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PREFACE

This report presents the results of an analytical study undertaken to
develop an implicit numerical method for determining the deflected shape of a
rectangular plane frame with three degrees of freedom at each joint. The
study consists of (1) the development of equations describing the behavior of
a rectangular plane frame under any reasonable conditions of loading and
restraint, (2) the development of an alternating-direction implicit method for
the solution of these equations, and (3) the application of the method to the
solution of realistic example problems.

Report 56-1 in the List of Reports provides an explanation of some of the
basic procedures used in the computer program written to verify the method.
The program has been written in FORTRAN 63 for the CDC 1604 digital computer,
Copies of the program and data cards for the example problems may be obtained
from the Center for Highway Research at The University of Texas.

Support for this research was provided by the Texas Highway Department,
under Research Project 3-5-63-56, in cooperation with the U. S. Department of
Transportation, Bureau of PublicsRoads. Some related graduate study support
was also provided by the National Aeronautics and Space Administration. Sev-
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ABSTRACT

A rational method for computer analysis of rectangular plane frames is
presented. Three degrees of freedom are allowed at each joint. Flexural
stiffness, transverse and axial load, and foundation spring restraint are
allowed to vary as desired along each frame member. Loads, couples, and
restraints can also be specified at each joint.

Equations which mathematically describe a bar-and-spring model of the
real frame are formulated. An iterative procedure is used to solve these
equations, Each iteration involves a complete solution of the mathematical
frame model, consisting of (1) a stiffness matrix solution, using an efficient
recursive technique, for the deflected shape of the frame in bending and (2)
a solution for the axial tension or compression in each frame member.

Procedures for computer solution of the equations describing frame
behavior are developed and convergence of the computer solution is discussed.
Comparison is made with results developed by accepted theory and solutions of

three example problems are presented.
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CHAPTER 1. INTRODUCTION

This study is concerned with the development of a rational procedure for

the analysis of rectangular plane frames.

Significance of the Problem

The analysis of framed structures is a problem civil engineers have long
considered. In recent years, framed structures have become so complex that
even the simplest type of frame analysis often requires a large expenditure of
time and effort on the part of the engineer.

Before the advent of the digital computer, many simplifying assumptions
concerning structural behavior were required to allow complex frame problems
to be solved by hand or with a desk calculator. Sets of simultaneous equa-
tions describing frame behavior could be formulated, but the time required to
solve them was prohibitive., Thus, relaxation methods requiring many assump-
tions concerning structural behavior became the most widely accepted tech-
niques of frame analysis because they could be solved by hand.

The development of the digital computer, with its ability to perform
efficiently large numbers of repetitious computations, opens the way for rapid
solution of complex frame problems. However, full benefit of the capabilities
made available by the computer can not be realized by simply programming the
old hand procedures. New methods of structural analysis, considering so far
as possible the aspects of structural behavior neglected or assumed in pre-
computer methods, must be developed. One such method is developed in the

following chapters for the numerical solution of plane frames.

General Remarks on the Problem and Its Solution

The problem is approached by considering a rectangular plane frame to be
a group of comnected beam-columns. Flexural stiffness, transverse and axial
loads, and elastic deflection restraint are allowed to vary as desired along
each frame member. Transverse loads and deflection restraints and applied
couples and rotational restraints may be specified as desired at each frame

joint. Axial rigidity is assumed for all frame members.



A typical rectangular plane frame is shown in Fig 1.1. Variation of
flexural stiffness is indicated by the different sizes and shapes of frame
members. Transverse deflection restraints are indicated by coil springs,
while joint rotational restraints are simulated by watch-type springs. Trans-
verse loads acting normal to frame members and axial loads acting along the
neutral axes of frame members are also shown in Fig 1.1, as are applied
couples acting on some of the frame joints.

An iterative procedure is used to solve the problem. Each iteration
involves a complete solution of the mathematical frame model and consists of
two parts: (1) a solution for the deflected shape of the frame in bending and
(2) a solution for the axial displacement and force distribution in each frame
member. During the iterative process initial assumptions concerning the ef-
fects of member interaction are adjusted, based on previously computed behavior,
until a final solution is achieved.

In a physical sense, the proposed iterative process may be visualized as
a readjustment procedure, If a frame under specified conditions of loading
and restraint is given, the sequence outlined below is followed:

(1) An initial assumption is made concerning the distribution
of internal forces and couples in the frame.

(2) The deflected shape of the frame is computed considering
the applied loading and assumed distribution of internal
forces and couples.

(3) The distribution of internal forces and couples is
revised considering the applied loading and the
deflected shape of the frame.

Steps 2 and 3 are repeated until the correct deflected shape of the frame
is obtained., This distribution, determined by interaction of frame members,
is computed using equations derived in the following chapters.

Because of the large number of repetitious calculations involved in a
procedure of this type, the structure is simulated and solved on the digital

computer.,

Scope of the Study

The aims of this study are threefold: (1) the development of equations
describing the behavior of a rectangular plane frame supported on an elastic
foundation under any reasonable conditions of loading and restraint, (2) the

development of an alternating-direction implicit method for the solution of
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these equations, and (3) the application of the method to the solution of real-

istic example problems.

QOrganization of the Study

A summary of previous developments in the solution of related soil
structure interaction problems is presented in Chapter 2, as well as a survey
of current methods of plane-frame analysis. 1In Chapter 3, equations describ-
ing the behavior of frame members are developed, while Chapter 4 is concerned
with equations describing the behavior of a plane frame in bending and Chapter
5 with determination of axial force distribution in frame members. Chapter 6
discusses the procedure for computer solution of the frame equations, and con-
vergence of the programmed method is shown in Chapter 7. Applications of the
method to the solution of realistic example problems are shown in Chapter 8.
Possible additions to the method are discussed in Chapter 9, while conclusions

and recommendations are given in Chapter 10.



GHAPTER 2. SUMMARY OF PERTINENT PREVIOUS DEVELOPMENIS
IN STRUCTURAL ANALYSIS

A large number of methods and procedures are presently used to analyze
framed structures. These methods may be classified as either (1) hand
methods or (2) matrix methods. The majority of these methods allow deter-
mination of bending moment distribution, translation, and rotation for each
frame joint. Bending moment distribution in each frame member is then de-
termined by a separate analysis. A survey of the most widely used methods

is given in the following sectiomns.

Summary of Hand Methods of Frame Analysis

Hand methods are methods or procedures of frame analysis which may be
carried out by an individual with the aid of a slide rule or desk calculator.
Such methods may be subdivided into classical or closed-form methods and re-
laxation methods.

The most widely used classical techniques are those of least-work, virtual
work, and slope-deflection. These procedures, summarized in any standard text
on structural analysis such as Wang and Eckel (Ref 22), require the solution
of a set of simultaneous equations to determine frame behavior. For simple
frames, requiring only a few simultaneous equations, these procedures are very
efficient, but for complex framed structures, the time required for hand
solution of the required equations becomes prohibitive.

Relaxation or point iterative methods were developed to surmount the
difficulties encountered in the application of classical techniques to the
solution of complex frame problems. The most well-known technique is that of
moment distribution, developed by Cross (Ref 3) for no-sway frames. This
procedure is applicable to all rigid frames, is simple to apply, and is always
convergent. Grinter (Ref 8) developed a similar method for balancing end
angle changes in frame members.

The moment distribution method of Cross has been modified in various ways
to solve frames that sway. Two such methods are the influence-deflection

procedure, summarized by Ferguson (Ref 4), which combines several moment



distributions in a simultaneous equation procedure, and the statics ratio
procedure, developed by Ferguson and White (Ref 5), which combines moment
distribution with iterative solution of the equations of statics.

The major limitation of these relaxation methods is defining the required
iteration parameters for non-prismatic members and complex conditions of load-

ing and restraint,

Summary of Conventional Matrix Methods of Frame Analysis

The advent of the digital computer has made simultaneous equation methods
of frame analysis practical for large and complex structures. Two general
approaches, based on classical methods, are normally used to analyze structural
frames. These are action or flexibility methods, where redundants are expressed
as forces, and displacement or stiffness methods, where redundants are expressed
as displacements,

In these procedures the required data concerning frame-joint behavior is
found by formulating and solving a set of simultaneous equations. An excellent
presentation of conventional matrix methods of frame analysis is given by Hall
and Woodhead (Ref 11). The main difficulties encountered in applying these
methods are (1) the development of required equations for non-prismatic frame
members and for complex conditions of loading and restraint and (2) the inversion
of large and sometimes "ill-conditioned" matrices.

Iterative procedures have also been used in determination of frame behavior.
Clough, Wilson, and King (Ref 2) have developed and compared iterative and
elimination procedures for solving large stiffness matrices describing frame -
joint behavior.

Relaxation methods, as described in the previocus section, have alsc been
adapted for computer solution, While these methods are still subject to the pre-

viously described limitation, a large amount of time is saved by computer solution.

Summary of Related Developments in Structural Analysis

A great deal of work has been done in the field of numerical analysis of
structural members. Early procedures for solving beams and beam-columns were
developed by Newmark (Ref 20) and Malter (Ref 13). Gleser (Ref 6) suggested a
recurring form of difference equation for beam solution that was utilized by

Matlock and Reese (Ref 19) in the analysis of laterally loaded piles.



Matlock (Ref 14) developed a more general recursive procedure for solving
beam-column problems. This technique was summarized by Matlock and Haliburton
(Ref 18).

In related developments, Ingram (Ref 12) and Matlock (Ref 15) revised
and extended this method of beam-column solution to include the effects of
nonlinear loads and supports. A procedure for solving beam-column problems
with nonlinear flexural stiffness was developed by Haliburton (Ref 9) and
extended by Haliburton and Matlock (Ref 10).

Tucker (Ref 21), using an alternating-direction implicit method of
analysis, applied the beam-column method to the solution of grid-beam and
plate problems. Matlock and Grubbs (Ref 17) also used an alternating-direction
implicit procedure to solve plane-frame problems with no sidesway.

At the present time, research is underway at The University of Texas to
extend present methods for solution of grid and plate systems and to develop
methods of analysis for slabs and layered plate-grid systems. Numerical
procedures for dynamic analysis of beam-columns, grid systems, and plates are
also being developed.

However, little work has been done in direct determination of the complete
deflected shape of a plane frame in bending. Such a procedure, based on matrix

iterative analysis techniques, is developed in the following chapters.
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CHAPTER 3. DEVELOPMENT OF A PROCEDURE FOR THE
BENDING ANALYSIS OF FRAME MEMBERS

It has been stated previously that a plane frame is a group of connected
beam-columns. Thus, in order to determine the deflected shape of a plane
frame, one must be able to determine the deflected shapes of the individual
frame members as influenced by the loading and geometry of the frame system.

In this chapter, an efficient numerical procedure will be developed for
determining the deflected shape of an individual beam-column under complex
conditions of loading and restraint. The behavior of any individual frame
member will be influenced by the behavior of all other frame members. The
interaction of individual frame members is considered in Chapter 4. It is
shown that procedures developed for individual beam-columns are still appli-

cable, subject to slight modification to consider member interaction effects.

Conventional Form of the Differential Equation
for a Beam-Column on Elastic Foundation

The well-known differential equation for a beam-columm on elastic founda-

tion, from conventional beam mechanics theory, has the form (Ref 7, p 219)

ra 2
EIL:—};J-P[%X—;_J+RW = q (3.1)
where
EI = constant flexural stiffness of the beam-column,
P = constant axial tension acting along the neutral axis of the
beam-column,
k = elastic foundation modulus,
q = applied transverse load per unit length,
w = transverse deflection of the beam-column neutral axis, and
x = distance along the beam-column neutral axis.

Equation 3.1 was derived using the assumptions of conventional beam mechanics
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theory:
(1) Axial and shear deformations are negligible,

(2) Plane sections normal to the neutral axis of the beam-
column before bending are also normal to the neutral
axis after bending.

(3) €onsideration is limited to straight beam-columns
having a vertical axis of symmetry.

(4) Transverse deflections are small compared to original
beam-column length,

(5) The material of the beam-column behaves in a linearly
elastic manner.

(6) Torsional effects are negligible.

The form of Eq 3.1 requires that the parameters EI and P be constant,
and also that k and q be smoothly continuous functions of the dependent
variable x . Furthermore, the solution of Eq 3.1 by conventional means is
very difficult unless K and q may be described as very simple functions of
x . Unfortunately, such simple cases are rarely encountered in the solution
of realistic problems.

Some complex problems may be solved by the use of finite-difference
approximations, dividing the beam-columm into 4 finite number of equal incre-
ments and replacing Eq 3.1 by a corresponding linear difference equation with
constant coefficients. If written about some increment point i on the beam-
colum, substituting appropriate finite-difference relationships directly into

Eq 3.1 results in the form:

W T S T I T,
EI 4 i
h
w - 2w, + w
i-1 i i+1")
- P [ 5 _l+ kw, = q (3.2)
h
where
h = increment length or spacing between the increment points or

beam-column stations.
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If four initial values of deflection are known, Eq 3.2 may be solved
explicitly for the deflection of the fifth point, and the deflected shape of the
beam-column may be computed by 'marching'" Eq 3.2 from one end to the other.
Alternatively, one could write an equation of the form of Eq 3.2 at every beam-
column station. The resulting set of simultaneous equations, including
appropriate boundary conditions, could then be solved implicitly for the
deflected shape of the beam-column. Once again, however, the form of Eq 3.2
requires that the parameters EI and P be constants.

Thus, a general method of analysis must allow EI and P , as well as k
and q , to vary over the length of the beam-column. Such a procedure 1is

developed in the next section.

The Finite-Element Model of a Beam-Column on Elastic Foundation

At least two procedures may be followed to derive a general numerical
method for the solution of beam-columns on elastic foundations: (1) approxi-
mation of Eq 3.1 by finite-difference equations which allow variation of the
parameters EI , P, k , and q along the length of the beam-column or (2)
derivation of equations which exactly describe a physical or mechanical model
of the real beam-column. Equations derived in either manner have similar
forms (Ref 18). The difference is primarily in the point of view.

A derivation based on a physical model is presented because (1) it permits
easier visualization of behavior to one not well-versed in numerical techniques
and (2) it serves to set the stage for consideration of a frame-joint model in
Chapter 4.

Figure 3.la shows the proposed model of a real beam-column. The model
consists of a series of rigid bars of equal length h connected by spring-
restrained hinges. The flexural stiffness EI or F of the system is simulated
by the springs which restrain the hinges at each increment point or station.

An axial tension or compression P 1is assumed to act along the neutral axis of
the model. A transverse load Q and a foundation spring S are applied at
each station. Thus the model is in effect a "lumped-parameter' approximation
of the real beam-colummn with the parameters F , Q , S , and P specified

at each station. These values may represent either actual concentrated effects
or may approximate effects distributed over a distance h/2 on both sides of

the station. Because of the finite distance h between stations, this model
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(a) PROPOSED MODEL OF THE REAL BEAM- COLUMN
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(c) SEGMENT OF THE MODEL BEAM -COLUMN DEFORMED UNDER THE ACTION OF APPLIED
LOADS AND RESTRAINTS

Fig 3.1. Development of a finite-element model beam-column.
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will hereafter be referred to as a '"finite-element' model of the real beam-

column.

Bending Moment as a Function of Model Deformation

Figure 3.1b shows a deformed segment of the finite-element model beam-
column. The change in slope between the rigid elements on either side of

Station i may be represented by the angle $i . From the figure,

w - W, - W, - W, -
i+1 i i i-1:
¥; = [1 h J'[ h J (3.3)
or
w - 2w, +w -
M-l i i+1
v; = [ h .l (3.4)

As the angle *i represents the amount of deformation produced in the two
springs which simulate the flexural stiffness Fi , the resisting moment pro-

duced by this deformation is therefore:

F, F,
My =¥ = ?(wi—l

- 2w, oWy (3.5)

)

Equations Defining Model Behavior

Figure 3.lc shows a segment of the finite-element model deformed under the
action of applied forces and restraints. These forces and restraints are
shown acting in the positive sense. The spring-restrained hinge shown in Fig
3.1a has been replaced by a deformable element containing the concentrated
bending stiffness F . The resultant transverse force applied to each element
is equal to the applied transverse load less the product of the elastic
restraint 8§ and deflection w . A variable axial tension or compression acts
along the centroid of the model. The variation in axial tension or compression
between increment points is assumed to be linearly distributed across the rigid
elements such that the total change AP may be concentrated at the centroid of
each rigid bar. A similar model has been proposed by Matlock (Ref 16).

The laws of statics may now be applied to the finite-element model of
Fig 3.lc to develop equations describing its behavior. The summation of forces

(positive upwards) on the deformable element at i gives

Q - S;w, +V, -V, = 0 (3.6)
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while the summation of moments (positive clockwise) about the center of Bar

A to eliminate APA results in the relation

w - W w - W
i 1-1] [ i~ Y17
M, - M +Vh+ B, [ 2 + P 2 J =

A similar summation of moments about the centroid of Bar B gives

W, - W, W, - W,
i+l 1] + Pi ( i+1 il

Myo- M 4117 2 |~z ] T

i i+1 + VBh + P

(3.7)

(3.8)

Equations 3.7 and 3.8 may be solved for V, and V_ . Substituting these

A B
values into Eq 3.6 gives
M- M H M, h(Q; - 8;w,) -2 (By ; +By) (wy -w, )
1 -
+3 By +Pg) (g - Wy)

(3.9)

If Eq 3.5, the relation between bending moment and model deformatiomn, is

substituted three times into the left side of Eq 3.9, collecting terms produces

the form
Wt bVt eV T T eV T f
where
a8 ° Fi-l
n? §
by = 2 [F 1 F e B F R
2 3
c; = F, [ +O4F, +F  +5 (B, + 2P, +P.,) +h'S,
2 .
a4 = 2[R +E @ o+ )]
i +1 4 +1
e = F

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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and

f., = hQ, (3.16)

An equation having the form of Eq 3.10 may be written at each station of
the model beam-column. It should be noted that no assumptions were made
concerning variation of the parameters F , Q , and S ; also, P was assumed
only to vary linearly across each rigid bar. Thus, while actual discontinuities
in F, Q, S8, and P may not be considered, there is no limitation on the
increment point by increment point variation of the values F, Q , S, and
P which define model behavior. If F and P are considered constant, and
if Q = hg and § = hk , Eq 3.10 reduces to the conventional finite-

difference relationship of Eq 3.2.

Error of Approximation

The error in the use of Eq 3.10 to describe actual beam-column behavior
may be thought of as the difference between the finite-element model of Fig
3.1la and the actual beam-column it simulates. If Eq 3.10 had been derived
from a differential equation allowing variation of F and P as functions of
position x by manipulation of finite-difference relationships (Ref 18), the
error in such a procedure would be (1) the error in assuming real beam-columm
behavior to be described by a differential equation and (2) the error involved
in replacing a differential equation by an appropriate difference equation.

The error in defining real beam-column behavior by a differential equation
is not completely known, but in classical beam mechanics it is usually assumed
to be negligible when beam-column deflections are small compared to beam-column
length.

On a comparative basis, for reasonable choices of increment length h , the
finite-element model has yielded values of deflection within one per cent of
those computed by classical beam mechanics. The relationship describing axial
compression has been found to predict buckling within 0.5 per cent of the

critical Euler load for both constant and variable axial force.

Solution of the Beam-Column Equations

If Eq 3.10 is written at each Station i of the finite-element model, a
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set of simultaneous equations is produced. This set of equations may be

represented as

Aw = £ (3.17)
where
A = quidiagonal stiffness matrix of the coefficients a;
bi > €4 s di , and e;
w = colum matrix of unknown deflections LIPS and
f = column load matrix of the fi terms.

Any quidiagonal matrix with non-zero diagonal elements may be efficiently
solved by a special form of Gaussian elimination using the relation

w. = A, + B.w, + C
i i'i

i +1 7 %340 (3.18)

where

A, , B, ,C, = coefficients computed from known stiffness,
load, and restraint information.
The derivation of Eq 3.18 and the related coefficients have been presented else-
where (Ref 18).

The procedure for development of equations at the ends of the model has
also been presented elsewhere (Ref 18). In effect, boundary conditions for a
free end are produced by the application of Eq 3.10 at the end stations and at
an imaginary station with zero F 1located a distance h from each end of the
member. A support may be approximated by specifying a large value of S at a
station. Procedures are also available for exact specification of values of
slope and deflection at any point along the model beam-column (Ref 18).

The process is summarized in Fig 3.2. Figure 3.2a shows the finite-element
model under the action of applied loads and restraints. Equations describing
the beam-column are developed which form the quidiagonal stiffness matrix and
column load matrix shown in Figs 3.2b and 3.2c. Figure 3.2d describes the
recursive-type elimination process and Fig 3.2e shows the desired result: the
deflected shape of the beam-column under the applied loads and restraints.
Finite-difference relationships may then be used to calculate any of the four

derivatives of beam-column deflection.
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Summary

In this chapter, an efficient numerical procedure for the solution of a
finite-element model approximating a real beam-columm on elastic foundation
has been developed.

This procedure is shown to remain valid for the interior segments of
members in a finite-element model of a rectangular plane frame developed in
the following chapter. The equations for a member in the vicinity of a frame

joint are modified to include the interaction of all frame members.



CHAPTER 4. DEVELOPMENT OF A PROCEDURE FOR THE
BENDING ANALYSIS OF A PLANE FRAME

In the previous chapter a numerical procedure for the analysis of a beam-
column on an elastic foundation was developed. This chapter is concerned with
the development of equations for the iterative analysis of a plane frame in
bending. This development is accomplished in three parts: (1) derivation of
equations describing a finite-element model of a frame joint, (2) integration
of these equations with those describing the members which connect frame joints,
and (3) indication of an iterative procedure for the member-by-member solution
of the frame system, with member interaction effects being adjusted during each
cycle of the iterative process.

The determination and distribution of axial tension or compression in the
frame members is discussed in the following chapter. The "bending' solution
developed in this chapter and the "axial" solution to be developed in the
following chapter are combined in Chapter 6 to give a complete method of

rectangular plane-frame analysis.

Selection of a Finite-Element Frame-Joint Model

In Chapter 3, a finite-element model of a real beam-columm was presented
and equations describing its behavior were developed. A similar procedure will
be used to develop equations describing model frame-joint behavior.

Figure 4.la shows a frame joint formed by the right-angle intersection of
two frame members. This frame joint obviously has some width in the horizontal
and vertical directions. Let h denote the joint width in the horizontal or
x-direction and k the joint width in the vertical or y-direction. Figure
4.1b shows the actual frame joint in equilibrium under the action of internal
moments and shears. It should be noted that, contrary to the line-member theory
of frame analysis, the resisting shears must be considered in equations for
joint-moment equilibrium.

If the joint of Fig 4.1b is assumed to be rigid, one rational finite-element
model of the real joint would be that shown in Fig 4.lc, composed of two rigid
bars connected at right angles. 1In effect, only the corners of the joint of

Fig 4,1b have been removed.

19
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Fig 4.1. Development of a finite-element model frame joint.
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The frame has been assumed to consist of connected beam-columns. Thus, if
the finite-element model of Chapter 3 is used to simulate these frame members,
the model joint can easily connect the beam-columns as shown in Fig 4.1d. The
resulting member and joint system may be visualized as two connected beam-
columns, with member interaction being transferred through the rigid joint.
Figure 4.2 shows the model frame joint and connecting members in greater detail.

With the selected model frame joint of Fig 4.2 in mind, consideration
should now be given to the establishment of a consistent sign convention for
the externally applied forces, couples, and restraints which may act on this

joint.

Establishment of a Consistent Sign Convention

In order to correctly determine the effects of member interaction, a
consistent sign convention must be developed for the internal and external
forces and couples acting on the frame. The sign convention to be established
is similar to that defined in Chapter 3 for a single beam-columm.

Let each horizontal line of members in the frame be divided into a finite
number of increments numbered from left to right starting with Station 0 and
ending with Station m . Let each vertical line of members in the frame be
divided into a finite number of increments numbered from top to bottom starting
with Station 0 and ending with Station my.

For the horizontal lines of members, positive load, either internal or
external, is defined to act in an upward direction. Positive transverse
deflection for the horizontal lines, as well as positive axial displacement for
the vertical lines, is also assumed to be positive upward. A positive couple
is assumed to act clockwise, while positive slope is measured counterclockwise
from the horizontal axis. This convention is shown in Fig 4.3a.

For the vertical lines of members, positive load, either internal or
external, is defined to act to the right. Positive transverse deflection for
the vertical lines, as well as positive axial displacement for the horizontal
lines, is also assumed to be positive to the right. Again, a positive couple
is assumed to act clockwise, while positive slope is measured counterclockwise
from the vertical axis. This convention is shown in Fig 4.3b.

A different sign convention must be used for the internal axial tension or
compression acting on the frame members. For tHe ordering assumed, Fig 4.3c

shows positive axial tension acting on a rigid bar taken from a horizontal line
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Fig 4.2. The finite-element model frame joint and
connecting members,
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24

of model frame members. The stations to the left and right of the bar are
denoted by i and i+l . The positive change in axial tension acting in the

bar is denoted by APi+ It should be noted that this change in axial tension

1"
acts in the direction opposite to that assumed for positive horizontal loads.
Figure 4.3d shows positive axial tension acting on a rigid bar taken from
a vertical line of model frame members. The axial tension acting on the bar is
defined in a manner similar to that of Fig 4.3c. For this case, however, the
change in positive axial tension acts in the same direction as that assumed for

positive vertical loads.

Possible External Effects Acting on the Model Frame Joint

Figure 4.4a shows the various types of external effects which might act on
the model frame joint. Loads Qx and Qy , as well as springs Sx and Sy s
act normal to the x (horizontal) and y (vertical) parts of the joint. C
is an external couple applied to the joint, while R 1is an external rotational
restraint applied to the joint. These effects are shown acting in the positive
sense.

In order to develop equations describing joint behavior, it will be
assumed that the joint may be split into x and y-halves. This assumption is
valid as long as (1) forces, couples, and restraints acting on the missing half
of the joint are applied to the half being considered, (2) the restraint against
translation and rotation provided by the other half of the joint is considered,
and (3) consistent deformations and rotations are enforced for both halves of the
joint. 1In effect, the joint will be taken apart for efficient iterative analysis,
but will be put together in the final solution.

Under this hypothesis, consider the x-half of the joint as shown in Fig
4.4b. The external forces, couples, and restraints acting on this half of the
joint are

(1) Q¢ and Sy , the external load and spring restraint
applied normal to the x-half of the joint,

(2) € and R , the external couple and rotational restraint
applied to the joint as a whole,

3) Qrx » a resultant load representing the effect of the
missing column and other horizontal members of the frame,
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(a) POSSIBLE EXTERNAL TRANSVERSE AND ANGULAR EFFECTS ACTING ON THE
MODEL JOINT

(b) FORCES, COUPLES, AND RESTRAINTS ACTING ON THE X-HALF OF THE MODEL
JOINT

(¢c) FORCES, COUPLES, AND RESTRAINTS ACTING ON THE Y- HALF OF THE MODEL
JOINT ( ROTATED 90° COUNTER - CLOCKWISE )

Fig 4.4. Forces, couples, and restraints acting on the
model frame joint.
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4) Qiy , the change in axial tension or compression
produced by the crossing y-member, and

(5) the couple absorbed by the y-half of the joint.

Z¥sé, Wpx and Gx are respectively the transverse
deflection and slope of the x-half of the joint.

Figure 4.4c shows the y-half of the joint under consideration. The forces,
couples, and restraints acting on this half of the joint are defined in a
manner similar to those above.

Equations describing the behavior of each half of the frame joint may now
be derived. In this analysis, it will be assumed that the axial tension or
compression distribution in all frame members is known. Procedures for com-

puting this distribution will be developed in Chapter 5.

Resultant Forces Acting on Each Half of the Joint

From Fig 4.4b, the resultant load acting on the x-half of the joint is

Q = Q_ -8

X bx bwax (4.1)

where be and S are values of load and support which represent the

missing vertical lgﬁe of members passing through the joint. These values may
be determined from frame stiffness, geometry, and loadings.

Consider the simple frame of Fig 4.5a. The frame is loaded by a constant
axial tension P applied along the axis of the axially rigid columm.
Resistance to column displacement is provided by the three supporting beams.
From simple beam mechanics, the resistance furnished by each beam at its joint

is given by the ratio of applied load P to resulting displacement A :

P
2 - _48_§ (4.2)
L

If axial rigidity is assumed, the total resistance to column displacement is

_ P 144F
Sex = 3 A= 3 (4.3)
L
The total load acting directly on the column is P plus the sum of load or

reaction contributed by each of the crossing beams. In this case, the load
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contributed by each beam is zero, and the total load is

Q, = P+0+0+0 (4 .4)

The system of Fig 4.5a may now be divided into components: either a
column, as shown in Fig 4.5b, or three individual beams, as shown in Fig 4.5c.
In either case, the load and restraint provided by the missing components are
applied to the component under consideration. The deflected shape of each beam
could now be determined by the procedure developed in Chapter 3. For this simple
case the effects of member interaction are expressed by the load and restraint
applied at the joint on each beam,

A procedure for the line-by-line solution of the frame, considering
translation only, may now begin to be visualized. Each horizontal line of
frame members may be solved individually, with the effect of member interaction
represented at each joint by a force or load be and a restraint or spring
be . The load be should represent the total of all vertical loads applied
at other joints directly above and below the one being considered plus all
loads applied directly to the vertical column passing through the joint. The

spring S should represent the total restraint provided by other horizontal

bx
lines of members at joints above and below the one in question, plus any
restraint applied directly to the column. A similar procedure may be followed
for vertical members.

The values be and S for each joint may be defined in terms of the

total load and restraint appgied to the axially rigid column. Consider the
colum of Fig 4.6a. This colummn is crossed by horizontal members, forming
joints, at the locations 4 = 1, 2, -.., N . Figure 4.6b shows the axially
rigid column displaced under the action of applied loads and restraints.

These values are

(1) Qx » L = 1, 2, «++, N) , the vertical loads applied
L
directly to each joint,
(2) Sx » 4 = 1, 2, =+, N) , the vertical restraint applied
L

directly to each joint,
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3) Six , & = 1,2, -, N) , the intrinsic restraint of
4
the crossing beam at each joint,

(&) Px ; the resultant of internal axial tension or compression

acting on the column, and
(5) Sc , the restraint applied at the bottom of the columm.

The total load acting on the columm is thus

N
ch = Px +'2, QXL (4.5)
4=1
where
m +1
y
P = z o, (4.6)
j=0

and the total restraint acting on the columm is

N
Scx = 'Sc +’§: (Sx * Six ) %.7)
’ 1=1 4 £

such that the displacement of the axially rigid column is given by

cx
Wcx - s (4.8)
cxX

-

For any joint 4 , the load and restraint which represent the rest of the

system are

be = Q - Q (4 .9)
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and
S = S -8 -8, (4.10)

The corresponding relations for vertical members are shown in Figs 4.7a
and 4.7b. 1In this case, Py , the resultant of intermnal axial tension or
compression, acts in a sense opposite to that of the joint loads Qy . For

this case, the total load acting on the axially rigid beam is

M
= - P +-§Z 4.11
%y gl Yy, (4.11)
L=1
where
m 41
X
Py = EZ APi (4.12)
i=0

and the total restraint acting on the beam is

M
= s +z (5. +5. ) .13)

such that the displacement of the axially rigid beam is

Q
. ey
ch = 3 (4.14)
cy

Again, at any joint £ , the load and restraint which represent the rest of the

system are

Qb% = Q- QyL (4.15)



32

) . . ) W
Sy, * Siy, Syzt Siys Syet Siyy Syt Siya Sywt Siyy °
Qy, Qy, §h ( l Qy, §h l l Y-t Oy,
i%f Sc¢
| LU =— NN
7 Py
STA O STA m,

{(b)

Fig 4.7. Loads and restraints acting on axially rigid
horizontal members,
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and

S = S -8 - S, (4.16)
All values except the intrinsic spring constants Six and Siy are
known from data describing frame loading and restraint. A method for computing

the 8, and S, values will be discussed later.
ix iy

Resultant Couples Acting on Each Half of the Joint

From Fig 4.4b, the resultant couple acting on the x-half of the joint is

Q
I

(c + RGX) - Cy (4.17)

where

c
y

couple absorbed by the missing y-half of the joint.
The corresponding relation for the y-half of the joint, from Fig 4.4c is

cC = (C+RO ) -C 4.18
, = ©+RO) -C, (4.18)

In this case, the values € and R are known from data describing frame
loading and restraint. Procedures for computing values of Cx and Cy will

be discussed later.

Derivation of Equations from Half-Joint Free Bodies

Figure 4.8a shows a free-body diagram of the x-half of the joint and the
stations or increment points i and i+l on either side of the joint. These
stations mark the boundaries between the ends of the joint and the ends of the
members which frame into the joint from either side. This free-body diagram
is similar to that of Fig 3.lc for the finite-element model beam-column. The
resultant couple Cx acting on the x-half of the joint is applied as two equal

and opposite loads + C; at Stations i and it+l. The reaction er acting
h-
on the x-half of the joint has also been split equally to Stations i and i+l

’

as has the resultant of external load and restraint, Qx - wabx . The direction

of the arrows in the figure indicates the sense of the applied positive loadings.
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From Fig 4.8a, it is also apparent that

- 1
W, = 3 @, +w (4.19)

bx i+1)

and

- w,) (4.20)

Figure 4.8b shows the corresponding free-body diagram for the y-half of

the joint. The relations for joint deflection and slope are

= 1
W =5 (wj + w

by (4.21)

j+1)
and

(w -w,) (4.22)

If the deflected shape of the x-half of the joint and the members framing
into it are known, as they would be from a previous cycle of the assumed
iterative process, a finite~difference relationship may be used to compute the
resultant forces acting at Stations i and i+l. This relation gives, from

Fig 4.8a,

2 c

dw 1 _ x 1 -
[F 2 " h [(Qi Siwi) + h + 2 (er + Qx wabx)
Lo dp Yy -w, )i 4P
2h i-1 i i i-1 2h i i+l
(wi_|_1 - wi)] (4.23)
at Station i, and
C
[F J - sl@y ) - X +2(@Q_+Q - SN )
2 li+1 r+1 i+1 h 2 rX X x bx

(Equation cont'd)
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1

1 - 1
“on By PP Gy V) oy (B FRL)
4o - Wi+1):' (4.24)
at Station i+l,
C
Adding Eqs 4.23 and 4.24 to eliminate E§ and solving for the net
vertical reaction at the joint gives
2 2 2 2
- d dw d dw
Q. +Q - SH) h{ 2 [F 2]1 3 [F 2 i+1} - Q- 5;wy)
dx dx dx dx

1
- Qg 7 Sivie) Y om [ @ TR
") T P TR s | 425)
while subtracting Eq 4.24 from Eq 4.23 to eliminate the net vertical reaction
and solving for Cx gives
2

2 2 2 2

_ hTord dw] _ d a“w _h _ )

C T 2 { 2 [F 2]1 2 I:F 2 i+1} 2 {(Qi Siwi) - Quyy
dx dx dx dx

1
- Si+1wi+l)} t3 [(Pi-l +P )Wy -w g) - 2(P, + B )

) (4.26)

Gigg ~ 9D T By PP Gy L Vi)

The corresponding expressions for the y-half of the joint are

2 2 2 2

d d"w d dw b
Q _+Q -SW ) = k{ [F :l.+ [F b - Q. - 8.w)
ry y y by dy2 dy?- x| dy2 dy2 3+J j i

(Equation cont'd)
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1
- Q- Sy T g [(Pj-l + By Gy

- wj-l) - (Pj+1 + Pj+2)(wj+2 - wj+1) (4.27)
and
2 2 2 2 2
k {d [ d w] d r d w] } k {
cC = — F .- F . --4(Q, - 8s.,w,) - (Q,
2 +1
y 2 dy2 dy2 i gyt L dy2-it1 2 j il j

1
- Sj+le+1)} + m [(Pj_1 + Pj)(wj - wj-l) -2 (Pj + Pj+1)

(wj+1 - wj) + (Pj+1 + Pj+2)(wj+2 - wj+1) (4.28)

Determination of Translational Restraint Provided by Each Half of the Joint

In previous sections, relations were derived for the resultant forces and
couples acting on each half of a frame joint. These relations required know-
ledge of intrinsic values of beam translational and rotational restraint at
each joint. Relations for these values are developed in this section.

The intrinsic translational restraint provided by a beam at any particular
joint is given by the ratio of net beam reaction to beam deflection. Thus, for

a joint on any horizontal member, using the relations of Eqs 4.19 and 4.25,

S - (er + Qx B wabx) (4.29)
ix W
bx

where

W # 0

For vertical members, using Eqs 4.21 and 4.27,

Q_+Q -SW.)
S = XY Yy yby (4.30)
iy wby
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where

Wby # 0

The restraints defined by Eqs 4.29 and 4.30 may be positive, zero, or
negative. The concept of a negative translational restraint is difficult to
visualize, except in an abstract manner, since its use might create instabil-
ity under some conditions. This instability may be avoided by substituting
the negative of the net reaction - (er + Qx - wabx) or - (er + Qy - Sywby)
as a force representing beam resistance. The negative sign results from the
fact that beam and column reactions are equal and opposite. In effect, the
replacement of the negative restraint by the negative of the net reaction
increases the total load ch or Qcy acting on a line of joints instead of
reducing the total restraint Scx or Scy .

The above procedure is valid unless at some time during the iterative
process all computed restraints for any one line of joints become negative.

In such a case, if the column restraint Sc and all joint restraints Sx or

Sy are zero, an infinite column displacement would be computed. Furthermore,
each joint would be subjected to a large applied load instead of a combination
of loads and restraint. Such a condition might also cause instability. These
problems may be avoided by introducing at each joint a differential restraint
(ﬂFx/hB) or (ﬂFy/kB) into the equations for total load ch or QCy and for
restraint Scx or Scy acting on the column and line of joints. The revised
equations for the total load and restraint provided by all joints and the

column are

N
S.x = sc+z (s +5s ) (4.31)

where

S = 8, , for 8., >0
r ix, ix,

(Equation cont'd)
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F
= =X
= T h3 , for SixL <0
N
= P +Z (Q +Q.) (4.32)
% 2

A
Fx
= - (Q +Q -S W _)Y+TN—SW , for S, <0
rx& x, Xy bx& h3 bxt ix,
members. The corresponding relations for vertical members are
M
= s +z (s. +5_) (4.33)
c Yy T,
4=1
= . , for ) >0
iy, iy,
Ty
= , for S, <0
i iyy
M
= -P 4~§£ + 4.34)
y (Qy{, QL) (
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where

Q = 0, for S, >0
Ty 1Yy,
El
Q = - (Q +Q -S_ W_ )+ W , for 'S, <0 (4.34)
7 I, Yy Yy Yy K Yy iy,

It should be noted that if joint deflection W and colum displacement

ch are equal, the differential restraint (an/h3?xhas no effect. If the
values are not equal, the differential restraint tends to enforce an equal
deformation condition. The same effect occurs for the other differential
restraint (ﬂFy/k3)

The coefficient 1| determines the relative magnitude of differential
restraint to be used. Empirical studies have shown that a reasonable rate of
convergence is usually achieved by the following procedure:

(1) 1f s, or S, is negative, and W,, and W, or
W,, and W., have the same sign, choose 1 such that

the resulting differential restraint (7F,/h®) or
(ﬂF}/ka) is very small (of magnitude 0.0l to 0.001).

(2) 1f 8, or S, 1is negative, but W,, and W, or
W,y and W,, have opposite signs, choose 7 between
1.0 and 0.01, such that the resulting differential
restraint (7F, /h®) or (ﬂFy/ks) is relatively large.
In following the above procedure, convergence is also accelerated by

revising the values of ch and SCx or Q and SCy acting on a line of

c
joints immediately after each line of membersyis solved. Thus, the values of
total load and restraint acting on each line of joints are always based on the
most recent information available concerning member behavior. Also, when
computing values of be and be or Qby and Sby for a particular joint,
it is necessary to remember just what was added into the total load and
restraint on the previous iteration and to subtract these values from the total
load and restraint.

In deriving Eqs 4.29 and 4.30, it was assumed that be and Wby were
nonzero. However, these values might easily be zero, especially if the solu-
tion process is started from initial zero deflections.

If joint deflection is zero, Eqs 4.29 and 4.30 correctly predict an

infinite resistance to joint translation. In practice, a large value of
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S-spring restraint may be substituted for this infinite value without affecting
the accuracy of the analysis. A joint fixed against translation in either the
x or y-directions may be approximated by a value of Sx or Sy having an
order of magnitude equal to the flexural stiffness F of the members on

either side of the joint. To prevent numerical roundoff in a digital computer
computation, these values should be no more than approximately one order of
magnitude greater than the flexural stiffness F at the stations on either

side of the joint.

Enforcement of Rotational Compatability for Each Half of the Joint

From Fig 4.4, the resultant couple acting on the x-half of the joint is,

as stated previously,

C_ = (C+RO) - c, (4.35)

while the resultant couple acting on the y-half of the joint is

C = (C+RO) -¢C 4.36
y ( y) x ( )

Equations 4.35 and 4.36 are not valid unless Gx and Gy are equal, the
condition of a rigid joint. Assume this is not the case. This equal slope
condition may be enforced during the proposed iterative process by the intro-

duction of a rotational closure parameter £ such that Eq 4.35 becomes

Cx - € (ex - Gy) = (C + Rex) - Cy (4.37)
while Eq 4.36 becomes

c - 6 -0 = (C+R -

y 5 ( y ) ( ey) C. (4.38)

The closure parameter £ 1is a differential rotational restraint which
tends to enforce an equal slope during the iterative process. While shown as
a constant in Eqs 4.37 and 4.38, £ may actually vary for each iteration, for

each joint throughout the frame, and for each half of each joint. Procedures
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for selecting values of £ are given in Chapter 6. When ex and ey

are equal, Eqs 4.37 and 4.38 reduce to Eqs 4.35 and 4.36. A similar procedure,
using a constant value of £ for each iteration, was developed by Matlock

and Grubbs for no-sway frames (Ref 17).

It should be noted that Eqs 4.35 and 4.36 are valid only if the joint is
rigid. For example, if the joint is pinned, the values Cx and Cy must be
defined externally as there is no mechanism for distribution of applied C
and R to the respective halves of the joint. If this is done, however, a
pinned joint may be considered by simply neglecting to enforce the equal
slope condition during the iterative process.

A joint fixed against rotation may be approximated by a rotational re-
straint R having an order of magnitude equal to the flexural stiffness F
of the members which frame into the joint. In order to prevent roundoff in
digital computer computation, the maximum values of R chosen for input should
be no more than approximately one order of magnitude greater than the flexural

stiffness F at the stations on either side of the joint.

Development of Stiffness Matrix Terms Describing Joint Behavior

The laws of statics may now be applied to the joint-free bodies of
Fig 4.8 in a manner similar to that used to develop Eq 3.10 for the finite-
element beam-column model.

From Fig 4.8a, summing forces in the vertical direction at Station i and
taking moments about the center of the bar to the left of Station i to develop

equations for VA’ and VB' gives

c )
- - x,1 -
Mg - M +M, = b [Qi Sivitg t3 Q.+ Q wabx)J

1

"3 By ¥ ROy -y )

2@, +P, )W, - W) (4.39)
2 Vi Tir M T Y :

Summing forces at Station i+l and taking moments about the center of the bar
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to the right of Station i+l to develop expressions for th and VC' gives

. 1

x —
M- B M, = b [Qu - S TR Qg

1
- wabx)] mg By F R, - W)

1
3 Cupg B (i - Vi) (4.40)
If Eq 3.5, the relation between bending moment and model deformation, is

substituted three times into the left side of Eqgs 4.39 and 4.40, collecting

terms and substituting

er = be - bewbx (4.41)

Cx = (C + ROX) - Cy + € (Qx - By) (4.42
and Eqs 4.19 and 4.20 for W, and ek gives at Station i

avw. 5 + biwi-l + AN + diwi+1 + eV, = fi (4.43)
where

a; = Fi-l (4.44)

h2
b, = -2 [Fi-l +F, +- (®,_;+PB) (4.45)

2

h 3
(P +ar +F, + 2

¢}
i

+ 2}?i + Pi+1) + h

i-1 SiJ

h3

+ (sX + be) +h (R + E) (4.46)
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h
-2 [Fi TRt Byt P1+1)]

-h R+ E)

F

i+1

2

3

h
+ 4 (sx + be)

h3 {Qi +‘% [Qx + bej +‘% [C . Cy ) gey] }

while at Station i+l,

301%i-1 FPi¥i 7t SV T Y Yiee T oY ©
with
341 = F
b B
bigp = -2 [Fi TRty Gyt Pi-l—l)] o Sy
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i+1
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i+l

i+l

i

]

[Fi ARt R

h3

h2

t (5, +5, ) +h R+E)

-2 1F,

i+l +F
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I

Fiv2

b’ {Qi+1 +'% [Qx + bej B % [C -Gy - geyj
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+2 4

+ 5 (Pl + 2Pi+
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p tPiyp) T Si+lj

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)
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Corresponding forms may be developed for the y-half of the joint from the
free-body of Fig 4.8b.

Development of a Procedure for the Bending Analysis of a Plane Frame

It is apparent that Eqs 4.43 and 4.50 have the same form as Eq 3.10 for
the finite-element model beam-column. In fact, the equations are the same
except for the addition of terms involving external forces, couples, and
restraints at the joints.

Under this hypothesis, the coefficients of Eqs 4.43 and 4.50 may be
considered as two rows of a quidiagonal stiffness matrix and columm load matrix
which may be written for each horizontal or vertical line of members and joint
halves in a rectangular plane frame. These matrices may be developed for each
line by writing Eq 4.43 at all stations to the immediate left of a joint, Eq
4.50 at all stations to the immediate right of a joint, and Eq 3.10 at all
other stations along the line.

The resulting stiffness and load matrices may then be solved recursively
by Eq 3.18 for the bending deflections of each line of frame members. By
solving all lines of members in the rectangular plane frame, the deflected
shape of the frame from bending, under the action of applied forces, couples,
and restraints, is known. The er , er , Cx , and Cy terms added to the
stiffness and load matrices reflect member interaction and are adjusted
during each cycle of the iterative process.

The iterative bending solution may be summarized as follows:

(1) Compute Q., for each vertical line of horizontal joints
and Q., for each horizontal line of vertical joints.

(2) Compute S,, and S, in similar manner, estimating
values of beam restraint if joint deflection is zero.

(3) Solve each line of horizontal members, computing values
of Q, and S,, , and applying the differential restraint
€ at each joint.

(4) Revise the values of Q, and S;, for the vertical
line passing through each joint by computing a new
value of §;, and substituting the appropriate values.

(5) Solve each line of vertical members, computing values of
Q, and Syy > and applying the differential restraint
€ at each joint.
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(6) Revise the values of Qcy and Scy for the horizontal
line passing through each joint by computing a new value
of Siy and substituting the appropriate values.

(7) Repeat steps (2) through (5) until the transverse deflection

of each joint equals the associated column displacement and
the slope of both halves of each joint are equal.

Enforcement of Consistent Deflections and Rotations in the Frame

During the early stages of the iterative process, the transverse deflec-
tions of individual joints in a particular line may not equal the computed
value of column displacement or, for that matter, each other. Also, the rota-
tion or slope of each half of each frame joint may not equal that of the other
half, The primary reason for these differences is the inaccuracy of initially
assumed values of joint restraint.

However, for an elastic system, the translational restraint provided by
a particular member at a particular joint is proportional to the magnitude
of the forces or couples applied at the joint and the resulting deflections
or rotations, The restraint provided by any joint is a function of member
stiffness, the behavior of other joints on the line of frame members, and
loads and restraints acting directly on the frame members. Thus, a few cycles
are required to determine values of translational stiffness at each joint
which are very nearly the exact values for the particular conditions of frame
loading,; stiffness, and geometry being considered. Once this condition is
achieved, a final solution is quickly reached.

For the simple frame of Fig 4.5, only two iterations are required to
achieve a correct solution. In a complex frame, with translational and rota-
tional interaction to be considered, more iterations will be required to com-
pletely eliminate the effects of initially assumed frame translational behavior.

The differential restraint £ tends to enforce an equal slope condition
during the iterative process by representing the missing half of each joint
with an appropriate combination of applied couple and rotational restraint.
When the correct ratios of applied couple and restraint have been determined
for each joint, as well as the correct values of joint translational stiffness,
the rotation or slope of both halves of each joint will be equal. Furthermore,

as the total load Q and the total restraint Scx will be constant for any
cX
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vertical line of joints in the frame, the transverse bending deflections
be% , 4 = 1,2, ¢«»-, N, will equal the column displacement W,, . Under
this condition, the transverse bending deflection of each horizontal line of
members at the point where they intersect the vertical column will equal the
column displacement. This relation also holds for vertical lines of members
intersecting horizontal beams.

Thus, the condition of consistent deformations, that final frame deforma-

tions be consistent with original frame geometry, is satisfied.

Summary

In this chapter, equations describing the behavior of a frame joint in
bending have been developed. These equations have been combined with those
for members between joints and a procedure for the determination of consistent
frame-bending deflections has been outlined.

As yet, nothing has been said concerning determination of axial tension
or compression distribution in the frame members. This topic is discussed in

the next chapter.
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CHAPTER 5. DEVELOPMENT OF A PROCEDURE FOR DETERMINING THE
AXTJAL FORCE DISTRIBUTION IN FRAME MEMBERS

In Chapter 4, an iterative procedure for the bending analysis of a plane
frame was developed. This procedure assumed knowledge of the axial tension or
compression distribution in all frame members. A method for obtaining these
values is developed in this chapter by consideration of each vertical or hori-
zontal line of frame members, as was done in the "bending' analysis of Chapter
4, 1In this case, information available from a '"bending'" analysis is used to
determine the axial tension or compression distribution in that line of frame
members. Thus, the "axial" solution developed in this chapter is dependent on
the results of the "bending" solution of Chapter 4 and vice versa,

An iterative method of analysis for the complete frame system may now be-
gin to be visualized. Starting with assumed values from the "axial' solution,
(1) a "bending" solution is made and (2) the results of this "bending" solution
are used in another "axial' solution. The process is repeated until the de-
sired degree of convergence or closure is obtained. This iterative method of

analysis is discussed in Chapter 6.

Determination of Axial Tension or Compression Distribution in Vertical Members

Figure 5.la shows the finite-element model of a line of vertical members
in the frame. This model is displaced an amount ch under the action of
applied forces and restraints. Stations or increment points along the model
are denoted by j and joints on the model are denoted by £ . Each station
is separated by a rigid bar. As stated in Chapter 3, the total change in axial
tension or compression in each bar may be concentrated at the bar's centroid.
Such is the case here where the APj represent changes in internal axial ten-
sion or compression in each bar, caused perhaps by weight forces. At the joints,
the reactions acting on the column cause an additional change in axial tension
or compression across the bar representing the joint,

In the figure, external forces are shown acting in the positive sense.

Using the positive (tensile) sign convention of Fig 4.3d to describe the axial

49
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tension or compression acting on each bar, the relation is either

Pj+1 = Pj + APj+1 (5.1)
or

Pj = Pj+1 - APj+1 (5.2)
for rigid bars between joints, or

P = By FAR LY QixL BRI TS i erL (5.3)
and

Py = Pup T BRip - Qix{l B Pj+1 TAPy * erL (5.4)
for the rigid bars acting as joints. The relation between Qr and Q

is a function of the laws of statics: beam reaction and column reaction é%e

equal and opposite. Thus
Q, = -, (5.5)

The axial tension or compression distribution in the line may now be
easily computed by integrating from Station -1 to Stationm my+1 using Egs 5.1
and 5.3 or by integrating from Station my+1 to Station ~1 using Egqs 5.2 and
5.4, 1In either case, only an initial condition is required.

If integration from -1 to my+l is desired, the value of P_1 must be
known. This value is normally zero, but may represent some externally applied

force. Conversely, if integration from my+1 to -1 1is desired, Pm +1

must be known. From Fig 5.la, considering the previously defined sign conven-

tions, it is apparent that

P = S W (5.6)
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Thus, the integration may be carried out conveniently in either direction.
In either case, the resulting axial tension or compression at each station is

the same,

Determination of Axial Tension or Compression Distribution in Horizontal Members

Figure 5.1b shows the finite-element model of a line of horizontal members
in the frame. The model is displaced an amount ch under the action of ap-
plied forces and restraints, Stations along the model are denoted by i and
joints on the model are denoted by 4 . As is the case for vertical members,
the APi represent changes in internal axial tension or compression in each

bar. At the joints, the reaction Qi causes an additional change in axial

£

tension or compression across the bar representing the joint.
Using the positive (tensile) sign convention of Fig 4.3c to describe the

axial tension or compression acting on each bar gives either

Pi+1 = Pi + APi+1 (5.7)

or

P N LAY (5.8)

for rigid bars between joints, or

Pigr T BpRAR L, - Q5 OB AR HQ (5.9)
2 )
and
P, S Pyt 0Bt Qiy& = Pip T AP er& (5.10)

for rigid bars acting as joints, The relation between er and Qiy is

similar to that of Eq 5.5, namely

Qiy - -er (5.11)
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The axial tension or compression at each station in the line may now be
determined by integration from -1 to mx+1 or mx+1 to -1 wusing Eqs 5.7
and 5.9 or 5.8 and 5.10 in a manner similar to that described for vertical

members. In this case, the boundary condition at mx+1 is

P = -SW (5.12)

Summary

In this chapter, procedures for computing the axial tension or compression
distribution in each frame member have been developed. These procedures, when
applied to every line of vertical or horizontal members in the frame, are
designated as an "axial solution of the frame.

Chapter 6 discusses a method of combining this "axial" solution with
the "bending' solution of Chapter 4 to develop a method for complete analysis

of a plane frame.
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CHAPTER 6. DEVELOPMENT OF AN ITERATIVE METHOD FOR COMPUTER
SOLUTION OF THE FRAME EQUATIONS

In Chapter 4, a numerical procedure for the line-by-line analysis of a
plane frame in bending was developed. This procedure required previous know-
ledge of the axial tension or compression distribution in the frame members.
A method for finding the axial tension or compression distribution in the
frame members, also on a line-by-line basis, was developed in Chapter 5.
However, this procedure required previous knowledge of the deflected shape of
the frame in bending.

Initially, the assumption of an iterative method of frame analysis was
made. The required iterative procedure may now be defined and procedures may

be developed for computer solution of the frame equations.

Definition of the Iterative Method

Each iteration of the required iterative procedure for the analysis of a
rectangular plane frame in bending is defined to consist of two parts:

(1) a line-by-line bending solution assuming knowledge of
axial force distribution in the frame and

(2) a line~by-line axial force distribution assuming
knowledge of the deflected shape of the frame in
bending.

These two solutions are repeated in cyclic fashion until the desired
degree of convergence, to be discussed later, has occurred. Each cyclic repe-
tition of the two solutions gives, in effect, one complete solution of the
frame.

The large number of repetitious calculations required for each cycle of
the proposed iterative process make it highly suitable for digital computer
solution. In fact, considering the large number of computations involved,
digital computer solution is felt to be the only efficient method for using
the proposed process. A general flow diagram for computer solution is shown
in Fig 6.1.

Specific equations required for implementation of the iterative process

55
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have been developed in previous chapters. However, in order to completely
define the proposed method, consideration must be given to (1) a general dis-
cussion of the iterative process, (2) selection of rotational closure param-

eters, and (3) computer solution of the frame equatioms.

Discussion of the Iterative Method

The iterative method, as defined previously, consists of a series of com-
plete solutions for the deflected shape of a plane frame in bending. Each
iteration consists of two half iterations, a bending solution, and an axial
solution.

As the final result desired from the iterative process is the correct de-
flected shape of a plane frame in bending, the bending solution forms the more
important part of each iteration. The axial solution, being of secondary na-
ture, is used to generate input data for the bending solution.

Data interchanged during the iterative process consist primarily of result-~
ant forces and couples, with the values of these forces and couples being deter-
mined by (1) frame stiffness and geometry, (2) applied loading and restraint,
and (3) results of previous iterationms.

In a physical sense, the iterative process may be visualized as a readjust-
ment procedure, such that given a frame under specified conditions of loading
and restraint, the procedure given below is followed:

(1) An initial assumption is made concerning the distribution
of internal forces and couples in the frame.

(2) The deflected shape of the frame is computed considering
the applied loading and assumed distribution of internal
forces and couples.

(3) The distribution of internal forces and couples is re-
vised considering the applied loading and the deflected
shape of the frame.

Steps 2 and 3 are repeated until the correct distribution of internal
forces and couples, and thus the correct deflected shape of the frame, is ob-
tained. This distribution, determined by interaction of frame members, is com-

puted using the equations derived in Chapters 4 and 5.

Selection of Rotational Closure Parameters

During the proposed iterative process, each half of each frame joint is
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considered independently. The differential restraint E 1is used to represent
the rotational restraint provided by the missing half of the joint. For exam-
ple, when solving horizontal members (1) a rotational restraint £ and (2) a
couple -gey are applied to the x-half of the joint. The rotational restraint
£ inhibits total joint rotation while the applied couple -gey tries to
rotate the x-half of the joint in the direction taken by the missing y-half of
the joint. Thus the ratio of restraint and applied couple represents the
effect of the missing y-half of the joint.

The restraint provided by the missing half of the joint must be a function
of the flexural stiffness F of the members which frame into the joint and the
length of members between joints. Under this hypothesis, a different value of
£ could exist for each half of the joint. Let gx be the restraint applied
to the x-half of the joint and gy be the restraint applied to the y-half of

the joint where

F
— A
§x = P XK (6.1)
and
Fx
gy = P 5 (6.2)

with F_ being the flexural stiffness of the vertical members in the vicinity
of the ?oint, Fx being the flexural stiffness of the horizontal members in
the vicinity of the joint, and p being a coefficient to be defined later,

The form of the iteration equations (Eqs 4.37 and 4.38) defining rotational
compatability for the joint is similar to that used in the generalized alter-
nating-direction implicit method of solving partial differential equations, as
summarized by Young and Wheeler (Ref 23). However, several differences are
present: (1) the rotational equations (Eqs 4.37 and 4.38) appear only indi-
rectly in the quidiagonal stiffness matrix written for each line of frame mem-
bers, (2) the quidiagonal stiffness matrix is formulated to solve for the de-
flected shape of the frame while the rotational equations are functions of the
first and second derivatives of frame deflection, and (3) the joints are pre-
sent on a discrete basis, so that an actual continuum does not exist.

For these reasons, a correct mathematical analysis for closure parameter
determination, considering variations in member flexural stiffness, member

length, and translational interaction, is felt to be beyond the scope of this
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study. Instead, a criteria based on actual structural behavior will be pre-
sented. While this criteria for closure parameter selection is somewhat empir-
ical, it has been applied successfully to a wide variety of frame problems

and has given reasonably good rates of convergence for all cases considered.
Some typical convergence or closure plots using the criteria to be presented
are shown in Chapters 7 and 8.

The maximum rotational stiffness of any joint is approximately (4EI/h) ,
corresponding to a fixed-end condition one increment away from the joint., If
L is the average distance between joints, the minimum rotational stiffness of
any joint is somewhere between (4EI/L) with the far end fixed and zero,
assuming no negative rotational stiffnesses, Experience has shown that (1EI/L)
is a reasonably small value of joint restraint.

Thus the actual value of joint restraint as determined by frame stiffness,
loading, and geometry will usually lie between (4EI/h) and (1EI/L) . A
rational procedure for approximating the actual joint restraint would then be to
assume several possible values of joint restraint between these limits and to
try these values successively during the iterative process. The coefficient
p may now be defined. 1Its maximum value will be approximately four, while
its smallest value will be chosen such that (pEI/h) will be approximately
(1EI/L) , that is, its smallest value should be approximately (h/L) . Once the
upper and lower values of p have been established, other values may be selected
between these bounds to cover the entire range of possible joint restraint
conditions., Usually only a few intermediate values need be selected,

For example, consider a frame with h and k equal to one and L equal
to ten, The upper p 1limit would be four while the lower p limit would be
(h/L) or 0.1, Intermediate values of p could be chosen as approximately
two and 0.5. This sequence of four p values would then be applied in cyclic
fashion during the iterative process, These values may be applied in four dif-
ferent cyclic orders: 'stairstep" order, 'reverse stairstep" order, "hill and

dale" order, and "dale and hill" order. The orders are illustrated as follows:

"Stairstep" Order "Reverse Stairstep" Order
Iteration p Iteration o
1 0.1 1 4.0
2 0.5 2 2.0
3 2.0 3 0.5
4 4.0 4 0.1 (Table cont'd)
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"Stairstep'" Order '"Reverse Stairstep" Order
Iteration o Iteration 0
5 0.1 5 4.0
6 0.5 6 2.0
"Hill and Dale'' Order "Dale and Hill" Order
Iteration o Iteration p
1 4,0 1 0.1
2 2.0 2 0.5
3 0.5 3 2.0
4 0.1 4 4.0
5 0.5 5 2.0
6 2.0 6 0.5
7 4.0 7 0.1
8 2.0 8 0.5
Fx EZ
with gy e q and =P x

All orderings have produced reasonable rates of convergence. The "stair-
step" and "dale and hill" orderings have produced slightly faster convergence
for some problems, but have caused oscillating closure for other problems. The
"reverse stairstep" and "hill and dale' orderings have given stable convergence

or closure for all problems solved.

Computer Solution of the Frame Equations

The equations derived in Chapters 3, 4, and 5 and the proposed iterative
method of analysis described previously are of little practical value unless
they may be applied to the solution of actual frame problems. Thus, the actual
potential of the method must be demonstrated by programming the derived equa-
tions for the digital computer and actually solving realistic example problems.

Chapter 7 demonstrates the closure or convergence of the method as actu-
ally programmed for computer solution, while the solution of realistic example
problems is shown in Chapter 8. First, however, the development of a computer
program to solve the frame equations must be considered. The basic considera-
tions for a generalized computer program are (1) data to be input, (2) equa-

tions to be solved, (3) closure techniques, and (4) desired results. These
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considerations are discussed on the following pages.

Input Data

The data input to a generalized computer program should completely de-
scribe the mathematical frame model to be solved. These data may be divided

into three classes:

(1) data describing frame geometry with respect to number
of lines of horizontal and vertical members, the incre-
ment length and number of increments for each line of
members, and the intersections or joint locations on
each line of members,

(2) data describing the flexural stiffness, lateral
loading and spring restraint, and axial tension or
compression acting on the frame members, and

(3) data describing the external forces, couples, and
restraints acting on each joint.

Frame Geometry. Description of frame geometry requires a consistent

ordering system, as defined in Chapter 4. Using such an ordering system, data
describing each line of frame members with respect to number of increments,
increment length, number of joints, and joint location may be developed. Each
joint location must be defined with respect to both lines of members which in-
tersect to form the joint.

Individual Frame Members. Each line of members in the frame is composed

of one or more frame members, As noted in Chapter 3, each individual member
may be described on a station-by-station basis with respect to flexural stiff-
ness, transverse load and spring restraint, and internal axial tension or com-
pression. The location of initial and final stations on each member would be
known from frame geometry considerations.

Frame Joints. All frame joints are assumed to be either rigid or pinned.

Thus no data describing joint flexural stiffness is required. Various external
transverse and angular effects may be input at each joint, as described in
Chapter 4. These effects consist of either horizontal or vertical load and
elastic restraint, a rotational restraint, and an applied couple.

Frame joints need not be formed by two intersecting frame members, as
shown in Fig 4.2. Some other possible joint configurations are shown in
Fig 6.2,

Figure 6.2a shows a three-member joint, which could represent an outside
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Fig 6.2. Various possible joint configurations desired in
developing input data.
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joint in a multi-story frame. Here, the horizontal line of members is assumed
to begin at the station to the right of the joint,

A method for describing frame corners is shown in Fig 6.2b. Here, the
horizontal member is begun at the station to the right of the joint, while the
vertical member is begun at the station below the joint.

Figure 6.2c shows a joint used for termination purposes. When a large
value of external transverse restraint is specified, this joint will approxi-
mate a simply-supported end. Large values of transverse and rotational re-
straint applied to the joint will approximate a fixed-end condition.

A "dummy" joint configuration is shown in Fig 6.2d. This configuration
may be used when it is desired to specify values of either applied transverse
load and spring restraint, rotational restraint, or couple at some location

between two increment points on a frame member.

Solution of Bending Equations

The equations describing frame bending may be solved exactly as described
in Chapter 4. A flow diagram for the computer solution of the equations is
shown in Fig 6.3. Using given input data and the results of a previous axial
solution, matrix coefficients are computed for each line of frame members.
Special coefficients are computed at the stations on either side of a joint.
The resulting quidiagonal stiffness and column load matrices are solved for
the deflected shape of the line exactly as described in Chapter 3. The result-

ing deflections of the frame are used in the next axial solution.

Solution of Axial Equations

The equations describing axial frame behavior are solved in two phases,
as described in Chapters 4 and 5. First, the axial displacement of each line
of frame members is computed; then the axial tension or compression distribu-
tion in that line is computed. A flow diagram of the process is shown in

Fig 6.4.

Closure or Convergence of the Solution

An iterative method is said to have closed or converged when successive
iterations of the method are equal within some prescribed tolerance. Thus, for

computer solution of the proposed method, closure is assumed to occur when (1)
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the transverse deflection and corresponding axial displacement for each half
of each frame joint, (2) the rotation or slope of both halves of each rigid
joint, and (3) the transverse deflections of all frame members are equal within

some prescribed tolerance or tolerances for two successive iterations.

Desired Results

The results desired from computer solution of the frame equations consist
primarily of data describing the deflected shape of the frame. These data may
be organized into two parts, joint data and member data.

The data available for each frame joint consist of three values which de-
fine its final position in space with respect to its original or zero position.
These three values are vertical joint translation, horizontal joint transla-
tion, and joint rotation.

The data describing joint behavior determines the position in space of the
members which frame between joints. The deflected shape of the individual mem-
bers can be differentiated to provide information about the distribution of

moment and shear in the frame,

Summary

This chapter has defined a proposed method of plane-frame ‘analysis and
outlined the requirements for iterative computer solution of the proposed frame
equations.

To show applicability of the method to the solution of realistic problems,
a computer program, PLNFRAM 4, was developed, following the requirements out-
lined in this chapter. This program, written in FORTRAN-63 for a Control Data

Corporation 1604 computer, is discussed in detail in Appendices 1, 2, and 3.



CHAPTER 7. VERIFICATION OF THE PROPOSED ITERATIVE METHOD

In preceding chapters, equations describing the behavior of a finite-
element frame model in bending have been developed. An iterative method for
solution of these equations has been proposed and discussed, and procedures
for computer solution of the proposed method have been outlined. The last step
in the development of an analytical method, verification of results, will be
given in this chapter. The generality of the proposed method will be shown by

the example problems in Chapter 8.

Comparison of Computed Results with Accepted Theory

The test of any numerical method of analysis is its comparison with the
accepted theory it approximates. In this regard, a simple frame problem has
been chosen for comparative purposes. While the solution of this simple frame
does not completely demonstrate the generality of the method, it nevertheless
provides a comparison between results obtained by the method and those produced
by accepted theory.

Figure 7.la shows a simple two-leg bent and Fig 7.1b shows the correspond-
ing finite-element frame model. Values of horizontal translation and rotation
for Joints B and C are presented in tabular form. Results obtained using the
slope-deflection method of amalysis are compared with numerical results for
three different increment lengths. As may be seen, good agreement is obtained.
The primary cause for difference in results is felt to be caused by the finite
joint width used in the frame model, as compared with the infinitesimal joint
assumed in the slope-deflection procedure. The effect of joint width will be
discussed later,

Perhaps the degree of accuracy available to the method may be better vis-
ualized by considering the simple frame of Fig 4.5. This frame was solved in
two iterations, with a computed joint translation of 0.9918 inches at all three
joints, Each beam was divided into 11 increments. The difference between the

computed value and the exact value of one inch was less than one per cent.
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8¢, rad. -1.761x 1072 -1.639x 102 ~1.662 x 1072 -1.668 x 1072

Fig 7.1.

Verification of

computed results.
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Convergence of the Iterative Method

Figure 7.2a shows computed joint rotations for the x and y-halves of
Joint B of Fig 7.1b, plotted against iteration number, Horizontal tramslation
of Joint B, transverse deflection and axial displacement, is plotted against
iteration number in Fig 7.2b. The shapes of the closure plots are typical of
those produced by the computer program.

Convergence for this simple problem is fairly rapid, representing the rela-
tively small amount of internal force redistribution that must take place during
the iterative process. For larger and more complex frames, it will be seen that

more iterations are required to achieve reasonable closure,

Justification of One-Increment Finite-Element Joints

Matlock and Grubbs (Ref 17) have proposed an alternate finite-element
frame-joint model., This model is two increments in width, such that a statiomn
or increment point occurs at the center of the joint, as well as at the ends of
the joint. While the two-increment joint concept has been applied only to the
solution of plane frames without sway, it is felt that this concept is also ap-
plicable to sway problems.

Previously developed techniques (Ref 18) for exact specification of slope
and deflection at a station or increment point may be directly applied to a
two-increment frame-joint model. This is felt to be the main advantage of the
model., At the present time, only procedures for approximating desired slope
and deflection at a frame joint have been developed for the one-increment model.

However, one serious disadvantage is felt to be inherent in the two-incre-
ment joint concept: the method of computing joint rotation or slope.

For a one-increment joint, with the center of the joint halfway between
stations, the slope of the joint is computed by the central-difference relation

about wi+% :

Oy = —h—- (7.1)

As the bar forming the joint is rigid, Eq 7.1 gives the exact value of joint

slope for the finite-element model.

For a two-increment joint, however, the slope of the joint must be computed
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by the central-difference relation about W

w - W
_ Vil i-1
ei = = (7.2)

where i 1is the station in the center of the joint and i-l and i+l are
the stations at the edges of the joint. As the two-increment joint proposed
by Matlock and Grubbs is not completely rigid between i-l1 and i+l , Eq 7.2
gives only an approximation of the slope at the center of the joint, Further-
more, the two-increment joint formulation requires that a value of flexural
stiffness be specified at Stationm i, the center of the joint. This require-
ment appears to be unrealistic if the joint is to be considered rigid.

For comparative purposes, a problem solved by Matlock and Grubbs (Ref 17,
p 31) was re-solved using the one-increment joint concept. The problem and
computed results are shown in Fig 7.3, The moment distribution results and
those for the two-increment joint model are taken directly from Reference 17,
As may be seen, both procedures give good agreement with accepted values. The
degree of accuracy obtained by the one-increment joint model with a 12-inch
increment length is roughly equal to that obtained for the two-increment model
using a three-inch increment length. However, using the one-increment model
with a three-inch increment length also gave approximately the degree of accu-
racy obtained by the two-increment model with a three-inch increment length,

The difference in computed values is felt to be a function of the differ-
ent procedures used to compute joint slope with Eq 7.1 being a better approxi-
mation than Eq 7.2, especially if larger increment lengths are chosen. The
difference between computed and theoretical values for both increment lengths
is a function of the finite joint widths used in the models. This effect will

be discussed in the next section.

Error of Approximation in the Method

The difference in results computed by the method developed in this study
and those given by classical theory is a function of the two different pro-
cedures used to represent the real structure. In the classical, idealized
structure an infinitesimal joint width is assumed, while in the finite-element
frame model described exactly by the equations of Chapters 3, 4, and 5 a finite

joint width is assumed.



72

k

40
15 ft -l 5 ft —e
B l c
\-F 2 1.0 x 10" 1b-in’ ‘
N 5 ft
= i 2
/—F = 1.0x 10" Ib-in 8ok
5 f1
T V1144 —L
A D
COMPARATIVE RESULTS
SLOPE TWO-INCREMENT MODEL JOINTS
RAD. THEORETICAL VALUES . -

. h =12in. h=3in.
8s -9.740 x 10° -9.923x16° -9.781x 10°
8¢ 4610 x 10° 4.684%x10° 4.630x 10°

ONE-INCREMENT MODEL JOINTS
h=12in. h=3in.
s -9740 x (03 ~9.700x 1073 -9.770 x 10°
¢ 4610 x |0° 4.624 %1073 4,632 x 10°
Fig 7.3. Comparison of relative accuracy of one and

two-increment model frame joints.



73

One primary difference in the two representations of the real structure
is immediately apparent: if the center-to-center distances between joints are
the same for both representations, the end-to-end distances for connecting
members will be different, with each finite-element member being exactly omne
increment length shorter than its classical counterpart. For this reason,
moments computed at the ends of finite-element members forming joints differ
by a distance h/2 from classical values. Comparative values of slope and, to
a lesser extent, deflection are also affected by the finite joint width.

However, the developed method is intended for solving a real structure,
not its classical representation. Thus, comparisons such as that given by Fig
7.1 show only how well the finite-element model compares to an idealized struc-
ture. As the increment length is decreased, the difference between the two
representations decreases.,

Under the above hypothesis, the finite-element frame model is credited
with giving at least an equally valid representation of a real structure when
compared to classical techniques. If rational choices of increment length
based on actual joint width are made, the finite-element model would be expected

to give a more valid representation of the real structure.

Errors in the Solution After Closure Has Occurred

Closure for the iterative method, as defined in Chapter 6, is assumed to
occur when member deflections, joint deflections and displacements, and joint
rotations are the same within specified tolerances for two successive itera-
tions, While such a method of defining closure is the simplest that may be
selected, it does not give a true indication of the statical imbalance of
forces and couples remaining in the system. This imbalance is a function of
the difference between actual values of member restraint and those computed by
the method.

The imbalance of forces and couples remaining in the system after deflec-
tion and rotation closure to a specified tolerance has occurred may be found
by applying the three equations of statics at each joint. Using the notation

of Chapter 4, the error in summation of vertical forces at any joint is

By = ch - Scx [% (be + ch)] (7.3)
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while the error in summation of horizontal forces is given by

E = -s [L W+ W ]
y Uy ~ Sey |2 Wy + Wey)
and the error in summation of applied couples is

E = C+R|:% (ex+ey}:\ -cx-cy

If the iterative process converges within desired tolerances, but the

statical errors are excessive, improved values of Ex s Ey , and Er may

(7.4)

(7.5)

usually be obtained by reducing the closure tolerances and allowing the pro-

cedure to further refine its computed values of member restraint.

Summary

In this chapter, the proposed method for the iterative analysis of rec-

tangular plane frames has been verified by comparison with accepted theory.

In addition, closure of the iterative method has been discussed and justifi-

cation for the use of a one-increment frame-joint model has been given.

The
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