from the pavement surface is multiplied
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times a factor, input by the wuser, to account for run off coming from
higher areas of the pavement and drainage ditch.

The infiltration into these soils is also assumed to go straight
to replenish the water within the crack fabric. The user can input a
maximum depth of water that the program allows to accumulate within the
drainage ditch. If the water level within the crack fabric accumulates
to this limit, the rest of infiltration is lost.

The combined possibilities offered to the wuser by the depth of
water ponding within the drainage ditch and the factor that multiplies
the run off from the pavement cover all possible cases of drainage

conditions for the section under study.

Moisture Removal Assignment

The actual removal of water from the soil mass is the result of
the potential evapotranspiration and the amount of soil-water stored in
the soil profile. To assign the removal of soil-water, the program
first has to determine the "actual" evapotranspiration. After the
"actual" evapotranspiration is known, it 1is necessary to assign the
location from where the soil moisture will be removed: from the cracks,
or the soil blocks.

Actual Evapotranspiration. The program estimates the actual

evapotranspiration using a simplified procedure [30] verified for the
climatic conditions of Central Texas. This procedure keeps track of
the amount of water .stored in the soil mass and the actual
evapotranspiration is calculated based on the storage of soil-water
available and the demand imposed by the potential evapotranspiration.
The total storage possible in the soil is calculated by the

program from the set of blocks specified by the user and the difference
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in soil-water stored within each block from field capacity to the
wilting point of the vegetation (15 bar suction). The program
calculates the volume of soil water ;tored on'a daily basis. The gains
are the rainfall depth plus the run off from the pavement and the loss
is the actual evapotranspiration.

The program splits the potenﬁial evapotranspiration into potential
soil evaporation and plant transpiration based on the Leaf Area Index
"LAI". The effect of the stage of drying is then evaluated
independently for the two components.

Soil evaporation is evaluated based on the matrix properties of
the soil summarized in a parameter "«". The program allows the user to
input this value or to select a value from a set of four default values
that cover the range of most cases to be encountered.

Plant transpiration passes through several stages, but in all
cases the actual plant transpiration is estimated based oﬁ the "LAI"
and the monthly average of actual evapotranspiration.

After the two components have been evaluated, are added together
to determine the actual evapotranspiration. The computer program
considers that evapotranspiration occurs at a constant rate during 12
hours every day. The rate at which the water is pulled out of the soil
is the actual evapotranspiration water depth divided into the 12 hours.

Subsurface Soil Regions. After the actual evapotranspiration is

known the program has to assign from where the water has to be removed.
The first choice is whether the water has to be removed from the cracks
or from inside the soil blocks.

A second choice has to be performed; this refers to whether the
water should come from the soil mass adjacent to the pavement or from

the soil mass under the pavement. The evaporation from the soil
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surface can only take place at the "Uncovered" soil surface outside the
pavement area. However, plant transpiratioﬁ removes water from the
soil inside the root depth of the vegetation. Thué, if the vegetation
can spread roots under the pavement the plant transpiration can be
supplied by soil-water stored in the soils under the pavement.

For this purpose, the soil mass has been divided into the three
regions shown in Figqure 24. The soil region "Pavement" is not
accessible to the roots of the roadside vegetation and, thus, the
computer program assumes that the water absorbed by the soil blocks
cannot be removed. This assumption implies that the soil blocks in
this region can absorb water and, thus, swell in size; however, there
is no mechanism to permit removal of water from these blocks.

The soil under the "Edge" as labelled in Figure 24, is assumed to
be accessible to the root system of the roadside side vegetation and,
thus, soil-water can also be removed from soil blocks in this region.
The computer program allows the user to specify the rooting depth of
the vegetation. The program estimates the width of the "Edge" by
considering it to be equal to the vertical distance from the tip of the
impermeable moisture barrier to the bottom of the rooting depth of the
vegetation. Although this region 1is not accessible for the soil
evaporation, the computer program considers that the actual
evapotranspiration can remove water from this region with the
preferential choices indicated in the remaining of this section.

The third region 1is the "Uncovered" soil mass adjacent to the
pavement. This soil is the most exposed and thus the program assumes
that the soil-water can be removed from this region by the two

mechanisms: soil evapotranspiration and the plant transpiration.
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In summary, the actual evapotranspiration is removed from the soil
mass under the "Edge" and the "Uncovered" soil mass adjacent to the
pavement. Therefore, the soil blocks iﬁ these two regions can
experience swelling and shrinking, which implies that the cracks will
close during wet periods but will open again during consistently dry
periods. This is in contrast to what will happen to the cracks in the
"Pavement"” region that are only allowed to close.

The rooting depth of the roadside vegetation has a large influence
because the shrinking under the "Edge" will open cracks allowing
rainfall water to bypass the barrier, if the barrier did not extend to
the rooting depth of the roadside vegetation.

Most commonly, the roadside vegetation are grasses. There is a
wealth of information [16] indicating that grasses have maximum rooting
depths of 8 ft to 9 ft. However, when shrubs or trees grow in the
vicinity of the pavement, much larger rooting depths should be
expected.

Removal of Soil-Water from Cracks. The soil-water stored in the

cracks is free water and 1is, thus, the water that requires the least
amount of energy to be absorbed by the rooting system of the
vegetation. Therefore, the computer program first tries to take all
the actual evapotranspiration from water stored in the cracks. When
the cracks do not hold enough water to satisfy all the actual
evapotranspiration, the remaining is taken from the soil blocks in the
"Edge" and "Uncovered" regions.

The water stored in the crack fabric of the soils within the
"Uncovered" region is the first source of water. The water in the
crack fabric in the "Edge" region 1is the next source, after the

"Uncovered" soil region has been depleted of water in the cracks.
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Removal of Soil-Water from Soil Blocks. When the water in the

crack fabric has been depleted, the actual evapotrénspiration is taken
from the soil blocks. At this time, it is necessary to seiect the soil
block or blocks from which the water has to be removed. The vegetation
will remove the water from the blocks that require the minimum amount
of energy to be speﬁt to remove the water and transport it to the
leaves. In this sense, the plants will go to the wettest block closest
to the soil surface.

This has been approximated by neglecting the transport component,
since it will only have a minimal influence. Thus, the program removes
the water from the soil block that is under the wettest conditions.
The decision of which block 1is the wettest block is based on the
position of the actual block state along the master block curve. The
blocks included in this search are the soil blocks located in the
"Edge" and "Uncovered" regions.

The selection of the wettest block 1is performed with a set of
dimensionless master block curves. An example of this set of
dimensionless master block curves is presented in Fiqure 30. The set
is formed by plotting percentages instead of actual volumes. Zero
percent corresponds to the driest condition at 15 bar and one-hundred
percent to the wettest condition. The program considers that the soil
block with the highest percentage is the wettest block and it is
selected as the source of soil water to satisfy the actual

evapotranspiration.

56



LS

BLOCK’'S VOLUME ( % )

50 1

40 +

30 1

20 1

=

x ACTUAL CONDITION

+ N N — + —

) 100 200 500 400 a0 600 700 800 920
TIME (DAYS)

FIGURE 30 EXAMPLES OF MASTER BLOCK CURVES REDUCED TO A COMMON
VOLUME SCALE

(000



Block Absorption/Desorption

The program keeps track of three sets of blocks; one on each of
the three soil regions: "Pavement", "Edge", and "Uncovered". For each
block, the program records at every time step the coordinates of the
center of the block, the width, length, and height of the block, the
total volume of the block and the relative volume of each block.

The total volume of the soil block at any time indicates the
position of the soil block along the master block curve. This position
also determines the volume increase of the soil block for any period of
time that the soil block is submergéd beneath the water level within
the crack fabric. This increase 1is obtained from the master block
curve by increasing the time by the step desired and finding the
corresponding new volume of the block. When the exposed faces of the
soil block are not completely covered by the water within the cracks,
the program considers that the fraction of face covered represents the
fraction of volume increased by the soil block.

The master block curves were developed imposing zero suction on
the exposed faces. However, when the blocks are submerged the water
inside the cracks will impose positive pressures on the exposed
surfaces; although this positive pressures will be small compared to
suction levels dealt with. Thus, the assumption of developing the
master block curves imposing zero suction will have a negligible effect
on the rate of water uptake by the blocks.

An additional assumption is that the change in volume of the soil
block will be equal to the volume of water absorbed or released by the
block. This assumption is quite appropriate in light of Holmes [25]

measurements and the suction levels of interest.
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The rate of desorption of the soil blocks subject to water removal
by the root system of the vegetation is determined based on the
approximate method described earlier to calculate the actual
evapotranspiration. The water removal will cause the blocks to slide
down along the master block curve. Upon rewetting the block will start

from a lower position along the master block curve.

Crack Fabric

The crack fabric depth is evaluated and tracked by the program
within the three soil regions: "Pavement", "Edge", and "Uncovered";
and within the soils just beneath the vertical moisture barrier.

The soils in the first region "Pavement" are only allowed to
absorb water and thus cracks will progressively close as rainfall
reaches this soil zone and is available for absorption by the blocks.
The program keeps track of one set of soil blocks. The changes
occurring in this set of blocks times the number of soil blocks fitted
within the region are wused to calculate crack opening changes within
the region.

The soils within the second and third soil regions are subject to
drying by the root system of the vegetation. Thus the crack depth in
these zones is subjected to closing during wet spells and crack opening
upon dry spells. The program keeps track of one set of blocks for each
region and assumes that the rest of the blocks within each region
behave identically to the set of blocks tracked. Thus the changes
recorded for the set of block times the number of blocks fitted
initially inside the region is used to calculate crack openings within

the regions.
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The soil region underneath the vertical moisture barrier plays a
critical role. Since when the cracks in this soil zone close the
moisture transfer from "Uncovered" to the "Edge" or vice-versa is

halted.

Water Transfer Underneath the Barrier

The program considers two water levels on either side of the
barrier. The transfer of water from one side to the other is assumed
to take place through the shrinkage cracks in the soil underneath the
vertical moisture barrier. If these cracks close, the program stops
all transfer of water between the two sides.

The water transfer when the cracks are opened is impelled by the
difference in elevation between the two water levels. The flow of
water through the cracks 1is estimated using Maning’s formula and
adopting a hydraulic gradient equal to the difference in water levels
divided into the horizontal distance between the midpoints of the two
regions on either side of the barrier. The hydraulic radius is
calculated at every step taking into account the wetted perimeter of

all shrinkage crack included in the highway section being analyzed.

Time Step of the Simulation

The computer program selects the time step of the simulation based
on the difference in water levels on both sides of the barrier. The
shortest time step is one minute and the longest time step is one day.
when the cracks are empty the simulation proceeds on a daily basis and
the program calculates the water balances once a day.

During rainstorms and when water levels on both sides of the

barrier are different by more than 1 cm, the program calculates the
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water balances every minute. If after some time the water levels reach
the same elevation the program takes the rest of the day as the next

time step.

Water Balances

The program enforces two nearly independent water balances: one
for the soil region "Uncovered", and the second is for the two soil
regions "Edge", and "Pavement". The result is that only two water
levels are tracked: one under the pavement and the second within the
cracks of the soil adjacent to the pavement.

At every selected time step the computer program considers the
initial volume of water stored inside cracks, then adds to it 1) any
rainfall assigned for this period, and 2) any volume of water
transferred underneath the barrier. Then substracts: 1) the volume
water absorbed by all the soil blocks, 2) the volume of water taken by
the actual evapotranspiration. Based on the volume absorbed by the

soil blocks, the geometry of the crack fabric is reconsidered.

COMPUTER PROGRAM

The computer code has been written in Fortran. The listing of the
program, the user’s gquide and copies of data files for trial runs have
been collected in Volume II of this report.

The user’s gquide is included as Appendix G. An example of the
input data required for the weather analysis at a site is included in
Appendix H. The output of this weather analysis is presented in
Appendix I. BAn example of the input data for a simulation is included

as Appendix J. An example of the output produced for a one year
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simulation is included as Appendix K. The complete FORTRAN listing of

the computer code is included as Appendix L.

RESULTS OF TRIAL RUNS AND DISCUSSION

General

The computer code has been used in several trial runs to insure
that is working properly and to illustrate the effect of some of the
parameters on the absorption of rainfall by the subbase soils. The
first part consisted of illustrating the analysis of the climatic
conditions at a site. This part was performed for the climatic
conditions of El Paso.

The simulation was performed for several representative climatic
conditions in Texas. Houston’s climatic conditions were adopted as an
example of the wettest conditions in Texas. El Paso’s climatic
conditions were taken as an example of the driest condition in Texas.
Then the climatic conditions of San Antonio, and Dallas - Fort Wortﬁ
were used as examples of the predominant weather conditions in Central
Texas.

Several extra simulations were performed for the climatic
conditions of San Antonio for several different depths of moisture
barrier to illustrate the effect that the barrier has on the wetting

process of the subgrade soils.

Climatic Conditions Analysis

The first part of the computer program that handles the raw
meteorological data to form distributions of rainfall depth and PET has

been tried for the climatic conditions of El1 Paso, Texas. For this
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purpose, fourteen years of data (1969-1983) were collected to be used
as input data for the program. A list of these data is presented in
Appendix H. |

The output of the program consists of the parameters of the
monthly distributions of rainfall depth, PET on dry days, and PET on
wet days. The summary of parameters selected in this run have been
assembled by month of the year and are included in Appendix I. Also
included in this appendix are plots of the histograms formed and plots
of the distributions fitted to those histograms. These plots are not
the normal output of the computer program written and they are only
included in this report to provide the reader with a graphical

representation of the goodness of fit achieved.

Simulation Results for Different Climatic Areas

The first set of simulations was to test the sensitivity of the
wetting process of the subbase soils to the climatic conditions. All
these runs were performed for the same subsurface soil and pavement
conditions. Specifically, an impermeable moisture barrier was
installed to an elevation of fifty centimeters for all these runs. The
subgrade was placed at elevations 120 cm and the base was 50 cm thick.
The period of simulation was five years for the climatic conditions of
Houston, Dallas - Fort Worth, and San Antonio; for E1 Paso the
simulation extended over ten years.

The results of the simulation at each site are summarized in a set
of four plots per year of the simulation. The first plot shows the
daily rainfall for everyday of the year; also included is the rainfall
depths infiltrating through the pavement surface, and the infiltration

depth into the soils in the "Uncovered" region. The second plot shows
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the daily PET and actual ET for every day of the year. The third plot
shows the water level elevations within the crack fabric under the
"Pavement" and within the crack fabric of the "Uncovered" region for
every day of the year. When the cracks are empty of water tﬁe water
level shown in these figures corresponds to the elevation of the crack
tip. The fourth plot shows the elevation of the shrinkage crack tips in
the three regions: "Pavement", "Edge", and "Uncovered".

San Antonio. The plots prepared from the results of the

simulation for San Antonio, Texas, are included as Appendix A.

The water levels in the crack fabric show a general increasing
trend with occasional fluctuations during the first two years. 1In
general, the water level in the "Uncovered" region lags behind the
water level within the "Pavement" region. The crack tip elevations
show that about 2 months after the beginning of the simulation the
cracks under the barrier close, and about 18 months from the beginning,
the cracks in the "Pavement" region have closed to the subgrade.
During the first two years, all crack tips show a general increasing
elevation trend with the cracks in the "Uncovered" region lagging
somewhat. After the first two years the cracks in the "Edge" and
"Uncovered" regions have closed and show only occasional drops during
the summer months.

Houston. The plots obtained from the simulation for Houston,
Texas are presented in Appendix B.

The water levels in the crack fabric fill the cracks in about four
months and remain full thereafter with the exception of a few short

periods when they drop below the subgrade.
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In about one month time the cracks wunder the moisture barrier
close and never open again. All the cracks in the three soil zones
close to the subgrade in about four month. fhereafter the cracks open
annually for periods of one or two months, and then close again for the
rest of the year.

Dallas -~ Fort Worth. The plots obtained from the simulation

results for Dallas - Fort Worth are presented in Appendix C.

The water level within the soil wunderneath the "Pavement" are
filled to the top of the subbase in less than one year. The water
level within the cracks of the soil in the region "Uncovered" lag
slightly behind those under the "Pavement", nevertheless, within the
first year also reaches the subgrade elevation. The remaining 4 years
of the simulation, the water levels remain very high with small summer
drops, below the subgrade elevation, for periods ranging from the 2 to
3 months.

The cracks within the soils wunder the barrier close within six
weeks of the beginning of the simulation. Within about 10 months of
the beginning, the cracks of the soil wunder the "Pavement" have
completely closed. The cracks in the regions "Edge" and "Uncovered"
also progressively close but lag behind the cracks under the
"Pavement”. At the beginning of the second vyear, the cracks in all
three regions have closed to the subgrade elevation. Thereafter, the
cracks within the "Edge" and "Uncovered" regions remain closed except
for summer periods ranging from 4 to 6 months per year.

El Paso. The plots of the simulation results for El Paso’s
climatic conditions are presented in Appendix D. Due to the extremely
dry conditions in El Paso, the simulation was performed for a 10 year

series.
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The actual evapotranspirations in El Paso are much smaller than
the PET and this is strickingly different than for the other regional
areas studied. The large strings of asterisks indicating durations of
dry periods are clearly evident in the evapotranspirations plots
included in Appendix D.

The plots showing the water levels indicate a slow gradual
increase for the water in the cracks underneath the "Pavement".
Nevertheless, it is necessary to keep in mind that in these plots, the
elevation of the water level when the cracks are empty is indicated as
the elevation of the crack tip. Thus, some of the rise seen in water
level elevation is in fact the result of closing the cracks underneath
the pavement. In stark contrast to what happen in the simulations for
the other areas, the water levels in the cracks within the "Uncovered"
region never accumulate water for more than a few days.

The cracks in the "Uncovered" region never close by any amdunt;
that is, the crack tip never changes during the 10 year simulation.
This prediction of the program is in agreement with visual observations
by the authors that shrinkage cracks are always open in the El Paso
area. Furthermore, it took about three vyears of simulation to close
the cracks within the soil under the moisture barrier.

The cracks, in the soil mass within the "Pavement" region of the
pavement, closed gradually, although at a very slow pace. It took
about seven years of simulation for these cracks to close to the
subgrade elevation. The cracks within the "Edge" region of the
pavement also exhibit a slow trend of gradually closing; however, these

cracks closed to the subgrade elevation only sporadically.
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Effect of Barrier’s Depth

Several trial runs were performed to illustrate the effect that a
deeper barrier might have on the rate of méisture uptake by the sub-
base soils. These runs were performed for identical soil conditions
and for the climate conditions of San Antonio, Texas. Two runs for
barrier tips at 25 cm and at 0.0 cm elevations were performed. The
second of these runs corresponds to the case that the barrier tip
reaches the bottom of the initial crack depth. The plots of the
results of the simulation for the barrier with the tip at elevations 25
cm are included in Appendix E. The results of the simulation for a
barrier with the tip at elevation 0.0 cm are presented in Appendix F.

The results for the barrier with tip at elevation 25 cm indicate
that a deeper barrier had the effect of accelerating the changes under
the pavement while it retarded the changes outside the pavement. In
this sense, the cracks under the pavement closed in one yeaf while for
the earlier run it had taken fifty percent more time. By way of
contrast, the outside cracks were slower to close by more than half a
year.

The same trend is observed for the barrier with the tip at
elevation 0.0 cm. The sub-base so0ils wetted up even faster; in this
sense, all the cracks were closed under the pavement in about 8 months.
While the cracks outside the pavement did not close during the period
of the simulation. The results of these simulations indicate that when
the pavement is cracked or fissured, a large fraction of the rainfall
is directed towards the sub-base. In this case, the subrade soil gains
moisture at a faster rate than the unpaved soils. These results would

explain the observed behavior [3] in IH-30 that seemed to be in
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conflict with previous observations at other vertical moisture barrier

sites [5].

Computer Resources Needed

The trial runs have been performed on a VAX 11,780 computer with
12 megabytes RAM. The CPU time spent on each simulation ranged from 1
hour 30 minutes to more than 5 hours for the five-year simulations.
The ten years simulation for el El Paso used more that 3 hr. 15 min. of
CPU time. Thus, on the average, 20 minutes of CPU time are required
for each year of simulation.

The development of the master block curves for a block sequence of

seven different blocks used 20 minutes of CPU time.

SUMMARY AND CONCLUSIONS

A computer program has been assembled to simulate the movement of
water under a pavement on a cracked, swelling soil subbase.
Specifically, it was desired that the program could account for the
infiltration of rainfall through cracks and joints on the pavement
surface and the horizontal water flow through the shrinkage crack
fabric.

The assumptions have been that the crack fabric displays a simple
geometric confiquration of superimposed parallelepipeds. The water is
assumed to flow through the cracks under positive pressure and then is
slowly absorbed by the soil blocks. As the water is absorbed, the
blocks swell and the geometry of the crack fabric changes. The water
absorbed by the blocks is assumed to be immobilized unless the road

side vegetation has stablished roots within the blocks.
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Trial runs for some climatic conditions of Texas show a wide range
of possible behavior. From the wettest conditions of Houston where the
cracks close in a matter of a few months to Lhe driest case studied of
El Paso where the cracks remain open during the ten years of
simulation.

These results have shown that the shrinkage crack fabric under the
pavement steadily close even under the dry conditions of El Paso
climate. The wetter the «climate, the faster that the cracks close;
from a minimum of four months in Houston to a maximum of seven years in
El Paso.

Trial runs performed with several moisture barrier depths have
shown that if the pavement surface has cracks and joints that allow
water infiltration, the moisture barrier can cause faster swelling
under the pavement than that for the surrounding soils.

The program requires some information about the sizes of the soil
blocks in order to form the shrinkage crack fabric. This data is not
readily available in the literature for the typical sub-surface soil
conditions in Texas. The usefulness of the program could be increased

dramatically if such information would become available.
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