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PREFACE

This report presents a method for the nonlinear analysis of plane frame
structures. Geometric, material, and support nonlinearities are accommodated
by a discrete element model of the frame members which is incorporated in a
nonlinear frame solution,

This is the twenty-third in a series of reports that describe work under
Research Project No. 3-5-63-56, "Development of Methods for Computer Simulation
of Beam-Columns and Grid-Beam and Slab Systems.' Reports No. 56-1, 56-4, and
56-21 provide background information for this report.

Duplicate copies of the program deck and test data cards for the example
problems in this report'may be obtained from the Center for Highway Research,
The University of Texas at Austin,

Thanks are due to the members of the staff of the Center for Highway

Research for their assistance in producing this report.

Clifford 0. Hays
Hudson Matlock

May 1972
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ABSTRACT

A discrete element analysis which considers geometric, material, and
support nonlinearities of statically loaded plane frames is developed. A
computer program has been written to implement and verify the analysis. Frame
geometry, loads, cross sections, and supports (nonlinear concentrated and dis-
tributed springs) can be sufficiently general to work practical frame problems.

The method of analysis is based on an iterative procedure called the tan-
gent stiffness method, Unbalanced nodal point forces are applied to a tem-
porarily linear structure whose position dependent stiffness matrix is the
tangent stiffness matrix of the structure, The frame members are divided into
a number of discrete elements. The member solutions necessary to define the
load-displacement response of the members are made separately from the frame
solution to reduce computer time and storage requirements.

Load-displacement equations for an individual discrete element are derived
which are valid for large displacements. A numerical technique is used to
determine the force-deformation response of a cross section with nonlinear
stress-strain curves. Loads and nonlinear supports are input in normal engi-
neering terms and can be referenced either to the structure or to the member
axes. When necessary, the loads and nonlinear supports are internally trans-
formed to member coordinates and discretized to concentrated values at the
nodal points,

Castigliano's first theorem is applied to develop matrix expressions for
the stiffness matrix of a general discrete element and these expressions are
used to obtain the stiffness matrix for the specific discrete element used in
the frame solutions,

A number of problems are worked and compared with existing analytical or
experimental solutions. These example problems demonstrate the ability of
the analysis to predict the general load-displacement response of (1) members

which undergo large displacements, (2) steel frames, (3) reinforced concrete

ix



frames, (4) continuous prestressed concrete beams, and (5) frames involving

gsoil-structure interaction.

KEY WORDS: structural engineering, frame analysis, plane frames, computer
program, discrete element, soil-structure interaction, nonlinear analysis,

large displacements, nonlinear material properties.



SUMMARY

A computer program which uses a discrete element model for the nonlinear
elastic analysis of complex bridge bents and other highway structures has been
developed and is reported herein., Rigid frames, trusses, continuous beams,
and other planar structures may be analyzed using the program.

The effects of nonlinear soil supports may be considered acting at the
joints or distributed along the members of the frame. Cross sections may be
quite general and are easily input without preliminary computations. Nonlinear
stress-strain curves which need not pass through the origin may be specified
for various parts of the cross section, This technique of inputting stress-
strain data accommodates the solution of a wide variety of practical problems
such as those which arise because of temperature and prestressing effects.

The geometric effects of the interaction of axial force and lateral displace-
ment and of the bowing or stretching of members due to bending are automatically
considered as part of a complete large displacement analysis.

Loads and restraints may act both normal and parallel to the members of
the frame. This allows the designer to consider both vertical and inclined
piles as integral parts of the frame, even if a pile has nonlinear lateral
and axial soil supports. The geometry of the frame and the directions of the
static loads may be input in a manner both natural and convenient to the

designer.
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IMPLEMENTATION STATEMENT

A method of plane frame analysis which considers nonlinear supports,
material properties, and geometric effects has been developed in this study.
The computer program, documented in this report, can analyze skewed frames
supported by laterally and axially restrained piles and subjected to a complex
system of static loads.

The nonlinear soil support capabilities available in the program allow
the highway structures designer to realistically model many problems of soil-
structure interaction which previously had to be represented in a linear
manner. The nonlinear soil characteristics are input as either concentrated
force-displacement curves at the frame joints ( Q-W curves) or distributed
force-displacement curves acting along the members ( q-w curves). This
method of input allows a wide variety of practical problems, such as bridge
bents on pile foundations, culverts below grade, retaining walls, and sign-
support structures, to be handled by the same program,

The nonlinear material properties features of the program allow the
designer to specify the cross section as a series of rectangles and thin-
walled tubular pieces with different nonlinear stress-strain curves. Steel,
reinforced and prestressed concrete, and other materials and construction
techniques can be accommodated by the program. The yielding of members asso-
ciated with plastic and limit design may be permitted or prevented at the
discretion of the designer.

The nonlinear geometric effects of axial force-lateral displacement
interaction and of the stretching of members due to bending are considered as
a part of a complete large displacement analysis in the program.

The large number of problems which are worked using the program and the
comparisons made with existing analytical and experimental studies show that
agreement is favorable for all such comparisons.

Because of the generality and wide range of application of the program
developed in the reported research, it may be less efficient for a linear

analysis than previously reported linear analysis programs. Therefore, the
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program documented herein is recommended primarily for problems which cannot
be solved accurately by previously documented programs,

Further research to demonstrate the full potential of the program to
study prestressing, temperature, and other practical effects and the exten-
sion of this and previously documented linear frame analysis programs, to

consider three-dimensional and dynamic effects, appear feasible at this time,
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NOMENCLATURE

Symbol Typical Units
A in2
A, in2
i
A in2
s
AE 1b
(AEf)eff 1b
AEY 1b=in
o _—
b in
b in
b. in
i
b. in
]
B,. 1b/in, 1b, and
H 1b-in/rad

(8]

1b/in, 1b, and
1b-in/rad

xix

Definition
Cross~sectional area of member

Area of ith sub-rectangle

Area of reinforcing or prestressing
steel

Axial stiffness = ZAiEi

Effective AE of flange

Axial-flexural stiffness 'ZAiEi;i

/

Cosine of angle between the x and

X-axes

Flange width for a wide flange
section

Width of compression face of concrete
member

Width
which

th X
of 1 sub-rectangle into
input rectangles are subdivided

width of 30
input

rectangle used to
cross section

. . th .
Increment in i end-displacement
corresponding to a unit increment of

.th .
the j internal deformation of a
discrete element

(3 X 6) incremental deformation=-
displacement matrix for discrete
element



XX

Symbol Typical Units
(81" 1b/in, 1b, and
1b~in/rad
B -
c in
d in
d in
di in
dj in

1b/in, 1b, and

1] 1b-in/rad
[p] 1b/in, 1b, and
1b=in/rad

) in

) in

{6} inches and radians
{468} inches and radians
A in

E lb/in2

£ 1b/in’

Definition
(6 X 3) matrix which is the transpose
of [8]
7

Cosine of angle between the x and
y-axes

Distance from centroidal axis to
outer fiber of member cross section

Depth of cross section

Distance from compression face to
centroid of steel in concrete member

. th
Depth of i sub-rectangle into
which input rectangles are subdivided

t
Depth of j b rectangle used to
input cross-section

. .th .
Increment in i internal force in
discrete element corresponding to a

R . .th
unit increment in the j internal
deformation

(3 X 3) incremental internal force-
deformation matrix for discrete-element

Elongation of axially deformable bar
in discrete element

Axial displacement of member

(3X 1) matrix of internal deforma-~
tions corresponding to internal
forces in discrete element

(3 X 1) matrix of increment of inter=
nal deformations corresponding to
internal forces in discrete element
Lateral displacement of member or
joint

Modulus of elasticity

Modulus of elasticity of concrete
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Typical Units

1b/in2

lb-in2

in/in
in/in
in/in
in/in
in/in
in/in
in/in
in/in
in/in
in/in
in/in
1b/in’
1b/in2
lb/inz

1b and 1b-in

1b/in2

Xxi

Definition

Slope of stress~strain curve for ith

sub-rectangle

Flexural stiffness = ZEiIi

Strain

Average of € and €y

Strain at bottom of cross section
. 1 .

Strain at members x =axis

Concrete strain

Strain at junction of parabola and
straight line on Hogenstad's stress-
strain curve

Strain at top of cross section

Ultimate concrete strain in com-
pression

Yield strain

Strain when compression flange first
yields

Strain when compression flange is
completely yielded

Concrete stress

Maximum stress from test of standard
concrete cylinder

Maximum stress on concrete stress™
strain curve

Force on end of discrete element

. . th ,
corresponding to i displacement

Maximum concrete stress in tension



xxii

Symbol Typical Units . Definition
. 2 R
fy 1b/in Yield stress of reinforcing steel
fl’ f2’ f3, 1b and 1b=in End=forces on discrete element
fyr 5, g
{£]} 1b and 1lb=in (6 X 1) matrix of end-forces on
discrete element
{Af} 1b and 1b-in (6 ¥ 1) matrix of increments of end-
forces on discrete element
. . ,th
F, 1b and 1b=in Force corresponding to i member=
1 end-displacement
Fl’ Fys F3, 1b and 1b-in Member-end-forces in member coordi-
: nates
Fir Foo Fe
{F} 1b and 1lb=-in (3N %X 1) matrix of incremental frame
joint loads measured in structure
coordinates
{FF} 1b and 1b=in (6 x 1) matrix of member incremental
fixed~end~forces measured in member
coordinates
{FF.} 1b and 1b-in (3 x 1) matrix of member incremental
b fixed~end~forces at joint 1i in
member coordinates
{EE,} 1b and 1b=in (3 x 1) matrix of member incremental
1 fixed-end-forces at joint i in
structure coordinates
g (u) 1b and 1b=in Function of u
g'(u) 1b/in and 1b~in/rad Derivative of g(u) , tangent stiff-
ness
[g’(u)]—l in/1b and rad/1b-in Reciprocal or inverse of g'(u)
g(u) 1b/in and lb-in/rad Secant stiffness
h inches Distance between concentrated rota=

tional springs in discrete element
model, one~half of element's length



(k]
(k]
R
(k]

[k]

ST
(k]

Sv

K. .
1]

(]

Typical Units
4

in

in

in

1b/in, 1b, and
1b-in/rad

1b/in, 1b, and
1b-in/rad

1b/in, 1b, and
1b-in/rad

1b/in, 1b, and
1b-in/rad

1b/in, 1b, and
1b-in/rad

1b/in, 1b, and
1b=in/rad

1b/in, 1b, and
1b-in/rad

1b/in, 1b, and
1b~in/rad

1b/in and 1b=-in/rad

1b/in, 1b, and
1b~in/rad

xxiii

Definition

Moment of inertia of cross section
' .
about member's z -axis

Moment of inertia of sub-rectangle i
about the member's z'-axis

Moment of inertia of sub-rectangle 1
about its own centroidal axis

th
Increment of 1 force correspond-

. S . .th )
ing to a unit increment in j dis-

placement in discrete element

(6 X 6) tangent stiffness matrix for
discrete element

3(m + 1) X 3(m + 1) member tangent
stiffness used for member solutions

Conventional portion of discrete
element stiffness matrix [k]

Initial stress portion of discrete
element stiffness matrix [k]

Portion of discrete element initial
stress stiffness matrix [k]S due
to axial force

Portion of discrete element initial
stress stiffness matrix [k]S due
to shear force

Element of tangent stiffness matrix
[K] which represent the increment of

th
force corresponding to the i dis-

placement due to a unit increment of

the jth displacement

Tangent stiffness of nonlinear Q-W
curve

(6 X 6) member tangent stiffness
matrix in member coordinates
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Symbol
x]

(Kgy

(K]

Typical Units

1b/in
1b/in

1b/in, 1b, and
1b=in/rad

1b/in, 1b, and
1b=in/rad

1b/in, 1b, and
1b~in/rad

inches

inches

1b~in

1b=in

1b=in

1b=in

Definition

(2 x 2) stiffness matrix which gives
the effect of member springs in
direction of structure coordinates

(2 X 2) stiffness matrix which gives
the effect of structure joint springs
in direction of member coordinates

(3N X 3N) structure tangent stiffness
matrix in structure coordinates

{3 X 3) member tangent stiffness
matrix in member coordinates which
represents the increments of forces
at i due to unit increments of
displacements at j

(3 X 3) member tangent stiffness
matrix in structure coordinates which
represents the increments of forces
at i due to unit increments of
displacements at j

Length of member

Projection of member along member's
original undeformed axis

Number of discrete elements in frame
member

Number of discrete energy absorbing
springs like elements in discrete
element model

Number of rectangles input for a
cross section

Bending moment

Moments at points A , B , C , and
D in frame

. th
Moment of stresses on 1 sub=-
rectangle

Moment corresponding to no axial ,
thrust and outer fibers just yielded

~
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Symbol Typical Units Definition
Ml, MZ 1b-in Bending moments at location of first

and second rotational springs in
discrete-element model

" - Poisson's ratio

n - Number of rectangles into which input
rectangles are subdivided to obtain
linear stress=strain response over
each sub-rectangle

n - Number of degrees of freedom of
general discrete element

N - Number of joints in frame
p == Reinforcement ratio (As/bd)
{p} 1b and 1lb-in 3(m + 1) X 1 member incremental load

matrix composed of equilibrium errors
at member nodal points (stations)

P 1b and 1lb~in Load or force

AP 1b and 1lb-in Equilibrium error, i.e., load not
absorbed by structure

PE 1b Euler buckling load
. .th .
Pi 1b and 1b-in Load at end of i load increment
APi 1b and 1b-in Load increment number i
Pm 1b and 1b=in Maximum load on structure
~1 a2 &3 . . . . .
P.,, P,, P, 1b and 1b-in Applied incremental forces at joint

i measured in structure coordinates
(x~force, y-force, and moment about
z-axis, respectively)

Y. o, ¥ radians Discrete angle changes which occur at
rotational springs in discrete element

q 1b/in and 1lb=in/in Distributed load intensity
1b/in and 1lb=in/in Distributed load in the direction of

the g-axis per unit of length along
the B~axis
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Symbol

Qal

Typical Units
1b and 1b=in

1b
1b and 1lb-in
1b and 1b-in
in

1b-in/rad

in

1b and 1b-in

1b/in
1b/in
1b/in
1b/in

1b and 1b-in

1b and 1b=in

1b/in2

1b/in2

Definition
Concentrated load

Force to cause a mechanism based on
simple plastic theory

Resistive spring force from nonlinear
Q-w curve

Concentrated load in the direction of
the o-axis

Chang$ in distance parallel to mem-
ber x =axis between rotational
springs in discrete element

Rotational restraint

. ' ’ .
Distance parallel to member y -axis
between rotational springs in dis-
crete element

Internal force in discrete element
, .th |
corresponding to the 1 internal

deformation

Member spring in direction of struc-
ture x~axis

Spring acting at strugtural joint in
direction of member x -axis

Member spring in direction of struc-
ture y-axis

Spring acting at structural joint in
direction of member y -axis

(3 X 1) matrix of internal forces
corresponding to internal deforma-
tions in discrete element model

(3 x 1) matrix of increments of inter-
nal forces corresponding to internal

deformations in discrete element

Stress

X .th
Stress at centroid of i sub-
rectangle



Symbol

oi

Q

e

Ql

rce

rt

rt

Typical Units

2
1b~in

lb-in2
1b"in2
1b-in2
1b"in2

lb-in2

in
1b

1b

ib

radians

in and rad

in and rad

in and rad

xxvii

Intercept of gtress-strain curve with
. . th

stress axis for i sub-rectangle

Residual compressive stress

Constant compressive residual stress

over flanges

Residual tension stress

Constant tensile residual stress

over web

Yield stress

Thickness of flange of wide flange
section

Thickness of web of wide flange
section

Axial thrust
, th
Thrust on 1 sub-rectangle

Axial thrust corresponding to full
yielded condition of cross section

(3 X 3) member coordinate transforma-
tion matrix

(3 % 3) matrix which is the transpose
of T

Angle axially deformable bar in dis-
cgete element makes with member
x =axis

Displacement

Linear increment in u

. . ., th
Displacement corresponding to i

load increment
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Symbol

Au,
1

Wl’ Wy w3,
Wy ws, w

{w}

6

{bw}
{w}

{aw)

wl, Wz} Wa!
W, Wes Wg

Typical Units

in and rad

1b=in

1b

rad/in

radians

in and rad

in and rad

in and rad

in and rad

in and rad
in and rad
in and rad

in and rad

in and rad

in and rad

in and rad

Increment of displacement correspond=~

. . th .
ing to 1 load increment
Strain energy of discrete element

Shear force normal to axially deform~
able bar in discrete element

Curvature

Curvature corresponding to no axial
thrust and outer fibers just yielded

Member displacement

Discrete element end-displacement
number i

Displacement at mid-element, used to

enter Q-w curves and find resistive
spring, force QS ,» and tangent

stiffness of spring KS

End~displacements of discrete element

(6 X 1) matrix of end~displacements
of discrete element

(6 X 1) matrix of increments of end~
displacements of discrete element

(3m + 1) X 1 of member nodal point
(station) displacements

3(m + 1) X 1 matrix of increments of
member nodal point (station) dis-
placements

Joint displacement

Member-end-displacement number i

Member—~end displacements in member
coordinates



W, o, W
1 1 1

{0}

{aW}

<

Typical Units

in and rad

in and rad

in and rad

inches

.inches

inches

inches

inches

inches

Xxix

Definition

Displacements of joint 1 measured
in structure coordinates (distance
along x and y , and rotation about
z=axis, respectively)

(38 X 1) matrix of frame joint dis~
placements in structure coordinates

(3N X 1) matrix of linear increments
of frame joint displacements in

structure coordinates

Cartesian coordinate axes for frame
structure coordinates

. 7 .
Distance along member x -axis
Cartesian coordinate axes for member

Distance to any point in cross sec-
tion

Displacement of member relative to
member

. .th
Distance to centroid of 1 rec-
tangle



CHAPTER 1. INTRODUCTION

The design and analysis of plane frames such as those which occur in
buildings, highway bridge bents, and marine and offshore structures has become
increasingly complex in recent years. Today the designer must not only check
stresses and displacements under working loads, for which a linear analysis is
often assumed to be sufficiently accurate, but in addition, he must often
estimate the maximum load which his structure will support. If the responses
of the soil and of the structure are considered simultaneously, additional
complications arise.

Plastic design has been permitted by the AISC Manual (Ref 6) for some time.
Standard 318 of the American Concrete Institute (Ref 5) does not specifically
permit limit design; hoﬁever, it does permit up to a 20 percent redistribution
in the design moments based on the concepts of limit design. Both limit and
plastic design are used to estimate a structure's maximum load and each method
predicts the additional load capacity that a statically indeterminate structure
possesses beyond the load at which one section in the structure reaches its
maximum capacity., This additional strength is available only if the structure
is sufficiently ductile to develop the necessary zones of yielding. These zones
of yielding are often idealized as plastic hinges occurring at points. Both
limit and plastic design are unconservative in certain cases unless modified
for the more general nonlinear effects discussed later .in this chapter,

Nonlinear behavior of many structures starts at stress levels well below
the proportional limit of the material from which the frame is constructed.
This nonlinearity is caused by the nonlinearity of the soil supporting the
structure and the long unsupported lengths and heavy axial loads that the
frame members often have.

When energy absorbing characteristics are important, as for earthquake
and blast loads, the complete load-displacement history of the structure should
be calculated., Such calculations are practical for real structures only with

the aid of a digital computer program.



Linear Discrete Element Analysis of Complex Frames

A research program entitled '"Development of Methods for Computer Simu-
lation of Beam-Columns and Grid-Beam and Slab Systems" is nearing completion
at The University of Texas at Austin. The work has been sponsored by the
Texas Highway Department and the Federal Highway Administration. The purpose
of this research has been to develop techniques for analyzing structures for
which no closed-form mathematical solutions are available. Hays and Matlock
combined the discrete-element modeling techniques developed in previous beam-
column research (Ref 40) with standard matrix techniques to develop a linear
frame analysis program (Ref 27). That program is capable of analyzing large
nonrectangular plane frames composed of nonprismatic members subjected to
complex lateral and axial loading and elastic support conditions, but it does
not consider any nonlineér effects. The present research is an extension of
that work which will consider the nonlinear response of plane frames to static

loads.

Sources of Nonlinear Behavior

Several nonlinear effects are possible in plane frames (Fig 1). Typical
nonlinear stress-strain curves are shown in Fig 1(a). Using the nonlinear
stress-strain curve for the frame materials gives a better prediction of the
general load-displacement response of the frame than using idealized elastic-
plastic moment-curvature relations (Ref 47). In particular the ultimate load
is predicted more accurately by using the appropriate nonlinear stress-strain
curves where the displacements interact with the axial forces, as pointed out
by Adams (Ref 1). The stress-strain curves sometimes do not pass through the
origin due to prestressing or temperature effects.

Elastic spring constants have been used (Ref 27) to represent supports and
they are more realistic than rigid supports. However, support curves which
represent the reaction-displacement (Q-W) relations can be nonlinear as shown
in Fig 1(b), particularly when the support is some type of soil, Thus,
an adequate representation of a support may require the description of a num-
ber of points on the support curve (Ref 41)., Supports may occur at structural
joints or may be distributed along the member, as for a grade beam or a fric~

tion pile,
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Fig 1. Nonlinear effects in plane frames.



All framed structures have members with axial forces present. The axial
forces act on lateral displacements to cause secondary bending moments as
shown in Fig l1(c¢). These moments tend to straighten a member and thus stabilize
the structure when axial forces are in tension and increase the curvature in a
member and thus decrease the stability of the structure when they are in com-
pression. Two types of secondary moments occur in a frame member, The so-
called PA moment is equal to the force P times the joint displacement A .
The so-called Py moment is equal to the force P times the distance vy ,
where y 1is the difference between the displacement of the member and the
displacement of the member chord.

When supports prevent or reduce the axial movement of both ends of a
member, as shown in Fig 1(d), a powing or stretching of the member due to
bending occurs. This causes an axial thrust which causes Py moments and
makes the member's response to load highly nonlinear,

When extremely large displacements occur, the entire geometry of the struc-
ture is changed, as shown in Fig l(e). The length of moment arms may change
significantly, and the axial force and shear are not always parallel and per-
pendicular to the member's original axis.

When the stress in a material has exceeded the elastic limit, upon unload-
ing the material follows a different path from the loading stress-strain curve.
Generally the material unloads on a path parallel to the initial slope of the
stress-strain curve. However, as borne out in the example problems presented
herein, many structures undergo few if any such inelastic strain reversals,
even when subjected to nonproportional loadings.

Residual stresses due to the cooling of rolled metal shapes and welded
built-up sections cause different areas of a cross section to yield at different
stress levels., The exact distribution of residual stresses is very complex and
is seldom if ever known accurately. Thus, an extremely accurate analysis is
unwarranted., An approximate method of handling residual stresses developed in
this report is sufficiently accurate for bending of a wide flange section about
its strong axis.

The effects of both nonlinear stress-strain and soil support curves can
be classified as material nonlinearity. The other nonlinear effects discussed
above can be grouped as geometric nonlinearities, since they occur because the
structure displaces and causes its geometry to change. A plane frame, as shown

in Fig 1(f), will be subject to both material and geometric nonlinearities.



Purpose of This Research

Considerable research has been done to develop design and analysis tech-
niques capable of considering each of the sources of nonlinear behavior dis-
cussed above. However, no computer analysis is known that considers the
effects of nonlinear stress-strain and soil support curves and all geometric
effects. The purpose of this research was to develop such a computer analysis
and to maintain the capabilities developed in Ref 27 to work problems dealing

with a wide range of real frames.

Outline of Presentation

Chapter 2 reviews a general method of nonlinearly elastic analysis called
the tangent stiffness method which is well suited for a discrete element solu-
tion of framed structures. In Chapter 3 the tangent stiffness ﬁethod is applied
to the nonlinear solution of frame joint displacements. The force-displacement
equations for the discrete element model are developed in Chapter 4 and the
tangent stiffness method is applied to develop the nonlinear solution of frame
members., The associated computer program is discussed in Chapter 5, and an
example is given to illustrate the use of the program. Several examples that
illustrate the validity of the solution for single members are presented in
Chapter 6. Chapter 7 presents the results of some previous research on steel
frames and shows how well the program can predict the response of steel frames.
Several concrete members and frames that had been tested were analyzed and a
comparison of the observed and predicted behavior is presented for these frames
in Chapter 8., Two examples of structure problems involving soil-structure
interaction are worked in Chapter 9. These examples illustrate the versatility
of the program.

Appendix A gives the linear stiffness matrix for prismatic members without
elastic restraints and the transformation matrix to transform displacements
and forces from member coordinates to structure coordinates., The numerical
integration procedure used to obtain thrust, moment, and stiffness terms by
integrating the stresses over the cross section for a specified axial strain
and curvature is developed in Appendix B. The discrete-element matrices needed
for the member solution are given in Appendix C. The transformation matrices
needed to transform the stiffness of springs between structure and member

coordinates are given in Appendix D. The remaining appendices include,
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respectively, the input guide, flow charts, FORTRAN notation, FORTRAN listing

of the program, and examples of program input and output,



CHAPTER 2. NONLINEAR ELASTIC ANALYSIS

In this chapter an extremely powerful method of structural analysis called
the tangent stiffness method is reviewed. The tangent stiffness method, when
applied to a one-degree-of-freedom system, has a very simple and descriptive
interpretation. The method, when extended to multi-degree-of-freedom systems,
is well suited for the solution of framed structure problems, using a discrete
element model of the frame members. The complete nonlinear frame solution is
shown to contain an iterative solution for the individual members within the

iterative solution for the structural joint displacements.

Modeling a Complex Structure

During the design-analysis cycle the structural engineer must model the
real or prototype structure. The modeling process consists of three steps.
First, the engineer creates a model that represents his complex prototype
and yet remains simple enough to analyze. The model may be physical or analy-
tical. Second, the engineer analyzes the model either experimentally or
mathematically, Third, he interprets the results of the model analysis in
relation to the prototype.

Actually, the process is seldom that simple. The original model may be
too complex to be analyzed., Or, after interpreting the results, the engineer
might decide that the model does not accurately represent the prototype. In

either case a new and better model must be created.

Matrix Methods of Structural Anmalysis

Matrix methods of structural analysis are accepted techniques for modeling
structural behavior. They are documented by many writers, including
Przemieniecki (Ref 49), who states:

Matrix methods are based on the concept of replacing the
actual continuous structure by a mathematical model made
up from structural elements of finite size (also referred
to as discrete elements) having known elastic and inertial
properties that can be expressed in matrix form.
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Actually, "continuous' as used by Przemieniecki may be somewhat misleading,
since a material such as steel is continuous only if viewed at the microscopic
level or higher and materials such as concrete are continuous only if viewed
at the macroscopic level or higher. One might consider that the continuum
mechanics model is being replaced with a discrete or finite element model,
Then, since the continuum model itself may have some errors in it, the results
of any new model should be compared not only with continuum solutions but also
with experimental results obtained from tests on structures made of real
materials.

The words 'finite element" and '"discrete element" also deserve some dis-
cussion. As used herein, finite element (Ref 66) denotes an element whose
displacements are described by a continuous mathematical function. Discrete
element (Ref 27), on the other hand, is used to describe mechanical models

that have discrete changes in rotation,

Finite and Discrete Element Methods

Both finite and discrete element methods allow the designer to subdivide
a complex structure into a number of regions or elements. Each element may
have different stiffness properties and loadings. The elements are connected
at a finite number of nodal points, and in general the more nodal points used
the more accurate the predicted response of the structure,

The development of finite and discrete element techniques has paralleled
that of digital computers, as both techniques involve the solution of a large
number of simultaneous equations, for which a digital computer is essential.
These equations relating element properties and nodal point loads, displace-
ments, and boundary conditions are the nodal point equilibrium equations,

Thus, in theory, any complex structure can be modeled by a large number
of elements whose properties are representative of the structure. In practice,
the number of elements which can be used is physically limited by the size of
available computers and economically limited by the amount of computer time
which a problem warrants, ‘

Both finite and discrete techniques will give adequate results if enough
elements are used. In general, finite elements are more complicated mathe-
matically and more time is required to develop and generate the element pro-
perties, such as the element stiffness matrix., However, they can adequately

represent smoothly varying loadings, stiffness changes, and support conditions



with fewer elements than required for a discrete element solution of equal
accuracy. Thus, finite elements may be more economical for modeling struc-
tures whose properties are very regular.

Discrete element models, on the other hand, are mathematically simpler,
easier to visualize,* and require less development and generation time. Thus,
structures which have widely varying and discontinuous loadings, stiffnesses,
and support conditions may be more economically modeled using a discrete
element model.

Problems in between the very regular and the very irregular may be
modeled by either method. All other things being equal, a structure for which
the nodal point equilibrium equations have a narrow band width is better
represented by a discrete element model with its larger number of simple
elements. A structure whose equations have a wide band width will be better
represented by a finite element model which has a fewer number of more com-
plicated elements.

A discrete element model was chosen for the plane frame solution developed
herein to allow frame members to have widely varying loadings, stiffness
changes (particularly since nonlinear material effects are being considered),
and supports and because, as discussed later in this chapter, frame members

have a very narrow band width when isolated from the rest of the frame.

Elastic Analysis

The elastic analysis of a statically loaded structure is basically a
problem in simultaneously satisfying four sets of conditions. The governing
conditions are 1) nodal point equilibrium, 2) compatibility of nodal point
displacements, 3) any boundary conditions specified at the nodal points, and
4) the element force-displacement relations. It is assumed that the element
force-displacement relations insure that equilibrium, compatibility, boundary
conditions, and constitutive laws for the element are satisfied throughout the

element.

A

Discrete element models were used to obtain qualitative results regarding
structural behavior before digital computers made possible the economical use
of a large number of elements to obtain accurate quantitative results, One of

the best known examples is Shanley's inelastic buckling model (Ref 54).
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Most methods of satisfying these conditions can be classified as either

displacement or force methods based on whether the formulation is such that
Fk

*
the basic unknowns to be found are nodal point displacements or forces
The force or flexibility method has advantages for certain structures but is
not as easy to formulate in general terms as the displacement method. Hence,

the displacement or the stiffness method is the only one considered herein,

Linearly Elastic Analysis

A set of linear simultaneous equations can be written that insure satis-
faction of the four governing conditions using the direct stiffness method,
discussed in Refs 27 and 36. The direct sitffness method is a technique by
which the element stiffness matrices are formed in their own element coordinates
and then transformed to‘the structural coordinates. Then the structure stiff-
ness matrix is formed directly by adding in the element stiffness matrices in
the appropriate positions. Premultiplying the unknown nodal point displacement
vector by the known stiffness matrix and setting this result equal to the known
nodal point force vector gives the desired simultaneous equations of nodal
point equilibrium. These equations may be solved for the nodal point displace-
ments which insure that all four governing conditions are satisfied. Using
the displacements thus found, the governing conditions can be applied to find
complete force and displacement information for the individual elements. It
is well known that the solution of a set of linear simultaneous equations is
unique. Therefore, there is no question of the uniqueness of the results of a
linearly elastic solution and superposition may be freely and fruitfully

applied.

Nonlinear Elastic Analysis Using the Tangent Stiffness Method

For a nonlinear but elastic analysis, the explicit writing of the nodal
point equilibrium equations may be difficult or impossible, especially when

some of the stiffness parameters of the structure are in other than equation

* , ,
Herein the word '"displacement' should be considered to mean either a trans-
lation or a rotation.

Fo¥e .
Herein the word "force" implies either a translational force or a moment.
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form; for example, a number of points on a nonlinear stress-strain or soil
support curve. It is possible, however, to construct an algorithm for satis-
fying the four governing conditions that is mathematically equivalent to using
the Newton Rapheson method (Ref 28) to solve the implied nodal point equilibrium

equations. This algorithm is described herein as the tangent stiffness method

which is an extension of the direct stiffness method to the solution of non-
linear but elastic structures and has been used by others (Refs 44, 34, and 65).

The tangent stiffness method uses an iterative process in which the nodal
point displacements are successively corrected until the four governing condi-
tions are satisfied. The corrections are made by applying the nodal point
equilibrium errors to a fictitious temporarily linear structure whose stiffness
matrix is position-dependent and properly reflects the stiffness of the struc-
ture in its deformed position.

Because of the nonlinearity of the equations, superposition is not valid
and in fact the uniqueness of the solution is not even guaranteed. However,
Murray (Ref 44) offers a-good argument that the result obtained by this tech-

nique is physically reasonable,.

One-Degree-of-Freedom System

An oversimplified model is examined here to clarify the iteration tech-
nique for multi-degree-of-freedom systems, Consider a single-degree-of-freedom
structure in which a single load P 1is a nonlinear function of a single dis-
placement u . The nonlinear relation is shown by the curve of Fig 2(a) and is

given mathematically by
P = g(u) (2.1)

The function, or algorithm, for finding P need not be an explicit
formula, but it must give a unique P for any given value of u . A funda-
mental problem in structural mechanics is to find, for a given value of P ,
the corresponding u . This u may not be unique, but normally, iterative
processes will converge on a stable position. For example, in Fig'2(a),
values of P below the maximum load Pm will converge on displacements to the
left of the displacement corresponding to Pm . Points to the right of Pm
may be obtained by a controlled displacement technique as discussed in the next

chapter,
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Tangent and secant iteration techniques.
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th
Assume that P, and u, at the end of the i load increment are
i

known and that, given Pi+l , it is desired to find u, . From Fig 2(a),

i+l
the increments in P and u are seen to be APi and Aui and are defined

by

u, g S ug ot (2.2)

Piy =B+ P, (2.3)
The first derivative of the function g(u) is g’(u) and is defined as

the tangent stiffness of the structure. From Fig 2(a)

AP, AP
g/(u) = — ~— (2.4)

Au Aui

Here Au  is the linear increment in u corresponding to APi and is

thus a linear approximation to Aui . Thus, solving Eq 2.4
’ -1
py ~omo= 87w (R (2.5)

where [g’(u)]—1 is the reciprocal, or the inverse, of g’(u)

Thus, the following first approximation to U is evident. First,

solve Eq 2.3 for APi . Then solve Eq 2.5 for an approximation to Aui .

Then solve Eq 2.2 for an approximation to u, This corresponds to going

i+l
from point 1 to point 2 on Fig 2(a).

The approximation of u can then be substituted into the algorithm for

i+l
finding P (Eq 2.1). The value of P obtained will not equal Pi+1 but
P at point 3 on the curve. Obviously then, not all of the load Pi+1 has

been absorbed by the structure, A remnant or equilibrium error AP remains

where
AP = P]._+1 - P (2.6)

For this new value of AP the process can be repeated. Solving for another
linear increment in displacement A1 , move to point 4; then correcting for

equilibrium, move to point 5; and repeat the process until a sufficiently



small AP 1is left. The flow chart of Fig 3 is thus suggested. The study of
this flow chart is a critical step in understanding the nonlinear frame solu-
tion developed herein.

A similar technique can be developed using a secant stiffness g(u) as
suggested by Fig 2(b). The secant stiffness will in general require more
iterations but is more stable. Also, the secant stiffness is easier to com-
pute than the tangent stiffness., However, due to the rapid convergence of the
tangent stiffness technique and its potential for future inelastic work, it

was used throughout this study.

Multi-Degree-of-Freedom Systems

The iterative process, which was demonstrated on a simple geometric basis
for a one-degree-of-freedom system, can be extended to a multi-degree-of-
freedom system by using Taylor series as done by Lee in Ref 34, The same
algorithm applies except that the individual forces (P, AP, etc.) now become
force vectors, the individual displacements (u, Au, etc.) now become displace-
ment vectors, and the single stiffness term g’(u) becomes a square stiffness
matrix, The stiffness matrix is not actually inverted to solve for the linear
increments in displacements, but instead, an elimination technique is used to

solve for the desired increments of displacement.

Incremental and One-Step Iterations

The iterative solution used might be described as an incremental loading
iterative solution; that is, loads are applied in increments, and within each
increment an iterative solution is performed until the full value of loading
at the end of the increment is absorbed by the structure. However, in general
there is no need to trace the complete load history of a structure if only the
results at one high load level are desired, The program documented herein
allows the user to specify a number of small increments, one large increment,
or any combination desired. This was done because it was observed by Lee (Ref 34)
and by the author that usually, the direct, or one-step, iteration process is
the fastest and most economical. However, in some cases, more information
about the loading history is desired, and some problems fail to converge at
very high load levels unless a few intermediate increments are used. Thus, the
program allows the user maximum flexibility for solving a wide range of non-

linear problems,
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Murray (Ref 44) proposed a modification of the tangent stiffness algorithm
whereby the tangent stiffness was revised only between load increments thus
not requiring a reformation of and a re-elimination of the stiffness matrix
between load increments, Murray's technique is probably best when a large
number of small increments are applied. However, when the size of the load
increment may be fairly large it was felt that the more rapid convergence
obtained by modifying the stiffness for every iteration was desirable, and that

technique is used in the computer program developed herein.

Special Technique for Framed Structure

The framed structure when treated as a series of line members intersecting
at a number of structurgl joints is well suited to using a large number of
elements within each member. Thus, any actual variation of member properties,
loading, or support conditions may be represented. It is possible to econo-
mically subdivide the members into a large number of elements by using a static
condensation process (Ref 19). The large number of equations with their result-
ing large band width which would arise if all elements were combined into one
system of equations need not be solved explicitly. Rather, the individual
members can be solved separately using as many elements as necessary to obtain
each member's stiffness and fixed-end-force matrices. These matrices may then
be combined to form the structure stiffness and load matrices using standard
matrix techniques. The only unknowns will be the structural joint displace-
ments. This condensing of the equilibrium equations results in considerable
savings in computer time and storage requirements for many problems which would

otherwise require a large number of pseudo-structural joints.

Joint and Member Solutions

As just discussed, it is advantageous to perform the member solutions
separately from the solution of structural joint displacements, Thus, for
nonlinear frames, an iterative cycle for each member occurs within the itera-
tion on structural joint displacements, (The members, with their current
level of loading, converge on the latest set of joint displacements., Then
the member-end-forces are found, and an equilibrium check of the joints is
made. Then a new set of joint displacements is found, and the process is

repeated.) Both iterations use the tangent stiffness method. No additional
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loops or iterations are required, as all sources of nonlinearity are handled
simultaneously. A general flow chart of the two iteration processes is shown
in Fig 4. The details of the frame solution are discussed in Chapter 3 and the

details of the discrete element member solution are developed in Chapter 4,
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CHAPTER 3. PLANE FRAME SOLUTION

The tangent stiffness method was reviewed in Chapter 2. The solution of
a framed structure was shown to consist of an iterative nonlinear member
solution nested within an iterative nonlinear solution for the frame joint
displacements. The frame solution is developed in detail in this chapter,
and in Chapter 4 the member solution is shown to be a simplified frame
solution.

The plane frame problem is defined in this chapter and the assumptions
and limitations of the proposed solution are given. Then a linearly elastic
frame solution is reviewed and modified to accommodate the tangent stiffness
algorithm. The nonlinear solution is presented and it is shown how the load

may be incremented up to a structure's maximum load capacity.
P P y

Plane Frame Definition

A plane frame such as that shown in Fig 5 is composed of straight-line
members that lie in a plane, in which all loads and displacements occur. For
convenience, the plane is taken to be the x-y plane of a right-hand Cartesian
coordinate system.

The end of a member or the intersection of two or more members is a
joint. A member may be either rigidly connected or pinned at a joint. All
members rigidly connected at a joint rotate through the same angle and trans-
mit moment to one another. When a member is pinned at a joint, it is free to
rotate independently of the joint and other members intersecting at that joint.

~1

Each of the N joints has three degrees of freedom, Wi s ﬁi , and
Wi , as shown in Fig 5. Translational displacements Wi and Wi must be
equal (compatible) for all members intersecting at a joint. The rotational
displacement may not be the same for all members at a joint, since some or
all of the members may be pinned at the joint. Hence ﬁ? is defined as being
the rotation of the joint, and the pin is assumed to be a part of the member

occurring at an infinitesimal distance inside the member. When all members

at a joint are pinned at the joint, the rotation of the joint is undefined.

19
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The program developed herein allows such joints and outputs a very large
rotational displacement to indicate that the rotation is undefined.

Joint forces ?i , ?? , and ?g , shown in Fig 5 can be applied at any
joint, The joints can be supported by linear or nonlinear springs. Member
loads and supports can be quite general, as discussed in Chapter 4.

Research discussed in a later chapter has shown that the size of a rigid
joint has an effect on both the strength and the stiffness of a frame. The
solution developed herein allows lengths of the member near the joint

(1) to be rigid,

(2) to be linearly elastic,

(3) to follow the member's stress-strain curve, or

(4) to be combinations of the above.

Assumptions and Limitations of the Solution

Although the solution developed herein covers a wide range of problems
and considers large displacements, nonlinear stress-strain curves, and non-
linear soil supports, the solution is developed within a definite framework
of assumptions. These assumptions, and limitations are as follow:

(1) Frame members are initially straight-line elements.

(2) Bernoulli's hypothesis of a linear distribution of strain

through the depth of a member is valid,

(3) Shearing deformations are negligible.

(4) The deformations (strain and curvature) are of an infinitesimal
order, even though the displacements (axial, lateral, and
rotational) may be of any size.

(5) No out-of-plane loads or displacements occur. Thus, lateral
or local buckling can be considered only by limiting strains for
the material stress-strain curves, and members must be symmetri-
cal about the x-y plane.

(6) The constitutive equations for the member can be satisfied by
specifying nonlinear but elastic uniaxial stress-strain curves.
Various portions of the cross section may have different stress-

strain curves.
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(7) The response of the structure to time-dependent loads (to consider
creep or rapid loadings) is obtainable only if the appropriate
pseudo-static stress-strain curves can be developed.

(8) Nonlinear but elastic Winkler-type springs can be used to repre-
sent the axial and lateral support characteristics of soil or

other supports.

Linearly Elastic Frame Solution

Matrix methods of linear frame analysis are well documented (Refs 36 and
49) and will be discussed only briefly here. Figure 7 illustrates a linear
frame solution from Ref 27. First the problem data are input. (Special
attention was given in Ref 27 to developing input techniques that were
versatile but still convenient for routine problems.) Next the member stiff-
ness matrix and fixed-end-force matrix for the members are calculated in
member coordinates (x', y', z', as shown in Fig 6). Member-end-displacements
(axial, lateral, and rotational) and their corresponding member-end-forces
(axial, lateral, and moment) are also shown in Fig 6, at the ends of the
member,

Member stiffness matrix. The member stiffness matrix is a 6 X 6 matrix

[K] relating member-end-forces to member-end-displacements. A typical

element of [K] is Kij . The 1i represents the ith row and j Trepre~
sents the jth column of [K] . For a linearly elastic member, Ki'
represents the force corresponding to the ith displacement due to i unit
value of the jth displacement. Thus, the jth column of [K] is the

collection of member-end-forces due to a unit value of the jth displacement.
Prismatic members without distributed linearly elastic spring restraints

have the well-known member stiffness matrix shown in Appendix A. A discrete
element solution for more realistic members was developed in Ref 27 using the
above unit displacement definition of the stiffness terms.

Member=fixed=end=force matrix. The member-fixed-end-force matrix is a

6 Xx 1 column matrix {FF} . Special cases for simple loadings are available.
More general loadings can be handled by performing a discrete element solution
of the member, subject to its member loads and zero end-displacements.

Structure stiffness matrix. The 3N x 3N structure stiffness matrix

o~

[K] is formed by first transforming the member stiffness matrix into structure
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coordinates (x, y, z, as shown in Fig 5):

t

[Kij] = [T] [Kij] [T] (3.1)
where

[Kij] = (3 X 3) member stiffness matrix in member coordinates
which represents the forces at joint i due to unit
displacements at joint j ,

[T] = (3 X 3) transformation matrix that transforms member
displacements and forces into structure displacements
and forces (shown in Appendix A),

[T]t = (3 x 3) transpose of |[T] ,

[Kij] = (3 X 3) member stiffness matrix in structure coordinates

which represents the forces at joint i due to unit

displacements at joint j

The member stiffness matrices are divided into 3 X 3 submatrices for
convenience in the next step, which consists of assembling the 3N x 3N
structure stiffness matrix [i] from the member transformed stiffness
matrices, using the direct stiffness method (Refs 27 and 36).

Structure load matrix. The member-fixed-end-force matrix is subdivided

into 3 X 1 submatrices and transformed into structure coordinates by

{7 )

(1t {FFI} (3.2)

where

(3 x 1) matrix of member-fixed-end-forces at joint

{re)

{7

i , in member coordinates,

(3 x 1) matrix of member-fixed-end=-forces at joint

i , in structure coordinates.
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The 3N X 1 structure load matrix {%} is then formed by subtracting
the transformed fixed-end-forces from the applied joint loads at all joints.

Joint supports. Any joint may have vertical, horizontal, and rotational

linearly elastic support springs. If a joint displaces, support reactions will
be generated equal to the negative of the displacements times the appropriate
spring constants. These reactions must be considered in writing the joint
equilibrium equations., 1If the support reactions are added to the equations,
the effect is to add the corresponding spring term to the diagonal of the
structure stiffness matrix [K].

The effect of the other matrix terms becomes negligible as the spring
term becomes very large compared to the other terms in any row of X1 .
Similarly, the load term for that row becomes negligible.

Thus, a zero displacement can be obtained by specifying a very large
spring restraint. Likewise, a specified displacement can be obtained by
specifying a large spring restraint and a correspondingly large joint force
equal to the desired displacement times the spring restraint.

Handling specified displacements in this way allows both real problems
with finite values of support restraints and idealized problems with infinitely
stiff supports to be solved by the same technique,

Solution of joint equilibrium equations. Premultiplying the structure

joint displacement matrix {ﬁ} by the structure stiffness matrix [ﬁ] yields
the structure load matrix {ﬁj . Thus the joint equilibrium equations may be

written as
Kl - (W} = (7 (3.3)

Equation 3.3 1s solved by a recursion-inversion process previously developed
(Ref 18). The solution considers the banding and symmetry of the stiffness

matrix, A multiple load option allows significant savings in computer time

when the same structure is analyzed for several loading conditions. This is
possible since for a linear solution the stiffness matrix is independent of

the loading. The joint displacements are then output.

Member-end-forces and equilibrium errors. The member-end-forces and other

member data such as shears, moments, and displacements can be found by a dis-
crete element solution of the members subject to their member loads and end-

displacements (transformed from the structure displacements found in the frame
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solution to member coordinates), The sum of all forces acting at the joints
(applied forces, member-end-forces, and reactions) should equal zero if the
solution is correct. In practice there are some small round-off errors and
discretizing errors. Thus, the joint equilibrium errors are an indication of
the validity of the solutions, and it is wise to print these out as a check on

programming errors and machine malfunctions.

Nonlinearly Elastic Frame Solution

Figure 8 shows the general flow diagram for a nonlinear frame solution.
It resembles the linear frame solution but the tangent stiffness algorithm
discussed in Chapter 2 is incorporated in it. The iterative process shown can
be used for any given load level and is thus valid for either a single load
level or a series of load increments.

Member tangent stiffness matrix. The tangent stiffness matrices for the

members are formed in member coordinates (undeformed) as in a linear solution.
However, in the more general nonlinear solution a member tangent stiffness
matrix is a nonlinear function of the member loads and member-end-displacements,
Martin (Ref 37) points out that the definition of the element of a nonlinear

. . . .th .th .
member stiffness matrix in the i row and the j column Kij is the

partial derivative of the ith force Fi with respect to the jth displace-

ment Wj , L.€.,

K,. = Efi (3.4)
ij W, ’
]
Thus the member stiffness matrices are formed by six discrete element
solutions similar to the linear unit displacement technique developed in
Ref 27 except that the discrete elements have nonlinear force-displacement

relations which are developed for the nonlinear discrete element model in

Chapter 4 and the unit displacements are unit increments of displacement from
the present position of the member.

Member incremental fixed-end-force-matrix. A fixed-end-force matrix for

the members is formed only on the first frame iteration., Succeeding iterations
include the effects of the member loads in the joint equilibrium errors. The

member incremental fixed-end-force matrices {FF} are formed by a discrete
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clement solution for the increments of member loads with the member-end-dis-
placements held in their present position (see Chapter 4),

Structure tangent stiffness matrix and incremental load matrix. The

formation of the structure tangent stiffness matrix [K] and incremental load
matrix {?} is the same as for the linear solution,

Nonlinear joint supports. Linearly elastic joint supports and specified

displacements are handled as in a linear solution. For nonlinear joint springs
the tangent stiffness of the spring's Q-W curve is added to the structure
stiffness matrix. Since the incremental load matrix is being constructed, the
resistive spring forces corresponding to the spring's displacement are not
normally added into the incremental load matrix; instead the spring force is
included in the joint equilibrium check. However, on the first iteration,
from a zero displacement start, the force corresponding to zero displacement
should be added into the structure incremental load matrix as a fixed-end-
force.

Joint supports may be in the direction of the member axes rather than in
the direction of the structure axes, as for an inclined pile that develops an
end bearing force, Such a spring produces a force in the direction of both
structure axes due to a unit displacement in either of the structure directions.
The method of transforming spring stiffnesses from member directions to struc-
ture directions is given in Appendix D (Case a).

Solution of incremental joint equilibrium equations. The solution of the

simultaneous equations is carried out as in a linear solution. However, the
increments of displacement {ﬂi} are obtained and are then added to the pre-
vious displacements {W} to obtain the new estimate of displacements {W} .

Nonlinear member-end-forces and joint equilibrium errors. The new

estimates of joint displacements are transformed into member coordinates and
an iterative discrete element solution is made for all members, as discussed
in Chapter 4. The discrete element solutions determine sets of member-end-
forces compatible with the member-end-displacements, member loads, and
restraints.

The sum of all forces acting at each joint should equal zero if an equili-
brium position has been found. The magnitude of the joint equilibrium errors
is an indication of the joint loads not absorbed by the structure in that
estimated position, If the errors are greater than a specified tolerance, the

cycle is repeated with the incremental joint loads taken as the equilibrium
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errors. When the joints converge, the results may be output and the program
returns for a new load leﬁel.

The joint equilibrium error corresponding to a specified joint displace-
ment is not well defined mathematically, In the present program when a large
spring and force are used to specify a displacement, no internal equilibrium
check is made corresponding to that displacement in the iterative process. The
equilibrium error output corresponding to the specified joint displacement is
actually the force required to enforce the displacement. The program interprets
any force larger than 1 X 1030 as one used to specify a displacement.

More details of the actual program are given in Chapter 5 and the
Appendices.,

Maximum load analysis. By increasing the loads until the solution diverges

or the value of a critical variable such as shear or strain in the compression
flange becomes excessive, one may make an estimate of the maximﬁm load that a

frame can carry. The loads may be increased, proportionally or otherwise, as

desired,

The nonconvergence of the solution at a given load level is often an
indication that the frame is physically unable to come to equilibrium under that
load condition. However, it is possible that the lack of convergence may be
due to other reasons, such as

(1) wusing too severe a tolerance on the joint equilibrium errors or the

member equilibrium errors,

(2) wusing incompatible equilibrium errors for the joint and member

solutions,

(3) applying too large a load increment if the frame or one of its mem-

bers undergoes a severe change in stiffness, or

(4) having a member in a state of zero stiffness, such that it will not

come to equilibrium,

The first two possibilities can be virtually eliminated by the following
technique: For the given frame, select as the joint tolerances a force and a
moment that will have a negligible effect on the frame; the member force and
moment tolerances can be chosen as one-tenth of the joint tolerances to allow
for accumulation of errors in the member solution. This procedure gave good
results for the wide range of problems for which the program was tested.

The other two possibilities are due in large part to the fact that a mem-

ber solution is attempted separately from the overall frame solution. Thus
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the nonconvergence of a member may not correspond to the maximum load on the
frame as a whole. The output from nonconverging solutions should be studied to
see if the frame is actually near a failure condition. The steel frame with
tie rods discussed in Chapter 7 illustrates these special problems and how

they can be handled.



CHAPTER 4. DISCRETE ELEMENT MODEL OF FRAME MEMBERS

In developing the nonlinear frame solution in Chapter 3, it was assumed
that there was a method for obtaining the member tangent stiffness matrix, the
member incremental fixed-end-force matrix, and the member-end-forces correspond-
ing to specified end-~displacements and member loads.

In this chapter, the necessary member sclutions are developed using a
discrete element model of the members. The force~-displacement and stiffness
properties of the elements are needed for the member solutions just as the
force-displacement and stiffness properties of the members are needed for the
frame solution. Thus, the force displacement equations for a typical discrete
element are developed early in Chapter 4, The stiffness matrix'of the element
is found by applying Castigliano's first theorem to the element force~displace=~
ment equations. Then the effects of member loads and restraints are discretized
to the nodal points connecting the elements. Finally, the member solutions
needed to define the force-displacement response and stiffness properties of

the members are developed.

Existing Capabilities for Response of Nonlinear Members

A closed-form solution for a frame member with variable cross section,
general loadings, and nonlinear material and support properties which considers
all geometric effects has not been developed.‘ Simple cases considering all
geometric effects except axial shortening have been worked using elliptic in-
tegrals (Ref 21). Approximations of the nonlinear geometric effects have been
made using finite element models by Jennings (Ref 32) and Saafan (Ref 53).
Nonlinear materiai effects have been approximated by numerous investigators
(Refs 59, 8, and 24). Nonlinear support properties, nonlinear material proper-
ties, and the Py and PA moments have been considered in a discrete element
member solution (Ref 39).

Gunnin (Ref 25) has developed a frame solution which considers large
displacements of structural joints and nonlinear material properties, as ex-

pressed in Ramberg-Osgood M-¢-T (moment-curvature-thrust) curves. However

31
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his member solution neglects the effects of member deformations on the statics
of the member. His solution may be used for problems with significant Py
moments only by subdividing members and inserting additional joints. Extra
joints are also required at concentrated loads., Distributed loads are handled
by specifying equivalent concentrated loads.’

Alvarez (Ref 4) has a solution which considers inelastic unloading for
an elastic'plastic stress-strain curve, but it is restricted to rectangular
steel frames made of wide flange members.

The discrete element solution that is developed herein allows for a more

general frame member than previously possible.

General Frame Member and Discrete Element Representation

A plane frame member is shown in Fig 9(a). Loads, linearly elastic re-
straints, and changes in a linearly elastic cross section may occur anywhere.
Loads and restraints may be specified in either member or structure coordinates.
Member restraints may be nonlinear and have a linear variation between struc-
tural joints. Cross sections may be defined as a series of pieces. Fach
piece can be either a rectangle or a thin wall tube. The dimensions and lo-
cations of the pieces can vary linearly between structural joints. Each piece
in the cross section may have a nonlinear stress-strain curve. The coordinates
of corresponding points on the stress-strain curves can vary linearly between
structural joints, ,

The member is assumed to be initially straight. All loads and displace-
ments are assumed to occur within the plane of the frame, in which one of the
member's principal axes lies. The members may be pinned or rigidly connected
at the joints. The effects of shearing deformation are neglected.

The member is divided into m elements of length 2h . The force-dis-
placement equations can then be obtained for a general element. Member loads
and restraints are discretized to the stations where the adjacent elements
are connected and are fully compatible. Thus the member may be solved as a
structure composed of a series of straight line elements.

The discrete element shown in Figs 9(b) and 9(c) was developed by Hays
and Matlock (Ref 27).‘ They obtained the element force-displacement equatioms
for linearly elastic response of the model and showed that these equations

were an approximation of the "exact'" differential equation solutions with an
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error term of order (2h)2 . Discretizing the loads and distributed linear
restraints with the astatic equivalencing technique of Mises (Ref 43) gives a
similar error term. The second~order error term (2h)2 gives a solution which
converges rapidly with a decrease in element size,

An analytical determination of the error term for a general nonlinear
element may not be possible due to the complexity of the differential equa-
tions. However, the force~displacement equations can be obtained from an
analysis of the model and used to check nonlinear examples for which closed-
form, numerical, or experimental solutions exist. With all the basic types of
nonlinearity so verified, one will have confidence to work problems which con-
tain all nonlinear effects.

In Chapter 6 an error study for cantilever beams indicates the good con~
vergence properties of the nonlinear discrete element model., Several examples

in later chapters also illustrate the discretizing error on real frames,

Discrete Element Model

A mechanical model of the discrete element is shown in Fig 9(b). It con-
sists of two rigid end-blocks (the end blocks are rigidly connected to neigh-
boring elements to preserve vertical, horizontal, and rotational compatibility
at the nodal points), two rotational springs, which give bending moments M
and M

2
T . A discrete line-element interpretation of the model is shown in Fig 9(c).

1
, and a rigid piston with an axial spring which gives an axial thrust

The end blocks of Fig 9(b) become rigid bars, the rotational springs reduce
to point size, and the piston is replaced by a bar that is rigid in bending
but axially extensionable. Discrete angle changes ¢1 and ¢2 occur,
corresponding to the bending moments Ml and M2 , and a discrete axial

shortening & corresponds to the axial thrust T .

Deformation-Displacement Relations

The element-end-displacements w1 through Ve completely define the
deformations ¢1 R ¢2 , and 8 . The deformations can be calculated by a

simple geometric analysis of the model.

From Fig 9(c) it is seen that the horizontal projection of the deformable

center bar is
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h+r = w + 2h - %(cos w, + cos w6) 4.1

AR | 3

The vertical projection of the center bar is

s = Wy W, - %(sin w3-+ sin w6) (4.2)

The length of the center bar (h + §) is the hypoteneuse of the triangle.
Thus,

§ = \/22 + (h + r)2 - h (4.3)

The angle 6 which the bar makes with the x'-~axis is given by

-1
6 = tan (hjr) (b.4)

The discrete angle changes ¢1 and ¢2 are found from

Equations 4.1 through 4.6 are the deformation-displacement equations for
the element and correspond to the strain-displacement equations of elasticity.
They are valid for large values of displacement, since they contain no small-

displacement approximations,

Force-Deformation Relations

The force-deformation equations for the model which correspond to the
stress-strain equations of elasticity may be obtained by integrating the stress-
strain cyrves over the cross section. For the case of linear material proper=-

ties, the equations of Ref 27 may be used:
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M = -Ei‘il
1 o (4.7)
} ELY,
M, - (4.8)
~ AES
T = 55 (4.9)

where EI and AE are the average product of modulus of elasticity times
moment of inertia and area, respectively, for the element. M1 and M2 are
the bending moments at the two discrete rotational springs and T 1is the
axial thrust in the center bar.

Equations 4.7 and 4.8 are the statements that the moments are equal to
EI times the curvatures, where the curvatures at 1 and 2 are taken as the
discrete angle changes ¢1 and ¢2 divided by h . For these equations to
be correct, the curvatures, and hence ¢1 and qb » should be small, even
though the displacements need not be., Similarly, Eq 4.9 is the statement that
the axial thrust is equal to AE times the axial strain, where the axial
strain is taken as the discrete change in length &8 divided by 2h .,

For nonlinear stress-strain curves the more complex relations can be ob-
tained by the numerical integration technique developed in Appendix B. Symbol-
ically, Eqs 4,10 through 4,12 can be used to represent any function g that

occurs:

T = g6, ¥, %) (4.12)

Thus, Ml and Mé are the moments at the location of the two rotational

springs and T is the average of the two thrusts at the two rotational springs.
The numerical integration procedure developed in Appendix B allows a

cross section to be specified as a series of up to 10 pieces. Each piece may

be either a rectangle or a thin wall tube. Several cross sections that can
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be input in this manner are shown in Fig 10, Each piece is assigned a non~
linear stress-strain curve by the user, The curves need not be the same for
all pieces at a section. The stress-strain curves are specified by inputting

a number of points to definme the curves., Up to eleven points may be used;
thus, the full range of the appropriate curve may be input and idealizations
such as assuming bilinear curves or equal properties in tension and compression
are not necessary.

This method of specifying cross section and material properties allows a
wide variety of practical problems to be handled by one program. Steel, rein-
forced concrete, and prestressed concrete examples are worked in subsequent
chapters, Other censtruction materials, such as aluminum and composite steel
and concrete, could be handled by the program by inputting the sections and

the appropriate stress-strain curves.

Equilibrium Equations

The equilibrium equations for the element are easily obtained by applying
the laws of statics to free bodies of the center bar and the two end bars.
The shear force V normal to the center bar of Fig 9(c) is found from a free

body of the bar to be

(, - M)
= ...._....._..._—l_.

v D) (4.13)
Then, summing forces and moments on the end bars gives Eqs 4.14 through

4,19:

f1 = =T cos & - V sin 9 (4.14)
£, = -T sin 6 + V cos © (4.15)
£ = M, +f, 2 cosw, - £, 2 sinw (4.16)
3 1 22 3 12 3

£ = f (4.17)
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£, = -f (4.18)

f = M2 + f2 g cos W6 - fl'% sin W6 (4.19)

Force-Displacement Equations

Equations 4.1 through 4.19 comprise the element force-displacement equa-
tions. They could be combined to form one set of equations but may be solved
by the following straightforward procedure. For a given set of displacements,
the deformation-displacement equations are solved for the deformations. Then,
using these deformations, the force-deformation equations are solved for the
internal forces. Then, using the deformations, internal forces, and displace~

ments, the equilibrium equations are solved for the element-~end=-forces.

Discrete Element Stiffness Matrix

The analytic differentiation of the element force-displacement equations
to obtain the element 6 x 6 stiffness matrix would be a laborious task., A
numerical differentiation of the relations in the computer program is possible,
as demonstrated in Ref 34, but this procedure was tried and found to take ex-
cessive computer time; up to 30 significant figures were required to perform
the numerical differentiation for problems that were near instability. Thus,
a derivation of the stiffness matrix was made using Castigliano's first theorem.
This theorem, applied to the discrete element equations, gives a method which
organizes the analytic differentiation process so that is is manageable and
also gives some physical insight into the problem.

Consider a discrete element with n element end-forces {f} related to
n element end-displacements {wl by n force-displacement equations of the

form shown in Eq 4.20 (n = 6 for the plane frame element being considered

herein):

£, 0= 8(Wy 5 Wy 5 Wy eee W, sio W) (4.20)

Since Eq 4.20 will not, in general, be linear, it is not possible to

write a matrix equation relating the forces and displacements by a constant
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stiffness matrix as is done in a linear analysis. However, a linear approxi-
mation of the relation between the increments in forces ﬂﬁf} and the incre-

ments in displacements {Aw} is given by

rel = (k] {aw] (4.21)
where [k] is the n x n tangent stiffness matrix with variable coefficients.
The coefficient of the ith row and the jth column, kij » is given by

Bfi
kij = Bwj (4.22)

Assume that there are m discrete energy absorbing springs in the ele-
ment with m internal forces {S} related to m deformations {6} as
given by m force-formation equations such as Eq 4,23 (m = 3 for the plane

frame element):

Si = g(61 3 62 ’ 63 cee 61 XX} Gm) (4.23)

Here, too, only a linear approximation is in order, relating increments

of internal force {AS} to increments of internal deformation Qgé} by
{ps} = [D] {n8} (4.24)

The m X m matrix [D] is the incremental force-deformation matrix,

. . b
and Dij is given by

3S,
D = = (4,25)

ij 0%,

=

The element deformation-displacement equations relating § and w

are given by m equations of the form

6 = g(w]_ ’ W2 ’ W3 see Wj seo Wn) (4.26)
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Linear increments in deformation A are related to linear increments

in displacement Aw by
{a8} = [B1{ Aw} (4.27)

where [B] is the m X n incremental deformation-displacement matrix, and
B,, = —— (4.28)

Castigliano's first theorem, which is applicable for nonlinear but elas~-

tic structures (Ref 66), gives the ith force fi as

_ 9U

where U is the strain energy of the element and may be expressed in terms

of the energy absorbing spring forces and deformations as

g 8, dﬁk (4.30)

Thus, combining Eqs 4.29 -~ 4.31 gives

£, = '—a—w— ( Z S Sk 'a—w—' dwi) (4.32)
* i k=1 i

The successive integration and differentiation that are implied negate

each other. Hence,
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m ) 61«:
i k=1 k 8wi

Equation 4,33 was derived in a slightly different manner by Austin
(Ref 10), Differentiating Eq 4.33 with respect to wj gives

m azék a8 08 .

afl . .
kij T Bw, E: Ksk dw.ow, T 3w Oow ) (4,34)
J k=1 i i j

But using the chain rule for partial derivations gives

Bsk _ m aSk 35&
j 1=1 4 i
Combining Eqs 4.34 and 4.35 gives the desired expression for kij as
m #s. 38, , m 3s_ 3
k 4\
W L T Y - .36
13 ey DR W 0w, 0w\, Oy a"jJ
Since kij is composed of two terms, the stiffness matrix [k] can be
considered to be composed of two portioms, [k]S and [k]C . Thus,
[k] = [klg + [k] (4.37)
where [k]S is called the initial-stress stiffness matrix and is made up of
all the kij that would arise if only the first term of Eq 4.36 were used.

The term initial stress was used by Murray {(Ref 44) and comes from the fact
that if an element undergoes a rigld body displacement, no internal forces
Sk will develop and [k]
body displacements are.

g will be zero regardless of how large the rigid
The initial-stress stiffness matrix for the frame element was computed by
taking the indicated second partial derivations of the strain-displacement

equations (Egs 4.1 through 4,.6). It was further noted here that for the frame
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could be subdivided into two portions, one due to the internal

Both

element, ’[k]s

axial force [k]ST and one due to the internal shear force [k]

[k]ST and [k]

sv °

gy are given in Appendix C.

The conventional portion of the stiffness matrix [k] could be computed

C
coefficient-by-coefficient using the second term of Eq 4.36; however, it is
easy to show that identical results will be obtained if this portion is formed

by the conventional triple matrix product
t
[kl, = [B]°[D][B] (4.38)

Matrices [B] and [D] are as previously defined, and [B]t is the
transpose of [B] . Both |[B] and [D] are given in Appendix C for the dis=-

crete element used herein,

Discretizing Member loads

Member loads were not considered in developing the force~-displacement
equations for a single discrete element., Rather they are discretized into
concentrated loads acting at the member stations. Such forces can then be in-
corporated into the member solution as nodal point forces.

The idea of replacing a complicated loading system with a simpler stati-
cally equivalent system is not new. Newmark's classic paper (Ref 453) gives a
good practical discussion of the concept and a theoretical treatment is given
in a paper by Mises (Ref 43), who points out the lack of generality of St.
Venant's principle and gives better criteria for the replacement of one load
system by another,

By use of Mises criteria a system of loads may be replaced by an equiva-
lent system if the static difference of the two systems is zero and remains
zero when the two systems are rotated through an arbitrary angle. Such systems
are said to be astatically equivalent, Then, if the real loading system and
the astatically equivalent loading system are contained in a circle with a
diameter of 2h (the length of an element), the difference in the resulting
stresses and strains a short distance away from the loads will be of order
(m? .

In Ref 27 it was shown that axial loads, lateral ldads, and couples could

all be discretized by the same formulas and satisfy Mises requirements, The
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formulas are based on applying the loads to a series of simple stringers sup-
ported at the member stations. The discretizing is done in the program de=-
veloped herein so that the user can specify his loads in a normal engineering
manner {(see Appendix E). However, the user should be aware of this discreti-
zation and how it affects his solution.

Consider a simply supported beam, as shown in Fig 1l. The beam is 40
feet long and has a concentrated load of 20 kips at 19.75 feet from the left
end, For a 40-element solution (2h = 1 ft) , the normal load, shear, and
moment diagrams are compared with the discretized diagrams in Fig 11.

The maximum shears are equal in both cases and the difference in maximum
moments is only 1.25 percent. The difference in the area of the two moment
diagrams, shown shaded in the figure, is a function of (2h)2 and thus the
curvature diagram and the resulting rotations and deflections will be of or-
der (Zh)2 , illustrating Mises principle.

Distributed loads are handled by finding the resultant load on each
stringer and then distributing it to its adjacent stations,

Output shears, axial forces, and bending moments are the average values
at stations where concentrated lateral loads, axial loads, and couples can

cause double values to exist.

Member Restraints

Member restraints are also discretized to concentrated station values,
i.e., discrete nonlinear springs. In Ref 27 it was shown that the formulas
used to discretize loads could be used to discretize linear springs except
where extremely large springs are used to set a member’s displacement. Thus,
the computer program developed herein permits only distributed spring supports
for members. Concentrated springs are input at the structural joints where
they are handled as described in Chapter 3., Distributed linear spring re-

straints are discretized to station values by the technique used in Ref 27,

Nonlinear Member Restraints

When a member displaces against a supporting medium such as soil, dis-
tributed forces q are developed which are often a nonlinear function of the
member displacements w ., For stable supporting media, the forces will oppose

and hence be of opposite sign to the displacements, Criteria are available to
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determine q-w curves (Refs 38, 17, and 48) that can represent the axial and
lateral response of sandy and clay soils.

Distributed nonlinear member restraints may be visualized as a bed of
nonlinear springs, such as the lateral springs shown in Fig 12(a). However,
axial and rotational springs are also allowed by the program. Any of the
spring restraints may be defined with reference to either the member or the
structure coordinates.:

The distributed force-displacement properties of the supporting medium
are defined by inputting a q-w curve at each end of the member, as shown in
Fig 12(b). The curves input at the "From" and "To" joints must both have the
same number of points.

In the program, a continuous nonlinear support is discretized as a series
of concentrated nonlinear springs at the member stations by the following pro-
cedure: first, as shown in Fig 12(b), a q-w curve is obtained at the middle of
each element by interpolating along the length of the member with respect to
both force and displacement. Interpolation is between corresponding points on
the end curves. Then the distributed values of force q are multiplied by
2h to obtain concentrated values of force Q at mid-element and generate the
Q-w curve of Fig 12(ec). Next the stiffness Ks and the resistive spring force
QS are found for the temporary spring displacement LA at mid-element by a
linear interpolation between adjacent points on the Q-w curve, as shown in
Fig 12(c). The concentrated values KS and QS are then replaced in the

solution by half-values at the two stations at the ends of the element.

Specification of Member Data in Member and Structure Coordinates

Member loads and stiffness properties are needed in member coordinates
for the discrete element member solutions; however, it may be convenient to
specify loads or restraints in structure coordinates.

The computer program developed herein allows considerable freedom in this
respect, thus extending the usefulness of the method. Member loads may be
specified in the direction of either member or structure coordinates and may
have their intensity (for distributed loads) specified along either the member
or the structure axes. For instance, gravity loads on an inclined member may
be specified as acting in the direction of the structure y-axis per unit of
length along the member x'-axis. All the options are illustrated in Appendix E.

The equations to transform the data to member coordinates are given in Ref 27.
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Member restraints (linear and nonlinear springs) may be specified as
parallel and perpendicular to the member or parallel to the structure x and
y axes, Restraints that are specified in the structure axes must be handled
differently from those specified in member coordinates, since a displacement
parallel to the member produces forces in both x and y structure-oriented

springs. The necessary transformations are given in Appendix D (case b),

Member-End-Forces by Discrete Element Solution

During the iterative frame solution it is necessary to find the member-
end-forces corresponding to a member's loads and the current estimate of frame
joint displacements (transformed to member coordinates)., An iterative solution
of the member is made, similar to the frame solution. The structure being
analyzed by the direct stiffness method is now the individual member composed
of m discrete elements connected at the m+l stations (Fig 9). The member
solution is somewhat simpler than the frame solution since all of the dis-
crete elements have their axes parallel to the member axes.

The element force~-displacement equations are developed earlier in this
chapter, as are the element stiffness matrices, and the effects of member
loads and restraints have been discretized to station values. The member
solution for a particular set of member-end-displacements is outlined in
Fig 13,

The incremental member-end-forces necessary to enforce the increase in
member-end-displacements (from the previous solution of the member) are equal
to the increase in member displacements times the large spring values at the
member ends. The large springs and corresponding large forces are used to
enforce the member-end-displacements from the frame solution. The station
equilibrium errors are used throughout the member solution as the member loads;
hence, the equilibrium errors at the end stations are set equal to the neces-
sary, large incremental end-forces,

Next the element-end forces are evaluated for each discrete element in
its current position., The element-end-displacements are known and hence the
element deformations may be found from Eqs 4.1 through 4.6, The internal
forces may then be found from Eqs 4.7 through 4.9 for a member with linear
material properties., The internal forces are found by the numerical integra-

tion procedure of Appendix B for members with nonlinear material properties.
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Then the equilibrium equations (4.13 through 4.19) can be solved for the ele-
ment-end~forces.

Next the station equilibrium errors at all interior stations (i = 2,m)
are evaluated by summing all forces acting at the stations (element-end-forces,
discretized member loads, and discretized spring forces). A check is then
made to see if the station equilibrium errors are less than the specified tol-
erance. If they are then the member is considered to be in equilibrium. Next
the member-end-forces are evaluated for checking joint equilibrium in the
frame solution. The member-end~-forces are the element-end-forces at the end
stations when corrected for the discretized member loads and spring forces at
the end stations.

If all frame members are in equilibirum and all joints are in equilibrium
when subjected to the member-end-forces and other joint forces, then an equi-
librium solution for the frame has been found and the latest member results
along with the joint displacements and reactions can be output. The axial
forces and shear forces for the members are output with respect to member
undeformed axes. The internal computations for thrust and shear, however,
are made with respect to the deformed axes, as previously discussed. The user
may transform the output forces to the member's deformed position, if desired,
since the member rotations are also given.

If any of the equilibrium errors is larger than the specified tolerances,
the member is solved as a structure composed of the discrete elements and sub~-
jected to the station equilibrium errors.

The element stiffness matrices and the spring stiffnesses are combined to
form the 3(m+l) x 3(m+l) member stiffness matrix [K] . The 3(m+l) member
load vector {;? is formed directly from the station equilibrium errors. The

incremental member equilibrium equations are given by
[k] {aw} = {p} (4.39)

Equation 4.39 is solved for the 3(mtl) increments of member displacements
&ﬁ:} using the recursion-inversion technique discussed in Chapter 3.
The new estimate of member displacements {G} is found by adding the

increments to the previous member displacements:

Wl = {wl+ {aw} (4 .40)
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Then the station equilibrium errors at the end stations are set equal to
zero for the subsequent member iterations, since the member-end-displacements
will not vary during these iterations. The solution is then repeated until

convergence occurs or a limiting number of iterations is reached.

Member Stiffness Matrix by Discrete Element Solution

The 6 X 6 member stiffness matrix [K] needed for the frame solution
is formed by applying 6 unit increments of displacement from the member's
present position., The incremental end-forces found from a member solution due
to a unit increment of the jth member-end-displacement are the jth co lumn
of [K] . Since the tangent stiffness of the member is sought it is not nec-
essary that the 6 member solutions be iterative as was the member solution
for a set of specified énd displacements, Rather a single member solution is
made for each unit increment of displacement and the incremental member-end-
forces are found by premultiplying the increments of member displacements by
the end-elements stiffness matrices and correcting for the discretized loads
and incremental spring forces at the end stations. The stiffness matrix so
found is the stiffness matrix that a linear member would have if all of its
elements had a linear stiffness matrix exaétly like the elements' present
tangent stiffness matrices, Furthermore, the stiffness of the member does
not change during the six member solutions and, hence, the member stiffness
matrix [k] does not change and the multiple-load features of the recursion-

inversion equation solver are used to good advantage.

Member Incremental Fixed-End-Force Matrix by Discrete Element Solution

The 6 X 1 member fixed=end-force matrix {FF} is found by a discrete
element solution for the member's incremented loads with the member fixed in
its present position, Here too, as in obtaining the'member 6 X 6 stiffness
matrix [K] , a single pseudo-linear solution will define the linear increments
of fixed-end-forces and no iterations are required. The incremental end-

forces are found as for the member stiffness matrix.

Summary of Chapter 4

The nonlinear force-displacement equations for the individual discrete

elements were developed considering large displacements, Material nonlinearity
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was incorporated into these equations through the nonlinear force-deformation
equations relating axial thrust and bending moment to axial strain and curva-
ture.

Castigliano's first theorem was applied to develop matrix expressions for
the stiffness matrix of a discrete element with n external degrees of free-
dome and m discrete energy absorbing springs. These expressions were then
used to obtain the tangent stiffness matrix for the discrete element used for
the plane frame members.

Member loads and distributed nonlinear spring supports are discretized
to concentrated loads and springs in order that the problem may be described
in normal engineering terms. Axis transformations are provided to allow member
data to be referenced to either member of structures axes.

The iterative solution to determine the force~displacement response of
the frame members was developed as a simplified frame solution. The structure
being solved was seen to be the member composed of a series of individual
discrete elements. The unit displacement technique was used to determine the
6 X 6 member stiffness matrix needed for the frame solution., Finally incre-
mental loads were applied to determine the incremental member fixed-end=-force

vector.



CHAPTER 5. COMPUTER PROGRAM

Computer program FRAME 51 was written for the nonlinearly elastic analysis
of plane frames and is subject to the limitations outlined in Chapter 3.

This chapter, after a brief descritpion of the computer program, discusses
the input and output features of the program and gives an example problem to
familiarize the reader with the use of the program. This example problem was
chosen to illustrate the input of dimensions, loads, and basic stiffness data.
An example problem in Chapter 9 illustrates the complete nonlinear capabilities
of the program. Input and output for these two example problems are given in
Appendices H and I. Other problems, discussed in Chapters 6, 7, 8, and 9,
illustrate the validity of the program for modeling a wide range of nonlinear

effects, however, input and output are not given for these problems.

Program Description

FRAME 51 is written in FORTRAN IV and conforms to the requirements of
"American Standard FORTRAN' (Ref 7). The program has been implemented and
checked out on the CDC 6600 computer at the Computation Center of The Univer-
sity of Texas at Austin. Only minor modifications are necessary to convert
the program to other machines.

Program flow charts, the glossary of notation, and the FORTRAN listing of
programs are in Appendices ¥, G, and H, respectively. The reader interested
in developing a full understanding of the computer program may wish to study
these appendices after reading this chapter. In particular, the flow diagram
for subroutine FRAM51 should prove helpful.

The program is presently dimensioned to work a moderate size frame, and
requires only 730008 words of storage. The detailed input guide in Appendix E
gives the limits for the number of members (40), number of joints (20), num-
ber of different cross sections (20), etc. The FORTRAN listing of the program

has a dimensioning guide to enable easy modification of the dimensions of the

program.
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The data input subroutines (JTCORD, MEMLOC, JNIDAT, RDMST, RDMID, and
ITCONT) were programmed using overlays, thus reducing the storage requirements,
but the program can be used without overlays by removing the cards marked
OVERIAY in columns 73-79 and replacing them with the comment cards marked
NONOVER