A FINITE-ELEMENT METHOD OF ANALYSIS FOR COMPOSITE BEAMS

by

Thomas P. Taylor
Hudson Matlock

Research Report Number 56-10

Development of Methods for Computer Simulation
of Beam-Columns and Grid-Beam and Slab Systems

Research Project 3-5-63-56

conducted for

The Texas Highway Department

in cooperation with the
U. S. Department of Transportation
Federal Highway Administration
Bureau of Public Roads

by the

CENTER FOR HIGHWAY RESEARCH
THE UNIVERSITY OF TEXAS
AUSTIN, TEXAS

January 1968



The opinions, findings, and conclusions
expressed in this publication are those
of the authors and not necessarily those
of the Bureau of Public Roads.

ii



PREFACE

This report describes an analytical tool for the solution of composite
beam and slab problems. It may be used as a guide for the study and analysis
of shear interaction between highway bridge decks and their supporting girders.

The program described in this report is written for the Control Data
Corporation 1604 or 6600 computers. It is in FORTRAN language and only minor
changes would be necessary to make it operable on other systems.

This is the tenth in a series of reports that describe the work in
Research Project No. 3-5-63-56 entitled '"Development of Methods for Computer

Simulation of Beam-Columns and Grid-Beam and Slab Systems.'

The reader may
find it advantageous to review Report No. 56-1 (see List of Reports) as it
provides background for this report.

The support of this work by the Texas Highway Department and the Bureau
of Public Roads is gratefully acknowledged. The continued assistance and
advice of Mr. Larry G. Walker, contact representative, and others in the
Bridge Division of the Texas Highway Department is appreciated. Support
for a portion of this study was provided by the National Science Foundation
in the form of a graduate student fellowship, and approximately two hours of

computer time were donated by the Computation Center at The University of

Texas.

Thomas P. Taylor
January 1968 Hudson Matlock
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ABSTRACT

A method of analysis for composite beams with any degree of horizontal
shear interaction is presented. The method is very versatile; it is appli-
cable to composite beams that have abrupt, point-by-point variations in their
structural properties. Also, the beam may be subjected to any configuration
of transverse or longitudinal load, and it may be supported in any reasonable
manner .

There are three important features in the method of analysis presented.
First, a finite-element model is substituted for the real structure. Second,
algebraic equations which describe the load-deflection behavior are written
for the model. Finally, the equations are solved for the unknown deflections
by a modified form of Gaussian elimination,

The solution of practical problems is facilitated by the use of the
computer program, COMBM 1, which utilizes the method of analysis presented
herein. A series of example problems are included to demonstrate the use of

the program and the generality of the method.
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NOMENCIATURE

Symbol Typical Units Definition
AS, Ab in2 Cross-sectional areas
as, ab in Distance from interface to horizontal spring
restraints
a - a* - Terms in coefficient and load matrices
bt - b° - Terms in coefficient and load matrices
Cs, Cb in Distance from neutral axis to interface
¢ -t - Terms in coefficient and load matrices
v in Slip at interface
ds, db in Component of slip due to slope of bars
8¢ in Change in horizontal displacement between
adjacent one-half stations
s _b .2 .
E”, E 1b/in Modulus of elasticity
s b . 2 . _
F, F 1b-in Flexural stiffness = EI
h in Increment length
6 rad Central-difference slope
IS, Ib in4 Moment of inertia
i - Station number
x© 1b/in Shear connector modulus
KS, K° 1b/in Horizontal spring stiffness
L - Dummy index used in summation process
s b . .
M7, M in-1b Bending moment
NS, Nb 1b Axial tension or compression

Note: The superscripts ''s" and "b" are used throughout the study to refer to
slab and beam respectively.
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Typical Units

1b
1b
in-1b/rad

1b/in
1b/in
1b/in
in-1b

in

1b

in

in

Definition

Applied longitudinal loads
Transverse load

Rotational restraints

Transverse spring support

Axial spring stiffness

Equivalent axial spring stiffness
Applied transverse couples
Horizontal displacement

Shear

Vertical deflection

Longitudinal distance along composite beam



CHAPTER 1. INTRODUCTION

Statement of Problem

This study is concerned with the development of an efficient method for
the analysis of composite beams, In this text, the term "composite beam"
refers to structural systems consisting of two separate members that are
joined at their interface by a shear connection. A practical example is a
highway bridge girder that acts compositely with the floor slab. A typical
composite beam is shown in Fig 1. The top member is a concrete slab and the
bottom member is a steel I-beam. Shear connection is provided between the two
members by studs which were welded to the top of the beam prior to placement
of the concrete. The method of analysis presented is not limited to concrete-
steel combinations such as shown in Fig 1 but is applicable to any similar
composite system.

The stiffness and strength characteristics of a composite system are
greatly affected by the amount of interaction between the slab and the beam,
Number, location, and strength of the shear connectors are the factors that
determine the degree of interaction between the two members. A complete
absence of shear connectors causes the most flexible system. At the other
extreme, the stiffest possible system is obtained when sufficient connectors
are provided to insure that there is no slip between the two members. It is
possible to determine the moment of inertia of the system for both of the
extreme cases; therefore, conventional methods of analysis may be applied to
them. For intermediate cases, it is not possible to calculate the moment of
inertia of the system; hence, a new method of analysis 1s needed. Special=-case

solutions for partial-interaction problems may be found in the technical
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literature, but a general method of analysis for the full range of composite

structures has not been found.

Brief Description of the Method of Analysis

The method of analysis presented in this text is free of many of the
severe limitations that are found in conventional methods., The method presented
herein allows wide variations in loads, supports, shear connectors, and charac-
teristics of the members. Development of this method was made possible by the
advent of the digital computer with its ability to do repetitive arithmetic
operations rapidly. A basic requirement of the method is the ability to solve
a large number of simultaneous equations, an ability not practical without the
aid of a computer,

There are three steps in the analysis presented herein. First, the real
physical problem is replaced by a finite-element model which enables a person
who is not familiar with techniques of numerical analysis to understand the
equations that describe the behavior of the system. Second, three equations
which describe the load-deflection behavior of the system are derived from a
free-body diagram of the model. The load-deflection equations are written in
terms of three unknowns: horizontal displacement of the upper member, horizontal
displacement of the lower member, and vertical deflection, which is the same
for both members. When the three governing equations are written for each
station in the model, a diagonally-banded set of equations results. Solution
of this set of equations is the final step of the analysis.

The three steps outlined above have been incorporated into a computer
program which makes the solution of practical problems a routine matter. All
that is required of the user is to describe the physical problem according to
a data input form that is provided, and the program completes the analysis

automatically.



Limitations of the Method

While the analysis presented in this text is applicable to a wide range
of problems, certain assumptions and limitations are built in. A detailed list
of the pertinent assumptions is given in a later chapter; hence, only a summary
will be given at this point. The method is valid only for static loads on the
system; dynamic response is not considered. Also, the assumptions of conven-
tional beam mechanics, linear stress-strain properties, small deflections, etc.,
are included. 1In addition, only linearly elastic shear connectors are presently

considered.

Organization of the Report

A summary of the previous developments which have contributed to this
report is given in Chapter 2. 1In Chapter 3, the finite-element model is pre-
sented and the load-deflection equations are derived. Chapter 4 is devoted to
the solution of the system of equations. The computer program is described in
Chapter 5. Example problems which illustrate correct usage of the computer
program are given in Chapter 6. The final chapter includes a summary and

recommendations for further research.



CHAPTER 2. A SURVEY OF IMPORTANT DEVELOPMENTS

History of Composite Construction

One of the first composite structures was built in 1922 by the Dominion
Bridge Company of Canada. Two I-beams with a concrete slab were tested. At
about the same time, tests of composite beams were carried out in the United
States and England. All of the tests indicated good interaction between the two
materials. In 1926, the patent "Composite Beam Construction" was issued to J.
Kahn. By the early forties, several composite bridges had been built. The
first specification for design of composite highway bridges was published by
the American Association of State Highway Officials (AASHO) in 1944. The
presentation of design principles in a specification stimulated a great deal

of interest in composite construction.

Conventional Methods of Analysis

In 1912, E. S. Andrews (Ref 2) published one of the first articles on the
theory of composite concrete and steel beams. Andrews presented equations for
the computation of stresses that were based on the theory of a transformed
section. In the transformed section theory, the concrete properties are
multiplied by the modular ratio in order to convert the concrete to an equiva-
lent section of steel. The modular ratio is simply the modulus of elasticity
of concrete divided by the modulus of elasticity of steel. After the concrete
has been transformed, the section is treated like a homogeneous steel section.
Andrews' analysis assumed straight-line stress distributions and no slip between
the concrete and steel.

The transformed section theory has been compared with tests of composite

beams by many investigators. These experiments have shown that the transformed



section theory is applicable as long as the bond between the steel and concrete
is unbroken. The tests have also shown that the theory gives a good approxi-
mation even after bond failure if there is a sufficient number of very stiff
mechanical shear connectors. For design purposes, the transformed section
theory has generally been accepted.

Tests have also shown that, except in the case of complete bond, some slip
between the slab and the beam is bound to occur and therefore the interaction
between the beam and slab is not complete. Several theories have been developed
to consider the effect of slip on the behavior of the system. The most widely
known of the partial-interaction theories was developed by N. M. Newmark (Ref 12).

Newmark derived a differential equation which relates the force transmitted
through the shear connectors to the applied bending moment. The equation is
applicable to a system composed of different materials joined by an imperfect
shear connection. It is assumed that:

(1) the shear connection between the slab and I-beam is continuous
along the length of the beam,

(2) the amount of slip permitted by the shear connection is directly
proportional to the load transmitted,

(3) the distribution of strains is linear within each of the members,

(4) the beam and the slab are assumed to deflect equal amounts at
all points along their length.

The differental equation developed by Newmark is a general expression, but
it is solved only for one special case, a simply-supported beam with a concen-
trated load. Once the axial load caused by the shear connectors has been
determined, it is possible to determine the desired design information such as
deflections and strains. The objection to this analytical procedure is that the
governing differential equation must be resolved for each different type of load
or support condition. For many common cases a solution to the equation would be

extremely difficult to obtain.



A Finite-Element Method of Analysis for Beam-Columns

The method of analysis presented in this text has been greatly influenced
by Matlock's numerical solutions to beam-column on elastic foundation problems
(Ref 10). Matlock's approach to these problems is to replace the real physical
system by an appropriate finite-element model. The model used by Matlock is
composed of rigid, weightless bars hinged at their ends. The beam stiffness of
each finite beam element is concentrated in the springs at the hinges. 1In Fig 2
the development of a bar-and-spring model from a section of a beam element
subjected to pure bending is shown. Figure 2b shows the stresses acting on the
beam element. The distributed stresses may be replaced by concentrated forces
as shown in Fig 2c. In Fig 2d the deformed beam element is replaced by a pair
of plates hinged at the center and restrained by springs at the top and bottom.
A beam could be represented by a series of such beam-element models as in Fig
2e. Finally, a cruder model could be made by using rigid bars and springs as
shown in Fig 2f.

Based on the model, a set of equations which describes the deflections as a
function of the applied loads is derived. This set of equations forms a five-

wide, diagonally-banded matrix which is solved by a direct elimination procedure.
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Fig 2. Finite mechanical representation of a conventional
beam (after Matlock, Ref 10).



CHAPTER 3. METHOD OF SOLUTION

General Remarks on the Method of Solution

In this chapter, three equations which describe the load-deflection
behavior of the system are derived. The three equations are written in terms
of three unknowns: vertical deflection, horizontal displacement of the upper
member, and horizontal displacement of the lower member. The vertical deflec-
tions are measured from any convenient horizontal reference line to the inter-
face of the two members. There is no common reference line for the horizontal
displacements; instead, the displacement of each point is measured from its own
initial equilibrium position. For convenience, the upper member will hereafter
be called the "slab" and the lower member will be called the "beam.'" A list of
the assumptions that were made in the derivation of the equations is given
below:

(1) wvertical deflections of the slab and beam are equal,

(2) the slab and the beam interface is a straight line,

(3) deflections are small compared to the length of the structure,

(4) linearly-elastic shear connectors are used,

(5) slab and beam have linear stress-strain properties,

(6) the strain distribution throughout the cross section of both
the beam and slab is linear; however, the strain distribution
for the entire composite section may have a discontinuity at
the interface as shown in Fig 3d,

(7) transverse shear deformations are negligible within each member,

(8) the cross sections of both members are symmetrical about the
vertical axis and loads are applied only in the plane of the
vertical axis.

A numerical solution to a composite structural syst=m may be obtained by

either of two approaches. One method, as explained in Cha ter 2, is to replace
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the physical system by an appropriate bar-and-spring model. Equations can then
be derived which describe the load-deflection behavior of the model. Another
approach is to base the derivations on an infinitesimal, or differential, ele-
ment of the real beam. Finite differences may then be used to convert the
resulting differential equations to difference equations, Identical equations
are obtained by either of the two methods. 1In this chapter, a bar-and-spring
model approach to the problem is presented because the mathematics involved are
simpler in this method. The infinitesimal element approach was investigated by

the author and used to check the equations presented in this chapter.

Bending of a Composite Section

When a composite section is subjected to an upward load, the bottom fibers
of the slab tend to shorten while the top fibers of the beam tend to lengthen.
If there are no shear connectors to bind the slab and beam together, slip occurs
at the interface of the beam and the slab as shown in Fig 3a. If shear connectors
have been installed, they prevent, at least partially, the slip from occurring.
The shear connectors cause horizontal shear to be transferred across the inter-
face, inducing a tension force in the slab and a compressive force in the beam
when deflected upward., This action is shown in Fig 3c. If enough shear connectors
are provided to transfer all of the shear that is developed, no slip occurs and
the upper limit of the strength of the member is reached. Stiffness, number, and
location of the shear connectors are the factors that determine the amount of
interaction between the beam and slab.

Stiffness of the individual connectors is measured by their load-slip
modulus which is simply the slope of their load-slip curve (see Fig 4). Load-
slip curves for a particular shear connection can be determined in the laboratory
from a push-out test. In a push-out test, shear connectors are placed on each

flange of steel beam. The length of the beam is variable, but is usually about
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two feet. Concrete with the same characteristics as the concrete to be used

in the real structure is poured in the form of a slab against each flange.

Bond is destroyed between the steel and concrete by lubrication with cup grease.
After the concrete has set, a series of axial loads are applied to the beam and

the resulting slips are measured.

The Bar-and-Spring Model

Figure 5 shows the model that is used to replace the real system. Each
member (slab and beam) is represented by a system of bars and springs. All of
the bending characteristics for each of the two layers of the system are lumped
in the springs which act at the hinges of the bars. The weightless bars possess
an infinite resistance to bending, but they are axially deformable. Pin-connected
vertical spacer rods are included between the slab model and the beam model to
insure that their vertical deflections are equal. The horizontal shear transfer
mechanism is modeled by a pointer rod and spring system. To the center of each
bar is attached an infinitely stiff cantilever pointer rod that extends to the
interface. A linear spring which represents a shear connector is attached to
each pair of slab and beam pointer rods.

An important feature of the model shown is that it permits a completely
general description of the system. The properties of the system are defined
only at discrete points; some properties are related to the joints while others
are related to the bars. Therefore, abrupt variations in the properties along
the member are allowable. The following quantities are defined at the joints:
vertical deflection W , bending moments Ms and Mb , accumulated axial ten-
sions NS and Nb , transverse loads Q , applied torques T°  and Tb , rota-
, Cross-section areas AS and

tional restraints R° and Rb , support springs S

b . . s b . .
A~ , moments of inertia I and I~ , and distances from the neutral axis to the
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interfaces CS and Cb . In the symbols above as well as in the remainder of the
text, the superscript "s'" refers to the slab and the superscript "b" refers to
the beam. The following quantities are related to the bars and are defined at

b

the half-station: horizontal displacements U° and U , slip vy , shears

s b c . . . s
V' and V  , shear connector modulus K~ , horizontal elastic springs K

b b

and K~ , distances from the neutral axes to the horizontal springs a® and a s

and concentrated longitudinal loads P° and Pb . The quantities listed above

are shown acting in the positive sense in Fig 6.

Derivation of Equations

The relationship between the horizontal displacement and the axial tension
of the slab can be determined by examination of Fig 7. Between Stations i-} and
i+5 the elongation is given by

c  _ 5 s
65 = = Uit Ui (3.1)

The axial tension is equal to the elongation multiplied by the axial spring

constant
S S S_.S / = S
(' Uisi2 Ui+1/2> AE/m = N (3.2)
Similarly, for Station i-l

[ _ 8 s ) S oS _
(" Uiean F Uiae) ApaBia/h = N (3.3)

Subtract Eq 3.3 from Eq 3.2

/ s s 5 s 4 s s 5.8
S Uigpt Ui-1/2> AqEia/h <' Uisrfp Ui+l/2> AE/h

= -N]_ +N, (3.4)

Sum the horizontal forces on Bar i-3 (Fig 8).
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S s s S C S
TN N Rl TR i YR, 0 (3-3)

Equation 3.5 may be substituted into Eq 3.4
s S 5 .5 s S S..5
- (-1 ; > ES /h+ |- ) :
( i-3/2 T U1-1/2> Aj qBi /bt ( Uio1/o ¥ Ui /o) A4Ei/0

s s c -
" K Yie12 T KiaraViaie T T Bilip (3.6)

The term Y must be eliminated from Eq 3.6 in order that u® 5 Ub , and W

_.%
will be the only unknowns. An expression for Vi1 may be obtained by examina-
tion of Fig 9. The amount of slip at each half-station is measured by two
pointer rods that are rigidly connected to the slab and beam bars. Slip at Sta-
tion i-% is simply the horizontal distance between the tip of the slab pointer
and the tip of the beam pointer. The pointers are stiff cantilevers; therefore,
they have the same slope as the bars. It can be seen that the component of slip
that is due to the slope of the slab bar is

-W W,
i

+
S S [ i-1 A
IR IS I, S e — (3.7
Similarly,
4D I i I .5
i-1/2 7 “i-1/2 \ h / -8)

Examination of Fig 9 shows that the total slip is composed of the difference in

horizontal displacement plus the slip components due to bar slopes given by

Egqs 3.7 and 3.8.
-W + W

s S i-1 i) b
- S L R § B
Yiai/o = Yic12 ¥ G ( h /" Vi-1/2
W+ W
b i-1 i)
+Ci12 ( h (3.9)

Equation 3.9 may be written
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= vl - P /¢S b (i-1 T T
Yicy/z T Uiz T Vi TGt Ci_1/2> Ty ) .10

When Eq 3.10 is substituted into Eq 3.6, one of the three governing difference

equations is produced.

S S

S S S S S__S
- (- Uiz * Ui-1/2> ApBp /(- Uisip ¥ Ui+l/2> AE/h

s s c s b 1 s b
" K lie12 T K [Ui-l/Z "Vt h <Ci-l/2 + Ci-1/2>

<' Wi F wi)} = - P?-l/z (3.11)

A derivation similar to the one just outlined yields the second governing

difference equation which applies to the beam.

b b b b b b b_b
- (- Ui-3/2 * Ui-l/2> ap By /b (- Ui-i2 ¥ Ui+l/2> AE;/h

b b c s b 1 /.8 b \
" KV TR fUi—l/Z " Uit R Ciap G 0)
. )| b 3.12
Wt T TR (3.12)

Equations 3.11 and 3.12 are thus derived from a summation of horizontal forces
and the axial deformation properties of the slab and beam. The third governing
differential equation is a moment-~equilibrium equation. It also involves a
summation of vertical forces and the moment-curvature relationship.

A free-body diagram of a portion of the system is shown in Fig 9a. It
should be noted that the applied torques and rotational restraints are felt by
the system as transverse loads one station away from where the torque or rota-
tional restraint is applied (see Fig 9b). For example, if a rotational restraint
is applied at Station i, then transverse loads equal to the product of the
rotational restraint and the slope ei are felt at Stations i-1 and i+l.

Sum moments about the interface at Station i are shown in Fig 9a.
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- M) - Mlz-1 T+ M? - b <V§-1/2 * V?-1/2> - <' Wi tWy
B, ci_l\) N+ <- Wy bW+ c?_1> N?_l - ciN] - C?N?
- B‘ (' Wia® Wi) - C /g - ai-1/2:| K 1/2%.1/2
- li'z‘ <' Wia™® Wi) * Cl13.1/2 + ali)-1/2:| Kl;.1/2112.1/2
* [% <' Wil T W ) * Cl13.1/2:| Pl13.1/2 * [% <' Wit Wi)
- Ci-1/2] Piijp = O

(3.13)

A similar equation can be obtained from a summation of moments about the inter-

face at Station i+l

S b S b o
M- + + -
Mi Mi Mi+1 Mi+1 h (Vi+1/2
_CS>NS+<-W +W +cb>
i i i i+l i

1
™
N =

| =

[ ST

N

V)

i+1/2

S

i~ j_+1Ni+1 -

- | - +
< wi wi+1

S b b
i+1Ni+1

/ s s ] s s
S +wi+1> - Civi/2 2+ /2] Ky /2% 472

/ \
K' v * Wi+1) +e

b b
(' w, * Wi+1> + Ci+1/2:| Pivi/2 +[

= 0

b
it1/2 ©

b :I "
ai+1/2

b P
i+1/27i+1/2

1

2 <' Wi + Wi+1>

S S
- Ci+1/2:| Piti/2

Subtract Eq 3.13 from Eq 3.14 and rearrange the terms

S b S b S b [ s s b b
+ - + + + -
Mig *M -2 <Mi Mi) T M "M - MG TN %
-2 <Ns s 4 b) s o8 b b :l i <_ )
i’1 N?.Ci + N 9Cm TN 0 W.p W

(3.14)
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b 8 1..b b 1. s s 1.b
(Ni-l - N ®ia179Y%-172 T ®-179%-172 T 2%i-12

1,8 (b s 1.b b
) + (-wi + wi+1> (N - N - oK U

+ 5P/ i "N - X0l
1.s s 1.b 1l.s N ! cs + 45
- Fin Uiy Yot Y P2/ - G2 T A2/

s s b b\ b b s
+ + {c®
K 17905 12 T G172 *2ii1/2) Kic12%ii172 F (Cing2
s N\ s s /b b ) b b
- +
*aii170) KineVivye - \Civye * 2i472) Kiwolinvge

_ /S b s b ) s s
= -~ B AV 0 V5172~ Vivge m Viwge) T Fia/2%12

b b s ] b b

- .1
1-1/2%-1/2 Y Pia/2% 172 " Piv/2C%ins2 (3.15)

+ P

An expression for the shear terms which appear in Eq 3.15 may be obtained by the

the summation of vertical forces on Station i.

VS b s b 1 (TS b s

- - -+ - - — -+ -
io1/2 V2~ Viase o Viwe T oS mop \Tia T T T Tin

Yo =
1+1> ~—<R1 p TR '1/ i-1 -—<R1+1 1+1/ i+l 0 (3.16)

. 8 - . .
An expression for Ni—l may be obtained by summation of horizontal forces

along the length of the slab.

i-1
s ) c s s 8 \ =
Nip - §:(KL-1[2YL-112 + Ky q/9Y%-172 7 Pro1/2) 0 (3.17)
1=1
Similarly for the beam
i-1 \
b - kP b + PP = 0 3.18
Nig - E;(* K 1/2¥1-172 ~ Kp-172%-172 T Fro1/2) (3.18)
1=1
Subtract Eq 3.17 from Eq 3.18
i-1
b s s b ) s b b >
3 - . - 1
Nip "N, E;(PL-IXQ P70 - Kil179V170 T Kpo1yoVi-172) G019

=1
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A similar equation may be written at Station i
i
b s S b s ] b b
- = + - -
- ) (s YR - Ky K12 1/2) 32200
L=1

Substitute Eqs 3.16, 3.19, and 3.20 into Eq 3.15

b s b) s b " s s b b
+ - + + - +
Mig THMq -2 (Mi Mi)tMig v My [Ni-lci—l N 1%

b b b b
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i

b b /.8 b
- +
+ Ki»l/ZUi-l/2>] * ( w, * Wiﬂ) [Z \PL-1/2 T PL_1/2
L=1

1
% (P1+1/2 P?+1f2>:| k Wy T W +1) [LZI <&S-1KEUE-1/’2

b 1 s b b
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s s b
Ci12 t oy 1/2) K1Yt (01 172 Y ag 1/2 K;

- (% ) s
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b b s s b b

+ -
TP 172% 172 T Rin/2C%ins2 T Bin2Cinge

(3.21)

The N° and Nb terms in Eq 3.21 can be eliminated by substitution of equations

of the form of Eq 3.2. Also, the M°  and Mb terms can be eliminated by using

the moment-curvature relationship which is given in Eqs 3.22 and 3.23. The terms

b b
F° and F  are equal to the products E°I° and E Ib respectively.

]

F
s _ 1
M= o (wi_l - W, W +1) (3.22)
b
b F, / )
. ; + .
Mo hl Wy - W, +W. (3.23)

When Eqs 3.22 and 3.23 are substituted into Eq 3.21, the third governing

difference equation is obtained.

) b s b) ( )
- + - + - +
(Fip * Fi-l) (Wi-z W Wi) 2 (Fi Fo) Wi -2, +W,
s b s s )
+ - + - -
* (Fi+l Fi+1) (Wi Min wi+2> ( Uisz2 T Ui/

s s s b b ) b b b ( s
- + + -
Ai-lEi-ICi-lh + ( U1.3/2 U1-1/2 Ai-lEi-lci-lh 2 Ui-1/2

s S._S_S b b ) b.b.b ( s
- - + - -
+ Ui+1/2) A;E;Cih -2 ( Us 172 T Uin/2) 44E1C Usit1/2

s s s s b b ) b b b
+ { -~
+ Ui+3/2) A EinCinh ( Uit1/2 + Yi+3/2) AimBinCiv

\ 2; ( L-1/2 Pz-l/z) % (Pl 1/2 ?-1/2>] b®

- (- W
* (' L )[ Z: (KL 1/2%0-1/2 KE-1/2U:-1/2> * % (Kl 1725 -1/2

i
+ K?-l/zuz-l/z)] b+ (_ i T i ) [ggl ( LN 2-1/2)
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+ % (Pisrso * P?+1/2)] L < Wyt W) [ }: K _1/2% 172

b b 1/ s b b s
+ + = + S
Ko12%-172) T3 (KoY 1+1/2 Ki+1/2Ui+1/2)] b - {Ci.12

S =] S b > 2 b b
+ a +
a;_ 1/2J WEKT 005 170 T (Cise T Aii12) DK 1005 1)0
K- s S s N b ’ b
+ 2 - 2
+ Kci+l/2 ai+l/2> DKt 2% 4172 = (Cimyn T ai+l/2) bK 1172
b = .3 3 h® / S s )
Uit1/2 hoQ; - hoS.W, - o= (T, 1 - T - T
/s b h® /_s b Y oS
— + + | + +
\Ri1 Ri-l) a1t Rin Ri+l) 941 T H \ Pl 1/2%-1/2
b b s s b b -
+ -
TP 1/2% 172 Y Riv1/2Ci+1/2 7 Pit1/2%i41/2) (3.24)
Nonlinear Terms in the Moment-Equilibrium Equation
i-1
In Eq 3.24, the terms . 1 +W }j kP uP )
’ \- % \Ke-1/2% 172 * R 1720 -1/2)
L

1 s s b b )] 2 \ [ }: . s
+ = -
7 (Ki—l/ZUi_l/Z *K 1905 172)] b7 and (- W+ \¥e-1/2%L-1/2

b b ) 1l /s s b b )] 2 .
+ + = + .
KL-l/ZUL—l/Z 5 (Ki 1/2Ui 1/2 Ki 1/2Ui 1/2 h are nonlinear because

they involve products of two unknowns. The nonlinearity occurs because the
horizontal springs cause the final axial load distribution to be dependent on
both vertical deflections and horizontal displacements. For problems in which
there are no horizontal springs, the terms drop out and the equation is linear.
For many practical problems this will be the case. In Chapter 5, example prob-
lems will be shown in which the presence of horizontal springs does not affect

the linearity of Eq 3.24. 1In these problems, the horizontal spring fixes the
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structure's location in space and does not affect the axial load distribution.
An iterative solution must be used when Eq 3.24 is nonlinear. 1In the
iterative solution, the products of the horizontal spring constants and the
horizontal displacements are computed and treated as known stiffness terms in
Eq 3.24. Zero horizontal displacements are assumed for the first iteration.
In each successive iteration, the horizontal displacements from the previous
iteration are used. The process is continued until the computed displacements

from two successive iterations agree to within a specified tolerance.
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CHAPTER 4. COMPUTATION OF RESULTS

Contents of the Chapter

In this chapter the load-deflection equations that have been derived are
converted to a form that is convenient for a computer solution. The system of
equations that results when the load-deflection equations are written about
every station in the structure is shown in matrix form, and the elimination
procedure used to solve the set of equations is described. Boundary conditions
are discussed and the accuracy of the solution is evaluated. The formulas
used to compute bending moment, axial load, slip, force per connector, shear,

and support reaction are presented.

Conversion of Equations to Standard Form

In this section the three load-deflection equations are converted to a
standard form that facilitates visualization of the elimination procedure used
to solve the equations.

Equation 3.11 may be written in the form

1.s 2. b 3 4 s 5 b 6
aUizpp vt aUi g P agW o tal aptailig,tay

7..8 8 b 9 _ 10
+ aiUi+1/2 aiUi+1/2 + aiwi+1 = ai %.1)

In this equation the coefficients are defined

ai - %A:-lEi-l

ai = 0

SR (C:-l/z + Cli)-1/2> K1/

a = - [’11? (A:-1Ei-1 * AEED R g Ki-l/zj,

27
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5 _ c
ay Ki-1/2
6 1l /s b c
3y T T3 (?1-1/2 + Ci-l/é) Kic1/2
7 _ 1l,s_.s
a; = whyEy
a§ = {
1
a? = 0
1
10 _ s
a = - Pap

Equation 3.12 may be written

4 b 5 6 s
v 3/2<+ bW, _1/2-+ DU AR oS t1/2
7.b 8 _ .9
U2t P T OBy

The coefficients in Eq 4.3 have the following values

b b

b = %Ai~lEi-1
by = -y (C§~l/2 + c?-l/2>K§-l/2
by = Ki-1/2
by = - [%’(A?-lE?-l +AgEy) + K?-l/z + Ki-l/z]
b = % (C?_-l/z'+ C?-1/2> Ki1/2
B® = 0
1
b/ = LaPg®
i h™i i

(4.2)

(4.3)

(4.4)
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by = P1-1/2

Equation 3.24 may be written in a similar form

ey * °§UE-3/2 * °2U2-3/z ey )+ equy
+ c7w + c8US+1/2 + c9Ub+l/2 + clowl
+ C£2U3+3/2 13W1+2 = Cia
The coefficients are defined

e} = By +E -0k (RS 4R )

e; = AL EL,

SRR R

b

4 s b 2
¢y = 2 (Fi-l FE L HE F E: ( L-1/2 * PL-l/é) b
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(4.5)

5 8 b b 2
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171
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The Pattern of the Equations

Each of the three equations (Eqs 4.1, 4.3, and 4.5) is a valid expres-
sion for each station in the model. When the equations are written about

every station, a system of simultaneous equations results which can be written
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in matrix form as shown in Fig 10. All of the terms in the coefficient matrix
are grouped in a thirteen-element wide diagonal band.

The set of simultaneous equations is solved by Gaussian elimination. An
extremely fast and efficient solution is obtained because of the large number
of zeroes in the square coefficient matrix. Those terms that are zeroes before
the solution begins are not even considered during the elimination process.
Therefore, the number of algebraic operations that must be performed is greatly
reduced. It is not possible to take advantage of the zero coefficients a? s

9 8 . , -
a; > and bi because the value of these coefficients is altered by the elimi-

nation procedure. There are three sets of coefficients used in the matrix;

therefore, three back-substitution formulas are used. These formulas are also

simplified by the diagonal banding of the matrix. The back-substitution

formulas are

Wy = - 1—7 ch f+1/2 + C?Uli)+1/2 * °110w1+1 + °11U§+3/2 + °112U?+3/2
1
tepu,, - elt) (4.7)
Uli)-l/z - 11)—4 (ow; + b305 i+1/2 F b7Ub+1/2 + 050, - b)) (4.8)
i
Ui-l/z - iZ < i i-1/2 1 2 o + a7U1+1/2 + 88Ul1)+1/2
i
+am, - al) (4.9)

Boundaries and Specified Conditions

The method of solution presented in this text is extremely versatile with
regard to boundary conditions. Some of the most common types are discussed in
this section.

A zero bending moment occurs at a point when the curvature and axial loads
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in a structure are both equal to zero. This condition is automatically created
at each end of the structure. When Eq 4.5 is written one station past the

ends of the structure, some of the terms in the equation are equal to zero
because the physical properties of the system are zero past the ends (see Fig 11).
The remaining terms specify that the second derivative of vertical deflection
with respect to distance (curvature) is equal to zero. A zero axial load is
produced when the first derivative of horizontal displacement with respect to
distance is set equal to zero (see Eq 3.2). This condition is also created
automatically by the physical properties of the system,

A vertical deflection may be specified at any point in the structure by

either of two methods. One method is to input a foundation spring of suffi-
cient magnitude to insure a zero deflection. The other appreoach is to
manipulate the matrix coefficients. A deflection can be specified at any
Station i simply by the clearing of all of the coefficients in Eq 4.5

to zero except Ci which is set equal to 1.0 and Cia which is set equal to
the desired deflection.

The fixity (resistance to rotation) of a member may be controlled at any
point by the specification of a rotational restraint. A rotational spring adds
a bending moment to the system that is equal to the product of the slope at the
point and the specified spring constant. A very large rotational restraint
causes the slope at that point to be essentially zero. The zero curvature that
is automatically created at the end of the member is over-ridden by the speci-
fication of a rotational restraint at the end.

Horizontal displacements can be controlled by the specification of hori-
zontal springs. No provision is made in the present analysis to control the
displacements by manipulation of the matrix coefficients.

To correctly model a cantilever such as the one shown in Fig 12a, the
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slope and horizontal displacements for both slab and beam should be set equal
to zero at the member's end. A large rotational restraint can be used to
enforce a slope that is essentially zero. It is not possible to set the dis-
placements equal to zero at Station O because they are defined only at the half
stations. It is possible, by adjustment of the axial spring stiffness, to set
the displacement at Station -1/2 and still maintain the correct displacement at
Station +1/2., If the displacement of Station 0 could be set equal to zero and
an axial tension N° were applied, then a displacement U° would exist at

Station 1/2 in Fig 12b. This relationship can be expressed as

S
s N
v = = (4.10)
Sl
where
A _ 2
17 whE (4.1

In Fig 12c, the displacement is zero at Station -1/2, but the same displacement

s . . . . . . . . s
U is maintained at Station 1/2. The axial tension is still N

, but the
springs have changed to
A _ 2
S, = ZAE, (4.12)
The equivalent spring for the two springs in series is
A
A (o)
E - SA N SA (4.13)
2 2
A1
SE = hA2E2 (4.14)

. s .
Since U is the same for both cases

SE = S1 (4.15)
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from which it is seen that
AE, = 2A.E

272 171

Thus, to correctly model a cantilever, the products ASE® and AbEb should be

twice the normal amount at the station at the point of fixity.

Accuracy of the Solution

Approximation errors are introduced when the finite-element model is sub-
stituted for the real structure. This type of error can be reduced to any
desired level by dividing the model into more increments. An excessive number
of increments should be avoided because computation time increases in simple
proportion to the number of increments. Experience will enable the user to
determine the optimum number of increments for his desired accuracy.

Because of the large number of arithmetic operations involved in the solu-
tion, round-off errors may occur. A CDC 1604 computer using approximately 11
decimal digits has been used to verify the method of solution, and no signifi-
cant errors have been observed in the practical problems that have been solved.
Errors can be caused by the specification of unreasonably large values of cer-
tain of the physical properties. A good rule-of-thumb is that the magnitude
of a rotational restraint should never be greater than 103 times the magnitude
of the sum of the bending stiffness of the members at that station. Similarly,
the shear connector modulus should not exceed 102 times the sum of the bending

stiffnesses.

Results

After the vertical deflection and horizontal displacements have been com-
puted, bending moment, axial load, slip, force per shear connector, shear, and
support reaction can easily be determined. Bending moment is computed for the

slab and beam by Eqs 3.22 and 3.23, The formula used to compute the axial
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tension in the slab is given by Eq 3.2, The formula used to compute the beam
axial tension is not shown because it is very similar to Eq 3.,2. An expression
for slip is given by Eq 3.10, The force per shear connector is simply the
product of the slip and the shear connector modulus. An expression for the
shear in the slab is obtained by a summation of moments about the center of

the slab bar in Fig 9a. The formula is

s 1 s s c s s [ s
Vv, = = | -M, + M, - K,
i-1/2 h [ i-1 TM 7 K Yic12Ci-172 T Vi1 0851021102

- % (ﬁi-l * N:) (}wi-l * w?) ] 4. 16)

A similar formula can be derived for the beam shear. Two formulas are used to

compute support reaction. At any station where a deflection is specified, the

support reaction is

s b s b

R
= - + -
Qy v Vi+1/2 + Vi+1/2 Qi

i i-1/2 ~ V1-1/2

1 /.8 b s b 1 s b
ton Bi-1 T Ty - Ty - Ti+£> T2 [ (?1-1 + Ri-£> W2

s b s b ]-> <S b
(#1-1 + R,y FR,FRO)W (R + Ri+i> W ] (4.17)
Equation 4.17 can be derived by a summation of the vertical forces on a joint.

At the other stations in the structure, the support reaction is simply the

product of the vertical deflection and the foundation spring stiffness

Q. = S.W, (4.18)



CHAPTER 5. THE COMPUTER PROGRAM

General

Program COMBM 1 (COMposite BeaM - lSt version) is written in FORTRAN-63
language for the Control Data Corporation 1604 and 6600 computers, With
minor changes, the program would be compatible with IBM computers. One sub-
routine, INTERP4, is included in the program. Compile times for the program
are approximately two minutes for the 1604 computer and approximately 13
seconds for the 6600 computer, The program storage requirement is 21,071
words. A listing of the program and the definitions of the symbols used
in the program are included in Appendix 2 and Appendix 3.

To describe the physical problem to the computer, it is first necessary
to divide the member into a number of equal increments, which are designated
by station numbers. Any number of increments 200 or less may be used. The
left end of the structure should be located at Station 0. In Chapter 3 it was
pointed out that some of the physical properties of the system are associated
with the joints (full stations) while other properties are defined in the bars
(half stations). To facilitate the description of problems, the half-station
numbering system has been deleted. In this program each bar in the model has
the same station number as the joint to the right of it.

All loads and restraints are defined at discrete points <dn the finite-
element model, Distributed loads and restraints from one-half of the increment
on each side of the joint are '"lumped" at the joint. Therefore, end stations
should receive half-values of the distributed effects. The input of distributed
data is facilitated by SUBROUTINE INTERP4, Given a value at the initial and
‘final stations in a distribution sequence, INTERP4 performs a linear interpola-
tion between these extreme values and stores the appropriate value at each

intermediate station. Concentrated loads that occur between stations should
39
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be split by the user to the two adjacent stations., The amount of load placed
at each station should be inversely proportional to the distance between the
station and the point of application of the load.

Any system of units may be used to describe the problem (for example,

pounds and inches), but the system must be used consistently.

Procedure for Data Input

A Guide for Data Input is included in Appendix 1. The guide is designed
so that additional copies may be furnished as separately bound extracts for
routine use. A parallel study of the guide will help the reader understand
the following discussion.

Any number of problems may be stacked and run together. The sequence of
problems is preceded by two cards which describe the run. The first card of
each problem contains the problem number and a brief description of the problem.
The program continues working problems until a blank problem number is encoun-

tered; then, the run is terminated.

Tables of Data Input

Table 1 is the data-control table. It consists of a single card which
must be input in each problem. The number of cards in the remaining tables
and the data-hold options are specified in this table. The data-hold options
allow the user to retain any of the data tables from the preceding problem. If
Table 2 or 3 is held, it may not be modified, and the number of cards specified
for it must be zero. Data in Tables 4, 5, 6, and 7 may be held and modified by
the addition of new cards, but the total accumulated number of cards in each
of these tables must be less than 100, The hold options for the various tables
are independent of each other; however, care must be exercised in order to

insure that data in the various tables are compatible,
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In Table 2, the number of increments in the member and the increment
length are specified. The number of increments must be 200 or less. For
linear problems the remainder of the card is left blank. For nonlinear prob-
lems the maximum number of iterations must be specified in order to prevent
excessive computation. The closure tolerance has the same units as the com-
puted deflections. If the tolerance is unreasonably small, closure may be
difficult to achieve. For most problems, a value in the range 1 X 10-6 to
1 X 10-8 inch is satisfactory. To encourage understanding of the solution
process, the program requires that three monitor stations be specified.

Any desired vertical deflection may be specified for any station in the
structure in Table 3. Each specification requires a separate card. A limit
of 20 is placed on the number of specified deflections. The cards in this
table may be stacked in any order.

Physical properties of the slab are described in Table 4. The properties
include the modulus of elasticity, cross-section area, moment of inertia,
distance from the neutral axis of the slab to the interface of the slab and
beam, horizontal spring constant, and the distance from the neutral axis to
the horizontal spring. The method used for description of distributed data is
illustrated in Appendix 1. Half-values of the moment of inertia and cross-
section area are automatically produced at the end of each distribution sequence.
Half-values are not created for the modulus of elasticity because the bending
stiffness (EI) and axial stiffness (EA) would then be only quarter-values. In
addition, half-values are not created at the ends of distribution sequences
for the distance from the neutral axis of the slab to the interface C° since
it would not be appropriate for this geometric property. The remaining

values in the table are defined at the half-stations, and it is also not
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appropriate to have half-values at the ends of their distribution sequences.
All of the values in Table 4 are accumulated algebraically in storage. There
are no restrictions on the order of the cards, except that within a distribu-
tion sequence the stations must be in ascending order.

Physical properties of the beam are described in Table 5. The same
comment s as enumerated for the slab parameters also apply to the same beam
parameters.

Transverse loads, foundation springs, and the modulus of the shear con-
nectors are described in Table 6. The description of data in this table is
very similar to Table 4. Half-values of transverse loads and foundation
springs are created at the end of their distribution sequences.

Table 7 provides for the description of torques, rotational restraints,
and longitudinal loads. The data-input rules of Table 4 apply to this table
also. Torques and rotational restraints are always concentrated effects.
Longitudinal loads can be either concentrated or distributed. Half-values are

not automatically created for the longitudinal loads.

Error Messages

Checks for common types of data errors are included in the program. An
error message which defines the message is printed if any of the following
conditions occur:

(1) two deflections are specified at the same station,

(2) the allowable number of cards for an input table is exceeded, and

(3) the station numbers in a distribution sequence are out of order.
In addition to the specific error messages, a general purpose error message is
provided for a number of unlikely errors. If the message "UNDESIGNATED ERROR
STOP" is printed, the user must investigate the program to determine what

caused the error. Any error detected by the program will cause the run to be
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abandoned. Specification of data past the ends of the structure will interfere
with the automatically created boundary conditions and cause the solution to be

in error. No check is provided for this type of error.
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CHAPTER 6. EXAMPLE PROBLEMS

Purpose

A series of example problems are solved in this chapter in order to demon-
strate the capabilities and prove the validity of the computer program. The
first five problems illustrate the uses of the program. These problems are
hypothetical, but they are typical of actual highway-bridge problems. In the
sixth problem, the results computed by COMBM 1 are compared to the experimental
results of Proctor (see Ref 13). 1In addition to the problems that are presented,
each example structure has been analyzed for the limiting cases of complete
shear interaction and no shear interaction. These limiting cases were analyzed
with COMBM 1 and checked against a computer program developed by Matlock in
Ref 10. Exact agreement was obtained. A listing of the input data is included

in Appendix 5 and the computer output listing is included in Appendix 6.

Example Problem 1. A Simply-Supported Composite Beam

This example problem demonstrates the method of analysis for a 'shored"
composite beam. A ''shored" composite beam is one for which temporary supports
are provided to carry the dead weight of the slab and beam during the setting
period of the concrete. The structure analyzed in this problem is shown in
Fig 13a. It is simply supported and has a span length of 20 ft. The member is
composed of a 12 WF 27 beam and a 48-in by 4-1/2-in concrete slab. Light-weight

concrete which weighs 110 1b/ft3 and has a modulus of elasticity of 2.3 X 106

lb/in2 is used in the slab. A modulus of elasticity of 2.9 X 107 lb/in2 is
assumed for the steel beam, Shear connection is provided by a double line of
1/2-in by 3-1/2-in welded stud shear connectors. The shear connectors are uni-

formly spaced at 1-ft intervals along the beam. A load-slip curve from Proctor

(Ref 13) which was obtained from a push-out test on the shear connectors is
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shown in Fig 13d., The shear connector modulus is determined by the straight
line through the linear region of the curve.

A model of the structure which has 20 increments is shown in Fig 13c.
Simple supports at each end of the member are modeled by the specification of
zero deflections at Stations 0 and 20, A horizontal spring is input at Station
0. This spring does not cause the problem to be nonlinear because the only
effect of the spring is to fix the location of the structure in space; the
axial load distribution is not affected. The maximum number of iterations,
closure tolerance, and monitor stations are left blank because the problem is
linear (the axial load is a function of vertical deflection only). Shear
connectors are described from Station 1 to 20 because the connectors are pro-
perties related to the bars, which are designated by the same number as the
joint to their right. The system of station numbers is shown in Fig 13c. The
input value of shear connector modulus is twice the amount that is computed
from Fig 13d because there are two connectors at each bar. Loads on the struc-
ture include the dead weight of the member itself plus the live loads shown in
Fig 13c.

The deflections computed in Problem 1 are shown in Fig 14. Also shown are
the deflected shapes of the structure for the cases of complete shear interac-
tion and no shear interaction. Comparison of the curves shows that the shear
connection used in Problem 1 is very close to the case of complete interaction,
Problem 2, which is discussed in the following section, is closely related to
Problem 1; therefore, the deflections computed in Problem 2 are also shown in
Fig 14. The computed value '"'LOAD ON SHEAR CONNECTOR'" which is printed in Table
9 is actually the load per bar and should be divided by the number of connectors
per bar in order to obtain the load on each connector, This value should be

compared to the load-slip curve to determine if the maximum allowable load or
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proportional limit per connector has been exceeded.

Example Problem 2. An Unshored Construction Problem

The performance of a composite beam is affected by the support conditions
while the concrete slab is hardening. When the beam supports its own weight plus
the weight of the wet concrete when cast, it is called "unshored'" construction
and permanent stresses are locked into the beam. The total stress distribution
under any given live load may be determined by the addition of the permanent
stresses to the live-load stresses. This procedure is illustrated in this
problem series. The structure to be analyzed is the same as the one analyzed
in Problem 1.

A solution for the behavior of the beam under the dead load of the slab
and beam is given in Problem 2A. The permanent stresses in the beam may be
obtained from the values computed in this problem which considers the beam only.

In Problem 2B, the composite structure is subjected to the live loads
shown in Fig 13C. It should be noted that the dead load is not present in this
solution. When the values computed in 2A are added algebraically to the values
in 2B, a final solution is obtained. For example, the bending moment in the
beam at Station 10 is 1.152 X 10° in-1b plus 4.917 X 10° in-1b which is 6.069
X 105 in-1b. The description of the problem is facilitated by the data-hold
options. All of the data from the previous problem except the loads are held.
The only new data cards required are those that describe the slab properties,
the loads, and the shear connectors. The final deflected shape of the struc-

ture is shown in Fig 14.

Example Problem 3. A Cantilever Beam

The hypothetical cantilever shown in Fig 12a is solved in this problem.

It is assumed that the member has the same physical properties as the structure
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in Problem 1. Shear connectors are spaced according to the shear diagram. In
the region from Station 0 to 10, a 6-in spacing is maintained between the pairs
of shear connectors. From Station 10 to 20, the spacing is increased to 12 in.
In Chapter 4, it was shown that to correctly model a cantilever, the pro-
duct of the cross-section area and the modulus of elasticity should be twice
the normal value at the fixed end. Half-values of area are created at the end
of each distribution sequence by INTERP4. Therefore, a concentrated value of
area equal to one and a half times the normal value is added to both the slab
and the beam at Station 0. A large horizontal spring is defined at Station O
of both the slab and the beam. The description of the cantilever is completed
by the specification of large rotational restraints at Station O for the slab

and beam. The deflected shape is shown in Fig 15.

Example Problem 4. A Two-Span Composite Beam

A two-span, continuous composite beam is shown in Fig 16a. The negative
moments that exist in the vicinity of the center support produce tensile
stresses in the slab which make the analysis of this difficult. Consideration
of the nonlinear properties of concrete is beyond the scope of this report;
however, this example problem demonstrates a rational approximation of the
behavior of the structure.

The analysis is simplified by the assumption that the slab has its full
flexural stiffness except between the inflection points, where it is zero. For
most problems, the location of the inflection points can be estimated. The
accuracy of the solution can be determined by examination of the computed
results. If large tensile stresses occur in the slab or if large compressive
stresses are computed for the top edge of the beam between the inflection points,
then a new set of assumptions should be made and the problem re-solved. Further

refinements could be made in the analysis if a more accurate solution were desired.
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Inflection points are assumed to occur at Stations 22 and 38 of the struc-
ture in Fig l6a. A 7-in by 3/8-in cover plate is provided in this region. The
moment of inertia of the slab is set equal to zero in this region, but the area
and modulus of elasticity are not because eight reinforcement bars are present.
Shear connection is provided by sets of shear connectors equally spaced at 1-ft
intervals along the member. Three connectors are in each set and the individ-
ual connectors have the load-slip characteristics shown in Fig 13d. The beam
is a 21 WF 55. 1Its modulus of elasticity is 3 X 107 1b/in2. The 84-in by 7-in

6

concrete slab weighs 150 lb/ft3 and has a modulus of elasticity of 3 x 10~ 1b/

in2. The supports in the center and at the left end are assumed to be on
rollers. A large horizontal spring is specified for the bottom of the beam
at the right end which represents the fixed support.

Examination of the computed results shows that the assumptions made for
this problem were reasonably accurate. Stresses in the slab can be determined
from the bending moment and axial load. TIf stress diagrams are drawn for Sta-
tions 20 through 24 and 36 through 40, it can be seen that the stresses in the
slab change from predominantly compression to predominantly tension at Stations

22 and 38, just as assumed. The deflected shape of the structure is shown in

Fig 17.

Example Problem 5. A Nonlinear Problem

A nonlinear problem occurs when the rollers at the center support of the
structure in Fig 16a become locked. The support column, which is fixed at its
base, resists horizontal movements of the beam. The spring constant of the

column is approximately 1 X 105 1b/in. It acts at the lower edge of the beam
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which is 9.297 in. below the neutral axis of the beam. A much larger spring,
1 X 108 1b/in, is specified for the right end of the beam because it is
assumed to be immobile. These two springs cause the axial loads to be depen-
dent on both horizontal and vertical deflections. Longitudinal tractive loads
of 50 percent of the concentrated vertical loads are specified at the surface
of the slab at these four locations. These axial loads cause applied moments
to also act on the slab at those points. A closure tolerance of 1 X 10-6 is
specified and a limit of 30 is placed on the number of iterations.

The iteration monitor data, which is printed in Table 8, shows that oniy
three iterations were required to reach the specified closure tolerance. The
longitudinal tractive loads reduce the effective stiffness of the beam which
tends to increase the deflections. The horizontal spring at the center sup-
port tends to reduce the deflections in the second span because it increases
the effective stiffness of the structure. The net result of these effects is
to cause the deflections in the first span to be slightly more than the deflec-

tions in Problem &4 and the deflections in the second span to be less.

Example Problem 6. A Comparison of the Method with Experimental Results

The purpose of this example problem is to verify the method of solution by
comparison with the results of an experimental study performed by Proctor (Ref
13). The composite beam tested by Proctor is shown in Fig 18a. It is composed
of a 12 WF 27 steel beam and 48-in by 4-1/2-in concrete slab with a 1-1/2-in
haunch. Proctor reports moduli of elasticity of 2.3 X 106 lb/in2 for the con-
crete and 2.9 X 107 lb/in2 for the steel beam. Shear connection is provided by
a double row of 1/2-in by 4-in welded studs. The studs are evenly spaced at
1-ft intervals along the length of the structure. 1In Proctor's test, the

deflection gages were zeroed before the concentrated loads were applied;
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therefore, the measured deflections do not include the effect of the dead weight
of the structure.

Each of the transverse loads in Fig 18a is located directly above a pair
of shear connectors. 1In the bar-and-spring model, loads are defined at the
joints while shear connectors are defined in the bars. Therefore, the real
structure cannot be modeled exactly. A 40-increment model of the structure
is shown in Fig 18c. In this model, the exact spacing between transverse loads
can be maintained. The value of the shear connector modulus is determined by
a straight line through the data points of Fig 18d. As with most experimental
data, the choice of the best straight line is somewhat arbitrary. Any value of
shear connector modulus between 6 X 105 1b/in and 9 X 105 1b/in is a reasonable
approximation. The value of 8 X 105 1b/in is used in this problem because
there are bond and friction forces in the real structure that are eliminated in
a push-out test. Proctor's test results show that the haunch is in the region
of tensile stress; therefore, the haunch has no effect except to increase the
distance from the interface to the neutral axis of the slab.

A comparison of the analytical and experimental results is given in Fig 19.
The curves are the results computed by COMBM 1 and the "+'" symbols are the
experimental results reported by Proctor. Fig 19a is a comparison of vertical
deflections. Proctor's value of 0.230 in. for the center-line deflection, which
is the only value reported, compares exactly with the computed value of 0.230
in. Six experimental values of slip are shown in Fig 19b. The measured slips
are located at the ends of the slab, 4-1/2 ft from the center line, and 1-1/2
ft from the center line. A value of end slip of 0.0046 in. was reported by Proc-
tor. This value is in reasonable agreement with the computed value of 0.0057

in. The values of slip do not compare as well as the deflections because the
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computed values of slip are much more sensitive to the choice of shear connector
modulus. A series of supplementary problems was run to determine the relative
effect of shear connector modulus on computed values of slip and deflection.

For moduli of 7 X 105 1b/in and 11 x 105 1b/in, the end slip was 0.0064 in,

and 0.0042 in.; the center-line deflections were 0.233 in. and 0.223 in.



CHAPTER 7. SUMMARY AND RECOMMENDATIONS

Summary

A method has been presented for the analysis of composite beams that
is valid for any degree of interaction between the elements. The method is
directly applicable to, but not limited to, the highway bridge problem of a
concrete slab over a steel beam with shear connectors at their interface. A
computer program, COMBM 1, has been written which utilizes the method of analy-
sis. Correct usage of the program has been demonstrated by a series of example
problems.

The principal features of the method are

(1) use of a finite-element model to simulate the real structural
system,

(2) describing the load-deflection behavior with three equations
which are written about each station in the structure,

(3) use of a special version of Gaussian elimination for most
efficient solution of the system of equations.

Recommendations for Further Research

Extension of the method of solution to include shear connectors with non-
linear load-slip curves would be an important development. Ingram (Ref 9) has
developed a technique for solving beams on nonlinear foundation springs that
could be modified to fit the case of nonlinear load-slip curves. A nonlinear
curve could be represented in the computer by a series of points. For any
specific slip v the load-slip relationship could be represented by a tan-
gent to the curve. The tangent has a slope K¢ and an intercept P ,

With these values of shear connector modulus and longitudinal load, the problem
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could be solved by the method presented in this text. New values of slip could
be computed and the entire process repeated until the values of slip from two
successive iterations agreed to a preset tolerance.

A more accurate analysis of a composite structural system would consider
the nonlinear material properties of the concrete slab., Haliburton (Ref 6) has
presented a technique for the solution of nonlinear bending problems that could
be incorporated into the method of analysis that has been presented.

The analysis of a bridge-floor system has been investigated by Ingram
(Ref 8). Ingram solved the problem of a plate supported by beams, but his analy-
sis neglected the transfer of horizontal shear between the plate and beam. A
natural evolution of the method presented in this text would be a combination

of it with the work of Ingram.
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COMBM 1 GUIDE FOR DATA INPUT ---Card forms
IDENTIFICATION OF PROGRAM AND RUN (2 alphanumeric cards per run)

£ Iv

|| 80
| 80
IDENTIFICATION OF PROBLEM (one card each problem ; program stops if PROB NUM is left blank)

PROB NUM

| | DESCRIPTION OF PROBLEM (alphanumeric)

! 5 H 80

TABLE ). PROGRAM CONTROL DATA (one card each problem)

ENTER "1" TO HOLD PRIOR TABLE NUM CARDS ADDED FOR TABLE
2 3 4 5 6 7 2 3 4 5 6 7
] [] ] [ 1] | [ 1
15 20 25 30 35 40 45 50 55 60 65 70

TABLE 2. CONSTANTS (one card, or none if Tabie 2 of preceding problem is held)

NUM MAX CLOSURE
INCRS INCR LENGTH ITERS TOLERANCE MONITOR STATIONS
10 21 30 41 45 55 60 65 70

TABLE 3. SPECIFIED DEFLECTIONS (number of cards according to Table 1; none if preceding Table 3 is held)
STATION DEFLECTION

[ ] |

10 21 30

L9
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TABLE 4. SLAB PROPERTIES

"1V

ENTER | E® 1° A® c® K® A
IF CONTD MODULUS MOMENT CROSS - DISTANCE HORIZONTAL DISTANCE
TO ON NEXT OF OF SECTION FROM N.A. TO SPRING FROM N.A. TO
STA STA CARD ELASTICITY INERTIA AREA INTERFACE HORIZONTAL SPRING
6 10 15 20 30 40 50 60 70 80
TABLE 5. BEAM PROPERTIES
ENTER | E° 1° A c’ K® a’
IF CONT'D MODULUS MOMENT CROSS- DISTANCE HORIZONTAL DISTANCE
TO ON NEXT OF oF SECTION FROM N.A.TO SPRING FROM N.A. TO
STA STA CARD ELASTICITY INERTIA AREA INTERFACE HORIZONTAL SPRING
6 10 15 20 30 40 50 60 70 80
TABLE 6. SLAB AND BEAM DATA
ENTER | K° Q s
IF CONTD SHEAR TRANSVERSE SPRING
TO ON NEXT CONNECTOR FORCE SUPPORT
STA STA CARD MODULUS
6 10 15 20 30 40 50
TABLE 7. SLAB AND BEAM DATA
ENTER | TS T® RS R® pSs p°
IF CONTD SLAB BEAM SLAB BEAM SLAB BEAM
TO ON NEXT TRANSVERSE TRANSVERSE ROTATIONAL ROTATIONAL LONGITUDINAL LONGITUDINAL
STA STA CARD COUPLE COUPLE RESTRAINT RESTRAINT LOAD LOAD
6 10 15 20 30 40 50 60 70 80
ISTOP CARD (ONE BLANK CARD AT END OF RUN)
80

69
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GENERAL PROGRAM NOTES

The data cards must be stacked in proper order for the program to run.

A consistent system of units must be used for all input data, for example, pounds and inches.

All 5-space words are understood to be right-justified integers or whole decimal numbers . . . . . -43

All 10-space words are right-justified floating-point decimal numbers . . . . . . . . . . .|[~%4.321E+03

TABLE 1. PROGRAM-CONTROL DATA

For Tables 2 and 3, the user must choose between holding all of the data from the preceding problem or
entering entirely new data. If the hold option for either of these tables is set equal to 1, the
number of cards input for that table must be zero.

In Tables 4, 5, 6, and 7, the data is accumulated by adding to previously stored data. The number of
cards input is independent of the hold option, except the cumulative total of cards in each of the
tables can not exceed 100.

Card counts in Table 1 should be rechecked after the coding of each problem is completed.

TABLE 2. CONSTANTS

Typical units for the increment length are inches.
The maximum number of increments into which the beam may be divided is 200.

The remainder of the card is blank for linear problems.

For nonlinear problems, the maximum number of iterations must be specified to prevent excessive computation.

Most practical problems will reach the final solution in less than 30 iterations.

LTIV

TL
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Specification of an unreasonably small closure tolerance makes closure difficult to achieve. A tolerance >
of 1.0 x 1076 is sufficient for most problems. -
O
Three monitor stations must be specified. The horizontal displacements of the monitor stations are
printed after each iteration to aid understanding of the closure process.
TABLE 3. SPECIFIED DEFLECTIONS
The maximum number of stations for which deflections may be specified is 20,
TABLE 4. SLAB PROPERTIES
Typical units: s s s s
variables: E® I A c® K a
values per station: 1b/in2 in& in2 in 1b/in in
Data should not be entered (nor held from the preceding problem) which would express effects beyond the
ends of the composite beam.
The left end of the composite beam must be located at Station O.
The variations in the interpolation and distribution process are explained and illustrated on page 68.
There are no restrictions on the order of cards in Table 4, except that within a distribution sequence the
stations must be in ascending order.
At end stations of each distribution sequence, half-values are automatically created for the moment of
inertia and the cross section area. Care must be taken that double amounts of the other parameters
are not input at points where they change value.
TABLE 5. BEAM PROPERTIES
Typical units:
variables: Eb Ib Ab Cb KP aP ~
values per station: 1b/in? in in? in 1b/in in “
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Data in Table 5 is governed by the same rules as Table 4.
TABLE 6. SLAB AND BEAM DATA

Typical units: c
variables: K Q S
values per station: 1b/in 1b 1b/in

Data in Table 6 is governed by the same rules as Table 4.

At end stations of each distribution sequence, half-values are automatically created for the transverse
force and the spring support.

TABLE 7. SLAB AND BEAM DATA

Typical units:

variables: T° Tb ingib . -?b p° Pb
values per station: in-1b in-1b —_— L 1b 1b
rad rad

Data in Table 7 is governed by the same rules as Table 4.

At end stations of each distribution sequence, half-values are automatically created for the slab and beam
transverse couples, and slab and beam rotational restraints.

I1° 1V

G/
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CONT'D

FROM TO TO NEXT TYPE 1 TYPE 2 TYPE 3
Individual Card {nput STA STA CARD? DATA DATA DATA
Data concentrated at one Station..........oovviiiiiiiiiiiiiriie e, 21+ 2 |o=NO 3.0 3.0 &
Data uniformly distributed..........co.oovvivinne ot O—-—+10 |O=NO 2.0 g
1{1—+15 [O=NoO 1.0 4.0 2.0
5—+15 [O=NO 2.0 O
1—-+165 [0O=NO 1.0 o
Multiple Card Sequence
First of 8@QUENCE.........cccovviiiiriieiieiiin et eiiieeiee e 2 0\|‘ 1*YES 2.0 -
INTOrior Of SOQUONCE.........ovvteriiet ettt e iiiiiiainenannnn C25 1-YES 2.0 =
End of sequence............. ... ... e e 30 |O=NO 0.0
20 1=YES 0.0 2.0
\‘28 O=NO 4.0 2.0 >=
32‘\‘ 1-YES 2.0 1.0 0.0 >|:1
Resulting Distribution of Data |*35 [O0*NO 2.0 1.0 3.0
- - —3—
TYPE 1 DATA: r- 4 —2— - - .
1,A,0,5,T,R ? % —i— [PTT?
STATION NO.O 5 10 15 20 25 30 35
—_4 —
_3_
TYPE 2 DATA: 066009 —2—
T _iC poo0
STATION NO. O 5 10 15 20 25 30 35
—_4 —
_3_
TYPE 3 DATA: ——
K,a,P _— — i i i i i i i i i
STATION NO. O 5 10 15 20 25 30 = 35
BAR NO. | 5 10 1S 20 25 30 35

LL
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This page replaces an intentionally blank page in the original.
-- CTR Library Digitization Team



CnOMBRM],

PROGRAM COMBM 1 (INPUT,OUTPUT) 13SE66
1 FORMAT ( 52H PROGRAM COMBM 1 - DECK 2 - MATLOCK-TAYLOR -

1 28H REVISION DATE = 18 JAN 68 )

DIMENSION AN1(32)}s AN2(14)« 28MR6
1 Q(207)s S{207)s RS(207)s RB(207)s TS(207)s TB(207)s 28MR6
2 PS(207)s PR(207)s ES(207)s EB(207)s S1(207)s BI(207)s 28MR6
3 AS(207)s AB(207)s CS(207)s CB(207)s SCMI207)s FS(207)s 12AP6
4 FR(207)s W(207)s US{207)s UB(207)s SH(207)s SHN(207y, 0BJEE
5 BH(207)y BHD(207)s DW(207)s BMS(207})s 8BMB(207), 08JE6
6 VS(207)s VB(207)s REACT(207),s KEY(277)s A(105207) 08JE6
7 B(9s207)s C(145207)s IN14(100)s IN24(100)s KR24(100)s 08JES
8 ESN2({100)s SIN2{100)s ASN2(100), CSN2(100), SHN2(100), 09JF6
9 SHDN{100)s IN15(100)s IN25(100)s KR?5(100), EBN2(100) 22SE66

DIMENSION BIN2(100)s ABN2(100)s CBN2(100)s BHN2(100), BHDN(100}s N8JE6

1 IN16(100)s IN26(100)s KR26(100}s SCMN(100)s QN2(100), 0BJE6

2 SN2(100)s IN17(100)s IN27(100)s KR27(100)s TSN2(100}, 09JE6

3 TBN2(100)s RSN2(100)s RBN2(100)s PSN2(100)s PBN2(100)s 0B8JE6

4 KSW4(100)s KSW5(100)s KSWe(100)s KSW7(100)s INI13(20), 0BJEE

5 WS(20)s TC{14)s UST{207)s UBT(207)s SALI(207)s BALI(207}s25JL6

6 GAMA(207)s FPCI(207)s UM(E) 25JL6

10 FORMAT ( 5H sy 80Xy 10HI=-—=—- TRIM ) 27FE4

11 FORMAT ( S5H1 sy 80Xs 10HI-=--—— TRIM ) 27FE4

12 FORMAT ( 16A5 ) ngMY3

13 FORMAT | 5Xy 16A5 ) 27FE4

14 FORMAT { ASs 5Xs 14A5 ) 18FES5

15 FORMAT (///10H PROB s /5Xs A5s 5Xs 14A5 ) 18FE5

16 FORMAT (///17H PROB (CONTD)s /5Xs A5y 5Xs 14A5 ) 18FES5

19 FORMAT (///48H RETURN THIS PAGE TO TIME RECORD FILE == HM ) 12MR5

20 FORMAT ( 10Xs 1415 ) 08JE6
21 FORMAT ( 5Xs 155 10Xy E10a43s 10Xs I5s E10435315 ) 29SE66

31 FORMAT ( 5Xs 15, 10Xs E10.3 ) 26JL6

41 FORMAT ( 5Xs 3I5s 6F1043 ) N1AP6

100 FORMAT (///35H TABLE 1 - PROGRAM-CONTROL DATA NgJEG

1 /  43Xs 35H TABLE NUMBER 08JE6

2 /43Xy 4CH 2 3 4 5 6 7 N8JES

3 /7 46H HOLD FROM PRECEDING PROBLEM (1=HOLD)» 28MR6

4 7Xs 615 N9JE6

5 / 38H NUM CARDS INPUT THIS PROBLEMs 15Xs 615 ) 08JE6

20" FORMAT (/7//24H TABLE 2 — CONSTANTS /) 28MR6

201 FORMAT ( 30RH NUMBER OF INCREMENTSs 48X,y 15, 25JL6

1 / 28H INCREMENT LENGTH 445Xy E10e3, 25JL6

2 / 28H NONLINEAR PROBLEM , 50Xs A5, 25JL6

3 / 28H MAX NUM ITERATIONS,s 50Xs I5» 25JL6

4 / 28H CLOSURE TOLERANCE » 45Xs FE10e3> 25JL6

5 / 34H LIST OF MONITOR STATIONSs 34Xs 315 ) 29JL6

300 FORMAT (///40H TABLE 3 - SPECIFIED DEFLECTINNS 26JL6

1 // 30H STA DEFLECTION / ) 25JL6

310 FORMAT ( 10Xs I3s 5Xs E10473 ) 25JL6

400 FORMAT (///35H TABLE 4 — SLAB PROPERTIES /) 26JL6

401 FORMAT ( 50R FROM TO CONTD MODULUS MOMENT CROSS- 26JL6

1 35H DISTANCEs HORIZONTAL DISTANCES 26JL6

2 / 50H STA STA OF OF SECTION 26JL6

3 35H NeAe TO SPRING NeAe TO 26JL6



82

4

5
411 FORMAT
412 FORMAT
413 FORMAT
500 FORMAT
600 FORMAT

1

2

3
700 FORMAT

B W

BUO FOURMAT
8US FORMAT
1

3
810 FORMAT
830 FORMAT
850 FORMAT

Ov e B N e

875 FORMAT

AU B s D e

860
870
880
890
Fu3
904

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
9u5 FORMAT
QU7 FORMAT
1
910 FORMAT
980 FURMAT

TTEST

START EXECUTION

/ 50H ELASTICITY INERTIA AREA
35H INTERFACE HORZ SPRING /)

{ 5Xe 214 I3y 1Xs 6E1143 )

{ 5Xs 14 4Xs I3 1Xe €E1143 )

{ GXs [4s 139 1Xse 6E11e3 )

{/7/740H TABLE 5 =~ BEAM PROPERTIEDS /)
{(//7/750H TABLE & — DATA COMMON TO THE SLAB AND BEAM
/77 50H FROM TQO CONTD SHEAR TRANSVERSE SPRING

/ SO0H STA STA CONNECTOR LOAD SUPPORT
/ A0H MODULUS / )
(//7/750H TABLE 7 - DATA FOR THE SLAB AND BEAM
// 50H FROM TO CONTD SLAB BEAM SLAB
30H BEAM SLAB BEAM
/ 50H STA STA TRANSVERSE TRaNDSVERSE ROTATIONAL
35H ROTATIONAL LOUNGITUD. LONGITUD.
/ 50H COUPLE COUPLE RESTRAINT
356H RESTRAINT LOAD LOAD /)
(///7640H TABLE 8 — ITERATION MONITOR DATA y
{ / 50H STA DISPLACEMENTS AT STATIONS
/ 15H ITER NOTs 11Xs I3s 20Xs I3s 19Xs 13,
/ 51H NUM CLSD U-Sp AR U=~BE AM J-5SLAG
38H  U=-BEAM U=-SLAB U-BEAM / )
15Xy 215 F12e3s Elle3s E124%s Flle3s E1243s E£E11e3 )
{ /7/50H SOLUTION NOT CLOSED TO SPECIFIED TOLERANCE
{7/735H TABLE 9 - C(COMPUTED RESULTS
/7 S50H STA VERTICAL SLAY SLAB
35H BEAM SEAM LUAD UN
/ 50H DEFLECTION oENDING AXTAL
35H BENDING AXTAL SHEAR
/ 50H MOMENT LOAD
354 MOMENT LOAD CONNECTOR /)
(/7/7/735H TABLE 10 - COMPUTED RESULTS
// &0H STA SLAB SLAB BEAM
I0H BEAM SUPPORT SLIP
/  SOH HORIZONTAL SHEAR HORTZONTAL
?5H SHEAR REACTION
/. 4T7H DISPLAC DISPLAC 7/
{ 5Xs &4y 2Xs 5E1243 1}
[ 71Xs E1243 )
[ 58Xy T4y 50Xy E1243 )
{ 11Xy 4F12.39s 12Xs E12e3 )
{ / 25H NONE )
{ //740H TOO MUCH DATA FOR AVAILABLE STORAGE /7 0}
{ 4 6H USING DATA FROM THE PREVIOUS PROBLEM
{ / 48H ERROR STOP —-- TwO DEFLECTIONS SPECIFIED FUR
20H THE SAME STATION )
( 43H LODITICONAL DATA FOR THIS PRO3LEM ¥
(//7/7640H UNDESIGNATED ERROR STUP }
OF PROGRAM
NCT3 = O
NCT4 = O
NCTS5 = O
NCT6 = O
NCTT = O

5H

)

26JL6
26JL6
28MR6
28MRE
28MR6
26JL6
26JL6
26JL6
26.JL6
26JL6
26JL6
26JL6
26JL6
26JL6
29JL6E
26JL6
26JL6
26JL6
254L6
29DES
290E6
290ES
29DE6
27JLé
26JL6
26JL6
26J0L6
26JL6
26JL6
26JL6
26JL6
26J4L6
26JL6
26JL6
26JL6
29JL6
26JL6
26JL6
26JL6
29JL6
26JL6
28MR6
28MR6
28MRE
254dL6
27JL6
28MRs
28MKR6
28MR6
28MRe6
28MR6
28MR6
28MR6
28MR6
18FES

A2.2

1D



A2.3

10U0 PRINT 10

CALL TIC T1OC (1)
READ 125 { ANIT(N)s N = 1s 32 )
1010 READ 145 NPROBs ( ANZIN})s N = 14 14 )
IF € NPROB ~ ITEST 3} 1020, 999Nns 10220
1020 PRINT 11
PRINT 1
PRINT 13+ ( ANI(N}s N = 19 32 1}
PRINT 154 NPROBs ( AN2{(iN})s N = 1s 14 )
Cm———- INPUT TABLE 1
1100 READ 20s KEEP2s KEFP3y KEEP4s KEEPS5s KEEP&Es KEEP74s NCD2s NCD3s
1 NCD4s NCDS5s NCDBEs NCD7
PRINT 100s KEEP2s KEEP3s KEEP4s KEEPS5s KEEP&s KLEEPTs NCDZ2s NCD3,
1 NCD4s NCDSs NCD&s NCD7
C-———- INPUT TABLE 2
120C PRINT 200
IF ( KEEPZ ) 9980, 1210, 1255
1210 READ 21s Ms Hs ITMAXs CLTOLs IM1s IM2s IM3
C—m=—- COMPUTE CONSTANTS AND INDICES
HTZ2 = H + H
HE? = H % H
HE3 = H % HE2
MPP2 = M + 2
MP3 = M + 3
MP4 = M + 4
MP5 = M + 5
MPE = M + &
MP7 = M + 7
GO TO 1260
1255 PRINT 908
1260 IF ( TTMAX 9980, 12629 1263
1262 LABEL = SH NO
GO TO 1265
1263 LABEL = 5H YES
1265 PRINT 201+ Ms Hs LABELs ITMAXs CLTOLs IM1s IMZ2s IM3
Cm—=-- CLEAR STORAGE
DO 129U J = 1+ MPY
WiJdy = Q.0
USTJY = G490
UBTJY = JaU
FS{JYy = UL0
FB(J) = a0
BMS(J} = 040
BMB(J} = 0.0
SAL(JY = 0.0
BALIJ) = 00
GAMALJ) = 040
FPC{J) = (.0
VS5(J) = 4.0
VB(J) = 0.0
REACT(J) = 0.0
DO 1270 N = 19 10
AlNsJ) = Ca0
1270 CONTINUE
DO 1275 N = 1y 9

83

12JL3
26S5E66
18FES
28AG3
26FES
26AG3
18FES
18FE5
26AG3
28MR6
08JES
08UJES
NBJES
8 JESs
28MRS
28i"R6
28MR6
29JL6
28Vik6
28MR6
28MR6
28MR6
12AP6
28MR6
28MR6
28MR6
78MRE
28MR6
78MR6
28MR6E
29JL6
25JLé6
25JL6
25JL6
26JL6
28MR6
08 JE6
28MR6
QR JUF6
08JE6
2 8MRA
28MR6
29JL6
29JL6
29JL6
29JLé
29406
26JL6
29JL6
29JLA
29.JL6
0B JE6
O8JES
ngJEs
08JEA

D

ID
i
ID
o
ID
Io
D
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1275

13u3

13uv5

1310
1311

1312

1325
1326
1327

1328

1345
1350
1351

BiNsJ) = 0e0
CONT INUE
DO 1280 N = 1y 14
CiNsJ) = Ga0
CONTINUE
CONT INUE
INPUT TABLE 3
PRINT 300
PO 1303 J = 1,
KEY(J) = 1
CONT INUE
IF ( KEEP3 ) 9980, 1310s 1305
PRINT 905
GO TO 1326

MpP7

IF ( NCD3 ~ 20 ) 1312, 1312, 1311
PRINT 9u4
GO TO 9990
NCT3 = NCD3
IFL 1 «GTWNCT3 ) GO TO 1326
DO 1325 N = 1s NCT3
READ 31s TNI3ZIN)s WSIN)
CONTINUE
IF § NCT3 1 9980, 1327, 1328
PRINT 9u3
GO TO 1400
IFiL 2 #GTNCT3 } GO TO 1351
DO 1350 JA = 25 NCT3
JM1 = JA - 1
DO 13485 N = JAs NCT3
IF C INI3CJIMI) - INI3{(N} Y 1345,
PRINT QU7
GO0 TO 9990

ARRANGE THE CARDS IN ASCENDING ORDER OF STA NUMBER

INSAV = INI3(UM1)
WOAV = WS1JUM1)

IN136JMT) = INL3(NI
WSEJUMTY = WSIND
IN13(N} = INSAV
WS(N)Y = WSAV
CONT INUE
CONT TNUF
CONTINUE
IFt 1 «GTWNCT?3 ) GO 71O
DO 138U N = 1s NCT3
JS = IN13IN) + 4
KEY{JS5y = 2
PRINT 31¢s INI3IN)s WSIN)
CONT INUE
INPUT TASLE 4
PRIMT 40U
PRINT 401
IF ( KEEP4 y 9980, 1401s 1430
NCla

=]
NCT4 = NCD4
GO TO 1430

1400

A2.4

08JES
08JES
08JE6
08JE6
08JES
N8 JES
D1JES
11JAS
23FES
03JE3
23FES
26MY5
26MY5
26MY5S
25%Y5
25MY5
25MY5
25MY5
015E66
25MY5
25J4L6
Q2FES
25MY5
25MY5
25MY5
015E66
25MYS
310E4
02FES
02FES
25MY5
25MY5
alJES
02FES
310ts
31bks4
310E4
31uE4
310t4
0Z2FES
N2FES
135E66
015E66
27MY5
31UES4
25JL6
25JL6
02FES
I0MR6
281R6
26JL6
29MR6
28iMR6
28MR6
28MR6
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1410 PRINT 9u5b
IFt 1 «GToNCT4 ) GO TO 1427
DO 1425 N = 1s NCT4
KSW4N = KSW4(N)
GO TO ( 1413 1417, 1421y 1421 Yo KSW4 N
1413 PRINT 411s IN14(N)s IN24(N)s KR24(N)s ESN2(N)s SIN2(N)s ASN2(N)»
1 CSN2{(N)s SHNZ2{N)s SHDN(N)
GO TO 1425
1417 PRINT 412sIN14(N)s KR24(N)Ys ESN2(N)s STNZ2{N)s ASN2(N)s CSN2(N)»
1 SHN?(N)s SHDN(N}
GO TO 1425
1421 PRINT 41713 IND&4(N)s KR24{N)s ESN2(N)s SIN2IN}s ASN2(N)s CSN2(N),

1 SHNZ2(N)s SHDNIN})
1475 CONTINUE
1427 CONTINUE
PRINT 910
NC1l4 = NCT4 + 1
NCT4 = NCT4 + NCD4

1430 IF { NCT4 100 ) 1435, 1435, 1433
1433 PRINT 9us4
GO TO 99990
1435 IF ( NCD& ) 998Uy 1437, 1440
1437 PRIMT 9u3
GO TO 15C0
1440 KR1 = v
DO 1470 N = NCl4, NCT4
READ 41s INIT4(N)s IN24(N)s KR24(N)y ESN2(N)s SINZ2 (N} ASN2(N)»
1 CSN2(N}s SHN2(N)s SHON(N)
KSWa({N) = 1 + KR246(N) + 2 * KR1
KR1 = KR24(N}
KSWaN = KSW4(IN)
GO TO ( 145Uy 1455, 14609 1460 ) » KSW4 N
1450 PRINT 47119 INT4(N)Ys IN24(NYys KR24(N)s ESN2(N)s SIN2(N)s ASN2(N),
1 CSN2(N)s SHNZ2IN)s SHDNIN)
GO TO 147N
1455 PRINT 4129IN14(N)s KR24{N)s ESND(NYy SIN2(N)s ASN2{N)s CSN2(N),

1 SHN? (N)s SHDN{N)
GO TO 1470
1460 PRINT 413s IN24(NYs KR24(NYs ESN2(N)s SIN2(N)s ASN2{N)s CSN2(N)»
1 SHNZ2 (N)s SHDNIN)
1470 CONT INUE
C———— INPUT TABLE 5
1500 PRINT 5uu
PRINT 4ul
IF { KEFPS ) 9980, 1501 1510
1541 NC16 = 1
NCT5 = NCDS
GO TO 1530
1510 PRINT 9068
IFC 1 eGTNCTH ) GO TO 1526

DO 1525 N = 1 NCTS
KSW5N = KSW5(N)
GO TO ( 15135 1517 15215 1521 )9 KSW5 N
1513 PRINT 411s INISUIN)s IN25(N)s KR25(N)s EBNZ{(N)s BINZ2(N)s ABN2(N)»
1 CBN2(N)s BHNZ(N)s BHDN(N)

85

28MRe
015E66
28MR6
135E66
135E66
28MR6
N9 JE6
28MR6
09JE6
09Je6
28MRA
09JE6
09 JE6
28MR6
215E66
28MR6
28MR6
28MR6
28MR6
28MR6
28MR6
28MR6
28MR6
28MR6
28MR6
28MR6
28MRA
09JE6
30MR6
28MRé6
135E66
13SE66
28MR6
09JE6
28MR6
09 JE6
09 JE6
28MR6
09Jeé6
09 JE6
28MR6
28MR6
28MR6
26JL6
28MR6
28MR6
28MR6
?8MR6
?8MR6
015E66
28MR6
135E66
13SE66
28MR6
09JE6



NCT6

GO TO 1525
1517 PRINT 412s IN15(N)s KR25(N)s EBN2(N),
1 BHN2(N}s BHDNI(N)
GO TO 1525
1521 PRINT 413s IN25(N)s KR25(NYs EBN2(N),
1 BHNZ2{N)» BHDN(N)
1525 CONT INUE
1526 CONT INUE
PRINT 91¢C
NC15 = NCT5 + 1
NCT5 = NCT5 + NCD5S
1530 IF ( NCT5 - 100 ) 1535, 1535, 1533
1533 PRINT 904
GO TOQ 9990
1535 IF ( NCDS5 9980s 15379 1540
1537 PRINT 9U3
GO TO 16N0
1540 KR1 =
DO 1570 N NC15s NCT5S
READ 41s IN15(N)s IN25(N)s KR25(N})s EB
1 CBNZ2(N)s BHN2(N)s BHDNIN)
KSW5(N)Y = 1 + KR25(N) + 2 % K
KR1 = KR25(N)
KSWaN KSWS (N)
GO TO ( 155Us 1555s 1560 1560 ),
1550 PRINT 411»s IN15(N)s IN25(N)s KR25(N),
1 CBN2(N)s BHN2(N)s BHDNI(N)
GO TO 1570
1555 PRINT 412s IN71S5(N)s KR25(N}s EBN2(N),
1 BHN2(N)s BHDN(N}
GO TO 1570
1560 PRINT 413, IN25(N)s KR25(N)s EBN2(N},
1 BHN2(N)s BHDNI(N)
1570 CONT INUE
————— INPUT TABLE 6
1690 PRINT 6uU
IF ( KEEP6 9980s 1601s 1610
l6v1 NC16 1
NCT6h NCDe6
GO TO 1630
1610 PRINT 905
IF( 1 «GT«NCTH ) GO TO 162¢
DO 1625 N 1s NCT6
KSWeN KSW6 (N)
GO TO ( 1613s 1617s 16219 1621 1}
1613 PRINT 411s IN16(N}s IN26(N)s KR26(N)
GO TO 1625
1617 PRINT 412s INT6(N)s KR26(N)s SCMNIN)»
GO TO 1625
1621 PRINT 413s INPGAIN)s KR26(N)s SCMNIN),
1625 CONT INUE
1626 CONT INUE
PRINT 910
NC1l6 NCT6 + 1

NCT6 + NCD6

BIN2(N)s ABN2(N),

BIN2(N)Ys ABN2(N)»

N2{N)Ys BIN2(N)»

R1

KSW5 N

EBN2{N)s BINZ2(N),

BIN2(N)s ABN2(N),

BIN2({N)s ABNZ (N),

KSW6 N

SCMN{N)» QN2(N)s SN2(N)

QN2 (N) s SN2(N)

AN2(N)s SN2I(N)

CBN2(N},

CBN2(N) »

ABN2 (N} »

ABN2 (N}

CBN2(N)

CBN2{N)Y»

A2,

28MR6
09JE6
09JE6
29MR6
09JE6
09JE6
29MR6
135E66
29MR6
29MR6
29MR6
29MR6
29MR6
30MR6
29MR6
29MR6
29MR6
29MR6
29MR6
29MR6
09JES
30MR6
29MR6
135E66
135E66
28MR6
09JE6
29MR6
09JE6
09JE6
29MR6
09JE6
09JE6
29MR6
29MR6
29MR6
29MR6
29¥R6
29MR6
29MR6
29MR6
01SEs6
29MR6
135E66
135€E66
09JE6
29MR6
09JE6
29MR6
09JE6
29MR6
13SE66
29MR6
29MR6
29MR6



A2,

1630 [E { NCTé6 —~ 100 1} 1635 16355 1633
1633 PRINT 9Su4

GO TO 9990
1635 IF { NCD6 Yy 9980, 1637y 1640

1637 PRINT 903
GO To 1700
1640 KR = 0O
DO 1670 N = NCl6s NCT4
READ 419 INT6(NYs IN26(N}Ys KR26(N1s SCMNI(NYs QN2{N)s SNZ2{N)
KSWHIN) = 1 + KR26{N} + 2 # KR1
KSWEN = KSW6EINY
GO TQ ( 1650, 1655+ 1660s 1660 )y KSWE N
1650 PRINT 411s IN16{N)s INZ6(N)s KR26(N}s SCMNINIs QN2IN}s SN2(N)
GO TO 1670
1655 PRINT 412s INI&({N}s KR26(N)s SCMNIN)s GNZ2{Nys SNZIN}
GO TO 1470
1660 PRINT 413y IN26(N}s KR26(N)}s SCMNINIs QNZ2({N1s SNZ2(N)
1670 CONTINUE
----- INPUT TABLE 7
1700 PRINT 700
IF ( KFFP7 )} 9980, 1701, 1710

1701 NC17 = 1}
NCT7 = NCD7
Go To 1730
171G PRINT 905
IF{ 1 «GTWNCT? y GO TO 1726

DO 1725 N = 1s NCT?
KSWTN = KSW7{N)
GO TO ( 1713s 1717 17215 1721 )s KSWT7 N
1713 PRINT 411s INV7(NIs IN27{Nis KR27(N)s TSN2I{N)Ys TBN2(N)s RSN2(N),

1 RBNZI{NYs PSN2(NJs PBN2IN)
GO TO 1728
1717 PRINT 412s INT7{NYs KR27(Nj}s TSN2(N)s THBN2(N)s RSN2(N}, RBN2{N},
1 PSN2(NYs P3N2IN)
co To 1725
1721 PRINT 413s IN2T7(N), KR27(N)s TSNZIN}s TBN2ZIN)s RSN2(N})s RaN2(N},
] PSNZINYs PBN2IN)
1725 CONTINUF
1726 CONTINUE
PRINT 91U
NC17 = NCT7 + 1
NCT7 = NCT7 + NCD7
1730 IF { NCT7 ~ 100 ) 1735, 1735, 1733
1733 PRINT 9Qus
GO TO 9990
1735 IF ( NCD7 )} 9980s 1737 1740
1737 PRIMT QU3
GO TO 1800
1740 KRl = o

DO 1776 N = NC17s NCT7
READ 41s INITIN)s IN27(N}se KR27(N)s TOSNZ(N)s TBNZIN)s RSN2{NJ,
1 RBNZ2(NYs PON2(N)s PBNZ2IN)
KSW7IN) = 1 + KR2T7{N) + 2 * KR}
KR1 = KR27(N)
KSW7N = KSWT(N)

29MR6
29MR6
29MRb
29MR6
29MR6
29MR6
29MR6
29MRE
09JE6
29MR4
135866
135E66
09JES
29MR6
05 JE6
29MR6
03 JEs
29MRé6
08JES
08 UES
08JEe
08JE6
08JES
08.JE6
08JE6
015E66
08JES6
135E686
135E66
08JEe
08JEs
08JES
08JEG
08JEs
ugJES
08B JES
0BJES
08JES
130L66
08JER
08Jt6
08JESL
0BJES
08.JE6
08JEs
08JE6
0BJES
C8JEs
CBJES
08JES
0B.JES
0BJES
08JES
08JE6
135866
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1

1

]
1770
1800

1850

GO TO ( 175Uy 1755, 1760 1760 )y KSWT7 N
1750 PRINT 411s INT7(N)s IN27(N)s KR27(N)s TSN2(N)s TBN2I(N),
RBN2(N)s PSN2(N)s PBN2{N)
GO TO 1770
1755 PRINT 4129 IN17(N)s KR27(N}s TSN2(N)s TBN2(N)s RSN2(N)s
PSN2(N)s PBN2(N)
GO TO 177C
1760 PRINT 413y INPT7{N)s KR27{N)s TSN2(N)s TBN2(N)s RSN2(N),
PSN2(N)s PBN2IN)
CONTINUE
LSM =1
INTERPOLATE AND DISTRIBUTE VALUFS FROM TABLE 4
CALL INTERP4 ( MPT7s NCT4s INl4s IN24s KR249 ESN2,s ESs LSM )
CALL INTERP4 ( MP7s NCT4s INl4s IN24s KR249 CSN2s CSs» LSM )
CALL INTERP4 ( #MP79 NCT&s INl4s IN24s KR249 SHNZs SHs LSHM )
CALL INTERP4 ( MPT7s NCT4s INl4s IN249 KR249 SHDNs SHDs LOSM
LSM = L
CALL INTERP4 ( MP7s NCT4s INl4s IN24s XKR249 ASN2s ASs LSM )
CALL INTERP4 ( P79 NCT4s INl4s IN24s KR249 SIN2s SIs LSM )
INTEFRPULATE AND DISTRIBUTE VALUES FROM TABLE 5
LSM = 1
CALL INTERP4 ( MP7s NCT5s IN15s IN25s KR25s EBN2s EBs LSM )
CALL INTERP4 ( MP7s NCT5s IN15s IN25s KR25s CBN2, CBs LSM )
CALL INTERP4 ( MPT7s NCT5s IN15s IN25s KR25s BHN2, BHs LSM }
CALL INTERP4 ( MP7, NCT5s IN15, IN25s KR25s BHDN,s BHDs LSM
LSM = v
CALL INTERP4 ( MP7, NCT5s IN15s IN25s KR25s ABN2s AB,s L3M )
CALL INTERP4 ( MP7s NCT5s IN15s IN25s KR259 B8IN2s Bls LSM )
INTERPOLATE AND DISTRIBUTE VALUES FROM TABLE 6
LSM = 1
CALL INTERP4 ( #MPT79 NCT6s IN16s IN26s KR269 SCMNy SCMs LSHM )
LSM = v
CALL INTERP4 ( MP7, NCT6s INl16s IN26s KR26s QN2s Qs LSM )
CALL INTERP4 ( MP74s NCT6s INl6s IN26s KR26s SN2y Sy LSM )
INTERPOLATE AND CISTRIBUTE VALUES FROM TABLE 7
CALL INTERP4 ( MP7s NCT7s IN17s IN27s KR279s TON2s TSs LSM )
CALL INTERP4 ( MP7s NCT7s IN17s IN27s KR27s TBN2s T8Bs LSM )
CALL INTERP4 ( MP7s NCT7s IN17s IN27s KR27s KOSN2s» RSs» LSM )
CALL INTERP4 | #MP7s NCT79 IN17s IN27s KR279 RHN2s RB»s» LSHM )
LSM = 1
CALL INTERP4 ( MP7, NCT7s IN17s IN27s KR27s PSN2s PSs LSM )
CALL INTERP4 ( MP7s NCT7s IN17s IN27s XR27s PBNZ2s PBs LSM )
C5{3) = CS(4)
cB(3) = CBl4)
CSIMPB)Y = CS(MPY)
CB(MPSK) = CB(MP4)
DO 185y J = 1s MP7
FStJ) = ES(J)y % ST(J)
FB(J) = EB(J) % BI(J)
CONT INUE
KERR = v
ITER = O
STURE VALUES OF DISPLACEMENT FROM THE PREVIOUS TTERATION
DO 31luvu J = 1, MP7
UsTi(d)y = Usitd)

RSN2(NY»

RBN2(N)»

RBN2{N) s

A2,

135E66
08JE6
08JES
08 JES6
08Jte6
08 JEG6
08JE6
08JE6
08 JE6
08JE6
N2JL6
29MR6
15JL6
15JL6
15JL6
15JL6
n2JL6
15JL6
15JL6
29MR6
29MR6
15JL6
15JL6
15JL6
15JL6
29MR6
15JL6
15JL6
29MR6
29MR6
15JL6
05AP6
15JL6
15JL6
08JE6
15JL6
15JL6
15JL6
15JL6
08JE6
15JL6
15JL6
29JL6
29JL6
29JL6
29JL6
29MR6
29MR6
29MR6
29MR6
26JL6
25JL6
25JL6
25JL6
25JL6
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A2.9
UBT (U} = UB(J) 26JL6
310U CONTINUE 25JL6
ITER = ITER + 1 25JL6
SMD = UaU 25JL6
NSTA = U 25JL6
NS = 1 09JE6
SMP = Uau 10JE6
SMP1 = U.0 10JE6
————— COMPUTE MATRIX COEFFICIENTS 08JE6
DO 35uU J = 3 MP5 15JE6
SMD = SMD + SHI{J=1) % US(J-1) + BH{(J=-1) % UB(J~1) 25JL6
SMD1 = SMD + Ue5 #* ( SH({J) * USI(J) + BH{J) # UB(J) ) 25JL6
SMD2 = 240 % SMD + 15 ¥ ( SH(J) * US(J) + BH(J) % UB(J))125JL6
1 4045 % { SH(J+1) * US{J+1) + BH(J+1) * UB(J+1) ) 27JL6
SMD3 = SMD + SHI(J) * US(J) + BH(J) * UB(J) 25JL6
1 + 065 * ( SH{J+1) * US(J+1) + BH(J+1) * UB(J+1) ) 27JL6
SMP = SMP + PS{J-1) + PR(J-1) 10JE6
SMP1 = SMP + PS(J) + PBI(J) 10JE6
AllsJ) = AS(J-1) * ES(J-1) / H 25JL6
Al2sJ) = U0 25JL6
Al3sJ) = 045 % { CS(J=1) + CS(J) + CB(J-1) + Cd(I) ) 25JL6
1 ¥ SCM(J) / H 25JL6
Alasd) = — ( AS(J—=1}) * ES(J-1) + AS(J) * ES(JIYy ) / H 26JL6
1 - SH{J} = SCM(D 25JL6
Al5sJ) = SCMI(J) 27JL6
Albsd) = = 045 % ( CS(J-1) + CS{J) + CB(JI-1) + CB(J) ) 27JL6
1 # SCM(J)Y 7/ H 25JL6
Al7sJ) = AS(J) * ES(J) / H 25JL6
Al8sJ) = 040 25JL6
A{GsJ) = (a0 25JL6
AlL10sJ) = = PS(J) 26JL6
BilsJ) = AB(J-1) ¥ EB(J-1) / H 25JL6
Bl2sJ) = = 045 % ( CSUJ-1) + CS(J) + CB(J=-1) + CB(J) ) 25JL6
1 * SCYlJY /7 H 25JL6
B(3sJ) = SCM(J) 25JL6
Blasd) = - ( ABIJ-=1) * EB(JU-1) + AB(J} * EB(J) ) / H 25JL6
1 - BH{J) - SCM(J) 25JL6
Bi5sd) = 0¢85 % ( CS(J=11 + CS(J) + CBlJ=-1) + CB(JI) ) 25JL6
) * SCHM(J) / H 25JL6
BlosJ) = (a0 25JL6
Bl7sJ) = AB{(J) * FB(J) / H 25JL6
BlRsJ) = 040 25JL6
BI(9sJ) = = PBI(J) 25JL6
CllsJd) = FS{J=1) + FB(JI-1) —.0e25 #* H 29JE6
1 ¥ [ RS(J=1) + RB(J-1) ) 29JE6
Cl29J) = CS(J=1) * AS(J=-1) * ES(J-1) * H 07JE6
Cl3sJ) = — CB(J=-1) % AB(J-1) % EB(J-1) * H 09JE6
Clasd) = = 240 % ([ FS(J=1) + FB(J=1) + FS(J) + FB(J) )} O07JES6
1 + HE2 * ( SMP + 045 % ( PS{J) + PB(J) ) ) 09 JE6
2 - SMD1 # HE?2 25JL6
Ci5ed) = ( CS(J-1) * AS(J=1) * ES{J=1) + 2.0 % CS{(J) O7TJIEs6
1 # AS({J) ¥ ES(J) + H * ( 045 % ([ CS(J-1) 07JE6
2 + CS(J) ) + SHD(J)Y ) * SHI(JYy ) * H 07JE6
ClBed) = ( CBIJI=1) % AB(JI-1) * EB{J-1) + 2.0 * CB(J) 07JE6
1 ¥ AB{J) ¥ EB(J) + H * { 0.5 % ( CB(J-1) 07JE6
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ot

4200

4201

4250

4340

4350

+ CB(J)Y )+ BHD(J) } * bdH(JY ) * H
Cl7sd) = FS(J-1) + FB(J-1) + 40 * ( FS{J)Y + FBLJI) )
+ FS{J+1) + FbolJd+1l) =~ ( 240 % SMP + 145 %
{ PS{J)Y + PBI(JY ) + Qa5 * { PS{J+1})
+ PBlJ+1} } )y % HE2 + S(J) #* HE3 + 0425 % H
¥ { RS(J=-1) + RB{JI-1) + RS{J+1) + RBUlJI+1) )
+ SMD2 * HE?2
Cl8sJ) = [ 2.0 * CS{JYy # AS(J) * ES(J) + CS5(J+1)
¥ OAS{J+1) ¥ ES(J+1) + ( Qa5 * { CS5(J)
+ CS{J+1} ] + SHDUIJ+1) ) % SH{J+1) * H ) % H
Ci9sd) = = [ 2.0 % CB({J) ¥ AB(JY * EB(J) + CB(JI+]1)
# AB(J+1) #® Eo(J+1) + ( Q5 ¥ ( CB(J)
+ CB{J+1) ) + BHD(J+1) )} % BR{J*L) * H ) ¥ H
Cl10sJ) = = 2.0 ¥ { FS{J) + FB(J) + FS(J+1) + FB(J+]1)
+ { SMP1 4+ 05 % ( PS{J+1)} + Ppid+1) 3 )
~ SMD3 % HE2
Cl1lsd) = = CS{J+1}) * AS{JI+1) % ES(J+1) * H
Cll12sJy = CB{J+1) ¥ AB{J+]1) * EB(J+]1) * H
Cl13sJ) = FS{J+11 + FBUJ+1) — 025 * H * { RS(JI+1)
+ RB(J+1) )
Cllasd) = QUJY * HER + 0,8 % { - PSUJYy % { C5(J-1)
+ CS{JY 1+ PS{J+1) %  CSUUYy + CS(J+1y )
+ PB(Jy % { CB(J-1) + (B{J}Y y =~ PB(J+1)
* ( CB(J) + CBLJ+1) ) ) ¥ fE2 = Q5 % HEZ
¥ { TS{J=-1) + TB(J=-11r = TS5{J+1) - T8BLI+1) ¥
CONTINUE

BEGIN GAUSSIAN ELIMINATION

DO sLUU U = 4s MPS
IF { KEY{J) = 1 ) 998uUs 4200s 4050
SPECIFIED DEFLECTION
DO 4UBS5 N = 19 14
CiNsJ} = (.0

CONTINUE

ClT7sJ} = 1.0

Cllasd) = WSINS)

NS = NS + 1
IF{ Cl{79J-1) ) 4201944014201

CM = =~ A(3.J) / C{TsJ-1)
DO 4250 N = 3y 10

TCIN) = CM % CI(N+49J-1)

AlNsJ) = A(NsJ) + TCIN)
CONTINUE

CM = =B(2sJ) /7 C(T7sJ-1)
DO 4300 N = 2% 9

TCIN) = CM % C{N+HsJ-1)

BiNsJ)Y = B{NeJ) + TCIN)
CONT INUE

CM = = Clasd) / C{T7sd-1)
DO 4350 N = 4s 10

TCINY = CM % CIN+39J=-1)

CiNsJ) = CINsJ) + TC{N)
CONT INUE

Cllaydy = Cll4sd) + CM ¥ Cllasd-1)

CM = = CllsJ+1} 7 ClT4d-1)

DO 4400 N = 1s 7

* HE2

A2.10

07JE6
07TJES
07JEG
07JE6
29JE6
29JE6
25JL6
07JE6
07JEE
09JEE
07JE6
07JE6
09JE6
09JE6
09JE6
25JL6
09JEG
09JE6
29JE6
29JE6
09JE6
07JE6
07JEG
29JE6
29JEG
16 JE6
09JES
15JE6
30JE6
15JE6
25JL6
30.JE6
30JE6
30JES
30JEG
30JE6
040CE6
040C66
06JE6
08JEG
06 JEg
06JESL
06JES
06JEG
08JESG
06JES
06 JEG
06JE6
06JEG
06JE6
06JEG
06 JEGE
06JE6
06JEG
06JE6
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4400

4401

4402

4500

455U

46U0

4650

4651
4652

4709

4750

48uuU

TCIN) = CM * C(N+69J-1)
CUINsJ+1) = C(NsJ+1) + TCI(N)}
CONTINUE
Cll4eJd+41) = Cl1lbsd+]1) + CM % C(14sJd—1)
IF{ Al49d) ) 4402446514402
CM = — B(3sJ) / Al4gsJ)
DO 4560 N = 34 9
TCIN) = CM #* A(N+1sJ)
BINsJ) = BI(NsJ) + TCIN}
CONTINUE
CM = = C(5sJ) / Ald4s))
PO 455U N = 54 10
TCIN) = CM % A(N-1sJ)
CINsJ) = C{NsJ) + TCI{N)
CONT INUE
Cll4sd) = Cl1l4sd) +-CM * A(10sJ)
CM = = A(lsJ+1) /7 Al4,))
DO 460U N = 19 6
TCIN) = CM #* A(N+3+J)
A(NsJ+1) = A(NsJ+1) + TC(N)
CONTINUE
Al10sJ+1) = A(10sJ+1) + CM #* A(10sJ)
CM = = C(2sJ+1) /7 Al4sJ)
DO 4650 N = 24 7
TCIN)Y = CM % A(N+2sJ)
CINyJ+1) = CINsJ+1) + TC(N)
CONTINUE
Cll4sJd+1) = Cl{lbsJd+1) + CM % A(10sJ)
IF( Bl4asd) ) 4652+600094652
CM = = Cl6esJd) / Blusd)
DO 4700 N = 69 1C
TCINY = CM % B(N=2sJ)
CINsJ) = CiNsJ) + TCIN}
CONTINUE
CllasJd) = CllbsJ) + CM % B(9sJ)
CM == A(2sJ+1) / Bl4+J)
DO 475U N = 23 6
TCIN) = CM # B{N+2+J)
A(NsJ+1) = A(NsJ+1) + TC(N)
CONTINUE
A(10sJd+1) = A(lusd+l) + CM * B(9sJ)
CM = = B{lsJ+1) 7/ Bl4sJ)
DO 48CU N = 1% 5
TCIN) = CM # B(N+3sJ)
B(NsJ+1) = B(NsJ+1) + TCI(N)
CONTINUE
B{GsJ+1l) = B(9sJ+1) + CM % B(9sJ)
CM = = C(3sJ+1) / Bl4sJ)
DO 4850 N = 35 7
TCIN) = CM * B{N+1sJ)
CINsJ+1) = C(NsJ+1) + TC(N}
CONT INUE
Cllbed+1l) = CllbsJ+1l) + CM * B(9sJ)
CONTINUE

BEGIN bACK-SUBSTITION

06 JE6
06JE6
06JE6
06JE6
040C66
06 JE6
06JE6
06JE6
06JE6
06JE6
06JE6
06JE6
06 JE6
06JE6
06JE6
06JE6
06JE6
06 JE6
06 JE6
08JE6
06JES
06JE6
C6JE6
N6JEG6
06JE6
06JE6
06JE6
06JE6
040C66
06JE6
06JE6
06JE6
08JE6
06JE6
06JE6
06JE6
06JE6
08JE6
06JE6
06JE6
06JE6
06JE6
06JEb
06JE6
06JE6
06JE6
06JE6
06JE6
06JE6
06 JE6
06JE6
06JE6
06JE6
06JE6
07JE6
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DO 610U L = 35 MP5
J = MP5 + 3 - L

IF( ClT7sd) Yy 600546010,60U05
6005 WIJ) = = 160 /7 CUT9Jd) * ( C(B9sJd) ¥ US(J+1) + C(9sJ)
1 ¥ UB(J+1) + Cl10sd) #* W(J+1) + C(1llsJd) * US(JI+2)
+ Cl12sJ) % UB(J+2) + Cl13sJ) * W(J+2) = C(14sJ)
6010 IFU Bl4asd) ) 60154,6020+6015
6015 UBI(J) = —1eU 7/ Blaed) * [ B(5ed) * W(Jd) + B(esJ)
1 ¥ US({J+1) + B(79J) % UB(J+]1) + B(B8sJ) * W(JI+])
- B(gsJ) )
6020 IFL Albasd) ) 6025+610U960U25
6U25 USIJ)Y = = 1.0 7 Alssd) * [ Al5sd) * UB(J) + Alged)
1 ¥ W(J)Y + A(T79J) ¥ US{J+1) + A(BsJ) ¥ UB(J+1)
+ A(9sJ) % W({J+1) — A{10sJ}) )
6100 CONT INUE

1IF  ITTER = 1 ) 9980s 6110y 6120
6110 PRINT 8ul
PRINT 8C5s IM1s 1M2s IM3

C—-=--— DETERMINE IF PROUBLEM IS NONLINEAR
6120 IF ( TTMAX ) 9980y 615U 6200
6150 PRINT 9U3
GO TO 8U00
C—=—=- CHECK THE NUMBER UF ITERATIONS AGAINST THE SPECIFIED LIMIT
6200 IF ( ITER - ITMAX ) 6300, 6300s 6250
6250 KERR = 1
GO TO 8u00
63u0 DO 6400 J = 4s MPS
C————- COMPARE DISPLACEMENTS TO THE PREVIOUS TTERATION
IF ( ABSF( US(J) - UST(J) ) - CLTOL ) 6350, 6350 6375
6350 [F ( ABSF( UB(J) - UBTU(J) ) — CLTOL ) 6400, 6400s 6375
6375 NSTA = NSTA + 1
6400 CONTINUE
JM1 = IM1 + &
JM2 = IM2 + &4
JM3 = IM3 + 4
UM(1) = US(TJM])
UM(2) = UB(JM1)
UME3) = US(UM2)
UME4) = UB(JIM2)
UMis) = US(JIMI)
UMie) = UB(JIM3)

PRINT 810s [ITERs NSTAs ( UM{N)s N = 19 6 )
IF ( NSTA ) 998Us BUUUSs 3000

Cmm=== COMPUTE RESULTS
8uud Wl2) = 240 % W(3) ~ Wlg)
W(MP6) = 240 ¥ WI(MP5) — W(MP4)
DO 8ubu J = 3, MP5
DW2 = ( W(J-1) — 2.0 ¥ wW(J) + W(J+1) )Y / HE?2
BMS(J) = FS(J) * DW2
BMB(J) = FBLJ) * DW2
SAL(JY = ({ = US(J) + US(JI+1) ) ¥ AS(J) ¥ ES(JY / H
BAL(J) = — ( - U3(J) + UB(J+1) ) * AB(J) * EB(J) / H
805v CONT INUE

DO 8luu J = 44 MP5
GAMA(J) = US(J)y — UB(J) + 045 /7 H ¥ ( CS(JI-1) + CS(J)

A2.12

07JE6
09JE6
050C66
07JE6
07JE6
}OTJEG
050C66
07JE6
07JE6
10JE6
050C66
07JE6
07JE6
07JE6
07JE6
02AG6
02AG6
25JL6
25JLé6
02AG6
25JL6
25JL6
25JLe
26JL6
26JL6
26JL6
27JL6
25JL6
26JL6
25JL6
25JL6
25JL6
27JL6
27JL6
27JL6
25JL6
25JL6
25JL6
25JL6
25JL6
25JL6
25JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
29JL6
26JL6
26JL6
26JL6
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R1vU

8120

S wN

816U
8175

82uu

818y
8195

83uU

Q938U
9990

+ CB(J=1) + CB(J)Y ) % (= W(J=1) + WI(J) )
FPCUJ) = SCM(J)y * GAMA{J)
VSEJY = (= BMSIJ-1) + BMS(J) - FPC(J) % 0.5
¥ CS(J=1) + CS(Jy ) + US(J) * SHI(J)Y * SHDI(J)
- ( SAL(J-1} + SAL(J)Y ) * 0e5 * ( — W(J=-1)
+ WlJY )y / H
VBI(J) = ( ~ BMB(J-1) + BMB(J) - FPC(J) ¥ 045
¥ O CB(J=1) + CB(J) ) - UB(J)Y * BH(J) * BHD(J)
+ ( BAL(J-1) + BAL(J) )y * Q05 * ( ~ W(J-1)
+ WwiJ}) ) ) / H
CONTINUE
DO 8l5v J = 3. MP5
IF ( KEY(J) - 1 ) 9980y 8130, 8120
REACT(J) = — VS(J) = VBI(J)y + VS({J+1) + vB(J+1)
- Q{JY + ( TS(J=1) + TBlLJ-1) = To(J+1)
- TB(J+1) )y 7/ HT2 = ( ( RS(J=-1) + RB{J=-1) )
* W(J=2) — ( RStJ-1) + RBfI-1) ) * W(J)
- { RS(J+1) + RBIlJ+1) ) * W(J)Y + ( Rs(J+1)
+ RBOJ+1) ) % W(J+2) ) 7/ ( 440 * HE2 )
GO TO 8150
REACT(J) = S(J)Y ¥ Wi(J)
CONTINUE
PRINT RESULTS
PRINT 11
PRINT 1
PRINT 13s ( ANI1(N}s N = 1s 32 )
PRINT 16s NPROBs ( AN2(N)s N = 1s 14 )
IF ( KERR ) 9980, 8175 8160
PRINT 83u
PRINT 85y
ISTA = - 1
PRINT 860y ISTAs W(3)s BMS(3)s SAL(3)s BMB(3)s BALI(3)
DO 82uu J = 4y MPS
ISTA = J - 4
PRINT 87Us FPC{J)
PRINT 86Us ISTAs wWitJd)s BMS{J)s SALIJYs BMB(J)s BALI(J)
CONTINUE
PRINT 11
PRINT 1
PRINT 13s [ AN1(N)s N = 19 32 )
PRIMT 169 NPRCBs { ANZIN)s N = 15 14 )
IF { KERR ) 9980s 8195, 6180
PRINT 83u
PRINT 875
[STA = - 1
PRINT 880y ISTAs REACT(3)
DO 83uu J = 4 MPS
[S5TA = J - 4
PRINT 89us US(JYs VolJ)s uUbB(Jys vBI{J)Ys GAMALJ)
PRINT 88us ISTAs REACTI(J)
CONT INUE

CALL TIC TOC (4)
GO TO 1010

PRINT 98

CONTINUF

93

26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
02AG6
02AG6
26JL6
26JL6
26JL6
26JL6
02AG6
02AGH
02AG6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6
26JL6E
26JL6
255E66
26AG3 1D
28MR6
12MR5 ID
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9999

905
908

16023

1605

1610

1620

1630

1659

165%

1660
1665
1670

1675
1676
1695
1698

17a¢

CONTINUE

PRINT 11

PRINT 1

PRINT 13y ({ ANT(N)s N = 1, 32 )

PRINT 19

END

SUBROUTINE INTERP& ( MP7s NCT» JN1s JNZ2s KRZ2s ZNs Zs LSM

DIMFNSION UN1(100)s JUNZ2{100)s KR2(100}s ZN(1003)s Z{207}

FORMAT ( //40H FRROR STOP =- STATIONS NOT IN ORDER

FORMAT ( //43H UNDESIGNATED ERROR STOP IN SUBROUTINE
DO 1603 J = 1s MP7

2y = 040
CONTINUE
M = MP7 - 7
KR1 = O
IFC 1 «GTNCT ) GO TO 1676

DO 1675 NC = 1. NCT
IF { XKR1 1} 1698s 1605, 1610

NC1 = NC
JY o= UNLINCL)
KSM = 0
IF ( KR2{NC)Y ) 1698y 1610y 1670
J1 = JV + 4
J2 = JN2(INC) + &4
JS = Jl1 + KSM
DENOM = J2 - J1
JINCR = 1
ESM = 100
ISW = 1 - LSM
IF ( DENOM ) 1695s 16204 1630
DENOM = 140
ISW = O
DO 1650 J = JSs J2s JINCR
DIFF = J -~ J1
PART = DIFF /7 DENOM
Z(JdY = Z2¢Jy + { ZN{NC1y + PART % ( ZNINCy = ZN{(NCD)
# ESM
CONTINUE
KS5M = L SM

IF { 15W ) 1698s 1660y 1655
JINCR = J2 - J1

EQM = ~O'5
IsW = 0O
GO TO 1630

IF { KRZ2{NC) )} 1698, 1670, 1665
JV = JN2(INC)
KRY1 = KR2(NC)
NC1 = NC
CONTINUE
RETURN
PRINT 905
GO TO 1799
PRINT 908
GO TO 1799
CONTINUE

)

}
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D4MY3
0BMY3
18FE5
18FES
26AG3
04MY3
15JL6
28JE6
14MY5
14MY5
26MRS
26MR5
26MR5
10FE6
12JA5
01SE66
26MR5
02JL6
12JA5
28JE6
28JE6
02JL6
28JE6
28JE6
nz2JLeé
28JE6
28JE6
28JE6
28.JE6
12JA%
12JA5
12JA5
28JE6
28JE6
02JL6
28JE6
28JE6
12JA5
28JE6
2BJES
12JA5
12JA5
12JA5
12JA5
12JA5
28JES
12JA5
12 JAS
12JA5
14MYS
14MY5
18JA8
14MY5
18JA8
18JA8



A2,

15

10

11
12

30
40

50

7Y
99y

END
SUBROUTINE TIC TOC (J)

FURMAT(//7730X19HELAPSED CPU TIME
FORMAT (/7 /30X15HCOMPILE TIME
FORMAT{///30X24HTIME FOR THIS PROBLEM

8H SECONDS )

=0 -2
IF( I-1 1} 40+30+30
Fl4 = F
CALL SECOND (F)
111 = F
11 = 111 /7 60
Flz = F - 11#%60

IFC 1 ) B5Us7U960
ODRINT 11y I1sF12
GO TO $90
FI3 = F - Fl4
12 = F13 /7 60
FI3 = FI3 - [2%60
PRINT 129 12s FI3
IFC [=1 ) 9909907V
PRINT 1lus l1sFI12
CONTINUE
RETURN
END

[5+48H MINUTESFOe3s8H SECUNDS
s15sBH MINUTESsF94.3+8H SECONDS
MINUTESsF9a3y

95

04MA3 1D
240066
255E66
255E66
255E€6
255E66
240Cs8
255E66
255E¢€¢6
255E6¢€
255Eé66
255866
255E66
255E66
255E66
255E£66
255E66
255E66
255E66
255E66
255E66
255t66
255E66
255E66
255E66
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NOTATION FOR COMBM 1

Al » )
AB( )}
ABN2( )
ANLL )y
ASL )
ASN2(
Bt s}
BAL({ )
BH{ )
8HOt )
BHON(
21( )
BINZ2( 1}
BMB{ )
BMS L )
[GEEE
CB( )
CcBNZt
CLTOL
M

st
CONZ L )
DENOM
DIFF
Dwt
DwWz

EBC )
EBNZ2( 1}
ESE )
ESM
ESNZ2{ )
FBC )
FRCL 1}
FS( )
GAMA( )
H

HE 2

HE3

HT2

AN2 ()

IMls IM2>

IN13(C )
IN14C )
IN16{
IN24( )
IN26 ¢

INSAY
1STA
15W
ITER
1TESTY

M3

IN1S5( 1

)

IN1TH{

IN2BL )

)

IN27(

)

)

UBAGS
MATRIX COEFFICIENTS 06AGH
CROSS SECTIUNAL AREA OF BEAM U6AGE
BEAM CRUSS SECTIONAL AREA { INPUT ) UEALE
TVENTIFICATION AND REMARKD (ALFAA—NUM) U6AGH
CROSS SECTIONAL AREA OF bHLAB U6AGH
SLAB CRUbS> SECTIUNAL AREA  InpPul ) 06AGE
MATRIX COttFICIENTS 06AGH
sEAM AXTAL LOAD UG6AGH
sEAM HORIZONTAL SPRING CONSTANT UGAGS
DIST OF dtAM NeAs TO HORIZ SPRING 06AGH
DIST OF BEAM NeAs. TO HUKIZ SPRING {INFUT) 06AGH
BEAM MOMENT OF INERTIA Q6AGH
dEAM MOMENT OF INERTIA ( INPUT ) 06AGH
BENDING MUMENT IN BEAM U6AGE
BENDING MOUMENT IN SLAB Q6AGL
MATRIX COEFFICIENTS 06AGo
DISTANCE FROM obAM NeAe TO INTERFACE UeAGS

DIST FROM DEAM NeAs TU INTERFACE ( INPUT JUBAGE
CLUSURE TULERANCE Fur Nun—LINEARK sulUTIUuN U6AGH

COEFFICIENT MULTIPLIER FOR ELIMINATING VEAGH

TERMS deLuw Trbk mAIN vIAGUNAL 06AGLH
UISTANCE FROM SLAB NeAs TO INTERFACE 06AG6
DIST FROM 5LAB NeAs (O INTERFACE [ INPUT JUBAGH
DENOMINATOR Q6AGH
DIFFERENCE 06AGH
FIRST DERIVATIVE OF DEFLECTION ( SLOPE ) 06AGH
SECOND DERIVATIVE OF DEFLECTION Q6AGH
MODULUS OF ELASTICITY OF BtAM UBAGE
BEAM MODULUS OF ELASTICITY { INPUT ) Q06AGE
MODULUS OF ELASTICITY OF SLAB 06AG6
MULTIPLIER FOR tND STATIONS Q06AGH
SLAB MODULUS OF ELASTICITY ( INPUT ) Q6AGH

BEAM FLEXURAL oTIFFNESS ({TOTAL PER >TA})  UBAGS
FORCE IN oSHEAR CUNNECTORS (TOTAL PER 5TA) 06AGH
SLAB FLEXURAL STIFFNESS (TOTAL PER 5TA)  Q6AGH

TOTAL SLIP AT INTERFACE 0BAGE
INCREMENT LENGTH 06AG6
H SQUARED 06AGH
H CUBED 06AGSE
H TIMES 2 06AGH
MONITOR STATIONS U6AGSE
EXTERNAL STA NUMSER FUR SPeCIFIcw weriedT 06AGH
INITIAL EXTERNAL STA udtED IN TABLES 06A06

4% 5s 69 AND 7 06AGS
FINAL EXTERNAL STA USED IN TAdLES 06AGE

49 59 63 AND 7 06AG6
TEMPORARY VALUE OF IN13( ) UEAGE
QUTPUT VALUE OF STA NUMBER Q6AGH
ROUTING SWITCH D6AGE
ITERATION NUMBER 06AGH
= 5 ALPHANUMERIC BLANKS USED TOU TERMINATE 06AGH

THE PROGRAM UEAGS

99
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[ TMAX

J

J1

J2

JA
JINCR
JM1
JM2 s
JN1(

JS
Jv

JIM3

)y

JN2 (¢ )

KEEP2 THRU KEEP7

KERR
KEY(
KR1
KR2t
KR24(

)

)

)

KR26(

KSM

KSwal

) s

KSWe6 (

L
LABEL
L SM

M

KR25( 1>

|}

KR271

KSW5( )

Yo

KSWT7I

MP2 THRU MP7

N

NC14 THRU NC17

NCD2 THRU NCD7
NCT3 THRU NCT7

NPROB
NS
NSTA
PART
PB( )
PBN2(
PSL )
PSN2{
Q)
QN2(
RB( )
RBN2(
REACT
RS(C )
RSN2{
S )
SAL(
SCMm{
SCMN{

)

{

)
)

)

)

)

)

)

)

)

)

MAXIMUM NUMBER OF ITERATIONS ALLOWED FOR
NON-LINEAR SOLUTION

DO LOOP INDEXs = STA NUMBER

INITIAL STA IN THE DISTRIBUTION SEQUENCE

A3,

06AG6
06AG6
06AG6
06AG6

FINAL STATION IN THE DISTRIBUTION SEQUENCEO6AG6

INDEX IN TABLE 3 SORTING PROCEDURE
INCREMENTATION INDEX

JA -1

INTERNAL MUONITOR STATION NUMBER

INITIAL AND FINAL EXTERNAL STATION NUMBER

OF THE DISTRIBUTION SEQUENCE
STA OF SPcCIFIED DEFLECTION
INITIAL STA NUMSER ON PREVIOUS CARD
IF = 1s» KEEP PRIOR DATAs TABLES 2-7
SWITCH TO INDICATE IF SOLUTION IS CLOSeD
ROUTING SWITCH FOR SPECIFIcD DeFLECTIONS
PRIOR VALUE OF KR2( )
CONTINUE SWITCH
CONTINUE SWITCHES IN TABLES
4% 59 69 AND 7
SWITCH USED FOR DISTRIBUTING VALUES TO
HALF~-STATIONS
ROUTING SWITCH IN TABLEY
4y Ss 69 AND 7
DO LOOP INDEX
DUMMY VARIABLE USED TO LABEL PROBLEMS
SWITCH FOR DISTRIBUTING VALUES TO
HALF=>TATIONS
TOTAL NUMBER OF INCREMENTo>
M+ 2 THRU M + 7
MATRIX COEFFICIENT SUPERSCRIPT
INITIAL INDEX VALUE FOR THE INPJUT TO THE
PARTICULAR TABLE
NUM CARDS IN TABLES 2 THRU 7, THIS PROB
TOTAL NUMBtR OF CARDS IN THE PARTICULAR
TABLE
PROBLEM NUMBER (PROGRAM STOPS [f BLANK)
INDEX NUMBER FOR SPECIFIED DEFLECTION
NUMBER OF STATIONS NOT CLOSED
INTERPOLATION FRACTION
LONGITUDINAL BtEAM LOUAD
LONGITUDINAL BEAM LOAD ( INPUT )
LONGITUDINAL SLAB LOAD
LONGITUDINAL SLAB LOAD ( INPUT )
TRANSVERSE FORCE (TOTAL PER STA)
TRANSVERSE FORCE ( INPUT )
ROTATIONAL BEAM RESTRAINT (TOTAL PER STA)
ROTATIONAL BcAM RESTRAINT ( INPUT )
SUPPORT REACTION AT EACH STA
ROTATIONAL SLAB RESTRAINT (TOTAL PER STA)
ROTATIONAL SLAB RESTRAINT ( INPUT )
SPRING SUPPORT STIFFNESS (TOTAL PER 9TA)
SLAB AXIAL LOAD
SHEAR CONNECTOR MODLULUS (TOTAL PER STA)
SHEAR CONNECTOR MODULUS ( INPUT )

06AGo
06AG6
06AG6
06AG6
06AG6
06AGH
06AG6
06AG6
06AG6
06AGH
06AG6
06AG6
06AG6
06AG6
06AG6
06AG6
06AG6
06AGE
06AG6
06AGE
06AG6
06AG6
06AG6
06AGH
06AGH
06AG6
06AG6
06AG6
06AGH
06AG6
06AG6
06AG6
06AG6
06AG6
06AG6
06AG6
Q06AG6
06AG6
06AG6
06AG6
06AG6
06AG6
06AG6
06AG6
06AG6
06AG6
06AG6
06AG6
06AG6
06AG6

2



A3.3 101

C SHU ) SLAB HORIZONTAL SPRING CONSTANT Q6AGE
C SHD{ ) DIST OF SLAB NeA. TO HORIZ SPRING 06AGE
C SHDN( ) DIST OF SLAB NeA. TO HORIZ SPRING (INPUT) 06AGH
C S1( ) SLAB MOMENT OF INERTIA Q6AGE
C SIN2t ) SLAB MOMENT OF INERTIA ( INPUT ) 06AGE
C SMD SUMMATION OF PROUDUCT OF HOKIZ SPRING ARD  06AG6
C HORIZ DISPLACEMENT 06AG6
C SMD1 THRU SMD3 NONLINEAR TERMS OF THE EQUATION 06AGE
C SMP SUMMATION OF LONGITUDINAL LOAD> 06AGE
C SMP 1 SMP + ADUITIONAL LONGITUDINAL LOADS 06AGSE
C SN2t ) SPRING SUPPORT STIFFNESS { INPUT 06AGE
C 8{ TRANSVERSE BEAM TORQUE (TOTAL PER STA) 06AG6
C TBNZ2! ) TRANSVERSE BEAM TORQUE { INPUT ) 06AGE
C TCL ) TEMPORARY COEFFICIENTS USED TO ELIMINATE (Q6AGSE
C TERMS BELOW THE MAIN OIAGUNAL 06A066
C TS0 ) TRANSVERSE SLAB TORQUE (TOTAL PER STA) 06AGSE
C TSN2{ ) TRANSVERSE SLAB TORQUE  INPUT ) 06AGE
C uB{ LONGITUDINAL DISPLACEMENT UF BtAM 06ALO
C UBTI ) LONGITUDINAL DISPLACEMENT OF BEAM 06AGE
C FROM PREVIOUS ITERATIUN UbAGE
C umMi ) OISPLACEMENTS AT THE MONITOR STATIUNS 06AGE
C ust LONGITUDINAL DISPLACEMENT OF SLAG 06A0G
C Usto ) LONGITUDINAL DISPLACEMENT OF SLAB 06AG6
C FROM PREVIOUS ITERATION 06AGH
C VBt ) SHEAR IN BEAM 06AGH
C VSt ) SHEAR IN SLAB 06AG6
C W{ } LATERAL DEFLECTION 06AG6
C WSt} SPECIFIED VALUE OF DEFL AT 5TAa Jo UH6AGE
C WSAV TEMPORARY VALUE OF WS( ) UbAGE
C 2t} INTERPOLATED VALUE C6AGE
C INU ) INPUT VALUE FOR INTERPOLATION 06AGH
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A4 1

105

SUMMARY FLOW DIAGRAM FOR PROGRAM COMBM 1

READ problem number and descriptiogw

Is there a problem?
Y Yes No

1800
Apply SUBROUTINE INTERP4

1 3000

READ and PRINT Tables 1-7. (dataﬁ @

Distribute data to storage

Store values of horizontal displacement

GCompute matrix coefficients

4000

Eliminate terms below main diagonal

Gaussian

Solve for unknowns (W, U®, U®)
by back substitution

elimination

PRINT monitor dat;j

Is the solution closed to
the specified tolerance?

A\rﬁo YYes

Has the max number
of iterations been
exceeded?

N/
INO Yes

i i Is the problem nonlinear?
Vo N/
Yes No

8000

Compute moments, shears, etc.

PRINT results \7




106 A4 2
GENERAL FLOW DIAGRAM FOR PROGRAM COMBM 1

READ and PRINT problem identification)

9990

READ and PRINT Tables 1 and 2. @

Table 1. Program Control Data
Table 2. Constants

Compute Constants

Clear Storage

READ Table 3. Specified Deflections)
1340

Rearrange the cards in Table 3 in
order of ascending station number

PRINT Table 3. N
1400

READ and PRINT Tables 4, 5, 6, and 7.
Table 4. Slab Properties

Table 5. Beam Properties
Table 6. Data common to the slab and beam
Table 7. Data for the slab and beam
1800
CALL INTERP4 Distribute all
data to storage

~—— DO for each sta (J) from 1 to MP7-)

(
|
FS(J) = ES(J) * SI(J) Compute the
FB(J) = EB(J) * BI(J) flexural stiffness
I 1850
e CONTINUE )
KERR = 0
ITER = O
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3000
—— DO for each sta (J) from 1 to MP7>

(
|
| VST(J) = VS(J) Store values
T VBT(J) = VB(J) Of horizontal
displacements

I 3100
N — CONTINUE:>

ITER = ITER + 1

SMD = 0.0

NSTA = O

NS ==1

SMP = 0.0

SMP1 = 0.0

Compute matrix coefficients

Set specified

C(14,J) = WS(NS) deflection

NS = NS + 1

N 4200
CM = - A(3,J) / C(7,J-1)

Begin elimination of

all terms below dﬁ_

i-1

4000
[,_ —————— DO for each sta (J) from 4 to MPS) Eif;?ngizzilan
| |
|
} ( ‘\\Efzfji/;/l//’ 9980
| + PRINT ...
| 4050
| (’-—'DO for each N from 1 to 14)
| | &
|
I T cN.J) = 0.0 Clear all coefficients
| | 4085 to zero
' l\— —————— CONTINUE )
|
T c(7,J) =1.0
[
[
|
|
|
|
|
|
|
|
I
|
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~—~—— DO for each N from 3 to ld)

f
|
| TC(N) = CM * C(N+4,J-1) Eliminate a3
’ A(N,J) = A(N,J) + TC(N) ai
l 4250
—————— — CONTINUﬁ)

CM = - B(2,J) / ¢(7,3-1)

~—— DO for each N from 2 to 9)

TC(N) = CM * C(N+5,J-1)

Eliminate b2
B(N,J) = B(N,J) + TC(N) i

4300
—_—————— —{ continue )

CM = - Cc(4,J) / ¢(7,3-1).

A (’— DO for each N from 4 to 10)
I
|
TC(N) = CM * C(M3,J-1) . 4
i C(N,J) = C(N,J) + TC(N) Eliminate Ci
l 4350
————————— CONTINUE)

C(14,J) = C(14,J) + CM * C(1l4,J-1)

CM = - C(1,J+1) / C(7,J3-1)

—— DO for each N from 1 to 7)

(
|
|
TC(N) = CM * C(N+6,J-1) . 1
| C(N,J+1) = C(N,J+1) + TC(N) Eliminate c )
{ 44,00

—_——— ] CONTINUE )

R O
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ey

C(14,3+1) = C(14,J+1) + CM * C(14,J3-1)

CM =

DO for each N from 3 to 9)

(

I

I TC(N) = CM * A(N+L,J)

T B(N,J) = B(N,J) + TC(N)
l 4500
—_————— — CONTINUE)

CM =

- C(5,0) [ AL,

DO for each N from 5 to 16)

TC(N) = CM * A(N-1,J)
C(N,I) = ¢(N,J) + TC(N)

4550
CONTINUE)

C(14,J) = C(1l4,3) + CM * A(10,J)

CM =

- A(1,J+1) [/ A(4,D)

DO for each N from 1 to Q)

TC(N) = CM * A(N3,J)
A(N,J+1) = A(N,J+1) + TC(N)
4600
—————— — CONTINUE )
A(10,J+1) = A(10,J41) + CM * A(10,J)
M = - C(2,3+1) [ A(4,)

109

Begin elimination
of all terms
below a;

Eliminate bz

.. 5
Eliminate ci

.. 1
Eliminate ai+1
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— DO for each N from 2 to ;)

I

| TC(N) = CM * A(N+2,J) . 2

T C(N,J+1) = C(N,J+1) + TC(N) Eliminate ¢, ;
| 4650

\

—_———————— CONTINUE)

C(15,J+1) = C(l4,J+1) + CM * A(10,J)

CM = - C(6,J) / B(4,J) Begin elimination
of all terms
below b%
i

rf— DO for each N from 6 to 1@)

|

I TC(N) = CM * B(N-2,J) . 6

| C(N,J) = C(N,J) + TC(N) Eliminate ¢,

I 4700

\

————— — — CONTINUQ)

C(14,J) = C(1l4,J) + CM * B(9,J)

CM = - A(2,J+1) / B(4,D)

~—— DO for each N from 2 to 6)

TC(N) = CM * B(N+2,J) liminate a2
AN,J+1) = A(N,J+1) + TC(N) € 4

I
I
I
I
I
—_—_——— CONTINUE)

A(10,J+1) = A(10,J+1) + CM * B(9,J)

CM = - B(1,J+1) / B(4,J)
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———— e — -

_—— e — — —

———

— DO for each N from 1 to 5)

TC(N) = CM * B(N+3,J)
B(N,J+1) = B(N,J+1) + TC(N)

4800
________ CONTINUE )

B(9,J+1) = B(9,J+1) + CM * B(9,J)

CM = - C(3,J+1) [/ B(4,T)

~—— DO for each N from 3 to 7;)

|

TC(N) = CM * B(N+1,J)
C(N,J+1) = C(N,J+1) + TC(N)

4850
——————— { CONTINUE )

111

- 1
Eliminate bi+1

.. 3
Eliminate Ci+1

C(14,J+1) = C(14,J+1) + CM * B(9,J)

6000

——————— CONTINUE )

DO for each sta (L) from 3 to MPS)

J=MP5+ 3 -1L

Compute W(J), UB(J), and US(J)

6100
———————— CONTINUE

Begin back
substitution

Y 6120

9980
PRINT ...




He A8

Determine if
problem is
6120 nonlinear

r~ ITMAX
6150 \\\\B‘////// | 9980
PRINT ...‘j PRINT ...

Check the number
of iterations
against the
specified limit

KERR = 1 -1 0
6500

Compare
displacements
to the previous
iteration

—_—_——— e ——— e

N 6375
NSTA = NSTA + 1
J
-
6400
—_————————— CONTINUE )
ML = IML + &
M2 = IM2 + 4
M3 = IM3 + &

8000
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UM(1) = US(JIML)
UM(2) = UB(IML)
UM(3) = US(IM2)
UM(4) = UB(JIM2)
UM(5) = US{IM3)
UM(6) = UB(IM3)

PRINT Monitor Dat;j

NG 9980
L 0 PRINT ...
N 8000

~ =1 po for each sta (J) from 3 to MPS) @

Ny

— ————,

Compute slab bending moment, beam
bending moment, slab axial load,
and beam axial load

8050
T —————— CONTINUE)

— o s—

~ = DO for each sta (J) from 4 to MPS)

Compute slip, force per connector,
slab shear, and beam shear

8100
————— ] CONTINUE )

g —

~=4 D0 for each sta (J) from 3 to MPS)

8150
N CONTINUE )

(
i
| Compute support reaction
I
I
{

PRINT Results

Return for new problem
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—_———— e — e ———

SUBROUTINE INTERP&4

DO for each sta (J) from 1 to MP7)

Z(J) = 0.0

1603

CONTINUET)

M
KR1 =

o3

DO for each card

(NC) from 1 to NCT)

1605

AL.10

NC1 = NC
JV = JN1(NC1)
KSM = 0

IF
KR2 (NC)

PRINT ...

N 1610

J1
J2
JS

JV + 4

J1l + KSM

DENOM = J2 - J1

1
.0

JINCR
ESM
ISW

- = N |

LSM

JN2(NC) + &

1670
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Gl

- IF 0
DENOM

1695 \\\\\\ 1620

+ l
PRINT ... DENOM = 1.0

& r )

- J 1630
DO for each sta (J) from J1
~ ™1 to J2 by increments of JINCR

I

J - J1

DIFF/DENOM
Z(J)+(ZN(NC1)+ PART *
(ZN(NC)-ZN(NC1)) ) *ESM

DIFF
PART
YAQ))

1650

S S ———

________ CONTINUE )

KSM = LSM

(i655

JINCR = J2 . Jl

ESM = . 0.5
ISW = 0

— oo €

G
1698 1665
{—L\ N
PRINT ... |Jv = JN2(NC) |
1677

i T
1670

e OO U USUU UCUD S ——
(
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APPENDIX 5

LISTING OF INPUT DATA FOR EXAMPLE PROBLEMS
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