A DISCRETE-ELEMENT ANALYSIS FOR ANISOTROPIC SKEW PLATES AND GRIDS

by

Mahendrakumar R. Vora Hudson Matlock

Research Report Number 56-18

Development of Methods for Computer Simulation of Beam-Columns and Grid-Beam and Slab Systems

Research Project 3-5-63-56

conducted for

The Texas Highway Department

in cooperation with the U. S. Department of Transportation Federal Highway Administration

by the

CENTER FOR HIGHWAY RESEARCH THE UNIVERSITY OF TEXAS AT AUSTIN

August 1970

The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Federal Highway Administration.

PREFACE

This report describes a numerical method for the analysis of anisotropic skew plates or slabs with grid-beams. Relations are developed which simplify the computation of anisotropic slab stiffnesses.

The method was programmed and coded for use on a digital computer. Although the program was written for the CDC 6600 computer, it is also compatible with IBM 360 systems. Copies of the program presented in this report may be obtained from File D-8 Research, Texas Highway Department, Austin, Texas, or from the Center for Highway Research at The University of Texas at Austin.

This work was sponsored by the Texas Highway Department in cooperation with the U. S. Department of Transportation Federal Highway Administration, under Research Project 3-5-63-56. The Computation Center of The University of Texas at Austin contributed the computer time required for this study. The authors are grateful to these organizations and the many individuals who have assisted them during this study.

> Mahendrakumar R. Vora Hudson Matlock

August 1970

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

LIST OF REPORTS

Report No. 56-1, "A Finite-Element Method of Solution for Linearly Elastic Beam-Columns" by Hudson Matlock and T. Allan Haliburton, presents a finiteelement solution for beam-columns that is a basic tool in subsequent reports.

Report No. 56-2, "A Computer Program to Analyze Bending of Bent Caps" by Hudson Matlock and Wayne B. Ingram, describes the application of the beamcolumn solution to the particular problem of bent caps.

Report No. 56-3, "A Finite-Element Method of Solution for Structural Frames" by Hudson Matlock and Berry Ray Grubbs, describes a solution for frames with no sway.

Report No. 56-4, "A Computer Program to Analyze Beam-Columns under Movable Loads" by Hudson Matlock and Thomas P. Taylor, describes the application of the beam-column solution to problems with any configuration of movable nondynamic loads.

Report No. 56-5, "A Finite-Element Method for Bending Analysis of Layered Structural Systems" by Wayne B. Ingram and Hudson Matlock, describes an alternating-direction iteration method for solving two-dimensional systems of layered grids-over-beams and plates-over-beams.

Report No. 56-6, "Discontinuous Orthotropic Plates and Pavement Slabs" by W. Ronald Hudson and Hudson Matlock, describes an alternating-direction iteration method for solving complex two-dimensional plate and slab problems with emphasis on pavement slabs.

Report No. 56-7, "A Finite-Element Analysis of Structural Frames" by T. Allan Haliburton and Hudson Matlock, describes a method of analysis for rectangular plane frames with three degrees of freedom at each joint.

Report No. 56-8, "A Finite-Element Method for Transverse Vibrations of Beams and Plates" by Harold Salani and Hudson Matlock, describes an implicit procedure for determining the transient and steady-state vibrations of beams and plates, including pavement slabs.

Report No. 56-9, "A Direct Computer Solution for Plates and Pavement Slabs" by C. Fred Stelzer, Jr., and W. Ronald Hudson, describes a direct method for solving complex two-dimensional plate and slab problems.

Report No. 56-10, "A Finite-Element Method of Analysis for Composite Beams" by Thomas P. Taylor and Hudson Matlock, describes a method of analysis for composite beams with any degree of horizontal shear interaction.

Report No. 56-11, "A Discrete-Element Solution of Plates and Pavement Slabs Using a Variable-Increment-Length Model" by Charles M. Pearre, III, and W. Ronald Hudson, presents a method of solving for the deflected shape of freely discontinuous plates and pavement slabs subjected to a variety of loads.

v

Report No. 56-12, "A Discrete-Element Method of Analysis for Combined Bending and Shear Deformations of a Beam" by David F. Tankersley and William P. Dawkins, presents a method of analysis for the combined effects of bending and shear deformations.

Report No. 56-13, "A Discrete-Element Method of Multiple-Loading Analysis for Two-Way Bridge Floor Slabs" by John J. Panak and Hudson Matlock, includes a procedure for analysis of two-way bridge floor slabs continuous over many supports.

Report No. 56-14, "A Direct Computer Solution for Plane Frames" by William P. Dawkins and John R. Ruser, Jr., presents a direct method of solution for the computer analysis of plane frame structures.

Report No. 56-15, "Experimental Verification of Discrete-Element Solutions for Plates and Slabs" by Sohan L. Agarwal and W. Ronald Hudson, presents a comparison of discrete-element solutions with the small-dimension test results for plates and slabs, along with some cyclic data on the slab.

Report No. 56-16, "Experimental Evaluation of Subgrade Modulus and Its Application in Model Slab Studies" by Qaiser S. Siddiqi and W. Ronald Hudson, describes an experimental program developed in the laboratory for the evaluation of the coefficient of subgrade reaction for use in the solution of small dimension slabs on layered foundations based on the discrete-element method.

Report No. 56-17, "Dynamic Analysis of Discrete-Element Plates on Nonlinear Foundations" by Allen E. Kelly and Hudson Matlock, presents a numerical method for the dynamic analysis of plates on nonlinear foundations.

Report No. 56-18, "A Discrete-Element Analysis for Anisotropic Skew Plates and Grids" by Mahendrakumar R. Vora and Hudson Matlock, describes a tridirectional model and a computer program for the analysis of anisotropic skew plates or slabs with grid-beams.

Report No. 56-19, "An Algebraic Equation Solution Process Formulated in Anticipation of Banded Linear Equations" by Frank L. Endres and Hudson Matlock, describes a system of equation-solving routines that may be applied to a wide variety of problems by utilizing them within appropriate programs.

Report No. 56-20, "Finite-Element Method of Analysis for Plane Curved Girders" by William P. Dawkins, presents a method of analysis that may be applied to plane-curved highway bridge girders and other structural members composed of straight and curved sections.

Report No. 56-21, "Linearly Elastic Analysis of Plane Frames Subjected to Complex Loading Condition" by Clifford O. Hays and Hudson Matlock, presents a design-oriented computer solution of plane frame structures that has the capability to economically analyze skewed frames and trusses with variable crosssection members randomly loaded and supported for a large number of loading conditions.

ABSTRACT

A discrete-element method of analysis for anisotropic skew-plate and gridbeam systems is presented. The method can be used to solve a wide variety of problems. The principal features are

- formulation of six elastic stiffnesses and compliances in terms of three moduli of elasticity in any three directions and three Poisson's ratios related to these directions,
- (2) representation of an anisotropic skew-plate and grid system by a discrete-element model consisting of a tridirectional arrangement of rigid bars and elastic joints,
- (3) formulation of stress-strain and moment-curvature relations for the discrete-element model using concepts of a continuum composed of interconnected fibers,
- (4) derivation of a stiffness matrix using equations of statics, and
- (5) a recursion-inversion procedure to solve the stiffness equations.

The method allows free variation in stiffnesses, loads, and supports. Concentrated and distributed loads and supports and external couples in three directions, including grid-beams in three directions, are easily handled. A computer program has been written to check the formulation. The results compare well with the results from other approximate methods and with experimental data.

KEY WORDS: anisotropic elasticity, skew plate, skew grid, slab-grid system, skew bridge, discrete-element analysis, computers, bridges, plates.

vii

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team SUMMARY

This study presents a method for the analysis of isotropic or anisotropic skew-plate and skew-grid-beam systems. The method can be used to solve a wide variety of problems and is particularly suited to analysis of skewed highway bridges and pavements.

A discrete-element analog is used to represent the actual structure, and formulation of the equations solved is based on this mechanical assembly. The assembly is such that the stiffnesses, geometric properties, loads, and restraints of the real system are represented in an accurate manner. The assembly is composed of an anisotropic plate with three tridirectional stiffnesses. Relations are developed in which the anisotropic plate stiffnesses are related to three moduli of elasticity in any three directions and three Poisson's ratios related to these directions. The six elastic constants can be determined by testing simple uniaxial specimens taken from the plate in any three directions. A grid beam assemblage may also be present and is oriented in the same three independent directions. These beams transfer only bending moment.

The included computer program, SLAB 44, is written in FORTRAN for the CDC 6600 computer and is easily made compatible with IBM 360, UNIVAC 1108, and other comparable computer systems.

A series of example problems is included to demonstrate and verify the method. No exact closed-form solution is available for even the simplest skew plate but the results compare favorably with several approximate methods. In addition, comparison is made with experimental results taken from a skewed, prestressed bridge modeled to a 5.5-to-1 ratio. The model represents a standard Texas Highway Department bridge structure. The computed results compare closely to the measured values within the elastic response range of the model.

A guide for data input is presented which allows routine application of the method of analysis with little necessary reference to the body of the main report. Any number of analyses may be run at the same time.

ix

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

IMPLEMENTATION STATEMENT

The problems associated with analysis of skewed highway structures have long been difficult for the highway engineer to solve. The use of approximate distribution factors and strip methods has for years furnished the engineer with convenient design approximations, but it can be shown that extending these methods to heavily skewed structures may cause extreme complications associated with the inherent twisting which is not considered.

In this study, a computer program (SLAB 44) is developed for computer simulation and analysis of skewed slab and grid systems. The potential application of this work ranges from sensitivity studies of skewed bridge geometries to the day-to-day design of any skewed bridge structure. In addition, it may be used to study some other effects of skewed slabs such as skew angles, aspect ratios, and diaphragm placements. Furthermore, the coupling of research results of the skewed model test project with this program will make available to the highway engineer procedures which will permit better analysis of many types of structures.

Program SLAB 44 has recently been applied to the analysis of a skewed, post-stressed continuous slab structure. Very good correlations have been made between the analysis and a brief, full-scale load test of the structure located in Pasadena, Texas. The investigation was initiated by the non-load induced failure of a companion skewed structure.

Recommendations are made for further research in the area of nonlinear response, especially concerning concrete slab characteristics. It is possible to modify and extend the computer method presented in this work to include nonlinear effects.

It is further recommended that this program be put into test use by designers of the Texas Highway Department to further evaluate its uses, and to investigate needed extensions or modifications to make it more usable for the practicing design engineer.

xi

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

TABLE OF CONTENTS

PREFA	ACE	• • •	• •	•••	•	• .	• •	•	•	•	•	•	iii
LIST	OF REPORTS	• - •	••	••	٠	•	• •	•	•	٠	•	•	v
ABSTR	RACT	• • •	••	•••	•	•	• •	•	•	•	•	•	vii
SUMMA	ARY	• • •	••	••	•	•	• •	•	•	•	•	•	ix
IMPLE	EMENTATION STATEMENT	• • •	••	•••	•	•	•••	•	•	•	•	•	xi
NOMEN	NCLATURE	•••	••	•••	•	•	• •	•	•	•	•	•	xvii
CHAPI	TER 1. INTRODUCTION												
	Previous Studies	· · · · · · · · · · · ·	• • • • • •	• • • • • • • •	• • • •	• • • •	• •	· ·	• • • •	•	• • • •	• • • • •	1 4 4 5 5
CHAPI	TER 2. PROPOSED TRIDIRECTIONAL DISC	RETE-E	LEME	NT I	MOI	EL	I						
CHAPI	TER 2. PROPOSED TRIDIRECTIONAL DISC Introduction	RETE-E	LEME	NT	моі		•	· ·	•	•	• • • •	• • •	7 7 9 9
CHAPI	TER 2. PROPOSED TRIDIRECTIONAL DISC Introduction	RETE-E	LEME	NT :	MOI)EL • • •	• •		• • • •	• • • • • • • •	• • • • • •	• • • • •	7 7 9 9 9 10 10
CHA PI	TER 2. PROPOSED TRIDIRECTIONAL DISC Introduction	RETE-E	LEME • • • • • • • • • • • • • • •	NT	MOI)EL	• • •		• • • •	•	• • • •	• • • • •	7 7 9 9 9 10 10
CHA PI	TER 2. PROPOSED TRIDIRECTIONAL DISC Introduction	RETE-E	LEME s odel S Plat s .	NT	MOI)EL			· · · · · · · · · · · · · · · · · · ·	• • • • •	· · · · · · · · · · · · ·	· · · · · · · · · ·	7 7 9 9 9 10 10 10 11 11 11 14 16

-

Transformation Relation for Modulus of Elasticity	,					•	•	•	•	28
Transformation Relation for Poisson's Ratio	•	•	•	•	•	•	•		•	29
Elastic Stiffnesses for Anisotropic Thin Plate .	•	•	•	•	•	•	•	•	•	29
Summary	•	•	•	•	•	•	•	٠	•	31

CHAPTER 4. STRESS-STRAIN RELATIONS FOR MODEL

Introduction	33
Conventional Stress-Strain Relations for Triangular Elements	33
Stress-Strain Relations for Fiber Continuum	37
Moment-Curvature Relations for Fiber Continuum	41
Moment-Curvature Relations for Grid-Beam Model	46
Alternate Approach to Compute B11 Through B22	47
Summary \ldots	58

CHAPTER 5. FORMULATION OF STIFFNESS MATRIX

Introducti	ion			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	61
Free-Body	Ana	1ys	sis	•		•	•	•	•	•	•	•	•	•	•	•	•				•	•	•	•		•	•	61
Operator		• •		•		•	•		•			•	•	•	•	•				•		•				•	•	75
Stiffness	Mat	rix	ε.	•	•	•	•	•	•	•	•	•	•	•	•					•	•	•	•	•		•	•	77
Summary	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•				•		•	•	•		•	•	77

CHAPTER 6. SOLUTION OF EQUATIONS

Introduction	79
Arrangement of Equations	79
Recursion-Inversion Solution Procedure	79
Solution of Deflections	82
Multiple-Loading Technique	82
Summary	82

CHAPTER 7. DESCRIPTION OF PROGRAM SLAB 44

ntroduction	83
he FORTRAN Program	83
ime and Storage Requirements	83
Procedure for Data Input	85
ables of Data Input	85
	87
Computed Results	87
ummary	88

CHAPTER 8. EXAMPLE PROBLEMS AND COMPARISONS

Introduction		89
Problem Series 1. Simply Supported,	Uniformly Loaded	
Rhombic Plates		89

- -

Problem Series 2. Simply Supported Rhombic Plates	
with Concentrated Load	91
Problem Series 3. Simply Supported, Uniformly Loaded	
Triangular Plate	91
Problem Series 4. Five-Beam, Noncomposite Skew Bridges	91
Problem Series 5. Four-Span Skew Bridge	95
Problem Series 6. Verification with Experimental Results	95
Problem Series 7. Sensitivity of Modeling Bending and	
Torsional Stiffness of Composite Section	99
Other Comparisons	101
Summary	101

CHAPTER 9. USE OF THE METHOD

Summary			 	103
Recommendations Pertai	ning to the Use of	SLAB 44	 	104
Extensions of the Basi	c Method		 	104

APPENDICES

Appendix 1.	Guide for Data Input	13
Appendix 2.	Flow Diagrams for Program SLAB 44 1	25
Appendix 3.	Glossary of Notation for SLAB 44 14	47
Appendix 4.	Listing of Program Deck of SLAB 44 1	53
Appendix 5.	Listing of Input Data for Selected	
	Example Problem	91
Appendix 6.	Computed Results for Selected Example Problem 1	95
THE AUTHORS		03

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

NOMENCLATURE

Symbol	Typical Units	Definition
а		Terms in stiffness matrix
[a]		Submatrix of stiffness matrix
$\{A\}$		Recursion coefficient vector
b		Terms in stiffness matrix
[b]		Submatrix of stiffness matrix
В	1b-in ² /in	Stiffness of plate model
В		Recursion coefficient matrix
c	1b/in ²	Elastic stiffness
с		Terms in stiffness matrix
[c]		Submatrix of stiffness matrix
[c]		Recursion coefficient matrix
đ		Terms in stiffness matrix
[d] .	~ -	Submatrix of stiffness matrix
D	1b-in ² /in	Plate stiffness
[ם]		Recursion coefficient matrix
е		Terms in stiffness matrix
[e]		Submatrix of stiffness matrix

xvii

$\mathbf{x}\mathbf{v}$	1	i	í

Symbol	Typical Units	Definition
E	1b/in ²	Modulus of elasticity
E		Recursion coefficient matrix
f	1b/in ²	Fiber stress
f	1b	Term in load vector
${f}$		Load vector
F	1b-in ²	Beam stiffness
G	$1b/in^2$	Shear modulus
h	inch	Increment length
i		Numbering associated with a-direction
j		Numbering associated with c-direction
[ĸ]		Stiffness matrix
l		Cosine of an angle
m		Sine of an angle
М	in-1b/in	Moment per unit width in slab
M ″	in-1b	Concentrated moment in slab model
M	in-1b	Moment in beam
Q	1b	Load
S	in ² /1b	Elastic compliances
S	lb/in	Support spring
t	inch	Thickness of plate
Т	in-lb	External couple
v	1b	Shear
w	inch	Deflection

<u>Symbol</u>	<u>Typical Units</u>	Definition
$\{w\}$		Deflection vector
Ŷ	in/in	Shearing strain
e	in/in	Normal strain
η		Coefficient of mutual influence
θ	degrees	Angle
μ		Directional Poisson effect
ν		Poisson's ratio
σ	lb/in ²	Normal stress
τ	lb/in ²	Shearing stress

CHAPTER 1. INTRODUCTION

Skew slabs or plates with skew ribs occur frequently in modern structures such as airplane wings, highway bridges, and building floors, and their analysis is always difficult. There are no closed-form mathematical solutions available for even the simplest cases, except a simple triangular plate given by Timoshenko and Woinowsky-Krieger (Ref 40). The practicing engineer must use some approximate procedure for analysis. To analyze a continuous prestressed concrete skew slab bridge of two, three, or more spans, for example (Fig 1), he may choose a strip of slab in the span direction and consider it as a beam. This kind of approximation might be reasonable for a rectangular slab bridge but may be inappropriate in the case of a skew slab bridge. Generally, because of the presence of large twisting effects, the largest principal moments are not in the span direction.

The objective of this study is to develop relations for elastic compliances such that the computation of anisotropic plate stiffnesses is simplified, and to develop a discrete-element method of analysis for anisotropic skewplate and grid systems in which the grid-beams may run in any three directions.

Previous Studies

Many investigators have attempted to analyze skew plate problems. Some of the methods are discussed here.

<u>Finite Difference</u>. In the finite difference approach, the partial differential equation and the boundary conditions are replaced by difference equations, which may be solved by any procedure. The parallelogram-shaped mesh could be used to fit the boundaries exactly. Using this type of mesh, Favre (Ref 9) solved simply supported skew plates, while Chen, Siess, and Newmark (Ref 6) solved a single-span, noncomposite skew bridge consisting of a concrete slab of uniform thickness supported by five identical steel beams. Morley (Ref 24) observed that when this type of mesh is used the convergence of solution, as indicated by advances to a finer mesh, deteriorates with increasing angle of skew in the case of simply supported uniformly loaded skew plates.

1

LONGITUDINAL SECTION

Fig 1. Continuous prestressed concrete skew bridge.

Jensen et al (Refs 14 and 15) used an alternate system of finite difference equations. Robinson (Ref 35) and Naruoka (Ref 25) extended Jensen's finite difference procedure to compute influence coefficients for several skew plates while Naruoka et al (Refs 26, 27, 28, and 29) solved orthotropic parallelogram plates and gave several numerical and experimental results. All these studies are for a single span and for either isotropic or orthotropic plates.

<u>Electrical Analog</u>. In this method, the network of an electrical analog automatically solves the finite difference equations within the boundary while at the boundary the potentials are adjusted until the boundary conditions are satisfied. Rushton et al (Refs 11, 34, and 36) utilized this procedure to solve skew plates with various boundary conditions, including a four-span flatslab 45-degree-skew bridge. He observed that for large angles of skew there was no apparent decrease in the accuracy of the deflections. Only isotropic plates were considered in his study.

<u>Conformal Mapping</u>. Aggarwala (Refs 1 and 2) used a conformal mapping procedure in which a parallelogram was mapped on the unit circle and obtained solutions for plates under transverse loadings. Only simply supported isotropic plates have been solved.

<u>Finite-Element</u>. In the finite-element method, the structure is idealized as an assemblage of deformable elements linked together at the nodal points, where the continuity and equilibrium are established. Using different types of elements, several investigators, including West (Ref 42), Mehrain (Ref 22), Cheung, King, and Zienkiewicz (Ref 7), Gustafson and Wright (Ref 10), and Sawko and Cope (Ref 37), have studied the problem. All of these studies were for either isotropic or orthotropic plates. Mehrain (Ref 22) has studied the skew problem extensively, making a comparative analysis of various forms of finite elements, and has observed that the accuracy of the finite-element solution drops rapidly when the angle of skew is increased in the case of simply supported uniformly loaded plates.

Series. In this method, with the fourth-order partial differential equation governing the deflection of the plate, a solution is obtained in which the deflection function is expressed in the form of a series. Quinlan (Ref 33), Kennedy and Huggins (Ref 16), and Morley (Refs 23 and 24) have presented solutions using different forms of series. These solutions are for single-span isotropic plates. Morley's results are the most extensive and several investigators have used these results as the basis for comparison with their methods.

Other Solutions. Akay (Ref 3) used a double-net model to solve for orthotropic skew plates with a boundary condition of either two opposite edges simply supported or all four edges simply supported. Several examples have been solved and the results compared with the solutions from other approaches. Suchar (Ref 39) dealt with anisotropic skew plates and obtained polynomial solutions to the governing differential equation using oblique coordinates. These polynomials were then used to calculate the influence surface for an orthotropic parallelogram plate with two opposite sides simply supported and the remaining edges free.

Present Study

It can be seen that except for Suchar (Ref 39) the studies were limited to either isotropic or orthotropic plates and also that most of the methods developed were for particular loading or boundary conditions.

In the present study a mechanical model consisting of a tridirectional system of rigid bars and elastic joints was used to simulate anisotropic skew plates plus slab-and-grid systems in which the grid-beams may run in any three directions. The model developed and the relations formulated are not limited to bending analysis but could also be adapted for plane stress analysis.

Discrete-Element Model

Chapter 2 describes a discrete-element model used to analyze anisotropic skew-plate and grid systems. Assumptions made for the solution of the model are also given.

Anisotropic Relations

Hearmon (Ref 12) and Lekhnitskii (Ref 17) have developed stress-strain relations in Cartesian coordinates for an anisotropic homogeneous body. For the problem of plane-stress in two dimensions, these relations require the computation of six elastic stiffnesses in terms of six independent elastic constants: moduli of elasticity in the x and y-directions, one Poisson's ratio, one shear modulus, and two coefficients of mutual influence of the first kind.

In Chapter 3, relations are developed in which the six elastic stiffnesses are related to three moduli of elasticity in any three directions and three Poisson's ratios related to these directions. This simplification is helpful in determining the six elastic constants by testing three simple uniaxial specimens taken from the plate at any three directions. Since the integration of stress-strain relations gives moment-curvature relations, the six anisotropic plate stiffnesses also may be computed in terms of three moduli of elasticity and three Poisson's ratios.

Using concepts of a continuum composed of interconnected fibers, stressstrain relations for the anisotropic discrete slab model are derived in Chapter 4. Moment-curvature relations for the slab and grid models are also derived.

Stiffness Matrix

In Chapter 5, equations of statics are used to derive a stiffness matrix for the discrete-element model. Chapter 6 describes the recursion-inversion solution procedure used to solve the stiffness equations.

Verification of Model

Chapter 7 describes a computer program written to verify the formulation. Several example problems are solved in Chapter 8, and results are compared with the closed-form solution for a triangular plate; with the solutions from other approximate methods, such as series, finite-element, conformal mapping, finite difference, and electrical analog; and with experimental results.

The appendices contain the guide for data input, general program flow chart, notations, program listing, listing of input data, and selected output.

5

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team CHAPTER 2. PROPOSED TRIDIRECTIONAL DISCRETE-ELEMENT MODEL

Introduction

In the discrete-element method of analysis a system (beam, plate, and plate and grid-beams) is replaced by an analogous physical model and then the analysis of the model is made. The mechanical assembly of this model should be such that it can represent the stiffnesses, geometric properties, loads, and restraints of the real system. This kind of approach has been used by several investigators including Matlock (Refs 18 and 19) for beam-column, Tucker (Ref 41) for rectangular grid-beam problems, and Newmark (Ref 30), Ang and Newmark (Ref 4), and Hudson (Ref 13) for rectangular plate problems.

A discrete-element model for a skew-plate and grid-beam system is proposed. In it the plate may be completely anisotropic and grid-beams may run in any three directions. In this chapter, the functions of different components of the model are explained and the assumptions required for the analysis of the model are listed.

Discrete-Element Model

A discrete-element model is to be worked out to be used to solve the following:

- (1) an anisotropic skew plate or slab,
- (2) a grid-beam system in which the beams may run in any three directions or less, and
- (3) a combination problem, i.e., an anisotropic skew-plate and grid-beam system in which the beams may run in any three directions.

Figure 2 shows the proposed tridirectional model for plates and Fig 3 shows a typical grid-beam model.

Components of Model

The model of a plate (Fig 2) will consist of elastic joints connected by rigid bars running in directions a , b , and c .

Fig 2. Discrete-element model for anisotropic skew plate showing all components.

Fig 3. Discrete-element model for a typical grid-beam showing all components.

The model of a grid-beam (Fig 3) in a particular direction will consist of elastic joints connected by rigid bars running in that direction. The model of a grid-beam will be the same as the model of a beam-column worked out by Matlock (Refs 18 and 21).

Function of Each Component

The stiffnesses, loads, and restraints will be lumped at elastic joints, and hence all elastic action will take place at these joints. The only function of the rigid bars will be to transfer bending moments from one elastic joint to another without deforming.

Connection

The plate model and the three grid-beam models of the grid-beam system will be connected with one another at elastic joints. The rigid bars of different systems will have no connection with one another. Therefore at any particular elastic joint, the deflection of all the four systems should be the same.

Assumptions Related to Conventional Plates and Grid-Beams

The following assumptions are related to the conventional plates and gridbeams and are included in the subsequent discrete-element development. The first three are the same as shown by Timoshenko (Ref 40) for thin plates with small deflections.

- There is no axial deformation in the middle plane of the plate. This plane remains neutral during bending.
- (2) Points of the plate lying initially on a normal-to-the-middle plane of the plate remain on a normal-to-the-middle plane of the plate after bending.
- (3) The normal stresses in the direction perpendicular to the plate can be disregarded.
- (4) All deformations are small with regard to the dimensions of the plate and grid system.
- (5) The neutral axis of a plate with grid-beams is in the same level even though the cross sections of the plate and of each grid-beam may be nonuniform.

Assumptions Related to Discrete-Element Model for Plates and Grid-Beams

In addition to the above, the following assumptions are made for discreteelement model for plates and grid-beams.

- Each elastic joint is of infinitesimal size and composed of an elastic, but anisotropic, material. Curvature appears at the joint as concentrated angle change.
- (2) The rigid bars of the models (Figs 2 and 3) are infinitely stiff and weightless. They transfer bending moments by means of equal and opposite shears. They are torsionally soft; i.e., they do not transfer twisting moment. They do not deform due to in-plane (axial) forces.
- (3) The stiffnesses of plates and of grid-beams may vary from point to point.
- (4) The spacing of elastic joints in the a and c-directions, designated h_a and h_c , respectively, need not be equal but must be constant. The spacing in the b-direction is equal to the length of the diagonal of the parallelogram having sides h_a and h_b (Fig 2).

Summary

The anisotropic plate and grid system is to be represented by a physical model having only one degree of freedom at each joint. The model will be helpful in visualization of the real problem. Discontinuous changes in stiffnesses, loads, and supports may be accommodated easily in the model. Where numerical word length is not a limitation, errors in the solution are due to approximating the real system with the model and not to the solution of model. Thus, accuracy of the solution will depend upon the number of increments used in the solution.

CHAPTER 3. ANISOTROPIC STRESS-STRAIN RELATIONS

<u>Introduction</u>

For plane stress problems, the anisotropic stress-strain relations require computation of six elastic compliances or six elastic stiffnesses. Hearmon (Ref 12) and Lekhnitskii (Ref 17) have shown that in Cartesian coordinates the compliances could be related to six independent elastic constants (moduli of elasticity in the x and y-directions, one shear modulus, one Poisson's ratio, and two coefficients of mutual influence of the first kind). Hearmon (Ref 12) has also described experiments required to determine the six compliances.

In this chapter, relations are worked out in which the six compliances and six stiffnesses are related to three moduli of elasticity with respect to any three directions and three Poisson's ratios related to these directions. This simplification is helpful in understanding and in computing the elastic compliances and stiffnesses.

Transformation relations have also been worked out whereby the modulus of elasticity and Poisson's ratio in any desired direction may be obtained from three moduli of elasticity and three Poisson's ratios related to any other three directions.

Hooke's Law

Hooke's law states that each stress component is directly proportional to each strain component. If σ represents stress and ε represents strain,

$$\sigma_{ij} = c_{ijk\ell} \epsilon_{k\ell}$$
(3.1)

and

$$\epsilon_{ij} = s_{ijk\ell}\sigma_{k\ell} \tag{3.2}$$

wherein i, j, k and ℓ take on all combinations of 1, 2 and 3.

The terms $c_{ijk\ell}$ are called elastic stiffnesses and $s_{ijk\ell}$ the elastic compliances. Equations 3.1 and 3.2 show that there are 81 stiffnesses and compliances. It can be shown (Ref 12) that $\sigma_{ij} = \sigma_{ji}$ and $\epsilon_{k\ell} = \epsilon_{\ell k}$. This results in $c_{ijk\ell} = c_{jik\ell} = c_{ij\ell k} = c_{ji\ell k}$ and $s_{ijk\ell} = s_{jik\ell} = s_{ij\ell k} = s_{ji\ell k}$ and reduces the number of stiffnesses and compliances to 36. It has been shown by Hearmon (Ref 12) that by thermodynamic argument $c_{ijk\ell} = c_{k\ell ij}$ and $s_{ijk\ell} = s_{ij\ell k}$ and these reciprocal relations further reduce stiffnesses and compliances to 21 in the most general case.

For plane stress problems, if σ_x and σ_y are the normal stresses in the x and y-directions, respectively, and τ_{xy} is the shearing stress, and if ϵ_x , ϵ_y , and γ_{xy} are the corresponding strains, as shown in Fig 4(a), then Hooke's law in Cartesian coordinates has the form

$$\sigma_{x} = c_{11}\varepsilon_{x} + c_{12}\varepsilon_{y} + c_{13}\gamma_{xy}$$

$$\sigma_{y} = c_{21}\varepsilon_{x} + c_{22}\varepsilon_{y} + c_{23}\gamma_{xy}$$

$$\tau_{xy} = c_{31}\varepsilon_{x} + c_{32}\varepsilon_{y} + c_{33}\gamma_{xy}$$
(3.3)

or

$$\epsilon_{x} = s_{11}\sigma_{x} + s_{12}\sigma_{y} + s_{13}\tau_{xy}$$

$$\epsilon_{y} = s_{21}\sigma_{x} + s_{22}\sigma_{y} + s_{23}\tau_{xy}$$

$$\gamma_{xy} = s_{31}\sigma_{x} + s_{32}\sigma_{y} + s_{33}\tau_{xy}$$
(3.4)

The stiffnesses and compliances in Eqs 3.3 and 3.4 satisfy the reciprocal relations which reduce the number of independent constants from nine to six. Hence, in general, for an anisotropic thin plate in a state of plane stress it is necessary to know the values of six different quantities to calculate elastic behavior. These reduce to two in the case of isotropic plates.

Fig 4. Stresses and corresponding strains for anisotropic plate element.

Elastic Compliances for Anisotropic Thin Plates

Consider a small rectangular element of a thin anisotropic plate: if the only stress acting on this element is σ_x , as shown in Fig 4(b), and the corresponding strains are ε_x , ε_y , and γ_{xy} , then from Eq 3.4

$$\epsilon_{\mathbf{x}} = s_{11}\sigma_{\mathbf{x}} \quad \underline{\text{or}} \quad s_{11} = \frac{\epsilon_{\mathbf{x}}}{\sigma_{\mathbf{x}}} = \frac{1}{E_{\mathbf{x}}}$$
 (3.5)

$$\epsilon_{y} = s_{21}\sigma_{x} \quad \underline{or} \quad s_{21} = \frac{\epsilon_{y}}{\sigma_{x}} = -\frac{\nu_{xy}}{E_{x}}$$
 (3.6)

and

$$\gamma_{xy} = s_{31}\sigma_x \quad \underline{\text{or}} \quad s_{31} = \frac{\gamma_{xy}}{\sigma_x} = \frac{\eta_{xy,x}}{E_x}$$
(3.7)

If the only stress acting on the element is σ_y , as shown in Fig 4(c), and the corresponding strains are ε_x , ε_y , and γ_{xy} then

$$\epsilon_y = s_{22}\sigma_y \quad \underline{\text{or}} \quad s_{22} = \frac{\epsilon_y}{\sigma_y} = \frac{1}{E_y}$$
 (3.8)

$$\epsilon_{\mathbf{x}} = s_{12}\sigma_{\mathbf{y}} \quad \underline{\text{or}} \quad s_{12} = \frac{\epsilon_{\mathbf{x}}}{\sigma_{\mathbf{y}}} = -\frac{\nu_{\mathbf{yx}}}{E_{\mathbf{y}}}$$
 (3.9)

and

$$\gamma_{\mathbf{x}\mathbf{y}} = s_{32}\sigma_{\mathbf{y}} \quad \underline{\text{or}} \quad s_{32} = \frac{\gamma_{\mathbf{x}\mathbf{y}}}{\sigma_{\mathbf{y}}} = \frac{\eta_{\mathbf{x}\mathbf{y},\mathbf{y}}}{E_{\mathbf{y}}}$$
(3.10)

Finally, if the only stress acting on the element is τ_{xy} , as shown in Fig 4(d), and the corresponding strains are ε_x , ε_y , and γ_{xy} then

$$\gamma_{xy} = s_{33}\tau_{xy} \quad \underline{or} \quad s_{33} = \frac{\gamma_{xy}}{\tau_{xy}} = \frac{1}{G_{xy}}$$
 (3.11)

$$\epsilon_{x} = s_{13}\tau_{xy} \quad \underline{or} \quad s_{13} = \frac{\epsilon_{x}}{\tau_{xy}} = \frac{\eta_{x,xy}}{G_{xy}}$$
 (3.12)

and

$$\epsilon_{y} = s_{23}\tau_{xy} \quad \underline{\text{or}} \quad s_{23} = \frac{\epsilon_{y}}{\tau_{xy}} = \frac{\eta_{y,xy}}{G_{xy}}$$
(3.13)

In Eqs 3.5 through 3.13, E_x and E_y are the Young's moduli (for tensioncompression) with respect to the x and y-directions; G_{xy} is the shear modulus; v_{xy} is the Poisson's ratio which characterizes the decrease in the y-direction for the tension in the x-direction; v_{yx} is the Poisson's ratio which characterizes the decrease in the x-direction for the tension in the y-direction; $\eta_{xy,x}$ and $\eta_{xy,y}$ are the coefficients of mutual influence of the first kind (Ref 17) which involve the ratio of shearing strain to normal strain; and $\eta_{x,xy}$ and $\eta_{y,xy}$ are the coefficients of mutual influence of the second kind (Ref 17) which involve the ratio of normal strain to shearing strain.

Owing to the reciprocal relations,

$$s_{12} = s_{21} \frac{\text{or}}{E_x} - \frac{v_{xy}}{E_x} = -\frac{v_{yx}}{E_y}$$
 (3.14)

$$s_{13} = s_{31} \quad \underline{\text{or}} \quad \frac{\eta_{x,xy}}{G_{xy}} = \frac{\eta_{xy,x}}{E_{x}}$$
(3.15)

and

$$s_{23} = s_{32} \frac{\text{or}}{G_{xy}} \frac{\eta_{y,xy}}{G_{xy}} = \frac{\eta_{xy,y}}{E_{y}}$$
 (3.16)

Hence for an anisotropic thin plate in a state of plane stress, six elastic compliances s_{11} , s_{12} , s_{13} , s_{22} , s_{23} , and s_{33} can be evaluated with known values of six independent constants E_x , E_y , G_{xy} , v_{xy} (or v_{yx}), $\eta_{xy,x}$ (or $\eta_{x,xy}$), and $\eta_{xy,y}$ (or $\eta_{y,xy}$). Combining the above results, the six compliances can be written as

$$s_{11} = \frac{1}{E}_{x}$$

$$s_{12} = -\frac{v_{xy}}{E}_{x}$$

$$s_{13} = \frac{\eta_{xy,x}}{E}_{x}$$

$$s_{22} = \frac{1}{E}_{y}$$

$$s_{23} = \frac{\eta_{xy,y}}{E}_{y}$$

and

$$s_{33} = \frac{1}{G_{xy}}$$
 (3.17)

Elastic Compliances in Terms of Three Moduli of Elasticity and Three Poisson's Ratios

Another approach has been worked out to compute the six elastic compliances. In it the compliances are functions of three moduli of elasticity in any three directions a , b , and c , as shown in Fig 5(a), and the three Poisson's ratios related to these directions. Angle θ_1 between directions a and b , angle θ_2 between directions a and c , and angle θ_3 between directions b and c can have any value except 0 and 180 degrees. For convenience, directions x and a are taken as the same but, in general, the

Corresponding Strains: $\epsilon_{b}, \epsilon_{bp}, \gamma_{bp}$

Corresponding Strains: $\epsilon, \epsilon, \gamma$

(a)

Ξ

(b)

Ξ

(c)

Ξ

Corresponding Strains: ϵ_x , ϵ_y , γ_{xy} $\sigma_x = \sigma_{x1} + \sigma_{x2} + \sigma_{x3}$ $\epsilon_x = \epsilon_{x1} + \epsilon_{x2} + \epsilon_{x3}$ $\sigma_y = 0 + \sigma_{y2} + \sigma_{y3}$ $\epsilon_y = \epsilon_{y1} + \epsilon_{y2} + \epsilon_{y3}$ $\tau_{xy} = 0 + \tau_{xy2} + \tau_{xy3}$ $\gamma_{xy} = \gamma_{xy1} + \gamma_{xy2} + \gamma_{xy3}$ (e)

Fig 5. Stresses and corresponding strains for anisotropic plate elements in different directions.

₹

Corresponding Strains: $\epsilon_{xi}, \epsilon_{yi}, \gamma_{xyi}$

Corresponding Strains: ex2, ex2, Yxy2

Corresponding Strains: ex3, ey3, y3, xy3
angle between directions x and a need not be zero. This approach can be worked out as follows.

Consider a small rectangular element as shown in Fig 5(b). If the only stress acting on this element is σ_{al} and the corresponding strains are ϵ_a , ϵ_{ap} , and γ_{ap} , where ϵ_a and ϵ_{ap} are strains in the a-direction and perpendicular to the a-direction (or ap-direction) and γ_{ap} is shearing strain, then

$$\epsilon_{a} = \frac{\sigma_{a1}}{E_{a}}$$

$$\epsilon_{ap} = -\frac{\nu_{a}\sigma_{a1}}{E_{a}}$$

$$\gamma_{ap} = \frac{\eta_{a}\sigma_{a1}}{E_{a}}$$
(3.18)

where E_a is the modulus of elasticity with respect to the a-direction; v_a is the Poisson's ratio which characterizes the decrease perpendicular to the a-direction (or ap-direction) for tension in the a-direction; and η_a is the coefficient of mutual influence of the first kind related to the a-direction. Now for the same state of stress, if the element is oriented with respect to the x and y-directions, as shown in Fig 5(b) (the x and a-directions are the same in this case), then

$$\epsilon_{x1} = \frac{\sigma_{a1}}{E_a}$$
$$\epsilon_{y1} = -\frac{\nu_a \sigma_{a1}}{E_a}$$
$$\gamma_{xy1} = \frac{\eta_a \sigma_{a1}}{E_a}$$

(3.19)

$$\sigma_{x1} - \sigma_{a1}$$

$$\sigma_{y1} = 0$$

$$\tau_{xy1} = 0$$
(3.20)

where σ_{x1} and σ_{y1} are the normal stresses in the x and y-directions, respectively; τ_{xy1} is the shearing stress; and ε_{x1} , ε_{y1} , and γ_{xy1} are the corresponding strains.

Now consider a small rectangular element as shown in Fig 5(c). If the only stress acting on this element is σ_{b2} and the corresponding strains are ϵ_b , ϵ_{bp} , and γ_{bp} , where ϵ_b and ϵ_{bp} are strains in the b-direction and perpendicular to the b-direction (or bp-direction) and γ_{bp} is the shear-ing strain, then

$$\epsilon_{\rm b} = \frac{\sigma_{\rm b2}}{E_{\rm b}}$$

 $\epsilon_{\rm bp} = -\frac{\nu_{\rm b}\sigma_{\rm b2}}{E_{\rm b}}$

$$\gamma_{\rm bp} = \frac{\frac{\eta_{\rm b} \sigma_{\rm b2}}{E_{\rm b}}}{E_{\rm b}}$$
(3.21)

where E_b is the modulus of elasticity with respect to the b-direction; v_b is the Poisson's ratio which characterizes the decrease perpendicular to the b-direction (or bp-direction) for tension in the b-direction; and η_b is the coefficient of mutual influence of the first kind related to the b-direction. Now for the same state of stress, if the element is oriented with respect to the x and y-directions, as shown in Fig 5(c), then by using Mohr's circle or transformation relations it can be shown that

and

$$\epsilon_{x2} = (\ell_1^2 - \nu_b m_1^2 + \eta_b \ell_1 m_1) \frac{\sigma_{b2}}{E_b}$$

$$\epsilon_{y2} = (m_1^2 - \nu_b \ell_1^2 - \eta_b \ell_1 m_1) \frac{\sigma_{b2}}{E_b}$$

$$\gamma_{xy2} = [-2\ell_1 m_1 - \nu_b 2\ell_1 m_1 + \eta_b (\ell_1^2 - m_1^2)] \frac{\sigma_{b2}}{E_b}$$
(3.22)

and

$$\sigma_{x2} = \ell_1^2 \sigma_{b2}$$

$$\sigma_{y2} = m_1^2 \sigma_{b2}$$

$$\tau_{xy2} = -\ell_1 m_1 \sigma_{b2}$$
(3.23)

where σ_{x2} and σ_{y2} are the stresses in the x and y-directions, respectively; τ_{xy2} is the shearing stress; ε_{x2} , ε_{y2} , and γ_{xy2} are the corresponding strains; ℓ_1 is $\cos \theta_1$; m_1 is $\sin \theta_1$; and θ_1 is the angle between the a and b-directions.

Finally, consider a small rectangular element as shown in Fig 5(d). If the only stress acting on this element is σ_{c3} and the corresponding strains are ϵ_c , ϵ_{cp} , and γ_{cp} , where ϵ_c and ϵ_{cp} are strains in the c-direction and perpendicular to the c-direction (or cp-direction) and γ_{cp} is the shearing strain, then

$$\epsilon_{c} = \frac{\sigma_{c3}}{E_{c}}$$
$$\epsilon_{cp} = -\frac{\nu_{c}\sigma_{c3}}{E_{c}}$$

$$\gamma_{cp} = \frac{\eta_c \sigma_{c3}}{E_c}$$
(3.24)

where E_c is the modulus of elasticity with respect to the c-direction; v_c is the Poisson's ratio which characterizes the decrease perpendicular to the c-direction (or cp-direction) for tension in the c-direction; and η_c is the coefficient of mutual influence of the first kind related to the c-direction. Now for the same state of stress, if the element is oriented with respect to the x and y-directions, then by using Mohr's circle or transformation relations it can be shown that

$$\epsilon_{x3} = (\ell_2^2 - \nu_c m_2^2 + \eta_c \ell_2 m_2) \frac{\sigma_{c3}}{E_c}$$

$$\epsilon_{y3} = (m_2^2 - \nu_c \ell_2^2 - \eta_c \ell_2 m_2) \frac{\sigma_{c3}}{E_c}$$

$$\gamma_{xy3} = [-2\ell_2 m_2 - \nu_c 2\ell_2 m_2 + \eta_c (\ell_2^2 - m_2^2)] \frac{\sigma_{c3}}{E_c}$$
(3.25)

and

$$\sigma_{x3} = l_2^2 \sigma_{c3}$$

$$\sigma_{y3} = m_2^2 \sigma_{c3}$$

$$\tau_{xy3} = -l_2 m_2 \sigma_{c3}$$
(3.26)

where σ_{x3} and σ_{y3} are stresses in the x and y-directions, respectively; τ_{xy3} is the shearing stress; ϵ_{x3} , ϵ_{y3} , and γ_{xy3} are corresponding strains; ℓ_2 is $\cos \theta_2$; m_2 is $\sin \theta_2$; and θ_2 is the angle between the a and c-directions. Now consider a case in which the above three sets of state of stresses act simultaneously. The method of superposition can be used in this case. Hence, as shown in Fig 5(e), if

$$\sigma_{\mathbf{x}} = \sigma_{\mathbf{x}1} + \sigma_{\mathbf{x}2} + \sigma_{\mathbf{x}3}$$

$$\sigma_{\mathbf{y}} = \sigma_{\mathbf{y}1} + \sigma_{\mathbf{y}2} + \sigma_{\mathbf{y}3}$$

$$\tau_{\mathbf{xy}} = \tau_{\mathbf{xy}1} + \tau_{\mathbf{xy}2} + \tau_{\mathbf{xy}3}$$
(3.27)

and

$$\epsilon_{x} = \epsilon_{x1} + \epsilon_{x2} + \epsilon_{x3}$$

$$\epsilon_{y} = \epsilon_{y1} + \epsilon_{y2} + \epsilon_{y3}$$

$$\gamma_{xy} = \gamma_{xy1} + \gamma_{xy2} + \gamma_{xy3}$$
(3.28)

then from Eqs 3.20, 3.23, and 3.26

$$\sigma_{x} = \sigma_{a1} + \sigma_{b2}\ell_{1}^{2} + \sigma_{c3}\ell_{2}^{2}$$

$$\sigma_{y} = 0 + \sigma_{b2}m_{1}^{2} + \sigma_{c3}m_{2}^{2}$$

$$\tau_{xy} = 0 - \sigma_{b2}\ell_{1}m_{1} - \sigma_{c3}\ell_{2}m_{2}$$
(3.29)

and from Eqs 3.19, 3.22, and 3.25

$$\epsilon_{x} = \frac{1}{E_{a}} \sigma_{a1} + (\ell_{1}^{2} - \nu_{b}m_{1}^{2} + \eta_{b}\ell_{1}m_{1}) \frac{\sigma_{b2}}{E_{b}}$$

$$+ (\ell_{2}^{2} - \nu_{c}m_{2}^{2} + \eta_{c}\ell_{2}m_{2})\frac{\sigma_{c3}}{E_{c}}$$

$$\epsilon_{y} = -\frac{\nu_{a}}{E_{a}}\sigma_{a1} + (m_{1}^{2} - \nu_{b}\ell_{1}^{2} - \eta_{b}\ell_{1}m_{1})\frac{\sigma_{b2}}{E_{b}}$$

$$+ (m_{2}^{2} - \nu_{c}\ell_{2}^{2} - \eta_{c}\ell_{2}m_{2})\frac{\sigma_{c3}}{E_{c}}$$

$$\gamma_{xy} = \frac{\eta_{a}}{E_{a}}\sigma_{a1} + [-2\ell_{1}m_{1} - \nu_{b}2\ell_{1}m_{1} + \eta_{b}(\ell_{1}^{2} - m_{1}^{2})]\frac{\sigma_{b2}}{E_{b}}$$

$$+ [-2\ell_{2}m_{2} - \nu_{c}2\ell_{2}m_{2} + \eta_{c}(\ell_{2}^{2} - m_{2}^{2})]\frac{\sigma_{c3}}{E_{c}}$$
(3.30)

Also ϵ_x , ϵ_y , and γ_{xy} can be related to σ_x , σ_y , and τ_{xy} using compliances from Eq 3.4 as follows:

$$\epsilon_{x} = s_{11}\sigma_{x} + s_{12}\sigma_{y} + s_{13}\tau_{xy}$$

$$\epsilon_{y} = s_{12}\sigma_{x} + s_{22}\sigma_{y} + s_{23}\tau_{xy}$$

$$\gamma_{xy} = s_{13}\sigma_{x} + s_{23}\sigma_{y} + s_{33}\tau_{xy}$$
(3.31)

Substituting values of σ_x , σ_y , and τ_{xy} from Eq 3.29 into Eq 3.31

$$\begin{aligned} \epsilon_{x} &= s_{11}(\sigma_{a1} + \sigma_{b2}\ell_{1}^{2} + \sigma_{c3}\ell_{2}^{2}) + s_{12}(\sigma_{b2}m_{1}^{2} + \sigma_{c3}m_{2}^{2}) \\ &+ s_{13}(-\sigma_{b2}\ell_{1}m_{1} - \sigma_{c3}\ell_{2}m_{2}) \end{aligned}$$

$$\epsilon_{y} &= s_{12}(\sigma_{a1} + \sigma_{b2}\ell_{1}^{2} + \sigma_{c3}\ell_{2}^{2}) + s_{22}(\sigma_{b2}m_{1}^{2} + \sigma_{c3}m_{2}^{2}) \end{aligned}$$

$$+s_{23}(-\sigma_{b2}\ell_{1}m_{1} - \sigma_{c3}\ell_{2}m_{2})$$

$$Y_{xy} = s_{13}(\sigma_{a1} + \sigma_{b2}\ell_{1}^{2} + \sigma_{c3}\ell_{2}^{2}) + s_{23}(\sigma_{b2}m_{1}^{2} + \sigma_{c3}m_{2}^{2})$$

$$+ s_{33}(-\sigma_{b2}\ell_{1}m_{1} - \sigma_{c3}\ell_{2}m_{2})$$
(3.32)

Since Eqs 3.30 and 3.32 should be the same, the coefficients of σ_{a1} , σ_{b2} , and σ_{c3} in both sets of equations should be equal. Comparison of the coefficients of σ_{a1} , σ_{b2} , and σ_{c3} results in the following nine relations:

$$s_{11} = \frac{1}{E_a}$$
 (3.33)

$$s_{11}\ell_1^2 + s_{12}m_1^2 - s_{13}\ell_1m_1 = \frac{1}{E_b} (\ell_1^2 - \nu_b m_1^2 + \eta_b\ell_1m_1)$$
(3.34)

$$s_{11}\ell_2^2 + s_{12}m_2^2 - S_{13}\ell_2m_2 = \frac{1}{E_c}(\ell_2^2 - \nu_c m_2^2 + \eta_c \ell_2m_2)$$
 (3.35)

$$s_{12} = -\frac{v_a}{E_a}$$
 (3.36)

$$s_{12}\ell_1^2 + s_{22}m_1^2 - s_{23}\ell_1m_1 = \frac{1}{E_b}(m_1^2 - v_b\ell_1^2 - \eta_b\ell_1m_1)$$
(3.37)

$$s_{12}\ell_2^2 + s_{22}m_2^2 - s_{23}\ell_2m_2 = \frac{1}{E_c}(m_2^2 - v_c\ell_2^2 - \eta_c\ell_2m_2)$$
(3.38)

$$s_{13} = \frac{\eta_a}{E_a}$$
(3.39)

$$s_{13}\ell_1^2 + s_{23}m_1^2 - s_{33}\ell_1m_1 = \frac{1}{E_b} [-2\ell_1m_1 - \nu_b^2\ell_1m_1]$$

+
$$\eta_{\rm b}(\ell_1^2 - m_1^2)$$
] (3.40)

$$s_{13}\ell_{2}^{2} + s_{23}m_{2}^{2} - s_{33}\ell_{2}m_{2} = \frac{1}{E_{c}} \left[-2\ell_{2}m_{2} - \nu_{c}^{2}\ell_{2}m_{2} - \nu_{c}^{2}\ell_{2}m_{2} + \eta_{c}(\ell_{2}^{2} - m_{2}^{2})\right]$$

$$(3.41)$$

Solving the above nine relations for six elastic compliances s_{11} , s_{12} , s_{13} , s_{22} , s_{23} , and s_{33} and three coefficients of mutual influence of the first kind η_a , η_b , and η_c in terms of three moduli of elasticity E_a , E_b , and E_c and three Poisson's ratios ν_a , ν_b , and ν_c , the following results could be obtained:

.

$$\begin{aligned} \Pi_{a} &= \frac{(\ell_{1}m_{2} + m_{1}\ell_{2})(\ell_{1}\ell_{2} - \nu_{a}m_{1}m_{2})}{2\ell_{1}m_{1}\ell_{2}m_{2}} \\ &- \frac{(m_{1}\ell_{3} + \ell_{1}m_{3})(\ell_{1}\ell_{3} - \nu_{b}m_{1}m_{3})}{2\ell_{1}m_{1}\ell_{3}m_{3}} \frac{E_{a}}{E_{b}} \\ &- \frac{(\ell_{2}m_{3} - m_{2}\ell_{3})(\ell_{2}\ell_{3} + \nu_{c}m_{2}m_{3})}{2\ell_{2}m_{2}\ell_{3}m_{3}} \frac{E_{a}}{E_{c}} \end{aligned}$$
(3.42)
$$\Pi_{b} &= \frac{(\ell_{1}m_{2} - m_{1}\ell_{2})(\ell_{1}\ell_{2} + \nu_{a}m_{1}m_{2})}{2\ell_{1}m_{1}\ell_{2}m_{2}} \frac{E_{b}}{E_{a}} \\ &+ \frac{(m_{1}\ell_{3} - \ell_{1}m_{3})(\ell_{1}\ell_{3} + \nu_{b}m_{1}m_{3})}{2\ell_{1}m_{1}\ell_{3}m_{3}} \\ &+ \frac{(\ell_{2}m_{3} - m_{2}\ell_{3})(\ell_{2}\ell_{3} + \nu_{c}m_{2}m_{3})}{2\ell_{2}m_{2}\ell_{3}m_{3}} \frac{E_{b}}{E_{c}} \end{aligned}$$
(3.43)

$$\eta_{c} = -\frac{(\ell_{1}m_{2} - m_{1}\ell_{2})(\ell_{1}\ell_{2} + \nu_{a}m_{1}m_{2})}{2\ell_{1}m_{1}\ell_{2}m_{2}} \frac{E_{c}}{E_{a}} + \frac{(m_{1}\ell_{3} + \ell_{1}m_{3})(\ell_{1}\ell_{3} - \nu_{b}m_{1}m_{3})}{2\ell_{1}m_{1}\ell_{3}m_{3}} \frac{E_{c}}{E_{b}} + \frac{(\ell_{2}m_{3} + m_{2}\ell_{3})(-\ell_{2}\ell_{3} + \nu_{c}m_{2}m_{3})}{2\ell_{2}m_{2}\ell_{3}m_{3}}$$
(3.44)

$$s_{11} = \frac{1}{E_a}$$
 (3.45)

$$s_{12} = -\frac{v_a}{E_a}$$
 (3.46)

$$s_{13} = \frac{(\ell_1 m_2 + m_1 \ell_2)}{2m_1 m_2} \frac{1}{E_a} - \frac{(\ell_1 m_2 + m_1 \ell_2)}{2\ell_1 \ell_2} \frac{\nu_a}{E_a} - \frac{m_2}{2m_1 m_3} \frac{1}{E_b}$$

$$+ \frac{m_2}{2\ell_1 \ell_3} \frac{\nu_b}{E_b} + \frac{m_1}{2m_2 m_3} \frac{1}{E_c} + \frac{m_1}{2\ell_2 \ell_3} \frac{\nu_c}{E_c}$$
(3.47)
$$s_{22} = \frac{\ell_1 \ell_2}{m_1 m_2} \frac{1}{E_a} - \frac{(\ell_1 \ell_2 - m_1 m_2)}{m_1 m_2} \frac{\nu_a}{E_a} - \frac{\ell_2}{m_1 m_3} \frac{1}{E_b} + \frac{\ell_2}{m_1 m_3} \frac{\nu_b}{E_b}$$

$$+ \frac{\ell_1}{m_2 m_3} \frac{1}{E_c} - \frac{\ell_1}{m_2 m_3} \frac{\nu_c}{E_c}$$
(3.48)
$$s_{23} = \frac{(\ell_1 m_2 + m_1 \ell_2)}{2m_1 m_2} \frac{1}{E_a} + \frac{(\ell_1 m_2 + m_1 \ell_2)(-2\ell_1 \ell_2 + m_1 m_2)}{2\ell_1 m_1 \ell_2 m_2} \frac{\nu_a}{E_a}$$

$$-\frac{m_2}{2m_1m_3}\frac{1}{E_b} + \frac{m_2(\ell_2 + \ell_1\ell_3)}{2\ell_1m_1\ell_3m_3}\frac{\nu_b}{E_b} + \frac{m_1}{2m_2m_3}\frac{1}{E_c} + \frac{m_1(-\ell_1 - \ell_2\ell_3)}{2\ell_2m_2\ell_3m_3}\frac{\nu_c}{E_c}$$
(3.49)
$$s_{33} = \frac{\ell_3}{m_1m_2}\frac{1}{E_a} + \frac{1}{\ell_1m_1\ell_2m_2}\left[-m_1m_2(\ell_1\ell_2 - m_1m_2) - \ell_1^2m_2^2 - m_1^2\ell_2^2\right]\frac{\nu_a}{E_a}$$

$$-\frac{\ell_2}{m_1m_3}\frac{1}{E_b} + \frac{1}{\ell_1m_1\ell_3m_3}(m_1m_2\ell_3 + \ell_1^2m_2^2 - m_1^2\ell_2^2)\frac{\nu_b}{E_b} + \frac{\ell_1}{m_2m_3}\frac{1}{E_c} + \frac{1}{\ell_2m_2\ell_3m_3}(-m_1m_2\ell_3 + \ell_1^2m_2^2 - m_1^2\ell_2^2)\frac{\nu_c}{E_c}$$
(3.50)

where l_3 is $\cos \theta_3$; m_3 is $\sin \theta_3$; and θ_3 is the angle between the b and c-directions.

Equations 3.45 through 3.50 describe the relations in which the six elastic compliances are related to the three moduli of elasticity in any three directions a, b, and c and the three Poisson's ratios related to these directions. These relations are valid for any value of angles θ_1 , θ_2 , and θ_3 except 0 and 180 degrees. It might appear that the relations are not valid for 90 degrees but an additional relation between moduli of elasticity and Poisson's ratios exists at this angle. For example, if directions a and b are at 90 degrees to each other then

$$\frac{v_a}{E_a} = \frac{v_b}{E_b}$$
(3.51)

Using this additional relation, compliances can still be computed in terms of E , E , E , V , v , v , and v c

For the isotropic case $E_a = E_b = E_c = E$ and $v_a = v_b = v_c = v$; substituting these in Eqs 3.42 through 3.44 it can be seen that $\eta_a = \eta_b = \eta_c = 0$, which is as it should be.

Transformation Relation for Modulus of Elasticity

Knowing the values of six elastic compliances, the transformation relation for the modulus of elasticity can be worked out as follows.

Multiplying Eqs 3.34, 3.37, and 3.40 by ℓ_1^2 , m_1^2 , and $-\ell_1 m_1$, respectively, and adding the three resulting equations gives

$$\frac{1}{E_{b}} = \ell_{1}^{4} s_{11} + 2\ell_{1}^{2} m_{1}^{2} s_{12} - 2\ell_{1}^{3} m_{1} s_{13} + m_{1}^{4} s_{22}$$
$$- 2\ell_{1}^{3} m_{1}^{3} s_{23} + \ell_{1}^{2} m_{1}^{2} s_{33} \qquad (3.52)$$

where ℓ_1 is $\cos \theta_1$; m_1 is $\sin \theta_1$; θ_1 is the angle between the a and b-directions, as shown in Fig 5(a); and s_{11} , s_{12} , s_{13} , s_{22} , s_{23} , and s_{33} are elastic compliances (as shown in Fig 5(a), the x and a-directions are the same).

Now consider any direction b' such that the angle between a (or x) and b'-directions is θ'_1 . If E'_b is the modulus of elasticity with respect to the b'-direction then from Eq 3.52

$$\frac{1}{E_{b}'} = \ell_{1}'^{4} s_{11} + 2\ell_{1}'^{2} m_{1}'^{2} s_{12} - 2\ell_{1}'^{3} m_{1}' s_{13} + m_{1}'^{4} s_{22} - 2\ell_{1}' m_{1}'^{3} s_{23} + \ell_{1}'^{2} m_{1}'^{2} s_{33}$$

$$(3.53)$$

where ℓ_1' is $\cos \theta_1'$ and m_1' is $\sin \theta_1'$.

Equation 3.53 describes the transformation relation for the modulus of elasticity in any direction. Similar relations have been worked out by Lekhnitskii (Ref 17) using a different approach.

Transformation Relation for Poisson's Ratio

Knowing the value of E'_b (or modulus of elasticity with respect to the b'-direction), the Poisson's ratio related to the b'-direction can be worked out. Consider Eq 3.34 as

$$s_{11}\ell_1^2 + s_{12}m_1^2 - s_{13}\ell_1m_1 = \frac{1}{E_b} (\ell_1^2 - v_bm_1^2 + \eta_b\ell_1m_1)$$
(3.54)

Substituting the value of η_b from Eq 3.43 into Eq 3.54 and then following a procedure similar to that explained above for the transformation of the modulus of elasticity, the following relation could be written:

$$v_{b}' = -\frac{2\ell_{1}'^{2}\ell_{3}'}{m_{1}'m_{2}} E_{b}'s_{11} - \frac{2m_{1}'\ell_{3}'}{m_{2}} E_{b}'s_{12} + \frac{2\ell_{1}'\ell_{3}'}{m_{2}} E_{b}'s_{13}$$
$$+ \frac{\ell_{1}'\ell_{3}'m_{3}'}{m_{1}'m_{2}'} \frac{E_{b}'}{E_{a}} + \frac{\ell_{3}'m_{3}'}{\ell_{2}m_{2}} \frac{v_{a}E_{b}'}{E_{a}} - \frac{\ell_{1}'m_{1}'\ell_{3}'}{m_{2}'m_{3}'} \frac{E_{b}'}{E_{c}}$$
$$- \frac{\ell_{1}'m_{1}'}{\ell_{2}m_{2}} \frac{v_{c}E_{b}'}{E_{c}} + \frac{\ell_{1}'\ell_{3}'}{m_{1}'m_{3}'}$$
(3.55)

where v'_{b} is the Poisson's ratio related to the b'-direction; l'_{1} is $\cos \theta'_{1}$; m'_{1} is $\sin \theta'_{1}$; θ'_{1} is the angle between the a and b'-directions; l'_{3} is $\cos \theta'_{3}$; m'_{3} is $\sin \theta'_{3}$; θ'_{3} is the angle between the b' and c-directions; l_{2} is $\cos \theta_{2}$; m_{2} is $\sin \theta_{2}$; and θ_{2} is the angle between the a and c-directions.

Elastic Stiffnesses for Anisotropic Thin Plate

Knowing elastic compliances, the elastic stiffnesses can be computed using the following procedure. Consider strain-stress relations

$$\varepsilon_{x} = s_{11}\sigma_{x} + s_{12}\sigma_{y} + s_{13}\tau_{xy}$$

$$\epsilon_{y} = s_{12}\sigma_{x} + s_{22}\sigma_{y} + s_{23}\tau_{xy}$$

 $\gamma_{xy} = s_{13}\sigma_{x} + s_{23}\sigma_{y} + s_{33}\tau_{xy}$
(3.56)

The values of elastic compliances can be computed by either of the above procedures or by some other means. Substituting these values of compliances in Eq 3.56 and solving for $\sigma_{\mathbf{x}}$, $\sigma_{\mathbf{y}}$, and $\tau_{\mathbf{x}\mathbf{y}}$ as

$$\sigma_{x} = c_{11}\varepsilon_{x} + c_{12}\varepsilon_{y} + c_{13}\gamma_{xy}$$

$$\sigma_{y} = c_{12}\varepsilon_{x} + c_{22}\varepsilon_{y} + c_{23}\gamma_{xy}$$

$$\tau_{xy} = c_{13}\varepsilon_{x} + c_{23}\varepsilon_{y} + c_{33}\gamma_{xy}$$

$$(3.57)$$

gives

$$c_{11} = \frac{1}{|\text{Det}|} (s_{22}s_{33} - s_{23}s_{23})$$

$$c_{12} = \frac{1}{|\text{Det}|} (s_{23}s_{13} - s_{12}s_{33})$$

$$c_{13} = \frac{1}{|\text{Det}|} (s_{12}s_{23} - s_{13}s_{22})$$

$$c_{22} = \frac{1}{|\text{Det}|} (s_{33}s_{11} - s_{13}s_{13})$$

$$c_{23} = \frac{1}{|\text{Det}|} (s_{13}s_{12} - s_{23}s_{11})$$

$$c_{33} = \frac{1}{|\text{Det}|} (s_{11}s_{22} - s_{12}s_{12})$$

(3.58)

where

$$|\text{Det}| = \begin{vmatrix} s_{11} & s_{12} & s_{13} \\ s_{12} & s_{22} & s_{23} \\ s_{13} & s_{23} & s_{33} \end{vmatrix}$$
(3.59)

and where is used for the determinant.

Equations 3.58 and 3.59 describe the relations between the elastic stiffnesses and the elastic compliances in which the compliances may be computed by using either Eq 3.17 or Eqs 3.45 through 3.50 or some other means.

Summary

The stiffnesses in Eq 3.58 could be related to three moduli of elasticity with respect to any three directions (a , b , and c) and three Poisson's ratios related to these directions through elastic compliances (Eqs 3.45 through 3.50). The six elastic constants could be experimentally determined by testing three specimens from the plate in unidirectional tension. These three specimens could be taken either from the three required directions (a , b , and c) or from any other three directions. The measured moduli of elasticity and Poisson's ratios may be transformed to the required directions using Eqs 3.53 and 3.55.

How elastic stiffnesses can be used in the moment-curvature relations for the discrete-element model of an anisotropic skew-plate and grid-beam system is shown in Chapter 4. This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

CHAPTER 4. STRESS-STRAIN RELATIONS FOR MODEL

Introduction

In this chapter, a small triangular element from an anisotropic plate is considered, and the conventional relations between the three normal stresses in any three directions and the corresponding three normal strains are worked out.

Since the rigid bars in the model of the anisotropic skew plate do not transfer any twisting moments, stress-strain relations for the plate model are derived from a small triangular element of the plate. The plate is assumed to be made up of three layers of interconnected fibers running in the three directions. The three fiber stresses are related to the three conventional normal strains for the stress-strain relations as derived for this element. This concept makes it clear what discretization choice is appropriate to develop the bar and spring model. Integration of these relations results in moment-curvature relations for the anisotropic skew-plate model.

Moment-curvature relations for grid-beam models are also derived.

Conventional Stress-Strain Relations for Triangular Elements

Consider a small rectangular differential element of a thin anisotropic plate. The stresses acting on this element are σ_x , σ_y , and τ_{xy} as shown in Fig 6 where σ_x and σ_y are the normal stresses in the x and y-directions, respectively, and τ_{xy} is the shearing stress. The corresponding strains are ε_x , ε_y , and γ_{xy} .

The anisotropic stress-strain relations for the rectangular element (Fig 6) may be written as

$$\sigma_{x} = c_{11}\varepsilon_{x} + c_{12}\varepsilon_{y} + c_{13}\gamma_{xy}$$

$$\sigma_{y} = c_{12} \epsilon_{x} + c_{22} \epsilon_{y} + c_{23} \gamma_{xy}$$

Corresponding Strains : ϵ_{x1} , ϵ_{y1} , γ_{xy}

Corresponding Strains: $\epsilon_{a}, \epsilon_{b}, \epsilon_{c}, \gamma_{a1}, \gamma_{b1}, \gamma_{c}$

Fig 6. Stresses and corresponding strains for a rectangular element and equivalent triangular element for an anisotropic plate.

$$\tau_{xy} = c_{13}\epsilon_x + c_{23}\epsilon_y + c_{33}\gamma_{xy}$$
(4.1)

where c_{11} , c_{12} , c_{13} , c_{22} , c_{23} , and c_{33} are elastic stiffnesses. Now consider a triangular differential element at the same location of the plate, as shown in Fig 6. The sides of this element are perpendicular to the a, b, and c-directions (a and x-directions are taken to be the same but, in general, are not necessarily the same). If the stresses acting on this triangular element are σ_a , σ_b , σ_c , τ_a , τ_b , and τ_c where σ_a , σ_b , and σ_c are the normal stresses in the a, b, and c-directions, respectively (Fig 6), and τ_a , τ_b , and τ_c are the shearing stresses related to these directions, and if ε_a , ε_b , ε_c , γ_a , γ_b , and γ_c are corresponding strains where ε_a , ε_b , and ε_c are normal strains and γ_a , γ_b , and γ_c are shearing strains, then by using Mohr's circle the following relations may be written:

$$\sigma_{b} = \sigma_{x} \cos^{2} \theta_{1} + \sigma_{y} \sin^{2} \theta_{1} - 2\tau_{xy} \sin \theta_{1} \cos \theta_{1}$$
$$\sigma_{c} = \sigma_{x} \cos^{2} \theta_{2} + \sigma_{y} \sin^{2} \theta_{2} - 2\tau_{xy} \sin \theta_{2} \cos \theta_{2}$$
(4.2)

and

 $\sigma_a = \sigma_x$

$$\epsilon_{a} = \epsilon_{x}$$

$$\epsilon_{b} = \epsilon_{x} \cos^{2} \theta_{1} + \epsilon_{y} \sin^{2} \theta_{1} - \gamma_{xy} \sin \theta_{1} \cos \theta_{1}$$

$$\epsilon_{c} = \epsilon_{x} \cos^{2} \theta_{2} + \epsilon_{y} \sin^{2} \theta_{2} - \gamma_{xy} \sin \theta_{2} \cos \theta_{2}$$
(4.3)

Combining Eqs 4.1, 4.2, and 4.3, it is possible to develop the following anisotropic stress-strain relations in which the normal stresses in any three directions are related to the corresponding normal strains:

$$\sigma_{a} = \frac{1}{m_{1}m_{2}m_{3}} \left[P_{aa}\epsilon_{a} + P_{ab}\epsilon_{b} + P_{ac}\epsilon_{c} \right]$$

$$\sigma_{b} = \frac{1}{m_{1}m_{2}m_{3}} \left[(P_{aa}\ell_{1}^{2} + P_{ba}m_{1}^{2} - 2P_{ca}\ell_{1}m_{1})\epsilon_{a} + (P_{ab}\ell_{1}^{2} + P_{bb}m_{1}^{2} - 2P_{cb}\ell_{1}m_{1})\epsilon_{b} + (P_{ac}\ell_{1}^{2} + P_{bc}m_{1}^{2} - 2P_{cc}\ell_{1}m_{1})\epsilon_{c} + P_{bc}m_{1}^{2} - 2P_{cc}\ell_{1}m_{1})\epsilon_{c} \right]$$

$$\sigma_{c} = \frac{1}{m_{1}m_{2}m_{3}} \left[(P_{aa}\ell_{2}^{2} + P_{ba}m_{2}^{2} - 2P_{ca}\ell_{2}m_{2})\epsilon_{a} + (P_{ab}\ell_{2}^{2} + P_{bb}m_{2}^{2} - 2P_{cb}\ell_{2}m_{2})\epsilon_{b} + (P_{ac}\ell_{2}^{2} + P_{bc}m_{2}^{2} - 2P_{cc}\ell_{2}m_{2})\epsilon_{c} \right]$$
(4.4)

where

$$P_{aa} = c_{11}m_{1}m_{2}m_{3} + c_{12}\ell_{1}\ell_{2}m_{3} + c_{13}m_{3}(\ell_{1}m_{2} + m_{1}\ell_{2})$$

$$P_{ab} = -c_{12}\ell_{2}m_{2} - c_{13}m_{2}^{2}$$

$$P_{ac} = c_{12}\ell_{1}m_{1} + c_{13}m_{1}^{2}$$

$$P_{ba} = c_{12}m_{1}m_{2}m_{3} + c_{22}\ell_{1}\ell_{2}m_{3} + c_{23}m_{3}(\ell_{1}m_{2} + m_{1}\ell_{2})$$

$$P_{bb} = -c_{22}\ell_{2}m_{2} - c_{23}m_{2}^{2}$$

$$P_{bc} = c_{22}\ell_{1}m_{1} + c_{23}m_{1}^{2}$$

$$P_{ca} = c_{13}m_{1}m_{2}m_{3} + c_{23}\ell_{1}\ell_{2}m_{3} + c_{33}m_{3}(\ell_{1}m_{2} + m_{1}\ell_{2})$$

$$P_{cb} = -c_{23}\ell_{2}m_{2} - c_{33}m_{2}^{2}$$

$$P_{cc} = c_{23}\ell_{1}m_{1} + c_{33}m_{1}^{2}$$
(4.5)

and

^l 1	=	COS	^θ 1
^l 2	2	cos	^θ 2
l ₃	=	cos	^θ 3
^m 1	=	sin	^θ 1
^m 2	=	sin	^θ 2
^m 3	=	sin	θ3

Stress-Strain Relations for Fiber Continuum

As explained in Chapter 2, the discrete-element model for the anisotropic skew plate consists of elastic joints connected by means of rigid bars running in any three directions (Fig 2). The rigid bars transfer bending moments from one elastic joint to the other elastic joint. Hence, to derive the stressstrain relations for the plate model, the following procedure is adopted.

It is assumed that the triangular element of Fig 6 is composed of three layers of infinitesimal fibers running in the a, b, and c-directions. These layers are so connected that the effect due to Poisson's ratio is transferred from one layer to the other two layers. This can be visualized by considering three layers of closely-spaced straps running in the a, b, and c-directions and pinned at the points of intersection as shown in Fig 7.

(4.6)

Fig 7. Simulation of anisotropic continuum with a fiber-element model.

Ē

Continuum Stresses : σ_{a} , σ_{b} , $\sigma_{c^{1}}$, $\tau_{a^{1}}$, τ_{b} , τ_{c}

Fiber Stresses: fai fbi fc

Fig 8. Stresses for a continuum element and equivalent fiber element. Now if f_a , f_b , and f_c are stresses in the fibers running in the a, b, and c-directions, respectively, as shown in Fig 8, then, by statics, the following relations may be written

$$\sigma_{a} = f_{a} + f_{b} \cos^{2} \theta_{1} + f_{c} \cos^{2} \theta_{2}$$

$$\sigma_{b} = f_{a} \cos^{2} \theta_{1} + f_{b} + f_{c} \cos^{2} \theta_{3}$$

$$\sigma_{c} = f_{a} \cos^{2} \theta_{2} + f_{b} \cos^{2} \theta_{3} + f_{c}$$
(4.7)

and

$$\tau_{a} = f_{b} \cos \theta_{1} \sin \theta_{1} + f_{c} \cos \theta_{2} \sin \theta_{2}$$

$$\tau_{b} = -f_{a} \cos \theta_{1} \sin \theta_{1} + f_{c} \cos \theta_{3} \sin \theta_{3}$$

$$\tau_{c} = -f_{a} \cos \theta_{2} \sin \theta_{2} - f_{b} \cos \theta_{3} \sin \theta_{3}$$
(4.8)

Solving Eq 4.7 for f_a , f_b , and f_c ,

$$f_{a} = \frac{1}{D} [(1 - \ell_{3}^{4})\sigma_{a} + (\ell_{2}^{2}\ell_{3}^{2} - \ell_{1}^{2})\sigma_{b} + (\ell_{1}^{2}\ell_{3}^{2} - \ell_{2}^{2})\sigma_{c}]$$

$$f_{b} = \frac{1}{D} [(\ell_{2}^{2}\ell_{3}^{2} - \ell_{1}^{2})\sigma_{a} + (1 - \ell_{2}^{4})\sigma_{b} + (\ell_{1}^{2}\ell_{2}^{2} - \ell_{3}^{2})\sigma_{c}]$$

$$f_{c} = \frac{1}{D} [(\ell_{1}^{2}\ell_{3}^{2} - \ell_{2}^{2})\sigma_{a} + (\ell_{1}^{2}\ell_{2}^{2} - \ell_{3}^{2})\sigma_{b} + (1 - \ell_{1}^{4})\sigma_{c}] \qquad (4.9)$$

where $D = 1 - \ell_1^4 - \ell_2^4 - \ell_3^4 + 2\ell_1^2\ell_2^2\ell_3^2$ and ℓ_1 , ℓ_2 , and ℓ_3 are $\cos \theta_1$, $\cos \theta_2$, and $\cos \theta_3$, respectively (Eq 4.6).

Substituting the values of σ_a , σ_b , and σ_c from Eq 4.4 into Eq 4.9, the following stress-strain relations for the fiber continuum, which relate the fiber stresses to the conventional strains, may be obtained:

$$f_{a} = a_{11}\varepsilon_{a} + a_{12}\varepsilon_{b} + a_{13}\varepsilon_{c}$$

$$f_{b} = a_{12}\varepsilon_{a} + a_{22}\varepsilon_{b} + a_{23}\varepsilon_{c}$$

$$f_{c} = a_{13}\varepsilon_{a} + a_{23}\varepsilon_{b} + a_{33}\varepsilon_{c}$$

$$(4.10)$$

where

$$a_{11} = c_{11} + \frac{2\ell_1\ell_2}{m_1m_2} c_{12} + \frac{2(\ell_1m_2 + m_1\ell_2)}{m_1m_2} c_{13} + \frac{\ell_1^2\ell_2^2}{m_1m_2^2} c_{22}$$

$$+ \frac{2\ell_1\ell_2(\ell_1m_2 + m_1\ell_2)}{m_1^2m_2^2} c_{23} + \frac{(\ell_1m_2 + m_1\ell_2)^2}{m_1^2m_2^2} c_{33}$$

$$a_{12} = -\frac{\ell_2}{m_1 m_3} c_{12} - \frac{m_2}{m_1 m_3} c_{13} - \frac{\ell_1 \ell_2^2}{m_1^2 m_2 m_3} c_{22}$$

$$-\frac{\ell_2(2\ell_1m_2+m_1\ell_2)}{m_1^2m_2m_3}c_{23}-\frac{(\ell_1m_2+m_1\ell_2)}{m_1^2m_3}c_{33}$$

$$a_{13} = \frac{\ell_1}{m_2 m_3} c_{12} + \frac{m_1}{m_2 m_3} c_{13} + \frac{\ell_1^2 \ell_2}{m_1 m_2^2 m_3} c_{22}$$

+
$$\frac{\ell_1(\ell_1 m_2 + 2m_1 \ell_2)}{m_1 m_2 m_3} c_{23} + \frac{(\ell_1 m_2 + m_1 \ell_2)}{m_2 m_3} c_{33}$$

$$a_{22} = \frac{\ell_2^2}{m_1^2 m_3^2} c_{22} + \frac{2\ell_2 m_2}{m_1^2 m_3^2} c_{23} + \frac{m_2^2}{m_1^2 m_3^2} c_{33}$$

$$a_{23} = -\frac{\ell_1 \ell_2}{m_1^2 m_3^2} c_{22} - \frac{(\ell_1^2 m_2 + m_1 \ell_2)}{m_1^2 m_3^2} c_{23} - \frac{1}{m_3^2} c_{33}$$

$$a_{33} = \frac{\ell_1^2}{m_2^2 m_3^2} c_{22} + \frac{2\ell_1^2 m_1}{m_2^2 m_3^2} c_{23} + \frac{m_1^2}{m_2^2 m_3^2} c_{33}$$
(4.11)

and where c_{11} , c_{12} , c_{13} , c_{22} , c_{23} , and c_{33} are elastic stiffnesses, the values of which could be obtained as explained in Chapter 3.

The fiber continuum which is developed here could be made into a discreteelement tridirectional model like that in Fig 2 for plane stress instead of bending.

Moment-Curvature Relations for Fiber Continuum

Consider a differential triangular element, as shown in Fig 9, under the action of fiber stresses f_a , f_b , and f_c . If the three-layer element considered is at a distance z from the neutral surface then, based on assumptions in Chapter 2,

$$\epsilon_{a} = z \frac{\partial^{2} w}{\partial a^{2}}$$

$$\epsilon_{b} = z \frac{\partial^{2} w}{\partial b^{2}}$$

$$\epsilon_{c} = z \frac{\partial^{2} w}{\partial c^{2}}$$
(4.12)

where $\frac{\partial^2 w}{\partial a^2}$, $\frac{\partial^2 w}{\partial b^2}$, and $\frac{\partial^2 w}{\partial c^2}$ are curvatures in the *a*, *b*, and *c*-directions, respectively.

Fig 9. Differential element from plate.

If M_a , M_b , and M_c are bending moments per unit width in the plate continuum and t is the thickness of the plate, then, using Eqs 4.10 and 4.12,

$$M_{a} = \int zf_{a}dz = \int (a_{11}e_{a} + a_{12}e_{b} + a_{13}e_{c})zdz$$

$$-\frac{t}{2} - \frac{t}{2}$$

$$= \int (a_{11}\frac{\partial^{2}w}{\partial a^{2}} + a_{12}\frac{\partial^{2}w}{\partial b^{2}} + a_{13}\frac{\partial^{2}w}{\partial c^{2}})z^{2}dz$$

$$-\frac{t}{2}$$

$$= (a_{11}\frac{\partial^{2}w}{\partial a^{2}} + a_{12}\frac{\partial^{2}w}{\partial b^{2}} + a_{13}\frac{\partial^{2}w}{\partial c^{2}})\frac{t^{3}}{12}$$
 (4.13)

Deriving similar expressions for $\ensuremath{\,\frac{M}{D}}$ and $\ensuremath{\,\frac{M}{C}}$ and introducing the following relations

$$B_{11} = a_{11} \frac{t^3}{12}$$

$$B_{12} = a_{12} \frac{t^3}{12}$$

$$B_{13} = a_{13} \frac{t^3}{12}$$

$$B_{22} = a_{22} \frac{t^3}{12}$$

$$B_{23} = a_{23} \frac{t^3}{12}$$

$$B_{33} = a_{33} \frac{t^3}{12}$$

(4.14)

and

$$D_{11} = c_{11} \frac{t^3}{12}$$

$$D_{12} = c_{12} \frac{t^3}{12}$$

$$D_{13} = c_{13} \frac{t^3}{12}$$

$$D_{22} = c_{22} \frac{t^3}{12}$$

$$D_{23} = c_{23} \frac{t^3}{12}$$

$$D_{33} = c_{33} \frac{t^3}{12}$$

(4.15)

.

it may be shown that

$$M_{a} = B_{11} \frac{\partial^{2} w}{\partial a^{2}} + B_{12} \frac{\partial^{2} w}{\partial b^{2}} + B_{13} \frac{\partial^{2} w}{\partial c^{2}}$$

$$M_{b} = B_{12} \frac{\partial^{2} w}{\partial a^{2}} + B_{22} \frac{\partial^{2} w}{\partial b^{2}} + B_{23} \frac{\partial^{2} w}{\partial c^{2}}$$

$$M_{c} = B_{13} \frac{\partial^{2} w}{\partial a^{2}} + B_{23} \frac{\partial^{2} w}{\partial b^{2}} + B_{33} \frac{\partial^{2} w}{\partial c^{2}}$$

$$(4.16)$$

where

$$B_{11} = D_{11} + \frac{2\ell_1\ell_2}{m_1m_2} D_{12} + \frac{2(\ell_1m_2 + m_1\ell_2)}{m_1m_2} D_{13} + \frac{\ell_1^2\ell_2^2}{m_1m_2^2} D_{22}$$

+
$$\frac{2\ell_1\ell_2(\ell_1m_2 + m_1\ell_2)}{m_1^2m_2^2}$$
 D₂₃ + $\frac{(\ell_1m_2 + m_1\ell_2)^2}{m_1^2m_2^2}$ D₃₃

$$B_{12} = -\frac{\ell_2}{m_1 m_3} D_{12} - \frac{m_2}{m_1 m_3} D_{13} - \frac{\ell_1 \ell_2^2}{m_1^2 m_2^2} D_{22}$$

$$-\frac{\ell_2(2\ell_1m_2+m_1\ell_2)}{m_1^2m_2m_3}D_{23}-\frac{(\ell_1m_2+m_1\ell_2)}{m_1^2m_3}D_{33}$$

$$B_{13} = \frac{\ell_1}{m_2 m_3} D_{12} + \frac{m_1}{m_2 m_3} D_{13} + \frac{\ell_1^2 \ell_2}{m_1 m_2^2 m_3} D_{22} + \frac{\ell_1 (\ell_1 m_2 + 2m_1 \ell_2)}{m_1 m_2^2 m_3} D_{23}$$

+
$$\frac{(\ell_1 m_2 + m_1 \ell_2)}{m_2^2 m_3} D_{33}$$

$$B_{22} = \frac{\ell_2^2}{m_1^2 m_3^2} D_{22} + \frac{2\ell_2 m_2}{m_1^2 m_3^2} D_{23} + \frac{m_2^2}{m_1^2 m_3^2} D_{33}$$

$$B_{23} = -\frac{\ell_1 \ell_2}{m_1 m_2 m_3^2} D_{22} - \frac{(\ell_1 m_2 + m_1 \ell_2)}{m_1 m_2 m_3^2} D_{23} - \frac{1}{m_3^2} D_{33}$$

$$B_{33} = \frac{\ell_1^2}{m_2^2 m_3^2} D_{22} + \frac{2\ell_1 m_1}{m_2^2 m_3^2} D_{23} + \frac{m_1^2}{m_2^2 m_3^2} D_{33}$$
(4.17)

Equations 4.16 and 4.17 describe the moment-curvature relations for the anisotropic skew plate continuum in which each moment is related to the three curvatures in the a, b, and c-directions.

Moment-Curvature Relations for Grid-Beam Model

As discussed in Chapter 2, the discrete-element model for a grid-beam running in a particular direction consists of elastic joints connected by means of rigid bars running in that direction (Fig 3). Also each grid-beam model is considered as a beam with deflection compatibility at the elastic joints. The procedure used to derive moment-curvature relations for each gridbeam model is the same as shown by Matlock (Ref 18) for the beam-column model. Hence the final results may be written as

$$\widetilde{M}_{a} = F_{a} \frac{\partial^{2} w}{\partial a^{2}}$$

$$\widetilde{M}_{b} = F_{b} \frac{\partial^{2} w}{\partial b^{2}}$$

$$\widetilde{M}_{c} = F_{c} \frac{\partial^{2} w}{\partial c^{2}}$$
(4.18)

where \overline{M}_{a} , \overline{M}_{b} , and \overline{M}_{c} are bending moments in grid-beams running in the a, b, and c-directions, respectively, and F_{a} , F_{b} , and F_{c} are flexural stiffnesses related to these directions.

It may be noted that if the plate stiffnesses D_{11} through D_{33} are computed in terms of three moduli of elasticity in any three directions and three Poisson's ratios related to these directions and if the three Poisson's ratios are set to zero, then the moment-curvature relations for the plate continuum (Eq 4.16) do not reduce to the moment-curvature relations for the gridbeam model (Eq 4.18).

Alternate Approach to Compute B₁₁ Through B₃₃

An alternate approach is developed to compute B_{11} through B_{33} (Eq 4.16) in which they are related to three moduli of elasticity with respect to three directions and three directional Poisson effects. The directional Poisson effect characterizes the decrease in length in a particular direction for the tension in some other direction whereas the conventional Poisson's ratio characterizes the decrease in a particular direction for the tension in the direction perpendicular to it. The alternate approach is as follows.

Consider a small rectangular element, shown in Fig 10(b), with the only stress acting being σ_{a1} (the x and a-directions are the same). For the same state of stress, if a triangular element is considered, shown in Fig 10(b), and if σ_{a1} , σ_{b1} , and σ_{c1} are the normal stresses in the a, b, and c-directions, respectively, and ε_{a1} , ε_{b1} , and ε_{c1} are the corresponding normal strains, then

$$\epsilon_{a1} = \frac{\sigma_{a1}}{E_a}$$

$$\epsilon_{b1} = -\mu_{ab}\epsilon_{a1} = -\frac{\mu_{ab}\sigma_{a1}}{E_{a}}$$

$$\epsilon_{c1} = -\mu_{ac}\epsilon_{a1} = -\frac{\mu_{ac}\sigma_{a1}}{E_{a}}$$
(4.19)

and

$$\sigma_{a1} = \sigma_{a1}$$
$$\sigma_{b1} = \ell_1^2 \sigma_{a1}$$
$$\sigma_{c1} = \ell_2^2 \sigma_{a1}^2$$

(4.20)

 σ_{ai}

Þ

ō

 σ_{a1}

Corresponding Normal Strains: $\epsilon_{a2}, \epsilon_{b2}, \epsilon_{c2}$

Corresponding Normal Strains: ϵ_{03} , ϵ_{b3} , ϵ_{c3}

Corresponding Normal Strains: €₀, €_b, €_c

(o)

Ē

(b)

 $\sigma_{a} = \sigma_{a} + \sigma_{c} + \sigma_{a} \qquad \epsilon_{a} = \epsilon_{a} + \epsilon_{c} + \epsilon_{a}$ $\sigma_{b} = \sigma_{b1} + \sigma_{b2} + \sigma_{b3}$ $\epsilon_{b} = \epsilon_{b1} + \epsilon_{b2} + \epsilon_{b3}$ $\sigma_{c} = \sigma_{c1} + \sigma_{c2} + \sigma_{c3} \quad \epsilon_{c} = \epsilon_{c1} + \epsilon_{c2} + \epsilon_{c3}$ (e)

where E_a is the modulus of elasticity with respect to the a-direction, μ_{ab} and μ_{ac} are the directional Poisson effects which characterize the decrease in the b and c-directions, respectively, for the tension in the a-direction, ℓ_1 is $\cos \theta_1$, and θ_1 is the angle between the a and b-directions.

Now consider a small rectangular element, shown in Fig 10(c), with the only stress acting being σ_{b2} . For the same state of stress, if a triangular element is considered, shown in Fig 10(c), and if σ_{a2} , σ_{b2} , and σ_{c2} are the normal stresses in the a, b, and c-directions, respectively, and ε_{a2} , ε_{b2} , and ε_{c2} are the corresponding normal strains, then

$$\epsilon_{b2} = \frac{\sigma_{b2}}{E_b}$$

$$\epsilon_{a2} = -\mu_{ba}\epsilon_{b2} = -\frac{\mu_{ba}^{\circ}b2}{E_{b}}$$

$$\epsilon_{c2} = -\mu_{bc}\epsilon_{b2} = -\frac{\mu_{bc}^{\circ}b2}{E_{b}}$$
(4.21)

and

$$\sigma_{a2} = \ell_1^2 \sigma_{b2}$$

$$\sigma_{b2} = \sigma_{b2}$$

$$\sigma_{c2} = \ell_3^2 \sigma_{b2}$$
(4.22)

where E_b is the modulus of elasticity with respect to the b-direction, μ_{ba} and μ_{bc} are the directional Poisson effects which characterize the decrease in the a and c-directions, respectively, for the tension in the b-direction, ℓ_3 is $\cos \theta_3$, and θ_3 is the angle between the b and c-directions.

Finally, consider a small rectangular element, shown in Fig 10(d), and with the only stress acting being σ_{c3} . For the same state of stress, if a

triangular element is considered, shown in Fig 10(d), and if σ_{a3} , σ_{b3} , and σ_{c3} are the normal stresses and ε_{a3} , ε_{b3} , and ε_{c3} are the corresponding normal strains, then

$$\epsilon_{c3} = \frac{\sigma_{c3}}{E_c}$$

$$\epsilon_{a3} = -\mu_{ca}\epsilon_{c3} = -\frac{\mu_{ca}\sigma_{c3}}{E_c}$$

$$\epsilon_{b3} = -\mu_{cb}\epsilon_{c3} = -\frac{\mu_{cb}\sigma_{c3}}{E_c}$$
(4.23)

and

$$\sigma_{a3} = \ell_2^2 \sigma_{c3}$$

$$\sigma_{b3} = \ell_3^2 \sigma_{c3}$$

$$\sigma_{c3} = \sigma_{c3}$$
(4.24)

where E_c is the modulus of elasticity with respect to the c-direction, μ_{ca} and μ_{cb} are the directional Poisson effects which characterize the decrease in the a and b-directions, respectively, for the tension in the c-direction, ℓ_2 is $\cos \theta_2$, and θ_2 is the angle between the a and c-directions.

Now consider a triangular element in which the above three sets of state of stresses act simultaneously, as shown in Fig 10(e). The method of superposition can be used. Hence, if

$$\sigma_a = \sigma_{a1} + \sigma_{a2} + \sigma_{a3}$$

$$\sigma_b = \sigma_{b1} + \sigma_{b2} + \sigma_{b3}$$

$$\sigma_{c} = \sigma_{c1} + \sigma_{c2} + \sigma_{c3} \tag{4.25}$$

and

$$\epsilon_{a} = \epsilon_{a1} + \epsilon_{a2} + \epsilon_{a3}$$

$$\epsilon_{b} = \epsilon_{b1} + \epsilon_{b2} + \epsilon_{b3}$$

$$\epsilon_{c} = \epsilon_{c1} + \epsilon_{c2} + \epsilon_{c3}$$
(4.26)

then, using Eqs 4.19 through 4.24,

$$\sigma_{a} = \sigma_{a1} + \ell_{1}^{2} \sigma_{b2} + \ell_{2}^{2} \sigma_{c3}$$

$$\sigma_{b} = \ell_{1}^{2} \sigma_{a1} + \sigma_{b2} + \ell_{3}^{2} \sigma_{c3}$$

$$\sigma_{c} = \ell_{2}^{2} \sigma_{a1} + \ell_{3}^{2} \sigma_{b2} + \sigma_{c3}$$
(4.27)

and

$$\epsilon_{a} = \frac{1}{E_{a}} \sigma_{a1} - \frac{\mu_{ba}}{E_{b}} \sigma_{b2} - \frac{\mu_{ca}}{E_{c}} \sigma_{c3}$$

$$\epsilon_{b} = -\frac{\mu_{ab}}{E_{a}} \sigma_{a1} + \frac{1}{E_{b}} \sigma_{b2} - \frac{\mu_{cb}}{E_{c}} \sigma_{c3}$$

$$\epsilon_{c} = -\frac{\mu_{ac}}{E_{a}} \sigma_{a1} - \frac{\mu_{bc}}{E_{b}} \sigma_{b2} + \frac{1}{E_{c}} \sigma_{c3}$$
(4.28)

Now if Eqs 4.1, 4.2, and 4.3 are combined so that the three normal strains ϵ_a , ϵ_b , and ϵ_c are related to the three normal stresses σ_a ,

 σ_{b} , and σ_{c} , which is the same as solving Eq 4.4 for three strains ϵ_{a} , ϵ_{b} , and ϵ_{c} , and if Eq 4.27 is substituted in these relations, then, by comparing coefficients of σ_{a1} , σ_{b2} , and σ_{c3} of the resulting equation and Eq 4.28, the following relations could be obtained:

$$\frac{\mu_{ba}}{E_{b}} = \frac{\mu_{ab}}{E_{a}}$$

$$\frac{\mu_{ca}}{E_{c}} = \frac{\mu_{ac}}{E_{a}}$$

$$\frac{\mu_{cb}}{E_{c}} = \frac{\mu_{bc}}{E_{b}}$$
(4.29)

Substituting Eq 4.29 into Eq 4.28 and solving for σ_{a1} , σ_{b2} , and σ_{c3} and then substituting the relations of σ_{a1} , σ_{b2} , and σ_{c3} into Eq 4.27, it is possible to develop the following anisotropic stress-strain relations, in which the normal stresses in any three directions are related to the corresponding normal strains.

$$\begin{split} \sigma_{a} &= \frac{1}{|\text{Det}|} \left[\left(-\frac{\mu_{cb}^{2}}{E_{c}^{2}} + \frac{\ell_{1}^{2}\mu_{ca}\mu_{cb}}{E_{c}^{2}} + \frac{1}{E_{b}E_{c}} + \frac{\ell_{1}^{2}\mu_{ba}}{E_{b}E_{c}} + \frac{\ell_{1}^{2}\mu_{ba}}{E_{b}E_{c}} \right) \\ &+ \frac{\ell_{2}^{2}\mu_{ba}\mu_{cb}}{E_{b}E_{c}} + \frac{\ell_{2}^{2}\mu_{ca}}{E_{b}E_{c}} \right) \epsilon_{a} + \left(\frac{\mu_{ca}\mu_{cb}}{E_{c}^{2}} - \frac{\ell_{1}^{2}\mu_{ca}^{2}}{E_{c}^{2}} + \frac{\mu_{ba}}{E_{b}E_{c}} + \frac{\ell_{b}E_{c}}{E_{c}^{2}} + \frac{\ell_{b}E_{c}}{E_{b}E_{c}} + \frac{\ell_{b}E_{c}}{E_{c}} + \frac{\ell_{b}E_{c}}{$$

$$\begin{aligned} \sigma_{b} &= \frac{1}{|\text{Det}|} \left[\left(-\frac{\frac{\mu_{1}^{2}\mu_{cb}^{2}}{E_{c}^{2}} + \frac{\mu_{ca}\mu_{cb}}{E_{c}^{2}} + \frac{\mu_{1}^{2}}{E_{b}E_{c}} + \frac{\mu_{ba}}{E_{b}E_{c}} + \frac{\mu_{ba}}{E_{b}E_{c}} + \frac{\mu_{ba}^{2}}{E_{b}E_{c}} + \frac{\mu_{ba}^{2}\mu_{cb}}{E_{b}E_{c}} + \frac{\mu_{2}^{2}\mu_{ca}}{E_{b}E_{c}} \right) \epsilon_{a} + \left(\frac{\mu_{1}^{2}\mu_{ca}\mu_{cb}}{E_{c}^{2}} - \frac{\mu_{ca}^{2}}{E_{c}^{2}} + \frac{\mu_{ca}^{2}\mu_{cb}}{E_{c}^{2}} + \frac{\mu_{ba}^{2}\mu_{cb}}{E_{b}E_{c}} + \frac{\mu_{2}^{2}\mu_{ba}\mu_{cb}}{E_{b}E_{c}} + \frac{\mu_{2}^{2}\mu_{cb}}{E_{b}E_{c}} + \frac{\mu_{2}^{2}\mu_{cb}}{E_{a}E_{c}} + \frac{\mu_{2}^{2}\mu_{cb}}{E_{b}E_{c}} + \frac{\mu_{2}^{2}\mu_{cb}}{E_{b}E_{c}} + \frac{\mu_{2}^{2}\mu_{cb}}{E_{b}E_{c}} + \frac{\mu_{2}^{2}\mu_{cb}}{E_{b}E_{c}} + \frac{\mu_{2}^{2}\mu_{cb}}{E_{c}^{2}} + \frac{\mu_{2}^{2}\mu_{cb}}{E_{b}E_{c}} + \frac{\mu_{2}^$$
where

$$|\text{Det}| = \frac{1}{E_a} - \frac{\mu_{ba}}{E_b} - \frac{\mu_{ca}}{E_c}$$
$$- \frac{\mu_{ba}}{E_b} - \frac{1}{E_b} - \frac{\mu_{cb}}{E_c}$$
$$- \frac{\mu_{ca}}{E_c} - \frac{\mu_{cb}}{E_c} - \frac{1}{E_c}$$
(4.31)

and where | | is used for the determinant.

Now substituting the values of σ_a , σ_b , and σ_c from Eq 4.30 into Eq 4.9, the following stress-strain relations for the fiber continuum may be obtained in which the fiber stresses are related to the conventional strains:

$$f_{a} = \frac{1}{|\operatorname{Det}|} \left[\left(-\frac{\mu_{cb}^{2}}{E_{c}^{2}} + \frac{1}{E_{b}E_{c}} \right) \epsilon_{a} + \left(\frac{\mu_{ca}\mu_{cb}}{E_{c}^{2}} + \frac{\mu_{ba}}{E_{b}E_{c}} \right) \epsilon_{b} + \left(\frac{\mu_{ba}^{\mu}cb}{E_{b}E_{c}} + \frac{\mu_{ca}}{E_{b}E_{c}} \right) \epsilon_{c} \right]$$

$$f_{b} = \frac{1}{|\operatorname{Det}|} \left[\left(\frac{\mu_{ca}\mu_{cb}}{E_{c}^{2}} + \frac{\mu_{ba}}{E_{b}E_{c}} \right) \epsilon_{a} + \left(-\frac{\mu_{ca}^{2}}{E_{c}^{2}} + \frac{1}{E_{a}E_{c}} \right) \epsilon_{b} + \left(\frac{\mu_{ba}^{\mu}ca}{E_{b}E_{c}} + \frac{\mu_{cb}}{E_{a}E_{c}} \right) \epsilon_{c} \right]$$

$$f_{c} = \frac{1}{|\operatorname{Det}|} \left[\left(\frac{\mu_{ba}^{\mu}cb}{E_{b}E_{c}} + \frac{\mu_{ca}}{E_{b}E_{c}} \right) \epsilon_{a} + \left(\frac{\mu_{ba}^{\mu}ca}{E_{b}E_{c}} + \frac{\mu_{cb}}{E_{a}E_{c}} \right) \epsilon_{b} + \left(-\frac{\mu_{ba}^{2}}{E_{b}^{2}} + \frac{1}{E_{a}^{2}E_{c}} \right) \epsilon_{b} \right]$$

$$(4)$$

.32)

Solving Eq 4.32 for ϵ_a , ϵ_b , and ϵ_c simple relations are obtained between conventional strains and fiber stresses as follows:

$$\epsilon_{a} = \frac{1}{E_{a}} f_{a} - \frac{\mu_{ba}}{E_{b}} f_{b} - \frac{\mu_{ca}}{E_{c}} f_{c}$$

$$\epsilon_{b} = -\frac{\mu_{ba}}{E_{b}} f_{a} + \frac{1}{E_{b}} f_{b} - \frac{\mu_{cb}}{E_{c}} f_{c}$$

$$\epsilon_{c} = -\frac{\mu_{ca}}{E_{c}} f_{a} - \frac{\mu_{cb}}{E_{c}} f_{b} + \frac{1}{E_{c}} f_{c}$$
(4.33)

It is interesting to note that the stress-strain relations of Eqs 4.32 and 4.33, which are developed above for the anisotropic fiber continuum, are analogous to the conventional stress-strain relations of Eqs 3.56 and 3.57 for a rectangular element of an anisotropic plate. For example, in the case of a rectangular element, if the only stress acting is σ_x , then $\sigma_y = \tau_{xy}$ = 0. The same is true for a fiber continuum in which if the only fiber stress acting is f_a , then $f_b = f_c = 0$. Also, in the case of a rectangular element, the reciprocal relations exist for stiffnesses and compliances. Similar relations also exist for the fiber continuum in Eq 4.29.

Integration of stress-strain relations in Eq 4.32 results in momentcurvature relations similar to Eq 4.16 in which

$$B_{11} = \frac{1}{|\text{Det}|} \frac{t^3}{12} \left(-\frac{\mu_{cb}^2}{E_c^2} + \frac{1}{E_b E_c} \right)$$

$$B_{12} = \frac{1}{|\text{Det}|} \frac{t^3}{12} \left(\frac{\mu_{ca} \mu_{cb}}{E_c^2} + \frac{\mu_{ba}}{E_b E_c} \right)$$

$$B_{13} = \frac{1}{|\text{Det}|} \frac{t^3}{12} \left(\frac{\mu_{ba} \mu_{cb}}{E_b E_c} + \frac{\mu_{ca}}{E_b E_c} \right)$$

$$B_{22} = \frac{1}{|\text{Det}|} \frac{t^3}{12} \left(-\frac{\mu_{ca}^2}{E_c^2} + \frac{1}{E_a E_c} \right)$$

$$B_{23} = \frac{1}{|\text{Det}|} \frac{t^3}{12} \left(\frac{\mu_{ba} \mu_{ca}}{E_b E_c} + \frac{\mu_{cb}}{E_a E_c} \right)$$

$$B_{33} = \frac{1}{|\text{Det}|} \frac{t^3}{12} \left(-\frac{\mu_{ba}^2}{E_b^2} + \frac{1}{E_a E_b} \right)$$
(4.34)

where t is the thickness of the plate, and |Det| is defined in Eq 4.31. Equation 4.34 describes the six bending stiffnesses for an anisotropic fiber continuum. The stiffnesses are related to three moduli of elasticity E_a , E_b , and E_c with respect to the a, b, and c-directions, and three directional Poisson effects μ_{ba} (or μ_{ab}), μ_{ca} (or μ_{ac}), and μ_{cb} (or μ_{bc}). These six constants could be experimentally determined by testing three specimens from the plate in unidirectional tension.

It may be observed that if in Eq 4.34 $\mu_{ba} = \mu_{ca} = \mu_{cb} = 0$, then the moment-curvature relations of Eq 4.16 for the fiber continuum reduce to the moment-curvature relations of Eq 4.18 for the grid-beam.

The relations between the directional Poisson effects and the conventional Poisson's ratios can also be established since

$$-\mu_{ba} = \ell_1^2 - \nu_b m_1^2 + \eta_b \ell_1 m_1$$

$$-\mu_{ca} = \ell_2^2 - \nu_c m_2^2 + \eta_c \ell_2 m_2$$

$$-\mu_{cb} = \ell_3^2 - \nu_c m_3^2 + \eta_c \ell_3 m_3$$
 (4.35)

Substitution of values of $\ensuremath{\eta_b}$ and $\ensuremath{^{n}_{c}}$ from Eqs 3.43 and 3.44 into the above relations results in

$$-\mu_{ba} = \frac{m_{3}(\ell_{1}\ell_{2} + \nu_{a}m_{1}m_{2})}{2\ell_{2}m_{2}} \frac{E_{b}}{E_{a}} + \frac{m_{2}(\ell_{1}\ell_{3} - \nu_{b}m_{1}m_{3})}{2\ell_{3}m_{3}}$$

$$- \frac{m_{1}(\ell_{2}\ell_{3} + \nu_{c}m_{2}m_{3})\ell_{1}m_{1}}{2\ell_{2}m_{2}\ell_{3}m_{3}} \frac{E_{b}}{E_{c}}$$

$$-\mu_{ca} = -\frac{m_{3}(\ell_{1}\ell_{2} + \nu_{a}m_{1}m_{2})}{2\ell_{1}m_{1}} \frac{E_{c}}{E_{a}} + \frac{m_{2}(\ell_{1}\ell_{3} - \nu_{b}m_{1}m_{3})\ell_{2}m_{2}}{2\ell_{1}m_{1}\ell_{3}m_{3}} \frac{E_{c}}{E_{b}}$$

$$- \frac{m_{1}(\ell_{2}\ell_{3} + \nu_{c}m_{2}m_{3})}{2\ell_{3}m_{3}}$$

$$-\mu_{cb} = -\frac{m_{3}(\ell_{1}\ell_{2} + \nu_{a}m_{1}m_{2})\ell_{3}m_{3}}{2\ell_{3}m_{3}} \frac{E_{c}}{E_{a}} + \frac{m_{2}(\ell_{1}\ell_{3} - \nu_{b}m_{1}m_{3})}{2\ell_{1}m_{1}\ell_{3}m_{3}} \frac{E_{c}}{E_{b}}$$

$$+ \frac{m_{1}(\ell_{2}\ell_{3} + \nu_{c}m_{2}m_{3})}{2\ell_{2}m_{2}} \qquad (4.36)$$

For the isotropic case, B_{11} through B_{33} reduce as follows:

$$B_{11} = \frac{Et^3}{12(1 - v^2)} \frac{(1 + \ell_3^2 - vm_3^2)}{2m_1^2 m_2^2}$$

$$B_{12} = \frac{Et^3}{12(1 - v^2)} \frac{(-\ell_1 - \ell_2 \ell_3 + vm_2 m_3)}{2m_1^2 m_2 m_3}$$

$$B_{13} = \frac{Et^3}{12(1-v^2)} \frac{(\ell_2 + \ell_1 \ell_3 + vm_1 m_3)}{2m_1 m_2^2 m_3}$$

$$B_{22} = \frac{Et^3}{12(1-v^2)} \frac{(1+\ell_2^2-vm_2^2)}{2m_1^2m_3^2}$$

$$B_{23} = \frac{Et^3}{12(1-v^2)} \frac{(-\ell_3-\ell_1\ell_2+vm_1m_2)}{2m_1m_2m_3^2}$$

$$B_{33} = \frac{Et^3}{12(1-v^2)} \frac{(1+\ell_1^2-vm_1^2)}{2m_2^2m_3^2}$$
(4.37)

where E is the modulus of elasticity and ν is the conventional Poisson's ratio.

Summary

Equations 4.16 and 4.17 give moment-curvature relations for an anisotropic skew plate continuum in which moments are per unit width. To get the concentrated moments acting at a particular elastic joint in the corresponding discrete-element model, it is assumed that fibers running in a certain direction a , b , or c and having a certain width, as shown in Fig 11, are collected and lumped along each line of the model.

For a problem having only a grid, all the three grid-beams running in any three directions have deflection compatibility at the elastic joints. The effect of Poisson's ratio is not transferred from one grid-beam model to the other two grid-beam models. For the problem of an anisotropic plate plus grid-beams, the deflection compatibility is assumed at the elastic joints between the plate model and the three grid-beam models, and the effects due to Poisson's ratios are not transferred from plate model to any of the grid-beam models and vice versa.

Fig 11. Plan of an anisotropic skew plate model showing the widths of fibers represented by each line of the model.

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

CHAPTER 5. FORMULATION OF STIFFNESS MATRIX

<u>Introduction</u>

In this chapter the equilibrium equation at Joint i,j is derived by considering the free-body of the joint and the rigid bars of the discrete-element slab and grid system. The operator resulting from the equilibrium equation is discussed. To form the appropriate stiffness matrix the operator is applied at each joint of the discrete-element model.

<u>Free-Body Analysis</u>

Figure 12 shows the free-body of Joint i,j of the slab and grid system with all appropriate internal and external forces acting on it. Any of the forces shown in Fig 12 may be zero but is considered to be acting for generality. The bars and joints are numbered as shown in Fig 13. For clarity, the following symbols are defined:

i	n	an integer used to index joints of the slab and grid system along the a-direction,
h _a	=	the increment length along the a-direction,
h b	=	the increment length along the b-direction,
h c	=	the increment length along the c-direction,
j	=	an integer used to index joints of the slab and grid system along the c-direction,
м ^{а'} і,	j	= the concentrated bending moment in the a-direction at Joint i,j (equals $M_{a}h_{c} \sin \theta_{2}$),
₩ ^a i,	j	the beam bending moment in the a-direction at Joint i,j,
Q _{i,}	j	the externally applied load at Joint i,j,
s _{i,}	j	<pre>support spring value at Joint i,j,</pre>
т ^а i-	1,j	= external couple in the a-direction applied at Joint i-1,j,

Fig 12. Free-body diagram of Joint i,j of an anisotropic skew slab and grid system model.

Fig 13. Plan view of skew slab and grid system model showing all parts with generalized numbering system.

$$V_{i,j}^{a}$$
 = shear in slab Bar i,j running in the a-direction,
 $\overline{V}_{i,j}^{a}$ = shear in grid beam Bar i,j running in the a-direction,
 $w_{i,j}$ = deflection at Joint i,j.

Summation of vertical forces at Joint i,j (Fig 12) with up taken as positive gives

$$v_{i,j}^{a} + v_{i,j}^{b} + v_{i,j}^{c} - v_{i+1,j}^{a} - v_{i+1,j+1}^{b} - v_{i,j+1}^{c} + \overline{v}_{i,j}^{a}$$

$$+ \overline{v}_{i,j}^{b} + \overline{v}_{i,j}^{c} - \overline{v}_{i+1,j}^{a} - \overline{v}_{i+1,j+1}^{b} - \overline{v}_{i,j+1}^{c} + Q_{i,j}$$

$$- s_{i,j}w_{i,j} + \frac{1}{2h_{a}} (-T_{i-1,j}^{a} + T_{i+1,j}^{a}) + \frac{1}{2h_{b}} (-T_{i-1,j-1}^{b}$$

$$+ T_{i+1,j+1}^{b}) + \frac{1}{2h_{c}} (-T_{i,j-1}^{c} + T_{i,j+1}^{c}) = 0 \qquad (5.1)$$

To eliminate shears from the above equation, the summation of moments about each individual bar is taken as follows:

$$-V_{i,j}^{a}h_{a} = M_{i-1,j}^{a'} - M_{i,j}^{a'}$$
$$-V_{i,j}^{b}h_{b} = M_{i-1,j-1}^{b'} - M_{i,j}^{b'}$$
$$-V_{i,j}^{c}h_{c} = M_{i,j-1}^{c'} - M_{i,j}^{c'}$$
$$V_{i+1,j}^{a}h_{a} = M_{i+1,j}^{a'} - M_{i,j}^{a'}$$
$$V_{i+1,j+1}^{b}h_{b} = M_{i+1,j+1}^{b'} - M_{i,j}^{b'}$$

$$V_{i,j+1}^{c}h_{c} = M_{i,j+1}^{c'} - M_{i,j}^{c'}$$
(5.2)

and

$$-\overline{v}^{a}_{i,j}h_{a} = \overline{M}^{a}_{i-1,j} - \overline{M}^{a}_{i,j}$$

$$-\overline{v}^{b}_{i,j}h_{b} = \overline{M}^{b}_{i-1,j-1} - \overline{M}^{b}_{i,j}$$

$$-\overline{v}^{c}_{i,j}h_{c} = \overline{M}^{c}_{i,j-1} - \overline{M}^{c}_{i,j}$$

$$\overline{v}^{a}_{i+1,j}h_{a} = \overline{M}^{a}_{i+1,j} - \overline{M}^{a}_{i,j}$$

$$\overline{v}^{b}_{i+1,j+1}h_{b} = \overline{M}^{b}_{i+1,j+1} - \overline{M}^{b}_{i,j}$$

$$\overline{v}^{c}_{i,j+1}h_{c} = \overline{M}^{c}_{i,j+1} - \overline{M}^{c}_{i,j}$$
(5.3)

where M'_a , M'_b , and M'_c are concentrated values of slab moments. Also

$$M'_{a} = M_{a}h_{c} \sin \theta_{2}$$

$$M'_{b} = M_{b}h_{a} \sin \theta_{1}$$

$$M'_{c} = M_{c}h_{a} \sin \theta_{2}$$
(5.4)

where M_{a} , M_{b} , and M_{c} are moments per unit width of slab.

Eliminating shears from Eq 5.1 by using Eqs 5.2 and 5.3 and rearranging gives the following expression:

$$\frac{1}{h_{a}} (M_{i-1,j}^{a'} - 2M_{i,j}^{a'} + M_{i+1,j}^{a'}) + \frac{1}{h_{b}} (M_{i-1,j-1}^{b'} - 2M_{i,j}^{b'})$$

$$+ M_{i+1,j+1}^{b'}) + \frac{1}{h_{c}} (M_{i,j-1}^{c'} - 2M_{i,j}^{c'} + M_{i,j+1}^{c'})$$

$$+ \frac{1}{h_{a}} (\overline{M}_{i-1,j}^{a} - 2\overline{M}_{i,j}^{a} + \overline{M}_{i+1,j}^{a}) + \frac{1}{h_{b}} (\overline{M}_{i-1,j-1}^{b})$$

$$- 2\overline{M}_{i,j}^{b} + \overline{M}_{i+1,j+1}^{b}) + \frac{1}{h_{c}} (\overline{M}_{i,j-1}^{c} - 2\overline{M}_{i,j}^{c} + \overline{M}_{i,j+1}^{c}) + S_{i,j}w_{i,j}$$

$$= Q_{i,j} + \frac{1}{2h_{a}} (-T_{i-1,j}^{a} + T_{i+1,j}^{a}) + \frac{1}{2h_{b}} (-T_{i-1,j-1}^{b})$$

$$+ T_{i+1,j+1}^{b}) + \frac{1}{2h_{c}} (-T_{i,j-1}^{c} + T_{i,j+1}^{c})$$
(5.5)

 M'_a , M'_b , M'_c , \overline{M}_a , \overline{M}_b , and \overline{M}_c expressions are found by introducing the finite-difference approximations for the second derivative of deflections into Eqs 4.16 and 4.18 and using Eq 5.4:

$$M_{i-1,j}^{a'} = B_{i-1,j}^{11}h_{c} \sin \theta_{2} \frac{1}{h_{a}^{2}} (w_{i-2,j} - 2w_{i-1,j} + w_{i,j}) + B_{i-1,j}^{12}h_{c} \sin \theta_{2} \frac{1}{h_{b}^{2}} (w_{i-2,j-1} - 2w_{i-1,j} + w_{i,j+1}) + B_{i-1,j}^{13}h_{c} \sin \theta_{2} \frac{1}{h_{c}^{2}} (w_{i-1,j-1} - 2w_{i-1,j} + w_{i-1,j+1})$$
(5.6)

$$\begin{split} \mathbf{M}_{i,j}^{a'} &= B_{i,j}^{11} \mathbf{h}_{c} \sin \theta_{2} \frac{1}{h_{a}^{2}} (\mathbf{w}_{i-1,j} - 2\mathbf{w}_{i,j} + \mathbf{w}_{i+1,j}) \\ &+ B_{i,j}^{12} \mathbf{h}_{c} \sin \theta_{2} \frac{1}{h_{b}^{2}} (\mathbf{w}_{i-1,j-1} - 2\mathbf{w}_{i,j} + \mathbf{w}_{i+1,j+1}) \\ &+ B_{i,j}^{13} \mathbf{h}_{c} \sin \theta_{2} \frac{1}{h_{c}^{2}} (\mathbf{w}_{i,j-1} - 2\mathbf{w}_{i,j} + \mathbf{w}_{i,j+1}) \end{split}$$
(5.7)
$$\begin{split} \mathbf{M}_{i+1,j}^{a'} &= B_{i+1,j}^{11} \mathbf{h}_{c} \sin \theta_{2} \frac{1}{h_{c}^{2}} (\mathbf{w}_{i,j-1} - 2\mathbf{w}_{i+1,j} + \mathbf{w}_{i+2,j}) \\ &+ B_{i+1,j}^{12} \mathbf{h}_{c} \sin \theta_{2} \frac{1}{h_{c}^{2}} (\mathbf{w}_{i,j-1} - 2\mathbf{w}_{i+1,j} + \mathbf{w}_{i+2,j+1}) \\ &+ B_{i+1,j}^{12} \mathbf{h}_{c} \sin \theta_{2} \frac{1}{h_{c}^{2}} (\mathbf{w}_{i+1,j-1} - 2\mathbf{w}_{i+1,j} + \mathbf{w}_{i+2,j+1}) \\ &+ B_{i+1,j}^{13} \mathbf{h}_{c} \sin \theta_{2} \frac{1}{h_{c}^{2}} (\mathbf{w}_{i+1,j-1} - 2\mathbf{w}_{i+1,j} + \mathbf{w}_{i+1,j+1}) \\ &+ B_{i+1,j}^{13} \mathbf{h}_{c} \sin \theta_{2} \frac{1}{h_{c}^{2}} (\mathbf{w}_{i+1,j-1} - 2\mathbf{w}_{i+1,j} + \mathbf{w}_{i+1,j+1}) \\ &+ B_{i+1,j}^{13} \mathbf{h}_{c} \sin \theta_{2} \frac{1}{h_{c}^{2}} (\mathbf{w}_{i+1,j-1} - 2\mathbf{w}_{i+1,j} + \mathbf{w}_{i+1,j+1}) \\ &+ B_{i+1,j}^{13} \mathbf{h}_{c} \sin \theta_{2} \frac{1}{h_{c}^{2}} (\mathbf{w}_{i+1,j-1} - 2\mathbf{w}_{i+1,j} + \mathbf{w}_{i+1,j+1}) \\ &+ B_{i+1,j}^{13} \mathbf{h}_{c} \sin \theta_{2} \frac{1}{h_{c}^{2}} (\mathbf{w}_{i+1,j-1} - 2\mathbf{w}_{i+1,j} + \mathbf{w}_{i+1,j+1}) \\ &+ B_{i+1,j}^{13} \mathbf{h}_{c} \sin \theta_{2} \frac{1}{h_{c}^{2}} (\mathbf{w}_{i-2,j-1} - 2\mathbf{w}_{i-1,j-1}) \\ &+ \mathbf{w}_{i,j-1} + B_{i-1,j-1}^{13} \mathbf{h}_{a} \sin \theta_{1} \frac{1}{h_{a}^{2}} (\mathbf{w}_{i-2,j-2} \\ &- 2\mathbf{w}_{i-1,j-1} + \mathbf{w}_{i,j}) + B_{i-1,j-1}^{23} \mathbf{h}_{a} \sin \theta_{1} \frac{1}{h_{c}^{2}} (\mathbf{w}_{i-1,j-2} \\ &- 2\mathbf{w}_{i-1,j-1} + \mathbf{w}_{i-1,j}) \end{pmatrix}$$
(5.9)

$$\begin{split} \mathbf{w}_{i,j}^{b'} &= B_{i,j}^{12} h_{a} \sin \theta_{1} \frac{1}{h_{a}^{2}} (w_{i-1,j} - 2w_{i,j} + w_{i+1,j}) \\ &+ B_{i,j}^{22} h_{a} \sin \theta_{1} \frac{1}{h_{b}^{2}} (w_{i-1,j-1} - 2w_{i,j} + w_{i+1,j+1}) \\ &+ B_{i,j}^{23} h_{a} \sin \theta_{1} \frac{1}{h_{c}^{2}} (w_{i,j-1} - 2w_{i,j} + w_{i,j+1}) \end{split}$$
(5.10)
$$\begin{aligned} \mathbf{w}_{i+1,j+1}^{b'} &= B_{i+1,j+1}^{12} h_{a} \sin \theta_{1} \frac{1}{h_{a}^{2}} (w_{i,j+1} - 2w_{i+1,j+1}) \\ &+ w_{i+2,j+1}) + B_{i+1,j+1}^{22} (w_{i,j+1} - 2w_{i+1,j+1}) \\ &+ w_{i+2,j+2}) + B_{i+1,j+1}^{23} h_{a} \sin \theta_{1} \frac{1}{h_{c}^{2}} (w_{i,j} - 2w_{i+1,j+1}) \\ &+ w_{i+2,j+2}) + B_{i+1,j+1}^{23} h_{a} \sin \theta_{1} \frac{1}{h_{c}^{2}} (w_{i+1,j}) \\ &- 2w_{i+1,j+1} + w_{i+1,j+2}) \end{aligned}$$
(5.11)
$$\begin{aligned} \mathbf{M}_{i,j-1}^{c'} &= B_{i,j-1}^{13} h_{a} \sin \theta_{2} \frac{1}{h_{a}^{2}} (w_{i-1,j-1} - 2w_{i,j-1}) \\ &+ w_{i+1,j-1}) + B_{i,j-1}^{23} h_{a} \sin \theta_{2} \frac{1}{h_{c}^{2}} (w_{i-1,j-2} - 2w_{i,j-1}) \\ &+ w_{i+1,j}) + B_{i,j-1}^{33} h_{a} \sin \theta_{2} \frac{1}{h_{c}^{2}} (w_{i,j-2}) \\ &- 2w_{i,j-1} + w_{i,j}) \end{aligned}$$
(5.12)

$$\begin{split} \mathbf{M}_{\mathbf{i},j}^{\mathbf{c}'} &= \mathbf{B}_{\mathbf{i},j}^{13} \mathbf{h}_{a} \sin \theta_{2} \frac{1}{\mathbf{h}_{a}^{2}} (\mathbf{w}_{\mathbf{i}-1,j} - 2\mathbf{w}_{\mathbf{i},j} + \mathbf{w}_{\mathbf{i}+1,j}) \\ &+ \mathbf{B}_{\mathbf{i},j}^{23} \mathbf{h}_{a} \sin \theta_{2} \frac{1}{\mathbf{h}_{b}^{2}} (\mathbf{w}_{\mathbf{i}-1,j-1} - 2\mathbf{w}_{\mathbf{i},j} + \mathbf{w}_{\mathbf{i}+1,j+1}) \\ &+ \mathbf{B}_{\mathbf{i},j}^{33} \mathbf{h}_{a} \sin \theta_{2} \frac{1}{\mathbf{h}_{c}^{2}} (\mathbf{w}_{\mathbf{i},j-1} - 2\mathbf{w}_{\mathbf{i},j} + \mathbf{w}_{\mathbf{i},j+1}) \\ \end{split}$$
(5.13)
$$\begin{split} \mathbf{M}_{\mathbf{i},j+1}^{\mathbf{c}'} &= \mathbf{B}_{\mathbf{i},j+1}^{13} \mathbf{h}_{a} \sin \theta_{2} \frac{1}{\mathbf{h}_{c}^{2}} (\mathbf{w}_{\mathbf{i}-1,j+1} - 2\mathbf{w}_{\mathbf{i},j+1} + \mathbf{w}_{\mathbf{i}+1,j+1}) \\ &+ \mathbf{B}_{\mathbf{i},j+1}^{23} \mathbf{h}_{a} \sin \theta_{2} \frac{1}{\mathbf{h}_{c}^{2}} (\mathbf{w}_{\mathbf{i}-1,j} - 2\mathbf{w}_{\mathbf{i},j+1} + \mathbf{w}_{\mathbf{i}+1,j+2}) \\ &+ \mathbf{B}_{\mathbf{i},j+1}^{33} \mathbf{h}_{a} \sin \theta_{2} \frac{1}{\mathbf{h}_{c}^{2}} (\mathbf{w}_{\mathbf{i}-1,j} - 2\mathbf{w}_{\mathbf{i},j+1} + \mathbf{w}_{\mathbf{i}+1,j+2}) \\ &+ \mathbf{B}_{\mathbf{i},j+1}^{33} \mathbf{h}_{a} \sin \theta_{2} \frac{1}{\mathbf{h}_{c}^{2}} (\mathbf{w}_{\mathbf{i},j} - 2\mathbf{w}_{\mathbf{i},j+1} + \mathbf{w}_{\mathbf{i},j+2}) \\ &+ \mathbf{B}_{\mathbf{i},j+1}^{33} \mathbf{h}_{a} \sin \theta_{2} \frac{1}{\mathbf{h}_{c}^{2}} (\mathbf{w}_{\mathbf{i},j} - 2\mathbf{w}_{\mathbf{i},j+1} + \mathbf{w}_{\mathbf{i},j+2}) \\ &+ \mathbf{B}_{\mathbf{i},j+1}^{33} \mathbf{h}_{a} \sin \theta_{2} \frac{1}{\mathbf{h}_{c}^{2}} (\mathbf{w}_{\mathbf{i},j} - 2\mathbf{w}_{\mathbf{i},j+1} + \mathbf{w}_{\mathbf{i},j+2}) \\ &+ \mathbf{E}_{\mathbf{i},j+1}^{33} \mathbf{h}_{a} \sin \theta_{2} \frac{1}{\mathbf{h}_{c}^{2}} (\mathbf{w}_{\mathbf{i},j} - 2\mathbf{w}_{\mathbf{i},j+1} + \mathbf{w}_{\mathbf{i},j+2}) \\ &+ \mathbf{E}_{\mathbf{i},j+1}^{33} \mathbf{h}_{a} \sin \theta_{2} \frac{1}{\mathbf{h}_{c}^{2}} (\mathbf{w}_{\mathbf{i},j} - 2\mathbf{w}_{\mathbf{i},j+1} + \mathbf{w}_{\mathbf{i},j+2}) \\ &+ \mathbf{E}_{\mathbf{i},j+1}^{33} \mathbf{h}_{a} \sin \theta_{2} \frac{1}{\mathbf{h}_{c}^{2}} (\mathbf{w}_{\mathbf{i},j} - 2\mathbf{w}_{\mathbf{i},j+1} + \mathbf{w}_{\mathbf{i},j+2}) \\ &+ \mathbf{E}_{\mathbf{i},j+1}^{33} \mathbf{h}_{a} \sin \theta_{2} \mathbf{h}_{c}^{33} \mathbf{h}_{c} \mathbf{h}_{c}^{33} \mathbf{h}_{c} \mathbf{h}_{c}^{33} \mathbf{h}_{c}^{33}$$

$$\overline{M}_{i,j}^{a} = F_{i,j}^{a} \frac{1}{h_{a}^{2}} (w_{i-1,j} - 2w_{i,j} + w_{i+1,j})$$
(5.16)

$$\overline{M}_{i+1,j}^{a} = F_{i+1,j}^{a} \frac{1}{h_{a}^{2}} (w_{i,j} - 2w_{i+1,j} + w_{i+2,j})$$
(5.17)

$$\overline{M}_{i-1,j-1}^{b} = F_{i-1,j-1}^{b} \frac{1}{h_{b}^{2}} (w_{i-2,j-2} - 2w_{i-1,j-1} + w_{i,j})$$
(5.18)

$$\overline{M}_{i,j}^{b} = F_{i,j}^{b} \frac{1}{h_{b}^{2}} (w_{i-1,j-1} - 2w_{i,j} + w_{i+1,j+1})$$
(5.19)

$$\overline{M}_{i+1,j+1}^{b} = F_{i+1,j+1}^{b} \frac{1}{h_{b}^{2}} (w_{i,j} - 2w_{i+1,j+1} + w_{i+2,j+2})$$
(5.20)

$$\overline{M}_{i,j-1}^{c} = F_{i,j-1}^{c} \frac{1}{h_{c}^{2}} (w_{i,j-2} - 2w_{i,j-1} + w_{i,j})$$
(5.21)

$$\overline{M}_{i,j}^{c} = F_{i,j}^{c} \frac{1}{h_{c}^{2}} (w_{i,j-1} - 2w_{i,j} + w_{i,j+1})$$
(5.22)

$$\overline{M}_{i,j+1}^{c} = F_{i,j+1}^{c} \frac{1}{h_{c}^{2}} (w_{i,j} - 2w_{i,j+1} + w_{i,j+2})$$
(5.23)

The terms defined by Eqs 5.6 through 5.23 are introduced in Eq 5.5. Collecting the terms, the final form of Eq 5.5 can be written as follows:

$$a_{i,j}^{1}w_{i-2,j-2} + a_{i,j}^{2}w_{i-1,j-2} + a_{i,j}^{3}w_{i,j-2} + b_{i,j}^{1}w_{i-2,j-1}$$

$$+ b_{i,j}^{2}w_{i-1,j-1} + b_{i,j}^{3}w_{i,j-1} + b_{i,j}^{4}w_{i+1,j-1} + c_{i,j}^{1}w_{i-2,j}$$

$$+ c_{i,j}^{2}w_{i-1,j} + c_{i,j}^{3}w_{i,j} + c_{i,j}^{4}w_{i+1,j} + c_{i,j}^{5}w_{i+2,j}$$

$$+ d_{i,j}^{2}w_{i-1,j+1} + d_{i,j}^{3}w_{i,j+1} + d_{i,j}^{4}w_{i+1,j+1} + d_{i,j}^{5}w_{i+2,j+1}$$

$$+ e_{i,j}^{3}w_{i,j+2} + e_{i,j}^{4}w_{i+1,j+2} + e_{i,j}^{5}w_{i+2,j+2} = f_{i,j}$$
(5.24)

where

$$a_{i,j}^{1} = B_{i-1,j-1}^{22} \frac{h_{a} \sin \theta_{1}}{h_{b}^{3}} + F_{i-1,j-1}^{b} \frac{1}{h_{b}^{3}}$$

$$a_{i,j}^{2} = B_{i-1,j-1}^{23} \frac{h_{a} \sin \theta_{1}}{h_{b}h_{c}^{2}} + B_{i,j-1}^{23} \frac{h_{a} \sin \theta_{2}}{h_{b}^{2}h_{c}}$$

$$a_{i,j}^{3} = B_{i,j-1}^{33} \frac{h_{a} \sin \theta_{2}}{h_{c}^{3}} + F_{i,j-1}^{c} \frac{1}{h_{c}^{3}}$$

$$(5.25)$$

$$b_{i,j}^{1} = B_{i-1,j}^{12} \frac{h_{c} \sin \theta_{2}}{h_{a}^{b}b} + B_{i-1,j-1}^{12} \frac{\sin \theta_{1}}{h_{a}^{b}b}$$

$$b_{i,j}^{2} = B_{i-1,j}^{13} \frac{\sin \theta_{2}}{h_{a}^{b}c} - 2B_{i,j}^{12} \frac{h_{c} \sin \theta_{2}}{h_{a}^{b}b} - 2B_{i-1,j-1}^{12} \frac{\sin \theta_{1}}{h_{a}^{b}b}$$

$$- 2B_{i-1,j-1}^{22} \frac{h_{a} \sin \theta_{1}}{h_{b}^{3}} - 2B_{i,j}^{23} \frac{h_{a} \sin \theta_{1}}{h_{a}^{b}b} - 2B_{i,j-1,j-1}^{23} \frac{h_{a} \sin \theta_{1}}{h_{b}^{b}c}$$

$$- 2B_{i,j}^{22} \frac{h_{a} \sin \theta_{1}}{h_{b}^{3}} + B_{i,j-1}^{13} \frac{\sin \theta_{2}}{h_{a}^{b}c} - 2B_{i,j}^{23} \frac{h_{a} \sin \theta_{2}}{h_{b}^{b}c}$$

$$- 2B_{i,j}^{22} \frac{h_{a} \sin \theta_{1}}{h_{b}^{3}} + B_{i,j-1}^{13} \frac{\sin \theta_{2}}{h_{a}^{b}c} - 2B_{i,j}^{23} \frac{h_{a} \sin \theta_{2}}{h_{b}^{b}c}$$

$$- 2B_{i,j}^{23} \frac{h_{a} \sin \theta_{1}}{h_{b}^{b}c} + B_{i+1,j}^{13} \frac{h_{c} \sin \theta_{2}}{h_{a}^{b}c} + B_{i-1,j-1}^{12} \frac{\sin \theta_{1}}{h_{b}^{b}h_{c}}$$

$$- 2B_{i,j}^{23} \frac{h_{a} \sin \theta_{1}}{h_{b}h_{c}^{2}} - 2B_{i,j-1}^{13} \frac{h_{a} \sin \theta_{2}}{h_{a}^{b}c} + B_{i-1,j-1}^{12} \frac{\sin \theta_{1}}{h_{b}^{b}h_{c}}$$

$$- 2B_{i,j}^{23} \frac{h_{a} \sin \theta_{1}}{h_{b}h_{c}^{2}} - 2B_{i,j-1}^{13} \frac{\sin \theta_{2}}{h_{a}^{b}h_{c}} - 2B_{i,j-1}^{23} \frac{h_{a} \sin \theta_{2}}{h_{b}^{b}h_{c}}$$

$$- 2B_{i,j-1}^{23} \frac{h_{a} \sin \theta_{1}}{h_{b}h_{c}^{2}} - 2B_{i,j-1}^{13} \frac{\sin \theta_{2}}{h_{a}^{b}h_{c}} - 2B_{i,j-1}^{23} \frac{h_{a} \sin \theta_{2}}{h_{b}^{b}h_{c}}$$

$$- 2B_{i,j-1}^{23} \frac{h_{a} \sin \theta_{1}}{h_{b}h_{c}^{2}} - 2B_{i,j-1}^{13} \frac{\sin \theta_{2}}{h_{a}^{3}} - 2F_{i,j-1}^{1} \frac{h_{a}^{3}}{h_{b}^{3}} - 2F_{i,j}^{2} \frac{h_{a}^{3}}{h_{b}^{3}}$$

$$b_{i,j}^{4} = B_{i+1,j}^{13} \frac{\sin \theta_{2}}{h_{a}h_{c}} + B_{i,j-1}^{13} \frac{\sin \theta_{2}}{h_{a}h_{c}}$$
(5.26)

$$c_{i,j}^{1} = B_{i-1,j}^{11} \frac{h_{c} \sin \theta_{2}}{h_{a}^{3}} + F_{i-1,j}^{a} \frac{1}{h_{a}^{3}}$$

$$c_{i,j}^{2} = -2B_{i-1,j}^{11} \frac{h_{c} \sin \theta_{2}}{h_{a}^{3}} - 2B_{i-1,j}^{12} \frac{h_{c} \sin \theta_{2}}{h_{a}h_{b}^{2}}$$

$$-2B_{i-1,j}^{13} \frac{\sin \theta_2}{h_a h_c} - 2B_{i,j}^{11} \frac{h_c \sin \theta_2}{h_a^3} + B_{i-1,j-1}^{23} \frac{h_a \sin \theta_1}{h_b h_c^2}$$

$$-2B_{i,j}^{12} \frac{\sin \theta_1}{h_a h_b} - 2B_{i,j}^{13} \frac{\sin \theta_2}{h_a h_c} + B_{i,j+1}^{23} \frac{h_a \sin \theta_2}{h_b^2 h_c}$$

$$-2F_{i-1,j}^{a} + \frac{1}{h_{a}^{3}} - 2F_{i,j}^{a} + \frac{1}{h_{a}^{3}}$$

$$c_{i,j}^{3} = B_{i-1,j}^{11} \frac{h_{c} \sin \theta_{2}}{h_{a}^{3}} + 4B_{i,j}^{11} \frac{h_{c} \sin \theta_{2}}{h_{a}^{3}} + 4B_{i,j}^{12} \frac{h_{c} \sin \theta_{2}}{h_{a}h_{b}^{2}}$$

+
$$4B_{i,j}^{13} \frac{\sin \theta_2}{h_a h_c}$$
 + $B_{i+1,j}^{11} \frac{h_c \sin \theta_2}{h_a^3}$ + $B_{i-1,j-1}^{22} \frac{h_a \sin \theta_1}{h_b^3}$

+
$$4B_{i,j}^{12} \frac{\sin \theta_1}{h_a h_b} + 4B_{i,j}^{22} \frac{h_a \sin \theta_1}{h_b^3} + 4B_{i,j}^{23} \frac{h_a \sin \theta_1}{h_b h_c^2}$$

$$+ B_{i+1,j+1}^{22} + \frac{h_{a} \sin \theta_{1}}{h_{b}^{3}} + B_{i,j-1}^{33} + \frac{h_{a} \sin \theta_{2}}{h_{c}^{3}} + 4B_{i,j}^{13} + \frac{\sin \theta_{2}}{h_{a}^{h}c}$$

$$+ 4B_{i,j}^{23} \frac{h_{a} \sin \theta_{2}}{h_{b}^{2}h_{c}} + 4B_{i,j}^{33} \frac{h_{a} \sin \theta_{2}}{h_{c}^{3}} + B_{i,j+1}^{33} \frac{h_{a} \sin \theta_{2}}{h_{c}^{3}} \\ + S_{i,j} + F_{i-1,j}^{a} \frac{1}{h_{a}^{3}} + 4F_{i,j}^{a} \frac{1}{h_{a}^{3}} + F_{i+1,j}^{a} \frac{1}{h_{a}^{3}} \\ + F_{i-1,j-1}^{b} \frac{1}{h_{b}^{3}} + 4F_{i,j}^{b} \frac{1}{h_{b}^{3}} + F_{i+1,j+1}^{b} \frac{1}{h_{b}^{3}} + F_{i,j-1}^{c} \frac{1}{h_{c}^{3}} \\ + 4F_{i,j}^{c} \frac{1}{h_{c}^{3}} + F_{i,j+1}^{c} \frac{1}{h_{c}^{3}} \\ + 4F_{i,j}^{c} \frac{1}{h_{c}^{3}} + F_{i,j+1}^{c} \frac{1}{h_{c}^{3}} \\ - 2B_{i+1,j}^{12} \frac{h_{c} \sin \theta_{2}}{h_{a}^{3}} - 2B_{i+1,j}^{13} \frac{\sin \theta_{2}}{h_{a}^{3}} - 2B_{i,j}^{12} \frac{\sin \theta_{1}}{h_{a}^{3}} \\ + B_{i+1,j+1}^{23} \frac{h_{a} \sin \theta_{1}}{h_{b}^{h_{c}^{2}}} + B_{i,j-1}^{23} \frac{h_{a} \sin \theta_{2}}{h_{b}^{2}h_{c}} - 2B_{i,j}^{13} \frac{\sin \theta_{2}}{h_{a}^{h_{c}}} \\ - 2F_{i,j}^{a} \frac{1}{h_{a}^{3}} - 2F_{i+1,j}^{a} \frac{1}{h_{a}^{3}} \\ - 2F_{i,j}^{a} \frac{1}{h_{a}^{3}} - 2F_{i+1,j}^{a} \frac{1}{h_{a}^{3}} \\ (5.27)$$

$$\begin{aligned} d_{i,j}^{2} &= B_{i-1,j}^{13} \frac{\sin \theta_{2}}{h_{a}h_{c}} + B_{i,j+1}^{13} \frac{\sin \theta_{2}}{h_{a}h_{c}} \\ d_{i,j}^{3} &= B_{i-1,j}^{12} \frac{h_{c} \sin \theta_{2}}{h_{a}h_{b}^{2}} - 2B_{i,j}^{13} \frac{\sin \theta_{2}}{h_{a}h_{c}} - 2B_{i,j}^{23} \frac{h_{a} \sin \theta_{1}}{h_{b}h_{c}^{2}} \\ &+ B_{i+1,j+1}^{12} \frac{\sin \theta_{1}}{h_{a}h_{b}} - 2B_{i,j}^{33} \frac{h_{a} \sin \theta_{2}}{h_{c}^{3}} - 2B_{i,j+1}^{13} \frac{\sin \theta_{2}}{h_{a}h_{c}} \\ &- 2B_{i,j+1}^{23} \frac{h_{a} \sin \theta_{2}}{h_{b}h_{c}} - 2B_{i,j+1}^{33} \frac{h_{a} \sin \theta_{2}}{h_{c}^{3}} - 2B_{i,j+1}^{13} \frac{\sin \theta_{2}}{h_{a}h_{c}} \\ &- 2B_{i,j+1}^{23} \frac{h_{a} \sin \theta_{2}}{h_{b}h_{c}} - 2B_{i,j+1}^{33} \frac{h_{a} \sin \theta_{2}}{h_{c}^{3}} \\ &- 2F_{i,j}^{c} \frac{1}{h_{c}^{3}} - 2F_{i,j+1}^{c} \frac{1}{h_{c}^{3}} \\ &- 2B_{i,j}^{12} \frac{h_{c} \sin \theta_{2}}{h_{a}h_{b}^{2}} + B_{i+1,j}^{13} \frac{\sin \theta_{2}}{h_{a}h_{c}} - 2B_{i,j}^{22} \frac{h_{a} \sin \theta_{1}}{h_{b}^{3}} \\ &- 2B_{i,j+1}^{12} \frac{h_{c} \sin \theta_{2}}{h_{a}h_{b}^{2}} + B_{i+1,j}^{13} \frac{\sin \theta_{2}}{h_{a}h_{c}} - 2B_{i,j}^{22} \frac{h_{a} \sin \theta_{1}}{h_{b}^{3}} \\ &- 2B_{i,j}^{12} \frac{h_{c} \sin \theta_{1}}{h_{a}h_{b}^{2}} - 2B_{i+1,j+1}^{13} \frac{\sin \theta_{2}}{h_{b}^{3}} \\ &- 2B_{i+1,j+1}^{12} \frac{\sin \theta_{1}}{h_{a}h_{b}^{2}} - 2B_{i+1,j+1}^{23} \frac{h_{a} \sin \theta_{1}}{h_{b}^{3}} \\ &- 2B_{i+1,j+1}^{23} \frac{h_{a} \sin \theta_{1}}{h_{a}h_{c}^{2}} - 2B_{i,j}^{23} \frac{h_{a} \sin \theta_{2}}{h_{b}^{2}} \\ &+ B_{i,j+1}^{13} \frac{\sin \theta_{2}}{h_{b}h_{c}^{2}} - 2F_{i,j}^{13} \frac{h_{a} \sin \theta_{1}}{h_{b}^{3}} - 2F_{i+1,j+1}^{13} \frac{h_{a}^{3}}{h_{b}^{3}} \\ &- 2B_{i+1,j+1}^{13} \frac{h_{a} \sin \theta_{1}}{h_{b}h_{c}^{2}} - 2F_{i,j}^{13} \frac{h_{a} \sin \theta_{1}}{h_{b}^{3}} - 2F_{i+1,j+1}^{13} \frac{h_{a}^{3}}{h_{b}^{3}} \\ &+ B_{i,j+1}^{13} \frac{h_{c} \sin \theta_{2}}{h_{a}h_{c}^{2}} - 2F_{i,j}^{13} \frac{h_{a}^{3}}{h_{b}^{3}} - 2F_{i+1,j+1}^{13} \frac{h_{a}^{3}}{h_{b}^{3}} \\ &+ B_{i,j+1}^{13} \frac{h_{c} \sin \theta_{2}}{h_{c}^{3}} - 2F_{i,j}^{13} \frac{h_{a}^{3}}{h_{b}^{3}} - 2F_{i+1,j+1}^{13} \frac{h_{a}^{3}}{h_{b}^{3}} \\ &+ B_{i,j+1}^{13} \frac{h_{c}^{3}}{h_{c}^{3}} - 2F_{i,j}^{13} \frac{h_{c}^{3}}{h_{b}^{3}} - 2F_{i+1,j+1}^{13} \frac{h_{c}^{3}}{h_{b}^{3}} \\ &+ B_{i,j+1}^{13} \frac{h_{c}^{3}}{h_{c}^{3}} - 2F_{i,j}^{13} \frac{h_{c}^{3}}{h_{c}^{3}} - 2F_{i+1,j+1}^{13} \frac{h_{c}^{3}}{h_{b}^{$$

$$d_{i,j}^{5} = B_{i+1,j}^{12} \frac{h_{c} \sin \theta_{2}}{h_{a}h_{b}^{2}} + B_{i+1,j+1}^{12} \frac{\sin \theta_{1}}{h_{a}h_{b}}$$
(5.28)

$$e_{i,j}^{3} = B_{i,j+1}^{33} \frac{h_{a} \sin \theta_{2}}{h_{c}^{3}} + F_{i,j+1}^{c} \frac{1}{h_{c}^{3}}$$

$$e_{i,j}^{4} = B_{i+1,j+1}^{23} \frac{h_{a} \sin \theta_{1}}{h_{b}h_{c}^{2}} + B_{i,j+1}^{23} \frac{h_{a} \sin \theta_{2}}{h_{b}h_{c}}$$

$$e_{i,j}^{5} = B_{i+1,j+1}^{22} \frac{h_{a} \sin \theta_{1}}{h_{b}^{3}} + F_{i+1,j+1}^{b} \frac{1}{h_{b}^{3}}$$

$$f_{i,j} = Q_{i,j} + \frac{1}{2h_{a}} (-T_{i-1,j}^{a} + T_{i+1,j}^{a}) + \frac{1}{2h_{b}} (-T_{i-1,j-1}^{b} + T_{i+1,j+1}^{b}) + \frac{1}{2h_{c}} (-T_{i,j-1}^{c} + T_{i,j+1}^{c})$$
(5.29)

Also, from Fig 14,

$$\frac{h_b}{\sin\theta_2} = \frac{h_c}{\sin\theta_1}$$
(5.31)

Operator

The equilibrium equation (Eq 5.24) can be visualized as an operator. It has 19 points as shown in Figs 15(c) and 15(d), and is first applied to the bottom row of joints from left to right (Figs 15(a) and 15(b)), then to the second row, and so on, moving upward. It is interesting to note that Fig 15(b), which is a mirror image of Fig 15(a), does not form the same equilibrium equations as Fig 15(a). This is due to the lopsided operator. This means that the two problems (Figs 15(a) and 15(b)) would not give exactly the same results. It has been observed that the difference between these solutions is about 1 percent in maximum deflection for a 20-by-20 increment solution. This difference reduces as the number of increments is increased.

(a)

(c)

(d)

Stiffness Matrix

Equations 5.24 through 5.30 describe the equilibrium equation at Joint i,j of the discrete-element model. Similar equations are written at each joint of the model, as explained above, to form the stiffness matrix.

In the matrix form, Eq 5.24 may be represented as

$$\begin{bmatrix} K \end{bmatrix} \{ w \} = \{ f \}$$
 (5.32)

The form of matrices [K], $\{w\}$, and $\{f\}$ is shown in Fig 16. The stiffness matrix [K] is symmetrical about its major diagonal and is also banded. The central band is five terms wide. The bands on either side of the central band are four terms wide and the two extreme bands are three terms wide. The stiffness matrix is partitioned as shown by the dashed line in Fig 16. If the skew slab and grid system to be solved is divided into m increments in the a-direction and n increments in the c-direction, then the stiffness matrix will have m+3 rows and m+3 columns of submatrices. Each submatrix will have m+3 rows and m+3 columns of terms. Because the recursion process is used to solve Eq 5.24, it is more efficient if m is smaller than n.

Summary

The stiffness matrix for the slab and grid system is obtained by writing equations of statics at each joint. The stiffness matrix is symmetric about its major diagonal. Advantage of this symmetry is taken in the solution of equations. GENERAL SLAB EQUATION :

$$\begin{aligned} a_{i,1}^{i} w_{i-2,j-2} + a_{i,1}^{2} w_{i-1,j-2} + a_{i,1}^{3} w_{i,j-2} \\ + b_{i,1}^{i} w_{i-2,j-1} + b_{i,1}^{2} w_{i-1,j-1} + b_{i,1}^{3} w_{i,j-1} + b_{i,1}^{4} w_{i+1,j-1} \\ + c_{i,1}^{i} w_{i-2,j} + c_{i,1}^{2} w_{i-1,j} + c_{i,1}^{3} w_{i,j} + c_{i,1}^{4} w_{i+1,j} + c_{i,j}^{5} w_{i+2,j} \\ & + d_{i,j}^{2} w_{i-1,j+1} + d_{i,j}^{3} w_{i,j+1} + d_{i,j}^{4} w_{i+1,j+1} + d_{i,j}^{5} w_{i+2,j+1} \\ & + e_{i,j}^{3} w_{i,j+2} + e_{i,j}^{4} w_{i+1,j+2} + e_{i,j}^{5} w_{i+2,j+2} = f_{i,j} \end{aligned}$$

OR IN MATRIX FORM :

Fig 16. Form of the equations showing partitioned stiffness matrix.

CHAPTER 6. SOLUTION OF EQUATIONS

Introduction

The equilibrium equation is applied at each joint of the discrete-element model and resulting equations are arranged and partitioned. A recursioninversion solution procedure is employed to solve the equations. A brief review of this procedure is made in this chapter. It has been shown that multiple load analysis can be handled efficiently also.

Arrangement of Equations

The problem to be solved, which may be an anisotropic skew plate, a skew grid, or a combination of both, should be divided into a skew grid work. If the number of increments is m in the a-direction and n in the c-direction then the number of joints becomes m+1 and n+1 in the a and c-directions, respectively. The equilibrium equation is written for each joint, including a fictitious joint, all around the actual problem, which makes the total number of equations to be solved $(m + 3) \times (n + 3)$.

The equations are arranged and partitioned as shown in Fig 16. Fig 17 shows the banding of different submatrices at a j^{th} horizontal partition.

Recursion-Inversion Solution Procedure

Matlock (Ref 18) described the recursion technique for the solution of equations for a beam-column. Stelzer (Ref 38) and Panak and Matlock (Ref 31) have used this technique to solve equations for the rectangular plate problems.

In the recursion procedure, a solution of the following form is assumed:

$$\left\{\mathbf{w}_{j}\right\} = \left\{\mathbf{A}_{j}\right\} + \left[\mathbf{B}_{j}\right] \left\{\mathbf{w}_{j+1}\right\} + \left[\mathbf{C}_{j}\right] \left\{\mathbf{w}_{j+2}\right\}$$
(6.1)

At the jth horizontal partition (Fig 16) the equation may be written in the form

Fig 17. Banding of submatrices.

$$\begin{bmatrix} a_{j} \end{bmatrix} \{ w_{j-2} \} + \begin{bmatrix} b_{j} \end{bmatrix} \{ w_{j-1} \} + \begin{bmatrix} c_{j} \end{bmatrix} \{ w_{j} \} + \begin{bmatrix} d_{j} \end{bmatrix} \{ w_{j+1} \}$$

$$+ \begin{bmatrix} e_{j} \end{bmatrix} \{ w_{j+2} \} = \{ f_{j} \}$$

$$(6.2)$$

Substitution of equations similar to Eq 6.1 into Eq 6.2 to eliminate $\left\{w_{j-2}\right\}$ and $\left\{w_{j-1}\right\}$ gives

$$\left\{ A_{j} \right\} = \left[D_{j} \right] \left[\left[E_{j} \right] \left\{ A_{j-1} \right\} + \left[a_{j} \right] \left\{ A_{j-2} \right\} - \left\{ f_{j} \right\} \right]$$

$$\left[B_{j} \right] = \left[D_{j} \right] \left[\left[E_{j} \right] \left[C_{j-1} \right] + \left[d_{j} \right] \right]$$

$$\left[C_{j} \right] = \left[D_{j} \right] \left[e_{j} \right]$$

$$(6.3)$$

where

$$\begin{bmatrix} D_{j} \end{bmatrix} = - \begin{bmatrix} a_{j} \end{bmatrix} \begin{bmatrix} C_{j-2} \end{bmatrix} + \begin{bmatrix} E_{j} \end{bmatrix} \begin{bmatrix} B_{j-1} \end{bmatrix} + \begin{bmatrix} c_{j} \end{bmatrix} \end{bmatrix}^{-1}$$
$$\begin{bmatrix} E_{j} \end{bmatrix} = \begin{bmatrix} a_{j} \end{bmatrix} \begin{bmatrix} B_{j-2} \end{bmatrix} + \begin{bmatrix} b_{j} \end{bmatrix}$$
(6.4)

Endres and Matlock (Ref 8) modified Eq 6.3 in order to make the solution procedure more efficient. The final form of equations for the solution of a symmetric stiffness matrix is

$$\left\{ A_{j} \right\} = \left[D_{j} \right] \left[\left[E_{j} \right] \left\{ A_{j-1} \right\} + \left[e_{j-2} \right]^{t} \left\{ A_{j-2} \right\} - \left\{ f_{j} \right\} \right]$$

$$\left[B_{j} \right] = \left[D_{j} \right] \left[E_{j+1} \right]^{t}$$

$$\left[C_{j} \right] = \left[D_{j} \right] \left[e_{j} \right]$$

$$(6.5)$$

where

$$\begin{bmatrix} D_{j} \end{bmatrix} = - \begin{bmatrix} e_{j-2} \end{bmatrix}^{-t} \begin{bmatrix} C_{j-2} \end{bmatrix} + \begin{bmatrix} E_{j} \end{bmatrix} \begin{bmatrix} B_{j-1} \end{bmatrix} + \begin{bmatrix} c_{j} \end{bmatrix} \end{bmatrix}^{-1}$$
$$\begin{bmatrix} E_{j+1} \end{bmatrix} = \begin{bmatrix} e_{j-1} \end{bmatrix}^{t} \begin{bmatrix} B_{j-1} \end{bmatrix} + \begin{bmatrix} d_{j} \end{bmatrix}^{t}$$
(6.6)

and t stands for transpose of matrix.

Solution of Deflections

In the forward pass of the recursion procedure, $\{A_j\}$, $\{B_j\}$, and $[C_j]$ are formed with the help of Eqs 6.5 and 6.6. On the reverse pass, deflections $\{w_j\}$ are computed using Eq 6.1.

Multiple-Loading Technique

This technique was discussed by Panak and Matlock (Ref 31).

For a multiple-loading solution, instead of re-solving the problem for each loading condition, the recursion coefficient vector $\{A_j\}$ in Eq 6.5 is modified for successive loadings and the other coefficients are retained on tape storage.

Summary

The recursion technique is advantageous in multiple-load analysis. The boundaries of the real problem are automatically taken care of due to the model.

CHAPTER 7. DESCRIPTION OF PROGRAM SLAB 44

Introduction

SLAB 44 is a computer program written to apply the discrete-element formulation of an anisotropic skew-plate and grid-beam system in which the grid-beams may run in any three directions. The number 44 simply means that this is the 44th significantly distinct program in the chronological sequence of development of various slab and grid programs. The program solves linear problems. In this chapter, Program SLAB 44 is discussed and the procedure for data input is explained. The error messages and other output information are also discussed.

The FORTRAN Program

The SLAB 44 computer program is written in FORTRAN and for the CDC 6600 computer. The program could be modified to make it compatible with IBM 360 computers, UNIVAC 1108 systems, or other computers.

A summary flow chart for the SLAB 44 program is given in Fig 18. A general flow diagram of the program is given in Appendix 2. A list of the variables used with their definitions is given in Appendix 3. A complete listing of the program is shown in Appendix 4.

Time and Storage Requirements

The compile time for the program is about 21 seconds on the CDC 6600 computer. The time required to run problems varies with the number of increments involved. On the CDC 6600, a ten-by-ten increment problem can be solved in about seven seconds, while a 20-by-20 increment problem can be solved in about 23 seconds, and a 40-by-40 increment problem can be solved in about 70 seconds.

The storage requirements are variable, depending upon the size of the problem to be run.

83

Fig 18. Summary flow chart for program SLAB 44.

Procedure for Data Input

A guide for data input in included in Appendix 1. The guide is designed so that additional copies may be made and used for routine reference. A parallel study of the guide will help to understand the following discussion.

Any number of problems may be run at the same time. A problem series is preceded by two cards which describe the run. The first card of each problem contains the program number and a brief description of the problem. The problem series terminates when a blank problem number is encountered.

Tables of Data Input

Table 1 is comprised of a single data card that includes options to hold data from a preceding problem, a count of cards added to each table in the current problem, multiple load option, print option, reaction output option, and stiffness input option.

The multiple load option in Table 1 is exercised for problem series in which only the load pattern and placement will vary and stiffness properties remain constant. The first problem in the loading series is the "parent" problem. Each successive loading is an "offspring" problem. The option is left blank for a normal problem.

The print option in Table 1 may be exercised to print bending moments in the a, b, and c-directions. The option is left blank to print bending moments in the x and y-directions and twisting moments (the x and a-directions are the same). In either case, the largest principal moments are computed and printed.

The reaction output option in Table 1 may be exercised to print a statics check for each joint, i.e., the summation of all shears, loads, and restraint reactions. The restraint reactions due to spring supports are printed if the option is left blank. In either case, the summation of support spring reactions and the maximum statics check error, with coordinates, are computed and printed at the end of the problem.

The stiffness input option in Table 1 may be exercised to input slab stiffnesses related to the three directions a, b, and c. The option is left blank to input slab stiffnesses related to the orthogonal directions x and y.

Table 2 is comprised of a single data card that includes number of increments in the a and c-directions, increment length in the a and c-directions, and the angle between the a and c-direction in degrees (Fig 13). For Table 2 a choice must be made between holding all the data from the preceding problem and entering entirely new data.

Table 3 is comprised of plate or slab bending stiffnesses. If the input value of stiffnesses is related to the orthogonal directions (D_{11} through D_{33}), then for isotropic and orthotropic plates and stiffnesses may be computed either as shown in the guide for data input in Appendix 1 or by some other procedure. For the anisotropic case the stiffnesses may be computed by using either three moduli of elasticity in any three directions and three Poisson's ratios related to the same three directions or another set of six constants, as explained in Chapters 3 and 4. Any other procedure may be used to find bending stiffnesses for an anisotropic plate. If the input value of stiffnesses is related to the directions a , b , and c (B_{11} through B_{33}), then it could be computed either in terms of stiffnesses related to the orthogonal directions (D_{11} through D_{33}) or in terms of three moduli of elasticity in any three directions as explained in Chapter 4.

Table 4 is comprised of beam stiffnesses, loads, and support springs. Concentrated stiffness values for beams running in the a , b , and c-directions may be input. Load and support spring values for any joint are determined by multiplying the unit load or unit support values by the appropriate area of the real slab or plate assigned to that joint. Hinged supports are provided by using large spring values. Loads and stiffnesses that occur between joints may be fractionally proportioned to the adjacent joints.

Table 5 is comprised of external couples in the a , b , and c-directions. Concentrated values of couples may be input at joints.

In Tables 3, 4, and 5 all the data are described with a and c station numbers. To distribute data over an area, the lower left-hand and upper righthand coordinates must be specified. To specify data at a single location, the same coordinates must be specified in both the "From" and "Through" coordinates. The "Through" coordinates must always be equal to or numerically greater than the "From" coordinates. All the data in Tables 3, 4, and 5 are algebraically accumulated and therefore values may be added or subtracted.

Error Messages

All input data are checked for possible errors. If any data errors are encountered, the problem is terminated and messages showing the number of data errors in each table and total data errors in the problem are printed. Typical input data errors are (1) misusing the multiple load option, such as an offspring problem following a normal problem; (2) having the number of increments in the a-direction greater than in the c-direction; (3) specifying a negative or zero increment length; (4) having the "Through" coordinates less than "From" coordinates; and (5) specifying data outside the limits of the slab and grid system.

In addition to the above, a general purpose error message "UNDESIGNATED ERROR STOP" is provided for a number of unlikely errors.

Computed Results

The output is arranged so that the input quantities of Tables 1 through 5 are printed with explanatory headings. The computed final results are printed in Table 6. The headings in Table 6 depend on the options used. This table is arranged to print the a and c-joint coordinates; the transverse deflection at each joint, with up positive; the bending moments in the x and y-directions and twisting moment, or bending moments in the a , b , and c-directions; the largest principal moment and its direction; and support reaction, or statics check at each joint. The summation of support reactions is computed and printed at the end of Table 6. Also, a statics check is made at each joint and the maximum statics check error is printed at the end of Table 6.

The interpretation of moments computed at the edge of a slab and gridbeam system needs some explanation. For example, for a simply supported, uniformly loaded, square plate, the moments at the edge, and in the direction perpendicular to the simple support, should be zero. With Program SLAB 44, these moments cannot be computed and printed as zeros, because in this program one fictitious joint all around the actual problem is considered and the moment at any boundary joint is computed in terms of three curvatures in the three directions. For the moment to be zero, either the three curvatures or all of the stiffnesses at the joint have to be zero. The moment could also be zero if its value in Eq 4.16 is zero. The moments at the fictitious joints would be computed as zero but at the actual boundary they might have **so**me value.

Summary

SLAB 44 provides a solution for an anisotropic skew-plate and grid-beam system. The solution process used to solve the stiffness equations makes the program very efficient. To solve a particular problem, usually 15 to 20 increments in the a and c-directions are enough, although the number of increments depends upon the size of the real problem, accuracy required, and variation in parameters.

CHAPTER 8. EXAMPLE PROBLEMS AND COMPARISONS

Introduction

To verify the formulation of an anisotropic skew-plate and grid system with the discrete-element approach, several example problems were solved using Program SLAB 44. Since there are no closed-form mathematical solutions for the skew plates, the results could be compared only with the results from other approximate methods. In this chapter, seven problem series are presented. In the first six series the results from the discrete-element solution are compared with series, finite-element, conformal mapping, finite difference, electrical analogue, and experimental results. The constants, e.g., stiffnesses and loads, used in each problem series are also given. In problem series 7, a brief sensitivity analysis is made for modeling of bending and torsional stiffnesses of a composite section of a single-span bridge.

A listing of input data and output for a selected problem is included in Appendices 5 and 6.

Problem Series 1. Simply Supported, Uniformly Loaded Rhombic Plates

A series of simply supported, uniformly loaded, isotropic, rhombic plates was solved using the SLAB 44 program with 20-by-20 increments. The results for the maximum deflections, maximum principal moments, and minimum principal moments are compared with the series solution by Morley (Ref 24), whose results are most extensive and have been used as a basis for comparison by several investigators, including Gustafson, and the finite-element solution by Gustafson (Ref 10) (Fig 19). For $\theta_2 = 90^\circ$, or 0° skew, the results are compared with the exact solution by Timoshenko (Ref 40). Figure 19 shows these comparisons. The overall differences between Morley's and SLAB 44 results are 4.1 percent in maximum deflection at $\theta_2 = 50^\circ$, or 40° skew; 9.4 percent in maximum principal moment at $\theta_2^2 = 50^\circ$, or 40° skew; and 5.8 percent in minimum principal moment at $\theta_2 = 50^\circ$, or 40° skew. At $\theta_2 = 90^\circ$, or 0° skew, the differences between the exact solution (Ref 40) and SLAB 44 results are

Simply supported, uniformly loaded, isotropic, rhombic plate

a = 20 in. Stiffness : D = $\frac{Et^3}{12(1-\nu^2)}$ = 1.6 x 10⁶ 1b in./ in Poisson's Ratio : ν = 0.3

Load per Unit Area : $q_0 = 1 \times 10^6 \text{ lb/in.}^2$

Angle	$w_{max} \times \frac{D}{q_0 c^4 10^{-3}}$				м	$M_{max} \times \frac{1}{q_0 a^2 10^{-2}}$				$M_{min} \times \frac{l}{q_0 a^2 l 0^{-2}}$					
θ	Ref 40	Ref 24	Ref IO	SLAB 44	Ref40	Ref 24	Ref IO	SLAB 44	Ref 40	Ref 24	Ref IO	SLAB 44			
2	E XOCT		0 1 10	20 x 20	EAUCI.			20 x 20	EXUCI.			20 x 20			
9 0 °	4.06	-	-	4.10	4.79	1.79 -		- 4.83		-	-	4,81			
85°	-	4.01	-	4.06	-	- 486 - 4.90		-	4.66	-	470				
80°	-	3.87	-	3.92	-	4.86	-	4.92	-	4.48	-	4.54			
60°	-	2.56	2.59	2.65	-	4.25	4.26	4.41	-	3.33	3.37	3.46			
50°	-	l.72	1.69	1.7 9	-	3.62	3.55	383	-	2.58	2.51	2.73			
40°	-	0.958	-	0.996	-	2.81	-	3.04	-	1.80	-	1.90			
30°	-	0.408	0.377	0.409	-	1.91	1.80	2.09	-	1.08	0.96	1.09			

Ref 40 is exact solution by Timoshenko and Woinowsky-Krieger

Ref 24 is series solution by Morley

Ref 10 is finite-element solution by Gustafson and Wright

Fig 19. Comparison of results for simply supported, uniformly loaded, isotropic, rhombic plates. 1.0 percent in maximum deflection, 0.8 percent in maximum principal moment, and 0.4 percent in minimum principal moment.

Problem Series 2. Simply Supported Rhombic Plates with Concentrated Load

Aggarwala (Ref 1) has used conformal mapping to obtain the central deflection of the simply supported, centrally loaded, isotropic, rhombic plates. Twenty-by-twenty increment SLAB 44 solutions were made for different skew angles and the deflections at the centers of plates are compared with his results (Fig 20). The difference between Aggarwala's results and those from SLAB 44 at $\theta_2 = 50^\circ$, or 40° skew, is about 7 percent, which reduces to about 2.8 percent at $\theta_2 = 90^\circ$, or 0° skew.

Problem Series 3. Simply Supported, Uniformly Loaded Triangular Plate

A closed-form solution for the deformation of a simply supported, uniformly loaded, isotropic, equilateral triangular plate has been given by Timoshenko (Ref 40). Using the SLAB 44 program, a 21-by-21 increment solution was made by inputting appropriate values of stiffnesses at each joint and using Poisson's ratio of 0.3. Figure 21 shows the comparison of deflection at point 0 of the triangular plate. The difference between the closedform result and SLAB 44 result is about 0.78 percent.

Problem Series 4. Five-Beam, Noncomposite Skew Bridges

Chen, Siess, and Newmark (Ref 6) have considered a simple-span, noncomposite, skew bridge which consisted of a concrete slab of uniform thickness supported by five identical steel beams uniformly spaced and parallel to the direction of traffic. Using the finite difference approach, they have computed influence coefficients for moments and deflections for a number of skew bridges having an 8-by-8 mesh. Gustafson and Wright (Ref 10) have used the finite-element method with an 8-by-8 mesh to solve the same bridge problem for a few loading conditions and compared their results with the solutions of Chen, Siess, and Newmark.

The SLAB 44 program, with 8-by-8 increments, was used to solve the same bridge problem. Figure 22 shows a comparison of beam moments obtained from finite difference, finite-element, and discrete-element solutions for different skew angles. It is interesting to note that the results of finite-element

Stiffness :
$$D = \frac{Et^3}{12(1-\nu^2)} = 4.0 \times 10^5$$
 lb ln/in
Poisson's Ratio : $\nu = 0.3$

Concentrated Load : $Q = 1.0 \times 10^3$ ib

Simply supported, isotropic, rhombic plate with concentrated load at the center

Angle	Deflection at Center x $\frac{D}{Qa^2}$								
θ2	Ref 1	SLAB 44 20 x 20							
50°	0.00881	0.00918							
60°	0.01200	0.01252							
70°	0.01547	0.01604							
80°	0.01920	0.01978							
90°	0.02315	0.02380							

Ref I is conformal mapping solution by Aggarwala

Fig 20. Comparison of results for simply supported, isotropic, rhombic plates with concentrated load at the center.

Simply supported, uniformly loaded, isotropic, triangular plate

Stiffness : $D = \frac{Et^3}{12(t-\nu^2)} = 1.0 \times 10^7 \text{ lb-in}^2/\text{in}$ Poisson's Ratio : $\nu = 0.3$ Load per Unit Area : $q = 1.0 \times 10^3 \text{ lb/in}^2$ a = 10 inches

Deflection a	$t O \times \frac{D}{q \sigma^4 10^{-3}}$
Ref 40	SLAB 44 21 x 21
1.029	I.0 37

Fig 21. Comparison of results for a simply supported, uniformly loaded, isotropic, triangular plate.

Slab Stiffness:
$$D = \frac{Et^3}{|2(1-\nu^2)|} = 1 \times 10^5$$
 lb in/in.

Poisson's Ratio : $\nu = 0$

Beam Stiffness: $EI = I \times 10^7 \text{ lb in}^2$

Concentrated Load : P = 5000 lb

$$H = \frac{EI}{aD} = 5$$

$$b/a = 0.5$$

Non-dimensional parameters used in Ref 6 and 10

Angle	Midspan Mamont in	Midspan Decision of	Midspan Moment x <u>I</u> Pa						
θ2	Beam	Load P on Beam	Ref 6 8 x 8	Ref 10 8 x 8	Slab 44 8×8				
150°	А	A C E	0.154 0.015 0.000	0. 15 7 0.021 0.005	0.156 0.022 0.005				
	В	A C E	0.049 0.027 0.004	0.050 0.033 0.012	0.049 0.033 0.01 I				
	с	A C	0.015 0.070	0.020 0.085	0.021 0.085				

Ref 6 is finite difference solutions by Chen, Siess, and Newmark.

Ref 10 is finite-element solution by Gustafson and Wright.

Fig 22(a). Comparison of results for five-beam, noncomposite skew bridges.

Angle	Midspan Momant i-	Midspan Position of	Midspan Moment × 1 Pa						
θ2	Moment in Beam	Load P on Beam	Ref 6 8 x 8	Ref IO 8 x 8	Slab 44 8×8				
135°	Δ	A	0.160	0.165	0.163				
	· ·	E	-0.009	-0.003	-0.003				
	В	Α	0.056	0.060	0.060				
		E C	0.033 - 0.001	0.043	0.044 0.006				
	с	A C	0.015 0.078	0.022 0.096	0.022 0.095				
120°	А	A C E	0.164 0.016 -0.013	0.169 0.022 -0.009	0.168 0.022 -0.009				
	В	A C E	0.06I 0.038 - 0.003	0.064 0.048 0.002	0.065 0.048 0.002				
	с	A C	0.016 0.083	0.022 0.099	0.022 0.098				
90°	Α	A C E	0.172 0.022 -0.017		0.171 0.022 -0.014				
	B	A C E	0.067 0.050 0.000		0.068 0.051 0.000				
	с	A C	0.022 0.101		0.022 0.099				

Ref 6 is the finite difference solution by Chen, Siess, and Newmark. Ref 10 is the finite-element solution by Gustafson and Wright.

Fig 22(b). Comparison of results for five-beam, noncomposite skew bridges.

and discrete-element (SLAB 44) solutions are almost identical, even though the finite-element method requires the solution of more than twice as many equations as SLAB 44 for the same mesh size when in-plane displacements are not considered. For $\theta_2 = 90^\circ$, or 0° skew, the three approaches give almost identical results.

Problem Series 5. Four-Span Skew Bridge

Harnden and Rushton (Ref 11) have studied the deformation of a four-span 45° skew bridge using an electrical analogue computer. Sawko and Cope (Ref 37) have used the finite-element approach to solve the same bridge problem.

Using 14-by-64 increments, the SLAB 44 program was used to solve the same problem for a load uniformly distributed on the entire bridge. Figure 23 shows the deflections and moments in the span direction obtained from the three approaches. The results are superimposed on the grid used in Program SLAB 44. The difference in deflection between an electrical analogue and SLAB 44 solutions is about 4 percent at the location of maximum deflection (797, 780, and 830), and at other locations the difference is less than 5 percent with respect to the maximum deflection. The difference in deflection between finiteelement and SLAB 44 results is about 6 percent at the location of maximum deflection and less than 6 percent at all other locations except one, where the difference is 8.8 percent with respect to the maximum deflection. In the case of bending moments, except for the locations over the supports, SLAB 44 results are very close to the other two approaches.

Problem Series 6. Verification with Experimental Results

Barboza (Ref 5) experimentally investigated the behavior of a skew, prestressed concrete bridge under various loading conditions. The bridge chosen was a Texas Highway Department standard, simply supported bridge with a skew angle of 30° . The bridge consisted of precast prestressed I-shaped girders with a cast-in-place deck slab. The slab was constructed to act compositely with the precast girders. The scale factor used for the model was 5.5. Figure 24 shows the dimensions of the model bridge. During the investigation, Barboza made a few auxiliary tests to determine experimentally the bending and torsional stiffnesses of a precast girder with the cast-in-place slab the width of which equaled the girder spacing in the model bridge (16.5 inches).

FOUR SPAN BRIDGE

*** SLAB 44

SECTION

Number of Increments: 22 along skew by 72 along span Slab Stiffness: $D_{II} = D_{22} = 7.46 \times 10^5$ lb in/in Poisson's Ratio : $\nu = 0.167$ Girder Stiffness (Composite) : 1.73×10^9 lb in² Diaphragm Stiffness : 2.34×10^7 lb in² Equivalent Girder Twisting Stiffness (distributed over 8.28 in. of slab width): $D_{33} = 3.625 \times 10^6$ lb in/in

Fig 24. Experimental model tested by Barboza (Ref 5).

Moment at Midspan of Girder (Ib-in)

Deflection at Midspan of Girder (in.)

Fig 25. Comparisons with experimental results of Barboza (Ref 5).

The girders used in these auxiliary tests were fabricated in the same manner as those used in the model bridge structure.

Program SLAB 44 was used to analyze this bridge by inputting composite girder stiffnesses, which were obtained experimentally by Barboza, as beams. The torsional stiffness of the girders, also determined experimentally by Barboza, was input as additional twisting stiffness in a two-increment width of slab along the girders. The other parameters used were the same as given by Barboza and as shown in Fig 24.

The analysis was made for five different positions of concentrated load of 1,000 pounds, as tested by Barboza. At this load, the structure was still uncracked. The results of deflections and bending moments at the midspans of girders were compared with the experimental results. Figure 25 shows these comparisons. It is evident that there is a very close correlation between experimental (Ref 5) and SLAB 44 results.

This problem series effectively demonstrates the modeling of composite action. It also shows that the diaphragms can be handled very simply even though they run in neither the span direction nor the skew direction.

<u>Problem Series 7. Sensitivity of Modeling Bending and Torsional Stiffness</u> of Composite Section

In this problem series, Program SLAB 44 was used to study the effects of variation of bending and torsional stiffnesses of a composite section of a single span bridge. This study is only analytical, even though the stiffnesses and constants of the bridge considered are the same as in problem series 6.

Figure 26 shows the dimensions and constants of the bridge. In the cases studied, the load of 1,000 pounds was considered to be acting at A4. The table in Fig 26 shows the variation in midspan deflections and midspan moments of girders D and E as the bending stiffness of the composite section was varied from 0.9 to 1.0 to 1.1 of the measured value (Ref 5), and the equivalent twisting stiffness was varied from 1.0 to 0.5 to 0.0 of the measured value (Ref 5).

It can be seen from the table in Fig 26 that the effect of variation of bending stiffness on deflection is more significant than the effect of variation of equivalent twisting stiffness. For example, consider the results of girder D. The deflection with a bending stiffness of 1.73×10^9 and a twisting stiffness of 3.625×10^6 is 0.01663. For the same bending stiffness, if the twisting stiffness is reduced by half then the deflection increases to

Number of increments: 22 along skew by 72 along span

Slab Stiffness : $D_{11} = D_{22} = 7.46 \times 10^5 \text{ lb in}^2/\text{ in}$

Poisson's Ratio : $\nu = 0.167$

Diaphragm Stiffness : 2.34 x 10⁷ 1b in²

Girder Number	Girder Bending Stiffness	Midspan De SLAB 44 Twisting S	eflections Cor with Equival tiffness of	mputed by ent Girder	Midspan Moments Computed by SLAB 44 with Equivalent Girder Twisting Stiffness of				
	x 10 ⁻⁹	3.625 x 10 ⁶ (Ref 5)	0.5 x 3.625 x 10 ⁶	None	3.625 x 10 ⁶ (Ref 5)	0.5 x 3.625 x 10 ⁶	None		
	0.9 x 1.7 3 = 1.557	0.01805	0.01877	0.02043	12.55	12.90	13.72		
U	1.73 (Ref 5)	0.01663	0.01730	0.01883	12.79	13.15	13.98		
	Ll·x 1.73 = 1.903	0.01544	0.01607	0.01749	13.01	13.38	14.22		
-	0.9 x 1.73 = 1.557	0.01879	0.019 40	0.02073	12.82	13.17	13. 9 0		
E	1.73 (Ref 5)	0.01722	0.01779	0.01902	13.01	13.37	4.11		
	l.l x l.73 = l.903	0.01592	0.01645	0.01 76 0	13.19	13.55	14.31		

Note: All comparisons are for load at A4.

Ref 5 is experimental solution by Barboza.

Fig 26. Sensitivity of modeling bending and torsional stiffness of composite section.

0.01730, which is a 3.9 percent increase. If the twisting stiffness is kept the same (3.625×10^6) but the bending stiffness is reduced by only 10 percent, then the deflection increases to 0.01805, which is an 8.2 percent increase (over 0.01663). Compared to deflections, the bending moments are not appreciably affected. Even though only one load position was studied, this problem series demonstrates the necessity of computing composite girder bending stiffnesses with care.

Other Comparisons

In addition to use with the above problem series, SLAB 44 was used to solve several example problems for 0° skew, or $\theta_2 = 90^{\circ}$, and the results were compared by solving the same problems using Program SLAB 36 (Ref 32). These problems were solved with different load and support conditions. The results of comparisons are not included here but it was observed that the difference in maximum deflection between the two solutions was about 1 percent, using ten-by-ten increments in both the cases.

Late in this study, there was an opportunity to apply the program to a real bridge. This study is reported elsewhere (Ref 20). Program SLAB 44 was used to study a failed structure, to study load placement on the test structure, to analyze the test structure, and to compare experimental results. The results indicated that for a severely skewed structure the strip method of analysis is not appropriate.

Summary

It has been observed by Mehrain (Ref 22) that in the case of simply supported uniformly loaded skew plates, the accuracy of finite difference and finite-element methods of solution drops rapidly as the angle of skew is increased. In the case of the finite-element method, this may be caused due to Kirchoff's hypothesis. This has not been observed (Problem Series 1) with the discrete-element approach presented here, even though the accuracy of the solution does depend upon the number of increments selected. In general, the results of the discrete-element model are in good agreement with the results of other approximate methods and with experimental data.

101

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

CHAPTER 9. USE OF THE METHOD

Summary

A discrete-element procedure of analysis of an anisotropic skew-plate and grid-beam system has been described. It has been observed from the literature studied that most of the work done on a skew plate is for either isotropic or orthotropic properties and for simple load and support conditions. The method presented here is not limited by these considerations. The stiffnesses, loads, and supports can be freely varied from point to point and in any direction. Concentrated and distributed loads and support springs, including external couples in three directions, can be easily handled. The principal features of this approach are summarized as follows:

- (1) In the anisotropic stress-strain relations, the elastic compliances and stiffnesses are formulated in terms of three moduli of elasticity in any three directions and three Poisson's ratios related to these directions. This simplifies the computation of anisotropic plate stiffnesses in terms of six constants which could be experimentally determined by three tension tests.
- (2) The anisotropic skew-plate and grid system is represented by a discrete-element model consisting of a tridirectional arrangement of rigid bars and elastic joints. The rigid bars are infinitely stiff and weightless and transfer bending moments. The elastic joints for the plate model are composed of elastic, but anisotropic, material The stiffnesses, loads, and restraints are lumped at elastic joints. All the elastic action takes place at these joints.
- (3) To derive stress-strain relations for the plate model, it is assumed that an element of the plate is made up of three layers of interconnected fibers running in three directions. The fiber stresses are then related to conventional strains. The integration of these relations results in moment-curvature relations for the plate model. Each grid-beam is considered as a beam (Ref 18).
- (4) Using equations of statics, the stiffness matrix is derived. The concentrated moments required in the equations of statics are obtained by assuming that the fibers running in a particular direction and having a certain width (Fig 11) are collected and lumped along each line of the model.
- (5) A recursion-inversion procedure is used to solve the stiffness equations.

(6) A computer program, SLAB 44, is developed which is capable of determining deflections, bending and twisting moments, largest principal moment together with its direction, and reaction at each joint of the discrete-element model.

Comparisons with several different approaches such as series, finiteelement, conformal mapping, finite difference, electrical analog, and experimental indicate that SLAB 44 produces excellent results.

Recommendations Pertaining to the Use of SLAB 44

This study and Program SLAB 44 are intended to provide a basic tool for use in design and to serve as a basis for future developments. The types of problems available in the literature are relatively simple, and SLAB 44 could be used to solve types of problems other than the example problems solved in Chapter 8 with SLAB 44.

Before coding a particular problem, the study of detailed rules and instructions would be helpful. Whenever it is necessary to make several solutions for the same structure in order to consider different load criteria or placements, the use of a multiple-load option switch is helpful in reducing the computer time.

Extensions of the Basic Method

The method developed could possibly be extended for several applications:

- The rotational restraint and axial thrust could be introduced in the formulation as is done in the beam-column and rectangular slab formulation by Matlock et al (Refs 18, 21, 13, and 31).
- (2) The method could be extended to solve for nonlinear loads and supports in which the loads and supports are represented by loaddeformation curves.
- (3) The method could be utilized to study alternative designs for a particular problem. For example, in the bridge shown in Fig 24, the effect of different diaphragm configurations could be easily studied.
- (4) All of the development of anisotropic stress-strain relations and discretization techniques developed here may be applied to plane stress problems.
- (5) It may be possible to combine plane stress with bending analysis to solve for plates and pavement slabs in which in-plane forces are considered.

REFERENCES

- Aggarwala, Bhagwan D., "Bending of Rhombic Plates," <u>The Quarterly Journal</u> of Mechanics and Applied Mathematics, Vol 19, London, 1966, pp 79-82.
- Aggarwala, Bhagwan D., "Bending of Parallelogram Plates," <u>Journal of the</u> <u>Engineering Mechanics Division</u>, Vol 93, No. EM4, Proceedings of the American Society of Civil Engineers, August 1967.
- 3. Akay, H. U., "A Discrete-Element Solution of Skew Plates," Master's Thesis, The University of Texas at Austin, May 1969.
- 4. Ang, A. H. S., and N. M. Newmark, "A Numerical Procedure for the Analysis of Continuous Plates," <u>Proceedings of the Second Conference on</u> <u>Electronic Computation, Structural Division</u>, American Society of Civil Engineers, Pittsburgh, September 1960, p 379.
- 5. Barboza, N. J., "Load Distribution in a Skewed Prestressed Concrete Bridge," Master's Thesis, The University of Texas at Austin, August 1970.
- 6. Chen, T. Y., C. P. Siess, and N. M. Newmark, "Moments in Simply Supported Skew I-Beam Bridges," University of Illinois Engineering Experiment Station Bulletin 439, 1957.
- 7. Cheung, Y. K., I. P. King, and O. C. Zienkiewicz, "Slab Bridges with Arbitrary Shape and Support Conditions: A General Method of Analysis Based on Finite Elements," <u>Proceedings</u>, Vol 40, The Institution of Civil Engineers, May 1968.
- 8. Endres, F. E., and Hudson Matlock, "An Algebraic Solution Process Formulated in Anticipation of Banded Linear Equations," Research Report No. 56-19, Center for Highway Research, The University of Texas at Austin, January 1971.
- 9. Favre, H., "Le Calcul des Plaques Obliques par la Methode des Equations aux Differences," Publication of International Association for Bridge and Structural Engineering, Zurich, 1943.
- Gustafson, W. C., and R. N. Wright, "Analysis of Skewed Composite Girder Bridges," Journal of the Structural Division, American Society of Civil Engineers, April 1968.
- 11. Harnden, C. T., and K. R. Rushton, "The Analysis of a Four-Span Bridge Using an Electrical Analogue Computer," <u>Proceedings</u>, Vol 36, The Institution of Civil Engineers, February 1967, pp 297-323.

- 12. Hearmon, R. F. S., <u>An Introduction to Applied Anisotropic Elasticity</u>, Oxford University Press, London, 1961.
- 13. Hudson, W. R., and Hudson Matlock, 'Discontinuous Orthotropic Plates and Pavement Slabs," Research Report No. 56-6, Center for Highway Research, The University of Texas, Austin, May 1966.
- 14. Jensen, V. P., "Analysis of Skew Slabs," University of Illinois Engineering Experiment Station Bulletin 332, 1941.
- 15. Jensen, V. P., and J. W. Allen, "Studies of Highway Skew Slab Bridges with Curbs, Part 1, Results of Analyses," University of Illinois Engineering Experiment Station Bulletin 369, 1947.
- 16. Kennedy, J. B., and M. W. Huggins, "Series Solution of Skewed Stiffened Plates," <u>Journal of the Engineering Mechanics Division</u>, American Society of Civil Engineers, February 1964.
- 17. Lekhnitskii, S. G., <u>Theory of Elasticity of an Anisotropic Elastic Body</u>, Translated by P. Fern, Holden-Day, Inc., San Francisco, 1963.
- 18. Matlock, Hudson, and T. A. Haliburton, "A Finite-Element Method of Solution for Linearly Elastic Beam-Columns," Research Report No. 56-1, Center for Highway Research, The University of Texas, Austin, September 1966.
- 19. Matlock, Hudson, and W. B. Ingram, "Bending and Buckling of Soil-Supported Structural Elements," <u>Proceedings</u>, No. 32, Second Pan-American Conference on Soil Mechanics and Foundation Engineering, Brazil, July 1963.
- 20. Matlock, Hudson, J. J. Panak, M. R. Vora, and J. H. C. Chan, "Field Investigation of a Skewed, Post-Stressed Continuous Slab Structure," Interim Study Report to Texas Highway Department Bridge Division, Center for Highway Research, The University of Texas at Austin, May 25, 1970.
- 21. Matlock, Hudson, and T. P. Taylor, "A Computer Program to Analyze Beam-Column Under Movable Loads," Research Report No. 56-4, Center for Highway Research, The University of Texas at Austin, June 1968.
- 22. Mehrain, M., "Finite Element Analysis of Skew Composite Girder Bridges," Report No. 67-28, Structural Engineering Laboratory, University of California, Berkeley, California, November 1967.
- Morley, L. S. D., "Bending of a Simply Supported Rhombic Plate Under Uniform Normal Loading," <u>The Quarterly Journal of Mechanics and Applied</u> <u>Mathematics</u>, Vol 15, Part 4, November 1962, pp 413-426.
- Morley, L. S. D., <u>Skew Plates and Structures</u>, International Series of Monographs in Aeronautics and Astronautics, Vol 5, The Macmillan Company, New York, 1963.
- 25. Naruoka, M., "Untersuchung der schiefen Platte mit Benutzung des Rechenautomaten," Der Bauingenieur, 34, 1959, pp 401-407.

- 26. Naruoka, M., and H. Ohmura, "On the Analyses of a Skew Girder Bridge by the Theory of Orthotropic Parallelogram Plates," Publication International Association for Bridge and Structural Engineering, Zurich, 1959.
- 27. Naruoka, M., and H. Ohmura, "Uber die Berechnung der Einfluskoeffizienten fur Durchbiegung und Biegemoment der orthotropen Parallelogramm-Platte," Der <u>Stahlbau</u>, 28, 1959, pp 187-194.
- 28. Naruoka, M., H. Ohmura, and T. Yamamoto, "On the Model Tests of Skew Girder Bridges," Publication International Association for Bridge and Structural Engineering, Zurich, 1961.
- 29. Naruoka, M., and H. Yonezawa, "Uber die Anwendung der Biegungstheorie Orthotroper Platten auf die Berechnung schiefer Balkenbrucken," Der Bauingenieur, 32, 1957, pp 391-395.
- 30. Newmark, N. M., "Numerical Methods of Analysis of Bars, Plates, and Elastic Bodies," <u>Numerical Methods of Analysis in Engineering</u>, Edited by L. E. Grinter, Macmillan Company, New York, 1949, pp 139-168.
- 31. Panak, John J., and Hudson Matlock, "A Discrete-Element Method of Multiple-Loading Analysis for Two-Way Bridge Floor Slabs," Research Report No. 56-13, Center for Highway Research, The University of Texas at Austin, January 1970.
- 32. Panak, John J., and Hudson Matlock, "A Discrete-Element Method of Analysis for Orthogonal Slab and Grid Bridge-Floor System," Research Report, Center for Highway Research, The University of Texas at Austin, in progress.
- 33. Quinlan, P. M., "The λ-Method for Skew Plates," Fourth U. S. National Congress of Applied Mechanics, 1962, pp 733-750.
- 34. Redshaw, S. C., and K. R. Rushton, "Study of Various Boundary Conditions for Electrical Analogue Solutions of Extension and Flexure of Flat Plates," <u>The Aeronautical Quarterly</u>, Vol 11, Pt 3, London, August 1961, pp 275-282.
- Robinson, K. E., "The Behaviour of Simply Supported Skew Bridge Slabs Under Concentrated Loads," Cement and Concrete Association, London, Research Report 8, 1959.
- 36. Rushton, K. R., "Electrical Analogue Solutions for the Deformation of Skew Plates," <u>The Aeronautical Quarterly</u>, Vol 15, Pt 2, London, May 1964, pp 169-180.
- 37. Sawko, F., and R. J. Cope, "The Analysis of Skew Bridge Decks A New Finite Element Approach," <u>The Structural Engineer</u>, Vol 47, No. 6, June 1969, pp 215-224.

- 38. Stelzer, C. F., and W. R. Hudson, "A Direct Computer Solution for Plates and Pavement Slabs," Research Report No. 56-9, Center for Highway Research, The University of Texas, Austin, October 1967.
- 39. Suchar, M., "Obliczanie powierzchni wplywowych dla plyt rownoleglobocznych (Computation of the influence surfaces of plates in the form of parallelograms), Rosprawy Inz. 7, 1959, pp 237-260.
- 40. Timoshenko, S., and S. Woinowsky-Krieger, <u>Theory of Plates and Shells</u>, (Engineering Society Monographs), 2nd Edition, McGraw Hill, New York, 1959.
- 41. Tucker, Richard L., "A General Method for Solving Grid-Beam and Plate Problems," Ph.D. Dissertation, The University of Texas at Austin, 1963.
- 42. West, P. E., "A Finite Element Solution to Skew Slab Problems," <u>Civil</u> Engineering and <u>Public Works Review</u>, May 1966, p 619.

APPENDIX 1

GUIDE FOR DATA INPUT

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

GUIDE FOR DATA INPUT FOR SLAB 44

with supplementary notes

extract from

A DISCRETE-ELEMENT ANALYSIS FOR ANISOTROPIC SKEW PLATES AND GRIDS

by

Mahendrakumar R. Vora and Hudson Matlock

August 1970

This page replaces an intentionally blank page in the original --- CTR Library Digitization Team

SLAB 44 GUIDE FOR DATA INPUT - CARD FORMS

IDENTIFICATION OF RUN (two alphanumeric cards per run)

1		60
1		80

IDENTIFICATION OF PROBLEM (one alphanumeric card each problem: program stops if PROB NUM is left blank)

PROB NUM

		Description of problem
ł	5	11 BO

TABLE 1. CONTROL DATA (one card for each problem)

This page replaces an intentionally blank page in the original --- CTR Library Digitization Team

TABLE 3. JOINT STIFFNESS DATA (number of cards according to Table 1)

Anisotropic: May be computed by using Eqs 3.45 through 3.50, 3.58, and 4.15 in terms of three moduli of elasticity and three Poisson's ratios; or by using Eqs 3.17, 3.58, and 4.15 in terms of the other six constants; or by some other means.

B₁₁ through B₃₃ may be computed by using Eq 4.17 in terms of D₁₁ through D₃₃; or by using Eq 4.34 in terms of three moduli of elasticity and three directional Poisson effects. In either case, the Stiffness Input Option in Table 1 must be exercised.

This page replaces an intentionally blank page in the original --- CTR Library Digitization Team

TABLE 4. BEAM STIFFNESS AND LOAD DATA (number of cards according to Table 1)

This page replaces an intentionally blank page in the original --- CTR Library Digitization Team

GENERAL PROGRAM NOTES

The data cards must be stacked in proper order for the program to run.

A consistent system of units must be used for all input data, for example, kips and feet.

A11	2 to	5-space	words	are und	derstood	to be	right-just	ified	integers	or who	le d	decimal	numbe	ers	• •	• +	43	21
A11	10 - sj	pace wor	ds are	floatir	ng-point	decima	1 numbers				• •		•••	- 4	. 3	2 1	E + (03

TABLE 1. CONTROL DATA

- For Table 2, the user must choose between holding all the data from the preceding problem or entering entirely new data. If the hold option is set equal to 1, the number of cards input for this table must be zero.
- In Tables 3, 4, and 5, the data are accumulated by adding to previously stored data. The number of cards input is independent of the hold option, except that the cumulative total of cards in each of the tables cannot exceed the number allowed by program dimension statements.

Card counts in Table 1 should be rechecked after the coding of each problem is completed.

- The multiple-load option is exercised for problem series in which only the load positions and magnitudes will vary. The first problem in a series is the Parent and is specified by entering +1, successive loadings are the Offspring and are specified by entering -1. If the option is left blank, the problem is complete within itself.
- For Offspring problems, Tables 2, 3, and 5 are omitted.
- The print option may be exercised for output moments. If specified 1, bending moments in a, b, and c-directions are printed. If left blank, bending moments in x and y-directions and twisting moments are printed (x and a-directions are the same). In either case the largest principal moments are computed and printed.
- The reaction output option may be exercised by entering either 1 or leaving a blank. If 1 is entered, a statics check for each joint is printed (a statics check is a summation of all shears, loads, and restraint reactions). If a blank is left, restrain reactions due to spring supports are printed.
- The stiffness input option may be exercised for input values of slab stiffnesses in Table 3. To input stiffnesses related to the a, b, and c-directions (B₁₁ through B₃₃), 1 is entered. The option is left blank to input stiffnesses related to the orthogonal x and y-directions (D₁₁ through D₃₃).

This page replaces an intentionally blank page in the original --- CTR Library Digitization Team

TABLE 2. CONSTANTS

The number of increments in the a-direction should be less than or equal to the number of increments in the c-direction.

The angle between the a and c-directions should be specified in degrees.

TABLES 3, 4, AND 5. STIFFNESS, LOAD, AND EXTERNAL COUPLE DATA

Variables: D_{11} through D_{33} B_{11} through B_{33} F_a through F_c QS T_a through T_c Typical Input Units: $1b - in^2/in$ $1b - in^2/in$ $1b - in^2$ 1b1b/inin - 1b

All data are described with a coordinate system which is related to the a and c-station numbers (Fig 13). To distribute data over an area, it is necessary to specify the lower left-hand and the upper right-hand coordinates.

- To specify data at a single location, it is necessary to specify the same coordinates in both the "From" and "Through" coordinates.
- The "Through" coordinates must always be equal to or numerically greater than the "From" coordinates.
- The user may input values on the edge of the slab and the corners to represent the proportionate area desired.
- There are no restrictions on the order of cards in Tables 3, 4, and 5. Cumulative input is used, with full values at each coordinate.

Unit stiffness values D_{11} through D_{33} for a slab or plate and concentrated stiffness values F_a through

F_c for beams are input at full value joints. The values may be reduced proportionately for edges.

Load values Q and support springs S for any joint are determined by multiplying the unit load or unit support value by the appropriate area of the real slab or plate assigned to that joint. Hinged supports are provided by using large S values. Concentrated loads that occur between joints can be proportioned geometrically to adjacent joints. This page replaces an intentionally blank page in the original --- CTR Library Digitization Team

APPENDIX 2

FLOW DIAGRAMS FOR PROGRAM SLAB 44

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

GENERAL FLOW DIAGRAM FOR SLAB 44

J)

$$X = L \cdot L^{T}$$

$$X^{-1} = (L \cdot L^{T})^{-1} = (L^{T})^{-1} \cdot L^{-1} = (L^{-1})^{T} \cdot L^{-1}$$

This flow chart is extracted from Ref 8.

[х].	[Y] = [Z]	L5	=	L1
[х].	OR [Y] =	z			L5	=	1

This flow chart is extracted from Ref 8.

 $\left[\begin{array}{c} \mathbf{X} \end{array}\right] \cdot \left[\begin{array}{c} \mathbf{Y} \end{array}\right] = \left[\begin{array}{c} \mathbf{z} \end{array}\right]$

This flow chart is extracted from Ref 8.

 $\left[\begin{array}{c} X \end{array}\right] \cdot \left[\begin{array}{c} Y \end{array}\right] = \left[\begin{array}{c} Z \end{array}\right]$

This flow chart is extracted from Ref 8.

This flow chart is extracted from Ref 8.

This flow chart is extracted from Ref 8.

This flow chart is extracted from Ref 8.

 $\left[\begin{array}{c} X \end{array}\right] \begin{array}{c} + \\ - \end{array} \left[\begin{array}{c} Y \end{array}\right] = \left[\begin{array}{c} Z \end{array}\right]$

This flow chart is extracted from Ref 8.

≈ C •

- X : I/O
- L1 : VARIABLE DIMENSION
- L2 : ORDER OR LENGTH OF X
- L5 : FULL OR VECTOR
- C : CONSTANT MULTIPLIER

This flow chart is extracted from Ref 8.

APPENDIX 3

GLOSSARY OF NOTATION FOR SLAB 44

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

C	-NUTATION FOR SLAB44		
C			
С	A()	RECURSION COEFFICIENT	03MY0
С	ALF	ANGLE ON MOHRS CIRCLE	03MY0
С	AM1()	RECURSION COEFFICIENT A() AT J-1	03MY0
С	AM2()	RECURSION COEFFICIENT A() AT J-2	03MY0
С	AN1(), AN2()	IDENTIFICATION AND REMARKS (ALPHA-NUM)	03MY0
С	ATM()	TEMP STORAGE FOR A() RECURSION COEFF	03MY0
С	B()	RECURSION COEFFICIENT	03MY0
С	BETA	ANGLE TO LARGEST PRINCIPAL MOMENT	03MY0
с	BETAT	TWICE BETA	03MY0
c	BMA(),BMB(),BMC()	CONCENTRATED MOMENTS IN SLAB MODEL IN	03MYO
с		A B C DIRECTIONS	03MY0
č	BMBA() + BMBB() + BMBC(CONCENTRATED MOMENTS IN REAM MODEL IN	03MV0
Ċ		A B C DIRECTIONS	02MY0
c	BMBBM1(), BMBCM1()	RMBR() AND RMRC() AT 1-1	0 2 M YO
c	BMBBP1(), BMBCP1()	RMPR() AND RMPC() AT 11	OSMYO
c			0.0000
c	BMBD1(), DMCD1()	DMB() AND DMC() AT 1.1	03MY0
c	DMDF1() 3DMCF1()	DEDITION CONCEPTCIENT DATE 1	USMYU
c	DITUM PITUP DITUM	RECORSION COEFFICIENT BUT AT J-1	USMYU
C	DIIVMODIIVFORIIVV	$B_{11} A_{1} (1^{-1}) J_{2} (1^{+1}) J_{2} (1^{+1}) J_{2} (1^{+1}) J_{2} J_{2} (1^{+1}) J_{2} $	U3MYO
	BIZMV BIZPP BIZPV	$H12 AI (I_9J-1)_9 (I+1_9J+1)_9 (I_9J+1)$	03MYO
	BIZVM, BIZVP, BIZVV	E12 AI (1-1+J) + (1+1+J) + (1+J)	U3MYO
	BI3MV BI3PV BI3VM	B13 AT $(1, J-1)$, $(1, J+1)$, $(1-1, J)$	03MYO
	BI3VP BI3VV	B13 AI (I+1,J), (I,J)	03MY0
C C	BZZMM, BZZMV, BZZPP	B22 AI (I=I,J=I), (I,J=I), (I+I,J+I)	03MY0
C	B22PV,B22VV	$B22 \text{ AT } (I_*J+1), (I_*J)$	03MY0
C	B23MM+B23MV+B23PP	B23 AT $(I-1,J-1)$, $(I,J-1)$, $(I+1,J+1)$	03MY0
C	B23PV,B23VV	B23 AT $(I,J+1)$, (I,J)	03MY0
C	B33MV,B33PV,B33VV	B33 AT (I+J-1), (I+J+1), (I+J)	03MY0
С	C()	RECURSION COEFFICIENT	03MY0
С	CBA	ONE DIVIDED BY HA CUBED	03MY0
С	CBB	ONE DIVIDED BY HE CUBED	03MYC
С	CBC	ONE DIVIDED BY HC CUBED	03MYO
C	CBMA,CBMB,CBMC	CONVENTIONAL BENDING MOMENTS PER UNIT	03MYO
С		WIDTH OF SLAB IN A B C DIRECTIONS	03MY0
С	CBM0,CBMT	FIRST AND SECOND PRINCIPAL BENDING MOMENT	SU3MYO
С	CBMX,CBMY	CONVENTIONAL BENDING MOMENTS PER UNIT	03MYO
С		WIDTH OF SLAB IN X AND Y DIRECTIONS	U3MYO
С	CBMXY	CONVENTIONAL TWISTING MOMENT PER UNIT	03MY0
С		WIDTH OF SLAB ABOUT X DIRECTION	03MYO
С	CC(,)	COEFFICIENTS IN STIFFNESS MATRIX	03MY0
С	CM1(,)	RECURSION COFFFICIENT C(+) AT J-1	03MYO
с	CS11 THRU CS33	MULT CONSTANTS FOR B11 THRU B33 IN STIFF	03MY0
с		MATRIX	03MY0
c	C1+C2+C3	COSINE OF THETAL THETA2 THETA3	024420
č	C1S+C2S+C3S	COSINE SQUARE OF THETAL THETA2 THETA3	03MV0
č	$D(\cdot)$	RECHRSTON MHETTPLTED	03440
č	DD(+)	COFFEICIENTS IN STIFFNESS MATRIX	03MY0
с	DDT(,)	TRANSPOSE OF DD(+)	
с	D11() THRU D33()	BENDING STIFFNESS PER UNIT WIDTH OF SLAB	03MV0
с	DIIN() THRU D33N()	INPUT VALUES OF DIT() THRU D33()	0 3MYO
с	DI2MI() THRU D33MI	D12() THRU D33() AT 1-1	0 miles
с	D12P1() THRU D33P1($D12()$ THRU D33() ΔT $J=1$	0.24440
ċ	F(•)	RECURSION MULTIPLIED	0 THE
č	EF(+)	COEFFICIENTS IN STIFFNESS MATRIX	0.3MAC
1 March 1997		CONTRACTOR AND	UTRU

FFP()	PACKED EET) AS DECUIDED FOR SOLUTION	
FFT1(•)	TRANSPOSE OF FEDU ANT 1-1	03MY0
	TRANSPOSE OF EE AT L D	0 3MYO
EP1(.)		USMYO
$EA() \bullet EB() \bullet EC()$	REAM STIFFNESS IN A P C DIDECTIONS	0 2 M Y U
FAN() FBN() FCN()	TNPUT VALUES OF FAIL FRAIL FRAIL	U3MYU
	TREAT VALUES OF FAIL FBILL FULL	03MY0
	FB() FC() AT J=1	03MY0
	FB() FC() AI J+1	03MY0
	COEFFICIENT IN LOAD VECTOR	03MY0
паэнвэнс	INCREMENT LENGTH IN A B C DIRECTIONS	03MY 0
	STATION NUMBER IN A OR X DIRECTION	03MY0
INI3() THRU IN15()	INITIAL STATION IN A OR X DIRECTION	03MY0
	USED IN TABLE 3 THRU 5	03MY 0
IN23() THRU IN25()	FINAL STATION IN A OR X DIRECTION	03MY0
	USED IN TABLE 3 THRU 5	03MY0
IPR	PRINT OPTION SWITCH	G3MY0
ISTA	EXTERNAL STATION IN A OR X DIRECTION	03MY0
ISTIFF	STIFFNESS INPUT OPTION SWITCH	03MY0
ITEMP	ISTA FOR MAXIMUM STATICS CHECK ERROR	03MY0
ITEST	= 5 ALPHANUMERIC BLANKS USED TO	03MY0
•	TERMINATE PROGRAM	03MY0
J	STATION NUMBER IN C DIRECTION	03MY0
JN	J-3	03MY0
JN13() THRU JN15()	INITIAL STATION IN C DIRECTION	03MY0
	USED IN TABLE 3 THRU 5	03MY0
JN23() THRU JN25()	FINAL STATION IN C DIRECTION	03MY0
	USED IN TABLE 3 THRU 5	U3MY0
JSTA	EXTERNAL STATION IN C DIRECTION	03MV0
JTEMP	JSTA FOR MAXIMUM STATICS CHECK ERROR	
K	DO LOOP INDEX	03MY0
KEEP2 THRU KEEP5	IF = 1. KEEP PRIOR DATA. TABLES 2 THRU 5	03MV0
KML	KEEP MI FOR FRROR CHECKS	02440
KPROB	PROBLEM NUMBER FOR PARENT PROBLEM	02000
KROPT	REACTION OUTPUT OPTION SWITCH	02440
1	DO LOOP INDEX	03440
	VARIABLE DIMENSION UNIT	02440
MA	NUMBER OF INCREMENTS IN A OP Y DIRECTION	03440
MAPI THRU MAPS	MALL THRU MALS	02MY0
MC	NUMBER OF INCREMENTS IN C DIRECTION	03010
MCP1 THRU MCP5	MC+1 THRU MC+5	
ML	MULTIPLE LOADING SWITCH	OZMYO
N	INDEX FOR DEADING CARDS	
NCD2 THRU NCD5	NUMBER OF CARDS IN TABLES 2 TUDILS	
	FOR THIS PROBLEM	
NCT3 THRU NCT5	TOTAL NUMBER OF CARDS IN TABLES 2 THOU 5	
NC13 THRU NC15	INITIAL INDEX VALUE FOR THE INDUT TO	
	TABLES 3 THRU 5	02020
NDES	NDE1 + NDE2 + NDE3 - NDE4 + NDE5	
NDE1 THRU NDE5	NUMBER OF DATA ERRORS IN TABLES 1 THRU 5	
NF	STARTING VALUE FOR DO LOOP	03MV0
NK	ORDER OF SUBMATRICES	03MY0
NL	MATRIX ORDER OF OVERALL COFFEICIENT MATRIX	KO 3MVO
NLM2	NL-2	03MV0
NPROB	PROBLEM NUMBER (PROGRAM STORS 15 DIANK)	
N1.N2.N3	BAND WIDTH OF FELAL DOLLA COLA	
ΡΜΜΔΧ	LARGEST PRINCIPAL MOMENT	02000
	CANOLUT ENTITICITAL POMENT	UIMEU

с	Q()	TRANSVERSE LOAD PER JOINT	03MY0
С	QN()	INPUT VALUE OF Q()	03MY0
С	REACT	SUPPORT SPRING REACTION PER JOINT	03MY0
С	S()	SPRING SUPPORT, VALUE PER JOINT	03MY0
с	SN()	INPUT VALUE OF S()	03MY0
С	STACH	STATICS CHECK ERROR PER JOINT	03MY0
С	STEMP	MAXIMUM STATICS CHECK ERROR	03MY0
С	SUMR	SUMMATION OF REACTIONS	U3MY0
С	SWB,SWS	SWITCHES TO PRINT HEADINGS FOR OUTPUT	03MY0
с	\$1,52,53	SINE OF THETA1 THETA2 THETA3	03MY0
с	S1S+S2S+S3S	SINE SQUARE OF THETA1 THETA2 THETA3	03MY0
C	TA()	EXTERNAL COUPLE IN A OR X DIRECTION	03MY0
С	TAN()+TBN()+TCN()	INPUT VALUES FOR EXTERNAL COUPLE IN	03MY0
C		A B C DIRFCTIONS	03MY0
С	TBM1(),TCM1()	EXTERNAL COUPLES IN B AND C DIRECTIONS	03MYO
С		AT J-1	03MY0
С	TBP1(),TCP1()	EXTERNAL COUPLES IN B AND C DIRECTIONS	03MY0
С		AT J+1	C3MY0
С	ΤΗΕΤΑ	ANGLE BETWEEN A AND C DIRECTIONS	03MY0
C		IN DEGREES	U3MY0
C	THETAL	ANGLE BETWEEN A AND B DIRECTIONS	03MY0
C		IN RADIANS	03MY0
С	THE TA2	THETA IN RADIANS	03MY0
c	THE TA 3	THETA2 - THETA1	03MY0
C	W(+)	DEFLECTION AT EACH JOINT	03MY0

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team APPENDIX 4

LISTING OF PROGRAM DECK OF SLAB 44

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

PROGRAM SLAB44 (INPUT, OUTPUT, TAPE1, TAPE2, TAPE3) С ----THIS PROGRAM IS NOW DIMENSIONED TO SOLVE A 25 BY 75 GRID AND c-FOR UPTO 70 CARDS IN EACH TABLE. L1 = MA + 3, L2 = MA + 5 С C 1 FORMAT (52H PROGRAM SLAB44 - MASTER DECK -M. VORA 28H REVISION DATE 03 MAY 70 1 .) REVISED DIMENSION AN1(32), AN2(14) 12009 C----DIMENSION STATEMENT FOR NUMBER OF CARDS IN DIFFERENT TABLES DIMENSION IN13(70), JN13(70), IN23(70), JN23(70), D11N(70), 12009 D12N(70), D13N(70), D22N(70), D23N(70), D33N(70), 1 12009 IN14(70), JN14(70), IN24(70), JN24(70), FAN(70), FBN(70), FCN(70), GN(70), SN(70), 2 12009 3 12009 4 IN15(70), JN15(70), IN25(70), JN25(70), TAN(70), 12009 TBN(70), TCN(70) 5 12009 C----DIMENSION STATEMENT WITH (MA+5) DIMENSION D11(30), D12(30), D13(30), D22(30), D23(30), REDIMEN D33(30), D12M1(30), D13M1(30), D22M1(30), D23M1(30), 1 REDIMEN 2 D33M1(30), D12P1(30), D13P1(30), D22P1(30), D23P1(30), REDIMEN 3 D33P1(30), FA(30), FB(30), FC(30), REDIMEN Q(30), 4 S(30), FBM1(30), FCM1(30), FBP1(30), FCP1(30), REDIMEN TA(30), TBM1(30), TCM1(30), TBP1(30), TCP1(30) 5 REDIMEN C----DIMENSION STATEMENT WITH (MA+3,) EXPECT FOR W WHICH IS (MA+5, MC+5) C DD(28, 5), DIMENSION CC(28, 5), EE(28, 5), DDT(28, 5), REDIMEN 1 EEP(5,28), EET1(28, 5), EET2(28, 5), FF(28, 1), REDIMEN 2 A(28), AM1(28), AM2(28), B(28,28), REDIMEN 3 BM1(28,28), EP1(28,28), ATM(28), C(28,28), REDIMEN 4 CM1(28,28), D(28,28), E(28,28), W(30,80) REDIMEN C----DIMENSION STATEMENT WITH (MA+5) DIMENSION BMA(30), BMBM1(30), BMB(30), BMBP1(30), REDIMEN BMCM1(30), BMC(30), BMCP1(30), 1 BMBA(30). REDIMEN 2 BMBBM1(30), BMBB(30), BMBBP1(30), BMBCM1(30), REDIMEN 3 BMBC(30), BMBCP1(30) REDIMEN COMMON / DATA2 / IN13, JN13, IN23, JN23, IN14, JN14, IN24, JN24, 14009 IN15, JN15, IN25, JN25, 1 140C9 D11N, D12N, D13N, D22N, D23N, D33N, 2 14009 3 FAN, FBN, FCN, QN, SN, TAN, TBN, TCN, 140C9 4 NCT3, NCT4, NCT5, MAP5 14009 6 FORMAT () 12009 11 FORMAT (5H1 • 80X, 10HI----TRIM) 12009 12 FORMAT (16A5) 12009 13 FORMAT (5X, 16A5) 12009 14 FORMAT (A5, 5X, 14A5) 12009 15 FORMAT (///10H PROB , /5X, A5, 5X, 14A5) 12009 PROB (CONTD), / 5X, A5, 5X, 14A5) 16 FORMAT (///17H 230C9 20 FORMAT (5X, 4I5, 5X, 4I5, 5X, I5, 5X, 3I5) 03MY0 21 FORMAT (215, 3E10.3) 12009 33 FORMAT (4(2X, I3), 6E10.3) 12009 43 FORMAT (4(2X, I3), 5E10.3) 120C9 53 FORMAT (4(2X, I3), 3E10.3) 12009 100 FORMAT (//27H TABLE 1. CONTROL DATA. 12009 48X, 35H 11 1 TABLE NUMBER, 12009 43X, 42H 2 1 3 2 - 4 5, 12009 3 5X, 41H HOLD FROM PRECEDING PROBLEM (1=HOLD), 19X, 415, 12009 11 NUM CARDS INPUT THIS PROBLEM, 27X, 415, 1 5X, 33H 12009

5 5X. 50H MULTIPLE LOAD OPTION (IF BLANK, PROBLEM IS S, 12009 11 16HINGLE LOADING --, 6 12009 15X, 50HIF +1, PARENT FOR NEXT PROB -- IF -1, A OFFSPRING , 120C9 7 1 8 5HPROB), 10X, 15, 12009 5X+ 50H PRINT OPTION (IF BLANK, MX MY MXY -- IF 1, 9 12009 Α 25HMA MB MC PRINTED) . 15+ 12009 REACTION OUTPUT OPTION (IF BLANK, SUPPORT REA, В 5X • 50H 12009 9HCTION -- , C 12009 15X, 30HIF 1, STATICS CHECK PRINTED) , 35X, 15, D 1 03MY0 STIFFNESS INPUT OPTION (IF BLANK, D11 THRU D33,03MYO F 5X, 51H 1 15X, 30HIF 1, B11 THRU B33 INPUT) , 35X, 15) F 03MY0 TABLE 2. CONSTANTS) 200 FORMAT (//24H 12009 NUMBER OF INCREMENTS IN A DIRECTION MA , 12009 201 FORMAT (/ 50H 1 32X, 13, / 12009 10X, 40HNUMBER OF INCREMENTS IN C DIRECTION MC , 32X, 13, /120C9 2 10X, 35HINCREMENT LENGTH IN A DIRECTION HA, 30X, E10.3, / 3 12009 10X, 35HINCREMENT LENGTH IN C DIRECTION HC, 30X, E10.3, / 4 12009 5 10X. 45HANGLE BFTWEEN A AND C DIRECTION IN DEGREES 12009 ٠ 20X, E10.3) 6 12009 300 FORMAT (//35H TABLE 3. JOINT STIFFNESS DATA. 12009 FROM THRU D11 D12 1 // 50H D13 , 120C9 2 35H D2 2 D23 D33 . 12009 3 1 JOINT JOINT) 20H 120C9 301 FORMAT (//35H TABLE 3. JOINT STIFFNESS DATA. 03MY0 1 // 50H FROM THRU B11 B12 B13 , 03MYO 35 H 2 B22 B23 B33 **U3MYO** . 20H JOINT JOINT) 3 12009 311 FORMAT (5X, 2(1X, 12, 1X, 13), 6E11.3) 12009 TABLE 4. BEAM STIFFNESS AND LOAD DATA 400 FORMAT (//45H 12009 1 // 50H FROM THRU FA FB FC 120C9 Ω 2 35H S 12009 . 3 1 20H JOINT JOINT) 12009 411 FORMAT (5X, 2(1X, 12, 1X, 13), 5E11.3) 12009 500 FORMAT (//35H TABLE 5. EXTERNAL COUPLE DATA. 12009 1 // 50H FROM THRU TA TB TC 120C9 1 20H JOINT JOINT) 2 12009 511 FORMAT (5X, 2(1X, 12, 1X, 13), 3E11.3) 12009 700 FORMAT (//25H TABLE 6. RESULTS) 23009 TABLE 6. RESULTS -- USING STIFFNESS DATA FROM, 230C9 701 FORMAT (//50H 18H PREVIOUS PROBLEM + A5) 1 23009 711 FORMAT (/ 49H INPUT DATA IS SUCH THAT ONLY BEAM , 23009 20HOUTPUT IS REQUIRED 1 23009 2 // 10X, 40H BEAM MOMENTS ARE TOTAL PER BEAM • 1 1 23009 712 FORMAT (/ 49H INPUT DATA IS SUCH THAT ONLY SLAB . 230C9 20HOUTPUT IS REQUIRED 1 23009 SLAB MOMENTS ARE PER UNIT WIDTH 2 // 10X, 40H 23009 / 10X, 47H // 25X, 50H COUNTERCLOCKWISE BETA ANGLES ARE POSITIVE . 3 23009 4 LARGEST BETA 230C9 / 25X+ 50H 5 PRINCIPAL X TO) 23009 713 FORMAT [/ 50H SLAB MOMENTS ARE PER UNIT WIDTH • 230C9 BEAM MOMENTS ARE TOTAL PER BEAM 1 / 10X+ 40H 23009 1 10X, 47H COUNTERCLOCKWISE BETA ANGLES ARE POSITIVE ,//) 23009 2 721 FORMAT(25X+51HBEAM A BEAM B BEAM C S+03MY0 6HUPPORT, 1 03MY0 52H 2 1 A , C DEFL MOMENT MOMENT MOMEN230C9

REACTION)

03MY0

3

31HT

722 FORMAT(25X,51HBEAM A BEAM B BEAM C S,03MY0 1 6HTATICS, 03MY0 52H A , C DEFL MOMENT 31HT CHECK) MOMENT 2 MOMEN230C9 3 31HT 3 31HT 731 FORMAT(25X,51HSLAB X SLAB Y U3MY0 SLAB XY SLAB LARGEST S,03MY0 6HUPPORT, 1 03MY0 52H A, C DEFL MOMENT MOMENT 2 MOMEN230C9 MOMENT MOMENT REACTION) 3 31HT 03MY0 732 FORMAT(25X,51HSLAB A SLAB B SLAB C SLAB LARGEST 5,03MY0 6HUPPORT, 1 03MY0 A • C DEFL MOMENT MO MOMENT MOMENT REACTION) 2 52H MOMENT A • C MOMEN230C9 31HT 03MY0 733 FORMAT(25X, 51HSLAB X SLAB Y SLAB XY SLAB LARGEST 5,03MY0 6HTATICS, 1 03MY0 2 52H А,С DEFL MOMENT MOMENT MOMEN230C9 MOMENT MOMENT CHECK 3 31HT 03MY0 734 FORMAT(25X,51HSLAB A SLAB B SLAB C SLAB LARGEST S,03MY0 1 6HTATICS, 03MY0 2/52HA , CDEFLMOMENTMOMENTMOMENTMOMEN230C9331HTMOMENTMOMENTCHECK)03MY0741FORMAT(25X,50HSLAB XSLAB YSLAB XYLARGESTBETA, 230C91/25X,50HMOMENTMOMENTMOMENTPRINCIPALX TO, 230C92/25X,51HBEAMABEAM BPEAM CSLABLARGESTS,03MY0 MOMENT MOMENT 2 52H DEFL MOMEN230C9 6HUPPORT, 3 03MY0 52H A, C DEFL MOMENT 31HT MOMENT MOMENT REACTION) 4 MOMENT MOMEN230C9 5 Ú3MYO 742 FORMAT(25X,50HSLAB A SLAB B SLAB C LARGEST 1 / 25X,50HMOMENT MOMENT MOMENT PRINCIPAL 2 / 25X,51HBEAM A BEAM B BEAM C SLAB LARGEST BETA PRINCIPAL A TO , 23009 , 23009 SLAB LARGEST S,03MY0 6HUPPORT, 3 03MY0 52H A, C DEFL MOMENT 31HT MOMENT MOMENT REACTION) MOMENT 4 MOMEN230C9 5 03MY0 743 FORMAT(25X,50HSLAB X SLAB Y SLAB XY LARGEST BETA , 23009 MOMENT MOMENT PRINCIPAL X TO BEAM B BEAM C SLAB LARGEST 1 / 25X. 50HMOMENT , 23009 / 25X, 51HBEAM A 2 BEAM C SLAB LARGEST S,03MYO 6HTATICS, 3 03MY0 6HTATICS, 52H A, C DEFL MOMENT 31HT MOMENT MOMENT CHECK) 4 MOMENT MOMEN230C9 5 03MY0 LARGEST BETA PRINCIPAL A TO 744 FORMAT(25X,50HSLAB A SLAB B SLAB C , 23009 1 / 25X, 50HMOMENT MOMENT MOMENT PRINCIPAL A TO , 230C9 BEAM B BEAM C SLAB LARGEST S,03MY0 MOMENT / 25X, 51HBEAM A 2 6HTATICS, 3 03MY0 DEFL A • C DEFL MOMENT MOMENT MOMENT CHECK) 4 52H MOMENT MOMEN230C9 5 31HT 03MY0 751 FORMAT (5X, 12, 1X, 13, 4E11.3, 17X, E11.3) 23009 752 FORMAT (5X, I2, 1X, I3, 5E11.3, F6.1, E11.3) 23009 753 FORMAT (22X, 3E11.3) 23009 753 FORMAT (226, 300 - 100NONE)903 FORMAT (25HNONE)905 FORMAT (46HUSING DATA FROM THE PREVIOUS PROBLEM)910 FORMAT (43HADDITIONAL DATA FOR THIS PROBLEM) 12009 12009 12009 **** UNDESIGNATED ERROR STOP ****) 12009 **** , I4, 991 FORMAT (//10H 12009 DATA ERRORS IN THIS TABLE ****) 1 33H 12009 992 FORMAT (///30H **** PROBLEM TERMINATED , I4 , 12009 1 DATA ERRORS ****) 20H 12009 993 FORMAT (//50H **** CAUTION. MULTIPLF LOAD OPTION MISUSED FO, 12009

```
30HR THIS OR PRIOR PROBLEM **** )
    1
                                                                       12009
  994 FORMAT ( //29X, 43HSUMMATION OF SUPPORT SPRING REACTION
                                                                =,
                                                                       30009
   1
         E11.3 )
                                                                       300C9
  995 FORMAT ( / 29X, 35HMAXIMUM STATICS CHECK ERROR AT STA , I3, I3,
                                                                       30009
                      2H =, E11.3 )
    1
                                                                       30009
С
C----PROBLEM IDENTIFICATION
C
              ITEST = 5H
                                                                       120C9
              KML = 0
                                                                       12009
      READ 12. ( AN1(N) = 1 = 32 )
                                                                       12009
     CALL TIC TOC (1)
                                                                       12009
 1010 READ 14, NPROB, ( AN2(N), N = ], 14 )
                                                                       12009
         IF ( NPROB - ITEST ) 1020, 9990, 1020
                                                                       12009
 1020 PRINT 11
                                                                       12009
      PRINT 1
                                                                       12009
     PRINT 13, ( AN1(N), N = 1, 32 )
                                                                       120C9
     PRINT 15, NPROB, (AN_2(N), N = 1, 14)
                                                                       12009
С
C----INPUT TABLE 1
C
     READ
            20, KEEP2, KEEP3, KEEP4, KEEP5,
                                                                       12009
    1
                NCD2, NCD3, NCD4, NCD5, ML, IPR, KROPT, ISTIFF
                                                                       03MY0
     PRINT 100, KEEP2, KEEP3, KEEP4, KEEP5,
                                                                       12009
     1
                NCD2, NCD3, NCD4, NCD5, ML, IPR, KROPT, ISTIFF
                                                                       03MY0
              NDE1 = 0
                                                                       12009
          IF ( KML ) 1115, 1110, 1112
                                                                       120C9
 1110
         IF ( ML ) 1111, 1115, 1115
                                                                       120C9
              NDE1 = NDE1 + 1
 1111
                                                                       120C9
          GO TO 1115
                                                                       120C9
         IF ( ML ) 1115, 1113, 1113
1112
                                                                       12009
 1113 PRINT 993
                                                                       12009
1115
              KML = ML
                                                                       120C9
         IF ( KEEP2 ) 9980, 1130, 1120
                                                                       12009
        IF ( NCD2 ) 9980, 1130, 1125
 1120
                                                                       120C9
1125
              NDE1 = NDE1 + 1
                                                                       12009
         IF ( ML ) 1135, 1145, 1145
1130
                                                                       120C9
 1135
         IF ( NCD2*NCD3*NCD5 ) 9980, 1145, 1140
                                                                       12009
              NDE1 = NDE1 + 1
 1140
                                                                       120C9
       IF ( NDE1 ) 9980, 1200, 1150
1145
                                                                       120C9
1150 PRINT 991, NDE1
                                                                       12009
C
C----INPUT TABLE 2
С
1200 PRINT 200
                                                                       120C9
         IF ( KEEP2 ) 9980, 1201, 1230
                                                                       120C9
1201
              NDE2 = 0
                                                                       120C9
          IF ( NCD2 - 1 ) 1203, 1205, 1203
                                                                       12009
 1203
              NDE2 = NDE2 + 1
                                                                       12009
 1205 READ
           21, MA, MC, HA, HC, THETA
                                                                       12009
     PRINT 201, MA, MC, HA, HC, THETA
                                                                       120C9
         IF ( MA - MC ) 1211, 1211, 1210
                                                                       120C9
1210
              NDE2 = NDE2 + 1
                                                                       120C9
         IF ( HA * HC ) 1212, 1212, 1250
1211
                                                                       12009
              NDE2 = NDE2 + 1
 1212
                                                                       12009
         GO TO 1250
                                                                       12009
```

IF (NCD2) 9980, 1240, 1235 1230 12009 1235 NDE2 = NDE2 + 112009 1240 PRINT 905 12009 PRINT 201, MA, MC, HA, HC, THETA 1250 IF (NDE2) 9980, 1300, 1270 12009 12009 1270 PRINT 991, NDE2 12009 C C----INPUT TABLE 3 С 1300 IF (ISTIFF) 9980, 1301, 1302 03MY0 1301 PRINT 300 03MY0 GO TO 1303 03MY0 1302 PRINT 301 03MY0 IF (KEEP3) 9980, 1304, 1310 1303 03MY0 1304 NC13 = 103MY0 NCT3 = NCD3 120C9 NDE3 = 012009 SWS = 0.0 12009 GO TO 1335 12009 1310 PRINT 905 120C9 DO 1325 N = 1, NCT3 12009 PRINT 311, IN13(N), JN13(N), IN23(N), JN23(N), D11N(N), 120C9 D12N(N), D13N(N), D22N(N), D23N(N), D33N(N)1 120C9 1325 CONTINUE 12009 PRINT 910 12009 NC13 = NCT3 + 112009 NCT3 = NCT3 + NCD312009 IF (NCD3) 9980, 1337, 1340 1335 12009 1337 PRINT 903 120C9 GO TO 1372 12009 1340 DO 1370 N = NC13, NCT3 12009 C----IF STIFFNESS INPUT OPTION ISTIFF = 1, THEN B11 THROUGH B33 ARE READ AND STORED AS D11 THROUGH D33 C READ 33, IN13(N), JN13(N), IN23(N), JN23(N), D11N(N), 12009 D12N(N), D13N(N), D22N(N), D23N(N), D33N(N) 1 12009 PRINT 311, IN13(N), JN13(N), IN23(N), JN23(N), D11N(N), 12009 1 D12N(N), D13N(N), D22N(N), D23N(N), D33N(N)12009 IF ($IN_{13}(N) - IN_{23}(N)$) 1342, 1342, 1341 12009 NDE3 = NDE3 + 11341 12009 1342 IF (JN13(N) - JN23(N)) 1344, 1344, 1343 12009 1343 NDE3 = NDE3 + 112009 IF (IN23(N) - MA) 1346, 1346, 1345 1344 12009 1345 NDE3 = NDE3 + 112009 IF (JN23(N) - MC) 1350, 1350, 1347 1346 12009 1347 NDE3 = NDE3 + 1 12009 1350 SWS = SWS + ABS (D11N(N) + D12N(N) + D13N(N) + D22N(N) 12009 1 + D23N(N) + D33N(N)12009 1370 CONTINUE 12009 IF (NDE3) 9980, 1400, 1375 1372 12009 1375 PRINT 991, NDE3 120C9 C C----INPUT TABLE 4 C 1400 PRINT 400 12009 IF (KEEP4) 9980, 1401, 1410 12009 1401 NC14 = 112009

```
NCT4 = NCD4
                                                                         12009
               NDE4 = 0
                                                                         12009
               SWB = 0.0
                                                                         12009
          GO TO 1435
                                                                         120C9
 1410 PRINT 905
                                                                         12009
          DO 1425 N = 1, NCT4
                                                                         12009
      PRINT 411, IN14(N), JN14(N), IN24(N), JN24(N), FAN(N),
                                                                         12009
     1
                 FBN(N), FCN(N), QN(N), SN(N)
                                                                         120C9
 1425
         CONTINUE
                                                                         120C9
      PRINT 910
                                                                         120C9
               NC14 = NCT4 + 1
                                                                         12009
               NCT4 = NCT4 + NCD4
                                                                         12009
 1435
           IF ( NCD4 ) 9980, 1437, 1440
                                                                         120C9
 1437 PRINT 903
                                                                         120C9
          GO TO 1472
                                                                         12009
 1440
          DO 1470 N = NC14, NCT4
                                                                         12009
      READ 43, IN14(N), JN14(N), IN24(N), JN24(N), FAN(N),
                                                                         12009
     1
                 FBN(N), FCN(N), QN(N), SN(N)
                                                                         120C9
      PRINT 411, IN14(N), JN14(N), IN24(N), JN24(N), FAN(N),
                                                                         12009
     1
                 FBN(N), FCN(N), QN(N), SN(N)
                                                                         12009
          IF ( IN_{14}(N) - IN_{24}(N) ) 1442, 1442, 1441
                                                                         12009
 1441
               NDE4 = NDE4 + 1
                                                                         12009
 1442
          IF ( JN14(N) - JN24(N) ) 1444, 1444, 1443
                                                                         12009
 1443
               NDE4 = NDE4 + 1
                                                                         12009
 1444
          IF ( IN24(N) - MA ) 1446, 1446, 1445
                                                                         12009
 1445
               NDE4 = NDE4 + 1
                                                                        12009
          IF ( JN24(N) - MC ) 1450, 1450, 1447
 1446
                                                                        12009
 1447
               NDE4 = NDE4 + 1
                                                                        120C9
 1450
               SWB = SWB + ABS (FAN(N) + FBN(N) + FCN(N))
                                                                        12009
          IF ( ML ) 1455, 1470, 1470
                                                                        12009
          IF ( FAN(N)*FBN(N)*FCN(N)*SN(N) ) 1460, 1470, 1460
 1455
                                                                         12009
 1460
               NDE4 = NDE4 + 1
                                                                         12009
 1470
          CONTINUE
                                                                         12009
          IF ( NDE4 ) 9980, 1500, 1475
 1472
                                                                         12009
 1475 PRINT 991, NDE4
                                                                         120C9
C
C----INPUT TABLE 5
С
 1500 PRINT 500
                                                                         12009
          IF ( KEEP5 ) 9980, 1501, 1510
                                                                         12009
 1501
               NC15 = 1
                                                                         12009
               NCT5 = NCD5
                                                                         12009
               NDE5 = 0
                                                                         12009
          GO TO 1535
                                                                         12009
 1510 PRINT 905
                                                                         12009
          DO 1525 N = 1, NCT5
                                                                         12009
      PRINT 511, IN15(N), JN15(N), IN25(N), JN25(N),
                                                                         120C9
     1
                 TAN(N), TBN(N), TCN(N)
                                                                         12009
          CONTINUE
 1525
                                                                         12009
      PRINT 910
                                                                         12009
               NC15 = NCT5 + 1
                                                                         12009
               NCT5 = NCT5 + NCD5
                                                                         12009
          IF ( NCD5 ) 9980, 1537, 1540
 1535
                                                                         12009
 1537 PRINT 903
                                                                         12009
          GO TO 1572
                                                                         12009
          DO 1570 N = NC15, NCT5
 1540
                                                                         12009
```

READ 53, IN15(N), JN15(N), IN25(N), JN25(N), 12009 TAN(N), TBN(N), TCN(N)12009 1 PRINT 511, IN15(N), JN15(N), IN25(N), JN25(N), 12009 1 TAN(N), TBN(N), TCN(N)120C9 IF (IN15(N) - IN25(N)) 1542, 1542, 1541 12009 1541 NDE5 = NDE5 + 112009 1542 IF (JN15(N) - JN25(N)) 1544, 1544, 1543 12009 1543 NDE5 = NDE5 + 112009 IF (IN25(N) - MA) 1546, 1546, 1545 1544 12009 NDE5 = NDE5 + 1 1545 12009 IF (JN25(N) - MC) 1570, 1570, 1547 1546 12009 1547 NDE5 = NDE5 + 112009 CONTINUE 1570 12009 1572 IF (NDE5) 9980, 1600, 1575 12009 1575 PRINT 991, NDE5 12009 1600 NDES = NDE1 + NDE2 + NDE3 + NDE4 + NDE5 16009 IF (NDES) 9980, 1700, 1650 160C9 1650 PRINT 992, NDES 16009 GO TO 1010 160C9 1700 CONTINUE 160C9 С C----COMPUTE FOR CONVENIENCE С IF (ML) 1885, 1875, 1875 160C9 1875 MAP1 = MA + 1160C9 MCP1 = MC + 1160C9 MAP2 = MA + 2160C9 MCP2 = MC + 2160C9 MAP3 = MA + 3160C9 MCP3 = MC + 3160C9 MAP4 = MA + 4160C9 MCP4 = MC + 4160C9 MAP5 = MA + 516009 MCP5 = MC + 5160C9 KPROB = NPROB23059 THETA2 = THETA / 57.29578 160C9 HB \pm SQRT (HA*HA + HC*HC + 2.0*HA*HC*COS (THETA2)) 160C9 THETA1 = ASIN (HC * SIN (THETA2) / HB) 160C9 THETA3 = THETA2 - THETA1160C9 CS11 = HC * SIN (THETA2) / (HA * HA * HA)160C9 CS12 = SIN (THETA1) / (HA * HB)160C9 CS13 = SIN (THETA2) / (HA * HC)160C9 CS22 = HA * SIN (THETA1) / (HB * HB * HB)160C9 CS23 = HA * SIN (THETA2) / (HR * HB * HC) 160C9 CS33 = HA * SIN (THETA2) / (HC * HC * HC)16009 CBA = 1.0 / (HA * HA * HA)16009 CBB = 1.0 / (HB * HB * HB) 160C9 CBC = 1.0 / (HC * HC * HC)160C9 C1 = COS (THETA1)160C9 C2 = COS (THETA2)16009 C3 = COS (THETA3) 160C9 S1 = SIN (THETA1) 160C9 = SIN (THETA2) S2 16009 S3 = SIN (THETA3)160C9 C1S = C1 + C1160C9 C2S = C2 + C2160C9

	C3S = C3 * C3	160C9
	S1S = S1 * S1	16009
	S2S = S2 * S2	16009
	\$3\$ = \$3 * \$3	16009
1885	CONTINUE	16009
RI	EWIND 1	4JA8
RI	EWIND 2	04 JA8
RE	EWIND 3	17JA8
	IF (ML) 2140, 2100, 2100	19009
CSI	ET INITIAL CONDITIONS	
2100	DO 2135 $J = 1$, MAP3	19009
	DO 2130 I = 1, MAP3	19009
	B(I + J) = 0 + 0	04JA8
	C(I,J) = 0,0	04 J A 8
	CM1(I,J) = 0.0	04 J A 8
	$EP1(I_{\bullet}J) = 0.0$	23MR8
	$D(I,J) = O_{\bullet}O$	15JL9
2130	CONTINUE	190C9
2135	CONTINUE	19009
2140	DO 2150 I = 1, MAP3	19009
	A(I) = 0.0	20MY8
	AM1(I) = 0.0	20MY8
2150	CONTINUE	19009
	DO 2350 $J = 1$, MCP5	23009
	DO 230C $I = 1$, MAP5	23009
	$W(I_{\bullet}J) = O_{\bullet}O$	23009
2300	CONTINUE	230C9
2350	CONTINUE	230C9
	DO 2400 I = 1, MAP5	23009
	BMA(1) = 0.0	23009
	BMB(1) = 0.0	23009
	BMC(I) = 0.0	23009
	BMBM1(I) = 0.0	230C9
	BMBP1(I) = 0.0	23009
	$BMCM1(\mathbf{I}) = 0 \cdot 0$	230C9
	BMCPI(I) = 0.0	23009
	DMDA(1) = 0.0	23009
	DMBC(I) = 0.0	23009
	$BMBC(1) = 0 \cdot 0$	23009
	$BMBBM(\mathbf{I}) = 0 \cdot 0$	230C9
	BMBCM1(1) = 0.0	230C9
	$BMPCP(1) = 0 \bullet 0$	23009
2400	CONTINUE	23009
2400	CONTINUE	23009
CBE	EGIN FORWARD PASS SOLVE FOR RECURSION COFFEICIENTS	
с		
	NK = MAP3	19009
	NL = MCP4	19009
	NF = Z	19009
	L1 = 28	REDIMEN
	$L_2 = 30$	REDIMEN
	NI = 5	19009
	NZ = 5	190C9
		190C9
	00 5000 J = Z, MCP4	19009

JN = J - 3C----RETRIEVE DATA NEEDED AT THIS J STEP DATA2 (D11, D12, D13, D22, D23, D33, D12M1, D13M1, 13009 CALL D22M1, D23M1, D33M1, D12P1, D13P1, D22P1, D23P1, D33P1, 13009 1 FA, FB, FC, Q, S, FBM1, FCM1, FBP1, FCP1, TA, TBM1, TCM1, 130C9 2 3 TBP1, TCP1, L2, JN, ML) 13009 C ----FORM SUBMATRICES **C**-C DO 3350 I = 2 . MAP4 19009 C-----COMPUTE TEMP CONSTANTS FOR SLAB STIFFNESS -- IF ISTIFF = 1, THE D11 THROUGH D33 COEFFICIENTS ARE ACTUALLY B11 THROUGH B33(TABLE 3) IF (ISTIFF) 9980, 3100, 3110 03MY0 B22MM = (C2S * D22M1(I-1) + 2.0 * C2 * S2 * D23M1(I-1))3100 03MY0 1 + S2S * D33M1(I-1)) / (S1S * S3S) 16009 B23MM = (- C1 * C2 * D22M1(I-1))160C9 - (C1 * S2 + S1 * C2) * D23M1(I-1) 16009 1 - S1 * S2 * D33M1(I-1)) / (S1 * S2 * S3S) 2 160C9 B23MV = (- C1 + C2 + D22M1(I))160C9 - (C1 * S2 + S1 * C2) * D23M1(I) 1 16009 - S1 * S2 * D33M1(I)) / (S1 * S2 * S3S) 16009 2 B33MV = (C1S * D22M1(1) + 2.0 * C1 * S1 * D23M1(1))16009 + S1S * D33M1(I)) / (S2S * S3S) 1 160C9 GO TO 3120 03MY0 3110 B22MM = D22M1(I-1)03MY0 B23MM = D23M1(I-1)03MY0 B23MV = D23M1(1)03MY0 B33MV = D33M1(I)03MY0 03MY0 3120 CONTINUE C----COMPUTE STIFFNESS VECTORS FF AND EET2 C----K IS USED AS INDEX FOR FF AND EET2 SO THAT FF AND EET2 WILL BE STORED FROM 1 TO MAP3 AS REQUIRED FOR SOLUTION PROCESS C K = I - 104N09 FF(K ,1) = Q(I) + 0.5 * (- TA(I-1) + TA(I+1)) / HA19009 + 0.5 * (- TBM1(I-1) + TBP1(I+1)) / HB 19009 1 + 0.5 * (- TCM1(I) + TCP1(I)) / HC 19009 2 EET2(K+1) = CS22 * B22MM + CBB * FBM1(I-1) 19009 $EET2(K_{2}) = CS23 * (B23MM + B23MV)$ 19009 EET2(K*3) = CS33 * B33MV + CRC * FCM1(I)190C9 EET2(K+4) = 0.019009 EET2(K,5) = 0.019009 IF (ML) 3350, 3150, 3150 19009 C----TEMP CONSTANTS \$22MM, B23MM, B23MV AND B33MV ARE ALREADY COMPUTED COMPUTE REMAINING REQUIRED CONSTANTS C 3150 IF (ISTIFF) 9980, 3160, 3170 03MY0 3160 B11VM = (S1S * S2S * D11(I-1))03MYO 1 + 2.0 * C1 * S1 * C2 * S2 * D12(I-1) 160C9 + 2.0 * S1 * S2 * (C1 * S2 + S1 * C2) * 2 16009 D13(1-1) + C1S + C2S + D22(1-1)3 16009 + 2.0 * C1 * C2 * (C1 * S2 + S1 * C2) * 16009 4 5 $D_{23}(I-1) + (C1 * S2 + S1 * C2) ** 2 * D_{33}(I-1) 160C9$) / (S1S * S2S) 6 16009 B11VV = (S1S * S2S * D11(I))16009 + 2.0 * C1 * S1 * C2 * S2 * D12(I)16009 1 + 2.0 * S1 * S2 * (C1 * S2 + S1 * C2) * D13(1) 160C9 2

+ C15 * C25 * D22(I)

3

16009
		$+ 2 \cdot 0 * C1 * C2 * (C1 * S2 + S1 * C2) * D23(1)$	16009
		+ (C1 * S2 + S1 * C2) ** 2 * D33(1))	16009
		/ (515 * 525)	1,000
BIIVD	_		19069
DIIVE	-	$(315 \times 525 \times 011(1+1))$	160C9
		+ 2.0 + C1 + S1 + C2 + S2 + D12(I+1)	16009
		+ 2.0 * S1 * S2 * (C1 * S2 + S1 * C2) *	16009
		D13(I+1) + C1S + C2S + D22(I+1)	16009
		$+2.0 \times (1 \times (2 \times ((1 \times (2 + (1 \times (1 + (1 \times (2 + (1 \times (1 + (1 + (1 + (1 + (1 + (1 + (1$	14000
		$D_{23}(1+1) + (C_{1} + S_{2} + S_{1} + C_{2}) + S_{2} + D_{23}(1+1)$	10007
		1 / (2 + 2 + 2 + 3)	16009
DIOVM	_		160C9
DIZVM	=	(-SI + C2 + S2 + D12(1-1) - S1 + S2S + D13(1-1))	160C9
		-C1 + C2S + D22(I-1)	160C9
		-C2 * (2.0 * C1 * S2 + S1 * C2) * D23(I-1)	160C9
		- S2 * (C1 * S2 + S1 * C2) * D33(I-1))	16009
		/ (515 * 52 * 53)	1,000
B12VV	. =	(-51 + 62 + 52 + 512(1) - 51 + 526 + 512(1))	10009
012		$= C_1 + C_2 + S_2 + D_1 Z (1) = S_1 + S_2 S + D_1 Z (1)$	19068
		$= C_1 + C_2 + 0.02(1)$	160C9
		$= C_2 + (2 \cdot 0 + C_1 + S_2 + S_1 + C_2) + D_{23}(1)$	160C9
		- S2 * (C1 * S2 + S1 * C2) * D33(I))	160C9
		/ (\$1\$ * \$2 * \$3)	16009
B12VP	=	(-S1 + C2 + S2 + D12(I+1) - S1 + S2S + D13(I+1))	16000
		- C1 * C2S * D22(I+1)	14000
		= (2 + (2)) + (1 + (2) + (1 + (2)) + (2)(1+1)	10009
		+ 52 + 7 - 61 + 52 + 51 + 62 + 51 + 62 + 7 + 62 + 17 + 17 + 17 + 17 + 17 + 17 + 17 + 1	10009
		32 - 1 - 1 - 32 + 31 + (2 + 33)(1+1) + (2 + 3)(1+1) + (3 + 3)(1+	16009
		/ (515 * 52 * 53)	160C9
BIZPP	2	(- S1 * C2 * S2 * D12P1(I+1)	160C9
		- S1 * S2S * D13P1(I+1) - C1 * C2S * D22P1(I+1)	160C9
		-C2 + (2.0 + C1 + S2 + S1 + C2) + D23P1(1+1)	16009
		- S2 * (C1 * S2 + S1 * C2) * D33P1(I+1))	16000
		/(S1S + S2 + S3)	1,000
B12VM	-	$1 (1 + c_1 + c_2 + b_1) (1 - 1) + c_1 c_1 + c_2 + b_2 + b_1 + c_2 + b_2 + b_1 + c_2 + c_2 + b_2 + b_1 + c_2 + b_2 + b_2 + b_1 + c_2 + b_2 + b_$	16009
DISVIN	-	1 CI = 5I = 52 = 012(I=1) + 515 = 52 = 013(I=1)	16009
		$+ C_{1}S + C_{2} + D_{2}Z(1-1)$	160C9
		$+ C_1 + (C_1 + S_2 + 2_0 + S_1 + C_2) + D_{23}(I-1)$	160C9
		+ S1 * (C1 * S2 + S1 * C2) * D33(I-1))	16009
		/ (S1 * S2S * S3)	16009
B13VV	=	(C1 + S1 + S2 + D12(I) + S1S + S2 + D13(I)	16009
		+ C15 + C2 + D22(1)	14000
		$+ (1 + (-1 + s_2 + 2)) + (-1 + (-2)) + (-2)$	16009
		1 C1 = (C1 = 32 + 200 + 51 + C2) + 025(1)	16009
		+ 51 + (C1 + 52 + 51 + C2 + D33(1))	160C9
		/ (S1 * S25 * S3)	16009
B13VP	=	(C1 * S1 * S2 * D12(I+1) + S1S * S2 * D13(I+1)	16009
		+ C1S + C2 + D22(I+1)	160C9
		+ C1 * (C1 * S2 + 2.0 * S1 * C2) * D23(I+1)	16009
		+ S1 * (C1 * S2 + S1 * C2) * D33(1+1))	16009
			10000
B13PV	-	1 (1 + 51 + 52 + 51)	16009
015. •	-	1 C1 = 51 = 52 = 012F1(1) + 515 = 52 = 013F1(1)	16009
		+ CIS * C2 * D22P1(I)	160C9
		$+ C_1 + C_1 + S_2 + 2.0 + S_1 + C_2 + D_{23P_1(I)}$	160C9
		+ S1 * (C1 * S2 + S1 * C2) * D33P1(I))	160C9
		/ (51 * 525 * 53)	16009
B22VV	=	(C2S * D22(I) + 2.0 * C2 * S2 * D23(I)	16009
		+ S2S $*$ D33(I)) / (S1S $*$ S3S)	16000
B22PP	=	$(C2S * D22P1(1+1) + 2_0 * C2 * S2 * D22P1(1+1))$	16000
		+ S2S + D33P1(1+1) + 7 (cic + cac)	10009
B22111	-	1 - (1 + (2 + (2) + (1)))	16009
02 3 4 4	-	$= 1 C_1 + C_2 + D_2 Z (1)$	160C9
		-1 CI $+$ S2 $+$ S1 $+$ C2 $+$ D23(I)	160C9

2	Raady	- s	1 * S2 * D33(I)) / (S1 * S2 * S3S)	16009
1	D2 3P V	- (-	CI + CZ + DZZPI(I)	16009
1		- (CI = S2 + SI = (2 + 23PI(1))	16009
2	BOOD	- 1 -	$1 \times 52 \times 033P1(1) = 1 \times 52 \times 535 = 1$	16009
1	D2 5F F	- ()	C1 + C2 + D22P1(1+1)	16009
1		- (CI = 52 + 51 = (2 + 2) = 023PI(1+1)	16009
2	Baavv	- 1 0	1 + 52 + 03391(1+1) + 7 + 51 + 52 + 535 + 15 + 527(1) + 7 + 7 + 52 + 537(1)	16009
1	05544		$13 \times 022(1) + 2.0 \times 01 \times 51 \times 023(1)$	16009
1	B32DV	- 1 0	$13 \times 033(11) + 7 \times 025 \times 035 + 03001(1)$	16009
1	05514		13 + 022F1(1) + 200 + (1 + 51 + 023F1(1))	16009
1	60 TO 3180	T 3	15 * 05391(11) / (525 * 535)	16009
3170	B11VM	- 011	(1-1)	03MY0
5110	BIIVY	- DII		03MY0
		~ DII		03MY0
	BIDIN	- 011		U3MYU
	DIZVM B12VV	- 012		03MY0
		- 012		03MY0
	BIZVP	= 012		03440
	BIZPP	= 012		03MY0
	BISVM	= 013		03MYC
	BI3VV	= D13		03MY0
	BI3VP	= D13		03MY0
	BIJPV	= D13		03MY0
	BZZVV	= 022		03MY0
	BZZPP	= D22	P1(1+1)	03MY0
	DZ 3VV	= D23		03MY0
	BZ3PV	= D23		03MY0
	DZ 3PP	= 023	P1(1+1)	03MY0
	B33VV	= D33		03MY0
2100	B33PV	= 033		03MY0
3180	CONTINUE			03MY0
C-====(0,	NPUIE SIIFFNE	SSES	CC, DD, AND EE	_
(K	IS USED AS IN		OR CC, DD AND EE SO THAT CC, DD AND EE WILL	BE
C 51	JRED FROM I I	U MAP	3 AS REQUIRED FOR SOLUTION PROCESS	
		[] =	CSII * BIIVM + CBA * FA(I-1)	19009
,		() =	$= 2.0 \times CSII \times (B11VM + B11VV)$	19009
1			= 2.0 * CS12 * (B12VM + B12VV)	190C9
2			= 2.0 * (S13 * (B13VM + B13VV))	190C9
5			+ CS23 * (B23MM + B23PV)	190C9
4	CCIN		-2.0 * CBA * (FA(I-1) + FA(I))	19009
,	CCIK93	\$) =	CSII * (BIIVM + 4.0 * BIIVV + BIIVP)	19009
1			+ CS22 * (B22MM + 4.0 * B22VV + B22PP)	19009
2			$+ (S_{33} * (B_{33MV} + 4.0 * B_{33VV} + B_{33PV})$	19009
5			+ 8.0 * (CS12 * B12VV + CS13 * B13VV	190C9
4 E			$+ (S_{23} * B_{23}VV) + S(1)$	19009
2	i		+ CBA * ($FA(I-I)$ + 4.0 * $FA(I)$ + $FA(I+I)$)	19009
0 7			+ CBB * ($FBMI(1-1)$ + 4.0 * $FB(1)$ + $FBPI(1+$	1)190C9
ſ	IE / CCIV.2		1 + CBC * (FCM](1) + 4.0 * FC(1) + FCP](1))19009
3310		כניי	1.0	19009
3320		.) -		19069
1	CC1K94		z = 0 * CS12 * (D12VV + D12VP) - 2.0 * CS12 * (D12VV + D12VP)	14069
2			$2 \bullet 0 = CS12 = 1 D12VV + D12VP I$	19069
2			$= 2 \cdot 0 + (212 + (213) + 230)$	19009
			- 2 O + CDA + (CA(T) + CA(T))	19069
4	CCIV	.) –	- 200 ° CDA * 1 FA(1) + FA(1+1) / CC11 # D11VD + CDA # FA(1+1) /	19009
	CCIN93	,, =	COIT & RIIAN + CRV & LV(1+1)	19009

	DD(K,1)	= 0.0	19069
	DD(K,2)	= CS13 * (B13VM + B13PV)	19009
	DD (K + 3)	= - 2.0 * CS13 * (B13VV + B13PV)	19009
1		- 2.0 * CS23 * (B23VV + B23PV)	19009
2		- 2.0 * CS33 * (B33VV + B33PV)	19009
3		+ CS12 * (B12VM + B12PP)	19009
4		$-2.0 \times CBC \times (FC(I) + FCP1(I))$	19009
	DD(K+4)	= - 2.0 * CS12 * (B12VV + B12PP)	19009
1		- 2.0 * CS22 * (B22VV + B22PP)	19009
2		- 2.0 * CS23 * (B23VV + B23PP)	19009
3		+ CS13 * (B13VP + B13PV)	19009
4		- 2.0 * CBB * (FB(I) + FBP1(I+1))	19009
	DD (K • 5)	= CS12 * (B12VP + B12PP)	19009
	EE(K,1)	= 0.0	19009
	EE(K,2)	= 0.0	19009
	EE(K • 3)	= CS33 * B33PV + CBC * FCP1(I)	19009
	EE(K,4)	= CS23 * (B23PV + B23PP)	19009
_	EE(K,5)	= CS22 * B22PP + CBB * FBP1(I+1)	19009
33,50 CON	TINUE		19009
CPACK EE	T2 AS REQUI	RED FOR SOLUTION PROCESS	_
	EET2(1,1)	= EET2(1,3)	19009
	EET2(1,2)	= EET2(1+4)	19009
	EET2(1+3)	= EET2(1,5)	19009
	EET2(1+4)	= 0.0	19009
	EET2(1,5)	= 0.0	19009
	EET2(2,1)	= EET2(2,2)	19009
	EET2(2,2)	= EET2(2+3)	19009
	EET2(2,3)	= EET2(2+4)	19009
	EET2(2+4)	= £ET2(2,5)	19009
	EET2(2,5)	= 0.0	19009
	EET2(MAP2	$\bullet 5) = EET2(MAP2 \bullet 4)$	19009
	EET2(MAP2	(+4) = EET2(MAP2,3)	19009
	EET2(MAP2	(*3) = EET2(MAP2*2)	19009
	EET2(MAP2	$(\bullet 2) = EET2(MAP2 \bullet 1)$	190C9
	EET2(MAP2	(+1) = 0.0	190C9
	EET2(MAP3	(•5) ≠ EET2(MAP3•3)	19009
	EET2(MAP3	$(\bullet 4) = EET2(MAP3 \bullet 2)$	19009
	EET2(MAP3	(*3) = EET2(MAP3,1)	190C9
	EET2(MAP3	(*2) = 0.0	19009
	EET2(MAP3	(.1) = 0.0	19009
	(ML) 4000	• 3380• 3380	19009
2280	AS REQUIRE	D FOR SOLUTION PROCESS	
0000	CC(1,1) =		190C9
	CC(1+2) =		190C9
	CC(1,3) =		19009
	CC(1,4) =	0.0	19009
	CC(1,5) =	0.0	19009
	C((2)) = C((2))		19009
	C(12+2) = C(12+3) =		19009
	C(12+5) =	C(2,5)	19009
	CC(2+4) = CC(2+5) =	(12)	19009
		$V = C (MAP_{2}, 4)$	19009
	CC (MAD2 . A	$I = CC(MAP2_2)$	19009
	CC(MAD) 2	i = CC(MAP2,2)	19009
	CC(MAD2 5	i = CC(MAP2J2)	19009
	CC DRAPZ 92	i = CC(MAPZ)I	19009

	CC(MAP2,1) = 0.0	19009
	CC(MAP3,5) = CC(MAP3,3)	19009
	CC(MAP3,4) = CC(MAP3,2)	19009
	CC(MAP3,3) = CC(MAP3,1)	19009
	CC(MAP3+2) = 0.0	19009
ссом	CC(MAP3,I) = 0.0 PUTE TRANSPOSE OF DD AS DDT	19009
	DO 3450 $I = 1$, MAP3	19009
	DDT(I+1) = DD(I+5)	19009
	DDT(I+2) = DD(I+4)	19009
	DDT(1,3) = DD(1,3)	19009
	$DDT(I_{1},4) = DD(I_{1},2)$	19009
	DDT(I,5) = DD(I,1)	19009
3450	CONTINUE	19009
	DO 3505 L = 3, MAP3	19009
	$K = MAP_3 - L + 3$	19009
	DDT(K+1) = DDT(K-2+1)	19009
3505	CONTINUE	19009
	DDT(1,1) = 0.0	19009
	$DDT(2 \cdot 1) = 0 \cdot 0$	19009
	DO 3510 L = 2, MAP3	19009
	K = MAP3 - L + 2	19009
	DDT(K,2) = DDT(K-1,2)	19009
3510	CONTINUE	19009
	DDT(1,2) = 0.0	19009
	DO 3515 K = 1, MAP2	19009
	DDT(K+4) = DDT(K+1+4)	19009
3515	CONTINUE	19009
	DDT(MAP3.4) = 0.0	19009
	DO 3520 K = 1, MAP1	19009
	DDT(K,5) = DDT(K+2,5)	19009
3520	CONTINUE	19009
	DDT(MAP2.5) = 0.0	19009
	DDT(MAP3,5) = 0.0	19009
CPAC	K DDT AS REQUIRED FOR SOLUTION PROCESS	
	DDT(1,1) = DDT(1,3)	19009
	DDT(1,2) = DDT(1,4)	19009
	DDT(1,3) = DDT(1,5)	19009
	DDT(1,4) = 0.0	19009
	DDI(1,5) = 0.0	19009
	DDT(2,1) = DDT(2,2)	19009
	DDT(2,2) = DDT(2,3)	19009
	DDI(2,3) = DDI(2,4)	19009
	DDT(2,4) = DDT(2,5)	19009
	DDT(MAD2 = 0.0	19009
	DDT(MAP2+2) = DDT(MAP2+4) $DDT(MAP2+4) = DDT(MAP2+2)$	19009
	DDT(MAP2, 3) = DDT(MAP2, 3)	19009
	DDT(MAP2,2) = DDT(MAP2,1)	19009
	DDT(MAP2+2) = DDT(MAP2+1)	19009
	DDT(MAP3.5) = DDT(MAP3.3)	10000
	DDT(MAP3.4) = DDT(MAP3.2)	19009
	$DDT(MAP3 \cdot 3) = DDT(MAP3 \cdot 1)$	10000
	$DDT(MAP3 \cdot 2) = 0.0$	10000
	DDT(MAP3.1) = 0.0	19009
CCOM	PUTE TRANSPOSE OF EEP AT PREVIOUS J STEP AS EET1 EXCEPT AT J	= 2

166			

	IF(J = 2) 9980 = 3550 = 3580				10000
3550	DO 3575 K = 1.5				19009
	DO 3570 I = 1. MAP3				19009
	$EET1(I_{\bullet}K) = 0_{\bullet}O$				19009
3570	CONTINUE				19009
3575	CONTINUE				19009
	GO TO 3600				19009
3580	DO 3590 K = $1, 5$				190C9
	$DU 3000 I = I \bullet MAP3$				190C9
3585	CONTINUE				19009
3590	CONTINUE				19009
3600	CONTINUE				19009
сР	ACK EE AT THIS STEP AS EEP AND AS R	REQUIRED FOR	SOLUTION	PROCESS	19009
	DO 3700 I = 1. MAP3				19009
	EEP(1,1) = EE(1,5)				19009
	$EEP(2,I) \neq EE(1,4)$				19009
	$EEP(3,\mathbf{I}) = EE(1,3)$				19009
	$EEP(4 \bullet I) = EE(I \bullet 2)$				19009
3700	$EEP(D \bullet I) = EE(I \bullet I)$				19009
5700	DO 3705 L = 3 MAP3				19009
	K = MAP3 - L + 3				19009
	$EEP(1 \cdot K) = EEP(1 \cdot K - 2)$				19009
3705	CONTINUE				19009
	EEP(1.1) = 0.0				19009
	EEP(1,2) = 0.0				19009
	00.3710 L = 2 MAP3				190C9
	$\mathbf{N} = \mathbf{MAP} \mathbf{J} = \mathbf{L} + \mathbf{Z}$ $\mathbf{FEP}(2, \mathbf{K}) = \mathbf{FEP}(2, \mathbf{K} - 1)$				19009
3710	CONTINUE				19009
	EEP(2,1) = 0.0				19009
	DO 3715 K = 1. MAP2				19009
	EEP(4,K) = EEP(4,K+1)				19009
3715	CONTINUE				19009
	EEP(4 MAP3) = 0.0				19009
	$\frac{1}{1} \frac{1}{1} \frac{1}$				19009
3720	CONTINUE				19009
5.20	$FEP(5 \cdot MAP2) = 0.0$				19009
	$EEP(5 \cdot MAP3) = 0 \cdot 0$				19009
с					1,000
	EEP(1,1) = EEP(3,1)				190C9
	EEP(2,1) = EEP(4,1)				190C9
	EEP(3,1) = EEP(5,1)				19009
	EEP(4+1) = 0+0 EEP(5+1) = 0.0				19009
	$EEP(1 \cdot 2) = EEP(2 \cdot 2)$				19009
	EEP(2,2) = EEP(3,2)				19009
	EEP(3,2) = EEP(4,2)				19009
	EEP(4,2) = EEP(5,2)				190C9
	EEP(5,2) = 0.0				19009
	EEP(0)MAP2) = EEP(4)MAP2)				190C9
	EEP(3,MAP2) = EEP(3,MAP2) $EEP(3,MAP2) = EED(2,MAP2)$				19009
	$\frac{1}{FEP(2 \cdot M\Delta P^2)} = \frac{1}{FEP(1 \cdot M\Delta P^2)}$				19069
	CHARTER STRUCT CONTRACTS				12063

EEP(1,MAP2) = 0.0EEP(5,MAP3) = EEP(3,MAP3)EEP(4,MAP3) = EEP(2,MAP3)EEP(3,MAP3) = EEP(1,MAP3)EEP(2,MAP3) = 0.0EEP(1,MAP3) = 0.0	190C9 190C9 190C9 190C9 190C9
4000 CONTINUE	19009
CINDICES NK, NL, NF, N1, N2, N3, L1, L2 FOR SOLUTION PROCESS	
C ARE DEFINED PRIOR TO DO 5000 LOOP	
CREPLACE AM2, AM1, BM1 WITH PREVIOUS COEFFICIENTS	
CALL RFV (AM2, AM1, L1, 1, NK)	19009
(ALL RFV AMI, A , L] , I , NK	19009
4180 CALL REV ($BM1 + B + 1 + 1 + 1 + NK$)	19009
GO TO 4220	19009
CREAD D AND E MULTIPLIERS FROM TAPE 3	1,000
4210 READ (3) (($D(I,K)$, $E(I,K)$, $I = 1,NK$) , $K = 1,NK$)	19009
GO TO 4280	190C9
CCALCULATE RECURSION MULTIPLIER E	
4220 CALL REV (E , EP1, L1 , L1 , NK)	19009
CALL MBEV (EET), PM1, ED1 11 11 NV N1 V	10000
CALL ABE (DDI • EPI• EPI• LI • NK • N2)	19009
CCALCULATE RECURSION MULTIPLIER D	1,00,9
CALL SMFF (E , BM1, D , L1 , NK)	19009
CALL RFV (BM1, CM1, L1 , L1 , NK)	19009
CALL RFV (CM1, C , L1 , L1 , NK)	19009
CALL MBFV (EET2, BM1, C , L1 , L1 , NK , N1)	19009
CALL ASFV $(D, C, D, L1, L1, NK, +1)$	19009
CALL ADF (CC 9 D 9 D 9 LI 9 NK 9 N3)	19009
CALL INVERTED $(D + 1) + 1 + NK + -1$	19009
CCALCULATE RECURSION COFFICENT C	19009
CALL MFB (D , EEP, C , L1 , NK , N1)	19009
CCALCULATE RECURSION COEFFIECENT B	1,00
CALL MFFT (D , EP1, B , L1 , NK)	19009
CCALCULATE RECURSION COEFFIECENT A	
4280 CALL MFFV (E , AM1, A , L1 , 1 , NK)	19009
CALL MBFV (EEV2, AM2, ATM, L1, 1, NK, N1)	19009
CALL ASEV (AM2, EE, ATM, L1, 1, NK, 9+1)	19009
CALL MEEV (D , ATM, A , L1 , 1 , NK)	19009
CSAVE A COEFFICIENT ON TAPF 1	1,00,9
WRITE (1) ($A(I)$, $I = 1$, NK)	19009
IF (ML) 4400, 4600, 4500	19009
4400 READ (2)	19009
	19009
4500 WPITE (2) (1 DILERS ON TAPE 3	
C = SAVE B AND C COEFFICIENTS ON TAPE 2	19009
4600 WRITE (2) (($B(I_9K)_9C(I_9K)_9$ I=19NK), K=1.0NK)	19009
5000 CONTINUE	19009
C	
CBEGIN BACKWARD PASS COMPUTE RECURSION EQUATION	
C	
C	

BACKSPACE 1 20MY8 BACKSPACE 2 20MY8 CALL RFV (W(NF, NL), A , L1, 1 , NK) 18JL9 BACKSPACE 1 20MY8 BACKSPACE 2 20MY8 READ (1) (A(I), I = 1,NK) READ (2) ((B(1,K), C(I,K), I = 1,NK), K = 1,NK) 20MY8 20MY8 BACKSPACE 1 20MY8 BACKSPACE 2 20MY8 CALL MFFV (B , W(NF,NL), AM1, L1 , 1 , NK) CALL ASFV (A , AM1, W(NF,NL-1) , L1 , 1 , NK , +1) 18JL9 18JL9 NLM2 = NL - 220MY8 NOTE THAT NLM2 = MCP2 С DO 6000 L = NF , NLM2 19009 J = NLM2 + NF - L19009 BACKSPACE 1 19009 BACKSPACE 2 19009 C----READ A COEFFICIENT FROM TAPE 1 READ (1) (A(1), I = 1, NK) 19009 C----READ B AND C COEFFICIENTS FROM TAPE 2 READ (2) ((B(1*K) * C(1*K) * 1 = 1*NK) * K = 1*NK) 19009 BACKSPACE 1 19009 BACKSPACE 2 19009 CALL MFFV (B ,W(NF,J+1), AM1, L1 , 1 , NK) 15JL9 CALL MFFV (C , W(NF, J+2), AM2, L1, 1, NK) 15JL9 CALL ASFV (AM1, AM2, AM1, L1 , 1 , NK , +1) CALL ASFV (A , AM1, W(NF,J) , L1 , 1 , NK , +1) 19009 15JL9 6000 CONTINUE 19009 С C----COMPUTE AND PRINT RESULTS С PRINT 11 23009 PRINT 1 23009 PRINT 13, (AN1(N), N = 1, 32) PRINT 16, NPROB, (AN2(N), N = 1, 14) 23009 23009 IF (ML) 6115, 6110, 6110 23009 6110 PRINT 700 23009 GO TO 6120 23009 6115 PRINT 701, KPROB 23009 6120 IF (SWS) 9980, 6125, 6140 30009 6125 PRINT 711 30009 IF (KROPT) 9980, 6130, 6135 30009 6130 PRINT 721 30009 GO TO 6215 30009 6135 PRINT 722 30009 GO TO 6215 30009 6140 IF (SWB) 9980, 6145, 6180 30009 6145 PRINT 712 30009 (KROPT) 9980, 6150, 6165 IF 30009 IF (IPR) 9980, 6155, 6160 6150 30009 6155 PRINT 731 30009 GO TO 6215 30009 6160 PRINT 732 30009 GO TO 6215 30009 IF (IPR) 9980, 6170, 6175 6165 30009 6170 PRINT 733 30009

GO TO 6215 30009 6175 PRINT 734 30009 GO TO 6215 30009 6180 PRINT 713 30009 1F (KROPT) 9980, 6185, 6200 30009 6185 IF (IPR) 9980, 6190, 6195 30009 6190 PRINT 741 30009 GO TO 6215 30009 6195 PRINT 742 30009 GO TO 6215 30009 6200 IF (IPR) 9980, 6205, 6210 30009 6205 PRINT 743 30009 GO TO 6215 30009 6210 PRINT 744 30009 6215 CONTINUE 30009 SUMR = 0.023009 STEMP = 0.0230C9 ITEMP = -223009 JTEMP = -2230C9 DO 7000 J = 2, MCP4 230C9 JN = J - 3230C9 C----RETRIEVE DATA NEEDED AT THIS J STEP CALL DATA2 (D11, D12, D13, D22, D23, D33, D12M1, D13M1, 13009 1 D22M1, D23M1, D33M1, D12P1, D13P1, D22P1, D23P1, D33P1, 130C9 2 FA, FB, FC, Q, S, FBM1, FCM1, FBP1, FCP1, TA, TBM1, TCM1, 130C9 3 TBP1, TCP1, L2, JN, ML] 13009 DO 6250 I = 2, MAP4 23009 C-----COMPUTE TEMP CONSTANTS FOR SLAB STIFFNESS -- IF ISTIFF = 1, THE D11 THROUGH D33 COEFFICIENTS ARE ACTUALLY B11 THROUGH B33(TABLE 3) IF (ISTIFF) 9980, 6216, 6217 03MY0 6216 B11VV = (S1S * S2S * D11(I))03MY0 + 2.0 * C1 * S1 * C2 * S2 * D12(I) 1 160C9 + 2.0 * 51 * 52 * (C1 * 52 + 51 * C2) * D13(I) 160C9 2 3 + C1S * C2S * D22(I)16009 + 2.0 * C1 * C2 * (C1 * S2 + S1 * C2) * D23(I) 160C9 4 + (C1 * S2 + S1 * C2) ** 2 * D33(I)) 5 160C9 / (S1S * S2S) 6 16009 B12MV = (-S1 * C2 * S2 * D12M1(I) - S1 * S2S * D13M1(I)160C9- C1 * C2S * D22M1(I) 1 160C9 - C2 * (2.0 * C1 * S2 + S1 * C2) * D23M1(I) 2 160C9 - S2 * (C1 * S2 + S1 * C2) * D33M1(I)) 3 160C9 4 / (S1S * S2 * S3) 160C9 B12VV = (-51 * C2 * 52 * D12(I) - 51 * S2S * D13(I)16009 -C1 + C2S + D22(I)1 16009 - C2 * (2.0 * C1 * S2 + S1 * C2) * D23(I) 2 16009 - S2 * (C1 * S2 + S1 * C2) * D33(I)) 3 160C9 / (S1S * S2 * S3) 4 160C9 B12PV = (-S1 + C2 + S2 + D12P1(I) - S1 + S2S + D13P1(I)160C9-C1 + C2S + D22P1(1)1 160C9 - C2 * (2.0 * C1 * S2 + S1 * C2) * D23P1(I) - S2 * (C1 * S2 + S1 * C2) * D33P1(I)) 2 160C9 3 160C9 / (S1S * S2 * S3) 4 160C9 B13MV = (C1 * S1 * S2 * D12M1(1) + S1S * S2 * D13M1(1))160C9 + C15 + C2 + D22M1(I)1 160C9 2 + C1 * (C1 * S2 + 2.0 * S1 * C2) * D23M1(I) 160C9 + S1 * (C1 * S2 + S1 * C2) * D33M1(I)) 3 160C9

4 / (S1 * S2S * S3) 16009 B13VV = (C1 * S1 * S2 * D12(1) + S1S * S2 * D13(1) + C1S * C2 * D22(1)160C9 1 16009 2 + C1 * (C1 * S2 + 2.0 * S1 * C2) * D23(I) 16009 3 $+ S_1 * (C1 * S2 + S1 * C2) * D33(I))$ 16009 / (S1 * S2S * S3) 4 16009 B13PV = (C1 * S1 * S2 * D12P1(1) + S1S * S2 * D13P1(1)160C9 + C1S * C2 * D22P1(I) 1 16009 + C1 * (C1 * S2 + 2.0 * S1 * C2) * D23P1(I) 2 160C9 + S1 * (C1 * S2 + S1 * C2) * D33P1(I))3 160C9 / (S1 * S2S * S3) 4 16009 B22MV = (C2S * D22M1(I) + 2.0 * C2 * S2 * D23M1(I)160C9 + S2S * D33M1(I)) / (S1S * S3S) 1 160C9 B22VV = (C2S * D22(I) + 2.0 * C2 * S2 * D23(I)16009 + S2S * D33(I)) / (S1S * S3S) 1 160C9 B22PV = (C2S * D22P1(I) + 2.0 * C2 * S2 * D23P1(I)16009 + S2S * D33P1(I)) / (S1S * S3S) 1 16009 B23MV = (- C1 + C2 + D22M1(I))160C9 1 - (C1 * S2 + S1 * C2) * D23M1(I) 160C9 - S1 * S2 * D33M1(1)) / (S1 * S2 * S3S) 2 160C9 $B_{23VV} = (- C_1 * C_2 * D_{22}(I))$ 160C9 - (C1 * S2 + S1 * C2) * D23(I) - S1 * S2 * D33(I)) / (S1 * S2 * S3S) 1 16009 2 16009 B23PV = (-C1 * C2 * D22P1(I))160C9 - (C1 * S2 + S1 * C2) * D23P1(I) 1 160C9 - S1 * S2 * D33P1(I)) / (S1 * S2 * S3S) 2 160C9 B33MV = (C1S * D22M1(I) + 2.0 * C1 * S1 * D23M1(I)16009 + S1S * D33M1(I)) / (S2S * S3S) 1 160C9 B33VV = (C1S * D22(I) + 2.0 * C1 * S1 * D23(I)160C9 + S1S * D33(I)) / (S2S * S3S) 1 16009 B33PV = (C1S * D22P1(I) + 2.0 * C1 * S1 * D23P1(I)160C9 1 + S1S * D33P1(I)) / (S2S * S3S) 160C9 GO TO 6218 03MY0 6217 B11VV = D11(I)03MY0 B12MV = D12M1(I)03MY0 B12VV = D12(I)03MY0 B12PV = D12P1(I)03MY0 B13MV = D13M1(I)03MY0 B13VV = D13(I)03MY0 B13PV = D13P1(I)03MY0 B22MV = D22M1(I)03MY0 B22VV = D22(1)03MY0 B22PV = D22P1(I)03MY0 B23MV = D23M1(I)03MY0 B23VV = D23(I)03MY0 B23PV = D23P1(I)03MY0 B33MV = D33M1(I)03MY0 B33VV = D33(I)03MY0 B33PV = D33P1(I)03MY0 CONTINUE 6218 03MY0 C----COMPUTE CONCENTRATED BENDING MOMENTS IN MODEL BMA(1) = B11VV * CS11 * HA 230C9 * ($W(I-1,J) - 2 \cdot 0 * W(I,J) + W(I+1,J)$) 1 230C9 2 + B12VV * CS12 * HA 23009

* (W(I-1+J-1) - 2+0 * W(I+J) + W(I+1+J+1))

+ B13VV * CS13 * HA

230C9

23009

3

4

5 1 2 3 4 5 1 2 3			BMB (1) BMC (1)	=	<pre>* (W(I,J-1) - 2.0 * W(I,J) + W(I,J+1)) B12VV * CS12 * HB * (W(I-1,J) - 2.0 * W(I,J) + W(I+1,J)) + B22VV * CS22 * HB * (W(I-1,J-1) - 2.0 * W(I,J) + W(I+1,J+1)) + B23VV * CS23 * HB * (W(I,J-1) - 2.0 * W(I,J) + W(I,J+1)) B13VV * CS13 * HC * (W(I-1,J) - 2.0 * W(I,J) + W(I+1,J)) + B23VV * CS23 * HC * (W(I-1,J-1) - 2.0 * W(I,J) + W(I+1,J+1))</pre>	230C9 230C9 230C9 230C9 230C9 230C9 230C9 230C9 230C9 230C9 230C9 230C9
45					+ B33VV * CS33 * HC * (W(I+I-1) - 2.0 * W(I+I) + W(I+I) \	23009
2	IF	($J - 2 \} 9$	98	0 + 6220 + 6222	02FF0
6220			BMBM1(I)	=	0.0	02FE0
			BMCM1(I)	=	0.0	02FE0
(GO	TC	6224			02FE0
6222			BMBM1(I)	=	B12MV * C512 * HR	02FE0
2					* (W(I=1+J=1) = 2+0 * W(I+J=1) + W(I+1+J=1) + B22MV * CS22 * HB	123009
3					$* (W(I-1)J-2) = 2 \cdot 0 * W(I \cdot J-1) + W(I+1 \cdot J))$	23009
4					+ B23MV * CS23 * HB	23009
5					* ($W(I_{\bullet}J-2) = 2_{\bullet}0 * W(I_{\bullet}J-1) + W(I_{\bullet}J)$)	23009
			BMCM1(I)	Ξ	B13MV * CS13 * HC	230C9
1					* ($W(I-1,J-1) + 2.0 * W(I,J-1) + W(I+1,J-1)$	123009
2					+ D23MV * C523 * HC + (W(T+1+1+2) = 7.0 + W(T, (=1) + W(T+1+1))	23009
4					+ B33MV + CS33 + HC	23009
5					* $(W(I_{9}J-2) - 2_{0}O * W(I_{9}J-1) + W(I_{9}J))$	23009
6224	ΙF	(MCP4 - J)	9980, 6226, 6228	02FE0
6226			BMBP1(I)	=	0•0	02FE0
	60	τ.	BMCP1(I)	=	0•0	02FE0
6228	60	r.	0230 DMDD1/T1	_		02FE0
1			DPDFILL	-	DIZPV = COIZ = HH * (W(T=1+J+1) = 2.0 * W(T+J+1) + W(T+1, J+1)	V2FE0
2					+ B22PV * CS22 * HB	23009
3					* $(W(I-1,J) - 2,0 * W(I,J+1) + W(I+1,J+2))$	23009
4					+ B23PV * CS23 * HB	23009
5						230C9
1			BMCPI(I)	=	BI3PV * CSI3 * HC * (W/T=1, (+1) = 2.0 * W/T, (+1) + W/T+2, (+1)	23009
2					* (W(I*193+1) * 200 * W(I93+1) + W(I+193+1) + R22DV * Cc22 * HC	123009
3						23009
4					+ B33PV * CS33 * HC	23009
5					* ($W(I_{9}J) - 2_{0}O $ * $W(I_{9}J+1) + W(I_{9}J+2) $)	230(9
6230			BMBA(I)	=	FA(I) / (HA * HA)	02FE0
1				-	* $(W(I-1,J) - 2,0 * W(I,J) + W(I+1,J))$	23009
1				-	FD(ま) / 1 円B 本 円B) ★ (W(『+1ヵ」ー1) + つっつ ★ W(『ヵ 引) エ W(『エ1 - いっ) い	23009
1			BMBC(I)	z	FC(1) / (HC * HC)	23069
1					* $(W(I_{,J-1}) - 2_{,0} + W(I_{,J}) + W(I_{,J+1}))$	23009
(IF	(J - 2) 9	98	0 • 6232 • 6234	02FE0
6232			BWBCH1(1)	=	0.0	02FE0
	60	τc	000CM1(1)	=		02FE0
6234	00		BMBBM1(1)	=	FRM1(I) / (HR * HR)	
						VZFEU

* ($W(I-1,J-2) = 2 \cdot 0 * W(I,J-1) + W(I+1,J)$) 1 23009 BMBCM1(I) = FCM1(I) / (HC * HC) 23009 1 * ($W(I_{J}-2) = 2.0 * W(I_{J}-1) + W(I_{J})$) 23009 IF (MCP4 - J) 9980, 6238, 6240 6236 02FE0 6238 BMBBP1(I) = 0.002FE0 $BMBCP1(I) = 0 \cdot 0$ 02FE0 GO TO 6250 02FE0 6240 BMBBP1(I) = FBP1(I) / (HB * HB)02FE0 * (W(I-1,J) = 2,0 * W(I,J+1) + W(I+1,J+2)) 1 23009 BMBCP1(I) = FCP1(I) / (HC * HC) 23009 * ($W(I_{*}J) = 2_{*}O * W(I_{*}J+1) + W(I_{*}J+2)$) 1 23009 6250 CONTINUE 230C9 JSTA = J - 3230C9 PRINT 6 23009 DO 6400 I = 2 , MAP4 23009 ISTA = 1 - 323009 C----COMPUTE REACTIONS, STATICS CHECK, SUMMATION OF REACTIONS AND MAXIMUM STATICS CHECK ERROR REACT = -S(I) * W(I,J)23009 SUMR = SUMR + REACT 230C9 STACH = (BMA(I-1) - 2.0 * BMA(I) + BMA(I+1)) / HA 23009 1 + (BMBM1(I-1) - 2.0 * BMB(I) + BMBP1(I+1)) / HB230(9 + (BMCM1(1) - 2.0 * BMC(1) + BMCP1(1)) / HC 2 23009 3 + (BMBA(I-1) - 2.0 * BMBA(I) + BMBA(I+1)) / HA 230C9 4 + (BMBBM1(I-1) - 2.0 * BMBB(1) + BMBBP1(I+1)) /230C9 5 HB + (BMBCM1(I) - 2.0 * BMBC(I) + BMBCP1(I)) / 230C9 6 HC = 0.5 * (- TA(I-1) + TA(I+1)) / HA23009 7 - 0.5 * (- TBM1(I-1) + TBP1(I+1)) / HB 230C9 8 - 0.5 * (- TCM1(I) + TCP1(I)) / HC - Q(I) 23009 9 + 5(1) + W(1,J)230C9 IF (ABS (STACH) - ABS (STEMP)) 6254, 6254, 6252 23009 STEMP = STACH 6252 23009 ITEMP = ISTA230C9 JTEMP = JSTA23009 6254 CONTINUE 23009 IF (SWS) 9980, 6260, 6280 30009 IF (KROPT) 9980, 6265, 6270 6260 30009 C----PRINT OUTPUT IF ONLY BEAMS EXIST 6265 PRINT 751, ISTA, JSTA, W(I,J), BMBA(I), BMBB(I), BMBC(I), REACT 23009 GO TO 6400 30009 6270 PRINT 751, ISTA, JSTA, W(I,J), BMBA(I), BMBB(I), BMBC(I), STACH 23009 GO TO 6400 30009 C----COMPUTE CONVENTIONAL BENDING MOMENTS PER UNIT WIDTH 6280 CBMA = BMA(I) / (HC * S2) + C1S * BMB(I) / (HA * S1)300C9 + C2S * BMC(I) / (HA * S2) 1 23009 = C1S * BMA(I) / (HC * S2) + BMB(I) / (HA * S1)230C9 CBMB + C3S * BMC(I) / (HA * S2) 1 23009 CBMC = C2S * BMA(I) / (HC * S2) + C3S * BMB(I) / 230C9 (HA * S1) + BMC(I) / (HA * S2) 1 230C9 CBMX = CBMA 230C9 = (C1 * C2 * S3 * CBMA - C2 * S2 * CBMB CBMY 230C9 + C1 * S1 * CBMC) / (S1 * S2 * S3) 1 230C9 CBMXY = (S3 * (C1 * S2 + S1 * C2) * CBMA - S2S * CBMB 230C9 + 515 * CBMC) / (2.0 * 51 * 52 * 53) 23009 C----COMPUTE PRINCIPAL MOMENTS CBMO = 0.5 * (CBMX + CBMY)230C9

```
1
                       + SQRT ( 0.25 * ( CBMX - CBMY ) ** 2
                                                                        23009
                       + CBMXY * CBMXY )
    2
                                                                        23009
               CBMT = 0.5 * (CBMX + CBMY)
                                                                        23009
    1
                       - SQRT ( 0.25 * ( CBMX - CBMY ) ** 2
                                                                        23009
     2
                       + CBMXY * CBMXY )
                                                                        23009
C----TEST TO PRINT ONLY MAXIMUM VALUE
          IF ( CBMX + CBMY ) 6316, 6318, 6318
                                                                       23009
6316
              PMMAX = CBMT
                                                                        230C9
          IF ( CBMX - CBMY ) 6340, 6330, 6320
                                                                        23009
6318
              PMMAX = CBMO
                                                                        23009
          IF ( CBMX - CBMY ) 6320, 6330, 6340
                                                                        23009
6320
              ALF = ATAN (CBMXY / (0.5 * (CBMX - CBMY)))
                                                                        23009
                    * 57129578
    1
                                                                        23009
          IF ( ALF ) 6322, 6324, 6324
                                                                        23009
 6322
               BETAT = -ALF - 180.0
                                                                        230C9
          GO TO 6345
                                                                        23009
              BETAT = - ALF + 180.0
 6324
                                                                        23009
         GO TO 6345
                                                                        23009
 6330
          IF ( CBMXY ) 6332, 6334, 6336
                                                                        23009
 6332
              BETAT = 90.0
                                                                        23009
          GO TO 6345
                                                                        230C9
 6334
              BETAT = 0.0
                                                                        230C9
         GO TO 6345
                                                                        230C9
6336
              BETAT = 90.0
                                                                        230C9
         GO TO 6345
                                                                        23009
6340
              ALF = ATAN ( CBMXY / ( 0.5 * ( CBMX - CBMY ) ) )
                                                                        23009
    1
                    * 57.29578
                                                                        23009
              BETAT = - ALF
                                                                        230C9
C----CLOCKWISE ANGLES ARE NEGATIVE
6345
              BETA = 0.5 * BETAT
                                                                        23009
         IF ( KROPT ) 9980, 6350, 6365
                                                                        30009
         IF ( IPR ) 9980, 6355, 6360
6350
                                                                        30009
C----PRINT SLAB OR COMBINED SLAB-BEAM OUTPUT
6355 PRINT 752, ISTA, JSTA, W(I,J), CBMX, CBMY, CBMXY, PMMAX,
                                                                        23009
           BETA, REACT
    1
                                                                        23009
         GO TO 63801
                                                                        30009
 6360 PRINT 752, ISTA, JSTA, W(I,J), CBMA, CBMB, CBMC , PMMAX,
                                                                        23009
          BETA, REACT
    1
                                                                        230C9
         GO TO 6380
                                                                        30009
6365
         IF ( IPR ) 9980, 6370, 6375
                                                                        30009
 6370 PRINT 752, ISTA, JSTA, W(I,J), CBMX, CBMY, CBMXY, PMMAX,
                                                                        23009
           BETA, STACH
   1
                                                                        23009
         GO TO 6380
                                                                        30009
 6375 PRINT 752, ISTA, JSTA, W(I,J), CBMA, CBMB, CBMC , PMMAX,
                                                                        30009
           BETA, STACH
   1
                                                                        23009
        IF ( SWB ) 9980, 6400, 6385
6380
                                                                        30009
6385 PRINT 753, BMBA(I), BMBB(I), BMBC(I)
                                                                        23009
6400
         CONTINUE
                                                                        23009
7000
         CONTINUE
                                                                        230C9
C----PRINT SUMMATION OF REACTIONS AND MAX STATICS CHECK ERROR
     PRINT 994, SUMR
                                                                        30009
     PRINT 995, ITEMP, JTEMP, STEMP
                                                                        30009
     CALL TIC TOC (4)
                                                                        12009
         GO TO 1010
                                                                        12009
9980 PRINT 980
                                                                        12009
9990
      CONTINUE
                                                                        120C9
```

9999	CONTINUE	12009
Ρ	RINT 11	12009
P	RINT 1	12009
Ρ	RINT 13, $(AN1(N), N = 1, 32)$	12009
С	ALL TIC TOC (2)	12009
E	ND	12009

SUBROUTINE DATA2 (D11, D12, D13, D22, D23, D33, D12M1, D13M1, 13009 1 D22M1, D23M1, D33M1, D12P1, D13P1, D22P1, D23P1, D33P1, 130C9 2 FA, FB, FC, Q, S, FBM1, FCM1, FBP1, FCP1, TA, TBM1, TCM1,130C9 3 TBP1, TCP1, L2, JN, ML) 130C9 С C----THIS SUBROUTINE IS CALLED AT EACH J STEP IN THE STIFFNESS MATRIX 130C9 С GENERATION AND AGAIN AT EACH J STEP WHEN COMPUTING RESULTS. 130C9 С DIMENSION D11(L2), D12(L2), D13(L2), D22(L2), D23(L2), 130C9 1 D33(L2), D12M1(L2), D13M1(L2), D22M1(L2), D23M1(L2), 13009 D33M1(L2), D12P1(L2), D13P1(L2), D22P1(L2), D23P1(L2), 2 130C9 3 FC(L2), D33P1(L2), FA(L2), FB(L2), Q(L2), 130C9 4 S(L2), FBM1(L2), FCM1(L2), FBP1(L2), FCP1(L2), 13009
 TA(L2), TBM1(L2), TCM1(L2), TBP1(L2), TCP1(L2)

 DIMENSION IN13(70), JN13(70), IN23(70), JN23(70), D11N(70),
 5 130C9 12009 D12N(70), D13N(70), D22N(70), D23N(70), D33N(70), 1 12009 2 IN14(70), JN14(70), IN24(70), JN24(70), FAN(70), 12009 3 FBN(70), FCN(70), QN(70), SN(70), 12009 4 IN15(70), JN15(70), IN25(70), JN25(70), TAN(70), 12009 TBN(70), TCN(70) 5 12009 COMMON / DATA2 / IN13, JN13, IN23, JN23, IN14, JN14, IN24, JN24, 14009 IN15, JN15, IN25, JN25, 1 140C9 2 D11N, D12N, D13N, D22N, D23N, D33N, 14009 3 FAN, FBN, FCN, QN, SN, TAN, TBN, TCN, 140C9 NCT3, NCT4, NCT5, MAP5 4 14009 98 FORMAT (//30H UNDESIGNATED ERROR STOP) 130C9 C C----DISTRIBUTE DATA FROM TABLE 3 C DO 305 I = 1, MAP5 130C9 D11(I) = 0.0 13009 D12(I) = 0.0 130C9 D13(I) = 0.0 13009 D22(I) = 0.0 13009 D23(1) = 0.0 13009 D33(1) = 0.0 130C9 D12M1(I) = 0.0130C9 D13M1(I) = 0.013009 D22M1(I) = 0.0130C9 D23M1(I) = 0.013009 D33M1(I) = 0.0130C9 D12P1(I) = 0.013009 D13P1(I) = 0.013009 D22P1(I) = 0.0130C9 D23P1(I) = 0.013009 D33P1(I) = 0.013009 CONTINUE 305 130C9 IF (NCT3) 980, 400, 310 130C9 310 DO 360 N = 1, NCT3 130C9 I1 = IN13(N) + 3130C9 I2 = IN23(N) + 313009 IF (JN - JN13(N)) 345, 315, 315 13009 IF (JN23(N) - JN) 330, 320, 320 315 13009 320 DO 325 I = I1 + I2 130C9 D11(I) = D11(I) + D11N(N)13009 D12(I) = D12(I) + D12N(N)13009 D13(1) = D13

		D13(I) = D13(I) + D13N(N)	130C9
		D22(1) = D22(1) + D22N(N)	130C9
		D23(1) = D23(1) + D23N(N)	130C9
		D33(1) = D33(1) + D33N(N)	13009
	325	CONTINUE	130C9
	330	IF $((JN-1) - JN13(N)) 345, 333, 333$	13009
	333	IF $(JN23(N) - (JN-1))$ 345, 335, 335	130C9
	335	DO 340 I = I1, I2	130C9
		D12M1(I) = D12M1(I) + D12N(N)	13009
		D13M1(I) = D13M1(I) + D13N(N)	130C9
		D22M1(I) = D22M1(I) + D22N(N)	130C9
		D23M1(I) = D23M1(I) + D23N(N)	130C9
	-	D33M1(I) = D33M1(I) + D33N(N)	130C9
	340	CONTINUE	130C9
	345	IF $((JN+1) - JN13(N))$ 360, 347, 347	130C9
	347	IF (JN23(N) - (JN+1)) 360, 350, 350	13009
	350	DO 355 $1 = 11, 12$	13009
		D12P1(I) = D12P1(I) + D12N(N)	13009
		D13P1(I) = D13P1(I) + D13N(N)	13009
		D22P1(I) = D22P1(I) + D22N(N)	13009
		D23P1(I) = D23P1(I) + D23N(N)	13009
		D33P1(I) = D33P1(I) + D33N(N)	13009
	355	CONTINUE	13009
	360	CONTINUE	13009
С			
с	DIS	TRIBUTE DATA FROM TABLE 4	
С			
	400	DO 405 $I = 1$, MAP5	13009
		FA(I) = 0.0	13009
		$FB(I) \approx 0.0$	13009
		FC(1) = 0,0	13009
		$Q(I) = 0_0 0$	13009
		S(1) = 0.0	13009
		FBM1(I) = 0.0	13009
		FCM1(I) = 0,0	13009
		FBP1(1) = 0.0	13009
		FCP1(I) = 0.0	13009
	405	CONTINUE	13009
		IF (NCT4) 980, 500, 410	13009
	410	DO 460 N = 1, NCT4	13009
		I1 = IN14(N) + 3	13009
		$12 = IN_24(N) + 3$	13009
		IF (JN - JN14(N)) 445, 415, 415	13009
	415	IF (JN24(N) - JN) 430, 420, 420	13009
	420	DO 425 I = II, 12	13009
		FA(I) = FA(I) + FAN(N)	13009
		FB(I) = FB(I) + FBN(N)	13009
		FC(1) = FC(1) + FCN(N)	13009
		Q(I) = Q(I) + QN(N)	13009
		S(I) = S(I) + SN(N)	13009
	425	CONTINUE	13009
	430	IF ((JN-1) - JN14(N)) 445, 433, 433	13009
	433	IF (JN24(N) - (JN-1)) 445, 435, 435	13009
4	435	DO 440 $I = 11, I2$	13009
		FBM1(I) = FBM1(I) + FBN(N)	13009

```
440
          CONTINUE
                                                                         13009
 445
          IF ( (JN+1) - JN14(N) ) 460, 447, 447
                                                                         13009
          IF ( JN24(N) - (JN+1) ) 460, 450, 450
  447
                                                                         13009
          DO 455 I = I1+ I2
  450
                                                                          13009
               FBP1(I) = FBP1(I) + FBN(N)
                                                                          13009
               FCP1(I) = FCP1(I) + FCN(N)
                                                                          13009
 455
          CONTINUE
                                                                          130C9
 460
          CONTINUE
                                                                         13009
C
  ----DISTRIBUTE DATA FROM TABLE 5
C٠
C
 500
          DO 505 I = 1, MAP5
                                                                         13009
               TA(I) = 0_{\bullet}0
                                                                         13009
               TBM1(I) = 0.0
                                                                         13009
               TCM1(I) = 0.0
                                                                         13009
               TBP1(I) = 0.0
                                                                         13009
               TCP1(I) = 0.0
                                                                         13009
  505
          CONTINUE
                                                                          13009
          IF ( NCT5 ) 980, 600, 510
                                                                         13009
          DO 560 N = 1, NCT5
  510
                                                                          13009
              I1 = IN15(N) + 3
                                                                          13009
               12 = IN25(N) + 3
                                                                         13009
          IF ( JN - JN15(N) ) 545, 515, 515
                                                                         13009
  515
          IF ( JN25(N) - JN ) 530, 520, 520
                                                                         13009
          DO 525 I = I1. I2
  520
                                                                         13009
               TA(I) = TA(I) + TAN(N)
                                                                         13009
          CONTINUE
  525
                                                                         13009
         IF ( (JN-1) - JN15(N) ) 545, 533, 533
  530
                                                                         13009
          IF ( JN25(N) - (JN-1) ) 545, 535, 535
  533
                                                                         13009
  535
          DO 540 I = I1, I2
                                                                         13009
               TBM1(I) = TBM1(I) + TBN(N)
                                                                         13009
               TCM1(I) = TCM1(I) + TCN(N)
                                                                         13009
  540
          CONTINUE
                                                                         13009
  545
          IF ( (JN+1) - JN15(N) ) 560, 547, 547
                                                                         13009
         IF ( JN25(N) - (JN+1) ) 560, 550, 550
  547
                                                                         13009
          DO 555 I = I1 + 12
  550
                                                                         130C9
               TBP1(I) = TBP1(I) + TBN(N)
                                                                          130C9
               TCP1(I) = TCP1(I) + TCN(N)
                                                                         130C9
 555
         CONTINUE
                                                                         13009
 560
         CONTINUE
                                                                         13009
  600
         CONTINUE
                                                                         13009
    RETURN
                                                                         130C9
  980 PRINT 98
                                                                         13009
     END
                                                                          13009
```

SUBROUTINE INVRG (X , L1 , L2)	19FE8
C****** THIS ROUTINE TAKES THE INVERSE OF A SYMMETRIC POSITIVE - DEF	05MR8
C MATRIX USING A COMPACTED CHOLESKI DECOMPOSITION PROCEDURE .	05MR8
C A FULL DIMENSIONED MATRIX IS REQUIRED BUT ONLY THE LOWER	05MR8
C HALF IS USED BY THE 3 ROUTINES DRIVEN BY INVR6	05MR8
DIMENSION X(L1+L1)	19FE8
CALL DCOM1 (X, L1, L2)	05MR8
CALL INVLT1 (X , L1 , L2)	19FE8
CALL MLTXL (X , L1 , L2)	05MR8
DO 100 I = 2 \cdot L2	19FE8
KC = I - 1	19FE8
DO 50 $J = 1$, KC	19FE8
$(L,I) = (I,L) \times (L,I) \times (L,I$	19FE8
50 CONTINUE	19FE8
100 CONTINUE	19FE8
RETURN	19FE8
END	19FF8

	SUBROUTINE DCOM1 (X , L1 , L2)	19FE8
C****	*** THIS SUBROUTINE PERFORMS DECOMPOSITION OF A GENERAL SYMMETRIC	03MY0
с	MATRIX TO A LOWER TRIANGULAR MATRIX BY CHOLESKI DECOMPOSITION	03MY0
	DIMENSION X(L1+L1) , T(100)	12MR8
10	FORMAT (/85X,* NON-POSITIVE DEFINITE MATRIX ENCOUNTERED *)	12MR8
	DO 20 $I = 1 + L_2$	12MR8
	T(I) = X(I + I)	12MR8
20	CONTINUE	12MR8
	IF (X(1,1) .LE. 0.0) GO TO 4000	05MR8
	X(1,1) = SQRT(X(1,1))	19FE8
	S1 = 1.0 / X(1.1)	19FE8
	DO 50 I = 2 + L2	19FE8
	$X(1,1) = X(1,1) + S_1$	19FE8
50	CONTINUE	19FE8
	$L2M1 \neq L2 - 1$	19FE8
	JU = 200 $J = 2$, L2M1	19FE8
	S = 0.0	19FE8
		19FE8
	DU 120 K = 1 , JMI	19FE8
120	$S = S + A(J_1 N_1 + A(J_1 N_1))$	1988
120		19718
	$X(J_{*}J) = S(T + J_{*}J_{*}J_{*}J_{*}J_{*}J_{*}J_{*}J_{*}$	10550
	51 = 1.0 / X (1.1)	19550
	JP1 = J + 1	19558
	DO 190 I = $JP1 + L2$	19558
	S = 0.0	19FF8
	DO 180 K = 1 , JM1	19FF8
	S = S + X(I • K) * X(J • K)	19FE8
180	CONTINUE	19FE8
	$X(I_{,J}) = (X(I_{,J}) - S_{,J} + S_{,J})$	19FE8
190	CONTINUE	19FE8
200	CONTINUE	19FE8
	S = 0.0	19FE8
	$DO 250 K = 1 \cdot L2M1$	19FE8
25.0	$S = S + X(L_2,K) * X(L_2,K)$	19FE8
250	CONTINUE	19FE8
	$S = A(L_2, L_2) - S$	05MR8
		U5MR8
		USMR8
4000	PRINT 10	19560
	X(1,1) = T(1)	12MD9
	DO 400 I = 2 + L2	09408
	K = I - I	12MR8
	X(I + I) = T(I)	12MR8
	DO 350 $J = 1$, K	12MR8
	$X(I_{*}J) = X(J_{*}I)$	12MR8
350	CONTINUE	12MR8
400	CONTINUE	12MR8
	DO 500 I = 1, L2	20MR9
500	PRIN[10] (X(1,J), J=1,L2)	20MR9
15	rukmai (/) 5X) 13E10 · 3)	20MR9
	END	19FE8

SUBROUTINE INVLT1 (X , L1 , L2)	19FE8
*** THIS SUBROUTINE REPLACES A LOWER TRIANGULAR MATRIX BY	03MY0
ITS INVERSE	03MY0
DIMENSION X(L1,L1)	19FE8
DO 50 I = 1 \cdot L2	19FF8
$X(I \bullet I) = 1 \bullet 0 / X(I \bullet I)$	19FE8
CONTINUE	19FF8
L2M1 = L2 - 1	19FE8
DO 200 $J = 1 + L2M1$	19FE8
JP1 = J+1	19FE8
DO 150 $I = JP1$, L2	19FE8
IM1 = I - 1	19FE8
SUM = 0.0	19FE8
DO 120 K = J , IM1	19FE8
$SUM = SUM - X(I_{\bullet}K) + X(K_{\bullet}J)$	19FE8
CONTINUE	19FE8
$X(I_{\bullet}J) = X(I_{\bullet}I) + SUM$	19FE8
CONTINUE	19FF8
CONTINUE	19FF8
RETURN	19FF8
END	19FE8
	SUBROUTINE INVLT1 (X , L1 , L2) *** THIS SUBROUTINE REPLACES A LOWER TRIANGULAR MATRIX BY ITS INVERSE DIMENSION X(L1,L1) DO 50 I = 1 , L2 X(I,I) = 1.0 / X(I,I) CONTINUE L2M1 = L2 - 1 DO 200 J = 1 , L2M1 JP1 = J+1 DO 150 I = JP1 , L2 IM1 = I-1 SUM = 0.0 DO 120 K = J , IM1 SUM = SUM - X(I,K) * X(K,J) CONTINUE X(I,J) = X(I,I) * SUM CONTINUE CONTINUE RETURN END

C****	SUBROUTINE MLTXL (X, L1, L2) *** THIS SUBROUTINE MULTIPLIES A LOWER TRIANGULAR MATRIX BY ITS INPLIED TRANSPOSE CENERATING ONLY THE LOWER WATRIX BY ITS	19FE8 03MY0
c	SYMETED CONSCIENCE IN THE CONSCIENCE THE	03MY0
Č	STMMETRIC RESULTS IN THE STORAGE ALLOTED TO THE ORIGINAL	O3MYO
C	LOWER TRIANGULAR MATRIX	03MY0
	DIMENSION X(LI,LI)	19FE8
	DO 200 l = 1 + L2	19FF8
	DO 150 J = 1 , I	19FE8
	SUM = 0.0 DO 100 K = I + L2	19FE8 19FE8
	SUM = SUM + X(K,I) * X(K,J)	19FE8
100	CONTINUE	19FE.8
	X(I,J) = SUM	19FF8
150	CONTINUE	19558
200	CONTINUE	19558
	RETURN	10559
	FND	10550
		17660

S	UBROUTINE MFFV (X , Y , Z , L1 , L5 , L2)	03MR8
C*****	* THIS ROUTINE MULTIPLIES A FULL MATRIX	13DE7
с	TIMES A FULL MATRIX OR A VECTOR	13DE7
С	(X * Y = Z)	13DF7
D	IMENSION X(L1,L1) , Y(L1,L5) , Z(L1,L5)	13DE7
	M = 1	20MY8
	IF(L1 .EQ. L5) M = L2	20MY8
	DO 110 $J = 1,M$	13DF7
	DO 105 I = 1,L2	13DF7
	SUM = 0.0	03MRB
	DO 100 K = $1,L2$	13DE7
	SUM = SUM + X(I,K) + Y(K,J)	03MR8
100	CONTINUE	13DE7
	Z(1,J) = SUM	03MR8
105	CONTINUE	13DE7
110	CONTINUE	13DF7
RI	ETURN	13DE7
E	ND	13DF7
		2002

SUBROUTINE SMFF (X, Y, Z, L1, L2)	19FE8
C****** THIS ROUTINE MULTIPLIES TWO FULL MATRICES UNDER THE ASSUMPT	ION 05MR8
C THAT THEIR PRODUCT WILL BE SYMMETRIC (X,Y, AND Z ARE FULL	05MR8
C DIMENSIONED BUT ONLY THE LOWER HALF OF EACH IS USED)	05MR8
$DIMENSION \times (L1,L1) + Y(L1,L1) + Z(L1,L1)$	19FE8
DO 110 $J = 1$, L2	19FE8
DO 105 I = 1 , J	19FE8
SUM = 0.0	19FE8
DO 100 $K = 1$, L2	19FE8
$SUM = SUM + X(J_{9}K) + Y(K_{9}I)$	19FE8
100 CONTINUE	19FE8
Z(J,I) = SUM	19FE8
105 CONTINUE	19FF8
110 CONTINUE	19FE8
RETURN	19FE8
END	19FE8

S	UBROUTINE MEFT (X , Y , Z , L1 , L2)	18MR8
C*****	* THIS ROUTINE MULTIPLIES A FULL MATRIX	18MR8
С	TIMES THE TRANSPOSE OF A SECOND FULL MATRIX	18MR8
C	(X * YT = Z)	18MR8
D	IMENSION X(L1+L1) + Y(L1+L1) + Z(L1+L1)	18MR8
	DO 110 $J = 1 + L2$	18MR8
	DO 105 I = 1 , L2	18MR8
	SUM = 0.0	18MR8
	DO 100 $K = 1 + L2$	18MR8
	$SUM = SUM + X(I_K) + Y(J_K)$	18MR8
100	CONTINUE	18MR8
	Z(I,J) = SUM	18MR8
105	CONTINUE	18MR8
110	CONTINUE	18MR8
R	ETURN	18MR8
E	ND	18MR8

S	UBROUTINE MBFV (XB , YF , ZF , L1 , L5 , L2 , LB)	07DF7
C*****	* THIS ROUTINE MULTIPLIES A BANDED MATRIX	07057
с	TIMES A FULL MATRIX OR A VECTOR	07057
с	(XB * YF = ZF)	07DE7
D	IMENSION XB(L1+LB) , YF(L1+L5) , ZF(L1+L5)	07DF7
	M1 = 1	20MY8
	IF(L1 .EQ. L5) M1 = L2	20448
	L4 = LB/2	07057
	L6 = L4 + 1	07057
	N1 = L2 - L4	U7DF7
	DO 110 $M = 1, M1$	13DF7
	DO 105 $I = L6.N1$	13DF7
	J = I - L6	07DF7
	SUM = 0.0	C6MY8
	DO 100 K = 1,LB	07DF7
	SUM = $XB(I_{\bullet}K) + YF(K+J_{\bullet}M) + SUM$	06MY8
100	CONTINUE	10N07
	ZF(I + M) = SUM	06MY8
105	CONTINUE	10N07
110	CONTINUE	10N07
	K1 = 0	1 CN07
	II = 1	10N07
	$I_2 = L_4$	67DE7
	I3 = 1	07DE7
	I4 = LB	07DF7
	IF(12) 150, 900, 150	. 07DE7
150	DO 210 $M = 1.M1$	13DF7
	DO 205 I = I1.I2	13DF7
	SUM = 0.0	06MY8
	N = 1	07DE7
	$DO 200 \text{ K} = 13 \cdot 14$	07DE7
	$SUM = XB(I \cdot N) + YF(K \cdot M) + SUM$	06MY 8
200	$N \neq N + 1$	07DE7
200		1 UNO7
205	CONTINUE	06MYB
205	CONTINUE	10N07
210		10N07
200	$17 \times 12 = 12 = 14 \times 1$	10N07
500	11 = 12 - 14 + 1	07DE7
	12 = 12	07DF /
		07DE7
		U7DE7
	GO TO 150	1 UNO7
900 R	FTURN	TONO7
700 K		10007
Ľ		10N07

	SUBROUTINE MFB (XF , YB , ZF , L1 , L2 , LB)	07067
C***+	**** THIS ROUTINE MULTIPLIES A FULL MATRIX	U7DE7
c	TIMES A BANDED MATRIX	07057
C	(XF * YB = ZF)	07057
	DIMENSION XF(L1+L1) + YB(LB+L1) + ZF(L1+L1)	07DF7
	L4 = LB/2	070F7
	L6 = L4 + 1	07057
	N1 = L2 - L4	07057
	$DO 110 I = L6 \cdot N1$	07057
	J = I - L6	07DE7
	$DO \ 105 \ M = 1 + L2$	07DF7
	SUM = 0.0	06MY8
	DO 100 K = $1 + LB$	07DE7
	$SUM = YB(K_*I) * XF(M_*K+J) + SUM$	06MY8
100	D CONTINUE	1 °N07
	ZF(M,I) = SUM	06MY8
105	CONTINUE	1 0N07
110	D CONTINUE	10N07
	K1 = 0	10N07
	I1 = 1	10N07
	12 = 14	07DE7
	13 = 1	08DE7
		07DE7
16	IF(12) 150, 900, 150	07DE7
150	0 00 210 I = 11, 12	10N07
	$\frac{1}{2} \frac{1}{2} \frac{1}$	07DE7
		06MY8
	N = 1	UBDE7
	$\frac{100}{100} = \frac{100}{100} = $	08DE7
	$SUM = TB(N_0 1) = XF(M_0 K) + SUM$	06MY8
200		08DE7
200	$7E(M_{\rm e}T) = CIM$	10N07
204	S CONTINUE	06MY8
210	D CONTINUE	10N07
	IFL K1 > 900.300.900	10N07
300	11 = 12 - 14 + 1	10N07
	12 = 12	07DE7
	13 = 12 - 18 + 1	07017
	I4 = L2	070E7
	$K_1 = 1$	07DE7
	GO TO 150	10N07
900	DRETURN	10007
	END	1007
		1.2.1077

	SUBROUTINE ABF (YB , XF , ZF , L1 , L2 , LB)	07DE7
C****	** THIS ROUTINE ADDS A BANDED MATRIX	07DE7
c	TO A FULL MATRIX	07DF7
с	(YB + XF = ZF OR XF + YB = ZF)	07057
	07DF7	
	L4 = LB/2	07DF7
	N1 = L2 - L4	07DF7
	L6 = L4 + 1	97DF7
	DO 50 I = 1.L2	07DE7
	DO 40 $J = 1, L2$	07DE7
	$ZF(I \downarrow J) = XF(I \downarrow J)$	07DE7
40	CONTINUE	07DE7
50	CONTINUE	07DE7
	DO 110 I = $L6 \cdot N1$	07DE7
	J = I - L6	07DE7
	DO 100 K = $1,LB$	07DE7
	$ZF(I_{9}K+J) = YB(I_{9}K) + XF(I_{9}K+J)$	11DE7
100	CONTINUE	1 ONO 7
110	CONTINUE	1 ⁰ NO7
	K1 = 0	10N07
	I1 = 1	1 ^O NO7
	12 = L4	07DE7
	I3 = 1	08DE7
	I4 = LB	07DF7
	IF(I2) 150, 900, 150	07DE7
150	DO 210 I = I1, I2	1 0NO7
	N = 1	08DE7
	DO = 200 K = 13, 14	08DE7
	$ZF(I_{\bullet}K) = YB(I_{\bullet}N) + XF(I_{\bullet}K)$	11DE7
	N = N + 1	08DF7
200	CONTINUE	10N07
210	CONTINUE	1 ⁰ N07
	IF(K1) 900, 300, 900	10N07
300	11 = L2 - L4 + 1	07DE7
	12 = L2	07DE7
	13 = L2 - LB + 1	07DE7
	14 = L2	07DE7
	$K_{1} = 1$	- 07DE7
000	GO 10 150	10N07
900	KE I UKN	10N07
	ENU	10N07

		-
~ ~ ~ ~ ~ ~ ~	SUBROUTINE ASPV (X , T , Z , LI , L5 , L2 , SIGN)	20MY8
(****	*** THIS ROUTINE ADDS OR SUBTRACTS 2 FULL MATRICES OR 2 VECTORS	20MY8
C	(X - Y = Z OR X + Y = Z)	13DE7
	DIMENSION X(L1,L5) , Y($L1$,L5) , Z(L1,L5)	13DE7
	M = 1	20MY8
	$IF(L1 \bullet EQ \bullet L5) M = L2$	20MY8
	IF (SIGN) 190, 50, 50	13DE7
50	DO 110 $J = 1.M$	13DE7
	DO 100 I = $1,L2$	13DE7
	$Z(I_{,J}) = X(I_{,J}) + Y(I_{,J})$	13DE7
100	CONTINUE	13DE7
110	CONTINUE	13057
	GO TO 300	130F7
190	DO 210 J = 1.M	12057
	DO 200 I = 1.12	12057
	$Z(I_{0}J) = X(I_{0}J) - Y(I_{0}J)$	13057
200	CONTINUE	13007
210	CONTINUE	
300	DETLIN	13DE7
		13DE7
		13DE7

```
SUBROUTINE RFV ( X , Y , L1 , L5 , L2 )
                                                                                         23MR8
C******* THIS ROUTINE REPLACES A FULL MATRIX OR A VECTOR
                                                                                         23MR8
С
       (X = Y)
DIMENSION X(L1,L5), Y(L1,L5)
                                                                                         23MR8
                                                                                         23MR8
                 M = 1
                                                                                         20MY8
            IF( L1 \in EQ. L5 ) M = L2
DO 110 J = 1.M
DO 100 I = 1 . L2
X(I,J) = Y(I,J)
                                                                                         20MY8
                                                                                         23MR8
                                                                                         23MR8
                                                                                         23MR8
  100
            CONTINUE
                                                                                         23MR8
  110
           CONTINUE
                                                                                         23MR8
       RETURN
                                                                                         20MY8
       END
                                                                                         23MR8
```

S	UBROUTINE CFV (X , L1 , L5 , L2 , C	20MY8
C*****	* THIS ROUTINE MULTIPLIES A FULL MAT	RIX OR A VECTOR BY A CONSTANT13DE7
с	(X = C*X)	13DF7
D	IMENSION X(L1,L5)	13DE7
	M = 1	2 0 M Y B
	IFT L1 .EQ. L5) M = L2	20MY8
	DO 110 $J = 1 \cdot M$	13DE7
	DO 100 I = $1+L2$	13DE7
	$X(I_{J}) = X(I_{J}) + C$	13DE7
100	CONTINUE	13DE7
110	CONTINUE	13DE7
R	ETURN	13DE7
E	ND	13DE7

		SUBROUTINE TIC TOC (J)		240C6
c		- TIC TUC (1) = COMPILE TIME		20DE7
С		TIC TUC (2) = ELAPSED TM TIME		03MY0
С		TIC TOC (3) = TIME FOR THIS PROBLEM		20DE7
С		TIC TOC (4) = TIME FOR THIS PROBLEM AND ELAPSED TM TIME		03MY0
	10	FORMAT(///30X19HELAPSED TM TIME = 15,8H MINUTESF9.3,8H SECONDS)	03MY0
	11	FORMAT(///30X15HCOMPILE TIME = +15+8H MINUTES+F9+3+8H SECONDS)	255F6
	12	FORMAT(///30X24HTIME FOR THIS PROBLEM = .15.8H MINUTES.F9.3.		255E6
		1 8H SECONDS)		25.5E6
	-	I = J - 2		21,147
		IF(1-1) 40. 30. 30		21.147
	30	F14 = F		25 SE6
	40	CALL SECOND (E)		25 SE6
		111 = F		255E6
		11 = 111 / 60		255F6
		FI2 = F - I1*60		255E6
		1F (L) 50, 70, 60		24 11 7
	50	PRINT 11. L1. F12		21 177
		60 TO 990		255F6
	60	$F_{13} = F - F_{14}$		25556
	•••	12 = F13 (60		255F6
		$F_{13} = F_{13} - I_{2*60}$		255E6
		PRINT 12. 12. FI3		255E6
		1 = (1 - 1) 990 + 990 + 70		21 197
	70	PRINT 10. 11. F12		21 197
	990	CONTINUE		DASE7
		RETURN		255EA
		FND		255E0
				22300

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team APPENDIX 5

LISTING OF INPUT DATA FOR SELECTED EXAMPLE PROBLEM

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

Problem 401 Five-beam Noncomposite Skew Bridge with Load at Midspan of Beam A

Fig Al. Geometry of the included problem.

CHG CEAG PROBLEM 401	013 SEF	36 RIES 5000	CODED 4 - F) LB LOA	AND RUN IVE BEAN AD AT MI	N 2 1 NOI 1 DSP	1 MAY NCOMP AN OF 1	70 OSITI BEAN	INCH-LE E SKEW BRI A A ANGLE	UNITS DGE WITH 8 THFTA2 =	X 8 INCREM	1ENTS
8	8	2.50	0E+00	2.000E+	00	1.500)E+02				
0	Ō	8	8	2.500E+	04	0.000	E+00	0.000E+00	2•500E+04	0.000E+00	1.250E+04
0	1	8	7	2.500E+	04	0.000	E+00	0.000E+00	2.500E+04	0.000E+00	1.250E+04
1	0	7	' 8	2.500E+	+04	0.000	E+00	0.000E+00	2 • 500E+04	0.000E+00	1.250E+04
1	1	7	' 7	2.500E+	04	0.000	E+00	0.000E+00	2•500E+04	0.000E+00	1.250E+04
0	0	8	0	5.000E+	+06						
1	0	7	′ 0	5.000E+	+06						
0	2	8	2	5.000E-	+06						
1	2	7	′ 2	5.000E+	+06						
0	4	8	3 4	5.000E-	+06						
1	4	7	7 4	5.000E-	+06						
0	6	8	6	5.000E-	+06						
1	6	7	6	5.000E-	+06						
0	8	8	8 8	5.000E-	+06						
1	8	7	78	5.000E	+06						
0	0	C) 8							1.000E+20	
8	0	5	38							1.000E+20	
4	8	2	• 8						-5.000E+03		

APPENDIX 6

COMPUTED RESULTS FOR SELECTED EXAMPLE PROBLEM

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team PROGRAMSLAB44-MASTERDECK-M. VORAREVISIONDATE03MAY70CHGCEAQ0136CODEDANDRUN21MAY70INCH-LPUNITSPROBLEMSERIES4-FIVEREAMNONCOMPOSITESKEWBRIDGEWITH8X8INCREMENTS

PROB

401 5000 LB LOAD AT MIDSPAN OF BEAM A. ANGLE THETA2 = 150 DEG

TABLE 1. CONTROL DATA

		TABLE	NUMBE	R
	2	3	4	5
HOLD FROM PRECEDING PROALFM (1=HOLD)	-0	-0	-0	-0
NUM CARDS INPUT THIS PROBLEM	1	4	13	- 0
MULTIPLE LOAD OPTION (IF BLANK, PROBLEM IS SINGLE LOADING	G			
IF +1. PARENT FOR NEXT PROB IF -1. A OFFSPRING PRO	08)			- 0
PRINT OPTION (IF HLANK, MX MY MXY IF 1. MA MR MC PRI	NTED))		- 0
REACTION OUTPUT OPTION (IF ALANK. SUPPORT REACTION				
IF 1. STATICS CHECK PRINTED)				- 0
STIFFNESS INPUT OPTION (IF PLANK+ D11 THRU D33				
IF 1• Bli THRU B33 INPUT)				- i)

TABLE 2. CONSTANTS

NUMBER OF INCREMENTS IN A DIRECTION MA	L.
NUMBER OF INCREMENTS IN C DIRECTION MC	۲
INCREMENT LENGTH IN A DIRECTION HA	2.500F+00
INCREMENT LENGTH IN C DIRECTION HC	2.000F+00
ANGLE BETWEEN A AND C DIRECTION IN DEGREES	1.500E+02

TABLE 3. JOINT STIFFNESS DATA

FR(J0])м [NT	THE JO:	RU INT	011	015	D13	022	023	D33
0	0	8	8	2.500E+04	0.	0.	2.500E+04	0•	1.250F+04
Ü	1	8	7	2.500E+04	0.	0.	2.500E+04	0.	1.250F+04
1	0	7	8	2.500E+04	0.	0.	2.500E+04	0.	1.250E+04
1	1	7	7	2•200E+04	0.	0.	2.500E+04	0•	1.250E+04

TABLE 4. BEAM STIFFNESS AND LOAD DATA

FRC) M	ТН	RU	F۵	FB	FC	Q	5
JOL	NT	J0]	INT					
0	0	8	0	5.000E+06	-0.	-0.	-0.	-0.
1	0	7	0	5.000E+06	-0.	-0.	-0.	-0.
0	2	8	2	5.000E+06	-0.	-0.	-0.	-0.
1	2	7	S	5.000E+06	-0.	-0.	-0.	-0.
0	4	8	4	5.000E+06	-0.	-0.	-0.	-0.
1	4	7	4	5.000E+06	-0.	-0.	-0.	-0.
0	6	8	6	5.000E+06	-0.	-0.	-0.	-0.
1	6	7	6	5.000E+06	-0.	-0.	-0.	-0.
0	8	8	8	5.000E+06	-0.	-0.	-0.	-0.
1	8	7	8	5.000E+06	-0.	-0.	-0.	-0.

0	0	0	8 -0.	-0.	<u>-</u> 0.	-0.	1.000E+50
н	0	ß	8 -0.	-0.	-0.	-0.	1+000E+20
4	8	4	8 -0.	-0.	-0.	-5.000E+0	3 -0.

TABLE	5.	EXTERNAL	COUPLE	DATA
	••	C C	(1997) 6	01414

FROM JOINT	THRU JOINT	TA	тв	ΤC	
		NONF			

PROGRAM SLAB44 - MASTER DECK - M. VORA REVISION DATE 03 MAY 70 CHG CEAD0136 CODED AND RUN 21 MAY 70 INCH-LB UNITS PROBLEM SERIES 4 - FIVE REAM NONCOMPOSITE SKEW BRIDGE WITH B X & INCREMENTS

PROH (CONTD) 5000 LB LOAD AT MIDSPAN OF REAM A. ANGLE THETA2 = 150 DEG 401

TABLE 6. RESULTS

SLAB MOMENTS ARE PER UNIT WINTH BEAM MOMENTS ARE TOTAL PER BEAM COUNTERCLOCKWISE HETA ANGLES ARE POSITIVE

Ą	• C	DEFL	SLAH X Moment Ream A Moment	SLAH Y MOMENT BEAM B MOMENT	SLAR XY Moment He am C Moment	LAPGEST PRINCIPAL SLAR MOMENT	HETA X TC LARGEST SUPPORT MOMENT REACTION
-1	-1	L.402E-03	0 • 1) •	0.	Ú.	0.	0.0 -0.
0	-1	7.630E-04	0.	0.	0.	0.	0.0 -0.
			0.	0.	J.		
1	- 1	1.020F-04	0.	0.	0.	0.	0.0 -0.
			Λ.	0.	0•		
2	-1	-6.563E-04	0 • ·	Ο.	0.	0•	$0 \cdot 0 - 0 \cdot$
			Λ.	0•	0.		
3	-1	-1.346E-03	0•	0.	0.	0•	$0 \cdot 0 - 0 \cdot$
	_		0.	0.	0.		
4	-1	-1.784E-03	0.	0•	0.	0•	$0 \cdot 0 - 0 \cdot$
-			θ. ●	0.	0.		
5	-1	-1.965t-01	0.	0.	·)•	0.	0.0 -0.
	,		0.	0.	0.		
6	-1	-1.567E-03	0.	0.	0.	0•	0.0 -0.
-	,		0.	.	0.	<u>^</u>	
(-1	-1.0451-03	0.	0.	0.	0•	$0 \cdot 0 - 0 \cdot$
2	,		n.	0.	U •	•	
8	-1	-1.050E-04	0.	0.	0.	0.	0.0 -0.
~	- 1	0	0. 0	0.	0.	0	0 0 0
4	-1	0.	0.	0	0.	0•	0.0 -0.
			() •	0.	U.		
-1	٥	1-080E-03	0.	0.	0.	0.	0.0 -0.
•	ý	100000.000	0.	0.	0.	0.	
0	0	2.034E-18	1.073E+00	2.2656+00	3.924E+00	5+638E+00	-49.3 -2.034E+02
Ū	-		2.145E+02	0.	0.		
1	0	-8.118E-04	1.001E+00	-1.817E+00	2.516E+00	-3.292E+00	59.6 -0.
		-	5.005E+05	0.	0.		
2	0	-1.498E-03	1.5558+00	-2.276E+00	-2.823E+00	-3.772E+00	-62.1 -0.
			3.110E+02	0.	0.		
3	0	-1.991E-03	2.239E+00	-1.584E+00	-7.315E+00	7.888E+00	37.7 -0.
		•	4.477E+02	0.	0.		
4	0	-2.203E-03	2.738E+00	-4.071E-01	-9.236E+00	1.053E+01	40.2 -0.
			5.475E+02	0.	0.		
5	0	-2.073E-03	5•154E+00	-5.1956-01	-1.045E+01	1.168E+01	40.6 -0.
		_	5+459E+02	0.	0•		
6	0	-1+602E-03	2.068E+00	1.755E+00	-7.807E+00	9.721E+00	44.4 -0.

_
7	Ċ,	-8 700F-04	4.1378+02	A. 0. 0405-01	0. 	E 000E.00	<i>44</i> 5	- 0
'	,		2.2446+02	0.	0.	2+608E+00	44.0	-0.
8	ti	-9.004E-19	4.662E-03 9.323E-01	1.584E+00	-1.220E+00	2•251E+00	61.5	9.004E+01
9	0	×.741E-04	0.	0.	0.	0•	0.0	-0.
			.) •	0.	0 .			
- 1	1	2.753E-03	0.	0.	0.	0•	0.0	-0.
0	1	-2.240E-19	4.800E+00	-4.553t+01	4+658E+00	-4.592E+01	85.2	2.240E+01
			0.	0.	9.			
1	1	-1-5288-03	0.044+00	-3.786r+01	9.578F+00	-3.974 <u>5</u> +01	78.9	- Q •
7	1	-2.488E-03	6.5588+90	-2.305t+01	-4-4236-01	-2.305F+01	-49.1	- 0 .
	,		0. 	0.				0
3	1	-3+039E=04	7 • 754E +00		-1.185E+01	-1.4672+01	-62+1	-0.
4	1	-3-106E-03	6.717E+00	4.1118+00	-1+937E+01	2.4H3E+01	43•1	-0.
c	,	-2 7625-03	0.	0. 1.9516+01	1. -2 2676-01	3 6606401	53 7	- 0
7	I	-2.1021-01	0. 0.	0.	-C+F47F+01	10-001-01	DC+1	-0.
5	l	-5.050E-03	5.544F+00	2.350F+01	-2-9506+01	3.6638+01	57.0	-0.
7	ı	-9.4058-04	0. -2.219E+00	052E+01		1.787E+01	58.9	-0.
r	1	/•••001 0•	0.	0.	0.	••••••	J () () ()	
Ą	1	4.566E-19	1.443E+00	1.2835+01	-5.3861+00	1.504E+01	67.7	-4.566E+01
3	ı	1.183E-03	··•	0.	0.	0.	0.0	-0.
	-		6	0.	11.			
				•	•			
- 1	5	2 5685-02	0	0	0	0	• •	-0
-1	2	2.568E+03	0. N.	0 • 0 •	() • () •	Л •	0+0	-0.
-1 0	2 2	2.568E-03 2.689E-18	0. 0. 4.395E+ab	0 • 0 • 	0• 0• 5•019E-04	0. -1.494E+01	0•0 88•5	-0.
-1 0	2 2 2	2.568E-03 2.689E-18 -2.018E-03	¶. ∩. 4.395€+∷0 4.395€+⊙2 3.142€+02	0 • 0 • 1 • 492F + 0] 0 • -9 • 353E + 0 1	0. 0. 5.019E-01 0. 5.346E+00	0. -1.494E+01	0•0 88•5 87-0	-0. -2.689E+02
-1 0 1	2 2 2	2.568E-03 2.689E-18 -2.018E-03	0. 0. 4.395E+00 4.395E+07 4.142E+00 4.142E+00 4.142E+02	0. 0. -1.492F+01 0. -9.353F+01 0.	0. 0. 5.019E-01 0. 5.345E+00 0.	0. -1.494E+01 -9.381E+01	0.0 88.5 87.0	-0. -0.
-1 0 2	2 2 2 2	2.568E-03 2.689E-18 -2.018E-03 -3.527E-03	0. 0. 4.395E+ii0 4.395E+ij2 3.142E+00 4.142E+02 1.049E+01	0. -1.492F+01 -9.353F+01 0. -7.294E+01	9. 0. 5.019E-01 0. 5.345E+00 0. -1.141E+00	0. -1.494E+01 -9.381E+01 -7.295E+01	0•0 88-5 87-0 -89-2	-0. -2.689E+02 -0.
-1 0 1 2 3	2 2 2 2 2 2	2.568E+03 2.689E+18 -2.018E+03 -3.527E+03 -4.350E+03	0. 0. 4.395E+00 4.395E+02 3.142E+00 3.142E+02 1.099E+01 1.099E+03 1.177E+03	0. 0. -1.492F+01 0. -9.353F+01 0. -7.294F+01 0. -3.711E+01	0. 0. 5.019E-01 0. 5.346E+00 0. -1.141E+00 0. -1.431E+01	0. -1.494E+01 -9.381E+01 -7.295E+01 -4.099E+01	0.0 88.5 87.0 -89.2 -74.8	-0. -2.689E+02 -0.
-1 0 1 2 3	2 2 2 2 2 2	2.568E-03 2.689E-18 -2.019E-03 -3.527E-03 -4.350E-03	0. 0. 4.395E+00 4.395E+07 4.142E+00 4.142E+02 1.099E+01 1.099E+01 1.099E+03 1.177E+01 1.177E+03	0. 0. -1.492F+01 0. -9.353F+01 0. -7.294F+01 0. -3.711E+01 0.	0. 0. 5.019E-01 0. 5.346F+00 0. -1.141E+00 0. -1.431E+01 0.	0. -1.494E+01 -9.381E+01 -7.295E+01 -4.099E+01	0.0 88.5 87.0 -89.2 -74.8	-0. -2.689E+02 -0. -0.
-1 0 1 2 3 4	5 5 5 5 5 5 5 5 5 5 5 5 5	2.568E+03 2.689E-18 -2.019E-03 -3.527E-03 -4.350E-03 -4.437E-03	0. 0. 4.395[+00 4.395[+02 3.142[+02 1.42[+02 1.099[+01 1.099[+03 1.177[+03] 1.099[+03 1.099[+03] 1.099[+03]	0. 0. -1.492F+01 0. -9.353F+01 0. -7.294E+01 0. -3.711E+01 0. -6.404E+00 0.	0. 0. 5.019E-01 0. 5.346E+00 0. -1.141E+00 0. -1.431E+01 0. -2.276E+01	0. -1.494E+01 -9.381E+01 -7.295E+01 -4.099E+01 2.660E+01	0.0 88.5 87.0 -89.2 -74.8 34.6	-0. -2.689E+02 -0. -0. -0.
-1 0 1 2 3 4 5	5 5 5 5 5 5 5 5 5 5 5 5	2.568E-03 2.689E-18 -2.018E-03 -3.527E-03 -4.350E-03 -4.437E-03 -3.843E-03	0. 0. 4.395E+00 4.395E+02 3.142E+00 3.142E+02 1.049E+01 1.049E+01 1.177E+03 1.177E+03 1.049E+01 1.049E+01 1.049E+03 2.208E+00	0. 0. -1.492F+01 0. -9.353F+01 0. -7.294F+01 0. -3.711E+01 0. -6.404E+00 0. 1.620E+01	0. 0. 5.019E-01 0. 5.346E+00 0. -1.141E+00 0. -1.431E+01 0. -2.276E+01 0. -2.770E+01	0. -1.494E+01 -9.381E+01 -7.295E+01 -4.099E+01 2.660E+01 4.019E+01	0.0 88.5 87.0 -89.2 -74.8 34.6 49.1	-0. -2.689E+02 -0. -0. -0.
-1 0 1 2 3 4 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.568E-03 2.689E-18 -2.019E-03 -3.527E-03 -4.350E-03 -4.437E-03 -3.843E-03	0. 0. 4.395E+00 4.395E+07 4.142E+00 4.142E+02 1.049E+01 1.049E+03 1.049E+01 1.049E+03 2.208E+00 4.208E+02	0. 0. -1.492F+01 0. -9.353F+01 0. -7.294F+01 0. -3.711E+01 0. -6.404E+00 0. 1.620E+01 0.	0. 0. 5.019E-01 0. 5.346F+00 0. -1.141E+00 0. -2.276E+01 0. -2.770E+01 0.	0. -1.494E+01 -9.381E+01 -7.295F+01 -4.099E+01 2.660E+01 4.019E+01	0.0 88.5 87.0 -89.2 -74.8 34.6 49.1	-0. -2.689E+02 -0. -0. -0. -0.
-1 0 1 2 3 4 5 6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.568E+03 2.689E-18 -2.018E-03 -3.527E-03 -4.350E-03 -4.437E-03 -3.843E-03 -2.735E-63	0. 1. 4.395E+00 4.395E+00 4.142E+00 4.142E+00 4.142E+02 1.099E+01 1.099E+03 1.177E+03 1.177E+03 1.089E+03 2.08E+00 4.208E+00 3.844E+00 3.844E+00	0. 0. -1.492F+01 0. -9.353F+01 0. -7.294F+01 0. -6.404E+00 0. 1.620E+01 0. 4.434E+01 0.	0. 0. 5.019E-01 0. 5.346E+00 0. -1.141E+00 0. -2.276E+01 0. -2.770E+01 0. -3.034E+01	0. -1.494E+01 -9.381E+01 -7.295F+01 -4.099E+01 2.660E+01 4.019E+01 6.057E+01	0.0 88.5 87.0 -89.2 -74.8 34.6 49.1 61.9	-0. -2.689E+02 -0. -0. -0. -0. -0. -0.
-1 0 1 2 3 4 5 6 7	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.568E-03 2.689E-18 -2.018E-03 -3.527E-03 -4.350E-03 -4.437E-03 -3.843E-03 -2.735E-63 -1.388E-03	0. 0. 4.395E+00 4.395E+02 3.142E+00 3.142E+02 1.099E+01 1.099E+01 1.177E+03 1.177E+03 1.089E+01 1.089E+03 2.208E+00 3.844E+00 3.844E+02 5.475E=01	0. 0. -1.492F+01 0. -9.353F+01 0. -7.294F+01 0. -3.711E+01 0. -6.404E+00 0. 1.620E+01 0. 4.434E+01 0. 5.303E+01	0. 0. 5.019E-01 0. 5.346E+00 0. -1.141E+00 0. -1.431E+01 0. -2.776E+01 0. -3.034E+01 0. -1.446E+01	0. -1.494E+01 -9.381E+01 -7.295E+01 -4.099E+01 2.660E+01 4.019E+01 6.057E+01 5.676E+01	0.0 88.5 87.0 -89.2 -74.8 34.6 49.1 61.9 75.6	-0. -2.689E+02 -0. -0. -0. -0. -0.
-1 0 1 2 3 4 5 6 7	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.568E-03 2.689E-18 -2.019E-03 -3.527E-03 -4.350E-03 -4.437E-03 -3.843E-03 -2.735E-63 -1.388E-03	0. 0. 4.395E+00 4.395E+00 4.142E+00 4.142E+00 4.142E+02 1.049E+01 1.049E+01 1.049E+01 1.049E+01 1.049E+01 1.049E+03 2.208E+02 3.844E+02 3.844E+02 5.475E=01 5.4	0. 0. -1.492F+01 0. -9.353F+01 0. -7.294E+01 0. -6.404E+00 0. 1.620E+01 0. 4.434E+01 0. 5.303E+01 0. 1.22E+01	0. 0. 5.019E-01 0. 5.346F+00 0. -1.141E+00 0. -2.276E+01 0. -2.770E+01 0. -3.034E+01 0. -1.446E+01 0.	0. -1.494E+01 -9.381E+01 -7.295F+01 -4.094E+01 2.660E+01 4.019F+01 6.057E+01 5.676E+01 1.201E+01	0.0 88.5 87.0 -89.2 -74.8 34.6 49.1 61.9 75.6	-0. -2.689E+02 -0. -0. -0. -0. -0. -0. -0. -0.
-1 0 1 2 3 4 5 6 7 8	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.568E+03 2.689E-18 -2.018E-03 -3.527E-03 -4.350E-03 -4.437E-03 -3.843E-03 -2.735E-03 -1.388E-03 -6.249E-19	0. 1. 4.395E+00 4.395E+00 4.142E+00 4.142E+00 4.142E+02 1.099E+01 1.099E+01 1.177E+03 1.177E+03 1.089E+03 2.208E+00 4.208E+00 4.208E+00 3.844E+00 3.8	0. 0. -1.492F+01 0. -9.353F+01 0. -7.294E+01 0. -6.404E+00 0. 1.620E+01 0. 4.434E+01 0. 5.303E+01 0. 1.138E+01 0.	0. 0. 5.019E-01 0. 5.346F+00 0. -1.141E+00 0. -2.276E+01 0. -2.770E+01 0. -3.034E+01 0. -1.446E+01 0. -2.800E+00 0.	0. -1.494E+01 -9.381E+01 -7.295F+01 -4.099E+01 2.660E+01 4.019E+01 6.057E+01 5.676E+01 1.201E+01	0.0 88.5 87.0 -89.2 -74.8 34.6 49.1 61.9 75.6 77.4	-0. -2.689E+02 -0. -0. -0. -0. -0. -0. -0. -0. -0. -0.
-1 0 1 2 3 4 5 6 7 8 9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.568E+03 2.689E-18 -2.019E-03 -3.527E-03 -4.350E-03 -4.437E-03 -3.843E-03 -2.735E-03 -1.388E-03 -6.249E-19 1.318E-03	0. 1. 4.395E+00 4.395E+02 3.142E+00 3.142E+02 1.099E+01 1.099E+01 1.099E+03 1.089E+03 2.08E+02 3.844E+00 3.844E+02 3.844E+02 5.602E-01 -5.602E+01 0.	0. 0. -1.492F+01 0. -7.294F+01 0. -7.294F+01 0. -6.404E+00 0. 1.620E+01 0. 4.434E+01 0. 5.303E+01 0. 1.132E+01 0. 0.	0. 0. 5.019E-01 0. 5.346F+00 0. -1.141E+00 0. -1.431E+01 0. -2.770E+01 0. -3.034E+01 0. -1.446E+01 0. -2.800E+00 0. 0.	0. -1.494E+01 -9.381E+01 -7.295F+01 -4.094E+01 2.660E+01 4.019E+01 6.057E+01 5.676E+01 1.201E+01 0.	0.0 88.5 87.0 -89.2 -74.8 34.6 49.1 61.9 75.6 77.4 0.0	-0. -2.689E+02 -0. -0. -0. -0. -0. -0. -0. -0. -0. -0.
-1 0 1 2 3 4 5 6 7 8 9	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.568E-03 2.689E-18 -2.019E-03 -3.527E-03 -4.350E-03 -4.437E-03 -3.843E-03 -2.735E-03 -1.388E-03 -6.249E-19 1.318E-03	0. 0. 4.395E+00 4.395E+00 4.142E+00 4.142E+02 1.099E+01 1.099E+01 1.099E+03 1.089E+03 2.208E+00 4.208E+02 3.844E+00 3.844E+00 3.844E+00 3.844E+00 1.6475E-01 4.475E+01 5.602E-01 0. 0.	0. 0. -1.492F+01 0. -9.353F+01 0. -7.294E+01 0. -6.404E+00 0. 1.620E+01 0. 4.434E+01 0. 5.303E+01 0. 1.132E+01 0. 0. 0.	0. 0. 5.019E-01 0. 5.346F+00 0. -1.141E+00 0. -2.276E+01 0. -2.770E+01 0. -3.034E+01 0. -1.446E+01 0. -2.800E+00 0. 0.	0. -1.494E+01 -9.381E+01 -7.295F+01 2.660E+01 2.660E+01 4.019F+01 6.057E+01 5.676E+01 1.201E+01 0.	0.0 88.5 87.0 -89.2 -74.8 34.6 49.1 61.9 75.6 77.4 0.0	-0. -2.689E+02 -0. -0. -0. -0. -0. -0. -0. -0. -0. -0.
-1 0 1 2 3 4 5 6 7 8 9 9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.568E-03 2.689E-18 -2.018E-03 -3.527E-03 -4.350E-03 -4.437E-03 -3.843E-03 -2.735E-03 -1.388E-03 -6.249E-19 1.318E-03 6.953E-03	0. 1. 4.395E+00 4.395E+00 4.142E+00 4.142E+00 4.142E+02 1.099E+01 1.099E+03 1.177E+03 1.089E+03 2.208E+00 4.208E+02 4.844E+00 3.844E+00 3.844E+00 3.844E+00 3.844E+00 3.844E+00 1.6475E+01 5.602E+01 0. 0.	0. 0. -1.492F+01 0. -9.353F+01 0. -7.294E+01 0. -6.404E+00 0. 1.620E+01 0. 5.303E+01 0. 1.138E+01 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 0. 5.019E-01 0. 5.346F+00 0. -1.431E+01 0. -2.770E+01 0. -2.770E+01 0. -1.446E+01 0. -2.800E+00 0. 0. 0.	0. -1.494E+01 -9.381E+01 -7.295F+01 -4.099E+01 2.660E+01 4.019E+01 6.057E+01 5.676E+01 1.201E+01 0.	0.0 88.5 87.0 -89.2 -74.8 34.6 49.1 61.9 75.6 77.4 0.0	-0. -2.689E+02 -0. -0. -0. -0. -0. -0. -0. -0. -0. -0.
-1 0 1 2 3 4 5 6 7 8 9 -1	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.568E+03 2.689E-18 -2.019E-03 -3.527E-03 -4.350E-03 -4.437E-03 -3.843E-03 -2.735E-43 -1.388E-93 -6.249E-19 1.318E-03 6.953E-03	0. 0. 4.395E+00 4.395E+00 4.142E+00 4.142E+00 4.142E+00 1.049E+01 1.049E+01 1.049E+01 1.049E+01 1.049E+01 1.049E+01 1.049E+00 3.208E+00 3.844E+000000000000000000	0. 0. -1.492F+01 0. -7.294F+01 0. -7.294F+01 0. -6.404E+00 0. 1.620E+01 0. 4.434E+01 0. 5.303E+01 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 0. 5.019E-01 0. 5.346F+00 0. -1.141E+00 0. -2.276E+01 0. -2.770E+01 0. -3.034E+01 0. -1.446E+01 0. -2.800E+00 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. -1.494E+01 -9.381E+01 -7.295F+01 -4.094E+01 2.660E+01 4.019E+01 6.057E+01 1.201E+01 0. 0.	0.0 88.5 87.0 -89.2 -74.8 34.6 49.1 61.9 75.6 77.4 0.0	-0. -2.689E+02 -0. -0. -0. -0. -0. -0. -0. -0. -0. -0.
-1 0 1 2 3 4 5 6 7 8 9 -1 0	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.568E-03 2.689E-18 -2.019E-03 -3.527E-03 -4.350E-03 -4.437E-03 -3.843E-03 -2.735E-03 -6.249E-19 1.318E-03 6.953E-03 7.043E-19	0. 0. 4.395E+00 4.395E+00 4.142E+00 4.142E+00 4.142E+02 1.049E+01 1.049E+01 1.049E+01 1.049E+01 1.049E+01 1.049E+01 1.049E+01 1.049E+01 3.844E+00 3.8	0. 0. -1.492F+01 0. -9.353F+01 0. -7.294E+01 0. -6.404E+00 0. 1.620E+01 0. 4.434E+01 0. 5.303E+01 0. 1.132E+01 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 0. 5.019E-01 0. 5.346F+00 0. -1.141E+00 0. -2.276E+01 0. -2.770E+01 0. -2.800E+00 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. -1.494E+01 -9.381E+01 -7.295F+01 2.660E+01 2.660E+01 4.019F+01 5.676E+01 1.201E+01 0. 0. -1.053F+02	0.0 88.5 87.0 -89.2 -74.8 34.6 49.1 61.9 75.6 77.4 0.0 0.0 88.7	-0. -2.689E+02 -0. -0. -0. -0. -0. -0. -0. -0. -0. -0.
-1 0 1 2 3 4 5 6 7 8 9 -1 0 1	3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.568E-03 2.689E-18 -2.018E-03 -3.527E-03 -4.350E-03 -4.437E-03 -3.843E-03 -2.735E-03 -1.388E-03 -6.249E-19 1.318E-03 6.953E-03 7.043E-19 -3.015E-03	0. 0. 4.395E+00 4.395E+00 4.142E+00 4.142E+00 4.142E+02 1.099E+01 1.099E+01 1.099E+03 2.08E+00 4.208E+00 4.208E+00 3.844E+00 3.844E+00 3.844E+00 6.475E+01 6.475E+01 5.602E+01 0. 0. 0. 0. 0. 1.51E+01 0. 1.638E+01	0. 0. -1.492F+01 0. -9.353F+01 0. -7.294F+01 0. -3.711E+01 0. -6.404E+00 0. 1.620E+01 0. 4.434E+01 0. 5.303E+01 0. 1.134E+01 0. 0. 0. 0. 0. -1.052E+02 0. -1.320E+02	0. 0. 5.019E-01 0. 5.346F+00 0. -1.141E+00 0. -2.276E+01 0. -2.770E+01 0. -3.034E+01 0. -2.800E+00 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. -1.494E+01 -9.381E+01 -7.295F+01 -4.099E+01 2.660E+01 4.019F+01 6.057E+01 1.201E+01 0. 0. -1.053F+02 -1.331E+02	0.0 88.5 87.0 -89.2 -74.8 34.6 49.1 61.9 75.6 77.4 0.0 0.0 88.7 85.1	-0. -2.689E+02 -0. -0. -0. -0. -0. -0. -0. -0. -0. -0.

2	3	-5.006F-03	1+316E+01	-1.1416+02	-6. 34HE +00	-1.1448+02	-87.2	-0.
3	3	-6.174E-03	^.]•679€+3}	0. -5.4855+01	-2.355E+01	-7.116F+01	-75.0	-0.
				0.	0.			2
4	.3	-6.2931-93	1.485E+01	-1.264F+01	-3.40[E+0]	3.7795+01	14 • ()	-0.
5	3	-5.484E-43	1 . 171£+91	3.581++0]	-3.858F+01	6•418 <u>5</u> +01	53.7	-0.
'n	3	-3.9436-13	0. 5.880F+00	6. 5.260++01	0. -3.702E+01	ਮ . 163E+01	62.7	-0.
			0.	0.	0.			
7	3	-1.7866-03	-5.930E+00	4•7276+01	-2.6u3F+01	5•788E+01	67.8	-0.
н	3	7.657F-14	-4.311E+00	4.599 <u>6</u> +01	-4.543E+00	4.774F+01	79 . 6	-7.657E+01
Ċ,	ä	1 2476-43	0. 0	0. 0	0 • 0	0 -	0.0	-0.
-	.,	1 • * • * * * * * * *	0.	0.	-1 • -} •	· , •	11.011	
- 1	4	5-6536-03	0. 0	0.	0.	0.	0 • Q	- n .
a		2 6516-19	1 0075+01	-3 7665401	2 1656400	- 7 75E+(1)	87.4	-3.551F+02
U.	-	200016-15	1 097E+03	$= 3 \bullet i \operatorname{Gray} \bullet i i$	0.	= 3• 1 1 (0 + 0 I	K 0 −	- 30 - 711 - 12
1	4	-4.3955-03	2.1436+01	-2. R14F+D2	2.429F+00	-2.415E+02	88.4	-0.
•	•		2.143E+03	0.	0.			
2	4	-7.4501-11	> 474F+0]	-2.091++02	-1.048F+01	-2.096F+02	-87.4	-0.
			2.474E+93	() •	-1 •			
3	4		2.335F+01	-1-1688+02	-4.209F+01	-).285F+02	-74.5	-0.
,	1.	0.0005.55		9.	8. 6. 16.51 - 6.1	4 4 4 5 5 1 - 5 1	(0.7	0
4	4	-9.0095-03	2.089E+01	-4+035F+01	-5•1#2F+01	-5.4455+01	-010 • 5	-0.
5	4	-7.753F-03	1.577E+01	2.308E+01	-5-802F+01	7.756E+01	46.8	-0.
-			1.577F+03	1) •	0.		•	
6	4	-5.512E-03	7.666F+00	8.914E+01	-5.536E+01	1.200F+02	62.3	-0.
			7.6668+92	0.	4.			
7	4	-2.792E-03	1•140E+00	1+151F+02	-3•139F+01	1.232F+02	75.6	-0.
			1.1408+02	0.	0.			
8	4	-2.403E-14	-).937E+00	2.487E+0]	-5.505E+00	2.546E+01	78.8	2.403E+02
-			-1-833E+0S	· () •	0•			•
9	4	2 • 2 2 0 F = 0 3	- Q •	0.	0.	0.	() • ()	- 0 •
			13.	() •	9.			
_ 1	5	1 2525-02	0	0	Ď.	0	0.0	-0
- 1	-)	1.0.023.002	0	0.	0.	0.	11 ● ()	-0.
0	5	-2.176F-14	4.694E+01	-2.309E+02	2.600E+01	-2.333E+02	84.7	2.176E+02
()				ſ) .	0.			
1	5	-7.654E-03	5.922E+01	-2.5471+02	3.372E+01	-S+283E+05	83.9	-0.
			0.	0.	0 .			
S	5	-1-161E-05	3.023E+01	-2.864F+02	-9.781E+00	-2.466E+02	-88.4	-0.
~	-	1 2/75 00	n. 2.0005+02	0.	0.	2 1505.02	7()	6
٦	כ	-1-3070-02	3.0496.01	-2.008L+02	-0.205 <u>r</u> +01	=2+159E+02	-10.3	-0.
4	5	-1.330E-02	2.552E+01	-8.534F+01	-8.783E+01	-1.338F+02	-61.1	-0.
			0.	0.	0.			• -
5	5	-1.133F-02	2.179E+01	5.308E+01	-9.438E+01	1+331E+02	49.7	-0.
	-		<u>^</u>	0.	0.			
6	5	-/.9986-03	1.550€+01	1.2276+02	-7.927E+01	1.6486+02	6 2 •0	-0.
7	Ľ	-3 6005-03	0. -0.5075+01	0. 1 AUKELAN	U. 	1.3136.405	60 E	-0
'	5	- 200776-03	-9.00/CTUU	1.0700.002		1.03152405	0400	-0.
я	5	1.494F-19	-1.015E+01	9.775F+01	-1.943F+01	1.011F+02	80.1	-1.444F+02
	2	1 4 H 2 H 10	0.	0.	0.	1-9116-0C	0001	** //76 /96
			-	-				

9	٦	2.430E-03	6 • () •	0 • 0 •	0 • 0 •	0.	0.0	-).
- 1	ħ	1.140E-02	() • 0 -	() •	0 • 0 •	0.	0.0	-0.
0	'n	-1.482F-17	7.105E+00 7.105E+02	-6.9168+01	1.3525+01	-7.052F+0]	どり・1	1.482E+03
1	ń	-1.0528-02	4.412E+01 4.412E+03	-4.201++02	2.653E+01	-4+216F+02	86.8	-0.
5	6	-1.805E-05	6.661E+01 6.661E+03	-7.9278+02	2.927F+1.3	-3.946F+02	26.4	-0.
3	6	-2-1378-92	4.393F+31 4.398F+03	-2.971++00	-6-519F+01	-7.(HHDF+()2	-80.1	-0.
4	5	-2.071E-02	4.417E+01 4.417E+03	-1.816++02	-1.2278+02	-2.346E+02	-66.6	-0.
5	ń	-1.6998-02	2.756F+01 2.756F+03	-3.320F+91	-1.5}5£+02	-1.573F+02	- 50.7	-0.
6	6	-1.154E-32	6.107E+90 6.107E+92	1.2251+02	-1.574F+62	2.74/E+02	59 . t	-0.
7	'n	-5.707E-03	-1.979E+00	2.400++02	-6.24×+11	2.6176+12	76.7	-0.
ч	4	-2.840F-18	-7. HANF+111 -7. HANE+112	7.397E+01 0.	-1.800F+03	7•793F+01	77.6	5.2801+05
с у	6	5.224F-03	0. 1.	· 2 •	ে) • গু •	٩ •	0.0	-0.
-1	7	1.2505-02	0 •	-) .	A .	0.	0.0	-0.
0	7	-6.3702-1-	-2.159F+01	-].45]t+02	6.154E+01	-1-7316+02	67.9	6.3708+02
1	1	+1.522E-02	9.120E+01	-7.3491+01	4.914E+11	9.549E+01	-16.2	-0.
5	7	-2.536E-02	4.99 <u>9</u> E+01	-2.002++02	5.057F+01	-2.101F+02	79.0	-0.
٦	7	-3-539E-05	1.058E+02	-1.866E+02	-1.92×E+0]	-1.8778+02	-26.4	-0.
4	7	-3-525E-05	9.069F+01	-1.3245+02	-1.256E+02	-1.PAHE+02	=65•K	-0.
5	7	-2.7408-02	S.641E+01	-6.726t+01	-1.778E+02	-1.935F+N2	-54.6	-1) •
6	7	-1-8528-02	3.475E+01	3.6125+00	-2.098F+02	2+245E+02	42.9	-0.
7	7	-7.4718-03	-5.729E+01	8.591E+01	-1.876E+02	2•151F+02	55.4	-0.
a	7	8.802E-18	-1.42HE+01	3.2241+02	-B+071E+01	3+408E+02	77.2	-8.802E+02
9	7	5.686E-03	9 • 0 •	0 • 0 •	() • () •	() •	0•0	-0.
-1	ų	1.650E-02	0 • 0	0.	0.	0•	0.0	-0.
0	ų	-1.0396-17	-5.445E-02	-1.856£+01	1.425F+01	-2+630E+01	61.5	1+0398+03
1	н	-1-6516-02	1.266E+01	8.702E+00	3.971E+01	5+045E+01	-43.6	-0.
2	h	-3.144E-02	2.952E+01	-3.860E+00	2.761E+01	4.509F+01	-29.4	-0.
3	9	-4.268E-02	4.987E+01	1.8926+01	1.976E+01	5+950E+01	-26.0	-0.
4	Ŗ	-4.769E-02	7.803F+01	0. 2.345E+01	-3.101E+01	9+205E+01	24.3	-0.

			1.50}F+04	0.	0.			
5	B	-4.2945-02	S.196E+01	1.0075+01	-7.4368+03	1.1315+02	37.6	-0.
			1.039E+04	0.	0.			
6	н	-3.1698-02	3.056E+01	5.41=++00	-L.010E+D2	1.1445+02	41.4	-0.
			6.171E+03	ก .	. F .			
7	я	-1.659E-02	1.193E+01	-6.9412+00	+1.050++02	1.079F+02	42.4	-0.
			2.346F+03	0.	Ο.			
8	8	-2.971E-17	-8,505E+00	-3.72(++0)	-6.443E+11]	=R.485F+()	-51.3	2.4716+03
			-1.701E+03	0.	G .			
4	đ	1.4478-02	0.	0.	0.	0.	0.0	-0.
			0 •	fi 🖕	·) •			
-1	9	0.	Q •	0•	J .	ñ.	0•0	-0.
			<u>.</u>	0.	0 •			
0	Э	1.5566-03	P.•	n .	0 •	0.	0.0	-0.
			11 •	· 1 .	0 •			
1	4	-1•412E-02	0 •	С.	D •	0.	0.0	-0.
			0.	0 •	12 •			
5	7	-3•365E+05	fi •	9.	J 🖕	0.	0.0	~ 0.
			0.	11 •)•			
3	4	-4.8255-02	0.	Λ.	0 •	0.	0 • 0	-0.
			14 •	0.	0 e			
4	9	-5.9658-03	υ.	U •	0.	0•	0.0	-0.
			" •	0.	0 •			
5	9	-6.065E-02	11 •	0 •	9.	0.	0.0	-0.
			·) •	:) •).			
6	Ģ	-4.990E-02	0.	13.	ð.	ı) ●	0.0	- () •
_			Э. •	1) •	13 •			
7	9	-3.2418-02	9 •	(F •	9.•	0.	0 • 0	-0.
			P.•	U •	() •			
8	9	-1.1448-02	') •	1) •	y) •	0.	0•0	I) •
~		A = 05	<u>п</u> .	P •	1. •			
y,	9	5.740H-03	9 •	·) •	0.•	f) •	$0 \bullet 0$	-n •
			0.	G .	-1 •			

SHMMATION O	н сльно й т	SPPIMG R	FACTION		=	5.0001+02
MAXTHUM STA	11CS CHEC	K ERROR A	T STA	3 А	=	5.271E-09

TIME FOR THIS PROMEM = 0 HINHTES 5.689 SECONDS

FLAPSED THE TIME = 0 MINUTES 30.11F SECONDS

PROGRAM SLAB44 - MASTER DECK + N. VURA REVISION DATE DR MAY 70 CHG CEAQUI36 CODED AND RUN 21 MAY 70 INCH-LE UNITS PROBLEM SERIES 4 - FIVE HEIM NONCOMPOSITE SKEW PEIDGE WITH 8 X & INCREMENTS

ELAPSED TO TIME = 0 MINUTES 30,120 SECONDS

THE AUTHORS

Mahendrakumar R. Vora was a Research Engineer Assistant with the Center for Highway Research, The University of Texas at Austin. His experience includes work with various private and government organizations in Bombay, India. His research interest is primarily in the area of discrete-element analysis.

Hudson Matlock is a Professor of Civil Engineering at The University of Texas at Austin. He has a broad base of experience, including research at the Center for Highway Research and as a consultant for other organizations such as the Alaska Department of Highways, Shell Development Company, Humble Oil and Refining Company, Penrod Drilling

Company, and Esso Production Research Company. He is the author of over 50 technical papers and 25 research reports and received the 1967 ASCE J. James R. Croes Medal. His primary areas of interest in research include (1) soil-structure interaction, (2) experimental mechanics, and (3) development of computer methods for simulation of civil engineering problems.