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PREFACE 

This report presents the results of an analytical study which was under

taken to develop an implicit numerical method for determining the transient 

and steady-state vibrations of elastic beams and plates. The study consists 

of (1) a theoretical analysis of the stability of difference equations used, 

(2) the formulation of the difference equations for the general solution of 

the beam and plate, and (3) a demonstration of the method by computer solu

tions of example problems. A supplemental report will describe the use of the 

associated computer programs for the beam and plate and will further illus

trate the application of these programs to highway engineering problems. 

Report 56-1 in the List of Reports provides an explanation of the 

basic procedures which are used in these programs. Although the programs 

are written in FORTRAN-63 for the CDC 1604 computer, minor changes would make 

these programs compatible with an IBM 7090 system. Copies of the programs and 

data cards for the example problems in this report may be obtained from the 

Center for Highway Research at The University of Texas. 

Support for this project was provided by the Texas Highway Department, 

under Research Project 3-5-63-56 (HPR-1-4), in cooperation with the U. S. 

Department of Transportation, Bureau of Public Roads. Some related support 

was provided by the National Science Foundation. The computer time was 

contributed by the Computation Center of The University of Texas. The authors 

are grateful to these organizations and to the many individuals who helped in 

this study. 
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ABSTRACT 

A finite-element method is developed to determine the transverse linear 

deflections of a vibrating beam or plate. The method can be used to obtain 

numerical solutions to varied beam and plate vibration problems which can not 

be readily solved by other known methods. The solutions for the beam and 

plate are separate formulations which have been programmed for a digital com

puter. Both solutions permit arbitrary variations in bending stiffness, mass 

density and dynamic loading. The static equations have been included in the 

development so that the initial deflections can be conveniently established. 

In the beam, the difference equations are solved by a recursive procedure. 

For the plate, the same procedure is combined with an alternating-direction 

technique to obtain an iterated solution. The numerical results demonstrate 

that the method is applicable to a wide range of vibration problems which are 

relevant to a beam or plate. 
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NOMENCIATURE 

Symbol Typical Units Definition 

A in. Constant 

C1 in. Constant 

C:a in. Constant 

D Ib-in8 j in Flexural stiffness of plate 

d lb-sec/in2 Distributed damping coefficient 

E lb/ in2 Modulus of elasticity 

e Base of natural logarithms 

F lb -ina Bending stiffness = EI 

g2 
EI h a 

t 
p h 4 

X 

h in. Length of plate increment 
p 

h t 
sec Length of time increment. 

h in. Length of beam or plate increment 
x 

h in. Length of plate increment 
y 

I in4 Moment of inertia of the cross section 

i Index for plate axis 

j Index for plate or beam axis 

k Index for time axis 

L in. Length of beam or plate 

M Number of beam or plate increments 

~ in-lb Bending moment 

m Index 

N Number of plate increments 

n Index 

xi 



xii 

Symbol 

P 

Q 

q 

R 

r 

S 

s 

t 

T c 

t 
c 

v 

w 

x 

y 

p 

Typical Units 

Ib 

Ib/ sta or 
Ib/mesh point 

Ib/ in or 
Ib/ in2 

in-lb/sta per rad 

in-lb/in per rad 

Ib/in per sta or 
Ib/in per mesh point 

Ib/ in2 or 
Ib/ in3 

sec 

in-lb/sta 

in-lb/in 

in/ sec 

in. 

in. 

in. 

radians 

radians 

Ib sec::!/ ina or 
Ib sec2 /in3 

Definition 

Axial load 

Concentrated transverse load on a beam or 
concentrated transverse load on a plate 

Transverse load per unit length of beam or 
transverse load per unit area of plate 

Concentrated rotational restraint 

Rotational restraint per unit length 

Concentrated stiffness of elastic founda
tion for a beam or concentrated stiffness 
of elastic foundation for a plate 

Stiffness of elastic foundation per unit 
length of beam or stiffness of elastic 
foundation per unit area of plate 

Time 

Concentrated applied couple 

Applied couple per unit length 

Dh 2 
t 

ph 4 
P 

Velocity 

Transverse deflection for a beam or plate 

Distance along axis of a beam or plate 

Distance along axis of a plate 

Angle 

Angle 

Closure parameter 

Poisson's ratio 

Mass density per unit length of beam or 
mass density per unit area of plate 

Exponent 



CHAPTER 1. INTRODUCTION 

Advances in science and technology have brought about an increasing need 

for solutions to structural problems in which dynamic behavior is an important 

factor. Classical solutions are available for a limited class of problems in 

this category. The development of the high-speed digital computer has made it 

feasible to obtain approximate numerical solutions for a vast number of here

tofore unsolved problems. 

The primary purpose of this investigation is to develop a finite-element 

method for determining the transverse time-dependent linear deflections of a 

beam or plate. The method is based on an implicit formula which was introduced 

by Crank and Nicolson (Ref 5)* to solve the second order heat flow problem. 

Essentially, the beam or plate is replaced by an arbitrary number of 

finite elements and the time dimension is divided into discrete intervals. 

This representation readily permits the flexural stiffness, elastic restraints 

and the loading to be discontinuous. The governing partial linear differential 

equation is approximated by a difference equation and a numerical solution is 

obtained at specified intervals of time. The difference equation for the un

known deflection may be formulated explicitly or implicitly. In an explicit 

formula, there is only one unknown deflection in each difference equation, 

whereas, in an implicit formula, there are several unknown deflections in each 

equation. Thus the resulting set of difference equations must be solved simul

taneously to obtain the unknown deflections. 

Finite difference solutions for initial value problems are subject to 

i(See References on p 51. 
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instability. This can be illustrated by considering the following equation 

for an undamped transversely vibrating beam: 

= o (1.1) 

In the foregoing, E is the modulus of elasticity, I is the moment of 

inertia, p is the mass density per unit length, w is the deflection, x is 

the distance along the beam and t is the time. For suitable boundary condi-

tions and a given initial displacement, the beam will vibrate periodically. If 

the deflections are calculated from a solution of the partial differential 

equation, the contribution from the higher characteristic frequencies is 

usually negligible. However, in a finite difference solution, it is possible 

for the higher frequencies to cause the calculated deflections to become un-

bounded as time approaches infinity. In his book on difference methods, 

Richtmyer (Ref 11) discusses the equivalence of stability and convergence. For 

properly defined problems, stability insures convergence. Crandall (Ref 4) 

and other investigators have discussed the stability of finite difference 

approximations for Eq 1.1. 

The stability criteria and pictorial representations of the explicit and 

implicit formulas for a beam and plate will be presented in the subsequent dis-

cussion. Both formulations have been programmed for a digital computer. How-

ever, the development of the equations and the numerical results will pertain 

to the implicit solution. As a convenience in establishing the initially 

deflected shape of a beam or plate, the equations of statics have been included 

in this development. All difference equations are based on the assumptions of 

linear elasticity and elementary beam and thin plate theories. The symbols 

adopted for use in this paper are defined where they first appear and are 

listed in the Nomenclature. 



CHAPTER 2. STABILITY OF THE BEAM EQUATION 

From a theoretical standpoint, the use of difference equations for the 

solution of a linear transient problem is complicated by stability require-

ments. In this discussion, a finite difference solution is stable if the solu-

tion is bounded as time approaches infinity. To facilitate a difference repre-

sentation of the terms in the vibrating beam equation, it is convenient to 

establish a rectangular grid in an x,t plane. The coordinate axes for the 

grid are the beam and the time axes, and the lines in the grid intersect at 

mesh points. Any mesh point may be located by station numbers which are 

identified by the indices j and k with respect to the beam and time axes. 

The distances between the grid lines in the coordinate directions are fixed by 

the lengths of the beam increment 

is illustrated in Fig 1. 

Explicit Formula 

h x and the time increment This grid 

An examination of the explicit formula for a uniform beam will demonstrate 

the stability criterion which was first established by Collatz (Ref 1). The 

explicit difference approximation for Eq 1.1 is 

= o (2.1) 

wherein 

= 

3 
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z 
o 
I-

~ 
(f) 

w 
:::iE 

I-

9 

I 
..>£ 

o 

o 2 

where 

0 
_11 2 +4g -6g +4g

2 2 

+2 
-II 

-I 

j-2 j-I j+1 j+2 M-I M 

BEAM STATION 

2 2 2 
-g W j _ 2 , k + 411 Wj_1 k + (-611 +2 )Wj,k 

EI 

P 

Fig 1. Explicit operator for the transverse deflections of a uniform beam. 



At k = 0 , the initial deflections and velocities are specified. Therefore, 

the value of w. k+1 J, 
is the only unknown in the equation. In Fig 1, the 

operator associated with Eq 2.1 is superimposed on the rectangular grid. To 

solve for each unknown deflection at k = 1 , the operator is applied succes-

sive1yat j = 1,2, ... , M-1. The boundary conditions are introduced to 

establish the deflections at the ends of the beam. In a similar manner, the 

unknown deflections are calculated for k = 2,3, ... ,00 

5 

For a beam with hinged ends and M segments or increments, a solution to 

Eq 2.1 is assumed to be 

w. k J, 
= A sin (j~ ) ek¢ 

n 
(2.2) 

in which A is a constant, j = 0, 1, 2, ... , M , and k = 2, 3, 4, ... ,00 

Equation 2.2 is substituted into Eq 2.1 to establish 

gae
k

¢ [sin (j-2) ~n - 4 sin (j-1) ~n + 6 sin (j~n) 

- 4 sin (j+1) ~n + sin (j+2) ~n] 

The following trigonometric identities are used to simplify Eq 2.3: 

sin (8 ± y) sin 8 cos y ± cos 8 sin y 

and 

cos 28 = 2 cos2 8 - 1 

Hence, Eq 2.3 becomes 

e 

~¢ [e(k-1)¢ _ 2ek¢ + e(k+1)¢] = 

This may be reduced to 

- 4g2 (1 - cos ~ )2 
n 

(2.3) 

(2.4) 
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(2.5) 

On the boundaries, independent of k, the deflections and moments are zero. 

Thus, 

o 

From Eq 2.2, 

sin (M~ ) = 0 n 

Hence, 

M~ = TI, 2TI , ... , nTI n 

or 

~n = nTI 
M 

where 

n = 1,2,3, ... ,M-l 

Therefore, Eq 2.2 becomes 

w. k J, 
= 

M-l 

I An sin 

n=l 

The roots of the quadratic Eq 2.5 are substituted into Eq 2.8 so that 

M-l 

wj,k = I An sin (j ~TI) [C l (e¢l)k + C2 (e¢a)k] 

n=l 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

where Cl and C2 are constants. In Eq 2.9, for wj,k to be bounded for all 

values of k, the roots of the quadratic, e¢l and e¢a, must satisfy the 

condition that 

(2.10) 

This condition may be satisfied by defining g2 in Eq 2.5. Thus, the limit-

ing value of· g2 occurs when the discriminant 
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(16 g2 _ 2)2 - 4 < 0 (2.11) 

for [3 = IT n 

Expanding Eq 2.11 discloses that 

4 g2 - 1 < 0 

and 

g2 1 
< 4 

(2.12 ) 

The preceding analysis is based on a uniform beam with hinged supports. For a 

bl 1 · h . 1 f -2 EI h~. ·b d b E sta e so ut10n, t e maX1mum va ue 0 0 ,or -- h ,1S prescr1 e y q 
p x 

2.12. Because of this limitation, the explicit formula will not be used in 

the subsequent development of the dynamic beam equation. 

Implicit Formula 

In Fig 2, an implicit operator of the Crank-Nicolson (Ref 5) form is 

shown for Eq 1.1. All deflections at Station k+l are unknown. The fourth 

derivative term that was previously at the kth station has been divided 

equally between the stations at k-l and k+l. For any Station j, this 

implies that the deflection at Station k is an average of the sum of the 

deflections at Stations k-l and k+l. At k=O, the initial deflections 

and velocities are specified. To solve for the unknown deflections at k=l 

the operator is applied systematically at j = 1, 2, .•• , M-l. This proce-

dure establishes a set of simultaneous equations wherein each equation in-

cludes five unknown deflections. These equations may be solved by any con-

venient method. In a similar fashion, the unknown deflections are determined 

for k = 2, 3, 4, •.• , OJ 

The admissibility of the implicit formula can be established by a proce-

dure suggested by Young (Ref 16). Let L(w) be the differential equation 

and G(w) be a Taylor series expansion of the terms in the implicit formula 
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8 

o 

o 

2 
Tg/2 -2g T;? 2g2 2 

+g72 

II 
I I 

2 
I I 

I 1 I I 

2 - 2 2 
-g72 +2g 

-I 
+2g g/2 

I 

2 j-2 j-I j+1 j+2 M-I M 

BEAM STATION 

2 2 
-2g Wj+l, k+1 +(g /2)w l + Z,k+1 : 

2 
2 wl,k -(g /2)WI_2,k_1 

2 2 2 2; + 2g wI-I, k-I + (-3g - I) Wj, k-I T 2g WJ+I, k-I -(g 2)wJ+z, k-I 

where 
2 

g.: 
EI 

p 

Fig 2. Implicit operator for the transverse deflections of a uniform beam. 
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about the point j,k When G(w) is subtracted from L(w) , the remainder, 

or truncation error, is of the order (hx )2 and (ht )2 Furthermore, h t 

is a given function of hx 

Thus the 

Lim [L(W) - G(W)] = 0 
h -0 

x 

and the admissibility of the implicit formula is established. 

The implicit difference approximation to Eq 1.1 is 

Z:[ 2 wj - 2 ,k+l - 4wj _l ,k+l + 6wj ,k+l - 4wj +l ,k+l + wj+2 ,k+l 

+ wj - 2 ,k-l - 4wj _l ,k_l + 6wj ,k_l - 4w j+l ,k_l + Wj+2 ,k-l] 

+ wj,k_l 2w. k + w. k+l J, J, 
= o 

(2.13) 

(2.14) 

To establish the stability criterion, Eq 2.2 is substituted into Eq 2.14 to 

yield 

~{e(k+l)¢[sin (j-2) ~n - 4 sin (j-l) ~n + 6 sin (j~n) 

- 4 sin (j+l) ~n + sin (j+2) ~nJ + e(k-l)¢ [sin (j-2) ~n 

- 4 sin (j-l) ~ + 6 sin (j~ ) - 4 sin (j+l) ~ n n n 

= 0 

The above equation reduces to 

1 [ (k-l)¢ _ 2 k¢ + (k+l)¢] 
(k+l)¢ (k-l)¢ e e e 

e + e 

= 2gt (1 - cos ~ )2 
n 

(2.15) 

(2.16) 
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and the quadratic equation becomes 

(2.l7) 

The value of ~n is given in Eq 2.7. The roots of the quadratic satisfy Eq 

2.10 for all g2 > 0 Therefore, the implicit formula is stable for all 

positive values of EI p , h 
x 

The preceding discussion of stability has been based on free vibration of 

a uniform beam and well defined boundary conditions. Analytical proofs for more 

complicated cases are not feasible. For example, if the same beam has uniform 

rotational restraints r, foundation springs s, and an axial tension P, the 

quadratic form becomes 

e
2

¢ - e¢ [p + h
t

2 (2 ~I4 
x 

+ 1 = 0 

2p 
s r+P 

(1 - cos ~ ) 2 + - + n 2 h 2 
X 

(2.l8) 

An evaluation of stability from Eq 2.18 is not practicable. However, stable 

numerical solutions have been obtained for complex problems. 

Crandall (Ref 4) has shown that the optimum implicit formula for a uni-

form beam has a truncation error of the order {h )3 
t 

In a recent paper, 

Tucker (Ref 15) used an implicit formula which has a truncation error of the 

In this study, the general development of the beam and plate 

equations will be based on the Crank-Nicolson (Ref 5) implicit form which has 

a truncation error of the order {h)2 . 
t 



CHAPTER 3. DEVELOPMENT OF THE BEAM EQUATIONS 

The finite-element beam solution consists of the static equation, the 

dynamic equation re lated to the initial ve loc i ties and the dynamic equation. 

The static equation is due to Matlock (Ref 9) and is discussed briefly herein. 

Central differences (Ref 3) are used in all derivations except where otherwise 

noted. The coordinate system which was described i~ the preceding chapter is 

applicable in the following development. 

Static Equation 

The beam segment in Fig 3 illustrates the static loads and elastic re-

straints which may be imposed on the beam to establish its initially deflected 

shape. A finite-element model of this segment has been developed by Matlock 

(Ref 9). Equation 3.1 is obtained by summing moments and forces on the beam 

segment in Fig 3. 

d [ dw' q - sw + dx tc + (r + P) dxJ (3.1) 

In the foregoing, ~ is the bending moment, q is the transverse load per 

unit length, s is the elastic stiffness of the foundation per unit length, 

tc is an applied couple per unit length, r is a rotational restraint per 

unit length and P is an axial load. Combining Eq 3.1 with the differential 

equation for a beam 

establishes Eq 3.3 

= q - sw + d~ [tc 

11 

+ (r + P) dwl 
dxJ 

(3.2) 

(3.3) 
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q(x) 

t,t t + 1 + 
Mb+dMb 

~ ) 
p 

~ Mb V 

c..W( C • p 

( i dw 
~ 

1 V+dV 
x 

1 r r 1 1 
w 

I 
-sW---J 

x_ dK 

Fig 3. Beam segment with static loads and elastic restraints. 

q ( x, t ) 

ttl t r 
V+ dV 

t t , t f p ~> 

t t t t' d ~7 

L. •• ----J 
Fig 4. Beam segment with transient loa~s. 



In a difference equation, the distributed quantities q, r, t and s 
c 

13 

are lumped as corresponding concentrated quantities Q, R, T and S at 
c 

each incremental point along the beam. Equation 3.3 involves the derivative 

of a product of two variables. In transforming this differential equation to 

a difference equation, the left side of the equation is expanded from the out-

side to the inside in the following manner: 

d
2 rF d

2
w] = _1 {(F d

2
w) 

dx L dx2 h 2 dx2 . 1 
x J-

(3.4) 

In Eq 3.4, F represents the bending stiffness and h x is the length of a 

beam increment. Similarly, Eq 3.3 is converted to the difference equation 

[FJ·_1 - 0.25 hx (R
J
'- l + hx P )] W - [2 (F + F )J-1 

j-l j-2 j-l j wj _l 

+ 0.25 hx (R
J
'+ l + hx P

J
·+ l )] w

J
' - L'2 (F

J
. + F )J. W 

j+l j+l 

+ [F J'+l - 0.25 hx (Rj +l + hx P )] w 
j+l j+2 

= 
(3.5) 

The application of this equation at each incremental point results in a set of 

simultaneous equations which is solved by a recursive procedure. This proce

dure and the boundary conditions will be discussed subsequently. 
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Dynamic Equation 

The partial differential equation for the transverse vibrations of a beam 

can be derived from d'A1embert's principle. The concept of reversed effective 

forces, or inertial forces, in d'A1embert's principle is quite easily visualized. 

Imagine that the inertial and viscous drag forces and an externally applied 

force q(x,t) are superimposed on the beam segment which is shown in Fig 4. 

Thus the differential equation for a vibrating beam is 

(3.6) 

where d is the coefficient of viscous damping and the other symbols have the 

same meaning as before. The quantities r, sand P, which affect the stiff-

ness of a beam at any instant of time, are added to Eq 3.6 and this yields 

0
2 

[ 03w] a [ ow] 03 w oW - F - + sw - - (r + P) - + P ~ + d - = 
0:x2 0:x2 OX ox or at 

q (x,t). (3.7) 

The implicit representation of Eq 3.7* is 

h 4 h 4 

YaWj - 2 ,k+1 + Ybwj - 1 ,k+1 + [Yc + h:Z Pj + h: djJ wj ,k+1 

= 

h 4 

h 3 Q. k + [2 h x 2 p. ] w. k 
x J, t J J, 

h 4 h 4 

- [h:a Pj] Wj ,k_1 + [h: dj ] wj,k - Yawj - 2 ,k-1 

(3.8) 

in which 

Y = -2
1 

[F. 1 - 0.25 h (R. 1 + h p. l)J a J- x J- x J-

* A derivation of the implicit formula for Eq 3.7 is given in Appendix 1. 
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(3.9) 

k = 1, 2t 3, .•. , ro 

In the foregoing, h t is the length of time increment. The remaining symbols 

have been previously defined. In Eq 3.8, the unknown deflections at k+l 

appear on the left side of the equation, and the known deflections at k and 

k-1 appear on the right side of the equation. 

At the outset, the deflections and velocities at k=O are given. With 

these initial conditions, the unknown deflections at k=l are then calculated 

to begin the transient solution, This is accomplished by rewriting Eq 3.8 so 

that the generic indices k+l, k and k-1 become 1, ~ and 0 respec-

tively. Furthermore, the initial deflections and velocities are introduced in 

the computational procedure in accordance with the following equations: 

Ow I = at j ,0 

-WJ' 0 + w' .!. , J,2 
h/2 

(3 10) 

and 

wJ',O - 2w· 1 + w· 1 J,2 J, 
(3.11) 

The unknown deflections at k=~ are e1bninated by combining Eqs 3.10 and 3.11. 
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Consequently, the deflections at k=l are calculated. Commencing at k=2 and 

thereafter, the solution progresses with time in accordance with Eq 3.B. This 

is demonstrated in Fig 5. 

The effects of rotatory inertia and shear deformation have been omitted in 

the derivation of the dynamic equat;.ion. A discussion of these effects is given 

in Ref 12. 

Method of Solution for the Difference Equations 

There are several systematic procedures available to solve simultaneous 

equations. For an efficient machine procedure, it is convenient to use a method 

of elimination described by Matlock (Ref 9). 

form 

The difference equation, whether static or dynamic, may be written in the 

k = 0, 1, 2, 3, ... , ro 

The terms h. , c. , 
J J 

d. , 
J 

e. 
J 

= f. k J, 
(3. 12) 

and T. k may be recognized by com
J, 

paring the foregoing equation with either the static Eq 3.5 or the dynamic Eq 

3.B. For instance, in Eq 3.B, 

and 

a. = 
J 

b. = 
J 

c. = 
J 

d. = 
J 

e. = 
J 

f. k J, 

Y a 

Yb 

Y c 

Yd 

Y e 

= 

h 4 h 4 
X +~ d. + 11 2 Pj h t J t 

h 4 h 4 

hx
3Q

j ,k_1 + [2 h:2 Pj ] wj ,k_1 - lh:2 Pj ] wj ,k_2 

(equation continued) 
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BEAM AXIS 

Wi,k+l~ 

~~I~·""--"-·---iI·-------~/ 

/ / k+1 

~ ....•• ~ 
/ /k 

b ...... ~ 
/ / k-I ."=- _ ~ Wj,k_'_ d 

/W ~. • • e=e:----A 
j-2 j I j .... , j+2 / 

BEAM: 0, f I 2, ... , M 

PRESCRIBED BOUNDARIES AT 0, M (Illustrated 

above os a hinge) 

TIME: 0, f, 2, .•• , CO 

DEFLS ARE KNOWN AT k-2, k-I, k 

DEFLS ARE UN KNOWN AT k .... 1 

Fig 5. Propagation of solution for unknown beam deflections. 
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The solution to Eq 3.12 is assumed to be 

in which 

w. k J, 

A. = 
J 

B. = 
J 

C. = 
J 

D. = 
J 

E. = 
J 

= 

D . (E .A. 1 + a.A. 2 
J J J- J J- f. k) J, 

D. (E.C. 1 + d.) 
J J J- J 

D. (e.) 
J J 

- 1 / (E.B. 1 + a.c. 2 + c.) 
J J- J J- J 

a.B. 2 + b. 
J J- J 

(3.13 ) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

Proceeding from either end of the beam in what is called a forward direction, 

Equations 3.14 through 3.18 are applied at every station, including one ficti-

tious station beyond each end of the beam. On the reverse pass, the unknown 

deflections are calculated from Eq 3.13. 

Boundaries and Specified Conditions 

Although the equations have not been established in a matrix array, it is 

convenient to consider the coefficients a., ... , e. as terms in a quintup1e-
J J 

diagonal coefficient matrix and the unknown deflections and known loads as 

column matrices. The first and last equations represent the moment at the free 

edge of a beam, and the second and next-to-the-1ast equations represent the 

shear one-half increment inside the free edge. For a uniform beam with an 

unloaded free boundary, the first and second equations are 



19 

o (3.19) 

and 

= o (3.20) 

Thus an approximation of the natural boundary conditions for zero moment and 

shear are automatically created by zero stiffness values beyond the ends of the 

beam. 

Specified deflections are established by equating A. to the desired 
J 

deflection and setting Bj and C. 
J 

equal to zero in Eq 3.13. 

slope at the jth station, the coefficients A. , 
J 

B. and 
J 

To specify a 

at Stations 

and j+l are recalculated on the basis of the reaction couple that must be 

developed about the jth station (Ref 9). 

j-l 
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CHAPTER 4. NUMERICAL RESULTS - BEAM 

The static and dynamic equations that were developed in the preceding 

chapter have been programmed in FORTRAN for the Control Data Corporation 1604 

computer. A listing of this program, DCB1, a guide for data input, and a sum-

mary flow diagram are in Appendix 4. 

Verification of the Method 

Table 1 illustrates the problems which have been selected to verify the 

method. The theoretical angular frequency of vibration for each problem is 

given in Timoshenko (Ref 12). The period of vibration corresponding to the 

lowest angular frequency was divided into an arbitrary number of time incre-

ments. For all problems, the number of beam increments is 10, the increment 

length is 12 in., the stiffness is 1.08 X 109 1b-in2, and the mass density is 

9.04 X 10-3 1b-sec 2/in2 • Each beam has hinged support. 

-4 In Problems 1, 2 and 3, the time increments a.re 2.653 X 10 sec, 5.306 X 

10-4 sec and 2.565 X 10-3 
sec. The initially deflected shape of each beam is 

established as one-half cycle of a sine wave. This is the fundamental mode of 

vibration of the beam. At k=O, the beam is released and the deflections are 

noted during the ensuing vibrations. The deflected shape of the beam at the 

conclusion of the first period is similar to its initial shape. This is 

illustrated in Table 1 by the recorded values of the initial deflections and 

the subsequent deflections at the end of the first period. These three 

problems demonstrate that a small time increment is desirable. 

Problems 4 and 5 are similar to Problem 1 with the following alterations. 

In Problem 4, the axial load is -3.70 X 105 1b and the time increment is 

21 
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TABLE 1. A SUMMARY OF THE NUMERICAL RESULTS 

VALUES AT CENTER OF SPAN 

NUMBER OF SUBSEQUENT 

TIME INCREMENTS INITIAL 
DEFLECTION 

BEAM AT INITIAL PER FUNDAMENTAL DEFLECTION 
(Inches) 

CONDITIONS PERIOD OF VIBRATION (Inches) 
BASED ON A THEO- TIME 

w 
RETICAL SOLUTION STATION 

-2.004 
99 - 1.987 

(I) ~ 100 - 1.999 

0 10 
100 

101 - 2.004 

102 - 2.001 

-2.004 49 - 1.955 

(2) ~ 
50 

50 - I .995 

0 10 51 - 2.005 
52 - 1.983 

- 2.004 9 - 0 .7231 
(3) ~ 10 - 1.637 

10 II - 2.018 0 10 
12 - 1.743 

-3.952 99 - 3.937 

(4)-~-P 100 
100 - 3.951 

0 10 101 - 3.950 
102 -3.933 

(5) I:tj,l: 
- 6.672 99 - 6.643 

100 
100 -6.669 
101 - 6 .670 

0 10 102 - 6.644 

0.0 25 1.619 x'IO- 1 

t t t t velocity 
100 

99 -1.393 x 10-2 

(6) LS D. 100 -6.512 X 10- 3 * 
0 10 

10 I 7.156 X 10-4 

a 0.0 50 6.690 

! 100 
99 7.954xI0- 2 

(7) LS D. 100 3.407 X 10-2 * 
0 10 101 7.937 X 10-3 

*' DEFLECTION IS ZERO IN THEORETICAL SOLUTION GIVEN BY TlMOSHENKO tREF.12) 
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3.752 X 10 sec. In Problem 5, the uniform foundation spring is 12.0 X 10

3 

/ 
-4 lb/in sta and the time increment is 1.540 X 10 sec, 

23 

The beam in Problem 6 has zero initial deflections and a uniform initial 

velocity of 30 in/sec everywhere except at the supports. The time increment 

-4 is 2.653 X 10 sec. Theoretically, the deflections at the end of the first 

period are zero. 

5 In Problem 7, a concentrated load of 1.0 X 10 lb is applied suddenly at 

the middle of the span and is removed at the end of the first period. The 

-4 time increment is 2.653 X 10 sec, At the conclusion of the first period 

and thereafter, the deflections are zero. 

Excluding Problem 3, the maximum error in the numerical results based on 

the theoretical solutions is about 4%. Furthermore, these results confirm 

that the finite-element method described herein can be used to solve vibra-

ting beam problems. 

Example Problems 

Two example problems have been selected to illustrate the versatility of 

the finite-element method. The partially embedded beam, which is described 

in Fig 6, is subjected to an axial load and a transient pulse. In addition 

to the hinged supports, there is a rotational restraint at the upper boundary. 

The soil modulus has been converted at each station to an equivalent elastic 

spring. A damping factor of 10.0 lb-sec/in2 has been assumed arbitrarily. 

Figure 6b shows the deflected shape of the beam at the conclusion of the 

pulse, or k = 18 , and at a subsequent time. Figure 6c illustrates the 

response of a typical station on the beam. 

The second example, which is sketched in Fig 7, is a three-span beam 

with a constant load moving along the beam at a uniform velocity of one beam 

increment per time increment. Figure 7b illustrates the response of the beam 
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Fig 6. Partially embedded beam subjected to a load pulse. 
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at Station 20. Figure 7c is a plot of the beam deflections at the two indi

cated times. 

For the Control Data Corporation 1604 computer, the execution time re

quired for each solution is approximately 45 seconds. 



CHAPTER 5. STABILITY OF THE PLATE EQUATION 

A difference solution for the vibrating plate equation must meet the re-

quirements of stability. The restrictions that have been established for the 

beam equation are not applicable to a plate, but the same procedures are in-

volved. Therefore, the following development will parallel the previous work. 

The equation for the transverse deflections of a vibrating plate is 

(5.1) 

where w is the deflection, D is the uniform flexural stiffness, x and y 

are the rectangular coordinate axes, t is time and p is the mass per unit 

area of the plate. The independent variables in Eq 5.1 are x, y and t. 

Therefore, a difference representation of the terms in the above equation 

requires a three-dimensional coordinate system in which x y and tare 

the three coordinate axes. A rectangular grid, whose lines are parallel to the 

x and y axes, is established at each interval of time. The intersections of 

these grid lines are known as mesh points. Any mesh pOint may be located by 

station numbers which are defined by the indices i j and k with respect 

to the coordinate axes. In the x or y-direction, the distance between 

adjacent grid lines is fixed by the length of the plate increment 

Explicit Formula 

Explicitly, the finite difference formula for Eq 5.1 is 

u
2 

{w. -2 ' k + w'+2 ' k + w, , 2 k + w, '+2 k + 20w, , k 
~ ,J, ~ ,J, ~,J- , ~,J, ~,J, 

- 8 [wi-l,j,k + wi+l,j,k + Wi,j-l,k + Wi,j+l,kJ 

(equation continued) 
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wherein 

::: 

+ 2 [W, 1 '+- k + w'+l '+1 k + w. 1 . 1 k + w'+l . 1 kJ 1 1- ,J 1, 1 ,J, 1- ,J- , 1 ,J-, j 

+ W. , k 1 - 2w. . k + w, 'k+l 1,J, - 1,J, 1,J, 

D 

P 

h 2 
t 

h 4 
P 

::: ° (5.2) 

Two initial conditions and eight boundary conditions are prescribed. At 

k = 1 and thereafter, the only unknown is w. . k+l . 
1, J , 

The operator corres-

ponding to Eq 5.2 is shown in Fig 8. To solve explicitly for each unknown de-

flection at any time station, the operator is used successively at every mesh 

pOint in the x,y plane. The boundary conditions are introduced to establish 

the deflections along the edges of the plate. In this manner, the solution 

marches forward with time. 

For a rectangular plate with H by N increments and hinged supports 

along the edges, a solution is assumed to be of the form 

where 

and 

w .. k 
1, J , 

= 

i 0,1,2, ... ,M 

j:;; 0,1,2, ..• ,N 

k::: 2,3, ... ,ro 

A substitution of Eq 5.3 into Eq 5.2 establishes that 

I 
- 8 sin (i+l) am + sin (i+2) amJ 

(equation continued) 

(i-I) a + 20 sin 
m 

(5.3) 

(ia ) m 



where 

: - U
2 

[W. 2 . k + 1- • 1. 

2 
+(-20u t2)W i,I,k 

D~ 
p 

Wi ,i-2,k + 

i, j+2, k 

I' 

W1'i+Z,k] 

] 
] 

j 

29 

Fig 8. Explicit operator for the transverse deflections of a uniform plate. 
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+ sin (iCY ) [sin (j-2) ~n - 8 sin (j-l) ~n - 8 sin (j+l) Sn m 

+ sin (j+2) Sn] + 2 [sin (i-l) cy sin (j-l) Sn m 

+ sin (i-l) cy sin (j+l) S + sin (i+l) cy sin (j-l) Sn m n m 

+ sin (Hl) cy sin (j+l) Sn] } + sin (iCY ) sin (jSn) [e(k-l)¢ 
m m 

(S.4) 

A simplification of Eq S.4 yields 

+ 2 cos CYm cos sui (S.S) 

Equation S.S reduces to 

e2 ¢ + e¢ {4u2 [(cos CYm - 2)2 + (cos Sn - 2)2 - 4 

(S.6) 

On the boundaries, independent of k, the deflections must satisfy the fol-

lowing equations: 

o (S.7) 

o (S.8) 

- W = W i,-l,k i,l,k 
(S.9) 

- wi,N-l,k = wi,N+l,k (S.lO) 

- W -l,j,k Wl,j,k 
(S .11) 

and 

- wM_l , j, k = wM+l,j,k 
(S. 12) 

The boundary conditions are satisfied for 
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m 
= - IT 

M 
m = 1, 2, •.• , M-l (5.13) 

and 

n = 1, 2, .•• , N-l (5.14) 

Thus, Eq 5.3 becomes 

M-l N-l 

L '\ A A sin (i mIT) sin (J' !m) [c (e ¢1 ) k 
L m n M N 1 

m=l n=l 

(5.15) 

in which C
l 

and C2 are constants. 

For stability, 

(5.16) 

An examination of Eq 5.6 shows that Eq 5.16 is satisfied if the discriminant 

- 4 < 0 

For a = 13n 
= IT Eq 5.17 reveals that 

m 

u2 < 
1 
16 

For a stable explicit solution, the maximum value of 

dicted by Eq 5.18. For this reason, the explicit formula 

the development of the dynamic plate equation. 

Dh S 
t 

u2 --- ph 4 
P 

will not be 

(5.17) 

(5.18) 

is pre-

used in 

To verify this stability criterion and to gain some insight of the be-

havior of an unstable solution, a numerical experiment was performed with an 

explicit plate program. The experiment consisted of five problems in which a 

square plate with hinged supports about the edges was divided into a 4 X 4 

grid. For each problem, D, P and h were consta.nts a.nd the time 
p 
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increment h t was calculated on the basis of a prescribed value for the ratio 

Dh a 
t . The values for this ratio were 0.04, 0.05, 0.06, 0.08 and 0.1. On the 

php4 

basis of Eq 5.18, instability could be predicted for a ratio of 0.0625. At 

k=O , the initial deflections were specified. An examination of the computed 

deflections revealed a divergent oscillatory solution for the largest ratio. 

The deflections became increasingly larger at each successive time interval. 

At ratios of 0.05, 0.06 and 0.08, irregularities were noted in the computed 

deflec tions. 

Implicit Formula 

Figure 9 illustrates the implicit formula and operator for Eq 5.1. The 

fourth derivative terms that were previously at the kth station have been 

divided equally between the stations at k-l and k+l This assumes that 

the deflections at the kth station are an average of the sum of the corres-

ponding deflections at Stations k-l and k+l. All deflections at k+l are 

unknown, whereas those at k and k-l are known from previous solutions. 

Thus, for an implicit solution, a set of simultaneous equations must be solved. 

The stability criterion for the implicit plate formula may be established 

by the same procedure that was employed for the explicit formula. Accordingly, 

Eq 5.3 is substituted into the equation that is shown in Fig 9. A separation 

of variables yields 

ea¢ - e¢ t 2 

4J} 1+2ua [(cos 
a a 

a -2) + (cos i3 -2) + 2 cos am cos i3n -m n 

+ 1 = 0 (5.19) 

The roots of the preceding quadratic equation satisfy Eq 5.16 for all 

(5.20) 



where 

+(-10,/-1) 

z 
u 

D 

P 

i, j, k-I 

Fig 9. Implicit operator for the transverse deflections of a uniform plate. 
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Hence, the implicit formula is stable for any choice of positive values for 

In a subsequent chapter, the implicit formula will 

be employed to solve for the deflections of a nonuniform plate. Analytical 

proofs for other boundary conditions are not readily attainable. Nonethe

less, stability is indicated by the fact that numerical solutions have been 

obtained for problems with other well defined boundaries. 



CHAPTER 6. DEVELOPMENT OF THE PLATE EQUATIONS 

The finite-element plate solution includes the static equation, the 

dynamic equation related to the initial velocities and the dynamic equation. 

Shear deformations, linear damping and the effects of rotatory inertia have 

been omitted. 

Static Equation 

Consideration of static equilibrium and the moment-curvature relationship 

(Ref 13) yields 

+ 2 ~:Oy [D (l-v) ~:~yJ = q - sw (6.1) 

where 

D 

In the foregoing, h is the plate thickness, v is Poisson's ratio, s is the 

foundation modulus and q is the transverse static load. The coordinate system 

which was described in the preceding chapter is applicable in the following 

development. 

In the finite-element solution, it is assumed that the increment length h -x 

in the x-direction does not necessarily equal the increment length h y in the 

y-direction. Furthermore, the stiffness D and the lumped quantities Sand 

Q may vary from one mesh point to another. The variation in D accounts for a 

changing plate thickness, but the plate properties are isotropic. The partial 

derivatives in Eq 6.1 are expanded in the same manner that was used for the beam 

equation. This establishes the difference equation 

35 
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= [Q. . - s. .W. .l hlh 1,J 1,J 1,J_' , 
x y 

(6.2) 

In the above equation, the coefficients Xl' .•. , XII' Yl , ... , Yll and 

Zl' ... , Z9 are defined in Appendix 2. A finite-element model of the plate 

has been developed by Hudson (Ref 6). 

Dynamic Equation 

The partial differential equation of motion for forced lateral vibration 

of a plate is 

~:a [D (~~ + v ~:~)J + ~~ [D (~:2 + v ~:~)J 

oa [ oZw ] oaw + 2 -- D (l-v) -- + sw + P -::.tZ = 
oxoy oxoy u 

q (x,y,t) (6.3) 

where q (x,y,t) is the imposed lateral force. The implied difference 

equation for Eq 6.3* is 

1 [Wk+l'J' + 1 (X_ + + 2Z ) [Wk+lJ 2 (Xl) w
k

_
l 

i-2,j 2 -~ Y7 2 w
k

_
l 

i-l,j 

'1 Si_i, Pi 01} rWk+lJ 
+ ~2 (X3 + Y 3 + 2 Z 5 + hh") + ~ I •. 

l x Y t L.Wk _l 1,] 

(equation continued) 

* A derivation of the implicit formula for Eq 6.3 is given in Appendix 3. 



w w 
+ 1 (+ + 2 ) [ k+ll. + 1 (X ) [ k+lJ 

2 X4 YlO 28 J'+l' 2 5 '+2 . w
k

_l ~ ,J wk_l ~ ,J 

+ 1 (X + + 22 ) [W k+ II 
2 9 Y6 1 ' . -1 '-1 w

k
_
1

...J1. ,J 

2p .. 
l.~ 1 

h w •. k 
t ~,J, 
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(6.4) 

The compact notation in brackets in Eq 6.4 implies a multiplication of the co-

efficients by the deflections at k+l and k-l. In Eq 6.4, the solution for 

the unknown deflections at k+l is dependent on the known deflections at k 

and k-l. 

To begin the transient solution at k = 0 Eq 6.4 is modified so that the 

generic indices k+l, k and k-l become 1 i and 0 , respectively. In 

addition, the initial velocities and deflections are introduced in the computa-

tional procedure in accordance with the following equations: 

oWl = at i,j,O (6.5) 

and 
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(6.6) 

The unknown deflections at k = l "2 are eliminated by combining Eqs 6.5 and 6.6. 

Thus the deflections at k = 1 are calculated. Beginning at k = 2 , the 

plate deflections are determined from Eq 6.4 for each time interval as the 

solution marches forward. 

Method of Solution for the Difference Equations 

To obtain a solution for the unknown deflections, either stat~c or dynamic, 

the appropriate equation is applied at each mesh point within the interior of 

the plate, along all boundaries, and at one mesh point outside of these boun-

daries. For a square plate which has been divided into M intervals in both 

directions, this procedure will introduce (M+3)2 - 4 unknowns in (M+3)2 - 4 

equations. In matrix form this becomes 

[C] (6.7) 

is a square matrix with a predominant number of zero terms, but the non-

zero terms are not banded about the main diagonal. These equations may be 

solved conveniently by an iterative procedure which is known as an alternating-

direction-implicit, or ADI, method. In a comparison with other iterative 

methods, Young (Ref 17) has shown for second order difference equations that 

the ADI method has the most rapid rate of convergence. Conte and Dames (Ref 2) 

were among the first to utilize the ADI method to solve for the static deflec-

tions of a plate. Tucker (Ref 14) used this method successfully to solve the 

static grid-beam problem. 

The ADI method is comparable to line relaxation in the x and y-direc-

tions. Basically, for an ADI solution, Eq 6.4 is solved for the deflections 
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in an x system and the deflections [wyJl in a y system at alter-

nate iterations. Equation 6.8 shows the iterative procedure employed to solve 

Eq 6.4 for the x system at iteration n+t. 

1 ) [- I n+t + 1 [ ] n# 
2 (Xl WXi -2 ,j,k+lJ 2 (~ + Z2) WXi-l,j,k+l 2 

+ 1 ) [- ] n+t 2 (X4 + Z8 wXi+l,j,k+l 

= 
Q •• k 
~. J. + 
h h 
x y 

~ [x,y,Z, hP2 ] [~J (6.8) 
t 

In the foregoing, [wx] n+t 

n~~2 , and [wx-Jl n iteration ~ 

are the unknown deflections for the x system at 

and [wyJ n are the known deflections from the 

th n iteration for the x and y systems, respectively. The summation term 

on the right hand side of Eq 6.8 implies a multiplication of the remaining X 

P 
y , Z and h 2 

t 
terms in Eq 6.4 with their respective deflections at iteration 

n~ or n , or at a previous time interval. The closure parameter Am will 

be discussed subsequently. Equation 6.8 involves M+3 unknowns in M+3 equa-

tions along a single line of mesh points in the x-direction. An equation 

similar to Eq 6.8 can be written for the y system. One iteration consists of 

solving 2M+2 lines in the x and y-directions. The total number of equa-

tions solved in each iteration is (2M+2)(M+3). 

Each equation has five non-zero terms banded about the main diagonal in 

the coefficient matrix. This quintuple-diagonal system of equations is solved 

by the same method which was described previously for the beam equations. The 

solution is reached when Iwx - wyl is less than a specified closure tolerance. 
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Boundaries and Specified Conditions 

For an unloaded free edge at x = a , the following difference approxima-

tions for moment and shear are automatically satisfied in the plate solution by 

zero stiffness beyond the edge of the plate. 

w 1 ' - 2 (ltv) w ,+ w +1 ' + v (w . 1 + w '+1) = 0 a- ,J a,J a ,J a,J- a,J (6.9) 

and 

- (2-v) w 1 . 1 + (2-v) w . 1 - w 2 ,+ (3 + 2 (2-V») w 1 ' a- ,J- a,J- a- ,J a- ,J 

+ (2-v) Wa,j+l = o (6.10) 

Equations <6.9 and 6.10 are equivalent to the Kirchhoff boundary conditions (Ref 

13) which are 

(6.11) 

and 

o (6.12) 

In the numerical solution, a zero deflection is conveniently established 

by inserting very stiff elastic foundation springs at the desired mesh points. 

No provision has been made to prescribe the slope at any boundary. However, 

this could be accomplished by the same procedure that was used for a beam. 

Closure Parameters 

The scalars ••• , A m 
in Eq 6.8 are closure parameters that ac-

celerate the convergence of the iterative procedure. In fact, these parameters 

are the key to an efficient solution. For a symmetric problem (Ref 6), these 

parameters have been related to the eigenvalues of the difference equations 

along any line in either the x or y system. 



41 

The parameters for the static equation as it is formulated in this devel-

opment may be determined from 

Am w. . 
~,J 

(6.13) 

In the above equation, the plate stiffness D is a constant and the increment 

lengths hand h are equal. For hinged boundaries and M intervals, a 
x y 

solution is assumed to be 

w .. 
~,J 

sin (iQ' ) 
m 

(6.14) 

where 

Q'm = 1!ill 
M 

This yields 

A 
D 

4 (1 
mTT 

(2 
mTT 

= h 4 - cos M ) - cos M ) m 
(6.15) 

x 

m 1,2, .•• , M-l 

There are M-l parameters which are used in cyclic order in the static and 

dynamic equations. If the problem has mixed boundary conditions and non-

uniform stiffness, the closure parameters may be estimated from Eq 6.15. 

The closure parameters for each system are inversely p+oportional to h 4 
X 

and h 4 
Y 

For an efficient solution, the iterative procedure must account for 

this variation in closure parameters. Ingram (Ref 7) has demonstrated that 

optimum closure is obtained if the calculated parameters for the x system 

are used in the solution of the y system and vice versa. This scheme has 

been included in the plate solution. 
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CHAPTER 7. NUMERICAL RESULTS - PLATE 

The development of the plate equations in Chapter 6 has been assembled in 

a FORTRAN program for the Control Data Corporation 1604 computer. A listing of 

this program, DPIl, a guide for data input, and a summary flow diagram are in 

Appendix 5. Four problems are used to interpret the computed results of the 

plate program. Problems 1, 2, and 3 are intended to illustrate the effect of 

variations in number of plate increments and length of time increment on the 

accuracy of the solution and on the amount of computation time required to 

propagate the solution through a given number of time increments. If the plate 

in initially deflected in the shape of its fundamental mode of vibration and 

then released, theoretically this deflected shape will be repeated at the end 

of each integer multiple of the fundamental period of vibration. The program 

was modified to permit specification of initial deflections, but since this is 

of little practical use it was not made a permanent part of the final version. 

Problem 1: 4 X 4 Grid 

A plate with hinged supports along the edges is divided into a 4 X 4 grid. 

The increment lengths hand hare 12 in., the uniform stiffness is 2.5 X 
x y 

10
6 

1b-in., Poisson's ratio is 0.25, the mass density is 7.5 X 10-4 1b-sec 2/ 

. 3 h . f' h ~n , t e ~ncrement 0 t~me t is 4.233 X 10-4 sec and the closure para-

meters are 1.83 X 102, 9.62 X 102 
and 2.24 X 103 lb/in3 . The theoretical 

period of vibration for the lowest angular frequency (Ref 12) is 30 h
t

. At 

k=O , the initial deflections of the plate are 

w •. 0 
~,J, 

= sin (
iTIhX) . (jnh) -- s~n ::..........:t. 
L L (7.1) 

in which L is 48.0 in. This shape corresponds to a normal mode of vibration. 

The plate is then released. At the conclusion of the first period, or 30 h
t 

' 
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the shape of the plate is similar to its initial shape. In Table 2, this simi-

1arity is shown for selected mesh points. The maximum variation between the 

initial deflections and the deflections at the conclusion of the first period 

is about 9 percent. For a closure tolerance of 1.0 X 10-6 
in. , four iterations 

are required to solve for the unknown deflections for each time increment. The 

computer execution time is 1.2 minutes for 30 increments of time. 

Problem 2: 8 X 8 Grid 

For this problem, the plate is divided into an 8 X 8 grid. Thus, the 

increment lengths hand 
x 

hare 6 in. and the summation in Eq 7.1 is 
y 

changed accordingly. The remaining dimensions are the same as those in the 

3 preceding problem. The closure parameters are 2.93 X 10 , 

34453 7.0 X 10 , 1.0 X 10 , 1.54 X 10 , and 3.58 X 10 Ib/in. 

3 103 4.0 X 10 , 5.0 X , 

Seven iterations are 

required for each time increment. The similarity between the initial def1ec-

tions and the deflections at the end of the first period is illustrated in 

Table 2. The variation in the deflections is about 2 percent. The computer 

execution time is 6.3 minutes for 30 time increments. 

Problem 3: 4 X 4 Grid and Reduced Time Increment 

This problem is identical to Problem 1 with the exception that the time 

increment h
t 

is 2.117 X 10-4 sec, which is one-half of the value used in Prob

lem 1. The deflections are shown in Table 2. Three iterations are required 

for each increment of time and the computer execution time is 1.7 minutes for 

60 increments of time. The variation in the deflections for this problem is 

about 7 percent. 

Problem 4: Moving Load on a Rectangular Plate 

Three different solutions have been obtained for the uniform plate which 



MESH 

POI NT 

2 

3 

2 

3 

TABLE 2. A COMPARISON OF THE NUMERICAL RESULTS 

PROBLEM 1 

4 x 4 GRID 

T = 30 ht 

DEFL TIME 

0.5000 in. (0 ) 

0.4580 in. (T) 

0.7071 in. ( 0 ) 

0.6478 in. ( T ) 

1.0000 in. (0 ) 

0.9161 in. T ) 

PROBLEM 3 

4 x 4 GRID 

T = 60 h t 

DEFL TIME 

0.5000 in. (0 ) 

0.4697 in. ( T ) 

0.7071 in . (0 ) 

.;- ( T ) 

1.0000 in. (0 ) 

0.9393 in. ( T ) 

DEFL 

T = FUNDAMENTAL PERIOD 
OF VIBRATION OF 
THEORETICAL PLATE 

PROBLEM 2 

8 l( 8 GRID 

T : 30 hI 

TIME 

0.5000 in. l 0 ) 

0.4910 in. ( T ) 

0.7071 in. (0 ) 

0.6944 in. ( T ) 

1.0000 in. ( 0 ) 

0.9821 in. ( T ) 

... NOT INCLUDED 

IN OUTPUT 

45 
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is described in Fig 10. First, the static load is applied at i = 7 and the 

resulting static deflections are noted. For the two dynamic solutions, the 

initial velocities and deflections are zero and the moving load is applied suc-

cessive1y at i = 0, 1, 2, ... , 15. In one solution, the velocity of the moving 

load is 9.45 X 102 
in/sec. For the other solution, the ve loc ity of the moving 

load is 3.78 X 10
3 

in/sec. The deflections are noted when the load is at 

i = 7 • Figure lOb illustrates the deflected shape of the plate for the three 

solutions. Figure 11 shows the contours of the deflections for the same 

solutions. -6 The closure tolerance is 1.0 X 10 in. and the closure parameters 

are 0.7, 1.0,4.0,6.0, and 11.0 1b/in3 . The static solution requires 50 itera-

tions. The dynamic solutions require 16 iterations for each time increment 

when h
t 

is 5.08 X 10-2 sec and 5 iterations when h
t 

is 1.25 X 10-2 sec. 

This problem was selected to demonstrate the effect that the velocity of a 

moving load has on the response of a plate. For v = 9.45 X 10
2 

in/sec, the 

dynamic deflection at i = 7 is greater than the static deflection. However, 

for v = 3.78 X 103 in/sec, the dynamic deflection at i = 7 is less than the 

static deflection and the traveling wave lags behind the moving load. This 

phenomenon was discussed by Reismann (Ref 10) in his theoretical solution for a 

long rectangular plate. 
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W 
0 

+ 0.8 

0 

- 0.8 

o 
o 

Q 
y 

/ 

___ f. /--'I-----¥- ~ , L 7 
"---------"--~ 0!. 

( 0 ) 

15 x 

D = 

h x :: 

L 

II 

Q = 

FOR 

FOR 

4 

2.5 

15 

Hinged supports along all edges 

Corners are held down 

GRID 

x 10
6 

Ib - in 

hy = 4.8 in. 

192 in. 

0.25 

1.0 X 10
3 

Ib /sta 

v = 9.45 x 10
2 

in/sec 

h t ; 5.08 x 10 
-2 

sec 

v :: 3.78 X 10
3 

in /sec 

h t :: 1.27 x 
-2 

10 sec 

t POSITION OF LOAD 

12 

STATION 

( b) PROFI LE OF THE TRANSVERSE DEFLECTIONS ALONG 
THE CENTERLINE 

Fig 10. Moving load on a rectangular plate. 
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+0.6 in. 
y 

I +0.2 in. 
4 

2 
( a ) 

STATIC 

0 -x 
0 5 7 10 15 

+ 1.2 In. 

y 
+0.2 in. I 4 

( b ) 
2 

9.45X 10
2 

in/sec v = 

0 -x 

0 15 

0.0 in. 

+0.4 in. 0.0 in. 

y 
+0.2 in. 

I 
4 

( c ) 

2 v = 3.78 X Id' in/sec 

0 -x 

0 5 7 10 15 

CONTOUR INTERVAL = 0.2 in. 

LOAD IS AT STATION I = 7 

refers to ,to along the x oKi, 

Fig 11. Contours of transverse deflections for a rectangular plate. 



CHAPTER 8. CONCLUSIONS 

A finite-element method has been presented to determine the response of a 

vibrating beam or plate. The method is based on an implicit difference formula 

of the Crank-Nicolson form. An examination of the difference equations for a 

uniform beam and plate disclosed that the implicit formula is not subject to 

instability. Therefore, this formula has been used in the development of the 

beam and plate equations. Although several investigators have used difference 

equations to solve the equation of motion for a uniform beam, the general devel

opment described herein is applicable to nonuniform beams and plates. 

For the beam equation, the development includes externally applied dynamic 

loading, rotational restraints, elastic foundation supports, axial loads and 

viscous damping. For the plate equation, the development is arbitrarily re

stricted to externally applied dynamic loading and elastic foundation supports. 

Separate computer programs have been written in FORTRAN-63 for the solutions of 

the beam and plate equations. Both programs permit the flexural stiffnesses, 

elastic restraints, mass densities and loads to be discontinuous. Numerical 

examples demonstrate that the programs will be useful in solving many diverse 

problems whose solutions are not easily attainable by other known methods. 

The present beam program effectively uses about 60 percent of the core storage 

of the Control Data Corporation 1604 computer. In contrast, the plate program 

utilizes the entire core storage of the computer and is restricted to problems 

whose maximum grid dimensions are 15 X 15. This limitation can be alleviated 

by storing a portion of the program on auxiliary tape. 

A future extension of the preceding development will incorporate nonlinear 

flexural stiffness, foundation supports and damping. In addition, coupling 

49 



50 

between response of the beam, or slab, and response of a moving mass must be 

considered. The fundamental ideas and procedures described herein may have 

a potential application in shell dynamics and in other initial-value problems 

in engineering. 
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APPENDIX 1 

DYNAMIC BEAM EQUATION 



!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
"#$%!&'()!*)&+',)%!'-!$-.)-.$/-'++0!1+'-2!&'()!$-!.#)!/*$($-'+3!

44!5"6!7$1*'*0!8$($.$9'.$/-!")':!



Al.l 55 

APPENDIX 1. DYNAMIC BEAM EQUATION 

The partial differential equation for the vibrating beam has been shown 

to be 

~? [F ~;J + sw - ~x [(r + p) ~: J+P ~:~ + d ~~ q(x,t) (Al. 1) 

A finite difference form of the above equation is derived in the following man-

nero All symbols have been previously defined. Expansion of Eq Al.l establishe~ 

and 

+ (sw) j, k - 2~x [- ( (r + P) ~:)j -1, k 

+ ( (r + p) ~w )'+1 k ] + ~j2 r w. k-l - 2w. k + w. k+l ] 
uX J, t - J , J , J , 

-w. k + w. k+l J, J, ] = q. k J , 

(equation continued) 

(Al.2) 



56 Al.2 

- 4~X3 [- (r + P) j-l (-wj _2 ,k + wj,k ) 

+ (I + P) j+ 1 (-w j , k + W j+2 ,k ) ] 

+ h
P 

j2 [ w. k-l -,2 w. k + w. k+l ] 
t J, J, J, 

(Al.3) 

Furthermore, let 

(A1.4) 

(AI. 5) 

and 

(AI. 6) 

Equations Al.3, Al.4, Al.5 and Al.6 are combined to yield 

(equation continued) 
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h 4 

+ hXPj+l ) ] Wj+2 ,k + h:2 Pj [ Wj,k_l - 2 wj,k + wj,k+l ] 

h4 

+ dj h: [ - wj,k + wj,k+l ] = hX3Qj,k (AI. 7) 

For an implicit formula, the preceding equation becomes 

h4 

+ h: dj ) } wj,k+l - [ F j + Fj +l ] wj+l,k+l 

(equation continued) 
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+ [ Fj + Fj +1 ] wj+l,k_1 - 0.5 [F j +1 - 0.25 hx (Rj +1 

+ hxP j +1 ) J wj +2 ,k-1 

The foregoing equation corresponds to Eq 3.8 in the text. 

A1.4 

(AI.8) 



APPENDIX 2 

STATIC PLATE COEFFICIENTS 
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A2.1 

x. .. 
5 

x -6 

x., -

61 

APPENDIX 2. STATIC PLATE COEFFICIENTS 



62 A2.2 

Ys - 1 D h4 i,j+l 
y 

Y6 
\I - h2 h2 Di,J-l 

X Y 

Y7 
2)1 ... - h2 h2 Di j 

x Y t 

Ys I:t 
)? 

h2 h2 Di j+l x y , 

Let 



A203 

Ti +l , j+1 = 

Then 

(I-v) Do-'--l o-,--l 
1.'""':2 ,J '2 

63 
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APPENDIX 3 

DYNAMIC PLATE EQUATION 
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.A.PI'ENDIX 3. DYNAMIC I'UTE EQUATION 

The partial differential equation for a transversely vibrating plate is 

(A3 .1) 

The finite difference form of Eq A3.1 is derived in the following manner. 

An expansion of Eq A3.1 establishes 

and 

Pi . + ,] 
h 2 

t (A3 .2) 
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+ bVa [Wi - 1,j-1,k - '2W i _1,j,k + Wi - 1,j+1,kJ} 
Y 

Di j { 1 [ ] - 2 ~ b 2 Wi _1 j k - 2wi j k + Wi +1 j k 
x x " " " 

+ bVa [W i +1 '-1 k - 2 wi +1 j k + wi +1 j+1 kJ - } y ,j, J , " 

Di ,j-1 { 1 r ' 
+ b a b 2 Wi j-2 k - 2wi j-1 k +w i . k J 

y 'y L " " ,j, 

+ hVg [Wi - 1,j-1,k - 2Wi ,j_1,k + Wi +1,j-l,k J} 
x 

(equation continued) 

A3.2 



A3.3 

Let 

+ Di ,j+l { 1 [ 2w + w J-h/ h/ Wi,j,k - i,j+l,k i,j+2,k. 

+ hVa [Wi _1 j+l k - 2wi ,j+l,k + wi +1,j+l,k J} 
x " 

+ 2(1-v) {Di..lf~",j-1'2 [W _ W - W 
h h h h i-l,j-l,k i-l,j,k i,j-l,k x y x y 

- D. lJ .+y [ 
+ J ~ ~' t ' Jaw. - w - w Wi,j,k - i-l,j,k i-l,j+l,k i,j,k 

xy 

D 
-: i+1'a,j-1'a [ 

+ Wi ,j+l,k J - h h Wi ,j_l,k - Wi,j,k - wi+1,j-l,k 
x y 

l Di+y?, j+ys [ + W J+ W - W - W i+l J' k h h . i,j,k i,j+l,k i+l,j.k , , x y , 

+ w. 1 . 1 kJ } + s. . W • • k ~+ , J+ , ~,J ~, J, 

[ W. - 2w + W J = q 1,j,k-l i,j,k i,j,k+l i,j,k 

= h h si j x y , 

Q •• k 
~,J, 

= h h q 
xy i,j,k 

C
i 

. == 
,J (I-v) Di :II JJ 

-'2' j-7 2 

69 

(A,3.3) 

(A3 .4) 

(A3.5) 

(A.3,6) 
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(A3.7) 

Ci +1 ,j = (A3.8) 

and 

(1-V) D, JJ.J ,+1/ 
~T/a,j 'a 

(3.9) 

Equations A3.3 through A3.9 are combined to yield 

Di-l,j { 1 [ J 
h a h a wi _2 ' k - 2wi _1 ' k + Wi ' k x x ,j, ,], ,j, 

+ h ~ a [w i -1 ,j -1 , k - 2 wi -1 , j , k + wi -1 , j+ 1 , k ] } 

Di , j { 1 [ l 
- 2 ~ 0 wi _1 ' k -2wi ' k + wi +1 ' k J x x ,j, ,j, ,j, 

+ h;2 [wi ,J-1,k - 2wi ,j,k + Wi ,j+1,k J} 

+ hVa [wi +1 j-1 k - 2wi +1 ' k + wi +1 j+1 k ] ~ 
y " ,j, " J 

D, , 1 { [ ] 
+ ~'~- h1a Wi '-2 k - 2wi j-1 k + Wi ' k Y Y ,j, " ,j, 

(equation continued) 
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+ h~2 [Wi - 1 ,j-1,k - 2wi ,j_1,k + wi +1 ,j-1,k J } 

2D. . r I 
~ , J J _1_ W _ 2w + w I 

h 2 l haL. i,j-1,k i,j,k i,j+1,k J 
Y Y 

[
II 

+ h\)2 wi _1 j k - 2wi . k + wi + 1 . k J J x ' , ,J, ,J, 

+ h: [wi - 1 ,j+1,k - 2wi ,j+1,k + wi +1 ,j+1,k ] } 

+ h 22 h a { C
i 

. rlow - w . - w + w . J--
,J i-1,j-1,k i-1,J,k i,j-1,k i,J,k x y 

- Ci ,j+1 [wi - 1 ,j,k - Wi - 1 ,j+1,k - Wi,j,k + Wi ,j+1,k ] 

- Ci +1 . rw - w - w + w l ,J ~ i,j-1,k i,j,k i+1,j-1,k i+1,j,kJ 

= 
Q •• k 
~,J, 

h h 
x y 

-w -w +w ]} i,j+1,k i+1,j,k i+1,j+1,k 

[w. - 2w + w l i,J,k-1 i,j,k i,j,k+1 ~ 

(AJ .10) 



72 A3.6 

The static plate coefficients, which are defined in Appendix 2, are substittlJted 

into Eq AJ.10. For an implicit formula, Eq A3.10 becomes 

+ 1 (Xs) [w + w ] + 1 (Y1) [w 2 i+2,j,k-1 i+2,j,k+1 2 i,j-2,k-1 

+ 2 ) [ + ] + -2
1 

(X + y Zl Wi - 1 ,j-1,k-1 Wi - 1 ,j-1,k+1 6 8 

) rL + ] + -2
1 

(X + Y + 2Z3 Wi - 1 ,j+1,k-1 Wi - 1,j+1,k+1 11 9 

+ 2 Z ) [W + w ] + -2
1 

(X + Y 7 i+1,j-1,k-1 i+1,j-1,k+1 8 11 

] 
2Pi.; 

+ 2Z9) [Wi +1,j+1,k-1 + wi +1,j+1,k+1 - ht
2 Wi,j,k 

Q .. k = 1.. J, 
h h 

x y 
(A3.11) 



APPENDIX 4 

SUMMARY FLOW DIAGRAM, GUIDE FOR DATA I~PUT, A~D LISTING FOR PROGRAM DBCl 
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A4.l 

I 

I 
I 
I 

• I 
I 
I 
I 

SUMMARY FLOW DIAGRAM - DBCr 

READ problem identification 

Yes 

PRINT problem identification 

READ and PRINT 
Table 2. Constants 
Table 3. Specified slopes and deflections 
Table 4. Beam data 
Table 5. Initial velocities 
Table 6. Time dependent loading 

DO for each time K from 2 to MTP2 

+ 

002 
Dynamic equations 
with initial velocity 

L _______ _ 

PRINT Table 7. Deflections 

75 
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GUIDE FOR DATA INPUT FOR PROGRAM DBCl (BEAM) 

with Supplementary Notes 
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DBC1 GUIDE FOR DATA INPUT --- Cord forms 

IDENTIFICATION OF PROGRAM AND RUN (2 alphanumeric cords per run) 

IDENTI FICATION OF PROBLEM (one cord each problem) 

PROB Description of problem (alphanumeric) 

" 

TABLE 2. CONSTANTS ( one cord) 

NUM BEAM NUM TIME NUM CARDS IN TABLE 

BEAM INCR TIME INCR 

INCRS LENGTH INCRS LENGTH 3 4 5 

I I 
6 10 20 26 30 40 46 50 56 60 66 70 

TABLE 3. SPECIFIED DEFLECTIONS AND SLOPES (number of cords according to TABLE 2) 

BEAM 

STATION 

I I 
6 10 

CASE DEFLECTION 

16 20 30 

SLOPE 

CASE = 1 for deflection only, 2 for slope only, 3 for both 
40 

. 
\..n 

BO 

BO 

BO 

6 

76 80 
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TABLE 4 

TABLE 5 

I 
II 

TABLE 6 

I 
6 

BEAM DATA AND STATIC LOADING (number of cards according to TABLE 2). Data added to storage as lumped quatities per 
increment length, linearly interpolated between values input at Indicated end stations! with 1/2-values at each end station. 
Concentrated effects are established as full values at single st at ions by setting Tinal station = initial station. (2 cards 
per set of data required) 

FROM 
BEAM 
STA 

TO 
BEAM 
STA 

Q 
TRANSVERSE 

LOAD 

15 

ENTER 1 
IF CONT'D 
ON NEXT 
SET OF 
CARDS 

F 
BENDING 

STIFFNESS 

S 
SPRING 

SUPPORT 

25 

o 

P 
AXIAL 
LOAD 

RHO 
MASS 

DENSITY 

OF 
DAMPING 

COEF 

35 

T 
TRANSVERSE 

COUPLE 

45 

R 
ROTATIONAL 
RESTRAINT 

55 

INITIAL VELOCITIES (number of cards according to TABLE 2) Full values of velocity occur at each station and the input is 
not cumulative. 

ENTER t 
FROM TO IF CONT'D WV 
BEAM BEAM ON NEXT INITIAL 
STA STA CARD VELOCITY 

10 15 20 30 

TIME DEPENDENT LOADING (number of cards according to TABLE 2) Full values of load occur at each station and the input is 
not cumulative. 

ENTER 1 QT 
FROM TO FROM TO IF CONT'D TIME 
BEAM BEAM TIME TIME ON NEXT DEPENDENT 
STA STA STA STA CARD LOADING 

I I 
10 15 20 25 30 40 

I STOP CARD (one blank card at end of run) 
5 

OJ 
l-' 
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GENERAL PROGRAM NOTES 

The data cards must be stacked in proper order for the program to run. 

A consistent system of units should be used for all input data; for example: 

All 5-space words are understood to be integers 

All la-space words are floating-point decimal numbers in an E format 

All integer data words must be right justified in the field provided. 

pounds, inches, 

1- 4 

The calculated deflections for all beam stations are printed in tabular form for each station. 

and seconds. 

1- 4 3 2 11 

3 2 1 E + a 31 

The program will adjust the number of time stations so that this value will be a multiple of five. Thus, the 
number of time stations input will be increased by the computer by one to four to accommodate the output 
format. 

TABLE 2. CONSTANTS 

Typical units for the beam and time increment lengths are inches and seconds. 

The maximum number of beam increments into which the beam-column may be divided is 100. 

. 
\.0 

There is no maximum number of time increments, except that dynamic loading may be specified for only the first 
110 time increments. 

TABLE 3. SPECIFIED DEFLECTIONS AND SLOPES 

The maximum number of stations at which deflections and slopes may be specified is 20. 

Cards must be arranged in order of station numbers. 

A slope may not be specified closer than 3 increments from another specified slope. 

A deflection may not be specified closer than 2 increments from a specified slope, except that both a deflec
tion and a slope may be specified at the same station. 

TABLE 4. BEAM DATA AND STATIC LOADING 

Typical units: 
variables: 
values per station: 

F 
lb_in2 

DF 
lb-sec/in 

Q 
lb 

S 
lb/in 

P 
lb 

T 
lb-in 

R 
lb-in-rad 
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Axial tension or compression values P must be stated at each station in the same manner as any other dis
tributed data; there is no prov~s~on in the program to automatically distribute the internal effects of 
an externally applied axial force. 

For the interpolation and distribution process, there are four variations in the station numbering and in 
referencing for continuation to succeeding cards. These variations are explained and illustrated on the 
following page. 

There are no restrictions on the order of cards in Table 4, except that within a distribution sequence the 
stations must be in regular order. 

TABLE 5. INITIAL VELOCITIES 

Typical units: 
variable: 
values per station: 

WV 
in/sec 

A linear variation in initial velocities may be specified for any interval of beam stations, including the 
two end stations. The sequential order of the stations must be observed. 

Initial velocities are input in the same manner as distributed quantities in Table 4, except that full values 
occur at every beam station and the input is not cumulative. 

TABLE 6. TIME DEPENDENT LOADING 

Typical units: 
variable: QT 
values per station: lb 

The time dependent loading may be specified for any beam station and for a maximum of 110 time stations. 

The program permits any continuous linear variation in loading with time; however, if the loading is input for 
an interval of beam stations, the timewise variation in loading must be the same for every station within 
the interval. 

The sequential order of both beam and time stations must be observed. 

Full values of load occur at each station and the input is not cumulative. 
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STATION NUMBERING AND REFERENCING FOR TABLE 4. 

Fixed - position Data 

Individual- card Input 

Co sea. I. Data concentrated ot one sta ........ . 

Case 0.2. Dato uniformly distributed ......... . 

Multiple - card Sequence 

Case b. First - of - sequence 

Case c. Interior - of - sequence .............. . 

Case d. End - of - sequence ................. . 

Resulting Distributions of Data 

STI FFNESS F 

Sta: 5 

LOAD a 

Sta: 5 

10 

,-- - -- --
I 

10 

15 

15 

-, 
I 
I 
I 
I 

20 

20 

FROM 
8EAM 
~ CONT'D 
BEAM TO NEXT 

STA STA CARD? F a 

~=7==~I=.=7==~1=0===N=0~======~===3=.0==~. 
~=5==~!=.=1=5==~10====N=0~==2=.0==~~====~~ 
~=15==~f=·=2=0==~1=0====NO~===4=.=0==~===1.=0==~e 
~_10 __ ~f_·_2_0 __ ~1_0_-_-_NO~ ________ ~ __ 2_.0 __ ~O 

25~~==~=I==Y=E=S~==0=.=0==~==2=.=0==~I' ..... /0 1 (§30 I = YES 4 . 0 2. 0 "0 
~==:::::!:I ~35 I = YES 2. 0 O. 0 I~ 
'---~I 40 0 = NO 2 . 0 1/ 

4 

3 

2 

3-

2-

1-

25 

25 

/ 

/ 
/ 

/ 
/ 

/ 
/ 

-, --

30 35 40 

30 35 40 

00 
-....J 
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TABLE 6. TI M E DEPENDENT LOADI NG (continued) 

The variable QT is input at any beam station and time station by specifying j and k in the FROM 
and TO columns. 

EXAMPLES OF PERMISSIBLE INPUT OF THE VARIABLE QT ARE SHOWN BELOW 

BEAM STATIONS TIME STATIONS CONT'D 
TO NEXT 

FROM TO FROM TO CARD? 

5 15 0 20 I = YES 

5 15 0 20 O=NO 

20 20 20 40 O=NO 

Q'1t It 

0 

10 

15 

00 
\.0 
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-COOP,CEUSll18,MATLOCK,S/2S. DBC1 DECK 1 
-FTN,E,R,N. 

PROGRAM DBC1 
1 FORMAT (SX,S2HPROGRAM DBF1 - DECK S HJ SALANI, H MATLOCK22JLS ID 

1 28H REVISION DATE = 12 JUN 66 ) 
C-----SOLVES FOR THE DYNAMIC RESPONSE OF A BEAM BY AN IMPLICIT METHOD OlJLS 

OlJLS 
12JE3 
OlJLS 

C-----NOTATION FOR DBC 1 
C AN1( ), AN2( ),ETC IDENTIFICATION AND REMARKS (ALPHA-NUM) 

DAMPING COEF C DF( J) 
C DWS( ) VALUE OF SPECIFIED SLOPE DW/DX 04JE3 
C ESM MULTIPLIER FOR HALF VALUES AT END STAS 

FLEXURAL STIFFNESS (EI) (INPUT AND TOTAl) 
BEAM INCREMENT 

07JE3 
12JE3 
09JLS 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

FN1,FN2,F(J) 
H 
HT 
ITEST 
J 

T I ME INCREMENT 
BLANK FIELD FOR ALPHANUMERIC ZERO 
BEAM STATION 

OlJLS 
22JLS 
09JLS 

J 1, J2 
JS 
K 

INITIAL AND FINAL STATIONS IN SEQUENCE 
STA OF SPECIFIED DEFLECTION OR SLOPE 
TIME STATION 

OSJE3 
OSJE3 
09JLS 
07JE3 
OlJLS 
12JE3 
OlJLS 
01JLS 
09JLS 
07JN6 
2SMY3 
OSJE3 

KASE 
KASE 
M 
M 
MT 
MT 
NCT3,4,S AND 6 
NPROB 
NS 
PN1' PN2, 
QN1, QN2, 
QT(J,K) 
QT(J,K) 
RHO(J) 
RN 1, RN2, 
SN1, SN2, 
TN19 TN2, 
W(J,K) 
WS(JS) 
WV(J) 
XF,XB 

P (J) 

Q(J) 

R (J) 

S (J) 

T (J) 

CASE NUM FOR SPECIFIED CONDITIONS 
l=DEFL, 2=SLOPE, 3=BOTH 
TOTAL NUMBER OF INCREMENTS OF BMCOL 
MAX NUM = SO 
NUMBER TIME INCREMENTS 
MAX NUM NOT SPECIFIED 
NUM CARDS IN TABLES 3,4,S AND 6 
PROBLEM NUMBER (PROG STOPS IF ZERO) 
INDEX NUM FOR SPECIFIED CONDITIONS 
AXIAL TENSION OR COMPRESSION(INPUT, 
TRANSVERSE FORCE (INPUT AND TOTAL) 
TIME DEPENDENT TRANSVERSE LOADING 
MAX NUM (SOd10) 
MASS DENSITY OF BEAM 
ROTATIONAL RESTRAINT ( INPUT, TOTAL 
SPRING SUPPORT STIFFNESS (INPUT AND 
TRANSVERSE TORQUE ( INPUT, TOTAL ) 
LATERAL DEFL OF BEAM AT J,K 
SPECIFIED VALUE OF DEFL AT STA JS 
INITIAL VELOCITY 
MULTIPLIER 

TOTAL)12JE3 
23MR4 
OlJLS 
09JLS 
01JLS 

) 12JE3 
TOTAL)23MR4 

12JE3 
09JLS 
12JE3 
09JLS 
OlJLS 

DIMENSION 
1 
2 
3 

AN1(32), AN2(14), F(107), Q(107" S(107), T(107), 
R(107), P(lU7" A(107), B(107), C(107), WQ07,8), 
KEY(107), WS(20), DwS(20" QT(107d10" RHO(107" 
WV(107J, DF(IU7) 

07JN6 
07.JN6 
07.JN6 
07JN6 

10 FORMAT 
11 FORMAT 
12 FORMAT 
13 FORMAT 
14 FORf\lA T 
IS FORMAT 
16 FORMAT 
19 FORMAT 
21 FORMAT 
31 FORMAT 
41 FORMAT 

SH , BOX, 10HI-----TRIM 
SH1 ,80X, 10HI-----TRIM 

16AS ) 
SX, 16AS ) 

AS, SX, 14AS ) 
(11110H PROB, ISX, AS, SX, 14AS J 
(11117H PROB (CONTD), ISX, AS, SX, 14A5 ) 
(1114BH RETURN THIS PAGE TO TIME RECORD FILE -- HM ) 
( 2( SX, IS, E10.3 ), 4( SX, IS) ) 

2(SX, IS" 2EI0.3 ) 
SX, 31S, 3E1J.3 ) 

27FE4 
27FE4 
04MY3 
27FE4 
18FES 
18FES 
18FES 
12MRS 
07JN6 
23MR4 
07JN6 

ID 
ID 
ID 

"I D 
ID 
ID 
I D 
ID 



92 

201 FORMAT 111125H TABLE 2. CONSTANTS 
1 I 5X. 25H NUM BEAM INCRE • 20X. 110. 
2 I 5X. 25H BEAM INCRE LENGTH .20X. E10.3. 
3 I 5X. 2SH NUM TIME INCRE .20X. 110. 
4 I SX. 2SH TIME INCRE LENGTH • 20X. E10.3. 
S I 5X. 25H NUM CARDS TA8LE 3 .20X. 110. 
6 I SX. 2SH NUM CARDS TABLE 4 .20X. 110. 
7 I 5X. 25H NUM CARDS TABLE S • 20X. 110. 
8 I 5X. 2SH NUM CARDS TABLE 6 • 20X. 110 ) 

300 FORMAT 111147H TABLE 3 - SPECIFIED DEFLECTIONS AND SLOPES 
1 I 5X. 48H STA CASE DEFLECTION SLOPE 

311 FORMAT I lOX. 13. 7X. 12. 8X. E10.3. 9X. 4HNONE ) 
312 FORMAT I lOX. 13. 7X. 12. 11X. 4HNONE. 8X. E10.3 ) 
313 FORMAT I lOX. 13. 7X. 12. 3X. 2(5X. E10.3) ) 
400 FORMAT 11114SH TABLE 4. BEAM DATA AND STATIC LOADING 
411 FORMAT ISX.30H FROM TO CONTD ,1ol0X. 31 14. 4X ). 

1 115X. 4SH F RHO DF 
2 10H Q .1. 5X. 41 SX. E10.3 ) • 
3 115X.4SH S P T 
4 10H R.I. SX. 4( 5X. E10.3 ) • II ) 

412 FORMAT ISX,30H FROM TO CONTD ,I. lOX. 14. 12X. 14. 
1 IISX. 4SH F RHO DF 
2 10H Q .1. SX. 4( SX. E10.3 ) • 
3 115X. 45H S P T 
4 10H R.I. 5X. 4( 5X. EIO.3 • II ) 

413 FORMAT 15X,30H FROM TO CONTD ,I. 18X. 14. 4X. 14. 
1 115X. 45H F RHO DF 
2 10H Q ,I. 5X. 41 5X. E10.3 ) • 
3 IISX. 4SH S P T 
4 lOH R ,I. 5X. 41 5X. E10.3 ) • II ) 

SJO FORMAT (11137H TABLE 7. D E F L E C T ION S .1. 
1 3SH J=BEAM AXIS. K=TIME AXIS 

Sll FORMAT SX. 14. 2X. 6E12.3 ) 
602 FORMAT (5X. 5ISX. EIO.3) 
604 FORMAT I 515X. EIJ03) ) 
60S FORMAT (1113SH TABLE 5. INITIAL VELOCITIES 
606 FORMAT ( SX. SEIO.3 ) 
607 FORMAT (11140H TABLE 6. TIME DEPENDENT LOADING .1. 

1 SX. 30H BEAM STA TIME STA .1. 
2 SX. SOH FROM TO FROM TO CONTO QT 

608 FORMAT lOX. 214. 7X. 214. 5X. 14. 2X. E10.3 I 
609 FORMAT SX. S15. E10.3 ) 
610 FORMAT (lOX. 13. 3X. 13. 6X. 13. 3X. 13. SX. EIO.3) 
611 FORMAT lOX. 214. 7X. 14. 9X. 14. 2X. EIO.3 ) 
612 FORMAT SX. 31S. EIU.3 ) 
613 FORMAT SX.25H FROM TO WV .1. lOX. 2( 14. 3X ). 

1 E1(03) 
614 FORMAT I 13X. 4HR(J). llX. 4HP(J). lOX. SHOFIJ). 9X. 6HRHO(J» 
615 FORMAT ( SX. 34H FROM TO CONTD WV .1. lOX. 14. 

1 12X. 14. 4X. E10.3 ) 
616 FOR,"'!AT ( SX. 34H FROM TO CONTD' WV ,I. 17X. 14. 

1 SX. 14. 4X. E1u.3 ) 
617 FORMAT (I. 18X. 2HK=. 13. lOX. 2HK=. 13. lOX. 2HK=. 13. lOX. 

1 2HK=. 13. lUX. 2HK=-. 13 ) 
618 FORMAT 7H J=. 13. 51 5X. E10.3 )1 

A4.18 

01JLS 
01JLS 
01JLS 
01JLS 
01JLS 
01JLS 

07JN6 
07JN6 
20JA4 

)OlJLS 
23MR4 
23MR4 
23MR4 
01JLS 
07JN6 
07JN6 
07JN6 
07JN6 
07JN6 
01JLS 
07JN6 
07JN6 
07JN6 
07JN6 
01JLS 
07JN6 
07JN6 
07JN6 
07JN6 
01JLS 
01JLS 
23MR4 
01JLS 
01JLS 
07JN6 
07JN6 
01JLS 
07JN6 
07JN6 
07JN6 
07JN6 
01JLS 
07JN6 
07JN6 
07JN6 
07JN6 
o IJLS 
07JN6 
07JN6 
07JN6 
07JN6 
01JLS 
01JL5 
01JLS 
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619 FOR~AT ( 30X. 14. 5X. 14. 2X. El~.3 I 
904 FORMAT (II 4UH TOO MUCH DATA ~OR AVAILA~Lt ~TORAGE II 
907 FORMAT (1140H ERROR STOP -- STATIONS NOT IN ORDER) 

C-----START EXECUTION OF PROGRA~ - SEE GENERAL FLOW CHART 
ITEST = 5H 

1000 PRINT 10 
CALL TIME 

C-----PROGRAM AND PROBLEM IDENTIFICATION 
READ 12. ( ANl(NI. N = 1. 32 I 

1~10 READ 14. NPROB. ( AN2(NI. N = 1. 14 I 
IF ( NPROB - ITEST I 1020. 9990. 1020 

1020 PRINT 11 
PRINT 1 
PRINT 13. ( ANl(NI. N = 1. 32 I 
PRINT 15. NPROB. ( AN2(NI. N = 1. 14 I 

C-----INPUT TABLE 2. CONSTANTS 
1210 READ 21. M. H. ~T. HT. NCT3. NCT4. NCT5. NCT6 

PRINT 201. M. H. MT. HT. NCT3. NCT4. NCT5. NCT6 
C-----COMPUTE CONSTANTS AND INDEXES 

1240 HT2 = H + H 
HTE2 = HT * HT 
HE2 H * H 
HE3 = H * HE2 
HE4 = H * HE3 
MPI M + 1 
MP4 M + 4 
MP5 M + 'S 
MP6 M + 6 
MP7 M + 7 
MTP2 MT + 2 
MTP9 = MT + 9 
H41T = HE4 I 
H4T2 = HE4 I 
XF= 0.5 
XB= 0.5 

HT 
HTE2 

C-----INPUT TABLE 3. SPECIFIED SLOPES AND DEFLECTIONS 
1300 PRINT 3uO 
1310 DO 1315 J = 3. MP'S 

KEY(JI = 1 
1315 CONTINUE 
1325 IF ( NeT3 - 20 ) 1327. 1327. 1326 
1326 PRINT 904 

GO TO lulU 
1327 JS = 3 

DO 1350 N = 1. NCT3 
READ 31. INI. KASE. WS(NI. DWS(NI 

IF ( IN1 + 4 - JS I 1328. 1326. 13L~ 

1328 PRINT 9u7 
GO TO 9999 

1329 JS = INI + 4 
C-----SET INDEXES FOR FUTURE CONT~OL OF SPECIFIED CONDITION ROUTINES 

GO TO ( 1330. 1335. 1340 )0 KA':'E 
133<.l KEY(JSI = 2 

PRINT 311. INI. KASE. WS(NI 
GO TO 1350 

93 

07JN6 
04FE4 
03FE4 
23MR4 
19MR':J I D 
12JL3 ID 
18FE5 ID 
04MY3 ID 
18FE5 ID 
28AG3 I D 
26FE5 I D 
26AG3 I D 
18FE5 ID 
18FE5 I D 
26AG3 I D 
01JL5 
07JN6 
07JN6 
10JE3 
03JE3 
01JL5 
301V1Y3 
30MY3 
01JL5 
01JL5 
30MY3 
30MY3 
10JE3 
30MY3 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
03JE3 
23MR4 
03JE3 
03JE3 
01JL5 
04JE3 
09JL5 
<.l3FE4 
01JL5 
03FE4 
03FE4 
03FE4 
03FE4 
03FE4 
10JE3 
o 5JE3 
05JE3 
03FE4 
03JE3 
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1335 

134v 

13 50 
1399 

C 

14C~ 

KEY(JS-l) , 
KEY(JS+11 ::: 5 

PRINT 312. INI. KA~E. DW~(NI 
GO TO 1350 

KEY(JS-l) = '3 
KEY (JS I 4 
KEY(JS+l) ::: 5 

PRINT 313. INI. KASE. WS(N). 
CONTINUE 
CONTINUE 

CLEAR STORAGE 
DO 14IJ2 J=1,MP7 

F(JI \J.G 
Q(J) v.l! 
SIJ) lJ.lJ 
T(J) G.v 
R(J) ::: 0.0 
P(J)::: .J 
RHO(J) ::: 0.0 
DFIJ) v.v 
\vV (J I :::J. J 

DO 1403 K= I. 110 
QT(J.KI ::: ,-.J 

CONTINUE 
DO 1402 KD I. 8 

W(J.KDI ::: J.u 
1402 CONTINuE 

C-----INPUT TAdLE 4, BEAM DATA 
NCH4 NCT4 / 2 

4\)0 1400 PRINT 
14G6 i<.R2 

DO 1480 N 
KRI 

o 
1, NCH4 

KR2 

D';lSIN) 

READ 
REAO 

41, I~I. IN2, KR2, FN2, RHON2. DFN2 
606. QN2. SN2, DM2. TN2, RN2 
IN INI + 4 
J2 IN2 + 4 
KSW ::: 1 + KR2 + 2 * KRI 

TO ( 1407, 1410. 1415, 141:> " KSW 

A4.20 

05JE3 
05JE3 
03FE4 
03JE3 
05JE3 
05JE3 
05JE3 
03FE4 
03JE3 
04JE3 
OlJL5 
OlJL5 
30MY3 
19MR4 
19MR4 
30MY3 
30MY3 
30MY3 
01JL5 
01JL5 
o IJL5 
01JL5 
01JL5 
01Jl5 
OIJL5 
01Jl5 
04JE3 
OlJL5 
01Jl5 
04JE3 
04JE3 
01JL5 
28MY3 
07JN6 
07JN6 
28MY3 
28MY3 
28MY3 
04JE3 GO 

14U7 PRINT 411. IN1, IN2. KR2. FN2. RHON2. DFN2, 
RN2 

iJN2, SN2, PN2, TN2,07JN6 
1 

GO 
141C PRINT 

GO 
1415 PRINT 

GO 
142,; 
142') 

TO 1420 
412, IN1, 

ro 142:.; 
413. IN2. 

TO 11+35 
J 1 JI~ 

FNI FN2 
QNl ::: Q~2 

SNI S~2 
TNI ::: TN2 
R~1 ::: RN2 

KR2. FN2. RHON2. DFN2. QN2. SN2. PN2. TN2, RN2 

i<.R2, FN2. RHON2. DFN2, QN2. SN2. PN2. TN2, RN2 

PNI PN2 
DFNI " OFN2 
RHONl ::: RHO~2 

07JN6 
04EJ3 
07JN6 
04JE3 
07JN6 
04JE3 
04JE3 
04JE3 
28MY3 
28MY3 
28MY3 
28MY3 
28MY3 
01JL5 
01JL5 
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GO TO ( 1435. 1480. 9999. 1480 ). K S W 22 J A4 
C-----SEE FLOW CHART. TABLE INTERPOL AND DISTRIB 23MR4 

1435 JINCR = 1 07JE3 
ESM = 1.0 07JE3 

IF ( J2 - Jl ) 1437. 1450. 1440 03FE4 
1437 PRINT 907 03FE4 

GO TO 1010 01JL5 
1440 DENOM J2 - Jl 07JE3 

ISW = 1 07JE3 
GO TO 1455 07JE3 

1450 DENOM 1.u 07JE3 
ISW = 0 07JE3 

1455 DO 1460 J = Jl. J2. JINCR 04JE3 
DIFF = J - Jl 28MY3 
PART = DIFF / DENOM 28MY3 
F(JI = F(JI + ( FNI + PART * FN2 - FNI * ESM 28MY3 
O(J) O(J) + ONI + PART * ON2 - ONI * ESM 19MR4 
S(J) = S(J) + SNI + PART * SN2 - SNI * ESM 19MR4 
T(JI T(JI + TNI + PART * TN2 - TNI * ESM 28MY3 
R(J) = R(JI + ( RNI + PART * RN2 - RNI * ESM 28MY3 
P(J) = P(JI + ( PNI + PART * PN2 - PNI ) I * ESM 28MY3 
DF(JI = DF(J) + ( DFNI + PART * (DFN2 - DFNll 1* ESM 01JL5 
RHO(J) = RHO(J) + ( RHONI + PART * (RHON2 - RHONl1 ) *ESMOIJL5 

1460 CONTINUE 04JEO 
IF ( ISW I 9999. 1470. 1465 03FE4 

1465 JINCR = J2 - J1 07JE3 
ESM :: - 0.5 07JE3 
ISW = 0 28MY3 

GO TO 1455 04JE3 
1470 GO TO ( 1480. 9999. 1480. 1475 I. KSW 23JA4 
1475 Jl :: J2 04JE3 

GO TO 1425 04JE3 
148U CONTINUE 04JE3 

C-----INPUT TABLE 5. INITIAL VELOCITIES 01JL5 
PRINT 605 07JN6 

KR2 = 0 07JN6 
DO 149'3 N=l. NCT5 07JN6 

KRI = KR2 07JN6 
READ 612. INI. IN2. KR2. WV2 07JN6 

IN :: INI + 4 07JN6 
J2 :: IN2 + 4 07JN6 
KSW = 1 + KR2 + 2 * KRI 07JN6 

GO TO ( 1481. 1482. 1483. 1483 I. KSW 07JN6 
1481 PRINT 613. INI. IN2. WV2 07JN6 

GO TO 1484 07JN6 
1482 PRINT 615. INI. KR2. WV2 07JN6 

GO TO 1484 07JN6 
1483 PRINT 616. IN2. KR2. WV2 07JN6 

GO TO 1486 07JN6 
1484 J] = IN 07JN6 
1485 WVl = WV2 07JN6 

GO TO ( 1486. 1493. 9999. 1493 " KSW 07JN6 
1486 IF ( J2 - Jl I 1487. 1489. 1488 07JN6 
1487 PRINT 907 07JN6 

GO TO 1010 07JN6 
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1488 DENOM = J2 - Jl 07JN6 
GO TO 1490 07JN6 

1489 DENOM = 1.0 07JN6 
1490 DO 1491 J Jl, J2 07JN6 

DIFF = J - J1 07JN6 
PART = DIFF I DENOM 07JN6 
WV(J) = WV1 + PART * ( WV2 - WVll 07JN6 

1491 CONTINUE 07JN6 
GO TO I 1493, 9999. 1493. 1492 ) . KSW 07JN6 

1492 Jl = J2 07JN6 
GO TO 1485 07JN6 

1493 CONTINUE 07JN6 
C-----INPUT TABLE 6. TIME DEPENDENT LOADING 01JL5 

PRINT 6LJ7 01JL5 
KR2 = 0 07JN6 

DO 635 N 1. NCT6 07JN6 
KRI = KR2 07JN6 

READ 609, I Nit I N2. KNI. KN2. KR2, OTN 07JN6 
Jl = INI + 4 07JN6 
J2 = IN2 + 4 07JN6 
KN = KNI + 2 07JN6 
K2 = KN2 + 2 07JN6 
KSW = 1 + KR2 + 2 * KRI 07JN6 

GO TO I 620, 621, 622, 622 ) . KSW 07JN6 
620 PRINT 608, IN 1, IN2, KNIt KN2. KR2. OTN 07JN6 

GO TO 623 07JN6 
621 PRINT 611. INl, IN2. KNl, KR2, OTN 07JN6 

GO TO 623 07JN6 
622 PRINT 619, KN2, KR2, OTN 07JN6 

GO TO 625 07JN6 
623 Kl = KN 07JN6 
624 ONI = OTN 07JN6 

GO TO ( 625, 635, 9999, 635 I, KSW 07JN6 
625 IF I J2 - Jl ) 626, 627, 627 07JN6 
626 PRINT 907 07JN6 

GO TO 9999 07JN6 
627 IF I K2 - Kl ) 628, 629. 630 07JN6 
628 PRINT 907 07JN6 

GO TO 9999 07JN6 
629 DENOM 1.0 07JN6 

GO TO 631 07JN6 
630 DENOM = K2 - Kl 07JN6 
631 DO 633 J = J 1. J2 07JN6 

DO 632 K = Kl. K2 07JN6 
DIFF = K - Kl 07JN6 
PART = DIFF I DENOM 07JN6 
OTlJ,K) = ONI + PART * ( OTN - ON 1 I 07JN6 

632 CONTINUE 07JN6 
633 CON TINUE 07JN6 

GO TO I 635, 635. 635. 634 I, KSW 07JN6 
634 Kl = K2 07JN6 

GO TO 624 07JN6 
635 CONTINUE 07JN6 

C-----START OF BEAM-COLUMN SOLUTION 10JE3 
PRINT 11 08MY3 ID 
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7009 
7006 

6000 

704 

97 

PRINT 
PRINT 
PRINT 
PRINT 

18FE5 10 
13. I ANIIN). N = 1. 32 ) 18FE5 10 
16. NPROB. I AN2[Nlt N :: It 14 ) 28AG3 10 
500 23MR4 

K = 1 01Jl5 
00 7009 NOT: a. MTP9. 5 OIJl5 
IF I NOT - MT - 4 ) 7009. 7005. 7U05 OIJl5 

MTP :: NoT OIJl5 
GO TO 70U6 OIJl5 
CONTINUE OIJl5 
00 7000 KO :: 2. MTP OIJl5 

K '" K + 1 OIJl5 
NS = 1 04JE3 

00 6060 J :: 3. MP5 04JE3 
IF I1IO-KOI 704. 705. 105 01Jl5 

aTP = 0.0 OIJl5 
GO TO 706 01Jl5 

105 aTP :: aTIJ. KO-l) OIJl5 
106 CONTINUE OIJl5 

C-----COMPUTE MATRIx COEFFS AT EACH STA J lOJE3 

7001 

7002 

7U03 

1 
2 

1 
Z 
3 
4 

1 
2 
3 

YA :: FIJ-ll - 0.25 * H * I RIJ-l) + H * PIJ-ll OIJl5 
YB = - 2.0 * I FIJ-1I + FIJI) 01Jl5 
YC FIJ-ll + 4.0 * FIJI + F(J+l) + HE3 * SIJ) + 01Jl5 

0.25 * H * ( I RIJ-l) + H * PIJ-ll + ( RIJ+l) OIJl5 
+ H * PIJ+lI ) ) 01Jl5 

YO :: - 2.0 * ( FIJ) + FIJ+l) ) 01Jl5 
YE ::: FIJ+lI - 0.25 * H * I RIJ+ll + H * PIJ+l1 I 01Jl5 

IF (KO-3) 70Ul. 7002. 7003 01Jl5 
AA YA 01Jl5 
BB = YB 01Jl5 
CC = YC 01Jl5 
00 :: YO 01Jl5 
EE :: YE 01Jl5 
FF ::: HE3 * alJ) - 0.5 * HE2 * ( T(J-ll - TIJ+ll ) 01Jl5 

GO TO 7004 01Jl5 
AA = XF * YA 01Jl5 
BB :: XF * YB 01Jl5 
CC :: XF * YC + 4.0 * H4T2 * RHOIJI + z.O * H41T * DFIJ) 01Jl5 
OD :: XF * YO 0lJl5 
EE :: XF * YE 0lJl5 
FF :: HE3 * aTP - XB * IYA * WIJ-2.K-II + YB * WIJ-I.K-l) 01Jl5 

+ YC * WIJ.K-I) + YD * WIJ+l.K-ll + YE * W(J+2.K-l)01Jl5 
+ 8.0 * H4T2 * RHOIJ) * IWIJ.K-Il + 0.5 * HT * WVIJ)01Jl5 
) - 4.0 * H4T2 * RHOIJI * WIJ.K-l) + 2.0 * H4IT * 01Jl5 
DFIJ) * IWIJ.K-I) + 0.5 * HT * WVIJ) I 01Jl5 

GO TO 7004 01Jl5 
AA :: XF * YA OIJl5 
BB = XF * YB 01Jl5 
CC :: XF * YC + H4TZ * RHOIJ) + H4IT * DFIJ) OIJl5 
DO :: XF * YD 01Jl5 
EE :: XF * YE 01Jl5 
FF :: HE3 * aTP - XB * IYA * WIJ-2.K-2) + YB * WIJ-l.K-2) 01Jl5 

+ YC * WIJ,K-2J + yO * WIJ+l.K-2) + YE * WIJ+2.K-2) )01Jl5 
+ 2.0 * H4T2 * RHOIJ) * WIJ.K-il - H4T2 * RHOIJ) 01Jl5 
* W{J.K-21 + H41T * DFIJ) * W(J.K-l) OIJl5 
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C-----COMPUTE RECURSION OR CONTINUITY COEFFS AT EACH STA 
7004 CONTINUE 

E = AA * B(J-21 + BB 
DENOM = E * B(J-1) + AA * C(J-21 + CC 

IF ( DENOM ) 6010. 6005. 6010 
C-----NOTE IF DENOM IS ZERO. BEAM DOES NOT EXIST. D = 0 SETS DEFL 

6005 D = 0.0 

6010 
6015 

GO TO 6u15 
D = - 1.0 / DENOM 
C (J) = D * EE 
B(J) = D * ( E * C(J-1) + DD I 
A(J) = D * ( E * A(J-11 + AA * A(J-21 - FF I 

C-----CONTROL RESET ROUTINES FOR SPECIFIED CONDITIONS 
KEYJ = KEY(JI 

GO TO ( 6060. 6020. 6030. 6020. 6050 I. KEYJ 
C-----RESET FOR SPECIFIED DEFLECTION 

6020 C(JI 0.0 
B(JI = J.U 
A(J) = \IIS(NSI 

IF ( KEYJ - 3 I 6059. 6030. 6060 
C-----RESET FOR SPECIFIED SLOPE AT NEXT STA 

6030 DTEMP = D 
CTEMP = C(JI 
BTEMP = B(JI 
ATEMP = A(JI 
C(J) = 1.0 
B(J) = 0.0 
A(JI = - HT2 * DWS(NSI 

GO TO 6()60 
C-----RESET FOR SPECIFIED SLOPE AT PRECEDING STATION 

O. 

6050 DREV = 1.0 / ( 1.0 - ( tiTEMP * B(J-11 + CTEMP - 1.0 I * 
1 D / DTEMP ) 

1 

CREV = DREV * C(JI 
BREV = DREV * ( t3(J) + ( BTEMP * C(J-ll I * D / DTEMP I 
AREV = DREV * ( A(JI + ( HT2 * DWS(NSI + ATE1'4P + STEMP 

C(JI 
B(JI 
A(J) 

* A(J-11 I * D / DTE1'4P I 
CREV 
BREV 
MEV 

6059 NS = NS + 1 
6()60 CONTINuE 

C-----C01'4PUTE DEFLECTIONS 

6100 

7007 

DO 6100 L = 3. MP5 
J = 1'4 + 8 - L 
\II(J.KI = A(JI 

CONTINUE 
IF ( 8 - K 

KSA = 
KSB = 
KSC = 
KSD 
KSE 

) 7007. 
KD 8 
KD - 7 
KD - 6 
KD - 5 
KD - 4 

+ B(JI * \II(J+l.K) + C(J) * W(J+2.KI 

7007. 7000 

PRINT 617. KSA. KSB. KSC. KSD. KSE 
DO 7008 J = 3. MP5 

JSTA = J - 4 

A4.24 

10JE3 
01JL5 
01JL5 
28MY3 
28MY3 
10JE3 
28MY3 
28MY3 
28MY3 
28MY3 
28MY3 
28MY3 
10JE3 
04JE3 
20JA4 
20JA4 
05JE3 
28MY3 
05JE3 
20JA4 
17JA4 
05JE3 
28MY3 
28MY3 
28MY3 
28MY3 
28MY3 
05JE3 
04JE3 
23MR4 
05JE3 
04JE3 
28MY3 
28MY3 
05JE3 
04JE3 
28MY3 
28MY3 
28MY3 
20JA4 
28MY3 
23MR4 
23MR4 
30MY3 
01JL5 
30MY3 
01JL5 
01JL5 
01JL5 
OlJL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
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PRINT 618, JSTA, wlJ,Zh w(J,3it .~IJ'4I' WIJ,SI, w1J'61 01JLS 
7U08 CONTINUE 01JLS 

K :: 3 01JLS 
DO 7010 J ::: 3. MPS OIJLS 

WIJ,Z) ::: WIJ,7) 01JLS 
W( Jt3) :: WIJ,81 01JLS 

7U10 CONTINUE OIJLS 
7000 CONTIIIlUE 01JLS 

CALL TIME 18FES ID 
GO TO 1010 Z6AG3 10 

9990 CONTINUE 1ZMRS ID 
9999 CONTINUE 04MY3 10 

PRINT 11 08MY3 10 

PRINT 1 18FES l[) 

PRINT 13, I ANlIN), N 1 , 32 I 18FES I 0 
PRINT 19 26AG3 l[) 

EIllD 2SJE4 
END 04MA3 

FINIS 01JLS 
-EXECUTE. OlJLS 
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APPENDIX 5 

SUMMARY FLOW DIAGRAM, GUIDE FOR DATA INPUT, 
AND LISTING FOR PROGRAM DPII 
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SUMMARY FLOW DIAGRAM - DPII 

I 
l 

READ problem identificatio~ 

Is 
prob num Yes 

zero 

8 ? 
No 

PRINT problem identificationl 

999 

I 
READ and PRINT 

Table l. Program control data 
Table 2. Constants 
Table 3, S tiffnesses and static loads 
Table 4. Initial velocities and densities 
Table 5 Dynamic loads 
Table 6, Closure parameters 

I 
J DO 
I for each time KT from 2 to MTP2 

I 
I DO specified num of iterations 

I 
Solve x system -- DO for each station J from 4 to MYP4 

I from 3 to MXP5 

I 
I CONTINUE 

I 
Solve y sys tern ... DO for each station I from 4 to MXP4 

J from 3 to MYPS 

I 
I CONTINUE ) 

I 
I PRINT monitor datal 

Closure of Yes 
WX and WY 

? 

L..7 No 
I CONTINUE I 

I 
r 

I PRINT deflection~ 
L..F. I 
r CONTINUE 

J 
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GUIDE FOR DATA INPUT FOR PROGRAM DPIl (PLATE) 

with Supplementary Notes 
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DPI1 GUIDE FOR DATA INPUT -- Card forms 

IDENTIFICATION OF PROGRAM AND RUN (2 alphanumeric cards per run) 

IDENTIFICATION OF PROBLEM (1 alphanumeric card each problem) 

NPROB DESCRIPTION OF PROBLEM (alphanumeric) 

I I 
1 5 11 

TABLE 1 CONTROL DATA (One card) 

NUMBER CARDS IN TABLE 

3 4 5 6 

6 16 20 26 30 36 J 
MONITOR MESH POINTS ( specify the I and J stations for three mesh points) 

1 J I J 

6 10 16 20 26 30 36 40 

TABLE 2 CONSTANTS (One card) 

NUM NUM NUM X 
X Y TIME INCR 

INCRS INCRS INCRS LENGTH 

46 

46 

Y 

MAX 
NUM 
ITER 

I 

INCR 
LENGTH 

50 

50 

56 

56 

TIME 
INCR 

CLOSURE 
TOLERANCE 

J 

60 

65 

POISSON'S 
LENGTH RATIO 

80 

80 

80 

I I I I 
6 10 16 20 26 30 40 50 60 70 ______ ~~--~~------L------L------~----~--------------L-----------~~------------~------------~~----_________ ~ 

o 
-....J 
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TABLE 3. STIFFNESS AND STATIC LOADING ( number of cords according to TABLE 1 ) 

FROM 
1 J I 

15 20 

J 

25 

D 
BENDING 

STIFFNESS 

T 
TORSIONAL 
STIFFNESS 

45 

S 
SPRING 

SUPPORT 

TABLE 4. INITIAL VELOCITIES AND DENSITIES (number of cards according to TABLE 1) 

FROM 
I J I 

6 10 15 

J 

20 25 

wv 
VELOCITY 

35 

RHO 
DENSITY 

TABLE 5. DYNAMIC LOADING (Number of cards according to TABLE 1 ) 

FROM 
I J K 

6 10 15 20 

TO 
1 J 

25 

K 

30 35 

QT 
LOAD 

45 

45 

55 

Q 
TRANSVERSE 

FORCE 

TABLE 6. CLOSURE PARAMETERS (Number of cards according to TABLE t) Use one card for each pa rameter. 

6 

CLOSURE 

PARAMETER 

15 

65 

> 
\.n . 

t-' 

I I STOP CARD (One blank card at end of each run) S5 
~1----~5~--------------------------------------~--------------------------------------------------------------------
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GENERAL PROGRAM NOTES 

Two cards containing any desired alphanumeric information are required (for identification purposes 
only) at the beginning of the data for each new run. 

The data cards must be stacked in proper order for the program to run. 

A consistent system of units must be used for all input data; for example, pounds, inches, and seconds. 

All integer data words must be right justified in the field provided. 

All data words of 5 spaces or less are integers . ~2 341 

All data words of 10 spaces are to be entered as floating-point decimal numbers in an E format 
l-l.234E+031 

Blank data fields are interpreted as zeros in an integer or floating point mode. 

One card with a problem number in columns 1-5 is required as the first card of each problem. This 
number may be alphanumeric. The remainder of the card may contain any information desired. 

Any number of problems may be stacked in one run. 

One card with problem number blank is required to stop the run. 

The calculated deflections for the monitor mesh points are printed after each iteration. 

When the closure tolerance is satisfied at all mesh points, or when the maximum number of iterations is 
reached, the calculated deflections for all mesh points are printed. 

TABLE 1. CONTROL DATA 

The maximum number of iterations is 999. 

A closure tolerance of 1.0 X 10-6 in. is usually adequate. 
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TABLE 2. CONSTANTS 

The maximum number of x and y plate increments is 15. 

There is no maximum number of time increments. 

TABLE 3. STIFFNESSES AND STATIC LOADING 

Typical units: 
variables: 
values per station: 

D 
1b-in 

In the foregoing, 

The remaining 

Eh 3 

D = 12 (1 - \l) , 
symbols have been 

T 
1b-in 

S 
1b/in 

Q 
1b 

wherein h is the thickness of the plate, and 

previously defined. 

T = D (1 - \i) • 

For a rectangular plate that is divided into an M X N grid, i = 0, 1, ••• ,M and j = 0, 1, .•. , N. 
The variables D, S, and Q are input at any grid or mesh point by specifying i and j in the 
FROM and TO columns. However, the variable T defines the torsional stiffness which is assumed to 
be concentrated at the center of each rectangular grid. In the program, T is numbered according 
to the mesh point that is located in the upper right corner of each grid, and it is assumed that 
the i station numbers increase from left to right and the j station numbers increase from 
bottom to top. Thus, for an M X N grid, T is specified from i=l, j=l to i=M, j=N 

There are no restrictions on the sequential order of the cards. The input is cumulative with full 
values at each mesh point. 

TABLE 4. INITIAL VELOCITIES AND DENSITIES 

Typical units: 
variables: 
values per station: 

wv 
in/sec 

RHO 
1b sec2 /in3 

The variables WV and RHO are input at any mesh point by specifying i and j in the FROM and TO 
columns. 

A zero initial velocity is automatically established in the program. Thus only non-zero velocities 
must be specified. 
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TABLE 4. Continued 

There are no restrictions on the sequential order of the cards. The input is cumulative with full 
values at each mesh point. 

TABLE 5. DYNAMIC LOADING 

Typical units: 
variable: QT 
values per station: 1b 

The variable QT is input at any mesh point and time station by specifying i, j, and k in the 
FROM and TO columns. 

There are no restrictions on the sequential order of the cards. The input is cumulative with full 
values at each station. 

The loading may be specified for any mesh point and for a maximum of 28 time stations. Therefore, 
k maximum is 28. 

TABLE 6. CLOSURE PARAMETERS 

Typical units: 
variable: 
values per station: 

The maximum number of parameters that may be input is nine. 

The parameters are used in the cyclic order in which they are input. 

The parameters are calculated on the basis of an average stiffness D and the increment length 
h in the x-direction from the equation. 

(RP) 
m 

4D (1 _ cos~)(2 _ cos~) 
M M m 1, 2, 3 ••• M - 1 • 

The parameters for the y system are calculated internally in the program. 
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AS.IS 

9COOP,CEOS101S, MATLOCK-SALANI, S/2S, 10, 6000. 
9F TN, E. 

PROGRAM DPI1 

117 

DPI1 

1 FORMAT ISX,S2HPROGRAM DPI1 - MASTER DECK HJ SALANI, H MATLOCK22JLS 10 
1 2BH REVISION DATE 22 JUL 6S)----- • 

C-----SOLVES FOR THE DYNAMIC 
C-----NOTA TI Of'.l 

RESPONSE OF A PLATE BY AN IMPLICIT METHOD 01JLS 

C ANAIN),ANBIN) 
C AIN),BIN),CIN) 
C CTOL 
C DII,J) 
C DII,J) 

ALPHA NUMERIC IDENTIFICATION 
COEFFICIENTS 
CLOSURE TOLERANCE 
PLATE STIFFNESS PER UNIT AREA 
IEHHH)/(112) I1-VV» 

01JLS 
01JLS 
01JLS 
01JLS 
01JLS 
01JLS 

C DN,RHON,TN,QN,QTN 
C HX,HY,HT 
C ITEST 
C ITMAX 

TEMP VALUES OF D,RHO,T,Q,QT 
INCREMENT LENGTHS IN X,Y AND 
BLANK FIELD FOR ALPHANUMERIC 
MAX NUM ITERATIONS 

01JLS 
Z DIRECTIONS 01JLS 
ZERO 22JLS 

01JLS 
C I 
C J 
C K 
C IM1,JM1 ETC 
C MX,MY,MT 
C MX,MY,MT 
C NCT3, ••• NCT6 
C NPROB 
C PR 
C QII,J) 
C QT(I,J,K) 
C OT 
C RHO I I, J) 
C RPIN) 
C SII,J) 
C TII,J) 
C WV I I , J) 

C WY I I, J, K) 
C WXII,J,K) 

X PLATE AXIS 
Y PLATE AXIS 
TIME AXIS 
MONITOR STAS FOR DEFL 
NUMBER OF INCREMENTS IN X,Y AND Z 
DIRECTIONS. MAX MX=MAX MY= lS,NO MAX MT 
NUMBER CARDS IN TABLES 3 THRU 6 
PROBLEM NUMBER, ZERO TO EXIT 
PO ISSON('S RATIO 
TRANSVERSE STATIC LOAD PER MESH POINT 
TRANSVERSE DYNAMIC LOAD PER MESH POINT 
MAX NUM QT =28 
MASS DENSITY OF PLATE PER UNIT AREA 
CLOSURE PARMETER 
SPRING SUPPORT PER MESH POINT 
STIFFNESS PER UNIT AREA, I1-V)ID) 
INITIAL VELOCITY 
TRANSVERSE DEFLECTION FOR Y SYSTEM 
TRANSVERSE DEFLECTION FOR X SYSTEM 

DIMENSION 
1 

AN1(32), AN2(14), 

2 
3 

QI22,22}, WVI22,22), 
SI22,22),RHOI22,22),QTI22,22,30),AI22),BI22),CI22), 
RP(9),WXI22,22,4),WYI22,22,4),JSTAI2S) 

COMMON/1/DI22,22),TI22.22)/2/X1,X2,X3,X4,XS,X6,X7,X8,X9,X10, 
1 X11,Y1,Y2,Y3,Y4,YS,Y6,Y7,Y8.Y9,Y10,Y11,XY1,XY2,XY3, 
2 XY4,XYS,XY6,XY7,XY8,XY9,I,J,HA,HB,HC,HD,HXYA, 
3 HXYB,HXYC,HXY1 

10 FORMAT I SH , BOX, 10HI-----TRIM 
11 FORMAT I SH1 , 80X, 10HI-----TRIM 
12 FORMAT I 16AS 
13 FORMAT I SX, 16AS ) 
14 FORMAT I AS, SX, 14AS } 
IS FORMAT IIIII0H PROB , ISX, AS, SX, 14A5 ) 
16 FORMAT 1II1l7H PROB ICONTD), ISX, AS, SX, 14AS ) 
19 FORMAT (11148H RETURN THIS PAGE TO TIME RECORD FILE -- HM ) 
20 FORMAT ISI2x.I3),SX,E10.3) 
21 FORMAT (11130H TABLE 1. CONTROL DATA 

1 30H NUM CARDS TABLE 3 
2 30H NUM CARDS TABLE 4 
3 30H NUM CARDS TABLE S 
4 30H NUM CARDS TABLE 6 
5 30H MAX NUM ITERATIONS 
6 30H CLOSURE TOLERANCE 

22 FORMAT 81S) 

,I 
, 40X,IS, 1 
, 40X, IS, 1 
, 40X,IS, 1 
, 40X, IS, 1 
, 40X,I S, 1 
, 3SX,E10.3 

01JLS 
01JLS 
01JLS 
01JLS 
01JLS 
01JLS 
01JLS 
01JLS 
01JLS 
01JLS 
01JLS 
01JLS 
01JLS 
01JLS 
01JLS 
01JLS 
01JLS 
01JLS 
01JLS 
1BFES 10 
01JLS 
01JLS 
01JLS 
16MRS 
16MRS 
16MRS 
16MR5 
27FE4 10 
27FE4 10 
04MY3 10 
27FE4 10 
18FES 10 
18FES 10 
18FES 10 
12MRS ID 
01JLS 
01JLS 
01JLS 
01JLS 
01JLS 
01JLS 
01JLS 
01JLS 
01JLS 

23 FORMAT I 30H MONITOR STAS I,J , 20X,3112,2X,I2,4X» 01JLS 
24 FORMAT 13110,4E10.3) 01JLS 



118 

25 FORMAT 
1 
2 
3 
4 
5 
6 
1 

1II130H TABLE 2. CONSTANTS ,I 
30H NUM INCREMENTS MX ,40X,15, I 
30H NUM INCREMENTS MY ,40X,15, I 
30H NUM INCREMENTS MT ,40X,15, I 
30H INCR LENGTH HX ,35X,E10.3, 
30H INCR LENGTH HY ,35X,EIO.3, 
30H INCR LENGTH HT ,35X,E10.3, 
30H POISSONtS RATIO , 35X,E10.3 

I 
I 
I 

26 FORMAT 
1 

1II145H TABLE 3. STIFFNESSES AND STATIC LOADING ,I 

2 
28 FORMAT 
29 FORMAT 
33 FORMAT 

1 
2 

35 FORMAT 
36 FORMAT 

1 
38 FORMAT 
39 FORMAT 
40 FORMAT 
42 FORMAT 
43 FORMAT 
45 FORMAT 

1 
2 
3 

11 FORMAT 
1 

85 FORMAT 
1 

81 FORMAT 
88 FORMAT 
91 FORMAT 
95 FORMAT 

104 FORMAT 

29H FROMII,J) THRUII,J),6X,lHD,9X,lHT,10X , 
2HS ,10X,3HQ ) 

1415.4E10.3) 
I 10X.12.2X.12,4X,12,2X,12,4X,4IEIO.3,2X) 
1II150H TABLE 4. INITIAL VELOCITIES AND DENSITIES 

34H FROMII,J) THRUII,J). 20X,2HWV 
12X, 3HRHO I 

I 10X,12,2X,I2,9X,I2,2X,I2,19X,EIO.3 ,5X,ElO.3 
1II130H TABLE 5. DYNAMIC LOADING, I 

36H FROMII,J,K) THRUII,J,K),18X,2HQT 
16I5,ElO.3) 
I 10X,I2,2X,I2,2X,I2,5X,12,2X,I2,2X,I2,15X,EIO.3 
111135H TABLE 6. CLOSURE PARAMETERS 
I ElO.3) 
I 10X,EIO.3 I 
1II130H ••• MONITOR DEFLS ••• , 

I lOX, 3HITR,1X,2HSF,8X,3HNOT,1X,4HTIME,16X,3HI,J, 
I lOX, 3HNUM,11X,6HCLOSED,lOX,I2,lX,12,1X,I2,lX,12, 

1X,J2,1X,I2 ) 
5X,2HWX.3X,I4. 2X, EIO.3. 4X, 15, 5X. 13, 2X, ElO.3. 

EIO.3, 2X, ElO.3, I, 5X, 2HWY, 36X, 312X,EIO.3) 1 
111136H ••• D E F L E C T ION S ••• ,1,5X,4HTIME, 
1X,14, lOX, 15HSTAS NOT CLOSED, 14 

I/I1X,5(2HJ=,I2,11X I ) 
II 5X,2HI=,12,2X,2HWX,2X, 5IE10.3,5X II 
I 11X,2HWY,2X, 5IE10.3,5X) ) 

15X, llE10.3) 
I ) 

ITEST = 5H 
1000 PRINT 10 

CALL TI ME 
C-----PROGRAM AND PROBLEM IDENTIFICATION 

READ 12, I ANlIN), N = 1, 32 ) 
1010 READ 14, NPROB, I AN2IN), N = 1, 14 ) 

IF ( NPROB - ITEST ) 1020, 9990, 1020 
1020 PRINT 11 

PRINT 1 
PRINT 13, I ANlIN). N = 1,32 ) 
PRINT 15, NPROB. ( AN2{Nl, N = 1. 14 ) 

C-----INPUT TABLE 1, CONTROL DATA 
READ 20.NCT3iNCT4,NCT5,NCT6,ITMAX,CTOL 
PRINT 21,NCT3,NCT4,NCT5,NCT6,ITMAX,CTOL 
READ 22,IM1,JM1,IM2,JM2,IM3,JM3 
PRINT 23,IM1,JM1,IM2,JM2,IM3,JM3 

C-----INPUT TABLE 2, CONSTANTS 
READ 24,MX,MY,MT,HX,HY,HT,PR 
PRINT 25,MX,MY,MT,HX.HY,HT,PR 

MXP3=MX+3 $ MYP3=MY+3 $ MXP2= MX+2 $ MYP2=MY+2 
MTP2=MT+2 $ MXP7=MX+1 $ MYP1=MY+1 $ MXP4=MX+4 
MYP4=MY+4 $ MXP5=MX+5 $ MYP5=MY+5 
HXE4=HX.*4 $ HYE4=HY**4 $ HTE2=HT*HT 
HP=HX*HY $ HXY=HP*HP $ HT2=2.0*HT 
HA=1.0/HXE4 $ HB=2.0.HA £ HXYl=I.0/HXY 

A5.16 

01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 

,/01 JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01 JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 

2X.OIJL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
19MRS ID 
12JL3 10 
18H5 ID 
04MY3 10 
18FE5 10 
28AG3 10 
26FE5 10 
26AG3 10 
18FE5 ID 
18FE5 10 
26AG3 10 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01 JL5 
01JL5 
01JL5 
01JL5 
16MR5 
16MR5 
16MR5 



AS.17 

HXYA=ll.O/HXYI*PR $ HXYB=2.0+HXYA 
HXYC=4.0*HXYA $ HC=l.0/HYE4 $ HD=2.0+HC 

C-----CLEAR STORAGE 
DO 30 l=l,MXP7 

AIII=BIII=CIII = 0.0 
DO 30 J=l,MYP7 

DII,JI=TII,JI=QII,JI=WVII,JI=SII,JI=RHOII,JI= 0.0 
DO 3l K= 1,4 

WXII,J,KI=WYII,J,KI= 0.0 
3l CONTINUE 

DO 32 KK=l,30 
QTII,J,KKI=O.O 

32 CONTINUE 
30 CONTINUE: 

C-----INPUT TABLE 3, STIFFNESSES AND STATIC LOADING 
PRINT 26 

DO 27 N= 1 , NC T3 
READ 28,INI,JNl,IN2,JN2,DN,TN,SN,QN 
PRINT 29,INl,JNl,IN2,JN2,DN,TN,SN,QN 

Il=INl+4 $ Jl=JNl+4 $ 12=IN2+4 $ J2=JN2+4 
DO 27 1=ll,12 
DO 27 J=Jl,J2 

DII,J)=DII,JI+DN $ TII,J)=T(I,JI+TN 
QII,J)=QII,JI+QN $ SII,JI=SII,JI+SN 

27 CONTINUE 
C-----INPUT TABLE 4. INITIAL VELOCITIES AND DENSITY 

PRINT 33 
DO 34 N=l,NCT4 

READ 28,IN1,JNl,IN2,JN2, WVN , RHON 
PRINT 3S,INl,JNl,IN2,JN2, WVN , RHON 

Il=INl+4 $ Jl=JNl+4 $ 12=IN2+4 $ J2=JN2+4 
DO 34 1=ll,12 
DO 34 J=Jl,J2 

WVII,JI=WVII,JI+WVN 
RHOII,JI=RHOII,J)+RHON 

34 CONTINUE 
C-----INPUT TABLE S. DYNAMIC LOADING 

PRINT 36 
DO 37 N=l,NCTS 

READ 38,INl,JNl,KNl,IN2,JN2,KN2,QTN 
PRINT 39,INl,JNl,KN1,IN2,JN2,KN2,QTN 

Il=IN1+4 $ Jl=JN1+4 $ Kl=KN1+2 
12=IN2+4 $ J2=JN2+4 $ K2=KN2+2 

DO 37 1=11,12 
DO 37 J=Jl,J2 
DO 37 K=Kl,K2 

QTII,J,KI = QT(I,J,KI + QTN 
37 CONTINUE 

C-----INPUT TABLE 6. CLOSURE PARAMETERS 
PRINT 40 
DO 41 N = l, NCT6 

REAl) 42,RPINI 
PRINT 43,RPINI 

41 CONTINUE 
C-----SET ERRONEOUSLY STORED DATA TO ZERO 

DO 44 1=3, MXPS 
DO 44 J=3,MYP5 

DII,MYPSI=O.O $ I)IMXPS,JI=O.O 
TII,MYPSI=O.O $ TIMXPS,JI=O.O 

44 CONTINUE 
C-----CALCULATE JSTAINI 

16MRS 
16MRS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
23FES 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
OlJLS 
09JLS 
OlJLS 
OlJLS 

119 
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DO 89 N=4,25 $ JSTAI3J= -1 $ JSTAINJ=JSTAIN~l)+l IlFE5 
89 CONTINUE 01Jl5 

C-----SOlUTION OF PROBlEM-----------------------------------------------01Jl5 
K=l 01Jl5 

DO 46 KT=2,MTPl 01Jl5 
KSTA=KT-2 $ K=K+l 01Jl5 

IFI4-KI 82,83,83 01Jl5 
82 K=3 01 Jl5 

DO 84 1=3,MXP5 01Jl5 
DO 84 J=3,MYP5 01Jl5 

WXIl,J,l)= WXII,J,3) $ WYII,Jtl)= WYII,J,3) 01Jl5 
WXII,J,21= WXII,J,4) $ WYIl,J,2}= WY(I,J,4) 01Jl5 

84 CONTINUE 01Jl5 
83 CONTINUE 01Jl5 

ITER=O $ N=O 01Jl5 
PRINT 45, IMl,JMldM2,JM2,1M3,JM3 01Jl5 

DO 47 NIT=l,ITMAX 01Jl5 
KCTOl =0 01Jl5 

ITER=ITER + 1 $ N=N+l 01Jl5 
IF (NCT6-NI 78,79,79 01Jl5 

78 N=l 01Jl5 
79 CONTINUE 01Jl5 

C-----SOlVE X SYSTEM 01Jl5 
204 DO 48 J=4,MYP4 01Jl5 

DO 49 I=3,MXP5 01Jl5 
IF (DII,J) 74,74,96 01Jl5 

74 SF=O.O 01Jl5 
GO TO 99 01Jl5 

96 SF= RPIN) *' (( HX I HY I ** 4 ) 01Jl5 
99 IF(l8-KT)50,51,51 01Jl5 
50 QTP=O.O 01Jl5 

GO TO 52 01Jl5 
51 OTP=QT( I,J,KT-lJ 01Jl5 
5l CAll COXY 16MR5 

IFIKT-3)53,54,55 01Jl5 
53 AA = Xl 01Jl5 

BB = X2 + XY2 01Jl5 
CC:: X3 + XY5 + S II,J) I HP + SF 01Jl5 
DD = X4 + XY8 01Jl5 
EE = X5 01Jl5 
Fl = 0 II,J) I HP + SF • WY II,J,K) - X6 • WX (l-l.J+l,KI01Jl5 

1 - X7 • WX II,J+l,K) - X8 • WX (l+l,J+l,K) - X9 • WX II-l,J-l, 01Jl5 
l K) - XIO • WX (I,J-l,K) - XII. WX (l+l,J-l,K) - Yl • WY (I,J 01Jl5 
3 -2,K) - Y2 • WY II,J-l,K) - Y3 • WY II,J,K) -Y4 • WY (I,J+l,K)01Jl5 
4 - Y5 • WY (I,J+2,K) - Y6 • WY 1I-1,J-l,K) - Y7 • WY 1l-1,J,K) 01Jl5 
5 - Y8 • WY 1I-1,J+l,K) - Y9 • WY (l+l,J-l,K) - YI0. WY 11+1, 01Jl5 
6 J,K) - Yll • WY II+l,J+l,K) 01Jl5 

F2 = - XVI • ( WX II-l,J-l,K) + WY (I-l,J-l,K) ) - XYl .01Jl5 
1 WY (l-l,J,K) - XY3 • ( WX II-I,J+l,K) + WY II-l,J+l,K) ) - 01Jl5 
2 XY4. I WX II,J-l,K) + WY (I,J-l,K) ) - XY5 • WY (I,J,K) - 01Jl5 
3 X Y 6 • I W X (I, J + 1 , K) + W Y 1 I , J + 1 , K) ) - X Y 7 *' W X 1 1+ 1 , J-l , K) 01 J l 5 
4 + WY II+l,J-l,K) ) - XY8 • WY (l+l,J,K) - XY9 • 1 WX II+l,J+l,01Jl5 
5 K) + WY II+l,J+l,K) ) 01Jl5 

FF = Fl + Fl 01Jl5 
GO TO 56 01Jl5 

54 AA = 0.5 • Xl 01Jl5 
BB = 0.5 • (Xl + XY2) 0lJl5 
CC = 0.5 • IX3 + XY5 + SII,J) I HP + SF) + 4.0 • (RHOI 01Jl5 

1 I, J) I HTE 2) 01 J l5 
DO = 0.5 • IX4 + XY8) 0lJl5 
EE = 0.5 • X5 01Jl5 
Fl = QTP I HP + 0.5 • SF • WYII,J,K) + 4.0 • IRHOII,J) 0lJl5 
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SS 

S6 
202 

58 

S7 
S9 

49 

60 
48 

1 

1 
2 
3 
4 
S 
6 
7 

1 
2 
3 
4 
S 
6 
7 
8 

1 

1 

1 
2 
3 
4 
S 
6 
7 

1 
2 
3 
4 
S 
6 
7 
8 

I HT) - WVII,JI + 4.0 - IRHO(I,JI I HTE21 - WXII,J,K-ll OlJlS 
F2 = -O.~ - IXI - WXII-2,J,K-1l + IX2 + XY21 - WXll-l,J,KOlAPS 

-11 + IX3 + XYS + SII,JI I HPI - WXII,J,K-il + IX4 + XY81 - OlAPS 
WXII+l,J,K-ll + XS - WXII+2,J,K-11 + IX6 + XY31 - IWXII-l,J+l,OlAPS 
K-ll + WXII-l,J+l,K)1 + IX7 + XY61 - IWXII,J+l,K-1I + WXII,J+lOlAPS 
,KII + IX8 + XY91 - IWXI I+l,J+l,K-ll + WXII+l,J+l,KII + OlAPS 
IX9 + XYII - IWXII-l,J-l,K-lI + WXII-l,J-l,KII + IXlO + XY41 OlAPS 
- IWXII,J-l,K-1I + WXII,J-l,KII + IXll +XYlI - IWXII+l,J-l, OlAPS 
K-il + WXII+l,J-l,KIII OlJlS 

F3 = -O.S - IYl -IWYII,J-2,K-11 + WYII,J-2,KII + IY2 + OlJlS 
XY41 - IWYII,J-l,K-lI + WYII,J-l,KII + IY3 + XYSI - IWYII,J, OlAPS 
K-il + WYII,J,KII + IY4 + XY61 - IWYII,J+l,K-ll + WYII,J+l, OlAPS 
KII + YS - IWYII,J+2,K-1l + WYII,J+2,KII + IY6 + XYII - IWYI OlAPS 
I-l,J-l,K-1I + WYII-l,J-l,KII + IY7 + XY21 - IWYII-l,J,K-1I + OlAPS 
WYII-l,J,KII + IY8 + XY31 - IWYII-l,J+l,K-ll + WYII-l,J+l,KII OlAPS 
+ IY9 + XYlI - IWYII+l,J-l,K-1I + WYII+l,J-l,KII + IYlO + OlAPS 
XY81 - IWYII+l,J,K-ll + WYII+l,J,KlI + IYll+ XY91 - IWYII+l, OlJlS 
J+l,K-lI + WYII+l,J+l,KIII OlJlS 

FF = Fl + F2 + F3 OlJlS 
OlJlS GO TO 56 

AA O.S - Xl OlAPS 
BB = o.S - IX2 + XY21 OlAPS 
CC O.S - IX3 + XYS + SII,JI I HP + SFI + RHOII,J) I OlAPS 

HTE2 OlAPS 
DD 0.5 - IX4 + XY81 OlAPS 
EE 0.5 - XS OlAPS 
Fl = QTP I HP + O.S - SF - WYII,J,KI - IRHOII,JI I HTE21 OlAPS 

- WXII,J,K-21 + 2.0 - IRHOII,JI I HTE21 - WXII,J,K-il OlAPS 
F2 = -O.S - IXI - WXII-2,J,K-21 + IX2 + XY21 - WXII-l,J,KOlAPS 

-21 + IX3 + XYS + SII,JI I HPI - WXII,J,K-21 + IX4 + XY81 - OlAPS 
WXIl+l,J,K-21 + XS - WXII+2,J,K-21 + IX6 + XY31 - IWXII-l,J+l,OlAPS 
K-21 + WXII-l,J+l,KII + IX7 + XY61 - IWXII,J+1,K-21 + WXII,J+lOlAPS 
,K) I + IX8 + XY9) - IWXII+1,J+1,K-21 + WXII+l,J+l,KII + OlAPS 
IX9 + XYII - IWXII-1,J-1,K-21 + WXII-l,J-l,KII + (XlO + XY41 OlAPS 
- IWXII,J-1,K-21 + WXII,J-l,KII + IXll +XY71 - IWXII+l,J-l, OlAPS 
K-21 + WXII+l,J-l,KIII OlAPS 

F3 = -O.S - IYl -(WYII,J-2,K-21 + WY(I,J-2,KII + IY2 + OlJlS 
XY41 - IWYII,J-1,K-21 + WYII,J-l,KII + IY3 + XYSI - IWYII,J, OlAPS 
K-21 + WYII,J,KII + IY4 + XY61 - IWYII,J+1,K-21 + WYII,J+l, OlAPS 
KII + YS - IWYII,J+2,K-21 + WYII,J+2,KII + IY6 + XYII - IWYI OlAPS 
I-l,J-l,K-21 + WYII-l,J-l,KII + IY7 + XY21 - IWYII-1,J,K-21 + OlAPS 
WYII-l,J,KII + IY8 + XY31 - IWYII-1,J+1,K-21 + WYII-l,J+l,KII OlAPS 
+ IY9 + XY71 - IWYII+1,J-1,K-2) + WYII+l,J-l,K)1 + IYlO + OlAPS 
XY81 - IWYII+1,J,K-21 + WYII+l,J,KII + IYll+ XY91 - IWYII+l, OlJlS 
J+l,K-2) + WYII+1,J+1,KI11 OlAPS 

FF = Fl + F2 + F3 OlAPS 
CONTINUE 

E = AA -BII-21 + BB 
DENOM=E-BlI-ll+AA-CII-21+CC 

IF IDENOMI S7,S8,S7 
D=O.O 

GO TO S9 
D= -l.O/DENOM 
CII'= D-EE 
BII'= D-IE-CII-II+DDI 
AI 11= D-IE-AI I-II+AA-AI I-21-FFI 

CONTINUE 
DO 60 l=3,MXPS 

I=MX+8-l 
W X I I, J, K 1= 

CONTINUE 
CONTINUE 

AI 11+ BI II- WXII+l,J,KI + CI II-WXI I+2,J,KI 

OlJlS 
OlJlS 
OlJlS 
OlJlS 
OlJlS 
01 JlS 
OlJlS 
OlJlS 
OlJlS 
01 JlS 
OlJlS 
OlJlS 
OlJlS 
OlJlS 
01Jl5 
OlJlS 

121 
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C-----SOLVE Y SYSTEM 01JL5 
206 DO 61 I=4,MXP4 01JL5 

97 

98 
100 

63 

DO 62 J=3,MYP5 01JL5 
IF IDII,J» 97,97,98 01JL5 

SF=O.O 01JL5 
GO TO 100 01JL5 

SF=RPIN) 01JL5 
IFI28-KT)63,64,64 01JL5 

QTP=O.O 01JL5 
GO TO 65 01JL5 

64 QTP=OTII,J,KT-l) 01JL5 
65 CALL COXY l6MR5 

66 

67 

68 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 
6 
7 

1 
2 
3 
4 
5 
6 
7 
8 

IFIKT-3)66,67,68 01JL5 
AA Yl 01JL5 
BB Y2 + XY4 01JL5 
CC Y3 + XY5 + S II,J) I HP + SF 01JL5 
DO = Y4 + XY6 01JL5 
EE Y5 01JL5 
Fl 0 II,J) I HP + SF • WX II,J,K) - Y6 • WY II-l,J-l,K)01JL5 

- Y7 • WY II-l,J,K) - Y8 • WY II-l,J+l,K) - Y9 • WY II+l,J-l, 01JL5 
K) - YlO • WY (I+l,J,K) - Yll • WY II+l,J+l,K) - Xl • WX II-2,01JL5 
J,K) - X2 • WX II-l,J,K) - X3 • WX II,J,K) -X4 .WX II+l,J,K) -01JL5 
X5 • WX II+2,J,K) - X6 • WX II-l,J+l,K) - X7 • WX II,J+l,K) - 01JL5 
XB • WX II+l,J+l,K) - X9 • WX II-l,J-l,K) - XlO • WX II,J-l,K)01JL5 
- XII. WX II+l,J-l,K) 01JL5 

F2 = - XYI • I WX II-l,J-l,K) + WY II-l,J-l,K) ) - XY2 .01JL5 
WX II-l,J,K) + WY II-l,J,K) ) - XY3 • I WX II-l,J+l,K) + WY 01JL5 

II-l,J+l,K) ) - XY4 • WX II,J-l,K) - XY5 • WX II,J,K) - XY6 • 01JL5 
WX II,J+l,K) - XY7 • I WX II+l,J-l,K) + WY I I+l,J-l,K) ) - 01JL5 
XYB. I WX II+l,J,K) + WY II+l,J,K) ) - XY9 • I WX II+l,J+l,K)01JL5 
+ WY II+l,J+l,Kl ) 01JL5 

FF = Fl + F2 01JL5 
GO TO 69 01JL5 

AA 0.5. Yl 01JL5 
BB = 0.5 • (V2 + XV4) OlJL5 
CC = 0.5 • IY3 + XY5 + SII,J) I HP + SF) + 4.0 • (RHO 01JL5 

II,J) I HTE2 ) 01JL5 
DD 0.5. IY4 + XY6) 01JL5 
EE = 0.5 * V5 OlJL5 
Fl = OTP I HP + 0.5 • SF • WX(I,J,K) + 4.0 • IRHOII~J) 101JL5 

HT ) • WVII,J) + 4.0 • IRHOII,Jl I HTE2) • WYII,J,K-l) 01JL5 
F2 = -0.5 • IYl • WYII,J-2,K-l) + IY2 + XY4) • WYII,J-l, 01AP5 

K-l) + IY3 + XY5 + SII,J) I HP) • WYII,J,K-l) + IY4 + XY6) 01AP5 
• WYII,J+l,K-l) + Y5 • WYII,J+2,K-l) + IY6 + XYl) • (WYII-l, 01JL5 
J-l,K-l) + WYII-l,J-l,K» + IY7 + XY2) • IWYII-l,J,K-l) + 01AP5 
WYll-l,J,K» + IY8 +XY3) • IWYII-l,J+l,K-l) + WYII-l,J+l,K» +09JL5 
IY9 + XY7) • IWYII+l,J-l,K-l) + WYII+l,J-l,K» + IYlO + XY8) 01AP5 
• IWYII+l,J,K-l) + WYII+l,J,K» + IYll + XY9) • IWYII+l,J+l, 01AP5 
K-l) + WYII+l,J+l,K») 01JL5 

F3 = -0.5 • IXI • IWXII-2,J,K-l) + WXII-2,J,K» + IX2 + OlAPS 
XY2) • IWXII-l,J,K-l) + WXII-l,J,K)1 + IX3 + XY5) • IWXI 01AP5 
I,J,K-l) + WXII,J,K» + IX4 + XY8) • IWX(I+l,J,K-l) 01JL5 

+ WX(I+l,J,K» + X5 • IWXII+2,J,K-l) + WXII+2,J,K» 01JL5 
+ IX6 + XY3) • IWXII-l,J+l,K-l) + WXII-l,J+l,K» + IX7 + XY6) 01JL5 
• IWXII,J+l,K-l) + WXII,J+l,K» + IXB + XY9) • IWXII+l,J+l,K 01AP5 
-1) + WXII+l,J+l,K» + IX9 + XYl) • IWXII-l,J-l,K-l) + 01JL5 
WXII-l,J-l,K» + IXlO + XY4) • IWXII,J-l,K-l) + WXII,J-l,K» 01AP5 
+ IXll + XY7) • IWXII+l,J-l,K-l) + WXII+l,J-l,K») 01JL5 

FF = Fl + F2 + F3 01JL5 
GO TO 69 

AA 0.5. Yl 
BB = 0.5 • IY2 + XY4) 

01JL5 
01AP5 
01AP5 
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CC 0.5" IY3 + XY5 + SII,J) I HP + SF) + RHOII,J) I 
1 HTEZ 

00 0.5" IY4 + XY6) 
EE 0.5" Y5 
Fl QTP I HP + 0.5 " SF " WXII,J,K) - IRHOII,J) I HTEZ) 

1 "WYII,J,K-Z) + Z.O " IRHOII,J) I ~TEZ) " WYII,J,K-l) 
FZ = -0.5 " IYl " WYII,J-Z,K-Z) + IYZ + XY4) " WYII,J-l, 

1 K-Z) + IY3 + XY5 + SII,J) I HP) " WYII,J,K-Z) + IY4 + XY6) 
Z " WYII,J+l,K-Z) + Y5 " WYII,J+Z,K-Z) + IY6 + XYll " IWYII-l, 
3 J-l,K-Z) + WYII-l,J-l,K)) + IY7 + XYZ) " IWY(I-l,J,K-Z) + 
4 WYII-l,J,K)) + IY8 +XY3) " IWYII-l,J+l,K-Z) + WYII-l,J+l,K)) 
5 (Y9 + XY1J " (WY(I+l,J-l,K-Z) + WYII+l,J-l,K)) + (YIO + XY8) 
6 "IWYII+l,J,K-Z) + WYII+l,J,K)) + IY11 + XY9) " IWYII+l,J+l, 
7 K-Z) + WYII+l,J+l,K))) 

F3 = -0.5 " IXI " IWXII-Z,J,K-Z) + WXII-Z,J,K)) + IXZ + 
1 XYZ) " IWXII-l,J,K-Z) + WXII-l,J,K)) + IX3 + XY5) " IWXI 
Z I,J,K-Z) + WXII,J,K)) + IX4 + XY8) " IWXII+l,J,K-Z) 
3 + WXI l+l,J,K)) + X5 " IflXII+Z,J,K-Z) + WXI I+Z,J,K)) 
4 + IX6 + XY3) " IWXII-l,J+l,K-Z) + WXII-l,J+l,K)) + IX7 + XY6) 
5 "IWXII,J+l,K-Z) + WXII,J+l,K)) + (X8 + XY9) " IWXII+l,J+l,K 
6 -Z) + WXII+l,J+l,K)) + IX9 + XYll " IWXII-l,J-l,K-Z) + 
7 WXII-l,J-l,K)) + IXIO + XY4) " IWXII,J-l,K-Z) + WXII,J-l,K)) 
8 + IX11 + XY7) " IWXII+l,J-l,K-Z) + WX(I+l,J-l,K))) 

FF = Fl + FZ + F3 
69 CONTINUE 

ZOI E = AA " B(J-Z) + BB 
OENOM= E"BIJ-l)+AA"CIJ-Z)+CC 

IF 10ENOM) 70,71,70 
71 0=0.0 

GO TO 7Z 
70 0= -1.0 IDENOM 
7Z CIJ)= O"EE 

BIJ)= O"IE"CIJ-l)+OO) 
AIJ)= O"IE"AIJ-l)+AA"AIJ-Z)-FF) 

6Z CONTINUl: 
DO 73 l=3,MYP5 

J=MY+8-l 
WYII,J,K)= AIJ)+ BIJ)"WYII,J+l,K)+ CIJ)" WYII,J+Z,K) 

73 CONT INUE 
61 CONTINUE 

C-----COUNT STAS WHERE WX AND WY NOT CLOSED 
DO 113 1=4,MXP4 
DO 113 J=4,MYP4 
IFIABSFIWX(I,J,K)-WYII,J,K))-CTOl) 94,94,76 

76 KCTOl =KCTOl + 1 
94 CONTINUE 

113 CONTINUE 
C-----PRINT MONITOR DATA 

PRINT 77,ITER,RPIN) ,KCTOl, KSTA,WXIIMl+4,JMl+4,K), 
1 WX( IMZ+4,JMZ+4,K) ,WX( IM3+4,JM3+4,K) ,WYI IMl+4,JMl+4,K), 
Z WYIIMZ+4,JMZ+4,K), WYIIM3+4,JM3+4,K) 

IF (KCTOl) 75,75,81 
81 CONTINUE 
47 CONTINUE 
75 CONTINUE 

C-----PRINT DEFlS 
PRINT 11 
PRINT 1 
PRINT 13, I ANlIN), N = 1, 3Z ) 
PRINT 16, NPROB, I ANZIN), N = 1, 14 ) 

109 PRINT 85, KSTA , KCTOl 
JI=3 $ JF=7 $ JTEST= MYP5/5 

OlAP5 
01AP5 
01AP5 
0lAP5 
01AP5 
01AP5 
01AP5 
01AP5 
01Jl5 
01AP5 

+01Jl5 
01AP5 
01AP5 
01AP5 
01AP5 
01AP5 
01Jl5 
01Jl5 
01Jl5 
OlAP5 
01AP5 
01AP5 
01AP5 
01AP5 
01Jl5 
01Jl5 
01Jl5 
01Jl5 
01Jl5 
01Jl5 
01Jl5 
01Jl5 
01Jl5 
01Jl5 
01Jl5 
01Jl5 
01Jl5 
01 Jl 5 
01Jl5 
01Jl5 
OlJl5 
01Jl5 
01Jl5 
01Jl5 
OlJl5 
01 Jl 5 
01Jl5 
01Jl5 
01 Jl 5 
01Jl5 
01Jl5 
OlJl5 
01Jl5 
01 Jl 5 
01Jl5 
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01 Jl 5 
08MY3 10 
18FE5 ID 
18FE5 ID 
Z8AG3 10 
01 Jl 5 
01 Jl 5 
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107 DO 
PRINT 

DO 

92 JKE=1,JTEST 
87,(JSTA(NI,N=JI,JF 
86 1=3,MXP5 

IS TA= 1-4 
PRINT 88, ISTA , (WX( I,J,KI, J=JI,JFI 
PRINT 91, (WV(I,J,KI, J=JI,JFI 

86 CONTINUE 
JI=JI+5 $ JF=JF+5 

92 CONTINUE 
IF ( MVP5 - JI 93, 108, 108 

108 JF = MVP5 
JTEST = 1 

GO TO 107 
93 CONTINUE 

DO 101 1= 4,MXP4 
DO 101 J= 4,MVP4 

WV(I,J,KI 0.5. ( WX(I,J,KI + WV(I,J,KI I 
WX( I,J,KI WV( I,J,KI 

101 CONTINUE 
CALL TIME 

46 CONTINUE 
CALL TIME 

GO TO 1010 
9990 CONTINUE 
9999 CONTINUE 

PRINT 11 
PRINT 1 
PRINT 13, ANlINI, N 1, 32 I 
PRINT 19 
END 

C-----SUBROUTINE 
SUBROUTINE COXV 
COMMON/1/D(22,221,T(22,22)/2/X1,X2,X3,X4,X5,X6,X7,X8,X9,X10, 

1 Xll,V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,XVl,XV2,XV3, 
2 XV4,XV5,XV6,XV7,XVB,XV9,I,J,HA,HB,HC,HD,HXVA, 
3 HXVB,HXVC,HXV1 

Xl HA. D (1-1, J I 
X2 - HB • ( D (1-1,JI + D (I,J) I - HXVB • D (1-1,JI 
X3 = HA • ( D 11-1,JI + 4.0 • D (I,JI + D (1+1,JI I 

1 + HXVC • D (I,JI 
X4 - HB • ( D (I,JI + D (I+l,JI 1- HXVB • D (I+l,JI 
X5 HA. D (I+1,JI 
X6 HXVA. D (I-l,JI 
X7 - HXVB • D (I,JI 
X8 HXVA. D (1+1,JI 
X9 X6 
X10 = X7 
Xll = XB 
VI HC. D (I,J-ll 
V2 - HD • ( D (I,J-l) + D (I,JI I - HXVB • D (I,J-ll 
V3 HC. D (I,J-ll + 4.0 • D (I,JI + D (I,J+l) ) 

V4 = 
V5 = 
V6 = 
Y7 
V8 
V9 = 
VI0 
VII 
XVI 
XV 2 

+ HX V C • D (I, J ) 
- HD • C D CI,JI + D (I,J+11 1- HXVB • D (I,J+11 
HC • D (I, J+ 11 
HXVA • D (I,J-1I 
X7 
HXVA. D (I,J+1I 
V6 

Y7 
VB 
HXVI • T(I,JI 
- HXV1 • ( T (I,JI + TCI,J+l) I 

AS.22 

01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
IBFE5 ID 
26AG3 ID 
12MR5 ID 
04MV3 ID 
08MV3 ID 
1BFE5 ID 
18FE5 ID 
26AG3 ID 
04MV3 ID 
01JL5 
16MR5 
16MR5 
16MR5 
16MR5 
16MR5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
OlJL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
01JL5 
09JL5 
09JL5 
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END 
END 

FINIS 
9EXECUTE. 

XY3 = HXYI • T II,J+l) 
XY4 = - HXYI • ( TfI,J) + TII+l,J) ) 
XY5 HXYI. T(I,J) + T(I,J+l) + T(I+l,J) 
XY6 = - HXYl • « Tll,J+l) + T([+l,J+I) ) 
XY1 = HXYI • T(I+l,J) 
XY8 -HXYl. ( TII+l,J) + TlI+l,J+l) ) 
XY9 = HXYI • TI I+l,J+l) 

09JL5 
09JL5 

+ TII+1,J+1)09JL5 
09JL5 
09JL5 
09JL5 
09JL5 
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