A DIRECT COMPUTER SOLUTION FOR PLATES AND PAVEMENT SLABS

by

C. Fred Stelzer, Jr. W. Ronald Hudson

Research Report Number 56-9

Development of Methods for Computer Simulation of Beam-Columns and Grid-Beam and Slab Systems

Research Project 3-5-63-56

conducted for

The Texas Highway Department

in cooperation with the U. S. Department of Transportation Federal Highway Administration Bureau of Public Roads

by the

CENTER FOR HIGHWAY RESEARCH THE UNIVERSITY OF TEXAS AUSTIN, TEXAS

October 1967

The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Bureau of Public Roads.

PREFACE

This report presents the results of an analytical study undertaken to develop a method for the direct computer solution of plates and pavement slabs. The basic procedure for the structural analysis is an extension of a finiteelement method developed by Hudson, and the direct solution of the basic finite-difference equation for plate behavior utilizes a back-and-forth recursive technique described by Professor Hudson Matlock.

This is the ninth in a series of reports that describe the work in Research Project No. 3-5-63-56, entitled "Development of Methods for Computer Simulation of Beam-Columns and Grid-Beam and Slab Systems." The project is divided into two parts. Part I is concerned primarily with bridge structures. Part II deals with pavement slabs. The reader may find it advantageous to review Report Nos. 56-1, 56-4, and 56-6 as they provide background for this report.

This is the second report in the series that deals directly with pavement slabs. Several subsequent reports concerning pavements are planned for sub-mission.

Duplicate copies of the program deck and test data cards for the example problems in this report may be obtained from the Center for Highway Research, The University of Texas.

The excellent facilities of the Computation Center of The University of Texas and the cooperation of its staff have contributed significantly to this report. Thanks are due to Art Frakes, Don Fenner, Beverly Brewster, Kathy Wilson, Joni McKnight, and all others who assisted with the manuscript.

> C. Fred Stelzer, Jr. W. Ronald Hudson

October 1967

iii

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

LIST OF REPORTS

Report No. 56-1, "A Finite-Element Method of Solution for Linearly Elastic Beam-Columns" by Hudson Matlock and T. Allan Haliburton, presents a finiteelement solution for beam-columns that is a basic tool in subsequent reports.

Report No. 56-2, "A Computer Program to Analyze Bending of Bent Caps" by Hudson Matlock and Wayne B. Ingram, describes the application of the beamcolumn solution to the particular problem of bent caps.

Report No. 56-3, "A Finite-Element Method of Solution for Structural Frames" by Hudson Matlock and Berry Ray Grubbs, describes a solution for frames with no sway.

Report No. 56-4, "A Computer Program to Analyze Beam-Columns under Movable Loads" by Hudson Matlock and Thomas P. Taylor, describes the application of the beam-column solution to problems with any configuration of movable nondynamic loads.

Report No. 56-5, "A Finite-Element Method for Bending Analysis of Layered Structural Systems" by Wayne B. Ingram and Hudson Matlock, describes an alternating-direction iteration method for solving two-dimensional systems of layered grids-over-beams and plates-over-beams.

Report No. 56-6, "Discontinuous Orthotropic Plates and Pavement Slabs" by W. Ronald Hudson and Hudson Matlock, describes an alternating-direction iteration method for solving complex two-dimensional plate and slab problems with emphasis on pavement slabs.

Report No. 56-7, "A Finite-Element Analysis of Structural Frames" by T. Allan Haliburton and Hudson Matlock, describes a method of analysis for rectangular plane frames with three degrees of freedom at each joint.

Report No. 56-8, "A Finite-Element Method for Transverse Vibrations of Beams and Plates" by Harold Salani and Hudson Matlock, describes an implicit procedure for determining the transient and steady-state vibrations of beams and plates, including pavement slabs.

Report No. 56-9, "A Direct Computer Solution for Plates and Pavement Slabs" by C. Fred Stelzer, Jr., and W. Ronald Hudson, describes a direct method for solving complex two-dimensional plate and slab problems.

Report No. 56-10, "A Finite-Element Method of Analysis for Composite Beams" by Thomas P. Taylor and Hudson Matlock, describes a method of analysis for composite beams with any degree of horizontal shear interaction.

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

ABSTRACT

A method of solving for the deflected shapes of freely discontinuous orthotropic plates and pavement slabs subjected to a variety of loads including transverse loads, in-plane forces, and externally applied couples is presented. The method is applicable to plates and pavement slabs with freely-variable foundation support including holes in the subgrade.

This is a direct method of rapidly solving the finite-element plate equations which are developed and it is unhindered by the closure parameters necessary in iterative techniques of solution. A computer program is presented which utilizes the equations and techniques developed. Several sample problems illustrate the generality of the method and its convenience to the user. The results compare well with closed-form solutions and with previous solutions developed using other techniques. This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

TABLE OF CONTENTS

PREFACE	iii
LIST OF REPORTS	v
ABSTRACT	vii
NOMENCLATURE	xi
CHAPTER 1. INTRODUCTION	
The Problem	1 1
CHAPTER 2. THEORY OF ELASTIC PLATES AND SLABS	
General Plate Theory The Isotropic Plate Equations Pavement Slabs Cracks Summary of Elastic Theory	3 3 4 5 5
CHAPTER 3. FINITE-ELEMENT THEORY	
The Physical Model	7 9 9
CHAPTER 4. FORMULATION OF EQUATIONS	
Free-Body Analysis	11 19
CHAPTER 5. SOLUTION OF EQUATIONS	
Previous Method for Solution	23 23

CHAPTER 6. THE COMPUTER PROGRAM

The FORTRAN Program	29
Output Information	31
Special Programming for Non-Rectangular Slabs	
or Slabs with Holes	32

CHAPTER 7. EXAMPLE PROBLEMS AND VERIFICATION OF THE METHOD

	Sim	ply-	Supp	port	ed	P1	lat	e	wi	th	V	ar	ia	ti	on	IS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	33
	Pro	blen	n 60	L	Cor	np 1	ex	B	bri	dg	e	Ap	pr	oa	ch	n S	Sla	b	•	•	•	•	•	•	•	•	•	•	•	•	36
	Pro Tab	le c	n olu of Ra) - 2011]	TMC te)-W	ay	Б	rı	ag	e	51	ар		•	•	•.	•	•	•	•	•	•	•	•	•	•	•	•	•	20
	140	ie c		2901	13	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	50
CHAPT	ER	8.	SUM	1ARY	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	43
REFER	ENC	ES	••	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	45

APPENDICES

Appendix 1.	Operating Manual for Program DSLAB 5	49
Appendix 2.	General Flow Diagram for Program DSLAB 5	67
Appendix 3.	Program Listing of DSLAB 5	79
Appendix 4.	Sample Input for DSLAB 5	93
Appendix 5.	Sample Computer Output	9 9

NOMENCLATURE

Symbol	<u>Typical Units</u>	Definition
Aj	-	Continuity coefficient
a, b, c, d	-	Temporary bar numberingrused in derivations
a _{1,j}	lb/in	Term of stiffness matrix
AAl _j to AA5 _j	lb/in	Sub-matrix of stiffness matrix
AA6j	1b	Sub-matrix of load matrix
${}^{\mathrm{B}_{\mathtt{j}}}$	-	Continuity coefficient
b _{i,j}	lb/in	Term of stiffness matrix
Cj	-	Continuity coefficient
C _x , C _y	<u>in-lb</u> rad	Torsional stiffness of slab element
C _{1,j}	<u>in-lb</u> rad	Torsional stiffness of Slab Element i,j about the x-axis
C ^y , j	<u>in-lb</u> rad	Torsional stiffness of Slab Element i,j about the y-axis
$C_{i,j}^{x'}$	in-lb	Torque exerted on the x-beam due to the relative rotation in Torsion Bar i,j
y' C _{1,1}	in-lb	Torque exerted on the y-beam due to the relative rotation in Torsion Bar i,j
с _{1,j}	lb/in	Term of stiffness matrix
D _x , D _y	in-lb	Bending stiffness of plate
D _{1,j}	in-1b	Bending stiffness of an orthotropic plate in the x-direction
D _{i,j}	in-lb	Bending stiffness of an orthotropic plate in the y-direction
Dj	-	Continuity coefficient

Symbol	<u>Typical Units</u>	Deflection
d1,1	lb/in	Term of stiffness matrix
E _x	lb/in ²	Modulus of elasticity in x-direction
Ey	lb/in ²	Modulus of elasticity in y-direction
Ej	-	Continuity coefficient
e _{1,j}	lb/in	Term of stiffness matrix
f _{1,1}	lb/in	Term of stiffness matrix
81, j	lb/in	Term of stiffness matrix
h _{i,j}	lb/in	Term of stiffness matrix
h _x	in.	The increment length along the x-beams
h _y	in.	The increment length along the y-beams
i	-	An integer used to index mesh points, stations, and bars in the x-direction
j	-	An integer used to index mesh points, stations, and bars in the y-direction
К	lb/in	Stiffness matrix
k	lb/in ³	Modulus of subgrade support
M _x	in-1b	Bending moment acting on an element of the plate in the x-direction
М _у	in-1b	Bending moment acting on an element of the plate in the y-direction
М _{х у}	in-1b	Twisting moment tending to rotate the ele- ment about the x-axis (clockwise positive)
x' M _{i,j}	in-lb	The bending moment in the x-beam at Station i, j (equals $h_y M_{i,j}^x$)
y' M _{1,1}	in-lb	The bending moment in the y-beam at Station i,j (equals $h_x M_{i,j}^y$)
, x M _{1,1}	1b	Unit bending moment in the slab in the x-direction at Station i,j
м _{1, ј}	1b	Unit bending moment in the slab in the y-direction at Station i,j
m	-	Counting integer

Symbol	Typical Units	Definition
m _x	-	Number of increments in the x-direction
my	-	Number of increments in the y-direction
n	-	Counting integer
P _x	1b	Axial load per beam in the x-direction
P _y	1b	Axial load per beam in the y-direction
$\Delta P_{1,j}^{x}$	1b	Change in axial load in the x-beam occurring at Station i,j
P _{i,j}	lb/in	Term of stiffness matrix
Q	1b	Concentrated lateral load
Q _{i,j}	1b	Externally applied load at Point i,j
q	lb/in ²	Distributed lateral load
q _{1, j}	lb/in	Term of stiffness matrix
r _{i,j}	lb/in	Term of stiffness matrix
S _{1, 1}	lb/in	Elastic restraint used to represent the foundation in the finite-element model
s _{i,j}	lb/in	Term in stiffness matrix
х Т _{1, ј}	lb/in	External torque applied to Bar i on the jth x-beam
y T _{1, j}	lb/in	External torque applied to Bar j on the i y-beam
t _{i,j}	lb/in	Term of stiffness matrix
u _{i,j}	lb/in	Term of load matrix
V _{e, j}	1b	Shear in Bar a of the j th x-beam
v _{i,c}	1b	Shear in Bar a of the i y-beam
Wj	in.	Sub-matrix of deflection matrix
W _{i,j}	in.	Lateral deflection
x, y, z	-	Standard Cartesian coordinate directions
ν	-	Poisson's ratio

Symbol	Typical Units	Definition
ν _{x y}	-	Poisson's ratio which results in strain in the y-direction if stress is applied in the x-direction
v _{y x}	-	Poisson's ratio which results in strain in the x-direction if stress is applied in the y-direction

CHAPTER 1. INTRODUCTION

The Problem

A useful method for the solution of discontinuous orthotropic plates and pavement slabs has been described by Hudson (Refs 2, 3). The principal features in his finite-element method are: (1) representation of structural members by a physical model of bars and springs which are grouped for analyses into two orthogonal systems of beams, (2) a rapid method for direct solution of individual beams that serve as line elements of a two-dimensional slab, and (3) an alternating-direction iterative technique which coordinates the solutions of individual beams and, thereby, ties the system together. The alternating-direction iterative technique is dependent on a fictitious closure spring joining the orthogonal beams at each intersection. Efficient solutions require the choosing of proper closure springs as input values for the computer program described by Hudson. Intensive investigations have shown that it is often difficult to choose the proper closure springs for a given slab problem without many time-consuming trials, thus clearly defining a need for an efficient one-pass method of solving discontinuous orthotropic plates and pavement slabs. This report will describe a method to satisfy this need.

Description of Report

Chapter 2 presents a brief discussion of the basic equations connected with the theory of elastic plates and slabs and explains the various types of problems that are of interest in this report. Chapter 3 gives a brief explanation of the finite-element theory used in developing the mechanistic model presented. The input values necessary for complete description of the model and the errors incurred by using the finite-element model as a computational device are discussed.

Chapter 4 presents the derivation of the general plate equation in finite-difference form. Chapter 5 explains the method by which the equations will be solved. A general description of the computer program can be found in Chapter 6.

1

Chapter 7 handles verification of the method by solving several problems previously solved by other methods. The generality and varied applicability of the method are indicated by additional example problems.

CHAPTER 2. THEORY OF ELASTIC PLATES AND SLABS

General Plate Theory

The bending of a plate depends to a large degree on its thickness in comparison with its other dimensions. Timoshenko (Ref 5) notes three kinds of plate bending: (1) thin plates with small deflections, (2) thin plates with large deflections, and (3) thick plates. This report deals only with the first, making the following assumptions:

- (1) There is no deformation in the plate's middle plane.
- (2) Planes of the plate initially lying normal to the middle surface of the plate remain normal to the middle surface of the plate after bending.
- (3) The normal stresses in the direction transverse to the plate can be disregarded.

With these assumptions, all components of stress can be expressed in terms of the deflected shape of the plate. This function has to satisfy a linear partial differential equation which, together with the boundary conditions, completely defines the deflection w . The solution of this differential equation gives all necessary information for calculating the stresses at any point in the plate.

The Isotropic Plate Equations

Structural plates and pavement slabs are normally subjected to loads applied perpendicular to their surfaces. The deflected surface of such plates is described by the biharmonic equation, a differential equation derived by Timenshenko and others. Timoshenko's equation is given below, changed so that the up direction (z-axis) is considered positive. It becomes

$$\frac{\partial^2 M_x}{\partial x^2} + \frac{\partial^2 M_y}{\partial x \partial y} + \frac{\partial^2 M_y}{\partial x^2} - \frac{\partial^2 M_{xy}}{\partial x \partial y} = q \qquad (2.1)$$

in which M_x is the bending moment acting on an element of the plate in the

3

x-direction, M_y is the bending moment acting on an element of the plate in the y-direction, M_{xy} is a twisting moment tending to rotate the element about the x-axis (clockwise positive), and M_{yx} is a twisting moment tending to rotate the element about the y-axis. Observing that $M_{xy} = -M_{yx}$ for equilibrium, the equation can be condensed into the following form:

$$\frac{\partial^2 M_x}{\partial x^2} + \frac{\partial^2 M_y}{\partial y^2} - 2 \frac{\partial^2 M_{xy}}{\partial x \partial y} = q \qquad (2.2)$$

To evaluate this equation, it can be assumed that expressions for moment derived for pure bending can also be used for laterally loaded plates. This is equivalent to neglecting the effect on bending of the shearing forces and the compressive stress in the z-direction produced by the lateral load. Errors introduced into these solutions by such assumptions are negligible provided the thickness of the plate is small in comparison with the other dimensions of the plate.

It is shown in Ref 2 that for the special case of isotropy, the moment equations can be stated as follows:

$$M_{x} = D\left(\frac{\partial^{2} w}{\partial x^{2}} + v \frac{\partial^{2} w}{\partial y^{2}}\right)$$
(2.3)

$$M_{y} = D\left(\frac{\partial^{2} w}{\partial y^{2}} + v \frac{\partial^{2} w}{\partial x^{2}}\right)$$
(2.4)

$$M_{xy} = -M_{yx} = -D (1-\nu) \frac{\partial^2 w}{\partial x \partial y}$$
(2.5)

where D is the bending stiffness of the plate, ν is the Poisson's ratio, and w is the deflection of the plate in the z-direction. The other terms have been previously defined.

Substituting these expressions into Eq 2.2 obtains

$$D\left[\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4}\right] = q \qquad (2.6)$$

Pavement Slabs

Although much work has been done on the pavement slab problem, the most significant was accomplished by Westergaard (Refs 8, 9, 10, and 11), particularly with reference to the design problems encountered in concrete pavement.

In his solution of this problem Westergaard made the following important assumptions:

- The concrete slab acts as a homogeneous, isotropic, elastic solid in equilibrium.
- (2) The reactions of the subgrade are vertical only, and they are proportional to the deflections of the slab.
- (3) The reaction of the subgrade is equal to the modulus of support multiplied by the deflection at that point. The modulus of support is assumed to be constant at every point, independent of the deflection, and the same at all points within the area of consideration.
- (4) The thickness of the slab is uniform.
- (5) The slab is infinite in extent in all directions away from the load.

Unfortunately for the designer, most pavement slabs do not meet the stringent assumptions imposed by Westergaard. First, the slabs must in reality be finite. Second, uniform support is hard to obtain since localized loss of support under the pavement is common. In the methods of this paper, the foundation is represented by the modulus of subgrade support k. The freely discontinuous inputs allowed by the method provide the capability of varying k anywhere under the slab.

<u>Cracks</u>

One qualification of the method to be developed should be noted. Cracks will either be treated as hinged discontinuities with no finite width or as holes in the structure with finite width.

Summary of Elastic Theory

Hand solutions of certain special cases of homogeneous, isotropic plates can be accomplished. The addition of elastic support or finite cracks forces the use of approximate methods and limiting assumptions. Furthermore, each solution represents a special case, and a multitude of special-case solutions are required for the problems of interest. For solutions of orthotropic plates one must usually resort to computers. A general computer method is described by Hudson (Ref 2). The research described here is an attempt to make Hudson's technique more efficient. This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

CHAPTER 3. FINITE-ELEMENT THEORY

The theories discussed in the preceding chapter are based on infinitesimal calculus. There are many rules governing the use of such calculus. In general, the functions must be continuous, and fourth-order systems must have two continuous derivatives. Many complex engineering problems do not properly fulfill these conditions and cannot be solved by resorting to calculus. As a consequence, so-called "numerical" methods have been developed. In numerical methods, the differential equation concerned is replaced by its finitedifference equivalent. The problem then reduces to solving a large number of simultaneous algebraic equations instead of one complex differential equation.

The Physical Model

Numerical methods are most often used as mathematical approximations of a governing differential equation by the substitution of finite-difference forms for derivatives or by the approximation of a continuum problem with a discrete nodal system. A third and perhaps preferable method is to model the plate or slab physically by a system of finite elements whose behavior can properly be described with algebraic equations. The physical model seems preferable because it facilitates visualization of the problem and formulation of proper boundary and loading conditions. Difference equations are used to describe the bending moments in the finite-element beams.

Figure 3.1 is a pictorial representation of the finite-element model of the slab as suggested by Hudson (Ref 2). The torsion bars represent the real torsional stiffness of the slab and are always active in the system. The Poisson's ratio effects and the bending stiffness of the plate are represented by elastic blocks at the node points of the slab. The elastic blocks have a stress-strain relationship equivalent to the real plate and have Poisson's ratio equal to that of the plate. If the beams in the x-direction are bent up, the beams in the orthogonal y-direction bend down due to Poisson's ratio.

7

Fig 3.1. Finite-element model of a plate or slab.

Fig 3.2. Plan view of plate segment divided into x and y-beams.

Input Values for the Model

It is necessary to relate the model to a real plate. The plate is divided into increments in the x and y-directions with increment lengths h_x and h_y respectively. These "beam" increments are designated with i in the x-direction and j in the y-direction. The mesh point or joint on the positive end of each increment is arbitrarily numbered the same as that increment. This numbering system then gives the i,j grid indicated in this plate segment (Fig 3.2). The stiffness $D_{i,j}$ for a plate is a unit value per inch of width. It is convenient for use in computations to input average stiffness over a full increment width. $D_{i,j}^{x}$ represents the average stiffness in the y-direction, that is, the average bending stiffness of the plate over an area one increment wide and one increment long, centered at Station i,j. The torsional stiffness of the plate segment is represented by torsion bars acting at the midpoint of the model element. Axial tensions P are also input into the bars with the changes ΔP considered to occur at mesh points.

Effects of Modeling

Errors resulting from this method are caused by approximating the real slab with a model. The algebraic solution is exact for the model within computer accuracy. Therefore, the closer the model duplicates the real slab, the more precise the answers computed by this method will be. This leads to the observation that the greater the number of increments used to model a particular problem, the greater the accuracy of the solution. According to Ref 2, reasonable results for certain cases can be obtained using 8 to 20 increments in each direction. The number of increments to be used will certainly depend on the dimensions of the problem as well as the accuracy required and the local complexity to be resolved. This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

CHAPTER 4. FORMULATION OF EQUATIONS

The purpose of this chapter is to formulate from a free-body analysis the equations needed to solve for the bending of a slab. A readable and concise account of these developments will be presented rather than a complete mathematical treatment. The necessary equations will be formulated so as to be compatible with the method of solution.

Free-Body Analysis

In order to derive the equations for solution of the bending of a plate or slab, it is helpful to refer to a free-body of the model. Consider first a section of the assembled slab model centered at any mesh point i,j (Fig 4.1). Temporarily, the four bars intersecting at Station i,j will be known as Bars a, b, c, and d as shown in Fig 4.1.

Figure 4.2 represents a free-body of the slab mesh point with all appropriate internal and external forces and reactions shown. Summing vertical forces at Joint i, j with up taken as positive gives

$$\Sigma F_{V_{i,j}} = Q_{i,j} + V_{a,j}^{x} + V_{i,c}^{y} - V_{b,j}^{x} - V_{i,d}^{y} - S_{i,j}W_{i,j} = 0$$
(4.1)

By taking the summation of moments about each individual bar it is seen that

$$-h_{x} V_{a,j}^{x} = C_{i,j}^{x'} + C_{i,j+1}^{x'} + T_{a,j}^{x} + M_{i-1,j}^{x'} - M_{i,j}^{x'} + P_{e,j}^{x} (-w_{i-1,j} + w_{i,j})$$

$$+ P_{e,j}^{x} (-w_{i-1,j} + w_{i,j})$$

$$-h_{x} V_{b,j}^{x} = C_{i+1,j}^{x'} + C_{i+1,j+1}^{x'} + T_{b,j}^{x} + M_{i,j}^{x'} - M_{i+1,j}^{x'}$$

$$+ P_{b,j}^{x} (-w_{i,j} + w_{i+1,j})$$

$$(4.3)$$

Fig 4.1. Typical Joint i,j taken from finite-element slab model.

Fig 4.2. Free-body of slab mesh point.

$$-h_{y} V_{i,c}^{y} = C_{i,j}^{y'} + C_{i+1,j}^{y'} + T_{i,c}^{y} + M_{i,j-1}^{y'} - M_{i,j}^{y'}$$

$$+ P_{i,c}^{y} (-w_{i,j-1} + w_{i,j}) \qquad (4.4)$$

$$-h_{y} V_{i,d}^{y} = C_{i,j+1}^{y'} + C_{i+1,j+1}^{y'} + T_{i,d}^{y'} - M_{i,j+1}^{y'} + M_{i,j}^{y'}$$

$$+ P_{i,d}^{y} (-w_{i,j} + w_{i,j+1}) \qquad (4.5)$$

If the values for $V_{a,j}^x$, $V_{b,j}^x$, $V_{i,c}^y$, and $V_{i,d}^y$ as defined above are substituted in Eq 4.1, the following equation results:

$$Q_{i,j} = \frac{1}{h_{x}} \left[C_{i,j}^{x'} + C_{i,j+1}^{x'} + T_{a,j}^{x} + M_{1-1,j}^{x'} - M_{i,j}^{x'} + P_{a,j}^{x'} + C_{i+1,j}^{x} + P_{a,j}^{x} + (-w_{i-1,j} + w_{i,j}) \right] + \frac{1}{h_{y}} \left[C_{i,j}^{y'} + C_{i+1,j}^{y'} + T_{i,c}^{y'} + M_{i,j-1}^{y'} - M_{i,j}^{y'} + P_{i,c}^{y} + (-w_{i,j-1} + w_{i,j}) \right] + \frac{1}{h_{x}} \left[-C_{i+1,j}^{x'} - C_{i+1,j+1}^{x'} - T_{b,j}^{x} - M_{i,j}^{x'} + M_{i+1,j}^{x'} + M_{i+1,j}^{x'} + P_{i,c}^{y'} + M_{i,j+1}^{y'} - C_{i+1,j+1}^{y'} + C_{i+1,j+1}^{y'} + M_{i+1,j}^{y'} + C_{i+1,j+1}^{y'} + C_{i+1,j+1$$

The expressions for the C and C terms can be derived directly from the model. The complete formulation can be found on page 139 of Ref 2. C and C terms are listed below.

$$C_{i,j}^{x'} = \frac{C_{i,j}^{x}}{h_{y}} (w_{i-1,j-1} - w_{i-1,j} + w_{i,j} - w_{i,j-1})$$
(4.7)

$$C_{i,j+1}^{x} = \frac{C_{i,j+1}^{x}}{h_{y}} \left(-w_{i-1,j} + w_{i,j} + w_{i-1,j+1} - w_{i,j+1}\right)$$
(4.8)

$$C_{i+1,j}^{x'} = \frac{C_{i+1,j}^{x}}{h_{y}} (-w_{i,j} + w_{i+1,j} + w_{i,j-1} - w_{i+1,j-1})$$
(4.9)

$$C_{i+1,j+1}^{x'} = \frac{C_{i+1,j+1}^{x}}{h_{y}} (-w_{i,j} + w_{i+1,j} + w_{i,j+1} - w_{i+1,j+1})$$
(4.10)

$$C_{i,j}^{y'} = \frac{C_{i,j}^{y}}{h_{x}} (-w_{i-1,j} + w_{i,j} + w_{i-1,j-1} - w_{i,j-1})$$
(4.11)

$$C_{i+1,j}^{y'} = \frac{C_{i+1,j}^{y}}{h_{x}} (w_{i,j} - w_{i+1,j} - w_{i,j-1} + w_{i+1,j-1})$$
(4.12)

$$C_{i,j+1}^{y'} = \frac{C_{i,j+1}^{y}}{h_{x}} (w_{i-1,j} - w_{i,j} - w_{i-1,j+1} + w_{i,j+1})$$
(4.13)

$$C_{i+1,j+1}^{y'} = \frac{C_{i+1,j+1}^{y}}{h_{x}} (-w_{i,j} + w_{i+1,j} + w_{i,j+1} - w_{i+1,j+1})$$
(4.14)

M' and M' expressions are found by introducing the finite-difference approximations for the second derivative into Eqs 2.2 and 2.4.

$$M_{i-1,j}^{x'} = D_{i-1,j}^{x} h_{y} \left[\frac{(w_{i-2,j} - 2w_{i-1,j} + w_{i,j})}{h_{x}^{2}} + v_{yx} \frac{(w_{i-1,j-1} - 2w_{i-1,j} + w_{i-1,j+1})}{h_{y}^{2}} \right]$$

$$(4.15)$$

$$M_{i,j}^{x'} = D_{i,j}^{x} h_{y} \left[\frac{(w_{i-1,j} - 2w_{i,j} + w_{i+1,j})}{h_{x}^{2}} + v_{yx} \frac{(w_{i,j-1} - 2w_{i,j} + w_{i,j+1})}{h_{y}^{2}} \right]$$

$$(4.16)$$

$$M_{i+1,j}^{x'} = D_{i+1,j}^{x} h_{y} \left[\frac{(w_{i,j} - 2w_{i+1,j} + w_{i+2,j})}{h_{x}^{2}} + v_{yx} \frac{(w_{i+1,j-1} - 2w_{i+1,j} + w_{i+1,j+1})}{h_{y}^{2}} \right]$$

$$(4.17)$$

$$M_{i,j-1}^{y'} = D_{i,j-1}^{y} h_{x} \left[\frac{(w_{i,j-2} - 2w_{i,j-1} + w_{i,j})}{h_{y}^{2}} + v_{xy} \frac{(w_{i-1,j-1} - 2w_{i,j-1} + w_{i+1,j-1})}{h_{x}^{2}} \right]$$

$$(4.18)$$

$$M_{i,j}^{y'} = D_{i,j}^{y} h_{x} \left[\frac{(w_{i,j-1} - 2w_{i,j} + w_{i,j+1})}{h_{y}^{2}} + v_{xy} \frac{(w_{i-1,j} - 2w_{i,j} + w_{i+1,j})}{h_{x}^{2}} \right]$$

$$(4.19)$$

$$M_{i,j+1}^{y'} = D_{i,j+1}^{y} h_{x} \left[\frac{(w_{i,j} - 2w_{i,j+1} + w_{i,j+2})}{h_{y}^{2}} \right]$$

$$(4.20)$$

At this point an additional note of clarification is helpful. It is convenient in computation to use the same indexing system for bars and torsion bars as for joints. So far, bars have been referred to as Bars a, b, c, and d. Figure 4.3 shows the numbering system used in the computer program. It may be seen that the index a becomes i, b becomes i+1, c becomes j, and d becomes j+1. Therefore, for example, $T_{e,j}^{x}$ becomes $T_{i,j}^{x}$, $P_{b,j}^{x}$ becomes $P_{i+1,j}^{x}$, etc. Now, the terms defined by Eqs 4.7 through 4.20 and the above mentioned subscripting changes are introduced in Eq 4.6, terms are collected, and the form of the final equation is shown below.

hậ

$$a_{i,j} w_{i,j-2} + b_{i,j} w_{i-1,j-1} + c_{i,j} w_{i,j-1} + d_{i,j} w_{i+1,j-1}$$

$$+ e_{i,j} w_{i-2,j} + f_{i,j} w_{i-1,j} + g_{i,j} w_{i,j} + h_{i,j} w_{i+1,j}$$

$$+ p_{i,j} w_{i+2,j} + q_{i,j} w_{i-1,j+1} + r_{i,j} w_{i,j+1} + s_{i,j} w_{i+1,j+1}$$

$$+ t_{i,j} w_{i,j+2} = u_{i,j}$$

$$(4.21)$$

Fig 4.3. Plan view of the slab model showing all parts with generalized numbering system.

where

$$a_{i,j} = \frac{h_x}{h_y^3} (D_{i,j-1}^y)$$
 (4.22)

$$b_{i,j} = \frac{1}{h_x h_y} \left(v_{yx} D_{i-1,j}^x + v_{xy} D_{j,j-1}^y + C_{i,j}^x + C_{i,j}^y \right)$$
(4.23)

$$c_{i,j} = -\frac{2h_x}{h_y^3} (D_{i,j-1}^y + D_{i,j}^y) - \frac{1}{h_x h_y} (2v_{yx} D_{i,j}^x + 2v_{xy} D_{i,j-1}^y) + C_{i,j}^x + C_{i+1,j}^x + C_{i,j}^y + C_{i+1,j}^y) - \frac{P_{i,j}^y}{h_y}$$
(4.24)

$$d_{i,j} = \frac{1}{h_x h_y} \left(v_{yx} D_{i+1,j}^x + v_{xy} D_{i,j-1}^y + C_{i+1,j}^x + C_{i+1,j}^y \right)$$
(4.25)

$$e_{i,j} = \frac{h_y}{h_x^3} (D_{i-1,j})$$
 (4.26)

$$f_{i,j} = -\frac{2h_{y}}{h_{x}^{3}} (D_{i-1,j}^{x} + D_{i,j}^{x}) - \frac{1}{h_{x}h_{y}} (2v_{yx}D_{i-1,j}^{x} + 2v_{xy}D_{i,j}^{y}) + C_{i,j}^{x} + C_{i,j+1}^{x} + C_{i,j}^{y} + C_{i,j+1}^{y}) - \frac{P_{i,j}^{x}}{h_{x}}$$
(4.27)

$$g_{i,j} = \frac{h_{y}}{h_{x}^{3}} (D_{i-1,j}^{x} + 4D_{i,j}^{x} + D_{i+1,j}^{x}) + \frac{h_{x}}{h_{y}^{3}} (D_{i,j-1}^{y} + 4D_{j,j}^{y})$$

$$+ D_{i,j+1}^{y}) + \frac{1}{h_{x}h_{y}} (4v_{y,x}D_{i,j}^{x} + 4v_{x,y}D_{i,j}^{y} + C_{i,j}^{x} + C_{i,j+1}^{x})$$

$$+ C_{i+1,j}^{x} + C_{i+1,j+1}^{x} + C_{i,j}^{y} + C_{i+1,j}^{y} + C_{i,j+1}^{y} + C_{i+1,j+1}^{y})$$

$$+ \frac{1}{h_{x}} (P_{i,j}^{x} + P_{i+1,j}^{x}) + \frac{1}{h_{y}} (P_{i,j}^{y} + P_{i,j+1}^{y}) + S_{i,j} \qquad (4.28)$$

$$h_{i,j} = -\frac{2h_{y}}{h_{x}^{3}} (D_{i,j}^{x} + D_{i+1,j}^{x}) - \frac{1}{h_{x}h_{y}} (2v_{yx}D_{i+1,j}^{x} + 2v_{xy}D_{i,j}^{y})$$
$$+ C_{i+1,j}^{x} + C_{i+1,j+1}^{x} + C_{i+1,j}^{y} + C_{i+1,j+1}^{y}) - \frac{P_{i+1,j}^{x}}{h_{x}}$$
(4.29)

$$p_{i,j} = \frac{h_y}{h_x^3} (D_{i+1,j}^x)$$
(4.30)

$$q_{i,j} = \frac{1}{h_x h_y} \left(v_{yx} D_{i-1,j}^x + v_{xy} D_{i,j+1}^y + C_{i,j+1}^x + C_{i,j+1}^y \right)$$
(4.31)

$$r_{i,j} = -\frac{2h_x}{h_y^3} (D_{i,j}^y + D_{i,j+1}^y) - \frac{1}{h_x h_y} (2v_{yx} D_{i,j}^x + 2v_{xy} D_{i,j+1}^y) + C_{i,j+1}^x + C_{i+1,j+1}^x + C_{i,j+1}^y + C_{i+1,j+1}^y) - \frac{P_{i,j+1}^y}{h_y}$$
(4.32)

$$s_{i,j} = \frac{1}{h_x h_y} \left(v_{yx} D_{i+1,j}^x + v_{xy} D_{i,j+1}^y + C_{i+1,j+1}^x + C_{i+1,j+1}^y \right)$$
(4.33)

$$t_{i,j} = \frac{h_x}{h_y^3} (D_{i,j+1})$$
(4.34)

$$u_{i,j} = Q_{i,j} - \frac{1}{h_x} (T_{i,j}^x - T_{i+1,j}^x) - \frac{1}{h_y} (T_{i,j}^y - T_{i,j+1}^y)$$
(4.35)

Matrix Representation of General Equation

The matrix representation of Eq 4.21 is

$$\begin{bmatrix} K \end{bmatrix} \begin{bmatrix} W \end{bmatrix} = \begin{bmatrix} Q \end{bmatrix}$$
(4.36)

Figure 4.4 shows the form of the K , W , and Q matrices, about which several important things should be noted. The K (stiffness) matrix is of special interest. It is symmetrical about its major diagonal, and it is also banded, that is, the terms lie in lines parallel to the major diagonal. It is a special kind of banded matrix, with the central band five terms wide, the bands on either side of the central band three terms wide, and the two extreme

 $\begin{array}{l} \textbf{GENERAL SLAB EQUATION:} \\ \textbf{a}_{i,j} \textbf{w}_{i,j-2} + \textbf{b}_{i,j} \textbf{w}_{i-1,j-1} + \textbf{c}_{i,j} \textbf{w}_{i,j-1} + \textbf{d}_{i,j} \textbf{w}_{i+1,j-1} + \textbf{d}_{i,j} \textbf{w}_{i-2,j} + \textbf{f}_{i,j} \textbf{w}_{i+1,j} + \textbf{g}_{i,j} \textbf{w}_{i+1,j} + \textbf{h}_{i,j} \textbf{w}_{i+2,j} + \textbf{q}_{i,j} \textbf{w}_{i-1,j+1} + \textbf{r}_{i,j} \textbf{w}_{i,j+1} + \textbf{s}_{i,j} \textbf{w}_{i+1,j+1} + \textbf{f}_{i,j} \textbf{w}_{i,j+2} = \textbf{u}_{i,j} \\ \textbf{OR IN MATRIX FORM:} \end{array}$

Fig 4.4. Form of K , W , and Q matrices.

bands only one term wide. The stiffness matrix is partitioned into submatrices, which are shown by dashed lines. If the slab to be solved has been divided into m increments in the x-direction and n increments in the y-direction, the K matrix will have n+3 rows and n+3 columns of submatrices. The sub-matrices will have m+3 rows and m+3 columns of terms. Solution of slab problems involve manipulating the sub-matrices. For this reason, rectangular slab problems will be solved more efficiently if m is smaller than n. It is important to notice that no matter how large ubecomes, the terms in Eq 4.21 will appear only in the five sub-matrices centered about the major diagonal of the stiffness matrix and that no matter how large m becomes, the sub-matrices will remain either a one, three, or five-wide banded matrix. Figure 4.4 also shows that terms in five-wide banded sub-matrices do not appear in the sub-matrix which contains the threewide band and vice-versa and that the terms of a three-wide banded sub-matrix do not appear in the sub-matrix which contains the single band and vice-versa. W (deflection matrix) and Q (load matrix) are column matrices. Figure 4.5shows the part played by the terms of Eq 4.21 in a typical row of the submatrices.

*The stiffness matrix is octually n+3 sub-matrices wide; only the five pertinent sub-matrices are shown in this figure

Fig 4.5. Terms in a typical row of sub-matrices.
CHAPTER 5. SOLUTION OF EQUATIONS

The equation derived in the preceding chapter is quite formidable. It has thirteen unknowns and must be solved for each mesh point in the system. To make it useful, there must be some general technique for rapid solution. The high-speed digital computer is a necessary tool in using the method of this paper.

Previous Method for Solution

Hudson (Ref 2) uses an alternating-direction iterative method which is based on the work done by Tucker (Ref 6). Conte and Dames (Ref 1) present a solution of the partial differential equation which governs slab behavior.

In simplest terms, the method divides the partial differential equation into two ordinary differential equations and couples their solution by trial and error in a methodical fashion, proceeding first in the x-Cartesian-direction and then in the y-direction, and thus giving it the name alternating direction. The most difficult part of this method is the selection of proper iteration parameters. Proof of convergence exists for certain parameter selection for regular, well-conditioned systems, but much remains to be done for the diverse systems which normally appear in practical slab or plate problems.

Detail of Present Method

The present method is based on an idea conceived by Tucker (Ref 7). He felt that by using "partitioned" matrices a matrix of five diagonal submatrices could be solved in a recursive technique analogous to Matlock's method of solving beams and columns (Ref 4).

Referring back to Figs 4.4 and 4.5 it is readily seen that the multitude of individual terms in the K , W , and Q matrices could be redefined as shown in Fig 5.1. In Fig 5.1 AAl_j , AA2_j , ... , AA5_j are sub-matrices of the stiffness matrix, W_j is a sub-matrix of the deflection matrix, and AA6_j is a sub-matrix of the load matrix. The sub-matrices AAl_j , AA2_j ,

23

]	w _,		AA6_,
AA2 ₀ AA3 ₀ AA4 ₀ AA5 ₀		wo		AA6 0
AAI, AA2, AA3, AA4, AA5,		w,		AA6,
· · · · · ·		•		•
• • • • •		•		•
AAI_{j-2} $AA2_{j-2}$ $AA3_{j-2}$ $AA4_{j-2}$ $AA5_{j-2}$		W _{j-2}		АА6 _{ј-2}
AAI _{j-1} AA2 _{j-1} AA3 _{j-1} AA4 _{j-1} AA5 _{j-1}		w _{j-1}		АА6 _{ј-1}
AAI _j AA2 _j AA3 _j AA4 _j AA5 _j	×	w _j	=	AA6 _j
AAI_{j+1} $AA2_{j+1}$ $AA3_{j+1}$ $AA4_{j+1}$ $AA5_{j+1}$		w _{j+1}		АА6 _{j+1}
AAI _{j+2} AA2 _{j+2} AA3 _{j+2} AA4 _{j+2} AA5 _{j+2}		W _{j+2}		AA6 _{j+2}
		•		•
• • • •		•		•
AAI _{n-1} AA2 _{n-1} AA3 _{n-1} AA4 _{n-1} AA5 _{n-1}		W		AA6 _{n-1}
AAI _n AA2 _n AA3 _n AA4 _n		Wn		AA6 _n
AAI _{n+1} AA2 _{n+1} AA3 _{n+1}		W _{n+1}		AA6 "+I

Fig 5.1. Redefinition of terms in K , W , and Q matrices.

and so on are defined in Fig 5.2. From Fig 5.1 it is seen that the following equation is valid.

$$AA1_{j}W_{j-2} + AA2_{j}W_{j-1} + AA3_{j}W_{j} + AA4_{j}W_{j+1} + AA5_{j}W_{j+2} = AA6_{j}$$
 (5.1)

As shown in Fig 5.1, this equation results in a five-wide banded diagonal coefficient matrix, termed the "stiffness matrix," which when multiplied by the single-column "deflection matrix" is equal to a single-column "load matrix." Matlock in Ref 4 discusses a convenient method for the solution of an equation such as Eq 5.1 and states that this system of equations is most easily solved by a back-and-forth recursion process. Proceeding from j = -1 to j = n+1, two unknown deflections (W_{j-2} and W_{j-1} in Eq 5.1) are eliminated from each equation, resulting in another diagonally-banded system of equations of the form

$$W_{j} - B_{j}W_{j+1} - C_{j}W_{j+2} = A_{j}$$
(5.2)

where

$$A_{j} = D_{j} (E_{j}A_{j-1} + AA1_{j}A_{j-2} - AA6_{j})$$
 (5.3)

$$B_{j} = D_{j} (E_{j}C_{j-1} + AA4_{j})$$
(5.4)

$$C_{j} = D_{j}AA5_{j}$$
(5.5)

$$D_{j} = - (E_{j}B_{j-1} + AA1_{j}C_{j-2} + AA3_{j})^{-1}$$
(5.6)

$$E_{j} = AAl_{j}B_{j-2} + AA2_{j}$$
(5.7)

To complete the solution for all of the unknown deflections $\,W_{\rm j}$, a reverse pass is made by applying the following version of Eq 5.2 at each station.

$$W_{j} = A_{j} + B_{j}W_{j+1} + C_{j}W_{j+2}$$
(5.8)

Fig 5.2. Sub-matrices.

By the time the reverse pass is made the deflections W_{j+1} and W_{j+2} will be known. The coefficients A_j , B_j , and C_j are called "continuity coefficients." The development of Eqs 5.3 through 5.8 is given in Ref 4.

This summary intentionally avoids discussing what is required at each end of the diagonally-banded system to allow the elimination process to start and then to turn around for the reverse pass. For this purpose auxiliary fictitious stations are employed beyond the boundaries of the slab. Recall that the stiffness matrix is produced by applying Eq 4.21 at each mesh point, including one fictitious station beyond the boundary of the real slab. AAl_{-1} , $AA2_{-1}$, $AA1_0$, $AA5_n$, $AA4_{n+1}$, and $AA5_{n+1}$ (Fig 5.1) would then be automatically calculated as zero provided that no load or stiffness data exist for the fictitious mesh points beyond the slab. In the computation of continuity coefficients (Eqs 5.3 through 5.7) these zero matrices serve to blind the equations to any extraneous effects that might be thought of as existing further beyond the boundaries of the slab. Since the fictitious stations beyond the boundaries of the model slab have no flexural stiffness, they act as multiple hinges and thus isolate the model slab and the recursion equations describing its behavior from consideration of any effects beyond the boundaries.

Matlock uses this recursive technique for the solution of a one-dimensional system (beams and columns) where each of the terms of Eqs 5.3 through 5.8 refer to only one value, but the process is mathematically valid for the five-wide banded matrix described by Eq 5.1 even though each of the individual terms refers to a matrix of numbers. Instead of the normal algebraic manipulations, matrix manipulations will be used to solve for the deflections of the slab by the method outlined above. This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

CHAPTER 6. THE COMPUTER PROGRAM

The equations derived in Chapter 4 are not useful for hand calculations, but they are extremely well-adapted for digital computer methods. During this investigation a computer program has been developed which is useful for solving slab and plate problems of various types.

The program is written in FORTRAN computer language for the Control Data Corporation 6600 Digital Computer, which has approximately a 16-decimal word length and comes equipped with a Chippewa FORTRAN compiler compatible with FORTRAN II and IV. The compile time for the basic program is about five seconds. The storage requirements of the program as presently dimensioned are about 120,000 words. The program is of little practical value for use on computers with internal storage of less than 64,000 words.

The time required to run problems varies with the size of the system, i.e., the number of increments involved. Eight-by-eight problems can be solved in 4 seconds, while a sixteen-by-sixteen increment problem is solved in about 20 seconds. At the present rates of The University of Texas Computation Center, the computer time costs approximately fifty cents to solve an eight-byeight problem and approximately two dollars to solve a sixteen-by-sixteen problem.

The FORTRAN Program

A summary flow diagram for the DSLAB Program is given in Fig 6.1. A detailed flow diagram and listing of the program DSLAB 5 are provided in Appendices 2 and 3. Appendix 1 is an instruction and operating manual for DSLAB 5. It includes instructions on the operation of the program and detailed input forms and descriptions.

The format used for inputting data into the program is arranged as conveniently as possible. The problem input deck starts with two cover cards which identify the program and the particular run being made. The information on them is alphanumeric and denotes projects, coding dates, personnel performing the key punching, description of the problems being run, etc. The program will

29

Fig 6.1. Summary flow chart.

not operate without these two cards, which are followed by

- problem number card with alphanumeric description of the problem.
- (2) Table 1 <u>Input for Data Control and Constants</u> 1 card. Information on this card includes the number of cards to be read in Tables 2 and 3, number of increments, increment length, and Poisson's ratio.
- (3) Table 2 <u>Stiffness and Load Data</u> The number of cards in this table is variable depending on the number required to specify bending stiffness, load, support springs, and torsional stiffness.
- (4) Table 3 <u>Stiffness and Load Data Cont</u>. The number of cards in this table is variable depending on the number required to specify external couples and axial loads.

Appendices 4 and 5 contain numerical examples of input and output for example problems in Chapter 7.

Output Information

The program output is arranged to be useful to the user. A format which can be trimmed to standard 8-1/2 by ll-inch size is provided. For convenience and help in identifying problems, the program prints out all original input data at the beginning of each problem, in Tables 1, 2, and 3. Table 4 is presented in two parts in keeping with the 8-1/2 by ll-inch format. The first half prints external station numbers, deflections, bending moments in the x and y-directions, and the external load (or reaction) of the slab at each station. Part 2 of Table 4 prints out external station numbers and twisting moments in the x and y-directions.

An automatic plot routine can be coupled with DSLAB 5 and used to plot any of the variables available at mesh points in the system although normally its major use is plotting deflection contours.

As with all finite mathematical techniques, there are approximations in this program. It is not possible to determine both values of a double-valued function by numerical differentiation. Twisting moments are such doublevalued functions, being a maximum just inside the plate boundary and zero just outside the boundary, and the best approximation in finite-difference techniques is half value or the average between maximum and zero. The same half-value approximation results for bending moments at fixed ends for cantilevered structures (Ref 4). The bending moment-stiffness diagram is correct for this case since bending stiffness is input as half-value at edges and ends. Bending moments at free or simply-supported edges are calculated correctly by this method. Third derivatives which are related to the shear forces meet the Kirchoff boundary conditions at free edges (Ref 5, p 84). In Ref 2 it is stated that many investigations of intricate calculations of output values for various discontinuous and orthotropic cases show that this finite-element model gives correct results.

Special Programming for Non-Rectangular Slabs or Slabs with Holes

Occasionally there may be a need to solve a slab problem which is not rectangular or which has one or more holes in it. For these cases, load, stiffness, and support values are input only at the mesh points where the slab exists; zero values are automatically stored for input variables which are not specified. The deflections at mesh points not on the real slab are unimportant to the solution of the real problem, but the computer program attempts a solution for the deflection at every mesh point in the minimum rectangle. If we look at the stiffness matrix we see that for this type of slab there are two or more rows which are dependent, therefore making it impossible to calculate an inverse and solve the problem. It can be shown that by placing a spring at the mesh points two or more stations away from all boundaries that no dependency will be introduced and in addition the solution will not be affected. DSLAB 5 is programmed to automatically place the necessary support springs at the proper mesh points.

CHAPTER 7. EXAMPLE PROBLEMS AND VERIFICATION OF THE METHOD

This chapter provides the solution to several example problems to demonstrate program DSLAB 5 and its use in engineering calculations. As stated before, this work is an attempt to improve the efficiency of Hudson's method (Ref 2), which is verified by comparison of solutions with accepted "closedform solutions." Since the slab model is the same in both cases, similar answers to the same problems would be expected. Therefore, verification of the method of solution of this report can be most conveniently accomplished by re-solving the examples of Ref 2. Sample input and output in Appendices 4 and 5 provide the reader with a step-by-step example of the program in use.

Simply-Supported Plate with Variations

A 48-inch-square, simply-supported, 0.98-inch-thick steel plate is the basic verification problem discussed by Hudson (Fig 7.1). This plate has a modulus of elasticity E of 30,000,000 psi and a Poisson's ratio ν of 0.25. A series of problems utilizing this plate, which have been previously solved by others in closed form, will be solved. The plate will generally be divided into eight six-inch increments in both the x \cdot and y-directions. The bending stiffness in the x and y-directions (D_x and D_y , respectively) can be calculated as shown in Ref 2 through the use of equations 7.1 and 7.2.

$$D_{x} = \frac{E_{x}t^{3}}{12(1 - v^{2})}$$

$$E_{y}t^{3}$$
(7.1)

$$D_{y} = \frac{1}{12(1 - v^{2})}$$
(7.2)

where

t = thickness of the plate, E_x = modulus of elasticity in the x-direction, E_y = modulus of elasticity in the y-direction.

Fig 7.1. Simply-supported square steel plate.

From Eqs 7.1 and 7.2 it is found that $D_x = D_y = 2.5 \times 10^{-6}$ in-lb. For correct representation of the slab one-quarter bending stiffness values are input at the four corner stations and one-half bending stiffness values are input along the edge stations.

The torsional stiffnesses of the slab element about the x and y-axes (C_x and C_y, respectively) are calculated using Eqs 7.3 and 7.4 (Ref 2 p 124).

$$C_{x} = \frac{E_{x} t^{3}}{12(1 + \nu)}$$
(7.3)
$$C_{y} = \frac{E_{y} t^{3}}{12(1 + \nu)}$$
(7.4)

The torsional stiffnesses for the example plate are $C_x = C_y = 1.875$ × 10 ⁶ in-lb/rad . Once the reader acquaints himself with the physical properties of this plate, it will be possible to evaluate very rapidly six separate cases of load and parameter variations.

<u>Problem 101 - Concentrated Load</u>. The first problem to be considered is the simply-supported plate described above with a single concentrated load of 100,000 lb in the center. The closed-form solution is 1.07 inches deflection under the load. For an 8×8 grid Hudson found a deflection of 1.138 inches, which is exactly the same deflection found from the method presented in this paper. If the number of increments is increased to 16 in each direction, a deflection of 1.09 inches is computed.

<u>Problem 102 - In-Plane Forces</u>. In addition to the concentrated load at the center, a uniform in-plane force (tensile axial load) in the y-direction of 16,667 pounds per inch of plate width is added. The maximum closed-form deflection occurs under the load and is 0.787 inch. The computed solution for an 8×8 grid is 0.854 inch, the same as found by Hudson. The accuracy of this solution also is increased by increasing the number of increments into which the plate is divided.

<u>Problem 103 - Two-Way In-Plane Forces</u>. When an equal in-plane tensile force in the x-direction is added to Problem 102, this method computes a maximum deflection of 0.692 inch. Reference 2 reports a maximum deflection for this example of 0.661 inch. However, a rerun of this problem with the methods of Ref 2 using better closure tolerances yielded a deflection of 0.692.

Problem 104 - Uniform Load. If a uniform load of 100 pounds per square

inch is substituted for the concentrated load, the closed-form solution is 0.861 inch. Both Hudson's method and this method calculate 0.861 inch for an 8 \times 8 grid. This problem points out that it takes a much finer grid-system to accurately model a slab loaded with a concentrated load than it does to model a slab loaded with a uniform load.

<u>Problem 105 - Interior Foundation Support</u>. A uniform interior elastic foundation with support k equal to 100 pounds per square inch per inch is added to Problem 101. Evidently, Refs 2 and 3 contain a misprinted value, 0.70 inch, for the reported deflection under the load. Hudson's original computer results show that this deflection is 0.787 inch, which is the same as calculated by DSLAB 5. This compares to the approximate closed-form solution given by Timoshenko's equation of 0.723 inch (Ref 5).

<u>Problem 106 - End Supports with Line Loads</u>. The basic problem is modified slightly by removing the simple supports from two opposite edges of the plates. The beam is loaded with line loads of 833 lb/in six inches from and parallel to the remaining two supported edges. This leaves the plate supported as a wide-beam on simple supports. Unlike a beam, however, the plate should exhibit Poisson's ratio effects. Poisson's ratio manifests itself in such a structure by anticlastic bending. A hand solution of this problem gives a deflection at the center of the beam or plate of 0.566 inch. Both computer solutions for an 8 \times 8 grid give a center deflection of 0.575 inch. This deflection increases to 0.640 inch at the center of the two unsupported edges due to anticlastic bending. The error of the solution is reduced to less than 1 percent if a 16 \times 16 grid is used to model the plate.

Problem 601 - Complex Bridge Approach Slab

One of the main features of this method is the ability to handle complex problems with combination loads and a variety of support conditions. Figure 7.2 illustrates such a problem. A 10-inch-thick, reinforced-concrete bridge approach slab is used. It was supported on one end by the bridge abutment; the other end rests on the embankment. Because of poor compaction, which often results when there is backfill, the soil has settled under the interior of the slab and left a section unsupported. The slab has a center-line joint and a crack which developed from a combination of shrinkage and previous overstress. For a non-uniformly supported slab such as this, the dead weight of the slab must be considered when evaluating moment and stresses. This weight

Fig 7.2. Bridge approach slab.

Fig 7.3. Deflection contour of bridge approach slab. Deflection in inches.

acts as a uniform load of 600 lb per station. Two 10-kip wheel loads were considered in this example. An axial load of 5,000 lb per inch has been induced by the expansion of the adjoining pavement. The resulting deflected shape is shown in Fig 7.3. The maximum deflection occurs at the corner near the wheel loads.

Problem 610 - Two-Way Bridge Slab

A second example of a complex problem is the two-way bridge slab illustrated in Fig 7.4. The slab in this problem has a variable thickness. The supporting beams are modeled as fixed supports. The dead weight is input due to the varying thickness and the simple supports. Six 20.8-kip loads act in a line 12 feet from the end of the slab. A maximum deflection of -.3095 inch occurs 12 feet from the end, one foot from the center. The resulting deflected shape is shown in Fig 7.5. The maximum moment in the x-direction is 23,500 in-lb and occurs two feet to the right of the maximum deflection.

<u>Table of Results</u>

A variety of example problems have been presented. The results are listed in tabular form for the convenience of the reader. Table 7.1 compares the results of the closed-form solutions, Hudson's solutions, and the solutions of this report. It also presents the computer time required to solve each of the problems. The deflections compared in Table 7.1 are in general the maximum deflections for the problem under study. The only exceptions are Example Problems 106 and 601. The deflection compared in Problem 106 occurs at the center of the slab. In Problem 601, the deflection compared occurs under the top 10-kip load (see Fig 7.2).

The exact time to run the problems using the SLAB 17 method (Ref 2) depends on the skill of the user. However, by examining the times required to run numerous problems with this program, it was possible to develop Table 7.2, which gives a general idea of the efficiency of SLAB 17 compared with DSLAB 5. Table 7.1 indicates that the time to run a square problem on DSLAB 5 is approximately proportional to m^3 (or n^3) where m and n are the number of increments in the x and y-directions, respectively. Slab solutions (see Chapter 4) involve manipulating sub-matrices. The size of the

Fig 7.4. Two-way bridge slab.

Fig 7.5. Deflection contour of two-way bridge slab. Deflection in inches.

Example <u>Number</u>	Increment Mesh	Closed-Form Solution _(inches)	Hudson's Solution (inches)	DSLAB 5 Solution (inches)	Time to Run Problem (seconds)
101	8×8	1.07	1.14	1.14	4.1
101	16×16	1.07	1.08	1.09	24.9
102	8×8	0.787	0.854	0.854	3.8
102	16×16	0.787	not run	0.817	23.9
103	8×8	not solved	0.692	0.692	3.3
104	8×8	0.861	0.861	0.861	3.5
104	12×12	0.861	0.862	0.862	9.5
104	16×16	0.861	0.860	0,862	24.0
104	24×24	0.861	not run	0.862	84.0
105	8×8	0.722	0.787	0.787	3.4
105	16×16	0.722	not run	0.752	24.3
106	8×8	0.566	0.575	0,575	3.4
106	16×16	0.566	not run	0.566	23.6
601	16×12	no solution	0.0106	0.0105	18.0

TABLE 7.1. COMPARISON OF RESULTS

TABLE 7.2. COMPARISON OF SLAB 17 AND DSLAB 5 SOLUTION TIMES

Increment Mesh	Time for SLAB 17 (sec)	Time for DSLAB 5 (sec)
8×8	4 - 7	3 - 5
16×16	25 - 50	23 - 25
24×24	70 - 150	80 - 90

sub-matrix is controlled by m. The number of times the manipulations of the sub-matrices must be performed is controlled by n. Apparently, the time to solve rectangular problems should be proportional to m^2n .

SLAB 17 holds an outstanding advantage over DSLAB 5: it requires less computer storage. For example, SLAB 17 can solve a mesh size of up to 30×30 on the CDC 1604, which has a 32,000-word storage capacity, while DSLAB 5 can solve only a 12 \times 12 system because of storage requirements. However, with the present 131,000-word capability of the CDC 6600, DSLAB 5 can solve a 28 \times 28 problem. By rearranging the DIMENSION statements of the program, DSLAB 5 can solve a long thin slab represented by a 14 \times 100 grid. Although DSLAB 5 is not presently practical on the smaller computers, it is invaluable for solving problems which cause the SLAB 17 program difficulties. This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

CHAPTER 8. SUMMARY

A useful method for the solution of discontinuous orthotropic plates and pavement slabs has been described by Hudson in Ref 2. Efficient solutions by this method are dependent upon the choice of proper closure springs, which for a given slab problem are quite often difficult to arrive at without several time-consuming trials. There is clearly a need for an efficient one-pass method of solving discontinuous orthotropic plates and pavement slabs. This report provides such a method.

The technique is based on a physical model of the problem which is helpful in visualizing the problem and forming the solution. All properties and loads can be freely variable from point to point. The method developed is not useful for hand calculations. With the normal computational accuracy of the CDC 6600 computer, the method is not hindered by round-off errors for the program size presently dimensioned.

The computer program DSLAB 5 is limited to a maximum size of 28 increments in the x and y-directions, although the dimension statements can easily be changed to solve a long slab with decreased width. The alternating-direction method of solution (Ref 2) requires much less computer storage space and could therefore solve a system which is divided into many more increments.

This method has application to a broad variety of complex plate and slab problems. Although the formulation of the finite-difference equation is based on the same finite-element model used by Hudson in Ref 2, this method is more convenient since the user is not required to calculate the often troublesome closure parameters needed for an iterative solution.

43

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

REFERENCES

- Conte, S. D., and R. T. Dames, "An Alternating Direction Method for Solving the Biharmonic Equation," <u>Mathematical Tables and Aids to Com-</u> <u>putation</u>, Vol 12, No 63, July 1958, p 198.
- 2. Hudson, W. R., "Discontinuous Orthotropic Plates and Pavement Slabs," Ph.D. Dissertation, The University of Texas, Austin, August 1965.
- Hudson, W. R., and Hudson Matlock, "Discontinuous Orthotropic Plates and Pavement Slabs," Research Report No 56-6, Center for Highway Research, The University of Texas, Austin, May 1966.
- 4. Matlock, Hudson, and T. A. Haliburton, "A Finite-Element Method of Solution for Linearly Elastic Beam-Columns," Research Report No 56-1, Center for Highway Research, The University of Texas, Austin, September 1966.
- Timoshenko, S., and S. Woinowsky-Krieger, <u>Theory of Plates and Shells</u>, (Engineering Society Monographs), 2nd Edition, McGraw-Hill, New York, 1959.
- Tucker, Richard L., "A General Method for Solving Grid-Beam and Plate Problems," Ph.D. Dissertation, The University of Texas, Austin, 1963.
- Tucker, Richard L., personal communication to Hudson Matlock concerning a technique for solving large, sparsely populated matrices, June 15, 1965.
- 8. Westergaard, H. M., "Analytical Tools for Judging Results of Structural Tests of Concrete Pavements," <u>Public Roads</u>, Vol 14, 1933.
- 9. Westergaard, H. M., "Computation of Stresses in Concrete Roads," <u>Proceed-ings of the Fifth Annual Meeting</u>, Highway Research Board, Washington, D. C., 1926.
- Westergaard, H. M., "New Formulas for Stresses in Concrete Pavements of Airfields," <u>Proceedings</u>, American Society of Civil Engineers, Vol 73, No 5, May 1947.
- 11. Westergaard, H. M., "Stresses in Concrete Pavements Computed by Theoretical Analysis," <u>Public Roads</u>, Vol 7, No 2, April 1926.

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team APPENDIX 1

OPERATING MANUAL FOR PROGRAM DSLAB 5

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

OPERATING MANUAL FOR PROGRAM DSLAB 5

extract from

DIRECT COMPUTER SOLUTION FOR PLATES AND PAVEMENT SLABS

by

C. Fred Stelzer, Jr., and W. Ronald Hudson

October 1967

This page replaces an intentionally blank page in the original --- CTR Library Digitization Team

DSLAB 5 is a computer program written to solve problems involving orthotropic plates and pavement slabs. The development of the equations and the overall method of solution are discussed in Chapters 4, 5, and 6 of the basic report. The purpose of this Appendix is to provide the program user with a concise manual which can be extracted for daily use with the program.

Program Operation

The general procedures followed in the program are described in the attached flow chart. A problem number card at the beginning of each problem controls the start of the solution. Unless an error occurs because of unacceptable data the program will work any number of problems in sequence, finally stopping when a blank problem number card is encountered.

The data deck starts with two cover cards used to identify the program and the particular run being made. The problems to be solved together in one run are stacked behind the cover cards in sequence as illustrated in Fig Al. Each problem consists of (a) one problem number card with alphanumeric description of the problem; (b) Table 1, Input for Data Control and Constants, one card containing necessary control data and constants for the problem; and (c) Tables 2 and 3, Stiffness and Load Data, which contain the number of cards required to properly describe the problem and loads being applied. The number of values on each card in Table 2 and the number of cards in Table 3 must be properly specified in Table 1 as indicated in the Input Form.

Guide for Data Input

The following pages provide a Guide for Data Input. It should be expected that revisions of these forms and instructions will be developed in the future and may supersede the present versions.

Example problems are discussed in Chapter 7. Appendix 4 includes example input data for several of these example problems. By comparing these example inputs with the description of the real problem the user can gain practical experience in the preparation of input data. Proficiency in the use of the program can be gained only through actual coding of problems and solution in the computer. Recoding and resolution of the example problems should prove to be helpful.

This page replaces an intentionally blank page in the original --- CTR Library Digitization Team

Fig Al. Assembly order for DSLAB 5 program deck with data, ready for run.

This page replaces an intentionally blank page in the original --- CTR Library Digitization Team

DSLAB 5 GUIDE FOR DATA INPUT - CARD FORMS

IDENTIFICATION OF PROGRAM AND RUN (2 alphanumeric cards per run)

A	count number,	project, coding	, key punching w	ith dates, etc.			80
D	escription of r	un					
1							80
IDENTIFICATION	OF PROGRAM (on	e card each prob	olem; program st	ops if PROB NUM	lis blank)		
Prob Num							
	Description o	f problem (Alpha	anumeric)				
1 5	11	- · · •					80
			(1 card)				
INDLE I. INOG.	AM-CONTROL DAI			- · · · · ·			
Num Cards	La Nu Turana	Incr Length in	Incr Length in	Poisson's			
$\frac{1able}{2}$	Le Num Lncrs MX MV	HX	y-Direction HV	PR			
		11X					
5 10	9 15 2	0 30	4 0	50			
TABLE 2. STIF	NESS AND LOAD	DATA (any number	r of cards as sh	own in Table 1)			
From Sta	Thru Sta	B en ding S	tiffness	Load	Spring	Twisting S	tiffness
I1 J1	I 2 J2	DX	DY	Q	S	CX	СҮ
		0 30		50	03	7	
		· · · ·					, 80
TABLE 3. LOAD	DATA CONTINUED	(any number of	cards as shown	in Table 1)			
From Sta	Thru Sta			External	l Couple	Axial	Tension
I1 J1	I2 J	2		TX	TY	PX	PY
		1	ł				
<u> </u>	D 15 2	o		41 50	60)	L > 80

ავ

This page replaces an intentionally blank page in the original --- CTR Library Digitization Team

GENERAL PROGRAM NOTES

TABLE 1. PROGRAM-CONTROL DATA AND CONSTANTS

The number of input cards for Table 2 and Table 3 must be shown separately and should be carefully checked.

Poisson's ratio will be taken as zero unless specified (always positive).

TABLE 2. STIFFNESS AND LOAD DATA

Typical Units:						
Variables:	DX	DY	Q	S	CX	CY
Input Units:	in-lb	in-lb	1b	lb/in	in-lb	in-lb

To distribute data over a rectangular area, the lower left hand and the upper right hand mesh points of the area must be specified. Figure A2 illustrates this.

To specify data at a single station, the station numbers (i and j) must be specified in both the "From Sta" and "Thru Sta" columns (see Fig A2).

The user must input half-values at mesh points on the edge of the slab and quarter-values at the corners since each mesh point represents the area within 1/2 increment length on all sides.

There are no restrictions on the order of cards in Table 2.

Unit stiffness values DX and DY are input at all full-value stations. The values are reduced proportionally for edges (half-values) and corners (quarter-values).

Unit torsional stiffnesses CX and CY are input in appropriate slab segments where full values are required. The values may be reduced as necessary (half segments rarely occur however).

CX and CY values lie in the increment space below and to the left of the mesh point. Care should be taken to keep from placing CX and CY values outside points with real DX and DY values.

This page replaces an intentionally blank page in the original --- CTR Library Digitization Team

Fr St	'om ta	Th St	ru a	Load Q	
4	2	4	2	1.000 E + 04	Concentrated value at Station 4,2.
3	1	4	1	5.000 E + 03	Distributed load centered over Stations 3,1 and 4,1 such that each gets a full value.
0 0 1 1	0 1 0 1	2 2 1 1	3 2 3 2	$\left.\begin{array}{c}0.500 \ E + \ 03\\0.500 \ E + \ 03\\0.500 \ E + \ 03\\0.500 \ E + \ 03\end{array}\right\}$	Uniform load in rectangle 0,0 - 2,3, added in one- quarter values at a time to provide half-values at edges and quarter-values at corners of the area.

S values for any station are determined by multiplying the support value k by the appropriate area of the real slab assigned to that station (half-values for edges, quarter-values for corners). If k is variable, then $S = \Sigma kA$ over the area A of the station. Pinned supports are provided by using large S values.

TABLE 3. LOAD DATA

Typical Units:				
Variable:	TX	TY	PX	PY
Input Units:	in-lb	in-1b	1b	1b

- All inputs in this table are lumped. Distributed data must be summed over the width of the increment involved. Concentrated values are applied directly at the nearest station.
- Axial tension (+) or compression (-) values P must be stated at each station in the same manner as indicated above. There is no mechanism in the program to automatically distribute the internal effects of any externally applied axial force.

Torques TX and TY are applied to the bar elements to the left and below the station, not at stations.

Dimension Guide

Since the size and the storage capacity of computers vary, it is necessary to make the size of a program variable. This is accomplished by use of a Dimension Statement, which is an integral part of the program deck. In DSLAB 5 it is also necessary to change the Dimension Statement to run rectangular problems. The Dimension Statement appears in the program after the section of comment cards which list the program notation. The following instructions are given so that the program user can change the Dimension Statements to fit his computer capacity or to fit the needs of his problem. The Dimension Guide, Fig A3, shows the Dimension Statement from DSLAB 5, using symbolized arrays. The dimensions of the real slab are replaced by S and L, where S is the short length of the slab and L is the long length. The user changes the numbers in the Dimension Statement by substituting the increment size of the maximum slab which he desires to solve into the arrays of the Dimension Statement following the formulas in the Dimension Guide. This choice of dimension input makes it necessary for the short end of the problem to be always in the x-direction and the long length in the y-direction. By making the short length the x-direction, the problem requires less storage and the computing time required is decreased.

The variables Ll , L2 , and L3 are in this Dimension Guide to be used in the subroutines which are part of the program. By changing L1 , the user automatically changes the subroutines' Dimension Statements to agree with the main Dimension Statement.

C----EXPANSION FORMULAS FOR DIMENSION STATEMENT IN DSLAB5.

DIMENSION	A(S+7,L+7),	A1(S+3,1),
1	A2(S+3,1),	AA(S+3,1),
2	AA1(5+3,5+3),	AA213+3,3+3),
3	AA3(S+3,S+3),	AA4(S+3,S+3),
4	AA5、3+3,3+3),	AA6, J+3,1),
5	AN1(32),	AN2(14),
6	AAUG(5+3,5+3,2),	B(S+3,S+3,L+7),
7	BB(S+3,S+3),	BB1(S+3,S+3),
8	BB2(5+3,5+3),	BMX(S+7,L+7),
9	BMY(S+7,L+7),	C(S+3,S+3,L+7),
1	CC(S+3,S+3),	CC1(5+3,5+3),
2	CC2(S+3,S+3),	CX(S+7,L+7),
3	C: (+7,L+7),	D、J+3,J+3),
4	DP(6),	DX(S+7,L+7),
5	Dr(S+7,L+7),	E15+3,5+3),
6	PX(S+7,L+7),	PY(S+7,L+7),
7	Q(S+7,L+7),	5(S+7,L+7),
8	TX(S+7∍L+7),	TY(S+7,L+7),
9	W(S+7,L+7),	W1(S+3,1),
1	W2(S+3,1)	

CVARIABLES	FOR	USË	IN	SET	ING	тНE	DIMENSION	SIZE	FOR
С	SUBF	ROUTI	NES	5 IN	DSLA	B5.			

L1	=	5+3
L2	=	1
L3	=	2

Fig A3. Dimension Guide.

APPENDIX 2

GENERAL FLOW DIAGRAM FOR PROGRAM DSLAB 5

5 The indicated operations involve numerous matrix multiplications and inversions which require calling the appropriate subroutines at the end of the program.

SUBROUTINE MATMP1 (MULTIPLIES A SQUARE MATRIX TIMES A VECTOR MATRIX)

SUBROUTINE INVRSL (FINDS INVERSE OF MATRIX)

APPENDIX 3

PROGRAM LISTING OF DSLAB 5

	PROGRAM DSLAB 5 (INPU	IT, OUTPUT)
ί,	1 FORMAT (52H PROG 1 ,	RAM DSLAB 5 - DECK 1 - STELZER 28JE7 28H REVISION DATE 24 JULY 1967)
С		
C	THIS PROGRAM IS MAT	HEMATICALLY IDENTICAL TO DSLAB1.
č	THIS PROGRAM SOLVES	ORTHOTROPIC PLATES AND PAVEMENT SLABS BY
č	A DIRECT METHOD. THE	DIRECT SOLUTION IS CARRIED OUT
č	BY USING A BACK AND F	
Č	BY HUDSON MATINCK.	
r		
č		
č		
č		
č	Δ()	CONTINUITY OR RECURSION COEFFICIENT
č	$\Delta \Delta ()$, $\Delta ()$, $\Delta 2 ()$	TEMPORARY A() TERMS
Č.	$\Delta\Delta1(), \Delta\Delta2(), \Delta\Delta3()$	TERMS WHICH MAKE UP THE SUB-MATRICES OF
č	$\Delta\Delta4()$, $\Delta\Delta5()$, $\Delta\Delta6()$	THE STIEFNESS MATRIX AND LOAD MATRIX
č		AUGMENTED MATRIX
č	ANI (N)	ALPHANUMERIC REMARK. INFORMATION ONLY
č	AN2(N)	ALPHANUMERIC REMARK, INFORMATION ONLY
č	8()	CONTINUITY OR RECURSION COEFFICIENT
č	BB(), $BB1()$, $BB2()$	TEMPORARY B() TERMS
Č.	BMX(1.J)	BENDING MOMENT IN THE X DIRECTION
č	BMY(I.J)	BENDING MOMENT IN THE Y DIRECTION
ĉ	CXN	TEMPORARY INPUT VALUE OF TWISTING STIFFNESS
ĉ	CX(I+J)	TORSIONAL STIFFNESS
č	CY(I,J)	TORSIONAL STIFFNESS
č	CYN	TEMPORARY INPUT VALUE OF TWISTING STIFFNESS
č	C ()	CONTINUITY OR RECURSION COEFFICIENT
Ĉ	CC(), $CC1()$, $CC2()$.	TEMPORARY C() TERMS
С	DP(N)	SQUARE ROOT OF PRODUCT OF BENDING STIFFNESS
С	DX(I,J)	BENDING STIFFNESS (SLAB)
C	DXN	TEMPORARY INPUT VALUE OF BENDING STIFFNESS
С	DY(I,J)	BENDING STIFFNESS (SLAB)
С	DYN	TEMPORARY INPUT VALUE OF BENDING STIFFNESS
С	Ε()	CONTINUITY OR RECURSION COEFFICIENT
С	D()	CONTINUITY OR RECURSION COEFFICIENT
С	нх	INCREMENT LENGTH IN X DIRECTION
С	HXDHY3	HX DIVIDED BY HY CUBED
С	нү	INCREMENT LENGTH IN Y DIRECTION
С	HYDHX3	HY DIVIDED BY HX CUBED
С	1	STATION NUMBE X DIRECTION
С	II, Il	TEMPORARY VALUE OF I
С	INI	X COORDINATE OF THE FROM STATION
С	IN2	X COORDINATE OF THE THRU STATION
C	ISTA	EXTERNAL X STATION NUMBER
C	ITEST	BLANK FIELD FOR ALPHANUMERIC ZERO
C	J	STATION NUMBE Y DIRECTION
C	J1, J2	TEMPORARY VALUE OF J
۲. C	JNI	Y COURDINATE OF THE FRUM STALION
C C	JNZ	Y COURDINATE OF THE THRU STATION
ւ c	JSIA	EXTERNAL Y STATION NUMBER
с с	MX	NUMBER OF INCREMENTS IN X DIRECTION
с С	MARS	MX PLUS IHKEE
с С		MA PLUS FIVE
с с		MX PLUS SEVEN
L L	۲ M	NUMBER UP INCREMENTS IN Y DIRECTION

C	MYP5			IVE			
C C	MVD7		MY DILLS S				
C C			NIIMBED OF				
C C	NCT2		NUMBER OF	CADOC 1A	TADLE 2		
			NUMBER OF	CARUS IN	N TADLE J		
с С	NPKUD ODUN		NUMBER UP	PRUBLEM,	PRUG STUPS	IF ZERU	
L C			UNE DIVID	ED BY HX			
	ODHY		UNE DIVID	ED BY HY			
C	ODHXHY		ONE DIVID	ED BY HX	TIMES HY		
С	PDHXHY		POISSONS	RATIO DIV	IDED BY HX	TIMES HY	
С	PR		POISSONS	RATIO			
С	PX(I,J)		AXIAL LOA	D IN X DI	RECTION		
С	PXN		TEMPORARY	INPUT VA	ALUE OF AXIA	L LOAD	
С	PY(I,J)		AXIAL LOA	D IN Y DI	RECTION		
С	PYN		TEMPORARY	INPUT VA	LUE OF AXIA	L LOAD	
С	Q(I,J)		TRANSVERS	E FORCE P	PER MESH POI	NT	
C	QBMX		HXHY + SE	COND DERI	V BEND MOME	NT (X)	
С	QBMY		HYHX + SE	COND DERI	V BEND MOME	NT (Y)	
С	QN		TEMPORARY	INPUT VA	LUE OF LOAD		
Ĉ	0PX		VERTICAL	REACTION	DUE TO AXIA	EORCES	
č	0PY		VERTICAL	REACTION			
č	OTMY		HXHY # SE	COND DERI	V THIST MON	ENT (XV)	
c c			HVHY # SE		V THIST MON	ENT (VY)	
C			NET TOANS	VEDSE ENG	14 14131 AOM 075		
C C	S (T I)		CODINC CH				
	2(1)1		TENDODADY	TNDUT VA	ALUE PEK MESI	H PUINI	
	2.4		THICTING	INPUT VA	ALUE OF SUPPL	UKI SPRINGS	
ι c	1908		TWISTING	MUMENI ()			
C	1 M Y		TWISTING	MUPENI LY	(X)		
C	TX(I,J)		EXTERNAL	COUPLE IN	X DIRECTIO	N	
С	TXN		TEMPORARY	INPUT VA	LUE OF EXTER	RNAL COUPLE	
С	TY(I,J)		EXTERNAL	COUPLE IN	Y DIRECTIO	N	
C	TYN		TEMPORARY	INPUT VA	LUE OF EXTER	RNAL COUPLE	
С	W()		VERTICAL	DEFLECTIC) N		
C	W1(), W2())	TEMPORARY	VALUES C	DF W()		
С							
С							
CFOR	DIFFERENT	SIZED PROB	LEMS, ONL	Y THE DIM	ENSION CARD	S AND THE	
C	11 CARD	NEED BE CHA	NGED. FO	R EXAMPLE	. AA1(S+3.S-	+31.	
Ċ	AA6(S+3.)	L). AAUG(S+	3.5+3.2).	A(S+7.L+	7) B(S+3.S	+3.L+7)	
C	WHERE THE	S AND THE	L REFER	TO THE SH	ORT AND LONG	GLENGTHS	
C		EAL PROBLEM	. ALSO.	L1 IS S+7			
č							
C-+THIS	PROGRAM		NSTONED T		GRID WITH	MAXIMUN STZE	
с нц.	DE 20 BY	29 MESH 00	INTS.			HAXING TILL	
C			10130				
DIM.	NSTON	A127 261		A1(23.1)		12(23.1).	22117
1		A(21)2011		ATI2311	21.	MA2122,221	26117
1		- HALZJIII		AA112312	21	MALICJICJI	27117
4		AAS(23)231	,	AN1/2010	1 +	AND(2012)11	22361
3		AAUCIAA	21	AN113211	241	HN211411	22JL1
4		AAUG123,23	, 2] ,	01231231	1001	DD12312311	22JL1
5		BBL(23,23)	•	002123,2	2/1/	DMA(2())0)	22JL1
6		BMY (27,36)	,	6625,23	1001	((23,23),	22JL1
(Â		UCI(23,23)	,	002123,2		UX(27,36),	22JL /
8		CY(27,36),		D (23, 23)	•	UP(6),	22JL /
9		DX(27,36),		DY(27,36	5),	E(23,23),	22JL7
1		PX(27,36),		PY(27,36	5),	Q(27,36),	22JL7
2		S(27,36),		TX(27,36	5),	TY(27,36),	22JL7
3		₩(27,36),		W1(23,1)	,	W2(23,1)	22JL7
EQUI	VALENCE	(W,S), (B	,BMX}, (C,BMY)			22JL7
	L1 4	= 23					20JL 7
	L2 :	- 1					20JL7

L3 = 220JL7 6 FORMAT () 04MY3 5H 10 FORMAT (, 80X, 10HI----TRIM) 03FE4 ID 11 FORMAT (5H1 , 80X, 10HI----TRIM) 03FE4 ID 12 FORMAT (16A5) 04MY3 ID 13 FORMAT (5X, 16A5) 26AG3 ID 14 FORMAT (A5, 5X, 14A5) 19MR5 ID 15 FORMAT (///10H PROB , /5X, A5, 5X, 14A5) 19MR5 ID PROB (CONTD), /5X, A5, 5X, 14A5) 16 FORMAT (///17H 19MR5 ID RETURN THIS PAGE TO TIME RECORD FILE -- HM 19 FORMAT (///48H) 26AG3 ID 20 FORMAT (415, 4E10.3) 23 FORMAT (4(2X, 13), 6E10.3) 24 FORMAT (4(2X, 13), 20X, 4E10.3) 02N06 21JL7 21JL7 TABLE 1. CONTROL DATA 30 FORMAT (//30H 15AP3 1 NUM CARDS TABLE 2 , 42X, 13, 1 / 30H 1 20JL7 30H , 42X, I3, 2 NUM CARDS TABLE 3 20JL7 1 4 30H NUM INCREMENTS MX , 42X, I3, 20JL7 1 , 42X, I3, 5 30H NUM INCREMENTS MY 20JL7 1 INCR LENGTH HX INCR LENGTH HY , 35X, 30H E10.3,/ 6 25MY4 7 30H , 35X, E10.3,/ 15AP3 30H POISSONS RATIO , 35X, E10.3,/ 15MR5 Q 2 30H , 35X, E10.3) 16SE5 TABLE 2. STIFFNISS AND LOAD DATA, FULL VALUES, 15SE6 33 FORMAT (//51H 35H ADDED AT ALL STAS I, J IN RECT. • / 1 15AP3 / 50H DX 2 FROM THRU DY ٥ 26AP5 S CY 3 45H СХ ,/) 26AP5 TABLE 3. STIFFNESS AND LOAD DATA, FULL, 37 FORMAT (//44H 20JL7 45H VALUES ADDED AT ALL STAS I, J IN RECT. 26AP5 1 / 50H FROM THRU TΧ 26AP5 2 45H ΤY PΧ Þγ ,/) 26AP5 TABLE 4. RESULTS 39 FORMAT (//25H 111 20JL7 I,J DEFL 50H BMX 1 BMY 20JL7 2 20H REACT () 20JL7 TABLE 4. 40 FORMAT (//30H RESULTS (CONTD) 111 40H I,J TMX TMY (5X, 2(1X, I3, I3), 6E11.3) 1) TMX TMY 20JL7 1 43 FORMAT 21JL7 44 FORMAT (5X, 2(1X, I3, I3), 22X, 4E11.3) 21JL7 45 FORMAT (7X, I2, I3, 9E12.3) 02N06 60 FORMAT (15X, 215, 5X, E10.3) 14SE6 C----PRUGRAM AND PROBLEM IDENTIFICATION r ITEST = 5H19MR5 ID CALL TIC TOC (1) 26SE66 READ 12, (AN1(N), N = 1, 32) 19MR5 ID 28AG3 ID 1010 READ 14, NPROB, (AN2(N), N = 1, 14) IF (NPROB - ITEST) 1020, 9990, 1020 19MR5 ID 1020 PRINT 11 26AG3 ID 19MR5 ID PRINT 1 PRINT 13, (AN1(N), N = 1, 32) 19MR5 ID PRINT 15, NPRO8, (AN2(N), N = 1, 14) 26AG3 ID С C----INPUT TABLE 1 C. READ 20, NCT2, NCT3, MX, MY, HX, HY, PR 21JL7 PRINT 30, NCT2, NCT3, MX, MY, HX, HY, PR 02N06 C. C----COMPUTE FOR CONVENIENCE MXP7 = MX + 707N06

C

C

MYP7 = MY + 707N06 MXP5 = MX + 512006 MYP5 = MY + 512006 MXP3 = MX + 312006 HYDHX3 = HY / HX + 314SE6 HXDHY3 = HX / HY **314SE6 PDHXHY = PR / (HY + HX)14SE6 ODHXHY = 1.0 / (HY * HX)14SE6 ODHX = 1.0 / HX14SE6 ODHY = 1.0 / HY14SE6 D0 105 J = 1, MYP7 D0 100 I = 1, MXP7 21JL7 21JL7 $A(I_{J}J) = 0.0$ 07N06 BMX(I,J) = 0.007NO6 BMY(I,J) = 0.007N06 DX(I,J) = 0.001N06 DY(I,J) = 0.001N06 Q(I,J) = 0.001N06 S(I,J) = 0.001NO6 CX(I,J) = 0.001NO6 01NO6 CY(I,J) = 0.0TX(I,J) = 0.023 JE7 [Y(I, J) = 0.023JE7 PX(I,J) = 0.023JE7 $PY(I_{J}) = 0.0$ 23JE7 W(I,J) = 0.002N06 CONTINUE 100 04MY7 105 CONTINUE 23JE7 DO 140 J = 1, 2 DO 135 II = 1, MXP3 DO 130 I = 1, MXP3 22JE7 22JE7 21JL7 B(I,II,J) = 0.007N06 $C(I_{1}II_{1}J) = 0.0$ 07N06 CONTINUE 130 04MY7 135 CONTINUE 22JE7 140 CONTINUE 22JE7 С C----INPUT TABLE 2 С PRINT 33 14SE6 IF (1.GT.NCT2) GO TO 365 21JL7 DO 360 N = 1, NCT2 21JL7 READ 23, IN1, JN1, IN2, JN2, DXN, DYN, QN, SN, CXN, CYN PRINT 43, IN1, JN1, IN2, JN2, DXN, DYN, QN, SN, CXN, CYN 22AP5 22AP5 I1 = IN1 + 420AP5 J1 = JN1 + 4 20AP5 I2 = J2 = IN2 + 4 20AP5 J2 = JN2 + 4 IF (I1.6T.I2) GO TO 360 20AP5 16AG6 D0 355 I = I1, I2 21JL7 IF (J1.GT.J2) GO TO 360 DO 350 J = J1, J2 16AG6 21JL7 DX(I,J) = DX(I,J) + DXN4SE64 DY(I,J) = DY(I,J) + DYN4SE64 Q(I,J) = Q(I,J) + QNS(I,J) = S(I,J) + SN 13AP3 13AP3 CX(I,J) = CX(I,J) + CXN15AP5 CY(I,J) = CY(I,J) + CYN15AP5 350 CONTINUE 13AP3 355 CONTINUE 22JE7

```
360
          CONTINUE
                                                                           13AP3
                                                                           04MY7
  365
          CONTINUE
С
C----INPUT TABLE 3
С
                                                                           22AP5
      PRINT 37
          IF ( 1.GT.NCT3 ) GO TO 385
                                                                           15SE6
          DO 380 N = 1, NCT3
                                                                           21JL7
      READ 24, IN1, JN1, IN2, JN2,
PRINT 44, IN1, JN1, IN2, JN2,
                                               TXN, TYN, PXN, PYN
                                                                           15SE6
                                              TXN, TYN, PXN, PYN
                                                                           15SE6
               I1 =
                      IN1 + 4
                                                                           13AP5
               J1 =
                       JN1 + 4
                                                                           13AP5
                                                                           16AP5
                       IN2 + 4
               I2 =
               J2 =
                       JN2 + 4
                                                                           13AP5
          IF ( 11.GT.12 ) GO TO 380
                                                                           16AG6
              375 I = I1, I2
                                                                           21JL7
          DO
          IF ( J1.GT.J2 )
                               GO TO 380
                                                                           16AG6
          DO 370 J = J1, J2
                                                                           21.11 7
               TX(I,J) = TX(I,J) + TXN
                                                                           20AP5
               TY(I,J) = TY(I,J) + TYN
                                                                           20AP5
                                                                           20AP5
               PX(I,J) = PX(I,J) + PXN
               PY(I,J) = PY(I,J) + PYN
                                                                           20AP5
 370
          CONTINUE
                                                                           20AP5
  375
          CONTINUE
                                                                           21JL7
  380
          CONTINUE
                                                                           20AP5
                                                                           20AP5
  385
          CONTINUE
C
C----PLACE SPRING AT MESH PTS BEYOND BOUNDARIES OF REAL SLAB TO MAKE
         SOLUTION OF NON-RECTANGULAR SLABS OR SLABS WITH HOLES POSSIBLE.
С
С
          D0 400 J = 3, MYP5
D0 395 I = 3, MXP5
                                                                           22JE7
                                                                           22DE6
                                                                           21JL7
               SUM = DX(I-1,J) + DX(I,J) + DX(I+1,J)
                   + DY(I_{J}-1) + DY(I_{J}) + DY(I_{J}+1)
                                                                           21JL7
     1
          IF ( SUM ) 395, 390, 395
                                                                           22DE6
  390
               S(I,J) = 1.0E+20
                                                                           22DE6
  395
          CONTINUE
                                                                           22DE6
  400
          CONTINUE
                                                                           22JE7
С
C----FORM SUB-MATRICES
С
             600 J = 3, MYP5
                                                                           04MY7
          DO
          DO
              500 I = 3, MXP5
                                                                           21JL7
               II = I - 2
                                                                           12006
               AA1(II,II) = DY(I,J-1) = HXDHY3
                                                                           12006
               AA2(II,II) = -2.0 + (PDHXHY + (DX(I,J) + DY(I,J-1))
                                                                           12006
                               + HXDHY3 + ( DY(I,J-1) + DY(I,J) ) )
                                                                           14SE6
     1
                               + ODHXHY = ( - CX(I,J) - CX(I+1,J)
                                                                           14SE6
     2
                               -CY(I,J) - CY(I+1,J) ) - ODHY + PY(I,J)
     3
                                                                          14SE6
               AA3(II,II) = HYDHX3 + (DX(I-1,J) + 4.0 + DX(I,J)
                                                                           12006
                               + DX(I+1,J) ) + HXDHY3 + ( DY(I,J-1) + 4.014SE6
     1
     2
                               # DY(I,J) + DY(I,J+1) ) + PDHXHY # 4.0
                                                                          14SE6
                               + ( DX(I,J) + DY(I,J) ) + ODHXHY
     3
                                                                           14SE6
                                                                          14SE6
     4
                               # { CX(I,J) + CX(I,J+1) + CX(I+1,J)
     5
                               + CX(I+1,J+1) + CY(I,J) + CY(I+1,J)
                                                                           14SE6
     6
                               + CY(I,J+1) + CY(I+1,J+1) + ODHX
                                                                           14SE6
     7
                                                                           14SE6
                               # ( PX(I,J) + PX(I+1,J) ) + ODHY
     8
                               + ( PY(I,J) + PY(I,J+1) ) + S(I,J)
                                                                           14SE6
               AA4(II,II) = -2.0 + (HXDHY3 + (DY(I,J) + DY(I,J+1))
                                                                           12006
     1
                               + PDHXHY = (DX(I,J) + DY(I,J+1))
                                                                           14SE6
```

2 + ODHXHY + (- $CX(I_{1}J+1) - CX(I+1_{1}J+1)$ 14SE6 3 -CY(I,J+1) - CY(I+1,J+1)) - ODHY14**\$**E6 4 # PY(I,J+1) 14SE6 AA5(II,II) = HXDHY3 + DY(I,J+1) 1200.6 AA6(II,1) = Q(I,J) - ODHX + (TX(I,J) - TX(I+1,J)) -12006 ODHY + (TY(I,J) - TY(I,J+1))1 15SE6 IF(II-1) 410, 410, 405 21JL7 405 AA2(II,II-1) = DX(I-1,J) + PDHXHY + DY(I,J-1) + PDHXHY + 21JL7 ODHXHY + (CX(I,J) + CY(I,J))1 14SE6 AA3(II,II-1) = -2.0 + (HYDHX3 + (DX(I-1,J) + DX(I,J)) 14SE61 + PDHXHY = (DX(I-1,J) + DY(I,J))) 14SE6 + ODHXHY = (- CX(I,J) - CX(I,J+1) 2 14SE6 3 -CY(I,J) - CY(I,J+1)) - ODHX + PX(I,J)14SE6 AA4(II,II-1) = PDHXHY + (DX(I-1,J) + DY(I,J+1))12006 + ODHXHY # (CX(I,J+1) + CY(I,J+1)) 1 14SE6 410 IF(II-2) 430, 430, 420 04MY7 420 AA3(II,II-2) = DX(I-1,J) + HYDHX304MY7 430 IF(II-MXP3) 440, 450, 450 04MY7 AA2(II,II+1) = PDHXHY + (DX(I+1,J) + DY(I,J-1))440 04MY7 1 + ODHXHY * (CX(I+1,J) + CY(I+1,J)) 14SE6 AA3(II,II+1) = -2.0 * (HYDHX3 * (DX(I,J) + DX(I+1,J)) 120C6 1 + PDHXHY + (DX(I+1,J) + DY(I,J))) 14SE6 + ODHXHY # (- CX(I+1,J) - CX(I+1,J+1) 2 14SE6 3 -CY(I+1,J) - CY(I+1,J+1)) - ODHX14SE6 4 # PX(I+1,J) 14SE6 AA4(II,II+1) = PDHXHY * (DX(I+1,J) + DY(I,J+1)) 12006 + ODHXHY * (CX(I+1,J+1) + CY(I+1,J+1)) 1 15SE6 450 IF(II+1-MXP3) 460, 500, 500 04MY7 460 AA3(I1,II+2) = HYDHX3 = DX(I+1,J)04MY7 500 CONTINUE 04MY7 С C----BEGIN MAIN SOLUTION С DO 515 I = 1, MXP3 21JL7 A1(I,1) = A(I,J-1)1200.6 A2(I,1) = A(I,J-2)12006 DO 510 K = 1, MXP3 21JL7 BB1(I,K) = B(I,K,J-1)12006 BB2(I,K) = B(I,K,J-2)12006 12006 CC1(I,K) = C(I,K,J-1)CC2(I,K) = C(I,K,J-2)120C6 510 CONTINUE 04MY7 515 CONTINUE 30JE7 CALL MATMPY (MX, MX, AA1, MX, MX, BB2, E, L1) 14FE7 DO 525 K = 1, MXP3 21JL7 DO 520 I = 1, MXP321 JL 7 E(I,K) = E(I,K) + AA2(I,K)20006 520 CONT INUE 30JE7 525 CONTINUE 22JE7 CALL MATMPY (MX, MX, E, MX, MX, BB1, D, L1) 14FE7 CALL MATMPY (MX, MX, AA1, MX, MX, CC2, CC, L1) 14FE7 DO 535 K = 1, MXP3 21JL7 DO 530 I = 1, MXP3 21 JL 7 D(I,K) = D(I,K) + CC(I,K)20006 530 CONTINUE 04MY7 535 CONTINUE 22JE7 K = 1, MXP3DO 545 21 JL 7 540 I = 1, MXP3 DO 21 J L 7 D(I,K) = -1.0 + (D(I,K) + AA3(I,K))20006 540 CONTINUE 04MY7

```
545
                                                                                22JE7
          CONTINUE
      CALL INVRSL ( MXP3, D, D, J, MY, AAUG, L1, L3 )
                                                                                17FE7
      CALL MATMPY ( MX, MX, D, MX, MX, AA5, CC, L1 )
CALL MATMPY ( MX, MX, E, MX, MX, CC1, BB, L1 )
                                                                                14FE7
                                                                                14FE7
           DO 555 K = 1, MXP3
                                                                                21JL7
           DO 550 I = 1, MXP3
                                                                                21JL7
                BB1(I,K) = BB(I,K) + AA4(I,K)
                                                                                20006
  550
           CONTINUE
                                                                                04MY7
           CONTINUE
  555
                                                                                22JE7
      CALL MATMPY ( MX, MX, D, MX, MX, BB1, BB, L1 )
                                                                                14FE7
      CALL MATMP1 ( MX, MX, E, MX, A1, AA, L1, L2 )
CALL MATMP1 ( MX, MX, AA1, MX, A2, A1, L1, L2 )
                                                                                14FE7
                                                                                14FE7
           DO 560 I = 1, MXP3
                                                                                21 JL7
                A2(I,1) = AA(I,1) + A1(I,1)
                                                                                20006
  560
           CONTINUE
                                                                                04MY7
           DO 570 I = 1, MXP3
                                                                                21 JL7
                A1(I,1) = A2(I,1) - AA6(I,1)
                                                                                2000.6
          CONTINUE
                                                                                04MY7
  570
      CALL MATMP1 ( MX, MX, D, MX, A1, AA, L1, L2 )
                                                                                14FE7
           DO 585 I = 1, MXP3
                                                                                21 JL7
                                                                                12006
                A(I,J) = AA(I,1)
               580 K = 1, MXP3
           nn
                                                                                21JL7
                B(I,K,J) = BB(I,K)
                                                                                12006
                C(I,K,J) = CC(I,K)
                                                                                12006
  580
           CONTINUE
                                                                                04MY7
  585
           CONTINUE
                                                                                22JE7
  600
           CONTINUE
                                                                                04MY7
С
C----COMPUTE AND PRINT RESULTS
С
           DO 650 LL = 3, MYP5
                                                                                21JL7
               J = MY + 8 - LL
                                                                                12006
               625 I = 1, MXP3
           DO
                                                                                21JL7
                W1(I,1) = W(I,J+1)
                                                                                12006
                W2(I,1) = W(I,J+2)
                                                                                12006
                AA(I,1) = A(I,J)
                                                                                12006
           DO 620 K = 1, MXP3
                                                                                21 JL7
                BB(I,K) = B(I,K,J)
                                                                                12006
                CC(I,K) = C(I,K,J)
                                                                                12006
  620
           CONTINUE
                                                                                05MY7
  625
           CONTINUE
                                                                                22JE7
      CALL MATMP1 ( MX, MX, BB, MX, W1, A1, L1, L2 )
                                                                                14FE7
      CALL MATMP1 ( MX, MX, CC, MX, W2, A2, L1, L2 )
                                                                               14FE7
           DO 630 I = 1, MXP3
                                                                                21JL7
                W(I_{1}J) = AA(I_{1}) + AI(I_{1}) + A2(I_{1})
                                                                                20006
  630
           CONTINUE
                                                                                04MY7
  650
          CONTINUE
                                                                                04MY7
                W(1,3) = 2.0 + W(1,4) - W(1,5)
                                                                                02N06
                W(MXP3_{3}) = 2.0* W(MXP3_{4}) - W(MXP3_{5})
                                                                                02N06
                W(1,MYP5) = 2.0 + W(1,MY+4) - W(1,MY+3)
                                                                                02N06
                W(MXP3,MYP5) = 2.0 + W(MXP3,MY+4) - W(MXP3,MY+3)
                                                                                02N06
          DO 665 J = 3, MYP5
DO 660 I = 3, MXP5
                                                                                21JL7
                                                                                21 JL7
                II = MXP5 + 3 - I
                                                                                07N06
                W(II,J) = W(II-2,J)
                                                                                07N06
  660
          CONTINUE
                                                                                04MY7
  665
           CONTINUE
                                                                                22JE7
           DO 670 J = 3, MYP5
                                                                                21 JL7
                W(1,J) = 0.0
                                                                                07N06
                W(2,J) = 0.0
                                                                                07N06
```

W(MX+6,J) = 0.007N06 W(MX+7,J) = 0.007N06 670 CONTINUE 04MY7 PRINT 11 15SE6 PRINT 1 21 JL7 PRINT 13, (AN1(N), N = 1, 32) 19MR5 ID PRINT 16, NPROB, (AN2(N), N = 1, 14) 28AG3 ID PRINT 39 02N06 DO 800 J = 3, MYP5 21 JL 7 PRINT 6 21JL7 DO 750 I = 3, MXP5 21JL7 ISTA = I - 402N06 JSTA = J - 402N06 700 N = 1, 3DÐ 21JL7 K = I + N - 202N06 DP(N+3) = SQRT (DX(K,J) + DY(K,J))02N06 $BMX(K_{+}J) = DX(K_{+}J) + (W(K-1_{+}J) - W(K_{+}J) - W(K_{+}J)$ 02N06 1 + W(K+1,J)) /(HX+HX)+ DP(N+3) + PR + (W(K,J-1)02N06 2 $-W(K_{1}J) - W(K_{1}J) + W(K_{1}J+1))/ (HY + HY)$ 02N06 L = J + N - 202N06 DP(N) = SQRT (DX(I,L) + DY(I,L))02N06 $BMY(I_{1}L) = DY(I_{1}L) + (W(I_{1}L-1) - 2.0 + W(I_{1}L))$ 02N06 1 $+ W(I_{+}L+1)) / (HY + HY) + PR + DP(N)$ 02N06 2 * (W(I-1, L) - 2.0 * W(I,L)+ W(I+1,L))/ (HX 02N06 3 * HX) 02N06 700 CONTINUE 04MY7 QBMX = (BMX(I-1,J) - 2.0 + BMX(I,J) + BMX(I+1,J))02N06 1 * HY / HX 02N06 UBMY = (BMY(I, J-1) - 2.0 + BMY(I, J) + BMY(I, J+1))02N06 1 * HX / HY 02N06 QTMX = (W(I-1,J-1) + CX(I,J) - W(I-1,J) + (CX(I,J))02N06 1 + CX(I,J+1)) + %(I-1,J+1) + CX(I,J+1) 02N06 2 $-W(I_{+}J-I) + (C)(I_{+}J) + CX(I+I_{+}J)) + W(I_{+}J)$ 02N06 3 * (CX(I,J) + CX(I,J+1) + CX(I+1,J) + CX(I+1,J 02NO6 4 +1)) - W(I,J+1) + (CX(I,J+1) + CX(I+1,J+1)) 02NO6ž + W(I+1,J-1) + CX(I+1,J) - W(I+1,J) + (CX(I))02N06 6 +1,J + CX(I+1,J+1) + W(I+1,J+1) + CX(I+1,J 02N06 7 +1)) /(HY + HX) 02N06 QTMY = (W(I-1,J-1) + CY(I,J) - W(I-1,J) + (CY(I,J))02N06 1 + $CY(I_{J}+1)$) + $W(I-1_{J}+1)$ + $CY(I_{J}+1)$ 02N06 2 - W(I,J-1) + (CY(I,J) + CY(I+1,J)) + W(I,J)02N06 3 * (CY(I,J) + CY(I,J+1) + CY(I+1,J) + CY(I+1,J 02N06 4 +1)) - W(I,J+1) * (CY(I,J+1)+CY(I+1,J+1)) 02N06 5 + W(I+1,J-1)07N06 5 * CY(I+1,J) - W(I+1,J) * (CY(I+1,J) + CY(I+1,J 02NO6 6 +1)) + W(I+1,J+1) * CY(I+1,J+1)) /(HX * HY)02N06 QPX = (1.0 / HX) + (PX(I,J) + W(I-1,J) - (PX(I,J))02N06 1 + PX(I+1,J)) * W(I,J) + PX(I+1,J) * W(I+1,J))02N06 QPY = (1.0 / HY) * (PY(I,J) * W(I,J-1) - (PY(I,J))02N06 + PY(I,J+1)) + W(I,J) + PY(I,J+1) + W(I,J+1))02NO6 1 REACT = QBMX + QBMY + QTMX + QTMY - QPX - QPY 02N06 PRINT 45, ISTA, JSTA, W(I,J), BMX(I,J), BMY(I,J), REACT 02N06 750 CONTINUE 04MY7 800 CONTINUE 04MY7 PRINT 6 21 JL 7 PRINT 6 21JL7 PRINT 16, NPROB, (AN2(N), N = 1, 14) 02N06 PRINT 40 02N06 DU 960 J = 3, MYP5 21JL7 PRINT 6 21 J L 7

```
DU 950 I = 3, MXP5
                                                                         21JL7
              ISTA = I - 4
                                                                         02NO6
              JSTA = J - 4
                                                                        02N06
              MX = (CX(I,J) + CX(I,J+1) + CX(I+1,J) + CX(I+1,J+1)) 02NO6
                        * 0.250 * (W(I-?,J-1) - W(I-1,J+1) - W(I+1,J)
    1
                                                                        02N06
                        -1) + W(I+1,J+1) ) / ( 4.0 + HX + HY )
    2
                                                                         02NO6
              TMY = (CY(I,J) + CY(I,J+1) + CY(I+1,J) + CY(I+1,J+1))
                                                                        02N06
    1
                        * ( -0.250 ) * ( W(I-1, J-1) - W(I-1, J+1)
                                                                        02N06
                        - W(I+1,J-1) + W(I+1,J+1) ) / ( 4.0 + HX + HY) 02N06
    2
     PRINT 45, ISTA, JSTA, TMX, TMY
                                                                        04MY7
 950
        CONTINUE
                                                                        04MY7
 960
         CONTINUE
                                                                        04MY7
     CALL TIC TOC (4)
                                                                        25$26
                                                                        26AG3 ID
        GO TO 1010
                                                                        19MR5 ID
9990
         CONTINUE
9999
        CONTINUE
                                                                        04MY3 ID
     PRINT 11
                                                                        08MY3 ID
     PRINT 1
                                                                        21JL7
     PRINT 13, ( AN1(N), N = 1, 32 )
                                                                        19MR5 ID
     CALL TIC TOC (2)
                                                                        26$E6
     PRINT 19
                                                                        26AG3 ID
     END
```

SUBROUTINE MATMPY (M1, N1, AA, M2, N2, BB, CC, L1)	14FE7
CIMENSION AA(L1,L1), BB(L1,L1), CC(L1,L1)	14FE7
M13 = M1 + 3	20006
N13 = N1 + 3	20006
LX = N2 + 3	20006
DO 35 I =1, M13	21JL7
D(0 = 30 M = 1, LX)	21JL7
CC(I,M) = 0.0	20006
DO = 25 K = 1, N13	21JL7
CC(I,M) = AA(I,K) + BB(K,M) + CC(I,M)	20006
25 CONTINUE	30JE7
30 CONTINUE	22JE7
35 CONTINUE	22JE7
RETURN	04MY7
END	14SE6

S	UBROUTINE MATMP1 (M1, N1, AA, M2, A1, A2, L1, L2)	21AP7
D	IMENSION AA(L1,L1), A1(L1,L2), A2(L1,L2)	21AP7
	M13 = M1 + 3	20006
	N13 = N1 + 3	20006
	DO 30 I = 1, M13	21JL7
	A2(I,1) = 0.0	20006
	DO 25 K = 1, N13	21JL7
	A2(I,1) = AA(I,K) + AI(K,1) + A2(I,1)	25006
25	CONTINUE	30 JE 7
3 0	CONTINUE	22JE7
R	ETURN	04MY7
Ei	ND	

	SUBROUTINE INVRSL (MX3, AA, BB, JX, MY, AAUG, L1, L3)	21AP7
	DIMENSION AA(L1,L1), BB(L1,L1), AAUG(L1,L1,L3)	21AP7
23	FORMAT (5X, 20H NO INVERSE EXISTS)	15SE6
	$\vec{c}P = 1.0E - 15$	14SE6
	MYP5 = MY + 5	31066
	MM = MX3	02ND6
	NN = 1	20 0C 6
_	IF(JX-3) 60, 50, 60	04MY7
50	MM = MX3 - 1	04MY7
	NN = 2	280 C 6
	G0 T0 70	04MY7
60	IF(JX-MYP5) 70, 50, 70	04MY7
70	DU = 105 [= NN, MM	21JL7
	DG 100 J = NN, MM	21JL7
	$AAUG(1, \mathbf{J}, \mathbf{I}) = AA(1, \mathbf{J})$	20006
00	IF(1 - J) = 0	
00	AA06(1, j, j, 2) = 0.0	
00	AAU((1,1,2)) = 1.0	04417
100		0407
105		22.1F 7
102	DO 1.35 I = NN. MM	21.11.7
	KK = I + 1	14SE6
	IF (ABSF(AAUG(I,I,1)) - EP) 110, 110, 150	04MY7
110	DC 120 II = KK , MM	21JL7
	IF (ABSF(AAUG(II,I,1)) - EP) 120, 120, 130	04MY 7
120	CONTINUE	04MY7
	GO TO 990	14SE6
130	DO 145 K = 1, 2	21JL7
	DO 140 L = NN, MM	21JL7
	SAVE = AAUG(I,L,K)	14SE6
	AAUG(I,L,K) = AAUG(II,L,K)	14SE6
	AAUG(II,L,K) = SAVE	14SE6
140	CONTINUL	04MY7
145		22JE7
100	STURE = AAUG(1),1,1	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21 177
	ANIG(T.L.K) = ANIG(T.L.K) / STOPE	14556
1.60		04MY7
165	CONTINUE	22.157
•	$D(1 180 12 = NN \cdot MM$	21 J Y 7
	IF (I2 - I) 170, 180, 170	04MY7
170	SAVE2 = AAUG(12,1,1)	04MY7
	DO = 178 K = 1, 2	21JY7
	DO 175 JJ = NN, MM	21JY7
	AAUG(I2, JJ, K) = AAUG(I2, JJ, K) - SAVE2 + AAUG(I, JJ, K)	14SE6
175	CONTINUE	21 J Y 7
178	CONTINUE	21 JY 7
160		04MY/
100	UUNIINUE DO 105 II - NN MM	22357
	100 190 KT - NN, MM DU 170 JJ - NN, MM	21 177
	BR(K1, 11) = AABC(K1, 11, 2)	21017
1 90	CONTINUE	04MY7
195	CONTINUE	22.1F7
	RETURN	04MY7
990	PRINT 23	15SE6
	END	14SE6

APPENDIX 4

SAMPLE INPUT FOR DSLAB 5

101	0	1 0 21	LAD WITH IND	,000 ED CEI	NIEK LUAD		
6	0	8	8 6.000E+00	6.000E+00	2.50JE-01		
0	0	8	8 U.625E+06	0.625E+06	1.000E+99		
1	0	7	8 0.625E+06	0.625E+06			
ō	1	8	7 0.625E+06	0.625E+05			
1	1	7	7 0.625E+06	0.625E+06	-1-000E+99		
1 6	1	3	1 0.0202100	0.0202.00	1.0005+05		
4	4	4	4		1.0002+05	1 0765.04	
1	1	8	8			1.0755+06	1.0/92+06
102 6 0 1 0 1 4 1 0	48 1 0 1 1 4 1 1	I NCH 8 7 8 7 4 8 8 8 8 8	SQ PLATE SI 8 6.000E+00 8 6.250E+05 8 6.250E+05 7 6.250E+05 7 6.250E+05 4 8 8	MPLE SUPPOR 6.000E+00 6.250E+05 6.250E+05 6.250E+05 6.250E+05	RTS, PY = 10E5, 0 2.5COE-01 1.000E+99 -1.000E+99 1.000E+05	9 = 10E5 A 1•875E+06	1.875E+06 1.00CE+05
103 6 0 1 0 1 4 1 1 0	48 0 1 1 4 1 0 1	I NCH 8 7 8 7 4 8 8 8 8 8	SQ PLATE SI 8 6.000E+00 8 6.250E+05 8 6.250E+05 7 6.250E+05 4 8 8 8	MPLE SUPPOR 6.000E+00 6.250E+05 6.250E+05 6.250E+05 6.250E+05	RTS, Px=PY=10£5, Q: 2.500E-01 1.000E+99 -1.000E+99 1.000E+05	=10E5 1.875E+05 1.000E+05	1.875E+06 1.000E+05
104 5 0 1 0 1	48 0 0 1 1 0	I NCH 8 7 8 7	SQ PLATE SI. 8 6.000E+00 8 6.250E+05 7 6.250E+05 7 6.250E+05 8 6.250E+05	MPLE SUPPOF 6.000E+00 6.250E+05 6.250E+05 6.250E+05 6.250E+05	RTS, UNIFORM LOA 2.500E-01 9.000E+03 1.000E+99 9.000E+03-1.000E+99 9.000E+03 9.000E+03	D 1000 LB	
1	1	8	8			1.8755+06	1.8/55+06

CE313126 HWY SLAB PROJECT DSLAB 5 CF STELZER SAMPLE INPUT FOR EXAMPLE PROBLEMS FOR DSLAB5 FOR USE IN SLAB REPORT APPENDIX 4

8 X 8 SLAB WITH 100,000 LB CENTER LOAD

101

105 7 0 1 0 1 1 4 1	48 INC 0 8 0 7 1 8 1 7 1 7 4 4 1 8	H SQ PLATE SIMPLE SUPPO 8 6.000E+00 6.000E+00 8 6.250E+05 6.250E+05 8 6.250E+05 6.250E+05 7 6.250E+05 6.250E+05 7 6.250E+05 6.250E+05 7 4 8	RTS, K = 3600 LBS 2.500E-01 1.000E+99 -1.000E+99 3.600E+03 1.000E+05	1•875E+06 1•875E+06									
106A 9 0 1 0 1 1 1 7 7	48 INC 0 8 0 8 0 7 1 8 1 7 1 8 0 1 0 7 1 1 1 7	H SQ PLATE SIMPLE SUPPO 8 6.000E+00 6.000E+00 8 6.250E+05 6.250E+05 8 6.250E+05 6.250E+05 7 6.250E+05 6.250E+05 8 8 8 8 7 7	RTS, 5000 LB LINE 2.500E-01 1.000E+99 -1.000E+99 2.500E+03 2.500E+03 2.500E+03 2.500E+03 2.500E+03	E LOADS 1.875E+06 1.875E+06									
601 16 0 1 1 0 1 6 6 1 0 0 1 6 0 1 0 1 4 1 0 1	EXAMPLE 2 12 0 12 1 12 0 11 1 11 7 12 7 11 0 6 1 6 1 6 1 12 0 12 7 12 7 12 7 11 7 12 7 11 1 5 4 15 1 1 12 1 11 1 12 1 11 1 11	PROBLEM BRIDGE APPRO 16 2.400E+01 2.400E+01 16 8.890E+07 8.890E+07 15 8.890E+07 8.890E+07 16 8.890E+07 8.890E+07 7 -1.777E+08 7 -1.777E+08 16-1.777E+08 16-1.777E+08 16 15 15 16 16 16 16 16 16 16	ACH SLAB 2.500E-01 -1.500E+02 -1.500E+02 -1.500E+02 -1.500E+02 1.440E+04 1.440E+04 1.440E+04 1.440E+04 -1.000E+04	2.667E+08 2.667E+08									
610	60	X 58		SLAB SIM	ΡLΕ	SUI	PPORTS	S AND	CON	CENTRATE	ΣL	OADS	
-----	----	------	-----	-----------	-----	------	--------	--------------	------	-----------	----	-----------	-----------
41	0	20	29	3.600E+01	2.4	400	E+01 1	.500	E-01				
0	0	20	0	3.328E+08	3.3	3281	E+08-3	8.248	E+02				
1	0	19	0	3.328E+08	3.	3281	E+08-3	8.248	E+02				
0	29	20	29	3.328E+08	3•3	3281	E+08-3	8.248	E+02				
1	29	19	29	3•328E+08	3.	3281	E+08-3	8.248	E+02				
0	1	20	1	7•313E+07	7.	313	E+07-3	8.105	E+02				
1	1	19	1	7•313E+07	7.3	313	E+07-3	8.105	E+02				
0	28	20	28	7.313E+07	7.3	313	E+07-3	8.105	E+02				
1	28	19	28	7•313E+07	7.	313	E+07-3	8.105	E+02				
0	2	20	2	1•132E+08	1.	1321	E+08-3	8.600	E+02				
1	2	19	2	1•132E+08	1.	1321	E+08-3	8.600	E+02				
0	27	20	27	1•132E+08	1.	1321	E+08-3	8.600	E+02				
1	27	19	27	1•132E+08	1•1	1321	E+08-3	8.600	E+02				
0	4	20	4	2•322E+08	2•3	3221	E+08-4	• 575	E+02				
1	4	19	4	2•322E+08	2•3	3221	E+08-4	+•575	E+02				
0	25	20	25	2•322E+08	2•1	3221	E+08-4	• 575	E+02				
1	25	19	25	2•322E+08	2•:	3221	E+08-4	• 575	E+02				
0	5	20	24	3.147E+08	3.	147	E+08-5	• 063	E+02	1•000E+9	99		
1	5	19	24	3.147E+08	3•1	147	E+08-5	•063	E+02				
16	8	16	8				-2	2.080	E+04				
16	11	16	11				-2	2.080	E+04				
0	3	20	3	1•656E+08	1.6	6561	E+08-4	•080	E+02				
1	3	19	3	1•656E+08	1•6	556	E+08-4	•080	E+02				
0	26	20	26	1.656E+08	1•6	556	E+08-4	•080	E+02				
1	26	19	26	1•656E+08	1.6	556	E+08-4	•080	E+02				
16	13	16	13				-2	2.080	E+04				
16	16	16	16				-2	2.080	E+04				
16	18	16	18				-2	2.080	E+04				
16	21	16	21				-2	2.080	E+04				
1	6	19	23							-1•000E+9	99		
10	5	10	24							1•000E+9	99		
1	6	19	23									5•351E+08	5•351E+08
1	1	19	1									4•425E+08	4•425E+08
1	2	19	2									1•559E+08	1•559E+08
1	3	19	3									2•342E+08	2•342E+08
1	4	19	4									3•351E+08	3•351E+08
1	5	19	5									4•878E+08	4•878E+08
1	29	19	29									4•425E+08	4•425E+08
1	28	19	28									1•559E+08	1•559E+08
1	27	19	27									2•342E+08	2•342E+08
1	26	19	26									3•351E+08	3•351E+08
1	25	19	2.2									4•878E+08	4•878E+08

IDENT	IFICA	TION		X	A	MA	22	E		P	R	0 E	3Z.	EI	4:	5						COL	ΈÐ	BY_	4	<u> </u>	1.4			_	04	TE_	4	-/ ·	- 4	67	, 	P	AGE.	/	OF		Ł
	,	5		0		15			zo			25		3			35	i		40			45			50			55			60			65		,	0		75	1		,
¢.	5/3	1/2	6	H	wy	5	LĄ	8	P	RO	IE	c7	•	0:	sZ/	18	5				C/		57	EL	zŁ	R																	
SAA	1PL	E	1.	w.	r /	Ēο	2	EX	A	4Pl	E	P	Ro	84	EA	75	f	01		ØS	1	8	5	Fa	R	U	SE	1	N	51	. /	8	R L	P	ar	7	A/	-	EN	PI	×	-	
		İΤ		t	i i		2	⊢- 51	AV	5 1		r H	-	00	,	>0	0	22	3	c e	NT	E	•	LO.	AC	Ħ	11	+	Ħ	Ħ		T			T		++					+	Í
H		,					-												Ħ				Ţ				$\frac{1}{1}$	1	H			╈		+	Ť		+	+			┢┼╴	++	+
┝╍┝╌┝				1	+		_				.0	00	EI	00) * ().	01	02		00	▼⊲		50	0 C	-0	1		+				╁		╉	+		+	╉┤				+	
\square	0	1		7		8	_		1	ro	• 6	25	E	+0(171	2.	62	57	+	0 6	_	+	-				7	. 0	00	'E1	• 9	9			-			╀		-	⊢	+	-
	1	1		2		7	_		8	+ 0	. 6.	25	E	•06	4).	62	5£	4	06	•																_	\downarrow					-
	0			'		8			7	-0	• 6	25	E	-06	+	9.	62	5 Z	4	06																							
	1	•		1		7			7	+0	. 6	25	E	00	+	Ø.	62	5	+	06		Ì				-	-1	. 0	a	DE.	+9	9											
	4	4		r		4			4												+1		00	0E	+0	5			I					i				Π				11	
		,††				8	1		8			T										+	1					+				4	1	2	75	A	-01		1	87	51	+	2
								, .		0															0				54			Ť.					Ħ						1
Hſ				•	•	//	4/1		99		4		\square			<u>.</u> _	3				73		-		1	łf					4	╞		0			+	<u> </u>			7	++	+
$ \vdash \downarrow$	6	•		1		8			8	+6	. 0	00	E	+0 [) /	6.	00	01	*	00	+:	2 . s	50	ØĒ	- (21	1	-		+		_									┝┿	++	4
	l	1		2		8			8	+6	. z	50	E.	10	5 + 1	6.	23	01	F +	05	•						41	. 6	201	ÞE-	19	9									\square		
	1	/		2		7			8	16	. z	50	E	10	5+1	5.	25	02	*	05		ĺ																					
	4	2		/		9			7	• 6	. 2	50	E,	0	5+	6.	25	OE	-	05												Τ											
		,			-	7			7	+ 4	. 2	50	E-	-0-			25	0	-	05							./		0	E.	+9	9					Ħ	T			Π		
	,	5	<u> </u>	0	1	15			20			25		3	•	-1-	34	5	- -	40			45	<u> </u>	L	50	<u> </u>	- -	55			60			65	<u></u>	<u></u> 7	·0		7	┢┷		Ļ
[_																							

NTIFICATION.	EXA	MPLE	5	PI	90	B	LE	<u>,</u>	1:	5				c	ODE	D B1		GI	٩A			_	DAT	re	4-	-/-	- 6	7	_	PAG	3E_	2	_OF.	8	
5	ю	15	20		25		3	00		35			40			45		50			55		6	0		65			70			75			80
4	4	4	4										4	4.	0	00	.	05	•					Π					Ţ				Τ		
1	1	8	8				•																	+/	, ,	87	54	;	06	+1		87	SE	+0	6
Ö	1	8	8									i												T					i	+1	.,	20	OE	10	5
103	48	INCH	50	PL	A7	E	51	NO	LE	5	VF	PO	AT	5			PX	-	4	Y	-	10	E:	ł	6	=		0	65		Π		T		
4	2	8	8+	6.	00	OE.	+0	0+	٢.	00	0 E	+0	0+	2.	5	00	Ę-,	01						ľ									1		
0	0	8	8+	6.	25	0E-	+0	5 + 1	6.	25	OE	+0	5						+1	. 0	00	E+	99										T		
	0	7	81	6.	25	0E	+0	5+	6.	25	OE	+0	5			Τ		~								-		T					1		
0	1	8	71	۴.	25	0E	+0	5+	6.	25	OE	+0	5																	İ	;		t		
1	/	7	71	· 6 .	25	OE	+0	5+1	6.	25	ØE	+0	5						-/	.0	00	E.	99					T			Ī	T	1		
4	4	4	4										1	1.	0	do	4	05			•			T	T				+			Ħ	T		
1		8	8													Π								+1	1.	87	SE	+	06	41		77	5E	+0	6
/	0	8	8					-																+/	1.	00	OE	+	05	•	ſ	Ť	T		
0		8	8					T					1							1						-				1	• •	10	OE	+0	5
104	48	INCH	50	PL,	47	Ε.	511	y A	LE	S	UP	PO	A	5	Π	0	v/	FO	R M	1	oA	2	10		,	LA	,					Ť			
5	a	8	8	6.	00	0E-	+0		6,	00	OE	+0	0	2.	5	00	E-	0		Ī									T		-	t			
0	a	8	8	6.	25	O E.	+0		4.	25	0F	+0	5	9.	0	00	F¢.	03			00	F+	99									Ħ	-		
5	10	15	20	<u> </u>	25		3	0		35		1	40	1.1.	<u> </u>		-1.1	50	<u> </u>		55		60	┢╵		65			70		<u> </u>	75			80

IDENTIFICATION EXAMPL	E PROBLEMS	_ CODED BY GAA DAT	4-1-67 PAGE 3 OF 8
	20 25 30 35	10 4 3 50 55 60	65 70 75 80
	7 6.250 =+05 6.250 =+0	5 9.000 =+ 03-1, 000 =+ 99	
	7 6,250E+06 6,250E+0	5 7 .000E+03	
	8 6 2505+05 6.2505+0	5 7.0005+03	
	8		1.875E+06 1.875E+06
105 48 INCH S	Q PLATE SIMPLE SUPPO	RTS. K = 3600 LBS	
7 0 8	8 6.000 E+00 6.000 E+0	0 2.500E-01	
0 8	8 6.250E+05 6.250E+0	5 1.000 =+99	
1 0 7	8 6.250 E+05 6.250 E+0	5	
0 1 8	7 6.250E+05 6.250E+0	5	
	7 6.250E+05 6.250E+0	5 - 1.000E+99	
	7	3. 600E+03	
4 4 4	4	1-000E+05	
/ / 8	S		1.875E+06 1.875E+06
106A 48 IMCH	O PLATE SIMPLE SUPPO	PTS. 5000 LB LINE LOA	25
9 4 8	8 6.000E+00 6.000E+0	0 2.500E-01	
0 0 8	8 6.250E+05 6.250E+0	5 / · OOD E 499	
	20 25 30 35		0 63 70 7 5 80

IDENTIFICATION	EXAM	PLE	PROBLEM	45	CODED BY GAA	DATE	4-1-67	PAGE 4	_o <u>r</u> 8
ı s	10 13	20	25 30	35 40	45 50 55	60	65 70	75	80
	a 7	8	6.250E+05	6.250E+05	-1.000	E+99			
0	1 8	7	6.250E+05	6.250E+05					
	1 7	7	6.250E+05	6-250E+05					
	1 8	8					1 - 875E+06	1. 87	5E+06
	0 1	8			2.500E+03				
7	a 7	8			2.500 = + 03				
	1 1	7			2.500E+03				
7	1 7	7			2-5005+03				
601	EXAMO	LE PAG	BLEM BRID	SE APPROAC	HSLAB	-			
16	2 12	16	2.400E+01	2.400E+01	2.500E-01				
a	0 12	16	8-890 E+07	8-890E+07	-1.500E+02				
0	1 12	15	8.890E+07	8. 890E+07	-1.500E+02				
	o 11	16	8.890E+07	8.8905+07	-1.500E+02				
	1 11	15	8.89 0E+07	8.89 OE+07	-1.500E+02	++++			
d	7 /2	. 7		-1.777E+08					
	7 17	7	┤┼┼┾╋┠┼┼┊┼╏	-1.777E+08		┿┿┿╉	╵ ┼┼ ┥╋┝┝┝╎		
1 S	10 15	20	25 30	35 40	45 50 55	60	65 70	7	80

IDENTIFICATION_	EX	AM	<u>PLE /</u>	ROBLEM	15		- co	DDED E	G G	A			DAT	4	-/-	6	2	PAG	5	_0F_	8
,	ю	15	20	253	0	35 40	, ,	45	50		55	4	60		65		70		75		80
6	4	6	16-1	. 777E+0	3																
6	1	6	15-1	- 777E+0	3																Ţ
		12	16				ŀ							2.	66	7 <i>E</i> +	08	2.	66	TEI	08
ø	0	12								1	. 00	OE.	199								
0	7	12	15				\square			1	. 44	ØE	+04								
	7	11	15							1	.49	OE	104								
a	7	12	16							1.	. 44	0 E	+04				\prod				
	7	//	16				T			1	. 44	OE,	r 0 q								
	15	4	15				-1.	000	E+04												
	15	1	15				-/.	000	E+04												
0	1	12	16											-6.	.00	OE.	04				
1	1	. //	16											-6.	00	0EI	04				
610	60	X .	58 SA	AB SIM	PLE	SUPPOR	75	AN	CON	CA	NTA	47	ED	20	ADS						
41	0	20	29 3	. 600 E+0	1 2.4	00E+01	1.	500	E-01					·							
0	4	20	03	.328E+0	9 3.3	286+08	-3.	248	E+02								•				
	q	19	0 3	3- 32 <i>8E+0</i>	g 3.3	28E +08	-3.	248	E+0Z												j
1 5	10	15	20	25	10	35 40		45	50		55		60		E.		70		75		60

IDENTIFICATION_	EX	<u>(AMP</u>	LE	PROB LEM	Is	- CODED BY	4 A		<u>67</u>	PAGE 6	.of 8
	ю	19	20	25 30	35 44	45 54	0 55	60	65	70 75	80
D	29	20	29	3.328E+08	3-32 BE+08	- 3- 248E+02	2				
	29	19	29	3.328E108	3.328E+08	-3.248E+02	2				
0	1	20	1	7-3135+07	7. 31 3 E+07	- 3. 105E+02					
111	1	19	/	7.813E+07	7.313E+07	-3. 105 E+02					
0	28	20	28	7.313E+07	1.313E+07	- 3- 1 05 E+02					
	28	17	28	7.313E+07	7.3/3E+07	- 3. 105E+02					
0	2	20	2	1.132E+08	1.132E+08	- 3. 600E+02					
	2	19	2	1.132 E+08	1.132E+08	-3- 600E+02					
4	27	20	27	1.132E+08	1.132E+08	- 3. 600E+02					
	27	19	27	1.132E+08	1.132E+08	- 3. 600 E+ 02					
o		20		2.322 E+08	2.3225+08	-4.575E+02					
1	4	19		2.322E+08	2.322E+08	-4.575E+02					
P	25	20	.25	2: 322E+08	2.322E+08	- 4. 575E+02					
1	25	19	25	2.322E+08	2.322E+08	-4.575 E+02					
0	5	20	24	3.147E+08	3.147E+08	-5.063E+02	1.000E	199		<u></u> †††††	
	5	19	24	3. 1475+08	3. 14 7E+08	-5.063E+02		┿╄╊┿	┆ ╵╎╞╏┊╎┝┥	╋┼┿┿┿╋	
(5)	10	15	zo	25 30	35 40	45 50	55	60	63	75	<u> </u>

IDENTIFICATION_	Ex	AMP	LE	PRO	<u>B LE</u> /	Ms			со	DED	ву	î A	A		_	DATE	4	-/-	6	7	PAGE	7	_0F_	8
	10	ıs	20	25	30		35	40		45		50		55		60		65		70		75		80
16	8	16	8					-	2.	08	DE+C	,4												
16	11	16	11	-				-	2.	08	0E+C	4												
D	3	20	3	1.65	6E+0B	1.6	56E+4	28-	4.	08	DE+C	2				,								
1	3	19	3	1.65	6E+08	1.6	56E+0	,8-	4.	08	OE+C	z												
o	26	20	26	1.65	6E+ 08	1-6	56 <i>E</i> +4	78-	4.	08	OE+	Z												
	26	19	26	1.65	6E+08	1-6	56E+4	78-	4.	Ò8	0 EH	2												
16	13	16	/3					-	2.	08	0 E + 6	24												
16	16	16	16					-	2.	08	0 E + 1	24												
16	18	16	18					-	2.	08	0 E+	04												
16	21	16	21					-	2.	08	0 E +	94			1									
	6	19	23									-	-1.	00	DE+	99								
10	5	10	24									Π	1.	00	0E+	99								
	6	19	23														5.	35	IE	+08	5.	35	I E	+08
	1	19	/														4.	. 42	SE	+08	9	42	5E	-
1	2	19	2]				1	. 55	9E	+08	1.	55	9E	+08
	3	19	3														2	34	2E	+08	2	. 34	2 <i>F</i>	+08
1 5	10	15	20	25	30		35	40	-	45		50		55		60		65	Ł	70		7	Ĺ_	80

	<u>M PLE PROBLEMS</u>	CODED BY GAA	DATE 4-1-67 PAGE 8 OF	8
. 	20 25 30	35 40 45 50	55 60 65 70 75	80
1 4 19	9		3.351 E+ 08 3.351 E	108
1 5 19	5		4.878E+08 4.878E	108
1 29 19	29		4.425E+08 4.425E	108
1 28 19	28		1.559E+08 1.659E	100
1 27 19	27		2.3425+08 2.3625	105
1 26 19	26		3.3515408 3.3515	- 0 -
1 75 19	25		4 87186408 (1 87186	
	╉┿╍┿┅╴╴╏╴┊╽┥╏╎┥┥┥┥╸			+++
<u></u>			╶╉┼┼┼┽┫┽╎╎╎┨╎┼╵┿╂┼┼┾╊┾┾	┿┼┥
			╶╉╌╌┼╌╏╴╎╶┥╴╡╴╎╴╎╴╏╴╏╴┥╍┣┥╌┦	┿╇
┝╼╪╼╪╼┼╸╋╵╎╴╡╶┼╴┦╺┿╍┼╍┿╍┼╍	╉ ╹╵╵╵╹╹╵╹╹╹╹╹			
	20 25 30 3 20 25 30		50 60 63 70 71 71	<u>13</u> 80

APPENDIX 5

.

SAMPLE COMPUTER OUTPUT

PROGRAM OSLAB 5 - DECK 1 - STELZER REVISION DATE 24 JULY 1967 CE313126 Hwy SLAB PROJECT DSLAB 5 CF STELZER RUN EXAMPLE PROBLEMS FOR USE IN SLAB REPORT APPENDIX 5

PROB (CONTE)

601 EXAMPLE PROBLEM BRIDGE APPROACH SLAB

TABLE 4. RESULTS

I,J	DEFL	8 M X	BMY	REACT
$\begin{array}{cccc} -1 & -1 \\ 0 & -1 \\ 1 & -1 \\ 2 & -1 \\ 3 & -1 \\ 4 & -1 \\ 5 & -1 \\ 6 & -1 \\ 7 & -1 \\ 8 & -1 \\ 9 & -1 \\ 10 & -1 \\ 11 & -1 \\ 12 & -1 \\ 13 & -1 \end{array}$	-1.207E-03 4.452E-96 1.180E-95 1.043E-95 1.034E-95 1.039E-95 1.135E-95 9.412E-96 1.139E-95 1.048E-95 1.048E-95 1.044E-95 1.050E-95 1.203E-95 4.580E-96 -1.229E-03			0. -7.701-105 -3.575-104 -4.517-104 -2.977-104 -3.902-104 -3.902-104 -5.76E-93 -2.902-104 -1.800-104 -2.005-104 -1.152-104 0.
-1 0 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0	-1.239E-97 1.235E-96 2.596E-96 2.519E-96 2.519E-96 2.573E-96 2.617E-96 2.537E-96 2.557E-96 2.557E-96 2.593E-96 2.663E-96 1.273E-96 -1.176E-97	0. 0. -4.100E-91 9.898E-93 9.542E-93 9.111E-93 1.969E-94 2.101E-95 1.811E-94 9.121E-93 9.621E-93 9.957E-93 -4.224E-91 -1.412-105 0.	$\begin{array}{c} 0.\\ -7.701-105\\ -3.575-104\\ -4.517-104\\ -2.977-104\\ -4.005-104\\ -3.902-104\\ 5.576E-93\\ -3.902-104\\ -3.800-104\\ -4.005-104\\ -3.800-104\\ -4.665-104\\ -1.152-104\\ 0. \end{array}$	0. -1.385E+03 -2.896E+03 -2.896E+03 -2.819E+03 -2.830E+03 -7.873E+03 -7.887E+03 -7.887E+03 -7.858E+03 -2.893E+03 -2.963E+03 -1.423E+03 -1.412-105
-1 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1	1.207E-03 -1.981E-96 -6.258E-96 -5.353E-96 -5.313E-96 -5.338E-96 -6.206E-96 -4.160E-96 -6.222E-96 -5.371E-96 -5.362E-96	0. 3.018E+00 -7.241E+02 -7.048E+02 -7.048E+02 -7.076E+02 -7.183E+02 -1.729E+01 -7.216E+02 -7.142E+02 -7.146E+02	0. -1.385E+03 -2.896E+03 -2.841E+03 -2.819E+03 -2.830E+03 -2.873E+03 -2.917E+03 -2.887E+03 -2.857E+03 -2.858E+03	-5.954E-12 1.681E+03 5.658E+03 4.753E+03 4.753E+03 4.738E+03 5.589E+03 3.576E+03 5.605E+03 4.771E+03 4.762E+03

100

10 11 12 13	1 1 1 1	-5.421E-96 -6.366E-96 -2.035E-96 1.229E-03	-7.233E+02 -7.407E+02 -1.819E-12 0.	-2.893E+03 -2.963E+03 -1.423E+03 0.	4.821E+03 5.766E+03 1.735E+03 -1.819E-12
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13	2222222222222222222	-4.494E-03 -4.789E-03 -4.692E-03 -4.601E-03 -4.566E-03 -4.585E-03 -4.654E-03 -4.675E-03 -4.675E-03 -4.627E-03 -4.630E-03 -4.687E-03 -4.687E-03 -4.6916E-03 -4.620E-03	0. 7.397E-01 -2.216E+02 -2.491E+02 -2.479E+02 -2.465E+02 -2.178E+02 -5.675E+00 -2.203E+02 -2.515E+02 -2.554E+02 -2.586E+02 -2.309E+02 2.592E-11 0.	0. -4.527E+02 -8.692E+02 -8.680E+02 -8.679E+02 -8.678E+02 -8.686E+02 -9.638E+02 -9.638E+02 -8.787E+02 -8.876E+02 -8.969E+02 -9.054E+02 -9.136E+02 -4.779E+02 0.	-f.593E-11 -1.000E+02 -f.000E+02 -f.000E+02 -f.000E+02 -f.000E+02 -f.056E+02 -f.056E+02 -f.056E+02 -f.056E+02 -f.000E+02 -f.000E+02 -f.000E+02 -f.000E+02 -3.000E+02 2.592E-11
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-1.172E-02 -1.114E-02 -1.079E-02 -1.059E-02 -1.053E-02 -1.056E-02 -1.072E-02 -1.077E-02 -1.077E-02 -1.068E-02 -1.070E-02 -1.083E-02 -1.108E-02 -1.148E-02 -1.209E-02	0. -1.449E+00 3.171E+01 5.000E+01 5.895E+01 3.641E+01 3.197E+00 3.496E+01 5.021E+01 5.408E+01 4.399E+01 2.715E+01 1.028E-10 0.	0. 2.543E+02 4.975E+02 4.894E+02 4.835E+02 4.803E+02 4.780E+02 5.099E+02 4.707E+02 4.660E+02 4.631E+02 4.638E+02 4.638E+02 2.375E+02 0.	-1.683E-10 -3.000E+02 -6.000E+02 -6.000E+02 -6.000E+02 -6.000E+02 -5.971E+02 -5.971E+02 -6.000E+02 -6.000E+02 -6.000E+02 -6.000E+02 -3.000E+02 1.028E-10
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13	4444444444444444	-1.777E-02 -1.662E-02 -1.604E-02 -1.576E-02 -1.577E-02 -1.597E-02 -1.648E-02 -1.607E-02 -1.695E-02 -1.699E-02 -1.618E-02 -1.656E-02 -1.723E-02 -1.846E-02	0. -2.890E+00 1.432E+02 2.043E+02 2.234E+02 2.032E+02 1.488E+02 8.302E+00 1.487E+02 2.076E+02 2.215E+02 2.013E+02 1.414E+02 -4.275E-11 0.	0. 6.581E+02 1.268E+03 1.250E+03 1.240E+03 1.234E+03 1.236E+03 1.231E+03 1.224E+03 1.224E+03 1.224E+03 1.224E+03 1.249E+03 6.472E+02 0.	1.018E-10 -3.000E+02 -6.000E+02 -6.000E+02 -6.000E+02 -5.922E+02 -5.922E+02 -5.922E+02 -5.922E+02 -6.000E+02 -6.000E+02 -6.000E+02 -6.000E+02 -6.000E+02 -6.000E+02 -3.000E+02 -4.275E-11
-1 0 1 2 3 4 5	5555555	-2.113E-02 -1.982E-02 -1.916E-02 -1.886E-02 -1.878E-02 -1.886E-02 -1.915E-02	0. -3.279E+00 1.569E+02 2.309E+02 2.545E+02 2.353E+02 1.623E+02	0. 7.488E+02 1.445E+03 1.422E+03 1.410E+03 1.405E+03 1.408E+03	3.662E-10 - ³ .000E+02 -6.000E+02 -6.000E+02 -6.000E+02 -6.000E+02 -5.911E+02

6	5	-1.976E-02	9.457E+00	1.537E+03	-5.805E+02
7	5	-1.931E-02	1.640E+02	1.405E+03	-*+911E+02
8	5	-1.919E-02	2.378E+02	1.398E+03	-6.000E+02
9	5	-1.926E-02	2.562E+02	1.401E+03	-6.000E+02
10	5	-1.950E-02	2.302E+02	1.412E+03	- €.000E+02
11	5	-1.994E-02	1.552E+02	1.434E+03	-6.000E+02
12	5	-2.074E-02	1.728F-11	7.423E+02	-3,000E+02
13	5	-2-218E-02	0.	0.	1.728E-11
	-		0.		147200 11
-1	6	-2.145E-02	0.	0	-1 028E-10
ñ	Ă	=2 0625=02	-2 5765+00	5 2645+02	-3.0200-10
1	6	-1 0945-02	7 4005401	1 0755402	-4 0000000
2	4	-1 0405-02	1 2495+01	1.0236+03	-0.0092+02
2	٥ ۲	-1.900E-02	1.5405702	1.0076+03	-0.000E+02
2	Ŷ	-1.9556-02	1.00000002	9.974E+U2	-c.005E+02
4	ò	-1.966E-02	1.396E+02	9.932E+02	-6.005E+02
ં	6	-1.996E-02	7.707E+01	9.948E+02	-5.948E+02
0	6	-2.056E-02	6.595E+00	1.060E+03	-4.833E+02
1	6	-2.019E-02	8.120E+01	9.929E+02	-5.948E+02
8	6	-2.012E-02	1.464E+02	9.896E+02	-6.004E+02
9	6	-2.022E-02	1.630E+02	9•927E+02	- €.004E+02
10	6	-2.047E-02	1.363E+02	1.002E+03	-6.005E+02
11	6	-2.092E-02	6.799E+01	1.022E+03	-6.010E+02
12	6	-2.169E-02	-2.310E-10	5.231E+02	-3.015E+02
13	6	-2.291E-02	0.	0.	-2.310E-10
			-		
-1	7	-2.024E-02	0.	0.	~1.879E+02
õ	7	-1-921E-02	-1.905E+02	-7.235E-01	2.824E+02
ĩ	7	-1.881E-02	-1.475E+02	-1.207E-01	6.440E+02
2	7	-1.867E-02	-8.760E+01	2 3065-01	4 4646+02
2	7	-1 969E-02	-6 8025401	2 7605-01	4.0040702
	'7	-1.000L-02		2 4075 01	4 7395402
4	4	-1.881E-02	-8.080E+01	3.487E-01	4.738E+U2
2	1	-1.909E-02	-1.504E+U2	-3.403E-02	9.400E+U2
0		-1.9646-02	5.541E-01	1.175E+00	-4.566E+U2
1	1	-1.940E-02	-1.481E+02	7.222E-02	9.649E+02
8	1	-1.940E-02	-6.600E+01	5.455E-01	5.114E+02
9	1	-1.954E-02	-5.263E+01	6.272E-01	*•229E+02
10	1	-1.977E-02	-7.960E+01	4.767E-01	5.336E+02
11	7	-2.015E-02	-1.670E+02	-1.847E-02	7.773E+02
12	7	-2.082E-02	~2.462E+02	-9.276E-01	3.451E+02
13	7	-2.231E-02	0.	0.	-2.462E+02
-1	8	-1.528E-02	0.	0.	1.949E-10
0	8	-1.550E-02	5.523E-01	-3.128E+02	1.453E+02
1	8	-1.545E-02	-1.420E+02	-5.771E+02	2.890E+02
2	8	-1.539E-02	-1.650E+02	-5.585E+02	2.862E+02
3	8	-1.538E-02	-1.603E+02	-5.407E+02	2.856E+02
4	8	-1.542E-02	-1.490E+02	-5.203E+02	2.874E+02
5	8	-1.548E-02	-1.278E+02	-5.014E+02	2.875E+02
6	8	-1.555E-02	-3.339E+00	-5.599F+02	3.852E+02
7	8	-1.568E-02	-1.169E+02	-4.653E+02	2.990E+02
8	8	-1.581E-02	-1.278E+02	-4.523E+02	3.102E+02
ģ	Ř	-1.597E-02	-1.329E+02	-4.473F+02	3,193F+02
ιń	Å	-1.6165-02	-1.4205402	-4.4526102	3-3035+05
11	о 0	-1 6615-02	-1 360E+02	-4 4915+02	2 4205402
12	D D	1 440E-02	1 0026402	-3 KEOF+02	3 7035402
12	0	-1.0092-02	1.0035-10	-2.4286+02	1 0035 102
13	Q	-1.0//2-02	U.	0.	1.883E-10
	~	1 0315 05	<u>^</u>	•	
-1	4	-1.231E-02	U.	U.	-2.227E-10
0	9	-1.287E-02	1.408E+00	-4.722E+02	7.078E+01
1	9	-1.3026-02	-1 312E+02	-8.887E+02	1 5076+02

2	9	-1.302E-02	-1.799E+02	-8.463E+02	1.498E+02
3	9	-1.296E-02	-1.774E+02	+8.041E+02	1.463E+02
4	9	-1.285E-02	-1.465E+02	-7.570E+02	1.404E+02
5	9	-1.268E-02	-9.481E+01	-7.085E+02	1.261E+02
6	9	-1.236E-02	-4.533E+00	-7.275E+02	1.002E+02
7	9	-1.272E-02	-7.968E+01	-6.175E+02	1.282E+02
8	9	-1.294F-02	-1.134E+02	-5.856E+02	1.455E+02
9	ģ	-1.311F-02	-1.269F+02	-5.687F+02	1,553E+02
10	ģ	-1.326E-02	-1.257E+02	-5-613E+02	1.635E+02
11	á	-1.337E-02	-9.630E+01	-5.663E+02	1.703E+02
12	á	-1 341E-02	-2 487E-10	+2.998E+02	8.631E+01
12	á	-1 3195-02	0	0	-1 487E-10
15	7	-1.0196.02	V •	0.	201011 10
-1	10	=1.118E=02	0.	0.	2.609E=11
ō.	10	-1.188E-02	1.741E+00	-5.699E+02	4.215E+01
ĩ	10	-1.208E-02	-1 249E±02	-1 079E+03	9.5716+01
2	10	-1 2036-02	-1 7705+02		\$ 260E+01
2	10	-1.194E-02	-1.6665+02	-0 4615403	9 21 25 +01
4	10	-1 1645-02	-1 1655402	-9.401E+02	6 4E 0E + 01
	10	-1.104E-02		-0.004E+U2	0.4000701
2	10		-2.040E+UL	-1.1900+02	2 (255.00
0	10	-1.035E-02	-4.820E+00	-1.497E+U2	-2.635E+00
1	10	-1.078E-02	-4.607E+01	-6.166E+02	1.689E+01
8	10	-1.104E-02	-/.9//E+01	-5.619E+02	3.575E+01
9	10	-1.119E-02	-9.369E+01	-5.285E+02	4.427E+01
10	10	-1.127E-02	-8.739E+01	-5 .113 E+02	4.896E+01
11	10	-1.128E-02	-5.764E+01	-5.094E+02	4.962E+01
12	10	-1.117E-02	8.595E-11	-2.631E+02	7.167E+01
13	10	-1.083E-02	0.	0.	8.595E-11
			•	•	
-1	11	-1.221E-02	0.	0.	-1.851E-10
0	11	-1.286E-02	1.624E+00	-6.458E+02	7.028E+01
1	11	-1.294E-02	-1.223E+02	-1.226E+03	1.455E+02
2	11	-1.271E-02	-1.760E+02	-1.13 8E+03	1 .321E+ 02
3	11	-1.229E-02	-1.45 3 E+02	-1.044E+03	1.080E+02
4	11	-1.167E-02	-6.715E+01	-9.383E+02	7.228E+01
5	11	-1.076E-02	-1.788E+01	-8.027E+02	1.581E+01
6	11	-9.538E-03	-4.771E+00	-7.177E+02	-3.860E+01
7	11	-9.899E-03	-2.876E+01	-5 .582E+ 02	- °• 393E+01
8	11	-1.007E-02	-5.805E+01	-4.807E+02	-2.005E+01
9	11	-1. 013E-02	-6.727E+01	-4.307E+02	-1.646E+01
10	11	-1.012E-02	-5.554E+01	-4.019E+02	-1.690E+01
11	11	-1.004E-02	-2.889E+01	-3.904E+02	-2.181E+01
12	11	-9.834E-03	-1.030E-10	-1.965E+02	-1.678E+01
13	11	-9.460E-03	0.	0.	-1.030E-10
-1	12	-1.567E-02	0.	0.	-7.078E-11
0	12	-1.607E-02	9.975E-01	-6.826E+02	1.627E+02
1	12	-1.587E-02	-9.882E+01	-1.305E+03	3.143E+02
2	12	-1.529E-02	-1.711E+02	-1.190E+03	2.804E+02
3	12	-1.448E-02	-1.097E+02	-1.080E+03	2.340E+02
4	12	-1.340E-02	2.959E+01	-9.686E+02	1.717E+02
5	12	-1.185E-02	3.987E+01	-7.875E+02	7.853E+01
6	12	-9.884E-03	-4.555E+00	-6.562E+02	-9.997E+00
7	12	-9.965E-03	-3.775E+01	-4.790E+02	-2.974E+01
8	12	-9.905E-03	-6.604E+01	-3.880E+02	-2.946E+01
9	12	-9.791E-03	-6.622E+01	-3.281E+02	-3.601E+01
10	12	-9.650E-03	-4.430E+01	-2.914E+02	-4.414E+01
11	12	-9.460F-03	-1.496F+01	-2.722F+02	-5,510F+01
12	12	-9.178E-03	-4.093F-12	-1.329F+02	-3,568F+01
13	12	-8.781E-03		0.	-4.093E-12
	÷ C-		~ •	~.	100/06 14

-1 13 0 13 1 13 2 13 3 13 4 13 5 13 6 13 7 13 8 13 9 13 10 13 11 13 12 13 13 13	-2.175E-02 -2.164E-02 -2.101E-02 -1.984E-02 -1.849E-02 -1.681E-02 -1.431E-02 -1.431E-02 -1.128E-02 -1.038E-02 -1.038E-02 -9.991E-03 -9.662E-03 -9.346E-03 -8.981E-03 -8.543E-03	0. -2.731E-01 2.393E+01 -1.525E+02 -4.623E+01 2.619E+02 1.369E+02 -3.953E+00 -7.998E+01 -1.113E+02 -9.690E+01 -5.768E+01 -1.669E+01 4.320E-12 0.	0. -5.950E+02 -1.174E+03 -1.037E+03 -9.338E+02 -8.631E+02 -6.581E+02 -5.248E+02 -3.700E+02 -2.922E+02 -2.381E+02 -2.014E+02 -1.796E+02 -8.522E+01 0.	2.547E-10 3.231E+02 6.104E+02 5.429E+02 4.649E+02 3.682E+02 2.210E+02 7.558E+01 2.158E+01 -1.897E+00 -2.455E+01 -4.348E+01 -6.168E+01 -4.134E+01 4.320E-12
-1 14 0 14 1 14 2 14 3 14 4 14 5 14 6 14 7 14 8 14 9 14 10 14 11 14 12 14 13 14	-3.014E-02 -2.925E-02 -2.819E-02 -2.613E-02 -2.409E-02 -2.183E-02 -1.795E-02 -1.351E-02 -1.351E-02 -1.132E-02 -1.132E-02 -1.056E-03 -9.996E-03 -9.079E-03 -8.577E-03	0. -2.197E+00 4.516E+02 -1.322E+02 3.308E+01 8.391E+02 2.762E+02 -2.531E+00 -1.564E+02 -1.640E+02 -1.540E+02 -9.156E+01 -3.154E+01 8.572E-11 0.	0. -2.275E+02 -5.091E+02 -4.553E+02 -3.938E+02 -3.485E+02 -2.514E+02 -2.6477E+02 -2.085E+02 -1.876E+02 -1.593E+02 -1.321E+02 -1.132E+02 -5.330E+01 0.	7.918E-11 5.427E+02 1.024E+03 9.048E+02 7.875E+02 6.572E+02 4.332E+02 1.935E+02 1.086E+02 5.198E+01 8.202E+00 -2.421E+01 -5.080E+01 -3.853E+01 8.572E-11
-1 15 0 15 2 15 3 15 5 15 5 15 6 15 7 15 8 15 9 15 10 15 11 15 12 15 13 15	-3.933E-02 -3.767E-02 -3.645E-02 -3.314E-02 -3.039E-02 -2.781E-02 -2.217E-02 -1.613E-02 -1.613E-02 -1.250E-02 -1.134E-02 -1.052E-02 -9.906E-03 -9.361E-03 -8.790E-03	0. -4.156E+00 1.614E+03 -1.806E+02 4.289E+01 2.157E+03 3.690E+02 -1.769E-01 -2.492E+02 -2.776E+02 -2.202E+02 -1.354E+02 -5.483E+01 -4.283E-11 0.	0. 4.924E+02 1.624E+03 5.694E+02 5.743E+02 1.554E+03 5.227E+02 1.910E+02 -2.223E+01 -8.283E+01 -3.559E+01 -7.190E+01 -2.932E+01 0.	-2.444E-10 7.849E+02 -8.501E+03 1.309E+03 1.150E+03 -8.998E+03 6.783E+02 -4.473E+01 2.134E+02 1.198E+02 5.297E+01 5.927E+00 -2.944E+01 -3.041E+01 -4.283E-11
-1 16 0 16 1 16 2 16 3 16 4 16 5 16 6 16 7 16 8 16 9 16	-4.619E-02 -4.438E-02 -4.259E-02 -3.909E-02 -3.571E-02 -3.204E-02 -1.841E-02 -1.581E-02 -1.370E-02 -1.21/E-02	0. -4.529E+00 4.996E+02 -3.651E+01 8.432E+01 7.887E+02 2.419E+02 1.316E+00 -1.419E+02 -1.673E+02	C. 3.941E-10 8.395E-10 4.969E-10 4.627E-10 3.929E-10 2.228E-10 3.491E+02 2.269E-10 1.073E-10 3.001E-11	-6.173E-11 4.890E+02 9.267E+02 8.257E+02 7.284E+02 6.226E+02 4.405E+02 1.337E+02 1.573E+02 9.448E+01 5.039E+01

10	16	-1.111E-02	-8.824E+01	1.370E-10	1.993E+01
11	16	-1.036E-02	-4.080E+01	3.001E-11	-1.757E+00
12	16	-9.744E-03	1.714E-11	-4.284E-12	-9.690E+00
13	16	-9.132E-03	0.	0.	1.714E-11
-1	17	-5.304E-02	0.	0.	0.
0	17	-5.107E-02	0.	0.	3.941E-10
1	17	-4.917E-02	0.	0.	8.395E-10
2	17	-4.501E-02	0.	0.	4.969E-10
3	17	-4.110E-02	0.	0.	4.627E-10
- 4	17	-3.695E-02	0.	0.	3.929E-10
5	17	-2.931E-02	0.	0.	2.228E-10
6	17	-1.953E-02	0.	0.	3.491E+02
7	17	-1.739E-02	0.	0.	2.269E-10
8	17	-1.475E-02	0.	0.	1.073E-10
9	17	-1.288E-02	0.	0.	3.001E-11
10	17	-1.162E-02	0.	0.	1.370E-10
11	17	-1.077E-02	0.	0.	3.001E-11
12	17	-1.013E-02	0.	0.	-4.284E-12
13	17	-9.473E-03	0.	0.	0.

PROB (CONTD) 601 EXAMPLE PROBLEM BRIDGE APPROACH SLAB

TABLE 4. RESULTS(CONTD)

I	J	TMX	TMY
-1	-1	0.	0.
0	-1	0.	0.
1	-1	0.	0.
2	-1	0.	0.
3	-1	0.	0.
- 4	-1	0.	0.
5	-1	0.	0.
6	-1	0.	0.
7	-1	0.	0.
8	-1	С.	0.
9	-1	С.	0.
10	-1	0.	0.
11	-1	0.	0.
12	-1	0.	0.
13	-1	0.	0.
-1	0	0.	0.
Ō	0	-6.987E+01	6.987E+01
1	0	-5.410E-91	5.410E-91
2	0	1.393E-91	-1.393E-91
3	0	2.909E-93	-2.909E-93
4	0	-1.101E-91	1.101E-91
5	0	1.248E-91	-1.248E-91
6	0	-3.413E-93	3.413E-93
7	0	-1.316E-91	1.316E-91

8		1.033E-91	-1.033E-91
9		-1.005E-92	1.005E-92
10		-1.499E-91	1.499E-91
11		5.444E-91	-5.444E-91
12		7.113E+01	-7.113E+01
13		0.	0.
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13		-1.146E+01 2.178E+01 1.450E+01 1.903E+00 -1.018E+01 -1.621E+01 -2.464E+00 1.129E+01 5.267E+00 -6.876E+00 +1.956E+01 -2.651E+01 1.039E+01 0.	0. 1.146E+01 -2.178E+01 -1.4>0E+01 -1.903E+00 1.018E+01 1.621E+01 2.464E+00 -1.129E+01 -5.267E+00 6.876E+00 1.956E+01 2.651E+01 -1.039E+01 0.
-1 0 2 3 4 5 6 7 8 9 10 11 12 13	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	C. 1.239E+02 6.358E+01 3.058E+01 3.721E+00 -2.202E+01 -5.199E+01 -6.815E+00 3.844E+01 8.641E+00 -1.696E+01 -4.369E+01 -7.604E+01 -1.300E+02 C.	0. +1.239E+02 -6.358E+01 -3.058E+01 -3.721E+00 2.202E+01 5.199E+01 6.815E+00 -3.844E+01 -8.641E+C0 1.696E+01 4.369E+01 7.604E+01 1.300E+02 0.
-1	33333333333333333	0.	0.
0		1.118E+02	-1.118E+02
1		7.712E+01	-7.712E+01
2		2.799E+01	-2.799E+01
3		1.649E+00	-1.649E+C0
4		-2.364E+01	2.364E+01
5		-6.972E+01	6.972E+01
6		-1.010E+01	1.010E+01
7		4.975E+01	-4.975E+01
8		4.272E+00	-4.272E+00
9		-2.029E+01	2.029E+01
10		-4.599E+01	4.599E+01
11		-9.463E+01	9.463E+01
12		-1.204E+02	1.204E+02
13		0.	0.
-1	4	0.	0.
0	4	5.966E+01	-5.966E+01
1	4	4.681E+01	-4.681E+01
2	4	1.406E+01	-1.406E+01
3	4	-3.594E+00	3.594E+00

4 5 7 8 9 10 11 12 13	4 4 4 4 4 4 4 4 4	-2.064E+01 -5.179E+01 -1.253E+01 2.717E+01 -2.812E+00 -1.840E+01 -3.503E+01 -6.783E+01 -7.054E+01 0.	2.064E+01 5.179E+01 1.253E+01 -2.717E+01 2.612E+00 1.640E+01 3.503E+01 6.788E+01 7.054E+01 0.
-1 0 2 3 4 5 6 7 8 9 10 11 12 13	555555555555555555555555555555555555555	0. -7.865E+00 -4.085E+00 -7.484E+00 -1.048E+01 -1.341E+01 -1.738E+01 -1.435E+01 -1.63E+01 -1.273E+01 -1.326E+01 -1.474E+01 -1.946E+01 -5.173E+00 0.	0. 7.865E+00 4.035E+00 7.484E+00 1.048E+01 1.341E+01 1.435E+01 1.63E+01 1.273E+01 1.326E+01 1.474E+01 1.946E+01 5.173E+00 0.
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13	66666666666666666	0. -3.102E+01 -4.740E+01 -2.892E+01 -1.701E+01 -5.704E+00 7.319E+00 -1.573E+01 -3.784E+01 -2.217E+01 -7.192E+00 7.404E+00 2.231E+01 4.642E+00 0.	0. 3.102E+01 4.740E+01 2.892E+01 1.701E+01 5.704E+00 -7.319E+00 1.573E+01 3.784E+01 2.217E+01 7.192E+00 -7.404E+00 -2.231E+01 -4.642E+00 0.
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13	777777777777777777777777777777777777777	0. -1.023E+02 -8.249E+01 -2.730E+01 4.540E+00 3.605E+01 8.783E+01 3.863E+00 -8.068E+01 -3.012E+01 -2.339E-02 2.990E+01 7.885E+01 9.419E+01 0.	0. 1.023E+02 8.249E+01 2.730E+01 -4.540E+00 -3.605E+01 -8.786E+01 -3.863E+00 8.068E+01 3.012E+01 2.339E-02 -2.950E+01 -7.885E+01 -9.419E+01 0.
-1	8	0.	0.

0	33333333333333333333333333333333333333	-1.240E+02	1.240E+02
1		-7.963E+01	7.963E+01
2		-7.832E+00	7.832E+00
3		3.584E+01	-3.584E+01
4		8.058E+01	-8.058E+01
5		1.537E+02	-1.537E+02
6		3.073E+01	-3.073E+01
7		-9.520E+01	9.520E+01
8		-2.955E+01	2.955E+01
9		6.316E+00	-6.316E+00
10		4.107E+01	-4.107E+01
11		1.033E+02	-1.033E+02
12		1.351E+02	-1.351E+02
13		G.	0.
-1	99999999999999999	0.	0.
0		-4.194E+01	4.194E+01
1		-2.913E+01	2.918E+01
2		1.959E+01	-1.959E+01
3		5.887E+01	-5.887E+01
4		1.018E+02	-1.018E+02
5		1.535E+02	-1.535E+02
6		5.485E+01	-5.485E+01
7		-4.985E+01	4.985E+01
8		-1.305E+01	1.305E+01
9		1.392E+01	-1.392E+01
10		4.003E+01	-4.003E+01
11		7.303E+01	-7.303E+01
12		4.677E+01	-4.677E+01
13		C.	0.
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13	10 10 10 10 10 10 10 10 10 10 10 10 10	0. -1.261E+00 3.357E+01 6.758E+01 1.013E+02 1.447E+02 1.897E+02 1.043E+02 6.028E+00 1.907E+01 2.990E+01 5.175E+01 2.305E+01 0.	0. 1.261E+00 -3.357E+01 -6.758E+01 -1.013E+02 -1.447E+02 -1.897E+02 -1.043E+02 -6.028E+00 -1.907E+01 -2.990E+01 -5.175E+01 -2.305E+01 0.
-1 0 1 2 3 4 5 6 7 8 9 10 11	11 11 11 11 11 11 11 11 11	G. 3.991E+01 1.073E+02 1.339E+02 1.621E+02 2.143E+02 2.686E+02 1.853E+02 7.766E+01 6.650E+01 5.603E+01 4.913E+01 4.342E+01	0. -3.991E+01 -1.073E+02 -1.339E+02 -1.621E+02 -2.143E+02 -2.686E+02 -1.858E+02 -7.766E+01 -6.650E+01 -5.603E+01 -4.913E+01 -4.342E+01

12 13	11 11	1.354E+01 0.	-1.354E+01 0.
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13	12 12 12 12 12 12 12 12 12 12 12 12 12 1	0. 8.490E+01 1.906E+02 2.169E+02 2.309E+02 3.072E+02 3.930E+02 3.008E+02 1.653E+02 1.255E+02 8.989E+01 6.388E+01 4.533E+01 1.305E+01 C.	0. -8.490E+01 -1.906E+02 -2.169E+02 -2.309E+02 -3.072E+02 -3.930E+02 -3.008E+02 -1.653E+02 -1.255E+02 -8.989E+01 -6.388E+01 -4.533E+01 -1.305E+01 0.
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13	13 13 13 13 13 13 13 13 13 13 13 13 13 1	0. 1.245E+02 2.725E+02 3.139E+02 2.792E+02 4.043E+02 5.557E+02 4.349E+02 2.563E+02 1.843E+02 1.236E+02 8.020E+01 5.152E+01 1.615E+01 0.	0. -1.245E+02 -2.725E+02 -3.139E+02 -2.792E+02 -4.043E+02 -5.557E+02 -4.349E+02 -2.563E+02 -1.843E+02 -1.236E+02 -8.020E+01 -5.152E+01 -1.615E+01 0.
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13	$ \begin{array}{r} 1 \\ 1 \\ 1 \\ 1 \\ 4 \\ 1 \\ 1$	0. 1.246E+02 3.172E+02 4.094E+02 2.659E+02 4.666E+02 7.122E+02 5.335E+02 3.162E+02 2.213E+02 1.453E+02 9.099E+01 5.535E+01 1.807E+01 0.	0. -1.246E+02 -3.172E+02 -4.094E+02 -2.659E+02 -4.666E+02 -7.122E+02 -3.162E+02 -2.213E+02 -1.453E+02 -9.099E+01 -5.535E+01 -1.807E+01 0.
-1 0 1 2 3 4 5 6 7	15 15 15 15 15 15 15 15 15	C. 9.524E+01 2.490E+02 3.221E+02 3.186E+02 4.563E+02 6.154E+02 4.857E+02 2.911E+02	0. -9.524E+01 -2.490E+02 -3.221E+02 -3.186E+02 -4.563E+02 -6.154E+02 -4.857E+02 -2.911E+02

8	15	2.169E+02	-2.169E+02
9	15	1.466E+02	-1.466E+02
10	15 `	9.103E+01	-9.103E+01
11	15	5.176E+01	-5.176E+01
12	15	1.538E+01	-1.538E+01
13	15	С.	0.
-1	16	С.	0.
0	16	2.842E+01	-2.842E+01
1	16	8.864E+01	-8.864E+01
2	16	1.162E+02	-1.162E+02
3	16	1.580E+02	-1.580E+02
4	16	2.069E+02	-2.069E+02
5	16	3.321E+02	-3.321E+02
6	16	2.230E+02	-2.230E+02
7	16	6.626E+01	-6.626E+01
8	16	1.011E+02	-1.011E+02
9	16	6.686E+01	-6.686E+01
10	16	3.918E+01	-3.913E+01
11	16	1.941E+01	-1.941E+01
12	16	5.259E+00	-5.259E+00
13	16	0.	0.
-1	17	0.	0.
0	17	С.	0.
1	17	0.	0.
2	17	0.	0.
3	17	0.	0.
4	17	с.	0.
5	17	0.	0.
6	17	0.	0.
7	17	С.	0.
8	17	С.	0.
9	17	С.	0.
10	17	C •	0.
11	17	0.	0.
12	17	0.	0.
13	17	0.	0.

TIME FOR THIS PROBLEM = 0 MINUTES 7.784 SECONDS

ELAPSED CPU TIME = 0 MINUTES 11.898 SECONDS

PROGRAM DSLAB >-DECK 1-STELZERREVISION DATE 24 JULY 1967CE313126HWY SLAB PROJECTDSLAB 5CF STELZERRUN EXAMPLE PROBLEMS FOR USE IN SLAB REPORTAPPENDIX 5

PROB

610 60 X 58 SLAB SIMPLE SUPPORTS AND CONCENTRATED LOADS

TABLE 1. CONTROL DATA

NUM CARDS TABLE 2 NUM CARDS TABLE 3 NUM INCREMENTS MX NUM INCREMENTS MY INCR LENGTH HX INCR LENGTH HY POISSONS RATIO

TABLE 2. STIFFNESS AND LOAD DATA, FULL VALUES ADDED AT ALL STAS I, J IN RECT.

F	ROM	T۲	RU	DX	DY	Q	S	CX	C Y
0	0	20	υ	3.328E+08	3.328E+08	-3.248E+02	-0.	-0.	-0.
1	0	19	0	3.328E+08	3.328E+08	-3.248E+02	-0.	-0.	-0.
0	29	20	29	3.328E+08	3.328E+08	-3.248E+02	-0.	-0.	-0.
1	29	19	29	3.328E+08	3.328E+08	-3.248E+02	-0.	-0.	-0.
0	1	20	1	7.313E+07	7.313E+07	-3.105E+02	-0.	-0.	-0.
1	1	19	1	7.313E+07	7.313E+07	-3.105E+02	-0.	-0.	-0.
0	28	20	28	7.313E+07	7.313E+07	-3.105E+02	-0.	-0.	-0.
1	28	19	28	7.313E+07	7.313E+07	-3.105E+02	-0.	-0.	-0.
0	2	20	2	1.132E+08	1.132E+08	-3.600E+02	-0.	-0.	-0.
1	2	19	2	1.132E+08	1.132E+08	-3.600E+02	-0.	-0.	-0.
0	27	20	27	1.132E+08	1.132E+08	-3.600E+02	-0.	-0.	-0.
1	27	19	27	1.132E+08	1.132E+08	-3.600E+0?	-0.	-0.	-0.
0	4	20	4	2.322E+08	2.322E+08	-4.575E+02	-0.	-0.	-0.
1	4	19	4	2.322E+08	2.322E+08	-4.575E+02	~0.	-0.	-0.
0	25	20	25	2.322E+08	2.322E+08	-4.575E+02	-0.	-0.	-0.
1	25	19	25	2.322E+08	2.322E+08	-4.575E+02	-0.	-0.	-0.
0	5	20	24	3.147E+08	3.147E+08	-5.063E+02	1.000E+99	-0.	-0.
1	5	19	24	3.147E+08	3.147E+08	-5.063E+02	-0.	-0.	-0.
16	8	16	8	-0.	-0.	-2.080E+04	-0.	-0.	-0.
16	11	16	11	-0.	-0.	-2.080E+04	~0.	-0.	-0.
0	3	20	3	1.656E+08	1.656E+08	-4.080E+02	-0.	-0.	-0.
1	3	19	3	1.656E+08	1. 656E+08	-4.080E+02	-0.	-0.	-0.
0	26	2 C	26	1.656E+08	1.656E+08	-4.080E+02	-0.	-0.	-0.
1	26	19	26	1.656E+08	1.656E+08	-4.080E+02	-0.	-0.	-0.
16	13	16	13	-0.	-0.	-2.080E+04	-0.	-0.	-0.
16	16	16	16	-0.	-0.	-2.080E+04	-0.	-0.	-0.
16	18	16	18	-0.	-0.	-2.080E+04	-0.	-0.	-0.
16	21	16	21	-0.	-0.	-2.080E+04	-0.	-0.	-0.
1	6	19	23	-0.	-0.	-0.	-1.000E+99	-0.	-0.
10	5	10	24	-0.	-0.	-0.	1.000E+99	-0.	-0.
1	6	19	23	-0.	-0.	-0.	-0.	5 .351E ⊁08	5.351E+08
1	1	19]	-0.	-0.	-0.	-0.	4.425E+08	4.425E+08
1	2	19	- 2	-0.	-0.	-0.	-0.	1.559E+08	1.559E+08

41

0

20 29

3.600E+01 2.400E+01

1.500E-01

1	3	19	÷	-0.	-0.	-0.	-0.	2.342E+08	2.342E+08
1	4	19	4	-0.	-0.	-0.	-0.	3.351E+08	3.351E+08
1	5	19	5	-0.	-0.	-0.	-0.	4.878E+08	4.878E+08
1	29	19	29	-J.	~0.	-0.	-0.	4.425E+08	4.425E+08
1	28	19	28	-0.	-0.	-0.	-0.	1.559E+08	1.559E+08
1	27	19	27	-0.	-0.	-0.	-0.	2.342E+08	2.342E+08
1	26	19	26	-0.	-0.	-0.	-0.	3.351E+08	3.351E+08
1	25	19	25	-0.	-0.	-0.	-0.	4.878E+08	4.878E+08

TABLE 3.	STIFFNESS	AND LUAD	CATA,	FULL	VALUES	ADDED	AT ALL	STAS	I,J 1	IN RECT	•
FROM	THRU				тх	T	Y	Рx		PY	

PROGRAM DSLAB 5- DECK 1- STELZERREVISION DATE 24 JULY 1967CE313126Hwy SLAB PRCJECTDSLAB 5CF STELZERRUN EXAMPLE PROBLEMS FOR USE IN SLAB REPORTAPPENDIX 5

PROB (CONTD)

610 60 X 58 SLAB SIMPLE SUPPORTS AND CONCENTRATED LOADS

TABLE 4. RESULTS

Ι,	J	DEFL	BMX	BMY	REACT
-1	-1	-8.503E-02	0.	0.	0.
0	-1	-8.371E-02	0.	Ο.	2.515E-09
1	-1	-8.29JE-02	0.	0.	1.001E-09
2	-1	-8.207E-02	0.	0.	2.463E-09
3	-1	-8.127E-02	0.	0.	2.617E-09
4	-1	-8.062E-02	0.	0.	2.822E-09
5	-1	-7.990E-02	С.	0.	2.283E-09
6	-1	-7.844E-02	Û.	0.	3.079E-09
7	-1	-7.515E-02	0.	0.	1.462E-09
8	-1	-6.874E-02	0.	С.	9.986E-10
9	-1	-5.810E-02	0.	0.	2.106E-09
10	-1	-4.271E-02	0.	0.	1.490E-09
11	-1	-2.306E-02	Ο.	0.	8.513E-10
12	-1	-7.719E-04	0.	0.	-1.027E-10
13	-1	2.160E-02	0.	0.	-7.708E-10
14	-1	4.110E-02	0.	0.	-2.256E-09
15	-1	5.506E-02	0.	0.	-1.539E-09
16	-1	6.174E-02	0.	0.	-3.645E-09
17	-1	6.085E-02	0.	0.	-1.490E-09
18	-1	5.358E-02	0.	0.	-2.104E-09
19	-1	4.229E-02	0.	0.	-1.155E-09
20	-1	3.223E-02	0.	0.	-3.977E-10
21	-1	2.230E-02	0.	0.	0.
-1	0	-6.558E-02	0.	0.	-3.526E-10
0	0	-6.487E-02	-5.288E-10	1.676E-09	-3.248E+02
1	0	-6.415E-02	7.163E+01	6.671E-10	~6.496E+02
2	0	-6.329E+02	-5.838E+01	1.642E-C9	-6.496E+02
3	0	-6.255E-02	-1.575E+02	1.745E-09	-6.496E+02
4	0	-6.213E-02	-8.777E+01	1.882E-09	-6.496E+02
5	0	-6.187E-02	2.091E+02	1.522E-09	-6.496E+02
6	0	-6.121E-02	7.171E+02	2.053E-09	-6.496E+02
7	0	-5.911E-02	1.346E+03	9.750E-10	-6,496E+02
8	0	-5.433E-02	1.929E+03	6.658E-10	-6.496E+02
9	0	-4.571E-02	2.244E+03	1.404E-09	-6.496E+02
10	0	-3.262E-02	2.076E+03	9.932E-10	-6.496E+02
11	0	-1.539E-02	1.334E+03	5.675E-10	-6.496E+02
12	0	4.493E-03	1.252E+02	-6.844E-11	-6.49 6E+02
13	0	2.462E-02	-1.290E+03	-5.1 39 E-10	-6.496E+02
14	0	4.219E-02	-2.590E+03	-1.504E-09	-6.496E+02
15	0	5.459E-02	-3.456E+03	-1.026E-09	-6.496E+02
16	0	6.011E-02	-3.631E+03	-2.430E-09	-6.496E+02
17	0	5.840E-02	-3.052E+03	-9.932E-10	-6.496E+02

18 0 19 0	5.061E-02 3.890E-02	-1.965E+03 -5.362E+02	-1.402E-09 -7.699E-10	-6.496E+02 -6.496E+02
20 0 21 0	1.335E-02	0.	-2.651E-10 0.	-3.248E+02 -6.367E-11
$\begin{array}{ccccc} -1 & 1 \\ 0 & 1 \\ 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \\ 5 & 1 \\ 6 & 1 \\ 7 & 1 \\ 8 & 1 \\ 9 & 1 \\ 10 & 1 \\ 11 & 1 \\ 12 & 1 \\ 13 & 1 \\ 14 & 1 \\ 15 & 1 \\ 15 & 1 \\ 16 & 1 \\ 17 & 1 \\ 18 & 1 \\ 19 & 1 \\ 20 & 1 \end{array}$	-4.613E-02 -4.602E-02 -4.539E-02 -4.382E-02 -4.382E-02 -4.387E-02 -4.387E-02 -4.325E-02 -4.325E-02 -4.017E-02 -3.361E-02 -2.280E-02 -7.899E-03 9.740E-03 2.782E-02 4.362E-02 5.459E-02 5.635E-02 4.789E-02 5.635E-02 4.789E-02 3.558E-02 2.002E-02	0. 6.787E-11 -3.502E+01 -8.037E+01 -1.123E+02 -1.016E+02 -3.589E+01 8.128E+01 2.304E+02 3.741E+02 4.588E+02 4.289E+02 2.598E+02 -2.217E+01 -3.537E+02 -6.605E+02 -8.682E+02 -7.676E+02 -5.189E+02 -4.261E+02 -9.349E-11	0. -1.959E+02 -4.089E+02 -4.013E+02 -3.835E+02 -3.464E+02 -2.838E+02 -2.021E+02 -1.211E+02 -6.910E+01 -7.244E+01 -1.442E+02 -2.828E+02 -4.723E+02 -6.786E+02 -9.428E+02 -9.428E+02 -9.292E+02 -8.196E+02 -6.329E+02 -4.447E+02 2.176E+01	4.525E-11 -3.105E+02 -6.210E+02 -
21 1	4.403E-03	0.	0.	-6.233E-11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2.821E-02 -2.876E-02 -2.876E-02 -2.729E-02 -2.656E-02 -2.645E+02 -2.699E-02 -2.6779E-02 -2.801E-02 -2.850E-02 -2.209E-02 -1.382E-02 -1.382E-02 -1.310E-02 2.850E-02 4.202E-02 5.131E-02 5.146E-02 4.294E-02 3.074E-02 1.410E-02 -2.589E-03	C. 1.028E-10 -1.064E+02 -2.260E+02 -3.010E+02 -3.023E+02 -2.186E+02 -5.392E+01 1.700E+02 4.061E+02 5.724E+02 3.299E+02 -3.482E+01 -5.734E+03 -1.367E+03 -1.224E+03 -8.676E+02 -9.110E+02 2.177E-11 0.	0. -6.057E+02 -1.210E+03 -1.260E+03 -1.293E+03 -1.269E+03 -1.269E+03 -1.173E+03 -1.011E+03 -8.155E+02 -6.393E+02 -6.393E+02 -6.182E+02 -8.596E+02 -1.243E+03 -2.080E+03 -2.317E+03 -2.055E+03 -1.604E+03 -1.018E+03 2.590E+01 0.	6.852E-11 -3.600E+02 -7.200E+02 -
-1 3 0 3 1 3 2 3 3 3 4 3 5 3	-1.363E-02 -1.465E-02 -1.422E-02 -1.327E-02 -1.255E-02 -1.246E-02 -1.308E-02	0. 8.458E-11 -2.412E+02 -4.496E+02 -5.707E+02 -5.873E+02 -4.939E+02	0. -1.209E+03 -2.464E+03 -2.624E+03 -2.743E+03 -2.742E+03 -2.591E+03	5.639E-11 -4.080E+02 -8.160E+02 -8.160E+02 -8.160E+02 -8.160E+02 -8.160E+02 -8.160E+02

6	3	-1.412E-02	-2.947E+02	-2.298E+03	-8.160E+02
7	3	-1.496E-02	-7.859E+00	-1.910E+03	-8.160E+02
8	3	-1.469E-02	3.190E+02	-1.518E+03	- E. 160E+02
9	3	-1.223E-02	5,818E+02	-1.266E+03	-8.160E+02
10	3	-6.674E-03	6.143E+02	-1.3095+03	-8.160E+02
11	à	2.124E+03	3.250E+02	-1.722E+03	-8,160E+02
12	à	1.326E-02	-2.093E+02	-2-433E+03	-8.160E+02
12	2	2 5016-02	-9 309E+02	-3 273E+03	-R 160E+02
14	2	2.5010-02			-0.1606+02
14	2	5.J416-02		-4.040L+03	
15	2	4.2005-02	-1.080C+U3	-4.552E+05	-8.100E+02
10	2	4.4836-02	-2.0446+03	-4.00/E+03	-6.100E+02
17	3	4.170E-02	-1.7146+03	-4.046E+03	-8,1602+02
18	3	3.410E-02	-1.211E+03	-3.079E+03	-8.1602+02
19	3	2.359E-02	-1.472E+03	-1.926E+03	-8.1602+02
20	3	8.304E-03	-5.457E-11	1.949E+02	-4.080E+02
21	3	-7.220E-03	0.	0.	-3.638E-11
_1		-3 502E-03	0	0	-2 425E-12
-1	7		-2 4105-12	-1 0575+02	_4 575E±02
, ,	4	-4.5041E-03	-5.0500-12	-4 1795+03	
1	4	-4.5046-05	-4.950E+02	-4.1/00+03	-9.1500+02
2	4	-3.142E-03	-7.536E+UZ	-4.094E+03	-9.190E+02
3	4	-3.203E-03	-8.933E+02	-4.879E+03	-9.150E+02
4	4	-3.196E-03	-9.194E+02	-4.922E+03	~9.150E+02
5	4	-3.645E-03	-8.330E+02	-4.688E+03	-9.150E+02
6	4	-4.466E-03	-6.368E+02	-4.186E+03	-9.150E+02
7	4	-5.312E-03	-3.406E+02	-3.470E+03	-9.150E+02
8	4	-5.645E-03	2.118E+01	-2.676E+03	-9.150E+02
9	4	-4.770E-03	3.476E+02	-2.064E+03	-9.150E+02
10	4	-2.020E-03	4.235E+02	-2.013E+03	-9.150E+02
11	4	2.802E-03	1.230E+02	-2.724E+03	-9.150E+02
12	4	9.141E-03	-4.478E+02	-4.028E+03	-9.150E+02
13	4	1.593E-02	-1.090E+03	-5.5548+03	-9.150E+02
14	4	2.198E-02	-1.707E+03	-6.993E+03	-9.150E+02
15	4	2.615E-02	-2.224E+03	-8.034E+03	-9.150E+02
16	4	2.741E-02	-2.453E+03	-8.246E+03	-9.150E+02
17	4	2.520E-02	-2.054E+03	-7.169E+03	-9.150E+02
18	4	2.020E-02	-1.397F+03	-5.142E+03	-9.150E+02
19	4	1.342E-02	-1.619E+03	-2.795E+03	-9.150E+02
20	4	3.2058-03	7.731E-12	7.4628+02	-4.575E+02
21	4	-7.6455-03	0.	0.	5.154E-12
21	•		0.	0.	
-1	5	1.634E-03	0.	0.	-3.638E-12
0	5	-3.398E-96	-5.457E-12	-2.586E+03	2.892E+03
1	5	~1.069E-95	-9.594E+02	-6.396E+03	9.681E+03
2	5	-1.089E-95	-1.102E+03	-7.345E+03	9.881E+03
3	5	-1.154E-95	-1.190E+03	-7.931E+03	1.052E+04
4	5	-1.164E-95	-1.208E+03	-8.054E+03	1.063E+04
5	5	-1.1.7E-95	-1.154E+03	-7.696E+03	1.016E+04
6	5	-1.006E-95	-1.030E+03	-6.864E+03	9.044E+03
7	5	-8.184E-96	-8.392E+02	-5.595E+03	7.171E+03
8	5	-5.441E-96	-6.042E+02	-4.028E+C3	4.428E+03
9	5	-2.191E-96	-3.863E+02	-2.576E+03	1.178E+03
10	5	-9.755E-97	-3.311E+02	-2.207E+03	9.384E+02
11	5	-3.258E-96	-5.244E+02	-3.496E+03	2.245E+03
12	5	-7.771E-96	-8.933F+02	-5.956E+03	6.758E+03
13	5	-1.221E-95	-1.303E+03	-8.6856+03	1.120E+04
14	5	+1.656E-95	-1-693E+03	-1-1295+04	1.5552+04
15	5	-2.1316-95	-2.018E+03	-1.346F+04	2.030F+04
16	5	-2.569E-95	-7.159E+03	+1.440E+C4	2.468E+04
17	5	-2.1355-05	-1 8416403	-1.2275+04	
- F F	,	とうエンフレ アノ	TEOATCION	102510104	

18 19 20 21	5 5 5 5	-1.477E-95 8.220E-96 3.703E-96 -1.082E-03	-1.221E+03 -2.897E+02 -3.638E-12 0.	-8.142E+03 -1.931E+03 1.712E+03 0.	1.376E+04 -9.233E+03 -4.209E+03 -7.425E-12
-1 0 1 2 3 4 5 6 7 8 9 11 12 14 16 17 18 190 23 11 12 14 16 17 18 90 11 12 14 16 17 18 90 11 12 14 16 17 18 90 11 12 14 15 16 17 18 90 11 12 13 14 15 16 17 18 90 12 12 13 14 15 16 17 18 90 12 12 12 13 14 15 16 17 18 190 22 1 12 12 12 12 12 13 14 15 16 17 18 190 22 1 12 12 12 12 12 13 14 15 16 17 18 190 21 12	666666666666666666666666666666666666666	1.349E-03 $6.650E-96$ $-1.349E-03$ $-2.930E-03$ $-3.995E-03$ $-4.175E-03$ $-3.398E-03$ $-1.815E-03$ $1.921E-04$ $1.958E-03$ $2.413E-03$ $5.174E-96$ $-6.001E-03$ $-1.459E-02$ $-2.387E-02$ $-3.231E-02$ $-3.846E-02$ $-4.059E-02$ $-3.644E-02$ $-2.765E-02$ $-1.518E-02$ $-3.758E-96$ $-1.618E-02$	0. -1.342E-90 -5.025E+02 -3.278E+02 -2.372E+02 -2.252E+02 -2.703E+02 -3.792E+02 -5.864E+02 -9.592E+02 -1.553E+03 -1.742E+03 -1.484E+03 -7.976E+02 -2.724E+02 2.252E+02 9.283E+02 1.949E+03 1.347E+03 1.179E+03 1.026E+03 7.435E-91	0. -8.947E-90 -2.613E+03 -3.821E+03 -4.380E+C3 -4.532E+03 -4.532E+03 -3.873E+03 -3.145E+03 -2.247E+03 -1.273E+03 -2.614E+02 -1.698E+03 -3.123E+03 -4.505E+03 -5.710E+03 -6.867E+03 -5.675E+03 -3.810E+03 -1.749E+03 4.957E-90	-8.947E-91 -7.157E+03 -1.013E+03
-1 0 1 2 3 4 5 6 7 8 9 11 12 14 16 17 18 20 21	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5.073E-03 3.227E-97 -5.073E-03 -9.391E-03 -1.206E-02 -1.256E-02 -1.083E-02 -7.203E-03 -2.478E-03 1.948E-03 3.853E-03 -2.651E-96 -1.338E-02 -3.199E-02 -5.193E-02 -6.999E-02 -8.320E-02 -8.788E-02 -7.838E-02 -7.838E-02 -3.215E-02 -2.146E-96 3.215E-02	0. 4.006E-91 2.363E+02 5.675E+02 7.568E+02 7.726E+02 6.172E+02 2.633E+02 -3.594E+02 -1.365E+03 -2.855E+03 -4.629E+03 -2.590E+03 3.920E+03 6.634E+03 3.541E+03 2.459E+03 -5.392E-11 0.	0. 2.671E-90 -8.153E+02 -1.445E+03 -1.794E+03 -1.924E+03 -1.887E+03 -1.717E+03 -1.449E+03 -1.125E+03 -1.125E+03 -8.077E+02 -6.943E+02 -7.250E+02 -1.129E+03 -1.143E+03 -8.895E+02 -6.314E+02 -4.158E+02 -3.102E+02 -2.425E+02 -8.088E-12 0.	2.671E-91 -8.290E+02 -1.013E+03 -
-1 0 1 2 3 4 5	8 8 3 8 8 8	9.595E-03 -1.116E-96 -9.595E-03 -1.729E-02 -2.191E-02 -2.286E-02 -2.012E-02	0. 4.370E-92 9.237E+02 1.471E+03 1.741E+03 1.744E+03 1.470E+03	0. 2.914E-91 1.334E+02 8.369E+01 5.936E+00 -6.518E+01 -1.372E+02	2.914E-92 (.098E+02 -1.013E+03 -1.013E+03 -1.013E+03 -1.013E+03 -1.013E+03

6	8	-1.424E-02	8.681E+02	-2.251E+02	-1.013E+03
7	8	-6.455E-03	-1.710E+02	-3.452E+02	-l.013E+03
8	8	1.076E-03	-1.819E+03	-5.149E+02	-1.013E+03
9	8	4.937E-03	-4.292E+03	-7.659E+02	-1.013E+03
10	8	-6.361E-96	-7.841E+03	-1.176E+03	5.348E+03
11	8	-2.108E-02	-3.834E+03	-2.067E+02	-1.013E+03
12	8	-5.018E-02	-1.932E+02	6.329E+02	-1.013E+03
13	8	-8.114E-02	1.671E+03	1.466E+03	-1.013E+03
14	8	-1.090E-01	3.983E+03	2.420E+03	-1.013E+03
15	8	-1.293E-01	6.705E+03	3.805E+03	-1.013E+03
16	8	-1.367E-01	1.175E+04	6.519E+03	-:.181E+04
17	8	-1.214E-01	7.615E+03	3.9378+03	-1.013E+03
18	8	-9.122E-02	5.792E+03	2.550E+03	-1.013E+03
19	8	-4.969E-02	4.079E+03	1.378E+03	-1.013E+03
20	8	-3.226E-96	-8.862F-94	-5.9086-93	2.7195+03
21	8	4.969E-02	0.	0.	-5.908E-94
	-				
-1	9	1.412E-02	0.	0.	1.715E-92
0	9	-2.022E-96	2.573E-92	1.715E-91	1.515E+03
1	9	-1.412E-02	1.493E+03	6.721E+02	-1.013E+03
2	9	-2.531E-02	2.295E+03	1.050E+03	-1.013E+03
3	á	~3.149E-02	2.658E+03	1.213E+03	-1.013E+03
4	á	-3.346E-02	2.6465+03	1.211E+03	-1.0135+03
5	á	-2.974E-02	2.255E+03	1.058E+03	-1.013E+03
6	á	= 2 + 150E = 02	1 412E+03	7 605E+02	-1 013E+03
7	á	-1 0735-02	-2 9545+01	3 2215+02	-1 0136+03
	2	-2.3255-05	-2.3055+03	-2 4605+02	-1.0135+03
0	0	- 2 • J2 JL-0J	-5 7505+03	-2.4001402	
10	0			-1 4415+02	9 3046+03
10	7		-5 1115+02	-1.041E+03	
11	2	-2.044E-UZ	-2.111E+U3	3.432C+UL	
12	9	-6.765E-02	-8.526E+02	1.7328+03	-1.01.3E+03
1.5	4	-1.0928-01	2.081E+03	3.342E+U3	-1.013E+03
14	9	-1.464E-01	5.826E+03	4.841E+U3	- 1.013E+03
15	9	-1.728E-01	9.555E+03	6.032E+03	-1.0132+03
10	9	-1.810E-01	1.402E+04	6.241E+03	-1.013E+03
17	9	-1.61/E-01	1.065E+04	5.930E+03	-1.0136+03
18	9	-1.218E-01	7.999E+03	4.532E+03	-1.013E+03
19	9	-6.601E-02	5.715E+03	2.669E+03	-1.013E+03
20	9	-4.316E-96	9.732E-93	6.488E-92	3.810E+03
21	9	6.651E-02	0.	С.	6.488E-93
_ 1	10	1 9335 93	0	0	1 1005 02
-1	10	1.823E-02			1.1008-92
0	10	-2.613E-96	1.651E-92	1.100E-91	2.1076+03
1	10	-1.823E-02	1.945E+03	9.9026+02	-1.013E+03
2	10	-3.267E-02	2.999E+03	1.6536+03	-l.013E+03
3	10	-4.132E-02	3.462E+03	1.997E+03	~1.013E+03
4	10	-4.330E-02	3.442E+03	2.052E+03	-l.013E+03
2	10	-3.869E-02	2.942E+03	1.839E+03	-1.013E+03
0	10	-2.845E-02	1.8776+03	1.376E+03	-1.013E+03
(10	-1.470E-02	6.468E+01	6.885E+02	-1.013E+03
8	10	-1.029E-03	-2.791E+03	-1.813E+02	-1.013E+03
10	10	0.022E-03	-7.138E+03	-1.153E+03	- 1.013E+03
10	10	-1.101E-95	-1.309E+U4	-2.U34E+U3	1.000E+04
11	10	-3.3U2E-U2	-0.312E+U3	1.7062+02	- 1.013E+03
12	10	-a.339E-U2	-9.399E+02	2.4/8E+03	-L.UI3E+03
13	10	-1.345E-01	3+375E+03	4.691E+03	~I.UI3E+03
14	10	-1.800E-01	7.410E+03	6.666E+03	-1.013E+03
15	10	-2.120E-01	1.190E+04	8.104E+03	-1.013E+03
16	10	-2.215E-01	1.692E+04	8.262E+03	- 1.013E+03
17	10	-1.980E-01	1.314E+04	7.850E+03	-1.013E+03

18 10	-1.493E-01	9.909E+03	6.080E+03	-1.013E+03
19 10	-8.163E-02	7.173E+03	3.634E+03	-1.013E+03
20 10	-5.289E-96	1.495E-92	9.965E-92	4.782E+03
21 10	8.163E-02	0.	0.	9.965E-93
-1 11 0 11 1 11 2 11 3 11 4 11 5 11 6 11 7 11 8 11 9 11 10 11 11 11 12 11 13 11 14 11 15 11 16 11 17 11 18 11 19 11 20 11 20 11 11 11 12 11 13 11 14 11 15 11 16 11 17 11 18 11 19 11 19 11 20 11 12 11 13 11 14 11 15 11 16 11 17 11 18 11 19 11 10 11 11 11 12 11 13 11 14 11 15 11 16 11 17 11 18 11 19 11 10 11	2.168E-02 -3.003E-96 -2.168E-02 -3.890E-02 -4.926E-02 -5.171E-02 -3.428E-02 -1.803E-02 -1.812E-03 7.659E-03 -1.333E-95 -4.056E-02 -9.667E-02 -1.559E-01 -2.453E-01 -2.453E-01 -2.567E-01 -2.288E-01 -1.725E-01 -9.436E-02 -6.078E-96 9.436E-02	0. 1.132E-92 2.292E+03 3.566E+03 4.125E+03 4.104E+03 3.513E+03 2.254E+03 1.187E+02 -3.238E+03 -8.340E+03 -1.598E+04 -7.354E+03 -1.037E+03 4.023E+03 8.664E+03 1.365E+04 2.055E+04 1.502E+04 1.144E+04 8.358E+03 1.542E-92 0.	0. 7.547E-92 1.179E+03 2.020E+03 2.487E+03 2.583E+03 2.324E+03 1.736E+03 8.631E+02 -2.223E+02 -1.389E+03 -2.397E+03 2.078E+02 2.971E+03 5.642E+03 8.082E+03 1.031E+04 1.294E+04 9.962E+03 7.314E+03 4.322E+03 1.028E-91 0.	7.547E-93 2.497E+03 -1.013E+03 -1.028E-92
$\begin{array}{ccccc} -1 & 12 \\ 0 & 12 \\ 1 & 12 \\ 2 & 12 \\ 3 & 12 \\ 4 & 12 \\ 5 & 12 \\ 6 & 12 \\ 7 & 12 \\ 8 & 12 \\ 9 & 12 \\ 10 & 12 \\ 11 & 12 \\ 12 & 12 \\ 13 & 12 \\ 14 & 12 \\ 15 & 12 \\ 16 & 12 \\ 17 & 12 \\ 18 & 12 \\ 19 & 12 \\ 20 & 12 \\ 21 & 12 \end{array}$	2.435E-02 $-3.255E-96$ $-2.435E-02$ $-4.375E-02$ $-5.545E-02$ $-5.827E-02$ $-5.228E-02$ $-3.880E-02$ $-2.058E-02$ $-2.348E-03$ $8.367E-03$ $-1.456E-95$ $-4.487E-02$ $-1.070E-01$ $-1.726E-01$ $-2.305E-01$ $-2.524E-01$ $-2.524E-01$ $-1.904E-01$ $-1.042E-01$ $-6.680E-96$ $1.042E-01$	0. 8.255E-93 2.544E+03 3.991E+03 4.633E+03 4.614E+03 3.951E+03 2.538E+03 1.436E+02 -3.612E+03 -9.298E+03 -1.773E+04 -8.178E+03 -1.120E+03 4.541E+03 9.708E+03 1.522E+04 2.160E+04 1.667E+04 1.270E+04 9.260E+03 1.620E-92 0.	0. 5.504E-92 1.290E+03 2.237E+03 2.780E+03 2.900E+03 2.607E+03 1.931E+03 9.277E+02 -3.021E+02 -1.591E+03 2.050E+02 3.272E+03 6.233E+03 1.092E+04 1.149E+04 1.050E+04 7.977E+03 4.725E+03 1.080E-91 0.	5.504E-93 2.749E+03 -1.013E+03 -1
-1 13	2.617E-02	0.	0.	<pre>4.326E-93 2.900E+03 -1.013E+03 -1.013E+03 -1.013E+03 -1.013E+03 -1.013E+03 -1.013E+03</pre>
0 13	-3.407E-96	6.488E-93	4.326E-92	
1 13	-2.617E-02	2.709E+03	1.350E+03	
2 13	-4.706E-02	4.276E+03	2.355E+03	
3 13	-5.969E-02	4.977E+03	2.941E+03	
4 13	-6.276E-02	4.962E+03	3.074E+03	
5 13	-5.635E-02	4.249E+03	2.758E+03	

6	13	-4.186E-02	2.727E+03	2.024E+03	-1.013E+03	
7	13	~2.227E-02	1.504E+02	9.401E+02	-1.013E+03	
8	13	-2.661E-03	-3.883E+03	-3.775E+02	-1.013E+03	
9	13	8.892E-03	-9.965E+03	-1.736E+03	-1.013E+03	
10	13	-1.535E-95	-1.892E+04	-2.837E+03	1.433E+04	
11	13	-4.784E-02	-8.748E+03	1.887E+02	-1.013E+03	
12	13	-1.142E-01	-1.176E+03	3.437E+03	-1.013E+03	
13	13	+1.841E+01	4.909E+03	6-563E+03	-1.013E+03	
14	12	-2 4575-01	1 0425+04	0 3275+03	-1 0135+03	
15	12		1 6105+04	1 1405+04		
12	13		1.0100+04	1. (205.04		
10	13	-3.0076-01	2.3352+04	1.430E+04	-2.181E+04	
11	13	-2.685E-01	1.762E+04	1.1242+04	-1.013E+03	
18	13	-2.027E-01	1.355E+04	8.351E+03	-1.013E+03	
19	13	-1.109E-01	9.866E+03	4.924E+03	-1.013E+03	
20	13	-7.083E-96	1.508E-92	1.006E-91	6.577E+03	
21	13	1.109E-01	0.	0.	1.006E-92	
-1	14	2.711E-02	0.	0.	3.769E-93	
0	14	-3.479E-96	5.654E-93	3.769E-92	2.972E+03	
1	14	-2.711E-02	2.793E+03	1.377E+03	-1.013E+03	
2	14	-4.877E-02	4.421E+03	2.408E+03	-1. 013E+03	
3	14	-6.187E-02	5.155E+03	3.012E+03	-1.013E+03	
4	14	-6.507E-02	5.142E+03	3.150E+03	-1.013E+03	
5	14	-5.844E-02	4.402E+03	2.821E+03	-1.013E+03	
6	14	-4.342E-02	2.8215+03	2.060F+03	-1.013E+03	
7	14	-2-311E-02	1.482E+02	9.364E+02	-1.013E+03	
8	14	-2.781E-03	-4:030E+03	-4.230E+02	-1.013E+03	
ő	14	9.190E-03	-1.032E+04	-1.814E+03	-1.013E+03	
ıń	14		-1 953E+04	-2 930E+03	1 4735+04	
11	14	- 4 9415-02	-9 0665+03	1 7775+02		
12	14			2 6116+02		
12	14	-1.1796-01	-1.2020703	5+511E+05	1 01 25 + 03	
13	14	-1.901E-01	5.124E+U3	0.088E+U3	-1.013E+03	
14	14	-2.536E+01	1.087E+04	9.360E+03	-1.013E+03	
15	14	-2.971E-01	1.677E+04	I.II0E+04	- 1.013E+03	
16	14	-3.088E-01	2•256E+04	1.120E+04	-1.013E+03	
17	14	-2.765E-01	1.833E+04	1.062E+04	-1.013E+03	
18	14	-2.090E-01	1.408E+04	8.340E+03	-1.013E+03	
19	14	-1.145E-01	1.020E+04	4.974E+03	-1.013E+03	
20	14	-7.303E-96	1.624E-92	1.083E-91	6.797E+03	
21	14	1.145E-01	0.	0.	1.083E-92	
	_					
-1	15	2.715E-02	0.	0.	3.739E-93	
0	15	-3.482E-96	5.609E-93	3.739E-92	2 .97 5E+03	
1	15	-2.715E-02	2•797E+03	1.378E+03	-1.013E+03	
2	15	-4.884E-02	4.428E+03	2•409E+03	-1.013E+03	
3	15	-6.196E-02	5.165E+03	3.013E+03	-1.013E+03	
4	15	-6.516E-02	5.153E+03	3 .15 0E+03	-1.013E+03	
5	15	-5.850E-02	4.409E+03	2.8 21 E+03	-1.013E+03	
6	15	-4.344E-02	2.822E+03	2.059E+03	-1.013E+03	
7	15	-2.309E-02	1:417E+02	9.346E+02	-1.013E+03	
8	15	-2.731E-03	-4.045E+03	-4.261E+02	-1.013E+03	
9	15	9.239E-03	-1.034E+04	-1.819E+03	-1.013E+03	
10	15	-1.578E-95	-1.957E+04	-2.935E+03	1.477E+04	
11	15	-4.953E-02	-9.064E+03	1.842E+02	-1.013E+03	
12	15	-1.182E-01	-1.205E+03	3.530E+03	-1.013E+03	
13	15	-1.906E-01	5.138E+03	6.715E+03	-1.013E+03	
14	15	-2.542F-01	1.091F+04	9.393E+03	-1.013E+03	
15	15	-2.978F-01	1.682F+04	1.113E+04	-1.013E+03	
16	15	-3.095E-01	2.261F+04	1-123F+04	-1.013E+03	
17	15			1.0645+04		
- F	1)	E I I ZL VI	1.00010.04	1.0001.004	TECTOT	

18	15	-2.095E-01	1.412E+04	8.376E+03	-1.013E+03
19	15	-1.147E-01	1.023E+04	4.999E+03	-1.013E+03
20	15	-7.325E-96	1.645E-92	1.097E-91	6.819E+03
21	15	1.147E-01	0.	0.	1.097E-92
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 10 11 12 13 14 15 16 17 18 9 10 11 12 13 14 15 16 17 18 9 10 11 12 13 14 5 167 189 20 10 11 123 145 167 189 10 10 11 123 145 167 189 10 10 11 123 145 167 189 10 10 112 134 156 178 190 10 10 112 134 156 178 190 10 178 190 10 112	16 16 16 16 16 16 16 16	2.629E-02 -3.416E-96 -2.629E-02 -4.728E-02 -5.996E-02 -6.302E-02 -5.654E-02 -2.221E-02 -2.513E-03 9.037E-03 -1.545E-95 -4.822E-02 -1.150E-01 -2.476E-01 -2.905E-01 -3.030E-01 -2.705E-01 -2.042E-01 -1.18E-01 -7.146E-96	0. 6.351E-93 2.721E+03 4.298E+03 5.007E+03 4.993E+03 4.270E+03 2.730E+03 1.308E+02 -3.927E+03 -1.004E+04 -1.903E+04 -8.803E+03 -1.185E+03 1.051E+04 1.624E+04 2.350E+04 1.365E+04 9.959E+03 -2.157E+10	0. 4.234E-92 1.354E+03 2.361E+03 2.945E+03 3.077E+03 2.758E+03 2.022E+03 9.352E+02 -3.861E+02 -1.751E+03 -2.854E+03 2.098E+02 3.496E+03 6.649E+03 9.428E+03 1.180E+04 1.440E+04 1.35E+04 8.462E+03 5.007E+03 -3.235E-11	4.234E-93 2.910E+03 -1.013E+03 -1
21 -1 0 1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 10 11 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 13 14 15 16 10 10 10 10 10 10 10 10 10 10	16 17 17 17 17 17 17 17 17 17 17	1.118E-01 2.455E-02 -3.274E-96 -2.455E-02 -4.411E-02 -5.590E-02 -5.870E-02 -5.260E-02 -3.891E-02 -2.048E-02 -2.104E-03 8.605E-03 8.605E-03 -1.472E-95 -4.547E-02 -1.084E-01 -2.336E-01 -2.744E-01 -2.862E-01 -2.556E-01 -1.928E-01 -1.055E-01 -6.772E-96 1.055E-01	0. 8.026E-93 2.562E+03 4.028E+03 4.683E+03 4.666E+03 3.988E+03 2.545E+03 1.106E+02 -3.687E+03 -9.411E+03 -1.790E+04 -8.267E+03 -1.139E+03 4.607E+03 9.866E+04 1.545E+04 2.186E+04 1.689E+04 1.285E+04 9.399E+03 1.833E-92 0.	0. 5.351E-92 1.298E+03 2.249E+03 2.791E+03 2.909E+03 2.610E+03 1.928E+03 9.212E+02 -3.140E+02 -1.612E+03 -2.685E+03 9.050E+03 6.385E+03 9.050E+03 1.111E+04 1.68E+04 1.070E+04 8.176E+03 4.882E+03 1.222E-91 0.	-1.438E-10 5.351E-93 2.767E+03 -1.013E+
-1	18	2.195E-02	0.	0.	7.342E-93
0	18	-3.033E-96	1.101E-92	7.342E-92	2.527E+03
1	18	-2.195E-02	2.316E+03	1.195E+03	-1.013E+03
2	18	-3.940E-02	3.617E+03	2.044E+03	-1.013E+03
3	18	-4.988E-02	4.196E+03	2.512E+03	-1.013E+03
4	18	-5.232E-02	4.178E+03	2.603E+03	-1.013E+03
5	18	-4.677E-02	3.567E+03	2.336E+03	-1.013E+03

6 7	18 18	-3.445E-02 -1.790E-02	2.266E+03 7.218E+01	1.737E+03 8.560E+02	-1.013E+03 -1.013E+03
8	18	-1.471E-03	-3.345E+03	-2.355E+02	-1.013E+03
9	18	7.986E-03	-8.493E+03	-1.413E+03	-1.013E+03
10	18	-1.354E-95	-1. 619E+04	-2.429E+03	1.253E+04
11	18	-4.133E-02	-7.476E+03	2.742E+02	-1.013E+03
12	18	-9.849E-02	-1.074E+03	3.130E+03	-1.013E+03
13	18	-1.589E-01	4.104E+03	5.873E+03	-1.013E+03
14	18	-2.125E-01	8.880E+03	8.360E+03	-1.013E+03
15	18	-2.501E-01	1.399E+04	1.061E+04	-1.013E+03
16	18	-2.615E-01	2.093E+04	1.323E+04	-7.181E+04
17	18	-2.331E-01	1.533E+04	1.026E+04	-1.013E+03
18	18	-1.756E-01	1.162E+04	7.614E+03	-1.013E+03
19	18	-9.603E-02	8.504E+03	4.582E+03	-1.013E+03
20	18	-0.175E-96	2.014E-92	1.343E-91	5.669E+03
21	18	9.603E-02	0.	0.	1.3435-92
-1	19	1.856E-02	0.	0.	1.080E-92
0	19	-2.658E-96	1.620E-92	1.080E-91	2.151E+03
1	19	-1.856E-02	1.972E+03	1.01/E+03	-1.013E+03
2	19	-3.329E-02	3.063E+03	1.696E+03	- 1.013E+03
3	19	-4.210E-02	3.554E+03	2.045E+03	-1.013E+03
4	19	-4.408E-02	3.540E+03	2.096E+03	-1.013E+03
5	19	-3.926E-02	3.017E+03	1.868E+03	-1.013E+03
6	19	-2.867E-02	1.897E+03	1.384E+03	-1.013E+03
	19	-1.453E-02	5.380E+00	6.796E+02	-1.013E+03
8	19	-5.895E-04	-2.932E+03	-1.971E+02	-1.013E+03
19	19	1.1.02505-05	-1.327E+03	-1.1/2E+03	-1.013E+03
10	19	-1.103E-93	-1.5910+04	-2.00/E+03	-1 012E+04
11	19	-3.500E-U2	-0.400E+U3	2.1000+02	
12	10	-1 3005-01	-1.005E+05	2.090E+03	
1.0	10		7 6765+03	7 0705+03	-1 0135+03
15	10	-2 178E-01	1 2335+04	8.544E+03	~1.013E+03
16	10	-2 275E-01	1 743E+04	8 6925+03	=1 013E+03
17	19	-2 031E+01	1 355E+04	8 259E+03	-1 013E+03
18	19	-1.529E-01	1.009E+04	6.482E+03	-1.013E+03
19	19	-8.343E-02	7.239E+03	4.0195+03	-1.013E+03
20	19	~5.332E-96	-1.078E-10	-1.618E-11	4-826E+03
21	19	8.343E-02	0.	0.	-7.189E-11
-1	20	1.450F-02	0.	0.	1.711E-92
ō	20	-2.085E-96	2.567E-92	1.711E-91	1.579E+03
1	20	-1.450E-02	1.518E+03	7.165E+02	-1.013E+03
2	20	-2.602E-02	2.369E+03	1.123E+03	-1.013E+03
3	20	-3.291E-02	2.770E+03	1.301E+03	-1.013E+03
4	20	-3.438E-02	2.768E+03	1.295E+03	-1.013E+03
5	20	-3.042E-02	2.350E+03	1.118E+03	-1.013E+03
6	20	-2.187E-02	1.443E+03	7.803E+02	-1.013E+03
7	20	-1.052E-02	-9.799E+01	3.048E+02	-1.013E+03
8	20	5.195E-04	-2.485E+03	-2.769E+02	-1.013E+03
9	20	6.415E-03	-5.986E+03	-9.446E+02	-1.013E+03
10	20	-9.464E-96	-1.110E+04	-1.665E+03	8.452E+03
11	20	-2.927E-02	-5.309E+03	1.856E+02	-1.013E+03
12	20	-6.979E-02	-9.583E+02	2.005E+03	-1.013E+03
13	20	-1.130E-01	2.003E+U3	5. 108E+03	-1.013E+03
14	20	-1.01/E-UI	0.10000403	2.411E+U3	-1.013E+03
12	20 20	-1 0775-01		0.0020103 4 0745+03	-1 0125+03
17	20	-1.01/C+U1 -1.672E-01	1 1175+04	0.014E+U3 6 497E±03	-1 0125+03
тı	20	1.0125-01	1.11/04	0.401540.3	-1.0136+03

18	20	-1.255E-01	8.165E+03	5.007E+03	-1.013E+03
19	20	-6.809E-02	5.532E+03	3.157E+03	-1.013E+03
20	20	-4.194E-96	2.537E-92	1.692E-91	3.688E+03
21	20	6.809E-02	0.	0.	1.692E-92
-1	21	9.971E-03	0.	0.	2.981E-92
0	21	-1.199E-96	4.471E-92	2.9816-91	6.926E+02
1	21	-9.971E-03	9.376E+02	1.989E+02	-1.013E+03
2	21	-1.803E-02	1.5518+03	2.003E+02	-1.013E+03
3	21	-2.289E-02	1.8/1E+03	1.572E+02	-1.0135+03
4	21	-2.3856-02	1.886E+03	8.813E+01	-1.013E+03
5	21	-2.087E-02	1.586E+03	-2.258E+01	-1.013E+03
0	21	-1.454E-02	9.100E+U2	-1.833E+U2	-1.013E+03
0	21	-0.210E-03	-2.0394E+UZ	=.2.801E+02	-).013E+03
0	21		-2.038E+03	-5.991E+02	-1.013E+03
10	21	5.551E-05	-4.5//E+U3	-8.182E+UZ	-1.013E+03
10	21			-1.1802+03	5.220E+03
12	21	-2.175E-02	-4.0946+03	-/.000E+01	-1 013E+03
12	21		-9.471E+02	9.199ETU2	
1.5	21	-0.4720-02	1.741E+U3 4 304E+03	1.9095403	
15	21	=1.359E=01	7 2065+03	5.203E+03	
16	21	-1.4355-01	1 2575+04	7 4995102	
17	21	+1 2715-01	0 295E±03	4 703E+03	
18	21	-9 463E-02	5 974E+03	3 0105403	-1 013E+03
10	21	-5.057E-02	3 360E+03	1 7846+03	-1 013E+03
20	21	-2 746E-96	-5 392E-11	-9 088E-12	2 2405+03
21	21	5-057E-02	0	0.0001 12	-3.5956-11
21	~1	J.0J/C 02	v.	0.	J. J. J. J. L. II
-1	22	5.393E-03	0.	0.	3.656E-91
Ō	22	2.327E-97	5.483E-91	3.656E-90	-7.390E+02
1	22	-5.393E-03	2.291E+02	-7.346E+02	-1.013E+03
2	22	-1.007E-02	6.509E+02	-1.267E+03	-1.013E+03
3	22	-1.298E-02	8.981E+02	-1.542E+03	-1.013E+03
4	22	-1.351E-02	9.266E+02	-1.658E+03	-1.013E+03
5	22	-1.156E-02	7.477E+02	-1.678E+03	-1.013E+03
6	22	-7.506E-03	3.313E+02	-1.631E+03	-1.013E+03
7	22	-2.240E-03	-4.117E+02	-1.530E+03	-1.013E+03
8	22	2.642E-03	-1.608E+03	-1.349E+03	-1.013E+03
9	22	4.563E-03	-3.230E+03	-1.0 11 E+03	-1.013E+03
10	22	-1.804E-96	-4.445E+03	-6.668E+02	7.912E+02
11	22	-1.372E-02	-2.943E+03	-7.2 3 9E+02	-1.013E+03
12	22	-3.3402-02	-9.598E+02	-7.468E+02	-1.013E+03
13	22	-5.487E-02	7.795E+02	-5.345E+02	-1.013E+03
14	22	-7.454E-02	2.441E+03	-9.611E+01	-1.013E+03
15	22	-8.902E-02	4.544E+03	5.472E+02	-1.013E+03
16	22	-9.411E-02	7.596E+03	9.396E+02	-1.013E+03
17	22	-8.350E-02	5.414E+03	8.133E+02	-1.013E+03
18	22	-0.1/4E-02	3.8/2E+03	9.246E+UI	-1.013E+03
19	22	-3.185E-02	8.4435+02	-5.851E+02	-1.013E+03
20	22	-1.009E-90	-2.101E-91	-1.441E-90	5.029E+U2
21	22	2.102F-05	0.	0.	-1.4415-91
_ 1	22	1 5355-03	0	0	-1.1705-00
_ T	23	8 35KE-04	-1 7545-00	-1 1705-90	-8 861ETUS
1	22	-1.535E-02		-2-5636+02	-1.0135403
2	د ے رز	-3 3005-03		-3.552F±02	-1 0135+03
2	23	-4.640E-03	-9.0126102	-3.9656+03	-1.0135+03
4	22	-4.846E-03	-7.8536+01	-4.087F+03	-1.013E+03
5	23	-3.976E-03	+1,426E+01	-3.9826+03	-1.013E+03
_	~ ~		1 + 720L · VZ	20,020,000	

6	23	-2.048E-03	-2.996E+02	-3.688E+03	-1.013E+03	
7	23	3.642E-04	-6.065E+02	-3.261E+03	-1.013E+03	
8	2 3	2.529E-03	-1.179E+03	-2.757E+03	-1.013E+03	
9	23	3.083E-03	-2.029E+03	-2.016E+03	-1.013E+03	
10	23	1.103E-95	-1.392E+03	-2.088E+02	-1.204E+04	
11	23	-5.949E-03	-1.938E+03	-2.231E+03	-1.013E+03	
12	23	-1.528E-02	-9.682E+02	-3.190E+03	-1.013E+03	
13	23	-2.503E-02	-2,000F+02	-3,883F+03	-1.013E+03	
14	23	-3.519E-02	4.937E+02	-4.374E+03	-1.013E+03	
15	23	-4.232E-02	1.438E+03	-4.468E+03	-1-013E+03	
16	23	-4.490E-02	2.953E+03	-4.164E+03	-1.013E+03	
17	22	-3 995E-02	2 1725+03	-3 521E+03	-1 0135+03	
10	2.2	-3.031E-02	1 9545+03			
10	23	-1 3905-02	1 6)9E+03			
19	23		-1.J20E+UJ	-4.1120+03		
20	23	-2.0305-90	5.110E-91	3.4000-90	1.5236+03	
21	23	1.380E-02	0.	0.	3.406E-91	
	. /		0	•		
-1	24	1.569E-03	0.	0.	1.213E-12	
0	24	-4.9310-96	1.819E-12	-2.483E+03	4.424E+03	
1	24	-1.080E-95	-9.433E+02	-6.289E+03	9.783E+03	
2	24	-1.077E-95	-1.111E+03	-7.410E+03	9.759E+03	
3	24	-1.139E-95	-1.217E+03	-8.111E+03	1.038E+04	
- 4	24	~1.151E~95	-1.240E+03	-8.267É+03	1.050E+04	
5	24	-1.105E-95	-1.180E+03	-7.867E+03	1.004E+04	
6	24	-9.937E-96	-1.037E+03	-6.914E+03	8.924E+03	
7	24	-8.081E-96	-8.156E+02	-5.438E+03	7.068E+03	
8	24	-5.555E-96	-5.403E+02	-3.602E+03	4.543E+03	
9	24	-3.543E-96	-3.007E+02	-2.005E+03	2.530E+03	
10	24	-3.238E-96	-3,096F+02	-2,064F+03	5.463E+03	
11	24	-4-584E-96	-4.418E+02	-2.945E+03	3.571E+03	
12	24	-7.843E-96	-8.3945+02	-5.596E+03	6.830E+03	
12	27	-1 2095-05	-1 3065+02		1 1065406	
16	24	-1 6665-05		-1 1735+06	1 5625+06	
1.4	24			1 4205404	1.0005.04	
12	24		-2.1000+00	-1.4300+04	2.000000404	
10	24	-2.4358-95	-2.303E+03	-1.009E+04	2.332E+04	
11	24	-2.053E-95	-1.987E+03	-1.324E+04	1.961E+04	
18	24	-1.157E-95	-1.231E+03	-8.204E+03	1.056E+04	
19	24	1.421E-96	8.437E+00	5.625E+01	-2.434E+03	
20	24	3.245E-96	0.	1.695E+03	-3.751E+03	
21	24	-1.071E-03	0.	0.	0.	
-1	25	-3.434E-03	0.	0.	-1.285E-10	
0	25	-4.649E-03	-1.928E-10	-1.919E+03	-4.575E+02	
1	25	-4.221E-03	-4.804E+02	-4.140E+03	-9.150E+02	
2	25	-3.391E-03	-7.710E+02	-4.624E+03	-9.150E+02	
3	25	-2.782E-03	-9.356E+02	-4.962E+03	-9.150E+02	
4	25	-2.720E-03	-9.688E+02	-5.020E+03	-9.150E+02	
5	25	-3.274E-03	-8.719E+02	-4.758E+03	-9.150E+02	
6	25	-4.279E-03	-6.470E+02	-4.183E+03	-9.150E+02	
7	25	-5.340E-03	-3.021E+02	-3.359E+03	-9.150F+02	
8	25	-5.825E-03	1.203E+02	-2.451E+03	-9.150E+02	
9	25	-4.917E-03	4.738E+02	-1.793F+03	-9.150F+02	
10	25	-1.889E-03	4.686F+02	-1.814F+03	~9.150F+02	
11	25	3.254F-03	2.430F+02	-2.483E+03	+9.150F+02	
12	25	1.015E-02	-3.671E+02	-3.8816+03	-9,1506+02	
12	25	1.7675-02	-1.097E±02	-5.6010+03	-9.1506+02	
14	25	2 4455-02	-1 914E+03	-7 2795+03	-0 150E+02	
1 5	27	2 0145.02	-1.0105-03	-0 E21E+02	-7.1505102	
12	27	2.910CTUZ	-2.4475403	-0.001E+U3	-9.1502+02	
10	23	3.054E-02	-2.100E+03	-8.839E+03	-9.150E+02	
11	25	2.1836-02	-2.296E+03	-1.5/0E+03	-9.150E+02	

18 19 20 21	25 25 25 25	2.180E-02 1.365E+02 3.173E-03 -8.262E-03	-1.436E+03 -1.280E+03 -6.366E-12 0.	-5.082E+03 -2.169E+03 8.848E+02 0.	-9.150E+02 -9.150E+02 -4.575E+02 -4.244E-12
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 2 3 4 5 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 11 2 3 4 5 6 7 8 9 10 11 11 2 3 4 5 6 7 8 9 10 11 11 2 3 4 5 6 7 8 9 10 11 11 2 3 4 5 10 11 11 11 11 11 11 11 11 11 11 11 11	26 26 26 26 26 26 26 26 26 26 26 26 26 2	-1.330E-02 -1.417E-02 -1.360E-02 -1.250E-02 -1.168E-02 -1.168E-02 -1.242E-02 -1.374E-02 -1.489E-02 -1.478E-02 -1.478E-02 -1.478E-02 -1.478E-02 -1.478E-02 -1.545E-02 2.844E-02 4.002E-02 4.796E-02 5.039E-02 3.743E-02 2.519E-02 8.592E-03 -8.416E-03	0. -9.823E-11 -2.342E+02 -4.660E+02 -6.077E+02 -6.298E+02 -5.249E+02 -2.966E+02 3.525E+01 4.111E+02 6.926E+02 6.857E+02 4.244E+02 -1.466E+02 -8.487E+02 -1.540E+03 -2.099E+03 -2.313E+03 -1.922E+03 -1.252E+03 -1.252E+03 -1.350E+03 -1.155E-10 0.	0. -1.196E+03 -2.452E+03 -2.639E+03 -2.781E+03 -2.784E+03 -2.280E+03 -1.837E+03 -1.394E+03 -1.120E+03 -1.176E+03 -1.606E+03 -2.377E+03 -3.319E+03 -4.212E+03 -4.813E+03 -4.813E+03 -4.867E+03 -3.058E+03 -3.058E+03 -3.389E+02 0.	-6.548E-11 -4.080E+02 -8.160E+02 -7.700E-11
-1 0 1 2 3 4 5 6 7 8 9 10 112 13 14 15 16 17 18 19 20 21	27 27 27 27 27 27 27 27 27 27 27 27 27 2	-2.754E-02 -2.794E-02 -2.729E-02 -2.618E-02 -2.537E-02 -2.532E-02 -2.607E-02 -2.718E-02 -2.718E-02 -2.771E-02 -2.633E-02 -2.166E-02 -1.272E-02 3.973E-04 1.657E-02 3.353E-02 4.850E-02 5.876E-02 5.815E-02 4.795E-02 3.381E-02 1.522E-02 -3.588E-03	0. -1.965E-10 -1.052E+02 -2.389E+02 -3.268E+02 -3.307E+02 -2.365E+02 -4.837E+01 2.088E+02 4.775E+02 6.567E+02 6.36E+02 3.994E+02 -4.786E+01 -5.980E+02 -1.132E+03 -1.531E+03 -1.531E+03 -1.371E+03 -9.138E+02 -9.042E+02 -1.043E-10 0.	0. -6.017E+02 -1.208E+03 -1.268E+03 -1.268E+03 -1.284E+03 -1.284E+03 -1.175E+03 -9.918E+02 -7.691E+02 -5.700E+02 -4.733E+02 -5.432E+02 -1.225E+03 -1.721E+03 -2.173E+03 -2.449E+03 -2.139E+03 -1.608E+03 -9.603E+02 1.212E+02 0.	-1.310E-10 -3.600E+02 -7.200
-1 0 1 2 3 4 5	28 28 28 28 28 28 28 28	-4.509E-02 -4.485E-02 -4.407E-02 -4.307E-02 -4.233E-02 -4.222E-02 -4.270E-02	0. 2.807E-10 -3.676E+01 -8.928E+01 -1.274E+02 -1.168E+02 -4.288E+01	0. -1.967E+02 -4.115E+02 -4.046E+02 -3.859E+02 -3.450E+02 -2.749E+02	1.871E-10 -3.105E+02 -6.210E+02 -6.210E+02 -6.210E+02 -6.210E+02 -6.210E+02

6 28	B -4.319E-02	9.051E+01	-1.829E+02	-6.210E+02
7 28	-4.261E-02	2.606E+02	-9.155E+01	-€.210E+02
8 28	-3.955E-02	4.232E+02	-3.221E+01	-6.210E+02
9 21	B -3.261E-02	5,162E+02	-3.248E+01	-6.210E+02
10 28	B -2.094E-02	4.811F+02	-1.075F+02	-6.210E+02
11 20	8 -4.767E-03	3-023E+02	-2-636E+02	-6,210E+02
12 28	B 1 451E-02	-5 670E+00	-4.762E+02	-6.210E+02
12 20	3 - 1 + 7 = 02	-2 7935+02	-7 0735+02	-6 210E+02
15 20		-7 3136+02		-0+210E+02
14 20		-7.5130+02		
15 23		-9.7030+02	-1.0012+03	-0.2100+02
16 28	6.828E-02	-1.031E+0.3	-9.813E+02	-C.210E+02
17 28	B 6.478E-02	-8.608E+02	-8.555E+02	-6.210E+02
18 28	B 5.464E-02	-5.628E+02	-6.475E+02	-6.210E+02
19 28	8 4.028E-02	-4.443E+02	-4.285E+02	-6.210E+02
20 28	B 2.247E-02	-6.378E-11	6.538E+01	-3.105E+02
21 28	8 4.489E-03	0.	0.	-4.252E-11
-1 29	9 -6.418E-02	0.	0.	6.472E-10
0 29	9 -6.334E-02	9.707E-10	6.244E-10	-3.248E+02
1 29	9 -6.250E-02	5.903E+01	3.763E-09	-6.496E+02
2 29	9 -6.154E-02	-9.752E+01	4.755E-09	-6.496E+02
3 29	9 -6.077E-02	-2.183E+02	3.387E-09	-6.496E+02
4 29	9 -6.044E-02	-1.458E+02	4.550E-09	-6.496E+02
5 24	9 -6.040E-02	1.883E+02	4.430E-C9	~6.496E+02
6 24	9 -5.998E-02	7.658E+02	2.994E-09	-6.496E+02
7 29	9 -5.804E-02	1.481E+03	4.909E-09	-6.496E+02
8 29	9 -5.315E-02	2.141E+03	4.3788-09	-6.496E+02
9 20	9 -4.400E-02	2.490E+03	3.283E-09	-6.496E+02
10 24	-2.988F-02	2.303E+03	1.011E-09	-6.496E+02
11 29	9 -1.118E-02	1.507E+03	5.048E-10	-6.496E+02
12 29	9 1.053E-02	1.813E+02	-6.502E-10	- €.496E+02
13 20	2 3.260E-02	-1.409E+03	-1.060E-09	-6.496E+02
14 20	9 5 186E-02	-2 901E+03	-1.814E-09	-6.496E+02
15 20	9 6 534E-02	-3 016E+03	-1 673E-09	-6.496E+02
14 20		-6 121E+03		-6 496E+02
10 2		-3 (535+03	-1:0055-00	-4 4945+02
17 25	9 0.040E-02	-3.4526+03	-1.099E-09	
18 23	9 5.9000-02	~Z+184E+03	-1.4195-09	-0.4900+02
19 2	9 4.529E-02	-0.343E+U2	-1.197E-09	-0.4900+02
20 20	9 3.025E-02	-3.236E-10	~2.993E-10	-3.248E+02
21 29	9 1.522E-02	0.	0.	-2.157E-10
-1 30	0 -8.327E-02	0.	0.	0.
0 30	U -8.183E-02	0.	0.	9.365E-10
1 30	J -8.093E-02	0.	0.	5.045E-09
2 30	0 -7.999E-02	0.	0.	7.133E-09
3 30	0 -7.918E-02	0.	0.	5.080E-09
4 30	0 -7.864E-02	0.	0.	6.825E-09
5 30	J -7.813E-02	0.	0.	6.645E-09
6 30	J -7.688E-02	0.	0.	4.490E-09
7 30	J -1.367E-02	0.	U.	1.363E-09
830	0 -6.704E-02	0.	0.	6.567E-09
9 30	J -5.572E-02	0.	0.	4.925E-09
10 30	J -3.913E-02	0.	0.	1.517E-09
11 30	0 -1.779E-02	0.	0.	7.5/2E-10
12 30	0 6.531E-03	0.	0.	-9.753E-10
13 30	0 3.101E-02	0.	0.	-1.591E-09
14 30	5.233E-02	0.	0.	-2.720E-09
15 30	0 6.744E-02	0.	0.	-2.510E-09
16 30	0 7.432E-02	0.	0.	-1.386E-09
17 30	0 7.264E-02	0.	0.	-1.643E-09

18	30	6.377E-02	0.	0.	-2.128E-09
19	30	5.039E-02	0.	0.	-1.795E-09
20	30	3.804E-02	0.	0.	-4.490E-10
21	30	2.595E-02	0.	0.	0.

PROB (CONTD)

610 60 X 58 SLAB SIMPLE SUPPORTS AND CONCENTRATED LOADS

TABLE 4. RESULTS (CONTD)

I,J	TM	X	TMY
$\begin{array}{c} -1 & -1 \\ 0 & -1 \\ 1 & -1 \\ 2 & -1 \\ 3 & -1 \\ 4 & -1 \\ 5 & -1 \\ 6 & -1 \\ 7 & -1 \\ 8 & -1 \\ 16 & -1 \\ 10 & -1 \\ 11 & -1 \\ 10 & -1 \\ 11 & -1 \\ 11 & -1 \\ 12 & -1 \\ 13 & -1 \\ 13 & -1 \\ 14 & -1 \\ 15 & -1 \\ 16 & -1 \\ 17 & -1 \\ 18 & -1 \\ 19 & -1 \\ 20 & -1 \\ 21 & -1 \\ 1 & -$			
$ \begin{array}{c} -1 & (\\ 0 & (\\ 1 & (\\ 2 & (\\ 3 & (\\ 4 & (\\ 5 & (\\ 6 & (\\ 7 & (\\ 8 & (\\ 9 & (\\ 11 & (\\ 12 & (\\ 13 & (\\ 14 & (\\ 15 & $	$\begin{array}{c} 0 & 0 \\ -4 & 36 \\ -7 & 91 \\ -5 & 62 \\ -3 & 58 \\ -9 & 10 \\ -1 & 68 \\ -2 & 64 \\ -3 & 71 \\ -4 & 74 \\ -5 & 54 \\ -5 & 97 \\ -5 & 97 \\ -5 & -5 & 11 \\ -5 & -5 & 11 \\ -4 & 28 \\ -3 & 38 \end{array}$	0. 4E+01 4. 0E+00 7. 6E+00 5. 3E+01 3. 1E+01 9. 0E+02 1. 2E+02 2. 6E+02 3. 9E+02 4. 4E+02 5. 1E+02 5. 7E+02 6. 1E+02 5. 8E+02 5. 8E+02 5. 4E+02 3.	364E+01 910E+00 626E+00 583E+01 101E+01 680E+02 642E+02 716E+02 749E+02 544E+02 971E+02 017E+02 721E+02 118E+02 284E+02 386E+02

-1	-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21	16 17 18 19 20 21
2	2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 - 0 - 0 - 0 - 0
0	0. 3.749E+01 7.533E+00 5.672E+00 4.651E+00 2.702E+01 6.863E+01 1.416E+02 2.517E+02 3.891E+02 5.282E+02 6.414E+02 7.116E+02 7.242E+02 5.222E+02 3.345E+02 1.459E+02 2.238E+01 1.498E+02 5.706E+01 0.	0. 6.351E+01 9.141E+00 7.921E+00 2.785E+01 9.652E+01 1.958E+02 3.275E+02 4.854E+02 6.475E+02 7.805E+02 8.600E+02 8.821E+02 8.495E+02 7.598E+02 6.196E+02 4.599E+02 3.161E+02 1.894E+02 1.887E+02 0.	2.582E+02 1.871E+02 1.407E+02 2.084E+02 C. C.
0.	0. 3.749E+01 7.533E+00 -5.672E+00 4.651E+00 2.702E+01 6.863E+01 1.416E+02 2.517E+02 3.891E+02 5.282E+02 6.414E+02 7.116E+02 7.242E+02 6.619E+02 5.222E+02 3.345E+02 1.459E+02 -2.238E+01 -1.498E+02 -5.706E+01 0. 0.	0. 6.351E+01 9.141E+00 -7.921E+00 2.785E+01 9.652E+01 1.958E+02 3.275E+02 4.854E+02 6.475E+02 7.805E+02 8.600E+02 8.821E+02 8.495E+02 7.598E+02 6.196E+02 4.599E+02 3.161E+02 1.8894E+02 1.063E+02 1.887E+02 0. 0.	2.582E+02 1.871E+02 1.407E+02 2.084E+02 0. 0.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4.355E+00 5.731E+00 -5.352E+01 -2.015E+02 -4.430E+02 -7.473E+02 -1.055E+03 -1.298E+03 -1.407E+03 -1.325E+03 -1.037E+03 -5.910E+02 -9.043E+01 3.693E+02 7.361E+02 4.876E+02 0.	-4.355E+00 -5.731E+00 5.352E+01 2.015E+02 4.430E+02 7.473E+02 1.055E+03 1.298E+03 1.407E+03 1.325E+03 1.037E+03 5.910E+02 9.048E+01 -3.693E+02 -7.361E+02 0. 0.
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0. -6.238E+01 -1.643E+02 -1.988E+02 -9.617E+01 6.363E+01 1.977E+02 2.241E+02 6.751E+01 -3.258E+02 -9.542E+02 -1.708E+03 -2.373E+03 -2.637E+03 -2.085E+03 -1.122E+03 9.789E+01 1.272E+03 2.156E+03 1.538E+03 0. 0.	0. 6.238E+01 1.643E+02 1.988E+02 9.617E+01 -6.363E+01 -1.977E+02 -2.241E+02 -6.751E+01 3.258E+02 9.542E+02 1.708E+03 2.373E+03 2.637E+03 2.085E+03 1.122E+03 -9.789E+01 -1.272E+03 -2.156E+03 -1.538E+03 0. 0.
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 3 14 15	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0. -1.254E+02 -5.890E+02 -5.753E+02 -2.724E+02 1.450E+02 5.372E+02 7.779E+02 7.328E+02 2.485E+02 -8.262E+02 -2.366E+03 -3.811E+03 -4.522E+03 -3.672E+03 -2.030E+03	0. 1.254E+02 5.890E+02 5.753E+02 2.724E+02 -1.450E+02 -5.372E+02 -7.779E+02 -7.328E+02 8.262E+02 2.366E+03 3.811E+03 4.587E+03 4.522E+03 3.672E+03 2.030F+03

16 17 18 19 20 21	5 5 5 5 5 5 5 5 5 5	4.396E+02 2.981E+03 4.890E+03 3.304E+03 0. 0.	-4.396E+02 -2.981E+03 -4.890E+03 -3.304E+03 0. 0.
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	666666666666666666666666666666666666666	0. -6.590E+02 -1.454E+03 -1.081E+03 -4.909E+02 1.899E+02 8.297E+02 1.293E+03 1.417E+03 9.802E+02 -3.015E+02 -2.669E+03 -4.954E+03 -5.968E+03 -5.968E+03 -5.883E+03 -4.842E+03 -2.769E+03 7.476E+02 4.465E+03 7.157E+03 4.571E+03 0. 0.	0. 6.590E+02 1.454E+03 1.081E+03 4.909E+02 -1.899E+02 -8.297E+02 -1.293E+03 -1.417E+03 -9.802E+02 3.015E+02 2.669E+03 4.954E+03 5.968E+03 5.883E+03 4.842E+03 2.769E+03 -7.476E+02 -4.465E+03 -7.157E+03 -4.571E+03 0. 0.
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0. -1.277E+03 -2.223E+03 -1.496E+03 -6.701E+02 1.844E+02 9.697E+02 1.560E+03 1.786E+03 1.420E+03 1.366E+02 -2.726E+03 -5.510E+03 -6.532E+03 -6.372E+03 -5.202E+03 -2.998E+03 9.215E+02 5.038E+03 7.805E+03 4.921E+03 0. 0.	0. 1.277E+03 2.223E+03 1.496E+03 6.701E+02 -1.844E+02 -9.697E+02 -1.560E+03 -1.420E+03 -1.420E+03 -1.420E+03 -1.366E+02 2.726E+03 5.510E+03 6.532E+03 5.202E+03 2.998E+03 -9.215E+02 -5.038E+03 -7.805E+03 -4.921E+03 0. 0.
-1 0 1 2 3	8 8 8 8	0. -1.401E+03 -2.464E+03 -1.686E+03 -7.715E+02	0. 1.401E+03 2.464E+03 1.686E+03 7.715E+02
45678910111213145166171892021	888888888888888888888888888888888888888	1.590E+02 1.007E+03 1.650E+03 1.924E+03 1.596E+03 3.051E+02 -2.648E+03 -5.521E+03 -6.539E+03 -6.539E+03 -5.008E+03 -2.597E+03 9.746E+02 4.706E+03 7.583E+03 4.860E+03 0.	-1.590E+02 -1.007E+03 -1.650E+03 -1.924E+03 -1.596E+03 -3.051E+02 2.648E+03 5.521E+03 6.539E+03 5.008E+03 5.008E+03 2.597E+03 2.597E+03 2.597E+03 -7.583E+03 -4.860E+03 0.
--	--	--	--
-1 0 1 2 3 4 5 6 7 8 9 10 112 13 145 167 189 201 21 112 134 156 167 189 201 112 134 156 167 189 201 112 123 145 167 189 201 201 112 123 145 167 189 201 112 123 145 167 189 201 112 123 145 167 189 201 112 123 145 167 189 201 112 123 145 167 189 201 120 112 123 145 167 189 201 1200 1200 120 1200 120 1200 120 1200 120 120	99999999999999999999999999	C. -1.337E+03 -2.382E+03 -1.669E+03 -7.834E+02 1.304E+02 9.641E+02 1.598E+03 1.875E+03 1.568E+03 3.258E+02 -2.450E+03 -5.143E+03 -6.107E+03 -5.847E+03 -4.540E+03 -2.147E+03 9.353E+02 4.144E+03 6.924E+03 4.496E+03 0. C.	0. 1.337E+03 2.382E+03 1.669E+03 7.834E+02 -1.304E+02 -9.641E+02 -1.598E+03 -1.568E+03 -3.258E+02 2.450E+03 5.143E+03 6.107E+03 5.847E+03 4.540E+03 2.147E+03 -9.353E+02 -4.144E+03 -6.924E+03 0. 0.
-1 0 1 2 3 4 5 6 7 8 9 10 11 2 3 14 15	10 10 10 10 10 10 10 10 10 10 10 10 10	C. -1.170E+03 -2.105E+03 -1.503E+03 -7.196E+02 1.051E+02 8.618E+02 1.437E+03 1.686E+03 1.402E+03 2.769E+02 -2.148E+03 -4.493E+03 -5.353E+03 -5.117E+03 -3.992E+03 -2.097E+03	0. 1.170E+03 2.105E+03 1.503E+03 7.196E+02 -1.051E+02 -8.618E+02 -1.437E+03 -1.686E+03 -1.402E+03 -2.769E+02 2.148E+03 4.493E+03 5.353E+03 5.117E+03 3.992E+03 2.097E+03

16 10	8.328E+02	-8.328E+02
17 10	3.863E+03	-3.863E+03
18 10	6.077E+03	-6.077E+03
19 10	3.922E+03	-3.922E+03
20 10	0.	0.
21 10	0.	0.
-1 11 0 11 1 11 2 11 3 11 4 11 5 11 6 11 7 11 8 11 10 11 11 11 12 11 13 11 14 11 15 11 14 11 15 11 16 11 17 11 18 11 19 11 20 11 21 1	C. -9.480E+02 -1.716E+03 -1.240E+03 -6.015E+02 8.318E+01 7.154E+02 1.195E+03 1.397E+03 1.149E+03 2.043E+02 -1.764E+03 -3.660E+03 -4.368E+03 -4.161E+03 -3.215E+03 -1.627E+03 6.885E+02 3.082E+03 4.923E+03 3.183E+03 0. 0.	0. 9.480E+02 1.716E+03 1.240E+03 6.015E+02 -8.318E+01 -7.154E+02 -1.195E+03 -1.397E+03 -1.149E+03 -2.043E+02 1.764E+03 3.660E+03 4.368E+03 4.161E+03 3.215E+03 1.627E+03 1.627E+03 -6.885E+02 -3.082E+03 -4.923E+03 -3.183E+03 0. 0.
-1 12 0 12 1 12 2 12 3 12 4 12 5 12 6 12 7 12 8 12 9 12 10 12 11 12 12 12 13 12 14 12 15 12 16 12 17 12 18 12 19 12 20 12 21 12 11 12 12 12 13 12 14 12 15 12 16 12 17 12 18 12 19 12 10 12 11 12 13 12 14 12 15 12 16 12 17 12 18 12 19 12 10 12 11 12 12 12 13 12 14 12 15 12 16 12 17 12 18 12 19 12 10 12 11 12 12 12 13 12 14 12 15 12 16 12 17 12 18 12 19 12 10 12 11 12 12 12 13 12 14 12 12 12 13 12 14 12 12 12 13 12 14 12 12 12 13 12 14 12 12 12 13 12 14 12 12 12 13 12 14 12 12 12 13 12 12 12 13 12 14 12 12 12 13 12 12 12 13 12 12 12 13 12 1	0. -6.953E+02 -1.263E+03 -9.199E+02 -4.490E+02 6.267E+01 5.375E+02 8.963E+02 1.043E+03 8.469E+02 1.314E+02 -1.318E+03 -2.709E+03 -3.055E+03 -2.300E+03 -1.060E+03 5.161E+02 2.149E+03 3.574E+03 2.337E+03 0. 0.	0. 6.953E+02 1.263E+03 9.199E+02 4.490E+02 -6.267E+01 -5.375E+02 -8.963E+02 -1.043E+03 -8.469E+02 -1.314E+02 1.318E+03 2.709E+03 3.231E+03 3.055E+03 2.300E+03 1.060E+03 -5.161E+02 -2.149E+03 -3.574E+03 -2.337E+03 0. 0.
-1 13	0.	0.
0 13	-4.269E+02	4.269E+02
1 13	-7.768E+02	7.768E+02
2 13	-5.680E+02	5.680E+02
3 13	-2.772E+02	2.772E+02

132

7 13 8 13 9 13 10 13 11 13 12 13 13 13 14 13 15 13 16 13 17 13 18 13 19 13 20 13 21 13	6.485E+02 5.192E+02 6.696E+01 -8.297E+02 -1.686E+03 -2.006E+03 -1.877E+03 -1.353E+03 -4.990E+02 3.251E+02 1.184E+03 2.151E+03 1.439E+03 0. 0.	-6.485E+02 -5.192E+02 -6.696E+01 8.297E+02 1.686E+03 1.877E+03 1.353E+03 4.990E+02 -3.251E+02 -1.184E+03 -2.151E+03 0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0. -1.513E+02 -2.754E+02 -2.010E+02 -9.608E+01 1.989E+01 1.274E+02 2.062E+02 2.332E+02 1.800E+02 1.094E+01 -3.161E+02 -6.273E+02 -7.438E+02 -6.901E+02 -4.664E+02 -4.777E+01 1.234E+02 3.055E+02 7.620E+02 5.299E+02 0. 0.	0. 1.513E+02 2.754E+02 2.010E+02 9.608E+01 -1.989E+01 -1.274E+02 -2.062E+02 -2.332E+02 -1.800E+02 -1.094E+01 3.161E+02 6.273E+02 7.438E+02 4.664E+02 4.664E+02 4.777E+01 -1.234E+02 -3.055E+02 -7.620E+02 0. 0.
$\begin{array}{ccccc} -1 & 15 \\ 0 & 15 \\ 2 & 15 \\ 3 & 15 \\ 4 & 15 \\ 5 & 15 \\ 6 & 15 \\ 7 & 15 \\ 8 & 15 \\ 10 & 15 \\ 11 & 15 \\ 12 & 15 \\ 13 & 15 \\ 14 & 15 \\ 15 & 15 \end{array}$	0. 1.264E+02 2.304E+02 1.702E+02 8.748E+01 -2.678E+00 -8.774E+01 -1.553E+02 -1.886E+02 -1.623E+02 -4.156E+01 2.076E+02 4.457E+02 5.297E+02 4.816E+02 3.062E+02 -2.350E+01	0. -1.264E+02 -2.304E+02 -1.702E+02 -8.748E+01 2.678E+00 8.774E+01 1.553E+02 1.886E+02 1.623E+02 4.156E+01 -2.076E+02 -4.457E+02 -5.297E+02 -4.816E+02 -3.062E+02 2.350E+01

16	15	-8.139E+01	8.139E+01
17	15	-1.535E+02	1.535E+02
18	15	-5.240E+02	5.240E+02
19	15	-3.752E+02	3.752E+02
20	15	0.	0.
21	15	0.	0.
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 2 3 14 15 16 7 18 9 20 2	$\begin{array}{c} 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\$	0. 4.023E+02 7.321E+02 5.368E+02 2.678E+02 -2.522E+01 -2.991E+02 -5.102E+02 -6.037E+02 -9.716E+01 7.277E+02 1.516E+03 1.802E+03 1.674E+03 1.194E+03 4.276E+02 -2.816E+02 -1.030E+03 -1.294E+03 0. 0.	0. -4.023E+02 -7.321E+02 -5.368E+02 2.522E+01 2.991E+02 5.102E+02 6.037E+02 5.019E+02 9.716E+01 -7.277E+02 -1.516E+03 -1.802E+03 -1.674E+03 -1.94E+03 -4.276E+02 2.816E+02 1.030E+03 1.918E+03 1.294E+03 0. 0.
-1 0 1 2 3 4 5 6 7 8 9 10 112 13 14 15 16 17 18 19 21 21 21 21 12 1	17 17	0. 6.718E+02 1.219E+03 8.882E+02 4.383E+02 -4.755E+01 -4.988E+02 -8.449E+02 -9.976E+02 -8.04E+02 -1.612E+02 1.229E+03 2.563E+03 3.046E+03 2.862E+03 2.144E+03 9.874E+02 -4.700E+02 -1.989E+03 -3.348E+03 -2.212E+03 0. 0.	0. -6.718E+02 -1.219E+03 -8.882E+02 -4.383E+02 4.755E+01 4.988E+02 8.449E+02 9.976E+02 8.304E+02 1.612E+02 -1.229E+03 -2.563E+03 -2.862E+03 -2.862E+03 -2.144E+03 -9.874E+02 4.700E+02 1.989E+03 3.348E+03 2.212E+03 0.
-1	18	0.	0.
0	18	9.271E+02	-9.271E+02
1	18	1.675E+03	-1.675E+03
2	18	1.209E+03	-1.209E+03
3	18	5.889E+02	-5.889E+02

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	18 18 18 18 18 18 18 18 18 18 18 18 18 1	-7.060E+01 -6.787E+02 -1.144E+03 -1.351E+03 -1.133E+03 -2.345E+02 1.696E+03 3.554E+03 4.216E+03 3.987E+03 3.064E+03 1.553E+03 -6.407E+02 -2.913E+03 -4.702E+03 -3.090E+03 0.	7.060E+01 6.787E+02 1.144E+03 1.351E+03 1.133E+03 2.345E+02 -1.696E+03 -3.554E+03 -4.216E+03 -3.987E+03 -3.064E+02 -1.553E+03 6.407E+02 2.913E+03 4.702E+03 3.090E+03 0. 0.
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	19 19 19 19 19 19 19 19 19 19 19 19 19 1	0. 1.155E+03 2.072E+03 1.473E+03 7.054E+02 -9.662E+01 -8.300E+02 -1.389E+03 -1.639E+03 -1.639E+03 -3.082E+02 2.110E+03 4.444E+03 5.248E+03 5.248E+03 3.854E+03 2.020E+03 -7.887E+02 -3.686E+03 -5.854E+03 0. 0.	0. -1.155E+03 -2.072E+03 -1.473E+03 -7.054E+02 9.662E+01 8.300E+02 1.389E+03 1.639E+03 1.385E+03 3.082E+02 -2.110E+03 -4.444E+03 -5.248E+03 -4.974E+03 -3.854E+03 -2.020E+03 7.887E+02 3.686E+03 5.854E+03 3.876E+03 0. 0.
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	20 20 20 20 20 20 20 20 20 20 20 20 20 2	0. 1.330E+03 2.363E+03 1.646E+03 7.692E+02 -1.282E+02 -9.433E+02 -1.560E+03 -1.831E+03 -1.548E+03 -3.573E+02 2.449E+03 5.169E+03 6.066E+03 5.758E+03 4.434E+03 2.069E+03	0. -1.330E+03 -2.363E+03 -1.646E+03 -7.692E+02 1.282E+02 9.433E+02 1.560E+03 1.831E+03 1.548E+03 3.573E+02 -2.449E+03 -5.169E+03 -6.066E+03 -5.758E+03 -4.434E+03 -2.069E+03

16 20	-9.086E+02	9.086E+02
17 20	-3.976E+03	3.976E+03
18 20	-6.692E+03	6.692E+03
19 20	-4.510E+03	4.510E+03
20 20	0.	0.
21 20	0.	0.
-1 21 0 21 1 21 2 21 3 21 5 21 6 21 7 21 8 21 9 21 10 21 11 21 12 21 13 21 14 21 15 21 16 21 17 21 18 21 19 21 20 21 21 21	0. 1.409E+03 2.469E+03 1.677E+03 /.619E+02 -1.655E+02 -1.007E+03 -1.638E+03 -1.569E+03 -3.287E+02 2.696E+03 5.634E+03 6.584E+03 6.315E+03 4.977E+03 2.537E+03 -9.888E+02 -4.609E+03 -7.370E+03 -7.370E+03 0. 0.	0. -1.409E+03 -2.469E+03 -1.677E+03 -7.619E+02 1.655E+02 1.007E+03 1.638E+03 1.569E+03 3.287E+02 -2.696E+03 -5.634E+03 -6.584E+03 -6.584E+03 -6.584E+03 -6.315E+03 -4.977E+03 -2.537E+03 9.888E+02 4.609E+03 7.370E+03 4.938E+03 0. 0.
-1 22 0 22 1 22 3 22 4 22 5 22 6 22 7 22 8 22 9 22 10 22 11 22 12 22 13 22 14 22 14 22 15 22 14 22 15 22 14 22 16 22 17 22 18 22 21 22	0. 1.306E+03 2.267E+03 1.519E+03 6.757E+02 -2.019E+02 -1.009E+03 -1.604E+03 -1.808E+03 -1.401E+03 -1.255E+02 2.828E+03 5.700E+03 6.703E+03 6.552E+03 5.334E+03 3.016E+03 -9.972E+02 -5.156E+03 -7.793E+03 -5.057E+03 0. 0.	0. -1.306E+03 -2.267E+03 -1.519E+03 -6.757E+02 2.019E+02 1.009E+03 1.604E+03 1.401E+03 1.255E+02 -2.828E+03 -5.700E+03 -6.703E+03 -6.552E+03 -5.334E+03 -3.016E+03 9.972E+02 5.156E+03 7.793E+03 5.057E+03 0. 0.
-1 23	0.	0.
0 23	3.568E+02	-3.568E+02
1 23	7.797E+02	-7.797E+02
2 23	5.872E+02	-5.872E+02
3 23	2.659E+02	-2.659E+02

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	23 23 23 23 23 23 23 23 23 23 23 23 23 2	-4.646E+02 -7.214E+02 -7.856E+02 -5.267E+02 2.046E+02 1.415E+03 2.586E+03 3.186E+03 3.186E+03 2.644E+03 1.516E+03 -4.276E+02 -2.506E+03 -3.998E+03 0. 0.	4.646E+02 7.214E+02 7.856E+02 5.267E+02 -2.046E+02 -1.415E+03 -3.186E+03 -3.186E+03 -3.186E+03 -2.644E+03 -1.516E+03 4.276E+02 2.506E+03 3.998E+03 2.390E+03 0.
-1012345678901112341561789021	244444444444444444444444444444444444444	0. 8.053E+01 3.280E+02 3.207E+02 1.501E+02 -8.511E+01 -3.075E+02 -4.486E+02 -4.321E+02 -1.620E+02 4.563E+02 1.214E+03 1.928E+03 2.414E+03 1.988E+03 1.116E+03 -2.609E+02 -1.717E+03 -2.832E+03 -1.692E+03 0. 0.	0. -8.053E+01 -3.280E+02 -3.207E+02 -1.501E+02 8.511E+01 3.075E+02 4.486E+02 4.321E+02 1.620E+02 -4.563E+02 -1.214E+03 -2.406E+03 -2.414E+03 -1.988E+03 -1.116E+03 2.609E+02 1.717E+03 2.832E+03 1.692E+03 0. 0.
-1 0 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15	25522522222222222222222222222222222222	0. 7.526E+01 1.984E+02 2.286E+02 1.043E+02 -8.763E+01 -2.521E+02 -2.937E+02 -1.239E+02 3.198E+02 1.026E+03 1.847E+03 2.574E+03 2.992E+03 2.924E+03 2.324E+03 1.235E+03	0. -7.526E+01 -1.984E+02 -2.286E+02 -1.043E+02 8.763E+01 2.521E+02 2.937E+02 1.239E+02 -3.198E+02 -1.026E+03 -1.847E+03 -2.574E+03 -2.922E+03 -2.924E+03 -2.324E+03 -1.235E+03

16 25	-1.751E+02	1.751E+02
17 25	-1.543E+03	1.543E+03
18 25	-2.536E+03	2.536E+03
19 25	-1.717E+03	1.717E+03
20 25	0.	0.
21 25	0.	0.
$\begin{array}{cccc} -1 & 26 \\ 0 & 26 \\ 1 & 26 \\ 2 & 26 \\ 3 & 26 \\ 4 & 26 \\ 5 & 26 \\ 6 & 26 \\ 7 & 26 \\ 8 & 26 \\ 9 & 26 \\ 10 & 26 \\ 11 & 26 \\ 12 & 26 \\ 13 & 26 \\ 14 & 26 \\ 15 & 26 \\ 16 & 26 \\ 17 & 26 \\ 18 & 26 \\ 19 & 26 \\ 21 & 26 \\ 21 & 26 \end{array}$	0. 4.293E+01 4.117E+01 3.949E+01 1.620E+01 -1.770E+01 -2.547E+01 3.569E+01 1.976E+02 4.633E+02 7.965E+02 1.144E+03 1.420E+03 1.542E+03 1.542E+03 1.542E+03 1.542E+03 1.131E+03 6.265E+02 5.961E+01 -4.541E+02 -8.536E+02 -5.808E+02 0. 0.	0. -4.293E+01 -4.117E+01 -3.949E+01 -1.620E+01 1.770E+01 2.547E+01 -3.569E+01 -1.976E+02 -4.633E+02 -7.965E+02 -1.144E+03 -1.420E+03 -1.542E+03 -1.542E+03 -1.453E+03 -1.31E+03 -6.265E+02 -5.961E+01 4.541E+02 8.536E+02 5.808E+02 0. 0.
-1 27 0 27 1 27 2 27 3 27 4 27 5 27 6 27 7 27 8 27 10 27 11 27 12 27 13 27 14 27 15 27 16 27 17 27 18 27 16 27 17 27 18 27 19 27 20 27 21 27	0. 3.722E+01 6.159E+00 -1.004E+01 -1.303E+00 2.088E+01 6.472E+01 1.439E+02 2.641E+02 4.131E+02 5.641E+02 6.958E+02 7.801E+02 7.909E+02 7.171E+02 5.574E+02 3.459E+02 1.399E+02 -3.816E+01 -1.808E+02 -9.398E+01 0. 0.	0. -3.722E+01 -6.159E+00 1.004E+01 1.303E+00 -2.088E+01 -6.472E+01 -1.439E+02 -2.641E+02 -4.131E+02 -5.641E+02 -7.801E+02 -7.801E+02 -7.909E+02 -7.171E+02 -5.574E+02 -3.459E+02 -1.399E+02 3.816E+01 1.808E+02 9.398E+01 0. 0.
-1 28	0.	0.
0 28	6.184E+01	-6.184E+01
1 28	3.787E+00	-3.787E+00
2 28	-1.670E+01	1.670E+01
3 28	1.975E+01	-1.975E+01

4 5 6 7 8 9 10 111 12 13 14 15 16 17 18 19 20 21	28 28 28 28 28 28 28 28 28 28 28 28 28 2	9.322E+01 2.012E+02 3.453E+02 5.176E+02 6.925E+02 8.368E+02 9.319E+02 9.628E+02 9.214E+02 8.131E+02 6.508E+02 4.735E+02 3.243E+02 1.980E+02 9.949E+01 1.699E+02 0. 0.	-9.322E+01 -2.012E+02 -3.453E+02 -5.176E+02 -6.925E+02 -8.368E+02 -9.319E+02 -9.628E+02 -9.214E+02 -8.131E+02 -6.508E+02 -4.735E+02 -3.243E+02 -1.980E+02 -9.949E+01 -1.699E+02 0. 0.
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	29 29 29 29 29 29 29 29 29 29 29 29 29 2	0. 4.263E+01 4.191E+00 1.174E-01 3.145E+01 9.085E+01 1.748E+02 2.799E+02 3.970E+02 5.088E+02 5.957E+02 6.462E+02 6.537E+02 6.180E+02 5.461E+02 4.500E+02 3.514E+02 2.689E+02 1.979E+02 1.436E+02 2.058E+02 0. 0.	0. -4.263E+01 -4.191E+00 -1.174E-01 -3.145E+01 -9.085E+01 -1.748E+02 -2.799E+02 -3.970E+02 -5.088E+02 -5.957E+02 -6.462E+02 -6.537E+02 -6.180E+02 -5.461E+02 -3.514E+02 -2.689E+02 -1.979E+02 -1.436E+02 -2.058E+02 0. 0.
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	30 30 30 30 30 30 30 30 30 30 30 30 30 3	0. C. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	

1	3	9
---	---	---

16	30	Ο.	0.
17	30	Ο.	0.
18	30	С.	0.
19	30	Ο.	0.
20	30	0.	0.
21	30	0.	0.

TIME FOR THIS PROBLEM = 0 MINUTES 39.256 SECONDS

ELAPSED CPU TIME = 0 MINUTES 51.154 SECONDS